-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpost_fmriprep.py
595 lines (462 loc) · 22.2 KB
/
post_fmriprep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
#!/usr/bin/env python
"""
This module uses three files:
1) *_confounds.tsv
2) *_preproc.nii.gz
3) *_brainmask.nii.gz
The confounds signals are regressed from the original fmri data.
Optionally, the user can ask for the scrubbing mask to be calculated
AND the contaminated volumes to be removed from the output fmri data.
Find the latest version of this code at:
https://github.com/pausz/fmripop/blob/master/post_fmriprep.py
For help type:
python remove_confounds.py -h
Usage:
CASE 0-a: Uses default values of non-boolean parameters (ie, confounds, filtering, tr)
and outputs data centred around a nonzero mean. The default values of these
non-boolean parameters are optimised for resting-state fmri data.
python post_fmriprep.py --niipath /path/to/file/file_preproc.nii.gz
--maskpath /path/to/file/file_brainmask.nii.gz
--tsvpath /path/to/file/file_confounds.tsv
--detrend
--add_orig_mean_img
CASE 0-b: Uses default values of non-boolean parameters (ie, confounds, filtering, tr)
and outputs zero-centred data (mean==0).
python post_fmriprep.py --niipath /path/to/file/file_preproc.nii.gz
--maskpath /path/to/file/file_brainmask.nii.gz
--tsvpath /path/to/file/file_confounds.tsv
--detrend
CASE 1: Typical use case for **task fmri data**.
Does not regress `framwise displacement` -- used for task-fmri data
Does not filter.
Uses default value for smoothing the data
python post_fmriprep.py --niipath /path/to/file/file_preproc.nii.gz
--maskpath /path/to/file/file_brainmask.nii.gz
--tsvpath /path/to/file/file_confounds.tsv'
--detrend
--add_orig_mean_img
--low_pass None
--high_pass None
--fmw_disp_th None
CASE 2: Calculates scrubbing mask AND removes contaminated volumes
python post_fmriprep.py --niipath /path/to/file/file_preproc.nii.gz
--maskpath /path/to/file/file_brainmask.nii.gz
--tsvpath /path/to/file/file_confounds.tsv'
--detrend
--add_orig_mean_img
--calculate_scrubbing_mask
--remove_volumes
CASE 3: Calculates scrubbing mask, but DOES NOT remove contaminated volumes
python post_fmriprep.py --niipath /path/to/file/file_preproc.nii.gz
--maskpath /path/to/file/file_brainmask.nii.gz
--tsvpath /path/to/file/file_confounds.tsv'
--detrend
--add_orig_mean_img
--calculate_scrubbing_mask
CASE 4: Performs smoothing with a different width along each axis
python post_fmriprep.py --niipath /path/to/file/file_preproc.nii.gz
--maskpath /path/to/file/file_brainmask.nii.gz
--tsvpath /path/to/file/file_confounds.tsv'
--detrend
--add_orig_mean_img
--fwhm 1.5 2.5 1.0
CASE 5: Remove confounds other than those in the default list
python post_fmriprep.py --niipath /path/to/file/file_preproc.nii.gz
--maskpath /path/to/file/file_brainmask.nii.gz
--tsvpath /path/to/file/file_confounds.tsv
--detrend
--add_orig_mean_img
--confound_list "csf,white_matter"
--num_confounds 2
TESTED WITH:
# Python 3.8.3
# pandas 1.1.0
# numpy 1.19.0
# nilearn 0.6.2
# nibabel 3.1.1
NOTES:
Warning about using butterworth filter: https://github.com/nilearn/nilearn/issues/374
REFERENCES:
[1] Confounds removal is based on a projection on the orthogonal of
the signal space. Friston, K. J., A. P. Holmes, K. J. Worsley,
J.-P. Poline, C. D. Frith, et R. S. J. Frackowiak.
“Statistical Parametric Maps in Functional Imaging:
A General Linear Approach”. Human Brain Mapping 2, no 4 (1994): 189-210.
[2] Lindquist, M., Geuter, S., Wager, T., & Caffo, B. (2018).
Modular preprocessing pipelines can reintroduce artifacts into fMRI data. bioRxiv, 407676.
[3] https://www.biorxiv.org/content/biorxiv/early/2017/11/05/156380.full.pdf
This reference recommends scrubbing BEFORE confound removal.
The reference paper, on scrubbing from which all the formulas come, is:
[4] http://www.sciencedirect.com/science/article/pii/S1053811911011815
.. moduleauthor:: Paula Sanz-Leon <[email protected]>
TIMESTAMP: Wed 19 Aug 2020 18:09:00 AEST
"""
# import standard python packages
import argparse
from argparse import RawTextHelpFormatter
import time
import json
import os
# import standard scientific python packages
import numpy as np
import pandas as pd
# import neuroimaging packages
import nilearn.image as nl_img
import nilearn.masking as nl_mask
# Start tracking execution time
start_time = time.time()
# Create function to support mixed float and None type
def none_or_float(arg_value):
if arg_value == 'None':
return None
return float(arg_value)
# Create class to parse numpy's ndarray
class StoreNDArray(argparse._StoreAction):
def __call__(self, parser, namespace, values, option_string=None):
values = np.array(values)
return super().__call__(parser, namespace, values, option_string)
class StoreStrList(argparse._StoreAction):
def __call__(self, parser, namespace, values, option_string=None):
values = [item for item in values.split(',')]
return super().__call__(parser, namespace, values, option_string)
# Create parser for options
parser = argparse.ArgumentParser(
description='''Handle parameters to remove confounders from 4D frmi images.''',
formatter_class = RawTextHelpFormatter)
# These parameters must be passed to the function
parser.add_argument('--niipath',
type = str,
default = None,
help ='''The path to the nii.gz file whose data will be cleaned.''')
parser.add_argument('--tsvpath',
type = str,
default = None,
help ='''The path to the tsv file with the confounders.''''')
parser.add_argument('--maskpath',
type = str,
default = None,
help ='''The path of the nii.gz file with the mask.''')
# These parameters have default values.
parser.add_argument('--num_confounds',
type = int,
default = 8,
help = '''The number of confounds to be removed. Must match the number of confounds specified in --confound_list.
Default: 8.''')
parser.add_argument('--confound_list',
action = StoreStrList,
type = str,
#default = "csf, white_matter, trans_x, trans_y, trans_z, rot_x, rot_y, rot_z",
default = ["csf", "white_matter", "trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"],
help = '''A list with the name of the confounds to remove. These are headers in the tsv file.
Default: csf, white_matter, trans_x, trans_y, trans_z, rot_x, rot_y, rot_z.''')
parser.add_argument('--low_pass',
type = none_or_float,
default = 0.10,
help ='''The low-pass filter cutoff frequency in [Hz]. Set it to None if you dont want low-pass filtering.
Default: 0.1 Hz.''')
parser.add_argument('--high_pass',
type = none_or_float,
default = 0.01,
help ='''The high-pass filter cutoff frequency in [Hz]. Set it to None if you dont want high-pass filtering.
Default: 0.01 Hz.''' )
parser.add_argument('--fmw_disp_th',
dest = 'fmw_disp_th',
type = none_or_float,
default = 0.4,
help ='''Threshold to binarize the timeseries of framewise_displacement confound. This value is typically between 0 and 1 [mm].
Set this flag to `None` if you do not wish to remove framewise_displacement confound.
Default: 0.4 mm.''')
parser.add_argument('--tr',
type = float,
default = 0.81,
help ='''The repetition time (TR) in [seconds].
Default: 0.81 s.''')
parser.add_argument('--detrend',
dest = 'detrend',
action = 'store_true',
default = False,
help = '''Detrend data prior to confound removal.
Default: False.''')
parser.add_argument('--standardize',
dest = 'standardize',
action = 'store_true',
default = False,
help = '''Use this flag if you want to standardize the output signal between [0 1].''')
parser.add_argument('--add_orig_mean_img',
dest = 'add_orig_mean_img',
action = 'store_true',
default = False,
help = '''Use this flag if you want to add the (nonzero) mean/average image of the original data to the cleaned data.
The additional is performed post filtering, confound regression and/or detrending, which have the effect of
centering the data around zero (zero-centred data).
Default: False.''')
parser.add_argument('--calculate_scrubbing_mask',
dest = 'scrubbing',
action = 'store_true',
default = False,
help = '''Use this flag to calculate scrubbing mask and scrubbing stats from data. Note that
if this feature is enabled the script does not perform volume censoring/removal.
Use --remove_volumes to achieve volume censoring.
Default: False
''')
parser.add_argument('--remove_volumes',
dest = 'remove_volumes',
action = 'store_true',
default = False,
help = '''This flag determines whether contaminated volumes should be removed from the output data.
Default: False.''')
parser.add_argument('--fwhm',
action = StoreNDArray,
type = float,
nargs='+',
default = np.array([8.0]),
help = ''' Smoothing strength, expressed as as Full-Width at Half Maximum (fwhm), in [millimeters].
Can be: -> a single number --fwhm 8, the width is identical along x, y and z. (Default)
--fwhm 0, no smoothing is peformed.
-> three consecutive numbers, --fwhm 1 1.5 2.5, giving the fwhm along each axis. ''')
parser.add_argument('--scrub_tag',
type = str,
default = '',
help ='''The tag appended to the output fmri nifti file whose data underwent scrubbing/volume censoring.
Only taken into account if scrubbing is performed
Default: empty string ''' )
parser.add_argument('--debug',
dest = 'debug',
action = 'store_true',
default = False,
help = '''This flag is only meant to be used for visual debugging. Warning: Don't enable it on an HPC environment.
Default: False.''')
def fmripop_smooth_data(imgs, fwhm):
"""
A wrapper of:
https://nilearn.github.io/modules/generated/nilearn.image.smooth_img.html#nilearn.image.smooth_img
Smooth images by applying a Gaussian filter.
args.smoothing corresponds to the parameter 'fwhm'.
"""
out_img = nl_img.smooth_img(imgs, fwhm)
return out_img
def fmripop_remove_confounds(args):
"""
Removes confound signals
"""
# label of framewise displacmeent confound as found in the tsv file
fd_label = 'framewise_displacement'
# This loads the tsv file in a DataFrame.
# The function read_csv() infers the headers of each colum.
# Row indexing starts at 0,
df = pd.read_csv(args.tsvpath, sep='\t')
# Remove row indices
ra = df.to_records(index=False)
# Get shape of confound array
tpts, nregressors = df.shape
# Check if we are removing FramewiseDisplacement
if fd_label in args.confound_list:
frm_disp = ra[fd_label]
# Binarizer timeseries of FramewiseDisplacement
frm_disp_bin = np.where(frm_disp > args.fmw_disp_th, 1.0, 0.0)
# Allocate memory for the confound array
confounds_signals = np.zeros((tpts, args.num_confounds))
# Build the confound array
for idx, this_confound in enumerate(args.confound_list):
if this_confound != fd_label:
confounds_signals[:, idx] = ra[this_confound]
else:
confounds_signals[:, idx] = frm_disp_bin
# Check the numeric type of the input nii image
print("Check datatype of input nii image [header]:")
this_dtype = np.float32
temp_img = nl_img.load_img(args.niipath, dtype=this_dtype)
# Print the datatype
print(temp_img.header['datatype'].dtype)
# Do the stuff
temp_img = nl_img.clean_img(args.niipath,
standardize=args.standardize,
detrend=args.detrend,
confounds=confounds_signals,
t_r=args.tr,
high_pass=args.high_pass,
low_pass=args.low_pass,
mask_img=args.maskpath)
# Add the mean image back into the clean image frames
*xyz, time_frames = temp_img.shape
data = np.zeros(temp_img.shape, dtype=this_dtype)
if args.add_orig_mean_img:
# Compute the mean of the images (in the time dimension of 4th dimension)
orig_mean_img = nl_img.mean_img(args.niipath)
# Smooth mean image
orig_mean_img = fmripop_smooth_data(orig_mean_img, args.fwhm)
for this_frame in range(time_frames):
# Cache image data into memory and cast them into float32
data[..., this_frame] = temp_img.get_fdata(dtype=this_dtype)[..., this_frame] + orig_mean_img.get_fdata(dtype=this_dtype)
else:
for this_frame in range(time_frames):
# Cache image data into memory and cast them into float32
data[..., this_frame] = temp_img.get_fdata(dtype=this_dtype)[..., this_frame]
out_img = nl_img.new_img_like(temp_img, data)
return out_img
def fmripop_calculate_scrub_mask(args):
"""
Calculate the vector that indicates which volumes should be scrubbed/censored.
"""
df = pd.read_csv(args.tsvpath, sep='\t')
# Remove row indices
ra = df.to_records(index=False)
# Get original nummber of frames
tpts, _ = df.shape
# Get framewise displacement vector
fd_vec = ra['framewise_displacement']
# fmriprep *prepends* nan in the FD vector, other approaches *append* a 0 at the end of the vector
# here we shift the fd to match 'typical' approaches in the literature
roll_step = -1
fd_vec = np.roll(fd_vec, roll_step)
fd_vec[tpts-1] = 0
above_threshold = 1.0
below_threshold = 0.0
# Find values of framwise displacement above the threshold
fd_bin = np.where(fd_vec > args.fmw_disp_th, above_threshold, below_threshold)
# Frame indices around the 'contaminated frame --> index 0'
frame_idx_before_a = -1
frame_idx_contaminated_a = 0 # Not really used, but for completeness. fd_bin==1 at time 'a', indicates motion between frame 'a' and frame 'b''
frame_idx_contaminated_b = 1
frame_idx_after_b = 2
# Create a dummy fd_bin vector padded with zeros so we can create the scrub mask with circular shifts
fd_bin_pad = np.pad(fd_bin, (-frame_idx_before_a, frame_idx_after_b), 'constant', constant_values=(0, 0))
# Create the scrubbing mask. This mask can be used for other stats, such as longest sequence of contaminated volumes.
scrub_mask = (np.roll(fd_bin_pad, frame_idx_before_a) + fd_bin_pad + np.roll(fd_bin_pad, frame_idx_contaminated_b) + np.roll(fd_bin_pad, frame_idx_after_b))[-frame_idx_before_a:-frame_idx_after_b]
# NOTE: Should check that for every FD above threshold detected we're removing the same number of frames
to_delete = False
# Create a boolean mask. A value of False indicates that the element/subarray should be deleted
scrub_mask = np.where(scrub_mask >= above_threshold, to_delete, not(to_delete))
return scrub_mask
def frmipop_calculate_scrub_stats(scrub_mask, args):
"""
This function calculates basic duration stats.
Calculates the percentage of scrubbed volumes.
Calculates the length [in minutes of]:
+ the original data and
+ the scrubbed data.
"""
# In the boolean scub_mask False indicates that the element/subarray should be deleted
# Percentage of frames to be eliminated
tpts, *_ = scrub_mask.shape
scrubbed_percentage = ((1.0 - scrub_mask.sum() / tpts))*100
stpts = (~scrub_mask).sum()
# Get length in minutes
original_length = (tpts* args.tr)/60.0
scrubbed_length = ((tpts-stpts) * args.tr)/60.0
return scrubbed_percentage, scrubbed_length, original_length
def fmripop_remove_volumes(imgs, scrub_mask, args, this_dtype=np.float32):
"""
Removes the 'contaminated' volumes from the 4D fmri image.
The resulting sequence will be shorter than the input along the 4th dimension/
"""
# Returns a 2D array of shape timepoints x (voxels_x * voxels_y * voxels_z)
masked_data = nl_mask.apply_mask(imgs, args.maskpath)
# In the boolean scub_mask False indicates that the element/subarray should be deleted
masked_data = masked_data[scrub_mask, :]
out_img = nl_mask.unmask(masked_data.astype(this_dtype), args.maskpath)
return out_img
def fmripop_scrub_data(out_img, args, params_dict):
"""
Handle scrubbing associated actions
"""
scrub_mask = fmripop_calculate_scrub_mask(args)
scbper, scbl, ol = frmipop_calculate_scrub_stats(scrub_mask, args)
params_dict['scrub_mask'] = scrub_mask.tolist() # True: uncontaminated volume. False: contaminated volume
params_dict['original_length_min'] = ol
params_dict['scrubbed_length_min'] = scbl
params_dict['scrubbed_percentage'] = scbper
if args.remove_volumes:
out_img = fmripop_remove_volumes(out_img, scrub_mask, args)
return out_img, params_dict
def fmripop_save_imgdata(args, out_img, params_dict, output_tag=''):
"""
Saves the output 4D image
"""
# Output filename
output_filename, _ = args.niipath.split(".nii.gz")
# NOTE: this line is not general enough, but it'll do for now
output_tag = '_confounds-removed' + output_tag + '.nii.gz'
output_filename += output_tag
# Save the clean data in a separate file
out_img.to_filename(output_filename)
params_dict['outputpath'] = output_filename
return params_dict
def fmripop_save_params(args, params_dict):
# Save the input arguments in a text file with a timestamp
#timestamp = time.strftime("%Y-%m-%d-%H%M%S")
filename = 'fmripop_parameters.json'
jsonpath, _ = os.path.split(args.tsvpath)
with open(os.path.sep.join((jsonpath, filename)), 'w') as file:
file.write(json.dumps(params_dict, indent=4, sort_keys=True)) # use `json.loads` to do the reverse
return
def fmripop_check_args(args):
"""
Checks input arguments and sets other dependent arguments accrodingly
"""
# Check if we want to regress framwise displacement or not
if args.fmw_disp_th is not None:
# Add it to the default confound list
args.confound_list.append(fd_label)
args.num_confounds += 1
# Cast single number or list to numpy array
args.fwhm = np.array(args.fwhm)
# If we want scrubbing check that the user has not specified a tag, otherwise set a default
empty_str = ''
if args.scrubbing and (args.scrub_tag is not empty_str):
args.scrub_tag = '_scbd'
return args
def fmripop_visual_debug(path_to_file, args):
"""
Include basic plottion to check voxels in the Default Mode Network, MNI coordinates.
"""
dmn_coords = [(0, -52, 18), (-46, -68, 32), (46, -68, 32), (1, 50, -5)]
dmn_labels = [ 'Posterior Cingulate Cortex',
'Left Temporoparietal junction',
'Right Temporoparietal junction',
'Medial prefrontal cortex',]
from nilearn import input_data
seed_radius = 8 # mm
masker = input_data.NiftiSpheresMasker(dmn_coords, radius=seed_radius,
standardize=False,
low_pass=None,
high_pass=None,
detrend=False,
t_r=args.tr,
memory='nilearn_cache',
memory_level=1,
verbose=2)
# Extract time series from seed regions
time_series = masker.fit_transform(path_to_file)
import matplotlib.pyplot as plt
for this_time_series, this_label in zip(time_series.T, dmn_labels):
plt.plot(this_time_series, label=this_label)
plt.title('Default Mode Network Time Series\n'+path_to_file)
plt.xlabel('Frame')
plt.ylabel('Signal Amplitude')
plt.legend()
plt.tight_layout()
plt.show(block=True)
return None
if __name__ == '__main__':
# Read in user-specified parameters
args = parser.parse_args()
# Set derived Parameters according to user specified parameters
args = fmripop_check_args(args)
# Convert to dict() for saving later
params_dict = vars(args)
params_dict['fwhm'] = args.fwhm.tolist()
# Performs main task -- removing confounds
out_img = fmripop_remove_confounds(args)
# Perform additional actions on data
if args.scrubbing:
out_img = fmripop_scrub_data(out_img, args, params_dict)
if np.array(args.fwhm).sum() > 0.0: # If fwhm is not zero, performs smoothing
out_img = fmripop_smooth_data(out_img, args.fwhm)
# Save output image and parameters used in this script
params_dict = fmripop_save_imgdata(args, out_img, params_dict, output_tag=args.scrub_tag)
fmripop_save_params(args, params_dict)
if args.debug:
fmripop_visual_debug(args.niipath, args)
fmripop_visual_debug(params_dict['outputpath'], args)
print("--- %s seconds ---" % (time.time() - start_time))