-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathHelm3dSLPmat.m
50 lines (47 loc) · 1.89 KB
/
Helm3dSLPmat.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
function [A, An] = Helm3dSLPmat(t,s,k,if_jac)
% HELM3DSLPMAT. dense Helmholtz SLP Nystrom eval matrix from sources to targets
%
% [A, An] = Helm3dSLPmat(t,s,k)
%
% Inputs:
% s - source surface struct with fields:
% x (3*N) nodes, w (1*N) quadr weights
% t - target struct with fields:
% x (3*N) nodes, and, if An requested, nx (3*N) normals
% k - wavenumber, satisfies imag(k)>0
% if_jac - whether or not to include the jacobian (speed) s.sp
% Outputs:
% A - (M*N) matrix getting potentials from density values
% An - (M*N) matrix getting t.nx directional derivs from density values
%
% Bowei Wu 3/13/20
if nargin<4 || isempty(if_jac), if_jac = 1; end
d1 = bsxfun(@minus,t.x(1,:)',s.x(1,:)); % 3 coords of displacement matrix (M*N)
d2 = bsxfun(@minus,t.x(2,:)',s.x(2,:));
d3 = bsxfun(@minus,t.x(3,:)',s.x(3,:));
rr = d1.^2+d2.^2+d3.^2; % dist^2 mat
r = sqrt(rr);
if if_jac
A = bsxfun(@times, exp(1i*k*r)./r, s.w*(1/4/pi)); % including src quadr wei
else
A = bsxfun(@times, exp(1i*k*r)./r, (s.w./s.sp)*(1/4/pi)); % including src quadr wei, excl jacobian
end
if size(s.x,2) == size(t.x,2) && norm(s.x - t.x) < 1e-14
A(diagind(A)) = 0;
end
if nargout>1 % targ deriv wanted
ddottn = bsxfun(@times,d1,t.nx(1,:)')+bsxfun(@times,d2,t.nx(2,:)')+bsxfun(@times,d3,t.nx(3,:)');
if if_jac
An = bsxfun(@times, (1-1i*k*r).*exp(1i*k*r).*ddottn./(sqrt(rr).*rr), s.w*(-1/4/pi)); % monopole deriv, incl src quad wei
else
An = bsxfun(@times, (1-1i*k*r).*exp(1i*k*r).*ddottn./(sqrt(rr).*rr), (s.w./s.sp)*(-1/4/pi)); % monopole deriv, incl src quad wei, excl jacobian
end
if size(s.x,2) == size(t.x,2) && norm(s.x - t.x) < 1e-14
An(diagind(An)) = 0;
end
end
function i = diagind(A)
% DIAGIND Return indices of diagonal of square matrix
%
% Example usage: A = randn(3,3); A(diagind(A)) = 0;
N = size(A,1); i = sub2ind([N,N], 1:N, 1:N); i = i(:);