forked from cultpenguin/mGstat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkrig_optim_mcmc.m
314 lines (255 loc) · 7.75 KB
/
krig_optim_mcmc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
% krig_optim_mcmc
% CALL :
% [V_new,be_acc,L_acc,par2,nugfrac_acc,V_acc,options]=krig_optim_mcmc(pos_known,val_known,V,options)
%
function [V_new,be_acc,L_acc,par2,nugfrac_acc,V_acc,options]=krig_optim_mcmc(pos_known,val_known,V,options);
V_new=V;
if ischar(V),
V=deformat_variogram(V);
end
options.isorange=1;
if isfield(options,'max_range')
max_range=options.max_range;
else
max_range=10*std(pos_known);
end
if isfield(options,'step_range')
step_range=options.step_range;
else
step_range=std(pos_known)/112;
end
if isfield(options,'step_nugfrac')
step_nugfrac=options.step_nugfrac;
else
step_nugfrac=.1;
end
if isfield(options,'annealing')
annealing=options.annealing;
else
annealing=0;
end
if isfield(options,'descent')
descent=options.descent;
else
descent=0;
end
if isfield(options,'gvar');
gvar=options.gvar;
else
gvar=var(val_known);
end
if isfield(options,'maxit');
maxit=options.maxit;
else
maxit=100;
end
if isfield(options,'method');
method=options.method;
else
method=1;
% 1: Maximum Likelihood
% 2: Maximum likelihood cross validation
end
ndim=size(pos_known,2);
options.dummy='';
nnug=13;
nugarr=linspace(0,1,nnug);nugarr(1)=.01;
std_known=std(pos_known);
mean_known=mean(pos_known);
% A PRIORI
na=25;
for idim=1:ndim
narr{idim}=na;
arr{idim}=linspace(0,2*std_known(idim),narr{idim});
arr{idim}(1)=0.01;
end
V_init=V;
V_old=V;
% NEXT LINE SHOULD GO !!!
% [d_est,d_var,be_init,d_diff,L_init]=krig_blinderror(pos_known,val_known,pos_known,V_init,options);
if method==1
L_init=krig_covar_lik(pos_known,val_known,V,options);
be_init=0;
else
[d_est,d_var,be_init,d_diff,L_init]=krig_blinderror(pos_known,val_known,pos_known,V_init,options);
end
if (isinf(L_init))
L_init=log(1e-300);
end
if L_init==0
L_init=log(1e-300);
end
be_old=be_init;
L_old=1.0001*L_init;
L_arr=[];
L_min=L_init;
L_new=L_init;
range_min=0.001;
%par2_all=zeros(maxit,length(par2));
L_all=zeros(1,maxit);
%be_all=zeros(1,maxit);
nugfrac_all=zeros(1,maxit);
t_old_plot=now;
nacc=0;
i=0;icum=0;
while i<=maxit
i=i+1;
icum=icum+1;
% Simulated Annealing
if annealing==1,
T=exp(-(i-1)/1000);
options.T=T;
end
% PERTURB MODEL
V_new = V_old;
% PERTURB RANGE
V_new(2).par2=V_new(2).par2 + randn(size(step_range)).*step_range;
% PERTURB NUGGET FRACTION
nugfrac=V_new(1).par1./gvar;
nugfrac=nugfrac+randn(1).*step_nugfrac;
V_new(1).par1=gvar.*nugfrac;
V_new(2).par1=gvar.*(1-nugfrac);
% TEST FOR BOUNDS
compL=1;
if ~isempty(find(V_new(2).par2<=0)), compL=0; end
for idim=1:ndim
if ~isempty(find(V_new(2).par2(idim)>=max_range(idim))),
compL=0;
end
end
if ((nugfrac<0)|(nugfrac>1))
compL=0;
end
%disp(sprintf('%g %g',L_new,L_old))
if compL==1
try
if method==1,
L_new=krig_covar_lik(pos_known,val_known,V_new,options);
be_new=0;
else
[d1,d2,be_new,d_diff,L_new]=krig_blinderror(pos_known,val_known,pos_known,V_new,options);
end
catch
%keyboard
end
par2_all(i,:)=V_new(2).par2;
L_all(i) = L_new;
be_all(i) = be_new;
nugfrac_all(i) = nugfrac;
else
i=i-1; % THIS IS NOT A PARAMETER CHOICE TO BE CONSIDERED
%L_new=-1e-45;
end
% When L is likelihood
% Pacc=min([(L_new)/(L_old),1]);
% When L is LOG likelihood
Pacc=min([exp(L_new-L_old),1]);
if compL==0
Pacc=0;
end
if descent==1
% ONLY ACCEPT IMPROVEMENETS
Prand=1;
else
Prand=rand(1);
end
if Pacc>=Prand
% if Pacc==1 % ONLY ACCPET IMPROVEMENTS
V_old=V_new;
L_old=L_new;
be_old=be_new;
nacc=nacc+1;
par2(nacc,:)=V_new(2).par2;
L_acc(nacc) = L_new;
be_acc(nacc) = be_new;
V_acc{nacc} = V_new;
nugfrac_acc(nacc) = nugfrac;
doPlot=1;
dt=(now-t_old_plot)*(3600*24);
if ((doPlot==1)&(nacc>=1)&(dt>5));
t_old_plot=now;
subplot(2,1,1)
plotyy(1:nacc,L_acc,1:nacc,-be_acc);
nn=size(par2,1);nmax=400;ndd=ceil(nn/nmax);ii=[ndd:ndd:nn];
if size(par2,2)==1
% ONLY PLOT NMAX DATA
subplot(2,3,4)
%plot(par2(:,1),L_acc,'k.')
%[ax,h1,h2]=plotyy(par2(:,1),L_acc,par2(:,1),-be_acc);
%[ax,h1,h2]=plotyy(L_acc,par2(:,1),L_acc,nugfrac_acc);
[ax,h1,h2]=plotyy(exp(L_acc(ii)),par2(ii,1),exp(L_acc(ii)),nugfrac_acc(ii));
%[ax,h1,h2]=plotyy(L_all,par2_all(:,1),L_all,nugfrac_all);
set(h1,'LineStyle','none')
set(h2,'LineStyle','none')
set(h1,'Marker','.')
set(h2,'Marker','.')
set(h1,'color','b')
set(h2,'color','g')
set(get(ax(1),'Ylabel'),'String','Range')
set(get(ax(2),'Ylabel'),'String','NuggetFraction')
xlabel('L');
subplot(2,3,5)
scatter(par2(ii,1),nugfrac_acc(ii),20,exp(L_acc(ii)),'filled')
%scatter(par2(:,1),nugfrac_acc,20,exp(L_acc),'filled')
%keyboard
%scatter(par2_all(1:i,1),nugfrac_all(1:i),20,L_all(1:i),'filled')
xlabel('Range');ylabel('Nugget Fraction');title('L')
subplot(2,3,6)
%if length(nugfrac_acc)>10
% scatter(par2(:,1),nugfrac_acc,20,-be_acc,'filled')
%end
%colorbar
%xlabel('Range');ylabel('Nugget Fraction');title('BE')
drawnow;
elseif size(par2,2)==2
subplot(2,3,4)
scatter(par2(ii,1),par2(ii,2),22,exp(L_acc(ii)),'filled')
xlabel('Range 1');ylabel('Range 2');title('Likelihood')
%colorbar
%%subplot(2,3,5)
%%scatter(par2(:,1),par2(:,2),22,-be_acc,'filled')
%%xlabel('Range 1');ylabel('Range 2');title('-be')
%colorbar
subplot(2,3,6)
scatter3(par2(ii,1),par2(ii,2),nugfrac_acc(ii),20,exp(L_acc(ii)),'filled');
xlabel('Range 1');ylabel('Range 2');zlabel('Nugget Fraction');title('Likelihood')
drawnow;
elseif size(par2,2)>2
subplot(2,1,2)
try
[ax,h1,h2]=plotyy(1:1:nacc,par2,1:1:nacc,nugfrac_acc);
catch
keyboard
end
set(h1,'LineStyle','-','LineWidth',1)
set(h2,'LineStyle','-','LineWidth',2)
% set(h1,'Marker','.')
% set(h2,'Marker','.')
set(ax(1),'YScale','log')
set(h2,'color','k')
set(get(ax(1),'Ylabel'),'String','Range')
set(get(ax(2),'Ylabel'),'String','NuggetFraction')
xlabel('iteration');
legend(num2str([1:1:size(pos_known,2)]))
drawnow;
end
end
V_old=V_new;
L_old=L_new;
disp(sprintf('%3d/%4d --OK-- L = %6.3g , PA=%4.2g Prand=%4.2g : %s',i,maxit,L_new,Pacc,Prand,format_variogram(V_new)))
%disp(sprintf('nugfrac=%5.4g Accept rate = %4.2f%%',nugfrac,100.*nacc./i))
else
%if compL==1;
% disp(sprintf('%3d/%4d ------ L = %6.3g , PA=%4.2g Prand=%4.2g : %s',i,maxit,L_new,Pacc,Prand,format_variogram(V_new)))
%end
end
end
% FIND BEST VARIOGRAM MODEL
try
i_max_L=find(L_acc==max(L_acc));
i_max_L=i_max_L(1);
V_new=V_acc{i_max_L};
catch
disp('could not find any accepted models')
keyboard
end