forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
446 lines (354 loc) · 14.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# Copyright 2020 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Some layered modules/functions to help users writing custom training loop."""
import abc
import contextlib
import functools
import inspect
import os
import numpy as np
import tensorflow as tf
def create_loop_fn(step_fn):
"""Creates a multiple steps function driven by the python while loop.
Args:
step_fn: A function which takes `iterator` as input.
Returns:
A callable defined as the `loop_fn` defination below.
"""
def loop_fn(iterator, num_steps, state=None, reduce_fn=None):
"""A loop function with multiple steps.
Args:
iterator: A nested structure of tf.data `Iterator` or
`DistributedIterator`.
num_steps: The number of steps in the loop. If `num_steps==-1`, will
iterate until exausting the iterator.
state: An optional initial state before running the loop.
reduce_fn: a callable defined as `def reduce_fn(state, value)`, where
`value` is the outputs from `step_fn`.
Returns:
The updated state.
"""
try:
step = 0
# To make sure the OutOfRangeError exception can be handled well with
# async remote eager, we need to wrap the loop body in a `async_scope`.
with tf.experimental.async_scope():
while (num_steps == -1 or step < num_steps):
outputs = step_fn(iterator)
if reduce_fn is not None:
state = reduce_fn(state, outputs)
step += 1
return state
except (StopIteration, tf.errors.OutOfRangeError):
tf.experimental.async_clear_error()
return state
return loop_fn
def create_tf_while_loop_fn(step_fn):
"""Create a multiple steps function driven by tf.while_loop on the host.
Args:
step_fn: A function which takes `iterator` as input.
Returns:
A callable defined as the `loop_fn` defination below.
"""
def loop_fn(iterator, num_steps):
"""A loop function with multiple steps.
Args:
iterator: A nested structure of tf.data `Iterator` or
`DistributedIterator`.
num_steps: The number of steps in the loop. Must be a tf.Tensor.
"""
if not isinstance(num_steps, tf.Tensor):
raise ValueError("`num_steps` should be an `tf.Tensor`. Python object "
"may cause retracing.")
for _ in tf.range(num_steps):
step_fn(iterator)
return loop_fn
def create_global_step() -> tf.Variable:
"""Creates a `tf.Variable` suitable for use as a global step counter.
Creating and managing a global step variable may be necessary for
`AbstractTrainer` subclasses that perform multiple parameter updates per
`Controller` "step", or use different optimizers on different steps.
In these cases, an `optimizer.iterations` property generally can't be used
directly, since it would correspond to parameter updates instead of iterations
in the `Controller`'s training loop. Such use cases should simply call
`step.assign_add(1)` at the end of each step.
Returns:
A non-trainable scalar `tf.Variable` of dtype `tf.int64`, with only the
first replica's value retained when synchronizing across replicas in
a distributed setting.
"""
return tf.Variable(
0,
dtype=tf.int64,
trainable=False,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)
def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs):
"""A helper function to create distributed dataset.
Args:
strategy: An instance of `tf.distribute.Strategy`.
dataset_or_fn: A instance of `tf.data.Dataset` or a function which takes an
`tf.distribute.InputContext` as input and returns a `tf.data.Dataset`. If
it is a function, it could optionally have an argument named
`input_context` which is `tf.distribute.InputContext` argument type.
*args: The list of arguments to be passed to dataset_or_fn.
**kwargs: Any keyword arguments to be passed.
Returns:
A distributed Dataset.
"""
if strategy is None:
strategy = tf.distribute.get_strategy()
if isinstance(dataset_or_fn, tf.data.Dataset):
return strategy.experimental_distribute_dataset(dataset_or_fn)
if not callable(dataset_or_fn):
raise ValueError("`dataset_or_fn` should be either callable or an instance "
"of `tf.data.Dataset`")
def dataset_fn(ctx):
"""Wrapped dataset function for creating distributed dataset.."""
# If `dataset_or_fn` is a function and has `input_context` as argument
# names, pass `ctx` as the value of `input_context` when calling
# `dataset_or_fn`. Otherwise `ctx` will not be used when calling
# `dataset_or_fn`.
argspec = inspect.getfullargspec(dataset_or_fn)
args_names = argspec.args
if "input_context" in args_names:
kwargs["input_context"] = ctx
ds = dataset_or_fn(*args, **kwargs)
return ds
return strategy.experimental_distribute_datasets_from_function(dataset_fn)
class SummaryManager:
"""A class manages writing summaries."""
def __init__(self, summary_dir, summary_fn, global_step=None):
"""Construct a summary manager object.
Args:
summary_dir: the directory to write summaries.
summary_fn: A callable defined as `def summary_fn(name, tensor,
step=None)`, which describes the summary operation.
global_step: A `tf.Variable` instance for the global step.
"""
self._enabled = (summary_dir is not None)
self._summary_dir = summary_dir
self._summary_fn = summary_fn
self._summary_writers = {}
if global_step is None:
self._global_step = tf.summary.experimental.get_step()
else:
self._global_step = global_step
def summary_writer(self, relative_path=""):
"""Returns the underlying summary writer.
Args:
relative_path: The current path in which to write summaries, relative to
the summary directory. By default it is empty, which specifies the root
directory.
"""
if self._summary_writers and relative_path in self._summary_writers:
return self._summary_writers[relative_path]
if self._enabled:
self._summary_writers[relative_path] = tf.summary.create_file_writer(
os.path.join(self._summary_dir, relative_path))
else:
self._summary_writers[relative_path] = tf.summary.create_noop_writer()
return self._summary_writers[relative_path]
def flush(self):
"""Flush the underlying summary writers."""
if self._enabled:
tf.nest.map_structure(tf.summary.flush, self._summary_writers)
def write_summaries(self, summary_dict):
"""Write summaries for the given values.
This recursively creates subdirectories for any nested dictionaries
provided in `summary_dict`, yielding a hierarchy of directories which will
then be reflected in the TensorBoard UI as different colored curves.
E.g. users may evaluate on muliple datasets and return `summary_dict` as a
nested dictionary.
```
{
"dataset": {
"loss": loss,
"accuracy": accuracy
},
"dataset2": {
"loss": loss2,
"accuracy": accuracy2
},
}
```
This will create two subdirectories "dataset" and "dataset2" inside the
summary root directory. Each directory will contain event files including
both "loss" and "accuracy" summaries.
Args:
summary_dict: A dictionary of values. If any value in `summary_dict` is
itself a dictionary, then the function will recursively create
subdirectories with names given by the keys in the dictionary. The
Tensor values are summarized using the summary writer instance specific
to the parent relative path.
"""
if not self._enabled:
return
self._write_summaries(summary_dict)
def _write_summaries(self, summary_dict, relative_path=""):
for name, value in summary_dict.items():
if isinstance(value, dict):
self._write_summaries(
value, relative_path=os.path.join(relative_path, name))
else:
with self.summary_writer(relative_path).as_default():
self._summary_fn(name, value, step=self._global_step)
class Trigger(metaclass=abc.ABCMeta):
"""An abstract class representing a "trigger" for some event."""
@abc.abstractmethod
def __call__(self, value: float, force_trigger=False):
"""Maybe trigger the event based on the given value.
Args:
value: the value for triggering.
force_trigger: Whether the trigger is forced triggered.
Returns:
`True` if the trigger is triggered on the given `value`, and
`False` otherwise.
"""
@abc.abstractmethod
def reset(self):
"""Reset states in the trigger."""
class IntervalTrigger(Trigger):
"""Triggers on every fixed interval."""
def __init__(self, interval, start=0):
"""Constructs the IntervalTrigger.
Args:
interval: The triggering interval.
start: An initial value for the trigger.
"""
self._interval = interval
self._last_trigger_value = start
def __call__(self, value, force_trigger=False):
"""Maybe trigger the event based on the given value.
Args:
value: the value for triggering.
force_trigger: If True, the trigger will be forced triggered unless the
last trigger value is equal to `value`.
Returns:
`True` if the trigger is triggered on the given `value`, and
`False` otherwise.
"""
if force_trigger and value != self._last_trigger_value:
self._last_trigger_value = value
return True
if self._interval and self._interval > 0:
if value >= self._last_trigger_value + self._interval:
self._last_trigger_value = value
return True
return False
def reset(self):
"""See base class."""
self._last_trigger_value = 0
class EpochHelper:
"""A Helper class to handle epochs in Customized Training Loop."""
def __init__(self, epoch_steps, global_step):
"""Constructs the EpochHelper.
Args:
epoch_steps: An integer indicates how many steps in an epoch.
global_step: A `tf.Variable` instance indicates the current global step.
"""
self._epoch_steps = epoch_steps
self._global_step = global_step
self._current_epoch = None
self._epoch_start_step = None
self._in_epoch = False
def epoch_begin(self):
"""Returns whether a new epoch should begin."""
if self._in_epoch:
return False
current_step = self._global_step.numpy()
self._epoch_start_step = current_step
self._current_epoch = current_step // self._epoch_steps
self._in_epoch = True
return True
def epoch_end(self):
"""Returns whether the current epoch should end."""
if not self._in_epoch:
raise ValueError("`epoch_end` can only be called inside an epoch")
current_step = self._global_step.numpy()
epoch = current_step // self._epoch_steps
if epoch > self._current_epoch:
self._in_epoch = False
return True
return False
@property
def batch_index(self):
"""Index of the next batch within the current epoch."""
return self._global_step.numpy() - self._epoch_start_step
@property
def current_epoch(self):
return self._current_epoch
@contextlib.contextmanager
def _soft_device_placement():
"""Context manager for soft device placement, allowing summaries on CPU."""
original_setting = tf.config.get_soft_device_placement()
try:
tf.config.set_soft_device_placement(True)
yield
finally:
tf.config.set_soft_device_placement(original_setting)
def train_function_with_summaries(*args, **kwargs):
"""Utility function to support TPU summaries via multiple `tf.function`s.
This permits interleaving summaries inside TPU-compatible code, but without
any performance impact on steps that do not write summaries.
Usage is as a decorator, similar to `tf.function`, and any `tf.function`
arguments will be passed through if supplied:
@trainer.train_function_with_summaries
def train(self, num_steps):
...
The decorated function is assumed to be a loop method accepting a `num_steps`
parameter, as for instance would be called within the `Controller`'s outer
train loop. The implementation here assumes that `summary_frequency` is
divisible by `steps_per_loop`. The decorated method should accept two
arguments, `self` and `num_steps`.
Two `tf.function` versions of `train_fn` are created: one inside a summary
writer scope with soft device placement enabled (used on steps that require
summary writing), and one with no summary writer present and soft device
placement disabled (used on all other steps).
Args:
*args: Arguments to pass through to `tf.function`.
**kwargs: Keyword arguments to pass through to `tf.function`.
Returns:
If the first argument is a callable, returns the decorated callable.
Otherwise, returns a decorator.
"""
def decorator(train_fn):
# TODO(dhr): Validate the signature of train_fn?
train_fn_with_summaries = tf.function(train_fn, *args, **kwargs)
train_fn_without_summaries = tf.function(train_fn, *args, **kwargs)
@functools.wraps(train_fn)
def wrapper(self, num_steps):
if tf.summary.should_record_summaries():
with _soft_device_placement():
output = train_fn_with_summaries(self, tf.constant(1))
num_steps -= 1
if num_steps >= 1:
with tf.summary.record_if(False):
output = train_fn_without_summaries(self, num_steps)
return output
return wrapper
if args and callable(args[0]):
train_fn, args = args[0], args[1:]
return decorator(train_fn)
return decorator
def get_value(x) -> np.number:
"""Returns the value of a variable/tensor.
Args:
x: input variable.
Returns:
A Numpy array or number.
"""
if not tf.is_tensor(x):
return x
return x.numpy()