You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
import keras
from keras.layers import Conv2D, Conv2DTranspose, Input, Flatten, Dense, Lambda, Reshape
#from keras.layers import BatchNormalization
from keras.models import Model
from keras.datasets import mnist
from keras import backend as K
import numpy as np
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train = x_train / 255
x_test = x_test / 255
img_width = x_train.shape[1]
img_height = x_train.shape[2]
num_channels = 1 #MNIST --> grey scale so 1 channel
x_train = x_train.reshape(x_train.shape[0], img_height, img_width, num_channels)
x_test = x_test.reshape(x_test.shape[0], img_height, img_width, num_channels)
input_shape = (img_height, img_width, num_channels)
========================
latent_dim = 2 # Number of latent dim parameters
input_img = Input(shape=input_shape, name='encoder_input')
x = Conv2D(32, 3, padding='same', activation='relu')(input_img)
x = Conv2D(64, 3, padding='same', activation='relu',strides=(2, 2))(x)
x = Conv2D(64, 3, padding='same', activation='relu')(x)
x = Conv2D(64, 3, padding='same', activation='relu')(x)
conv_shape = K.int_shape(x) #Shape of conv to be provided to decoder
x = Flatten()(x)
x = Dense(32, activation='relu')(x)
z_mu = Dense(latent_dim, name='z_mu')(x)
z_sigma = Dense(latent_dim, name='z_sigma')(x)
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'decoder_target' with dtype float and shape [?,?,?,?] [[{{node decoder_target}}]]
The text was updated successfully, but these errors were encountered:
I have mdified this code as follows:
import keras
from keras.layers import Conv2D, Conv2DTranspose, Input, Flatten, Dense, Lambda, Reshape
#from keras.layers import BatchNormalization
from keras.models import Model
from keras.datasets import mnist
from keras import backend as K
import numpy as np
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train = x_train / 255
x_test = x_test / 255
img_width = x_train.shape[1]
img_height = x_train.shape[2]
num_channels = 1 #MNIST --> grey scale so 1 channel
x_train = x_train.reshape(x_train.shape[0], img_height, img_width, num_channels)
x_test = x_test.reshape(x_test.shape[0], img_height, img_width, num_channels)
input_shape = (img_height, img_width, num_channels)
========================
latent_dim = 2 # Number of latent dim parameters
input_img = Input(shape=input_shape, name='encoder_input')
x = Conv2D(32, 3, padding='same', activation='relu')(input_img)
x = Conv2D(64, 3, padding='same', activation='relu',strides=(2, 2))(x)
x = Conv2D(64, 3, padding='same', activation='relu')(x)
x = Conv2D(64, 3, padding='same', activation='relu')(x)
conv_shape = K.int_shape(x) #Shape of conv to be provided to decoder
x = Flatten()(x)
x = Dense(32, activation='relu')(x)
z_mu = Dense(latent_dim, name='z_mu')(x)
z_sigma = Dense(latent_dim, name='z_sigma')(x)
def sample_z(args):
z_mu, z_sigma = args
eps = K.random_normal(shape=(K.shape(z_mu)[0], K.int_shape(z_mu)[1]))
return z_mu + K.exp(z_sigma / 2) * eps
z = Lambda(sample_z, output_shape=(latent_dim, ), name='z')([z_mu, z_sigma])
encoder = Model(input_img, [z_mu, z_sigma, z], name='encoder')
print(encoder.summary())
decoder_input = Input(shape=(latent_dim, ), name='decoder_input')
x = Dense(conv_shape[1]*conv_shape[2]*conv_shape[3], activation='relu')(decoder_input)
x = Reshape((conv_shape[1], conv_shape[2], conv_shape[3]))(x)
x = Conv2DTranspose(32, 3, padding='same', activation='relu',strides=(2, 2))(x)
x = Conv2DTranspose(num_channels, 3, padding='same', activation='sigmoid', name='decoder_output')(x)
decoder = Model(decoder_input, x, name='decoder')
decoder.summary()
z_decoded = decoder(z)
def vae_loss(x, z_decoded):
x = K.flatten(x)
z_decoded = K.flatten(z_decoded)
recon_loss = keras.metrics.binary_crossentropy(x, z_decoded)
kl_loss = -5e-4 * K.mean(1 + z_sigma - K.square(z_mu) - K.exp(z_sigma), axis=-1)
return K.mean(recon_loss + kl_loss)
**y = decoder(z)
print('y ' ,y)
vae = Model(input_img, y, name='vae')
Compile VAE
vae.compile(optimizer='adam', loss=vae_loss)**
vae.summary()
vae.fit(x_train, None, epochs = 10, batch_size = 32, validation_split = 0.2)
``
It ends with the followíng exception:
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'decoder_target' with dtype float and shape [?,?,?,?] [[{{node decoder_target}}]]
The text was updated successfully, but these errors were encountered: