diff --git a/brainscore_vision/benchmarks/coggan2024_behavior/benchmark.py b/brainscore_vision/benchmarks/coggan2024_behavior/benchmark.py index 14db4121f..c00a52335 100644 --- a/brainscore_vision/benchmarks/coggan2024_behavior/benchmark.py +++ b/brainscore_vision/benchmarks/coggan2024_behavior/benchmark.py @@ -1,12 +1,10 @@ # Created by David Coggan on 2024 06 25 import numpy as np -from brainio.assemblies import DataAssembly, BehavioralAssembly -from brainscore_vision import load_stimulus_set, load_dataset +from brainscore_vision import load_stimulus_set, load_dataset, load_metric from brainscore_vision.benchmarks import BenchmarkBase from brainscore_vision.benchmark_helpers.screen import place_on_screen from brainscore_core.metrics import Score -from brainscore_vision.metric_helpers import Defaults as XarrayDefaults from brainscore_vision.model_interface import BrainModel from brainscore_vision.utils import LazyLoad from scipy.stats import sem @@ -21,6 +19,39 @@ url = {}, journal = {in prep}}""" + +class Coggan2024_behavior_ConditionWiseLabelingAccuracySimilarity(BenchmarkBase): + def __init__(self): + self._metric = load_metric('conditionwise_accuracy_distance') + self._fitting_stimuli = load_stimulus_set('Coggan2024_behavior_fitting') # this fails is wrapped by LazyLoad + self._assembly = LazyLoad(lambda: load_dataset('Coggan2024_behavior')) + self._visual_degrees = 10 + self._number_of_trials = 1 + self._ceiling_func = lambda assembly: get_noise_ceiling(assembly) + super(Coggan2024_behavior_ConditionWiseLabelingAccuracySimilarity, self).__init__( + identifier='tong.Coggan2024_behavior-LabelingConditionWiseAccuracySimilarity', + version=1, + ceiling_func=lambda: self._metric.ceiling(self._assembly), + parent='behavior', + bibtex=BIBTEX, + ) + + def __call__(self, candidate: BrainModel): + choice_labels = set(self._assembly['object_class'].values) + choice_labels = list(sorted(choice_labels)) + candidate.start_task(BrainModel.Task.label, choice_labels) + stimulus_set = place_on_screen(self._assembly.stimulus_set, + target_visual_degrees=candidate.visual_degrees(), + source_visual_degrees=self._visual_degrees) + labels = candidate.look_at(stimulus_set, number_of_trials=self._number_of_trials) + raw_score = self._metric(labels, self._assembly) + ceiling = self.ceiling + score = raw_score / ceiling + score.attrs['raw'] = raw_score + score.attrs['ceiling'] = ceiling + return score + + class Coggan2024_behavior_ConditionWiseAccuracySimilarity(BenchmarkBase): """ @@ -125,5 +156,27 @@ def ceiler(score: Score, ceiling: Score) -> Score: return ceiled_score +class Coggan2024_behavior_ConditionWiseLabelingEngineeringAccuracy(BenchmarkBase): + def __init__(self): + self._metric = load_metric('accuracy') + self._ceiling_func = lambda assembly: get_noise_ceiling(assembly) + self._stimulus_set = load_dataset('Coggan2024_behavior').stimulus_set + super(Coggan2024_behavior_ConditionWiseLabelingEngineeringAccuracy, self).__init__( + identifier='tong.Coggan2024_behavior-LabelingConditionWiseEngineeringAccuracy', + version=1, + ceiling_func=lambda: Score(1), + parent='Coggan2024-top1', + bibtex=BIBTEX, + ) - + def __call__(self, candidate: BrainModel): + choice_labels = set(self._assembly['object_class'].values) + choice_labels = list(sorted(choice_labels)) + candidate.start_task(BrainModel.Task.label, choice_labels) + labels = candidate.look_at(self._stimulus_set) + raw_score = self._metric(labels, self._stimulus_set['object_class'].values) + ceiling = self.ceiling + score = raw_score / ceiling + score.attrs['raw'] = raw_score + score.attrs['ceiling'] = ceiling + return score \ No newline at end of file