forked from flywheel-apps/dicom-mr-classifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification_from_label.py
416 lines (364 loc) · 14.4 KB
/
classification_from_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#!/usr/bin/env python
'''
Infer acquisition classification by parsing the description label.
'''
import re
def feature_check(label):
'''Check the label for a list of features.'''
feature_list = ['2D', 'AAscout', 'Spin-Echo', 'Gradient-Echo',
'EPI', 'WASSR', 'FAIR', 'FAIREST', 'PASL', 'EPISTAR',
'PICORE', 'pCASL', 'MPRAGE', 'MP2RAGE', 'FLAIR',
'SWI', 'QSM', 'RMS', 'DTI', 'DSI', 'DKI', 'HARDI',
'NODDI', 'Water-Reference', 'Transmit-Reference',
'SBRef', 'Uniform', 'Singlerep', 'QC', 'TRACE',
'FA', 'MIP', 'Navigator', 'Contrast-Agent',
'Phase-Contrast', 'TOF', 'VASO', 'iVASO', 'DSC',
'DCE', 'Task', 'Resting-State', 'PRESS', 'STEAM',
'M0', 'Phase-Reversed', 'Spiral', 'SPGR',
'Quantitative', 'Multi-Shell', 'Multi-Echo', 'Multi-Flip',
'Multi-Band', 'Steady-State', '3D', 'Compressed-Sensing',
'Eddy-Current-Corrected', 'Fieldmap-Corrected',
'Gradient-Unwarped', 'Motion-Corrected', 'Physio-Corrected',
'Derived', 'In-Plane', 'Phase', 'Magnitude']
return _find_matches(label, feature_list)
def measurement_check(label):
'''Check the label for a list of measurements.'''
measurement_list = ['MRA', 'CEST', 'T1rho', 'SVS', 'CSI', 'EPSI', 'BOLD',
'Phoenix','B0', 'B1', 'T1', 'T2', 'T2*', 'PD', 'MT',
'Perfusion','Diffusion', 'Susceptibility', 'Fingerprinting']
return _find_matches(label, measurement_list)
def intent_check(label):
'''Check the label for a list of intents.'''
intent_list = [ 'Localizer', 'Shim', 'Calibration', 'Fieldmap', 'Structural',
'Functional', 'Screenshot', 'Non-Image', 'Spectroscopy' ]
return _find_matches(label, intent_list)
def _find_matches(label, list):
"""For a given list find those entries that match a given label."""
matches = []
for l in list:
regex = _compile_regex(l)
if regex.findall(label):
matches.append(l)
return matches
def _compile_regex(string):
"""Generate the regex for label checking"""
# Escape * for T2*
if string == 'T2*':
string = 'T2\*'
regex = re.compile(r"(\b%s\b)|(_%s_)|(_%s)|(%s_)|(t2star)" % (string,string,string,string), re.IGNORECASE)
# Prevent T2 from capturing T2*
elif string == 'T2':
regex = re.compile(r"(\b%s\b)|(_%s_)|(_%s$)|(%s_)" % (string,string,string,string), re.IGNORECASE)
else:
regex = re.compile(r"(\b%s\b)|(_%s_)|(_%s)|(%s_)" % (string,string,string,string), re.IGNORECASE)
return regex
# Anatomy, T1
def is_anatomy_t1(label):
regexes = [
re.compile('t1', re.IGNORECASE),
re.compile('t1w', re.IGNORECASE),
re.compile('(?=.*3d anat)(?![inplane])', re.IGNORECASE),
re.compile('(?=.*3d)(?=.*bravo)(?![inplane])', re.IGNORECASE),
re.compile('spgr', re.IGNORECASE),
re.compile('tfl', re.IGNORECASE),
re.compile('mprage', re.IGNORECASE),
re.compile('(?=.*mm)(?=.*iso)', re.IGNORECASE),
re.compile('(?=.*mp)(?=.*rage)', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Anatomy, T2
def is_anatomy_t2(label):
regexes = [
re.compile('t2[^*]*$', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Anatomy, Inplane
def is_anatomy_inplane(label):
regexes = [
re.compile('inplane', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Anatomy, other
def is_anatomy(label):
regexes = [
re.compile('(?=.*IR)(?=.*EPI)', re.IGNORECASE),
re.compile('flair', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Diffusion
def is_diffusion(label):
regexes = [
re.compile('^dmri_', re.IGNORECASE),
re.compile('_dmri$', re.IGNORECASE),
re.compile('dti', re.IGNORECASE),
re.compile('dwi', re.IGNORECASE),
re.compile('diff_', re.IGNORECASE),
re.compile('diffusion', re.IGNORECASE),
re.compile('(?=.*diff)(?=.*dir)', re.IGNORECASE),
re.compile('hardi', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Diffusion - Derived
def is_diffusion_derived(label):
regexes = [
re.compile('_ADC$', re.IGNORECASE),
re.compile('_TRACEW$', re.IGNORECASE),
re.compile('_ColFA$', re.IGNORECASE),
re.compile('_FA$', re.IGNORECASE),
re.compile('_EXP$', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Functional
def is_functional(label):
regexes = [
re.compile('functional', re.IGNORECASE),
re.compile('fmri', re.IGNORECASE),
re.compile('func', re.IGNORECASE),
re.compile('bold', re.IGNORECASE),
re.compile('resting', re.IGNORECASE),
re.compile('(?=.*rest)(?=.*state)', re.IGNORECASE),
# NON-STANDARD
re.compile('(?=.*ret)(?=.*bars)', re.IGNORECASE),
re.compile('(?=.*ret)(?=.*wedges)', re.IGNORECASE),
re.compile('(?=.*ret)(?=.*rings)', re.IGNORECASE),
re.compile('(?=.*ret)(?=.*check)', re.IGNORECASE),
re.compile('go-no-go', re.IGNORECASE),
re.compile('words', re.IGNORECASE),
re.compile('checkers', re.IGNORECASE),
re.compile('retinotopy', re.IGNORECASE),
re.compile('faces', re.IGNORECASE),
re.compile('rings', re.IGNORECASE),
re.compile('wedges', re.IGNORECASE),
re.compile('emoreg', re.IGNORECASE),
re.compile('conscious', re.IGNORECASE),
re.compile('^REST$'),
re.compile('ep2d', re.IGNORECASE),
re.compile('task', re.IGNORECASE),
re.compile('rest', re.IGNORECASE),
re.compile('fBIRN', re.IGNORECASE),
re.compile('^Curiosity', re.IGNORECASE),
re.compile('^DD_', re.IGNORECASE),
re.compile('^Poke', re.IGNORECASE),
re.compile('^Effort', re.IGNORECASE),
re.compile('emotion|conflict', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Functional, Derived
def is_functional_derived(label):
regexes = [
re.compile('mocoseries', re.IGNORECASE),
re.compile('GLM$', re.IGNORECASE),
re.compile('t-map', re.IGNORECASE),
re.compile('design', re.IGNORECASE),
re.compile('StartFMRI', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Localizer
def is_localizer(label):
regexes = [
re.compile('localizer', re.IGNORECASE),
re.compile('localiser', re.IGNORECASE),
re.compile('survey', re.IGNORECASE),
re.compile('loc\.', re.IGNORECASE),
re.compile(r'\bscout\b', re.IGNORECASE),
re.compile('(?=.*plane)(?=.*loc)', re.IGNORECASE),
re.compile('(?=.*plane)(?=.*survey)', re.IGNORECASE),
re.compile('3-plane', re.IGNORECASE),
re.compile('^loc*', re.IGNORECASE),
re.compile('Scout', re.IGNORECASE),
re.compile('AdjGre', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Shim
def is_shim(label):
regexes = [
re.compile('(?=.*HO)(?=.*shim)', re.IGNORECASE), # Contains 'ho' and 'shim'
re.compile(r'\bHOS\b', re.IGNORECASE),
re.compile('_HOS_', re.IGNORECASE),
re.compile('.*shim', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Fieldmap
def is_fieldmap(label):
regexes = [
re.compile('(?=.*field)(?=.*map)', re.IGNORECASE),
re.compile('(?=.*bias)(?=.*ch)', re.IGNORECASE),
re.compile('field', re.IGNORECASE),
re.compile('fmap', re.IGNORECASE),
re.compile('topup', re.IGNORECASE),
re.compile('DISTORTION', re.IGNORECASE),
re.compile('se[-_][aprl]{2}$', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Calibration
def is_calibration(label):
regexes = [
re.compile('(?=.*asset)(?=.*cal)', re.IGNORECASE),
re.compile('^asset$', re.IGNORECASE),
re.compile('calibration', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Coil Survey
def is_coil_survey(label):
regexes = [
re.compile('(?=.*coil)(?=.*survey)', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Perfusion: Arterial Spin Labeling
def is_perfusion(label):
regexes = [
re.compile('asl', re.IGNORECASE),
re.compile('(?=.*blood)(?=.*flow)', re.IGNORECASE),
re.compile('(?=.*art)(?=.*spin)', re.IGNORECASE),
re.compile('tof', re.IGNORECASE),
re.compile('perfusion', re.IGNORECASE),
re.compile('angio', re.IGNORECASE),
]
return regex_search_label(regexes, label)
# Proton Density
def is_proton_density(label):
regexes = [
re.compile('^PD$'),
re.compile('(?=.*proton)(?=.*density)', re.IGNORECASE),
re.compile('pd_'),
re.compile('_pd')
]
return regex_search_label(regexes, label)
# Phase Map
def is_phase_map(label):
regexes = [
re.compile('(?=.*phase)(?=.*map)', re.IGNORECASE),
re.compile('^phase$', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Screen Save / Screenshot
def is_screenshot(label):
regexes = [
re.compile('(?=.*screen)(?=.*save)', re.IGNORECASE),
re.compile('.*screenshot', re.IGNORECASE),
re.compile('.*screensave', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Spectroscopy
def is_spectroscopy(label):
regexes = [
re.compile('mrs', re.IGNORECASE),
re.compile('svs', re.IGNORECASE),
re.compile('gaba', re.IGNORECASE),
re.compile('csi', re.IGNORECASE),
re.compile('nfl', re.IGNORECASE),
re.compile('mega', re.IGNORECASE),
re.compile('press', re.IGNORECASE),
re.compile('spect', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Susceptibility
def is_susceptibility(label):
regexes = [
re.compile('swi', re.IGNORECASE),
re.compile('mag_images', re.IGNORECASE),
re.compile('pha_images', re.IGNORECASE),
re.compile('mip_images', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Multi-echo gradient echo
def is_megre(label):
regexes = [
re.compile('megre', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Volumetric navigator
def is_vnav(label):
regexes = [
re.compile('_vnav_setter', re.IGNORECASE)
]
return regex_search_label(regexes, label)
# Utility: Check a list of regexes for truthyness
def regex_search_label(regexes, label):
if any(regex.search(label) for regex in regexes):
return True
else:
return False
# Call all functions to determine new label
def infer_classification(label):
if not label:
return {}
else:
classification = {}
if is_anatomy_inplane(label):
classification['Intent'] = ['Structural']
classification['Measurement'] = ['T1']
classification['Features'] = ['In-Plane']
elif is_fieldmap(label):
classification['Intent'] = ['Fieldmap']
classification['Measurement'] = ['B0']
elif is_diffusion_derived(label):
classification['Intent'] = ['Structural']
classification['Measurement'] = ['Diffusion']
classification['Features'] = ['Derived']
elif is_diffusion(label):
classification['Intent'] = ['Structural']
classification['Measurement'] = ['Diffusion']
elif is_functional_derived(label):
classification['Intent'] = ['Functional']
classification['Features'] = ['Derived']
elif is_functional(label):
classification['Intent'] = ['Functional']
classification['Measurement'] = ['T2*']
elif is_vnav(label):
classification['Features'] = ['3D', 'EPI', 'Navigator']
elif is_anatomy_t2(label):
classification['Intent'] = ['Structural']
classification['Measurement'] = ['T2']
elif is_anatomy_t1(label):
classification['Intent'] = ['Structural']
classification['Measurement'] = ['T1']
elif is_anatomy(label):
classification['Intent'] = ['Structural']
elif is_localizer(label):
classification['Intent'] = ['Localizer']
classification['Measurement'] = ['T2']
elif is_shim(label):
classification['Intent'] = ['Shim']
elif is_calibration(label):
classification['Intent'] = ['Calibration']
elif is_coil_survey(label):
classification['Intent'] = ['Calibration']
classification['Measurement'] = ['B1']
elif is_proton_density(label):
classification['Intent'] = ['Structural']
classification['Measurement'] = ['PD']
elif is_perfusion(label):
classification['Measurement'] = ['Perfusion']
elif is_susceptibility(label):
classification['Measurement'] = ['Susceptibility']
elif is_spectroscopy(label):
classification['Intent'] = ['Spectroscopy']
elif is_phase_map(label):
classification['Custom'] = ['Phase Map']
elif is_megre(label):
classification['Measurement'] = ['T2*']
classification['Features'] = ['Gradient-Echo', 'Multi-Echo']
elif is_screenshot(label):
classification['Intent'] = ['Screenshot']
else:
print(label.strip('\n') + ' --->>>> unknown')
# Add features to classification
features = feature_check(label)
if features:
class_features = classification.get('Features', [])
[ class_features.append(x) for x in features if x not in class_features ]
classification['Features'] = class_features
# Add measurements to classification
measurements = measurement_check(label)
if measurements:
class_measurement = classification.get('Measurement', [])
[ class_measurement.append(x) for x in measurements if x not in class_measurement ]
classification['Measurement'] = class_measurement
# Add intents to classification
intents = intent_check(label)
if intents:
class_intent = classification.get('Intent', [])
[ class_intent.append(x) for x in intents if x not in class_intent ]
classification['Intent'] = class_intent
return classification