forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraw_data_process.py
92 lines (81 loc) · 3.74 KB
/
raw_data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Processes crawled content from news URLs by generating tfrecords."""
import os
from absl import app
from absl import flags
from official.nlp.nhnet import raw_data_processor
FLAGS = flags.FLAGS
flags.DEFINE_string("crawled_articles", "/tmp/nhnet/",
"Folder path to the crawled articles using news-please.")
flags.DEFINE_string("vocab", None, "Filepath of the BERT vocabulary.")
flags.DEFINE_bool("do_lower_case", True,
"Whether the vocabulary is uncased or not.")
flags.DEFINE_integer("len_title", 15,
"Maximum number of tokens in story headline.")
flags.DEFINE_integer("len_passage", 200,
"Maximum number of tokens in article passage.")
flags.DEFINE_integer("max_num_articles", 5,
"Maximum number of articles in a story.")
flags.DEFINE_bool("include_article_title_in_passage", False,
"Whether to include article title in article passage.")
flags.DEFINE_string("data_folder", None,
"Folder path to the downloaded data folder (output).")
flags.DEFINE_integer("num_tfrecords_shards", 20,
"Number of shards for train/valid/test.")
def transform_as_tfrecords(data_processor, filename):
"""Transforms story from json to tfrecord (sharded).
Args:
data_processor: Instance of RawDataProcessor.
filename: 'train', 'valid', or 'test'.
"""
print("Transforming json to tfrecord for %s..." % filename)
story_filepath = os.path.join(FLAGS.data_folder, filename + ".json")
output_folder = os.path.join(FLAGS.data_folder, "processed")
os.makedirs(output_folder, exist_ok=True)
output_filepaths = []
for i in range(FLAGS.num_tfrecords_shards):
output_filepaths.append(
os.path.join(
output_folder, "%s.tfrecord-%.5d-of-%.5d" %
(filename, i, FLAGS.num_tfrecords_shards)))
(total_num_examples,
generated_num_examples) = data_processor.generate_examples(
story_filepath, output_filepaths)
print("For %s, %d examples have been generated from %d stories in json." %
(filename, generated_num_examples, total_num_examples))
def main(_):
if not FLAGS.data_folder:
raise ValueError("data_folder must be set as the downloaded folder path.")
if not FLAGS.vocab:
raise ValueError("vocab must be set as the filepath of BERT vocabulary.")
data_processor = raw_data_processor.RawDataProcessor(
vocab=FLAGS.vocab,
do_lower_case=FLAGS.do_lower_case,
len_title=FLAGS.len_title,
len_passage=FLAGS.len_passage,
max_num_articles=FLAGS.max_num_articles,
include_article_title_in_passage=FLAGS.include_article_title_in_passage,
include_text_snippet_in_example=True)
print("Loading crawled articles...")
num_articles = data_processor.read_crawled_articles(FLAGS.crawled_articles)
print("Total number of articles loaded: %d" % num_articles)
print()
transform_as_tfrecords(data_processor, "train")
transform_as_tfrecords(data_processor, "valid")
transform_as_tfrecords(data_processor, "test")
if __name__ == "__main__":
app.run(main)