forked from SoloSynth1/tensorflow-yolov4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.py
executable file
·89 lines (75 loc) · 2.94 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import tensorflow as tf
from absl import app, flags, logging
from absl.flags import FLAGS
import numpy as np
import cv2
from core.yolov4 import YOLOv4, YOLOv3, YOLOv3_tiny, decode
import core.utils as utils
import os
from core.config import cfg
flags.DEFINE_string('weights', './data/yolov4.weights', 'path to weights file')
flags.DEFINE_string('output', './data/yolov4-pb', 'path to output')
flags.DEFINE_boolean('tiny', False, 'path to output')
flags.DEFINE_integer('input_size', 416, 'path to output')
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4')
flags.DEFINE_string('dataset', "/media/user/Source/Data/coco_dataset/coco/5k.txt", 'path to dataset')
def representative_data_gen():
fimage = open(FLAGS.dataset).read().split()
for input_value in range(100):
if os.path.exists(fimage[input_value]):
original_image=cv2.imread(fimage[input_value])
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
image_data = utils.image_preporcess(np.copy(original_image), [FLAGS.input_size, FLAGS.input_size])
img_in = image_data[np.newaxis, ...].astype(np.float32)
print(input_value)
yield [img_in]
else:
continue
def save_tf():
NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3])
if FLAGS.tiny:
feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, NUM_CLASS, i)
bbox_tensors.append(bbox_tensor)
model = tf.keras.Model(input_layer, bbox_tensors)
utils.load_weights_tiny(model, FLAGS.weights)
else:
if FLAGS.model == 'yolov3':
feature_maps = YOLOv3(input_layer, NUM_CLASS)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, NUM_CLASS, i)
bbox_tensors.append(bbox_tensor)
model = tf.keras.Model(input_layer, bbox_tensors)
utils.load_weights_v3(model, FLAGS.weights)
elif FLAGS.model == 'yolov4':
feature_maps = YOLOv4(input_layer, NUM_CLASS)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, NUM_CLASS, i)
bbox_tensors.append(bbox_tensor)
model = tf.keras.Model(input_layer, bbox_tensors)
utils.load_weights(model, FLAGS.weights)
model = tf.keras.Model(input_layer, bbox_tensors)
model.summary()
utils.load_weights(model, FLAGS.weights)
model.save(FLAGS.output)
logging.info("model saved to: {}".format(FLAGS.output))
def demo():
model = tf.keras.models.load_model(FLAGS.output, compile=False)
logging.info('tf model loaded')
input_shape = model.inputs[0].shape[1:]
input_data = np.array([np.random.random_sample(input_shape)], dtype=np.float32)
output_data = model.predict(input_data)
print(output_data)
def main(_argv):
save_tf()
demo()
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass