forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcls_head.py
86 lines (75 loc) · 2.98 KB
/
cls_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A Classification head layer which is common used with sequence encoders."""
import tensorflow as tf
from official.modeling import tf_utils
class ClassificationHead(tf.keras.layers.Layer):
"""Pooling head for sentence-level classification tasks."""
def __init__(self,
inner_dim,
num_classes,
cls_token_idx=0,
activation="tanh",
dropout_rate=0.0,
initializer="glorot_uniform",
**kwargs):
"""Initializes the `ClassificationHead`.
Args:
inner_dim: The dimensionality of inner projection layer.
num_classes: Number of output classes.
cls_token_idx: The index inside the sequence to pool.
activation: Dense layer activation.
dropout_rate: Dropout probability.
initializer: Initializer for dense layer kernels.
**kwargs: Keyword arguments.
"""
super(ClassificationHead, self).__init__(**kwargs)
self.dropout_rate = dropout_rate
self.inner_dim = inner_dim
self.num_classes = num_classes
self.activation = tf_utils.get_activation(activation)
self.initializer = tf.keras.initializers.get(initializer)
self.cls_token_idx = cls_token_idx
self.dense = tf.keras.layers.Dense(
units=inner_dim,
activation=self.activation,
kernel_initializer=self.initializer,
name="pooler_dense")
self.dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
self.out_proj = tf.keras.layers.Dense(
units=num_classes, kernel_initializer=self.initializer, name="logits")
def call(self, features):
x = features[:, self.cls_token_idx, :] # take <CLS> token.
x = self.dense(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
def get_config(self):
config = {
"dropout_rate": self.dropout_rate,
"num_classes": self.num_classes,
"inner_dim": self.inner_dim,
"activation": tf.keras.activations.serialize(self.activation),
"initializer": tf.keras.initializers.serialize(self.initializer),
}
config.update(super(ClassificationHead, self).get_config())
return config
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def checkpoint_items(self):
return {self.dense.name: self.dense}