Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add histogram equalization feature #514

Merged
merged 5 commits into from
Jan 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
100 changes: 100 additions & 0 deletions doc/image_processing/contrast_enhancement/histogram_equalization.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
.. _he:

######################
Histogram Equalization
######################

Description
-----------

Histogram equalization also known as histogram flattening, is a non-linear image enhancement
algorithm that follows the idea that not only should an image cover the entire grayscale space
but also be uniformly distributed over that range.

An ideal image would be the one having a flat histogram.

Although care should be taken before applying a non-linear transformation on the image
histogram, there are good mathematical reasons why a flat histogram is the desired goal.

A simple scenario would be an image with pixels concentrated in an interval, in which case
histogram equalization transforms pixels to achieve a flat histogram image. Thus enhancing
the image contrast.

.. figure:: he_chart.png
:width: 200px
:align: center
:height: 100px
:alt: Could not load image.
:figclass: align-center

Pixels concentrated in an interval spread out.

Algorithm
---------

#. First calculate the histogram corresponding to input image.
#. If it is a multi channeled image (e.g. RGB), convert it to a independent color space
(like YCbCr, HSV etc.).
#. Then calculate the cumulative histogram over the input image.
#. Normalize the histogram to bring bin values between 0-1. For multi-channeled images
normalize each channel independently (by the number of pixels in image).
#. If the histogram of image is H(p\ :sub:`x`\) p\ :sub:`x`\ in [0, 255], then apply
the transformation p\ :sub:`x'`\ = H(p\ :sub:`x`\), p\ :sub:`x'`\ is pixel in output
image.

**Explanation**

Since we will be transforming the image to match a flat histogram, we match
the cumulative histogram of the image to the cumulative histogram of a flat histogram.

Cumulative histogram of flat image is H(p\ :sub:`x'`\) = p\ :sub:`x'` .

Hence,

=> H(p\ :sub:`x'`\) = H(p\ :sub:`x`\)

=> p\ :sub:`x'`\ = H(p\ :sub:`x`\)

Results
-------
The algorithm is applied on a few standard images. One of the transformations in shown below:

**Grayscale Image**

.. figure:: barbara.jpg
:width: 512px
:align: center
:height: 256px
:alt: Could not load image.
:figclass: align-center

**RGB**

.. figure:: church.jpg
:width: 900px
:align: center
:height: 300px
:alt: Could not load image.
:figclass: align-center


Demo
----

Usage Syntax:

.. code-block:: cpp

gray8_image_t inp_img;
read_image("your_image.png", inp_img, png_tag{});
gray8_image_t dst_img(inp_img.dimensions());
histogram_equalization(view(inp_img), view(dst_img));

// To specify mask over input image

vector<vector<bool>> mask(inp_img.height(), vector<bool>(inp_img.width(), true));
histogram_equalization(view(inp_img), view(dst_img), true, mask);

.. tip:: Convert an RGB image to a channel independent color space
before trying the histogram equalization algorithm.

20 changes: 20 additions & 0 deletions example/histogram_equalization.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
#include <boost/gil.hpp>
#include <boost/gil/extension/io/png.hpp>
#include <boost/gil/image_processing/histogram_equalization.hpp>

using namespace boost::gil;

int main()
{
gray8_image_t img;

read_image("test_adaptive.png", img, png_tag{});
gray8_image_t img_out(img.dimensions());

// Consider changing image to independent color space, e.g. cmyk
boost::gil::histogram_equalization(view(img),view(img_out));

write_view("histogram_gray_equalized.png", view(img_out), png_tag{});

return 0;
}
150 changes: 150 additions & 0 deletions include/boost/gil/image_processing/histogram_equalization.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
//
// Copyright 2020 Debabrata Mandal <[email protected]>
//
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_GIL_IMAGE_PROCESSING_HISTOGRAM_EQUALIZATION_HPP
#define BOOST_GIL_IMAGE_PROCESSING_HISTOGRAM_EQUALIZATION_HPP

#include <boost/gil/histogram.hpp>
#include <boost/gil/image.hpp>

#include <cmath>
#include <map>
#include <vector>

namespace boost { namespace gil {


/////////////////////////////////////////
/// Histogram Equalization(HE)
/////////////////////////////////////////
/// \defgroup HE HE
/// \brief Contains implementation and description of the algorithm used to compute
/// global histogram equalization of input images.
///
/// Algorithm :-
/// 1. If histogram A is to be equalized compute the cumulative histogram of A.
/// 2. Let CFD(A) refer to the cumulative histogram of A
/// 3. For a uniform histogram A', CDF(A') = A'
/// 4. We need to transfrom A to A' such that
/// 5. CDF(A') = CDF(A) => A' = CDF(A)
/// 6. Hence the pixel transform , px => histogram_of_ith_channel[px].
///

/// \fn histogram_equalization
/// \ingroup HE
/// \tparam SrcKeyType Key Type of input histogram
/// @param src_hist INPUT Input source histogram
/// \brief Overload for histogram equalization algorithm, takes in a single source histogram
/// and returns the color map used for histogram equalization.
///
template <typename SrcKeyType>
std::map<SrcKeyType, SrcKeyType> histogram_equalization(histogram<SrcKeyType> const& src_hist)
{
histogram<SrcKeyType> dst_hist;
return histogram_equalization(src_hist, dst_hist);
}

/// \overload histogram_equalization
/// \ingroup HE
/// \tparam SrcKeyType Key Type of input histogram
/// \tparam DstKeyType Key Type of output histogram
/// @param src_hist INPUT source histogram
/// @param dst_hist OUTPUT Output histogram
/// \brief Overload for histogram equalization algorithm, takes in both source histogram &
/// destination histogram and returns the color map used for histogram equalization
/// as well as transforming the destination histogram.
///
template <typename SrcKeyType, typename DstKeyType>
std::map<SrcKeyType, DstKeyType>
histogram_equalization(histogram<SrcKeyType> const& src_hist, histogram<DstKeyType>& dst_hist)
{
static_assert(
std::is_integral<SrcKeyType>::value &&
std::is_integral<DstKeyType>::value,
"Source and destination histogram types are not appropriate");

using value_t = typename histogram<SrcKeyType>::value_type;
dst_hist.clear();
double sum = src_hist.sum();
SrcKeyType min_key = std::numeric_limits<DstKeyType>::min();
SrcKeyType max_key = std::numeric_limits<DstKeyType>::max();
auto cumltv_srchist = cumulative_histogram(src_hist);
std::map<SrcKeyType, DstKeyType> color_map;
std::for_each(cumltv_srchist.begin(), cumltv_srchist.end(), [&](value_t const& v) {
DstKeyType trnsfrmd_key =
static_cast<DstKeyType>((v.second * (max_key - min_key)) / sum + min_key);
color_map[std::get<0>(v.first)] = trnsfrmd_key;
});
std::for_each(src_hist.begin(), src_hist.end(), [&](value_t const& v) {
dst_hist[color_map[std::get<0>(v.first)]] += v.second;
});
return color_map;
}

/// \overload histogram_equalization
/// \ingroup HE
/// @param src_view INPUT source image view
/// @param dst_view OUTPUT Output image view
/// @param bin_width INPUT Histogram bin width
/// @param mask INPUT Specify is mask is to be used
/// @param src_mask INPUT Mask vector over input image
/// \brief Overload for histogram equalization algorithm, takes in both source & destination
/// image views and histogram equalizes the input image.
///
template <typename SrcView, typename DstView>
void histogram_equalization(
SrcView const& src_view,
DstView const& dst_view,
std::size_t bin_width = 1,
bool mask = false,
std::vector<std::vector<bool>> src_mask = {})
{
gil_function_requires<ImageViewConcept<SrcView>>();
gil_function_requires<MutableImageViewConcept<DstView>>();

static_assert(
color_spaces_are_compatible<
typename color_space_type<SrcView>::type,
typename color_space_type<DstView>::type>::value,
"Source and destination views must have same color space");

// Defining channel type
using source_channel_t = typename channel_type<SrcView>::type;
using dst_channel_t = typename channel_type<DstView>::type;
using coord_t = typename SrcView::x_coord_t;

std::size_t const channels = num_channels<SrcView>::value;
coord_t const width = src_view.width();
coord_t const height = src_view.height();
std::size_t pixel_max = std::numeric_limits<dst_channel_t>::max();
std::size_t pixel_min = std::numeric_limits<dst_channel_t>::min();

for (std::size_t i = 0; i < channels; i++)
{
histogram<source_channel_t> h;
fill_histogram(nth_channel_view(src_view, i), h, bin_width, false, false, mask, src_mask);
h.normalize();
auto h2 = cumulative_histogram(h);
for (std::ptrdiff_t src_y = 0; src_y < height; ++src_y)
{
auto src_it = nth_channel_view(src_view, i).row_begin(src_y);
auto dst_it = nth_channel_view(dst_view, i).row_begin(src_y);
for (std::ptrdiff_t src_x = 0; src_x < width; ++src_x)
{
if (mask && !src_mask[src_y][src_x])
dst_it[src_x][0] = channel_convert<dst_channel_t>(src_it[src_x][0]);
else
dst_it[src_x][0] = static_cast<dst_channel_t>(
h2[src_it[src_x][0]] * (pixel_max - pixel_min) + pixel_min);
}
}
}
}

}} //namespace boost::gil

#endif
Loading