Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

alternative implementation of a VAE #71

Open
joepareti54 opened this issue Jul 31, 2023 · 0 comments
Open

alternative implementation of a VAE #71

joepareti54 opened this issue Jul 31, 2023 · 0 comments

Comments

@joepareti54
Copy link

joepareti54 commented Jul 31, 2023

I have mdified this code as follows:

import keras
from keras.layers import Conv2D, Conv2DTranspose, Input, Flatten, Dense, Lambda, Reshape
#from keras.layers import BatchNormalization
from keras.models import Model
from keras.datasets import mnist
from keras import backend as K
import numpy as np
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train = x_train / 255
x_test = x_test / 255
img_width = x_train.shape[1]
img_height = x_train.shape[2]
num_channels = 1 #MNIST --> grey scale so 1 channel
x_train = x_train.reshape(x_train.shape[0], img_height, img_width, num_channels)
x_test = x_test.reshape(x_test.shape[0], img_height, img_width, num_channels)
input_shape = (img_height, img_width, num_channels)

========================

latent_dim = 2 # Number of latent dim parameters

input_img = Input(shape=input_shape, name='encoder_input')
x = Conv2D(32, 3, padding='same', activation='relu')(input_img)
x = Conv2D(64, 3, padding='same', activation='relu',strides=(2, 2))(x)
x = Conv2D(64, 3, padding='same', activation='relu')(x)
x = Conv2D(64, 3, padding='same', activation='relu')(x)

conv_shape = K.int_shape(x) #Shape of conv to be provided to decoder
x = Flatten()(x)
x = Dense(32, activation='relu')(x)
z_mu = Dense(latent_dim, name='z_mu')(x)
z_sigma = Dense(latent_dim, name='z_sigma')(x)

def sample_z(args):
z_mu, z_sigma = args
eps = K.random_normal(shape=(K.shape(z_mu)[0], K.int_shape(z_mu)[1]))
return z_mu + K.exp(z_sigma / 2) * eps

z = Lambda(sample_z, output_shape=(latent_dim, ), name='z')([z_mu, z_sigma])

encoder = Model(input_img, [z_mu, z_sigma, z], name='encoder')
print(encoder.summary())

decoder_input = Input(shape=(latent_dim, ), name='decoder_input')

x = Dense(conv_shape[1]*conv_shape[2]*conv_shape[3], activation='relu')(decoder_input)
x = Reshape((conv_shape[1], conv_shape[2], conv_shape[3]))(x)
x = Conv2DTranspose(32, 3, padding='same', activation='relu',strides=(2, 2))(x)
x = Conv2DTranspose(num_channels, 3, padding='same', activation='sigmoid', name='decoder_output')(x)

decoder = Model(decoder_input, x, name='decoder')
decoder.summary()

z_decoded = decoder(z)

def vae_loss(x, z_decoded):
x = K.flatten(x)
z_decoded = K.flatten(z_decoded)
recon_loss = keras.metrics.binary_crossentropy(x, z_decoded)
kl_loss = -5e-4 * K.mean(1 + z_sigma - K.square(z_mu) - K.exp(z_sigma), axis=-1)
return K.mean(recon_loss + kl_loss)

**y = decoder(z)
print('y ' ,y)

vae = Model(input_img, y, name='vae')

Compile VAE

vae.compile(optimizer='adam', loss=vae_loss)**
vae.summary()

vae.fit(x_train, None, epochs = 10, batch_size = 32, validation_split = 0.2)

``
It ends with the followíng exception:

tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'decoder_target' with dtype float and shape [?,?,?,?] [[{{node decoder_target}}]]

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant