forked from ronghanghu/moco_v3_tpu
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbagnet.py
162 lines (131 loc) · 6.15 KB
/
bagnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch.nn as nn
import math
import torch
from collections import OrderedDict
from torch.utils import model_zoo
import os
dir_path = os.path.dirname(os.path.realpath(__file__))
__all__ = ['bagnet9', 'bagnet17', 'bagnet33']
model_urls = {
'bagnet9': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet8-34f4ccd2.pth.tar',
'bagnet17': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet16-105524de.pth.tar',
'bagnet33': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet32-2ddd53ed.pth.tar',
}
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, kernel_size=1):
super(Bottleneck, self).__init__()
# print('Creating bottleneck with kernel size {} and stride {} with padding {}'.format(kernel_size, stride, (kernel_size - 1) // 2))
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=kernel_size, stride=stride,
padding=0, bias=False) # changed padding from (kernel_size - 1) // 2
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x, **kwargs):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
if residual.size(-1) != out.size(-1):
diff = residual.size(-1) - out.size(-1)
residual = residual[:,:,:-diff,:-diff]
out += residual
out = self.relu(out)
return out
class BagNet(nn.Module):
def __init__(self, block, layers, strides=[1, 2, 2, 2], kernel3=[0, 0, 0, 0], num_classes=1000, avg_pool=True):
self.inplanes = 64
super(BagNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=1, stride=1, padding=0,
bias=False)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0,
bias=False)
self.bn1 = nn.BatchNorm2d(64, momentum=0.001)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], kernel3=kernel3[0], prefix='layer1')
self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], kernel3=kernel3[1], prefix='layer2')
self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], kernel3=kernel3[2], prefix='layer3')
self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], kernel3=kernel3[3], prefix='layer4')
self.avgpool = nn.AvgPool2d(1, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.avg_pool = avg_pool
self.block = block
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, kernel3=0, prefix=''):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
kernel = 1 if kernel3 == 0 else 3
layers.append(block(self.inplanes, planes, stride, downsample, kernel_size=kernel))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
kernel = 1 if kernel3 <= i else 3
layers.append(block(self.inplanes, planes, kernel_size=kernel))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if self.avg_pool:
x = nn.AvgPool2d(x.size()[2], stride=1)(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
else:
x = x.permute(0,2,3,1)
x = self.fc(x)
return x
def bagnet33(pretrained=False, strides=[2, 2, 2, 1], **kwargs):
"""Constructs a Bagnet-33 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,1,1], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['bagnet33']))
return model
def bagnet17(pretrained=False, strides=[2, 2, 2, 1], **kwargs):
"""Constructs a Bagnet-17 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,1,0], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['bagnet17']))
return model
def bagnet9(pretrained=False, strides=[2, 2, 2, 1], **kwargs):
"""Constructs a Bagnet-9 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,0,0], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['bagnet9']))
return model