diff --git a/DS_Unit_1_Sprint_Challenge_2.ipynb b/DS_Unit_1_Sprint_Challenge_2.ipynb new file mode 100644 index 0000000..49031f8 --- /dev/null +++ b/DS_Unit_1_Sprint_Challenge_2.ipynb @@ -0,0 +1,537 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "DS_Unit_1_Sprint_Challenge_2.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "i-n_5en3ER1o", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Data Science Unit 1 Sprint Challenge 2\n", + "\n", + "# Storytelling with Data\n", + "\n", + "In this sprint challenge you'll work with a dataset from **FiveThirtyEight's article, [Every Guest Jon Stewart Ever Had On ‘The Daily Show’](https://fivethirtyeight.com/features/every-guest-jon-stewart-ever-had-on-the-daily-show/)**!" + ] + }, + { + "metadata": { + "id": "Thm2n5FF2Fnp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Part 0 — Run this starter code\n", + "\n", + "You don't need to add or change anything here. Just run this cell and it loads the data for you, into a dataframe named `df`.\n", + "\n", + "(You can explore the data if you want, but it's not required to pass the Sprint Challenge.)" + ] + }, + { + "metadata": { + "id": "0rTHgzJIuRS7", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "df = pd.read_csv('https://raw.githubusercontent.com/fivethirtyeight/data/master/daily-show-guests/daily_show_guests.csv')\n", + "df.rename(columns={'YEAR': 'Year', 'Raw_Guest_List': 'Guest'}, inplace=True)\n", + "\n", + "def get_occupation(group):\n", + " if group in ['Acting', 'Comedy', 'Musician']:\n", + " return 'Acting, Comedy & Music'\n", + " elif group in ['Media', 'media']:\n", + " return 'Media'\n", + " elif group in ['Government', 'Politician', 'Political Aide']:\n", + " return 'Government and Politics'\n", + " else:\n", + " return 'Other'\n", + " \n", + "df['Occupation'] = df['Group'].apply(get_occupation)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "OS0nW1vz1itX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Part 1 — What's the breakdown of guests’ occupations per year?\n", + "\n", + "For example, in 1999, what percentage of guests were actors, comedians, or musicians? What percentage were in the media? What percentage were in politics? What percentage were from another occupation?\n", + "\n", + "Then, what about in 2000? In 2001? And so on, up through 2015.\n", + "\n", + "So, **for each year of _The Daily Show_, calculate the percentage of guests from each occupation:**\n", + "- Acting, Comedy & Music\n", + "- Government and Politics\n", + "- Media\n", + "- Other\n", + "\n", + "#### Hints:\n", + "1. Use pandas to make a **crosstab** of **`Year`** & **`Occupation`**. ([This documentation](http://pandas.pydata.org/pandas-docs/stable/reshaping.html#cross-tabulations) has examples and explanation.)\n", + "2. To get percentages instead of counts, use crosstab's **`normalize`** parameter to normalize over each _row._ ([This documentation](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.crosstab.html) describes the parameter and its options.)\n", + "3. You'll know you've calculated the crosstab correctly when the percentage of \"Acting, Comedy & Music\" guests is 90.36% in 1999, and 45% in 2015." + ] + }, + { + "metadata": { + "id": "5VFXaicISRg6", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 418 + }, + "outputId": "54f01f4e-7d90-494d-e309-f56830ba58ba" + }, + "cell_type": "code", + "source": [ + "# Number of guests per occupation\n", + "df_count = pd.crosstab(df['Year'], df['Occupation'])\n", + "\n", + "# Normalized to 0-1\n", + "df_norm = pd.crosstab(df['Year'], df['Occupation'], normalize='index')\n", + "\n", + "# Normalized to 1% - 100%\n", + "df_pct = df_norm.style.format('{:,.2%}'.format)\n", + "df_pct" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OccupationActing, Comedy & MusicGovernment and PoliticsMediaOther
Year
199990.36%1.20%6.63%1.81%
200073.96%8.28%12.43%5.33%
200172.61%3.82%19.75%3.82%
200262.26%6.92%26.42%4.40%
200356.02%10.24%24.70%9.04%
200438.41%22.56%27.44%11.59%
200537.04%16.05%33.33%13.58%
200636.02%19.25%29.19%15.53%
200725.53%17.02%33.33%24.11%
200820.73%20.12%46.95%12.20%
200920.86%20.86%36.20%22.09%
201035.15%18.18%30.30%16.36%
201133.74%16.56%31.29%18.40%
201226.83%20.12%31.71%21.34%
201342.77%12.65%30.72%13.86%
201439.26%12.88%32.52%15.34%
201545.00%17.00%24.00%14.00%
" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "id": "Nqf9oJJDDu-d", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Part 2 — Recreate this explanatory visualization:" + ] + }, + { + "metadata": { + "id": "ixYrwzeGXVlX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Instructions" + ] + }, + { + "metadata": { + "id": "scozkHQc0_eD", + "colab_type": "code", + "outputId": "4bbb8d6b-9895-4619-8776-b2cd32f62c84", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 406 + } + }, + "cell_type": "code", + "source": [ + "from IPython.display import display, Image\n", + "url = 'https://fivethirtyeight.com/wp-content/uploads/2015/08/hickey-datalab-dailyshow.png'\n", + "example = Image(url, width=500)\n", + "display(example)" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMQAAAO2CAMAAAAwo7uMAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJ\nbWFnZVJlYWR5ccllPAAAAppQTFRFAI/VCIfPDZPVD5XXEH/KGHfEGpfUHpvYH4XMIG+/JpvUKGe5\nKZ3WLaHaMF+0MHytM5/TOFeuPDw8PKfcQHWgQKLTQU+pR0dHR12wR6nZSUejS63dTKHOTabSUG+S\nUT+dU1NTVmOxVq/bWLHdWTeYWqrSWrPfW15fXl5eX1usYGiFYS+SZWhpZ67RZ7ffaSeNaWlpabnh\nbmGub0uhb7facDWUcHJzcR+Hc7LRdHR0eMDjeReCenx9fI2nfzuWgFtrgICAgLbQgL/egQ98hIaH\nhhuBhzOQh8bkiB2DiyeGi4uLjSmIjVekjbrQjkGXjpCRjyuLjzOLj1VdlD+QljmSlpaWlszml7bZ\nmKDMmMXamUqVmYm/mZqbmr7PnUeZnU+an05Qn1GcoaGhomKfo6Slo8bYpFWgpdLop26lp6bOp8HP\np8vcq2Ooq8/hrHqqra2tra+vr0hDsYavsnGvs8XOtHuytNjptZK0t7m5uLi4uYC2up65uszVu4m5\nvHNxvpO8vpq8v0E1v469v6m+wMnOwaS/wdLbwsPDw8PDw97rxLXDxdfgxpzFx6vGx9DUyMHIzHJo\nzM3NzarMzc3NzrHMzs7Ozzso0MPA0r3S0uTt1LjT1q6n1tbW1tfX2NDX2YyE2cTY2cvJ2cvZ2n91\n2qSa2tPZ2tra28ba3U053ZmN3zQb37ev39/f4I+A4Kqg4OHh4eru4qyj4tTi5eXl5+fn6KSY6XBa\n6eLp6mxY6n5r6t3a69DL6+vr7GVN7nRe7y4N71tA8PDw8ePh8pSD8tfS81Ez84d088rD9L609VM1\n9bGl9fX19kYm9mFH9qWW95iH+Egp+H9p+Ix4+XJa+ksr+mZL+z4c+1k8/DEN/E0t/UAe/jQP/ycA\n////UNdpdAAAe4tJREFUeNrs3Yt/I+l6J3SfYzYmBG8SeRPBmrBa2PWInA7IXDqRMrAK7mBHsEwn\naZnbxID20D7sGtTQQdvyAsvpPTDlbHOZnhXB5jTXIAM7MKZ1WHMZLjJmbTyLjW2M43b3/0Ld3nov\n9dZVJaneqt/z+ZwzbtkqVZWqvvW8bz3vWzNDBAKBUDhmsAsQCAQQQyAQCCCGQCAQQAyBQAAxBAKB\nAGIIBAIBxBAIBAKIIRAIIIZAIBBADIFAIIAYAoFAADEEAgHEEAgEAoghEAgEEEMgEEAMgUAggBgC\ngUAAMQQCgQBiCAQCiCEQCAQQQyAQCCCGQCAQQAyBQAAxBAKBAGIIBAIBxBAIBAKIIRAIIIZAIBDZ\nRKynmdHHzk1zpOxb6lur00tuiQNridqEt6PbNEMb4BBLDWKa5ODqS47/Hj1iKgUzmkkdjN1mvVKp\n1JvtfqLnizyiEeBEAief1mxam9kb2SbmFJbGIKFvqedaapSvwTrbm9a32rRWpxJ7x1WbLf7L06wl\nFsZ59mjCmdAuF5wot6FLShArWd9IkX2tar3WYF8r0j9LFLF2hR4WhVIzietbs+ATIZdRcb+z0hhB\nn26V3cxGfK6N76vEnMLS0BL6lsS9UKq2wu8DjVmZ+Ihp7I4r1vsTRaxvf4T9qb2ScESgMZIOxBr2\nF8IenOSQZa/J1kvVhBHrCodFodhMLWLGHunGvKCLm1mox9S6Tb6FqSAWKQFJArG+aw2ak0SsbX9Z\n3L/Yo7UHYNKAWNf+Plruo6/AXGha1ivtZBGry06SQXoRE7LTsNGQLKgYry+nRL6rqSGmU65NCrFe\n0f3p1QkiVmfPA20sBysiAcQG4rHBnHNtVwuznyRig7L0HAl9YLBdLpNCLMZWD6ryJcXpUuk6LEwR\nsZCUj46YzDAnL5oEYmVmnQfFZA4HRPKI2V8U2ylWLrhhKzINzKQQo6dIUe+4lVxrA4I9RyaGWCFy\nPwhjmL6ZzKnQjbvLhtNGzIFkvIjRi1yJPT66k0JsINmAQlG/v9B3enKLECYNiDXFTrEBtUXs4awn\niZiT8FWso6Rdinh2eyHWrjhBzwES0U5f8uf0qI3coHQ2s2SlXl3n1CxG9lCjK9Wjm1SkVwI7eski\nVrJy3nopUi42MmItJ90xd1S7yPfVjh8xK+8ts5dxp51QL3gdfojJI6aJnWJM/2VPeK2dIGKaq1nl\nNC/LoyHm+pMYq1pxnXP1aCvn2kzalV+PmnIK69AMXNdhsog5S+5VY6eRMRArCQeI07rsTQixJvPx\nXSERJ63LFohJAWJD8YyqS1r89muDBBErue8oDEqSW6We0Z8sYs4Kx2uRVYZuD6NexvtyPyaHGHOF\nK40dsb5rzzW5r3P8iFWYDW2K7egKOsVShFhFOCrNk7XIZx0l9p+JfH1tycntvBhq0d0JI9aIc9LI\n7vRSrCOmYtylZDqI0TZee9yIaa4vr8/ttvEjxm5nRdxqIJYmxFpCRZ91sHHnS5/rCOG/vp5HJffA\nv869LEtGBl4nt6zWvjoaYv7l+5LTtyk/afq+21mV9oQ7+cxAuuM8FjfwyIHCIOb1LfmvvWzJFXmz\nOmg0RHTEmu4vzx4D0JYg5rnXetHHGrCKFgfcZmtALJWI9fhLq2Val2u5tLl/0a9v0LJvQouX5XaV\n9IN6FKf35a2SFnuUkmOJdCiX6s4hpDWd23xloye7EQ0x2SLDIsau8aBNkCq3Bn4rIDaQi9w+tzvp\njY3QrB1Xqvc9z+p6VMS8vqXgtZctWZJbdsnuLFbYBTF3GTjENPsXdAF19i9FxKoBmZr5fcr3Wr9B\n7r1XnW3vWp/lHBLWzq8La90lZwL5u4awin107KcJMXJG1dncoV9iX+PbMc7pwQzDKLMHIF+HLy1O\nb4W9y9XjbvOTg0isoqhEQUy+yMDTt+oypFsMGmugefQg1bkETSMfNqj4VSBVrfOoHRExz28pcO3l\nSxb72/nhCMWWuPNddycHYm9oX1quoBX8e0gpYg35XhvUZaMt+sI30uBJ7tF/GiM2KwP/JBUlFilB\nrMp9rfbPVfa1Mncsk9ODq0UsDdz91j6DM6ohb3K15SWioyDWDlN16j59NVddhLidkgPeK5toc20y\nghhf/Rv6vpc/YmG/JdnpKl1yg9+pbc9KWM8Si7qw2LY0xexRYAe+iNXle81VKlvnEO7z/Rpt7uoa\neNuiHqFgDjEBxNps+0Czv5sW89qAp8A+tBtF+bFbDzPErBSudLTtUeg+AmLtULXzrtOXVCm1h97b\nWfe0uunRhC9wiPG1paHLyHwRC/8t1UMumb8lo8lLbX0R6wo9glX5BY3J8CqSuT+cjn/5XpOU+9dZ\nhNuymwVkkwMaCM4gjCKGHaUEsT57LjfsH/vMhU24Dyiv4y4KyYfRWVV0JwBCX1GIrlW7WrXEti7i\nI+a5SHlrQSwo7boaxJW21qp45ZUVLyYL7gtHQTzrWkkg5vEthVp7+ZI1bp87N1r1+XKELn/vYlfh\nglCUt8zEL7lc5+bQ8BizYO81Z5SQ/hWWud9pnFptYceEaSD0yjFrZBBjQ4wciHWaXffJi1UKW9F1\nepT0GcB6Tf4L7bMDnJ1eCfHKNgiHGFdL1mLOEX2KKfK5ddedAF/EPBcZgoAi073X507EuseNw6LX\nwc7tNHo66vcZBk5JfyUZxKTfUqi1ly+5x/bzaexloM2n196INThHuh6Z4KAkGXzeliAm22t1tkdW\nK7JpGmdmla/e1UIcllpxlOGviPEgxhzEA+ekrtOvs8z361T4XpQWJ0WdT26q8majJurRqHDR5q6S\nLT57aEvOkbCI+S8yALF6eyD2DNV5G9t+VgUj1uVP3kQQk35L4dbeY8nsBYi/Y1rhdq43Yj1uAxte\n2Y90AHipJyIm22tCK7HHNiir7BEqNLSbwfV7Tn9EEYalCDFmSEXb+ULbziE4EFo3FQEm7vTgb3U6\nB1Nr6NMkcaPRlNxxcM616giI+S8yqDHG3MQr8vugKV9ONMTqQjsqEcT8vqWAtQ+DmHXR0bjlNIMQ\nI73pXeY7kN3n65V8pv/w3WtC8SO5thYZhWhPSVGc3KAVposDk4mlCrEBvaTVnYNr4FygNKHjqFKQ\nZmZ19it2Lqtl6XkQDjGxLcrXzMdCzH+RgYg5A4A1AUNNfsc9GmJijtFPADG/bylo7eVL7nsPPOKl\n8kGsxaxM3+c+30A6FRs/dlK61ypCpt9lVqbP7BnzeK/T9wXv+CqmEkslYkSaBrkqMi+WyfFXFA/t\npuxQdyURciU0sU9MhpgmCtDlXoiDWMAiXadvmcwv33T6TsqSc5Ke2b1R+sQ813IExPy+paC1D9Ox\nHw+xAaNmy7cvfdByX0/4+6LSvSZ+8QP2hTJ9o3m89wr8VJPlMB3IMCxliDXI+dlz974O7EO5Hur0\nqIvX9KZ8gE0YxNriqcWneXEQC1ik3+k74Mol6uIcP/K1iXR3cnKIhVz7sIj1280qO1NaMGLsmLFK\nYNVor92oFF1zuvntNXcvBpuCN50/7FkfXSar1ggusIg5AQli3IiRfMS+KnKzBHSHQUNf2UPdddi3\n5OeHOHiQdOyXmGW7srqerLEZCbGARfqfviWmNqjiMx2hBLFQdWKTQyzk2suXLIxpHLRK8kzJF7G2\nY8og5NANZko3rlRCutfce7DIfH7P2YCWBVKdHIvlsIcU+vRTh5hzvNXZPIWUfIv9BJEQ8zghyx6n\nTdMPsWHyiA0jINZmsraQDDQ9Ckm7sop9RRCr8uM+JX3vIRCjUwV3w8++1OaqVqMhVnHXqVXsw7Bl\nL7htg1oMcaqgQCx9iJF74yX2S6za5ZBiN24kxNry88OrlL3qh1g/ecT6ERBj54YJyUDXoxO8IRs7\nqQhiRbZNx1VBFMvhEasTu+oRpidrskpGQ6zEfj4pHxrY69C3v4xuiKYiEEsrYk12BEeVbwk2xVwi\nxOlRch13wpXWq8xU1pzsi4dpa2TEPBYZGTF74mYawn2tgcfM/Pwg6mkhFrT2vvlomduQsvlIbC08\nYj2y30sRJv3WoiLWFo+EKrsNWpccqyXrhwaaigoj1mMHvrRlL3bDnR6uVMdrFi752d3zvTupJX93\nUouQg7CIhZ0eqyzN9DS+S3DqdycjLHnADXno8li0wyNm41Xpe7Umm7I9x1IU6e4k/wKpfGyQy7Ol\nl/2USzwSV03EhkXx3g97mRXuLvqdHq7bfxWPgT1laW8R18p03WLi73TGQSxgkf4wsEXv7ZAzsbSl\nI4Ur/MZPHLGwa1/xnlrb2iB+/FD4EgtnbxbbXq1JTZKra7JrnHSviUXMwl1o6+hrlslLXWYSvTLQ\nUBQx5rliJdcBK3yzfqeHqMTAa96wdkFS3NDli13FI7HMrUuYYdKuC7L/IsPlIOw9fFqrYYW4HGcc\nclWiIblcTByxsGvvWjJ9hmZL9iER+sScGlev1uRA0lHXYI8Z370mlvo0+IuV9Q1U6J8UfdcFoQRi\nLdmULG3JFC4Bp4fT3TLw7RJj0jxmYgg6TV9T9mah/6oUok3kQsx/kX4w9MvcfAdl3qa210ihlnu3\ntsSdOnHEwq69sOQendeHf9xCnb8GhUKMvW5K701WXMN7+LTWd69p8jktqkK3hfNS1X9d3GuFnv30\nIdanX2LXfTHk8yXf06PLnbO9oqc0Xaqmddj0XI9Z6nPP+iNTBgqznheqmuf86m7E/Bfp2kba9V0R\n1q3N9Qb1i541kGU6AYP5Kd2Ka4bCySMWcu35CYmYLgeywxqsM87sDkUtDGJtWfIvO0DsSRH7zUKE\ne7plTkDXUyJLwkjMtmuyIiCmHGLMtzqQnICF0KeH8y2XWlq37je/H2NWkZ4iFXbZzlOXG5rmZAFd\noYUQbT4x30W6j1XJ4Elh3+gzcnUbRe9Du8+c+2V23sOia9jA5BALufZee8FZ9Tbdm+26+H0EIDYo\nSvN86aeXWEKLYW6H0Od9djWnHLchOfgGwvW6DsSURawu6/1qSJHwPz36xVBTp3qcIo2mrJNFOgGp\nFgsx30WGQMwZ9yubJ0Z6AkgnlOEmQZgCYuHW3mMvlPtD2b0fZl7HMIgxkMgT6UFZ/vHdUHut4fPd\nMWleVdzUNhBTFrF2QXLCa7IXA04PyfnhcVwM6pI0h0fMfRzXpZ0qERDzXWQgYtWBpAevwE/d5VKs\n7Dct1nQQC7f2Ff/piIbi9KrtZhTENN/WpJdizixeQXut7mMYzbxaYkflAIgpi1hfWrUtvVQGnB7D\nPn/sl7y/75ZwJulTAzSF2Qf4C2qxJT/GozwoxG+RAYhVuE0RR9x4PoJw0HSJ0RgMp4tYqLWX7IWS\n8NQOBkOdl0E5AmJOGue949zpVCV8I1w4urhd7pqts+9RfQ3EFELMaWYNJV91MdLpoad1Fc+DXjy9\nSwIRTfGw1ugVtSg+V9Dp7Ij0yDbfRXqdvsVKvSX+KTv22WtBku0slISHcU4FsTBrL+yFSrXZ89w0\naxGDZjk8Ys3gedP6Dc7aqhZlr/WZp6RUhZ3ZEs0qBYAKxBRALNnod/UbevVmK3hcb69lzg7aaHse\nygN9Rv2q/iAK2XHTlxc4BYXfIiNFr91sVBrNVvCCrPlqKrLn9kwtwq+9/6bp30CcMvd2qOSnR3Zc\nnG9LazXr+ju7mP0LiCEQyUclRLkyAgHEEGmNdriudAQQwy5ApI4vvf3ZqoQrzEIggBgire1I70Jo\nBAKIIVRBDD1iCCCGUBkxNCYRQAyhMmJN7AwEEEOoF3YNdbmB/jAEEEOoGX0NJe8IIIZAIIAYAoFA\nADEEAoEAYggEAgHEEAgEEEMgEAgghkAgEEAMgUAggBgCgQBiCAQCAcQQCAQCiI0Y+pM6mq3UTYWs\nDyLs4btBIJJArNeolIyncrWyObOA/aTe1A07bno/bw6BQERArMs83q8+bcb053O1E19mAYghENlF\nzE5TdDxK3JPipxRjmCzPeLJqtatpqWtOAjEEIgHEzIfPly25+k3jqckTV6zfbLbHiZhuRWkyKDWb\nUVcMiCEQoyJW4eY675WnoJjGnstjaE5OzAp93wExBGLCiLWE5zUM9FysOOF2lzbmcxmIIRDZRcww\nqyyKMumn0LQyglgPiCEQE0es7b5pV594KtbICGJdIIZATByxqrvPW+N7xfrdZrPL110MNL0nPmSV\n5kB/u3BbsK+/vcW8phW9z2XJp3ss1Wf1vK3otZutsOWmklXRWuxq9MsCYvrSZSvvWjG9Erc1WvmH\n5BsZmCsn2XUanjKEyBRi+mnXEF8rMu1JzS6xKnfpyWyVZBRKTUa9oetns6Nr0LCrzyg4PfLcQfs1\n5lmqmv3vpvenW0u116AhY0xcvYKwfDZzsurjSl1DE/rnGrNzNHFVKpQK81ausyGNovA8RVJ9V+n5\nI9a3llxsOm3rMnuNaQhfTZdtvA74TaZfEtlFzKdXjK0x/hSPe0RkCTHDnK5PdtZ2P625R0/W8iAA\nMbN8w/rTnnuJ1tsL3oi13J/OL1WSX2nFgOVzrVg72oGIMattZ6l0LQqlAY9x026V21HU/BCj+7Nq\nrm9f/4nkSgP9557Q1K8zq18VvxHJl1TsMYiZrwMxRJYQa4tniX1qFeivq/opqFWdY984DcrdwbDX\ndBDxRqxSKLU1rWucz3Z20S9ayUG/SXJAvbaqYuRNevR5xMind41Pb9GllguVlqa1pCVtzuoZQlVl\ny3eiZdbH9XrG4usBiBmrUu9ZO6LYJ4YU24PhoG0nrnrT0dhO43M0u3/M+MBu2adITd8J5ZJZh9uu\nODlx2dlY42PLYq9bkfxcsq8/xiZX9J/Mb8S+IpWttMxcuTJFrF3Eg7cRWUOsKeuKbpJ2Sp82LOvk\n7Ck7CZgDoCdiRfLutnPqNJyTqknPR67PykGsT+mqO9mJRnMh48ZqVVz3kvNamxon7RPrF7k/9UXM\n+NuWk6bWSZKkOc26vkvzMlnioORdeNdkMrs6WSDTnqxSz1ztyR7zjVQdlkuOdXSVes6OLeqNVow4\nR+QAsS45neo0iSDnbJtp7JDz1BMxmkY4LdQKbY7R00uOWJ15tUTSFLYApOHOcdrMndU666UbsQbz\np40AxJhVGdg7QKNbV6/YHU/sjnA6rIYt7+rdJtMlaWBXZz+B/Yld6zr/E7vJZXvvNulOonldhXYA\nIBAZR0wjJ2+RySEa1qlYZTpl2pVKwx+xLuuieTr26AjGksOFHDH201sk7WAyC7M96O7Oc1av5/yp\nFLES02c+CECM7U+vWCrICnQFxIK/nyaljjHZyb9crUkm/3Jak2zff9NOyvQpfvqU8iZFDDcmEflA\njNSOaewpRs/Nrt+5yyPm+76KP2Lcp/f8m67yj3HagDLEBlxHf8UXMe6DbCg0SW+igFgrDGIV7t0D\nzq6qZBlOTxjRjLuFynSZ0Y+giFVxSiDy0yfGdbFwiYD7au5TYjF0dRFZgui9/c2ATKzJnZAyT9yI\n8bI4MjU9sqYB20rzQczYERoJ0rQ0+sjrbc1rRxg3IyqtgIkzmuxecVglrciBbGeTViT5r/GNdMm6\nCbmp/kqzwiKGLn1E9hDrymbZatinguTc17yan0GI0TOo36oUhZoHL8QqHGLNcIhxn1nxRUymiQyx\nZoGPCslXzRKGqjNjLLtMp8ih0uyHQ4x+tJ2BSVqTNAMjGZkmrJu9AoN2tcSXrQExRDYR68nKFMjJ\nPw7EBo2Cu3BLScSYqSTJFGzcMnu0cKwREbGupVdV2iItm3r12E5CN2KtYkEoWwNiiIwixlXnM82a\nxrgQMypES4220e9cUQkxs86MBGFfa1ZtqXqyFeq16nbS2YqGmPGt9OWtSbNtW2fuUmp2bZoTJJcu\n1lvGBP5NIIbIOGJV92hvp/6rKR9XGb5PjGkMlZwWknNGT79PjP5pPQixsuceNCeSrHsSP2iXvKtd\nm2yW1qdrVDf2UlfeEd8390uZhXPg/hNnoFcdiCEyjljXlScMnJOOOyftu/bsOT6wn9XD/l1bfneS\ndFozJRCDQsS7k/1gxFx3J9ueiA25hnRJhlhfendSSlHZO0+VMjOUbDgzB0bXeL3uUSSr+6X1KYyS\nXk32jkwZiCEyjphx+ha53KpBS+JZEuz7d2Umd+japyB7ltY5xNriCcqcSO0AxLhPb8lglZjBrh69\nkypFrMwkOhpXJ9YV13AgKRDRaMGbsx7MCvVopdbQ+xElTTaxZSck0v01BiRI7dP3RaNFt7Ps7nNj\ntrePPjFE5hHThDrudoEb9cLWzPesM4gtiW9xGYs1FEhWsV+xM7CKc8YZCZ9/savw6c0wiAmrVxl6\nI8YMGx0ww6JpTmZWh2quVbGLXSs0g+1KMrEmJXJAjG+6puDnKva50mL97V5lXfrySmWu5NfZZPtT\nm9xXCMQQGUfMPJFKJFMwbx468x5o3Mi+EjnVmAGRfZI3WOfboMwjxv6pxnXBmXNvkZOqyXbMVViv\n2uIfBCDGrJ7mgSSXg1qtxVKB0lW1J6UwNrlIlsCsChl70HD+zhGa/cguN6iqRKyvuvc9s4eLXPPZ\nc8hl1Zw5Q7LJfdvBlpNC1pm5PoAYIquIWTPSVNpGsaQ5J1axx/2qrg0G5jwSzu1/fc6E/lBjxhvW\nzdf0WstSockhVjL+dGDUhzJDH0tNfV6LYqFsyNRwTtliQ59AkD/XrE+359DoDsMgZq+ePclGY+iH\nmFnJVTIfVNfmp84wpt7QX6rQ+6dkVczFNgkYxnQZg26FemUWwOozPlqtvGJb187c+JarfU0zJ3MP\n982ldDlhPXvS2nzZBtnkfptMLmk+J6HR1RolfR2cZ4kCMURmERt2i1wRFHvq1F3TaMmmGBsU6Ssc\nYr2i+Kd1Os1Vn5ZmVpiCJuZck3x6EGKy1fOa2ZVUchW77IdW6HRkFDF2VUh2WXSvXZPWkfVK4jva\nbpaM+oe2aylETa9BQoMCP+TJNUXbkF1mSTbbJAKRLcSGg6ZzxlWFLui2e3pSMscpM49oj05Oyt+d\nJLOW0hugLesJvUYFgFEtaq9AXYqY5NMDEZOtnuf01Jo+rL2qTwrGfiiZE1VfQwYxZ1XoYvvVgsdk\nr1Y6RKZ6Je9oulkyi7g0e35Zbs/3/J6cJ84pTja5SKfEtWZsrPas7waIIbKOmHHStIxu566kAdOT\nT5IvzB1vTCfP/5VNTL9tTRLI/KnebnX+yHFU06RP6A6cpl4SxmT47WjTZnEnuMe8/saq8Is1ZrYX\np7E3toO8Ysxy3+0x9LQ9d74403/P72ktVRdHxirz0/T3mf3ZwwQ8iBwglnxoUR/9M80oTuCJwRXP\nTi5JNHyemzfAnDoIIAbEhAeSTIKFKDPhDIqetWV40BsCiAExM9r0CR5acQLPCx5ESfbqPhPz9yaR\nNiIQQCz9zUmj77ts9AQaP4z/ccEDTQv3GfVmo+RV5K93y1ULSMQQQAyImaowD1krp6iPyW/6HquG\no4geMQQQm0D0KpW0Jwztqj2tYapaZyaqHmvUNMtTYBgCiCGYRl7q1knzKQ/payiXQAAxBAKBAGII\nBAIBxBAIBAKIIRAIIIZAIBBADIFAIIAYAoFAADEEAgHEEAgEAoghEAgEEEMgEEAMgUAggBgCgUAA\nMQQCgQBiCAQCiCEQCAQQQyAQCCCGQCAQQAyBQAAxBAKBAGIIBAIBxBAIBAKIIRAIIIZAIBBADIFA\nIIAYAoEAYggEAgHEEAgEAoiNFl98kcNv8csvvszhVv/wix/lb6N/9MUPoRYQA2JADIgBMSAGxIAY\nEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAM\niAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIIYAYkAMiAExIAbEgBgQ\nA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyI\nATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsQQ0RDTtL7wyqDbbGri\nXzWb3QHz716z1QdiQAyIAbEpI9aoFAuFQpF/sWm8Vij1mJe6JeOlYtt5oW78uwHEgBgQA2JTRUwr\nWMHDZr9YpIp17ZcKRLFWodRtFwsaEANiQAyITROxfqFSbZZ4xDQj4xr0dcpKpPk40FOzZn/Q0v9j\nw1YpdPWMrdAEYkAMiAGxqTYnLZA4xKoFK8FqsHmXxZWekNXJezQgBsSAGBBLJWLFQtnO0ohYhmtW\nUlYqlIAYEANiQCzdiBUKFeEH+hfMD0AMiAExIKYwYtVCy7hDCcSAGBADYmoipvf+16uFolUp1q0C\nMSAGxICYWoiZhWNmJVm/URRKNIAYEANiQCz9iOl1F0Zff1t/pdQaADEgBsSAmHKI6SOP6noSVp9o\nwSsQA2JADIglhNigXfZPwn74BQKBQATGlBDTgpMwIIZAIFKLGEnCBrplpS6ak2hOojmJ5qRizcmi\nnYSVC6UKHZ0ExIAYEANiSnXs62Mp9THiGhmKBMSAGBADYoohZo07mmCZGBADYkAMiAUiVrTtGnAD\nwIek+QjEgBgQA2LpRqxqTxrWLBjjI81o2T/qg42qQAyIATEglh7EBpoe+q1G4z9kxnxjUkTNhKvI\nToqoK6YVC/xcri0jVxsAMSAGxIDYtBBrFmiQDjBr+nwjaO1Em7zEz6qvTznW1uqFyY3/BmJADIgB\nsWDE7En2i2z9V9t8dohr6h0Tt9IEn3oExIAYEANiruakHQxF/Vaz2eYHFA3aTdkz2vquPwRiQAyI\nAbHJIaZcADEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAM\niAExIAbEgBgCiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQ\nA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyI\nATEgBsSAGBBDADEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBAD\nYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQCx3iO12doAYEANiQExZxNZnZmaWgBgQA2JATFHE\ndmeMqAExIAbEgJiaiK2biM3uAjEgBsSAmJKIdUzEZhaAGBADYkBMScSG85Zim0AMiAExIKYkYnYq\nNncAxIAYEANiKiI2XLYUWwZiQAyIATElETuYtRSLVy0GxIAYEANi0w7rBuXMPBADYkAMiCmJ2HDB\nUmwViAExIAbElETMKniNVywGxIAYEANi04+apdgiEANiQAyIKYnYcC52sRgQA2JADIilIOIXiwEx\nIAbEgFgaYilusRgQA2JADIilIWIXiwExIAbEgFgqIm6xGBADYkAMiKUjYhaLATEgBsSAWDoiZrEY\nEANiQAyIpSTiFYsBMSAGxIBYWiJWsRgQA2JADIilJWIViwExIAbEgFhqwi4Wi/TUECAGxIAYEEtN\nxCkWA2JADIgBsfTEevSnhgAxIAbEgFiKInqxGBADYkAMiKUoduxisfB9+0AMiAExIJamiFwsBsSA\nGBADYmmKA7tYrAPEgBgQA2IqIha5WAyIATEgBsTSFYvRisWAGBADYkAsZQ3KaMViQAyIATEglrJY\njVQsBsSAGBADYmmLSMViQAyIATEglraIVCwGxIAYEANiqYsoxWJADIgBMSCWuohSLAbEgBgQA2Lp\niwjFYkBMuAB09Ah3Z3ens6vUVgMxhEKIRSgWi4HYas2I8MMzdxb0WE5iszo1Y1ELtc0Rl+ODWCfk\nnd31eavJLsl2d2tW7Ii7rLY+hX0GxKCWmoiRYrHgVCE6YvYTScKfkJ2o0wN5uWG3ko0cc32kJY2M\n2MGCsyqrXnnwzJK4yyLshKT2GRADYqoiFr5YLDpiy1GfcJnMCXmwOMPG0lQRW2DWZNMLsVnx2wBi\nQAyIRYiFkPlSdMRIPrQb+PkLCZ6QB/MzM4kpNipim+Yf7Q47szLNOy7e5oEYEANikSNssVhkxHa8\n21EeiCXSv2Plf7N6R9NObTZiezZxxMyHGRh71pxK1xOxJaE1GUEl9IkBMSBGWn1BCUtkxIzlzhvZ\n2FxYxJIIC4ZZq698x1RsbnqIORvX8UVs5oC2JmfHkFoBMSCWbcRCFotFRsxY7PJi4BDzuWTP2UVu\nW2qRn4eSPGJmK3Kd6/piFzHPJIvGz4tADIgBsaixad/ISxYx8wzdNJtRXGtnd10vIVglynRMZub1\nkqtdtvRqx/jJ+K9ecrDJNHQPNvXyg136e1fs8kMQDrj2rPHuWs15n/lxxseuWwu1/2KVMe/LH/wT\n3FvIBujrRBDbsZdi/or5mWa5u/aFYkm6i5bpCpsrv+4gZi75wL1gcyvIXuHL1fidC8SAWF4QC1cs\nFhUxszvIOi/n2C4cUvuwSjKVGefTaXJjvu78MVmxA7vlu2z/XhLrwn3ARaPLyMpzDpbIzcAaY0ht\naPecLekqrFs/LhA2D/42bm2Zpcyuk5VdZTKnZbELzv4j82aDu9fRWoF5pz1pLGpO2AkdmlFaq22v\nLrk0sAmhsHOBGBDLD2K7YYrFoiI2ayUY81xLdV24a+iL2M4s87she99xyROxZbaLiQu6ND3zO6CG\nENr0la05v3e/ZUl8adle2V3mE+dcH25eHxbnaDedG7FVRz5j+5YDEFuiq7QgILaeVGEJEEMoh1io\nYrGIiG3ap+Yqe0rZPdkLsySV8EWM/nJ2KKRts16ILczIOp8o1HNzVKkO/yEzq/RH0xSrEHje6tez\n2qQHc3z5xgJxynzDjns0vfMGiWE2Ys67TA53/BEzoZpdsPbgOoeYa+cCMSCWI8RIfdJ6coiR4oJd\nVpU50m5btTO/nc4q0ycmnL8z85udDu2otxKNxd3hgZ0xeSK24NVkntclMUu2TBDss77W6ZAUTP9x\nlXaqmZvwd5L0y2wNWn+oj6TaXXAQW3fesOreh6QNO79LerZciDn5m9maHPojNm+PdDVxnOcQc+1c\nIAbE8oRYiGKxaIgdzJIze452Uq3TweYL7kzChZj1l3Pk/GVu2y17IuaVUe7Sm5brhNUOzbCWaKuV\nNBOtt/zYl86vV8nKLNMUa4E0nGfIWvNZ4M482yBeFNp5NmKkJ23e/LU/YjTvMnr32X0m27lADIjl\nB7EQxWLREFt3zqNlutxF2s6pcemQHLFV+iZy/toa7kZGbJV2dR0Qzzo0SdykHVsdsmzzLb/wpfPr\nRWL9Ll3igkPcpr3gJY9+uHX795tuxOz25K7162DEuJZph2vVCjsXiAGxHCEWXCwWDbFF52zfoT7M\nSkYQ+iDGn787LFyRm5PMKW79DdcFZ1dsDTnEzLf8wp8xmoCr9j3WdabXX+iMWrJ/uyn2w81uLtuK\nrYp1LDZidnvSLiXzR8zu0ltwyj6cP5+VDs8EYkAsN4gFF4tFQsxMOuY6Zjh90EMZk6ER67BwLfgi\nNuPxes0fsQUesQVhDOaMvS7ugZ5zFj9LYmuSdPlbjdXOvJgfEcRM5TbtxqY/YjXm5sYqtxrRHoUM\nxIBY9hALLBaLhNi6CMDihBBbEjq1SSnqWBGrWWs7K7QmD5y8bdG5o3ogQ8xMMkmj1B8xbnj7MhAD\nYkBMbPv43NWKhNiiCIC52OQQm/MvdqWd2uRWZFzEfu7vrTnhiZjZm7W8I+3ysu4CzEvLtzp8I5G5\n3eBX7DrH7VQgBsSAmBMBxWJRENt1GUbv7VmnuTNaJjRiQ2YY5IFnn9guP4XZDrkbsMQQMm+vTwBi\nS7Rjn9tF8259zSGSNbE12aGfSRTblSO2zBgn7IR1V2tYr9RYrS3MiBsh27lADIjlCzFSLLY5OmLm\nyb5IMpgFcuozveurIe5Oyvq0lxhvh96dYqtcRkhqp+YYAXcCETPf8jNfutSxm4TscCOrVEzMtDpM\nJ6NVOCs8y8BBbIeZV0zYCTWaedZcu7gmvzu5iruTQCyniPkXi0VBbJ7LOpzChHW6eL5OzP7IMH3a\nq7THzVn2rMsZO4FZdfIbpk6sRmwJQMx6y190kHLabCYPTJ2YTdSseAHYZTy1iy3md6WI2e3JWX5V\naGHcKvncVecq0xERk+1cIAbEcobYcHnGZ8RKBMR2hVmp57hkan5zuLPonHGWcHPLxrMxAvq07YFD\nC3Mzs06fmHuWDDIptp4C2jSYcJiNw9lNAsJ6MGLWW+Y7ZFz4OnlpZvWAVLGStveSOM80kxUubXY2\nl7jhVW7ElmmPGV0VS+2FdfJucgvAGPl5sOhKJyU7F4gBsbwhRp4a0hkRsVVhPtdlLvcRnpwx5zl2\nUuzTpqWj687dyZq7p0mcnrrD9UrNyLiQI3Ywy75lXujsYzMxUqAi1Arzm2vdnpQjtjPDp1gLsg+r\nOS4u0EFPrrGToabTBWJALKOIkXNxfkTE5gRZNp0++fVZV0qyGRoxMtXM7DotsZDNC7vMyUFE3pkX\n53gIQkwy8QWtHZnd4e6CzEm7E9lKk9mdnVlPxEipGb8qzoYsSUsszFViZ7GYleZ7QAyI5Qmx4YL3\nKRAesR0XhLNOo2+XNKzocxg782ER09++aU0H6AxXnJX1/nSc1tss89TLAzIT1/zmMBxi+nxi37Yz\noZqwtnM7Qw6xZXmlsDPDl7kiB8tzXogty2i15w7T5z+jO+FgaZbbNPbPJTsXiAGxvCFmF4vN7o6U\niflHZ7223uF6bA6E+VBD7F2bjF2PiXeGHeMptOtimcGOMSlrlE/68os/Y8wtuyMsZHVH2oKWdSYe\ndEaaa3VHMoOtsW1eS3TvXCAGxPKFGBnWsjBGxOIGnbfLaqaRoqrlMX6mzxz7PFVzo83ln64AYgiV\nEfMuFps6Yuvk/uKB1fnTsc3dHeNnhkGsQ+6DLmTl2AViCKUR63gVi00dMWFWVXM0Zm1hYWmcnxkG\nMWdMdlYSMSCGUBsxz2KxqSM23GEVWzyYxEdGQWw9M8cuEEOojZhXsdj0EdPvLxLG5ickRnjE5jaz\nc+wCMYTaiHkVi6UAsaE9TX3nYFIfFwYx18MmgRgQA2JTDnmxWDoQm3CEvTuZrQBiCNURkxeLATEg\nBsSAmCohLRYDYkAMiAExZUJWLAbEgBgQA2LKhF0sxs3hB8SAGBADYuqEpFgMiAExIAbE1AlSLLYD\nxIAYEANiSsa6q1gMiAExIAbEVIoFcYJQIAbEgBgQUynsuZFpsRgQA2JADIgpFTVmsgggBsSAGBBT\nL+b4YjEgBsSAGBBTK4RiMSAGxIAYEFMslrhiMSAGxIAYEFMs+GIxIAbEgBgQUy24YjEgBsSAGBBT\nLthiMSAGxIAYEFMu2GIxIAbEgBgQUy+YYjEgBsSAGBBTMGixGBADYkAMiCkYtFgMiAExIAbEVIwl\n8tQQIAbEgBgQUzGcYjEgBsSAGBALioFGokdfdF6b0obYxWILQAyIATEgFhSVghMt8lrL/dKEwy4W\n+yUgBsSAGBALj1iTvNZ0vzThsIvFvv0DIAbEgBgQ8w+taUWdR6xuvtgaTGtT7GKxnwFiQAyIAbFw\noTchNSY7G0x5Uw7sYrEOEANiQAyIhYoqA5eO2NS3hRSLbR4AMSAGxIBYcAwKhfKQIlac/sYsztix\nUMtXOgbEgBgQixNt9k5koVCZ/saQYjFzNPji6g4QA2JADIj5tyb7DGLlRqVSaU23Y2x1hovZpfVd\nIAbEgBgQC9GaHJICi2JvqpuzMCPG3HIOusiAGBADYqO2JjUDsEqlqCvWn+bm7M7PSGJ+OeNdZEAM\niAGxGFFmW5P9UqGs/2ugl47Vp7tBf/qXFmdlkC1kuYsMiAExIBY9+lxrcjjsWb1hJabU4ssvphS/\n9Qs/JXPs2z/zK7/9BQKBUC3GhFhLPkqyyRTAfjnFrf7Bn/zjf4MMsh/7uV/5AY4JBAKICa1JOWJT\nCWaDD9aX5uRdZJtoTqI5ieZk3puTA6E1mUbEzJ7+VY8uslqWusiAGBADYpGjWyg0VEDMiJ3VBZlj\nGSqHBWJADIhFjgaPVZHclEwjYkZ0lqXFF3PZKIcFYkAMiEWOMj/gu0gal3V5V9nUEdPjYNOzi0z1\nclggBsSAWOQQxkpW7QRsUCyUprtB/ncydteXpF1k82qPGAdiQAyIRY2+UNSqV+wX2/p/ytOb2TUU\nYkbsrC7KHJtRuIsMiAExIBY1NBGrOhk8Oe3JLMI9KKRTk/f1L60DMSAGxPKJ2LBZNA1rTHuDQj/t\n6GBT2tc/r2L/GBADYkAsumKaOOnOoK1PsN+f+gZFemTbrqQcVkXFgBgQA2LZicjPndwRy2EVVAyI\nATEglmPETMi4LjL1FANiQAyI5RwxI5guMuUUA2JADIgBMSMO5hVVDIgBMSAGxJRWDIgBMSAGxOxY\nUlIxIAbEgBgQU1oxIAbEgBgQU1oxIAbEgBgQcys2q85QSiAGxIAYEFNaMSAGxIAYEFNaMSAGxIAY\nEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNa\nMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEJPHshqKATEgBsSAmEesK6EYEANiQAyIKa0YEANiQAyI\nBSvWAWJADIgBMQURcxSbWQdiQAyIATEFEVNAMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAG\nxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAY\nEFNaMSAGxIAYEAsXm7OpVAyIATEgBsRCxk4qFQNiQAyIATGlFQNiQAyIAbHoitWAGBADYkBMQcSo\nYktADIgBMSCmIGIpVAyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSU\nVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsTixe58\nKhQDYkAMiAGxmHGQCsWAGBADYkBMacWAGBADYkBsdMUWD4AYEANiQEw9xKhi81NTDIgBMSAGxJRW\nDIgBMSAGxJJRbEoT7wMxIAbEgFgyis3MLu8CMSAGxICYaogxiukd/JtADIgBMSCmGGKcYjNztQmn\nY0AMiAExIJaoYpNOx4AYEANiQGx0xZZnOcYmmY4BMSAGxIBYEoyt89nY5NIxIAbEgBgQSyZ2lsR0\nbCKlY0AMiAExIJZYOrY6x6djSx0gBsSAGBBTBzE9Oks8Y3Or407HgBgQA2JATOl0DIgBMSAGxJRO\nx4AYEANiQEzpdAyIATEgBsQmko7Nr48nHQNiQAyIAbExxW6NT8dml3aAGBADYkBMHcT02FwcezoG\nxIAYEANiSqdjQAyIATEgpnQ6BsSAGBADYlNIx5IbIA7EgBgQA2KTiPUFPh1bSGo2ayAGxIAYEJtQ\nOibM15PQbNZADIgBMSCmdDoGxIAYEANiSqdjQAyIATEgpnQ6BsSAGBADYlNPx0aZzRqIATEgBsQm\nH67ZrONnY0AMiAExIDaV4Gezno1d/wrEgBgQA2JpSMeWgRgQA2JATDHE+HQsbrcYEANiQAyIpSId\nWwJiQAyIAbEvlFzthZFSMSAGxIAYEJtydEZKxYAYEANiQEzpVAyIATEgBsSUTsWAGBADYkBM6VQM\niAExIAbEph47I6RiQAyIATEgNv1Yip+KATEx9vf0OARiQAyITTJ246diWUTs7bYV+/Sll9Yrr0Ig\ntrGix56h2YYez4EYEANi6U7FsojY3ooVW5Q1+5WNKIjtse8AYkAMiE0iFVsAYixiazQRA2JADIip\nkYp1gBiD2Mpr8soTIAbEgFhWU7FMI7YltCajIYY+MSAGxFRIxTKN2MohbU2uRUYsawHEgFg2U7HM\nIma2IF/R1uRTIAbEgFgmU7HMIvbc+L+ntDX5ikfsPzCKLl695d62vf1yn0Hs0CgYI2Uah3tGicbr\nt0AMiAGxlKVimUVs+4nTnjRak4+5bvp/49fs9uZTR6XXj61es0NZx/7h8zXSq7YPxIAYEEtVKpZd\nxF467UmDs+csYltOp9nK2r7w0hMJYodP3G8AYkAMiCUdB7NxUrHsIrZP2pNma3KfQWzbxOjpczP3\neuwka2zwiFnCbWysKF10AcSAWOqjFicVyy5iw8d2e9JsTTIkmaitvSU4bRupltlafKLT9XLNjdhb\nkoHtm79UtV8MiAGxbKZiGUbsud2efGJWjAl51SvKmf7DK8c1OyfjELNuFBi/fM6V0AIxIAbEUpCK\nZRgxuz351oKHImamU1aJhdnXpadYT5nS2DWfiv1tkroBMSAGxMaYis0DMYsaqz35ysq2HJJM237t\nLxn1E3ukmOwxk2F5DDvSCy5eb28AMSAGxCaRiq0DMZMaq/H31Eqy+MYhG/pfrjAFrjLE9rfWuL8H\nYkAMiI01FZsDYiY1Zs61ZSdZoyD2XPx7IAbEgFhqUrEsI2a1Eu2+ex6xX/tXtp3YC0LslVVA9vzl\n3hYQA2JALG2pWKYRe87MZsEXTKzwYyfXfPvEHju3M9GxD8SAWOpSsUwjts/MKybcnfxPuHdsOEUU\nsruT5jLM3yETA2JALHWpWKYRs9uTa8Ohq/7eqqd4bINl1fAztftuxA4dFIEYEANiaUrFso3Yczo3\nolCxv7J9OHxrloc9dl56sj88fCkZdmTmZluHw9fWLcq1V0AMiAGxMaZic9FSsWwjtk9nqRbHTq5w\nc1gzQ8IfuxCjv1xTefQkEANiisR6tFQs24iZ7cW1oYAYS5Y9byKdp2Jr24WY88u1/Q0gBsSA2Ngj\nWiqWccSeO91f/Hxiv07mE3MmPbRnDHs+3JZMxbNttSjfDg+NqlcgBsSAWIpSsbw+Afw/e63P48o9\n6NuYu/W155O/3+7tq77RQAyIKZaKzR4AMR/EfpS/jQZiQEy1VKwGxIAYEANi2U/FgBgQA2JATOlU\nDIgBMSAGxJROxYAYEANiQEzpVAyIATEgFi0Gmh099lWt2ewOgNg0UjEgBsSAWLSoFkhQxbol49/F\nNhCbQioGxIAYEIsWFQcxzTGMvDJtxTKE2HAhbCoGxIAYEIuMWNMMR6xBUX+pP2gV2eQMiI0YnbCp\nGBADYkAsWhQKZeGVlm6YnZDVgdjEUzEgBsSAWFTEKsIrei+Z1adfKpSA2MRTMSAGxIBYVMSq7gam\n8AMQSzAV2wViQAyIJYmYZrcdgdikUrElIAbEgFjCiFXrlUq1DcQmlIrN7AIxIAbEkkXMivIAiKUi\nFQNiQAyIRYqmUdVaMYrFykAsFakYEANiQCxSdIuFup6D9cu0tBWITTUVA2JADIhFbVCa/9+npRZS\nxL78AjF6/JSl2G9jTyByG+NATKQLiI0vfstC7OewJxBAbOKIoTmZSCwF94qhOYnmJJqTQCy9sRvc\nKwbEgBgQA2JKp2JADIgBsSjRc25KArGUpGJADIgBsYiINayf6GjvKrGrjAHgY0vFOkAMiAGxZJqT\nxULRLNXX6Lw7+lQ8LfulKhAbUyq2AMSAGBBLBjG9Yr+sV4q1i3RmV2NSRF0xjXkJiE0uFQNiQAyI\nRYpBmQyepJNZtMlLjSlvUCYRC0rFgBgQA2IRFasXXE8FMfKygnuOHiA2iVQMiAExIBY1+i19gn3+\n+WyDdrPZ6k99g7KJWEAqlkvE9v7p3/zXgBgCD8/NRiqWR8Rer+ixBcQQQCwTqVgOETtcMxBbeQ7E\nEEBMkaj5pWI5RGxjxYpXQAyIATE14mDWJxXLH2IvV0i8BmJADIipn4rlDrF9x7CVtX0gBsSAmPKp\nWN4QO3yyklfFgBgQUz8VWwdiw+crbDw5BGJADIgplIrNAbHXtl7fy6FiQAyIZTMVyxdidnXFyve+\n+PO2YjkqFwNiQCybqVi+ELOrKzb0YUdbuVMMiAGxbKZiuULMrq5Ye2uMndzKW7kYEANi2UzF8oTY\nvlMfZiDm3KfMi2JADIhlMxXLEWJErS17Fgvy77wUWgAxIJbNVCxHiNnVFY8PyVQ8+2u5UgyIATHF\nY12eiuUHMVJdYYhlzydGFMtHoQUQA2Kqx5w0FcsNYqS6YntIEXNgy4ViQAyIZTMVyw1ipLpiyCI2\nfGUr9hSIpTZqCwurQAyIeadieUHMqa7gEXOGIeWgXExNxDbNw7YGxIAYk4rV8ojYPj/7DjPHPikX\newnEUhidBeugnQViQIxJxWYP8ofY4eMVbjZX9kEhuSkXUw+xXXtqdT2AGBDzTMXygdiW0H/PIuYU\nvWa90EI1xA5qs45hC0AMiHmmYrlA7LXIFPfItrc5KRdTDLF1StjM/C4QA2KeqVgeECNK0W4v/rmT\npFzscbYLLZRCrDNHCZtdH9vHALEspGJ5QIyrrpAglpNyMYUQ212ghM3UDsb3QUAsC6lYDhDbtluL\nh56I5aNcTBnEDpYYwpZ2x/lRQCwLqVj2EduXPNtIRIxAl+lyMVUQY/rzZxY64/0sIKZgdMRULPOI\nidUVcsSccrFtIDblxgLTGTa3Pu5PA2IqxoKQimUesS1Zd5cbsRw8UlcFxDpMZ9hsbfyfB8SykIpl\nHbHX0iIwCWJOudgeEJPEztJCbXfca7i7yHSGLR9MYJ8AsSykYhlHzF1d4YWYM81FZsvFRkFsxyrX\nWh8nLAc1hrCF3YnsEyCmciq2lA/E3NUVnojRORIzWmgxCmLzBJfFzXGt3ipb3NqZ0D4BYiqnYjO7\neUBs24MlKWLDvWyXi42AGJsjzS7tjOPaOpniViCWxVQs04jJqit8EHPKxTaAmKQxydw1TLp7bIfr\nzz+Y3D4BYllIxbKMmLS6wg8xMutYNsvF4iM2P+OKJLvHdidX3ArEspiKZRmxLc/WoRdiTrnYcyAm\nb0wykVD32AFX3Loz2X0CxLKQimUYsdfeU+x4IjZ8mt1ysbiIkcbkzuaiwFgS3WNccevmpPcJEMtC\nKpZdxDyqKwIQc8rFXgMx/ppnlBYerM8n2z3WYZY3uzr5fQLEspCKZRexDZ9Oem/EnI607JWLxURs\n1e4Es/+5W5tLrHts8sWtQCwzsUtTscwitu1X9OWDGC0XewvEjGPF7rFiGo47S7NJdI8dLLNL2J3K\nPgFi6saSk4plFbF931ahH2LOW7NWLhYPsQXZ42WGCXSPTaW4FYhlMRXLKGLe1RXBiDnlYk+AGGlM\nzrnzqNG6xzYnOlkFEMtwKraTVcS2/JMpf8QyWi4WBzHSmJRmSu7usYWQ3WOdaRW3ArHspWILGUXs\ndcADjAIQy2a5WBzEbGyWvX7v7h5bCu4e44tbD6a5T4BYBlKxTiYR86uuCIWYo1iWysViIEYak37Q\nuLvHln27x6Za3ArEspiKZRKxjaAhkIGIHWbwkbrREfNtTDIsrbq6x1Y9u8fYJ7HNdaa9T4BYFlKx\nfy6DiG0HTqkTiJijWIbKxaIjthjQmGS4Ww7XPTbt4lYglsVU7Keyh9h+cM19MGK0XCwzikVGbDNE\nY5LxKbh7bGJPYgNi+UrFfitriAVUV4RFzFEsM+ViURE7CNeYZJuKvt1jB9ObrAKIZTwVyxpiWyHs\nCYMYLRfLiGJREQvfmGSg8u4em+ST2IBYXsIe9fEvZGurgqorwiPmKJaRcrGIiNmNydmorT5599h6\nOopbgVjGwm4uLGRqowKrKyIg5hRaZEOxaIiRxmScUZHu7rH5yT6JDYjlJmpR+zwUCPum4tNhEohl\nq1wsGmJ2Y3Ix5oe5usfSUdwKxDKais0trWbGse1wDywKi1imysUiIRa3MckcXauSWa0XdtO1T4BY\nVlIxM9/PhGR7IR+AGxaxTJWLRUFslMYkDbF7bD51hxgQy0oqRq+Ty+s7Km9PmOqKaIg5fWwZUCwK\nYsujNSZpMN1js+vp2ydALFOpGCPZ5q6im/M07BQ64RFzysUeK19oEQGxzsiNSSas7rHZ2kEK9wkQ\ny14q5lw0F2oKSvYqdNIUATGnZkP5crHwiB3MJdGYZJa3ulRL5+EExDIQu3/zt2e8Ynax1jlQaFvC\nVVdERswpF3uaG8QSa0ymPoBYFuLLL/6tzdrCrKdkc+pI9iS8NZEQGz7PRrlYaMRIY3I3+4c/EMsG\nYuawo9315QVPyNS4dRmyuiIGYk652Eulv+qwiJHG5GoODn8gliHEzNgJkCzVty7DVlfEQWyYiXKx\nsIgtz2RwJAcQywliVltidWneW7LUFmGErq6IhZhT9KpyoUVIxHLUmARiGUWMSDbnI1kKb10+jfSA\noqiIZaJcLCRiOWpMArEsI2Z2jXRqi96SpawI41U0YyIjloVysXCI1XLUmARiWUfMkizo1uVqp9OZ\nPmYRqitiIub0ualbLhYKsZ08NSaBWC4QM2PXVzL7yr2wsFir1TZ106awFU8iVnLFQMwpF9vINGLz\neWpMArH8IGZdon1vXYopmm7acm1iaVqU6orYiJFPUbZcLAxi+WpMArGcIUYkm5+JHvNWmrY+pjQt\nUnVFfMSccrHtzCJmNyZndvJy+AOx/CFmhn8RRnDMWmlaLaksLVp1xQiIkedZKlouFgIx+3ut5ebw\nB2I5RcyWzOfWZehI5GyJVl0xCmJOudieil91MGJ2Y3I+P4c/EMszYkboRRi1JT2tGkGxBDqQX8Wo\n4IqJ2PDQvgu68lzBe5SBiOWuMQnEgBjnWaezqjcRddKiJWgjT5QXtbpiJMSccrGVNfXGUQYitpC3\nxiQQA2I+1/ROZ7MWLk0bVbEncebJiY2YcxNBL3t9nTHEVnPXmARiQCyZNG00xSJXV4yImFMuZlSM\nqdU1FoDY7mzuGpNADIiNmKbNJqDYXrye9hEQYxVb2Xob9d3rCwtLtemMcQhALIeNSSAGxEbFbHTF\nYlRXjIzYcH+DKra2HS0FdB5qMAXK/BGzG5Nz+Tr8gRgQS0ix2C2YGNUVoyOm53+PGcaiFI3tiIO1\nJkmZL2KkMdnJ1+EPxIDYiLFJyl9jKvYq7vw4IyI2HL5co4w9Cd2WPZDfuZ0QZb6I2Y3J5Zwd/kAM\niI0a6yMpFqu6IhnEhofbTNfYRsiusWXfIfTjpswPMdKYPMjZ4Q/EgNh0FXsS+ylEoyOmE7rF9vCH\n6RrbDFE3N0bKfBDLaWMSiAGxKSsWr7oiMcT0rjGuhz+4MWlLsbQ4PxXKfBBbzGdjEogBsekqtjfC\nOMZkENM75Zge/sdBPfyLzDQ3O5u1cJQl2L7zRmwzp41JIAbEklUs4ikUt7oiUcT0dHAtbPHrqnvO\n1DCUzS4sryZDmSdiB3ltTAIxIJZQkO7u+UinatzqioQRGx5uhSt+Jd1Om67fTIoyT8Ry25gEYkAs\nqViKoRiprngb6xMTREzv4We6xlY8i19tpha9lhKSss3kEbMbk7MHOTz8gRgQm5pie2sjTU+YKGL6\n2jxhevjlBR+1cG3mYMrmYzf6PBA78EwRgRgQywFih2+TWYtoih2+JP3pT2N+XsKI6Ykh0zX2WNI1\nRkr1wwnkT9lSzJTJA7HFgBQRiAGxDCNmlBg8fpmIYxEU26edULEfApk4YnrxK9vDLw4hIKX6kbqd\nPCmbjTeVpByxPDcmgVjeEXv7lKRDSUysRRQLSgheMS23+LNEJ4+Yf/HrcvypugzKXKOVFuLUBksR\ny3VjEojlGzHulF17Pno6RnKOJb8Pfc6kO6M8dWgciInFr4eubGeEqbo66zV+Lrbl6JmTFLHlPDcm\ngVieEeMIs0odXo046/xBoGKvN/iPfB7/w8aDmL6K0uJXku2M/ECBTo0+w3g2cu4kQ6yT68YkEMsv\nYofPVySxtjXaRKf+ir3dfsx92uPtUdAcF2Ly4tfF5J5Iu7vItCkjDkz6S3/u3xT3GemrG3djcn9v\nP52HPxDLJ2JcFzYfo/Xy+yi2J2R+o3bDjQ8xXvinxv6QlOqPEJtMq7IWJoF6u/d6+/mG3ZW4trG1\nvfd2co3Jw71X2xvm5edpKp8PBcTyiBhP2NZrsV05Ci8eih2+4pOwBHrgxogYc8fDerbbbsJd5wc1\nqticT8nG3t7L7acbj6VXmydPt1/v0cbkOKbNeLun08keK0/epvDwB2I5RIwnzDgsD18+WUnKGEcx\npvdof2tN6HxLYKvHiphQ/PpHE892dplHSC3uShOvjZUQ8fjv+8M//ePfSuThn1zb8bWOp6y/YR+I\nAbGpI8alRHQmQNGZ+L38u+K0+682hH63ZE6EMSPG76lf/InEZ4jYZDr4a6TbyTvx8o/v6C3MRHbr\nob4KvmvwCogBsekixhPG9+K/eppMLz/38JC3Qu/b45dJ9auMHTG+2f2dP5D0DBEHZNT8t378J/7u\n7XCJl3/oLcxXse/M6G3HrY214A95DsSA2BQR8yPMPI6F24f6/cO3Iyn2WnBxK8GnPI4fMaEM5e9J\nukNo/5//m372j3znF6Mw9Q//5q8F/s3axvOXe1HWVW+8Pn0Sfh3S1r0PxHKEGFvH6flkjD1XL/+r\nuIp966d/MQERp4rYaM9282yxvd6OmnhtbDzXu/HfmnViex79VeJbtrZf74/YdrS/uI3tl3uHw+cp\n7d4HYrlBjCPMbwbTw1euXv79GIr9gT8inFNJd6ZMBrHh8B//xZjPduPbanqdgtFZH82utY2n29t7\nzPWGFrsadw7/gV8OA9CrvcO4bUf7DihJ5NPZvQ/EcoJYaMKs9OP5iL38h//U35V0RcW0ENNL9X/6\nl+M82+1wz8i49JQrTEeTiIeeeL2SNQn5iv15vTvtD/7sd/6hMC1MUloWru0o1KKRo2gtjd37QCwX\niHFVT49DHYBiL3+U7ixheOTow5mmiZhRXv+tnw35bLc9o7BLb+zFusO4svLL3/ljfweXePkjVnNG\nEegVEVthWpjh244eV7cnKezeB2I5QIwf5x26XyduL79QUbHyj+yNZ6sng5hdqv/X88Wv7HlNGopP\nRrir+I/+4Z/9gz/+14UYiMQitiMOSX+79/J5jLRP3nb0SC83Ij3gDogBsSQQi0mYlVhE7uUX5fvF\nn/7W7I7CiNFSfX56i9gNRb7NtmH0eBlfSSfkQCQWMbuquOb61l5Futno1Xb0COeQeHIIxIDYJBDj\nRgHGuLsWrZdfRO+P/UT8R4OnA7F5ZgzVq8crycQTHY1XYm0qOxBpMwxiNf/5zfb3QrQwPbr9/TPt\ntHXvA7FMIyYMkox36Qzby08nnCbc/WOjPBo8FYgJs+pvr42QdOlZl95c8854fAciuRHbCTW/2aHR\nwpThq9/2fB0TIad7f+0VEANi40Xs0D1IMmaE6OUXhy2ZFRUxH0eZGsRcs+ofbkVKuPR7gnqmE3o8\nEDO5xWwtCDGvxqTcHXpLkrlRGTdo9/42EANi40TsZVKEmX1dL317+b2GR8Z7HGVaECMzdbFQvN3w\nb54ZhV0v9/bi3cxwBiJ5Tm7hILYaY7JsvVhtL5ly3VR17wOxrCLmMc57hNgTh4iT8lWxouIx09xc\nGp9i40dsSQrF3mOPhmIS5/MO26Y88EaM3HDYmdIhl6bufSCWTcSCBknGvAC7evn1jCtgeOT4FBs7\nYptePXqvNkhDcQzjb9Zn/Z6IRBBbiNKYHEekqHsfiGURsddjIUyada2sBZWSjU2xcSOW2Kz6UT93\nyecpuzZidmNybooH3evUdO8Dsewhxo8wSr7SVEy9GC9f+zTKElds3IgtJDerfsTozHs+EclCjDQm\nO9M86vYfp6R7H4hlDbFogyRjpmMvJTftvYdHhn0cZboQW53mM4RWmTbluhuxhRiP8U0+Dp3OhS0g\nBsQSQ2wShFkftBVheGSYx1GmDbGd6T6Qlnsi0o6A2OoYC1ciRTq694FYlhDjRxiNuauC7eUPmHD6\nYCyKjRex+XG4G6lNKR2IZCCWisakFS+dC+YUu/eBWHYQG2WQZMxmpdnLH2LC6bEoNlbEailIdpin\n7DoDkQzE0tGYtIJ277+e2joAsawgNnnCrIN4O9Sdg3EoNk7EOjNpSHbYgUj25BY6YptpaUyaQbv3\nXwIxIDYKYv/R9lQICx9jUGyMiMlK9acSroFIP/ri30lPY9LqVph69z4Qy0L8F9/71QRHGI1ZscTK\nrsaI2FKMMT1j2m3CU3Z/9MXPpKgxacW0u/eBmPKxt82N5ksnYUPJ4yjTi9jmOCffiBrcQKTdH/3J\naVZ+eMSUu/eBWJYASzFhQ+FxlGlGbFql+l7BDkT6B7891coPj3g11e59IJYdwPSK+f1Ur3HCio0N\nsemV6nupykxuMZa64ZFjf5pPEAFiKsahBLCkB0mmX7FxIbaawgYbOxApbetmHZJT7N4HYsoB9vq5\ndP709BOWtGJjQmzKpfqetM4yiG2m8Lh0uvc3Jt29D8SyANjKyj+7p8YWOIol0Gc+JsSmXqrv1aZc\nTG1j0gqnyufJhHs1gJj6gG1s/9thngCejthMbtr98SBWS1UpKd+mnEtrY9IK2r0/2UsqEEsund6w\nHsA1hmW/9QHM+Lwv1UHMmXZ/dMXGglg6SvU9hZ1NaWPSiil178dFTGs2uwPuBRI5RYyds3jDeIZy\nUin121dbj/0AGyqGWHKKjQOx1JTqe8Tu3/7tv3Ezvd/tdLr34yHWLRX0KLboK60CiVYeEeOe7kgn\nX386ImaegK09fckuVynEElNsHIilp1TfI9iH56ZRsWl078dCrE3AajgvNR3EmjlEbO+x/xNwjEel\nRq1CDQuYeoglpdgYEEtVqb6KiE2lez8OYj2DqsGgXSwUNAaxetOI1iB3iEnTMClmz/Vn4oS5QO1H\nAExBxBJ6HGXyiKWtVF9FxJgniEyqez8OYlW7zagVClXyWqVQGKRiF04esf0nkR9i/9yn/3//5dO1\nKICpiFgyj6NMHrHUleqriNjku/fjIFYslKwfyoUig1g69uDEEaNz4Ky9fLW9tfE4NGbum5megD3e\neuXXHFUOsUQeHpI4YqvprmBQBbHhW+ey/jy1iJVIXxgjV4V6livEmDTMeUDt/t7L7acba2Ets/v/\n4wKmJmKOYnPxa/eTRiylpfrqITY8dJ6H9XQS3fsj1YmVqFyFQiWPiLFpmBu4ve3tjY2VUSIEYIoi\n5ig2M7caM/NJGrG0luqrh9hw6HQTP5nAtCqjIKbfpKxTxMqNSqXSmnrH2CQRk6VhktgzMHsSGbAn\n4QBTFTGqmD5n6W4KEEtxqb56iE30AeEjIDZg706SAotiLz+IvaTNvzDTix/uvd5+HhKzJ89fR8nD\nlUSMUUxPf2Iwlixi6S7VVw6xSXbvx0dsUGbqxDQDsEpFZ63Yzwlib2lDMVpFzNs9//7/iICpi9iQ\nm15mIbIeiSKW9lJ95RCbYPd+bMT6umFlp/HYLxXKul6DOtPCzDZiTBoW8yHubyX9/zEAUxgx9plk\nMfr4E0Us9aX6yiE2ue79uIj1iqxhxgvWP0pMqcWXX2Q2fuc3HXd+/S+MuKy/8Of+xe/9k/ryfvNP\n/dl/94ucxQ9+5cdYxn7sF34wpRWxZ67/9p/+ApFc/CnnJPmd0RY0FsSMgUd1WSd+k+knyy5if5Y+\nXOh7OFRHi1/5KZaxb//x354KpvbM9b+E7yPR+JfJafKro13qx4FY23OMJItYVpuTNE1eeZyOuQhV\nbU7aXeqL3NTLS2EHLibYnFSgVF+95qQRe5Po3o+FWFc3rD3MK2KvaTfW85Q8pFZtxPQJZpZmY/Tx\nJ4eYCqX6aiLGlCFtj+0z4iBm1FZ4GJZ9xNKXhmUAMeMZsdH7+BNDTIlSfUURGx46d/G3xnXJj4NY\nk52Dx4oiuSmZdcRSmIZlAjE91ue45/nUAtOixBBTolRfVcSYB4SPa6LEkQaAsy+VrR/0GovpFoqN\nFTFm0p21ND2ZIxOI6bN5LXCMBRXAJoWYGqX66iJGq/fTg1jPnYgZs/NodkuzNN0dNk7EmLkPnx6m\n6SjJCGJ6H/8S38ffmQBineSevwTEPE6ctbQhplfn18mE+j36WlHvJtPKGZ7ZlU3DXqfrIMkMYu4+\n/s1xI6ZKqb7KiNnd+ylqTmoFJsiLdfLCtCezGBtiqU3DsoWY0cc/F66PPxnEVCnVVxoxc+79pynq\n2JciNmwWhVn3M4bYdmrTsOHw5P9+//+eDTMU4fr4E0GMzKq/q8iuURSxsUacjn2NBjNnxaCtT7Df\nn/oGjQexkJPuTMmw+/d63Bxn6bjsLPCdY7tjQkyBWfWB2DgQS3WMBTHfuQ+nHUd37824v8rUF7nD\n9/EvdsaCmG3lojK7BYgBscylYcPhzXsSd6eZ+ip3l/k+/vXkEVOoVB+IAbGMpmHD4eV7Ji6PMvVl\nuvr4D5JFbGdGnVJ9IAbE4gY792EK07Dh+Xsu7s8z9n2uz3v28Y+OmL3sZYX2BxADYlFj9LkPxxtW\npz4bt8cZ+0Y9+/hHRmxZpVJ9IAbERk7D9tO4tUe2YX/tv7+jjF1l7Tvd5fv4ySQXoyKmVqk+EANi\nWUzDhkObrt//D78cXtGc7N1p1r7VXX6Si/n1BBBTrFQfiAGx6MFMupPONGw4vLbV+u+Miv3jW5qM\n3Rxl7Xs9WOX7+PWHVUZA7OjUjIsrI65vzfgvf+Pnf1KhUn0gBsQiRzon3eHiwibrwh52dPaOdvBf\nZO9YFfv4/1UXYicmVWcmVVcWVe/e+8b3f+M/ViptPf4//vf/9XiIAGLR0rDHeynd1FP7RLx2xk4e\nMfUWdyfZO1q5iaz/0M//e3/VSavejxJ31xdKSHZ2+S6Td6CB2FgQUyANc25M3rEDwE/uMls0ZobZ\nx/+Tf+uf+Jf+6/cJR8olO76gRc36ZQsBxNRPw+hooyN+FosLpoP/LGvf7tHp1f/w/ffji7vrq9MU\n0m+nYMx6Hg0RQMwnmEl3tg5Tu6H2hfneaDVyU/Ec3WSyaOz0/Or2/v0k4t1NmiTjUjDa53kKu4CY\ndxr2PMWT7tAgvV9m/4gwn9gp08GfgaKx47Orm7sRYfr3v2/EP/MnzPhDZvz8b3w/7ZIduVIwGhfA\nC4gFp2FP05uGOaONLocSxIZHV+8zMSr86PTiOkqf/f9mUvV9i6qfN6n6yRnvmDs4Ob+8DZBsarns\nyYVs1f6/33c6xtCkBGIKp2FOp/7NUIoYXzSm5NF+Eth6vP+//spfvfrP//W/34y/ZUGP2ZloYZfq\nn5z5ftT97dXZpCU7OruWpWA3F8c/+t2/luX7z0BsZMSYSXfSnIY5o41I/65seurz+wmMCj86v9Hr\nGy6vri70+qyEzvTj08DW463Z/+5f7NphYrPGxNKCFYs7Qps1LZLJU7B3l+ZtGr3Y9dpZqTMABsSE\nSPmkO5QOcmOSnFbSOfbZorGxdPDrgrl5ub290QtNz3TTYrUeL28DO93PSAKS3BPA0yOZdwpm/4FR\nsU+vT5cQDIix8Tbdcx8yQS7FjhMeDwo5ZUeFH41fMDc5odM0o/XoX1x/f3spFHIlj5iTCfqtyu3l\n+Zjacb4pGIPY8MRZv1t0jAExGnS0d7rTMDraiDYSPZ92NKZR4ccXse4W3llp2jmXpulmXN8FV29J\nEBwTYnZSGCCZviGnSXb6B6ZgLGLDI0e7d+gYA2J2MPWtKU/Dhmfusm3vR7Yd3yQ+KjymYJLU6vb2\nOqDz/t0tbT1OFLFQklkbYTSeR9QsTArGIaZfnpw/wyAkIGbGHh1mlPI0jB1tFAKxpEeFJyVYcLha\nj5NHjEh2HWabjYbz+Wn0vChsCiYgNjy7xyAkIMbE89RPukOPefuEencUErEER4WfXLrP5ptzc9aI\n61EHYbOtx5DVWZNBzO5evLi+C91ovjZ6AZNOwUTEmGGyd8dALO+IMYUVz1O/fbfMaKNwiOmH+20C\no8JPJMXjN+dHYtpiTdoVPAeOV+sxQqf5JBGLKpm1NWbH2VEyKZgLseHRNQYhATErXiow2tuJS2lH\nSABi3KjwWMVFEsHur4MXdHIaOk0zWo8RfZ04YkSy2+i9f2LHWfQUzI0YvcWT80FIuUfscEON+lYr\nzuXT6AciNtKo8LN4gkl6l6Rpmt56jFd9NR3EbJ0vdJrvYtzLMDrOYqVgMsSGp/fZncsXiIUNOnHY\n2qv0b9zJe260UQTEYo8KP7u+T0QwjzTtfISG0BQRYzbi/Opy9O7AECmYFDGnizTXg5DyjdjhljKF\nFeYRe+8xm1QYxNi78mGLxiSCvbtMTf9LGhBjNDszcsw4kwWFS8HkiNHK5xwPQso1YvuP0/40o6Hs\nqnvvOubDIRZtVPiRVLA0Xe5ThRjdyaenV1c3Ye9rhE/BvBBTZBDS+e3N2JDNM2J0qOTjfRU2zTXa\nKCpibHGR/6hw2aCidAmWWsToPjwN6jiLlIJ5IqbAIKQja+TIuOa2yy9izFDJrUMVtuzCu0I7NGL8\nqPCT8ILdXaSvyyXliNE4lXScRU7BvBFL+yCkY3L1vQdiySL2ak2JicOYJMqnPjs8YoGjwo+lgqWy\nmlIZxGjOpGtm3Jy9ib9D5c+dTPEgpFMGbyCWJGLsUMlDNY5/yWijWIjxjxLhm6ayQUUpFUxJxBII\nj4fnpnUQ0jnbN3gLxBJEjJmD+qUamyUdbRQTMX5U+LGfYDcXKR7RAsTYi1wKByEdXXG3hsbW1s0l\nYgoNlSQhHW0UFzHJqHCpYOfpLqAEYpwYaRuE5HSF2YSNr6GbQ8SUGippx6V/j0dkxPhHiZyFGRYJ\nxNKNWMoGIZ3x9zFuxwlr/hBjJj/cU2WjPEYbjYAYPypcLMlXQDAg5o7UDEI6OuevitfjbeHmDTG1\nhkoSbzxGG42EGNfBn/ygIiA2ecRSMgjpWOgKuxq3qDlDTK2hkuSguA96dn08xJhuFPUEA2LSmP4g\npBP+oLqbQM1HrhBjnir55K0yW+Q92mhUxLhR4YoJBsQ8eh6mOwhJ6Aq7mcg9hjwhpthQSfHi6tNA\niI0YLZNM3aAiIBYLsWkOQhK6wu6vJ1TskSPEVBsqKSjjl5aPgJg5KlxBwYCYJyVTGoQ08a6w/CH2\ndkOxoZIkPw9TiD0KYvpRr+gU7UAs4Lo3yUFIU+gKyx1ir1UbKkmOjfswIzZGQ0zVAGKeV75JD0Ka\nSldYzhBT6KmSQpL0zm+0ERADYh5Nu0kOQjq6mE5XWL4QU2+oJAn/0UZADIh5wTKxQUjHl3xX2MXk\n62zzgNi2ekMl7SBHYlDpAxADYmJMZhDSKd8VdjuVmYCyjxg7VPJQrW0JGm0ExICYd5yMfxDSOd8V\ndj2lkeeZR0zFoZLkKAzdOQvEgJikSTneQUhiV9jl1G5yZxwxpkf/qWJpWIjRRkAMiPnG5fgGIaWg\nKywniDGFFS9V25AQo42AGBALaO+NaRBSKrrCcoGYmkMlSYQYbQTEgFhQl8Q4BiGlpCssD4gxPfrb\n6m3HVZSaayAGxLwS+puEByEdXaWlKywHiDFDJffU24yzSBXXQAyIBV4OExmEdHydnq6wzCP2dkPd\nHv1h2NFGQAyIhbkgJjYI6ZR/nN9tSqZuyihiqg6VJCl7uNFGQAyIhUqfog9COj5l4soO/lky16mZ\n+SSTiB1uKTpUkkTI0UZADIiFuygyE75eXDFxy8Td+whxf5WiqU+yiNjeY5V79IfhRxsBMSAWMi7e\nJxnv0vUgmQwipu5QSTtCjzYCYkAsbJzcJ0bYbdpmMc8cYr/z68oOlbTjNHovLBADYoFNyrtkCLtO\n3yTAWUPs5a8q3aM/jDTaCIgBsQhxObpgqeoKyyhi+2oXVrAXzPsovQ5ADIiF6acI36S8Z7v8r8l9\ngLN0PlM5S4gxNyXVGypJ4ibCaCMgBsSiZfmXt7c37N3JM7aSQtl9kiHE6KQ7qvboDyOONgJiQAyR\nIcT26EjJlefKbsV5vDkHgBgQA2Kqx1vaklRyqKQdEUcbATEghsgKYtu0JbnyvUNlN4OMNrqL2n8K\nxIAYEFO7JUkr9Fc2fucLdTfkLuJoIyAGxBBZQOztU64l+YW6iEUebQTEgBhCfcQO6SCjlTVjpKS6\niJ3Hf8IWEANiQEzVeM20JJ+aE1Yoi9jpCHM+ATEgBsQUbUnSAv2VJ/Y9SVURizPaCIgBMYTSiDHP\nAWEq9BVFLNZoIyAGxBAqI/aKKavYomUVaiJ2dhtntBEQA2IIdRFjhnqvbLDVrQoidkKfQxrzUQ5A\nDIgBMdVakkyB/tor7leqIXZ8yTwBK+4TToEYEANiagUz1Ns186FSiB1fcDPV3cZdDhADYvI4Mqan\niNVHcWK880iJfaIgYuxQ7w3XdBXqIHZ0zj8AK96NSSAWIs4ujWmxbq5O1N/oiIidihfHY2YeHt8J\nDs1eWmN6nnNj37n7OcyZxoBYrOCGeksmb1UFsbMbcR66m/iXPSDmF1d0LsB3p6pv9KiInXIP/Lg6\nCkbsSv68B3MBQCxOsEO9t2VDvZVA7PRanGPz7mKUeX+BmE+ziJ9b/lLxjU4UMZ2xEyA26ZYkO9Rb\n/kTJ9CN2wnblW0fS5YgzlwMx770tXi6uVNm8U6LIOBF7f38cAbErBi4gFq8l+TTEpGEpR+z4QhTs\n/nL0nhog5hV2EbHxiJ4ju1l5rMjmjRMxo9P+4tb3bpKsT4xFDH1iMcI11Fs9xI4uxMdm3V8n8gw/\nIOYVl2z53UnswalZQ4zdOccBiDFxlZ7sS0nE2KHeW2+H6iHmuhmpd+Un9SBlIOaV+PL9YOZZe6/I\n5p2PHbHhO59ZU2SIXQOxEWJfMtRbKcTO3F35CT4KHoh5xBWfa5zy/zw6MyoN7BOVq6hiiqS4P7J/\nY71sv+fY+psL8t5j+73HF84zzo7Pr67O2YznRP8dfUW2mOMzM2u/EJ9C9D/93v/IVUeQtT5lV9L+\nSP3T/RG7YTsJT/mHsjmIHdtrNzyxHvlGPpB9QJK9k47YfpMrZp8AMY+h3vJ85/d+L30FeicJ34wE\nYmERu/Pp9Tm6dp4I6yRtJEszvq933B+9u2DObatswxbhitRw3J1QOE/tN5rLvhRujJ6RftGbYwoL\nvxi2/51dZ2eE2q3tg7WB9hLvz/htuz/3R4ztsycLvj4SECN/dMVXZTPLoXvy0n7zyW3g3c+cIeYx\n1Fua8Nwbx02qGDuW3IxM+psFYh5O+dyPZG9bmmXGd3RW3TNiDvtH1wxid9YZbOlz7fRwHjkynDm9\nnxfDW6G845rpEz2hiHGLkSN2dCe+1ULs3Hn1VNi2y3CZmGTB4RFz7UnulVMgppdVbPgV6PPHLHlQ\n+3Va7kAdS7ryx/CtAjGfHiH5dN/2/G3vrCvMnf7KBZXq2p5Q5Mj8o7vLGzrlrnluX71nELulX+6F\ngxh98Z45+Y+d39/fWNe2d0dD6WLkiFnO3bK3Fc0VpGbcmOeBcNn07xM7J4C/v79jqi5CI3ZkJ5B0\nT1rLvbs1F/cOiPkM9XZfWxkwrlNQmn10fit25SdzMxKIRUJMeijckJbb6b19kh7RU+7ePhuvuYzM\nTLTMr/SeRUx/8+mp1V10S/vh9JbcqX0nx/jx2kHu2HHimuRBksXo3WTuPjHzrb//l0mmc0wQ0+06\nPbVzP7oGeoPk+NYXsWsi6wVpix7T9rcLMb1v7D3TJ+Ysx1zK3THZk+d2IntBrgtneUfMb6i3GBfC\n5WfKjI3xZiQQC4nYFYMYn0cc09+ck86wGzKh24l9Eh5T1q7JeXlrd/6cGbic0vzrXCDkxMlIrE+5\nI2JdOzUfTi+cdDGS24Pm3/2VH5JetjNns26G3Ca9c9quVk4mrxM7p8K9c1rdx87Ky4pd30uKXek7\nrL+8Jr2C5ivC7YYcIsYN9X4bkPa4sp73786ntuZn4+7KB2KjIXbhNH3sjrNTG5BLQgRJUK5oL9mN\nk4mdMCJYNwNOeMRMVqwF3dFVubWzPBuCO/v0ly5GWuNASiwoLMxUmvf2G06Ye7AXYSr2rTccDTls\nwyLG7ElyF+FqwuV4KUaMK9B/HdRwuH8viXcX0+jjl4wruhpvJx0QC25O8ojdMB3tt6Q9Se5JvmP/\n6MqsJbggSdkte5+RvffHI8YM07nkEDuxxqGbcWcnZdLFeCH2u//t6dnVLY/YkHvDOWUl3NhJxiGK\nbVjEbtwjUq108v72mq8rySFigUO92bh0vpX/87/iUrKJ36o8vhr/zUggFgkxKyE3h8nccafoFY8Y\n6c8/IW9yJfciLaEQu+JwEDMh49fhEeOKdbwQu2IWF2oWC/YNkRG7dd8APmJW8vY4v4jtuZ7F5pf6\n0B79K73Y9fia70yf3K3KsY0rAmKxEDsWSyxOfRE7s+u1SOMqdYhduoeyx0PMnE/MKUVNGrHheZgR\n5llHjH0W2+O9oL++uGeSY7Ni//iSa13eTKSPXzquaDL7C4h5xD3TUOK6iKSI2Xcl70iflvmLazqL\n4FVSiL1jlnkaHjHLhv/n8uL0ekTEJF2HSSI2PLkR6+vyhljIod7EDrq/jGJje9jR0RXH2O3Z5AW7\nPZ9YSxaIecS1MMT5lpyi18zpdefcG7R69J07f9eS83NUxI4liIRFzOyo+G8kHfv8ql0E94lJEqd3\nTLJ3EwGxa6ZPjB2KpPfcXb+bzFjVFCIWdqi3va8crKwxF3Ts5Pm7Sd2qdJe0jvdmJBALi9gprUCg\n/3TuTlrn7RG9wXdCitzvad52kyxiVnJ4Egsx83fm3UnfTOyUudl4EQYx9nbmHVdLEu3u5In4YVaF\nRw4R2wo71JseG+9Jud2QHwDOF5u+G08f/8mlS7AJdOUDsXBT8dyyLRr7gifUiV0xecg7rgl0TE/u\nc1crKy5iTA74jlVHjtiVC7Hf/SFRxwuxIf2tV52YsJdonRgdIu+J2Cm/ouKevKa1ws5I07whth92\nqLd5lN25JuzkZ7E4FW5VJp0enbqqKfSu/Mk/jgKIeV5iyAVMr5K4sWvtb52mopG8X7Azjl3xA/6s\nYnSjauGeu2M5CmLHTjn9DdFTjpjVP3Fzdc338P0v/6k5QtgcCeCBmD084Ijc8QpE7Jy8wWL+euiB\n2L11gJudg3zF/v350bFTlXdDdtapJJXNA2IvQw71Nvf9vfsBEOJUPGO8VemuaJ3QzUggFhox7kaZ\nMQySnNNHXP5MoDi2DyfSHOK+4LtEmpPsGES7802O2Llr7CQ9lO9lk0nQyXOYRkEoxIbX7qduyRC7\n9hk7yQzetD7j3e27CY0AT2smFjDU29x5N7IHBbnnExvLrUq9I99dXntzPqX5M4BYmCudcff6yjmn\nuZG2zl/f8ZPmuCdoGB0xToxz7z6x4Z2ImAPv/cmtH2LUv/uTcIgx5xJ5cqAMMXvUvDiLxTvxkV3n\n4hbmsU8saKi3+W04u+6e3U+ySRGTvlV57L4VaeRg05sBCIj5fVvXzFRZFDF6VNwxx8PFe77f/Yi8\n+d2VKEVsxIbOPD03J0MfxMjkYa4DWW9OmOvlidjQGgxglByFQ4zeBiPbKX/akdUEds0n5uxJciY6\nWziREcwpvDv5avtlcEvS3aPvg9gwyVuVkluR799NpxUJxMJ2XV4I846SROs86BGy9pvPEu7nPDbm\ncA3xfO0TcWLX4f/8e3851CfomxZxXlVjnc6D3yJ/ovjJmb49x8LSgvdtZhELtcNvvR4k6Dk9dSK3\nKt3DIqdwLxKIRUUsQxFxjv1chJqIndHiMDFd9Zljf9RblWcSwSZbDwbEgBgQywRiR9eyHv1gxEa6\nVSm5Ffn+5iIlM8gCMSAGxFQKejPkXvK0qYCnHcW6VSkZUzTFW5FADIgh1EaM6dGX9UUFPrIt6q3K\n44vb9ykpBwNiQAyIqY/YkWePfljEhlFuVZ7IbkVenqVtrwAxIAbEVIkzYbh3PMRC3qqU3Yq8m/6t\nSCAGxBDKInZEJ4W79eqQCvsE8KBblWfXab0VCcSAGEJVxJiBIheefxQWMb9blUfSW5Hnx6ndM0AM\niAExFeLCv0c/MmIetypltyLv03QrEogBMYSSiLE9+n6gREFMcqtS0pGftluRQAyIIVRELLhHPxZi\nQ/FWpftW5KkCeweIATEglva4DP0IqMiIibcq2Y78qxM1dg8QA2JALN1x4p7ANUnExFuVKb8VCcSA\nGEI1xLhHso0FMdetypR35AMxIIZQCDHhkWxjQoy5VXl/rZZgQAyIAbFUx2nYHv1RETNuVb6b+vSG\nQAyIAbGMIXbpMYHrOBBTN4AYEANiKY3jCD36QAyIATEglraQPZINiAExIIZQBDH5I9mAGBADYgg1\nEPN4JBsQA2JADKEEYldRe/SBGBADYkAsPcH06F9GeycQA2JADIjFDK3Z7A6SWZTPI9mAGBADYoix\nINYtFfQothNYlO8j2YAYEANiiHEg1i3YMbpi/o9kA2JADIghxoDYoFgoNPuDlv6f3oiLOg81gSsQ\nA2JADJEkYi3dMDshq4+2pOO4PfpADIgBMSAWP6qFgtWnXyqUkknE7mMOxAZiQAyIAbEYUSkUhB/i\nxmnAI9mAGBADYohUIza8838kGxADYkAMkW7Eji5vr0eY2h6IATEgBsSmi9iIAcSAGBADYkAMiAEx\nIAbEgBgQA2JATHXEmgUEAoEYOYAYAoEAYmhOojmJ5iSak+gTA2JADIgBMSAGxIAYEEMAMSAGxIAY\nEOOjSuwqjzoAHIgBMSAGxKaAmD4VT8v4r1YoVIEYEANiQEw5xIxJEXXFNP0/GhADYkAMiCmH2LBN\nKjoaU94gIAbEgBgQi6dY0TSsOe0NAmJADIgBsZgtynaz2epPfYOAGBADYkBM6QBiQAyIATEgBsSA\nGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExBBADYkAMiAEx\nIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAY\nEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEghgBiQAyIATEg\nBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEghkAgEEAMgUAAMQQCgQBiCAQC\nAcQQCAQCiCEQCCCWjtCqxUKp3g94qV8vFYpVjX1p0CwXCpW2sl9Vu1LhNlG2jUZ0xb9TOQbVSlPc\nDYVCuTngtrhaEL9/taNXqXS5A7zdrFaqg8AdAcTUiHrBjGLb/VKP+YKtlwrMX/WK1kt1Vb8q/Zjl\njljJNpqnvQ56do5PrVBocFtXtja6PHB9/4V2Zra6WSiwiJWs7dNkO6LUA2KqIdYwGDJSqoLz5bX0\nf1SNl4rOtbhnHOZN/fpMj4WBfiSUGvWicFIoFMVClbtau7eR7I5mdo7PFvNFG6Fvb7He0L/LMnvG\nW99/ITPnc7VQZP9ZkCBmHO8NY0eUkIsphphmJ1x6FlKhmYf5kn4sV5mkpW3/NXOoGzlYv6TqsT4Q\nUg3JNtqX7WKGDusGn1ZqVg420C1r0f1Cvv9KVra6zLcX2l3N2DyNz9XMZLSeqUtWPhBrkDOZtq26\n5GvUr030uK6QP9ec48I6t7uqfusa35qUbaPdyMzSUV3hE2eysQMqVtv9/SsfYnZtqaXxiVjfvoSX\ngZhqx3RB/E6dn+hLGjmuNXpGO0e9qhfsFt+alG2j3X+SoR5uvQ3dk37/zg/c95+R9mRPSK4liDlH\ncSU7dOemOdns5hWxBt+a9ECsrfCdC2kbujSMgJiWja3uSr5DYevazR4QUxQxNuEY5AuxvjYMgVgl\nW4nYUOuHQMy6sNWFu7cK060NghBzjooCmpOqItaivfh5QUw8u6WIaQW+0Zm1kCDWszc5W6UlYRFj\n7nAAMcU6DYq0/wOIMYhVzH2gaVm97S5BzOjjrvaG3XK279PJEWujxEJVxAzDmkMg5kKsZ26clt2r\nswwxUsWc7XaVFLF2ITP9gHlDrF1ke6+BGEWsbvYPadnNSWSIkdr1TN3RCIVYI1PDFHKFmFGh3RgC\nMfc26r28pWHuEKsYtetNY+xRlnuH3IgZFb9FGKYkYnXh8gPEnG2sO0X8OULMLuI3mtLFDHcPuRAz\nEtAiBk4qiVhd/OqAGNlGOxHLGWJ18rU3Mt0/1JQMAC+jT19JxFquyw8QI9vYMkaE66Gf1pWMTtEi\nQcz5Scv07UkRsSoMUxWxQdE1tgSIkW1sFpjIZlICxOjXj9oKRRFruntvgRiTiTmR0d4SIEa3Gv1h\niiJWdg+N7TITW5B8jdxub7KzWJQydajLtnGY+bO5QSdvqNCXsjZ2MhixQcZHZmQaMUkaReYTY6YY\nI3Nt6WWQzg0rez4xoz80G4e6ZBuzj5jmnkbLuTtZlMz9kFXENEwjpjJixQqJPv167TqhHvMd6/O/\nNopM49PoTas0m6XMXMIk25iDI1ynu9RsVtgeoWrW68T6xtFuTGar/6fqfMUlch4gJVMOMUnXtWSO\n9ba7iJuMTsnMPZ22V6F6lhEj5flMn1/mK/Y19qj3fAmIqRLVSsWViemns3EYV7mOTs2YfL7MzY/Z\nNybYL2Xo9JZsI7lyZ7dzaGAk08U6dyVqmd9/Zre5zxz0Vc+XgBgCgUAAMQQCgQBiCAQCAcQQCAQQ\nQyAQCCCGQCAQQAyBQCCAGAKBAGIIBAIBxBAIBAKIIRAIBBBDIBBADIFAIIAYAoFAADEEAgHEEAgE\nAoghEAgEEEMgEAgghkAggBgCgUAAMQQCgQBiCAQCAcQQCAQQQyAQCCCGQCAQCSL2EQKBQCgcQAyB\nQAAxBAKBAGIIBAIBxBAIBBBDIBAIIIZAIBBADIFAIIAYAoEAYggEAgHEEAgEAoghEAgEEEMgEEAM\ngUAggBgCgUCMHbFnnz8QXnnhegWBQCBSi9ibD1/xZn324cMj7DUEAqEOYrxiumFADIFAKIUYq5hh\nGBBDIBBqIUYVMw0DYggEQinEvnH6xT778M3XQAyBQKiF2IsHOl6mYrphH3/06TcsYh+/seKF/vOn\nbz41X3lhvfGN9f9WMD8aP7948/FH9D/Wn74wfvf5J+xS9UU9fPPGBPTBmzcP+Y8jH/TgmQ7r59Y6\nWatg/4f9QERO49HnekPiU+YfXz97wByf5Igxj5PPPrb/7tOvPnx4Q44oKz4VlmsfuvRH+3C0X3/2\n5hnzG/OQfSCeL/brDz9i18dclReyLTFWytmSh5998+Gbzx4G/YpZS/fJYP/8+ZtPzHV5wK4Fs8SP\n6erw2+i7OdxqyHYi9wl0B/F7gN91L4TViYDYI5Ovrx5YhpFXyGHxwQpj2599eGa+Yu2HDx+s/7eC\n+fEDXYb9H+tP31i/fcEs1VjUG3Op+sLfCB9nf9CDr6yXPv3IWQX7P+wHIvIZn1pHwGfsP6xmhX1Y\n2EeMfaR8wnSakCPKimfS84L50T4cyT++ecj8wwzzFf4AZj6HrM9HH3scsZ+xW/LxN9YiPw74FbOW\n7pPB+vnZh6+sdfkusxbsEskJLW7jR76bw62GZCfyn0B3EL8H+F33RlidiIgZin3m3jHGIr96ZMTH\nnoiZvza/y0ePPvvwmfWzHLHvPnqkb66+qAf6X31l/PNj83jQD7oH39jHA/04+4Ne6C999OC7Hz48\nFBFjPxCRy3ion5sPPvqudWY9/OaDnoXpB9YLGWL6cfL5h2+Mnz/58M2nen5PjqjPzCPuYRTEHnxt\nkfCGHrSffPXhc9cB/JV5iH74mEXsxYfPvrIxZcNcqY8++cYyQl/Yw48efm76Y/9KbyF9Qn/12Yev\nXYg5ZyKL2MfWx+tafE3XgluiP2Jem8OthnsncpvD7iB+D/C7blTEDDlt9wXE6CLliLELe0YsliNm\n5XzPhKPETMWeubfA/vkboux3RcTYHxC5jO9al/oX5lnwXXIMfSNDzPj/r81j6XPrJe6I8jwvpIi9\nsA9T9jcPzI+QHMCfWetIzpSvPjyy15oLe6U+NbfkY/PCblzZP6a/esb+St+Uj0XExEWar3xlvfmR\n3dVt/RW3RH/EPDaHXw33TuQ2x3rnQ8kekOy6URD76LOvP/5oAog9cyFmpGJ2IibbafYnPHz0EIgh\nhLC//4eP2FOJOzI5xKxjzj7yuCMqEmKfkJYR9xsvxITjWCf2oZW/yD7vAdsI4df3EdvJ8tHHjx6E\nQeyFlcwZJ5npCbsfhCWGREy2Gs+8WuPc5kj2gGTXjYSY/JUJIGakYnYi5oMY9wFADGH3gn39wHX0\nhUTMfQS94X72REy/4n73o7iImTmIlb8En3U+iLneJUXskd34M972tdF8Thoxr9NQtjmSPZAdxPSr\nBLkjCsQQUUL35KuPJ43Y585BGgOxN0Zv0Av3YTsWxPS+u2fOEs0tTQFi7B5IDLGvPn/mfODDT569\n+Vp2d5L687GVCT4kPQ/sbQlGKOZ93J574UbM+Os37o+TI+bxgYh8hnGTjFQiBCP2lQwxelPvY6Zn\n2vyjh8+euRF74dxmkyLmOoC541jv/nlgnENfjQEx8QahXgngfI7+tgfGieuJ2KcGAp53Jx8FISbe\nGZVszgPJHpDtuhiIff5BvzlAvpbPjTuoX3146IeY3tP+0EzkP4uD2KNvyJ0ZZjMffaD9Y3LEnunx\nCIghXPHwM+doCETsu+b5440YG+bF9oXZGvvGfJdzgr+hArGIfWpe3IMQs3q67XPIhdin+mH+aQjE\nHhrnw8NgxN58eME48pl+6kkQM3HR/+9zYwe9iIKYsxoeiHGb8+Aza79xe0C262Ig9uzDpw/eEER0\nzT7hUx93c9K+q/O5dS84UnOSW0X2UHKW4tWcJF8PmpMIVzL2xi5H8keMnuKezUn+UH5hZG7GsW4t\niWYpX5MuMVo09uaN9aeBzUmrJujRmw+fyhB7w5dIeiL2iMAS0Jx8SLrEzLcZ/5MgZjQ79XsVRsvq\nmbiD/JuTj4T0xntzmIyG2wOSXRenOfmJ8Z7PCGJGxT6X6koQM9/xkXVRi46YM1lZJMSePXsDxBCe\n3fvcqeSN2LOPQiNmHH0PPhi1G/zJpb/5kdOe5Ipdn/3/7Z27maMwFEbLISEmIlROA4QugNAdEFOA\naqABOlAN9LJXb11LgPDau7P7/SfyDAZLsnRGjytNUyExuZ8F147TXCUx6gJtNRJzka7+tm3vShLT\nPz0pq/1Ls72UWEjGdJWdZEs2K4FC0b0jMcqZjntzocGtniodzyXWWnOvzRsT+4/4uFsS84+GxEAB\nG7t0NZxc7klMkRwHuVNVX15a/OzDNpNgV9E2dRJb9Uab7WgmXFRJrLRGUQ6x8L1GcxuNFssSezTb\nKihJ697fnNiXZxJjb1ZBYkkJFIruLYmFVVgDbfKRzbnEzEhydoVzU2JtnAyAxMBv43b5iWRb3LHE\nhAtO8g1sEmc1iO6Yd9opIibWUXC1eMgn9islJprKVv8Rifleo52WUhQGkEuMEtPR4FnJuH74BYlN\nLr6VlcBxcd2TGP29UX3iMH7Qa0liemrOR7rcDbGYQ7ByvcS6MNEKiYGXtjLEGQ7XTDovsc520uLE\n/mYHGW5CitWoHOo5bCutok1P+/Z05W5w8epVErNx8dcSG2NOvG79mNGeesAurXUS85sLbFrm3aci\neaIeHlGfk/omLbf8WXZ4Mi6zI83X0n1PYonFMocVJUbRFb2POb4rsc59/fUSW8w0Wq/S/Q2QGGhs\n+9uoZXSraTK9mXZpFysNW29EunMxNFp9k1DZjpk0xEIPsvTcvlrzCSQTaFErMb/nsSAxu7SX5oQa\n4MMa1ApWJZnc0kujvXQtsTbdINk7ifEnCr1vujWDTXkpMZ8dloy8GbLseINOX5SYtdhjanOHFSWm\nF2382i0LpagJdpU82jmTWFysdR9N23qVXsB4NpAYeEEfcSL1Cet2cEkvpHIDKFZvQoN2m5d3fWW2\nNSgumsvXYxgGG3XUZRLrVNIR4i0xrcDp6RMFibGT+1hOaLFwo2kjN2o9viTjxDhvifETba/RpXF1\nLY09sdvNqz4kNT71ODssGVMeHJF+gh9Uqm9KTFtMH8uUO6wssSkcanJfYoPvw9VKzCyh74qFAkFi\nwFnMHPkyu2o76fNh/GFYab1xNexpW6C96dmcSkxfaE1s2d5kEtM9jUqJ+XPAriTGczLow0m34epS\nhcRIw3NI4+h+x5/oCkPF5dtjiYVjzdJkFCSWfkIw6PhNifGTmH4cHU7bAYca86tbtiWkI8LjesNv\n+nuD4ZNE9aKvuvSRYnuLi2R8sozr/nnu+IMdBsB/ybKgDD4pMW0xOAyAP4gcUAYflVgzzHAYAOAf\nlhgAAEBiAAAAiQEAACQGAIDEAAAAEgMAAEgMAACJAQAAJAYAAJAYAABAYgAASAwAACAxAACAxAAA\n4JhflzBydcIRb30AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 500 + } + } + } + ] + }, + { + "metadata": { + "id": "W7lw3JzAE6BJ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Hint:** use the crosstab you calculated in part 1!\n", + "\n", + "**Expectations:** Your plot should include:\n", + "- 3 lines visualizing \"occupation of guests, by year.\" The shapes of the lines should look roughly identical to 538's example. Each line should be a different color. (But you don't need to use the _same_ colors as 538.)\n", + "- Legend or labels for the lines. (But you don't need each label positioned next to its line or colored like 538.)\n", + "- Title in the upper left: _\"Who Got To Be On 'The Daily Show'?\"_ with more visual emphasis than the subtitle. (Bolder and/or larger font.)\n", + "- Subtitle underneath the title: _\"Occupation of guests, by year\"_\n", + "\n", + "Any visual element not specifically mentioned in the expectations is an optional bonus, but it's _not_ required to pass the Sprint Challenge.\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "metadata": { + "id": "52xDh3wzXa4P", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Code" + ] + }, + { + "metadata": { + "id": "E8XBAr8rz_Na", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 413 + }, + "outputId": "6c5001e0-1a3b-406a-c29f-1fca26761017" + }, + "cell_type": "code", + "source": [ + "# Create and adjust figure\n", + "plt.style.use('fivethirtyeight');\n", + "\n", + "fig, ax = plt.subplots(figsize=(8,5))\n", + "ax.set_facecolor('#F0EFF0')\n", + "plt.ylim(0,1.07)\n", + "ax.axhline(color='gray', linewidth=6)\n", + "ax.tick_params(axis='x', length=17, pad=2, color='silver')\n", + "\n", + "# Plot each line and label\n", + "plt.plot(df_norm['Acting, Comedy & Music'], linewidth=3, color='#008FD5');\n", + "fig.text(0.22,0.68, \"Acting, Comedy & Music\", size='large', color='#008FD5',\n", + " weight='bold');\n", + "\n", + "plt.plot(df_norm['Media'], linewidth=3, color='#81117C');\n", + "fig.text(0.53,0.46, \"Media\", size='large', color='#81117C',\n", + " weight='bold');\n", + "\n", + "plt.plot(df_norm['Government and Politics'], linewidth=3, color='#FE2501');\n", + "fig.text(0.6,0.10, \"Government and Politics\", size='large', color='#FE2501',\n", + " weight='bold');\n", + "\n", + "\n", + "# Mark each axis tick\n", + "plt.yticks(np.arange(0,1.1,.25),['0','25','50','75','100%'], fontsize=14,\n", + " fontname='DejaVu Sans');\n", + "plt.xticks(np.linspace(2000,2012,4, endpoint=True),['2000',\"'04\",\"'08\",\"'12\"],\n", + " fontsize=14, fontname='DejaVu Sans');\n", + "\n", + "# Titles\n", + "fig.suptitle(\"Who Got To Be On 'The Daily Show'?\",\n", + " fontsize=22, weight='bold', horizontalalignment='left', \n", + " x=0.01, y=1.04);\n", + "\n", + "ax.set_title('Occupation of guests, by year',\n", + " horizontalalignment='left', x=-0.08, y=1.05, fontsize=16);\n" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGMCAYAAADZb6ZnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XdcVfX/wPHXZW9BUBRFcFCu3OJe\niJqpX9HKMtevYWqZWvbtq/ZVM0sbVo4cmbm+5Qh3uWduyUzBjQNFlsjecMfvj8s93csSBEXl/Xw8\nfMg983POufec9/lMVWJiog4hhBBCiArKrLwTIIQQQghRniQYEkIIIUSFJsGQEEIIISo0CYaEEEII\nUaFJMCSEEEKICk2CISGEEEJUaBblnYC8Ro8ezZkzZwD46aefeO6558o5RUI8HtRqNe3btwfA1taW\nP/74o5xT9HCFh4fz4osvAlCzZk02bdpU5PTHQUW7RkI8LR44GHrxxRcJDw8HYObMmfTq1ctk/urV\nq/n++++Vz3PmzKFz584my3z99dcEBgYC0K9fP6ZOnfqgyXloTp8+ze7duwkODubevXukp6djY2OD\nh4cHzZo1o2/fvjRo0KDM9qfVannhhReIj49ny5YteHh4FLl8//79iYqKKtE+irPdklq8eDErVqwo\ncJ6ZmRm2trZUr16dli1b8sorr1CzZs0y3X9BUlNT2bp1K8ePH+fGjRskJydjbW1NlSpVlGv3KILt\nvn37cvfuXVq3bs3ChQsZOXIk586dK9E2li5dSuPGjR9SCosnKCiIsWPH5ptuYWGBo6MjtWrVonnz\n5vTr1w9PT89ySGHZ0mg07Nmzh/379xMeHq78/u3t7fHw8KB169YMGjQId3f38k7qAzO+pjNmzKB3\n797KvOzsbDZv3sy+ffu4fv06GRkZODo68swzz9CzZ0/69OmDubl5eSVdiDL1wMFQq1atlGAoODg4\nXzB09uxZk89///13vmAoJCRE+bt169YPmpSHIjExkWnTpnHy5Ml889LS0ggNDSU0NJTAwED69+/P\nf/7zHywsSp/RdvbsWeLj40u9nceJVqslLS2Na9euce3aNbZt28Z3331HixYtHto+Dx48yGeffUZK\nSorJ9JycHFJTU7l58yabN2+mZ8+efPzxx9ja2j60tDzt1Go1CQkJJCQkcO7cOVavXs1rr73GO++8\nU6rfhIeHBzt27AAok99WSWRmZjJ+/Hj+/vvvfPOSk5NJTk7m8uXLbN68me+//56GDRs+0vQ9bAkJ\nCYwdO5bQ0FCT6YmJiQQFBREUFMSuXbuYO3cuVlZW5ZRKIcrOA99hWrduzebNmwHToAZAp9MRHBxs\nMi1vcJSZmWnyQ2vVqtWDJqXMZWZmMnbsWK5evQpAlSpVGD58OC1btsTOzo7o6GgOHDjAxo0b0Wg0\nbN26FXt7eyZMmFDqfR86dKhEy69cuRKNRmMy7YUXXlD+Xrp0ab5cGBcXlwdOX3H4+fnx4YcfKp/V\najVhYWHMnz+fa9eukZGRwdy5c1m9evVD2f8ff/zBpEmT0On0nav37NmT/v37U7NmTdLT0zl9+jQr\nVqwgPj6ePXv2kJCQwPz58x/ZW+6cOXPIyckxmTZ8+HDu3bsHwKxZs2jWrJnJfGdn50eStuJyc3NT\nrl9OTg6RkZEcPHiQzZs3k5OTw88//0xcXBwzZsx44H2Ym5vj5uZWVkkukeXLlyuBkLu7O++99x6N\nGjVCp9Nx+fJlFi5cSEREBKmpqXz77bcsW7asXNL5sMyaNUu5Pz/77LOMGTMGLy8vwsLC+PbbbwkP\nD+f06dOsXbuWESNGlHNqhSi9UuUMqVQqdDodoaGhZGRkKG/XhiIJAE9PT8LDw7l8+bLJMpcuXVIe\n4rVr1y70pnf16lUWLVpEcHAwOp2O5s2bM378eLy8vPItGx4ezi+//EJQUBCxsbGYm5vj7u5Ohw4d\neO2114p9Y129erUSCFWrVo3ly5ebrOvh4UGLFi1o1aoVH330EZaWlty6dYusrCysra1NtnX69Gk2\nbNhAcHAwiYmJ2NnZ4eXlhb+/PwMHDlSW//333/n0009N1g0ICAD0RVAtW7YsMK33C2ycnZ2LPO6U\nlBTWrl3L4cOHiYiIQK1WU7lyZVq0aMHgwYN55plnitx+QaysrPLts1q1alhZWTF69GgArl27lm89\nQ2C5Y8cOrl+/jlqtpkaNGvTp04fBgwcXK3cgPT2dzz77TAmExowZw+uvv26yTN26denSpQuvv/46\ncXFx/Pnnn2zYsIFXXnkFMC06GDRoEGPHjmXp0qXs37+fe/fu4ebmRp8+fXjjjTceKMeiUqVK+aaZ\nmf3TlsHJyanAa6ZWq/NN27dvH6tXr+bmzZvY29vTvXt33nnnHezt7U2WK4tzmze9xmk0FIH6+fkx\nbtw4srOz2blzJ127dqVbt24mx7Bx40Z2797NzZs3ycrKws3NjbZt2/Lmm2+aFDmVpG7QkSNHmDhx\nYpHLvvLKK9y8eROA7777jg4dOhS6vaNHjyp/v/vuu/Ts2VP5XLNmTerUqcOIESNwd3fH3t6e1NRU\nHBwcCtxWca8R6L97GzduJCQkRLlfeHt706NHDwYMGKDkwhhXMfjxxx9p2rSpso1XX32VGzduANC7\nd2+TgHTr1q18/vnnAHz88cdUr149XxqioqI4fPgwoK/3tGDBAiUYr1GjBmZmZowfPx7Qv3hIMCSe\nBg8cDDk7O1OvXj1CQ0PRaDRcuHBByd0xrg/Rr18/Fi1ahEajITg4mDZt2gBw/vx5ZZnCisjCw8OZ\nM2cOqampyrSjR49y8eJF1q9fb/JQOXjwINOmTSMrK8tkGzdv3uTmzZts27aNefPm0ahRoyKPS6vV\nsmHDBuXze++9V2gw0bVrV5YsWcKzzz5b4I1t/vz5/PzzzybTkpOTCQkJISQkhO3bt/P999+X21v/\njRs3GDduHHfv3jWZHhUVxfbt29m1axeTJk2if//+ZbI/S0tL5W9XV1eTeWq1mg8++CBfseSNGzdY\nsGABp0+f5ptvvrnvQ3vHjh0kJSUB+iC7sBt1tWrVGDVqFLNmzQJgzZo1SjBkLCMjg/fff5+//vpL\nmRYVFcWyZctISkri3//+d5HpeZh27drF9OnTlcAvKyuLwMBA7ty5w7x585TlyurcFkeLFi147bXX\nWLlyJQBr165VgiGNRsP777/PqVOnTNaJjo5my5YtHD58mFWrVj1QHZx27drh6upKXFwcd+7cITQ0\nFB8fH2V+RESEEghVrlxZuQ8Vxji3NTY2Nt/8OnXqcPjwYVQqVZHbKe41An2AtnbtWpNpycnJBAcH\nExwczPbt25k/fz7Ozs60aNFCCYYuXLigBEMJCQnKcQL5ivkuXLig/N2qVSsiIiLypdnS0lL5XVSq\nVCnf/cn4vltQgC7Ek6hUTeuNgxjjYjFDMOTq6kqXLl2U6cZFZcUJhpYsWULfvn3ZvHkzs2fPxsbG\nBoD4+Hh+++03Zbnw8HCTQGjIkCH88ssvrFy5Ej8/P0B/U5k0aRKZmZlFHtONGzdITEwE9DeFrl27\nFrl8ixYtCgyEdu3apQRCtra2TJo0icDAQL7//nvq1KkD6HO9vvjiCwD8/f3ZsWMHVatWVbaxcuVK\nduzYQZMmTYpMw4NQq9V89NFHSiDUoUMHli1bxrp163jjjTdQqVRoNBq+/PLLAnNxSiInJ4dr166Z\nVKgfNGiQyTKrV69WHta1a9dmyZIlrF+/ngEDBgBw4sQJNm7ceN99BQUFKX/7+/ub5Ljk1aNHD2V+\nVFQUt2/fzrfMoUOHuHPnDgsXLmTdunX069dPmbd582YlB/RR02g0LFq0iKlTp7JlyxbeeOMNZd6J\nEyeUnE0ou3NbXMbFtCEhIaSlpQGwd+9eJRDy9PRk5cqVrF+/Xvn9x8fHP3DRqYWFhUnl34MHD5rM\nP3bsmPK3v7//fQM/40Dq+++/Z+bMmZw4ccLkxex+gVBJrtH27duVQMjOzo4pU6YQGBjIggUL8Pb2\nBuDy5ct8/fXXgP6+Y9i/cYBz5swZdDod1atXx9LSkujoaJMGFob7brVq1ahRo0aB6XZzc6N79+50\n7949X/UFjUbDjz/+qHwu70r9QpSVUgVDxj8U43pDhqCnadOmeHt74+joCJi+pRh+wObm5oUWAXl6\nevLBBx9Qo0YNunfvzssvv6zMM35Ar1u3TgmE+vXrx/jx4/Hx8aFhw4bMmjWL2rVrAxATE8OBAweK\nPCbjN6WaNWua5GaAPufo3r17Bf5LT09Xllu1apXy90cffcTAgQPx8vLC19eXefPmKfVTDh48SFRU\nFDY2Nri5uZnUWzEUceVNQ1k4ePCg8vD39vZmzpw5NGnShDp16jB69Gjloa9Wq5U30OLatWsXvr6+\nyj9DMeXff/+Nt7c3H330EcOGDVOW1+l0/Prrr8rnyZMn06JFC2rXrs1//vMfpWVScR7Yd+7cUf6u\nW7dukcva29ubFBMYr2uQkpLC7Nmzad26NXXq1GHKlClUrlwZ0J8b47fwwvz+++8EBQWxcOHC+y5b\nXNnZ2bz44ov07dsXDw8PRo8eTf369ZX5ht9HWZ7b4vL29la+xxqNRslZSUpKonPnznTu3JlRo0bR\nsGFDateubRIk5K1rWBLGgWreunfGwZBx0FSYN954Q3nJ0el0/Pbbb4wfP57u3bszePBgvv76a44d\nO4ZWqy10G8W9RmB6v5g0aRIBAQF4eXnRpk0b5s2bpwTt+/fvJyYmBhcXF+W+ZvxiaeiWpE2bNkor\nV8O0jIwM5ftquOf6+voqFaLvd14SExP54IMPlHNZvXp1k2snxJOsVMFQ8+bNlZteSEgIOp2Ou3fv\nKm8iTZs2RaVSKTkbFy5cICcnh5iYGCVHon79+oWWtfv7+5t8Nn4LMVQ2BdPcAOP6CaCv29CxY0fl\ns+HGUJiMjAzlb0NOlLHY2FheeOGFAv8ZcoLu3bvH9evXAf3bY940ubu7KzdFnU6Xr3L5o2BcVNGl\nS5d8lYeNc/Tud85KIjY2luPHj5tUng8PD1da0FlYWJhcZzMzM+VzWFhYgUUWxgy5EECxWojZ2dkV\nuK6Bh4eHSXrMzc1NulLIW8T4KBX1+zCcp7I8tyVhfO4N5/WVV15hzpw5zJkzx6QOjnExtPELRUnV\nrl1bOZ5r164pwW1mZqbyHfb09LxvUTnoi8GWL19O586dTX4bOp2O69evExgYyPvvv89LL71kkjOT\nV3GuUUxMDGFhYYD+muTNja5evbpSd0+r1So574aAJioqioSEBAClOLdFixZKJXzDS6hxPc3CXkAL\nc/36dYYPH86JEycA/b39xx9/LLcK7kKUtVJVErC3t6dRo0YEBweTnJzMrVu3TB5yhnLsZs2acezY\nMbKysrh8+TIxMTHKMkU1qc9bd8DJyUn527isOjo6Wvm7WrVq+bZjXPR0vxu+8cPROEu8JIzT4+jo\naLJN4zQZbqLl8UA1TmNBdTRKcs7yytuaDPR1GY4ePcqPP/7I0aNHOXnyJCtWrODZZ59VbuRg2mld\nQcLCwqhSpUqh840D6+JcP+NljL9fBgV9nww5nYb0lpe8162gdJXluS0utVptEtQYzqtWq2XTpk3s\n3LmTiIgIEhISlLo0Bnk/l1Tfvn2VnJKDBw8ybNgw/vzzTyXn+Pnnny/2tmrXrs2cOXNISkoiKCiI\ns2fPcv78ea5evaoEFXfu3GHs2LFs3LhRyTE0VpxrZPxbdHZ2LvAlrGrVqly+fBn45/doXG/o/Pnz\nNG7cWMn5adGiBY6OjqxevVoJhoxzkErSejc1NZWJEycq6XzzzTcZOXJkkUXQQjxpSv1tzltUZnjA\n29raKm8zzZs3V5a5cuWKSQXron6UD1Kh83430/v9gGvVqqX8bWg6a8zd3V3JVg4KCmLatGklTmPe\ndD6ONxXj9N2vbkRehtZkxv98fHx4/fXXlQrNarX6gZoj36+OjqF+BZCvj5S8UlNTTQJz43UNHudO\n5cq6752yqv909epVpfjIxsZGCQi+/PJLvvrqK0JCQoiPjy914FOQnj17Ki00DUVlxi3DilNEllel\nSpXo0aMH//73v1m1ahU7duzg9ddfV74baWlp7N69u8B1S3qNCjsnBf0e89YbMtQXqlmzJlWrVqVp\n06aYmZkpHUYa7s01atQoMMgvzN69e4mMjASge/fujBo16rG8ZwlRGqW+m7Zu3Zrly5cD+mDI8GbS\nqFEj5UbQoEEDrK2tycrK4urVq1y5cgUAa2trkyahD6patWrcunUL0L9lGVd+BEwqEN6vpYqXlxdV\nqlQhNjYWrVbLnj17GDhwYInTY5CSklJgs9v75WY9bMb7LKgHa+NpZZk+46b6hu+KcVa7vb19kXWU\njN+sC9KmTRv27t0LwO7du3n77bcLfSDt27dPeWjXq1fvie5JuDBleW6Ly7hxQ+vWrbGysuLu3bts\n2bJFmT5q1Cj8/f2xt7cnPDycUaNGlcm+HRwc6NKlC3v27OH8+fPExsYqdVwaN25c7J7PMzIyCAsL\nw8rKKl/dMxcXF8aMGUNkZKQSBBXUKqu4jH9fSUlJJl2QGBT0ezTUG7px4wYXLlxQOhg1dGbq4OCA\nj48PV65c4e+//1aCoZIWkdWvX58pU6YAlMn9WojHUanD++eee055EwsJCVECHeNO4ywtLZUeWi9c\nuKC8sRuvWxq+vr7K33krSKvVapPxge7XpFalUpm0dPrhhx+Unrbz0ul0XLx4Md90Nzc35Qaq0+ny\nVeYMDw9XWpJYWFgU2hNzdnZ2kWktDePz8Mcff+TruHH//v0FLltaxrk1huKTGjVqKE3t09LSSE1N\nNclVysrKUvpwul9vt7169VICgKioKBYtWlTgcjExMSxdulT5PHz48FId1+OqLM9tcQQFBZkEPUOH\nDgX0xUmG3A17e3vefPNNvLy8cHNzU+rXAfm+hw/CUJFap9OxbNkypRi6uLlCGzZsoGvXrowYMYJp\n06YV+js0LgosTUem7u7uSq6kVqvNd7+4deuWco4sLS1N7heGwObixYucPn0awGS+4T68e/du5TyU\ntIPbBg0aEBAQQEBAgFJpW4inTamDISsrK+Vt4fr160rT9bxvEIYfZWhoqFJWXlZDcLz66qtKULVj\nxw4WL17MzZs3CQ4OZuLEicpbW7169fINCVKQIUOGKJUsExISeP3111m1ahVXr14lOjqaS5cusX79\neoYMGWLSJ5FxE3vj/m2++eYbfv/9d8LDwzl27Bjjx49XciQCAgJM+twxfjsPDAws84qtBt26dVOK\nBG/fvs3kyZO5fPkyoaGhzJ07lz179ijH9Oqrr5Zo29nZ2fla2oWFhbFu3TqTptPdu3dX/n7ppZeU\nvz/++GOCgoKIiopi7969DBkyhAEDBjBkyJB8PTfnZW1tzSeffKIUYfz888989NFHyvZu3LjB+vXr\nGTFihFIJ38/Pr0R1SZ40ZXVujeVtVXnp0iUWLlzIBx98oAQ0gwYNUorIjb/j6enp7N27l/DwcDZt\n2sTChQuVvmzu3r3L+fPnH7i+HujvK4ZcPkNgZm5uTo8ePYq1vp+fn/JbDg0N5d133+Xw4cNERkYS\nFRXFuXPn+Prrrzly5Aigf6HJW1G6pIyD8a+++oodO3YQHh7O0aNHmTBhghJIDhw40KTfH0Pgk5KS\nYlJfyMBw/g1phZLnDM2ePRs/Pz/8/PyUUgAhnjZlUumgdevWJi26zM3N8w2AmXd4AcN6ZcHT05Pp\n06fzySefkJ2dzYoVK/INGurh4cGXX35ZrDogFhYWLFiwgKlTp3Ls2DGSk5NZuHBhoU2jq1Spwuuv\nv670lgv6ipqXL19mzZo1pKWl5etdGvQ5LuPGjTOZ1rRpUyXXKDAwUGm1Mnjw4PumuyQsLCz48ssv\nGTduHLGxsRw6dCjfG6mtrS2ff/55iYvJDhw4cN8uDDp37mzSyeHw4cM5ffo0f/31F6GhofkGBLWz\ns2PWrFnFyr3w9fXl22+/Zdq0aSQlJRV4bKDPBRwwYIDSc/HTqizPrcG9e/dM+hMyplKpGDp0KO+8\n844yzcvLi7Zt23Ly5El0Oh0ff/yxMm/EiBFkZWWxbt06NBoNb7zxBqNGjTJpcVYSZmZm9OnTh+XL\nlytBRNu2bYvduWnlypX56quvmDRpEsnJyZw7d67QgXWtrKyYNGlSgT3il0Tfvn25cuUK69evJy0t\njU8++STfMu3bt8937Qz1hgzH6eHhYfJ7NQRDhvm1atUqcSX5jIwMJTjN26mtEE+LMguGjPn4+ORr\nQdWkSRPMzc2Vt0Z7e/syHe3d398fHx8fZTiOe/fuYWFhgaenJ126dOHVV18ttAl/QRwcHPjuu+/4\n888/2bVrF8HBwcTFxZGZmUmlSpVwdXWlcePGtGnThk6dOhVYL2XChAm0b9+ewMBAQkJCSE5Oxs7O\nDh8fH/r06UPv3r3zBWejRo0iISGBkydPkpOTQ/Xq1R/aCOB169ZlzZo1JsNxaLVaqlatSps2bRgy\nZEihHbOVlK2tLW5ubnh7e9O7d2+6d+9uUjHb0tKSBQsWsGHDBnbt2kVYWBjZ2dlUqVKFtm3bMmzY\nsBKNdN+uXTu2bNnCli1bOHbsmMmo9e7u7rRs2ZL+/fs/0HAjT5qyPrcFsbOzw93dnVatWvHiiy8q\nHYsamzlzJosXL+b48eMkJCTg6enJoEGDCAgIIDY2lkuXLnHx4kUcHR1NGjI8iL59+5rkYpS04nSr\nVq3YsGEDW7du5eTJk4SFhZGcnIxWq8Xe3h5PT09atWpFQEBAmf1GJk6cSIcOHdiwYQPnz58nKSkJ\ne3t7nnnmGeV+kbfisnG9ISBfkbuLiwve3t5K0/2S5goJUVGoEhMTy75JhxBClKPU1FSef/55srOz\nsbe3Z+fOnQU2WRdCCCiDOkNCCPG42bBhg1LxuXfv3hIICSGKVLYdlQghRDkxNDa4cuWKMn6WpaUl\nQ4YMKeeUCSEedxIMCSGeCjt37szXcOLtt98uszo9QoinlwRDQoingoODg9LFhpeXF0OGDHmgHqeF\nEBWPVKAWQgghRIUmFaiFEEIIUaFJMCSEEEKICk2CISGEEEJUaKUOhrRaLdu2bWPkyJH4+fnRsWNH\nXnzxRebOnUt8fHxZpPGxsHTpUtq1a1feyQD0g89OmjSJDh06MGHChPJOTrkYPXo07777bnknQwgh\nxFOgVK3JtFotkyZN4s8//+SNN95g0qRJ2Nracu3aNZYtW8bevXtZtGhRqcftKQ+zZ8/G1dWVt99+\nG9CPvm089lh5+uuvvzhw4ACTJ08u1sCz5S3vuRRCCCEeJ6XKGVq/fj1Hjhxh/vz5DBs2jLp16+Lh\n4UHnzp1ZunQplStXZurUqWWV1kfq/PnzJp/t7OxMRt4uT8nJyYB+oNfHJU1FyXsuhRBCiMdJqYKh\ndevW4e/vn2+EegAbGxvGjBnD5cuX+fvvv5XpBw4c4LXXXqNTp068+OKL/PLLLybrFTV/xowZDBw4\n0GT5PXv24OvrS2RkJKAvPpk0aRKBgYH06dOHjh078tZbbykDFQJER0czZcoU/P396dixIy+//DIb\nN25U5vfv35/Q0FCWLVumbDtvMVlmZibffvstffr0oX379vTv35/FixejVquVZXx9fdm0aRMLFizg\n+eefp1u3bnz44YckJCQUeV7379/P0KFD6dixI35+fnz44Yfcvn0b0BfXGUb8DggIYPTo0QVuIzs7\nm1mzZtG9e3f8/Pz44osvlHMVExOjHOdnn31mst7s2bPp37+/yXbmz5/Piy++qJyrbdu2mayzd+9e\nhg4dSufOnenevTvjx49XzndB5zIxMZHp06fTu3dvOnbsyMCBA1m1alWR56QwW7Zs4V//+le+6/x/\n//d/BY5GP3HiREaOHJlv+rFjx/D19eXy5csm0y9fvoyvry9BQUEAnDt3jjFjxuDv74+fnx+TJ08m\nNjZWWV6n07Fy5UoGDBhAu3bt6N27N5988gmJiYnKMjNmzGDkyJGsWLGCrl27snXr1gc6diGEEGXj\ngYOhmJgYoqKiaN68eaHLtG7dGktLS86cOQNAUFAQH3/8MX369GHNmjWMHj2axYsXExgYWKz5xRUS\nEsLZs2eZP38+ixYtIiEhgcmTJ6PT6btUmjp1Krdv32bhwoUEBgYyePBgvvrqK06cOAHAypUrsbKy\nYsiQIezYsQN3d/d8+5g5cyZ79+5l8uTJBAYGMmrUKNavX8/ChQtNlluzZg22trYsXbqUzz//nFOn\nTrFs2bJC0378+HEmT55Mly5d+OWXX1iwYAHx8fG8++67ZGZmMnToUCZNmqSk88svvyxwOz/88AM7\nduxgwoQJrFixAjs7O3744YcSnUeAL774gq1btzJy5EjWrFlDQEAAs2bNYu/evYB+CIRp06bRq1cv\n1q1bx5IlS7C0tGTixIlKYJD3XM6ZM4fQ0FDmzJnDhg0bGD16ND/99BM7d+4sUdpu3LjBsWPH+Oab\nb0yuM+iDsBMnTpgEIampqZw6dYq+ffvm21a7du2oWrUqO3bsMJm+f/9+qlWrRuvWrQkLC2Ps2LE4\nOTnxww8/MHfuXCIiIhg/fjwajQaAbdu2sWTJEt555x22bNnCl19+yfnz5/n6669Ntnv37l0uXrzI\nL7/8Qvfu3Ut03EIIIcrWA9cZunv3LgDVqlUrdBlLS0vc3NyUN+e1a9fSvHlzZawgT09PYmJiSE9P\nL9b84kpOTmbKlCnY29sDMHLkSKZNm8aNGzeoW7cun376qZI2QMmZOHnyJO3atcPFxQUAW1tbZRlj\nMTEx7Nu3j8mTJ9OxY0cAatSoQVhYGIGBgbz77rtYWFgo5+ett94CoFatWrRs2ZILFy4Umva1a9fS\npEkTk9yL6dOn8/LLL3P48GF69uyJg4MDAM7OzlSqVKnA7ezatYvevXvTr18/AMaNG8elS5cIDw8v\n9nmMjY1lx44djB8/nueffx6AIUOGEBISwv/+9z969OhBaGgoGo2Gvn37Kudt+vTphIeHo9PpCjyX\noaGhtGzZkkaNGinnyNvbm8qVKxc7baAPbj755JN81/n69ev07NmTuXPnsmfPHgYNGgTA0aNHMTMz\nw9/fP9+2zMzM6NevH5s3b2aAYKtmAAAgAElEQVT8+PGYm5sD+pzKPn36oFKpWLduHfb29sycORMr\nKyvlWAcPHszx48fp1KkTfn5+NG3aFG9vbwDc3d3p2bMnv/76q8n+oqOjWbp0aYGBthBCiEfrgXOG\nzMz0qxoe+oXJyspSlr106RL169c3mT906FBGjBhRrPnFVbt2beUBCSjbjI6OBvRFPwsWLKB///50\n69aNLl26EB0drdTFuZ8rV66g0+nyFQ82bNiQtLQ0pUjLMM2Ys7MzKSkphW770qVL+bbr5eWFg4ND\nviKcwmRlZREbG0u9evVMppe0NdylS5fQarW0atXKZHqLFi24du0aOp2OJk2a4OTkxJgxY/j1118J\nCwvD0dGRhg0bKtc9rw4dOrB582Zmz57N8ePHycjI4Jlnnikw8CxK3utsONe3b9/G3t4ef39/k9ym\n/fv3061bN5N1jPXr14+EhAROnToFwNWrV7lz5w59+vQB4MKFCzRp0kQJhADq1q1LpUqVuHr1KqAv\nHj506BCvvfYa/v7+dOnShVWrVuX7brm4uEggJIQQj4kHzhky3MgNdXUKkp2dTUJCgrJscnIyNjY2\nhS5/v/nFlfdhZ2trC0BKSgppaWmMHj0aJycnPvzwQzw9PTE3N2fcuHHF3n5aWlqB+7GzszOZDyhj\nJRmoVCqluK6wbRf0sLazszPZblGSkpIKTJ+Tk1Ox1jdOC8Cbb76JSqVSpms0GtRqNUlJSbi7u/PT\nTz+xevVqli1bxpw5c6hTpw4ffvhhviDKYOzYsdSsWZPff/+drVu3YmlpSd++fZkwYUK+81WUwq5z\nZmYmoC8qe+utt7h16xZVqlTh5MmTfPfdd4Vuz8PDA19fX3bs2EH79u05cOAAzZo1o2bNmsr5OHLk\nCF26dDFZLzMzU+lGYu7cuWzatImxY8fi6+uLjY0Nmzdv5ueffzZZx/BdEUIIUf4eOBhyc3PDy8uL\no0ePEhAQUOAyZ86cQafT0bp1a0D/NlzUA/1+8wsKJAoqQjM8DPMu4+TkxJkzZ4iLi+PLL7+kSZMm\nyjKGAKI4DMVUqampJtMNaTfMfxD29vb5tmvYdnG3a8i5yM7ONple0DHmPZ8ZGRnK34b9ffXVVwWO\n/G2Y7+XlxdSpU9FqtZw/f57FixfzwQcf8NtvvxVYjGdmZsbAgQMZOHAgiYmJ7Nq1i4ULF2Jvb8/Y\nsWOLdYxQ+HU2BEVNmjShdu3a7N69m9q1a1O5cmVatmxZ5Db/9a9/MXPmTDIzMzlw4ADDhg0zOd62\nbdvywQcf5FvPEJjt3r2bfv36KUW9ADk5OcU+JiGEEI9eqVqTDR48mCNHjvDnn3/mm5eVlcXixYtp\n1qyZUnzx7LPPEhwcbLLcihUrlBZN95tvb2+fr4ipoPo3165dM1nOULzk5eWlPJiMH9JHjhwhNTW1\nyBwbY88++yxmZmacO3fOZHpISAgODg54enoWazsFadCgQb5zcP36ddLS0vIVuRXG2dkZJyenfMVq\nhw4dMvmc93xqtVouXrxokhYzMzMSExPx9PRU/tnY2FCpUiUsLCy4evUqp0+fBvRBTpMmTZgwYQKZ\nmZkF5hpmZmayZ88eJeBzdnbm1VdfpU2bNty4caNYx2eQ9zpfuXIF0BefGfzrX//i4MGD7N69W6n7\nU5SuXbtiY2PD8uXLiYmJManc3LBhQ8LDw6lZs6bJ+cjJyVHqRqnVapydnZV1srKyOHjwIJA/8BRC\nCPF4KFUwNGDAAHr27MmHH37IypUruX79OpGRkRw5coRRo0aRmJjIJ598oiz/2muvcfHiRX788Uci\nIyPZv38/K1asUOq23G9+/fr1SU5OZv369URERLBp06YC+7Cxt7fn888/5/r16wQHB7Ns2TKaNGlC\njRo1qF+/Pubm5qxdu5aIiAj27dvHihUraNq0KTdu3FCanTs6OhISEkJoaGi+AKxq1ar06tWLH3/8\nkcOHDxMREcHWrVsJDAzk1VdfvW89qqIMGzaMCxcusGjRIm7fvs25c+eYMWMGtWrVolOnTsXeTvfu\n3dm9ezd79+7l1q1bzJ07N18uWoMGDQgKCiIoKIhbt27xzTffmAQLbm5u9OrVi/nz53Po0CEiIyM5\ndeoUo0ePZs6cOYC+D6F///vf7Nq1i8jISG7evMm6detwdnZWghLjc5mZmcmCBQv49NNPuXz5MjEx\nMRw5coSzZ8/SokULQF85/+WXX+bIkSNFHqODg4Nync+dO8fixYtp0KCBSSefffr04fbt25w4cUKp\n+1MUS0tLevfuzf/+9z/8/PxMirMGDRpEdHQ0s2fP5tq1a9y6dYvvv/+eYcOGKYFco0aN2LdvH1ev\nXuXy5cu8//77tGnTBtDnlGZlZd03DUIIIR4tVWJiYqleV3U6Hbt27WLz5s1cu3aN7OxsqlWrRteu\nXRk2bFi+YpJdu3axYsUK7ty5g7u7OwEBAQwbNkx5CBc1X61W8/XXX7N//340Gg2dOnWiR48eTJw4\nkS1btuDh4cHo0aMxNzfHz8+PVatWER8fT8OGDZk2bZpS92PLli389NNPJCUl0aRJEyZPnszFixf5\n/PPP8fLyYtWqVaxfv54lS5YAMG/ePE6ePMmKFSuU5vdZWVksXLiQvXv3kpiYSLVq1QgICGD48OHK\nsfj6+jJq1CjefPNN5fhnzJjBuXPn2LRpU6Hn9MCBAyxbtoxbt25ha2tLmzZtGDdunFL3as+ePfz3\nv/9VjrkgqampfPbZZxw/fhw7Ozv69u1LjRo1mD17Nnv27MHZ2Zm7d+8yc+ZMgoODsbW1ZdCgQajV\narZv3670fZOdnc2SJUvYs2cPcXFxuLi40KtXL0aNGoWNjQ06nY7Vq1ezbds2YmJisLW1pWHDhowe\nPZoGDRoA5DuXjo6OzJ8/n+DgYLKysnB3d+f555/njTfewNzcnMjISAICApg5cya9evUq8PgM9b7a\ntWvH8uXLSUhIoFGjRkybNi1fkd57772HWq1m8eLFhZ5zY8HBwbz11lssWbJECdAMzp49y6JFi7h0\n6RKgDyhHjRqlFL/dunWLmTNncuXKFapWrcrIkSNp27Ytb7/9NtHR0SxZsoTAwMD7fgeEEEI8OqUO\nhh43hmAob38/FU1OTg5paWkmRTbff/89GzduVIptHmfz5s2jbdu2Sq7Kg0pISCAgIIBPPvmEbt26\nFWud+fPnc+rUqXwdggohhHg6yaj1T6nFixczcOBADh06RFRUFAcPHmTz5s1Kv0OPs+zsbE6dOmVS\nwb2kUlNTuXbtGpMmTeKZZ57J1wKsIDExMWzdupW1a9eWqCK3EEKIJ1upBmoVj68xY8YA8M0335CQ\nkECVKlUYMGCA0gHk48zKyoo1a9aUahu//vory5cvp2XLlkydOrXQPo+MBQQE4OrqykcffVTiPpmE\nEEI8uZ66YjIhhBBCiJKQYjIhhBBCVGgSDAkhhBCiQpNgSAghhBAVmgRDQgghhKjQJBgSQgghRIUm\nwZAQQgghKjQJhoQQQghRoUkwJIQQQogKTYIhIYQQQlRoEgwJIYQQokKTYEgIIYQQFZoEQ0IIIYSo\n0CQYEkIIIUSFJsGQEEIIISo0CYaEEEIIUaFJMCSEEEKICk2CISGEEEJUaBIMCSGEEKJCsyjvBDx0\nuvJOQOmFXgvFp55PeSdDlJJcx6eDXMeng1zHJ4jq4e9CcoaEEEIIUaFJMCSEEEKICk2CISGEEEJU\naBIMCSGEEKJCk2BICCGEEBWaBENCCCGEqNAkGBJCCCFEhSbBkBBCCCEqNAmGhBBCCFGhSTAkhBBC\niApNgiEhhBBCVGgSDAkhhBCiQitWMHTmzBkmTpxInz598PX15ffffzeZr9PpWLp0KS+88AKdOnVi\n9OjRXL9+3WSZ5ORkpk+fTrdu3ejWrRvTp08nJSVFmR8ZGcnbb79N586defvtt4mMjDRZ/z//+Q+b\nN29+0OMUQgghhChQsYKhjIwM6tatywcffIC1tXW++atXr2bNmjV8+OGHrFy5EhcXF9577z3S0tKU\nZaZOncrly5eZN28e8+bN4/Lly0yfPl2ZP2/ePKpWrcrPP/+Mm5sb8+fPV+YdOnSIhIQEAgICSnOs\nQgghhBD5FCsY6tChA++88w7du3fHzMx0FZ1Ox7p16xg+fDh+fn7UrVuX6dOnk56ezu7duwG4efMm\nJ06cYMqUKTRp0oQmTZowefJkjh49yq1btwAICwujT58+1KpVi759+3Lz5k0AUlNTmTdvHlOmTEGl\nUpXlsQshhBBClL7OUGRkJHFxcbRt21aZZmNjQ/PmzQkODgYgJCQEOzs7mjRpoizTtGlTbG1tlWV8\nfHwICgpCq9Vy8uRJfHx8AFi4cCF9+/bF29u7tEkVQgghhMjHorQbiIuLA6By5com0ytXrszdu3eV\nZZydnU1ydlQqFS4uLsr648aNY/bs2fTv35969eoxefJkgoODOXv2LIsXL2bq1KmEhITQuHFjJk2a\nhIODQ7HSF3ottLSH+Fh4Wo6jopPr+HSQ6/h0kOv4ZDBkjjxMpQ6GykrVqlX57rvvlM85OTmMHz+e\nyZMns2rVKszNzdmwYQOffvopy5cvZ9y4ccXark+9h38SH7bQa6FPxXFUdHIdnw5yHZ8Och2FsVIX\nk7m6ugIQHx9vMj0+Pl6Z5+rqSmJiIjqdTpmv0+lISEhQlslr1apVNG/enCZNmnD69Gn8/f2xsLCg\nZ8+enD59urTJFkIIIYQAyiAY8vDwwNXVlVOnTinTsrKyOHv2rFJH6LnnniM9PZ2QkBBlmZCQEDIy\nMkzqERmEhYWxfft23nnnHQC0Wi1qtRrQ5xhpNJrSJlsIIYQQAihmMVl6ejp37twB9IFJdHQ0V69e\nxcnJiWrVqvHqq6+ycuVKvL29qVWrFsuXL8fW1pZevXoBULt2bdq1a8fs2bOZPHkyALNnz6Zjx454\neXmZ7Eun0zFr1iwmTJig1Atq1qwZmzZtonbt2mzatIlmzZqV2QkQQgghRMVWrJyhS5cuMXToUIYO\nHUpWVhZLly5l6NCh/PDDDwAMHz6cwYMH89VXXzFixAju3bvHggULsLe3V7Yxc+ZMfHx8GD9+POPH\nj8fHx4cZM2bk29fmzZtxcXGhS5cuyrSRI0eiUqkYMWIEKpWKkSNHlva4hRBCCCEAUCUmJuruv9gT\n7Ck4Oqno93SQ6/h0kOv4dJDr+AR5BF0MythkQgghhKjQJBgSQgghRIUmwZAQQgghKjQJhoQQQghR\noUkwJIQQQogKTYIhIYQQQlRoEgwJIYQQokKTYEgIIYQQFZoEQ0IIIYSo0CQYEkIIIUSFJsGQEEII\nISo0CYaEEEIIUaFJMCSEEEKICk2CISGEEEJUaBIMCSGEEKJCk2BICCGEEBWaBENCCCGEqNAkGBJC\nCCFEhSbB0AOIy9Sg0+nKOxlCCCGEKAMSDJWAVqdj1dU0mm+MYcPNjPJOjhBCCCHKgARDJfDDpTTG\nH08kOUfH5KAk4jM15Z0kIYQQQpSSBEMlMNTHjpr25gDcy9Ty8Z/J5ZwiIYQQQpSWBEMl4Ghpxpy2\nlZTPa6+nczAysxxTJIQQQojSkmCohJ73tGWgt63y+f0TiaSrteWYIiGEEEKUhgRDD+CLNpVwtlIB\nEJai4YuzKeWcIiGEEEI8KAmGHkBVW3Nmtv6nuGzhhVTOxWWXY4qEEEII8aAkGHpAQ+vZ0amaFQAa\nHYw7nohaK30PCSGEEE8aCYYekEqlYm57F6xzz+C5uBwWX0wt30QJIYQQosQkGCqFuk4W/KeZk/J5\n9tkUwlLU5ZgiIYQQQpSUBEOl9F5jBxq5WACQrtbxwYlEGapDCCGEeIJIMFRKlmYq5rd3wUzfuIwD\nkVmsvyFDdQghhBBPCgmGykDLKlaMamCvfJ4SlMQ9GapDCCGEeCJIMFRGPm7uhGfuUB3xWVqmBCWV\nc4qEEEIIURwSDJURB0szvm3nrHz+9UYG+yNkqA4hhBDicSfBUBnqUdOGl2qbDtWRliNDdQghhBCP\nM4vyTsDTZrZvJfZHZpKQpeN2qobZZ1P4zKi36ifVx38msfCCvh+lQXVsWdq5cplu/7nAaMLTNCzs\n4MwQH/v7r/AQZWt0rA5NY8ONDC4l5pCWo8PZ2oy2Va0Y1cCBTtWtyzV9xXUrRU3TjTEA/NbLrUzS\nrdHq+Do4hZVX0kjM1uJTyZKPmzvyvKftfdftszOWYzH6ntr7e9mwqpuryfzVV9MYdzxR+Zz4fzVK\nnd6COK+MAMrunAghnnySM1TGqtia81mrf4KfRRdTOXvvyR6qQ6vTsflmuvJ5x+1MMtQP3n3A+OMJ\nygPJYKiPHaMb2FPf2fKBt1sW0nK09N99jw9PJnEuLodO1awZ4mOHh505v9/OpN/ueyy6UHE711x6\nOY0vzqbgamPGS3XsuJ6sZsTBeG6VsH+tA5FZZGtMv0O7wh9NsfLoBvaMbmBPjdw6fkIIITlDD8Fr\n9ez49UYGf0RlodXBe8cTOdC3CpaG9vdPmGPR2USma6lkpcLJ0ozwNA07wzMYWNuuxNvK0ujYGpa/\n6wHjzivL0yd/JXPibjau1mbs7O3GM0bB2ZKLqUwKSmLq6SR61LTGp1L5Bm7l4VBkFgBbe7nhZmOO\nvYWKHy6lcTYuBy/H4t1OPOzMiEzXciQ6i+41bADIVOs4FJVFdTszotIfbtHyF22c77+QEKJCkWDo\nIVCpVMxt50y7rTFkaiAkPodFF1IZ/5xjeSftgWzIzRXqUcOGKrZmLL6oL0IqKBj6/VYG886ncD5e\njZ2FiuZulkxq5kSrKlb8EprGu8f+KQZxXhlBB3crtveukq+YzLCsl4M5W3u5MeF4IqfuZlPJSsV/\nmjnx+rP/FKWdupvF5KAkLsTnUNXWnPcaOxCRpmHe+VQG17VjcSeXYh1nWo6Wn0P1x/p+EweTQAhg\ndEMH0tQ6mrta4uXwz0/n91sZLLyYSkhcDmqdjjpOFrxa1453GjpgkRsA64uI7JicmoybjRlfn0sh\nNUfHC7VsWNDBhcAb6Xx5NoW7GRq6eFjzQ6fKuOSO9aLT6fjhUhprr6dzPUmNlbmKnjWt+ax1Jdxs\nzJVlvg5OYfnlNJKydfhWteL95xxM0r8/IpMX98ahAi4OqkZ1O/26aq2OeuuiSMzWMadtJd6qb7qe\nMXsL/fHkaCE2Q8PByCwsVNDAufi3kq4eNqy5ls7O8EwlGDocnUW6WkffWjb8mqefroKKUAsrAtwa\nlsGSi6lcSVKTqdHh7WDOaz52vNvQAZVKn/aCisnOx+fw+d/JHI/JQqOFZ5wtGN3AgUF1Sx7wCyGe\nPFJM9pDUdrJgsslQHcncTH7yhurI0erYdkv/cArwtmWAt75uyL6ITBKzTN/g119PZ+jBeE7H5tCz\npjVt3a3YH5FFn52xnLmXTX1nS/7lZaMsP7qBPf29i65rkpClZciBOFxtzGjoYkF0hpb3TyTyV2y2\nMv+lvXGcuZdDFVtzOle3Zm5IipLmkjgbl0NGbtFN1+o2BS4zsYkjfjVssDLXP1iXXkpl6MF4TsZk\n06GaNf/ysuVGspppp5MZfSQh3/q772Ty0+U0WlWxIlWt49cbGYw6ksCXZ1NoX80KlQr23Mli+ul/\numaY/lcyk4KSuJmspr+3Lc86W7DuegaD9sWhyR0cePmVNGb9nUJ0hpYeNa2pZmeWb/9+HtbUdjRH\nhz6AMzh5N5vEbB025vDSfXL72ucOTjzmSAKtNscQlqJmXnvnfIFjUXyrWGFnoTIpFjP83dXjwevw\n7LidwYhD8ZxP0H//XqljS3KOjv/+mcyssymFrhealMPzO2LZGZ6p/45623IlUc3bRxJYIuMNClEh\nSDD0EL3byIHnKusfEpkamPAEDtWxL0JfGdzJUkWPmjb4VrXG096cbC0mAYdOp+PTv5IB/RAlq7q5\n8oufK0N97LAwU7HkYiotq1gx0ijX4Ys2zrzdoPBcCIDkHB0jnrHnpy6V2fVCFWo56HMzduY+PH8O\nTSMlR4eVGex5oQoLO7qwp08VItNK3ulldPo/63jY3f+nkZytVY55SnNH1vu7srRzZX7MrVy+4WYG\n5+JM64tdS1Kz64Uq/OznStfcXInfb2Xw2/Nu/NCpMu/n5h7uy+2WITZDo9RRWtalMgs7urCzdxV8\nq1hx5l4Ou+7ol/vhUhoAL9W2ZXU3V37oVJlX8+RqqFQqJUfN+Nrtzj2X//Kyxdm68ONOytYSEp8D\nwKGoLNpUteKPflUZ4mPPjWR1vjpAhbE0g07VrLiTplHOz+7wTJwsVfhWsSrWNgqyN/dcDKpjx5JO\nlfmuvQube7oyobEDdYoowvvqXAqpah2t3CzZ2duNRR1d+LptJewtVCy+mKoEnEKIp5cEQw+RhZmK\nBe2dlaE6/ojKYu319KJXesxsyC2y6FPLFuvc3JCBud0HbLz5zwP1WrKaiNxg4nnPf3JVFnRwIWKo\nR6lan72Yuz9LMxUt3fQPy+gM/b4MD+eWVazwyK0QW9Pe4oFaCamMqnQV57n+Z2w2qbkVyV+u80/g\n0beWDYaY4mi0aTDUoZo1Tlb6mU1d9YFyAxdLvHMf1i2U49Pnuv11LxtDXfUdtzOYdCqRSacSSVXn\nzo/NJluj42qSPtfR+NwHFJDrNrSeHdZmcDwmm7jcXtJ35wYRRbXiu5uhwf/3WFZdTVeOrV1Vaxq4\n6I9h6ME4GgdGFzsgMrQ+2xmeSXBcNhHpGrrXsClVvbqGuWlZcTWNV/bFMTckhfgsLVNbODG4XuE5\nXoej9PWgenraYJb7JXitnj0RQz0491I1zJ/Qun5CiOKTOkMPWTM3K8Y0dFCapX/8Z1Ju3ZvHvyVL\nWo5WyYH5IyqTjlvvApCc23fS0egsYtI1uNuZE5f5T5FZJauyjbFdbf45Vza5AZkmd3f3cvfrZmO6\nz8pF5HAUpqZR66KINM19r5HxMRvvT6VS4WJtRnSGloQ8RYnORufGcCxOlqp80wyZEcnZ/wQXK6/m\nD6Qj0jXEG+3D0fKf7Rd0HSrbmBNQ25b11zPYfjuTTtWsuZqkxsvBnM7VCs+VmfV3MqHJanrWtObb\nds503hbLl+eS6elpQ7ZGx8UENb1q/lN8eD/Pe9rwwQl9hWxDANTbs+CiyeJ6q7499zK1LLmUyu47\nmUqQV8vBnIUdXAoNkA3Xsay/t0KIJ4cEQ4/AlGaO/HYrg9upGhKydEz5M0kpSnmc7QjPJD03WyIy\nXUtknlY+Gh1sCstgTEMHk+IV4yAhLUdLYrYOCxW425V9AGioZJw36DBOQ3E1dbWikpWKpGwdm8My\naOaWPzgYeiCOuk4WvFXfHlejAOxeplbJ8dFodUqAUsW2dA9Y4/N6/dVqJoGhQZZRboxxYHS3kPHx\n3nrWgfXXM/jtVgapOfp1h/rYKRWMCxJ0V5/D9eazDtS0t+C7ds6MOBTPkANxeORe15H1i98/VHU7\nc5q6WupzvrT670fPmjYkZee/buZmhuP8Z1pcVv7lVCoVk5s78VFTR0Lic/gzNpuNNzM4eTeboQfj\nCH2leoHBmrO1GfcytSbfGbVWR0xu7lw1WzPJHRLiKSevQo+AvaUZ3xkN1RF4I0Op3/A423BDnxPx\ngqcNif9Xw+TfW7kPvo25yzxTyQL33Af/9tv/FJ9NDkqiUWA0Y4/pK/MaP29TyqB3bkPRyOnYbGJy\ni+nupKk5Gp1lslxkmobWm2JovSmGEzFZ+bYDYG2uYlRuHablV9I4m6e+z4LzKfx+O5P551O5l6nF\nt6oVDrmtqzYY9cO09VYG2VpQAd1K2alfSzdLDJk9eyP+SfdPl1NZeCGV8/E5WJurqOekf6/ZGf7P\nuV97reAi2dZVrXiusiV/RGWx8WY6Zip9sVBR3HJzyS4l6osl+3vbMqGxA2EpGo7HZNPKzRL/miXL\n2entaUOOFk7fy6Gtu1Wh9ZXcc/d92qi/rk0381eQX3EljQnHE7iZoqaZmxUjGzjws5/+pSMpW0di\nAYEWQMdq+mu0KzxTqR+06WYGjQKjabclBulDXoinn+QMPSLda9gwqI6t0mz4/ROJnAyoioPl4xmP\nxmdqOJDbp8yLtfPXPRngbcuyy2mcvpdDWIoab0cLPm7uxLjjifxwKY2INA1anb5OiKUZ/LupvmJw\nDaPcoVf2xdHO3YqpLR68h+4h9eyYcy6FDI2OHjti6VLdmoORWbjbmXM79Z+shBytjtDc1nxpOYXX\na/l3U0eC43PYFZ5Jz+2xdK9hg7utGcHxOZy5pw8EZvlWonlurtF/WzgxKSiJ2X+ncD4+ByszFb/l\nVk5+q759iVpZFcTVxpzRDRxYcCGVCccT2B+Ryb1MLQcjs6hsbUa/3NZ5bzxrz5Q/k9h2K5OX9t7D\n0kylBC4FefNZeyacSOSvezn417C+bweEQ+rZcTgqi5lnkjlzLxsbcxV7jcbeOxOXw9ADcXjYm/NV\nMfvxed7Thtm5rbx6F9GDdW9PG07dzWbttXR0OlDrdFxLyt8y80aympVX09lzJ5OeNW0wV6k4lZuj\n1dLNkqqFFHv+u6kju8MzCY7PodeOWJ5xtlT6wvqomeMT2z+YEKL4Hs8n8VNqlm8lpW7JnTQNn/+d\nXM4pKtzWW5nkaMHOQmVSKdegnbsV1XNbXBkqWQ9/xp6fOrvQ3NWS/RFZHIrKonN1a3Y8XwXfqvq3\n79pOFrz/nANOlir+vpfDxYTSdTdQzc6ctd0r09DZguh0Dceis/h3U0faVtUHK1YFPP+Kij8tzVSs\n8avMD51caOduzcm7Wfwcmk54qoY+tWzY1suNMQ3/aQE3uqEDK7tWplUVS/ZFZLH9dibPOlvybVtn\nvmpTNsOwzGjlxMxWTnjaW7AlLIO/YrPpW8uGXb3dqJXb39GoBva828gBZysVJ2L0RU9r/FwL3WZf\noy4OhhVj+JNX6tqxvIv+2u69k8W2Wxl42Jkzo6UT/+tWmTZVrNgXkcmBiIJz3QrS1NVKqaf1QhH1\nhd5p6MDI+vY4WuoDzXHP3skAACAASURBVCyNjnXdXckbo8xo5cS0Fk44Wprx640M1lxLJ12tZVxj\nBwL9Cz8XjVz0rcj8a+jrTwXeSMfL0ZwfOrkwttGT2TeYEKJkVImJiU93u9HH7OjWXU9X+n8xU8G+\nPlWUFkSFCb0Wik89n0eRvCdOYpaWi4k5xGVqecHTBnMzFVqdjnZb7nIlSc2Mlk5KZ5dhKWqabYzh\nVEBVni2HYT8ep+v49blkPv87BU97c8686C65HyXwOF1H8eDkOj5BHsHtSYrJHrFX6tiy/no6ByNz\nh+o4lsChflXlYfSAMjU6XtkXR0qOjpZuljRzteLvuGyuJKlxszHjNaMm1euvp1PT3pxnKlXcr/2M\nv5I4HZutNPmf0cpJvntCiApPiskeMZVKxXftnLHNbdVyIUHN9+ell9sHVc3OnB29q9Cnlg3hqRp+\nDk3jXqaWAd627OrtpjSPV2t1WJurWNjBuchWU0+7K4lqTt3NxtPBnG/aVnqg8eWEEOJpU3FfkcuR\nt6MFU5o7MvW0vs7Ql+eS6e9tSx0nuRwP4rnKlvxSRP0Y0HeAOeEJHRuuLK3pXvR5EkKIikhyhsrJ\nmIYOSg/ET+pQHUIIIcTTQIKhcmJhpmJee2cMfcAdjsril0L6hRFCCCHEwyPBUDlq5mrFO0bNtP/7\nZxJ3M0o+wKgQQgghHpwEQ+VscnNHvB31lXwTs3VMOpVUzikSQgghKhYJhsqZnYXpUB2bwjLYHf74\nD9UhhBBCPC0kGHoMdPOw4dW6/wxHMPFkYpmM2yWEEEKI+5Ng6DHxeetKuBoN1fHZmcd3qA4hhBDi\naVJuHdv079+fqKiofNM7dOjAd999x9KlS1m2bJnJvMqVK7Nr165HlcRHytXGnNm+lXg7d6iOpZfS\neLmOHa2qFD1UhxBCCCFKp9yCoZUrV6LR/NNyKi4ujuHDh9O9e3dlmpeXF4sXL1Y+m5sXPbL2k+7l\n3KE69kdmoQPGHU/gUN+q5Z0sIYQQ4qlWbsGQi4uLyedt27Zhb2+Pv7+/Ms3c3Bw3N7dHnbRyo1Kp\n+LadM+223iVdreNigpr551Ppf/9BxYUQQgjxgB6L8R90Oh3btm2jd+/e2NjYKNMjIiJ44YUXsLS0\npHHjxrzzzjvUqFGjRNsOvRZa1sl96N72tGDuTX3x2Fdnk2jWQgVP4HGI/J7E76PIT67j00Gu45PB\nx8fnoe9DlZiYWO5jQJw8eZJx48bx888/88wzzwBw/Phx0tLS8Pb2JiEhgeXLlxMWFsa6detwdna+\nzxaNlPvRlZxaq6PH9lj+jssBoIWThl+er4G7rRlmFXiQ0Sdd6LVQfOo9/B+1eLjkOj4d5Do+QR7B\nY++xyBnasmULDRs2VAIhgPbt25ss07hxYwYMGMD27dsZMmTIo07iI2VhpmJ+Bxe6/nYXjQ7OJJvT\n4NdorM2gloMFXo7meDlY4O1ornz2drDA2VoaBwohhBAlVe7BUHx8PIcPH+ajjz4qcjk7Ozvq1KlD\neHj4I0pZ+XqusiXvNXJg7vlUZVqWFkKT1YQmq4GsfOs4WarwctQHSV4OFng5mOPlqP+/loMFthaS\nqySEEELkVe7B0O+//46VlRU9e/YscrmsrCzCwsJo2bLlI0pZ+Zvc3IlsrY6Dt5OJyrYgMbvoMr/k\nHB0h8TmExOcUOL+arZlJcGScw1TDzhxzMwmWhBBCVDzlGgzpdDq2bt1Kjx49sLOzM5k3b948OnXq\nhLu7OwkJCfz0009kZmbSp0+fckrto2dtrmKWrzOhlWPxqVeLpGwtt1LU3ErVcCtVza0UDbdT1YSl\naLidqiFDU3SwFJ2hJTojm1N388+zUEFNB31wVMfRnP971p6mrtLHkRBCiKdfuQZDf/31F+Hh4Xz6\n6af55t29e5f//ve/JCYm4uLiQuPGjfnpp5+oXr16OaT08VDJyowmrlY0cc0/T6fTcTdDqw+SUjXc\nStEHTGG5wVNEmub/2bvr8LbOu43jX5FBZogDTmI7joMOMzM3acrZ263tuq4rr12btSm3W9sVVmZa\nmdImaZjaMDODncQOm2Vbkm3Ref+QI1mx45BsWcrvc1257HNEz8mRjm89SG1ZyaZAVqmdrFI7K07B\nt5lmvhkex+jmIed+kBBCCBEAGsRosjoVAEfnjVEPNofCcZO9MijZOGq0VwYlZw1Tbnn1tdCC1PDV\nsFjGtgit4RnFxZLRK4FBzmNgkPPoR66U0WSi7mnVKpIjtCRHaKFpcLXbzTYHR412DpfYmLaxmGyj\nHYsD/rSskC+HxjK+pQQiIYQQgUnGYgsA9Fo17aJ1jG8Zytyx8SRHOJc+sTrg1uWFzM0u83EJhRBC\niLohYUhU0yJcy9yx8aRUCUS3LS9ktgQiIYQQAUjCkKhR8zAtc8c2IjXSGYhsCvx5eSG/ZkkgEkII\nEVgkDIlzSgzTMGdMI1pHOruW2RW4fUUhM4+YfVwyIYQQwnskDIlaNQvTMHdsPGlVAtEdK4v45bAE\nIiGEEIFBwpA4ryZ6ZyBqE+UORH9dVcR0CURCCCECgIQhcUEaVwaidtHOQORQ4G+rivjxkAQiIYQQ\n/k3CkLhgCaEa5oyJp32VQHTXqiK+z5RAJIQQwn9JGBIXpVGohjlj4+kQ4wxECnDP6iK+zTD5tmBC\nCCHEJZIwJC5afIizhqhjlUB03xoDX0sgEkII4YckDIlLElcZiDrF6gBnILp/jYEvD0ogEkII4V8k\nDIlLFhuiYfaYeDpXBiKAv6818L8DEoiEEEL4DwlD4rLEBKuZPSaernHuQPTQOgOf7Tf6sFRCCCHE\nhZMwJC5bdLCaWaPj6R7vDkQPry/mk30SiIQQQjR8EoaEV0QHq5kxKp6eVQLR1A3FfLhXApEQQoiG\nTcKQ8JroYDW/jI6nVyN3IHpsYzHv75FAJIQQouGSMCS8KipIzS+j4umTEOTa9/imYt7dU+rDUgkh\nhBDnJmFIeF1kkJqfR8XRt0ogenJTCe/slkAkhBCi4ZEwJOpEhE7N9FFx9GvsDkRPbS7hzV0SiIQQ\nQjQsEoZEnYnQqZk+Mo4BVQLRs1tKeH2nBCIhhBANh4QhUafCdWp+GhnHoCbuQPT81hJe3VHiw1IJ\nIYQQbhKGRJ0L06n5cWQcg5sGu/a9sK2Ul7dLIBJCCOF7EoZEvdBr1fwwIpahVQLRS9tLeWlbCYqi\n+LBkQgghrnQShkS90WvVfD8ijuHN3IHo5R2lvLi9VAKREEIIn5EwJOpVqFbFd8PjGJnoDkSv7ijl\n31JDJIQQwkckDIl6F6JV8c2wOEY3dwei/+40MnFRPnuLrD4smRBCiCuRhCHhEyFaFV8Pi2NM8xDX\nvtWnLQyancvjGw2UWBw+LJ0QQogriYQh4TPBGhVfD4vlvo7haFTOfXYF3t9rotfMHH48ZJamMyGE\nEHVOwpDwqSCNin/3imL1pAQGVpmLKKfMwd9WFTF+QT67CqXpTAghRN2RMCQahPYxOuaMieezwTE0\n1bvflutyLQyZk8s/NxgwVEjTmRBCCO+TMCQaDJVKxXWt9Gy8pjEPpIejrWw6cyjw8T5n09m3GSYc\n0nQmhBDCiyQMiQYnQqfm+Z5RrL06wWOSxrxyB/euMTB2fj47Ciw+LKEQQohAImFINFhtonXMHB3H\nl0NjSdRrXPs35lkYNjePR9ZL05kQQojLJ2FINGgqlYqrk0PZeE0C/+gUjq7yHetQ4NP9JnrMyOGr\ng9J0JoQQ4tJJGBJ+IUyn5ukeUay7OoERVZbzKKhw8MBaA6Pm5bEtX5rOhBBCXDwJQ8KvtI7S8fOo\nOL4eFkvzMHfT2ZZ8K8Pn5vHg2iIKy+0+LKEQQgh/I2FI+B2VSsXEJGfT2SOdIwiqfBcrwBcHzfSY\nmcP/DpiwO6TpTAghxPlJGBJ+S69V82T3SNZPbuyxzllRhcJD6wyMmJfH5jxpOhNCCFE7CUPC77WK\n1PLjiDi+HxFLUri76Wx7gZWR8/K4f00R+dJ0JoQQ4hwkDImAoFKpGNcilPWTG/NY1whC3JmIrzPM\n9JiRwyf7jNJ0JoQQohoJQyKghGpVPNbV2XQ2rkWIa3+xRWHqhmKGzs1jQ26FD0sohBCioZEwJAJS\ncoSW70fE8dPIOFIi3NVEuwqtjJmfz92rpOlMCCGEk4QhEdBGNw9h3dWNeaJbBKEalWv/94fMTFqY\nj8UuzWZCCHGlkzAkAl6IVsXULpFsuCaBq1q6m872Gmx8sNfow5IJIYRoCLS+LoAQ9aVluJZvhsfx\n1q5SntlSAsArO0q5oZWeZlUmcBSB5/NBH1N6wnnOu/+1J4OmDfW4fd3rq9n47noAIhIjuX3VnZf8\nWiXHi/nf4E8AuO67G2netyXr31zDhrfXkdinOdd/P+WSn1sIUTekZkhcce7tGE6HaOf3AJNN4enN\nxT4ukahPh5ceqr7vt+r7vKlJt2Z0va07aePa1OnrCCEujYQhccXRqlW83Cfatf3zkTJWn5YRZleC\n8CbhGI4UUXS40LWv5EQJ+fvyCGscXmevmzwkhSFPD6fLLd3r7DWEEJdOmsnEFWlQ02CuTQ5lRlYZ\nAP9cb2DlpAS0atV5Hin8WYsBSez7ZQ+Hl2bS487eABz53Vkr1KJfS/bP2uu6r6Io7PhyG/tm7KHo\nSCGaIC0pw1JoNqWlx302vrueXd9up6Kkgqbdm9Hzrj7VXremZrKyQjPr31xL1vLDmPLMhDcOI218\nW/o80A9tiK4u/xuEEGeRmiFxxfpXryj0Wmf42Wuw8el+k49LJOpaywFJgGdTmSsMDWjpcd81L69k\nxfO/Y8g2kDauLbGt49g3Yy+bn1qPw+4AYNe3O1j/xhpMuSaSh6YQ1jicxY/Mv6CyzLlzFju/2Y5a\np6H9tR2xVdjZ/OFGVr+80huHKoS4CBKGxBUrMUzD1M4Rru0Xt5WQWyZzDwWy8CbhxLWJ49S2k5QV\nmrGaLRxfd4yY1FgiEyNd9zPnm9j2+RYAxr45gVGvjOWGH6fQtHszig8YOPL7YQC2f7kVgDYT2zHh\n/asZ89/xtLum43nLUW4oI65tI9L/0IVJn1zDiBdGMejxoQBkLjjo5aMWQpyPNJOJK9o9HcP5JtPE\noRI7JVaF57aU8N7AGF8XS9ShlOGpFBws4MiywwRHBGO32Gk1ItXjPqd3nMZhc9b+HF6aydFVWQBY\nTM6Ff09vP0XykBSKDjn7HlV9fNr4Nmz5aGOtZQiJDmXIU0PJWHCQfTP3YjVZMJ4uBcCUKzWUQtQ3\nCUPiihasUfFy72iuX1oAwLeZZm5rE0avhCAfl0zUlVYjW7P5w40cXZ2NLlTn2uewuWsFLaXuDvW7\nv99Z7TmMp0spN5S5toPC3e+X4MiQavc/mznfxE/Xf0fxURnJKERDIGFIXPFGNg9hfIsQ5h8rB2Dq\nBgO/TWiERjpTB6QmXZsSGqfn+PpjaIM1hMaF0rR7M05sPOa6T3CUO9DcufkeQmP1ru2MzAzSWqdh\nq7C59pUbyl2/m/PPX7Oz46ttFB8tRhem4/rvpxDfvhFHV2fz659/udzDE0JcAukzJATwYu8ogis/\nDdsLrHyTafZtgUSdUalVpAxrhSnHSPHRYpKHtkJ1VvBt0qUJap3zDZG14ohr/85vtnPkl0Pk7ctD\nG6wlOsXZpHp4aabrPvtm7DlvGc6Ep4hmkSSkN0atUXv0FaoatIQQdU/CkBA4F3Z9sJO7M/VzW0oo\nqnD4sESiLqVU6ePTamTrareHxurpeptzTqDfHl/CwgfnMfOW6Sx7eimZ3x8kONLZLNb55q4AZC7M\nYNaff2bOnTM5tib7vK/fpGtTAAozCph//xx+uflHCg8VoI931kAteGAueftyL+8ghRAXTMKQEJUe\n7BRBy3DnshyFFQ5e2Fbi4xKJupI0KAlNsBZNsJakQUk13mfgo0MYOG0IkYmRZCw4wOkdp0kdnUa/\n1wcSmRgFQJdbu9HtLz0Ijgrh5KYT2K0Orvpo8nlfv93kDnT7Sw9C4/RkrzhCaKyeiR9Npvf9/QgK\nD+LkpuNYjBavHrMQ4txUBoPBJ8t2f/zxx3z66ace+2JjY1m4cCHgnMzsk08+YdasWZSWltKxY0em\nTp1KampqTU93bgGwKPmZPgqi7s3JLuNPy5wjhNQqWHZVI7rEeacztZzHwCDnMTDIefQj9dB906cd\nqJOSkvjggw9c2xqNe7HMr776iu+++46nn36apKQkPv30U+6//36mT59OWFiYL4orrgBXtQxheLNg\nfj9ZgUOBf24oZuG4eFQq6UwthBCByqfNZBqNhvj4eNe/mBhnZ0RFUfjhhx+45ZZbGD58OKmpqTzz\nzDOYzWYWLVrkyyKLAKdSqXi5TxSVfWfZkGvhx8NltT9ICCGEX/NpGDpx4gTjx4/n6quv5oknnuDE\niRMAnDx5koKCAvr27eu6b0hICN26dWPnzupzfgjhTWlROu7p4F608+lNxZRYpDO1EEIEKp81k6Wn\np/P000+TnJxMUVERn3/+OX/5y1/44YcfKChwToAXGxvr8ZjY2Fhycy9uhEVGZobXyuxLgXIc/uKa\ncPguKIQ8i5rccgePLT/KQ62sl/28ch4Dg5zHwCDn0T+kpdV93y6fhaH+/ft7bKenp3PNNdcwb948\nOnXq5LXXCYQOctLRzzdeCjJzx8oiAH46peOB3om0i7701cTlPAYGOY+BQc6jqKrBDK3X6/W0atWK\nY8eOERcXB0BhYaHHfQoLC123CVHXrksJpX9j50gymwKPbihGUQJgeKIQQggPDSYMVVRUkJWVRXx8\nPM2aNSMuLo4NGzZ43L59+3Y6d+7sw1KKK4lKpeKVPtFoKgeSrThVwezs8tofJIQQwu/4rJnsrbfe\nYtCgQTRu3JiioiI+++wzysvLmTBhAiqViilTpvDFF1+QnJxMy5Yt+fzzzwkNDWXMmDG+KrK4AqXH\n6rijXRgf7XOuN/XEpmJGJgYTpmsw3yOEEEJcJp+FodzcXJ588kkMBgMxMTGkp6fz2Wef0bSpc5r6\nW265hYqKCl555RXXpIvvvPOOzDEk6t20rpH8cqSM/HIHx0123thl5Mnukb4ulhBCCC/x2QzU9SYA\njk46+vne1xkm7l9jACBIDesnN6ZV5MV9l5Dz6N/Ki8vZ/MEGzJoyRv5jNGqN1A76M/k8+pF6mPNW\nPs1CXICbW+vpEe8cSWZxwLSNBh+XSNQnh83BnDtnseXjTez7YDe/P7EExREA37SEEICEISEuiFql\n4tW+0a4vKIuOV7DwmMxMfaVY+9oqTm467tre89Mulj/7m4wuFCJASBgS4gJ1jw/iljZ61/ZjG4sp\nt8kfw0B3aEkmWz7eVG3/zm+2s+qF5RKIhAgAEoaEuAhPd48kOshZP5RVaufdPUYfl0jUJUO2gcWP\nLHBtJw9NoemwRNf2ts+3sPbVVRKIhPBzEoaEuAhxIRqPkWT/3VnKMaPNhyUSdcVWbmX+vbOxlFYA\nEJEYyZjXx9Pln91pPdbd8XbzhxvZ8PY6XxVTiAahwu7fXwgkDAlxkf7cJoxOsc7O1GV2hSc3Ffu4\nRKIuLH/ud/L2OtdC1ARpGP/uREKiQ1Fr1Ix98ypSRqS67rvhrbVs+mDDuZ5KiIB1zGjjb6sKGbcg\nD4cf15BKGBLiImnUKl7tE+Xa/jW7nOUnZWbqQLL3593s+XGXa3vwk8No0qWpa/tMOEoanOzat/bV\nVWz9bHN9FlMInzFUOHhmczE9Z+Tw46EytuZb+eWI/w4qkTAkxCXo2ziYG1uFurb/uaEYi59XEwun\nvH15/P7UUtd220nt6XRzl2r30wZruerDq2ner6Vr36oXlrPjq231Uk4hfKHCrvD+HiPdZpzmrd1G\nKhzu2zbkWnxXsMskYUiIS/R8zyjCtc7O1AeLbXy0TzpT+7uKkgrm3fMr9gpnP7DYtDiGvzAKlarm\nWd+0ITomfTKZZj3dnaqXP/sbu3/cWS/lFaK+KIrCjCNmes/M4fFNxRRVuL/8dY/XMXdsPK/1jfZh\nCS+PhCEhLlETvYZHu0a4tl/eXspps92HJRKXQ1EUljy6kOJs54SaOr2OCe9NIigsqNbH6fRBTPrs\nWpp0dTej/fb4YvbN2FOn5RWivqw5XcGIeXncvqKIbKP7GpcUruHzITEsndCIgU2CfVjCyydhSIjL\ncFeHcNpGOZflMNoUnt4snan91bbPt3BoUYZre8RLY4htHXdBjw2OCGbyF9eRkN7YuUOBJf9cyMG5\n++uiqMLPFFU42Ftkxe5ns5YfMFiZ8lsBExbmszXf6tofE6zixV5RbLymMdem6FGfo+bUn0gYEuIy\n6NQqXq7Smfqnw2Wsy6nwYYnEpTi5+QRrXl7p2u5ySzfaTmx3Uc8RHBnC5C+vJ75dIwAUh8LCh+aR\nWSVgiStPVqmNPjNz6P9rLu1/Os0j6w2sPl3RoINRjtnOg2uL6PdrLguPuQeHBKvh7+nhbLu2Cfd0\nDCdY4/8h6AwJQ0JcpqHNQrg6KcS1PXV9cYO+0AlP5nwT8++fg8Pm7AnauEsTBk4bcknPFRoTyjVf\nXU9smrNGSbErLHhgDod/O+S18gr/4VAU7l9TRG65872VW+7g0/0mrlqYT4fpp5m63sDanIoGMyTd\naHXw0rYSus/I4YuDZqpexm5KDWXTtY15rmcU0cGBFx0C74iE8IF/94oitPJb0u4iK/87aPJxicSF\ncNgdLHxwHqYcZ+f3kOgQxr87CW2w9pKfUx8fxrVf30B0cozzNawO5t87m+xVWd4osvAjXx40s+p0\nzSOscsocfLLfxPgF+XScfppHNxhY76NgZHMofHHARI8ZOby8oxRTlWWGhjQNZsXERnw0KJaW4Zf+\nuWjoJAwJ4QUtwrU83NndmfpfW0vIL5fO1A3dhrfWcmztUeeGCsa8MYHIxMjaH3QBwhLCufbbG4ls\n4WxCtVvszLlzFsfXH73s5xb+4bjJ5tGH8IH0cOaOjeeOdmE0CvH803vK7OCjfSbGLsgnffpppm00\nsDG37oORoigsOFbGgF9zeXCdgZwy9zj5DjFafh4Zx6zRcXSJq30QQSCQMCSEl9zXMZzkCA0AxRaF\nf20t8XGJRG2ylh9m47vrXdu97+tH8pAUrz1/RNMIrvv2RiKaOUOyvcLG7DtmcnLzCa+9hmiYFEXh\nobUGSq3OMJMWqeXxrpEMbBLMa32j2X9jE2aPief2tmHEnxWMTpodfLDXxOj5+XT+OYcnNhWzKdfi\n9fXvtuZbmLAwnz/8VsiBYveSQk31at4dEM2qiQmMbB5yzmklAo2EISG8JESr4j+93Z2pvzpoZmu+\n/05CFshKThSz6B/zXdstBybR54F+Xn+dyOZRXPvtTYQ1DgfAarby6+2/cHrHKa+/lmg4fjhUxpIT\nzoEUKuCdAdGEaN2hQqNWMbhpMK/3cwajX0fHcVsbPbFn9cU5brLz3h4jo+bn0ennHJ7cVMyWvMsL\nRlmlNm5fXsjwuXmszXFfnyJ0Kp7qHsmWaxvzx7QwNOorIwSdIWFICC8a2yKUMc2d820owNT1hgbT\nOVI42SpszL93DuUG5yiZ8CbhjHljAmpN3VwOo5Oiue7bG9HH6wGwGC3MuvVncnfn1MnrCd86bbbz\n2EaDa/tv7cPo2/jcc/Bo1SqGNAvhzf4xHLipCTNHx3FLmp6YYM8wctxk5909RkbMy6PLLzk8vbmY\nbfkXHowKy+1M22ig18wcZmS5l83QquCv7cLYdl1jHu4cgV57ZcaCK/OohahDL/WOJqjyk7Ul38q3\nmWbfFkh4WPXicnJ2ngZArVUz7p2J6OP0dfqaMa1iuebrGwiJcS7hUlFSwcxbppO/P69OX1fUL0VR\neHi9gWKLM6AkhWt4qvuF90HTqVUMaxbC2wNiOHhTU34ZFccf0/REB3kGo6NGO2/vNjJsbh5df8nh\n2c3FbC+oORiV2RTe2lVK119y+GCvCWuV5TMmJYWwfnICr/aNJj5Ec2kHHSAkDAnhZa0itTyQ7u5M\n/dyWEgxVF/ARPrP/133s/Hq7a3vgY0No1iOxlkd4T3zbRlz79Q0ERzmnYSg3lDPjTz9RmFlQL68v\n6t6srDLmHXXPy/P2gBjCdJf2Z1anVjEiMYR3K4PR9JFx/F9rPZE6z2CUbbTz5m4jQ+fk0X1GDs9v\nKWZngQWHovDDITO9ZubwzJYSSqzuoNQnIYhF4+P5algcraN0l3awAUZlMBgCuw4/AI4uIzODtNZp\nvi6GuAgmq4M+s3I5bnKOKLuzfRh/jcuT8+hDBRn5/HjNt1jNzpl0W49rw/h3J150B9HL/Tye3nGK\nmX+ajsXo7K8RlhDGdd9PISYl5pKfU1w8b19XC8rt9JmVS37lnEK3tdHzZn/vn1OLXWHZyQpmZpmZ\nf7TcI+RUFalTVbstNVLDMz2imNjSzzpG10NRpWZIiDoQplPzQi93Z+pP95vIMPnRxSfAWEwW5t87\n2xWEolNiGPmfMT75g9CkS1Ou/t916PTOb+SmXBMz/vgTxccM53mkaMge21jsCkKJeg3P9Yw6zyMu\nTZBGxZgWIXw4KJaMKU35YUQsN6WGEnFWjVHVIBQfoubVPlGsn9yYSUmh/hWE6omEISHqyKSkEIY0\ndXacdCjw8qEgtuVbKKpweH2YrDg3RVH4bdpiCjMLAdCGaJnw3iSCI3y3sGSzHolc/fm1aEMq17U7\nVcqMm3+i9KRMx+CP5h8tY/phd6fkN/pHExVU939egzUqxrYI5aNBsWTc1JTvhsdyY6tQwitHroVq\nVDzSOYKt1zbmr+3D0V1hI8QuhjST+QFpJvNf+w1WBv6ai+2s92GkTkVyhJakCA3J4VqSIzTO7XAN\nLcK1AbXmj6/t+Hoby5/5zbU9+rVxtL+24yU/nzc/j0dXZzP7jhnYLc7m1KikaK7/YQrhlUPxRd3x\n1nk0VDjoOyuH05UTFt6U6gwnvlRmU9iab6FNlJZGoQHQMboeLoeBO7e2EA1Au2gdd3UI5909Ro/9\nJVaFnYVWdhZag1GbAQAAIABJREFUqz1GBSSGaUgK15AUURmUKgNTUriWhFC1VHNfoNM7TrHy38tc\n2+lTOl9WEPK2lgOTmPDB1cy9axYOq4PibAMz/vgT1313E2GNwnxdPHEBntpc7ApCCSFq/tM72scl\nglCtigFNfFfz6Y8kDAlRx57uHklUkIpV2UXkO0LIMtoxn11VVIWCc06R4yY7a3KqT9qo16pcQSkp\n3FmjdCYwJUVorth5Qs5WVlTG/Htn46gcS9yoYwJDnhnu41JVlzKsFePfneQsq81B0aFCZv5pOtd9\ndyOhsXU75F9cnmUny/k6wz11xmv9ookJwEVMrwQShoSoY0EaFVO7RDI5LIe01kkoikJeuYPsUjtZ\nRhtZpTaySu1kG50/T5jstbbumm0K+ww29hlsNd6eEKJ2NcE1CdXQWK92/gzV0DhUTWO9hkidKqBr\nlxSHwqJ/zKf0ZCkAwZHBTHjv8hZgrUupo1oz9s0JLHhgLopDoeBgPjNv/Zlrv7mRkMqh+KJhKbU6\neGCNu9P75ORQJiWF+rBE4nI0zCuDEAFMpVKREKohIVRDr4TqCyBa7ArHTHayK0PSmcCUbbRzpMR2\nzqG0Z+SWO8gtt7Cxlvn8QjWqKiFJTUKohiZ65+/OAOX8PT5EjdoPQ9Om99eTveKIa3v0a+OIaun7\n5ovapI1vi91iZ9HD80GBvD25zLrtZ6756gafdvYWNXt+SwnHKqfOiAlW8Uqfuhk9JuqHhCEhGpgg\njYrUSC2pkTV/PA0VDlc4ctYq2cgyOsPTUaO9WmftmpTZFWfQKrXXej+NChJC1ZW1Shqa6CuDU+W+\nMwEqIVTTYDp9H12dzbo31ri2e/ytN61GtvZhiS5cu8kdsFvsLH1sEQA5O07z6+0zmPzFdQSFBf7K\n4f5ibU4Fn+w3ubZf7h1NQiB0VL6CSRgSws9EB6vpGhxE1/jqt9kcCifNzpBz1Ggjt8zB6TI7OWY7\nOa7fHZTZL2yYpV2BU2YHp8wOoHpn76piglUMbRrCK32ifDaCxXi6lIUPzXWNIk3s05z+Dw/0SVku\nVccbO2G32ln21FIATm05wTdjv2DAPwfT5qq2Ad286Q/MNgf3rS5ybY9pHsINraR5zN9JGBIigGjV\nKlqGa2kZrgVqblpRFIVSq0JOmZ3TZofzZ2VIyilzhibnbXYMlgufm6KoQmFmVhkHDFZmj42v97WO\n7FY78++fQ1mBc74XfaMwxr09EbUfdijvfHNX7BY7K//lHAlXeqKEhX+fy/YvtjD4yWE07dbMxyW8\ncr20rZTDlTWqkToVb/SLloAaACQMCXGFUalURAapiAxSk3aebg7lNoXccmdQOl1m9whQuWV2Tpc5\nyDHbyS134KjMTXsNNiYtzK/3QLTm5ZWc2nISAJVGxbi3r/Lr4end/tyD4MhgVr+0grJCZ8A7ve0U\nP133HW0mtmPAPwcRmejdfioVdoXvMs1YHQopEVpSImTeq6q25Fl4b697mox/94qiWZg0jwUCCUNC\niHMK0Z6paar9fnaHwvQjZdyzugiHUhmIFuUze0z9BKKMBQfZ9vkW13b/RwbRvE+LOn/dutbhunRS\nR7Vm0/sb2P7FVtfkjAfn7OfQogy6/aUnve7uQ1D45fcnUhSF21cUeiw0Cu55r5IjNKREaEmuDEln\nfr9ShpJX2BXuW1PkCv1DmgbzpzSZ+iBQSBgSQlw2jVrFlFQ9KuDuM4GoyBmI5oyJJ64OA1HR4UKW\nPrrQtd1qZCo97uxVZ69X34IjQxj42BDS/9CFNa+sJHPBQQDsFjubP9jA3um76PfwQDpcn45ac+nB\n5JP9pmpBCDznvVp9uvq8V1FBqsqApCU5XENKpPNncoSWxDAN2gBZAuK1naWu6SzCtCre6i/NY4FE\nwpAQwmtuSnV+U75rVREK7kA0u44CkbXMyrx7Z7tWgI9sEcXo18YF5B+p6KRoJrw3iRObjrPy38vI\n3ZUDgDnfzG/TFrP9i60MfmIYLQcmXfRz7yq08tSmYtd2v4QgNGouaN6rYovCjgIrOwqqd7DXqqBl\nuLsW6cyyMymVv4fr/KNWaWeBhTd2lrq2n+kRSXKE/PkMJHI2hRBedVOqHgW4uzIQ7SmycfWiAmaP\niSPWi4FIURSWPb2UggP5AGiCNEx4fxLBkYE9SWFir+ZMmflHDszex5pXV2E85fwjXXAgn5m3TCdl\neCsGThtCbGrcBT2fyerg9uWFVDgn6qZTrI5ZY+Jd/YQq7ArHjDaOlDqncjhS6vw9u3JKh9pmU7cp\ncLjUXtnhuKLa7Y1C1KREaGkbreXuDuF0iNFd3H9GPbA6FO5bY3BNWdEvIYg72vlvXzRRMwlDQgSg\nk1tOcGztUZr3aUGzXon1XlMyJVWPosA9q52BaHeRlasXF/DraO8EIofNwfYvtrLvlz2ufUOfG0FC\nx8aX/dz+QKVW0W5yB1LHpLH1081s/nADtjJnE86R3w+TteIInW/uSp+/9yc0pvZh349uLCajxN38\n8/mQGI8O08EaFa2jdLSOqh5UFEUht8zBkcpgdKTEVjlJqDM45VSu2XUueeUO8sotbMyz8MMhM1O7\nRPBQp4gGtbr627uNrjUEQzTwzoBov5yIVNROVq33A7JqfWCoj/NoyDaw5uUVZC7McO2LSY0l/abO\ntL+2Q72vdfVdpol7VxtcH8POsTp+HRN/yZ1uS44Xs/vHXez9eTemHPeonvbXdWTUK2PrJfQ1xM+j\nMcfIuv+uZu8vuz2uecGRwfS+rx9dbumGJqh6CP3lsJm/rHTPmfPegGhuTvNerYfJ6nDOnF5Zo5Rd\n6vz9zPIz1hqyUudYHe8NjKFTbN3WEl3IeTxgsDJodi6WynI+3zOSB9Ij6rRcogb1kD0lDPmBhnjx\nFRevLs9jRUk5G99bz44vt7lGHJ1NE6QhdXQa6VM607xvC1T19O372wwT96259EBkt9o5vPQQu3/Y\nydHVWdU+0/HtGnHjL/+HLrR+mlga8ucxd08Oq15YzvH1xzz2RyVFM/CxIaSObu0KjFmlNgbNzqW0\ncnmXG1qF8vGgmHqrRbRXThCaUWzjxW0lbM539znSquDhzhE83DmCoDoa1n++82h3KIxdkMemPGe5\nusfrWDy+UYPvEK44FEpOFGPIMhDfrpFfTy/hImHICwLg6BryxVdcuLo4jw6bg13f7WD9W2spLyrz\nuK15vxbk7DyN1VS9Y2tUUjTpN3Wi/XXp9XKx/CbDxP1VAlGXOB2zRtceiAxZRa5aoLICc7Xb9fF6\nOlyfTs+7etdrP6GG/nlUFIXDSw+x+qUVGLKKPG5L7N2cQU8MJaZDY8YtyGNLZQBJidCwYmICkUG+\n6dBsdyi8v9fIv7eWuPouAXSM0fLewBi6xnl/KZLzncf39hh5orJTuU4NKyYmNKg+TYqiYMo1UXAw\nn4ID+c6fGfkUZhRgNTvPa1B4EGPfuoqUYa18XNrLJGHICwLg6Br6xVdcGG+eR0VRyFp+hNUvLacw\ns9DjtqbdmzHoiaE07dYMi8nCwbkH2P3DDnJ2nK72PGqtmlYjU0mf0pmWA5PrtLbo6wwTD5wViH4d\nHU90lUBkq7BxaHEmu3/YyfF1R6s/iQqSBqeQPqUzKcNbodHV/4R3/vJ5tFvs7Px2OxveXkdFcZUh\n8yooH5zGu906UBqpR6uCxRMa0T3e92ufZRRbuW+NgQ257iH8GhU81CmCqV0iLmvyR0VRcFgd2Mqt\nWMtsHMs9RvtO7Wu87+ESGwN+zXUtWzOtawSPdo285Ne+XGVFZRRm5JN/JvQcLKDgYL7neT0XFQz4\n52B63NnLf0dZShjyggA4On+5+Iraees85h/IY9WLKzi6Kstjf0RiJAMfHUzahJrXr8rbl8vuH3ay\nf9Y+LKXVR/ZENo+k442d6HBDJ8Ibn2eWxUv0dWUN0RldK2uIHMeL2P3DTvbN2FuthgsgvEk4HW7o\nRMcb070+6/LF8rfPY7mhjA1vr2PnN9tx2NzVLhadhjX92zP83t480DPWhyV0slvt2MqslJusfLO7\nhI+2G3CU29BZbeisdpKDFG5LCiJRq2Ats2E1W7GVW7GV2bCWWbGVOUOOrdzqvO3M72W2ytusKGet\nyafT69A3CiOsUZjrZ2i8ns9yFLbZtRjDQ0lMDGfOTS0IDan78UYWo4XCzALyD+RTmHEm+ORjyjWd\n/8FVhMbpQVFcM5cDtJ3UnpH/GY02pOHUbl0wCUNeEABH528XX1Gzyz2PpjwT699cy54fd6I43G/s\noPAget3Th65/7oE2+PwXbGuZlcwFB9n1/U5ObTlR7XaVRkXKsFakT+lM0pCUy5rIryZfHTTxwFoD\nWquNDvuOMWTXYeIP5VYvh1pFcmU5koekNJg1xvz181h0uJDfXljOiWWHPfaHNQlnwCODaDe5g1dr\nBhVFwWK0YM4zYc43YcozYco1Yc5z/m7ON2HOM2PKM1FeVOYR1BocFYTGhqKP9wxO+vjK3xPc+4Mj\ng89bA2OrsFF0uNDdvFX5r+R4yUUVKyg8iLi28cS1qfIvLQ59fBimPBPz753Nyc3uz3hCemOu+mgy\nEU39rBO4hCEvCICj89eLr/B0qefRVmFj2+db2PzBBtfkguAMCx1v6kzfB/tfcr+fgox8dv+wi/0z\n91BuqF7lHt40go43pNPhhk5EJnqnmSB/fx7TP9xK8eL9hJZX788UkVhZQ3V9eoO8aPvr59GhKFy3\npICs1dmMWbKNpjkGj9sT0hsz+MmhJPaufRkTu8XuCjfmfLM73NTw01Zuq8tDumgqjQpdqA5NsJaK\nknIcNQ1nu0yaIA36eL1HjZM+PgyVCgoynM1bhqyiarVUtT5nsJa4tDji2sR5BJ/wphG1Bi+7xc7y\n535j9/c7Xfv08XomvH81zXomXtZx1isJQ14QAEfnrxdf4eliz6OiKGTMO8Dql1dSesLzG2PLgUkM\nenwo8e0aeaVstgobmQsz2PPjzmojkQBQQfIQZ1+d5GEX31fHarZwcN4Bdv+wk9PbTlW73a5WkdOp\nBbfc24P2w7xfG+VN/vp5fGtXKc9scb6P1A4Hn9jyKPxsA+Y8zyaY1DFppI5uXS3oOAOQucZmTG84\nE1S0oTp0eh3aEG3ltharTssOo8IpuwqrTotFp8EWpKVnop7RqeHowyofE1r1cTp0oVqPn1Xftwcz\nDpLUuKU7wOWaeG9NLidPGAk3ldO4rJx0lY2yfBNlheZ6+Vui1qqJaRXjWdPTJp7IFlGX/JlQFIWd\n32xn5b+WuWrf1Do1w54fSfpNnb1Z/LojYcgLAuDo/PXiKzxdzHk8vf0UK/+9jFNbT3rsj0mNZdDj\nQ0kemlJnnSGLDhey56fKUVyF1f/whSWE0eH6dDre1ImoFtG1Plfunhx2f7+TA7P3edRqnaFqGsni\n9ils75qCMTyUHvE6ZoyOJ8pHo5ouhD9+HjfnWRg7P881i/JDncJ5pkcUFqOFLR9vZMsnm7FXeL8W\nRxuiJSzBXTsSVtmkVHVb3yiM0NjQ8zbxOhSFLw6YeXpzMcYqs163jtTy7oBo+jYOvqiynX0ev8s0\ncc9qZ22ZClg4Pp4+Cc7ndNgclBWaz6r5MjsDYq4RU57ZFRhrep9Xo4KoltFnhZ44YlJia5wPyhuO\nrz/K/PvmeHymu9zSjUFPDPXJQISLImHICwLg6Pzx4iuqu5DzWHKihLWvruLA7H0e+0NiQun7YH/S\np3SutwuX3WLn8NJMdn2/k2Nrsmu8T8uBSaRP6Uyrka1dF3GL0cKBOfvY/f1OcnfnVHuMWqem9Zg0\nOt7UmRb9WvK/g2b+sd7dZNMzXscvDTgQ+dvnsdjiYPDsXLKNzvmnejXSMX9cI49ZnktPlrDm1VUc\n+HXfuZ7GRaVWERqnrwwyesIahVdpEtK7+tKEJYSjC9N5PbQfNdp4YI2B5afcgwBUwF0dwniqeyT6\nC+xbVvU8njbb6TMrh2KL8w/G3R3CeKl37UH/XKxmC+b8s4OTCbvVQWxqLHFt4oltHYtOX/+j90qO\nFzPnzlnk789z7WverwXj35103pnKfUrCkBcEwNH528VX1Ky282gxWtj84Qa2frbF4xu6Wqem623d\n6X1vX5+uuWXINrhqi85uVgEIjQulw3XplBeXc3DOftc8J1VFp8TQ6Q+daXdNR/RxnjNhf7bfyMPr\n3QuF9mqk45dR8T6b96Y2/vR5VBSFv6woYkaWszYgUqdi5aSEcy4yenrHKXZ9uwNbudXdObiRu5Ow\nPt5Zi+PrZkxFUfg6w8wTm4pdk0aCc76kdwfEMKDJ+WuJzpxHRVG4+fdC5h9z9plLjtCwZlICYX6y\niOzFspotLJ66kMwFB137IltEMfGjyV5rdvc6CUNeEABH508XX3FuNZ1Hh93B3p93s+6/qzHne04s\n2HpsGgMeHUJ00qV9Q60LdqudI78fZvcPO8leeeS8ny9NkIbW49rQ6Q+dadarea21BJ/uN/KIHwQi\nf/o8nhm5d8b/hsRwTUr9LslSl46bbDy41sDSE55TRfy1XRjP9IgkvJZAc+Y8zjhi5vYV7skpfx0T\nz5CmF9fk5m8URWHju+tZ/8Ya1z6dXsfo/46n9ZgG+N6WMOQFAXB0/nTxFed29nk8uiabVS8s96iy\nhjOjeoaR2Lt5fRfxopScKGbPT7vZO30XxtNGj9vi2sTR8abOtL+mAyHRF179/sk+I1M3uANR70ZB\n/DwqrkEFIn/5PB4wWBk6J881ceCtbfS81T/Gx6XyPkVR+C7TzLSNxZRUqSVKCtfw9oCYcwabjMwM\nYpq3os/MXAoqp73+cxs9bwTg/9G5HFqSyaJ/zPOYpb7P3/vT5/5+9bZczwWRMOQFAXB0/nLxFbU7\ncx6LDhey6qUVHPntkMft4U3C6T91EO2u9u58L3XNYXOQteIIhxZnoA3W0vbq9jTt3uyS+4qcHYj6\nJDgDUUQDabbwh89juU1hxLxc9hQ5m1zbRWv5/apGF9yfxh+dNNl5aJ2BRcc9p4i4vW0Yz/WMrPb+\nycjM4OUTcfx8xNmEmKjXsG6y75Yk8ZX8A3nM/dssio+6P3OpY9IY/do4gsJ8Pys5IGHIKwLg6Pzh\n4ivOb8/WPeTNOc2ub3d4TDCnDdXS82+96X5HT590qmyIPt5n5J8NNBD5w+dx6noDn+x39u0K0cBv\nVyXQsQGtq1VXFEXhp8NlPLrBgMHivvg3D9PwzoBohjVz97v7dMNhHtnnrjWaPjKOUc191y/Pl8qK\nylhw/xyOrXUvgRPXNp6JH08+74jReiFhyAsC4Oj84eIraqYoCoYjRRxanMGG99djM1bpWKyC9td2\npP8jg+ps+Qt/9uFeI49tdAeivglBTG8Agaihfx7nZpfxx2Xu9er+2zeKv7S7st5fp812/rHO4OoU\nfcYtaXr+1SsKRYGev5wg3+J8L01JDeXDQb5fksSXHDYHq15czvYvtrr2hcSEMv7dibTo19J3BQMJ\nQ14RAEfX0C++wpMxx8jxdUc5uiabY2uPYjxVWu0+iX2aM/iJYSSkN/ZBCf3HB3uNTKsSiPolBPGT\njwNRQ/48HjfZGPhrrqtW5KqWIXw9LNZ/F+i8DIqi8MuRMv65oZjCCndNbKJeQ5toLctOOjtdJ4So\n2XBNY2KCfV/r2BDsmb6LZU8txW5xTsWg0qgY8tQwOv+pm+/eRxKGvCAAjq4hX3wFVJSUc3z9MY6t\nPcqxtdnVVpGvKiopmkHThtBqVOsr8g/UpXh/j5HHN3kGoumj4modKVSXGurn0eZQmLgon3U5zkn/\nmodpWDUp4Yr/I59bZueR9QZmZ9e8wvvXw2KZmNSA59jxgVNbTzL3rlkeI1w73tSJoc+OuKD1D71O\nwpAXBMDRNdSLrzeYC8zs+GobpSdLiGkVS1xaHLGt4y5r+vm6Ziu3cnLLSWf4WZNN7u4cj4VTzxYU\nHkRinxaEdQpn6F3D62yG2UD23h4jT1QNRI2DmD7SN4GooX4eX9xWwis7nLWQahXMGxtPv4uclTmQ\nzcoq4+F1BtfIMYDJyaF8MfTKbh47l9JTpcy9axa5u9wTpzbt0YwJ7199yWshXjIJQ14QAEfXUC++\nl0NRFPbP2svKfy+vca0jTbCW2NRYYlvHEVsZkOLS4ohqGV3vq5c7bA5yd+e4mr1ObTnhqkKuiSZI\nQ9MezWjRP4kW/VvSuFMT1Fp1QJ7H+vTunlKe3OReo61/4yB+8kEgaojncfXpCiYtyudMJn+8WwT/\n7OKdhXUDSX65nX+uL2ZGVhmpegcLJjYjIVS+nJyLrdzK0mmLPWYmD28awVUfXk3jTk3qryCBHIa+\n+OILli1bxtGjR9HpdKSnp3PvvfeSmprqus9zzz3HvHnzPB6Xnp7O559/fuEvJGGowSk+ZuD3J5dy\ndFXWRT9WrVMTkxLrEZBiW8cRnRzjtRoXRVEozCzg2Bpns9fx9cdqX29I5Zwb6Ez4adYzEV1o9ZE7\ngXYefeGd3aU8tdkzEE0fGVevswU3tPNYWG5n4OxcTpqdNR4DmwTx6+h4NH40PUN9K7E4OJZ1iI5t\nGs55bKgURWHrp5tZ8/JKVw24JljLqJfH0HZS+/opRD28lX3Q+Oe0ZcsWrr/+ejp06ICiKHz00Ufc\ne++9/Pjjj0RFRbnu17t3b5599lnXtk4X+MNDA5XD5mD7F1tZ98ZqbGXuJScimkXQ+U/dMJ4qpSCj\ngMLMghqXfABwWB0UHMyn4GC+x36VRkV0coxHQIpNiyemVcwFtXGXnCjh2Fpnzc/xdUcx5db8+mfE\ntIqlxYCWtOifRPO+LQiJujKH5Na3+9MjAFyBaG2OhR4zcri7Qzi3tQ1rsOuZ1RVFUbhnjcEVhGKD\n1Xw8KFaC0HlEBqm5wt4ql0ylUtHjr72IaxPPggfmYimtwF5hY+GD88jbl0f/RwY22C4NF8NnYeid\nd97x2H7uuecYPnw4O3fuZNCgQa79Op2O+Pj4+i6e8LK8vbksfWyR58KdKuh6a3f6PTyw2uRe5YYy\nCjMLKcwscAWkwsyCGkdmASh2haJDhRQdKuTQogz3S6hVRLWMrlaTpI/Xc2qrs9/P0TXZFGcbanze\nM8KbhNOif0tX7U94k4hL/88Ql+X+9AgU4OnKQHS6zMEzW0p4bWcpt7UJ464O4SSGXRlNHx/vN7Gw\nyvDx9wdG0+wKOXZRv5KHpDBl5s3MuXMWRYedg0S2fLSRggN5jH3zKoIj/bt/ms/C0NnMZjMOh4OI\nCM8/Mjt27GDMmDGEh4fTvXt37r77bmJjpcObv7CVW1n/1jq2froJxe5us4xrG8/Il8bQpGvTGh8X\nEh1Ks56JNOuZ6LG/oqSCwkMFFFYGpDNBqfRESY3PozgUDFlFGLKKOLwk84LLHRwZTPO+LWkxoCUt\nByQRnRIjo78akAfSI4gJVvPC1hJOlzlrRUqtCu/sMfLhPiPXp+i5Pz2cDgE80eDOAgtPVelUflf7\nMMa2kFFRou7EtIrlphk3s/DBuWQtPwJA1vIj/Hjtt0z8eDIxrfz3b3OD6UA9bdo0jh07xpdffolG\n4/xms3jxYkJCQmjWrBmnTp3igw8+wOFw8NVXXxEUdGEz9WZkZJz/TqJO5G/LY/dbOzCfdDc5qXVq\nWv+xLa1uaO3VjtC2MhvGY6UYs0sxHi3FmG3EeLQU8ynTBfUbUwepiU2PI65bI+K6xROVGo1KI+Gn\nobM4YGGuhm9O6DhSVv39NDDGzh+bW+ke6SCQsmyZHf60PYTsymNuG+bg8y7l0vQj6oViVzjwxT4O\n/+j++6oN09Lt8Z406uX9udPS0uq+b1eDCENvvPEGS5Ys4ZNPPiExMfGc98vLy2PSpEm8+OKLDBs2\n7MKe3OdHd/kaWofN8yk3lLHqxRXs/Xm3x/7EPs0Z8cLoev32YCu3UnS4yN3UVvnTmFNKXJt4WvRP\nouWAljTp1qzO58/wt/PoTxyKwqLj5by9y8i63Oqd3XvE63ggPYKrWoZcdn+ahnAe711dxLeZzjlg\nwrQqVkxsROuowK0FqwsN4Tz6uwOz97Hk0UXYK5x9QOPaxPF/c2/1/ojfQO5Afcbrr7/OkiVL+OCD\nD2oNQgCNGjUiISGBo0eP1no/4RuKopAx7wDLn/udsgL3ZF1BEcEMmjaEjjd2qvcFSLUhOhp1SKBR\nh4R6fV1Rv9QqFeNahDKuRSgbcyt4e7eReUfLXd+FtuRbuXV5ISkRGu7rGM7/tQ4jVOufVUXTD5td\nQQjg1b5REoSET7Sd1J7olBjm3vUrVpOFCR9MrvepT7zFp2Hov//9rysIJScnn/f+BoOBvLw86VDd\nAJWcKGHZ00vJWnbYY3/rsWkMfXYEYQlX1tpIwnd6JwTzzfBgMoutvLvHyPeZZs7Ms3ek1M7D64t5\naXspd7YP4462YcSG+E+H4yMlNv6xzt3Z/8ZWofwhVe/DEokrXeNOTZgy648UZxuISYnxdXEumc/C\n0CuvvMKCBQt45ZVXiIiIID/fOVRar9ej1+sxm8188sknDBs2jPj4eE6dOsV7771HbGwsQ4cO9VWx\nxVkcdgc7v9nO2tdWYTW5FyENaxzOsOdHkjqqtQ9L14CUFqOyVPi6FFeU1lE63uwfw+PdIvl4n4lP\n9hsprlyzK7/cwYvbSnlzl5E/pum5t0M4SRE+ryivlcWucPuKQkqtzmNoFaHhv/2ipWO/8LmwRmH1\nPyu1l/msz1Dv3r1r3H/HHXdw5513Ul5eztSpUzl48CClpaXEx8fTo0cP7rrrLho3vogOWtJnqM7k\nH8jjt8cXc3rbKY/9nW7uwoCpg/1+qKW3aFfOJ/Tpv6FYLVhvfYiKWx+EYJmXqL6VWh18fdDM+3uN\nHDd5ziCuUTmXZrg/PZyucbUPzvDV5/GpTcW8s8cIgE4NS8Y3omv8hQ0kEdU11OuqqEEgz0BdbwLg\n6Brah9ZWYWPT++vZ/OFGHFb3Oj8xqbGMeHE0ib2a+7B0DYt633bC7hyPqsK95Ii9ZWvKH3sde89B\ntTxS1BW9Q8BDAAAgAElEQVSrQ2HmkTLe2l3KniJbtduHNg3mgfRwhjULrrHWxRefx6XHy7l+aYFr\n+9+9Irmvo8x1dTka2nVV1OJK6EAt/MuJjcf57fHFrkm3wDlcvtfdfeh5dx/frGjcQKlyTqB/+A8e\nQQhAczSTsHsmYRk/hYq//wslRvrA1SedWsWNqXpuaBXKspMVvLXbyIpT7ibM5acqWH6qgvQYHX/v\nFM7k5FB0PpzROcds5+7VRa7tUYnB3NNB+uAJ4U3+2e1b1LuKkgp+e2IJP0/5wSMINe3ejP+bcwt9\nHxwgQagqsxH9w39AnX8aACUiihM3/A0lzP1tPmj+D4Td0Bvd7G9ACYAqTD+jUqkYnhjCr2PiWT6x\nEdelhFI18+wusvLXlUV0+yWHD/YaMVapBa0vDkXhb6uKyCt3vnbjUDXvD4xBLf2EhPAqaSbzA76u\nzs1clMHyZ5Z6rNcVFB5E/6mD6Hxz13ofLt/g2e2EPvondCsXAKBotJjfmcH+6Ca0iQon5I0n0C2d\n6fEQW7f+lD/2Oo6Utr4osaiUVWrj/b1Gvj5opszuefGIDlJxR7twOpBH8+bNsSu4/jkUBZsD7IpS\nZR/YHUqV+1X+ftb9FLsNramUYKOBIFMRIaUGgk0GQkwGLIVFZBSVszEhndVNe/DVxGSGNJP+Zt7g\n6+uquAjSZ8gLAuDofPWhNeYYWf7Mbxxa7DmLd8qIVIY9P5KIptJnoSbBbz5J8HfvubbLnngb69V/\n8jiP2rVLCHn5EdSn3HNmKVodllv+TsVt/4AQWVbBlwrK7Xy638TH+0wUVFxYjZDGYSOmooTY8mLi\nyg3EVhQTW15MbEWJ6/cY1z73z+iKUtQXcKFyqNQoHbph6zkIW49B2Lv0gVD/HsHjSxKG/IiEIS8I\ngKOr7w+t4lDY/cNOVv9nBRajezZffbyeoc+OoPW4NjKc9xx0M78g9KWHXNsVf3qAivufA2o4j+Vm\ngj99haBv30Nld3fktbdoRfmj/8Xee2h9FVucg9nm4PtMM+/tLiHm8C5GH1tLC+NpYs4EmsrwE1tR\nTJTFWK9lU7Q67B17YO81GFvPwdjTe0KQjOCslaKg3r8D7YbfORYeR+Prb/V1icSFkDDkBQFwdPUZ\nhooOF7J02mJObjrusb/jjZ0YOG0IIVFSRX8umo3L0f/9elR257Bt69CrKPvPl6B2ds0713lUZ+4h\n5KWH0O7a5LHfOuZ6yh98ASVOZs/2CbMR7cYVaFcvQrtmMeqCnDp7qbLQCMz6aMrCKv+FR1MeFk1F\nWDRh9nLSD29El7ETVS19y5TgEOyd+2DrMRB7z8HYO3QDrcxMjaKgztyDbslMdEtnoj5+xHWTZdxN\nlE99BcIjfVhAcV4ShrwgAI6uPsKQoijs+nYHq15cjq3cXUsRnRzDiBdH0bxvyzp9fX+nPnKAsL+M\nRmUsAcDergumj+Z5NGPUeh4dDnSzviTk3WddzwHOjtfl9z2L9epbXKGqoVIV5oFajRId5+uiXDLV\nyaNoVy9Et3oxmi2rUFmrr3N2LopKhRIRjRIVA5ExKJHRKJExzn9RlT9r2hcRDdoLGHxQXIR26xo0\nW1ah3bwSzeH9tZdHH46ta1/sPQdj6zEIR5tOoPGf2bYvlzrrINolM9EtmYEm6+A57+dITKbs+Y+x\nd+pVj6UTF0XCkBcEwNHVdRgy5ZlY+uhCspa7vzGptWq6/7UXfe7vizZEvl3WRmUoIOzPI1GfyALA\nkdAM0/+WojRq6nG/CzmPqvwcQt58At3iXzz22zr3pnzaGzhSO3i17JelsslBt3I+2hXz0WTuAcDR\ntCX29B7YO/Rw/mzbpeH2gbLZ0Oze5Kz9Wb2o1oDhiIrF1n8UpxOaE5/atkrAiUGJinXWLtRjYFUV\n5KLZutoZjDavRnPsUK33VyKisHUb4GxW6zEQR6v2DT5gXyzV8SPolsxAt2Sm6/14NiUsAnvrDmh3\nbHDv02iouONRLLf944oKjH5DwpAXBMDR1WUYOrQkk9+mLaKs0D0XTlybOMa8PkEWN70Qlgr0905G\nu2M9AEqIHtMnC3C07VztrhdzHjXrfyf05YddAQuco9Isf7yPir9MhRAfrUdlqUCzZRW6lQvQrlqI\nOvfkeR+iaLQ40jpi79Ade3pP7B174EhK890f4hID2vW/OQPQ2qWoS4rOeVd76w7YBo7BNnAM9o49\nQaNpsB1vVTkn0G5ZhWazs+ZIffp4rfd3xMRj7zHI1azmaJkKftgXUHX6GLqls5wBaN+2Gu+jhOix\nDR6LdeS12PqNgOAQ8r96l5T/vYLKVOq6n61LX8qe/wilqdSENygShrwgAI6uLi6+FpOFlf9axp6f\ndnns73Z7D/pPHSRzBl0IRSHk2bsIWvCTc1OlouzVb7ANHl/j3S/6PJaXEfz5awR9/bZHB2tHsyTK\nHn0Ne7+Rl1X8C1ZchG7tYrQrFqBd/xsqc80dhRVdEKhUF7QGmxIW4QxHHXu4apGU+ItYZudiKArq\n7Ax37c+O9a5+XdXuGhTsHK01cAy2AaNr/KPYUMOQB0VBdTIb7aaVroB0vj5PjkZNsfUc5Oxv1LEH\njhatQNcwl/tQ5Z1C99uvaJfMqNbX7gwlOARb/1FYR16DbeDoaiPvMjIzaKMPJvSZOz1ricIjKXvs\ndWyjr6vTYxAXQcKQFwTA0Xn74ntq60kWPTyf4mz36tfhTcIZ9co4Wg5M8trrBLqgz14j5KMXXNvl\nf/8XlpvvO+f9L/U8qg/tI+Q//3DVPp1hHXUN5Q+9iBLf5KKf83xUJ7LQrZiPdtUCNNvXnTs8REZj\nHTAG2+Bx2PoOh6Bg1Jl70ezZjGb3FjR7t9baX6MqR5Pm2Dv2rAxH3bG373rpNWBWC5pta9GuXoRu\n9SKPTrPVXje+SWXtz2hsvYacd7i6X4Shs1UGQs3mlWg3r0KzZTXq4sLaH6LR4GiWhCMpDUdyGo6W\nlT+T2/ikX5iqMA/t77PRLZ2JZtvaGjuTK1odtn4jsI66BtugcRB27uk/XOfRZiPoi9cJ/uwVj/e5\nZcIfKH/k5VqfQ9QTCUNeEABH562Lr91qZ+O769j03gYUh/s/Jm1CW4b/ayQh0Q20X0cDpF0yA/0T\nf3FtWybfSvm0N2ptZris8+hwoJvzLSHvPI2qxB1ilbAIyu99Buu1f768ZieHA/W+be4AdGjfue+a\nmIx18Hhsg8dh79L3/J1/S4udoWjPFtc/dWHeeYukaDQ4Ujs4a48q/zlS2p7zOFWFeWjXLnHWAG1Y\n5tH8cTZ7h+5YK5u/HG07X1TzkF+GobM5HKgz96DdstoZkLauqfX/q9rDI2OcwSipDY6k1u7fE5O8\nO4KtuAjdsjnOALR5JSpH9TmfFI0Ge6+hWEddg3XIBIiMvqCnPvs8anZuJPTpO1GfzHbtczRPcXau\nTu95+cciLp2EIS8IgKPzxsW36HAhi/4xn5ydp137gsKDGPb8SNpe3V7mDboIml2b0N890dUcZOs1\nBPNb08/7R8Ab51FVmEfwW0+6mubOsKX3onza6zjS0i/8ySrK0W5agXbVArSrFrmWDqmJLb0ntkFj\nsQ0ej6NVu8vrW6IoqE4dqxKONqPZvwNVRfn5HxoWgb19N+wdu2Pv2BMlvjGaDcvRrlmEZs+Wcw49\nV0LDsPUZ5qwB6j/qsprkAiIMnc1mQ31wJ9pNK9FsW4PmyAHUp45d9NMoGi2OFq2ctUlJrXEkt8GR\nlIY9Ke2CQwrGYnQrFqBdOgPt+mUeTcSu11GrsXcf6KwBGjbxkmqqajyPxhJCXp3q8flSNBoq/voY\nllsfks7VviJhyAsC4Ogu5+KrKAq7vqscMl/mvqgk9mnO6NfGEZkY5aVSXhlUJ48SdvtIV82GPbkN\nps8WQ8T5/x+9+UdUs3E5IS8/jObYYdc+RaPB8od7qPjro+ds6lEZCtCuXox25Xxn7UmZqcb7KUHB\n2HoNwTZkPLaBY+qkKc6DzYr60D40uzdXBqStqLMO1Dqvzvk4miVhHTQW24DR2LsP8NqEhAEZhmpS\nbkZ99BDq7AzUWRlosg+izs5EnZ2Jqtx80U/niG1UGZLSXE1v9qQ0Z7+s/2/vvsOjqNYHjn9nZ0s2\nDQhIrwaQSwlIlSq9XZAiKhcUf0pRxIqAwFUQUBGQolxAwYKUWFAvXlCq0gJIFOkICtKkkxBI3d3Z\nnd8fEzZZCJhAkk15P8/jY3bmzMyZnbD75pz3nONINro0136Defv6m05poNW9zwiA2va44xyzWz1H\n8+pl2Ke87JtcfW8zkie8j166wh1dt6BRzp/GsjIS9Y8DJL+9MIcukjOn9bmEBEN53+1++CZeTGT9\n6DUc35D2hWmymGj2cgvuHdgQk1qwhtXmuISrBA3u7O1C8hQJM4bQl6+SqcOz/UvUkYLt05lYF85E\n0VzezZ4yFUgZMRWtZWcATCePGsHP5lWoe3dk2NUA4Cla3Gg5adkF7b42/l/qIeEK6sHdqAd3GvlH\nB3beMglYV1Vj0sFr3V+Vq+fI6KhCEwzdjMeDcvEMpuOpQdJJ4/+mE39kanTh9XSrzUi8v0nLoFa7\nIVr7Xrja9UAvVe5Oa+/1d89ROX3CSK7eG51W15AiJI+eidahV7bVI1/SNMxb12JZ/qkRvKZ+piQs\n3ZK11unMkmAoGxSAu7udD98/1x9h/Zg1JMfIkPlsoWkEvtwX8/YfAGPkVNKc5bjrNc30KXLqS9R0\n/HdjButd23y2a41bo1w8i3rs8E2PdVcIR7u/C1qrrrjrNM7b3QC6jnL+L9QDv3oTtE2XzuGu1cDI\n/7mvHRQpluPVKPTB0K0kxntbk9QT6YKkU0cz1Q16jfueCFwdeuNq3wu9bM4Mc8/Uc9Q0rJ9MN5Kr\n0/0R4ezWj5SX3y50ydXK6eNYv12MZWVkht3qjv7P4nhhUg5cOPtPecMlJBjK+7Ly4etMdLLlzY3s\n/3yvz/Z6TzSg+SgZMn+7AqaNwrpsgfd18oT3cXV5JEvnyNEvUV3H8t1n2N597ZajhHRFwV2nkdH6\nc39Xo/VEZIkEQ7fB40E59xemE7+jXguQTvxhdLulfqm6w/9hzAPUoZcx51EOy9K8X3t3YH9tiM/C\nyp7yVUiatABPrQY5VcW8wenAvOl7rN8uwhy9McMiWsNWOHsOQGvdLWfWx8uFYEi+GQuQs7vOsGa4\n75D5oFLBdJwmQ+bvhOXL+T6BkOPJEVkOhHKcouDq1g+tRSds743DujLSu0u32dGatEZr1dWYO0fW\nOhO5zWRCL1sRd9mKN86PlXAFJSUl5+aZygbuiCYkLN1MwNSRWFcvA8D01zGCBnXGMWQ0zgEv5u1W\n1dtgOv47luWLsHz/Oaa4mBv2e8JK4ureD+cDj6FXuNsPNcxeEgwVAG6Xm5/n/ET0nJ/Q3emGzHet\nTts3OsiQ+Ttg3raOgBljvK9d7XvhGDLmFkf4l160OCnj5uB64FHM23/AXas+WuPW/puxWoi/E1wE\nPTgfDOQILkLKxPm4m7YjYOpIlMR4FLdGwLw3MO/YYCRXlyrv71remZQkLD/8z8gFum5eMzBalrVm\n7XE9MACtZacCtRCwBEP53OVjl1kz/DvO7/EdMt96Qjtq9KwpQ+bvgOnoQez/HujNFdBqNyR53Jx8\nsZ6Tu17TLOUzCSEyx9XlEbSIJtjHDfHOfm3+dSvB/VqQPGYWWvuefq5h1pl+34f120VYVn3ps1D0\nNZ5S5XA+8BiuB/rn/4DvJiQYyqd0XWf/53vZ/MYG3yHzjcvTcboMmb9TyqXzBL70iHdorad0eZKn\nLc27C44KIXKNXq4ySR98j+3jaVg/fgfF40GJv0Lg2Cdwbl9vJFcHBvu7mreWGI9l7ddYly/KcE03\nXTWjteyMq+cAtCZtC1w34PUkGMqHki4lsn7MWo79kLZKtclioulLzak/uJEMmb9TKcnYRz3qXehS\nDwohacbnkmsjhEhjNuMYMgatcWvs45/yTlJpXbEUdfd2kictwFOzvp8reR1dRz2w08gFWvdNhvOM\necpXwdnjMVz/7Jen87iymwRD+cyfPxxl/eg1JMekTXoWVq04nWZ0pWStwvOLm2M8HuwTh2He/wtg\nzHSb9NbHeKrW8nPFhBB5kbteUxKWbME+5WUsa78GQD31J0EDO+F4eizOR5/3f6vK1Tgsq77E+u2n\nqEcO3rBbt1jR2nTH2fNxY4LSfJAKkN0kGMonXElONr+5if2f7fHZXu//6htD5gMKTiKbP9nmT8ay\n/r/e1ynDJ+fe6vBCiPwppAjJkxagNWtPwLRRacnVcyZi/ulHkl9/P1snjMwUXUfdtQ3L8k+x/Pg/\n7/JB6bmr1MDVcwCuLo+gFw3L3frlMRIM5QNxhy4TOWQzcccve7cFlQqmw9TOVGpZ2X8VK2As33+O\n7eN3vK+dDw3G9fAQP9ZICJFvKAqurn3R6t6H/bUhmPenJlfvjCK4fwtSXn4bd6VqxlIjLhdoLuNn\nLd3PLhe4nMZ6bC6n8Z+mpZYz9iuaK125dD9rqcdoThSXC+XyxQzXl9NtdmNR254DjIlWZZANIMFQ\nnqY5NH6Zt4Po//zks8p81S7GkHl7MUnmzS7q7u0EvPmC97WrWXtSXnrLjzUSQuRHernKJM3/DttH\n07B+Mt1Irr4ah338036tl7tGXZw9BuDq9CDkh6kMcpkEQ3mQ7tE5vOIQ297ZQvzptGGO1mArrV9v\nR41eMmQ+Oyl/HcM+8lHv4pDu8H+Q/MZHYJZ/HkKI22C24HhqbFpydepgjNymB4Xg6tQHZ8/H8dSo\n65c65BfyaZ/HnI4+xeY3N3Jhn++ClGUblqPTjK6ElpeIPlvFXyFweF/vEhaesLtImvE5BIf6uWJC\niPzOfW8zEpZGYZs/2Vg70KSiWyxgsYLFim42gzn1Z4vFmMTQbEG3WI2fU8vqqdvTyllTy6Wey2xO\nPcZqHGO2oFttxrImMuFqpkgwlEdc/jOWqCmb+XPdEZ/t9jA7d/erRtsX2suQ+eymuQgc/Tjq8d8B\nY/Xs5GlL0cvkzMKQQohCKKQIjpff5sb0ZZGXSDDkZ0kxSUTP3s6+yD14tLRVkVWbmXufbEDDpxpz\n8sJJCYSym64TMG0k5p83eTclj5+Lu04jP1ZKCCGEP0gw5CdaiovdC3/l57k7cCY4ffbV6FWTpsNb\nEFoutavmgh8qWMBZI+di/e+n3tcpT/0brUNvP9ZICCGEv0gwlMt0j87h//1mJEefiffZV/6+CrQc\n25qStWXyxBxz5TKW1cuwvfead5OzyyM4n3zZj5USQgjhTxIM5aK/dpxiy5sbubDfNzm6WHgYLUbf\nT5W2d8sosRygXDyLedN3WDasRP01CsXt9u7T6t5Hyr/flbk2hBCiEJNgKBfEHo1h65TN/Ln+qM92\ne3E7973QnNp9IzCZJScoO5lOHsW8caXxX+rSGtfzlK9C8rQlYLXlcu2EEELkJRIM5aCkS4nseG87\n+z7bg+5OmzRRtZmpP7ABDZ5qjC1Evoizha5j+mM/lg0rMG9ciXr0t5sW1Wo3RLv/nzh7PwEhMlWB\nEEIUdhIM5QAtxcWuj3/ll/evS45W4B+pydEhZWUemzvmdqPui8a8YSWWjSsxnT2ZYTFdVXHXb4Gr\nTTe0Vl3RS5bN5YoKIYTIyyQYykbXkqO3TttCwtnrkqObVqDlmKwnRytnTxLw11EIryp5LQAuJ+ov\nm7FsXIl50/eYYi9mWEy3BaA1aYvWuhuulp2hSLFcrqgQQoj8QoKhbHJq+0miJm+6ITk6rKqRHF25\nTRaTo50ObAvexrr4PWp5PMa6Mg8PwdWhN9gCsrn2eVxSAubtPxgBUNQalMT4DIvpQSG4WnZGa90N\nrWk7sAflckWFEELkRxIM3aHYIzFETdnMsR+uT44OpOlLzan1cJ0sJ0ebDu/F/vrTPnkv6qE92CcO\nw/beOFw9H8f54JPopcplyz3kRUpcLOao1UYC9I4NKI6UDMt5wkqi3d8VV+tuuBu2NKamF0IIIbJA\ngqHblHQpkZ/e3cb+z/femBw9qCENhjTKenK05sK6cCa2j6ahuDXvZl1RUHTjGqa4GGwLZ2Bd/C5a\n6+44Hx6Mu17TAtGFppw/bQyB3/gd6q6tPkPg0/OUrYSrdTe0Nt1w124EqprLNRUiB3g8mNd+hfW7\nLzAd3oMSfwUC7Lir1sTV+WFcDzwqwX4BFdrY6MZPHjcHV7d+GZYJfLob5l+3+mzTTSb0YnehNb4f\nx5Cx6OUqZem6lpWR2CcOw1OmAgnf7gUguEcEprOnblmX9PVxDHoFx5DRWbpuXiTBUBZpKS5+/Wgn\nOz+IvjE5unctIzm6TEiWz2s6+hv2Cc+gHtrt3abb7KQ89zq/V63HPfu2Yf36I+/qx4rbjeWH5Vh+\nWI67Wm2jC61THwiw3/E95hpdx/Tnb5ij1hgB0IGdNy3qrlrTyP9p3Q1PtdoFIvgTwsvpwP7KY1i2\nrkNXzWhNWqOXKo/p+O+Yd23DvGcHljVfkTTrSwgM9ndtC4RiW1cT2q8xifNW4G7Qwt/VyTR3xapo\nzdoDoCTGY962HuuqLzHv2EDiks3oJUrf0fmd3R9FuXoZd5V7vNusn0wnYN4bxC/fg17WWLvR1fYB\n3NXroNVpeEfXyyskGMoCt8vN0q6LiDt+2Wd7+aYVaTn2fkrWuo2Zo91urEv/g+2Dt1BcacGVVqcR\nKePn4akYjnbkD5yPv4iz/7OYt6zC+uV8zDujvGXVP/Zjf/N5bLPH4+o5AGefgeilK9z2feYoRwrq\nr1FYotZgjlqD6eypmxbVajdCa2MEQHqFu3OxkkLkLtv7bxqBUHAoif9Zjqfmvd595i2rsb8yAPPu\n7diWzMYxZIwfa1pwFI9a7e8q3BbPPXVwDJ/sfa1cOk/wQ40wxV7EuuxDHENfvaPzOweNumGbZfVX\nN2xzPTzkjq6T18hMf1mgWlTCO1Xzvg6rVpwHPupN7yUP3VYgZDpxhMAhXQj4z+veQEi3WEl5bgJJ\n81fhqRjue4DZjNamO0nzVpAQGYWz5+PotrSWINPVy9gWvUtwz3rYXxmAujMKdB1/Uy6exbJ8EfYR\n/QnpEE7QCw9hXfbhDYGQrprRGrcmedQ7xH93kKSP1+J87HkJhETBlpKM9ZtPAHA8/qJPIASgtexM\nyvDJJE1ZjOP/hvvsM2/8jsAhXQlpXYGQlmUI6tcc6+L3QDO62QPGP0Vo42IEDuzoc5zp8F5CGxcj\ntHExTIeN7hHTiT+wj3mC4O61U8/VAvO6b7zHKGdOeo9Rt68nqF9zgjsbrQcBE54htHExAiY9i/rT\njwT1a05Ii9IEPdIUde8O7zls89826jP0AdRd2wjq25SQlmUIHNwF5cxJ1P2/EPTY/caxfZti+n2f\nT73V7esJHPoAwR2rEnJ/eQKf6eFTxrIyktDGxQjuWQ/l9HECn+1FSMuyBHf9B5bU9/jafRTZsw2A\noKHdvd1UGVHiYgiYOoLgHnUJaVmG4F73YpszAVKSvWUye/8Alv8uJLhnPUJalCbwyQ6YDv5602tn\nhl6iFFrdJsb7k65nQTl9goAJzxDcpQYhzUoS3PUfBEx4BuVMxlOQXBPcI4LQxsWwrIxE3RllPO9j\nhwAI6VmX4B4RgNFNFtq4GLb5b6d7r2IJmPwSwf+sadz/w02wfjjV571SYi4QMG0kwb3uNd7PztWx\nj34c05+H7uh9uFPSMpRFjYY24fiGo9R9vD61Hsp6cjQAHg/WZQuw/WcCiiPtl8Rdox7J4+fiCf/H\n35+iai1Sxs4iZdh4rCuWpAYXxi+54vFg2bACy4YVuKvWNLrQOj8EAYFZr+vt8HgwHdrtbf1RD+25\naVE9KAStaXu0Fh1xNe8kQ+BFoaP+tgslKQEArUnbDMu4+gy8YZvly/nY33kFXVHQmndEDw7FsmEF\nAbPHox7eS/IbH6J16oN11ZeoB3aixF5ED7vLOHbjSgDcd9fAc08EyrlTBA7qjOlKLFrdJngat8Gy\ncQX2VweRbAtAa9XV59r2aaNwVwxHv7e5770c3os5eiNaw1YoifGoxw5hf7kfCSv2+3Thm86dIuDt\n4bhr1MN05iTmPT9hnzQM07m/0CKaoFy+hPrnIexjnyRxWTQoitFCNqIfKApa626gmDBv+B9BQ7uT\nEBmFXqq89/zK1csEjnwUz9334KlaE/XATuxvD8d9TwSe8nfj6Ps0ts/fN97btg/gucXcY/aX/4V5\n389G91TXvpij1mD7dBYkJ+EYMSVL92/etg775JeMZ924NZ5ylQgc/fhNr51Z1/Ir9dScMuXMSYKe\naIcpLgZ3lXvQmnVA3b0d63efYd62jsTFmzI135qnZFmc3ftjXbEUAGf3/njKVMy4sCOFwGe6ox45\niKd8FVxdHsEcvYGA+ZNRf99H8tTFoOsEvvQI6qHdaLUb4WnaDuX8aSw//g/zL5tJ+GonetGwO34/\nbocEQ1lkC7XRf9X/3fYaYsqZk9gnDfPp5tJVM45Bo3A+/iKYLVk7YZFiOB99Due/nsEctcboQvt5\nk3e3euQg9rdeJOA/r+N84DGcfQZ5+3yzVWI85uhNmKPWYN66FlPshZsWdVesitaiE1qLTrjr3Zf1\nexaiAFEunvX+rJcuf4uS6SRcJWDuJAAcQ8biHDgCAG3DSgJfeQzL2q9xPPY8WuM2eIqVwHT5Euao\nNUYSNmBODYZcXR4BwLp0DqYrsbhrNSBpgdF95OrQi6DnH8Q2/+0bgiF3zXtJfuOjG6pl+mM/iUs2\n46lWG9PJowT3aYjpSizq3h24G7dOK3f6OInvr8RdvzmeSlUJeP9NzDujSJ7wPq4uj6D+upWgp7uh\nnjyC8tcx9Ap3Y5v3Boqu4+j/LI7nJwJgmzsR28KZWJfOxTH8rbT3NOEqzp4DjK4czUXwgw0xnT2J\nZfMqHENfxTF8sjcYcj40+OY5Q1cu46laC2fVWjj7PYOnUjXMa78m8NVBWH783w3B0N/dv/WLD4zn\nFB3shUYAABODSURBVNGYpNnfgKJg+fpj7FNuf6Fo5fxp1D1G65P73mbG+/LBW6mBUA0SF280lhxK\nSiD4ocaYLp7Fuvg9HC+/fYuzGvQKd+MYOMobDDkGjrrp94dl1ReoRw6i2+wkfrwOvWhxlNPHCe7f\nEvOODZj+PIQeWszbepX8zlJvcO7+4gNIjIf4OJBgKP+4rUBI17F8u4iAWa96/woEIzE4efw8PPdE\n3FmlVBXt/q5o93fFdPQ3rMsWYPn+C5SUJKPOV+OwLZmNNXIOWovOOB95yhiKfgeJyMrp46mtP2uN\nBVDT5Tylp6tm3Pc2MwKg5h3xVKp629cUosBJ/28w3QhKJS6GkI43/lu5Gn0Zdd/P3s8RV+c+3n1a\n63+iW20oTgfmnVE474lAa9cD61cfYd68CtcDj2I6eRT16G/oJpPRYgyYU79McaRgm2HkJCmpXRum\nP/aD0+FTB9f9/8zwVjxV7jEGOACeiuF4wu7CFHsR06VzpB8bqgeF4K5vtCp5atRNO2/LzsbbULO+\nd5vp0jncYXehHjlgvD52yFtH08kjAKgHblx/UOv4oPGD2YK7VgNMZ0+iXDp/Q7lbKlKMlJfewvLj\nt1i+/wKSEzFdOOOtV1bv3/SHcQ9ai07e56616wlZCIZMh/elPaPEBMzb1qGkJOGuWBVnT6OVyRy9\n0Th32+5pay8GBqM174h1+aeYd0bhyOjkd8D8y2YA3HUaoRctDoBerjLxG9OlQ2guPCVKY7p0jqAn\n2uFq2QV37Ya42vVEL3EbObfZSIKhXKBcOIP9zecxb//Bu003mXAOeAHHoFeyfaFQT/g/SBk9g5Rn\nxmFdsRTrVx9iOn3cqIvHg2Xz91g2f4/77ho4HxqMq+sjmZugUNNQ9+7wtv6oxw7fvA5Fi6M172gE\nQE1aQ7CsASZERny6d86dQi9e0thuC8DR92kATBfOYPnxf2nlrsSkHV8k3V/SioIeWgzl0jmUq8ZA\nD1fnh4xgKHojOFK8rULu+i3S5ipLvAqAeuSAN+jwnlLXjdYrJS0lQC9aIuN7Sf0S9Lo2QazH41su\ntGjaz+nyHr2fE+lHxXo8PhOtWrauA9b5nO9agHKzuujeemQ8XcfNKLEXCRrY0fv5+Xf+7v6VK7FG\nuaC0Ecd6FtdHVE8eQU0NAnWTCb14KZy9n8Dx1FhIPa8SF5Nhfa51QV373chOSlzqvd3qfswWkt5d\nRsDUkZj3/ITty/nw5Xx0VcXV9V+kjJnht54CCYZykq5jWfUFAdNHG3OGpHJXqkbK+Lm4a+fwkMTQ\nojj7D8PZ92nM29YZXWg7Nnh3q38ewj7lZQLmTsTZ/VGcDw1CL1fZ5xRKXCzqT+uxRK3FvH29z31c\nz12tdlr3V836Mv+PEJngrlEXPaQISvwVLKuX4ajVwNhhD/KOGlJ3RvkEQ3qRtC855fIl9ODUtQ7d\nbu8XrqdYahdERBM8ZSpiOnsSc/RGzBu/AzD+CLomxAhOnA8NImXktAzr6ZN4a8rdsTd6SBHvfGtJ\nkxeiteuRK9e1fjkf0+nj6IHBJL6/Ek+12qjRGwh64aHbOp9eJMwIVK+kBSPKLVIKMuLq0IvkNz++\n9XWKFkeJOY9y3XJFSozx+lr3VHbSU3+HrgVi3mteOgduN3qRYhAQiKdabZIWrEKJvYi6/2fUnVux\nfrsI64oleCpVxTnghWyvW2bIaLIcosRcwD7yUeyvD/UGELqi4PjXMyQu3pTzgVB6qorWsjNJs78h\n4csdRtCTriVIib+CLXIOwb3rG8mCG1Zi/XQWgYO7ENy5GoHjnsKy9usbAiHdFoCreUeSX5lO/Ip9\nJC7dgmPoq7jryESIQmSa1YbzocHGj8sXoV43sR4uJ+Ztvi0h7ojG6KnzDVnWfu3dbv7xWxSXE11R\ncDdpnXaKTkaXkeWbT1AP/IJus+Nq0927X6t7HwDqz5shtbvbdOww1o/fwfLtYv+PSrUH4aleBwDz\ntvXezeata7Euehd1+/qbHfm3lKSMl/eBtBYUT6nyRneeqmL5IS0ovb778O94wmsCYNm61ttaZPnu\nsyzW+O9p9xmJ+OYNK7zPk8R4zFvXGPubtMn8ydL14t7qvdIaGN2e6oGd3u5I5dwpgrvVIqR7bUxH\nf8N0/Hdscydh/XQmethdaK264njpTW9gbjpzIvP1ymbSMpQDzD98S8DbwzGl/oUGxqzJyePmePvJ\n/cVTuTopI6eRMvRVrCs/w7JsAeqpPwGjOdyyZTWWLTeff8NTsqy39Udr2DL3RqgJUYA5Bo7EdHgv\nlq1rCRzWA3cjY6SRcjkGdfc274LErg69jAOCQnAMfZWA6aOxzZ+M+sd+MFvSEqP7DMJTubr3/K5O\nfbAtnGl8CQOu+7t6u1QAnP2GYv0uEvX47wQ93hb3PRFG0uulczgefTZPTHLqGDIG+4h+WFcswXTx\nLHpIKObNq8HlIHnakiyfzxlWEmvsBWyzXsW8aRUpL0yC67p43LUawlcfGaPCxj6JcvkSuBx4wkpi\nir2AfeyTWZp92fngk5h3/Ih6YCeBT3VFL1UO9cCv6CYTynVdiXfCMXg05i2r055nrQaYf9mMKfYi\nnjIVcPZ/LtPn0sNKopstKJoL++tDcddqQMqYmTeUc3Xrh/WL+agn/iBoYEe0Rvdjjt6A4vHgatkZ\nT836KDEXsH45HyUpAXX3T3jKVcYUF4N5k9FaqaXmjPmDtAxlIyUuFvurAwkc838+gZDzwSdJiIzy\neyDkI7gIzr5Pk7jsZ5JmfmEsbJoBXVHQajci5el/k7BkMwkr9pMyeoaRACiBkBDZw2IlefpnJE94\nH3eDlsbUFMsXYf5lE3qJ0jgeeYqERRt9ukecjzxF0luf4K7VEPO29Zg3fY+nyj0kvzKdlOtGOXnC\na+KuWsv72tXlYZ/9eqnyJC5YjatVF0zn/8Kyehm6PYiU4ZNxPDshZ+89k7SWnUl+JxKtdiPUXdsw\nb16Fu1pt4/OrZZcsn+/UYy/hKVkW09lTqLu2Ztj65eryMI5+w/CE3YV5+3r0YiVIficSx6CR6EEh\nqLu3+wyI+dt7aP1PUoaNx1O8FOqhPSjnT5M0dTF6NudU6mUrkrjwB1wdH0SJOY9lZSS4nDh7P0Hi\nx+uzNnzdFkDKi2/gKVoc0/Hfb75SQEAgSe+vxNn9UXA6vC1ejkGvkPzmR0Y+W4lSJM7/HlerrqgH\ndmL95hPUnzfhjmhC0ozP0Zp3zPjcuUCJi4vz/6x8OSmX7s68ZTUBb72IKSZttIKnZFmSX52N+76M\n5w7JrD+O/EG1qtX+vuAdMp04gmXZAsx7o/GUrWS0/jRrnyP9y4VRbj1HkbPkORYM8hzzkVxomJRu\nsjuVcIWAGWOxroz02ezs1o+Ul966odk1L/NUqopjxJRsH3IphBBC5GUSDN0BdccG7G88h+n8ae82\nT1hJUv4967aabYUQQgiR+yQYuh1JCQTMHo/1a9/hja6OvUkZMc1v04kLIYQQIuskGMoiddc27BOH\n+UzC5SkSRsor09Ha9/RfxYQQQghxWyQYyor4KwQO7+szG6qrVVdSxsz0zhorhBBCiPwlXwyt/+qr\nr+jRowctWrRgwIAB7Nq1yz8VCSlCyrDxAOjBoSS/Po/kaUskEBJCCCHysTw/tH7dunWMGzeOV155\nhbp16/LVV1+xcuVKvvjiC0qXLv23x8+aNSt7K6TrtN67kZ3VGhAfGJq95xZCCCGEjxdffDHHr5Hn\nW4YiIyPp1q0bPXv2pEqVKowcOZISJUrw9ddf//3BOUFR2Fi3jQRCQgghRAGRp3OGXC4Xhw4don//\n/j7bmzRpwt69ezN1jtyIKIUQQgiRf+XplqG4uDjcbjdhYb5D1cPCwoiJibnJUUIIIYQQmZengyEh\nhBBCiJyWp4OhokWLoqoqsbGxPttjY2MpXry4n2qV+3bv3u3vKohsIM+xYJDnWDDIcxTp5elgyGKx\nUKNGDaKjo32279ixg4iICD/VSgghhBAFSZ5OoAbo168f48ePp2bNmtStW5dvvvmGS5cu0bt3b39X\nTQghhBAFQJ4Phjp06MCVK1f45JNPuHTpEuHh4cycOZMyZcr4u2pCCCGEKADyfDAE0KdPH/r06ePv\nagghhBCiAMrTOUNCCCGEEDlNgiEhhBBCFGoSDAkhhBCiUJNgSAghhBCFmgRDQgghhCjUJBgSQggh\nRKEmwZAQQgghCjUJhoQQQghRqEkwJIQQQohCTYIhIYQQQhRqEgzlA6VKlfJ3FUQ2kOdYMMhzLBjk\nOYr0lLi4ON3flRBCCCGE8BdpGRJCCCFEoZYvVq3P7xYuXMiGDRs4efIkFouF2rVrM2zYMMLDw71l\ndF1nwYIFLF++nPj4eGrVqsXIkSN9yly9epXp06ezefNmAFq1asWIESMICQnxljly5AjTpk3j4MGD\nhIaG0qtXLwYOHIiiKLl3w4XQhAkTKFOmDEOGDMnUs7zG4XDwxBNPcOTIERYuXEjNmjX9UHsBWX+G\nJ06cYPbs2ezZsweXy8Xdd9/N4MGDadq0qR/vQqR/jhs2bOCbb77h8OHDxMXFMW/ePBo0aOAte+XK\nFebPn090dDTnzp2jSJEitGjRgqeffpqiRYv68S5EbpOWoVywc+dO+vTpw4cffsjcuXNRVZVhw4Zx\n5coVb5lFixYRGRnJiBEjWLhwIcWKFeO5554jMTHRW+a1117j0KFDvPvuu7z77rscOnSI8ePHe/cn\nJCTw7LPPEhYWxsKFCxk+fDhLliwhMjIyV++3sMvMs7zmvffek9yFPCgzz3D48OE4nU7mzJnD4sWL\nqVu3LiNGjOCvv/7yY81FesnJyURERPDiiy9muP/SpUtcvHiR5557jsjISCZOnMiuXbt47bXXcrmm\nwt8kGMoFs2fPpnv37oSHh1O1alUmTJhAXFwce/fuBYxWoc8//5wBAwbQtm1bwsPDGT9+PElJSaxZ\nswaAY8eOsX37dsaOHUtERAQRERGMGTOGqKgoTpw4AcDq1atxOByMHz+e8PBw2rVrx2OPPUZkZCS6\nLqlhuSEzz/KaTZs28csvv/D888/7qbYiI5l5hnFxcZw6dYoBAwZQvXp1KlSowLBhw3C73Rw+fNjP\ndyCu6dq1K4MHD6ZZs2YZ7g8PD2fq1Km0atWKChUqUL9+fZ5//nmio6NJSEjI5doKf5JgyA+SkpLw\neDze7q0zZ84QExPDfffd5y0TEBDAvffe6w2Y9u3bR2BgIBEREd4ydevWxW63+5SpV68eAQEB3jJN\nmzbl4sWLnDlzJjdurdDLzLMEOH/+PFOmTGHSpEnYbDZ/VFXcRGaeYZEiRahSpQqrVq0iKSkJt9vN\n8uXLCQwMpG7duv6qusgGiYmJWK1Wn89RUfBJzpAfTJ8+nerVq1OnTh0AYmJiAAgLC/MpFxYWxoUL\nF7xlihYt6pP7oygKxYoV8x4fGxtLyZIlbzjHtePLlSuXMzckvN2V174sb/Us3W4348aNo3///lSv\nXl0C1TwiK89QURRmz57NqFGjaNOmDSaTidDQUGbNmkWJEiVyt+LCR/rUgayKj4/ngw8+oEePHpjN\n8vVYmEjLUC6bOXMme/bsYcqUKaiq6u/qCD9YuHAhFouFfv36+bsq4jbpus7UqVMpUqQI8+fP55NP\nPqFt27aMHj3aGzCJ/CUpKYnhw4dz11138dxzz/m7OiKXSeibi2bMmMG6deuYN2+eTytN8eLFAaNl\np3Tp0t7tsbGx3n3FixcnLi4OXde9rUO6rnP58mVvmbCwMGJjY32uee31tTIiZ2XmWf7888/s3r37\nhjyGgQMH0r59eyZNmpR7FRY3yOwz3LJlC+vXr/d2d9eoUYPo6GhWrFjBwIEDc7/i4rYlJSV5k6xn\nzJghXdeFkLQM5ZLp06ezdu1a5s6dS+XKlX32lS1bluLFi7Njxw7vNofDwe7du705QnXq1CEpKYl9\n+/Z5y+zbt887WuJamd27d+NwOLxlduzYwV133UXZsmVz8O7ENZl5lq+99hpLly5lyZIlLFmyhJkz\nZwIwceJEnn32Wb/UW6TJzDO89m/s+ikrFEWRwQr5TGJiIi+88AIej4dZs2YRGBjo7yoJP5CWoVww\ndepUVq1axdSpUwkJCeHSpUsABAYGEhgYiKIo9O3bl4ULF1K5cmUqVqzIxx9/jN1up1OnTgBUqVKF\npk2bMnnyZMaMGQPA5MmTadGiBZUqVQKgc+fOfPjhh0ycOJEnn3ySkydPsmjRIgYNGiTzDOWSzDzL\n63O37Ha7d7sMs/e/zDzDOnXqEBoayqRJkxg4cCA2m41vv/2W06dP06JFCz/fgbjmypUrnD9/nvj4\neABOnTpFSEgIYWFhlChRgsTERO+UCdOmTSM5OZnk5GTASJK3WCz+rL7IRbIcRy5o3LhxhtsHDRrE\nkCFDgLRJF//73/96J3kbNWrUDZMuvvPOO2zZsgWAli1bMnLkyBsmXZw6dSoHDx4kJCSE3r17SzCU\nyzLzLNM7c+YMPXv2lEkX85DMPMODBw8yb948fvvtN9xuN5UrV2bgwIESDOUhK1euZOLEiTdsv/bZ\nu3PnToYOHZrhsddP0CgKNgmGhBBCCFGoSc6QEEIIIQo1CYaEEEIIUahJMCSEEEKIQk2CISGEEEIU\nahIMCSGEEKJQk2BICCGEEIWaBENCCCGEKNQkGBJCCCFEoSbBkBBCCCEKtf8HQLRyKoDIlXsAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "LuacMjSf2ses", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Part 3 — Who were the top 10 guests on _The Daily Show_?\n", + "\n", + "**Make a plot** that shows their names and number of appearances.\n", + "\n", + "**Hint:** you can use the pandas `value_counts` method.\n", + "\n", + "**Expectations:** This can be a simple, quick plot: exploratory, not explanatory. \n", + "\n", + "If you want, you can add titles and change aesthetics, but it's _not_ required to pass the Sprint Challenge." + ] + }, + { + "metadata": { + "id": "fW2AOT1s5rvo", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import matplotlib as mpl\n", + "\n", + "# Needed because otherwise barh ordering is broken.\n", + "!pip install --upgrade matplotlib" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Slc0FzXFxwYc", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 221 + }, + "outputId": "957102c6-a780-4e63-8d4b-7a18e975e9ed" + }, + "cell_type": "code", + "source": [ + "guest_count = df.groupby('Guest').agg('count')\n", + "guest_count.sort_values('Year', ascending=False, inplace=True)\n", + "appearances = guest_count['Year'][0:10]\n", + "appearances" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Guest\n", + "Fareed Zakaria 19\n", + "Denis Leary 17\n", + "Brian Williams 16\n", + "Paul Rudd 13\n", + "Ricky Gervais 13\n", + "Tom Brokaw 12\n", + "Richard Lewis 10\n", + "Bill O'Reilly 10\n", + "Will Ferrell 10\n", + "Reza Aslan 10\n", + "Name: Year, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "id": "Q1X8YRHbop9A", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 281 + }, + "outputId": "e13575b4-ce60-4e6a-d1da-7417a262e8ca" + }, + "cell_type": "code", + "source": [ + "fig, ax = plt.subplots()\n", + "x = list(appearances.index)\n", + "y = appearances.values\n", + "ax.barh(x,y);" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAEICAYAAADvMKVCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XtcVVX+//HX4SaieUVslNDRvOIF\nxShDRzTR7GaNZWl5FzzyKx0LEnMcQzOtvOQNEZK+WmqpTVPpjGRpio2mCEgizqhjolKY5EFRDvff\nHz48EwMaHJHDwffz8egRZ++11v6c5YHPWXvtvbbBZDKVICIiIpXiYOsARERE7JESqIiIiBWUQEVE\nRKygBCoiImIFJVARERErKIGKiIhYQQlURETECkqgIiIiVlACFY4fP27rEKym2G1DsduGYq9ZlEBF\nRESsoAQqIiJiBSVQERERKyiBioiIWEEJVERExApKoCIiIlZQAhUREbGCk60DqG0avX/O1iFYwQ32\n2mPcoNht42AfW0cgYnsagYqIiFhBCVRERMQKSqAiIiJWUAIVERGxwm1PoBkZGQQEBGA0GjEajYwf\nP54333yToqKi23K8lJQU/Pz8+Pe//33TchEREcTHx9+WGEREpParlhGol5cXUVFRREVFERsbS0FB\nAXFxcbflWHFxcbRq1Yovv/zytrQvIiICNrqNxdvbmzNnzgCwefNm4uLiMBgMBAQE8PzzzxMdHU1i\nYiIAJ06cICwsDB8fH15//XUACgsLmT17Np6enqXaLSoqYteuXbzxxhtERETw4osvArB//36ioqKo\nU6cOTZo0Ye7cuZY6OTk5zJo1C7PZjNlsJjQ0FG9vb/74xz/y1FNPER8fT0FBAStWrKBevXrV0Dsi\nImIPqn0OtLCwkD179tChQwfOnTvHzp07iYmJITo6mp07d/LTTz8RHBxMVFQU06ZNo1WrVgwYMICs\nrCwmTJjAqlWrePzxx9myZUuZtg8cOEDr1q3p2bMnDRs2JCUlBbiWpKdOncrq1asZNGgQJpPJUicr\nK4uhQ4eyatUqQkJCWLduHXAtGbdu3Zro6GhatGjBwYMHq6eDRETELlTLCDQ9PR2j0QhcG1GOGjWK\ngIAAduzYwZkzZ5g8eTIAV69eJSMjg7vvvhuz2cy8efOYO3cuzs7ONG3alPfff5/o6GguX75Mx44d\nyxwnLi6OQYMGATB48GC+/PJLunXrxkMPPcSCBQt4+OGHGTRoEO7u7pY6TZs2JTY2lvXr15Ofn0/d\nunUt+3x8fADw8PAgJyfntvWPiD2y5wckK3bbsMfY27Vrd8N91ZJAr8+BAoSHh+Pl5XXt4E5O+Pv7\nM2PGjDJ1Fi1axNNPP02rVq0AWL16NQ888ADDhg3j66+/Zu/evaXK5+XlER8fz7Fjx9i8eTOFhYVc\nvnyZl19+mUceeYQHHniA3bt388orr7BgwQJLvY0bN9KsWTMiIiI4evQoy5Yts+xzdHSs8r4QqS1u\n9oelJjt+/LhitwF7jv1Gqv0U7ksvvcTKlSsxm8106tSJhIQEzGYzJSUlLFq0CLPZzM6dO7ly5QpP\nPPGEpZ7JZMLT05OSkhL27NlDQUFBqXbj4+Pp1asXH330EevXr+fjjz+mVatWJCQksGbNGpycnHjq\nqacIDAzk1KlTZdoF+Oabb8q0KyIiUp5qT6AtW7ZkwIABxMbGcvfddzNixAiCg4MZP348TZs2xdXV\nlcjISM6ePWu59WXTpk089dRTLFy4kKlTpxIYGEhSUhL79++3tBsXF8djjz1W6liPP/44O3bsoHnz\n5rz44ov8v//3/zh+/Di9e/e2lHn00UfZsGEDL730El26dCErK4svvvii2vpDRETsk8FkMpXYOoja\nxD4XkxepnIN9rtrt6Th7PpWo2GsWrUQkIiJiBSVQERERKyiBioiIWEEP1K5ipnEtbR1Cpdnz3IRi\ntw17vJ9PpKppBCoiImIFJVARERErKIGKiIhYQQlURETECrqIqIrZ50IKbrDXHuMGxW4bB/vYOgIR\n29MIVERExApKoCIiIlZQAhUREbGCEqiIiIgVqjWBjhgxgrNnz1peP/vss3z77beW12FhYezbt4+Z\nM2diNpuJiIggPj6erVu3snTp0lJtZWRkEBAQYHnkmdFoZPHixVUWa3R0NJs2beLQoUOEh4dXWbsi\nIlI7VOtVuL6+viQlJeHp6YnJZCI3N5ekpCT8/f0BSE1NZc6cOaWe13kzXl5eREVF3c6QRUREylXt\nCTQ+Pp7HH3+c5ORkhgwZQnJyMgCnTp2iRYsW1K1bl6FDh7Jx40arjxMZGUlycjLFxcU888wzDB48\nmIiICJydncnOzqZv377885//5Oeff2bevHns3r2buLg4DAYDAQEBPP/881X1lkVEpJaq1gTas2dP\nVqxYAUBycjJ9+/YlMTERs9lMUlISvr6+t3yMpKQkfvrpJ6Kjo8nPz2fUqFH069cPgAYNGvDaa6+x\ndetWfvrpJ9asWUNGRgY7d+4kJiYGgIkTJ/LQQw/dchwitZ09Lyiv2G3DHmO/2QMfqjWBNmzYkLp1\n63L+/HlSU1MxGo107tyZI0eOkJyczGOPPVap9tLT0zEajZbXfn5+ODo6cuTIEcv2kpISsrKyAPD2\n9raU7dy5MwaDgaNHj3LmzBkmT54MwNWrV8nIyLjVtypS69nzk2QUe/Wz59hvpNpXIvL19WX//v0A\nuLq64uPjQ0pKCqmpqbz22muVaqu8OdANGzbwxBNPMHbs2DLlnZz++3adnZ0t2/z9/ZkxY0apsgkJ\nCZWKRURE7izVfhtLr169+PTTT+natSsA3bt3Z+/evbi7u+Pq6nrL7Xfp0oX4+HiKi4vJy8vjnXfe\nuWn5Tp06kZCQgNlspqSkhEWLFmE2m285DhERqd2qfQTao0cPjh07xrhx4wBo0qQJly5dYtCgQVXS\nfrdu3fD19WXChAmUlJTw9NNP37T83XffzYgRIwgODsbR0ZF+/fpVSSIXEZHazWAymUpsHURtYp+L\nyYtUzsE+V+12Psue5+IUe82ilYhERESsoAQqIiJiBSVQERERK+iB2lXMNK6lrUOoNHuem1DstmGP\nN8SLVDWNQEVERKygBCoiImIFJVAREREraA60itnnfaBusNce4wbFbhsH+9g6AhHb0whURETECkqg\nIiIiVlACFRERsYISqIiIiBWUQEVERKxw26/CzcjIYOTIkXTs2BGDwUBeXh5TpkzBx8eHtWvX0qNH\nD9LT0zl58iTPPPMM4eHhrFu3rlQbZrOZJUuWkJqaipOTE02aNGH69Ok0b96c6OhofH19+fHHH4mK\nisLT0xOA3NxcnnjiCYYNG3bD2BYvXsyzzz7Ltm3baNSoEW3btmXz5s0sWLDgtvaJiIjYv2q5jcXL\ny4uoqCgAEhMTWbNmDcuXL2fMmDEApKen37T+kiVLaNasGR9++CEAhw8fZsqUKaxfv75UucDAQKZO\nnQpAfn4+o0aNonfv3rRo0aLcdl9++eVbel8iInLnqvZTuL/88gseHh4AREREEB8ff9PyV65cYd++\nfYwdO9ayrXv37nTp0oXdu3czfPhwvL29y9RzcXGhbdu2nDt3jqKiIubOncvkyZMJCgri4MGDABiN\nRk6ePFmm7pYtWywJH+DFF1/U2p8iIlJKtYxA09PTMRqN5Ofnc/78eZYtW1bhuufOnaNVq1Y4OZUO\ntX379pw+fZqHHnqo3HpZWVmkpqYSGhpKXFwc7u7uzJo1C5PJREhICBs2bLjhMQMDAzEajRiNRnJy\ncsjOzrbbRb9Fbhd7/lKp2G3DHmO/2d/+aj+F+8MPPzBjxgw++OCDCtcvLi4us62kpARHR8dS23bs\n2EFaWhr5+flkZWURGhpKkyZNSElJITk5mcOHDwOQl5dHQUHBDY/XsGFD7rnnHo4dO3bTJC1yJ7PX\nL5X2/hQcxV5zVPtSfq1bt6ZOnTpkZmZWqHzLli05ffo0BQUFODs7W7b/+9//JiAgoFTZ63OgZrOZ\n0aNH0759ewCcnZ0ZN24cgwcPrnCcjzzyCF9//TU//vgjISEhFa4nIiJ3hmqfA83OzubChQuWedDf\nUq9ePfr27UtMTIxlW0pKCv/617/w9/cvt46rqysTJkxgyZIlAHh7e7Nnzx7g2hxsZGTkbx7X39+f\npKQkcnJybngRkoiI3LmqdQ4Url0dGxYWVmo0+VtefvllVqxYwciRI3FxcaFx48bMnz+/zCncXxs8\neDCbN29m//79DBw4kISEBCZMmEBxcTFBQUG/eUxnZ2dat25Nx44dKxyniIjcOQwmk6nE1kHURHl5\neQQHB7Ny5Urq169f4Xr2+TQWkco52Oeq3c5n2fNcnGKvWbQSUTm+//57xo0bx3PPPVep5CkiIncO\nPQ+0HF27dr3pbS4iIiIagYqIiFhBI9AqZhrX0tYhVJo9z00odtuwxxviRaqaRqAiIiJWUAIVERGx\nghKoiIiIFTQHWsXs8z5QN9hrj3GDYreNg31sHYGI7WkEKiIiYgUlUBERESsogYqIiFhBCVRERMQK\nlU6gGRkZBAQEYDQaMRqNjB8/njfffJOioiIuXLjA/Pnzb1jXaDRy8uTJWwr45MmTlie7/FpgYOAt\ntXvd4sWLOXfOPi/sEBGR6mPVVbheXl5ERUVZXkdERBAXF8cjjzzCjBkzqiw4W3j55ZdtHYKIiNiB\nKrmNxdvbmzNnzpCRkUF4eDjr1q3ju+++IzIyEkdHRwIDAxkxYgQAX331FYsWLSI7O5tFixbh7u5O\nREQE58+fJzc3l6CgIPr27YvRaKRt27YAjB49mhkzZuDi4lKppc9+/vln3njjDQoKCnB0dGTmzJl8\n+umn3HvvvQQGBjJ//nycnJwICwsjLi6O9PR0Dh06RFhYGIWFhbz11lu4uLjg7OzMm2++yV133VUV\n3SUiIrXALc+BFhYWsmfPHjp06GDZVlJSwttvv827775LTEwMBw4cwGw2A9C4cWMiIyN58MEH2bVr\nF5cuXeL+++9n9erVzJ8/n5iYGEs7bdq0ISwsjI8//phBgwYRFRWFu7t7hWOLiori+eefJzIykuee\ne441a9bQs2dPvv/+ewCysrLIzMwEICUlBV9fX0vdL774gqeffpqoqChGjx5NVlbWLfWTiIjULlaN\nQNPT0y3zkCdOnGDUqFEEBASQkZEBwMWLF3FxcaFx48YALFmyxFLXx8cHgGbNmpGdnU2DBg1IS0vj\nb3/7GwaDgezsbEtZb29vAE6dOsXAgQMB8PX1Zd++fRWK8/vvvyc9PZ3Y2FiKiopo3Lgx3bp1IzY2\nlkuXLlGvXj2Kioowm80cO3aMqVOnWur+4Q9/4K233iI9PZ3AwEBat25tTVeJ1Fr2vKC8YrcNe4z9\nZmc9b3kONDw8HC8vr1L7HRwcKC4uLreuo6Oj5eeSkhK2b99OdnY20dHRXLp0iTFjxlj2Ozs7W342\nGAwAN2y3PE5OTsyfP7/MqNXBwYFDhw7RtWtXzGYzBw8exM3NDRcXF0sZPz8/1q5dy969e4mIiGDK\nlCn06tWrwscWqe3s+Ukyir362XPsN3LLp3BfeuklVq5caTlFC9CoUSOKi4s5f/48JSUlTJs2jcuX\nL5dbPzs7mxYtWuDg4MCuXbsoKCgoU8bLy4u0tDQADh06VOHYunTpwjfffAPAwYMH2b59u2X7li1b\n6Nq1K126dGHTpk2WkfF1mzZtIjs7m4cffpgRI0bwr3/9q8LHFRGR2u+WLyJq2bIlAwYMIDY2lief\nfNKy/dVXXyU8PByAgQMH3vACnP79+xMaGsqRI0d44okn8PDw4L333itV5rnnnuO1115j165dN/wG\nk5OTU+r2lpEjRxIUFMScOXP48ssvMRgM/OUvfwGgZ8+ebN68mXvvvZeCggISExOZMGFCqfbuuece\nZsyYQf369XFxcWHWrFmV7xwREam1DCaTqcTWQdQm9rmYvEjlHOxz1W5Px9nzqUTFXrNoJSIREREr\nKIGKiIhYQQlURETECnqgdhUzjWtp6xAqzZ7nJhS7bdjj/XwiVU0jUBERESsogYqIiFhBCVRERMQK\nSqAiIiJW0EVEVcw+F1Jwg732GDcodlupmbHb40V8Yr80AhUREbGCEqiIiIgVlEBFRESsoAQqIiJi\nhSq9iOjdd9/l2LFjZGVlkZubi6enJw0aNODtt9++5bZXrVrFV199RbNmzSgsLKRZs2bMnj0bV1fX\n36x74MABPvvsM+bNm3fLcYiIiEAVJ9A//elPAGzdupWTJ08yderUqmyekSNHMmzYMABmz57N3r17\nGThwYJUeQ0REpCKq7TaWd999l9TUVAoLC3n22Wd5+OGHCQoK4v7772f//v04OzszePBgtm3bhrOz\nMytWrMDBofwzzEVFRVy6dMkyGh0xYgRt27alT58+tG/fnoULF+Lo6IibmxuzZ88uVXfz5s2cOHGC\nsLAwXn/9dX7++WfMZjOTJk3CYDCwd+9ewsLC2LZtGxs3buTDDz8kMzOTuXPnsmLFiuroKhERsQPV\nkkAPHjzImTNniImJ4erVq4wcOZJ+/foB4OHhwXvvvce4ceO4evUqMTExjB8/nlOnTtG2bdtS7WzY\nsIEdO3aQmZlJhw4d6Nq1K8XFxZw5c4aFCxfSqlUrgoODmTZtGp06dWLt2rVs3ryZrl27ApCUlER8\nfDyLFy/GZDLRu3dvHn30UU6fPs3rr7/OihUriImJASAlJYWGDRty9epVDh8+jK+vb3V0lYjcgoou\ncm/Pi+Er9up1swc+VEsCTUtLo2fPngC4ubnRqlUrzp49C4C3tzcATZs2pUOHDgA0adKEnJycMu38\n+hRudHQ0a9asYdy4cdSvX59WrVoBkJ6eTqdOnQDw9fVl3bp1dO3alfPnzzN79mzWrl2Lk5MTDRs2\n5MiRI3z66acYDAays7OpV68ejo6O5OXlcf78efr06UNqaiqHDx9m8ODBt7eTROSWVeTpNvb+FBzF\nXnNUy1W4BoOBkpISy+uCggLL6VlHR0fL9l///Ovy5enfvz9JSUkAODmV/z3g18fJyMige/fufP75\n5wD8/e9/t4x458+fb6nTtWtXDhw4wF133UWXLl34/vvvOX78OJ07d67MWxYRkVquWhJo586dOXTo\nEAA5OTn8+OOPtGx5a0tupaamWkadv9a6dWuOHj0KQGJiomU06uPjw8yZM9m+fTunTp3CZDLRsmVL\nDAYD33zzDQUFBQD07NmTjz76CG9vbzp06EBKSgr16tW7YZIWEZE7U7UkUF9fX9q0aUNwcDBTpkxh\nypQpFbr95H9t2LABo9HIpEmT+OabbwgKCipTJiwsjOXLlzN58mSOHz/OM888Y9nn6upKWFgYb7zx\nBg899BC7du0iJCSEBg0a0KhRI95//318fHxITEyka9euuLi4cPnyZXx8fG7p/YuISO1jMJlMNz9X\nKpVin4vJi9QOFVlM3p7n4hR7zaKViERERKygBCoiImIFJVAREREr6NLSKmaPD/S157kJxW4b9hy7\nSFXRCFRERMQKSqAiIiJWUAIVERGxguZAq5h93gfqBnvtMW5Q7LZS+2O3x+sZpHppBCoiImIFJVAR\nERErKIGKiIhYQQlURETECkqgIiIiVrDqKtyMjAxGjhxJx44dAcjPz+fee+9l+vTpXLx4kZiYGGbM\nmFFu3aFDh7Jx40bc3NwqfLzc3Fzeffdd0tLSqFOnDgaDgWnTplme9VmVQkNDWbhwYZW3KyIitYvV\nt7F4eXkRFRVleR0REUFcXByPPPLIDZOntZYsWYKnp6el3cOHDzNz5kw2bdpU5Q+6VvIUEZGKqLJT\nuN7e3pw5c4aMjAxGjx4NwHfffceYMWMYP348GzduLFU+MzOT0aNHExcXx+zZsy3b582bx549eyyv\nr1y5woEDB3jhhRcs27p3725JnkVFRcydO5fJkycTFBTEwYMHATAajbzzzjssWLCAJ554gry8PAAS\nExN59dVXyczMZPLkyZZ6Z8+eBSAwMBCAbdu2MXbsWIKCgnj77berqptERKSWqJLhW2FhIXv27OGP\nf/yjZVtJSQlvv/027733Hg0aNCA0NJSnnnoKuHbKd/bs2cycOZN7772X6Oho8vLycHZ2JiUlhVdf\nfdXSzrlz5/Dy8sLBoXSuvz7yjIuLw93dnVmzZmEymQgJCWHDhg0AtGnThmHDhjF37lwOHjxInz59\n2L17NwMGDCArK4sJEybQq1cvPv/8c7Zs2cKf/vQnS/vr169nyZIlNG/enC+++AKz2Yyrq2tVdJeI\n2IHjx4/bOoRy1dS4KsIeY7/ZQxOsTqDp6ekYjUYATpw4wahRowgICCAjIwOAixcv4uLiQuPGjYFr\np2GvW7BgAX379qVDhw4A9OnTh3/+8580bdoUHx8fnJ2dLWUNBgNFRUWW19HR0SQmJmIymXjllVdI\nSUkhOTmZw4cPA5CXl0dBQQFwbVQM0L9/f+Lj4+nTpw/79+8nODiYnJwc3n//faKjo7l8+bJlPve6\nQYMGERYWxpAhQxg0aJCSp8gdpiY+bcaen4Jjz7HfiNWncK/PgUZFRdGrVy+8vLxKN+zgQHFxcbl1\nPTw8+Mc//mFJdI8++ihff/018fHxDB48uFRZT09P0tPTyc/PByA4OJioqCg6deqE2WzG2dmZcePG\nWWL55JNPLAn4+v/9/PxITk7mxIkTeHp6Uq9ePVavXs0DDzxAdHQ0EydOLBPj2LFjefvttykuLiYk\nJASTyWRtV4mISC1UJXOgL730EitXrsRsNlu2NWrUiOLiYs6fP09JSQnTpk3j8uXLwLX5yT/84Q/E\nxMQA0L59e86fP09qaio9evQo1XbdunXp169fqQuWfvnlF06cOEGdOnXw9va2zJn+8ssvREZGlonP\nxcWFdu3a8cEHHzBgwAAATCYTnp6elJSUsGfPHksyByguLiYyMhJ3d3eef/55unbtyk8//VQVXSUi\nIrVElcyBtmzZkgEDBhAbG8uTTz5p2f7qq68SHh4OwMCBA7nrrrss+8aNG8f48ePp378/nTp14v77\n7+fq1asYDIYy7f/pT39i9erVvPDCC7i5uVFYWMjw4cPx8/OjsLCQhIQEJkyYQHFxMUFBQeXGGBAQ\nQEREBKGhoQA89dRTLFy4kN/97ncMHz6c+fPns3//fuDa6LlevXqMHz+e+vXr07JlS9q3b18VXSUi\nIrWEwWQyldg6iJKSEl588UXCw8O55557bB3OLbHPp7GIyP+qiU9jsed5RHuO/UZsvhJRRkYGY8aM\nwc/Pz+6Tp4iI3Dls/jzQFi1asG7dOluHISIiUik2H4GKiIjYI5uPQGubmjhv8lvseW5CsduGYhfR\nCFRERMQqSqAiIiJWUAIVERGxguZAq5h93gfqBnvtMW5Q7LZS+2O3x+sZpHppBCoiImIFJVAREREr\nKIGKiIhYQQlURETECtV+EVFGRgYjR46kY8eOlJSUUFBQwKhRo+jfv3+l2omIiGDAgAH07dvXsm3r\n1q1ERUXh6ekJQG5uLk888QTDhg2rUJtLly6lbdu2PPbYY5ZtV69eZcSIEXz22WeVik9ERGo3m1yF\ne/1h3ADZ2dmMGjWK3r174+rqesttBwYGMnXqVADy8/Mtbbdo0eKW2xYREbnO5rexNGzYEHd3d7Ky\nsrhy5QrvvPMOTk5OGAwG5s+fz5UrVwgPD7csOD969GgWLFhQobZdXFxo27Yt586dIzExkZMnTzJ1\n6tRSo8p//OMfrFu3Dg8PD+rUqUPbtm3JyckhPDycvLw8fHx8bufbFxERO2XzOdCMjAyys7Np3rw5\nFy9eJDQ0lFWrVtG9e3e2b99+S21nZWWRmppK27Zty91fUlJCZGQkK1euZNGiRZw9exaA7du306ZN\nG2JiYvQgbRERKZdNRqDp6ekYjUZKSkpwcXFh9uzZODk50aRJE1asWIHZbObChQsMHjy40m3v2LGD\ntLQ08vPzycrKIjQ0lCZNmpRbNjs7Gzc3N8v+bt26AXDq1Cl69OgBQM+ePa18lyJiz44fP27rEMpV\nU+OqCHuM/WYPHrD5HOivLV68mNGjR9O7d28+/PBDrl69isFgKFWmsLDwpm1fnwM1m82MHj263BHk\n9TZKSkpwcPjvILykpKTM9uvbROTOUhOf2GLPT5Kx59hvxOancH/NZDLRsmVL8vPz+fbbbyksLKRe\nvXr88ssvlJSUcOHCBc6dq9jyYa6urkyYMIElS5YAUK9ePS5cuADA4cOHgWvzrzk5OVy+fJnCwkLL\n9latWpGWlgZAQkJCVb9NERGpBWpUAh0+fDhhYWHMmDGD4cOHs23bNn766Sf8/PwYM2YMq1atqtSc\n5ODBg7lw4QL79+/nvvvu4/Tp0xiNRn744QcMBgMODg4EBQUxadIkwsPDLXOljzzyCEeOHCEkJIT0\n9PTb9XZFRMSOGUwmk85RViH7XExeRP5XTVxM3p5Pg9pz7DdSo0agIiIi9kIJVERExApKoCIiIlaw\n+UpEtU1NnDf5LfY8N6HYbUOxi2gEKiIiYhUlUBERESsogYqIiFhBCVRERMQKWkihimkhBRGxB9V9\nwWNtvHhLI1ARERErKIGKiIhYQQlURETECkqgIiIiVqhUAs3IyCAgIACj0cjkyZMZP348ycnJZcrt\n27ePLVu2WB3UiBEjOHv2rOX1s88+y7fffmt5HRYWxr59+5g5cyZms5mIiAji4+PZunUrS5cu5cKF\nC8yfP9/q44uIiPyWSi/l5+XlRVRUFACJiYmsWbOG5cuXlyrTu3fvWwrK19eXpKQkPD09MZlM5Obm\nkpSUhL+/PwCpqanMmTPnhsdxd3dnxowZtxSDiIjIzdzSWri//PILHh4eAERERODs7Ex2djZ9+/bl\n5MmTTJ06lSVLlnD06FHy8vL44x//yJNPPklERATNmjUjLS2NzMxM5syZQ8eOHS3t+vr6Eh8fz+OP\nP05ycjJDhgyxjHRPnTpFixYtqFu3LkOHDmXjxo1l4srIyCA8PJx169axfft2Nm3ahIODA23atOG1\n115j69atJCYmYjKZ+M9//sPkyZP58ssvOXXqlCWWv/zlL1y4cIGCggKCg4Nv+UuBiIjULpVOoOnp\n6RiNRvLz8zl//jzLli2z7Gu0wSxIAAATNElEQVTQoIElQQHk5eXRokULpk2bhtlstiRQgPz8fJYv\nX84nn3zC3//+91IJtGfPnqxYsQKA5ORk+vbtS2JiImazmaSkJHx9fSscb25uLkuXLuWuu+4iODiY\nEydOAHDmzBmio6P57LPPWLt2LR988AFbt27lyy+/xMnJCZPJRHR0NJcvXy51+lhEpDY4fvz4HXHM\nW3Wze1dv6RTuDz/8wIwZM/jggw8A8Pb2LlW2Tp06ZGdnM2HCBJydnbl48aJln4+PDwAeHh6kpqaW\nqtewYUPq1q3L+fPnSU1NxWg00rlzZ44cOUJycjKPPfZYheNt0KABoaGhlnizs7MB6NSpEwaDgaZN\nm3Lvvffi6OhIkyZNOHz4MK1bt+bq1avMnj2bgIAABg0aVMleEhGp2ap7UQMtpPA/WrduTZ06dcjM\nzATAyal0Pk5MTCQhIYHVq1cTFRWFi4uLZZ+jo6Pl55KSsosh+fr6sn//fgBcXV3x8fEhJSWF1NRU\nunXrVqH4CgoKeOedd5g3bx6rV68uleB/ffz/jcXV1ZXY2Fieeuopvv32W+bNm1eh44mIyJ3jlhJo\ndnY2Fy5csMyD/i+TyUTz5s1xcnJiz549FBcXU1BQUKG2e/XqxaeffkrXrl0B6N69O3v37sXd3R1X\nV9cKtXHlyhUcHR1xd3cnMzOTtLS0Ch3/2LFjxMXF4ePjQ3h4OKdOnarQ8URE5M5h9RwoXJvHDAsL\nw9nZudyyfn5+rFu3jkmTJtGvXz/8/f1ZsGBBhY7To0cPjh07xrhx4wBo0qQJly5dqtTp1EaNGuHn\n58eYMWNo164do0aNYsmSJYwYMeKm9Vq0aEFkZCR//etfcXR05IUXXqjwMUVE5M6gxeSrmBaTFxF7\noMXkb51WIhIREbGCEqiIiIgVlEBFRESscEsrEUlZ1T2vUBXseW5CsduGYrcNe469NtIIVERExApK\noCIiIlZQAhUREbGC7gOtYroPVETuNBW59qM2zt9qBCoiImIFJVARERErKIGKiIhYQQlURETECkqg\nIiIiVrgtCTQjI4OAgACMRiOTJk0iJCSEAwcOWNVWaGhohcoZjUZOnjxp1TFEREQq67Yt5efl5UVU\nVBQAZ8+e5ZVXXuGNN96o9GXMCxcuvB3hiYiI3JJqWQvX09OTcePGsWXLFmbMmMHmzZuJi4vDYDAQ\nEBDA888/T3R0NDk5OaSnp3P27FlefvllHnzwQQIDA9mxYwfbtm1j8+bNODs7065dO1599dXfPG5R\nURFvvvkmGRkZFBYWEhwczH333ceBAweIiorC2dmZu+66i/nz55OSksKHH35Ibm4ufn5+5OfnWx4c\n/uKLLzJ16tRadw+TiIhYr9oWk+/UqROffPIJ586dY+fOncTExAAwceJEHnroIQDOnz/Pu+++y759\n+/jkk0948MEHLfXXr1/PkiVLaN68OV988QVmsxlXV9ebHjMuLg53d3dmzZqFyWQiJCSEDRs2cOnS\nJebOnUvLli2ZPXs2+/fvx83NjZMnT7JlyxZyc3MxGo0YjUZycnLIzs5W8hQRuYHjx49Xabma5GZ/\n+6stgV65cgVHR0eOHj3KmTNnmDx5MgBXr14lIyMDgO7duwPg4eHBlStXStUfNGgQYWFhDBkyhEGD\nBv1m8gRISUkhOTmZw4cPA5CXl0dBQQGNGzdm3rx5FBUVce7cOe677z7c3Nxo164dLi4uuLi4cM89\n93Ds2DFOnz5tSfAiIlJWRQYYtXElompLoGlpabRv3x4nJyf8/f2ZMWNGqf0JCQk4OjpaXpeUlF5h\ncOzYsTz88MN8/fXXhISEsHr1aho1anTTYzo7OzNu3DgGDx5cavvcuXNZsmQJv//973nnnXdKlb/u\nkUce4euvv+bHH38kJCSk0u9XRERqt2q5jeXs2bNs2LCBkSNH0qlTJxISEjCbzZSUlLBo0SLMZvNN\n6xcXFxMZGYm7uzvPP/88Xbt25aeffvrN43p7e7Nnzx4AfvnlFyIjIwHIycnh7rvv5vLlyyQkJFBQ\nUFCmrr+/P0lJSeTk5NCiRQsr3rWIiNRmt20Emp6ejtFoJD8/n+LiYl599VXuvvtuAEaMGEFwcDCO\njo7069fvN0/HOjg4UK9ePcaPH0/9+vVp2bIl7du3L1Nuzpw51K1bF4BevXoxduxYEhISmDBhAsXF\nxQQFBQHwzDPPMHHiRLy8vBg1ahQxMTFlRpnOzs60bt2ajh07VkV3iIhILaOnsdxAXl4ewcHBrFy5\nkvr161e4np7GIiJ3Gj2NRSy+//57xo0bx3PPPVep5CkiIneOaruIyJ507dqVDRs22DoMERGpwTQC\nFRERsYJGoFWsInMBNY09z00odttQ7LZhz7HXRhqBioiIWEEJVERExApKoCIiIlbQfaBVTPeBiojU\nDLf7mhSNQEVERKygBCoiImIFJVARERErKIGKiIhY4aYLKWRkZDBy5MhSTyRp3749L7/88m0NKjAw\nkB07dpTaFh4ejslkAq4t9H7ixAni4+PLrb9161ZOnjzJ1KlTK3XctWvX0qNHD7p162Zd4CIicsf4\nzZWIvLy8iIqKqo5YbmrBggWWn5ctW0ZAQECVH2PMmDFV3qaIiNROVi3lV1hYSEREBOfPnyc3N5eg\noCD69u2L0Wikbdu2AISEhDB37lwuXbpEUVERoaGhtGvXjqSkJCIjI3FycqJ58+bMnDkTg8HArFmz\nyMzMpHPnzjc99rFjx0hISCA2NhaA7du3s2nTJhwcHGjTpg2vvfZaqfIrV67E1dWVZ599llmzZmE2\nmzGbzYSGhuLt7c2wYcN48MEHady4MWfOnGHAgAH06NGj3LIiIiLXWTUHeunSJe6//35Wr17N/Pnz\niYmJsexr06YNYWFhfPTRRzzwwANERkYyffp0li5dCsCiRYtYuHAhq1atokmTJnz99dd89913FBYW\nEhsby8MPP0x2dna5xy0qKmLBggWEh4fj5HQt9+fm5rJ06VLee+89fvjhB06cOGEp/9VXX5GZmcmE\nCRPIyspi6NChrFq1ipCQENatWwdc+zLw4IMPMn78eEu9G5UVERG57jdHoOnp6RiNRstrPz8/Ro8e\nTVpaGn/7298wGAylEt71kVpKSgoXL15k+/btAJjNZrKysjhz5gzTp08HriW/Ro0aceHCBcu8Y5cu\nXahTp065sWzYsIFu3bqVGqU2aNCA0NBQAH744QdLLP/5z3/YtWsXH3/8MQBNmzYlNjaW9evXk5+f\nT926dS1t/O+o92ZlRUTEPhw/fvyW27jZ4v1WzYFu3bqV7OxsoqOjuXTpUqm5Q2dnZ8v/Q0NDS12Q\nc+nSJZo1a1amvQ8++AAHh/8OhktKyi6OdO7cObZu3cr//d//WbYVFBTwzjvv8OGHH+Lu7s60adMs\n+3788UfatGnDzp07GTJkCBs3bqRZs2ZERERw9OhRli1bVibm625WVkRE7MPtfnKNVadws7OzadGi\nBQ4ODuzatYuCgoIyZby9vdm9ezdwbTS4fv16GjRoYHkN8PHHH3P8+HFatWpFWloacG3kmp+fX6a9\nBQsWMHXq1FKjwStXruDo6Ii7uzuZmZmkpaVZYvH392fWrFmsWbOGrKwsTCYTnp6eAHzzzTflxnxd\nZcqKiMidyaoE2r9/f/bu3UtISAh169bFw8OD9957r1SZ4cOHc/bsWYKCgpg3bx49evQA4M9//jNz\n584lKCiIw4cP06pVKx588EHMZjOTJk3iyy+/xMPDo1Rb33//PYmJiaxbtw6j0Wj578KFC/j5+TFm\nzBhiYmIYNWoUS5YsobCwEIDGjRsTHBzMW2+9xaOPPsqGDRt46aWX6NKlC1lZWXzxxRflvr/KlBUR\nkTuTFpOvYlpMXkSkZtBi8iIiIjWQEqiIiIgVlEBFRESsoDlQ4fjx47f9cu/bRbHbhmK3DcVes2gE\nKiIiYgUlUBERESsogYqIiFhBCVRERMQKSqAiIiJWUAIVERGxghKoiIiIFZRARURErKAEKiIiYgWt\nRCQiImIFjUBFRESsoAQqIiJiBSVQERERKyiBioiIWEEJVERExApKoCIiIlZQAhUREbGCk60DsDeL\nFy/myJEjGAwGXnnlFTp37mzZd+DAASIjI3FwcMDf358JEybYMNKyli1bRnJyMkVFRYwdO5b+/ftb\n9g0dOhQPDw8cHR0BmDNnDh4eHrYKtZRDhw4xY8YM2rRpA0Dbtm0JCwuz7K/p/f7ZZ5/xj3/8w/I6\nLS2N3bt3W1737t2b7t27W16vXLnS8u9gKydPniQ0NJQRI0YwfPhwMjMzmT17NkVFRbi7uxMREYGL\ni0upOjf73bB17HPmzKGwsBAnJyciIiJwd3e3lP+tz5ctY4+IiODYsWM0bNgQgBdeeIE+ffqUqlNT\n+z08PByTyQTApUuX6NKlC6+99pql/NatW4mKisLT0xMAPz8/xo8fb5PYraUEWgmJiYmcOXOG2NhY\nTp06xdy5c4mNjbXsX7RoEcuWLaNZs2ZMmjSJ/v37W34pbS0hIYH//Oc/xMbGYjKZGDVqVKkECrB0\n6VLc3NxsFOHN9ezZkwULFpS7ryb3O1z7cjJ06FDg2mfoq6++KrW/fv36REVF2SK0cuXm5rJw4ULu\nu+8+y7bVq1fz9NNPM3DgQCIjI/n88895+umnLft/63fDlrGvWrWKJ598ksDAQDZv3syGDRuYMmVK\nqXo3+3xVl/JiBwgJCaFv377l1qnJ/f7r/pw7d67ld+DXAgMDmTp1arXEeDvoFG4lHDx4kH79+gHw\n+9//nsuXL5OTkwPAuXPnaNCgAc2bN7eMhA4ePGjLcEvp0aMH8+fPB+Cuu+4iNzeXoqIiG0d162p6\nv/+v9957r8Z/y3Z2dmbJkiVlRml/+MMfAOjTp0+ZPr7Z70Z1Ki/26dOnM2DAAAAaNWpEdnZ2tcdV\nEeXF/ltqcr9fd/r0aS5fvoy3t3e1x3W7KYFWQlZWFo0bN7a8btSoEVlZWZZ9jRo1suxr3LixZV9N\n4OjoSN26dQH4/PPP8ff3L3OacMGCBQQFBbFixQpKSmrWCo+nTp3ilVdeISgoiO+++86yvab3+68d\nPXqU5s2bl/kjk5+fz5///GcmTpzI+vXrbRTdfzk5OeHq6lpqm9lstpyybdKkCRcuXCi1/2a/G9Wp\nvNjr1q2Lo6MjRUVFbNmyhcGDB5epd6PPV3UqL3aAzZs3M3nyZGbOnGk5JXpdTe736z766COGDx9e\n7r7ExESmTJlCSEgI//rXv25niLeFTuHeJjUtAV23e/duPv/8c5YvX15qe3BwML1796ZBgwaEhYWx\nc+dOHnroIRtFWdo999zDxIkTGThwIOfOnWPy5Mn89a9/xdnZuUzZmtrvcG0u9LHHHiuzfcqUKQwZ\nMgSDwcCkSZPo0aOHzeaxKqIm9/GNFBUVMXv2bHr16oWfn1+pfZX5fFW3IUOG0KhRI9q3b8/atWuJ\niYmx2fysNQoKCjh8+DDTp08vs69Lly40atSIPn36kJKSwuuvv87GjRttEKX1NAKtBHd391Lf7n7+\n+WfLaOJm+2qKffv28f777/Puu+9Sv379UvseffRRmjRpgpOTE/7+/pw8edJGUZbl4eFBYGAgBoMB\nT09PmjZtyvnz5wH76PfrDh06RLdu3cpsHzZsGG5ubtStW5devXrVqL6/rm7dupjNZuBaHzdr1qzU\n/pr+7zBnzhy8vLwICgoqs+9mny9b8/Pzo3379gD07duXEydOlNpf0/s9MTHxhl8GW7dubbkgqlu3\nbly8eNHuppWUQCvhgQceYOfOnQAcO3aMZs2aUa9ePQBatGjBlStXyMjIoLCwkL1793L//ffbMtxS\ncnJyWL58OYsXL7Zc0ffrfS+99BIFBQXAtQ99TboIZ/v27Xz44YcAXLhwgV9++cVyhXBN7/frfv75\nZ9zc3MqMak6fPs2f//xnSkpKKCwsJCUlpUb1/XV+fn7s2rULgJ07d/LAAw+U2n+z3w1b2759O87O\nzgQHB99w/40+X7Y2ffp0zp07B1z7vWzbtm2p/TW53+HatEW7du3K3bdu3Tri4uKAa1fwNm7c2OZX\nn1eWHmdWSStWrCApKQkHBwfCwsL497//Tb169ejfvz+JiYmsWLECgAEDBvDCCy/YONr/+vTTT4mJ\nicHLy8uyrVevXrRt25b+/fvz0UcfsW3bNurUqUOHDh0IDQ3FYDDYMOL/unLlCrNmzeLy5csUFhYy\nceJELl68aBf9fl1aWhpRUVEsXboUgLVr19KjRw+6devG8uXLSUhIwMHBgb59+9r8IqO0tDSWLl3K\njz/+iJOTE82aNWPOnDnMmTOHvLw8fve73/GXv/wFJycnZs6cyaxZs3B1dS3zu3F95GTr2C9evIiL\ni4slsfz+979n+vTpltiLiorKfL78/f1rROzDhw9n7dq1uLq64ubmxqxZs2jSpIld9Ptbb71FdHQ0\nPj4+BAYGWsqGhoaycOFCMjMzef311ykuLqaoqIhp06bZ3YVGSqAiIiJW0ClcERERKyiBioiIWEEJ\nVERExApKoCIiIlZQAhUREbGCEqiIiIgVlEBFRESsoAQqIiJihf8P27upw25A4fEAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file diff --git a/module2-choose-appropriate-visualizations/LS_DS_122_Choose_appropriate_visualizations.ipynb b/module2-choose-appropriate-visualizations/LS_DS_122_Choose_appropriate_visualizations.ipynb index 964e477..e9aa059 100644 --- a/module2-choose-appropriate-visualizations/LS_DS_122_Choose_appropriate_visualizations.ipynb +++ b/module2-choose-appropriate-visualizations/LS_DS_122_Choose_appropriate_visualizations.ipynb @@ -1,652 +1,3579 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_Lambda School Data Science_\n", - "# Choose appropriate visualizations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Upgrade Seaborn\n", - "\n", - "Make sure you have at least version 0.9.0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!pip install --upgrade seaborn" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import seaborn as sns\n", - "sns.__version__" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fix misleading visualizations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!wget https://raw.githubusercontent.com/LambdaSchool/DS-Sprint-02-Storytelling-With-Data/master/module2-choose-appropriate-visualizations/misleading.py\n", - " \n", - "import misleading" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix misleading plot #1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "misleading.plot1()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix misleading plot #2" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "misleading.plot2()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix misleading plot #3" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "misleading.plot3()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix misleading plot #4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_If you're on Jupyter (not Colab) then uncomment and run this cell below:_" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# import altair as alt\n", - "# alt.renderers.enable('notebook')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "misleading.plot4()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Links\n", - "- [How to Spot Visualization Lies](https://flowingdata.com/2017/02/09/how-to-spot-visualization-lies/)\n", - "- [Where to Start and End Your Y-Axis Scale](http://stephanieevergreen.com/y-axis/)\n", - "- [xkcd heatmap](https://xkcd.com/1138/)\n", - "- [Surprise Maps: Showing the Unexpected](https://medium.com/@uwdata/surprise-maps-showing-the-unexpected-e92b67398865)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Use Seaborn to visualize distributions and relationships with continuous and discrete variables\n", - "\n", - "#### Links\n", - "- [Seaborn tutorial](https://seaborn.pydata.org/tutorial.html)\n", - "- [Seaborn example gallery](https://seaborn.pydata.org/examples/index.html)\n", - "- [Chart Chooser](https://extremepresentation.typepad.com/files/choosing-a-good-chart-09.pdf)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Anscombe dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df = sns.load_dataset('anscombe')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the data's shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Group by](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.groupby.html) `'dataset'`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) the groups" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the [count](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.count.html), for each column in each group" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the [mean](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.mean.html) ..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the [standard deviation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.std.html) ..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the [correlation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html) ..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Use pandas to [plot](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html) the groups, as scatter plots" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Use Seaborn to make [relational plots](http://seaborn.pydata.org/generated/seaborn.relplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Use Seaborn to make [linear model plots](http://seaborn.pydata.org/generated/seaborn.lmplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Links\n", - "- [Seaborn examples: Anscombe's quartet](http://seaborn.pydata.org/examples/anscombes_quartet.html)\n", - "- [Wikipedia: Anscombe's quartet](https://en.wikipedia.org/wiki/Anscombe%27s_quartet)\n", - "- [The Datasaurus Dozen](https://www.autodeskresearch.com/publications/samestats)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Tips dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "tips = sns.load_dataset('tips')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the data's shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the first 5 rows" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Describe the data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make univariate [distribution plots](https://seaborn.pydata.org/generated/seaborn.distplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make bivariate [relational plots](https://seaborn.pydata.org/generated/seaborn.relplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make univariate [categorical plots](https://seaborn.pydata.org/generated/seaborn.catplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make bivariate [categorical plots](https://seaborn.pydata.org/generated/seaborn.catplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Flights" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "flights = sns.load_dataset('flights')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the data's shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the first 5 rows" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Describe the data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot year & passengers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot month & passengers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create a [pivot table](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot_table.html) of passengers by month and year" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot the pivot table as a [heat map](https://seaborn.pydata.org/generated/seaborn.heatmap.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "LS_DS_122_Choose_appropriate_visualizations.ipynb", + "version": "0.3.2", + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "i1Y03IX0CJIu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "_Lambda School Data Science_\n", + "# Choose appropriate visualizations" + ] + }, + { + "metadata": { + "id": "GeIVqWojCJIy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Upgrade Seaborn\n", + "\n", + "Make sure you have at least version 0.9.0" + ] + }, + { + "metadata": { + "id": "QmmM4WYjCJIz", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 207 + }, + "outputId": "bc2e479a-b4a4-46be-e4ee-10ca828ceea8" + }, + "cell_type": "code", + "source": [ + "!pip install --upgrade seaborn" + ], + "execution_count": 73, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already up-to-date: seaborn in /usr/local/lib/python3.6/dist-packages (0.9.0)\n", + "Requirement already satisfied, skipping upgrade: matplotlib>=1.4.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (2.1.2)\n", + "Requirement already satisfied, skipping upgrade: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.1.0)\n", + "Requirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", + "Requirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", + "Requirement already satisfied, skipping upgrade: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.5.3)\n", + "Requirement already satisfied, skipping upgrade: six>=1.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (1.11.0)\n", + "Requirement already satisfied, skipping upgrade: pytz in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2018.7)\n", + "Requirement already satisfied, skipping upgrade: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.3.0)\n", + "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "K2GmtusLCJI9", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "994f04e6-eb67-49c0-f857-2f5db1db94fc" + }, + "cell_type": "code", + "source": [ + "import seaborn as sns\n", + "sns.__version__" + ], + "execution_count": 74, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'0.9.0'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 74 + } + ] + }, + { + "metadata": { + "id": "zBXRaTyCCJJC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Fix misleading visualizations" + ] + }, + { + "metadata": { + "id": "u9smaR81CJJE", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4QUq72ldCJJI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "5a811a63-89e3-46f1-c148-d3cdedacce88" + }, + "cell_type": "code", + "source": [ + "!wget https://raw.githubusercontent.com/LambdaSchool/DS-Sprint-02-Storytelling-With-Data/master/module2-choose-appropriate-visualizations/misleading.py\n", + " \n", + "import misleading" + ], + "execution_count": 77, + "outputs": [ + { + "output_type": "stream", + "text": [ + "--2018-11-13 20:44:02-- https://raw.githubusercontent.com/LambdaSchool/DS-Sprint-02-Storytelling-With-Data/master/module2-choose-appropriate-visualizations/misleading.py\n", + "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n", + "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 1641 (1.6K) [text/plain]\n", + "Saving to: ‘misleading.py.2’\n", + "\n", + "\rmisleading.py.2 0%[ ] 0 --.-KB/s \rmisleading.py.2 100%[===================>] 1.60K --.-KB/s in 0s \n", + "\n", + "2018-11-13 20:44:02 (176 MB/s) - ‘misleading.py.2’ saved [1641/1641]\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "WWIGdNjjCJJO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Fix misleading plot #1" + ] + }, + { + "metadata": { + "id": "9-T_baqaCJJP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + }, + "outputId": "80bca1cc-b81a-456b-97fd-c7902ffc10a1" + }, + "cell_type": "code", + "source": [ + "misleading.plot1();" + ], + "execution_count": 79, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEpCAYAAACDc9l6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFTlJREFUeJzt3X2UVfV97/H3F6WiiMWHqUXRQL2K\nRCNQMYT03lsfanxcmgtJjdGIJYHosk3sSmKVaOwVk4u9LruMaa26pJgbLzENRgnaXEyuYBKNiICI\nWkvMQjvXJCA+1IgECN/7x5yZDpMZzjyc4cz5zfu1Fmv2/u19Zn8WzPrM5nf23icyE0lS4xtS7wCS\npNqw0CWpEBa6JBXCQpekQljoklQIC12SClG10CPiiIh4NCKej4jnIuKzlfGDIuKRiFhf+Xpg/8eV\nJHUlql2HHhGjgFGZuSoiRgBPAx8GLgVez8x5EXE1cGBm/lV/B5Ykda7qGXpm/jwzV1WW3wZeAA4H\nzgfuqex2Dy0lL0mqk6pn6LvsHDEGeAw4HnglM0dWxgN4o3W9w2tmA7MBhg8ffuKxxx7b99SSNIg8\n/fTTr2VmU7X9ul3oEbE/sBz4cmbeHxFvti/wiHgjM3c7jz558uRcuXJlt44nSWoREU9n5uRq+3Xr\nKpeIGAosAu7NzPsrw7+szK+3zrNv7G1YSVLfdecqlwDuBl7IzFvabVoMzKgszwAerH08SVJ37d2N\nff4I+ATwbESsqYzNAeYB34qITwIvA3/aPxElSd1RtdAz80dAdLH5tNrGkdQb27dvp7m5ma1bt9Y7\nivpg2LBhjB49mqFDh/bq9d05Q5c0wDU3NzNixAjGjBlDyyypGk1msnnzZpqbmxk7dmyvvoe3/ksF\n2Lp1KwcffLBl3sAigoMPPrhP/8uy0KVCWOaNr6//hha6JBXCOXSpQGOufqim32/DvHOq7hMRXHTR\nRXzjG98AYMeOHYwaNYopU6awZMmSbh9r2bJl3Hzzzd1+zZo1a3j11Vc5++yzf2vbli1bmDVrFmvX\nriUzGTlyJN/73vd47bXXOPfcc1m3bl23c/XGiy++yMc//nG2b9/OHXfcwdSpU9mxYwdnnnkmixcv\nZr/99qvp8Sx0STUxfPhw1q1bx7vvvsu+++7LI488wuGHH96j77Fjx44eH3fNmjWsXLmy00K/9dZb\nOfTQQ3n22WeBloLt7RUkHXPuvXf1+rzjjju49dZbGTNmDJ/97GdZtGgRt99+OxdffHHNyxyccpFU\nQ2effTYPPdTyv4OFCxdy4YUXtm1bsWIFU6dOZdKkSXzwgx/kxRdfBGDBggWcd955nHrqqZx22q5X\nQj/11FNMmjSJl156iXfeeYeZM2fy/ve/n0mTJvHggw+ybds2vvSlL3HfffcxceJE7rvvvl1e//Of\n/3yXXyrjxo1jn332AeA3v/kNs2bN4rjjjuNDH/oQ7777LgB33XUXJ510EhMmTGD69Ols2bIFgEsv\nvZTLLruMKVOmcNVVV3Wap6OhQ4eyZcsWtmzZwtChQ3nzzTf57ne/yyWXXNLXv+pOWeiSauZjH/sY\n3/zmN9m6dStr165lypQpbduOPfZYfvjDH7J69WpuuOEG5syZ07Zt1apVfPvb32b58uVtY48//jiX\nXXYZDz74IEcddRRf/vKXOfXUU1mxYgWPPvooX/jCF9i+fTs33HADF1xwAWvWrOGCCy7YJc/MmTO5\n6aabmDp1Ktdeey3r169v27Z+/XquuOIKnnvuOUaOHMmiRYsAmDZtGk899RTPPPMM48eP5+677257\nTXNzM48//ji33HJLp3neeeedXY5/xRVX8JWvfIUZM2YwZ84c5s6dy5w5cxgypH+q1ykXSTVzwgkn\nsGHDBhYuXPhbUyBvvfUWM2bMYP369UQE27dvb9t2+umnc9BBB7Wtv/DCC8yePZulS5dy2GGHAbB0\n6VIWL17MzTffDLRcqvnKK6/sNs/EiRP52c9+xtKlS/n+97/PSSedxBNPPMG+++7L2LFjmThxIgAn\nnngiGzZsAGDdunVce+21vPnmm/zqV7/ijDPOaPt+H/3oR9lrr712m2f8+PFt+x955JEsW7YMgJ/+\n9Kc0Nzczfvx4PvGJT7Bt2zbmzp3LMccc0+2/32osdEk1dd555/H5z3+eZcuWsXnz5rbx6667jlNO\nOYXvfOc7bNiwgZNPPrlt2/Dhw3f5HqNGjWLr1q2sXr26rdAzk0WLFjFu3Lhd9n3yySd3m2f//fdn\n2rRpTJs2jSFDhvDwww8zffr0tqkXgL322qttyuXSSy/lgQceYMKECSxYsKCtkDvm7CpPV774xS9y\n44038tWvfpVPfepTjBkzhjlz5nDvvfd26/Xd4ZSLpJqaOXMm119/Pe973/t2GX/rrbfa5rMXLFiw\n2+8xcuRIHnroIa655pq2Qj3jjDO47bbbaH3k9+rVqwEYMWIEb7/9dqff58c//jFvvPEGANu2beP5\n55/nPe95z26P/fbbbzNq1Ci2b9++27LtKk9nli9fzmGHHcbRRx/Nli1bGDJkCEOGDGmbn68Vz9Cl\nAnXnMsP+Mnr0aD7zmc/81vhVV13FjBkzuPHGGznnnOr5Dj30UJYsWcJZZ53F/Pnzue6667jyyis5\n4YQT2LlzJ2PHjmXJkiWccsopzJs3j4kTJ3LNNdfsMo/+0ksvcfnll5OZ7Ny5k3POOYfp06fz8ssv\nd3ncuXPnMmXKFJqampgyZUqXvyy6ytNRZnLjjTe2vWE7e/ZsLrroInbs2MHtt99e9e+hJ3r0iUV9\n5QdcSP3jhRde2GXuVo2rs3/Lmn7AhSRp4LPQJakQFrpUiD05far+0dd/QwtdKsCwYcPYvHmzpd7A\nWp+HPmzYsF5/D69ykQowevRompub2bRpU72jqA9aP7Gotyx0qQBDhw7t9afcqBxOuUhSISx0SSqE\nhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQljo\nklQIC12SClG10CNifkRsjIh17cYmRsRPImJNRKyMiPf3b0xJUjXd+cSiBcDXgK+3G/sb4L9n5j9H\nxNmV9ZNrnq5Oxlz9UL0jFGXDvHPqHUEaFKqeoWfmY8DrHYeBAyrLvwu8WuNckqQe6u1nil4J/J+I\nuJmWXwof7GrHiJgNzAY48sgje3k4SVI1vX1T9HLgLzPzCOAvgbu72jEz78zMyZk5uampqZeHkyRV\n09tCnwHcX1n+J8A3RSWpznpb6K8Cf1xZPhVYX5s4kqTeqjqHHhELabmC5ZCIaAauB2YBt0bE3sBW\nKnPkkqT6qVromXlhF5tOrHEWSVIfeKeoJBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAl\nqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIK\nYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAW\nuiQVwkKXpEJULfSImB8RGyNiXYfxv4iIf4mI5yLib/ovoiSpO7pzhr4AOLP9QEScApwPTMjM44Cb\nax9NktQTVQs9Mx8DXu8wfDkwLzN/XdlnYz9kkyT1QG/n0I8B/ktEPBkRyyPipK52jIjZEbEyIlZu\n2rSpl4eTJFXT20LfGzgI+ADwBeBbERGd7ZiZd2bm5Myc3NTU1MvDSZKq6W2hNwP3Z4sVwE7gkNrF\nkiT1VG8L/QHgFICIOAb4HeC1WoWSJPXc3tV2iIiFwMnAIRHRDFwPzAfmVy5l3AbMyMzsz6CSpN2r\nWuiZeWEXmy6ucRZJUh94p6gkFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXC\nQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0\nSSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpek\nQljoklSIqoUeEfMjYmNErOtk2+ciIiPikP6JJ0nqru6coS8Azuw4GBFHAB8CXqlxJklSL1Qt9Mx8\nDHi9k01/C1wFZK1DSZJ6rldz6BFxPvD/MvOZbuw7OyJWRsTKTZs29eZwkqRu6HGhR8R+wBzgS93Z\nPzPvzMzJmTm5qampp4eTJHVTb87QjwLGAs9ExAZgNLAqIn6/lsEkST2zd09fkJnPAr/Xul4p9cmZ\n+VoNc0mSeqg7ly0uBJ4AxkVEc0R8sv9jSZJ6quoZemZeWGX7mJqlkST1mneKSlIhLHRJKoSFLkmF\nsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgL\nXZIKYaFLUiEsdEkqhIUuSYWw0CWpEFU/JFrSwDHm6ofqHaEoG+adU+8INeUZuiQVwkKXpEJY6JJU\nCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiGqFnpEzI+IjRGx\nrt3Y/4yIf4mItRHxnYgY2b8xJUnVdOcMfQFwZoexR4DjM/ME4F+Ba2qcS5LUQ1ULPTMfA17vMLY0\nM3dUVn8CjO6HbJKkHqjFHPpM4J+72hgRsyNiZUSs3LRpUw0OJ0nqTJ8KPSK+COwA7u1qn8y8MzMn\nZ+bkpqamvhxOkrQbvf4Iuoi4FDgXOC0zs2aJJEm90qtCj4gzgauAP87MLbWNJEnqje5ctrgQeAIY\nFxHNEfFJ4GvACOCRiFgTEf/QzzklSVVUPUPPzAs7Gb67H7JIkvrAO0UlqRAWuiQVwkKXpEJY6JJU\nCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw\n0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtd\nkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCVC30iJgfERsjYl27sYMi4pGIWF/5emD/xpQk\nVdOdM/QFwJkdxq4GfpCZRwM/qKxLkuqoaqFn5mPA6x2GzwfuqSzfA3y4xrkkST0UmVl9p4gxwJLM\nPL6y/mZmjqwsB/BG63onr50NzK6sjgNe7HtsVRwCvFbvEFIn/NmsrfdkZlO1nfbu61EyMyOiy98K\nmXkncGdfj6PfFhErM3NyvXNIHfmzWR+9vcrllxExCqDydWPtIkmSeqO3hb4YmFFZngE8WJs4kqTe\n6s5liwuBJ4BxEdEcEZ8E5gGnR8R64E8q69rznMrSQOXPZh10601RSdLA552iklQIC12SCmGhS1Ih\n+nwduvasynNzjqDdv11mrqpfIkkDhYXeQCJiLnAp8BLQ+m52AqfWK5MEEBFnAdcA760MPQfclJkP\n1y/V4GOhN5Y/BY7KzG31DiK1iohZwKeBq4CVleHJwLyIGF25W1x7gJctNpCIWARcnpnemasBIyKe\nB/5zZr7eYfxg4EeZOb4+yQYfz9Aby/8AVleeTf/r1sHMPK9+kSSiY5kDZObmlmf3aU+x0BvLPcBN\nwLPAzjpnkVr9e0RMyMxn2g9GxATg7TplGpQs9MayJTO/Wu8QUgefAxZHxD8CT1fGJtPynKeL65Zq\nEHIOvYFExC20TLUsZtcpFy9bVF1FxKHAFcBxlaHngb/LzF/UL9XgY6E3kIh4tJPhzEwvW1TdREQT\n0JSZz3cYfy+wKTM31SfZ4OOUS4OIiCHA7Zn5rXpnkTq4Dfj7TsYPBq4FPr5n4wxenqE3ED8FRgPR\n7n4uI2Jd60dXqv/5LJfG8v2I+HxEHBERB7X+qXcoDXojdrNt6B5LIadcGswFla9XtBtL4A/qkEVq\n9dOIOLvjbf6VxwH8rE6ZBiWnXCT1SUQcDTwEPM6uly1OBc7NzH+tV7bBxkJvMBFxPC0PQBrWOpaZ\nX69fIgkiYh9a3vxsnS9/Dvjfmbm1fqkGHwu9gUTE9cDJtBT6w8BZtDwr4yP1zCVpYLDQG0hEPAtM\nAFZn5oTKzRzfyMzT6xxNg1hEvM1/PM55l0203CdxwB6ONGj5pmhjeTczd0bEjog4ANhIy4ddSHWT\nmbu7ykV7kJctNpaVETESuIuWN59WAU/UN5IGu4g4td3y2A7bpu35RIOXUy4NKiLGAAdk5to6R9Eg\nFxGrMvMPOy53tq7+5Rl6A4iIP2+3fBxAZm6wzDVARBfLna2rH1nojWFmu+X/VbcUUueyi+XO1tWP\nfFO08XjGo4HmDyJiMS0/m63LVNbHdv0y1ZqF3hhGRsR/o+V/VAd0fKMpM++vTywJgPPbLd9c+Zod\n1rUH+KZoA6h8EkxXMjNn7ma71K8i4nxgdGb+XWV9BdBES6n/VWb+Uz3zDSYWuqQ+iYgfAx/LzH+r\nrK8BTgOGA/+YmafVM99g4pSLpL76ndYyr/hRZm4GNkfE8HqFGoy8ykVSXx3YfiUz/7zdatMezjKo\nWeiS+urJiJjVcTAiPg2sqEOeQcs59AYSEfsBnwOOzMxZledQj8vMJXWOpkEsIn4PeAD4NS2PowA4\nEdgH+HBm/rJe2QYbC72BRMR9tDzD5ZLMPL5S8I9n5sQ6R5Nan+lyXGX1ucz8v/XMMxhZ6A2k9cN4\nI2J1Zk6qjD2TmRPqnU1S/TmH3li2RcS+VG7aiIijaPlvriR52WKD+Wvge8AREXEv8EfAn9U1kaQB\nwymXBhMRBwMfoOU5GT/JzNfqHEnSAGGhN5CI+EHHu+46G5M0ODnl0gAiYhiwH3BIRBzIfzxx8QDg\n8LoFkzSgWOiN4dPAlcBhtFy22Fro/w58rV6hJA0sTrk0kIj4i8y8rd45JA1MFnqDiYjjgfcCw1rH\nMvPr9UskaaCw0BtIRFwPnExLoT8MnEXLk+0+Us9ckgYGbyxqLB+h5TnTv8jMPwMmAL9b30iSBgoL\nvbG8m5k7gR0RcQCwETiizpkkDRBe5dJYVkbESOAuWq52+RXwRH0jSRoonENvUBExBjggM9fWOYqk\nAcIplwYSET9oXc7MDZm5tv2YpMHNKZcG4J2ikrrDQm8M3ikqqSrn0BuId4pK2h0LvQFExEnAv2Xm\nLyrrlwDTgZeBv87M1+uZT9LA4JuijeEOYBtARPxXYB7wdeAt4M465pI0gDiH3hj2ancWfgFwZ2Yu\nAhZFxJo65pI0gHiG3hj2iojWX76nAe0/Td1fypIAy6BRLASWR8RrwLvADwEi4j/RMu0iSb4p2igi\n4gPAKGBpZr5TGTsG2D8zV9U1nKQBwUKXpEI4hy5JhbDQJakQFrokFcJCl6RC/H/SiPUgIAVT3wAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "IhzJyGuKCJJT", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + }, + "outputId": "83238939-bf77-4da7-c984-9ad525b363d5" + }, + "cell_type": "code", + "source": [ + "insurance = pd.DataFrame(\n", + " index=['State Farm', 'GEICO'], \n", + " data={'Market Share %': [18.07, 12.79]})\n", + "\n", + "insurance.plot.bar();" + ], + "execution_count": 84, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEpCAYAAACUUUmzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGOZJREFUeJzt3X+01XWd7/HnGyRRw8HwxKCoMI2R\nPxKYUKLpzvXH+Au9NoN21SwxSrJlU651y5uk2RJr2brWLNOWiiNDTQ5xb4xKSoY1aZqmIqCiDgM6\nlEctERNRYODI+/5x9jlzOO4Dp7M37OP+PB9rnXW+38/ns7/fNxx47e/57M/+7shMJEnlGNDoAiRJ\nu5bBL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYQx+SSrMbo0uoJp99903R40a1egyJOlt\n49FHH305M1t6M7ZfBv+oUaNYvHhxo8uQpLeNiPhNb8c61SNJhTH4JakwBr8kFaZfzvFLqr8tW7bQ\n2trKpk2bGl2KajB48GBGjhzJoEGD+nwMg18qRGtrK0OGDGHUqFFERKPLUR9kJmvXrqW1tZXRo0f3\n+ThO9UiF2LRpE8OGDTP038YigmHDhtX8W5vBLxXE0H/7q8fP0OCXpMI4xy8VatSX76zr8VZfdcoO\nx0QE55xzDj/4wQ8AaGtrY8SIEUycOJE77rij1+e65557uPrqq3v9mGXLlvHCCy8wefLkt/Rt2LCB\n888/n8cff5zMZOjQodx11128/PLLnHrqqSxfvrzXdfXFihUr+NjHPsaWLVu48cYbmTRpEm1tbZx0\n0kksWLCAPffcs+7nNPj7qN7/aUrXm9DQ299ee+3F8uXL2bhxI3vssQd33303+++//x91jLa2tj/6\nvMuWLWPx4sVVg/+aa65h+PDhPPHEE0B7ENeyYqZrnbvttuOIvfHGG7nmmmsYNWoUX/jCF5g/fz7X\nX389H//4x3dK6INTPZJ2scmTJ3Pnne0XTnPnzuXss8/u7Hv44YeZNGkS48eP50Mf+hArVqwAYM6c\nOZx22mkce+yxHHfccdsc75FHHmH8+PE888wzvPHGG0ybNo2jjjqK8ePHc/vtt7N582a++tWvMm/e\nPMaNG8e8efO2efyLL764zZPPmDFj2H333QF48803Of/88znssMM44YQT2LhxIwA33XQTRx55JGPH\njuX0009nw4YNAJx33nlccMEFTJw4kYsvvrhqPd0NGjSIDRs2sGHDBgYNGsSrr77Kj3/8Y84999xa\n/6p7ZPBL2qXOOussfvjDH7Jp0yYef/xxJk6c2Nn3vve9j/vuu4+lS5dyxRVXMGPGjM6+JUuW8KMf\n/Yh77723s+2BBx7gggsu4Pbbb+c973kPX//61zn22GN5+OGH+cUvfsGXvvQltmzZwhVXXMGZZ57J\nsmXLOPPMM7epZ9q0aXzzm99k0qRJXHrppaxcubKzb+XKlVx44YU8+eSTDB06lPnz5wMwZcoUHnnk\nER577DEOOeQQbr755s7HtLa28sADD/Dtb3+7aj1vvPHGNue/8MIL+cY3vsHUqVOZMWMGM2fOZMaM\nGQwYsPPieYe/h0TEbOBU4KXMPLzSNg8YUxkyFHg1M8dVeexqYD3wJtCWmRPqVLekt6kjjjiC1atX\nM3fu3LdMvaxbt46pU6eycuVKIoItW7Z09h1//PG8613v6tx/+umnmT59OosWLWK//fYDYNGiRSxY\nsICrr74aaF/C+tvf/na79YwbN45nn32WRYsW8bOf/YwjjzySBx98kD322IPRo0czblx7tH3gAx9g\n9erVACxfvpxLL72UV199lddff50TTzyx83gf/ehHGThw4HbrOeSQQzrHH3jggdxzzz0ArFq1itbW\nVg455BA+8YlPsHnzZmbOnMl73/veXv/99kZv5vjnANcB3+9oyMzOp8yI+BawbjuPPyYzX+5rgZKa\nz2mnncYXv/hF7rnnHtauXdvZftlll3HMMcdw6623snr1ao4++ujOvr322mubY4wYMYJNmzaxdOnS\nzuDPTObPn8+YMWO2GfvQQw9tt553vvOdTJkyhSlTpjBgwAAWLlzI6aef3jnlAzBw4MDOqZ7zzjuP\n2267jbFjxzJnzpzO4O5eZ0/19OQrX/kKV155Jd/5znf49Kc/zahRo5gxYwa33HJLrx7fWzv8XSIz\nfwm8Uq0v2heU/k9gbl2rktTUpk2bxuWXX8773//+bdrXrVvXOd8+Z86c7R5j6NCh3HnnnVxyySWd\nwXviiSdy7bXXkpkALF26FIAhQ4awfv36qsf51a9+xR/+8AcANm/ezFNPPcVBBx203XOvX7+eESNG\nsGXLlu2Gck/1VHPvvfey3377cfDBB7NhwwYGDBjAgAEDOl8/qKdaV/X8N+D3mbmyh/4EFkVEAjdm\n5qyeDhQR04Hp0P6rj6Sdq5ErqUaOHMnnP//5t7RffPHFTJ06lSuvvJJTTtlxfcOHD+eOO+7g5JNP\nZvbs2Vx22WVcdNFFHHHEEWzdupXRo0dzxx13cMwxx3DVVVcxbtw4Lrnkkm3m+Z955hk++9nPkpls\n3bqVU045hdNPP53f/Kbn29vPnDmTiRMn0tLSwsSJE3t8Uumpnu4ykyuvvLLzhefp06dzzjnn0NbW\nxvXXX7/Dv4c/VnQ8E213UMQo4I6OOf4u7dcDqzLzWz08bv/MfD4i3g3cDfxd5TeI7ZowYUL29w9i\ncTlnfbmcc+d7+umnt5lb1ttXtZ9lRDza29dR+/yycUTsBkwB5vU0JjOfr3x/CbgVOKqv55Mk1Uct\n64X+Gvi3zGyt1hkRe0XEkI5t4ARg574FTpK0QzsM/oiYCzwIjImI1oj4VKXrLLq9qBsR+0XEwsru\ncOD+iHgMeBi4MzPvql/pkv5YvZnaVf9Wj5/hDl/czcyze2g/r0rbC8DkyvazwNga65NUJ4MHD2bt\n2rXemvltrON+/IMHD67pON6rRyrEyJEjaW1tZc2aNY0uRTXo+ASuWhj8UiEGDRpU06c2qXl4rx5J\nKozBL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqMwS9JhTH4JakwBr8kFcbgl6TC\nGPySVBiDX5IKY/BLUmEMfkkqTG8+bH12RLwUEcu7tH0tIp6PiGWVr8k9PPakiFgREasi4sv1LFyS\n1De9ueKfA5xUpf3vM3Nc5Wth986IGAh8FzgZOBQ4OyIOraVYSVLtdhj8mflL4JU+HPsoYFVmPpuZ\nm4EfAh/pw3EkSXVUyxz/5yLi8cpU0D5V+vcHnuuy31ppkyQ1UF+D/3rgPcA44EXgW7UWEhHTI2Jx\nRCxes2ZNrYeTJPWgT8Gfmb/PzDczcytwE+3TOt09DxzQZX9kpa2nY87KzAmZOaGlpaUvZUmSeqFP\nwR8RI7rs/i2wvMqwR4CDI2J0RLwDOAtY0JfzSZLqZ7cdDYiIucDRwL4R0QpcDhwdEeOABFYDn6mM\n3Q/4h8ycnJltEfE54KfAQGB2Zj65U/4UkqRe22HwZ+bZVZpv7mHsC8DkLvsLgbcs9ZQkNY7v3JWk\nwhj8klQYg1+SCmPwS1JhDH5JKozBL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqM\nwS9JhTH4JakwBr8kFcbgl6TCGPySVBiDX5IKY/BLUmF2+GHrETEbOBV4KTMPr7T9H+B/AJuBZ4BP\nZuarVR67GlgPvAm0ZeaE+pUuqSejvnxno0toKquvOqXRJdRVb6745wAndWu7Gzg8M48A/h24ZDuP\nPyYzxxn6ktQ/7DD4M/OXwCvd2hZlZltl99fAyJ1QmyRpJ6jHHP804Cc99CWwKCIejYjpdTiXJKlG\nO5zj356I+ArQBtzSw5APZ+bzEfFu4O6I+LfKbxDVjjUdmA5w4IEH1lKWJGk7+nzFHxHn0f6i7zmZ\nmdXGZObzle8vAbcCR/V0vMyclZkTMnNCS0tLX8uSJO1An4I/Ik4CLgZOy8wNPYzZKyKGdGwDJwDL\n+1qoJKk+dhj8ETEXeBAYExGtEfEp4DpgCO3TN8si4obK2P0iYmHlocOB+yPiMeBh4M7MvGun/Ckk\nSb22wzn+zDy7SvPNPYx9AZhc2X4WGFtTdZKkuvOdu5JUGINfkgpj8EtSYQx+SSqMwS9JhTH4Jakw\nBr8kFcbgl6TCGPySVBiDX5IKY/BLUmEMfkkqjMEvSYUx+CWpMAa/JBXG4Jekwhj8klQYg1+SCmPw\nS1JhDH5JKkyvgj8iZkfESxGxvEvbuyLi7ohYWfm+Tw+PnVoZszIiptarcElS3/T2in8OcFK3ti8D\nP8/Mg4GfV/a3ERHvAi4HJgJHAZf39AQhSdo1ehX8mflL4JVuzR8BvlfZ/h7wN1UeeiJwd2a+kpl/\nAO7mrU8gkqRdqJY5/uGZ+WJl+3fA8Cpj9gee67LfWml7i4iYHhGLI2LxmjVraihLkrQ9dXlxNzMT\nyBqPMSszJ2TmhJaWlnqUJUmqopbg/31EjACofH+pypjngQO67I+stEmSGqSW4F8AdKzSmQrcXmXM\nT4ETImKfyou6J1TaJEkN0tvlnHOBB4ExEdEaEZ8CrgKOj4iVwF9X9omICRHxDwCZ+QowE3ik8nVF\npU2S1CC79WZQZp7dQ9dxVcYuBj7dZX82MLtP1UmS6s537kpSYQx+SSqMwS9JhTH4JakwBr8kFcbg\nl6TCGPySVBiDX5IKY/BLUmEMfkkqjMEvSYUx+CWpMAa/JBXG4Jekwhj8klQYg1+SCmPwS1JhDH5J\nKozBL0mF6XPwR8SYiFjW5eu1iLio25ijI2JdlzFfrb1kSVItevVh69Vk5gpgHEBEDASeB26tMvS+\nzDy1r+eRJNVXvaZ6jgOeyczf1Ol4kqSdpF7BfxYwt4e+SRHxWET8JCIOq9P5JEl9VHPwR8Q7gNOA\n/1elewlwUGaOBa4FbtvOcaZHxOKIWLxmzZpay5Ik9aAeV/wnA0sy8/fdOzLztcx8vbK9EBgUEftW\nO0hmzsrMCZk5oaWlpQ5lSZKqqUfwn00P0zwR8acREZXtoyrnW1uHc0qS+qjPq3oAImIv4HjgM13a\nLgDIzBuAM4DPRkQbsBE4KzOzlnNKkmpTU/Bn5hvAsG5tN3TZvg64rpZzSJLqy3fuSlJhDH5JKozB\nL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqMwS9JhTH4JakwBr8kFcbgl6TCGPyS\nVBiDX5IKY/BLUmEMfkkqjMEvSYUx+CWpMDUHf0SsjognImJZRCyu0h8R8Z2IWBURj0fEX9R6TklS\n3+1Wp+Mck5kv99B3MnBw5WsicH3luySpAXbFVM9HgO9nu18DQyNixC44rySpinoEfwKLIuLRiJhe\npX9/4Lku+62Vtm1ExPSIWBwRi9esWVOHsiRJ1dQj+D+cmX9B+5TOhRHxV305SGbOyswJmTmhpaWl\nDmVJkqqpOfgz8/nK95eAW4Gjug15Hjigy/7ISpskqQFqCv6I2CsihnRsAycAy7sNWwCcW1nd80Fg\nXWa+WMt5JUl9V+uqnuHArRHRcax/zsy7IuICgMy8AVgITAZWARuAT9Z4TklSDWoK/sx8Fhhbpf2G\nLtsJXFjLeSRJ9eM7dyWpMAa/JBXG4Jekwhj8klQYg1+SCmPwS1JhDH5JKozBL0mFMfglqTAGvyQV\nxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqMwS9JhTH4JakwBr8kFcbgl6TC9Dn4I+KAiPhFRDwVEU9G\nxBeqjDk6ItZFxLLK11drK1eSVKtaPmy9DfhfmbkkIoYAj0bE3Zn5VLdx92XmqTWcR5JUR32+4s/M\nFzNzSWV7PfA0sH+9CpMk7Rx1meOPiFHAeOChKt2TIuKxiPhJRBxWj/NJkvqulqkeACLincB84KLM\nfK1b9xLgoMx8PSImA7cBB/dwnOnAdIADDzyw1rIkST2o6Yo/IgbRHvq3ZOa/dO/PzNcy8/XK9kJg\nUETsW+1YmTkrMydk5oSWlpZaypIkbUctq3oCuBl4OjO/3cOYP62MIyKOqpxvbV/PKUmqXS1TPX8J\nfAJ4IiKWVdpmAAcCZOYNwBnAZyOiDdgInJWZWcM5JUk16nPwZ+b9QOxgzHXAdX09hySp/nznriQV\nxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqMwS9JhTH4JakwBr8kFcbgl6TCGPySVBiDX5IKY/BLUmEM\nfkkqjMEvSYUx+CWpMAa/JBXG4Jekwhj8klQYg1+SClNT8EfESRGxIiJWRcSXq/TvHhHzKv0PRcSo\nWs4nSapdn4M/IgYC3wVOBg4Fzo6IQ7sN+xTwh8z8c+DvgW/29XySpPqo5Yr/KGBVZj6bmZuBHwIf\n6TbmI8D3Kts/Ao6LiKjhnJKkGtUS/PsDz3XZb620VR2TmW3AOmBYDeeUJNVot0YX0CEipgPTK7uv\nR8SKRtbTRPYFXm50ETsSTgKWyn+f9XNQbwfWEvzPAwd02R9Zaas2pjUidgP+BFhb7WCZOQuYVUM9\nqiIiFmfmhEbXIVXjv8/GqGWq5xHg4IgYHRHvAM4CFnQbswCYWtk+A/jXzMwazilJqlGfr/gzsy0i\nPgf8FBgIzM7MJyPiCmBxZi4Abgb+KSJWAa/Q/uQgSWqg8AK8uUXE9Mo0mtTv+O+zMQx+SSqMt2yQ\npMIY/JJUmH6zjl/1ExH70L6MtvPnm5lLGleRpP7E4G8yETETOA94Buh4ASeBYxtVk6T+xRd3m0zl\nHc/vr9w/Seo3IuJk4BLab+oI8CTwzcxc2LiqyuQVf/NZDgwFXmp0IVKHiDgf+AxwMbC40jwBuCoi\nRrqkc9fyir/JRMQE4HbanwD+s6M9M09rWFEqXkQ8BXw4M1/p1j4MuD8zD2lMZWXyir/5fI/2zz14\nAtja4FqkDtE99AEyc613at/1DP7msyEzv9PoIqRuXouIsZn5WNfGiBgLrG9QTcVyqqfJRMS3aZ/i\nWcC2Uz0u51TDRMSHgVuAfwQerTRPoP0mjh/PzPsbVVuJDP4mExG/qNKcmelyTjVURAwHLgQOqzQ9\nBXw3M3/XuKrKZPA3kYgYAJyRmf+30bVIXUVEC9CSmU91az8UWJOZaxpTWZm8ZUMTycyttC+Xk/qb\na2n/tK3uhgHX7OJaiucVf5OJiKto/yi7ecAbHe3VVlRIu8r2PmkrIpZn5uG7uqaSGfxNJiL+o0pz\nZuaf7fJipIqIWJGZY/7YPu0cLudsMpk5utE1SFWsiojJ3W/PULmNw7MNqqlYXvE3oYg4nPb7oQzu\naMvM7zeuIpUuIg4G7gQeYNvlnJOAUzPz3xtVW4kM/iYTEZcDR9Me/AuBk2l/S/wZjaxLiojdgY8B\nHfP5TwL/nJmbGldVmQz+JhMRTwBjgaWZObaydvoHmXl8g0uT1E84x998Nmbm1ohoi4i9ab9L5wGN\nLkpli4j1/NfnQ2zTRfvig713cUlFM/ibz+KIGArcRPtc6uvAg40tSaXLzCGNrkH/xameJhYRo4C9\nM/PxBpeiwkXEsZn5r5Xt0Zn5H136pmTmvzSuuvL4zt0mERGf67J9GEBmrjb01U9c3WV7fre+S3dl\nITL4m8m0Ltv/1LAqpOqih+1q+9rJDP7m5H8k9TfZw3a1fe1kvrjbPIZGxN/S/mS+d0RM6drpHKoa\n7M8iYgHtFyUd21T2fbf5LuaLu00iIv5xO92ZmdO20y/tVBHx36s0d4RPZOa9u7Ke0nnF3yQy85ON\nrkHajqHAyMz8LkBEPAy00B7+/7uRhZXIOX5Ju8LFtH8caId30H6vnqOBCxpRUMm84pe0K7wjM5/r\nsn9/Zq4F1kbEXo0qqlRe8UvaFfbpupOZn+uy27KLaymewd9kImLPiLgsIm6q7B8cEac2ui4V76GI\nOL97Y0R8Bni4AfUUzVU9TSYi5tF+j55zM/PwiNgTeCAzxzW4NBUsIt4N3Ab8J7Ck0vwBYHfgbzLz\n942qrUQGf5Pp+GzTiFiameMrbY9l5thG1yZFxLHAYZXdJzvu36Ndyxd3m8/miNiDyhrpiHgP7VdZ\nUsNVgt6wbzCDv/l8DbgLOCAibgH+EnCNv6ROTvU0oYgYBnyQ9rfD/zozX25wSZL6EYO/yUTEzzPz\nuB21SSqXUz1NIiIGA3sC+0bEPvzXHTr3BvZvWGGS+h2Dv3l8BrgI2I/25Zwdwf8acF2jipLU/zjV\n02Qi4u8y89pG1yGp/zL4m1BEHA4cCgzuaMvM7zeuIkn9icHfZCLictrveHgosBA4mfYbYp3RyLok\n9R/eq6f5nAEcB/yuco/+scCfNLYkSf2Jwd98NmbmVqAtIvYGXgIOaHBNkvoRV/U0n8URMRS4ifbV\nPa8DDza2JEn9iXP8TSwiRgF7Z+bjDS5FUj/iVE+TiYifd2xn5urMfLxrmyQ51dMkfOeupN4y+JuH\n79yV1CvO8TcZ37kraUcM/iYREUcCz2Xm7yr75wKnA78BvpaZrzSyPkn9hy/uNo8bgc0AEfFXwFXA\n94F1wKwG1iWpn3GOv3kM7HJVfyYwKzPnA/MjYlkD65LUz3jF3zwGRkTHE/lxbPu5pj7BS+pkIDSP\nucC9EfEysBG4DyAi/pz26R5JAnxxt6lExAeBEcCizHyj0vZe4J2ZuaShxUnqNwx+SSqMc/ySVBiD\nX5IKY/BLUmEMfkkqjMEvSYX5/2KJk5sswskbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "jnvSx3c6CJJX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Fix misleading plot #2" + ] + }, + { + "metadata": { + "id": "Y5Vpil2KCJJZ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 310 + }, + "outputId": "17be7acc-0fd8-4897-8b42-c1a116ffedc0" + }, + "cell_type": "code", + "source": [ + "misleading.plot2();" + ], + "execution_count": 91, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATYAAAElCAYAAABu/s6cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VOW9x/HPLythMQoCKiAHRAxh\nEcG1olBr3QJeW+vV4kortlxbrKWtU7V1qlSj1datF7eqaF0Q7VXx1LUVrKggKDsUtygqKCoO+xLy\n3D/OpMSYTCaTmXnO8nu/XvMKTM7MfAMvvjxnex4xxqCUUmFSYDuAUkplmxabUip0tNiUUqGjxaaU\nCh0tNqVU6GixKaVCR4tNKRU6WmxKqdDRYlNKhY4Wm1IqdLTYlFKho8WmlAodLTalVOhosSmlQkeL\nTSkVOkW2AygVJPPnz+9WVFR0FzAIHRjkSh2wpLa29vzhw4d/mskbaLEp1QpFRUV37bXXXgO6du26\nrqCgQGdpzYG6ujpZu3Zt5Zo1a+4CTs7kPfR/HKVaZ1DXrl3Xa6nlTkFBgenatWsCb1Sc2XtkMY9S\nUVCgpZZ7yT/jjPtJi02pgLnkkkv26tev38D+/ftXVlRUVP7zn//sAHDllVd227BhQ4v/ptPdrqFT\nTz3V6dGjx+CKiorKioqKysmTJ3fLNH8+6DE2pdrAibnDs/l+NdVV81N9/4UXXujw7LPP7r548eJl\nZWVlZvXq1UXbtm0TgNtvv737+PHjv+jUqVNdqvdId7vGJk+e/OG4cePWteY1ALW1tRQV5bdqdMSm\nVIB89NFHxZ07d64tKyszAHvvvXet4zg7Jk+e3O3TTz8tHjlyZP/DDjusP8CZZ56576BBgwb069dv\n4MUXX7wPQFPb/e1vf9tt6NChFZWVlQNOPPHEvolEIu1eaOozAHr06DF4woQJPSorKwfcfffdexx6\n6KEH/PCHP+w1aNCgAX379h04a9as9scdd9x+vXv3HjRx4sR9Un1GJrTYlAqQU045Zf3HH39c4jjO\noLPOOmtf13U7Alx++eWfduvWbcesWbNWzpkzZyXAH//4x4+WLFmyfMWKFUtnz57dac6cOWWNt1u9\nenXR1VdfvfdLL720ctmyZcuHDRu2+aqrrure1GdffvnlPet3RefOnVvW3GfUb9+lS5faZcuWLb/g\nggvWAZSUlNQtWbJk+bhx49aedtpp/e68884PVqxYsXTatGl7rlmzpjCbf05abEoFSHl5ed2SJUuW\n3Xrrre937dq19txzz93v5ptv7tLUtlOnTu1cWVk5oLKysvKtt95qt3DhwnaNt5k5c2aHd955p92h\nhx5aUVFRUfnwww93+eCDD0qaer/Jkyd/uGLFimUrVqxYduihh25p6TPOOeecr+y2fuc73/kS4MAD\nD9zSr1+/Lb17995RVlZmevXqte3dd99t8jMzpcfYlAqYoqIiRo8evWH06NEbhgwZsuX+++/vMnHi\nxM8bbrNixYqSW2+9tfv8+fOXd+3adeepp57qbN269WsDGWMMI0aMWD9jxoz3Wpujpc9ofAyvXbt2\nBqCgoIDS0tL/nFkuKCigtrZWWvv5qeiILU0icpmILBWRRSKyQEQOSz7/MxFpn8br09qu0WvuFZH3\nkp+3QEQmZppfhcPChQtLFy9eXFr/+zfffLOsZ8+e2wE6dOiws/742Lp16wrLysrqOnfuvHPVqlVF\nM2fOLK9/TcPtRo0atWnevHkdlyxZUgqwfv36gkWLFpWShlSfYZuO2NIgIkcAo4FhxphtIrInUD90\n/hnwV2BzC2+T7naN/dIY82grX4OIFBpjdrb2dcrf1q9fXzhx4sR9169fX1hYWGgcx9k2derU9wHO\nPffcz0444YT+3bt33z5nzpyVgwYN2rzffvsN2nvvvbcPHz58Y/17NN7u9ttvrznjjDP6bt++XQCu\nuOKKj4YMGbKtpSxHHHHEluY+wzYxRq81bImIfBcYZ4wZ0+j5icD1wL+Bz4wx3xSRKcAhQBnwqDHm\nima2Ow74HVAKvJN8/42N3v9e4KnGxdbUZySfrwGmAd8GrgN+DLwJHAV0AM4Bfg0MBqYZYy7Pwh9P\npCxcuLDmwAMP/Mx2jihYuHDhngceeKCTyWt1VzQ9zwG9RGSliPyviIwEMMbcDHwMfNMY883ktpcZ\nYw4GhgAjRWRI4+2SI77LgWONMcOAecDPm/nsPzTYFR3c3Gc02P5zY8wwY8zDyd9vT257G/AEcCHe\nrSrniUiTB52VCjottjQkR1LDgQuAtcA0ETmvmc3/W0TewBspDQQqm9jm8OTzs0VkAXAu0LuZ9/ul\nMWZo8rE4jc+Y1uj1Tya/LgaWGmNWG2O2Ae8CvZr5TKUCTY+xpSl5vGomMFNEFuOV0b0NtxGRPsAv\ngEOMMeuSu5JfO8UOCPC8Meb7rc2RxmdsavSS+mMldQ1+Xf97/ftXoaQjtjSIyAEisn+Dp4YC7yd/\nvQHolPz1bnjFkhCR7sCJDV7TcLvXgCNFpF/y/TuISP8046T6DKUU+j92ujoCt4jI7kAt8DbebinA\nHcAzIvJx8vjZm8AKYBUwu8F7NN7uPOAhEak/tX45sLKlIMaYhSk+QymFnhVVqlX0rGj+6FlRpSJm\n1apVRWPGjOnTs2fPwQMHDhwwdOjQivvuu2/3p556qlOnTp2G1t/TWVFRUfn44493Amjfvv1B9a9f\ntGhR6ciRI/v17t17UGVl5YCTTjqp76pVq4oAnn322Y6DBw8e0KdPn4F9+vQZeP311+9p6+fMlO6K\nKtUW8fKsTltEPJFy2iKAuro6xowZ02/s2LGf198KtXLlypLp06fv3rlz5y0HH3zwxhdffPHt5l6/\nefNmGTNmzP7XXHPNqrFjxyYAnnrqqU5r1qwpMsZw3nnn9Zk+ffo7I0aM2Lx69eqiY489dv+ePXvu\nOOOMMxLZ+0FzS4tN5ZwTcwuA9g0eZU38uh3eXRmfN3h8UVNdpXdPNDJjxoxOxcXF5le/+tXa+uf6\n9++//bLLLvv0qaee6pTqtQB33HFH52HDhm2sLzWA0aNHbwC46KKL9jn99NM/HzFixGbwpkW6+uqr\nP7zyyiv30WJTkeHE3E7AAUD/Bl/7A3uxq7wynbnBODF3PV8tu4aPT/Hu5lhaU12V0WpGQbR48eKy\nIUOGNHtr3rx58zpWVFT859rGxx577J2BAwf+51KfJUuWlA0bNqzJ1y9fvrzsnHPO+coN9SNGjNj8\n9ttvlzW1vV9psakWOTG3COiDV1yNS2zvHH60AOXJR98WMq4FliYfS/AuXl5QU13V4j2PQXf22Wfv\nO3fu3I7FxcWmurr6w5Z2RaNAi019jRNzOwDfAEYBI/HuS83qfFk50BUv76gGz+1wYu5i4HVgbvLr\nsqDv3g4ePHjLE088sUf97++///4PVq9eXXTwwQcPSOf1AwcO3PrSSy91bOp7FRUVW+bNm9f+rLPO\n+rL+udmzZ7fv16/flrYnzx89K6pwYm6xE3OPcWLu1U7MfQVYh3d/7KXAkfi/1JpTDAwDfgT8BVgE\nfOLE3KlOzP1ussADZ8yYMRu2bdsm1157bdf65zZu3Jj2v+Xx48d/Pn/+/I4PP/zwf6YZevrppzu+\n/vrr7SZNmrR22rRpXV555ZUygDVr1hReeumlPSdNmrQmuz9FbumILaKcmLsPcFLycSy77ooIuy54\ns5ycA2x1Yu4/8CYHmFFTXRWIf7wFBQXMmDHjnQsvvLDXzTffvFfnzp1r27dvvzMej38IXz/Gdskl\nl6xuuAhLx44dzRNPPPH2xIkTe11yySW9ioqKzIABA7ZMmTLlg169etXefffd711wwQXOpk2bCowx\nMmHChE8anmgIAr1AN0KSZTYOOA040HIcvzHAHLySe6Kmump5UxvpBbr505YLdHXEFnJOzC3EG5WN\nT37N6qIZISJ4s64cDlzjxNy38GZGmV5TXTXHajLValpsIeXE3D7AD/FGaFlf3iwC9gcmAZOcmPs6\ncBPwyBPf72k3lUqLFluIODG3BDgFOB/vuFlWF8iIsEPwpnW/btP2uvY7dtZ9WVxYUGs7lGqeFlsI\nODG3Aq/MzsG77EHlxj4bd9SxfPX68vKy4s+7dir9tH1JUaAugwiKuro6wZszMCNabAHmxNyBwNXA\nybazRMX7X+6gS5eEfGl22zOxZcee7UuKNnTpWPLJ7mXFCREdIGdDXV2drF27thzvQuuMaLEFkBNz\nHbyFYM5Cr0XMq1vmrOOnQO/dP0O8Pf1O70GnwgJqy4oKNpQVywbxzrCqzNUBS2pra8/P9A30co8A\ncWJuN7wJKX9EcC+aDbuPgBjwQE11lf7jskSLLQCcmLsb3joHF+PN5qv871XgoprqqtdtB4kiLTYf\nc2JuKfATvLVAdam84DHAfUAsKHc1hIUWmw8lL6o9D7gCXSIvDDbgneT5UxRmG/EDLTafcWLuALz/\n5Q+2nUVl3TvApJrqqidsBwk7LTafcGKu4B1D+z1Nr0WqwuN54Gc11VXLbAcJKy02H3Bibm+8xZdH\n2U2i8qgWuA64oqa6Su9iyDItNsucmPsD4EaiM22Q+qrXgbE11VWRnvE227TYLHFibnfgTmCM7SzK\nuk14l4b8xXaQsNBis8CJuacCtwGBW69R5dSjwAU11VXrWtxSpaTFlkdOzN0duBU403YW5VvvA9+r\nqa6aZztIkOl9hnnixNyD8Obc11JTqfQGXnZi7o9tBwkyHbHlQXLX8z68NTaVStf9wI9rqquaXUNU\nNU1HbDnmxNzLgOloqanWOxt4zYm5/WwHCRodseVI8j7Pv6C7nqrt1gLH11RXvWk7SFBoseWAE3M7\nAzPwFh1WKhsSwOia6qqXbQcJAt0VzTIn5vYCXkZLTWVXOfCsE3OPtx0kCLTYsig5VferwADbWVQo\ntQeedGLu92wH8TsttixxYu4I4F9AD9tZVKiVAA8nb8VTzdBiywIn5p6IN2PDHrazqEgoBO5yYu7F\ntoP4lRZbGzkx90jgMXSqIZVfAvzRibm/sx3Ej/SsaBs4MXcw8BKwu+0sKtJuAi7WxWN20RFbhpJL\n4D2Dlpqy7yLgdtsh/ESLLQNOzO0KPAfsYzuLUknjnZh7qe0QfqG7oq3kxNxOwIvAcNtZlGrEAKfX\nVFdNtx3ENi22VnBibgnwd+BbtrMo1YwtwMior2equ6JpcmJuAfBXtNSUv5XhXcQb6WUbtdjSdytw\nmu0QSqVhL+ApJ+Z2tB3EFi22NDgx9wpggu0cSrXCEOCh5J5G5ETyh24NJ+aOBuK2cyiVgdHADbZD\n2KAnD1JwYu7eeNN566IrKsgm1FRX3WY7RD5psTUjuTL7c8CxtrMo1Ua1wEk11VXP2w6SL7or2rxf\noKWmwqEImObE3L1sB8kXLbYmODF3OPB72zmUyqI9iNBtV1psjSRPkT8EFNvOolSWnezE3LNsh8gH\nLbavuwXY33YIpXLkpijskmqxNeDE3NOB82znUCqHOhOBXVI9K5qUnIZoAd6iGUqF3Vk11VUP2A6R\nK1psgBNzC/EmjNSVpVRUfAEMrKmuWmM7SC7orqjnp2ipqWjpDIT2ot3Ij9icmLsH8DbeX7RSUXNm\nTXXVg7ZDZJuO2OBytNRUdN3ixNzutkNkW6SLzYm5+wE/sZ1DKYs6A3+2HSLbIl1sQDXeArRKRdmp\nTswN1THmyBZb8i/ye7ZzKOUT1bYDZFNki42IzlOlVDOOcmJule0Q2RLJYnNi7n8Dh9vOoZTPXJ2c\nrivwIldsTswtJWTDbqWyZAgw1naIbIhcseFdjNvHdgilfOp3yTtxAi1SxebE3C7AZbZzKOVj+wFn\n2A7RVpEqNuBnwO62Qyjlc5cG/VhbZIrNibntgB/bzqFUAFQC37Udoi0iU2zAmehqU0qlK9CHbKJU\nbBfZDqBUgBzkxNyTbIfIVCSKzYm5xwCDbedQKmAm2A6QqUgUGzpaUyoTJzgxt5vtEJkIfbE5Mbcn\nMNp2DqUCqIiAXrAb+mIDfkA0fk6lcuEc2wEykfY/eBHpJyJ/FZHHROSIXIbKluS1OONs51AqwA5y\nYu4g2yFaq9liE5F2jZ66Cvg13kWuU3IZKouOBRzbIZQKuHNtB2itVCO2GSLScBi6A68kegM7cxkq\ni863HUCpEDgzaPePpiq2E4DdROQZETka+AVwPPAdvItdfc2JuZ2BU2znUCoE9ga+bTtEazRbbMaY\nncaYW4HTgZOBm4B7jDGTjDEr8hWwDU5Ep/1WKlsCdRIh1TG2w0TkUbzjaffireb0exG5QUSCcCP5\n8bYDKBUipzgxdzfbIdKValf0dmAiEAduN8a8Y4w5A3gSmJaHbBlLng09znYOpUKkDDjNdoh0pSq2\nWnadLNhe/6QxZpYxxu+joYOA0K2VqJRlvj+2Xi9VsY0FTgWOIWD713gnPpRS2XVkcvov3ytq7hvG\nmJXApDxmySYtNqWyrwQ4DJhlO0hLQnerUfIAZyDujFAqgI6yHSAdoSs2vLsNmh2JKqXa5GjbAdKR\nVrGJSJmIHJDrMFmiu6FK5c4RQbgLocViE5ExwALgmeTvh4rIk7kO1gZ+P2OrVJB1BIbZDtGSdEZs\nceBQ4EsAY8wCfLoupxNzK4F9bedQKuR8f5wtnWLbYYxJNHrO5CJMFuhFuUrlnu+Ps6VTbEtFZCxQ\nKCL7i8gtwCs5zpUp3w+RlQqBEX5fdzSdYvspMBDYBjwIJPDmZPOjAbYDKBUBXfDWHvWtlJdFiEgh\ncKUx5hcEY53BoJy5VSrojgKW2g7RnJQjNmPMTmBEnrK0iRNzewCdbOdQKiJ83QvpXMj6ZvLyjunA\npvonjTF/y1mqzOhuqFL54+u9o3SKrR3wOd7N8PUM4Ldiq7AdQKkI8fVlVS0WmzEmKKs8abEplT/d\nnJjbrqa6aqvtIE1psdiSq1X9EO/M6H+mLDHG/CCHuTKhxaZUfu0LrLQdoinpXO5xP7AX3q1Ks4Ce\nwIZchsqQHmNTKr962w7QnHSKrZ8x5jfAJmPMVKAKb04m33BibidgH9s5lIoY3x5nS+uWquTXL0Vk\nEFAOdMtdpIzobqhS+efbYkvnrOgdIrIH8Bu8hVw6Ar/NaarW091QpfLPt7ui6ZwVvSv5y1lA39zG\nyVgP2wGUiqDgjthEpBRvURen4fbGmCtzF6vV2tsOoFQE+bbY0jnG9gTwX3jL8W1q8PATLTal8q+X\nX2f5SOcYW09jjN+n29ZiUyr/SvAuBVttO0hj6YzYXhGRwTlP0jZabErZ0dV2gKY0O2ITkcV494QW\nAeNE5F28OdkEMMaYIfmJmBYtNqXsKLYdoCmpdkVH5y1F22mxKWVH4IptLd56BzsAksvvnQS878Mp\ni8psB1AqonxZbKmOsT2Dd4kHItIPeBXvOrYLReSa3EdrFR2xKWVH4IptD2PMW8lfnws8ZIz5KXAi\n/ttN1WJTyg5fFluqXdGGS+wdA/wBwBizXUTqcpqq9bTYAqiU7Vt/V3TvawMKPvD9yuKqae+Zveq8\neTH8JVWxLRKR64GPgH7AcwAisns+grWSFlvAnFP43Gu/Kbq/Z7HsHGU7i8rcgbzry/+UUhXbeOAi\nvONsxxljNiefrwSuz3Gu1iq1HUClZ4i889Y9Jddt7CIbDredRWXFTtsBmtJssRljtgDVTTz/Cv5b\nMHkT0Nl2CNW83dmw7q6SGxYPl5VHiuDL/+VVRmptB2hKOrdUBUEC6GU7hPq6Aup2Xlb0wMvjCp8e\nUiAcbTuPyjotthz60nYA9XUnFMx548bi/+3UTnaMtJ1F5UzCdoCmpDNt0WnGmOktPWeZL/9wo8qR\n1avuK67+aN+CtXocLfzW2g7QlHRugv91ms/ZpMXmA+3ZuunO4utnvlgyqZuWWiQYfFpsqW6CPxHv\nFqoeInJzg2/thv/2q3VX1LIfFc6Y/auiaX0LpW6U7Swqb74knvBbFwCpd0U/BuYBJwPzGzy/Abg4\nl6Ey8KntAFF1qCxfdmfJDTvLZfORtrOovPPtv7tUl3ssBBaKyIPJ7fY1xvw7b8lax3cT3YVdN9at\nvafkun9XyvtHiuDLWVRVzvm22NI5xnYCsADvpnhEZKiIPJnTVK33se0AUVFE7Y5riu6cNaf0wtKB\nBe+P0FKLNF8eX4P0LveIA4cCMwGMMQtEpE8OM2VCR2x5cGrBS69fU3zXniVSq5dvKPDxiC2dYtth\njEmIfOU/ZtPcxpboiC2HDpAP3ptacu3ne8m6Q2xnUb4S6GJbKiJjgUIR2R+YiP9uqfoU7541vVUn\nizqxKTGl+KYFRxYs+YYIfhulK/v8esw9rWNsPwUG4q138CCwHvhZLkO1Vk111U7gPds5wkKoq/t5\n0SMvLyy9YPuIwiUjRfw555aybqntAM1JZ8TW3RhzGXBZ/RMicgjwes5SZWY+3vRKqg2OLli4aErx\nTcUdZOsI21mUr+0EVtgO0Zx0RmyPiUiP+t+IyNHA3bmLlLH5LW+imtODtatfKPnFK/eVXDukg2wd\nYDuP8r23iSe22Q7RnHRGbD8CHheRMcAw4Bq8OxL8Zp7tAEFUyvat1xXf8drJBa8cIsI3bOdRgeHb\n3VBIo9iMMa+LyES8GXS3AscaY/x4/cobeGdr9bqqNJ1d+Nxrv9VZbFVmfF1sYkzTV26IyAy+ellH\nJd71YusAjDEn5zxdKzkx9y30OFuLGsxie5DtLCqwTieeeMR2iOakGrH5bfrvdOgJhBR0FluVRb4e\nsaW6V3SWiBQCLxhjvpnHTG0xDzjddgi/KaBu56VFD8z+QeHTg3UWW5UFW4GVtkOkkvIYmzFmp4jU\niUi5MSYIc57pmdFGji+Y++ZNxX/u2E52aKGpbHmFeGKH7RCppHNWdCOwWESex1s0BQBjzMScpcqc\nnkBISs5i+/G+BWsPs51Fhc4/bQdoSbMnD/6zgci5TT1vjJmak0Rt5MTclcD+tnPY0p6tm24q/vO8\nYwvmHyZCO9t5VCgdSTzht9sqvyKdyz18WWApzCeixdZgFludfUPlykZgru0QLUlnMZf98S7KrYRd\nIwBjTN8c5mqL2cAZtkPkk85iq/LoZb9OB95QOsfY7gGuAP4EfBMYR3q3YtnyOHAzETjO1o11a+8u\n+cOKgVKjEz6qfPH98TVIr6DKjDH/wDse974xJg5U5TZW5mqqqz4kAEPltiiidsfVRXfNmlN6Yemg\ngpqjtNRUHr1oO0A60hmxbRORAuAtEfkJ8BHQMbex2uxRIJRnA79T8K/Xry2+U2exVTZ8iXflge+l\nU2wXAe3xJpi8CjgGaPJMqY88BvzBdohs0llslQ/8nXiiznaIdLR4uUdQOTF3Pt5sJIHWkc3rpxTf\n+OYIbxZbnfBR2TSGeOIp2yHSkWrB5JQrUfnxJvhGHiPAxSbU1f2s6LHZPy18vKJAjO52Ktu+AJ61\nHSJdqXZFjwBWAQ8BcwjeWcZHgd/bDpGJowoWLb6t+MaiDrL1KNtZlEp6zO+3UTWUatqiQuDbwPeB\nIYALPGSM8fVd/Q05MXcxMMh2jnTtw2erp5ZUv7t/wcd6PZrym2OIJwJxRhRSXO5hjNlpjHnGGHMu\ncDjwNjAzeWY0KB61HSAdpWzfemPxrbNml07cTUtN+dBqYJbtEK2R8qyoiJTiXbP2fcDBu/D1/3If\nK2sew1vw2bfOLnz+td8W3dejWHbqcTTlV48E5WxovVS7ovfh7cb9HXjYGLMkn8GyxYm5K4ADbOdo\nTGexVQFyOPHEHNshWiNVsdWxa5qihhsJYIwxu+U4W1Y4MfdSfHQSQWexVQHzb+KJCtshWivVDLp+\nvh+0NaYAlwIdbIbQWWxVQN1kO0AmwlJezaqprloH3Gkzw/EFc99cVjru3fOLnj66QNjDZhalWuEL\nIGjTlgHp3VIVBn8EfkKef97esubD+4urP9y34NPD8/m5SmXJHcQTm22HyEToR2wANdVVq4CH8/V5\n7dm66Y7iG2bOLPn5nlpqKqB2ALfYDpGpSBRb0nX5+JAfFc54ZXHp+euPK5w/SqfmVgH2CPHEx7ZD\nZCq0N8E3xYm5TwMn5OK9D5EVy+8qub62XDYPzsX7K5VnBxNPBHbVt6gcY6t3HVkutgaz2B4pEqkR\nsAqvfwW51CBau6LUVFe9CLyejfdqYhbbSP1ZqlAL/FyGURuxgfeX9khb3kBnsVUhNpt4YobtEG0V\nxWJ7DO+G/n6tfWF/WfXefSXVn+kstirEfmk7QDZE6uRBPSfmjgfuSHd7bxbbm94cUbBYZ7FVYfY3\n4olTbYfIhqgeF7obWNzSRkJd3cVF019eWDp+21GFi0dqqakQqwV+bTtEtkRyxAbgxNxRpFhKrMEs\ntgPyl0opa6YQT/yP7RDZEtliA3Bi7nTgew2f01lsVQRtBPoRT3xiO0i2RHVXtN4kYAt4s9j+qfjP\nM3UWWxVB14ep1CDiIzYAJ+b+9qzC50+8wpvFtpftPErlWQ0wiHhiU0sbBknki+3DK/Yr7SmfLSGD\nyz+UCoFvE0+8YDtEtkV9V5Sev3tnG/Bj2zmUsuAvYSw10GLzxBP/AO6zHUOpPPoI7xhzKGmx7fJz\nYK3tEErlyY+IJxK2Q+SKFlu9eOJz4HzbMZTKgweIJ1zbIXJJi62heOJJAjxrqFJp+ASYaDtErmmx\nfd0vgQW2QyiVI/9DPPGF7RC5psXWWDyxDTidXWuqKhUWU4gn/mY7RD5osTUlnliJt6qVUmExH7jY\ndoh8ifwFuinFy/8KnGk7hlJt9CUwjHjiPdtB8kVHbKlNwJuUUqmgMsA5USo10GJLLZ7YAHwXWG87\nilIZiodhqu/W0mJrSTyxGDgNbyI+pYLkceAq2yFs0GJLRzzxHN5uqVJBsQxvFzSSB9G12NIVT9wF\nXGM7hlJpWAWckDyUEklabK1zGfCw7RBKpbAWbyqiVbaD2KSXe7RWvLwUeAEYYTuKUo1sAL4Z9FXc\ns0GLLRPx8s7Aq0B/21GUStoGnEg80ewCRVGiu6KZ8O61OwZYaTuKUsBO4AwttV202DIVT3wEjAKW\nW06ios0A44knHrcdxE+02NoinliNV25LLSdR0WSAi4gn7rEdxG/0GFs2xMv3BP4BDLEdRUVGLfAD\n4on7bQfxIy22bImXdwGeBw5sywOKAAAFfklEQVSyHUWF3hbgtLDPgtsWWmzZFC/fA3gOONh2FBVa\nXwKjiSdm2w7iZ3qMLZviiXXAt4C/246iQmk1cLSWWsu02LItnlgPjAH+ZDuKCpV3gBHJSRlUC3RX\nNJfi5T8EpgDFtqOoQJsL/BfxxBrbQYJCR2y5FE/8Bfg28LntKCqwbgOO0lJrHR2x5UO8vC8wA6i0\nHUUFxhZgAvHEVNtBgkiLLV/i5bsBDwEn2Y6ifO9d4LvEEwttBwkq3RXNF++kwmjg53g3LCvVFBcY\nrqXWNjpisyFePgR4ABhkO4ryjTrgd8BVUZ31Npu02Gzx5nWrBi4CxHIaZddKvNuj9Pq0LNFisy1e\nfhxwL7C35SQq/3YCfwR+Szyx1XaYMNFi8wPvPtM78Jb6U9GwFG+UNtd2kDDSYvOTePl38f4H7207\nisqZWuBa4Eriie22w4SVFpvfxMvLgBjwK6Cd5TQquxbgjdLetB0k7LTY/Cpe3gdv9HaK7SiqzT4G\nrgDuIZ7YaTtMFGix+V28/HjgJuAA21FUq20ErgNuIJ7YbDtMlGixBUG8vBjvspAY0MVyGtWyWuBO\nIE488antMFGkxRYk8fKOwARgEtDdchrVtMeBGPHEv20HiTIttiDyTjCMxzvB0MNyGuXdNfAE8Afi\niVdth1FabMHm3b0wDm8XVS8Ryb/NwD3AjcQTb9sOo3bRYgsD7xjc2XjH4XSlrNxbDdwK3JZcPFv5\njBZb2MTLvwH8GDgNvQ4u2xbjXYLzoF5c629abGEVL++MN4o7DxhqN0ygrcGbR+8B4on5tsOo9Gix\nRUG8fChewX0f6GY3TCBsAP4P+CvwT72oNni02KIkXl4AHI63itYYYKDdQL6yA3gWr8yeJJ7YYjmP\nagMttijz1mKoL7mjid5qWquAZ5KPF5KzHKsQ0GJTnnh5OXA8cCxwGN5ortBqpuz7ApgFvIi3i7nU\nch6VI1psqmneXQ6H4JXc4cmve1nN1Dqb8c5iLkw+XgEWEU/UWU2l8kKLTaUvXt6bXaO5/YC+ya+2\nT0h8yK4Cq3+8pSUWXVpsqu280V3fBo/9gK5AObBbo0cnWl7jYQewPfn4Am/an4+Bjxp99R46c4Zq\nRItN5Ve8XPDKbTe85R+3f+WhF76qLNBiU0qFji6YrFSSiHQXkQdF5F0RmS8ir4rId0RklIgkRGRB\ng8exyddsbPD6/iLydxF5S0TeEJFHRKR78nsjRGSuiKxIPi6w9XNGQZHtAEr5gYgI3lxqU40xY5PP\n9QZOBtYB/zLGjE7x+nZ4q7j/3BgzI/ncKKBr8r0fBE4xxrwhInsCz4rIR8YYN5c/V1TpiE0pzzHA\ndmPMbfVPGGPeN8bckubrxwKv1pda8vUzjTFLgAuBe40xbySf/wxvLr1Y1tKrr9BiU8ozEHgjxfeP\narQrul+j7w8CmrtJfmAT35uH3tKWM7orqlQTROTPwAi8s7W/pIVdUeUvOmJTyrMUGFb/G2PMhcC3\n8K7HS/f1w5v53rImvjc8+RqVA1psSnn+CbQTkQkNnmvfitc/CHxDRKrqnxCRo0VkEPBn4DwRGZp8\nvgveavDXtT22aopex6ZUkojsDfwJ77axtcAm4DbgE7zFWt5rsPlkY8yjIrLRGNMx+foK4Ea8Oy92\nAIuAi4wxn4jI0cAN7Lrz4kZjzJT8/GTRo8WmlAod3RVVSoWOFptSKnS02JRSoaPFppQKHS02pVTo\naLEppUJHi00pFTpabEqp0NFiU0qFjhabUip0tNiUUqGjxaaUCh0tNqVU6GixKaVCR4tNKRU6WmxK\nqdDRYlNKhY4Wm1IqdLTYlFKho8WmlAodLTalVOhosSmlQkeLTSkVOlpsSqnQ0WJTSoWOFptSKnS0\n2JRSofP/LrNWcuvLhmgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "GNa4z4IG4knV", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 310 + }, + "outputId": "17e7e26e-a77b-49e3-a7f2-0c55c3902d3c" + }, + "cell_type": "code", + "source": [ + "insurance.loc['Others']=[100-18.07-12.79]\n", + "insurance.plot.pie('Market Share %', figsize=(5, 5));" + ], + "execution_count": 92, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAElCAYAAACYt0sEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VNX9//HXmWwkBBLCvsmgGELg\nAoLF+ivWtRarWOtS/KJ19OvSoi3UpRqr1VSppa1LS61ibW1HW5VarQqx2m9rxdaFfbkQIvseNoGw\nhWQmc35/3EHjmGWSzMyZmft5Ph7zgEzuzH0nhHfueo7SWiOEEOJTHtMBhBAi2UgxCiFEBClGIYSI\nIMUohBARpBiFECKCFKMQQkSQYhRCiAhSjEIIEUGKUQghIkgxCiFEBClGIYSIIMUohBARpBiFECKC\nFKMQQkSQYhRCiAiZiVrR4sWLe2VmZv4OGIEUcryEgJXBYPCGsWPH7jYdRohUlbBizMzM/F2fPn2G\n9ezZc7/H45HRceMgFAqpPXv2lO7cufN3wMWm8wiRqhK55TaiZ8+eB6UU48fj8eiePXvW4GyVCyHa\nKZHF6JFSjL/w91gOVQjRAa76D3TXXXf1GTJkyPDi4uLSkpKS0rfffrszwAMPPNDr0KFDrX4vol2u\nscsuu8zbv39/q6SkpLSkpKR0+vTpvdqbXwiRGAk7xhjJW1YxNpbvt2nGhYtb+vw///nPzm+99Vah\nbduVubm5urq6OrOurk4BPPXUU71vvPHGfV26dAm19B7RLhdp+vTp26677rr9bXkNQDAYJDPT2D+R\nEK7lmi3G7du3ZxUVFQVzc3M1QN++fYNerzcwffr0Xrt3784688wzi0877bRigKuuuuqEESNGDBsy\nZMjwW2+9tR9AU8u98sorXUePHl1SWlo67IILLjixpqYm6u9nU+sA6N+/vzVlypT+paWlw5555plu\n48aNG3r99dcPHDFixLATTzxx+Lx58/LOP//8kwYNGjRi6tSp/VpaRypTSvVWSj2vlNqglFqslPpA\nKfUNpdRZSqkapdSyRo/zwq853Oj1xUqpN5RSa5VSS5RSf1FK9Q5/brxSaoFSqir8uMnU1ymSk2uK\n8ZJLLjm4Y8eObK/XO+Lqq68+oaKiIh/g3nvv3d2rV6/AvHnz1syfP38NwKOPPrp95cqVq6uqqla9\n9957XebPn58buVx1dXXmQw891Pfdd99dU1lZuXrMmDFHH3zwwd5Nrfvee+8dcHxXesGCBbnNreP4\n8t27dw9WVlauvummm/YDZGdnh1auXLn6uuuu23PFFVcMefrpp7dUVVWtmj17do+dO3dmxP+7l1hK\nKQW8CryrtT5Raz0WuBIYEF7kP1rr0Y0e/4x4fSegAnhSa32y1noM8ATQUynVB3ge+I7WugQYD3xb\nKXVhgr48kQJcU4wFBQWhlStXVj7++OObe/bsGfT5fCfNnDmze1PL+v3+otLS0mGlpaWla9eu7bR8\n+fJOkcu88847ndevX99p3LhxJSUlJaUvvvhi9y1btmQ39X7Tp0/fVlVVVVlVVVU5bty42tbWcc01\n13xmt/sb3/jGAYBRo0bVDhkypHbQoEGB3NxcPXDgwLoNGzY0uc4Udw5Qr7WedfwJrfVmrfWvo3z9\nZOADrfWcRq9/R2u9ErgF+KPWekn4+b3AnUBZzNKLlOeqA1iZmZlcdNFFhy666KJDI0eOrH3uuee6\nT5069ePGy1RVVWU//vjjvRcvXry6Z8+eDZdddpn32LFjn/sForVm/PjxB+fMmbOxrTlaW0fkMcxO\nnTppAI/HQ05Ozidn9j0eD8FgULV1/SlgOLCkhc+foZRa1ujjy7TW6xt9PAJo7pjzcMAf8dyi8PNC\nAC7aYly+fHmObds5xz9eunRp7oABA+oBOnfu3HD8+OD+/fszcnNzQ0VFRQ1bt27NfOeddwqOv6bx\ncmedddaRRYsW5a9cuTIH4ODBg54VK1bkEIWW1iE+Tyn1G6XUcqXUwvBTkbvS61t8AyHayDVbjAcP\nHsyYOnXqCQcPHszIyMjQXq+3zu/3bwbw+Xx7J0yYUNy7d+/6+fPnrxkxYsTRk046aUTfvn3rx44d\n+8kB/cjlnnrqqU1XXnnlifX19Qrg/vvv3z5y5Mi61rKcfvrptc2tQwCwCrjs+Ada61uUUj1wtuyi\nff2ZzXyuEhgLvNboubHh1wgBgNI6MddcL1++fNOoUaP2JmRlLrd8+fIeo0aN8prO0V7hky8f4hwL\nfDL83AnAu8C1wB1a64uaeN1hrXW+UioXsIFpWuuK8Oe+DOwDPgbmAxdrrZcppboDbwIPND4mKdzN\nNbvSInVo57f1JcCZSqmNSqkFOMcF7wovckbE5TqXR7y+FrgI+F74cp1K4GZgj9a6GrgaeFopVQW8\nDzwjpSgac82utEgt4QK7splPN3lMVmud3+jvVcCEZpZ7F/hCRzOK9CVbjEIIEUGKUQghIkgxCiFE\nBClGIYSI4Lpi3Lp1a+bEiRMHDxgwwBo+fPiw0aNHlzz77LOFc+fO7dKlS5fRx+9pLikpKX311Ve7\nAOTl5Z1y/PUrVqzIOfPMM4cMGjRoRGlp6bCvfe1rJ27dujUT4K233sq3LGvY4MGDhw8ePHj4ww8/\n3MPU1ymEaD9zZ6XLC2I67BjlNS0OOwYQCoWYOHHikMmTJ398/Fa+NWvWZL/00kuFRUVFtaeeeurh\nf//73+uae/3Ro0fVxIkTT/7pT3+6dfLkyTUAc+fO7bJz585MrTXXXnvt4Jdeemn9+PHjj1ZXV2ee\nd955Jw8YMCBw5ZVX1sTuCxVCxJurLteZM2dOl6ysLH3nnXfuOf5ccXFx/T333LN77ty5XVp7/W9/\n+9uiMWPGHD5eigAXXXTRIYBp06b1mzRp0sfjx48/Cs6wZg899NC2Bx54oJ/ri7G8wAMUhh/dwo9C\nnJ+/ABAMPwJAPXAEOAwc+uTP8pqGxAcXbuWqYrRtO3fkyJFHm/v8okWL8ktKSkqPf/zyyy+vHz58\n+Ce3+K1cuTJ3zJgxTb5+9erVuddcc81nBqQYP3780XXr1uU2tXzaKC/oD5SGHyVALz4tv+MF2BXo\n2GAX5QX7gI3AhkZ/Hn9sobwm0KH3F6IRVxVjpG9961snLFiwID8rK0vPmDFjW2u70q5WXnACnxZg\nKc5oNMNo5mLrOCgKP5o6BNNAecE2Pi3NVcB7wBIpTNEeripGy7JqX3vttW7HP37uuee2VFdXZ556\n6qnDonn98OHDj7377rv5TX2upKSkdtGiRXlXX331gePPvffee3lDhgyp7XjyBCsvyAJOB87DGRtx\nJNDqoQaDMoBB4cfZjZ6vpbxgAfDf8OMDymvcfVhDRMVVZ6UnTpx4qK6uTv3sZz/refy5w4cPR/09\nuPHGGz9evHhx/osvvvjJVtLf//73/IULF3a6/fbb98yePbv7+++/nwuwc+fOjB/+8IcDbr/99p2x\n/SripLxgBOUFt1JeUAHsB+YBPwK+RHKXYktycUbZuQf4O7CP8oLllBf8hvKCyeGtYCE+x1VbjB6P\nhzlz5qy/5ZZbBs6cObNPUVFRMC8vr6G8vHwbfP4Y41133VXdeBKr/Px8/dprr62bOnXqwLvuumtg\nZmamHjZsWO2TTz65ZeDAgcFnnnlm40033eQ9cuSIR2utpkyZsqvxiZqk4hwbPA/4CnAu0MdsoITw\n4Gz9jsQZVALKC1YDfwFmU16z2lw0kUxk2LE01OywY+UF/XCG/Z8MnPK5zwsbmI1TknKs2cVctcXo\nSuUFXYHLgauAs3DZ4ZM2ssKP6ZQXLMUpyb9QXtPm6StEapNiTFOW3zoTuKHHwP5D/r11+xdN50lB\np4QfMygvWAi8APyR8po2zw8uUo9sPaSRhlCDZ8/RPb32B/b3B94Brt6b4TltQ1bmZsPRUt0XgEeB\nbZQXzKK8oLS1F4jUJsWYBuob6rN2HN7Rf83+NSN3H909sEE3fLonoJR6uKib7ArGRh7wbWAV5QX/\n2HP/CRO8ZRXpOEuj68mudAqrDdZ22lu7t8+h+kNFWutm/4P+N7fT8AAEsiArkfnS3Ff+0TA2G3jY\nW1bxc+D5TTMuDJoOJWJDthhT0JHAkbyNNRuHbDiwYfjBuoPdWypFAK1Uz5e75Lc6yIaIXkiz/yfB\nq0/l03mq13vLKm72llXIL5804LpiXL9+fda555570qBBg0YMHDhwxHXXXTfw2LFj6v3338+dPXv2\nJxdu33bbbf3uu+++3iazRjoWPJaz+eDmEzfVbBp2NHC0TbfiPVVYIHsHMVQR+uLyo3Tq3OipE4Df\nAKu9ZRWTZBc7tRn7z2L5rZgOO2b77KiGHbvkkkuG3HDDDbunTZu2PhgMMnny5EHTpk3rP3z48NpF\nixZ1njRpUkwuyA4Gg2RmxubbG2gIZO46uqtfTX1ND3T7BmPYm+EZsyUzc9sJweCAmIRyMa05dG/g\nf0c38+mTgBeBO7xlFXdtmnHh2wmMJmLEVVuMc+bM6ZKTkxOaNm3axwCZmZnMmjVr6wsvvNCjvLx8\nwJw5c7qVlJSUPv30093AGTFn3LhxQwcMGGBNnz691/H3eeKJJ4osyxpWUlJSOnny5EHBoHNoKS8v\n75Qbb7xxwNChQ0v/9a9/5d988839TzrppOHFxcWlN910U5sLqSHU4Kk+XN1v7YG1Vk1dTc/2liIA\nSnkeKSqUi5ZjYF5o5JIa8gtbWexU4F/esoq3vGUVzZWoSFKuKkbbtnNHjRr1mWHDioqKQv3796+/\n7bbbqidOnLi/qqqq8sYbb9wPsG7duk7z5s1bs3DhwtUPP/xwv7q6OrVkyZJOf/3rX4sWLVpUVVVV\nVenxePSsWbO6A9TW1npOO+20Ix999FHlqFGjat94441ua9euXbVmzZrKhx56qLotWfcd21e09sBa\na9+xfX211jH5d3onL3doA8i4hh2gNcfuCtwU1aAjYecDS7xlFc94yyqK4pVLxJarirGtzj///AO5\nubm6b9++waKiosC2bdsy33zzzS4rV67MGzVq1LCSkpLS//73v103bNiQA5CRkcG11167H6B79+4N\nOTk5oUmTJnn9fn9hfn5+KJp11gXrsjfWbDy5+nD14IZQQ0wPdYSU6vtafmc5CdMBi3Xxgl0U9Wp9\nyc9QwHU4xx8nxyGWiDFXFeOIESNqly9fntf4uX379nmqq6uzMzMzP3fTeE5OzifPZWRkEAwGldZa\nXXHFFR9XVVVVVlVVVW7atGnlo48+ugMgOzs7dPy4YlZWFsuWLVt9+eWX7587d27hWWeddXJL2UI6\npHYd2dVnfc364UcDR7vG5AtuwhPdEjV8YvrRmuBtgSknduAtegF/9pZVvOEtqxgUq1wi9lxVjBdf\nfPGhY8eOeR5//PHu4JwgufnmmwdeccUVe/v06ROIZgiyCRMmHJw7d2637du3ZwLs2rUrY82aNdmR\ny9XU1Hj27duXMWnSpJpZs2Ztraqqyvv8uzkO1x/uvP7A+mF7a/f2j9Vuc3N2ZWSM3ZGZ0abdeuGo\n0gPnb9G9Y3Hy6gJglbes4lZvWUVGDN5PxJiritHj8fDqq6+ue+WVV7oNGjRoxODBg0fk5OSEZs6c\nuf2CCy44tGbNmtzGJ1+aMnbs2GP33nvv9nPPPbe4uLi49JxzzineunXr565dO3DgQMaECRNOLi4u\nLj399NOHPvjgg1sjl9Fas+Pwjv6bD24uqW+oT8wUCEplPNat8KOErCuNaE3o1sAtfWP4lp1xbjP8\n0FtWURLD9xUxIMOOGVIXrMveenjriXXBus6tL902Ozfu5PuV32/28xlab1+yaWtfj8t+MXbE5lCv\nD8+s/2W8BuM4Anx304wL/xin9xdtJP8xDNh3bF/RhpoNpfEoxWg0KNX/jc55S0ysO1XdHpgSz4Oz\nnYE/eMsqnvOWVTQ5dYZILCnGBGoINXi2HNzirT5cPTikQ0aPLT3erVDu643SLl24eJEe2pZLdNrr\namCxXPdonhRjgtQGazutr1lfeqj+UHfTWQC2Z2acujsjY7fpHKmgLHBjIu8QK8Y57vjdBK5TREhk\nMYZCoZAr7x+tqasp2FSzaVigIZAT73VprdFEcdxYqcxfdSuQOU5acUB3XvHv0CmjErzaHODX3rKK\n571lFXH/mRGfl8hiXLlnz54Ct5Xj7qO7e287tG1ISIfi/r3WWlN/qJ6ttZ87Ad6kN/I7D9ZE06Lu\nVR7w1Rtc/f8Ab3vLKnq2uqSIqYSdlV68eHGvzMzM3wEjcMcuvDoUPFRUF6pL2MF0jWZr7Vae3vI0\nhxoORfWaR3btWXr+0VqZGKsJR3VOVWndH5LhUpoNwIWbZlxYZTqIWySsGN3E8ls9gFeAM0xnac2g\nQOCDuduqTzedIxndF/B98GzDV5Ple3MAuExG60kMN2y5JZTlt7zAh6RAKQJszswcu8/j+dh0jmRT\npzM3PNfwldNM52ikEHjTW1ZxvekgbiDFGEOW3xoK/AdnTL7UoFT2zG6FK03HSDaPBy+p1niS7f9H\nFvA7b1nFvaaDpDvZlY4Ry29ZwD9xBgpIKVlab1yyaetg0zmSRVB7tg2t8/dpICOZRz1/YNOMC+83\nHSJdJdtvxJRk+a0v4ExXmnKlCBBQavC83E7LTedIFn9smLAhyUsR4D5vWcVPTIdIV1KMHWT5rTNw\nthRTehDSx4oKj5jOkAwatNrzi+A3x5nOEaUfessqfmY6RDqSYuwAy299GXgTiNv4iYmyPitrTI3H\nc8B0DtNebvhyZR3ZnUznaIM7vWUVj5oOkW6kGNvJ8lujgddxJmFPfUp1+k1hwQrTMUzSmpofB68Z\nYzpHO9zqLav4lekQ6USKsR0sv3USzpZiWg2H/UqXzv1MZzDprdAXlh4ht4vpHO001VtW8UPTIdKF\nFGMbWX6rD/APIKnmnI6FOo9nyPudOtmmc5igNUfuDlw/0nSODvqJt6ziW6ZDpAMpxjaw/FYB8Heg\nI/N+JLVHiwpjMq92qnk/NHzRfrqm9Am0sN97yyrONR0i1UkxRsnyW52A14C0Hivvo+ysMQc9ylXl\nqDX1dwS+M9R0jhjJAl7xllWk+tavUVKM0XsaONN0iLhTKu/pggJXXdO4XJ80v5rufUzniKGuwBve\nsopYTNyFUuoepdQqpdQKpdQypdRp4ee/r5Rq9eRjtMtFvOaPSqmN4fUtU0pNbW/+9pBijILlt+7A\nGV3ZFV7smp92x0+bozUNtwampONUpv2Bv3vLKjo0fYZS6nTgImCM1nokcB5wfFy77xPdVRnRLhfp\nB1rr0eHHzGhfpJTq8Oj4UoytsPzWV4EZpnMk0jGPZ+iiTjmVpnMkwjrdf/5G3e8E0zniZATOnk5H\n9AX2aq3rALTWe7XWO8JbcP2Afyul/g2glHpSKbUovHX54/BzTS13vlLqA6XUEqXUS0qpqIfma2od\n4ec3KaV+ppRaAlyhlHpHKfVYeNnVSqkvKKVeUUqtVUpNb209UowtCI+U8zzgurl/HykqTPsRd7RG\n3xaYku6DwP6Pt6xiSgde/w9goFJqjVLqCaXUmQDhLbgdwNla67PDy96jtT4VGAmcqZQaGbmcUqoH\ncC9wntZ6DLAIuK2Zdf+i0a601dw6Gi3/sdZ6jNb6xfDH9eFlZ+GcH7gF55fFtUqpFqcYkWJsRvhk\ny8uk+K1+7bUyO/uUI0odNp0jnrbTY4GtTzzZdI4EeMxbVjG2PS/UWh8GxgI3AXuA2Uqpa5tZ/Jvh\nLbalwHCgtIllvhh+/j2l1DLABzR3KKPxrvTxy8haWsfsiNe/Hv7TBlZpravDW74bgIHNrBOQYmzJ\nr4FUvAsiNpTKf6ag61LTMeLpjsC33TJVaQ7wkresorA9L9ZaN2it39Fa3w98F7gschml1GDgDuDc\n8LHICqCpWysV8H+NCq9Uax3VGJNRrCPyfv+68J+hRn8//nGLg4RIMTbB8luXAjeYzmHanwu6JMWM\nhvGwV3dd+mFo+HDTORJoMPCst6yiTXMuKaWGKqUab1WPBjaH/34IOH6nUFecYqpRSvUGLmj0msbL\nfQh8SSk1JPz+nZVSxVHGaWkdMSXFGMHyW72Bp0znSAZHPJ7SFTnZH5nOEQ/3BK531aRsYRNxtrja\nIh/wK6UqlVIrcHZdy8Of+y3wplLq31rr5Ti7t1U4x+Xfa/QejZfbA1wLvBB+vw+AqObVaWUdMSUD\n1Uaw/NbrOD9AAhh9rO7d56p3fdl0jlg6qHNXjqz7/QjTOQypB07dNONCV976GS3ZYmzE8lvXI6X4\nGctyskfVKnXUdI5YejD4rVrTGQzKBvzesopkH4jXKCnGMMtvDQYeM50j6ShV8GxBlyWmY8RKrc5e\n81LDmaeazmHYKcA9pkMkMylGwPJbHuCPfHqAWDTi79o1bYZXeyR4xV5Qbjy+GOkeb1mFWw8ntEqK\n0XE9kFbH0WLpUIbHWp2dtd50jo6q1xmbn2m4IJmmRDUpC3jaW1YhHdAE139TLL/VDXjIdI5k93BR\nt22mM3TUrIaJW0N4XHcXUwu+iHM3iIjg+mIEpgM9TIdIdgs75Yys/+xFsiklqD3Vvw5emiqTXCXS\nT7xlFa4ZNCRari5Gy2+NAr5tOkcq0Ep1+3NBl0Wmc7TXnxvOXRsgM9t0jiTUBXjAdIhk4+piBB7H\nhQNEtNczBV1T8ha6kFZ7ZwQnu/1MdEuu95ZVNHVfs2u5thgtv3U1MN50jlRyICNj1LqsrI2mc7TV\na6H/t6qWnPSYzTE+MoBfmA6RTFxZjOGRc1w1xmKsPFxUuLn1pZKH1hy8L3BtWk9HESNfk7liPuXK\nYsQ5rtjfdIhU9H5upxH1zm1lKeHt0ClLD9E5ba7DjLNH5PIdh+u+CZbfygXuMp0jVWmlerzUNX+x\n6RzR0JrauwI3yrGz6I0CrjEdIhm4rhhxthb7mg6Ryp4uKEiJs7sLdMnCvRSm+wjdsXa/3EftsmKU\nrcXY+DjDM2ZzZubW1pc0R2sCtwemDDGdIwV5gW+aDmGaq4oRmAKk0zSZZiilHi4qTOpbBCv1oPnb\ndM9+pnOkqDtNBzDNNcUY3lp0/T94rLyblzssCEHTOZqiNaFbAzfLybX2G+Utq5hgOoRJrilG4FuA\n3PoUIyGlev+tS+ekPAmzUfeZv0YPHGw6R4pz9SEnNxWj3CwfY7MKC5Ly5+e2wM2unNkxxs7yllW4\n9t7ypPzBjjXLb52BMw+tiKHdGRljt2dm7DCdo7Fq3W3hMj1kqOkcaaLMdABTXFGMyNZifCjleaSo\n2xrTMRq7M/DtpqbsFO3zdW9ZRYvzL6ertC9Gy2/1BS41nSNdvZ2XWxxy5uk1bp/OX/6f0EjLdI40\n4gF8pkOYkPbFCNyEM1qxiIMGpfrNzU+OkzD3Ba5rMJ0hDV3b1rmo00HUxaiUGqKU+pNS6mWl1Onx\nDBUrlt/KwClGEUePFxYY32I8rDtVzg2dPsZ0jjR0Ei6c9qPZYlRKRR6reRC4G/g+8GQ8Q8XQOYBc\n5Btn1ZkZY3dmZOw0meGh4OSDJtef5q4zHSDRWtpinKOUanxDeQDndqFBQKrsskwyHcAVlMr8ZVFh\nlanVH9NZ659vOFcmuYqfy71lFa6aQbOlYpwAdFVKvamU+jJwB/BV4BvAVYkI1xGW38pCTrokzFud\n807SoE2s+1fBS3fKlKhx1RmX3T/dbDFqrRu01o/jbHVdDPwK+IPW+nattbGtgzY4H+hmOoRbBJUa\n+FbnvKWJXm9AZ2z9bcNFsrUYf1ebDpBILR1jPE0p9Vec44l/BO4FfqKUekQpVZigfB0hu9EJNrNb\nQcJnEfx9wwUbG8hw/TBZCTDeW1aRCv/vY6KlXemngKlAOfCU1nq91vpK4HVgdgKytZvlt3KAr5vO\n4TZbMzNP3Zvh2ZOo9TVotevR4BWytZgYmcAFpkMkSkvFGOTTky2fDGWvtZ6ntf5qnHN11ASgq+kQ\nrqNU1sxuhZWJWt3shrOr6snKSdT6BBNNB0iUlopxMnAZziUvqTbcuWt+syWbufmdByViPSHN/p8E\nrxqbiHWJT0xwy+jeLZ18WRM+0XK31jqpR2tuwnmmA7hVQCnvv/Jyl8V7PW+ETlt+hNyUnOc6hXUD\nvmQ6RCKk3S2Blt8ahHO1vjDkV90Kj8bz/bXm8D2B62VKVDNcsTuddsWIbC0atzErc+x+j2dfvN7/\n3dDIxTXku+YMaZK50HSARIiqGJVSuUqpVBnjTorRNKVyftOtwI7HW2tN3Z2Bm4bF471FVEq8ZRVp\nP/Niq8WolJoILAPeDH88Win1eryDtYfltxTOySJh2N/y8wfE432X6JPn76KoVzzeW0Tti6YDxFs0\nW4zlwDjgAIDWehmQrPNpWID8p0kC9R510n9zO62I5XtqTfC2wJQTY/meol1SYnStjoimGANa65qI\n54zcExsFudg3iTxaVHgolu/3kR44f7PuE5ctUdEmUozAKqXUZCBDKXWyUurXwPtxztVep5gOID61\nNitrTI1HRf5SbRet0bcGbpY5wZPDF7xlFRmmQ8RTNMX4PWA4UAc8D9TgjMmYjKQYk4lSuU8VFiyP\nxVtt1b3mr9aD5DKs5NCZNJ9crsViVEplAA9ore/RWn8h/LhXa30sQfmiZvktD2n+j5WKXuqSH5Ot\nvNsD3ymIxfuImEnr3ekWi1Fr3QCMT1CWjhoK5JkOIT7rmMdTvKBTzqqOvMduXbB4oS6RS3SSS1pP\nIxHNfY9Lw5fnvAQcOf6k1vqVuKVqn7T+h0pljxQV7p+9Y1e7X3934AZX3J+bYopNB4inaH7gOgEf\n89nrAzWQbMUoxxeTVGV29imHlTqUr3Wbh8ev0Xkr/hUaOyoeuUSHuLsYtdapMhFOqekAohlKdf59\nYdf/TNtfc0ZbX1oe8NW3vpQwoLe3rKLLphkXxvSSrGTRajGGZwu8HufM9CczB2qt/zeOudpDzlgm\nsee7dukxbX/brtw5qnM++lvojFPjFEl0XDGQFHOKx1o0l+s8B/TBmQhrHjAASKrfEuEz0gkZB1C0\nz1GPZ9iynOw2zRX08+CkuA1EIWLiZNMB4iWaYhyitf4RcERr7ccZXSPZ7jDpB8hIzknuF0Xdop72\noE5nbvQ3nJ9sP2fis9L2OGNSechKAAAP/UlEQVRUtwSG/zyglBoBFJB89yOfYDqAaN2KnOxRR5U6\n0vqS8Jvg17drPOk4LF46cfUW42+VUt2AH+FMhFUJ/DyuqdpO7p9NBUp19Rd0aXWK1aD2bH+i4euy\ntZj8+poOEC/RnJX+Xfiv84BkHdmkv+kAIjrPFnQtnHLgYIvL+Bu+ui5IpvybJr/upgPESzRnpXNw\nJsXyNl5ea/1A/GK1Wdr+5ko3hz2eEauys9cOr69vcjesQas9Pw9Okq3F1JC2xRjNrvRrOHM0B3Hu\nfDn+SCZyH20KebiocEdzn3ul4YzKOrI7Nfd5kVTSthijufNlgNZ6QtyTdIzMFpdCFnfKGVWnOJaj\n+UwBak3Nj4PXyB1MqSPPW1aRs2nGhXWmg8RaNFuM7yulrLgn6Zg232omzNFKFf6pa9fPXRj8j9Cp\nSw+T19VEJtFuabnV2GwxKqVspdQKnNF1liilPlJKrWj0fDKRYkwxfyjo8pl/M605Uha4QYaNSz1p\nWYwt7UpflLAUHSe70immJiNj5EdZWRuGBgInAnwQKl20n65nms4l2qyb6QDx0NKu9B5gh9Z6s9Z6\nM8590pcCY8MfJxPZYkxBj3Qv3AqgNfV3BL6TtndRpLks0wHioaVifBPnEh2UUkOAD3CuY7xFKfXT\n+EdrE9liTEEfduo0oh7qV+gT5++gh1xylZrScu6Xloqxm9Z6bfjvPuAFrfX3gAtIvt1suXUsBWml\nur/QtcvCWwM3yy2dqSsti7GlY4yNp0g9B/gFgNa6XikVimuqtpMx+1LUo0VF/QJ5r2zJgy2ms4i2\nC9X3CDrjyqSXlopxhVLqYWA7MAT4B4BSqjARwdoo0PoiIhmFlB6ckbttsOkcon0ycrel5bQTLe2C\n3gjsxTnOeL7W+mj4+VLg4TjnaispRiHMaDAdIB6abXutdS0wo4nn3wfej2eodpBiFMKMtCzGdDlp\nIcUohBm1pgPEgxSjEKIj0nL6iVaLUSl1RTTPGZZso/0I4RbuLEbg7iifM6n9s7kLIToiLYux2ZMv\nSqkLgK8B/ZVSMxt9qivO2IzJRIpRiMQ7ZPvsZOuCmGjpGqQdwCLgYj47d+wh4NZ4hmoHKUYhEi8t\ntxah5ct1lgPLlVLPh5c7QWv9UcKStY0UoxCJl7bFGM0xxgnAMpxBJVBKjVZKvR7XVG0nxShE4u01\nHSBeoinGcmAccABAa70MSLZbuKQYhUi8DaYDxEs0xRjQWtdEPKebXNKcatMBhHChdaYDxEs0xbhK\nKTUZyFBKnayU+jVJdkug7bOrcU4KCSESx9XF+D1gOFAHPA8cBL4fz1DtVGU6gBAu4+pi7K21vkdr\n/YXw4x4gGWcNXG06gBAuooH1pkPESzTF+LJSqv/xD5RSXwaeiV+kdpNiFCJxdtg+Oy0HkIDoivHb\nwKtKqT5Kqa8Bv8a5IybZSDEKkThrW18kdbU6+q7WeqFSairOCN7HgPO01nvinqztpBiFSJxlpgPE\nU0v3Ss/hs5fl5AE1wO+VUmitL453uDZaj3OCKMd0ECFcYIHpAPHU0hZjsk1f0CLbZzdYfmsp8EXT\nWYRwAXcWo9Z6nlIqA/in1vrsBGbqiPeQYhQi3vbaPjttz0hDKydftNYNQEgpVZCgPB31X9MBhHCB\nhaYDxFs0Ux8eBmyl1P/RaKRsrfXUuKVqv/dMBxDCBdJ6NxqiK8ZXwo+kZ/vsPZbfWgMUm84iRBqT\nYtRa+xMRJIbeQ4pRiHgJ4oI9s2gmwzpZKfVXpVSlUmrD8UciwrWTHGcUIn7et3125GhbaSeaO1/+\nADyJ85vibOBZ4E/xDNVB/zQdQIg09obpAIkQTTHmaq3/BSit9WatdTlwYXxjtZ/ts7cAS03nECJN\n/d10gESI5uRLnVLKA6xVSn0X2A7kxzdWh70OnGI6hBBpZrvts1eYDpEI0WwxTsO5HXAqMBb4FuCL\nZ6gYeM10ACHS0JumAySK0jrZZimIDctvbQEGms4hRBq5zPbZKXHpXke1NIhEizMBJuEgEpFeB24x\nHUKINHEUZ4QtV2jpGOPpwFbgBWA+oBKSKHakGIWInVdtn33YdIhEaakY+wBfAf4HmAxUAC9orVcl\nIlgMvA3sBnqZDiJEGnjOdIBEavbki9a6QWv9ptbahzNizTrgnfCZ6aRn++wgLvvHFCJOdgL/ZzpE\nIrV4VloplaOUuhTngu5bgJnA3xIRLEaScW4aIVLNi7bPbjAdIpGaLUal1LPAB8AY4MfhGQIf1Fpv\nT1i6DrJ9diXwoekcQqQ41+15NXu5jlIqxKfDjDVeSAFaa901ztliwvJbNwK/NZ1DiBRVafvs4aZD\nJFpLI3hHc/F3KngR+CXORepCiLZx5UZFupRfs2yffQh4yXQOIVLQQVx6nD7tizHscdMBhEhBvwtv\nWLiOK4rR9tmLgHdN5xAihTTgXIXiSq4oxrCUmg5WCMNesX32ZtMhTHFTMc4FKk2HECJFPGY6gEmu\nKUbbZ2tghukcQqSAD22f/YHpECa5phjDXgA2mg4hRJIrNx3ANFcVY/j+adlqFKJ582yf/ZbpEKa5\nqhjDngHWmA4hRJK623SAZOC6YgxvNd5lOocQSWiO248tHue6YgSwffarwH9M5xAiiYSAe0yHSBau\nLMawO/js4BhCuNnzts+2TYdIFq4tRttnLwBmm84hRBI4BtxnOkQycW0xht0N1JkOIYRhM2yfLZex\nNeLqYrR99ibkVkHhbuuBn5kOkWxcXYxhDwIfmQ4hhCFTbZ99zHSIZOP6YrR9dh1wPXIiRrjPbNtn\nv2E6RDJyfTEC2D77PeAJ0zmESKD9wDTTIZKVFOOn7ga2mA4hRIL8wPbZu0yHSFZSjGHhkYq/YzqH\nEAnwqu2zf286RDKTYmzE9tl/B/5oOocQcbQduMF0iGQnxfh53wWqTIcQIg5CwDW2z/7YdJBkJ8UY\nwfbZR4ArgFrTWYSIsV/YPvtt0yFSgRRjE2yfvRL4nukcQsTQQuBHpkOkCqW1XL7XHMtvPQdcbTqH\nEB10CBhj++x1poOkCtlibNl3kOONIrWFgKukFNtGirEFjY43unLScZEW7rF99hzTIVKN7EpHwfJb\nFwBzgAzTWYRogz/ZPvtbpkOkItlijEL4+sbvms4hRBt8iFyv2G5SjFGyffYs4BHTOYSIwlbgkvAA\nKaIdpBjb5gfAK6ZDCNGCQ8DX5T7ojpFjjG1k+a1c4B1gnOEoQkSqBSbYPvtd00FSnWwxtpHts2uB\nC4GVprMI0Ug98A0pxdiQYmwH22fvBc4FKk1nEQIIAlfaPvst00HShRRjO9k+ezdwDnIBuDBLA9fZ\nPvtvpoOkEynGDggf4D4HWGM6i3CtKbbP/pPpEOlGirGDbJ9djVOOcsuVSKQG4HrbZz9lOkg6krPS\nMWL5rQHAP4BhprOItFeHc0zxVdNB0pVsMcaI7bO3AV8C/mM6i0hrB3EuyZFSjCMpxhiyffZ+4CvA\nX01nEWlpN3CW7bPfMR0k3Ukxxlj4NqxvAr80nUWklU3AeNtnLzUdxA3kGGMcWX7rVpz7q5XpLCKl\n/Qe4PHyJmEgA2WKMI9tnPwZcjoznKNrvN8C5UoqJJVuMCWD5raHAy8Bw01lEyqgDbrZ99jOmg7iR\nFGOCWH6rM/AUcJXpLCLpbQcutX32AtNB3EqKMcEsv3Uz8BiQbTqLSErvAt+UYcPMkmOMCWb77CeA\nM4AtprOIpFIPlAFnSymaJ1uMhlh+qxD4NTI9q4BVwNW2z15mOohwSDEaZvmtS4FZQE/TWUTCaZzr\nXe+WaQiSixRjErD8Vk+crcdJprOIhNkG+Gyf/bbpIOLzpBiTiOW3vg48CfQ1nUXETRCYCZTbPluu\nb01SUoxJxvJbBcB9wPeALMNxRGzNA26xffYq00FEy6QYk5Tlt4qBR3HmlxGprRr4ge2z/2w6iIiO\nq4pRKTUA5xarUpxLlebiTIlaCvTTWr8RXq4cOKy1fthQ1E9YfuurONc9yjiPqSeA8/N2v+2zD5oO\nI6LnmusYlVIKZ07oV7XWJwPFQD7wE2A08LUYrisjVu8VnuBoJDAV2Ber9xVxFQL+DAyzffatUoqp\nxzVbjEqpc4H7tdZfbvRcV2Azzm92hXMr1k9xts5OAE4M//lLrfXM8GuuximpbGA+cLPWukEpdRjn\nlr/zgFuAi4CLcQ62/0NrfUdHvwbLb3UBvgvcBvTo6PuJuHgduNf22bbpIKL93FSMU4HBWutbI55f\nCvwBKNZafzf8XDlwPnA20AX4COgDDAF+DlyqtQ4opZ4APtRaP6uU0sAkrfVflFLdgfeBEq21VkoV\naq0PxOprCd93/R3gjnAuYd7rwI9tn73EdBDRcZmmAySxCq11HVCnlNoN9MaZS3ossNDZMycXZ1Rl\ncCYnejn89xrgGPB7pdRcnGOZMWP77CPAI5bf+g1wE3An0D+W6xBRqQdmA4/JALLpxU3FWIkzNuIn\nwrvSJ+Ds7kZqfCdCA873SgF+rfXdTSx/TGvdAKC1DiqlxuEU6eU4u7/ndPgriGD77GPATMtvPYVz\ncfgU4IuxXo/4nJ04dyvNkvua05ObdqUVsBCYGd71zcD54T6Is9t7sdbaF162nEZnpZVSK3GOGeYB\nrwFf0lrvVkoVAV201puVUoe11vnh5fOBvPAyBcAGrXX3RHydlt8ajVOQVwGdE7FOF1mIc3H2X2yf\nXW86jIgf1xQjgFJqIPAEUIJzRv4NnON0nYG3cC6oPn7y5XPFqLXepJSaBNwdfn0AuEVr/WFEMfbF\nKdBOOFuZD2ut/Yn7SsHyW11xBqiYAoxI5LrTzF7gL8Czts+ebzqMSAxXFaNbWX5rDHBF+HGS4Tip\n4AjOL7bngbdsn93UoRaRxqQYXSZckt/EKckTDcdJJnXAv3DK8NXwCS7hUlKMLhYuya/jnCQah/vu\nzV4LvBl+vGP77KOG84gkIcUoALD8Vj7wZZyz5+cCo0i/aV9rcKYOeBN40/bZGwznEUlKilE0yfJb\nPXCKcixwSviRSheT1wHLgQWNHmtsny0/8KJVUowiapbf6gOM4dOiLAa8OHcHmVIHbADW4ewarwGW\nAMvlkhrRXlKMosMsv9UNpyC9wKDwnwOBovCjG1CIc1lUtAOXHMO5VObj8KPx33fglOA6YIvts0Mx\n+UKECJNiFAll+a08nILMwhmFpiH8CDX6MyhzoAiTpBiFECKCa8ZjFEKIaEkxCiFEBClGIYSIIMUo\nhBARpBiFECKCFKMQQkSQYhRCiAhSjEIIEUGKUQghIkgxCiFEBClGIYSIIMUohBARpBiFECKCFKMQ\nQkSQYhRCiAhSjEIIEUGKUQghIkgxCiFEBClGIYSIIMUohBARpBiFECKCFKMQQkSQYhRCiAhSjEII\nEUGKUQghIkgxCiFEBClGIYSIIMUohBARpBiFECKCFKMQQkSQYhRCiAhSjEIIEUGKUQghIkgxCiFE\nBClGIYSIIMUohBAR/j89JV/sIJi3kwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ltajKxCFCJJm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Fix misleading plot #3" + ] + }, + { + "metadata": { + "id": "NJRdZBgTCJJo", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 336 + }, + "outputId": "d49941ba-e60d-46b3-8506-bf88257462f9" + }, + "cell_type": "code", + "source": [ + "misleading.plot3()" + ], + "execution_count": 93, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAE/CAYAAACEto0QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYJVV9//H3YXNDQFQEgz8rKAZX\nFhWXqLhHLYzi9kSN4hpEXJIoWi6AK1aMxhhcQENEo2Dc4kLhBrggKKKgokHBpRQEZGcQUIaZ+v1R\nNdozzAzTPbf7W8v79Tz3aWa65/bnNrduf+6pU+ekpmmQJEnSxtskOoAkSdJYWKwkSZJmxGIlSZI0\nIxYrSZKkGbFYSZIkzYjFSpIkaUYsVpIkSTNisZJGJKX0oJTSKSmlK1NKl6WUTk4p3bf73HNSSt+a\nx31lKaUmpbTZArOs+ve/n3P74ULuq09SSs9MKZ2WUro6pXRRSuk7KaUXzfn8R1NK163xuL/ffe7O\nKaVmjfu7f0rpS3P+n52aUnr2nM9vm1I6PKX0u5TSNSmlH839vKR+sVhJI5FS2go4FjgM2Bb4C+CN\nwB8jcwHbNE2zZXfbdb7/eKHFbjGklF4NvBN4G3C77vZiYK+U0qZzvvTQOY95y6Zp7r2O+3sQcDxw\nArATcGvgJcDjus/fpPvcjsCewDZAAbwzpfSyRXiIkjaSxUoaj7sANE1zTNM0K5qmubZpmq80TfOj\nlNJdgcOBB3QjKFcApJTylNIZKaVlKaVzU0pvmHN/3+w+XtH9mwd0/+Z5KaWzUkqXp5S+nFK643yD\nppR2Til9rRuhuSSl9N8ppa3nfP68lNKBKaUzgavn/N0rU0o/7vJ8IKV0uy7DspTSV1JK26zj+52T\nUnrMnD9v0X3ve6WUbp5SOjqldGlK6YqU0ndTSrdZy33cCngDsF/TNJ9pmub3Tev0pmme3jTNivn+\nHIB3AEc2TfOvTdNc2t3faU3T/F33+ecAOwBPa5rm103TXNc0zXHAPwJvSSltuYDvKWkRWayk8Tgb\nWJFS+nBK6bFdEQCgaZqzgBcB3+5GUFYVkKuBZ9OOhOTA/imlJ3afe0j3cdWI07dTSk8AXgs8Cbgt\ncBJwzAKyJuAtwPbA3WhHaw5a42v+Dnhsl22VfYCHA7sATwYq4FXAdsBNgAPW8f2OAZ4+58+PBc5v\nmuZHwHOBm9OOCt2adgTqD2u5j7+mfc38woY8wBuTUrol7SjUp9bzZY8CqqZprlnj7z8FbAncbxZZ\nJM2OxUoaiaZplgEPAhrgg8DFKaXPp5Rut55/8/Wmac5smmZlVzKOAfZaz7d5EfC2pmnOaprmeuBQ\nYLcbGbW6pBsJuiKl9Mru+57dNM0J3QjMRcC71vJ93900zXlN01w75+/+o2mai5qmOQ/4Fm1R/GHT\nNH8APgvsvo4MRwNPTCndtPvzM7q/A1gO3Aa4czfS972maX6/lvu4DXBx0zQrV/1FN7p1RUrp2pTS\nA+d8bTHnMV+RUjpyLfe3LW3BvGAdmVd9zxt8vmmaPwKXdZ+X1CMWK2lEusLznKZpdgTuAdwe+Pd1\nfX1K6X7dKbmLU0pX0han9f2yviPw7lWFgfaXe6Kdz7Uut2maZpvu9o7u+26fUvpESum3KaVlwFFr\n+b7nruW+fjfnv69dy5/XemqsaZqfAr8A8u702d78uVgdRTvPaVWech3zui4Ftksp/el1s2maPbvR\nvytZ/fW0nPOYt2ma5vlrub/LaEvwDmvL3LlkbZ/v5l5t231eUo9YrKSR6srEUbQFC9pf4ms6Gvg8\ncIemabamnYeV1vP159LOMZpbGm7WNM0p84z3L7ST6u/ZNM1WtHOJ0hpfs7bvvzFWnQ7cB/hB0zQ1\nQDdq9oamae5KO+K3D/DMtfz7k4EVwONnEaZpmquA79Ke0lyX44HHpZRutsbfP4X2NO53Z5FF0uxY\nrKSRSCntklJ6RUppx+7Pd6AtEt/pvuR3wI4ppS3m/LNbApc1TfOHlNKetKfIVrkYWEk7/2mVw4HX\npJTu3n2PrVNKT11A3FvSFoMru5yvXMB9zNcxtHOr/oE/j1aRUnp4Suke3UjUMtpTgyvX/MdN01wG\nvBk4PKX0pJTSlimlTVJKuwNrFp8NdSDwgpTSP6eUtu3y7J5SWpXvw8BFtKNpd+wm3T+W9tTpwV05\nk9QjFitpPK6incx8akrpatpC9WPgFd3nTwR+AlyYUlp1CunFwJtSSlcBBwOfWHVn3YTptwInd6f+\n7t80zf/SjjZ9vDuF92PasjJfh9BO3L6SdsTs0wu4j3np5mV9D7g/cx4n7enSz9CWqp/QjhIdfYM7\naO/jUODVtBP4LwIuBN5P+zM+dc6Xvjatvo7Vheu4v5OARwJ/A9Qppcu6+zuu+/y1tJP1LwROo/15\nvR14ddM075rvz0DS4ktNM+vRdkmSpGlyxEqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRi\nJUmSNCMWK0mSpBmxWEmSJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmSNCMW\nK0mSpBmxWEmSJM2IxUqSJGlGLFaSJEkzsll0AI1bVlS3AHYAtu8+7rDGn7cFNqd9Ls69bQqsAK6f\nc1ve3S4BLgQumHP705/rMv/D0jw6SZJWl5qmic6gAcuKKgE7AXsAu3f/Pbc43TIg1hWsXrx+DpwB\nnF6X+W8C8kiSJsJipQ2WFdUmwC60JWrVbTdg68hc83QJbck6Azi9u/28LnMPBEnSRrNYaZ2yorob\n8ADakag9gF2Bm4eGWhzLgB/w56J1cl3mv4yNJEkaIouV/iQrqpsADwP2BnIgCw0U62fAsd3tW3WZ\nXx+cR5I0ABaricuKagfaErU38EjgFrGJeukK4Mu0JeuLdZlfGpxHktRTFquJ6Sab34e2SO1Ne5ov\nhYYalpXAd+hGs+oyPzM4jySpRyxWE9HNl9oPeBrtFXuajV8DxwAfqMv8V9FhJEmxLFYj1s2Zegpt\noXpwcJyxa4CvAEcAX3BOliRNk8VqhLKiugttmdoXuHVwnCk6HzgS+GBd5udGh5EkLR2L1UhkRbU5\n8CTaQvWw4DhqrQC+SDuKdVxd5iuD80iSFpnFauCyosqAFwHPBbaLTaP1+A3wn7SjWBdGh5EkLQ6L\n1UBlRbUjcBDwPNzzcUiuBd4LlC7bIEnjY7EamKyotgNeA+wP3CQ4jhbuKuBdwDvrMl8WHUaSNBsW\nq4HIimob4EDg5biI55hcBrwdOKwu82uiw0iSNo7FqueyoroFbZk6ENgmOI4Wz4XAW2nXw7ouOowk\naWEsVj3VrUG1P+1pPyelT8evgTcBH67LfEV0GEnS/FiseigrqmcBhwI7RmdRmLOBV9Rlfmx0EEnS\nhrNY9UhWVHekXfPob6KzqDc+DrysLvOLo4NIkm6cxaoHuo2RDwDeBmwZHEf9cwnwj3WZfyw6iCRp\n/SxWwbKi+ivahSMfFJ1FvXcssH9d5udFB5EkrZ3FKkhWVJvRXul3CK5HpQ23DHg1cERd5h68ktQz\nFqsAWVHtTrtJ7+7RWTRY3wBeUJf5z6ODSJL+zGK1hLolFA6hHalyGxptrGtpn0//5tIMktQPFqsl\nkhXVzsD/AnePzqLR+TbwlLrMz48OIklTt0l0gCnIiioHTsNSpcXxAOB7WVE9MDqIJE2dI1aLqFtG\n4SDgDUCKTaMJWA68vC7z90cHkaSpslgtkqyobgl8BHhidBZNzpHAAXWZ/zE6iCRNjcVqEXRrU30W\n2CU6iybrVODJdZn/NjqIJE2Jc6xmLCuqxwPfxVKlWPcDvp8VlQvPStIScsRqRrr5VIcAB+N8KvXH\nctrtcN4XHUSSpsBiNQPdfKqPAn8bnUVahw/RbofjvCtJWkQWq42UFdVtgC8B947OIt2I44En1mV+\ndXQQSRori9VGyIrq9rS/rO4anUXaQKcAeV3mV0QHkaQxslgtUFZUO9GWqr+MziLN0w+AR9dlfnF0\nEEkaG68KXICsqO4GnISlSsO0G3BSVlQ7RgeRllp3oZG0aByxmqesqO4BnAjcNjqLtJFq4KF1mf86\nOoi0EN2bg9sD2wM7rHFb9XdbAZt3t01pr9pugOu723LgCuCCNW4Xzvnv39ZlfuFSPS4Nm8VqHrKi\nujvwNSxVGo9fAXvVZX5udBBpXbKi2oR2bcA9utvutCOv2yxhjEuAM4DT53z8eV3m/hLVaixWG6gr\nVScC20VnkWbsl7Tl6rzoIBL86Wrrx9BuML47sCtw89BQa7eMds7i6bQXhnylLvMrYyMpmsVqA3Rz\nqr6GpUrj9QvacuUWOAqRFdW9gL272/0Y5hzg5cC3gGOBL9Rlfk5wHgWwWN2IrKjuBJwM3C46i7TI\nfg480KsFtRSyorop8HDaIpUD/y820aI4h7ZkHQucVJf58uA8WgIWq/XIimob4Nu475+m42TgEa7Q\nrsWSFdW9gf2ApwNbBsdZSpcDHwGOqMv8rOgwWjwWq3XIimoz4DjgUdFZpCX20brMnxUdQuORFdUt\ngGfQFip3qWiX6zkc+LRvYsbHYrUOWVG9F3hxdA4pyOvqMj80OoSGLSuqXWnL1DNplz3Q6i4FjgI+\nUJf52cFZNCMWq7XIiuolwGHROaRADfDUusw/HR1Ew5MV1WOBg2iv6tONa4ATgDfUZX5ydBhtHIvV\nGrKi+hugol1ITpqya4CH1GX+/eggGoasqB4CvBV4UHSWAfsi7YjxGdFBtDAWqzm6ZRVOAbaOziL1\nxPnAni7DoPXJiuq+wFuAR0dnGYkG+DRwsBPdh8di1ekWpDsV2Ck6i9QzpwMPrsv8mugg6pdui683\nA0+MzjJSK4GP0p4i/FV0GG0YixWQFdUWtOe3Hb6W1u7TtHOufMEQWVFtC7wD2JdhLuQ5NMuB9wAH\n1WV+dXQYrZ8HROsILFXS+jyZ9lSPJi4rqqcC/wc8F3+HLJXNgX8CzsyK6pHRYbR+kx+xyorq74H/\njs4hDUADPKou8xOig2jpZUW1PfA+YJ/oLOJI4BXuS9hPky5WWVHtCJzJ0u6QLg3ZucA9fUGflqyo\nngu8E7hVdBb9yfnAi+sy/1x0EK1ussUqK6oEfBlXVpfm68N1mT8nOoQWX1ZUGfABfJ3ss08AL63L\n/KLoIGpN+fz4/vhiIS3EvllRPSE6hBZX9//4h/g62XdPA36UFdWDo4OoNckRq6yo7kz7gnHz6CzS\nQF0E3KMu84ujg2i2utH8NwKvB1JwHG245cA/12X+nuggUze5EausqDYBPoylStoY29FeTasRyYpq\na+DztNvRWKqGZXPgsKyoPpQV1U2jw0zZ5IoV8CrggdEhpBHYJyuqZ0WH0GxkRXVX4LvA3tFZtFGe\nA5yUFdUdooNM1aROBWZFdS/gNGCL6CzSSFxJe0rwvOggWrisqPahHcm/ZXQWzczFtIv6fiM6yNRM\nZsSqW139I1iqpFnaGvhQNy9HA5QV1cG0K+tbqsbltsDxWVHtFx1kaiZTrICDgV2jQ0gj9EjgxdEh\nND9ZUaWsqN5NO1HdYjxOmwGHZ0X16uggUzKJU4FZUd0JOIt2cp+k2bsSuFNd5pdGB9GNy4pqU+CD\ntNvSaBrKusxfEx1iCqYyYvU2LFXSYtqa9koy9VxWVJsBx2CpmpoiK6rDokNMwehHrLKi2hM4NTqH\nNAHXAXety/yX0UG0dl2pOhp4anQWhTmsLvOXRYcYsymMWL0jOoA0EVsAh0aH0Np1p/8+hqVq6l7a\nza3TIhl1seq2ZHCZf2npPK0bJVaPdFdtfoR2+xPpZVlR/Wt0iLEabbHq3p2V0TmkiUnA26ND6Abe\nBDwjOoR65ZVZUb0oOsQYjbZYAS8AdokOIU3QXllRPT46hFpZUT2Tdt8/aU2HZUX1yOgQYzPKyetZ\nUW0J/By4XXQWaaLOAu5Zl/mK6CBTlhXVA4ETgZtEZ1FvXQHcvy7zn0UHGYuxjli9EkuVFOmuwPOj\nQ0xZVlR3BP4XS5XWbxvg2Kyoto0OMhajG7HKimp74Bxgy+gs0sRdAOxcl/nV0UGmJiuqWwKnAPeI\nzqLB+AbwqLrMl0cHGboxjli9FkuV1Ac7AK6Xs8S6C3c+jqVK87MX8P7oEGMwqmKVFdVWuJqw1CcH\ndItSaukcDDwuOoQG6flu2rzxRlWsaEuVo1VSf/wFsE90iKnIiuq+tKP20kK9IyuqnaJDDNloilW3\nAN4B0Tkk3cBLowNMQVZUN6NdBNQRQm2MLYEPZ0U1mn6w1Mb0g3sMsHN0CEk38OCsqHaNDjEBb8O1\n+zQbDwJeER1iqMZUrHxXLPWXx+ciyorqYXihgGbrzVlReQHEAoxiuYWsqO4MnE27nYak/rkW2LEu\n88uig4xNd9HOj4A7RmfR6JwB3M8lGOZnLCNWB2CpkvrsZrhg6GL5dyxVWhy7015lqnkY/IhVVlS3\nAH4LbB2dRdJ61cCd6jJfGR1kLLKiegRwfHQOjdoKYLe6zH8cHWQoxjBi9WwsVdIQZICbM89IdyX0\nO6JzaPQ2Bd4eHWJIxlCsXhIdQNIGcxL77Pw9sFt0CE3CY7Oienh0iKEY9KnArKj2Ar4enUPSvPxV\nXeZnR4cYsqyobgr8DPh/0Vk0GacD96nLfLilYYkMfcTqKdEBJM3bk6MDjMDLsFRpae0BPCM6xBAM\nvVg9ITqApHnzuN0IWVFtC7wmOocm6S1ZUd0kOkTfDbZYZUV1b+AO0TkkzdueWVHtEB1iwF4PbBMd\nQpOU4bzmGzXYYoXveqWhSnj8LkhWVBnuiapYr8uKymK/HkMuVk+MDiBpwTx+F+blwBbRITRptwJe\nEB2izwZ5VWBWVDsBv4jOIWnBrgNuW5f5suggQ+FiyOqRXwF3drHftRvqiJXvdqVh2wJ4XHSIgXkW\nlir1w18CeXSIvrJYSYriPKv5cdKw+sTFftdhcKcCs6K6LXAB7TL7koZrGe3pwOuig/Rdt+r1CdE5\npDka4G51mf80OkjfDHHE6vFYqqQx2Ap4WHSIgXB0QH2TcBR1rYZYrDx9II2Hp/VvRFZUd8TNq9VP\n+2ZFtVV0iL4ZVLHqdnN/aHQOSTPjiNWN2w9H6dVPWwLPjg7RN4MqVsBdaE8fSBqHu/iO90Y9NTqA\ntB4+P9cwtGJ13+gAkmYqAfeODtFXWVHdHbhzdA5pPf46K6pbR4fok6EVq/tEB5A0cx7X6+YcNPXd\npjgHcDVDK1aOWEnj43G9bhYrDYHP0zkGU6yyotoU2C06h6SZc8RqLbKi2hFPk2oYHp0V1c2jQ/TF\nYIoVcHfA/3HS+PxlVlS3iQ7RQ0+gnYMm9d3NgEdHh+iLIRUrTxdI4+Wo1Q15ekVD4vO1M6Ri5Quv\nNF4e33N0S1DsFZ1Dmoe9s6IaUqdYNEP6IThiJY2Xx/fq7gdsHh1CmodbA7tEh+iDQRSrrKi2AO4Z\nnUPSonHEanX+PDREPm8ZSLEC7gVsER1C0qK5fVZUO0SH6BFH8DREPm8ZTrHaKTqApEXncf5nvvPX\nEFmsGE6xun10AEmLzuMcyIrqdsAdonNIC7BrVlSTnxtosZLUFx7nLUerNFQ3Be4RHSKaxUpSX3ic\ntzydoiGb/BsDi5WkvvA4b03+F5MGbfJvDCxWkvrC47zlWkAasrtGB4hmsZLUFx7nLX8OGrLJP397\nX6yyotoSuGV0DkmLbvIvyFlR3Yp2Q1tpqCa/Hl3vixW+2EpTsVVWVLeIDhHM1zsN3c26NwiTZbGS\n1CdTP97/IjqANAOTPo4tVpL6ZOrH+9Qfv8Zh0s9ji5WkPpn68T71x69xmPTzeAjFaupzLqQpmfrx\nPulfSBqNST+Ph1CsJr/vkDQhUz/et48OIM3ApJ/HQyhWm0UHkLRkpn683zQ6gDQDk34eD6FYTf0d\nrDQlUz/ep/74NQ6Tfh4PoVhN/R2sNCVTP96n/vg1DpN+HlusJPXJpN/p4uudxmHSx/EQipWk6Wii\nA0jaaJM+jodQrJZHB5C0ZKZ+vE/98WscJv08HkKxuj46gKQlM/XjfeqPX+Mw6efxEIrVpJuvNDFT\nP96n/vg1DpN+Hg+hWE26+UoTM/Xj/eroANIMTPp5PIRiNenmK03M1I/3C6IDSDMw6efxEIrVldEB\nJC2ZqR/v50cHkGZg0s/jIRSrSf8PkiZm6sf71B+/xmHSz2OLlaQ+mfrx/tvoANIMTPo4tlhJ6pOp\nH+9Tf/wah0k/jy1Wkvri0rrMr4sOEczXOw3dVXWZ/z46RKTeF6u6zP8IXBadQ9Kim3yp6H4hXRWd\nQ9oIkz+Oe1+sOpP/HyVNgMd567zoANJGmPw8QYuVpL7wOG/9ODqAtBF+FB0gmsVKUl94nLdOiw4g\nbYTvRQeIZrGS1Bce563J/2LSoE3+jYHFSlJfeJy3vg800SGkBbgSOCc6RDSLlaS+8DgH6jJfBpwd\nnUNagO/XZT75NwVDKVY/iw4gaVE1WCbmmvzpFA2Sp7EZTrH6KTDpBcekkftFXeZXRIfoEX9BaYh8\nQ8BAilVd5iuB06NzSFo0viCvzp+HhsjnLQMpVh3fwUnj5fG9uu/jKL2Gpa7L/NfRIfpgSMXKJiyN\nl8f3HN1WXl+KziHNw+eiA/TFkIqV72ilcfJU/9p9NjqANA8+XzuDKVZ1mf8cuDw6h6SZO6su86uj\nQ/RQBSyPDiFtgEuBk6JD9MVgilXHUStpfDwNuBbdVZLfiM4hbYBj6zJfER2iLyxWkqJ5XK+bp1c0\nBD5P5xhasfKdrTQ+Htfr5oRg9d21wFeiQ/TJ0IqV72ylcVkO/DA6RF/VZX4e7dILUl99tS7za6JD\n9MmgilVd5ucCF0bnkDQzZ3ZLC2jdjo4OIK3HMdEB+mZQxarz1egAkmbGUwg37kOAIwLqowuAT0eH\n6JshFisnyUnj4fF8I+oyvxz4aHQOaS0Or8vcJUHWMMRi9SXayXKShu184LvRIQbisOgA0hquA46I\nDtFHgytW3SS546NzSNpon6/LvIkOMQR1mf8Y+Hp0DmmOT9Zl/rvoEH00uGLV8fSBNHwuJTA/jlqp\nT3w+rsNQi9XnAVd5lYZrGXBidIiB+RxwbnQICTitLvNTo0P01SCLVV3mlwCnROeQtGBfrMv8uugQ\nQ9JtGfL+6BwS8J7oAH02yGLV8TSCNFyezl+Y9wOXRYfQpP0S+Hh0iD4bcrHyhVkapuuA46JDDFG3\nMfNbo3No0l7raPP6DbZY1WX+C+DH0TkkzdvX6jJfFh1iwN4D1NEhNEnfBT4RHaLvBlusOo5aScPj\nafyN0I0WvDY6hybpQJdIuXFDL1b/Ex1A0rwsBz4THWIEPo6b0mtpfaEu829GhxiCQRerbtG8b0Tn\nkLTBPuWighuvGzU4MDqHJmMF8OroEEMx6GLVcZEyaTg8XmekLvOv40UAWhr/VZf5WdEhhmIMxeqz\nuGieNATfr8v829EhRuZA2tOr0mJZBhwSHWJIBl+sukXzDo/OIelGuajgjNVl/n/AG6NzaNReXpf5\nBdEhhmTwxarzQeCP0SEkrdMluKjgYimB70SH0Ch9ri7zo6JDDM0oilVd5hfji7bUZx+sy/wP0SHG\nqBu13xe4JjqLRuVi4B+iQwzRKIpVx0mxUj+5x90iq8v8bKCIzqFReVFd5hdFhxii0RSrusy/Dzgx\nVuqfz9Zl7gUmi+89wAnRITQKH63L3PXmFmg0xarjqJXUPx6XS6Bb2+q5wJXRWTRo5wEviQ4xZGMr\nVp8CvHpB6o8z6zJ3Ed8l0o0M+ktRC7USeG5d5pbzjTCqYlWX+XJ8dyz1yb9FB5iausw/ij93LcyB\ndZkfHx1i6EZVrDrvBs6PDiGJHwMfiQ4xUQcCx0aH0KB8sC5zC/kMjK5Y1WV+DXBwdA5JvKou85XR\nIaao+7k/HfhRdBYNwteAA6JDjMXoilXnKNp3y5JinFCX+RejQ0xZXea/Bx4PuOm11ucc4MndVBrN\nwCiLVbdgnmu6SDEa4FXRIQR1mf8GeCLg4qxam8uBvesyvzw6yJiMslgB1GVe0Q5vSlpax9Rlfnp0\nCLXqMv8O8LzoHOqd64GndIvLaoZGW6w6r6J99yxpafwReF10CK2uLvNjgFdH51BvrASeV5f5idFB\nxmjUxaou8+/hHoLSUnpPXeZ1dAjdUF3mbwdeG51D4VYCz6/L/L+jg4zVqItV57XAddEhpAm4HHhr\ndAitW13mb8MRxSlrgBfUZX5UdJAxG32x6t49vzc6hzQBhzoJtv/qMj8UeE10Di25FbQjVR+KDjJ2\noy9WnbcAV0SHkEbs17jrwWDUZV7Sbn3jHNRpWA483VK1NCZRrOoyvwx4RXQOacT2r8v8j9EhtOHq\nMn8v8BzakQyN17XAE+oy/2R0kKmYRLECqMv8v3CLB2kxfMDFQIepLvOPAPsAV0Vn0aK4CHi0x+fS\nmkyx6rwQuDQ6hDQiv8TR4EGry/wLwP0A1zMal+8B96nL/FvRQaZmUsWqLvMLgf2jc0gjsRLYt9s6\nRQNWl/lZwJ7AF6KzaCaOAh5cl/m50UGmKDXN9OYuZkV1NO0GpZIW7h11mR8YHUKzkxVVAt4AHASk\n2DRagOXAP3Xz5xRkUiNWcxwAnB8dQhqwnwCvjw6h2arLvKnL/BDaeVfLovNoXn4HPMJSFW+Sxapb\na+f50TmkgVoOPNurAMerLvPP0c67Ois6izbIqbTzqU6KDqKJFiuAusy/BBwRnUMaoDe7yfL41WX+\nU2APoKTdsFf9cy3tHpB/XZf5edFh1JrkHKtVsqLaEvghsFN0FmkgTgMeWJe5v2gnJCuq3YH/AnaL\nzqI/+QbwwrrMz4kOotVNdsQKoLuaaV/aq5skrd+1tKcALVUTU5f5GcB9afde9RRwrGW0V7c/zFLV\nT5MesVolK6oDgbdH55B67pl1mR8dHUKxsqL6K+BI4K+js0zQccB+nvbrN4tVJyuqI4HnReeQeuot\ndZkfFB1C/dAty7A/cAiwXXCcKfgN8Brf2AzDpE8FruFFwDejQ0g99Eng4OgQ6o9uWYb30c5PfR1u\ncr9YLgReCuxsqRoOR6zmyIrq1rSXrd4pOovUE98DHlKX+bXRQdRfWVFtAxwIvBy4RXCcMbiMdnrK\nYXWZXxMdRvNjsVpDVlS7AN8KmNeLAAAHE0lEQVQGtonOIgU7D9izLvMLooNoGLKi2g54De1pwpsE\nxxmiq4B3Af9Wl/mV0WG0MBartciK6lG0kwQ3i84iBbmadq+xM6KDaHiyotqRdn2lZwNbBccZgotp\nLwh4Z13ml0SH0caxWK1DVlT7A++LziEFaIAn1WX+2eggGrasqG5Ouy/rfrTLNWh1X6ddqPozdZlf\nF5xFM2KxWo+sqP6DduKgNCVFXeb/Eh1C49ItMrof8Exgy+A4kS4DPgwcUZf5z6LDaPYsVuuRFdWm\nwLHAY6KzSEvkw3WZPyc6hMar2/HiGbTL2+wJpNhES2IFcBLt6b5P1WX+h+A8WkQWqxuRFdVWwInA\nvaOzSIvsq8DenpLQUsmK6nZADuwNPIpxjWRdDnyJ9s35l+oyvyw4j5aIxWoDZEV1K+AEYPfoLNIi\nOR74W5dVUJSsqLYA9qItWXszzD1c/4+2SB0LnFKX+YrgPApgsdpAWVFtS/vLx3KlsTmRdqTKUqXe\n6LbOeQCwR3fblX6NaF0BnAGc3n08pS7zX8VGUh9YrOahK1cn4A7vGo+v0ZYqFyFUr2VFtQmwM38u\nWnsAd6fdUmcx52mtAH4HnElbok4HTq/L/JeL+D01YBareepWZz+B9t2TNGRfB3JLlYYsK6rNaMvV\nDmvctu8+bk27JuHm3cdNaMvS9XNulwMXrHG7sPt4UV3mK5fuEWnoLFYL0M25Og64f3QWaYGOA57i\n6T9Jmi03YV6Auswvp72C5cToLNICfAJ4oqVKkmbPYrVAdZn/Hngc8PnoLNI8HAk8vS7z5dFBJGmM\nLFYboS7zPwJPBo6OziJtgHcBL3S+iCQtHudYzUBWVAk4BDiYaawirGFZDvxjXebufSlJi8xiNUNZ\nUT0e+Cju5q7++B3tJPVvRQeRpCmwWM1Yt6jdZ4FdorNo8k4FnlyX+W+jg0jSVDjHasa63cr3BD4X\nnUWTdiSwl6VKkpaWI1aLpJt39XrgjTjvSktnOfCyuswPjw4iSVNksVpkWVHlwMdoV/+VFtOFtPOp\nTo4OIklTZbFaAllR7Uw77+pu0Vk0Wt+mLVXnRweRpClzjtUSqMv8HOB+wP9EZ9EovR94qKVKkuI5\nYrXEsqJ6MvAe2g1CpY3xS9oFP91aSZJ6whGrJVaX+adpTwkeFRxFw7WSdhX1e1qqJKlfHLEKlBXV\no4EjgCw4iobjJ8Dz6zI/NTqIJOmGHLEKVJf5V4B7AIfRjkJI67IceBOwh6VKkvrLEaueyIrqgbSL\nOrpiu9Z0Gu0o1ZnRQSRJ6+eIVU/UZX4KsBtwKHB9cBz1w7XAK4EHWKokaRgcseqhrKjuBfwL8Jjo\nLArRAJ8EXluX+S+iw0iSNpzFqseyonoQ8FbgIdFZtGSOBQ6qy/wH0UEkSfNnsRqA7urBtwL3ic6i\nRfM14HV1mX87OogkaeEsVgOSFdU+wJuBu0dn0cycSluoTogOIknaeBargcmKahPg6cAbgTsFx9HC\n/Qh4fV3mX4gOIkmaHYvVQGVFtRnwXOAg4A7BcbThzgYOAf6nLnMPPkkaGYvVwGVFtTnwBGA/4BFA\nik2ktVhBOyn9CODLdZm7GKwkjZTFakSyoroz8ELakazbBscRnAf8J3BkXebnRYeRJC0+i9UIZUW1\nBfAk2lGsh8ammZyVwJeAw4Hj6jJfEZxHkrSELFYjlxXVLsA/APsC2wbHGbMLaLck+s+6zH8dHUaS\nFMNiNRFZUd0UeArwd8DDgZvFJhqFq4CvAh8DPl+XuVsRSdLEWawmKCuqm9FOdN8byIEdYxMNyi9o\nJ6IfC3yzLvPrgvNIknrEYiWyotqNtmTtDdwXN+ee63rgZLoyVZf5T4PzSJJ6zGKl1WRFtR3wWNqS\n9Whgq9hEIS4Fvkhbpr5cl/kVwXkkSQNhsdI6dYuQ3g3YY85tV2DLyFwzdgXwA+D0ObefudaUJGkh\nLFaal25LnZ1ZvWztDtwqMtcGugg4gzklqi7zX8ZGkiSNicVKM5EVVUZbsHYCdgC27z6uum2zBDEu\nBS6kXfpg7u0XtCXqt0uQQZI0YRYrLYluuYe1Fa5tgc2Bzda4bUq7Fcz1c27Lu9sl3LBAXegVepKk\naBYrSZKkGfGyekmSpBmxWEmSJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmS\nNCMWK0mSpBmxWEmSJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmSNCMWK0mS\npBmxWEmSJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmSNCMWK0mSpBmxWEmS\nJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmSNCMWK0mSpBmxWEmSJM2IxUqS\nJGlGLFaSJEkz8v8B7VusKzwbg08AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "oe_yziX7CJJv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 336 + }, + "outputId": "2b2a929e-1d45-41c6-a78a-cc189d0fea92" + }, + "cell_type": "code", + "source": [ + "# I made the area proportional to the market share, rather than its square. \n", + "# I multiplied both circles by a factor of 3 just to make them easier to see,\n", + "# while maintaining the same ratio of areas.\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 5))\n", + "ax.set_xlim((0, 80))\n", + "ax.set_ylim((0, 40))\n", + "plt.axis('off')\n", + "\n", + "circle = plt.Circle(xy=(20, 20), radius=3*math.sqrt(18.07))\n", + "ax.add_artist(circle)\n", + "\n", + "circle = plt.Circle(xy=(60, 20), radius=3*math.sqrt(12.79))\n", + "ax.add_artist(circle)\n", + "\n", + "plt.title('State Farm vs GEICO')\n", + "plt.show()" + ], + "execution_count": 97, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAE/CAYAAACEto0QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xm4JFVh9/HvkU2RTSQsglIqrmAU\nFBVfDYqSCAUKLnmNEEDc910qGhEVsdyieTUvi+KLQcV9AYoYFZFE2RcFFRfUUkAGZN9llsofVfNy\ngZlhbvfpe7qqv5/n6WfmTt/b/bv31nT/+tTpc0LTNEiSJGl890odQJIkaSgsVpIkSZFYrCRJkiKx\nWEmSJEVisZIkSYrEYiVJkhSJxUqSJCkSi5U0ICGEp4YQTgshXB9CuCaE8OMQwo7ddQeEEH40j9vK\nQghNCGHNEbMs//qb5lx+OsptTZMQwj4hhLNDCDeHEK4MIZwRQnjVnOs/H0K4/S7f97nddduEEJq7\n3N6TQwjfmfM7OzOEsN+c6zcOIRwRQrgihHBLCOGCuddLmi4WK2kgQggbACcCnwQ2BrYE3gv8JWUu\nYKOmadbrLo+d7xePWuwmIYRwEPAx4IPAZt3lNcDOIYQ15nzqYXO+5/Wapnn8Sm7vqcD3gZOBhwD3\nB14H7N5dv0533VbAE4GNgAL4WAjhDRP4FiWNyWIlDcfDAZqmOa5pmqVN09zaNM13m6a5IITwKOAI\nYKduBOU6gBBCHkI4P4RwQwjhkhDCIXNu77+6P6/rvman7msODCFcFEK4NoTwnyGErecbNITwsBDC\nKd0IzVUhhGNDCBvOuf7SEMLbQwgXAjfP+be3hRB+1uU5KoSwWZfhhhDCd0MIG63k/n4TQnj2nI/X\n7u77r0MI64YQvhhCuDqEcF0I4awQwiYruI37AYcAr2ya5htN09zUtM5rmuYfmqZZOt+fA/BR4Oim\naT7SNM3V3e2d3TTNi7rrDwC2AP6+aZo/NE1ze9M0JwFvAg4NIaw3wn1KmiCLlTQcvwaWhhA+F0LY\nrSsCADRNcxHwKuD0bgRleQG5GdiPdiQkB14dQtiru+5vuj+XjzidHkJ4LvBO4HnAXwH/DRw3QtYA\nHApsDjyadrTm3Xf5nBcBu3XZltsb2AV4JPB8oALeAWwKrAO8diX3dxzwD3M+3g34U9M0FwAvAdal\nHRW6P+0I1G0ruI3/RfuYecLqfIP3JISwPu0o1NdW8Wm7AlXTNLfc5d+/BqwHPClGFknxWKykgWia\n5gbgqUADfBr4cwjh+BDCZqv4mh82TXNh0zTLupJxHLDzKu7mVcAHm6a5qGmaJcBhwOPuYdTqqm4k\n6LoQwtu6+/110zQndyMwVwIfX8H9/mvTNJc2TXPrnH/7P03TXNk0zaXAj2iL4k+bprkN+Baw/Uoy\nfBHYK4Rw7+7jF3f/BrAY2ATYphvpO6dpmptWcBubAH9ummbZ8n/oRreuCyHcGkJ4ypzPLeZ8z9eF\nEI5ewe1tTFswL19J5uX3ebfrm6b5C3BNd72kKWKxkgakKzwHNE2zFbAd8ADgEyv7/BDCk7pTcn8O\nIVxPW5xW9WS9NfCvywsD7ZN7oJ3PtTKbNE2zUXf5aHe/m4cQvhJCuCyEcANwzAru95IV3NYVc/5+\n6wo+XuGpsaZpfgn8Fsi702d7cEexOoZ2ntPyPOVK5nVdDWwaQvj/j5tN0zyxG/27njs/npZzvueN\nmqZ56Qpu7xraErzFijJ3rlrR9d3cq4276yVNEYuVNFBdmTiGtmBB+yR+V18Ejgce2DTNhrTzsMIq\nPv8S2jlGc0vDfZqmOW2e8T5EO6n+MU3TbEA7lyjc5XNWdP/jWH46cG/gJ03T1ADdqNkhTdM8inbE\nb29gnxV8/Y+BpcCeMcI0TXMjcBbtKc2V+T6wewjhPnf59xfQnsY9K0YWSfFYrKSBCCE8MoTw1hDC\nVt3HD6QtEmd0n3IFsFUIYe05X7Y+cE3TNLeFEJ5Ie4psuT8Dy2jnPy13BPBPIYRtu/vYMITwwhHi\nrk9bDK7vcr5thNuYr+No51a9gjtGqwgh7BJC2K4bibqB9tTgsrt+cdM01wDvB44IITwvhLBeCOFe\nIYTtgbsWn9X1duBlIYS3hBA27vJsH0JYnu9zwJW0o2lbd5Pud6M9dXpwV84kTRGLlTQcN9JOZj4z\nhHAzbaH6GfDW7vofAD8HFoUQlp9Ceg3wvhDCjcDBwFeW31g3YfoDwI+7U39Pbprmm7SjTV/qTuH9\njLaszNd7aCduX087Yvb1EW5jXrp5WecAT2bO90l7uvQbtKXq57SjRF+82w20t3EYcBDtBP4rgUXA\n4bQ/4zPnfOo7w53XsVq0ktv7b+BZwN8BdQjhmu72Tuquv5V2sv4i4Gzan9eHgYOapvn4fH8GkiYv\nNE3s0XZJkqTZ5IiVJElSJBYrSZKkSCxWkiRJkVisJEmSIrFYSZIkRWKxkiRJisRiJUmSFInFSpIk\nKRKLlSRJUiQWK0mSpEgsVpIkSZFYrCRJkiKxWEmSJEVisZIkSYrEYiVJkhSJxUqSJCkSi5UkSVIk\nFitJkqRILFaSJEmRWKwkSZIisVhJkiRFYrGSJEmKxGIlSZIUicVKkiQpEouVJElSJBYrSZKkSCxW\nkiRJkVisJEmSIrFYSZIkRWKxkiRJisRiJUmSFInFSpIkKRKLlSRJUiQWK0mSpEgsVpIkSZFYrCRJ\nkiKxWEmSJEVisZIkSYrEYiVJkhSJxUqSJCkSi5UkSVIkFitJkqRILFaSJEmRWKwkSZIisVhJkiRF\nYrGSJEmKxGIlSZIUicVKkiQpEouVJElSJBYrSZKkSCxWkiRJkVisJEmSIrFYSZIkRWKxkiRJimTN\n1AE0O7KiWh/YYs5l8zl/3wBYq7usSVv6lwJLusti4FpgEXD5nMsi4PK6zG9eyO9FkqQVCU3TpM6g\ngcmK6gHADsD23Z/bAg8A7jvBu70RuAy4EDgPOB84ty7zqyZ4n5Ik3YnFSmPJimoLYCfaArW8TG2e\nNNSdXUpbtJZfTrdsSZImxWKlecmKKgA7Ant0l+3TJpq3ZcCZwInAiXWZX5A4jyRpQCxWukfd3Ki/\npS1SuwGbpU0U1SVARVu0Tq7L/LbEeSRJPWax0gplRbUWsBdwILALsHbaRAviFuA/gc8A36nLfFni\nPJKknrFY6U6yonow8HLaQjWkkan5+gPwaeCzdZlfnjqMJKkfLFYiK6o1gD2BVwG74vpmcy0BjgeO\nBL5Xl7n/YSRJK2WxmmFZUW0IvBF4BbBl4jh98FvgcODwusxvSR1GkjR9LFYzKCuq+9IWqrcB90sc\np48WAR8AjqrL/PbUYSRJ08NiNUOyolqH9nTfO4FNE8cZgj8A7wM+V5f50tRhJEnpWaxmQFZUawIv\nAd4NPDBxnCH6NfAe4MvOwZKk2WaxGrisqPYGPgxskzrLDLgAeHNd5j9IHUSSlIbFaqCyotoc+Dfg\neamzzKCjgbfWZX596iCSpIVlsRqgrKgOAP4FJ6an9Cfg1XWZH586iDRkWVFtBGxH+87mLbrL5nP+\nvhntBvBrdpd70W5ttQRYDNxE+4aURcDl3WX53y8FLqzL/KaF+47UdxarAcmKamvgKNrtZzQdvgK8\nvi7zK1MHkfouK6pNuWPD9+WXB0/4bpcBF3PnzdzPq8v82gnfr3rKYjUA3cbIrwMOA9ZLHEd3dzXw\nprrMP586iNQnWVFtAPwdkAPPBLZKm+hOfgd8n3af0e/XZX5r4jyaEharnutewX0ZeHriKLpn3wT2\nr8v8xtRBpGmVFdXDaDd83wN4GrBW2kSr5VbgFNqSdWJd5pckzqOELFY9lhXVjsA3mK5XcVq1XwJ7\n1WX+q9RBpGnRvdnmQGB/4OGJ48TwU+AY2jXuPGU4YyxWPZUV1Utot1dZJ3UWzdsNwL51mZ+QOoiU\nSjeF4Zm0ixY/h36MTM3XrcBXgSPrMj8tdRgtDItVz2RFtRbwCeA1qbNoLA3wXuB9LiqqWZIV1Sa0\no1MvZ7bW17uQdjP3Y+syvyF1GE2OxapHsqLajPbVz9NSZ1E03wb284FWQ5cV1f2BAngtcJ/EcVK6\nHvgo8AmXcRgmi1VPZEX1eOBbOJ9qiH4J7FmX+cWpg0ixde/sewvwZmCDxHGmyZ+BEvi/dZnfljqM\n4rFY9UBWVDsDJwDrp86iibkC2LUu8wtTB5FiyIpqXdplYN4B3D9xnGl2GXAocHRd5otTh9H4LFZT\nLiuq3YGvMdtD57PiWmC3uszPTB1EGkdWVPsAH6Fd+Vyr53e0iwmflDqIxmOxmmJZUb0A+CLDfLeM\nVuwm4Dl1mZ+SOog0X1lRbQUcQbugp0bzedoFha9OHUSjsVhNqayoXkhbqtZMnUUL7hZgD8uV+qJb\nOuGVwIdwHlUMVwJvqMv8y6mDaP4sVlMoK6rnA1/CUjXLbgF2r8v81NRBpFXJimob4DPAzqmzDNC3\naTdzvzx1EK2+e6UOoDvLimovLFWCdYEqKyqX1tDUyorq5cAFWKom5bnAL7Ki2jt1EK0+R6ymSLdF\nzak4UV13uAZ4cl3mv0kdRFouK6q1gU/RLvKpyWuAw4CD6zJfljqMVs1iNSWyonogcBaweeosmjq/\nAnZyzzFNg6yotgC+DuyUOssMOgnYpy7z61IH0cp5KnAKZEV1X+B4LFVasUcAX82KytPDSiorqqcA\n52KpSmV34OysqLZNHUQrZ7FKLCuqewFfAB6XOoum2jNpT71ISWRF9Urgh7g2VWrbAGd0b3LSFLJY\npVfSTlCU7skrs6J6U+oQmj1ZUb2Pdn0q19SbDuvRjmK/OnUQ3Z1zrBLKiupA4OjUOdQry2j3FXR1\nZk1ctz7VvwAW+ulV1GX+odQhdAeLVSLdOwB/BKydOot650Zg+7rMf5s6iIarK1VH4jv/+uDQuszf\nnTqEWp4KTCArqnsD/46lSqNZHzimm58nRdeVqqOwVPXFP3enazUFfGBOowQemTqEeu2pwNtSh9Dw\nzBmpelnqLJqXd2dFdUjqELJYLbisqJ4BvCF1Dg3C+7Ki2i51CA3O+3Gkqq/e44T29JxjtYCyotqA\ndvuHrVNn0WD8BHhiXeaLUwdR/2VFtS9wbOocGssSYLe6zL+fOsiscsRqYX0cS5XiehxwcOoQ6r9u\n8c/PpM6hsa1JuxTDI1IHmVWOWC2QrKj2AE5InUODtBR4Sl3mZ6UOon7Kimpr2i21Nk2dRdFcDDyp\nLvNrUgeZNRarBdCdAvwVblmjyfkl8Ji6zJekDqJ+yYpqfeA0wPl6w3MqsKtTBRaWpwIXxkFYqjRZ\njwRekTqEeukLWKqGamfgk6lDzBpHrCYsK6otgd8A90mdRYN3JbBNXeY3pg6ifuj2/zsidQ5N3J51\nmZ+YOsSscMRq8t6HpUoLY1PgHalDqB+yonoI8NHUObQgPpMV1SapQ8wKi9UEdWsMHZA6h2bKW7Ki\n2iJ1CE23btX+z9Fu5qvh2ww4PHWIWWGxmqwP489YC2td2lFSaVXeQrt6v2bHC7KienHqELPAOVYT\nkhXVLsDJqXNoJi0FHluX+c9TB9H0yYpqW+BcYJ3UWbTgrgW2q8v8T6mDDJmjKRPQ7bX1kdQ5NLPW\nAD6UOoSmT3cK8BgsVbPqfrSba2uCLFaT8bfADqlDaKblWVE9JnUITZ19gSekDqGk8qyonpU6xJBZ\nrCbj9akDSMDrUgfQ9MiK6t60GyxLH+7OrGgCLFaRdW9h3i11DgnYJyuqjVKH0NR4A/Cg1CE0FbYH\n9kkdYqgsVvG9Fn+umg73BQ5MHULpZUW1MfBPqXNoqhyaFZVz7SbAAhBRVlQ+kWnavLabsKzZ9m7A\n0UvNtTXtKKYi8wE3rn3xwUvT5SHA7qlDKJ2sqDLgNalzaCq9Myuq+6UOMTQWq7icLKxp5JspZtsb\ngbVTh9BU2gh4WeoQQ+MCoZFkRfU3wKmpc0gr0ACPqMv8N6mDaGF10xMuAzZMnUVTqwYeWpf5stRB\nhsIRq3helDqAtBIB+PvUIZTEfliqtGoZsGfqEENisYqgWw/kOalzSKuwV+oASsLpCVodHicRWazi\neAKwZeoQ0io8Pisqj9EZkhXVM4FHp86hXnhWVlSPSh1iKCxWcTgaoGkXgOemDqEF5ZsWNB+OWkVi\nsYrDYqU+8DidEVlRbYHzZjQ/+3XbHmlMFqsxZUX1MBxuVz88PSsqJzLPhufi47vmZz1g19QhhsD/\neONzFEB9sRaQpw6hBeFpX43C4yYCi9X4PBDVJx6vA5cV1frALqlzqJf2dAus8fkDHEO3geWOqXNI\n8/C01AE0cbvjSusazabAU1KH6DuL1Xj+Gh/A1C9bZEX1gNQhNFFOT9A4PH7GZLEaj6NV6iOP24HK\nimpt3HRb43G6wJgsVuN5QuoA0gg8bofricAGqUOo17bJiurBqUP0mcVqPD5BqY8csRouf7eKweNo\nDBarEWVFtS6uX6V+8gXBcPm7VQweR2OwWI1ue2CN1CGkEdzfof7BcqRBMXgcjcFiNToPPPWZx+/A\ndKvqb5M6hwZhh6yoQuoQfWWxGp07gavPPI09PE+g3WxbGtcGwCNSh+gri9XotkwdQBqDa1kNj/Ni\nFJPH04gsVqPziUl95vE7PI5CKqZtUwfoK4vV6HxiUp95/A6Po+iKyceIEVmsRpAV1ZrAX6XOIY3B\nB83h8XeqmDyeRmSxGs0W+LNTv23avUDQcDhipZg8nkZkORiNTV59F2hfIGgAsqK6L25lo7h8nhuR\nxWo0HnAaAo/j4fB3qdg27HYY0TxZrEazWeoAUgSbpw6gaCxWmgSPqxFYrEZzn9QBpAjunTqAotkk\ndQANksfVCCxWo1krdQApAievD4ePSZqEtVMH6COL1Wh8QtIQ+GQ8HP4uNQk+143AYjUaDzYNgcfx\ncKyROoAGycI+AouVNLua1AEkTTUfI0ZgsRrN4tQBpAiWpA6gaPxdahJ8rhuBxWo0PohpCDyOh8Pf\npSbB42oEFqvR2OI1BB7Hw3Fb6gAapL+kDtBHFqvR3Jw6gBSBx/FwXJk6gAbpitQB+shiNZrLUweQ\nIvA4Ho4/pQ6gwWnwMWIkFqvRXJY6gBSBx/FwWKwU29V1md+eOkQfWaxG44OY+m4Jnj4ajO4J8KrU\nOTQovvAakcVqNFfiuyXUb4vqMneNmmHxBZ9i8ngakcVqBN0T0qLUOaQx+KA5PP5OFZPH04gsVqPz\noFOfefwOz6WpA2hQPJ5GZLEanU9M6jOP3+G5IHUADYrH04gsVqOzzavPPH6H5+zUATQoHk8jsliN\nzjavPvP4HZ6f4JtqFMcVdZlfkjpEX1msRndO6gDSGDx+B6Yu89uAn6XOoUHw8WEMFqvR/Qz351I/\nXVKXuVtVDJNPiIrB42gMFqsR1WW+GPhp6hzSCHzQHC7nxSgGj6MxWKzG4xOU+sgHzeE6K3UADYKP\nEWOwWI3Hg0995HE7XD/FpTQ0nnPrMne7qzFYrMbjiJX6yON2oLpdIY5PnUO99q3UAfrOYjWei4Cb\nUoeQ5uHiusyvSx1CE+UTo8bh8TMmi9UY6jJfBpyaOoc0D6ekDqCJOwW4IXUI9dJv6zJ3yY4xWazG\n9+3UAaR58NXowNVlfjvwH6lzqJd8PovAYjW+44FlqUNIq+FG4OTUIbQgLNAahcdNBBarMXULLZ6R\nOoe0Gr5Tl/lfUofQgjgJuCV1CPXK5cCPU4cYAotVHLZ89YHH6Yyoy/wG4Aupc6hXjuzmDWtMFqs4\nfMLStFsMVKlDaEF9MnUA9cZi4MjUIYbCYhVBXea/oV16QZpWp9Zlfn3qEFo4dZlfiO9a1ur5Wl3m\ni1KHGAqLVTyOWmmaeXzOJkettDo8TiKyWMXjfAZNq9uBr6YOoSS+BVySOoSm2rl1mZ+eOsSQWKwi\nqcv857j4oqbTV9z7azbVZb4UODx1Dk01R6sis1jF5QGqaeRxOdsOB65JHUJT6ffAcalDDI3FKq7j\ngT+mDiHNcVZd5melDqF0ur0hD0udQ1PpXd1K/YrIYhWRw+6aQp9KHUBT4VNAnTqEpso5wJdShxgi\ni1V8nwZuSx1CAq4Evpw6hNLrVtx/V+ocmipvr8u8SR1iiCxWkdVlfjWes9Z0OMphfs1xHHBu6hCa\nClVd5j9MHWKoLFaT4WRhpbYEOCJ1CE2PbnTi7alzKLmlwEGpQwyZxWoC6jI/HzgxdQ7NtKPrMr8s\ndQhNl7rMTwG+mTqHkjqiWx5IE2Kxmpx30L4ykBbaTcB7UofQ1HoV8OfUIZTExbTPTZogi9WE1GV+\nEfDZ1Dk0kz5Wl/kVqUNoOnWLxb4ydQ4tuGXA/nWZ35I6yNBZrCbrPcDNqUNopiwCPpI6hKZbXebf\nBI5NnUML6iN1mZ+WOsQssFhNUF3mlwMfS51DM+WQuswt81odrwcuTR1CC+JC4ODUIWaFxWryPgJ4\nWkYL4ZfAZ1KHUD/UZX49cCDgWkbDdjvwjy69snAsVhNWl/lNwHtT59BMOKhb/V9aLXWZfw/4aOoc\nmqiD6jL/aeoQs8RitTA+DVyQOoQG7ft1mR+fOoR6qQBOSB1CE/Hpusw/kTrErLFYLYC6zJcA+9EO\nyUqx3QC8NHUI9VNd5suAF+OLv6E5BXht6hCzyGK1QLqhWE8JahLeWJf5H1OHUH91Uxb2xPmgQ/Eb\n4Pl1mS9OHWQWWawW1oeAM1KH0KAcX5f5MalDqP+6cv5c3ES+764F9qjL/NrUQWaVxWoBdROL9wdc\noE0xXAW8InUIDUdd5mcCL8F3CvbVYuAFdZn/OnWQWWaxWmDdAV+kzqFBeJUrrCu2usy/BLwGy1Xf\nLAH+d13mP0gdZNZZrNL4FHBy6hDqtS/UZf711CE0THWZH4ETn/tkCfCibkV9JWaxSqAu84Z2uP2q\n1FnUS78HXpc6hIatLvPDceSqDxbTlipfaE0Ji1UidZlfAuyNSzBofm6gnZh6XeogGr6uXB0AuPDs\ndLoVeK6larpYrBKqy/xHOPlYq28p7RyKX6QOotlRl/m/Ay/EF4HT5kbg2XWZ/0fqILozi1VidZl/\nDihT51AvvLku8++kDqHZ083deQawKHUWAXAxsFNd5v+VOojuzmI1Hd4JOOlQq3J4XeafTB1Cs6su\n89OAxwOnp84y404CdqzL/Oepg2jFLFZToJvMvi9wXuosmkrfA96QOoRUl/mfgKcDRyWOMosa4APA\nns6xnG6haXzDx7TIimpL4CzgAamzaGr8EnhyXebXpw4izZUV1SuATwJrp84yA24E9nc5hX6wWE2Z\nrKgeA/wA2CR1FiX3B2Dnusz/kDqItCJZUT0Z+ALwkNRZBuwC2uUULkodRKvHU4FTpi7zC4FnAVen\nzqKk/gg83VKlaVaX+RnAY4CPA8sSxxma24GDgSdYqvrFEasplRXV42hXZ984dRYtuOWl6vepg0ir\nKyuqJwFHA9umzjIApwMvtVD1kyNWU6ou858AuwBXps6iBfU7LFXqoW4D5x2A99KuBq75uxl4E/BU\nS1V/OWI15bKiegTtu8IemDqLJu4XwK7dO6+k3sqKajvgE8AzU2fpkW8Cb/VFVf9ZrHogK6oH0Z4W\n3CZ1Fk3MObSrKDu3ToORFdUzaJcI2Cl1lin2XeCf6zI/O3UQxWGx6omsqDYFvgY8LXUWRXc8sG9d\n5jemDiJNQlZUewCHAo9NnWWK/Ah4l6unD4/FqkeyolqL9t03r02dRVE0wCHA+7tFYqXByooq0O45\neAjwqLRpkjoHONg9/obLYtVDWVEdABwBrJM4ikZ3PfCPdZmfkDqItJC6gvUM4JXA3sBaaRMtiFuA\nLwNHdpP8NWAWq57KimpH4BvAVqmzaN4uAvaqy/zXqYNIKXVTHA4EXs4wFxn9OXAkcKzb0MwOi1WP\ndQ9KXwF2Tp1Fq+1bwH7Op5Lu0I1i7QrsD+wG3C9torFcAVTA/6vL/Eepw2jhWax6LiuqNYESeDOu\nSzbNFtPOLfmg86mklcuKag3gKcAe3eXRaRPdowY4Hzixu5zj//HZZrEaiKyonkK76vEjU2fR3ZxN\nu4ryhamDSH2TFdWDgZx2q68dmI41/X4HnEu7xmDl2nOay2I1IFlRrUO7t9Q7gDUTxxHcSvv7+Hhd\n5ktTh5GGICuqTWgL1g7A9t2fDwXCBO5uGfAr4Lzucj5wvvOltCoWqwHq9hn8LO2DjtI4FXhZXeYX\npw4iDV1WVOsCWwCbd39ucZeP16V9sbkmsAawFFhCe4r+ZuDyOZdFcz+uy/wvC/m9qP8sVgPVzb16\nG/Ae4N6J48ySG2hHDI9ynoUkzR6L1cBlRfVw4DDgeUxmqFytpcCxwLvrMr80dRhJUhoWqxmRFdUO\ntFtK7JY6y8A0wFdpV1L+VeowkqS0LFYzJiuqp9IWLNe+Gt+JtCNUP0kdRJI0HSxWMyorql1pd53f\nMXWWHvoB7eapZ6QOIkmaLharGZcVVQ68Bng2LjC6KotpV03/t7rMT00dRpI0nSxWAiArqq1p9+s6\nkPbtyWr9Hvg08Nm6zK9IHUaSNN0sVrqTbpmG59DuPL8rs/lOwiXACbSbp37XZRMkSavLYqWVyorq\nocBLaIvWYxLHmbQGOAf4Nu3mqW5RIUmaN4uVVktWVA/ijk1Rn8EwFh29iXavrxOBk+oyX5Q4jySp\n5yxWmrdu+4hn0pasHNgybaJ5+R1tkaqAH9ZlfnviPJKkAbFYaWzdaNZdN0V9QNJQrT9wx+ap5wHn\nOSolSZoki5UmIiuqzbijbG1HW7SWb4i6fsS7up47Nky9DLiQO0rUNRHvR5Kke2Sx0oLLiuq+3H0n\n+g1pd55fq/vzXtyxA/3yyzXceef5RXWZ37rQ+SVJWhmLlSRJUiSutC1JkhSJxUqSJCkSi5UkSVIk\nFitJkqRILFaSJEmRWKwkSZIisVhJkiRFYrGSJEmKxGIlSZIUicVKkiQpEouVJElSJBYrSZKkSCxW\nkiRJkVisJEmSIrFYSZIkRWKxkiRJisRiJUmSFInFSpIkKRKLlSRJUiQWK0mSpEgsVpIkSZFYrCRJ\nkiKxWEmSJEVisZIkSYrEYiVJkhSJxUqSJCkSi5UkSVIkFitJkqRILFaSJEmRWKwkSZIisVhJkiRF\nYrGSJEmKxGIlSZIUicVKkiQr6D9eAAAA8UlEQVQpEouVJElSJBYrSZKkSCxWkiRJkVisJEmSIrFY\nSZIkRWKxkiRJisRiJUmSFInFSpIkKRKLlSRJUiQWK0mSpEgsVpIkSZFYrCRJkiKxWEmSJEVisZIk\nSYrEYiVJkhSJxUqSJCkSi5UkSVIkFitJkqRILFaSJEmRWKwkSZIisVhJkiRFYrGSJEmKxGIlSZIU\nicVKkiQpEouVJElSJBYrSZKkSCxWkiRJkVisJEmSIrFYSZIkRWKxkiRJisRiJUmSFInFSpIkKRKL\nlSRJUiQWK0mSpEgsVpIkSZFYrCRJkiKxWEmSJEVisZIkSYrkfwBTd3VKA9fUagAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "VZsaFfcfCJJ2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Fix misleading plot #4" + ] + }, + { + "metadata": { + "id": "fYGQTXGkCJJ3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "_If you're on Jupyter (not Colab) then uncomment and run this cell below:_" + ] + }, + { + "metadata": { + "id": "lALRAG7_CJJ6", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# import altair as alt\n", + "# alt.renderers.enable('notebook')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "SGUfxDAmCJJ_", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 348 + }, + "outputId": "37f2e977-cd7e-4109-fd48-bef121f087d3" + }, + "cell_type": "code", + "source": [ + "misleading.plot4()" + ], + "execution_count": 98, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Chart({\n", + " data: UrlData({\n", + " format: TopoDataFormat({\n", + " feature: 'states',\n", + " type: 'topojson'\n", + " }),\n", + " url: 'https://vega.github.io/vega-datasets/data/us-10m.json'\n", + " }),\n", + " encoding: EncodingWithFacet({\n", + " color: Color({\n", + " shorthand: 'State Farm policy premiums',\n", + " type: 'quantitative'\n", + " })\n", + " }),\n", + " height: 300,\n", + " mark: 'geoshape',\n", + " projection: Projection({\n", + " type: 'albersUsa'\n", + " }),\n", + " transform: [LookupTransform({\n", + " from: LookupData({\n", + " data: state id State Farm policy premiums \\\n", + " 0 Alabama 1 768213 \n", + " 1 Alaska 2 128613 \n", + " 2 Arizona 4 760003 \n", + " 3 Arkansas 5 454931 \n", + " 4 California 6 3655463 \n", + " 5 Colorado 8 827143 \n", + " 6 Connecticut 9 169773 \n", + " 7 Delaware 10 191319 \n", + " 8 District of Columbia 11 67231 \n", + " 9 Florida 12 2806322 \n", + " 10 Georgia 13 1761224 \n", + " 11 Hawaii 15 133498 \n", + " 12 Idaho 16 130613 \n", + " 13 Illinois 17 2256543 \n", + " 14 Indiana 18 861382 \n", + " 15 Iowa 19 368898 \n", + " 16 Kansas 20 351343 \n", + " 17 Kentucky 21 680433 \n", + " 18 Louisiana 22 1415980 \n", + " 19 Maine 23 101111 \n", + " 20 Maryland 24 883401 \n", + " 21 Massachusetts 25 0 \n", + " 22 Michigan 26 1580398 \n", + " 23 Minnesota 27 851940 \n", + " 24 Mississippi 28 467887 \n", + " 25 Missouri 29 883774 \n", + " 26 Montana 30 156816 \n", + " 27 Nebraska 31 273727 \n", + " 28 Nevada 32 404688 \n", + " 29 New Hampshire 33 103340 \n", + " 30 New Jersey 34 619623 \n", + " 31 New Mexico 35 261922 \n", + " 32 New York 36 1666653 \n", + " 33 North Carolina 37 842368 \n", + " 34 North Dakota 38 67282 \n", + " 35 Ohio 39 1240075 \n", + " 36 Oklahoma 40 636063 \n", + " 37 Oregon 41 564416 \n", + " 38 Pennsylvania 42 1654528 \n", + " 39 Rhode Island 44 0 \n", + " 40 South Carolina 45 874436 \n", + " 41 South Dakota 46 101912 \n", + " 42 Tennessee 47 889329 \n", + " 43 Texas 48 3395165 \n", + " 44 Utah 49 300403 \n", + " 45 Vermont 50 30003 \n", + " 46 Virginia 51 878312 \n", + " 47 Washington 53 794882 \n", + " 48 West Virginia 54 323608 \n", + " 49 Wisconsin 55 443680 \n", + " 50 Wyoming 56 90412 \n", + " 51 Puerto Rico 72 0 \n", + " \n", + " BERKSHIRE HATHAWAY GRP STATE TOTAL \n", + " 0 282947 3025561 \n", + " 1 81366 454623 \n", + " 2 604049 4373055 \n", + " 3 96908 1777917 \n", + " 4 2091720 25255501 \n", + " 5 365797 4057463 \n", + " 6 486498 2795415 \n", + " 7 129033 802005 \n", + " 8 115149 325239 \n", + " 9 3952147 17333354 \n", + " 10 821326 7571988 \n", + " 11 184743 722550 \n", + " 12 87222 863636 \n", + " 13 412978 7028885 \n", + " 14 201200 3506499 \n", + " 15 58105 1650388 \n", + " 16 76533 1725608 \n", + " 17 186915 2805864 \n", + " 18 369492 4136224 \n", + " 19 68109 699558 \n", + " 20 1059508 4554586 \n", + " 21 473913 4924736 \n", + " 22 0 8462142 \n", + " 23 108942 3412460 \n", + " 24 100827 1760180 \n", + " 25 214191 3606590 \n", + " 26 33538 668513 \n", + " 27 61046 1167135 \n", + " 28 262815 2129828 \n", + " 29 103403 806545 \n", + " 30 1441019 7375823 \n", + " 31 174865 1284430 \n", + " 32 3926684 12633982 \n", + " 33 560700 5543700 \n", + " 34 15516 454376 \n", + " 35 405652 6303148 \n", + " 36 151388 2515842 \n", + " 37 223187 2647434 \n", + " 38 602848 8270326 \n", + " 39 97597 867558 \n", + " 40 426033 3583918 \n", + " 41 15682 508569 \n", + " 42 292357 3769652 \n", + " 43 2127633 19180816 \n", + " 44 139315 1723931 \n", + " 45 52939 359996 \n", + " 46 884489 5105360 \n", + " 47 478922 4780616 \n", + " 48 110806 1209872 \n", + " 49 131845 2950711 \n", + " 50 30187 374169 \n", + " 51 0 444480 ,\n", + " fields: ['State Farm policy premiums'],\n", + " key: 'id'\n", + " }),\n", + " lookup: 'id'\n", + " })],\n", + " width: 500\n", + "})" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 98 + } + ] + }, + { + "metadata": { + "id": "Yrg_kGxfCJKG", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 348 + }, + "outputId": "6ffd2a8c-b8b0-4161-e4fc-14d5f51f2745" + }, + "cell_type": "code", + "source": [ + "df['State Farm market share %'] = df['State Farm policy premiums'] / df['STATE TOTAL']\n", + "df.head()\n", + "\n", + "variable = 'State Farm market share %'\n", + "\n", + "alt.Chart(states).mark_geoshape().encode(\n", + " alt.Color(variable, type='quantitative')\n", + ").transform_lookup(\n", + " lookup='id',\n", + " from_=alt.LookupData(df, 'id', [variable])\n", + ").properties(\n", + " width=500,\n", + " height=300\n", + ").project(\n", + " type='albersUsa'\n", + ")" + ], + "execution_count": 103, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Chart({\n", + " data: UrlData({\n", + " format: TopoDataFormat({\n", + " feature: 'states',\n", + " type: 'topojson'\n", + " }),\n", + " url: 'https://vega.github.io/vega-datasets/data/us-10m.json'\n", + " }),\n", + " encoding: EncodingWithFacet({\n", + " color: Color({\n", + " shorthand: 'State Farm market share %',\n", + " type: 'quantitative'\n", + " })\n", + " }),\n", + " height: 300,\n", + " mark: 'geoshape',\n", + " projection: Projection({\n", + " type: 'albersUsa'\n", + " }),\n", + " transform: [LookupTransform({\n", + " from: LookupData({\n", + " data: state id State Farm policy premiums \\\n", + " 0 Alabama 1 768213 \n", + " 1 Alaska 2 128613 \n", + " 2 Arizona 4 760003 \n", + " 3 Arkansas 5 454931 \n", + " 4 California 6 3655463 \n", + " 5 Colorado 8 827143 \n", + " 6 Connecticut 9 169773 \n", + " 7 Delaware 10 191319 \n", + " 8 District of Columbia 11 67231 \n", + " 9 Florida 12 2806322 \n", + " 10 Georgia 13 1761224 \n", + " 11 Hawaii 15 133498 \n", + " 12 Idaho 16 130613 \n", + " 13 Illinois 17 2256543 \n", + " 14 Indiana 18 861382 \n", + " 15 Iowa 19 368898 \n", + " 16 Kansas 20 351343 \n", + " 17 Kentucky 21 680433 \n", + " 18 Louisiana 22 1415980 \n", + " 19 Maine 23 101111 \n", + " 20 Maryland 24 883401 \n", + " 21 Massachusetts 25 0 \n", + " 22 Michigan 26 1580398 \n", + " 23 Minnesota 27 851940 \n", + " 24 Mississippi 28 467887 \n", + " 25 Missouri 29 883774 \n", + " 26 Montana 30 156816 \n", + " 27 Nebraska 31 273727 \n", + " 28 Nevada 32 404688 \n", + " 29 New Hampshire 33 103340 \n", + " 30 New Jersey 34 619623 \n", + " 31 New Mexico 35 261922 \n", + " 32 New York 36 1666653 \n", + " 33 North Carolina 37 842368 \n", + " 34 North Dakota 38 67282 \n", + " 35 Ohio 39 1240075 \n", + " 36 Oklahoma 40 636063 \n", + " 37 Oregon 41 564416 \n", + " 38 Pennsylvania 42 1654528 \n", + " 39 Rhode Island 44 0 \n", + " 40 South Carolina 45 874436 \n", + " 41 South Dakota 46 101912 \n", + " 42 Tennessee 47 889329 \n", + " 43 Texas 48 3395165 \n", + " 44 Utah 49 300403 \n", + " 45 Vermont 50 30003 \n", + " 46 Virginia 51 878312 \n", + " 47 Washington 53 794882 \n", + " 48 West Virginia 54 323608 \n", + " 49 Wisconsin 55 443680 \n", + " 50 Wyoming 56 90412 \n", + " 51 Puerto Rico 72 0 \n", + " \n", + " BERKSHIRE HATHAWAY GRP STATE TOTAL State Farm market share % \n", + " 0 282947 3025561 0.253908 \n", + " 1 81366 454623 0.282900 \n", + " 2 604049 4373055 0.173792 \n", + " 3 96908 1777917 0.255879 \n", + " 4 2091720 25255501 0.144739 \n", + " 5 365797 4057463 0.203857 \n", + " 6 486498 2795415 0.060733 \n", + " 7 129033 802005 0.238551 \n", + " 8 115149 325239 0.206713 \n", + " 9 3952147 17333354 0.161903 \n", + " 10 821326 7571988 0.232597 \n", + " 11 184743 722550 0.184760 \n", + " 12 87222 863636 0.151236 \n", + " 13 412978 7028885 0.321039 \n", + " 14 201200 3506499 0.245653 \n", + " 15 58105 1650388 0.223522 \n", + " 16 76533 1725608 0.203605 \n", + " 17 186915 2805864 0.242504 \n", + " 18 369492 4136224 0.342336 \n", + " 19 68109 699558 0.144536 \n", + " 20 1059508 4554586 0.193959 \n", + " 21 473913 4924736 0.000000 \n", + " 22 0 8462142 0.186761 \n", + " 23 108942 3412460 0.249656 \n", + " 24 100827 1760180 0.265818 \n", + " 25 214191 3606590 0.245044 \n", + " 26 33538 668513 0.234574 \n", + " 27 61046 1167135 0.234529 \n", + " 28 262815 2129828 0.190010 \n", + " 29 103403 806545 0.128127 \n", + " 30 1441019 7375823 0.084007 \n", + " 31 174865 1284430 0.203921 \n", + " 32 3926684 12633982 0.131918 \n", + " 33 560700 5543700 0.151951 \n", + " 34 15516 454376 0.148076 \n", + " 35 405652 6303148 0.196739 \n", + " 36 151388 2515842 0.252823 \n", + " 37 223187 2647434 0.213194 \n", + " 38 602848 8270326 0.200056 \n", + " 39 97597 867558 0.000000 \n", + " 40 426033 3583918 0.243989 \n", + " 41 15682 508569 0.200390 \n", + " 42 292357 3769652 0.235918 \n", + " 43 2127633 19180816 0.177008 \n", + " 44 139315 1723931 0.174255 \n", + " 45 52939 359996 0.083343 \n", + " 46 884489 5105360 0.172037 \n", + " 47 478922 4780616 0.166272 \n", + " 48 110806 1209872 0.267473 \n", + " 49 131845 2950711 0.150364 \n", + " 50 30187 374169 0.241634 \n", + " 51 0 444480 0.000000 ,\n", + " fields: ['State Farm market share %'],\n", + " key: 'id'\n", + " }),\n", + " lookup: 'id'\n", + " })],\n", + " width: 500\n", + "})" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 103 + } + ] + }, + { + "metadata": { + "id": "ctVEiCpnCJKX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Links\n", + "- [How to Spot Visualization Lies](https://flowingdata.com/2017/02/09/how-to-spot-visualization-lies/)\n", + "- [Where to Start and End Your Y-Axis Scale](http://stephanieevergreen.com/y-axis/)\n", + "- [xkcd heatmap](https://xkcd.com/1138/)\n", + "- [Surprise Maps: Showing the Unexpected](https://medium.com/@uwdata/surprise-maps-showing-the-unexpected-e92b67398865)" + ] + }, + { + "metadata": { + "id": "ytkmX4-jCJKY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Use Seaborn to visualize distributions and relationships with continuous and discrete variables\n", + "\n", + "#### Links\n", + "- [Seaborn tutorial](https://seaborn.pydata.org/tutorial.html)\n", + "- [Seaborn example gallery](https://seaborn.pydata.org/examples/index.html)\n", + "- [Chart Chooser](https://extremepresentation.typepad.com/files/choosing-a-good-chart-09.pdf)" + ] + }, + { + "metadata": { + "id": "pvc1iNRxCJK5", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 1. Anscombe dataset" + ] + }, + { + "metadata": { + "id": "ASdE3keNCJK9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Load dataset" + ] + }, + { + "metadata": { + "id": "641l56q4CJLD", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "df = sns.load_dataset('anscombe')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "HahrZu6LCJLM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the data's shape" + ] + }, + { + "metadata": { + "id": "Fp32gMzMCJLP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "33fc6efd-7738-4f4f-a050-37f584f13477" + }, + "cell_type": "code", + "source": [ + "df.shape" + ], + "execution_count": 108, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(44, 3)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 108 + } + ] + }, + { + "metadata": { + "id": "LmMMlobYCJLd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the data" + ] + }, + { + "metadata": { + "id": "B_1uzu_bCJLg", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1413 + }, + "outputId": "20fd9938-4e37-4969-e909-c3e6ceaa97e3" + }, + "cell_type": "code", + "source": [ + "df" + ], + "execution_count": 109, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
datasetxy
0I10.08.04
1I8.06.95
2I13.07.58
3I9.08.81
4I11.08.33
5I14.09.96
6I6.07.24
7I4.04.26
8I12.010.84
9I7.04.82
10I5.05.68
11II10.09.14
12II8.08.14
13II13.08.74
14II9.08.77
15II11.09.26
16II14.08.10
17II6.06.13
18II4.03.10
19II12.09.13
20II7.07.26
21II5.04.74
22III10.07.46
23III8.06.77
24III13.012.74
25III9.07.11
26III11.07.81
27III14.08.84
28III6.06.08
29III4.05.39
30III12.08.15
31III7.06.42
32III5.05.73
33IV8.06.58
34IV8.05.76
35IV8.07.71
36IV8.08.84
37IV8.08.47
38IV8.07.04
39IV8.05.25
40IV19.012.50
41IV8.05.56
42IV8.07.91
43IV8.06.89
\n", + "
" + ], + "text/plain": [ + " dataset x y\n", + "0 I 10.0 8.04\n", + "1 I 8.0 6.95\n", + "2 I 13.0 7.58\n", + "3 I 9.0 8.81\n", + "4 I 11.0 8.33\n", + "5 I 14.0 9.96\n", + "6 I 6.0 7.24\n", + "7 I 4.0 4.26\n", + "8 I 12.0 10.84\n", + "9 I 7.0 4.82\n", + "10 I 5.0 5.68\n", + "11 II 10.0 9.14\n", + "12 II 8.0 8.14\n", + "13 II 13.0 8.74\n", + "14 II 9.0 8.77\n", + "15 II 11.0 9.26\n", + "16 II 14.0 8.10\n", + "17 II 6.0 6.13\n", + "18 II 4.0 3.10\n", + "19 II 12.0 9.13\n", + "20 II 7.0 7.26\n", + "21 II 5.0 4.74\n", + "22 III 10.0 7.46\n", + "23 III 8.0 6.77\n", + "24 III 13.0 12.74\n", + "25 III 9.0 7.11\n", + "26 III 11.0 7.81\n", + "27 III 14.0 8.84\n", + "28 III 6.0 6.08\n", + "29 III 4.0 5.39\n", + "30 III 12.0 8.15\n", + "31 III 7.0 6.42\n", + "32 III 5.0 5.73\n", + "33 IV 8.0 6.58\n", + "34 IV 8.0 5.76\n", + "35 IV 8.0 7.71\n", + "36 IV 8.0 8.84\n", + "37 IV 8.0 8.47\n", + "38 IV 8.0 7.04\n", + "39 IV 8.0 5.25\n", + "40 IV 19.0 12.50\n", + "41 IV 8.0 5.56\n", + "42 IV 8.0 7.91\n", + "43 IV 8.0 6.89" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 109 + } + ] + }, + { + "metadata": { + "id": "JY2-iy6BCJLk", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### [Group by](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.groupby.html) `'dataset'`" + ] + }, + { + "metadata": { + "id": "EIxxW-MlCJLl", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "groups = df.groupby('dataset')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "usb12p9JCJLo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### [Describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) the groups" + ] + }, + { + "metadata": { + "id": "gaCV0TeaCJLq", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "outputId": "de665b4c-adc4-4188-aac3-d959c882e487" + }, + "cell_type": "code", + "source": [ + "groups.describe()" + ], + "execution_count": 111, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
dataset
I11.09.03.3166254.06.59.011.514.011.07.5009092.0315684.266.3157.588.5710.84
II11.09.03.3166254.06.59.011.514.011.07.5009092.0316573.106.6958.148.959.26
III11.09.03.3166254.06.59.011.514.011.07.5000002.0304245.396.2507.117.9812.74
IV11.09.03.3166258.08.08.08.019.011.07.5009092.0305795.256.1707.048.1912.50
\n", + "
" + ], + "text/plain": [ + " x y \\\n", + " count mean std min 25% 50% 75% max count mean \n", + "dataset \n", + "I 11.0 9.0 3.316625 4.0 6.5 9.0 11.5 14.0 11.0 7.500909 \n", + "II 11.0 9.0 3.316625 4.0 6.5 9.0 11.5 14.0 11.0 7.500909 \n", + "III 11.0 9.0 3.316625 4.0 6.5 9.0 11.5 14.0 11.0 7.500000 \n", + "IV 11.0 9.0 3.316625 8.0 8.0 8.0 8.0 19.0 11.0 7.500909 \n", + "\n", + " \n", + " std min 25% 50% 75% max \n", + "dataset \n", + "I 2.031568 4.26 6.315 7.58 8.57 10.84 \n", + "II 2.031657 3.10 6.695 8.14 8.95 9.26 \n", + "III 2.030424 5.39 6.250 7.11 7.98 12.74 \n", + "IV 2.030579 5.25 6.170 7.04 8.19 12.50 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 111 + } + ] + }, + { + "metadata": { + "id": "ZRCwMb3QCJLt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Get the [count](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.count.html), for each column in each group" + ] + }, + { + "metadata": { + "id": "LaTjDriCCJLu", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "ba5dca63-d4d2-4865-e526-e6d970598440" + }, + "cell_type": "code", + "source": [ + "groups.count()" + ], + "execution_count": 112, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
dataset
I1111
II1111
III1111
IV1111
\n", + "
" + ], + "text/plain": [ + " x y\n", + "dataset \n", + "I 11 11\n", + "II 11 11\n", + "III 11 11\n", + "IV 11 11" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 112 + } + ] + }, + { + "metadata": { + "id": "ISiha0GTCJLx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Get the [mean](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.mean.html) ..." + ] + }, + { + "metadata": { + "id": "fISWsEW5CJLy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "56ea50a6-df15-4779-969c-25f51ed9d10b" + }, + "cell_type": "code", + "source": [ + "groups.mean()" + ], + "execution_count": 113, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
dataset
I9.07.500909
II9.07.500909
III9.07.500000
IV9.07.500909
\n", + "
" + ], + "text/plain": [ + " x y\n", + "dataset \n", + "I 9.0 7.500909\n", + "II 9.0 7.500909\n", + "III 9.0 7.500000\n", + "IV 9.0 7.500909" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 113 + } + ] + }, + { + "metadata": { + "id": "-STzY_hMCJL1", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Get the [standard deviation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.std.html) ..." + ] + }, + { + "metadata": { + "id": "KeH12C91CJL3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "a389a938-73f7-4410-9389-d3c4227ec304" + }, + "cell_type": "code", + "source": [ + "groups.std()" + ], + "execution_count": 114, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
dataset
I3.3166252.031568
II3.3166252.031657
III3.3166252.030424
IV3.3166252.030579
\n", + "
" + ], + "text/plain": [ + " x y\n", + "dataset \n", + "I 3.316625 2.031568\n", + "II 3.316625 2.031657\n", + "III 3.316625 2.030424\n", + "IV 3.316625 2.030579" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 114 + } + ] + }, + { + "metadata": { + "id": "i5dznUE7CJL-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Get the [correlation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html) ..." + ] + }, + { + "metadata": { + "id": "hbJZbHh0CJMC", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "outputId": "bf300bb5-7b96-4621-80ee-7d14a1bf607d" + }, + "cell_type": "code", + "source": [ + "groups.corr()" + ], + "execution_count": 115, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
dataset
Ix1.0000000.816421
y0.8164211.000000
IIx1.0000000.816237
y0.8162371.000000
IIIx1.0000000.816287
y0.8162871.000000
IVx1.0000000.816521
y0.8165211.000000
\n", + "
" + ], + "text/plain": [ + " x y\n", + "dataset \n", + "I x 1.000000 0.816421\n", + " y 0.816421 1.000000\n", + "II x 1.000000 0.816237\n", + " y 0.816237 1.000000\n", + "III x 1.000000 0.816287\n", + " y 0.816287 1.000000\n", + "IV x 1.000000 0.816521\n", + " y 0.816521 1.000000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 115 + } + ] + }, + { + "metadata": { + "id": "i9jemTF_CJMF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Use pandas to [plot](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html) the groups, as scatter plots" + ] + }, + { + "metadata": { + "id": "6m4k73ZhCJMH", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1081 + }, + "outputId": "75232c49-cd8c-4878-c7ce-5ff47cb78144" + }, + "cell_type": "code", + "source": [ + "groups.plot('x','y', kind='scatter');" + ], + "execution_count": 116, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEXlJREFUeJzt3X9sXWd9x/HP59bGduIIjG06sOnS\nkaqbVBnTeQjIqBgFVrbKRXhIoCEKY8sfY8DQtgS2Cf6ZGPOQBtokpqiFVhp0P2KqVJuGWhWx/jFW\n4ZbEBMqoxqBxaMmtcVBdbHPD/e6Pe9HiEMeOfc957PO8X1Lke8+90fM5reOPz4/nuY4IAQDyVUsd\nAACQFkUAAJmjCAAgcxQBAGSOIgCAzFEEAJA5igAAMkcRAEDmKAIAyFxX6gCbMTQ0FPv3708dAwB2\nlUceeeTpiBje6H27ogj279+v2dnZ1DEAYFex/d3NvK+wU0O2P237rO1TF2x7i+2v227anihqbADA\n5hV5jeAuSbdctO2UpDdLeqjAcQEAV6CwU0MR8ZDt/Rdte0ySbBc1LADgCnHXEABkbscWge1Dtmdt\nz9br9dRxAKCydmwRRMTRiJiIiInh4Q3vfgIAbNGOLQIAuNDC0qpOnj6nhaXV1FEqp7CLxbbvkfQa\nSUO25yV9RNIPJP2tpGFJ/2b7RET8elEZAFTD8RNndGRmTt21mhrNpqanxjQ5PpI6VmUUedfQ29Z5\n6d6ixgRQPQtLqzoyM6eVRlMrakqSDs/M6eCBIQ329yROVw2cGgKwo80vLqu7tvZHVXetpvnF5USJ\nqociALCjjQ70qdFsrtnWaDY1OtCXKFH1UAQAdrTB/h5NT42pt7umfT1d6u2uaXpqjNNCHbQrFp0D\nkLfJ8REdPDCk+cVljQ70UQIdRhEA2BUG+3sogIJwaggAMkcRAEDmKAIAyBxFAACZowgAIHMUAQBk\njiIAgMxRBACQOYoAADJHEQBA5igCAMgcRQAAmaMIACBzFAEAZI4iAIDMUQQAkLnCisD2p22ftX3q\ngm3Pt/2A7cfbXweKGh8AsDlFHhHcJemWi7Z9UNKDEXGdpAfbzwEACRVWBBHxkKQfXLT5Nkl3tx/f\nLelNRY0PALvZwtKqTp4+p4Wl1cLHKvszi6+OiCfbj5+SdHXJ4wPAjnf8xBkdmZlTd62mRrOp6akx\nTY6PFDZesovFERGSYr3XbR+yPWt7tl6vl5gMANJZWFrVkZk5rTSaemb1vFYaTR2emSv0yKDsIvi+\n7RdKUvvr2fXeGBFHI2IiIiaGh4dLCwgAKc0vLqu7tvZHc3etpvnF5cLGLLsI7pN0e/vx7ZKOlzw+\nAOxoowN9ajSba7Y1mk2NDvQVNmaRt4/eI+nLkq63PW/73ZI+Jun1th+X9Lr2cwBA22B/j6anxtTb\nXdO+ni71dtc0PTWmwf6ewsYs7GJxRLxtnZduLmpMAKiCyfERHTwwpPnFZY0O9BVaAlL5dw0BADZh\nsL+n8AL4KZaYAIDMUQQAkDmKAAAyRxEAQOYoAgDIHEUAAJmjCAAgcxQBAGSOIgCAzFEEAJA5igAA\nMkcRAEDmKAIAyBxFAACZowgAIHMUAQBkjiIAgMxRBACQOYoAADJHEQBA5pIUge332z5l++u2/zBF\nBgBAS+lFYPsGSb8n6eWSXirpVtsHys4BAGhJcUTwS5IejogfRcR5Sf8h6c0JcgAAlKYITkl6te1B\n23sk/YakFyfIAQCQ1FX2gBHxmO2/knS/pGclnZD0k4vfZ/uQpEOSdM0115SaEQBykuRicUTcGRG/\nHBE3SVqU9K1LvOdoRExExMTw8HD5IQEgE6nuGnpB++s1al0f+FyKHMB2LCyt6uTpc1pYWk0dBdiW\n0k8Ntc3YHpTUkPSeiDiXKAewJcdPnNGRmTl112pqNJuanhrT5PhI6ljAliQpgoh4dYpxgU5YWFrV\nkZk5rTSaWlFTknR4Zk4HDwxpsL8ncTrgyjGzGLhC84vL6q6t/afTXatpfnE5USJgeygC4AqNDvSp\n0Wyu2dZoNjU60JcoEbA9FAFwhQb7ezQ9Nabe7pr29XSpt7um6akxTgth10p1sRjY1SbHR3TwwJDm\nF5c1OtBHCWBXowiALRrs76EAUAmcGgKAzFEEAJA5igAAMkcRAEDmKAIAyBxFAACZowgAIHMUAYBN\nY+ntamJCGYBNYent6uKIAMCGLlx6+5nV81ppNHV4Zo4jg4qgCABsiKW3q40iALAhlt6uNooAwIZY\nervauFgMYFNYeru6KAIAm8bS29XEqSFgF+J+fnRSkiMC2x+Q9LuSQtLXJL0rIlZSZAF2G+7nR6eV\nfkRge0TS+yRNRMQNkq6S9NaycwC7EffzowipTg11Seqz3SVpj6TvJcoB7Crcz48ilF4EEXFG0scl\nPSHpSUk/jIj7y84B7Ebcz48ipDg1NCDpNknXSnqRpL22336J9x2yPWt7tl6vlx0T2JG4nx9FcESU\nO6D9Fkm3RMS728/fIekVEfH76/2diYmJmJ2dLSsisOMtLK1yPz82ZPuRiJjY6H0p7hp6QtIrbO+R\ntCzpZkn8lAeuAPfzo5NSXCN4WNIxSY+qdetoTdLRsnMAAFqSzCOIiI9I+kiKsQEAazGzGAAyRxEA\nQOYoAgDIHEUAAJmjCADgMnJY6ZXPIwCAdeSy0uuGRwS239teFgIAspHTSq+bOTV0taSv2P5n27fY\ndtGhACC1nFZ63bAIIuLPJV0n6U5J75T0uO2P2n5JwdkAIJmcVnrd1MXiaK1M91T7z3lJA5KO2Z4u\nMBsAJJPTSq8bXiy2/X5J75D0tKQ7JP1JRDRs1yQ9LulwsREBII3J8REdPDBU+ZVeN3PX0PMlvTki\nvnvhxoho2r61mFgAsDPksNLrhkXQXiBuvdce62wcAEDZmFAGAJmjCComh1mQADqLmcUVksssSACd\nxRFBReQ0CxJAZ1EEFZHTLEgAnUURVEROsyABdBZFUBE5zYIE0FlcLK6QXGZBAuis0ovA9vWS/umC\nTb8g6cMR8Ymys1RRDrMgAXRW6UUQEf8taVySbF8l6Yyke8vOAQBoSX2N4GZJ/3PxOkbAlWASHbA9\nqa8RvFXSPYkzYBdjEh2wfcmOCGw/R9KkpH9Z5/VDtmdtz9br9XLDYVdgEh3QGSlPDb1R0qMR8f1L\nvRgRRyNiIiImhoeHS46G3YBJdEBnpCyCt4nTQtgGJtEBnZGkCGzvlfR6SZ9PMT6qgUl0QGckuVgc\nEc9KGkwxNqqFSXTA9qW+awjYNibRAduTeh4BACAxigAAMkcRAEDmKAIAyBxFAACZowgAIHMUAQBk\njiIAgMxRBACQOYoAADJHEQBA5igCAMgcRQAAmaMIACBzFAEAZI4iAIDMUQQAkDmKAAAyRxEAQOYo\nAgDIXJIisP0828dsf9P2Y7ZfmSIHAEDqSjTuJyV9ISJ+y/ZzJO1JlAMAsld6Edh+rqSbJL1TkiLi\nx5J+XHYOAEBLilND10qqS/qM7a/avsP23ovfZPuQ7Vnbs/V6vfyUAJCJFEXQJelGSZ+KiJdJelbS\nBy9+U0QcjYiJiJgYHh4uOyMAZCNFEcxLmo+Ih9vPj6lVDACABEovgoh4StJp29e3N90s6Rtl5wAA\ntKS6a+i9kj7bvmPo25LelSgHAGQvSRFExAlJEynGBgCsxcxiAMgcRVCQhaVVnTx9TgtLq6mjAMBl\npbpGUGnHT5zRkZk5dddqajSbmp4a0+T4SOpYAHBJHBF02MLSqo7MzGml0dQzq+e10mjq8MwcRwYA\ndiyKoMPmF5fVXVv7n7W7VtP84nKiRABweRRBh40O9KnRbK7Z1mg2NTrQlygRAFweRdBhg/09mp4a\nU293Tft6utTbXdP01JgG+3tSRwOAS+JicQEmx0d08MCQ5heXNTrQRwkA2NEogoIM9vdQAAB2BU4N\nAUDmKAIAyBxFAACZowgAIHMUAQBkjiIAgMxRBACQOYoAADJHEQBA5igCAMgcRQAAmaMIACBzSRad\ns/0dSc9I+omk8xExkSIHACDt6qO/FhFPJxwfACBODQFA9lIVQUi63/Yjtg9d6g22D9metT1br9dL\njgcA+UhVBL8aETdKeqOk99i+6eI3RMTRiJiIiInh4eHyEwJAJpIUQUScaX89K+leSS9PkQMAkKAI\nbO+1ve+njyW9QdKpsnOg8xaWVnXy9DktLK2mjgLgCqS4a+hqSffa/un4n4uILyTIgQ46fuKMjszM\nqbtWU6PZ1PTUmCbHR1LHArAJpRdBRHxb0kvLHhfFWVha1ZGZOa00mlpRU5J0eGZOBw8MabC/J3E6\nABvh9lFs2/zisrpra7+Vums1zS8uJ0oE4EpQBNi20YE+NZrNNdsazaZGB/oSJQJwJSgCbNtgf4+m\np8bU213Tvp4u9XbXND01xmkhYJdIucQEKmRyfEQHDwxpfnFZowN9lACwi1AE6JjB/h4KANiFODUE\nAJmjCAAgcxQBAGSOIgCAzFEEAJA5igAAMkcRAEDmKAIAyBxFAACZq3QR8EEpALCxyi4xwQelAMDm\nVPKI4MIPSnlm9bxWGk0dnpnjyAAALqGSRcAHpQDA5lWyCPigFADYvEoWAR+UAgCbV9mLxXxQCgBs\nTrIisH2VpFlJZyLi1iLG4INSAGBjKU8NvV/SYwnHBwAoURHYHpX0m5LuSDE+AOD/pToi+ISkw5Ka\n673B9iHbs7Zn6/V6eckAIDOlF4HtWyWdjYhHLve+iDgaERMRMTE8PFxSOgDIT4ojgoOSJm1/R9I/\nSnqt7X9IkAMAIMkRkW5w+zWS/niju4Zs1yV9d4vDDEl6eot/d7din/PAPlffdvf35yNiw1Mqu2Ie\nwWZ2ZD22ZyNiopN5djr2OQ/sc/WVtb9JiyAiviTpSykzAEDuKrnEBABg83IogqOpAyTAPueBfa6+\nUvY36cViAEB6ORwRAAAuo/JFYPsq21+1/a+ps5TB9vNsH7P9TduP2X5l6kxFsv0B21+3fcr2PbZ7\nU2cqgu1P2z5r+9QF255v+wHbj7e/DqTM2Enr7O9ft7+v52zfa/t5KTN22qX2+YLX/sh22B4qYuzK\nF4HyW9zuk5K+EBG/KOmlqvC+2x6R9D5JExFxg6SrJL01barC3CXplou2fVDSgxFxnaQH28+r4i79\n7P4+IOmGiBiT9C1JHyo7VMHu0s/us2y/WNIbJD1R1MCVLoLcFrez/VxJN0m6U5Ii4scRcS5tqsJ1\nSeqz3SVpj6TvJc5TiIh4SNIPLtp8m6S724/vlvSmUkMV6FL7GxH3R8T59tP/kjRaerACrfP/WJL+\nRq212Qq7oFvpItAmFrermGsl1SV9pn067A7be1OHKkpEnJH0cbV+U3pS0g8j4v60qUp1dUQ82X78\nlKSrU4Yp2e9I+vfUIYpm+za1PrPlZJHjVLYINru4XcV0SbpR0qci4mWSnlW1Thes0T4nfptaBfgi\nSXttvz1tqjSidftfFrcA2v4zSeclfTZ1liLZ3iPpTyV9uOixKlsEynNxu3lJ8xHxcPv5MbWKoape\nJ+l/I6IeEQ1Jn5f0qsSZyvR92y+UpPbXs4nzFM72OyXdKum3o/r3vr9ErV9yTrZ/jo1KetT2z3V6\noMoWQUR8KCJGI2K/WhcQvxgRlf5tMSKeknTa9vXtTTdL+kbCSEV7QtIrbO+xbbX2t7IXxy/hPkm3\ntx/fLul4wiyFs32LWqd6JyPiR6nzFC0ivhYRL4iI/e2fY/OSbmz/O++oyhZBxt4r6bO25ySNS/po\n4jyFaR/5HJP0qKSvqfX9XMmZp7bvkfRlSdfbnrf9bkkfk/R624+rdXT0sZQZO2md/f07SfskPWD7\nhO2/Txqyw9bZ53LGrv7RFQDgcjgiAIDMUQQAkDmKAAAyRxEAQOYoAgDIHEUAAJmjCAAgcxQBsAW2\nf6W9Ln6v7b3tz0S4IXUuYCuYUAZske2/kNQrqU+tNZ7+MnEkYEsoAmCLbD9H0lckrUh6VUT8JHEk\nYEs4NQRs3aCkfrXWv6nkR2QiDxwRAFtk+z61lji/VtILI+IPEkcCtqQrdQBgN7L9DkmNiPic7ask\n/aft10bEF1NnA64URwQAkDmuEQBA5igCAMgcRQAAmaMIACBzFAEAZI4iAIDMUQQAkDmKAAAy93/Z\nomF0EMrjugAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEUVJREFUeJzt3X1sXXd9x/H399bGduuKGMd0LG6W\nbp26SZ0TwEOFbEhrAXWjSie8PzqtGnvQIk0bdGhSAnsATdoDeEgDCYkpakeRgDKoqYqQhlrRMaQ9\ndCQlMYV2IB7aOFAaPAfVxTE3vd/94ZuRpPFDXJ977Pt7v6TI9vHx/X5P4nzO7/zueYjMRJLU/Rp1\nNyBJ6gwDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klSInrobONf27dtz165ddbch\nSVvGkSNHvp+ZI2tZd1MF/q5duzh8+HDdbUjSlhERT6x1Xad0JKkQBr4kFcLAl6RCGPiSVAgDX5IK\nYeBLUiEMfEnPMzu/yLHjp5idX6y7FW2gTXUevqT63X/0BAenpultNGi2WkxOjLFvz46629IGcIQv\n6f/Nzi9ycGqa080Wzyye4XSzxYGpaUf6XcLAlzapOqZVZuYW6G2cHwu9jQYzcwsd60HVcUpH2oTq\nmlYZHRqg2Wqdt6zZajE6NFB5bVjayc3MLTA6NMDwYF9HapbEEb60ydQ5rTI82MfkxBj9vQ2u7Ouh\nv7fB5MRYR8L3/qMn2Pueh7j9zofZ+56H+PTRE5XXLI0jfGmTOTutcpofj7TPTqt0Inj37dnB3mu3\nd3Skfe5O7ux2H5iaZu+12x3pb6BKR/gRcUdEPBoRX4mIP6myltQt6p5WgaWR/u6rt3UsbH3voDMq\nC/yIuB74A+BVwG7gloi4tqp6Ureoc1qlLpthJ1eCKqd0fh54ODN/CBAR/wa8CZissKbUFeqYVqnT\n2Z3cgQveqO727e60KgP/UeBvImIYWAB+DfDpJtIaDQ/2FRV4pe3k6lBZ4GfmYxHxHuAB4FngKPDc\nhetFxH5gP8DOnTurakfSFlDaTq7TKn3TNjPvysxXZuZrgTngaxdZ51Bmjmfm+MjImh7LKElah0pP\ny4yIl2bm0xGxk6X5+xuqrCdJWl7V5+FPtefwm8AfZeapiutJkpZRaeBn5i9X+fpSJ3i5v7qFV9pK\nK/BWweUoYcdu4EvL8HL/cpSyY/fmadIyvNy/DCU9A8DAl5bh5f5lKGnHbuBLyyjxnjYlKmnH7hy+\ntAIv9+9+Jd3Hx8CXVuHl/t2vlB27gS9JlLFjdw5fkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLA\nl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIGvLWN2fpFjx0915YMppE7w5mnaEkp5BJ1UJUf42vRKegSd\nytPJI1dH+Nr0zj6C7uyDxOHHj6Dr9tvZqrt1+si10hF+RLwtIr4SEY9GxD0R0V9lPXWnkh5Bp3LU\nceRaWeBHxA7grcB4Zl4PXAbcVlU9dS+fLatuVMfD06ue0ukBBiKiCVwOfKfieupSpTyCTuWo48i1\nshF+Zp4A3gs8CXwX+EFmPlBVPXW/4cE+dl+9zbBXV6jjyLWyEX5EDAG3AtcAp4BPRsTtmfmRC9bb\nD+wH2LlzZ1XtSNKm0+kj1yrftH0d8K3MPJmZTeBTwGsuXCkzD2XmeGaOj4yMVNiOJG0+nTxyrTLw\nnwRuiIjLIyKAm4DHKqwnSVpBlXP4DwP3Ao8AX27XOlRVPUnSyio9Sycz3wW8q8oakqS18dYKklQI\nA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDw\nJakQBr4kFcLAl6RCGPi6JLPzixw7forZ+cW6W5F0iSp94pW6y/1HT3BwapreRoNmq8XkxBj79uyo\nuy1Ja+QIX2syO7/IwalpTjdbPLN4htPNFgemph3pS1uIga81mZlboLdx/q9Lb6PBzNxCTR1JulQG\nvtZkdGiAZqt13rJmq8Xo0EBNHUm6VAa+1mR4sI/JiTH6extc2ddDf2+DyYkxhgf76m5N0hr5pq3W\nbN+eHey9djszcwuMDg0Y9tIWU1ngR8R1wD+fs+ingXdm5vuqqqnqDQ/2GfTSFlVZ4Gfm/wB7ACLi\nMuAEcF9V9SRJK+vUHP5NwDcy84kO1ZMkXaBTgX8bcE+HakmSLqLywI+IFwH7gE8u8/39EXE4Ig6f\nPHmy6nYkqVidGOH/KvBIZn7vYt/MzEOZOZ6Z4yMjIx1oR5LK1InA/02czpGk2lUa+BFxBfB64FNV\n1pEkra7SC68y81lguMoakqS18dYKklQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY\n+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiFWDfyIeEtE\nDHWiGUlSddYywr8K+GJEfCIibo6IqLoprW52fpFjx08xO79YdyuStoie1VbIzL+IiL8E3gD8LvCB\niPgEcFdmfqPqBvV89x89wcGpaXobDZqtFpMTY+zbs6PutiRtcmuaw8/MBJ5q/zkDDAH3RsRkhb3p\nImbnFzk4Nc3pZotnFs9wutniwNS0I31Jq1rLHP4dEXEEmAT+HfiFzPxD4JXAxCo/uy0i7o2IxyPi\nsYh49YZ0XbCZuQV6G+f/s/U2GszMLdTUkaStYtUpHeAlwJsy84lzF2ZmKyJuWeVn3w98NjN/IyJe\nBFy+zj7VNjo0QLPVOm9Zs9VidGigpo4kbRWrjvAz810Xhv0533tsuZ+LiBcDrwXuaq/7o8w8td5G\ntWR4sI/JiTH6extc2ddDf2+DyYkxhgf76m5N0ia3lhH+el0DnAQ+FBG7gSPAHZn5bIU1i7Bvzw72\nXrudmbkFRocGDHtJa1LlhVc9wCuAD2bmy4FngbdfuFJE7I+IwxFx+OTJkxW2012GB/vYffU2w17S\nmlUZ+DPATGY+3P76XpZ2AOfJzEOZOZ6Z4yMjIxW2I0llqyzwM/Mp4HhEXNdedBPw1arqSZJWVuUc\nPsBbgI+2z9D5JksXbkmSalBp4GfmUWC8yhqSpLXxbpmSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWp\nEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph\n4EtSIQx8SSqEgS9JhTDwJakQBr4kFaKnyhePiG8DzwDPAWcyc7zKepKk5VUa+G2/kpnf70AdSdIK\nnNKRpEJUHfgJPBARRyJif8W1JEkrqHpK55cy80REvBR4MCIez8wvnLtCe0ewH2Dnzp0VtyNJ5ap0\nhJ+ZJ9ofnwbuA151kXUOZeZ4Zo6PjIxU2Y4kFa2ywI+IKyLiyrOfA28AHq2qniRpZVVO6VwF3BcR\nZ+t8LDM/W2E9SdIKKgv8zPwmsLuq15ckXRpPy3wBZucXOXb8FLPzi3W3Ikmr6sSFV13p/qMnODg1\nTW+jQbPVYnJijH17dtTdliQtyxH+OszOL3JwaprTzRbPLJ7hdLPFgalpR/qSNjUDfx1m5hbobZz/\nV9fbaDAzt1BTR5K0OgN/HUaHBmi2Wucta7ZajA4N1NSRJK3OwF+H4cE+JifG6O9tcGVfD/29DSYn\nxhge7Ku7NUlalm/artO+PTvYe+12ZuYWGB0aMOwlbXoG/gswPNhn0EvaMpzSkaRCGPiSVAgDX5IK\nYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRCV\nB35EXBYRX4qIz1RdS5K0vE6M8O8AHutAHUnSCioN/IgYBd4I3FllHUnS6qoe4b8POAC0Kq4jSVpF\nZYEfEbcAT2fmkVXW2x8RhyPi8MmTJ6tqR5KKV+UIfy+wLyK+DXwcuDEiPnLhSpl5KDPHM3N8ZGSk\nwnYkqWyVBX5mviMzRzNzF3Ab8FBm3l5VPUnSyjwPX5IK0dOJIpn5eeDznaglSbo4R/iSVAgDX5IK\nYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAG\nviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JheiKwJ+dX+TY8VPMzi/W3YokbVo9dTfwQt1/\n9AQHp6bpbTRotlpMToyxb8+OutuSpE2nshF+RPRHxH9HxLGI+EpE/NVG15idX+Tg1DSnmy2eWTzD\n6WaLA1PTjvQl6SKqnNJZBG7MzN3AHuDmiLhhIwvMzC3Q2zh/E3obDWbmFjayjCR1hcqmdDIzgfn2\nl73tP7mRNUaHBmi2Wucta7ZajA4NbGQZSeoKlb5pGxGXRcRR4Gngwcx8eCNff3iwj8mJMfp7G1zZ\n10N/b4PJiTGGB/s2sowkdYVK37TNzOeAPRGxDbgvIq7PzEfPXSci9gP7AXbu3HnJNfbt2cHea7cz\nM7fA6NCAYS9Jy+jIaZmZeQr4V+Dmi3zvUGaOZ+b4yMjIul5/eLCP3VdvM+wlaQVVnqUz0h7ZExED\nwOuBx6uqJ0laWZVTOi8DPhwRl7G0Y/lEZn6mwnqSpBVUeZbONPDyql5fknRpuuLWCpKk1Rn4klSI\nWLo+anOIiJPAE+v88e3A9zewna3Abe5+pW0vuM2X6qcyc02nOG6qwH8hIuJwZo7X3Ucnuc3dr7Tt\nBbe5Sk7pSFIhDHxJKkQ3Bf6huhuogdvc/UrbXnCbK9M1c/iSpJV10whfkrSCrgj89m2YvxQRRdy6\nISK2RcS9EfF4RDwWEa+uu6eqRcTb2k9OezQi7omI/rp72mgR8U8R8XREPHrOspdExIMR8fX2x6E6\ne9xoy2zz37d/t6cj4r6z9+TqFhfb5nO+96cRkRGxvYraXRH4wB3AY3U30UHvBz6bmT8H7KbLtz0i\ndgBvBcYz83rgMuC2eruqxN08/46ybwc+l5k/C3yu/XU3uZvnb/ODwPWZOQZ8DXhHp5uq2N1c5M7B\nEXE18AbgyaoKb/nAj4hR4I3AnXX30gkR8WLgtcBdAJn5o/btp7tdDzAQET3A5cB3au5nw2XmF4D/\nvWDxrcCH259/GPj1jjZVsYttc2Y+kJln2l/+FzDa8cYqtMy/M8A/AAfY4CcDnmvLBz7wPpb+klqr\nrdglrgFOAh9qT2PdGRFX1N1UlTLzBPBelkY+3wV+kJkP1NtVx1yVmd9tf/4UcFWdzdTg94B/qbuJ\nqkXErcCJzDxWZZ0tHfgRcQvwdGYeqbuXDuoBXgF8MDNfDjxL9x3mn6c9b30rSzu7nwSuiIjb6+2q\n89rPiS7mtLqI+HPgDPDRunupUkRcDvwZ8M6qa23pwAf2Avsi4tvAx4EbI+Ij9bZUuRlg5pznA9/L\n0g6gm70O+FZmnszMJvAp4DU199Qp34uIlwG0Pz5dcz8dERG/A9wC/FZ2/7njP8PSYOZYO8tGgUci\n4ic2utCWDvzMfEdmjmbmLpbexHsoM7t65JeZTwHHI+K69qKbgK/W2FInPAncEBGXR0SwtM1d/Ub1\nOT4NvLn9+ZuB+2vspSMi4maWpmn3ZeYP6+6napn55cx8aWbuamfZDPCK9v/1DbWlA79gbwE+GhHT\nwB7gb2vup1Lto5l7gUeAL7P0e9t1V2NGxD3AfwLXRcRMRPw+8G7g9RHxdZaOdN5dZ48bbZlt/gBw\nJfBgRByNiH+stckNtsw2d6Z29x8tSZLAEb4kFcPAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw\n8KVlRMQvtu/J3h8RV7Tvx3993X1J6+WFV9IKIuKvgX5ggKV7GP1dzS1J62bgSyuIiBcBXwROA6/J\nzOdqbklaN6d0pJUNA4Ms3dul6x6rqLI4wpdWEBGfZunW29cAL8vMP665JWndeupuQNqsIuK3gWZm\nfiwiLgP+IyJuzMyH6u5NWg9H+JJUCOfwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEv\nSYX4Pzb0WgKqz8lLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEQ9JREFUeJzt3X+MZWV9x/H3Z9h1WVgq6+5IlcVC\nhGBbAtROG5VKa9GWWgJW0kRSK1TSTZP6M01Ba1ubtLUWTVoTk5oNIDRFmpaVYNpoIZiUP4rEWcR1\nEZRUKw6IOwKKq7DuOt/+MXfbZd1xZmfn3DP3Pu9Xstl7zz3c53tg2c+c5znfc1JVSJLaNdF3AZKk\nfhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMat6eqLk1wPXATsrqqzBtv+ErgE\nmAN2A1dU1aOLfdfmzZvr1FNP7apUSRpLO3bs+FZVTS62X7q6xUSS84E9wD8eFAQ/UVVPDV6/DfiZ\nqvqDxb5ramqqpqenO6lTksZVkh1VNbXYfp1NDVXVXcATh2x76qC3xwPe6EiSetbZ1NBCkvw18Cbg\nO8Crhj2+JOnZhr5YXFXvqapTgJuAtyy0X5KtSaaTTM/Ozg6vQElqTJ9XDd0EXLrQh1W1raqmqmpq\ncnLRtQ5J0jINNQiSnHHQ20uAB4c5viTpR3V5+ejNwK8Am5PMAO8FXpvkTOYvH/0asOgVQ5KkbnUW\nBFV12WE2X9fVeJLUhcf37GXmyafZsnE9mzas67ucTgz9qiFJGhW33fcIV2/fydqJCfbNzXHNpWdz\n8bkn913WivMWE5J0GI/v2cvV23fyzL45vrt3P8/sm+Oq7Tt5fM/evktbcQaBJB3GzJNPs3bi2X9F\nrp2YYObJp3uqqDsGgSQdxpaN69k3N/esbfvm5tiycX1PFXXHIJCkw9i0YR3XXHo2x66d4IR1azh2\n7QTXXHr2WC4Yu1gsSQu4+NyTOe/0zV41JEkt27Rh3dgGwAFODUlS4wwCSWqcQSBJjTMIJKlxBoEk\nNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY3rLAiSXJ9kd5JdB237QJIHk+xMcmuSE7saX5K0\nNF2eEdwAXHjItjuAs6rqbODLwLs7HF+StASdBUFV3QU8cci226tq/+DtZ4AtXY0vSVqaPtcI3gx8\ncqEPk2xNMp1kenZ2dohlSVJbegmCJO8B9gM3LbRPVW2rqqmqmpqcnBxecZLUmKE/mCbJFcBFwAVV\nVcMeX5L0bEMNgiQXAlcBv1xV3x/m2JKkw+vy8tGbgbuBM5PMJLkS+DBwAnBHkvuSfKSr8SVJS9PZ\nGUFVXXaYzdd1NZ4kaXnsLJakxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZ\nBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1Lgun1l8fZLdSXYdtO23k9yf\nZC7JVFdjS5KWrsszghuACw/Ztgt4PXBXh+NKko5Alw+vvyvJqYdsewAgSVfDSpKO0KpdI0iyNcl0\nkunZ2dm+y5GksbVqg6CqtlXVVFVNTU5O9l2OJI2tVRsEkqThMAgkqXFdXj56M3A3cGaSmSRXJvmt\nJDPAy4F/T/IfXY0vSVqaLq8aumyBj27takxJ0pFzakiSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1\nziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIa1+WjKq9P\nsjvJroO2PS/JHUkeGvy+savxJUlL0+UZwQ3AhYdsexdwZ1WdAdw5eC9J6lFnQVBVdwFPHLL5EuDG\nwesbgdd1Nb4kaWmGvUZwUlV9Y/D6MeCkIY8vSTpEb4vFVVVALfR5kq1JppNMz87ODrEySWrLsIPg\nm0leADD4ffdCO1bVtqqaqqqpycnJoRUoSa0ZdhB8Arh88Ppy4LYhjy9JOkSXl4/eDNwNnJlkJsmV\nwPuB1yR5CHj14L0kqUdruvriqrpsgY8u6GpMSdKRs7NYkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEk\nNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLj\nFg2CJG9NsnElB03y9iS7ktyf5B0r+d2SpCOzlDOCk4DPJvmXJBcmydEMmOQs4PeBXwTOAS5KcvrR\nfKckafkWDYKq+lPgDOA64ArgoSTvS/LiZY7508A9VfX9qtoP/Cfw+mV+lyTpKC1pjaCqCnhs8Gs/\nsBG4Jck1yxhzF/DKJJuSHAe8FjhlGd8jSVoBaxbbIcnbgTcB3wKuBf64qvYlmQAeAq46kgGr6oEk\nfwvcDnwPuA/44WHG3QpsBXjRi150JENIko7AUs4Inge8vqp+var+tar2AVTVHHDRcgatquuq6uer\n6nzgSeDLh9lnW1VNVdXU5OTkcoaRpJH1+J69fP7r3+bxPXs7H2vRM4Kqeu+P+eyB5Qya5PlVtTvJ\ni5hfH3jZcr5HksbRbfc9wtXbd7J2YoJ9c3Ncc+nZXHzuyZ2Nt2gQdGR7kk3APuAPq+rbPdUhSavK\n43v2cvX2nTyzb45nmAPgqu07Oe/0zWzasK6TMXsJgqp6ZR/jStJqN/Pk06ydmPi/EABYOzHBzJNP\ndxYEdhZL0iqyZeN69s3NPWvbvrk5tmxc39mYBoEkrSKbNqzjmkvP5ti1E5ywbg3Hrp3gmkvP7uxs\nAPpbI5AkLeDic0/mvNM3M/Pk02zZuL7TEACDQJJWpU0b1nUeAAc4NSRJjTMIJKlxBoEkNc4gkKTG\nGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJA0Eob56MbWeNM5SavesB/d2BrPCCSt\nagc/uvG7e/fzzL45rtq+0zODFdRLECR5Z5L7k+xKcnOSY/uoQ9Lqd+DRjQc78OhGrYyhB0GSk4G3\nAVNVdRZwDPCGYdchaTT08ejG1vQ1NbQGWJ9kDXAc8GhPdUha5fp4dGNrhr5YXFWPJPkg8DDwNHB7\nVd0+7DokjY5hP7qxNX1MDW0ELgFOA14IHJ/kjYfZb2uS6STTs7Ozwy5T0iqzacM6zjnlREOgA31M\nDb0a+GpVzVbVPuDjwCsO3amqtlXVVFVNTU5ODr1ISWpFH0HwMPCyJMclCXAB8EAPdUg6QjZ1jac+\n1gjuSXILcC+wH/gcsG3YdUg6MjZ1ja9erhqqqvdW1Uuq6qyq+t2q8scLaRWzqWu82VksaVE2dY03\ng0DSomzqGm8GgaRF2dQ13rz7qKQlsalrfBkEkpZs04Z1BsAYcmpIkhpnEEgjyMYurSSnhqQRY2OX\nVppnBNIIsbFLXTAIpBFiY5e6YBBII8TGLnXBIJBGiI1d6oKLxdKIsbFLK80gkEaQjV1aSU4NSVLj\nDAJJapxBIC2T3b0aF64RSMtgd6/GydDPCJKcmeS+g349leQdw65DWi67ezVu+nh4/ZeAcwGSHAM8\nAtw67Dqk5TrQ3fsM/9/YdaC71yt5NIr6XiO4APjvqvpaz3VIS2Z3r8ZN30HwBuDmw32QZGuS6STT\ns7OzQy5LWpjdvRo3qap+Bk6eAzwK/GxVffPH7Ts1NVXT09PDKUxaosf37LW7V6takh1VNbXYfn1e\nNfQbwL2LhYC0Wtndq3HR59TQZSwwLSRJGp5egiDJ8cBrgI/3Mb7Gi41d0tHpZWqoqr4HbOpjbI0X\nG7uko9f3VUPSstnYJa0Mg0Ajy8c2SivDINDIsrFLWhkGgUaWjV3SyvDuoxppPrZROnoGgUaejV3S\n0XFqSJIaZxBoxdjYJY0mp4a0ImzskkaXZwQ6ajZ2SaPNINBRs7FLGm0GgY6ajV3SaDMIdNRs7JJG\nm4vFWhE2dkmjyyDQirGxSxpNTg1JUuMMgjFjU5ekI+XU0BixqUvScvT1zOITk9yS5MEkDyR5eR91\njBObuiQtV19TQx8CPlVVLwHOAR7oqY6xYVOXpOUa+tRQkucC5wNXAFTVD4AfDLuOcWNTl6Tl6uOM\n4DRgFvhoks8luTbJ8YfulGRrkukk07Ozs8OvcsTY1CVpuVJVwx0wmQI+A5xXVfck+RDwVFX92UL/\nzNTUVE1PTw+txlH2+J69NnVJAiDJjqqaWmy/Pq4amgFmquqewftbgHf1UMdYsqlL0pEa+tRQVT0G\nfD3JmYNNFwBfHHYdkqR5ffURvBW4KclzgK8Av9dTHZLUvF6CoKruAxadtxplztVLGhV2FnfADl9J\no8R7Da0wO3wljRqDYIXZ4Stp1BgEK8wOX0mjxiBYYXb4Sho1LhZ3wMc2SholBkFH7PCVNCqcGpKk\nxo11EPjYRkla3NhODdnUJUlLM5ZnBDZ1SdLSjWUQ2NQlSUs3lkFgU5ckLd1YBoFNXZK0dGO7WGxT\nlyQtzdgGAdjUJUlLMZZTQ5KkpevljCDJ/wDfBX4I7K+qsX5amSStZn1ODb2qqr7V4/iSJJwakqTm\n9RUEBdyeZEeSrT3VIEmiv6mhX6qqR5I8H7gjyYNVddfBOwwC4kBI7EnypWWOtRlobQrKY26Dxzz+\njvZ4f2opO6WqjmKMo5fkL4A9VfXBjr5/urXFaI+5DR7z+BvW8Q59aijJ8UlOOPAa+DVg17DrkCTN\n62Nq6CTg1iQHxv9YVX2qhzokSfQQBFX1FeCcIQ65bYhjrRYecxs85vE3lOPtfY1AktQv+wgkqXFj\nHwRJjknyuST/1nctw5DkxCS3JHkwyQNJXt53TV1K8s4k9yfZleTmJMf2XVMXklyfZHeSXQdte16S\nO5I8NPh9Y581rqQFjvcDgz/XO5PcmuTEPmtcaYc75oM++6MklWRzF2OPfRAAbwce6LuIIfoQ8Kmq\negnzazFje+xJTgbeBkxV1VnAMcAb+q2qMzcAFx6y7V3AnVV1BnDn4P24uIEfPd47gLOq6mzgy8C7\nh11Ux27gR4+ZJKcwf3Xlw10NPNZBkGQL8JvAtX3XMgxJngucD1wHUFU/qKpv91tV59YA65OsAY4D\nHu25nk4MGi6fOGTzJcCNg9c3Aq8balEdOtzxVtXtVbV/8PYzwJahF9ahBf4bA/wdcBXzd2ToxFgH\nAfD3zP8LnFtsxzFxGjALfHQwHXbtoFdjLFXVI8AHmf9J6RvAd6rq9n6rGqqTquobg9ePMX9pdive\nDHyy7yK6luQS4JGq+nyX44xtECS5CNhdVTv6rmWI1gAvBf6hqn4O+B7jNV3wLIM58UuYD8AXAscn\neWO/VfWj5i//a+ISwCTvAfYDN/VdS5eSHAf8CfDnXY81tkEAnAdcPHj2wT8Dv5rkn/otqXMzwExV\n3TN4fwvzwTCuXg18tapmq2of8HHgFT3XNEzfTPICgMHvu3uup3NJrgAuAn6nxv/a9xcz/0PO5wd/\nj20B7k3ykys90NgGQVW9u6q2VNWpzC8gfrqqxvqnxap6DPh6kjMHmy4AvthjSV17GHhZkuMy36p+\nAWO8OH4YnwAuH7y+HLitx1o6l+RC5qd6L66q7/ddT9eq6gtV9fyqOnXw99gM8NLB/+cramyDoGFv\nBW5KshM4F3hfz/V0ZnDmcwtwL/AF5v88j2XnaZKbgbuBM5PMJLkSeD/wmiQPMX929P4+a1xJCxzv\nh4ETmL9j8X1JPtJrkStsgWMeztjjf3YlSfpxPCOQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMI\nJKlxBoG0DEl+YXBf/GOTHD94JsJZfdclLYcNZdIyJfkr4FhgPfP3ePqbnkuSlsUgkJYpyXOAzwLP\nAK+oqh/2XJK0LE4NScu3CdjA/P1vxvIRmWqDZwTSMiX5BPO3OD8NeEFVvaXnkqRlWdN3AdIoSvIm\nYF9VfSzJMcB/JfnVqvp037VJR8ozAklqnGsEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1\nziCQpMb9L7j03E/e/Y69AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEUBJREFUeJzt3X9sXeV9x/HP52LjOCQtJrnNWEwW\n2tDsR+R61K0oDCoKbOmEko5sFahdYUWNVHW0oKkJXadVk7aOGaZpUqVVUcmCNJoJCAymqWsiJpU/\nBqyGJSE0jGjrIA6EmJB0BBJjc7/7495UibHjY+eee3zP835J0b333Jv7fB8l8sfPec7zHEeEAADp\nqhRdAACgWAQBACSOIACAxBEEAJA4ggAAEkcQAEDiCAIASBxBAACJIwgAIHEdRReQxeLFi2P58uVF\nlwEAbeWZZ555PSKq032uLYJg+fLlGhoaKroMAGgrtl/K8jlODQFA4ggCAEgcQQAAiSMIACBxBAEA\nJI4gAIDEEQQAMAcdPjaqXfuP6vCx0dzbaot1BACQkkd3HtDGbbvVWalorFbT4Lo+relfmlt7jAgA\nYA45fGxUG7ft1omxmt4cHdeJsZo2bNud68iAIACAOWT4yHF1Vk7/0dxZqWj4yPHc2iQIAGAO6e3p\n1litdtqxsVpNvT3dubVJEADAHLJoQZcG1/VpXmdFC7s6NK+zosF1fVq0oCu3NpksBoA5Zk3/Ul2x\nYrGGjxxXb093riEgEQQAMCctWtCVewCcxKkhAEgcQQAAiSMIACBxBAEAJC63ILC92fYh23tOOXa3\n7Rds77b9iO3z82ofAJBNniOCLZJWTzi2Q9KqiOiT9KKkb+TYPgAgg9yCICKekPTGhGPbI2K88fIp\nSb15tQ8AyKbIOYIvSvpBge0DAFRQENj+pqRxSfef4TPrbQ/ZHhoZGWldcQCQmJYHge1bJF0v6XMR\nEVN9LiI2RcRARAxUq9WW1QcAqWnpFhO2V0vaIOmTEfF2K9sGAEwuz8tHt0p6UtJK28O2b5X0HUkL\nJe2wvdP2d/NqHwCQTW4jgoi4aZLD9+bVHgBgdlhZDACJIwgAIHEEAQAkjiAAgMQRBACQOIIAABJH\nEABA4ggCAEgcQQAAiSMIACBxBAEAJI4gAIDEEQQAkDiCAAASRxAAQOIIAgBIHEEAAIkjCAAgcQQB\nACQuz5vXb7Z9yPaeU479nu3nbddsD+TVNgAguzxHBFskrZ5wbI+kGyQ9kWO7AIAZ6MjriyPiCdvL\nJxzbK0m282oWADBDc3aOwPZ620O2h0ZGRoouBwBKa84GQURsioiBiBioVqtFlwMApTVngwAA0BoE\nAQAkLs/LR7dKelLSStvDtm+1/Tu2hyV9QtK/2P5hXu0DALLJ86qhm6Z465G82gQAzBynhgAgcQQB\nACSOIACAxBEEAJA4ggAAEkcQAEDiCAIASBxBAACJIwgAIHEEAQAkjiAAgMQRBACQOIIAABJHEABA\n4ggCAEgcQQAAiSMIACBxBAEAJC7PexZvtn3I9p5Tjl1ge4ftfY3HnrzaBwBkk+eIYIuk1ROO3Snp\n8Yi4RNLjjdcAgALlFgQR8YSkNyYcXivpvsbz+yR9Jq/2AQDZtHqOYElEvNp4flDSkqk+aHu97SHb\nQyMjI62pDgASVNhkcUSEpDjD+5siYiAiBqrVagsrA4C0tDoIXrN9oSQ1Hg+1uH0AwAStDoLHJN3c\neH6zpEdb3D4AYII8Lx/dKulJSSttD9u+VdJdkq6zvU/StY3XAIACdeT1xRFx0xRvXZNXmwCAmWNl\nMQAkjiAAgMQRBACQOIIAABJHEABA4ggCAEgcQQAAiSMIACBxBAEAJI4gAIDEEQQAkDiCAAASRxAA\nQOIIAgBIHEEAAIkjCAAgcQQBACSOIACAxBUSBLa/ZnuP7edt315EDQCAupYHge1Vkr4k6eOSPiLp\netsrWl0HAKCuiBHBr0h6OiLejohxST+SdEMBdQAAVEwQ7JF0pe1FtudL+m1JFxVQBwBAUkerG4yI\nvbb/StJ2SW9J2inp3Ymfs71e0npJWrZsWUtrBICUTDsisH2b7Z5mNhoR90bERyPiKklHJL04yWc2\nRcRARAxUq9VZtXP42Kh27T+qw8dGz7JiACivLCOCJZJ+bPtZSZsl/TAi4mwatf2BiDhke5nq8wOX\nnc33TebRnQe0cdtudVYqGqvVNLiuT2v6lza7GQBoe9OOCCLiTyRdIuleSbdI2mf727Y/dBbtbrP9\nE0n/LOkrEXH0LL7rPQ4fG9XGbbt1YqymN0fHdWKspg3bdjMyAIBJZJojiIiwfVDSQUnjknokPWR7\nR0RsmGmjEXHlTP/OTAwfOa7OSkUnVPv5sc5KRcNHjmvRgq48mwaAtjNtENj+mqQvSHpd0vckfT0i\nxmxXJO2TNOMgyFtvT7fGarXTjo3Vaurt6S6oIgCYu7JcPnqBpBsi4rci4sGIGJOkiKhJuj7X6mZp\n0YIuDa7r07zOihZ2dWheZ0WD6/oYDQDAJKYdEUTEt87w3t7mltM8a/qX6ooVizV85Lh6e7oJAQCY\nQsvXEbTSogVdBAAATIPdRwEgcQQBACSu1EHAymIAmF5p5whYWQwA2ZRyRMDKYgDIrpRBcHJl8alO\nriwGAJyulEHAymIAyK6UQcDKYgDIrrSTxawsBoBsShsEEiuLASCLUp4aAgBkRxAAQOIIAgBIHEEA\nAIkrJAhs32H7edt7bG+1Pa+IOgAABQSB7aWSvippICJWSTpH0o2trgMAUFfUqaEOSd22OyTNl/RK\nQXUAQPJaHgQRcUDSPZJelvSqpJ9FxPY82mIbagCYXssXlNnukbRW0sWSjkp60PbnI+IfJnxuvaT1\nkrRs2bIZt8M21ACQTRGnhq6V9NOIGImIMUkPS7p84ociYlNEDETEQLVanVEDbEMNANkVEQQvS7rM\n9nzblnSNpL3NbIBtqAEguyLmCJ6W9JCkZyU916hhUzPbYBtqAMiukKuGIuJbEfHLEbEqIn4/Ipp6\nzoZtqAEgu9LuPrqmf6l+9cL3aef+o+q/6HytWLKw6JIAYE4qbRBw1RAAZFPKvYa4aggAsitlEHDV\nEABkV8og4KohAMiulEHAVUMAkF1pJ4u5eT0AZFPaIJC4eT0AZFHKU0MAgOwIAgBIHEEAAIkjCAAg\ncQQBACSOIACAxBEEAJA4ggAAEkcQAEDiCAIASFzLg8D2Sts7T/nzf7Zvz6Otw8dGtWv/Ue5DAABn\n0PK9hiLivyT1S5LtcyQdkPRIs9vhDmUAkE3Rp4aukfTfEfFSM7+UO5QBQHZFB8GNkrY2+0u5QxkA\nZFdYENg+V9IaSQ9O8f5620O2h0ZGRmb03dyhDACyK3JE8GlJz0bEa5O9GRGbImIgIgaq1eqMvnjR\ngi599qO9px377EAv9yYAgEkUGQQ3KYfTQlJ9juCBZ4ZPO/bA0DBzBAAwiUKCwPZ5kq6T9HAe388c\nAQBkV8itKiPiLUmL8vp+5ggAILuirxrKxaIFXRpc16d5nRUt7OrQvM6KBtf1MUcAAJMo7c3r1/Qv\n1RUrFmv4yHH19nQTAgAwhdIGgVQfGRAAAHBmpTw1dBJ7DQHA9Eo7ImCvIQDIppQjAvYaAoDsShkE\nrCMAgOxKGQSsIwCA7EoZBKwjAIDsSjtZzDoCAMimtEEgsY4AALIo5akhAEB2BAEAJI4gAIDEEQQA\nkDiCAAASRxAAQOIIAgBIHEEAAIkr6ub159t+yPYLtvfa/kQRdQAAiltZ/LeS/jUiftf2uZLmF1QH\nACSv5UFg+/2SrpJ0iyRFxDuS3ml1HQCAuiJODV0saUTS39v+T9vfs33exA/ZXm97yPbQyMhI66sE\ngEQUEQQdki6V9HcR8euS3pJ058QPRcSmiBiIiIFqtdrqGgEgGUUEwbCk4Yh4uvH6IdWDAQBQgJYH\nQUQclLTf9srGoWsk/aTVdQAA6oq6aug2Sfc3rhj6H0l/kEcjh4+NcmMaAJhGIUEQETslDeTZxqM7\nD2jjtt3qrFQ0VqtpcF2f1vQvzbNJAGhLpVxZfPjYqDZu260TYzW9OTquE2M1bdi2W4ePjRZdGgDM\nOaUMguEjx9VZOb1rnZWKho8cL6giAJi7ShkEvT3dGqvVTjs2Vqupt6e7oIoAYO4qZRAsWtClwXV9\n6uqw5neeo64Oa3BdHxPGADCJUgaBJIUkyZIbjwCASZUyCE5OFo+O1/T2O+9qdJzJYgCYSimDgMli\nAMiulEHAZDEAZFfKIDg5WTyvs6KFXR2a11lhshgAplDUFhO5W9O/VFesWMwWEwAwjdIGgVQfGRAA\nAHBmpTw1BADIrtRBcPjYqHbtP8plowBwBqU9NcTuowCQTSlHBOw+CgDZlTIIWFAGANmVMghYUAYA\n2ZUyCFhQBgDZFTJZbPt/Jb0p6V1J4xHR9NtWsqAMALIp8qqhqyPi9TwbYEEZAEyvlKeGAADZFRUE\nIWm77Wdsr5/sA7bX2x6yPTQyMtLi8gAgHUUFwW9ExKWSPi3pK7avmviBiNgUEQMRMVCtVltfIQAk\nopAgiIgDjcdDkh6R9PEi6gAAFBAEts+zvfDkc0m/KWlPq+sAANQ5IlrboP1B1UcBUv2qpe9HxF9M\n83dGJL00yyYXS8r16qSClbl/9K09lblvUnv175ciYtpz6y0PglazPZTHOoW5osz9o2/tqcx9k8rZ\nPy4fBYDEEQQAkLgUgmBT0QXkrMz9o2/tqcx9k0rYv9LPEQAAziyFEQEA4AxKHQS277D9vO09trfa\nnld0TbNle7PtQ7b3nHLsAts7bO9rPPYUWePZmKJ/d9t+wfZu24/YPr/IGmdrsr6d8t4f2Q7bi4uo\n7WxN1TfbtzX+7Z63PVhUfWdriv+X/bafsr2zsQ1O2y+ILW0Q2F4q6auSBiJilaRzJN1YbFVnZYuk\n1ROO3Snp8Yi4RNLjjdftaove278dklZFRJ+kFyV9o9VFNckWvbdvsn2R6gsqX251QU20RRP6Zvtq\nSWslfSQifk3SPQXU1Sxb9N5/u0FJfxYR/ZL+tPG6rZU2CBo6JHXb7pA0X9IrBdczaxHxhKQ3Jhxe\nK+m+xvP7JH2mpUU10WT9i4jtETHeePmUpN6WF9YEU/zbSdLfSNqg+iaMbWmKvn1Z0l0RMdr4zKGW\nF9YkU/QvJL2v8fz9auOfKyeVNgga+xndo/pvW69K+llEbC+2qqZbEhGvNp4flLSkyGJy9kVJPyi6\niGaxvVbSgYjYVXQtOfiwpCttP237R7Y/VnRBTXa7pLtt71f9Z0y7jlR/rrRB0DhfvlbSxZJ+UdJ5\ntj9fbFX5ifrlX237m+WZ2P6mpHFJ9xddSzPYni/pj1U/rVBGHZIukHSZpK9LesC2iy2pqb4s6Y6I\nuEjSHZLuLbies1baIJB0raSfRsRIRIxJeljS5QXX1Gyv2b5QkhqPbTsEn4rtWyRdL+lzUZ5rnT+k\n+i8ouxq3be2V9KztXyi0quYZlvRw1P2HpJrq+/OUxc2q/zyRpAdVgt2TyxwEL0u6zPb8xm8j10ja\nW3BNzfaY6v8p1Xh8tMBams72atXPoa+JiLeLrqdZIuK5iPhARCyPiOWq/+C8NCIOFlxas/yTpKsl\nyfaHJZ2r9tmkLYtXJH2y8fxTkvYVWEtTlDYIIuJpSQ9JelbSc6r3tW1XBNreKulJSSttD9u+VdJd\nkq6zvU/1EdBdRdZ4Nqbo33ckLZS0o3Gp3ncLLXKWpuhbKUzRt82SPti45PIfJd3crqO5Kfr3JUl/\nbXuXpG9LmvQui+2ElcUAkLjSjggAANkQBACQOIIAABJHEABA4ggCAEgcQQAAiSMIACBxBAEwC7Y/\n1rhPwjzb5zX23V9VdF3AbLCgDJgl238uaZ6kbknDEfGXBZcEzApBAMyS7XMl/VjSCUmXR8S7BZcE\nzAqnhoDZWyRpger7IbXtbVABRgTALNl+TPVN1S6WdGFE/GHBJQGz0lF0AUA7sv0FSWMR8X3b50j6\nd9ufioh/K7o2YKYYEQBA4pgjAIDEEQQAkDiCAAASRxAAQOIIAgBIHEEAAIkjCAAgcQQBACTu/wGE\nQ3JPiBbZVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "jW-KbvaNCJMK", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Use Seaborn to make [relational plots](http://seaborn.pydata.org/generated/seaborn.relplot.html)" + ] + }, + { + "metadata": { + "id": "kA7vmw3yCJML", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import seaborn as sns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "D59XlM5JCJMO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Use Seaborn to make [linear model plots](http://seaborn.pydata.org/generated/seaborn.lmplot.html)" + ] + }, + { + "metadata": { + "id": "5hJVo1MTCJMP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 441 + }, + "outputId": "1486265a-59cc-4a5b-82b0-54b368160e04" + }, + "cell_type": "code", + "source": [ + "sns.lmplot('x', 'y', col='dataset', data=df, hue='dataset', col_wrap=2, height=3);" + ], + "execution_count": 118, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAGoCAYAAAATsnHAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl0ndV96P3v70zSOZolz5aM8QSY\nGWQTIEwhgJmNMVNSghNS0r5tX+59m95mpbdJV9qVm77pvW3etKsNbVgmTRoGywYzhTkxQ+LYGAxm\ntDE2ki1LOpqlMz/Pfv94jnRkW7PPqPP7rKUlaZ/nnGdL9qPf2fv57d8WYwxKKaVUvnHlugNKKaXU\naDRAKaWUyksaoJRSSuUlDVBKKaXykgYopZRSeUkDlFJKqbykAapAiMjfiMg3JzhmrYisTPN5F4vI\nl9L0WhtFZH06XksVp5l2HYjIr0WkMR2vOxNpgJpZ1gJpvTCBxUBaLkylskSvgxlCA1QeE5G/EpGP\nReQ14JQR7X8oIjtEZLeINIlIQEQuAm4Cfigib4vI0tGOSz7/NhHZk2zflmxzi8gPk8e/IyLfSJ7u\nB8Alydf871n+FSil10ER8+S6A2p0InI+cCdwDs6/0y7gzeTDm40x/5487u+Ae40xPxaRrcBTxphN\nycd6jj0O+DHwHeAaY8whEalOvua9QK8xZpWIlACvi8jzwLeAbxpjbhiljxXAq2P8CF8yxrx/gr8G\nVeT0OihuGqDy1yXAFmNMCCB50Q05I3mhVQPlwHNjvMZYx70ObBSRR4HNybargbNG3COqApYDsbE6\naIzpx/nDoVSm6HVQxDRAFaaNwFpjzG4R2QBcPpXjjDF/JCIXANcDbybfpQrwZ8aYoy5yERnrtfWd\no8q1jeh1MKPpPaj8tQ1YKyL+5AVw44jHKoBWEfECXx7R3p98bNzjRGSpMWa7MeY7QAfQgPOu8o+T\nxyIiK0SkbJTXHGaM6TfGnDPGh16UKh30OihiOoLKU8aYXSLyCLAbaAd2jHj4r4HtOBfVdlIXzsPA\nv4vI/w2sH+e4H4rIcpx3iy8lz/EOTqbSLhGR5HPWJtstEdkNbDTG/GNGfmClRqHXQXET3W5DKaVU\nPtIpPqWUUnlJA5RSSqm8pAFKKaVUXtIApZRSKi8VRIBas2aNAfRDPwr944TptaAfM+RjUgoiQAWD\nwVx3Qam8oNeCKiYFEaCUUkoVHw1QSiml8pIGKKWUUnlJA5RSSqm8pAFKKaVUXtIApZRSKi9pgFJK\nKZWXNEAppZTKSxqglFJK5SUNUEoppfKSBiillFJ5SQOUUkqpvKQBSimlVF7KWIASkQYReUVE3heR\n90Tk/mR7rYi8ICJ7k59rMtUHpZRShSuTI6gE8OfGmJXA54A/EZGVwLeAl4wxy4GXkt8rpZRSR8lY\ngDLGtBpjdiW/7gc+ABYCNwMPJQ97CFibqT4opZQqXFm5ByUii4Fzge3AXGNMa/KhI8DcMZ5zn4js\nFJGdHR0d2eimUnlJrwVVrDIeoESkHGgC/psxpm/kY8aYMbf/NcY8YIxpNMY0zp49O9PdVCpv6bWg\nilVGA5SIeHGC0y+MMZuTzW0iMj/5+HygPZN9UEopVZgymcUnwE+BD4wx/2fEQ1uBe5Jf3wM8kak+\nKKWUKlyeDL72xcDdwLsi8nay7dvAD4BHReRe4CBwewb7oJRSqkBlLEAZY14DZIyHr8zUeZVSSs0M\nWklCKaVUXtIApZRSKi9pgFJKKZWXNEAppZTKSxqglFJK5SUNUEoppfKSBiillFJ5SQOUUkqpvKQB\nSimlVF7SAKWUUmpqYqGsnCaTtfiUUkrNJLYFA22AgC+Q8dNpgFJKKTWxeAT6W50g5SvLyik1QCml\nlBpfuBtCXWBG3V82YzRAKaWUGp1tO1N6scGcnF4DlFJKqeMlotB/BKx4zrqgAUoppdTRIr0wGMz6\nlN6xNEAppZRyGAMD7RDtz3VPAA1QSimlABIxGDjifM4TGqCUUqrYRQecZIgcT+kdSwOUUkoVK2Mg\n1Anhnlz3ZFQaoJRSqhhZCWfhbSKa656MSQOUUkoVm1jIud9k27nuybg0QCmlVDEJdTkfBUADlFIj\nJCwbj1uL/KsZyLachbfxcK57MmkaoJTCCUydgzG8bhe1Zb5cd0ep9IqHneBkW7nuyZRogFJFrz8S\np2swhmUbqgManNQMk6NCr+mgAUoVrYRlExyIEYolct0VpdIvx4Ve0yFjk+0i8qCItIvInhFtfyMi\nh0Tk7eTHdZk6v1Lj6YvEaekOa3BSM1MiCr2fFXRwgsxu+b4RWDNK+z8aY85JfjyTwfMrdZy4ZdPa\nGybYH8UuwCkPpSYU6YXeFmedU4HL2BSfMWabiCzO1OsrNVW94TjdgzENTGpmyrNCr+mQi3zaPxWR\nd5JTgDVjHSQi94nIThHZ2dHRkc3+qRkmbtkc7gnTOVCYoya9FtSEEjHobZ5RwQmyH6D+FVgKnAO0\nAv97rAONMQ8YYxqNMY2zZ8/OVv/UDNMbcu41ReKFlV47kl4LalzRfic45VEV8nTJahafMaZt6GsR\n+XfgqWyeXxWPWMKmYyBKtIADk1LjMgYGOyDSl+ueZExWA5SIzDfGtCa/vQXYM97xSk2VMca51xSK\nYwpwOk+pSbHiyUKvM2/UNFLGApSI/BK4HJglIi3Ad4HLReQcwAAHgG9k6vyq+EQTFsGBmI6a1MyW\np3s3ZUIms/juGqX5p5k6nypexhh6QnF6wjpqUjNYnu/dlAlaSUIVtGjCoqM/SiyR39sGKHVCCmDv\npkzQAKUKkjGG7lCcXh01qZkuNuhM6eX53k2ZoAFKFZxI3Bk1xa3iu2BVkRnsdIq9FikNUKqg9IRi\nmqGnZj4r4ex4G4/kuic5pQFKFYSE5axrCsc0Q0/NcPm+HXvnJ7D7v+Cki+GC+zJ6Kg1QKu8NRhME\nB6JYto6a1AyXr9uxGwOtb8Ouh+DAq05byw44fwN4MreHmgYolbds2xAcjDIQKfyqzEqNK1+3Yzc2\nfPobePMhaHs31V6zGD7//2T89BqgVF4KxRIE+2MksjjNcbBzkH96cS93rm7goqWzsnZeVeTycTt2\nKwYfPg1v/Sf0HEy1zz0DzrsHTrkOqusz3g0NUCqvWLahM8ujpj2Henl4RzNvfNIJQHcopgFKZUe+\nTelF+2FPE+z+JYSCqfaTLobzNsCCc0EEXO6sdEcDlMob2bzXZBvDbz/p5JEdzew5nCq22VDrZ80Z\n8zDGICIZ74cqUraV3I49lOueOAbanaC0pwniyV14XW5YvgbOvRtmLc9JtzRAqZxLWDadgzEGo5kf\nNcUSNi992M6jO5o52JX643DK3AruWNXAjWcvYHZFScb7oYpYPOJk6eXDjrddn8JbP4OPngE72R+v\nH1aug3O+BBXzcto9DVAqZ7JZeXwwmuCpd1rZtKuFzoFUBehVi2u4c1UD5zRUIyK4XTpqUhkU7nam\n9HK9jq91t5OR9+lvUm3+Wjj7TjhjPZRW5a5vI2iAUjkRjlkEBzJfDaJrMEbTrha27j7MYNS5Ce0S\nuOKUOdy5qoGlc8ozen6lAGdN00CbU7YoV4wNB15zAlPr26n2qnpnGu/UG8BTmrv+jUIDlMqqhGXT\nNRhjIMPTec1dIR7d2cLz7x8hbjnvVks9Lq47cz7rG+uZV5lfF6KawRJRp9Brrqb0rDh8/KyTkde1\nP9U+Z6WTkbfkiqwlPUyVBiiVNX2ROF0DMewMTm980NrHwzuaeW1vkKGzVPm9rD1nAWvPXUiV35ux\ncyt1nEgvDAZzM6UXG4D3tsDb/wWD7an2RRfCeV+BhaucjLw8pgFKZVymyxQZY9j+aReP7Ghmd0vv\ncPv8qlJuO7+eNWfMo9Sbn+8Q1Qxl28527NH+7J97MJjMyNvkBCkAccPyq5wR06wV2e/TNGmAUhnV\nG47TPZiZUVPCsnn5ow4e3dHM/mBqbn/ZnHLuXNXAZStma9KDyr5E1Fl4a8Wze97ug8403odPgZ08\nt6cUVq6Fc74MlQuy25800AClMiJu2QQzNGoKxyyefreVTW+20N6f2sDt/EXV3LGqgfNPqtE1TCo3\ncjGl17bHKUW0/xUYmtgurYaz7oAzbwd/dfb6kmYaoFTa9YbidIViaU8d7w7F2LzrEFt3H6Y/WWnC\nJXDZitncsaqBFXMr0no+pSYt21l6xsDB12HXz+Dwm6n2igVw7h/AaTc565kKnAYolTaxhHOvKRpP\n76jpUE+Yx3a28Kv3jgxv7e7zuLj29Hnc1ljPgurCvxBVAcvmlJ4Vh73PO4trO/el2mef4pQiWvoF\ncM2cP+sz5ydROZWJjQQ/buvnl79v5tW9HQxVP6oo9bD2nAXccu5CqgOZK/Ov1KRE+pxkiExP6cVC\n8P7j8PbPnZHakPrVTuJDwwV5n5E3HRqg1FF+/WE7P9m2n+buEA01Ab5x6RIuP3XOmMdHExbBgVja\nRk3GGHYe7ObhHc289VnPcPucihJua6znujPm4/dpRp7KMWOcwBTpm/jYExHqgncehncfg2jyXOKC\nZV+Ec78Cc07L7PlzTAOUGvbrD9v5ztb38LqFar+X9v4I39n6Ht+D44KUMYaeUJyecHpGTZZt+PVH\nHTyyo5l9HQPD7Utml3HnqgYuXzEbj9t1wudR6oRZcWfhbSI28bHT1dsMb/0cPngSrGQikLsEVt7s\nZORVZX6ri3wwYYASkT8Dfm6M6c5Cf1QO/WTbfrxuIeBz/lsEfB5CsQQ/2bb/qAAVS9i090eG7wed\niHDc4ld7jvDYzhaO9EWG289pqObOVQ2sWqwZeSqPRAecKbZMTem1ve/cX/rkJac0EUBJFZx1u5OV\n56/JzHnz1GRGUHOBHSKyC3gQeM5kurKnyonm7hDVx1Ra8HvdtHSnqn6na11TbyjOlrcP8fhbh+hL\nZuQJcMnyWdyxqoHT5lee0OsrlVbGOOnjkd6Jj53Oazf/zqmR17Ij1V4xzxktrbxlRmTkTceEAcoY\n8z9F5K+Bq4GvAv8sIo8CPzXGfJLpDqrsaagJ0N4fGR5BgTPCqa8JYNuGjoHoCW+JcaQ3wqM7m3l2\nzxGiyRGY1y2sSWbk1dcETuj1lUo7K+5k6SWiEx87FXYC9r3opIoHP0q11y13ShEtuwrcxV2aa1L3\noIwxRkSOAEeABFADbBKRF4wx/yOTHVTZ841Ll/Cdre8RiiXwe92E4xZxy7DhopM41BM+ocrj+9oH\neHhHM7/+qH04I6+8xMNNZ89n3Xn11JZpRp7KQ7FBZ0rPTmPV/XgY3n8C3v4F9B9OtS9sdDLyFl04\nIzPypmMy96DuB74CBIH/AP7CGBMXERewFxg1QInIg8ANQLsx5oxkWy3wCLAYOADcrve28sflp87h\nezj3olq6Qyys9nPnqkUsn1sxreBkjOGt5h4e/n0zOw+m/plnlfu47fx6rj9r/lGjNaXyhjEQ6oRw\nz8THTla4G955FN59ZMRUoThrl877Csw9I33nmiEm89ehFlhnjDk4stEYY4vIDeM8byPwz8DPRrR9\nC3jJGPMDEflW8vu/nFqXVSZdfuocLj91DqFYgmB/jMQU3jn+fn8XD+9o5nBvCL/XQ8I2HOoJDz9+\nUl2AOxobuPK0OXjzNCNP37cqrISz4208MvGxk9F3CN76BXzweGqa0O1z9l86926oXpSe88xAk7kH\n9d1xHvtgnMe2icjiY5pvBi5Pfv0Q8Gs0QOUV2zZ0Dsboj0xtVfzv93fxTy99TDRhMxBJ0G6nUnDP\nXFjFXasbWH1yLa48m7rwul2Uet2Uep3P+Ro4VZakc+Ftx0dO4sO+F8Ek1wmWVMAZtzk71wbqTvwc\nM1y251fmGmNak18fwckQHJWI3AfcB7Bokb7DyIa+iJOhZ9lTuzj7wnH+6aW9tPdHGflUv9dFfXWA\nH915Tpp7On0+z1BAclPqcRXE2iq9FrLAtpLbYwxMfOx4jHEy8XY95GTmDSmfC2d/CU6/BXxlJ3aO\nXBPJWvJGzm4AJBMvxvxLaIx5AHgAoLGxUdPaM2i61SDa+iJserOFp99tJRJ3pgIFpxxRbcCH1yNT\nHomlm9ftosTrwu91E/B5CnL7Db0WMiw2CAPtTpCaLtty1i7t+hl0jJhYql3qTOOtWFM4GXkiTj0/\ntxdcXnB7kp+9TnsWd9/NdoBqE5H5xphWEZkPtE/4DJUxtm3oDsXoiySmVA1if8cAj+xs4eUP24dH\nWy6BMp+H2eW+4VFJOG4xrzJ76zdcIpR63ZR4nKBU4nEXZEBSWWIlIBQ8sVFTIuJUe3jrP517TUMW\nnOtk5J10sVOaKN+43CMCkPf4gJQnst2TrcA9wA+Sn5/I8vlV0mA0QefA5JMgjDG809LLwzua2f5p\n13B7XZmPdectZGGVn5+8up+4bXC7DZG4TcI23LmqIVM/Ah6Xi1Kvi5LkPaQSj9boU5NgDER64P0n\nYddG6DvsbOZ37j2w+OLJvUakF959FN55xMnOA0BgyWXO68w/K1O9nzy3x0nGcPtSwWcoEOXZveCx\nZCxAicgvcRIiZolIC/BdnMD0qIjcCxwEbs/U+dXoLNvQORBlYJILbi3b8PonQR7Z0cwHrantqxtq\n/NyxqoEvnjYXn8d5h1jqdfPwjmaO9IWZV+nnzlUNrF5Sm7a+e1xDIyMXfp9bA5Ka2McvwBs/gp6D\nUH0SXPB/wfwzYN8rsO3vnT/aJVUw2Ol8z1+mgtSB1+Gth44OYHVLnPVL7z/urGcC5zVOvc4p3lqz\nOLs/3/B0nA88JU7wGQpKBRKExiOFULWosbHR7Ny5M9fdKHgD0QSdA9FJJUHEEjbPv9/GozubaelO\npYqvnF/JHasauHhZXcYz8rxuJxAVUkLDBE74F6bXwhR8/AI8+01w+ZxSQbFBSITh0r90As9gJ3hL\nU8fHI1BWB7c84ASnoQDmKXUqiUe6nTTxoRp5vjI4Yz2cdReUz878z+NyOX1xl4DH53wuoNHQMSbV\n6fyZbFSTMtXtMAASlk3nYGxSZYoGIgm27j7M5rcO0TWYShW/cEkdd65q4Mz6qhP+GcYyFJBKPE5S\nwwwISCrTjh0hXXQ/rLjKeeyNHznByRdwygq5PWB7U6OikmP+L3tKoS+ZZPzWQyAeJxj1NR+9U25g\nllMj7/RbnLTxdBvKkhsKQJ6S5NfF9+e6+H7iAjaV7TCGTLa4a0d/lKZdLTz1TiuhmJPN5HEJV542\nh9sbGzh5VvpTY0XESfv2uCgr8VDq1Sk7NQUjR0ilNdDf5nzPPzhBqucglFSDFUuNeoaCUOWC40dQ\niQhUzncy8jo/cb5PjFis6/aBNwD3POl8PdoU4GTvYQ1xuUbcJ/I5/fOUFOqoKO00QBWQyW6HARCJ\nW3QOTpw6fqBzkEd2NPPSB+0kklN/fq+bG86az/rz65ldUZK2/o+csvO5XcP3rpSalpEjJHA+x5Lt\nK66CyoVOMBotCJ17jzOFF8cJComIE8hql8Ev1jtJFEM8fgjUOiOq8lmp4DTRPawhI+8TuX2p6TmP\n1p+ciAaoAjKZ7TASlk3XYGzCJIg9h5yMvDc+6Rxuqwl4ufW8em48ez4VpSe+ZmNk2negRJMaVJr1\nHHRGTiN5/dB9EHoPOfeGjg1CdnzESCd5L6r3kDOSifU7dfKGeEqhtNr5GPlccJ7n8qaCn7fUOc9b\nP4PlX3T6MTJxQU2LBqgCMt52GDDxdJ5tDD974yBNu1oYjKVGVgur/dzeWM81p8874VGNx+UEozKf\nh1KvSzcbVJlTfZIzrTc0gjLGWdNUPsfJsBsZhPpaUyOnoRHOrGUw+zRo/wDiyTd5Lg+suNZZXNt/\nZOznDt/DcjkjJBHnftRAO1QtzPZvYsbSAFVAxtoO46sXLeZwT5jIGNN5ccvmxQ/aeeiNA7T3p/a0\n8bmFQImHP7l8KZ9bOr26YCPXIvm9bp22U+k1XhLERffDM38OEcsZqcRDyVHOV1LPX3zx8VNuXfud\nig8fP+skT4Bzb+n0dXDOl5yyRAB1S0efrvMGnHTygSCUjJg+jIWg5qTJ9V1NigaoAnLsdhgLqp21\nRsvmlg8Hp6GK4q19YeaUl9JQ6+f3B7oIDqQy8gI+N7UBL36vm0jC5tGdLZMOUEPTdn6fm4BPi6uq\nDBovCeLkz8P8M+Hz34S3No4+yhnJGGh92wlMB7al2gN1cNadcOZtY2fkuVzgq4CS8tTOtp//c6cv\nsZDTFg+DHXOC0ER91yA1aRqgCszlp87h4uWz6A7FGIgcfZ/p9/u7+NHLexGcdUx7Wnt597Cz74xL\nnEKpcypKKB1xL6jU6+JIX5jxeN0uyks8wyngOm2nsmJkEoQxzn2eqOXcV6o92Tlm8UXOx1iMDZ9u\nc4q3Hnkn1V61yJnGO/V6Z/R1LBFnnVNJhTNiOvb//IqrgH9IjpA+c7bMGCvFHY5P4FCTogGqgFjJ\n2nn9Y9TO2/jGAfrCcUIxi6FHBagr9/H/3XUu/++zH9E5ePS21ZG4fVy9PBHBn5yy8/t02k5lgTHO\n1up2PPk5AV2fOPd5ElEY+h/t9jpJDROxYvDRs07SQveBVPvc051R1pLLRy966vZCaSWUVE5cFHXF\nVWMHm7ESOHo+m7jvapgGqAIQS9j0hGOEotaoCRDvH+7j4R3NfNiWKkXkFqgO+KjyewjFLOZVlnLn\nqgZ+9PJewnGLUq/rqHp5LhECJU7Fb7939CKr01kkrNQwK3F0ADoqII1y/7Ri/thrlcYS7Yf3tsDu\n/3K2zxhy0sVO8dYF5x0/GhoeLVWmRjwn6tgEDnCmAXVzwinRAJWnjDGE4xb9kcSoFSCMMWz/1Lnf\n9E5L73C72yXUBbxU+r24RI6qKL56SS33s3y4Xt78Kj9fu3gxX1w5b8KMu+ksElZFxrZHBJz48QFp\nqmXVRlurNDLVe6TBDtj9S9izKVX1weWG5dc4SROzlh//HJcbSqucj3RvIXHR/cl7VIx+j0pNigao\nDJjuSMMYQyhmMRhNMBizRp3GS1g2L3/YziM7W/g0mCq/smxOOatOquGVj9rxul2IOCnoIyuKiwiX\nnjKbNWfOI+DzTGnqbiqLhNUMZUxy5BNLBZ2RI6FJVsY/ynjVGCZKEwdn+u6tn8GHzzh9ACcgrFzr\nlCOqGGW05fGBvyYzZYqGTHSPSk2KBqg0m+pII2HZhOMWoZjzMVbx3lAswdPvHqHpzZajUsXPX1TN\nnasXcd6iakSEs+urj6sofvmpcygv9RDwunFNc3+kySwSVgXOtkYEnETy+5HTcSewod9oJlONYbQ0\ncYDWd5zAtf83DN+f8tfAWXfAmbc7o6KRhqbxSqtSmXiZNt49KjUpGqDSbDIjjUjcGSWF4xaxxPHv\nOkemis8qK2FOZQk7DnQPV4dwCVy2YjZ3rGpgxdyj3wWuXlLL6iW1eFwuKko9VJR60lJ0daJFwqpA\nGJMaAR31OTb1KbgTNWY1hofGSBW34cBrTkZe69up9sqFTkbeaTc6U4EjiTiVIPzVWd0JVqWHBqg0\nG22kUepx8VnXIF3JiuJxa+ypkKFUcYwhErd4v7WP95IFlks8LtacPo/bGutZUH38u8ChRIeKEi9+\nX3ovxrEWCX/j0iVpPY/KoEQsv7LIJqooPsSKw8e/cnat7fok1T77VCfxYemVxwcft8cZLZVUOeuY\nVEHSAJVmQyONUo8byxiMcabnZpeX0hOKTfj8B1//lJ5QnPCIqhAugdnlJfzrH5xHdeD4ApMlXjcV\npR7KfZ5pT+FN5NhFwvWaxadO1HgVxcFJdhjKyBtoSx3TcAGctwHqVx2fkectdab6fOmvvq+yTwNU\nmli2IRRLcEdjA3//3IfEEvZxqdxjMcaw82A3D+9o5uP2geF2j0uoCXipLPUwGLOOCk4uEcqTU3jZ\nKsJ6+alzNCCp9BkrS2/lLfDbf4E9jzlp4wDigmVXOSOm2acc/1q+gBOYsnV/SWWFBqhpiiVsogmL\nSNz5PHQv6ayGKu7/wvJJbX1u2YZff9TOwzua+aQjlZHndQt1ZT4qSjzIManiXreLSr+XipLMjZaU\nyopjs/QCNc7+TS9/z7knBk6Vh9PWwrlfdu41HctX5myFMVo1CFXwNEBNUiRuEY5ZRBM2kfjoC2aH\nDCUqjCUct3j23SM89mYzbX2pjLxzGqo5r6GaZ/a0OjXuRqSK333hIuZWllJWov9kagZZfLGTwLDr\nIfjkZYYz8kqr4Mw74KzbnZHRsUrKnXYNTDOa/rUbhW0bYpZNNGETjVuE4xaWfeIZTr2hOFvePsTj\nbx2iL5LKyPv88lncuaqBU+dVArBibsXwCGxBtZ8/unQpV58x74TPr1TWjbXOyRj47LewayMcejN1\nfMUCZ/3SypuPn64Tcao9+Kt1j6UioQEqaWiEFI47o6Sx1iNNR2tvmEd3tvCrPUeIJqcCvW5hzenz\nuL2xgYU1R1+Iq5fU8oXT5lAV8Oomf6pwjbbO6Tc/gJYrofm30LkvdeysFc79pWVfdPZkGsnldoKS\nZuQVnaIOUH2ROKGoNeGU3XTtbevn4R3N/ObjDoYGYOUlHm4+ZwG3nLuQ2rKjM/JEhLISN9V+nxZo\nVYVv5DonYzv7NYU64e3/TB1Tv9pZw7TowuMz8tyeZMWHyuMfU0WhqANU50AsrSMlcDLy3vqsh1/u\naObNg93D7bPLS1jfWM/1yTJDI4kIFaUeqv3etCyqVSov9B0Gb5lTJy/c7QSpIcu+6Ez3zV15/PM0\nMKmkog5Q0zWy0sP8ZJbe+YtreHVvh5Mq3pZKFV9cF+COVQ184dQ5x23uJyJUlnqo0sCkZpreltSW\nGSM3f/GVQ80iWPP3xz/H5XYy8jQwqSQNUFM0VOnB43KCS8dAhO8/+wFet4vOwdRC3DMXVnHnqgYu\nWFKL65iLTUQoL/FQE9DApGaY9g+c4q37XkyNmMTl7I3kDQA2rPrG0c9xucBf62TuaWBSI2iAmqKH\ndzTjcQk+t4uuwTg9oThWcppQgIuW1XHXqkWsXFB53HNdIlT6nYW3GpjUjGEMNG93AlPz9lR7+VxY\ndDF074eBdqiYc3Q18uE6eTWa/KBGpQFqilp6QiQsm95IYri2puBsnf6vXz6fRXXHF08dusdUE/CN\nuhGgUgXJTsC+l5xkiI6PUu3iSClJAAAgAElEQVS1S52MvOVXj50OXlLhTOdpurgaR04ClIgcAPoB\nC0gYYxpz0Y+p2N8xwMM7mgkOpKbxXAJVfi9+r5s5FaWjBqeyEg+1Zb7j7j8pVbDiYfhgK7z1c+g/\nnGpfeL6zOeBJF489VecLQKBOF9iqScnlCOoKY0wwh+efkDGG3S29PLyjmd9/2jXc7hKoKPVQV+Yj\nbplRa+153S5mlZekvaq4UjkT7oF3H4V3HoFIT7JRYMkVcN5XYN6ZYz/XUwJls7RWnpoSneIbhWUb\nXt8X5OEdzXx4pH+4fVFtgDsa66kq9bJp16FRa+25RKgOeKnye8fcQn26O+4qlRN9h+Htn8P7TzgF\nXQHcPjjlemcNU28L/PbHo++K6/ZAYJZTmkipKcpVgDLA8yJigJ8YYx7IUT+OEkvYPP/+ER7d2UJL\nd3i4feX8Su5a3cCFS+uGM/IuWj7ruOcHfB5mlfvGTYCY6o67SuVM8GOnRt7eF8Akt3/xlcMZ6+Hs\nu5wR0Vi74sq34LQbnAQIzcxT05SrAPV5Y8whEZkDvCAiHxpjto08QETuA+4DWLRoUUY70x+J8+Tu\nVpp2tdAdig+3X7ikjjtXNXBmfdU4zwa3S6grL6F8EoVcJ7PjrlIjZfNawBg4tAN2/cyplTekbI4T\nlM5Y5wSpIaPtiptwOdOA538ls31VM15OApQx5lDyc7uIbAFWA9uOOeYB4AGAxsbGjOxF3dEf5bGd\nzTz1TuvwBoEel3DlaXO4vbGBk2eNv+nZ0ELbmoBv0ltfjLbjrt/rpqU7NL0fQs142bgWsC3Y/7IT\nmNrfT7XXLoFz7oZTrh094+6oXXHFOcZdAr3NGemmKi5ZD1AiUga4jDH9ya+vBr6XzT60dIf4pxf3\n8vhbh0gki+T5vW5uOGs+68+v59OOQX780r6jKkUcu31GqdfNrPKSKdfMG9pxd2S5o3Dcor7m+AxA\npTIuEYEPn3K2U+9tSbXPP9vZtXbx552FtmMZ2hW3pBzE7UznxUJQneGRnioKuRhBzQW2JBMIPMB/\nGWN+lc0OxBI2TbtaMAZqAl5uPa+em85eQHmp57hKEZ2DUX708l7uZzmrl9QiItQGfFQFprd+4xuX\nLuE7W98jFEvg97oJxy3iluEbly5J80+p1DgivbBnE+x+GMKpDFVOvszJyJt/zuRe5/x7YdsPIBFz\nMvRiIbBjcNH9mem3KipZD1DGmP3A2dk+70hLZpdz78UnUxXwctVpc48aBQ1VivB7nfTwoSDy8I5m\nLjllNrOnMWoa6fJT5/A9nHtRLd0h6jWLT2VT/xF4+xfw/hZnPRM421uccj2cdzfUnDz51/JXw7lf\ngvI58MaPoOczZ+R00f2w4qrM9F8VlaJNM/+fN6zk0+DgcdXMW/vCVJYe/Wsp9brp6I+wsDo9azgu\nP3WOBiSVXR0fwbZ/gPeanPtN4FQaP2MdnJ0MMpPlcjtljHzJaekVV2lAUhlRtAFqLPMr/XQORodH\nUC6XEEtYLKobP2FCqbzWstNZZAtOJYezvwRn3OqUHJqKkgoom62181RWaIA6xp2rGvjRy3uJJCzK\nfB5ilk3CRu8RqcJ25m2w+5ew5HI45Tpnoe1UiDijrKkGNKVOgAaoY1ywtI6/KvXw898d5FBPWO8R\nqZnB44M/2OzcJ5oqb6kzpaeFXVWWaYAaocTrZk5FCSfPKuOGsxfkujtK5ZaIU3HcX5PrnqgipQEK\np35eTcBHpd8zZv08pYqKp8QZNXl88PELySy9g1B9kmbpqawp6judgrMdRn2Nn6rA2MVdlSoq/hqo\nqk8Fp2e/Cf1tzq64/W3O9x+/kOteqiJQ1AFqXlUpcytLdXdbpcCpPF61EMrqUgVe3/gRuHxOSrmI\n89nlc9qVyrCinuIr9epeTUoBTqmisjnHp4/3HHRGTiN5/dNLtlBqinTooFQxE3G2zaiYN/rapuqT\nUhUnhsTDWmtPZYUGKKWKldsDlQudkkVjueh+p7ZeLORsxaG19lQWaYBSqhj5AlDVkNrHaSwrroJr\n/wEq5jrbvFfMdb7XLD6VBUV9D0qpoiPilDoab9R0LK21p3JEA5RSxUJczpTeRKMmpfKEBiilioXb\n43woVSD0HpRSSqm8pAFKKaVUXtIApZRSKi9pgFJKKZWXNEAppZTKSxqglFJK5SUNUEoppfKSBiil\nlFJ5SQOUUkqpvKQBSimlVF7SAKWUUiovaYBSSimVl3ISoERkjYh8JCL7RORbueiDUkqp/Jb1ACUi\nbuBfgGuBlcBdIrIy2/1QSimV33IxgloN7DPG7DfGxICHgZtz0A+llFJ5LBcBaiHQPOL7lmSbUkop\nNSxvkyRE5D4R2SkiOzs6OnLdHaVyRq8FVaxyEaAOAQ0jvq9Pth3FGPOAMabRGNM4e/bsrHVOqXyj\n14IqVrkIUDuA5SJysoj4gDuBrTnoh1JKqTzmyfYJjTEJEflT4DnADTxojHkv2/1QSimV37IeoACM\nMc8Az+Ti3EoppQpD3iZJKKWUKm5ijMl1HyYkIh3AwVz3YxSzgGCuOzEG7dv0ZLJvQWPMmhN5gTy+\nFqB4/11PVL72LefXQkEEqHwlIjuNMY257sdotG/Tk899y3f5/LvTvk1dPvRLp/iUUkrlJQ1QSiml\n8pIGqBPzQK47MA7t2/Tkc9/yXT7/7rRvU5fzfuk9KKWUUnlJR1BKKaXykgYopZRSeUkDlFJKqbyk\nAUoppVRe0gCllFIqL2mAUkoplZc0QCmllMpLGqCUUkrlJQ1QSiml8pIGqDwmIn8jIt+c4Ji1IrIy\nzeddLCJfStNrbRSR9cmvfy0ijcmvD4jIrHScQ818M+laEJHvisj/Ouaxc0Tkg3ScZybRAFX41gJp\nvSiBxUBaLkqlsqhQroVfAncc03Znsl2NoAEqz4jIX4nIxyLyGnDKiPY/FJEdIrJbRJpEJCAiFwE3\nAT8UkbdFZOloxyWff5uI7Em2b0u2uUXkh8nj3xGRbyRP9wPgkuRr/vcs/wqUAmbutWCM+RjoFpEL\nRjTfjgao43hy3QGVIiLn47yTOgfn32YX8Gby4c3GmH9PHvd3wL3GmB+LyFbgKWPMpuRjPcceB/wY\n+A5wjTHmkIhUJ1/zXqDXGLNKREqA10XkeeBbwDeNMTeM0scK4NUxfoQvGWPeP8Ffg1LFcC38Mvnz\nbReRzwFdxpi9k/jVFBUNUPnlEmCLMSYEkLzghpyRvMiqgXLguTFeY6zjXgc2isijwOZk29XAWUP3\niIAqYDkQG6uDxph+nD8aSmXSTL8WHgHeEJE/R6f3xqQBqnBsBNYaY3aLyAbg8qkcZ4z5o+SUwvXA\nm8l3qAL8mTHmqAtcRMZ6bR1BqXywkQK/FowxzSLyKXAZcCtw4VjHFjO9B5VftgFrRcSf/M9/44jH\nKoBWEfECXx7R3p98bNzjRGSpMWa7MeY7QAfQgPOO8o+TxyIiK0SkbJTXHGaM6TfGnDPGhwYnlS7F\ncC38EvhHYL8xpmUSxxcdDVB5xBizC2fovxt4Ftgx4uG/BrbjTE98OKL9YeAvROQtEVk6znE/FJF3\nRWQP8EbyHP8BvA/sSrb/BGdU/Q5gJW8ia5KEyroiuRYeA05Hp/fGpDvqKqWUyks6glJKKZWXNEAp\npZTKSxqglFJK5SUNUEoppfJSQQSoNWvWGEA/9KPQP06YXgv6MUM+JqUgAlQwGMx1F5TKC3otqGJS\nEAFKKaVU8dEApZRSKi9pgFJKKZWXNEAppZTKSxqglFJK5SUNUEoppfKSBiillFJZk+jsnPSxGqCU\nUkplnLFt4m1tWH19k36O7qirlFIqo0wiQaKtDTsWm9LzNEAppZTKGDsWI9HWhkkkpvxcDVBKKaUy\nwg6FSHR0YGx7Ws/XAKWUUirtrP5+EidYO1IDlFJKqbRKdHVh9fae8OtkLItPRBpE5BUReV9E3hOR\n+5PttSLygojsTX6uyVQflFJKZY8xhnhbe1qCE2Q2zTwB/LkxZiXwOeBPRGQl8C3gJWPMcuCl5PdK\nKaUKmLEsEq2t2KHBtL1mxgKUMabVGLMr+XU/8AGwELgZeCh52EPA2kz1QSmlVOaZWIx4ayt2NJrW\n183KQl0RWQycC2wH5hpjWpMPHQHmjvGc+0Rkp4js7OjoyEY3lcpLei2ofGaHw8RbWzHxeNpfO+MB\nSkTKgSbgvxljjlpCbIwZc/tfY8wDxphGY0zj7NmzM91NpfKWXgsqX1kDA84ap2mmkU8kowFKRLw4\nwekXxpjNyeY2EZmffHw+0J7JPiillEq/RHe3s8bJjDrGSItMZvEJ8FPgA2PM/xnx0FbgnuTX9wBP\nZKoPSiml0ssYQ7y9HaunJ+PnyuQ6qIuBu4F3ReTtZNu3gR8Aj4rIvcBB4PYM9kEppVSaGMsi0d6O\nHYlk5XwZC1DGmNcAGePhKzN1XqWUUulnYjHi7e0ZSYYYi1aSUEopNS47EiHR3o6xrKyeVwOUUkqp\nMVkDg1jBzCZDjEUDlFJKqVFZPT0kurtzdn4NUEoppY5ijMEKBrEGBnLaD93yXakTZNkWoXgo191Q\nKi2MbZNoa8t5cAINUEqdkHAizOHBw0Ss7KTdKpVJJh4nfrgVOxzOdVcAneJTatp6Ij30RDO/WFGp\nbLCjUadsUZYz9cajAUqpKbJsi45wB5GEjprUzGAPDma8bNF0aIBSagoiiQgd4Q4sO3/eZSp1Iqze\nXhJdXbnuxqg0QCk1Sb3RXnqiPXn3LlOp6TDGYHV2YvX357orY9IApdQEbGMTDAc1U0/NGMa2SXR0\nYIfy+/+0BiilxhGzYnSEO4hb2as/plQmmUSCRFsbdiyW665MSAOUUmMYiA3QGenUKT01Y9ixmJOp\nl0jkuiuTogFKqWMYY+iMdDIQy/1CRaXSxQ6FnEy9DO1+mwkaoJQaIW7H6Qh1ELPyf/pDqcmy+vpI\ndHbmuhtTpgFKqaRQPEQwHMQ2hfMOU6mJJDo7sfr6ct2NadEApYqeMYbuaDd90cK8iJUaTaFk6o1H\nA5Qqagk7QTAc1KoQakYppEy98WiAUkUrnAgTDAWxjFaFUDNHoWXqjUcDlCpKvdFeuiO524hNqUwo\nxEy98WiAUkXFsi2C4SDhRH5sJ6BUulj9/VidM2vdngYoVTSiVpSOUAcJu/CnPpQaKdHVhdXbm+tu\npJ0GKFUU+mJ9dEe6Z9S7S6WMMSTaO7BDg7nuSkZogFIzmm1sOsOdDMZn5gWsipexLCdTLxrNdVcy\nRgOUmrHiVpz2cLsWelUzjonFiLe3Y+Iz+/+2Big1Iw3EBuiKdGlVCDXj2OEwifb2GZOpNx4NUGpG\nsY1NV6RLC72qGckaGMAKBovmXqorUy8sIg+KSLuI7BnR9jcickhE3k5+XJep86viE7NitA62anBS\nM1Kiu9tZ41QkwQkyGKCAjcCaUdr/0RhzTvLjmQyeXxWRvlgfrYOter9JzTjGGOLt7Vg9PbnuStZl\nbIrPGLNNRBZn6vWVAl14q2Y2Y1kk2tuxI8VZKzKTI6ix/KmIvJOcAqwZ6yARuU9EdorIzo6Ojmz2\nTxWISCLC4cHDMz446bVQnEwsRrz1SNEGJ8h+gPpXYClwDtAK/O+xDjTGPGCMaTTGNM6ePTtb/VMF\nwBhDd6SbI4NHsOyZX+hVr4XiY0cixI8cwcQLuxr5icpqFp8xpm3oaxH5d+CpbJ5fFb64HScYChK1\nZu7iRFXcrIFBrGBxJUOMJasjKBGZP+LbW4A9Yx2r1LEGYgO0DrRqcFIzltXTQ6KjfUYGJ2MM4Xfe\npfU73530czI2ghKRXwKXA7NEpAX4LnC5iJwDGOAA8I1MnV/NHFquSM10xhisYBBrYOYtkTCWReh3\nv6PnsU1EP/poSs/NZBbfXaM0/zRT51Mzk1YgVzOdsW0nUy88s5J97FiMgZdeprepifihQ8PtJaee\nOunX0EoSKm/1RnvpifYUxHTHh10fsrx6ObMDmsSgJs/E48Tb2mdUMoQ1MED/M8/Q+/gTWN2pTUED\nq1dTu+Eeyi6+eNKvpQFK5Z1CWdtkjOGt9rdo2tvEO8F3uGflPXxz1Tdz3S1VIOxo1Nma3ZoZmaiJ\nYJDex5+g75lnMEOjQbebiiu/QO3Xvob/7LMRkSm9pgYolVciiQgd4Y68Th9P2AleO/QaTXubONB3\nYLj93eC7GGOmfBGq4mMPDs6YskWxg5/R09TEwCuvQMKZihe/n6qbbqL23nspWdQw7dfWAKXyRr5P\n6UUSEZ4/+DxP7HuC9nD7cPtZs87i7pV3c83iazQ4qQlZvb0kurpy3Y0TFnnvPXoe20Ro+/bhNndN\nDTV33UnN3XfjqRmzDsOkaYBSOZfvU3q90V6e2v8UT+9/mv54PwAuXFy44ELWLV/HipoVVJZUanBS\nE0oEg1j9/bnuxrQZ2ya0fTs9mzYRff+D4XZvfT21G+6h+rbbcJWUpO18GqBUTuXzlN6RwSNs2beF\nFw++SMx2bmL7XD6uXHQla5etZUH5ghz3UBUKY9skOjqwQ6Fcd2VaTCzOwK9foWdTE/Hm5uH2kpWn\nUfeH91F59VWI253282qAUjmTr1N6+3r2sXnvZl4/9Do2zqZw5d5yrj/5em5YegPVJdU57qEqJCaR\ncLZmjxVepp49GKLv2WRGXmfncHvZRRdR941vEFi9KqMzBxqgVNZZtkVHuINIIn+KYBpjeLvjbTbv\n3czbHW8Pt8/yz+LmpTdzzeJr8Hv8OeyhKkR2LOZk6iUKax1foqvLych7+mnM0KjP7aby2mup+8Ov\nU3rKKVnphwYoNWmvtrzKxvc2cmjgEAvLF7Lh9A1cUn/JlF4j36b0LNvi9cOv07S3if29+4fbT6o8\niXXL1nFp/aV4XHqZqKmzQyEnU6+AtmaPtbTQ29RE/4svpTLySkupvm09dRs24F24MKv90StPTcqr\nLa/y/e3fx+v2UumrpCPcwfe3f59v8+1JB6l8mtKLJCK89NlLbNm3hbbQcA1jTq87nfXL13P+3PM1\n6UFNm9XXR2LElFi+Gdy5k97HNpE4cgTPvHn4P3cB0T3vEfrtbyF5fbpra6i9+25q7roLd3VuprU1\nQKlJ2fjeRrxu7/A019Dnje9tnDBA5VOWXl+sj6f3P82T+5+kP+ZkUwnC5+Z/jluX38optdmZulAz\nV6KzE6uvL9fdGNPgzp10/vO/gMeDcbmIfvghkXfeGX7c29BA3de+StXatbj8uZ3W1gClJuXQwCEq\nfZVHtZW6Szk0cGiMZzjyZUqvbbCNxz95nBcOvjBcDd3j8nBlw5XcsvwWFpZnd+pCzTyFkqnX88ij\nmFgMu7sbMyJxw1VWxvy/+1sqrr46Ixl506EBSk3KwvKFdIQ7jkoUiFiRcf+w90R66In2ZKN7Y/q0\n91M27d3Ea4dewzbOvYAyTxnXLbmOG5fcSE3piS8mVKoQMvXsUIi+554j+v77MOK+mKusDHddHSaR\noPLaa3PYw+NpgFKTsuH0DXx/+/cBZ+QUsSLErTgbTt9w3LEJO0EwHMxZlp4xhneC77B572Z2te8a\nbq8rreOmpTexZvEaAt5ATvqmZp58z9RLdHfT98RW+p5+GnvEdh6uqio8dXW4/H7scBjv/PnjvEpu\naIBSk3JJ/SV8m29PmMUXiofoDHdimexP6VnG4reHf0vT3ib29ewbbm+oaGDdsnVc1nAZXpc36/1S\nM5cdDpNob8/LTL34oUP0NG1m4MUXMfE44GTkBT73OaIffogrEEBKS7HDYUwsRu29X8txj4+nAUpN\n2iX1l4yZEGGMoTvaTV80+zeHo1aUlz97mS37ttA62Drcfnrd6axbto7GeY24JKubR6siYPX3Y3V2\n5kVW6kiRjz6m97HHGHzjjVRGXnU1NV/+MjV/8GU8NTX0b9tG108fJN7S4pQpuvdrVFx6aY57fjwN\nUOqEJewEHaGOrG/F3h/r55lPn+HJT56kN9Y73D6UkXdq7eQ3RlNqKhJdXVi9vRMfmCXGGMJvvknP\nY5uOysjzLFhA3Ve/SvWt63AFUtPaFZdempcB6VgaoNQJycWUXnuonSc+eYLnDzxPxHLuc3nEwxUN\nV3DL8ltoqJh+eX+lxmOMcTL1Bgdz3RXASc4Y2LaN3sc2ETtwYLi95JRTqPv616m8dg3iKdw/84Xb\nc5VTuZjSO9B7gKa9TWw7tG04Iy/gCXDtyddy45IbqfPXZa0vqvgYy3Iy9aLZnSkYjR0O0//cc/Ru\n2UKivWO4PXDBBdR9/euUff7iGbHQXAOUmrK4HScYCmZlSs8Yw57gHpr2NfFm25vD7bWltcM18sq8\nZRnvx1hK3CUEvAHNCpzhTCxGvL19ONkgV6yeXnq3bqXvqaewh7btcLmouOqL1H39D/GfeUZO+5du\nGqDUlAzGB+kMdw6PYDLFMha/O/w7mvY2sbdn73B7fXk965av4/L6y/G6c5ORV+opxe/xU+Yt0zp9\nRSAfMvXira30bt5M//MvDC+uFZ+PyptvYtbXv47vpJNy1rdM0qtLTYplW3RFuhiMZ3buPWbFeLn5\nZbbs3cLhwcPD7afWnsqty29l9bzVWc/IExFK3aXOSMkTwO3Kj1X2KvOsgQGsYDBnmXrRffvoeWwT\ng6+9Nry41lVRQfUdt1P31a/iqZvZ09oaoNSEwokwwXAwo+WKBmIDPHvgWbZ+svWo6hOr563m1uW3\nsrJuZcbOPRqXuPB7/AS8Afwev6apF6FEdzdWT/YroRhjCL/1Fr2bNhF+K7X1i2fObGruvpvaL30J\nV1nuprWzacIAJSJ/BvzcGNOdhf6oPJPpckXBcJAn9j3BcwefGy4m6xEPlzVcxrpl61hUuShj5z6W\nW9z4vX4CHicozYSbzGrqjDFYwSDWiKoLWTmvZTH46mv0bNpE7JNPhtt9J59M7YYNVK+7BfEW10Lz\nyYyg5gI7RGQX8CDwnMm3lWkq7Wxj0xHqyFgF8oN9B9m8dzO/afnNcIq63+PnmsXXsHbp2qxl5Lld\nbgIeJ8mh1F2qQanIGcsi0d6OHclemS47EqH/hRfo3byFxJEjw+2lZ51F3de+RvnVV+FyFecIfsIA\nZYz5nyLy18DVwFeBfxaRR4GfGmM+Gf/ZqhDFrTjt4XbiVnozlowxvN/5Pk17m9jRtmO4vbqkmpuW\n3sS1i6+l3Fee1nOOxuPyEPAGKPOWUeIuyfj5VGEw8TjxtnZMPDsFX62+PvqefJLerU9iD23PIULZ\nxRdR+7WvUXbhhUX/hmlS96CMMUZEjgBHgARQA2wSkReMMf8jkx1U2RWKhwiGg2nN0rONzfbW7TTt\nbeKj7o+G2xeULWDd8nVc0XAFPrcvbecbjc/tGx4pZfpcqvDYkYiTqWdlfsF5vK2N3s1b6H/uOUxy\nTZV4vZR/8YvUfXUDpWecgRTpiOlYk7kHdT/wFSAI/AfwF8aYuIi4gL3AqAFKRB4EbgDajTFnJNtq\ngUeAxcAB4Ha9t5UfMrHwNm7FnYy8fVuO2jfqlJpTWLd8HRfMvwC3ZC4jbuQaJS0Sq8ZiDQxiBTsy\nnqkX3b+f3sc2MbBtWyojr6yMyhtuoObuP6BkyRINTMeYzAiqFlhnjDk4stEYY4vIDeM8byPwz8DP\nRrR9C3jJGPMDEflW8vu/nFqXVbqlu5beYHyQZz91MvK6o6n3H41zG7l1+a2cXnd6RqYuRCQVlDwB\nXaOkJmT19JDoztx7ZGMMkd276XlsE+Fdqa1f3HV1VN+ylqo77sC3YEHebBCYbyZzD+q74zz2wTiP\nbRORxcc03wxcnvz6IeDXaIDKqXTW0usMd/Lk/id59tNnCSWcXUXd4uay+su4ZdktLK5afMLnOJaI\nOOngycw7XaOkJsMYg9XZiTVUjSHdr29ZDL7xBj2PPUZsb2rrF++iRVSvX0/VjTfgmT27oOvkZUO2\nfztzjTFD+yEcwckQHJWI3AfcB7BoUfZSjYtJd6Sb3uiJV2Ru7m9my94tvNL8CgnjbNrm9/i55qRr\nuGnpTcwOzD7hc4xUbGuU9FpIL2PbTqZeOP0ZqnY0ysALL9KzeTOJ1tTWL6Wnn07VbeupuOIKPLW1\nRZcuPl05C9/JxIsxJ32NMQ8ADwA0NjZqWnsapWvH2w86P6BpbxPbj2wfbqsuqeaGJTdw/cnXpzUj\nr5jXKOm1kD6ZytSz+vvpe+opep/Yij1iG47AhZ+jev16Ao2r8NRUIz5N0JmKbAeoNhGZb4xpFZH5\nQHuWz1/0wokwwVBw2lN6trHZcWQHTXub+KArNcM7v2w+tyy7hS8s+kLaUreH1iiVecso9ZSm5TVV\n8bKjUWdr9jRm6iXa2+nZ8jj9v/oVZmjtlMdDxZVfoGrdOkpPOQV3TQ2uEl3OMB3ZDlBbgXuAHyQ/\nP5Hl8xctYwy90V56Y73TylaKW3F+0/IbNu/bTHN/83D7suplrF++ns8t+FxaMvK8bu9wOriuUVLp\nYg8OkuhIX6Ze7NNP6WlqYuDXv4FkwJNAgMrrrqNq7c34Fi50AlOpvrE6ERkLUCLyS5yEiFki0gJ8\nFycwPSoi9wIHgdszdX6VErNidIY7p5WlF4qH+NWBX/HEJ0/QFekabj9vznncuvxWzpx15glPt/nc\nPsq8ZQQ8gZxVKFczl9XbS6Kra+IDJ2CMIbJnj5ORtyO10NxdW0vV2pupvO46PLW1uKurj9q9Vk1f\nxgKUMeauMR66MlPnVMfrjfbSE+2Z8jvHrkgXWz/ZelRGnktcXLrwUtYtX8fJVSefUL+GtqzQNUoq\nkxLB4Aln6hnLIvS739Hz2CaiH6UWmnvr66lafysVV3wBV1kZnprqoinimi2a4zhDGWPojHQyEJta\nwcuW/ha27NvCy80vk7CdjLwSdwnXnHQNNy+7mTmBOWM+d2fbTjbv3UxbqI25gbmsW76OxrmNgG5Z\noaanf9s2un76IPGWFrz19dTe+zUqLr10wucZ23a2Zg+Fpn1uOxZj4MWX6N3cRPxQauuXktNOo/q2\n9QQuuABXSQnu6mrc5ffPUHQAABo4SURBVJkv0VWMNEDNQFErSjAcnFItvY+6PqJpbxO/a/0dBme0\nVemr5MYlN3Ldkuuo9FWO+/ydbTv5t93/htflpdxbTnekm5/s/gkl55VwRcMVBLyBGZ8OrtKrf9s2\n2r73t4jPh6uqikRHB23f+1v4zl+PG6RMIuFszR6bXqaeNTBA39NP0/fEVqwRi3gDF1xA9fr1lJ5x\nOuLxOFN55eVFlVGabRqgZpCpliuyjc2bbW/StLeJ9zrfG26fF5jH2mVruXLRlZPOntu8dzNel5dS\nTykuceFz+4gkIjy+73FuXHrjtH4eVdy6fvogdjyO6e7GjsVw+XxIeTldP31wzABlx2JOpl4iMeXz\nJYJBerc8Tt+zz2KG1kh5PJRfcTnVt96K76STELcbd1UVrspKDUxZoAFqhogkIgTDweFpufHE7Tiv\ntrzK5n2bOdiXqmC1tGopty6/lYsWXDSlKTi3y01HqIOqkipc4hq+cP0e/1E1+JSaisjevdj9/SAC\nLhd2PA5dXUTio88M2KGQk6k3xa3ZYwc/o6dpEwOv/BqSgU38fiqvvZaqtWvxzJ6FuFy4KitxV1Vp\nvbws0gBV4Gxj0x3ppj828Y3gUDzE8wef54lPniAYDg63nzvnXNYtW8fZs8+e9LvCoS0rAp4ApZ5S\nFlUuoiPcgd/jHz4mYkVYWL5w6j+UUuAEC2NSdepEnJHRKKMjq6+PRGfnpF/aGEP0vffp2bSJ0PbU\nQnN3TQ2VN99E5fXX405O37mqqnBXVmq9vBzQAFXAJjtq6o508+T+J3nm02cYjA8C4MLF5+s/z7pl\n61havXT42PESHcbbsmLD6Rv4/vbvA1DqLiViRYhbcTacviGNP7EqJsPlgGwbXK7hCuDHlglKdHVh\n9U6uZJexbULbtzsZeR+kFpp7Fy6gat2tlH/xSmcqUQRXRQXu6moNTDmkAaoAGWPoifZMWEfv8MBh\ntuzbwkufvUTcdqZFfG4fVy+6mpuX3cy8snlHHT9WokN5YzlXLrpy3DVKl9Rfwrf5Nhvf28ihgUMs\nLF/IhtM3cEn9JSf+A6uiVLJsGeGPPsT09Q8HKamsoGTZMmBqmXomFqf/lVfobWoi3pxaaF6yYgVV\nt613NgdMBiJ3RYUzlaf18nJOA1SBiVtxguHguItuP+7+mKa9Tfz28G+HM/IqfBXccPINLKxYyHMH\nnuOvXv+r40ZIQ4kOQwVYS9wlRKwIj338GGtOXjNh3y6pv0QDkkob/+rVhHbudEZPXi9YFqZ/AP/q\n1ZhYjHh7x4Q19ezBQfqefZbex5/AGjEF6G9spPq29ZSemVpo7iorw1Ot9fLyiQaoAmGMoS/WN+ai\nW2MMu9p30bS3iXeD7w63zwnMYe3StVx10lXs6dxz3Ajp33b/G3989h/z+YWfJxgOUuWrwjXiJnCp\nu1QTHVROhH//e1yVlU7x1UQCXC5cVVWE3niD+A3Xj5sMkejspPfxJ+h75hnM0AjL7ab8skupXr8e\n38mpheauQMApS6SBKe9ogCoAMStGMBwkZh3/bjFhJ3jt0Gs07W3iQN+B4fYlVUu4ZdktXLLwkuGM\nvKERUomnBEHwe/24LTdP73+aW1fcSkNFg5Po4NJEB5V70X37sPv7nT2TXC6MZWH39RH95JMxg1Os\npYXeTZvof+nlVEZeSQkVa9ZQve4WPHNSC81dfr8Wcs1zGqDy2HgFXsOJMC8cfIHH9z1OR7hjuP3k\nqpMxxtAf6+f/b+9ug+MqrwOO/8+9u6td7a5WWll+xTZgHIpjEigKEEIdDOXFpjYgy03pZMqEzJDM\nNDNphi9JZtJ2koZ+CXTING0gkwzJUDepJdsxCQSTFGIHCMGATWyoYxv8JhtLGCTtStrX+/TDXa0k\nW5L1Zt270vl9sXS9L8fXfnz0PHue8+w4uoNYKFZewmvvbacmVINt2QiCiBCQACd73F3yWuig/MSU\nysmNCBjjlpsPuj5Y5u236dzcQu/vf+8+FrASCRLr11Gzbh12PF5+rFVV5SamSOSc11H+ognKp0aa\nNXVlu9yKvHeeJpV3S8stLG5YdANXJK9g++HtBK0g8VC8XORQfU01q5esZmnNUjr6OgjKwIe/g2dI\nWuigfKX/tNnBsyWR8nXjOPS++ipdLS1k9g1sNA/Mn09iQxPxW28dMjuyQiE3MWkj14qhCcpnRpo1\nneo5xbZD29hxZEf51FpBuGbeNTzwsQdYEF3A13/39XO6OWSLWVoPtrL20rVjmiFpoYPyg2K6h9CS\nJeSOH8f09mLyeSQYRKqrCS5YQOq5X9PZ2kr+6MBG89Bll1G7sZnopz41pDRcgqFSvzxt5FppNEH5\nyHA99A51HqL1YCsvtb2EQ2kfCEKiKkHEjnA8dZy2dBtLa5aet8hBZ0jKz0yxiJNKUUynMfk8iQ1N\ntD/8SPmAQVMoYHp6yB87Rscjj5SfF7n6amo3biR81dCN5hIMaiPXCqcJygfO7gZhjOGNjjfYcnAL\nezv2lh8XtNzD/JKRJJZYWFhknSy/fOeXNH+keUxFDjpDUn7jZDIUu7vdmdJZn7WafB4GN33N53Ey\nGbAson/xF9Q2N1N12bIhz5FAwO2XF49rv7wKpwnKY9lilo7eDgpOgaJTZFfbLp58+0lO954uP2Zu\n9Vw+e8VnefKtJ6mpqsEWu9zzLmAFONVzCtAiB1U5jOPgpNM4qdSIXcfPfP8xGGYTrhWPs+i7jxKc\nP3SjuViWm5gSCU1MM4QmKI8MnjVlChm3Iu/wNtp728uPCdthYsEYlrFYFFvkLuNl3h/SZkiLHFQl\ncXI5nO5unJ6eEUvFMwcO0NXSSqFtmP13luBkMkOSk7Ylmrk0QU0zYww7juzgJ2/9hJM9J7HEIpVL\n0VfoKz8mYkeoj9QTDUaxxCJTzPCzAz/jcys/p0UOquIYYwZmS9nhO6AYY+h77TU6N7eQefPNkV/M\nMWANLAPasZibmLQt0YykCWoaZYtZnnnnGR59/VH6in305nvLrYhssbl16a28+t6rJMNJAlagvEzR\nX+igMyRVSUwuRzGVwkmnR5wtmUKB9M6ddG1uIXfkSPl66NJLyR07Nmzncmzb3WSbTGr3hxlOE9Q0\nKDgFOrOd7G3fy3de+86QJq8WFtFglEXxRTzY+CBf2/U1zmTOjLpXSROS8itjDE5PL06q2y1mGIHT\n10fq2Wfp2rqVQvvARvPIVVeR2NhM5OqrOXLv32JSqaH7oCzLLTU/6/MnNTNpgroAdp3YxRP7n+BE\n6gTzqudxZcOVvNnxJns69pQfY4tNbVUtNVU1WFh0ZbuYH53P/Svv10IHVXFMPk+xtIzXXxY+nGJn\nF13bt9P91FM46bR70bKI3vgptyJv+fLyY6uWLiXX1jawD6p0om54UB89NbNpgppiu07s4qFXHkJE\nKDpF9p3Zxxsdb5R/v8quojpQTV24zv1wVyzyxTyL44sBLXRQlcXp7XWX8c5z5EX+5Cm6tm4hteM5\nTKlqT0Ih4rfeSqKpieDCBec8J7GxmTP//j2koQGJRiGbxeRyJD9//wX5syj/0QQ1Af0zpOESyA/e\n/AHpfJp0Pj3kIMHqQDUPNj6IIDz25mPknBzRQJSck6PgFLTQQVUMUyjgpNMUUyn3hNtRZA8donPz\nZnp+92J5qc6KxahZt47E+nXYtbUjPjd2/fXk207SuWkTTlsbVjRK3X33EV+1akr/PMq/NEGNU/8M\nKWgHqQnV0NHXwUOvPMQXM1/kTx/+iT0de8qFDwDRYJREKEHBFLh2/rUAhANhth7cysmekzpDUhXD\n6etzk9IwG2oHM8bQ98YbdG1uoW/PoGXthgZqm+4hfvvtozZq7d/P1LN3L52bN7szLsvC5HJ8uGkT\nkStXapKaJTRBjdMT+58gaLuH+hljECN0Zjv5xovfGJKY4qE4tVW1bj+8QpZ5kXlYYpEMJ1m3bB3r\nlq3z8E+h1NiYYrE0W0qf93BAUyzSs+t3dLa0kDt8uHw9dPHFJDY2E1u1yj06YxRWdTWB+nokEKDj\n4Ufcs6Asy01QjoPp6qL9Ow9rgpolNEENY7QlvBOpE8SCMdK5NB9kPiCdT5efVx2o5uq5V3PgwwOE\n7TBBK0i2kCXv5Ln38ntZGFtIwNJbrvzPyWYHNtSOMlsCt1VRasdzdG3ZQuH0QAeU8JVXUruxmUhj\n43k7O0ggQCCZxIoONHTNHzniVu3195YUwfRfV7OC/m95luGW8L79+2/zlWu+wscaPkaVXcXR1NEh\nR65bYjE3MpdHVz9KdbCa3ad3s+XgFk73nmZ+9Xzu++h93HbxbR7+qZQ6P+M4OD09bmIaof3QYMWu\nLrp/8Qu6tj+F093tXhQhesMNJDY2E7788jG9rx2LYdfXDySiIW9SdD/n6j8PSgS0W8Ss4UmCEpEj\nQAooAgVjTKMXcQynfwkvbIdxjENAAuTI8d03vkuVXcW73e+WH9t/dHrQCvKFj3+B6qB7zkzjvEYa\n5zUSDoSZE5mjsybla2NpPzRY/vRpulq3kNqxA1PqDCHBILFb/5LapiaCi8Z2ArMEAth1yRGPwbAb\nGgbaHYmUiyxs3QM1a3j5P+dqY8z7Hr7/ObLFLMdSx8rVdY5xSOVSdGY7h1TkLY4vxsKit9DL/Oh8\nmpY3lU+t7VdbVUtteOQKJaW85G6o7XHbD42yoXaw7OHDdLa00LNz10BFXjRKzV/dSc369QSSyTG/\nv51IuC2Khps1lVjRqDtbcpyBGZRlDVkGVDPbrP/RPlPI0FvopTffS8Ep0BBp4EzfGTLFDF3ZLopm\nYNPhdfOvo2l5EyvqV4z4erZlMycyh0hAj5NW/mPy+YH2Q6NsqC0/3hgye/bS2dJC3+uvl6/b9fUk\nmu6h5o47xnVCrQQCBObMGdNx66anh8DChTgffICTy2GFQljJJKanZ8zvpyqbVwnKADtExACPGWMe\nP/sBIvIA8ADAkiVLpu6NjaGv0EdvoZe+fN+QBNTe2040GGXf+/uGVOSF7TD3r7yfNZesGfW1a6pq\nqK2qxZKRfypUarwmOxaMMZj+DbV9fed/AqWKvBdfdCvyDh4qXw8uWUJt8wZiN9007gatdjyOnUyO\nOmsaLHjRRRQ6OghcfHH5mtPXR6ChYVzvqyqXVwnqRmNMm4jMBZ4Tkf8zxuwc/IBS0nocoLGxcfQy\novNwjEOmkKEn30NfoQ/HDF1nP9p9lNaDrew8sbOcsCyxCNthlsSX8Jk/+8w5S3iDBe0gcyJzqLKr\nJhOmUsOa6FgwhcLAbOk8G2r7Odks6dJx6oX33itfD6/8KInmZqo/8YkxJ5h+YtvurGkcMy2A5Ofv\n5/Q3v4UDSDiMyWS0k8Qs40mCMsa0lX5tF5GtwLXAztGfNT5FpzgwUyr0nXtSpzHsP7Of1oOt7D69\nu3y9rqqO9cvWs+aSNUSD51/rjofiJMNJPSBN+YbbfiiN0zv2pbBiKuVW5P18u7v3CECE6uuvp7Z5\nA+EVIy9rj8aKRAjMmXPe/U/Dia9aBf/4DT744Y/InzhB8KKLSH7+ft0DNYtMe4ISkShgGWNSpa9v\nA745Fa9dcArlz5Oyxeyw+zcc4/DKqVdoPdjKgQ8PlK8vii3insvu4ebFNxO0z790YYtNfaS+XLmn\nlJdMsYiTSlFMp91j0seo0N5O59ZtpH71K0x/sUQgQPyWm0ls2EBo8eIJxSMi2Mkkdk3NhJ7fL75q\nlSakWcyLGdQ8YGtpxhEANhljfjWZF+zKdtFX6CNTGLkaKVfM8fzx59l6aCtt6YGTOi+vu5wNyzdw\n3YLrxvzZkZaPK79wMhmK3d3nbT90tty779LZ0kL6hd+WK/KkupqatWtJ3H0Xgfr6CcdkVVW5syY9\nq0lN0rT/D2uMeQf4+FS+Zme2c8TBmc6leebIMzx1+Ck+zH5Yvt44r5Hm5c2sqF8xruU5XdJTXjOO\n47Yf6k6dt/3QkOcZQ+aP++jcvJm+3QPL2nYySeLuu6hZu3bSJdx2IoFdV6fjQ02JGTsFONN3hm2H\nt/HskWfLx6nbYvPpiz5N0/ImltYsHdfr6ZKe8gXHIX/8+Jg21PYzxSI9L79MV0sL2QN/Kl8PLl5M\nYkMT8dU3I6HJHZk+0UIIpUYz4xLUse5jbDm0hd8e/y0F41YuRQIRbl96O+uXraehevwlqpFAhPpI\nvS7pKc8ZxxlzcnJyOdK//g1dW1rJt50sX6+64gpqNzZTfd11467IG44VDhNoaJhQIYRSo5kx/6L2\nn9nPloNb+MN7fyhfq62qZd2l61h7yVpiodi4X9MWm7pw3YSeq5RXiuk0qaefpmvbzyl+OLCsXX3t\ntdRu3Eh45Uen7L3s2loCdXVT9npKDVbRCcoxDi8cf4Hv7/0+b3/wdvn6wuhC7r7sbm5Zcgshe2If\n1EaDUZLhJLaljSlVZSh0vE/Xtm10P/MMpn9DbiBAbPVN1G5oJrR06ja8j6cjhFITVdEJ6qWTL/Hl\n579c/n557XI2LN/A9Quvx5aJJZb+M5t01qQqRe7oUTpbW0k//wKUNuRKJELNmjUk7r6bQMOcKX0/\nq7rardLTruLqAqvoBHXDwhtYllhGXbiOpuVNrKxfOanqoZAdoiHSMKZ9UEp5LbNvP52bN9P7h4Fl\nbbuujpq71lNz553Ysan9IUtEsGtrRz2mXampVNEJyhKLTXduoqOvY1x7QIYTC8WoD9dreazyvZ6X\nX6azpYXsWwPL2sFFC0lsaCZ2y81YF2D/kQSDBBoasKq0nZeaPhWdoAC37Hts/S+HJSIkw0niofjU\nBaXUBZJ7911Of/Nb5e+rLv8IieZmop/85AVbcrOqowQa5kxJxZ9S41HxCWoyAlaAudVzJ1xIodR0\nM1l3Y26ksdGtyLtycsvao5mqdkVKTdSsTVCxUIxkOKlHY6iKYiVquOg/vkfokksu6PtIMERgbsMF\nWS5UaqxmXYLSJT1VyYILFlzw5GTHYtj19bqkpzw3qxJU0A7SEGnQJT2lhiGWhV1fP+XVf0pN1KxJ\nUNFglPpIvS7pKTUMKxRy2xXpkp7ykRmfoESEunAdNSH9oFep4dg1Ne5R7LrFQvnMjE5QAStAQ3WD\nHsWu1DDEstx2RZM8YkOpC2XGJiit0lNqZFZVlbukF9SuKcq/ZlyC0nOblBpdf7siXdJTfjejElQk\nEGFOZI52IFdqGGLbbrsi7UCuKsSMSFAWFrWRWt3bpNQIrEjE7UCuhwqqCjIj/rXOj80naOlaulLD\nCdTVaQdyVZFmRILS5KTUuSQQcJf0wmGvQ1FqQmZEglJKDaWHCqqZQBOUUjOIiGDX1WEnEl6HotSk\naYJSaobQQwXVTKMJSqkZwIpG3SU97UCuZhBNUEpVMBFxO5DHdYuFmnk0QSlVoSQYIjhXO5CrmcuT\n9QARuUNEDojIIRH5qhcxKFXJ7Hic4KKFmpzUjDbtCUpEbOB7wBpgBXCviKyY7jiUqkgiBBrmup83\naS89NcN5MYO6FjhkjHnHGJMDfgrc5UEcSlUcsW3smB6PoWYHLxLUIuD4oO9PlK4NISIPiMhuEdnd\n0dExbcEp5Tc6FtRs5duaVGPM48aYRmNMY0NDg9fhKOUZHQtqtvIiQbUBiwd9f1HpmlJKKVXmRYJ6\nFVguIpeISAj4G2C7B3EopZTysWnfB2WMKYjIl4BnARv4kTFm/3THoZRSyt882ahrjHkaeNqL91ZK\nKVUZfFskoZRSanYTY4zXMZyXiHQAR72OYxhzgPe9DmIEGtvEXMjY3jfG3DGZF/DxWIDZ+/c6WX6N\nzfOxUBEJyq9EZLcxptHrOIajsU2Mn2PzOz/fO41t/PwQly7xKaWU8iVNUEoppXxJE9TkPO51AKPQ\n2CbGz7H5nZ/vncY2fp7HpZ9BKaWU8iWdQSmllPIlTVBKKaV8SRPUBInIERH5o4jsEZHdHsfyIxFp\nF5F9g64lReQ5ETlY+rXOR7H9s4i0le7dHhFZ60Fci0XkeRF5S0T2i8iXS9d9cd8qiY6FScXm+Vgo\nxeHL8aAJanJWG2Ou8nqvAPAEcPamt68CvzHGLAd+U/reC09wbmwA/1a6d1eVWl9NtwLwoDFmBXA9\n8Pelk539ct8qjY6F83sCf44F8Ol40AQ1AxhjdgIfnHX5LuDHpa9/DNw9rUGVjBCb54wxp4wxr5e+\nTgFv4x6c6Yv7piZGx8LE+HU8aIKaOAPsEJHXROQBr4MZxjxjzKnS1+8B87wMZhhfEpE3S8seni6j\nicjFwNXAK/j/vvmRjoXJ8c1YAH+NB01QE3ejMebPgTW40+FVXgc0EuPuJfDTfoL/BJYBVwGngIe9\nCkREYkAr8A/GmO7Bv+fD++ZXOhYmzjdjAfw3HjRBTZAxpq30azuwFbjW24jOcVpEFgCUfm33OJ4y\nY8xpY0zRGOMAP8CjeyciQdzB+F/GmC2ly769b36lY2Hi/DIWwJ/jQRPUBIhIVETi/V8DtwH7Rn/W\ntNsO3Ff6+j7g5x7GMkT/P/iSe/Dg3omIAD8E3jbGPDLot3x73/xIx8Lk+GEslOLw5XjQThITICKX\n4v6kCO6hj5uMMd/2MJ7/Bm7CbY9/GvgnYBvwP8AS3OMZ/toYM+0f0I4Q2024SxoGOAJ8YdA693TF\ndSOwC/gj4JQufx133d3z+1YpdCxMOrab8HgslGLz5XjQBKWUUsqXdIlPKaWUL2mCUkop5UuaoJRS\nSvmSJiillFK+pAlKKaWUL2mCUkop5UuaoJRSSvmSJqhZTEQ+UWpSGS51BNgvIiu9jkspL+h48B/d\nqDvLici/AGEgApwwxvyrxyEp5RkdD/6iCWqWE5EQ8CqQAW4wxhQ9Dkkpz+h48Bdd4lP1QAyI4/7k\nqNRspuPBR3QGNcuJyHbgp8AlwAJjzJc8Dkkpz+h48JeA1wEo74jI3wF5Y8wmEbGBl0TkZmPM/3od\nm1LTTceD/+gMSimllC/pZ1BKKaV8SROUUkopX9IEpZRSypc0QSmllPIlTVBKKaV8SROUUkopX9IE\npZRSypf+H/VPLojvBDTZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "WKW-LKGmCJMT", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Links\n", + "- [Seaborn examples: Anscombe's quartet](http://seaborn.pydata.org/examples/anscombes_quartet.html)\n", + "- [Wikipedia: Anscombe's quartet](https://en.wikipedia.org/wiki/Anscombe%27s_quartet)\n", + "- [The Datasaurus Dozen](https://www.autodeskresearch.com/publications/samestats)" + ] + }, + { + "metadata": { + "id": "YKTnsdRhCJMU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 2. Tips dataset" + ] + }, + { + "metadata": { + "id": "KXyu7O_vCJMV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Load dataset" + ] + }, + { + "metadata": { + "id": "R-9JSkbBCJMY", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "tips = sns.load_dataset('tips')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "yNhq0ZJPCJMm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the data's shape" + ] + }, + { + "metadata": { + "id": "hfZ12J-2CJMn", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "3d5ec1de-90a3-448e-c273-296c5b7c5b6a" + }, + "cell_type": "code", + "source": [ + "tips.shape" + ], + "execution_count": 120, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(244, 7)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 120 + } + ] + }, + { + "metadata": { + "id": "ejXdg-1KCJMq", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the first 5 rows" + ] + }, + { + "metadata": { + "id": "6Deiy4SrCJMs", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "67c2c00c-7de9-46d6-8789-5d1da1b53751" + }, + "cell_type": "code", + "source": [ + "tips.sample(5)" + ], + "execution_count": 121, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
total_billtipsexsmokerdaytimesize
16731.714.50MaleNoSunDinner4
14416.432.30FemaleNoThurLunch2
6417.592.64MaleNoSatDinner3
19119.814.19FemaleYesThurLunch2
12811.382.00FemaleNoThurLunch2
\n", + "
" + ], + "text/plain": [ + " total_bill tip sex smoker day time size\n", + "167 31.71 4.50 Male No Sun Dinner 4\n", + "144 16.43 2.30 Female No Thur Lunch 2\n", + "64 17.59 2.64 Male No Sat Dinner 3\n", + "191 19.81 4.19 Female Yes Thur Lunch 2\n", + "128 11.38 2.00 Female No Thur Lunch 2" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 121 + } + ] + }, + { + "metadata": { + "id": "l-OZU_OICJMw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Describe the data" + ] + }, + { + "metadata": { + "id": "KxpFHLigCJMz", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "75abaf60-881c-4330-f051-f365533e44fa" + }, + "cell_type": "code", + "source": [ + "tips.describe()" + ], + "execution_count": 66, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
total_billtipsize
count244.000000244.000000244.000000
mean19.7859432.9982792.569672
std8.9024121.3836380.951100
min3.0700001.0000001.000000
25%13.3475002.0000002.000000
50%17.7950002.9000002.000000
75%24.1275003.5625003.000000
max50.81000010.0000006.000000
\n", + "
" + ], + "text/plain": [ + " total_bill tip size\n", + "count 244.000000 244.000000 244.000000\n", + "mean 19.785943 2.998279 2.569672\n", + "std 8.902412 1.383638 0.951100\n", + "min 3.070000 1.000000 1.000000\n", + "25% 13.347500 2.000000 2.000000\n", + "50% 17.795000 2.900000 2.000000\n", + "75% 24.127500 3.562500 3.000000\n", + "max 50.810000 10.000000 6.000000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 66 + } + ] + }, + { + "metadata": { + "id": "q9x2KUnibby5", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 173 + }, + "outputId": "438dc7c0-32d7-4b6b-fd66-69d9122bb357" + }, + "cell_type": "code", + "source": [ + "tips.describe(exclude=[np.number])" + ], + "execution_count": 67, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sexsmokerdaytime
count244244244244
unique2242
topMaleNoSatDinner
freq15715187176
\n", + "
" + ], + "text/plain": [ + " sex smoker day time\n", + "count 244 244 244 244\n", + "unique 2 2 4 2\n", + "top Male No Sat Dinner\n", + "freq 157 151 87 176" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 67 + } + ] + }, + { + "metadata": { + "id": "tGwjtJB4CJM4", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make univariate [distribution plots](https://seaborn.pydata.org/generated/seaborn.distplot.html)" + ] + }, + { + "metadata": { + "id": "yElZPu-ICJM5", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 283 + }, + "outputId": "65551e81-c204-44e3-da5d-b67f06be702c" + }, + "cell_type": "code", + "source": [ + "sns.distplot(tips.tip);" + ], + "execution_count": 70, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4XPV97/H3d2Y02nfJWm3LG9jy\ngsHGbAkEAgkEgml20uQmTVrSm6RNe/u0oW2a5knv05ulT+7NbbltaJo9hCzQGxdMCE0gEIKNF4xt\nyfumXZa179v87h8a+QpHRmNrRkdz9Hk9D49mzhxpPiPkz5z5nXN+x5xziIiIvwS8DiAiIvGnchcR\n8SGVu4iID6ncRUR8SOUuIuJDKncRER9SuYuI+JDKXUTEh1TuIiI+FPLqiYuKilxVVZVXTy8ikpT2\n7NlzzjlXPNN6npV7VVUVu3fv9urpRUSSkpmdiWU9DcuIiPiQyl1ExIdU7iIiPqRyFxHxIZW7iIgP\nqdxFRHxI5S4i4kMqdxERH1K5i4j4kGdnqEpsHtlZd1nf9/7rlsQ5iYgkE225i4j4kMpdRMSHVO4i\nIj6kchcR8SGVu4iID6ncRUR8SOUuIuJDKncRER9SuYuI+JDKXUTEh1TuIiI+FFO5m9mdZnbEzI6b\n2YOvs947zcyZ2eb4RRQRkUs1Y7mbWRB4CLgLqAbuN7PqadbLBj4F7Ix3SBERuTSxbLlvAY475046\n50aAR4Gt06z3d8AXgaE45hMRkcsQy5S/FUD9lPsNwHVTVzCza4DFzrknzezP45hP5tDlTC+sqYVF\n5qdZ71A1swDwFeDPYlj3ATPbbWa729raZvvUIiJyEbGUeyOweMr9yuiySdnAOuA5MzsNXA9sm26n\nqnPuYefcZufc5uLi4stPLSIiryuWct8FrDKzZWYWBt4HbJt80DnX7Zwrcs5VOeeqgB3Avc653QlJ\nLCIiM5qx3J1zY8AngaeBQ8CPnHM1ZvZ5M7s30QFFROTSxXQNVefcdmD7Bcs+e5F13zT7WCIiMhs6\nQ1VExIdU7iIiPqRyFxHxIZW7iIgPqdxFRHxI5S4i4kMqdxERH1K5i4j4kMpdRMSHVO4iIj6kchcR\n8SGVu4iID6ncRUR8SOUuIuJDKncRER9SuYuI+JDKXUTEh1TuIiI+pHIXEfEhlbuIiA+p3EVEfEjl\nLiLiQyp3EREfUrmLiPiQyl1ExIdU7iIiPqRyn+dGxiI0dg0yMhbxOoqIJJGQ1wHk4s609/PQs8dp\n6xvGgOLsVN5+VTkrirO8jiYi85y23OepnSfbue+hF+kbHuO+jRXcunoREef4zkunOdHW53U8EZnn\nVO7zUHvfMB/51i7yM8N8/E0r2LKsgNvXlPDAzSsoyAyr4EVkRir3eejh508yODrOwx/cTGFW6vnl\nWakhPvqG5eRnhPnBy3X0Do16mFJE5jOV+zxztneIb790mq0bK1i56LfH1rNSQ9y/ZQnDYxG2vdqE\nc27uQ4rIvKdyn2f+5bmTjI47/vjNqy66TklOGrevKaGmqYf9jd1zmE5EkoXKfR5p7RniezvP8I6r\nK1hWlPm6675hZRGV+en8x6tN9A2PzVFCEUkWKvd55LG9DYyMRfjErStnXDcYMN55TSVDo+M8fbBl\nDtKJSDJRuc8jTx1oYePiPKpm2GqfVJKTxhtWFrOnrpMz7f0JTiciyUTlPk/UdwxwoLGbt60vvaTv\nu231InLTU/jpvibGI9q5KiITVO7zxFMHmwG4a13ZJX1fOBTgng1ltPQM8ZsT5xIRTUSSkMp9nth+\noIX1FbksLsi45O+tLsthTWk2z9S2crZ3KAHpRCTZxFTuZnanmR0xs+Nm9uA0j/+hmR0ws31m9msz\nq45/VP9q7BpkX30Xd13ikMwkM+O+qytICQZ4bE+DhmdEZOZyN7Mg8BBwF1AN3D9NeT/inFvvnNsI\nfAn4StyT+tjPoke7XOqQzFTZaSncu7Gc+s5Bfn2sLV7RRCRJxbLlvgU47pw76ZwbAR4Ftk5dwTnX\nM+VuJqBNx0vwTG0Lq0uzZzy2fSYbKnJZV5HLM4daefbw2TilE5FkFEu5VwD1U+43RJe9hpl9wsxO\nMLHl/sfxied/Q6Pj7K3r4uYrimf9s8yMd1xdQWlOGh///l5eqeuMQ0IRSUZx26HqnHvIObcC+DTw\nmenWMbMHzGy3me1ua9PQAcDeuk5GxiJcv7wgLj8vLSXIh26sYlFOKh/51i5ePtURl58rIskllnJv\nBBZPuV8ZXXYxjwL3TfeAc+5h59xm59zm4uLZb6n6wY6THQQMNlfFp9xhYvz9ux+5jqy0EO/52kv8\n9b8foHtAM0iKLCSxXIlpF7DKzJYxUervA94/dQUzW+WcOxa9ezdwDInJjpPtrKvIJSctJa4/d0lh\nBk//yc185edH+caLp3h0Vz1ry3PYuDiPrNQQqaEgqSkBUkOBiTNdVxXF9flFxFszlrtzbszMPgk8\nDQSBbzjnaszs88Bu59w24JNmdjswCnQCH0pkaL8YGh1nX10XH76pKiE/PyMc4jP3VPOOayr52cFm\ndpzq4PG9jQyNjjN2weGSKUGjqjCTt64tpTwvPSF5RGTuxHQNVefcdmD7Bcs+O+X2p+Kca0HYW9fJ\nyHiEG5YXJvR5qstzqC7Pec2ysfEII+MRRsYiHD/bxzOHWnlkRx3/8qsTbN1Yzqal8RsmEpG5pwtk\ne2jHifboeHv+nD93KBggFAyQEZ4Y799cVUBhZio/3FXHY3sbOds7PKvj7kXEW5p+wEM7TnawviKX\n7DiPt1+urNQQv3fTMrYsK+CFY+c4oAuBiCQtlbtHhkbH2VffxfUJHpK5VAEz3r6hnMX56Ty+t4H2\nvmGvI4nIZVC5e2R/Qzcj4xGujeMhkPESDBjvu3YJZvDornrNVSOShFTuHnm1vguAjUvyPE4yvfzM\nML9zdSWNXYPsPaMzXUWSjcrdI/vqu6jMT6coK9XrKBe1rjyHxfnp/PLIWUbHI17HEZFLoHL3yL76\nLq5aPD+32ieZGXdUl9I9OKppDESSjMrdA229wzR2DXL1PC93gJWLslhenMlzR9sYHhv3Oo6IxEjl\n7oHJ8fb5vuU+6S3VpfQPj7HzpLbeRZKFyt0D++q7CAaMdeW5XkeJyZKCDJYVZbLzVDsRpyNnRJKB\nyt0DrzZ0cWVJNunhoNdRYnb98kI6B0Y52trrdRQRiYHKfY5FIi4pdqZeqLosh+zUkIZmRJKEyn2O\nnWrvp3doLCl2pk4VDBibqwo42tpLR/+I13FEZAYq9zm2ry65dqZOtWVZAWbosEiRJKByn2MHGrvJ\nCAdZuSjL6yiXLDc9hdWlOew506EpCUTmOZX7HKtp6mZNWQ7BgHkd5bJsWppP/8g4x89qx6rIfKZy\nn0ORiONQcy9rL7hwRjJZVZJFekqQV6LH6ovI/KRyn0N1HQP0DY9RXZa85R4KBNhQmcuh5h6GR3XG\nqsh8pXKfQ7XNPQCsTZKTly5m4+I8RscdNdHXIyLzj8p9DtU0dRMMGKtKkm9n6lRLCjLIz0hhn4Zm\nROYtlfscqm3qYdWiLNJSkufM1OmYGRsX53PibB+tPUNexxGRaajc51BNU09Sj7dPtXFxHg54cn+z\n11FEZBoq9znS1jvM2d5hqpP4SJmpirNTKctN44n9TV5HEZFpqNznyOTOVL+UO8D6ilz21nXR2DXo\ndRQRuYDKfY7UNkWPlClL7iNlplpfMfFanjqgoRmR+UblPkdqmrqpyEsnNyPF6yhxU5iVyrqKHP5D\n4+4i847KfY7UNvck9ZmpF3P3+nJere+ivmPA6ygiMoXKfQ70D49x6lx/0p+8NJ2715cBsF1DMyLz\nSsjrAAvB4ZYenINzfcM8srPO6zhxtaQwg6sqc3lifzMfu2WF13FEJEpb7nNgcmdqWW6ax0kS4+4N\nZRxo7OZMe7/XUUQkSuU+B2qaesjLSCE33T87U6d6W3Ro5kkNzYjMGyr3OTC5M9UsOedwn0llfgYb\nF+fpbFWReUTlnmCj4xEOt/T6ZtqBi7lnQxk1TT2cOqehGZH5QOWeYCfb+hkZi/jySJmpzg/NaDoC\nkXlB5Z5gNU3dgL+mHZhOeV46m5bm84SGZkTmBZV7gtU29ZAaCrC8KNPrKAl3z4YyDrf0cvxsn9dR\nRBY8lXuC1TT1sLo0m1DQ/7/qu9aVYaZpgEXmA/83joecc9Q291Dt8/H2SaW5aVy7tIAnD2jcXcRr\nKvcEauwapHtw1JdzylzMPVeVcbS1j6OtvV5HEVnQYip3M7vTzI6Y2XEze3Cax/+bmdWa2X4z+4WZ\nLY1/1OQzeWaq33emTnXnulLM0I5VEY/NOLeMmQWBh4A7gAZgl5ltc87VTlntFWCzc27AzP4r8CXg\nvYkInExqm3sIGKwpnfty92oOm0XZaVy3rIAn9zfxp7ev8u2JWyLzXSxb7luA4865k865EeBRYOvU\nFZxzzzrnJud83QFUxjdmcqpt6mFZUSbp4eS+IPalumdDOSfa+jmioRkRz8RS7hVA/ZT7DdFlF/NR\n4KnpHjCzB8xst5ntbmtriz1lkqppWjg7U6e6c10pAYMnXtXQjIhX4rpD1cw+AGwGvjzd4865h51z\nm51zm4uLi+P51PNO98AojV2Dvp92YDpFWancsKKQJw8045zzOo7IghRLuTcCi6fcr4wuew0zux34\na+Be59xwfOIlLz9eEPtS3L2+nFPn+s//HkRkbsVS7ruAVWa2zMzCwPuAbVNXMLOrga8xUexn4x8z\n+Zwv9wW45Q4TQzPBgOmoGRGPzFjuzrkx4JPA08Ah4EfOuRoz+7yZ3Rtd7ctAFvBjM9tnZtsu8uMW\njNqmHhZlp1Kcnep1FE8UZIa5cUUhT+7X0IyIF2K6zJ5zbjuw/YJln51y+/Y450p6NU3dC3ZIZtI9\nG8r49GMHONjYw/rKhbdjWcRLOkM1AYbHxjl+tm/BDslMeuvaUkIB4wlNAywy51TuCXCstY+xiFvw\nW+55GWHesKqIJzQ0IzLnVO4JsNB3pk519/oyGrsGebWh2+soIguKyj0Bapt6yAgHqSr0/xzuM3nL\n2lJSgqYrNInMMZV7AtQ29bCmLIdAQPOq5KancPOqYp7c30wkoqEZkbmico+zSCQ6h7uGZM67e0MZ\nTd1DvFLf5XUUkQVD5R5nDZ2D9A2PLfidqVPdUV1COBTQFZpE5pDKPc5qm6MXxNaW+3nZaSncckUx\n2w9oaEZkrsR0EpPErraph2DAuLI02+so88o9G8p4praVXac7uG554WXNN//+65YkIJmIP2nLPc5q\nmnpYUZxJWsrCmsN9JrevKSEjHOTxvb8155yIJIDKPc60M3V6makh7l5fxhP7mxgYGfM6jojvqdzj\nqKN/hObuIe1MvYh3baqkf2Scpw60eB1FxPdU7nF06PyZqZokazpblhWwpCCDn+xp8DqKiO+p3OOo\npil6pIy23KdlZrxrUyUvnWyno3/E6zgivqZyj6Paph7KctMoyAx7HWXeeuemSszglbpOr6OI+JrK\nPY60M3VmFXnp3LiikL11nUQ0U6RIwug49zgZGh3nRFs/b11b6nWUOXU5x6tX5KXz4vF2Tp/rZ3lx\nVgJSiYi23OPkcEsv4xHHWo23z6i6LJfUUIA9ZzQ0I5IoKvc4OdAwMSnW+so8j5PMf+FQgA2VuRxs\n6mZ4dNzrOCK+pHKPk/0N3RRmhinPTfM6SlK4Zkk+o+OOA426iIdIIqjc4+RAYzfrK3Mx0xzusVhS\nkEFRVpg9OmpGJCFU7nEwODLO0dZeNlTo5KVYmRnXLMnnTPsAbb3DXscR8R2VexzUNncTcRpvv1Sb\nluYTNOPlU+1eRxHxHR0KeZmmHgL4mxPnADh+tk9boZcgOy2F6vIc9tR1ckd1KeGQtjVE4kX/muKg\nsXOQ7NQQOWl6r7xU1y8vZGg0wv4GXYJPJJ5U7nHQ2DVIRX66dqZehqrCDBZlp7LzVIfXUUR8ReU+\nS8Nj47T1DlORl+51lKRkZly3vJDGrkHqOwa8jiPiGxpHmKWmriEcUJGvcr9cVy/O4+maFl462c7i\ngoy4/mxdzk8WKm25z1Jj1yCAttxnIS0lyLVL89nf0EXXgKYCFokHlfss1XcMkJueQnZaitdRktqN\nK4sA+M0JHRYpEg8q91mq7xhgSZyHEhai/Iww6ytyefl0B4Mjmm9GZLZU7rPQMzhK1+Bo3MeJF6o3\nripmZCzCrtM6ckZktlTus1DfOXF0h7bc46M8L50VxZm8ePwcI2MRr+OIJDWV+yzUdQwQDJhmgoyj\nN68uoXd4jJdOauxdZDZU7rNQ3zFAeW4aoaB+jfFSVZTJlSXZPH+0TWPvIrOgVrpM4xFHY9eghmQS\n4C1rSxgcHeeFY21eRxFJWir3y9TSPcTouNPO1AQoy01nQ2UuL544R8/QqNdxRJKSyv0y1WlnakLd\nsaYE52Dbviacc17HEUk6MZW7md1pZkfM7LiZPTjN4zeb2V4zGzOzd8U/5vxT3zFAdlqI3HSdvJQI\nhVmp3L6mhNrmHg429XgdRyTpzFjuZhYEHgLuAqqB+82s+oLV6oAPA4/EO+B8VdcxwOL8DM0EmUA3\nrSyiIi+dbfsa6R8e8zqOSFKJZct9C3DcOXfSOTcCPApsnbqCc+60c24/sCAOTm7tGaKjf4SqQg3J\nJFIwYLzzmkqGRiM8treB8YiGZ0RiFUu5VwD1U+43RJctWDuix2AvK8ryOIn/leam8bb1pRxu6eVz\n22o0/i4Sozmd8tfMHgAeAFiyJHmnVX35VAepoQClOnlpTtywoojuwVG+u+MMpblpfOLWlV5HEpn3\nYtlybwQWT7lfGV12yZxzDzvnNjvnNhcXF1/Oj5gXdp7qYGlhBsGAxtvnylvWlnLfxnK+/PQR/urf\nDzA0qhOcRF5PLOW+C1hlZsvMLAy8D9iW2Fjz17m+YY6f7WNZYabXURaUgBn/8O6r+MNbVvDIzjp+\n5//8RtddFXkdM5a7c24M+CTwNHAI+JFzrsbMPm9m9wKY2bVm1gC8G/iamdUkMrSXdkWv9bmsSOU+\n10LBAA/etZpvfHgzLd2D3PtPL/KBr+/k2cNnGR1fEPvyRWIW05i7c247sP2CZZ+dcnsXE8M1vrfz\nVAdpKQHKdVk9z9y2uoTn/+JWHtlZx9d/fYrf+9YuctNTuH1NCW9bX8obVhWRGgp6HVPEU7qG6iXa\neaqDTUvzCQV0cq+XstNS+NgtK/jwTVW8cPQc2w8280xtC4/tbSArNcTbryrnYzcv9zqmiGdU7peg\ne2CUwy09/OntV3gdRaJSQ0Fury7h9uoSRsYivHSynSdebeKxvQ38cFcdGyrzuHt9GZmp+lOXhUWb\nn5dg56l2nIMtywq8jiLTCIcC3HJFMV9+91X8+tO38gc3L+dAYzf/+xfHOHa21+t4InNK5X4Jnj/W\nRkY4yDVL8r2OIjNYlJ3GX961ho+/aQXp4SDffPE0zx/VFMKycKjcY+Sc41dH27hheSHhkH5tyaIs\nN51P3LqS9RW5/KymheeOnPU6ksic0EBkjE63D1DfMcgfvFE76ZJNSjDAezYvJhgwfl7bCsCbrlzk\ncSqRxFK5x2jyI/3Nq5L3zNqFLBgw3rVp4mjdn9e2UpAZZkNlnsepRBJH4wsxev5oG0sLM6jSyUtJ\nK2DGO66pYGlBBo/tbaCpa9DrSCIJo3KPwfDYOL850a6tdh8IBQK8/7olZIRDfHfHGfo0T7z4lMo9\nBntOdzI4Os4tV6jc/SA7LYUPXL+U/uExHt/boGmExZdU7jH41dE2UoLGDSsKvY4icVKRl85b107M\nE78zOl+QiJ+o3GPwn4daubaqQGc5+syNKwq5oiSL7Qeaae0Z8jqOSFyp3GdwrLWXE2393LWu1Oso\nEmdmE5fxSw0F+OGues0sKb6icp/B9gMtmMFb16rc/Sg7LYV3baqkpWeIn9e0eB1HJG40zjCDpw42\ns2lJPotydEk9v7qyNIcblhfy4ol2VpVkex1HJC605f46Tp/r53BLL3dqSMb37lxXSklOKj/Z08C5\nvmGv44jMmsr9dTx1cOJj+l3ryzxOIomWEgzw3muXMDQ6zp//+FUdHilJT+X+Op462MxVlblU5Omq\nSwtBaU4ad60r5dkjbXz7N6e9jiMyKyr3izjT3s/+hm7uXKet9oXk+uWF3LZ6EX//1GEONfd4HUfk\nsqncL+JHu+sJGNx3dbnXUWQOmRlfetcG8tJT+Nh399A1MOJ1JJHLonKfxth4hB/vbuBNVy6iLFdD\nMgtNUVYq//yBTTR3D/JHP3iF8YjG3yX5qNyn8dyRNs72DvPeaxd7HUU8smlpPp/fuo4Xjp3jiz87\n7HUckUum49yn8eiueoqyUrlttS7osJDdv2UJtU09PPz8SYqywjxw8wqvI4nETOV+gdaeIZ49cpY/\neONyUoL6YLPQfe7etXQMjPD32w+TnZbC/VuWeB1JJCYq9wv8cFc94xGnIRkBJq7g9D/fs5G+oTH+\n6t8PMDYe4YM3VHkdS2RG2jSdon94jG++eIrbVi9ima64JFHhUIB/+cAm3rx6EX/z0xr+x/ZDRLST\nVeY5lfsUP3i5js6BUT5x60qvo8g8kx4O8rUPbuaD1y/la8+f5Pe/s5u2Xk1TIPOXhmWihkbH+drz\nJ7lxRSGbluZ7HUem8cjOOs+fZ3VpNm/fUMZTB1u45cvPsnVjBevKczAz3n/dpY/HX85rupznkYVH\n5R714z0NtPUO89X3bvQ6isxjZsYNK4pYUZzFj/c08IOX61hakMFbNCW0zDMalgEGRsb452ePc/WS\nPF1KT2KyKCeNP7xlBVs3ltM5MMK/vnCS+x56kR/uqqNfF92WeUBb7sBXf3GMpu4hvnr/1ZiZ13Ek\nSQQDxnXLCrl6cT67z3RwpKWXTz92gL/5aQ03LC/k1iuLuWZpPleWZpMaCnodVxaYBV/uR1p6+bcX\nTvGezZVcW1XgdRxJQuFQgBtXFPGP91/NnjOdPHWwhV8ePsvn/qN24vFggNVl2WyozGV9RS5ry3NZ\nVZKlwpeEWtDlHok4PvN/D5CVFuLBu9Z4HUeSnJmxuaqAzVUF/M091dR3DLC/oZv9jV3sr+/mp680\n8b0dEztQQwFj5aIs0lKCVOSlU1WYSWluGsGAPjlKfCzocv/XF06y63QnX3znegoyw17HEZ9ZXJDB\n4oIM7t4wMW10JOI43d7PoeZeapu7qW3qYc+ZTvbVdwGQGgqwqiSbNaXZXFmaTUZ4Qf/zlFlasH89\nzx05yxd/dpi715fxns06G1USLxAwlhdnsbw463zhP7Kzjq6BEc50DHDibB9HWno52NhNwGBpYSbV\nZTmsr8wlJy3F4/SSbBZkuZ86188f/eAVrizN4cvv3qCdqOKpvIwweRlhrqrMI+IcjZ2DHGruoba5\nhycPNLP9QDPLizO5qjKPteW5XseVJLHgyv1Yay//5RsvkxIM8PAHN+mjr8wrAbPzwzlvWVvK2d4h\n9jd0s6++i8dfaeSnrzbx8ul2tm6s4LbVi0hL0U5Zmd6Carbdpzv46Ld3Ew4F+O5Ht7C4IMPrSCKv\na1F2GrevSePNqxfR2DXIq/Vd7K3r4umaVjLDQW6+opjbVi/ijauKKc1N8zquzCMLotxHxiJ87Vcn\n+MdfHqciP53vfETFLsnFzKjMz6AyP4PvXLuYHSfbeWJ/M7883MpTB1sAWFqYwaal+awpzeGK0myu\nLMmmJCdVw44LVEzlbmZ3Al8FgsDXnXNfuODxVOA7wCagHXivc+50fKNeuvGI4z8PtfIPTx/h2Nk+\n7t5Qxt9tXacjYyQh5mrum2DAuGllETetLMK5ddQ09bDjZDs7T3XwwrFzPL638fy6uekpVBVlUp6b\nRs/gKLnpKeRmhCe+pqeQnRYi8DrlP5fz2MzV72+hzM0zY7mbWRB4CLgDaAB2mdk251ztlNU+CnQ6\n51aa2fuALwLvTUTgmUQijoNN3Tx3pI0f7qqnsWuQyvx0vvHhzdy2usSLSCIJY2asq8hlXUUuv//G\n5QB09I9wtLWXo629HG7ppa59gCOtvdR3DDA6/tqpigMGWakhstNSyEkLkZ0e/Rq9X9PUTUlOGrnp\nKTFdvGY84ugeHKVzYITO/hE6+kfoHBiho3+UroHJ+xO3uwdHGR6LMDIWYXhsnP6RcZxzBMwIBoyg\nGYHAxO2AGQHj/BvR5PuRGRgTdyLOMR5xRNzE7UjEMT71qwMDvvLMUTLCQdJTgqSFg+Slp1CUlUpx\n9pT/ptzPSQsl5aefWLbctwDHnXMnAczsUWArMLXctwKfi97+CfBPZmbOubhPej04Mk5b7/DEH8yU\nP6CGzkGOne2ltqmHzoFRAK5bVsBn7l7DHdUlhHRVJVkgCjLDXL+8kOuXv3aepO/vOMPQaISuwYli\nnfyvd2iM3qFROgdGOdMxwMDI+Pnv+fZLZ87fDgcDZKQGyQyHyAgHiTjHWMQxNu4Yi0QYHovQPTjK\nxf7Vh0MBCjLC5GWkkJ8RZkVxFmkpAcKhAKmhICfb+giYMX6+pB3jkaml7XAOHIBzTD7NxDJ3/s1g\n8s1h8g0hOGVZxDmWFmYyNDrO4Mg4A6PjdA2McKy1l7a+4d9685vMXZyVStEFpV+YGSY7LURWaois\ntBDZqSmkhwOEAgFCQSMlGCAUsPP3gwHDRd94UoITrzuRYin3CqB+yv0G4LqLreOcGzOzbqAQOBeP\nkFN98zen+NLPjvzW8oxwkFWLsrijuoQbV0x8ZC3OTo3304skLTMjPRwkPZxOWW76RdcbG4/QOzxG\n79AYGxfn0tozTO/QKH3D4wyMjNE3PMbgyDiBgP3/8goY4VCA/IwU8jPDFGSGyc+Y+DpZ5hnh4Otu\nAXs9LOPcxKeOtt5h2vqGJ75ecLuhc4B99Z20949c9E0sFv/9vnV84Pqll/8DYjCnO1TN7AHggejd\nPjP77ZaehUNQRALeUDzmx9cE/nxdc/KafjfRT/Bavvv/9Lvz4DV98Ivwwcv/9pjeFWIp90Zg6imc\nldFl063TYGYhIJeJHauv4Zx7GHg4lmCXw8x2O+c2J+rne8GPrwn8+br0mpKDH1/TdGIZ9NkFrDKz\nZWYWBt4HbLtgnW3Ah6K33wVAXs9jAAAELklEQVT8MhHj7SIiEpsZt9yjY+ifBJ5m4lDIbzjnaszs\n88Bu59w24N+A75rZcaCDiTcAERHxSExj7s657cD2C5Z9dsrtIeDd8Y12WRI25OMhP74m8Ofr0mtK\nDn58Tb/FNHoiIuI/OvhbRMSHfFPuZnanmR0xs+Nm9qDXeWbLzBab2bNmVmtmNWb2Ka8zxYuZBc3s\nFTN7wuss8WBmeWb2EzM7bGaHzOwGrzPNlpn9afTv7qCZ/cDMknJWMjP7hpmdNbODU5YVmNkzZnYs\n+jXfy4yJ4otynzJFwl1ANXC/mVV7m2rWxoA/c85VA9cDn/DBa5r0KeCQ1yHi6KvAz5xzq4GrSPLX\nZmYVwB8Dm51z65g4kCJZD5L4FnDnBcseBH7hnFsF/CJ633d8Ue5MmSLBOTcCTE6RkLScc83Oub3R\n271MFEaFt6lmz8wqgbuBr3udJR7MLBe4mYkjxnDOjTjnurxNFRchID163koG0ORxnsvinHueiSP4\nptoKfDt6+9vAfXMaao74pdynmyIh6YtwkplVAVcDO71NEhf/C/gLIOJ1kDhZBrQB34wONX3dzDK9\nDjUbzrlG4B+AOqAZ6HbO/dzbVHFV4pxrjt5uAXw5o6Bfyt23zCwLeAz4E+dcj9d5ZsPM7gHOOuf2\neJ0ljkLANcA/O+euBvpJ8o/50THorUy8cZUDmWb2AW9TJUb0ZEtfHjLol3KPZYqEpGNmKUwU+/ed\nc497nScObgLuNbPTTAyd3WZm3/M20qw1AA3OuclPVT9houyT2e3AKedcm3NuFHgcuNHjTPHUamZl\nANGvZz3OkxB+KfdYpkhIKjYxfd6/AYecc1/xOk88OOf+0jlX6ZyrYuL/0S+dc0m9ReicawHqzezK\n6KI389rpsJNRHXC9mWVE/w7fTJLvJL7A1OlSPgT81MMsCeOLy+xdbIoEj2PN1k1MTBx3wMz2RZf9\nVfRsYZlf/gj4fnTD4iTwex7nmRXn3E4z+wmwl4mjtl4hSc/qNLMfAG8CisysAfhb4AvAj8zso8AZ\n4D3eJUwcnaEqIuJDfhmWERGRKVTuIiI+pHIXEfEhlbuIiA+p3EVEfEjlLgtWdDbHj0dvl0cP/xPx\nBR0KKQtWdM6eJ6IzH4r4irbcZSH7ArDCzPaZ2Y8n5/w2sw+b2U/N7LnonN9/63FOkUvmizNURS7T\ng8A659zGya34KY9tAdYBA8AuM3vSObd77iOKXB5tuYtM7xnnXLtzbpCJibPe4HUgkUuhcheZ3oU7\no7RzSpKKyl0Wsl4g+yKP3RG91mY6E1fqeXHuYonMnsbcZcFyzrWb2YvRHakXTmn7MhNz6VcC39N4\nuyQblbssaM6591/koQbnnC+vrSkLg4ZlRER8SCcxiYj4kLbcRUR8SOUuIuJDKncRER9SuYuI+JDK\nXUTEh1TuIiI+9P8AyBBshPmmH7UAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "F4yfDO_bb4V8", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 284 + }, + "outputId": "0cd09305-b510-44de-eaf2-b7d0ad537266" + }, + "cell_type": "code", + "source": [ + "pd.plotting.scatter_matrix(tips);" + ], + "execution_count": 72, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAELCAYAAADQsFGkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXeUHdd1p/udqro5ds65kSNBgACz\nSIpKlERZkZJsOY1pyR7bz37jJXuNx2/Z4+egNW85vecZyZ6xZMu2REmWNLYoUZQo5oQMIqfOufvm\nXOG8P26jCZAA+ja6Gt3orm8tsm/frjp1cOvW2efss/dvCyklDg4ODg5rD2W5O+Dg4ODgsDw4BsDB\nwcFhjeIYAAcHB4c1imMAHBwcHNYojgFwcHBwWKM4BsDBwcFhjeIYAAcHB4c1imMAHBwcHNYojgFw\ncHBwWKNoy92B61FbWys7OzuXuxsON0h/fz/O/bs1kEBBN9EUgUtVbrl7Z0lJUbdwaQqaIpa7O8vO\nwYMHp6WUdfMdt6INQGdnJwcOHFjubjjcILt373bu3y3CM6cnODqURBGCz9zZwcP333VL3bsnDgwx\nEs/jdan80r1daOradm4IIQYqOW5tf0oODg4A6GZZE0wiMaxbTx/MmO2/aVncer1fPlb0CsDBweHm\ncP/6OsJeF7VBN3Uhz3J3Z8E8sq2J46NJOmsDuNb47H8hrGkD0Pk736v42P4/fWQJe+KwEkkVdA70\nx2gM+9jcHF50e5Ylee7sFKmCzjvW1xPxu2zo5dVJFXR+cHwcTRG8d2sTPrd63eO9LpU7e2qWrD9L\nTcTv4u7eWlvbvDid4YvPXSTqc/GbD6/H67r+Z7icnJ/MMDCTZWdblJpg5QbcMZUODtfgJ6cnOTqU\n5KkT48SypUW31z+T5chQgotTWV7vj9nQw2tzYiTFSDzPwEyO0+OpJb3WauXbh0bony7fs5fOTy93\nd65JQTf53rExjg0neerExILOdQyAg8M1CLjLC2S3puDRFv+o1AQ8uGfbaQx7F93e9Wir9qEpArem\n0FLlW9JrrVY2NYURlFdH6+qDy92da6IqAq+r/L0KeBa2SlnTLiAHh+vxwMZ6Omr81AQ9BDyLf1Qi\nfhc/d1cnRcOiOuC2oYfXprXKzy/d140Q4NFWrutiJfO+bU3saIvid6lULfH9WgwuVeGxO9qZSBXo\nrAks6FzHADisOqSUHBlKIIGdrVGUG4wLVxXBuoaQrX0LeDQCN2mPdSX7rO0mmdM5MZqkozZAS9S+\nFY+dbS0lEZ+LiG/he0qOAXC4ZZBSIsT8g/mJ0RTPnpkCQBWCHW3Rpe6awzLzvTfGmEjlOTQY55fv\n73EigSrEMQAOK56CbvLNg8PEsyXeu62J3nn8sZoqrvraYfUyFMtxaDBOQ9gLTp3zinEMgMOKZzJV\nZCpdBOD0eGpeA7CxMYymCCwJ6xfhwpFSMhTLEw24CHuXLmTTYfFEfC46awOEvRqmBLvu1nA8h9+t\nLfmezXLhGACHFU9jxEtrlY94rsS2lkhF5/TWL953/9zZKQ4PJvC6VH72rg78budxWans66lBAr31\nQdv2Pg4Pxnn2zBSqIvjU3nZqFxBff6vgfKMdVjxuTeFju9tu+nUTOR0ou6DyJdMxACuYnW1Rdtq8\n13Pp/puWJJXXHQPg4LCWuKOrmsFYjt764IKyKx1WB3u7q9FNi6BXo6t2YeGV1+PkaIq8brCjNbrs\nonU35epCiN8UQrw4+/rPhRAvCCH+8mZc22H1IqXk4ECcl85PUzIs29o1zHJbhwbjmJbk3ESG5Oxs\n0GHxnJ/M8JMzkyRyi8+uXkr8bo2HNjVwZ3dNRdFnldA/neWpE+M8f3Z6ybPBK2HJVwBCCA+wc/b1\nLiAopbxXCPHfhRB7pJT7l7oPDquTC1NZnj87Nfe7HVowPzkzyZHBBJuaQnO68kKAcKIKbSFXMvje\nsTEsKZlKF/n4Mrj2KqV/Osu/HR0l4NH4xJ42W5IB1ctyUlSbjMpiuBkuoF8EvgL8IbAPeHr2/R8B\ndwKOAXC4IfxuFSHKUX/ziZ1VyumxdPnneJrP3t9NY8RHfchzU6OASobFdw6PEM+VeM/WRjoWmN25\nklFn5SkKuonfpnu2VLzaN8NrfTO4NZU7uqrZWmEAwvVoq/bz6M5mciWTzU2LFxhcLNc1AEKIf4Nr\ny2tLKT84z/ku4B1Syr8RQvwhEAUuzv45CWy5yjmPA48DtLe3X7fzDmubqN+FS1VIFXSabNLW2dNZ\nxaHBOFuaI3hdmu0bi5UwlswzksgDcHwktaoMgEdT+eQdbYynCnTX2quvU2miYKUk8zojiTweTaVk\nmLa12123cnSF5lsB/LdFtv8zwD9f9nsSuGT2wkDirSdIKb8EfAlg9+7dTkaHwzU5N5Hh8GAc3bR4\nrW+GD93Wet3jx5J5vnN4FI+m8NHdrVed1e/urGZ3Z/VSdbkiGsJe6kIeErkSm5rslaJYCUT9bqJ+\ne+PqX++L8cqFGXrqA7x/e7MtbUqrvLqUUmKt0uSy6xoAKeVzi2x/A7BTCPFZyrP9WmA78ATwTuDL\ni2zfYQ1jWBa6KTHMyqpYnZvIUNBNCrrJ4EzOliX9UuB1qfz0vg7bZ7SrmeMjSSwp5+6xHbkAYZ+L\n5qgXt6riXqWCevO5gN7g+i6g7dc7X0r5+cvaelFK+QdCiL8UQrwAHJFSvr7QDi8XlRaPcQrH3DzW\nN4S4d10tBd1kb9f8xUw2NoY4O5HG41JtDetbKpzBv3Jua4/y8oUZ1tmYCHZXTw0zmSJ+j0bPCnLb\n2Ml8LqD323UhKeU9sz9/w642HdY2Ia+LX7ynC0teGV1xLerDXv7Dvd3X/Hs8W+LZs5NEfC7esb7+\nhlVEHW4+VX439SGPreUsO2sD/MoDvShi9Rrj+VxAFVWWd3BYLoQQXEvvzZp1C1lSVpRw83p/jP7p\nHADdtUEMy+LHpyapD3toq/IT8mpsaFz+yI3VgGnJiox2pTx7ZpJ4Tmc4nmdTU9iWVcBoIs/fPHue\n2oCbz76jd1XKa8/nAnpRSnmPECJN2RUkLv8ppXSeBocVyasXZ3juzBRjqTzdtUE+sKN5XrdPc8TH\nydEUHpdCVcDN0ycnyJVMnnxjjJlMCa9L5bceXn/Dm8QF3eTQQJyqgJtNKyAEcDmwLMm3D48wFM9x\n77o6bu+osqXdpqiPeE6nLuTBbVN27Z99/zTPnJlEEYLuugAf3Hn9IIPlZHAmx0Asy7aWyII22Odb\nAVxy26y+UASHVc3J0RTpgs5YokBL1MeFycy8BmBba4TWKh9el4rPrbKpKcRIPI+qKGiKwLTknCrp\njfDiuWneGEkCZZdFY2Rpy0KuRNJFg8FYeZV1aixlmwF41+YGdrVXEfW7bHPdZYpG+YWUxFdwJnhB\nN/nukREMSzISz/PYHZWHz1ecCDabxXsP5RXAi1LKwwvvqsNaJZnX6Z/O0lUXsD2pajSRp386y+bm\n8Nzs5/aOKvIlA49LoT7kZXtrZRE/l5f+29IcoS7owbQkTxwYJuBReWBj/Q3381I9YEUIXGu0TkHY\nq+FSBQf6Y9fdj1koQghb/f8Av/3uDfzxk6eoCrj4+O6VO/tXhEBTFQzLnPuOVUpFBkAI8fvAx4B/\nnX3ry0KIb0gp/2hhXXVYq3zr4DDJvE7VoIufu7vLtnZ10+Lbh0coGRZ901k+va8DgB1t0UVXAnv5\n/DSv9cUIejR++f7ueX3AJ0dTHB1OsKkpfNUEsrt7a6kNeoj6XWtWXG4mU+Rbh4Yp6hZ/98JF7llX\nt9xduiYNYS8f2NFMyKvhUleu/9+tKXxiTxujify8tTLeSqUrgE8DO6SUBQAhxJ8CRwDHADhUhGGV\nBdZ0096EmtnNKN4YSaIpgj1d1QsuAjOdKfLMqUkifhfv3NQwtzk5nipQ0E1MyyJdMOY1AM+fmyJf\nMplMFdnRGnlb5IiqCDY3r03f/yVyJYNkzkA3TSYX4U57K3LWTRP2arYpbD53ZoqnTozj1hS6agMr\nOgCgOuC+oaI1lX5So8DlDksPMLLgqzmsWT50Wwt7u6p59DZ7sjQvoakKD2yspy7kobc+yKmx1ILb\nONAfYySR5+RoiqFZ/zSUtYb6prMkcjoh7/xzpbYqPwCtVb5VGza4WCJ+DzvbI7RU+blvg32z/x+d\nmuQrL/fz9QNDc9FfiyVZ0EkXDJI5nVzRPimIlcR8UUB/TdnnnwROCCGenv39YWDFJnFVmrTlcPOo\nD3mpD11/09O0JF95uZ8LUxk+ensrt7VXtkEopaQm4CbgViuuGAZl2WdNVWit8nN6PI3PpVJ7mR85\nWzTZ0BgiU9AZjGVZ3/DmDHA4nuOpExNU+V18YEczLlXhfdsaubu3xikfeR3CXo2P3t7GwEyOe9ct\nXr31En1TGSZSBfIlk5Jp4VUW77LprPGTzJcIe120VPls6CVkiwb/8voguaLJh29voXV20mAHl77P\nC2G+ac2B2Z8HgW9f9v6zC7qKg0MFjCRyPH1yAktKvnVwuCIDMJLI8/TJSVyqwuaWSEVCW7pp8Y0D\nw0ymCzy0sYFtrRE6avy4NQXPZSn/d/XWsL9vhtMTaQZiOX72ri7uX1+etR4bTpLK66TyOiPxPJ21\nAYQQtmvcrDaEELxvW5Pt7RqWZDpTRFPFnIz3YnnqxDjJvEE6b7C/P8YjNmgMnRpN8ZMzk5impCbk\n5tN7OxbdppTl0NqBmRx39tSwr3v+rPhLzBcG+pVKGhFCfEtK+ZGKr+rgcBXCXhdRv4vpTPGq5fdK\nhoUimJvlFA2TH5+a4MRokp66YMXx3/FciYlUAYAzE2m2tUYIXWXW3hTx0VYdoG8mR65ocnEqM2cA\n1jcEOT+ZIezVaIx4OTwY57W+GOsbgjy4seFGP4I1wbNnJsuf5YZ62yQW0gWdRE7H71avrV2zQPxu\nFVWAqii2SVe7NAWPqqJj4bVJXyhXMhmYKbsuz4yn7TMAC8C+eC6HNUvU7+andrXwgzfG52LuL4X2\nDcVyfOfwyFzEQ9Tv5sJUhiODCSSSupCn4i9+bcDD+oYQY8k8t7VfP1LofdubyJYMhIB7Lis401sf\n4lcfCM7JBBwaTJAvmRwdSnJ3b+0VK4mzE2nOjKfZ2Ralrdq+Jf+tSDxX4h9fHSBTMBhNFvi9Rzbb\n0u65yQyjiTxFw0Q3LFw2bAT/2oPrqAl4qAm6uX/9jYf/Xs7GxhCbW8Kk8jr7eiofqK9HwKOxvTXC\nxansgvMq7DIAq1Mr1eGmIy1JxO9CiPJgcckAXJzOYlgSo2QyksgT9bvJl0wm0gVMSxLyavNKC0gp\nefnCNEGPxiPbK3NDtER9/Pa7N1x1U/fy621qCvF6X4yeuuAVg79pSX5wvGzQJlIFW2Pfb0UEkCua\nxLMlSrp9G6vpgoEQgrxuzkWcLZaI380Hb2vB71JtSy4biudQhaDK7+b8ZIaWqD17Cw9urOeeddYV\n371KcIrCOywLpiXJFAwi/jddLwXd5NxkeTMv2hi6wj2wrSXCUCyH16XOvd9a5ef29ir6prN8//g4\n6YLBL97TxfnJDJqqvC3z99uHR/j6/iEE8J/evWFeSYejQwl+cmaSmqCHT+xuu26SzV09tezrqnnb\nQKEqgqjfxUymRE3Q2R9QFcF4Kk88W2IybV9N4Ic3NfCjU+OsbwgT9NizCf/c2Sn+8ZV+vJrKf3n/\nJhoiix+sw14XihBYUlLlt6efliX51qFhhuN59nZXc1dP5ZvrdhkAJ+bNoWIsS/LEgSHGkwV2tEXm\nfOb5koluStbVh2iJ+q+YYVcH3Pz0vis3zBrCXj5zVyef/+Yx8iWTH52coLsuwNGhstzCozubr9gU\njmVLmJZEUI79n49zkxmkhPFEntf7Ztg6j87KtWaJH9/dxlS6uCalH97KeKI8+JuW5Pxk2rZ2w34X\n3XVBakJuLClRbBiSDvTNMJEqoCqCU+MpWwxAfdjLT+9rp2BYts3+87rJcLxcQe7cRGZBBsCuUtef\nn/8QB4cyJdNiPFnehB2ceTPuvirg5v4NdfTWB+c2W+ejNuiZ8+M3RLx4LsvYLBrW7E+TkmFxZ3c1\nXpdC2O9iV3uUcxNp/uTJU/zDK/1kZ3Vf+qezvHJhhmzRYGtzmESuxFiywOt9Mb62fwjDXLh7wetS\naav22+KXvtWpCXmoDrhRhGBdg30a+8dHklyYynJyNIVpUx6Ax6UwGMsxGs/bmrldE/TYNvhDeQ9g\nZ3uUsM/FHV0LEyq80YIwl9RAt1N+8cMFXdVhTeN1qdzVU8OFqezbvrBNES+maVWUeHWJX32gl0d3\ntlAbdOPWVBSlrA+UKej8+7FRzo6Xi8C0V/u5vaN8veF4ga/tH2RgJsfATI7b2qrorPXz3SOjWFIy\nmS6gKQpRv5vheJ76kAeXamFK+baHJpEr8fKFGepCHvYscznJlY6CACFQFYFNrnoAqv1ufC6V6oDb\ntg3JAwNxCnp58nBkMMG2lptfH7pSHthQzwMbFn7eTSsI4+BwOXu7a9j7lqidTNHgv3znOP0zOXa2\nRfnCR7bPuVVyJYMD/XGqA262tkSwLMkzpydJFXQe2FA/F10zkymSKhicn8zwdy/04Z2Vdt7WEiXq\nKyf0eDSF7roAEZ8LVRFoqqC92o8iBIoAS4KmKFyasK9vCLGjLcLmpshVN9leODfN+ckMZ8bTtFX5\nHVfPdUgWdKbTRUpGOazWLjJFg4lUAY9LsS0PYCZTomRIBJJ03r79ipWEUxDGYcWQyJY4P5lBNy3O\njKfJlIy5rNoXzk1zcrQs81Ab9JArGXPSyvv7Y7xrSyMH+mO8cG6a4XgOlypIF3RcmhvdlOXZf2cV\nE6kiHq08s//03g4GYzl2tEbmNqM/vqeN8WSBjbPF2BsjPupDHpqvsmQ/NZbi/GQGOVsw3ONSCF5l\n5TKTKdI/k2NdQ3DNZwlLaWGYFoYlKdmoCzUSz6Opgni2RK5kEvYt3t3m1cqTAAEoK1gMbjFUqga6\nD/hrYBPgBlQg6xSEeTsLkaFw6gdfSW3IQ2dNgAtTGWqDbv7xlX72dddwe0f1XCKOqgg8moLP7UFT\nBcdHkhiWxZbmMN85MspYMk9b1IthQW99kPqwl4/samVvdw1HhxI8c3oSIeAju1rprA3Q+ZZIoYaw\nl4bwmzP4DQ2hq0b/FA2Tp06MIyVU+V18bHcrYZ+LoOfKR8qyJN84OEy+ZHJqLPW2jey1hkBQsiwM\nqxz1ZReGJRlLFqgPefDZVLnrtvYqzk1m0VTBjtbVOdRV6mj9f4HHgG8Au4HPAOuXqlMOa5NcyWRT\nc5j2aj+jyTwlQ3J4MMHtHdXc3VNLQ9hL1OeiKuDm9HiKqXSxXFpQCJ46OYHPpaAKwUiiQDJfQkp4\naGP9nKspli2hm+UkobxukisZjCbytFb5r6r0eWgwznNnpqgJunlsT/sVhsClKER8LhI5nZqg57qa\nLrMLhLmVwlpmNJ7DmB334zn73CqaKmirKst55HUT1wJ18a/GfevryRRMvG6F1qrrFxO6Val4p01K\neV4IoUopTeDvhRCHgd+93jlCiL3AnwMWsF9K+ZtCiN8GHgUGgJ+TUq7cUjsONxW/W6Um4MatKkT8\n5XjpLc1lcTdFEVfIPB8dSuB3qYwm8kgJn7u/m4JuEva6iOWKHHsjCUhKs5FAQ7EcR4YSTKUL7O2q\noTni5Yn9Q8RzOs1RL5/Y8/YqShenskDZF5zIl64Qs1MUwSfvaGcqXbyqe+jy4z6yq4W+6SwbGp3C\nesZlRtCuaB2A929v4muvD7Kvu4awzx43W2PEg0Ti0pQbklq+FajUAOSEEG7giBDiC8AYlYWQDgAP\nSikLQoh/EkLcDzwwW2f488CHKK8qHBzwulQ+saeNoViOjuoA/3p4mKPDifKG4XSWnrog962vI5Yt\n4VYVhhN5Enkd05IcHU7yzo31nBpPcXIsSb5kziYdlcNNRxN5DNNiJF7gH8b7OTmaxOcua8enC8ZV\n+9MS8fHM6Qk6qv3UXmUAuBTeOR/1YS/1YWdjGMqlMC9hZ1G0Z05PMhTLUzKnefy+HltWAK9cmOG1\nvhn8bpUPbm9iiw1RQEXD5HvHxsiVTN6ztfGqmlc3k0oNwM9QHvD/I/CbQBvw4flOklKOX/arDmzh\nTSXRH1EuNOMYAAeg7CL5ny/2MTCTY119cC6O/wfHx6kPezk4EKe7LsA/vjLA0eEEhmlRKJkUdZO/\ne6GPJw4OUeVz49YU3KqC36NyKUdxa0uE585OMZzIYZiS585N84HtTaxrCF1TD2gkmWddfXnWPp0t\nzStn7TA/E8n83GvdxjDQgwNxZrIlUgWdZL5ErQ336oWzU0ykiigCjg4nbTEAfdPZOeG2N4aTiyox\nageVmskPSSkLUsqUlPIPpJS/xQJCRIUQ24E6IAFcqtiRBFZuYK3DkjIUy/HiuWkSl/mBY9kSr16c\nYTSR59RYitqgG69LZW9X2YffWuVDNywyRQMpyxvCJdMkWzTIFHXSeYPJdIHuGj9NUR+NYS+7O8tf\nsYBH433bmuitC+JSFYQA3ZL43eo1XTiXyuvVBt1EfavTBXCzyV+28WvnjkhvXRCfS6Ep6iXgsUfg\nwOdW58T+gh57NpabIj4CHhVVEW8LQFgOKv2kfhb4y7e893NXee9tCCGqKW8ifxy4HbhUXTlM2SC8\n9fjHgccB2tsrr27vcGvQN53lhyfGeWMkSVdtgMFYjk/tLd9nr0ultz7IZKrI7Z3VvGdrE985PEIs\nV+Ke3hqEgOaoj0e2N/F6X4zpVIHT42ksaeFzKQQ8Gu/a0sA7NzXg9WggIZbVOTgQI1Mw6KkLUB0o\nrxCaoz60eWR+d7ZF2dgYwq0qtomBrXVqLpuZ2xlYGfSo5A0LRYh5S3dWyge2N3FsJEnE62JPlz3K\nnRGfi1+4uwtTygULty0F82UCfxL4FNAlhPjfl/0pDMTma1wIoQFfBf6TlHJcCLEf+BXgC8A7gVff\neo6U8kvAlwB2797thE2sMg4PxskUDeLZEg1hL25N4fBgnMFYjju6qtnTUc3ZyTT39tZybjLNuck0\nU+kiR4bi1AU9vDGS5F1bmrirp5YvPX+eXNHAlFAf9NBZ46dvKktfXZaLU1lKpkVnjZ8vPX8RgMaw\nl6F4jli2RE3Azcd2t7Fxno1ZuwYThzIB95tDjo0eIF7vj2OaFgMzOcaSeZqji5fdfvL4ONOZEvGs\nzsGBOO/fbo98g6YqK0aFc75+vEx5w7cW+H8uez8NHKug/Y8Be4AvzMrp/i7wvBDiRWAQ+IuFdtjh\n1iKZ0zkxlqSjJkBL1Mf6hhCDsRz3b6hjd0c1bVV+vvpaOd9wMlUkUzTQFIWDg3F2t1cxliygmxbT\n2RLnJjIUTpv84yuDbGkO017tQyKQUpIuGgzF80R8Lv73kRFOj5eFxlqib844XapCpmhgWhLDkmiK\ncGr33mRePDMx99rO2Z1hSfK6hUdC2CYXUCyng5SYUhKrQDzwVqSSTOAB4E4hRAPlwRzglJTy6qET\nV57/L8C/vOXtV4A/u4G+OtyCPHl8jPFkgUMDcR6/r4etLRE2NoZQZwdf3bQI+1yk8jpt1T6+fXiE\ni5MZ/sO9XXhcgqjPhSUlE8kUuZKBlBJVKYt0NUd8BNwqmaKBKkBRoKibTKXzpPI6bpeKJS22NEcI\neVW2NIV5YySJaUmivksZxlNsbAzP1R1wWFpqQ/aJoF1OKl9EUq4aF8/pBG3Ys/npvW0MzmQJeTXe\nvbVx8Z1cgVSaCfwx4L9RjuARwF8LIX5bSvnNJeybwyrgkqSzqihccqNrqsK5iTQnRpM0R308urMZ\n3bQYi+d45tQEugVf+MEZvnVohJlsCY9LIV00MEyL2qCHkNdFc9TLPetq+ObhIVyGQNMEIY8Lj6ZQ\nE3KTLpiEfS6kpRDyaoS8Ghems0T9LsI+jU3NYZ4+NUFRtzg3keEX7ulaxk9p7VC05p033hCXInkt\noKDblVqk8ODGBjRVkC4YNKzCZOBK10q/B+yRUk4CCCHqKIdxOgbA4bq8f3sTZycytFX5rqjl++3D\nI7zeF2MmU2J3ZxX/8cFeJlIFZiM/ied1JlJFSqaFWxO4NQWvS+V925r4jYfWIYTgb5+/QKZgoJuS\nolGWFqgOuNnWEmZnWxX3ratjf3+MdMFAVQQPbmzk7EQGr0vh/vX1fOvQMEXdwuNyZJpvFonc0rhS\nXIpAn631IGwqT9Ja7SM4quHRVOqCqzMEuFIDoFwa/GeZwb5aAg6rGL9bY2fbldG+mlJWbMzrJooC\n2aLBSCJfllqefZBdqiBXMgh7Nf7zezdzYjTJYCzHL97ThTprSFIFHcOUIEE3TFyqQmPYw2N3dMxl\nbnbU+MtJZLVBPC6FD2xvwqOVZRw+trucdPbWymEOS4dHXZrtz/dvb+LHpyfpqg3QVW/PVH1jY5jm\nqA+3qqzaYIBK78b3hRBP8aY//xPAk0vTpbXDWhWOUxXBL9/fQ5XfxYH+GB21AXrrgjw9ncGalQeQ\nwM72KD11QQJelWfOTKEbFn/xo3N87h09RPwuHtpcz5dfHqBomkR9Lm5ri+L3aKQLOjOZIlG/m7qQ\nh13tZWPw8vlpjg6XFURrQh42NoaJtESW62NYkyzVOPqFj+1gMJajMeydtzb0Qljt6q2VGgAJfBG4\nZ/b3LwH7lqRHDqsK05L0T2e5OJ2hoyYwp+ejKoKCIcnpFv2zNX0bQm4upQlZpmR3RzWtVT5MC0YS\nOZI5nViuxEsXpmmO+vjknjZ2tkeZSBboqQ/QXR9gfUOY/pkchwbiaIrgM3d2zkk9X9KIEWL1P9gr\nlUx+aaS/XKpyRQ1ph8qo1AA8LKX8PPCvl94QQvwBTilIh3n47pERnnxjDFURbGoqL6mDHo1vHxrm\nqRPj6KZJld/N82encF82JhsSTo+nGU3k2dEWJZU3yJVMtLxO0KORL5lMpov81M4WXu+Psbe7hg/t\nbEFVBD84PlZuw5IUDRMoN1yu6evCrSmOrMMy0T+TXe4uOFzGfIlgn6OcuNUthLg87j8EvLSUHXNY\nHYzE83g0hXhOx6OpaIogU9D52v5BxpNFpJQEPBo1ATfpy2aHLgUGY1niWZ2ZdAFBOSkr4FbZ3Bwm\n6NG4b30dHTUBPrq7be68iVR65gZaAAAgAElEQVSBRE7H51a4p7fubSJs15Ntdlh6In4n3HYlMd8K\n4J+B7wN/AvzOZe+npZTzZgI7ODywsZ7aoJvqgJs9XTUUdBNpmQzE8mQLOgG3hioEfTM53IrAq0HJ\ngN76EEGPRlG3qA17iPhcFAyLR7Y18buPbL7m9V48N83YbMH5Jqc044qjp95x06wk5ksES1IWbfvk\nzemOw2pja0uErbMbrX/7wkVOjaZoDHuwLIkE0kWDgwNx2qq9BIMeLClASDQVPnNXJwf6YiDg3Vsb\nmcmWSJdMzk2kWddwdQmHhrCXwViOkFezTRRsLXN8JEnRMNnZVmXL5qq2RJnX3z0ywr8dHWV7a5Rf\nf2jdklxjNeI8IQ43Bd2w+MnpSSZSBV7TzbnC3ZYs/29wJo9HVTGlRBEQzxo8tLGBe3prUYTg6FCC\nr746QNTn4uULM9c0APesq2V9Y7n27ltD95I5nadOjONxKbxna+OKEONayVyYyvD0ybJ0g2HKucpq\ni2F6iSQVnjw2Rrpg8NL5aT5zZwdRv6PeWgmOAbhFqDRkdKWGi2qqKM/OZ3J4XQp+lzob629SNEwC\nHhc1IQ+BRAHLktzeUQUwN0jvaq/i/GSGsWRhXhnda23wHh1OMJIo69Gfm8jMrUwcro6mCNIFvayb\nZFP1lvYlyrm4vaOKH5+epLc+SNjrDGuV4nxSDjcFIQS9dQGG4zl0wyrX85WS92xtYmNjiHTBoH8m\nS1etH6+mcXfvlbNNRRF8fHcb2ZJB6AZDONur/RwZSqCp4rplHB3KqIrAsCSGWZZZtoPtrVVzr4Nu\n+9xBj9/fw6f2tRP0OOG9C8ExAA5LSjKnz+UAmBLu6qnlyFCcC1PZsgSDlPzivd3kSgZ/85MLnJ1I\nUzR0rlYuVlHEDQ/+AJ21AR6/rxshWJD759K/obs2OJdTsBbIl94s3pIrmtc5snJSBRNFlF1/qmKv\nmIAz+C8cxwA4LCnfPDRMKq9T5U/w7i2NnJ1Ic3o8RcSnkdct7l5XC5QlI96xoY4LUxlCXo2lUmm+\nkZT+bx0aJpnXOTKU4OfvXjuicS5VkC+ZGJZEtWm7RCJRRVnCW7PZADgsHMcAOCwpRcMkldfxu1U2\nNIbY0BhCVcqbih01ft6/vXnu2O2tUfZ11xDLluisWTn6PObscsS82rJkFWNK5lxldgmsdVYHaYh4\nSOYMtrc5FWGXm1vGACxEN2cts9L0hTRFkMzrtF2WgPW+bc08tKkBt6pcUZDFrSl8em87Od1cUVIN\nH7qthXOT6bkC8WuFnrogD29umAsDtQOfR+UD25oYiOV515bVqbF/K3HLGACHWxPdlLRV+ymaVxYA\nvJYPXlMVwurKcg3UhTxrtmCM3ZFSRcPC49ZY1xC6okC8w/LgGACHJeU9Wxs5NZZiS7MTcukAQY/G\nQxsbGIhl2dNZvdzdWfM4BsChIm40D6E+5CFfCqzZGfStzuBMjqJh0lsftK1+8rbWCNtanQnBSsAx\nAGuYm7Gv8s2DwyRyOjVBN5+5s3PJr+dgH0OxHN86NAzAOzbUcVu7PfsADiuHJXW2CiGahRCHhBAF\nIYQ2+96fCyFeEEL85VJe22FlUJyt8VjUrXmOdFhplKW0yxSc+7cqWeoVQAx4CPg2gBBiFxCUUt4r\nhPjvQog9Usr9S9wHh2XkQztbODuRZkPj2oqgWQ301AV5YGM9Bd2ck+ZwWF0IKZc+tlkI8SzwTuBx\nYFpK+YQQ4iNAi5Tyr651Xm1trezs7Fzy/jksHikhkSthSknYWy660t/fj3P/bk1utXuXK5lkiwYe\nl7KiQoiXi4MHD0op5bwenpu9BxAFLs6+TgJbrndwZ2cnBw4cWPJOOSyevuks3zk8AsCmphDv2drE\n7t27nft3i3Kr3bv/9WIfydmCQp97R8+qLeJeKUKIQ5Ucd7MDrpNAePZ1GEi89QAhxONCiANCiANT\nU1M3tXMON05TxEtN0I1LFWxoDM9/goODjWxpDiME9NYH8WgrK49kJXOzVwCvAL8MPEHZJfTltx4g\npfwS5aLz7N69e23l3t/CeF0qn7mzEynlosIFV1oms8Otwd7uGu7oqrYtVHWtsNRRQC4hxI+AHcBT\nlKtzF4QQLwCmlPL1pby+w83HeQAdlgvnu7dwlnQFIKXUKc/0L+e1pbymg4ODg0NlOM4yBwcHhzWK\nYwAcFoxlSYZiOXIlY7m74uCwpIwl8yRypeXuxpLhSEE4LJinT01wcjRFyKvxs3d14lph6p0ODnZw\nZCjBT05PoimCT+5tpza4+vSsnCfXYcHEsuUZUaZozEk9ODisNmLZIgCGJedyDFYbzgrAYcE8tLGe\n/f1xOmr8BD3OV8hhdbK3q4aSIQl5NbprV06FOjtxnl6HBVMf9vLI9qbl7oaDw5IS8Gi8Z+vqrlrm\nuIAcHBwc1iiOAXBwcHBYozgGwMHBwWGN4uwBONyy3GiZSgcHhzLOCsDBwcFhjeIYAAcHB4c1imMA\n1gCWJTkznmY8WVjurjg43DJIKTk3kWY0kV/uriwZzh7AGuCVizO83hdDEYJP71udKe0ODnazvz/O\nS+enEQI+eUc7DWHvcnfJdpwVwBqgoJsAWFJScqQbHBwqIj/73Ej55jO02nBWAGuAu3tr8WgqUb+L\n5qhvubvj4HBLsK+7Gk0RBD0aHTWOFITDLYrXpXLPutrl7oaDwy2FR1O5u3d1PzeOC8jBwcFhjeIY\nAAcHB4c1imMAblEuTGV46sQ4E6mbH9p5eDDOl1/q40B/7KZf28HhZjGVLvLVVwf47pGRFR88cW4i\nzQ9PjDOVLi7oPMcALBG5koFlyYqOzZdMzAqPBdBNi+8dG+PkaIofHB+/0S7eMC9fmCGe03np/MxN\nv7aDw7VYyDNXCUeGEowl8pyfyDAYy9rWrt0UdJMn3xjnxGiKH55c2HjgGIAl4KXz03zxuYs8cWBo\n3i/kG8NJvvj8Bf7hlf6KQ81UIQjMFmIJeW/+Pn5PXbD8s351RkY43Ho8d3aKLz53kW8dGkZKe4yA\nIuDQYIKTYyn8btWWNpcCTRFz/Qt7XQs7dyk6tNa5OJUBYCxZIKeb162adXE6g5SQyOnMZEu0VBCm\nqSiCx/a0MZYs0F7tt63flfKerY3cv74Or8uZPzisDC49c8PxPEXDwuta/IBtSdjVEUURglxp5eYB\naKrCY3e0MZkuLng8cAzAErCvu4aXL8zQVRuYt2Ti7s5qUnmd2qCHpgVkGgY8Gr31wcV29YbxreAZ\nkcPa486eGl67GKO3PmjL4A+wsy3KZLpwS+QBhLwuQguc/YNjAJaEdQ0h1jWEKjq2JerjZ+7snPe4\nZF4nWzScRC4Hh6uwsTHMxsawrW3WhTw8tLEBn0vFpa7O1a5jAG4CRcNESq47M5nJFNnfH6e1ysfW\nlsgVf0vmdL762gAlw+LedbXs7qxe6i47OCwZpiXJz+MaXSjjyQJHhuJ01wVZX+Hkaz6ODiV45vQk\nmiL41N52alahhlbFd0AIsQu4B5DAS1LKQ0vWq1XETKbI1w8MYZqSR3e20F5zdR/dM6cnGY7nOTWW\noq3aT8T35nIuVdDnwtCmM6Wb0m8Hh6XAtCRf3z/ERKrA3q5q7rIp0/bpk+NMZ0qcGc/QUePHoy3e\nDTSTLYdUGpYkkddXpQGoaF0jhPh94CtADVAL/L0Q4veWsmO3MqYleW1WgXMolqeoWxiWZDCWu+Y5\nlwZ8n1vFoylMZ4pzUUGtVT72dlezsTHEXb01N+Xf4OCwFGRLBqfHUvTPZDkxlrSt3fDs8xP0amiK\nPe6aO7pqaKvysa0lQnftyt4DuFEqXQF8GtghpSwACCH+FDgC/NFSdexW5o2RJC9fKMfI37Ouls5a\nP7oh2fYW187lPLSpgXUNIWqCbg4PJnj14gxBj8bP3NmB16VyV8/q1iRxWBtoiiBTNEjldUqGfTH7\n79vWxFAsR0PYi6oIW9ocmMkyFM8zkS6yu7OKqN9tS7sriUoNwCjgBS6lnXqAkSXp0SrAd5mvP+pz\nsaezdd5zVEXQNTvLGE+VC1Bkigapgm5bVIODw3KjKoJ1DSEKumlrCLNLVeiuszcq7lIBpZJhMZ0p\nrWkDkAROCCGeprwH8DDwuhDirwCklL++RP27JdnQGMKjKQjBDYWP3d1Ti2VN0xjxUh+6dmiolJJ0\n0SDo1lBsmvUsBZUWb3dY/Xg0lcf2tDGeKswlFK5UdndUM50pEvG65iZnq41KDcC3Z/+7xLM3ekEh\nRCfwGnAKKEkp33WjbV1CSsnz56ZJ5Erct66OqsDyW+rOq3xhBmdyvHB+itYqP/evr7vqeQMzWQ70\nx9jRGqV3nmiGv3uhj+fPTbGxMcR/fmSzLf12cFhqLk5nGJjJEfa5Kkp8XC5e7Zvmb1/oI+jR2NEe\npSmy+L5aluTVizNkSyb39NYuez5NRQZASvkVm6/7tJTyp+1qbDie59BAHAC3qvDebU12NX1dpJQc\nGkyQKxnc0VVNIqdzYjTJuvoQbW9Z3p6fTPNPrw3iVhUmU0U8mkJeN7m9o+qK9O3/8ewFLk5n+f7x\ncf7kw9s4PpKitcpHa5Wf1/tjVPldbG+NAvBa3wyZgsHzZ6f42O4U6xsqi4POFA3298eoD3nY0hzB\nsiT7+2OYUnJHZzXaPDHPZ8bLdVJ3dVRdEa3k4DAf6YLO//fMeUYSec5NpPn8ezfZ0u50psix4QRd\ntUHbZutffqmfwZksioB/PzrCL93Xu+g2z0+m+bsXL1LUTQzL5L1bm23oKTx3ZpLDQwnev61p3onj\n5VzXAAghnpBSflwI8QZl188VSCm3L7yrADwghHgB+Fcp5Z/fYBtzRP0uvC6Vgm7SELl5dTsvTmd5\n/uzU3O9nJzKk8jqnxtJ87v6eObdMtmjwvWPjpPI6ybzO7o5qXjo/jSIEqbzOoztb5toomeVwT0vC\n946NEc/pHBtO0l0X4PxkOd29NuihOerjwY31/K+X+qj2u/nhiQl660IVuYKeOzPF2Yk0APUhLxOp\nwtymtUdTuL3j2nkGyZzO94+PleUr8iV+6rb59zccHC4xnSlwcDCBZVk8fXLSNgPwg+NlJczjIyk+\ne38Pbm3xkUBF08KU5WfRsElk7uRYijPj5WfvlfMzthiAZK7EF5+/iGlJ+qdz/MVjOys+d74VwG/M\n/jwF/PZl7wvgCwvr5hxjwHqgCHxXCPFjKeWxuYaFeBx4HKC9vb2iBkNeFz97Vwe5knlTC5773SpC\nlGuG+t0aAbdKKq/jc6lXDMSqIrBkWZ9kT2c1793ayFdfG6RkWATcV96Cz93fy5PHR9ncHKFkWMRz\nOi5NzIm+qYqY2xT+1N4OJJLJVAm3ps6KYF3bAEymC5yfyGBYZSOjKQKPS7lC6Mrvvv5XwqUJXKpC\nybDmPdbB4a2EvW6q/C4KuklLlX2TNb9bxbDK30m7ooAe3FDHwHQWj6Zwp01ReF21ARojPkzLYmPT\ntaMCF4JLU/BoCrmSuWBxyOseLaUcm33ZK6UcuPxvQoiNC+vmXJtFyoM/Qoh/B7YCxy77+5eALwHs\n3r27YrPrd2s3fUBqivj4xJ42ciWT7toAm5vCDMSytFZd6f5RhEDK8pfS41KJ+N08tqeNmWzpbRth\nvQ1Bfr1hPVCWfe6pC9IQ9hD2umit8hH2uqi+bI/jI7vaeO7sJMeGk3zllQEeu6Ptmp/Ddw6PkC2a\nBDwq79/eRFXATdjrIux18dHbW7GknHfT2u/W+OQd7Uxniqs2Ntph6agJevjrT97G/v44H7m9Zf4T\nKqQ64ObggE5TxIdd8RBuVaEm4MGlKtgkMMqOtip+//2biOd07rOpTKvfrfGHH9zKybHUgktYzucC\n+hzwK0C3EOLYZX8KAS8tuKflNkNSyvTsr3cDf30j7awULt8Y8rnVq+qRmJZEVQS1QQ8lo5zcVRP0\nzJtZ6FLLs/MfnZqks8Z/VQkIr0tFStAUhWReZyJVpKv26rdVVRTAxKOpb9MqeuuexfWoDrivMEIO\nDgthW2uUbbP7WHZxcSpLbdDDVLpomxpoTrcwpQTLolihVHsl7Girsq2tS7TV+Gm7hsrA9ZhvyvzP\nwPeBPwF+57L301LKGy0Hda8Q4r9SXgW8IKV87QbbWVKKhkk8q1Mf8lTkVy/oJomcTkPYgxBXHu9z\nq7xzUz3PnJ6gOeJDSvm2Y67F8+emmEwVGYrl2NAYuqri3462KOPJAlG/m9aqa0cqfHRXK30zWbrr\nnJm7w/IxkylwZjzDvu5qFNuydqt59eIM6xpCtuXNdNcGCHtdBDwqtdcJx76Vmc8FlKScA/BJuy4o\npXwSeNKu9pYC05J87fUhYtkSm5pCvGfr26OKxpJ50gWDdfVBTEvyL68PksjpbGkO864tjVccmy7o\nfG3/EGcn0owmC9SGPGxqunrEzmS6wFAsz4bGEEGPRnPEx2SqSJXfdUWC2eU0RXz83N1d8/67In4X\nO/32zrwcHBZCKl/isS+9SjKvs6+rhr/61C5b2t3aEnmbiOJiSRV03JqCJbF1BbAUTKYKDMXzbGwM\nzRWLqgRnF+8q6KZFPFcWXZtMFzEtyeHBOJqqsKM1wlS6yNf3D2GYktqAm2jAxcBMjojPxeRVanLO\nZEoYs9E9qbxxTWlZ3bT45sFhirrF+ck0n9jTzjs21LG1JULE55o3PNPBYaUzNJNnOJ7HMCUHZkO3\nVyo9dSF2tOXRFEF1cOW6PEuGxTcODlMyLC5OZfjY7raKz13VBuDZM5OcGU+zp6uaXe3X9rtNpYv8\n+7FRvC6VR3c243dr7O6o4kvPXwQgXzIYSRQ4MZIk5HNx/7o6LEtybDjB+akMAbfGxsYQjWEPD2ys\n5+Xz07wxkmRnW5S93TW0Vfu5b30tqYJBddCNlJIfnhjn6/uH6KoN8Pn3bpwzCpc2my5FnQkhqAst\nPLJpKJbjqRPjVPndfGBHsy1hcQ4Oi0UTFnm9PBmaShfmObpyfvdbR3nq5AS9dUGe+OxdtrTp1QTH\nhhNU+d34V7Aci0TOlcFc6Gb1qh0VdNPi8GCCXMmcSxK7FifHUiRyOuPJAn3T5eLPqqKgmxZFw+LQ\nYIKJZIHpdJGZTJHhRI49swlTHlUhXdAZSuTIFE1imRL7++PkSubcDEdVBLs7q+mtD1Ltd3N4KMFT\nJ8bJFA3eGEnSP3tNl6rwkV2t3NVTwyPbF5fM9sZIknTBYDCWYyyZX1RbDg528Vr/m8/irB2whR+f\nnkI3LE6NpeifztjS5o9OT2Ga1mytjhvd8lx6PJrKh2fHjfdua5z/hMtYtQbApSqsayiHWF7L336J\n3vogbk0h5NXmomFyJQNTli3qu7c0Uhf2kC4aTKaKtET93NlTw6+8o4dtrRF2tVexq60KVREk8zqb\nmsoRNptnr3t8JMk/vTrISCKHlJJNjWH2ddcgRDn6pu2yjdvGiJe93TUVFXfun85yeDCObr79SVrf\nEEJTBDVBNw0LKDXp4LCUvHNLw1ymSrXfPgfEhsYQuimpDnhojdrzfQ+6FU6Opzk/maHZBhmIpaQ5\n6mNvd82Cy0KuahfQ+7c3z4VgXo+WqI/P3d+DEGWXSzJfzr7d11VNbdDNA+vrefHcJF21AVRFsK+7\nmlTB4PaOKm5rryKRLXF0OIEpJTvbIrg0hYc2NXB+MsNf/Ogsr1yYIeJzsaExxKf3dtAQ8bKtNcKH\ndrbgukHXzGS6wN+/1EfBsHhXpsRDmxuu+HtvfZBffaB3USJxumkhJbe8+2ghYnT9f/rIEvbEIeh1\n88i2Bi5OZnjvdvvyALa1REhmCnTWBjARtgxsh4cTCCkxTIvDQwk227zJvBJY1QYAeNvgP5ku4FFV\nIn4X05ki/3Z0FJeq8KHbWuZK1HldCkGPxunxFD8+NcH/fKkfVQgsKdnYGObYcJKnTkywoTFEPFfi\nGweGKegmd/fU8NVXB1AVhf/jnes4PJhgf1+MgZksYZ+LvV3V1IU8TKQKTGeKbFhE6bqJZIHTsynl\np8bTbzMAwKIG/8l0gW8cGAbgI7taabyJEhsOq5d8Qef7xycwJUy90sevPbTOlna/8nIf2ZLF8bEM\nf/RoCU9w8TN2t6piWKAqEPDc2pOga7HqDcDlnBxN8dSJcVRF8NieNs5MpEnkdAD6prJsbSm7bDya\nyru2NPDKxWmmMkVMU4IQ7O2qZlNTmPFUefPq/GSGn5yeZDSRRxFwYixJpmDi1hR+cmoChCCe0/G7\nNZojXh7d2UK6aPDE/iEMSzKWKPDOqwzclVAd9LChsayrvrXZ3mLYAEOx/FwZyoGZrGMAHGzh+XNT\nmLMbldMZ3bZ2c6VZDS2gL5Znhw0GYG9XNf3TWbwuhe46e+oMrzTWlAGYzpRDNE1LEsuV6K0P8sZI\nEreq4Hcr/I/nLqIpgjt7qnn+7DSxbAmPplLAxKMonBxL0RDx8r5tTfzwxBhHh5LkSgYeTaEm6OaB\nDfX8+NQksWyJk2Np1jWE2NAYojrgYmtLhOqAm0Rex5SSyXSB0eT8oWUlw+KVizNoiuCOzmoMS+Jz\nq7REfXzmzk7SBf26lcZulI2NIS5MZcp7FktgYBzWJr0NbyYh2lcPDEIelVTRRFVurAbH1XjP1iYK\nuknU775qhv9qYE0ZgN2dVWSLBl63yrr6EKoiePzebn54YoJ/fn2QbNFgJl3kJ2cm0A0LIcu1eruD\nAYZiOfIlk5l0kUxB5/BAgoGZLIaEjQ0hfuPhdezrriXqc3F6PM10pkTRMOmpC/DpfR1UzVYTqg64\ncasKhwcT9E1l2dtZRdDnJuhWSRcNwl6N7x8fJ5U3eN/2JkYTZalr05K8dH4al6pw77rauaiiayGl\nZDRZwK0KSqakOeJFCFH+N2SLNEd813URBTwaH19APLGDQyWcGk3Pf9AN0Fbl5dxUlqjXPjG4U2Mp\nvnFwmIhX4951tTTatBGczOkUDZP6FRCcsaYMgN+tva1WwJGhBF99bYBkXmcyVSBdMNBNC7emEPSo\n+F0qw/EcBd1CNy1+fHqS46NJZrIlCiUTt6bSN5PlL350js/cWSKW0xmM5agLeXlwYz1jiQLjycKc\nAYDy5mrE50ICPzgxgSXLRTLaqvxoqjIXJXF8JEnn7GymZJqUDIuIz83FqexVdYEu55nTkxwaiHN6\nPM2mpjB3dFWzr7uGf3ptgHTBYFtL5IbdTw4ON8pILLck7Y6mShgWJIomRdPCDofNH3/vBOcmsggB\n//RqH//nuxdfdGkqXeRrrw9iWJKHNzfYnr28UNaUAXgrybzO4EwW3TRRRFlSNqebGFZZXK21yk9e\nN8mUTIQATVXQFEG2aNIQ8jCaLOBxlZUCS4bFdw6PIgT43BoNYS8nx1Kk8gaD8Rxt1f65TebH7mgn\nUzSI+Fw0RrwMxfIksjqNYQtVEVQH3GRLJhsbQ3TUBAh6NRTK+QojiTx3dF1/8Idy9nHJtMgUDQzL\nYjpTpGCYpAtG+e/Zt2csOzgsNZM2Jn9djt+lkisZuDXVNt/SpYQ1KSGeM2xpM5ErzdUWuOSSXk7W\nhAFIFXQUIeYGYCgP2H/8vVOcnUjjdyl86I4WfC6Np0+OM5rI01Ll5+fv6uSvnjnHTKZEfchDa5WP\ngNfF1uYwZyfSlEwJSAIejd2dVahCYFiSgm5x77papjNFUvk0PpeKS31zWdoQ9s6VcJzOFHnlwgzr\n6oNYwIbZfYPLBeMulc1rWkD5vHdsqMPnVumuDRD0urizp5xb8MDGeoZiuYqMyFrECRldWn7+nl6+\ncXgcuF7lioXz4KY6vn98gg31QaoD9tQE+bUH1/FnPziN363y2ft7bGmzpy7Iro4q8iWDPfOs4m8G\nq94ADMxk+c7hURQBD2ysQ0pBR42Pf3hlgOfPTaGbZenYfNFkb1cNH95VrnDVN5Xh+XPTJHM6piXJ\nFk0e3FjPQ5sa6awNMBjL8n999wQF3eThzQ38wj3dnBxNMZrIs7uziqjfzcvnp1EVwV09NXi0q6eS\n1wY9BL0afVNZ7uqtYUNjefFaqVrotagPe/nAjrdXG9rZFmVn27UF4YqGydnxDA0Rz3UL0js43Aip\nQmnutZ2bwLGsTkPYS8mS5HSDoGfxpUo/vKuViM9NXdBNa7U9G8uKIq5ZD3w5WPUGYCxZwJKSomHx\ntdeHqAl66JvKcGgwQSxbRBWCkmHx3SOj7O9P8H9/eCseTeG3vnGUyVSBgm4hKSeTPXtmilTB5CO7\nWmmvCfDL93fz7UPDxHM6Q7Ecm5vDbJ6NmMmVDF7rK6ePHx5KXFP/PFs0ODKYAOD1vtiyRxv88MQE\n5yczuDWFX7i7a9mLVjusLg70TS9Z20XdxOtS0BY5ebrEd4+M8s+vDeBxKfzBo1voWYWhoKszu+Ey\ntrdG6KkP0lsfJODRODqc4OxEiqJhoqkKjREvUb8Lj0uhaJgUdJOReI7heI5UXkdVBDvbovjcGrFs\nidf6ZvjhyXGklET9boIeN1PpIqfGkldc16up1IfLS9HrFVvxuVRaZqUgrhfVc7O4VC7SMGW5GIaD\ng43Uh5ZGUqE64EFSLg+r2qSae2BghtFknv6ZHGfH7dEXWmms+hWA363xwVlXyA9PjDMSzxPxuUnk\njXKVrY5q3rWlgWfPTBHPlvjb5y8ykSwgLYkQsKUpzN7uatbVhTgwGKcp4iNdMEjlDWoCbgbj2bna\nvQDD8RzfOzZG0Kvx6I5mDKtsKK6Fogg+dnurbVWMFsvDmxs5NpSgOeq7Ys/EwcEOehveXOFqNm4C\nnJ1Ik8zryJksRd28puT6QtjW8v+3d9/hcZz3gce/v+0LbEHvBMAikqLYCarY6iWSHMeRzrLsuMWJ\nyyWO70lzfPFdntzFJRfHTnyJHfvsOI6dOJbPPtuxo2JbvVEWRVGU2DtBEnVRt+/szLz3xyxAkARA\ngCgLEO/nefQQmn1n5jczu+877f29UfZ1xAl43bPWt2ChuWJ+4amcya72QapCPmrCAfZ1DrOyKoRb\n4EtPH2U4k2dNbYRs3gwsIgYAACAASURBVGIgbWDZilN9Kc4OZDnYNUTOVPQnnfuTyaxJ0jBxi9BQ\nHuTua+r43s4ztLWWE/J7WVYe5FBXnF+e6sfvcbO69twgDDuO93OgM05FyMer7YM8eyRGyrB4Z9sy\ntracS0ndm8iyvzPOquoQscKD4JXVpdx5dS0vnejncHeCLc1lbGuZ3wdFIb+HN01zXFFNm6qUca73\nrzmLF5i9iSxDaYO8ac/as4WNTVG+vaOdkN89+mxuNuw+PUjGsGhrLZ/w2eB8uWIagOePxjjYlcC0\nbI70JkgbFuvqI/TEszxzOIZh2uw43k9tyM9A2mAwnS/k3LfZeWqYkZd03C7BshWWAgvFa6cH2N9Z\nOXp2/taN9RiWzXdeaudob5KyoJdo0Mfta2sA56FzLJkjbZg8eaiXF4/1YZg2hmmxsjpEtMR5OPXo\nG10MpvPs7ximxOfGMG0OdiWIBn388NWzdA1nOd6bpLLUT6sefF0rgmTO5F9fOkXasHjv9S2zklX2\nL/9j/8wDG8dw4Qo8Z9qkcua0s2KO57OPHuLsYJqzg/DNF07w4Ztn/ibQiViSZw/HAOf10htnaWD4\ny3XFNAAjFXTKcDpMmZZzRn88liSTt1BK4bWF4cIwby6cvCHgvI4mLsHvdhHwusjmbTL5kb4BHgQn\n708o4CHoc+MxXfi9Toet8lIfb1pZSYnP2ZUNZUE8LhdlJV6yeQuPS7BcQkWpH8+YV0FLfB4G03kC\nXjcbm6K8dHyAFdUhokHP6OWr1+NaELeFtKVpd/sgzx6OoYDqsJ/339A642WuqCrlYGz2x6eoLwuQ\n77cp9XuIBmdn9K5ooRG53EGZxhPwuhFxKv+gr/iPYK+YBuCmq6ppKAsS8Lp46mAv7f1pWqtKeP3s\noJPMDWgqC1ATDtCbNGgsCzKcNsjmLarCfm5bXU3A5+X0YJpUxiRa4iEc8PKua5vZeXKAilIfXrfg\nc7uoj/r5rTcvpyeepT4apGHM+/n3b2mkvd/p+CXAda0VZC2bNbXnj9X5ts0NnOxL0VQeJBzw0tZa\nOfrZR29dyZnBDFfVhnQSNq1oQgE3fq8b07Ypm6VK9QM3r+SRg7P/JtA962r5we4ONjeVEfDOTsX6\n9+/axN89dZzmiiD3bWmalWU2lAV5sG0ZacNJE1NsV0wD4HYJSsHBzjg98SwtVSUEvG4GU3lsnNed\nTvan6UsZlPg9JHJ5lleGyJkWIsK6xnLW1oX5xA/foDeRo6kswNfe34bf46a8N0lFqY+A103ncIan\nD8dYVx8Z9/58ic9z3gA0Wy/o7DGczvPMkV7CAQ+3rq4ZNx/P8uoQy6uL/0aQtrRtbirnQzctH+3Y\nOBs6BubmbZp9nQnqo0F6EjmGM/lJX7yYKo/Hwx//yppZiO58DdPo0DnXrpgG4JWT/fzvJ45ysi9F\nwOumMuSjPOghHPAQzzr3+xWQy9vkzDzRoBefR1A4uf+rw37CAQ9pwyRjmMSzJvs742xtLueW1dWs\nqAqRMky+9uxxwgEvnUMZrq4PT7vD1iunBjgRc4aAbKksZaWu6LUFyuUSbrpqdjst7Tg2N0MrtrWW\n8ePXuti0LDIrlf9SccU0AD2JHKat8LiFwbThZARUCqWc+25uEVwuoazEi1ucf6+uj7KluYxo0MvG\npigiwsduW8UPXj1LS0UpNYX7fiJCc2UJ33j+BNm8RXc8yzUNkcvqrVsXDTgpqD0uKkun90VN5kzn\nllVodu5Hatp8u/nqGr7/WtesL9fv9XDXulpcIuRMq+hv1ywWV0wDcMfaWjqHshztiWOYFpGgn3Qu\nTzxrErG9lJU4lfzv3rISl0tIZPMc7XFG6hqbWfPOdXVsX+6M13vhuLzlJT5W14bxe1w8sO3y7gmu\nb4zSUBbE73Gd90zgUgZTBt/deRrDtBdEFkFt6nmDdM6gc+oj525/BGex9ikv8dGfNAgHPHhdxX+4\nulgs+AagN5HlkTe6KPV5eNvmhtG3YrqHszy6t4twwMO9G+r4xf4e3C7hN65tZsfxfgBuX7uMf9/T\nyYHOYSJBL7euqaWlKkQ2b/HVZ0/QMZjhqpoQTeVB6sfk+o4GnYr/7GCa/3i9ixKfmwe2NfG2zQ10\nDWWpifjxzKCjScU0z/wBBtLG6AhdPfGsbgAWkcWaYG4gafCZRw6QyVv8/h1XsbZ+5mlKygLe0Tfw\nfJ7Zq37uXV9H51CW6rB/RkOhLjULvgHY3xFnKJ1nKJ3nVH9qNFfO3o5hhjN5hjN5drcP0t7v5Bnv\nGs7xoZtWAM6tn6vrI8QzeUQYfTf4ZF+KbN5J+zCYNibs8XqkJzFa7uxghjV1YZorJ07rMJeWV5ay\nubmMRNa85FgAmjYbXjgeo2PIeWXziYM9s9IApE2bgNeFaatZ7WnucbuK9ttczIrSAIjI+4HfBNzA\ne5RSHROVXVUTYn/nMAGvezQt8sj0Q11xSv0ermmIcrIvzXAmz+ra0HnvzosI0QseCjWWB1lXH6Gy\n1Mf9Wxsn7DSyti7Csd4kJT4PzZPk85kPLpdw25qaosagzb3pXC3MhbFXIFuay/nJa50Yls31Kyon\nmWvq1taG2dAUpb0/zVs3X5ytVptfouY54ZeINAKfUkp98FJlq6qqVGtr69wHVQSG5XRWCxY6howw\nbYVhWgS8blyTPGSearm5kLds8uPEfqFTp06xUI/fRPt/LMtWDGfyBLyu0Y5+M6GAjOF0DvR5FvZ9\n6oV87LRLe/XVV5VS6pJfsmJcAdwNuEXkSeAA8AdKKWu8gq2trezatWteg5sP8Wyeb714CstWrK0L\njw5Tmbds/vH5E+TyNg1lAd65vXnc+S1b8bXnjpPL29RFA/zGteOXmwvJnMk3XziJZSuuqg3x1o0T\nn8W1tbUtyOM30f6/0GcfOcAbZ4dxu4TPv2MjjWUzuwp8+nAve04PIQLvua5l1nqXzoWFeuy0qRGR\n3VMpV4zTkFrAp5S6A0gDvz72QxH5iIjsEpFdsVisCOHNPaWc/+DiQTFGp1/iwmzkc3uer+DGXjEu\n1mzRY/e/Pck2jHyk1OTlpr7eMftuVodD0bTLU4wrgGHg2cLfTwFtYz9USn0d+DpAW1vbFfkriQa9\n3L+lkZ5Elg1j3ubxup3XS9v706ytnzj7oLuQQvpUf3pWsxRORTjgxN4dz7K+YXG+iTTR/r/Qx25b\nxU9f72R1TZhl5TN/BnTjqmqiQS9lJT492pq2IBSjAdgBfLjw92bgZBFiKLrmypJx31qojQSmlHWx\nJhKgZhayM16OZRUlkw5ysxhMtP/HKivxzUoCtBE+j2ve03svVIv11dgrzbw3AEqpPSKSEZFngD7g\ni/Mdg6Zpmlak10CVUh8vxno1TdO0cxb2u2iapmnanNENgKZp2hKlGwBN07QlSjcAmqZpS5RuADRN\n05Yo3QBomqYtUboB0DRNW6IW/HgAC5lSipdO9JPOWbx5VRVB3/SHoRtMGbx8coD6aIBNy8po70/x\n2ulB0obF8qoQ16+ouKyhJycznM7z0ol+aiJ+tjaXz+qyZ2rv2WE6htJcu7zykgPn2Lbilyf6yeSd\n/T82DfhsOBlL8r1XzlDid7O6JszWlvIp9dLWtMVCNwAzcDyW5OUTziDXXo+LW1ZPfwDtZ4/EONmX\n4mBXnKbyII/t6+ZgZ5xYMsf21gpqIv5ZHzj+uaMxjvUmOdgFTWXBoqWUuNBQ2uCJgz0ApHIWb7/E\nsJvHY0lePlnY/24XN1/G/p/MP71wksPdCTqHM9y+pob+lMF7r2+Z1XVoWjHpW0AzEAl4R3PxlwXH\nH1TmUqIlznx+r4ugz01Z0EvA6ybgdeF2yUXjEs+GssI6fR4XJbM4KtNMBbzu0auokRgnEwme2//l\nJdMfZvNSqiN+RMDvdRPwuacUk6YtJgvn178I1UQCvPf6ZjJ5i6bLzBZ5y1XVrKgqpbzUR4nPw/1b\nG7luRSW2UpQFvVSGZj9n/I2rqmipKCVa4p3VYflmKuB18+7rmhlMGVPKvlkbCfCe65vJmfZ5o8XN\nlt+7ZRXbWyqoCTtjQDeVz/46NK2YFs6vf5GaaQXtcgktlaWj/+/3uFleVTrJHDMnIgt2/NRIwDut\nq56qOWggR3g8Lt60qmrOlq9pxaZvAWmapi1RugHQNE1bonQDoGmatkTpBkDTNG2J0g2ApmnaEqUb\nAE3TtCVKNwCapmlLVNEaABH5QxF5oVjr1zRNW+qK0gCIiB/YXIx1a5qmaY5i9QT+IPBt4FNFWv8l\ndQxleOpQL9UhH2vqwjy08zRPHuylNhzgL//TenafHmLPmSFeOz1IeamPm1ZVURX2c+/6es4Optlx\nvJ+eeJbd7YP0JnJ4PS68LqgJB7hnfT1nBtJ0DGX4tU0N3LqmZnS9R3sSfPHxI/Qlc7xjWxNbmst5\n/lgffQmD+rIAd62rpTYSwLIVn33kAM8cjtFcEeSjt13FtcsrRpdzIpbk+aMx+pMGfq8by1YIUOr3\nsLWlnM3LykbLpg2TR/d2Y9uKezbUXbIn7sNvdPLo3i62NpfzoZtWzNo+N02Td39jJ6cH03zwzcv5\n0E0rePpwL6+cGuBUX5raaIDfuXklddEApmXz0Mvt/P1TR8nmFWvrQvznW1Zy57o6UjmTR/d2sa9j\nmO54ho7BLMurSnn/DS08tPMMQZ+bT9y9BhAe29dFNm8BTq/u7qEMe84Occ/6emrCfr781FEGUgY5\n06a1qpTPP7CR8lI/PfEsjx/oobzExz3r63C7hDfODvHa6SGuaYjQ1nruWLx8op9D3Qk2LYtyZiBD\nPJvnrnW11ITHT8Jn2Yqf7etmMG1w59W11EWnn6wvns3zs73duFzCWzbUUeLTnf61i837t0JEvMCt\nSqmviMiCbQB2nRqgL5GjL5Hj9ECa54/00RvPksqZfOP5k1SG/Dx3JEYia9I5lMHncnFNY5RjvUle\nOz1If9Lgsb3dJLJ54lkTATxuYShtkrc6MW2FZSseP9DD9SsqR1MZ/3x/N4e6E+RMi8cP9tKXMuiJ\nZznYlWCLKmN3+yD3bqinYzDD04d76U8aDKUNnjnUw7aWctwuJznayycHODOQYW/HMJGAB0RIZPOs\nqQ2TyVvnNQCHuxOcGUgDcKAzzvUrKifdNz/Z00k8k+eJAz08uH3ZrCWse/ZIHwe74gD828uneWDb\nMl4/M8zu9iF6E1kGUgYvHe/n/q2NnB5I8+M9HQyl85g2HOpO8JM9ndxxdS2HuuMc602y+/QQsUSW\nbN7CsGy++sxxUoZT2T9zJEZlqZ+u4SzHepNEAh7CgQy72gfxul38dE8nlSEfp/rT9CZyuF1C2rB4\n4mAv72hbxu72QWKJHLFEjvWNEVoqS3nxWD/ZvMULx/rY1lKOiGDZih3H+wF4bG/36HHec3qIX7mm\nbtz90DGY4UhPAoDdpwd5y4b6ae/L/R1xOoYygHN8tyywtN/awjCjW0AiUisi/yQijxX+f52IfPAS\ns70P+O4ky/yIiOwSkV2xWGwm4c3IiqoQIk5WyvUNUZZVlOBxOxk7b19bTcDrpqksiM/jIhr0UV8e\nIOB101gWZEUhffPyqlJCfg8Br4sSn5tSn5twwMOaukghwZhwVW0Iv+fcYVjfGCUc8OB1u1hZHWJd\nQ4QSn4fKkA+fx0VrIU9QVdhHU3kJXreL8lIfq2pDo5W/E38pAa+bmoifqrCf8hIvDdEgpX4PKy7I\nNdRY7myH1y0sq7h0jqD1DREAWqtKKZ3FM8tNzWWECo3JhsJ+qA77qQ77nRxBQQ9X1Tqx10QCrKuP\n4HY5WVPLSnxc0xhFRGgqL6HU76Gy1Emm5/e6Cfk93Lq6BrdLCHjdbGyM0lJZgscl1Eb8RAqJ90aO\n3TUNETYtKyPodVPqd+N3C5Ggh01N0dFtF2E0RoAV1U5sy6tKR8dwcLuE1ipnn65vjBDye3CJjB7H\n8VSFfYQDHkSgtfLy8kI1V5bgdQs+j+uyExVqVz5RSl3+zE7F/8/Af1dKbRIRD/CaUmrDJPN8Duf+\nvwKuA/5cKfWl8cq2tbWpXbt2XXZ8M5UxLHweV+HszySeyRPwuikr8WGYNrZSDKUNQn4PHrdTzut2\nKvO0YeJ3uxhIGyhbOZWzyGiKZ8OyyZkWYb8Xl+v8AV/iGYO8qSgr9Y2u2yOCDecNemJaNp1DGcqC\nXsJB70UDx6QNE6/LhWkrRMAtYFiKEp/7orKGaaNQ+D2XHlRFKUVfMkdFiQ+3e+JziLa2NqZ7/JJZ\nk86hNKvrnEbGthVZ08K0bNziojRwrsExLZueeAbDtIgE/VSU+ka3yzBtLNvGsGzylo3P7SYS9DKc\nNvB6XKO3RLJ5C5cItlJ4CsdhMG1QFfIjIgwkDUScciG/h/CYtN/ZvIXHJXgK+0ApRdqwLtq/I9NL\n/R5My8a01SUHr5lqucnkTAvBaQSm63KO3XS0/ukjUy576q9+dc7iuFKJyKtKqbZLlZvp6VuVUur7\nIvJJAKWUKSLWZDMopf7rmCBfmKjyXwjGjvBV4vOcdx915EdVFx0/RfBI2eoJ7vMGXO4Jf9yR4Pm5\n7Se6f+txu2ie5AxxZL6xN2i8Exzx6VQSIjLhds1UKOAZrfzByZY62fY3lo+//c72uLjw6EQvGDdg\nvGMwdtsqQhOPM3DhvCJC6TjptcdO97hdTKGNnXK5yUylMdeWtpm+BZQSkUqcs3lE5HpgeKozK6Vu\nnOH6NU3TtMs00yuAPwZ+CqwUkReBauAdM45K0zRNm3MzagCUUq+KyC2A804dHFZK5WclMk3TNG1O\nzfQtoOPAh5RS+5VS+5RSeRF5eJZi0zRN0+bQTJ8B5IHbROSfRWTkaVnjDJepaZqmzYOZNgBppdQ7\ngYPA8yLSTOGBsKZpmrawzfQhsAAopf5aRHYDvwAqJp9F0zRNWwhm2gD8+cgfSqknRORu4DdnuExN\n0zRtHlxWAyAia5VSh4AOEdl6wccL7iGwadrYTL2zk20rMrk8edvG63KBgN/rQQFZwyRc6KhlWjYC\nZPJOL8+R3p+WrbBsG5/HjWnZAKO9RU3Lxu1ycsSMnaaUQsTpVWrbzl00l0swLXu03KTbWFju2B6o\n402bipF1jo1jKpRS523XVGPNGiaBMZ29hlM5IiU+Z78geFyCiLNfRQSUGu1VbVkWmbwqpNNwelzn\nLef4eUQIBLwoGO2hncyaeIBAYPyv/oWxTWcf5i17dD3T+WyhuNzvi7Z4Xe4VwB8BHwH+Zsy0sff+\nb7/siGZZe1+Kv3h4P3lL8Ud3rb5kUqzeeJZP/mgvzx6JYdkKlwt8bmFFdRjTsulLGqyqCfHf3nI1\nj+7t4oWjMYazJhsbo3zhwU30xHN88fHDDKXzbG0p52wh++Mda2swlaJ7OEvesgl6Pdy5rgaXCP/0\nwkmOx5JUhXxc21pBzrLxuFysrg3z+pkhGsuCvH1b03m5fsY61pvk0b1dhAMe3rW9maDPzbHeBI/u\n7SYS8PCua5unnFJg9+lBnjsSI+z3kCs0Xg9sbaImMnnP34xh8b1XTpPImrxlQz2rakLjltvXMcwT\nB3uoCvm5b3MDn3r4AO39ad66qZ77NzXwzn/8JWcGMqP5ebJ5m+uXV1AZ9tMbz5ExTPpSBhsaomxf\nXs6f/XgffSmDqpCPukgAr9vFiViSjqEsANfUhdncUs4ta2roGc7whV8cwe0SvvLurVy38vykd8dj\nSR55w9mP79y+jOO9KZ481EN12M+DbcsmrcBfPNbHzpMDrKgu5dc3n/8exMNvdHK0J8nWlnJuWV19\nyWNQDIe64/x8Xw8VpV4e3L6s2OFo8+SyTkmUUh8p/PlV4NeVUrcBT+P0Av74LMU2K149PUgqZ2GY\nNi+fHLhk+ZN9KY72JLBshQIsG/KmomMwQ1eh8j47mOalE/0Mpg16Ejnyls3JvhRnBtIc603SG8+R\nM21+eaKf/lSO4UyeQ91xzgykSecsjvUmsZXiSE+CIz0JYoksQ2mDWCLH/s448YxJxrDYecLJItkx\nlCGRnbh7xbFeJ96hdJ7uuFPxHelJYtmKwXSensK0qTjcnUApONyTYDidJ5d3tu1SuuNZhtJ5LFtx\nrDcxYbkjPc7yY4kcR3sTtPc7WUhfOTnI/u4EXcNZbKU4O5hhIGWQyOY52ZeivT9Nf9LJzJrMmvSn\ncjy6t4t41iRv2cQSOfpTBmcG08SSORTOGcnJgTQDKYPD3XF+dqDHyQ9kWjyyr/Oi2EaO+1A6T/dw\nlsOFWHvjOQZTxqTbf6jb2eYTsRQ581w2FMtWHO1JFvZt/JL7sVgOdyewlaIv6XwPtaVhps8A/qyQ\nC+hGnLP+L+A0CtfNOLJZctNVVbxwtA/Dsrnz6ppLll9bF+HNq6r4yZ4OJ4mYx4XP42ZDY5S8ZXNm\nMMOmpii/sq6Gn+1TXF0fJpbIsX15BcurQkSDzvgB/SmDG1ZWcqovRTyb54aVVeQtm46hDHVlAQTY\nsqwclwj7OoZxu4TKkJ/rl1eSMkw8Lhdr68LsPj3IsooSosGJUy5vaCqjcyhLWYmXxjIn+83Gpijd\nw1nKS700lI2fr2g821rKee5IjNbKKtKGiV3YJ5fSWBakpbKEoXSejU1lE5bb0lzOQMqgLhpgfUMZ\nbS3lHO5JcO+GOrY0lnFNQ5RDXXFW1pQS8nvJGCZtrRVUhHx0D2VpKg8SSxqsqA7xphUV7OuI0zmc\nobEsSH00SNDrotTn4VChst3eWs6K6hDXLq9kdV2YP+9N4HO7+M0bll8U28amMrqGs0QC3tEMmkNp\ng/pokKqQf9Lt395azssnBgrZXc9dbbldQltrOYe6EmxrXbgpmbcsK6cvee5KSlsaZpoN9DWl1BYR\n+V/AXqXUd0emzUZwxc4Gqs3MXGeU1OaOzga6uE01G+hMn0p1iMjXgHcCjxaGelzYT7o0TdM0YOaV\n9YPAz4G7lVJDOH0A/mTGUWmapmlzbqbJ4NLAj8b8fxfQNdOgNE3TtLmnb9domqYtUboB0DRNW6J0\nA6BpmrZE6QZA0zRtidINgKZp2hI17w2AiFwnIjtE5AUR+eJ8r1/TNE1zzDQVxOVoB25XSmVF5N9E\nZINSau/lLKg3kSXgdRMJeEnmTF461kdlyEcmb2JasKYuzCN7OzndlyRj2KyqiTCcyeHxCO2xLH2J\nNIatWFFZis/rJhx0YxgWKdPGDdi4WFkdJG/B6f4UuOCe9Q2EfF4OdQ2RtxVpw6Y24qcmHMDjdtE1\nlKY/leNNq6rJWwrTtokEvNi2ImvabGiMEkvmGE7niSWzrK2LUuJz0xvP4nIJNeHARVlL+5M53C6h\nYyhDMmty7fIKRIR4Nk/WsC6ZqG2sbN5iIGVQHw3MS9bHZDbPjuN91EcC5G3FmYEU6xoifH/naXYc\n6+fmtVVUhwP43B7uWV/Hh775Enu60nzlbS2kvBEypsVta2r4xb5OHt3bzftuaCXgdSMCjeWlfOXJ\nwxzqTfLu7c10xbOsrA6xqibMy6f6KfEI77lhBbm8Td52Mrc+tPM0yVyet2ysxyduzgymuXFVJUH/\nxak2LMvimSMxVlSV4vd6qA77z0sIN7IvayMBYokc4YCHUn8xflKadnlmlApixisX+Rbw10qpA+N9\nPlkqiDfODvHkwV68buHXNjXw6YcPsPPkgJPETSncbgEFiZw17vyXHTMQ8LrI5u3R9KcCuAW8Hmc6\nQNDnpizoxbQVJT43hmlTGfKxraWCbN7ihaMxLAWra0Jct6KC188O43G5uGFlJe+9vmV0fcdjSf7j\n9U6OxxLsbh9CRHjPdc28a3sz//ZyO3lLcfvaGjYtmzj/zgjDtPmXl06RyJpsbIpyx9W1s7pvLtTW\n1sbKD3+Jo70JTEuNpsm2bYVhn19WcC5Hxx4tJ8EzhHyQGJOLzS0gIohS5Mf5+roFrML0tuYyblpd\nTX/K4KmD3ZwdchKd+d1Cqd+D2yWsa4jw7d++OH3VJ/7f67x4rA/DtPm1TQ2srY/wYJuTKdO2Ff/6\ny3YGxiSJC3jdvP+GliuiEVisqSCmutxiL3OuzVcqiMsmIhuB6gsrfxH5iIjsEpFdsVhswvlHMhbm\nLSdzZCyRQylF3rIxbYVtKdLG7Fb+4FRIhmmfl/taAbYCw7JHs1AapkXGMAv/WuRMi7ylaO9PkTJM\nsqaNZSsG0gaxpEE6Z5E2TAZSxmgefoC+RA6loD9hOOtViuOxFINpg3yhlptq9sasaZHImtOaZ6Zi\niRy2rcjlLQzLxlaQty8upzi/8gewC9MvTMRpK2fsgfEqfzhX+QOcHshgWDZpw2IwfS6jat5SZPIW\nllKjGVQvdHYwA0DOtIln8+fts7xtM5h2AusYcspl8+f2r6YtBkU5VRGRCuDLOKkkzqOU+jrwdXCu\nACZaxrXLK8jmbUIBD9cvr+C33tzKt3a0U+pzkcsrxAWtlUEeP9DLcMZEAI/LqVCUAnOCM0db4ZyO\nKnAJ+D2CUopc4Xe9orqE+miAoz1JUoYFKEIBH+UlXsJ+D6cH0ximzYbGCNGgj5xlU1XqJ22YlPg8\nPLCtiWOxFEGPm4GUwe1X17C+McrLJwfwuIQbVlaeNwDLpmVlDKbztFaW8OyRGJm8xUdvXUlrZSnb\nWspJZE2uWzG1UTgjAS+3rKnmzECa65ZXXnqGWfDhm1bwo9fOEg16yOUV3fEMy8oDPHOkH1s5u7rE\n5yLk9/CWDfX884720XnrIn4M0+autRX8+PUeDAtCXqiJBhGE1sogTx52Uma7cI5XKOBmWVkJx/pS\n+N0uPnXfNfg8LhJZk4aIn2+8cJK8ZXPt8nLKSwP0JXL8xnXN48b+X25bxVeePU51yMdNV1VzTUN0\n9DO/x82dV9dyPJbkrnW1nOhLUR3yUxfVmTS1xWPebwGJiAf4KfA/lVI7Jyurs4Eubjob6OKlbwHN\n7TLn2kK+BfQOYDvw1yLyjIjcUIQYNE3Tlrx5vwWklHoIeGi+16tpmqadT3cE0zRNW6J0A6BpmrZE\n6QZA0zRtidINLJspAgAACGJJREFUgKZp2hKlGwBN07QlSjcAmqZpS5RuADRN05aoBd8A2LZif+cw\nJ/tSk5Y7M5Bm79lhTMumvT/Fvo5hLFsxlDbYc2aIeDY/6fza3DjTn+b7u85wZjA9abnu4SzPHOrl\nlVP9ZPOzn8NJ07SLLfi0hbvaB3nxWB8AD2xrYllFyUVlYokcP9x9FqXgWCxJe38KpSCeyXOgK04i\na/LGWR/vv6F1nqPXPv3IAYYzeZ4+1MtX37tt3DLJnMlDL7ezs32QihIvd62r474tjfMcqaYtPQu+\nATDtc6kjLXv8vEW2UoykNDJMa/TvvK0wC/OY1vzmPNIcI8fPtMZJAVpgK+Uk4VNOJs/8JGW1+TdX\neXuWsuns06m6nH2/4BuAa1sr8LldBH1uWqtKxy1TGwnwqxvrGUwZbG4u42RfinjGZPOyMq6uC3Ms\nlmR1bXieI9cAPn73Gl481sctq2smLBMJeHn7tiauqg0RDnhoa51adlNN02amqAPCXIqIxHBGEFvI\nqoC+YgcxDfMZ71Zg9zytay4ttmM8EyPbOtfHbjHt08US69g4W5RS1ZeaYUE3AIuBiOyaStrVhWKx\nxbsQLKV9Nl/bupj26WKJ9XLiXPBvAWmapmlzQzcAmqZpS5RuAGbu68UOYJoWW7wLwVLaZ/O1rYtp\nny6WWKcdp34GoGmatkTpKwBN07QlSjcAmqZpS5RuADRtAiKyXkTeJSLbix3LYici14jI2gumXVes\neKZDRH6v2DFcSETqC/+KiNwnIp8sfFen1blXPwOYBhFxA/cBNwBlwBDwS+DflVJmMWObiIhs44J4\nlVK7ihvVwiUiP1NK3SMifwDcATwCvBk4q5T6ZHGjm33z8f0Qkb8BaoE8Tmel31ZKxUTkKaXU7bO5\nrpkSkeeBkUpRCv9eA+xTSt1cnKguNrLvROTvgAzwFLAZaFNKPTjV5Sz4VBALzLeAN4DvAsNABLiz\nMP29RYtqAiLyRcAPPAEcxIn3t0TkfUqp3y9qcAuXr/Dv/cBtSikb+D8i8kIRY5oT8/j92D5SeYrI\nRuAHIvLxWVz+bPoRsAn4llLqGQAReUwpdW9Ro7rYSMKsa5RSdxb+/oWIPD2dhegGYHpalVLvu2Da\na4WzhoVo2zhnLT8WkeeKEs3isE5E/gVYiVM5ZgrTA8ULac7M1/fDLSI+pZShlHpDRO4HvoNzZr2g\nKKW+KCI+4IMi8js4J3sL0bdF5BvAGRH5DvAssBGY1tWbvgU0DSLyJ8AtwDNAHOeM6RbgOaXU54sY\n2rhE5G+BUuBxzsV7B5BTSv1BMWNbqESkZcz/diql8iISAm5SSj1WrLjmwnx9P0TkWuCUUqp3zDQ3\n8A6l1Pdmaz2zrXA//X3AGqXUnxY7nguJSANwN87ttWFgh1Lq9WktQzcA0yMiNwPrcO6XxoFXgBVK\nqZeLGtgERGQLcB3OPd5hoEop9eniRqUtFIXvx/Wc+368BHiUUq8UNTBtXugGYBoKD7NqAJMF/jAL\nznugJWMmrwP2L6QHWlpxiMh4bwEK8DOl1F3zHY82//QzgOlZTA+zYPE80NKKI4nzFttYgnMvWVsC\ndAMwPYvmYRYsqgdaWnEcBO5XSg2PnSgijxcpnjlTeGD6t0qpA8WOZSHRt4CmYbE+zIKF/0BLm3+F\nzkT9SinjgumehdqvRZtdugHQNO2KIiKlwPeBJsANfBr4XeDjQAPwqULRIOBTSi0vdIj7WyCEM6rW\nB5RSXfMd+3zTqSA0TbvS3IPzCu8mpdR64GcjHyilfqqU2qyU2gy8DnxBRLzAl4AHlFLbgG8Cny1G\n4PNNPwPQNO1Ksxf4GxH5HPCwUup5ETmvgIh8Asgopf5BRNYD64HHC+XcwBV/9g+6AdC0SYlIGfBu\npdRXCh1v/l4p9UCx49ImppQ6IiJbgbcAnxGRJ8d+LiJ3Au8ARl6FFpxXo2+Y30iLT98CmiIRKROR\nj16iTKuIvHsKy2oVkX2TfP4BEfnyBJ/tuHAZInKriDx8qfVql6UM+CiAUqpTV/4LX6GhTiulvgN8\nHtg65rMW4B9wXtwYSfNxGKgWkRsKZbwisiDf7JttugGYutGKYBKtwCUbgJlQSr1pLpevXeSvgJUi\nskdEfjCm0f2AiPxERJ4RkaMi8j+KHKd2zgZgp4jsAf4H8Jkxn30AqAT+vXBMHy28BfUA8DkReR3Y\nAyyJ35m+BTR1oxUBTu4UgHtxetp+Rin1fwtlri6U+TbwY+BfcfKtAHxMKbVjiutbJiLPAI3Ad5RS\nfwEgIkmlVGg2Nkibkj8F1iulNotIKzD2SutanHvHaeAVEXlEp9ouPqXUz4GfXzD51sK/u4C/GGee\nPZy7JbRk6AZg6sZWBG8Hfgenl20Vzo//uUKZjyul3gogIiXAXUqprIhcBTwEtE1xfbpyWfgeV0r1\nA4jIj4AbmWY2Rk0rJt0AXJ4bgYeUUhbQIyLPAttxksON5QW+LCKbAQtYPY116Mpl4buwE43uVKMt\nKroBmFt/CPTgXCm4gOw05tWVy8KQAMITfHaXiFTgjBlwH/Db8xaVps0C/RB46sZWBM8D7xQRt4hU\n49w73MnFlUUU6CqMKvU+nPeLp+ouEakQkSBO5fLiTDdAm77CVdiLhYe/F475sBP4Ic4ocT/Ut+i0\nxUZfAUyRUqpfREYqgsdwfvSv45yZf0Ip1S0i/YBVeJPgW8BXgB+KyPtxeiOmprHKkcqlCechsK5c\nikQpNdGbXWeVUvfNazCaNot0LiBNuwwi8gGcAbg/VuxYNO1y6QZA0zRtidK3gIpIRO4GPnfB5JNK\nqfuLEY+maUuLvgLQNE1bovRbQJqmaUuUbgA0TdOWKN0AaJqmLVG6AdA0TVuidAOgaZq2RP1/3Rvp\nDgzw5dwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ZV3RzsdkCJM8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make bivariate [relational plots](https://seaborn.pydata.org/generated/seaborn.relplot.html)" + ] + }, + { + "metadata": { + "id": "DYn1Vv0CCJNB", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "fd8b7922-0b07-4a8a-a995-c70767354b8c" + }, + "cell_type": "code", + "source": [ + "sns.relplot(data=tips, x='tip', y='total_bill');" + ], + "execution_count": 181, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XucVNWVL/Dfqld30d3QDXTjA4jE\nEAzXtGKTKJAbNY5eZ8LEIEgyEcS8gDAZM05GycwN17mXZEbEDKOTDwHyMD5iEgM6eM2NkaBMPkHy\ngJAQgyIySgCBbptu7Ed1V1edff+oB/U4p+p0VZ06j/p9Px8+9Kvq7G7oVfusvfbaopQCERFVn8/u\nARAR1SoGYCIimzAAExHZhAGYiMgmDMBERDZhACYisgkDMBGRTRiAiYhswgBMRGSTgN0DMOvGG29U\nzz77rN3DICIyQ8x8kWtmwG+99ZbdQyAiqijXBGAiIq9hACYisgkDMBGRTRiAiYhswgBMRGQTBmAi\nIpswABMR2YQBmIjIJgzAREQ2cc1WZCKiatE0he6BKKKxOEIBPyY0hODzmdpdPCoMwEREGTRN4dDp\nPnz2kb043hPB5JYwvnnbbMyY1FTxIMwUBBFRhu6BaDr4AsDxngg++8hedA9EK34tBmAiogzRWDwd\nfFOO90QQjcUrfi3LA7CIvCEifxCR34nI3uTHxovIDhE5nPy7xepxEBGZEQr4MbklnPWxyS1hhAL+\nil+rWjPga5VSlyulZiff/xKAnUqp6QB2Jt8nIrLdhIYQvnnb7HQQTuWAJzSEKn4tUUpV/EmzLiDy\nBoDZSqm3Mj52CMA1SqmTInI+gF1KqRmFnmf27Nlq7969lo6ViAioSBWEqS+uRhWEAvCciCgAm5VS\nWwBMUkqdTH7+FIBJeg8UkeUAlgPA1KlTqzBUIiLA5xO0NtVZfp1qBOAPKKVOiEgbgB0i8krmJ5VS\nKhmc8ySD9RYgMQO2fqhERNVjeQ5YKXUi+XcngKcAvB/A6WTqAcm/O60eBxGR01gagEWkQUSaUm8D\nuAHASwCeBrAs+WXLAGy3chxERE5kdQpiEoCnRCR1rceVUs+KyG8APCEinwZwFMBii8dBROQ4lgZg\npdR/AbhM5+PdAK6z8tpERE7HnXBERDZhMx4ih6hWBy438frPhAGYXMtLv5zV7MDlFrXwM2EKglwp\n9cu5YONuzFv3AhZs3I1Dp/ugae4sF69mBy63qIWfCQMwuZLXfjmr2YHLLWrhZ8IATK7ktV/Oanbg\ncota+JkwAJMree2Xs5oduNyiFn4mlndDqxR2Q6NMXlyg8dKiYqW4+GdiapAMwORaLv7lJO9zTDtK\nIktUq2UgkVWYAyYisgkDMBGRTRiAiYhswgBMRGQTBmAiIpswABMR2YQBmIjIJgzAREQ24UYM4o4y\nIpswANc4L/ZUIHILpiBqnNf66hK5CQNwjfNaX10iN2EArnFe66tL5CYMwDWuFppeEzkVF+EcxI5q\nBJ9PMGNSE55aNY9VEERVxgDsEHZWI7CvLpE9mIJwCFYjENUeBmCHYDUCUe1hAHYIViMQ1R4GYIdg\nNQJR7eEinEOwGoGo9jAAOwirEUaHTYTI7RiAyZXYRIi8gDlgciWW7ZEXMACTK7Fsj7yAAZhciWV7\n5AUMwORKLNsjL+AiHLkSy/bICxiAybVYtkduxxQEEZFNGICJiGzCAExEZBPmgMm1uBWZ3I4BmFyJ\nW5HJC5iCIFfiVmTyAgZgciVuRSYvYAD2CE1T6OobxomeQXT1DUPTlN1DshS3IpMXMAB7QCofumDj\nbsxb9wIWbNyNQ6f7PB2EuRWZvECUcscv6ezZs9XevXvtHoYjdfUNY8HG3Vm35JNbwnhq1TxX7xQr\nVuXAKghyMFP/EatSBSEifgB7AZxQSs0XkWkAfgBgAoB9AJYqpbh6UiIv5kPNVDlwKzK5XbVSEF8A\n8HLG++sAbFBKvQtAD4BPV2kcnuTFfCirHKgWWB6ARWQygA8D+FbyfQHwIQBbk1/yMICPWj0OL/Ni\nPtSLs3qiXNVIQfwbgLsBNCXfnwCgVykVS75/HMCFeg8UkeUAlgPA1KlTLR6me3mxNWNqVp+b13bz\nrJ4ol6UzYBGZD6BTKbWvlMcrpbYopWYrpWa3trZWeHTeksqHXtgyBq1Nda4OvoA3Z/VOUWsli05m\n9Qx4HoCPiMhfAKgHMBbAAwCaRSSQnAVPBnDC4nGQy3hxVu8E3MLtLJbOgJVS/6CUmqyUugjAxwE8\nr5S6FcALABYlv2wZgO1WjoPcyWuzeifg4qaz2LURYzWAvxOR15DICX/bpnEQ1RQubjpL1bqhKaV2\nAdiVfPu/ALy/WteuBdyUQGZwcdNZuBXZA2pxKzKVhoubzsKtyB7g1a3IZA3eLVWFc7Yik7XszOvx\nl9l9uIXbORiAPcCuvB5LmojKwxywB7SEg9i0pCMrr7dpSQdawkFLr8uSJqLycAbsAT2RETy481Ws\nmT8TzeEgepPvf3VBu6W3mixpIioPA7AHRGNxPHewE88d7Mz6+D1/aW0gZEkTUXmYgvAAu9pRsqSJ\nqDwsQ/MAOxfDWAVBpMvULwEDsEcwEBI5CuuAawlrO4nchzlgIiKbMAATEdmEAZiIyCYMwERENuEi\nHDkOKzqoVjAAk6OwwQ/VEqYgyFHY4IdqCQMwOQob/FAtYQAmRxlNXwtNU+jqG8aJnkF09Q3zCCZy\nHQZgchSzDX54Dh55AXtBkOOYqYIwOgfv6c/PQ0xTGBqJwy+CcMiP5jCrKKjq2AuCRic38LWEg+iJ\njFS9HMxMXwu9XHFrYx1Onh3Cikf3pSso1i9qx6Sx9bhoQgODMDkOAzAByC//umFmG+647t1Y+dg+\nR5aD6TWDv+O66engCyQW7+7aegBrb7oUTfVBNisix2EOmADkl38t7JiSDr6A88rB9HLF0yY26FZQ\njAn5HV9FwQXF2sQZMAHIv6VvDgcdXQ7m8wlmTGrCU6vmpVMkCkr3iKTBaNzRxyRx80nt4gyYAOSX\nf/VGRmw55mg0UrniC1vGoLWpDhMb6vJmxesXteMdE8Y4+pgkbj6pXZwBE4Bzt/SpQLBt3zFsWtKR\nlwN2ciBLzYqfXDUXQyMa/AJXVEFw80ntYgAmAPq39C3hYNb7bmiK4/MJ2prq7R7GqPB06drFFASl\n5d7SBwK+rPedHnzdiqdL1y7OgIlspnf34Ya7DSofAzCRA/BQ1drEAOxBbGhO5A41FYBrITCxppTI\nPWpmEa5WumfVUk0pd4+R29VMAK6VwFQrNaV2vqAy8FOl1EwArpXANJqG5m5m1wtqrdxJUXXUTACu\nlcBUKzWldr2g1sqdFFVHzSzC5W619Wpgyq0pDQZ8CPgEJ89GPLXwaNfusVq5k6LqqJkAXEvF7qma\nUjdURJRamWLXCyq3DVMl8UgiDzM6tuepVfMcUfRf7guEHWWFbnhRI0fgkUS1zum3y0b5VLMvEHbs\nHqulOymyHgOwhzn9drncFwi7NtZw2zBVSs1UQdQip1dElFOZwnIw8gLmgD3Oyduvy8mnOj2/TTWP\nOWBy9u1yOflUp+e3icxgAK4wJ884najUFwin57eJzGAOuIKYl6yeSua32duB7MIccAU5JS9ZK7Pw\nSnyfrOsli9ifAxaRegA/B1CXvNZWpdQ9IjINwA8ATACwD8BSpZTrN9NHY3G0NtZhzfyZaA4H0RsZ\nwaZdR6qal6ylgFKJ/Ha5tchE5bA6BzwM4ENKqX4RCQL4hYj8BMDfAdiglPqBiGwC8GkA37B4LJYL\nh/y4+8YZuGvrgXTwW7+oHeFQ9fKSTgko1ZyFp66laRriClBKmb4mF/PITpbmgFVCf/LdYPKPAvAh\nAFuTH38YwEetHEe1xDSVDr5A4hf5rq0HEKtiTtEJAaWaufDUtf7nUwfwWtcAFm/eM6pr1kqXPHKm\nggFYRP6viDxt9MfMBUTELyK/A9AJYAeAIwB6lVKx5JccB3ChwWOXi8heEdnb1dVl/ruyyUhM0w1+\nIzGtamNwQkCpZsvG1LUWdkzB6m0HRn1Np29WIW8rloK4v9wLKKXiAC4XkWYATwG4ZBSP3QJgC5BY\nhCt3LFZzQmmUE9puVnMWnrpWczhY0jXZ24HsVDAAK6X+s1IXUkr1isgLAOYAaBaRQHIWPBnAiUpd\nx05OCH5OCCjVfCFKXas3MlLyNZ28WYW8rWAZmoj8AYmcrS6lVHvBJxdpBTCSDL5hAM8BWAdgGYBt\nGYtwB5RSGws9lxvK0AD7SsCcVHpWzUqM1LU27DiEZXOnpdMQVlzTST9jcjxT/zGKBeB3FHqwUupo\nwScXaUdikc2PRL75CaXU/xGRdyJRhjYewH4AS5RSw4Weyy0B2A5OLD1zSxXEaK7htJ8xOVr5AdhJ\nGICNOWUDiJfxZ0yjVP5GDBH5hVLqAyLSh0QqQjL/VkqNLXuYHlTu7G+0j3dC6ZnX8WdMVii2CPeB\n5N9N1RmO+1XimJ3RPt4J1Rdex58xWcF0CkJErgDwASRmwL9QSu23cmC53JKCKPdWtZTHa5rCG90D\nONo9iDEhPwajcbxjwhhcNKGB+ckKqVQOmAt5NaNyvSBE5H8BuAXAk8kPfVdEfqSU+kqJg/Oscm9V\nS338cEzDmu0vZQUHqpxKlPdxIY9ymd2KfCuA9yml7lFK3QPgKgBLrRuWe5W7E62Ux1dz51ktS9UL\nX9gyBq1NdaMOmvx3olxmA/CbAOoz3q+DRzZPVFq5W1tLeTwXiNyB/06Uq1gVxL8jkfM9C+CPIrIj\n+f71AH5t/fDcp9xb1VIezwUid+C/E+UqthFjWaEHK6UerviIDLhlEc6ORRY7c4uxmIbO/mGMxDUE\n/T60NdYhEOBBK3qYA64p1duIISLblFILy36iAtwQgO38BbMj8MdiGl453YeVj+1Lf7+blnTgkklN\nVQnCbqwocOOYqSRVDcD7lVKzyn6iAtwQgJ20W6oaM9M3eyNYvHlP3vf7xIo5uKA5XOCR5eNskhzO\n1H/CSv1GumM/s8WcssiSmpku3rwHV6/fhcWb9+CV032IVbgv8Uhcv/9xLG59/2NWFJAXMFlXQU5o\nhg4Anf3D6bQAkAhOKx/bh87+7H5H5Z4GHPT7dL/fgN/6/1ZOebEjKkelflM8dc9XamByyukKZmam\nlTg2qK2xDpuWdGR9v5uWdKCt0fp0i1Ne7IjKUakc8A1KqecqMB5D1coBV6KXg92LLGZys5XKV6dy\nzbG4hkAVqyCYAyaHq0g/YKOG7KluaAUbsldStQKwkxbSSmWmOuFEzyDmrXsh77G7V1+LC1vGVHvI\nJXHCix2RgYr0gphfgYG4ihdyi4GAD5dMasITK+YYzky9sClA7yghBmVyk2LtKAueeOFFXghMQCII\nFyoFq9T5dU4KeExLkNuYygGLyFUA/h3AewCEkDhiaKCaDdndkgN2k0o0jh/Nz8rqYO2F9BF5RuXa\nUQL4OoCPA/gRgNkAbgPw7tLG5WxOOFW4Wso9DdioFlcv4FkRrHO/xgvpI6otpperlVKvAfArpeJK\nqYcA3GjdsOxVbtvBWmE24Gmawqm3hzAwHMOa+TMxa0pzwY0TZkrk9L4mrimWppGrmA3AgyISAvA7\nEblPRO4cxWPJ5Yzqos3U4qYC5eLNe7Bo0x6sfeYg/v5/zEgHYb3ZqZldbnpf85UfH8TmpR2212ET\nmWU2iC5Nfu3nAQwAmALgZqsGRc5RaDZqZuOJXqBcve0AVl5zseHs1MzMWu9rnjvYiYkNITy1ah52\nr74WT62a58ncPXmH2RzwR5VSDwAYAvC/AUBEvgDgAasGRvbJzK2KSME8b7F8uVEwTQVvvdmpmUoU\no6/x+XwVX3BzUqUHeYvZGbBeX+DbKzgOzyi3v4IdMsfc2TeEN7oH0jPeN3sjBWejxfLlRmmKC5rD\nhrNTMzPram37rsSWbSIjxU7E+CsAnwAwTUSezvjUWABnrByYG6V+WTfsOISFHVMwoSGESDSGC8aF\nHdukXK86Yf2idrQ21uF4TwTdA9Gy6qKN6o3PG1tvOIs0U4lSrWqV0VR6EI1WsRTEiwBOApgI4GsZ\nH+8DcMCqQblV90AUG3YcwrK507B624F0wNm8tAPvOW+sJbet5d4e6wWYu7YewJr5M7Hi0X3YtOsI\n1i1sz/p+RjPTLDVQmimRK7eMzgyWtpGVzOyEOwpgjohMAvC+5KdeVkrFrB6c20RjcXxy3jQMjWj4\n2i2XoTcygk27jmDFo/tMz5hGE1ArsWnEKMBMb2vE5qUd2LTrCB5+8XU8sWIOlFIlBflqBEqreGVn\nJDmTqftiEbkFiUM4bwGwGMCvRGSRlQNzo3DIj8a6ANZsfwkf2/LLdMlVa2OdqRnTaPONlWhKbpSj\nPdzZj7XPHMTdN87Al/78PThvbH1N1kU7pcUoeZPZrci/B3C9Uqoz+X4rgJ8ppS6zeHxpbjiSqLNv\nCDdvfDFvtrT2pktx6YXjis4CR7uVdrQdzfRm1wDyZtHrFrbj/p8ewv5jvZjcEsaTq+airane9M/B\na1gFQSWo6FZkXyr4JnWDGzHyjMT0G6FPm9hgasY02nzjaG6PC6UrUjnaSDSGl0/1pYNv6vojFT7K\nyG3cnEIhZzMbRH8iIj8VkdtF5HYAPwbw/6wbljsZ3c6PqfObmjGN9pSH0dweF0pXpAJMOBTA2mcO\npoNvset7iRvLB8n9zAZgBWAzgPbkny2WjcjFjALixAZzs6fR5hszKwyK7fwyM7suJd/phcBVzVpf\nL/y8qHLM5oB/q5S6IudjB7x4Ika5KtHi0Yp8o9n8crWrMJygWm0svfLzIlPKzwGLyOcArALwThHJ\nrPttArC79LF5V7mnNJSabyx2jZZwEI9/5kp09g2jeyCKbfuO4c7rZ+TNbkdzfa9sUqhWra9Xfl5U\nOcUW4R4H8BMA/wLgSxkf71NKcSecjtxA2BIO4nBXv6WznmIzK01TeWPYvLQD01sbyxqDVzYpVKvW\n1ys/L6qcgjlgpdRZpdQbSqm/UkodzfjD4KtDN5fYmdiaXE6tbjHF6oH1Pr/i0X3oiYwASBzi+WZv\nBEe7B/BmbwQxk1UPXjkavlq1vl75eVHlsJSsgowC3cKOKVlfV+lZT7GZVaHPp05QXrx5D65evwuL\nN+/BK6f7TAVhuzcpVGpBazSLmeWw++dFzmO2DphMKNR6MVMlZj25LSNvmNmG5w6eK9XOvEahW+zO\n/uH08fWp8a58bB+eWDGn4KGegL3HN1V6Qasatb61dNwVmcMZcAUZ3WK2NdVVdNaTm+pYvHkP7rju\n3bhhZpvuNQrNvEbi+ptHYnFzaQi7jm+qxDZsO/C4K8rEGXAFGbVevGBcuKKzHr3gk5q13vOX+Q1z\nCs28gn6f7uw44K/sa3Oly+u4oEVewABcQYUCXSVvb42Cj1JKtwdEamx6Y2hrrMN3P/k+HDsTwZiQ\nH4PROKaMD6OtsfB47a4XZpcy8gKmICqsGreYlVxN9/kEIzGV7uC2ZvtLGImpguO2o2tbLi5okRcw\nALuQUfDx+zDqioDugSg++2hOcHy0cHAcbUC1Il1QrcoFIisxBeFCuamOYMCH4ZE4fn/sbDqN8I4J\nY3DRhIaiAamU4Ghl17bRYJcycjsGYJfKDD5nBoZxpCeCNdtfyjrXrXlMEOOLNAIKBny4YWYbFnZM\nQXM4iN7ICLbtO4ZggTPsjAJqOORHV99wXl7YaHGS6QKqdaaa8TiBW5rxFGK0cFVuhcCJnkF8bMsv\n8wLiD5dfVbQxe33Qhzd7h/C57/02HRw33noFpo4Po3mMfvDWW1R75FPvx3BMK7gdutJNhtgonRzM\n1H9EBuAqMaoEmN7aWHaviD+dGcAXvv87rLzm4vQsdtOuI3jgr2Zh6vjsAJw7joduf1965pxSKHhn\nPk/3QBSapiGugJimIRpTiERjePPsEDbtOoKu/mHLGs2wsxg5nKn/hFyEqxKjhavO/mFTC1qZ227P\nDAyjs28oveDWVO/H3TfOwNpnDqbPorv7xhloqPPlbdftjWSPY0zIr5vPjRd5XU6lFs4MjmDx5j34\n4H27cPtDv8bbQzFs23dsVGfhlcKtGzGIMjEAV5hRfwKjhauYwU60zMCVWfb1+cf349CpPty88cV0\nCVhfJI67th7IO1o+HkdeudjJ3iG0ZtT49kZGdEva6oPF/2voBcHV2w5gYccUrN52AHdcN92yulxu\nxCAvsDQAi8gUEXlBRA6KyB9F5AvJj48XkR0icjj5d4uV46iWQvWxRrW7geROtNyPZwauzEC38pqL\n84JtZ9+wbjAajmk4dXYIX7vlMmxe2oHWxjqseGwf7rhuevrrNu06gvWL2ks6xcMoCDaHg6M6C68U\n7CxGXmD1DDgG4ItKqZkArgLw1yIyE4newjuVUtMB7ER2r2HX6h6IYsOOQ1gzfyZ+uPwqrJk/Ext2\nHEL3QNSwdretsa7ohoLMQJcKbrnX1QtGmjq3wWLtMwfTaYFpExvSX9/VP4xJY+vx5Kq5o66nNQqC\nvZER3DCzDaGADyfPRiw5eocbMcgLqroIJyLbAXw9+ecapdRJETkfwC6l1IxCj3XDItzpsxG81jWA\n1dsOZB3x/q7WBkwaFy65CiLzyJzNSzuw9pmDWUH4hplt+MKfvRsrHt2X1XD9gZ+9mtchbe1Nl+K/\nXTAWIlJ29YDeQti6he34+aHT+MvLJ6e7rFm1QMYqCHIwZ1VBiMhFAH4O4FIAf1JKNSc/LgB6Uu/n\nPGY5gOUAMHXq1I6jR49WZaylerM3gsWb9+RVFJhp7VhIZqBrbazD3TfOSKchUsGteUwAA8MafAJo\nCmiq8+PKf3k+77me/+LVuvXBpQaz3LaYfgHiCro/Bx69QzWk/DPhKkVEGgFsA/C3Sqm3EzE3QSml\nRET3VUAptQXJE5hnz57t+Ho5pZRhk5xy5O58C4f8eHLVXIzENIQCfgT9wMsn+7KC8sZbr9DtEfxm\nbwR1AR/QcO75yynp0tuNdqJnkAtkRCZYXgUhIkEkgu/3lFJPJj98Opl6QPLvTqPH26HUkxasXBjK\nbPIzvqEObU316YY/A8P5VRCrvvdb/M8Pz8zKka5b2I5H9ryRN55Kl3RxgYzIHKurIATAtwG8rJT6\n14xPPQ1gWfLtZQC2WzmO0Rhtp69Mdi0MxQ1m3j4BHv/Mldi6cg7WzJ+Jh198Xfck5EqXdHGBjMgc\nq1MQ8wAsBfAHEfld8mP/COBeAE+IyKcBHAWw2OJxmFbO0eF2HTlTH/Tr9nOoC/oxsaEO4VAA54+r\nxxVT23XHU06zHKPcMY/eISrO0gCslPoFjJPR11l5bbNyA4imFd8YUYiZDl2VXr0fHw7hjuvenVV1\nsGlJB8aHzTWDL7VZTrHcMRfciAqr6V4QegHEqHyrUiv4VvQwyCxTK3XMpbwoVOK6RB7FXhDFGB0j\n/+WcxatK5i8LLXiVuvhnJodb7LkLneQRi2l4szeCo90DeLM3kj6yntuBicpT0/2AjQKI3yeW5S8L\nBa2SS8FEdHO4vmS5X7FZd6HZbyym4ZXTfXnpjUsmNSEY0D/Qs1AvYSI6p6Z/UwqVS5V6rluxmabR\nNUWk5FKwoF+w8dYrsmbtm5Z0AEiM5a0B445rxao+OvuH08E39diVj+1DZ/8wAj7J6yOxflE7VPJn\nUOntx0ReU9MBuJRyqUIB1kwJm941Ny/tgF9Q8u38UEzD158/jDXzZ+KpVXPxyKfejwd3voo59ybG\nMDhsPOsuVgM8YtCtLRbXEInGcd+z2b0v7nv2EN7oHhxV+R5RrarpFMRoy6WK3cqbKWHz+QTTWxvx\n+GeuRGffMLoHonjgZ6+m8865PR5EBCd6BguOTVMKXX2JgNlUH8DR7sH0+8d7Inj9rQHDVEGxPG7Q\nr59mCPh9CPp96OofxopH92V9rjcyMqryPaJaVdMBGBjdwY7FAqzZRameyAg+8a1f5X1tqgJjYccU\nTG4JQ2X0VCiUE26o8+f1h1i3sB33//QQ9h/rxYM7D+Mbt16RdezQ+kXtCPgEUqQGuK2xDpuWdOTl\ngNsaE6mZ3PK11HWNvnciOqfmA/BoFAuwZjc06D3Pcwc78c8L3pvuarZm/sx017NZU5px940zUB/0\n4VjPIMKhxAaLVCCOa8jbirx62wGsmT8TKx7dh67+YfQPx7Bm/sz0Ro37nj2Er39iFiY11esG2JZw\nEAAQCPhwyaQmPLFiDmJxDQG/D22NdQgkF9pSdxCRkTiOdPang77R905E53g2AFvRqrBYgDW7ocHo\neaJxlW4pmer7O2tKM+75yExEonEs/favdWfDIzH9PG1zOFiwtjkU8ONMJIoHd76aFZwf3PkqvrLg\nvWhrqgeQCMJG3dxSdxCapjAwHENX/3D6+bn9mKgwTwZgqw5sLBZgzeaUjZ4ns5ta6qiglddcjJ6B\nkayDM3NTH0blYBe2hPHkqrkYHw7hzutn4ODJvrxxH+8dxHMHO7OCMwB8eb5m+medeqGb0BjC05+f\nh0iU24+JzPBkAC6nn0MhZgKsmZyy0fOkTrY43hPBpl1HsG5hO+oCPsQ1/WY7qdRHqhwsMwe8flE7\nTvYOobE+gIkNdXnXawkH0T0QNawh9puImzyZmKg8nixDs3KHVqEdY4D5VpZ6z5NZorb/WC8efvF1\nnDeuHoPReMH2jkblYJpS+Owje9EbiWalY1rCQRzu6seCjbtx7Mygbi1v0G/uUE6jI5iIqDhPzoDL\n6e5VDrMzQr38NAD0RqIYWx/A9z5zJYI+QX3Ij7F1QURjWt4MNzP1EQr4DcvBWhvrcLJ3CCseyz+u\n6HhPBPc9ewj3fGQm1t50KcaE/BiMJhq+p3qEFMqla5qGZXOn5R3BpGn56QseH0SUz5PNeOy6Ne7s\nG8KXn/pDXlvIzAUto7E11vlxZiCKMwMj6UD4jgljcNGExNEVvZEoItE44gqoD/qyqiCMzma7/6eH\ncMd107Pyx0AiOKcqJABg1pRmrLzmYkxva8Thzn5s23cMX12QaF1Z6Odo9ggmpiqoBjnnSKJqs6sf\nbdxgRhjXzs0mT709pJuffvyzV2IwGk8Hy1QqIHV+2/iGuqxjhHK/3+mtjXhixRyMxDWMxBW2/OcR\ndPUPY9rEBt10TGZ1wv5jvVgR5XKbAAATrUlEQVT7zMF06Vtqdl0sl272CCarcvJEbufJHDBQPFdr\nBU1DOvgC5+pxNU0hFtNw6HQf3uyN6AYtgeTV8t619QAi0eJ5a01TONzVj8Wb9+Dq9btw+0O/xrK5\nF+GZv5mHULJCItPkljDamurytkNfPnlc1rH0Zuuec5/bTN0zN2kQeTgAl6PUtpBG1QoxTaGzfzjd\nY0EvaBk9Nm7i0nqLYQ/sfBVvR2L4p6dfwrqF2Yts37xtNi4Yl+jbu3v1tXhq1Ty857yxmDQunPVi\nVSzAmu2lwTPiiPR5MgVRjnJPCNY7Gsgnkm5qkyovy0xTfPO22Qj49cvB6oPFXyM1TcOqa9+FnoER\nAEDI78Oqa9+FvuEYnjvYia6+KNbMn4kJDSFc0BzGeWPrK3JSRrl1z9ykQbXOk4tw5TA65eGHy68C\ngIL55O7+IZzoHcKqjJ4LG2+9Aq1NIWga8LEtv0zvblt5zcWY0BDC+ePqcf64cCLwd/ald8KNJvB3\nvj2EI139eXXAFzSHcfX6XVlfu3v1tbiwZYzpn0elqhdYBUE1hidilMIoX3ny7FDRU5LjGtLBN/W4\nVd/7LeJaomFOqt42teg1EtcQDvnh8wkCAR/ec97YrLSA2SqBkbimmz/OfW0t5ba/Url0O3LyRE7H\nFEQOoxri1OaCQiv4Rr1zlQIaQ0FMGlufVW87aWw9msPnbsNLPcgyZpA/FkH6e+FtP5HzMADn0MtX\nZrZYBPRX8DVNIa4p3eD9Wmc/+odjmN7aiKb6YMVvw4M+/fxx0O9L52dFBH5JLNjx9p/IGZiCyJFa\nWHpixRxsXTkHD93+Pjz84uvpFouA/q1890AUX/nxwbyKg3UL2/HgzsPYsOMQOvuHLcmBBvw+bFh8\nWdZ1Nyy+DD4BWsJBvD0Uw+LNe3DlvzzPkyqIHIQzYB0+n+C8sfU4GxnB+p++gmVzp+l2EssUjcXx\n3MFOvPeCcfjB8qsQ1xREBNt/exwAsGzuNFPN1UuhlEIw4MtKbwQDvsSZbwrcBEHkUAzABlIz4a8u\nSPQ2eGLFHCilDGevoYAfK/77Rbj6kjZ8PFntkKqC+OCMVvz14/uLBsFSKwV8Ph82vvAaFnZMwRj4\nEY1r6feb6gKWboJgdQNR6RiACxjNotiEhhCWzp2WDr7AuSqI73/2qqJBUNMU3ugewNHuwbxeEMUC\n2oSGUPokjcy89cMvvo5/+silljUmYo8HovIwAFeIzyfQDKoRlNJfnMsMgr2RKE6/PWTYC6LYtd/d\n2ogfLL8KI3ENfp8PkWgMX/7wTLRauAmCPR6IysMAXEF+g2oEv87hlblBMBKN69by/nD5VYZNeFI0\nTeG1twbyKjcefvF13Hn9DExvbbSkMRF7PBCVhwG4gkIBHzbeekXeTri6gK/olt24QWcxs70gcmei\nqUM5rZyR2tV3mcgrGIALyFxgCgZ8CPik4Hln0ZiGH//+BB66/X3w+wRxTWHr3j/htrnTiuaT64PZ\nwWzWlGbccd10AInGQIVmrUYz0dTBnsVmpKUupLHHA1F5GIAN6C0wrV/UjvuePYSu/mHdxSafAB+c\nMQmf/O5vslIBZu72JzbU4ZFPvR9HuwfRPCaIceEg7v3Jy3juYCcmt4TxyKfej8b6AEZiWl6QNJqJ\npg72LDQjLbf5kB19l4m8ghsxDOjd1t+19QBWXnNxerEp9+wzTRn0Aza552E4pmHN9pewYOOLuO07\nv8ayudMwa0ozWhvrcPrtIdy88UXdfhR6bSHXLWzHtn3His5IjRbSzJ7rxh4PRKXz/Ay41NvrQrf1\nqbfztiMrhdbGOqyZPzPdjnLTriPQTHScK5THBZC3QPfZR/biyVVz0dZUnzcTTW07Th0rVOj75UIa\nkX08HYDLub0udFufejv31r7O78M//sUluPOJ36evt2HxZahLnjBc6MXATMDP/dzQyLnDL0tt5MOF\nNCL7eDIFkTrR4njvIE6dHUJrYyIwjeb2Wu+2fv2idmzadcRwsSmmkA6+qevd+cTvEVPnXgwWbNyt\nm0YIGhwdNBLXDI+l91fgbt/sqRZEVHmea8he6ITgVEOdYk3JUzNVTdMQV+d6LWRWQbSEg+iJjGTN\nZo/1DOY1QAeA/7zrGowJBXQbvadKxLoHhvDqqfym6u+c2AARwdHugayZ9fpF7ZhxXlPRTRpmcDsx\nUcXV5qnIhXKpKx7dV35VQIPx1zTVBww3Ymialpcb3n+sN51rHRiO475nD2V9zX3PHsK/fuxyTGkO\no384VrCXcDlKTV8QUXk8F4AL5VLN3F6b2V5r9DVPfm4u1i9qz5vFhkM+nDo7jLXPHMzbqZZ6MfCL\noKt/GCse3Zcey+SWMN54awCNdQFcNKHBkl7CRGQfzwVgo0Wl1O1+KVUBrY11iMbiONEziFDAD03T\nP/lCUwpj6wNZM9Wx9QFER1S6UU7qa1dvO4DHP3Nl+sUgHPLjG7degc9l7KJLpU6+/olZnKUSeZDn\nFuGMFpXOzzly3YiIZC14zZrSjLtvnIGPbfllevHsrYEobpjZlvW4yS1h9A/H8eX/+COi8UR1QjSu\npd/XC9gAkrlmheZwCBMbQ1h706Xpo+Xv/2li0wcrEoi8yXMz4HJ3Z/kF+PonZqFnYARjQn5MaKzD\nfc++nDV7XfHoPjz+mSuzmrRvXtKBU2cjummEoN+nOyt/+VQf1j5zMJ1jbm2sx5mxI3knI1tRkcCF\nNyL7ea4KolxnBoZxpLM/q+Igt4oCSFRShAL+dADz+4AvbTuAT3/gnfjij849dvPSDsxoa8Lhrn7D\nyozM9EhvJIpINI64AuqDPkxsqPzuMvbxJbKcqV8kBuAcnX2JLb+5s9VUFUXq/R8uvypr5phqqN43\nNIIzydlzZlN1IJFuiERjePlUX7oKImX36mvx9lCsKkGxq2+4YEkcEZWtNsvQyjUS08/XptIAqcqG\nzz++P68pT2NdALd959eGga21qQ5dfUhXQ2R+jYhUrbk5tx8TOQMDcI6g34eHbn8fxoT86Xrdrv5h\nnD+uHj+/+1oc6ezHfc+eS0ekguSEhhAGo8UDm1ELR7/obze2Iihy+zGRMzAAZ9A0ha7+4bxjgcY3\nhCAC+AE8uPNwVuogFSS7B6J4/a0B3DCzDQs7pqQ3U2zbdywrsBktEnYPRKsWFNnHl8gZajIHbFQB\nYJQbvf+Wy/DxLb/M6gmcCsKpFEM0FscDPzuMJXPekXUixjeWdOA9k5oQCBSu+Kv2whirIIgsxRyw\nnkKBzig3Khlv37X1ANbedCk++d3fZM0cuwei+PP3no+vP384azvxv+98FV9d0F40j5s7M071njh5\nNmJJgOTGDiL71VwA7h6IYsOO7J4LG3YcwlcXtBdtQQkkgvDU8WPw/BevRjjkh18SQTIY8GHGeY1Y\nde270DOQ+PqQ34dV174LmqbljUNPKiiyTIyoNli6E05EviMinSLyUsbHxovIDhE5nPy7xcox5NI0\nDcvmTsPaZw7iY1t+ibXPHMSyudOgaRomNISweWmHbgvKlMktYbzW1Y97f/IyuvqGcfM3EqdU3Lzx\nRfgl0S1tzfaX8LEtv8Sa7S8hEh39Ilq5p1QQkTtYvRX5uwBuzPnYlwDsVEpNB7Az+X7VxA2ODYqr\nZBqgrQmPf+ZKbF05B/fe/F6MCfnR1T8MIBF8v3bLZRhbH8DdN16C7v5oVq/haFzpHi0/YvZMoiSW\niRHVBktTEEqpn4vIRTkfvgnANcm3HwawC8BqK8eRMyb94981hVhMQ09kBHUBH/qGYunNFPfe/F7U\nB/0Y3xDC20Mj+Pzj+3V3tMU1/efWRhmA3VQmxsU8otLZkQOepJQ6mXz7FIBJRl8oIssBLAeAqVOn\nVuTiRsHttc5+nI2M4MGdr+LTH3gnPvnd3+Q99oW/vzodfIH8XsO9g/qlZPXB0QVOt5SJMVdNVB5b\nu6GpRA2c4fRQKbVFKTVbKTW7tbW1Itc0OkH4wZ2HsfKxfVjYMSV9nHumyS1h+EQK9hoeGw7im0tz\nOrEtnY2JjaOrNsisiNi9+lo8tWqeI4Mac9VE5bFjBnxaRM5XSp0UkfMBdFbz4qng9sPlV+F4TwS9\nkZGsRjvN4SDu/ckrWLewPZ0rTs3swqHivYYBlNyJLXecTi8TY66aqDx2BOCnASwDcG/y7+3VHoDP\nJwgF/OmuZSmpkrP9x3px/08PYe1Nl+LitkaEg/50cNVLDZw/LpwVZJ0eOCvFTblqIieydCeciHwf\niQW3iQBOA7gHwH8AeALAVABHASxWSp0p9lyV7oaml7/ctKQDD+58Fc8d7DTMZxZbdKqlRSnmgIkM\nsR1lMbnBsiUcxNvDI8l+vAr1Qb+pfryZzxPXFL7y44MFg7iX1NILDtEocCuykdygkUohaJrC6beH\nsWHHISzsmIIJDSEMReO4YFzYsJeD3ixw3cJ2dPVFsf9Yr2UtJZ3CDblqIqfy3JlwxaQC5oKNu9Nn\nvB063ZcOyht2HErvlFu0aQ8+8a1f4VBnn2Etr14lwOptB7DymovT73NRioj01FwALlQ6FY3FsbBj\nSt5OuRWP7jMsrTKqBGgOBwFwUYqIjNVcAC5UOpXKYY6mtCpVCZApVU3h1A0UROQMNReAjQJmahHu\nvHH12LpyDjYv7cCsKc1Zn9ejt7Fj89IOXD55nGM3UBCRM9RcFYRR6dT01sa8k4u/dstl+PYv/gt3\nXj+jYCDNXNRL9fGNRFkVQFTDWIZmRK906q2BYd3TkH+0Yg4mja03FURZF0tESaZ+4T2ZgtA0ha6+\nYZzoGURX33BeBUOqdOrCljFobUrU+Q6N6OeGRzRlOniyN4K9iv27EzmN5+qAS52F+kV0t9X6RzFx\nZW8E+/Dug9zIczPgUmeh4ZAf6xe1552GEQ6ZLyErtMBH1uLdB7mR52bApc5Cm8MhTBpbj7U3XZpu\nxD5pbD2aw+ZLyNzSx9eLePdBbuS5AFxqhy6fT3DRhAY01QdL7muQe7IxqyCqh53ZyI08l4LQq8s1\nOwvVW5wbrUo8B41eOf/uRHbxZBkaO3TVJv67k4PUbjc0duiqTfx3J7fxZADmTIiI3MBzAZj1oETk\nFp5bhGM9KBG5hecCMOtBicgtPBeAuRuNiNzCcwGY9aBE5BaeW4TjbjQicgvPBWCA9aBE5A6eS0EQ\nEbkFAzARkU0YgImIbMIATERkEwZgIiKbMAATEdmEAZiIyCYMwERENvHkRgz2AyYiN/BcAGY/YCJy\nC8+lINgPmIjcwnMBmP2AicgtPBeA2Q+YiNzCcwGY/YCJyC08twjHfsBE5BaeC8AA+wETkTt4LgVB\nROQWDMBERDZhACYisgkDMBGRTRiAiYhswgBMRGQTBmAiIpswABMR2YQBmIjIJqKUsnsMpohIF4Cj\ndo9jFCYCeMvuQVRRrX2/AL/nWlDq9/uWUurGYl/kmgDsNiKyVyk12+5xVEutfb8Av+daYPX3yxQE\nEZFNGICJiGzCAGydLXYPoMpq7fsF+D3XAku/X+aAiYhswhkwEZFNGICJiGzCAFxBIjJFRF4QkYMi\n8kcR+YLdY6oWEfGLyH4RecbusVSDiDSLyFYReUVEXhaROXaPyUoicmfy//RLIvJ9Eam3e0yVJiLf\nEZFOEXkp42PjRWSHiBxO/t1SyWsyAFdWDMAXlVIzAVwF4K9FZKbNY6qWLwB42e5BVNEDAJ5VSl0C\n4DJ4+HsXkQsB3AFgtlLqUgB+AB+3d1SW+C6A3M0TXwKwUyk1HcDO5PsVwwBcQUqpk0qp3ybf7kPi\nl/JCe0dlPRGZDODDAL5l91iqQUTGAfgggG8DgFIqqpTqtXdUlgsACItIAMAYAG/aPJ6KU0r9HMCZ\nnA/fBODh5NsPA/hoJa/JAGwREbkIwCwAv7J3JFXxbwDuBqDZPZAqmQagC8BDybTLt0Skwe5BWUUp\ndQLA/QD+BOAkgLNKqefsHVXVTFJKnUy+fQrApEo+OQOwBUSkEcA2AH+rlHrb7vFYSUTmA+hUSu2z\neyxVFABwBYBvKKVmARhAhW9NnSSZ97wJiReeCwA0iMgSe0dVfSpRs1vRul0G4AoTkSASwfd7Sqkn\n7R5PFcwD8BEReQPADwB8SEQes3dIljsO4LhSKnV3sxWJgOxVfwbgdaVUl1JqBMCTAObaPKZqOS0i\n5wNA8u/OSj45A3AFiYggkRd8WSn1r3aPpxqUUv+glJqslLoIiYWZ55VSnp4dKaVOATgmIjOSH7oO\nwEEbh2S1PwG4SkTGJP+PXwcPLzrmeBrAsuTbywBsr+STMwBX1jwAS5GYBf4u+ecv7B4UWeJvAHxP\nRA4AuBzAP9s8HsskZ/pbAfwWwB+QiBue25IsIt8HsAfADBE5LiKfBnAvgOtF5DASdwL3VvSa3IpM\nRGQPzoCJiGzCAExEZBMGYCIimzAAExHZhAGYiMgmDMBUE5Ldy1Yl375ARLbaPSYilqFRTUj25ngm\n2c2LyBE4A6ZacS+Ai5ObY36U6vkqIreLyHYR2ZXs+XqPzeOkGhKwewBEVfIlAJcqpS5PzYYzPvd+\nAJcCGATwGxH5sVJqb/WHSLWGM2AiYIdSqlspFUGi0cwH7B4Q1QYGYKL8FoNcGKGqYACmWtEHoMng\nc9cnz/4KI3Hiwe7qDYtqGXPAVBOUUt0isju5+JbbSvHXSPRwngzgMeZ/qVoYgKlmKKU+YfCp40qp\nip71RWQGUxBERDbhRgwiIptwBkxEZBMGYCIimzAAExHZhAGYiMgmDMBERDb5/5bFhW6K1OnHAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "YpGpfOfACJNH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make univariate [categorical plots](https://seaborn.pydata.org/generated/seaborn.catplot.html)" + ] + }, + { + "metadata": { + "id": "BsaeZXX8CJNK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "ff4e60c2-80a8-47d5-c644-ecad04ee67ed" + }, + "cell_type": "code", + "source": [ + "sns.catplot('sex', data=tips, kind='count');" + ], + "execution_count": 182, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFgCAYAAACbqJP/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAE+dJREFUeJzt3X+w3XV95/HnSwKitoDIlcUEhowN\ndtFqwSvFOjpYWo3aGquuhXU1KNO0LsV2263Vdkbcdmm12FrU1mkqkdA6IKKWrGtBxF/TqQIXfwAJ\nWlNcJVkwlyK2VQtG3vvH+YJnrzfkcMn3nPO5eT5m7uR8P+f7PefNzJ1nvnzvud+kqpAkteNhkx5A\nkvTgGG5JaozhlqTGGG5JaozhlqTGGG5JaozhlqTGGG5JaozhlqTGrJj0AA/F2rVr64orrpj0GJK0\nr2SUnZo+477jjjsmPYIkjV3T4Zak/ZHhlqTGGG5JaozhlqTG9BbuJJuS7Epy04L1s5N8KcnWJH88\ntP6GJNuTfDnJc/uaS5Ja1+fHAS8E3glcdN9CkmcD64CnVNXdSR7brR8PnAY8EXgc8LEkx1XV93uc\nT5Ka1NsZd1V9GrhzwfJrgDdX1d3dPru69XXAJVV1d1V9FdgOnNTXbJLUsnFf4z4OeGaSa5J8KsnT\nuvWVwK1D++3o1n5Ikg1J5pLMzc/P9zyuJE2fcYd7BXA4cDLw28ClSUb6TaH7VNXGqpqtqtmZmZk+\nZpSkqTbucO8APlgD1wL3AkcAO4Gjh/Zb1a1JkhYYd7j/Fng2QJLjgIOAO4AtwGlJHp5kNbAGuHbM\ns0lSE3r7VEmSi4FTgCOS7ADOATYBm7qPCN4DrK+qArYmuRTYBuwGzvITJZK0uAy62abZ2dmam5tb\n8vFP/e2L9r6TloXrz3vlpEeQRrH87w4oSfsjwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1J\njTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHc\nktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1Jjekt3Ek2JdmV5KZFnvutJJXkiG47Sd6e\nZHuSG5Kc2NdcktS6Ps+4LwTWLlxMcjTwHODrQ8vPA9Z0XxuAd/U4lyQ1rbdwV9WngTsXeeptwOuA\nGlpbB1xUA58FDktyVF+zSVLLxnqNO8k6YGdVfXHBUyuBW4e2d3Rri73GhiRzSebm5+d7mlSSptfY\nwp3kkcDvAm98KK9TVRuraraqZmdmZvbNcJLUkBVjfK/HA6uBLyYBWAV8LslJwE7g6KF9V3VrkqQF\nxnbGXVU3VtVjq+rYqjqWweWQE6vqdmAL8Mru0yUnA9+qqtvGNZsktaTPjwNeDHwGeEKSHUnOfIDd\nPwLcAmwH/gr4r33NJUmt6+1SSVWdvpfnjx16XMBZfc0iScuJvzkpSY0x3JLUGMMtSY0x3JLUGMMt\nSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x\n3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY3pLdxJNiXZleSmobXz\nknwpyQ1JPpTksKHn3pBke5IvJ3luX3NJUuv6POO+EFi7YO0q4ElV9WTgH4E3ACQ5HjgNeGJ3zF8k\nOaDH2SSpWb2Fu6o+Ddy5YO2jVbW72/wssKp7vA64pKrurqqvAtuBk/qaTZJaNslr3K8G/q57vBK4\ndei5Hd2aJGmBiYQ7ye8Bu4H3LuHYDUnmkszNz8/v++EkacqNPdxJzgB+Hnh5VVW3vBM4emi3Vd3a\nD6mqjVU1W1WzMzMzvc4qSdNorOFOshZ4HfDCqvrO0FNbgNOSPDzJamANcO04Z5OkVqzo64WTXAyc\nAhyRZAdwDoNPkTwcuCoJwGer6leramuSS4FtDC6hnFVV3+9rNklqWW/hrqrTF1m+4AH2Pxc4t695\nJGm58DcnJakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluS\nGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4\nJakxhluSGmO4JakxhluSGtNbuJNsSrIryU1Da4cnuSrJV7o/H92tJ8nbk2xPckOSE/uaS5Ja1+cZ\n94XA2gVrrweurqo1wNXdNsDzgDXd1wbgXT3OJUlN6y3cVfVp4M4Fy+uAzd3jzcCLhtYvqoHPAocl\nOaqv2SSpZeO+xn1kVd3WPb4dOLJ7vBK4dWi/Hd3aD0myIclckrn5+fn+JpWkKTWxH05WVQG1hOM2\nVtVsVc3OzMz0MJkkTbdxh/sb910C6f7c1a3vBI4e2m9VtyZJWmDc4d4CrO8erwcuH1p/ZffpkpOB\nbw1dUpEkDVnR1wsnuRg4BTgiyQ7gHODNwKVJzgS+Brys2/0jwPOB7cB3gFf1NZckta63cFfV6Xt4\n6tRF9i3grL5mkaTlxN+clKTGGG5JaozhlqTGGG5JaozhlqTGGG5JaozhlqTGGG5JaozhlqTGGG5J\naozhlqTGGG5JaozhlqTGGG5JaozhlqTGGG5JasxI4U5y9ShrkqT+PeC/gJPkYOCRDP75sUcD6Z46\nBFjZ82ySpEXs7Z8u+xXgN4DHAdfzg3D/C/DOHueSlo2v//5PTHoEjdExb7yx9/d4wHBX1fnA+UnO\nrqp39D6NJGmvRvrHgqvqHUl+Gjh2+JiquqinuSRJezBSuJP8NfB44AvA97vlAgy3JI3ZSOEGZoHj\nq6r6HEaStHejfo77JuA/9DmIJGk0o55xHwFsS3ItcPd9i1X1wl6mkiTt0ajhflOfQ0iSRjfqp0o+\n1fcgkqTRjPqpkn9l8CkSgIOAA4FvV9UhfQ0mSVrcSD+crKofrapDulA/AngJ8BdLfdMk/y3J1iQ3\nJbk4ycFJVie5Jsn2JO9LctBSX1+SlrMHfXfAGvhb4LlLecMkK4HXArNV9STgAOA04C3A26rqx4Bv\nAmcu5fUlabkb9VLJi4c2H8bgc93//hDf9xFJvsfgJla3AT8D/Ofu+c0MfiD6rofwHpK0LI36qZJf\nGHq8G/g/wLqlvGFV7UzyVuDrwHeBjzK4gdVdVbW7220He7j7YJINwAaAY445ZikjSFLTRv1Uyav2\n1Rt2t4ddB6wG7gLeD6wd9fiq2ghsBJidnfU3OSXtd0b9hxRWJflQkl3d1weSrFrie/4s8NWqmq+q\n7wEfBJ4BHJbkvr9IVgE7l/j6krSsjfrDyfcAWxjcl/txwP/q1pbi68DJSR6ZJMCpwDbgE8BLu33W\nA5cv8fUlaVkbNdwzVfWeqtrdfV0IzCzlDavqGuAy4HPAjd0MG4HfAX4zyXbgMcAFS3l9SVruRv3h\n5D8n+S/Axd326cA/L/VNq+oc4JwFy7cAJy31NSVpfzHqGfergZcBtzP46N5LgTN6mkmS9ABGPeP+\nfWB9VX0TIMnhwFsZBF2SNEajnnE/+b5oA1TVncAJ/YwkSXogo4b7Yd3nr4H7z7hHPVuXJO1Do8b3\nT4DPJHl/t/2fgHP7GUmS9EBG/c3Ji5LMMbifCMCLq2pbf2NJkvZk5MsdXaiNtSRN2IO+raskabIM\ntyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1\nxnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMmEu4khyW5LMmXktyc5OlJDk9yVZKvdH8+\nehKzSdK0m9QZ9/nAFVX148BTgJuB1wNXV9Ua4OpuW5K0wNjDneRQ4FnABQBVdU9V3QWsAzZ3u20G\nXjTu2SSpBZM4414NzAPvSfL5JO9O8ijgyKq6rdvnduDIxQ5OsiHJXJK5+fn5MY0sSdNjEuFeAZwI\nvKuqTgC+zYLLIlVVQC12cFVtrKrZqpqdmZnpfVhJmjaTCPcOYEdVXdNtX8Yg5N9IchRA9+euCcwm\nSVNv7OGuqtuBW5M8oVs6FdgGbAHWd2vrgcvHPZsktWDFhN73bOC9SQ4CbgFexeAvkUuTnAl8DXjZ\nhGaTpKk2kXBX1ReA2UWeOnXcs0hSa/zNSUlqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGW\npMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYY\nbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMZMLNxJDkjy+SQf7rZXJ7kmyfYk70ty\n0KRmk6RpNskz7l8Hbh7afgvwtqr6MeCbwJkTmUqSptxEwp1kFfAC4N3ddoCfAS7rdtkMvGgSs0nS\ntJvUGfefAa8D7u22HwPcVVW7u+0dwMrFDkyyIclckrn5+fn+J5WkKTP2cCf5eWBXVV2/lOOramNV\nzVbV7MzMzD6eTpKm34oJvOczgBcmeT5wMHAIcD5wWJIV3Vn3KmDnBGaTpKk39jPuqnpDVa2qqmOB\n04CPV9XLgU8AL+12Ww9cPu7ZJKkF0/Q57t8BfjPJdgbXvC+Y8DySNJUmcankflX1SeCT3eNbgJMm\nOY8ktWCazrglSSMw3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x\n3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLU\nGMMtSY0x3JLUGMMtSY0x3JLUmLGHO8nRST6RZFuSrUl+vVs/PMlVSb7S/fnocc8mSS2YxBn3buC3\nqup44GTgrCTHA68Hrq6qNcDV3bYkaYGxh7uqbquqz3WP/xW4GVgJrAM2d7ttBl407tkkqQUTvcad\n5FjgBOAa4Miquq176nbgyD0csyHJXJK5+fn5scwpSdNkYuFO8iPAB4DfqKp/GX6uqgqoxY6rqo1V\nNVtVszMzM2OYVJKmy0TCneRABtF+b1V9sFv+RpKjuuePAnZNYjZJmnaT+FRJgAuAm6vqT4ee2gKs\n7x6vBy4f92yS1IIVE3jPZwCvAG5M8oVu7XeBNwOXJjkT+BrwsgnMJklTb+zhrqq/B7KHp08d5yyS\n1CJ/c1KSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4Jakx\nhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluS\nGmO4JakxhluSGmO4JakxUxfuJGuTfDnJ9iSvn/Q8kjRtpircSQ4A/hx4HnA8cHqS4yc7lSRNl6kK\nN3ASsL2qbqmqe4BLgHUTnkmSpsqKSQ+wwErg1qHtHcBPDe+QZAOwodv8tyRfHtNsy8URwB2THmLc\n8tb1kx5hf7Rffq9xTh7K0VdU1dq97TRt4d6rqtoIbJz0HK1KMldVs5OeQ8uf32v9mbZLJTuBo4e2\nV3VrkqTOtIX7OmBNktVJDgJOA7ZMeCZJmipTdamkqnYn+TXgSuAAYFNVbZ3wWMuNl5k0Ln6v9SRV\nNekZJEkPwrRdKpEk7YXhlqTGGO5lIkkl+Zuh7RVJ5pN8eC/HnbK3fbT/SfL9JF8Y+jq2x/c6I8k7\n+3r95Wiqfjiph+TbwJOSPKKqvgv8HH6UUkv33ar6yUkPocV5xr28fAR4Qff4dODi+55IclKSzyT5\nfJJ/SPKEhQcneVSSTUmu7fbzdgO6X5IDkpyX5LokNyT5lW79lCSfSnJ5kluSvDnJy7vvoxuTPL7b\n7xeSXNN9b30syZGLvMdMkg9073FdkmeM+7+zBYZ7ebkEOC3JwcCTgWuGnvsS8MyqOgF4I/CHixz/\ne8DHq+ok4NnAeUke1fPMmk6PGLpM8qFu7UzgW1X1NOBpwC8nWd099xTgV4H/CLwCOK77Pno3cHa3\nz98DJ3ffg5cAr1vkfc8H3ta9x0u647WAl0qWkaq6obsWeTqDs+9hhwKbk6wBCjhwkZd4DvDCJP+9\n2z4YOAa4uZeBNc0Wu1TyHODJSV7abR8KrAHuAa6rqtsAkvwT8NFunxsZnATA4Deh35fkKOAg4KuL\nvO/PAscn99/v45AkP1JV/7YP/puWDcO9/GwB3gqcAjxmaP0PgE9U1S92cf/kIscGeElVeeMuLSbA\n2VV15f+3mJwC3D20dO/Q9r38oDPvAP60qrZ0x7xpkfd4GIOz8n/fd2MvP14qWX42Af+jqm5csH4o\nP/hh5Rl7OPZK4Ox0pztJTuhlQrXqSuA1SQ4ESHLcg7yUNvw9uKfbNX6UH1xaIYk/IF2E4V5mqmpH\nVb19kaf+GPijJJ9nz/+n9QcMLqHckGRrty3d593ANuBzSW4C/pIH93/tbwLen+R69ny719cCs90P\nP7cxuG6uBfyVd0lqjGfcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1x/50R/3eSLya5\nKckvJXlqd9e765NcmeSo7j7n13W/sk2SP0py7oTH137Ge5VIA2uB/1tVLwBIcijwd8C6qppP8kvA\nuVX16iRnAJclObs77qcmNbT2T4ZbGrgR+JMkbwE+DHwTeBJwVXfrlgOA2wCqamuSv+72e3pV3TOZ\nkbW/MtwSUFX/mORE4PnA/wQ+Dmytqqfv4ZCfAO4CHjumEaX7eY1bApI8DvhOVf0NcB6Dyx8zSZ7e\nPX9gkid2j18MHA48C3hHksMmNLb2U95kSgKSPJdBsO8Fvge8BtgNvJ3B7UhXAH8GfAj4B+DUqro1\nyWuBp1bVnm5TKu1zhluSGuOlEklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqzP8D26SGnSPb\n8qAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "XiOOPON5CJNN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make bivariate [categorical plots](https://seaborn.pydata.org/generated/seaborn.catplot.html)" + ] + }, + { + "metadata": { + "id": "3RP8cnduCJNP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "6a7dc32a-826d-41e7-85ea-e24e57d5552f" + }, + "cell_type": "code", + "source": [ + "sns.catplot('sex', 'tip', data=tips, kind='strip', alpha=0.5);" + ], + "execution_count": 183, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeUpNd53/nvfd/K1TmH6Z6enIBJ\nGGSAAEiQgEmaQSRFUhKPAq20a0ryHtvr491ja49tyba8a0n2ObvLQ0tLWSJpEaTEHEGAIIg4GMwM\nJufOoTpVVw7ve/ePW52mexIw029V1/M56NP9vpVuoXt+ffu+9z5Xaa0RQgix9iyvGyCEENVKAlgI\nITwiASyEEB6RABZCCI9IAAshhEckgIUQwiMSwEII4REJYCGE8IgEsBBCeMTndQNuxtNPP62///3v\ne90MIYS4Wepm7lQRPeDJyUmvmyCEELddRQSwEEKsRxLAQgjhEQlgIYTwiASwEEJ4RAJYCCE8IgEs\nhBAekQAWQgiPSAALIYRHJICFEMIjdyyAlVJ/oZSaUEqdWHKuSSn1I6XU+dLnxjv1+tUgX3Q5NjjL\nSxcnmUzmvG6OEOIW3cke8P8HPH3VuX8BPKu13gY8WzoWb4PWmq8fGeInZyZ49dI0X3p1gJHZjNfN\nEkLcgjsWwFrrF4Dpq05/GPhi6esvAh+5U6+/3o3Gs4zGswvHjqs5PjTrYYuEELdqrceA27XWo6Wv\nx4D2a91RKfVbSqnDSqnDsVhsbVpXQWxrZbElS91UASYhRJnw7CKc1loD+jq3f15rfUhrfai1tXUN\nW1YZ2utC9LVEFo4DPosDvTKkLkQlWet6wONKqU6t9ahSqhOYWOPXX1c+vK+bS5NJUjmHLW011AQr\noryzEKJkrXvA3wR+tfT1rwLfWOPXX1csS7G1rZZ9PQ0SvkJUoDs5De3LwMvADqXUkFLqs8C/B96r\nlDoPPFk6FkKIqnTHuk1a609f46b33KnXFEKISiIr4YQQwiMSwEII4REJYCGE8IgEsBBCeEQCWAgh\nPCIBLIQQHpEAFkIIj0gACyGERySAhRDCIxLAQgjhEQlgIYTwiASwEEJ4RAJYCCE8IgEshBAekQAW\nQgiPSAALIYRHJICFEMIjEsBCCOERCWAhhPCIBLAQQnhEAlgIITwiAVzF5rIFCo7rdTOEqFp3bFt6\nUb6SuSLfOjbCWDxL0G/xxI42dnXWed0sIaqO9ICr0MsXpxiLZwHIFVx+cmaCbMHxuFVCVB8J4Co0\nncotO84XXRLZoketEaJ6SQBXob7m6LLjurCf5mjAo9YIUb1kDLgK3dvXhKM1FyaS1If9PLK1BctS\nXjdLiKojAVyFLEvx0JYWHtrS4nVThKhqMgQhhBAekQAWQgiPSAALIYRHJICFEMIjEsBCCOERCWAh\nhPCIBLAQQnhEAlgIITwiASyEEB6RABZCCI9IAAshhEckgIUQwiMSwEII4REJYCGE8IgEsBBCeEQC\nWAghPCIBLIQQHpEAFkIIj0gACyGERySAhRDCIxLAQgjhEQlgIYTwiASwEEJ4RAJYCCE84kkAK6X+\niVLqpFLqhFLqy0qpkBftEEIIL615ACuluoHfAw5pre8CbOBTa90OIYTwmldDED4grJTyARFgxKN2\nCCGEZ9Y8gLXWw8B/AgaAUSCutf7h1fdTSv2WUuqwUupwLBZb62YKIcQd58UQRCPwYWAT0AVElVK/\ncvX9tNaf11of0lofam1tXetmCiHEHefFEMSTwGWtdUxrXQC+DjzkQTuEEMJTXgTwAPCAUiqilFLA\ne4DTHrRDCCE85cUY8KvAM8AR4K1SGz6/1u0QQgiv+bx4Ua31vwb+tRevLYQQ5UJWwgkhhEckgIUQ\nwiMSwEII4REJYCGE8IgnF+HE2nJdzc8uTHJ6dI5owOaRba1saol63Swhqp70gKvA0aFZjvTPkMk7\nTCbzfOf4CJm843WzhKh6EsBVYHgms+y44GjG5rIetUYIMU8CuAp01C8vt2xbirbaoEetEULMkwCu\nAgd6GtjVWYelFDVBH0/t6SAalOF/Ibwm/wqrgM+2ePquDt63ux3LUl43RwhRIj3gKiLhK0R5kQAW\nQgiPSAALIYRHJICFEMIjEsBCCOERCWAhhPCIBLAQQnhEAlgIITwiASyEEB6RABZCCI9IAAshhEck\ngIUQwiMSwEII4REJYCGE8IgEsBBCeEQCWAghPCIBLIQQHpEAFkIIj0gACyGERySABclcEdfVXjdD\niKojm3JWsHimgNaahkjgbT1+JpXn28dHmEzmqQ2Z3ZJ7miK3uZVCiGuRAK5AWmt+cHKc06NzAGxu\njfLBvV3Yt7jp5vPnJphM5gFIZIv84OQYn31kE0rJ5p1CrAUZgqhAlydTC+ELcCmW4szY3HUesbqp\nUvjOS2SL5IruO26fEOLmSABXoHimsPJceuW5G9nYHF123FkfIuS333a7hBC3RgK4Am1qiS4bblAK\ntrTV3PLzPLa9lb0b6mmI+NnWXsP793bezmYKIW5AxoArUEMkwEcPdHNkYAbH1ezvaaC9LnTLzxPw\nWbxnV/sdaKEQ4mZIAJc5x9VkCg41weXfqp6miMxYELculwB/BCwZaioHEsBl7GIsyY9PjZPOO7TV\nBfmH+7qoC/m9bpaoRNk5OPE1SIyBPww73g+t271uVdWTMeAyVXRcfnjShC/AxFyOF89PetwqUbEu\nPWfCF6CQgTPfBufWL9yK20sCuEyl8g7ZgrPs3FQy51FrRMVLxZYfF3NmOEJ4SgK4TNWFfDTXLF/h\ndvW0MSFuWtOW5ceRJgg3etMWsUDGgMuUUooP7evihfOTTCdzbGqt4aEtzV43S1SqvkdBuzB1ASLN\nsOXdZv6i8JTSuvyLsBw6dEgfPnzY62YIIcTNuqnfbjIEIYQQHpEAFkIIj0gACyGERySAhRDCIxLA\nQgjhEQlgIYTwiASwEEJ4RAJYCCE84kkAK6UalFLPKKXOKKVOK6Ue9KIdQgjhJa+WIv8Z8H2t9ceV\nUgFACtuugZlU3mzEmcjT2xzh8R2tBH1SF1YIr6x5ACul6oF3Ab8GoLXOA/nrPUbcHt9+a5TJhKmo\ndmpkDksp3rtbdsQQwiteDEFsAmLAXyql3lRKfUEpJWW+rqPouJweneON/ulVN+S8Gel8cSF85w1M\np29H84QQb5MXAewDDgL/t9b6AJAC/sXVd1JK/ZZS6rBS6nAsFrv65qqhtebrbw7z/RNjvHBukr9+\npZ+JRPaWnyfst6kNLf+Dp7U2eLuaKYR4G7wI4CFgSGv9aun4GUwgL6O1/rzW+pDW+lBra+uaNrCc\njMazDM9kFo7zRZdjg/Fr3n8ymePceIJ0vrjsvFKKp+/qoD5stjTqrA/x+I7q/f8qRDlY8zFgrfWY\nUmpQKbVDa30WeA9waq3bUSlWKxZ6rRKir16a4qWLUwD4bcVHDnSzoXHx+uaGxgi//nAfuaJLyC8X\n34TwmlfzgD8H/I1S6jiwH/gjj9pR9rrqQ3Q3hBeO/bZif0/Divvlig6vXZ5eOC44mlcuTa+4n1JK\nwleIMuHJNDSt9VHgkBevXWmUUnz0YDdnxxJkCg7b2mpoiARW3K/oaIru8p7x1XvKCSHKi2xJVAH8\ntsVd3fXXvU806GNza5RLsdTCubtv8BghhLckgNeR99/dyfGhWaaSeTa1RNnWXut1k4QQ1yEBXIYm\nkzkKjktHXQh1Cxsn+m2LezY23cGWCSFuJwngMqK15rtvjXFuPAFAe12IXzjYLRfNhFinpBpaGRmc\nziyEL8D4XJYTw9ee8+u4mtcuT/PMG0O8cC4mF92EqDDSAy4jyVzxps7Ne/HCJEf6ZwAYnE4zk87z\n4f3dd6x9QojbS3rAZWRTS5Sgf/FbYinFjo5rX0g7N5ZYdnx5MkW+6N6x9gkhbq+b6gErpQ4Cj2AW\nZv1ca33kjraqSoUDNr94qIcj/TMUHM3eDfV01oevef+6sG9ZDzkSsPFZN3/RTgjhrRv2gJVS/wr4\nItAMtGCqmP3vd7ph1aqlJsj79nTwgb2d9DRdv0zyo9taCQfMBTq/rXh8RxuWBLAQFUNdq67Awh2U\nOgvs01pnS8dh4KjWescatA+AQ4cO6cOHD6/Vy1WUguMSS+RoigZktoQQ5eOmekI3MwQxAoSA+RqI\nQWD4bTZK3GZ+26Kr4drDFEKI8nUzARwHTiqlfoQZA34v8JpS6s8BtNa/dwfbJ4QQ69bNBPDflT7m\nPX9nmiKEENXlhgGstf7iWjRECCGqzTUDWCn1t1rrX1RKvcUqdcG11nvvaMuEEGKdu14P+PdLn08D\n/2zJeQX8xzvWIiGEqBLXDGCt9Wjpy61a6/6ltymldt7RVgkhKpvWMH4S5kagfgO07YJbqOxXLa43\nBPG7wP8EbC5tHTSvFvj5nW6YeGdyRYegz6bguFyZTBHwWfQ2RW6pvKUQq5odgNFjYAeh514IN668\nz6XnYKC07+7wG5CKwebH1radFeB6QxBfAr4H/DHLt41PaK1XbjYmysJ0Ks933xollsgRDdpk8g7z\nOxX1NEX42MFuCWHx9sWH4eiXQZdqjsROw/2/A76gOZ66aAL37PegtgOCdeb8yBEJ4FVccymy1jqu\ntb6itf601rp/yYeEbxl79vQ4sUQOgLNjCY4Ozi7cNjidpn8q7VXTxHowfnIxfAHyaZi+ZL6OD8Nb\nXzUhnJmBsRNQND+L2Cv3MRRSDa3iZPIOL12c5EenxhmcXhmmE6XwBVMvOJ13lm1jn3ekWpp4BwKr\n1Cfxl85NnjVjvwANvSaoMzNm7Lfv0bVrYwWResAVRGvNM28MMpnMA3ByJM5H9nfT1xJduE9vU4QL\nE0nAFPbJFJyFIYfakI++5ujKJxbiZnUdhPFTkJ4yx63bTdgChJZsAlvbaY57H4Se+yHavPZtrQAS\nwBVkJJ5dCF8wnY0TI3F6myKcGp3j2OAs9WE/9WEfRwZmqQv5+IUDXVyZylAX9vP+uzuxLcWpkTkS\n2QJb22porgl6+I7Empu+DPEhqO+Gps2L550iDL4GEyeheRtsfHBxXHepQATu/Ucw2w++ENR1Lt7W\nvB34oXn+aCv03Ac7/oHMfrgOCeAKEvKtHDEK+Wy+f3KMv319kEzBIVtwSOaKNIT9DLmaw1dmuHdT\nEy01QZ4/O4GrNVcmzdDFq5en+YWD3WxovH7ZS7FODLwCF59bPN78GGx8yHx9+L/Bme+AWwRlwfBj\n8PA/AXuViLAsaNq0/JxTgGNfNl+Hm8AXgL5HJHxvQMaAK0hzTZDdXXULx5GAze6uWl6+OEmmtB/c\nXLbAVDJHKm+COJUvMlAaKz4xHOfUyNzC4x1XL7tIJ9a5gVeWHw+WponNjcDwERO+YMZux07C9MWb\nf+6pC4vDEoEIoGD0+HUfIqQHXHGe2tPB3g31pHJFepuiFN3VLqqpax6pFbdJD6VqrOiNXud7r25w\n++oPuMHriatJD7gCddaH2dpWS8BnEQn4eGTr4s4Y9SE/LbUBokGbmpCPaNBHb2lnjbs3NLCne7EH\n7bMUB3obPHkPwgO9D111/KD5XNcFG+4Fy2+OlQWd+6B5y80/d/NWiLYsHvvD5jnEdd1wR4xyIDti\nXJ/WmrPjCY4PxWmrDbKlJcqbQ3G0q9nVWUsiV6Qu5GdLaw0AF2JJEtkCW1praIjI/MyqMju4eBFu\nfvYCgOvAyJtmnm/zVnMBzfbf2nMX82ZhhlOA1p0QrLm9ba8sN9X9lwAWQojb76YCWIYghBDCIxLA\nVcxxNYPTaSYS2RvfWQhx28ksiDIUzxQ4MjBDJu+wu7Nu2Uq32yWZK/LVw4PMpgsA7O6q46k9Hbf9\ndYQQ1yY94DJTdFy+eniQowOznB1L8PdHh+mfSt321zk6MLsQvgCnRuYYn5OecFXIzJpVb+OnzMU3\n4RnpAZeZwZkMiWxx4VhrOD2aYONtruGQyhdXnsutPCfWmblROPrXZukxmOXI+z7pbZuqmPSAy0y0\nNJ932bngynPv1K6OumXz5GtDPnqaZEnyujf0+mL4giklmRjzrj1VTnrAZaatLsSerjpOlpYMN0T8\nHOhdZceBd6i3OcJHD3RzamSOUMDmYG8jflt+H69/q0w7rYCpqOuVBHAZet+eDg70NpItOHQ1hLGt\nO7Okc2Nz9LYPbYgy130PxM4t1n1o6F1e0UysKQngMtVau7ZlIifmsmQLLt2Ndy7wRRmo3wCHfgNi\nZ8xKtbY9XreoqkkAC75/YpTTownADHn84qEeokH50Vi3os0QfdjrVgjkIlzVG4tnF8IXYDZdkBKV\nQqwRCeAqJ9PRhPCOBHCV622KUBtaHG5QCnZ11l3nEUKI20UG+tYJx9VciiXJFly2tEWJBG7uW+u3\nLT5xqIcjAzPkCg67O+tlPrAQa0QCeB3QWvO1I0MMz2QAePGCzafv66EhEmAuWyBXcK87q6I+7OeJ\nHW1r1VxRjlKTphB7pMnrllQVCeAyly+6PH92gitTKZqiQZ7Y0bpiJ+OhmcxC+AJkCw5HB2fRwLHB\nWbSGjvoQHz3QTch/+1fViQrmFOHEM2a3ZID23bDrQ7Kd0BqRMeAy9+KFGCdH5kjlHAan03zr2AhX\nF9F33JUrmaZSeY4OzC4schqLZ2V2g1hp/MRi+IIp0DN1C5txindEArjMDU5nlh3PpAskrpql0NsU\noWXJEIPfVmxoCK94rrlMYcU5UeWycfO5kIVibvk5ccfJEESZa6sNMp3KLxxHgzbRqy6wWZbiE/ds\n4PToHJmCw86OOiIBmyMDs2QLi+UGt7fXrlm7RYVo2gyvf6G0pbwyK+VuZTPOpSYvQP+LZk+47nug\n++Btbep6JAFc5h7d3koiV2R4JkNd2M/7drevulQ45LdXFO35+D0beP3KNLmiw56u+jtS2F1UuOQE\n1HaagjxKmYtwuTkI3+Ju2ZkZOPE10K45PvcDCNW//TCvEhLAZa4m6OMXD/WQKzoEbAt1CxdHWmuD\nvP9uKbQiriMzA+FG87H03NIdk2/GzJXF8J03fVkC+AZkDLjMzWULvHZ5mhPDc2QL7o0fIMStaNm6\n/Nj2QeOmxeNCFoYOw5UXTTBfS3SVaYzRltvTxnVMesBlLJ4p8KVXBxbGcY8OzvIrD/QS9N3aVLKC\n4/LCuRgXY0kaIgEe395KW13oTjRZVJrGPtjzERg+ArYfeh+EUGklpFOEN/+7mSMMMPAK3PNrqwdr\nfTf0PQwDr4J2oH0PdNy9Vu+iYnkWwEopGzgMDGutP+hVO8qN1pp03iESsHlzYIZMvojWUHBdxmYL\nHBuIc++mxoWhiGzBwWcpfEuKqRcdl4KjCZd213jl0hTHh8yV7dl0im+k83z2kc1YUnZSALTtMh9X\nmzxvdsuwfObCmnZh9ChsfdIcuw74l/wi3/Qu6HnA3M8vv+Bvhpc94N8HTgNSeKBkLJ7lu2+NMpHI\nMlRaWDE0nSFTKDI+lyVXdPneiTGe3N3Obz+2hdevzHAplsRvWzy0pZkDvY2cHInz03MxcgWXjc0R\n3n93J4PTGXJFh/PjSZK5In7b4p6NjRzcKKuexDX0vwynvwnDb4KTA18I7ADUdsCVn8PASyaA23bB\nzg+CVfqrzBfwtt0VxpMxYKXUBuADwBe8eP1y9cNTY8QzBfqn0sQSOeKZPFOpHEMzGTJ5B1drMgWH\nVy5N8fkXLnFxIonWZrXcT8/FGJ3N8OzpCXKlseL+qTSvX5mmrTbIwHSaZGn+sNaaly9NU3RkTFms\nIjkBl56HQC24BUjFIJ80t02ehQs/NsMTWpuFG6PHPG1uJfPqItyfAv8cuGYCKKV+Syl1WCl1OBaL\nrV3LPOK6mqmkme+bzhcBzcRcHqVMYFqWwm9buBryRb1iq3qt4fJUasWquFgix8NbWwiXliAHfBZb\n22rIF11SOdmSXKwiOWE+KwU17RBpMR/dB6GYh8LyxUGk1v+/zztlzQNYKfVBYEJr/cb17qe1/rzW\n+pDW+lBra+satc47lqXoLVUhawgHiGeKFB0H1wXbsrAUKMBnKSIBmwO9y+dpBnwWd3fXL4z7ztvY\nHCUcsPnQ/m7u7WviYG8DDZEATdEAdWG5BitW0dC7OKQQboJABJo3Lw5BhOqX33/prAlxS7z4F/gw\n8CGl1PuBEFCnlPprrfWveNCWsvLUXR28cC5GNGgzmTTLQn22Rb7oMDSTIWBbtNYG+cDeTj5xqIe3\nhuOcHI4TCfh4cEsztSE/H9nfzYsXJklkC+zoqOVAjwnqh7Y042rN5ViK5poAj25rvaU5xaKKhOrg\nro+ZqWeRJujcay6shepg8+OmB3zlRXDy0HUAWrd73eKKpa4u7LKmL67U48A/vdEsiEOHDunDhw+v\nTaPKxN+82s/EXG7hOOS3+e13ycwFISrETf1DlYUYZerhLS34bfM9VAoe3dYi4SvEOuNpD/hmVWMP\nGMzFuNF4lpaaIPVh/215zolEllcuTZPJF9ndWc/2jhpeujjF6GyWzoYQD21pvuWFHqLK5NMwccp8\n3bbbjBGLq91Ub0muwpSxSMDHltaa2/Z8+aLL194YXlhZdzGWInBSYSmFUorxuSzpnMMH9kr9CHEN\nhQy88ZeQnTPHA6/Aod+QEH6bJICryPBshmS2wGymwEQiy1ymyEwqT0d9iN1ddQR9NhdjSa+bKcrZ\nxKnF8AXIJcy5DYe8a1MFkwCuIq6rOTpoagSPzWWJBHxEAja5osvIbIZNLTU0RG7PUIcQ4sbkIlwV\nuRBL0lEfYn6tRtF12d5eg9+2KDiaSMDm3Ttlc05xHW27l88DDkQhWLdycYa4KdIDriK5oktjNEB9\n0ixx9lkWkaCPAz1h3rWjhQM9jcuK+gixgj8Mh37dDDskxs2ecie+ZspY7vzg6kV9xDXJv7YqcldX\nHefHk2QKDm21QSIBm2LRYWdnLdvb6iR8xc3xh82WQ6mYKcgDpjbE+R+BK/VFboX0gCtAOl8klXNo\nqQm8o9VrzdEgm1uiTKXyBGyLXNFhJJ7j3HiSi7EUH9nfTW+zXM0WNyk3t/y4kAa3CJZURLtZEsBl\n7vCVaV66OIXjalpqAnz04AZqgiu/bTOpPD89F2MymaO3KYLPUlyeShMN2KRyRY4NxVEKbKXoa45Q\ndDVH+meoC/uJZwrUhny8enlKArgaJWNQSEF9D8TOwtnvQuyMKcSz7b3Q9y4YeROG3zBDDRsfhtYd\nZrhh8HWzTHnmCuRT8O0/MLUh+h4xy5TnhiHauljkXSwjAVzGEtkCP78whVtaLDOZzPP65WmeWOVC\n2bePjzBZqqb2g5Nj5B2XzS01HOmf4eRInLbaIEqZOb81IR/RgI+84zKdyhPPFAj4LJoi0nOpOme+\nu1hO0vJBLgmjb5qe7NyIGWJIz5hAnnfy7+G+34TNT4A/ajbgdIuQnTUfc6NmF41Tfw+hBlAWbH+f\nCWSxjAz6lbFEtrgQvvNmM4tb1LuuZiaVZzadXwhfMFsZzWVM7d/JZI5CaYcMAFdrtrXW8NlH+miv\nCy3ssJwvukhtniqTGFtey3emH6YumDCdl5kxvd+ltAuz/aZi2sYHTaW0pZt6OjmYOrdY1lK7cPE5\nM04slpEecBlrrwtRG/KRyBYpOC6xRI72uiDxdIG84/LNYyPMZQqE/Bb5okvAZ36fzvduAepCPmxL\n4SvVlfBZilgyx9+8OoBC09sUoeC4NEYCNNUEPXuvwgP55TWlCUQhFzc91vkdjgM10NRnZjwstXQT\nzmibeew8ZYNm+Tknb4q72xI5S8n/jTJmW4qPHdzAixdi/ODkODVBH+NzOf7mtX6iAZu5TAHH1YzM\nZrEtRVPUTzLncHBjI7YyQXtXdz1tdUH6p9IopWirCS4UbU/lXYpugV2dZnxuV0etl29XrLWGjRCs\nNavZACKN0LXPjPVOXTRF2Hvug90fMj3YsbfAsszGnfXdi8+z6VHITJvecmLUjAFHWxZnSAA0bTGz\nJ8QyUoynApwameMHJ8eWnZtM5qgJ+jg5El8YXvjMgxt5clc7odLuF9mCQ8C2sCxFKlvEsuAvX7pC\nruCQL7poDaNzWd6zs53dXXVsbbt9dSdEhcjMwuBr5iJcx15o3lLacLMIqOWbaxbzpjSffY3VkoWM\n6f2iTfH2kTdh+pK5mNdzf7XtFyfFeNaL+eGDpTY0hjk1MrcQvnVhP+fHkzy4uXkhgOc/A0RD5lvt\ntyxeGZgiVxqyuLevkQ/t71qDdyHKUrjBXCBbyvavHrI3CtCre7jdB82HuCa5CFcBokGbgek0RwZm\n6J9KEQ3afPq+XnqbI0QCNq21QbaVeq/Z4vUnwmv0srnEct1NAFDMmV0uJs7c+L7itpEecJkrOi7f\nOT7KhoYwkYCN1rCzo46GSICP39PDN+xh4ukC/VMpGiIBwv7r/07NFVzu6qrD0ZqAbeFos+mnbE9U\nxWaH4Pv/qxnDBTPP94l/aYYbnCIMvWbGdhv6zFQyS/ptt4v8nyxzlyZTxNMFLEvRUhOktTbI2FwW\ngE0tUR7e2sJkMkfQZ1Mf9vPVw0Pkiit3O3ZczXNnJzg7nuCN/hkGpzNooK85KuFb7Y59aTF8Afpf\nWiy4fvY7cOmnEDsH538Il5/3pInrlfSAy4zjasbmsvgtxU/OTDA4k+bYUJzO+hBdDWaMrbV2cbpY\nIltg85Ki7em8w8BUmo3NUU6OxEnlHGpCNs+dmeCVS9PYliIa9JHMFYgEbN63p33N36MoM9nZq05o\nSE+b3u/VQxJjJ2DLu9esaeudBHAZmUnl+dqRIRLZIoPTaWxL0dUQpr0uyMVYkoaIj12d9Ty4uXnh\nMZHAym9hyG/x9SNDjMZNT/n48OzC8mXH1bhas7+nka1ttas+XlSZjn1mNZtTMBfSmjabAuuWbWZB\n5NOL9106t1e8Y/Kvr4y8cmmKRNasFkrnHWYzeVK5IlOpPD5LgVY8vqNt2eyGfRsaODeeYDyeRQN7\nuurx2dZC+GYLDv2TZsK9CzSGA8zv7dnbJHUfqobrmFVuhQy0bFsMUteB5Dh0HTT1HOwg7P7I4oyG\nLe82y5W1axZRbHnCs7ewHkkAl5FEbnGpZmPUTyyRNcMRtkXAZxP02xy+Ms379nQs3C8csNnYFKF/\nKo2lwLZALZnbcDGWJO9o0FBkn5SSAAAgAElEQVQf8ZPKF9na1sCj21rYIQsvqoPWcOwrMDtgji/+\nxBTSSYyaVW+pSdPrbdpsbi9mFx/bcTc09pllxXVdspjiNpMALiM72msZnjE7C7TVhrCUYnQ2Q8Bn\ns6ExjG0pMoXlF9iGZtIcGVgcYjg9mmBDY4QtbTVcnEhweTKF1pqgzyKdL7K9rZY//NBuokHZeqhq\nzA4shi+YnvDEaRO4rgOT56BzLwuTEmuv2pQ1WGs+4sOgHVM1TS7c3hYSwGVkX08DtqU4O5ZgNJ4h\nnS9yMZZEoZhJ5eluDLGtvYZvHRuhuSbA3g31vHAuxtmxhJnfi5lmdm48QV3IRqPQ2vR+45kCtmXh\nar0QvpdiSU6OzDEaz1AX9rO1tYYDvY0LBXrEOrG0uE56GoZKq0qdAjRtgoZes/DCdaB5K2x6l7k9\nn4LBV001tJkrpp4DQG0H7P8l8JUuBmttVr1dfsGMF0caIT6yuEvGhnvW7K1WGgngMnNXdz3Dsxl+\ndniSc2MJMkUH19XMZgqA5rtvjbKtrZYLE6bsZMhnMzybZjqVJ+izmUzmCPttfLYi72jcYoG5vAln\n21JcmkzxysUpOupDfOPoCJcnk4zP5Qj4LPZvaGAmXeC9u2VmxLrS2GdqM0yeM3N601NmqfDom5BP\nmmXCD/2eKUdpLV5f4Pj/MEV40pOmx9y8zYRvYszMhpgP1isvwltfXRxjjg+afeJqO2DkKDz1R9Au\nWxWtRuYBlxmtNW8OzBBLZCm6LtpdrNUxnsgxnczjao3jas6MJrAtRW3IT8BnkcgWCPos8o6L42oK\nRYe8a0aE/baFz7aIBGxeOB/j9KjZzWC+jGW+6DKXLXBmdG61ZolKZtlw4DMmEO2g6fH6Q6bHm501\nMx58QXM/p2iGK6YuLVZAcwrmc2pi8TnzycWvx0+Y7YnA1JYo5syHUzClKWXu8DVJD7jMKKWoC/nN\n/mxKgfkPpcz0Mp9tLRwH/Ra2pWgI+3FcTU2wyHQqj1swtX0tpYiEbJxMkZDfJuBTBHwW9WE/kdKY\nsd9WC9XR/La1cF6sM/4QdO6D0bdMkPrDJmx7DpkABnMx7tiXTVF2p2juV9sB4SbTO7ZLtSAs2+yO\nPC8QXawdYfsp/cSaC3xgHi9WJf/aytCTu9s5N54gnimYHrCC1pogB3obCfqthZ0tPrK/m8HpDN2N\nYVL5ItvbGjg6FCdXcMgWHWpDfpqifqLJPOm8OW6rDfHRg92E/TYXJ5JsbI5yfjxBS02Q+rCfx7a3\neP32xZ2y4T4zJHDlRTOe29AD254yF9gArvzMhC+Y3/DTl82wgi9oxoZ7HoBAxCxHrmldfN7Nj5sx\n4my8FLalamiWbS707Xh6bd9nBZFylGUqlStyfjzByGyGhoifltog3Q0RfLZiLJ6lMRqgLuQnmSsy\nmcjRUhNgKpWnNuhjeDZDvujSXGN2Ps4WXMbiGZRSHOhtWNj92NQSzqCAoqtpqwvKwoz1znVg5jJk\n58zYcGRJ7/TIX5mZDmB2x4gPQNseE8aRJjNOHLjG3PFirrQvXNIE8Uy/ef5N71o+rlw9pBxlJYsG\nfezvbWR/b+OK2zY2L65Gqgn6Fqag1YTMn4Gr7Wyx2mabtqXokcUY1cWyTW92NW17FgM4nzS7YcwH\ntNZmnDewcfXH+oLQsh2OfNHsCQdmSKN1J9R1rv4YIQEsRFXLp8EXMhXONtxjAnryPARqITO1eD9f\nwIwHr8Z1zeKNVGwxfMFMfxt5UwL4OiSA14GLsSRHB2bx2Yp9PfXUBP00RgIyn1dcWy4JJ/8O4kPm\nItr2p6F1O3TtNx+uC5d+AuMnzRjxlncvzvtdKnYWzn3fBHkgasaW7SWF25VMtLoeCeAKNxrP8K1j\nI+jSYotn3hhiU3OE6XSBbW013NvXxAObm7EkjMVSl39qwhfMgosz34amzy3OZrAs2Pqk+biWYt48\nrlhaoJFPQiG9GMC+AHTLIozrkQCucBcnUsxfR708mSJXcDg2FCfkt0nnHVwNAZ/FoT6ZCiSWSF61\ny3ExZy7MRZtXv/9qsvHF8AXMdJ0dZtPOfNoU/QnV3ZbmrlcSwGWm6Li8fmWG4dkMXfUhDvU1LWw3\nv5qGiOmxaK3JFhwKzuKWRNlS3YgrU2kJYLFc46blW82H6pfPiLgZkWYTsNkli3eat5pCP+KmyABN\nmXnubIxXLk0xOJ3m1cvTPHt6/Lr339lRy+ZWs6tFYzRAR32YcKlcZVPU/CnYUlNVu9GKm9H3KGy4\n1wRv0ya4+xO3XmDHsszjLNuMBRdSUN9rFnGMHjO1IRLX//mtdtIDLjPnxhNXHSd5+q5r79mWyjnc\n1V3P/ZuasC3FieE5jgzMMDaXpb02xIbGMPdvWvyzUvZ/E4AplLPtSfPxTmTjZm5x6w5zfOKrEG2D\nuRFz3P8y7P3EYqlLsYwEcJmpC/kW6jMA+H2K58/GSOaK7OqsZWvbYg3fo4OzPH92Aq3NkuIP7+/m\niZ1tPLGzjaLjknfchYUVY/EsPzo9zlQyx8bmCE/t6ZBFF9WmmAPUjbeXvxVTF5YfZ+dMJbSaNnOs\nXRh6QwL4GuRfYJl5bHsb3zo+Qr7oooDLsRRXJlM0RwM8f3aCjvogj21v42BvIz+/MLlwAa7gaF66\nOMknm3oB8JWK74zMZhiYSvGzC5P4SrvZnh0zK+we297Gjo5a/LaMRK1rrgvnvmfqQGRnTTGePR8x\nBdaXKmTNZpzaNeO46SmYHTT3a9q0/Pkmz0Fm2kxniw+aucSRZkCB/6rFPbKL8jVJAJeZ3uYIv/no\nZsbnsnz1jUEGps1+XIevTJPJO0SDPg5fmeX9d3Usu+AGZhujpU4Mx/nRqXHyRZcjAzN0N4RpqQly\nYiSO31bki5rjQ3E+dW+PTFNbzyZOwuhxU9thbgjGjpuKZwd+2ex4AaZO8E//g9kduabdlKL0Rxfn\n/m56F/Q9bL4+/U1TnjIbh7G3zLQzJwfRVjj0G+Y5Jk6b+1o+U4NCrEp+NZWhgM8iV3TJFkzAaq2Z\nShXIO3phccVPz8fY1LJ8g8Tdncun/Lx+ZRowwxMhv81oPMPYXAbH1dSWli2Pz2UZnEkj1rHkhBmn\nTYwsniukYOAV87VTgBf/swnT+JBZvTZ+cnn5ycFXzXLkzOxiuM4NA9rUh9hwnynEM3wEpi6a1W9b\n3gP3/aYp+iNWJQFcxsJ+m4760MKxbSlqQot/tDy1p4OHt5q93d67u537Nq0+jUgpxba2GmpDfmzL\noikaYOMqtSHEOrV0+AAABaElNUamL0FuycVf7S5WRVs8ef3XUBZMnTfDEk7eLElWQLjhHTR8/ZMh\niDK1qSVKS63586+9LkTAtkgXnIVx3PfsbCfkt68ZugCHNjbx49I0tmjQx68+1MfOjlq+8vog+aK7\n8Nw9jRLG61rTZtj1ATP+OztQKsgeNjthgBkmiDSDLwxFsych9RvMbIZ5PQ+YaWrhBjM+PHHajA1n\nZs3nfALCjcvHf+OD0CPDD9cj5SjLWL5o9nfLFV22t9dwamSOU6Nz7Omq475Ny1cszaTyHB+Oo7Vm\n74aGhTnAI7MZBqfTtNeF6CsNWcxlC5wfTxD02XIRrppobYYHkuOmVzx/Ec514diXzBhxKmYuqD3y\nv4Cbv/FFuHCz+WwH4MKPYGmebH4cNj64lu+wnNzURRUJ4HUgmSvyVy9fIVcaMw74LD7z4EaiAR9H\nBmYYmc3QURfino2NC7WAx+JZjg7OoDXs722gs162G686Wi8WUm/abIK5mDNLiFcrvHMjE6fhwrOm\nHkT7HlPs3a7aP7KlHnC1ODeeWAhfKPWcxxLMZQscG4wDcCmWYiZd4Om7OphN5/nq4UGKpa2ILkwk\n+ZUHNtIYlRVzVeXMt83mmmCK8Oz/ZRO+b1fbLvOhtWxbf5MkgNeB4Cq1IoI+mzNj08vOHR2cIRKw\nuDyZJlNwFoYeMgWHbx0foa85ys7OWtpqQyueT6wThayZDWH5F8MXzEyIwVdgz0dv/rmcopnWFqxb\nXkdCwvemSQCvA9vbazk2GGd8LgtAa22QHR21vDk4Q65gVtWl80XOjycXtq4fnE6zd0MDSpn5wkPT\nGc6PJ3mjf4Zfur+X9joJ4XVnpt9sH+8UzMW27JyZ8zvPKS5+nU+Z4YlI8+qF2NPTcPRLZvaEUqYC\n2ubH7vhbWG8kgCuM62oO98/QP5WipTbIA5uaCQdsPnVvDwPTaTSwsSmCZSneta2V77w1Sr7oMp3K\n09NkxnmbogFiiRyzmTwKmErlyRYcxhNZgj6L7e01fGBv13XbISrQpecWt5j3hSHTb2Y6KGU+ug+a\n22YH4fhXFgN544PmgtpS/S8tTl3TGgZeNpt1SvnJWyIBXGFeuji1sMBiaCbDVDLPx+/ZgGWphVkO\n8/paonz2kU3EEjkuxZIcGZgFzHb1uzrreGRrM5PJHOfGF+d85oougzOZtXtDYu1cPbe3ZTtsfbcp\npN6600w9A+j/+fLe8OBrZsqaf8mF2vxVz6W16TVLAN8SmX9UYa6uljY4nSazZAmy6y6f1RLy2/Q0\nRbinr4naJYs4uhvC3LOxic2tNdSH/Qvn/baiVzbqXJ/a9yw/btsFvQ+YXS/mwxdKRXuWcB2zuOJ6\nzxVtufaeceKapAdcYerCfuKZwsJxOGAT8FkMTqd59vQ4s5kCm1qivG93B+HA4nbgNUEfn3lwI5cn\nU/hti03NUSxLsamlhkN9jQzPZCi6mpaaIIf6Vu7ELNaBTY+Z/d1mrpix3/mFGFfr2r9YThKgeYup\nG7xUx92gbIidNrfNL9QQt0TmAVeQoZk0Pz49zuuXZ2iM+OmoD/Hk7na2tdXy3168RCpnesJaazY2\nR/nA3k5CpeLsk8kcYb9NNLjyd24yV+T44Cw5x2VPV53MghAwecEsLY40m7Fd23/jx4ilynMhhlKq\nB/groB2zwPzzWus/u95jqimAjw3O8NLFKVpqA3TVhdnZWUs67zA8k+Ybx0bIFVwmSrMdDvY24QIN\nYR+DMxkaIgFm0nne7J+hqDV7Ouu4a0M9SsF0soClFHd119EUDVAf9tNX6gWLKpSeNqvelDK94fke\n7tyIWV7sC0Jdt9nZYuRNsxJu40OmB52dg/Skud0XNNPZYmfNMET3IQhGr//a1aFsA7gT6NRaH1FK\n1QJvAB/RWp+61mOqJYC/8toA/89PLzKbKZDOFakL+agLB6gN+RifyzKTzpMv6oWyKJaCjrogfS1R\nbGVRH/Hz8wuTzGUKuKW58EGfRUddkCd2thNL5njjygxhv01TNMBjO1r57COblw1ViCpw6Xk490MY\nP2GK6HTuhR0fgJnLcOVFsyTZHzazHOaGzWMCUdj6Htj9Ybj4vCnYY/vNcMblF0wJSjsAnfvhff8G\n2nd7+AbLQnmuhNNajwKjpa8TSqnTQDdwzQCuBlprvnp4iFzBIVu6qBbPFHA0TCVzKMWy8AVwNUwm\n82hg34YGBqdTpHJFNOZPC60hW3CZSOQ5OjjLaDxLMlvAcV1yjqkRfM/gLA9uuYWdcEVly8ZNGcqZ\nK+CWZjrMDsLJr5upaTNXAA2JUUiMmaANRM0Mh6HDZhpbuLToYvqyCd+cWW2Jkze1Jo5+CZ76tx68\nucrj6SwIpVQfcAB4dZXbfkspdVgpdTgWi61109ac1lBwHVxgPmY14GqNozXqGr9QXa1J5x1SOYeN\nzVFCfmtZPRTzHC6xRA7HdVFKYVsKrTUzqQLpfHHV5xXrVD5tftiWzmpw8ua8kzeBC2bmg+ssHoOZ\nHbF0elohbUJ82Q9cEbIzd/Y9rCOeBbBSqgb4GvAHWuu5q2/XWn9ea31Ia32otbV17Ru4xixL8e6d\n7fiUWig5GfbbhPw2dWE/AZ+16pJjv20R9Nncv7mRg72N1Ib8LB3WtRWE/D62tEZpqw1RE/QtbMo5\nv2JOVJHaDjNWu3QFXLTNXGiLNC2OBQdrzP3m5/4qGzr2mmlr8+p7zfPZSwr3hJugT1bE3SxPpqEp\npfyY8P0brfXXvWhDOfrHT2ylqy7Mc2fHSRUcuurD9DVHCfotLsdSpPIFhqez9M+kSOWLtESCdDSE\n2dZWw8fu6aEu5GcuU+CZN4aYSuWwlCIcsNnZUceff/oA3zo2yssXpxiNZ2irC/HPntrBBqkFXF2U\ngn2fNtXPRo+ZWsCd+8yUtGwcmrbA5BmItJgylOOnzFBD9z1mCyNlmd0xkuPmOQ5+Bl7/AoweNeG7\n95Ow64Nev8uK4cVFOAV8EZjWWv/BzTymWi7C3YoTw3He6Dd/6t2zsZG7uk3PZXA6zTNvDJEpOEzM\nZVFK8an7erh/UzNaa0biZgZFV31ItqcXt0cuCSe+ZmZQ+EOmDGX7bjNenJ4yU9mqbxpbeV6EAx4G\nPgO8pZQ6Wjr3L7XW3/WgLRXrru76hdBdqqcpwj0bGzk6OEukJcrOjlru3Wgumiil6G6Qur/iNrv8\nwuLCjUIWzn7XBO6Zb5tjX9BUWVuxNZKQhRjr1FymwGuXp3j50jS5gsP29hoe3d5Kb1N0YWNPIW6L\nN764fOUcmF01itnF40gT3P/ba9sub5VtD1jcBmPxLEMzZquhnlVqNzx/Lsazp8cZi2fRWnNhIsmP\nTk1w3+YmHtrSwj0bZbmxuE2atywP4FD9ymI9mdm1bVOFkACuQCeG4/zo1PjC8QObm5fN5c0WHC7F\nkiSyZspQKu+QzBbpqA8xlynwwrkYfc0RmmvexrYzojrEzpot6us3QOuO1e+jtZkr3LzdTEeLnTMb\nc255wpSnXFrw/VrPUeUkgCvQfDnKeUcGZrh/UxMXY0leujhFJl9kLJ6lNmiTyhUpFF0sS+G31UJt\niPG5LIlsEdtSbGgMywW5auU6ZmbD0u//5Z+ZFXFgSlH2PQyb3rX8ccUcHPvKYs+3fTfc95uLz7Pt\nKQjUmBCv64K+R+/8e6lAEsAV6Ophe6018WyB7741hrvkxkjAR3NUk3dcQj6Lbe21WEqh0fz84hTJ\nUg+5uyHMx+7ZIGPD1aSQNRfJpi6YLYW2P2WGEgCGr7reMvT6ygAePbZ82GHkmFmK3LQFmreCL2B6\nwuK6JIAr0MGNjTx3ZmLheH9PI+NzWVytSeWK+GxFe12ITS1R9vU00Fkf4sRwnGODs8SzppTl6GyG\n2pCZGjQ8m+FiLMn2dlmUUTWu/Awmz5uvs3E49Q148B+b4LSuigVrlSlk2SVrpwoZE8iZabPAo3Gj\nmWssf1XdkARwBdrf00BzNMBg6SLcltYaRmYznBiOk8yZXm1XQ5j37Gpj05JdMs6NJ5lIZPHbFvFM\nga1tNbSUxoGzBWfV1xLrVGJ0+XExZwrq1LbDxofh3A8Wb+t7eOXj23aZnrIu1Y1Am/FfMHvPxQeh\nofeONX+9kAAuc7mig60UPnv5MuTW2iBdDeGFYYMrkylaa4Nkiw6Oq3Fcl87SxponhuP8+PQ4V6ZS\nADhuEY1maCZNczRAOOBjS2vN2r4x4a2GXogPLx4HImbBBJi94WraIT4AjZtW3+mivhvu/rgZnnDy\nEG01Y8nzcknZnv4mSACXKcfV/PDkGGdLWxB11YfY2VnHxuYIz52JcXkyRchv89j2VnZ31TGXLdBe\nF6K9Llj6uVfMpPO8cnmaH50aZ3wuSypXJBywmUrlTI9XQ8Bn8Y8e2Uyu6BIJaLkYVy02PmyGDmJn\nTM9165Ngl+Kg/2WzL5zrQPsk7Hg/WFeVLJ26CGe/Z4LWKcDYW6Ad8EdN/QitzQKN3R+Gus61f38V\nQgK4TB0fmuXMWIKi6/LWUJyXiy57NyRJ5x3qw378tsV0KsffvTlEfaiPRLbI8GyGttogftsiHLCJ\nJfNcmEgSKdX7LTgu2ZTDTCpPyG/TVhtiPJ7lT589xz29TTTXBPjw/m6aogGP372442w/7PgH5mOp\nxLipFzxv7IQpvD6/YzKYYD79LRPgbsHUgQjUmg05Z/tN0XalzJDGmW+b2RFiVRLAZWoyacoFTiXz\n5IqmJGA67zCZzFF0NMlckclkjoLjcno0wb4N9QR9FsOzGZ7c1c6DW5p59ZKZrtZWGySZKxJP58kU\nHGxLYVsWPgtiyQJKKXJFh9l0gZ+dj/Hh/d2evW/hseT4ynOpq8rB5uZM+IL5rF0zD7ixz4wHL10B\nl5oE1wVL9v9djfxfKVNX70ysFNSF/NSH/SRzBSaTZufabMEhV3QYT+RoqQnS12zqP7TUBNnYHCk9\n1sz1bYgGeXBzM621IUAzlzHF22tCPsKl+cGz6QKiijX0rhxuaOxbfhxqMEuLwRRrt/wQbli8Lbxk\nlWXjRgnf65AecJna0VFLIlvgyMAMc9kCrTVBAj6Lra01BP0Wz56eIOCzaIr4mU4XyBcXC2fPX5jb\n01VHMlfk1MgcBcdmV0ctdWEfjobz4wl8tmJbfXjZQozNrbKfV1ULN8CeXzDT1Jy8WVY88AoMHzF7\nwjVuNL2Buz4GF541e8Pt+6QZB86nYP8vmRkV8UEz9rv1vV6/o7ImxXgqQCbvcHrMzLvc2WEWU/zl\nz6+QLTjkiw6vXZmhIeKjJRpiX089n7q3d8Vmm66r+auXrzCzpIf71J4OeprCvHRxiqlknr6WCPdv\napYFGcKYvmxWu82zfKagTqjOuzZVDinGs16EAzYHe5cXz/nFQxs43D/D+fEEOztq0VpjW4qaoH/V\nnY4tS/GxezZw+IrpUW9vr2VXp/mH9NSeVaYZCTF1YfmxWzQbd3bu86Y965AEcIVqrgny1J4OJhI5\nCs7iXzGXJpOcHo2TyDr0NkXoqA8RzxS4MJEg7Pfx6LaWFXOKhVjV/DjvvHwSpvvNVLPmLTLH9zaQ\nAK5wwavCdHA6zXeOj2JbFi8puLeviaODswtjxCeGw3zi0AaZ7yturGOfGYaYPG/GenMJmDhpPjYc\ngm0yvvtOSVeowj2wuRlfacjBcfXCFDMwc+G/+9YombzD/Fj/8GxmYVsiIa7L9pnVbg/+z9CyzayK\nmzfyprnYJt4R6QFXuN7mCL/+yCYGp9PUh30888YwjmvCNl90uTCRAEwZys2tUepCfirhwqsoI6E6\nU+lsKa1XluUTt0x6wOtATdDHrs46uhoi7OtpWDjfP5Wiqz6Mpcx84QsTSTrqg7IvnLh1PfcvH/Pt\n2m824BTviPSA15l3bWthQ2OYWCKHUqaT0l4XYiqVx2crnr6rU8Z/xa1r32MWWExfNoV3WraZ87Fz\ncOUFKOZNKG98yNt2VhgJ4HVGKcWW1hq2tNaQyBY5MRwn6LfpagjTFA3QEK667cHF7VLXZT7mZeNw\n8u/MUmSASz81Id22y5v2VSAZgljHHt3Wwq7OWsIBm56mCB/cK71fsUR62qxee7tmBxfDd97MlXfU\npGojPeAKMpHI8uL5yYVi6g9tabnuqrWQ3+bpu6QUoLhKIQsnnjEBqizovR82P778PlqbkpTjJ029\nh82Pmw06l7q6TnB2FobfMM/bcbfpCV/4sSnm07gJtrzb7LghFkgPuEI4ruYbb47QP5VmNl3g8JUZ\nDl+1OacQN2X4sAlJMD3Y/pcheVXFs5E3zeac6Wlz3+N/u3LaWbTF1BH2BU2JyvQ0YEF6ypS0fPm/\nmjnEmVnzfBefXYt3V1EkgCvEVDK3sN3QvP6ptEetERUtM3Pjc9OXlh8XczA3zAo998LDv28K+DRt\nXpwp4RQW95y71nMKCeBKURf247eXDze01Mqfc+JtaNmx/NgXXLl/W03b8mNlQaRl9eezbKjrWD5N\nzfKZ2RJLRa96TiEBXClCfpv37u4gXNrdorsxzAObmz1ulahIrdth5wegocdMJ9v/Syvn9Pbcv7hN\nvS9olh1frwpapKm0rZHfBHHrdrj/d8zuGGACfet77sz7qWBSjrLCOK4mX3QXgliIOyqfNqvg7Ju8\nXu8UTNU0f2mxj+tCIQ3Bqtv0VcpRrke2pSR8xdoJRG58n6Vsv/mYZ1nVGL43TYYghBDCIxLAQgjh\nEQlgIYTwiASwEEJ4RAJYCCE8IgEshBAekQAWQgiPSAALIYRHJICFEMIjEsBCCOERCWAhhPCIBLAQ\nQnikIqqhKaViQL/X7agQLcCk140Q65L8bN28Sa310ze6U0UEsLh5SqnDWutDXrdDrD/ys3X7yRCE\nEEJ4RAJYCCE8IgG8/nze6waIdUt+tm4zGQMWQgiPSA9YCCE8IgEshBAekQCuAEoprZT66yXHPqVU\nTCn17Rs87vEb3Uesf0opRyl1dMlH3x18rV9TSv3XO/X8643silwZUsBdSqmw1joDvBcY9rhNonJk\ntNb7vW6EWEl6wJXju8AHSl9/Gvjy/A1KqfuUUi8rpd5USr2klNpx9YOVUlGl1F8opV4r3e/Da9Ru\nUYaUUrZS6k+UUq8rpY4rpX67dP5xpdRPlVLfUEpdUkr9e6XUL5d+bt5SSm0p3e8fKqVeLf0s/Vgp\n1b7Ka7Qqpb5Weo3XlVIPr/X7LHcSwJXjK8CnlFIhYC/w6pLbzgCPaq0PAP8K+KNVHv+/AT/RWt8H\nPAH8iVIqeofbLMpDeMnww9+Vzn0WiGut7wXuBX5TKbWpdNs+4HeAXcBngO2ln5svAJ8r3edF4IHS\nz9xXgH++yuv+GfCfS6/xsdLjxRIyBFEhtNbHS2N3n8b0hpeqB76olNoGaMC/ylO8D/iQUuqflo5D\nQC9w+o40WJST1YYg3gfsVUp9vHRcD2wD8sDrWutRAKXUReCHpfu8hfnlDbAB+B9KqU4gAFxe5XWf\nBHYrpeaP65RSNVrr5G14T+uCBHBl+Sbwn4DHgeYl5/8N8JzW+qOlkH5+lccq4GNa67N3tomiQijg\nc1rrHyw7qdTjQG7JKXfJsctiZvwX4P/SWn+z9Jg/XOU1LEwvOXv7mr2+yBBEZfkL4P/QWr911fl6\nFi/K/do1HvsD4HOq1B1RSh24Iy0UleIHwO8qpfwASqnttzgktfRn7levcZ8fsjhkgVJKLgReRQK4\ngmith7TWf77KTf8R+EIRQhIAAAG2SURBVGOl1Jtc+6+af4MZmjiulDpZOhbV6wvAKeCIUuoE8P9y\na38R/yHwVaXUG1y7ROXvAYdKF/lOYcaVxRKyFFkIITwiPWAhhPCIBLAQQnhEAlgIITwiASyEEB6R\nABZCCI9IAAshhEckgIUQwiMSwGLdKlWA+45S6phS6oRS6pNKqXtK1b7eUEr9QCnVWaqv/HppSS1K\nqT9WSv07j5svqoDUghDr2dPAiNb6AwBKqXrge8CHtdYxpdQngX+ntf4NpdSvAc8opT5Xetz9XjVa\nVA8JYLGevQX8n0qp/wB8G5gB7gJ+VCqJYQOjAFrrk0qp/16634Na67w3TRbVRAJYrFta63NKqYPA\n+4F/C/wEOKm1fvAaD7kbmAXa1qiJosrJGLBYt5RSXUBaa/3XwJ9ghhValVIPlm73K6X2lL7+BaAJ\neBfwX5RSDR41W1QRKcYj1i2l1FOY4HWBAvC7QBH4c0w5RR/wp/z/7dwxEYBAFEPBnCYk4AdruMDI\nCfkooGMmza6IV6RIcid5kpwzs9daV5JjZr5uFuEXAgxQYoIAKBFggBIBBigRYIASAQYoEWCAEgEG\nKHkBGTVXRfK3qa0AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "GIzSIMg4CJNU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 3. Flights" + ] + }, + { + "metadata": { + "id": "SO4nEAkaCJNV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Load dataset" + ] + }, + { + "metadata": { + "id": "LjxGhB-sCJNX", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "flights = sns.load_dataset('flights')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Czfk1FO-CJNZ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the data's shape" + ] + }, + { + "metadata": { + "id": "w4khqV87CJNa", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "b338f6d3-d929-4001-8dd9-1e7247e3420c" + }, + "cell_type": "code", + "source": [ + "flights.shape" + ], + "execution_count": 125, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(144, 3)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 125 + } + ] + }, + { + "metadata": { + "id": "zpwqxs2qCJNc", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the first 5 rows" + ] + }, + { + "metadata": { + "id": "uG7dN_EwCJNe", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "af8d058c-790c-41c7-97ba-70b690519451" + }, + "cell_type": "code", + "source": [ + "flights.head()" + ], + "execution_count": 126, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthpassengers
01949January112
11949February118
21949March132
31949April129
41949May121
\n", + "
" + ], + "text/plain": [ + " year month passengers\n", + "0 1949 January 112\n", + "1 1949 February 118\n", + "2 1949 March 132\n", + "3 1949 April 129\n", + "4 1949 May 121" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 126 + } + ] + }, + { + "metadata": { + "id": "Yq4waXa7CJNh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Describe the data" + ] + }, + { + "metadata": { + "id": "rCVQaIGMCJNi", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "6293f48a-9b89-40c0-ee93-1373fb7e1d76" + }, + "cell_type": "code", + "source": [ + "flights.describe()" + ], + "execution_count": 127, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearpassengers
count144.000000144.000000
mean1954.500000280.298611
std3.464102119.966317
min1949.000000104.000000
25%1951.750000180.000000
50%1954.500000265.500000
75%1957.250000360.500000
max1960.000000622.000000
\n", + "
" + ], + "text/plain": [ + " year passengers\n", + "count 144.000000 144.000000\n", + "mean 1954.500000 280.298611\n", + "std 3.464102 119.966317\n", + "min 1949.000000 104.000000\n", + "25% 1951.750000 180.000000\n", + "50% 1954.500000 265.500000\n", + "75% 1957.250000 360.500000\n", + "max 1960.000000 622.000000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 127 + } + ] + }, + { + "metadata": { + "id": "VePEZjHeCJNn", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Plot year & passengers" + ] + }, + { + "metadata": { + "id": "JTiQ9NQfCJNo", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 283 + }, + "outputId": "2a094cbf-9718-49a3-db02-de8915db4656" + }, + "cell_type": "code", + "source": [ + "sns.stripplot(x='year', y='passengers', data=flights);" + ], + "execution_count": 137, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4HFe5+PHvu02rYjWrWLYludtx\niR1bcZwe4nRSbyotAQKBCz8gdLjP5UIg9156SC4QEgi5JtwAIT2QBNKcnjiuce9VlmXJ6nXb+f0x\nI3slre2VPSN5V+/nefbRzpmZfc9Kq3l3zpk5R4wxKKWUUn15hroCSimlTkyaIJRSSiWkCUIppVRC\nmiCUUkolpAlCKaVUQpoglFJKJaQJQimlVEKaIJRSSiWkCUIppVRCvqGuwPEoKioy48aNG+pqKKVU\nSlm2bFm9Mab4aNuldIIYN24cS5cuHepqKKVUShGRnclsp01MSimlEtIEoZRSKiFNEEoppRLSBKGU\nUiohTRBKKaUS0gShlFIqIU0QSimlEtIEoZRSKciEo67HSOkb5ZRSargxzd2EHtuK2dOGjAziv2oC\nnrE5rsTSMwillEoh4ed3Yva0AWAOdBF+YivGGFdiaYJQSqkUEtvb3mvZNHZDlzvNTZoglFIqhXjG\n5fZaltIsJNOd3gLtg1BKqRTiv6SSsDHEtrXgKc3Cd1mla7E0QSilVAqRTB+Bf5mEMQYRcTWWJgil\nlEohJhQl/Mx2YusakLwMfJdW4p2c70osV/sgRCRfRB4VkQ0isl5ETheRQhF5QUQ22z8L7G1FRO4R\nkS0i8r6IzHWzbkoplYoir+8ltrYBDJimbsKPbcF0p2Yn9d3A88aYacBsYD3wLeAlY8xk4CV7GeBS\nYLL9uA241+W6KaVUyum5xPWgUAxT1+lKLNcShIjkAecADwAYY0LGmCbgKmCRvdki4Gr7+VXAH4zl\nHSBfRMrcqp9SSqUiqRjRuyDoRUoyXYnl5hnEeKAOeFBEVojI70QkGyg1xtTY2+wDSu3nY4Ddcfvv\nscuUUkrZfGePxntKMQQ8SEkm/usnIwGvO7FcedVDrz0X+IIx5l0RuZtDzUkAGGOMiAzoFkARuQ2r\nCYqKigqn6qqUUilBfB78V4zHf8V412O5eQaxB9hjjHnXXn4UK2HU9jQd2T/32+urgfK4/cfaZb0Y\nY+43xlQZY6qKi4tdq7xSSg13riUIY8w+YLeITLWLFgLrgKeBW+yyW4Cn7OdPAzfbVzMtAJrjmqKU\nUkoNMrfvg/gC8H8iEgC2AZ/ASkqPiMitwE7gBnvbZ4HLgC1Ah72tUkqpIeJqgjDGrASqEqxamGBb\nA3zezfoopZRKng7Wp5RSKiFNEEoppRLSBKGUUiohTRBKKaUS0gShlFIqIU0QSimlEtIEoZRSKiFN\nEEop5SATMYS2R4k2xIa6KsdNZ5RTSimHRBtiNC0KEWuxxiDNOttH9vn+Ia7VsdMzCKWUckj765GD\nyQGg440I0ZYBDVh9QtEEoZRSDom19kkGBmJtmiCUUmpYijbHMFErCQRn9Z64x1ss+MpkKKrlCO2D\nUEqpYxBtjNH8lxDRWoNkwYgrAwRn+8AL3WujePOEzDP9iGiCUEqpYaXthTDRWuvMwXRA61MhAl8J\nEpzpIzgzPQ6t2sSklFLHIFrXu2/BdEKsPXX7GxLRBKGUUscgMLlPf0OJ4M1Lr0NqepwHKaXUIMs+\n3zp8hjZH8RYLORcOzv0OscZuCEfxlGS5HksThFJKHQPxCTkX+eGiwUkMxhgiz2wnurLeil8xgsCH\npyAB71H2PHbpdT6klFJpKraj9WByADC7WomuqHM1piYIpZRKAaa5u39ZU/8yJ2mCUEqpFOCdlAeB\n3ods70mFrsbUPgillEoBkhMgcPM0Im/WQDiGd14JnooRrsbUBKGUUinCMzqHwPWTBy/eoEVSSimV\nUjRBKKWUSkgThFJKqYQ0QSilVAoyUfenNNVOaqWUSiGmO0r4yW3ENjVCbgD/pePwTsl3JZaeQSil\n0sq2tRFefLSLxU90sXdHdKir47jIq9XENjaCAZpDhB/fggm58z5dTRAiskNEVovIShFZapcVisgL\nIrLZ/llgl4uI3CMiW0TkfRGZ62bdlFLpp3Z3lNXvhGlvNjQ3GJa+HKKt2f2mmMEU29veuyAUw9R3\nuhJrMM4gPmCMmWOMqbKXvwW8ZIyZDLxkLwNcCky2H7cB9w5C3ZRSaWR/de9v0sZAfU16JYh+N8dl\n+hCXRnYdiiamq4BF9vNFwNVx5X8wlneAfBEpG4L6KaVSVN7I/oe0RGWpzHfOaLxziyHTi5RlEbhx\nMuJz5z263UltgH+KiAHuM8bcD5QaY2rs9fuAUvv5GGB33L577LKauDJE5DasMwwqKipcrLpSKtWU\nT/TSsC/Grs1RPF6YfLKPguL0ShDi8+C/fDz+y8e7HsvtBHGWMaZaREqAF0RkQ/xKY4yxk0fS7CRz\nP0BVVVV6ze+nlDoudTUxEJg6x0vlST6CmemVHAabqwnCGFNt/9wvIk8A84FaESkzxtTYTUj77c2r\ngfK43cfaZUopdVTV2yIsfSV8cLlur+GsyzOGsEapz7X0KiLZIjKi5zlwEbAGeBq4xd7sFuAp+/nT\nwM321UwLgOa4piillDqiHRt7d1AfqI3R2pReHdSDzc0ziFLgCRHpifOwMeZ5EXkPeEREbgV2AjfY\n2z8LXAZsATqAT7hYN6VUmvEH+hQI+PwyJHVJF64lCGPMNmB2gvIDwMIE5Qb4vFv1UUqltymz/dRV\ndxOxW5nGn+QlM1sTxPHQoTaUUmkhv8jDhTcE2V8dJTvXk3ZXLw0FTRBKqbQRCApjJ+phzSn6m1RK\nKQeFdkaJ1BgC4z34Sp09izHtYaIbGpGgF8/UAtdukOuhCUIppRzSvjhMx6sR6zkw4ho/wZOdOczG\nGrsI/W4ddFqvL2OyCXxiOuJxr59FG+mUUoNqTV2U/1sT5tVdESKx9LnX1UQMHW9FepV1vB45zNYD\nF126/2ByADDV7cS2NTv2+onoGYRSatAs3hnh/pWHbmZbsjfK1xek9s1sxhjouQWj720XTt6GkSiZ\nupxgNUEopQbN4xvDvZZX1MZo6IxRmKJDYnSvi9L2XIhYGwSmeQie4qFr6aGskLnAuUOs95Riosvr\nIGy/flEQBKJbmgBrlFcJeB2LB5oglFKDqDNBi8uOptRMELFOQ8sTIbDfU2hDjMwzveReHyBcEyMw\n3kNggnMHbE9JFoHPzCS2+gAmZoiurCP8p82HNsjyEfjYNDylzg39nXp/FaVUyjqpqP8hpzwvNQ9D\n0brYweTQI1JjyJjuJWeh39Hk0MNTGMR37hhoD0Nr77MxOiJEXnN2+LrU/MsopVLSp2YH6Jnvxitw\n03QfxVmpeRjyjfIgwd5lgfGD815MWzhxebtzneKgTUxKqUGUmyH88PxMatpijAgIOYHUHQpDAkLu\nTQHa/xkm2mwIzvSSefrgHFK9s4uIbWrqX37ySEfjaIJQSg26spzUPGvoK1DpJfBp55uSjsZ7UiHc\nOJnoyjpMaxiy/fhmjcQ7UxOEUkoNe96pBXinFrgaIz3SuFJKKcdpglBKKZWQJgillFIJaR+EUipt\nNNXH2F8dJbfAQ2m5B3tGS3WMNEEopdJC9bYIS185dH/A+OleTj697zykqc+EosS2NiPZfjw9N5W4\nRBOEUiotbF7d+yaxHeujnDTP4E/hey36ijV2EXpwPdg3ynlmFBK4dpJr8ZLqgxCR60VkhP3830Xk\ncRGZ61qtlFJqoNJn5PDDir6z72ByAIitbSBW0+5avGQ7qb9jjGkVkbOAC4AHgHtdq5VSSg3QpFm9\nG0Qqp3nT6uwBwHRFkypzSrJNTD01+CBwvzHm7yJyp0t1UkqloSV7o6yvjzKxwMMZY714HO5AHjvR\nR3auh/17rE7qUZXpd5Gmd04xsTUHDp4tycggnkr3+iGSTRDVInIfcCHwIxHJQC+RVUol6YmNYf66\nwe4j2B5le1OMj81yvgO5oNhDQfHQHZpiHYb2l8KEq2MEKj1kne/Hk+FcIvSOz0VuOYno6noI+pAR\nAaKr6vGeVIAEne9STvY3eQPwD+BiY0wTUAh83fHaKKXS0gvbe3cgv7gjSsykX6dB65MhupZHidYa\nOpdEaXs28airx8p0R4luaybWGia6sp7I8zuJPLOd7vvWYDqcjQVJnEGIiBdYboyZdrCSxtQANY7X\nRik1aLqjMao7uinPzsDvcfdbd4ZPoPtQQnB44rMTgokZQpt7zzEa2uhs/0D4sS3EtiSYh7o5RPT9\nA/gWjHI03lE/FcaYKLBRRCocjayUGjLv1bdy7atr+fhbG7n+1XWsbXLvShiAa6f6kF7Lfsf7IIaa\neARvYe/35C1y7j2ajnDi5NAj6uQE2JZkG60KgLUisgQ4+EkyxlzpeI2UUq776brdtIStb7cNoQh3\nr6/m/tOnuBbvrHIfE/I9bGyIMSHfQ2WKziJ3NDlX+Gl5NIRpB0+ukHOpg/0sAS9keKE7wVlJlg/v\nyUXOxbIlmyC+43hkpdSQ2NvRTU1nqFfZno5u1+OOHuFh9Ij0SQzGGDoWR+hcHsGTBTkXBfBP8JB9\nsY/wDkPGNA/+Mc69X/F58C0cS+S5ndZVTAEP3pOLkNyA9XOE853+SSUIY8yrIlIJTDbGvCgiWUAa\ntiIqlb5CsRjfW7WDN/a39Ft3Tmme8/Gihsc3RlhXH2VCvofrpvkHfQY5Ywxb10So2REjO0+YNtdH\nlkOTFXUui9DxmtX5Hm2D5v8LkTFb6F5p9bV0L4+Scylkznfu6iJfVSneyfnE6rvwjM1BMtw9DCd7\nJ/WngUeB++yiMcCTSe7rFZEVIvI3e3m8iLwrIltE5C8iErDLM+zlLfb6cQN9M0qpw3uuuqFfcqjI\nyuCmccXcftJYx+P9YXWYpzdH2NJo+Of2KPcuDx19J4dtWR1h7ZIIDftj7N4c5Z1/hDAOXT3VvbJP\nU4+B7lW9X7vjHWfniAaQvAy8E/NcTw6Q/GWunwfOBFoAjDGbgZIk9/0SsD5u+UfAXcaYSUAjcKtd\nfivQaJffZW+nlHLI7vb+zUg3jivhc1PHEPQ63/TzXk3vA+jK2hjh6OBe2lqzo3cdWpsMbc3O1EH8\niQr7LKb4aHfJfiq6jTEH07+I+Ehi5BMRGYt19/Xv7GUBzsc6GwFYBFxtP7/KXsZev1B0rF6lHHNW\nSe9mpIBHmF/k3l24pdm9/31HZgq+Qe6CyM7tHdDrhWCWM4eVrHP7ZwhPfp9tzk7tDJHsn+tVEfk3\nIFNELgT+CjyTxH6/AL4B9Fx/NRJoMsb0nHftwWquwv65G8Be32xv34uI3CYiS0VkaV1dXZLVV0rN\nKczhuydXMis/m6qRI/jJvAmUZro3HPbNMwPkZVjPs3zwidn+QZ+fYdpcH9m5VkyPF2Yu8Ds2PlNg\nnJfc6wN4iw+9XqwBCEDWQh8Fn80gOCu1E0Sytf8WVhPQauAzwLPYZwWHIyKXA/uNMctE5LzjqWQ8\nY8z9wP0AVVVV6XcrplIuWlhWwMIydye67zGp0MP/XBSkutVQmi0EfYPfIJCd62HhdRm0NhqC2ULA\nwWEvADKmewltjRKti2vKCoG3QPCVunO6FN3aTOTVauiK4JlTjCfHj2kO4ZlWgKc409FYyV7FFAN+\naz+SdSZwpYhcBgSBXOBuIF9EfPZZwlig2t6+GigH9thNWHnAgQHEU0qdYHweoTJvaFuKRYTcQvfq\n4M3v/9refHeSg2kLEf7LJohY342jL+4+OJIqr1YT+Ng0RwfvS/YqptUi8n6fx+sicpeI9GsGAjDG\nfNsYM9YYMw64CXjZGPMR4BXgOnuzW4Cn7OdP28vY6182Tl1uoJRSLgme6sM31hO37HX0/od4sR2t\nB5ND/5WGyLv7HI2XbBPTc1hDfj9sL98EZAH7gP8FrhhAzG8Cf7aHC1+BNbcE9s+HRGQL0GDHUEqp\nE5onKBTcmkFkfwzJAK+Ld4lLadZRNnA2XrIJ4gJjTPwMcqtFZLkxZq6IfPRoOxtjFgOL7efbgPkJ\ntukCrk+yPkopdULxlbh/iZanOBPfBeVWH0Q4Bjn+QzPMecXxwfqSTRBeEZlvjFkCICKncuhOaufv\nBFFKKZWQ74wyvKeWWE1NAQ+xDY2HOqkLg87GSnK7TwG/F5EcrJOYFuBTIpIN/LejNVJKDarazhCv\n1jYxMsPPuaX5+Dx6+9GJTvxesG/D8M5I2A3siGSvYnoPmCUiefZy/Jizj7hRMaWU+za1dPCFJVvo\ntIeKrhp5gJ9XTRriWqkTRVIJwp5i9FpgHODrudnFGPN912qmlHLdYzvrDyYHgKUH2ljf3MFJeUfp\nDFXDQrJNTE9h3dm8DHB/XGCl1KCIJRgxJx2nAlXHJtkEMdYYc4mrNVFqGFrRWM/T1bvI9Hq5sWIC\nldnujY2UyDXlRbyyr4lQzEoKs/KzmZ4GZw/RiKG+JkYwS8gbmT5zUAy2ZBPEWyIyyxiz2tXaKDWM\nrG9u4vbl7xC1v7Ev3l/Dn884n1y/e+Mj9TU9P5vfnzGVV/ZZndQXlhUM+nhJTms+EOX1Z0JE7VuM\ny8Z5mL8ww7V43WujtC8OY7oNGbN9BOd48aVJUko2QZwFfFxEtmM1MQlgjDEnu1YzpdLcC/v2HEwO\nAC3hMG/V13JJWfmg1qMiO8gtE529fn4oLVscPpgcAGp2xHjz2S5mnhZw/Gwi2hij5bHQwbGtO9+I\n0PlGBN9YIe/DGXgyUzvZJpsgLnW1FkoNQ4UZ/a9ZHxlw9jr2I1nT1I4xhpn52a6fNRhjeHVXlOX7\nomT64IrJPsbmujPhTUd7/z6U+hrDm891c9GNQXx+595reGcs4cQHkT2GzrciZC9MNGlE6kj2Mted\nInIW1pSjD4pIMZDjbtWUSm9XjankxX3VbGmzZnk7p3gUVYXOTzzfVzgW42tLt7GisQ2AmfnZ3FU1\nkQwXJg3q8czmCH9ef+ie2tf3hPjoTD+XTXR+OOz8Ig8HamL9ysPdcGBfjNJy5xKTb/Thf2fRxtTv\n7E/2MtfvAlXAVOBBrFs0/og1YqtS6hiM8Pv5/WnnsLqpgUyvjym5zs8Lncirtc0HkwNYZxIv1jTy\nwbHu3XD16u5ov7JH1oc5v9Lr+DDgVR8I8Pbz3bQ09D9A98wN4RRfiYecS/xWH0RX73WBaanfD5Fs\n+r4GOAVYDmCM2Ssig3u5hVJpyCPC7IKRGGNY29yIV4RpuflH3/E4NHSH+5eF3B0xJy9DqGnrfcAO\nRaG+wzDW4YN2MFP4wDVBOttjvP2PEK2NBgQmzvCR48JAepmn+Qie6iWyL0bHGxFibRCc7SU4M7Un\nC4LkZ5QL2UNvGwB7iA2llAO6ohE+v+wtPvPeG3xqyet8ZcU7RGL9m0iccm5pPplxzUkZHuG8UneT\nUuFh5rG5b0Uo8QoHtLcYWpvspGSs+amjLs2JLR7BP9pL3g0ZFHwyg8x5qZ8cIPkE8YiI3Ic12c+n\ngRcZ2ORBSqnDeGFfNe83NRxcXnKgjtfrnB3XP15pZoBfzZ/MB8cUctmYQn45fzLl2e5dBlrXEePt\nPYkT3tYmw54Wd5Lhrs3RXh3IHW2G+r3uJd7wnhhdKyNEW1K/76FHsp3UP7Xnom7B6of4D2PMC67W\nTKlhor67/+AE9d1dCbZ0zqTcTL45s8LVGD2auhJe6ANY18tnO3hVUbyMYP/XdesWk7aXwnS+YTfT\necPkfSRAYLw7V2kNpmRnlMvGmuHt61hnDpkiktrXbyl1gvhAaRkBz6F/xUyvl3NKyoawRs4qy4GS\nw9ycffkkHwUO3ysQ6jJsXRvB6wNvn6/Au7f07yw/XrFO65LWg6LQ8Vp6zIKQbEPZa8DZIlIAPA8s\nBW4EPuJWxZQaLsZlj+CeeWfw+O7teEW4vnwCpUFnJ58fKo9vDPPUpgjhmJUkynOFU8t8ZPuF4myh\nItfZTuNwt2Hxk910JrgXAqxmp5PPMM7e9xEF+rRcmVB6NDMlmyDEGNMhIrcC9xpjfiwiK92smFLD\nycy8AmbmFQx1NRy1oznGoxsOfZPe3wEXT/BxToV7HbjV26OHTQ5gNTE5fVOgJ0cInOQhtP5Qlsis\nSo9O6qQThIicjnXGcKtdlvoNbEop11S39u8Q3pOgbNAITK9yp2U8918CdK2IEqmLkTHFS2BSehwe\nk00QtwPfBp4wxqwVkQnAK+5VSymV6qYXefF7woTjcsKcUncPnGMmeNn8foSOVussIpgtLLjAT1uL\nIb/YQ/YId25eE5+QeWp6nDXEEzPAsd9FxAPkGGNa3KlS8qqqqszSpUuHuhpKqcNYWxfl8Y0ROiKG\n8yt9XDje/YNouNtQvT2KicGYiV4CGak9YJ4bRGSZMabqaNslO9TGw8Bnsbpj3gNyReRuY8xPjq+a\nSql0NqPYy4ziwW1u8WcI46al37f5oZDs+dZ0+4zhauA5YDzwMddqpZRyzd6Obhbva6I+wZAb6SDc\nbdi7I0pL4xD2d6SJZNOs377v4Wrgl8aYsIikx3VcSg2xxlA3DaFuJmSPcH3Y7b/tOcBP1+4mBvhF\n+MK00by8r4lNLZ3MGzmCr88oJz/g7LfvPS0xsv3i+P0OiTTWxXjruW4idu6bMsfHSfP0lq1jlewn\n4T5gB7AKeE1EKrHuqlZKHYeHd2zh/q0biBhDZVYOv5i7gGKX7oGIGcN9m/YevGQ/bAz3bKgmYn/V\ne31/Mz6PcMfscY7Eaw8bfvx2iM2NMQS4bJKPj8xw92C9cUX4YHIA2Px+hAkzfAnvqlZHl1QTkzHm\nHmPMGGPMZcayE/iAy3VTKq3Vd3dxn50cAHZ2tPHZpW/SGnan6SdqDG2R3ncSR/q0A6xqaMMp/9gW\nYbPdzGOAv2+JsLPZ3WafUJ9RS0wMOtti1OyM0u7SmE/pLOlzSRH5IDADiJ/y6vuO10ipYWJfZ0ev\nKUcBars6+d/tm/jClBmOx/N7PFw8upBnqxsOu820vMOMiXEM9ie4YW1/u6HSxWkvKqd4adx/KBHk\njRTefDZ08Kxixnwfk2Zpk1Oykh2L6TdYQ2t8AWt8reuBShfrpVTam5abT2Gg/yiqm1ubXYv5tenl\nzMpPPFp/rt/L5WOcmzRo/ujeVy9l+2FCvvDarghv7YkQcmHo7cqpPk5dGKB8kpdp83z4fNKryWnD\n8giRsHafJivZq5jOMMbcDDQaY+4ATgemHGkHEQmKyBIRWSUia0XkDrt8vIi8KyJbROQvIhKwyzPs\n5S32+nHH/raUOj7b2g/wXsMuQjH3Bl3zeTz84pQF+KX3v2FVYbGLMYUFxYnn+moJR7lz9U5aHJo8\naO4oL5+f52d6kYf5oz186dQAd7wR4jcrwvxyWZjvvtbtSpIYPc7L3HMDTJ3jJ9RnTKRoBCLpMY7e\noEg2QXTaPztEZDQQBo423GQ3cL4xZjYwB7hERBYAPwLuMsZMAho5NHTHrVgJaBJwl72dUoPuZ5te\n4aNLHuJLqx7nxncWUdPl3vUYE0bk8j9VZ3ByfiElGUFurJjAhysnuhYPYFNL52HXdURjLHOwH+LM\nsT5une2nMww/fzdEfeehA/bOFsPSGudHV41XMbn3WUzJWA/BQbiaKl0k2wfxNxHJB34MLLPLfnek\nHewZ6Ho+aX77YYDzgQ/b5YuA7wH3AlfZzwEeBX4pImIGequ3UsdhR3sDj1WvOrhc293Kw7uW8dUp\n7l2TMTOvgF9XDd707mOzjjw5UPlR1g/UL94Lsfswk+iEXe43njTLT0ZQqN0TY0S+MDENpgEdTMn+\ntn4K/CtwNvA28DrWQf2IRMSLlVAmAb8CtgJNxpiek7w9wBj7+RhgN4AxJiIizcBIoD7JOip13BpD\nHf3KDoTah6Am7vnQuBJWNrSxtrkDvwhFQT81nSG8AjeNK2FSrnOX2bZ0m8Mmh5GZwqll7t9lXT7Z\nR/lk18OkpWQTxCKgFbjHXv4w8AfghiPtZIyJAnPss48ngGnHWM+DROQ24DaAiorBmRFLDR+z8kYz\nNjOfPZ1NB8uCnvT61pkb8HHvginsbu8m1+8lL+Bjb0c3WT6v4zfJ5QSgKFN6NS2NzhHOKfdybqWP\nLJdmk1POSLYPYqYx5lZjzCv249PAzGSDGGOasEZ/PR1rXuueT+FYoNp+Xg2UA9jr84ADCV7rfmNM\nlTGmqrjYvc48NTz5PB7unHEZHg4duJ6v3cA/azcMYa3cUZ6dQZ6dEEZnZTieHAA8Inxunp+SLOv3\nObnAw7dOD3DlFD95OojeCS/ZBLHc7mAGQEROw5pV7rBEpNg+c0BEMoELgfVYieI6e7NbgKfs50/b\ny9jrX9b+BzUUdnc2Eeszi/KShl1DVJvUN22kl7suyOCBy4LccU4GRVnuDLmtnJfsV4Z5wFsi0vNf\nUgFsFJHVWP3RJyfYpwxYZPdDeIBHjDF/E5F1wJ9F5E5gBfCAvf0DwEMisgVoAG46trek1PGZlFOE\nQK8UMTknPc9WNzR38G59C5XZQc4pzcPj0lhQIkKm3p+WcpJNEJcM9IWNMe8DpyQo3wbMT1DehXUD\nnlJDqjKrkC9OOpffbn+brmiYhSVTuGbMrKGuluNe3tfIHat2HkyEV4wdyddnlA9pndSJJakEYY+9\npNSwcWP5KVwzZhbhWIxsX2DQ4nZGI2xubWF89ghG+N39yv2XHXW9zpKerT7AbZPLDvZLKKWfBKUO\nI+DxERjE5vKVjQf41qr3aIuECXq8fGfmKZxbcrT7UQdmZ1sX927ay+72bjoi/W9S025jFU8ThFIn\niLs3rqHNHjioKxblro1rOKd4lGNzRMSM4VvLt1HdGUq4/oqxReTq2YOKo58GlXKe2vUH/r77Ybzi\n5aqKj3PJ2PToutrZ0XuIi/ruLiLG4HcoQexu7+6XHHL9XibmZHLx6AIuHVPoSByVPvR6M5VSVjW8\nw5+2/YqWcCONoXr+d8tP2dy8eqirddw6IhFCsd7jTgjWEN1OKQn6yfb1fr2WcJQVjW3cv7mGlrC7\n4yKp1KMJQqWUDc0rE5StSrBlanmquv91IE73B2T6vHxzRgW5/v7DWzSEIry+371hxlVq0gShUsqU\n3P6Xm47PmepavM5omDvX/4MPy3WXAAAaPklEQVSLXv81n1z6J9Y217gSZ19n/zGgYsDO9lZH45w3\nKp/Hz5vBxyeU9luX6dXDgepNPxEqpczIryLgCfYqW9N0xJv6j8tvt7/Ns/vW0xYJsaG1lm+v+RuR\nmPNNMeeVJr5aaUur80ONBzwerqss7jWq67TcLM4udXGqN5WStJNapZTqju2EYl29ytY3LXct3mt1\nW3ot14fa2d3ZxPhs52ZeAziloIgLS0fzQu3eg2U+EeYUOBunR27Ax4NnTOXtuhb8HuG0olx8Hr3I\nVfWmCUKllLKsSrK8OXRED13xMyk36XEjB6Q13EVtd+8mnoDHy+igO9+0vztrHhNzcnmyeif5/gCf\nnjSNkRnBo+94jDK8Hs4ble/a66vUpwlCpZSgN5MvTP8BD27+CXVd+zi16ByuHXfr0Xc8Brs6Gon2\nGS+yIrOADK97/zYfHT+Zj47XyQvUiUEThEo5p4w8g1NGPkHMRPGIexPOTMopJt+fSVP40BSd55cc\ncSp2pdKKdlKrlOVmcgDI8Pr4yawrmZ03mpKMHG4qn8tHK+a5GlOpE4meQaiUEImF8XkGf7zoGXll\n3Dv3iBMnKpW2NEGoY1LXsJqtu57G78tm6oQbyMka7Uqc6vbt/Gr999jWtoGJI6bz+ZPuYHRWek81\n+3LtXt6s20d5Vg7XV4wn26cTKaihoQlCDdiBxnW88OZnsKYchx3V/+TKhX/F78t2PNa9G37AtjZr\nus+treu4b+Od3HHK/Y7HOVE8tWcnP9nw/sHlFY0HuHve6UNYIzWcaYJQA7Z9z3MHkwNAV/cB9ta+\nTeWYCxyPtbV1fa/lzc2r+c7yTzHCl8cFo6/hlJFnOjbaaTxjjCuvezi1XZ08uG0TL8fdBwGwrLGe\nms4OyjKzBq0uSvXQBKEGLCPQ/z6AjIA719OflD+HdXE3wsWIsbnFGpxvecMbzC86j6/M/JFj8f64\ncykP7XqPqDEsLJmMVzzk+DK4fuwcijNyHIsTzxjDV1e8w472tn7r/OIh26f/pmpo6FVMasAmj7uW\nEdljDy6PKT2L0iJ3ru753LTvMrvw9MNesbSkfjHbWzc6EmtF0x5+ve0NWiPddERDPFOzlif3ruaP\nu5by6WV/pisadiROX9vbWxMmB4CZ+QXk+gdvRjul4mmCUAO2r24JXd1NAOTmjGP+7G+51hxTFBzF\nt0/+Bdnew39774r2H+juWKxt3nfYdfu72/jcir/y1oHtjsSKV5QRJHCYYb3fb2qgrqsz4Tql3KYJ\nQg1IONLOu6v+m3DE+sbb0raD9zfc53rcaflzEpZXZE9iat5sR2LMzj/ylVgbWvfzjfefZnXz3iNu\nN1C5/gCfmzQdv/T/d4waw4FQt6PxlEqWJgg1IO0d+4hEe3+jbWrd5nrcayo+0a8sPzCS/5hzL54E\nB9ZjMStvNLeNO/IVQzEML+/f7Ei8eNdVjOfxsy/gk+N736ldmZXDlBE6yqoaGtr7pQYkd8Q4srPK\naO84NC/CmJIzXI87OnscQW9Wr+akiSOmk+PPdTTOTRVz+ePupXQcob+hLNPZmD0KAhl8cuJURmdl\n8XJtDaOCmXxs3CQ8g3g1lVLx9AxCDYhHvHzgtLsoLpxNwJ9LaVEVU8Zd53rcoDeTj078Ij6xbhor\nCBRz0/h/dSGOny9OOvews7nNzhvN5aNmOB433iVl5fx4zny+Mm0WxcFMV2MpdSRi+oxWmUqqqqrM\n0qXuTRajEquufYPF734NsD47IwtmcMnZvx+U2C2hRmo79zB+xDRXh95Y31LLjze+yJa2ek7OH80n\nxi0g3x9kUk6xazGVGiwisswYU3W07bSJSQ3Ylp1P0pMcAA40rqWhaQOF+dNcj50bKCA3UOB6nJNy\nS3nw1I+4HkepE5kmCDVgPm//ITU6uxvo6NxPVmaJo7FC0W4Wbfk579S9RHGwjJsnfZnp+XMdjaGU\nSkz7INSATZ/0Efy+Q/clZAQKWPzul3nyhatYtuZuR2M9tWsRL9U8SXuklR1tm/jZmm/SHe06+o5K\nqeOmCUINWEHeFK664HHOOOV7TKy4iu5QIwCGGBu2PUxD0wbHYq1vXtFruT3Swq72LYfZ2nnVnc28\nXr+VlrAmJTX8uJYgRKRcRF4RkXUislZEvmSXF4rICyKy2f5ZYJeLiNwjIltE5H0R0XaEE1hGII/x\n5ZcCsX7r2jqqHYszcUTvK4YCniB5/kLHXv9IfrPtTa5/50G+ufoZPvjmfbxZ7/79HkqdSNw8g4gA\nXzXGTAcWAJ8XkenAt4CXjDGTgZfsZYBLgcn24zbgXhfrlrZCHfupfv+37Hzvx7TuX+l6vPKyD/Ra\n9vtyGFU837HX/5fKT7CgeCGCB5/4CcW6+PKS63li54OOxUikOxrhoZ3vHVyOGsN/bXjR1ZhKnWhc\nSxDGmBpjzHL7eSuwHhgDXAUssjdbBFxtP78K+IOxvAPki0iZW/VLR+0H1rP66euoWfMAdZsfZ+OL\nn2Xv6gdcjTmm9EzOnPcDSouqKC/7ABec+WsC/hGOvX6mL5vbZ/wXl5d/iIixbl6LmgiPbL+PxTV/\nI+RSf8S+7hb6XgDeEtFmJjW8DEofhIiMA04B3gVKjTE9t+HuA0rt52OA3XG77bHLVJJqNzyMiYV6\nldWsXUQsGjrMHseutW034bA1HlP5qHMZN+YicnMqMaZ/k5MT3qz9Z69lg+E3G3/AF965hup25wfQ\nK88sIMPT+yK/ikz3L69V6kTi+mWuIpIDPAbcboxpiR/10xhjRGRAd+qJyG1YTVBUVKT31JMDlSgR\nGBN19KDd2XWAxe9+mYbmjXi9Gcyd/kV273uVfXVLAFi3+Q+ct+DnjC5xbha0DU0raQjVJVzXHG7g\n8Z0P8oXp33csHoBHhJ+cfBXfWft3msNdlGfmc9fsq4++o1JpxNUEISJ+rOTwf8aYx+3iWhEpM8bU\n2E1I++3yaqA8bvexdlkvxpj7gfvBupPatcqnoJIp19K05zXib2IrnnQVXl/QsRirNz1AQ7M1/0I0\n2s17q39GfEe1IcaGrX92NEE0hQ4c1/pjVVVQzm/n3kR1ZxNzC8rxexLPSaFUunItQYh1qvAAsN4Y\n8/O4VU8DtwA/tH8+FVf+/0Tkz8BpQHNcU5RKQu6o+Zx0yYPsW/cQkVALhZUXUTThg47GaG3b1aek\n/9lJKNziaMzZhQvI8xfSHG5IuP6cUZc5Gq/Hb7a+yUO73sMApRkj+OUp1zEmU0dWVcOHm2cQZwIf\nA1aLSM/lNP+GlRgeEZFbgZ3ADfa6Z4HLgC1AB9B/fGd1WKGOOvau/h1drbvIH3M2pdNuQhwaBjve\n2FHnsK/+0NU9Hk+AWJ9+j7LiBY7GzPRlc8fc3/Ls7j/REWljfvF5bGlZx/6uahYUL2RByUJH4wHU\ndLUcTA4Atd2t/GHnEr497ULHYyl1onItQRhj3oDDDorZ7z/aWKMGft6t+qS7za9+lc7GTQC07V+B\nMRHKpt/seJwp468nGguxdfffaW3b2S85BDOKmD75o47HLQmWcWbpxeQHRlKaOYb5xR84+k7HoTHU\n0e8qpvrudldjKnWi0bGY0kBX6+6DyaFHzZpFeDwBiqdch8fj3J9ZRJg+6aOs2/IQxkR7rZtUeTUn\nT70Nv6//WE3H40BXLT9Y9Xn2de5GEC4v/wgfmfgFR2P0NW1EKZVZBezsaDxYdvEo9wcjVOpEokNt\npAF/sBCPt3dHdCzSzu7lv2DzK7c7Hu9A03q6Q039yseUnk1mcKTj8Z7Z/Uf2dVpXQBsMz+z+IzUd\nfftCnOUR4Z4513LD2DmcWzSRH8y4jItKNUGo4UXPINKA15/N2LlfZNfSn0Gfb/WttUvpat1DcMRY\nx+J1dO5PWF48MvG80cfrQHf/eA3ddZRluXuZc3FGDrdPPs/VGEqdyPQMwmUmFiWy4lFCT3yVyNKH\nMdGI4zHCXY3UbX6sX3Lo4WRn9e6axazZ9HsSfXT+/spNNLc6f9PamSUX9Vouyihjat5sx+MopXrT\nMwiXhZ/4KmaXNetddMe7xDa9QuDDv3U0Ru2GP9PZtDXhutyyBWTkjHYkTlPLNl5/79uYXpe2Cj33\nXXR21bFqw32cc+oPHYnXY0HJQr7Ef/JG7fMUZBRzZfnH8DnYr6KUSkz/y1xkWvYdTA4Hy2rXE6vf\nhqdogmNxutv39ivLKpxO8cQrKJp4pWNxaure7ZMcgD7X+nR01joWL97pJRdweskFrry2UioxTRBD\nwrkbwI2JEQ31vzFtwll3EnTozKFH/ojx/cqys0bT3nEoQVWO0fsElEoX2gfhIskdhZTP611WOhVP\n0UTHYuxc8t+01LzbrzxR2fEqK1nAtAk34REfIl4mVlzJhWfdz5Tx11NWfBqnzvo60yZ8yPG4Sqmh\noWcQLopVvw/dreANQDAXz6wr8c3/mGOvH+48QP3WvyVcF+luTFh+vObN/DKzpn4KY2JkBKxhJ06d\n9TVXYimlhpYmCJeYSIjwM/8Gnfb9Au31SDSEeP3OxTjCKK05RbMci9OXk/M9KKVOXNrE5BLTsPNQ\ncrDF9jg7w1sgq5jCyr5t/h5KptxA7qhTHY2llBp+ht0ZRKyhCcnIgGgUjEHyXPo2HMiympbi5mjw\njJrueJjxp/8H+WPOpqt1Jxkjyqnf/iwHdjxPd1s1lfO/SSCrxPGYSqnhYdgkCNPVTfjRf2Cqe1+G\n6Zlcie+qhYjXubH+TWcz4Uc+1ys5SOVpeE//pGMxDr2wF18wH1+4hbpNj9NWvwqA5r1vsv3tO5i6\n8FfOx1RKDQvDJkFEl67plxwAYpt3Elu3Fe+sKY7Fim1+Bdp7T2LjGTsHychxLEaPXUt/Qt3mxxOu\na61dxqaXv8j4M+7AH9TpMpVSAzNs+iBM4+EnsTGNzc4G82b0K4ruXk7k7QeINe5OsMOxCXceoG7L\nk0fcpmXfEqpX/dqxmEqp4WPYJAjPlHGJV4jgmVTpcKzzkJF97pTe9R7Rdx4k/NDHidVvcySOiUWg\nz5VMkiA5tTdsdCSeUmp4GTYJwjt1PN4Lz4DCfMjJgswgFBXgu+ZCPKOd7cgVfyb+D/8W7wXfgL4D\n5UW7ia1+2pE4gexS8seeGx+Z8af9O/7M0l7b5ZbMdSSeUmp4GTZ9ELHqWqKvLYXuuBnQOrugvcOV\neOLLwFM8hWiiexUcvBdiwpl3cmDHc3S37CJv7NmMKJ5NMLeCXcvuoqtlJ/ljz2L07M84Fk8pNXwM\nmwQRee293snBFl21Ae+ck9wJOnJcwmLvyVc7FsLj9VPcZ0C+rMKpTLvwN47FUEoNT8OmiYm2xGcK\nZn8DsR3VroSU2GHmZ8gf40o8pZRy0rBJEJ4ZkxKviMUIP/USJuzcRD6mrZ7w3/+D0EM3Y82XEMcX\nTLiPUkqdaIZNE5P39FNAPERfe6//yq5uTGMzUuLMfMrh57+P2b08cT3O+JQjMZRSym3D5gwitmkH\n0VUbwOsBf5+8mBVECvMdiWOi4cMmB8+MD+Kbd5MjcZRSym3DIkFEm1qIPPkiNLdCNAbxzUkieM+c\ni/icGWpDvH6koCLxutwyR2IopdRgGBYJIvLYPw+/0hhiazY7Gs938b/BiFG9C70BPOPPcDSOUkq5\naVgkCJoOP8wGgGlpczScp2wmgVsfgdK4y2ejIcLP3eFoHKWUclPaJwjTHbKalY7AO825KUAPaquD\n2vW9yxp3Emvc5XwspZRyQdpfxRTbuguM6V1YXIh3QjmxffV4KkfjnX+y43FNd3uCUkEynekMV0op\nt6V9giDQf1gL8XuR4kL8556KiCTY6fh5iiYgRZMw9VsOlU2/GAnmuhJPKaWc5loTk4j8XkT2i8ia\nuLJCEXlBRDbbPwvschGRe0Rki4i8LyKOjS7nmVCOjO09eJ3ZW0fkb68QfeVdp8Ik5L/hl3hPvxUZ\nfwa+S76L/+J/dzWeUko5yc0+iP8FLulT9i3gJWPMZOAlexngUmCy/bgNuNepSojHg/9Dl+O77mLI\nCPRaF12xDtO3+clBkpGDb8EnCFz9Y7wn9Z07WimlTmyuJQhjzGtAQ5/iq4BF9vNFwNVx5X8wlneA\nfBFx7KYB8XjwTqyAYJ+5Enzp38KmlFLHarCvYio1xtTYz/cBPW0/Y4D4qdb22GX9iMhtIrJURJbW\n1dUNKLjvrHn9lt3qg1BKqVQ3ZF+hjTFGRAbcvmOMuR+4H6CqqmpA+3tnTkbKijF79iFlxXgcGntJ\nKaXS0WAniFoRKTPG1NhNSPvt8mqgPG67sXaZ4zwj82GkXmqqlFJHM9hNTE8Dt9jPbwGeiiu/2b6a\naQHQHNcUpZRSagi4dgYhIn8CzgOKRGQP8F3gh8AjInIrsBO4wd78WeAyYAvQAXzCrXoppZRKjmsJ\nwhjzocOsWphgWwN83q26KKWUGri0H4tJKaXUsdEEoZRSKiFNEEoppRISN4eacJuI1GF1dg9UEVDv\ncHU0nsZLtVgab/jGqzTGFB9to5ROEMdKRJYaY6o0nsY70eKl83vTeKkXT5uYlFJKJaQJQimlVELD\nNUHcr/E03gkaL53fm8ZLsXjDsg9CKaXU0Q3XMwillFJHY4xJ+Qfwe6yRYdfElc0G3gZWA88AuX32\nqQDagK/FlX0JWAOsBW53Ih4wDugEVtqP38TtM8/efgtwD/YZnYvx/hNr3o02p36fh4sHZAF/BzbY\nv88fDsLv83lglR3vN4DXzXhx+z4d/1ouvr/FwMa4dSUuxwtgNWFssv+O17r4eRkRV7YS69LNX7j8\n/j5kb/++/dkpcjHWjXactcCPnDqWASfb69ba64MDObYc7THkB3cnHsA5wNw+v9T3gHPt558EftBn\nn0eBv2InCGAmVnLIwhqj6kVg0vHGsz80CQ8ewBJgASDAc8ClLsdbAJRx9ARx3PHs3+MH7OcB4PVB\neH89/6gCPAbc5GY8e/2/AA8fZRun3t9ioMrJ/4ejxLsDuNN+7iHBAdTp32fc/suAc1z8fPqwDsRF\n9vKPge+5FGsksAsotpcXAQsdeG8+rKQzOy6O136e1LHlqH+HY9npRHz0/eMAzRzqYykH1sWtuxr4\nCfA9DiWI64EH4rb5DvCN4413hA9NGbAhbvlDwH1uxevzWkdMEE7Hs7e7G/j0IL0/P9Y3rRvdjAfk\nAG8A05OokxPxFpNEgnAw3m4ge7Dixe07xY592G+9xxvP/ozUAZVYB9HfALe5FOtU4KW45Y8Bv3bg\nvV0G/DHB/gM6thzpkc59EGux5roG6+BfDiAiOcA3sb4dxVsDnC0iI0UkC+uXX07yEsazjReRFSLy\nqoicbZeNwZpatcdhp1l1KN7xOuZ4IpIPXAG85HY8EfkH1jfDVqyzRDfj/QD4GdYQ9QN1rL/PB0Vk\npYh8RwY2X+6A4tl/M4AfiMhyEfmriJSSvOP5fN4E/MXYRzc34hljwsC/YjXD7MVK8g+4EQurmWeq\niIwTER/WF1Qnji1TACMi/7D/Rt+wy4/32HJQOieITwKfE5FlWO2bIbv8e8Bdxpi2+I2NMeuBHwH/\nxGqPXAlEHYhXA1QYY04BvgI8LCK5x/SOUjCe/Q/xJ+AeY8w2t+MZYy7G+gaVAZzvVjwRmQNMNMY8\nMYAYx/v+PmKMmQWcbT8+5mI8H9bMjm8ZY+ZitXP/1OX31+MmrM/MQAz07+fHShCnAKOxmmq+7UYs\nY0yjHesvWE2tO3Dm2OIDzgI+Yv+8RkT6TadwXI7ltONEfHDkU+UpwBL7ec8faAfQBDQA/y/BPv8F\nfO544yVYtxio4jibmAYar0/ZgJuYjjUeVqfbPYMVL678ZuCXLv79/hXrm+cOrG9oIWDxIL6/j7v8\n/gRoBzx2eTmwdhA+L7OBTW5/Xujf7HMO8Owg/e1uA358vO8NK5Euilv3HeDraBPT0YlIif3TA/w7\nVhsjxpizjTHjjDHjgF8A/2WM+WWffSo41Pl4XPFEpFhEvPbzCcBkYJuxplRtEZEFdlPBzRyagtXx\neMm+rpPxROROIA+43e14IpIj1jznPWctH8S68saVeMaYe40xo+3P0VlYB7XzXHx/PhEpssv9wOVY\nzaJuvT+D1Y/T854WAuvcihe364cY+NnDscSrBqaLSM+AdRcC6916b3H7FACfA353vO8N+AcwS0Sy\n7M/8uVj9E8d1bOnlWLLKifbA+kDVAGGsb3O3Yl2yusl+/JAEHV7EdVLby69j/ROs4jBXGQw0HnAt\nVhviSmA5cEXc61Rh/ZNvBX6ZqI4Ox/uxvX/M/vk9t+JhNU8YrH+6nsv+PuVivFKsqz3et3+n/wP4\n3Px9xr3eOI58FZMT7y8b68qenksl7+bwl/E69XmpBF6zY76E1Xzi6u8T64A6zan/96O8v89ifT7f\nx0qGI12M9SesY8s6DnN13bEcy4CP2jHXEHdWQpLHlqM99E5qpZRSCaVtE5NSSqnjowlCKaVUQpog\nlFJKJaQJQimlVEKaIJRSSiWkCUIppVRCmiCUGmI9N1cpdaLRBKHUAIjI90Xk9rjl/xSRL4nI10Xk\nPRF5X0TuiFv/pIgsE5G1InJbXHmbiPxMRFYBpw/y21AqKZoglBqY32MNXdAz9MFNwD6sYRXmA3OA\neSJyjr39J40x87DubP2iiIy0y7OBd40xs40xbwzmG1AqWb6hroBSqcQYs0NEDojIKVjDe6zAGvjt\nIvs5WPNETMYapuKLInKNXV5ulx/AGs3zscGsu1IDpQlCqYH7HdZoqqOwzigWAv9tjLkvfiMROQ+4\nADjdGNMhIouBoL26yxgzkCGflRp02sSk1MA9AVyCdebwD/vxSbEmo0JExtgjcOYBjXZymIY1BaRS\nKUPPIJQaIGNMSEReAZrss4B/ishJwNvW6Mq0YY2y+TzwWRFZD2wE3hmqOit1LHQ0V6UGyO6cXg5c\nb4zZPNT1Ucot2sSk1ACIyHSsOYZf0uSg0p2eQSillEpIzyCUUkolpAlCKaVUQpoglFJKJaQJQiml\nVEKaIJRSSiWkCUIppVRC/x/uGrpp+lUATQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "KWW0zuX7CJNt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Plot month & passengers" + ] + }, + { + "metadata": { + "id": "B2LQN5-mCJNu", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 319 + }, + "outputId": "30eaf7c8-f3c5-446f-8cea-39b3d76d024e" + }, + "cell_type": "code", + "source": [ + "g = sns.stripplot(x='month', y='passengers', data=flights);\n", + "g.set_xticklabels(g.get_xticklabels(), rotation=45);" + ], + "execution_count": 141, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEuCAYAAACd7SWvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYXNV5+PHvuXfK9t67Vlo1VJC0\nSAIhihDVpprihjHBJk78c5w4dowdO47t2Ia4EBM72GAg4BLAgI0wTTSBQQghCfVedrVVq+112r3n\n98fMNu0iDWjOzO7s+TyPHu09OzPvWZX73tOFlBJN0zRNOxUj1hXQNE3TJgedMDRN07Sw6IShaZqm\nhUUnDE3TNC0sOmFomqZpYdEJQ9M0TQuLThiapmlaWHTC0DRN08KiE4amaZoWFp0wNE3TtLA4Yl2B\n05GTkyMrKipiXQ1N07RJZfPmza1SytwP+r5JnTAqKirYtGlTrKuhaZo2qQghaj/M+3SXlKZpmhYW\nnTA0TdO0sOiEoWmapoVFJwxN0zQtLDphaJqmaWHRCUPTNE0Li04YmjYB2froZG0CmtTrMDQt3hzo\n6eKHu7ZyoLebxZnZfOuMReQlJMa6WpoG6BaGpk0o3925hQO93QBs6WjjZ3t3xLhGmjZMJwxNmyD6\nAn5q+npHle3q7ohRbTRtLJ0wNG2CSHY4mZGSNqpsYUZ2jGqjaWPphKFpE8h35y9mQUYWCYbJuTn5\n/PPs+bGukqYN0YPemjaBlCen8j/VK6Ia02vZuE397Kidmk4YmjZF1fR6+P72Wg70DFCVmsi3F5RT\nkZIQ62ppE5jSxwohRIYQ4gkhxF4hxB4hxNlCiCwhxEtCiAOh3zNDrxVCiHuEEAeFENuFEItV1k3T\nprq7dh7lQM8AAAd6Brhr59EY10ib6FS3Q38OvCClnA0sBPYAdwCvSCmrgFdC1wCXA1WhX7cD9yqu\nm6ZNaXu7+096rWknUpYwhBDpwHnAAwBSSp+UshO4Gng49LKHgWtCX18NPCKDNgAZQohCVfXTtKlu\nUVbqqOvFJ1xr2olUtjCmAceBh4QQ7wkhfiOESAbypZRNodc0A/mhr4uBuhHvrw+VaZqmwDfmlXJO\nbhppTpNzctO4Y15prKukTXAqB70dwGLgS1LKd4QQP2e4+wkAKaUUQnygTXOEELcT7LKirKwsUnXV\ntCknN8HFnYsrY10NbRJR2cKoB+qllO+Erp8gmECODXY1hX5vCX2/ARj5iFMSKhtFSnmflLJaSlmd\nm/uBzzDXNE3TPiRlCUNK2QzUCSFmhYouAnYDa4BbQmW3AE+Hvl4DfCY0W2o50DWi60rTNE2LMdXr\nML4E/F4I4QIOA7cSTFKPCyFuA2qBG0OvfQ64AjgI9Ideq2mapk0QShOGlHIrUD3Oty4a57US+KLK\n+miapmkfnt4PQNM0TQuLThiapmlaWHTC0DRN08KiE4amaZoWFp0wNE3TtLDohKFpmqaFRScMTdM0\nLSz6ACVNm4J6/AHWNnbgtW1WF2aSl+CKdZW0SUAnDE2bYgYCFrdv2E9Dvw+APxxp4Tdnz6IgUScN\n7eR0l5SmTTFvtnQPJQuAbr/Fcw1tMayRNlnohKFpU4whxpaZYpxCTTuBThiaNkEc8wywpqGWLe2t\nSuOcm5fOtJSEoessl4MrirOUxtTigx7D0LQJYFtnG/+0ZQM+2wbgmuJyvjpngZJYbtPgV8uqWHes\nE68luaAggwyXvhVop6ZbGJo2AfzuyMGhZAGwpqGWVq9HWbxEh8nlxdlcU5ajk4UWNp0wNG0C8NrW\nqGsb8FrW+C/WtBjRCUPTJoDrSioYOex8dnYexUnJMauPpo1Ht0U1bYQOXz/PNO3CY/m5vGAOpUmZ\nUYl7QX4Rv3C5eeN4M6VJyVxeWHrqN2lalOmEoWkhA5afz21+lCZPNwCP17/Hg9WfpCxKSWNhZjYL\nM7OjEkvTPgzdJaVpIW+2Hh5KFgD9lp9nm3bFsEaaNrHohKFpIW5jbIN7vDJNm6p0wtC0kHOyK5ib\nmj90netO4cqieTGskaZNLPrxSdNCHIbJvYtv5M3Ww3hsPytzppPicMe6Wpo2YeiEoWkjOA2TC/Oq\nYl0NTZuQdJeUpmmaFhadMDRN07Sw6IShaZqmhUWPYWiaFjX9fslb9RYBG84pMUl363M4JhOdMDRt\nCgvYko2t3VjA8pxUnIa6TgdPQPKvr3s51icBWHPAzw8vSCAzQSeNyUJpwhBC1AA9gAUEpJTVQogs\n4DGgAqgBbpRSdgghBPBz4AqgH/islHKLyvpp2lTmtWy+uPEA+7sHAJiWksD/LKsi2WEqibex0RpK\nFgBdXnjjaICrZzqVxNMiLxpjGBdKKc+UUlaHru8AXpFSVgGvhK4BLgeqQr9uB+6NQt00bcp6rblz\nKFkAHOn18FJjRwxrpE10sRj0vhp4OPT1w8A1I8ofkUEbgAwhRGEM6qdpU0JfYOx5G73jlEXK0iKT\n/OTh7qd0N5xXpnvFJxPVf1sSWCuEkMCvpZT3AflSyqbQ95uBwb0YioG6Ee+tD5U1oWlaxF1QkMFD\nh5rp9geTRLLDYHWhup15ExyCH5zvZn29hV8Pek9KqhPGuVLKBiFEHvCSEGLvyG9KKWUomYRNCHE7\nwS4rysrKIldTTZsA+gMBuvw+ChOTlMfKdju5b/lM1tS3YUvJlSXZFCS6lMZMcgpWT9OtislK6d+c\nlLIh9HuLEOJPwFLgmBCiUErZFOpyagm9vAEYeWpMSajsxM+8D7gPoLq6+gMlG02byJ6sO8K9B/bg\nsS3mpWdy58KzyHCp3cuqKMnNF2YWKY2hxQ9lYxhCiGQhROrg18AlwE5gDXBL6GW3AE+Hvl4DfEYE\nLQe6RnRdaVpca/V6uGf/Ljyhs713dnXw25qDMa6Vpo2msoWRD/wpOFsWB/AHKeULQoh3gceFELcB\ntcCNodc/R3BK7UGC02pvVVg3TZtQGgb6sOToBnNNX0+MaqNp41OWMKSUh4GF45S3AReNUy6BL6qq\nj6ZNZHPSMshyuWn3eYfKVuQUxLBGmjaWHn3StAnAZZjcvXg59x/cS4t3gNX5xVxbUh7ramnaKDph\naNoEMT0ljTvPXBrramja+9K71WqTwkCgL+ox+wK+qMfUtIlMtzC0Ce1Izz5+seffaOivoSJlFv8w\n9/sUJantqqnv7+Tfdj/H3p4WypIy+c6cy5iTln/qN2panNMtDG1Cu3fv92jorwGgpncf9++7U3nM\nH+9/lb09weVBR/s7+P6eF5XHjLbGfi9NA95Tv1DTRtAtDG3CCtgBjvaNXotQ07v3fV4dOft6WkZd\n1/S347UCuE21/116/H7WtTTiEAbn5xWS5Ih8vIAt+c62Gv7a0gXA6oIM/nVBOabQW3Rop6ZbGNqE\n5TAczElfNKpsXuZZyuNWZ5aOup6fVqg8WXT4vNyyYR137dnOD3Zv5fMb/0p/IBDxOK82dwwlC4CX\nmztZP+JaJU9A8sRePz95x8uLhwPYUm/UMNnoFob2gfT2N/LOth/R2r6T3OyFLF/4DZIS1fXvf3HO\nd3nowI852L2TORmLubXqq8piDfrqzFUIIdjSUc/s1Dy+OmuV8pgvNNXT4vUMXdf29/J6SxOXF5We\n5F0fXGP/2IH8+nHKVPjlZh+bm20AtjTbdHklN85RdxbGwR1+Du0MIISgaqGDaXP07e506T9B7QN5\n+73v09IWPNeqqeVtNmz9AavOvkdZvJyEfL42/yfKPn88Ga5Evn/GFVGNGZB2WGWn69y8dB4+3IwV\nerh3CMG5eWkRj3Oifr9kS/Pon+etektZwmhpsNi1cbCFJtm+3k9GjkFmru5UOR36T0/7QFra3ht1\nfeyEa+3DuayghAzn8E6xee4ELsiL/KaAM9ISuXNRJUuzU1mek8aPl1RSmpwQ8TgncpmQfEJuUHk0\na1vz2GTb1qzurI+pQrcwtA8kO3MubR27hq5zMs+IYW3iR25CIg8tO48XmutxCIPLCktIdap5+l6W\nm8ayXPWtipEchuCTZzh5YJsfS0KiAz4+V93tZ7yWREaOfj4+XUJO4oGn6upquWnTplhXY0rp6qlh\n/Xv/TnvnHnIy53HOon8nNSWy/exa/OrwSOq7baZnGiQ51c7M2rPZz6FdAYSAqgUOZi7UZ4cPEkJs\nHnFsdvjv0wlD+zBsaWEIM9bV0LSTGry/CT1teJQPmzB0l5T2oehkoU0GOlFElu7U0zRN08KiE4am\naZoWFp0wNO0kDve1sbu7mck81qdpkaLHMDRtHFJKvrP7eV5u2Q/AnNR87jnzOpId7hjXTJvqpGUj\nu32IdDfCiO4YjU4YmjaOzR11Q8kCYE/PMZ5u3Mkny5bEsFbaVGfXduN78hD0+iHdhevGKozC5KjF\n111SmjaOFm/vmLLj45RpWjT5nzkSTBYAXT78z9VENX5YCUMIcYMQIjX09beEEE8JIRarrZqmxc45\n2dNIcQxv1WEgWJ03M4Y10qY6aUtk++gzTGSr531erUa4LYxvSyl7hBDnAquBB4B71VVL02Irw5XI\nvYtu5NL82ZyRVsCnypYwLTk71tXSpjBhCIzp6aPKjJkZUa1DuAljcNeujwD3SSmfBVwneb0WIwNd\nNXQ3b8S24u886j5/D388cj/37P4261teUh6vJDGDI31t7Opu5rdHN3Hzu7+j0zegPK6mvR/ntZWY\nZ+YgchMxq/NwXlER1fjhDno3CCF+DVwM3CWEcDNJxj+kZWHvOohs78KYUY5REr9nM9dtuYdje/8A\ngDMxl1mr7yUhtSTGtYqcH+/8Knu7tgKwvmUt/YFeVhddqyzeG62H2N97fOi6ydPNc8279cC3FjMi\nyYnzqsqYxQ/3pn8j8CJwqZSyE8gCvqasVhEUWPMageffwHpnG/7fr8HaezjWVVLC29vIsb3/N3Tt\nHzhO8+5HYlijyGoeqB9KFoNeb35WaUyvPfbEO4/lVxPLsgjYkT//QtMi6ZQJQwhhAluklE9JKQ8A\nSCmbpJRrldfuNMnuXuz9R0aVWZt3vc+rJze/px0YvbjMP9AWm8ookOxIxRSjG8RpTrX9t+flTCfH\nNTxlMdl0cVnBnIjGCNg2P9y1lUvWPc+Vb6zlT/U1Ef18TYukUyYMKaUF7BNClEWhPpFlGnDi5mNm\nfG6al5w1h4S08lFl2ZXRPTVOpVRnOteW3zp0nexI4/qKzymNmeZM4MHqT/L5aWfz2fKl/O9Zn6Io\nMf3Ub/wAnm6o5bmmOiwp6Qn4+dneHRzt09N3tYkp3DGMTGCXEGIj0DdYKKW8SkmtIkQkJ2EsnI29\ndU+wwDRwLF8Y20opIgyTmav+m6Pv/gRffzM5M64jq+yiWFcroq6v+Bzn5F1MU38dczLOJMmRojxm\njjuZWyuWKfv8fd1do64lcKCni7Jk9T/boIGAhdMwcER51XA0HNoZoP5QgIRkwZzFTtKyJsXQ6wci\nbQl+G+FW/zAcbsL49ocNEOrS2gQ0SCk/KoSYBjwKZAObgZullL7QQPojwBKgDbhJSlnzYeMOclyy\nAjlrGrK9E6OyFJER3ZPGoqluy8/pbHgDgPotd5OUOYOUnHkxrlVkFSWVU5RUfuoXThKLs7J5rqlu\n6NohBAsysqIS22/b3LWzjleaO0g0DW6bUcjHynMjGuNIp82zB/3U9UhSnLCixMGF5WZUth2v3Rdg\n5zuhMadWSUeLl4tvTMB0xE9itPZ2BBfv9foxKtNwfmwGIlHdBh5hpVsp5etADeAMff0usCXMGF8G\n9oy4vgu4W0o5A+gAbguV3wZ0hMrvDr3utAkhMCqKMRefEdfJwtNdS8fRV4aubcs7ahBcm5guLSjh\ntspZ5LkTmJ6Sxn8sqCY3ITEqsZ+ua2NtUweWhN6AzT17G6jri9xCsJY+m++96WV9g01dt2RPm+Q3\n2/w8c3DsZAIVmmpHn+HtHYCO4/EzsUD6LPx/PjS08ts+3E1gXb3SmOGu9P488ATw61BRMfDnMN5X\nQnDtxm9C1wJYFfosgIeBa0JfXx26JvT9i4Q+/SRstj129o4cp0ybWIQQ3Fo5k6dWXszDy8/n3NyC\nqMXe390/6jrYHRa5dSYbmyy81tjyN+vGKVQgJX307U0ISE6Nn1uKbPOAb3QCtJv63+fVkRFuh94X\ngRVAN0BotlReGO/7L+BfgMGfKhvolFIOPmLUE0w+hH6vC31+AOgKvV4LQ1LGDFLzR5y4KEzyZt6g\nNGb/QAubdvyU1zd+jZr6F5XG0iKvOjt11LXLECzIjNzYSYZ7/JtzRkJ0btpVCx1k5gZjGSbMPctB\nYkr8jGGIvERIGX1OuVGpthcl3M4ub2icAQAhhIMT53CeQAjxUaBFSrlZCHHBadVy9OfeDtwOUFY2\n+SZuqVR1wU9pO/I8vr5mMstWkZSpbu8jKW1eefv/0d1bC0B98xtIJNNKLlMWU4usS4qyOObx80x9\nG2lOk8/NKCTH7Tz1G8O0rMhk3VGL3a3DT8GJDrhxduRinIw7QXDeVQn0ddu43ALn+ySwyUqYBq6P\nz8S/9iiyw4M5JwvHuUVKY4abMF4XQnwTSBRCXAz8PfDMKd6zArhKCHEFkACkAT8HMoQQjlArogRo\nCL2+ASgF6kMJKZ3g4PcoUsr7gPsAqqurJ+SpNtLTTeCv9yIbtyMKz8Cx8ouICE/HHI9husmdcc2p\nXxgBbZ17hpLFoJr6F3TCmGRurszn5ko1ux84TcG3Vrg52GHT5bFxmYKqLIOEKA86J6epa1VIKfEd\ntLFabFzTTRwF0W3BGEXJuD8b2bVBJxNuwriD4KD0DuBvgecIjUu8HynlN4BvAIRaGF+VUn5KCPFH\n4HqCM6VuAZ4OvWVN6Prt0PdflZP0mLPAy/+JfWAdALK9lsBAF86rIzKGP2EkurMRGEhGPD0mRHaG\njRYfZmQaTJKdhD6wvhf9DLwTHJPpeyVA2sdcuM+Iz7VeEP4sKVtKeb+U8gYp5fWhrz/szfzrwFeE\nEAcJjlE8ECp/AMgOlX+FYJKalOwjb5/0Oh4kJxUwt+oWIPi0mJRYwBlVn41pnTQtmmyvZODdEQP4\nEvrfiu+JJmG1MIQQOxg7ZtFFcH3Ff0gpT7oHhZRyHbAu9PVhYOk4r/EAakdpo0RkVSBb9o26jkdn\nzvkC08uupN/TQm7mfAxDH+CoTSHjPTJPyj6R8IXbTnweeBb4VOjXMwSTRTPwv0pqNok5LvoapIWm\nR6bk4Vj9L7GtkEKpycXkZy/SyUKbcowEQcLi0d1PiWfH9/+DcH+61VLKkSfs7RBCbJFSLhZCfFpF\nxSYzo2A2rlsfg54WSM1DGPHbp6lpU1nKFU5clSaB0KC3syQ+x2oGhZswTCHEUinlRgAhxFnA4F0w\nOss2JxlhmJBeGOtqaKfpvc56tnTUMzs1jxU5sTuHQJuYhBC455i450yNh8JwE8bngAeFECkERzm7\ngc8JIZKBH6mqnKbF0lMN2/jJ/teGrj9dVs3fTz83hjXStNgKd5bUu1LK+cCZwEIp5QIp5UYpZZ+U\n8nG1VdS02PjD0dHbpf2xfit+OzrbWmjaRBTuLCk38DGgAnAMrviWUn5PWc00LcaME7YyM4QgvtYK\na9oHE+4IzdMENwcMEDwPY/CXNsFIO8AkXe8YFltabGl7kzean6PP36M01s1l1aOuP1G6GIeiCQxv\nHm/mK1s2cMfWjWzvbFcSQ1NHWvH7f26kcMcwSqSUk3rPByklsrEFDAOjMP5WJNuWl9p37qS9di0O\ndwYli79MdsUlsa5WREkp+dH2f2RHx0YA0p2ZfH/xg+Qlqtk/58qieUxPyWFzRx2zU/M5K0vN3mU7\nuzr4xrZ3h6bwv9t+nD+cs4r8KG1zrn143v0Wvc/5sbslrlkGqde4MOJsz6qRwk0Y64UQ86WUO5TW\nRhHp8+N/7LlgwgDEtBKc11+KMOJnCtyxfY/RVvM8AH5PGzUbvkda/hKcifGz4e+erveGkgVAl7+D\nFxv+yM0zvqws5ty0Auamqd1y/I2WplHrvby2zdutx7impEJp3HhVszfAoZ0BEFC1wEFZlZq1EdIn\n6XnKh/QGr317bfpfD5BySXQ2V4yFcO+Y5wKbhRD7hBDbhRA7hBDbVVYskuxdB4aSBYA8Uo99oPYk\n75h8+tp2j7qWdoC2mrUxqk1k7evazksNT9HcXzfme14rcuc3xEpRYtKYsuLE5BjURI2j3TYvHQlQ\n06n+8KK2Zottb/np7ZL0dkree8NPZ6uauIFWOZQshsoa4ueApvGEm3ovV1oLxWTvODeVPrUHjURb\nau4iOuvWjSpr2P5rsisumdStjMeO/Io/1T4EgMAgy5VLu+84AA7hZFXR1bGsXkRcXljKG8eb2dgW\n/LmuKCylOisnxrWKjHW1Ae7f6h9qQd0y38mllepWQx9vHHvDPt5okZET+d4ER65AJIIccXtxlsdP\nr8V4wvqbk1LWCiHOBaqklA8JIXKB6J1Sf5qMOZVY72wFK/SPyeXEqKqIaZ0iLW/mx2g9/AwDnQeH\nyqTlobt5I9nTJme+91gD/KXuD0PXEptUVyaXltxIr7+LlfmXU5YyI4Y1jAy3afKzRcs52teLyzAo\nGKfFMVk9tS8wqrvtyX1+pQkjPXvsDXu8skgQTkH6x130vuDH6pC455oknae3BkEI8R2gGpgFPAQ4\ngd8RPPNiwjNyMnF+4qNY7+0Gw8CsnodIjZ8mP4AwHGRXfoT6LT8fVe5OKVEat71zL29u/hb9nuNk\nplVx/tKfkODOiMhn29LCskdvJGDZAa4u+0xEPn+iKUtW/wzW7QvwRksXiabByvx0XIrH8XwnzB7y\nW8HJC6pOXy4oM5g+z8GRPQEEMG2uid8rqd0XoLDCxBXhAWlnmUnm7VNjlTeE3yV1LbAI2AIgpWwU\nQqSe/C0Ti1Gcj1Gs5qCYiSJ3xjV0NbxFz7FNIAzyqq4nJXe+sniW7WftW3+LZXkAaO3YwUtv/S1X\nrnosIp+f5EjhvILLWdf8l6Gyy0riYkPjmGjx+Lj97f20+4JJeHZaEv+zrAqHoW5WzyWVDp7YO5z0\nL5nmUJYsILhVx7xlTuYscWBbkrde8HFwR3Cx5Z4tfs6/KoHE5PidxaRauAnDJ6WUQggJENoSRBuH\n9HRj7XgGPN0Ycy7FiOL+Q6YjkVkX/QJPTx2GIxFXotp+8LaO3UPJYlB3bw2BgAeHIyEiMT4/8xvM\nzVhCbe8BFmYtZ0HWsoh87lS0pq5tKFkA7O3u553WblbkqTsN8rpZTkrTDPa12czIFCwris7TuOkQ\nHKu36WodbuF4+6F2X4DZi+N3FpNq4SaMx4UQvyZ4vOrngb8B7ldXrcizG1uw3tqCHPBgLpiFeWbk\njzWUlh//Y3+HbA/OwLLe+yPOj/8KI0/d2drjSUgtjUqclOSx6x8cZhKm6Y5YDNNwcF7BFRH7vKnM\nb49dXDZeWaSdVWhyVmH0u23kOD+bHd+TmJQLdy+pnwBPAE8SHMf4Nynlf6usWCRJjxf/Y89hH65D\nNh0n8OKbWHsPRzyOfXTTULIAwPJh7VgT8TgTRVJCLnMqPzl0LYTB0oV3KO1y0D68j5RkkWgO/5cv\nTnJxdm5aDGukVn6pSVLq8L9FhxPKqib/eIO1vRXfYwfwv1BLYNtx7KbobboR7qB3MsEztl8SQswC\nZgkhnFLKSXEeoX20EXyjq2ofrMWcHdnuIuEY+2QtnJHpmpmoFs/7MnOrbqGtcxcFOdURbV1okVWW\nnMCD58zixcZ2khwmVxRl4Tbjdxqowyk4/yo3Rw8ECPihdIZJctrk/nkDm1sIPFszptyszsN5RYXy\n+OF2Sb0BrBRCZAIvEDxt7yaCp+9NeCJr7KwdkR2ZmTyjPrNkEaJ0CbJuc7AgMQNz4XURjzPRJLgz\nKM6fFBPmprziJDd/M2PqnNPiShDMmB8/YxbWjvFPw7Y2tWAuL8DIUvuAGm7CEFLKfiHEbcC9Usr/\nFEJsVVmxSDJyMjHPXYL19ntg2YjyIszFZ0Q8jhAC53U/xT6yATw9GNNXIBLit8mvaVp0iVTn+x8b\nPqD+LLuwE4YQ4myCLYrbQmWTqjPQsWIx5pIzwOtDpKubESwMB6Y+ZEfTNAUc5xXjq+2B3tFd7CI/\nEVGkfvJquAnjH4FvAH+SUu4SQlQCr53iPROOSHBDgu5j1zRtcjJyE3H/w0Lsul5klxe7tgeR5sKx\nLD8qk03C3RrkdeB1ACGEAbRKKf9BZcU0TdO0sYTDwJwW6uo+M7pHNYQ1ZUAI8QchRFpottROYLcQ\n4mtqqzb52TUb8L/8nwQ2/QHpU7fZoZSSvrY9eHrqlcWItb2dW3lg/3/yZM0D9Pi7Yl0dTZuSwu2S\nmiul7BZCfAp4HrgD2Az8WFnNFJFdPVh7DyMS3BhzZyCcajYLs/asJfDC8Am2ds07uK7/+Une8eEE\nvF3se/VLDHTsByC36mOUnxVfuXx7+zv8aPs/Igmuutpw/BXuqv4dhojOFMnd3c28017L9OQcVuZU\n6nUm2pQV7t3SKYRwAtcAv5BS+ge3CZlM7OPt+H+3ZmhNhti2F+enr1JykNKJC/Zk3WZkZz0iI7Kb\nAR7b9/hQsgA4fuBJcqZfSXLW7IjGGdTasZM9B3+PZfuZNe0GCvPUb9XxatOaoWQBUNd3iH1d25iT\nsUh57LXH9vLd3S8MzUy5rngBX525SnnceHaww6ap12Z+rklGgk6+k0m4CePXQA2wDXhDCFEOdKuq\nlCrWe3tGLeCTTceRR5sQFcURjyXcyaOnvwkTnJHfttrXf2xsWd8xJQmjb+AYL6//eywreGpMY8t6\nLlv5IFkZapLToGTH2F1ckx3R2fvy/45uGfX3+HTjTr5QuYKUcRZpaqf2h11+/nIwOP3TZfq542wX\ns7Mn1YTLU/LusfDttzBzBIlnORCu+EmK4W4Nco+UslhKeYUMqgUuVFy3yBvv703R36W57BZwDp/J\nbC6+AZGcFfE4WWWrR1073JmkFZwV8TgADc1/HUoWAFJaHG1SP1nuI6WfItU5vNByRd6lMTsHQ6Ds\nn0zc6/ZKnj80vFbAZ8Gf9kV+7YBtS/p67HH3klJtYHOA7sd9eLZa9L0coOtxn9J40m8hO72nfmGE\nhN2BL4T4CHAGMHIp4ffe5+XZx1DPAAAgAElEQVQTkrloLvbOA8NdUoV5iLKxG+hFglEwF9dtf8Q+\nugmRXoJRoOYpPL1oOdNX3kXroTU43OkUzL0ZU0FLBiA5aezZ1smJas+7BihKKuPny55ke/s7ZLiy\nmZ1xpvKYgz5VtoTv7H5+qJVxTdECknXr4kPx25ITjsfAE+F80dpksWmdD28/JKYIll7kUnLa3ngG\n3gvQt3b0+gj/IRury8ZMV9Dtva0V/wu14LUQhUm4Pj4TkeqKeJyRwt1L6ldAEsFWxW+A64GNp3hP\nAsEtRdyhOE9IKb8jhJgGPApkExw4v1lK6RNCuIFHgCVAG3CTlLLmw/xQ78fIycR12/XBQe/EBIzZ\nagcwRWIG5qzVSNvCbtgG7lQl251nlp5PZun5Ef/cExXlnUN50WpqG18GoCDnLKaVRuc0vyRHCsvz\nLopKrJFW58+iNClzaND7nOwKpfE6fF7+ePQIrV4PFxcUc1Z2dKdNqpSdaHBmvsHWY8PjURdVRLY7\nautbfryhCYkDvZLt632cd5X6/dw82wP0rhlnaz0TJV1S0hPA/2wNBIJ/lrKpn8C6BpxXTot4rJHC\nbWGcI6VcIITYLqX8rhDipwRnS52MF1glpewNDZi/KYR4HvgKcLeU8tFQIroNuDf0e4eUcoYQ4uPA\nXQT3q4ookZaCY+mCSH/s+5IDnfj/+CVk2xEAjDmX4rzs21GLH0lCGJxb/QMW9P4ttu0nI216rKsU\nFbNS85iVmqc8jiUlX9q8npq+XgCea6rjroVLWZEbPwd//eNZLl6tsWjstVlSYLIwP3IJw7YlfV2j\nmzA9ndHplvLutsYtT1rhwEhUkDA6fUPJYpB9fOB9Xh054baTBmvSL4QoAvzASXcwC4119IYunaFf\nElhFcKt0gIcJzrwCuDp0Tej7F4k4mL9obX1qKFkA2HtexG7cGcManb60lLIpkyyiaXdXx1CyGPRc\n49EY1UYNlym4bLqDv1noimiyADAMQV7J6FtaQVmUDmzKGHurSvuUk+QL1Wx8KPISERmju5/MmZHf\nUPVE4SaMvwghMoD/JNiNVAP836neJIQwQ5sUtgAvAYeATinlYM9lPTA4RakYqAMIfb+LYLfVpCb7\nWsMq07Q059ibS5or8n3SXstmY2s3dX3RGyyNlsXnuyirMknNEFTMNllwTnR2qk0614mZF0oaApIu\ncOCeoWaNF4AwBM5PzsKYlYnIS8RxfjHmOep3IQ73J/oJ8HfASuBt4K8Eu5FOSkppAWeGks2fgNMe\n+RVC3A7cDlBWVna6H6ecOfti7B3PwOCwaWIGRvnSmNZJm5jKk1O5sriMZxqCrYosl5tPlke2JVfT\n6+HL7x6kwxdAALdMz4+r7c7dCYJF56kd+B2PkSLI/IIb65hEJAvMVPWdI0ZOIq6bqpTHGSnchPEw\n0APcE7r+JMEB6hvDebOUslMI8RpwNsFjXh2hVkQJ0BB6WQNQCtQLIRxAOsHB7xM/6z7gPoDq6uoJ\nv3jQKFmE87qfBs/5TkjFXPIJhEvNLCZt8vv6nIVcXVxOq9fDkqwcEs3IPqU+fKiZjtC53hL47eFj\nXFOaQ5Y7fs6MiBUhBI6CSd+LflLh/mucJ6WcO+L6NSHE7pO9QQiRC/hDySIRuJjgQPZrBGdZPQrc\nAjwdesua0PXboe+/KqWc8AkhHEb5Ut2q0MI2O01dX3S7d/Q8VktCpy+gE4YWlnATxhYhxHIp5QYA\nIcQygqfunUwh8LAQwiQ4VvK4lPIvoUTzqBDiP4D3gAdCr38A+K0Q4iDQDnz8A/4s78uubSDw2jvI\n3n7MuTMwL1iqZDsQTZvoLi3O5L2O4YH1mWmJVKYmnuQdmjYs3ISxBFgvhBicslEG7BNC7CA4IWrM\nPFUp5XZgzGY/UsrDwJjHbSmlB7gh3IqHS3p9+J96aWixnvXuDkhJiurUWk2bKK4ozsZtGLx+rJPC\nRDefmKZ+urAWP8JNGJcprYVCsvn4qP2jAOTRRohSwrBbDyG7mjBKF+uxC21CuKgwk4sKM2NdDe00\nyF4fgfXNyE4v5hlZmGdEZ0JpuAco1aquiCoiNwtMA6zhRS6iIDqrZwNv/BJrc2j2cUI6zhv+W8lK\nb03ThgX8kt4uSWqGwHTE3yC0lBLf7/YhW4LL4+y9HWBJzAU5ymPHfUe+SErEccUFkJwIQmDMrsRc\ntlB5XNnTgrXlseECTxfWxkeUx9W0k/FYNi80tPN0XSudvshv/BdrLfUWLz7q4fWnvax91ENb8/gr\nsCNN2hJ7IDpzdGRz/1CyGGRtj87aLnUrSyYQc+50jDmVYNkIR3RWfkpPN8jRS/flQHyeFNfZfYju\n3lryc6pxu9KUx+sP9PL00Ueo6zvEwqzlXFz0sagdpjSZ+Wybv9uwn0O9HgAeOtjMfWfPJC8h+usW\nVNm23k8gtEGszws73vZzwbVq/897D1j0rvFh94Kj1CDtBpfSdRgi2RncMnlkfkqJziy3KZEwIDhH\nmiglCwAjdwYibxayZd9QmXnGFUpj+j0dHD/4JyxvN9mVV5CUOVNpPIBte3/Nzv0PAuBwJHHR2b8g\nJ/MMpTH/a9c32d7xDgBb2t6kz9/DdRV/ozRmPFjf0j2ULADafQGerW/n1hnqdxyOBikl/b2jn/L7\netQ+9cuApOfPPmRow8NAnU3fS37SrlOXhEWaC3NFEdabjcGCVCeOlWp23T7RlEkYseD82N1YWx4P\nDnrPvBBz+rnKYtmWj71rP4+3N3iud8uBJ5l9yf3KTt4D8Pq62H1guJstEOhnx77fcOHyu5XF7PZ1\nDCWLQW+2vKgsYbR5+3j1+AGSTCer8maSaKp/kjvmGeD1liYynC4uyC/EZUTmQccaZ1lTID6WOgHB\nh8LCcoOmmuGWfdE0tQ+Jdo8cShaDAsfs8V8cQc5VJZhn5iA7vRhlqQhHdFrYOmEoJBLScJzzuajE\n6m56ZyhZAEjbT+vBp0leqi5h+AN92HJ0P7jPr/YgxgQziUQzmQGrb6gs06VmsK9xoIvbNv8fXf7g\nU/nj9e/xmyWfwBmhG/h4DvV284V332TACva9P91Qyy+WnBORbfhX5KVTnOSioT/YZ5PiMPlIceQP\n9YqlRStdJKUE6Dhuk11gMOtMtbc4I0NgZgms9uHE66qMzs3byEqALPVbt4+kE0acMMY5NGm8skhK\nSSqiIOcsmlvfHSqbXnaV0pgu082npn+Jhw78GEtapDjS+ETl3yuJtaZx51CyADjQ28rbbTWcl6tu\np94n644MJQuAbZ3tbO9sZ2Hm6U+bTDAN7ls+kxcbO/BYNhcXZpKfqHb84q36AHtabaZnGpxfZmIo\n3oDa6RLMWxa9VetCCNI+7qL3RT9Wq8RVZZC8Kn5XzeuEESdS8xaTVrCU7ubguVbOxBzyZkZ8HeQY\n5y29i31H/khP71FKCs6jtPAC5TFXF13LkuyVNPbXMD3tDBJMNSuVbcZ218hxyiJpvB6i8erxYaU6\nHVxfHp1p5U/u9fNk6AjWV2stajptbl0YPwPsgxy5BhmfnhqnMOqEESeEEFRd+F90N20k4Osmo3gF\npjNZeVynI5l5VZ9VHudEme4cMt1q551fVTiPPzdupzc07WZaUhZnKz5x77rSCtY21+O1g/3gc9My\nWJgxOXf5f6VmdHfla0ctPjNfYhrxtzZiqtAJI44IYZBetDzW1YgbJUkZ/Pasm3np2D6SHS4uyZ+F\ny1D7X6YqNZ1Hll/Aq8cayXS5WV1QpLwbR5VEh6DTO9w6SnDAJP1RtBCdMDTtJPITUvl0eXVUYxYn\nJXPztOiec6DCDXOc/GKzDzuUM26Y7Zy0yU8L0glD0zQllhebVGa42dduU5lhUJyqF1dOdlMyYciu\nHmRXL6IoL2orv7XJx29bPNWwnf29LVRnlnJZ/pyITG+daLp8AQ72DDAzLZFUZ2RvCXnJBnnJOlHE\niymXMAJvbcF6a0twOkpKMs5PXIGRpf7wdG3y+eHel3jx2F4Anm/eQ7Onh1srlsW4VpH112OdfHd7\nLT5bkmAafG9hBctz1W/vok1OUyr1y97+4WQB0NuH9dZ7sa1UhNh2/G0kF0sey8/LI7Z1geC6jHjz\n33sb8IUGGTyWzS/2NZziHR/OnlaLdbUB2qO0QV+0BZptBrYECLSqX+UdS1OqhSH7B8ZMdJe9fe/z\n6smh5/g2ajb8AG/PURIzqkhILSEhvZL82TfhiMJGgF09R9h/5AlsaTGz4joy09XtXyWl5ED3Tkxh\nMj1t7qnfcBocwiDJdNET8A6VpTuju6pWNSklrScc2drm9b/Pqz+8h7b5eKkmuBjRZfr5xtkuZmXH\nT1dw/9sB+taG/twEpF7rJGF+fN5a4/Oneh8iNwuRm4U83j5UZs6dEdEYduMOAm/8EtnbgjlzNea5\ntyMUTcWUtsXht76Nv78FgIHOAwx0HoC61+hqfJu5lz2oJO6g/oEWXvzrbfgDwaR7pP55PnL+70hN\nKY14LJ/l4QfbvsS+7u0AzM9cytfn341D0Z+twzC5vfIcfrb/NSTgCl3HEyEEqwszeKGxY6js4ggf\nrNQxIHm5Znjlus+CNQcCfC1OEoa0Jf1vjEiyEvpfD+iEEQ+EEDhvvBxrwzZkVw/GrGmY8yI3fVH6\nB/D/+V/A2wOAtfkPkJSBo/qTEYsxkn+gdShZnKi/fTcDnYdIzFC3jUVd07qhZAFgWR5qG19m3sxb\nIxbDlhbvta3nneOvDiULgB0dG9nU+jrL8y6KWKwTfax4Icsyy9nf28LC9GKy3ZFfCLnuWCNP1deQ\nYJp8uqKKBRnR3dvpn+eWUpzkZndXP/MzkrmpIrKrwH322LXxXoVHVHgGJMeOWiQkCfJKDPWTFCTI\nExpl0he9bjf7WD92XQ9GSQpGgfqFulMqYQCIlCQcq89W8tny2P6hZDHIProJFCUMZ1Iu7pSSUZsO\nDhEGpuIuKbcrfUxZX39TxD5fSsmd2/9pzO60gzp86g+NKUnKoCRJzaSIbR1tfHvH5qEb6ub2Vh49\nZxW5CWq2OhmP2zS4Zbq67c3zkw0W5hlsaxnu219doea209Vu8+ZfvARCN/DCcoOlq9Vu2SFMQeIS\nk4GNw1kwcWl0bquBLS0E/lIzdO24vBzHWflKY06pQW/VRHY5mKP3yjFy1S3AEsJg+sofkZwzH8OR\niDCGNz3Ln/0JXElq9wwqLbyQ3KzRpxcePPo0h44+E5HP39+9/X2ThdtI5KycCyISJ1beON486unb\na9tsaBu/xTiZ/dNSF5+d7+TySpNvr3CxvFhNd9ShnYGhZAHQVGvT1a5+EDr5Miep1zhJXGqSdqOL\npHOjs/lg4PXRExQCb6iZsDDSlGthqCQSM3BccgeBdffAQBfGtLMxl35GacykzCrmXHI/AJa/j55j\nm3GnFCvtihpkmi6WLriDZ9d9YlT54bpnmV525Wl/vs/yjinLTyhhdsZCLi/+ODkJap+mVCtOHNuF\nMF7ZZOcyBZdUqr/VWONMFByvLNKEECQsdID6k59HC5yQDP3qk6NOGBFmzr4EY+YqCPgQLrXbi4+J\n7Uwmo+S8qMZ0u9IRwkTK4SZ5gisyA6dzMxZTljyDo30HAXAIJ/8w9/vKZ0idSErJ1q4GpJScmVES\nse0tPlJUylutzbzTdhwBXFVczuIstRsqxrNpc0yaaqyhiZCZuYLM3PhbaDnIPCsf643G4eul6h+g\nhJzEJ25VV1fLTZs2xboaU97IY1rdrgwuOvsXZKZHpiuuP9DLa03P0O1vZ0XepZSlRHZW26n47ABf\n3vontnUFm/tzUvP55aLrSYjgyXsN/X24DCOqYxfxqrPVpuGwRUKyoHymicMZvwkDwNrbjl3bg1Ga\nijk3/AkTQojNUsoPvEmaThhaRHT31tLTV09+9mIcjvi58a09tpd/3/3CqLI7Zq3mqqJ5MaqRpp2+\nD5swdJeUFhFpKeWkpZTHuhoR1+EbGKesf5xXahPNQJ/k4A4/A72S4kqT4iiMo8Q7/SeoaSdxQe4M\n7j/yNv1W8BClBMPBRfnqVrPHK09A8uA2P5ubLQpTBJ9d4GJGprpJmlJK1r/gpbcz2IPSVGtj21A6\nQ9/yTseUnVYr+z1IO773fdFOX35CKvctuYlri+ZzVeE8frX4RkoS9WaVH9Tje/y8WW8xEIDDnZK7\nN3qxbHXd4Z2tcihZDKo/pHDF4BShLN0KIUqBR4B8QAL3SSl/LoTIAh4DKoAa4EYpZYcILsn8OXAF\n0A98Vkq5JdL1kj19+P/8MrKxBZITcVx+Hub0skiH0eJIZXI2X5ulbkX5VLCnbfTDWYcHmvskxalq\nBqUTEgEBIxe6JCSpHwD37Arg3WFhpAiSznVgZsTXM7nKnyYA/LOUci6wHPiiEGIucAfwipSyCngl\ndA1wOVAV+nU7cK+SSq3bGEwWAH0DBJ5dhwzoJw8t9jxWgJ1dHfQFIr8B4Ilqez3U9nqUxxl0YvdT\nmgvyFN7AE1MMqhYMPw8nJAtmLlTbHeXdbdHzhB/fPhvPZovOh31IS+2kosCGZjw/ew/Pz94jsKFZ\naSxQ2MKQUjYBTaGve4QQe4Bi4GrggtDLHgbWAV8PlT8ig9O2NgghMoQQhaHPOb262Db0exApSciW\nttHfHPBCbx9kqNtGQ3p6wDCjvi5Dmzy2tLfyze2b6A34STRN/n3eElbkRn5efcCWfGvrEdYf7wbg\nnNw0/uPMaTgMtU/fN81x0uGRvNdsk58suG2hE6epNubcaiflM036eyXZ+QaG4nieHaNXCdqdEn+d\njatCzcp2u6abwNqjQ9eBtUcxCpIwKtTdy6IyAiSEqAAWAe8A+SOSQDPBLisIJpO6EW+rD5WdVsKw\nj9Tjf3Yd9A0g8rIQRXnI1uHdOUVmGqSnnk6I9yVti8BLd2HveQEME3PxTTjO/YKSWNrkds/+XfSG\nWhYDlsXd+3YoSRjrjnUOJQuA9ce7ef1YJxdFeJfaE6W4BF9d5saWMqrneienGSRH6TwoY5zuNTNN\n3c9qH+0ZW1bXqzRhKO9gE0KkAE8C/yil7B75vVBr4gO12YQQtwshNgkhNh0/fvykr5W2jf+516Ev\nODVStrQj+/oxFs+F9BSMylIcH7tU2Y6W9t6XsHc/B9IGy4/17u+w67dGNEbv8e3seu5TbH50JYf+\n+g0CvrH/iLSJr9kzeqruca8HS8EaqeYBX1hlqkQzWXS12fR0Rm9iS9K5Tsys4Z8v8WwHZpa6W6zI\nGbveSRSp3VpGaQtDCOEkmCx+L6V8KlR8bLCrSQhRCAzuttYAjDxIoSRUNoqU8j7gPggu3DtpBfo9\n0Dv6P6Js68R1/WVw8YoP8RN9MHbznjFlsvUQlJwZmc+3Axx685v4B4K7tnbUvYbDnUH50q9H5PO1\n6FmVX8SahuHuhfPzCjEV3FxX5qXz0MFm/KFk5BSClfljdx2ezAIByYYXfbQ1B5NF0TST6gudyrc6\nN9MEmV90E6i3MVIFpsJpwwCydewaIRTOPAO1s6QE8ACwR0r5sxHfWgPcAtwZ+v3pEeX/TwjxKLAM\n6Drd8QuRkoTIyx41bmFURv5wnxNJaRN4+cfYu549oUImovysiMXx9TYOJYtBva07Ivb5WvR8eeY8\nsl0JbOtsY05aJrdMU7PLcXlKAj+tns4fa4Ot8xvKcylLjq+TBOsOWEPJAqDxiEVLlUl+qfpDm4Qh\ncJZF53Ao6Rlnso7Kw0ZQ28JYAdwM7BBCDPbDfJNgonhcCHEbUAvcGPrecwSn1B4kOK02IqfwOK9d\nTeC1d7Bb2jEqS3BcsCwSH3tS9oHXsXeesMV3ZimOlX+PkRm5KbyulCKciTmjkkZKzvyIff5E1Nh/\nlD5/F9PTzsAQ8TNl0W2a3DZ9VlRinZmVwplZKVGJNdKOFou3GyxykgSXTHOQ4lLzxD/QO/Ype6Bv\n8m6B9H7MhTlY7x6DwZlYqU6MKrVrhFTOknqT4Ezo8YyZ1B4az/hipOshMtJwXntxpD/2pGTbkTFl\n5rwrMaevjGgcw3Aw/dwfUvvuXXi6a8koXknxmX8f0RgnY1k+ahteom+gmdLCC8lIq1Qa7759P+TV\npmCDtCx5Bt9a+EvSXHoR3WTwbpPF3RuHx0o2NVn84Hy3km6iomkmB3cEhnatNR1EpXUxyPZKpFft\ngDeAkZ+E67a5WFtbwWngOCsf4Vb7c+p18goY05ZjbXiIkeP51u4XMOdchkiO7BGcKbkLOOOK3w9d\n97XvpbPjAKn5S3CnFEU01ole3/g1mo5vAGDn/gdZdfY95OcsURLrUPeeoWQBcLTvIC82PM4N026P\neKw93cc41NfKkowSChPjq38/VtbVjp5yWtMlqemSTMuI/E01I8fg7MtcHNkdwDAFM+Y7SEyOzmB7\n/1t++tYFIADOaQZpN7kw3OpiGwXJGJdF7wwVnTAUMArmYq7+KtbLP2EoabQdJvDO/+Jc9RVlcRt3\nPkjj9vsAEMJk+so7ySiJbKtmUGf3oaFkAWDLAPsOP64sYbR7x55E1zZO2el68MgGflMT/LkcwuDO\n+VdyTva0iMeZapLH2WY8SeHBdLlFJrlF0WtVAFjtNn0vDydG/xGbgbcDJF8QnRP4oiF+OoEnmODR\nrKP7TWV7rbJ4dsBD865HhmNJi8adDyqLJ8YZPxivLFLmZ55FunP0WoEzMj/w7swnNWD5eeTou0PX\nAWnzUM34R8RqH8xVVQ5SRtw3V1eY5CfH1+0n0Dp2nMQap2wymzItDOu93Vi7DyHSkjFXLMbIUtv3\nLXJnQkou9A6vFTEqz1EWT0oL2x69pYQdULcNd3rqNEoKzqe++XUATMPN7OmfOMW7PrwERxLfWXQf\nzxz9Lfu7d9DUf5Rf7vkOrzU9zVfn/Zgkx+kP4gZsi8AJG1L2W+q36QA43NvN9s525qVnMSNV3cIr\nj2XzVksXQsCK3HTcZnRu2iVpBv91cQI7j9vkJAoqFU85jQVnuQEmMGKiknN6fP2cUyJhWNv3EVj7\nFhB85rfrmnH97U0IU12TVZgOnNf+FOut+5DdTRgzV2EuukFZPNOZTHbFpbQdeW6oLLfqY8riAays\n/iH1zW/QN9BMScH5pCYXK41XlFTGlWU385WNw3+Ouzu38Fz9o1xf8bnT/vxUZwKr82ex9tjeobLr\nihec9ueeyl8ajnLXnm1D7dGvzp7PNSUVEY/T4w9w+4b9NPQHB5+npSTwq2VVJDqi03WT5BQsjXI3\nUTRZLfaoZAFAdJ43omZKJAx73wmzlnr6kE3HESUFSuMaOZUYV9+pNMZI5cu+SUruQgY6D5BWsEzZ\n+MUgw3BQVrRKaYwTNfUfHVPW2F8Tsc//1uyLWZRRzKHeVpZlVbAiR/34xQOH943qvHzg8D4lCWNt\nY8dQsgA40uth3bEuLi+O7ESMqcpqG9v9FGhVt9I8sL4Ja1MLuAwc5xdjzlH/9zglEobIPKGJLwQi\nLfrz0FUzDAe5M66OWrzWjp3s3P8QPn8vVRXXMq3kMuUx52ScSZKZQr/VO1RWnX1exD7fYZhcXRTd\ntSwea/RjqddSc5PxjPO5qmJNFAO9NsfqbZJSBLnFhtLV3s5KExz+4D7dIe5ZalpU1t4OAi8Pb73n\nf+Ig4osLMLLULsKcEgnDXH4m9tEm5PF2MAzMlUviMmFEk8fbwSvrv0TACo6THG/fituVTlHe2Urj\nJjlS+NeFv+CJmvvo9ndyfsFHOCf/EqUxVbu+dBoPHdk/dH1daYWSOKsLM/nDkRZ6Qtv5Z7kcXFAQ\nv+tY2o9ZrH/ex2A+Lq0yWXyeS1k8M02Q/ikX/X8NIH2SxGoHrumKdqo90jW6QIJd26MTRiSIlCSc\nt16HbO1AJCciksZu2qV9MM3HNw4li0F1Ta8rTxgA09Pm8PUFdyuPEy23TZ9FZUpqaNA7k1X5atbP\n5Ce6+M05M3muvh1TCD5SkkWGK7q3gNdqA6w5EMCW8NEZDi6epi7+gR0BRjbe6g5YzF5kk5SqbiDa\nVWEq2858JFE4du2FUaD++IQpkTAAhBCIXN1XGympyWP35EpNLolBTeLDhflFXKgoUYxUmOjmtqpC\n5XHGc7Dd5v6tw6PAD233U5IqmJOj6Cl8nG2VrDg5K81ckIOs7w2u8nYIHOcVY4yTRCJtyiQMLbKy\nM+cyZ/on2Xv4MaS0yM+ppqriulhXS5vAdreNvVvvbrWVJYxpcxy0NPiGlkPlFhukxsmRqcIQOD86\nDcel5WCAiNL0aJ0wFJABL4F1P8fe/xoivRDHBV/GKF4Y62pF3OIzvsyc6Z8mYA3EXevirdbDbOw4\nSlVKLpflz8FhRO9G0+33ccwzQGVKmpItzgcdG/DhsWzKU6KzW23lODfr8coipaDMZOVH3TTVWCSn\nCUpnxN+UXuGMbgKcsglDWhYELIQ78oNg1sZHsHesCcZp6cG/5pu4Pv8UwuGOeKxYS0zIjnUVIu6P\n9Vu5+8C6oevtXY18c3Z0NrD8c30N9+zfhc+2KU5M4qeLllOSFPmuhp/squOZ+jYksDgrhR8tmqZ8\nPca8XJPrZjl49mBwGtGllQ4WFaiNmZVnkJUXnZuq3Sfx7rYQLnDPNRHjbIcy2U3JhGFt20vgtXfA\n68OYUY7jygsRrsjt92LXbxtd4OlCth5GFMyJWAxNnScbRv/9Pd+8my/POJ9kh7oZNgC9AT//HUoW\nAA0D/dx/aC/fnR/Z/bm2tveypn74jJgt7b38paGdG8pzIxpnPNfPdnLtTAcSlJ8jHk1Wp03H/V5k\naB7IwIYAGZ9zIxSfIx5t8dGh9wHInj4Ca98Eb3ABk32wFmvj9ojGMApmjy5wJSGyyiMa42Q6G9ZT\n++5PaNn/BLYVveM340WCMfo5yilMHFE4e6PN68F7wtYkjQOR396lacA7pqyxf2yZKqYh4ipZAHi2\nWEPJAiDQLPEdVL/GRfb6sRv7kIpP2hs05VoYsrVjzDGGI0/kiwRz2a3IribsQ3+F1DwcF34F4VI/\n5Q3g+ME/U7txeHV5T0+A/rEAACAASURBVMt7TD/3B1GJHS/+pmI5/7rrWSwZ/A//mfKluE31/1XK\nklKoTE7lcN/wuewX5kV+RtPSnDQSTYOB0KI9AZyfH7/rMaJBjpcbFM/ICqxvIvBqPdgSkeXG+enZ\nGBlqu72nXMIQRXngcoJveHqfURHZAVvhTsZ55Q+QVgARhRvNSC0Hnhp13XH0VfyeDpwJme/zjtMX\nCAzQ2LKBBHcGedmLlMWJlvNyp/N/yz7D5o46qpJz8NoWrx8/yLKschJMdVtVCyH48aJlPHh4H/X9\nfazMLeDGssgfSpXtdnJ39XR+f6SFAcvmmtLsqJ3At642wMYmi7wkwdVVTjIT46OlkbDIxLMpgAw1\n1MxsgWumulap7PUPJQsA2e7FeqMB4yq1h5hNvYThduG8/lICr7+L7OvHPKMKY5GasYVoJwsA0zG6\nJSMMJ4apru+9t7+JtW9+ngFPcFfe0sILOO+su5TFi5aSxAyKE9L5+o5neLPtMAD57lTuW3ITuW51\nN9f8hES+MfdMZZ8/aG5GMj9YFN1zPl6pCfDAtuEHtT2tNndeGNlT9/q6bWr2Bh/ty2eZpKRHabpp\ntkHmF9x4dlgYLoF7oYlwqEuGssc3tqekU3234pRLGABGaSGuT18V62oo4UwcPWspt+o6TKe6BT37\nDj82lCwA6prW0dqxk5zMecpiRsu2rsahZAFwzNvDE/Vb+bvp58awVpPX+vrRfTR1PZK6bklZemRu\nrAN9ktef9uIPDdvV7Auw6rqEqJ22Z2YYJK+MToIS+UmILDeyfThJGHPVL0yecoPe8czTXUvH0VdG\nlak81Mjjbaem/oUx5T5/7zivnnx6Ap5xyqI3OBxvsk/ofjIFpEfw+NLGI9ZQsgAI+OD/t3fmYVJU\n1wL/nZ4ZZhh2UBAUGAQEQQUVURRFEEURcF8BEff1GZdENC6oedGoiUs07kaNe1xijGsUd0PURNwx\nKohIUEF5rmwzc94f5zRTNAN0T1f1LNzf99U3XdU9dW5V3brnnuXeO29W5er/oREjKaHZhL4Ubbk+\nqYrWFI+uoHhQp8TlrpMWRiHRymVUPncF1R88BS06UDzsJIp6DUtE1tIfv1jl2LJajsXF2zNvYsmy\nRSsda1HeJbFlWtN8v/xbnp73Z75ZuoDtO+5G/3bJyBvcrjudy1ozf8l3ABRJij036JeIrHWBffoU\n88HX1Xy9WEkJ7N+3mDZl8SmM2rKei5vgWIg00raUkrGFdSsGhZEwVW/eT/W7j9rOd/OpfPwCUkc9\niJTHH4Ru1XEgJc3XZ/niGhdR++4jY5eT5v++n7XKsW23mEJRKrnAcGX1cs5/85gVa2BMm/8IZ25+\nBQM7xD/pYWlRMTdsdRAPznuL75YvYfQGm9K/Tf3Mw9QU6NwyxRUjS/lkUTXrlQsdmsdr/W7Yo4jZ\n71Xy7Tfm22/dTtgoodli11WCwkgYnf/eygeqlqELPkK6D45dVqqolD67XMv89+9g+eKFdOgxmnbd\nklvgqEunISz4ZsaK/fKyjolaFx999y6XvXMG3y2vsWoUZdr8RxJRGADrlbbg2ASX1l3XKE4JfTok\n04gXlwg77VXKl3Or+O4bpazFatJdmxCqmugaH5kEhZEw0mVz+OSl6BE0ldxtL2vdjR7bnZPY+aP0\n6zmBysolzJ0/jZblXRjY7yRSCV7bTR9evJKySNOyJLk1sAONi1RKmPtRFfPnmKZ4//VKdhxTWrBs\nqUKh3y9j+V9mUT37O6RTOSXjehRkttqmdRezoOrjOSy7/WGW3XQ/lW+8m7i8oi0PgNZRN4ZS9ezl\nqBZmZGaSpFLFDNz0OMaOuJ/h211Ju9a9EpU376fZqxxrVdKWMV3HJyo30HhYtKB6hbIAWLYEPnm3\nMIHv6sXKT9Mr+enl5VR9l+z7vfyJOVTPttiafvkTyx/6pCBtyjphYVTN+ICq9z+Bsmbox5+B39iq\nZ/+BtGlJUe+KxGRLUQlkTM+hiz6Dpd9DWegZ58KW7Xfgja9fXLHfs1U/fjng95QXh9UTA0ZVZS3r\nai+v5Ycxo8uURTctpXqRyf/p1UraHVNKUUKz8VbPWzkTUb9eAkuqoHmyTXqTtzCq3v6QyqdeRufO\nRz+as0JZpKmePS/xMmRObS4deiBBWeTMcX3PYecNxtKlvILhG4zjrC2uDMoisBIdOqVo1a7Gpy8C\nFX2TD3wvnVm1QlkA6GJYMiO5uUFS3VqttC/rN0cSVhawDlgY1R+u6saIkuqY/PTcxcNPpbJqOdVz\nXkc69qZ45C8Sl9kUaVnShuP6FiY+E2icSEoYumcpn86sZOliZaOexbRbvwD94tpEJCi2ZPfuLK9U\nqmd9azGMMRXJCYuQmMIQkVuBMcBXqrqZH2sP3AdUAJ8CB6rqIrEw/1XAaOAn4HBV/XcsBWnbatVj\nxcVQVUWqfy9Sm28Si5g1IeXtKBl3ceJyAoEANCsVNhmQXGp3bZT2KeLH1suptrAC0hzKtkyuPy4t\nSmh2UO/Ezr86krQwbgOuAe6IHJsCPKuql4jIFN8/E9gD6O3btsB1/jdvircbyPLP5tsstakURTtu\nTdGgzaCqOpHFkwKBwLrHstnVK5QFgFaBNEH/TWKXpKovikhFxuG9gJ398+3A85jC2Au4Qy3MP11E\n2opIZ1Wdn285pFULSo7YD13wDdKiHGnR3L5ogg8zEAjUD8s+yIhXLIPls6sp7de0Bg4WOujdKaIE\nvgDSk59sCMyN/O5zPxYLIkKqY4caZREIBAIxkmq/6uC5olqONXbqLUvKrYmcE4dF5BgReUNE3liw\nYMHa/yEQCAQSpvngYkq6eXMq0Hz7Yoo3aHpJqIV2zHyZdjWJSGfgKz8+D+ga+d1GfmwVVPVG4EaA\nQYMGNf7Rb4FAoNGTKhXaTi6l8utqUqVCqmXTsy6g8BbGX4FJ/nkS8Ejk+GFibAd8G0f8IhAIBApJ\ncYdUk1UWkGxa7T1YgHs9EfkcOB+4BLhfRI4E5gAH+s8fx1JqP8bSaicnVa5AIBAI1I0ks6QOWc1X\nu9TyWwVOTKosgUAgEMifpheVCQQCgUAiBIURCAQCgawICiMQCAQCWREURiAQCASyIiiMQCAQCGRF\nUBiBQCAQyAppzEuFisgCbDxHrqwHLIy5OEFekNfYZAV566687qq6fq7/1KgVRl0RkTdUdVCQF+Q1\nNHlN+dqCvMYvL7ikAoFAIJAVQWEEAoFAICvWVYVxY5AX5DVQeU352oK8Ri5vnYxhBAKBQCB31lUL\nIxAIBAI5EhRGIBAIBLIiKIw1ICJhEfAsEZGNRWSv+i5HU0JEihpAGaS2z/VNnGWp7+sqtPx85AWF\nsRpEpBdwrH8u+IsrIm0KLTNPugN3iMh+hRYsIiX1IDPRl1xE+gBTRCRVHw2aiJSLSKmqqoj0hhXr\n1tQL6XsgIluISHFcZRERSZ9LRPrFcc485I8XkdENWV5QGKunP7Cv3+CqQgr2xuK0GM+XWIMjIt1E\nZIiqPoetoHi5iByQlLxa5G8JnJWwjHRjtZ2I7CUi2yXVeEaeVW9gY1Wt9ka70EpjKHCliOwLPCAi\nFfXZE/d7MAy4HugZ53kBROQo4BwRaR3XuXOUPxI4GnilIcsLCiMDEWkJoKqPALOAc+uhGJXAeBHZ\nPd8TiUjbyOfJInKyiIzP97wRtgaWiUhrVX0KOAa4VEQOXMv/xcW3wCEiMiIpAd5Y7Qb8EVgfeFVE\n9klIXLn/fRroKSJnpMuQkLxaUdWngR7APcCZqvop9dheeCfqeOAqVf0wTqvfFdFuwDmq+p2IFPQ6\nRWRH4BTgLVX9tiHLCwqDlXqQfYFTRCTdY727wOVoJSItVPUT4DxgiIiU1LUCi0gF9sJvLSL7A1Ow\nZ36qiFwYR5lV9WFgHvCwiIxV1b9jSuM3SVoaIlIsIkWqOgu4Aujjx2N1H4rRHnNP7gO8D7wDvBr9\nTR7n7yoiY1xOT1zZquoy7Hm1cvdQQXr3kXehDXA/8DfgRBFpV2hLO4OtgA2B3USkrapW1fWeRK4x\nJSJlwEFAX2Bbr1PVsZV6DfIjfAD8B+gmIls1ZHnrvMJI+/Tcl3cj8BowXER+C+wEHC0F8MuLyA7A\n2cBF3puaCWwBtFHV6rq8HN4rnA5ciF3LBFW9CntBxonI1BjKPQrYBmtYThKR3V1pHA38QUQOzldG\nLTI3xxThcWKxpjeByUk0amp8g93Hw4DfAfuq6pcicriI9Muz9z8QuAgYB7QBngNO92dzJPbc+hTC\nwoi8C+OAXwNPqep+wP8BD/hvtheRowtRFv9bISIdVfUe4HxgKbC/iLSqi6sufY2+2wlYBpwMPIJZ\nywNju4i1yBeRiW7t76yqp2MTqR4g5mZtmPJUdZ3fgEFYhdnW91PAGOA44FPgBqAFPtAxAfm7YA3F\nPsCpwD+BScBXwKVAKsfzSbSswFFYo3oU0MyP9fRr+2Ue5d4Kc9Ns5/tHA88Co3x/FDA8pnskGft7\nA2dgPf7R/veUzGvPRxbQESj3zxcAc4Fevj8AeA8YGsO17Q1MA/bz/S5YDOEq4AvgTqB1EnWvlrIM\nB94CBmUcvxZ4CuuZ7lWgsoz2stwA/ANz143HlPaJQKs8zv0/wJOYF2EqUOb3++J0fU742k4CXsJc\nYYuBXb2+XQlcA2zREOUl/tAb+uaK4HJgAdC+lu939sa8d0Ly+3ljMSBybDAwEngG69mV5XC+qKKY\nDJzkn0/FrIAhQLEf64EFVnMtcxHWG14ETIvKxXrF04HRtZWpjvcofe5RWID7hPQ9wZTtZOB14K8x\nPpcxwIfAzcAZfuw+4E+YknwTGBeDnC7+dzTwApY4EH2Go4DbgQ2SqH+1lGcq1pNfHzgCuBe41L8b\nAmwaxzPNohz9sYBsN+AALJ6YfubjgeuArnU894FYx6Ytrgj9eHvMy3ARUJrgtbXDLORSLLnlb9R0\n5NphSqtjQ5SXeAVsiFtmZcd8ow8BdwAt/VhJ5Pt7gWMSKEe5N+TzgYNq+b41pkyOrsO5TwD+nX7B\n/diZmCW1E6408rxv2wI/ZJYP8/dvG/O9GuPXMxZ43q+jRca9fAWYFIOsPt4g7QFsD/wZt8R8fxyw\ndW33JEc5nYFb03ULUxrPA/vilo0f/ztwWNz1L6Msm/jfYcCjwAyvLxOBPwAbJSm/lvJsiHU+JmIW\n98bp++9/O+VZl4ZgFulT6Xcd2BjrQNb53KuRl8rYb+VtzTXAg9RYsSd53cu3g5WYvIJVgIayUdNb\n3d0rzOm+3wXrbdyIm7qYa6q9V6o+ccqP7LfEes1/BIZFjqetgClYDGKND5WVe6XNvJHr4/tlke/O\nIkerJUPOcMxNNh7rnWyOWRpHxPycugE7+Oe2XuF7A/thpvU9mAUWbVjPA07NU24nLIh/m++XYFbg\nfcAVCdTHIzCXy+G+Pxqzlg7w59gO+Fdc9a8W+SmXMx24BFO8HXEFgbkd38MVSlIbUJTxtwuWXDCT\nmgZ9e+BFbPGfrN41anFRYi7A74EnI8eOBG4iWctiC8xyE6yjWA208+8OxazWbg1ZXmIVoCFvwJ6Y\nb3QYZure7sc3AG4BbiOipevauNYiN62sRnsjcbE3Rs2B07Ec85GR37cGLgM2z+a8/nk/anoUx6df\nQP9uiP9tW8dy74D18qdibpJbMNfBAKAKOCqOe+TXPd8bi139eBe/V//2z12wmMLz3uit7/d0szxk\np91DBwOfADv6fgpTjA8A/ep47g2BR/1zD+AXke/GY5bGJN8fQ8SPTsSSSuBdKPW/G2GN8a99vxgY\nAXwEjElQfhdqFMI4rKNzDbCj16tFWDzvFOBtcnADEnEjY/HIy/09W8/P9z4W5D7Vz90/5msbjqXq\ngln8HwF3YdZxd6yD8w5mzb6eT90tlLxEKkFD3fzFb4u5nzb1CvqiV5a/+m82jLviZJRhT6zHuBPW\na30Xy85ohmVJ3UoklkLENZbFuQ/CgoMbYgHuqbjV4t89Baxfx3L3xVwD+/t+hcu43Pd3AnaL8T5d\njLliHseykvBndn1E3kXA4Mj/1FmxY+6hP1LjHpoIfIwHtb3u5NVwY6m4z3vZ78WtW//ubH/Bj4gc\nSzpOsKk3oN0j9+CfWCC0DIvf5R3UX0sZ7vZn3A+LFU7EstG+xgKzWwG/wqzaXbK5L1inoxRLGLjQ\n36/pWAfqMuANrAE9GfMo/ImI6zbGa+uFBZivwwLqXTHr7TTgZcz9tYOXr3tjkJdYRWiIG94Q+4vR\nH+utlmFmfzVwX8Lym3nl7wvshSmrs7C86AFelh7+25waC68ErwCH+P5G3qA+iAW5ZrAWSyXjfH2w\nnnZX39/UG7xpkd/09wawS+RYPj79aNxolFf8cZiC3xeznJ7FfOoLqbE+csoiW4P8I7wBOdz3J3ij\ns1Oe541aq3/FendDMQvt5358IN5wJlkHo8/Jy3Az8DNqlMZm/i6cRcQ6TbgsD3n9PD9ybFssI6tH\nHuetwJT+DCyVNH38dODOyH6s1+n3Nu1a2xhLX33N94uxpJHrgL0bm7zEK0ND2TAlMSfSyGyG9SjL\nsADYJcCIBOX39r/lWO/mVWoyTv4JzCaHNMHMhtlfsHsxKyIdIGzh1z2IHLJsvAL+FliOxQou83MN\nBK7GfL2CKZUZ1CHTqhaZfTE32vBIGe7GxgPsDTyG+bDb+POqc1Cd3NxDk6KNTR4yV6c0nsBcBjOJ\nuCMTqoNp1+LmmPuu1O/p7zGl0Qbrpd6Fu+OSLktk/06sA9ciUs4bgIF1vMZ0A7oR8Dlwd+Q3vTCr\nImvrvS7XhVukmOL6BncX+bEbyTPeVi/ykqwUDW3D0i//g6WstvDG8Ebgy2hDlYDclsDDwO98vxUW\nA+iK+Wp/Sw551xmVZCDmBy7GAsWXYnnq3fMs866YGdvLG7TL/dwjsCyatzHLJZZGDnPTVGPuuqOx\nIGR3LOjfGTgEs2bi6pWtzT30MTG7h1hVaTyPJVUcRJ5WTA5lGIlZaDMx5Z/uMF2NTUcyC+84JfEu\nZJRlCGY5tvb9B/w92cG3/+LZaFmeL/pebIlb1Jhb5kus41OGBXzfoZY0+hiv7WgsHnO471dg8Zg/\nY263fxGjG6xQ8hKvoPW9Ya6UbpH9Q/2l2BxzRQ3Fs3FilhutvCmsYb8PuNiP3Yz1cr4AxtZRxsmY\nb/a3mPJrhpmkF2O9s7xSIYG/AOf650nYiN83MMvsXeAPtV1vHvKGAj9icZ7/xeIxn2EjyYv92Q3K\nU0a9uocy5D+BWzqZ3yWxYW7LeVhsYjw11mIZ1oEaSszp0Gt51jOxwXM3UKOkbscGrF5CHTsjwM+x\nzs4LWCLJcCzQPdff/YvjfrYZz3UXzN08yZ/xFMya64rFGJ4m4sZtDPJWyCpE5aiPDfPbpbwhvQ3r\nfafN1Uu9Uibaq8N6SYPTDxhzgz0MnOzHOpPDQCg8Jc4/H4DFLFpjvf/ZWNCwFHMVTaWO+eSR+7QN\nFgcZgCmIIzEL49eYv/8OXAHGeM9GYTGdEmwA43nUBDtzHjuyGhn16h7KkL+iPiS9+bO7xj+XYDGo\nZ7CspDYFkJ+uV+XYSOt01t6pmFss/ZzvIodgOyt3zjbBrMdif7/2w5RiZ8w99S+gIonr8s9bA/vj\nljBmRd2GjWkpxzIxezUmeSvJLkRFLeQWqZTpsRSlXmGuxy0NLJB6NzFNW7GacnT3RnseNUqjBHOL\nfQxckOP5dsN697v5/lb+EhyL9SBKMYXxMmZp5O2fxUz5p7BeyrGR4+lRopsDnRO4d3tiSqNN+r4l\nIKNe3UNp+Vhwuc7Ts2Qpq8LrYy8sjrdH5LsrcJccCVs4Lm9vzHp7CzjRj7XH0lxvJpJpR3adqJaR\nz239nXiLmsFpG2AKaJLvxx7gjnw+DnOjPYN14NKutm2wwP5p2VxTQ5K3ivykK0h9bNg4h5ew+X8G\nYb2Nm7Bg5gVY/vWAbCtlrg8T85/+2z8fj00xsY3vj8RcSINzPPfJwBJXDmP9WAoz53f2/Yv8ZYxz\n8M82mGuoc0Rmor5tl7M75ndul6CMenMPuYxSzFpLJDPKn1U7r/vnYoMS98M6AROA7TCX5ln49B8J\nX+9mWJbbztiMxj/glpwrjdPJIaUd64D9DFNCRwEP+vHrsXTadIfjAiwuJUk9VywWdmfkPbkK68Cl\nB8ptTUxuofqQt0Ju0pWk0BvW834IC/RcjPlpd8FcVBOweXL2TFD+MKy3ekDk2AlYkPhSrEcwrA7n\nXQ/rDZ7m13eQH7/Rr+lsbBqROo2zWIPcEqznd2AhGtEM2XsSQ4bSWmTUi3soIjMWN1vGOTMzkEZg\nge5TsdG/ozD//qO+vwdmZZVn/m+MZerq9eixyLFDsfTo0bneC2o6Z72xNVHmpOs+lkhyOaYMp2Bx\ni1jngovIT4/tugub6XpY5PjvsNHUOQ2UbQjyVluOpE5cH5tXyo+pGe3YBZsv5WoyZtiM68Wo5eXc\nFJsy+YaM4yOw3t3OOZx7Czx7yivEb/yl29Vf8OGYu+FXWEB9QD7XsoZybIPP4VNPzzXpbJ2CuYcK\neM+2AH4f2R+GWaPnUJN+mR7NPZMcxujU5bm5rIlYZt0koLkfn4S5PNcjS3dRxnk3xDqGs4CJ6eeJ\nBfInYpZMrNOqZMhPWzGtMaV8Hm4xYp3US8g/Y7Gg8tZYlqQrbqE3zN0zn5pxD50wU/caYp7xM+NB\n9qRm0F0PLKXtjDzO3QFLM52LBbXSmULXYj3Eg7Ee4p7pylLf974xbyTsHipA+TMHWvbFeqFXUdM7\n3Rsbk/BzLCuqHEvHjH2eqIjMUZjb6FTfn4yNJJ9AzeyzdXKduDI4yz9vinUW03GRsSQ8YSIWuH8Y\nW2hqMhbzuxlTykko4ILKq7UMhRCS0MNaMamYvyzR6cHPxTJf0pPvbRC31vWHlR5XsRPmcnoJy/bY\nBsvK+hw4Ow8ZI1xpXOjXdDeWSz7Bv5+MWRatKEBcoalvJOAeKlC5axto2QqL310OXOu/64nFuDaL\n/G9ibkYsUeNNLFayyBu2UizecBNwOCuPUs5+1lSr++8QGQnu1/uRn3suCS1J4LImYvGYDlgsIT0Q\ndGMsiWAKnhwSo7xnCiVvdVu6wW20iMie2EvxEhZs3ltV54nImViF3FtVP0xAbm+sEa/GzOkzMFfU\njpgCORcLOL6K5fXP0Tos/Sgiu2DB+q0wS+NQ7GU4Anv5UNXv87ycQCNHRHbFYlmHY8rjI6xuPoXV\nm/6Ytf0zVX0iY+W5JMojmDV8g8u9ADhYVef4ksOTgemq+l6W59sIc1219HNcj61j8bCINAOq1JZt\nrcDSsd9QW743EURkIjYyfSQWAxqL3e/2mGtIVHV+Hudf6fn4SnkzkpKXNUlrpAQ0e3Rah15YxlM3\nzNz+EUsrrfDvzyGBQXl+7hRm9v8OG1yWTmnbCAtEH+37dV4VLCJrNNabSq/VUef5dcLWdDdqH2j5\nKjaZ36UkO6lmGdDTP3fHArNTsfjhNGqs/cPIcbQ+Nu/aP/z6XsNcaidinbTmkd/tQYL++0j5u2CK\neSHwUOS7Y7w9yMtSZWVX92AsTf5kbOxY7PJyKluhBMX80F7B0kubY4Hu3b0iNcfMs4+TalSpcYOl\nzegKLAB9OzU+2TMw11SKmnUt8s2/Ho2NTWifWZawrdtbpE7WNtByDywwumXCZdgaSzD5NTY4rgU2\nmnwxNZk8W2Nra+ycw3mHY9P5bO1KqI8rwWexrMERmAWzv7cLsY8LyijPlfgMB9jA1WmuQE7EOnWx\nxcCwsSmP4rFXbGaIxORlVaZCCovhBkZTIJ8EXvDPJwMX+ef9sYE7OU1alqX86HoWV2KxhU2x/PLr\nvcIegsVPYpvqOyJ/L8wMLshYiLA1ro3VD7QsL4DsMix28CMrT3r3C8yVcis28DSnZW2BX1KzzHC6\nQ7YhNhXGfzHL6XEsTTjWdbBXU57+mKstPd7hVmxamYdjVhYj/H6tn3E8PZ4sVnnZbo0uhiEiKfVY\ngIg8iWUOXYMF2BZiPr5TVPX1hOTvhFWYAzET+WnMotgIm0K4HXCaqr6UkPyWqvpDEucONH5EZBvM\nDbSvqs6Pvi8JyVvhaxeRoZhreCmmJB5U1WoRGYytb9FMVT/IJn6S/o2IXAd8qapTPS6SUotV9MUs\njDOwcRhLVHVhQtd4ONbO3IMp41uAxap6QuQ3zVR1WYwyD8ZG5E/ymE9KVSsj35eq6tK45GVLqtAC\n88UrYMo/744ttXg11uNoA1wWp7IQkU1EZFTk0A5Yvn57zEd8uT+4/2KWzqFJKQuAoCwCa2EG5vbZ\nMWllAeCN+nARmYClx54BLMDm5hopIkOwDMZPVPWD9P9kc17/+ACwg4hs7cdUREowS+ZH4DNV/TxO\nZeGKKcpcLGX5V5jb7TRgQxHZMlLeOiuLqDwRKfOPM/2rAaparaqVIjJBRI7338emnHKhuD6E5kta\nafiN3EdEHgQOU9XRsLIVkg8isglmRVwaOTwLm8OlIzaae45nTHRW1UtrOU0gUDBUdbmI3IDNv5W4\nZeEK4Q7Mup7oFs5ULIvvQMyNOikPUdMxV+9BLvMNoNrldiDmNizDYhoLVAILVHWkiAzCYkTplQC3\nxdKG8yIi71igp4gswGIV3wAHeId1ATaebO9sFG5SNDqXVJQM99TDwHOqenVM5+6HDXyaqqqPuFXT\nCauk12ABqAexQXq3A1NU9fE4ZAcCjQFXDpOAF1X1fhEpxabFeU5VzxaRztg0FR/kKSe95PAILFtq\nGRarPERV38rn3LXISivCE7BBjY9ja3Y8qKrn+G/2wVzf16nquzHJPRxLUjgSi12cgi1RvKNvgo2n\niUVeXWnUCgNqlIaInIX5+f43pvMOxV6ElO8/ieV9XyEiB2LzU3XDgn1XulJJNLc9EGhIiMiJWK/3\ndmwQ6/feuN+CWd+xjQ8SkebYwLxRWKzyCY1xfJWIdAO+VtUfRaQjNpr6eI+5tMMSWa5V1Sv897G9\n6yJSjlkut2FjFrLdOgAABahJREFUySYAY1R1WUSBxRojqSuN0iUVxZVFKTay9c4Yz/uyiOwpIrOA\nT4BX0pXFe1PPAIploMwLyiLQ1Ik0XhsDX6jqtSIyH5uR+UUReQ3rRHXEJq2MDVVdjA3OjT0+KCLp\n6YPmisj1qvqViCzE4wSqukhETsWWs02Xp87vutig3w7Y1CwzVPUbEZmDTeOyTFV389+djS2PcHtD\nUBbQBBQGgKouFZHzolkEMZ33CRE5GkvhTT/E5l55F3mlWeS/Dcoi0KRxZbEH1ht+QkS2wmIUXbEJ\nAD/DFMWFqvpN/ZU0ZxZgFsRWwGQRuQYby3WviAzxdqUC6CoiRapaVVdBYjNTXITNrtsS2FREdsfG\nWI0HLhMbuT4OiwEdXPfLip9G75IqBCIyGtP+Q1R1oYgUx62cAoGGiIh0waag+RRbze4eLH6wL7bq\n4y6q+oOIHIYlg1yuqg/VU3Fzwnv6KVX90DOPxmADHWeo6o2e0jsAmyduW2C8qr6fh7zdsYSAM1X1\nBT92PhYH2hUbnLgHtghUM2x4wDt1lZcETcLCSBpVfVxEqoD3RKSvqi6q7zIFAknjYx0exBq5Bdjc\nRX/C1qA4EAs6/yAi26vqHSLSCjjd3VTTG7LVLSIdsIXNForIBUAVNqVPG6CXiByrqseLyLZYnPI3\nqjo7D3ntsQD6OFV9QUTKVHWJql4gIkXAY9iU9E+6vMqGaKUFCyMH3Jz8UVWfr++yBAJJIjaJ39+A\nK1T1Fj/WFsvgKcHmpfpBbCDrmcBk9/0fjy2S9Fn9lDx7RGQENgPsKdhyw+2wVQCXYROK/h34o8Y0\nQM7bj0uwqVG+lsjgOxF5ARvw+684ZCVFsDByQFUfg3gzJAKBBspw4FlVvcVTygdifvy7gH2AvURk\nOTaIdaqqfgWgqtfVU3lzRlWn+RiHqzHXUycsdfdgbNK/PpgLLhaFoaqPiUg18JqIDPJgeomqLscG\nARd85HauBAsjEAisgogMwyYSvBA4CJvYcwA2V9VQbL31D4Bpnhwi0DiTP7znfwWwnWcstcOsqHJV\n/TQBeXtgY7nSSuMwbDLBsWnF21AJFkYgEKiN14E/Y8sCf4wlfbyLWRlVwHmq+hM0fos70vOf7llR\nXycs7wkROQlLRf4DtjjSkQ1dWUBQGIFAoBZcGVwpIndEg68iMgAYArQVkcXq1FtBY8Ib8WbAM2Lz\nViU9B9cTHux+CJt6PquFpOqb4JIKBAJrRWzCv12x8RZnp+N5TQ0p8GzQIlKettQaA0FhBAKBNeLK\nYjC2zOpVqvpoPRcpUE8EhREIBNaKK40OqvpFY49ZBOpOUBiBQCAQyIpGt4BSIBAIBOqHoDACgUAg\nkBVBYQQCgUAgK4LCCAQCgUBWBIURCBQQEWnry3+m93cWkb/VZ5kCgWwJCiMQKCxtgRPW+qtAoAES\nFEYgsBpEpEJEZorIbSLyHxG5S0RGisgrIvKRiAwWkfYi8hcReVtEpovIFv6/U0XkVhF5XkRmicj/\n+GkvAXqKyAwRucyPtRSRB1zWXemJ/AKBhkaYSyoQWDO9sJXljsAm5DsUm611HHA2MBd4U1X39vUV\n7sCmAgfoi00T3gr40FdwmwJspqoDwVxSwJZAf+C/wCvADsDLhbi4QCAXgoURCKyZ2ar6jk9G9x62\nRoQC72Aztw7FVqFDVacBHUSktf/vY6q6VFUXAl9h6y3Uxmuq+rnLmOHnDQQaHEFhBAJrJrqoTXVk\nv5q1W+jR/61aw++z/V0gUK8EhREI5MdLwHhY4V5aqKrfreH332MuqkCg0RF6MoFAfkwFbhWRt4Gf\ngElr+rGv5fyKiLwLPAE0yWnCA02TMPlgIBAIBLIiuKQCgUAgkBVBYQQCgUAgK4LCCAQCgUBWBIUR\nCAQCgawICiMQCAQCWREURiAQCASyIiiMQCAQCGRFUBiBQCAQyIr/B/dGAbnnsRR/AAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "0EucmQZJCJNw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Create a [pivot table](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot_table.html) of passengers by month and year" + ] + }, + { + "metadata": { + "id": "PzhxeU3_CJNx", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 2000 + }, + "outputId": "6890c633-ce3e-47c3-9e6c-408e89bdeea5" + }, + "cell_type": "code", + "source": [ + "pivot1 = flights.pivot_table(index=['month','year']);\n", + "pivot1" + ], + "execution_count": 173, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
passengers
monthyear
January1949112
1950115
1951145
1952171
1953196
1954204
1955242
1956284
1957315
1958340
1959360
1960417
February1949118
1950126
1951150
1952180
1953196
1954188
1955233
1956277
1957301
1958318
1959342
1960391
March1949132
1950141
1951178
1952193
1953236
1954235
.........
October1955274
1956306
1957347
1958359
1959407
1960461
November1949104
1950114
1951146
1952172
1953180
1954203
1955237
1956271
1957305
1958310
1959362
1960390
December1949118
1950140
1951166
1952194
1953201
1954229
1955278
1956306
1957336
1958337
1959405
1960432
\n", + "

144 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " passengers\n", + "month year \n", + "January 1949 112\n", + " 1950 115\n", + " 1951 145\n", + " 1952 171\n", + " 1953 196\n", + " 1954 204\n", + " 1955 242\n", + " 1956 284\n", + " 1957 315\n", + " 1958 340\n", + " 1959 360\n", + " 1960 417\n", + "February 1949 118\n", + " 1950 126\n", + " 1951 150\n", + " 1952 180\n", + " 1953 196\n", + " 1954 188\n", + " 1955 233\n", + " 1956 277\n", + " 1957 301\n", + " 1958 318\n", + " 1959 342\n", + " 1960 391\n", + "March 1949 132\n", + " 1950 141\n", + " 1951 178\n", + " 1952 193\n", + " 1953 236\n", + " 1954 235\n", + "... ...\n", + "October 1955 274\n", + " 1956 306\n", + " 1957 347\n", + " 1958 359\n", + " 1959 407\n", + " 1960 461\n", + "November 1949 104\n", + " 1950 114\n", + " 1951 146\n", + " 1952 172\n", + " 1953 180\n", + " 1954 203\n", + " 1955 237\n", + " 1956 271\n", + " 1957 305\n", + " 1958 310\n", + " 1959 362\n", + " 1960 390\n", + "December 1949 118\n", + " 1950 140\n", + " 1951 166\n", + " 1952 194\n", + " 1953 201\n", + " 1954 229\n", + " 1955 278\n", + " 1956 306\n", + " 1957 336\n", + " 1958 337\n", + " 1959 405\n", + " 1960 432\n", + "\n", + "[144 rows x 1 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 173 + } + ] + }, + { + "metadata": { + "id": "-SYg5RkRCJNz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Plot the pivot table as a [heat map](https://seaborn.pydata.org/generated/seaborn.heatmap.html)" + ] + }, + { + "metadata": { + "id": "GJpST5XgCJNz", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 319 + }, + "outputId": "0878b9b4-361d-4640-e206-1e867acae5aa" + }, + "cell_type": "code", + "source": [ + "ax = sns.heatmap(flights.pivot(index='year', columns='month', values='passengers'))\n", + "ax.set_xticklabels(g.get_xticklabels(), rotation=45);" + ], + "execution_count": 176, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEuCAYAAACJVHkLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXe8HlW1v5/vSQ+BJFRTgNB779I7\nhF5EkBKKoID8kHKlXAvlXkVEKRcvmCsKKNgoCkqRjqKgoJEiUQJSgnQRCS3JOev3x9ovZ3I85S0z\n58x73vXkM5/M7JlZs+c9M2v2XnvttWRmBEEQBK1D20BXIAiCIOhfQvEHQRC0GKH4gyAIWoxQ/EEQ\nBC1GKP4gCIIWIxR/EARBixGKPwiCoMUIxR8EQdBihOIPgiBoMULxB0EQtBhDB7oCRTFi5NKFxKIY\n2jakCLGMHjaiELlFheSY2z6/ELlQ3G8xasjwQuQWyXvtcwuRO2fu+4XIfX9+MfUFGDF0WGGy33n3\nWTVy/rzXn6n6RRu2+PINXSsPBq3iD4Ig6Dc62ge6BjURij8IgqBRrGOga1ATofiDIAgaxAo0fRZB\nKP4gCIJG6WiuFn9hXj2SviPpVUmPZ8rWkfRbSY9JulnSIl3OWUbSHEmnZspOlPS4pCckfbao+gZB\nENSNdVS/VIGkcZKukzRT0pOSNpO0qKQ7JD2V/h+fjpWkSyTNkvSopPX7kl+kO+eVwC5dyr4NnG5m\nawE3Av/RZf83gFsrG5LWBI4GNgbWAXaXtGJRFQ6CIKiLjvbql+q4GLjNzFbFdd+TwOnAXWa2EnBX\n2gbYFVgpLccAl/UlvDDFb2b3A//oUrwycH9avwPYr7JD0t7A34AnMsevBjxkZu+a2XzgPmDfouoc\nBEFQFzm2+CWNBbYCrgAws7lm9k9gL+CqdNhVwN5pfS/ganMeBMZJmtDbNfp7AtcTeCUBPgYsDSBp\nDHAacHaX4x8HtpS0mKTRwNTKOUEQBKWho6P6pW+WA14Dvivpj5K+LWkhYCkzeykd8zKwVFqfBLyQ\nOX92KuuR/lb8RwLHSXoEWBiozPY4C7jQzOZkDzazJ4GvAr8EbgNmAD32lSQdI+lhSQ+3t8/p6bAg\nCIJcsfb5VS9ZPZWWY7qIGwqsD1xmZusB79Bp1vHr+czMumdn9qtXj5nNBHYCkLQysFvatQmwv6Tz\ngXFAh6T3zexSM7uC1OWR9GX8a9aT/OnAdChu5m4QBMG/UYMff1ZP9cBsYLaZPZS2r8MV/yuSJpjZ\nS8mU82ra/yILWkImp7Ie6dcWv6Ql0/9twOeBywHMbEszm2JmU4CLgC+b2aVdzlkGt+9f2591DoIg\n6JMcB3fN7GXgBUmrpKLtgT8DNwHTUtk04Gdp/SbgsOTdsynwVsYk1C2Ftfgl/QDYBlhc0mzgS8AY\nScenQ24AvluFqOslLQbMA45PgxxBEATlIf+ZuycA10gaDjwDHIE31H8s6SjgOeCAdOwt+PjnLODd\ndGyvqKggXgNNBGlzIkhbJxGkrZMI0rYgjQZp++CJu6p+0UassX0EaQuCIGh6IlZPEARBa2Ht8wa6\nCjURij8IgqBRosVfDtpUjMPS8LZifrIRQ4qxX84vKE54e4FBqUYPHVmI3LFDRxcit0hGDCnGZl7U\n2E9RzxvAuBELFSa7YZosSNugVfxBEAT9RrT4gyAIWozIwBUEQdBiRCKWIAiCFiNMPUEQBC1Gkw3u\nliIDl6Qpkt6TNCMtl2fO2SAdPytlmRnwWW9BEAQLkG9Y5sIpUwaup81s3bR8OlN+GZ6Fq5JhpqvM\nIAiCAcWsveqlDJQmA1d3pNCji5jZgyn+9NV0Zp0JgiAoB9Hi75VuM3AllkvZZu6TtGUqm8SC8ff7\nzCwTBEHQ77TPr34pAWXJwPUSsEzKNnMycG3F/l8L2cw28+dHBq4gCPqJHHPu9gelyMBlZh8AH6T1\nRyQ9jZuFXsSzyVToNbNMNrPNqFHLDs5400EQlI+SmHCqpRQZuCQtIWlIWl8eH8R9JmWR+ZekTZM3\nz2F0Zp0JgiAoB9Hid2rMwLUVcI6keUAH8GkzqwwMH4d7CI0Cbk1LEARBeWiyFn9hit/MDuph18Xd\nHHs9cH0Pch4G1syxakEQBPlSkkHbaomZu0EQBI0SLf4gCIIWoyS2+2oJxR8EQdAo0eIvB0uOHluI\n3CHufJQ7iw+vedpCVbzb/kEhchlRXDayoQX9xuOGjCpEbpG801FMBq4hBWWoGzl0eCFyAcYOK3EG\nrmjxB61AUUo/CJqSaPEHQRC0GO3lCL5WLaH4gyAIGiVa/EEQBC1GKP4gCIIWo8kGd5shA9d/S3pB\nUoTbDIKgnEQ8/g+5knwycN0MbFxgPYMgCBrDrPqlBJQ6A1eS82CK0hkEQVBO5s+vfikBZc/AFQRB\nUH6aLCzzoM3ANef9rp2NIAiCYrAOq3opA2XPwPVwjfI/zMC17GJrl+MXDoJg8FOSQdtqKXUGrv6s\nWxAEQd3kbOqR9Gzyfpwh6eFUtqikOyQ9lf4fn8ol6RJJsyQ9Kmn9vuQX6c75A+C3wCqSZks6CjhI\n0l+BmcDfWTAD16OSZgDXkcnAJen8lMFrdJJzVlF1DoIgqIv57dUv1bNt8nLcMG2fDtxlZisBd6Vt\ngF3xxvJKwDHAZX0JboYMXJ8DPpdj1YIgCPKlf0w9e+HpbAGuAu4FTkvlV5uZAQ9KGidpQm/ekP09\nuBsEQTD4yN+P34BfSnpE0jGpbKmMMn8ZWCqtTwJeyJw7O5X1SIRsCIIgaJQaWvxJkR+TKZqeHFOy\nbGFmL6Zx0TskzczuNDOTVLcDSyj+IAiCRqnBTTPrfdjLMS+m/1+VdCMeveCViglH0gTg1XT4iyw4\nJ2pyKuuRQav4Fysoo9VwFfOTjWobVojcojItAbShQuROHLpwIXJHF/S3AxhNMVnDZuvdQuQOK+i5\nGFHQcwwwfsjowmQ3TI4TsyQtBLSZ2dtpfSfgHOAmYBpwXvr/Z+mUm4DPSPohsAnwVl/RDgat4g+K\npSil34wUpfSD5sFq89bpi6WAGyWB6+hrzew2Sb8Hfpw8JJ8DDkjH3wJMBWYB7wJH9HWBUPxBEASN\nkuOMXDN7Blinm/I3gO27KTfg+FquEYo/CIKgUUoSg6daQvEHQRA0Skli8FRLKP4gCIJGiVg9Th4Z\nuCSNlvQLSTMlPSHpvKLqGwRBUDcdVv1SApohA9cFZrYqsB6wuaRdC6xzEARB7bS3V7+UgFJn4DKz\nd83snrQ+F/gDPjkhCIKgNFhHR9VLGWiaDFySxgF74FHpgiAIykOYenqlrgxckoYCPwAuST6u3ZLN\nwPX6uy8XdhNBEAQLEIq/Z8xsppntZGYb4Ir86VT+QZqcgJk9kspXzpw6HXjKzC7qQ/50M9vQzDZc\nfPRHirmJIAiCrjRZzt1+deeUtGQKOvRvGbiAf5hZe9cMXJL+CxgLfLI/6xoEQVAtNr8cCr1aSp2B\nS9Jk4D+B1YE/JFfP+AAEQVAumszUU+oMXGY2GyIaWBAEJack3jrVEjN3gyAIGqUkLflqCcUfBEHQ\nKKH4gyAIWgurPpduKQjFHwRB0ChN5tUzaBX/okMXGugq1MSUIcWkGyzqcZxXoD/ymIJSJC5a0OM+\nworzP5jXNrIQuUW5873fMb8gyTBU5c10ZmHqCYIgaDFC8QdBELQYzWXpCcUfBEHQKGHqCYIgaDWa\nTPGXOgNX2nebpD+lDFyXSyUe4QmCoCWx+Vb1UgaaIQPXAWa2DrAmsAQexz8IgqA8dNSwlIBSZ+BK\ncv6VVocCw4FyfDKDIAgS1mFVL2WgKTJwSbodeBV4G4/eGQRBUB6ixd8rdWXgMrOdgQnACGC7noRn\nM3C9OGd2UfcQBEGwAE2Wh6VpMnBhZu8DP6Ozx9Cd/A8zcE0aEznZgyDoH2x+9UsZ6FfFL2nJ9P+/\nZeCqeOtkM3BJGiNpQiofCuyGJ3EJgiAoD01m6inMjz9l4NoGWFzSbOBLwBhJx6dDbmDBDFznSJqH\n/zSVDFxLATdJGoF/pO4hfSyCIAjKQllMONVS9gxcrwAb5Vy1IAiCXAnFHwRB0GKE4g+CIGg1CgzN\nXQSh+IMgCBqkY35zKf7+9uMPgiAYdBThxy9pSJrU+vO0vZykhyTNkvQjScNT+Yi0PSvtn9KX7EHb\n4h9eUCy3Oe0fFCK3o6DQc3MLMj4OV3FthqIyZS0zv5g6zy2wsTdnyLBC5H6gYp6LuUNGFSIXYPG2\n4mQ3ihVj6jkReBKoTGb9KnChmf0wBbI8Crgs/f+mma0o6cB03Md7Exwt/iAIggbJu8UvaTI+b+nb\naVt41IJKyJqrgL3T+l5pm7R/+3R8jwzaFn8QBEF/YR25t/gvAj6Hh7YBWAz4p9mHc39nA5PS+iTg\nBQAzmy/prXT86z0JjxZ/EARBg5hVv2RjiqXlmKwsSbsDr6bwNYUQLf4gCIIG6ahh/MjMpgPTezlk\nc2BPSVOBkbiN/2JgnKShqdU/GXgxHf8iHul4dgptMxZ4o7c6lD4DV+bcm7KygiAIykItLf6+ZdkZ\nZjbZzKYABwJ3m9nBeMia/dNh0/CglQA3pW3S/rvNer9SM2TgQtK+wJwC6xoEQVA31qGqlwY4DThZ\n0izchn9FKr8CWCyVnwyc3pegImP13N+NP2nXDFy3A1/oTY6kMfjNHAP8ON9aBkEQNE5B7pyY2b3A\nvWn9GWDjbo55nxpT0jZDBq5zga8D7/ZTHYMgCGpiUCVikdQm6aM5Xq+mDFyS1gVWMLMbqxGeHS1/\nfs7zOVY7CIKgZ9o72qpeykCvtTCzDuCbeV2sjgxcmwEbSnoW+DWwsqR7e5H/YQauZcYsk1e1gyAI\neqWfbPy5Uc3n5y5J+/U1E6waas3AZWaXmdnENLq9BfBXM9um0XoEQRDkSZ5ePf1BNYO7n8LNL/Ml\nvQ8IMDNbpLeT8sjAVevNBEEQDARlaclXS5+K38wW7uuYHs5rOANXl2OeBdaspy5BEARF0jEY4/FL\nGo+bX0ZWyszs/p7PCIIgaB2Kcucsij4Vv6RP4uFBJwMzgE2B3+KR4oIgCFqe9iYz9VQzuHsinvD8\nOTPbFlgP+GehtQqCIGgizFT1UgaqMfW8b2bvS0LSCDObKWmVwmsWBEHQJJTFW6daqlH8syWNA34K\n3CHpTeC5YqvVOMu2jSlE7vsFZQGayPBC5LY17oXbvdwCH/SV5hVT51Xaign3NGduMVmyAMYOHVGI\n3IWHFvMcjxhS3ASl5ayY3yIPBt3grpntk1bPknQPHvLztkJrFQRB0ESUxYRTLdV69WwBrGRm35W0\nBJ7x5W+F1iwIgqBJaB9sil/Sl4ANgVXwCVfDgO/jyQKCIAhankFn6gH2wT15/gBgZn+XVNekriAI\ngsFIs5l6qhmJmZuyuRiApIWqEZxXBi5J90r6S2bfkrXdYhAEQbF01LCUgWoU/48lfQvP93g0cCfw\nf1WcdyU5ZeACDs7se7WKawdBEPQbhqpeykA1pp65uLL/F27n/6KZ3dHXSXll4AqCICg7HU3mx19N\ni39J4CvAsvgH4M4GrldPBi6A7yYzzxfyCA8dBEGQJ+20Vb2UgT5rYWafxwO0XQEcDjwl6cuSVqjj\nejVl4Er7Dk6moS3TcmhPwrMZuP789jN1VC8IgqB2BqONnzS4+3Ja5gPjgesknV/LxerIwIWZvZj+\nfxu4lm6SDWfkf5iBa/WFl6+lakEQBHXTbDb+PhW/pBNTC/184AFgLTM7FtgA2K+Wi9WagUvSUEmL\np/JhwO7A493JDoIgGCiarcVfzeDuosC+ZrZAfB4z65C0e08n5ZGBK7mO3p6U/hCq9ygKgiDoN8qi\n0Kulmlg9X+pl35O97Gs4A5eZvYP3LIIgCEpLWUw41VJVrJ4gCIKgZ+Y3mbNhKP4gCIIGaTI3/lD8\nQRAEjTLobPxBEARB73SEqaccLGfFZLSaV1Cnbvl5hYilvaBBpyEFdm7XHPFWIXKXWPrtQuTO/6C4\n2ZjDnx9fiNx57cVk4GofUlyWrI+0l1e5hqknCIKgxZhf3m9St4TiD4IgaJCOcOcMgiBoLcLUEwRB\n0GJ0NFeDvyQxQoMgCJqYPGP1SBop6XeS/iTpCUlnp/LlJD0kaZakH0kanspHpO1Zaf+Uvq5RmOLP\nMfXicEnTJf1V0kxJNQWGC4IgKBqrYamCD4DtzGwdYF1gF0mbAl8FLjSzFYE3gaPS8UcBb6byC9Nx\nvVJki/9K8km9+J/Aq2a2MrA6cF+BdQ6CIKiZ+ap+6Qtz5qTNYWkxYDvgulR+FbB3Wt8rbZP2b99X\nwqrCFL+Z3Q/8o0tx19SL1bTej8QzgGFmHWb2em6VDIIgyIG8wzJLGiJpBvAqriufBv5pZvPTIbOB\nSWl9EvACQNr/FrBYb/L728ZfU+pFSePSvnMl/UHSTyQt1ZPwbAauh+Y8VcgNBEEQdMVU/ZLVU2k5\n5t/kmbWb2brAZDz51Kp51re/FX+tqReH4jf+GzNbH/gtcEFPwrMZuDYZs1KR9xEEQfAhtbT4s3oq\nLdN7kmtm/wTuATYDxkmqeGJOBl5M6y+SGtFp/1jgjd7q26+Kv47Ui28A7+JJWwB+Aqzfn3UOgiDo\ni5y9epaoWDskjQJ2BJ7EPwD7p8OmAT9L6zelbdL+u1O63B7pV8Vfa+rFVPmb8UxeANsDf+7POgdB\nEPRFzl49E4B7JD0K/B64w8x+DpwGnCxpFm7DvyIdfwWwWCo/GTi9rwsUNoErj9SLad9pwPckXQS8\nBhxRVJ2DIAjqIc9YPWb2KLBeN+XP4Pb+ruXv42OmVVOY4s8j9WLa9xz+YQiCICglEY8/CIKgxYhY\nPUEQBC1Gs8XqCcUfBEHQIGHqKQmTCspoNaetmE/7svZeIXLndhTjuDW8rbhHfcLK/ypE7ojVFilE\nrgp6Jpw3C5E699miHPqKy8A1Yd78vg8aINqbzNgzaBV/EARBfxEt/iAIghajudr7ofiDIAgaJlr8\nQRAELUZ49QRBELQYHU1m7Cl1Bi5JC2fKZkh6PYVuCIIgKA3tNSxloNQZuMzs7UzZusBzdEbqDIIg\nKAUdWNVLGWiGDFwASFoZWBL4VS4VDIIgyImco3MWTqkzcHXhQOBHfcWZDoIg6G/yTr1YNGXPwJXl\nQDx5S49kU5rd/W6kXgyCoH8IU08v1JGBC/BBYWBo2teb/A9Tmm03OlIvBkHQP4SppxdqzcCVOfUg\n+mjtB0EQDBTtWNVLGWiGDFwABwBTi6prEARBI5TFdl8tpc/AlfYvn1e9giAI8qYstvtqiZm7QRAE\nDdJcaj8UfxAEQcNEiz8IgqDFKMugbbUMWsW/RHsx2XraGFKI3GEFZbQqLAPXkOKijgwZU0yow7al\nFi1ErsYsVIhcAB6YWYjYUQX9/YYUqP/6e9JRLcTgbhAEQYth0eIPgiBoLaLFHwRB0GJ0NFkIsVD8\nQRAEDdJcaj8UfxAEQcO0N5mxp9QZuNK+g9Lxj0q6TdLiRdU5CIKgHiIscydX0mAGLklD8RAP25rZ\n2sCjwGcKrHMQBEHNRFjmRE4ZuJSWhSQJWAT4e571DIIgaBSr4V8ZKHUGLjObBxwLPIYr/NWBK/qx\nvkEQBH0Spp7eqSkDl6RhuOJfD5iIm3rO6El4NgPXLe89XeR9BEEQfEi7dVS9lIGyZ+BaN5U9nXLt\n/hj4aC/yP8zANXXUCgXfTRAEgZNni1/S0pLukfRnSU9IOjGVLyrpDklPpf/Hp3JJukTSrOQEs35f\n1yh7Bq4XgdUlLZFE7Ag82Z91DoIg6IucbfzzgVPMbHVgU+B4SasDpwN3mdlKwF1pG2BXXGeuBBwD\nXNbXBUqfgUvS2cD9ad9zwOFF1TkIgqAe8vTWMbOXcPM3Zva2pCeBSfj46DbpsKuAe4HTUvnVySry\noKRxkiYkOd1S+gxcZnY5qWcQBEFQRqygkA2SpuBjnA8BS2WU+cvAUml9EvBC5rTZqaxHxV/mSKdB\nEARNQS02/qwTSlqO6U6mpDF4g/izZvav7L7Uuq/7axMhG4IgCBqklpANZjYdmN7bMcmj8XrgGjO7\nIRW/UjHhSJoAvJrKX2RB1/jJqaxHosUfBEHQIGZW9dIXabLqFcCTZvaNzK6bgGlpfRrws0z5Ycm7\nZ1Pgrd7s+zCIW/xjh8zt+6A6UPuwQuROXP6tQuTOe6+YjGELLVHM7wswbPliMmW1rb1eIXIZOboY\nucDYTZ4vRK7a/lmI3Lbni5uZOmFKMe9IHuQcimFz4FDgMUkzUtmZwHnAjyUdhTu6HJD23QJMBWYB\n7wJH9HWBQav4gyAI+os8QzGY2a/xUDXdsX03xxtwfDfH9kgo/iAIggaJRCxBEAQtRnOp/VD8QRAE\nDTO/NOHXqiMUfxAEQYMUNYGrKJohA9fHU+ChJyR9taj6BkEQ1EskYunkShrPwLUY8DVgezNbA/iI\npH8b1Q6CIBhIIhFLIqcMXMsDT5nZa2n7zirOCYIg6FfynMDVH5Q6Axc+IWGVZAoaCuzd5ZwgCIIB\nJxKx9E5NGbjM7E08A9ePgF8BzwLtPQnPBj/66bt/K/A2giAIOmk2G3+/evWY2UxgJwBJKwO7pfIP\ngA/S+iOSKhm4Hjazm4Gb0znH0IvizwY/emjivuX4hYMgGPSUxXZfLWXPwJU9ZzxwHD5AHARBUBo6\nzKpeykDpM3ABF0taJ62fY2Z/LarOQRAE9dBsLf5myMDVk5wgCIJSUJaWfLXEzN0gCIIGKYu3TrWE\n4g+CIGiQMPUEQRC0GGHqKQlTVnmjELlzXhtZiNxho3v0Um2IRTYopr4wDI0aUYjkIZtsUIjcoZvs\nWYhce6eYbFYAtsqjhchdpOOZQuS+//a7hcgFGD2xmHckD6LFH7QERSn9IGhGLGz8QRAErUVZZuRW\nSyj+IAiCBgmvniAIghajLFE3qyUUfxAEQYM0m1dPKTJwpX1rp31PpP0jU/kGaXuWpEskqag6B0EQ\n1EMkYunkSqrMwJVi7X8fj9GzBh7jZ1465zLgaDxw20rdyAyCIBhQIhFLosYMXDsBj5rZn9K5b5hZ\nu6QJwCJm9qD5L3Y1nowlCIKgNEQilt7pKQPXyoBJul3SHyR9LpVPAmZnzp+dyoIgCEpDs4VlLksG\nrqHAFsDB6f996kmqns3A9b2/v5RXnYMgCHql2Uw9pcjAhbfk7zez19O+W4D1cbv/5IyIycCLvcj/\nMAPXK9tuXY5fOAiCQU+zTeAqRQYu4HZgLUmj00Dv1sCfzewl4F+SNk3ePIcBP+vPOgdBEPRFtPgT\ntWTgMrM3JX0D+D1gwC1m9ot03HG4h9Ao4Na0BEEQlIay2O6rpRQZuNLx38dNO13LHwbWzLFqQRAE\nuVIWb51qiZm7QRAEDVIWE061hOIPgiBokLLMyK2WUPxBEAQNEi3+IAiCFqPZFH9NbkiDdQGOaSa5\nzVjnZpPbjHWO36J/fovBsPT3zN2yckyTyS1SdsgtXnazyS1SdrPJHRSE4g+CIGgxQvEHQRC0GKH4\nnelNJrdI2SG3eNnNJrdI2c0md1CgNBASBEEQtAjR4g+CIGgxQvEHQRC0GKH4a0DSqIGuQ38gaXlJ\ne/V9ZGsgaUg/Xkvdrfcn9Vy3P+ta1LUG6vceCELxV4mkFYFPpfXCFIGksUXJroFlgasl7dfnkXUi\naVhRspP8XF5iSasAp0tqK1IxpFwUI8zMJK0EYP00AFe5L0lrSxpa63UlqXKOpNWLqGMP1zpY0tQy\nyy0rofirZw1g3/SAtBdxgaRkTq7z3IaVkqRlJG1mZvcABwAXSPpYo3K7uc56wBk5yqsork0l7SVp\n00aVZub3XAlY3sw6klIuSvlvAVwkaV/gOklT+qsFmu5razwx0gr1nA8g6ZPA5yUtknMVu7vWDsDR\nwANllltWQvH3gaQxAGb2M+AZ4AsFXm4+cLCkXWo5SdK4zPoRkk6QdHAd198AmCtpETO7HZ/9eL6k\nA+qQ1RtvAQdJ2i4PYUlx7YQn9lkC+I2kfRoUOzr9/0tgBUmnVq7VoNxuMbNfAssBPwBOM7Nn6af3\nMzU4jgUuNrO/1NOjTR+OnYDPm9m/Upa9QpC0JXAi8Ccze6vscstIKP5uyLQgVwVOlFRpnV5b0PUW\nlrSQmT0NfBHYTNKwal4eSVNwZbGBpP2B0/G/60mSzqmlHmZ2I57T+EZJe5jZHbjy/2oeLX9JQyUN\nMbNngAuBVVJ53aYzOYviZrh9gD8DjwG/yR5ThZylJe2e5K1A+uCZ2Vz8N104mWNybYVnnrWxwI+B\nnwPHSxpfVM+yG9YHJgE7SRpnZu193Wem3m2SRgIfB1YFNkl/49wyk3RTlyeBvwLLSFq/bHKbgVD8\nXajY+pKNbzrwO2BbSV8HtgKOVo62b0mbA2cC56aW10xgbWCsmXX09QKmluGDwDmpfoeY2cX4i7in\npLNqqMvOwEa48vmMpF2S8j8a+F9JB9Z6fxnZa+EfqE/Lx0v+CBzRqIIz5x/4b3AY8A1gXzN7RdLh\nklavspW+LnAusCcwFrgHOCX9fkfhv+0qebb4M8/ansCXgdvNbD/gn8B16ZiPSjo6r2tWrpv+nyJp\nSTP7AZ4a9QNgf0kL92bWqtQ7bS4FzAVOwPNhb4D/lrnVNWOGOTT1ZLcxs1OA54CPyU2HpZDbNAx0\nlLgyLsCG+EO8SdpuA3YHPg08C3wLWIg0Aa6B62yPK5h9gJOAh4BpwKvA+UBbL+cqe33gk7gy/SQw\nPJWtkOr7n1XUZX3cVLJp2j4auAvYOW3vDGxb4/2py/bewKl4q3xq+v/ErvdSrVxgSWB0Wj8beAFY\nMW2vAzwBbFGD3L2Bu4H90vZE3PZ+MfAynhp0kZyftW2BPwEbdin/JnA73gLdq4BnfGq67reA3+Km\nrYPxD+fxwMJVyPh/wG14T/gsYGT6rb5SeY5yrO9ngF/h5qT3gB3T3/8i4FJg7TLJLfsy4BUo25IU\n+gXAa8Ci3ezfJinrlRq8zupJyayTKdsY2AG4E2/xjezh3KzCPwL4TFo/CW+tbwYMTWXL4YOTPdVj\nCN7CfRO4Oysfb+k+CEzt7tp93F9Fxs74QO5xlfvBP3hHAL8Hbqrz99sd+AvwbeDUVPYj4Hv4B+yP\nwJ41yJuY/p8K3IcPbmd/551gWGpzAAAXqUlEQVSBq4CP5Py8nYW3tpcAjgR+CJyf9m0GrFbL717l\nNdfABy+XAT6Gj11V/jYHA5cBS/ch4wC8YTCO9JFK5YviPeVzgRE51Xc83lscgTs//JzOxs14/EOz\nZFnkNsMy4BUow9L1pcLtnTcAVwNjUtmwzP4f0kC8b7x1dRLwEvDxbvYvgn8Uju5DznHAHyrKIZWd\nhvdWtiIp/yrveRNgTtdr4rbzTeq8z91T/fYA7k31WqjL7/AAMK1Guask5bQr8FHgJ6ReTdreE9ig\nu/vsQd4E4DuVvymu/O8F9iX1KFL5HcBhOT1zK6f/twZuBmakv92hwP8Ckwt83ifhH/VD8V7m8pXf\nLv2/VJV/283wHtvtlfcDWB5vPPUpoxfZbV22F07v4qXA9XT28j6TnoVqGyOFyG3GZcArMNALnS3T\nXdJDfEranoi3ZKaTur24yWfR9KCvUs91Mttj8Jbwd4GtM+WVlvrpuN1e3ckAhieFt0raHpnZdwa9\n9Bgyx22Lm5QOxls4a+Et/yPr/C2XATZP6+PSS7USsB/enf4B3pvJKtMvAifVcI2l8AHoK9P2MLz3\n9CPgwgaegyNxs8fhaXsq3iP5WPqtxwOP1Pp37+Y6bUneg8B5+MdvSZKix01uT5A+DDk940O6/D8R\nHwCfSafC/ihwP7Bs1+eWbkxxuFnsbeC2TNlRwP+RX0t/bbwnJLyh1AGMT/s+gffqlimL3GZaBrwC\nZViA3XB759Z4t/eqVP4R4ArgSjKthb4UajfyKx+XqUm5fCUpq1HAKbj/9A6Z4xcBvgas1VVGWt+P\nztbKsZUXOu3bLP0/ro+6bI63xs/CTRhX4CaAdYB24JO13F+q80tJmeyYyiem+/xDWp+I2+HvTQpw\nifR7rFnldSrmmAOBp4Et03Yb/tG6Dli9DxmTgJvT+nLA5zL7DsZb/tPS9u5kbNVkeisNPGsj0v+T\ncUX75bQ9FNgOeArYPafneiKdin1PvKFwKbBl+ju/iY8pnQg8SjemMTImTXyM64L0zC6ezvszPph7\nUpKxRgP13RZ3BwXvzT4FXIP3FJfFGwmP4b2939fw3BQit5mXAa/AgN68K4xxuFlntfRy3J8e4JvS\nMZMaeZgz19oNbzFuhbdOH8c9IIbjXj3fITOmQMa01EXOx/HBuEn4QO5ZpB5D2nc7sEQfdVkV7+Lv\nn7anJFkXpO2tgJ3quMev4OaQW3DPGtLvenlG7rnAxplzqvqI4uaY79JpjjkUmEUavE1/y6oUM+7q\neW+qzw9Jvby078ykGI7MlOXS5U+/xSmkVnW6p4fwgcSR+PhR1YPRVVzv2vS3WB0flzoU93x6Ax/E\nXB/4L7zXt332XvGP+Qh8UPuc9Kw+iDc0vgY8jCvNE/Be8ffImBzrrO+K+ADrZfgg8dJ4b+hk4Ne4\nCWnzVJdlB1puMy8DXoEBvfmkaNMLuAbeMh2Jd+s7gB/ldJ3h6QVbFdgL/7icgfsNr5OuuVw6tkcl\nkx7MB4CD0vbkpEivxwemZpDpJWTOWwVvJS+dtldLyu/uzDFrJGU4MVNWjX08O/axc3q59sQ/pvvi\nPZO7cLv163T2Bnr0WOrlWkcmJXN42j4kKaatqjw/22u7CW/dbYH3dv4jla9LUpY5P2tK1/o28Fk6\nlf+a6Vk7g0zPLcfr3pCeiy9lyjbBvYWWq+L8KfgHdgbu7lgpPwX4fma77rqn36Zihloed6f8Xdoe\nijsgXAbsXQa5g2EZ8AoM2I27sn8uo4jWxFuUI/FBq/OA7XK4zkrp/9F4C+k3dHpqPAT8jR5c57oq\n3vTC/hBv1VcG5BZK97Ih3XicpIf/68A83Mb+tXTOusAluE1W+MdhBr14AHUje1Xc3LRt5lrX4j7p\newO/wG3HY9NvWtUgMbWZY6ZlFVIVsntS/rfiXf+ZZMxuDf7tK63ntXCT1oj0e/wPrvzH4q3Ra0hm\nqzyvm9n+Pt6oWShTp28B6/ZR74rSnAzMBq7NHLMi3srvtmdaT11JPTb8Y/MPknkmlU2ntrGgQuQO\nlmXAKzCgN+8uhX/FXSgXSopxOvBKVpk1IH8McCPwjbS9MG5PXxq3s36dHvyEuzy46+L22qH4AOr5\nuL/1slXWY0e8S7tiUm4XJBnb4R4lj+I9hpoUHm4q6cBNWEfjg3vL4gPTE4CD8F5EzS0q+jbHzKJO\ncwz/rvzvxQftP06VvYcarrUD3tuZiX9oKw2LS/BwEM+QGhiNPGvdXHczvMe1SNq+Lj2Lm6fl7yTP\np16eu/VIPUjcNPIK3nAYiQ+CPkY3Ls911vdofAzi8LQ9BR+D+AluonqEOkxJRclt9mXAK9DvN+xm\njmUy259IL99auIlnC5JnSp3ysy9OG660fwR8JZV9G28pvQzsUYW8E3Db6tfxD9NwvNv6FbzVVpXb\nH/BT4AtpfRo+O/RhvJfzOPC/3d1DFXK3AN7BxzD+Gx9/eB6fATw0/b4b1iCvX8wxXa5zK6mH0XVf\ng8/aBrgH0jZ4T6XSwxqJNzS2oE5X2Sr+JjPxyVXfovPDchU+OfA8+vjIA/+BNxbuw50PtsUHdF9I\n78tXcvz9t8fNn9PS3+J0vHe0NG6b/yUZE+RAyB1sy4BXoN9u1O15bUl5Xom3nCtd2vPTC5FLaw9v\nUW2c1ttwM9KNwAmpbAI9TMwhuZWl9Y/hNv1F8Fb63/BBuhG4aeYs+vCXztzjRvh4wDq4oj8Kb/F/\nGbedX036ONVxvzvj4xXD8EloX6RzsLDHuQS9yOsXc0yX63z498nxmdsOuDStD8PHUe7EPWvG5nyt\nyt95ND6jtuLddRJuWqr8Pa6hmwFkFmywrIz3uIamZ3U//IM1ATf7PAJMabSuaX0DYH9SrxDvqVyJ\nz2kYjXvWrTiQcgfjMuAVKPwGO1+Iii/+iPQQX05q+eODkddSY0iCHq63bFLIL9Kp/IfhZqVZwNm9\nnLsT3grfKW2vn162T+GtkxG44v813vKv2r6Kd9Vvx1s6n8qUV2YqrgVMaOC+d8OV/9jKPTf4O/aL\nOaZyHXxwtc/QFlXKnJKegxXxcaRdM/suJJmuyKlnkZG9N94T+hNwfCpbFHe7/DYZT60uSnJMZn1c\neub+ROeEpo/gH4xpabuhgdzM+qdxk9OdeKOmYpbaCB+UPpkqe59FyR2sy4BXoF9u0v3nf4XHc9kQ\nb8n8Hz5IeDbui7xO1weoBvmVj8t6wB/S+rF4SIGN0vYOuLlm417knAC8n5T8HqmsDe+ub5O2z00v\ndz0TVzbCTTETMrLztCvvgtuBx+ckr3BzTJI1Au/5NOTJk37P8enZ+gI+2Ww//IN7CLApbrY7gxSW\nIcd7WBP3ntoGj6g6h9QrSsr/FLpxS8YbJZ/FPxqfBK5P5ZfjbpyVD/nZ+NiK8vjt8bGb72eexYvx\nRk1lItUG1GGGKUruYFsGvAKF36C3mm/AB3K+gttZt8dNP4fgcVJ2y+E6W+Ot0o9lyo7DB07Px1sg\nW/chY3G8RXhyqvPHU/n0VM8z8VAOvfrp9yJ/GN7yOyBPxdnlGrtRg5dNFfIKNcdkZNdsksqc29Vc\ntx0+oHsSPkt0Z9xWfnPa3hXvxYzuem6d1186/V1/kSn7BO4+O7Wn+6OzwbISniPhucqzhTsfXIB/\nqE7H7fp1x6fKXKsyd+YaPPLt1pnyb+CzZrudfNifcgf7MuAVKPTm/IWYReesvYl4HI5L6BLxsNYX\nsJuXfTU8PO23upRvh7f6tulBztokz570kH41vcQ7JuWwLW46+C98kHidWurZzfU2IsVkKfi3z7Mn\nkbs5poD7XRv4n8z21nhP7fN0uhNWZufOpJv5FvX+vknuobhn1jRgVCqfhpv2FqeLeabL+ZPwRtEz\nwKGZZ3FkknsMDYSq6HKtSg9iEfzj+EVSTwtvjJ1H9d5qhchthWXAK1D4Dbp55SU6/emXwru9l1Jn\npMUuD9wKdE6+Wg53FTu1SjmL4e6QL+ADURVPmG/ircQD8Vbibun43Cf4NMtCTuaYHOvTdVLcqnhr\n82I6W6F74/7v/4F78YzG3QsbisOTkb8zbqY5KW0fgc8CPoTOaJu9mjWSUj8jra+GN5Qq4wN7kGOw\nOHzQ+UY84cwR+LjTt/GPY90fwqLkDuZlwCuQ241kAkmllzIb7vgLuGdIJaDZR+r9+qeHquKXvxVu\nyvkV7jmxEe4tNBs4s0p52yXlf06q57W4r/Qhaf8ReEt/YVp9QKoBc0wBz1rXSXEL4+NHFwDfTMet\ngI/HrJk5Ny9X0Z1w88WmeGPj8+nj+El8jOFwFpy5+m/PTnq2HiMzgzfdw1NJxgs0GH48I/dQfAxi\nMdwGX5mgtzw+2H06ydGgDrl35i13sC8VRTlokLQb/vL9Ch9s3dvMXpR0Gv4y7G1mf2lA/kq4gu7A\nu9Cn4iaeLfEPwRfwAb7f4P7mz1kfaegkbY8PNK+Pt/w/gb90R+IvM2b2dr11DvJH0o74uMvh+Efg\nKfyZuB3/G66B9y4/a2a3dsla1ei1hfcKv5WucTZwoJk9l9J1HgE8aGZPdDlvMm76GZOOvRyPo3+j\npOFAu3naxSm4W+7D5mky86jzofjs4R3wMY498N9rUdwUIzN7qQo5C/yOKXPWjEblthwD/eVpdGHB\n6f0r4h46y+Dd7Hdw18cpaf/naWByVpLRhnfrv4FPVKq4ik3GB2GPTtt9ZjDqIncq3vqqxP/vM45K\nLAP+7HU3Ke43eCC088khuF+SPRJYIa0viw9inoWPVd1NZ0/2MHqYJY3HiPptqvPvcPPT8XjDZVTm\nuF3J0Rae6jQR/0C+DtyQ2XdMeo+q6smxoIl1Y9yl+QR8Dk7dcltxGfAK5HITPsnpl3iY46Vxt8Lf\npe0f4nbLhhQpnWakStd5Cj74ehWd9tRTcZNPG51x9WuZBTsV94VftOt1YynPknkWupsUtys+sLhe\njtfbAHdK+DI+eWohfCbwe3R6r2yAx/Hfppvzt8VDk2yQPhqrpA/UXbgX2XZ4z2H/9C7VPZ+jm2tf\nRJoVjk8SvDt9CI7HGzo1j9ng8xJuJo3R4TPhG5bbSsuAV6Chyi/o6ncbcF9aPwE4N63vj09G6TYg\nVZXXycbTvwi3x6+G+05fnl6Wg/BxhJrDGXe51l54lzhXH/tY8l/oeVLc6JyvMxK3ub/DggHGPoeb\nOb6DT/zrNtUk8J90puesNFIm4eEM/o73Tm7BXU5zzTGLm7y+Sacf/Xfw8Bs31qn0t0v3ukSX8sq8\nnLrkttrS9DZ+SW2WbOiSbsO9Yi7FB79ex21/J5rZ7xu8zlb4A3wA3l3+Jd7Cn4yHdh0PnGxmv2rk\nOulaY8xsTqNyguKRtBFuctnXzF7KPo85yP7Qni1pC9x8+QGu7K83sw5JG+Px9Yeb2ZNdzpGZmaTL\ngFfM7Kw0PtBmbstfFW/xn4r78b9vZq/nUO/D8ffwB/hH8QrgPTM7LnPMcDObW4fsA/GZ0NPSeEab\nmc3P7B9hZh80eg+DnbaBrkCjpIe/La3vgqeDuwRvzYwFvlaP0pe0sqSdM0Wb437ki+K23AvSA/Z3\nvIfxiTyUPkAo/aZiBm5i2TJPpQ+QlPa2kg7B3TJPBV7D4xbtIGkz3HvtaTN7snJO9vy0eh2wuaQN\nUplJGob3IN4Bnjez2fUq/fQxyfIC7ur6X7iJ6mRgkqT1MnXrU+ln5UoamVZnpl3rmFmHmc2XdIik\nY9PxNX9MWpGhA12BPKgo//Qg7CPpejwp9lRYsFdQDZJWxlv152eKn8FjgCyJz859LnkqTDCz87sR\nE7QAZjZP0rfw2ES5tvSTYr8a71EemnoXZ+HeXgfgZsFpVYh8EDdHfjzJfhjoSPIXowE90KWHsQcw\nH3jNzHaQtCE+BlLJ9rUJ7oJaFRm5nwJWkPQabsv/B/Cx1DB7DZ+Xs3f2oxf0TtOberJ0MfvcCNxj\nZpfUKGN1fCLOWWb2s9SbWAp/QS7FB5KuxydrXQWcbma35HgbQVAxIU0D7jezH0sagYcEucfMzpQ0\nAQ9B8GSV8iqpOrfDvXvm4uNfB5nZnxqoZ+UjdRw+Oe0WPA/A9Wb2+XTMPrjJ9TIze7xG+Yfjg+ZH\n4bb9E/H0nlumRfi8iZrktjqDSvFDp/KXdAZu//vvGs/fAn/Z2tL2bbiv84WSDsDj/CyDD7hdlD4O\nufloBwGApOPxluxV+ITBt5PyvgLvcdY8r0PSKHyC1s74+NetVuecFknLAG+Y2TuSlsRnzR6bxhnG\n444O3zSzC9PxNb8jkkbjPYYr8Tk5h+CJ6OdmPjh1jRW0OoPC1JMlKf0R+EzK79dx/q8l7SbpGeBp\n4IHKw5taXncChntuvBhKP8iDjCJbHnjZzL4p6SU8yuv9kn6HNziWxIPt1YyZvYdPbGxoLEpSJezJ\nC5IuN7NXJb1Osq+b2ZuSTsLTTFau3ec7Ip8cuRge2mKGmf1D0nN4GIy5ZrZTOu5MPOz5VaH062PQ\nKX4AM/tA0hezo/01nn+rpKNxF9HKwzYqvThvpof4zXRsKP2gYZLS3xVv4d4qaX3chr80HkDteVzh\nn2Nm/xi4mgJuV/89brc/QtKl+FyZH0raLL13U4ClJQ0xs/a+BMpn3J+LRwgdA6wmaRd8XsvBwNfk\ns4v3xMc3Dsz/tlqHQWfqyRNJU/HWxmZm9rqkofV+TIKgK5Im4iE5nsWzXv0At7vvi2df297M5kg6\nDHcsuMDMbhig6lZa5G1m9pfkQbM7PmFthplNT26j6+DxqzYBDjazP1chdxd80Po0M7svlX0JH+PY\nEZ94tiueIGY47p79WN7310oMyhZ/XpjZLZLagSckrWpmbw50nYLBQfKhvx5XeK/h8WW+h8fGPwAf\ndJ0j6aNmdrWkhYFTkvnnwf7uaUpaDE8s9Lqks4F2PETJWGBFSZ8ys2MlbYKPf33VzP5WhdxF8QHh\nPc3sPkkjzex9Mztb0hDgF3jI69uS3Pkl6PE0PdHir4LUDX3HzO4d6LoEzY88CNrPgQvN7IpUNg73\nWhmGx/iZI580eBpwRLKjH4snW3l+gOq9HR4J80Q8Ved4PNPXXDxg4R3Ad63GCVTp/ToPDzfxhjKT\nsCTdh0+MfCS/OwmixV8FZvYLqM8zIQi6YVvgLjO7IrkLr4vbxK8B9gH2kjQPnzB4lpm9CmBmlw1Q\nfUnXvzv5zl+Cm3SWwt1DD8SDpq2Cm6tqUvxm9gtJHcDvJG2YBoeHmdk8fLJkzMTNmWjxB0E/I2lr\nPODaOXjy+FG4Ir0dn5X7Cj6oeXdyNBCUx5EgtdAvBDZNnjfj8Z7KaDN7tgG5u+JzZSrK/zA86Noe\nlY9fkA/R4g+C/uf3wE/wNJuzcAeCx/FWfzvwRTN7F8rZy8y00B9MXjxv5CT3Vkmfwd1X/xdPsnJU\nKP38CcUfBP1MUuoXSbo6O1ApaR1gM2CcpPcsMWAV7YWkpIcDd8pjAOUSriLJHQLcgIe2fqKvc4La\nCVNPEAww8oBpO+L++mdWxpSaARUUSVbS6EqvJ8ifUPxBMIAkpb8xnj7xYjO7eYCrFLQAofiDYIBJ\nyn8xM3u5jDb9YPARij8IgqDFaPpELEEQBEFthOIPgiBoMULxB0EQtBih+IMgCFqMUPxByyNpXEod\nWNneRtLPB7JOQVAkofiDAMYBx/V5VBAMEkLxB02FpCmSZkq6UtJfJV0jaQdJD0h6StLGkhaV9FNJ\nj0p6UNLa6dyzJH1H0r2SnpH0/5LY84AVJM2Q9LVUNkbSdela11QCpQXBYCBi9QTNyIp4hqoj8YBn\nn8CjWu4JnAm8APzRzPZOMeSvxkMfA6yKh0VeGPhLyhp1OrCmma0LburBk3uvAfwdeADYHPh1f9xc\nEBRNtPiDZuRvZvZYCgz2BB7b3oDH8AiXW+DZrDCzu4HFJC2Szv2FmX1gZq8Dr+Ix5bvjd2Y2O11j\nRpIbBIOCUPxBM5JNzNGR2e6g715s9tz2Xo6v9rggaDpC8QeDkV8BB8OHZpvXzexfvRz/Nm76CYKW\nIFoxwWDkLOA7kh4F3gWm9XZwyvP6gKTHgVvxBN9BMGiJIG1BEAQtRph6giAIWoxQ/EEQBC1GKP4g\nCIIWIxR/EARBixGKPwiCoMUIxR8EQdBihOIPgiBoMULxB0EQtBj/H6uI2z+WhzSiAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "AhUO92qiJ6g3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb index 94dbed8..041c584 100644 --- a/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb +++ b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb @@ -1,58 +1,1029 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_Lambda School Data Science_\n", - "\n", - "# Choose appropriate visualizations\n", - "\n", - "\n", - "Recreate this [example by FiveThirtyEight:](https://fivethirtyeight.com/features/al-gores-new-movie-exposes-the-big-flaw-in-online-movie-ratings/)\n", - "\n", - "![](https://fivethirtyeight.com/wp-content/uploads/2017/09/mehtahickey-inconvenient-0830-1.png?w=575)\n", - "\n", - "Using this data:\n", - "\n", - "https://github.com/fivethirtyeight/data/tree/master/inconvenient-sequel\n", - "\n", - "### Stretch goals\n", - "\n", - "Recreate more examples from [FiveThityEight's shared data repository](https://data.fivethirtyeight.com/).\n", - "\n", - "For example:\n", - "- [thanksgiving-2015](https://fivethirtyeight.com/features/heres-what-your-part-of-america-eats-on-thanksgiving/) ([`altair`](https://altair-viz.github.io/gallery/index.html#maps))\n", - "- [candy-power-ranking](https://fivethirtyeight.com/features/the-ultimate-halloween-candy-power-ranking/) ([`statsmodels`](https://www.statsmodels.org/stable/index.html))" - ] + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "LS_DS_123_Make_explanatory_visualizations.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "-8-trVo__vRE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "_Lambda School Data Science_\n", + "\n", + "# Choose appropriate visualizations\n", + "\n", + "\n", + "Recreate this [example by FiveThirtyEight:](https://fivethirtyeight.com/features/al-gores-new-movie-exposes-the-big-flaw-in-online-movie-ratings/)" + ] + }, + { + "metadata": { + "id": "WSHgM3C6fzpg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## In-class example" + ] + }, + { + "metadata": { + "id": "ya_w5WORGs-n", + "colab_type": "code", + "outputId": "0305ae61-b94b-4bd1-91f4-20d3a3e93712", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 355 + } + }, + "cell_type": "code", + "source": [ + "from IPython.display import display, Image\n", + "\n", + "url = 'https://fivethirtyeight.com/wp-content/uploads/2017/09/mehtahickey-inconvenient-0830-1.png'\n", + "example = Image(url=url, width=400)\n", + "\n", + "display(example)" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "HioPkYtUG03B", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Using this data:\n", + "\n", + "https://github.com/fivethirtyeight/data/tree/master/inconvenient-sequel\n", + "\n", + "### Stretch goals\n", + "\n", + "Recreate more examples from [FiveThityEight's shared data repository](https://data.fivethirtyeight.com/).\n", + "\n", + "For example:\n", + "- [thanksgiving-2015](https://fivethirtyeight.com/features/heres-what-your-part-of-america-eats-on-thanksgiving/) ([`altair`](https://altair-viz.github.io/gallery/index.html#maps))\n", + "- [candy-power-ranking](https://fivethirtyeight.com/features/the-ultimate-halloween-candy-power-ranking/) ([`statsmodels`](https://www.statsmodels.org/stable/index.html))" + ] + }, + { + "metadata": { + "id": "c03JCR85frjC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make the figure look right" + ] + }, + { + "metadata": { + "id": "N89pO3kX_-7p", + "colab_type": "code", + "outputId": "b16e7c06-4547-4a39-f932-d6f1d6d5c797", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 207 + } + }, + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "!pip install --upgrade seaborn\n", + "import seaborn as sns\n", + "\n", + "fake = pd.Series([38,3,1,2,1,4,6,5,5,33], index=range(1,11))" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already up-to-date: seaborn in /usr/local/lib/python3.6/dist-packages (0.9.0)\n", + "Requirement already satisfied, skipping upgrade: matplotlib>=1.4.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (2.1.2)\n", + "Requirement already satisfied, skipping upgrade: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.1.0)\n", + "Requirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", + "Requirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", + "Requirement already satisfied, skipping upgrade: six>=1.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (1.11.0)\n", + "Requirement already satisfied, skipping upgrade: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.5.3)\n", + "Requirement already satisfied, skipping upgrade: pytz in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2018.7)\n", + "Requirement already satisfied, skipping upgrade: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.3.0)\n", + "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "lqqPHAyaPDC-", + "colab_type": "code", + "outputId": "851c5369-41de-4a53-fd0d-75d2cfce88a9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 391 + } + }, + "cell_type": "code", + "source": [ + "plt.style.use('fivethirtyeight');\n", + "ax = sns.barplot(x=fake.index, y=fake.values, color='#EC713B');\n", + "\n", + "ax.set(xlabel='Rating',\n", + " ylabel='Percent of total votes',\n", + " yticks=range(0,50,10));\n", + "\n", + "ax.tick_params(labelrotation=0);\n", + "\n", + "ax.text(x=-2, y=50, s=\"'An Inconvenient Sequel: Truth to Power' is divisive'\", \n", + " fontsize=16, fontweight='bold');\n", + "\n", + "ax.text(x=-2, y=46, s='IMDB ratings for the film as of Aug. 29')" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(-2,46,'IMDB ratings for the film as of Aug. 29')" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFlCAYAAADRdSCHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XdYFNf7NvB7AaXDgi4LIp0VBLFG\njShqYsOCWLDFmMQkGtBfbBG70diQxJBoROy9FyxYY8MgsRA1GsUgkaJGBRRXBVFU9v2Dl/myAkrZ\nEdbcn+vykp05e84zM7vzzJw5MytRKpUqEBERUZWhU9kBEBERkTomZyIioiqGyZmIiKiKYXImIiKq\nYpiciYiIqhgmZyIioirmjck5JCQEUqkUGzZsKDIvLy8PHh4ekEqlkEqlkMvlUCqVogSampoqtOPl\n5SVKG/8VBeuxa9eub6W9RYsWISQkBIsWLSrT+37//Xf07dsXnp6esLKygouLC7y9vTFkyBCcPHlS\npGjfjqCgIGE7pKamlvn9GzZsEN7/pn/FfXcr6sSJEwgJCUFISAhu3rypNu/FixdC2/7+/uVuY8+e\nPUIbjx49qmjIRaxdu7bIurKwsICDgwP8/f1x4MABjbf5NhVsh0aNGr2x7NChQ4V18O+//4oWU1JS\nUrGfjVmzZgnTT506VeZ6KxL/21p2APD19S11O3oVaSgmJga3b98WXj979gy7du3CZ599VpFq6R0T\nERGBmzdvws7ODsOGDSvVeyIjI/H555+rTbt//z7u37+P+Ph41KlTB61atRIjXCqFmJgYzJs3DwDQ\ntm1b2NnZabyNvXv3YuvWrQCATz75BGZmZhpv41UqlQoPHz7EiRMncOLECfzwww8YMmSI6O0SvapC\n3dpbtmwp1TSqWpRKJZRKJfbt21fZoZTohx9+AACYmZlh//79uHv3LhITE7F//34MHz4ccrm8kiOs\nXAMHDhS2o1KpxPjx44V548ePV5s3cODA19b19OlTscOt8gYNGgSlUol///0XEyZMEKbPmDEDz549\nq8TIyqes23Tp0qXC58XW1lakqEo2ZcoUof0WLVqU+f0Vib+yl70k5U7OOTk52Lt3LwCgdu3aaNOm\nDQDg9OnTRbrpCnfBrV69GjNnzoSnpydsbW3RsWNHnDt3rtwLEBMTI9Q9Z84c/PLLL2jUqBFsbGzQ\nqlUrHD58uMh7fvvtNwwYMAAKhQIymQwKhQIBAQFITk4Wyty/fx8TJ05Eo0aNYGVlhdq1a6NDhw5Y\nv359udsfOHAgpFIpLC0tcefOHWF6Xl4e3N3dhS77vLw8AMC///6LMWPGoH79+pDJZHBwcEBAQABi\nY2PVYii49CCVSrFv3z6MHTsWCoUC9vb26NmzJ65fv65WvqRu7YSEBAwdOhR169aFTCaDq6srPvnk\nE1y+fFmtXOEu2TNnzmDo0KFwcHCAk5MTBg0ahLS0NLV1U9DtefPmzVJfmiiIWS6X4/3334eBgQFk\nMhm8vb0xe/ZsfPLJJ2rllUolpk6divfeew9yuRx2dnbo0qWL8Bkt7PTp02jfvj3kcjm8vLzwyy+/\nqK3Dwt3AJa2riq7DknTt2rVC3d0lKdyd+PXXX2PFihV47733UKNGDezevRvR0dHC/IIDIwDFTvfw\n8BDOmgGgc+fOr+2SjI6ORrt27WBtbY1GjRrhl19+gUpV8oMJC7pjC86aAcDT07NI12NWVhZmzZqF\n5s2bw9raGrVq1ULr1q2xaNEivHz5slzrydjYGOPGjYOxsTEA4PHjx0hISBDm7927F927d4e9vT1k\nMhnq1auHESNG4MaNG0KZX375RYj1xIkTAIDs7GzUrFkTUqkU3377rVC2W7dukEqlsLOzw4sXLwAA\nL1++xOLFi9G2bVvY2trC2toa3t7eWLhwodpyvWmblkVJXburVq1CmzZt4ODgACsrK9StWxc9e/Ys\n1UmYUqnE8OHD4eDgAHt7ewwZMgQZGRnFln21Wzs3NxfOzs6QSqVFkvWVK1eEssOHD69w/K++Nz09\nXdhW/fr1U2v7wIEDQtnQ0FBh+q+//oqePXvC0dERMpkM9evXx/jx4/HgwYM3rqfXrUBVef6tWLFC\nBUAFQDVs2DBVWFiY8HrKlClqZcPDw4V55ubmwt8F/ywsLFSpqamvbe/ixYtCeTs7O2F6VFTUa+uu\nVq2a6s8//xTKh4aGqiQSSZFyAFRRUVEqpVKpSkhIUNnZ2RVbBoDqs88+K1f7GzduFKbPnj1bqGP3\n7t3C9PHjx6uUSqUqLi5OVaNGjWLb19HRUa1cuVJ4//jx418bg0KhUN2/f18oXzC9ZcuWwrQDBw6o\nDA0Ni23PwMBAtX//fqHsgAEDXttemzZtiqybV/8V3obF/XNychLKurq6qgIDA1UrVqxQ/f3330XK\nJiYmqpV/9d+MGTOEsr///nuxy2ljYyP8HR4e/tp1pel1ePHiRWF6y5Yti53+pn+FPwMFn6HC/86f\nPy/Mt7S0VIttyZIlql27dgmvJ0+eLLyvuOm1atUqcV0fOHBAde/ePbW2dHV1i5RbsWJFictS+P3F\n/bty5Yrq5s2bqnr16pVYxtfXV5WZmfnadbZgwQKh/KBBg4TpmZmZKiMjI2Heb7/9plIqlapJkyaV\n2J6FhYUqLi5OpVQqVdHR0cL0iRMnFlmPTZs2VSmVSlV6errweenYsaNKqVSq7t+/r+rUqVOJ7XTt\n2lX14MGDUm3TsuzP+/btq7Z+lUqlavny5SXG0atXr9fWl5mZqWrRokWR91lbWxfZTyiVStXYsWPV\nPkNKpVI1dOhQYVpsbKxQdsyYMUXKViT+4t7r6+urAvL338nJyULZgIAAFZC/D/7rr79USqVSNX36\n9BLbcXJyUl2/fr1M26LgX7nPnAsf1fr7+6Nbt27Q0dEpMq84e/fuRXJysnDN8MGDB8We4ZbVkydP\nsG7dOqSmpqJv374AgOfPnyMyMhJA/pno1KlToVKpoKenh59//hkpKSlISEjAwoULUbNmTQDA7Nmz\nhbO9jz76CMnJyTh58qRwXW316tU4c+ZMmdvv2LGj0B27fft24X0Ff0skEqELcsKECbh//z7MzMwQ\nFRWFtLQ0nD9/HnXq1EFeXh6Cg4ORm5tbJAYzMzPExMTg77//hpubGwAgMTHxjb0TI0eORE5ODuzs\n7BAdHY309HT89ttvqFmzJp4+fYqxY8cW+z4HBwf8+eefOHfuHGQyGYD8wUJ3796Fj48PlEqlsN7s\n7OyE7qO//vrrtfEUHBEDwD///IPFixfjiy++QN26dREQEKB2VjlnzhwkJydDV1cXa9euxd27dxEf\nHw9vb28A+Ufld+/eBZDfXZ6TkwMA+PLLL5Gamoo9e/bg4cOHr42nNMq7Dt+2zMxMjB07FklJSUhM\nTBR6vUorPj5ebVkOHDhQYpdkZmYmvvnmG6SmpiIkJESY/rozLz09PSiVSuE7BOSfLSkLdT2Gh4cL\nvREdO3bEtWvXcOHCBdSrVw8AcPDgwTKfPQL53+Hvv/8eT548AQCYmprCzc0NKSkpwpmSVCrFgQMH\nkJqaitGjRwPI34dNmjQJAFC/fn1YWFgAgNCT8PvvvwMAdHR08OeffyInJwfnz58XPos+Pj4A8vcF\nhw4dAgAEBwcjJSUFN27cwNChQwEA+/btK3agWkW3aXEKYjYzM8P58+eRnp6OS5cuYeXKlWjbtu1r\n33v48GFh2RUKBc6dO4e///4bTk5OpW7/448/Fv4uvL/csWMHAMDV1fW1XeAVib+g7efPn2PXrl0A\n8ns/CtZ9mzZtYGdnh9TUVMyaNQsA0KlTJ1y+fBlpaWlYunQpACA5ORk//vhjqZe5sHIl53v37uHo\n0aMAABsbGzRr1gxWVlZo3rw5AAhflOIMGjQIrVq1goWFBbp37y5Mf3XEZ3l07twZfn5+MDc3R69e\nvYrUffToUSGh9e3bF5999pkwyvzjjz9G3bp1AeR3URSYPXs2LCwsUK9ePbXBTMUdTLypfT09PaGb\n5MKFC0hKSkJubi6ioqIAAK1bt4a9vT1ycnIQHR0NAHj06BH8/Pwgl8vRuHFjXLt2DUB+t/vFixeL\nxPD111/Dy8sL1tbW6NChQ5EYinP9+nWh3ps3b6Jt27awsrJC69atce/ePQD5O+SC7urCJk2aBEdH\nR7i4uKh9USq6Pb/88kusXr0a7733HiQSiTBdpVLhyJEjGDRokND9f/DgQQD53YGffPIJrK2t4eHh\nIXw5c3NzhUsBhUd5T506Febm5mjdujW6detWoXgrsg4L27dvn5CEHBwcKhRTSdzd3TFlyhRYWlpC\nJpPB2tpalHaA/P3DhAkTYG5ujgEDBgjTK/r5KPwdnTZtGqysrODk5ITg4OBiy7zJunXrIJVKUatW\nLcydO1eYPmXKFOjr6+PIkSNCl/LAgQPRokULmJubY/LkyZBKpQDyu+9zc3Oho6ODli1bAgD++OMP\nvHz5UvgsduvWDc+fP0dcXJwwDcj/7gP/+ywD+QeSjo6OsLe3F3b2AHD8+PEi8YuxTQs+f48fP8b3\n33+PFStW4Pr162jfvn2Ry0qv+u2334S/v/rqK7i4uMDa2rpMB6j169dH/fr1AfwvIZ89e1Y4MH/T\nWIqKxO/r6yucbBQcGBw4cADZ2dkA/pe8jxw5IlyOOHToEOrVqwe5XC4cTAHFb6/SKFdy3rFjhxBQ\ns2bNcPXqVcTHx6sN2S/pyFihUAh/GxkZCX9rYlDKm+pOT08Xprm7u5dYT8HO1MTERDgCBqA2IrW4\nayelWbbCR4Pbtm3D4cOHhdvPBg0aBCD/KLw018wyMzPLFcOrSroOJFZ7pdWjRw8cOXIE165dw9q1\na9G3b18hUV+6dEkYI1Ca+AtiL/jf1NQU5ubmwvyyDAQp+OwXVpF1+LaV5VbE4pa1LJycnIQetYLr\nuEDFPx8F31Egf8xLAXt7+2LLlIWZmRl8fHywfv16fPXVV69tT09PDzY2NgDyz7IKemAKkm1WVhb+\n+OMPnDt3Dq6ursIJye+//y4kZwsLC2GblOWzXJgYt5cOHToUfn5+0NHRwebNmzFx4kT07NkTCoUC\nCxYsKHWMtWrVKvbv0ijYX964cQNnzpzBtm3bAAC6urpqB3uajr/widSpU6dw+/ZtoW0LCwvhYL68\n26s0ynUrVeFu6927dxfbfRQZGYnZs2dDV1dXvUG9/zVZ+IxIE95Ut5WVlfB34UEer5LJZLhz5w6y\nsrKgVCqFI+Nbt26plSlr+wBQp04dNG3aFHFxcdixY4cQh1QqFTa4hYUFdHV18fLlS7i4uBTbJa1S\nqYptozzrt/CytG3bVujG0VR75dnOjx49Em6dkclk6N69O7p3746MjAzhSLRgsEXB9jI2NkZycjKq\nV69eYuw1atRAeno6Hj9+jIcPHwoJuqT7DqtXr47c3Fy1EbspKSlFylVkHb5tBgYGRaYVXmdvWtay\nqFatmvC3JpddJpMJg7Bu3bolbMfCZ+QFl6lKY9CgQfjll19e216BwvuBFy9eCIM7q1WrJsRR0E0N\n5N9KmJOTgxYtWgiXWk6ePIlLly4BAFq2bCkcwBRu58iRI3jvvfeKxFLcYLritmlFGRoaYt26dXj4\n8CGuXr2KxMRErFq1CufPn8f06dPRv39/tX1qYTVq1BD+Lny7beG/S6NPnz6YOnUqnj17hq1btwq9\njO3bt39j70BF4gfyz8wXLlyIvLw8rFixAseOHQMABAQEQF9fH4D69po+fTpGjRpVpJ7XDX58nTKf\nOV+/fr1Uo6vT09OFhakq2rVrJ+yEtmzZgrVr10KpVCIjIwObNm3C1atXAeRfwypQMMQ/Pj5e7SEa\nhcuUVcHR4LVr17Bnzx4A+Ru84AtmaGgoXDO6fv06vv32W2RkZCA3NxfXrl3DwoUL1S4JVJSLiwtc\nXV0B5F8vXrRoEZRKJZ4+fYq//voLoaGhRe45LgtLS0sA+UeQpf1yfvjhhxgzZgxOnDgBpVKJ3Nxc\nnD17VrjOqKurK8TcqVMnAPnXhL7++mvcunULz58/R0pKClavXi10MQLqO82ZM2fi4cOH+O2334od\n1Q38r7ckPj4eN27cwPPnzzF79uwi5TS1DsUarf0mhXuFjh07hmfPnuHu3buIiIgotnzBNgXyrwcX\nXGLQpMJtXL58WW0nV/j7N2PGDGRkZCAlJUVtFHnB50IT2rVrJ5xobNq0CWfOnMGjR48QEhIi9Hx9\n8MEHwv6lbt26wo6/4DveokUL1KpVCw4ODoiNjRUerFJwlv1qzOPGjcPly5eRm5uL9PR07N69G336\n9Cl2vIsYdu3ahWXLliEtLQ316tVDjx494OnpCSD/DpPXfZcLf8+WLFmC69ev4+7du2rbpzQsLCzQ\npUsXAMCaNWuE3s/CPZBixA/kb8MmTZoAAObPn4/nz58Xabvw52LBggU4evQocnJy8PDhQ8TExGDk\nyJFYuHBhmZa5QJmT8+bNm4W/R44cqXY/pVKpxPz584X5bxoY9rbZ2tpixowZkEgkePHiBUaMGAFH\nR0coFAoEBQUJXVeTJk0Sdlbr16+Ho6MjvL29hSP1wYMHo1mzZuWOo1evXkIXcEG34asftpCQEKFL\nfcGCBVAoFLCyskKzZs0wZcqUCp/RvOrnn3+GgYEBVCqVcB3Z2toaPj4+CAkJUbskUFZNmzYFkJ88\nC54oFxQU9Nr3PHnyBCtXroS/vz8cHR1hZWWFjh07Ct1IQ4YMEXo0Jk2aJFxf2rJlC+rVqweZTIaG\nDRti1KhRiI+PF+oNDg4W1v3y5cvh4OCA7t27l/iAiz59+gjxNG7cGPb29sKAnVeJuQ7FZmdnJ4wZ\nOH/+PJycnODp6al2y19hBdsUAMaOHQtLS0u1syVNKNxGv379YGFhIVw6Gz58uDD469ChQ1AoFGjY\nsKFwNurr66vRA1hHR0fhXvLMzEx06tQJ9vb2wmAfCwuLIgdtBQmq4MCl4KzZ29tb7UCjcHLu06cP\n2rdvDyB/O7Rq1QpWVlaoU6cOPv30Uxw+fLjcZ2JldfXqVQQHB6NZs2aoXbs27OzssG7dOgD53dMF\nY3SK06FDB+HzlJiYiCZNmsDd3V0Yl1EWBfvGgn2lTCaDr6+vqPGX1LaXlxcaNGggzHd0dBQGAmZm\nZqJ3796wsbGBg4MD/Pz8sGbNmnJfwilzci7odweA/v37F5nfo0cP4Qxw3759yMrKKldgYgkMDMTu\n3bvh6+uLmjVrQk9PDzKZDO3atROuJcnlckRHRyMoKAhOTk6oXr06TExM0LRpUyxcuBA//fRThWIw\nNTVV23F4enqiYcOGamXc3NwQExODL774Ao6OjqhevTrMzMzg7u6OQYMGVTiGV7Vq1QrR0dHo378/\nbG1tUa1aNVhYWMDT0xNDhw5VuzezrCZMmIDevXuXqZvxhx9+wODBg4VEq6enB1NTU7z33nv48ccf\nMWfOHKGslZUVoqOjMXLkSNSpUwf6+vowMTGBq6sr+vTpg5UrVwpl3d3dsXPnTrz33nvQ19dH7dq1\nMXPmTHz66afFxjF69GgMGzYMNjY2qF69Olq0aKE2aKcwMdfh27B8+XL4+vrCzMwMBgYGQrdecZo2\nbYo5c+bAyclJretak3r27InRo0ejdu3aRS6PmZiY4ODBgxg7dizc3Nygr68PQ0ND1K9fH7Nnz8aG\nDRuErmJNGTduHNatWwcfHx+YmZlBT08PtWvXxqBBg3DixAm18ReAetK1sbGBo6MjAKgNnJTL5Wrj\nX3R1dbF582bMnTsXTZo0gYmJCfT19WFnZ4cOHTpg3rx5wkGJ2D744AMEBATA2dkZJiYm0NXVhbW1\nNQICArBv3z6ha7c4Ojo62LRpEz766COYmZnB1NQU/v7+WLt2bbniKHydv2/fvqX6zFUk/gK9e/eG\noaGh8Lq4M/ZvvvkGW7ZsQbt27WBhYYFq1arB2toa77//PiZNmqR210FZSP7/PZtE/2khISHCrTLh\n4eFvHAlKRCQm/ioVERFRFcPkTEREVMWwW5uIiKiK4ZkzERFRFcPkTEREVMUwORMREVUxTM5ERERV\nDJMzERFRFcPkTEREVMUwORMREVUxTM5ERERVDJMzERFRFcPkXIyQkBC1X46pLGlpaejZsydq1aol\n/Dyi2Lp27Yrg4GCN15uXl4dRo0bByckJUqkUMTExCAoKQr9+/YQyr77WdiEhIVAoFJBKpdiwYUNl\nh0NEWuSNyfnVHWZISAikUmmxv5W6YsUKSKVStcS2YcMG4cfjLS0tYW9vj7Zt22LmzJnCb/O+WnfB\nP3t7e3Tr1g1xcXEVWcYSpaamQiqV4sKFC2rTv/76a+zbt0+UNsvil19+wd27dxETE4OEhASN1h0T\nEwOpVIr79+9rtN6S/Prrr9iwYQM2b96MhIQENG/eHHPnzsWSJUveSvtvW3x8PEJDQxEWFoaEhAT0\n6tXrteXHjRsHS0tLrFmz5i1FWLw1a9agc+fOcHBwEL5/p06dUivz+PFjTJgwAfXq1YO1tTU6duyI\n8+fPV1LERO+mcp05y+VynD59GqmpqWrT161bp/a7mwWMjIyQkJCA+Ph4HD16FEFBQThw4ABatGhR\nJOkoFAokJCQgISEBhw4dglwuR0BAQJl+sPrFixcV+kFyExMTWFpalvv9mpKUlIQGDRrAxcUFcrm8\nXHVUdF1oSlJSEuRyOZo3bw65XI7q1avD3Nz8rfUIvG1JSUkAgG7dukEul6v9Juyrnj17hm3btmH0\n6NHl+r1bTTp58iR69uyJPXv24OjRo1AoFOjduzeuX78ulBkxYgSOHTuGiIgI/P777/jggw/Qo0cP\n3L59uxIjJ3q3lCs5W1paomPHjmpddZcvX0ZiYiL8/f2LlJdIJJDL5bC2toZCoUC/fv3w66+/wtzc\nHKNHj1Yrq6enB7lcDrlcjrp16+Kbb77Bw4cPixwIFFbQDb1hwwY0bNgQVlZWyM7OxpEjR4SzAEdH\nR/Tq1UvtYKBBgwYA8n+UWyqVomvXrmr1FSjoPYiIiEDdunXh4OCAYcOG4cmTJ0KZ7OxsfPXVV7C1\ntYVCoUBYWBj69euHoKAgocyePXvg7e0Na2trODo6okuXLkhPTy92mby8vLB//35s3rwZUqlUqOfm\nzZsYOHAgateujdq1a+Pjjz/Gv//++8Z1UVhqair8/PwAAC4uLmr1A/ld0DNmzICzszNcXV0xZcoU\n5OXlCfNzc3Mxbdo0eHh4wMbGBh988AGOHj1a4vYJCgrCpEmTcOvWLUilUnh5eamt15J07doVY8aM\nweTJk+Ho6AgXFxdERETg2bNnGDt2LOzt7VGvXj1s3ry5xDoA4Pz58+jZsyecnZ1hZ2cHX19fnD17\nVq3MqlWr0KRJE8jlcjg7O6NXr1548eJFiXVeuXIF/v7+wrYMCgrCw4cPAeRvg4IfZbewsHjjAUhU\nVBTs7e3xzTffCAexhRV3mWXDhg2wtbVVmxYWFgaFQgFbW1t89dVXmDt3rrCuS2vZsmUYOnQoGjRo\nIHyOTUxMcOTIEQBATk4O9uzZg2nTpsHHxwfOzs6YOHEinJycsHLlyjK1RUQlK/c150GDBmHTpk3C\nTnvdunXo0aMHTExMSvV+ExMTDB48GL///jvu3btXbJmnT59iy5YtkMlksLe3f219qamp2L59O1av\nXo2TJ0/CwMAA2dnZCAwMxLFjx7B3716YmZmhf//+yM3NBQAcO3YMALBjxw4kJCRg/fr1JdZ/6tQp\nXL16Fbt27cKqVauwd+9eLF68WJg/ZcoUxMbGYv369dizZw8uX76s1h2YlpaGL774AgMGDMCZM2ew\nf/9+9O/fv8T2jh8/jrZt26Jnz55ISEjA3LlzkZeXh48++ggZGRmIiopCVFQU7t69i4EDB6qdHRe3\nLgqrXbu2cIZ2+vRpof4C27Ztg66uLn799Vf88MMPiIiIQGRkpDB/+PDhiI2NxbJly3Dq1CkMGDAA\n/fv3x19//VXsssydOxfjxo2Dra0tEhIScPz48RKX+1Xbtm2DiYkJjh49ilGjRmHixIkYOHAgXFxc\nEB0djf79+2PEiBG4e/duiXU8fvwY/fr1w4EDB3D06FF4eXmhT58+yMzMBABcuHABY8eOxfjx4xEX\nF4fdu3ejXbt2JdaXnZ2N3r17w9jYGEePHsX69etx9uxZ/N///R+A/MsiCxYsAAChF+h11q5di759\n+8LIyAh+fn7lOnvesWMHQkNDMXXqVJw4cQJubm5YtGhRmet5VW5uLp4+fSocYLx48QIvX74s8pky\nNDQs0v1NROWnV943tm/fHi9evMCJEyfg7e2NrVu3YuPGjYiOji51He7u7gDyk0nNmjUB5O/MCs4I\nnjx5AqlUijVr1ry2WxDI34ksWbIEVlZWwrRXz+LDw8NhZ2eHc+fOoUWLFqhRowaA/J6AN3Ubm5qa\n4qeffoKuri7c3NzQo0cPnDhxAmPGjEFWVhbWr1+PxYsX44MPPgCQf73Yw8NDeP+dO3fw/Plz+Pv7\nCwcahee/qmbNmtDX14eBgYEQ2/Hjx3HlyhVcuHABDg4OAIDly5ejUaNGOHHiBNq2bVviuihMV1cX\nFhYWAACZTCashwJubm6YPHkyAMDV1RVr1qzBiRMnEBAQgOTkZGzfvh2XLl2CnZ0dAGDo0KGIjo7G\n6tWr8eOPPxZpz9zcHKamptDR0Slz97y7uzsmTpwIAPi///s//Pzzz9DT0xPO9MePH4/58+fjzJkz\nxfbaAECbNm3UXn///ffYs2cPDh8+jH79+uHmzZswNjZG586dYWpqCgCvPePcvn07njx5giVLlgjl\nf/75Z/j5+SEpKQnOzs4wNzcHgDcub0pKCk6dOoVly5YBAPr374/Bgwfju+++g76+/ptWj2Dx4sX4\n6KOP8MknnwAAxowZg5iYGPzzzz+lrqM4s2bNgomJCTp37gwg/3vQrFkzzJs3D3Xr1oVcLsf27dtx\n9uxZODs7V6gtIvqfcp856+rqYsCAAVi/fj327duHmjVrlnmEc8HZnkQiEaY5OTkhJiYGMTExiI6O\nxqeffoqBAwfizz//fG1dtWrVKpKMkpOT8eWXX6Jhw4aws7NDnTp1kJeXh1u3bpUpTiA/Yenq6gqv\nra2thQFtycnJeP78OZo0aSLf3cLUAAAgAElEQVTMNzY2Vku+Xl5eaNu2Lby9vTFo0CCsWLGixB6D\nkiQkJMDGxkZIzADg6OgIGxsb/P3338K04tZFWXh6eqq9LrysFy9ehEqlwvvvvw9bW1vh36+//ork\n5ORyt1maWCQSCWQymdq0atWqQSqVFhlcWFhGRgZGjRqFJk2awN7eHrVr10ZGRobwOfjggw9Qu3Zt\nNGjQAEOGDMHGjRvx+PHjEutLSEiAp6enkJgBoHnz5tDR0VHbDqWxfv16tGnTRkjiPj4+MDIyKvOA\nxGvXrqFx48Zq0wp/HssjIiICq1evxrp162BmZiZMX7JkCSQSCTw8PGBlZYUlS5YgICAAOjq8+YNI\nU8p95gwAAwcORMuWLXHjxg0MHDiwzO//+++/IZFI1Lqsq1evrnYE3qBBA+zbtw+LFi3C0qVLS6zL\n2Ni4yLR+/fqhVq1a+Pnnn2FjYwM9PT00b95c6NYui2rVqqm9lkgkZRpopauri507dyIuLg7Hjh3D\nunXr8N1332Hfvn1lvi5YnMIHOMWti7J43bLm5eVBIpHg2LFjRcq92tWpCcXFoqenV2Ra4WvirwoK\nCkJ6ejrmzJkDe3t76Ovro3v37sLnwNTUFL/99htiY2MRHR2Nn376CTNnzsSxY8dgY2NTpngLb4c3\nefnyJTZu3Ig7d+6o9V7k5eVh7dq1wghvHR2dIp+1110P14RFixZhzpw52LZtW5Ek7+TkhP379yM7\nOxuPHz+GtbU1Bg8eDEdHR1FjIvovqdChrouLCxo3bowLFy5gwIABZXpvVlYWVq1ahZYtWwpd2iXR\n1dVFTk5OmerPzMzEtWvXMGbMGLRt2xZubm54/Pix2k6tevXqAPJ3khXh5OSEatWqqd1O8uTJkyID\neyQSCZo1a4YJEybg+PHjsLGxwc6dO0vdjpubG+7cuaM2OC4lJQV37twRLhGUVnmXvX79+lCpVEhL\nS4Ozs7Pav1q1apWprrfl9OnTGDp0KDp16oS6devCxMQEaWlpamX09PTQpk0bTJs2DbGxscjOzsah\nQ4eKrc/NzQ1XrlxRO7s+c+YM8vLy4ObmVuq4jhw5gszMTBw/flzoLYqJicGWLVtw4sQJYTvXrFkT\n6enpagn61ev7derUKXJLYHlvb1q4cCHmzJmDLVu2vLY3zNjYGNbW1lAqlTh69Ci6dOlSrvaIqKgK\nnTkD+dffcnNzXzsitWBnDgCPHj3C+fPnMX/+fDx69AibNm1SK/vixQuhbFZWFiIjI/H3339j5MiR\nZYpLKpWiRo0aWLt2LWrXro3bt2/j22+/VTvrkslkMDQ0xNGjR4UzqoJrhWVhYmKCjz/+GNOmTUON\nGjUgl8sxb948qFQq4UwqLi4O0dHRaNeuHWQyGS5duoR///23TDvztm3bwtPTE0OHDhUGcI0bNw4N\nGjRA69atyxSznZ0dJBIJDh06hM6dO8PAwKBUg/lcXV3Rt29fDBs2DLNnz0aDBg3w4MEDnDx5Eg4O\nDsXe/17ZXFxcsHXrVrz33nt48uQJvv32W+HgBAAOHjyI5ORkeHt7w8LCAjExMcjKykKdOnWKra9P\nnz4ICQlBYGAgJk2aBKVSidGjR8PPz69M113Xrl2L9u3bo2HDhmrTPTw8oFAosH79ekyePBmtWrXC\ngwcP8OOPP6J3796IiYnB7t271d4TGBiI4cOHo1GjRvD29sbevXvxxx9/qH0vo6KiMGPGDOzevbvE\nA6kFCxZg5syZWLp0KVxdXYXvooGBgfDdOHr0KPLy8qBQKJCcnIypU6eiTp065eo9I6LiVfgikZGR\n0RtvFXny5Anc3Nzg7u6Odu3aITw8HL6+vjh16lSR5JSYmAg3Nze4ubnBx8cHO3fuRFhYWJnPzHV0\ndLBy5UpcuXIFLVq0QHBwMCZPnqw2yEZPTw+hoaFYt24d3N3d8dFHH5WpjcJmzpyJFi1aYMCAAfDz\n84OnpycaNmwodPWamZnhzJkz6NevH5o0aYIpU6YgODi4TE/Ekkgk2LhxI2rUqAE/Pz/4+fnBysoK\nGzZsKFN3KpB/XXrixImYNWsWFApFmZ4KFh4ejoEDB+Lbb79F06ZN0a9fP8TGxr5xRH1lWbhwIbKz\ns9G2bVt8/vnn+Pjjj9ViNTc3x759+9CjRw80a9YMCxcuxIIFC+Dt7V1sfUZGRtixYwceP36Mdu3a\n4aOPPkLTpk2xcOHCUseUnp6OQ4cOlTiIzd/fHxs3bhTOxsPCwrB69Wq0bNkS0dHRGDNmjFr53r17\nIzg4GN999x1at26N+Ph4fP7552qXGh49eoTExEQ8f/68xLiWLVuG58+fY/DgwcL30M3NDRMmTFCr\nJzg4GM2aNUNgYCBatGiBHTt2FLkEQUTlJ1EqlZX/hIp30LNnz+Dl5YWvv/4aX3/9dWWHQ/9BAwcO\nxIsXL7Bly5bKDoWIyqjC3dqU7+LFi7h27RqaNGmCx48fY/78+cjKynrjYxuJNOHJkydYsWIF2rdv\nDz09PezZswf79++v9CeOEVH5MDlrUHh4OP755x/o6uoKT/h69SlORGKQSCQ4cuQIwsLC8PTpUzg7\nO2Pp0qXCk+CISLuwW5uIiKiK4VMDiIiIqhgmZyIioiqGyZmIiKiKYXImIiKqYpiciYiIqhgmZyIi\noiqGyZmIiKiKYXImIiKqYpiciYiIqhgmZyIioiqGyZmIiKiKYXImIiKqYpiciYiIqhgmZyIioiqG\nyZmIiKiKYXImIiKqYpiciYiIqhgmZyIioiqGyZmIiKiKYXImIiKqYpiciYiIqhgmZyIioiqGyZmI\niKiKYXImIiKqYpiciYiIqhgmZyIioipGq5NzWFgYpFIpgoODhWkqlQohISFwd3eHtbU1unbtiqtX\nr1ZilERERGWjtck5Li4Oq1evhqenp9r0+fPnIzw8HKGhoTh27BhkMhl69uyJx48fV1KkREREZaOV\nyfnhw4cYMmQIFi5cCKlUKkxXqVSIiIjAqFGj4O/vDw8PD0RERCArKwvbt2+vxIiJiIhKTyuTc0Hy\nbd26tdr01NRUpKWl4cMPPxSmGRoawtvbG2fOnHnbYRIREZWLXmUHUFZr1qxBUlISli5dWmReWloa\nAEAmk6lNl8lkuHPnzluJj4iIqKK0KjknJiZixowZOHjwIKpVq1bZ4RAREYlCq7q1z549i/v37+P9\n999HjRo1UKNGDcTGxmL58uWoUaMGLC0tAQAZGRlq78vIyICVlVVlhExERFRmWnXm3LVrVzRq1Eht\n2vDhw+Hi4oIxY8bA1dUVcrkcx48fR+PGjQEAT58+xalTpzBjxozKCJmIiKjMtCo5S6VStdHZAGBk\nZAQLCwt4eHgAAIKCghAWFgaFQgFXV1fMmzcPxsbGCAgIqIyQiYiIykyrknNpjBw5Ejk5OQgODoZS\nqUSTJk0QGRkJU1PTyg6NiIioVCRKpVJV2UEQERHR/2jVgDAiIqL/AiZnIiKiKobJmYiIqIphciYi\nIqpimJyJiIiqmHfuVqqKuP394Eppt9a4VZXSLhERVU08cyYiIqpimJyJiIiqGCZnIiKiKobJmYiI\nqIphciYiIqpimJyJiIiqGCZnIiKiKobJmYiIqIphciYiIqpimJyJiIiqGCZnIiKiKobJmYiIqIph\nciYiIqpimJyJiIiqGCZnIiKiKqZSkvPdu3eRkJBQGU0TERFVeaIm59WrV2PYsGFq04KDg+Hh4YEW\nLVqgdevWuH//vpghEBERaR1Rk/OKFStgZGQkvI6JicHy5csREBCAb7/9FklJSZg3b56YIRAREWkd\nPTErT01Nxaeffiq83rlzJ2xtbbF48WLo6Ojg4cOH2LlzJ0JCQsQMg4iISKuIeub88uVLVKtWTXh9\n/PhxtG/fHjo6+c06Ozvj7t27YoZARESkdURNzg4ODjhx4gQA4MKFC0hJScGHH34ozE9PT4epqamY\nIRAREWkdUbu1P//8cwQHB+Pvv//G7du3YWtri44dOwrzT58+DXd3dzFDICIi0jqiJucvv/wS1atX\nx6+//oqGDRti1KhRMDAwAAA8ePAAGRkZ+Pzzz8UMgYiISOtIlEqlqrKDqCpufz+4UtqtNW5VpbRL\nRERVk6hnzgUePXqEc+fOISMjA23btoWVldXbaJaIiEgrif6EsB9//BF169ZFr169EBgYiKtXrwIA\n7t+/DxsbG6xcuVLsEIiIiLSKqMl55cqVmDVrFgICArBq1SqoVP/rQa9Rowa6dOmCXbt2iRkCERGR\n1hE1OS9ZsgQ9evTA/Pnz0bp16yLz69evj2vXrokZAhERkdYR9ZpzSkoKgoKCSpwvlUrx4MEDMUMg\nIqK3jINrK07UM2epVIqMjIwS51+9ehVyuVzMEIiIiLSOqMm5Y8eOWLNmTbFnx5cvX8batWvRpUsX\nMUMgIiLSOqIm5ylTpgAAWrRogenTp0MikWDDhg34/PPP0a5dO8jlcowbN07MEIiIiLSOqMlZLpcj\nOjoanTp1QlRUFFQqFbZt24YjR46gT58+OHz4MCwtLcUMgYiISOuI/hCSmjVrYv78+Zg/fz7u3buH\nvLw81KxZU/hlKiIiIlInaoYcPnw4/vjjD+F1zZo1YWVlJSTmc+fOYfjw4WKGQEREpHVETc4bN25E\ncnJyifNTU1OxadMmMUMgIiLSOpXat5yZmQl9ff3KDIGIiKjK0fg159jYWJw8eVJ4HRUVhaSkpCLl\nlEolIiMjUa9ePU2HQEREpNU0npxjYmIQGhoKAJBIJIiKikJUVFSxZevWrSuUJSIionwaT84jR47E\n0KFDoVKp4Orqip9++gndu3dXKyORSGBoaAgDAwNNN09ERKT1NJ6cDQ0NYWhoCAC4ePEiatasCSMj\nI003Q0RE9M4SdUCYvb09jIyMoFQqsWvXLixYsAALFizArl27oFQqy1zfsmXL4O3tDTs7O9jZ2aFD\nhw44dOiQMF+lUiEkJATu7u6wtrZG165dhd+PJiIi0haiP4Rk/vz5mDt3Lp49e6b2e84GBgaYOHEi\nRowYUeq6atWqhe+++w4uLi7Iy8vDpk2bMHDgQERHR6NevXqYP38+wsPDER4eDoVCge+//x49e/ZE\nXFwcTE1NxVg8IiIijRP1zHnt2rWYPn06mjdvjk2bNuHChQu4cOECNm/ejPfffx/Tp0/HunXrSl1f\n165d0aFDBzg7O8PV1RVTp06FiYkJ4uLioFKpEBERgVGjRsHf3x8eHh6IiIhAVlYWtm/fLuJSEhER\naZaoyXnx4sVo06YNdu7ciU6dOsHR0RGOjo7o1KkTIiMj4ePjg4iIiHLV/fLlS+zYsQPZ2dlo1qwZ\nUlNTkZaWhg8//FAoY2hoCG9vb5w5c0ZTi0RERCQ6Ubu1k5KSMHjwYEgkkiLzJBIJunXrhqlTp5ap\nzitXrqBjx454+vQpjI2NsX79enh6egoJWCaTqZWXyWS4c+fOG+tNTEyEcZki0ZzExMRKapmISPMq\ne1+qUCgqKQLNETU5m5ubIyUlpcT5KSkpMDc3L1OdCoUCMTExePToEXbv3o2goCDs3bu3gpHm13u7\nwrWUv20ioncF96UVJ2q3tq+vL5YtW4YtW7aoDQZTqVTYunUrli9fjs6dO5epzurVq8PZ2RkNGzbE\ntGnT4OXlhUWLFkEulwMAMjIy1MpnZGTAysqq4gtDRET0loianKdNmwZXV1cEBQXBzc0Nvr6+8PX1\nhZubGwIDA+Hi4oJp06ZVqI28vDzk5ubCwcEBcrkcx48fF+Y9ffoUp06dQvPmzSu6KERERG+NqN3a\nlpaWOH78OFatWoXDhw/j5s2bAAAvLy906tQJn376aZl++GL69Ono2LEjbG1thVHYJ0+exNatWyGR\nSBAUFISwsDAoFAq4urpi3rx5MDY2RkBAgFiLSEREpHGi3+esr6+PwMBABAYGVriutLQ0DB06FOnp\n6TAzM4Onpye2b9+Odu3aAch/dGhOTg6Cg4OhVCrRpEkTREZG8h5nIiLSKhKlUql6c7HyGT58OAIC\nAtCmTRvo6FTqr1OWyu3vB1dKu7XGraqUdomIxMB9acWJmjH37NmD3r17w83NDWPHjkVsbKyYzRER\nEb0TRE3OiYmJWLVqFVq2bIlNmzbBz88Pnp6emDx5Ms6dOydm00RERFpL1ORsYGAAf39/rF69GomJ\niVi6dCkaNGiAFStWoEOHDmjYsCFmzpwpZghERERa561dCDYyMkJAQAA2btyIxMREhIaGIjMzEz/9\n9NPbCoGIiEgriD5au7CcnBwcOnQIkZGROHLkCHJycuDs7Pw2QyAiIqryRE/Oubm5OHz4MHbu3ImD\nBw8iOzsbtra2+OKLL9C7d280bNhQ7BCIiIi0iqjJOTAwEPv378fjx49hZWWFAQMGoHfv3nj//ffF\nbJaIiEiriZqcDx06hB49eqB3797w8fHRinudiYiIKpuoyTkxMRF6em/1sjYREZHWE/VUlomZiIio\n7NjPTEREVMUwORMREVUxTM5ERERVDJMzERFRFcPkTEREVMVodDj1pk2byvW+AQMGaDIMIiIirabR\n5Dxs2LAyv0cikTA5ExERFaLR5Hzx4kVNVkdERPSfpNHkbG9vr8nqiIiI/pM4IIyIiKiKEf35munp\n6Vi3bh3+/PNPPHr0CHl5eWrzJRIJ9uzZI3YYREREWkPU5BwfH49u3brhyZMncHV1RXx8PNzd3aFU\nKnHnzh04OTnB1tZWzBCIiIi0jqjd2t999x0MDAxw5swZ7N69GyqVCiEhIYiPj8eyZcugVCoxc+ZM\nMUMgIiLSOqIm59OnT+Ozzz6Dg4OD8FvOKpUKABAQEIBevXph6tSpYoZARESkdURNzs+fP4e1tTUA\nwMDAAADw8OFDYb6XlxcuXLggZghERERaR9TkbGdnh1u3bgEADA0NYW1tjbNnzwrz4+PjYWxsLGYI\nREREWkfUAWE+Pj7Yt28fJk2aBADo06cPFi1aJIza3rJlCwYNGiRmCERERFpH1OQ8cuRI+Pj44Nmz\nZ9DX18fkyZOhVCqxe/du6Orqol+/fpgxY4aYIRAREWkdUZOznZ0d7OzshNf6+vpYsGABFixYIGaz\nREREWk3Ua87Dhw/HH3/8UeL8c+fOYfjw4WKGQEREpHVETc4bN25EcnJyifNTU1PL/TOTRERE76pK\nfbZ2ZmYm9PX1KzMEIiKiKkfj15xjY2Nx8uRJ4XVUVBSSkpKKlFMqlYiMjES9evU0HQIREZFW03hy\njomJQWhoKID8H7WIiopCVFRUsWXr1q0rlCUiIqJ8Gk/OI0eOxNChQ6FSqeDq6oqffvoJ3bt3Vysj\nkUhgaGgoPDWMiIiI/kfjydnQ0BCGhoYAgIsXL6JmzZowMjLSdDNERETvLFHvc7a3tweQf305Ojoa\nN27cEKa3bdsWUqlUzOaJiIi0kqjJGQDmz5+PuXPn4tmzZ8IvUgH5P4QxceJEjBgxQuwQiIiItIqo\nyXnt2rWYPn062rRpg6CgILi5uQEAEhISsHjxYkyfPh0WFhZ8vjYREVEhoibnxYsXo02bNti5cyck\nEokw3dHRER07dkSPHj0QERHB5ExERFSIqA8hSUpKQteuXdUScwGJRIJu3boVew80ERHRf5moydnc\n3BwpKSklzk9JSYG5ubmYIRAREWkdUZOzr68vli1bhi1btqgNBlOpVNi6dSuWL1+Ozp07ixkCERGR\n1hH1mvO0adMQFxeHoKAgTJ06Fc7OzgDyu7vv3bsHd3d3TJs2TcwQiIiItI6oydnS0hLHjx/HqlWr\ncPjwYdy8eRMA4OXlhU6dOuHTTz/lD18QERG9QvT7nPX19REYGIjAwECxmyIiInoniHrNuUGDBti/\nf3+J8w8ePIgGDRqIGQIREZHWETU537hxA9nZ2SXOz87OFrq6iYiIKJ+oyRlAsfc4F/jnn39gampa\n6rrCwsLwwQcfwM7ODi4uLujXrx/i4+PVyqhUKoSEhMDd3R3W1tbo2rUrrl69Wu74iYiI3jaNX3Pe\nuHEjNm3aJLyeN28e1qxZU6ScUqlEfHw8fH19S133yZMn8cUXX6Bx48ZQqVSYM2cOevTogTNnzsDC\nwgJA/rO8w8PDER4eDoVCge+//x49e/ZEXFxcmQ4EiIiIKovGk3NOTg7u378vvM7KyoKOTtETdGNj\nY3z++ecYP358qeuOjIxUe71kyRLY29vj9OnT6Ny5M1QqFSIiIjBq1Cj4+/sDACIiIqBQKLB9+3YM\nHjy4nEtFRET09mg8OX/xxRf44osvAAD169fH3Llz0aVLF003AyA/8efl5Qk/PZmamoq0tDR8+OGH\nQhlDQ0N4e3vjzJkzTM5ERKQVRL2V6tKlS2JWjwkTJsDLywvNmjUDAKSlpQEAZDKZWjmZTIY7d+68\ntq7ExEQYixPmGyUmJlZSy0REmlfZ+1KFQlFJEWiO6Pc5i2XSpEk4ffo0Dh48CF1d3QrXp1AocFsD\ncZW3bSKidwX3pRUn+mhtMUycOBE7duzAnj174OjoKEyXy+UAgIyMDLXyGRkZsLKyepshEhERlZvW\nJefx48cLiblOnTpq8xwcHCCXy3H8+HFh2tOnT3Hq1Ck0b978bYdKRERULlrVrT127Fhs2bIF69ev\nh1QqFa4xGxsbw8TEBBKJBEFBQQgLC4NCoYCrqyvmzZsHY2NjBAQEVHL0REREpaPR5Dxp0iT069dP\neCTnzZs3UbNmTRgaGmqk/uXLlwOAcJtUgfHjx2PixIkAgJEjRyInJwfBwcFQKpVo0qQJIiMjeY8z\nERFpDY0m54iICDRq1EhIzg0aNMCSJUvQp08fjdSvVCrfWEYikWDixIlCsiYiItI2Gr3mLJfLcf36\ndeG1SqXSZPVERET/CRo9c+7cuTO+//57HDhwAGZmZgCAH3/8EWvXri3xPRKJBHv27NFkGERERFpN\no8l5zpw5qFWrFmJjY5GRkQGJRFLi4zuJiIioeBpNzoaGhggODkZwcDAAwMLCAtOmTdPYNWciIqL/\nAlFvpYqKioKbm5uYTRAREb1zRE3OrVq1ApA/yjo6Oho3btwAANjb26Nt27bCD1YQERHR/4j+EJL5\n8+dj7ty5ePbsmdrobQMDA0ycOBEjRowQOwQiIiKtImpyXrt2LaZPn442bdogKChI6OJOSEjA4sWL\nMX36dFhYWGDQoEFihkFERKRVRE3OixcvRps2bbBz505IJBJhuqOjIzp27IgePXogIiKCyZmIiKgQ\nUe9xSkpKQteuXdUScwGJRIJu3bohKSlJzBCIiIi0jqjJ2dzcHCkpKSXOT0lJgbm5uZghEBERaR1R\nk7Ovry+WLVuGLVu2qA0GU6lU2Lp1K5YvX47OnTuLGQIREZHWEfWa87Rp0xAXF4egoCBMnToVzs7O\nAPK7u+/duwd3d3dMmzZNzBCIiIi0jqjJ2dLSEsePH8eqVatw+PBh3Lx5EwDg5eWFTp064dNPP4W+\nvr6YIRAREWkd0e9z1tfXR2BgIAIDA8VuioiI6J3AX6QgIiKqYpiciYiIqhgmZyIioiqGyZmIiKiK\nYXImIiKqYkRNzqGhoYiPjy9x/tWrVxEaGipmCERERFpH1OQ8d+5cXLlypcT5TM5ERERFVWq3dlZW\nFqpVq1aZIRAREVU5Gn8IyeXLl/HXX38Jr0+dOoUXL14UKadUKrFy5UooFApNh0BERKTVNJ6c9+7d\nK3RVSyQSrFq1CqtWrSq2rFQqxdKlSzUdAhERkVbTeHL+7LPP4OvrC5VKhQ8//BCTJk1Chw4dipQz\nNjaGk5MT9PREf4IoERGRVtF4ZrS2toa1tTUAICoqCm5ubpDJZJpuhoiI6J0l6mlrq1atxKyeiIjo\nnSR6n/LRo0exbt06pKSkQKlUQqVSqc2XSCT4888/xQ6DiIhIa4ianBcsWIDp06fDysoKjRs3hoeH\nh5jNERERvRNETc6LFy9G69atsW3bNt7PTEREVEqiPoREqVTC39+fiZmIiKgMRE3OTZo0QWJiophN\nEBERvXNETc7z5s3D3r17sXXrVjGbISIieqeIes35k08+QW5uLgIDAzF69GjY2NhAV1dXrYxEIsHp\n06fFDIOIiEiriJqca9asCZlMBldXVzGbISIieqeImpz37dsnZvVERETvpEr9yUgiIiIqSvTknJmZ\niVmzZqFTp05o3Lgxzp49K0wPDQ1FQkKC2CEQERFpFVG7tVNTU9G5c2dkZmbCw8MDKSkpyMnJAQBY\nWloiMjIS9+7dww8//CBmGERERFpF1OQ8bdo0qFQqnD59GqampkUGhnXp0oXXpYmIiF4hard2dHQ0\nhgwZAkdHR0gkkiLzHRwccPv2bTFDICIi0jqiJudnz55BKpWWOP/hw4fQ0eGYNCIiosJEzYx169ZF\nbGxsifP37duH+vXrixkCERGR1hE1OQcFBWHnzp2YN28eHjx4AADIy8vDtWvX8OWXX+KPP/7A8OHD\nxQyBiIhI64g6IKxPnz64desW5syZgzlz5gAAevfuDQDQ0dHBd999h86dO4sZAhERkdYRNTkDwOjR\no9GnTx/s2bMHSUlJyMvLg5OTE/z8/ODo6Ch280RERFpH9OQMALVr18awYcM0UldsbCx++eUXXLx4\nEXfu3EF4eDgGDhwozFepVJg7dy7WrFkDpVKJJk2aYN68eahbt65G2iciIhKbqNecT58+jbCwsBLn\n//TTT8ITw0orOzsbHh4emDt3LgwNDYvMnz9/PsLDwxEaGopjx45BJpOhZ8+eePz4cZnjJyIiqgyi\nJufQ0FD89ddfJc6/fPkyQkNDy1Rnx44d8e2338Lf37/IbVgqlQoREREYNWoU/P394eHhgYiICGRl\nZWH79u3lWgYiIqK3TdTkfOnSJTRr1qzE+U2bNsXFixc11l5qairS0tLw4YcfCtMMDQ3h7e2NM2fO\naKwdIiIiMYl6zfnJkyfFPhmssKysLI21l5aWBgCQyWRq02UyGe7cufPa9yYmJsJYY5GUTWJiYiW1\nTESkeZW9L1UoFJUUgY5EHBoAABPNSURBVOaImpxdXV1x7NgxBAYGFjv/yJEjcHZ2FjOEUlMoFKis\nB4m+Cx8kIqIC3JdWnKjd2p988gkOHz6McePGCQ8hAfJ/LjI4OBjHjh3DoEGDNNaeXC4HAGRkZKhN\nz8jIgJWVlcbaISIiEpOoZ85DhgzBX3/9hWXLlmH58uVCgkxPT4dKpcJHH32EoKAgjbXn4OAAuVyO\n48ePo3HjxgCAp0+f4tSpU5gxY4bG2iEiIhKT6Pc5L1iwQHgISUpKCgDA0dER/v7+aNWqVZnry8rK\nQlJSEoD8R4HeunULly5dgoWFBezs7BAUFISwsDAoFAq4urpi3rx5MDY2RkBAgCYXi4iISDSiJefc\n3FzExcXB2toaPj4+8PHx0Ui9Fy5cgJ+fn/A6JCQEISEhGDBgACIiIjBy5Ejk5OQgODhYeAhJZGQk\nTE1NNdI+ERGR2ERLznp6eujRowfmzJkDFxcXjdXr4+MDpVJZ4nyJRIKJEydi4sSJGmuTiIjobRJt\nQJiOjg7s7e01eqsUERHRf4Goo7UDAwOxevXqIqOniYiIqGSiP4TEyMgIjRs3RteuXeHo6FjkedgS\niQQjRowQMwwiIiKtImpynj59uvD3li1bii3D5ExERKRO1OSsyedmExER/VeImpzt7e3FrJ6IiOid\nJPpDSADg+vXrOHnyJDIyMtCnTx84ODggNzcXaWlpkMvlqF69+tsIg4iISCuImpzz8vIwevRorFu3\nDiqVChKJBE2bNhWSc8uWLREcHIyvv/5azDCIiIi0iqi3Uv34449Yv349Jk+ejMOHD0OlUgnzTExM\n4Ofnh71794oZAhERkdYRNTlv2LABH3/8Mb755ptifxrSw8MD169fFzMEIiIirSNqcr59+zaaNGlS\n4nxDQ0M+QYyIiOgVoiZnKysr3Lhxo8T5f/75J+zs7MQMgYiISOuImpy7d++OlStXqnVdSyQSAMDh\nw4exefNm9OjRQ8wQiIiItI6oyXnChAmoXbs2WrdujSFDhkAikSAsLAzt27dHv379UK9ePYwZM0bM\nEIiIiLSOqMnZzMwMv/76K8aMGYP09HQYGBjg9OnTyM7OxoQJE7B///4iz9omIiL6rxP9ISQGBgb4\n5ptv8M0334jdFBER0TtBlOT89OlT7N+/H6mpqbC0tESnTp1gbW0tRlNE9I65/f3gSmm31rhVldIu\nUXE0npzv3LmDLl26IDU1VXjoiJGRETZv3gwfHx9NN0dERPTO0fg151mzZuHGjRsYNmwYtmzZ8v/a\nu/ugmvI/DuBvv0tJHm6FGz2gxHVTJFsxdllW2NRGVsUME1E3jTGzqdiINns3tS3NJiqNp0KDnW1t\ny+40WaUiaxejfWCoLW0eohIuW/f+/jAuV3Y9pXP2er9m+uN83Xu/767mfM73nO/5HqhUKnTt2hVR\nUVHt3RUREZFBaveR85EjRxAYGIj4+HhdW9++fREcHIzLly/DysqqvbskIiIyKO0+cr5y5Qrc3d31\n2jw8PKDValFTU9Pe3RERERmcdi/Ora2t6Nq1q17bw221Wt3e3RERERmc1zJbu7KyEj/99JNuu6mp\nCQBw/vx5dO/evc3r/239bSIioYl1BrlYc9Grey3FWaVSQaVStWmPjIzU2374jOcbN268jhhERET/\nSe1enFNTU9v7I4mIiN4o7V6c58yZ094fSURE9EZ5rWtrExER0YtjcSYiIhKZ1/7gCyISJ870JRIv\njpyJiIhEhsWZiIhIZFiciYiIRIbFmYiISGRYnImIiESGs7X/AzirlojozcKRMxERkciwOBMREYkM\nizMREZHIsDgTERGJDIszERGRyHC2NhkUzmwnIkPAkTMREZHIsDgTERGJDIszERGRyLA4ExERiQwn\nhNFL4+Sr58fvioheBEfOREREImOwxTkzMxPOzs6QyWQYP348SkpKhI5ERET0XAyyOB84cADR0dH4\n6KOPcPToUbi5ueHDDz9EdXW10NGIiIieySCLc2pqKubMmYP58+dj6NChSExMhEwmQ1ZWltDRiIiI\nnqlTQ0ODVugQ7en+/fvo168ftm7dCl9fX117REQEKioqkJ+fL2A6IiKiZzO4kXN9fT1aW1vRp08f\nvfY+ffrg6tWrAqUiIiJ6fgZXnImIiP7rDK44W1hYQCKR4Nq1a3rt165dQ9++fQVKRURE9PwMrjgb\nGRlh5MiRKCws1GsvLCyEu7u7QKmIiIien0GuELZkyRKEhITA1dUV7u7uyMrKQl1dHYKChFmliYiI\n6EUY3MgZAGbOnAmVSoXExES8/fbbKCsrQ25uLmxtbdu1n2PHjiEgIADDhg2DVCpFdnZ2u37+y0pO\nTsa7774LGxsb2Nvbw9/fHxUVFYJmysjIwNixY2FjYwMbGxtMnjwZhw8fFjTTk5KTkyGVSrF8+XJB\nc6hUKkilUr2fIUOGCJrpobq6OoSGhsLe3h4ymQzu7u4oLi4WLI+Tk1Ob70oqlWL27NmCZQKA1tZW\nxMfH6xZCcnZ2Rnx8PFpaWgTNdevWLURHR2P48OGwtLSEp6cnTp061aEZnrXf1Gq1UKlUkMvlsLS0\nhJeXF3799dcOzSgGBjlyBoDg4GAEBwe/1j5u374NhUKBwMBAhIaGvta+XkRxcTEWLlyIUaNGQavV\n4tNPP4Wvry+OHz8OMzMzQTL1798fa9euhb29PTQaDXbv3o25c+fiyJEjGD58uCCZHldeXo5t27bB\n0dFR6CgAAAcHBxw8eFC3LZFIBEzzQENDA6ZMmQIPDw/k5ubCwsICVVVVbe6M6EiFhYVobW3VbdfV\n1WHChAl6t1EKYcOGDcjMzERaWhoUCgXOnTsHpVIJIyMjREZGCpZr6dKlOHfuHNLS0mBlZYW9e/fC\n19cXZWVl6N+/f4dkeNZ+c+PGjUhNTUVqaiocHBywfv16zJgxA+Xl5ejRo0eHZBQDg7vPWShWVlZY\nv3495s6dK3SUNpqbm2Fra4vs7GxMmzZN6Dg6AwcORGxsrOCXGxobGzF+/HikpKQgISEBCoUCiYmJ\nguVRqVTIy8tDaWmpYBmeJi4uDseOHRPdGY/HJSUlISUlBb///jtMTEwEy+Hv7w8zMzNs3rxZ1xYa\nGoqbN29i7969gmS6e/curK2tsWPHDnh5eenax48fj8mTJyMmJqbDMz2539RqtZDL5Vi0aBEiIiJ0\nuR0cHPDJJ58Ivq/oSAZ5Wpv0NTc3Q6PRQCqVCh0FwINTfvv378ft27fh5uYmdBwsW7YMH3zwAd55\n5x2ho+hUVlZCLpfD2dkZCxYsQGVlpdCR8O2338LV1RVBQUEYPHgwxo0bh/T0dGi14ji+12q12Llz\nJ/z9/QUtzADg4eGB4uJi/PHHHwCA3377DUVFRZg8ebJgmVpaWtDa2oquXbvqtZuYmIjmQLCqqgpX\nrlzBxIkTdW0mJiYYO3Ysjh8/LmCyjmewp7XpkejoaDg5OQleCM+dOwdPT0+o1WqYmppi165dgp9G\n3r59Oy5evIj09HRBczxu9OjR2LRpExwcHHD9+nUkJibC09MTZWVlMDc3FyxXZWUltm7dirCwMCxb\ntgxnz55FVFQUAGDx4sWC5XqosLAQVVVVmDdvntBRsGzZMjQ3N8Pd3R0SiQQtLS2IiIh47Zfa/k2P\nHj3g5uaGpKQkDBs2DDKZDPv27cOJEydgZ2cnWK7HXblyBQCeuojUX3/9JUQkwbA4G7iVK1eirKwM\nhw4dEvy6pYODA4qKitDU1ISvv/4aSqUSBw8ehEKhECTP+fPnERcXh0OHDqFLly6CZHiaJ0dXo0eP\nxsiRI5GTk4Pw8HCBUgEajQYuLi6IjY0FAIwYMQIXL15EZmamKIrz9u3bMWrUKDg5OQkdBQcOHMCe\nPXuQmZkJuVyOs2fPIjo6Gra2toIePGzZsgVLliyBQqGARCLBiBEjMGvWLPzyyy+CZaKnY3E2YCtW\nrMCBAwfwzTffYODAgULHgZGRke4IfeTIkTh16hQ2bdqEL7/8UpA8J06cQH19PTw8PHRtra2tKCkp\nQVZWFmpra2FsbCxItsd1794dcrkcFy9eFDSHTCbD0KFD9dqGDBmCmpoagRI9cu3aNeTn5yMpKUno\nKACA1atXIzw8HH5+fgAAR0dHVFdX44svvhC0OA8aNAj5+fm4ffs2bt26BUtLSwQFBYli/wA8+BsD\nHvx/2tjY6NrfxEWkeM3ZQEVFRWH//v3Iy8sTzW04T9JoNLh//75g/Xt5eaGkpARFRUW6HxcXF/j5\n+aGoqAhGRkaCZXucWq3G+fPndTsuoXh4eODChQt6bRcuXNDbiQolJycHxsbGumIotDt37rQ5UyWR\nSKDRaARKpM/U1BSWlpZoaGhAQUEB3n//faEjAQAGDBgAmUymt4iUWq1GaWnpG7eIFEfOr6C5uVk3\nmtFoNKipqcGZM2dgZmYm6A4rIiICe/fuxa5duyCVSnXXcUxNTdG9e3dBMq1Zswaenp6wsrJCc3Mz\n9u3bh+LiYuTm5gqSB4DuntjHdevWDWZmZoKdageAmJgYTJ06FdbW1rprznfu3EFgYKBgmQAgLCwM\nnp6eSEpKwsyZM3HmzBmkp6dj1apVgubSarXYsWMHZs6cKdjf95OmTp2KDRs2YMCAAZDL5Thz5gxS\nU1MREBAgaK6CggJoNBo4ODjg0qVLWLVqFYYMGdKhd5k8a7+pVCqRnJwMBwcHDB48GElJSTA1NcWs\nWbM6LKMY8FaqV1BUVARvb+827YGBgUhLSxMg0QP/NCs7KioKK1as6OA0DyiVShQVFeHq1avo2bMn\nHB0dsXTpUkyaNEmQPP/Ey8tL8FupFixYgJKSEtTX16N3794YPXo0Pv74Y8jlcsEyPXT48GHExcXh\nwoULsLa2xqJFixASEoJOnToJluno0aPw8fFBQUEBXF1dBcvxuFu3bmHdunU4ePAgrl+/DplMBj8/\nP0RGRraZLd2RvvrqK6xduxa1tbUwMzODj48PYmJi0KtXrw7L8Kz9plarxWeffYZt27ahoaEBrq6u\nSEpKEvSAWQgszkRERCLDa85EREQiw+JMREQkMizOREREIsPiTEREJDIszkRERCLD4kxERCQyLM5E\nbyAnJycolUqhYxDRP2BxJhKB7Oxs3YplUqkUFhYWGDZsGJRKJWpra1/qM7///nuoVKp2TkpEHYHL\ndxKJSHR0NAYNGoR79+6hvLwcOTk5KCsrQ2lp6QuvLPXDDz8gIyPjqavCnTx5Ev/7H4/NicSKxZlI\nRCZNmoS33noLADBv3jxYWFhgw4YN+O677zBjxox260cMT9sion/GQ2ciERszZgwA4NKlS7q2/Px8\n+Pv7Q6FQoG/fvhg+fDhWrVoFtVqte41SqURGRgYA6J0ur6qqAtD2mnNRURGkUin27duHzz//HAqF\nAjKZDD4+Pk99VGVGRgZGjBgBS0tLTJw4EceOHYOXlxe8vLxey/dA9KbhyJlIxP78808A+g8zyc7O\nhrGxMUJCQtCzZ0+Ul5dj06ZNuHz5MrKysgAAQUFBqKurQ2FhIbZs2aJ7b+/evf+1v40bN0IikSA8\nPBxNTU1ISUnBokWLUFBQoHvN1q1bsXz5cowZMwZhYWGorq7G3LlzYWZmhv79+7fnr0/0xmJxJhKR\npqYm1NfXQ61W4+TJk0hISICxsTGmTJmie01GRga6deum2w4KCoK9vT3i4+MRFxcHa2truLm5YfDg\nwSgsLIS/v/9z93/v3j0UFxfrnmUtlUoRHR2NiooKKBQK3L9/H+vWrYOzszPy8vLQpUsXAIBCoUBY\nWBiLM1E74WltIhHx8/ODvb09HB0dMX/+fJiammL37t2wsrLSveZhYdZoNGhsbER9fT08PDyg1Wpx\n+vTpV+o/ICBAV5iBR6fVKysrAQA///wzbty4gfnz5+sKMwDMnj37Hx9VSkQvjiNnIhFJSEjA0KFD\n0djYiJycnKfO0q6oqEBsbCyKi4tx9+5dvX9ramp6pf6tra31th8W3IaGBgBAdXU1AMDOzk7vdZ07\nd4atre0r9U1Ej7A4E4nIqFGjdLO1p0+fDi8vLwQHB6O8vBympqZobGyEt7c3unXrhpiYGNjZ2cHE\nxAS1tbUICwuDRqN5pf4lEslT27VaPvadqCPxtDaRSEkkEsTGxqK2thbp6ekAHsyqrq+vR1paGpYs\nWYJp06ZhwoQJ6NevX4dksrGxAYA2M7hbWlp0k9eI6NWxOBOJ2JgxY+Dm5oa0tDSo1WrdyPbxkaxG\no0Fqamqb95qamgJ4dEq6Pbi4uMDc3Bzbt2/H33//rWvPzc1t136I3nQ8rU0kcuHh4Zg3bx527doF\nPz8/mJubQ6lUIiQkBJ07d0ZeXh6am5vbvM/FxQUAsHz5crz33nvo3Lkzpk6dqivaL8PIyAjR0dGI\njIyEj48PfH19UV1djezsbAwaNAidOnV66c8mokc4ciYSuenTp8POzg4pKSno0aMHcnNzYW1tDZVK\nheTkZCgUCmzevLnN+7y9vaFUKvHjjz8iNDQUCxcuxPXr1185z+LFi5GQkICamhqsXr0apaWl2LNn\nD3r16vXCS4wS0dN1amho4EwPInolGo0G9vb28Pb2RkpKitBxiP7zOHImoheiVqvbzN7evXs3bt68\niXHjxgmUisiw8JozEb2Q8vJyrFy5Er6+vjA3N8fp06exc+dOKBQK+Pr6Ch2PyCCwOBPRC7G1tYWV\nlRW2bNmCmzdvwszMDAEBAVizZo3e6mJE9PJ4zZmIiEhkeM2ZiIhIZFiciYiIRIbFmYiISGRYnImI\niESGxZmIiEhkWJyJiIhE5v/wC3YX8Yhm7QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "Re84N5aIf_ML", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Populate figure with the real data" + ] + }, + { + "metadata": { + "id": "lhdOLcMcPMCp", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "pd.options.display.max_columns = 50\n", + "df = pd.read_csv('https://raw.githubusercontent.com/fivethirtyeight/data/master/inconvenient-sequel/ratings.csv')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "tqJFHj0FPZ5Q", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Turn the timestamps from strings to actual time stamps\n", + "df.timestamp = pd.to_datetime(df.timestamp)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0AoZ5WX9Pm7x", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# set the timestamp to be the index.\n", + "df.set_index('timestamp', inplace=True)\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7iNgbtAyimH2", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "D3FB624cex9H", + "colab_type": "code", + "outputId": "0b7336a7-0bdf-4386-919b-d7536c5e17c8", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 111 + } + }, + "cell_type": "code", + "source": [ + "columns = ['1_pct','2_pct','3_pct','4_pct','5_pct','6_pct','7_pct','8_pct','9_pct','10_pct']\n", + "final = df[columns].tail(1)\n", + "final.columns = range(1,11)\n", + "final " + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910
timestamp
2017-08-29 23:10:06.21825138.42.61.40.92.14.15.85.55.533.7
\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10\n", + "timestamp \n", + "2017-08-29 23:10:06.218251 38.4 2.6 1.4 0.9 2.1 4.1 5.8 5.5 5.5 33.7" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "id": "MnioWS0Qj9gX", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "colors = ['#333333']*10\n", + "colors[0] = '#EC713B'\n", + "colors[-1] = '#EC713B'" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4lgMFBEIgWfw", + "colab_type": "code", + "outputId": "36545a18-3269-44ad-c636-7f235a125263", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 372 + } + }, + "cell_type": "code", + "source": [ + "plt.style.use('fivethirtyeight');\n", + "ax = sns.barplot(x=final.columns, y=final.values[0], color='#EC713B');\n", + "\n", + "ax.set(xlabel='Rating',\n", + " ylabel='Percent of total votes',\n", + " yticks=range(0,50,10));\n", + "\n", + "ax.tick_params(labelrotation=0);\n", + "\n", + "ax.text(x=-2, y=50, s=\"'An Inconvenient Sequel: Truth to Power' is divisive'\", \n", + " fontsize=16, fontweight='bold');\n", + "\n", + "ax.text(x=-2, y=46, s='IMDB ratings for the film as of Aug. 29');" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFjCAYAAAAHLMOaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XdYFNf7NvB7AQWkLciyKFJlBUGs\nUSOKYoliQTBiizGJSTSgv9giKpZobEBiSDQq9t4LRrHGAga7UaNRDBIpalRAcVUQRWXfP3iZLyug\nlB1hzf25Li/ZmbPnPDuzO8/MmTMzEqVSqQIRERFVGTqVHQARERGpY3ImIiKqYpiciYiIqhgmZyIi\noiqGyZmIiKiKYXImIiKqYt6YnENDQyGVSrF+/foi8/Ly8uDm5gapVAqpVAq5XA6lUilKoKmpqUI7\nHh4eorTxX1GwHLt37/5W2lu4cCFCQ0OxcOHCMr3vxIkT6Nu3L9zd3WFlZYW6devC09MTQ4YMwbFj\nx0SK9u0ICgoS1kNqamqZ379+/Xrh/W/6V9xvt6KOHj2K0NBQhIaG4ubNm2rzXrx4IbTt5+dX7jZ2\n7doltPHo0aOKhlzEmjVriiwrc3Nz2Nvbw8/PD/v27dN4m29TwXpo0qTJG8sOHTpUWAb//vuvaDEl\nJSUV+92YOXOmMP3kyZNlrrci8b+tzw4APj4+pW5HryINxcXF4fbt28LrZ8+e4ddff8Vnn31WkWrp\nHRMZGYmbN2/C1tYWw4YNK9V7oqKi8Pnnn6tNu3//Pu7fv4/4+HjUq1cPbdq0ESNcKoW4uDjMmTMH\nAODt7Q1bW1uNt7F7925s2bIFAPDJJ5/A1NRU4228SqVS4eHDhzh69CiOHj2KH374AUOGDBG9XaJX\nVahbe/PmzaWaRlWLUqmEUqnEnj17KjuUEv3www8AAFNTU+zduxd3795FYmIi9u7di+HDh0Mul1dy\nhJVr4MCBwnpUKpUYP368MG/8+PFq8wYOHPjaup4+fSp2uFXeoEGDoFQq8e+//2LChAnC9OnTp+PZ\ns2eVGFn5lHWdLlmyRPi+2NjYiBRVySZPniy036pVqzK/vyLxV/ZnL0m5k3NOTg52794NAKhTpw7a\ntWsHADh16lSRbrrCXXCrVq3CjBkz4O7uDhsbG3Tu3Bnnzp0r9weIi4sT6p49ezZ++eUXNGnSBLVq\n1UKbNm1w8ODBIu/5/fffMWDAACgUCshkMigUCgQEBCA5OVkoc//+fYSEhKBJkyawsrJCnTp18MEH\nH2DdunXlbn/gwIGQSqWwsLDAnTt3hOl5eXlwdXUVuuzz8vIAAP/++y/GjBmDhg0bQiaTwd7eHgEB\nATh+/LhaDAWnHqRSKfbs2YOxY8dCoVDAzs4OvXr1wvXr19XKl9StnZCQgKFDh6J+/fqQyWRwdnbG\nJ598gsuXL6uVK9wle/r0aQwdOhT29vZwdHTEoEGDkJaWprZsCro9b968WepTEwUxy+VyvP/++zAw\nMIBMJoOnpydmzZqFTz75RK28UqnElClT8N5770Eul8PW1hbdunUTvqOFnTp1Cp06dYJcLoeHhwd+\n+eUXtWVYuBu4pGVV0WVYku7du1eou7skhbsTv/76ayxfvhzvvfceatasiZ07dyI2NlaYX7BjBKDY\n6W5ubsJRMwB07dr1tV2SsbGx6NixI6ytrdGkSRP88ssvUKlKvjFhQXdswVEzALi7uxfpeszKysLM\nmTPRsmVLWFtbo3bt2mjbti0WLlyIly9flms5GRkZYdy4cTAyMgIAPH78GAkJCcL83bt3o2fPnrCz\ns4NMJkODBg0wYsQI3LhxQyjzyy+/CLEePXoUAJCdnQ1LS0tIpVJ8++23QtkePXpAKpXC1tYWL168\nAAC8fPkSixYtgre3N2xsbGBtbQ1PT0/Mnz9f7XO9aZ2WRUlduytXrkS7du1gb28PKysr1K9fH716\n9SrVQZhSqcTw4cNhb28POzs7DBkyBBkZGcWWfbVbOzc3F05OTpBKpUWS9ZUrV4Syw4cPr3D8r743\nPT1dWFf9+vVTa3vfvn1C2fDwcGH6b7/9hl69esHBwQEymQwNGzbE+PHj8eDBgzcup9ctQFV5/i1f\nvlwFQAVANWzYMFVERITwevLkyWplFyxYIMwzMzMT/i74Z25urkpNTX1texcvXhTK29raCtOjo6Nf\nW3e1atVUf/75p1A+PDxcJZFIipQDoIqOjlYplUpVQkKCytbWttgyAFSfffZZudrfsGGDMH3WrFlC\nHTt37hSmjx8/XqVUKlVnz55V1axZs9j2dXR0VCtWrBDeP378+NfGoFAoVPfv3xfKF0xv3bq1MG3f\nvn0qQ0PDYtszMDBQ7d27Vyg7YMCA17bXrl27Isvm1X+F12Fx/xwdHYWyzs7OqsDAQNXy5ctVf//9\nd5GyiYmJauVf/Td9+nSh7IkTJ4r9nLVq1RL+XrBgwWuXlaaX4cWLF4XprVu3Lnb6m/4V/g4UfIcK\n/zt//rww38LCQi22xYsXq3799Vfh9aRJk4T3FTe9du3aJS7rffv2qe7du6fWlq6ubpFyy5cvL/Gz\nFH5/cf+uXLmiunnzpqpBgwYllvHx8VFlZma+dpnNmzdPKD9o0CBhemZmpqpGjRrCvN9//12lVCpV\nEydOLLE9c3Nz1dmzZ1VKpVIVGxsrTA8JCSmyHJs3b65SKpWq9PR04fvSuXNnlVKpVN2/f1/VpUuX\nEtvp3r276sGDB6Vap2XZnvft21dt+SqVStWyZctKjOPDDz98bX2ZmZmqVq1aFXmftbV1ke2EUqlU\njR07Vu07pFQqVUOHDhWmHT9+XCg7ZsyYImUrEn9x7/Xx8VEB+dvv5ORkoWxAQIAKyN8G//XXXyql\nUqmaNm1aie04Ojqqrl+/XqZ1UfCv3EfOhfdq/fz80KNHD+jo6BSZV5zdu3cjOTlZOGf44MGDYo9w\ny+rJkydYu3YtUlNT0bdvXwDA8+fPERUVBSD/SHTKlClQqVTQ09PDzz//jJSUFCQkJGD+/PmwtLQE\nAMyaNUs42vvoo4+QnJyMY8eOCefVVq1ahdOnT5e5/c6dOwvdsdu2bRPeV/C3RCIRuiAnTJiA+/fv\nw9TUFNHR0UhLS8P58+dRr1495OXlITg4GLm5uUViMDU1RVxcHP7++2+4uLgAABITE9/YOzFy5Ejk\n5OTA1tYWsbGxSE9Px++//w5LS0s8ffoUY8eOLfZ99vb2+PPPP3Hu3DnIZDIA+YOF7t69Cy8vLyiV\nSmG52draCt1Hf/3112vjKdgjBoB//vkHixYtwhdffIH69esjICBA7ahy9uzZSE5Ohq6uLtasWYO7\nd+8iPj4enp6eAPL3yu/evQsgv7s8JycHAPDll18iNTUVu3btwsOHD18bT2mUdxm+bZmZmRg7diyS\nkpKQmJgo9HqVVnx8vNpn2bdvX4ldkpmZmfjmm2+QmpqK0NBQYfrrjrz09PSgVCqF3xCQf7SkLNT1\nuGDBAqE3onPnzrh27RouXLiABg0aAAD2799f5qNHIP83/P333+PJkycAABMTE7i4uCAlJUU4UpJK\npdi3bx9SU1MxevRoAPnbsIkTJwIAGjZsCHNzcwAQehJOnDgBANDR0cGff/6JnJwcnD9/Xvguenl5\nAcjfFhw4cAAAEBwcjJSUFNy4cQNDhw4FAOzZs6fYgWoVXafFKYjZ1NQU58+fR3p6Oi5duoQVK1bA\n29v7te89ePCg8NkVCgXOnTuHv//+G46OjqVu/+OPPxb+Lry93L59OwDA2dn5tV3gFYm/oO3nz5/j\n119/BZDf+1Gw7Nu1awdbW1ukpqZi5syZAIAuXbrg8uXLSEtLw5IlSwAAycnJ+PHHH0v9mQsrV3K+\nd+8eDh8+DACoVasWWrRoASsrK7Rs2RIAhB9KcQYNGoQ2bdrA3NwcPXv2FKa/OuKzPLp27QpfX1+Y\nmZnhww8/LFL34cOHhYTWt29ffPbZZ8Io848//hj169cHkN9FUWDWrFkwNzdHgwYN1AYzFbcz8ab2\n9fT0hG6SCxcuICkpCbm5uYiOjgYAtG3bFnZ2dsjJyUFsbCwA4NGjR/D19YVcLkfTpk1x7do1APnd\n7hcvXiwSw9dffw0PDw9YW1vjgw8+KBJDca5fvy7Ue/PmTXh7e8PKygpt27bFvXv3AORvkAu6qwub\nOHEiHBwcULduXbUfSkXX55dffolVq1bhvffeg0QiEaarVCocOnQIgwYNErr/9+/fDyC/O/CTTz6B\ntbU13NzchB9nbm6ucCqg8CjvKVOmwMzMDG3btkWPHj0qFG9FlmFhe/bsEZKQvb19hWIqiaurKyZP\nngwLCwvIZDJYW1uL0g6Qv32YMGECzMzMMGDAAGF6Rb8fhX+jU6dOhZWVFRwdHREcHFxsmTdZu3Yt\npFIpateujbCwMGH65MmToa+vj0OHDgldygMHDkSrVq1gZmaGSZMmQSqVAsjvvs/NzYWOjg5at24N\nAPjjjz/w8uVL4bvYo0cPPH/+HGfPnhWmAfm/feB/32Ugf0fSwcEBdnZ2wsYeAGJiYorEL8Y6Lfj+\nPX78GN9//z2WL1+O69evo1OnTkVOK73q999/F/7+6quvULduXVhbW5dpB7Vhw4Zo2LAhgP8l5DNn\nzgg75m8aS1GR+H18fISDjYIdg3379iE7OxvA/5L3oUOHhNMRBw4cQIMGDSCXy4WdKaD49VUa5UrO\n27dvFwJq0aIFrl69ivj4eLUh+yXtGSsUCuHvGjVqCH9rYlDKm+pOT08Xprm6upZYT8HG1NjYWNgD\nBqA2IrW4cyel+WyF9wa3bt2KgwcPCpefDRo0CED+XnhpzpllZmaWK4ZXlXQeSKz2Ssvf3x+HDh3C\ntWvXsGbNGvTt21dI1JcuXRLGCJQm/oLYC/43MTGBmZmZML8sA0EKvvuFVWQZvm1luRSxuM9aFo6O\njkKPWsF5XKDi34+C3yiQP+algJ2dXbFlysLU1BReXl5Yt24dvvrqq9e2p6enh1q1agHIP8oq6IEp\nSLZZWVn4448/cO7cOTg7OwsHJCdOnBCSs7m5ubBOyvJdLkyMy0uHDh0KX19f6OjoYNOmTQgJCUGv\nXr2gUCgwb968UsdYu3btYv8ujYLt5Y0bN3D69Gls3boVAKCrq6u2s6fp+AsfSJ08eRK3b98W2jY3\nNxd25su7vkqjXJdSFe623rlzZ7HdR1FRUZg1axZ0dXXVG9T7X5OFj4g04U11W1lZCX8XHuTxKplM\nhjt37iArKwtKpVLYM75165ZambK2DwD16tVD8+bNcfbsWWzfvl2IQyqVCivc3Nwcurq6ePnyJerW\nrVtsl7RKpSq2jfIs38KfxdvbW+jG0VR75VnPjx49Ei6dkclk6NmzJ3r27ImMjAxhT7RgsEXB+jIy\nMkJycjKqV69eYuw1a9ZEeno6Hj9+jIcPHwoJuqTrDqtXr47c3Fy1EbspKSlFylVkGb5tBgYGRaYV\nXmZv+qxlUa1aNeFvTX52mUwmDMK6deuWsB4LH5EXnKYqjUGDBuGXX355bXsFCm8HXrx4IQzurFat\nmhBHQTc1kH8pYU5ODlq1aiWcajl27BguXboEAGjdurWwA1O4nUOHDuG9994rEktxg+mKW6cVZWho\niLVr1+Lhw4e4evUqEhMTsXLlSpw/fx7Tpk1D//791baphdWsWVP4u/DltoX/Lo0+ffpgypQpePbs\nGbZs2SL0Mnbq1OmNvQMViR/IPzKfP38+8vLysHz5chw5cgQAEBAQAH19fQDq62vatGkYNWpUkXpe\nN/jxdcp85Hz9+vVSja5OT08XPkxV0bFjR2EjtHnzZqxZswZKpRIZGRnYuHEjrl69CiD/HFaBgiH+\n8fHxajfRKFymrAr2Bq9du4Zdu3YByF/hBT8wQ0ND4ZzR9evX8e233yIjIwO5ubm4du0a5s+fr3ZK\noKLq1q0LZ2dnAPnnixcuXAilUomnT5/ir7/+Qnh4eJFrjsvCwsICQP4eZGl/nB06dMCYMWNw9OhR\nKJVK5Obm4syZM8J5Rl1dXSHmLl26AMg/J/T111/j1q1beP78OVJSUrBq1SqhixFQ32jOmDEDDx8+\nxO+//17sqG7gf70l8fHxuHHjBp4/f45Zs2YVKaepZSjWaO03KdwrdOTIETx79gx3795FZGRkseUL\n1imQfz644BSDJhVu4/Lly2obucK/v+nTpyMjIwMpKSlqo8gLvhea0LFjR+FAY+PGjTh9+jQePXqE\n0NBQoeerffv2wvalfv36woa/4DfeqlUr1K5dG/b29jh+/LhwY5WCo+xXYx43bhwuX76M3NxcpKen\nY+fOnejTp0+x413E8Ouvv2Lp0qVIS0tDgwYN4O/vD3d3dwD5V5i87rdc+He2ePFiXL9+HXfv3lVb\nP6Vhbm6Obt26AQBWr14t9H4W7oEUI34gfx02a9YMADB37lw8f/68SNuFvxfz5s3D4cOHkZOTg4cP\nHyIuLg4jR47E/Pnzy/SZC5Q5OW/atEn4e+TIkWrXUyqVSsydO1eY/6aBYW+bjY0Npk+fDolEghcv\nXmDEiBFwcHCAQqFAUFCQ0HU1ceJEYWO1bt06ODg4wNPTU9hTHzx4MFq0aFHuOD788EOhC7ig2/DV\nL1toaKjQpT5v3jwoFApYWVmhRYsWmDx5coWPaF71888/w8DAACqVSjiPbG1tDS8vL4SGhqqdEiir\n5s2bA8hPngV3lAsKCnrte548eYIVK1bAz88PDg4OsLKyQufOnYVupCFDhgg9GhMnThTOL23evBkN\nGjSATCZD48aNMWrUKMTHxwv1BgcHC8t+2bJlsLe3R8+ePUu8wUWfPn2EeJo2bQo7OzthwM6rxFyG\nYrO1tRXGDJw/fx6Ojo5wd3dXu+SvsIJ1CgBjx46FhYWF2tGSJhRuo1+/fjA3NxdOnQ0fPlwY/HXg\nwAEoFAo0btxYOBr18fHR6A6sg4ODcC15ZmYmunTpAjs7O2Gwj7m5eZGdtoIEVbDjUnDU7Onpqbaj\nUTg59+nTB506dQKQvx7atGkDKysr1KtXD59++ikOHjxY7iOxsrp69SqCg4PRokUL1KlTB7a2tli7\ndi2A/O7pgjE6xfnggw+E71NiYiKaNWsGV1dXYVxGWRRsGwu2lTKZDD4+PqLGX1LbHh4eaNSokTDf\nwcFBGAiYmZmJ3r17o1atWrC3t4evry9Wr15d7lM4ZU7OBf3uANC/f/8i8/39/YUjwD179iArK6tc\ngYklMDAQO3fuhI+PDywtLaGnpweZTIaOHTsK55LkcjliY2MRFBQER0dHVK9eHcbGxmjevDnmz5+P\nn376qUIxmJiYqG043N3d0bhxY7UyLi4uiIuLwxdffAEHBwdUr14dpqamcHV1xaBBgyocw6vatGmD\n2NhY9O/fHzY2NqhWrRrMzc3h7u6OoUOHql2bWVYTJkxA7969y9TN+MMPP2Dw4MFCotXT04OJiQne\ne+89/Pjjj5g9e7ZQ1srKCrGxsRg5ciTq1asHfX19GBsbw9nZGX369MGKFSuEsq6urtixYwfee+89\n6Ovro06dOpgxYwY+/fTTYuMYPXo0hg0bhlq1aqF69epo1aqV2qCdwsRchm/DsmXL4OPjA1NTUxgY\nGAjdesVp3rw5Zs+eDUdHR7Wua03q1asXRo8ejTp16hQ5PWZsbIz9+/dj7NixcHFxgb6+PgwNDdGw\nYUPMmjUL69evF7qKNWXcuHFYu3YtvLy8YGpqCj09PdSpUweDBg3C0aNH1cZfAOpJt1atWnBwcAAA\ntYGTcrlcbfyLrq4uNm3ahLCwMDRr1gzGxsbQ19eHra0tPvjgA8yZM0fYKRFb+/btERAQACcnJxgb\nG0NXVxfW1tYICAjAnj17hK7d4ujo6GDjxo346KOPYGpqChMTE/j5+WHNmjXliqPwef6+ffuW6jtX\nkfgL9O7dG4aGhsLr4o7Yv/nmG2zevBkdO3aEubk5qlWrBmtra7z//vuYOHGi2lUHZSH5/9dsEv2n\nhYaGCpfKLFiw4I0jQYmIxMSnUhEREVUxTM5ERERVDLu1iYiIqhgeORMREVUxTM5ERERVDJMzERFR\nFcPkTEREVMUwORMREVUxTM5ERERVDJMzERFRFcPkTEREVMUwORcjNDRU7eb0lSUtLQ29evVC7dq1\nhScwia179+4IDg7WeL15eXkYNWoUHB0dIZVKERcXh6CgIOGB5gCKvNZ2oaGhUCgUkEqlWL9+fWWH\nQ0Ra5I3J+dUNZmhoKKRSabGPY1u+fDmkUqlaYlu/fr3wfFoLCwvY2dnB29sbM2bMEB7/92rdBf/s\n7OzQo0cPnD17tiKfsUSpqamQSqW4cOGC2vSvv/4ae/bsEaXNsvjll19w9+5dxMXFISEhQaN1x8XF\nQSqV4v79+xqttyS//fYb1q9fj02bNiEhIQEtW7ZEWFgYFi9e/Fbaf9vi4+MRHh6OiIgIJCQk4MMP\nP3xt+XHjxsHCwgKrV69+SxEWb/Xq1ejatSvs7e2F39/JkyfVyjx+/BgTJkxAgwYNYG1tjc6dO+P8\n+fOVFDHRu6lcR85yuRynTp0q8jD4tWvXqj3aq0CNGjWQkJCA+Ph4HD58GEFBQdi3bx9atWpVJOko\nFAokJCQgISEBBw4cgFwuR0BAQJmeifnixYsKPfPU2NhY7UHvlSUpKQmNGjVC3bp1IZfLy1VHRZeF\npiQlJUEul6Nly5aQy+WoXr06zMzM3lqPwNuWlJQEAOjRowfkcrnaY+de9ezZM2zduhWjR48u1yP1\nNOnYsWPo1asXdu3ahcOHD0OhUKB37964fv26UGbEiBE4cuQIIiMjceLECbRv3x7+/v5vfHg9EZVe\nuZKzhYUFOnfurNZVd/nyZSQmJsLPz69IeYlEArlcDmtraygUCvTr1w+//fYbzMzMMHr0aLWyenp6\nkMvlkMvlqF+/Pr755hs8fPiwyI5AYQXd0OvXr0fjxo1hZWWF7OxsHDp0SDgKcHBwwIcffqi2M1Dw\n0Oz27dtDKpWie/fuavUVKOg9iIyMRP369WFvb49hw4bhyZMnQpns7Gx89dVXsLGxgUKhQEREBPr1\n64egoCChzK5du+Dp6Qlra2s4ODigW7duSE9PL/YzeXh4YO/evdi0aROkUqlQz82bNzFw4EDUqVMH\nderUwccff4x///33jcuisNTUVPj6+gIA6tatq1Y/kN8FPX36dDg5OcHZ2RmTJ08WHhgPALm5uZg6\ndSrc3NxQq1YttG/fHocPHy5x/QQFBWHixIm4desWpFIpPDw81JZrSbp3744xY8Zg0qRJcHBwQN26\ndREZGYlnz55h7NixsLOzQ4MGDbBp06YS6wDyH1rfq1cvODk5wdbWFj4+Pjhz5oxamZUrV6JZs2aQ\ny+VwcnLChx9+KDxgvThXrlyBn5+fsC6DgoLw8OFDAPnroOC5r+bm5m/cAYmOjoadnR2++eYbYSe2\nsOJOs6xfvx42NjZq0yIiIqBQKGBjY4OvvvoKYWFhwrIuraVLl2Lo0KFo1KiR8D02NjbGoUOHAAA5\nOTnYtWsXpk6dCi8vLzg5OSEkJASOjo5qz80mooop9znnQYMGYePGjcJGe+3atfD394exsXGp3m9s\nbIzBgwfjxIkTuHfvXrFlnj59is2bN0Mmk8HOzu619aWmpmLbtm1YtWoVjh07BgMDA2RnZyMwMBBH\njhzB7t27YWpqiv79+yM3NxcAcOTIEQDA9u3bkZCQgHXr1pVY/8mTJ3H16lX8+uuvWLlyJXbv3o1F\nixYJ8ydPnozjx49j3bp12LVrFy5fvqzWHZiWloYvvvgCAwYMwOnTp7F3717079+/xPZiYmLg7e2N\nXr16ISEhAWFhYcjLy8NHH32EjIwMREdHIzo6Gnfv3sXAgQPVjo6LWxaF1alTRzhCO3XqlFB/ga1b\nt0JXVxe//fYbfvjhB0RGRiIqKkqYP3z4cBw/fhxLly7FyZMnMWDAAPTv3x9//fVXsZ8lLCwM48aN\ng42NDRISEhATE1Pi537V1q1bYWxsjMOHD2PUqFEICQnBwIEDUbduXcTGxqJ///4YMWIE7t69W2Id\njx8/Rr9+/bBv3z4cPnwYHh4e6NOnDzIzMwEAFy5cwNixYzF+/HicPXsWO3fuRMeOHUusLzs7G717\n94aRkREOHz6MdevW4cyZM/i///s/APmnRebNmwcAQi/Q66xZswZ9+/ZFjRo14OvrW66j5+3btyM8\nPBxTpkzB0aNH4eLigoULF5a5nlfl5ubi6dOnwg7Gixcv8PLlyyLfKUNDwyLd30RUfnrlfWOnTp3w\n4sULHD16FJ6entiyZQs2bNiA2NjYUtfh6uoKID+ZWFpaAsjfmBUcETx58gRSqRSrV69+bbcgkL8R\nWbx4MaysrIRprx7FL1iwALa2tjh37hxatWqFmjVrAsjvCXhTt7GJiQl++ukn6OrqwsXFBf7+/jh6\n9CjGjBmDrKwsrFu3DosWLUL79u0B5J8vdnNzE95/584dPH/+HH5+fsKORuH5r7K0tIS+vj4MDAyE\n2GJiYnDlyhVcuHAB9vb2AIBly5ahSZMmOHr0KLy9vUtcFoXp6urC3NwcACCTyYTlUMDFxQWTJk0C\nADg7O2P16tU4evQoAgICkJycjG3btuHSpUuwtbUFAAwdOhSxsbFYtWoVfvzxxyLtmZmZwcTEBDo6\nOmXunnd1dUVISAgA4P/+7//w888/Q09PTzjSHz9+PObOnYvTp08X22sDAO3atVN7/f3332PXrl04\nePAg+vXrh5s3b8LIyAhdu3aFiYkJALz2iHPbtm148uQJFi9eLJT/+eef4evri6SkJDg5OcHMzAwA\n3vh5U1JScPLkSSxduhQA0L9/fwwePBjfffcd9PX137R4BIsWLcJHH32ETz75BAAwZswYxMXF4Z9/\n/il1HcWZOXMmjI2N0bVrVwD5v4MWLVpgzpw5qF+/PuRyObZt24YzZ87AycmpQm0R0f+U+8hZV1cX\nAwYMwLp167Bnzx5YWlqWeYRzwdGeRCIRpjk6OiIuLg5xcXGIjY3Fp59+ioEDB+LPP/98bV21a9cu\nkoySk5Px5ZdfonHjxrC1tUW9evWQl5eHW7dulSlOID9h6erqCq+tra2FAW3Jycl4/vw5mjVrJsw3\nMjJSS74eHh7w9vaGp6cnBg05Zb4GAAAgAElEQVQahOXLl5fYY1CShIQE1KpVS0jMAODg4IBatWrh\n77//FqYVtyzKwt3dXe114c968eJFqFQqvP/++7CxsRH+/fbbb0hOTi53m6WJRSKRQCaTqU2rVq0a\npFJpkcGFhWVkZGDUqFFo1qwZ7OzsUKdOHWRkZAjfg/bt26NOnTpo1KgRhgwZgg0bNuDx48cl1peQ\nkAB3d3chMQNAy5YtoaOjo7YeSmPdunVo166dkMS9vLxQo0aNMg9IvHbtGpo2bao2rfD3sTwiIyOx\natUqrF27FqampsL0xYsXQyKRwM3NDVZWVli8eDECAgKgo8OLP4g0pdxHzgAwcOBAtG7dGjdu3MDA\ngQPL/P6///4bEolErcu6evXqanvgjRo1wp49e7Bw4UIsWbKkxLqMjIyKTOvXrx9q166Nn3/+GbVq\n1YKenh5atmwpdGuXRbVq1dReSySSMg200tXVxY4dO3D27FkcOXIEa9euxXfffYc9e/aU+bxgcQrv\n4BS3LMridZ81Ly8PEokER44cKVLu1a5OTSguFj09vSLTCp8Tf1VQUBDS09Mxe/Zs2NnZQV9fHz17\n9hS+ByYmJvj9999x/PhxxMbG4qeffsKMGTNw5MgR1KpVq0zxFl4Pb/Ly5Uts2LABd+7cUeu9yMvL\nw5o1a4QR3jo6OkW+a687H64JCxcuxOzZs7F169YiSd7R0RF79+5FdnY2Hj9+DGtrawwePBgODg6i\nxkT0X1KhXd26deuiadOmuHDhAgYMGFCm92ZlZWHlypVo3bq10KVdEl1dXeTk5JSp/szMTFy7dg1j\nxoyBt7c3XFxc8PjxY7WNWvXq1QHkbyQrwtHREdWqVVO7nOTJkydFBvZIJBK0aNECEyZMQExMDGrV\nqoUdO3aUuh0XFxfcuXNHbXBcSkoK7ty5I5wiKK3yfvaGDRtCpVIhLS0NTk5Oav9q165dprrellOn\nTmHo0KHo0qUL6tevD2NjY6SlpamV0dPTQ7t27TB16lQcP34c2dnZOHDgQLH1ubi44MqVK2pH16dP\nn0ZeXh5cXFxKHdehQ4eQmZmJmJgYobcoLi4OmzdvxtGjR4X1bGlpifT0dLUE/er5/Xr16hW5JLC8\nlzfNnz8fs2fPxubNm1/bG2ZkZARra2solUocPnwY3bp1K1d7RFRUhY6cgfzzb7m5ua8dkVqwMQeA\nR48e4fz585g7dy4ePXqEjRs3qpV98eKFUDYrKwtRUVH4+++/MXLkyDLFJZVKUbNmTaxZswZ16tTB\n7du38e2336oddclkMhgaGuLw4cPCEVXBucKyMDY2xscff4ypU6eiZs2akMvlmDNnDlQqlXAkdfbs\nWcTGxqJjx46QyWS4dOkS/v333zJtzL29veHu7o6hQ4cKA7jGjRuHRo0aoW3btmWK2dbWFhKJBAcO\nHEDXrl1hYGBQqsF8zs7O6Nu3L4YNG4ZZs2ahUaNGePDgAY4dOwZ7e/tir3+vbHXr1sWWLVvw3nvv\n4cmTJ/j222+FnRMA2L9/P5KTk+Hp6Qlzc3PExcUhKysL9erVK7a+Pn36IDQ0FIGBgZg4cSKUSiVG\njx4NX1/fMp13XbNmDTp16oTGjRurTXdzc4NCocC6deswadIktGnTBg8ePMCPP/6I3r17Iy4uDjt3\n7lR7T2BgIIYPH44mTZrA09MTu3fvxh9//KH2u4yOjsb06dOxc+fOEnek5s2bhxkzZmDJkiVwdnYW\nfosGBgbCb+Pw4cPIy8uDQqFAcnIypkyZgnr16pWr94yIilfhk0Q1atR446UiT548gYuLC1xdXdGx\nY0csWLAAPj4+OHnyZJHklJiYCBcXF7i4uMDLyws7duxAREREmY/MdXR0sGLFCly5cgWtWrVCcHAw\nJk2apDbIRk9PD+Hh4Vi7di1cXV3x0UcflamNwmbMmIFWrVphwIAB8PX1hbu7Oxo3bix09ZqamuL0\n6dPo168fmjVrhsmTJyM4OLhMd8SSSCTYsGEDatasCV9fX/j6+sLKygrr168vU3cqkH9eOiQkBDNn\nzoRCoSjTXcEWLFiAgQMH4ttvv0Xz5s3Rr18/HD9+/I0j6ivL/PnzkZ2dDW9vb3z++ef4+OOP1WI1\nMzPDnj174O/vjxYtWmD+/PmYN28ePD09i62vRo0a2L59Ox4/foyOHTvio48+QvPmzTF//vxSx5Se\nno4DBw6UOIjNz88PGzZsEI7GIyIisGrVKrRu3RqxsbEYM2aMWvnevXsjODgY3333Hdq2bYv4+Hh8\n/vnnaqcaHj16hMTERDx//rzEuJYuXYrnz59j8ODBwu/QxcUFEyZMUKsnODgYLVq0QGBgIFq1aoXt\n27cXOQVBROUnUSqVlX+HinfQs2fP4OHhga+//hpff/11ZYdD/0EDBw7EixcvsHnz5soOhYjKqMLd\n2pTv4sWLuHbtGpo1a4bHjx9j7ty5yMrKeuNtG4k04cmTJ1i+fDk6deoEPT097Nq1C3v37q30O44R\nUfkwOWvQggUL8M8//0BXV1e4w9erd3EiEoNEIsGhQ4cQERGBp0+fwsnJCUuWLBHuBEdE2oXd2kRE\nRFUM7xpARERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RMRERUxTA5ExERVTFMzkRERFUMkzMREVEV\nw+RMRERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RMRERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RM\nRERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RMRERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RMRERU\nxTA5ExERVTFMzkRERFWMVifniIgISKVSBAcHC9NUKhVCQ0Ph6uoKa2trdO/eHVevXq3EKImIiMpG\na5Pz2bNnsWrVKri7u6tNnzt3LhYsWIDw8HAcOXIEMpkMvXr1wuPHjyspUiIiorLRyuT88OFDDBky\nBPPnz4dUKhWmq1QqREZGYtSoUfDz84ObmxsiIyORlZWFbdu2VWLEREREpaeVybkg+bZt21Ztempq\nKtLS0tChQwdhmqGhITw9PXH69Om3HSYREVG56FV2AGW1evVqJCUlYcmSJUXmpaWlAQBkMpnadJlM\nhjt37ry23sTERM0FSURElUahUFR2CBWmVck5MTER06dPx/79+1GtWjWN1v0urEwiIno3aFW39pkz\nZ3D//n28//77qFmzJmrWrInjx49j2bJlqFmzJiwsLAAAGRkZau/LyMiAlZVVZYRMRERUZlp15Ny9\ne3c0adJEbdrw4cNRt25djBkzBs7OzpDL5YiJiUHTpk0BAE+fPsXJkycxffr0ygiZiIiozLQqOUul\nUrXR2QBQo0YNmJubw83NDQAQFBSEiIgIKBQKODs7Y86cOTAyMkJAQEBlhExERFRmWpWcS2PkyJHI\nyclBcHAwlEolmjVrhqioKJiYmFR2aERERKUiUSqVqsoOgoiIiP5HqwaEERER/RcwORMREVUx79w5\n54q4/f3gSmm39riVldIuERFVTTxyJiIiqmKYnImIiKoYJmciIqIqhsmZiIioimFyJiIiqmKYnImI\niKoYJmciIqIqhsmZiIioimFyJiIiqmKYnImIiKoYJmciIqIqhsmZiIioimFyJiIiqmKYnImIiKoY\nJmciIqIqhsmZiIioiqmU5Hz37l0kJCRURtNERERVnqjJedWqVRg2bJjatODgYLi5uaFVq1Zo27Yt\n7t+/L2YIREREWkfU5Lx8+XLUqFFDeB0XF4dly5YhICAA3377LZKSkjBnzhwxQyAiItI6emJWnpqa\nik8//VR4vWPHDtjY2GDRokXQ0dHBw4cPsWPHDoSGhooZBhERkVYR9cj55cuXqFatmvA6JiYGnTp1\ngo5OfrNOTk64e/eumCEQERFpHVGTs729PY4ePQoAuHDhAlJSUtChQwdhfnp6OkxMTMQMgYiISOuI\n2q39+eefIzg4GH///Tdu374NGxsbdO7cWZh/6tQpuLq6ihkCERGR1hE1OX/55ZeoXr06fvvtNzRu\n3BijRo2CgYEBAODBgwfIyMjA559/LmYIREREWkeiVCpVlR1EVXH7+8GV0m7tcSsrpV0iIqqaRD1y\nLvDo0SOcO3cOGRkZ8Pb2hpWV1dtoloiISCuJnpx//PFHRERE4MmTJ5BIJNixYwesrKxw//59NGjQ\nALNmzWLXNhHRO4S9kBUn6mjtFStWYObMmQgICMDKlSuhUv2vB71mzZro1q0bfv31VzFDICIi0jqi\nJufFixfD398fc+fORdu2bYvMb9iwIa5duyZmCERERFpH1OSckpKCdu3alThfKpXiwYMHYoZARESk\ndURNzlKpFBkZGSXOv3r1KuRyuZghEBERaR1Rk3Pnzp2xevXqYo+OL1++jDVr1qBbt25ihkBERKR1\nRE3OkydPBgC0atUK06ZNg0Qiwfr16/H555+jY8eOkMvlGDdunJghEBERaR1Rk7NcLkdsbCy6dOmC\n6OhoqFQqbN26FYcOHUKfPn1w8OBBWFhYiBkCERGR1hH9OmdLS0vMnTsXc+fOxb1795CXlwdLS0vh\nyVRERESkTtQMOXz4cPzxxx/Ca0tLS1hZWQmJ+dy5cxg+fLiYIRAREWkdUZPzhg0bkJycXOL81NRU\nbNy4UcwQiIiItE6l9i1nZmZCX1+/MkMgIiKqcjR+zvn48eM4duyY8Do6OhpJSUlFyimVSkRFRaFB\ngwaaDoGIiEiraTw5x8XFITw8HAAgkUgQHR2N6OjoYsvWr19fKEtERET5NJ6cR44ciaFDh0KlUsHZ\n2Rk//fQTevbsqVZGIpHA0NAQBgYGmm6eiIhI62k8ORsaGsLQ0BAAcPHiRVhaWqJGjRqaboaIiOid\nJep1znZ2dgDyzy/Hxsbixo0bwnRvb29IpVIxmyciItJKot+EZO7cuQgLC8OzZ8/UnudsYGCAkJAQ\njBgxotR1LV26FCtXrsTNmzcBAK6urhg7diy6dOkCAFCpVAgLC8Pq1auhVCrRrFkzzJkzB/Xr19fs\nhyIiIhKRqJdSrVmzBtOmTUPLli2xceNGXLhwARcuXMCmTZvw/vvvY9q0aVi7dm2p66tduza+++47\nHD16FDExMWjbti0GDhyIy5cvA8jfEViwYAHCw8Nx5MgRyGQy9OrVC48fPxbrIxIREWmcRKlUqt5c\nrHw8PT1hZWWFHTt2QCKRqM1TqVTw9/dHRkYGTpw4Ue42HBwcMHXqVHz22WdwdXXFkCFDMHbsWABA\nTk4OFAoFZsyYgcGDB7+xrtvfv7mMGGqPW1kp7RIRiYHb0ooT9cg5KSkJ3bt3L5KYgfwR2z169Cj2\nGujSePnyJbZv347s7Gy0aNECqampSEtLQ4cOHYQyhoaG8PT0xOnTp8v9GYiIiN42Uc85m5mZISUl\npcT5KSkpMDMzK1OdV65cQefOnfH06VMYGRlh3bp1cHd3FxKwTCZTKy+TyXDnzp0yx05ERFRZRE3O\nPj4+WLp0KRo2bIi+ffsKR9AFj45ctmwZBgwYUKY6FQoF4uLi8OjRI+zcuRNBQUHYvXt3hWNNTEyE\nUYVrKX/bRETvisrelioUikqKQHNETc5Tp07F2bNnERQUhClTpsDJyQlAfnf3vXv34OrqiqlTp5ap\nzurVqwv1NG7cGOfPn8fChQuF88wZGRmwtbUVymdkZMDKyuqN9SoUCtwuUySa8y58kYiICnBbWnGi\nnnO2sLBATEwMZs+eDQ8PD2RmZiIzMxMeHh4ICwtDTEwMzM3NK9RGXl4ecnNzYW9vD7lcjpiYGGHe\n06dPcfLkSbRs2bKiH4WIiOitEf06Z319fQQGBiIwMLDCdU2bNg2dO3eGjY0NsrKysG3bNhw7dgxb\ntmyBRCJBUFAQIiIioFAo4OzsjDlz5sDIyAgBAQEa+CRERERvh6jJefjw4QgICEC7du2go1Pxg/S0\ntDQMHToU6enpMDU1hbu7O7Zt24aOHTsCyL+vd05ODoKDg4WbkERFRcHExKTCbRMREb0tol7nbGtr\ni+zsbNSsWRN+fn7o1asXWrduLVZzFcZr84iIKo7b0ooT9ZxzYmIiVq5cidatW2Pjxo3w9fWFu7s7\nJk2ahHPnzonZNBERkdYSNTkbGBjAz88Pq1atQmJiIpYsWYJGjRph+fLl+OCDD9C4cWPMmDFDzBCI\niIi0jqjJubAaNWogICAAGzZsQGJiIsLDw5GZmYmffvrpbYVARESkFUQfrV1YTk4ODhw4gKioKBw6\ndAg5OTnCNctERESUT/TknJubi4MHD2LHjh3Yv38/srOzYWNjgy+++AK9e/dG48aNxQ6BiIhIq4ia\nnAMDA7F37148fvwYVlZWGDBgAHr37o33339fzGaJiIi0mqjJ+cCBA/D390fv3r3h5eWlkWudiYiI\n3nWiJufExETo6b3V09pERERaT9RDWSZmIiKismM/MxERURXD5ExERFTFMDkTERFVMUzOREREVQyT\nMxERURWj0eHUGzduLNf7BgwYoMkwiIiItJpGk/OwYcPK/B6JRMLkTEREVIhGk/PFixc1WR0REdF/\nkkaTs52dnSarIyIi+k/igDAiIqIqRvT7a6anp2Pt2rX4888/8ejRI+Tl5anNl0gk2LVrl9hhEBER\naQ1Rk3N8fDx69OiBJ0+ewNnZGfHx8XB1dYVSqcSdO3fg6OgIGxsbMUMgIiLSOqJ2a3/33XcwMDDA\n6dOnsXPnTqhUKoSGhiI+Ph5Lly6FUqnEjBkzxAyBiIhI64ianE+dOoXPPvsM9vb2wrOcVSoVACAg\nIAAffvghpkyZImYIREREWkfU5Pz8+XNYW1sDAAwMDAAADx8+FOZ7eHjgwoULYoZARESkdURNzra2\ntrh16xYAwNDQENbW1jhz5owwPz4+HkZGRmKGQEREpHVEHRDm5eWFPXv2YOLEiQCAPn36YOHChcKo\n7c2bN2PQoEFihkBERKR1RE3OI0eOhJeXF549ewZ9fX1MmjQJSqUSO3fuhK6uLvr164fp06eLGQIR\nEZHWETU529rawtbWVnitr6+PefPmYd68eWI2S0REpNVEPec8fPhw/PHHHyXOP3fuHIYPHy5mCERE\nRFpH1OS8YcMGJCcnlzg/NTW13I+ZJCIieldV6r21MzMzoa+vX5khEBERVTkaP+d8/PhxHDt2THgd\nHR2NpKSkIuWUSiWioqLQoEEDTYdARESk1TSenOPi4hAeHg4g/6EW0dHRiI6OLrZs/fr1hbJERESU\nT+PJeeTIkRg6dChUKhWcnZ3x008/oWfPnmplJBIJDA0NhbuGERER0f9oPDkbGhrC0NAQAHDx4kVY\nWlqiRo0amm6GiIjonSXqdc52dnYA8s8vx8bG4saNG8J0b29vSKVSMZsnIiLSSqImZwCYO3cuwsLC\n8OzZM+GJVED+gzBCQkIwYsQIsUMgIiLSKqIm5zVr1mDatGlo164dgoKC4OLiAgBISEjAokWLMG3a\nNJibm/P+2kRERIWImpwXLVqEdu3aYceOHZBIJMJ0BwcHdO7cGf7+/oiMjGRyJiIiKkTUm5AkJSWh\ne/fuaom5gEQiQY8ePYq9BpqIiOi/TNTkbGZmhpSUlBLnp6SkwMzMTMwQiIiItI6oydnHxwdLly7F\n5s2b1QaDqVQqbNmyBcuWLUPXrl3FDIGIiEjriHrOeerUqTh79iyCgoIwZcoUODk5Acjv7r537x5c\nXV0xdepUMUMgIiLSOqImZwsLC8TExGDlypU4ePAgbt68CQDw8PBAly5d8Omnn/LBF0RERK8Q/Tpn\nfX19BAYGIjAwUOymiIiI3gminnNu1KgR9u7dW+L8/fv3o1GjRmKGQEREpHVETc43btxAdnZ2ifOz\ns7OFrm4iIiLKJ2pyBlDsNc4F/vnnH5iYmJS6roiICLRv3x62traoW7cu+vXrh/j4eLUyKpUKoaGh\ncHV1hbW1Nbp3746rV6+WO34iIqK3TePnnDds2ICNGzcKr+fMmYPVq1cXKadUKhEfHw8fH59S133s\n2DF88cUXaNq0KVQqFWbPng1/f3+cPn0a5ubmAPLv5b1gwQIsWLAACoUC33//PXr16oWzZ8+WaUeA\niIiosmg8Oefk5OD+/fvC66ysLOjoFD1ANzIywueff47x48eXuu6oqCi114sXL4adnR1OnTqFrl27\nQqVSITIyEqNGjYKfnx8AIDIyEgqFAtu2bcPgwYPL+amIiIjeHo0n5y+++AJffPEFAKBhw4YICwtD\nt27dNN0MgPzEn5eXJzx6MjU1FWlpaejQoYNQxtDQEJ6enjh9+jSTMxERaQVRL6W6dOmSmNVjwoQJ\n8PDwQIsWLQAAaWlpAACZTKZWTiaT4c6dO6LGQkREpCmiX+cslokTJ+LUqVPYv38/dHV1K1xfYmIi\njDQQV3nbJiJ6V1T2tlShUFRSBJqjlck5JCQEUVFRiI6OhoODgzBdLpcDADIyMmBraytMz8jIgJWV\n1WvrVCgUuC1KtG/2LnyRiIgKcFtacaJfSqVp48ePx/bt27Fr1y7Uq1dPbZ69vT3kcjliYmKEaU+f\nPsXJkyfRsmXLtx0qERFRuWjVkfPYsWOxefNmrFu3DlKpVDjHbGRkBGNjY0gkEgQFBSEiIgIKhQLO\nzs6YM2cOjIyMEBAQUMnRExERlY5Gk/PEiRPRr18/4ZacN2/ehKWlJQwNDTVS/7JlywBAuEyqwPjx\n4xESEgIAGDlyJHJychAcHAylUolmzZohKiqK1zgTEZHW0GhyjoyMRJMmTYTk3KhRIyxevBh9+vTR\nSP1KpfKNZSQSCUJCQoRkTUREpG00es5ZLpfj+vXrwmuVSqXJ6omIiP4TNHrk3LVrV3z//ffYt28f\nTE1NAQA//vgj1qxZU+J7JBIJdu3apckwiIiItJpGk/Ps2bNRu3ZtHD9+HBkZGZBIJCXevpOIiIiK\np9HkbGhoiODgYAQHBwMAzM3NMXXqVI2dcyYiIvovEPVSqujoaLi4uIjZBBER0TtH1OTcpk0bAPmj\nrGNjY3Hjxg0AgJ2dHby9vYUHVhAREdH/iH4Tkrlz5yIsLAzPnj1TG71tYGCAkJAQjBgxQuwQiIiI\ntIqoyXnNmjWYNm0a2rVrh6CgIKGLOyEhAYsWLcK0adNgbm6OQYMGiRkGERGRVhE1OS9atAjt2rXD\njh07IJFIhOkODg7o3Lkz/P39ERkZyeRMRERUiKjXOCUlJaF79+5qibmARCJBjx49kJSUJGYIRERE\nWkfU5GxmZoaUlJQS56ekpMDMzEzMEIiIiLSOqMnZx8cHS5cuxebNm9UGg6lUKmzZsgXLli1D165d\nxQyBiIhI64h6znnq1Kk4e/YsgoKCMGXKFDg5OQHI7+6+d+8eXF1dMXXqVDFDICIi0jqiJmcLCwvE\nxMRg5cqVOHjwIG7evAkA8PDwQJcuXfDpp59CX19fzBCIiIi0jujXOevr6yMwMBCBgYFiN0VERPRO\n4BMpiIiIqhgmZyIioiqGyZmIiKiKYXImIiKqYpiciYiIqhhRk3N4eDji4+NLnH/16lWEh4eLGQIR\nEZHWETU5h4WF4cqVKyXOZ3ImIiIqqlK7tbOyslCtWrXKDIGIiKjK0fhNSC5fvoy//vpLeH3y5Em8\nePGiSDmlUokVK1ZAoVBoOgQiIiKtpvHkvHv3bqGrWiKRYOXKlVi5cmWxZaVSKZYsWaLpEIiIiLSa\nxpPzZ599Bh8fH6hUKnTo0AETJ07EBx98UKSckZERHB0doacn+h1EiYiItIrGM6O1tTWsra0BANHR\n0XBxcYFMJtN0M0RERO8sUQ9b27RpI2b1RERE7yTR+5QPHz6MtWvXIiUlBUqlEiqVSm2+RCLBn3/+\nKXYYREREWkPU5Dxv3jxMmzYNVlZWaNq0Kdzc3MRsjoiI6J0ganJetGgR2rZti61bt/J6ZiIiolIS\n9SYkSqUSfn5+TMxERERlIGpybtasGRITE8VsgoiI6J0janKeM2cOdu/ejS1btojZDBER0TtF1HPO\nn3zyCXJzcxEYGIjRo0ejVq1a0NXVVSsjkUhw6tQpMcMgIiLSKqImZ0tLS8hkMjg7O4vZDBER0TtF\n1OS8Z88eMasnIiJ6J1XqIyOJiIioKNGTc2ZmJmbOnIkuXbqgadOmOHPmjDA9PDwcCQkJYodARESk\nVUTt1k5NTUXXrl2RmZkJNzc3pKSkICcnBwBgYWGBqKgo3Lt3Dz/88IOYYRAREWkVUZPz1KlToVKp\ncOrUKZiYmBQZGNatWzeelyYiInqFqN3asbGxGDJkCBwcHCCRSIrMt7e3x+3bt8UMgYiISOuImpyf\nPXsGqVRa4vyHDx9CR4dj0oiIiAoTNTPWr18fx48fL3H+nj170LBhQzFDICIi0jqiJuegoCDs2LED\nc+bMwYMHDwAAeXl5uHbtGr788kv88ccfGD58uJghEBERaR1RB4T16dMHt27dwuzZszF79mwAQO/e\nvQEAOjo6+O6779C1a1cxQyAiItI6oiZnABg9ejT69OmDXbt2ISkpCXl5eXB0dISvry8cHBzEbp6I\niEjriJ6cAaBOnToYNmyYRuo6fvw4fvnlF1y8eBF37tzBggULMHDgQGG+SqVCWFgYVq9eDaVSiWbN\nmmHOnDmoX7++RtonIiISm6jnnE+dOoWIiIgS5//000/CHcNKKzs7G25ubggLC4OhoWGR+XPnzsWC\nBQsQHh6OI0eOQCaToVevXnj8+HGZ4yciIqoMoibn8PBw/PXXXyXOv3z5MsLDw8tUZ+fOnfHtt9/C\nz8+vyGVYKpUKkZGRGDVqFPz8/ODm5obIyEhkZWVh27Zt5foMREREb5uoyfnSpUto0aJFifObN2+O\nixcvaqy91NRUpKWloUOHDsI0Q0NDeHp64vTp0xprh4iISEyinnN+8uRJsXcGKywrK0tj7aWlpQEA\nZDKZ2nSZTIY7d+689r2JiYkw0lgkZZOYmFhJLRMRaV5lb0sVCkUlRaA5oiZnZ2dnHDlyBIGBgcXO\nP3ToEJycnMQModQUCmLTCOAAABO1SURBVAUq60ai78IXiYioALelFSdqt/Ynn3yCgwcPYty4ccJN\nSID8x0UGBwfjyJEjGDRokMbak8vlAICMjAy16RkZGbCystJYO0RERGIS9ch5yJAh+Ouvv7B06VIs\nW7ZMSJDp6elQqVT46KOPEBQUpLH27O3tIZfLERMTg6ZNmwIAnj59ipMnT2L69Okaa4eIiEhMol/n\nPG/ePOEmJCkpKQAABwcH+Pn5oU2bNmWuLysrC0lJSQDybwV669YtXLp0Cebm5rC1tUVQUBAiIiKg\nUCjg7OyMOXPmwMjICAEBAZr8WERERKIRLTnn5ubi7NmzsLa2hpeXF7y8vDRS74ULF+Dr6yu8Dg0N\nRWhoKAYMGIDIyEiMHDkSOTk5CA4OFm5CEhUVBRMTE420T0REJDbRkrOenh78/f0xe/Zs1K1bV2P1\nenl5QalUljhfIpEgJCQEISEhGmuTiIjobRJtQJiOjg7s7Ow0eqkUERHRf4Goo7UDAwOxatWqIqOn\niYiIqGSi34SkRo0aaNq0Kbp37w4HB4ci98OWSCQYMWKEmGEQERFpFVGT87Rp04S/N2/eXGwZJmci\nIiJ1oiZnTd43m4iI6L9C1ORsZ2cnZvVERETvJNFvQgIA169fx7Fjx5CRkYE+ffrA3t4eubm5SEtL\ng1wuR/Xq1d9GGERERFpB1OScl5eH0aNHY+3atVCpVJBIJGjevLmQnFu3bo3g4GB8/fXXYoZBRESk\nVUS9lOrHH3/EunXrMGnSJBw8eBAqlUqYZ2xsDF9fX+zevVvMEIiIiLSOqMl5/fr1+Pjjj/HNN98U\n+2hINzc3XL9+XcwQiIiItI6oyfn27dto1qxZifMNDQ15BzEiIqJXiJqcrayscOPGjRLn//nnn7C1\ntRUzBCIiIq0janLu2bMnVqxYodZ1LZFIAAAHDx7Epk2b4O/vL2YIREREWkfU5DxhwgTUqVMHbdu2\nxZAhQyCRSBAREYFOnTqhX79+aNCgAcaMGSNmCERERFpH1ORsamqK3377DWPGjEF6ejoMDAxw6tQp\nZGdnY8KECdi7d2+Re20TERH914l+ExIDAwN88803+Oabb8RuioiI6J0gSnJ++vQp9u7di9TUVFhY\nWKBLly6wtrYWoykiIqJ3jsaT8507d9CtWzekpqYKNx2pUaMGNm3aBC8vL003R0RE9M7ReHKeOXMm\nbty4gWHDhqFt27ZISkrCDz/8gPHjx+PEiROabo6I3jG3vx9cKe3WHreyUtolKo7Gk3NsbCwGDBiA\nmTNnCtOsrKzw5Zdf4t9//4WNjY2mmyQiElVV3WGoqnFRxWl8tHZaWhpa/r/27j+q5vuPA/jT91KS\nH7fCjX6gXHJTJKs4NsaEpRaZwjmc/KqbjuOcJbGIxu5Sa3SWqHT8KnSws2aN7XTalIrMhqP94FCr\ntfyISris7v3+4bi0bIb0/ux6Ps7pj/t2730/xfm8Pu/3+/N5fzw9W7R5eXlBr9ejqqqqrbsjIiIy\nOm1enJubm9G5c+cWbQ9fa7Xatu6OiIjI6LyUq7XLy8vx/fffG143NDQAAC5cuICuXbu2ev8/7b9N\nRET0qnkpxVmj0UCj0bRqj4yMbPH64TOeb9y48TJiEBER/Se1eXFOTk5u668kIiJ6pbR5cZ49e3Zb\nfyUREdEr5aXurU1ERETPjsWZiIhIYl76gy+ISJq4gQWRdHHkTEREJDEszkRERBLD4kxERCQxLM5E\nREQSw+JMREQkMSzOREREEsPiTEREJDG8z/k/gPejEhG9WjhyJiIikhgWZyIiIonhtDZRO+DSBBE9\nC46ciYiIJIbFmYiISGJYnImIiCSGa8703LiOSkT0cnDkTEREJDEszkRERBLDaW0yKpxqJyJjYLQj\n5/T0dLi6ukKhUGDs2LEoKioSHYmIiOhfMcrifOjQIURFReG9997DsWPH4OHhgXfffReVlZWioxER\nET2VURbn5ORkzJ49G/PmzcPgwYMRHx8PhUKBjIwM0dGIiIieqkNdXZ1edIi2dP/+ffTp0wfbt2+H\nv7+/oT0iIgJlZWXIzc0VmI6IiOjpjG7kXFtbi+bmZvTq1atFe69evXD16lVBqYiIiP49oyvORERE\n/3VGV5ytrKwgk8lw7dq1Fu3Xrl1D7969BaUiIiL694yuOJuYmGD48OHIz89v0Z6fnw9PT09BqYiI\niP49o9yEZMmSJQgJCYG7uzs8PT2RkZGBmpoaBAeL2aCCiIjoWRjdyBkApk+fDo1Gg/j4eLz++uso\nKSlBdnY27O3t27Sf48ePIygoCEOGDIFcLkdmZmabfv/zSkxMxJtvvgk7Ozs4OjoiMDAQZWVlQjOl\npaVh9OjRsLOzg52dHSZOnIijR48KzfRXiYmJkMvlWL58udAcGo0Gcrm8xc+gQYOEZnqopqYGoaGh\ncHR0hEKhgKenJwoLC4XlcXFxafW7ksvlmDlzprBMANDc3Iz169cbNkJydXXF+vXr0dTUJDTXrVu3\nEBUVhaFDh8La2hre3t44ffp0u2Z42nFTr9dDo9HAyckJ1tbW8PHxwU8//dSuGaXAKEfOALBw4UIs\nXLjwpfZx+/ZtqFQqzJo1C6GhoS+1r2dRWFiIBQsWYMSIEdDr9fjwww/h7++PEydOwMLCQkimvn37\nYt26dXB0dIROp8PevXsxZ84cfPvttxg6dKiQTI8rLS3Fjh074OzsLDoKAECpVOLw4cOG1zKZTGCa\nB+rq6jBp0iR4eXkhOzsbVlZWqKioaHVnRHvKz89Hc3Oz4XVNTQ3GjRvX4jZKETZt2oT09HSkpKRA\npVLh/PnzUKvVMDExQWRkpLBcS5cuxfnz55GSkgIbGxvs378f/v7+KCkpQd++fdslw9OOm5s3b0Zy\ncjKSk5OhVCqxceNGTJs2DaWlpejWrVu7ZJQCo7vPWRQbGxts3LgRc+bMER2llcbGRtjb2yMzMxNT\npkwRHcegf//+iImJEb7cUF9fj7FjxyIpKQlxcXFQqVSIj48Xlkej0SAnJwfFxcXCMjxJbGwsjh8/\nLrkZj8clJCQgKSkJv/zyC8zMzITlCAwMhIWFBbZu3WpoCw0Nxc2bN7F//34hme7evQtbW1vs2rUL\nPj4+hvaxY8di4sSJiI6ObvdMfz1u6vV6ODk5YdGiRYiIiDDkViqV+OCDD4QfK9qTUU5rU0uNjY3Q\n6XSQy+WiowB4MOV38OBB3L59Gx4eHqLjYNmyZXjnnXfwxhtviI5iUF5eDicnJ7i6umL+/PkoLy8X\nHQlffvkl3N3dERwcjIEDB2LMmDFITU2FXi+N83u9Xo/du3cjMDBQaGEGAC8vLxQWFuLXX38FAPz8\n888oKCjAxIkThWVqampCc3MzOnfu3KLdzMxMMieCFRUVuHLlCsaPH29oMzMzw+jRo3HixAmBydqf\n0U5r0yNRUVFwcXERXgjPnz8Pb29vaLVamJubY8+ePcKnkXfu3IlLly4hNTVVaI7HjRw5Elu2bIFS\nqcT169cRHx8Pb29vlJSUwNLSUliu8vJybN++HWFhYVi2bBnOnTuHFStWAAAWL14sLNdD+fn5qKio\nwNy5c0VHwbJly9DY2AhPT0/IZDI0NTUhIiLipS+1/ZNu3brBw8MDCQkJGDJkCBQKBQ4cOICTJ0/C\nwcFBWK7HXblyBQCeuInUH3/8ISKSMCzORm7VqlUoKSnBkSNHhK9bKpVKFBQUoKGhAZ9//jnUajUO\nHz4MlUolJM+FCxcQGxuLI0eOoFOnTkIyPMlfR1cjR47E8OHDkZWVhfDwcEGpAJ1OBzc3N8TExAAA\nhg0bhkuXLiE9PV0SxXnnzp0YMWIEXFxcREfBoUOHsG/fPqSnp8PJyQnnzp1DVFQU7O3thZ48bNu2\nDUuWLIFKpYJMJsOwYcMwY8YM/Pjjj8Iy0ZOxOBuxlStX4tChQ/jiiy/Qv39/0XFgYmJiOEMfPnw4\nTp8+jS1btuDTTz8VkufkyZOora2Fl5eXoa25uRlFRUXIyMhAdXU1TE1NhWR7XNeuXeHk5IRLly4J\nzaFQKDB48OAWbYMGDUJVVZWgRI9cu3YNubm5SEhIEB0FALBmzRqEh4cjICAAAODs7IzKykp88skn\nQovzgAEDkJubi9u3b+PWrVuwtrZGcHCwJI4PwIP/Y8CDf087OztD+6u4iRTXnI3UihUrcPDgQeTk\n5EjmNpy/0ul0uH//vrD+fXx8UFRUhIKCAsOPm5sbAgICUFBQABMTE2HZHqfVanHhwgXDgUsULy8v\nXLx4sUXbxYsXWxxERcnKyoKpqamhGIp2586dVjNVMpkMOp1OUKKWzM3NYW1tjbq6OuTl5eHtt98W\nHQkA0K9fPygUihabSGm1WhQXF79ym0hx5PwCGhsbDaMZnU6HqqoqnD17FhYWFkIPWBEREdi/fz/2\n7NkDuVxuWMcxNzdH165dhWRau3YtvL29YWNjg8bGRhw4cACFhYXIzs4WkgeA4Z7Yx3Xp0gUWFhbC\nptoBIDo6GpMnT4atra1hzfnOnTuYNWuWsEwAEBYWBm9vbyQkJGD69Ok4e/YsUlNTsXr1aqG59Ho9\ndu3ahenTpwv7//1XkydPxqZNm9CvXz84OTnh7NmzSE5ORlBQkNBceXl50Ol0UCqVuHz5MlavXo1B\ngwa1610mTztuqtVqJCYmQqlUYuDAgUhISIC5uTlmzJjRbhmlgLdSvYCCggL4+vq2ap81axZSUlIE\nJHrg767KXrFiBVauXNnOaR5Qq9UoKCjA1atX0b17dzg7O2Pp0qWYMGGCkDx/x8fHR/itVPPnz0dR\nURFqa2vRs2dPjBw5Eu+//z6cnJyEZXro6NGjiI2NxcWLF2Fra4tFixYhJCQEHTp0EJbp2LFj8PPz\nQ15eHtzd3YXleNytW7ewYcMGHD58GNevX4dCoUBAQAAiIyNbXS3dnj777DOsW7cO1dXVsLCwgJ+f\nH6Kjo9GjR492y/C046Zer8dHH32EHTt2oK6uDu7u7khISBB6wiwCizMREZHEcM2ZiIhIYliciYiI\nJIbFmYiISGJYnImIiCSGxZmIiEhiWJyJiIgkhsWZ6BXk4uICtVotOgYR/Q0WZyIJyMzMNOxYJpfL\nYWVlhSFDhkCtVqO6uvq5vvPrr7+GRqNp46RE1B64fSeRhERFRWHAgAG4d+8eSktLkZWVhZKSEhQX\nFz/zzlLffPMN0tLSnrgr3KlTp/C///HcnEiqWJyJJGTChAl47bXXAABz586FlZUVNm3ahK+++grT\npk1rs36k8LQtIvp7PHUmkrBRo0YBAC5fvmxoy83NRWBgIFQqFXr37o2hQ4di9erV0Gq1hveo1Wqk\npaUBQIvp8oqKCgCt15wLCgogl8tx4MABfPzxx1CpVFAoFPDz83vioyrT0tIwbNgwWFtbY/z48Th+\n/Dh8fHzg4+PzUn4PRK8ajpyJJOy3334D0PJhJpmZmTA1NUVISAi6d++O0tJSbNmyBb///jsyMjIA\nAMHBwaipqUF+fj62bdtm+GzPnj3/sb/NmzdDJpMhPDwcDQ0NSEpKwqJFi5CXl2d4z/bt27F8+XKM\nGjUKYWFhqKysxJw5c2BhYYG+ffu25V+f6JXF4kwkIQ0NDaitrYVWq8WpU6cQFxcHU1NTTJo0yfCe\ntLQ0dOnSxfA6ODgYjo6OWL9+PWJjY2FrawsPDw8MHDgQ+fn5CAwM/Nf937t3D4WFhYZnWcvlckRF\nRaGsrAwqlQr379/Hhg0b4OrqipycHHTq1AkAoFKpEBYWxuJM1EY4rU0kIQEBAXB0dISzszPmzZsH\nc3Nz7N27FzY2Nob3PCzMOp0O9fX1qK2thZeXF/R6Pc6cOfNC/QcFBRkKM/BoWr28vBwA8MMPP+DG\njRuYN2+eoTADwMyZM//2UaVE9Ow4ciaSkLi4OAwePBj19fXIysp64lXaZWVliImJQWFhIe7evdvi\nzxoaGl6of1tb2xavHxbcuro6AEBlZSUAwMHBocX7OnbsCHt7+xfqm4geYXEmkpARI0YYrtaeOnUq\nfHx8sHDhQpSWlsLc3Bz19fXw9fVFly5dEB0dDQcHB5iZmaG6uhphYWHQ6XQv1L9MJntiu17Px74T\ntSdOaxNJlEwmQ0xMDKqrq5GamgrgwVXVtbW1SElJwZIlSzBlyhSMGzcOffr0aZdMdnZ2ANDqCu6m\npibDxWtE9OJYnIkkbNSoUfDw8EBKSgq0Wq1hZPv4SFan0yE5ObnVZ83NzQE8mpJuC25ubrC0tMTO\nnTvx559/Gtqzs7PbtB+iVx2ntYkkLjw8HHPnzsWePXsQEBAAS0tLqNVqhISEoGPHjsjJyUFjY2Or\nz7m5uQEAli9fjrfeegsdO3bE5MmTDUX7eZiYmCAqKgqRkZHw8/ODv78/KisrkZmZiQEDBqBDhw7P\n/d1E9AhHzkQSN3XqVDg4OCApKQndunVDdnY2bG1todFokJiYCJVKha1bt7b6nK+vL9RqNb777juE\nhoZiwYIFuH79+gvnWbx4MeLi4lBVVYU1a9aguLgY+/btQ48ePZ55i1EierIOdXV1vNKDiF6ITqeD\no6MjfH19kZSUJDoO0X8eR85E9Ey0Wm2rq7f37t2LmzdvYsyYMYJSERkXrjkT0TMpLS3FqlWr4O/v\nD0tLS5w5cwa7d++GSqWCv7+/6HhERoHFmYieib29PWxsbLBt2zbcvHkTFhYWCAoKwtq1a1vsLkZE\nz49rzkRERBLDNWciIiKJYXEmIiKSGBZnIiIiiWFxJiIikhgWZyIiIolhcSYiIpKY/wMYkYo41632\nkwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "AV2mO2XZmmzH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Next visualization" + ] + }, + { + "metadata": { + "id": "AQTD9GGXhy_f", + "colab_type": "code", + "outputId": "514a0212-888c-40ad-8937-dc0c47ddeaf3", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 517 + } + }, + "cell_type": "code", + "source": [ + "# First, let's look at the graph itself\n", + "\n", + "url = 'https://fivethirtyeight.com/wp-content/uploads/2017/09/methahickey-inconvenient-0830-6.png'\n", + "example = Image(url=url, width=600)\n", + "\n", + "display(example)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "hs2C2ZEmINHb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "I don't want to have to generate fake data that fits this pattern, so I'll work instead on extracting the real data first." + ] + }, + { + "metadata": { + "id": "irMf12IqDGll", + "colab_type": "code", + "outputId": "cb48532d-36d2-411d-abea-7d70d2d3090e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + } + }, + "cell_type": "code", + "source": [ + "# I create new dataframe columns for the number of respondents in several rating ranges\n", + "df['1/10'] = df['respondents']*df['1_pct']*0.01\n", + "df['10/10'] = df['respondents']*df['10_pct']*0.01\n", + "df['2-9/10'] = df['respondents']-df['1/10']-df['10/10']\n", + "print(df.shape)\n", + "df.head()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(80053, 29)\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
respondentscategorylinkaveragemeanmedian1_votes2_votes3_votes4_votes5_votes6_votes7_votes8_votes9_votes10_votes1_pct2_pct3_pct4_pct5_pct6_pct7_pct8_pct9_pct10_pct1/1010/102-9/10
timestamp
2017-07-17 12:28:32.785639402Maleshttp://www.imdb.com/title/tt6322922/ratings-male4.65.02197773771182013549.01.71.70.71.71.72.72.05.033.6196.98135.07269.948
2017-07-17 12:28:33.02560078Femaleshttp://www.imdb.com/title/tt6322922/ratings-fe...6.97.71016101103434920.51.30.01.31.30.03.85.13.862.815.9948.98413.026
2017-07-17 12:28:33.2739194Aged under 18http://www.imdb.com/title/tt6322922/ratings-age_14.24.23200010000150.00.00.00.025.00.00.00.00.025.02.001.0001.000
2017-07-17 12:28:33.4953254Males under 18http://www.imdb.com/title/tt6322922/ratings-ma...4.24.23200010000150.00.00.00.025.00.00.00.00.025.02.001.0001.000
2017-07-17 12:28:33.722849130Aged 18-29http://www.imdb.com/title/tt6322922/ratings-age_26.36.5941031236466431.50.02.30.81.52.34.63.14.649.240.9563.96025.090
\n", + "
" + ], + "text/plain": [ + " respondents category \\\n", + "timestamp \n", + "2017-07-17 12:28:32.785639 402 Males \n", + "2017-07-17 12:28:33.025600 78 Females \n", + "2017-07-17 12:28:33.273919 4 Aged under 18 \n", + "2017-07-17 12:28:33.495325 4 Males under 18 \n", + "2017-07-17 12:28:33.722849 130 Aged 18-29 \n", + "\n", + " link \\\n", + "timestamp \n", + "2017-07-17 12:28:32.785639 http://www.imdb.com/title/tt6322922/ratings-male \n", + "2017-07-17 12:28:33.025600 http://www.imdb.com/title/tt6322922/ratings-fe... \n", + "2017-07-17 12:28:33.273919 http://www.imdb.com/title/tt6322922/ratings-age_1 \n", + "2017-07-17 12:28:33.495325 http://www.imdb.com/title/tt6322922/ratings-ma... \n", + "2017-07-17 12:28:33.722849 http://www.imdb.com/title/tt6322922/ratings-age_2 \n", + "\n", + " average mean median 1_votes 2_votes 3_votes \\\n", + "timestamp \n", + "2017-07-17 12:28:32.785639 4.6 5.0 2 197 7 7 \n", + "2017-07-17 12:28:33.025600 6.9 7.7 10 16 1 0 \n", + "2017-07-17 12:28:33.273919 4.2 4.2 3 2 0 0 \n", + "2017-07-17 12:28:33.495325 4.2 4.2 3 2 0 0 \n", + "2017-07-17 12:28:33.722849 6.3 6.5 9 41 0 3 \n", + "\n", + " 4_votes 5_votes 6_votes 7_votes 8_votes \\\n", + "timestamp \n", + "2017-07-17 12:28:32.785639 3 7 7 11 8 \n", + "2017-07-17 12:28:33.025600 1 1 0 3 4 \n", + "2017-07-17 12:28:33.273919 0 1 0 0 0 \n", + "2017-07-17 12:28:33.495325 0 1 0 0 0 \n", + "2017-07-17 12:28:33.722849 1 2 3 6 4 \n", + "\n", + " 9_votes 10_votes 1_pct 2_pct 3_pct 4_pct \\\n", + "timestamp \n", + "2017-07-17 12:28:32.785639 20 135 49.0 1.7 1.7 0.7 \n", + "2017-07-17 12:28:33.025600 3 49 20.5 1.3 0.0 1.3 \n", + "2017-07-17 12:28:33.273919 0 1 50.0 0.0 0.0 0.0 \n", + "2017-07-17 12:28:33.495325 0 1 50.0 0.0 0.0 0.0 \n", + "2017-07-17 12:28:33.722849 6 64 31.5 0.0 2.3 0.8 \n", + "\n", + " 5_pct 6_pct 7_pct 8_pct 9_pct 10_pct 1/10 \\\n", + "timestamp \n", + "2017-07-17 12:28:32.785639 1.7 1.7 2.7 2.0 5.0 33.6 196.98 \n", + "2017-07-17 12:28:33.025600 1.3 0.0 3.8 5.1 3.8 62.8 15.99 \n", + "2017-07-17 12:28:33.273919 25.0 0.0 0.0 0.0 0.0 25.0 2.00 \n", + "2017-07-17 12:28:33.495325 25.0 0.0 0.0 0.0 0.0 25.0 2.00 \n", + "2017-07-17 12:28:33.722849 1.5 2.3 4.6 3.1 4.6 49.2 40.95 \n", + "\n", + " 10/10 2-9/10 \n", + "timestamp \n", + "2017-07-17 12:28:32.785639 135.072 69.948 \n", + "2017-07-17 12:28:33.025600 48.984 13.026 \n", + "2017-07-17 12:28:33.273919 1.000 1.000 \n", + "2017-07-17 12:28:33.495325 1.000 1.000 \n", + "2017-07-17 12:28:33.722849 63.960 25.090 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "id": "rAxHSCGEsTZF", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# The fact that time is sampled to the nanosecond creates a problem, because\n", + "# each row for men and women winds up being separate even if they're from the\n", + "# same microsecond. So let's bin that a bit. \n", + "\n", + "\n", + "\n", + "males = df[df.category == 'Males'].resample('5T').max().dropna()\n", + "females = df[df.category == 'Females'].resample('5T').max().dropna()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "UoVRc9XO1SSX", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# I combine men and women into a new dataframe, and create new columns for each\n", + "# individual score group. \n", + "\n", + "ratings = pd.DataFrame({'males':males.respondents, \n", + " 'females':females.respondents,\n", + " '1 out of 10 ratings':males['1/10'] + females['1/10'],\n", + " '10 out of 10 ratings':males['10/10'] + females['10/10'],\n", + " '2-9 out of 10 ratings':males['2-9/10'] + females['2-9/10']\n", + " })" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VQbS2rC3J8D6", + "colab_type": "code", + "outputId": "7f6eace2-6bb7-4c17-e75e-51f2b4606b4d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 310 + } + }, + "cell_type": "code", + "source": [ + "# And now I plot.\n", + "\n", + "sns.set()\n", + "sns.set_style(\"whitegrid\")\n", + "sns.set_context(\"notebook\", font_scale=1.1, rc={\"lines.linewidth\": 2.5})\n", + "\n", + "ax = sns.lineplot(data=ratings);\n", + "ax.set(yticks=range(0,1500,500));\n" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAElCAYAAACMDhegAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3WdgVFXawPH/1Ewmkx5SSCBAgBCE\nYEggFBOKQBQIKiq7voLgijRhRQ0rIoqLDTsIiAKiu2JbFXsJFqQpLRRFQHpJAultZpKp9/0wMjCk\nkECSSTm/L2RufU4yzDPn3nPPI5MkSUIQBEEQmjm5uwMQBEEQhPogEpogCILQIoiEJgiCILQIIqEJ\ngiAILYJIaIIgCEKLIBKaIAiC0CKIhCYIgiC0CCKhCYIgCC2CSGiCIAhCiyASmiAIgtAiiIQmCIIg\ntAhKdwdwpex2OwaDAZVKhUwmc3c4giAIQj2RJAmLxYKXlxdyee37Xc02oRkMBg4fPuzuMARBEIQG\n0rVrV7y9vWu9fbNNaCqVCnA0WK1W13q//fv306NHj4YKy61E25qnltw2aNntE21rGGazmcOHDzs/\n52ur2Sa085cZ1Wo1Hh4eddq3rts3J6JtzVNLbhu07PaJtjWcut5OEoNCBEEQhBZBJDRBEAShRRAJ\nTRAEQWgRmu09tJrY7Xby8/MpLi7GZrO5rFMqlRw8eNBNkTUs0bbmQaPREBERUecb3oIg1KxFJrTM\nzExkMhkdOnSo9JyawWDAy8vLjdE1HNG2pk+SJAoKCsjMzKRjx47uDkcQWpQWecnRYDAQHh6OWq0W\nD10LTYpMJiMwMJCKigp3hyIILU6LTGhAnZ4uF4TGJL5kCS1VXk4Zn763B1OFxS3nb5GXHAVBEISr\nZ7PZyT1bRklROWoPBVqd47k0i8lKXo4ek8lKcYGRwgIDf5uUwI9fHeLwwRxGjOmOO55gEwlNqNHu\n3bt55JFHyM3N5emnn2bkyJHuDqlGX3zxBR9//DH//e9/3R2KIDRbFouNDV/k8vV739R6H7td4u/3\n9OHU8QLyc/V46Ro/pYnrcm6wdu1axo4dS48ePZg7d26DnSczM5Po6GhMJtMVH2PJkiX87W9/Y8+e\nPVUms8u15fDhw4wbN45evXoxevRodu3adcWxXKqq9o0ZM0YkM0G4Aju2nODbdfuxmG2oVArMJnud\n9i8qMAIQFKyjfceAhgjxskQPzQ2Cg4OZMWMGmzdvvqpk0xiys7Pp3LlztetraovFYmHatGn8/e9/\nZ+3atXz33XfMmDGD77//Hl9f38ue22q1olSKt6gg1Jdyoxl9qYmTRwsoKS7HVGFh1G2xAPzw1UGC\nQ73ZufUkPeLaEhqhoW14CF7eHnjpPPDSqZEkyXksjaeKkLY+yOUyFAo5SpUCwC09s/PEp4UbjBgx\nAoDff/+dnJycy26/bt063njjDQoLC7nmmmtYsGCBc8h3dHQ033zzDVFRUQAsXbqU48eP88orrzB+\n/HgA+vXrB8Drr79OYmKiy7HNZjOvvPIKX3/9NVarlUGDBvHoo4+i0+kYOnQo2dnZzJw5E4VCwaZN\nmyrNfF1TW3bs2IHJZGLy5MnI5XLGjBnDO++8w/r167n99tsrtXPu3LmoVCry8vLYtm0bL774IiqV\nildeeYXTp0/j4+PD7bffzn333QdQZfuysrL44IMP+N///uf8/SxcuJC33nqLvLw8kpOTefbZZ9Fo\nNAC8/fbbrFmzBovFwqRJk/jwww954oknSE5O5rfffuPf//43J06cQKPRMHLkSObPn3/Zv5cgNCVm\nk5V9uzLZ8O2fVJS7Dtbw1KqcCU3n7UH2mRKKCox07xVGr/5+xMc3r4mXRUJr4rZv386iRYtYvXo1\n3bp1Y+XKlUybNo2vvvrqsg/mrl27luuvv55t27ZVO8noG2+8wY4dO/j444/x9PTkoYce4umnn+bZ\nZ5/lp59+YujQoc4P+Lo6cuQIXbt2dRlxGhMTw5EjR6rd56uvvmLlypW89tprmM1mfv/9d5577jna\ntm1LVlYWEydOpHv37gwZMqTK9q1bt67SMdPT03n//feRJIk77riDTz75hDvvvJOtW7fy+uuv89Zb\nbxEVFcULL7zgkpSffvppJkyYwM033yzKFQnNgiRJZJ4sIj9XT2lxBfm5ev7Ym13t9o5Li1bUHkpS\n/9YLnc6DNqF/fWk90UhB16NWkdAOny7ig+//pNxkxWazoVAo6v0cnh5K/j48mq7t/ev1uF988QW3\n3HILsbGOb1HTp0/nvffeY9++fSQkJNTL8efOnUtwcDAAaWlpjB07lqeffvqqH30wGAyVenTe3t4U\nFxdXu8/QoUPp06cP4JhR4/zPBoOBbt26MWrUKHbs2MGQIUNqHcfUqVPx9/d3Hv/AgQOAI3necsst\nxMTEAPDggw/y3nvvOfdTKpWcPn2awsJCAgICiIuLq/U5BaExSJJE5qliPnp7Fzfccg0xPcPY+tMx\nDh+o/spPwoBIIqMCCW/vh1+A1rm8Y+egxgi5QbWKhPb5pmPsrOEPXF+0HirSxsfX6zFzcnLo2rWr\n87VCoSA0NJTc3Nx6O354eLjzdXh4OBaLhcLCQoKCru4N7uXlhV6vd1lWVlZW44wfoaGhLq/37NnD\nyy+/zOHDh7FarZjNZkaPHl2nOC5uh1ar5dy5cwDk5ubSrVs35zpPT09n4gNHD23p0qWMHDmStm3b\nMn36dIYPH16ncwtCfaoot7B90wlCw33oek0ISLAx/TD6MhNWix2z2cbN/3ctqxdvoTDfgEwuI7CN\nFxpPFTf9vReBbXTubkKDahUJ7abkKMpN1gbvoY1J7lTvxw0JCSE7+8IlA7vdzrlz55w9Kq1W6zLr\nRF5envPn2jzAGxISQlZWlvODPSsrC5VKRUDA1Y9S6tKlC6tXr8Zutzt7e4cOHary/ll1MaelpXHn\nnXeyZMkSAgICWLhwIUajscpt6yo4ONiZ3ADKy8spKipyvu7QoQMvvfQSdrudn376idmzZ7N169Za\nDWgRhPpgs9k5ciCXTesPU1ZagUFvBsDbV0N4ez90Pho0no6P8R1bT9L1mhDUHkr+dncCOh8PPDQq\n5PLW8yB/q0hoXdv78/g9joEDTWFOQKvVkVjtdjs2mw2TyYRcLq/ynlhqair3338/o0ePJjo6mtWr\nV6PT6ejVqxfguCf1+eef061bN3777TfS09MZMGAAAAEBAcjlcs6cOVPtSMXU1FRWrFhBbGwsGo2G\nl19+mdGjR9f6cmNNbenbty9qtZo1a9Zw1113sX79ek6ePFmnXo7RaMTX1xcPDw/27t3L119/7bzc\nWJv21WTkyJH861//4qabbqJTp04sXrzYZf3nn39OUlISAQEBeHl5IUlSg3wZEoTzJEki63Qx+3Zm\ncmj/OQxlVY+CLiupYOfWUwy5MZp+gzrRf3AUYRG+zuTlvA/WyrSKhNbUrFixgmXLljlfn79PtmjR\nokrb9uvXj7S0NNLS0igoKKB79+6sWLHCmfzmz5/P3LlzSUhIoE+fPowZM4b8/HzAcQlt2rRpjB8/\nHqvVymuvvUbfvn1djj9t2jQMBgO33HILdrud5ORkHn300Xppi0qlYsWKFcyfP59XX32Vdu3asXz5\ncvz8/Gp9/AULFrBo0SKeeuopEhMTufHGG5090qraVxdJSUnce++93HvvvVgsFu6++24CAgJQq9UA\nbNmyhUWLFlFRUUFoaCgvvvgiOl3LvmQjuE/u2VL+89qvlBurnzYqNj4cH39P+g/qhKfW8T6NiKzf\n+/bNmUy6+MGCZsRkMrF//3569OhRaQTfwYMHnTf6L9UUemgNRbTt6uj1evr27cu3335LZGRkg57r\n4vdoRkYG8fH1e++1KWnJ7bvattltdjJPFxMQqCXnbBnHD+fx68/HnesDgrzo0DmQa/u2I7y9X6PO\nA+rOv1tNn+81ET00oVVLT09n8ODBWCwWnn32Wbp06UL79u3dHZbQQtlsdoryjQSFOHr6/1mxjTMn\nCpnyYBJR0W04fbwQgPFTE+nQOahV3f+qDyKhCa3aRx99xLx585DJZPTs2ZPFixeL2fCFq2az2vl1\n43H0pRWUGy3k5+oxm6wU5BnoEdeWpGFdCArROQd0rHx5M6Nu60lcYjuuG9YZlUrcq70SIqEJrdrq\n1avdHYLQgpgqrGz+4Qi/bDhW7Tb792Szf082D/17OLG9I4iI9CcswpfO3YIbMdKWSSQ0QRCEOjrf\nAysoMhIfD1arjWce/rbKbZUqOX7+WvyDtHh4KNF4qug/uBNeOg+uiWvbyJG3bCKhCYIg1IHNaufN\nJVs4l11KRCfPardTqRVMvv+6VjuE3h1EQhMEQbiE3S6hL70wYYHZZGPfrjMADB3ZjeQRXfjf2xmc\nO1OBJEnIZTKSR3RBhgytTs0117ZF66V2V/itlkhogiAIF9m4/jAb06ueiNo/UMv1o2Lw0DhKp1zT\nV4NMJkOmkDE4JbqRIxUuJRKaIAgCcPRQLu+t2lHjNkUFRmw2Ox27BDH1oWQyMjIaKTqhNkRCE67K\n4sWLef/997HZbPVajbqhTJ48mZSUlBrnkxRal5zsUv67ovIMHXK5jBvH9nA+xuGlU9OhcxAKxdVV\noRAajvjLuMHatWsZO3YsPXr0YO7cuZXWHz58mHHjxtGrVy9Gjx7dYIli6dKlPPDAA1e8f3Z2NqtX\nr+arr76qMkaz2cw///lPhg4dSnR0NNu3b6+0zdq1a0lKSiIuLo7Zs2dXmp3/alTVvtWrV4tkJgCO\nmetzz5Wh1anpHOM6ZP7GsT2Y/8Io4vtH0rtfe3r3a090j1A8NKIP0JSJhOYGwcHBzJgxg1tvvbXS\nOovFwrRp0xg2bBg7d+5kypQpzJgxg5KSEjdEWrPs7Gx8fX1p06ZNtdv07t2b559/vspttm7dyrJl\ny1i5ciWbN2/GarXy5JNP1urcVqv1iuMWWrf8XD1rXt3K8/PT2fz9Ebx9NJjKHe+nW+6M47EXR9Fn\nYAf3BilcEZHQ3GDEiBEMGzasykl6d+zYgclkYvLkyajVasaMGUNkZCTr16+v8lh6vZ5HHnmEAQMG\ncMMNN/Dcc89hNjtKTKxbt45x48a5bD906FA2bdrEpk2beOONN1i/fj1xcXGkpKRUefwTJ04wadIk\n+vTpQ0pKirMi9KZNm/jHP/5BQUEBcXFxPPjgg5X2VavVTJo0iYSEhCpn71+3bh1jx44lJiYGnU7H\nAw88wDfffEN5eXmVsURHR/POO++QkpLCddddB8Czzz7LoEGD6N27N2PHjnXe06iufRMmTOD99993\n+f288sorJCYmkpSU5FLxuri4mJkzZxIfH8/o0aN58803GThwoHP9ypUrSU5Opnfv3qSkpLBly5Yq\n4xaaBkmSyM/VU1RgICBIi7ePB0aDGavFxtjxcTz+0mh69g4XM8U0Y6L/3MQcOXKErl27uiSAmJgY\njhw5UuX2Tz31FIWFhaSnp1NQUMBDDz3EypUrmTlzZo3nSU5OZurUqRw/fpxXXnmlym3O9xZTU1NZ\nuXIlhw4dYvLkyURERJCcnMyqVat48MEH2bp16xW3ddCgQc7XUVFRAJw6dcql8ObFvv/+e95//320\nWkel3WuuuYZp06bh7e3NmjVrmD17Nj/++GOt2gfwxx9/kJqaytatW9m4cSMPPPAAQ4YMwd/fnyef\nfBJJkti4cSMlJSVMnTrVud/x48d59913+eijj5w15USvsWmRJIldv5ziwL6zFOTq0f9VimXWvCHc\nOLYH6784gEIhRyaXoRZTTbUIrSahle37ibLffsZms1FSQ00r79jBePca6nydv34N5pyTlz1+4PC7\n8QjteNVxGgwGvL1dH8T09vamuLi40rY2m42vvvqKjz/+GG9vb+RyOTNnzuSZZ565bEKrjX379lFS\nUsL06dNRKBTExsZy66238vnnn1cqQ3MljEZjlW2t6T7alClTXIqPjhkzxvnzvffey4oVKzh16hRd\nunSpVQwhISFMmDABgOuvvx6tVsuxY8eIi4sjPT2ddevWodPp0Ol03HXXXSxZsgRwVA43m80cPXqU\ngIAAl6rfgvtZzDYWP/lDtaVYPDQqUsf1auSohIbWahKapSSPitN/OH6uYTtN5DUur805J5371cRu\nMlxNeE5eXl6VPtDLysqqLJ1SVFSExWJx+TANDw8nJyenXmLJzc0lNDTUpahleHh4tb3FutJqtZXa\nqtfra6w5FhYW5vJ61apVfPLJJ+Tl5SGTySpVnb6coKCgSjEZjUYKCwuxWCwu57v458jISObNm8fy\n5cuZPXs2/fv355FHHqkUn9B49KUV/PLzcXZsOYHd5loVy0unplvPUPwCtGg8KxfSFVqGVpPQVL5t\n0LS/BpvNVmPVYZWv6+AFdUiHWh1f7lE/tbq6dOnC6tWrsdvtzsuOhw4dqnJknr+/PyqViqysLOcl\nuqysLEJCQgDHh/PF96NsNhuFhYXO15e7VxAcHMy5c+dcfmcXH/9qdenShUOHDpGamgrAsWPHkCSp\n1rXIdu7cyerVq/nvf/9Lly5dkMlkxMfHc77E39XcCwkICEClUnH27FlnL/Ls2bMu26SmppKamope\nr+eJJ57g2Wef5dVXX73icwp1U1RgxMNDiaeXil1bT/Htp/ur3G7wDdEkD69dj11o3lpNQvPuNRTv\nXkPrXCgyaMQ/6j0Wq9WKzWbDbrdjs9kwmUzI5XJUKhV9+/ZFrVazZs0a7rrrLtavX8/JkycZPnx4\npeMoFApGjRrF4sWLeeGFFygsLGT58uXOy3DdunXjxIkT/Pbbb3Tr1o3ly5djsVzonwYGBrJp0yaX\n5HmxXr164ePjwxtvvMHkyZP5888/WbduXZ0+tM1mszPBWCwWTCYTKpUKuVzO2LFjSUtLIzU1lYiI\nCJYsWcLIkSPx9Kx+fryLGY1GlEolAQEBWK1WXn/9dZcEfrn21UShUDBixAiWLl3KokWLKCkp4Z13\n3nGuP378ODk5OcTHx6NWq9FoNOIeWiPZs/0036zbj81q57a7etO9V1tkl/x5tTo1ycO70K1nKD6+\ntXs/Cc2fGOXoBitWrCA2NpaVK1fyxRdfEBsby2OPPQaASqVixYoVpKenk5CQwIoVK1i+fHmVIyIB\n5s+fj5+fHykpKfzf//0f8fHxzsELHTp0YPbs2UydOtU50OHi3tUNN9yAQqEgMTGRUaNGVTr2+Vi2\nbdvGgAEDSEtLIy0tjcTExFq39YYbbiA2NpacnBzuueceYmNj2blzJwADBw5kxowZTJ48maSkJGQy\nmfP3UBvXXXcdycnJpKSkMHToUHQ6ncvjAZdr3+U89thj2Gw2kpOTmTJlCqNHj0atdszPZzabefnl\nl0lMTGTgwIHk5OTw8MMP1/kcQs0qyi0cP5zPtk3H+eDNnejLTIS188NL5/g7WK12JEnCL0BLr4QI\nBl7fmUcW3Ujav0fQ97qOIpm1MjLp/NfnZqamEt0Xl7e/VF17aM2JaFvDeu+99/jyyy+dw/6vxsXv\nUXeWum8MV9K+/Bw9767aTkmR6yMcs+YNxT9QS9bpYjZ9f5j+g6PoEBVYn+HWSUv+27mzbTV9vtek\n1VxyFIS6OnbsGCaTiZiYGI4ePcqaNWu488473R1WiyVJEvv3ZPPpu3uq3ebUsQL8A7WEt/fjjnuu\nfqSt0LKIhCYI1TAYDKSlpZGTk4Ofnx8jR44UCa2eSZLE7m2n2bvzDFmnKj+aAtCtZyj9BnXCU6si\nKLj6EbCCIBKaIFQjNja22hlahCtXVGBg8w9H6RAVSGxCBEUFxiqT2Ygx3UkYGIlSKR56FmpHJDRB\nEBqNqcLC0mc2AODjqwFAqZITFKzD198xgKP/4E506lr9/KCCUB2R0ARBaHCSXSIvV49areD6Ud34\n8etDZPx6ikEpXRmcEi2KYwr1QiQ0QRAazK8bj7N7ewFfv/c1AKNu68mAIVH4+nvSrkOAmAhYqFci\noQmC0CC2/nSUH78+5LLMarUjk8noESfmvhTqn0hogiDUK0mS+Hbdfnb9csq5zEOjpGOXIDp2dt8z\nY0LLJ2YKEepVfn4+48ePp3fv3ixcuNDd4VxWdnY2cXFxzhpywtWRJIkVz290SWZ+gSoefvoGxk1K\nIDjMx43RCS2dSGiNzGw2M2/ePIYMGUJcXBxjxozhxx9/rHEfvV7P/PnzGThwIH379uWpp55qsHkD\nzxcAvVIffvghOp2OjIwMHn/88Urrt23bxoQJE+jduzdDhw6ttL60tJT777+fuLg4kpKSePfdd684\nlqpc2r62bduyZ88e55RWwpU7sC+bJ9O+Jj/3QgWF4DBvBowQvTKhcYiE1sisVithYWG88847ZGRk\n8NBDD5GWlsaJEyeq3WfRokUUFBSQnp7O119/ze7du3n99dcbMeray87OpnPnztXe7Ndqtdx6663V\nznu4cOFCbDYbmzdvZuXKlSxdupRt27bV6txicuDGl32mmNyzpZhNVn7PyHJZN3xMd6alDRIDP4RG\nIxJaI9NqtcyaNYuIiAjkcjmDBg2iQ4cO/P7779Xu88MPP3Dvvfc6J9+dMGECn3zySbXb//bbb4wb\nN474+HhSU1PZuHGjc92ECRNc5iLcvn07AwcOBGDOnDlkZ2czc+ZM4uLiWL58eZXHX7duHSkpKfTp\n04dJkyY5k/GcOXP47LPPePvtt4mLi2PDhg2V9o2NjeXmm2+mXbt2ldYZjUa+++47Zs+ejU6nIyYm\nhltvvbXatq5bt47bb7+dRYsWkZiYyPPPP8+ZM2eYOHEiiYmJJCYmMmfOHMrKyqptX2ZmJtHR0ZhM\nJufvZ/HixUyYMIG4uDj+9re/cfr0aec5f/31V0aNGkVcXBwPPfQQDzzwAC+++CIAhYWFTJ06lT59\n+tC3b1/uuOMOl+oGLc2Gb/9k9eItHPz9HGoPJddc29a57s4pifQf1MmN0QmtkUhoblZYWMixY8dq\nrLAsSRIXzyEtSRLZ2dnOD+qLlZSUMHnyZMaNG8f27dtJS0vj/vvv59SpU5W2vdQLL7xA27ZtWbZs\nGXv27OG+++6rtM327dtZtGgRL7zwAlu3biUhIYFp06ZhsVh44YUXSE1NZdKkSezZs4chQ4bU8rfg\ncPLkSQA6d+7sXBYTE1NjQdE//viD0NBQtm7dyoMPPgg4qlpv3ryZb775hjNnzvDaa6/Vun0An3/+\nOY899hg7duwgLCyMl156CYDi4mLuu+8+pk2bxs6dO7n++uv5/vvvnfu99dZbhISE8Msvv7B161Ye\neuihOpetaQ4ku4TNaicgSAvAgb3ZWK022oR587e7E3j8pdFERYsHo4XG1/L+t1Xj5xO/8sRPL7Po\nl9cqLXvip5frZVldWa1W5syZw8iRI6utDgAwePBgVq1aRWlpKTk5Oc66XBfX/nLG9fPPhIeHc9tt\nt6FUKhk0aBDJycl8/fXXVxznxb744gtuueUWYmNjUavVTJ8+nbKyMvbt23fVxzYajZVm1Pf29sZg\nqL4aeGBgIBMnTkSpVKLRaGjXrh0DBw5ErVYTGBjIpEmT2LFjR53iGDt2LF27dkWlUnHzzTdz4MAB\nwPG77dChA6mpqSiVSkaOHEmPHj2c+ymVSvLy8sjKykKlUpGQkFBjMdnmSF9awaJHvyM/T09AG8e8\niuGR/iiVCkLCfIjuEermCIXWrNUM2881FHAg70iDLqsLu93Ov/71LwCX0YCPP/44X375JeCoiLxw\n4ULmzZvHM888w8iRI9Fqtdx2220cOXKEoKCgSsfNycmhbdu2LsvCw8PJycm54lgvPX7Xrl2drxUK\nBaGhoeTm5l71sbVabaXkpdfraywbExoa6nKPJi8vj6eeeordu3djMBiQJAl/f/86xXHx79XT0xOj\n0QhAbm4uYWFhLtte/Lu+5557WLZsGZMnT8Zut3Pbbbcxffr0FnMP6YM3d3L4gON9VFFuQa1WkrZw\nBFovMaBGaBpaTUIL9gqke5su2Gy2Ssuq2u5KltWWJEk8+uij5ObmsmrVKpcRdgsXLqw03N3X15fn\nnnvO+fr999+nR48eVV7OCgkJITs722VZVlYW3bp1AxxJo6KiwrkuLy+vTrFfeny73c65c+cIDg6u\n03Gq0qFDB8BRtiUqKgpw1A2r6XLspcni5ZdfRiaT8eWXX+Ln58d3333H888/f9WxAQQHB3P27FmX\nZdnZ2c6kptPpmDt3LnPnzuXo0aNMnDiR7t27M3jw4Ho5v7tknS7mzSVbXJZ9unYPd88aKJKZ0KS0\nmoQ2uGN/Bnfs79IDOL+squ2uZFltLViwgGPHjrFmzRo8PS9fUffMmTN4eXnh5+fH7t27ee2116r9\nkB40aBBPPfUUn376Kampqfz6669s2rTJeX8pJiaG9PR0xo0bh16v5+2333bZPygoiDNnzlQbS2pq\nKvfffz+jR48mOjqa1atXo9Pp6NWrV63abrfbsVgsWCwWJEnCZDIhk8lQq9VotVpSUlJYsmQJzzzz\nDJmZmXzyySe88sortTo2XLhs6e3tzblz51izZk2d2leTQYMGsXDhQr7++mtSUlL44Ycf2L9/PwkJ\nCQBs2LCBTp060b59e7y8vJDL5c26d2bQm1jy1I9YLXaX5Z26BjHqtljnZMKC0FS0mntoTUVWVhYf\nfvghBw8eJCkpibi4OOLi4mochn/gwAFuuukm4uLiWLBgAY888gj9+1edTP38/Fi5ciXvvvuuc+Tf\nyy+/7Oz9TJo0CW9vb5KSkpg6dSpjxoxx2X/KlCmsWrWKhIQEVqxYUen4/fr1Iy0tjbS0NAYMGMC2\nbdtYsWIFKpWqVu3fuXMnsbGxTJkyhezsbGJjY7nhhhuc6xcsWABAUlISkydPZubMmfTr169WxwaY\nOXMmBw8edA5WGTFiRJ3aVxN/f3+WLVvGsmXL6NOnD+vXr2fIkCHOHvapU6e4++676d27N+PGjeO2\n225j0KBBdTpHU5Gfq+elBd9XSma3T4xn/NR++Adq3RSZIFRPJl08fK4ZqalE98Xl7S9lMBhqvCfT\nnIm2Nb7bb7+dcePGcfvtt9dpv4vfo+4sdV+dbz753WW2j36DOjF8dAwyed17nE2xffVFtK1h1PT5\nXpNWc8lREOrDpk2biI2Nxcv4zJQFAAAgAElEQVTLi88++4w///yT5ORkd4dVrywWm0sye/jpFDw0\nteuBC4I7iUuOglAH+/btIyUlhb59+7J27VqWLl1KSEiIu8O6ajabnbOZJeTn6FEq5fz9nj4AdIkJ\nFslMaDZED00Q6mDWrFnMmjXL3WHUK6PBzOsvbkRfaiIxuSMxsWFoNCq8fTUMHdnN3eEJQq2JHpog\ntHKeWhW33RVPl+7BbN90gs/e20t4pB8PPD6MkLZidnyh+RA9NEFoJSwWG7t/PcUvG46hULrOYHLH\nPX3oN6gT8f0jad8xAIVCfNcVmh+R0AShBdOXmfhlwzGO/ZlH3rnKc3+eZ7PZ6di58swzgtCciIQm\nCC3U0UO5vLeq+nksY+PDnT9rPMXAD6H5EwlNEFqgk8cKKiWzoBAd7TsGEJsQQfuOAW6KTBAajrhQ\n7gb5+fmMHz+e3r17V5q3sSFdbTVqoekryNPz0X92oVYruH1iPF7ejodSH1wwjBn/Gszo22NFMhNa\nLNFDc4MPP/wQnU5HRkZGs57rT2haLGYbyxf9DMCglGi69QglLMIXb1+NGOQhtAriXe4G2dnZdO7c\nWSQz4aodPZTLZ+/t4dDv51AoZPT8677Yzi0nkMll+AVoRTITWg3xTm9kc+bM4bPPPuPtt98mLi6O\nH3/8kZUrVzJ8+HASExOZNWsWhYWFAGRmZhIdHc3HH3/M4MGDSUhI4J133uHgwYPcfPPNxMfH8+ij\njzqrWWdlZTFx4kQSExNJTExkzpw5VVa1Bses99Wd12QyMWfOHBITE0lISGDs2LH1Uu9MqF/792Tx\n3qod/JaRRVGBAblCjo+vhm49Q0m5+Rp3hycIjU4ktEb2wgsvkJqayqRJk9izZw+ZmZmkp6fzn//8\nh82bNxMYGMhjjz3mss/evXtJT09n6dKlLFq0iCVLlrBq1Sq+/fZbfv75ZzZu3Ag46qxNmTKFzZs3\n880333DmzBlee+21qsLgnXfeqfa8n376KWVlZfz8889s376dp556qlZlboTGcfp4IU8//A3r1u5x\nLisudBQhvX5UDOMmJaBUtqxK2YJQG63mHlrOjz+R+9PP2Gw2FIrK/9l7Pr3QZbvzOt5zN7pOHdEf\nP8GJN9+q9vjnt6urDz74gHnz5jmLRP7zn/9kwIABmEwm5zbTp0/Hw8OD/v374+vrS0pKCm3atAGg\nT58+HDhwgMGDBxMREUF0dDQAgYGBTJo0iVWrVtX5vEqlkuLiYk6dOkW3bt3o3r17ndslNIztm46T\n/vkBl2XePh7cOLanmyIShKaj1SQ0U24epfv/qPN2tr8KgtoMhhr3t11UOLQusrOzuf/++12qT6tU\nKnJycpzLgoIuPPCq0WgIDAx0eW00Or6d5+fnM2/ePHbv3o3BYECSJPz9/et83ptuuolz587x0EMP\nUVJSwujRo3nwwQddKmsLjctUYeFcdmmlZDZgSBSJyXX/IiUILVGrSWgewW3w6XFNtT20S7c7T/FX\nDS6Fl5fL8ksprrBWV2hoKE8++SR9+/attC4zM7NOx1q2bBkymYwvv/wSPz8/vvvuu2orW9d0XnAU\nypw5cybZ2dlMnTqVdu3aceedd9YpHuHqSZLEp+/uYf+ebJflcoWMR58bKQYWCcJFWk1CC7l+KCHX\nD71socjz211K16mj87JkfbrjjjtYvHgxzz33HO3ataOwsJCMjAyGDx9e52OVl5fj4+ODt7c3586d\nY82aNVd03m3btuHv70/nzp3RarUoFArxwekmhjITxUXlIAMuKsX7j1kDxd9EEC7RahJaU3XXXXch\nSRKTJ08mLy8Pf39/RowYcUUJbcqUKSxYsICEhAQiIyMZPXo07733Xp3Pm5+fz4IFC8jNzcXT05Ph\nw4fXuSKzcPXOZpagUMr5x6yB7N1xhqzTRXTv1ZZ2HfxRqsSgD0G4lEw6P+a7mampRPfF5e0vdbke\nWnMm2tZ8XPwerarU/ZmTRby1dCs948MJCfNhwJAod4RZL6pqX0sh2tYwavp8r4kYti8ITdC+nWfw\n0qn5PSOLo4fEM4CCUBvikqMgNEGjb48laVgXftlwlBE3iYekBaE2REIThCbmlw3H8PXzJLpHiHi+\nTBDqQCQ0QWhCTBVWfvjqIAAKhZxHnx/p5ogEofkQ99AEoQkpzL/wgH67jlU/FC8IQtVED00Q3Kwg\n18TqJVuQAVmni53L+w3q5L6gBKEZEglNENxow3d/su2HwirXRXYKrHK5IAhVEwlNENzkm09+Z9cv\np1yWdY4JxsdXQ/LwLnhoxH9PQagL8T+mGZs7dy5BQUGkpaW5OxShliRJQpIkzCarSzJrE6JjWtog\nZHIxnZUgXCkxKEQQGoHdbqcgV8/ZzBL0ZSZUagU3/b0XAMHhHkz/12CRzAThKokemiA0IJvNDpKj\n/IvZbHMslEAmk9GtZxgBQV7kFp5wb5CC0EKIHpobDB06lJUrVzJmzBji4uJ4+OGHKSwsZNq0afTu\n3Zvx48dTUFAAwAMPPMDAgQOJj49nwoQJHDt2rNrjbt68mZtvvpmEhATGjRvHH39cqN+2cuVKkpOT\n6d27NykpKWzZsqXB29ma2e0SRQUGcrJLsUsSWp0HwWHeKJRyx8z5gIdGSbuOAe4NVBBaEJHQ3CQ9\nPZ0333yT9PR0tmzZwqRJk5gxYwbbtm1DrVazevVqAJKSkkhPT+eXX36hS5cuzJkzp8rjHThwgAUL\nFrBgwQJ27NjB+PHjmTZtGuXl5Rw/fpx3332Xjz76iN27d7NmzRratWvXmM1tVfSlFZzLKqHcaAEg\n71wZhjITCoWckDAffHw93RyhILRMreaS494dZ9i36ww2mx2FonZ5fOKMAS77VrcMoFdCO67tW/sk\nMX78eNq0aQNAnz598PT0JDY2FoBhw4axfv16AMaOHevcZ+bMmfTv3x+j0YhWq3U53ocffsgtt9xC\nXFwcAGPGjOGNN95g165dtG/fHrPZzNGjRwkICCA8PLzWcQp1U1RgcCay8zSeKrReotq3IDS0VpPQ\niouMnDpW9fM+V7Lvpcsio+r2zFBg4IXtNRpNpddGoxGbzcZLL71Eeno6RUVFyOWORFxUVFQpoWVn\nZ7Njxw4+/vhj5zKLxUJubi5JSUnMmzeP5cuXM3v2bPr3788jjzxCWFhYnWIWqldRYaEwz+CyTCaT\nERz612VGQRAaXKtJaH7+WiKjAurUQ7t035qW+flrL93tqn355Zf8+OOPvP3220RERFBUVET//v2p\nqoRdWFgYEydO5MEHH6zyWKmpqaSmpqLX63niiSd49tlnefXVV+s95tbIbLZWSmYaTxUBQS2nfpsg\nNAetJqFd29dxSfBKCkWe3/dyy+qbwWBArVbj7+9PeXk5ixcvrnbb22+/nenTpzNkyBB69epFRUUF\nO3fu5Nprr6WgoICcnBzi4+NRq9VoNBqsVmuDxt5alJZUoC+tcFkWEOSFxlPlpogEofUS10KasJtv\nvpnw8HCSkpIYPXq08/5YVXr27Mnjjz/O008/Td++fRkxYoTz8qPZbObll18mMTGRgQMHkpOTw8MP\nP9xYzWiRyo1mzGYrSqUcD82F5BUa7iuSmSC4iUyq6vpVM1BTie6Ly9tf6kp6aM2FaFvDkySJglwD\nZrOVgCAvPDRKLGYbRoMZX39PZLLaPRx98XvUnaXuG0NLbp9oW8Oo6fO9JrXqoa1du5axY8fSo0cP\n5s6d67Lu8OHDjBs3jl69ejF69Gh27dpVad+kpCTi4uKYPXs2er3eua60tJT777+fuLg4kpKSePfd\nd2sduCC4g8Vsw2p1PCBt0Jswm6yoPZT4BWhrncwEQWgYtUpowcHBzJgxg1tvvdVlucViYdq0aQwb\nNoydO3cyZcoUZsyYQUlJCQBbt25l2bJlrFy5ks2bN2O1WnnyySed+y9cuBCbzcbmzZtZuXIlS5cu\nZdu2bfXYPEGoXyq1gpC2Pui8PVCpFKg9Ws1taEFo8mqV0EaMGMGwYcPw8/NzWb5jxw5MJhOTJ09G\nrVYzZswYIiMjnc9QrVu3jrFjxxITE4NOp+OBBx7gm2++oby8HKPRyHfffcfs2bPR6XTExMRw6623\n8sknn9R/KwXhKpkqrJzNLKEw34AkgY+fJz5+tb/EKAhCw7uqQSFHjhyha9euzuejAGJiYjhy5Ihz\nfbdu3ZzroqKiADh16hQnT54EoHPnzlXuKwhNhSRJFOTpkSQJU4WVnLOlWC02d4clCMIlrup6icFg\nwNvb22WZt7c3xcWOqrtGo7HK9efvo116k9/b2xuDwfV5nsvZv39/pWVKpbLG49T1HM2JaFv9M5Xb\nXV57auWYzBWYzFd+TLPZTEZGhvP1xT+3RC25faJtTcdVJTQvLy+XQR4AZWVlzkSl1Worrdfr9eh0\nOux2e6UPKL1eX+eRbNWNcvT09HTpOZ7XVEbLNQTRtgY6d2mp8+c2Id6o1IqrOp4kSajVanr1cpSP\nackj5aBlt0+0rWGcH+VYV1d1ybFLly4cPnwYu/3CN9hDhw7RpUsX5/pDhw451x07dgxJkoiMjKRD\nhw7OZecdPHjQue/V8PLyIisrC7PZXOWsGoJQW1arDavV8f5WKOT1kswKCgrQaDT1EZ4gCBepVQ/N\narVis9mw2+3YbDZMJhNyuZy+ffuiVqtZs2YNd911F+vXr+fkyZMMHz4ccEysm5aWRmpqKhERESxZ\nsoSRI0fi6emYbTwlJYUlS5bwzDPPkJmZySeffMIrr7xy1Y2KiIggPz+fU6dOVZoRw2w2o1a3zIli\nRdvqn760AqvN8aXIw0NBYcnVx6DRaIiIiLjq4wiC4KpWCW3FihUsW7bM+fqLL77glltuYdGiRaxY\nsYL58+fz6quv0q5dO5YvX+4cDTlw4EBmzJjB5MmTMRgMJCcn89hjjzmPs2DBAubPn09SUhJeXl7M\nnDmTfv36XXWj5HI5wcHBBAcHV1qXkZHhvNTT0oi21a+CPD0frf7Z+fpfT6WIWUAEoQmrVUKbNWsW\ns2bNqnJddHQ0H330UbX7TpgwgQkTJlS5zsfHR0yQKzRZ767c4fy5Z+9wkcwEoYkTczkKQhVysksp\nLjQ6X4/5e8vs+QpCSyISmiBUwcdPw13T+xHRwZ8hN0bXueSQIAiNT8zbIwhVOJtZQlmpiX/MGuju\nUARBqCXxtVMQqvDTN4coyNNTWlLu7lAEQaglkdAEoQr6MhNHD+ay8bvD7g5FEIRaEglNEKqg89Gg\nLzPh6dUyn+sThJZI3EMThCpMvv86d4cgCEIdiYQmCJcoKjBgMdvQeKrw8fN0dziCINSSSGiCcBFJ\nklj6zAYA/AO1zJo31M0RCYJQW+IemiBcJPdsmfNnUbxTEJoXkdAE4SL6MpPz58Tkjm6MRBCEuhIJ\nTRAuUm64ULWzQ1SgGyMRBKGuREIThIsYL0poWjFkXxCaFZHQBOEiRuOFhOapFbPrC0JzIhKaIFxk\n0/ojAGg8VcjFhMSC0KyI/7GC8BdJkpDLHSMbTRUWN0cjCEJdiYQmCH+pKLdgt0sADBgS5eZoBEGo\nK5HQBOEvhrIL98+CQ73dGIkgCFdCJDRB+MuOLSecP2t1Hm6MRBCEKyGmvhKEvwwbHUPfpI58/8UB\n2rbzdXc4giDUkUhogvAXtYcSbx8Nt9wZh8ZTDNkXhOZGXHIUBMBus7Ps2Z/4Y28WpSUV7g5HEIQr\nIBKaIAAnjhZQmG/kq49+Z+eWk+4ORxCEKyASmiDgmFk/ooM/AL37tXdzNIIgXAlxD00QgE5dg+jU\nNcjdYQiCcBVED01o9SRJoqjAiM1md3cogiBcBdFDE1q94sJylj7zEzIZjL49lrhEcclREJoj0UMT\nWjWjwczSZ34CQJLEA9WC0JyJHprQ6uScLSX7dDEAX/7vN5d1HTuLop5C62Oz2Sk1mMkrLufImWIq\nTFZyzukxKrKoMFnRl1+YrFvmmL8buUyGj5catUqB2WLj5NlSZDIZnh5KurTz49qubZCd37iRiIQm\ntAqSJLFj8wkO/HaOMycKq9zmn48ORe0h/ksIzZPdfqFahN0uYbNL2Ox2Kkw2jmYWs377KYwVFtQq\nBZIEhnILdknCZHYko6p8m7HriuNZ/MAgoiL8rnj/KyH+9wotlqnCgofGMePH5+/v5beMrGq3nfnI\nEPwCtI0VmiDUyGSxoZDLsNslCkoqMFRYUMhlKBVyfjuaj77cjFwmw2SxsetgDscySwDw9FBgtUlY\nrO4d4BTs70kb/8b//yQSmtDiFBUYeXvZVlRqBffNHYJMJkOlVjjXh0f60SEqkIQBHQDw8lajVCqq\nOZog1MxqsyOXyZy9I6vNjiSByWzFYrNjsdqx2uwE+XpitdkpKKnAYrVjt0vYJQmrzc6ZHD37j+fz\n25F8rH9d/rsS5SbbZbfx1akJ8vNErVRQbrJisdrx8lQS6OvJgNi2+HqpCQnUsnfffmJiYlDIZfj7\naFDIXS8flhktlOhNqJRylAo5apWCYH9HGxVyufP30ZhEQhOatbycMnZvO82f+3O4454+tAn1RiaD\nslITACePFdCxcxBhEX4MvkHDtX3a4ePn6eaoBXczVlg4dbaMTXszKTNYsNnt6MstGCscNfGsNsnx\noa+SY7VKmC02KsxWFAo5SoWM4jITRWUmR+J5LxO5DLy91Nhsksv9psYkl8tI6ReJQiZDp1WjUspR\nyGUoFDI0aiXdOwbQto0OZS0rsZ/1U9GxbfWTdGs1KkKquKqhcuOXQ5HQhGZDskuUllRQXGTkxJF8\n9u/OpjDf4Fy/e/tpUm66xvk6MioQnbdj1KKY/aN1MFZYMFZYycwt4+TZMg6fLnL0gqx2TBYbZUYz\nBcUVFOtNlz1WdfeVqmKXoER/Zb2qi6mVctr4exLTIRAPtQI/bw8CfDR4a1XYJcfgDbsE3SIds9po\n1Eq8vdSVek+tlUhoQpMnSRIHMkr5YV06pgprtdspVY5vhj6+Gh559kaXy4xC82K12cnK0zsGN9gk\nTBYbOYVGyissFOlNmC0X7hEZKywcOFHIuQLDFd87Cm+jQ6GQ4evlQYXZSrHehFLhuJSmUshRKh29\nHIvVjrHCgpenCj9vD4qLi7HigaeHktBAL5QKORarHblcRoC3Bz5eapDJMJlt2OyOS3EaDwV+Og8U\nchkyuQy5TIZaJScq3A8vUeXhqoiEJjRppSXlrHl1K6XFVc+AHxXdhsTkjoS398NTqwZArpAjF7ms\nybJYbWQcyuVEdimlehM2ScJul9jzZy6FpSYkyTFCr77I5TIiQ71RKuT4eKnRalQE+moICdDSLtib\nHp2DrriHk5GRQXx8fL3FKlwdkdCEJi3zZJFLMrvu+s4Eh3kTHOqNj5+nqFvWjEiSxOHTRaS9uvmq\nj6VUyFBcdC9IhuOeTny3YIL8PAn298TfR0OQryeRYT5XfT6heRAJTWhyLBYbJYXlBIXoiL4m1Ll8\n+r8G0SbE242RCbV1LLOYjEO5HM8uIb+gkC93/0rGodwqt/XxUiP/69KbJEl0be9PZJgPvjo1bfw8\nnSPmPD2UtA3ywkOtQKsRX2SaIkmSsOmLUXr7u+X8IqEJTcqm7w/z83eH8Q/Ucu8DSahUCiKjAojq\noRTJrAk6ebaU7Dw9FqudP08XUVxmYvPeqp73q3zJeO7EPgyMbdvwQbZCkiQhmcuR7HYUnjoqsg5j\nKysEZNhNBtTBkXiERTm3L/vtZ2z6IiSbBUtxHtaSXHSlxWQf+AyZSoNkLkeu8SJ03CPOfQxHdmH8\ncwemnBNYis6BZEcyO/7O7e57DZVfSGM3WyQ0wf0yTxWhVMoJDfelY5c27NxykqICI5++u4c7Jvdl\n4owBZGRkuDtMAbDZJTbsOsPOg+f45beztdrHQyWjXaivY3CFQk5SXDjD+rRz6/DupkiyWZApLvQ8\nbeVl2MoKsRlLsRmKQSbHZijGZiwDuw1JsoPdjq5HMh6hHR3HsFrIWfcixiM1z/Dhd91tLgmt+NdP\nseRnumyjAiqKLnodEOay3pxzkrJ9P1Z5fLlKU5sm1zuR0AS3sdvsbN1wjA3f/knbdr5Mum8A7Tr4\nc/P/xbFn+2lGju3p7hBbpeIyE4fPFLH/WAGZuWWUGcyU6M0U602Um6ofZXpeaKAWtUrBHSOiSYgJ\n4Y/f97XIgRN2qxlFcRYVWd4ovQOQ7HaQ7Ci9A7Hqi1D5BQOORKX/YwuWgmyQyZEsFdhNRiSbFZlK\ng01fRPnpP5BM5XR69GPn8cv2fE/hhncvG4dHWJQzocmUKkzZRy+7j2R1fcRArnZ9NlPp24YKVHhY\nDchUHsjVnqhDO7nu46FF4R2ATCYHmRxVQCjqkA5IVisylfqyMTQEkdAEt5AkiW/W7Wf3ttMAZJ8p\nYfvmEwwc2pmo6DZERbdxc4Stx54/c1n381HKK6xk5enr9GBwcICWW4d0pmdUECqlnAAfDWpVy+15\nSTYLZb9vomjjB9j0hfgA2dsqb6f0C6H9fa859rFakSwmin9ZV7eTyWp+AFqmUIFcfmG2YOe5g1H6\nBaPw9EYVGI7dXIHcQ4PSpw3q4EiUPoEotK4DZUJun4tc7YHNUIJC64vcw5OMjAy61vBFxLfPSHz7\njKxbmxqYSGhCo6kot3D6RCGnjxeyZ/tpyo0XPjgHpXRl4NDOboyuZSszmjmbb+DImWI2ZJxBpbzw\nYbn/WEGN+4YFeRHgo8HHS01ooBdajZLOEX4kxDT+PZL6JkkSdpMRu7GEst82Un58L3ZzOTZDsaPX\n8ldSaT9zxV97yByXAfVVT3DtdFGSkXtUMTONTI5MqUayVCBTqJCp1Ch92iDZbcj+euZE2yUBpU8Q\ncg9P5BovJJsNmUKB0i8Epa76QRfhk56t0+8AQKlzTCJ8aU+tuREJTWhwOdmlfPm/fWSfKaly/Zi/\n9eLavu0aOaqWTZIkDp4s5J1vD142YV2sb/dQlEoZ7UN8SI4Lp42fJ5pmVIHAbjVjMxRjKTiLtSQX\na2m+o9CdZEf661+vrn3RtIsBwJKfSebK2VUfq8IxC43c88JgJJlC6egVOV5hCu9JeK+BjldyOZbi\nHGRyBUrfYOwWE3KVY6Yar5iBePe6Hru5HMlmQ6HzRSaTI0l2xyW7KqiDIlAHRdTHr6XVaD7vVKFZ\nKi0p542XNlW5rkPnQIaNjqFtu8YtMdGSWW12nlj1K/uO5F922x5RF2q/BfhouPemnvh5N80Cp5Ik\nYS3NQzKbsFcYMJ09is1Yhnfc9ah8HfeqTOdOkPVm2mWPpfQJciY0ubrqwQsypRp1SAcUXn4ovQNc\n1vn0TsGv/83I5AoyMjLwibv8/UGF1pEUFUrXxw2qS2bClREJTah3RoOZLT8eZcSY7thtF2Z8UHso\nGTm2B6HhPmg8VWKS4HqQV1TOiewSbHY7GzIy+fX3qkcexnVtw+D4CPy9NYQH6wh2Q2mPi1nLipDJ\n5X/1WKxINisq/1Dkag2SJGE4+AuFP73z16U7GdbinCqP49kp1pnQ1MHVzNf516AFmUz2V+/qosuB\nnt4EDLkTudYXmVyBTO2BR2iUc0BHVRSeuittttDAREIT6pXVauPFx9ej9VIzYkx3lEo5XbuH0K1n\nKD3jw11mdxDqrqi0gg0ZmRgqLGzbf5bT58qq3TbxmlCG921PbJc2eLrzsqFkx5yfiSnrMCW7vsN8\n7liVm7Wd+AyaiGhkMhlKvxCsJXmXP7b9wtyNMrkCpV8wco0OXUx/PDvFoQoKR66sfsSdXK3Bb8DY\nOjdJaJpEQhPqlUJ+0WCDPVn0iAvn7/f0cWNELcvSj/ay80DVvZXzOrX15dG7+xLshoKlks1CReZh\nkOx4dnA8diGzmsl84/5a7HvhkQC5UoUqMPzCs1KShGS3oQ7pgFztiUzlgXevIZUu2bW/bwWCe5lt\nFpRyBXI3XE4VCU24KjnZpWzbeByNVsX1I7uhUMjR6tS0i/QXQ+/r0Y4/znEss7jKZJYQE8IdI6Kx\n2SQ6tvVp1EEckt1G2Z7v0R/YSsXpA87l2s7xzoQmVTFTtDo4EnVwJJp2Mcg9tMgUSpcBEOrgSNpN\ne7XhGyDUq+OFp1mw4WWWj3oSH03jz+wjEppwRcqNZtI/+4PfMi5Mc/TH3mxmzh1C2r9HuDGylmXX\nwRz+vbryg04DY9syZ3w8EtS6YGN9Ktu/iYLv38JurLpmmFVfhN1qdlzukytpc9P9KDy8UPgEog6O\ndNzPEpo0SZLYdmY3FpuV6DZRBHsFYjAb2Z65F39PH64NvQaZTMYPxzazdt+neKo0vDry3zw4YDLF\nFaUioQlNmyRJFOQZ+Pm7Pzmwz3XwQZsQHcNSu6NuRkO8m7rdf+ZWmcw6tfVlwsiYRrkfKUkSxqMZ\n2E1GvHskA2AtzSf/mzeQLFWX9PGKGYBfv5suTOMkkzn3FZoWSZKcXy7KLRX8dHwrNsnGmG4jMNjK\nWf7LewD8s98/CPYKpKSilNd3vkM7nzB8Er2JCojEbLNgtJRjsVtRKVTEhsQgwz1fWMSnj1AjSZIo\nN1jI2HaKPdtPU1xY7rJeLpcxcGhnBqd0RSaq5tabEr2JBSt/dVk2b1If+vUIa5TejaU4h/xv36Di\n9EEkqxltlwRnUlL6BKHyD8acexqQ4dN3FLru16EJ79LgcQlXRpIkykx6NEoP1Eo1ZquZ13euZcvp\nnSwb9SRtvAJ5Z+8n/HB8C/FtezKm2wi8FJ4u+wPOB8bPlJ7lqY2vsvjGBYR5B9M7rAeav+ZvVLix\nGKFIaEK1JElix5aTpH/2R5Xre8S15aa/X4tCKUYu1rdXP9zr8vrLl25qsHNZCrMp2fE11rJCzOeO\ng0xWaYSh6exxrPoi5wwVPvE3ogoIc94nE9xLkiRMNjMapeM5wp9P/IrRUk6v0O6E+4SyfMd/2HRy\nO10CO/LU9XOwSja2nN4JQIXVBEBUQCQ/HN/CyaJMjhacBGBy/B108Iugna+jKkKwVxCvjX4aZOCj\n1qFWqokL60FcWI/Gb2xYyyMAACAASURBVHQVREITnLb+dJQtPx7FbpcYNKIrA4ZEuRTQlMtlJAyI\nJCzCl569w5GLIfgNoqi0gh0Hzjlfv/avobXe11pWSEXmn0hWE9bSAuwVeiSr1fGvzYrxaAYyuQK/\nAbc4h6vnfb3CZUDHpfwG3oo2Ks5luiWf3uI+qbsYLeXk6guI9AtHJpOxetf7bD29kyeHzSHCxzEj\n/lu7/0e5tYL7+/+DcJ9Q53IZMsdjETJHL0ohV7Ar+zfa+4UT4RvGLTE3MKTTAEJ1bcg4WcCIzq6X\nipVyBUFerg+aNyUioQlOXbqHkPHraYoLjdhsjud7vH009BkYSaeubYiMChQVohuY3S5x17/TAfDA\nzJ19dfjn76X4WL7zAWSbvgiboRi7xYTNUIxvwkh84lMAsJYWkLvuxRrPIQF284X7X2H/9zilu7+n\nYP2byFQa5B5adNcMROnbBt01yc5ZLgT3Ka0oQ+fhxdMbX+X3nD9J6TyIu3uPc9yrkoHBUs7c9c9y\nT++/M7hjf2evq6i8BKO5nGCvQHqGdCM6yDFjvkqh4sNxr7lcvo4OiiI6KKrK8zcX9ZLQJkyYwN69\ne1EqHYcLDAzkhx9+AGDHjh0sXLiQM2fOEB0dzdNPP02XLheutb/yyit88MEH2Gw2Ro0axfz581Gp\nxIdmQ7NZHaVbzpwoRF9awYTp/QkO9eb/Jvdl++YThLd3fBvv1DWITl2D3Bxty2a1SaRvO4WlrIDs\nwgtlPXp7nKTX0W3kXqYaiO2vOQf5//buOzyqKn/8+PtOn0lmMqmkQEhISKGmEQhVkKJIEwsW7OjP\nsmJddXUty+rudy0sYsO66q67Loq6dsWKiKKEXkMnpPfJJJOp5/fHhIGYhICAKZzX8/A84ZYz5zP3\nznzm3nsKoLGEt1qv6IyotDoUnRF8PoTwoY8+/MWlqLVdcuT005UQAq/w/6BcuOpFNpZuJURv5pnp\nj3DZ0PN4bf3bfLbrW9aWbOapqQuICgqntyWGjJiBZMcORlEU/n72A5Q1VBJmtGLSGRkZn8PI+JzA\na/TUVqYn7Qrt3nvv5eKLL26xrKamhhtvvJEHHniAs846i1dffZUbb7yRTz75BI1Gw1tvvcXHH3/M\nsmXLMJlM3HDDDTz33HPMnz//ZFVL+gW324ut1sHLT35P0xHThCxa8AVzrh5GUmok55wvn4ucamu3\nl/PvT7egaSjnYt/7xCse9IqH3Y2ZgP/9P2NcFqz5ZStHBUWtQW0OQx1s9c9TFREXWKvSm4icfjP6\nuBRUGi1qS0SP/fLqaRrdDv767dPsrjnA74Zfycj4bOJDYlhTtAGdRofD3URfa2+mp04iMiicGamT\nUKlUzEibzIy0lreAYy3RxFqiOymSznNKbzkuX76chIQEZsyYAcC8efN4/fXX+fnnn8nLy2PZsmVc\neeWV9O7t71B5KPnJhHby1VY38ul7WyjY0rpjbp/EMPr2CyMhqfWve+n4CSFYs62MkqoGft5Sxs7C\nGhRFIVqpJF5VTpqyF6uqketUdjSKD454FKnGh6LA0ORIMrP60hR0MYb4AegieqMyBAWmFmmPSmfA\nPOSMUxug9Ks5PS4EAp1Ky/Ld3/HV3u+5ePBMMmIGBrbx+A6PmDIrbQrFtnLM+iBsznqMWgNZsYPI\niu0ajTC6mpOW0BYtWsSiRYtITEzklltuIS8vj4KCAtLS0gLbqFQqUlNTKSgoIC8vj507d7ZYn56e\nTmlpKfX19ZjN8r79yVBVYWfNqv2sXrG3zfXX3DKauHg52v2J8np9fPrDPjbtqeL7DcUAxKsrKfSG\nI1DQ42Ji8M+k64rbLUM9aDJXZp/JjbFJqJq7QBgjz/8tqi+dZFvLd/JxwVdkxAxkYtJoAG79+CGK\n68u4LudSzuw3ioigMPbWFPL8z2+Q1yeLS4bMwtd8q9HYPO2MQWvg9lHXdloc3c1JSWh33nknSUlJ\n6HQ6PvroI2644Qbee+89GhsbCQkJabGt2WymocF/z7+xsbFF4rJY/LOoNjQ0HHNC27x583HXNz8/\n/7j36S6OjM3t9vH5Wy2vyDRahX7pQZiCNYRGaCmt2E3pMYwB2xV0teO2q7iJrzfVUWP30uj0oSDo\no67i95YfiFXXolIEt1XPRaAQGRGM0EeBw5/QPIqGWnMipqgYfOYo3JFJoFJTWVYHZWs7ObKTr6sd\nu5Ppo+8/Y1fDfgQw1JKKRRvMyweWUemqwWN3EVrr789V3VALwPY9OwitNbKvsQitoiFECaKpupEN\n6zcwPngYs0In4Ct2kl/c+e9ZdztuJyWhDR06NPD3ueeey4cffsg333yDyWTCbre32La+vp6goCCA\nVuvr6/0jhx9afywGDRqEXn/sczjl5+eTfZRpxbuzr774kfL9avomhTFiXD8URWHXhh/ZU+CfG2v8\n2amMmdg9O792leMmhODxN/JZsa6IMFU9kap6RugKGWI9gEVx8Mu+5a/dnkVIbDyKotCwMxKvPQ/z\nkHGHR9Gg68R2qvS0+D7Y/gWf717B3aNvoGxXMalpqbz2xXsATM2aSEpEP3bpilm29WMqqQvEPsK7\nBbfXzZCYQWQnZJNNNucxozNDOarOPG5Op/NXXayckmdohx5Cp6Sk8NZbbwWWCyHYsWMH8+bNA6B/\n//5s376drKwsALZt20Z0dLS83XgcbHUOykvqSU6LoqnRS8HWSgq2llG4r4YLrshm+Nh+9Iq1cOY5\n6YHbWNLxa3J6+MeHW/jsx/14fYJB2kKuNX991H3MmZMw6dWBz0NQ/5yjbi91DW6vm4KqvQyMSgFg\n+a7vKKwrZmR8NmmRyTi9LsrsFTz87WImho5gjL71PGx5fbJIiUhkSK/0wLIbcy//zWI4XZ1wQrPZ\nbGzYsIHc3FzUajUff/wxa9as4Q9/+ANhYWE8+uijfPjhh0yePJnXX38do9HIsGH+6URmz57Nyy+/\nzLhx4zAajTz77LOcd955JxzU6UAIwaqvd/PlR9tJToskOS2KqBg9Zoseg0lHdp5/ANj+6VH0T29/\nskKpY6VVDVz/l8+IU9fQS1FTTCib3b3Zq00m0X24Tb02LAZz5iS0oTGYkrNQ1LKbZ3dzoLaIOz97\nGAWF/855FoD8kk3sqNjF4Og0hBAkWP2tSh3uJvQqHWFGK4vPWUB08OHZJeKtccRb49p8DenUOeFP\nnMfjYdGiRezZswe1Wk2/fv145plnSEry93N55plnWLBgAffeey+pqak8++yzgf5qF1xwAUVFRcye\nPRuPx8M555zDDTfccKJV6hF8PoHL6fGPwWZz4vX4qK1uZNvGEspK6qkqt+Pz+cdXc7u9OJs8KCqF\nG+8+A71B9uM7WYQQvPvMMywMWw3ATncvvgi7iLNHJjAmeSSuigNozGFoI3ofdSJJqWtqcjfx5qb3\nCTVamZE2CavR/8xfpSiU2SvoFRyJUaOnwe3gsZVLmDv0XKYkn8Er5z5OsC6I/Px8tGpti2QmdZ4T\nTmhhYWEsW7as3fXDhw/no48+anOdoijcdttt3HbbbSdajW5L+AQHD9RSXFiLz+sj74wkhE/w8pMr\nKTlYd0xl9EkMQ6f3N+eWyezk8bicHHjsEqYc0VI+xeJgyvzDwwFprfLqt7upaKjiyz3fc8HAc3h0\n5RI2l+9AURQKbcVcOHAaUUHh6DV6zLpgAG7Ju4b5I66m3mnHrA9GURT0yB8vXZG8J3IK7d9dRXVl\nA/U2Z2BZbVUjNdWN9E0K44wpqQC886+11NU46JcSQd4ZSR2OWh/TO4TIaDMRUcFk5PYh2HzsjWKk\nY+NxuTjw2CUtlrkNocSfd2sn1Uj6Nbw+Lz8U5qNT68jtncG/NrzD+9uXAzAt5Uz+eMZ8tpYXsOCb\nJym2lREZFM7T0x5uVY6iKJ0yv5d0fGRCO0mcTR7yf9jPgb3V1FY1Um9rwtHobnf74sJa8sb1Q2/Q\nkjUinq8/2YHL6Q3MT5SQHE6/1EiCgnTo9GpMQXoUxZ/MLFZju+VKJ8fuN5/gyGvdnfGzmHLZZZ1W\nH+nYeLwetlbspFdwBG6vh9s/XQDAoKhUcntnYDVYSA5LYFf1PtYUb+SMxDxizdE8M+1hIoPkwALd\nnUxov4IQgq3rS1ixvIDZc7PoFWvB4/byxYfbjmn/0HATFquBijI7vfuGkjOyL4n9I4jpHRJoETdp\n+oBTGYLUAdfBbYGEtmfojUyZdman1kdqrcZRx47K3QTrghjUy3+347r378HuauDa7EsYk5DL3KGz\n+d+2z9hdvR8hBNNSJzKyTw5bygsYFjcEgDCTHFigp5AJ7Rg02J189dF2IqLN5DX371r93V4qyuys\n++kAZ806PAyNwaglLt6KTq/GEmIkKS2S+MQwNEfMGfbLaVeMJh29+8p78l1FVZ2D9Y44RhkKKPZY\nGT15XGdXScLfgGNtyRaG9EojWB/Ezqq9LFz1IqPjhxFuCiXGHMWQ6HRWHVjDlooCJiWPYWrKBHzC\n559FufnHYpjJypiE3E6ORjoVZEJrh8fjZVN+Ebu2V7BtYwkAFquB4WMSW/Tnqizzj3piMGm55Y9n\nYgkxyJmbu7k3lxewzZnEKEMBW0PHMlonPyadwefz8fLaN7k843x0ai33LP8/bE47N+RexrC4oYSb\n/DNCrDzwM3trC/nbpD/QLzSeioYqxifmAf75u2alT+nMMKTf0Gn/Sa2tbsRW14QQAluNg+KDdZQV\n29i3q6rVtrbaJirL7URFm5l+4RBCQo3o9P63UK1WERIqn211d/ZGF5/+sA89Ify5dhYLb76gs6t0\nWiqtL2f+xw8CcOmQc/EqKob3zuTdbZ/y2Mol3D3mRpLC+nL9sLkM6pVGpCkMRVGYkTaJGWmTOrn2\nUmc57RPa91/tJv+H/UfdJjLaTEychelzhqJuvl0YGS1bPPVEBbuKCFPZqfYFk5wQQ6jF0NlV6rFK\n68spri8nK3YQDncT9y7/G40eB+emn0VuXAaXDjmXNza+y4v5/+b6YZcRY45iRO8srs25GLPe36R+\nQr9RnRyF1JWc9gmtLWaLnshoCxFRQYybkoLRJJ9vnS6sH9zJHRY9+zyRjL7sb51dnR6hyevk7S0f\nY3PWM3vA2VgNFv676QOWbf2Ys/qfQVbsILQqDUX1pf7tPU7CTFbczdOoTEk+A71GxxmJeZzRfCtR\nktpy2ie0ITm9SRkYhUqlQqfXYA01Yg6Rv8pPR55GGwDBKieJ2gpCZf++E+L1+buh1LrrWbr5AwAm\n9huN1WBBrfLf6ahx1JFfvImsmEGM7JONTq0jwdoHgJlpkzh/oJxFWzp2p31C65MQ2tlVkLqIFa8u\nIeHQ38aJDJYzPf9qb256n3e2fsKCCXegOuJ9bPL4BxmINIWT2zuDrJhBDI5KRVEUbh05r0UZWrUc\n9UY6Pqd9QpMkgBff28QZ1T9B83fv2bNly7hjta1iJ9/u/RG3z8OcwTOICgrns13fAlDvasCiCeZv\nk+8l3GgNjLYxLnEE4xJHdGa1pR5I1fEmktRzVduaePSfa/hp1VrUin+w58qQAfRLlCOlt0cIwZub\n3ucv3z6F1+fl1XVv8dXeVXy3/yeczVdgEcZQFEVhc9kO9CodiaF95NBR0iknr9CkHq+mvomdB2qp\nqHVQXGln1YZi7A7/sGRNLi8Aw3SHu2mkjZIdqdvjEz5u+fghyuwVhJtCUavU/HXSPfxr/Tt8WPAl\nXp8PgAcn3IZRY0CtUne7WY+l7ksmNKlHcLm9VNY6cHl8NDjcbNtXzbod5RworafW7uxw/5lBawN/\nBw8ee5QtT08/Fq7F7fWQF5/NnEHTWVu8yd+huaaQxNA+XDRkJucPOgeT1t8XM1h37LPOS9LJIhOa\n1G3V2Z189uN+Nu2uZPPuKjxe3zHtp1GrCA8xkDc4BoBwix7Ljx6EFxS1Vs5r1szmtGPWBaEoCgtX\nvYhZF8S2ip1cNHgGVoOFaalnkhjqb5GoU2vRyUYcUieTCU3q8rxeHz8V2Hn35++xNbjweH043T7K\nqxuPup9WoyIzJYrocBNDkiOIiwomJjwIxe3AVVUEgK5XAnjcVNpG0rDtB0Jyp/0GEXV9qw6s4UBd\nMRcOmoaCQpwlmiJbKT8Xb+Sa7IsCgwFLUlciE5rUZTndXj77YR+vfLAFb/Ps3G1RqRRyB/QiJT6U\n2IhgtBoVvaw6epl8qIULb0MdrqotuNYfoOTAVlxlewP79rnhKbRhsUTNmA8z5v8GUXUPPxVtYNWB\nNbyz9ROen/F/zB06G5PWQGpEEipFtiWTuiaZ0KRO53B6KK1qYMPOCoorG2h0eDhQZmNfiQ0hQEGg\nxodAYUSinkh9ExZRT6SnlF7aBixqJ6Z+mYSNGx4os+y9v1O8ZWUnRtV9eHxevtj9Ha+s/S/zR1zN\n6L7DuHzoeaw6sIYgrZFQYwjZxsGdXU1J6pBMaFKnaHJ62FtsY/lP+/k6/2C7z7+Miov7Qt7DrGry\nL6hrvY0L0IXHtlimtHUVoVKji4xHH9cfQ1wKalMI6uCwE4yk6/P6vGyv3M2W8gIuGHgOiqLwc9EG\nvt//MwA3Db+CtIgkABb/+Aqf7PyaP42/nayYQZw/8JzOrLokHReZ0KRTos7upKy6kQOlNkqqGimq\nsLO3qI5qWxMerw+Pt+UtRDVejIqLvppKQoL1VASn0L+PlZT4UMxf/w/amfxbZbKgi+qLLqpvi+Wm\n5Gz0cSmo9CZUhiB04bForL1QVOpTFXKn8wlf4HZgbZONRreDWHMvHO4mnv7xVaocNcxKm4xOo6PI\nVsqqQn9z+htzLwcUNCoNo+JzmNBvJBq1hnvG3tSJ0UjS8ZMJTTppDpbXs+tgHV/+dID1Oys63D5C\nZeNMw2YStZVEq+tQ8Cc5U3I20XOuDWx34OcQGoxJRCcPRGUIQh0cijYkCnVwKBpLeJtlBw8cfXKC\n6gb21Rzkrs8f4fphlzGh30jWFG3g0ZVLuDLzAgxqPYt/fIUqRw0AB20l9AvrS7AuiFhzL38BikJC\naG/+fcFTnRiFJJ04mdCkE+L1+iiubODhV1ZTXNnQ7nYRIQZiwoOY6fkQs6sCjdeJxutou8ymluXE\n3/gM+fn5hGZnn9S69xT/3fw+AEL4sDsb8Ar/7dtX173F13t/4ObhV1LbZMOkNRJv7Q3AxKTRTEw6\nfZK+dHqQCU1qwesT+Hw+qm1O1hdUUFHTSGWdgzq7C5fbS029k3CLAY1GhcPpYdfBWpzNo22AvwGH\nQXGTF+1glLUMS0gw8dPnYTL4+ygdfPEdXPbaFq+pi0rA0HcAmpAo1CYzpn6Zv2nMXZ2tqZ4DdcXE\nW+Mw64J4bd1bfL77O/404XaSwvoSYfI/B3x326fk9s4gJjiKWelTMGj0zEybjFqlJh45lJfU88mE\ndhprcnmoqmuiuMLO5t1VrN5SSmlVw1GbyAMUltU3/yVI0ZTQz1BBvKaSMK2TaE0ditcNTqAM1A2h\nmAw3BPY19ElH1ysRRaNFHRSCoc8ATP2Gnrogu6kmjxODRk9hXTF3fPpnAO4afT0DIlOINkfh8Xm4\n74tHuX7YXCYmjWZ47wzSI/ujVqkx64O5xCoTmHT6kQmth7M3uiitamR3US37Smy4PT5q653UN7rY\nure6w/0VBULNeqzBBtRqBY1ahdvrQ+tzcoXjNYw0tdzB2/K/apMZn8cVGH0j4qxrkY7uhZ/f4Is9\nK1k65zn6hMRiNViobbLh8now6YyB4aXG9h3OuIQRqHtwQxep6xBeL96mpnbXqfR61Ho9NflrMaen\nozEZf+MayoTWYzQ43BRWOtny8Va+WXsQe6MLIQ4PvnssosNNZKZGEWk1olIU+sWFMDg5Ao1ahcde\nQ/26LzD1z0EfnQhA+QcF2Dd+DYA6OAxteAzasFi0YTFoLBEY4lLQhESeknh7Ap/w8c7WT1m66wMm\niR1cm3MJLq+bL/aspFdwJAfrSoizRJMYGk+v4AgGRaUAkBU7iH+d9yQ6OUTXaUd4vThKSnHX1CC8\nLT/bIUMGgxDU5K/Ftm07AG5bPX3nXowuNJTKVT9w8O13AYHHZmuVnHJeXILaaKTko4858J//4vF4\nWa1Rk3L7rYRmZWLbuo3Nf3yw3boNefxvmPsnY9+9h+DkJEAmNOk4NDa5+fSH/eRvL2Pz7kr8dwqP\n3row2KglJFiPXqcmLjKYlPhQ4iKDiLFqsdbtwNdYivB5ET4PTRu2UvLVQYTPh6e2DMDfj6s5oYWO\nmo02LJag/jloI/ugyAkxO7Snej8H6ooJM1oBAjM5Oz0uXF43OrWWcFMoZfYKVuxfzSVDZvGHXzSf\nlwP/dh4hBE0lJXjq7QD4DhZRH2xGUaubv8ShqbQUd50tsI8poS9qvR63zUZTSWmrMj12Ox57A2Ej\ncv1XOGvXUfn9KoTHi9tmI/GqKzD2jmPbw3+lJn9tq/0PyXv7TVRaLfUFOyl6573A8t7nnwuAu85G\nw+7dHcboc7kD8XmgVeLsiEqv89/a6QQyoXUhXq8v8PyqsclDfaMLnxDU2py4vT7cHi/VdU1U2Zoo\nLKtnzbayVv25DkmJtzIgMRy9Vk2fXmasZj1pCWHotf7bUz5XE8LjRm3yz1FV+vajlO9Y3WEdhfdw\nhzBtWCyho2afaNg9WpO7CZurgTBDCCqVitfWv822il1kxgziD2Nv4qWZj3LvJ/9Hqb0Cl8eFTq3l\n4sEziQ+JJaF54F/p2Pncbqp/WoOr+vB0QDHnTEVRqagv2En9jh0AeB1NeOrrEUIgPB58Ljf95/t/\nOOz/17+pWbsendVC+KiR9DpzAgAlH3/KnhdfBl/LQQA2AtrQUHJffQmAg8vepezzLwLrs559CmNc\nLLXrNlCwcFG7dc955UXUej2NhYWUf/FVYLn3ogtRVCqiz55Czdp1II7+jFs010+l81/BC7f/M6uP\njCA0x99SWFGp0JjNqA36wH6Kxp8OgvolEnPO2ZSXlxMVFYU+KgoAQ3Q0CVdf2e7raoL9P7TiZs44\nav1OJZnQTrKqOgdujw+3x8e+Yht2h6vF+vIaB+XVjTjdXv+0Js3nZqPTQ1GFHV8HDTLaM2xAL3oF\nOzlz5FCS+1hbrPO5nThLdtH40wpqy/cjXE007sonYur1WDInARA59XqKyvfjqfnFL0i1BlNyNhpz\nGMa+gzGl5v6q+p0O6p12Cqr2khaRRJDOhM/n4/J3biM1vB/3jbsZg9qAWRcMgE/4f/VaDGauip9N\n9hFdEsYmDG+z/NORs6ICtcmEJiiIpvJyKleuwtvYiNtWj9fhQLjduG02hMfDwAUPUr36ZwoWLW6R\ndGKmng1A7foNHHjjP22+jsYcDPgTmquqmobdu2kAbNsLsAxIxxgTg9fhaJXMThW1yYTaaESl1aBo\n/S2EQ3OySbjychACfVQU2hALivrw89NDf8dfPIeEy+e2KjMsJ5uwnI67vliHDsE6dAg1+fn0O+K8\n1EdGEDdz+omGdkrJhHaMnG4v+0tsbN9XjcPpodrWRHFFA7ZGFw6nB6fLQ2OT57ieWZ2IYKOWvjEW\nxmbGMT67D0a9hvz8fJL7WPE5HdjWLcdjq8SxdwPuyoNtliG8nkCDDbXJQvSce1FpdCgaHag1KCo1\nilYvbyUeRZPHicfnIVgXxKIfXmZT2XYuHDSd8wdORaVSYdYFsaNqD9e9fw/3jLmRGWmTOG/gVEKN\nIZ1d9d+Ez+UKXCEIIXDX1eEsr8BVU4PweALbuG02wnJyMMbF0rD/ALufex7HwYN46u0M/uvDWAak\n07BnL/tf+2e7ryV8gshxYzDExrD53vvxuVztbnuI2mQCBTRmMz63G5VWiykhnuCU/oH6Vf2wmt6z\nZ2GMiyVy3FgMsTGY4vugNhjYuXMn/fv3D1zdAMRMO4fwvBGB/+vC/d0qLIMGMuDBP7ZZD601BJ3V\nf07ETp/W5lWOoijEzer46kelPX2n8TmtE5rX62PjrkrKaxr9z5+EoL7RTVl1I3aHi/IaB6WVDQj8\nz6s6uNI/Zka9hjCLgVCLHq1ahaIoKApEhwcRHmIAQK1SCLMY0HidGIWdYKMWhI9gRyl6Tz0qXxPC\nU4WwbaPhWxWGCZcHylc0Gqq//hf4WifXQyNtALhrSlHUh08BXbhs6n2sVuxbzfJdK9hRtYf5I65i\ndN9cwk3+93Xp5g/oFxpPVuwgzkwaTb2zgaHR6aRFJvfIkepdNTU07N2H1moluJ//+eqaa2/AU++/\nitJMnAAjRuBrauLnK65ptxxDVC+McbF4Gxupb27UAP5nTOIXHz5FrUZjMaM2GFDpdGhDQlDU/vfW\nGBtD9vPPotI1f7Gr/MtjZ04nZupZgTLURmOLK5xD4mbOaDOhhI8YTviIllfPauEjNKtlv8mgvvEE\n9Y1vtb8+PAx9eMdjhyqqnneO/FZO64S26M11fLO27auXjqhVCn16mYmwGjEZNBh0GvQ6NWaTjogQ\nA16fICrMRN9oM6ojrnAURSEk2H9vu2n/Zhz7NuFrasBTX423tgqlQU/sZX8ObF+/8WsqPng68H9n\n879W9TGYIcj/UFpRa9GGx+GuKERlMqOxRGLJnoIxfgCa0Gh5xfUrbCrbzoc7viQzZiBTksehU2sD\n72ONw0a9084ZCXlkxQwiOTwh0Nn5kiGzOrPap4THbqdu0xZq8tdSt2kzTaX+29Tho0aSdtcdADjL\ny4+7XNH8A0xRq9H3isIYF4c+MsKfeBQFa2YGOS89jy4i/KjnsCYoCIJaN5xR6/Wg17exh9RTnNYJ\nTadtu/9OkFFLmMWAVq0iJiKIUIsejVpFfC8zyX2sxFpU+OyVuAq34dj/M8LlQLh84PQh6nxQ5AXh\nIyR3OsEhYwLlFj5/C+7KIqpp/1JP0ZuOPQC1BpXWgKIz0Lh7LUpqr8CquCv/iqJWo8hZhH81l9fN\n7up9pEUkExkUzrqSzWyt2EmY0cqIPlkkhvbhP5vex+l1EaQzMSCqf2dX+aQRQlC7fgMNe/fRVFpG\nWG4OYTnZ7Hzyd3Sd6AAAHz9JREFUacq/+rrNfY68xacyGPA5nYTl5mDv4x9uS9FoSJx3NWqjEX1E\nOFprSOBqRG0KQhfqf/ZrTulPzgvPtSpfrdejjpQJSWrfaZ3QfnfBUKaNTiTIqEWtUlAUf8dhS5D/\nCsrnduKxVYLXiy7q8C2E+k3fUPF+xwO5euw1LRcIAW0kM5UhCJXehCY0GrXR3GKdIX4AUbNuBRRQ\nFBStHkNcKiqDqdXI8aX5+YfL1Bk6rJ/Uvm0VO3nwq4XkxA0lOSyBQ9cDEcZQvtv/E1kxg+gVHMmt\nee3fQuuqGg8W4ao63Aqw+uc11O8oAAGR40YTO30aXoeDrQ8dvlNgive3uIyfewk169bhrjk8fJkp\noS8hAwcSM+3swLK8/74R+Du/+bxUabXETpfT0Uinzmmd0BRFoVfjLpx7mmcwFgIvUAM4S/fQWPAz\nIFB0Bvre8nIgSShKy0Sij0vxJxdF5f/FqVKBomrVqdiSPQVvgw3/t6OCSm/E1H9Yq7m8jqS19kJr\n7dXueunksjXV4/K5iTNHA7CmaAMPf/sUD46/lf9e+GyXuF3rc7tp2LOXus1bQAh8Hg/OsjJc1TVo\nLBZS77gVgC0P/ZnadesD++W99R8UjYbyr76maNm7bZZtGZAG0PrZUnPrPl2olX7zrqbxYBERo0Zi\n6BUVaB4uSZ3ttE5oAA0Fa6hf9/lRtxGuJhq2/4B5yHgADPHpRJ13JyqNDkPC4MCwTh0JGSZ/nXZl\npfYK5n/0ADfmXs6wuKGkRSQxqFcaExJHdlpjDnddHRXffoezooKQwYMIyx1G3eYtLa6ejqSPOvrI\nLIpK1W6jA0Wtxtg7LvB34ryrMfWNx5KWGkhaikpFxOhRJxCRJJ06p31Ca5+CNjwG85DxaEJjMCYM\nCqzRWCIItkR0Yt2kU+GdLZ8AYHc14PF5WHDmnb/J6wqnk4oVK2kqLUV4PGhDLMScM5VdzzzXooOu\nolYTljus7UJUKvSREQT36xdYFHnGWMypKS32B4gYPQrLgHRURzSQ0FmtGOMO3ylQaTTy9qDU7Zz2\nCS3irHlEnDWv9QpFQemBTaxPBx6fl4qGKhzNMzYbtAbK7ZUUVO3BJwRj+uaiKAo/Fq7lg+3LqXbU\n8ddJd6NRqVEpKl5fv4yz+o8/KXURPh9ehwPHwSJc1dWYEhIwxkRTu3ETe1/+B66qKjz1dgqO2MfY\nuzcx50wlcd7VaIKDKXr3f/5bi839uUy94+h33TVoQ0L8CU5R/Fdev7hNGHXGuDbrFJTQl6CEvm2u\nk6Tu7LRPaL9sWCF1baV2/1iVwVoTwfog7K4G/rvpAxyeJq4fdhkalZrNZTv4ywp/o50/Tbid9Mj+\nrC/dykv5/0Gj0pAVM4hgfRA2p52d1fsACNKZuG7YpczLuZgGVyOaYzgvPI2NOMsrcFZW4q6tQ3g8\nCOEf+DU4pT+hmRnsfPJpKr75NrBP4rXXYJw2FY/NRuO+/UctX63XEzX+DIy94zCnpmJqvh2oj4wk\n5pypv+btk6Qe7bRPaFLX9WPhWioaqtGptUTgHzLq1o8fwid8nJt+FhcPmYnT4+KzXf6EMbx3JsPi\nhgaGlQICgwBHNHd69vg8/FC4lknJY4gMCmNo9AD0Gh0urxutWotKUWHWB7eoR33BzhaDyobnDUd4\nvWy4426aiovbrHvvC88nNDODhCsvo27jJlzVzVP1NHcQ1gQHYxmQjjYkhFqvh5iEBGLOPgtdWGiL\nckzxfQItDCVJOjqZ0KQu4eeiDXy553umpZzJoF6pALy/fTm7qveRHTuYiSb/CA2iudvDocaGerW/\nsUKoIYQNpVsZFjeUOEs0V2fNwaIPJtzoTxBpkcksPOsBwoxWjFp/a9XMmEFkxgzil2zbtuM4eJDI\n5lt2JR9/SsXX3wTW577+CtqQEIwx0e0mtEPDJulCQ+l/y+9oPFCI1mrFmjEEAGvGUKwZ/olN8/Pz\n6Zvd8Rh7kiQdnUxo0m9OCEFB1R4a3Y5AQqlqrGFt8SYO1BZxz5gbibfGBW77aVSHT9Obcq9ACEF8\n84zMQToTb174TItWiL2CIzmr/xktXtOkNWIKOfr8TF6Hg11PP0flyu8JGz7Mf5svvk+7wxVZM4di\niIkmZMgQ9JHh6Kz+5KmoVWhDDo/VeGTykiTp1JEJTfrVHO4mnB7/QFxWYwhCCPbUHOBgXQmZsYOw\nNN+6u/PThym0FTOidxa3jZxHvdPOM6tfo6yhkv+XM5cJ/UZi1geh1+gJNYawtWIn8dY47hp9AwKB\nUWtkQ3N/ql+ORK8oCgrH1zfMVVsLQqALDUX4fDTs2UvpZ5+3aFFYvfpnatdtYMhjfyVseC7m1BSM\ncf4kqgn2xxU7fdqve+MkSTolZEKTAGh0OTBo9agUFUW2Ugrr/LfScntnoFJU/HRwPV/uWcmAyBRm\npk9GCMFdnz1CWUMlEaYwnp3+CIqi8NWe71m++ztG9snmlrxrUBQFn/D5551qfn5kMZjRqDQIIfjP\npv+RETOAYXEZ5PXORnVEH6lgfccTWTaVl1O3cRM+lxuf2+2fyfeIgWwjRo/C3D8ZR0kJOx59Ak99\nPc6KSvpecRm9Z8/C53az4Y67WpWbdNP1RI0/47QeuVySuhuZ0E4jpfYKPt+1gtomG5cOmUW4KZSf\nDq5nyc//wu5q4OVZj2HWB7P64Dre3PQ+AP++4GlUChRU7WVdyRZ2VO5hSvJYDFoDYxJyeXvLx3iP\nGNW/qfmKbVVhPmMTRpAVO4hJSWOoc9robTncz2la6pn0C+1LfEhsiyQmvN7AbL/C5/PP/RQZgfD5\n2L3kRXxO/7TxpoS+xM2cQeV337P/9X+1G7OpTx/M/ZPxufyja3QkdtYM+sy5EI3pt58+XpKkEyMT\nWjfkcDehKApalQa1So3X52X1wfXsqd9DL1ssvS0x1Dvt/HfTB9Q22ZiUPIah0QOobqzhwx3+22oz\nUicSbgqlyePE7moAwCfan7zQqNETa+5FhCmM4vpy+oXFc2a/0VgNFgyaw+NGzkibxMy0yZhUOky1\nTbiqazg7xd+nq2Hffhr27QMgz9gPY2gMwudj/z/foOrH1TjLK/x9rY64woo552z6XTcPhKD0k08D\ny0Ozs/zTfMyehX33Hqq+X+VfoVK1uKo6NKWI2mggdFgO4O9EHJqV4d9coyH9vnv8McbFtehcLElS\n9yIT2jHaXLYdl9dNmDGUhFD/6OFbygtodDsI0h4eaf3JH17mYF0JE/qNCnyR3/bxn/AKL5OTxzEt\n9UwAbvrgPrzCx9SU8cxImwzAte/dhUd4mZ46kdkD/AO9XvXO7XiFjxlpkzh/oH/khivfvR0hBHOH\nzmZG2iTUKjWLVr2IudFHsNpHRMoZuF0ONv34BVVWDWmRSaRpe2HO383wjXZ0qHEl74fsPkSqg7lo\nXwg6lZbK/75LrUrDQI+Te+2p+OobsG/einXIYGb0HkXKGz/gcxVT/+Gz2K65kvD0NCYnjyP/hptZ\nbV9y+M0SAk9DA/h8xJ13bmD23A133BVo/WdOTWHIo39FUamo27QFx8GiDo+BotGgtVpRVEqLRheJ\nV11Ov+uuARS05uA257gyREUx4I9/aF3m0UbfkCSpWzntE1q5vZLaJhtqlZqkMP/oCasPruPbfasJ\nM4YwL/tiAP7zyYuIimoGRvTHnHYm4XnDefbHV4lZX8QAS18svf2/+MWWVUR63fh2QXGBg9hpUym2\nlxFf1ISy9wcObqoDwO6oxqEDsW47m9/wX12cWV6IEIKQFR+yOXg1noYGnMOa8KgE+h+2sObJDwG4\nwl7J8hEW7K4G7Hv2sP2vj3FTZQUaH8BS8lkKwIXAl7P7o1fradizlwNLXuLQPLqWMY0AJAXFUr1q\nJwClbG31/jhz8wDwOp3YthxeX7b8Syzp/oFsPfX1eOrrf/UxULQazOlpBPdLRKXXo7Va/XNXAaZD\nEyWqVOS9/WarwYEVRUEfefTxCyVJOj2c9gntq3deoWLzRvQaHaok/9xlJUVbiD94kKK8JGjuHjRi\nRQlhVU4gn13mAsLzhoOikHTQSa+yLexnCwCHf+uv42DoPmKnTWVU/DDiN2/AumEd+1kHwLgbJuIK\nCyZqWwN1GzcBcLj7bCl1+Dvynn3xHIRGRa/1FTjL/JMmhgCT++YRG5WCqPPgLC9v90DeNnIe5uRk\nqn9eE1imqNWgOmLSUU3be+vCwtAEmQL7BCUmorWGgKLgbWpC+HwoKhW9Jk7A29Ry2lFFo8EU3xtz\nampgWervb2/RsfiQQQsebPOqqkV5itIlRrqXJKnrOu0TWtC+cvrscAAOirf4r4AO/d4PX3kQ70UO\n1EYjvYIjcVe1nN36ztHXU6/+mfrn3+Bo5o+4il35z1FGYWDZxYNnYoyLpaJpJSXphW3up6jVXDJk\nJmq9nmrPGipr3YF1GUMnEhSdgEOUEHnGOFRaLVUKJDZfNQGodLpAU3NzWiqZzyxGF2r1z+jbTBcW\nyshl/+3wfdKHh5Ox6PE21yVceXmH+wOtpq8/Mk5JkqQTddontPjwvtgN/ibq6ubOuQJQ63RER/fG\nvmcPIQMHknb99aAoaIKDA9NvJIb2QUyJRUya3uHr9Pt/1/obNzQ79CUeOXY0kWNHd7h/2LAcwpob\nNRzJGBNDym3zAajLzyeqnREntGYzWrO5zXWSJEk9wWmf0IbedDPcdHOH21kGpLe5XFGrj+kKQ9XO\nbT1JkiTp5JDzo0iSJEk9gkxokiRJUo8gE5okSZLUI8iEJkmSJPUInZ7QbDYbt9xyC5mZmYwZM4Y3\n3jh6E3hJkiRJakunN71bsGABXq+X7777jsLCQq666iqSkpIYMWJExztLkiRJUrNOvUJrbGzk008/\n5dZbbyU4OJj09HTOO+88li1b1pnVkiRJkrqhTr1C29c88npycnJgWXp6Ot9//32H+x6a88rlch33\n6zqdzo436qZkbN1TT44NenZ8MraT79D3+pFzGx6LTk1ojY2NBAW1nMTRbDbT0NDQ4b5ut38YqIKC\nguN+3c2bNx/3Pt2FjK176smxQc+OT8Z26rjdbgwGQ8cbNuvUhGYymVolL7vd3irJtSUoKIiUlBS0\nWq0ctFaSJKkHEULgdruPKRccqVMTWkJCAgC7d+8mKSkJgG3bttG/f/8O91WpVJjl2ISSJEk90vFc\nmR3SqY1CTCYTU6ZM4cknn8Rut7N9+3aWLVvGeeed15nVkiRJkrohRRzvU7eTzGaz8cc//pHvvvuO\noKAgbrjhBi699NLOrJIkSZLUDXV6QpMkSZKkk6HTRwqRJEmSpJNBJjRJkiSpR5AJTZIkSeoRZEKT\nJEmSegSZ0CRJkqQe4TdLaC6Xi3vvvZfx48eTmZnJjBkz+PLLLwPrCwoKuPDCCxk6dCjTpk1jzZo1\nLdZdc801DB8+nNTU1FZln3POOWRmZgb+DRgwgOuvv/6o9fn73//O8OHDycnJ4cEHHwwMpVVcXNyi\nrMzMTFJTU3nllVfaLevVV18N1G3gwIEtYluzZg1Dhw4lPT2d1NRU0tLSSE1N5bPPPuvysblcLu6+\n+24yMzNJS0sjLS2NCRMmtHncBg8eTGpqKnfccUeLdV01NoBHHnmEjIyMQGyjRo1qEdv8+fMDcY0d\nO7bTzkmA7du3M3fuXHJychg9ejT/93//h9frbbcsu93OWWedFTjfRo4c2SXPyV8T2/vvv09eXh6p\nqamkp6e3+10yZMgQ0tLSuOKKK1qs68qx/eUvfyErKytwTo4bN65FbPfffz9Dhw4lNTWVvLy8bnVO\n/u1vf2Py5MlkZmYyZcoU3nrrrRbrj7e8NonfSENDg1i8eLEoLCwUXq9XfPPNNyIjI0Ps2bNHuFwu\nMX78ePH8888Lp9Mp/ve//4lhw4aJ2tpaIYQQu3fvFkuXLhXLly8XKSkpR30dn88nxo8fL9599912\nt1m6dKmYOHGiKCwsFFVVVeLCCy8UTz75ZJvbHjhwQKSlpYnCwsJ2y3v//ffFrbfeKm6//XZx1113\nHTW2hQsXipSUFFFSUtLlY2toaBBPPPGEePjhh8WBAwfEV199JQYPHiyGDBnSIrZnn31WTJ06VUyc\nOFEMHjy42xy3zZs3iyeeeEIUFhaK4uJiMW7cODFo0KBAbLm5ueK+++4TM2fOFH/84x879Zw8++yz\nxeOPPy7cbrcoKSkRZ511lnjjjTfaLe9vf/ubGDNmjNi8ebPYv3+/GDVqVIvYutI5ebyxffXVV+Lm\nm28WjzzyiLj00kvb/bxdeumlYsqUKWLgwIHd5rg9/vjj4qGHHhIHDhwQ69atExkZGWLw4MGB2IYP\nHy7uuececd1114mbbrqpW52TTz75pNi1a5fwer1iw4YNYtiwYeKHH3741eW15TdLaG2ZNWuW+N//\n/idWrlwpRo4cKbxeb2Dd+eefL5YuXdpi+3379nV4oFavXi0yMjJEQ0NDu9vMmTNH/Otf/wr8/5tv\nvhFjx45tc9unnnpKzJ0791jCEQsXLhR33323EKL92O655x4xfPjwbhfbIbNmzRLjx49vEdvixYvF\n448/Lu6++24xatSobhlbaWmpmDZtmhg9enSr43bRRReJZcuWdeo5OWTIELFz587A/x955BHx0EMP\ntVve6NGjxTfffBP4/xtvvCGGDh3aJc/J443tkKVLlwaO8S8/b2+//ba47bbbxOLFi8WwYcO6XWyH\n3HTTTWLUqFGtjtsdd9whFi9e3K3OybZie/bZZ09aeUII0WnP0Kqrq9m9ezf9+/dn586dpKSkoFId\nrk56ejo7d+487nLfffddpkyZgslkanebnTt3kpaW1uK1SktLqa+vb7GdEIL33nuPc88997jq0F5s\nh+Z/y8jI6JaxVVdXs2vXLioqKgKx9enThw8//JAbb7wRgPDw8G4V2wsvvEBmZiZjx47FZrNRW1vb\nJc/JK6+8kmXLluFyuSgqKmLFihWMGTOmzbLq6uooLy9vUV5cXBwOh6NLnpPHE1tbfvl5S0xM5Lnn\nnuOee+4BwGKxdMvYXC4X69ev7xHnZFuxbdy4scW4vSd6HkAnNQrxeDz8/ve/Z+rUqaSnp9PQ0NBq\noOFjnUbmSA6Hg88++6zDL7LGxsYWr2exWABavV5+fj5VVVVMmTLlmOvg8/naje3zzz8nNDSUpKSk\nbhebx+PhzjvvxGq1cs455wRi279/P7///e8xGo0A6HS6bhXbddddx9q1a3n77bfRarVMnjy5S56T\nY8aM4csvvyQjI4MJEyYwYsQIJkyY0G5ZAMHBwYD/2C1ZsgRFUbrkOXk8sf2SEKLV562oqIjLLruM\nqKgoALRabbeM7YEHHsDlcrX4vHXXc/KXHnroIRISElpsfyLlHfKbJzSfz8ddd90FwIIFCwD/VDB2\nu73FdvX19cc9dcDnn3+O1WolNzc3sOyBBx4IPAR94IEHAP+gyEe+3qFfHL98vXfffZfJkye3WH7k\ng9X333+/xfZCCPLz89uN7b333mPWrFndLrZDSXrHjh0kJycHYtuzZw9CCCZOnBjY1uVydavYwH/c\n/vGPf6BSqQgNDQ2U2VXOydraWq699lquu+46Nm7cyIoVK9i+fTsvv/wyAPPmzQuUt2TJksCvbrvd\nHvi8eTyeQILrSufk8cZ2JJ/Px+7du4HDn7fq6mrq6uqYO3duYLtfMw1JZ8f26KOP8uWXX5Kens6f\n//znQJnd9Zw80mOPPcbWrVt5+umnA1ebHZV3zI7rBuUJ8vl84p577hGXXnqpaGxsDCxfuXKlGDVq\nVItnaBdccMFx3xu+8sorxaJFizqsx5w5c1o8bPz2229bPYtxOBwiKytLrFq1qsPyhPDHNn36dJGX\nl9dmbAcPHhTp6eli//793So2n88n7r77bjFy5Ehx8cUXt4jtqquuEqmpqSIvL0+MHDlSDB48WKSl\npYlp06Z1i9gOxXfonFy0aJG4/vrrhRAtz8lDz9A667ht3LhRZGRktNj+n//8p7jiiivaLW/06NHi\n66+/DsT26quviosvvrhFbF3hnPw1sQnhP25z5swR2dnZLc7JO++8U6SkpATOyYyMDJGamirGjBnT\nbWJbtGiRyM7OFhdeeGG735OHnqF1t+P25JNPirPPPltUVVW1WP5ry/ul3/QK7cEHH2T37t0sWbIk\ncIsKIDc3F51OxyuvvILL5eLDDz9k3759TJo06VDSxel0BpqMOp3OVlODl5aWsnr16mN6bjJ79mxe\ne+01ioqKqK6u5tlnn201Zc3y5csJCQlhxIgRHZbn8Xi4//77qampYfjw4ahUqkBdD8X24IMPMnTo\nUDZu3NitYnvwwQdZsWIF0dHRvPDCCy2O2xNPPEF0dDRz5sxh6dKlpKWlodFoePrpp7t8bG63m6VL\nl3Lvvfeya9cufve73/HWW2+Rl5cHHD5uL7zwAl6vl7Vr17J3797ALZDfMrbExETUajXvvfcePp+P\nyspKPvroozabZh9Z3r333suOHTt48MEH+fe//x0oryudk78mNq/Xy/333095eTnJycmoVCpcLhcA\n9913HzExMYFzctiwYajVal577bVuEdvzzz/P66+/Tp8+fXj55Zfb/J584YUX8Hg8bNu2jb179zJ+\n/PhuE9sHH3zAq6++SlhYWIt1v6a8Nh1X+jsBBw8eFCkpKWLQoEEiIyMj8O+5554TQgixfft2cf75\n54vBgweLqVOnip9++imwb2FhoUhJSWn170hLliwJ/ALtiM/nEwsXLhS5ubkiKytL3H///cLlcrXY\n5uqrrxZ///vfj6m8hx9+uFXd0tPTW8Q2ePBgMWDAgG4V26Fj9st/AwcObPO4ZWdni9tvv71bxOZ2\nu8Ull1wSqFNqaqoYOHBgi3Ny9uzZreq+bNmyTontxx9/FOedd57IysoSeXl54p577hH19fXtlrd3\n794W9RowYECrz1tXOSePN7aXXnqpVd3S0tLaPCdHjBghLr/88m4TW1t1GzBgQCC266+/vtX6xYsX\nd5vYDn3GDv27//77f3V5bZHTx0iSJEk9ghz6SpIkSeoRZEKTJEmSegSZ0CRJkqQeQSY0SZIkqUeQ\nCU2SJEnqEWRCkyRJknoEmdAk6TgtWbKEefPmdXY1JEn6BdkPTZI6cNlll5Gbm8vNN9/c2VUBul59\nJKmrkFdokiRJUo8gr9Ak6SgeeOAB3nrrLdRqNVqtFpPJxEUXXcRPP/3EP//5T8B/xZSamkpZWRkr\nV64kLCyMBQsWoFareeSRRygqKmL48OE89thjgRHvbTYbTzzxBCtWrKCxsZEhQ4bwwAMP0KdPHwA+\n/vhjnnnmGUpKStBqtaSnp/Pqq6+2WZ/vv/+e1atXs3DhQvbu3YuiKGRmZnLfffcFynvnnXd4+umn\nufLKK3nppZeor6/nggsu4MYbb+SBBx5g5cqVREZG8uc//zkwCvtTTz3F6tWrGTJkCO+88w5qtZpZ\ns2Zx2223odFoOuFoSFIHjmugLEk6Dc2dOzcwXp4QQixevLjFbNhz584Vubm5Yu3atcLj8YgnnnhC\njBw5Utx8882ipqZGVFdXiylTpoinnnpKCOEfI2/u3LnizjvvFDU1NcLpdIrHHntMnH322cLlconG\nxkYxcODAwIwBTU1NLWYP+GV9hBBizZo1Yt26dcLlcomamhpxww03iDlz5gTWL1u2TAwYMEAsXLhQ\nOJ1OsW3bNjFw4EBx7rnnBur96KOPigkTJrSIc8CAAWLx4sXC6XSKXbt2iQkTJojnn3/+5L7BknSS\nyFuOknQSTJkyhczMTNRqNTNmzKCyspKrrroKq9VKaGgo48aNY/PmzQBs3bqV9evXs2DBAqxWKzqd\njttuu42SkhI2bNgAgEajYc+ePVRXV6PX6wOzALQnOzubjIwMtFotVquV3/3ud6xfvx6HwxHYRqvV\nMn/+fHQ6HWlpaaSlpTFo0KBAvadPn87BgwepqakJ7BMaGspNN92ETqcjKSmJa665hmXLlp2Cd1CS\nTpy8byBJJ0FkZGTgb4PB0OayQzP97t+/H7fb3Wp6ea/XS2lpKTk5Obz00kv84x//YPHixURFRTFn\nzpwWk1b+0rZt21i4cCHbtm0LzFgthKC6upq4uDgAwsLCUKvVgX2MRmOLOh6aqqShoSEw0WlsbGxg\nEkaA3r17U1paehzvjCT9dmRCk6QOKIpyUsuLiIjAYDDw448/tvssKicnh5ycHIQQ/PTTT8ybN4/k\n5GRGjBjRZn1uvfVWJkyYwBNPPIHFYmHr1q2ce+65iBN8RF5cXIzP5wsktaKiIqKjo0+oTEk6VeQt\nR0nqQGRkJPv27Ttp5WVnZ9OvXz/+9Kc/UVVVBUBdXR2fffYZDoeDiooKPvnkE2w2G4qiYLFYUBQl\ncHXVVn3q6+sJCgoiODiYyspKFi9efFLqWlNTw3PPPYfL5WLPnj28/PLLzJ49+6SULUknm0xoktSB\nq666ioKCAnJychg7duwJl6dWq/nHP/6BXq/nggsuIDMzk5kzZ7J8+XIURUEIwZtvvsnEiRPJzMxk\n/vz53H777QwbNqzd+jzyyCN88MEHZGVlcdVVVwVmnz5RmZmZNDQ0MHbsWObOncukSZO4+uqrT0rZ\nknSyyWb7kiS16amnnmrRPUGSujp5hSZJkiT1CDKhSZIkST2CvOUoSZIk9QjyCk2SJEnqEWRCkyRJ\nknoEmdAkSZKkHkEmNEmSJKlHkAlNkiRJ6hFkQpMkSZJ6hP8PGLnDEcp6jtYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "IxAWnIK0Yd7Z", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + }, + "outputId": "f52eec06-2865-4bc5-f564-8a1dae37a3b8" + }, + "cell_type": "code", + "source": [ + "'''\n", + "Since the \n", + "\n", + "And those are the only parts that actually worked. Most of my problems were \n", + "with @#$%^& Seaborn itself, though, as most of the time \n", + "trying to change some of the aesthetic parameters totally backfired for some \n", + "reason. I managed to change the line widths, but not the type of line or their \n", + "color, and I didn't even try to change the timestamp labels on the axes.\n", + "\n", + "'''" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "\"\\nSince the \\n\\nAnd those are the only parts that actually worked. Most of my problems were \\nwith @#$%^& Seaborn itself, though, as most of the time \\ntrying to change some of the aesthetic parameters totally backfired for some \\nreason. I managed to change the line widths, but not the type of line or their \\ncolor, and I didn't even try to change the timestamp labels on the axes.\\n\\n\"" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } + ] + }, + { + "metadata": { + "id": "2PtS4dD43j3G", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 466 + }, + "outputId": "c08b8f4c-c3cc-4f59-d93b-451b911fd763" + }, + "cell_type": "code", + "source": [ + "# Let's plot again, this time with matplotlib only\n", + "\n", + "fig, ax = plt.subplots(figsize=(8,6))\n", + "plt.plot(ratings['males'], linewidth=3, color='#EC713B');\n", + "fig.text(0.65,0.65, \"All ratings \\nfrom men\", size='large', color='#EC713B',\n", + " weight='bold');\n", + "\n", + "plt.plot(ratings['females'], linewidth=3, color='blue');\n", + "fig.text(0.55,0.1, \"All ratings from women\", size='large', color='blue',\n", + " weight='bold');\n", + "\n", + "plt.plot(ratings['1 out of 10 ratings'], linewidth=2, color='#EC713B');\n", + "fig.text(0.7,0.42, \"1 out of 10 ratings\", size='medium', color='#EC713B',\n", + " weight='roman');\n", + "\n", + "plt.plot(ratings['10 out of 10 ratings'], linewidth=2, color='#EC713B');\n", + "fig.text(0.7,0.33, \"10 out of 10\", size='medium', color='#EC713B',\n", + " weight='roman');\n", + "\n", + "plt.plot(ratings['2-9 out of 10 ratings'], linewidth=2, color='#EC713B');\n", + "fig.text(0.7,0.25, \"2-9 out of 10\", size='medium', color='#EC713B',\n", + " weight='roman');\n", + "\n", + "ax.set(yticks=range(0,1600,500));\n", + "plt.xticks(['2017-07-23','2017-07-30','2017-08-06','2017-08-13','2017-08-20',\n", + " '2017-08-27'],['7/23','7/30','8/6','8/13','8/20','8/27']);\n", + "\n", + "fig.suptitle(\"Men dominated Al Gore's IMBD movie rating\",\n", + " fontsize=20, weight='semibold', horizontalalignment='left', \n", + " x=0.08, y=1.025);\n", + "ax.set_title('Cumulative number of IMDB ratings for \"An Inconvenient Sequel\" '\n", + " 'by\\ngender and score, July 17 through Aug. 29',\n", + " horizontalalignment='left', x=0, fontsize=14);\n" + ], + "execution_count": 103, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHBCAYAAACYFepwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXtcTdn//1+VUoQKiRgU54TuuRtM\n0ZTuUhFdjHumMaZB5c6YGMKQy+R+GdcuKlGDQWSSEpVIKqVC94sSpzr790e/s79nd051Tpdp8lnP\nx8NDe62111p7nb3e+73e673WkqAoigKBQCAQCARCJ0OyoytAIBAIBAKB0BKIEkMgEAgEAqFTQpQY\nAoFAIBAInRKixBAIBAKBQOiUECWGQCAQCARCp4QoMQQCgUAgEDolRInpxLDZbPqfn59fR1dHKM7O\nznQdnZ2dO7o6HYKfnx/jt/o3iI2NZZQZGxv7r5RLIHR2/tdkVnBwMENW5ObmdnSVxKJLR1egteTm\n5mLatGmMsD59+uDOnTuQkZERSG9tbY3U1FRG2N9//42BAwe2az0JHY+RkRHy8vIAADNnzsSOHTs6\nuEaiU1xcjKlTp6KmpoYOGzVqFIKDg9utzJKSEgQFBeHhw4dIS0tDeXk5uFwu5OXlMWjQIIwePRpT\npkyBgYGB0L72X8LPzw8HDhyAqqoqbt++3S5lBAcHw9vbm77evn07bG1t6Wv+949HSEgIRowYIZDX\ntm3bcPbsWUaYKPkBgIyMDBQUFDBs2DBMmzYN9vb26Nq1KyONl5cXrly5Ql9LSEigS5cu6NatGxQV\nFTF48GCMGzcOM2fOhJKSkogtQPivwf87t+e735F0eiVGGEVFRQgLC4OdnR0j/J9//hFQYAjti6Oj\nI7755hsAQP/+/Tu2Mp2YkJAQhgIDACkpKUhNTYWGhkabl3f69Gns2bMHnz59EogrLS1FaWkpkpKS\ncOLECezbtw+mpqZtXof/BU6ePImdO3cywioqKhAUFNTiPDkcDgoKClBQUIB//vkHEREROHPmDKSk\npBq9h6Io1NTUoLy8HOXl5cjKykJUVBR+//13rF69Gi4uLi2uT2fjf01maWlpYc2aNfS1goJCB9ZG\nfL5IJQaoF8INlZgTJ050UG3+dzEzM+voKnwRBAYGNhq+fv36Ni1r165dOHbsGCPMwMAA+vr66Nmz\nJz58+ID09HTExcXhw4cPbVp2Y1RWVkJeXv5fKevf5Pr161i1ahWUlZXpsIsXL+Ljx49i5dOrVy8s\nXboUAFBeXo7g4GAUFhYCAOLj43Hnzh1Mnz690fuXLVsGeXl5lJWV4cmTJ3j8+DGAeoXo119/RX5+\nPlavXi3u43VK/ksy699474cPH47hw4e3axntyRenxEhJSaGurg5paWl48OABJk2aBABIT09HdHQ0\nI01TJCYm4ty5c3j8+DEKCwshKSmJQYMGYfr06XB1dRXQVp2dnfHo0SMAwNixY7F37174+fnh9u3b\nKC0txYABA+Dg4ICFCxdCQkJC5Of58OEDDhw4gMjISJSUlGDAgAGYNWsWvvvuu2bvTUtLw9mzZ/Ho\n0SO8f/8eFEWhX79+GDNmDFxcXARG8DyTO4/Hjx/Dz88P169fR0VFBTQ0NPDjjz9i4sSJKC0txd69\ne3Hr1i18+PABw4cPxw8//ABDQ8Mm24XfRM7vH+Lu7g4jIyMcOHAA8fHx+Pz5M1gsFtzd3elREY/Y\n2FiEhYXhxYsXKCgoQEVFBSiKQu/evaGpqYk5c+bg66+/ptM3NJ0DwJUrVxhhZ86cwbhx4wDUj0oj\nIiIQGhqKlJQUlJWVQVZWFmw2G1ZWVpg1axa6dBHsOvfv38fhw4fx/PlzSEtLw8DAACtXrmzyNxKF\nhIQEZGZm0tdDhgxBVlYWAODq1atYs2ZNm03nxMbGMhSYnj17ws/PD+PHjxdIW1NTg6ioKKGj1eLi\nYpw9exb37t1DdnY2Pn/+DAUFBWhpacHe3h5GRkYC5fKP9s+cOYPs7GycP38er1+/Ru/evRmmcHH7\nZ2N8/vwZp0+fxs2bN/H69Wt8/PgR8vLyUFRUBJvNhpaWFhYvXixSXuLAk0E1NTU4d+4cfvrpJwD1\nbfrnn38y0oiCvLw8Fi5cSF+PGjUKK1asoK/53x9h2NvbM6bUHz16BHd3d5SXlwMAjh07hq+//hoT\nJkxoti4Nf8vTp08jPT0d586dQ25uLgYMGABnZ2c4OTmhrq4Ox48fR0BAAN69e4f+/fvDwcEBixYt\nEiono6KiEBAQgMTERJSWlkJGRgaDBg3C1KlT4eLigj59+gAAuFwupk+fTk+3zZ49G1u3bmXkdfPm\nTbi7u9PXYWFhtB9MYzILqLdEnjt3Dnfu3EFWVhY+f/4MJSUljBkzBq6urtDW1m62jXg0nIK8ceMG\nbty4geDgYOTk5EBPTw9nz55Fbm4uzpw5g5SUFLx9+xZlZWWoqalBjx49MHz4cJibm8POzo62tjXM\nFwDy8vIEZO4PP/wgkJbfvaLhdFRYWBgOHz6MiIgIFBQUoE+fPrCwsMCKFSsEZBCHw8HRo0cREhKC\nd+/eQVlZGTNmzMD3338PCwuLNpva/+KUmGnTpuHGjRsA6k21PCXm5MmT4B0TNX36dPz111+N5nHg\nwAEcOHAADY+VSktLQ1paGkJCQnD8+HGoqakJvf/du3eYOXMmCgoK6LDs7Gzs2rULnz59YnScpqis\nrMS8efPw8uVLOiwrKwu7d+9GQkJCk/deunQJv/zyi8AUxJs3b/DmzRuEhoZi3bp1mDt3bqN5uLq6\n4tmzZ/T106dPsWjRIuzevRt79uzBmzdv6LiUlBQsX74cJ0+eFPrBa4779+/D39+fUd/k5GS4ubkJ\n5Hn37l2hlol3797h3bt3uHnzJjw8POiRqThwOBy4u7sjKiqKEV5TU4P4+HjEx8cjPDwcR44cgZyc\nHB0fHByMtWvX0u9MdXU17ty5g5iYGOjr64tdD374n7Vnz57YunUr/ZEoKyvDrVu32mz02NBauXnz\n5kZ/T2lpaaGj+8TERCxbtgwlJSWM8MLCQty+fRu3b9+GtbU1duzYAUlJ4WsL9u/fj/j4eKFxre2f\n/Li5ueHBgweMMP4plb/++qtdlBhtbW3k5uaisLAQFy9exLJlyyAnJ4fr168jPz8fQPNyqjHKy8tx\n7949Rhi/pUcUxo4di82bN9PKFVD/boiixDRk165dDDmSlZWFX375BaWlpXj58iVu3rxJx7158wa+\nvr74/PkzQ05yuVysW7dOwAespqYGqampSE1NxeXLl3H48GHo6elBUlIStra29IKHyMhIrF+/nvGh\nvXr1Kv23tra2SE73ycnJWLZsGYqKihjh+fn5CA8PR0REBNauXQsnJycRW4fJ2rVrhb73r169wunT\npwXCS0pKEBsbi9jYWNy6dQv+/v6N9qnWUlVVhdmzZyM9PZ0Oe/fuHY4ePYri4mJs376dDq+rq8Py\n5ctx//59OiwvLw/Hjh1DXFwcPn/+3Gb1+uKUGBaLhaqqKjx48ADR0dHIyMiAgoICwsLCAABDhw7F\n1KlTGxUOkZGRjJU++vr6mDRpEj5+/IiwsDAUFhbi7du3cHd3x9WrV4XOM+fk5KBr165wdHSErKws\nLly4QPsWnDx5EkuXLoW0tHSzz7J//36GAqOhoQEjIyO8efMG165da/S+hIQEbN68GVwuFwCgqKgI\na2trSEpKIjQ0FMXFxaitrcXWrVvBYrEwevRoofk8f/4cDg4O6NatG86dO4eamhrU1dVh5cqVkJKS\nwuzZsyEjI4MLFy6gtrYWXC4Xx44da5ESk5iYCBUVFVhaWuLdu3cIDw8HAKF5ysnJYfTo0WCz2ejV\nqxfk5OTw4cMH/PPPP7Sw9PPzg42NDfr16wczMzMMHz4c/v7+9MhSU1OT8eH/6quvAAA7duygFRhJ\nSUmYmJiAxWLh7du3CA0NBYfDwaNHj+Dj44NffvkFAFBQUICtW7fSH1VpaWnaITIiIgL//POP2O3B\no6qqChEREfT1t99+i3HjxmHgwIH0KoKgoKA2UWK4XC4ePnxIX/fs2RMzZswQK4/Kykq4ubnRCkyX\nLl1gZWUFFRUV3L59m/ZJCw0NhZqaGpYtWyY0n/j4eAwYMADGxsaQl5enn7Wl/fOHH37ADz/8wCgj\nIyODocAYGxtDU1MTVVVVeP/+PZ4+fcpQ1NsSaWlpODk5Ye/evSgrK0NISAgcHR1x6tQpAPXt5uzs\nLLIS03CUzc/QoUPx7bffil1HU1NTbN68me4zsbGx4HK5Yn8knz17hsmTJ0NLSwsBAQH0NBfP6jt1\n6lSMGjUKFy9epN+bhnLy2LFjDAWGxWLByMgIxcXFtL9YaWkpli9fjhs3bqBHjx6ws7PDwYMHweVy\nUV5ejqioKBgbGwOot3DfuXOHzs/BwaHZ5+C92zwFpk+fPjA3N0evXr0QExODuLg41NXV4ddff4WG\nhkajcrUp4uPjoa6uDiMjI0hKStLfDSkpKWhoaEBTUxNKSkro0aMHPn36hOfPn+Pu3bugKAr37t3D\njRs3YGpqSvu5XL9+nZaJ/FOOAKCnpydW3crKylBRUQEbGxsoKysjICAApaWlAOp99n766SdaWT5/\n/jxDgVFVVYWFhQVKSkpw5coV1NbWit02jfHFKTEA8N133+HBgwegKAqnTp1C3759weFwANRbF5qa\nzjly5Aj999SpU+Hv70+nnzVrFv2xyMjIaHKeec+ePXRc//794ePjA6C+I2RmZjar9dfW1jJG4EOG\nDEFAQAA9klBTU8P+/fuF3nvy5ElagZGSksK5c+egrq4OoN6sam5ujtraWlAUhePHjzfa2VasWAE3\nNzcA9c7SPMUCAFauXIklS5bQcbwPbXJycpPP1RjdunXD5cuX0a9fPwDAp0+fcOvWLaF5rlixAhRF\nISUlBenp6aioqICUlBSmT59Od9iamhrExMTAxsYGU6ZMwZQpU3Du3DlaIA8fPpxhfgfqR7CXLl2i\nrz08PBij8JEjR2LLli0A6hWHn376CUpKSggJCUF1dTWdbsuWLZg1axYAYOHChTA2NkZZWVmL2uX6\n9esM/wgLCwv6/z/++ANAvcP627dvMWDAgBaVwaOsrIzhyDtkyBDGB6uqqkqoVYl/1cOVK1dQXFxM\nx23evBn29vYA6q0elpaW9FTYiRMnsHjxYqEDgYEDByI4OBi9evVihLdV/wRAywSgfjpmz549Aibx\n7OzsRu9vLXPmzMEff/yB6upqnD59GkOGDMHz588B1CurbeFU2rdvXxw8eBDdunUT+15JSUkMHjwY\nSUlJAOqn3srKysRerTRp0iQcPXoUEhISUFFRwcaNG+m4yZMn079p37596f7FLye5XC7DQvjVV18h\nMDCQXnGlp6eHtWvXAvi/FXXz58+HiooKvv76a9oqFRYWRisxf/31F/37d+vWTaRBQEhICK2AycjI\nIDAwkP6Nli9fjtmzZyMxMZGub0uUGF1dXZw5c0ZgNRlPhr158wYpKSkoKSlBly5dMGbMGDx//py2\n3t27dw+mpqa0n8urV69omdhwyrEleHl5wdXVFQCgo6OD77//HkD9AOjZs2f0NPGFCxfoe+Tl5REY\nGEi/Nzo6Om3qx/dFKjGTJ0+mf8DQ0FDa7K+goICZM2fi+vXrQu+rrq6mhQhQP//a1MqPx48fCxWS\nysrKjPChQ4cy4isqKpp9hszMTFRVVdHXZmZmDAE7c+bMRpUYnlMeUN8peAoMUP9h0tfXp+d8m5qW\nsrS0pP9WVVVlxPE+pgAwePBg+m+ekiAuRkZGtAIDMNusYZ4xMTFYv359s/sZ8Dq2qDx9+pQxQvD1\n9YWvr6/QtHV1dUhMTIShoSHDVC4lJQUrKyv6umfPnjAyMmrxUmj+VSrKysq03w6/EsPlchEcHCzy\nNKWoiOO7xYP/3ZOSkoK1tTV9LSMjA0tLS9qSUl5ejoyMDLBYLIF85s2bJ6DAtFX/5KGurg4lJSWU\nlJSgsrISRkZG0NTUxFdffQV1dXWMHj2a0XfaGp484vn9eHl50XGi+Lzxwz/KrqysRFRUFFJSUlBY\nWIjZs2fjxIkTYvlq8Gg4ZdcSLCws6HepKTkyZMgQRhxPTr5+/Zoe8QOAubk54yNvbW2NjRs30n03\nISEB8+fPB1Dv68NTYu7evYuKigr07NmTMZVkZmaG7t27N/sc/NM8HA5HwFePH/5+IA4LFiwQUGCA\nekvbmjVrGp1i5SGuzBMHKSkpzJkzh75u7LtWVVWFjIwMOtzQ0JCh+NrY2GDz5s1tZo35Yje7473E\nvNEDUD/ykZWVbfQenoOoqDSc8+fRsKM2HN3xrCRN0VDR4TmsNXbND/9HX1i6vn37NloOP/xKRcPp\nL/45dn4n15YKvYb79PC3GX+e+fn5WL58uUgbMvGPtEVBXAWM9/vzt2HPnj0F2qqp36opMjIy8OTJ\nE/ra3NyctowMHz6cYc0LDg5u9QdHQUGB0T+ysrIY76qMjAzWrFmDNWvWYNCgQULz4G/Dnj17Crz7\nDduisTYX5s/SVv2Th4yMDPz8/OhnKSwsxJ07d3D69Gls3LgRZmZmWLBggdBl5m3F/Pnz6d/0/fv3\nAOqnyMRVOHij7IULF+LHH3/ExYsX6cHFhw8fsHnzZrHrxuVyGZYoWVnZFi2/FVWONLTI8d69hlZM\nfvkF1MsfRUVF+po/vaGhIf3OcTgcREZGIj8/nx7EAaJNJQHiyQfenkri0pgfl7u7e7MKDCC+zBOH\n3r17MxSsxr5rlZWVjPCGv5e0tHSbLuP+Ii0xAGBlZYW9e/fS85e8Oeim6NmzJyQkJGhBOX78eEyZ\nMqXR9MOGDRMa3rCjtmRE27NnT8Z1Q0eyhtf89OrVizbpC0vHM4kKK4efpvx2hK3OaQ0N82usze7e\nvcuYXlmzZg3s7OzQq1cvVFdXQ1dXt8V1aDjyd3BwEBgd8qOpqQmA2YYVFRWoqalhtF1Tv1VTNHRe\nPnnyJE6ePCk0bV5eHmJiYjBx4sQWlQXUTx+MHz8ed+/eBVAviG/dukX7U0hLS9Pm6Lt37yInJ0cg\nD/42rKioAIfDYQi7hm3RsM158DtN82ir/snP6NGjcfPmTbx8+RKpqal48+YNXr58iTt37qCurg4P\nHjzAsWPH2tzKxWPw4MEwNDTE33//TYeJa4URhoyMDEaMGEErISkpKWIv142MjGQo6OPGjWuR02hT\nsqKpvWt4NPzg8csvoH7qnd9Sw59eWloa1tbWOH78OID6KaXKykr6g8tisaCjo9P8Q4D5rsrLy2P5\n8uVNpm+J3Bf23r9+/ZphgTQ3N8eaNWugrKwMSUlJ2NnZtXgaXxxE/a41fMcaDiZqampaPL0ujC9W\niZGRkcHcuXPpKRcLCwsBjbAhcnJyGDlyJFJSUgDUC9w5c+YImBprampw586dVn0wm0NNTQ3du3en\np5SuX78ONzc3+oPQcMkwP/r6+rTH/9OnT5GRkUGbxbOyshhTSK1dOfNvwy+sgHo/CJ5wacrZGWAK\nU34fFh66urro0qULbebkcDhC55ArKipw79492hKiqalJO2DW1dUhLCyM9ompqKho0S6ZNTU1CA0N\nFeueoKCgVikxQP0HlKfEAMDGjRuhoqIismVAX1+f9o+qq6tDaGgo7RPD4XAYZvxevXqJNV3T1v2T\nw+EgKysLLBYLGhoajKmpZcuW0Y6f/NOF7cGCBQtoJYa3TLy11NTU4MWLFwJhohIXFydgvWmtP0VL\nGTp0KBQVFem+f+3aNbi5udFWgdDQUMbUREOZZm9vTysx8fHxePv2LR3XcC+xpjAwMKDf7crKSowa\nNUroIoa0tDRUVFS0SIkRRkOZZ2pqChUVFQD11tqmNnBtTua1B927d8ewYcPoVUx3797Fhw8f0KNH\nDwD1vkXEsVdEXFxc6A+NlpaWSPcsWrSIXlaYnp4OCwsLTJ8+HX379kVlZSVevXqFR48eobKyEn//\n/XejI8nW0qVLF9ja2tJ7FGRlZcHBwQGGhobIyclhONk25LvvvsOtW7dAURTq6uowb9482NjYQEJC\ngtHhJSQksGDBgnapf3vRcB52yZIlmDp1KrKzs5tsE6DerM0bmUZFRWHXrl1QUlKCtLQ0XFxc0KtX\nL9jb29NOaSEhIcjIyMDEiRPRvXt3FBcX48WLF3jy5AmUlZXp+Xxra2scPHiQnnbYtGkTnj59Sq9O\nasmo4+7duwwHWR0dHYFpSgBISkqip9Zu3ryJ8vLyVr2T48ePx3fffUdbfEpLSzF79mxMnDgR2tra\nkJWVRUFBAWPVHD8zZ87E4cOH6dHX5s2bkZCQQK9O4jn1AvVTKaKMxPlpy/5ZWVkJS0tLDBkyBHp6\neujbty/k5eWRlZXFWKLcXn2cx+jRo+Hv74/a2loMHDiwRdaOyspK+kNdVVWFqKgoxlSQmpoaY8ql\nIQEBAZCXl0d5eTmePHkiMHWxePFi2h/r30ZSUhLfffcd9uzZA6B+GbadnR2mTZuGoqIihISE0GkV\nFRUZRzMA9TJj9OjRiI+PB0VR9P4kMjIyDJ+t5pg5cyb++OMP2pq4ePFiGBsbQ11dnc43ISEBWVlZ\ncHd3b5FjrzAGDx4MSUlJ2nr066+/4vnz5/j48SOuXLnSpHLKU3aAeouIl5cXhg0bBgkJCVhbW7d4\nqrs55syZg23btgGon96zs7ODqakpiouLmxyAt4QvWonp0aOH2KMaMzMzZGZm0vtQvH37FmfOnGmn\nGjbNypUrERsbi7S0NADAixcv6NHV+PHjGcth+TEwMMDGjRvx66+/0qbWhtMQUlJS8Pb2xpgxY9r3\nIdoYIyMjjBgxgm6HxMREJCYmAgBsbW2bdKA1NTWl58Krq6vpTd26detG77vi7e2Nd+/e0daI5OTk\nZk21/fr1w/r167FhwwZ6+/bLly8DqDfB6uvrN7uvT0P4p5KkpKSwf/9+hkDiERYWRu+k+vnzZ4SH\nh2PevHlildUQT09PKCkpYf/+/aipqQGXy0V0dDS9WWRD+M33PXr0wKFDh7Bs2TKUlZWhtrZW6G9i\nYWHRon182qN/ZmVlMZQrfuTk5P6VLfebchIVhfLycoHjC3jIysoyVgQJg+ck3pCuXbti1apVHX7s\nwOLFi5GRkUFbJ3l7AvGjoKCAgwcPCp0it7e3F1DMvv32W7F8M+Tl5XH48GEsX74chYWF4HA4zVp/\n24LevXtjzpw5OH/+PIB636nDhw8DqN8wdNCgQbR1siHGxsY4dOgQvWkivwIxduzYdlNi5s6di7t3\n79IyIysri37HNDU18f79e1oZbK3F6otWYlqKu7s7pk6digsXLuDx48d4//49amtr0bNnTwwdOhQG\nBgaYNm1aux8aKS8vj3PnzsHPzw+RkZH0zr9WVlZYsmRJk9aluXPnQl9fn96xNz8/HxRFQVlZGWPH\njoWzszNGjhzZrvVvD6SlpXHq1Cn4+vri77//xocPHzBw4EDY29vju+++a1KJcXR0RFVVFYKDg5Gb\nmyt0BNO1a1f4+/vjxo0bCAkJwbNnz1BSUgIJCQn06dMHw4YNw9ixYwXOCrK3t4eysjL++OMPPH/+\nHF26dIG+vj5++OEHREVFiaXE5OfnM/ZYmDJlilAFBgBMTEywbds22ukwMDCw1UqMhIQElixZAmtr\nawQEBODhw4fIzMykTeS9evXCkCFDoKWlhcmTJwuY1PX09HDt2jWcPXuWtghwOBwoKipCU1MTdnZ2\nrZoyaav+2aNHD9pq9uLFCxQXF6O8vBzS0tJQUVHB2LFj4erq2q4rlNoDSUlJyMnJYeDAgXRf519B\n2Bi8AyCVlJQwePBgjB8/HjY2Nv+JAyAlJSWxc+dOmJqaIjAwEElJSSgrK4O0tDQGDRqEKVOmwMXF\npdFN/UxNTbFt2zbGMRniTCXx0NbWRnh4OC5cuIC7d+/Sq0hlZWWhqqqKUaNGYfLkyQI7l7eW9evX\nQ0VFBZcvX0Z+fj4UFRUxbdo0eHh40MuchcFms7F//34cOXIEaWlp/9qUkpSUFA4fPowjR44gJCQE\n79+/R58+fWBqaorvv/+esaN6ay2dElRbrKEjEAgEAoFA+P98+vRJ6Grghsc97N27t1WbdRJLDIFA\nIBAIhDZl4cKFUFRUxPjx49G/f398+vQJiYmJ9FQ70DaO7ESJIRAIBAKB0KbU1NTg5s2bjLOx+Bkw\nYAAOHz7c6sNriRJDIBAIBAKhTZk7dy6UlJSQmppKO/nzTt02MjKCvb29SDslNwfxiSEQCAQCgdAp\n+WKPHSAQCAQCgfBlQ5QYAoFAIBAInRKixBAIBAKBQOiUECWGQCAQCARCp4QoMQQCgUAgEDolRIkh\nEAgEAoHQKSFKDIFAIBAIhE4JUWIIBAKBQCB0SogSQyAQCAQCoVNClBgCgUAgEAidEqLE/AvExsaC\nzWajpKSkVfnk5uaCzWYjOTm5jWr23yM4OBh6enodXQ0GGRkZmD17NrS0tGBkZNTR1fnP8F/5raqr\nq7FixQoYGBiAzWYjNze3o6tEaCXOzs7YunVrR1ejU9Ca78t/pQ+3hi9CiSkqKsK2bdswffp0aGpq\nYvLkyVi0aBGioqI6umotRlgn7t+/P6KjozFixIgOqtX/Jvv27YOsrCwiIiIQGBgoNI2fnx8sLCzo\n6+DgYLDZbHz77bcCaaOiosBmsxnCgyeI2Gw2NDQ0oK+vD0tLS2zbtg05OTmM+3l58/7p6enBzs4O\nd+/ebZsHFgKbzUZkZCQjzMzMDLdu3Wq3MkUlKCgIcXFxOH/+PKKjo9G/f/82zZ+nGAUHB8PZ2Vkg\nvqioCFpaWvjmm2/A5XLbpMyG79P/Gn5+fvDw8GjTPMX5YAcEBMDGxgZ6enowMDCApaUl9u7d26b1\naS9iY2PpwZaXlxf8/Pw6uEbtS6c/xTo3NxeOjo7o3r07PDw8oKGhAYqiEBMTg02bNrWrYP+3kZKS\nQt++fTu6Gp0SDofT4iPfs7OzMW3aNAwcOFCs+7p27YqKigo8evQIY8eOpcODgoIwYMAAlJWVCdxz\n7do19OrVCx8/fkRqaipOnz4NKysr+Pv7M/KQk5Ojj7ivrKzE+fPn4e7ujps3b4r8EedyuaAoClJS\nUmI9Fw9ZWVnIysq26N62JDtKAcGwAAAgAElEQVQ7G+rq6mCz2S3OozVtceXKFRgaGuLly5e4f/8+\npk6d2uJ6EOpRUFDosLIDAwOxbds2eHt7Y8KECaitrUVaWhqePn3aYXUiNE6nt8Rs2bIFQP2HwczM\nDGpqalBXV4eTkxPCwsLodMJGkkZGRjh+/Dgjzfnz5+Hm5gYdHR2YmJjg4cOHeP/+PRYuXAhdXV1Y\nW1sjJSWFvkeYdt+cea+0tBQeHh6YMmUKtLW1YW5ujqCgIDrey8sLjx49wrlz5+jRdm5uLmM6icvl\nYurUqTh79iwj79evX4PNZtN1/PDhAzZs2IAJEyZAT08PTk5OzU5HGRkZ4dChQ9i4cSP09fUxZcoU\nHDt2jJGmvdqTx+3bt2FiYgItLS04OzsLWCNu374NW1tbeopn79694HA4jLr4+fnB29sbo0ePxqpV\nq4Q+K5fLxcGDBzF16lRoamrC0tKSYV1gs9lITU3FwYMHwWazxRrVSElJwdramvHblpSU4M6dO7Cx\nsRF6j5KSEvr27YvBgwfDxMQEZ8+exYgRI7B27VrU1dXR6SQkJNC3b1/07dsXQ4cOxcqVK1FTU4O0\ntLRG68N7V6OiomBhYQFNTU1kZGQgKSkJCxYswLhx46Cvrw9HR0c8efKE0ZYA8OOPP4LNZtPXDd99\nnvXg2rVrmD59OvT09LB8+XJGP6itrYWPjw/GjBmDMWPGwMfHB5s2bWJYOOLi4uDg4ECPgu3s7Bp9\nLmdnZ5w5cwZxcXFgs9l0PuXl5fD09MSYMWOgra2N+fPn49WrV822RUsICgqCjY0NrKysGL81Dzab\njUuXLmHFihXQ1dXFtGnTEBoaKlYZorQtUK9QWVpaQlNTExMnToSnpycd9/btW3z//ffQ09ODnp4e\n3N3d8f79e5HLiI6OhqamJkpLSxll7tmzB5aWlvR1QkICnJycoKOjg8mTJ2PTpk2orKyk452dnbF5\n82bs2bMH48aNw4QJE/Dbb78xrFgNLdEcDge7du3ClClToKOjg1mzZuH+/ft0PE/mxsTEwN7eHjo6\nOrC1taVlS2xsLLy9vfHx40dapjbWl2/fvg1jY2PMmTMHgwcPhrq6OmbMmAFvb2+BdE3JoOLiYri5\nuUFbWxuGhoYIDAyEhYUFo1xR5GhLZLi4NCZvc3NzoaGhIVDe5cuXMW7cOMbzdhSdWokpKyvD/fv3\nMW/ePHTv3l0gvmfPnmLnefjwYZibmyM0NBSamprw8PDAunXr4OjoiCtXrkBZWRleXl6tqjeHw8HI\nkSPh7++Pa9euwcXFBZs2bUJMTAwAYN26ddDT04OtrS2io6OFmsglJSVhbm6Oq1evMsKvXr0KdXV1\njBo1ChRFYcmSJcjPz4e/vz9CQkIwevRouLq6oqCgoMk6nj59GiwWC1euXMHixYuxa9cuxodNVFrS\nnhwOBwcOHICPjw8uXboELpcLd3d3UBQFALh//z5WrVqFefPm4dq1a/Dx8UFkZKSAuffkyZNQU1ND\nUFBQo6bpM2fO4Pjx41i1ahWuXr2K6dOn44cffsCLFy8A1AvuoUOHYsGCBYiOjsaCBQvEen47Ozvc\nuHGDFuJhYWHQ09PDoEGDRLpfSkoK8+fPR05ODp4/fy40TW1tLYKDg9G1a1doaGg0md/nz59x6NAh\nbNmyBdeuXcOAAQNQVVUFKysrnD9/HgEBARgxYgSWLFlCf6x4U2jbtm1DdHR0o1NqAJCXl4fr16/j\nwIEDOHHiBF68eIHff/+djj9x4gSuXLmCbdu20b9teHg441mWL18OAwMDhIaG4vLly3B1dW3UQuLn\n5wdbW1vo6ekhOjqa/kB4eXkhMTERhw4dQkBAAGRlZbFo0SJ8+vSpybYQl/j4eJSVlWHy5MmwsrLC\nnTt3hA5eDh48SCsvZmZmWLduHd6+fStWWc217cWLF7Fx40bY2toiLCwMR44cwfDhwwHUK+vLly9H\ncXExzpw5gzNnzqCgoADLly+n+1VzZUyYMAEKCgqMjy5FUQgPD4eVlRUA4OXLl1i4cCGMjIwQGhqK\nAwcOIDU1FWvXrmU8y9WrVyElJYWLFy9iw4YNOH36NK5fv97os3t7eyMuLg67d+9GeHg4Zs6cCTc3\nN6SmpjLS7d69Gz///DOCg4OhqKiIVatWgaIo6OnpYe3atZCTk6NlamN9uU+fPkhOThYYOPEjigzy\n8vLCmzdvcPLkSRw8eBChoaHIy8trNE9htEaGi0pT8nbgwIGYNGmSgHIeFBQEa2vrFlu32xSqE5OY\nmEixWCzqxo0bzaZlsVhUREQEI8zQ0JA6duwYI42vry99/fLlS4rFYlEnTpygwx4+fEixWCyquLiY\noiiKCgoKonR1dRn5NkzT8FoYK1eupNauXUtfOzk5UVu2bGGkycnJoVgsFpWUlERRFEW9ePGCYrFY\nVHZ2Np3G2NiYOnz4MEVRFPXPP/9Qurq6VHV1NSMfKysr6siRI43WxdDQkPrpp58YYcbGxtTBgwfp\n6/ZsTxaLRcXHx9NpcnNzKQ0NDerBgwcURVHU3LlzqQMHDjDKvnnzJqWrq0txuVy6LkuXLm30GXl8\n/fXXlJ+fHyPMycmJ+vnnn+lrc3Nzav/+/U3ms3//fsrc3Jy+5n8v7OzsqEuXLtF5hYSECLw3Tb0j\n6enpFIvFoq5du0bnzWKxKF1dXUpXV5fS0NCgtLW1qfDw8CbryLsvOTm5yXRcLpeaNGkSFRISQocJ\n+70bPsP+/fspTU1NqqKigg47dOgQNX36dPp60qRJlL+/P6Osb7/9lnJycqIoiqJKS0spFotFxcbG\nNllHfrZs2ULfT1EU9fr1a4rFYlGPHj2iwyoqKih9fX3q8uXLdN1FaYvm8PT0ZPTTuXPnMvoARQn2\ng5qaGkpbW5vRvg1p+D6J0raTJ0+mdu3aJTS/6OhoSkNDg8rJyaHD3rx5Q7HZbLpfiVKGj48P5ejo\nSF/HxcVRGhoa1Lt37yiKoqjVq1dT3t7ejLKfP39OsVgsqqioiKKo+v7l4ODASDN//vxG5V92djbF\nZrOpvLw8xj1ubm7Upk2bKIr6v/5z7949Oj4+Pp5isVh03YTJamHk5+dTDg4OFIvFooyNjamff/6Z\nunLlCsXhcOg0zcmgzMzMRuUYvyxpTo6KIsNF+b40hijyNiIigho9ejT16dMniqL+Tx69fPlS7PLa\ng07tE0PxjSDaCv559T59+gAAWCyWQFhJSQmUlJRaVEZdXR2OHDmC69evo6CgABwOBzU1NQyfB1HQ\n0NAAi8VCWFgY3N3dkZiYiDdv3tCm3ZSUFFRXV2PChAmM+z5//tzkKAOAgH+BsrJyi7zfW9KekpKS\n0NbWptOoqqpCWVkZ6enpmDhxIlJSUpCUlMSY4uJyufj06RMKCwuhrKwMANDU1GyybpWVlSgoKICB\ngQEjXF9fH/fu3RP7WRvDzs4OQUFBYLPZeP/+PUxMTJocdTaGhIQE/becnBxCQkIA1K/OiYmJgbe3\nN+Tl5Zv0yejSpYuAY3hxcTH27duH2NhYFBUV0W357t07ses4YMAA9OjRg75WVlZGcXExgHqzeGFh\nIbS0tBjPpK2tTU9rKCgowNbWFgsXLsSECRMwYcIEmJiYiGUlycjIgKSkJHR1demwHj16gMViIT09\nnQ4T1hbiUFlZicjISJw+fZoOs7a2xsmTJ7Fw4UJGWv5+0KVLFygpKYndn5pq2+LiYuTn5wv0dR4Z\nGRlQVlZm+HUNGjSI0a+aKwMArKyscPr0aeTl5UFVVRVXr17FmDFjoKKiAqBe5mRnZyMiIoK+hyen\n37x5g969ewu0h7By+ElJSQFFUTA3N2eEczgcjB8/nhHGny9PDhQXF9P1EwVlZWVcunQJaWlpiIuL\nQ0JCAjZu3IhTp07hwoULkJOTa1YG8d5BYXJMHFojw0WlOXk7bdo0bN26FTdu3IClpSUCAwOhra3N\nkOMdSadWYgYPHgwJCQlkZGTA2Ni4ybQSEhICSk9NTY1Aui5dBJtEWBhv/lZSUlIg39ra2ibrcvz4\ncZw8eRJr164Fm81Gt27dsGfPnhYpCVZWVggMDIS7uzuuXr0KAwMDqKqq0nXs06cPzp07J3CfvLx8\nk/k2fGYJCQnGnHV7tSd//o3BM3eampoKxPErlnJyco3m0RxNlS8u5ubm2L59O3x9fWFubi62Myzv\nw8s/BSUhIYHBgwfT1xoaGoiOjoa/v3+TSoyMjIzA1IynpyeKi4vh7e0NVVVVyMjIYP78+UJ/z+aQ\nlpZmXAt7T5pj+/btcHV1xb1793D79m3s3bsXBw8exOTJk8WuT0P4f1dhbSEOV69eRXV1NRwdHRnh\ndXV1ePz4MUM5bq4/iUJbtK0w+NukuTJGjRoFNTU1hIeHY8GCBYiMjMTq1avpeC6XC3t7e8yfP1+g\nnH79+tF/C2uPxp6FoihISEggMDBQ4L6GfYk/nvdcLV0xxmKxwGKxMG/ePMTHx2PevHmIiIiAra2t\nyDKoOTnSnBxtjQwXh6bqKS0tTfv2zZgxA2FhYVixYkWbld1aOrUSo6CggK+//hp//vknnJ2dBfxi\nKioqaL8YJSUlFBYW0nFFRUWM65aiqKiI6upqVFZW0i8Vz5+iMRISEmBoaEg7d1IUhaysLIYPj7S0\nNMORszEsLS2xZ88ePH36FNevX8ePP/5Ix40aNQpFRUWQlJQU2QdDVNqrPYH6jpuUlAR9fX0A9Q6J\nBQUFUFdXBwCMHDkSmZmZjI94S5CXl4eysjIeP37MGOkkJCTQZbUF8vLyMDExQUhICNasWSPWvXV1\ndTh9+jS++uqrZq0GUlJSDJ8PUXn8+DHWr1+Pb775BoDw31JaWrrVy4d79OiBvn37Ijk5mW5viqKQ\nnJwssOpOQ0MDGhoaWLJkCRYtWoSQkBCRlRh1dXVwuVw8ffoUY8aMAVBvNUlLS4OtrW2rnoGfwMBA\nODk5Yfbs2Yzw3bt3IzAwUMDC15707t0b/fr1Q0xMDCZNmiQQr66ujoKCAuTm5tLWmJycHBQUFGDY\nsGFilWVlZYWrV69i+PDhqK6uZnzIR44cifT09Fb3TX5GjBgBiqJQWFgoYHkRB1FlqjB4bfTx40cA\nzcsgNTW1RuUYP83J0faU4Tyak7cAYG9vD3Nzc5w/fx5VVVUCVrGOpFM79gLApk2bAACzZs1CREQE\nMjMzkZGRgfPnz9POZgAwfvx4nDt3DsnJyXj+/Dm8vLzQtWvXVpevo6ODbt26Yffu3cjOzsZff/2F\n8+fPN3nPkCFDEBMTg/j4eGRkZGDr1q0CG3SpqqoiOTkZubm5KCkpafQDoqKigjFjxmDTpk348OED\nQ6BMnDgR+vr6WL58OaKiopCTk4MnT55g//79iI+Pb9Vzt1d7AvWjKR8fHzx58gQvXryAp6cnhg0b\nRpu8v//+e4SHh2Pfvn1IS0tDRkYGIiMjsXPnTrHLWrhwIU6cOIHw8HC8fv0a+/btQ3x8vMB0QGvZ\nunUrHj58yJhKEUZJSQkKCwuRnZ2NGzduwNnZGS9evICPjw/DasAT6oWFhcjJycGlS5cQHR3dos34\nhg4dirCwMKSnpyMpKQk//fSTwIhcVVUVMTExKCwsRHl5udhl8HBxccHx48dx8+ZNZGZmYseOHQyh\nnZOTA19fXyQkJCAvLw8PHz7Ey5cvxVIqhwwZgmnTpmHjxo2Ij4/Hy5cvsWrVKsjLyzNW0bSG1NRU\nPHv2DPb29vSInffP2toakZGRjBU5/wbLli3D6dOncerUKbx+/RovXrzAiRMnANTLAjabjVWrViE5\nORnJyclYtWoVRo4cKbZiYGlpifT0dOzbtw+GhoYMi8DixYuRlJSEjRs34vnz58jOzsadO3ewcePG\nFj/X0KFDYWlpCW9vb0RGRiInJwfJyck4fvw4bty4IXI+qqqq+Pz5Mx48eICSkhJUV1cLTbdp0yYc\nPHgQjx8/Rl5eHp4+fQpPT0/IycnRCmJzMkhNTY1emcWTY15eXgKWo+bkaHvKcB7NyVve8xgYGGDn\nzp0wMTFpUytQa+nUlhig3sQeHBwMf39/+Pr6Ij8/HwoKCtDQ0GAs0fP09MS6devg4uKC3r17Y/Xq\n1cjMzGx1+QoKCti1axd27dqFoKAgjBkzBj/++GOTI243Nzfk5uZi8eLFkJWVxcyZM2FpaclY4rlg\nwQJ4eXnB3Nwcnz59wt9//91oflZWVli3bh2MjY3Rq1cvOlxCQgJHjhzB77//jg0bNqCkpAS9e/eG\nvr5+o0t8RaW92hOoN/MvW7YMnp6eePv2LXR1dXHgwAHa5Dl58mT4+/vj0KFDOHHiBKSkpDBkyJAW\njbJdXFxQVVWFXbt2obi4GEOHDoWfn1+zq3zEpWvXriIpebwRTrdu3aCqqorx48fjt99+ExiFVVdX\n4+uvvwZQ314DBgzAihUrsHjxYrHr5uPjgw0bNsDW1hbKyspwd3cXWEbr6emJHTt24JtvvkG/fv1w\n+/ZtscsB6t/rwsJCeHt7Q0JCAra2tjA2NkZRURGA+inArKws/PjjjygtLUWfPn1gaWkp9nNt374d\nPj4+cHNzw+fPn6Gvr49jx4612b42gYGBGDJkiND3hLfp3bVr1wSsNO3J3LlzIS0tjZMnT8LX1xe9\nevXClClTANTLgkOHDmHbtm1wcXEBUP+B3LBhg9hTp6qqqjAwMEB8fLzAtIKGhgb+/PNP/P7773By\ncgKXy8WgQYMwffr0Vj3b9u3b8ccff2DXrl3Iz89Hr169oKWlhXHjxomch76+PubMmQMPDw+UlZXB\n3d0dP/zwg0A63mqcixcvorS0FAoKChg1ahROnDiBoUOHAhBNBu3YsQPr16+Hq6srFBUV4e7uLuAy\n0JwcbU8ZzqM5ecvDzs4OcXFxsLOza5Ny2woJqj28YwkEAkFEbGxsYGBggA0bNnR0VQiEdsXCwgIm\nJiZClaf/OkeOHEFQUBD++uuvjq4Kg05viSEQCJ2HvLw8REdHY8yYMaitrcXly5fx8uVL/PLLLx1d\nNQKBIISqqiq8ffsWZ86cgZubW0dXRwCixBAIhH8NSUlJhISEYOfOneByuRg2bBiOHj3arK8QgUDo\nGH755ReEh4fDyMjoX50eFRUynUQgEAgEAqFT0ulXJxEIBAKBQPjfhCgxrSAyMrJVJ+d2BCUlJWCz\n2YiNje3oqvxn8PLywtKlSzu6GiLDfxDof5XOUEcCgdD5IUoM4Yui4em3/xaXLl2Cs7MzRo8eTZ86\nzg/vlF1h//i3aG9IZ1Ow2oqUlBSMGDECc+bM6dB6pKamwsPDA1OnToW2tjZMTExw9OhRgX2brl+/\nDmtra+jo6MDQ0FDg1HcCgdA+EMfeDobD4fw3TgLtQGpqagQ2V+ts8PZtmTZtGrZv3y4QzztlmZ+z\nZ8/i7Nmz9F4e7U1naueAgADMnTsXISEhyMjIaNMdlMXh2bNnUFJSws6dOzFgwAAkJSVh/fr1qKur\nw7JlywAAUVFRWLVqFdatW4cpU6YgIyMD69evh6ysLJycnDqk3gTC/wqd3hLz8eNHrFmzBnp6epg4\ncSL8/f2xdOlSeHl50Wk4HA527dqFKVOmQEdHB7NmzcL9+/fpeN4oOSYmBvb29tDR0YGtrS1SUlIY\nZYWEhMDQ0BA6OjpYunSp0APLbt++DVtbW2hpacHIyAh79+4Fh8Oh442MjODn5wdvb2+MHj0aq1at\nEvpcSUlJWLBgAcaNGwd9fX04OjriyZMnjDRsNhuXLl3CihUroKuri2nTpiE0NFQgH159bGxskJSU\n1GybxsXFwcHBAXp6ejAwMICdnR3S0tLo+KdPn8LFxQW6urowMDCAi4sL8vPz6bb+9ddfMXHiRGhp\nacHBwYGxsySvraOiomBnZwdNTU36495c27UEYZaZpqwbISEhGDdunEC5P//8M/3REsb8+fOxdOnS\nRreal5GRQd++fRn//vrrL1hYWAgcl8HDz88PV65cwd27d2mrDf804Nu3b/Hdd99BR0cHZmZmePDg\nAR3XVDtfvHgRxsbG0NTUhLGxMS5fvswol81mIzIykhFmZGSE48eP09evX7+Gk5MTtLS0YGJigqio\nKOjp6SE4OJhxX1N1bIxPnz4hPDwcDg4OMDExQWBgICO+samqhvVOTEzEzJkz6Xc/KipK7KlUOzs7\nrF+/HuPGjcOgQYNgbm4OR0dHxk6xYWFhMDQ0xLx58zBo0CB88803WLp0KY4ePdouh9QSCIT/o9Mr\nMTt27EBcXBwOHDiA06dPIzU1VWA7Zm9vb8TFxWH37t0IDw/HzJkz4ebmhtTUVEa63bt34+eff0Zw\ncDAUFRWxatUqWgglJibCy8sLDg4OtDKzf/9+xv3379/HqlWrMG/ePFy7dg0+Pj6IjIzE3r17GelO\nnjwJNTU1BAUFwcPDQ+hzVVVVwcrKCufPn0dAQABGjBiBJUuWCOykevDgQVp5MTMzw7p16/D27Vs6\nj6VLl2LgwIEICgrCzz//jN9++63J9qytrcXy5cthYGCA0NBQXL58Ga6urvSW96mpqXBxccHgwYNx\n4cIFXL58GWZmZvSZJDt37kRERAR8fHwQEhICFouFxYsXC5wZ4uvri5UrVyIiIgI6Ojoit117Y2pq\nCi6Xi1u3btFhHz58wK1bt9p0p8rY2FhkZWXBwcGh0TQLFizAjBkzMHHiRERHRyM6Ohp6enp0/N69\ne+Hs7IzQ0FBoaWnBw8MDVVVVjDwatvPNmzfxyy+/wNXVFVevXoWLiwu2bNki1g68vMPvpKSkcPny\nZezYsQMHDhwQqnCKUseGREZGYsCAAWCz2bC2tkZISIjYh1Hy3n01NTUEBwdj9erVLTqWQhiVlZWM\nc844HI7AbsyysrJ4//498vLy2qRMAoHQCFQnprKykho1ahQVHh5Oh1VVVVGjR4+mPD09KYqiqOzs\nbIrNZlN5eXmMe93c3KhNmzZRFEVRDx8+pFgsFnXv3j06Pj4+nmKxWNS7d+8oiqIoDw8Pav78+Yw8\n1q5dS7FYLPp67ty51IEDBxhpbt68Senq6lJcLpeiKIoyNDSkli5dKvazcrlcatKkSVRISAgdxmKx\nKF9fX/q6pqaG0tbWptNcvHiRMjAwoCorK+k0ISEhFIvFoh4+fCi0nNLSUorFYlGxsbFC4z08PCgH\nBwehcVVVVdSoUaOoK1eu0GG1tbXUtGnTqD179lAU9X9tHRkZybhXlLYTBScnJ2rLli2NXlMURXl6\nelJLlixp9HrLli3UggUL6Otz585REydOpGpqapotPykpiWKxWFROTk6T6Tw8PChra+tm82tYN4qi\nqJycHIrFYlEXLlygw96/f0+xWCwqLi6OoqjG23n27NmUl5eXQBlz5syhr1ksFhUREcFIY2hoSB07\ndoyiKIq6d+8eNWLECOr9+/d0/OPHjykWi0UFBQWJXMfGcHJyosvicrmUoaEhoz68vJOSkhj38df7\nwoUL1JgxY6jq6mo6PiwsrMl3XxSePXtGaWpqMtr14sWLlLa2NnX//n2qrq6OyszMpExNTSkWi0Ul\nJCS0uCwCgdA8ndonJicnBzU1NdDW1qbDunXrhuHDh9PXKSkpoChK4NRNDocjcPAZ/0ojZWVlAEBx\ncTFUVFSQkZEBQ0NDRnpdXV2GqTslJQVJSUkMpz4ul4tPnz6hsLCQzlNTU7PZZysuLsa+ffsQGxuL\noqIiOp937941WucuXbpASUmJPp8jIyMDbDabMV3BP5IXhoKCAmxtbbFw4UJMmDABEyZMgImJCQYM\nGACg/oRuY2Njofe+efMGNTU19GmoQP3Jyrq6uoxzoYS1gaht92/g4OCAmTNn4v3791BRUUFQUBBs\nbGzQpUvbdJfS0lLcuHGDMeXZEoS9rw3PZmnYzpmZmZg1axYjzMDAQCxLTGZmJpSVldGvXz86TEtL\nC5KSgoZdUerIT3Z2Nh4/fgxfX18A9WfHWFpaIjAwkHG4qSh1HD58OOOsJB0dHZHvbyzPpUuXwtXV\nFSYmJnS4g4MD3rx5g+XLl6O2thby8vJwcXGBn5+f0DYhEAhtR6dWYkSBoihISEggMDBQ4CPU8DA4\n/nje4VeNnR4tDJ6ZXZiwVVJSov+Wk5NrNi9PT08UFxfD29sbqqqqkJGRwfz58wXM6g2fSUJCQqw6\nC2P79u1wdXXFvXv3cPv2bezduxcHDx7E5MmTW5xnw8PEGraBqG3XknKpBn4JzU1NaGhoYOTIkQgO\nDsb06dPx7Nkz7Nq1q8V1aEhoaCikpKQYp6y3BFHeV1HeNf77eX+L22atqSM/AQEBqKurYwwYeHV5\n9+4d+vfvTysG/HVsaf1EJSMjA66urjAzMxPwY5OQkMDq1avh4eGBoqIiKCoqIiYmBgAEDu4kEAht\nS6dWYgYNGgRpaWkkJyfTwqK6uhqvXr3CV199BQAYMWIEKIpCYWGh2EfO86Ouro7ExERGWMPrkSNH\nIjMzE4MHD25xOTweP36M9evX45tvvgEAFBUVobCwUKw81NXVceXKFXz8+BHdunUDUO+UKwoaGhrQ\n0NDAkiVLsGjRIoSEhGDy5MkYMWIEHj58KPSer776CtLS0khISKDbv66uDk+fPoWFhUWT5bVl2/Gj\npKQk0G4vX76Eqqpqk/c5ODjg2LFjKC0thb6+PtTU1NqsTgEBATA1NUWPHj2aTSstLU37G7UFampq\nSEhIgL29PR32+PFjxuqfhm3W8N1TU1NDQUEB8vPzaWvMs2fPWq0819bWIiQkBD///DP93vNYs2YN\ngoKC4O7uTiu1/HV68eKFwHOGhITg06dP9GBFFKd2YaSnp8PV1RUzZszA2rVrG00nJSVFt8e1a9eg\np6fXKgWcQCA0T6e2dXbv3h22trbw9fVFTEwM0tPTsX79enC5XHrUN3ToUFhaWsLb2xuRkZHIyclB\ncnIyjh8/zlhh0BzOzs74559/4O/vj6ysLFy+fBk3b95kpPn+++8RHh6Offv2IS0tDRkZGYiMjGyR\nQ+HQoUMRFhaG9PR0JCvj78QAACAASURBVCUl4aeffhJ7eayFhQWkpKSwdu1avHr1Cg8ePMAff/zR\n5D05OTnw9fVFQkIC8vLy8PDhQ7x8+ZL+yC1atAjPnz/Hhg0bkJqaiszMTAQEBODt27fo1q0bHB0d\n4evri6ioKGRkZGDz5s0oLi7G3Llzmyy3LduOn/Hjx+PevXv4+++/kZmZie3btwtMyQnD3NwcRUVF\nuHDhgkgOvYWFhXjx4gWysrIA1I/cX7x4gbKyMka6+Ph4pKenM5SIplBVVcWrV6+QmZmJkpKSVlsc\nFi1ahLCwMJw7dw5ZWVk4e/Ysrl69ikWLFtFpxo8fj3PnziE5ORnPnz+Hl5cXw3F10qRJGDp0KLy8\nvJCamoqnT59ix44d6NKli4DFTRzu3r2L0tJS2Nvbg8ViMf6ZmZkhODgYFEVBVlYWurq6OHr0KF69\neoWEhASB98TCwgKSkpJYv3490tPT6b4LMK1Opqam+PPPPxut06tXr+Di4oKxY8di6dKlKCwspP/x\nKCkpwfnz5+nffNu2bYiMjGxS4SEQCG1Dp1ZigPppFwMDA7i5ucHFxQVsNhuampqMvVe2b98OW1tb\n7Nq1CzNmzMCyZcsQFxdH+3mIgq6uLn799VdcuHABVlZWuHHjhsBx6pMnT4a/vz9iY2Nhb28Pe3t7\nHDlyRKxyePj4+ODjx4+wtbWFh4cHZs2a1az1oCHdu3eHv78/srOzMXPmTPz222+NLunmIScnh6ys\nLPz4448wMTGBl5cXLC0tsXjxYgD1lq2TJ08iMzMTDg4OcHBwwLVr1+hpg9WrV2PGjBnw9vaGtbU1\nXr58iaNHjzbr0yJK2/n5+TW7QzKXy6VXUgHArFmzMGvWLKxduxaOjo7o3r17oz49/MjLy8PU1BQy\nMjKYMWNGs+kvXrwIGxsbun2XLFkCGxsbAV+TgIAAqKurN7oUuyEODg5QV1fHrFmzMGHCBCQkJIh0\nX2NMnz4d69evx6lTp2Bubo4zZ85g06ZNMDIyotN4enpi0KBBcHFxwYoVK2Bvb4/evXvT8ZKSkvRq\nJDs7O3h6emLZsmWQkJAQWKUjDoGBgRg3bhwUFRUF4mbMmIG8vDx6ibaPjw+A+iXQmzZtwsqVKxnp\n5eXl8ccffyA9PR02NjbYuXMn3N3dAYBRx9evXwus+OMnMjISxcXFuH79Or7++mvGP35CQ0NhZ2cH\nR0dHpKen4+zZswxfPQKB0D58cQdAcjgcGBoaYuHChViwYEFHV4fQhnh6eqKoqIixX0lDTExMMGvW\nLCxZsqTV5S1atAgqKirYtm1bq/P60klNTYW1tTWCgoJEclzvCG7dugV3d3f8888/ZJqHQPhC6NQ+\nMQDw/PlzZGRkQFtbG1VVVTh69CiqqqpgZmbW0VUjtCEUReHhw4c4deqU0PjCwkLcvXsXWVlZmDhx\nYqvKKi8vR3x8PB48eCCweSChnps3b0JOTg6DBw9GXl4eduzYAQ0NDYwaNaqjq0Zz5coVDBo0CCoq\nKnj16hV8fHxgaGhIFBgC4Qui0ysxQP3mca9fv0aXLl2goaGBP//8EyoqKh1dLUIbIiEhgaioqEbj\nHR0dAQAbNmxotSVg5syZKCsrw08//QQWi9WqvL5Uqqqq4Ovri3fv3qFnz54YN24cvL29W+UT09YU\nFRXBz88PBQUF6Nu3L6ZOndrsdCqBQOhcfHHTSQQCgUAgEP436LSWGC6Xi6qqKkhLS/+nRn8EAoFA\nIBDEg6Io1NTUoHv37mJtEtlplZiqqirGoYQEAoFAIBA6NywWS6Q9tHh0WiWGt2cKi8ViLKcmiMez\nZ8/+s6tJ/iuQNmoe0kaiQdqpeUgbicaX1k4cDgdpaWli74fWaZUY3hSSjIxMq/amIIC0nwiQNmoe\n0kaiQdqpeUgbicaX2E7iuod0+s3uCAQCgUAg/G9ClBgCgUAgEAidEqLEEAgEAoFA6JQQJYZAIBAI\nBEKnhCgxBAKBQCAQOiVEiSEQCAQCgdApIUoMgUAgEAiETglRYggEAoFAIHRKiBJDIBAIBAKhU0KU\nGAKBQCAQCJ0SosQQCAQCgUDolBAlhkAgEAgEQrNQnM+ozXsFisvt6KrQdNoDIAkEAoFAILQ/VF0t\nPt29gI/X/AEAUoNGoNfKI2If1tgeECWGQCAQCIT/Aai6WtTlvQLF+QSJbj0h1bv//8XV1oCTEg2q\nugoABe6HUnyOuw7q80eA84mRT13OC1DVHyDRree//ASCECWGQCAQCIQvjLqCN+Ak30NNdgqojx/A\nLX0Hbml+m+TddZwlJP8DCgxAlBgCgUAgEL4oOCkP8OG4Z9tnLN0V8nPWoqvetLbPu4UQJYZAIBAI\nhE4OVVcLblk+Ppxaj7q8V83f0FUO/4+9+46TorwfOP6Zme271+kdaSJdFLFgixU7GFtiLzH2FsVC\nNLZEo7EEfyjGaOwasSKK3SiKIFgA6b23q9t3Zp7fHwsL6+1xd3B3e7d836+XL3eeeWbmOwPcfm+e\nhvpVmW2huX04+x6A7isATUMvbItrn4PQSzqg6c1vLJAkMUIIIUQLo0eDmKvmE/7oOax1S7BL12Wu\n6HDhOfg0HJ33Ri9qi9GqE3pecdMG24gkiRFCCCGaMWVbRL+aiAqVE5//HdbqBXQBKmo5zj3sBPxn\njmkWo4gaiyQxQgghRDNkrl9G6NW/Yq78pV7HaYFCCq5+EqN1p0aKrPmQJEYIIYRoJuxQJYn50wi+\nej9YZq31NV8+eklHvL/5Pc5u/dHzS5ogyuZDkhghhBCiCdmVW4h8/jLYNub6pZCIJ9+22Fatx3qP\nOg/N5WWRVsTA35zYBNE2b5LECCGEEE1AxSJEPn2ByCfP1+s4o30PAr/7M44OPVJliZkzGzq8FkmS\nGCGEEKKBKaWwN68mPGk8Vtl6rNUL63W8XtIR1z4H4TnsDIzi9rUfsIeSJEYIIYRoACoWxly/nMgn\n/yExd2qdjvGdcg3YJkbb7ujF7TCK26O5PI0cae6QJEYIIYTYRcq2ic/5iuBzt9f5GC2/Fb7jL8Fz\ngPRp2V2SxAghhBD1YFduJvzhvzGXz8Zav6zW+kaHnniPOAdHt37oxR1yet6WpiZJjBBCCFGLxIq5\nxKa+Rez7D2utq5d0QHO4kp1xO/Vuguj2XJLECCGEEDVQShH9+k3Cbz1Sa133QafiP/lqNJe7CSIT\nIEmMEEIIkVHs+ykEX76nxv16cXu8R52Ps89+GEXtmjAysY0kMUIIIfZ4KhbGrirD2rAMbJuqZ2/L\nWE8vaofvpD/iGnhEs1zVeU8jSYwQQog9llW2gYpHLkYFy2ut6zn8LPwnX9UEUYm6kiRGCCFETlOW\niV22AWXGSfzyDXYouf5z/KfPsUvX1Xq8f/QNeA4e1dhhil0gSYwQQoicpGybqmdvrfPEcwBafgma\n24vRpiu6vwD/qdeheXyNGKXYHZLECCGEyCnKjBP9eiLhd5+o8zFGu70ouOk56efSwkgSI4QQosVR\nSmGumEts5keYK+agOdyAwq4qxd6ytsbj9OL2YDhw9twXo7gdyrJwDzsBo7B10wUvGowkMUIIIVqU\nyBevEn53XL2OKbjpORwdejZSRCJbJIkRQgjRIiilqHj0MqxV8+p8jO/Ua/AcMhpNNxoxMpEtksQI\nIYRo1lQiRnTqmzX2cXF07Ydzn4Nw9hwCaKBpGO26o3v8TRuoaHKSxAghhMg6c8NyEgtmkL9yBZHg\nYgDs0vVEp74JtpXxmMA5Y3Hvd2xThimaGUlihBBCZI2ybSqfuh5z0UwAioHwrNqPK7j5BRztujdu\ncKLZkyRGCCFEVtjhSsruGFnn+po3gPeYC/EcegaapjViZKKlkCRGCCFEk7I2r6H8ofMhHq22L1bS\nhYJ+w7cXKBu9sA3u4SejewNNGKVoCSSJEUII0STsaIiysSeClci4v+DGZ/lpfSUdhg5t4shESyVT\nEwohhGh00W/epuy2YzMmMJq/kKI738bRsVcWIhMtmbyJEUII0WhUPEb4gwlEv3yt2j6jY2/yL38U\n3Z+fhchELpAkRgghRIOzQxVUPXc75pIfq+3T/IUUjnlZkhex2ySJEUII0aDsqlLK7jw54z73QacS\nOP2mJo5I5Ko69Yl58cUXGTVqFP3792fMmDFp+/r06cPgwYMZMmQIQ4YMqbb/xRdfZMSIEQwZMoTr\nrruOYDCY2ldZWcm1117LkCFDGDFiBC+99FID3JIQQoimZpVtILHsZ4JvPFRjApN30d/wj76xiSMT\nuaxOb2LatGnDFVdcwVdffUUsFqu2f+LEifTo0aNa+dSpUxk3bhzPPvssnTt3ZsyYMdxzzz088MAD\nANx9991YlsVXX33FqlWruPDCC+nRowfDhw+vdi4hhBDNix2povKJq7HWLt5pvcJbX8Fo3bmJohJ7\nkjq9iTnmmGM46qijKCwsrNfJ33zzTUaNGkXfvn0JBAJcf/31TJ48mUgkQjgc5sMPP+S6664jEAjQ\nt29fRo8ezcSJE3fpRoQQQjQdc+U8ym4/vtYEpui+DySBEY2mQfrEnH/++SilGDx4MGPGjKFz5+Rf\n2EWLFnHYYYel6m17W7NixQps2wagZ8/tS6P37duXqVOn1uvac+bM2d3w93gzZ87MdgjNnjyj2skz\nqpsW/ZyUwr15Ofnzv8C/snqHXYB4QXuUYVDV6xCCew1j+S8L632ZFv2MmpA8pwZIYl588UUGDRpE\nNBrl0Ucf5bLLLuPdd9/F6XQSDofJy8tLq5+Xl5fqF+P3+6vtC4VC9bp+//79cbvdu3cTe7CZM2cy\nVCaW2il5RrWTZ1Q3LfU52aFKwh8+TWzqWzXWKbp3Mrpv90cbtdRn1NRy7TnFYrFdeimx20nM/vvv\nD4DL5eL2229n6NChLFq0iH322Qefz5fWkRcgGAwSCASwbbtawhIMBqslNkIIIZqeuXoBkc9exi5d\nh7nylxrrGR16UnDDM2i60YTRCZHU4EOsd1yUq1evXsyfP5+TTjoJgCVLlqCUomvXriilUmXbmpnm\nzZtHr14yY6MQQjQ1lYgR+fwV4rM+xtq4otb6jr0G4zlkFK6Bh6PpMvm7yI46JTGmaWJZFrZtY1kW\nsVgMXddZvnw5pmnSu3fvVHNSmzZtUv1cRo0axU033cRJJ51Ep06deOyxxxg5ciRerxeAY489lsce\ne4z777+f1atXM3HiRB555JHGu1shhBBpEgu/p+r5P6PClXWq7z/rNtz7Hy+rSItmoU5JzPjx4xk3\nblxq+9133+W0007jlFNO4a677mLDhg14vV6GDBnCU089hcvlAuDggw/miiuu4JJLLiEUCnHooYcy\nduzY1HnuvPNO7rjjDkaMGIHf7+eqq66S4dVCCNHIlGUS/fI1wpPG11rX0WUf3AedgqPLPjjadW+C\n6ISouzolMVdffTVXX311xn1TpkzZ6bHnnnsu5557bsZ9+fn5PP7443UJQQghxC5SShH96g3is/+H\n5nSRmP/dTut7j70I9/4jMYrbNVGEQuwaWXZACCFyWHzBDKqeur7Weu79jsN/5hg0Q74WRMshf1uF\nECIHxWZ9TPDFv9Razz/6BtwHniqdc0WLJEmMEELkkMgXrxB+94ka93uO/D3OHoPQ3D4cXfvJmxfR\nosnfXiGEaIFUIkb0m7dJzPuWxNKfQSmwEjXW9xxyOr6Tr0RzOJswSiEalyQxQgjRgigzQfSLVwlP\nfqpO9f2jb8Rz8GmNHJUQ2SFJjBBCtBAqGqbs/jNRwbJa6wbOuxv34CObICohskeSGCGEaOZUPErk\ns5eIfPRsxv2+U67G0aEXjm79QNPAcMpkdGKPIEmMEEI0c6GJDxOb8UG1cv9Zt+IZdkIWIhKieZAk\nRgghmimViBH93+sZE5jC21/HKOmQhaiEaD4kiRFCiGZEKUXo1b8Sn/dtxr4v/lHX4z7wFBkaLQSS\nxAghRLNS8cDva1xF2tFzXzyHjN7lc5f//XysdUuSG5pO4diJGIWt0+pEp08m9Or9QHKxR8+wkQCU\n3XM6dtl69KJ2FI19Y5djqA87UkX0y9cBcHTshWvAoWn7K564CnPJjwCU/OPrJolJNC8yRaMQQjQT\nsVkf15jA+E64nPxL/77L5zbXLtmewAAom/gPH+/y+ZqCigSJfPQskY+eJT7nq2yHI5oheRMjhBDN\nQOz7KQRfvietLP/KcTi69W+QpqPYrI+ql838CO8R5+z2uetKJWJoTneDna/gynENdi7RMkkSI4QQ\nWaTMBJVPXo+59Me0cu/Iy3D2GNww11CK+KzkWxfNm4ejx2ASc77CWrsYc/1SHO32apDrbLNj01Pg\n7NsJTxqPuXYxngNPwX/atQRf/Svm6gXYFZtQkSCay4PRfi88B50GlAAQ/vCZtCHlsRkfpDo4e4+5\nEN9xF2dsTkosnkXl/12Tqqe5vUSnvoUdLMNo2x3/qVfj7D5w+7OxTMKTJxD7/kNULIxzr0H4R91A\n+f1nAuDoMTiVLNnBcsJTniExbxp2VSmabqDll+Do1BvfsRdjtOnSoM9R1E6SGCGEyKLQGw9VS2Dc\nw07A+5tzG+wa5pIfscs3AuDqdzDOvsNJbG2eic/8GMcJf2iwa+3IDpVTOeFGMONp5bHp76dtq2gI\nc9lsgstmExh+Ngwd2iDXj371X1QkmNq2Vs2j6umbKbzjdXRfPpB8/rHvJqXqJOZ/R+UTV2U8X/CV\n+0jM+3Z73IDaFCa+aRXufY+RJCYLJIkRQogsSCz9icpxV1Yr951yNd7DzmzQa+3YlOQaeBjOnkPB\n4QIzTmzWx3hHXtY4k+PFozj3Ho7/9JvQ/fnYW0dbBc4Zi6N7f/RAMRgOrI0rqHr6T9gVm8hf8D/g\nSnzHXYx72EjK7/0tAO79jydw9u31uryKRwlccB/OXkMJTfwH8VkfoaJBEvOm4R56DNbGlakERgsU\nknfxgxitOhJ6/QHiszdVO19ia7LpGnAY/rNvQ0PDKl1HYuEM9MI2u/GgxK6SJEYIIZpQYvkcQhMf\nxlqzqNq+vEsfwtV3eINeT5lx4j99kdxwe3H2GYbmdOPssz+JuVOxy9ZjLvsZ516DGvS62wTOGoOe\n3woAw+1LFhoOgq/+FWvtElQ0BMpO1XdUbmywa7v6HYJ74GEAuIf8hvjWZM4u2wAkm562cQ87AWfX\nfYBkJ+r47P9VO59R3AFr3RISK+YQ+fg/GO2642i/F55Dz0DTZZxMNkgSI4QQjUzFIoTeeZxu096j\nsoY6/jNuafAEBiD+y7eoSBUAjs59sTavSX7u2JvE3KlAsoNvYyQxWqAolcBsE/vhE4Iv3FXjMfpO\nVuKuL6NN5+2xuLypz2pr85YdKt9et6jt9hiK22U8n/+Mmwm+ch/2xpVEP395e/2iduRd9FccHXs1\nWOyibiSJEUKIRqRiEUpvPbrG/c6+B5J3yYONttbRtg69AObiWVT8/bzqdX76HHXadWgOZ4NeO9NI\npNgPn6Y+By64D9c+B6E5nJT/4yKs1Qt/fYbdC0Df4Ssuw6l0f2Hqs12xvfnILl2f8XTOrv0oGvMy\nVuk6rA0rsNYuJvzJf7DL1hOeNJ78P/xj9+IV9Sbvv4QQopHYlZtrTGAcPYZQcPPz5F/690ZLYOxI\nkPgv39RaT4UrScyf1igx/JqmG6nPujcPbIvot+9kbF7b1vkWwNq8GhWPNmgszp77pj5Hp0/GXLMI\nO1RB+P0nM9YPT36K+NyvQdNx9hqKa/CRyXtgexOVaFryJkYIIRqBuX4pFQ9Wf+sROP9eXANGpH2Z\nN5b4T1+kRga59zuOwDl3pO2P/fgpwefvTH6e+RGu/iMaPSbXgEOJ//wFAJXjk0OhcbrRC1qnRlBt\no3l8GG27YW1YjrlsNqVjjgIg7/JHcPXef7djMdp0wX3AicS+m4Sq3ELFwxcmr5vWBLY9wYz98BmR\nT17IeC5nn2G7HY+oP3kTI4QQDcyOBDMmMGtOvA33oMObJIGB9FFJ7v2Oq7bf1e8QNI8fgPjcqdjR\nUKPH5B56DL5TrkEvbg8OF0bnvcm/9CH0GhazDJxzB47uA8Dtzbh/d/lPvwnPEeegBYrA6ca59wHk\nXXBvav+Ob4M8h4zG0WtoMskxnMn423XHe+zF+E6uPtJMND5NKaWyHcSuiMVizJkzh/79++N2N9wM\nkHuamTNnMrSB5mTIVfKMaifPKMmOBKn6182Yy36utq/4/o+YNXeePKdaNPXfJXP9MjTdSM3xouJR\nQu+OI/bN2wD4R9+A5+BRTRZPXeXav7ld/U6X5iQhhGgAykxQdnv1tx0AxQ9+3uCdZkXDSCyYQfid\nx9HcPjRvALuqDLaOkHJ064/7gBOzHKHYGUlihBBiN5lrFqX6U+zIaNuNwNm3SwLTjDk698HZe3/M\ndUuSSwk4XOgdeuIefASeEaejOVzZDlHshCQxQgixi1QsTOkdJ6R+c99R4S0vYbTtmoWoRH049xqE\n8/JHsh2G2EXSsVcIIXZBfMEMSm89JnMCc+srksAI0QTkTYwQQtRTfN63VD39p2rlrsG/IXDuXY02\n78uuis34gMjnr2CVroWtc61sW/VZiJZMkhghhKinyJRnq5UV3fdBauKz5sRcv5Tgq/dDyxyIKsRO\nSRIjhBD1ZIe3r4Dk3PsA8i59qNm9fdnGWrM4lcB4j70Y7zEX1BqrSsQyLhkgRHMjSYwQQtSRHaqk\n8p9/xN68OlUWOOvWZpvAVDxxFeaSH1PbkSnPEJnyDI4egym4clza/oKb/kP4ncdJrJiLs/f+5F/0\nV5RSxL6bRGzae5jrl4FtoRe1xTXgMHxHnYfm8aXOveWGQwBw9BiM55DTiXzwNFbpOhyd+uAffQN6\nYVtCbz9GYu7X4PLiHnwkvhMvr3X0T9k9p2OXrUcvakfg7NsJvfNPrA3LMdp0wX/K1Ti69if8/nhi\nsz4GTcO193B8p12H7g2kzmGHKol8+jzxuV9jl21EMxwYnfrgPeJsXPsclKoX/vAZIh8l37LlXfRX\n4vO/S856bJs49hqEf/SNGIVtdvvPRTQcSWKEEKIWyraoeva21KrPKbqB5glkPqiFqRx/DSpUkVYW\nev0BYt9NSiuzN60i+tmLJOZ9S8HV49MSGQBr7RKCz/8ZlA2AuXw2lU/fhFHYBnPlvGSlaIjo/15H\n8wbwHXtRneKzQxVUTrgxtYyCtXYxlc+MwdmtH4mF36fqxb7/EDSdwNm3JY+rKqXisT9gl65L1VFm\nHHPJD1Qt+QHfadfjHTG62vWCr9yHigRT24m5UwlGQhRcNa5O8YqmIaOThBCiBnawjNBbj1I29sTq\nCQzgPeIcNJcnC5HVTcGV4/CfdVtq23/WbZT842sKrqz+RawXt6fglhcp/tun+E/8I4mlP6USGL2k\nIwU3P0/R3ZNwDTgUAGvdEiJfvlrtPCpShe/kqyi6f0qqrqrcglW+kYKb/kPhra+CK7mEwI7LItQq\nHsFzyCiK7p+CZ8TpqbLE8rnkXzmOorveQd/6liT2wydsm4w+/MG/kgmMbhC44D6KH/iUwj+/mVzK\nAAi/Pz6teXAbzROg4MZnKbrrbYy23QAwl/6IVb6pWl2RPZLECCFEBuaq+ZT9+SSiX72BilSl7dPc\nPgrHTsR3wh+yFF3D8592HY623dBcbow2XUjM276qtffws3C02ws9UIjvhMtT5Yl531Y7j17QGs+h\nv0X3+HHusEijZ9hIHB16YLTuhKP9XgDYpfVY+dlw4DvukuR59z4gVezqfwjOHoPR80tSiQlmHFW1\nBWD7Kt62RfC52ym95TeU3z0Kc9nsZHk8uv3zDjyHn42jYy/0/FY4+w5Pldvlslp1cyLNSUIIkUF4\n0viM5XmX/h1X3wObOJrG5+jQK23bDpanPutFbbd/Lm6Xsc6O+1N9hHboHKwX77DA47YZjDPMsVMT\nPVCUeuu1Y6djo7h96vOO/WuUmTy3CpbVeu5Mb2K2raUEoLl2WHxya3OWaB4kiRFC7PFULIxKpH85\nWWXpv3H7TrkaZ899cXRM/7LPFZorfTSSHihMfbZ3eBY7ft6xzvbCGlbo3t2Vu3fxvFqgEFW5Bdxe\niu/9AM1I/9pTSmXsmK0ZTbPSuNg9ksQIIfZYdqiC8r+dU61D668V/vktjMLWTRRV8+Dc50Ain74A\nQOR/r+HoOQQ9UET4/ae21+l7UE2HNxuuvgcR++49iEUI/ffveI+7BD1QiF22nvi8b4nPnUrBHx/L\ndphiF0kSI4TYo1ib1ySH+i75AWKR2g9wuNB9zW8Su8bm7D4Q9wEnEvtuEvam1VQ88Pu0/Ub7HngP\nOzNL0dWd7/iLSSycgV22ntj094lNfz9tv17UroYjRUsgSYwQYo8Qm/kRwZfu3mkdzV+Qvu104zn8\nrGY9Aqkx+c+4BUfXftvnibFM9OJ2GeeJaa70/FYU3PAMkU9fID53KnbZBjTDgV7QGke3/rgGHZHt\nEMVu0JRqmXNRx2Ix5syZQ//+/XG7ZWbJXTVz5kyGDh2a7TCaNXlGtWvOz0jZFvEfPt15AmM4Kfrz\nm+h5RY0aS3N+Ts2FPKO6ybXntKvf6fImRgiR00JvPUps6lvVyo223fCd+Ecc3Qag+/OzEJkQYndJ\nEiOEyEnKtgi99gCxGZPTyo3OfSm49ik0XabJEqKlkyRGCJFzzHVLqfj7edXKPYeegfeo8ySBESJH\nSBIjhMgZyraIfvka4ff+r9o+z5G/w3/iH7MQlRCisUgSI4Ro8ZRSmIt/oHL8NRn351/1BM69BjVx\nVEKIxiZJjBCixVKWSfidcUS/fiPjfs3to+gv7+6xQ6SFyHWSxAghWiS7qoyyO0+qcb935GXJVaYN\n+TEnRK6Sf91CiBZHxcIEX38g4z73gafgO/GP6N5AE0clhGhqksQIIVoMZVsEX76X+KyPq+3L+8M/\ncPbeP+NifkKI3CRJjBCiRbDKNlB+z+iM+/IueRBXn2FNHJEQItskiRFCtAjh95+sXqjpeI8+H+fe\nw5s+ICFE1kkSZIZhVwAAIABJREFUI4Ro1pQZx9q8ploTUv7V43F2H5ClqIQQzYEkMUKIZimx9Ccq\nx12ZcV/hmJcx2nRp4oiEEM2NJDFCiGYn9v0Ugi/fk3Gf5i9EL+nQxBEJIZojSWKEEM1K9Nt3Cf33\nwWrlWn4JmtNN/uWPytwvQghAkhghRDMTnjQ+bdvZZxh5lz4kizYKIaqRJEYI0WzE501DRapS296j\nz8d3/KVZjEgI0ZzJrzZCiGbB2ryGqqdvSm1rbp8kMEKInZIkRgjRLEQ+eT5t233waVmKRAjRUkgS\nI4TIOmXbxKa/n1bmO+HyLEUjhGgpJIkRQmRd/MdP07YLrv+XrIEkhKiVJDFCiKyL/fhZ2rbRWiay\nE0LUTpIYIURWWRtXkpjzVWrbc/jZaB5fFiMSQrQUksQIIbIqPvfrtG330GOyFIkQoqWRJEYIkVUq\nFkl91vyFODr2ymI0QoiWRJIYIUTWKMsk8tGzqW3vEWdnMRohREsjM/YKIZqMioWpeuEuEgtmgMMB\nO7yFAdB8+VmKTAjREkkSI4RoEkopyu4/C1VVmiywEtXquAYc1sRRCSFaMklihBCNzo4EKbv9uBr3\nG227kXfZQ+h+eRMjhKg7SWKEEI2u4uELq5XlX/MkRttuaC4PmiE/ioQQ9Sc/OYQQjcYOV1J2x8hq\n5QU3PYejQ88sRCSEyCWSxAghGpSyTGLfvkNi2WziP3xSbX/hHW9gFLfLQmRCiFwjSYwQokEopQi/\n9SjRryfWWCf/miclgRFCNBhJYoQQu823fBalL1270zpF909B9/ibKCIhxJ5AkhghxC4z1y6m4qEL\naFPDfs9hZ+LsMRhnn2FoTneTxiaEyH2SxAgh6s0OlhF661HiP3yacX/+Ff/E2XNIE0clhNjTSBIj\nhKiX2A+fEnzhzoz7vEefj/foC9AcziaOSgixJ5IkRghRZ8HXHiD23XvVymMlXWl/y7NoDlcWohJC\n7KkkiRFC1En44+cyJjCFt7zEj6s300ESGCFEE5MkRgixU1bZBsrvOwNsK63cc+Tv8J/4x+TG6s1Z\niEwIsaeTJEYIUaP4whlUPXl9tXLfKdfgPeyMLEQkhBDbSRIjhMhIxSIZExj/6TfhOejULEQkhBDp\nJIkRQlSTWDSLyvHXpBdqOkV3T5KVpoUQzYYkMUKINOGP/0Pkg6fTC3WD4gc/Q9ON7AQlhBAZSBIj\nhAAg/su3VP3rTxn3Ff35TUlghBDNjiQxQggin71MeNL/VSt3DxuJ/8xb0TQtC1EJIcTOSRIjxB4u\n8uVrGRMY/xm34Bl+UhYiEkKIupEkRog9XPzHz9K23cNGEjjrtixFI4QQdafXpdKLL77IqFGj6N+/\nP2PGjEnbt3DhQs444wwGDRrEiSeeyPfff1/t2BEjRjBkyBCuu+46gsFgal9lZSXXXnstQ4YMYcSI\nEbz00ksNcEtCiPpQsXDqs/fYiyWBEUK0GHVKYtq0acMVV1zB6NGj08oTiQSXX345Rx11FDNmzOCy\nyy7jiiuuoKKiAoCpU6cybtw4JkyYwFdffYVpmtxzzz2p4++++24sy+Krr75iwoQJ/POf/2TatGkN\neHtCiJooyyTy2ctY65elytz7HZPFiIQQon7qlMQcc8wxHHXUURQWFqaVT58+nVgsxiWXXILL5eLk\nk0+ma9eufPTRRwC8+eabjBo1ir59+xIIBLj++uuZPHkykUiEcDjMhx9+yHXXXUcgEKBv376MHj2a\niRMnNvxdCiHSRKdPpvRPh1frC6N5AlmKSAgh6q9OSUxNFi1aRO/evdH17afp27cvixYtSu3fe++9\nU/t69OgBwIoVK1i+fDkAPXv2zHisEKJxmOuXEXr1/mrlzn6HoPsLshCREELsmt3q2BsKhcjLy0sr\ny8vLo7y8HIBwOJxx/7Z+MX6/v9q+UChUrxjmzJlT37DFr8ycOTPbITR7ufSMSqa9St6vyjYfcCbB\nngfBbtxnLj2jxiTPqXbyjOpGntNuJjF+vz+toy5AVVVVKjnx+XzV9geDQQKBALZtV0tYgsFgtcSm\nNv3798ftdu9C9AKS/wiGDh2a7TCatVx6RnawnLKXvk1tGx17UXjjs5Ts5nlz6Rk1JnlOtZNnVDe5\n9pxisdguvZTYreakXr16sXDhQmzbTpXNnz+fXr16pfbPnz8/tW/JkiUopejatSvdunVLlW0zb968\n1LFCiIa3YydeAN9xF2cpEiGE2H11SmJM0yQWi2HbNpZlEYvFSCQSDBs2DJfLxb///W/i8TiTJk1i\n+fLlHH300QCMGjWKN998k/nz5xMMBnnssccYOXIkXq8Xn8/Hsccey2OPPUYwGGT+/PlMnDix2ggo\nIUTDic36aPuGw4Vzn4OzF4wQQuymOiUx48ePZ+DAgUyYMIF3332XgQMHMnbsWJxOJ+PHj2fKlCns\nt99+jB8/nieeeCI1iunggw/miiuu4JJLLmHEiBFomsbYsWNT573zzjsBGDFiBJdccglXXXUVw4cP\nb4TbFEIo2yI27b3UtmvAobKcgBCiRatTn5irr76aq6++OuO+Pn368N///rfGY88991zOPffcjPvy\n8/N5/PHH6xKCEGI3mcvT25vd+x6dpUiEEKJh7FafGCFEy1H171u3b7g8uPpJU5IQomWTJEaIPUB8\nwXRUuDK17d5XZuYVQrR8ksQIsQeIfvFq2rZ/9A1ZikQIIRqOJDFC5Lj4gukkFkxPbbsPHoVmyAL2\nQoiWT5IYIXJcdOpbadveI87OUiRCCNGwJIkRIsepSFXqs6Nbf4zi9lmMRgghGo4kMULkukQs9dF3\n8lVZDEQIIRqWJDFC5DAVDWOunJfa1pyyzpgQIndIEiNEDov99Fnatub99frVQgjRckkSI0QOU1Vl\nadtGcbssRSKEEA1PkhghcpjaoT+M99iLshiJEEI0PElihMhRyraIfPxcalv6wwghco0kMULkqMT8\n79K2Nbc3S5EIIUTjkCRGiBxll21I23b2G5GlSIQQonFIEiNEjlJmPPXZPfxkjMLWWYxGCCEaniQx\nQuSoHTv1aj4ZWi2EyD2SxAiRg1Q8RmTyhNS25nBlMRohhGgcksQIkYMSC9I79ep5RVmKRAghGo8k\nMULkIDtUkbbtGnJUliIRQojGI0mMEDlIxcKpz54Rp6P78rMYjRBCNA5JYoTIQSq6PYnR3L4sRiKE\nEI1HkhghctCOb2IkiRFC5CpJYoTIQWlJjEeSGCFEbpIkRogcpGKR1Gd5EyOEyFWSxAiRg6wNy1Of\nJYkRQuQqSWKEyDEqFsZas3B7gSz8KITIUZLECJFjzNUL07Yd7bpnKRIhhGhcksQIkWPSJrpzedHz\nW2UvGCGEaESSxAiRY9QOSYx78BFZjEQIIRqXJDFC5JgdkxjNX5jFSIQQonFJEiNEjon98Enqs+4v\nyGIkQgjRuBzZDkAI0XBUPIa1bklqW/NJEiNEXSkzQfDle0ksmI6yTIrvfR/N4cp2WPVSOeFGHHsN\nwnfUedkOpUlIEiNEDrErNqZtu/oOz1IkYk8V++ETol+/ibV2MSoWpuQfXzf6NaPTJxOZ8m+Kxr6x\nW+eJ//Q55vLZFI2dWONM13W5P3P1QkJv/gNzzSJ0fwGew8/Ge+hvdyu2TLbccAj5VzyOs+e+qbL8\nyx5u8Os0Z9KcJEQOsYPlqc96SUf0AhmZJJqW5s3Dc/Bp+E69Jtuh1JtVuha9pMNOl+qo7f7saIjK\nCTfi7DOM4nsnEzjvbiJT/k3sp8/rHIcyE/WOfU8lb2KEyCEqWJb6bLTrlr1AxB7LtfcBACQWz6rz\nMeb6pYTf/ifm6gV0wiC05lh8x1+K5nQD1d84WKXrKL/3txTe8V/s8o2E3ngIrARbxhwNQN7vxuIa\ncGi161hlGwi//TiJZT+BbuDaezi+k69E9+UTfO1vxL7/EGybLWOOxtl7P/Iv+mu97y/+85eg63iP\nvgBN13F26497+ElEp76Fe1Dm0YLBV+5DmXE0l4/4nP/h7DmEwDljCb50D4nls1GxMEZRO7zHXIB7\n8G8A6DApGVvlhJuS99L3APLOv5eKJ67C2WMIvuMuTj07/+gbiM38CHPtEoySDvhPvwln9wEAKMsk\n/P5TxGZOAdvGPWwk5opfcPZMnkOZCUJvP0Z89v9Q8Qi6rwDP4WfhHXF63f5wG5kkMULkkMTyOanP\neqAoi5EIUTd2NETl+OvxHDCSvIv/xs/ffEnXGS8TNk38o66r9XjnXoPwn35Trc1Jyrao+tfNODr1\npui211FmjOCLfyH4yn3kX/wAgTPHoBe0JrHkBwquHLfL92OtXYyjY280fXtDh6Pz3sSmvbfT4+I/\nfUHgzDH4T78RLBMUOPsdjP/MMWguD7FZHxN88W6M9j1wtO3G2hNvpdtL15J/2UNpzUmZRKdNIu/8\ne9CL2hJ+558EX76HottfByDy2UvEZ39JwZXj0IvbE/nsJczls3H2HAJAbMYHmCvmUvin59EDhdiV\nW7ArN+/y82lo0pwkRA6Jfv5y6rMMrxYtQeKXbwDwHncJmtONGSjBd/ylRL97D6VUg13HXDkPa8Ny\nfKddh+bxoQeK8J1yDYm5U7ErtzTYdVQ0hOYNpJVp3ry0leUzcXTth3v/49EMB5rLg+Zy49n/eHRv\nAM1w4Nn/eIy23TAX/1DvmLyHn4XRqiOa4cB94CnYW9amJsWMzfgA7xHnYLTpguZw4j3qPLQdfwFy\nOFGxCNaG5SjLRM8vwdGpT71jaCzyJkaIHKHMeNq2s9fQLEUiRN3Z5Rsxitqi6UaqzGjVCRIxVLAc\nLa9h3ija5RvQ/AXoHv8O1+kIJJuZ9PySBrmO5vFjby5LK1ORqloXYtVL2qcfY8YJT3qS+NypyWZi\nTUfFI9jBshrOsJNz79A3Ttu6lpqKhcFfgF2+Eb14+7U1XccobJPadg89BhUsI/zeE1gbV+LoNgDf\nyMtwdOpd7zgagyQxQuQIuyL9Fa+z935ZikSIutML22CVbUDZdqoJxtqyBpxutMDWt4luLyoeTR3z\n67/rmqbV4TptUaEKVDSc6rhrbVkDgFHUtiFuJXmuDj2J/fhZ2v2YqxdgdOy10+M0Lb1hJPLFqyQW\nTCf/sofRW3VE0zTK/34+7Ph2qg73XRu9sA126brUtrJtrPKNOLddQjfwHnEO3iPOQcXChD98hqpn\nb6Vo7MTdvnZDkOYkIXKEtXl16rOjS986/WAXoqEp20IlYijLTG4nYsn/bDtjfec+BwGKyJRnUGYc\nI1hK+IN/4R52QurvsKPT3sSmT0YlYthVpUQ+ejbtHFp+CXaoHDtcWWNcjs57Y7TpSujtR1GxMHaw\nnPA743Duc1C93sLUdn+ugYeBbRH55HmUGSex4hdi097Dc9Cpdb4GgIoEweFECxSAbRGd+hbWhuXp\n951XjLVxZb3O+2vu/Y8j8sWrWBtXoswEkU9fSBsgkFg0E3PV/OSIKYcLzeUFrfmkDvImRogcEXrz\nkdRnvaB1FiMRe7LY91MIvXp/arv0luRoml/PZ7KN7vGT/4dHCL/zOGV3nkJ7zcC5/7H4jr8sVcc/\n+gZCr/2N0rEnYpR0wHvEOSQWTE/td/bcF1ffAym//yywbQLn3IGr/yFp19EMB3mXPEjo7ccou/eM\nraOTDsB38lUNen+6x0/+ZQ8TmvgwkU+SnWG9x1yIe/CR9bqO9/CzsdYupuwvo9DcPjwHjMTRbUBa\nHd8JlxP54GnC7z+Js88B5J33l3pdA8B75O9R4Soqxl0JSuEeNjL5S5AzOcmfHSwj8tajWKXr0QwD\no31P8s6/p97XaSyaasieU00oFosxZ84c+vfvj9vtznY4LdbMmTMZOlT6TuxMS3lGZXePwi5PTnbn\nOeIc/Cdd0WTXbinPKNvkOdVOnlHdNNZzUrZF2V9Ow3/K1bj3PbrBz1+TXf1Obz7vhIQQu0xZZtoI\nC+9R52YxGiFES2FHgsR/+QZlmck+L5OeBMvE2UJm+5bmJCFygF26HmwLAC1QiO7Ny3JEQogWQdmE\np/wb+4W7QNMxOvQg79KHWszPEElihGjhlG1R/tezUtt6QZud1BZCiO10Xz6F1/8r22HsMmlOEqIF\nU5aZ7My4g23TiQshRK6TNzFCtCDKTJBYNBMVqQIgOvWttDkeIDliQQghGoodDSWHfKPQ84rRHK5s\nh5QiSYwQLYAdDWEu+5ngC39BRYM11iu6+73UjJxCiD2HuW4p1trFWFvWYm1ahbns51Rnf83pwmjf\nMzk/TvmGarN7a6TPKeXoMRh0A1VVilW6HlWVvixD4JyxuPc7tnFvqI4kiRGiGVOJGOEpzxL97MVa\n6xaOfUMWfRQiRyilsDeuxCrfSHjyU6jKLWh5RWieAHbFRjpXVVA6UaGiQbT8EtRO1n9SZhxz6Y81\n7//V9rb1rKpxeSEewQ6V78IdNQ5JYoRoZqxNq0ks+4n4zI9ILJ6VPs34DlxDkpNsaYYT19BjMYra\nNWWYQog6SFtOYeNKEgtnEJ36Fjhc6P4CcDjBTKDMeHJZhHgUu2x95pNVbEp9NNiefOyYwLiGHotR\n0gGjVSf0wtbo+a2wStehOZxgONH9Bej529dSUjukMCpShbVm0fafOZqOXtAKzZuHXtIBTdNQ8Sia\ny9Mgz6YhSBIjRDOgbJvIx/8h9t17qQnrMnHucxBG6854jzinwRasE0LUTpkJ7GA5dtk67M1rQNPQ\nPH6sLetQofLktPxmAjtcAUoR/+ET0I3U1AcYTrASaee06nBdvXUnjNZdcHTdB0eXfQDQHC7mrt3C\ngH77YK1fhp5fguYNoBe1S1tIcxujTZcaz5/WkOTx1/rLUHNKYECSGCGywipdT2L+NMzlczDXL8Va\nvbDGuprHj2vAYXiPOg+jdacmjFKI3KO2zae09cteKQXxCMo0wYpjh6vAttAcLuyKzcTnT8MuW0/8\nx8/qfzF7hzRlhwTGaNsNvaQD7v2PRzOcyTWSDCeaLy+5hlE0iNGhF0arjsm3NRlY5TMxittjFLfP\nuH9PIUmMEE1ExWPE535NePIE7K2r59bE0a0/jq79cA04FEf3gbKYo2jxlBnHXPEL1sYVW7/ctWRC\nYcbBslDxMHqrzgSWLydqbSDVWLJjc6ptg6ZhLp+NSsRAKRLzpqH5C9BcHhyd+iTPmYhjla3HWr0A\nLVCI5nChLAtsMznKxrbQi9snE5WqLVtH3tSN0bYbKhoCpxs9UIRe2Aa9qG0y2TCcaB4fKhZGVZXh\n7DMMvbANykpglHRI7q/l37KjltWuRTpJYoRoZFbpOsKTJxCf9XGtdY1Ofci//BF0X34TRCZE41Bm\nAhUNkVj6E3bpOmIzpyT7WtRBKyA0rZ7Xi4UBsNYvq74vWF6t4ypQbWoCzRtIrtLsdKO5fckRPJYJ\nDifO7oNwdOmLq9/B0ozbzEgSI0QDUtEw8blfY5Wtx968Ovmb54blGevqRW1x73sMjm790YvaYbTq\nhOaSxUxF82ZtWoVdsRm7agvxn7/EDlXA1nV3VLgSlYihQhU1Hu/oNRQ9UIQKVybfsrg8oBR2xUY0\nt59y20FJq20dT7XU/1Qijl25Bc3lQS9oje4vQMtvhb15FSoWwdG1HxgGmu4Aw5EcIhwqR/MX4Ojc\nF81IlmtON9aWtaDs5LbhRC9ul9wvWhz5UxOiASiliEyeQOTTF2qt6+i5L+5BR+A5+LQmiEyI2tmR\nKjSXN/VFbkdD2JtXY1eVkVg8i/icr1CxCKpyc91OqGng8qAHinF06oWe1wq9VUc8B59Wa7KweOZM\nujbyKtaODj0a9fyi6UgSI8Rusiu3UPXvMZgr5+20nufws/Cd+MeMoweEaCgqGsZctwTN7UWFK4nP\nn45dsQlsE83tR3O6sCu3YK6aD7aFigSTzTGaBpqe3hm1Bprbl6yvFO7hJ+EacCgYDvS8EjSXG83j\nb1azuorcJUmMELtBKUXVc7dXS2Dcw09GL2iFo2MvjDZd0Qtay0y6okHY0RDm0p9JzP8OFQ2ibBuU\nlez0atvEZ3+5aydWKnkeSDaz+PIBDcwYnkPPQC9qh+7Px2jTTUbJiWZDkhghdpG1eQ1Vz/8Za/WC\ntPLCO97AKJaJ50TDU7ZNxUMXVOuUmole3D45asfhRPMXorm8ONrvBU5X8i2JbmC06ojmzds+j4im\ng26kJmcTormTJEaIXZBYPofKx3+10KLTTfF9HyZnxhSiAdnREOF3nyA27d1UmaP7QByd98bRqXcq\n+UDXQdOTbwBLOmQxYiGahiQxQtSDUorIh88Q+fi5tHItUETBdU9LAiN2mbJM4j9/QWLRLKz1S1GJ\nOCoeRoWrqo32cfYfQd6F98v8QWKPJ0mMEHWgYmGqnr2NxMLvq+1zDToC/+k31TizphCZKNvCWrcU\nFQ0Rfu//MFf+Uusx7v2Ow3Pk73C0694EEYqWSimFtXYx5uoFyeHvlgm2jdG+OypUibVxJejJjtya\npqfe4KHrOHsMAaVQlkns23eww5Vgmdil67C2rEVzusi78H6cPffN9m0CksQIsVPKtvEvnU7pS9dm\n3O//7Z/wHHhKE0clWho7XEn43Sdos2oplT8UJUcQ1bCqsGOvwTi69MU9+EhwuZMTH2p6cvSPTIKY\ns+xgGYlFs1KT7BklHYn/MhVzxdzkvDeanppbx64qpUskxJZXrOTswyUdkkPgI1XJDt7KbrQ4lRkn\nPm+aJDFCNGfKTBB6+zFi375L6ww/EPSithTc8Cy6X75URGaJxbMIT3kWEtHU6DUfkPhVn1yjbTe0\n/BKcew3Ce/T5MgS/mbLKNyXXNGrTFQBN11FbJ/mzyzduXbhVQy9ui7nkR8z1y1ChSjRfHprTjYqG\nwUqglMLZdZ/kseEqEotnYa5ZBPFIveLZseu1vWVtxjpaXjGuvsNBQWL57OQcPQ4nRnEH9OL2yX5U\nKpn02FvWJSfm1A0wjK0dvA2MNl1wDTw8OWLN4QSnG0enPrv0DBuDJDFC/IoyEwRf+xvxmVOq7XP0\nGEzeRX9D9wayEJloTpRSWKvmJ78cHC7MlfOSKx2Xb0Qlolir5lc7JtR5EG0POREAvU1XjJIO6IHC\npg59j6fiMZRtAslVmVU0hF26DmUm0AwHxtYv6egXr5CY/x3W5tXYZRvSzqH5C3Y6M/HOZPrZso2z\n3yFYaxYm377YNkbrTjh7D0PPK0Jv1TE5KaHDxU/L1jB4YH+s1QuTiZLbh17QBrtsPSoRRS/puEf8\nnJIkRogdKDNBxaOXYq1dnFbuGng4nsPPwtmtf5YiE81BYtlsYrM+wlq9MNmHRWValSed96hzMTr0\nwtlnGMt/WUCXRp6Ndk+wrc9H9H+vJ/t7JOI4uvVLrhmpLJRtoTk9YCWwtqxL/jlZCZRlYq5egL1p\n1e7HsC2BMZzoha3RDCcqEUVzeZOrUjs96EVt0Xz56F4/emFbrA0rUPFIarkDHE40jx9Hhx44egxB\nc3nq/CZOrd6M7stH771fWrnRtutu31tLIkmMEFvZwTKCrz9YLYFZccYD7Dv84CxFJbLFriqjcsKN\n2OUbUIl4crXlDLPZam4fzn0OSs7H4vbh6Npv61o8TrT8VhiFrbMQfe5QiRh22QbsUAXmirlYm1cT\n++btavV2eZK/bTQdvbh92grzmseP3roz/lOuTq5YXdwO0JLz9BgO9MI2suZSlsnTF3s0a+NKrLL1\nxGd9QmzG5Gr7C25+HrWmLAuRiaai4jHis79M/oa8A3P1wuRr/R3pBjhd+E+8Ipms5JfIqsa7SFkm\nKliO5ssjOu09Eotmonv8FEZtgos+wg6VY29Zm3Fl6m2Mdt0x2vdIjgzcNk+OUpgr5qI53ck3IW4/\nmjeA5i9E9+WBYaD7CnD0GgpmHGvDCvT8ErS8YjRNQym1/Q2bpmUcxp6aHFBknSQxYo9jla4n9t0k\nYjMmb+2MV53mL6TwT/9JfkGtmdnEEYrGouJREotnYW1eg7VhOXbpOhILpu/0GPfBp+E/4Y/gTM5y\nK3Oz1N225htz2WxUuBK9qF1yqYREnMiH/8p4TCEQy1BudOqTXLMJhavfITh777/7Czk63cnJAneg\naVpyXSjRIkgSI/Yo5oblVDzw+53WcR9wIt7Dz5bfsHOIuXoB0alvE/vuvRrrGJ16Vxt1oTndeA47\nC83ja+wQWwy7qjS1gKRduha7shQ7XInu8SeH+kZDqEQMFQkS/+GTOp/XaNcd594HsH5LOe07dEAv\naI0eKEJzeXD0GNxsmm1iMz4g/MHT2OEq/Kdei2f4idkOaY/WPP5WCNHIzNULqPrPn9Pau7cxOvVG\n9xWgeQN4j7kwub6MaPGUmSD05j+IzfwIEum/27sGHo7RpjN6YVs0Xx7OnvuiB4qyFGnzoJRKzg4c\nrkQv6QDxaHLGYDORXKn92dtRVVt26dxGpz6gbPTCNql5bxILpmMHy9DcfrxHnoP3yN8BUD5zJj0a\nofPzlhsOIf+Kx3drfhNlmQQnPkzgnLG4Bx6WsY5VvonQxIex1i7CLtuA/6zb8AwbmX6eeIzQ248R\n/+lzsC2cfYfjH32TTNmwCySJETnNXL+U4PN3ZmxXN9p2I//KcTLENQdlWttK8wZw9tqPwNm3bW2W\n2DOoWBjQsINl6IVtQDdQ0SDRrydCPAa6QWLpj5hLMk++VxNHtwHgcOLsPhC7YhNaoBDNcGJXbAIU\nyrKIz5xC0T3vp81mbUdDlN9/Fp6DT8N75O8w1yyi6uk/oZd0wD3oiIa9+QZmV5VCPFqtCWpHmq7h\n6rM/xpHnEHzhrox1Qu88jrl6AYU3vwBOF8GX7iH4yr3kX/JgI0WeuySJETnLXLOIiocvrFZutOuO\n5/CzcO93vKzWmwOssvVYG1aAbWMu/5nEkh8xl81O7XcNOhz/adfvEc2DSimwTGLT3sXauJLEkh+x\n1i3ZtZMZzuT8I47kUGA9vxWuAYfh6NgLR7f+tTbvJBbPIj5zSrXlOOI/fwm6jvfoC9B0HWe3/riH\nn0R06lvLkAW+AAAgAElEQVQ1JjEqHiP8wQTiP3+BikVwdOqD79RrUssvBF+5D4DA2benjql44iqc\nPYbgO+5iyrc2IVdOuAl0A1ffA8g7/97q17EtIp+9ROy791GhCox23fCddCXO7gNILJ5F5b9uBqD8\nwXMBjaLbX0fPS3+Dp+e3wnPI6OSGVv3ni4rHiM34gLwL70MvaAWA7+QrqXjg91hl6zGK2u30uYp0\nksSInGOVbUj+IJr6Zlp5srnoIryHnZGlyERDUZYJmk7Vs7eSmDu1xnoFNz6Lo2OvJoyscSilSMz5\nisSyn4l+8zaYieRwb4dr64yrKuPw7xoZjuTU9u17YLTvAZqGnl+C98jfo7k9YJng9DRKkm+tXYyj\nY++0czs6701sWs39lULv/hNzxS/kX/kEel4R4Sn/pvLJ6yka83Kd+isV3vJisjnpsod22pwU/eJV\nYt++S97FD2C07Urs23eofOoGCm95EWfPfSm8+QXK7/0thTe/gFHcvn43vpW1aSWYcRyd906VOdp2\nA5cHa81iSWLqSZIYkTPsqlLCU/6dcQ4J16DDM/7mJVoOO1hGxaOXJefo+BXNG8Do1AdVVQaahv+3\nf8LRvgea25uFSHeduWZRcvbYyi3YFRtRiTh2xSYSv3yTeSSdGa9epulovnyMNl1w7388RtuuONr3\nhG0rrBuO2kdYOVy7fzM1UNEQ2q9mktW8eVubvTLUt21i0yeTd8F9GMXJL3jfyMuIzfiA+LxvcA85\nqsFii343Ce+R56RGPXkOGU10+mTisz7C+5tzG+Qa2+5T8+allWueACoaapBr7EkkiRE5wQ5VUnbn\nyRn3eY44B/9JVzRxRKKhJUfDVE9gXEOOIu/cu5o+oAaizATWplVEPn+J+Pc1T0e/jWu/Y3G07Y5j\nr0EY7fdKNvdoyVWIW0LzqObxY29On3tJRapq7KekQhVgxjFKOmw/h25gFLWrthTA7rLLN6IXd0gr\nM1p1wmrA62y7TxUJou3QH09Fg2gef4NdZ08hSYxo0ZRlEv/5i4wd6NzDT8J7zEUyY2oOUJaJtTE5\nVbxe3J68Sx7AaNsdbKvZDL2tK2XbJOZ+TXzhDOzNazLOU2Ns7Tjq7D0MzeXBKGqLVtAKZ48hLe5+\nf83o0JPYj5+hbDuVdJmrF2DU0Oyn+QvA4cIqXZuaUl/ZFlbZBvSitsk6bh/2r0ZO2ZWbf3Wi2ud+\n0QvbVEuUrS1rcHfMPBJpVxitu4DDhblqfnJxRkj26YpHMTr0bLDrNIbQe/9H/IdP8J10Je4hv8l2\nOIAkMaIFU5ZJ2V9OQwXTf6tzdB9A/mX/aHFNCSKdikUIT3mG6Jevpa1R5Oy5L452W4fBt5AvdGUm\nsDavovX/nqH0pZ8z1nF0G4DRsSe+oy9o0Z2QlW2BZSb7LZFcNgBIdhTWdVwDDyM8aTyRT57He+Q5\nmGsWE5v2Hv7Tb8p4Pk3XcQ8bSfiDf2G0644eKCLy8XOggavvQclTd96b2NuPY21ciV7SgejXb2Jv\nSU9GtLxirI0rd9onxjPsBCKfv4yjxyCM1l2ITXsPa8NyXPvWryk6dc8kO1qrRHIUmGY40Fxu3Psf\nT/jDZ3B07AkOF6H3nsDZ98BUc1m2KKWwy9aDbScLNNA8eahQOZH/vZ5qqjdXzZckRohdpcw4kc9e\nzjjjp7PfwQR+92dJYFq4xLKfqfznr5oAnW6MVp1wH3BCdoLaBXY0RPTzl4l8/B8Aft1YoOW3wnvI\naFwDD8uZqexj308h9Or9qe3SW5JfdtvmaNE9fvIve5jQxIeJfPI8eqAQ7zEX4h58ZI3n9J98FeHJ\nE6j85xVbRyf1Jv8Pj6Q69br3PRpz2WwqHvsDOJx4DjwFR/cBaefwnXA5kQ+eJvz+kzj7HEDeeX+p\ndh3P4WehbJOqZ8YkRye17Ub+ZQ/Xu7PttnsGCP33QUL/fRD3/senRk/5T7mG0NuPJkdN2TbOvQ/A\nf/qf6nWN+jJXzceu2IQdLE92Ate0rc2Qyf9bG1cS/ezF2k/kcOE78Y+NGmt9aErVYRnWZigWizFn\nzhz69++P2+3Odjgt1syZMxnaQlbVVZZJ5LMXiXyQebry/Gufwtm1X4NftyU9o2xpyGcU+/lLgs9t\nHyprdOxF3sUPNutmQaUU9pa12BWbiP/0BfGF09HQsDauSKsXK+lCfu8h+Eb+QSY2q4H8e6ubnT0n\nZZnEZn2MvWkl0e/eT76trsdXvRYoRHN5U01rmie5Crde2IbAuXeh/6pjdkPY1e90eRMjmr34vGlE\nv3mrxqG0rsFHEjj7djSnJLO5IPLhM6nP/jNuwTP8pCxGs3N2pIrEolnJPllWosZ6jh5DCJx9Gz8u\nW0sH+YIWDUTFwiQWz8KuSjap63nFxOd8XfPyGi4Prj4HJPsZsXWhy61D9JWywTLx/uZcHFv75ijL\nRMWjjZK0NBRJYkSzZG1eQ2Lpj0S/eA1r/dLMlRwuCm99BWNr5z7R8oUmjU/9eft/e3OzTWDsqjIq\nHr+82jIWemEbNH8BRusueEacnlxJubD19iUNlq3NQrQiF9jREPbmNSgrQWLuVIrWrqH0pWt3eoyW\nX5JsWuuyD44ufatNPFgbzXBUGw7f3EgSI5oVu6qUiieuwt64suZKTjd5592Ns8/+aI04n4VoWsk2\n+ZdS2w05/8euUokY5qr5yVfrZeuJL/weVbmF+OwvU3W0vGKc3QbgHn5SarSJELsjsXgW8dnJyQ2t\n1Qsy1tkxHXF0H4hKRMFKTnjo6NIXzyGjc2Kix9pIEiOyxtywnMiHz6BiESA5T4K5fE7Gulp+K/J+\nNxa9Vcfkon11GC4pWhZry/a3FIVj32iylaOt8o1YaxaizPTmIGvTKiKTJ+z0WO/Iy/AddV5jhidy\njIqFif3wWXKEleHYoa+KAjOxde2pmm0bil7uLqZt//0x2u+Fq8+wxg26GZMkRmRF5KuJhN96ZKd1\nNE8A90Gn4uzeH0ePIegyEVTOUmaCqqeTQ2yd/Ufs1tTrdqgSlI21fil2+SbsUEVyAVDDAMtChSux\nQ+WgG1gbV6J+PZ9IBpq/IDmSQ9fxjfz/9s48vIrq/OOfmbvlZk8IYQ37vi8JWxEExR1E1FZr3Sgu\naKu29VeXqrVWu2itVOtSW9e6tYqCuBRB2UQUCIvseyAEEsiem3tz752Z8/vjZLvkBkLIzvk8T57M\nPXNm5sy5c2e+8573vO+t6DHtsLVPwZbUpd7tVLR9zIJsfF+9jSjOQwTKEKaBsXdDnbbVYtth79of\ne5e+6HHtsSV3x9a5t8wCDuxLT6eH8q9SIkbRtAghKH33Cfzr/1drHc0djWvsdKJm3NmELVM0J8Uv\n/6py2TX6glrrCb+P4P7NCL8X4SnA8hRieQrANGV4/p3f1rsNjsETawaSc7iInHZjm5n+rGhchGlg\nHNyGd9ELGNn7odzKHA57rxG4z/0Rtg49AA2r6BjmcRnQ0dEvLSRCsaJ2lIhRNAlm4XGMQ9vxfvoS\nVvkPtQLXuOk4h0wCQG/XCVtydzVcdBYhhKjMOm0fOJ7gttUEtqzCPLwLs+gYCNA0TQZRqwwiVjf0\ndl3QbHZsXfpga98NPa496Dp6VDyay40wDTS7A3vPYa0+Eq6i+bB8HjzvPkFw66qw611jp+McOgnN\n7kCLiMLWoUeNWFa29l1PGohPER71q1U0OqUfPkPZ1/PDrqsIgKU4exCmQWDjUqzSIkTQj5m1t3J6\nsrFjDUa4bU74bO8xBD2mHXpce7TYxEoTuzCC2Np1wt59CJo7WgkTRYMjAmX4VryHmbUXM/cwZl5W\nDYuLvecwbJ174+gxFMfAcZXXp6LhUb9wRaNS9t0ntQqYuPvekinoFW0aYZkEtqzCyNxJYNdarKzd\nJ63v6JeKrVNvKVTi2mPv2AuBkBl+jSB6u87KUqdocoyj+/F++hLB7d/UXKnb0FyROPqnEX3Ng2jO\niKZv4FlKg4iY66+/nk2bNmG3y921a9eOpUuXArB27Voee+wxMjMz6d+/P0888QR9+1ZN+3rmmWd4\n7733ME2TSy+9lIceegiHw9EQzVI0A8KyKJ3/NMFda8NmHHYMmoC9xxCcQyYqAdOGsHnypQ+AoCqA\nlmXi37GGsmrB68KiaSAg6kf34xpzSViBogEox25FExLYthr/2k8BDavMg7EnPWS9vddw3OffgL1L\nX7ToBCWsm4kGs8Q8+OCDXHvttSFlBQUF3HHHHTzyyCNcdNFFvP7669xxxx18/vnn2O123n//fT77\n7DPmz59PZGQkc+fO5cUXX+Suu+5qqGYpmgghBGVfvYX303/UWifunn9i7zawCVulaCyCB7cT3L0W\n81gmgQ1LSBEWRaexvWPgOKJm/By9fUplJmOFornwb16GkbEV8+h+gvs2SWFtBMLWdZ93PRHnXnPa\ngeMUjUOjDictWbKEHj16MGPGDADmzJnDm2++ybp16xg/fjzz58/npptuomvXrgCVgkeJmNaDEILg\nttWUff0Bwd3rw9bRIqKJnPlzJWBaOSLoJ7hrLSX/frQWB1uNmt4r5WsionD0H4MWnYB70g+xte/a\nmE1VKCqxSosI7t0IwTJEMIAo8yACZVA+zGnmH4VA7bOI3Bffgh6XhB6TiKP3SDVU1MJoMBEzb948\n5s2bR8+ePbn77rsZP348u3fvZsCAAZV1dF2nf//+7N69m/Hjx7Nnz56Q9QMHDiQ7O5uSkhJiYmLq\ndNytW8MHR1PUnfT09FNXCoO9OIek7/5DxLF9Ndb5Og3g+A9uwHJVGwKo53FaAvXto9aMXubBWXCY\nqIObiD6wDs0KdbkVmoYWklSuatl0RlLcfxJGTBKl3UdDdWvLoRz5d5ZyNl5Lp0uD9JFpEJ2xnqRv\n361TdSMynqJB5yHsLkpThoFuQ9gc0ioD4AW2bDvzdjUg6lpqIBFz77330rt3b5xOJ59++ilz585l\nwYIFeL1e4uJCTW4xMTGUlpYC4PV6Q8RKbKz04C4tLa2ziFFZrM+M080YW7buc8qWvYN5/HD4hHea\nRvx9b9MuuRtt5V37bMqqKywT//rFeBc+i/B5wlfSNBAiRMCUdhtJu+590OPb4xwxFVtCR5KbqM2t\nibPpWqovde0jIWQCQ+HJJ7h/M0amDM8vykoJbPoK4SsJqe8YMBY9LhnNGSHzAek2NN2G3r4rziHn\noNnstKYsbG3tWqrIYn26NIiIGT58eOXyFVdcwSeffMLy5cuJjIzE4wm9EZaUlBAVJd/OT1xfUiIv\nuor1ipaBMA2Cu9ZRtup9grvW1lov6qp7cY2bjqbbmrB1iobAyNwpZ16cOCRod0rzud2BKM6TZeXi\nRW/XGefQSURedAsZW7bSrQ3dUBUtl8DWr/EtewfjwPd1qu8YMI6ISVfjHDC2kVumaA4axSemwku7\nX79+vP/++5XlQgh27drFnDlzAOjbty87d+5k1CgZJ2THjh107NixzlYYReNi+UrwLnwO/4al4Z3c\nNA09qQvOgROImDBTRTVtpZg5Byl6Zk5oocMl/V6MAOKE794x5BxibnpciVVFkxI8uB3voucx9m+u\nudLlxhaXjCv1Ijl0qes4B/1AOo6rWUNtmjMWMcXFxWzevJkxY8Zgs9n47LPPWL9+PQ888ACJiYk8\n+eSTfPLJJ1xwwQW8+eabuN1u0tLSAJg1axavvPIKkydPxu1288ILL3DllVee8UkpzgwR9ON55/cE\nNi8PX8HuJOb6R7H3GoEepYI4tUaEZVK28r+UrXwfq/BYzQrVHHe16HgiL7sDe+c+MpqyUw3fKhoW\nYVkENi4lsOs7knLzKNn5WeU6q/AYxr6NNbaJvOwObB17oid2wN6xV1M2V9GCOGMRYxgG8+bNY//+\n/dhsNnr16sXzzz9P7969AXj++ed57LHHePDBB+nfvz8vvPBCZTyZq6++mqysLGbNmoVhGFx66aXM\nnTv3TJukOAOMrD0U/fWnMs5HNTRXJPa+o3GNmIpz5Pnq7aYVIwJ+Cp64GlGSX2OdrVNvbB264xw4\nHi06AXuXPuixSc3QSsXZQGDXWowDW/B98VplWTQQyKh9m5g5T+HoM0qJaQXQACImMTGR+fPDR2QF\nGDt2LJ9++mnYdZqm8Ytf/IJf/OIXZ9oMRT3R/V7K1izEPJ4pYySE8Xlxn3c97ktuVcKljVD64dNV\nAsYVCX4vAM7RFxJz3cPN2DLF2YC0Ar5PcMcagicEkEPTyEu9iu59+wNg+UoxM3eApuNKvQhHX5Wi\nRBGKSjvQxhF+L4GdayFYBkJgFh5DeAoBMLL3021POqW1bGvr3IfY255Bj0lougYrGpXgwW3411aZ\n6isEDICj1/AwWygUDYd5PJOS1x7EzD4QUm7r3Af3eT/BOeI8MjZswKWcxBV1RImYNoCwTMzjmRgH\nthLcvQ4jYwtWuVCpLerkSXFGEH3NA7hGnNewDVU0K8Ej+yj+220hZVE/uh8tIgp7t4HYEjo2U8sU\nbRVhWQifB1FaiG/ZO/i/+yRkvWvCTCJ+MAt7J+XToqgfSsS0IqySAgI7vwUjgHFkL8Ht32AV5YJl\nntmOXW4ixs1AT+iILakL9pSByvrSxjCPH6b4LzdWfrZ17EnsXS+hq3xEikbA8pUQ2Po1pe8+EXZ9\nxLnXEDn9TjVErThjlIhpAQghpBAxTbyfvkgwYxuiOBer6HiD7F+LScSeMgDNHYNms6MndUFzyNDZ\nB4oDDLzsOnUzacOYx7Mo/OM1lZ9tXfsRe9c/0O0q0arizBGWRWDrKqyCbAjKKfnVHXUBtOgE9Phk\nbEldiJr1S/To+GZqraKtoURMEyMCfsycA1gl+ZjHDhLcuxFj3yZENd+E+qC5o6UlpVNvXKkXYu82\nCK3iIWV31ipSfOnpSsC0cTwfPFm57Bg4nthbnmrG1ijaEmXfLKD0g7/Uut7RLw33BTcpfytFo6FE\nTBNg+Tz4Fr9KcP8mzKw9lRFP64Pergv27oOkH0PX/jiHn4vmdMsQ2kqMKMJg7JeRTbXYdkrAKOqN\nsCxKP5qHlXsYq7QQ8/DukPW2jr1wDJqAZnegudzYkrvjHPyDZmpt01L64Tz8G5cign7if/mKCvzZ\nhCgR08CIQBmB75cT3L8Z4fciPIU1pxHWhm5Di4rDnjIA99TrsHcdoGIhKM4IEfRX5riydxvczK1R\ntAbMvCOYxw7iW/pvjKzdYFnYOvaoIVoqsHXoQcycP2Nr1wWA0kUvENi8TAZRdLlxDhhH5PQ70KPi\nwm4PUiCVffU2Zd9+TLfiPApX9CRq5l2NasEJ7t1A8Qt30e6vX5/Zfg5soezbj0l46L+1xlQK7l6P\n98t/Y2btQXiLiX/ofWyJnULqmHlHKP3gLwQPbEFzRhAxbjrui29RL6enQImYBkIYQUo//Cv+bxed\nsq4W2w5bYif0hA7YOvTEOWg8ts590apn+lUoGoCiebdWLrvPUdGwFTURZV4CO9ZgFWTj/eI1CJTV\nqBMiYJxuIi+9Hd0djXPkeWi20MeIptuIvu4RbJ16IbwleN5+DM+7TxA750lqo2zlfyj7bhGxtz7N\npoPZDPJlUPzyvcTf9xa2hJadltHKO4Iek3jyoJDOCFypF6FP/hEl//p1jdXCMin516+x9xxK4k2P\nYxXlUvzyr9Dc0bin/LgRW9/6USLmDDHzjxLYsgrvwmdPXtEZgbP/GCJn3qWmsiqaBP/3KzCP7pMf\nbA4cfVXsjbMd4fdhFedWLpd++AxGxpaaFW12HAPGYu/cF3uvYSAEenyyfFifxKICEHlp1TR+LSaB\niHOuwvPW7066TWDTV1X51zKP4570Q8qWvYt/3edEXnBT2G3Mghy8C54leGAz6DZp8ZlxJ3qkTIVS\n8PurcF84m4gxl1Ruk/fLicTe8Sx6u84Uv3yvLLt/mmz3JbfinnR1jeNYpcV4F/2dwM7vwDJx9BxO\n5BV3Y4tPxvvF6/iWvglmkLz7p2FLTiH+l6/W2IejxxAcPYZg5h8Ney7G/s2YuVnE3vUimisSW3I3\n3FN+jG/ZO0rEnAIlYupJYOsqShc9j3X8cNj1ztQLcXQbhBYVj619CrbOvVXCPEWT4v30pcrlqB/d\n34wtUbQEShe9QNmyd2pd7xw+BVtydxz9UrH3Gt5gwxjBPenYOvc5aR0hBIiaZWZW+CGsSstF134k\nPPhfhOHH89bvpMXnp38+ZZtsCR2JvfUvcjjpT0tOWtfz9mMgLOLvfQPN7sQz/2lKXrmfuF/8k8gL\nbkKPT8a3+FUSHv7glMetDePIXmxJXdDdVcmP7SkDsPKPYpWVqlAIJ0GJmFqwfCUIn4xlK3wlmDkZ\nBA9swdi7AasoF1HmCbudY+B4oq95AD0msSmbq1CEIITAys2q/OwaNa0ZW6NoLoRlIkoK8HzwFMFt\nqyvL9cROWMV5YASIvPQ2Is69tsawUEPg3/QlZd8tIu7Ov5+0nnPIRMq++QjHoPFgGviWv4soyat1\n1qZxaAdmTgaxP38BLSISjUgiL7+LoqduwCrOQ49t1yDtt4pzCe78lrhf/7tyWnjUrF9Q8NAlGId2\n4OgxpEGOI8q8aNUEDMgZp3JdKSgRUytKxJyACPop+fejBLeuqvM2tg490JO64kq7GNewyY3YOoWi\nbgi/tzKJpzPtYuVvdRYhLAsrLwvj0A5pRaiGFhFNwuOfNcn14N+4lNIP/kLs7D9j79q/srzwzz/B\nLMgBwDX6AqKv/j/cU38CwQAlr9xHSkkh5sjzcPRNRYuKDbtvqzAHLSouxEJhS5KOxWZBToOJGLNA\nZni3tetcWaa7o9Gi47EKc4CGETFaRGSNF2Ph85SvUwLmZCgRcwLBPel1FjB6+xSir/wVjn6pjdwq\nheL0MI9nVi5Hq6GkNotv+bsYmbswsw9gHjskC8tno52IK+1ioq68t0kETNm3n+Bd9Dwxc57E0XNY\nyLr4+96qUV+z2Ym85FYiL7mV9PR0Rg0fSsHjPyTywpvD7l+P74AoLZIWjIhIAMw8aXmscATWXJEQ\n8FVuYxXlnnDQU/eDLSFZ7jv/KPYOPeR+ykoRpUXo8Q3ncGzv3AdvbhaWz4NeboExDu9CT+ykhpJO\ngRIxJ2DvORRbx16Y2fvRYttVmlj1+A7oce2xdx+Ec+hk9Oh4NGdEM7dWoQiPd0G5o7nNrnyxWjmi\nzIuZl0XZmoUIvw/hKZDZ5p0RYWcSAWiRsegJHdHjknBP+iG2Tr2bLJWIb+X7+Ja8Tuztz2BPGVCn\nbaySfITfh96uMzZfMaX/fRI9MhZX6kVh69tTBmBL7k7pgnlEXXEPIhjAu/DvOAZNqLTC2FMG4N+w\nFOfoCwEo/fTFkH1UDPmbxw7VGtdFj03CMWAs3oXPEf3jh9EcTrwfPoOtQw/s3QbW6dxAWscwg2CU\nC0wjKMMflP8+7b2GY2vXGe8nLxI142dYRcfxffU2EROuqPMxzlaUiDkB3R1D3P+9AUG/EimKVkvF\nrCQ9WuXAam0Iy8T3xesYh3YgvMUYh7aHr1guYPSkrkRecgt6VDz2nkPlOpuj2eKLeBf8DXQbRc//\nPKQ8/r5/1zoz0yrKpeTfv8UqOk5nzQbDJhN7x9/QHOHjZGk2OzFznqR0wd8oePyH5bOTxhI542eV\nddwX30Lpe3+g4LEr0GPaEXnZXALrF1eutyV3I2LiVRQ9dweYBu6LbwkbhiD6ukfwfvx3Cp+6Uc5O\n6jWMmDl/Pq2XA2P/JopfuKvyc+Gf5IyjqGseJGLMJWi6TZ7PB38h/7fTK+PEREy5ts7HOFvRhDiD\n8LHNiN/vZ+vWrQwZMgSXSwWEqy/p6emMVmnvT0pr6yNhBMn/9RQAXONnEn31vY1+zNbWR81FXfrJ\nu+QNfJ//s0a5rUOPSj8REShDj47HlXZxmxOq6lqqG22tn+r7TFeWGIWijeH5b9UU06jLf3aSmoqW\nhj/9ixABE3PbM2gOp0zgWotVQqE4m1EiRqFoQ/g3LCGw/n+AnKKphkRbNsLvxTi0g9JFz2MePRDi\nlBv/0AfYElVgTIXiZCgRo1C0EYIZW0Mio0bf8PtmbI0iLMLC99U7GId3IbzFBHevq1HF1qEHMbc+\n3eLD7SsULQElYhSKNoCRtYfiZ28PKXP0GdlMrVFUx8zNIrh7Hd5P/0EPXwnhwrfZe4/ENfxcXBNm\nqtlkCsVpoESMQtHKMHOzEL4S+UEIvEvfrBHbyDF4YqNEYFXUHWEaeN55nMDGpTXWaTGJOHqPwNFr\nOPYeQ0KCwSkUirqj7nIKRQtFCIF1PBPh9xLc/z1mbiZWbpaMERIGR780hBnE2LcJV9rFTdxaRQVC\nCILbV+N5/ylEcV5lub3HULKTB9LvRz9vtunPCkVbQ4kYhaIFETy4ncCmL7FKCzH2bcYqyA5bT4uK\nQy+PuaHpNlw/uALnkIkU/EaKF+VP0TwEdq2j5B+/CCmzdehB3L2vo9ns7E1PVwJGoWhAlIhRKJoY\nIQSBLSuxCnJAt2HlZmKVFGAc2o6Vf7RGfT25G7akrth7DEFzRqBHxeMcNa3Gw7Bs7WdV2yR1bfTz\nUEis4lwC29dgHNqB/9uPK8v19im4Rk3DPe0mlbtKoWgklIhRKJoAYZn4136GP/0LjIPbwAiEr2hz\n4Bw0AUf/NLToBJz902QOmDpQkTvHNW56Zf4VReNhFmTj+/xf+MuntFcn7t43sHfu3QytUijOLpSI\nUSgaECNrD8FdaxFmEEwTEfRjFeUS3L0W4SmsrKdFxuLolyotK7FJ6PHJ2Dr1wt6l32nHdrE8hRgH\nt1L2lUys5+jbdqJ4tlTM/GwKH78qpMw15lJsnXvjGnFeg2VRVigUJ0eJGIXiDBGWRXD3OspW/KdW\np1uQwedc42YQMeFy9MTOp+0bISwLM2s3ge9XYHmLZaEZxL/uc6iWPcTefUi9zkNRd4yMLZXL7ktu\nJWLMJeixSc3YIoXi7ESJGIXiDBBlXnwr3sO3+NXKMsegCXIoQbej2Z1okTHoiZ1w9B1d52nPwjIR\npXHrR1oAACAASURBVEUYWXswMrZiZO7EOLAFUeapdRtHv1QiZ/xMRXltJPzfryCw6UuCu9dDeSwX\n14SZRJ5/QzO3TKE4e1EiRqGoA8LvxTi6H4J+LJ8H4+A2jEPbMfZ/D8ICwNa1H9FX/xp7yoDQbYXA\nPLKX4K61mMcOgiUAAZaFkZMBQT8gh4XM45lg+BF+H1hmjXZokbE4+ozC3ms4mt0hC3UbzqGT0KPi\nGrMLzkqs0mK8n7+MdTyT4J700JWahqPnsOZpmEKhAJSIUShqJZixleCudbTfuYH897aAaYStp8Um\nYe8+CNfoC7FK8vGnf4GZfxQr/yhWUS5mTkatU6VPhhYZix7XHnu3Qdh7DMbefRC2Dj3VFN0mwszN\novAPP6pR7j7/Bmxd++PoMxI9MrYZWqZQKCpQIkahqIYIlGEez8S34j0C6xcDEFW+To9PRm/XBXQd\ne8ee2LoPQZTkE9yznuCWlQS3rDzpvu09hkgR4o4CNNA09Oh4Ge9F00DTsXfug+aOQXNFoNmdjXuy\nZxkiUEbwwPdorkj0yFj8G5YgAj6skgII+BCWJa1f5X/VLS+OIecQMWEm9i590WMSm/EsFApFdZSI\nUZxVCCGwjh3CzDuCkfE9RnYGBP0II4BVko91PDPESdY5/FyO2hPpOWGajNOiaQjLwji4jZLXH0KU\nVIvI2nOYnA6tadiSu6FFxmLv3BvN6cbWqTd6dHwznLFCGEHKVn+Ed+Gz9do+cvoduKf8uIFbpVAo\nGgIlYhRtGiN7P/51/wMjQHDfJhlLpbYYLQCajhYVh71LXxxDJ2Hr1BtrwxrMI3vwLXsHI2Mrwu+t\n9GMBcI2dTsQPZqr8N82MMIIE922UztNCABrCMmtE0AUZDFCLiMKW0AF77xHoMe3QHE7QdOm0q9vQ\ndBuay41Nfa8KRYtFiRhFm8PMy8LI2EZgy0oC3y+vsV5zx2Dr3Adbh+44egxFi4pFs7vQ3NHoSV0w\nDm6nbPm7+Ja8gSjOpT1QeuI+ImNx9B5J5CW3YuvQvSlOS1ELwrIQ3iIK//jjqsSYYdDjk4m8bC6u\nUdOasHUKhaIxUSJG0WYwjuzD8/ZjmEf3hZTbew7DOXQSWkQ0zsETIDIOUZCN5SnAyNiKWR7zwyo8\nhvCVYGTuqrTW6AkdKIntTEL7ZGzxyThHnIee0AEtIlo52DYzlqeQsjUL8X3+z7Dr7b2GS4uMsHAO\nnkjElGvRyqdGKxSKtoESMYpWgwiU1YhmKwJlBLasxDi6j7Kv3q4sd/Qdjb3bIJzDzw0Z5jELcij9\n570Ed6876bGcw86Vs1C69GX/hg10G62i4LYUhBCUvPYgwa2rQsq1mEQixl+Oe9qNcjhIiUyFos2j\nRIyixSAsE+PAFoyD2zHzjyA8hZg5GQjLhEAZVtFx9PjkkFxCZk5GyD602CTif/Vq5QwSYRr4132O\nf8MSjMO7EKVFVZWdETj6peHoNQzN4ZKzVhI7obljsHfq1RSnrDgJQgis3CxEmQfNHYN//f8wsnYT\n3LY6pJ4tZQCxP/2zCvWvUJyFKBGjaBbMwmP41ywkuH8zwiej0Fr52SeNSAtyyKcGTrfMV5PYATQd\n37J3ZUbokjys/BwwgyHVbSkDcQ2dRMR5P1Fv6y0QYRr4vnoL3+f/Omk9e59RxN7+jBoiUijOYpSI\nUTQ6osyL//tliJJ8zOOZmNkHMA7tCF/Z5cY1dDK2rv3QIqKxdeiBHhEFmoYWk4hVdByQU6CtkgIC\nm5ZhHN6BP31xDbFSgd6uC66RU3GlXozePkUJlxaKf9NX+Ja9g5m5M3SF3QlCoEXGIgJe7N0GETX9\nTuxd+zVPQxWKsxAh4OBBsCzo2VOGtmoJKBGjOGOEaVQ6xAa2fY0o88ogYnlHQAg55FMemr869j6j\ncI08X4bpL/9F2Dr0qAqnHwbdHY3lK6Hk9YcwTggDb+8+GFtyd/S4JGydemPv3Ac9rj1aRGQte1O0\nFHxfvYP3kxdCyuzdBhL1w/uwd+7TTK1SKFoeQsChQ7BvXwQRp5fwHoDcXLl9XcjPh6VL5TbffltV\nfv758MUXLUPIKBGjqDMiUIZxeBf+7z7FKi2UZd4SjMO7Th57BdDbp+Dol4atXWf0mEQcfUeflg+D\nVZKPMIKUvv8UwZ1VvyZbykAixl+Oo1+qSnzYwrE8BZhH9uH76i1EMABmEGEaWEW5CE9BZb3oG36H\nc+jkOifLVChaKllZkJdX+/rCQvj8cygpqRIEOTmwbx/s2gXBYE2h4K8MUTW4MZpcJ776SrY9IaHZ\nmlCJuksoTkrw4DaMA1swcw/jX/tZrWJFi4hGi4rF0WsE9t4j0DRNDt04I2RQscROdT6mEALhLQbA\nyjuCb9nbBDYvP+GAGjE3/wHnkHPqe2qKJkSYBgW/m1XrkB/IOC5xv3gFPaYF3BkVijCYJuzcWSUk\nvv9eCo0KNm6EZctknbbMX/7SMgQMKBGjCIPl8+D/9mPKvvsE69gJdke7E3vPoUSMuVQO02g2bJ16\nYUvocFrHEJaFkbEFM+8IGEGEEQQzgPAW41+/uKYDr82BFhWHpuu4z7seV+pFaC73GZ6porEwMndi\n5h/FPHaI4N4NIUN/ts59cPRLwzn8XDSbA80ZIWedOethG1e0WoSQoqACXZd/4dYZBixfDh98IOtU\nywzSKJgmfPcdRETIYx09Ctmnn8O10Rk0qH7bBQLQuTN061a3+nY7XHABDB8OAwe2jGGkCpSIUZRH\nPC3GPH6IwLZvKFv53xCLiyvtYvTYJOw9h+EYMKbes0GEEFj5RwnuXo/vi9fKnXRrR3NHy+i6yd1w\nT7sRR89h9TquogkQAv/mZZS+/1SlFS0c7vOvJ/KS25qwYYqG5PvvpaWhQmycisJC2LEDXC75WQjp\nW2GasHdvzfrR0RAfP5jDhxuuzS2BIUNqf/Cbpjzvc8+Frl1lmaZBYqIUKf3719zWZoPvv09ntIpf\npURMW0KYBubR/Zj5R8sLBFimzBdUbsa3PAVYxeWDtKZBl8N7KZgfqDG12ZbcHeeIqUScczV6VGz9\n22RZ+L58E3/6F4iiXJl3qPIgDpxDJqJFRIPdgWZ3oDndoOu40i5RPi4tHMtXgnX8MIHt39Dty7fx\nmNWGGnUbenwy9m4DQbfhGnUB9pQBaqioBeLzyQfp0aPyD6QvR4XlYc0aKCuDRYsavy0eD3g8Ld8i\nFxsLvXvL5bIyGDMGHI6qz4MHw803Q1KSFByKxkOJmBaEEEKKkKzdMsAbVMwmBsAqOo5x4HuEGUR4\nCrGKcqsqCIEwAmAap3VMR8UenG70yBjsKQNwjjwf14ipp91+s/A4xt4NBPdtxDy6X5YdzwzNZ+Ny\nY4vvgGPQBCIvnK2GEFoJwjIx9n9PcO8GzJwDmMcPYx6pepWufDHXbcTd9RK2lAFqKnsLoaxMOov+\n6lewdi24q43C7t7dfO2qKxUiwDQhJgZSU+HyyyGyCSYd6jqMHCmX7XYYMACczsY/rqLuKBHTyAi/\nDyNzB2ZBDqI4D8vnkdONg34ZMyU3C6sgG+wOOQH/FLN8ToUW0w57l74yI68sQY9LQit/A9Z0u3S4\nLb8z7MrKZfDYiWgxiWh1tRGXYxXlYpUW4vvy35jZGTVyFlXHNfYyIi+egxYVr2adtCKs0mJKXr0f\n48D3tdbRk7tR4owjafAY3BfcpMRLI1JcDIcPS0tJdb+QgwflLBjLkpaTiAhZtu7k2TXqzfjxUNeR\nDE2TQmTYsNCykSOlNSM6WrZ7zx4puLZv386gQYMq1ykUJ0M9Tc4AGRb9sHRK1cAqzsMon80T3LcJ\ngv5T76SCQLnlxenG0XcUelRctZVVD4WK+CfY7djadyt/TZHrNU0Hl/u0HiKBsnT0uKTaz9E0CGz6\nCuPIXjk0dXQ/RtYeRNAPAV9oZbsTe0p/HL1HyhlKrkgQFporUsX6aGX4N31FYMsKAhu/DCm3dxuE\nrWNPnEPOQYtJlILZ7mB/errKL1VPDEMKkF274KWX4Jtvwjuu1jW2R32JigKvF9LSpA9LMAgdO0L3\n7lJcjB8vP59/fsMPkei69P0AMAwfw4c37P4VbRclYsIggn6Cu9dhlVY4KAo5XFNahJG5A6sorzy+\nxXFEce7Jd6Zp2JK7Y+vcBz0qDi22nRQZmo7erjN6VJwM9gYIw0CLiGw0S4UQovzuKCrvkjZvIWXf\nLJDWId2GCAYws/djZJWLltxM8PvC79BmR2/XGc3mwDX2MukA7FavTq2RilD/ZSs/ACMQ6rsERM64\nk4iJV500EKHi5AgBK1bE8cADVAYp275dxgRpCpxOSEmBv/61SjAAxMVJcaJQtEaUiAlD8cv3Yuzb\nWLfKug1b+xS5bHdi79oPe/fBOHoNRy8vr6tlRHOdfluFEUT4vVj5R7FKizCPHUT4SrEqgocZQcyj\n+2r6ppSTApSeql0RUbjGXIoem4QWGYuj1zD02KRKZ1xF68MsPIZxYAtoGv61nxLc+V2NOnpiJ6Jm\n3o291zD0yPo7d5+tCAHp6XIWzl//WjG00zAWSbdbDs/EVvtaAgHo0kUKlUAAxo6VFo5Bg+SfGuVT\ntEWUiAmDc/APwDKklUGr8BORA7v2zn2wdeoNdieazY6tfUqDxysR5VafynD9AqpbTwQCTIPAttX4\n1y+uOaxzKjRNno+mIYSQwitlAFgmWBa25G4yZ1FsO4RlYu/ST4mVNkTpohcoW/ZO2HX23iOIuupe\nbEldle9SHTEMWLFChmg/fhyWLIGCAll2uiQlwYgRcOedMibHiW5qMTFy6q1CoZCou1QY3Odeg/vc\na85oH8IyK0WBMA38az8jsPkrLG8xWrmAqC4mAPnfNOSU6DC5hmpFt6G364QeGYctuRuaOwY9sSNo\ncuDaFt8eW8eeVRajaqSnq1gDZwvBPel43vsDVkFOZZljyDlgmdjap+C+4GY1HHgSfD7pl7Jtm3Ss\nfeQRKWA8J0+8HpYbb4RZs+SypskZN53qHtRaoVCUo0RMAyGEwDi0A98Xr2Eez8TKPypFTH3RZSRc\nzRVV7rdbXfjIIs0dg2v0BTiGnKNmhCjCYh7PpPSDvxDM2BriaK5FJ5DwyIfKwoY0cO7fL51Xq/PF\nF/Doo3JqbyAQGl7+dJkyBdq3h5kzt3PttfUMs6pQKGqgRMwZENy/meDejeVDO1+HxM0AwGYH3Qa6\njh4Zh2vMpTiHT0ZKECGHiYRVNRWh3OlWT+ykfBAUZ4xZkE3hH68NKdMionBfNIeIiVee9pT6lkxF\nJNgdO6TODwZlTJSiIilQXLX4m+3aJYeBGgK3W4oVt1s67k6bBqNGhUZrTU8/zaFfhUJxUpSICUPw\n4HaZKbm2BB1CENi+GjNrT2i5puMccg4R51yJvesAmVtIoWgGhN9L4R+qBIz7ojm4p1yL5qiH93gL\nIRCAxYtlVNmf/Uz+PCt+ouYZGD1Pl5TyUdlx46QPy69/LcPF29XdVKFoctTPLgyl85/GPLyrTnWd\nI87DltwNPSZRJSVUtAiE30fBH39cmWoi+trf4Eq7uJlbdXpYFvzvf/DxxzKGyrZt0srSmLhcVaHk\nK3A44JZbpA8LyFgqauRWoWg5KBEThqgrf0Vwx5qaK6rdvTR3NM6B48M6yyoUzYn3i9cq4xdF3/BY\nvVJINAXBYKgFJSMDnnwSXnvtzPY7ZYoM0AbSelNhMakoOxGXSw751DbkpFAoWi5KxITB0X0Qju7K\n+U7RuhBCYOzbWCnAI865qsUIGK8XjhyBrVulUFkT5h3hdJg9W4qSn/9cTjsGOR25Dbn5KBSKOqBE\njELRShCWhSjJxzi0HVFWFaJQBP0E920iuHcjoqQ8Q7mm4b5oTpO2LzcXvq+WYundd2H5chns7Uy4\n9VYZCj8mRmYHHjRIiRWFQiFRIkahaCbM/GyCezfIpJ82O8JTiFmQjRYRBYEyRDAAloGRnYHwFmMV\nHa9TglBbp964xl7WKDFfhIDCQpms79//hs8+k2WHDo2qt3NtxTCOpslpzqmpcM898OMfK/8ThUJx\ncpSIUSgaGeH34t+8DFGSj+Utwdi3qdY0EKdCi47H1j4FPbFzZV5QTdPR23Upj7KciKPnsJPvpBaK\nimSY/FWr5HRlrxd27qzK8yMEZGbW2rI6HUPXpVUlPh7++EcZnVYJFYVCUV+UiFEozhAR9GPmZhHc\nvhr/pq8wj+6XKyoiMpu1R0mz9x4hncPLzRi25JTyaM8Wemw7+T+pK7aEDuhxSTIz+Bng9cosyb5q\n4UoOHIC77z6j3YbQqRMMkDlN0XWYM0dmPk6qPVm6QqFQ1AslYhSKOiL8Pvwbl2Ic3I5xcBvCX4rl\nKQQjeMo0EXq7zjiHTkKPjENzR2HvPRI9rn2ThPn/5z/h2WdlyPzi4lPXrytRUdKScsEFMHDgNkaN\nGkzXrmqWj0KhaDqUiFEoasEqycfI2Er7Fe9SuPQZmZCzFrToBGztU3AOnohr/Aw0Z0R5NLbyBJ4O\nZ5Omhigrg5/8BObPP/1t3W6YPFkmIBwzRgZy69Chan1iYtWMoArS08tqxFhRKBSKxkaJGIXiBIzM\nnfhWvk8gfTEAUUCFz6oWEYVz9IU4yoeBbO26IBDoEVHN1t4TKSyEhIRT17vsstDPQ4bAY4/JAG8K\nhULRGlAiRnFWIITAOnYIs/CYtIjoOmi69FvRbQi/l8DGLwnu24SVf6Qqnr3NTnGvcXSd9iM5/JOQ\njGZ3huy7pfilZmfDr34F77wTfv1vfgPXXSfD5kerZNUKhaINoESMok1h+TwQ9GPmHkaUeTGPZ+JP\nX4yZtbv2XFhhcPRLxTXmUhz9x5Kxcw89+4xsxFbXDcuCL7+Uf6WlNdf//e81y5KT5YyjLl3ULCCF\nQtH2UCJG0SIRlikDuhlBzPyjmMczsQpyMI8dBDOIMILl05Q9YAQRliFn+JwsjorLjb1LP5lZXFhS\nFZT7rQjLQo9JIGL8DOw9hqJHxTX4OQWDUoBUTFP2+2HfPum/Eo7SUti4UWZatqzTS3LocMjEhI89\npgLDKRSKtosSMYomQRgBLE8Rmq5hFedhZO5EBAMYGVuxSvKk8yvllhIhMLMP1CuOCg4XmtONFhEp\npy7rNhw9h+Iadzl6VGxDnlIIVrkmKi6WwqS60ec//4GVK2H9+kY7fAj9+smEiSqrct0ZNgy2bJHL\nui5ncnXpElrn9dfh5pvl8muvwU03yeUePeDgQZkGISOjadpbWAjz5snlESNg5szQ9eeeCytWyOXT\nMEA2G599Bo8+KuMSlZSMBuTU/x49mrVZilaAus0pGpzAjm/xf/cJIugHy8TylmAe2XvSeClhsTvR\nIqLQXG7s3QaiR8Vj69QLzR2DZrPLwG/tOoNuB5sdzWaX2zSg6UEIyMhw4ffLGCv79kmLCkjRcuAA\nrFsHmzeDx9Ngh62V2FiYOBGmTQObreb65GT5QFMCpu5s2VIlYEB+r+++C/fe23xtOhWFhfC738nl\nG2+sKWJaE/n5cOWVtVskFYqToW51inpjHN6NVZiDVZyHVXgMI/sAxqEdlRmUQ9A0tJh2VFhb7CkD\n0BM6oEfGYu8xFM3hBLRKxw3NGYGtS78GESRCSAFSV7Zvh6+/lpFrly6FkpIhZ9yG6lx5ZdXsoYQE\n+QZf22l26CBFS2Ki/KySHDY8b79ds+ytt5pWxJSVVUVGbgiWL2+4fTU2O3ZUCZjZs+H229NJSxt9\n0m0aur8UrRclYloAotzeq2kawrKw8o+CZVbagUW1YZaqIReqlVUrONF2fJL1wjKJytiAn7zyWTrl\nM3YA89ghhKcAM/sAVpkXzS6tHFbRcemHEihD+GtRBnYnWr8JaMMukv4nDhdax35oEVVTYgRy2rIJ\nVNhnKoZirIq4cXvkP48H9u8Hw5CfTVN+rkvgtsJCWLtWvu01BXa7FCUVoqOCxET5UJw8WU1hbkkI\nUTWbKyEBJk2ChQulZW3bNplwsiGZPn0IR4/Ka+SNN+C++2DTJrj9djk89NOfSkfsw4dlGojISBg6\nFO64Q+aSAjnsUmGFAbmfN96Qy7/9rVwfbjhp+XKYMkUuP/KIjPXzwguQkyPP85ln4Ac/qNpvMAgP\nPST3XVIi++bvf4c+feT6yZOrxFJurjz255/LWXJ2u4zcPGqUbE///uH746abqtoO8Oqr8OqroyuH\n5qqvX7FC9tHSpdC7t/QXA/jwQ3juOdiwQUai7tIFLrkEHn4YOnas2nf1Yb833oBf/EK+sAwYAH/9\nK4wfD/ffL0WtrsPFF8sgkXEncY+bN0/up6J9kyZBXh60by/7/Xe/k30N8nvculX2355q97Y//lHG\nc8rIkP02aJCMcn3LLVXO+NW/u4cfllbY554bht8Pl14qv8fDh+Guu+T9rmtX6RM354QcsN98I7PI\nf/ONvDe2bw8XXSS/o5SU8H313nvyOl23Tr5UzZ4tZzq2lJcpJWIaCFHmxciuHm4eQKsKcKZpIARG\nTgZm5k4ZWl7TsHKzMLL2IDwF8oEPUsA0Ee0Bz+r6bRsUTvb6h+Gx4sgOdqfAn8CKvYP5dl8vcnLb\nzqXldFoMGaLjcskffdeuVV+x2y1vqAMHwjnntJwftqJurFxZ5Wg9fbp8cC1cKD+//Tb84Q+Nc9zj\nx+XD48QhlFdfDf1cXAyrV8s/v7/KJ+dMefZZ+RCrYN06+TA8cKDKSjh3LrzySlWd//1PCpdw3Hij\n9GupTkkJ7N4tp/XXJmJOh1mzpECAKmH2+OPyoV6djAz5UF+4EL77rqZvU25uaN9v3gwzZkgRs3Rp\nVb0335S/59deq71NFcICpPV20iT5XVW07+uv5f/8fCmKq2/j8Ugr6+bNVfvw++V3sW6dFBqvv17z\nmC++KM8B5NvQf/4DR47I/Ve8rO3ZI0VQ375V39m778L114dOEDhyRF5zixbJvurZM/RYx45JQez3\ny88ZGVKUdekixUxLoO08aZoQYRoEtq0ut1RkYBzdh7F/8ylDz5+ScvHi0+Lwa9IJVVAliCo/lxcF\ngxo+HwSNE+pUGmsqPmsEg/K/LK9af7w0kSJ/NDbdQtMsbJqFrlnk+eLZndeD494EMoo647CZOG0B\nSgNuDpd0xLBseAKR+M3WE2M+so5ph1wuKUhGjpRvdLCRMWNObt5WtE6qDyXNmgVTp8rv3++XFpon\nnmicqelerxRML74I7drJhwXIzOATJsg3XodDOrpecglkZcHf/iZFzKOPSgtFxQPnxhvDP+xORmmp\ntGBMnQp33in7oahICpHrrpPio0LAtG8Pn3wixfott8BHH9Xc38qV8v+sWfKhr2nygbdkiRT9tfH6\n6/JcKh7sv/0tTJ+ezujRNX9v8fHS0jNkiNx3RobsC5B9uGiRfJl46CF4/nnZZw89VFOElJbKeEqP\nPCIF0LPPyrI1a6Q1pV8/Gak6M1M++F99tfZrYNgweey8PDn8DFXCRdflPk0zVNhUnOu8eVUCZvp0\n2d95eVJQ7dkjrUU331xTOHq9sGwZBIObueWW4Rw8KI997rlS0Hz1FVx7raz79tty+9JS+T2bprSO\nvfuutLZ8/bUUdMePw4MPyvLq+Hzy+nr6aSmqZsyQ5e++q0RMi8a/Yy2Fa1dWDuloQR9aQSb4S9A8\nuWi1OKgWlMWwv0D+YjUNNCqGiUTlcqE/hnVHhpJTmojDZlBYFsPBos6kZw9GQ2DXTXyGi5YTQq3+\nxNZjMlC3bvKmeSIdO0rzdMXNJDJSmmXrMjTTsyeMHl3/YZz09Pptp2jZ+P3wwQdyOToaLrxQ+llc\ncIF8IB48KG/y55zTOMd/5RV5TVccH+Q1Ons2fP+9FBVWtfeiXbsa7tgzZsAVV8jla66pEnOHDsn/\nX31VVXf2bPlQB/jTn8KLmJ49pXP0mjXSOjJ4sBw+ueeehrNOPv64zIAOUqy8/HKVVeGnP5WWFIA/\n/1muCwZrWodA9vFjj8l7yEUXSREDcPnl0pICcljtvffkNZKdXfU9nYimSZHw4Yfy3C1LXjM2mxQm\nCxbI4cIKgQNSbEBo2/78Z3nfa99eDjvfdltVnRNFzMyZch/p6QZjx8rrFKQISU6u+l6hat0330BB\ngVzesCG8ZWzJkpplNpsUz3Fx8nwqBFvFddISUCLmBPLzYdtTLzMofudJ6x33xrM6cxQZRZ1Jzx5E\nTmk7NmYPRHBmv9ig1XgOEzExNR/kpmlgs9V+GWiaFAujR9fMlxMVJd/Oqu8zIUEq/JQUlQhQ0bL5\n7LOqG3taGuzdK5dHjZIiBuTDvTFETHJyzQfje+9VvUGHoyFn71R/iEVVy5hRMWyQW803v1u3quXu\n3cPv75//lG/su3bBU0+F1l+wQE4DP1OGDw/9fPx4+DZGRcmHbXZ26HlUkJxcZZV1u6vKqw+lVL93\nVfRJbUyZIkVMUZEckklPlxaaiy+W575qVZWlasCAqu+9tvZX7+PqdcK1M1z7w7W9wtJ3MiqG6qrT\noUOoT1BUlKx3qj5pSpSIOYE1a+CeBY8wMWUDltCwhI4lNDIKu1BQFsvBos74TQemsHGitSQpSb5R\n1WYhiIys+dA/U5KSpCo/Va6cqChZ90TS0zeHNd0qFG2d6kNJy5ZJy8GJvP++fFN3OmuuOxOqP3wq\neO+9quUPP5Q+Kk6nfIHYsCG07pkOcVW/B4XbV/V7RVZW1XLFm/2JjB0rh74yMuT/zZul5eTgQekU\nunjxmbUXavZZdYttdcuA11v1QA53z6st/EB9wxJU94v5618hEJC+LhXid/Hiqu+vet327auE86FD\n0rpUsVy9TkO0v/p+br0V/vGPmnXCxRM68VnVEqN+KxFzAuefD2Mu7sYXy7vVXOmC+GS52LGjvLlM\nnSpNj4mJoW80CoWi5VJUJP08TkV+vvTDuPzyxm9T9YdQfLycjff661WzcKpTffbb3r3ywV1Xn6+6\nMHVq1fJrr8HVV0vr6v33h6//m9/AuHHS4jJ1qrT0PP+8dF5trKGHCy+UfWYY0m9l1ixp6Xj4obij\n9QAADm9JREFU4apYTpde2jjHrs7gwdK6c+yYFJ8gRcyAAVJELV5c0x+mom1r1sjlBx6Q1qyCAul/\nUr1OQ/CDH8hrqrBQOiyff770tRJCCs6335bWoNq+35aMmktxAi6X/EKzsk7+l54ux12vuUb+uJWA\nUShaDx98UGUSv+GG8uwT1f7+85+quuHiyDQG1X0Zpk6V95R77qk5uwbk0O6gQXJ59WpZV9NCZ9ec\nCf36ST8TgKNHpZN7UpIcLqmg+lv5f/4j/Wy6dZP30F69qmZ9XXhhw7TpRLp3l47AIIeNxo2TD+rn\nnpNlXbrA73/fOMc+kQo/lwofpokTZf9MnFglYDStqh7A3XdXDZEtXCiFUP/+Vb5PN91U5aNzpkRF\nyX7RdTks+cMfylGDmBjZxhdfbL3BBpWIUSgUZx3VhckNN9RcP2NGlWP6okV1i0l0plx3nYzV0rOn\ndDBOTZVWoN69w9d/8035ht1YGclffFHGGklOlkM5F10k45lUUN0a9LOfSeHVubMcAouIkBaK3/0u\n1EemoXnoIdmmyZPl9+VwSHFzxx0yzUc4AdgYVLew9Owp+wFC/akGDQod1omOlk7ADz4oxYvTKa1p\naWnw0ks1p9ufKT/5ifTNmTlTtsNulz4v48bJWV7hfgetAU2I1pBZoyZ+v5+tW7cyZMgQXMqDtN6k\np4efzqioQvXRqVF9VDdaUz9t3y5np1Q4AXu9cmrySy/Jz88/L8VCQ9Oa+qg5aWv9VN9nuvKJUSgU\nCkUNvvhCRqONiZEzVI4dk06rIKczVww3KRTNiRpOUigUCkUNUlNlotHISJmawOWSQx1PPSVncykD\nuKIloCwxCoVCoajBxInSGqNQtGSUJUahUCgUCkWrRIkYhUKhUCgUrRIlYhQKhUKhULRKlIhRKBQK\nhULRKml2EVNcXMzdd9/NyJEjOeecc3i7qcJjKhQKhUKhaNU0++ykxx57DNM0WbVqFZmZmdx88830\n7t2bcePGNXfTFAqFQqFQtGCa1RLj9Xr53//+xz333EN0dDQDBw7kyiuvZH712NYKhUKhUCgUYWhW\nS0xGRgYAffr0qSwbOHAgq1evPuW2FdkSAhUhJBX1xl+RCU9RK6qPTo3qo7qh+unUqD6qG22pnyqe\n5aebCalZRYzX6yXqhPTPMTExlJaWnnLbYHmu9d27dzdK284mtm7d2txNaPGoPjo1qo/qhuqnU6P6\nqG60xX4KBoNERETUuX6zipjIyMgagsXj8dQQNuGIioqiX79+OBwOtOo54RUKhUKhULQqhBAEg8E6\nPf+r06wipkePHgDs27eP3uX55nfs2EHfvn1Pua2u68TExDRm8xQKhUKhUDQRp2OBqaBZHXsjIyO5\n8MIL+dvf/obH42Hnzp3Mnz+fK6+8sjmbpVAoFAqFohWgidP1omlgiouLeeihh1i1ahVRUVHMnTuX\n6667rjmbpFAoFAqFohXQ7CJGoVAoFAqFoj40e8RehUKhUCgUivqgRIxCoVAoFIpWiRIxCoVCoVAo\nWiVKxCgUCoVCoWiVKBGjUCgUCoWiVaJEjEKhUCgUilaJEjFtiJEjR4b8DRw4kN///vchdV577TUe\nf/xxDhw4wNy5cxk3bhxpaWncfPPN7N27t7Lerl27mDVrFmlpaaSlpXHTTTexZ8+epj6lBud0+siy\nLK6//nrGjRvHqFGjmDFjBkuXLg2p+/nnn3PeeecxYsQIZs+eTU5OTlOeTpNx5MgRbrvtNsaMGcP4\n8eO5//77Q1KGfPHFF9x+++2Vn9955x2mTZvGiBEjuOCCC9iwYUNzNLvROZ1+mTdvHtOnT2fQoEE8\n99xzIfvJzc3lmmuuYezYsYwePZof/ehHrF+/vknPpbGoax/l5eXxy1/+kokTJzJ69GiuueYa0tPT\nQ/a1du1aLrvsMoYPH84Pf/jDNnFPqqCh+unjjz8OuccNHz6c/v37t8k8SwAIRZvE4/GIESNGiLVr\n14aU33DDDWLVqlVi8+bN4r///a/Iz88XwWBQPPfcc2LKlCnCsiwhhBCFhYUiMzNTWJYlDMMQb7zx\nhrj44oub41QajVP1kWVZYseOHSIYDAohhNi4caMYMWKEyM7OFkIIsXfvXjFixAixevVq4fP5xGOP\nPSauu+66Jj+PpmDOnDni3nvvFT6fTxQUFIjrrrtOPPnkk5XrH3jgAfHee+8JIYSYP3++uPTSS8WO\nHTuEZVniyJEjlX3W1jidfvnwww/F8uXLxe233y6effbZkP34fD6xb98+YZqmsCxLLFmyRKSmpgq/\n39+k59MY1LWPDh06JF599VWRk5MjTNMU77//vkhNTRVFRUVCCCHy8/PF6NGjxcKFC4Xf7xf/+Mc/\nxPnnn1/5+2ztNFQ/ncj8+fPFeeedV3lvb2soS0wb5YsvviAxMZHU1NTKMo/Hw44dOxgzZgzDhg3j\n6quvJiEhAbvdzk033URWVhbHjh0DIC4ujq5du6JpGkIIbDYbhw4dOu006S2ZU/WRpmkMGDAAu12m\nGNN1HcMwyMrKAuQbz6RJk5gwYQIRERHcc889bNq0iUOHDjXL+TQmhw8f5rLLLiMiIoL4+HimTZtW\n+RYshGDlypWce+65WJbFs88+ywMPPMCAAQPQNI1OnTrRoUOHZj6DxqGu/QJwxRVXMHny5LAJ7iIi\nIujVqxe6riOEQNd1iouLKSgoaMrTaRTq2kcpKSncfPPNJCcno+s6V111FZqmVdZdsmQJPXr0YMaM\nGTidTubMmYPP52PdunXNeXoNRkP104l89NFHzJw5s80mSlYipo0S7sJdvXo1aWlpOJ3OGvXXrVtH\nfHw87du3DylPTU1l2LBh/P73v+f2229vUz+EuvbRbbfdxtChQ7n66qtJS0tj+PDhAOzevZsBAwZU\n1ouJiaFLly7s3r276U6iibjxxhtZtGgRXq+X/Px8Fi9ezKRJkwDYtm0bSUlJdOjQgZycHI4ePcq+\nffuYMmUK5557Ln/6058IBALNfAaNQ137pa5Mnz6dYcOGMXfuXGbNmtUmxF99+2j37t14vV569uxZ\n+bn6703Xdfr3799mfm8N1U/VycrKYv369Vx++eWN3v7mQomYNkhWVhbr1q1j5syZIeXLly+vfCus\nTk5ODo8++ii//vWv0fXQS2L9+vWsX7+ehx9+mCFDhjRms5uU0+mjf/zjH2zYsIGXX36Zc845B5vN\nBoDX662RST02NjZkHLutMHr0aPbv309qairjx48nNjaWa6+9FpB9NnnyZACOHj0KwIoVK/joo4/4\n73//y/r163n55Zebre2NSV37pa4sWrSI9PR0nn76acaMGdMYTW5y6tNHHo+H//u//+O2224jMTER\nCP97i4mJaTO/t4bqp+osWLCA1NRUUlJSGr39zYUSMW2QhQsXMnr06JALVwjBqlWravwQ8vPzmT17\nNldddVWt2cMjIyO59tprue+++8jLy2vUtjcVp9NHAA6Hg8mTJ/P111/z5ZdfArJfPB5PSL2SkpKw\nwwWtGdM0mTNnDlOnTmXTpk1899132O12nnjiCUAKlilTpgDgdrsBmDNnDvHx8SQnJzN79myWLVvW\nbO1vLE6nX04Hl8vFZZddxssvv8zOnTsbutlNSn36qKysjLlz5zJo0CB+9rOfVZa35d9bQ/ZTdRYu\nXFjjRa2toURMGyTchbt161aSk5NJTk6uLCsqKmL27NlMmjSJn//85yfdp2VZ+Hy+NjP7pq59dCKm\naZKZmQlAv379Qh4yHo+Hw4cP069fv8ZpdDNRVFREdnY21113HU6nk/j4eK688kpWrVpFXl4eWVlZ\nDBs2DIAePXqEHa5si5xOv9QHwzAqr7XWyun2USAQ4M477yQpKYknnngiZKj3xN+bEIJdu3a1id9b\nQ/ZTBenp6Rw7dowLL7ywKU+lyVEipo2xYcMGcnJyuOiii0LKV6xYEWJh8Hg8/PSnP2XkyJHcd999\nNfazatUqdu7ciWmaeDwe/vSnPxEbG0vv3r0b/Rwam7r20d69e1m5ciV+v59AIMCCBQtYv349aWlp\nAMyYMYOVK1eyZs0aysrKmDdvHiNGjKBbt25Nej6NTWJiIikpKbz33nsEg0FKSkr46KOP6N+/PytX\nrmTixImVw5But5vLLruMV155hZKSEvLz83n99deZOnVqM59Fw3M6/QIQDAbx+/0IITAMA7/fj2EY\nAGzcuJH09HSCwSBlZWW8/PLL5ObmnpEIagmcTh8Fg0HuuusunE4nTz31VI2h7WnTpnHgwAE++eQT\nAoEAr7zyCm63u/L32JppyH6qYMGCBVxwwQVER0c35ak0OUrEtDEWLFjAtGnTaly4y5cvDzFHLlmy\nhC1btvDRRx+FxBSoiE1RXFzM3XffTWpqKueffz6HDh3iX//6Fy6Xq0nPpzGoax9VzLQZP348EyZM\n4K233uKZZ55h8ODBAPTu3ZsnnniChx56iLFjx7J//36efvrpJj2XpuLvf/87a9asYcKECZx//vkI\nIXj44YfD+hD95je/IT4+nsmTJzNjxgxGjRrFLbfc0jwNb2ROp18efvhhhg0bxieffMJLL73EsGHD\nePHFFwE5NPDoo48yZswYJk2axMqVK3n55ZfbhGNvXfto48aNLFu2jG+++Ya0tLTKe9LHH38MQEJC\nAs8//zwvvvgiqampLF68mBdeeKFy9mBrp6H6CcDv9/P5559zxRVXNMOZNC2aaEtzZhVhyc3NZebM\nmaxatapNzS5qSFQfnT6GYTBx4kSWLFlSw+HybEb1y6lRfVQ3VD+dGtujjz76aHM3QtG45OTk0L9/\nf/r379/cTWmxqD46fQoKCkhKSgqJs6NQ/VIXVB/VDdVPp0ZZYhQKhUKhULRKlE+MQqFQKBSKVokS\nMQqFQqFQKFolSsQoFAqFQqFolSgRo1AoFAqFolWiRIxCoVAoFIpWiRIxCoVCoVAoWiX/DxpqlDja\nmc27AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "PLUYz6G435IG", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations_LESSON.ipynb b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations_LESSON.ipynb new file mode 100644 index 0000000..54522c9 --- /dev/null +++ b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations_LESSON.ipynb @@ -0,0 +1,839 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "LS_DS_123_Make_explanatory_visualizations_LESSON.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "-8-trVo__vRE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "_Lambda School Data Science_\n", + "\n", + "# Choose appropriate visualizations\n", + "\n", + "\n", + "Recreate this [example by FiveThirtyEight:](https://fivethirtyeight.com/features/al-gores-new-movie-exposes-the-big-flaw-in-online-movie-ratings/)" + ] + }, + { + "metadata": { + "id": "WSHgM3C6fzpg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## In-class example" + ] + }, + { + "metadata": { + "id": "ya_w5WORGs-n", + "colab_type": "code", + "outputId": "24ba880f-51b6-4f3c-c4ac-df4ed53e5823", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 355 + } + }, + "cell_type": "code", + "source": [ + "from IPython.display import display, Image\n", + "\n", + "url = 'https://fivethirtyeight.com/wp-content/uploads/2017/09/mehtahickey-inconvenient-0830-1.png'\n", + "example = Image(url=url, width=400)\n", + "\n", + "display(example)" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "HioPkYtUG03B", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Using this data:\n", + "\n", + "https://github.com/fivethirtyeight/data/tree/master/inconvenient-sequel\n", + "\n", + "### Stretch goals\n", + "\n", + "Recreate more examples from [FiveThityEight's shared data repository](https://data.fivethirtyeight.com/).\n", + "\n", + "For example:\n", + "- [thanksgiving-2015](https://fivethirtyeight.com/features/heres-what-your-part-of-america-eats-on-thanksgiving/) ([`altair`](https://altair-viz.github.io/gallery/index.html#maps))\n", + "- [candy-power-ranking](https://fivethirtyeight.com/features/the-ultimate-halloween-candy-power-ranking/) ([`statsmodels`](https://www.statsmodels.org/stable/index.html))" + ] + }, + { + "metadata": { + "id": "c03JCR85frjC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make the figure look right" + ] + }, + { + "metadata": { + "id": "N89pO3kX_-7p", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 207 + }, + "outputId": "b1f8eaab-34f6-4bf1-a53d-0b1531b84c1d" + }, + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "!pip install --upgrade seaborn\n", + "import seaborn as sns\n", + "\n", + "fake = pd.Series([38,3,1,2,1,4,6,5,5,33], index=range(1,11))" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already up-to-date: seaborn in /usr/local/lib/python3.6/dist-packages (0.9.0)\n", + "Requirement already satisfied, skipping upgrade: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.1.0)\n", + "Requirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", + "Requirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", + "Requirement already satisfied, skipping upgrade: matplotlib>=1.4.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (2.1.2)\n", + "Requirement already satisfied, skipping upgrade: python-dateutil>=2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2.5.3)\n", + "Requirement already satisfied, skipping upgrade: pytz>=2011k in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2018.7)\n", + "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n", + "Requirement already satisfied, skipping upgrade: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.3.0)\n", + "Requirement already satisfied, skipping upgrade: six>=1.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (1.11.0)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "lqqPHAyaPDC-", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 391 + }, + "outputId": "63fcf7cb-438a-4d47-c9d5-5d01037a2675" + }, + "cell_type": "code", + "source": [ + "plt.style.use('fivethirtyeight');\n", + "ax = sns.barplot(x=fake.index, y=fake.values, color='#EC713B');\n", + "\n", + "ax.set(xlabel='Rating',\n", + " ylabel='Percent of total votes',\n", + " yticks=range(0,50,10));\n", + "\n", + "ax.tick_params(labelrotation=0);\n", + "\n", + "ax.text(x=-2, y=50, s=\"'An Inconvenient Sequel: Truth to Power' is divisive'\", \n", + " fontsize=16, fontweight='bold');\n", + "\n", + "ax.text(x=-2, y=46, s='IMDB ratings for the film as of Aug. 29')" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(-2,46,'IMDB ratings for the film as of Aug. 29')" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFlCAYAAADRdSCHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XdYFNf7NvB7AaXDgi4LIp0VBLFG\njShqYsOCWLDFmMQkGtBfbBG70diQxJBoROy9FyxYY8MgsRA1GsUgkaJGBRRXBVFU9v2Dl/myAkrZ\nEdbcn+vykp05e84zM7vzzJw5MytRKpUqEBERUZWhU9kBEBERkTomZyIioiqGyZmIiKiKYXImIiKq\nYpiciYiIqhgmZyIioirmjck5JCQEUqkUGzZsKDIvLy8PHh4ekEqlkEqlkMvlUCqVogSampoqtOPl\n5SVKG/8VBeuxa9eub6W9RYsWISQkBIsWLSrT+37//Xf07dsXnp6esLKygouLC7y9vTFkyBCcPHlS\npGjfjqCgIGE7pKamlvn9GzZsEN7/pn/FfXcr6sSJEwgJCUFISAhu3rypNu/FixdC2/7+/uVuY8+e\nPUIbjx49qmjIRaxdu7bIurKwsICDgwP8/f1x4MABjbf5NhVsh0aNGr2x7NChQ4V18O+//4oWU1JS\nUrGfjVmzZgnTT506VeZ6KxL/21p2APD19S11O3oVaSgmJga3b98WXj979gy7du3CZ599VpFq6R0T\nERGBmzdvws7ODsOGDSvVeyIjI/H555+rTbt//z7u37+P+Ph41KlTB61atRIjXCqFmJgYzJs3DwDQ\ntm1b2NnZabyNvXv3YuvWrQCATz75BGZmZhpv41UqlQoPHz7EiRMncOLECfzwww8YMmSI6O0SvapC\n3dpbtmwp1TSqWpRKJZRKJfbt21fZoZTohx9+AACYmZlh//79uHv3LhITE7F//34MHz4ccrm8kiOs\nXAMHDhS2o1KpxPjx44V548ePV5s3cODA19b19OlTscOt8gYNGgSlUol///0XEyZMEKbPmDEDz549\nq8TIyqes23Tp0qXC58XW1lakqEo2ZcoUof0WLVqU+f0Vib+yl70k5U7OOTk52Lt3LwCgdu3aaNOm\nDQDg9OnTRbrpCnfBrV69GjNnzoSnpydsbW3RsWNHnDt3rtwLEBMTI9Q9Z84c/PLLL2jUqBFsbGzQ\nqlUrHD58uMh7fvvtNwwYMAAKhQIymQwKhQIBAQFITk4Wyty/fx8TJ05Eo0aNYGVlhdq1a6NDhw5Y\nv359udsfOHAgpFIpLC0tcefOHWF6Xl4e3N3dhS77vLw8AMC///6LMWPGoH79+pDJZHBwcEBAQABi\nY2PVYii49CCVSrFv3z6MHTsWCoUC9vb26NmzJ65fv65WvqRu7YSEBAwdOhR169aFTCaDq6srPvnk\nE1y+fFmtXOEu2TNnzmDo0KFwcHCAk5MTBg0ahLS0NLV1U9DtefPmzVJfmiiIWS6X4/3334eBgQFk\nMhm8vb0xe/ZsfPLJJ2rllUolpk6divfeew9yuRx2dnbo0qWL8Bkt7PTp02jfvj3kcjm8vLzwyy+/\nqK3Dwt3AJa2riq7DknTt2rVC3d0lKdyd+PXXX2PFihV47733UKNGDezevRvR0dHC/IIDIwDFTvfw\n8BDOmgGgc+fOr+2SjI6ORrt27WBtbY1GjRrhl19+gUpV8oMJC7pjC86aAcDT07NI12NWVhZmzZqF\n5s2bw9raGrVq1ULr1q2xaNEivHz5slzrydjYGOPGjYOxsTEA4PHjx0hISBDm7927F927d4e9vT1k\nMhnq1auHESNG4MaNG0KZX375RYj1xIkTAIDs7GzUrFkTUqkU3377rVC2W7dukEqlsLOzw4sXLwAA\nL1++xOLFi9G2bVvY2trC2toa3t7eWLhwodpyvWmblkVJXburVq1CmzZt4ODgACsrK9StWxc9e/Ys\n1UmYUqnE8OHD4eDgAHt7ewwZMgQZGRnFln21Wzs3NxfOzs6QSqVFkvWVK1eEssOHD69w/K++Nz09\nXdhW/fr1U2v7wIEDQtnQ0FBh+q+//oqePXvC0dERMpkM9evXx/jx4/HgwYM3rqfXrUBVef6tWLFC\nBUAFQDVs2DBVWFiY8HrKlClqZcPDw4V55ubmwt8F/ywsLFSpqamvbe/ixYtCeTs7O2F6VFTUa+uu\nVq2a6s8//xTKh4aGqiQSSZFyAFRRUVEqpVKpSkhIUNnZ2RVbBoDqs88+K1f7GzduFKbPnj1bqGP3\n7t3C9PHjx6uUSqUqLi5OVaNGjWLb19HRUa1cuVJ4//jx418bg0KhUN2/f18oXzC9ZcuWwrQDBw6o\nDA0Ni23PwMBAtX//fqHsgAEDXttemzZtiqybV/8V3obF/XNychLKurq6qgIDA1UrVqxQ/f3330XK\nJiYmqpV/9d+MGTOEsr///nuxy2ljYyP8HR4e/tp1pel1ePHiRWF6y5Yti53+pn+FPwMFn6HC/86f\nPy/Mt7S0VIttyZIlql27dgmvJ0+eLLyvuOm1atUqcV0fOHBAde/ePbW2dHV1i5RbsWJFictS+P3F\n/bty5Yrq5s2bqnr16pVYxtfXV5WZmfnadbZgwQKh/KBBg4TpmZmZKiMjI2Heb7/9plIqlapJkyaV\n2J6FhYUqLi5OpVQqVdHR0cL0iRMnFlmPTZs2VSmVSlV6errweenYsaNKqVSq7t+/r+rUqVOJ7XTt\n2lX14MGDUm3TsuzP+/btq7Z+lUqlavny5SXG0atXr9fWl5mZqWrRokWR91lbWxfZTyiVStXYsWPV\nPkNKpVI1dOhQYVpsbKxQdsyYMUXKViT+4t7r6+urAvL338nJyULZgIAAFZC/D/7rr79USqVSNX36\n9BLbcXJyUl2/fr1M26LgX7nPnAsf1fr7+6Nbt27Q0dEpMq84e/fuRXJysnDN8MGDB8We4ZbVkydP\nsG7dOqSmpqJv374AgOfPnyMyMhJA/pno1KlToVKpoKenh59//hkpKSlISEjAwoULUbNmTQDA7Nmz\nhbO9jz76CMnJyTh58qRwXW316tU4c+ZMmdvv2LGj0B27fft24X0Ff0skEqELcsKECbh//z7MzMwQ\nFRWFtLQ0nD9/HnXq1EFeXh6Cg4ORm5tbJAYzMzPExMTg77//hpubGwAgMTHxjb0TI0eORE5ODuzs\n7BAdHY309HT89ttvqFmzJp4+fYqxY8cW+z4HBwf8+eefOHfuHGQyGYD8wUJ3796Fj48PlEqlsN7s\n7OyE7qO//vrrtfEUHBEDwD///IPFixfjiy++QN26dREQEKB2VjlnzhwkJydDV1cXa9euxd27dxEf\nHw9vb28A+Ufld+/eBZDfXZ6TkwMA+PLLL5Gamoo9e/bg4cOHr42nNMq7Dt+2zMxMjB07FklJSUhM\nTBR6vUorPj5ebVkOHDhQYpdkZmYmvvnmG6SmpiIkJESY/rozLz09PSiVSuE7BOSfLSkLdT2Gh4cL\nvREdO3bEtWvXcOHCBdSrVw8AcPDgwTKfPQL53+Hvv/8eT548AQCYmprCzc0NKSkpwpmSVCrFgQMH\nkJqaitGjRwPI34dNmjQJAFC/fn1YWFgAgNCT8PvvvwMAdHR08OeffyInJwfnz58XPos+Pj4A8vcF\nhw4dAgAEBwcjJSUFN27cwNChQwEA+/btK3agWkW3aXEKYjYzM8P58+eRnp6OS5cuYeXKlWjbtu1r\n33v48GFh2RUKBc6dO4e///4bTk5OpW7/448/Fv4uvL/csWMHAMDV1fW1XeAVib+g7efPn2PXrl0A\n8ns/CtZ9mzZtYGdnh9TUVMyaNQsA0KlTJ1y+fBlpaWlYunQpACA5ORk//vhjqZe5sHIl53v37uHo\n0aMAABsbGzRr1gxWVlZo3rw5AAhflOIMGjQIrVq1goWFBbp37y5Mf3XEZ3l07twZfn5+MDc3R69e\nvYrUffToUSGh9e3bF5999pkwyvzjjz9G3bp1AeR3URSYPXs2LCwsUK9ePbXBTMUdTLypfT09PaGb\n5MKFC0hKSkJubi6ioqIAAK1bt4a9vT1ycnIQHR0NAHj06BH8/Pwgl8vRuHFjXLt2DUB+t/vFixeL\nxPD111/Dy8sL1tbW6NChQ5EYinP9+nWh3ps3b6Jt27awsrJC69atce/ePQD5O+SC7urCJk2aBEdH\nR7i4uKh9USq6Pb/88kusXr0a7733HiQSiTBdpVLhyJEjGDRokND9f/DgQQD53YGffPIJrK2t4eHh\nIXw5c3NzhUsBhUd5T506Febm5mjdujW6detWoXgrsg4L27dvn5CEHBwcKhRTSdzd3TFlyhRYWlpC\nJpPB2tpalHaA/P3DhAkTYG5ujgEDBgjTK/r5KPwdnTZtGqysrODk5ITg4OBiy7zJunXrIJVKUatW\nLcydO1eYPmXKFOjr6+PIkSNCl/LAgQPRokULmJubY/LkyZBKpQDyu+9zc3Oho6ODli1bAgD++OMP\nvHz5UvgsduvWDc+fP0dcXJwwDcj/7gP/+ywD+QeSjo6OsLe3F3b2AHD8+PEi8YuxTQs+f48fP8b3\n33+PFStW4Pr162jfvn2Ry0qv+u2334S/v/rqK7i4uMDa2rpMB6j169dH/fr1AfwvIZ89e1Y4MH/T\nWIqKxO/r6yucbBQcGBw4cADZ2dkA/pe8jxw5IlyOOHToEOrVqwe5XC4cTAHFb6/SKFdy3rFjhxBQ\ns2bNcPXqVcTHx6sN2S/pyFihUAh/GxkZCX9rYlDKm+pOT08Xprm7u5dYT8HO1MTERDgCBqA2IrW4\nayelWbbCR4Pbtm3D4cOHhdvPBg0aBCD/KLw018wyMzPLFcOrSroOJFZ7pdWjRw8cOXIE165dw9q1\na9G3b18hUV+6dEkYI1Ca+AtiL/jf1NQU5ubmwvyyDAQp+OwXVpF1+LaV5VbE4pa1LJycnIQetYLr\nuEDFPx8F31Egf8xLAXt7+2LLlIWZmRl8fHywfv16fPXVV69tT09PDzY2NgDyz7IKemAKkm1WVhb+\n+OMPnDt3Dq6ursIJye+//y4kZwsLC2GblOWzXJgYt5cOHToUfn5+0NHRwebNmzFx4kT07NkTCoUC\nCxYsKHWMtWrVKvbv0ijYX964cQNnzpzBtm3bAAC6urpqB3uajr/widSpU6dw+/ZtoW0LCwvhYL68\n26s0ynUrVeFu6927dxfbfRQZGYnZs2dDV1dXvUG9/zVZ+IxIE95Ut5WVlfB34UEer5LJZLhz5w6y\nsrKgVCqFI+Nbt26plSlr+wBQp04dNG3aFHFxcdixY4cQh1QqFTa4hYUFdHV18fLlS7i4uBTbJa1S\nqYptozzrt/CytG3bVujG0VR75dnOjx49Em6dkclk6N69O7p3746MjAzhSLRgsEXB9jI2NkZycjKq\nV69eYuw1atRAeno6Hj9+jIcPHwoJuqT7DqtXr47c3Fy1EbspKSlFylVkHb5tBgYGRaYVXmdvWtay\nqFatmvC3JpddJpMJg7Bu3bolbMfCZ+QFl6lKY9CgQfjll19e216BwvuBFy9eCIM7q1WrJsRR0E0N\n5N9KmJOTgxYtWgiXWk6ePIlLly4BAFq2bCkcwBRu58iRI3jvvfeKxFLcYLritmlFGRoaYt26dXj4\n8CGuXr2KxMRErFq1CufPn8f06dPRv39/tX1qYTVq1BD+Lny7beG/S6NPnz6YOnUqnj17hq1btwq9\njO3bt39j70BF4gfyz8wXLlyIvLw8rFixAseOHQMABAQEQF9fH4D69po+fTpGjRpVpJ7XDX58nTKf\nOV+/fr1Uo6vT09OFhakq2rVrJ+yEtmzZgrVr10KpVCIjIwObNm3C1atXAeRfwypQMMQ/Pj5e7SEa\nhcuUVcHR4LVr17Bnzx4A+Ru84AtmaGgoXDO6fv06vv32W2RkZCA3NxfXrl3DwoUL1S4JVJSLiwtc\nXV0B5F8vXrRoEZRKJZ4+fYq//voLoaGhRe45LgtLS0sA+UeQpf1yfvjhhxgzZgxOnDgBpVKJ3Nxc\nnD17VrjOqKurK8TcqVMnAPnXhL7++mvcunULz58/R0pKClavXi10MQLqO82ZM2fi4cOH+O2334od\n1Q38r7ckPj4eN27cwPPnzzF79uwi5TS1DsUarf0mhXuFjh07hmfPnuHu3buIiIgotnzBNgXyrwcX\nXGLQpMJtXL58WW0nV/j7N2PGDGRkZCAlJUVtFHnB50IT2rVrJ5xobNq0CWfOnMGjR48QEhIi9Hx9\n8MEHwv6lbt26wo6/4DveokUL1KpVCw4ODoiNjRUerFJwlv1qzOPGjcPly5eRm5uL9PR07N69G336\n9Cl2vIsYdu3ahWXLliEtLQ316tVDjx494OnpCSD/DpPXfZcLf8+WLFmC69ev4+7du2rbpzQsLCzQ\npUsXAMCaNWuE3s/CPZBixA/kb8MmTZoAAObPn4/nz58Xabvw52LBggU4evQocnJy8PDhQ8TExGDk\nyJFYuHBhmZa5QJmT8+bNm4W/R44cqXY/pVKpxPz584X5bxoY9rbZ2tpixowZkEgkePHiBUaMGAFH\nR0coFAoEBQUJXVeTJk0Sdlbr16+Ho6MjvL29hSP1wYMHo1mzZuWOo1evXkIXcEG34asftpCQEKFL\nfcGCBVAoFLCyskKzZs0wZcqUCp/RvOrnn3+GgYEBVCqVcB3Z2toaPj4+CAkJUbskUFZNmzYFkJ88\nC54oFxQU9Nr3PHnyBCtXroS/vz8cHR1hZWWFjh07Ct1IQ4YMEXo0Jk2aJFxf2rJlC+rVqweZTIaG\nDRti1KhRiI+PF+oNDg4W1v3y5cvh4OCA7t27l/iAiz59+gjxNG7cGPb29sKAnVeJuQ7FZmdnJ4wZ\nOH/+PJycnODp6al2y19hBdsUAMaOHQtLS0u1syVNKNxGv379YGFhIVw6Gz58uDD469ChQ1AoFGjY\nsKFwNurr66vRA1hHR0fhXvLMzEx06tQJ9vb2wmAfCwuLIgdtBQmq4MCl4KzZ29tb7UCjcHLu06cP\n2rdvDyB/O7Rq1QpWVlaoU6cOPv30Uxw+fLjcZ2JldfXqVQQHB6NZs2aoXbs27OzssG7dOgD53dMF\nY3SK06FDB+HzlJiYiCZNmsDd3V0Yl1EWBfvGgn2lTCaDr6+vqPGX1LaXlxcaNGggzHd0dBQGAmZm\nZqJ3796wsbGBg4MD/Pz8sGbNmnJfwilzci7odweA/v37F5nfo0cP4Qxw3759yMrKKldgYgkMDMTu\n3bvh6+uLmjVrQk9PDzKZDO3atROuJcnlckRHRyMoKAhOTk6oXr06TExM0LRpUyxcuBA//fRThWIw\nNTVV23F4enqiYcOGamXc3NwQExODL774Ao6OjqhevTrMzMzg7u6OQYMGVTiGV7Vq1QrR0dHo378/\nbG1tUa1aNVhYWMDT0xNDhw5VuzezrCZMmIDevXuXqZvxhx9+wODBg4VEq6enB1NTU7z33nv48ccf\nMWfOHKGslZUVoqOjMXLkSNSpUwf6+vowMTGBq6sr+vTpg5UrVwpl3d3dsXPnTrz33nvQ19dH7dq1\nMXPmTHz66afFxjF69GgMGzYMNjY2qF69Olq0aKE2aKcwMdfh27B8+XL4+vrCzMwMBgYGQrdecZo2\nbYo5c+bAyclJretak3r27InRo0ejdu3aRS6PmZiY4ODBgxg7dizc3Nygr68PQ0ND1K9fH7Nnz8aG\nDRuErmJNGTduHNatWwcfHx+YmZlBT08PtWvXxqBBg3DixAm18ReAetK1sbGBo6MjAKgNnJTL5Wrj\nX3R1dbF582bMnTsXTZo0gYmJCfT19WFnZ4cOHTpg3rx5wkGJ2D744AMEBATA2dkZJiYm0NXVhbW1\nNQICArBv3z6ha7c4Ojo62LRpEz766COYmZnB1NQU/v7+WLt2bbniKHydv2/fvqX6zFUk/gK9e/eG\noaGh8Lq4M/ZvvvkGW7ZsQbt27WBhYYFq1arB2toa77//PiZNmqR210FZSP7/PZtE/2khISHCrTLh\n4eFvHAlKRCQm/ioVERFRFcPkTEREVMWwW5uIiKiK4ZkzERFRFcPkTEREVMUwORMREVUxTM5ERERV\nDJMzERFRFcPkTEREVMUwORMREVUxTM5ERERVDJMzERFRFcPkXIyQkBC1X46pLGlpaejZsydq1aol\n/Dyi2Lp27Yrg4GCN15uXl4dRo0bByckJUqkUMTExCAoKQr9+/YQyr77WdiEhIVAoFJBKpdiwYUNl\nh0NEWuSNyfnVHWZISAikUmmxv5W6YsUKSKVStcS2YcMG4cfjLS0tYW9vj7Zt22LmzJnCb/O+WnfB\nP3t7e3Tr1g1xcXEVWcYSpaamQiqV4sKFC2rTv/76a+zbt0+UNsvil19+wd27dxETE4OEhASN1h0T\nEwOpVIr79+9rtN6S/Prrr9iwYQM2b96MhIQENG/eHHPnzsWSJUveSvtvW3x8PEJDQxEWFoaEhAT0\n6tXrteXHjRsHS0tLrFmz5i1FWLw1a9agc+fOcHBwEL5/p06dUivz+PFjTJgwAfXq1YO1tTU6duyI\n8+fPV1LERO+mcp05y+VynD59GqmpqWrT161bp/a7mwWMjIyQkJCA+Ph4HD16FEFBQThw4ABatGhR\nJOkoFAokJCQgISEBhw4dglwuR0BAQJl+sPrFixcV+kFyExMTWFpalvv9mpKUlIQGDRrAxcUFcrm8\nXHVUdF1oSlJSEuRyOZo3bw65XI7q1avD3Nz8rfUIvG1JSUkAgG7dukEul6v9Juyrnj17hm3btmH0\n6NHl+r1bTTp58iR69uyJPXv24OjRo1AoFOjduzeuX78ulBkxYgSOHTuGiIgI/P777/jggw/Qo0cP\n3L59uxIjJ3q3lCs5W1paomPHjmpddZcvX0ZiYiL8/f2LlJdIJJDL5bC2toZCoUC/fv3w66+/wtzc\nHKNHj1Yrq6enB7lcDrlcjrp16+Kbb77Bw4cPixwIFFbQDb1hwwY0bNgQVlZWyM7OxpEjR4SzAEdH\nR/Tq1UvtYKBBgwYA8n+UWyqVomvXrmr1FSjoPYiIiEDdunXh4OCAYcOG4cmTJ0KZ7OxsfPXVV7C1\ntYVCoUBYWBj69euHoKAgocyePXvg7e0Na2trODo6okuXLkhPTy92mby8vLB//35s3rwZUqlUqOfm\nzZsYOHAgateujdq1a+Pjjz/Gv//++8Z1UVhqair8/PwAAC4uLmr1A/ld0DNmzICzszNcXV0xZcoU\n5OXlCfNzc3Mxbdo0eHh4wMbGBh988AGOHj1a4vYJCgrCpEmTcOvWLUilUnh5eamt15J07doVY8aM\nweTJk+Ho6AgXFxdERETg2bNnGDt2LOzt7VGvXj1s3ry5xDoA4Pz58+jZsyecnZ1hZ2cHX19fnD17\nVq3MqlWr0KRJE8jlcjg7O6NXr1548eJFiXVeuXIF/v7+wrYMCgrCw4cPAeRvg4IfZbewsHjjAUhU\nVBTs7e3xzTffCAexhRV3mWXDhg2wtbVVmxYWFgaFQgFbW1t89dVXmDt3rrCuS2vZsmUYOnQoGjRo\nIHyOTUxMcOTIEQBATk4O9uzZg2nTpsHHxwfOzs6YOHEinJycsHLlyjK1RUQlK/c150GDBmHTpk3C\nTnvdunXo0aMHTExMSvV+ExMTDB48GL///jvu3btXbJmnT59iy5YtkMlksLe3f219qamp2L59O1av\nXo2TJ0/CwMAA2dnZCAwMxLFjx7B3716YmZmhf//+yM3NBQAcO3YMALBjxw4kJCRg/fr1JdZ/6tQp\nXL16Fbt27cKqVauwd+9eLF68WJg/ZcoUxMbGYv369dizZw8uX76s1h2YlpaGL774AgMGDMCZM2ew\nf/9+9O/fv8T2jh8/jrZt26Jnz55ISEjA3LlzkZeXh48++ggZGRmIiopCVFQU7t69i4EDB6qdHRe3\nLgqrXbu2cIZ2+vRpof4C27Ztg66uLn799Vf88MMPiIiIQGRkpDB/+PDhiI2NxbJly3Dq1CkMGDAA\n/fv3x19//VXsssydOxfjxo2Dra0tEhIScPz48RKX+1Xbtm2DiYkJjh49ilGjRmHixIkYOHAgXFxc\nEB0djf79+2PEiBG4e/duiXU8fvwY/fr1w4EDB3D06FF4eXmhT58+yMzMBABcuHABY8eOxfjx4xEX\nF4fdu3ejXbt2JdaXnZ2N3r17w9jYGEePHsX69etx9uxZ/N///R+A/MsiCxYsAAChF+h11q5di759\n+8LIyAh+fn7lOnvesWMHQkNDMXXqVJw4cQJubm5YtGhRmet5VW5uLp4+fSocYLx48QIvX74s8pky\nNDQs0v1NROWnV943tm/fHi9evMCJEyfg7e2NrVu3YuPGjYiOji51He7u7gDyk0nNmjUB5O/MCs4I\nnjx5AqlUijVr1ry2WxDI34ksWbIEVlZWwrRXz+LDw8NhZ2eHc+fOoUWLFqhRowaA/J6AN3Ubm5qa\n4qeffoKuri7c3NzQo0cPnDhxAmPGjEFWVhbWr1+PxYsX44MPPgCQf73Yw8NDeP+dO3fw/Plz+Pv7\nCwcahee/qmbNmtDX14eBgYEQ2/Hjx3HlyhVcuHABDg4OAIDly5ejUaNGOHHiBNq2bVviuihMV1cX\nFhYWAACZTCashwJubm6YPHkyAMDV1RVr1qzBiRMnEBAQgOTkZGzfvh2XLl2CnZ0dAGDo0KGIjo7G\n6tWr8eOPPxZpz9zcHKamptDR0Slz97y7uzsmTpwIAPi///s//Pzzz9DT0xPO9MePH4/58+fjzJkz\nxfbaAECbNm3UXn///ffYs2cPDh8+jH79+uHmzZswNjZG586dYWpqCgCvPePcvn07njx5giVLlgjl\nf/75Z/j5+SEpKQnOzs4wNzcHgDcub0pKCk6dOoVly5YBAPr374/Bgwfju+++g76+/ptWj2Dx4sX4\n6KOP8MknnwAAxowZg5iYGPzzzz+lrqM4s2bNgomJCTp37gwg/3vQrFkzzJs3D3Xr1oVcLsf27dtx\n9uxZODs7V6gtIvqfcp856+rqYsCAAVi/fj327duHmjVrlnmEc8HZnkQiEaY5OTkhJiYGMTExiI6O\nxqeffoqBAwfizz//fG1dtWrVKpKMkpOT8eWXX6Jhw4aws7NDnTp1kJeXh1u3bpUpTiA/Yenq6gqv\nra2thQFtycnJeP78OZo0aSLf3cLUAAAgAElEQVTMNzY2Vku+Xl5eaNu2Lby9vTFo0CCsWLGixB6D\nkiQkJMDGxkZIzADg6OgIGxsb/P3338K04tZFWXh6eqq9LrysFy9ehEqlwvvvvw9bW1vh36+//ork\n5ORyt1maWCQSCWQymdq0atWqQSqVFhlcWFhGRgZGjRqFJk2awN7eHrVr10ZGRobwOfjggw9Qu3Zt\nNGjQAEOGDMHGjRvx+PHjEutLSEiAp6enkJgBoHnz5tDR0VHbDqWxfv16tGnTRkjiPj4+MDIyKvOA\nxGvXrqFx48Zq0wp/HssjIiICq1evxrp162BmZiZMX7JkCSQSCTw8PGBlZYUlS5YgICAAOjq8+YNI\nU8p95gwAAwcORMuWLXHjxg0MHDiwzO//+++/IZFI1Lqsq1evrnYE3qBBA+zbtw+LFi3C0qVLS6zL\n2Ni4yLR+/fqhVq1a+Pnnn2FjYwM9PT00b95c6NYui2rVqqm9lkgkZRpopauri507dyIuLg7Hjh3D\nunXr8N1332Hfvn1lvi5YnMIHOMWti7J43bLm5eVBIpHg2LFjRcq92tWpCcXFoqenV2Ra4WvirwoK\nCkJ6ejrmzJkDe3t76Ovro3v37sLnwNTUFL/99htiY2MRHR2Nn376CTNnzsSxY8dgY2NTpngLb4c3\nefnyJTZu3Ig7d+6o9V7k5eVh7dq1wghvHR2dIp+1110P14RFixZhzpw52LZtW5Ek7+TkhP379yM7\nOxuPHz+GtbU1Bg8eDEdHR1FjIvovqdChrouLCxo3bowLFy5gwIABZXpvVlYWVq1ahZYtWwpd2iXR\n1dVFTk5OmerPzMzEtWvXMGbMGLRt2xZubm54/Pix2k6tevXqAPJ3khXh5OSEatWqqd1O8uTJkyID\neyQSCZo1a4YJEybg+PHjsLGxwc6dO0vdjpubG+7cuaM2OC4lJQV37twRLhGUVnmXvX79+lCpVEhL\nS4Ozs7Pav1q1apWprrfl9OnTGDp0KDp16oS6devCxMQEaWlpamX09PTQpk0bTJs2DbGxscjOzsah\nQ4eKrc/NzQ1XrlxRO7s+c+YM8vLy4ObmVuq4jhw5gszMTBw/flzoLYqJicGWLVtw4sQJYTvXrFkT\n6enpagn61ev7derUKXJLYHlvb1q4cCHmzJmDLVu2vLY3zNjYGNbW1lAqlTh69Ci6dOlSrvaIqKgK\nnTkD+dffcnNzXzsitWBnDgCPHj3C+fPnMX/+fDx69AibNm1SK/vixQuhbFZWFiIjI/H3339j5MiR\nZYpLKpWiRo0aWLt2LWrXro3bt2/j22+/VTvrkslkMDQ0xNGjR4UzqoJrhWVhYmKCjz/+GNOmTUON\nGjUgl8sxb948qFQq4UwqLi4O0dHRaNeuHWQyGS5duoR///23TDvztm3bwtPTE0OHDhUGcI0bNw4N\nGjRA69atyxSznZ0dJBIJDh06hM6dO8PAwKBUg/lcXV3Rt29fDBs2DLNnz0aDBg3w4MEDnDx5Eg4O\nDsXe/17ZXFxcsHXrVrz33nt48uQJvv32W+HgBAAOHjyI5ORkeHt7w8LCAjExMcjKykKdOnWKra9P\nnz4ICQlBYGAgJk2aBKVSidGjR8PPz69M113Xrl2L9u3bo2HDhmrTPTw8oFAosH79ekyePBmtWrXC\ngwcP8OOPP6J3796IiYnB7t271d4TGBiI4cOHo1GjRvD29sbevXvxxx9/qH0vo6KiMGPGDOzevbvE\nA6kFCxZg5syZWLp0KVxdXYXvooGBgfDdOHr0KPLy8qBQKJCcnIypU6eiTp065eo9I6LiVfgikZGR\n0RtvFXny5Anc3Nzg7u6Odu3aITw8HL6+vjh16lSR5JSYmAg3Nze4ubnBx8cHO3fuRFhYWJnPzHV0\ndLBy5UpcuXIFLVq0QHBwMCZPnqw2yEZPTw+hoaFYt24d3N3d8dFHH5WpjcJmzpyJFi1aYMCAAfDz\n84OnpycaNmwodPWamZnhzJkz6NevH5o0aYIpU6YgODi4TE/Ekkgk2LhxI2rUqAE/Pz/4+fnBysoK\nGzZsKFN3KpB/XXrixImYNWsWFApFmZ4KFh4ejoEDB+Lbb79F06ZN0a9fP8TGxr5xRH1lWbhwIbKz\ns9G2bVt8/vnn+Pjjj9ViNTc3x759+9CjRw80a9YMCxcuxIIFC+Dt7V1sfUZGRtixYwceP36Mdu3a\n4aOPPkLTpk2xcOHCUseUnp6OQ4cOlTiIzd/fHxs3bhTOxsPCwrB69Wq0bNkS0dHRGDNmjFr53r17\nIzg4GN999x1at26N+Ph4fP7552qXGh49eoTExEQ8f/68xLiWLVuG58+fY/DgwcL30M3NDRMmTFCr\nJzg4GM2aNUNgYCBatGiBHTt2FLkEQUTlJ1EqlZX/hIp30LNnz+Dl5YWvv/4aX3/9dWWHQ/9BAwcO\nxIsXL7Bly5bKDoWIyqjC3dqU7+LFi7h27RqaNGmCx48fY/78+cjKynrjYxuJNOHJkydYsWIF2rdv\nDz09PezZswf79++v9CeOEVH5MDlrUHh4OP755x/o6uoKT/h69SlORGKQSCQ4cuQIwsLC8PTpUzg7\nO2Pp0qXCk+CISLuwW5uIiKiK4VMDiIiIqhgmZyIioiqGyZmIiKiKYXImIiKqYpiciYiIqhgmZyIi\noiqGyZmIiKiKYXImIiKqYpiciYiIqhgmZyIioiqGyZmIiKiKYXImIiKqYpiciYiIqhgmZyIioiqG\nyZmIiKiKYXImIiKqYpiciYiIqhgmZyIioiqGyZmIiKiKYXImIiKqYpiciYiIqhgmZyIioiqGyZmI\niKiKYXImIiKqYpiciYiIqhgmZyIioipGq5NzWFgYpFIpgoODhWkqlQohISFwd3eHtbU1unbtiqtX\nr1ZilERERGWjtck5Li4Oq1evhqenp9r0+fPnIzw8HKGhoTh27BhkMhl69uyJx48fV1KkREREZaOV\nyfnhw4cYMmQIFi5cCKlUKkxXqVSIiIjAqFGj4O/vDw8PD0RERCArKwvbt2+vxIiJiIhKTyuTc0Hy\nbd26tdr01NRUpKWl4cMPPxSmGRoawtvbG2fOnHnbYRIREZWLXmUHUFZr1qxBUlISli5dWmReWloa\nAEAmk6lNl8lkuHPnzluJj4iIqKK0KjknJiZixowZOHjwIKpVq1bZ4RAREYlCq7q1z549i/v37+P9\n999HjRo1UKNGDcTGxmL58uWoUaMGLC0tAQAZGRlq78vIyICVlVVlhExERFRmWnXm3LVrVzRq1Eht\n2vDhw+Hi4oIxY8bA1dUVcrkcx48fR+PGjQEAT58+xalTpzBjxozKCJmIiKjMtCo5S6VStdHZAGBk\nZAQLCwt4eHgAAIKCghAWFgaFQgFXV1fMmzcPxsbGCAgIqIyQiYiIykyrknNpjBw5Ejk5OQgODoZS\nqUSTJk0QGRkJU1PTyg6NiIioVCRKpVJV2UEQERHR/2jVgDAiIqL/AiZnIiKiKobJmYiIqIphciYi\nIqpimJyJiIiqmHfuVqqKuP394Eppt9a4VZXSLhERVU08cyYiIqpimJyJiIiqGCZnIiKiKobJmYiI\nqIphciYiIqpimJyJiIiqGCZnIiKiKobJmYiIqIphciYiIqpimJyJiIiqGCZnIiKiKobJmYiIqIph\nciYiIqpimJyJiIiqGCZnIiKiKqZSkvPdu3eRkJBQGU0TERFVeaIm59WrV2PYsGFq04KDg+Hh4YEW\nLVqgdevWuH//vpghEBERaR1Rk/OKFStgZGQkvI6JicHy5csREBCAb7/9FklJSZg3b56YIRAREWkd\nPTErT01Nxaeffiq83rlzJ2xtbbF48WLo6Ojg4cOH2LlzJ0JCQsQMg4iISKuIeub88uVLVKtWTXh9\n/PhxtG/fHjo6+c06Ozvj7t27YoZARESkdURNzg4ODjhx4gQA4MKFC0hJScGHH34ozE9PT4epqamY\nIRAREWkdUbu1P//8cwQHB+Pvv//G7du3YWtri44dOwrzT58+DXd3dzFDICIi0jqiJucvv/wS1atX\nx6+//oqGDRti1KhRMDAwAAA8ePAAGRkZ+Pzzz8UMgYiISOtIlEqlqrKDqCpufz+4UtqtNW5VpbRL\nRERVk6hnzgUePXqEc+fOISMjA23btoWVldXbaJaIiEgrif6EsB9//BF169ZFr169EBgYiKtXrwIA\n7t+/DxsbG6xcuVLsEIiIiLSKqMl55cqVmDVrFgICArBq1SqoVP/rQa9Rowa6dOmCXbt2iRkCERGR\n1hE1OS9ZsgQ9evTA/Pnz0bp16yLz69evj2vXrokZAhERkdYR9ZpzSkoKgoKCSpwvlUrx4MEDMUMg\nIqK3jINrK07UM2epVIqMjIwS51+9ehVyuVzMEIiIiLSOqMm5Y8eOWLNmTbFnx5cvX8batWvRpUsX\nMUMgIiLSOqIm5ylTpgAAWrRogenTp0MikWDDhg34/PPP0a5dO8jlcowbN07MEIiIiLSOqMlZLpcj\nOjoanTp1QlRUFFQqFbZt24YjR46gT58+OHz4MCwtLcUMgYiISOuI/hCSmjVrYv78+Zg/fz7u3buH\nvLw81KxZU/hlKiIiIlInaoYcPnw4/vjjD+F1zZo1YWVlJSTmc+fOYfjw4WKGQEREpHVETc4bN25E\ncnJyifNTU1OxadMmMUMgIiLSOpXat5yZmQl9ff3KDIGIiKjK0fg159jYWJw8eVJ4HRUVhaSkpCLl\nlEolIiMjUa9ePU2HQEREpNU0npxjYmIQGhoKAJBIJIiKikJUVFSxZevWrSuUJSIionwaT84jR47E\n0KFDoVKp4Orqip9++gndu3dXKyORSGBoaAgDAwNNN09ERKT1NJ6cDQ0NYWhoCAC4ePEiatasCSMj\nI003Q0RE9M4SdUCYvb09jIyMoFQqsWvXLixYsAALFizArl27oFQqy1zfsmXL4O3tDTs7O9jZ2aFD\nhw44dOiQMF+lUiEkJATu7u6wtrZG165dhd+PJiIi0haiP4Rk/vz5mDt3Lp49e6b2e84GBgaYOHEi\nRowYUeq6atWqhe+++w4uLi7Iy8vDpk2bMHDgQERHR6NevXqYP38+wsPDER4eDoVCge+//x49e/ZE\nXFwcTE1NxVg8IiIijRP1zHnt2rWYPn06mjdvjk2bNuHChQu4cOECNm/ejPfffx/Tp0/HunXrSl1f\n165d0aFDBzg7O8PV1RVTp06FiYkJ4uLioFKpEBERgVGjRsHf3x8eHh6IiIhAVlYWtm/fLuJSEhER\naZaoyXnx4sVo06YNdu7ciU6dOsHR0RGOjo7o1KkTIiMj4ePjg4iIiHLV/fLlS+zYsQPZ2dlo1qwZ\nUlNTkZaWhg8//FAoY2hoCG9vb5w5c0ZTi0RERCQ6Ubu1k5KSMHjwYEgkkiLzJBIJunXrhqlTp5ap\nzitXrqBjx454+vQpjI2NsX79enh6egoJWCaTqZWXyWS4c+fOG+tNTEyEcZki0ZzExMRKapmISPMq\ne1+qUCgqKQLNETU5m5ubIyUlpcT5KSkpMDc3L1OdCoUCMTExePToEXbv3o2goCDs3bu3gpHm13u7\nwrWUv20ioncF96UVJ2q3tq+vL5YtW4YtW7aoDQZTqVTYunUrli9fjs6dO5epzurVq8PZ2RkNGzbE\ntGnT4OXlhUWLFkEulwMAMjIy1MpnZGTAysqq4gtDRET0loianKdNmwZXV1cEBQXBzc0Nvr6+8PX1\nhZubGwIDA+Hi4oJp06ZVqI28vDzk5ubCwcEBcrkcx48fF+Y9ffoUp06dQvPmzSu6KERERG+NqN3a\nlpaWOH78OFatWoXDhw/j5s2bAAAvLy906tQJn376aZl++GL69Ono2LEjbG1thVHYJ0+exNatWyGR\nSBAUFISwsDAoFAq4urpi3rx5MDY2RkBAgFiLSEREpHGi3+esr6+PwMBABAYGVriutLQ0DB06FOnp\n6TAzM4Onpye2b9+Odu3aAch/dGhOTg6Cg4OhVCrRpEkTREZG8h5nIiLSKhKlUql6c7HyGT58OAIC\nAtCmTRvo6FTqr1OWyu3vB1dKu7XGraqUdomIxMB9acWJmjH37NmD3r17w83NDWPHjkVsbKyYzRER\nEb0TRE3OiYmJWLVqFVq2bIlNmzbBz88Pnp6emDx5Ms6dOydm00RERFpL1ORsYGAAf39/rF69GomJ\niVi6dCkaNGiAFStWoEOHDmjYsCFmzpwpZghERERa561dCDYyMkJAQAA2btyIxMREhIaGIjMzEz/9\n9NPbCoGIiEgriD5au7CcnBwcOnQIkZGROHLkCHJycuDs7Pw2QyAiIqryRE/Oubm5OHz4MHbu3ImD\nBw8iOzsbtra2+OKLL9C7d280bNhQ7BCIiIi0iqjJOTAwEPv378fjx49hZWWFAQMGoHfv3nj//ffF\nbJaIiEiriZqcDx06hB49eqB3797w8fHRinudiYiIKpuoyTkxMRF6em/1sjYREZHWE/VUlomZiIio\n7NjPTEREVMUwORMREVUxTM5ERERVDJMzERFRFcPkTEREVMVodDj1pk2byvW+AQMGaDIMIiIirabR\n5Dxs2LAyv0cikTA5ExERFaLR5Hzx4kVNVkdERPSfpNHkbG9vr8nqiIiI/pM4IIyIiKiKEf35munp\n6Vi3bh3+/PNPPHr0CHl5eWrzJRIJ9uzZI3YYREREWkPU5BwfH49u3brhyZMncHV1RXx8PNzd3aFU\nKnHnzh04OTnB1tZWzBCIiIi0jqjd2t999x0MDAxw5swZ7N69GyqVCiEhIYiPj8eyZcugVCoxc+ZM\nMUMgIiLSOqIm59OnT+Ozzz6Dg4OD8FvOKpUKABAQEIBevXph6tSpYoZARESkdURNzs+fP4e1tTUA\nwMDAAADw8OFDYb6XlxcuXLggZghERERaR9TkbGdnh1u3bgEADA0NYW1tjbNnzwrz4+PjYWxsLGYI\nREREWkfUAWE+Pj7Yt28fJk2aBADo06cPFi1aJIza3rJlCwYNGiRmCERERFpH1OQ8cuRI+Pj44Nmz\nZ9DX18fkyZOhVCqxe/du6Orqol+/fpgxY4aYIRAREWkdUZOznZ0d7OzshNf6+vpYsGABFixYIGaz\nREREWk3Ua87Dhw/HH3/8UeL8c+fOYfjw4WKGQEREpHVETc4bN25EcnJyifNTU1PL/TOTRERE76pK\nfbZ2ZmYm9PX1KzMEIiKiKkfj15xjY2Nx8uRJ4XVUVBSSkpKKlFMqlYiMjES9evU0HQIREZFW03hy\njomJQWhoKID8H7WIiopCVFRUsWXr1q0rlCUiIqJ8Gk/OI0eOxNChQ6FSqeDq6oqffvoJ3bt3Vysj\nkUhgaGgoPDWMiIiI/kfjydnQ0BCGhoYAgIsXL6JmzZowMjLSdDNERETvLFHvc7a3tweQf305Ojoa\nN27cEKa3bdsWUqlUzOaJiIi0kqjJGQDmz5+PuXPn4tmzZ8IvUgH5P4QxceJEjBgxQuwQiIiItIqo\nyXnt2rWYPn062rRpg6CgILi5uQEAEhISsHjxYkyfPh0WFhZ8vjYREVEhoibnxYsXo02bNti5cyck\nEokw3dHRER07dkSPHj0QERHB5ExERFSIqA8hSUpKQteuXdUScwGJRIJu3boVew80ERHRf5moydnc\n3BwpKSklzk9JSYG5ubmYIRAREWkdUZOzr68vli1bhi1btqgNBlOpVNi6dSuWL1+Ozp07ixkCERGR\n1hH1mvO0adMQFxeHoKAgTJ06Fc7OzgDyu7vv3bsHd3d3TJs2TcwQiIiItI6oydnS0hLHjx/HqlWr\ncPjwYdy8eRMA4OXlhU6dOuHTTz/lD18QERG9QvT7nPX19REYGIjAwECxmyIiInoniHrNuUGDBti/\nf3+J8w8ePIgGDRqIGQIREZHWETU537hxA9nZ2SXOz87OFrq6iYiIKJ+oyRlAsfc4F/jnn39gampa\n6rrCwsLwwQcfwM7ODi4uLujXrx/i4+PVyqhUKoSEhMDd3R3W1tbo2rUrrl69Wu74iYiI3jaNX3Pe\nuHEjNm3aJLyeN28e1qxZU6ScUqlEfHw8fH19S133yZMn8cUXX6Bx48ZQqVSYM2cOevTogTNnzsDC\nwgJA/rO8w8PDER4eDoVCge+//x49e/ZEXFxcmQ4EiIiIKovGk3NOTg7u378vvM7KyoKOTtETdGNj\nY3z++ecYP358qeuOjIxUe71kyRLY29vj9OnT6Ny5M1QqFSIiIjBq1Cj4+/sDACIiIqBQKLB9+3YM\nHjy4nEtFRET09mg8OX/xxRf44osvAAD169fH3Llz0aVLF003AyA/8efl5Qk/PZmamoq0tDR8+OGH\nQhlDQ0N4e3vjzJkzTM5ERKQVRL2V6tKlS2JWjwkTJsDLywvNmjUDAKSlpQEAZDKZWjmZTIY7d+68\ntq7ExEQYixPmGyUmJlZSy0REmlfZ+1KFQlFJEWiO6Pc5i2XSpEk4ffo0Dh48CF1d3QrXp1AocFsD\ncZW3bSKidwX3pRUn+mhtMUycOBE7duzAnj174OjoKEyXy+UAgIyMDLXyGRkZsLKyepshEhERlZvW\nJefx48cLiblOnTpq8xwcHCCXy3H8+HFh2tOnT3Hq1Ck0b978bYdKRERULlrVrT127Fhs2bIF69ev\nh1QqFa4xGxsbw8TEBBKJBEFBQQgLC4NCoYCrqyvmzZsHY2NjBAQEVHL0REREpaPR5Dxp0iT069dP\neCTnzZs3UbNmTRgaGmqk/uXLlwOAcJtUgfHjx2PixIkAgJEjRyInJwfBwcFQKpVo0qQJIiMjeY8z\nERFpDY0m54iICDRq1EhIzg0aNMCSJUvQp08fjdSvVCrfWEYikWDixIlCsiYiItI2Gr3mLJfLcf36\ndeG1SqXSZPVERET/CRo9c+7cuTO+//57HDhwAGZmZgCAH3/8EWvXri3xPRKJBHv27NFkGERERFpN\no8l5zpw5qFWrFmJjY5GRkQGJRFLi4zuJiIioeBpNzoaGhggODkZwcDAAwMLCAtOmTdPYNWciIqL/\nAlFvpYqKioKbm5uYTRAREb1zRE3OrVq1ApA/yjo6Oho3btwAANjb26Nt27bCD1YQERHR/4j+EJL5\n8+dj7ty5ePbsmdrobQMDA0ycOBEjRowQOwQiIiKtImpyXrt2LaZPn442bdogKChI6OJOSEjA4sWL\nMX36dFhYWGDQoEFihkFERKRVRE3OixcvRps2bbBz505IJBJhuqOjIzp27IgePXogIiKCyZmIiKgQ\nUe9xSkpKQteuXdUScwGJRIJu3bohKSlJzBCIiIi0jqjJ2dzcHCkpKSXOT0lJgbm5uZghEBERaR1R\nk7Ovry+WLVuGLVu2qA0GU6lU2Lp1K5YvX47OnTuLGQIREZHWEfWa87Rp0xAXF4egoCBMnToVzs7O\nAPK7u+/duwd3d3dMmzZNzBCIiIi0jqjJ2dLSEsePH8eqVatw+PBh3Lx5EwDg5eWFTp064dNPP4W+\nvr6YIRAREWkd0e9z1tfXR2BgIAIDA8VuioiI6J3AX6QgIiKqYpiciYiIqhgmZyIioiqGyZmIiKiK\nYXImIiKqYkRNzqGhoYiPjy9x/tWrVxEaGipmCERERFpH1OQ8d+5cXLlypcT5TM5ERERFVWq3dlZW\nFqpVq1aZIRAREVU5Gn8IyeXLl/HXX38Jr0+dOoUXL14UKadUKrFy5UooFApNh0BERKTVNJ6c9+7d\nK3RVSyQSrFq1CqtWrSq2rFQqxdKlSzUdAhERkVbTeHL+7LPP4OvrC5VKhQ8//BCTJk1Chw4dipQz\nNjaGk5MT9PREf4IoERGRVtF4ZrS2toa1tTUAICoqCm5ubpDJZJpuhoiI6J0l6mlrq1atxKyeiIjo\nnSR6n/LRo0exbt06pKSkQKlUQqVSqc2XSCT4888/xQ6DiIhIa4ianBcsWIDp06fDysoKjRs3hoeH\nh5jNERERvRNETc6LFy9G69atsW3bNt7PTEREVEqiPoREqVTC39+fiZmIiKgMRE3OTZo0QWJiophN\nEBERvXNETc7z5s3D3r17sXXrVjGbISIieqeIes35k08+QW5uLgIDAzF69GjY2NhAV1dXrYxEIsHp\n06fFDIOIiEiriJqca9asCZlMBldXVzGbISIieqeImpz37dsnZvVERETvpEr9yUgiIiIqSvTknJmZ\niVmzZqFTp05o3Lgxzp49K0wPDQ1FQkKC2CEQERFpFVG7tVNTU9G5c2dkZmbCw8MDKSkpyMnJAQBY\nWloiMjIS9+7dww8//CBmGERERFpF1OQ8bdo0qFQqnD59GqampkUGhnXp0oXXpYmIiF4hard2dHQ0\nhgwZAkdHR0gkkiLzHRwccPv2bTFDICIi0jqiJudnz55BKpWWOP/hw4fQ0eGYNCIiosJEzYx169ZF\nbGxsifP37duH+vXrixkCERGR1hE1OQcFBWHnzp2YN28eHjx4AADIy8vDtWvX8OWXX+KPP/7A8OHD\nxQyBiIhI64g6IKxPnz64desW5syZgzlz5gAAevfuDQDQ0dHBd999h86dO4sZAhERkdYRNTkDwOjR\no9GnTx/s2bMHSUlJyMvLg5OTE/z8/ODo6Ch280RERFpH9OQMALVr18awYcM0UldsbCx++eUXXLx4\nEXfu3EF4eDgGDhwozFepVJg7dy7WrFkDpVKJJk2aYN68eahbt65G2iciIhKbqNecT58+jbCwsBLn\n//TTT8ITw0orOzsbHh4emDt3LgwNDYvMnz9/PsLDwxEaGopjx45BJpOhZ8+eePz4cZnjJyIiqgyi\nJufQ0FD89ddfJc6/fPkyQkNDy1Rnx44d8e2338Lf37/IbVgqlQoREREYNWoU/P394eHhgYiICGRl\nZWH79u3lWgYiIqK3TdTkfOnSJTRr1qzE+U2bNsXFixc11l5qairS0tLw4YcfCtMMDQ3h7e2NM2fO\naKwdIiIiMYl6zfnJkyfFPhmssKysLI21l5aWBgCQyWRq02UyGe7cufPa9yYmJsJYY5GUTWJiYiW1\nTESkeZW9L1UoFJUUgY5EHBoAABPNSURBVOaImpxdXV1x7NgxBAYGFjv/yJEjcHZ2FjOEUlMoFKis\nB4m+Cx8kIqIC3JdWnKjd2p988gkOHz6McePGCQ8hAfJ/LjI4OBjHjh3DoEGDNNaeXC4HAGRkZKhN\nz8jIgJWVlcbaISIiEpOoZ85DhgzBX3/9hWXLlmH58uVCgkxPT4dKpcJHH32EoKAgjbXn4OAAuVyO\n48ePo3HjxgCAp0+f4tSpU5gxY4bG2iEiIhKT6Pc5L1iwQHgISUpKCgDA0dER/v7+aNWqVZnry8rK\nQlJSEoD8R4HeunULly5dgoWFBezs7BAUFISwsDAoFAq4urpi3rx5MDY2RkBAgCYXi4iISDSiJefc\n3FzExcXB2toaPj4+8PHx0Ui9Fy5cgJ+fn/A6JCQEISEhGDBgACIiIjBy5Ejk5OQgODhYeAhJZGQk\nTE1NNdI+ERGR2ERLznp6eujRowfmzJkDFxcXjdXr4+MDpVJZ4nyJRIKJEydi4sSJGmuTiIjobRJt\nQJiOjg7s7e01eqsUERHRf4Goo7UDAwOxevXqIqOniYiIqGSiP4TEyMgIjRs3RteuXeHo6FjkedgS\niQQjRowQMwwiIiKtImpynj59uvD3li1bii3D5ExERKRO1OSsyedmExER/VeImpzt7e3FrJ6IiOid\nJPpDSADg+vXrOHnyJDIyMtCnTx84ODggNzcXaWlpkMvlqF69+tsIg4iISCuImpzz8vIwevRorFu3\nDiqVChKJBE2bNhWSc8uWLREcHIyvv/5azDCIiIi0iqi3Uv34449Yv349Jk+ejMOHD0OlUgnzTExM\n4Ofnh71794oZAhERkdYRNTlv2LABH3/8Mb755ptifxrSw8MD169fFzMEIiIirSNqcr59+zaaNGlS\n4nxDQ0M+QYyIiOgVoiZnKysr3Lhxo8T5f/75J+zs7MQMgYiISOuImpy7d++OlStXqnVdSyQSAMDh\nw4exefNm9OjRQ8wQiIiItI6oyXnChAmoXbs2WrdujSFDhkAikSAsLAzt27dHv379UK9ePYwZM0bM\nEIiIiLSOqMnZzMwMv/76K8aMGYP09HQYGBjg9OnTyM7OxoQJE7B///4iz9omIiL6rxP9ISQGBgb4\n5ptv8M0334jdFBER0TtBlOT89OlT7N+/H6mpqbC0tESnTp1gbW0tRlNE9I65/f3gSmm31rhVldIu\nUXE0npzv3LmDLl26IDU1VXjoiJGRETZv3gwfHx9NN0dERPTO0fg151mzZuHGjRsYNmwYtmzZ8v/a\nu/ugmvI/DuBvv0tJHm6FGz2gxHVTJFsxdllW2NRGVsUME1E3jTGzqdiINns3tS3NJiqNp0KDnW1t\ny+40WaUiaxejfWCoLW0eohIuW/f+/jAuV3Y9pXP2er9m+uN83Xu/767mfM73nO/5HqhUKnTt2hVR\nUVHt3RUREZFBaveR85EjRxAYGIj4+HhdW9++fREcHIzLly/DysqqvbskIiIyKO0+cr5y5Qrc3d31\n2jw8PKDValFTU9Pe3RERERmcdi/Ora2t6Nq1q17bw221Wt3e3RERERmc1zJbu7KyEj/99JNuu6mp\nCQBw/vx5dO/evc3r/239bSIioYl1BrlYc9Grey3FWaVSQaVStWmPjIzU2374jOcbN268jhhERET/\nSe1enFNTU9v7I4mIiN4o7V6c58yZ094fSURE9EZ5rWtrExER0YtjcSYiIhKZ1/7gCyISJ870JRIv\njpyJiIhEhsWZiIhIZFiciYiIRIbFmYiISGRYnImIiESGs7X/AzirlojozcKRMxERkciwOBMREYkM\nizMREZHIsDgTERGJDIszERGRyHC2NhkUzmwnIkPAkTMREZHIsDgTERGJDIszERGRyLA4ExERiQwn\nhNFL4+Sr58fvioheBEfOREREImOwxTkzMxPOzs6QyWQYP348SkpKhI5ERET0XAyyOB84cADR0dH4\n6KOPcPToUbi5ueHDDz9EdXW10NGIiIieySCLc2pqKubMmYP58+dj6NChSExMhEwmQ1ZWltDRiIiI\nnqlTQ0ODVugQ7en+/fvo168ftm7dCl9fX117REQEKioqkJ+fL2A6IiKiZzO4kXN9fT1aW1vRp08f\nvfY+ffrg6tWrAqUiIiJ6fgZXnImIiP7rDK44W1hYQCKR4Nq1a3rt165dQ9++fQVKRURE9PwMrjgb\nGRlh5MiRKCws1GsvLCyEu7u7QKmIiIien0GuELZkyRKEhITA1dUV7u7uyMrKQl1dHYKChFmliYiI\n6EUY3MgZAGbOnAmVSoXExES8/fbbKCsrQ25uLmxtbdu1n2PHjiEgIADDhg2DVCpFdnZ2u37+y0pO\nTsa7774LGxsb2Nvbw9/fHxUVFYJmysjIwNixY2FjYwMbGxtMnjwZhw8fFjTTk5KTkyGVSrF8+XJB\nc6hUKkilUr2fIUOGCJrpobq6OoSGhsLe3h4ymQzu7u4oLi4WLI+Tk1Ob70oqlWL27NmCZQKA1tZW\nxMfH6xZCcnZ2Rnx8PFpaWgTNdevWLURHR2P48OGwtLSEp6cnTp061aEZnrXf1Gq1UKlUkMvlsLS0\nhJeXF3799dcOzSgGBjlyBoDg4GAEBwe/1j5u374NhUKBwMBAhIaGvta+XkRxcTEWLlyIUaNGQavV\n4tNPP4Wvry+OHz8OMzMzQTL1798fa9euhb29PTQaDXbv3o25c+fiyJEjGD58uCCZHldeXo5t27bB\n0dFR6CgAAAcHBxw8eFC3LZFIBEzzQENDA6ZMmQIPDw/k5ubCwsICVVVVbe6M6EiFhYVobW3VbdfV\n1WHChAl6t1EKYcOGDcjMzERaWhoUCgXOnTsHpVIJIyMjREZGCpZr6dKlOHfuHNLS0mBlZYW9e/fC\n19cXZWVl6N+/f4dkeNZ+c+PGjUhNTUVqaiocHBywfv16zJgxA+Xl5ejRo0eHZBQDg7vPWShWVlZY\nv3495s6dK3SUNpqbm2Fra4vs7GxMmzZN6Dg6AwcORGxsrOCXGxobGzF+/HikpKQgISEBCoUCiYmJ\nguVRqVTIy8tDaWmpYBmeJi4uDseOHRPdGY/HJSUlISUlBb///jtMTEwEy+Hv7w8zMzNs3rxZ1xYa\nGoqbN29i7969gmS6e/curK2tsWPHDnh5eenax48fj8mTJyMmJqbDMz2539RqtZDL5Vi0aBEiIiJ0\nuR0cHPDJJ58Ivq/oSAZ5Wpv0NTc3Q6PRQCqVCh0FwINTfvv378ft27fh5uYmdBwsW7YMH3zwAd55\n5x2ho+hUVlZCLpfD2dkZCxYsQGVlpdCR8O2338LV1RVBQUEYPHgwxo0bh/T0dGi14ji+12q12Llz\nJ/z9/QUtzADg4eGB4uJi/PHHHwCA3377DUVFRZg8ebJgmVpaWtDa2oquXbvqtZuYmIjmQLCqqgpX\nrlzBxIkTdW0mJiYYO3Ysjh8/LmCyjmewp7XpkejoaDg5OQleCM+dOwdPT0+o1WqYmppi165dgp9G\n3r59Oy5evIj09HRBczxu9OjR2LRpExwcHHD9+nUkJibC09MTZWVlMDc3FyxXZWUltm7dirCwMCxb\ntgxnz55FVFQUAGDx4sWC5XqosLAQVVVVmDdvntBRsGzZMjQ3N8Pd3R0SiQQtLS2IiIh47Zfa/k2P\nHj3g5uaGpKQkDBs2DDKZDPv27cOJEydgZ2cnWK7HXblyBQCeuojUX3/9JUQkwbA4G7iVK1eirKwM\nhw4dEvy6pYODA4qKitDU1ISvv/4aSqUSBw8ehEKhECTP+fPnERcXh0OHDqFLly6CZHiaJ0dXo0eP\nxsiRI5GTk4Pw8HCBUgEajQYuLi6IjY0FAIwYMQIXL15EZmamKIrz9u3bMWrUKDg5OQkdBQcOHMCe\nPXuQmZkJuVyOs2fPIjo6Gra2toIePGzZsgVLliyBQqGARCLBiBEjMGvWLPzyyy+CZaKnY3E2YCtW\nrMCBAwfwzTffYODAgULHgZGRke4IfeTIkTh16hQ2bdqEL7/8UpA8J06cQH19PTw8PHRtra2tKCkp\nQVZWFmpra2FsbCxItsd1794dcrkcFy9eFDSHTCbD0KFD9dqGDBmCmpoagRI9cu3aNeTn5yMpKUno\nKACA1atXIzw8HH5+fgAAR0dHVFdX44svvhC0OA8aNAj5+fm4ffs2bt26BUtLSwQFBYli/wA8+BsD\nHvx/2tjY6NrfxEWkeM3ZQEVFRWH//v3Iy8sTzW04T9JoNLh//75g/Xt5eaGkpARFRUW6HxcXF/j5\n+aGoqAhGRkaCZXucWq3G+fPndTsuoXh4eODChQt6bRcuXNDbiQolJycHxsbGumIotDt37rQ5UyWR\nSKDRaARKpM/U1BSWlpZoaGhAQUEB3n//faEjAQAGDBgAmUymt4iUWq1GaWnpG7eIFEfOr6C5uVk3\nmtFoNKipqcGZM2dgZmYm6A4rIiICe/fuxa5duyCVSnXXcUxNTdG9e3dBMq1Zswaenp6wsrJCc3Mz\n9u3bh+LiYuTm5gqSB4DuntjHdevWDWZmZoKdageAmJgYTJ06FdbW1rprznfu3EFgYKBgmQAgLCwM\nnp6eSEpKwsyZM3HmzBmkp6dj1apVgubSarXYsWMHZs6cKdjf95OmTp2KDRs2YMCAAZDL5Thz5gxS\nU1MREBAgaK6CggJoNBo4ODjg0qVLWLVqFYYMGdKhd5k8a7+pVCqRnJwMBwcHDB48GElJSTA1NcWs\nWbM6LKMY8FaqV1BUVARvb+827YGBgUhLSxMg0QP/NCs7KioKK1as6OA0DyiVShQVFeHq1avo2bMn\nHB0dsXTpUkyaNEmQPP/Ey8tL8FupFixYgJKSEtTX16N3794YPXo0Pv74Y8jlcsEyPXT48GHExcXh\nwoULsLa2xqJFixASEoJOnToJluno0aPw8fFBQUEBXF1dBcvxuFu3bmHdunU4ePAgrl+/DplMBj8/\nP0RGRraZLd2RvvrqK6xduxa1tbUwMzODj48PYmJi0KtXrw7L8Kz9plarxWeffYZt27ahoaEBrq6u\nSEpKEvSAWQgszkRERCLDa85EREQiw+JMREQkMizOREREIsPiTEREJDIszkRERCLD4kxERCQyLM5E\nbyAnJycolUqhYxDRP2BxJhKB7Oxs3YplUqkUFhYWGDZsGJRKJWpra1/qM7///nuoVKp2TkpEHYHL\ndxKJSHR0NAYNGoR79+6hvLwcOTk5KCsrQ2lp6QuvLPXDDz8gIyPjqavCnTx5Ev/7H4/NicSKxZlI\nRCZNmoS33noLADBv3jxYWFhgw4YN+O677zBjxox260cMT9sion/GQ2ciERszZgwA4NKlS7q2/Px8\n+Pv7Q6FQoG/fvhg+fDhWrVoFtVqte41SqURGRgYA6J0ur6qqAtD2mnNRURGkUin27duHzz//HAqF\nAjKZDD4+Pk99VGVGRgZGjBgBS0tLTJw4EceOHYOXlxe8vLxey/dA9KbhyJlIxP78808A+g8zyc7O\nhrGxMUJCQtCzZ0+Ul5dj06ZNuHz5MrKysgAAQUFBqKurQ2FhIbZs2aJ7b+/evf+1v40bN0IikSA8\nPBxNTU1ISUnBokWLUFBQoHvN1q1bsXz5cowZMwZhYWGorq7G3LlzYWZmhv79+7fnr0/0xmJxJhKR\npqYm1NfXQ61W4+TJk0hISICxsTGmTJmie01GRga6deum2w4KCoK9vT3i4+MRFxcHa2truLm5YfDg\nwSgsLIS/v/9z93/v3j0UFxfrnmUtlUoRHR2NiooKKBQK3L9/H+vWrYOzszPy8vLQpUsXAIBCoUBY\nWBiLM1E74WltIhHx8/ODvb09HB0dMX/+fJiammL37t2wsrLSveZhYdZoNGhsbER9fT08PDyg1Wpx\n+vTpV+o/ICBAV5iBR6fVKysrAQA///wzbty4gfnz5+sKMwDMnj37Hx9VSkQvjiNnIhFJSEjA0KFD\n0djYiJycnKfO0q6oqEBsbCyKi4tx9+5dvX9ramp6pf6tra31th8W3IaGBgBAdXU1AMDOzk7vdZ07\nd4atre0r9U1Ej7A4E4nIqFGjdLO1p0+fDi8vLwQHB6O8vBympqZobGyEt7c3unXrhpiYGNjZ2cHE\nxAS1tbUICwuDRqN5pf4lEslT27VaPvadqCPxtDaRSEkkEsTGxqK2thbp6ekAHsyqrq+vR1paGpYs\nWYJp06ZhwoQJ6NevX4dksrGxAYA2M7hbWlp0k9eI6NWxOBOJ2JgxY+Dm5oa0tDSo1WrdyPbxkaxG\no0Fqamqb95qamgJ4dEq6Pbi4uMDc3Bzbt2/H33//rWvPzc1t136I3nQ8rU0kcuHh4Zg3bx527doF\nPz8/mJubQ6lUIiQkBJ07d0ZeXh6am5vbvM/FxQUAsHz5crz33nvo3Lkzpk6dqivaL8PIyAjR0dGI\njIyEj48PfH19UV1djezsbAwaNAidOnV66c8mokc4ciYSuenTp8POzg4pKSno0aMHcnNzYW1tDZVK\nheTkZCgUCmzevLnN+7y9vaFUKvHjjz8iNDQUCxcuxPXr1185z+LFi5GQkICamhqsXr0apaWl2LNn\nD3r16vXCS4wS0dN1amho4EwPInolGo0G9vb28Pb2RkpKitBxiP7zOHImoheiVqvbzN7evXs3bt68\niXHjxgmUisiw8JozEb2Q8vJyrFy5Er6+vjA3N8fp06exc+dOKBQK+Pr6Ch2PyCCwOBPRC7G1tYWV\nlRW2bNmCmzdvwszMDAEBAVizZo3e6mJE9PJ4zZmIiEhkeM2ZiIhIZFiciYiIRIbFmYiISGRYnImI\niESGxZmIiEhkWJyJiIhE5v/wC3YX8Yhm7QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "Re84N5aIf_ML", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Populate figure with the real data" + ] + }, + { + "metadata": { + "id": "lhdOLcMcPMCp", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "pd.options.display.max_columns = 50\n", + "df = pd.read_csv('https://raw.githubusercontent.com/fivethirtyeight/data/master/inconvenient-sequel/ratings.csv')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "tqJFHj0FPZ5Q", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Turn the timestamps from strings to actual time stamps\n", + "df.timestamp = pd.to_datetime(df.timestamp)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0AoZ5WX9Pm7x", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# set the timestamp to be the index.\n", + "df.set_index('timestamp', inplace=True)\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7iNgbtAyimH2", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "D3FB624cex9H", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 111 + }, + "outputId": "413b6294-1446-4702-e82e-6ce616a84d85" + }, + "cell_type": "code", + "source": [ + "columns = ['1_pct','2_pct','3_pct','4_pct','5_pct','6_pct','7_pct','8_pct','9_pct','10_pct']\n", + "final = df[columns].tail(1)\n", + "final.columns = range(1,11)\n", + "final " + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910
timestamp
2017-08-29 23:10:06.21825138.42.61.40.92.14.15.85.55.533.7
\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10\n", + "timestamp \n", + "2017-08-29 23:10:06.218251 38.4 2.6 1.4 0.9 2.1 4.1 5.8 5.5 5.5 33.7" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "MnioWS0Qj9gX", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "colors = ['#333333']*10\n", + "colors[0] = '#EC713B'\n", + "colors[-1] = '#EC713B'" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4lgMFBEIgWfw", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 372 + }, + "outputId": "f45f1815-3968-46e0-b489-c71445085d04" + }, + "cell_type": "code", + "source": [ + "plt.style.use('fivethirtyeight');\n", + "ax = sns.barplot(x=final.columns, y=final.values[0], color='#EC713B');\n", + "\n", + "ax.set(xlabel='Rating',\n", + " ylabel='Percent of total votes',\n", + " yticks=range(0,50,10));\n", + "\n", + "ax.tick_params(labelrotation=0);\n", + "\n", + "ax.text(x=-2, y=50, s=\"'An Inconvenient Sequel: Truth to Power' is divisive'\", \n", + " fontsize=16, fontweight='bold');\n", + "\n", + "ax.text(x=-2, y=46, s='IMDB ratings for the film as of Aug. 29');" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFjCAYAAAAHLMOaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XdYFNf7NvB7AQWkLciyKFJlBUGs\nUSOKYoliQTBiizGJSTSgv9giKpZobEBiSDQq9t4LRrHGAga7UaNRDBIpalRAcVUQRWXfP3iZLyug\nlB1hzf25Li/ZmbPnPDuzO8/MmTMzEqVSqQIRERFVGTqVHQARERGpY3ImIiKqYpiciYiIqhgmZyIi\noiqGyZmIiKiKYXImIiKqYt6YnENDQyGVSrF+/foi8/Ly8uDm5gapVAqpVAq5XA6lUilKoKmpqUI7\nHh4eorTxX1GwHLt37/5W2lu4cCFCQ0OxcOHCMr3vxIkT6Nu3L9zd3WFlZYW6devC09MTQ4YMwbFj\nx0SK9u0ICgoS1kNqamqZ379+/Xrh/W/6V9xvt6KOHj2K0NBQhIaG4ubNm2rzXrx4IbTt5+dX7jZ2\n7doltPHo0aOKhlzEmjVriiwrc3Nz2Nvbw8/PD/v27dN4m29TwXpo0qTJG8sOHTpUWAb//vuvaDEl\nJSUV+92YOXOmMP3kyZNlrrci8b+tzw4APj4+pW5HryINxcXF4fbt28LrZ8+e4ddff8Vnn31WkWrp\nHRMZGYmbN2/C1tYWw4YNK9V7oqKi8Pnnn6tNu3//Pu7fv4/4+HjUq1cPbdq0ESNcKoW4uDjMmTMH\nAODt7Q1bW1uNt7F7925s2bIFAPDJJ5/A1NRU4228SqVS4eHDhzh69CiOHj2KH374AUOGDBG9XaJX\nVahbe/PmzaWaRlWLUqmEUqnEnj17KjuUEv3www8AAFNTU+zduxd3795FYmIi9u7di+HDh0Mul1dy\nhJVr4MCBwnpUKpUYP368MG/8+PFq8wYOHPjaup4+fSp2uFXeoEGDoFQq8e+//2LChAnC9OnTp+PZ\ns2eVGFn5lHWdLlmyRPi+2NjYiBRVySZPniy036pVqzK/vyLxV/ZnL0m5k3NOTg52794NAKhTpw7a\ntWsHADh16lSRbrrCXXCrVq3CjBkz4O7uDhsbG3Tu3Bnnzp0r9weIi4sT6p49ezZ++eUXNGnSBLVq\n1UKbNm1w8ODBIu/5/fffMWDAACgUCshkMigUCgQEBCA5OVkoc//+fYSEhKBJkyawsrJCnTp18MEH\nH2DdunXlbn/gwIGQSqWwsLDAnTt3hOl5eXlwdXUVuuzz8vIAAP/++y/GjBmDhg0bQiaTwd7eHgEB\nATh+/LhaDAWnHqRSKfbs2YOxY8dCoVDAzs4OvXr1wvXr19XKl9StnZCQgKFDh6J+/fqQyWRwdnbG\nJ598gsuXL6uVK9wle/r0aQwdOhT29vZwdHTEoEGDkJaWprZsCro9b968WepTEwUxy+VyvP/++zAw\nMIBMJoOnpydmzZqFTz75RK28UqnElClT8N5770Eul8PW1hbdunUTvqOFnTp1Cp06dYJcLoeHhwd+\n+eUXtWVYuBu4pGVV0WVYku7du1eou7skhbsTv/76ayxfvhzvvfceatasiZ07dyI2NlaYX7BjBKDY\n6W5ubsJRMwB07dr1tV2SsbGx6NixI6ytrdGkSRP88ssvUKlKvjFhQXdswVEzALi7uxfpeszKysLM\nmTPRsmVLWFtbo3bt2mjbti0WLlyIly9flms5GRkZYdy4cTAyMgIAPH78GAkJCcL83bt3o2fPnrCz\ns4NMJkODBg0wYsQI3LhxQyjzyy+/CLEePXoUAJCdnQ1LS0tIpVJ8++23QtkePXpAKpXC1tYWL168\nAAC8fPkSixYtgre3N2xsbGBtbQ1PT0/Mnz9f7XO9aZ2WRUlduytXrkS7du1gb28PKysr1K9fH716\n9SrVQZhSqcTw4cNhb28POzs7DBkyBBkZGcWWfbVbOzc3F05OTpBKpUWS9ZUrV4Syw4cPr3D8r743\nPT1dWFf9+vVTa3vfvn1C2fDwcGH6b7/9hl69esHBwQEymQwNGzbE+PHj8eDBgzcup9ctQFV5/i1f\nvlwFQAVANWzYMFVERITwevLkyWplFyxYIMwzMzMT/i74Z25urkpNTX1texcvXhTK29raCtOjo6Nf\nW3e1atVUf/75p1A+PDxcJZFIipQDoIqOjlYplUpVQkKCytbWttgyAFSfffZZudrfsGGDMH3WrFlC\nHTt37hSmjx8/XqVUKlVnz55V1axZs9j2dXR0VCtWrBDeP378+NfGoFAoVPfv3xfKF0xv3bq1MG3f\nvn0qQ0PDYtszMDBQ7d27Vyg7YMCA17bXrl27Isvm1X+F12Fx/xwdHYWyzs7OqsDAQNXy5ctVf//9\nd5GyiYmJauVf/Td9+nSh7IkTJ4r9nLVq1RL+XrBgwWuXlaaX4cWLF4XprVu3Lnb6m/4V/g4UfIcK\n/zt//rww38LCQi22xYsXq3799Vfh9aRJk4T3FTe9du3aJS7rffv2qe7du6fWlq6ubpFyy5cvL/Gz\nFH5/cf+uXLmiunnzpqpBgwYllvHx8VFlZma+dpnNmzdPKD9o0CBhemZmpqpGjRrCvN9//12lVCpV\nEydOLLE9c3Nz1dmzZ1VKpVIVGxsrTA8JCSmyHJs3b65SKpWq9PR04fvSuXNnlVKpVN2/f1/VpUuX\nEtvp3r276sGDB6Vap2XZnvft21dt+SqVStWyZctKjOPDDz98bX2ZmZmqVq1aFXmftbV1ke2EUqlU\njR07Vu07pFQqVUOHDhWmHT9+XCg7ZsyYImUrEn9x7/Xx8VEB+dvv5ORkoWxAQIAKyN8G//XXXyql\nUqmaNm1aie04Ojqqrl+/XqZ1UfCv3EfOhfdq/fz80KNHD+jo6BSZV5zdu3cjOTlZOGf44MGDYo9w\ny+rJkydYu3YtUlNT0bdvXwDA8+fPERUVBSD/SHTKlClQqVTQ09PDzz//jJSUFCQkJGD+/PmwtLQE\nAMyaNUs42vvoo4+QnJyMY8eOCefVVq1ahdOnT5e5/c6dOwvdsdu2bRPeV/C3RCIRuiAnTJiA+/fv\nw9TUFNHR0UhLS8P58+dRr1495OXlITg4GLm5uUViMDU1RVxcHP7++2+4uLgAABITE9/YOzFy5Ejk\n5OTA1tYWsbGxSE9Px++//w5LS0s8ffoUY8eOLfZ99vb2+PPPP3Hu3DnIZDIA+YOF7t69Cy8vLyiV\nSmG52draCt1Hf/3112vjKdgjBoB//vkHixYtwhdffIH69esjICBA7ahy9uzZSE5Ohq6uLtasWYO7\nd+8iPj4enp6eAPL3yu/evQsgv7s8JycHAPDll18iNTUVu3btwsOHD18bT2mUdxm+bZmZmRg7diyS\nkpKQmJgo9HqVVnx8vNpn2bdvX4ldkpmZmfjmm2+QmpqK0NBQYfrrjrz09PSgVCqF3xCQf7SkLNT1\nuGDBAqE3onPnzrh27RouXLiABg0aAAD2799f5qNHIP83/P333+PJkycAABMTE7i4uCAlJUU4UpJK\npdi3bx9SU1MxevRoAPnbsIkTJwIAGjZsCHNzcwAQehJOnDgBANDR0cGff/6JnJwcnD9/Xvguenl5\nAcjfFhw4cAAAEBwcjJSUFNy4cQNDhw4FAOzZs6fYgWoVXafFKYjZ1NQU58+fR3p6Oi5duoQVK1bA\n29v7te89ePCg8NkVCgXOnTuHv//+G46OjqVu/+OPPxb+Lry93L59OwDA2dn5tV3gFYm/oO3nz5/j\n119/BZDf+1Gw7Nu1awdbW1ukpqZi5syZAIAuXbrg8uXLSEtLw5IlSwAAycnJ+PHHH0v9mQsrV3K+\nd+8eDh8+DACoVasWWrRoASsrK7Rs2RIAhB9KcQYNGoQ2bdrA3NwcPXv2FKa/OuKzPLp27QpfX1+Y\nmZnhww8/LFL34cOHhYTWt29ffPbZZ8Io848//hj169cHkN9FUWDWrFkwNzdHgwYN1AYzFbcz8ab2\n9fT0hG6SCxcuICkpCbm5uYiOjgYAtG3bFnZ2dsjJyUFsbCwA4NGjR/D19YVcLkfTpk1x7do1APnd\n7hcvXiwSw9dffw0PDw9YW1vjgw8+KBJDca5fvy7Ue/PmTXh7e8PKygpt27bFvXv3AORvkAu6qwub\nOHEiHBwcULduXbUfSkXX55dffolVq1bhvffeg0QiEaarVCocOnQIgwYNErr/9+/fDyC/O/CTTz6B\ntbU13NzchB9nbm6ucCqg8CjvKVOmwMzMDG3btkWPHj0qFG9FlmFhe/bsEZKQvb19hWIqiaurKyZP\nngwLCwvIZDJYW1uL0g6Qv32YMGECzMzMMGDAAGF6Rb8fhX+jU6dOhZWVFRwdHREcHFxsmTdZu3Yt\npFIpateujbCwMGH65MmToa+vj0OHDgldygMHDkSrVq1gZmaGSZMmQSqVAsjvvs/NzYWOjg5at24N\nAPjjjz/w8uVL4bvYo0cPPH/+HGfPnhWmAfm/feB/32Ugf0fSwcEBdnZ2wsYeAGJiYorEL8Y6Lfj+\nPX78GN9//z2WL1+O69evo1OnTkVOK73q999/F/7+6quvULduXVhbW5dpB7Vhw4Zo2LAhgP8l5DNn\nzgg75m8aS1GR+H18fISDjYIdg3379iE7OxvA/5L3oUOHhNMRBw4cQIMGDSCXy4WdKaD49VUa5UrO\n27dvFwJq0aIFrl69ivj4eLUh+yXtGSsUCuHvGjVqCH9rYlDKm+pOT08Xprm6upZYT8HG1NjYWNgD\nBqA2IrW4cyel+WyF9wa3bt2KgwcPCpefDRo0CED+XnhpzpllZmaWK4ZXlXQeSKz2Ssvf3x+HDh3C\ntWvXsGbNGvTt21dI1JcuXRLGCJQm/oLYC/43MTGBmZmZML8sA0EKvvuFVWQZvm1luRSxuM9aFo6O\njkKPWsF5XKDi34+C3yiQP+algJ2dXbFlysLU1BReXl5Yt24dvvrqq9e2p6enh1q1agHIP8oq6IEp\nSLZZWVn4448/cO7cOTg7OwsHJCdOnBCSs7m5ubBOyvJdLkyMy0uHDh0KX19f6OjoYNOmTQgJCUGv\nXr2gUCgwb968UsdYu3btYv8ujYLt5Y0bN3D69Gls3boVAKCrq6u2s6fp+AsfSJ08eRK3b98W2jY3\nNxd25su7vkqjXJdSFe623rlzZ7HdR1FRUZg1axZ0dXXVG9T7X5OFj4g04U11W1lZCX8XHuTxKplM\nhjt37iArKwtKpVLYM75165ZambK2DwD16tVD8+bNcfbsWWzfvl2IQyqVCivc3Nwcurq6ePnyJerW\nrVtsl7RKpSq2jfIs38KfxdvbW+jG0VR75VnPjx49Ei6dkclk6NmzJ3r27ImMjAxhT7RgsEXB+jIy\nMkJycjKqV69eYuw1a9ZEeno6Hj9+jIcPHwoJuqTrDqtXr47c3Fy1EbspKSlFylVkGb5tBgYGRaYV\nXmZv+qxlUa1aNeFvTX52mUwmDMK6deuWsB4LH5EXnKYqjUGDBuGXX355bXsFCm8HXrx4IQzurFat\nmhBHQTc1kH8pYU5ODlq1aiWcajl27BguXboEAGjdurWwA1O4nUOHDuG9994rEktxg+mKW6cVZWho\niLVr1+Lhw4e4evUqEhMTsXLlSpw/fx7Tpk1D//791baphdWsWVP4u/DltoX/Lo0+ffpgypQpePbs\nGbZs2SL0Mnbq1OmNvQMViR/IPzKfP38+8vLysHz5chw5cgQAEBAQAH19fQDq62vatGkYNWpUkXpe\nN/jxdcp85Hz9+vVSja5OT08XPkxV0bFjR2EjtHnzZqxZswZKpRIZGRnYuHEjrl69CiD/HFaBgiH+\n8fHxajfRKFymrAr2Bq9du4Zdu3YByF/hBT8wQ0ND4ZzR9evX8e233yIjIwO5ubm4du0a5s+fr3ZK\noKLq1q0LZ2dnAPnnixcuXAilUomnT5/ir7/+Qnh4eJFrjsvCwsICQP4eZGl/nB06dMCYMWNw9OhR\nKJVK5Obm4syZM8J5Rl1dXSHmLl26AMg/J/T111/j1q1beP78OVJSUrBq1SqhixFQ32jOmDEDDx8+\nxO+//17sqG7gf70l8fHxuHHjBp4/f45Zs2YVKaepZSjWaO03KdwrdOTIETx79gx3795FZGRkseUL\n1imQfz644BSDJhVu4/Lly2obucK/v+nTpyMjIwMpKSlqo8gLvhea0LFjR+FAY+PGjTh9+jQePXqE\n0NBQoeerffv2wvalfv36woa/4DfeqlUr1K5dG/b29jh+/LhwY5WCo+xXYx43bhwuX76M3NxcpKen\nY+fOnejTp0+x413E8Ouvv2Lp0qVIS0tDgwYN4O/vD3d3dwD5V5i87rdc+He2ePFiXL9+HXfv3lVb\nP6Vhbm6Obt26AQBWr14t9H4W7oEUI34gfx02a9YMADB37lw8f/68SNuFvxfz5s3D4cOHkZOTg4cP\nHyIuLg4jR47E/Pnzy/SZC5Q5OW/atEn4e+TIkWrXUyqVSsydO1eY/6aBYW+bjY0Npk+fDolEghcv\nXmDEiBFwcHCAQqFAUFCQ0HU1ceJEYWO1bt06ODg4wNPTU9hTHzx4MFq0aFHuOD788EOhC7ig2/DV\nL1toaKjQpT5v3jwoFApYWVmhRYsWmDx5coWPaF71888/w8DAACqVSjiPbG1tDS8vL4SGhqqdEiir\n5s2bA8hPngV3lAsKCnrte548eYIVK1bAz88PDg4OsLKyQufOnYVupCFDhgg9GhMnThTOL23evBkN\nGjSATCZD48aNMWrUKMTHxwv1BgcHC8t+2bJlsLe3R8+ePUu8wUWfPn2EeJo2bQo7OzthwM6rxFyG\nYrO1tRXGDJw/fx6Ojo5wd3dXu+SvsIJ1CgBjx46FhYWF2tGSJhRuo1+/fjA3NxdOnQ0fPlwY/HXg\nwAEoFAo0btxYOBr18fHR6A6sg4ODcC15ZmYmunTpAjs7O2Gwj7m5eZGdtoIEVbDjUnDU7Onpqbaj\nUTg59+nTB506dQKQvx7atGkDKysr1KtXD59++ikOHjxY7iOxsrp69SqCg4PRokUL1KlTB7a2tli7\ndi2A/O7pgjE6xfnggw+E71NiYiKaNWsGV1dXYVxGWRRsGwu2lTKZDD4+PqLGX1LbHh4eaNSokTDf\nwcFBGAiYmZmJ3r17o1atWrC3t4evry9Wr15d7lM4ZU7OBf3uANC/f/8i8/39/YUjwD179iArK6tc\ngYklMDAQO3fuhI+PDywtLaGnpweZTIaOHTsK55LkcjliY2MRFBQER0dHVK9eHcbGxmjevDnmz5+P\nn376qUIxmJiYqG043N3d0bhxY7UyLi4uiIuLwxdffAEHBwdUr14dpqamcHV1xaBBgyocw6vatGmD\n2NhY9O/fHzY2NqhWrRrMzc3h7u6OoUOHql2bWVYTJkxA7969y9TN+MMPP2Dw4MFCotXT04OJiQne\ne+89/Pjjj5g9e7ZQ1srKCrGxsRg5ciTq1asHfX19GBsbw9nZGX369MGKFSuEsq6urtixYwfee+89\n6Ovro06dOpgxYwY+/fTTYuMYPXo0hg0bhlq1aqF69epo1aqV2qCdwsRchm/DsmXL4OPjA1NTUxgY\nGAjdesVp3rw5Zs+eDUdHR7Wua03q1asXRo8ejTp16hQ5PWZsbIz9+/dj7NixcHFxgb6+PgwNDdGw\nYUPMmjUL69evF7qKNWXcuHFYu3YtvLy8YGpqCj09PdSpUweDBg3C0aNH1cZfAOpJt1atWnBwcAAA\ntYGTcrlcbfyLrq4uNm3ahLCwMDRr1gzGxsbQ19eHra0tPvjgA8yZM0fYKRFb+/btERAQACcnJxgb\nG0NXVxfW1tYICAjAnj17hK7d4ujo6GDjxo346KOPYGpqChMTE/j5+WHNmjXliqPwef6+ffuW6jtX\nkfgL9O7dG4aGhsLr4o7Yv/nmG2zevBkdO3aEubk5qlWrBmtra7z//vuYOHGi2lUHZSH5/9dsEv2n\nhYaGCpfKLFiw4I0jQYmIxMSnUhEREVUxTM5ERERVDLu1iYiIqhgeORMREVUxTM5ERERVDJMzERFR\nFcPkTEREVMUwORMREVUxTM5ERERVDJMzERFRFcPkTEREVMUwORcjNDRU7eb0lSUtLQ29evVC7dq1\nhScwia179+4IDg7WeL15eXkYNWoUHB0dIZVKERcXh6CgIOGB5gCKvNZ2oaGhUCgUkEqlWL9+fWWH\nQ0Ra5I3J+dUNZmhoKKRSabGPY1u+fDmkUqlaYlu/fr3wfFoLCwvY2dnB29sbM2bMEB7/92rdBf/s\n7OzQo0cPnD17tiKfsUSpqamQSqW4cOGC2vSvv/4ae/bsEaXNsvjll19w9+5dxMXFISEhQaN1x8XF\nQSqV4v79+xqttyS//fYb1q9fj02bNiEhIQEtW7ZEWFgYFi9e/Fbaf9vi4+MRHh6OiIgIJCQk4MMP\nP3xt+XHjxsHCwgKrV69+SxEWb/Xq1ejatSvs7e2F39/JkyfVyjx+/BgTJkxAgwYNYG1tjc6dO+P8\n+fOVFDHRu6lcR85yuRynTp0q8jD4tWvXqj3aq0CNGjWQkJCA+Ph4HD58GEFBQdi3bx9atWpVJOko\nFAokJCQgISEBBw4cgFwuR0BAQJmeifnixYsKPfPU2NhY7UHvlSUpKQmNGjVC3bp1IZfLy1VHRZeF\npiQlJUEul6Nly5aQy+WoXr06zMzM3lqPwNuWlJQEAOjRowfkcrnaY+de9ezZM2zduhWjR48u1yP1\nNOnYsWPo1asXdu3ahcOHD0OhUKB37964fv26UGbEiBE4cuQIIiMjceLECbRv3x7+/v5vfHg9EZVe\nuZKzhYUFOnfurNZVd/nyZSQmJsLPz69IeYlEArlcDmtraygUCvTr1w+//fYbzMzMMHr0aLWyenp6\nkMvlkMvlqF+/Pr755hs8fPiwyI5AYQXd0OvXr0fjxo1hZWWF7OxsHDp0SDgKcHBwwIcffqi2M1Dw\n0Oz27dtDKpWie/fuavUVKOg9iIyMRP369WFvb49hw4bhyZMnQpns7Gx89dVXsLGxgUKhQEREBPr1\n64egoCChzK5du+Dp6Qlra2s4ODigW7duSE9PL/YzeXh4YO/evdi0aROkUqlQz82bNzFw4EDUqVMH\nderUwccff4x///33jcuisNTUVPj6+gIA6tatq1Y/kN8FPX36dDg5OcHZ2RmTJ08WHhgPALm5uZg6\ndSrc3NxQq1YttG/fHocPHy5x/QQFBWHixIm4desWpFIpPDw81JZrSbp3744xY8Zg0qRJcHBwQN26\ndREZGYlnz55h7NixsLOzQ4MGDbBp06YS6wDyH1rfq1cvODk5wdbWFj4+Pjhz5oxamZUrV6JZs2aQ\ny+VwcnLChx9+KDxgvThXrlyBn5+fsC6DgoLw8OFDAPnroOC5r+bm5m/cAYmOjoadnR2++eYbYSe2\nsOJOs6xfvx42NjZq0yIiIqBQKGBjY4OvvvoKYWFhwrIuraVLl2Lo0KFo1KiR8D02NjbGoUOHAAA5\nOTnYtWsXpk6dCi8vLzg5OSEkJASOjo5qz80mooop9znnQYMGYePGjcJGe+3atfD394exsXGp3m9s\nbIzBgwfjxIkTuHfvXrFlnj59is2bN0Mmk8HOzu619aWmpmLbtm1YtWoVjh07BgMDA2RnZyMwMBBH\njhzB7t27YWpqiv79+yM3NxcAcOTIEQDA9u3bkZCQgHXr1pVY/8mTJ3H16lX8+uuvWLlyJXbv3o1F\nixYJ8ydPnozjx49j3bp12LVrFy5fvqzWHZiWloYvvvgCAwYMwOnTp7F3717079+/xPZiYmLg7e2N\nXr16ISEhAWFhYcjLy8NHH32EjIwMREdHIzo6Gnfv3sXAgQPVjo6LWxaF1alTRzhCO3XqlFB/ga1b\nt0JXVxe//fYbfvjhB0RGRiIqKkqYP3z4cBw/fhxLly7FyZMnMWDAAPTv3x9//fVXsZ8lLCwM48aN\ng42NDRISEhATE1Pi537V1q1bYWxsjMOHD2PUqFEICQnBwIEDUbduXcTGxqJ///4YMWIE7t69W2Id\njx8/Rr9+/bBv3z4cPnwYHh4e6NOnDzIzMwEAFy5cwNixYzF+/HicPXsWO3fuRMeOHUusLzs7G717\n94aRkREOHz6MdevW4cyZM/i///s/APmnRebNmwcAQi/Q66xZswZ9+/ZFjRo14OvrW66j5+3btyM8\nPBxTpkzB0aNH4eLigoULF5a5nlfl5ubi6dOnwg7Gixcv8PLlyyLfKUNDwyLd30RUfnrlfWOnTp3w\n4sULHD16FJ6entiyZQs2bNiA2NjYUtfh6uoKID+ZWFpaAsjfmBUcETx58gRSqRSrV69+bbcgkL8R\nWbx4MaysrIRprx7FL1iwALa2tjh37hxatWqFmjVrAsjvCXhTt7GJiQl++ukn6OrqwsXFBf7+/jh6\n9CjGjBmDrKwsrFu3DosWLUL79u0B5J8vdnNzE95/584dPH/+HH5+fsKORuH5r7K0tIS+vj4MDAyE\n2GJiYnDlyhVcuHAB9vb2AIBly5ahSZMmOHr0KLy9vUtcFoXp6urC3NwcACCTyYTlUMDFxQWTJk0C\nADg7O2P16tU4evQoAgICkJycjG3btuHSpUuwtbUFAAwdOhSxsbFYtWoVfvzxxyLtmZmZwcTEBDo6\nOmXunnd1dUVISAgA4P/+7//w888/Q09PTzjSHz9+PObOnYvTp08X22sDAO3atVN7/f3332PXrl04\nePAg+vXrh5s3b8LIyAhdu3aFiYkJALz2iHPbtm148uQJFi9eLJT/+eef4evri6SkJDg5OcHMzAwA\n3vh5U1JScPLkSSxduhQA0L9/fwwePBjfffcd9PX137R4BIsWLcJHH32ETz75BAAwZswYxMXF4Z9/\n/il1HcWZOXMmjI2N0bVrVwD5v4MWLVpgzpw5qF+/PuRyObZt24YzZ87AycmpQm0R0f+U+8hZV1cX\nAwYMwLp167Bnzx5YWlqWeYRzwdGeRCIRpjk6OiIuLg5xcXGIjY3Fp59+ioEDB+LPP/98bV21a9cu\nkoySk5Px5ZdfonHjxrC1tUW9evWQl5eHW7dulSlOID9h6erqCq+tra2FAW3Jycl4/vw5mjVrJsw3\nMjJSS74eHh7w9vaGp6cnBg05Zb4GAAAgAElEQVQahOXLl5fYY1CShIQE1KpVS0jMAODg4IBatWrh\n77//FqYVtyzKwt3dXe114c968eJFqFQqvP/++7CxsRH+/fbbb0hOTi53m6WJRSKRQCaTqU2rVq0a\npFJpkcGFhWVkZGDUqFFo1qwZ7OzsUKdOHWRkZAjfg/bt26NOnTpo1KgRhgwZgg0bNuDx48cl1peQ\nkAB3d3chMQNAy5YtoaOjo7YeSmPdunVo166dkMS9vLxQo0aNMg9IvHbtGpo2bao2rfD3sTwiIyOx\natUqrF27FqampsL0xYsXQyKRwM3NDVZWVli8eDECAgKgo8OLP4g0pdxHzgAwcOBAtG7dGjdu3MDA\ngQPL/P6///4bEolErcu6evXqanvgjRo1wp49e7Bw4UIsWbKkxLqMjIyKTOvXrx9q166Nn3/+GbVq\n1YKenh5atmwpdGuXRbVq1dReSySSMg200tXVxY4dO3D27FkcOXIEa9euxXfffYc9e/aU+bxgcQrv\n4BS3LMridZ81Ly8PEokER44cKVLu1a5OTSguFj09vSLTCp8Tf1VQUBDS09Mxe/Zs2NnZQV9fHz17\n9hS+ByYmJvj9999x/PhxxMbG4qeffsKMGTNw5MgR1KpVq0zxFl4Pb/Ly5Uts2LABd+7cUeu9yMvL\nw5o1a4QR3jo6OkW+a687H64JCxcuxOzZs7F169YiSd7R0RF79+5FdnY2Hj9+DGtrawwePBgODg6i\nxkT0X1KhXd26deuiadOmuHDhAgYMGFCm92ZlZWHlypVo3bq10KVdEl1dXeTk5JSp/szMTFy7dg1j\nxoyBt7c3XFxc8PjxY7WNWvXq1QHkbyQrwtHREdWqVVO7nOTJkydFBvZIJBK0aNECEyZMQExMDGrV\nqoUdO3aUuh0XFxfcuXNHbXBcSkoK7ty5I5wiKK3yfvaGDRtCpVIhLS0NTk5Oav9q165dprrellOn\nTmHo0KHo0qUL6tevD2NjY6SlpamV0dPTQ7t27TB16lQcP34c2dnZOHDgQLH1ubi44MqVK2pH16dP\nn0ZeXh5cXFxKHdehQ4eQmZmJmJgYobcoLi4OmzdvxtGjR4X1bGlpifT0dLUE/er5/Xr16hW5JLC8\nlzfNnz8fs2fPxubNm1/bG2ZkZARra2solUocPnwY3bp1K1d7RFRUhY6cgfzzb7m5ua8dkVqwMQeA\nR48e4fz585g7dy4ePXqEjRs3qpV98eKFUDYrKwtRUVH4+++/MXLkyDLFJZVKUbNmTaxZswZ16tTB\n7du38e2336oddclkMhgaGuLw4cPCEVXBucKyMDY2xscff4ypU6eiZs2akMvlmDNnDlQqlXAkdfbs\nWcTGxqJjx46QyWS4dOkS/v333zJtzL29veHu7o6hQ4cKA7jGjRuHRo0aoW3btmWK2dbWFhKJBAcO\nHEDXrl1hYGBQqsF8zs7O6Nu3L4YNG4ZZs2ahUaNGePDgAY4dOwZ7e/tir3+vbHXr1sWWLVvw3nvv\n4cmTJ/j222+FnRMA2L9/P5KTk+Hp6Qlzc3PExcUhKysL9erVK7a+Pn36IDQ0FIGBgZg4cSKUSiVG\njx4NX1/fMp13XbNmDTp16oTGjRurTXdzc4NCocC6deswadIktGnTBg8ePMCPP/6I3r17Iy4uDjt3\n7lR7T2BgIIYPH44mTZrA09MTu3fvxh9//KH2u4yOjsb06dOxc+fOEnek5s2bhxkzZmDJkiVwdnYW\nfosGBgbCb+Pw4cPIy8uDQqFAcnIypkyZgnr16pWr94yIilfhk0Q1atR446UiT548gYuLC1xdXdGx\nY0csWLAAPj4+OHnyZJHklJiYCBcXF7i4uMDLyws7duxAREREmY/MdXR0sGLFCly5cgWtWrVCcHAw\nJk2apDbIRk9PD+Hh4Vi7di1cXV3x0UcflamNwmbMmIFWrVphwIAB8PX1hbu7Oxo3bix09ZqamuL0\n6dPo168fmjVrhsmTJyM4OLhMd8SSSCTYsGEDatasCV9fX/j6+sLKygrr168vU3cqkH9eOiQkBDNn\nzoRCoSjTXcEWLFiAgQMH4ttvv0Xz5s3Rr18/HD9+/I0j6ivL/PnzkZ2dDW9vb3z++ef4+OOP1WI1\nMzPDnj174O/vjxYtWmD+/PmYN28ePD09i62vRo0a2L59Ox4/foyOHTvio48+QvPmzTF//vxSx5Se\nno4DBw6UOIjNz88PGzZsEI7GIyIisGrVKrRu3RqxsbEYM2aMWvnevXsjODgY3333Hdq2bYv4+Hh8\n/vnnaqcaHj16hMTERDx//rzEuJYuXYrnz59j8ODBwu/QxcUFEyZMUKsnODgYLVq0QGBgIFq1aoXt\n27cXOQVBROUnUSqVlX+HinfQs2fP4OHhga+//hpff/11ZYdD/0EDBw7EixcvsHnz5soOhYjKqMLd\n2pTv4sWLuHbtGpo1a4bHjx9j7ty5yMrKeuNtG4k04cmTJ1i+fDk6deoEPT097Nq1C3v37q30O44R\nUfkwOWvQggUL8M8//0BXV1e4w9erd3EiEoNEIsGhQ4cQERGBp0+fwsnJCUuWLBHuBEdE2oXd2kRE\nRFUM7xpARERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RMRERUxTA5ExERVTFMzkRERFUMkzMREVEV\nw+RMRERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RMRERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RM\nRERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RMRERUxTA5ExERVTFMzkRERFUMkzMREVEVw+RMRERU\nxTA5ExERVTFMzkRERFWMVifniIgISKVSBAcHC9NUKhVCQ0Ph6uoKa2trdO/eHVevXq3EKImIiMpG\na5Pz2bNnsWrVKri7u6tNnzt3LhYsWIDw8HAcOXIEMpkMvXr1wuPHjyspUiIiorLRyuT88OFDDBky\nBPPnz4dUKhWmq1QqREZGYtSoUfDz84ObmxsiIyORlZWFbdu2VWLEREREpaeVybkg+bZt21Ztempq\nKtLS0tChQwdhmqGhITw9PXH69Om3HSYREVG56FV2AGW1evVqJCUlYcmSJUXmpaWlAQBkMpnadJlM\nhjt37ry23sTERM0FSURElUahUFR2CBWmVck5MTER06dPx/79+1GtWjWN1v0urEwiIno3aFW39pkz\nZ3D//n28//77qFmzJmrWrInjx49j2bJlqFmzJiwsLAAAGRkZau/LyMiAlZVVZYRMRERUZlp15Ny9\ne3c0adJEbdrw4cNRt25djBkzBs7OzpDL5YiJiUHTpk0BAE+fPsXJkycxffr0ygiZiIiozLQqOUul\nUrXR2QBQo0YNmJubw83NDQAQFBSEiIgIKBQKODs7Y86cOTAyMkJAQEBlhExERFRmWpWcS2PkyJHI\nyclBcHAwlEolmjVrhqioKJiYmFR2aERERKUiUSqVqsoOgoiIiP5HqwaEERER/RcwORMREVUx79w5\n54q4/f3gSmm39riVldIuERFVTTxyJiIiqmKYnImIiKoYJmciIqIqhsmZiIioimFyJiIiqmKYnImI\niKoYJmciIqIqhsmZiIioimFyJiIiqmKYnImIiKoYJmciIqIqhsmZiIioimFyJiIiqmKYnImIiKoY\nJmciIqIqhsmZiIioiqmU5Hz37l0kJCRURtNERERVnqjJedWqVRg2bJjatODgYLi5uaFVq1Zo27Yt\n7t+/L2YIREREWkfU5Lx8+XLUqFFDeB0XF4dly5YhICAA3377LZKSkjBnzhwxQyAiItI6emJWnpqa\nik8//VR4vWPHDtjY2GDRokXQ0dHBw4cPsWPHDoSGhooZBhERkVYR9cj55cuXqFatmvA6JiYGnTp1\ngo5OfrNOTk64e/eumCEQERFpHVGTs729PY4ePQoAuHDhAlJSUtChQwdhfnp6OkxMTMQMgYiISOuI\n2q39+eefIzg4GH///Tdu374NGxsbdO7cWZh/6tQpuLq6ihkCERGR1hE1OX/55ZeoXr06fvvtNzRu\n3BijRo2CgYEBAODBgwfIyMjA559/LmYIREREWkeiVCpVlR1EVXH7+8GV0m7tcSsrpV0iIqqaRD1y\nLvDo0SOcO3cOGRkZ8Pb2hpWV1dtoloiISCuJnpx//PFHRERE4MmTJ5BIJNixYwesrKxw//59NGjQ\nALNmzWLXNhHRO4S9kBUn6mjtFStWYObMmQgICMDKlSuhUv2vB71mzZro1q0bfv31VzFDICIi0jqi\nJufFixfD398fc+fORdu2bYvMb9iwIa5duyZmCERERFpH1OSckpKCdu3alThfKpXiwYMHYoZARESk\ndURNzlKpFBkZGSXOv3r1KuRyuZghEBERaR1Rk3Pnzp2xevXqYo+OL1++jDVr1qBbt25ihkBERKR1\nRE3OkydPBgC0atUK06ZNg0Qiwfr16/H555+jY8eOkMvlGDdunJghEBERaR1Rk7NcLkdsbCy6dOmC\n6OhoqFQqbN26FYcOHUKfPn1w8OBBWFhYiBkCERGR1hH9OmdLS0vMnTsXc+fOxb1795CXlwdLS0vh\nyVRERESkTtQMOXz4cPzxxx/Ca0tLS1hZWQmJ+dy5cxg+fLiYIRAREWkdUZPzhg0bkJycXOL81NRU\nbNy4UcwQiIiItE6l9i1nZmZCX1+/MkMgIiKqcjR+zvn48eM4duyY8Do6OhpJSUlFyimVSkRFRaFB\ngwaaDoGIiEiraTw5x8XFITw8HAAgkUgQHR2N6OjoYsvWr19fKEtERET5NJ6cR44ciaFDh0KlUsHZ\n2Rk//fQTevbsqVZGIpHA0NAQBgYGmm6eiIhI62k8ORsaGsLQ0BAAcPHiRVhaWqJGjRqaboaIiOid\nJep1znZ2dgDyzy/Hxsbixo0bwnRvb29IpVIxmyciItJKot+EZO7cuQgLC8OzZ8/UnudsYGCAkJAQ\njBgxotR1LV26FCtXrsTNmzcBAK6urhg7diy6dOkCAFCpVAgLC8Pq1auhVCrRrFkzzJkzB/Xr19fs\nhyIiIhKRqJdSrVmzBtOmTUPLli2xceNGXLhwARcuXMCmTZvw/vvvY9q0aVi7dm2p66tduza+++47\nHD16FDExMWjbti0GDhyIy5cvA8jfEViwYAHCw8Nx5MgRyGQy9OrVC48fPxbrIxIREWmcRKlUqt5c\nrHw8PT1hZWWFHTt2QCKRqM1TqVTw9/dHRkYGTpw4Ue42HBwcMHXqVHz22WdwdXXFkCFDMHbsWABA\nTk4OFAoFZsyYgcGDB7+xrtvfv7mMGGqPW1kp7RIRiYHb0ooT9cg5KSkJ3bt3L5KYgfwR2z169Cj2\nGujSePnyJbZv347s7Gy0aNECqampSEtLQ4cOHYQyhoaG8PT0xOnTp8v9GYiIiN42Uc85m5mZISUl\npcT5KSkpMDMzK1OdV65cQefOnfH06VMYGRlh3bp1cHd3FxKwTCZTKy+TyXDnzp0yx05ERFRZRE3O\nPj4+WLp0KRo2bIi+ffsKR9AFj45ctmwZBgwYUKY6FQoF4uLi8OjRI+zcuRNBQUHYvXt3hWNNTEyE\nUYVrKX/bRETvisrelioUikqKQHNETc5Tp07F2bNnERQUhClTpsDJyQlAfnf3vXv34OrqiqlTp5ap\nzurVqwv1NG7cGOfPn8fChQuF88wZGRmwtbUVymdkZMDKyuqN9SoUCtwuUySa8y58kYiICnBbWnGi\nnnO2sLBATEwMZs+eDQ8PD2RmZiIzMxMeHh4ICwtDTEwMzM3NK9RGXl4ecnNzYW9vD7lcjpiYGGHe\n06dPcfLkSbRs2bKiH4WIiOitEf06Z319fQQGBiIwMLDCdU2bNg2dO3eGjY0NsrKysG3bNhw7dgxb\ntmyBRCJBUFAQIiIioFAo4OzsjDlz5sDIyAgBAQEa+CRERERvh6jJefjw4QgICEC7du2go1Pxg/S0\ntDQMHToU6enpMDU1hbu7O7Zt24aOHTsCyL+vd05ODoKDg4WbkERFRcHExKTCbRMREb0tol7nbGtr\ni+zsbNSsWRN+fn7o1asXWrduLVZzFcZr84iIKo7b0ooT9ZxzYmIiVq5cidatW2Pjxo3w9fWFu7s7\nJk2ahHPnzonZNBERkdYSNTkbGBjAz88Pq1atQmJiIpYsWYJGjRph+fLl+OCDD9C4cWPMmDFDzBCI\niIi0jqjJubAaNWogICAAGzZsQGJiIsLDw5GZmYmffvrpbYVARESkFUQfrV1YTk4ODhw4gKioKBw6\ndAg5OTnCNctERESUT/TknJubi4MHD2LHjh3Yv38/srOzYWNjgy+++AK9e/dG48aNxQ6BiIhIq4ia\nnAMDA7F37148fvwYVlZWGDBgAHr37o33339fzGaJiIi0mqjJ+cCBA/D390fv3r3h5eWlkWudiYiI\n3nWiJufExETo6b3V09pERERaT9RDWSZmIiKismM/MxERURXD5ExERFTFMDkTERFVMUzOREREVQyT\nMxERURWj0eHUGzduLNf7BgwYoMkwiIiItJpGk/OwYcPK/B6JRMLkTEREVIhGk/PFixc1WR0REdF/\nkkaTs52dnSarIyIi+k/igDAiIqIqRvT7a6anp2Pt2rX4888/8ejRI+Tl5anNl0gk2LVrl9hhEBER\naQ1Rk3N8fDx69OiBJ0+ewNnZGfHx8XB1dYVSqcSdO3fg6OgIGxsbMUMgIiLSOqJ2a3/33XcwMDDA\n6dOnsXPnTqhUKoSGhiI+Ph5Lly6FUqnEjBkzxAyBiIhI64ianE+dOoXPPvsM9vb2wrOcVSoVACAg\nIAAffvghpkyZImYIREREWkfU5Pz8+XNYW1sDAAwMDAAADx8+FOZ7eHjgwoULYoZARESkdURNzra2\ntrh16xYAwNDQENbW1jhz5owwPz4+HkZGRmKGQEREpHVEHRDm5eWFPXv2YOLEiQCAPn36YOHChcKo\n7c2bN2PQoEFihkBERKR1RE3OI0eOhJeXF549ewZ9fX1MmjQJSqUSO3fuhK6uLvr164fp06eLGQIR\nEZHWETU529rawtbWVnitr6+PefPmYd68eWI2S0REpNVEPec8fPhw/PHHHyXOP3fuHIYPHy5mCERE\nRFpH1OS8YcMGJCcnlzg/NTW13I+ZJCIieldV6r21MzMzoa+vX5khEBERVTkaP+d8/PhxHDt2THgd\nHR2NpKSkIuWUSiWioqLQoEEDTYdARESk1TSenOPi4hAeHg4g/6EW0dHRiI6OLrZs/fr1hbJERESU\nT+PJeeTIkRg6dChUKhWcnZ3x008/oWfPnmplJBIJDA0NhbuGERER0f9oPDkbGhrC0NAQAHDx4kVY\nWlqiRo0amm6GiIjonSXqdc52dnYA8s8vx8bG4saNG8J0b29vSKVSMZsnIiLSSqImZwCYO3cuwsLC\n8OzZM+GJVED+gzBCQkIwYsQIsUMgIiLSKqIm5zVr1mDatGlo164dgoKC4OLiAgBISEjAokWLMG3a\nNJibm/P+2kRERIWImpwXLVqEdu3aYceOHZBIJMJ0BwcHdO7cGf7+/oiMjGRyJiIiKkTUm5AkJSWh\ne/fuaom5gEQiQY8ePYq9BpqIiOi/TNTkbGZmhpSUlBLnp6SkwMzMTMwQiIiItI6oydnHxwdLly7F\n5s2b1QaDqVQqbNmyBcuWLUPXrl3FDIGIiEjriHrOeerUqTh79iyCgoIwZcoUODk5Acjv7r537x5c\nXV0xdepUMUMgIiLSOqImZwsLC8TExGDlypU4ePAgbt68CQDw8PBAly5d8Omnn/LBF0RERK8Q/Tpn\nfX19BAYGIjAwUOymiIiI3gminnNu1KgR9u7dW+L8/fv3o1GjRmKGQEREpHVETc43btxAdnZ2ifOz\ns7OFrm4iIiLKJ2pyBlDsNc4F/vnnH5iYmJS6roiICLRv3x62traoW7cu+vXrh/j4eLUyKpUKoaGh\ncHV1hbW1Nbp3746rV6+WO34iIqK3TePnnDds2ICNGzcKr+fMmYPVq1cXKadUKhEfHw8fH59S133s\n2DF88cUXaNq0KVQqFWbPng1/f3+cPn0a5ubmAPLv5b1gwQIsWLAACoUC33//PXr16oWzZ8+WaUeA\niIiosmg8Oefk5OD+/fvC66ysLOjoFD1ANzIywueff47x48eXuu6oqCi114sXL4adnR1OnTqFrl27\nQqVSITIyEqNGjYKfnx8AIDIyEgqFAtu2bcPgwYPL+amIiIjeHo0n5y+++AJffPEFAKBhw4YICwtD\nt27dNN0MgPzEn5eXJzx6MjU1FWlpaejQoYNQxtDQEJ6enjh9+jSTMxERaQVRL6W6dOmSmNVjwoQJ\n8PDwQIsWLQAAaWlpAACZTKZWTiaT4c6dO6LGQkREpCmiX+cslokTJ+LUqVPYv38/dHV1K1xfYmIi\njDQQV3nbJiJ6V1T2tlShUFRSBJqjlck5JCQEUVFRiI6OhoODgzBdLpcDADIyMmBraytMz8jIgJWV\n1WvrVCgUuC1KtG/2LnyRiIgKcFtacaJfSqVp48ePx/bt27Fr1y7Uq1dPbZ69vT3kcjliYmKEaU+f\nPsXJkyfRsmXLtx0qERFRuWjVkfPYsWOxefNmrFu3DlKpVDjHbGRkBGNjY0gkEgQFBSEiIgIKhQLO\nzs6YM2cOjIyMEBAQUMnRExERlY5Gk/PEiRPRr18/4ZacN2/ehKWlJQwNDTVS/7JlywBAuEyqwPjx\n4xESEgIAGDlyJHJychAcHAylUolmzZohKiqK1zgTEZHW0GhyjoyMRJMmTYTk3KhRIyxevBh9+vTR\nSP1KpfKNZSQSCUJCQoRkTUREpG00es5ZLpfj+vXrwmuVSqXJ6omIiP4TNHrk3LVrV3z//ffYt28f\nTE1NAQA//vgj1qxZU+J7JBIJdu3apckwiIiItJpGk/Ps2bNRu3ZtHD9+HBkZGZBIJCXevpOIiIiK\np9HkbGhoiODgYAQHBwMAzM3NMXXqVI2dcyYiIvovEPVSqujoaLi4uIjZBBER0TtH1OTcpk0bAPmj\nrGNjY3Hjxg0AgJ2dHby9vYUHVhAREdH/iH4Tkrlz5yIsLAzPnj1TG71tYGCAkJAQjBgxQuwQiIiI\ntIqoyXnNmjWYNm0a2rVrh6CgIKGLOyEhAYsWLcK0adNgbm6OQYMGiRkGERGRVhE1OS9atAjt2rXD\njh07IJFIhOkODg7o3Lkz/P39ERkZyeRMRERUiKjXOCUlJaF79+5qibmARCJBjx49kJSUJGYIRERE\nWkfU5GxmZoaUlJQS56ekpMDMzEzMEIiIiLSOqMnZx8cHS5cuxebNm9UGg6lUKmzZsgXLli1D165d\nxQyBiIhI64h6znnq1Kk4e/YsgoKCMGXKFDg5OQHI7+6+d+8eXF1dMXXqVDFDICIi0jqiJmcLCwvE\nxMRg5cqVOHjwIG7evAkA8PDwQJcuXfDpp59CX19fzBCIiIi0jujXOevr6yMwMBCBgYFiN0VERPRO\n4BMpiIiIqhgmZyIioiqGyZmIiKiKYXImIiKqYpiciYiIqhhRk3N4eDji4+NLnH/16lWEh4eLGQIR\nEZHWETU5h4WF4cqVKyXOZ3ImIiIqqlK7tbOyslCtWrXKDIGIiKjK0fhNSC5fvoy//vpLeH3y5Em8\nePGiSDmlUokVK1ZAoVBoOgQiIiKtpvHkvHv3bqGrWiKRYOXKlVi5cmWxZaVSKZYsWaLpEIiIiLSa\nxpPzZ599Bh8fH6hUKnTo0AETJ07EBx98UKSckZERHB0doacn+h1EiYiItIrGM6O1tTWsra0BANHR\n0XBxcYFMJtN0M0RERO8sUQ9b27RpI2b1RERE7yTR+5QPHz6MtWvXIiUlBUqlEiqVSm2+RCLBn3/+\nKXYYREREWkPU5Dxv3jxMmzYNVlZWaNq0Kdzc3MRsjoiI6J0ganJetGgR2rZti61bt/J6ZiIiolIS\n9SYkSqUSfn5+TMxERERlIGpybtasGRITE8VsgoiI6J0janKeM2cOdu/ejS1btojZDBER0TtF1HPO\nn3zyCXJzcxEYGIjRo0ejVq1a0NXVVSsjkUhw6tQpMcMgIiLSKqImZ0tLS8hkMjg7O4vZDBER0TtF\n1OS8Z88eMasnIiJ6J1XqIyOJiIioKNGTc2ZmJmbOnIkuXbqgadOmOHPmjDA9PDwcCQkJYodARESk\nVUTt1k5NTUXXrl2RmZkJNzc3pKSkICcnBwBgYWGBqKgo3Lt3Dz/88IOYYRAREWkVUZPz1KlToVKp\ncOrUKZiYmBQZGNatWzeelyYiInqFqN3asbGxGDJkCBwcHCCRSIrMt7e3x+3bt8UMgYiISOuImpyf\nPXsGqVRa4vyHDx9CR4dj0oiIiAoTNTPWr18fx48fL3H+nj170LBhQzFDICIi0jqiJuegoCDs2LED\nc+bMwYMHDwAAeXl5uHbtGr788kv88ccfGD58uJghEBERaR1RB4T16dMHt27dwuzZszF79mwAQO/e\nvQEAOjo6+O6779C1a1cxQyAiItI6oiZnABg9ejT69OmDXbt2ISkpCXl5eXB0dISvry8cHBzEbp6I\niEjriJ6cAaBOnToYNmyYRuo6fvw4fvnlF1y8eBF37tzBggULMHDgQGG+SqVCWFgYVq9eDaVSiWbN\nmmHOnDmoX7++RtonIiISm6jnnE+dOoWIiIgS5//000/CHcNKKzs7G25ubggLC4OhoWGR+XPnzsWC\nBQsQHh6OI0eOQCaToVevXnj8+HGZ4yciIqoMoibn8PBw/PXXXyXOv3z5MsLDw8tUZ+fOnfHtt9/C\nz8+vyGVYKpUKkZGRGDVqFPz8/ODm5obIyEhkZWVh27Zt5foMREREb5uoyfnSpUto0aJFifObN2+O\nixcvaqy91NRUpKWloUOHDsI0Q0NDeHp64vTp0xprh4iISEyinnN+8uRJsXcGKywrK0tj7aWlpQEA\nZDKZ2nSZTIY7d+689r2JiYkw0lgkZZOYmFhJLRMRaV5lb0sVCkUlRaA5oiZnZ2dnHDlyBIGBgcXO\nP3ToEJycnMQModQUCmLTCOAAABO1SURBVAUq60ai78IXiYioALelFSdqt/Ynn3yCgwcPYty4ccJN\nSID8x0UGBwfjyJEjGDRokMbak8vlAICMjAy16RkZGbCystJYO0RERGIS9ch5yJAh+Ouvv7B06VIs\nW7ZMSJDp6elQqVT46KOPEBQUpLH27O3tIZfLERMTg6ZNmwIAnj59ipMnT2L69Okaa4eIiEhMol/n\nPG/ePOEmJCkpKQAABwcH+Pn5oU2bNmWuLysrC0lJSQDybwV669YtXLp0Cebm5rC1tUVQUBAiIiKg\nUCjg7OyMOXPmwMjICAEBAZr8WERERKIRLTnn5ubi7NmzsLa2hpeXF7y8vDRS74ULF+Dr6yu8Dg0N\nRWhoKAYMGIDIyEiMHDkSOTk5CA4OFm5CEhUVBRMTE420T0REJDbRkrOenh78/f0xe/Zs1K1bV2P1\nenl5QalUljhfIpEgJCQEISEhGmuTiIjobRJtQJiOjg7s7Ow0eqkUERHRf4Goo7UDAwOxatWqIqOn\niYiIqGSi34SkRo0aaNq0Kbp37w4HB4ci98OWSCQYMWKEmGEQERFpFVGT87Rp04S/N2/eXGwZJmci\nIiJ1oiZnTd43m4iI6L9C1ORsZ2cnZvVERETvJNFvQgIA169fx7Fjx5CRkYE+ffrA3t4eubm5SEtL\ng1wuR/Xq1d9GGERERFpB1OScl5eH0aNHY+3atVCpVJBIJGjevLmQnFu3bo3g4GB8/fXXYoZBRESk\nVUS9lOrHH3/EunXrMGnSJBw8eBAqlUqYZ2xsDF9fX+zevVvMEIiIiLSOqMl5/fr1+Pjjj/HNN98U\n+2hINzc3XL9+XcwQiIiItI6oyfn27dto1qxZifMNDQ15BzEiIqJXiJqcrayscOPGjRLn//nnn7C1\ntRUzBCIiIq0janLu2bMnVqxYodZ1LZFIAAAHDx7Epk2b4O/vL2YIREREWkfU5DxhwgTUqVMHbdu2\nxZAhQyCRSBAREYFOnTqhX79+aNCgAcaMGSNmCERERFpH1ORsamqK3377DWPGjEF6ejoMDAxw6tQp\nZGdnY8KECdi7d2+Re20TERH914l+ExIDAwN88803+Oabb8RuioiI6J0gSnJ++vQp9u7di9TUVFhY\nWKBLly6wtrYWoykiIqJ3jsaT8507d9CtWzekpqYKNx2pUaMGNm3aBC8vL003R0RE9M7ReHKeOXMm\nbty4gWHDhqFt27ZISkrCDz/8gPHjx+PEiROabo6I3jG3vx9cKe3WHreyUtolKo7Gk3NsbCwGDBiA\nmTNnCtOsrKzw5Zdf4t9//4WNjY2mmyQiElVV3WGoqnFRxWl8tHZaWhpa/r/27j+q5vuPA/jT91KS\nH7fCjX6gXHJTJKs4NsaEpRaZwjmc/KqbjuOcJbGIxu5Sa3SWqHT8KnSws2aN7XTalIrMhqP94FCr\ntfyISris7v3+4bi0bIb0/ux6Ps7pj/t2730/xfm8Pu/3+/N5fzw9W7R5eXlBr9ejqqqqrbsjIiIy\nOm1enJubm9G5c+cWbQ9fa7Xatu6OiIjI6LyUq7XLy8vx/fffG143NDQAAC5cuICuXbu2ev8/7b9N\nRET0qnkpxVmj0UCj0bRqj4yMbPH64TOeb9y48TJiEBER/Se1eXFOTk5u668kIiJ6pbR5cZ49e3Zb\nfyUREdEr5aXurU1ERETPjsWZiIhIYl76gy+ISJq4gQWRdHHkTEREJDEszkRERBLD4kxERCQxLM5E\nREQSw+JMREQkMSzOREREEsPiTEREJDG8z/k/gPejEhG9WjhyJiIikhgWZyIiIonhtDZRO+DSBBE9\nC46ciYiIJIbFmYiISGJYnImIiCSGa8703LiOSkT0cnDkTEREJDEszkRERBLDaW0yKpxqJyJjYLQj\n5/T0dLi6ukKhUGDs2LEoKioSHYmIiOhfMcrifOjQIURFReG9997DsWPH4OHhgXfffReVlZWioxER\nET2VURbn5ORkzJ49G/PmzcPgwYMRHx8PhUKBjIwM0dGIiIieqkNdXZ1edIi2dP/+ffTp0wfbt2+H\nv7+/oT0iIgJlZWXIzc0VmI6IiOjpjG7kXFtbi+bmZvTq1atFe69evXD16lVBqYiIiP49oyvORERE\n/3VGV5ytrKwgk8lw7dq1Fu3Xrl1D7969BaUiIiL694yuOJuYmGD48OHIz89v0Z6fnw9PT09BqYiI\niP49o9yEZMmSJQgJCYG7uzs8PT2RkZGBmpoaBAeL2aCCiIjoWRjdyBkApk+fDo1Gg/j4eLz++uso\nKSlBdnY27O3t27Sf48ePIygoCEOGDIFcLkdmZmabfv/zSkxMxJtvvgk7Ozs4OjoiMDAQZWVlQjOl\npaVh9OjRsLOzg52dHSZOnIijR48KzfRXiYmJkMvlWL58udAcGo0Gcrm8xc+gQYOEZnqopqYGoaGh\ncHR0hEKhgKenJwoLC4XlcXFxafW7ksvlmDlzprBMANDc3Iz169cbNkJydXXF+vXr0dTUJDTXrVu3\nEBUVhaFDh8La2hre3t44ffp0u2Z42nFTr9dDo9HAyckJ1tbW8PHxwU8//dSuGaXAKEfOALBw4UIs\nXLjwpfZx+/ZtqFQqzJo1C6GhoS+1r2dRWFiIBQsWYMSIEdDr9fjwww/h7++PEydOwMLCQkimvn37\nYt26dXB0dIROp8PevXsxZ84cfPvttxg6dKiQTI8rLS3Fjh074OzsLDoKAECpVOLw4cOG1zKZTGCa\nB+rq6jBp0iR4eXkhOzsbVlZWqKioaHVnRHvKz89Hc3Oz4XVNTQ3GjRvX4jZKETZt2oT09HSkpKRA\npVLh/PnzUKvVMDExQWRkpLBcS5cuxfnz55GSkgIbGxvs378f/v7+KCkpQd++fdslw9OOm5s3b0Zy\ncjKSk5OhVCqxceNGTJs2DaWlpejWrVu7ZJQCo7vPWRQbGxts3LgRc+bMER2llcbGRtjb2yMzMxNT\npkwRHcegf//+iImJEb7cUF9fj7FjxyIpKQlxcXFQqVSIj48Xlkej0SAnJwfFxcXCMjxJbGwsjh8/\nLrkZj8clJCQgKSkJv/zyC8zMzITlCAwMhIWFBbZu3WpoCw0Nxc2bN7F//34hme7evQtbW1vs2rUL\nPj4+hvaxY8di4sSJiI6ObvdMfz1u6vV6ODk5YdGiRYiIiDDkViqV+OCDD4QfK9qTUU5rU0uNjY3Q\n6XSQy+WiowB4MOV38OBB3L59Gx4eHqLjYNmyZXjnnXfwxhtviI5iUF5eDicnJ7i6umL+/PkoLy8X\nHQlffvkl3N3dERwcjIEDB2LMmDFITU2FXi+N83u9Xo/du3cjMDBQaGEGAC8vLxQWFuLXX38FAPz8\n888oKCjAxIkThWVqampCc3MzOnfu3KLdzMxMMieCFRUVuHLlCsaPH29oMzMzw+jRo3HixAmBydqf\n0U5r0yNRUVFwcXERXgjPnz8Pb29vaLVamJubY8+ePcKnkXfu3IlLly4hNTVVaI7HjRw5Elu2bIFS\nqcT169cRHx8Pb29vlJSUwNLSUliu8vJybN++HWFhYVi2bBnOnTuHFStWAAAWL14sLNdD+fn5qKio\nwNy5c0VHwbJly9DY2AhPT0/IZDI0NTUhIiLipS+1/ZNu3brBw8MDCQkJGDJkCBQKBQ4cOICTJ0/C\nwcFBWK7HXblyBQCeuInUH3/8ISKSMCzORm7VqlUoKSnBkSNHhK9bKpVKFBQUoKGhAZ9//jnUajUO\nHz4MlUolJM+FCxcQGxuLI0eOoFOnTkIyPMlfR1cjR47E8OHDkZWVhfDwcEGpAJ1OBzc3N8TExAAA\nhg0bhkuXLiE9PV0SxXnnzp0YMWIEXFxcREfBoUOHsG/fPqSnp8PJyQnnzp1DVFQU7O3thZ48bNu2\nDUuWLIFKpYJMJsOwYcMwY8YM/Pjjj8Iy0ZOxOBuxlStX4tChQ/jiiy/Qv39/0XFgYmJiOEMfPnw4\nTp8+jS1btuDTTz8VkufkyZOora2Fl5eXoa25uRlFRUXIyMhAdXU1TE1NhWR7XNeuXeHk5IRLly4J\nzaFQKDB48OAWbYMGDUJVVZWgRI9cu3YNubm5SEhIEB0FALBmzRqEh4cjICAAAODs7IzKykp88skn\nQovzgAEDkJubi9u3b+PWrVuwtrZGcHCwJI4PwIP/Y8CDf087OztD+6u4iRTXnI3UihUrcPDgQeTk\n5EjmNpy/0ul0uH//vrD+fXx8UFRUhIKCAsOPm5sbAgICUFBQABMTE2HZHqfVanHhwgXDgUsULy8v\nXLx4sUXbxYsXWxxERcnKyoKpqamhGIp2586dVjNVMpkMOp1OUKKWzM3NYW1tjbq6OuTl5eHtt98W\nHQkA0K9fPygUihabSGm1WhQXF79ym0hx5PwCGhsbDaMZnU6HqqoqnD17FhYWFkIPWBEREdi/fz/2\n7NkDuVxuWMcxNzdH165dhWRau3YtvL29YWNjg8bGRhw4cACFhYXIzs4WkgeA4Z7Yx3Xp0gUWFhbC\nptoBIDo6GpMnT4atra1hzfnOnTuYNWuWsEwAEBYWBm9vbyQkJGD69Ok4e/YsUlNTsXr1aqG59Ho9\ndu3ahenTpwv7//1XkydPxqZNm9CvXz84OTnh7NmzSE5ORlBQkNBceXl50Ol0UCqVuHz5MlavXo1B\ngwa1610mTztuqtVqJCYmQqlUYuDAgUhISIC5uTlmzJjRbhmlgLdSvYCCggL4+vq2ap81axZSUlIE\nJHrg767KXrFiBVauXNnOaR5Qq9UoKCjA1atX0b17dzg7O2Pp0qWYMGGCkDx/x8fHR/itVPPnz0dR\nURFqa2vRs2dPjBw5Eu+//z6cnJyEZXro6NGjiI2NxcWLF2Fra4tFixYhJCQEHTp0EJbp2LFj8PPz\nQ15eHtzd3YXleNytW7ewYcMGHD58GNevX4dCoUBAQAAiIyNbXS3dnj777DOsW7cO1dXVsLCwgJ+f\nH6Kjo9GjR492y/C046Zer8dHH32EHTt2oK6uDu7u7khISBB6wiwCizMREZHEcM2ZiIhIYliciYiI\nJIbFmYiISGJYnImIiCSGxZmIiEhiWJyJiIgkhsWZ6BXk4uICtVotOgYR/Q0WZyIJyMzMNOxYJpfL\nYWVlhSFDhkCtVqO6uvq5vvPrr7+GRqNp46RE1B64fSeRhERFRWHAgAG4d+8eSktLkZWVhZKSEhQX\nFz/zzlLffPMN0tLSnrgr3KlTp/C///HcnEiqWJyJJGTChAl47bXXAABz586FlZUVNm3ahK+++grT\npk1rs36k8LQtIvp7PHUmkrBRo0YBAC5fvmxoy83NRWBgIFQqFXr37o2hQ4di9erV0Gq1hveo1Wqk\npaUBQIvp8oqKCgCt15wLCgogl8tx4MABfPzxx1CpVFAoFPDz83vioyrT0tIwbNgwWFtbY/z48Th+\n/Dh8fHzg4+PzUn4PRK8ajpyJJOy3334D0PJhJpmZmTA1NUVISAi6d++O0tJSbNmyBb///jsyMjIA\nAMHBwaipqUF+fj62bdtm+GzPnj3/sb/NmzdDJpMhPDwcDQ0NSEpKwqJFi5CXl2d4z/bt27F8+XKM\nGjUKYWFhqKysxJw5c2BhYYG+ffu25V+f6JXF4kwkIQ0NDaitrYVWq8WpU6cQFxcHU1NTTJo0yfCe\ntLQ0dOnSxfA6ODgYjo6OWL9+PWJjY2FrawsPDw8MHDgQ+fn5CAwM/Nf937t3D4WFhYZnWcvlckRF\nRaGsrAwqlQr379/Hhg0b4OrqipycHHTq1AkAoFKpEBYWxuJM1EY4rU0kIQEBAXB0dISzszPmzZsH\nc3Nz7N27FzY2Nob3PCzMOp0O9fX1qK2thZeXF/R6Pc6cOfNC/QcFBRkKM/BoWr28vBwA8MMPP+DG\njRuYN2+eoTADwMyZM//2UaVE9Ow4ciaSkLi4OAwePBj19fXIysp64lXaZWVliImJQWFhIe7evdvi\nzxoaGl6of1tb2xavHxbcuro6AEBlZSUAwMHBocX7OnbsCHt7+xfqm4geYXEmkpARI0YYrtaeOnUq\nfHx8sHDhQpSWlsLc3Bz19fXw9fVFly5dEB0dDQcHB5iZmaG6uhphYWHQ6XQv1L9MJntiu17Px74T\ntSdOaxNJlEwmQ0xMDKqrq5GamgrgwVXVtbW1SElJwZIlSzBlyhSMGzcOffr0aZdMdnZ2ANDqCu6m\npibDxWtE9OJYnIkkbNSoUfDw8EBKSgq0Wq1hZPv4SFan0yE5ObnVZ83NzQE8mpJuC25ubrC0tMTO\nnTvx559/Gtqzs7PbtB+iVx2ntYkkLjw8HHPnzsWePXsQEBAAS0tLqNVqhISEoGPHjsjJyUFjY2Or\nz7m5uQEAli9fjrfeegsdO3bE5MmTDUX7eZiYmCAqKgqRkZHw8/ODv78/KisrkZmZiQEDBqBDhw7P\n/d1E9AhHzkQSN3XqVDg4OCApKQndunVDdnY2bG1todFokJiYCJVKha1bt7b6nK+vL9RqNb777juE\nhoZiwYIFuH79+gvnWbx4MeLi4lBVVYU1a9aguLgY+/btQ48ePZ55i1EierIOdXV1vNKDiF6ITqeD\no6MjfH19kZSUJDoO0X8eR85E9Ey0Wm2rq7f37t2LmzdvYsyYMYJSERkXrjkT0TMpLS3FqlWr4O/v\nD0tLS5w5cwa7d++GSqWCv7+/6HhERoHFmYieib29PWxsbLBt2zbcvHkTFhYWCAoKwtq1a1vsLkZE\nz49rzkRERBLDNWciIiKJYXEmIiKSGBZnIiIiiWFxJiIikhgWZyIiIolhcSYiIpKY/wMYkYo41632\nkwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "AV2mO2XZmmzH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Next visualization" + ] + }, + { + "metadata": { + "id": "AQTD9GGXhy_f", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 517 + }, + "outputId": "23f79f8d-5964-4ccc-a099-4c95c43971aa" + }, + "cell_type": "code", + "source": [ + "# First, let's look at the graph itself\n", + "\n", + "url = 'https://fivethirtyeight.com/wp-content/uploads/2017/09/methahickey-inconvenient-0830-6.png'\n", + "example = Image(url=url, width=600)\n", + "\n", + "display(example)" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "hs2C2ZEmINHb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "I don't want to have to generate fake data that fits this pattern, so I'll work instead on extracting the real data first." + ] + }, + { + "metadata": { + "id": "irMf12IqDGll", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "outputId": "719980ef-3a5a-44fa-edbb-5fcf2590d652" + }, + "cell_type": "code", + "source": [ + "# I create new dataframe columns for the number of respondents in several rating ranges\n", + "df['1/10'] = df['respondents']*df['1_pct']*0.01\n", + "df['10/10'] = df['respondents']*df['10_pct']*0.01\n", + "df['2-9/10'] = df['respondents']-df['1/10']-df['10/10']\n", + "\n", + "# I separate out the rows for Men and Women, and all users.\n", + "\n", + "males = df[df.category == 'Males']\n", + "females = df[df.category == 'Females']\n", + "users = df[df.category == 'IMDb users']\n", + "\n", + "# And combine men, women, and individual scores into a new dataframe\n", + "ratings = pd.DataFrame({'males':males.respondents, \n", + " 'females':females.respondents,\n", + " '1 out of 10 ratings':users['1/10'],\n", + " '10 out of 10 ratings':users['10/10'],\n", + " '2-9 out of 10 ratings':users['2-9/10']\n", + " })\n", + " \n", + "ratings.head(5) " + ], + "execution_count": 118, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
1 out of 10 ratings10 out of 10 ratings2-9 out of 10 ratingsfemalesmales
timestamp
2017-07-17 12:28:32.785639NaNNaNNaNNaN402.0
2017-07-17 12:28:33.025600NaNNaNNaN78.0NaN
2017-07-17 12:28:36.697246303.744256.284117.972NaNNaN
2017-07-17 12:34:17.770310NaNNaNNaNNaN402.0
2017-07-17 12:34:17.963319NaNNaNNaN78.0NaN
\n", + "
" + ], + "text/plain": [ + " 1 out of 10 ratings 10 out of 10 ratings \\\n", + "timestamp \n", + "2017-07-17 12:28:32.785639 NaN NaN \n", + "2017-07-17 12:28:33.025600 NaN NaN \n", + "2017-07-17 12:28:36.697246 303.744 256.284 \n", + "2017-07-17 12:34:17.770310 NaN NaN \n", + "2017-07-17 12:34:17.963319 NaN NaN \n", + "\n", + " 2-9 out of 10 ratings females males \n", + "timestamp \n", + "2017-07-17 12:28:32.785639 NaN NaN 402.0 \n", + "2017-07-17 12:28:33.025600 NaN 78.0 NaN \n", + "2017-07-17 12:28:36.697246 117.972 NaN NaN \n", + "2017-07-17 12:34:17.770310 NaN NaN 402.0 \n", + "2017-07-17 12:34:17.963319 NaN 78.0 NaN " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 118 + } + ] + }, + { + "metadata": { + "id": "djmuFOWeFLii", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "outputId": "a79e3583-5531-4d2c-af02-ed27d4c8964d" + }, + "cell_type": "code", + "source": [ + "# Because each entry has a different timestamp, there's a NaN in every single row.\n", + "# I interpolate to fill the NaNs, and drop the first and last few rows because \n", + "# interpolate doesn't fix them\n", + "\n", + "ratings.interpolate(method='nearest', inplace=True)\n", + "ratings.dropna(inplace=True)\n", + "ratings.head()" + ], + "execution_count": 119, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
1 out of 10 ratings10 out of 10 ratings2-9 out of 10 ratingsfemalesmales
timestamp
2017-07-17 12:28:36.697246303.744256.284117.97278.0402.0
2017-07-17 12:34:17.770310303.744256.284117.97278.0402.0
2017-07-17 12:34:17.963319303.744256.284117.97278.0402.0
2017-07-17 12:34:21.250099303.744256.284117.97278.0402.0
2017-07-17 13:00:02.497484303.744256.284117.97278.0402.0
\n", + "
" + ], + "text/plain": [ + " 1 out of 10 ratings 10 out of 10 ratings \\\n", + "timestamp \n", + "2017-07-17 12:28:36.697246 303.744 256.284 \n", + "2017-07-17 12:34:17.770310 303.744 256.284 \n", + "2017-07-17 12:34:17.963319 303.744 256.284 \n", + "2017-07-17 12:34:21.250099 303.744 256.284 \n", + "2017-07-17 13:00:02.497484 303.744 256.284 \n", + "\n", + " 2-9 out of 10 ratings females males \n", + "timestamp \n", + "2017-07-17 12:28:36.697246 117.972 78.0 402.0 \n", + "2017-07-17 12:34:17.770310 117.972 78.0 402.0 \n", + "2017-07-17 12:34:17.963319 117.972 78.0 402.0 \n", + "2017-07-17 12:34:21.250099 117.972 78.0 402.0 \n", + "2017-07-17 13:00:02.497484 117.972 78.0 402.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 119 + } + ] + }, + { + "metadata": { + "id": "H1uijBv9hL6a", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VQbS2rC3J8D6", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 310 + }, + "outputId": "da009877-11e0-438c-d565-9ff5f09ccc4a" + }, + "cell_type": "code", + "source": [ + "# And now I plot.\n", + "\n", + "sns.set()\n", + "sns.set_style(\"whitegrid\")\n", + "sns.set_context(\"notebook\", font_scale=1.1, rc={\"lines.linewidth\": 2.5})\n", + "\n", + "ax = sns.lineplot(data=ratings);\n", + "ax.set(yticks=range(0,1500,500));\n" + ], + "execution_count": 135, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAElCAYAAACMDhegAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VFX6wPHv9Mlk0jtJqIGEFgwJ\nRMCEIhAFgoKC+lMUV0RAWBusiCguiqKuAgqigOiu2BUrrsCitChFQIqAdAgJ6XVmkqn390dkIKSQ\nkDIp5/M8Ps7ccu45YTJv7rnnnFcmSZKEIAiCIDRzcldXQBAEQRDqgwhogiAIQosgApogCILQIoiA\nJgiCILQIIqAJgiAILYIIaIIgCEKLIAKaIAiC0CKIgCYIgiC0CCKgCYIgCC2CCGiCIAhCiyACmiAI\ngtAiKF1dgWvlcDgwGo2oVCpkMpmrqyMIgiDUE0mSsFqtuLu7I5fX/L6r2QY0o9HIsWPHXF0NQRAE\noYF06dIFDw+PGh/fbAOaSqUCyhqsVqtrfN6hQ4fo0aNHQ1XLpUTbmqeW3DZo2e0TbWsYFouFY8eO\nOb/na6rZBrSL3YxqtRqNRlOrc2t7fHMi2tY8teS2Qctun2hbw6nt4yQxKEQQBEFoEURAEwRBEFoE\nEdAEQRCEFqHZPkOrjsPhICcnh4KCAux2e7l9SqWSI0eOuKhmDUu0rXnQarWEhYXV+oG3IAjVa5EB\n7fz588hkMtq3b19hnprRaMTd3d2FtWs4om1NnyRJ5Obmcv78eTp06ODq6ghCi9IiuxyNRiOhoaGo\n1Wox6VpoUmQyGX5+fpSWlrq6KoLQ4rTIgAbUana5IDQm8UeW0FJlZxbz1Uf7MJdaXXL9FtnlKAiC\nINSd3e4g60IxhfklqDUKdPqyeWlWs43sTANms42CXBN5uUbGT4xj07qjHDucyfDR3XDFDDYR0IRq\n7d27l6eeeoqsrCwWLFjAiBEjXF2lan377bd88cUX/Oc//3F1VQSh2bJa7fz8bRbrPvqhxudIDok7\n/9aHc6fyyMky4K5v/JAm+uVcYM2aNYwdO5YePXowe/bsBrvO+fPniYyMxGw2X3MZS5Ys4Y477mDf\nvn2VBrOrteXYsWOMHz+eXr16MWrUKH777bdrrsuVKmvf6NGjRTAThGuwa/tp/rv2EFaLHZVKgdXi\nqNX5ebkmAPwC3WnbwbchqnhV4g7NBQIDA5k2bRrbtm2rU7BpDOnp6URERFS5v7q2WK1WpkyZwp13\n3smaNWv48ccfmTZtGhs3bsTLy+uq17bZbCiV4iMqCPWlxGTBUGTmzIlcCgtKMJfaGHl7TwA2rTtK\nQJCe3Sln6BHThqBQLW1Cg3D30OCu1+CuVyNJkrMsrZuKoDaeyOUyFAo5SpUCwCV3ZheJbwsXGD58\nOAAHDx4kMzPzqsevXbuWd955h7y8PLp37868efOcQ74jIyP54Ycf6NSpEwBvvvkmp06dYtGiRdxz\nzz0AXH/99QC8/fbbxMfHlyvbYrGwaNEi1q1bh81mY+DAgTz99NPo9XqGDBlCeno606dPR6FQsHXr\n1gorX1fXll27dmE2m5k0aRJyuZzRo0fzwQcfsGHDBsaNG1ehnbNnz0alUpGdnc2OHTv417/+hUql\nYtGiRZw7dw5PT0/GjRvHww8/DFBp+9LS0vjkk0/47LPPnD+f+fPn895775GdnU1iYiIvvfQSWq0W\ngPfff5/Vq1djtVqZOHEin376Kc899xyJiYkcOHCAf/7zn5w+fRqtVsuIESOYO3fuVf+9BKEpsZht\n7P/tPD//909KS8oP1nDTqZwBzV2vIT21kPxcE12jQ+jVz5vY2Oa18LIIaE3czp07WbhwIatWrSIq\nKooVK1YwZcoUvv/++6tOzF2zZg033ngjO3bsqHKR0XfeeYddu3bxxRdf4ObmxhNPPMGCBQt46aWX\n+OmnnxgyZIjzC762jh8/TpcuXcqNOO3atSvHjx+v8pzvv/+eFStW8NZbb2GxWDh48CAvv/wybdq0\nIS0tjfvuu49u3boxePDgStu3du3aCmWuX7+ejz/+GEmSuOuuu/jyyy+5++67SUlJ4e233+a9996j\nU6dOvPrqq+WC8oIFC5gwYQK33nqrSFckNAuSJHH+TD45WQaKCkrJyTLwx+/pVR5f1rVoR6VWkHxH\nNHq9hoDgv/5oPdM4da5PrSKgHTuXzycb/6TEbMNut6NQKOr9Gm4aJXcOi6RLW596Lffbb79lzJgx\nREdHAzB16lQ++ugj9u/fT1xcXL2UP3v2bAIDAwGYOXMmY8eOZcGCBXWe+mA0Givc0Xl4eFBQUFDl\nOUOGDKFPnz5A2YoaF18bjUaioqIYOXIku3btYvDgwTWux0MPPYSPj4+z/MOHDwNlwXPMmDF07doV\ngMcff5yPPvrIeZ5SqeTcuXPk5eXh6+tLTExMja8pCI1BkiTSzhXw2Xu/cdOY7nTtGULKzyc59kfV\nPT9x/dvRrpMfoW298fbVObd3iPBvjCo3qFYR0L7ZepLdh6/etVdXOo2KmffE1muZmZmZdOnSxfle\noVAQHBxMVlZWvZUfGhrqfB8aGorVaiUvLw9//7p9wN3d3TEYDOW2FRcXV7viR3BwcLn3+/bt4/XX\nX+fYsWPYbDYsFgujRo2qVT0ub4dOpyMjIwOArKwsoqKinPvc3NycgQ/K7tDefPNNRowYQZs2bZg6\ndSrDhg2r1bUFoT6VlljZufU0waGedOkeBBJs/vEYhmIzVqsDq9XOmP+7jpWLtpOXY0Qml+EX4I7W\nTcUtd/bCL0Dv6iY0qFYR0G5J7ESJ2dbgd2ijEzvWe7lBQUGkp1/qMnA4HGRkZDjvqHQ6XblVJ7Kz\ns52vazKBNygoiLS0NOcXe1paGiqVCl/fuo9S6ty5M6tWrcLhcDjv9o4ePVrp87Oq6jxz5kzuvvtu\nlixZgq+vL/Pnz8dkMlV6bG0FBgY6gxtASUkJ+fn5zvft27fntddew+Fw8NNPP/Hoo4+SkpJSowEt\nglAf7HYHxw9nsWXDMQxFpRgNFgA8PDWEtvVG76lF61b2Nb475QyR3YNQa5TccX8cek8NGq0Kubz1\nTORvFQGtS1sfnn2gbOBAU1gT0GYrC6wOhwO73Y7ZbEYul1f6TCw5OZlHHnmEUaNGERkZyapVq9Dr\n9fTq1Qsoeyb1zTffEBUVxYEDB1i/fj39+/cHwNfXF7lcTmpqapUjFZOTk1m+fDnR0dFotVpef/11\nRo0aVePuxura0rdvX9RqNatXr+bee+9lw4YNnDlzplZ3OSaTCS8vLzQaDb///jvr1q1zdjfWpH3V\nGTFiBP/4xz+45ZZb6NixI4sXLy63/5tvviEhIQFfX1/c3d2RJKlB/hgShIsudiHu353K0YMZzgB2\npeIiM7tSzjDk5ijiEzvSb1BHQsK8ncHL+RyslWkVAa2pWb58OUuXLnW+v/icbOHChRWOvf7665k5\ncyYzZ84kNzeXbt26sXz5cmfwmzt3LrNnzyYuLo4+ffowevRocnJygLIutClTpnDPPfdgs9l46623\n6Nu3b7nyp0yZgtFoZMyYMTgcDhITE3n66afrpS0qlYrly5czd+5c3njjDcLDw1m2bBne3t41Ln/e\nvHksXLiQF154gfj4eG6++WbnHWll7auNhIQEHnzwQR588EGsViv3338/vr6+qNVqALZv387ChQsp\nLS0lODiYf/3rX+j1LbvLRnCdrAtF/PutXykxVb1sVHRsKJ4+bvQb2BE3XdnnNLx9/T63b85k0uUT\nC5oRs9nMoUOH6NGjR4URfEeOHHE+6L9SU7hDayiibXVjMBjo27cv//3vf2nXrl2DXuvyz+iePXuI\nja3fZ69NSUtuX13b5rA7OH+2AF9/HZkXijl9PIdffj7p3O/r7077CD969QknrJ13o64D6sp/t+q+\n36sj7tCEVm39+vUMGjQIq9XKSy+9ROfOnWnbtq2rqyW0UHa7g/wcE/5BZXf6/3l7B+dO5fHgYwl0\nigzg3Ok8AO55KJ72Ef6t6vlXfRABTWjVPv/8c+bMmYNMJqNnz54sXrxYrIYv1Jnd5uDXLacwFJVS\nYrKSk2XAYraRm22kR0wbbhjamYAgPVpt2aODlYu2MfL2nvSOb8sNN0agUolntddCBDShVVu1apWr\nqyC0IOZSG1s3HuPXzaeqPObQvnQO7UvniX8Oo2dsKKHtvAkJ8yIiKrARa9oyiYAmCIJQSxfvwHLz\nTcTGlr1f8GTlK9MrVXK8fXX4+OnQaJRo3VT0G9QRd72G7te1aeSat2wioAmCINSCzWZn9ZIUMtKL\nCOvoVuVxKrWCSY/c0GqH0LuCCGiCIAhXcDgkDEWXFiywmO3s/y0VgCEjokgc3oXP3v+NjNRSJElC\nJpeROLwzMmTo9Gp6xLRxDqsXGo8IaIIgCJfZsv4YWzZUvhC1j5+OG0d2ReOmJLiNJ936apHJZMhk\nMCgpspFrKlxJBDRBEATgxNEsPlq5q9pj8nNN2O0OOkT4M/mJRPbs2dNItRNqQgQ0oU4WL17Mxx9/\njN1ur9ds1A1l0qRJJCUlVbuepNC6ZKQX8Z+3fq2QK0yukHHzmB7OaRzuejXtI/xRKOqWhUJoOOJf\nxgXWrFnD2LFj6dGjB7Nnz66w/9ixY4wfP55evXoxatSoBgsUb775Jo899tg1n5+ens6qVav4/vvv\nK62jxWLh73//O0OGDCEyMpKdO3dWOGbNmjUkJCQQExPDo48+WmF1/rqorH2rVq0SwUwAylauz8oo\nxl2vpku38kPmR9zWg7mvjCS2Xzt6X9+W3te3JbJHMBqtuAdoykRAc4HAwECmTZvGbbfdVmGf1Wpl\nypQpDB06lN27dzN58mSmTZtGYWGhC2pavfT0dLy8vAgICKjymN69e/PKK69UekxKSgpLly5lxYoV\nbNu2DZvNxvPPP1+ja9tstmuut9C65WQZePeN7bwydz3bNh7Hw1NLaWnZ52ns3TE8+9oo4vq3d20l\nhWsiApoLDB8+nKFDh1a6SO+uXbswm81MmjQJtVrN6NGjadeuHRs2bKi0LIPBwFNPPUX//v256aab\nePnll7FYylboXrt2LePHjy93/JAhQ9i6dStbt27lnXfeYcOGDcTExJCUlFRp+adPn2bixIn06dOH\npKQkZ0borVu38re//Y3c3FxiYmJ4/PHHK5yrVquZOHEicXFxla7ev3btWsaOHUvXrl3R6/U89thj\n/PDDD5SUlFRal8jISD744AOSkpK44YYbAHjppZcYOHAgvXv3ZuzYsc5nGlW1b8KECXz88cflfj6L\nFi0iPj6ehISEchmvCwoKmD59OrGxsYwaNYp3332XAQMGOPevWLGCxMREevfuTVJSEtu3b6+03kLT\nIEkSOVkG8nON+AXo8fDSYjSYsVntzkDWo3fo1QsSmixx/9zEHD9+nC5dupQLAF27duX48eOVHv/C\nCy+Ql5fH+vXryc3N5YknnmDFihVMnz692uskJiby0EMPcerUKRYtWlTpMRfvFpOTk1mxYgVHjx5l\n0qRJhIWFkZiYyMqVK3n88cdJSUm55rYOHDjQ+b5Tp04AnD17tlzizctt3LiRjz/+GJ2uLNNu9+7d\nmTJlCh4eHqxevZpHH32UTZs21ah9AH/88QfJycmkpKSwZcsWHnvsMQYPHoyPjw/PP/88kiSxZcsW\nCgsLeeihh5znnTp1ig8//JDPP//cmVNO3DU2LZIk8VvKWQ4fuEBulgFDsRmAGXMGc/OY7mz49jBK\npRyZXIZaLDXVIrSagFa8/yeKD2zGbrdTWE1OK4/oQXj0GuJ8n7NhNZbMM1ct32/Y/WiCO9S5nkaj\nEQ+P8hMxPTw8KCgoqHCs3W7n+++/54svvsDDwwO5XM706dN58cUXrxrQamL//v0UFhYydepUFAoF\n0dHR3HbbbXzzzTcV0tBcC5PJVGlbq3uONnny5HLJR0ePHu18/eCDD7J8+XLOnj1L586da1SHoKAg\nJkyYAMCNN96ITqfj5MmTxMTEsH79etauXYter0ev13PvvfeyZMkSoCxzuMVi4cSJE/j6+pbL+i24\nntViZ9H8/1UY6HGRRqsieXyvRq6V0NBaTUCzFmZTeu6PstfVHKdt173ce0vmGed51XGYjXWpnpO7\nu3uFL/Ti4uJKU6fk5+djtVrLfZmGhoaSmZlZL3XJysoiODi4XFLL0NDQKu8Wa0un01Voq8FgqDbn\nWEhISLn3K1eu5MsvvyQ7OxuZTFYh6/TV+Pv7V6iTyWQiLy8Pq9Va7nqXv27Xrh1z5sxh2bJlPPro\no/Tr14+nnnqqQv2ExmMoKuWXzafYtf00Dnv5rFjuHhqiegTh7atD61Yxka7QMrSagKbyCkDbtjt2\nu73arMMqr/KDF9RB7WtUvlxTP7m6OnfuzKpVq3A4HM5ux6NHj1Y6Ms/HxweVSkVaWpqziy4tLY2g\noCCg7Mv58udRdrudvLw85/urrSofGBhIRkZGuZ/Z5eXXVefOnTl69CjJyckAnDx5EkmSapyLbPfu\n3axatYr//Oc/dO7cGZlMRmxsLBdT/NVl1XxfX19UKhUXLlxw3kVeuHCh3DHJyckkJydjMBh47rnn\neOmll3jjjTeu+ZpC7eTnmlBrFOjc1fyWcpb/fnWo0uMG3xxJwtCa3bELzVurCWgevYbg0WtIrRNF\n+g//W73XxWazYbfbcTgc2O12zGYzcrkclUpF3759UavVrF69mnvvvZcNGzZw5swZhg0bVqEchULB\nyJEjWbx4Ma+++ip5eXksW7bM2Q0XFRXF6dOnOXDgAFFRUSxbtgyr9dL9qZ+fH1u3bi0XPC/Xq1cv\nPD09eeedd5g0aRJ//vkna9eurdWXtsVicQYYq9WK2WxGpVIhl8sZO3YsM2fOJDk5mbCwMJYsWcKI\nESNwc6t6fbzLmUwmlEolvr6+2Gw23n777XIB/Grtq45CoWD48OG8+eabLFy4kMLCQj744APn/lOn\nTpGZmUlsbCxqtRqtViueoTWSfTvP8cOXh7DbHdx+b2+69WqD7Iq8Ye56NQnDOhPVMxhPr5p9noTm\nT4xydIHly5cTHR3NihUr+Pbbb4mOjuaZZ54BQKVSsXz5ctavX09cXBzLly9n2bJllY6IBJg7dy7e\n3t4kJSXxf//3f8TGxjoHL7Rv355HH32Uhx56yDnQ4fK7q5tuugmFQkF8fDwjR46sUPbFuuzYsYP+\n/fszc+ZMZs6cSXx8fI3betNNNxEdHU1mZiYPPPAA0dHR7N69G4ABAwYwbdo0Jk2aREJCAjKZzPlz\nqIkbbriBxMREkpKSGDJkCHq9vtz0gKu172qeeeYZ7HY7iYmJTJ48mVGjRqFWl63PZ7FYeP3114mP\nj2fAgAFkZmby5JNP1voaQvVKTBZOHctmx5ZTfPLubgzFZtqEe6P3LMtibLM6kCQJb183esWFccON\nETy18Gae+Odw+t7QQQSzVkYmXfzzuZmpLkX35entr1TbO7TmRLStYX300Ud89913zmH/dXH5Z9SV\nqe4bw7W0LzuzmI9W7qIwv/wUjhlzhuDjpyPtXAFbNx6j36BOtO/kV5/VrZWW/G/nyrZV9/1enVbT\n5SgItXXy5EnMZjNdu3blxIkTrF69mrvvvtvV1WqxJEni0L50vvpwX5XHnD2Zi4+fjtC23tz1QN1H\n2gotiwhoglAFo9HIzJkzyczMxNvbmxEjRoiAVs8kh8Tenef4fXcqaWcrTk0B6BodTHxiR3Q6NX6B\nLbMHQqgfIqAJQhWio6OrXKFFuHZ5OUa2/+8E7SP8iI4LoyDPVGkwS7qlG3H926NQikf9Qs2IgCYI\nQqMpLbGy9KWfAfD01gKgVCrwD9Tj5eOGJEH/wZ3o2MW/umIEoVIioAmC0OAkh0R2ZjFqjZIbR0ax\nad1R9u44x8CkLs7/BKGuREATBKHB/Lr5JHt35bLuo3UAjLitJ/0Hd8LbR0dYe586TX4XhCuJgCYI\nQoPYvukEP/1wtNw2u82OTCaje0wbF9VKaMlEQBMEoV5JksS6Lw6yd8c55zaNVkmHzv506CyejQkN\nRwwfEupVTk4O99xzD71792b+/Pmurs5VpaenExMT48whJ9SNJEm89fLmcsHMJ0DFkwtuYvzEOAJD\nPF1YO6GlEwGtkVksFubMmcPgwYOJiYlh9OjRbNq0qdpzDAYDc+fOZcCAAfTt25cXXnihwdYNvJgA\n9Fp9+umn6PV69uzZw7PPPlth/44dO5gwYQK9e/dmyJAhFfYXFRXxyCOPEBMTQ0JCAh9++OE116Uy\nV7avTZs27Nu3z7mklXDtDu9P5/mZ68jNvpR5IriNJ/2Gum4lD6F1EQGtkdlsNkJCQvjggw/Ys2cP\nTzzxBDNnzuT06dNVnrNw4UJyc3NZv34969atY+/evbz99tuNWOuaS09PJyIiosqH/Tqdjttuu63K\ndQ/nz5+P3W5n27ZtrFixgjfffJMdO3bU6NpiceDGl55aQNaFIsylNg7tSy+3L+mWbkx+IlEM/BAa\njQhojUyn0zFjxgzCwsKQy+UMHDiQ9u3bc/DgwSrP+d///seDDz7oXHx3woQJfPnll1Uef+DAAcaP\nH09sbCzJycls2bLFuW/ChAnl1iLcuXMnAwYMAGDWrFmkp6czffp0YmJiWLZsWaXlr127lqSkJPr0\n6cPEiROdwXjWrFl8/fXXvP/++8TExPDzzz9XODc6Oppbb72V8PDwCvtMJhM//vgjjz76KHq9nq5d\nu3LbbbdV2da1a9cybtw4Fi5cSHx8PK+88gqpqancd999xMfHEx8fz6xZsyguLq6yfefPnycyMhKz\n2ez8+SxevJgJEyYQExPDHXfcwblzl7rPfv31V0aOHElMTAxPPPEEjz32GP/6178AyMvL46GHHqJP\nnz707duXu+66q1x2g5bmp/8eZdXi7Rw5mIFGq6Rb9KVccHdPjic+saMLaye0RiKguVheXh4nT56s\nNsOyJElcvoa0JEmkp6c7v6gvV1hYyKRJkxg/fjw7d+5k5syZPPLII5w9e/aqdXn11Vdp06YNS5cu\nZd++fTz88MMVjtm5cycLFy7k1VdfJSUlhbi4OKZMmYLVauXVV18lOTmZiRMnsm/fPgYPHlzDn0KZ\nM2fOABAREeHc1rVr12oTiv7xxx8EBweTkpLC448/DpRltd62bRs//PADqampvPXWWzVuH8A333zD\nM888w65duwgJCeG1114DoKCggIcffpgpU6awe/dubrzxRjZu3Og877333iMoKIhffvmFlJQUnnji\niVqnrWkOJIeE3ebAL6AsEevh39Ox2xwEhHhwx9/68Oxro+gUGXCVUgSh/rW837YqbD79K8/99DoL\nf3mrwrbnfnq9XrbVls1mY9asWYwYMaLK7AAAgwYNYuXKlRQVFZGZmenMy3V57i9nvTZvJjQ0lNtv\nvx2lUsnAgQNJTExk3bp111zPy3377beMGTOG6Oho1Go1U6dOpbi4mP3799e5bJPJVGFFfQ8PD4zG\nqrOB+/n5cd9996FUKtFqtYSHhzNgwADUajV+fn5MnDiRXbt21aoeY8eOpUuXLqhUKm699VYOHz4M\nlP1s27dvT3JyMkqlkhEjRtCjRw/neUqlkuzsbNLS0lCpVMTFxVWbTLY5Ki4q5aU5/yUn24Cvf9m/\nVVh7HxRKOUEhnkR2r5/kr4JwLVrNsP0sYy6Hs4836LbacDgc/OMf/wAoNxrw2Wef5bvvvgPKMiLP\nnz+fOXPm8OKLLzJixAh0Oh233347x48fx9+/4hDozMxM2rQpP8cnNDSUzMzMa67rleV36XJpVQeF\nQkFwcDBZWVl1Llun01UIXgaDodq0McHBweWe0WRnZ/PCCy+wd+9ejEYjkiTh4+NTq3pc/nN1c3PD\nZDIBkJWVRUhISLljL/9ZP/DAAyxdupRJkybhcDi4/fbbmTp1aot5hvTRql2cOFL271xqsqLWKJn1\n/HDcdGJAjdA0tJqAFujuR7eAztjt9grbKjvuWrbVlCRJPP3002RlZbFy5cpyI+zmz59fYbi7l5cX\nL7/8svP9xx9/TI8ePSrtzgoKCiI9vfzD+bS0NKKiooCyoFFaWurcl52dXau6X1m+w+EgIyODwMDA\nWpVTmfbt2wNlaVs6deoElOUNq6479spg8frrryOTyfjuu+/w9vbmxx9/5JVXXqlz3QACAwO5cOFC\nuW3p6enOoKbX65k9ezazZ8/mxIkT3HfffXTr1o1BgwbVy/VdJe1cPu8uSSm37asP9/G3vw8QwUxo\nUlpNQBvUoR+DOvQrdwdwcVtlx13LtpqaN28eJ0+eZPXq1bi5XT2jbmpqKu7u7nh7e7N3717eeuut\nKr+kBw4cyAsvvMBXX31FcnIyv/76K1u3bnU+X+ratSvr169n/PjxGAwG3n///XLn+/v7k5qaWmVd\nkpOTeeSRRxg1ahSRkZGsWrUKvV5Pr169atR2h8OB1WrFarUiSRJmsxmZTIZarUan05GUlMSSJUt4\n8cUXOX/+PF9++SWLFi2qUdlwqdvSw8ODjIwMVq9eXav2VWfgwIHMnz+fdevWkZSUxP/+9z8OHTpE\nXFwcAD///DMdO3akbdu2uLu7I5fLm/XdmdFgZvHzm7DbHOW2d4oMYOTtPfH0Ftmghaal1TxDayrS\n0tL49NNPOXLkCAkJCcTExBATE1PtMPzDhw9zyy23EBMTw7x583jqqafo16/yYOrt7c2KFSv48MMP\nnSP/Xn/9defdz8SJE/Hw8CAhIYGHHnqI0aNHlzt/8uTJrFy5kri4OJYvX16h/Ouvv56ZM2cyc+ZM\n+vfvz44dO1i+fDkqlapG7d+9ezfR0dFMnjyZ9PR0oqOjuemmm5z7582bB0BCQgKTJk1i+vTpXH/9\n9TUqG2D69OkcOXLEOVhl+PDhtWpfdXx8fFi6dClLly6lT58+bNiwgcGDBzvvsM+ePcv9999P7969\nGT9+PLfffjsDBw6s1TWaipxMA6/N21ghmI2fGMvdk+Px9tW5qGaCUDWZdPnwuWakuhTdl6e3v5LR\naKz2mUxzJtrW+MaNG8f48eMZN25crc67/DPqylT3VVn3xUH2/HppZGy/QR0ZOrIrMnnt7zibYvvq\ni2hbw6ju+706rabLURDqw9ZVeLVpAAAgAElEQVStW4mOjsbd3Z2vv/6aP//8k8TERFdXq15ZLfZy\nwezJBTeh0YqvCqHpE12OglAL+/fvJykpib59+7JmzRrefPNNgoKa/1B1u93BhfOF5GQaUKrk3PlA\nHwC6dAsSwUxoNsQnVRBqYcaMGcyYMcPV1ahXJoOFt/+1BUOxmfjEDkT1DEbrpsLTS8vgEZGurp4g\n1Ji4QxOEVs7NXcW4iXF06R7Ezq2n+faT/YS29ebRZ4cSJFbHF5oRcYcmCK2E1Wpnzy9n+XXzSRTK\n8iuY3PVAH+ITO9D7+ra07eCLQiH+1hWaHxHQBKEFMxSVkvLzSU79mU12pqHK4+x2Bx0iRPJNoXkT\nAU0QWqjjR7L4eFXV61hGx4Y6X2vdajaPUBCaMhHQBKEFOn0ip0IwCwjS07ajL9GxYYR38HVRzQSh\n4YiOchfIycnhnnvuoXfv3hXWbWxIdc1GLTR9OZkGPv/3b2g0SsZPjEXvUTYp9fHnhjH1H4MYeXu0\nCGZCiyXu0Fzg008/Ra/Xs2fPnma91p/QtGRnFLP81bJkrgOTIunSPZjgUC88vLRikIfQKohPuQuk\np6cTEREhgplQZ8ePZPH1R/s4ejADH38dHTqXDez4LeUMcrkMb1+dCGZCqyE+6Y1s1qxZfP3117z/\n/vvExMSwadMmVqxYwbBhw4iPj2fGjBnk5eUBcP78eSIjI/niiy8YNGgQcXFxfPDBBxw5coRbb72V\n2NhYnn76aWc267S0NO677z7i4+OJj49n1qxZlWa1hrJV76u6rtlsZtasWcTHxxMXF8fYsWPrJd+Z\nUL8O7U3j41W7OLAnjfxcI0qlglvu7EX369qQdEt3V1dPEBqdCGiN7NVXXyU5OZmJEyeyb98+zp8/\nz/r16/n3v//Ntm3b8PPz45lnnil3zu+//8769et58803WbhwIUuWLGHlypX897//ZfPmzWzZUtbN\nJEkSkydPZtu2bfzwww+kpqby1ltvVVYNPvjggyqv+9VXX1FcXMzmzZvZuXMnL7zwQo3S3AiN4+zJ\nXBY8+QNrP9zn3FaQV5a93NPbjdsm9EahFL/aQuvTap6hZW76iayfNmO321EoFBX291wwv9xxF3V4\n4H70HTtgOHWa0+++V2X5F4+rrU8++YQ5c+Y4k0T+/e9/p3///pjNZucxU6dORaPR0K9fP7y8vEhK\nSiIgIACAPn36cPjwYQYNGkRYWBiRkWVLFfn5+TFx4kRWrlxZ6+sqlUoKCgo4e/YsUVFRdOvWrdbt\nEhrGji2n2PDt4XLbPL213Dy2h4tqJAhNR6sJaOasbIoO/VHr4+x/JQS1G43Vnm+/LHFobaSnp/PI\nI4+Uyz6tUqnIzMx0bvP3vzThVavV4ufnV+69yWQCykZPzpkzh71792I0GpEkCR8fn1pf95ZbbiEj\nI4MnnniCwsJCRo0axeOPP14us7bQuEpLrGReKKoQzAYM6UR8Qu3/kBKElqjVBDRNYACePbpXeYd2\n5XEXKf7KwaVwdy+3/UqKa8zVFRwczPPPP0/fvn0r7Dt//nytylq6dCkymYzvvvsOb29vfvzxxyoz\nW1d3XShLlDl9+nTS09N56KGHCA8P5+67765VfYS6kySJtWv28cfv6eW2K5Vynlp4sxhYJAiXaTUB\nLejGIQTdOOSqiSIvHnclfccOzm7J+nTXXXexePFiXn75ZcLDw8nLy2PPnj0MGzas1mWVlJTg6emJ\nh4cHGRkZrF69+pquu2PHDnx8fIiIiECn06FQKMQXp4sYi80UFZaCDLgsFe/9MwaIfxNBuEKrCWhN\n1b333oskSUyaNIns7Gx8fHwYPnz4NQW0yZMnM2/ePOLi4mjXrh2jRo3io48+qvV1c3JymDdvHllZ\nWbi5uTFs2LBaZ2QW6u7C+UKUSjn3T+/P77tSSU8toGuvEMLb+aBUVd3LIAitlUy6OOa7makuRffl\n6e2vdLU7tOZMtK35uPwzWlmq+3On83h/6S/0iGlDUBtPBgyJcEU160Vl7WspRNsaRnXf79URY3sF\noQk68Nt59J4aDu1L5/TxHFdXRxCaBdHlKAhN0Khx0RTkmfh18ymSbhHTJgShJkRAE4QmJuWnE3j7\n6OjSPUjMLxOEWhABTRCakNISK5vWHQXKhubPeXmEi2skCM2HeIYmCE1IbvalCfptO4o0L4JQG+IO\nTRBcLDfTzKol2wFIP1fg3B6f2NFVVRKEZkkENEFwoU0/HGXHprxK97UTd2iCUCsioAmCi3z32X72\n7Uwtty2iayCeXloSh3dGrRG/noJQG+I3phmbPXs2/v7+zJw509VVEWpIkiQkScJitpULZkEhHkx+\nPBGZXCxnJQjXSgwKEYRG4HA4yMkycOF8IYZiMyq1glvvug6AoDAND80cKIKZINSRuEMThAZktzsA\nMJdYsVrsZRslkMlkRPYI5v4ZA8jKPeXCGgpCyyHu0FxgyJAhrFixgtGjRxMTE8OTTz5JXl4eU6ZM\noXfv3txzzz3k5uYC8NhjjzFgwABiY2OZMGECJ0+erLLcbdu2ceuttxIXF8f48eP5449L+dtWrFhB\nYmIivXv3Jikpie3btzd4O1szh0MiL8dIZnoRDoeETq8hMMQDpVIOf62Sr9EqCW9feb46QRBqTwQ0\nF1m/fj3vvvsu69evZ/v27UycOJFp06axY8cO1Go1q1atAiAhIYH169fzyy+/0LlzZ2bNmlVpeYcP\nH2bevHnMmzePXbt2cc899zBlyhRKSko4deoUH374IZ9//jl79+5l9erVhIeHN2ZzW5XiolIy0gop\nLbECkJ1RjLHYjEIhJzDEE08vrYtrKAgtU6vpcvx9Vyr7f0vFbnegUNQsjt83rX+5c6vaBtArLpzr\n+tY8SNxzzz0EBAQA0KdPH9zc3IiOjgZg6NChbNiwAYCxY8c6z5k+fTr9+vXDZDKh0+nKlffpp58y\nZswYYmJiABg9ejTvvPMOv/32G23btsVisXDixAl8fX0JDQ2tcT2F2snLMToD2UVaNxU6vcj2LQgN\nrdUEtIJ8E2dPVj7f51rOvXJbu05+tSrTz+/S8VqttsJ7k8mE3W7ntddeY/369eTn5yOXlwXi/Pz8\nCgEtPT2dXbt28cUXXzi3Wa1WsrKySEhIYM6cOSxbtoxHH32Ufv368dRTTxESElKrOgtVKy2xkpdj\nLLdNJpMRGOJR4z+gBEGom1YT0Lx9dLTr5FurO7Qrz61um7eP7srT6uy7775j06ZNvP/++4SFhZGf\nn0+/fv2oLIVdSEgI9913H48//nilZSUnJ5OcnIzBYOC5557jpZde4o033qj3OrdGFoutQjBz06nw\n8Ws5+dsEoTloNQHtur5lXYLXkijy4rlX21bfjEYjarUaHx8fSkpKWLx4cZXHjhs3jqlTpzJ48GB6\n9epFaWkpu3fv5rrrriM3N5fMzExiY2NRq9VotVpsNluD1r21KCoswVBkLrfN198drZvKRTUShNZL\n9IU0YbfeeiuhoaEkJCQwatQo5/OxyvTs2ZNnn32WBQsW0LdvX4YPH+7sfrRYLLz++uvEx8czYMAA\nMjMzefLJJxurGS1SicmCxWJDqVSUC17BoV4imAmCi8ikyvqvmoHqUnRfnt7+Stdyh9ZciLY1PEmS\nyMkyYLXY8fV3R6NVYrHYKTFa8PJxQyar2eToyz+jrkx13xhacvtaYtvsdgc2h8SePXvp1es6bHYH\nZ9KLKDSacTgk7I6ykNG1vS8ymQyz1U5eUSnZ+SUUGc2UWuyEBugZHBtW49+HK1X3/V6dGnU5rlmz\nhrVr13Ls2DFGjRrFwoULnfuOHTvG3Llz+fPPPwkPD+e5554jLi6u3LnvvPMOBoOBgQMH8sILL6DX\n6wEoKirimWeeYevWrej1eqZMmcLdd99d48oLQmOzWuzYbWWTpY3FZmQy0GhVaMS6i0ITZ7HaScs2\nYLU5cEgSdruE1Wan0GChxGwjNauY3X9kkpFnxHmb83n6NV8vLFBPl7aNO8+yRr+FgYGBTJs2jW3b\ntmE2X3peYLVamTJlCnfeeSdr1qzhxx9/ZNq0aWzcuBEvLy9SUlJYunQp7733HuHh4cyePZvnn3+e\nl19+GYD58+djt9vZtm0bqamp3H///XTq1Inrr7++YVorCHWkUisIauNJUWEpMhliAWGhSbHaHJhK\nrZxMK8RgspBbWMrW39MoMlrIyjM1Sh3kMogI9yY0QN8o17tcjX4bhw8fDsDBgwfJzMx0bt+1axdm\ns5lJkyYhl8sZPXo0H3zwARs2bGDcuHGsXbuWsWPHOrtWHnvsMW699Vaee+45JEnixx9/5Ouvv0av\n19O1a1duu+02vvzySxHQhCbHXGolL8eEWqPAx88dL283V1dJaEUKis0UGMz4e2k5eDKX81nFlJht\nBHi7kV9sZvOe85SYbRQYzFcvrBoeOhVhgR5EtvPBWJhDaGgoR87koVTIGRDdho5hXthsDv44nYtC\nLkOllKNSKHDTKgnwdiPIV4dGrbjmrsa6qtOfl8ePH6dLly7O+VEAXbt25fjx4879AwcOdO7r1KkT\nAGfPnsXhKOu2iYiIKHduSkpKXaokCPVOkiRnJmlzqY3MC0UEBOpRqhQurpnQEkiSxKm0QlIOpLPj\nUAZmq51CgxmdRomx1IZaKcdwxWT92lAp5Xi5q4nrFkz7EE8CvN1QKGTIZTIUChlatRI/Ly0atRKd\nRon8r0Wyy54Pdq60zHYhntdcn4ZUp4BmNBrx8PAot83Dw4OCgrKsuyaTqdL9BoMBoMJDfg8PD4zG\n8vN5rubQoUMVtimVymrLqe01mhPRtvpXWuIo995NJ8dsKcVsufYyLRYLe/bscb6//HVL1JTbJ0lS\nhTsKi82B1SZhd4BDknA4QAJ83BXYHVBicWB3SNjsEl/8kILVJuGQytbwVCvl2BwSxSV2bHYJk9lB\nXrGNAqMdQ6mdQmPZItVatQwvnZLMgsqDlfmvxawtVvtV26BUgI9eSUSIFotNQpKgT2d3vNwVuKnl\nf7XPBuRBadk5jr/+swLF2ZWX25T/3SpTp4Dm7u7uDE4XFRcXOwOVTqersN9gMKDX63E4HBW+oAwG\nQ61HslU1ytHNza3cneNFTWW0XEMQbWsYhqIi5+uAIA9U6rrdmUmShFqtplevXkDLHCl3uabUPlOp\nlRKzjdPpRRw6mcNXW07icEjI/+o+Uyrk2O0OSi1XDyJ1VWqRKLVUHsw6hnpRaDDj7+2Gt15DkK8O\nQ4mVYD93gnx1hAWWPZ/y8dDipVejUsrrvZvPlf9uF0c51ladAlrnzp1ZtWoVDofDGTyOHj3KuHHj\nnPuPHj1KcnIyACdPnkSSJNq1a+dc7eLkyZPOrsgjR47QuXPlt7i14e7uTlpaGkFBQahUKpf15wrN\nn812aVSjQiGvl2CWm5uLVisWKG5IpWYbG3edY/fhDORyGXK5jAMncpx3PVdyOCTMFjtmGiaQeejU\nKBUy8osvPeO6rksAaqUChUKGTqskNiqI6Ah/vPQ1H6YulFejgGaz2bDb7TgcDux2O2azGblcTt++\nfVGr1axevZp7772XDRs2cObMGYYNGwaULaw7c+ZMkpOTCQsLY8mSJYwYMQI3t7IH6klJSSxZsoQX\nX3yR8+fP8+WXX7Jo0aI6NyosLIycnBzOnj1bYUUMi8WCWt0yF4oVbat/xUWl2O1lf3xpNEryCus+\naVqr1RIWFlbnclqrUouNklKbcxCEJEF2vokffjnDhRwjRSYLDkfNptdq1QpUSgWDYsNQKuRYbWXd\nhGqVHH8vN7QaJUq5DMdfz7mUCjlyuQw/Ly16NzWpqWeJ6hKBj4cGpVLOuYxi5HIZSoUMjUpBVHtf\n3DRKlGI9z0ZRo4C2fPlyli5d6nz/7bffMmbMGBYuXMjy5cuZO3cub7zxBuHh4Sxbtgxvb28ABgwY\nwLRp05g0aRJGo5HExESeeeYZZznz5s1j7ty5JCQk4O7uzvTp0+tlhKNcLicwMJDAwMAK+/bs2ePs\n6mlpRNvqV06mgc9XbXa+f3LBTWi0Yph+QzKWWMnKN1FksJBbVMq6lFOYLXay8k2UmO1o1Ioq77Kq\n4qZREuLvjiRJOBwSHUO9uK5LAJ3DfQgP8rh6AdXYo8gmtuelRb4jwrzrVJ5QNzX67ZwxYwYzZsyo\ndF9kZCSff/55ledOmDCBCRMmVLrP09NTLJArNFlrVuxwvu7VJ0wEs3piLLHyy4F0zmYUU2goG46e\nnW+iwGDBeJXRfDUJZjf2CSfE350Abzei2vnSxgXzoQTXEL+hglCJjLRCigpKne+Tx0W7sDYtR25h\nCRPnb6j1ef5eWjRqxV+DJLQE++kI8HEjM89EoI+OtsEetA3ywN1NPDNvzURAE4RKePvquO/hfvy0\n7ihdugchF89Arkl+cSkZ+RZ+P5bFxxv+5PDp8nkFPXRqvD00eLqrCfLV4eOhoV2IJ/5ebmjUCtw0\nSoL9dKiUYs6fcHUioAlCJdLOFWAoNnP/jAGurkqzk1tYwoYdZ/ls03Fs9otz+LIqHPfaI4mNvtaf\n0LKJgCYIlfjph6N0igqgqLAETy+xzFVVzFY7x87lY7bYSc82kJlv4tutp6o9Z0B0Gx69MwatWAdT\nqGfiEyUIlTAUlXLicBYmg4VR4vlZOamZxew/ns2+P7PZdTij2mPdNAoSuulJjO+Ov7cbfp5aEciE\nBiM+WYJQCQ9vNwyFpejcW+a8vpoqNdvIKy4lv8jMmQtF5BaW8Pmm41c9L9DHjXeeGopSIS+bctE5\noBFqK7R2IqAJQiUmPXKDq6vgMnuPZrFp9zkOncolr6i02mM9dCoCvHWMGNAehVxG/+g2aNRKFHIx\n0rApkuw2bIVZ2IrzkOx2NEHtsRnywW5DAuyGfGyF2WhDu1w6x2Enb/NHWHPT0fdMBIcDh6UEyWpB\nstswHd+NJess+p6D8B/+N9c1DhHQBKGCvBwjFosdNzcVXj4t//nZ4dO5/PjrGUrMNnYdzrzqKhtK\nhZzO4d489+D16LR1XzlFuDpJcgCyKqckWPMzMGecwl6ch60oF1txLg5TEfZSE9q2XfEfdj8AtuJc\nUpdXPqf4cj4D7wK3DgDI5ApKz/6BOf04pmO7qjzHbiyofcPqmQhognAZSZJY+tLPAPgFuPPw7MEu\nrlHDW/LJPtJzKs9k0Dncm4hwb3p29EerUdCzk79L8121VA5zCcajv2IrysFhKcFuMiBXqrAV5WDN\nv4CtIBvJbkXXuQ/B42c7z7PkpnPho39iL8qpsmx1YLjztUxZs3Ui7cZC+OtvOUmSMKdfvZtZrnb9\nH38ioAnCZTLTL62s35K+tA+fzuWbrScpNdtJyzaUW1vwQm5ZMPP20BDg7YbeTcUN14UyPL6dq6rb\nLDhKjcgNOZhO70fp7o068NLPy2EpwWExI9e4YTq5l9LUo9iLcrAbC7EbC5AcDlS+bQi5ay4AMpWa\n4gM/U3rucPXXNF/KOl1y5iA5G1ZXGszkOk+UngHINW5ogjs5tyu07gSMnoHDXILdUIBC54Fc645c\nqweZDBkykMtRB7bn7LGy0aoymYz2//gIS3YqMpkcmVKJTKVBrtYhUyiRKZSgUCCTuX6upghognAZ\nw2WroccndnBhTeoup6CEZ975hfNZhqsfDEy4uasIYlWQJAd2QyGW7HOUph6mYPsXAHgBGYDSJ5iw\nB15FrtEh2W1kfLaQ0rPVpz+RqS4NOJLJFUi2K5b9kitQeQeh8PDBVpSL0tMPtw6X1jOVKdVoQ7vg\nFt4VmVKFrTgPbXgUHtGDkWt0lV9TqcKj56Bat1+u0qBtE3H1A11MBDRBuIzJeClrZ7tOfi6sybUz\nmCw8vfwXTqUXVro/0McND3c1bfz15bYlxoQ2VhWbJEly4DAVY75wErdOMchkMszpJ8j44hXsxbnV\nnqv0CnAGEZlCidKzks+OXIk6sB0KrQ65uxdKT/9yu4PHP4XcTY/DXIJkNVdexmW0YZFowyJr18gW\nTgQ0QbhMyWUBrbkN2Tdb7bz1xX5++i21wr7RCR2J6xpEzwj/Vp/KxGEuofC3Hyg9cxCbIR+51h1b\nUW65rrv2sz5Eptai8g3BK34UhTu+xW7Ir1CWKWooYW1CULiXX2Vf1zkOhc4Lhc4TmUqNpk3nciMH\nK6Nw9yr7v5se3MSCytdCBDRBuIzJ9Fe3jwy0bk1/BN/RM3ks/mQvF3KMVDY4MTYqkBnjr8Ovlax2\nYs3PwFaci2S1ULRvI7aCLJTegQTdNsv5TDQ/5QsKf/36quVogtoj17rj1WckcrUOh9mE0jsATVAH\nlF4ByOQK9uzZg3clWZ31Xfuj79q/QdooVE0ENEG4zLaNZaO53NxUyJvoXKoTqQUcOJHDz3tSOXOh\nqNJj/L20vDlrCPpmEJTrwnRyH9bcNJDJyd/ycblBExdJNku5AT5yVfmRfnI3Dxwlxc73nrE3ofa7\n1P0qkyvwjBnaALUX6psIaILwF8khIZOBJIHFXLskko3l/e//4MufT1S6r2t7XyLb+TCsb1vaBns2\ncs3qV9kE4GyQy3GUGLAVZmPJTsWSfQ7vfreiCSkbuWc3FZG78b1qy1J4+JZ7r4uIQ+npj6ZNBOqA\ntg3WBqHxiYAmCH8pMVmR/uq26z+4U/UHu4DDIVUazHpHBTLvgeub7B1lTZkzz1C0+wdMJ/ZUO0nX\n47K7JV1ELOrAdliyzl7aFhmPZ68bUXj6oQ4IRyYvn3pGE9IRTUjH+m+A4HIioAnCXwyGS0P2A4Kb\nzkP5E6kFvPvdIQ6dvDTSLjTAnQVTByCXy/Dx0LqwdjUnSRLmtD8pOXMIS/Y5JLsNuUpD4C2PAFBy\n6ndKzv1RbTCTKdXl5jvJNW74j5yGXKND5R2ATNGyu1iF6omAJgh/2bXttPO1u75mKyo0tIMncpiz\nPKXC9ofHNY+BHqXnj6I5vZO8oqMU/LK2wn6l16VFi72uv4XCnd8B4NbxOrRhUWWTftValN6BKL0C\nUXkHljtfJlc0i/lRQuMQAU0Q/pJ0S3f6D+7Ehm8OExLm5erqcPh0boVgNjAmjKF9w+nZyb+Ks1zL\nUWpEptIgUyhxWM2k//tpdEBV91wqvzbO1zKZDN8bJ+Ae1a/CwA1BqAkR0AThLyq1Ane9mjF3X4em\nCSy6+9228okyv34lGUUTnENWtOdHjMd/w5J5Frshj/Bpy1D5BJcFJbkCHGUDbOQ6T+QaHbqI3ugi\n4nDr0LPCcknXsoqFIFwkApogAHa7g2ULf2bAkAjC2/sQGOLagHY6vZDt+9Od75taMLMV55O/5SOK\n9/9U7XE+A24n1eigZ9K4CoMzBKG+iYAmCMDp4zkU5JWw7ouD9BnQnpvH9nBpfRZ/ss/5OjrCv0kE\nM4fZRO6mDyhNPYw153yF/UqfYLTh3ZCpLg1S8Ukcz6k9e0QwExqFCGiCAMjlctp29OXcqTx6X+/a\nuUk2u4NTaZfWYXzuwesbvQ6SJJG78T2suWn43DAObXgUDkspjpKiCsFMHdQB/5snX3VpJ0FoaCKg\nCQLQsYs/Hbs0jYEWc966NBBk3I2dUSkb7+7GZijAdPw3cn5Y7tzmGXsTAEoPXwLHPE7Of1dQmnYM\nlXcggWMeFwM4hCZDBDSh1ZMcEvl5Jjy9tSgbMXhUJrewhCNn8pzvB8eGV3N0/cj7eQ3F+3/CUWpC\nslsr7L98m0yuIGDk1AavkyBcCxHQhFYvL9fIsoWbQQajx/fiur4NH0QuZ7E5+HrLSUBi0+5LK+UP\njAkjPMijVmVZ89IxHNqOzZiPTCZHstuwm4qwFWYjkyuwlxQRfOdc51qFkiRR8MtXVZbn3X+sWGRX\nqLFvjmzg19Q9LBj6DxQueG4qAprQqhkN5rJgBiCBu0fjpYyx2hy8uuY3fj14AUivsP+2IVVPGLYW\nZlFyaj8ylQaPHolAWT6vtPeewlFafULPjE9eIHj8U6gD2iKTydD3HIjh4BaUXgHouvRF5R2IW4de\nyLV6lB4+dWqj0LJ8/+cmHJKdoZ0S0KncSCvK4B8bXsRqtzI9fiIfHij74yjXlE+gvvG78EVAE1qd\nzPQi0lPLpvp+99mBcvvaN9KE5Xe/PfTXXVnlekcF0j7EE8luK1sOqjgfkDAd30Np6hHn8lAKd29n\nQJPJ5Oi6xGE4sNlZjkLvU7YclFyOTKFErnUvSyx52fwvz5jheFx3Y9kIRVnzXg9SqD8njan867PV\n3NFzNKOjhiGXyfn26AbkMjlKuZJB7fshk8mw/tUlHe7VhlW3vMKGk1spMhtEQBOEhiJJEju3nebw\n/gucP1MxUSPAI3NvRKWu326SQoOZf687TJHRgs3uwO6Q2H8827kI8kWBPm4smDoAjVqBWqnA3U1F\n5trXMB75pdryr1z3UN91AOqAdug6x6LybVOjAKUNj6p1u4Tmz+awY7aZcVNpkcvk/Hh8M9vP7mZ0\n1DD6hl0HSNglBx8d+JqtZ3byStLTKOVKckx5fHboe7y1XvQMiiQmpAcFpYUoZHI8tR7c3n2ky9ok\nAprQYpWWWJ1JOr/++HcO7kmr8tgZc4bg5VP3tREdDomU/el8s/UkxlIr57Oq7/7z9dRwb4Ke+BAF\n5v1rsVtK0Q2dCEDAyKko9N4U7f6h0nM9rhuKzw23l9tWtgpH7zq3Q2h5bHYb+aWFBLj78VvaAZbt\n+jcl1lKWjnweD40eP50PJ/LO8OnBb/kt/QAdlMEMj0hELVcRFxqNUq7gjZHzUcjk5f5QeirxYRe2\nqjwR0IQWJy/HyPvLfkGtVvDw7MHIZDLU6ksf9bB2PrSP8CO2Xzug7LlZXUY3mkqtbNqdSsqBdP44\nlVvlcRHh3ijkMpQKOXo3FSP6d6C7ZxFp7z1J1mXH+SSMR6H0Qq7Roe82AKVnAOrAdiADyWJGE9yh\n3KK+giBJEqfzz6GQK2jnHUZBSSF5JYX46bzx0nqyJ/0gXx9Zz9mC8/zntsX0btMDncoNo8XEjye2\ncE+vMbTzDsMhOdAqNUxa/LAAACAASURBVPQJ7YU8w8bNscPLXUfZxCfIi4AmNGvZGcXs3XGOP//I\n4M4H+hIY7IFcLsNQVJYK5szJXDpE+NMm3AsPr0iu6xuGZz2sUm8osfLbkUxWfHWQYpOlyuOGx7ej\nXYgHideF4e1RNl/LUWrEdGIvRbuXknbujwrnOKxmLn5taMOi0IaJLkGhPIfkINeUj7/OF4vdyr1f\nPoqEhEKu4MWhT6JRqlmw9U36h8fyt953YLFbyDXlY7aXfVblMjn+Ol96BXUl0r8sN5y31pO3khfg\nrytLiLonY4/L2netREATmg3JIVFUWEpBnolTx3P4Y18aeTkm5/59O8+RdEv3sjcyaN/JD4+/coXF\nxNff6h/rtp/i7a8OVrrP011N78hARt7Qgah2vkiSBJLDufSTOfMMaaueqPTcNve9iCa0ixiYIVTr\ncNYxnvt5EQD/GbsIrUrLdSHdKCgtYnyPZE7np/L+vs8otZnZfGYHt3QdzvrjWwAY2vEGHA4Hcrmc\nfw55vFy5aoXKGcyaKxHQhCZPkiT+2FPIxi/XYzHbqjxOpSoLGp5eWp566Wbn+/qUmllcaTAbndCR\nO4ZF4uleNuzfYSkl86vXMR5OwbPPSPyH/62sjj7BFc61BEXSZcJc5BpdvddXaP7sDjsbT27jupDu\nBOsD0Co1hHmGcL7oAjmmfMK8Qri582C++3Mjfm7edPZtj5tKg0KmQKvUoFfp+H/2zjs8yipr4L/p\nk5lMJp00UkknIXQSOiIgoCIWLNjRFVdd26qrIi7q7mdXbOiurrqruxbUde0VFQtIaNIhAdIJ6ZNk\nMu293x8DA0MSOoQk9/c8eZ7MbXPOvO+8Z+69555z/wHGq6ciDZrklKapwc7LTy/F1uTosL5fZiTD\nRycR09dKgMlrTNQaNcd7qX9HZROvfLiOVVt2+5UvvG0cidFBvlmV4nJQ+a/5OCq2+tqo9QEIxeOd\npalUPtf56IvnozYFsXLlSmnMJD5KGsrZUrudYKOFIbEDWFGxlldWvkVySDxTUscxLikfu6sN8C4T\nAuRFZ5MXne0bI7/v4C6RvauRBk1ySlO6o97PmI2emEpklIWIaAtBVqPPi/FE0trm4sbHvm1X/v4j\nZ6LVqFHcTprXL6V540/Yi1a1a+esKfWd+1LrDCTe9voJl1nSfRBCIBCoVWrKm6pY+Ms/KGksZ3xS\nAUNiB5Ac4l0uL64voaTRewD//gm3EGkOl8vTByANmuSUw+X00FhvJ7xPIBn99y3RXX/HOML7BJ50\neV76wH+JsX9KGOdNSEWrUeNpaWTnU1d12M+ckU/YpKvQWrr3voTk+NLmauPjLd8wLikfg1bPi7++\nwbKyVaSHp3DbyGu5YuD5LFjyFE0OGwBhphCuGjSLjPAUEkO8Ydn6BEov146QBk1ySvHd51v47ost\nhISZuOaW0eh0GhL7hZHSX9MlxszW6vSLr/ja/MmYWyrQR3iNlKu+CmNiDm07vEZPZTARkJhD2MTL\n0QX3OenySk4t7K42ShrLiQqMIMhg8XokvncLADl9Moi3xjAhuYBlZavQqNQEG4Ooba1nSOwAbs2f\nA3g9EqekjutCLboPXZ81UNLrKd1RT2WZN/9XSkYEZouB+tpW3n9zFRqtmsvm5mM0dc35lxff2zc7\nGzUgBnNLBeX/uJOWrSsQQmCMSyf6onmEjJ5F37nPknT7P4k67w5pzHoxVc27abB77+fSxgrmff0Y\n1/z3TiqbvacNR8YPAWBpya8YdUZanHYA0sKT8SgeUkITuGPUdWg1cr5xpMhPTNJlKB6FH77exnef\nbyE6zsoVNxQQlxDCjIvyWLWshKnn5nSpfK9/soHvVu1NZim4ckwYjSs+BaFQ/d5jRF+6gID4bFRq\nDSFjLuhSWSVdR1XzbhxuB9GBkdz48X3UtzVy/bDLGNF3kF/EeUUoGLR6IsxhBBkCOTfrDABGJQxl\nVMLQrhK/RyENmqRLEELw0Tu/sXrPcl5lWSPLf9jOyAn9SEmPICW9a/cItlc08s7XXk/FGE09d1r/\nR/Mb/m0MUcldIJnkVOKNso8o21bFhTlnMSllDOOS8vm6eCnPL3+dH0tWcEvBHC7oPx234iFQbwbg\n4twZXJw7o4sl75lIgyY5abTZXZRsr2NnUS2rlpXSZt+XOHL8GemMPEi6lJPNlhJvAOM4TS1/tH7c\nrl4flYxKZzzZYklOMnZXGyqVCqPWG+Xl3fWfsKZqA7cWXENIgBUFBYC61gbcwsOFOWcRYQ7F5XEz\nIXkkBq2+S4P19jakQZOccCrLGvnonbW+fbIDmXFxHrmD406yVAfn9U82Eq+p4Tarf2Dg4JHnou+T\niCl1iHSZ7oF4FA9rd21kYHR/AK7/3920uOycnTGJ8/tPB2BzTRG/+/AuLug/nazAFIYm5pEYEuc7\nEzYxZXSXyd/bkQZNckJparDztyd/6LAuKTWcidMziY6znmSpDk7pLhtNLU5idA5+dSQz1FAMQNJd\nb6GSG/U9lipbNfO+foxGh423Z70AgLInz0+EORS9RkdckPcYybDYPCamjKaobSuDB/TOQ8ynIvLb\nKTnutDY7WfrNNiadlYWi7Ev8ZQzQccY52fSJCcJo0h2XIMEngi+XlwCwyRVLwenjCQ/eiSXvNGnM\neiBuxUNZYyVRlgi+Kl5Ko8OGTqPjo81fMS3tNKaln8aG6i0EG70/unL6ZPDyjEexGE7+ERLJoZHf\nUMlxxe3y8Nj8LzAF6pl0VhZarZq07D5k5kTRf1AsGs2pfVJECMH7S7b5Xk8e2Q+TMbMLJZKcKKps\n1dz0yXwGRvfn1oJrmD1gJqPih/H4jy9i0plQqVRcsGeZcS9mvQxRdipzaj9dJN2OvQZLKIL1qyoI\nDDJy4VVDGTC07ylvzMAbs9GsauPp0NeZE/YromR1V4skOY7Uttbz+dbvaHa0UGGrJtYSxarKdVy6\n+A+srPiNxJA4npn+ABOSC7paVMlRIGdokmOiqqKJX5YUEWDSc9q0DDQaNeZAPXGJIaRkdL/wPJU1\nLcy1fAVAjtiIoyoHc5o8I9RdaWxrYlXlehxuJ5NTx/LG2g9YunM5hRVrGRSTwwOn3c7jP73EzKwz\nyI5I62pxJceINGiSo6K1xcln769j3aoKX9n6NRXccNd4bvvzpIP0PLVprConXVvnex00YEIXSiM5\nGmpa6lCEQmRgOK+tXkxh+Vrs7jZO7zeaawZfxNKdy1ldtYGC+CEEGszMH39LV4ssOU5IgyY5bIQQ\n1Fa38O1nm9i4tsqvLjLKwulnZaE3dO9baul3v5K+Z5vEkjcRrbX7zTJ7E27Fw9baYqzGIGIsfXh1\n1Tt8suUbhsYO4PaRv+PqQbP4uWSFr22AzsiQmFyuHXqJz81e0nPo3k8fyQlHCIG9xcWKn3ewalkp\njfV2v3q1RsWo0/ox9vQ0VOrufS7L7VGwiGbf65DR53ehNJJDUW9v5NbPFtDibGVG5mQuzp1BWlgS\nnwCrKtejUqkw603kRmUye8BMdGrv4+6O0XO7VnDJCUMaNEmnCCFYvnQHn3+wvsP6nMGxnDVrQLdw\n9jgcissbGWYoAkCgQhMY0sUSSfanzdXGA0uepsZez43DryA1LJlzs6by+up32VHvDaGWEOw9oL9/\ndPo/jbmhK8SVdAHSoEl8LP16Gz9+sw1FEYydlEbB+BS/BJpqjYqhBYlExVnJGRiDuocYsr389dVl\nzNPWeF/oTd4M05Iuw+lx8cSPL6HX6Ll15DW4FQ/VLbU0Omw0O1sxaL0ZyjUqNbNyzgK8ecJenfkE\nJt2pecZRcmKRBk3iIz27D6uWlVBf24rH441RF2Q1MnRkIsnpESQkh56UDNFdwfriWpoam2FPLk5D\nWNTBO0hOOPd8+TA7G8sJNgahCIVAg5kAnZFGh42QAO9B52lpE5iefpqvj1atQauWxqy3clwM2qWX\nXsrq1avRar3DhYWF8dVXXtfn5cuXs2DBAkpLS0lPT+ehhx4iNTXV1/fJJ5/kP//5Dx6Ph2nTpnHv\nvfei0/XMh+aphNvt4adviygprqfZ1sZl1+UTEWXhwquH8uvSHcTGe5fbklLDSUoN72JpTzwPvPwL\nZrUDu6IjQO3COnhKV4vU42l2trCsdBUR5jByozJZXbmBf6x8i9P7jWZq2gRO7zeGNVUb+LV8DYqi\noNao+fOE2wg2BvniaMp4mpL9OW4ztLvvvpuLLrrIr6y+vp7rr7+e++67jylTpvDqq69y/fXX8+mn\nn6LVannnnXf45JNPWLx4MSaTiblz5/LCCy9w0003HS+xJAfgcnn2xFdcitPh9pU/+cBXXHT1UJLT\nIro8D9nJpLHZwV9f+5WWNjctBPJn+2z+8+fTQT4ojyuKUKi0VbO8bDUTkguwGoN44se/sa56M+OT\nCsiNyiTYGERlczXvb/iMqubdnJc1lYHR2Vw/7DJfssu9MzOJpCNO6JLjl19+SWJiImed5V3fnjNn\nDq+//jq//vor+fn5LF68mCuuuIK4OO9G7l7jJw3a8ae+toXPPljP1g3V7er6JoWSmBJGQkpYF0h2\ncnG5FVZu2kVxeSMC+PcXm/3q/zJ3FGqdoWuE62HYXW2srlqPHnC4ndzy6Z8ByI5Mw2oMYlK/Mayr\n3syS7T8zd9ilaNRqQgOC6ReWSIQpjEBDIFq5jyk5Ao6bQXvqqad46qmnSEpK4g9/+AP5+fls2bKF\njIwMXxu1Wk16ejpbtmwhPz+frVu3+tVnZmZSVVWFzWbDYrEcL9F6NTXVzRT+tJNlP2zvsP6aW0af\nctHujze2Vicf/VDMtyvLqKxp6bCNCoX7RraS3EfmODseKELh2g/vwqjR87u4C9Br9m0jrKveTFp4\nMmGmENLCkrl68IUA9LXGsOisv3aVyJIewHExaLfffjspKSno9Xo+/vhj5s6dywcffEBraytWq//D\n0mKx0NLifai0trb6Ga6gIO9Bx5aWlsM2aOvWrTtieQsLC4+4T3dhf91cToUv3t3lV6/Tq0jODCTA\nrCEkXEfFrm1U7DpwlFOTI7lupTUO1u+0s7vJxfYqB/sF/W+H2ajmDyOcBO34ic1vbsMZlYE74uQm\nG+0p92Sbx4FTcVHnaiRCG4LN3cwv9WtQrVIxMTyfAI2RmJZQn77nhEygrriaOtqvHHQXesq164ju\npttxMWgDBgzw/X/OOefw0UcfsWTJEkwmE83NzX5tbTYbZrM3FfmB9TabDcBXfzj0798fg+Hwl4gK\nCwsZPLhn5i/65stf2LVTTUJKGPnjklGpVGxb+wvFW7yu6KdNyzilskIfCZ1dN0URrNi4i+9WlrG7\nwY7T7aG8upk2p6ddW4New+gBscRFBjIoI5LE6H2RIprXfsvutVVom6pIOu0CjH1PXoT97nxPKkIB\n4XXO+Fvhv/lq+w9cNWgW56RMJ6osmqd/foUwfTCDBw9mMN1Tx4PRna/doehK3RwOx1FNVk7IHtpe\nz6O0tDTeeecdX7kQgs2bNzNnzhwAUlNT2bRpE4MGDQJg48aNREVFyeXGI6Cpwc6uShupmZG02T1s\n3VjD1o3VlO2s5/zLBzN8TDJRsVYmTM1A3c0jeexFUQRl1TY27qjjP19uoabB3mnbyFATg9IjGZUb\nQ1ZyGDptx2fnHJVFvv/1UcnHXeaexobqrby17kN2NpSzcOqf0Wv1vmXFVped6tZa+pgjuHP09VDp\n7GJpJb2FYzZoTU1NrFmzhmHDhqHRaPjkk09YsWIFf/rTnwgNDeWRRx7ho48+YtKkSbz++usEBAQw\ndKg3evnMmTN5+eWXGTt2LAEBATz//POce+65x6xUb0AIwdKvt/Htp5vplxFBamYkkdEGLEEGAkx6\nhhQkolKpSM2MJDUzsqvFPSZ2VjXxn+9reHjxRzicnk6XD5NigggJMhIWZCTYYqAgN4Z+ccGH9R5N\nhZ8BoDKYpFPIYfBTyQpKGsppddl5qfBNbiu4FqPW+7k1tdkIDwghKtAbB7OwsnstW0m6L8ds0Nxu\nN0899RTFxcVoNBqSk5N57rnnSElJAeC5555jwYIF3H333aSnp/P888/7zqudf/75lJeXM3PmTNxu\nN9OmTWPuXBlnDbyzEKfDjRACW5MDj1uhvraFTb9VsavSRk11M2LPk93p9OBoc6NSq7j+zvEYjD3j\nvHx1XSuLv93KJz/t6LSN2aglPyeGS6dmEhp0dA4dinPfDE9mpe6cbbU7eG7Za5zffxpzhlzEef2n\n8UrhW/S1RuNRPExPP43zsqdJz0RJl3HM397Q0FAWL17caf3w4cP5+OOPO6xTqVTccsst3HJL703f\nIBRB2c56KsoaUTwK+eNSUBTBy08vpbKs8bDGSEgJQ2/wPkS6qzFrsbv46MdiquvstNhdbK9opOIA\nj0SjXsO0kUmoVCqsgQayk0NJjrEeUyxJV0M15a/80fc6fPKcox6rp9LmagPg7q8eBuCjzV9TYavm\nzPSJ3DryGl+7QPljQNLFyDvwBLKjqJa63S002xx7SgT1ta001NlJSA5l3JR0AN5/cxUNdXaS08LJ\nH5dyyL2umL5WwvtYiOgTSN7Qvpgt3XeJrMXu4uUP1/Hl8pJO26jVKsZkW7j5snFojmEfUHE7cdWU\nY4hKAkAoHir+OQ/Fvs8xyRiX0Vn3XodH8XDNf+9kfFI+swfM5NWZT/D51u/492//ZUTfQX6u+BLJ\nqYA0aMcJR5uLFT/tpHR7PQ11rTQ1ttFmd3XavqK0gfxxyRiMOgYOj+fbTzfjdHgQQqBSqUhKDSc5\nPQKzWY/eoMEc6DVa0X2tBFm7f6y6xmYHXyzbyeufbGxXFxESgDXQQGpcMAPTIxiSGcXaNasOacwU\nlwN3fRWe1iaE24lwu1Gcrdi3r8VRWYSrtgJjQjYxs70HfFGpCcwYQePyjwAIHT8bbVDPP1x+uDS0\nNRFhCuV/m7/il9KVPDrlXsYn5TMjc7IMOSU5JZEG7SgQQrB+VQXff7mVcy8bRJ/oINwuha8/3nRY\n/UPCTAQFG9m9q5m4hBCGFCSQlBpOdJzV96CYOP3kuY2fSNqcbnbX2ynZZWPV5mpKqmyUVduwtfob\n+9AgIxdNSmf8kL4YdB3vwQih4KqrQnG0glAwxPRDpdq33Fj6wg14bHUd9t2Lp7nO96NBpVKhCQrD\nlDaU8MnXSGO2Hy6PC4veGwwY4MyM0zHpAmQUe8kpjTRoh0GLzcHXH28iIiqQ/HEpqFQqli/dQU11\nM6uWlTBlRn9f2wCTjpj4YPR6DUHBAaSkRxCfFIp2P3fxA9OuBJj0xCXoT5o+J5qKmmYWLV5Lvc3B\nzqomxEEONQNkJ4dx75XDCDT5fwaKoxXbmm9o+OVDglsa2P7ZvrNlKr2R8MlzCMwZt99sofNZg0pn\nxJI7DkNMKihu2LNcFjz8LBh+1lHp2VMpa6zkiZ/+xoIJt3HloAvoYw7HqJMRVCSnPtKgdYLb5WFt\nYTnbNlWz6bcqwJtKZfiY5H17XCqorfY6LhhNOv5w72kEWY3dPnPz0bKttIFvCkv53w/FnbaJDjcT\nFxlIRHAAA1IjSE8IIeyAJVThdtHwy3+p/+7fvrIDP1HhbGP3x4vQBIZiSvYe7A8umIlab0BrjUSl\n1aHS6FDpDGiMZtQBgTK/WScoQuHNtR/QYG/imiEX8+GmLylrquSqD27ngv7TOS97WleLKJEcFr3e\noO3d7xJC0Fhvp7KskV0VTezYVtuubVNjG7XVzUREWThzVi7BISZ0eu9DUqNRYw3pncsxza1O7n3x\nJ4o68MqcPCKBjIRQ4voEEt/Hgsno70ggFA9t5Vto3bqC0HEXewtV0Lz+B792rpC+hKcPQmMORhca\njVpvRBca47dMaB0iU74cLkIIPEJBrVLx4JKFrKvejEVvZnt9KUX1O4m3xpIU0pfp6RO7WlSJ5LDp\n9Qbtx2+KKPx550HbREZZiI6zMv2CXJ+LeESf3hHNxOny0NLmosHmwO1R/JYP25xuPvt5Jz+sLvfr\nExpkoF9cCHddPrRdZA7hceNpbcJZtZ2WLctp3vAjwmlHExjqM2gqjY6IqddR+eYCAvuPIXTcxaze\ntI30Hhpi6ETzU8kKPtr8NQLB7AEz8SgeHvxuIQALJtzGgKgsAg1mfildSXJIXx6fMq+LJZZIjo5e\nb9A6IshqJLyPhfA+ZsZNTu+xWZoPpKSqid+21eDyKJRU2VhXVEtlbcfR6TvCGqjn/jn59OvrH51D\neNzU//AO9u1rcOzaDh53u76KowWP3YYmwPtDQR+dQuLt/5QHnY+S0sYKHG4n/cIS+Xzb92yr28HM\nrClkhvdjY802Xzu34uHszEmUNlZwXtZU9Nqes5cr6X30+qdF7pA40rL7oFarMBi1WEMCsBxlxInu\nSJvTzdptNbz37TbWF7dfZj1crpyexZT8xHZLigAtm36h4cd3O+ynNgVhHXIG5qyRPmMGoJYP1iOi\n2dmCWWdCpVLx1E9/56fSQmZkTqZfWCIWvRmrMQirIQiP8BBpDuO87KloVBoizd4l277WmC7WQCI5\ndnq9QeubGNLVIpwUGpsdbNheR12jnbLdzTTbXWwtaaB8d3OH7Q16Df2Tw0iPDyHQpCckyIB+jzu9\nz6dQpUKrUZGVFOarU1wOPM31uOp3+Zw1zFkjUX38PMLlIDB3AoaoRDSBoejD49CFRstZ2DGwvGw1\nj/34IudnT+P8/tMB8AgFgIqmXTQ7Wvj98MvRqDW+g9AR5jAu6H9ml8kskZwo5JOkB7J5Zx07Kptw\nuRVa29yUVdv4trDsoH20GjWjBsQwbnAcGQmhGPWaww4p1bz+B+o2/oyrpgxXrXc/TR+ZiCn5ccBr\n+AL7jyVo8GQMfRKPSTeJ1yuxuK6E5NB4lpetRoWKd9Z/zLrqLfxp9PXk9EnHrDeR0yedQMPhp2KS\nSLo70qD1AIQQbC1t4Pv1Tfzty68o333wfS+tRkWQWY85QE9STBDZyWHk50QTYjn8pVZ3cwOtm3+h\naeXnOKs7DlulONtQ671jRkz93eErJPHhVjx8W/wTKhVMTBlNQ1sTN340j7Rwb6bnG0ZcQX78YBYt\n/yfnZ0/DqDMyqd/YrhZbIukSpEHrxjQ2O3j3m638/Fslu+paO21nDtARERxAYkwQF01KJzLEhPYY\nAvo6qrZT/vLt7coNMakYolPQRyagCQyR576OA6+vfpfPti4hOjCSiSmjCTYGYTVa+G3XJm7+5H6e\nmno/g2Ny+NuMR7paVImky5EGrRvh8Sh89stOtpbW09jsZOWmXe1yg6lUMCSzD6cPiycryZvQMsCg\nPebYe0Lx+AyUNigcrTUSd2M1AKa0oQQXzMQYm3ZM7yHxsq12B0adgbigaMYkDOezrUuobK72hexK\nDOnLkJhcxiSOIMbSp6vFlUhOGaRBO0VQFEFReQONzU7UKhU7KpuobbRjd7iprm+l3uagpMrWaf8J\nQ/oSb21j2mnDMBqO7rIKjwv7zg1et3q1mpbNy2krWYe7YTcqvYHEW18DQGPyeiMGJOXS57w7UOt7\n54Hy44Hb42ZTczExtr5EWyJpaGvi7q8eJjUsifTwFM5Kn0hOnwwuHTDT96Pk9pFy+VYi6Qhp0E4w\n1fWtOF0e1GoV9U0OVm2pprKmhRa7i8ZmB4qABpsDp8tD80Gi8x9IbEQgsRGBjBwQQ0FONEaDlsLC\nwqMyZm0V26j76lXaSttHvt+LcPhPBePmPIbaKB0OjoUqWzV//PwhHB4nu9Y2cFbG6cQGRQGwtXY7\nEeYwggOszBv3hy6WVCLpHkiDdpQIIWhsdlLbaMftUXC4PFTX2Snf3Uybw02z3cWarbup9+VCOzpC\nLAbCgwMIsRgJNOlI6xvMhKHxBBzlLKwjXLVlBzVm5uxR6MPiEELxRbeXxuzo2F5fyiM/vIBTcfHI\npLt5cOIf+c8vH/BL2Up0Gi3XDZ3N+dnTSArpy+CY3K4WVyLpVkiD1gEejwIqFc2tTraVNSAENLU4\n2bijjordzTS1ONlV14Ld4Tn0YJ0QGxFImNWIWqXCHKAjwKClX5yVpFgrQoBOqyYlLviYElr69Glp\npK18C83rf8BRthnF2UZg/zGET74aALXeBEBA8kBMKXkYYtNACBAKWmukTKtyjJQ2VuBRFBJD4ogK\njKDWXu+r62uNIdoYwf2DbiUrMhXAd55MIpEcGb3aoAkhWF9cS2VNC8UVjTQ1OynZZaOkqqmds8Xh\nolarMBm06LRq+oSayEwKIyHK4juEHBlqIjUu+LDPeB0pisuBo2IbzuodOGvKsBevxt1Q3b6d0+77\n35iQTcLNr6AxW0+ITL0RsSfo5c6Gcu744iEGRffnwpyziLfG+to4PE7UKjXZln4+YyaRSI6eXm3Q\nXnhvLZ/+tOOw2+u0amIjAokMMWHQa+jbx0KQWU+Y1YiiCMKsRhKigzDqT9zHqridKPZmhOLGVVNO\nW+km9JHxBGaNBMDdUE3lv+7rtL8hOsXrXh+X7ivTyOXD40aFbRcLf36FksYK/u/0u4izRpMcEs/K\nynXsaCjjhTP/wlsXPC8zPkskJ4BebdBaDsiaHG41YtBrSY0PJiY8EIQgNjKQPqEmdFoN8VGWYzq/\n1RGuxmqUtlZcdZW4m3YTNPB0n9dg46+fYFu7BIQCQkF4XLjqqryv9yNo6FSfQdNH9MXUbzCt2wpB\nrUFrjUAfmYA5YwQBibloA4MPFEFyDLS67Ly+ejGtTju3jrwGIQTF9d6D5k2OZuLVGgL1ZgbF5HDH\nqOukIZNITiC92qDdfNEgJucnEGQ2EBVqOmp398PBubsER2WR96CYSo27cTdNv36Cp6XBr11gZoHP\noBnjMqj94uVDji3c/tHrw8/4HYrT7o2TKA83nxDa3A6MWgO/7drEN8U/EhsUhRCCIEMg0YGRxAfH\nEhwQBMC9427qYmklkt5BrzZoOq2a3H4RR9VXCEFT4ee0bFiK4mjBG7JX5TVYgEqtIfaqh33tW4tX\nU/fVa4ceV9nnJQITPAAAIABJREFUaKKPSiJo8BTcTTU+Q6jWB6CP6Is6wIJab0QfEY8+oq/fGNKJ\n48Tx5bYfeGXVW0SYQlk4bQEmnffHR3lTFUV1O+kXlsjT0/7cxVJKJL2TXm3QDgchFPB4UGn3pUXZ\n/fEL2FZ/dfCOB86MRMdeJoa4DKxDzkBtsqAP74tmvyVBlUpF+JRrjlp2yfFhc00RsZYozHoTJr0R\nj+LxLR1GWyK5pWAOOX0yCNTLvUiJpCuRBq0DhBB4muupX/oOLeuXEjRsOqFjZu3fwK99QGIOKr0R\nBIDw1qv999qC8iZizhjhc4cXQqDWGdAGhZ94hSRHzUebv+L11YuZ3G8sBfGDfUYrwhSG0+Mi3BRK\nuCm0i6WUSE48wuPB09bWaZ3aYEBjMFBfuBJLZiZa08mPINTrDVrNZ3+jadVXexwvBHuskh8NP7yN\nPiyWwOxRAJj6DUJjtqLS6jBn5Ldb8usItdEsDyN3Eypt1Xy46Ut+N/QSMiO87vSfb/uOaEskp6eM\n5s3znkErc7hJugDh8WCvrMJVX4/w+J+DtebmgBDUF66kaeMmAFxNNhJmX4Q+JISan36m7N33AYG7\nqamdcRryt0VoAgKo/PgTSv79Fm63h2VaDWm33kzIoIE0bdzEuns696DOfexhLKn9aC4qJrBfCiAN\n2klHKAoo7k7r1QGBWPImoo9K8pWZM0Z4Z1uSHofL4+IPn8zHpAvgotyzCQmwkhmRymnJIxmTOLyr\nxZN0MUII2ioqcTd7E+MqZeXYAi2oNJo9D3Foq6rC1djk62NKTEBjMOBqaqKtsqrdmO7mZtzNLYSO\nGOad4axcRc2PPyHcHlxNTSRdeTkBcbFsfPCv1Beu7FS2/Hf/g1qnw7ZlK+XvfeArjzvvHABcjU20\nFBUdUkfF6cJt8+rnhnaG81CoDXqfL8HJptcbNFNKHpqAQO8LlRpUKm94J5UKTWAwlrzTfOGeJD2f\n9dVbAdCoNfy98N/cWnANf55waxdLJTlcFJeLuuUrcNbV+sqip01FpVZj27IV2+bNAHjsbbhtNoQQ\nCLcbxeki9abfA7DzX29Sv3I1+uAgwkYW0Oe0CQBUfvoZxS+9DIr/sZm1gC4khGGv/h2AssXvs+uL\nfXvsg55/hoDYGBpWrWHLE091KvuQV/6GxmCgtbSU6q++8ZV7LrwAlVpN1BmTqV+5qtP9eB976tV6\nvfely3s8yRARTsiQwQCo1Gq0Fgsao8HXTaX1mgNzchLR086gurqayMhIDJGRABijoki86opO31Yb\n6F2Bij37rIPLdwLp9QbNnD4cc7r85S3xkhedxdNT/8yzv/yD87OndbU4vZ626mq0ZjNas5m26mpq\nlv6Ep7UVV5MNj92OcLlwNTUh3G6yF8ynbvmvbHlyoZ/RiZ56BgANq9dQ8sa/O3wfrSUQ8Bo0Z20d\nLUVFtABNm7YQlJVJQHQ0nlZ7O2N2otCYTGgCAlDrtKh0Xoe0kCGDSbziMhACQ2QkOmsQKs0+57O9\n//e98AISLr2k3ZihQwYTusegHYzgAbkED8ilvrCQ5MH72hvCw4g9+8xjVe2E0usNmkQCYHM087cV\n/2bO4AuJtkTy0Ol3drVIPQLF6fTNEIQQuBobceyqxtnQ4Ds/qTiduJqaCB0yhIDYGFp2llD0wovY\ny8pw25rJ+euDBGVl0lK8nZ2v/bPT9xKKIGLMaIzR0ay7ex6K03lI+TQmE6hAawlCcblQ63SYEuMJ\nTEv1yVf78zLiZs4gIDaGiLFjMMZEY06IR20wsHXrVlJTU32zG4Do6dMIy9+3JaEP8zoNBfXPJmv+\nvR3KoQu2og/2hp6LOXN6h7MclUpF7IxDz37UOt0h2/RUpEGT9AqEEDg9LgxaPYUVv7Gy4jdUqMju\nk8bwuIF8t2MZv5St5Nfy1ZyXPY1zs6d2tcjdBmd9PS3bd6ALDiYw2bvXvOKa63DbmvHY7WgnToAR\nI1Da2vj18qs7HccY2YeA2Bg8ra3Y9jg1ALhszb7YmHtRaTRogyxojEbUej06qxXVnig+ATHRDH7x\nedT6PQ/2PR7HMWefSfTUKb4xNAEBfjOcvcSefVaHBiVsxHDCRviv5miEQsiggX5l5oR4zAnx7fob\nwkIxhB3aI1alllscR4s0aJJui9Pjwu6yowhBSID31+0HGz9nU00RwcYgrhs6G4B7v3qUnY3lDI7u\nz80FcwgxBvFL6UpszhY0ag35fQczMWUUr69+F49QyI8/9LJMb8Zls9G0bgP1hStp/O032qp2ARA2\nsoCMO24DwFG9+4jH3RtUQKXRYOgTSUBsLIbwMLSmAFQqFcED8xjy8kvow0IPGkJMazaDub1HscZg\nAIOhgx6SnoI0aJJTHiEEG23FfPH9z6hQcdOIq2hwNPGnL/4Pu7uNCFMoz535EADrdm1m7a6NZEem\n+fpr1Bocbgf1bV7Ps+TQBK4cNIt/rHobo9b7gFOjYlB0f27Kv8oX/aM3I4SgYdVqWnbspK1qF6FD\nBxM6dAhbn36G6m+WdNzHtS82qtpoRHE4CB02lOa+cYDX6SBpzlVoAgIwhIehCw5GtSc9ksZkRh/i\nDSpgSUtlyEsvtBtfs+eck0TSGdKgSU4JhBC0uuyY9SaaHS28ufYD1ldv4erBF5LTJ4Oi1hLW27YB\n4FJcxFj6cFHu2byy8i2c+x27CDeFeGMp7pemZUzCMBKssSSH7lsGGpUwlFEJQ32v9Vo9d435/UnQ\ntOtpLSvHWbvPC7Bu+a/YtmwFARFjRxFz5nQ8ra1s+PODvjameO9Zy4RLZ1O/ag2u+n053UyJCVj7\nZxM97QxfWf5bb/j+LywsBLx7OzFnSkcbyYlDGjRJl7Nk+8+8te5/1LbW85eJdxJhDuWr4qWAN2eY\nSqXijMjRuPUKdW2NqPcco5iYMhq9Ro92vzBj1w27tN34p6WMOjmKnCQUl4uW4u00rlsPQqC43Th2\n7cJRW4fOaiX9tpsBWH//AzSsWu3rl//Ov1FptVR/8y3li9/vcOygrAwAPycHwJfhQRdsJXnOldjL\nKwgryMfYJ9LnHi6RdDXSoElOOrWt9dTZG7AagxBC4Z9r3sPmaGZi8ihSQhNwK26MWgNhphAMGu/D\nUqPS8MDEP/qNo1VrmJBc0BUqnDScDY3UfP8Djt27seb0J3TYUJrWb2D9/AUdtjdEHjzYtkqt7tTp\nQKXVEhDnndmqNBqS5lyFKSGeoIx0n9FSqdWEjxp5DBpJJCcOadAkxw2P4qHN7cDpcRESYMXlcbHo\n13+xafc2BsfkctVgbzzMOz5/CJuzhfOzp3F+/+k8M3UBDy99gcyIVAQCnUbH6+d2fgC1pyEcDnZ/\nv5S2qiqE243OGkT0tKlse/YFdn2574CuSqMhdNjQjgdRqzFGRmBO2hfRJmLcGCzp+/YS93r0hY8a\nSVB2lt/MSh8STEBMzL7htFq5PCjpdkiDJjkkbsVDU5uN4voS+oUmEBxgZXt9Kd/vWIbdZefaIZeg\nVqv5e+F/+Lp4KcHGIF46+2F0Gh27W2rZ3VpHk8PmG29vHMQttdsBCNAZmTf2ph4ZH1EoCh67HXtZ\nOc66OkyJiQRER9Gw9je2v/wPnLW1uG3NbNmvT0BcHNHTppJ0zVXorEGULX7fu7S4x+kiIDaG5Guv\nRhccTOjQId7oNmp1Oxf0yHFjO5TJnJiAOTHhRKkskXQZPe8JIjkqFKGgVqlxelws3bmcxjYbZ2dM\nQq1Ws2n3VhYseRqA+8ffSnCAlc01RXy85WsArhw0C4Na7/MYtLsdvnFDA4IZETeIrMhUX9nleeej\nVqlICfU+VFUqVbc0Zu7WVhzVu3HU1OBqaES43b7Dw5b0NEIG5rH16WfYveR7X5+ka64mYPpU3E1N\ntO7YedDxNQYDEWNHY4yJxpKejmnPcqAhIoLoafKcnERyIN3vKSI5alZXbuDb7T8Rb43xHRx+YMnT\nbNy9jdEJw5g77FLsLjuLfv0XAEkh8eRFZ6FV77tNLAbv+R71nnNAoQHBuBU3BvQMjc0lzBSCSWf0\ntb+5YE47OQq62Tkv2+YtvrNWAGH5w1HcHtbcdidtFRUd9om74DxCBuaReMVlNP62DmdtnbdizwFh\nbWAgQVmZ6IKDaXC7iElKIuqMyehDQvzGMcXHY4pvf0hXIpG0Rxq0HoDD7aS+rZEaZz1Ojwu9RkdV\n826+2/4LiSFxDI8biBCC5WWr+Lm0kLb9ZlB19gafEwbgF5Hhq6IfyIvOok9gBFcNmkW4KZSoQK/T\nwdjEfMYm5mPQ7tuHyYpMI2u/81/dlaYNG7FXVBAxdgwAlZ9+zu5vl/jqh73+CjqrlYDoqE4N2t6w\nSfqQEFJvuoHWklJ0ISEED8gBIDhvAMF5AwCvW3v84O5l5CWSUxFp0I6BZmcLra42gvRmjDojDfZG\nPtj4OW0eJ1NTxxMfHEtZUyX/WPk2ABflnE2/sMROy/6+4t80tDUxd9ilpIenUFxXwgvLX0elUnHN\nkItJDUvit12beG7Za7gVN/eMvYmkkL6s3bWRR5cuAiA1PY3k0HiK60pYvOETAvVm+oUmEmYK8UXT\nEGJfgNXhcQPZ3VJLhDkURVGwGAJ5euqfsRosmPTeA8YhAVampI7z031/Q9ZTcLfa2fbsc9T++DOh\nw4diSUvFFB/fabii4IEDMEZHYc3NxRARhj7YO7tSadTorNZ97fYzXhKJ5MQhDVoHtDrtfFH0PTGW\nPgyLy6PSVs2tny1Ao1IzJXUcswfMRAjB7/57Fy7Fze+GXMJpKaNocjTzydZvARgel0d8cCytTju/\n7fLGpTszfaJv/I7KNuz2pi5xebyb/21uBzsbywFw7JlVeRSFOnsDAE6PN/jq/uew3HsOGe+NDORW\n3Hyx7Xsuyj2bQTE55PTJICOin6/9hTntY9ZFWyKP6fM71XE2NIAQ6ENCEIpCS/F2Kj/9nOqvvva1\nqVv2Kw2r1pD76P8ROnwYlvQ0AmK9e1jaQG+6oZgzp3eJ/BKJpGN6vUF7f8NnLCtbhcVg5p6xNwHw\n1x+eY3NNEROSRzIsLo+owAhCjVZ2t9bh8uw1GCp0Gh0uxY1O4w2CqtVoUavUWA0WNCqvkTFqDaSH\nJQP4QiodrCzQYMZqDAIgUG9iSOwAhPDOnMAbCWN8UgFatQarwQJAQnAcNwy/gpIdO4naY4wGRmXz\n8oxHff0AnxNGT6JtVzWNv/2G4nShuFzeTL77LZuGjxqJJbUf9spKNj/yOK4mG86aGhIuv5S4mTNQ\nXC7W3HZHu3H73TCXiHFje3Xkcomku9HrDdru1jqK60t8RgQgwhzG5poiShu8syOVSsXFA2ZQXFfi\nN7s5I3U8dncbkeZwACJNYbxyzmN+sQDjg2PbHQg+krI7Rl3nVxZnjWbuAdEwQgOCGZM4nMJaLUF7\nDJhRZ8RI90N4PL5sv0JRQCgYIiIQikLRor+hOLxp402JCcSefRY1P/500JQipr59saT2Q3F6o2sc\nithzzqbvrPPRBMh4jhJJd6PXG7R4awyDovtj0pt8ZWMShpEV0Y8RfQf5ykbGD2VkvP+h1lk5/snu\ntBptt3Q/PxEoTidtVbvQBgaiD/XuLbXs2AnsyaZrMBAQHY1QFEre+De1P/+CY3eN96zVfjOs6Gln\nkHztHBCCqk8/85WHDB7kTfNxztk0byui9sefvBVqtd+sam9KEU2AkZChQwDvIeK9KT/UWi2Z99wF\nQEBcrN/hYolE0r3o9U/fKanj2jk85EVnd40wx4BQFERjI2279riXC4GzvgFTQjxakwlHbS31hStx\n1tYh3G7vvlBaKu7W1g7j+nnsdlyNTURNmYQ1pz/OhkY2P/IYitO7v5d09RUEZXrj/hXOvRF3c/N+\nwgjcLS2gKMSeew6Jl3nTuKy57Q6f958lPY3cR/6KSq2m8bf12Ms79hbcH5VW64vQvr/TReIVl5J8\n7dWACp0lsMMcV8bISLLu/VP7MQ8WfUMikXQrer1BO1yai7fTVlmFUBTUWi1h+cMRQlD58acobW0d\n9lEbjcRM9573qi9cScv2Hb66PpNPR2exUPPjz1R99nmH/d3NzeQ+8lfUOh2Vn35G+fv/9dWl3nQD\n1v7ZNBcXs+mvj+Ks8xqqwgPGyH3sYSyp/Wgp3k7Rc4t85YaICCxpqShtDsrefa9TvYMH5mHNAcXp\noGn9Bl/5ri++8hk0t82G22brbIhDotJpCcrKxJyUiNpgQB8S4gvLZNqbKFGtJv/d/7TLg6VSqTBG\n9mwnFolEcnj0eoNW8+PP2DZt8itT3G5aS0qJv/ACrDn9Adj27PO0FBUDoLVYCMsfjkqlom7ZchrX\n/tbh2LqQEJ9Bq/1lGbu+2BeXLyx/BDqLBUfN7k77A77lN09LK45d1ftk3JNeXrjcOKqrO+zaGSqN\nBtT7DEO7yOoAKhX60BC0ZpOvjzk5yTszUqnwOBwIRUGlVtNn4gQ8bQ7/7lotpvg4LOnpvrL0P97q\nd7B4L/0XzO9wVuUvjuqgSR0lEomk1xu0xrVrqfrsiw7ril/6OzkP/xWtqXMHgT6TTj+4QToE+pBQ\nLHtmOgei0mh8HnumhHgi9ovNt3dfShtk8Xnj1aohKWPfWGq93udqbslIZ+BzC71GymTyG6dg8VuH\nlNMQFkbek491WJd4xWWH7A+0S1+/l0MZM4lEIjkcer1BU+n0HXq0qQ0GdFYrLduLsWZnkzznKlCr\n0ZrNfuk3wgtGEPbufw75Psm/u8br3LD3ffc8xCPGjCJizKHzdYUOHeINRHsAAdHRpN3iPW7QWFhI\nZCcRJ3QWCzqL5ZDvI5FIJN2VXm/QkudcSfKcKw/ZLigrs8NylUZzWDMMdUfLehKJRCI5bnSc6U8i\nkUgkkm6GNGgSiUQi6RFIgyaRSCSSHoE0aBKJRCLpEXS5QWtqauIPf/gDAwcOZPTo0bzxxhtdLZJE\nIpFIuiFd7nq3YMECPB4PP/zwA6WlpVx55ZWkpKQwYsSIrhZNIpFIJN2ILp2htba28tlnn3HzzTcT\nGBhIZmYm5557LosXL+5KsSQSiUTSDenSGdqOHTsA6NdvX0qWzMxMfvzxx0P23RtBw7knBNSR4HA4\nDt2omyJ16570ZN2gZ+sndTv+7H2u75/b8HDoUoPW2tqK2Wz2K7NYLLS0tByyr8vljfq+ZcuWI37f\ndevWHXGf7oLUrXvSk3WDnq2f1O3E4XK5MBoPP7Njlxo0k8nUzng1Nze3M3IdYTabSUtLQ6fTyaC1\nEolE0oMQQuByuQ7LFuxPlxq0xMREAIqKikhJSQFg48aNpKamHrKvWq3GImMTSiQSSY/kSGZme+lS\npxCTycTkyZN5+umnaW5uZtOmTSxevJhzzz23K8WSSCQSSTdEJY501+0409TUxL333ssPP/yA2Wxm\n7ty5XHLJJV0pkkQikUi6IV1u0CQSiUQiOR50eaQQiUQikUiOB9KgSSQSiaRHIA2aRCKRSHoE0qBJ\nJBKJpEcgDZpEIpFIegQnzaA5nU7uvvtuxo8fz8CBAznrrLP4+uuvffVbtmzhggsuYMCAAUyfPp0V\nK1b41V199dUMHz6c9PT0dmNPmzaNgQMH+v6ysrK47rrrDirPk08+yfDhwxkyZAjz58/3hdKqqKjw\nG2vgwIGkp6fzyiuvdDrWq6++6pMtOzvbT7cVK1YwYMAAMjMzSU9PJyMjg/T0dD7//PNTXjen08md\nd97JwIEDycjIICMjgwkTJnR43XJyckhPT+e2227zqztVdQN46KGHyMvL8+k2cuRIP91uuukmn15j\nxozpsnsSYNOmTcyePZshQ4YwatQo/u///g+Px9PpWM3NzUyZMsV3vxUUFJyS9+TR6Pbhhx+Sn59P\neno6mZmZnT5LcnNzycjI4PLLL/erO5V1+8tf/sKgQYN89+TYsWP9dJs3bx4DBgwgPT2d/Pz8bnVP\nPvzww0yaNImBAwcyefJk3nnnHb/6Ix2vQ8RJoqWlRSxcuFCUlpYKj8cjlixZIvLy8kRxcbFwOp1i\n/Pjx4sUXXxQOh0P897//FUOHDhUNDQ1CCCGKiorE22+/Lb788kuRlpZ20PdRFEWMHz9evP/++522\nefvtt8XEiRNFaWmpqK2tFRdccIF4+umnO2xbUlIiMjIyRGlpaafjffjhh+Lmm28Wt956q7jjjjsO\nqtsTTzwh0tLSRGVl5SmvW0tLi3j88cfFgw8+KEpKSsQ333wjcnJyRG5urp9uzz//vJg6daqYOHGi\nyMnJ6TbXbd26deLxxx8XpaWloqKiQowdO1b079/fp9uwYcPEPffcI84++2xx7733duk9ecYZZ4jH\nHntMuFwuUVlZKaZMmSLeeOONTsd7+OGHxejRo8W6devEzp07xciRI/10O5XuySPV7ZtvvhE33nij\neOihh8Qll1zS6fftkksuEZMnTxbZ2dnd5ro99thj4v777xclJSVi1apVIi8vT+Tk5Ph0Gz58uLjr\nrrvEtddeK37/+993q3vy6aefFtu2bRMej0esWbNGDB06VPz8889HPV5HnDSD1hEzZswQ//3vf8XS\npUtFQUGB8Hg8vrrzzjtPvP32237td+zYccgLtWzZMpGXlydaWlo6bTNr1izxr3/9y/d6yZIlYsyY\nMR22feaZZ8Ts2bMPRx3xxBNPiDvvvFMI0blud911lxg+fHi3020vM2bMEOPHj/fTbeHCheKxxx4T\nd955pxg5cmS31K2qqkpMnz5djBo1qt11u/DCC8XixYu79J7Mzc0VW7du9b1+6KGHxP3339/peKNG\njRJLlizxvX7jjTfEgAEDTsl78kh128vbb7/tu8YHft/effddccstt4iFCxeKoUOHdjvd9vL73/9e\njBw5st11u+2228TChQu71T3ZkW7PP//8cRtPCCG6bA+trq6OoqIiUlNT2bp1K2lpaajV+8TJzMxk\n69atRzzu+++/z+TJkzGZTJ222bp1KxkZGX7vVVVVhc1m82snhOCDDz7gnHPOOSIZOtNtb/63vLy8\nbqlbXV0d27ZtY/fu3T7d+vbty0cffcT1118PQFhYWLfS7aWXXmLgwIGMGTOGpqYmGhoaTsl78oor\nrmDx4sU4nU7Ky8v5/vvvGT16dIdjNTY2Ul1d7TdebGwsdrv9lLwnj0S3jjjw+5aUlMQLL7zAXXfd\nBUBQUFC31M3pdLJ69eoecU92pNvatWv94vYe630AXeQU4na7+eMf/8jUqVPJzMykpaWlXaDhw00j\nsz92u53PP//8kA+y1tZWv/cLCgoCaPd+hYWF1NbWMnny5MOWQVGUTnX74osvCAkJISUlpdvp5na7\nuf322wkODmbatGk+3Xbu3Mkf//hHAgICANDr9d1Kt2uvvZaVK1fy7rvvotPpmDRp0il5T44ePZqv\nv/6avLw8JkyYwIgRI5gwYUKnYwEEBgYC3mu3aNEiVCrVKXlPHoluByKEaPd9Ky8v59JLLyUyMhIA\nnU7XLXW77777cDqdft+37npPHsj9999PYmKiX/tjGW8vJ92gKYrCHXfcAcCCBQsAbyqY5uZmv3Y2\nm+2IUwd88cUXBAcHM2zYMF/Zfffd59sEve+++wBvUOT932/vL44D3+/9999n0qRJfuX7b6x++OGH\nfu2FEBQWFnaq2wcffMCMGTO6nW57jfTmzZvp16+fT7fi4mKEEEycONHX1ul0divdwHvd/vGPf6BW\nqwkJCfGNearckw0NDVxzzTVce+21rF27lu+//55Nmzbx8ssvAzBnzhzfeIsWLfL96m5ubvZ939xu\nt8/AnUr35JHqtj+KolBUVATs+77V1dXR2NjI7Nmzfe2OJg1JV+v2yCOP8PXXX5OZmckDDzzgG7O7\n3pP78+ijj7JhwwaeffZZ32zzUOMdNke0QHmMKIoi7rrrLnHJJZeI1tZWX/nSpUvFyJEj/fbQzj//\n/CNeG77iiivEU089dUg5Zs2a5bfZ+N1337Xbi7Hb7WLQoEHip59+OuR4Qnh1O/PMM0V+fn6HupWV\nlYnMzEyxc+fObqWboijizjvvFAUFBeKiiy7y0+3KK68U6enpIj8/XxQUFIicnByRkZEhpk+f3i10\n26vf3nvyqaeeEtddd50Qwv+e3LuH1lXXbe3atSIvL8+v/T//+U9x+eWXdzreqFGjxLfffuvT7dVX\nXxUXXXSRn26nwj15NLoJ4b1us2bNEoMHD/a7J2+//XaRlpbmuyfz8vJEenq6GD16dLfR7amnnhKD\nBw8WF1xwQafPyb17aN3tuj399NPijDPOELW1tX7lRzvegZzUGdr8+fMpKipi0aJFviUqgGHDhqHX\n63nllVdwOp189NFH7Nixg9NPP32v0cXhcPhcRh0OR7vU4FVVVSxbtuyw9k1mzpzJa6+9Rnl5OXV1\ndTz//PPtUtZ8+eWXWK1WRowYccjx3G438+bNo76+nuHDh6NWq32y7tVt/vz5DBgwgLVr13Yr3ebP\nn8/3339PVFQUL730kt91e/zxx4mKimLWrFm8/fbbZGRkoNVqefbZZ0953VwuF2+//TZ3330327Zt\n44YbbuCdd94hPz8f2HfdXnrpJTweDytXrmT79u2+JZCTqVtSUhIajYYPPvgARVGoqanh448/7tA1\ne//x7r77bjZv3sz8+fN58803feOdSvfk0ejm8XiYN28e1dXV9OvXD7VajdPpBOCee+4hOjrad08O\nHToUjUbDa6+91i10e/HFF3n99dfp27cvL7/8cofPyZdeegm3283GjRvZvn0748eP7za6/e9//+PV\nV18lNDTUr+5oxuuQIzJ/x0BZWZlIS0sT/fv3F3l5eb6/F154QQghxKZNm8R5550ncnJyxNSpU8Xy\n5ct9fUtLS0VaWlq7v/1ZtGiR7xfooVAURTzxxBNi2LBhYtCgQWLevHnC6XT6tbnqqqvEk08+eVjj\nPfjgg+1ky8zM9NMtJydHZGVldSvd9l6zA/+ys7M7vG6DBw8Wt956a7fQzeVyiYsvvtgnU3p6usjO\nzva7J2d37dlHAAAFc0lEQVTOnNlO9sWLF3eJbr/88os499xzxaBBg0R+fr646667hM1m63S87du3\n+8mVlZXV7vt2qtyTR6rb3//+93ayZWRkdHhPjhgxQlx22WXdRreOZMvKyvLpdt1117WrX7hwYbfR\nbe93bO/fvHnzjnq8jpDpYyQSiUTSI5ChryQSiUTSI5AGTSKRSCQ9AmnQJBKJRNIjkAZNIpFIJD0C\nadAkEolE0iOQBk0ikUgkPQJp0CSSI2TRokXMmTOnq8WQSCQHIM+hSSSH4NJLL2XYsGHceOONXS0K\ncOrJI5GcKsgZmkQikUh6BHKGJpEchPvuu4933nkHjUaDTqfDZDJx4YUXsnz5cv75z38C3hlTeno6\nu3btYunSpYSGhrJgwQI0Gg0PPfQQ5eXlDB8+nEcffdQX8b6pqYnHH3+c77//ntbWVnJzc7nvvvvo\n27cvAJ988gnPPfcclZWV6HQ6MjMzefXVVzuU58cff2TZsmU88cQTbN++HZVKxcCBA7nnnnt84733\n3ns8++yzXHHFFfz973/HZrNx/vnnc/3113PfffexdOlSIiIieOCBB3xR2J955hmWLVtGbm4u7733\nHhqNhhkzZnDLLbeg1Wq74GpIJIfgiAJlSSS9kNmzZ/vi5QkhxMKFC/2yYc+ePVsMGzZMrFy5Urjd\nbvH444+LgoICceONN4r6+npRV1cnJk+eLJ555hkhhDdG3uzZs8Xtt98u6uvrhcPhEI8++qg444wz\nhNPpFK2trSI7O9uXMaCtrc0ve8CB8gghxIoVK8SqVauE0+kU9fX1Yu7cuWLWrFm++sWLF4usrCzx\nxBNPCIfDITZu3Ciys7PFOeec45P7kUceERMmTPDTMysrSyxcuFA4HA6xbds2MWHCBPHiiy8e3w9Y\nIjlOyCVHieQ4MHnyZAYOHIhGo+Gss86ipqaGK6+8kuDgYEJCQhg7dizr1q0DYMOGDaxevZoFCxYQ\nHByMXq/nlltuobKykjVr1gCg1WopLi6mrq4Og8HgywLQGYMHDyYvLw+dTkdwcDA33HADq1evxm63\n+9rodDpuuukm9Ho9GRkZZGRk0L9/f5/cZ555JmVlZdTX1/v6hISE8Pvf/x69Xk9KSgpXX301ixcv\nPgGfoERy7Mh1A4nkOBAREeH732g0dli2N9Pvzp07cblc7dLLezweqv6/vftpOSUMwwB+TRbo1SyE\nhJV8gWGUlYVYi5KNDVlLvoGFJQsWNjRbewvJF5APQFnIhpR/ISkL867OlJM3ncw5nabrt5+7u9lc\n3c8z073ZQJZldDodKIqCZrMJl8uFbDb7tLTyd7PZDI1GA7PZTNtYraoqDocDvF4vAMBut8NkMmnP\nWK3Wpx5/rSq5Xq/aolOPx6MtYQQAn8+HzWbzB2+G6N9hoBG9IQiCrvUcDgcsFgvG4/GPd1GyLEOW\nZaiqislkgmKxiEAggEgk8rKfcrmMWCyGer0OURQxnU6RSqWgfnhFvl6v8Xg8tFBbrVZwu90f1ST6\nW3jkSPSG0+nEcrnUrV4oFILf70e1WsV+vwcAnE4nDIdD3G43bLdbDAYDnM9nCIIAURQhCII2Xb3q\n53K54OvrCzabDbvdDs1mU5dej8cj2u027vc7FosFut0u0um0LrWJ9MZAI3ojn89jPp9DlmVEo9GP\n65lMJiiKArPZjEwmA0mSkEwmMRqNIAgCVFVFr9dDPB6HJEkolUqoVCoIh8M/9lOr1dDv9xEMBpHP\n57Xt05+SJAnX6xXRaBS5XA6JRAKFQkGX2kR642f7RPRSq9V6+j2B6H/HCY2IiAyBgUZERIbAI0ci\nIjIETmhERGQIDDQiIjIEBhoRERkCA42IiAyBgUZERIbAQCMiIkP4BuSn8fF2miJnAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "IxAWnIK0Yd7Z", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "'''\n", + "And those are the only parts that actually worked. I notice that the way\n", + "I calculate the lines for ratings is wrong, clearly because 'IMDB users' is a \n", + "category that contains more than just males and females (otherwise those lines\n", + "would be squished down further). I ran out of time to fix that.\n", + "\n", + "Most of my problems were with @#$%^& Seaborn itself, though, as most of the time \n", + "trying to change some of the aesthetic parameters totally backfired for some \n", + "reason. I managed to change the line widths, but not the type of line or their \n", + "color, and I didn't even try to change the timestamp labels on the axes.\n", + "\n", + "'''" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb b/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb index b3c2b22..f64b5f7 100644 --- a/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb +++ b/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb @@ -1,55 +1,720 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_Lambda School Data Science_\n", - "\n", - "# Sequence your narrative\n", - "\n", - "Create a sequence of visualizations inspired by [Hans Rosling's 200 Countries, 200 Years, 4 Minutes](https://www.youtube.com/watch?v=jbkSRLYSojo).\n", - "\n", - "Using this [data from Gapminder](https://github.com/open-numbers/ddf--gapminder--systema_globalis/):\n", - "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--income_per_person_gdppercapita_ppp_inflation_adjusted--by--geo--time.csv\n", - "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--life_expectancy_years--by--geo--time.csv\n", - "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--entities--geo--country.csv\n", - "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--concepts.csv\n", - "\n", - "### Stretch goals\n", - "- [ipywidgets](https://github.com/jupyter-widgets/ipywidgets)\n", - "- [Matplotlib animation](https://matplotlib.org/examples/animation/index.html)\n", - "- [Connected scatter plots](http://www.thefunctionalart.com/2012/09/in-praise-of-connected-scatter-plots.html)\n", - "- [Idyll markup language](https://idyll-lang.org/) for \"scrollytelling\"" - ] + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "LS_DS_124_Sequence_your_narrative.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JbDHnhet8CWy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "_Lambda School Data Science_\n", + "\n", + "# Sequence your narrative\n", + "\n", + "Create a sequence of visualizations inspired by [Hans Rosling's 200 Countries, 200 Years, 4 Minutes](https://www.youtube.com/watch?v=jbkSRLYSojo).\n", + "\n", + "Using this [data from Gapminder](https://github.com/open-numbers/ddf--gapminder--systema_globalis/):\n", + "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--income_per_person_gdppercapita_ppp_inflation_adjusted--by--geo--time.csv\n", + "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--life_expectancy_years--by--geo--time.csv\n", + "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--population_total--by--geo--time.csv\n", + "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--entities--geo--country.csv\n", + "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--concepts.csv" + ] + }, + { + "metadata": { + "id": "SxTJBgRAW3jD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Variables\n", + "- Income\n", + "- Lifespan\n", + "\n", + "- Population\n", + "- Year\n", + "- Country" + ] + }, + { + "metadata": { + "id": "3ebEjShbWsIy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Upgrade Seaborn\n", + "\n", + "Make sure you have at least version 0.9.0.\n", + "\n", + "In Colab, go to **Restart runtime** after you run the `pip` command." + ] + }, + { + "metadata": { + "id": "4RSxbu7rWr1p", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 326 + }, + "outputId": "20e44bf7-339c-4506-94bc-4b366ca28039" + }, + "cell_type": "code", + "source": [ + "!pip install --upgrade seaborn" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting seaborn\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/a8/76/220ba4420459d9c4c9c9587c6ce607bf56c25b3d3d2de62056efe482dadc/seaborn-0.9.0-py3-none-any.whl (208kB)\n", + "\u001b[K 100% |████████████████████████████████| 215kB 23.3MB/s \n", + "\u001b[?25hRequirement already satisfied, skipping upgrade: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.1.0)\n", + "Requirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", + "Requirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", + "Requirement already satisfied, skipping upgrade: matplotlib>=1.4.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (2.1.2)\n", + "Requirement already satisfied, skipping upgrade: python-dateutil>=2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2.5.3)\n", + "Requirement already satisfied, skipping upgrade: pytz>=2011k in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2018.7)\n", + "Requirement already satisfied, skipping upgrade: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.3.0)\n", + "Requirement already satisfied, skipping upgrade: six>=1.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (1.11.0)\n", + "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n", + "Installing collected packages: seaborn\n", + " Found existing installation: seaborn 0.7.1\n", + " Uninstalling seaborn-0.7.1:\n", + " Successfully uninstalled seaborn-0.7.1\n", + "Successfully installed seaborn-0.9.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "5sQ0-7JUWyN4", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "044d9ceb-5803-43b5-d80d-af66b3c621c9" + }, + "cell_type": "code", + "source": [ + "import seaborn as sns\n", + "sns.__version__" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'0.9.0'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "S2dXWRTFTsgd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## More imports" + ] + }, + { + "metadata": { + "id": "y-TgL_mA8OkF", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "CZGG5prcTxrQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Load & look at data" + ] + }, + { + "metadata": { + "id": "-uE25LHD8CW0", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "62a6d471-c872-468c-eecd-6fd72ed57f1c" + }, + "cell_type": "code", + "source": [ + "income = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--income_per_person_gdppercapita_ppp_inflation_adjusted--by--geo--time.csv')\n", + "lifespan = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--life_expectancy_years--by--geo--time.csv')\n", + "population = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--population_total--by--geo--time.csv')\n", + "entities = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--entities--geo--country.csv')\n", + "\n", + "income.shape, lifespan.shape, population.shape, entities.shape" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "((44268, 3), (44370, 3), (51939, 3), (273, 33))" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "6HYUytvLT8Kf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Merge data" + ] + }, + { + "metadata": { + "id": "dhALZDsh9n9L", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf" + ] + }, + { + "metadata": { + "id": "z6KBarvARP4B", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "d79e43b4-efc6-4142-e36c-d9f18fb693b8" + }, + "cell_type": "code", + "source": [ + "df=pd.merge(income, lifespan)\n", + "df = pd.merge(df, population)\n", + "\n", + "variables = ['country', 'name', 'world_6region']\n", + "\n", + "df = pd.merge(df, entities[variables], \n", + " how='inner', left_on='geo', right_on='country')\n", + "\n", + "df.drop(columns=['geo', 'country'], inplace=True)\n", + "\n", + "df.rename(columns={\n", + " 'time': 'year', \n", + " 'income_per_person_gdppercapita_ppp_inflation_adjusted': 'income', \n", + " 'life_expectancy_years': 'lifespan', \n", + " 'population_total': 'population', \n", + " 'name': 'country', \n", + " 'world_6region': 'region'\n", + "}, inplace=True)\n", + "\n", + "df.head()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
0180083334.4219286Arubaamerica
1180183334.4219286Arubaamerica
2180283334.4219286Arubaamerica
3180383334.4219286Arubaamerica
4180483334.4219286Arubaamerica
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "0 1800 833 34.42 19286 Aruba america\n", + "1 1801 833 34.42 19286 Aruba america\n", + "2 1802 833 34.42 19286 Aruba america\n", + "3 1803 833 34.42 19286 Aruba america\n", + "4 1804 833 34.42 19286 Aruba america" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "id": "C2osGLJReSwG", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "6ff54152-edb6-42d6-ef6c-9c094551ba28" + }, + "cell_type": "code", + "source": [ + "usa = df[df.country=='United States']\n", + "usa[usa.year.isin([1818,1918,2018])]" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
393991818225839.419879049United Statesamerica
394991918937147.18106721812United Statesamerica
3959920185489879.14326766748United Statesamerica
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "39399 1818 2258 39.41 9879049 United States america\n", + "39499 1918 9371 47.18 106721812 United States america\n", + "39599 2018 54898 79.14 326766748 United States america" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "metadata": { + "id": "UbVGIjLpgf5v", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "65e04c88-fb95-4c9f-9ad6-3887477bdeb1" + }, + "cell_type": "code", + "source": [ + "china = df[df.country=='China']\n", + "china[china.year.isin([1818,1918,2018])]" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
7120181898532.00374161494Chinaeast_asia_pacific
7220191898922.13462444535Chinaeast_asia_pacific
732020181601876.921415045928Chinaeast_asia_pacific
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "7120 1818 985 32.00 374161494 China east_asia_pacific\n", + "7220 1918 989 22.13 462444535 China east_asia_pacific\n", + "7320 2018 16018 76.92 1415045928 China east_asia_pacific" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] + }, + { + "metadata": { + "id": "9jXRAttGgT6L", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 365 + }, + "outputId": "d0b7eceb-932c-4182-955b-66414f04f5f3" + }, + "cell_type": "code", + "source": [ + "# df[df.year.isin([2018])]\n", + "now = df[df.year==2018]\n", + "ax = sns.relplot(x=\"income\", y=\"lifespan\",\n", + " hue=\"region\", size=\"population\",\n", + " data=now)\n", + "\n", + "# ax.set(xscale=\"log\")" + ], + "execution_count": 57, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAFcCAYAAAAtTgz9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeclNW9+PHPecrMbO/sLkhHYOm4\nYkNEgYgYpIlGiNefemNFgShX0OQKmkACFmzxBmKMN7GgUaSKXhURUQQFLDSlLJ2lbN/Zac/znN8f\ngwNI274Me96vl68Xz7D7zHd2cb5zzvme7xFSSomiKIqiKOc0raEDUBRFURSl7qmEryiKoiiNgEr4\niqIoitIIqISvKIqiKI2ASviKoiiK0giohK8oiqIojYBK+IqiKIrSCKiEryiKoiiNgEr4iqIoitII\nqISvKIqiKI2ASviKoiiK0giohK8oiqIojYDR0AHUhoKCchznzGcApaTEUlRUUQ8RVV80xAjREWc0\nxAjREWc0xAjVjzMjI6EOolGUs0ujGuEbht7QIZxRNMQI0RFnNMQI0RFnNMQI0ROnojSERpXwFUVR\nFKWxqrcp/U8++YRnn30WKSVSSu677z6uvvpq+vXrh8vlwu12AzBhwgT69OlTX2EpiqIoSqNQLwlf\nSslDDz3Ea6+9Rvv27dm8eTOjRo1iwIABADz33HO0b9++PkJRFEVRlEap3qb0NU2jrKwMgLKyMpo0\naYKmqRUFRVEURakPQkp55vL2WrBy5UrGjx9PbGwsXq+X2bNn06NHD/r160d8fDxSSnJzc3nggQdI\nTEysj5AURVEUpdGol4RvWRa/+c1vuP/++8nNzWXNmjU8+OCDLF68mNLSUrKzswkGg0ydOhWv18uT\nTz5ZpftXdlteRkYChw6VVfdl1ItoiBGiI85oiBGiI85oiBGqH6falqc0BvUyp75p0yYOHjxIbm4u\nALm5ucTExLBt2zays7MBcLlcjB49mrVr19ZHSIqiKIrSqNRLws/KyiI/P5/t27cDsG3bNgoKCsjM\nzIys60spee+998jJyamPkBRFURSlUamXKv2MjAymTJnCuHHjEEIAMG3aNILBIHfddRe2beM4Dm3b\ntmXy5Mn1EZJSRYYOmggB4OBq4GgURVGUqqq3ffhDhgxhyJAhJzw+b968+gpBqSZDlxTt38aHb81C\n03SuvWUciYltGzqsc56mCUxTR0pJMGg3dDiKokQ5tS9OOSNNWHww50VCwQABfwUfvjkLf0V5Q4d1\nTtN1DR0fa5f+mx3rv8BtqoSvKErNnBOH5yh1TwjtmD+LBozkKE0TldqdEY00Aix59TkK8vcA4ImL\np0nLrliW08CRKYoSrdQIXzkjR5oMuvl+PLHxxCUmM3D0vcTENdw2Jl0XuI0gpQe34dID6OfkeSmS\ngO/oqW8+b9lZ80FLUZTopEb4yhlZNiSmt+SGMVOQgBTuBu2SaGhB3n7xD1SUleDyxHDTuD9i22aD\nxVMXJG6uGT2GZfP+l6S0JrTt0gu/WsdXFKUGVMJXKsWygUh1fsNOo1uhIBVlJQAE/T6CPi9uM4GA\nPHeG+pYtccU3YeCvxyKETiB07rw2RVEahprSV6KObrhp2bEbAFkt2yEPF1G6fBluYTVwZLXLtiWW\n4yJk69RPA2xFUc5laoSvEKtZOGWl6C4XlstDQJ7d/yxCtsEVQ26Fa/xUbNtO3hMzCZWU0vPyywmI\nszv2s5WhOwgZxA4FMdxxBC01o6Ao5xr17tjIeYTNgXnz2b9gIQDnP/hbXF17EjqLq8GlhJBt4vGV\nsn3GTJASd0YGqKK2ajEMjdJDu1j4ylMgJRcNGE77nlcSstXPU1HOJSrhN3KaY3H4s88i14c+WUbz\nzl2A2hvhaZpASlmr09JSSuy4JLrO+BPlW7eRkpuLT/eAffZ+UDlb6brG9vVf89MvaPuGNZzf43Lg\n3CqEVJTGTq3hN3K2ppN68UWR6/TLe+PotfNGLwR4XDYVRbsRdhmGXrtV5kF0QmnZxFx6BV7dg62S\nfbVYlkNOryvQjfDvvdtlA0BTyV5RzjVqhN/IBaRB0xtvJKN/f8yEeBx3DL7QyROnYWg4jqx0sxtD\ns1g29xV2/vgdCMHQ//wv4lJa1GpiDsejtqvVhG07uOPS+fUDf0I6EqmZhM6t+kdFUVAjfAWokCau\ntFTKt+dh7d9HzM+q3XVdEC+CBL9dg3F4Hx4qlw2EkOzZvil8ISUVJUXE2D7iHD8uoZL02cSyIWC5\nCDpuQpZ6W1CUc5Ea4TdiLlf412+EfGx9aialGzYC0GbMPcRcdBmhUDgpe+wAGx+djH/ffgA6/v5h\nyLjwjPeXUqPrpQP45rMlZLdqT5YnmXVj7kd3e2hz952YOV0J2Q2730zTBJomsG1HbX37mZ9+Nqqd\nr6KcG1TCb6RcpsGGtfs4fLCcX/RvTummzZG/K1m3jrheFx/9YtuOJHuA4rXrSOt15oQfsnW6Xno1\nnS+6Erfbw+HFS+g27Q8EDhfizkgHaRGqxeLAqnJhI4oK8G7bTnLPnviMGFUHcIQHCzs/H/+BAyR1\n79bQ4SiKUgtUwm+ETFMn78fDfLQoPN3eukUcTfpdycGPloKmkTnwamx0IDzCl7pBUvdulHz7HcIw\nyLjqqlPe2zA0JAJNg1DQPrKfOwZh62T07cu3D/4XtreCmPOakfPYZGpzN0BVCCHQvaV8O2FieFtf\nZiadpv4Bb6SbYOOl6xrW7t1sfPQxAJK6d6PDhAcaOCpFUWpKJfxGylcRjPx52bJd/Oedo8keOhTd\n7SaouwhaR9fYfcKkzdj7ccrL0WNjsQ2DYEkJLk0QdI7u1dZ0jT0FPhZ8to1u7dK5tEs28sh9LMuB\nggJsb/hAGN+evciQBUbDJFhNA//+/MhWtMCBA+E/q63naJqgfMfOyLVv926kbaHeLhQluqn/gxuh\nUMimU4+m7NlRRFFhBdde35WA5sKKOfLP4Wdr2VKCFxPiUogVFocXLaZozRqaDh1CTLcekR72NoJH\nZ6/Esh2+XJ9Pq+xEmqbE4DgSKSXurGw8WVn48/NJvqAnwjQwdUHIqv/Fc9uWxJ/fjoScjpRv3UaL\nm0djaUZDHxNwVrAsm7TLLuXQx58QOHiA1nfdgREXByWBhg5NUZQaUAm/kQpZFgOG5CAdQOO4wixd\n144Ua9nhQa8IN84RApySIva+MxeArc+9QM9ZLxLQYgBwHAfrmDXwCl8IT6qJT4R7wfs0Fzl/fBys\nEDIUZMdLL5N68cXEdu2GvwEOvvFKF20efBANiSX0c+rwnZqQEio0D+3/+3cIKQnqLjSXC1AJX1Gi\nmdp/00hJCZbtYEvnuEI1U7fxFu1m58aVuIwQCbqNcXA38SKIJgSaxxP5Ws00EeLoPyFDE9wxrAvp\nyR4u75ZFc8rY/dLfiSEEhEfVXlwgBN+MfYDClV+y9Zln0UP++nvhx5BS4sPEi0sl+59xHEkFLrzC\nTchR6xyKci5QI3wlQtcF3uIDzH9pOgCbvv6UKy++lm3TnsBMSqLr008QcsfS4ZFJFK1eTebAgQQM\n90+1fUjb4bLOWVzaPpWSFSvYNfU5bJ+f5jf/GsxjOrdJybF74KSjKuMVRVHqmkr49cg0dRwJmpCE\nTtHNriEJISg6nB+5Lj58AM3jBiBUUoJd4SMQk4TZoTPteuVSVOw7YRubtB3iNZutb83B8fsxU5LR\nzOPbtNqmhzb33cuhjz4mve8VOO7YBl07jxEWIuBDGAYh3UVQjfYVRTkHqYRfT4SusT2/jCUrd9Kn\nR1NyWqRADUa2HmGjOxYIgf9IH3ldFxiOBbpBoBqFcJbl0LJ9NzKbt6Ho0H6uHHoL/p27AUjo2AEt\nNpyYQyEboWmn3LPu19x0f/Zp/Hv3EdemNT5hwjEfcPxSJyb3Ilp374ljmPgbsOmeS5MUf/45O//+\nDxCCjr9/BKNtRyxLdQJUFOXcohJ+PbElPPb3VTiO5Mv1+5k1qX+1zyJzC5viZUvZ9a/XcDfJoPPU\nPxAwPOiFB9j1r9eIbdOazMGD8TpV//XauOg34nZKCw+ya+sGOnW5mAtm/w+OZlCBC0OTuOwAwSIL\nQzexbImmCWKcADIYRLjd+HARMmNwpadzeMXnJHbpAgnJhOTR9f6QDSFhRpYDGopmWxQsP3JaoJQU\nLF9OVrsOlWwerCiKEj1Uwq9H8ph1a6cGe75NabPrtTcACBw8RNG6daTk5vLdlMexysop/uZb4tq0\nwezSA8tycAsLIxhAOjaOJxa/PM2vXVp8vuRNdv34PQBbvl3FyDFTCNkmppCIA3tYP+3PCN2g438/\ngkzNxOME2fLn6ZRv3UZM8/PImTIZaYX45oEJSMvC3SSDLlP/gMtxkIaJD/OsaWPr6CZNrv4F5Vu2\nInSdjAH9aeBuv4qiKHVCJfx6oguY8OtclqzcweXdm+IxNGQ127g6QHzbNpRv2QpCEN+mzYkJVIQ/\nTZimjv/779jy5NMAtL7zDuIu603wVENYYdDi/C6RhN+0dQd+6oZnWAF+eO4vWGXlAOT9zyzaTJyI\nDAYo37oNAN/uPdh+H4EDB5FW+Ena3T+GzX+ajnd7Hkldu9Bm/Ljwvv6zQNCB+AsupOesFxFCI2i4\nCKre8YqinINUwq8n0nbo0iqFnBYpGD/b915Vfs1N+0kTKf/xRzzZ2TjxSQR0g06PTWbXv14jrk1r\n4nNy8FoObgMKP/8i8r2FK1eSfOklSNMVORznWKGQQ+vOF5HetCUBXwVNmrUmYB0pYhMCIyEejrTV\n1+PiQGhobjfuzEwCBw5gpiSjezzEtmiBmZIc+XDg3Z4HQMn365GBALjOjoQP4ZoC9Njwhcr1iqKc\no1TCr0f2kSRfnVxvmnqkGY5tS8ox0Tt2JXCkix22RKY0ocV99yN1He+REbyNRuagayhc/RVSSrIG\nDaRo+WeYaanE5HQ66fR+0NKJSWpGbLLAf0yxXdBw037CA+x4+R8I3aDlbf+PCs0kJASdp/2RUFER\nZkoyPi1c2d/1yScIFRfhTk7GSEzEKi3F3STjSBMXRal9oaCFqetIQCLVYUiKcgwh5dmymlp9BQXl\nOM6ZX0ZGRgKHDpXVQ0TVd7IYha7x3fYCNmwvZEifNiS49Sq9kbmEg8sJIqRk/wcfsO+deQB0e+Yp\nAglpVVpP1zSBC4fYOBfFXuu4n7sQnPReui6IsQMEDh3E3SQTn+aulzfiaPh9Q3TEGQ0xGrpG/p5S\n3n19HUnJMYy+82Jsx67Uv++MjIS6D1BRGpjqtFcHDF1D1zQMTUOImnUp0zRBfpGPmW+s4/9W7WTi\nX1ZgV/GeQalRLjxITWP/vIWRx22fj6pWDjqOxO8IdI/nhA9Zp3pjDc9IuLCaNKdcmmrUpdQJKeH9\ndzdghRwKDnnZsG4vhqF6KijKT1TCr2W6rrF/dymvvPAFi9/+HrOGbzhCCErKj55s5/OHqO6kTFBz\n0WHSQ8S3a0vTYUNwZWZV+17VcQ5MJilnMSGgSXZ85DqrWVKlZv4UpbFQa/i1SNc1HCFwJbjofkkL\nvvhwC3lbDtOyXWq1i/Rs26Fjy2R6d2vKlt1F3HxNDhrVa0wXdARG2w7hynrdwOuoz3vKucN2JMNG\n9WTbj4dITo0lIcl93GFOitLY1VvC/+STT3j22WeRMlxkdt9993H11VeTl5fHpEmTKC4uJjk5menT\np9OqVav6CqvWCAEhCY+8uIKDRT5uvqYDV/6yI0kpMTUe2UrL5j+v64TjgK5R7e18EC4YtIRLVaMr\n5xwpJXEJbs5rnYKUUiV7RfmZehniSSl56KGHmDFjBvPnz2fGjBlMnDgRx3GYPHkyo0eP5oMPPmD0\n6NE8+uij9RFSrTMMnc++3cvBIh8Ar77/Azk9skhOjcGuYScXKQHbQZNOjZK9UjWGrmHqOoauUcNS\nDKUe2bajpvIV5STqbU5X0zTKysJVvmVlZTRp0oSioiI2btzI4MGDARg8eDAbN26ksLCwvsKqNVJK\nWmUdrfTNTI0FfzlCU5kiGhm6xtqVu/jL9GW89/Z6TEOtfimKEt3q5V1MCMEzzzzDvffeS2xsLF6v\nl9mzZ7N//34yMzPR9XBhm67rNGnShP3795Oamlrp+6elxZ/5i46oy+037XWYfEs3duwv4/JOqcRZ\nxcQkZ1X5PtGyRSga4qxujCVFPj5fGu4euO2HQ5SV+DmvZUpthnacc/lnWd+iJU5FqW/1kvAty2LW\nrFm8+OKL5ObmsmbNGsaPH8+MGTNq5f5nyz58TRN0b5NKx5gChF2Mk9ysys93phgNDTxOAH/+ATzZ\nWfiEG7sBpi+jYV92TWI0DZ24BDfesgCaJoiLd9XZ6z3Xf5b1qbpxqg8JSmNQLwl/06ZNHDx4kNzc\nXAByc3OJiYnB7XZz4MABbNtG13Vs2+bgwYNkZ2fXR1i1znEkxX4Ns0knHEdGOuvVBk0T6LqGy1/G\nt+MfxPb5MBIT6fb0E5TjrrXnUcIc6XDbfZexY+thmrVIqdauCEVRlLNJvazhZ2VlkZ+fz/bt2wHY\ntm0bBQUFtGzZkpycHBYtWgTAokWLyMnJqdJ0/tkoFLKr3FxG0wToOoWlfoT+s1+LrlFQHuS7vELK\nf9xypGEOWKWl+PftC39vJcUKixh/CfHSj0tTBYCnYtsSB4fWHdIx3Bq2o35WiqJEt3oZ4WdkZDBl\nyhTGjRsX6Tw3bdo0kpOTmTJlCpMmTeLFF18kMTGR6dOn10dIZxUhwNE0Hp29kn2Hyrntus5c3jUb\naTsIARVBmwnPf0acx+SZ/9cZYRhIy0LzePBkZ1NeySl9t7A5uHAB++YtAE2jy7Q/omeeFxWd74QA\nqWlIBCAxBLU6g3IyUtbskCNFUZSzSb2VHg8ZMoQhQ4ac8Hjbtm3597//XV9hnJV0XWP15oPsORg+\nWe4fizbSu1tTIFzweLDQi5RQ7gvx6hf7ufvZmZRv2UJChw74dU+l99TrjkXhV2vIvPV2jKbNKC8q\nIaFZi+hI+IbBX+d+x+qN+WQkxzDxll6kJ7jqPOkriqKcK1SrtbOA40haZidGrltkJkQa0zuOpHXT\nJLqfn06M26Bd63T8cUm4elxIhSuuSifv2ZpJi0kP825pOr9/bz+rAykEa9gjoD6Yps6n6/awakM+\nUsLBIh9//t+vsM7+0BVFUc4aanPxWcBxJGkJbp4a24e9h7x0bZuGcJzIwF1aNuNu6IEU4U9ojuVU\nq1FeEI0C28Xy7/IBeHnRRi7r1vSs/9QngS17io977FCxr2GCURRFiVJn+3t9vdN1DQwdDP3E4rkq\nqtJJeY5DWryLqy5sjrTs47YZSinBcRB2zTrtSQmJ8W5+qvFLjHNVqeCvoUhHcs3FLY977IIOGVU8\n509RFKVxUyP8Y/zUD//hF1dwuNjHPSO60atjkyonWaFpWEBBiY+s1FioZKvP+mgH6tIFM+7vw/fb\nDnNpl6boSOw6f9aasW2HZulxPH7npbz/5Q7aNE1iQK8WSMtW2+UURVEqSSX8YxiGzopv9nHoSD/8\n/128kdyOTao0ktQ0QVFFkAnPfYbtSNqdl8wj/68XnCVpVdoOGQkuBlwQrs6PlqI3aTu0zIjj7qFd\nEEAoZDV0SIqiKFFFJfxjOI6kXfPkyHW75smnTPaaJpCaAAlCysjo3DA01mw+GOl+t3VPMbbjoNd1\n8FVg2xLbPjs+gFSFbTtny+cmRVGUqKMS/jFs2yEzOYZnftuXA4UVdGiRctJpYyEEjqYx693vCVkO\n94zohqmFPzBYlsOFOZnM+fAHLFvSoUUKuibgSDW8EGCa4R97MFh7o1QhwI2FsG1ChrtK1fuKoijK\nuU8l/J9zHJI8BinnJWGfYtpYNzT+vmgjqzaEq91fePtbxt3YHZBICUkxBn+d2J/i8gDpSZ7wGj7h\nWQFTD7J+5fsYpoucC/sSCOk/7cCrkTgRIu+vs/Dv20+r22/D1aotQaf2ytoMQwuXywvVjEZRFCUa\nqYR/ElLKM55hrx9Twd+hRTIGAt3QMP3loGv4dQ9pcSZO6OgctC5CfPjmX9m/YwsAJYcP0OvqXxGy\narYbwOXSOfzRRxSt/hqAzX+aTo//eYFgLfXYN3SNvTtKWLdqF116NqXV+Wm1cl9FURSl/qiEXw22\n5fAf13TEcSRNUmO4slM2Lz/3OS6Xzujbc4nDjy40LMvBdOlYthPeWodDyeEDkfsUHc5HOjY13R0p\nJegeT+RaM80a3e9k95/72lqQkLflMGMmXVmr91cURVHqnkr41SClRNgOt12bAxLm/nMN3rIAXuDT\nj7fTv2eAg8EmvPGvjbRql8Z1v+qOZdtITC4ZOJKlc/+Bpmlc/IsRIFxwms1lQoR3D0gpTzmVHgrZ\nJF9yCdn5B/Dt3k2Lm0cT1NyYuh75+5oQR/77Kcoq9ReoJF3XkMcUPyqKoii1SyX8apJSYls2hq6R\nmh7Hvt0lAGSku/BtXkpa9+swXTo7thbgHNnHb9mCpm268R8TZoAQOJhYJ+kPq5s6lgOaBnG2n8Mf\nfURMi+bEtG6Dj5OP3r2OQfqIkQjbIqQZxMgQRZ9/juZxkdijJ16n+r9qKeDGWy8MT+lf0AxRi+2a\nNE1g6Dq7theSkhZLXIILKwp6+yuKokQblfBryHYcBlyXQ/NWyZgEaZHmp/jdL/H0GoljS1LT49AN\nDccKj7JDtganWVsv8wYpLA/y0vz1uE2dewa2Zv+ChYRKSsiZ/Hv0Vu1PedhNwJKAjls67H1jDgc+\n/AiA5qNvImngLwlWc6Rv2w5NmiUwcESXcHOiGs4YHEsTGm/942v27wl/YBr1m16kZ8WrwkBFUZRa\nphJ+DUkJgaBF5x6ZaCX7KVm1lIzhDyLikhh5ywVkNUvCluEEqWkCjxNAQ2IJHb888cdf4Q/xyqKN\nbNheAMBbiW6uuegiDn34If78g8S26cCZttALx8afnx+59u/bR3INe9LVVQIWAvbvLYlc79peRJOm\niVT6CMCznKYJDC2IdGyEMAg5Rq3sylAURakq1Uu/lnh9Dr7YbGL734md3Q2/o5OeHU/QsrBtia5r\nxMkAPzz2B9b+5i4KP/4Itzhx259p6MR5jn4QiI91obtdJHbtQspFvSo1ug7pJq1+8594mmYT26ol\n5930K0K2xDT18Pa6OqZpAtPUcbnO3G5ISsmlfdsA4Ikx6ZbbDMs6d7rruPQQi195ileffIjP33sN\nU1MdAhVFaRhqhF+LLMsh/HYeTlhSynCjHd2ivOQw/h178e3eDcCeN96kSf9+BH52j6QEN3cM60pq\nkodYt8Eve7fGHchCCo0K4aIyw0PblgQTU+kwZQoIQcD0EOsEKPxsJWZiInGdu1BxktmF2mAYGnZI\n8vF7m8nIiqd7r/NOu5Rg2Q4X9m5F7qUt0XSBI+UplyyijRBQXlJA4cF9AGzfsIbLBv0K9b+doigN\nQb3z1DGXbvHZon+xf8ePDP/VfeFKPMchrnUrAHRDYEsNiUSDcFc+y2LUgPORjiQYtKgQR9b8q1DB\nbtsSnxb+Po8dZMffXqLwy1UAtL7zDuIuv4JgsPZH0tKBN1/+ioJDXgCSU2Np3ibltEsC1pE1Cvss\nHPxqmqj2zgEpIS4pFXdMHAGfl9TMZghNP1dWKxRFiTIq4dchXdcoyN9J3sZ1AKxbu5wLZvyRQP5B\n4tq24UBBPp70Fox/+hMqAhZ3DutK/17Nw3UB/lrMfrZz3Jq+b89u4mrv7ic+3TEj9Gg5nOfndC3c\nWbDwkJeMrAQs265W4rcck5vGPk55aTHxiSkEbZPTbcNUFEWpK2oNvwqEEBiGRmW3oWvC4vsvl0au\nN3+7km83reVAeiueWryL978PoglByHKQEv753iZ8gdofdVummzb33o0rPY3YVi3JHja07orwtPAW\nvtbnp9Ord0vadMiIuop7IUA6kv+Z8Smv/201r/9tNXo19yLaNvhDJmZsBv6QofoMKIrSYNQIv5J0\nXcMKOuzNK6JFm1SkFm6/qxsaliMxNHHCaFZKiR0KHvdY255XMfa51ZHT9EzTpO8F5/Hh6l00z0xA\n10StHwhn2RIzPZtO06YhhcBveCK9AWqbZTm4YnQG39gVoQmCUXiMraYJDu4ti8xUHMovq3FlvarM\nVxSloamEX0lCwuynl+PYkvgEN7eP642jS5Z/t58V3+5jcO/WdGmdijwmkQrNpG2XXuzN+wEATdep\n8IciyR5gX4GXG/q1o1mTeK7o0YykeDeHfMETnr+mQg6EjqzpU8dFceFzCGTUHmVr25Ks85JISYul\nqKCCnpc0D/8DUBRFiWIq4VeCEILSEj/OkQN1yssCOLbEbzv8fcEGAH7cVcTfHh5w3BpJKOTQqtMF\nfLPiA0qLDuHYNnEegw4tU/hhZxGmoTGib1vOS4sjKznmnNqOFu0c6fAf91yC40iEEJHCQkVRlGil\nEn4lSCnD1eatUti9o4jcS1sgNDAIr+dLGS7yOlmPeQcXI+99lM1rP2PNssVYFaX85uqOCFPDZer8\nsG4fWb09OFEy5/vT6z3X2bbEjtYpCkVRlJNQCb+SQpbNsF/3PJLwJJbtYGga/337xXz2zV4GXtIS\nHXncjitDA73oEPkffUyrCy/k/DF/xNEM3vnXN+zZWQxAxy6Z4a1fZziOt8FpgpADJWUBmqTENHQ0\niqIoShWphF9JUko0aWHaQSQCqXuwbYd22Ymc3ywR6Zx4ml2MZrHj7bmUbdrE/sVL6PD0TERqGiP+\n4wJWfZqHYWpc2LsVIavmhW0ulxHpc1/bleC6LjhYGmTiC5/hSLgq9zzuHNa1Vp9DUZS688YbbxAI\nBLj11lsbOhSlAamEX0mmBlbeFjY9+TSu1DRyJv8erx576nV3TWNDfoD15/ej79AbKfnHLHwlZegJ\nybgEXHJVa4QQBINWjabINU3gEUEK9uexd+ePdOhxGYYr8aSn8FX/OTS+23Y40vfn2y2HCUbZVjtF\niXaWZWEY1XvLHjVqVC1Ho0QjlfArSeAQSG9Gs6kzCHy7joNLPyH52utO2q1O0wSHygJMeSnc2e6D\nNft4+u4xHC4NkGnoSMuutS53MTJESUE+C/53JgDff7mUm8b+EesUx+hWh2U59O7WlPmfbqPUG+SG\n/ucT6zEoC4Rq7TkURTlRhw5qKxNrAAAgAElEQVQduO+++1i2bBl9+vRh/PjxzJ49m//7v//Dtm0y\nMzP5wx/+QEZGBmVlZTzyyCNs2bKFzMxMMjMzSUtLY+LEiTz//PNUVFQwceJEbNvmySef5LPPPgOg\nT58+TJgwAV3XmTRpEi6Xix07dpCfn0+PHj2YPn36SeuTlOijEn4lGIbG9oMVTPnbKhwJdw06n8ua\nu045dS6EIL/AG7kuqwghY+PJSkxEk7JapWCaJtA0Ddu2j5sR0DRB6eEDkeug34fjWFCLCV9KSYyu\n8cxv++I4El2Ax2VQVmvPoCjKqbjdbt555x0A5s+fz+7du3nrrbfQNI3XX3+dP//5zzz11FP85S9/\nITExkffff5/i4mJGjBjBwIEDT7jfm2++yaZNm5g7dy4Ad9xxB2+++SajR48GYMuWLbzyyisIIRg+\nfDhffPEFvXv3rr8XrNQZ1WmvEnRD46OvdkemtJeuP4RMzzxlBzlNE7Rrnkzb85LQBAy9og07D5TB\nzw6G0XUNQ9cxdB1NO/UnaJdwcBUfwrdyObGhCnT96NcGHchu3YHM88JLBN17Xw2aq3Ze+DFs2wHL\nRnOc43oNKIpSt4YPHx7589KlS/niiy8YPnw4Q4cO5fXXX2fv3r0ArFq1ihEjRgCQnJzMgAEDTnq/\nlStXMnz4cFwuFy6XixEjRrBy5crI3w8YMAC3243L5aJTp07s2rWrDl+dUp/UCP8MdF2jrMhP7y7Z\nrPhm75GiteYIoXG6U1C27S1heN92pCZ62LC9gM+/2cf5zZIiXdQNXWP7D4f5YP4GmmQlcuOtFxA6\nyf2EACPg5ZsJD4HjYCYl0vWpJyknnNQDUsfjimXQqDFIAQ46QevosbSaJjC18I0CIZWoFSXaxMbG\nRv4speSee+5h5MiRdfZ8brc78mdd17FVD4pzhhrhn4mEf//vGgrzCnlm7BU8/9u+XN4t+7RHuIZC\nNl3bpLL7QBmvvr+JZWv3MPqaDuAc04VPCJbMXY8Vcti3u5ht6/cSd5Kz0oUQBA4einxvqKQUaR2/\ndu53dHy2C7/lOi7Z67pGTMjL/r//jcIF8056f0VRoke/fv14/fXXKSkpASAYDLJ582YALrroIubP\nnw9AaWkpH3/88UnvcemllzJv3jxCoRChUIh58+Zx2WWX1c8LUBpUvYzw9+zZw5gxYyLXZWVllJeX\ns3r1avr164fL5Yp8qpwwYQJ9+vSpj7AqLSHRw9oVO1m7YieXXtWWtj2ySYwxkc6pp/Rjgj6uKP6e\nq7tmE9vlAoJCHPchQUpIzYjj8IFyAFKT3eyb+y6tbrn5uHs5jiS+RQvi27en/McfybxmII7hJlZY\n4K9Ac7sJCBcheeKSgMvy8+OMJ/Fu2x6+TksltndfQqc5n15RlLPXsGHDKC4u5uabw+8TUkpGjRpF\nx44dGTNmDA8//DDXXHMNGRkZdOnShfj4+BPu8atf/Ypdu3ZFlgouv/xybrzxxnp9HUrDEFLWf9+0\nqVOnYts2jz76KP369eOvf/0r7du3r/b9CgrKK7X3PCMjgUOHKl9qJgQYho6Q8Pkn23B5TDLbpjLl\nH6v4y3/1Qz9Fwo8hxPYnnqDshx8BaP/Qgxiduh+35q9pAkPT+OGb3WSkebC//RLKimhz528oKPId\n19FOCEGMDCKQ2GggBAffeZv895aguVx0fWI6gYTUE34GMU6ALVOnUrEzvAbX8tZbiL/qF7WS8Kv6\ns2wI0RAjREec0RAjVD/OjIyEOoimfoVCIRzHwe12U15ezqhRo3j44YfV6F2JqPc1/GAwyMKFC/n7\n3/9e309dJbouwaogPy+PrOZtufwXbfnLO+tZvWwLGckxCCBOD2IJk4B1/OhaSIdgYVHkOnDoMObP\ntrU4jsTCoXvPLPbPXwAVFTS78UbQNESsRWFFMWmxKeAPH6lacUzVfawT4PCKz8P3CQYp/uYb4q8c\ngOMcn8iDpof2//UgO156GVdGOmlXXEG5Gt0ryjmptLSUO+64A9u2CQQCDB48WCV75Tj1nvCXLl1K\nZmYmnTt3jjw2YcIEpJTk5ubywAMPkJiYWN9hHUcIgQyV8+bz/41j2ximi1Hjp3Jhp0x6d29KnMdk\n6+5COqRYGAVbiWndC98xa+chw835D4xj63N/wd0kg7TLL8d7kgY9jiMpkzqpQ4cDAq/l4A+UMfH/\nplIW9NI0IZPfXzEOfMf/mmzNoEm/K9k3bwGax0PyBT0JnKSmwLYlgbgUmt9/P2g6XkftpVWUc1Va\nWlpkq52inEy9T+nfcccd9OnTh1tuuQWA/fv3k52dTTAYZOrUqXi9Xp588sn6DOmkNq1ZwcdvH52F\nuO7WB2jarhOfrdvLzDfWAXBlz2xGNd9DRo/LMZOaHPf9jmVhlZUjDB0zofLThXmFu5j44Z8i1y8M\n/iNN4tJO+LpQWRmW14tmujCTEtGq2YFLURRFaRzqNUscOHCAr776ihkzZkQey87OBsDlcjF69Gju\nueeeKt+3ttfwhRBkNm+LbhjYloXp8pCc0RSfN8jmHUen6rfvK4ecDBypneK+OliAv/JriikJyTRP\nasrukn1ckN0VzdFPHbMeF94ZWOSr9P1rSzSs6UZDjBAdcUZDjNC41/AV5UzqNeG/++679O3bl5SU\nFAAqKiqwbZuEhASklLz33nvk5OTUZ0gnJaVEGHHcNG4qBfm7yWjaAhsXMmQz5Io2fLl+P15fiNt/\n2YGUZm78Tu01ukn2JPJw7/uwpY0uDAjoZ/4mRVEURTmDek/4v/vd7yLXBQUF3H///di2jeM4tG3b\nlsmTJ9dnSKdk2QIhYkht2pFgZH1cEmtoPDXuCoRjU7Hycwq2hki5/HKCtfijlH4DDYOqrLXoBjiG\nBQK0kIldi4fnKIqiKNGvXhP+Bx98cNx18+bNmTdvXn2GUCWmqYMAKUVkycC2HWIJsvGhSQQLCwGI\naZqN3jbntM14qkoIgdQECIGQ8rTtbHVdUGgf5g+fPIuGxn/3HUeynlar8SiKoijRTXXaOwUtxuHj\nvZ/y6qZ/Y7n8GObRqXWBxAkGI9d2IHiyW9SIMHSefmMdd//5Yz5fvx+hn/pXJXWHtzYswhfy4w1V\n8M6m90BXyV5RlKobOnQofr+/ocNQ6oBK+CdhmjrfHdzInO8X8OmOL3l65WwOlJdEkm5Qd9Pxv39H\nYqccsq4dREJO7Y7uNU2wfW8J67cXELQc/r5gA5JTb6nTpEb7tDaR6w5pbdHUr1ZRlCqwrHDr7fnz\n5+PxeBo4GqUuqL1cpxCwApE/+60g+w57SW2RiABCNhhNmtLqgQeQukG5Xfn97bouiHECWGXlGAkJ\nVIgTj9mVUpKZFosmwJGQlRZ32ntaIclVLXvTPq0NQgiaxmUR8qsRvqLUh2VrdvPPJZs4XOQjPSWG\nWwblcGVu81q7/4MPPkheXh6hUIgWLVowbdo0Nm/ezNSpU+nWrRvffvsthmEwY8YMXnjhBbZs2UJ2\ndjbPP/88sbGxBINBZs6cyVdffUUwGKRDhw5MmTKFuLg4Jk2ahK7r5OXl4fV6mT9/Ph06dGDt2rXE\nxcWxbds2pk6dyqFDhwC4/fbbGT58OC+//DKLFy/Gtm3cbjdTpkw5KwquldNrkNa6ta0uWuvqsQ5z\n1s/noPcwIzuMYO77+dwzohucpIFOVcSLIOsfmkSwoJCY85rR8bHJeOXRKv+fYhS6RmlFiO37Suje\nLgMdB9s+/Wv86YjdyvwsaioatmlFQ4wQHXFGQ4xQ/9vylq3ZzQv//pbAMR0s3abOfTd0r7WkX1hY\nSGpqKgAzZ87Etm369OnD7bffzttvv01OTg6PPfYYH3/8MW+99RZZWVnccccdXH311dxwww28+OKL\nANx7770APPHEExiGwW9/+1smTZrEjz/+yKuvvho5le+nhO92u/nlL3/J+PHjGTRoEABFRUWkpKQc\nF9MXX3zBM888w1tvvVUrr1epO2qED5imhun4sTUXgSMH0Tk+jZtyRlAeCPBjXjl3DO2CLh1q2pjW\nKiklWBAu9vPt2YsMBMF14rY+aTskxRjknp+OZdmVet76SPSKohz1zyWbjkv2AIGQzT+XbKq1hD9/\n/nwWLlxIKBSioqKCVq1a0adPH1q3bh0ZVXfq1Il9+/aRlZUFQOfOndm5cycQ7m5aXl4eKZoOBoN0\n7Ngxcv9rrrnmuCN4f5KXl4dlWZFkD0S2VK9fv55Zs2ZRUlKCEIIdO3bUymtV6lajS/i6LhAygBAC\nBzceLUhw22qKv1uKu0UXEnsNpjRgICXYAUm87uHC9jFY1plH2JVhJCXhycrCn59PXNs2CLebU+2/\ncxxZ8ySua9hO+HXrUqrKfUWpRYdP0fTqVI9X1ddff80bb7zBnDlzSE1NZeHChZGRtOuYgYKu6yec\nYx8IhJclpZRMnjyZSy+99KTPcbJkfzrBYJBx48bx6quv0rlzZw4cOMAVV1xR1ZemNIBGl/BlqJQP\n5vwPum5w9ah7Ed5iCt+fDUBg31b0uCTMjv0JhcKJMZwgNRwhMHSBbdUsYfo0F53++DhOMIBwu/EJ\n19Fj8WqbrvHh6t288eEPJMe7mXH/5Zii7p5OURqb9JQYDp0kuaenxNTK/UtLS4mPjyc5OZlgMMg7\n77xT5Xv069ePV155hZ49e+LxeCgvL+fAgQO0bdv2tN/XunVrDMNgyZIlx03pm6aJZVmRLqmvv/56\n1V+Y0iAaVSl3wFfBikWvUZC/h4N7d7D6w7nYoaNb6mJadUO44zH1o0V4Qtf4fMMBpr+6hi82HDjt\n9rjKsG1JOS4qXAl45YkFe7VJAvOWbwOguDzAuh8Ooeuqc5+i1JZbBuXgNo//f8pt6twyqHYK2Pr0\n6UOLFi0YOHAgN998M506daryPe688046duzIyJEjue666xg9ejTbtm074/cZhsGLL77InDlzuO66\n6xgyZAiffvop8fHxjB07lpEjRzJixIgqzxAoDadRFe0lJ7lYvvA1Nn39GQC5Vw0m97JfsG/2/bh6\nXc8WV0e+2lrGdb1bk57oxrEdghLunr40co9Zk/pjVqkHXtXUanGUrvG3BRtY+f1+dE0w87d9SXTr\ntfIhIxqKuKIhRoiOOKMhRmiYXvp1XaWvKLWlUU3pmy43Fw0YQUqTphiGi1Y5F+ANajT9z6fJ92o8\n+dRyAL78fj8vPnQVgqOV7wBCgCaiZ05cOA53DuvCyKvakRTvRgccR63hK0ptujK3uUrwSlRoVAkf\nwB/UadM1XGASrq6VlDou/CEr8jUhy0ZKEICpCR66OZela/bQ/8Lm6IJTFtmdbaQEQjapcSbScaIl\nbEVRFKUONLqEDxD62TYaKSE10c3Iq9qx9sdDDO/bFl2E87q0Hbq0TqVTqxQ0AVbo6AhZCNA1LZxY\nBWdtBXyUTEgoiqIodahRJvyTkZbN4MtaMejSlrh0Dds+OiKWjkO4g77g2Bl90zBY/PZ37N9TSu4l\nLehxcXNCNWzMoyiKoih1oVFV6Z+JYzvEE0Lu34kpKzBFBS7TwW/BX979nmXf7MXlcSFEuN/+hnX7\n2LrpEN6yAMs/3EIwYJ3xOUxTx+XSEZXvxqsoiqIoNdaoR/gul46hCSTgD1i4hOTge+8Re0kub70w\nmVDAT+6Vv6QkrivX5WaStOdHChZ9Q/aAfgRELPLnq+JnmDqPFRbeb7/Bv28/GQP6UaF5VHc8RVEU\npV402oRvGDqG38veOW+ix8bQbMQIQo6D7a1gd95mQoHw8ZAbvlrOgFt6Y3++gv1z5gBQumYNbf/r\nIbr0bEbej4dxmRq9B7TA7baQmjvStOf459Pwrt/IlqefAaDo669pO2kiPk5sq6soiqIota3RTum7\nnCA7Z83m0NJPyF/0HvvenYdwx5B25RU0a9Ue3Qh/FmrbOZfUxFisvbsj3+vbuxeBQ8iyue6mLlwx\npCO7CryUVgQpK9iFcZKz6IUQBA4cjFwHDhcgqlhNp+saHhnEI4PoNWwApChK4/LRRx/x3XffRa5X\nrVrFiBEj6vQ5v//+ex588ME6fQ6l8hrtCF86Eid4tMue7feFp9czmpIoQtz8wJ8JBQPorlgcDJqN\nHEnxum+xvF5a3nYrlmYipSQkdcbN/JQKv0VGcgy/G9UODQv0GECiI7FtiWXZpF95BUVff03g0CHa\n3jeGkO6GShb267rA4y9ly8xnATj/gfH4XPFqSUBRGljZ+uUUffIaVmkBRmIaKVf9moQuZ19v+Y8+\n+oguXbrQrVu3envOrl278tRTT9Xb8ymn12gTvuNy0/Kuu9g5axaa28N5N/0KryWREkKY4S/SXNgW\ngINMTKXrM0+DlFiaSUCGR9il5QEq/OFivUPFPqRmUlFexoS/rcY0Nabd0xu3JnAcSYXmps2DD4Aj\nsQw3J5n5PyXDCZE3+yXKf9wCwI6XXua8e+8lgGqVqygNpWz9cg4v/ivSCh9UY5Ue5vDivwLUStL3\n+XxMnDiRrVu3YhgGrVu35tlnn2X27NksWLAACCfV3//+95Hz7bt06cLNN98MELlu2bIlS5cu5Ysv\nvuDf//43t912G9nZ2di2zaOPPsq6desQQjBz5szT9th/+eWXWbx4MbZt43a7mTJlCjk5OaeMc9Wq\nVUyfPp25c+diWRZ33XUXRUVFBAIBunXrxmOPPXbcIUBK3Wq088KBoI2TmEyr8eNpOeZeKoSb03UZ\ntmyJFxde4Y4ke4CkeBedWoePjOzTPQsZqkCLS+eR2y7i8u5Nee+LPMwjvbYdR+LDhU+rWrIHQGjo\ncUd7VhsJ8SAa7a9PUc4KRZ+8Fkn2P5FWgKJPXquV+69YsQKv18t7773HggULePzxx/n0009ZsGAB\nc+bMYeHChdi2HTnz/lT69OlDv379uPPOO5k/fz7Dhg0DYOvWrdx0000sXLiQQYMGnfE+w4YN4513\n3mHevHmMGzeOyZMnnzLOn9N1nSeffJK5c+eyaNEibNuu1mFASvU12hF+nGmhBUsQhokj3Ji2TUir\nep95TcJDv76AQCCA5S9Hi0lh/MzlVPhD3DW8G62yE2pl2j0odVredhtmQiJC08i+fjheR+3tU5SG\nZJUWVOnxqurYsSPbtm3jscce46KLLuLKK69k5cqVXHvttcTHxwNw4403Mm3atGrdv3Xr1pEDeXr0\n6MEnn3xy2q9fv349s2bNoqSkBCEEO3bsOGWcP+c4Di+//DLLly/HcRxKSkrweDzVilupnkY5RPQY\nDr5v3mff7HHsfXEM1p4NFC1ZREywvMrFcJbl4FiSuJhY0jKy+HD1bsp9IRwJCz7bTlpSzAmd/apD\nSokXk4xRvyb9V6PwSlN10FOUBmYkplXp8apq3rw5ixYtonfv3qxcuZKhQ4ee9ut1XT/uvIxAIHCa\nr+a46XRN07CsU/cSCQaDjBs3jkceeYRFixbx0ksvETxSB3WyOH/+3AsXLmTNmjW89tprLFy4kNGj\nR0e+X6kfjTLh6zKEd/3yI1eSis1f4AQCbJ35LKblr9Y9g0GLYNCiR/v0yGPd2qWj1+IgXMrwUkQg\naKtkryhngZSrfo0w3Mc9Jgw3KVf9ulbun5+fj67rDBgwgIcffpjCwkI6derEkiVLKC8vR0rJ22+/\nzWWXXQZAy5Yt+f777wE4ePAgq1atitwrPj6esrLqn3gYDAaxLIvs7GwAXn/99dPGWVxcfNz3l5WV\nkZKSEolj0aJF1Y5FqZ5GN6XvMmwClkXyjb+j7KN/EMj7Bk/rXA7NWx5ujl+DFniW5XBeejwvPtSP\nMm+QzNQYnFoY3R9L1zXclh8hwBI6AamK9hSlofxUmFdXVfo//PBDpMrdcRzuvPNOhgwZQn5+Pjfd\ndBMAXbp04Z577gHghhtuYOzYsVx77bW0atXquIr8IUOG8PDDD/P+++9HivaqIj4+nrFjxzJy5EiS\nk5MZOHDgaePMzMyMTPlDeP3/448/5pprriEtLY3c3NwzzkAotUvI01WqRYmCgvJKrZMnxGmsWPQG\nm9d9julyc8M9vyfebVK2eSsHl62g5W234nfF18ohOEKI0xYBnsrpzvPWNEFMyMvmP/6JwIEDNB0x\njLRfXI1P1v/ntmg4Hz0aYoToiDMaYoTqx5mRkVAH0SjK2aVRTenbVojN6z4HIBQMsHPLespND3Tt\nROaYu/CZcbV24l1dfI4ysdn58iv4du/GCQbZM+cthL+i1p9HURRFOfc0qil9Tdc5r20n9mzbiNA0\nmnfL5V/fv82Xu9dyRctLuKHTdeDXcZkaUto4Uj/LjryVyJ8V1cizKj5FUaLdp59+ytNPP33C4w88\n8AB9+/ZtgIiU2tKoEn5MXAL9R95BWfEhYhOS8GLz+a6vAfhkxxcMyxlInOnih7XLOLgnj4sGDEP3\npGLbEtPUwLGQQseyGmYVxBIGLW/7f5Rv206ouJjMgVcj4uLPeGiPoihKZfXt21cl9nNUo0r4AP6Q\njis+i5ADbt0ixvDgs/zEuWIxdIPC/btZ9eFcdMOkQ6dcmjYz0UyTvK2b2fLdKjpf3I+07DaE7Jqt\nhpi6CO8IEIKA7qnUTIJtSwJxKXR5cgZIiS10Khpg/V5RFEWJPo1qDf8nPy2vi5DBn69+mFt73sDD\nfcbwxnfzkTKcePv84nrsz9ey7u77+GbsAzRJTKcgfw9LXnsenJpVlhq6QOTvYcOEh/hh8hQ8gTI0\nrXK7A2zbiXT88ze+z2uKoihKNTXKhP8TxwJNany640umLX+BFbtWk9q0Ob36D6VZi/M5vHQZALbX\nS8nXa0nLPg+kxF9RXpPdexghP3mz/0aopATf3n3se3d+pP2uoiiKotSFehki7tmzhzFjxkSuy8rK\nKC8vZ/Xq1eTl5TFp0iSKi4tJTk5m+vTptGrVqj7CAkCXJv1bX85nu1ZxVaveWFKnU6++BAoLiGvb\nBu+27SAECTkdKf3ke7Jank9cYir+UE2e1MDTrBnevB0AxLZqWSdV/YqiKIrykwbZhz916tTIKU23\n3HIL119/PUOHDmX+/Pm88847/POf/6zS/Sq7D/9Ue3R1U2CLELo0sUMSGSxi8T9n8ssb7ia4ex/J\nbdogEuIJOjaabhKyzRolaCEgTlgUf/01RkICsR06UOEYp43xbBMNcUZDjBAdcUZDjKD24SvK6dT7\nlH4wGGThwoVcf/31FBQUsHHjRgYPHgzA4MGD2bhxI4WFhfUSi6YJTFNHFxoEDexQOIl74hJpfn4X\n5r36DNtK9yCTk6mwXVgyhqBl1Hg0LiWUOwaei3pj5HSNJHtFUZSamDt3LmPHjo3656htH330EYMG\nDWLYsGFs3779hL//+OOPmT59egNEVr+qlGlWrFjBpk2bqKg4vtnLuHHjKn2PpUuXkpmZSefOnVm/\nfj2ZmZnoenj9Wtd1mjRpwv79+0lNTa1KaFWm6wIhBUsXbSYu3s0lV7YhGArvcQ+EdC7sdz29+g9H\nSkEgVDefiyyrdtvuKopS/z7buZo3vptPQUUhabGpjOo2lD4tL2rosM5qlmVhGPU30JkzZw5jx45l\n0KBBJ42lf//+9O/fv97iaSiV/ok//vjjLFmyhIsvvpiYmJhqP+E777zD9ddfX+3vP5m0tPhKf+1P\nU3cV5UHm/OMr9uwoAsB0aVw1qCOiJtV4tSRaphejIc5oiBGiI85oiBHqN87Pdq5m1levEbTDp74d\nrihk1levAdRK0vf5fEycOJGtW7diGAatW7emb9++LFu2jOeeew4Ij7iPvS4rK+Puu+9m165dpKen\n88QTT5CZmXnS+zuOw+OPP86XX36Jy+UiNjaWOXPmYFkWd911F0VFRQQCAbp168Zjjz0WOV2vvLyc\n8ePHs2XLFhISEnj++efJyMjghx9+4LHHHsPn8xEIBLjxxhu59dZbAZg0aRK6rpOXl4fX62X+/Pk8\n+OCD5OXlEQqFaNGiBdOmTSMpKYlVq1Yxbdo0unfvzrp16xBCMHPmTNq2bXvKn9XLL7/M4sWL/z97\n9x0fRbU+fvwzu5vdhDSSEDBA6BKCdJByIQK5SIfEgFIUvaAIfK+AYq7SJBQBKVdFFAF/Kl6qIggG\nUJAiKCWIIEU6UkKHQEIKye7OzO+PyEqEhARS2Ozzfr18vdgpZ55MkGfPmTPnQVVVLBYLY8eOJTQ0\nlEmTJvHrr79y8uRJFi1axPz58wkJCeGVV17hxx9/JCwsjAoVKmS5h19//bXj0bKbmxtz5syhZMmS\nOd4TZ5DrhL9q1SpWrlyZ54ILt7t06RK//PILU6dOBSAoKIhLly6hqipGoxFVVbl8+XKer3E/z/CN\nBgO2jL9WrUu/aefGjXSs1uzLQxaG4v6stDA5Q4zgHHE6Q4xQ+M/wF+9b6Uj2t1hVK4v3rcyXhP/z\nzz+TmprKmjVrAEhKSmLDhg05nvPrr7+yYsUKqlSpwocffsjEiRMdiezvDh8+TFxcHGvWrMFgMJCU\nlARkjrZOnz4dPz8/dF3nzTffZNmyZfTq1QuA/fv38+233xIUFMTo0aNZsGABr732GuXKlWPevHmY\nzWZSU1N5+umnCQsLcyTqQ4cOsWDBAkqUKAHAqFGjHKO57733Hp988gnR0dEAHD9+nMmTJzN+/Hg+\n/vhjZs2a5SjQczeRkZH069cPgG3bthETE8NXX33FyJEjOXToEP369aN169aO4y0WC8uWLQMyvzTd\nEhcXx5w5c1i0aBGBgYGkpqZiMpnueU+cQa4Tvp+fH97eD/bN+ZtvvqFly5b4+fkBEBAQQGhoKKtW\nrSIiIoJVq1YRGhpa4MP5ACg6kc/WZ9VX+/Ao4Ubz8KqgZWAwmBxfHsxuCmY9HQWwKW5k2I0ym14I\n4ZCQdvf5Rtltz6saNWpw4sQJxo0bR+PGjWnVqtU9z2nYsCFVqlQBMqvndenSJdtjg4ODsdvtjBo1\niiZNmjgSoqZpfPbZZ2zZsgVN00hKSsLd3d1xXoMGDRwds7p167Jt2zYA0tPTGTt2LEeOHEFRFC5f\nvszhw4cdCb99+/aOZPmHsBgAACAASURBVA+wcuVKYmNjsdlspKWlZXlDq3LlytSsWROAevXqsWnT\nphx/7gMHDjBnzhySkpJQFCVLpb67eeqpp+66/ccffyQiIoLAwEAAPD09AVBVNcd74gxynfD79u1L\ndHQ0AwYMoFSpUln2BQcH56qNb775hlGjRmXZNnbsWIYPH86sWbPw8fEptIkTqqrjZjEQ1ace9oxU\nvl8wFaPJRNue/4cNM14mK6n7N3Jlz3o06008qtanZFhP0oye2It2EEAI8ZAIKOHP1bsk94AS+dNp\nCQ4OZtWqVezYsYMtW7bw3nvv8e9//xtN+2tlzgcpMevt7c3q1auJi4tj27ZtTJ8+nW+++YatW7fy\n66+/snDhQry8vJg9e3aWBGqxWBx/vjU6C/Duu+8SGBjIO++8g8lkol+/flniuz3Z79q1i8WLF7Nk\nyRL8/f2JjY3lq6++cuy/fajcYDBgz+EfXqvVytChQ1mwYAGPPfYYly5d4oknci5RfHssuREbG5vj\nPXEGuU74Y8eOBTK//dxOURQOHTqUqzbWrl17x7aqVauydOnS3IaRr1RVx81oJfbzyaQlZw5lHfxl\nMw2at+HKV9PIOH/UcWzq7z+RdmwXZftNI1nxlp6+EIJedSKyPMMHMBvN9KoTkS/tX7x4EV9fX9q0\naUPz5s0JCwsjODiYI0eOYLVmXnPt2rX4+Pg4ztm9ezenTp2iUqVKLFu2jKZNm2bb/rVr1zAajYSF\nhfGPf/yDH3/8kfj4eJKTk/Hz88PLy4vk5GRWrVpFrVq17hlvcnIyISEhmEwmjh49yq5duxxvYf3d\njRs38PLyomTJklitVsfw+v2wWq3Y7XbHqMOiRYvuu61WrVoxevRoevbsSalSpRxD+vd7Tx4muU74\nhw8fLsg4ipCCp3dJR8L39gtAvXElS7K/RbfeJPGnLynRqi/pBTRzXwjhPG49py+oWfpHjhxxPLfW\nNI2XX36ZBg0a0KxZMzp16kTp0qWpUaMGV65ccZzToEEDpkyZwunTpx2T9rJz4cIF3nrrLex2O6qq\n8sQTT1CvXj0effRRNmzYQPv27QkICKBhw4a5GkkYNGgQb7zxBl9//TWVK1fm8ccfz/bYsLAwvv32\nW9q1a4efnx+NGjVi//79ebg7f/Hy8mLIkCF0796dkiVL0q5du/tqB6BJkya8/PLL9O3bF0VRMJvN\nzJ49m8jIyPu6Jw+TIll4J789yMI7BoOCmyGDAzs24lvqESpUr0P6z4tI/m39XdswuHtSpt+7pNgt\nd93/oIr75KjC5AwxgnPE6Qwxgiy8I0ROct3Dt9vtLFq0iF9++YXr169nGdJeuHBhgQRXGDRNx6pb\nCA1rT6qaylX1Br4N/gn7fsxcbP9vFHP2rySazSZAx2qV9+uFEEI8XHKd8CdPnsyOHTt45plneP/9\n93n11VdZvHgxnTp1Ksj4CoXJpLD3ygE+2vkFAJ0eDefJZl1J37r8jmO96z2JVXHn9iL0igIWN5WD\nv2zILKtbrznpNimGI4R4OCxdupQFCxbcsf2dd94hNDS0CCK6P5s3b+bdd9+9Y/uwYcNo2bJlEUTk\nXHKd8NetW8eXX35J2bJlmTlzJi+88AItWrQgJiaGwYMHF2SMBU5VVLae2eX4vOPcHjo26ntHwreU\nrY5nnXBuWLM+PjAZdXasXcqRPX++mpKaQu0WXaSnL4R4KDz99NM8/fTTRR3GA2vZsqUk9geQ64Sf\nnp7umAHp7u7OzZs3qVq1KgcPHiyw4AqKwaCgmHQUFFSbjkE38kSlJvx28XcAmgc/jtmrFGVfnkHK\nvk3o6SmUCG2O0b88yTYzt/fuAdA1bqbccHxMS04EXUMIIYR4WOQ64VetWpX9+/dTp04datWqxcyZ\nM/Hy8sp2ycaHldFowGpKY/6+ZfhYvOlesxP2NKhRsjozOozDqtrwMnlhTTdgU3wxP94dgAy7hmrT\nuCPZAxpuhHV5lh++movRaKJJ227IMvlCCCEeJrlO+CNHjnQUuRk+fDhjx44lNTWVCRMmFFhwBcFu\ntPJB3Gccv3YKAB+LF50qtSUjw44JD0x4OObq6TpkZNhRjAbS7RomowGTArqatfeuqhpGozdP9nwF\nRVFQccvVWwNCCCFEYcl1wq9Tp47jz5UqVWLevHkFEU+BUww6+m29dFXXHG8cKIqCp8mKQbOBwYRV\ncUdTDGzac45Pv/0dRYGYl5pSpYwXdvudSR/c/vyUNdkrCrgZjaSmWPEoYUZX9D+PF0IIIQpHnuoT\nbt++ndWrV3P58mVKly5Np06daNasWUHFlu9sqp2LqVcY0OhZFu77Bh+LDx2rtcZ2M3P83cvNyrWV\n75EefxCDpQSBPUaRkGalell/DAYFTdP5ac85qnWqAXlYXtdoMLJm2QGOHbqMwaDwwr+b4eljkaQv\nhBA5iIuLw2az0aJFi/s6v0+fPncUzXlQM2bM4NFHH6Vjx4751mZhyfVycZ999hnDhg3D19eXli1b\nUrJkSV5//XU+++yzgowvX6XZ0vBwM7PlVBxNyzfg6cc64qa5o+tgNCrYr5wmPT5zEqKWkUbixv+R\ncvkcyad/JaxuWUxGhSebVEBT8zZcryhw7NDlzHY1ncP7L2I0ykp9QhQHlzdvYddLA9ga2Z1dLw3g\n8uYtRR1SFrfWuXdGO3fuZOvWrdnuz2l9/YIydOhQp0z2kIce/ueff84XX3xB9erVHdsiIiLo27ev\noyThw87daOHX8wdYdTSzvGRlv2D+02wQYELXM4f0b6comdXxrl8+x4td2vB8x1AMcMdw/r3ouk61\n0NIc/7OHX6P2I9K7F6IYuLx5Cyc+mo325xKrGVeucuKj2QCUbplz8Zbc2rt3L9OnTyc1NRWAIUOG\n4OHhwZQpUxxlXePi4hyf4+LiePvtt6lVqxYHDx7k1VdfpXbt2sTExHDmzBkAXnzxRSIjIwEIDw+n\nY8eObNu2jeTkZF544QWee+45AP744w8mTZrE9evXsdlsvPDCC3Tr1i3bWK1WK++99x4//fQTBoOB\n4OBgPvroIwDmzp3LunXrUFWVMmXKMGHCBAIDA5k5cyYnT54kOTmZ+Ph4KlSowIwZMzhz5gxLlixB\n0zS2bdtGp06d6NixI926dSMqKsqxLkylSpV4//33ycjIQFVVBg4cmOv1Yex2e7Y17nfv3s2ECRPQ\nNA273c6gQYPo3Lkzw4cPp1atWjz33HNs3779vq9dFPI0pF+xYsUsn4ODg+9Ikg8zi5sFT/NfFZLM\nRjfH23OapmMsVQGPKvW4+cdvGEr44BnWk12bvqdF597oqo6i6neZo39vqqbRqVsteYYvRDFzZv5C\nR7K/RcvI4Mz8hfmS8G/cuEFMTAxz586ldOnSXL58me7duzNmzJgczzt+/Djjx4+nfv36ALz66qs8\n+uijfPTRR1y+fJmoqChq1qzp6MAlJCSwfPlyrl69SmRkJI0aNaJatWpER0czbdo0qlatSkpKCt26\ndaNevXqOcrd/N3fuXOLj41m+fDlms5lr1zIrCa5cuZL4+Hi++uorDAYDixYt4p133nHUCThw4ABf\nf/013t7evPjii8TGxvLMM8/Qs2dP0tLSePPNNwE4e/YsiYmJ1K5d27EtKSmJRYsWYTQauXr1KlFR\nUbRo0QJfX9973t+catx/8sknvPjii3Tu3Bld10lOvnPJ5po1a973tYtCrhP+4MGDGTlyJIMHD+aR\nRx7hwoULzJo1iyFDhmQp1WgwPNxD1c3KNSQlI4WEm4n0eKwL6Aq6uw2DaiLF5oZv+3/jjx0UA1aM\nPBH5LzQsqHkcxr+droPVruLmbsSuZQ6vuZkz75PdpkvlPSGcVMbVhDxtz6s9e/Zw9uxZ+vfv79im\nKAqnT5/O8byKFSs6kj1kzr8aPnw4AKVLl6Zly5bExcU5En737pmvH5cqVYpWrVqxc+dOTCYTJ06c\nYNiwYY52bDYbf/zxR7YJf9OmTQwfPtxR2tbfP7NM8MaNGzlw4ICjBr2qqnh5eTnOa9GihaPiX506\ndRwjEXdjsVjo0KGD4/O1a9cYOXIkp0+fxmg0kpSUxMmTJ6lXr16O9wgyCxJlV+O+SZMmfPzxx5w5\nc4bmzZtTt27dO85/kGsXhVwn/FvfKFevXo2iKI4kFRsby5gxY9B1PU+lcouKdtNIh4pPZvayFRsz\nd37OqcR4okI78I+yjUm1uvHXbPtb8jchG0torDjyHSnWNHrU6oohwyyv8QnhhCylAsi4cvWu2/OD\nruuEhITcUa9k165drFq1yvH571Xb8lrrPbtr+/n5sXLlynxpa9CgQY4vFn9nsfxVjMxoNOZYhc7D\nwyPLyPLYsWMJDw/nww8/RFEU2rVrl+sqdjnVuP/Xv/5FeHg427ZtY8KECTRv3pzXXnsty/kPcu2i\nkOvu+IYNGxz/rV+//q6f16+/e4W5h43VqqJoCrZU6BvaiyfKN2PBvuWoBluBX9tsNvLd8Y2sObaJ\nLafjmPvrQnST806qEcKVVejzLAZL1sqZBouFCn2ezZf269evz+nTp9mxY4dj2759+wgODiY+Pp6k\npCR0XWf16tU5ttOsWTO++uorAK5cucLmzZtp2rSpY/8333wDZPZYN2/eTJMmTahcuTLu7u6sWLHC\ncdyJEydISUnJ9jqtW7fmiy++wGq1OtqDzHkCixYtIikpswy51WrNVcn1W7Xnc5KcnEy5cuVQFIWt\nW7fec/Tj7+f+vcb9LSdPnqRChQr07NmT559//q6lex/k2kUh1z38cuXKZfmcnp6OwWBwDN04E5PR\nwMHfLvBD7CEUBbo8/zjnH7mAohswGg0F+nxdMSjY1L9mlmYO8UvvXghndOs5/Zn5C8m4moClVAAV\n+jybbxP2fH19mTVrFtOmTWPSpEnYbDaCg4OZPXs2ffv2JSoqilKlSvH4449z7NixbNsZPXo0Y8aM\noUuXLgBER0fz6KOPOvb7+fkRFRVFcnIyAwYMICQkBIDZs2czadIkPv30UzRNIyAggPfffz/b67z8\n8sv897//JTIyEjc3NypWrMgHH3xAZGQkiYmJjsmAuq7Tq1cvatSokePP36ZNG1asWEFERIRj0t7f\nvf7664wbN46ZM2dSu3ZtR+y5kVON+/nz5xMXF4ebmxtms5nRo0fn67WLgqLn8gHylClT6NChA3Xq\n1OHHH39kyJAhKIrCe++9R3h4eEHHmaOEhJRcDYnfqpVtVAws/n87SbiSOeu1+mNl+EeXYPZuuUjz\nVo+iagWT8A3uGlfTE/Dz8GXJ/pWk2m7Sr34P3GzujjkCxb3ueGFyhhjBOeJ0hhjh/uMMDPQugGic\nQ3h4OLNnz87yBpYonnLdw4+NjWXIkCEAfPTRR0ybNg1vb28mT55c5Ak/rxQDPFqzNAmbTwJQ/bHS\nXPkjnfOnblBQ7xy4uRn4+Vwc/9u7DC+zJ4Ob/ItKPhXQMgyo8vxeCCFEAct1wr958yYeHh5cv36d\n+Ph42rVrB8C5c+cKLLiCohgUQpr6ExzqjZvZxPHU49QuXYNuj9VGxYrRZkLN5/UcNEXj4JXMIbcU\nayprjm1kQL0X0CXZCyGK0MaNG/N0fEJCwl3XXnnyySd55ZVX8iusfDVmzBj27t2bZZvRaHSsY+Aq\ncp3wK1WqxLfffut4RQEyJ2TceoXBmRgMCqdSTzPvwFJUTcXP3Zda5R5l6HcTMBlMvNXyVQJMpfK8\nwE5OFM1AVGhHDlw+gq7rdAvthEE1oSLv4wshnEdAQEC+zNwvTOPHjy/qEB4KuU74MTExTJo0CZPJ\nxKRJkwD4+eefHcnfWShuOpesF3nEO5CnQttzIfkSETXasWjfN9g0OzbNzle/xzKg3vOQjwP8druG\nv8mfd9vFAGCwmVDz8QuFEEIIkZM8VctbsmRJlm1du3ala9eu+R5UQVKNVsasm46GTsOg2nSv2Ql3\nxR2T4a9372uXroHF5EaGXc3X9+NVO2DPvOXyIp4QQojClKeldbdu3crq1au5du0as2fPZv/+/aSk\npDhVxbxrNxNR/1xPd9f5fVQsWZ72Ff7Jc3WiCA2sRmW/YKyqjdV/rKdJ+fp4GX3QbYWzfLDRqJCY\nfgPc7SiaEd36cK9aKIQQwnnkOqPMnz+fsWPHUqlSJX755RcA3N3dmTFjRoEFVxBKlyhFGc9SAFhM\nFv4R3Ai7XUNNM9Ck9OMkpF1n7KZ3WXZwDW+um0SKfgODoXASvma2EbPhv/x7zSg2xf+EYpYhfyGE\nEPkj1z38L774gnnz5lG+fHk++eQTAKpUqcLJkycLLLiCoFhNxLQaRoo1FS+LJwarCZ3MiXw23cqP\np7Y7jtXRiYvfQ/uKbbBaC7YMo9Fo4HDCH1xIySyj+/XBNbSu1Jw8fCcTQgghspXrbJKamkpQUBDw\nVxlZu92Om9vf151/uKmqjn7ThKfqi55mwqSopCScIv3GeSwGhTqlQ7McX6tMSJZ60ooCbiY7FpMN\ns0nDzc2IyfTgSVnTdIJ9y2JUMtuq5lcJdOepRCiEq9r/61lmvL2B8a+vYsbbG9j/69nCj2H/fl5/\n/fW77jt79ixNmjS5576cjitsZ8+e5csvvyzUa86cOdOxJDDA8OHDWbBgQb61P2LECDp16sSrr756\n1/2jRo1i165d+Xa9u8l1D//xxx9n7ty5DBo0yLHtf//730PzF+R+uJlg//Z17NnyHQAtI56nae2G\noCjsvfg7LSs1o4xHGdSMvybumU12Ni37lBuJV/ln38HsvHCAiiXLE+xZDt1qvO9YdF3HA0/e6ziW\nizcuE+xbDtJN3F9BXiFEYdj/61lWLd2PzZbZKUi6fpNVSzPXXK/dsHyhxVG7dm1Hqdni4Ny5c3z5\n5Zf06NGjwK9lt9sxmUx8+OGH9OvXr0CWi7969Spr165l165dd60oq6oqEydOzPfr/l2uE/7o0aMZ\nOHAgS5cuJTU1lXbt2uHp6cmcOXMKMr58ZzIZMnv5uo5i0PAtX4HaYW05uH0jF04dpUJoY5qWfpzG\nZRpg1E3YMrL27tOSE4k//jutnxvIf3d+RnzSeQBiWr1GkFvZByuja1N4pGQgbhkeaGk6ssa+EA+3\njd8dcST7W2w2lY3fHcmXhB8SEsKrr77K+vXrSUxM5O2332bbtm389NNP2O12ZsyYQdWqVYmLi2PK\nlCmOhWQWLlzIvHnz8PLyomXLllnazGnf7fbu3cv06dNJTc1cgnzIkCG0atUq2+NTUlKYPHkyR44c\nISMjgyZNmjBixAiMRiOfffYZq1evRlVVLBYLY8eOJTQ0lJs3b/Lmm29y/PhxTCYTlStXZsaMGYwf\nP56zZ88SERHhWI//bpYvX86qVavw8fHh2LFjeHt7M3PmTAIDA1FVlenTp/PTTz8BEBYWRnR0NEaj\nkeHDh2M0Gjl58iSpqak0aNAAgJ49e2IwGJg/fz4AR48e5fnnn+fixYvUq1ePKVOmZKnUdzu73c6A\nAQO4fv06GRkZ1KlTh3HjxmG1Wnn++edJT0/nqaee4qmnnsLHx4dvv/0WT09PTp8+7aiV0K9fP1q3\nbk1ycjKTJk3iwIEDKIpCo0aNGDNmDNu3b+f9998nIyMDVVUZOHAgnTp1yvZ38nc5JvzDhw87ihuU\nLl2aZcuWsX//fs6dO0dQUBB16tS567eVh5HRpHA55SoHrx+jekAVLAYP9l87SuyFTTxaqgJt+w7F\n16MkqsqfxXMUtL+9PKfrUMLLB6PJDTd3D66mXnPsu5KaQFm/cuRHkpZSuUI4h6TrN/O0/X74+Piw\nbNkyvvvuO/7v//6Pd999l9dff51PPvmEjz/+mOnTp2c5/vDhw3z88cesWLGCUqVKMXbs2Fztu92N\nGzeIiYlh7ty5lC5dmsuXL9O9e3dHcr2byZMn8/jjjzNx4kQ0TSM6Opply5bxzDPPEBkZ6Vidb9u2\nbcTExPDVV1/x888/k5qaypo1awAc1fTGjBmT5QtMTvbv38+3335LUFAQo0ePZsGCBbz22mt8+eWX\nHDp0yNFG//79+fLLL+nduzcAhw4dYsGCBY5SwosWLWLJkiV4eno62j527Bjz5s1DURSeeuoptm3b\nlu3aM0ajkenTp+Pn54eu67z55pssW7aMXr16MXfuXLp16+ZYsGj58uXs3buXlStXUqFChTvamjRp\nEiVKlGDlypUYDAZH1cGaNWuyaNEijEYjV69eJSoqihYtWuDr63vP+wT3SPi9e/dm9+7dALRt25Z1\n69ZRp04d6tSpk6vGHyaam403f5hMqjUNi9HM9PZvMXPH5+jonLx+hpplQihVwh+rNTPJm82Zw/O3\nPt9i193oOWQCKalJvNLkX/y/3YsJ9gmidplQ7Gkyq14IV+Lr53HX5O7r55Fv1+jQoQMAjz32GJBZ\nghagVq1a/PDDD3ccv3PnTlq1akWpUplvI/Xo0YPvvvvunvtut2fPHs6ePUv//v0d2xRF4fTp09Su\nXfuucW7cuJF9+/bx+eefA5kVVcuUKQPAgQMHmDNnDklJSSiK4qg5X6NGDU6cOMG4ceNo3LhxjiMI\n2WnQoIFjflndunXZtm0bANu3b+epp55yDNFHRUWxfv16R8Jv3769I9lnp02bNlj+LH9cs2bNLCvN\n/p2maXz22Wds2bIFTdNISkrKcSXaBg0a3DXZA2zatInly5c7OtT+/v5A5uq2I0eO5PTp0xiNRpKS\nkjh58iT16tXL8ee4JceE7+Pjw6ZNm6hWrRpXrlwhPj7+rscFBwff80IZGRlMmjSJ7du3Y7FYqFev\nHhMmTCA8PByz2ey4qdHR0YSFheUq+LywqjZSrWmZsahWNF3L8nzcrmUusqMooHiobDj1MwCtKv0D\n7aaBWzUFVVVBUUrg6eNFFYPGhFZvYMCAftOEDMEL4VrCO4RkeYYP4OZmJLxD/pVJvfVv49/LkRsM\nBuz2gnl7SNd1QkJCWLhwYZ7OmTVr1h35wGq1MnToUBYsWMBjjz3GpUuXeOKJzPLBwcHBrFq1ih07\ndrBlyxbee+89YmNj8xTrrfsDmb3s2ydZ5+ReyT6vbcfGxvLrr7+ycOFCvLy8mD17tuOLzd3cPpKQ\nW2PHjiU8PJwPP/wQRVFo166do5xvbuSY8EeNGsWkSZM4f/48mqbx5JNP3nGMoigcOnTonheaNm0a\nFouFtWvXoigKV69edez74IMPCrw0o9lgpnXlf7D51A4ala2D2Wimb4MerD6ygUf9K1GrdA3saRoG\ns87i/SvYcjoOgIspl+lZ4ylU61/PbXT9z2F/FRTc/kzzkuyFcDW3ntNv/O4ISddv4uvnQXiHkEKd\nsPd3jRs35pNPPiEhIYGAgAC+/vrrXO27Xf369Tl9+jQ7duygadOmAOzbt4/atWtn+ww7PDycuXPn\nMnbsWIxGI9euXSM1NRU/Pz/sdrujF75o0SLHORcvXsTX15c2bdrQvHlzwsLCSExMxMvLi5SUlAe6\nD82aNWPFihV07NgRgBUrVtC2bdtsj/f09CQlJeW+EjFAcnIyfn5+eHl5kZyczKpVq6hVq9Z9tdW6\ndWs+/fRTRo8ejaIoXLt2DX9/f5KTkylXrhyKorB161ZOnz6dp3ZzTPhPPvmkI8nXr1+fPXv23Ffw\nqamprFixgs2bNzv+stwaUioserqRPvWieLpmZxQFvj20FovJwrB/9MfX7IN2M3PoREPlcmqC47xL\nqVf/LHBz/zPwhRDFV+2G5Ys0wf9djRo1GDhwIL169cLLy8vRm77Xvtv5+voya9Ysx2Qym81GcHAw\ns2fPzjbhjxw5kmnTphEREYGiKLi5uTFy5EiCg4MZMmQI3bt3p2TJko5KqwBHjhxxvF2gaRovv/wy\nZcqUISAggMqVK9O5c2eqVKmS7aS9nPTo0YMzZ87w1FNPAdCiRQueeeaZbI/v168fzz//PO7u7o5J\ne3kRGRnJhg0baN++PQEBATRs2DBPve/bjRgxgkmTJtG5c2eMRiONGzdm9OjRvP7664wbN46ZM2dS\nu3ZtQkLyNpKk6Lqeq66p1Wq979cVDh8+zCuvvMKTTz5JXFwcnp6eDB06lEaNGhEeHo6Xlxe6rtOw\nYUOGDRuW7aSQ7CQkpORqoltgoDcJCSlcsJ1j/Ob3AVBQmNlxAkp65s9mMCok6glM/ukjAEaGvUJJ\nxf+BZt/nRWCgN1euJBfKtR6EM8TpDDGCc8TpDDHC/ccZGOhdANEI8XDJMeG/9dZbTJgwAYA33ngj\n20amTp2a40V+//13oqKimD59Ol26dGHv3r0MHDiQH374geTkZIKCgrBarUycOJHU1NQ7Zp3mt4vJ\nlxm1YRrJGSl4mNx5v+NY/Dz+muWoaio3MlJQAG+LF0aD9O6FEEI4txyH9MuX/2uYKrvZhLkRFBSE\nyWSic+fOQOZMSj8/P06ePOmY8Wk2m+ndu3eWhX1yK7c9/JL+7iSkJWLNMDK++Vtk6GmY3DT0dCNX\nUv7eK8gc4r+WkpbneB5Ece9JFSZniBGcI05niBGkh1/QDh06xPDhw+/Y/txzz/H0008X2HWjoqLu\nmDBXt27dIqlzP2bMGPbu3Ztlm9FozNUrhEUtx4Rfp04dtm/PXFu+YcOG930Rf39/mjRpwtatW2nR\nogUnT54kISGB0qVLk5ycjLe3N7qus2bNGkJDQ+/d4H1KzkglKcXKu/MOcf5qKrWqBvCf3g3R7FKs\nVggh7iU0NNTxLnlhepiSaVF8ycgv95ylfy+KorBhw4Z7Hjdu3DhGjhzJlClTMJlMTJ06FavVyoAB\nA1BVFU3TqFq1KjExMbmPPo/S7RkkJds5fzUVN5OBZ1pVIPXqKSwenpg9fLCpMnQvhBCieMox4W/c\nuDHfLhQcHHzXmY8rVqzIt2vci5e5BI/4m/Au4UaHJuW4dmgTW3f9CECH54bgX7Y6drssniOEEKL4\ncY51cfOJj7s3XmY3ZrzeiraNy3E5/rhj37kTBzEaXep2CCGEcCEul+HUDAVsKhY3C42ffAqDwYh7\nCS8eaxruWC3LddR3mgAAIABJREFU4Kajm20Y3GQxHSGEEMWDyyX8W2x28A+qxnPRU3nmlXEY3Lwz\nl9a1aGw5v523f36f9fGbMVhkiF8I4fzWr1/Pvn378r3d/fv38/rrr+d7u/crIiKC9PR0AHbv3k3n\nzp2JjIxkx44d9O/fnzNnzhRxhEUn1+Vxixuj0YBiULDalT/Xyc/szduwsnh/5ryCZQfX0KLC45i5\nv6UWhRDF35E929mxbhnJiQl4lwygadtuhNRvVtRh3WH9+vXUqlUr34uf1a5d27Fa3sPg9rcIVq5c\nSWRkJC+99BKAY5lgV+WSCd/NqJJ45RQJF8/yaJ3G2DSL4z1+k8GIyWDCrtkxKgbMxtytLmgwKOhm\nGxoaBoyQYSR3axgKIZzVkT3b2fTNPOw2KwDJiQls+mYeQL4l/bvVpW/RosVda6+bzWZ2797NhAkT\n0DQNu93OoEGD8PX1ZePGjWzbto2lS5fSt29fIiMj73q9vNauj4uLc5Syza4mfE6rtIaHh9OxY0e2\nbdtGcnIyL7zwAs899xwAU6ZMYefOndhsNvz8/Jg0aRLlypUDMivKzZw5E7vdjsFg4J133qFGjRqE\nhISwe/duFi9ezHfffYe7uzuxsbF8+eWXdOzYkdmzZ1O9enUuXbrE22+/7Shw07lzZwYMGJAvv7OH\nlcslfJMHJF+6wKp57wJwbO922j/3KhpuABhsJsa1fp2tZ36haXADFJspd2VxLHYm//wh8UnnqR9U\ni/71n4V0ec1PiOJsx7pljmR/i91mZce6ZfmS8LOrSx8bG5tt7fVPPvmEF198kc6dO6PrOsnJyfj4\n+BAeHk6tWrUcyTQ7ea1df7ucasLnJCEhgeXLl3P16lUiIyNp1KgRNWrUoH///rz55psALF26lOnT\np/Pee+9x8uRJRo8ezcKFC6lUqRJWqxWrNevv4aWXXuL48ePZ/szR0dG0bNmSmTNnAjhqzhdnLpXw\n020Z7L18gBKXbzi2JV9P4PZSEJpdIcAYSFS1ztjtGmouXtMzGg0cvXac+KTzAOy5cIC02ml4IKt3\nCVGcJScm5Gl7XmVXl/7UqVOsX7/+rrXXmzRpwscff+yo3V63bt08XfNBatfntSb8Ld27dwcyi6q1\natWKnTt3UqNGDbZs2cKiRYtIS0vLUgp427ZtPPHEE1SqVAnIXKk1L7VeUlNT2bNnD59//rlj262a\n88WZayV8ewYb/tjKvxs+h8kOB3f+SPOOPR29+1tUVcssf5tLmqZT2uuv6n8mgwkPN3comFLVQoiH\nhHfJgLsmd++SAfnSfnZ16VesWJFt7fV//etfhIeHs23bNiZMmEDz5s157bXXcnW9B61dn9ea8Dk5\nd+4ckydP5uuvvyY4OJjdu3cTHR19X22JTC41S99iMvPy471ZeuQ7fvVIoMPA/xBQrhoPurKuruv4\nGLwZGTaYDo+2ZnzraBSbS32XEsIlNW3bDZNb1p6lyc1M07bd8qX92+vS37Jv37671l6/5eTJk1So\nUIGePXvy/PPPs3//fgDHsTmxWq051q43Go20adOGESNGcO3aNRITE7Ocn1NcOfnmm2+AzGH1zZs3\n06RJE1JSUnBzcyMwMBBN01iyZInj+ObNm7NlyxbHlwmr1UpKSkqurgXg6elJ/fr1mTdvnmObDOkX\nMzo6C/Z+wyNegdQMfJQzNy5Qxbci3F/J4qxt24xU9KhIlWqVc/0oQAjh3G49py+oWfrZ1aX/73//\nm23t9fnz5xMXF4ebmxtms5nRo0cD0LVrV0aMGMH333+f7aQ9Ly+vPNeuv70Hf7814f38/IiKiiI5\nOZkBAwY46ry3b9+ejh074ufnR8uWLdm1axcAlSpVYsKECbz22muoqorRaOSdd97JU3346dOnM27c\nODp37ozBYKBz5868/PLLuT7fGeVYHtdZ5LZaXglfI7+e38ellATWHt9MVf8K9GvQAzfVgmpV7nl+\nYSjuVckKkzPECM4RpzPECFItzxmFh4c7Zs6LguVSQ/qe5hKElKrK0t9XcSMjmT0XfmffpUNgcPrv\nPEIIIUSOXGpIH8ComBzv2QOUdPdF0U2ADMELIVzD5s2beffdd+/YPmzYMFq2bJnv11u6dCkLFiy4\nY/s777yTr0XaRM5cZkjfaAHVaOXg5WP4e/jy/fHNhAZWo1n5RmhpD8/78sV96LQwOUOM4BxxOkOM\nIEP6QuTEJXr4BoOCVbnJB9s+4/i1U1Tzr0Sv2hFU9alIaqq8OyeEEKL4c4ln+AaDwk17Ogk3rwNw\n/Nopfjn7GycPxOHu9oDv5AkhhBBOwCUSvqpqeLt50rf+M/i6+1CpZHn+Wb4xO374hjNH92EyPTxD\n+kIIIURBcIkhfV0Ho81MjVLVmBT+H66ePcWWBXO5mXIDk9kCuVstXwghhHBaLtHDB1DtOooCSw58\ni6evH49UrEazDs8QVCkEuyySI4RwccuXL2fIkCH3PC4uLo6ff/7Z8fnSpUv06dOnIEMT+cQlevi3\n3LSl89OZXzh09QR1K4ZSt2ZjMm7KcL4QQuTWzp07SUtLo0WLFgCUKVOG+fPnF3FUIjdcpocP4G6y\nEFDCj6tp19h5fi86GgazDOcLIR5OISEhfPDBB0RERNCuXTvWrl3r2LdlyxYiIyPp0qULL7zwAqdP\nnwYye+Bdu3bljTfeoFOnTnTv3p3jx48Dd/bis+vVX7lyhT59+hAVFUWnTp2YOnUqkLm87pIlS1ix\nYgURERHMnTuXs2fP0qRJk1zFFRERwZgxY+jSpQtdu3blxIkT+X/TRLZcKuGX9PBlfHg00c0HMOKJ\nfzNj+2fYDbaiDksIIbJlMBhYuXIlH3/8MWPGjCEhIYGEhATeeOMNpk+fTmxsLJ07d85SSe7IkSN0\n796d1atX8+yzz/LGG2/k6Zo+Pj7Mnj2b5cuXs2LFCg4cOMCWLVsICQmhZ8+eREZGsnLlyjvWnr9X\nXMePH6dnz57ExsbSoUMHZs2a9WA3R+SJSyV8gJSMNOb8soBR66dy4vppzAYTilnD5OZyt0II4QSe\nfvppAKpUqULNmjX57bff2Lt3LzVq1KBatWoAdOvWjUOHDjkqxlWsWJHGjRsDEBERwdGjR/NUTU5V\nVaZOnUrXrl2Jiori2LFjHD58+J7n3SuuypUrU7NmTQDq1atHfHx8rmMSD85lnuEbDApJ6Tco6e7N\nwMf78POZX3gutCv29DQSM26Qip1g37IoVjdUuwzzCyGKH6PRiKb9NUk5u0p2n3/+OTdu3GDp0qVY\nLBbeeuutXFW9uxez+a9SwgaDAbtdFj4rTC7TrdUtNg5cOka6mkGgpz99az3F8V9+4svpI4lbMo+S\nijuJ6TfIMKahPByF84QQgmXLlgFw6tQpDh48SL169ahXrx6HDx92PAP/5ptvqFmzJl5eXgCcOXPG\nUUo2NjaW6tWr4+XlRcWKFTly5AhWqxWr1ZplTsDtkpOTCQwMxGKxcOnSJTZs2ODYd6vW/d3cKy5R\ntFyih280GohPvkB530d4c90k0u0ZvN96JL9uWgVA4pWLXDt3Bv+q1Thy9Q/q+tWWV/WEEA8FVVWJ\njIzk5s2bjB8/noCAAACmTp1KdHQ0drsdf39/pk2b5jinevXqLF26lLFjx+Lu7u6YdFevXj2aNWtG\np06dKF26NDVq1ODKlSt3XLNPnz4MHTqUzp07U6ZMGZo1a+bY16ZNG8ekvU6dOtGxY0fHPn9//xzj\nEkXLJYrnKIqCwcPOxlNb+erAKqr4VWBgg16c2bGNfVt/QFEUug0ew+4bJ6j3SC3MthIU1V0p7kVK\nCpMzxAjOEaczxAjFr3hOSEgIu3fvxtPTM9fnxMXFMWXKFJYvX16AkQln5BI9fF3XQTVRP6gWp66f\nJbxKc5Ye/p7HqlenW5MJmHUF3WKmsXcDFJuJexTeE0IIIZyOS/Twb/HxM3MjI4Vfzu6lkl8wNs2G\nj9kbX/xR1YdjCL+496QKkzPECM4RpzPECMWvhy9EfnKZSXsAFpMFRVe4lHqVsZveZfbOBXi4yVr6\nQgghij+XSviZFL47tgk/d1+smo0Dl4+iyLR8IYQQxVyhPcPPyMhg0qRJbN++HYvFQr169ZgwYQIn\nT55k+PDhJCYmUrJkSaZMmUKlSpUKLhANRrUczE1bOu4mC2U8A9Fs0sMXQghRvBVawp82bRoWi4W1\na9eiKApXr14FICYmht69exMREcHKlSsZM2YM//vf/wosDpNi4rcLv7P66EYABj7eh4YB9bBa1QK7\nphBCCFHUCmVIPzU1lRUrVjB06FDH8HmpUqVISEjg4MGDdO7cGYDOnTtz8OBBrl27VmCx3NRvsv/S\nEcfnvRd/R1Okhy+EeDidPHmSHj160K5dO3r06MGpU6fuOEZVVcaNG0ebNm148sknWbp0aeEHKh56\nhZLw4+PjKVmyJB9++CFRUVH06dOHXbt2ceHCBcqUKYPRmFmi1mg0Urp0aS5cuFAgcaRZb7I1/hfa\nVXsCBQU3oxsdHw0H6dwLIR5St0ZB165dS+/evRkzZswdx8TGxnLmzBnWrVvHl19+ycyZMzl79mwR\nRCseZoUypK+qKvHx8dSsWZM333yTvXv3MnDgQGbMmJEv7QcE5G7Zxgx7Bglp10m13mRc+DBKuHlQ\nxisQi8l875MLkbO8IuQMcTpDjOAccTpDjFA0cdrtdsc8JJMp//5ZvTUK+vnnnwOZo6ATJkzg2rVr\n+Pv7O45bs2YNTz/9NAaDAX9/f9q0acP333/PSy+9lG+xCOdXKAk/KCgIk8nkGLqvW7cufn5+uLu7\nc+nSJVRVxWg0oqoqly9fJigoKE/t5/Y9/MBAb6JqdmDzqR0cunKcxuXrkZqSwQ1bBm5uRnRdL/Il\ndYv7+86FyRliBOeI0xlihKJ5D3/v3r0MHToUq9WK2WxmxowZ1K1b977bu11Oo6C3J/wLFy5QtmxZ\nx+egoCAuXryYLzGI4qNQhvT9/f1p0qQJW7duBTKfSSUkJFCpUiVCQ0NZtSpzTftVq1YRGhqa5S9y\nftI0jWW/r+HI1RMcuHyEj3f+D82gYiihsv1yHAeTDmFwl/F9IUTu2O12hg4dSkpKClarlZSUFIYO\nHYqqyr8j4uFTaO/hjxs3jjlz5tClSxeGDRvG1KlT8fHxYezYsSxYsIB27dqxYMECxo0bV2AxGAwG\nmpRvwL6Lh9l/6TCPl6uHoih8unsxn+/5ihlxn7Lj/K+YzS6x4rAQ4gElJiZitVqzbLNarVy/fj1f\n2g8KCnKMggLZjoIGBQVx/vx5x+cLFy7wyCOP5EsMovgotMwWHBzM/Pnz79hetWrVQp1RGlyiPB90\nHI9ds+OuuKNqKueTLzn2n048R4tHZNa+EOLeSpYsidlszpL0zWYzfn5++dJ+QECAYxQ0IiIi21HQ\n9u3bs3TpUtq2bUtiYiLr169n4cKF+RKDKD5cbqU93WbAkG7BbPVEyzBi1NzoV78nHiZ3SpXwJ7JG\nuyJ/ji+EcA4mk4kZM2bg5eWF2WzGy8uLGTNmOJ6554fsRkH79+/P/v37AYiIiKB8+fK0bduWZ555\nhn//+98EBwfnWwyieHCp4jnZTegxmEAz2QAw2syoatHdkuI+OaowOUOM4BxxOkOMUHTFc1RV5fr1\n6/j5+eVrshciP7nsw2qTyYCm6Zn/2QG7GwCqFNIRQuSR0WikVKlSRR2GEDlyuSF9g0HB12zFcDoO\nj7SzeJjs9zxHMWsoHnYUiyqFdoQQQjgll+vhexqtXFo8DlvCOQDK9BqDsWQ1VPXuz+0Vs8aP8VtZ\ndmgNIQFVGdKkH2qay31PEkII4eRcLnMpaI5kD5Bx7ihGY/a9dt2g8tXvsaiaysErRzmXfBGDQXr5\nQgghnIvLJXy7bsT78U4AGEr44FmzRY6z8hVFIbBE5iswBsVAqRJ+uZogKIQQQjxMXG5IP81uosTj\nT+HTqBMYTKRqFrQcZuUbrGbGtn6dg1eOUtmvAmbNHXlpTwghhLNxmYRvNCpcv5mE5m7jpuaGbi3x\nZ5W8nHvrqqrBTTfqlKyNatfRnP8tRiGEEC7IJRK+waCQZkhm9HfTSLPd5Nk6T9E8qAm6LfdPNGQx\nHiFEdnRddxTPye83ecLDwzGbzVgsFgCio6MJCwvL9flWq5VBgwZx4MABAOLi4rLs37hxI1OnTkVV\nVR577DEmT56Mh4fHPfcJ5+MSz/BNJiNbTseRZrsJwLdHfkAzSHELIcSD0XXdsaRtWFgYbdu2ZenS\npeT3emYffPABK1euZOXKlXlK9pBZQ+TFF19k3rx5d+xLTU3lrbfeYvbs2fzwww94enry6aef3nOf\ncE4ukfA1TaNWmRqOzzVLPYpBd4kfXQhRgL7++mtmzJjB9evX0TSN69evM2PGDJYtW1bg1968eTM9\ne/YkKiqKHj168Ntvv931OJPJxD/+8Q+8ve9cTXDLli3UqlWLSpUqAdCzZ0++++67e+4TzsklhvTt\ndo2y7o/wbocxXE9Nopx3EFq6JHwhxP3TdZ25c+eSnp6eZXt6ejpz5syhW7du+Ta8Hx0dja7rNGzY\nkGHDhpGYmMisWbP49NNP8fLy4tixY/Tv358ff/wxT+1euHCBsmXLOj6XLVuWCxcu3HOfcE4ukfAB\ndJuR8oFBeNi8UW/KxDshxIOxWq0kJSXddV9SUhJWq9Xx3P1BLFy4kKCgIKxWKxMnTmT8+PHUr1+f\nM2fO8OyzzzqOs9vtXL16VZb4FdlymYR/i7xDL4TID2azGV9fX65fv37HPl9fX8xmc75cJygoyHG9\n3r17M2jQIOrXr09YWBhTp0694/hx48axe/duAN577z2qVKmSY9u3T+I7f/6843o57RPOSca1hRDi\nPiiKwssvv4y7u3uW7e7u7gwYMCBfhvPT0tJITs6s/qfrOmvWrCE0NJTmzZvz008/cezYMcex+/bt\nAyAmJsYxwS+nZA8QFhbG/v37OXXqFABLliyhQ4cO99wnnJPL9fCFECK/dO/eHUVRmDNnDklJSfj6\n+jJgwAC6deuWL+0nJCQwePBgVFVF0zSqVq1KTEwMpUuXZtq0aYwaNYr09HRsNhsNGjSgTp06d22n\nW7duXLp0iRs3bvDEE08QFhbGxIkT8fLyYvz48QwYMABN0wgNDWXUqFEAOe4TzknR8/v9kSKQkJCS\nq6F6Z6jp7QwxgnPE6QwxgnPE6Qwxwv3HGRh45wz2vCjI9/CFyC/SwxdCiAekKEq+TNAToiDJM3wh\nhBDCBUjCF0IIIVyAJHwhhBDCBUjCF0IIIVyAJHwhhBDCBUjCF0KIh9SUKVMIDw8nJCSEo0eP3lcb\ny5Yto0uXLnTq1ImBAweSmJiYq32i+JGEL4QQD+DAgQOMGjWKPn36MGrUKEfd+fzwz3/+k4ULF1Ku\nXLn7Ov/EiRO8//77fPHFF6xevZo6derw7rvv3nOfKJ4k4QshxH2aM2cOAwcOZN26dRw6dIh169Yx\ncOBA5syZky/tN2rU6K7r1+/du5c+ffoQFRVFVFRUtlXyjh49SmhoKP7+/gC0bNmS2NjYe+4TxZMk\nfCGEuA8HDhxg/vz5pKenc2vBUl3XSU9PZ/78+fna07/djRs3iImJ4b///S/Lly9n9uzZjBkzhhs3\nbtxxbI0aNdi/fz/x8fHous6qVatIS0sjMTExx32ieJKV9oQQ4j4sXryYjIyMu+7LyMhg8eLFTJw4\nMd+vu2fPHs6ePUv//v0d2xRF4fTp09SuXTvLsZUrV2b06NG89tprKIrCP//5TwBMJlOO+0TxJL9Z\nIYS4D2fOnCG7UiS6rhMfH18g19V1nZCQEBYuXHjHvo8//pjvv/8egBEjRtC0aVM6depEp06dgMyK\neosWLcLLywsgx32i+JEhfSGEuA8VKlTItlCOoigEBwcXyHXr16/P6dOn2bFjh2Pbvn370HWdQYMG\nOUrjNm3aFIArV64AmaMOH3zwAf369XOcl9M+UfwUWg8/PDwcs9nsKDARHR1NWFgYISEhVK9eHYMh\n87vH1KlTCQkJKaywhBDivvTq1YvNmzeTnp5+xz6LxUKvXr0e+Bpvv/0269at4+rVq/Tt25eSJUuy\nevVqZs2axbRp05g0aRI2m43g4GBmz5591y8gI0aM4Pz589hsNjp27Mjzzz+fq32i+Cm08rjh4eHM\nnj2b6tWrZ9keEhLC7t278fT0vO+2pTxu4XOGOJ0hRnCOOJ0hRij88rhz5sxh/vz5ZGRkoOu6o2pe\nnz59GDBgwH21KURBkWf4QghxnwYMGEDz5s1ZvHgx8fHxBAcH06tXL2rVqlXUoQlxh0JN+NHR0ei6\nTsOGDRk2bBg+Pj4A9OnTB1VVeeKJJxg8eDBms7kwwxJCiPtWq1atApmNL0R+K7Qh/QsXLhAUFITV\namXixImkpqYyffp0x/aUlBT+85//UL16dV577bXCCEkIIYRwGYXWw7+1WpTZbKZ3794MGjQoy3Yv\nLy+efvppPv/88zy3Lc/wC58zxOkMMYJzxOkMMULhP8MXwpkUymt5aWlpJCdn/k+o6zpr1qwhNDSU\npKQkxwxXu93O2rVrCQ0NLYyQhBBCCJdSKD38hIQEBg8ejKqqaJpG1apViYmJ4Y8//mDMmDEoioLd\nbqd+/foMHTq0MEISQgghXEqhJPzg4GBWrFhxx/bSpUtLsQYhhBCiEMhKe0IIIYQLkIQvhBBCuABJ\n+EIIIYQLkIQvhBBCuABJ+EIIIYQLkIQvhBBCuABJ+EIIIYQLkIQvhBBCuABJ+EIIIYQLkIQvhBBC\nuABJ+EIIIYQLkIQvhBBCuABJ+EIIIYQLkIQvhBBCuABJ+EIIIYQLkIQvhBBCuABJ+EIIIYQLkIQv\nhBBCuABJ+EIIIYQLcLmEbzAoRR2CEEIIUehcJuErJp1LKVeIzziNoYQqiV8IIYRLMRV1AIVBURQy\nDKlEr5mAqmtU9qvAf5oNgnRjUYcmhBBCFAqX6OEbDApnEs+j6hoAJ6+fAUUv4qiEEEKIwuMSCV9V\nNR4NqEwZr0AAutZoC6oBRQE3iwE3S+afhRBCiOLKJYb0AQxWNyb8MxqrzYZBM4LNgOKhsvRQLJqu\n0b1mZ7hpQtel5y+EEKL4cZmEr6o6/u4+XElORgdMFoUlv8ey6eQ2ADLsVp6r+TSqtWjjFEIIIQqC\nSwzp35UOds3u+GjT7JkbhRBCiGLIZXr4f6faoFetSDLsVjRd4/m63dEzDEjSF0IIURy5bMLXdR1D\nhht9a/fK3JBhQNMk2QshhCieXDbhA5kJ3nprer4keyGEEMWX6z7DF0IIIVyIJHwhhBDCBRTakH54\neDhmsxmLxQJAdHQ0YWFh/Pbbb4wZM4aMjAzKlSvHtGnTCAgIKKywhBBCCJdQqM/wP/jgA6pXr+74\nrGka//nPf5g8eTKNGjVi1qxZTJ8+ncmTJxdmWEIIIUSxV6RD+gcOHMBisdCoUSMAevbsyffff1+U\nIQkhhBDFUqH28KOjo9F1nYYNGzJs2DAuXLhA2bJlHfv9/f3RNI3ExERKliyZ63YDArxyfWxgoHee\nYi4KzhAjOEeczhAjOEeczhAjOE+cQhS2Qkv4CxcuJCgoCKvVysSJExk/fjxPPvlkvrSdkJCSq3fo\nAwO9uXIlOV+uWVCcIUZwjjidIUZwjjidIUa4/zjlS4JwBYU2pB8UFASA2Wymd+/e7N69m6CgIM6f\nP+845tq1axgMhjz17oUQQghxb4XSw09LS0NVVby9vdF1nTVr1hAaGkqtWrVIT09n165dNGrUiCVL\nltC+ffs8t28w5L62bV6OLSrOECM4R5zOECM4R5zOECM4T5xCFDZFL4R6sPHx8QwePBhVVdE0japV\nqzJ69GhKly7N7t27iYmJyfJaXqlSpQo6JCGEEMKlFErCF0IIIUTRkpX2hBBCCBcgCV8IIYRwAZLw\nhRBCCBcgCV8IIYRwAZLwhRBCCBcgCV8IIYRwAZLwhRBCCBcgCV8IIYRwAS6R8E+ePEmPHj1o164d\nPXr04NSpUwV2revXr9O/f3/atWtHly5deOWVV7h27RoAv/32G127dqVdu3b069ePhIQEx3kFsS83\nPvzwQ0JCQjh69OhDGWNGRgYxMTG0bduWLl268NZbbwE5/04LYl9ONm3aRGRkJBEREXTt2pV169YV\neYxTpkwhPDw8y++2KGK6V7x3izOn/4fg4fs7KoTT0F1Anz599BUrVui6rusrVqzQ+/TpU2DXun79\nur5jxw7H53feeUcfMWKErqqq3qZNG/2XX37RdV3XP/roI3348OG6rusFsi83Dhw4oL/44ot669at\n9SNHjjyUMU6YMEGfOHGirmmaruu6fuXKFV3Xc/6dFsS+7Giapjdq1Eg/cuTI/2/v7kKabOMwgF+5\n0WwSmCt1WhQEhRFlPJolhmgo6T4KkogwEgwTKwwLzzrJEDwoi8xUCKoTOygjsoySFdEHfhGaZFQG\ntdx0tAj8oMHm/z3wddRbrfd9c25z1+9oPrfsvrb7vv3veXz0FhGRgYEBSU5OFo/HE9CMXV1dYrPZ\nvGPrz37/JO/Pcv5qDYn4Zx7+6RwlChVzvuB/+vRJFEURt9stIiJut1sURRGn0zkr/d+9e1f27dsn\nvb29YjAYvMedTqckJyeLiPil7XdcLpfs2rVLrFar94dtsGUcGxsTRVFkbGzsu+O+xtQfbb5MTk7K\nxo0bpbu7W0REOjs7JTc3N2gyfltIZzvTf8n7zw8m35peQyL+mYd/MkeJQsms7JYXSHa7HXFxcVCp\nVAAAlUqF2NhY2O12xMTE+LXvyclJNDc3Izs7G3a7HQkJCd62mJgYTE5O4suXL35p+90Ww2fPnoXZ\nbMbSpUu9x4Ito9VqRXR0NOrq6tDR0YGoqCiUl5cjMjLyl2MqIjPe5muezJs3D2fOnEFZWRm0Wi3G\nx8fR1NTkc97NdsZps53pT/MC36+h6dcQTHOUKJSExe/wA6WqqgparRaFhYWBjvKd58+fo7+/H3v2\n7Al0FJ/aMsWVAAAFR0lEQVQ8Hg+sVivWrFmDlpYWHDt2DIcPH8bExESgo3m53W40Njaivr4eDx48\nwIULF3DkyJGgyhjKgnUNEYWiOX+Gr9frMTIyAo/HA5VKBY/HA4fDAb1e79d+a2pq8P79ezQ0NCAi\nIgJ6vR42m83b/vnzZ0RERCA6Otovbb50dXVhcHAQW7duBQAMDw+juLgYe/fuDZqMwNTYqdVqGI1G\nAMD69euxaNEiREZG/nJMRWTG23wZGBiAw+GAoigAAEVRsGDBAmg0mqDJ+O37OZuZ/jTvP9fQ9GsI\npjlKFErm/Bm+TqdDUlISWltbAQCtra1ISkry6+X806dPo7+/H+fPn8f8+fMBAGvXrsXXr1/R3d0N\nALh69Sq2bdvmtzZfSkpK8PjxY1gsFlgsFsTHx+PixYvYv39/0GQEpi6tpqWl4cmTJwCm7vh2Op1Y\nsWLFL8fU13j/3zZf4uPjMTw8jHfv3gEABgcH4XQ6sXz58qDJOM0f/for78/WEBBc64go5MzuLQOB\n8fbtWykoKJDc3FwpKCiQwcFBv/X1+vVrWbVqleTm5orZbBaz2SxlZWUiItLT0yNGo1FycnKkqKjI\ne8e5v9r+rW9vmAq2jB8+fJDCwkIxGo2yY8cOefjwoYj4HlN/tPly8+ZNMRqNYjKZxGQyyf379wOe\nsaqqSrZs2SJJSUmSnp4u+fn5Acn0u7w/y+lrDYkE3xwlChXzREQC/aGDiIiI/GvOX9InIiIiFnwi\nIqKwwIJPREQUBljwiYiIwgALPhERURhgwaegYjAY0NHREegYRERzDv8sj4iIKAzwDJ+IiCgMsOBT\nUMnOzsbTp09x7tw5lJeXo7KyEhs2bIDBYMCLFy+832e323Ho0CFs2rQJaWlpOHHiBICp3dXq6+uR\nlZWFzZs3o7KyEqOjowCAjx8/YvXq1bh+/ToyMzORmpqK5uZm9PX1wWQyISUlxfs8065du4a8vDyk\npqaiuLgYQ0NDs/dmEBHNIBZ8CloWiwUGgwHd3d3Izs5GVVUVgKld9A4cOICEhARYLBY8evQI+fn5\nAICWlhbcuHEDV65cQXt7OyYmJn4o4r29vbh37x5qa2tRXV2NhoYGXLp0Cbdv30ZbWxs6OzsBAO3t\n7WhsbERdXR2ePXsGRVFw9OjR2X0TiIhmCAs+BS1FUZCZmQmVSoXt27fj1atXAIC+vj44HA5UVlZC\nq9VCo9EgJSUFAHDr1i0UFRVh2bJliIqKQkVFBe7cuQO32+193oMHD0Kj0SAjIwNarRZGoxE6nQ5x\ncXFISUnBy5cvAUxtolJSUoKVK1dCrVajtLQUAwMDPMsnopA057fHpdC1ePFi7+PIyEi4XC643W7Y\n7XYkJCRArf5x+jocDiQmJnq/TkxMhNvthtPp9B7T6XTexxqN5oevp/eyt9lsqK6uRk1Njbdd/t7y\n9ds+iIhCAQs+hRy9Xg+73Q632/1D0Y+Njf3uDNxms0GtVkOn02F4ePg/91NaWgqz2TwjuYmIAomX\n9CnkrFu3DkuWLMGpU6cwMTEBl8uFnp4eAIDRaMTly5dhtVoxPj6O2tpa5OXl/fRqwO/s3r0bTU1N\nePPmDQBgdHQUbW1tM/paiIhmC8/wKeSoVCo0NDTg5MmTyMrKAgCYTCYoioKdO3diZGQEhYWFcLlc\nyMjIwPHjx/9XPzk5ORgfH0dFRQWGhoawcOFCpKenIy8vbyZfDhHRrOA/3iEiIgoDvKRPREQUBljw\niYiIwgALPhERURhgwSciIgoDLPhERERhgAWfiIgoDLDgExERhQEWfCIiojDAgk9ERBQG/gLj/ERM\nxHjU0QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "q7xOWs4hjjsj", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "centuries = df[df.year.isin([1818, 1918, 2018])]\n", + "\n", + "df['population'] = df['population']/1000000\n", + "now = df[df.year==2018]\n", + "\n", + "sns.set()\n", + "sns.set_style(\"white\")\n", + "fig, ax = plt.subplots()\n", + "\n", + "ax.scatter(x=\"income\", y=\"lifespan\",\n", + " c=\"region\",\n", + " data=now, sizes=(5,500));\n", + "\n", + "qatar = now[now.country=='Qatar']\n", + "qatar_income = qatar.income.values[0]\n", + "qatar_lifespan = qatar.lifespan.values[0]\n", + "\n", + "ax.set(xscale=\"log\");\n", + "plt.text(x=qatar_income+10000, y=qatar_lifespan, s=\"Quatar\");\n", + "plt.ylim((20,90));\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Lp2-p22DjD7S", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Assignment work\n", + "\n", + "I wanted to get a good grip on Matplotlib before going on to anything fancier, so I used this occasion to focus on the basics." + ] + }, + { + "metadata": { + "id": "AXmBtbQaJxv6", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 367 + }, + "outputId": "8ce5d042-6286-4a68-d16e-90b9cca85536" + }, + "cell_type": "code", + "source": [ + "\"\"\"\n", + "I want the bubble sizes to be proportional to population. \n", + "The first step is to create a new column with percentile population,\n", + "which I can then feed into a size parameter when building the bubble chart.\n", + "It looks like the parameter \"s\", for size, is already in unites of area,\n", + "so I can make that directly proportional to the population.\n", + "\"\"\"\n", + "\n", + "import matplotlib as mpl\n", + "\n", + "# I added the multiplier in pop_normal to make the bubbles whichever size \n", + "# seemed most appropriate.\n", + "df['pop_normal'] = 5000*df['population'] / max(df['population'])\n", + "now = df[df.year==2018]\n", + "\n", + "# I created a dictionary of regional colors\n", + "colors = {'america':'yellow', 'south_asia':'red', 'sub_saharan_africa':'blue',\n", + " 'europe_central_asia':'orange', 'middle_east_north_africa':'green',\n", + " 'east_asia_pacific':'red'}\n", + "\n", + "# Plot\n", + "fig, ax = plt.subplots(figsize=(10,5))\n", + "ax.scatter(x=\"income\", y=\"lifespan\", data=now, s='pop_normal', alpha=0.6,\n", + " c=now['region'].apply(lambda x: colors[x]),\n", + " linewidth=2, edgecolor='black');\n", + "\n", + "# Being able to set a custom axis label was NOT trivial. This is Darwin's\n", + "# solution, which still only sorta makes sense to me.\n", + "ax.set_xscale('log')\n", + "ax.set(ylim=(20,90),xlim=(100,300000))\n", + "ax.xaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('${x:,.0f}'))\n", + "\n", + "ax.set_title('The world in 2018', fontdict={'fontsize':20});\n", + "ax.set_xlabel('Per capita income ($PPP)', fontdict={'fontsize':14}, labelpad=10);\n", + "ax.set_ylabel('Life expectancy', fontdict={'fontsize':14});\n", + "\n", + "\n", + "# Creating a custom legend for this one requires craeting a list of Patch objects.\n", + "\n", + "legend_colors = {'America':'yellow', 'South Asia, East Asia, Pacific':'red', \n", + " 'Sub-Saharan Africa':'blue','Europe, Central Asia':'orange', \n", + " 'Middle East, North Africa':'green'}\n", + "\n", + "patch_list =[]\n", + "for region, color in legend_colors.items():\n", + " patch_list.append(mpl.patches.Patch(facecolor=color, label=region, alpha=0.6, \n", + " linewidth=2, edgecolor='black'))\n", + "\n", + "ax.legend(handles=patch_list, loc='lower right', bbox_to_anchor=(1,0));\n", + "#Legen... wait for it... DARY." + ], + "execution_count": 180, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAFeCAYAAADaE1hnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeUVPXh///nvXf6zvY625cFl4Wl\ndxSxELuSmFgSFUuM+SbGSNQYUr6feJJoYvwlaozko18xomDUaAxKggWk97rsLkvbXmbbzO70eu/9\n/bGysgKCiID6fpzDOe6de9/3PXcW58W7Srqu6wiCIAiCIAhnJflMV0AQBEEQBEE4NhHWBEEQBEEQ\nzmIirAmCIAiCIJzFRFgTBEEQBEE4i4mwJgiCIAiCcBYTYU0QBEEQBOEsJsKaIHxF3HLLLZSVlZ3p\napw1Nm/eTFlZGU899dQJX/PUU09RVlbG5s2bT+j8efPmUVZWRmtr68lWUxAEAcOZroAgCJ/Opw1c\nv//977n22ms/p9oIZ1IwGGT58uWsXr2ampoaOjo6kCSJkpISrrrqKm6++WZMJtNRrz148CBPPfUU\nW7Zswe/3k5uby5VXXsldd92FxWIZdG4sFuPll19m79697Nmzh7q6OmKxGL/73e+47rrrjlk/l8vF\nggULWLNmDW1tbZhMJvLy8rjiiiu48cYbsdvtp/R5CMKXlQhrgvAF86Mf/eiIYwsXLsTn8zFnzhyS\nkpIGvVZeXn66qiZ8zH333cf3vvc9srOzP5fyt23bxk9/+lNSUlKYMmUKs2bNwuv18sEHH/Doo4/y\n3nvvsXDhQsxm86DrKisrufXWW4nH41x66aXk5OSwadMmnn76aTZu3MjChQsHhbxQKMQjjzwCQEZG\nBhkZGTidzk+sW2trK9dffz0ul4vJkyczY8YMotEo69at47HHHuOtt97itddeOyIYCoJwJBHWBOEL\n5p577jni2JtvvonP5+PWW28lPz//DNRKOJqsrCyysrI+t/IzMzN57LHHuOyyywaFqwcffJA5c+aw\nc+dOFi9ezB133DHwmqqq/PznPycUCjF//nwuvvhiADRNY+7cubz77ru88MIL3HXXXQPXWCwWnn32\nWcrLy8nKyuKpp57ir3/96yfWbcGCBbhcLu65555B/8BQVZU77riDTZs28c477/D1r3/9VD0OQfjS\nEmPWBOErJh6P87//+79ccsklVFRUMHPmTB577DGi0ehRz6+rq2PevHnMnDmTiooKpk+fzv333099\nff0J3a++vp6ysjLuv//+QcdbWlooKyujrKyMbdu2DXrtscceo6ysjI0bNw46Xl1dzT333MO0adOo\nqKjgwgsv5KGHHqKrq+uI+x4aL9bS0sJLL73E1VdfzejRo7nllluOW+fq6mq++93vMm7cOMaPH89t\nt93Gzp07T+j9Hq0Oh49Za21tpaysjHnz5tHa2spPfvITpkyZwqhRo7j22mtZuXLlCZdfXl7ONddc\nc0RXp91u5/bbbwdgy5Ytg17bsmULdXV1TJo0aSCoAciyzE9/+lMAXnnlFQ7fidBkMjFz5sxPFTxb\nWloAuOiiiwYdVxSFCy64AAC3233C5QnCV5kIa4LwFXP//fezaNEiJkyYwLe//W0sFgvPPfccv/71\nr484d82aNVx77bW8/fbbjBo1ijlz5jBt2jTee+89rrvuOmpqao57vyFDhpCdnX3EoPxNmzYN/PfH\nQ9nGjRsxm82MHz9+4NjKlSu58cYbWblyJdOnT+f222+npKSEf/zjH3zzm98cCAcf9/DDD/Pkk09y\nzjnnMGfOnEFlHs2OHTu46aab2LhxI+effz4333wzRqORW265hcrKyuO+3xPV1tbGddddR1tbG7Nn\nz+aKK67gwIED/PCHPxz0bE6WwdDfcaIoyqDjh8qeMWPGEdcUFBRQXFxMW1vbMZ/niRo2bBgAq1at\nGnRc0zTWrFmDLMtMnTr1M91DEL4qRDeoIHzFtLS0sHTpUlJSUgD4yU9+wuzZs/n3v//NfffdR2Zm\nJgAej4f7778fi8XC4sWLGTp06EAZ+/fv54YbbuBXv/oVb7755nHvOXXqVJYsWcKBAwcGvsQ3btxI\namoqOTk5bNy4caB71+PxUFtby+TJkwfGWgUCAebNm4eqqrz00ktMnDhxoOxnn32WP/3pT/z617/m\n+eefP+LeNTU1vPnmmxQUFBy3nrqu84tf/IJwOMzTTz/NrFmzBl5buHDhwLitU2HLli1HdBFeddVV\n3HnnnSxYsOAzB5k33ngDODKUNTQ0AFBcXHzU64qLi2lsbKShoYHCwsKTvv+dd97JypUrefLJJ9m8\neTMjRowgFouxfv16enp6+N3vfseIESNOunxB+CoRLWuC8BXzwAMPDAQ1AJvNxtVXX42maVRXVw8c\n//e//43X6+XHP/7xoKAGcM4553DdddexZ88eDh48eNx7Tps2DRjcgrZp0yamTp3KtGnT2L17N8Fg\nEOhfUkPTtIFrAFasWEFfXx9XXHHFoKAGcMcdd5CXl8f69etpb28/4t533nnnCQU16G9Va2hoYNKk\nSYOCGsDNN9/8mcLLx+Xl5fGDH/xg0LEZM2aQm5vL7t27P1PZixYtYu3atZSXl/PNb35z0Gt+vx+A\nxMTEo157aIamz+f7THVIT0/ntdde42tf+xqbNm3i+eef56WXXqKhoYHLL7+c6dOnf6byBeGrRLSs\nCcJXTEVFxRHHHA4H0N+qdciuXbsA2Lt371HXImtsbAT6x7R9PMx93KFWoo0bNzJnzhz279+Py+Vi\n2rRp5OTk8Pzzz7N161Zmzpw50E13eMvSnj17jjh2iMFgYNKkSbS1tbFnzx5yc3MHvT569OhPrNvh\nDt1n0qRJR7ymKAoTJkygubn5hMv7JMOHDz+iixIgJydn4NmfjPfee49HHnmEzMxMnnrqKYxG42ep\n5klrbW3lBz/4AZFIhGeffZYJEyYQCoVYsWIFjz76KCtWrOCVV1454SAtCF9lIqwJwlfMx5f2gI/G\nNWmaNnCsr68PgNdee+0TyzvUIvZJHA4HxcXFbN26FVVVB1rYpk2bRkZGBkajkU2bNjFz5kw2btyI\n3W5n1KhRA9cfauU51EX7cYeOH601KCMj47j1+/h9jnXNpynreI72OUB/+Dz8c/g0li9fzn333Uda\nWhovvvjiUYPQ8VrOjtfydqJ+/vOfs3//fpYsWcLw4cMH7n3jjTcSiUR45JFHePrpp/nDH/7wme4j\nCF8FIqwJgnBUh76sD/+y/SymTJnCq6++SlVVFRs3biQvL2+gW3HUqFFs2LCBzs5O6uvrufDCCwe1\nOh2qS3d391HLPnT8aAFDkqQTruOh63t6eo76+rGOnw2WLVvGAw88QEZGBgsXLjzmmLSSkhLgo5bR\njzt0/NB5J8Pv97NlyxZSUlKO+rszZcoUgBOaoCIIghizJgjCMYwZMwaA7du3n5LyDo1BW7duHdu2\nbRvUpTlt2jT27dvHsmXLgCO7Ow8t7PvxZSigfymSQ0t/fNYB64eu37p16xGvqap6yp7FqfbWW29x\n//33k5WVxaJFi44Z1OCjZ7t27dojXmtpaaGxsZG8vLzP1D0Zi8WA/tB2tCVhent7Ac5YF60gfNGI\nsCYIwlFde+21JCUl8de//vWoA941TTvhPTKhvzVFkiRefvllfD7foAkEU6dORdd1nn322YGfDzdr\n1ixSUlL4z3/+c8R4roULF9La2sr06dOPGK/2aY0fP56SkhK2bt3K8uXLB722aNGiUzZe7VR68803\n+dnPfobD4WDRokXHDVmTJ0+mtLSUrVu3smLFioHjmqbx2GOPAXDjjTd+qhbJj0tNTaW0tJR4PM78\n+fMHvRaJRAaOiaU7BOHEiG5QQRCOKjU1lb/85S/cfffdXH/99UybNo2hQ4ciSRIdHR3s3LmTvr4+\nqqqqTqi8tLQ0ysrK2Lt3LzD4i3rs2LFYrVZcLtfAeYdLSEjg4YcfZu7cudx8881cdtll5ObmUlNT\nw7p168jMzOQ3v/nNZ37PkiTx8MMPc8cdd/DjH/+Yr33taxQVFVFbW8vGjRuZMWPGUVukzpRNmzbx\ni1/8Ak3TmDJlCv/617+OOCcxMZHbbrtt4GdFUfj973/Prbfeyr333sull16Kw+Fg48aNVFdXDywC\n/HHPPvvswELItbW1QP/yIIdaGydMmDBon9Bf/epX3HXXXfztb39jw4YNjBs3jnA4zNq1a2lra6Oo\nqIjvfe97p/BpCMKXlwhrgiAc07Rp03jrrbd4/vnnB7ovjUYjWVlZTJ06lUsvvfRTl7d3716GDh06\naLKAyWRiwoQJrFu3bqAF7uNmzZrFyy+/zDPPPMO6devw+/1kZGRw44038sMf/vCU7b85YcIEFi9e\nzOOPP86aNWuA/i7hl156iXXr1p1VYa29vX1gMsKhddU+Li8v74jwNWbMGF5//XX+8pe/sG7dOgKB\nAHl5edx9993cddddR938fe3atUd0Q+/cuXPQzg6Hh7Xp06fz+uuvs2DBArZu3crixYuRZZmCggK+\n//3vc+eddx5zkoUgCINJ+uF7igiCIAiCIAhnFTFmTRAEQRAE4Sx2WsPaqlWr+MY3vsHVV1/NzTff\nPLD3XENDAzfccAOXXnopN9xwwzGnlAuCIAiCIHzVnLZuUI/HwyWXXMIrr7xCSUkJS5Ys4a233mLB\nggXMmTOHb37zm8yePZslS5bwxhtv8OKLL56OagmCIAiCIJzVTlvLWlNTExkZGQMLLc6cOZN169bh\ncrnYs2cPV111FdC/kfGePXtwu92nq2qCIAiCIAhnrdM2G7SkpISenh52797N6NGjefvttwFwOp1k\nZ2cPrFauKApZWVk4nU7S0tKOW244HKa6uprMzMyj7rMnCIIgCIJwtlBVle7ubioqKrBYLCd0zWkL\na4mJiTz++OP8/ve/JxKJcP7555OUlHRC+wp+kurqam666aZTVEtBEARBEITP3+LFi5k4ceIJnXta\n11mbPn0606dPB/r32FuwYAF5eXl0dnaiqiqKoqCqKl1dXTgcjhMq89BaTYsXLyYnJ+dzq7sgCIIg\nCMJn1dHRwU033TRorcnjOa1hrbu7m8zMTDRN489//jM33ngjeXl5lJeXs3TpUmbPns3SpUspLy8/\noS5QYKDrMycnh/z8/M+z+oIgCIIgCKfEpxm6dVrD2hNPPMGOHTuIxWKce+65PPDAAwA89NBDzJs3\nj/nz55OUlMSjjz56OqslCIIgCIJw1jqtYe3hhx8+6vHS0lL++c9/ns6qCIIgCIIgfCGIHQwEQRAE\nQRDOYiKsCYIgCIIgnMVEWBMEQRAEQTiLibAmCIIgCIJwFhNhTRAEQRAE4Sx2WmeDCoIgCMIXWTQa\npbW1ldbWVsLhMIqikJmZSWFhISkpKWe6esKXlAhrgiAIgnAcdXV1rFy5kh3btqF6vRAIQDwOkgQ2\nG9jtFAwZwsyZM5k6dSpGo/FMV1n4EhFhTRAEQRCOIRAI8Oqrr7J59Wpoa0Pq6iLPZKLAbsduNBLX\nNJwuF01+Py1797Jo1y7effddbr31VoYNG3amqy98SYiwJgiCIJwUXdeJx+PE43EMBgMGgwFJks50\ntU4Zp9PJk088QW9NDcbmZmY5HJw/bhxpFssR58Y1je09PbzT2Eh7Rwd/am/nuptu4uKLLz4DNRe+\nbERYEwRBED6R3++nqamJpqYmmpubaW5uxuPxEI/FQNdB00CWQZIwGI0kJydTWFhIUVHRwJ+EhIQz\n/TY+lZ6eHv78pz/h3baNklCIO8aOJctqPeb5BllmSlYWEzIy+E9zM//dsYPX4nFkWebCCy88jTUX\nvoxEWBMEQRAGiUQibN26lerqapqamnB3dYHf/9Efnw8iEdA0jLKMIsuomkZM14lLEi6LBZfdzk67\nHRITwW4nPSuLwsJCRo8ezcSJEzGZTGf6bR6TpmksWLAAb2UlwyMR7h41CtMJbrptkGVmFxeTbrHw\nUlUVr738MkOHDqWgoOBzrrXwZSbCmiAIggBAZ2cnq1evZsP69YTa2qC7G3w+TNEoBQkJFCUmUpSa\nSmFBAZlWKwZJGtTtqes6cV2nOxSiye+nyeejuaeHlkAAl8mEKzGRncuX88/8fKafey4zZ84kKyvr\nDL7jo1u5ciX1O3aQ0t3N9ydMOOGgdrjzcnJo9ftZeeAAL7zwAr/85S+RZbFalnByRFgTBEH4CtM0\njcrKSlatWsXeqipwOqGjgyEmE+fl5DCksJBsqxX5BMaiSZKEUZLITUggNyGBadnZ/ffQdTqCQeq8\nXta3tNBQV8fy/ftZvmwZI8aM4YILLmDUqFFnRZhRVZX33nsP6uv5ztCh2Awn/zX5jZISKrdvp7W2\nlpqaGkaNGnUKayp8lYiwJgiC8BVVXV3Nyy+/jKu+HpxOTL29TMnIYOaIERTY7afsPvJhAW6Gw0GT\nz8dqp5MtW7eyp66OPZs2kTFkCDfffDPl5eWn7L4nY9euXTTs2kW2y4XVbqfe4yElJYXU1NRPPXnC\nrChc4HDwL6eT1atXi7AmnDQR1gRBEL5igsEgr7/+OutXrID9+8mORrnA4WDqZ2xJOlFFiYnMSUzk\nW0OGsLGzk1X79tHV1MQTbW3MmDWLb33rW1iOMuPy86RpGu+++y7z58/HU1XJROI4m/ehI9FqsGKx\nJZKfn4/D4SAQCBAIBIirKoqikGCzYbfbjxrmpmVn869t29i/fz+app0VrYfHsmfPHmprazEYDEyc\nOJG8vLwzXSXhQyKsCYIgfIVUV1fz0osv0rd3L4bGRmYXFDArL++EujlPNZvBwMV5eVyYm8u7LS0s\n3bGDtW43NTU1zJkz57S1sqmqyrPPPsuuLatw1m8nKdhHukkhFIygaRrBiAtZVuhwtmGx2bGYDKBF\nAR2QQDZhT0zGkZtLVlYWymGBLMlkIlVR6O3ro7OzE4fDcUJ10jSNdevWsX37dlRVZfTo0Vx44YWf\n22K7S5cu5e3XXoOODlAU3isq4v/cfbdoDTxLiLAmCILwFfDx1rQSTePWMWNw2GxnumrIksTlhYWM\nSU/nhf37aerp4Qmn87S1sr3yyivs3LScjvrtBAJBsnSNLCMkKHFkCRJM4AtG8HlD+DxuMlPMFOQk\nYTDIqKpGr9eH3+3hgNdFe1saFRUVmM1mAOKqik1V2dPQwLJly7jyyivJ/nAs37Hous5zzz3HtuXL\n8dbW4vf5eNtu5x+TJvHEE0+QnJx8St+/0+nk7TfeQKqs5OKsLPoCAbbt3MkLf/87f3zsMZSTmGAh\nnFoirAmCIHzJ9fT08Pjjj9NTVXXGW9M+SW5CAvPGjh3UyrZv3z7mzp1Lenr653JPl8vFmlUfUFe7\nBUeKjFmOYDXqVBQaKU5W0HTo7g3T4wG3H0JRFV2Lk55sJiu1f901VYeevjDNTi8BT5TKSpUxY8bg\n7OigrbWVHqeTtp4elr34IpvXrWPk2LHccsstpKamHrVOBw8eZNvatQTWr2emAkYtzIrWLir9vcyd\nO5e//OUvJCYmnrJn0NraCh4PFXY71w0Zgq7r1G7ahN/tpq+v73N79sKJE2FNEAThS6y9vZ0nHn8c\nz/btFPh8fPcsaU07lsNb2Rbs20drMMhj0Shzf/ITcnJyTvn9Vq9eTUt9NZIWIdWsct4IC7F9YTBK\nSEh4fBF0TSU7BcrzDRzsUGl1x6mpc2EbmYPdakCRIDvVQlqSiaqDblyuNpb+pxVZ05DCYXyqSobB\nwKRQiOatW6lpbeXRtjbm/fznR2z+HgwGWbVqFS3V1RRGwyRa4ozMTyIpbOS5bh9NB/q3s/rWt751\nyp5BYmIiWCz9W2b5/bgjEQK6jmQ0fuEWM/6yEmFNEAThS6qpqYknn3iCwI4dnBONcvfo0VhOwwSC\nUyE3IYEHRo/mrzU1HNy8mcf++Ed+ct995Ofnn9L7bNu2jdaWRsYXxrjzkhR21IXZ1BylKayRb5aI\nxFQkNNLsCoosMSRbJhrX6PJFaOn0U178UdiKRsJk2eP0uP2E/BqyrKPp0ByX2NXXh6Wzk9mFhdR1\nd9NTWcnrr7/O7bffTmVlJdu3b6epqYnu7g46Oxto9jbiMvoJWAys7fVywB3DbVTQutpZv379KQ1r\nw4YNo2T0aBp8Pn5XUwOKAiNGcMHFFx+1C7qpqYlnnnmGaDTKd7/73TM+g/er4Ivxt1YQBEH4VA7t\naxnYto3Rus5dFRUYz+KZiEdjNRi4t6KC/62tpWbbNp54/HF++uCDxx3z9WnU1dVhksKUZBlINsdA\nDeOVVLb0wjizTkRV2RuV6I1oRDQwy5Br6t8TdV9zH25vBABNjaNIMZKtcRLNcXym/lZCpwE0g0am\nPUqn1Mafarsw6hY8dXVUeTxUVVURDncCnYAXgyHMxIlWcnJACmpY9CiBUIwENxBXCIUkNm5cxR/+\n8AcuuOACJk+ejCRJBAIBZFnGdhKtpoqi8OMf/5hXs7MHZoNOmzaNK6+88qjnv//++/Ru3YpJVfmv\nwyHC2mkgwpogCMKXTE9PD088/jiBnTup0DS+P2IEhi9YUDvEpCj8cMQI/lpTQ+2OHTz+5z/z4M9+\nRlpa2ikpv6uri0RTjOxEnb3OKDZ7DK8pzo4OjafDUB/RkXQJWe3fBlXVdaIS6CqUqhEme+PYzTJx\nNY6qaXgDErIERhnMRh1PksywDJnyVInGDhWzOY4nGMIbhljzZhLs+5g0KY+LLy6irCwXh8OGosg0\nN2exZdNG5GgQm0UhhkxvLzS0Wmhu7aWhYSkNDbt4991yYrEY3Z1OkCQqRo3hjjvu+NTdlzabjdtv\nv/2EznU4HGgZGYRV9XPpmhaOJMKaIAjCl0gsFuOpp56ib8cOhoXDfL+i4gsb1A4xyDI/GDGCJ6qq\nqN+xg6eeeopf/vKXGE5Bl67BYCCOhskcJahIpBYaGVqq8069SmsfDJNhuAnGG8Gg6vRqsDkOTg12\noaMrOj8uUFHjGn1B6PHqxFTwxGG/Dvt1nZARLBEJk0HHaAfFBDlDILdAp3yUl/ETUhk71kJ6+kcL\nERcU5BOJjKOxoQ7iIaxGheQMG6MnZVBWNoLt290sWVLL+vVbcTZHGZIl48hIoHprF3+XJH70ox99\n5mdzLJdffjmpqalUV1fj9/uprq6moqLic7ufAF/sv8GCIAjCIEuWLKGjqoqc3l7uHjnypPa1PBuZ\nFYV7KirIcrlo372bpUuXDrym6zq6rp9Uufn5+agahNQYKdkmDGYFb0QiSYciDW6S4DwTdMV1fBqc\nb4TfJsIPLJClwoGAyhs9KlYjOJJhYqnEkGwIGWB5ADpsOjmZOl2eOL4QKDYYNgLuuw1uux5KCzSC\nfU727t1LPB4fqJckSQwdOpQJE6dQWDqSrPxzOGf4KEaPHo3VauK883J48MFyxo/3U1jUQ0aagfHD\nM8B3kKrduwiHw5/1kR+TLMuUlpayfetGqta/zvynn8Lv939u9xNEy5ogCMKXRl1dHcuXLUOqq+P2\nkSOxnqbJBD3hMK5wmGyrlZQP1xf7PNgMBm4rK+Ox2lreefttkpKSqKysZP/+/SiKwrhx47j66qvJ\nzMxk586dbNu2jUgkQmlpKTNmzDjqchelpaXs36zgCcbxBWO0dit42jTGGmBWArwdhG6Pjk0HXYLN\nJviJCcoluFOB52Kw1QsXpUKuCVRNx2+G94BmG2TLkJWks6QFykphaDncfQs4MmBXk4TdImEwqIQC\nvXR2dpGXlztQN0mSSEtLJS3t6Et8WK0GrrgsifLiMBvWu/hge4D2TpXS5Ciapn1eHwPQv5Awuo5J\nVgmqav/PwudGhDVBEIQvgVgsxsKFC9H37+fS7GyKT+E6XMei6zpvNDTwfkczGONIUSPXFpVyySme\nsQn97y8YCpElSYxMSODllSt574Pl5GeaMepBEhMsRFx7qa6qIi8/nwN7dkCoHbQ41VvTWPnBBzzw\n058eMTlhzJgxrPxvIXVt9eRmR1m7A+QunctSJQhBfUgnOwYXSFAjwc4I3BSHaTp8V4YZRlgbgw1e\nmJUC7/XBGj/4HZCmQ14arK8FWyrkFMO9t0NGMnR6JEIxCbNRJtUObV4/fr/vUz0Tm82GNSGR3EI3\nk1Ufb77lo8VlxLOzknA4fFKTDU5Ubm4uN3xnDrt27WL69OmnfKFeYTAR1gRBEL4ElixZQmd1NY5g\nkKuHDz/u+X2RCGs7Oqh2u4moKjaDgXEZGUzPzibhBLc02tbdzfvdjcjFbgpyZJraNN5o0Si22znn\nY+uHnaxIJEJDQwPO7k6qAz4qg2F6JI2A4ifTDkm6mZzMJOLEOLCvhsCeRmwJSYwrinPVuQWkJppZ\nvrWN+vYAixYt4v777wegpaUFp9NJRUUFxcOn0F3bSWdHmJ62CAUBjZGJEpWqhN2oM1yDmTKY47BW\ng/wiqG2FZmCsAf4bhOecsMYLWhL4cmDSUBiWD8+tgJ4wFA2Biy+C2g4wdAGShKwoFGcb6fVGicXi\nn7o1TJb7u0o/aG4iOV1i1teMBCMqHe09vPDCC9x3332n5DM4losuuoiLLrroc72H0E+ENUEQhC+4\nw7s/bxs58hOX6NB1nXdaWnirpREtMQjJYVA0iMvU9XSypKmR75QOZfoJzPLb29cHyUGunmHjiql2\n/rHcyypviH0ezykJa5FIhMrKSnqDXbzZ14vbpGJI10hP0BiRAVmZOqX5oJhhV0MQRdXYstdNZ4fC\nXZdNYdbk/ha+8pJU5j29hf17a3C73VRXV7P4xech5sWU6GDosDKk8BSq26uxy30UW6PYLSZyJR3J\nGGJfXGOZBLsV0DQ42ATlOvjNEI1DXIduGfIKYWQhDM+F/EzITIW21yCtAC6aCWYr+MNgNoLNLDMs\n10xmsky9M0JMlbHZTmYBWomMtBQswOXT0zBpHl79t4933nmHuXPnntUbxwsnToQ1QRCEL7jXXnsN\n/cABLjuB7s//trTwlvMgUpGbCeUmzh2VQGqiTKdb5b2dPrbscTFvRzdX5w3h3oqKT5ygYDEYICTT\n4IzR3hOjpSsGcSvmUzSpobGxEU+wm3/7+4hnSwzJkPh6hYXCFJVqdwRLIpTmqpiT4lwxKYOD7VH+\n8IqX/R0ayzY0M74sk/KSVGx9NtWXAAAgAElEQVQWAyl2E51alGAwyNtvvw19VWQkanR09VDd24e7\nF+R4Jn1eHwZjAlnZ6WShs1d1s7K9j3WqTtwEw1W4yCiRa1PISDQQj8ewu1WKHXDbBf1BTDHKDMuH\nf6zTSMuCkSNh3IdLkUlAghlS7P3BubI+SjAqg2wgKSnpUz8ji8WCJBuIRvq3xRo/AdZt1+nscbNl\nyxamTp16Sj6LU6Wjo4OFCxfS3t7OkCFDuO2220QX6gkQYU0QBOELrLGxkca9e7H19XHl5MmfeG53\nKMTbLQ1IRW6+9/UkJpR9tDq9ya4yJSlONC3GiliYZ2r3EFFV5o0de8ylP87LyWH1rjZ27+pl974+\nCJixh5KZnJn5md9XPB6nu7uL/3h6iWVCXrbKT843k2KVUXWF/Z4YsZiKxxcj1RwlGosj6xGumWxj\n3d4YBzq7+dsbNfzPnRPpdAfp9KhYctPIysrqb22SJFRNp7OzE2+kj9K8RHZ16KhyIrVuN1tqXaQl\nmpmmGDCaFVpCcZIViVIT5KcZGZZrQpElOgIamk/FaO5vdYupkJcB/qDEzgZIzYBJE8BmhnS7Qluv\nRKdHpduvY7epyLKRuCaRmpJyUkuRWK0WCgqLaGnSaO4JgmRh5oV2Nm2WWbVq1VkV1nRdZ/78+azb\ns47uYDf7O/ej6zpz584901U7653WsLZy5UqefPLJgWnWP/rRj7jkkktoaGhg3rx59PX1kZKSwqOP\nPkpxcfHprJogCMIX0urVq8HpZHp29nGX6VjjdKInBZk22jQoqOlAnddLrxRh7HSFlm6d1q4w73e3\nMrPTwQyH46jlOWw27q8YwxsNDfT0hnHYbFw/uvSUzAgNh8M4I0FaUClI0fnxeRZSrP2hUZEkChON\nHOjTaHHrdIWCyB0doFixJ2dwyWSd2MZudu5r4d4/R7EnWCFpBBddfDEmk4nZs2fz4gs99EY9uCIt\nlKRHMGm9TBg7Hm8gimfjRg5oMqUhGU1VSYpaKNOjFKebSU0Au1nHE1ABnRUuDb9FpiBDIilBIsOu\nYzVIvLtLw6fC0OFgs0kEowqGsIzRALJBRlaMZKTZSU4w0eD0IZksWCwn99yKi4tJTEzE4/FgMBgo\nLbOybXslO3ZsoKGhgZKSks/8eZwKfr+f1vZWnH4nY74xhpolNdTX15/pan0hnLawpus6Dz74IIsX\nL+acc85h7969fPvb32bWrFn8+te/5jvf+Q6zZ89myZIl/M///A8vvvji6aqaIAjCF1IgEGDr5s3Q\n0cHMsWOPe36l2w0ZIWaMHtzdFo6rdIfDBOQ4yQlGhozR2V6lUrXHzUsHDpBhsTA8JQVJko4osyQp\niQfGjAGgKxTCHYnQEw5jMxjIs9k+cS/SQCxGk9+PSZYZkpSEfFj5sqKwMxjGYFWZXmwiPWFw657D\nouBVDHSGZXoiGpJFITffQfmwoRgUhUCshn0d7exukTj3vKl87ZJLufrqqwGYPn06paWldHR00N7e\nzqKX/k5vOMS4c0Yyfvx4/hWN0tTYyKXFxchAY0MDIW8nuVkmHOlWgqEg8VgcdzTOtkiAaJrO9OEK\nQ/PN6GqUeCzK1jqNmBFGj5QpK0wmFINQPA6SRHa6iYrSVKxmhaYOPyg20jMyMJ7gxI6PkySJjIwM\nMjIyaG5uZv+BGjJzvFTXbOU3v/kNCxYsOCvGriUkJJCWkkZqTyq7/72b7IRssQPCCTqtLWuyLOPz\n9U9N9vl8ZGVl0dvby549e/j73/8OwFVXXcVvf/tb3G73KdtORBAE4cto48aNxNrbGZmYSJbVetzz\ng/E4GDQyUwa3wNV5vUTCEVRZpdetYUnUkSUdXYrTburmif07yVGSuHP4cArs9kHXxjSNHT09rGpv\np76vD+Lx/n2ZZBmz2cyU7GxmOhzkH3adqmm80dDA6o524uYIaBIpup0bSksZn5EBgG4wcDCuYkzT\nmejo3+YpENdQJAmrIhEIxMk2mChJTWFvMIjfaqOwsIDMD6+/5rJz2dmymWR3NtddfwMXX3zxoHpn\nZ2ejaRpLly5FkUBXVBrrD2K320ksLcXZ28trXV3cVV7OMIOBmqoA7T19ZKfbSLTb6QzHWdjRi1qc\nQZkDCrIjqLKZZHsCHa4wnqgXU1qMkhI75UMyMBhk/MEYsgSJNhOy3L8mW0dPEJQ0HI5cPqtQKER9\nQz2ukIuCchnWethWuY3Nmzczbdq0z1z+ZyXLMt///vfhGXD3ucnNyeW2224709X6QjhtYU2SJJ54\n4gl++MMfYrPZCAQCPPvsszidTrKzs1E+bL5XFIWsrCycTqcIa4IgCMeg6/pAF+jMgoITusaqKPhU\nmR6PSlJC//9zo5pGSyCAougoOhDWCXaASZcZVWDmjuvMbKl10+H089juMPeNGjMwiaHV7+fpmhrc\nXi8Eg1ijUQoMBoyShFfTaNE01ni9rGlr49zcXG4aOhRFlnmtvp5VngakYg+l+Qq+kEaX08uz+0PM\nNYxleEoK7cEglmQzeSkGiMdZ3xpFM/aPC0vQIF8xYFBM2G02hhgM1AaCOJ1OcnNzicVi9Pb2Ul5g\nZW+7i3379h0R1gKBAH/+05/wtm0nQ3KRl5tAfXsL1Vu7yRs6ESZOpLaykp9t2cLkjAysBjOqX6Gh\npovuBCPVgRh6XiL55Vnc/LVsWur30eB0M2ZoKk1unRaPzoSRBrLSbFjN/c86NdF02OcH+5o8RDQz\nCcnJpKR89kH2oVCYmBpHsSgMnZBKUkqItrY+2tvbP3PZp8qwYcP44x//iN/vJzEx8aittcKRTltY\ni8fjPPPMM8yfP58JEyawfft25s6dyx//+MfTVQVBEIQTFovFMBgMZ+2Xyb59++iqryctGmXUCf7D\ndnR6Ost9PazbHWJIrgkdqO3rw2rTMCTKFCabUFWdDStiaAGFKycnMH6Yhaun2XnhHS/bdrj4a001\nv5k4ie5QiD/v3k3Y5SI3Hud8q5Uik4lILEYgHiemabg1jSqPh+reXv7j9+ONRrlp2DDWdLYjl3h4\n4DsplOaZ+hfXXe3j/VVe/tPczPCUFILxOBaLkfREK02REKpdw2r/cN/NPgWLaqA8IxVFlkk3WzB5\nvXjdbnbu3Ekg4EePh/H0hOhyxvjHy4uIx+NceeWVlJaWArBhwwa8XQcpTg0wosTB9r09JFhkGtqq\nwZTK/7l7LqsLCqitrGRdRwcxq5UOt0w0qBKLqaQXp3D5eUXccvkwzCaFaMhPQ0OM/7esk/d3q0hG\nmeICE+cUHBnCojGN/c0e3AEwWNMZPrz8lPyeWa1WjIoRNagS7PKSaFOxW5RTsofqqSTL8knNfP0q\nO22fYG1tLV1dXUyYMAGACRMmYLVaMZvNdHZ2oqoqiqKgqipdXV04jjGgVRAE4fNUVVXFP/7xD1yu\nbmw2O1dccQWzZs0660Lbvn378La0IEciPLBpE6quU2y3c1FeHqPT0o5a35kOB8t3NLNxdw9jhoYZ\nUqTgiYUxp6iML7HidKu8uyrKgXpw9mqsPuhjd1OAoVkKM0aZaS+I0eDq4b8NDWzq6SHc08MoXWem\notDn99Fq6O9mxaKBpJMITNckSiLwhrubxYEAlW43UkKIEcUGSvP6W5okSeLKaXbe39rFgY4+dF1H\nkSQkJGSTCcmiYbCqjBtmwOXVOBgDSbNh+nCMlyyB3WikpaeHeMyHxaiRlmgizaZiN8fxh5uo2fgv\namuq+O73vs/EiRP7B7ZH3VjNBv67uQ4sHtAlev0yqrMBj8fD3LlzcTqdrF27lubmZhy9vWzbtg2j\nGiQ5Ocaehj6ef3sfZpOCPxhlU2Ucp9tGvTNAbkGM4nwLcU1HkiQ0XScQiuF0BenujaArNoy2VEZW\nVJCQcGp2GrBaLZQOKUWv14lGI+Sk2+nLTjtrJhgIJ++0hbWcnBw6Ojqor69nyJAh1NXV4XK5KCoq\nory8nKVLlzJ79myWLl1KeXm56AIVBOG0q6urY/78J9G0asBDMGjh9de7MRgMXHjhhWe6eoOsWrWK\n6vp9jCrQ0dJUkHT2BszsPdDDrKxivlVSckRgy7JauSKvmCUtcR57tZuCISpDyuIMtUgs+SDEhp0q\nNXt16togvVzGlx6jpV3nYJPEnvYQw7NlwpYQf9u2lQxJplTTGGVQ6DXHITFGepJCerKC3WrA+OG3\nSzCsUxzUMHVqLHD5Wd3ZQpLZRGbf4AHvoUj/5puK1H880WgEXaHbr2KQZDQU2l1y/2boKFgMH427\ni6gancEQVkOEVKvEqHNysJgU6rp9ODLMTJ8wFIvJwAe7dvL8c8+SkZGB1WoF2cS2vU4S0rx8+5tW\nej0az3V66XJ5sVj6Z8s6HA6uv/76gXvFYjG2b9/OqlWraDhYS2VXAHQVJIWk0hGkl1uJ7dyJybCf\nLk+czTU9gAZIICmg2NBNSZjMZgwGAzU1NUB/q5jD4SAjIxNFOfnJAAUF+aSmpuD3+6ne1Uo0Uiz2\n7fwSOG1hLTMzk4ceeoh777134H8gjzzyCCkpKTz00EPMmzeP+fPnk5SUxKOPPnq6qiUIgjBg1apV\naFo9551n5aabRrN+fQeLFu1jxYoVZ1VY6+7uZtWq5eQN8XHZzGSumJSMySixaU+YJWvcLG+EsuRk\nRqen0x4IsKylhZreXnRdJ6KqNPWF6GzWqdwbIXmbimSCSBy8UVDNMPIyiZxhUv/sTF2nqxH2b9OR\nezSCukaLpmKLwBBZIp4AmekGhhVYsJpkNF0noqnE9f5xdSarRE6CwtezDeyvDdEXjOAxxlm6DkYN\nMfOtmYkEIxqL3/eAx8a4jAwkSaLAbifVkIDb24catiJJOu2xOOgGjHETBekfTVhoDwaRDXFSLDqF\nmUYsJgVV1VlfGwJDGlMrsikrSkHTDrKq9iDLli3jggsuYP3q96mvrqbQFKO+RaK9M0ogqGOypjLm\nwxmuH2c0Gpk6dSojRozgwIEDqKqKpmlYrVby8/NJT09nwYIFrFgxH1tyBGOiTDweR5ZljEYjiYlJ\nuN0ufCE/wViQmBoDwOQ10u3uJtmezMiRI0lIOJndDPrZ7Xbsdjtmcw+SJA2MCRe+uE5rR/Y111zD\nNddcc8Tx0tJS/vnPf57OqgiCIBwhEAgAEUaOzEGWJSoq0oDGD4+fPf773/9iNfcyboTELV9L4VD7\n2SWTEtB1nX95/axsb8duNPL/Ve3mgOShSw7RG42gelSS3CqXmi10tkvUOaFHB48V0kfD5K/L2BIV\nZPmjVrmC4ZCQqHFglYba07/OWZKsMSRdo9ghk52qoWlR+qISobhKHB3Q0elfsV9GQtFhRprGnrjO\nvgQNgyTx2+e6eXerF5NiBI8VmyeVq8YUAiBLEjMdDv7d3ktNe4TvTEynNxJBkSSyk22YP2x90nTo\nCAVRDCqOJAlNVVE1jcqGKJ6QgZzcJM4p7B83duW5hayp3Eblrh3ccMMNnDvza3R3d1OzbycdriC6\nbsDty+X/zv1Bf8vbUei6zquvvsr7K94nqkZJS0rjzu/eyahRowbOSUhIIDExjZwcE9OmfbSpfSgU\nYufOnbgCLuJKnIScBFLs/XUL+yL4XD5CfWHU3Srjxo0baN07WT5fDDAe870IXxxn16hDQRCEMyg/\nP5+amnTefLMBny/K9u09QDr5+fnHvfZ02r17NzZLiInlFj4+Mm1KuZV/rXLR0O3llbo6qiU35MLQ\n4iR2dnURaYhg1sDkCnCzruOzgMsK7xugISYRDcjYk48c75aWJ2PL1mk8oJEYVjknSWJ4iYHMZPCE\n4wTjcVRZQldAUqSBsKdqGmpcQwIcVpCiUFwi4cjU2bQVdqyOcU6ilfNLCvnWmKHk2D4avzU9O5sX\n9u9jXWOQ4TkyFw5JPuL9htQ4MS2OxQLJFqV/YoM3whsb/GBIYuZ4x0BvTpLdxIjiJKp73DQ2NnLL\nLbdQXl7O66+/Tm1tLenp6Tw0Z84ntqKuWbOGJe8sobq7GsWqYHaZiT0T4+HfPkxqairAh78vCTQ3\n9w66tqGhAXegF82ik16QgXRYb6ct1Yo12Upvsxt3oJfGxkaGDx/+ib8Hn0RVNdragkACeXl5J12O\ncHYQYU0QBOFDV1xxBVVVVbS3K7z8ch+QSkJCGd/+9rePer7X66WpqYmmpiaam5vp7u4mGo0Si8UG\ndX31d38lUlhYSFFREYWFheTk5Jz0QqUejwc9rqFoRy6iGonpoEFU19nv99BnizKlIpN6vw9JijK0\nANx+nQa3zni1fxPydDNMS4W+Pug4oJN2jCW/UgqhNwDpJshMlHCkS3iiOmEZorKOrOgYjDIGg4IE\naJqGpoFiAF0DVQWDAcK6xO1XWQgHYzjDOleYFcZqGvUeD09WVRGMxxn94bhlXzxMu1PlLxtcuCMR\nvlmeNSiwaboOEhhkCaMi0xNQWfRBLz2hJIoKMjhvTP+iq6FQiNa2NgK+XmLRVKLRKJIkMWnSJCZN\nmnTCz76mpoZWbyvF5xXjGOmg6t9VdPR1cODAASZ/uN1XUVERYKepqfmjzyUSobunh1A8SOaQzEFB\n7RBJhuTcZHoOuujq7mbIkFJMppNbKNfpDBKLmcnMzMFmOzUTGIQzR4Q1QRCED1ksFubNm8cHH3xA\nR0cHycnJzJw5k/T0dABcLhdbtmyhoaGBpqYm+rq7we//6E8w2J9IdL1/QTBJAlkGWabTZOKg3Q6J\niWC3Y0pKoqCwkMLCQsaMGcPw4cNPeMapxWLB75LZURPnmnH6oC7L5dsD4LdSbLdT6XNjNEvIikQg\nHkPSdNIMEDBBTAET/WFNlWBIAlg6oNujH/O+Lr+OroLJAmmpEv5Y/0K1EVnHbJbQNP3DPyqyLKNp\nGqChKBKyoX9GZASdsKzhMca4bLqBpR6obfBh7mnjLWcT5iFBjDaZVR19tHbGGFkUpVQysaE5zt83\n+2nskbiqLImyTBOSJPXvW6pLdHk19rXDyoMx/JqZoaVZ/OhbIzEZFXRdp6qqirC/h/omHwf7DHR2\ndvLEE0/g9/spLCzk2muvxf6xBX+Pxmg0YpANBLoDhHpDRAIRDGYDJtNHa6g5HA4MhiS6umL09kZI\nTTXjdvcSjocw2c3IhmOHdMWkYEwwEo6F6O3tJTs764R+Jw5RVQ2Xq4e1a9vwemHcuKO3CmuahiRJ\nZ90sZ+HoRFgTBEE4jNls5vLLLx/4Wdd1qqurWb16NVU7d6J3doLHAz4f5liMQrudosRECtPSyM3P\nx2IwYJRlDHL/YPuYphHTNFzhMM1+P03d3TQ3NOCKx6mz26lLTGRlZiaZJSXk5+djMpmw2WyMHTuW\nsrKyo36ZZmdnE+4z0nhQ5bFX3Fww1obFJLGxJsTOGhW5N52vjyimpSZA3K/j6Y2iSBLIEh4fRH2Q\nEodSC9SoEI+Byw+aDIrho/vpmk403J89vWGN5lqN1GQwmiX2BHTOj/YHNZNZJhDQaWrof14FhRpJ\nyQA6kiwNbCNV5wfVJpGQCl5Jo7gUjKkq3U6FfQEP0cQYl0y1M7ZE4vF/+XC3QFmWhXvOTeW+t7t4\nvzbKhpjCAaePzCSdnEQDigy17hj1bhWrAjGMlJbamXtjOQnWDxf+jcUIh4J09Xhp7Y7Q4Q2x9K1/\nIQcaQA3Rsi+L+vp6fv7zn2M+zr6m559/Ppu2bKK2vpaq/VVkJ2RTVlRGeXn5wDkGg4ERI0aybNkH\nPP/8Gq65phiLxYKm6Sim47emKkYFLaahqvHjnns4v99PdXU13oCXpctcVO9JxmjcwNVXXz2oK7Sy\nspIFzz1HYlIS991338A/RoSzlwhrgiAIR+H3+9mwYQOrV6+mp6EBnE4MPT2MT0ujIj2d4qIigvE4\nazo62NLVxQexGJquYzEYyLXZON/hYGJmJkkfdnXm2GyMPGxJIn8sRpPPR53Xy5qqKpavXUuPUSNi\ng6TkZMpyy7jikiu44447jtpdOjIzC0tnlPpghPoDof6R/AEzBr+N24YO55yUFC5wOOhoD1KzrRcp\nRcLvl9nbozLRLXGuEQpTjTh7VZwhla0ucNp1UtMgGtZx7tfpOKARCeqEI+AN9e9sMCwDsrNkWtp0\nDoR0CpMkDAq4esCo9W8K73bp2BM1ZEkfVPcNPRDNgAmTZUKKjl9XKc6VOdgqoUY1tLBE1YEgvoAV\nQ9yIEZ09HXH+tNpNOCYxKT2baZm51Pl8dHcE6O7q30y9OyTT2OsnMzXG1ROhuDBI9c6tIMmkpKbg\ncDgwW5NYXtNNbyyVlNRU5EAd548wMWnEEF767wGcjdVs376d6dOnf+LvRVlZGffecy9vvfUWXq+X\noqIivvOd7xwR8qLRKAcaAiiWHkaOhryc/kkr0ejxl9FQo3HMkulTLWar6zp79uyhy9tFszNCuxu6\nozEa/Y387W9/4ze/+c3AZ7Fq1SqKnE7au7rYvn07l1xyyQnfRzgzRFgTBEE4TDweZ+nSpbz/7rvE\nnU5obyc9FmOmw8H0iRNJNJnY2dPDgn37aOrr6+/6DIX6uz2BsCRRbzJR393NPxMSODcnh6uKijAr\nCpquU+12s8vlIhCPY5ZlylJSmJCZyY6Qi5C1DzlLxmMIsfpAO/XN9aSnp/ONb3xjUB1jsRiJRiMP\njhxJo8/Hnt5eNF2nOCmRGefkkPbhLMKvFxfjj8dJ7DTS2RUi0BsDl0aSrnNhpolUu5nkaJh3fBo1\nAZ32VAm/X2XfiyoZVkhPhCQHyAp4eqAtBB1dcE6BTp9d451uuCtVJ67q2BLA7+2vX6odDp8NCtAc\n0KkJ6KglMuMmyIQDGoGwRnKqhGTWyE020dau4vr/2TvvMLnu8t5/fqdMrzvbq+qqd1m21WzLJkBi\nI8A0FzDhJpBLJ9wYbngCJHlyn1ACOCTBYAjCDgRijLEtjIyLLFuWZVtW29WutCttb7Nlejv9/rGS\nrGpLxthyMp//ZufMnN8pz57vvOX7dvkojKp4sj7+fH4V+xPjdBcMsFRuaG7h3TNnYjsOfdksWcPA\nchwk4Ct79jBWGOeZTg00m0rDRsiQSCV5/sAQ+4cECaeF2UsXUVNTQ65/OxtXtNBUE2DRrCjjhwuk\n0+kLukeWLl3K0qVLX3YbWZYp2oKxcdh3IEtLYxNexUsml8EybGT13BE2S7cwCibegJdIJHpB6wFI\nJpNk8ll0oXO4W6WoBFn67nlMdE/QM9TDkSNHTkb/li9fzs8OHMDl9bJw4cIL3keZN46yWCtTpswl\nj23bTExMUCqVkGWZcDhM8Ph8yteSvr4+tmzZwmhbG+LYMRb7/Vzd0sKiaBRJCBzH4aH+frb29EAm\ng98wWOfxsK6igkpZRgKKjsOBUokns1n6Mxl+l81yOJXi2oYGHuzvp0/PEpeK6NjICCon3fTEs2RC\nOhsur8EVVBgtFOiRsowe7eXr//iPBINBNm3adDIyYts2OA4BReHahgauPaPbryuV4pGhIa6orua2\n1lbe1thIRypFdyLBA/k2bKvI14sWgWKRhG1zTEj0qA6xiESy3aK5ChbMh5VroaEBnJxgcsjmcDu0\ntcOLnTaKCxwZ/nMQbmmBWAz8/un1+XzTtWsnGCo4/LjPId8sWLpK4PdPTycoaQ7C5YDsYAM3x8Kk\nAw34wxEWz6ygKRBgvDiTkXyejK5Tsm0eHx5mXjjMrFPGFf1HdzcxIYgnYDwrsSsDhwd1In6VRKnA\nUNok4USpntPAd//pn/jVr37F/rE27n64iwUzouxqm4DA0te063fdunU8+sSjHOnexwu7itz0nhiV\nlQ5ZLUt6JE20KXpWk4FjO6SH0/hVH1VV1RfVXKBpGqZt0N0FXV0OBUIsWNqAltEoJAokky91pl51\n1VUsXrwYj8fze/m5lXn9KIu1MmXKXJJkMhmeeeYZDh48yODAAEY2O128LwS43USrqpg1axZr165l\n4cKFr7qzEl6Kpj2ydSt2dzc1uRy3LVjA7DPmF24dGGDr0aOIZJL3+P1cFYmgnlFT5heCtT4fa30+\nenWdH6XTtBeL/LKvB7VGxgjZ1DV6ifhc6LrNwEie/mKWUsqi80CKplkBKiMy7go3+6wsxb4+7v3h\nD9m7dy+33XYbNTU1qKoKkoTpnLsZ4P6+Pm7+Ey8/+HU/l1VXU+PzUePzMU8IKqtCHJEFw4pE3nTw\nSnC5KlFTMDgwolEZFCxrddj8bglFEhQzNqWszYxqWP4nMLcJHtoGx/phOAZ7CjDVBRurYEWFgyoJ\nHKabDSZKsCft8FzSIdUkaFohcfWm6eskywKb6agcgFa0cCsKV9XVUVVVdfJYcobBr/r6iGsZUDRw\nBPR6aA1V8KetrViOw9PDwyjpNJ9WFAZMkyPjEE86jMsWfn+I+aEoffk8sWgU27Z53/veR19vLwNj\nXQy0lcC/hLUb38LixYtf9T10JqtWreKOb93Bd7/7XRKJg9x//ygf/egc0ukUE9kJpnom8cX8uAPT\n6VMtWyI/VcBlq0SDFcyYMeOi9ufz+SnmZHb8rsBoqZ65b50LDiQHk7RUtFBff3qLb7lO7c1FWayV\nKVPmkqJQKHDffffx7M6dWKOjcLzjskJR8CsKluMwVSqRVFVejER48cknqZw5kxtvvJGVK1de9P5O\ni6YdPcpbqqvZvHIl6hnib+/kJFt7ehDJJB8LhVhxAYalM10uPhuNcvvQELpqURQ+Nq6vPa1poLbe\nS99kFo+hU8qlGejKU9AgEHCo1mVWKwqhzk6OTU7y9729bH73u6cd6SUJ43jq9UxWVFZy1wOjzItE\ngGl7C92yGE+lCMk2H5wTprbeR9G08SrTomx3vMCnd8WJNFtcuVTCSTNtbluCkCqoDTpUhKH5Ojh0\nGIaHoaISzDAcHoLhlOA3Yw6NXlAEpHUY0MCodNBmC+YsEbzlrZzsXD1xBibTDmZxWocpHv9powYH\nczm+034QzZUgUqWzvN6DbjnsHc7SlcvzzYMlFkYiUCzSaFnUukwa3fCuah+67KV3sojq8rBuyRIe\nGhvjqYkJduzYwQc+8D0ORh0AACAASURBVAH+5stf5rnnniObzdLc3MyKFSsuqjNyYmKCe++9F1mW\n+chHPjItoM9g1qxZ/N3f/R1f/epXOHz4WX7962E2b17CoUOHyOSzFMbz5EazAKiyi5ASIhwKsWjR\nYjyel290OBMh3Gx7WGNsJEhCKzF6aJTu7d00+ZtYsmDJcTuRMm9WymKtTJkylwyHDh3iJ1u2kD58\nGNHfz7JQiPUNDcwOhfCf8jC0HYd4scjBqSme6uxksqeH7w8MsHrjRm655ZYL9pXavXs3P/nhD1+K\npi1ceFY0DaaLtx8eGIBMhvf4/Rck1E6QL5V4u1tmwjTosx1yGZNg+KVjGejNUReQaJgnmD3DZmTA\noKvLYfyYxEpLcE1U4br58/lNPM7u3bv5ZTLJuKZRCejnmfl4dV0dfkWhL5vl/+3bx3A+j2lZTE1N\noRs5WoSbuSmNloDKkgo3M4MqLUEXy2vd+BtsNjTJmM70FIFJx8KUTPwuUGQHVYHlC2HfQdA1uO3P\n4WibYLBDYnzAYVIDHAcLsPzQMhPmzXeoqIZE0iabtglFBJY1PdlgbByyExY1aoSamprTRiP9qrcX\nTU1y2Sz48OoqFHlaTL1naZA7nk7QP5Lg0eE8crHIDBwUxWJWlYI37CJWEcYrCUZSGhMTE6ypruap\n3l56enpOjoe69tprL/g6nklvby+XXdZIf3+aRCJBTU3NObcLBoN87GN/wR13FHjqqb3AKO9//2qm\npiYZGxujWCwC4PX6js8GjV10lDiV0rjjjnZMcz61MZXFNZVohoa/xs+KJSv4yEc+UrboeJNTFmtl\nypS5JNi9ezdb7roLp6OD2bbNbcuWUXMe0SUJQZ3PR53Pxx81NrJjdJRfHTjAnlSK0dFRPve5z71i\nTdv27dv5+U9+Am1tXBOJcOM5omkn6MtmGUyn8RsGVx2PVl0oY8Uismyx3K+SypuMDhYIhsMn38+m\nDKoiNm99u5twUGfBDJvkGOS7BO+MuWh0ufGpKn86bx6rpqbY0tlJUZZpz2Toq6yk9ZT1TJZKPDE8\nzLPxOIV8HjQNDANMEzcQKxbRbIPSuM2hlM4hVeJhr0xT2MXCqAtHOER8MvOjHhwcsrqNKglGSjbj\nWYt6N1g2pPLHDVzDgAULlwiuXiMzNemQyTiYJsiyg8tlYVpgqmB5HewS2IZDLuPgOJAdFsRHBHLW\nRVNzJU1NTSePJalpdKSmUKMlblrxklAD8Lsk3rcsxDem0vTENWZaFiqgSCAr0knB5/Mo4EwbFPtk\nGWybjo4OPv2pT2FZFuvWr+fmm29+VSn0FStW8PDDD1NZ2XReoXaC1tZW/uIvPsGdd/4rTz11gPHx\nQ3zoQ60sW/byn7sQ2toS/Md/dJNK1dPUtIZvfetzFAoFJicnqa6ufsW1lXlzUBZrZcqUecM5cOAA\nW37wA5wDB/jjykpuaGk56c31SgghuLq+nsUVFXy3vZ3hZ5/lDkni9ttvP82o9FS2bdvG/T/7GbS1\n8Z76et7yCoXlT46OQqHAeq/3rBq1l8MGNMvClGxWhd3sndDpHy0ya14Q5Xg3oCQLbEegZSVcMZnx\n/PRcTUmGOD4ur6hkQNN4rLeXiWKRareb8bExUprGXYcPs76uDo8s89jwMA/09mJms1AsMkuSWOnx\n0OLx0KwoeCSJ8YkJTDOLiLoYteGobrN7SmMwrXNsQuFQyYBJm1Tepq+kkzEsbAc0CxxL0D3iYDlw\npA8KJZjfCmYOIrHpY4lVCmKV0+dH120SExK646CEQfI6yAEwx8HUp0/Ogb0OTtzFinA1K5YsPe16\nTZZKIJs0RRT85/Ammx1TURSLpG4hShodpokfm2jRIRRT0U2b0ckCyAFCwSBHMhnytk3vsSMsrtfB\nsXj68SR1dXWvKsKmqiqbN2++4O2XLFnCZz7zl3z/+3dy+PBh/vZv9/Hud7ewYUMtsnzxYjGb1fnl\nL3vZvTsNzGf27JV8/OMfJxAIEA6Hqauru+jvLHPpUhZrZcqUeUPJZDL8ZMsWnPZ2bqiq4vpXWVtT\n6fHw+aVL+caBAwzu3csDDzzAe9/73rO22759O/f/7GeIgwf5YEsL62prX/G7DyWTUCyy7pR6qgvh\nVFlXoUq0qIJ4wSKd1IlVT6dSa+q9HD1UZPsTGi6PQWYKnJJK02yJrowHrbqaHx4+iFOZgZABBTfC\n5aIuVSReKPA3O3cSCQQYSqUgnWalonBNMEiDoiALgSrLnEgsSpKEEBIVQqLOI7HSA+8KOuwtWWzN\nGXTpNkcHbO7eWWT5cgfZbYMNLl2m0u2iL2vSM2rS0wNaEVqbQdIE6jlK5xymx0BJkjh+HqbHYOFM\nB/umBuDYEUEoG+bDV1+JcLn4fkcHg/k8l1VVsSIWA1siWbSw7dOnNMC0SW/BcChaJhmPybGSxeyC\nw7G4RUrPYNlZbNmHJxChorKS7QcOkPb7qfGbrFsSoDrq5f7dcfr7+y/qmv4+tLa28tWv/i0/+9nP\n2Lt3J//5n0d5+OEBNmyoY8OGWiKRl69TcxyH3t4sTz45wosvJjDNGlT1CjZvfjfXXnvt79VkU+bS\npizWypQp84by85//nPyRIyxQFP6kufn3+q6Qy8WfzZ/PPx46xOO//S2rVq1i1qxZJ9/fvXv3ydTn\nrRco1BzHIafrYNtUnlJP9bKfYdoU1TTN6fQcElrJJiJLyLaDob+kbiprPGilMEcPp4nHDWQNbrrG\nT6kEcp+PrYODODUprl2vsHZxhG3P53n+uRKuSQk5k+F3x45hyzIbXC7e4nJRqZUY0ooMAQKBiqDa\n66Xe70dRFAxDwjRs3Mcje6oQXO5VWOGRqUho/LjX4uGdJoYL1q0ExxEgYGbQRcRUeXyvRmHEpkJx\n6N0vsf5qh/SUTaRS4HK9JKhsa3qygVWAUspCFMDWQTIgMwVPPwliyMctC5dQFwzyy54efjuoM5iv\npi87xoxgkEpXgMlsmucHS1zR4j3tHD/SlUcruajzy1iqRdxyeNKw2WR6CMqVCFWmoiJGw4wZ/Li7\nmzGfj8rZs1GcEs8cbEcSNgQXnNUl+YdmuobtY7z44moeeughRkePsnXrKFu3vkh1tUpLS5Dm5gCB\ngIIsS5imzeRkif7+HP39WXI5FahDiLksXbqC97znPeVU5/8AymKtTJkybxjxeJwXd+9GHRzkQytX\nviZF0C3BIG+pqeGRvj62bdvGxz/+cQD6+/v5yY9+dDL1uf4ChBpMC68T5q4XErcwTJNUKoV5PNfn\nM2wUxyKbcZBVCeFwmgcZQEOLn2LBwkg5VKsKesKDlPGyrqaWnfExaNB598YoiiJ4x7oAL7QnSJkm\nG453eQ7aFrJlImSTuGIjyQIhpoenY0G6ZDBczONHImaB1zg7FOYSgs/FPKgJwV0HS9xfcHjxICyZ\nIxF2wb60TscxGyZdvD3qJmNYxLtLbDctLl8vkbQtfEEJr18gyWA74PEKFFlFZA30vIljOIz0wwtP\ngdblYaWnhj8+LqazhkHW8FAwXRRNlbxh8NamJn7ak+PuPQmG0garGz3oFjzdW+D5PhO/GWVxRCZH\nhhezaRKSQd7t5rpYFdU+H72WxfcPHkSvqsK7eDF//fnPs3v3brY/EcC2bVasuozrrrvugu6D15pV\nq1axcuVKuru72bFjB/v372N8PMP4eI4XXsgBeabvPAlwA3XAXEKhKtauXcvGjRvL9hv/gyiLtTJl\nyrxh7NixA8bGuLyy8qTr/mvBWxoaeGzPHg7u3cvU1BThcJgtW7Zgd3dzdSTyijVqpyIJgVuW0YSg\n6Dj4zhCUJ6JosiwjSRKJRALbLiFJFm63TJVkEc/ZpHI2U4qEWSEh5JcEoOM4jA4WmBoosc5Xy6aa\neoQQtDQE2FBby6FkkqSu8FxnkSsXeXm+s4SjqXisAg0S3CzgIQHHJJu5WCyv951W72eaNoWcyWSh\nRMaUSGg2pnAIhdRz1gV+ssJNNA3faNPYPyRI98g0+BWELqEWFK6s9vLeWSHGiiZ3tCdI6BoPTOgs\nXCqYNc8m53ZQXM7JHLAsC2RJkJtSOLTPprsDlCEfl/vr+cLatSfXsKm+nr2TbdT50swJycwPBLCK\nRa6raeaxMcGjbQUe7cxMnzXDg2RE+PC8eSyMRtk1NkaLJ85jmQyJ+nr2hsOkkknSmkbD8uUsXrmS\n97///dTX19PS0sINN9yAZVl/EGPli0EIQWtrK62trZimyejoKP39/QwNDVEsFrEsC1VVCYVCtLS0\n0NLSQkVFRbmz838gZbFWpkyZN4y9e/dCPM7GefNe0+8NulysiEbZMz7O/v37yeVyjLS1UZ3JcOOr\n8GKr8/noc7k4qGlc4T09HZdKpynki0gS+P1+bNtAUWxiMQ+SEIQBjQIH0yb9wqDfttCPTpBKpJFk\nN+kpGzUvscyMceusuWcJybc0NvJfQ3nufijFTx/NYBVUCv0ultg2IWCZb7oU7NdF2KnbLHHg1PIu\nRZEIRVwEwyqZlEHGNukpOYQyBnXhczdg3BJ206JKfDtjoE+pbIiEaI6qrK7y4D+ePm0OqPzNikru\n6U7T1l+kLamz9wWdWLVDMApu7/SkhUzWIDkpk5pUULNhZpZivHfpbDY1NJwmFluCQb52+ZrpJgqX\ni30v7sF2NOaHq1m9dBU7RkcZyOWQhWB2LMS8SASvMj3tYXllJccyGZY3N/P2D38Yr9fLgw8+yMrm\nTdTW5rjttttOO74LtXZ5PVEUhaamptM6YsuUOUFZrJUpU+YNIZPJkBwfx6PrNAcCr/n3t4bD7Mlm\n2blzJ8/v2kWgs5NbZ89GnMf1/+XYWFdH3+QkO3K5s8SarmkYhoIsm5RKJcDC65VPEyJeBzLCoehA\nhSXwDZvkRixkx6AGP0FXAMUl8VB/P78ZGKDa62V9bS2XV1ezqb4e23H43dAQGVMjLKkszE8y07ap\nFqAbsE7AHuCo4/B0xmBT5GwRJoQgHFVxHJusrdOeLBH1K3iUcyd313kVDmg2Bx2HnGlzVf3ZAifi\nlvnkoihtCR/b+lK0DVtMHLM4JgBF4HIpFDIWUsnN/FgL62vr2NTQQOV5oqg+RaElGCSXy2GaOtXV\nkE7nWRIKUevzsXt8nN3xOE+NjbI9PgBiOp2rmfDiRIqgbfOBcJgNGzYwNTVFoZBkzZp1Z+3HOX4P\nlCNUZd4slMVamTJvEnbt2sW2bdsIhULceuut1F5gzdWlytDQEOTzNPn9f5CHZkswyPixY/zmrh8w\n1ypxmeTgjPXxYiLB4iVLCFzETMTLqqq41++nJ5Oh3zBoOcWg1+/3Y9lZFFnG7XZTKJSwrJcEYaFg\nousmbZJDQ4WLTy6uRAjByFSJ3f15ho0iwUYXii+HJpkA9Fsq/X0T/Ko3wIdbW3lLYyPXNTSgWRbD\n/f10DAwQkcEvZEq2jQS8S4YfOLA/a9LqlWl0n6sZQhCucKPrJvmsTW+ixILqc0eZhBDcElLpnCyx\nf7zI+Mwg1d6zHxlCCJbGPLQoPvrjJZ4/BhOaSkUsQNStMmHmiHojvH3pMqIXmHb0+/00Nc0glUox\na1Yjjw8P80BfL5pUAFcBETSoDUqEPTIODj2pEi0eG9k9yc/v/h6/ffhhbrr5ZpYvX37WvbVr1y5+\n8YtfIITgpptu4vLLL7+gNZUp80ZSFmtlyrwJmJqa4u4f/QinrY14KMTdts3tt9/+Ri/r96JQKIBh\nEDzHmJ7XAgnYOzxE2KczT1W4bXEFqck82azGkcOHWXkRDQ0uWWZdbS2PZbP8KJXiC7EY/uM2CQG/\nH5/PhxAC0zQpFPIUCiVkxcDjlkmndbYZNmMuiViFhxtmBFElwf2AnShQ79dY3Jzj7YtizKhQsR3o\niGtsP5rn2HiOOw/r/Pm8RayqqkKVJAYHB5G0EhWyhDfsQiuUEJbNbJfCJt3mEc3ikaTOh6o9qNLZ\nxycQhMIeksUiI3mL5oKB33fuaxCRJdZ4FJ4pWuwYLfDeWWdPdzj1jCdHbeoMiStrQyycFaWomeyZ\nKCI8PgJnRCRfDiEEM2fOJKvrfL+zk+78BPjStNZIXDXLx+LaCJ7j6Vjbgecnxkn5I9iBZvYc6WG4\nv587/yXO5euu5oMf/ODJUVCapvHTn96DaT4PwD33GKxcufKco6LKlLmUKJuylCnzJiCbzeLoOuRy\nkE6TTqff6CVdFLZtE4/HmZycPD0F9QdMQz0/MYFGiZmmxV9eWcPMJj9Ll8VQXRr5fIZ8Pn/Oz5VM\nE/McMzdvaG6msaqKuMfDtxIJUqeMepLEtJeYqij4A0HATTZjMz5e4sG8yRMOyJVu/mxBDFUSPBsv\n8KPuJEZY57rFDhtbbVxejaJt4HNJXNbk5a+uruBPFrtxfAl+3HWYlKYxNTVFLpHA6zgEvCqKrCCp\nMsgCy7G5ThU0OpAt2XQUzz2KCsDjlZHcMkUhGEzo5Asm50sOX+VToGCya6yIfZ4Uckkz6ezMMDUF\n2RzkChpdA2n2dyVADVJdXYOqXFxsIKPrfOPgQbq1YUKxFB9fH+TzV8VYUKcypZcYzOdJaBqTpRK6\nolBZFeHt62fzN/9rJTddU40ru5/ndmzlX//1XzEMA5hOf1qWCRiAiWWZ2OeZr1qmzKVEObJWpsyb\ngObmZhasWkWn44DLxVvf+tbXfQ2O43D48GF27tzJ+Pg4kiQxY8YMNm7cSENDw8lt2tvbGR8fp6qq\niiVLlrB//37uvfdepsaHAYnmmXO45ZZbpjvxXC4SmvYHWe/ueJyI4zDPJ9N6vIZLlsDrkTF06+QD\n/ARJTeOuzk6OZdMoQuatjY3c0NJyMvrmURQ+tWgR37JthiYm+NupKdZ7PGz0+ag6RYgEAwEcWWZX\nJsPTWomj2GgemY+2ViBLcGdHkv/oSqP4dNY3QmMY0iWNgp1iWFHwqiq1Ph+1Xi83LAwwmDI52JNn\n59gY8w0Dp1QiIDkox9OciqJiWBam7eCRJTapgmHTZn/OZKlPPk/0UOAPqhi6SdaUyGRMNN0iHHIh\nnxGNa1ElYsBUyWKsYFLvPz0KFY8XaG8fJ5cFQ5MREgxPGUzlJQKhGJFojNlz5lzUtbMdh+91dBC3\nx2msLvGZDTG8LkF7MklCK4FkAQ44MhnNxBONMqe+/uSxXr2qntbmMN/+zzY698FPfxrhwx/+MB6P\nh+uv38xDD1kIIfGOd7wTt/viBqaXKfNGUBZrZcq8CZAkiU9/+tP09fURCASorq5+XfefSqX43ve+\nR9+hQzAyMh3hE4K+aJQnH3mEyzdu5NZbb+Xf//3feWr3U2T1LEFXkLktcxkbGYB0ByFXCcO0GWg7\nxre/NcZf3f4F8PsZyuexbBv5NXRfdxyHrnSaCh3mC0GxOF30n0zqZLIWkuQmcEZTw12dnRzTR5DC\nOUxb4jfDOlVeL1eeYjiqWRarKitpE4LBTIbfFQo8mkjQqihUHp8UUHAcOnSdgssFkQh+XeePFJ0n\njmUYFwItZ5DKaCyudLi+BkJCRlYVTGCspFHUdXo1jcFcjgWRKNfO9XFwOMvTY2PUu1wI08QjxEm3\nekWWMYSEjYntOCyRBWHdZkyzGNFtGs5ZuzZtqWHKEm7Vh7BttJLOhFbC51fweWWUU0YgtSgSU6ZN\nf25arDkOJJMaIyMFhoez5LLgU2UuWxbDMG26BjKYkoeWmbNpbmq66JrER4eG6ClMEq0q8tkNFfjc\nMgemJsnZRSS3QZVfRpEEE/kS2DapQuGsDs/6Kj+fef9i/vGeNp7duZ2VK1eydOlSrr/+ejZs2IAQ\nglDo5dK6ZcpcOpTFWpkylxCmafLCCy/w1FNPMTg4OO231dLCxo0bz3Ljf70oFAp8+9vfZmz3bkJj\nY1xTX8+CmhpMx+HFiQl27t3Lc9ksnZ2dDIwP0JnqJDYrRn9PP50dncyrdLhxQxXv2bQM03K481cd\ntMd7eO6556ipryfu89GdyTD/IgekvxxH0mnShQI1yDSJEC/smcTtEkwH8SLU1defVqdUMk2OZdOI\ncI5v3lDNM71F7tub41AyeZpY+35nJ1e43aiyzP9dvZodo6M8H49zpFTiiG2D44AkQTDIjEiEq+vr\nmeF285Xt20kUNSoti+UeCcvnsDQCLYpAlhS8LhcCQbPqkLAshkyTtGnSbjvMi4TxeSySuSITpRKy\nbeNRXhI/QggURcG0bXTbxiPLrFEktpkO+/MmDW4Z23HO8lQ78VJRVSpDIdLpNLpWJJ8zyec0VFWg\nqhKKIlHjOOh5k339OcIJjWxGR9NkbNtDOqMS9lhsWl2PelzgSZKgN25SyOcvWqhldZ0H+/sgkOaD\nK0MEPTJjxSI5S8PjNVlW58GtSDhA0G8hUjIpY7phJXLGPdRYE+CdG5u496kufv7zn7N48WIkSSIc\nDl/UmsqUeaMpi7UyZS4R8vk8//zP/0zfvn3T0atUCoDuSITuPXt4avVqPvGJT+C9iELt14LHHnuM\nsQMHqJ+a4vOrVhE4ReTMDYdZV1vLN9va2BuPkw+ZNKxpoHlVM4ORQdp/2o4dgE2rlyGEQFUEV62o\no/3BEQYHB1mzZg0P7d/PjpGR08RadzrNo0NDZA2DBr+fd7S0EDrPUPZz8VB/PxSLXF5VRVPjDBJT\nk2iahay4qK9vYMYZ80dVSUIRMqYtsbO3QEdcB1vFe8p4KcO2GS8W+dn4OEOWRbxYxK8oXFZdTb3f\nj1eWKZgmAmgJBJgXjWLaNt9tb8dUFBpMiT9zKYwYNnsVE0U4gIzb4+bE9EyBICYrVMgyvYbBUKlE\nV+r4nE0cTNtBBWQxHT08IYRUl4plWdimiWHbXK4ItpcsugoWFYrBhGETUyTWhV+6drY9vT9FCBRJ\noiIaRTcC5PJ5JvI5/Pb0DE+wkUybguUwOGYxWQoCQTweP9GKCnD68In0aZE4j0sGR8e0zl83dz6e\niccxlQJL6hUW1U6nKOPFIsgmzREV93GrkZxhYAmJplovetwhkZhC1w1crtPTtJtWN/Dk3lEmxnpp\nb29n6dKlF72mMmXeaMpirUyZSwDHcbjzzjvp27mTipERbmhuZvm8eTiOw4uTk2w9fJjuQoEfut18\n6lOfet3WZVkWTz/9NAwOctOcOacJtRM0BQK8raGBrpERxm0b66iFv8LPxNEJvB4vKNA7kiUWnvbW\n6hnJguwlFAqxfv16fvPgg+zv72cgl6M5EOBQIsG/dLRhezIgWfQkXXQkk/z1ihXn3P+ZJDWN3/b3\nExaC62bMYNHChRimiWkYuNzuc6ZbZUnibU1NbB3S+dXeHNgqHjPCpuO1eM+Nj/Nfx45RzOfJ5fPM\ncBzyw8PkJYm4201SUXAkibBLRZEBR9DkDxJQVTricWKaxu2Njfh0Hb1YRDEhYVj4/V4kcfZ6BIKZ\nqoqNwbF8iYEMVDoCN9ORO0kILMNCcSknt3e5XWiOg2GaRBSZhZLgRdNmT87gY1eobNt3eiF9qWji\ndRR8x+vt2kslHsrlUEyTm6qDJNMGs7xeTNPEo2molkUoWkdrayvBQACfz4fjOExOTFDKpRlPFKmu\n8GJZDiMTBZA9hF7FhIBd8Ti4Clwz+6U0tW5ZIDmE3NPnyrBtcqYJHg+xWITRdIa8Y6Hr+lliTZKm\nfyD8ctcYu3btKou1Mm9KymKtTJlLgO7ubrr27SMwNMQXVqwgckrR88a6OhZGo/z93r2079lDf38/\nLWdEhv5QjI6OkhkbI2bbzH2Z1NGVNTX8V38/45qXSrOSkSdGiHlizF44G59isOU33XT2JilqFnu7\nMxBZxvr164lEIlxz3XU8PjHBliNH+OsVK7ivtxfbm2LdHInLmvzc15ZlcDTB48PDbJ4x4xXXfO+x\nYxQKBVYHAiyaOROY7tI8Xzei4zikdJ1FkQgls4WebJZqj4e3NTdT5/Px+PAw/9XVBckkM4GrAwEW\nud2oQjBhGHw9keCoVSQcEzgewcyIF82EgVKSQ/06ZtrgW7HYdBOCorDM66VywmIim+dYymFu9NzH\nIRDMVlW29RVIZmTmBj24dB1TUVAkMDXzpFgDkCX5pXSoZXOlImgzHGwXPNvmcHnwJRFjmTZGySGG\nQs3xSO09mQzqYo3+bps5OYWFinLSi85TKOA3DBpqaqg9JS0shKCpqYmeo0WODCbpH8thmDaW8KL6\nwtTV1b3i9TqVvGEQL+ZRoyYLql+KpKqSRNGBvG7jdUmkdB1UFV/AjyyrFDULXBKqeu5rvGxujF/u\nGKGnp+ei1lOmzKVCWayVKXMJ8Mwzz8DYGFfX1Z0m1E5Q6fGwvraWx0ZHeeaZZ143sWYYBlgWAVV9\n2dqjgKriApYuXcq1117L+Pg41dXVvP3tb2fr1q3seno7O49NgpAQFa3c+J730draCsDmzZs5ePAg\nw1NT3N3VxUSpBH6dG5dW4XdJXFOwuHtCZ6xYPC31dy6G83n+q7cXr9vNlTNnnjdlbNg2L05M8MLE\nBP25HNlSCU6k7ISgR5bpyWZxyTLtk5OE02luCgS4+rif2gke03Vsj80VNbCw2WZuo0ptRGFhpIIn\ne7PkXkwxZDrsKha50utFEtNpx/VeLw9nNX7VbfCXqyRU+dzHlCo5tA9BKgmEBG63G8flwrIsHMvA\ntmykU9KPp6ZDm4WDajukbLgiqOI+pcsznzfxOjLVXi/q8UhjSJIYjoPPVmlweZl7imnwqGmCopxz\n8kBDQwMIweDAACW9CC6JcDjKnLlzcV1E6hpgIJcD2aApoiCdst4qr5dMtkh/ykBRbUwhkN1ugoEg\nvaNZbOEmHKk4b2dnVdSDVzFJJyfJZDLlxoIybzrKYq1MmUuAyclJyOWY9zIibF44zGOjo9Pbvk5E\nIhHweBgrFimZJp7zRKd6s1nweqmpqeHWW2897b3bbruNNWvWcPDgQUKhEGvWrCEWiwHTA9AfeeQR\nFi5cyLPJJM/t3ctwJkOtR+E3nTkua/Lwu+48B0ZNeqReDk5N8UeNjbzjFEuNExxOpfjB4cMkAgFm\nFAqsPkcUzrRthSgtAgAAIABJREFUHhka4vGhoWmftWIRdB2f41AlyyhCoDkOY5bFuCzTr+uM6jqL\nVJWIfLoNRtayeLSQR9RrfHqFm9kVgr0ljYymkTcNGmM2t6yQedAyOTqs0aHrLD4uJjb5fOyaKtIz\nWuSf92ncusBFjf8l0eU4Dt0pmy2HdIwJFZ/mkCwUMKJRhMuFbZqojoWW1/EE3SfXdWo61LFMagRk\nLIcJwz450UDXLIpZi0rHTd0pHZT/OxrlqZybeo/CGo+HU8/ugGGAx0PLOcaCCSFobGigvq6OYrGI\noii43W4M2+Y/jx7lxclJLNtmUUUFN8+ZczLtei5yhgGSTYXv9A7WWq+XkbybdMHkxWGNirCbiKoy\n3J0gWwLhrnjZHzBCCKIhN0VLJ5vNlsVamTcdZbFWpswlgKqqIMvTdTjnIW+aIMuvq9t6NBqlddEi\nuo4e5amxMf7ojCHjMC0sHhsehro6rrjiitPeO3LkCFu3bqXjcAeGZeBz+xgZGeGGG26gurqap59+\nmo6OFKXSFH98/fVskyTclsW+vqOUDJtHOzX2DxtM5ppIyjMZL9oktRGCqnqynixnGDzU38+TU1OY\ns2fjHxujVpapP2Oc1EAux5YjRxhOJCCToUkIrvL5WBAIEDtDiOUsi+9MTTFVLDLfNPEDdyYSrPb5\nuCkUIiBJ7CoWMX0mS2tkFsSmxUW9qtBnmIwU8uRMk6Bq88czVB5OmzyZL5wUa0FZ5jPRKN9JOnQZ\nOl+e0phfKWgJSdgOHJqyGUk5kFaZY3hZFBQcMQzSskxQVTGEIAjYWgEtq+EOuBHHI1GyJKOoCqbj\nUIPJUcthTJ8Wa1rJIpXQidouWvxBQqfcSzFZ5l3nqDHTHYcB0wRVfdkZrpIk4T/lnG85coQ9qUHw\nZgB4IZUh0V7i/yxbdlZn6ishC0FLIMAz4wUslxer6CbnyCB5Ufx+WlvnEYlcWIencx5j3zJlLmVe\nN7E2NDTEJz7xiZOvs9ksuVyO559/nt7eXr74xS+SSqWIRCJ87WtfY8YF1KaUKfPfhXnz5tFZWcmz\n8TgrKyvPuc2ueBzq6pg/f/7rurbrrruOrgMHuP/AAXyKwtqampMP25Jp8mB/P/tLJdTFi9m4cePJ\nz+3Zs4fvff97HE0cJaElUHwKVtyiZ6qH9vZ2/uqv/orq6mrS6aex7emxPytWrGDLli1ITz7JsUOH\nQNfJ6QqymMsV1R8lpR2jJ/NrHh0awqsoHE6l2DM1hVlVhbxmDStWrkTevp0m00QIQUbXsR2Ho+k0\nPz58GDOVosowuDUUYp7Ldd6Uap9psgAISxKtLhcuWeb+Uok9lkWvYfC5aJRjhgFBizW1L0WBamWZ\nfqPEVElDEoDjcGWdwsNdGj1J/bR91Ksq/zdWydZcjudGihxOmBxWHXAAXSVoqGzwenlb1M8vslmO\nOA5KIABeL5MTE8yIxXCSDiW9RClTQvEoKC4FIQlcqgscqDdsHMtisGAy13TQ8hZR202T18/MCyz+\nf6FYRHe5mBkOE7zAtGZS09gzFUcOp/n8xiheVfDNHUmOJRL0ZrPMPk9kK6CqYEskCqd3kWYMg+5s\nllhtHeHqKoLBEI5j4/cHqKqqRJbP7SV3AsdxSGY0CLqmzZjLlHmT8bqJtcbGRh544IGTr//hH/4B\n63iNyFe+8hVuvvlmNm/ezAMPPMCXv/xl7r777tdraWXKvOGsX7+erQ88wMHBQR4bGuLahoaTQsJx\nHB4eHKTLMHA3NJwVvfpDs2zZMt72rnexzba5p7ubrf39zItEMG2b9mSSUjSKtHw5/+ujH6WiogKY\n9mbb8pMtHBg7QHRxlDWr1qC4FUqZEkd3HGX/4H7uuecevvCFL/DZz1bjcrmIRqcr7W+//Xa2X3YZ\njz76KKNdXex+9kUSKY1n4r2ktT4K1hR9uS4eHB0lFIvRvGAB66++mne96110dHSw6777GCsW+ctn\nnyWjOyQ0jaOpSaosk3d4vXyishLXK0R25rlcPGLbZB2HRapKo6qyRJb5ga7TXyzyT45D5LhAcJ9S\nb+YSEi4EGg62c3zygQwIh3PFTKOyzAfDYW4MBtlfKpE+PpS9yquwNOJGOWOdPo+HYCRCJp0moetU\nx2Ikk0k0XcPUTIrFIrIqI2QJIQQNSEiGTW9Sx/F6qBQeWgJBZgQCXEhsy3EcthcKEAxy9UU0C+QN\nA4RN1CsxKzZd79gQlulKWdPvnYfmQAAslcGUiW07SJIgpescSqawImGqGhuYP3/+RXu3TSRLFE2F\ncLSy7LFW5k3JG5IG1XWdhx56iB/96EdMTU3R0dHBj3/8YwCuv/56/v7v/55EInHyH3+ZMv/dCQaD\nfOCWW/iPYpF7Ozp4amyMFbEYDrB3cpIJVYXFi7nl1ltfd581gHe+851UV1ezbds2xnt72Z3NTruq\nzprFnEWL2Lx588mGAYDnnnuO4eQwarXKzCtnvjSyKeRhwdsW8PxPnqejq4PBwUGamppO25ckSVx7\n7bVcc801HDx4kG984xvs2TPM0NAvwSkQlvtY5HIRkyRMIfC63axevZrGxka+853v8Hz7YaJ2NSWr\nBs3yM14s4ZgpZGWS/dIUv85meW8w+LIPfFUIrvd6ies68vHtKiWJv3S7+WdN41ipRI8sE/ELetIW\nS6vOjuwoksAUgq6UBYZExctMaPBJEmvPcOA/lZxtgxD4FIW6+noyk5MMpNNUeb3EYjF0XSefz1PS\nSli2hWNNO7M1ouJ1bMYdCduUaI2FqX+Z/ZzJXk1jEPD7/ayqqrrgz1V5vXiEm8mM4N9fSONTJbrG\nLYTlouGM9PSp+FWVao+PcV2hc1ynNgqdqTR2NEJ1YxOtra0XLdQADnRPgRpm5vHu4DJl3my8IWLt\niSeeoKamhkWLFtHe3k5NTc3JMLYsy1RXVzM6OloWa2X+R7Fhwwbcbjf33Xcf8f5+tqVS04Jo3jwq\nZszgfe97HytWrHhD1iaEYN26daxdu5bu7m4mJiaQJImWlhbq6+vP2n5gYIBUKUXlwsqzHq6yKhNt\njpJOpM8p1k4gSRLLly/nrrvu4qtf/SqPPPAA3lSK/71gGR9qbUWzLLYNDfHbI0f46T33kM1mefzx\nXUxmZhP2r2Z+ZA19WReOniMsUgSkY+zTDqI5XUCW971CkblblkEIspZF3fGieI8QfNLt5u9KJdJC\nMJqCncMWb5vh4FEEJcdGY7pjNeRyMVUssbXfgJyLK16lyC7YNp26DuEwTYEAVR4PI7EY2WKR3myW\nuaEQbpcLt8uFadtopRK2bU93zkoSzXIG0+3G9no5ms1StCxmBAInRej5yFoWP8tkIBpl84wZJ7tG\nz8SwbWQhTqtDc8syt7XO467DFs9356b/qFfy3plziJ2jo/RU1tbUcN/wFPceSrBpiQwVUepbWpg9\ne/arEmq27bBj3yh457F27dqL/nyZMpcCb4hYu++++7jxxhvfiF2XKXNJs2bNGlatWkVbWxtDQ0PA\n9BD3E2Ny3miEELS2tp4WRTsXiqIgCxlTP3fDhKmbSEJ6xVojAJ/PRyAQ4IqKCj66aNHJCI9HUXjn\njBn0ZbMcHBzkX/7l3xgbq8SvXsbc8FrypkmqlMBlmSx0V6JKVVRYTXTo4M61s8ajM+OUGiwbSJRK\npHSdnGGQ1nXGDIMx02TCsghJEgFJolKW+aDLxR2aRp8pqJqS+Nf9Gh9b6mZSvGRxEXN5+GVvhueH\nbWYXFNZVvjqxtrtYRHe7WRCLUX1c8LW2trI3m2V0fJyoy3XSUkORJJQzImeBYpFQMEh1QwNOPM5w\nOk1icpLWSITweZpVbMfhJ5kMOa+X+VVVbDwjBTpaKLBjZITnJybIGgYCqPf52FBXx5U1NfgUhZWV\nlfz18pXsn5rCdhwWRqMv69V3glqfjwNjBUaEyayFFVw9dy5Nr2K+6Ame2DPMRM5NbM5MlixZ8qq+\no0yZN5rXXazF43FeeOEFvv71rwNQV1dHPB7HsixkWcayLMbHxy/aTLFMmf8uyLLM8uXLWb58+Wv+\n3aZpsm/fPtra2rBtm9bWVi6//PLz+lO9WhYuXEjVo1Uc7jhMw9IGZPUlUVZIFkgNpGiKNiHLMiMj\nI9TV1b3swzgej0Mmw+JFi856b3E0yu+GhhiX61GUBfiUhUhCMJIvgGHQoqqoxzslo3IDNfIyRs04\n2wtT/KnLheU4DOXzjBUKZA1ByVIxbBem7UWzAtiOTb9h45csVGHiFSUiMswVgqIsk5oUdOHwf1JF\nKmM2kYiLKrfNwZEMh8YEQ6MKH4n4CF6AMD0Tx3HYUShAOMxVp/xP9Pv9zJg5k17D4HAyyUIhqDjP\nNVSFQDgONXV11DY0cKCzkz1jY+ybmGB9IMC8YPC0KJvtOGxJp2kDfNEoHzol9eg4Dg/193P/YB+j\nUoExuYDhsXEcCBoqB3sTbB3o5+MLFzH3eCSw6WU6SE9Fsyx+3dfHExMTVLXOI2Ok2D/i8K5Y7asW\nakPxHL9+ahBCy/nABz5wSfzgKVPm1fC6i7X777+fq6666mQxcSwWY8GCBWzdupXNmzezdetWFixY\nUE6Blinze2BZFvv376erq4t8Pn/yx9AzzzxDJiNIJFQcB2KxF5g3bxuf/exnqa6ufs32v2zZMuY0\nzWGsc4yD9x+kaXUT3qiXka4Rund2I03I9CXH+OY378LlgqamSq666irWrVt3mv3DCbxeL1mXi/Fi\n8ayH/0SpRDybJSv58flWQsGhYJhkNA3Ftql2nS5i6pUF7Cvt44XSCNdrGr2ZDElNIm/6cBwfXiVC\nQPWhSl5MWzBVKuFYGg4atlNi0k6TtotUixxZS6fK76chq/DgeA51QiHiV2nyuxBGiBpHEI4W2FMq\ncZ1lnWxKuFDuz+UYk2WiwSDLjnvTnaCxsRFN0xgBDiWTzA4EqPP5zmocONGkYNo2mtvNA5bFqG1T\nsG2eTaf501KJxeEwUbebrGXxk3SadiFwx2J8avHi09KWD/b384uhYxxyJYk1ulnUFMUfUHAcSExo\nDPXlGU0WKLVZfGHZcmZcQOel4zi0J5P84tgxJkIhpDVr+Nj119PR0UHfoR185+ftfOb9iwkFLs5g\nd2Qizx2/aMfwzuHK9ZvKY6bKvKm5ILHW2dnJggULXpMd3n///XzpS1867W9f/epX+eIXv8i//du/\nEQqF+NrXvvaa7KtMmf9ppFIpnn76aZ5++mkGBtJMToJpTg/tHh/vJJk0MM3ZNDSsp6qqjv7+F0il\nhvnBD37Al770pVcdwTgTSZL45Cc/if4tnSPDRxh+YpjR8VGKGR2R9SEZ1ZjeTfT1eSmVJjl8eJJD\nh+7jkUd+x6c+9cmzrHtWrVrFk4cOcX9fHx9fuBDleIRkKJfj2YkJdJcLyQ7gdjeii3GSug6WRbWs\ncOZwAI8UQoggE7rDs1MJbMOP7QQJqfW4pACnqh2XDBG3m7Qu0CwV0/Hjk2I4ThaPFUdlkseyORZ4\nPSysqEL2+XhLQwNBl4sFkQjNgQDfaWvj2Ogo304k+HRFBbELEGyO47A1l+MRTUP6/+y9Z3wc5bn3\n/52drdpdSauVtJKsalmWJdmyZbCNwUX0jum9h4Q4JCEk/P8PIQmEk5DzkBNyTggQOCdAIDkQQiCY\nGGyKi9xxkW1ZvfddlZW0Vdtm5nkhW8FINnIDEub7+ZgXu/fcc8+u2PnNdV/X77LbuWPmzAneZIIg\njOVxaTT0CALNHg+DoRAzExIwfuIc0kFfMVEQWNvVhXd4mAJZJqjV0q4o7NDpULxe2mMxtsgyitWK\nNSmJ78yezfRP5PX1BgK83dVOjX6Ygnnx2FONn1gLJDuM2FMNNNZ4qOka5uXGRh6ZP/+If1OBaJSt\nfX1U9PYyqNXC9Olkzp3LnXfeSVZWFmeffTa/+tUo3a07+dmLldx2cQGlBfZJ5/r0Z1dR6eStjR2E\njTOYNW8pt9xyy2cep6LyZWZKYu2qq66iuLiYa6+9lssvv/yEfGref//9Ca/l5+fzxhtvHPecKioq\nsHPnTl588WV6emI4naAo6TgcZ2C12ojFRuno+C/8fj063fW43YmEQpCaegUDA6/Q0NBFW1sb06dP\nP+o5BgcH2bx5M62trcRiMVJSUjjzzDMpLCyccFN2OBw8+uijbN68md/97nd4RiJEPWays6+ksPAu\njMax6LmiyAwNVdPVtZbBwRbC4V/z0EP/P5mfMOC94IIL2LljBzV79/LjXbuYZ7fjiUTYPzKCVFCA\nw+ulr+9gSyxBwBeNgCwTfwRhFJElfHKM4VgCKbppmLWpRxQVJq0WjSDgjUSJyTJ+RQbikTBhVaJE\nlRCbQyEu0un4w1lnYf5UHth9JSX8SpLoHRjg/7rdXGg2s9BgQIxE0IgiRoNhXB8qikJDJMKHgQDV\nioKQlMQds2ZRZJu8gaggCEzPyyPeaqW5qYkRj4ddg4MkGwxkxMURr9cTHRuITqPBG4lALMZ8g4Fh\nnQ434DSbedXvp0OW6TMYsMgyNyYkTChAqHA6cWqCJGcaDhNqn15PQXECOwcHaPZ7aPZ6D8tTUxSF\nDr+fjb297HK7idntUFSEPTeX8vJyzjnnHLQHizni4+N58MEHef7552mu3cMzf2ukMLOH5WXpzM5P\nwqA//LsNjEaprB9kY6WT7mENWOeyYPFy7rjjjs/VSFpF5VQwJbG2du1a3nzzTZ577jl++ctfct55\n53Httdd+7n5PKipfNRRF4S9/+Qu7du1i9uzZ3HbbbYiiiKIobNy4kW3btmG1WnE4HKxZs57qajCZ\n5pGffy4JCQXjAsTjaUanc2A252KzXUgw6MTt7iEa9SIICXg8PpxO5xHFmqIovPXWW6x5fw1On5Oh\n0SFkRcait7B+y3pKCkpYuXLlWHuqTxAXF4fVasVkcqDT5VBe/n2s1sPbAgmCBru9FJuthIaGFzhw\nYA+///3vefTRR8fXb7fb+f6DD/I///M/9LW0sMHjAYsFobCQM5cuJbOzk/fe68bjaQfBTCA6Fk60\nTHKTHoz0E5WGD/qZ5WHRHaGT+icwiCIpJpGwJDEakwjGYkQVhRQllXjc+ORE6gaHeKutjds+VXxh\n1un4/+bO5fnaWuoHBvhLIMBrg4OUCjL5GpFkawJavR63JLF1dJQ+QYC4OPQWC18vKqLUfvRokiAI\npKSkkJCYSEtLCwN9fQyMjjLg9aKXZbrDYbq1WvYMDiIAfRoNL3u9hGWZTq2WwvR0EsvKcBiNzExM\nJOTzUdXXR1VdHZlaLdOtVrItFj7q6cFpCDIn++ifl0YjkDbNhKt5lG0uFwZRpMPno8Pvp8XrpVeS\nICMDIT+f2fPmsXz58iMW0MTHx/ODH/yADRs2sOrtt2kY7qHhPSdCtBFHkoFEqx5FgcGREG5vDPSJ\nYMojPjubm26+mfnz53/md6ui8s/AlMRabm4uP/jBD3jggQfYtGkTb731Fvfccw9paWlcc801XHXV\nVaSlpZ3qtaqofOVobm7m738fE2E9PdspLS1l/vz57N27lxdf/DONjSDLXkZH6xDFBWRl3ci0aedO\nmEensyKKIEn9CIKAxZKL0ZiM212NLHfQ09Mxaa7YId544w3eeu8tagdqseXbyJyZiagTGekZYe++\nvTT1NNHY2MgjjzxymJeVoiisX7+ezk7Iy7thglD7JBqNSGHhXeza1UJzs5OGhobDujVkZWXx2GOP\nUV9fT1dXF3q9njlz5mC326moqGDfvldxOivRyUuIhEIYYlFkAcIaDVpRi0bUICsK7eEDWBmkVJc+\nJaH2SQyiiEEUicgSgiyQLRpxkEBASMIT0vNSYyO3FhRMiNLFabXcP2cOB4aG2Njby/raWrbEAmyT\nFAzBICZFAY0GEhJItFpZmpbG0vR0Eo6hEbpep6No1izycnNxulz0uVyER0fpd7noEATeDYfRabVE\nU1LojItDYzCQl5fH6UuXUl5ezvz589FqtfT391NRUcG2rVvp7uuj2+9HGhlhq3uQfnsAQ0jEIukw\niiKiRkAANIKArIx5u0mywrAYoS8wyguDDWzz+8FqBYsFHA7MaWmctWQJy5YtI2UK3m2HfPfOPPNM\nduzYwfbt2+nu6sIV8eEaOWiwqzWgz4gnb/p0lixZMn4tKir/KhzTX7NGo6G8vJzFixfz2muv8eST\nT/Kb3/yGZ555hvPPP5+HHnoIh8NxqtaqovKVw2AwoNVCXByIIuNVm01NTbhcIAgzaWnZgiAolJWd\nP6lQA4iLc5CQkIPX28HIyO+xWq9GEPTo9XV4vU4CgUG8Xu+kx/b29rLmgzXUDtYy69JZ2LLGBI4k\nSfR6e4nmSTTuaKWztY/Oe3q58srLuPPOO7FarXR0dNDY2IXPZ6a4eMFnXq9GoyM9fRm9ve9QUVEx\nobWWIAgUFRVNyKFdtGgR6el/JRisIeyT0UdL0QLRiIyiUYgJEqKooUtuYlipYTojLNIff7Wtooz9\nRxTGxEqamE9z1Ey3v4adAwMsmqRYQyMIzLXbmWu3s1ir5aPWFnyAPS0dq8mEWaej2GZjblIS4glU\nLRqNRvJyc8nNyaFzeBiDIDCjqIhzr70WSZLQ6XTY7XZycnLIzs4m7lNWH6mpqVx33XVceeWVtLW1\n0dHRQWtrK3uefw5FbsNrteKTYiBJEFPGPgyFsVy/g9vQo4IGjyDQoddjz8riwgsvZMaMGWRnZ5OX\nl3dc25Imk4mzzz6bs88+m1gsRm9vL4FAYMzTLj6etLQ0tdpT5V+WYxJrVVVV/PWvf2XNmjVYLBa+\n8Y1vcM011zAwMMBTTz3Ft771Ld58881TtVYVla8c2dnZ3HnnTezevZuSkhKKi4vHX09Jgfb2PWg0\nHnS6RHJzrzzqXDNm3EIw+GtGRvYzNLQfAKMRUlJMGI0z2LJly2G9PQ9RUVGB0+8kZVbKuFBTUKiu\nqcbp9ODziWhzcvAPD1BVNYBWu5/W1kdYsWIFe/fupbXVhcVyLhrN1G7QycmnU139Dm1tbezdu5e+\nvj4WLVo0XkE+GXq9nrg4E6LYRijmJYoLA7OICnkIisKI5KRfqmdYaSRTaOEiYy528ejmrEfDIGoY\nlTUMyBFGEXDLRiy6RcQUH+t6eiYVa59kYVERpXl5aHU6tMdh6TEVBEGgPxbDnJrK4vPP59Zbbz2m\n43U63WGeet3d3azdtxa7w46YJBKNRJFkacyAV1aIxWJEY1HMcWaae5rRKSI6XSGQitls5rzzzjtp\n16bVasnOzj5p86mofNmZklh76aWXeOutt2hra6O8vJxf/epXLF26dPwpJiMjg8cff5xzzjnnlC5W\nReWrSHl5OeXl5Ye9dsYZZ9DX10dHx38QCkUoKXkEUTz6lpnVmkNZ2cN0d6/F7a5CUWQSE2eSkXEO\ndXXP0dDQQXt7+4RKzIaGBtxBNzMKZ4y/NuQeYnDQg9+vJ9k+F41oZLBzJ/qIjX37aqivD7JrVxfR\nqEx7uwtRfBdFiZKevpzk5NOOWnWq1cYhSdDW1saTv30ST8jDhg0b+PnPf37EiMyePXvo6vJgNs8n\nZNmH4u8hpDSzV7FiQINJGMWqdJOkDLJETGOh/sR8HC06HRFZxiVHcGMgItpJMBYTU+poGGmk3ef7\nTNsK42c4+Z8MOg9uQZ4MYbN06VIOtB6gr6WPObPnHPYd9vX3UV/XSCSqMIKHYE8Q/MnEZ55BV1cf\nLS0tJ3x+FZWvMlMSa6+99hrXXnstV199NcnJyZOOSUpK4vHHHz+pi1NRUZmcQ9uBeXmzCQQSyc6+\ndErHxcU5mDnzjgmvOxxn4XR+yKZNmyaItWh0LIKiM/5DKPUP9BMMgtmchag1IctRRmNuQj4/YqwY\nv9+EVltMYmIKsVgbfr+L9vZGBgYaSU/fRWHh144oLqNRH1ot+P1+glIQl99FkimJwcHBI5plV1RU\n0N0Ns2atpN34NyItr6OVmkhXZLI1OhIFkVQphCNmIVVz4obbWo2GZKMRrxxFEpPJSZxOfnwa3f7Z\n9I862ed2T8lj7FTT4fdDVhY5OUfOFZwqZ511FqvfXY2rw0XzxmZmLJ+BoBFQUGhtacXtVpBCWiKN\nTuL9elIzUhCEPqZN46ScX0Xlq8yUxNoHH3zwmWP0ej1XXXXVCS9IRUVlarS3tzM8DMnJ8xGEE8vV\nSUlZQGPjh7S1tU14z2azEaeLw+vyYkoca3cUjUaRJDAa41AUCXf/PqKeAJpRGwm2rxMOm7HZEpg1\naxZ+/x76+2PodArDw6uRpH3I8vOUlNw36br7+3dgt4/loXV0dZBqTqUwv/CI+bCSJNHY2MTQkMDM\nmWcwPFyFZM7AHBpgVizIw8YUQODAqItB9GgU41jfzGPwlFMUBUmSAQVB0CCKGgaVEG4NxBlTKEyY\njiiIJOgz6Rs10uHzTXnuU4WiKGORNYvlpETWzGYzK7+5kshTEarbqtnZsZO0kjQsqRb8Tj/BxlEY\n1qDzxzFz+nRuuukmuru7ycvL48YbbzwJV6Si8tVlSmLtT3/6E1arlRUrVhz2+qpVq/D7/arhoIrK\nF0AgECAaBZ3u6A3Jp4JOZyUWg2AwOOG9xYsXs6NqBx37OkgpSEEjajAajeh0EImMEA67CXQMoPit\nWM03IYrz0OvbMBqNmM1jos3r9SAI+dhsRQwP/wqNpprExHVkZp5/2LlisVFcri3Mmwe33norRqOR\ngYEBioqKjpg8HovFkGUALVqtEYslB58xlVh4mCFBpEYKk68RiSkaNIIRjaD5R0L8ZyDL8kFhKqHI\nBw8Txuwp9tCPR5uEI24OojAWdbToHDR7DXQFBo/tCzgF9AaDjGq1xNvtEyxVjpeioiIe/MGDvPLK\nK7R2teKqc+E84ETv1pPgjiEE48jKSOEnP/kJ5547ebHLp5Flmddff53q6mpmzJjBLbfcgv4YqmBV\nVL4KTEmsvfzyy5NucU6bNo2HH35YFWsq/7RIkoTb7cZisUyoivuyoxx0pj8ZXQcOzSGPqZ7DWLBg\nAdNXTafSyoDPAAAgAElEQVSvuY/aNbXMWDaDtLQ0enpcDLg6CTs9RDsimEJnYzAvJxDoIimJcTuf\nadOm4XZ7GBpqIyGhmPj4O/D5nqW3dwPTpp07Hl2LxULU1v6O1NQARUW55OXlIQgCGRkZR127Xq/H\nYjGh040SCPSQlFSKMy6VJG8jIa2ZNVEfd+usyIqA5uBP3lQ+M1mSCYVDyPJYBwhBEBEQkGSJPmmU\nvQwzIMxkYdzc8WMMGitRWYs/Gj3m6N1UkCSJQDCIOS4O8VOFCTFZZkNvL/2joxQmJtI0MgKpqcyd\nO/cIsx0fM2bM4LHHHqOhoYGPP/4Yj8eDRqMhGAySlpbGaaedRskkPVyPxLZt21i1aiONjZCXN4jD\n4eCSSy45qWtWUflnZ0pizeVyTfqDmZaWhsvlOumLUlH5PGhqauL55/+bgQEver3AeeedzfXXX3/S\nb7Cniri4OLRaiEb9JzxXNBo4aBESR3t7OwcOHACgpKSEvLw87rvvPsL/Gaaut469r+7FlGICj0S0\n2UVkUIHhTNCdRTgcIzER0tOTx/v7jtlEZKAovQwP12AwpBKLxePzuRkaqiYhYSb9/R/T27uOhIQ+\ncnNlDAYD69evn1J0RhAEFi1aRH39Rrq7P2DmzDsxJBSi8TQTDQ/hlEKsjwXJVWIIAoii9jOjaoqi\nEA6HkSQQ0KLV6jh0kKLIrJM66MaBhRKUsOETv6T/aHh+solGo+zdu5eQ34/RYmFeWRn6TxRc/E99\nPet6RhkOm3GYmhmVfKQuXz6hOOVkIAgCs2bNmmCtcjx4vV78fhgdBb+fI1rIqKh8lZmSWEtJSaG+\nvv6w9i8AtbW1Ry2nV1H5suLz+Xj66WfZtSuI329BUfz4/etJTk6e8vbNF01mZiYJCdDQsJ+8vGtO\nSGS63XuxWmVaWlp45JF/Z3BwzD4rJWU1ixaV8o1vfIMfPfwjVq9eza7du3D73WRbsxER6Q1KmBKv\nJj7+NEwmPRkZGWRlZY2vRxAEpk/PR6MR6ejoIhjsIxq109e3h927H8FiycRmizJjBhQWOnA4HNy1\ncCF/2rt3yt/F2Wefzfr1m6is3EF7ewJpaWfidO8lLRYkqFfYFOghKMeYLkjodJ/9syfFJCRZATRo\nPlEIISsKH8pdtAkmQmIBacoCAoEgZrMZAYGYEkIUZAyieNJF/9DwMKGRERgZIRSLMTw0NJ7H54tE\n2D0wRN3IDBzGUioHt2KOH2FxcfGE3+0vG2eccQYbNmzEavWQmho3qX2MispXnSmJtcsuu4yf//zn\nmEwmFi5cCMDHH3/ML37xCy6//PJTukAVlVNBa2srPT1BYrEczjjjIfr6ttPR8QpVVVX/NGKtpKSE\nnBwbzc39jIzUYbMVEw6P4HJtIRDoQqs1k5p6BomJM486jyxLOJ2biY/vor8/AafTSGrqYgRBw759\n2/D7q0hK+is33XQTd999N9dffz2dnZ1IksTrr7/Ohx/2k55+I/Hx+RiNxkmLBgRBIC8vD4fDgdPp\npLXVRjCokJExTHGxg1mzCli+fDllZWU4nU5eff/9Y9pKS0tL45577uS///slmprep6dHx0homPiw\nm1IEarUa1ssxfHi5cArzxaQYY00F/hG5iigSH8ld7EPGKc4kz3gVmohILBolHA5jNBjxR/sw68JM\nO0o3iOPFYjYjGAwoFgsYDId1nNBpNIiCgChI+GMDBGOjWBMSJo2qdXd3s337dgYHB4nFYlgsFmbP\nnk1ZWdkX4vqflJTEz372b3R1dZGRkXHUThoqKl9VpvR/5ne+8x26u7v52te+Np4nIcsyF110Efff\nf/8pXaCKyqlAFEVEcWz7LxweJhQaQBT53G5WkUiEt99+m/r6egwGA8uXLz/mXrsajYZly5ZRW7uK\n3t6NCIKW2tqnsFg6MJlGiMUM1Nd/RHLyJeTn33DESM/Q0H6MxmHC4SE8nmzmzHkAqzUXAIfjDKqr\nH2fz5q1cddVVGI1GLBbLuDnvBx98gEYzgMGgw2T67Jy/uLg48vPzMZl6GBnJ44Yb5nP33Xcfli+Y\nlZXFPffcc0yfBYxVjyYkJPD3v/+dmppm6uo0+NrBJMS4MiGd37tcVATDDIcbudiQR6LGcMS5ZFlG\nUcby1AA6FR/rpG46NVb6NXnkGq4lTuMgovEiK2MFCAC+qAurLky2xXLM6/8szGYzpfPmMTQ0hC0p\nCcsnzmHUarksexohqQtnsBef3EvJ/AsP643Z0NDAqlWrqK1tweWCQGAseqrTQWrqDrKyrJSXl3Px\nxRdPyIc71RiNRgoKCj7Xc6qo/DMxpTuTTqfj17/+Nd/97nepra0d93j6tB+TisqXHUVRUBTloDN7\nKsPD/VRWPozJBEVFsGTJks9lDc899xwbNtTQ3Q1aLdTUtBKJRI64BaQoCrIsT7iJLlmyhFWrVtPZ\nuZfKyq3k5LRSXKyhpCQVtzvIxx/vo71dxmYrwm6fmGgeDo/Q2voXMjPDhEIOotGUcaEGYLFko9U6\n8Hr7GBwcnLCllpycjNncyMhII4mJU89f8nqbSUjQkZube1ILOw7lUfX29lJVVcV/P/MM7qYmHlq8\nGPeBA7xQ7yQYU+gNNVEoWpmntZOhMaP5lJAVEIgqEi3yEFXKEJ1KlF4xE1mcQb7+EoyaQ83VlfEj\nFEWhf7SOggQ/sxLzOBUkJCSQkJAw6XtX5OZSbLPxfF0daalzuPKqq8YfPrZv384LL7xCY6PM8PBY\n5DQ1dSaCoCUUGqSlZQvNzT10dPyd1tZWVq5ceVwtoVRUVE4NxxRGyM3NVQWayj8dTqeTiooKKisr\n8fl8SJKMyWTEbrczZ46FwsII8fHxXHrppZSVlZ3y9XR1dbF7dw3NzUaKir6Jz9dOXd3brF279jCx\npigKtbW1bNy4kZqaGmIxifh4K4sXL6a8vBy73U58fDw33HAt3d3PUFOzn4wMPVdfvQSNZkx86HQi\nTmcjjY1/ZMaMKCZTGhbLmOAKh4c5cOA3pKcPs3BhAW1tnbhcI0QiPvT6MUPXaDRAJDKEXs9hkZxD\nLF68mI8+2kZV1Waysy9Bo5n8J0WSwoTDw5hMDqJRP0NDeygoEFi8ePHJ/niBsa4qGRkZtLa2sj8a\n5U9NTdxWUEDdyCibXCYiYgr90gj7o73EyWEcGhMJgh5REIgqMi7JzwARArKFYU0KQTGFFN0iUrUL\n/7HNqyhIUgiddqyJuifShSA4ybZIlB4srvi88UejeEWRhIKxbWWAAwcO8Pvfv8y+fQp2+4UsWnQp\nonh4VDEj42xGRuppbHyBWKwGvf4F7r333n+aYhsVlX91pizW3nvvPbZv347b7Z5Q3v/cc8+d9IWp\nqJwonZ2dvPHGG1RXN+J0Ql8fRCKgKAKiGMJm6yE9HbKyrCxduvSUCYdPEwgECIfBZHJgsxURF5dG\nd/fb+P3/qOpUFIVXX32VtWs30d0NAwMgywJGo4+6ug/YsKGCb33rmxQXF3POOeewadMm+vt3Y7ON\n4ve3IggpVFUNs21bB11do4RCu/D5fOh0kJCQidGYjNfbRmamhwUL0vn+97/Piy++SFdXNbW1z5KT\nczkg0NHxdxyOKKWlRZN6dRUUFJCfn05zs5Pe3vVkZl4wYYwkhdm9+xHEqJ/kzAuJRn0kJ8coKyvF\nbrdPGH8yuemmm2hsaKBq2zZOD4UotVvoCcQhMA+DaGUgVE84NkSHPIpOiTDW9VTDqNGOJwRa2U6i\nUkyqMhOjYD8sHy8a9aPRyOgNOkSthlb3RrIsQyxLTz+hRuzHSyAa5X+bm6G4mKuvvRabzYYsy7z2\n2mvU1CikpFx28HudiCAI2GxFzJnzA6qqnmDLlr0sXVp7THmDKioqp44pibUnnniCV155hUWLFpGa\nmqo+bal86amurubZZ5+nri6C220gOXkRxcXLiItLRxBEYrEAg4OVtLRsoLm5l+7uv9HV1cVdd911\nyvPWpk2bhs2mpbm5g+rq3xIKuXE4IC/vH1tna9asYfXqTdTU6Jg27RIWLFiCTmfF52unq+s9du2q\n4umnf8ejj/4Yh8PBtddeS2VlBW73Adzudlat2kd3dypdXSn4fOkIQgE+XyKhUA09PZuIixskN9fK\nwoXnsmzZMvbs2cPChQvp7OyioaGVjo7fAJCaCoWF8dx8882TXosgCKxYsYL29ufYt+8tNBoDGRnL\nDxsTDg8hRgMs0lpY1/42VquO007Tfi5eWjabjetvuIGXBwf584ED3DlzJk0jDewerKI48TZyrUuI\nySH80T7Csh9FkdAIWoSYCe+AREwxoMgisgKRsAdB0CIIArFoAFkZxWAQsFqtdAU+Ri+2U5wY5fwv\nqPryzy0teFNSKDjtNM4++2wAampqaG93Ew4nk5192WfOEReXTkbGhfT0vE1FRYUq1lRUviRM6a60\natUqnnzySS666KJTvR4VlROmqamJp5/+HZWVMeLizmDBgpvQag9vmq3TWUhPX0Za2lKGhg5QW/sC\nsdhuRFHkrrvuOqUPJPHx8dx99x3I8h/o769Gq4WZM+3cdtttAITDYd5//wPq66Gw8F6SkuYwOtpP\nT89HhEJurNY8PB6J1tYaPvzwQ2699VaKi4uZO3cJLS1+fvvbJkZGMvH5ioDTkOUcTKYUtFo9iYll\nCEIt0eg2/P4u1q/fyP79vcRiYLHIRKMjpKcnUVaWhsFgGI/cxccfuUtCWVkZN998DYryJjU1r9LX\nt5X09HKSk+chikZE0YxgSuUd1xaSk+3Mm2fg61+/6zBxeipZvHgxe/bsodrtZovLxSXZaXii/dSO\nvM3cpJswaW0kGg7vXTk8MowohgAjimJAkgJEY0HkUReiqEOrBaNOIDExEY/Uiiu4mXnJfdw+sxjD\n55ycD7BvcJCdPh+6M87gjjvuGP/73bRpE04nZGQsn/LfdFraEnbv/juVlVWMjIyctO4HKioqx8+U\nxJosyxQVFZ3qtaionDDRaJTnnnueqqoYVuty8vNvOupNShAE7PZSZs/+PtXVT6LXf0xhYSFnnXXW\nYeNGRkaoqKhg586deL1eLBYLp59++nju2LGycOFCcnNzaW5uRq/XM3v2bIzGMUG5b98+enpG0evz\nSEqaw9BQDdXVz+L3x4jFQK/fjdmsYWQkyI4dH3PjjTei1WpZuXIl991XzcCATDBYjNl8OeGwnpyc\nJOLjrWi1WkwmE6mpC6mry6e19X9wuVqZPn0a8fE5HDiwCq1vH3aLQubX7ubhhx+e8vVccMEFWK1W\nXn/9L/T0dOB0vkxr68tIEogiJCXBkiV55OQkcvvtt3+uERtBELj11lt5rLmZqm3bmGe3c5bDT0xu\nY//QaxQnXkm8fqLpt8BYcZUg6AmHR1EU0OvBaNRgMpkwmUwMhA/QGfiQOUnd3DA9k8IvQNh8evsz\nJSVl/L3e3l48HsjMnHoXA73eisWSj8/XiNPpVMWaisqXgCmJtRtuuIF33nmH73znO6d6PSoqJ8Su\nXbvo7PQRjWYxe/aNU44mWK055OXdSHv7y6xfv54zzzxz/NiWlhaeeuppWlqCuFwQCoHBMERV1Vju\n2H33rTyuh5nU1FRSU1MnvO52uwkEICGhEEWRaWr6I0NDMQRhPgbDHEZHtxCLtQBO/P44fD4fNpuN\nlJQUcnJyqa01k5l5NwkJ+aSkpGA0mg6bv7+/D6/XgiyfTlxcAvHxOcyceQcgMlzViuB1s3379mO+\nnsWLF3P66aeze/duNm3aRE9Pz5j/mNFIXl4ey5cvZ+7cuUfs8Xkq+eR26OsHDvCtWbOALrSaFmpH\n/kiq8QxyrGeO9/g0Go0EgyHCYR8QRNRIGIx67PYkDHoDIclDvedtYkoDc+19XD89nYuysj7364rK\nMs/V1eF1OA7b/jxEJBI5KJiPbFMyGaJoRJLGjldRUfnimZJY83q9rF69mq1bt1JYWDihpPvHP/7x\nKVmcisqxUlFRQW8vZGScM6k569FITV1Ie/tbNDV109raSn5+Pj6fj6eeeprdu4MoShEzZlyK2ZxF\nMNhLV9cadu+u4plnfsdjjz160pLltVotogjhcBC/v5NAYBhJSiY5+RsIgoDRWMrAwA+APiBvPMeu\nrq4OpzNIfPwsSkrKjyhUXS4XwSAkJFzB6OjT9PfvoqDgdnJyLmV01EVb+9/IMCXS29v7mX05P41O\np2Px4sXjxRqnoj/m8bJ48WIaGhrYEYnwfEMD3yspIcc6yLsdnTR7g+wcqMJhnE2qqYQ4QzIJ8VZ8\nfj+yLKHRCFjijQQVJy3DVXiiDWTGDVGY6OOWghmc/olo1ueFJMs8X1tLo8FA4rx5k27fG41GtFov\n0agPg2HqEbJIxItWCyaT6bMHq6ionHKmJNaam5vHe8C1trYe9t6X5YdYRaW7u5v6+nZ8vjiKixcc\n8/EajZa0tCU4nWvYsmUL+fn5bN68mba2ILJcyJw53x0XgPHx0yku/ha1tb+jrW0/Gzdu5Jprrjmm\n8x2y5ti6dSvDw8MkJSWxZMkSCgoKsNuhs3MPKSmHrkM5+G/MzysWC2EySWRlpY1bang8HkZHFQQh\nib4+F1qtDpvNNsGbLRQKEY2C1TqDYNCIJIWQpFEMBhtz5z6IKBoQhGoGBgaOWax9mi/T74MgCNxx\nxx2Mjo6yX5J4uqaG75eWUma383prK3XDDTiDLuo92wlLJuK0KYh6A4osE1UChH1DmLUhUk0+imw+\nFqXauW76acTr9Z998pOMJMu82NDAAUHAXFbG9x54YNKHhRkzZmC399PfvxOLZWqRv2Cwj3C4naQk\n3Ze+VZWKyleFKYm1P/7xj6d6HSoqJ0x/fz9+P8THFxzWJuhYSEwspqNjDX19fcDYtmpfH2RnXzgh\nUicIAllZF9HYuJ/du3d/pliTJImmpqaDFho69uzZw8aNO+npGXOTN5tb2bx5N5dccjYzZ2bT3t6J\n07kRs9mG1+tmZOQ5DIbZ+P0bUJQupk1L4txzzx0XRNXV1dTW1uL1JtHf34QoQlyclszMzMN6dYqi\nFo0mTCw2iqIcsuEZuzZFUQiF3Oh0jOfQnSqi0Sg1NTV4vV5MJhPFxcWf2WpoeHgYn89HXFwcdrv9\nmMWgRqPh61//Ok+Hw9QrCv9RVcX9JSU8NG8eHT4fFU4nDSN99I1GCMTaickigqCg10hYdFEyzXHM\ntdtZmlZIouHYthZPFhFJ4vm6OqoFAWNZGd+9/37S09MnHbt8+XLWr9/G3r1bycm5bErboU7nRtLS\nYPHiRSfVsFhFReX4+fwbwamonCJGR0eRJNBqj3/rRqs1IUlj0Sf4hyea2Tx5hCkuLoNweGzcZCiK\ngtvtZuPGjezcuZOuLg/hMHi9Q3R01BEKOSgs/AZ5efPxeBrZt+89ZHkDN9+8Aqezj6qqPYRCEnq9\nk0jEjcezFlnuIy0tzBVXXDnecWH9+vW8/34Fw8N+RkediGIykhTG4/ExOtpONBolPz+frq5OAoEA\nghDC49mOKIYxGBLGb+JDQ1WAk4wMK/n5+cf9OR4NWZZ59913WbduPb29QUKhsZZHDoeOM888g+uu\nuw7Dp4TQ/v37ef/996mvbyEcHhufn5/Jueeey+LFi49JtOl0Or797W/zvE7HAVHk1zU13FtYSLHN\nxu3WMTPgYCxGTyBAWJIQAItOR4bZjO4LyLf7JL5IhOfr6mgyGjGXlXH/975HTk7OEcfn5uYya1Yu\nnZ3tNDS8xKxZX0ejOXK1qtu9n4GBDZSVMWlfURUVlS+GKYu1HTt28O6779Lb20s0Gj3svVdeeeWk\nL0xF5VgxGAxoNBAOB+jq6iQSiRysfkxFq51apE2WI2g0jIsFq9WKweDB7+/CYLBNGB8IdGE0jo37\nJNFolI8++ogNGzZQUbGd/v5hwmEDFksJDsdZdHY2Mjg4itlsZGBgD+np5WRnX4pGY6Cz8w0aGxt5\n8MHv89JLL9HS4qKnJxm324VGEyY9PYUrrriUu+++G61WSyAQ4I033qS9PR67fS4jIwaMxhBG43zC\nYTfDw7WIYg9paWl4vT7m5+awwXOA0dEKRLEVk+livN5m3O4q+vrWU1ICF1xw/gn7zSmKwvDwMLIs\nj0fBFEXhpZde4oMPdtLYCDpdDhZLNqOjAzQ11dPTs5nu7m4eeOCB8e/gvffe489/XkVbGwevLYVw\neIjGxm7q61+mra2Nm2+++ZgF28qVK3nJaGSXVstv6uspt9u5Oi8PgygSp9VScIS2Tl8UlYODvNrc\njC8tjcS5c/neAw8cMaL2Se644w6czl9SWbmXmprfkpd3NRZL9mFjotEATucmenvfoaRE4eqrLyXr\nCyiYUFFRmZwp/Rq/9dZbPProo5x//vns3LmTc889l/b2drq7u7niiitO9RpVVKaEzWYjEBigsXEH\nZvNsJEmDXg9mcwezZxeTkPDZCdZebwtxcYzbFSxcuJA9e7rp6lqDzVZ8WDslRZHp7HyPtLSxcYeI\nRqM89dRTbN/eyN69QwwOphMOp2M2GzCZjGg0IomJ1+H19qMotQwMtFFT8zSnn/4YSUlz6O19g/7+\nfnJzc/npT39KfX09tbW1RCIREhMTWbhw4WH5STt27MDpjGE2zyYraw61tX9mZORVtNoMDIY0jMY0\nfL4uOjo6yMzMpLevj7y8GI2NtZjNLmS5ira2RhISoKwMLrqonAsumNiJ4Fhob2/nf//3f+lsbgZF\nISMvj5tuugmv18u6dTupqzMwa9Y3sdmKx48JBHqpqXkaUWxj7dq1rFixgpqaGl5/fRX79wtMm3YV\nhYXliKIBWY7R37+DAwf+jKJsIicn55j7uoqiyN133016ejqr336bjc3NVO/Zw+0zZ34hFhxHwheJ\n8OeWFnYHAlBczMzTT+euu+4iaYotrTIyMnjggfv57W+fpqGhjtrax9Hr80hI+Edv0KGhSuz2KHPn\nwpVXXsjll0/e6UBFReWLYUpi7cUXX+SRRx7huuuuo6ysjB/84AdkZWXxb//2b2pOg8qXBqPRSF9f\nO6FQMoIwTFzcAoJBN8Ggh5qaWhYuXHjUaJGiKDidmygsZLyaccmSJXzwwYe43a1UVT1JVtbFWCxZ\nBAK9dHe/j0bTQH5+3HgfRoC1a9eybVsjTU0WYAmimM20afOQpEZGRv6EIOxCq9Wg18/AZLoNv/93\neDz9uN37keXYYZE6QRAoKio6qjWIy+XC54OkpDmkpS3D7d6PJNUxNPR/EcXTCIdthEJ+fL5+mpt3\nYDJ1YjZ3cf75Dk477RwEQSAajZKens6yZctOuP/v8PAw//nkk4SqqjANDSEAvc3NPOVykZSSQlcX\n5ORcfZhQg7Gt5pkz76S5+Uk2bdrMpZdeyrp16+jogIyMy8nKunB87KFiENDQ1vYy69at46yzzjqu\nHLZLL72UuXPn8oc//IGu/fv5dUPDYVG2L5LxaJrDgaG0lKuvvZbly6ducHuIvLw8fvKTH/PRRx+x\ndes2enraCATakGVISID8fJg3r4RzzjmH2bNnn6KrUVFROV6mJNa6urrGb156vX48P+eWW27h9ttv\n58EHHzx1K1RRmSKbN29Gq03HZFIQxU7M5qswm6fhdu/H7/cyMDBw1G2jse3CAXJzk8ZvWGazme99\n737+679+Q0tLK11dzxAOj5mjpqVBXl4c3/3ut8cjcZIksWnTJtrbwW5fgc8HOl0ien0CsABFieL3\nv0xCQj1m8wy83m70+tMJBt+jtfVNFCXKzJkcU59SvV6PKI7ZLWg0IsXFK9FoXqCtbS1DQ5WEw3oU\nxUwkIhAMetFq+0hIGOH00y8gPz+f0tJS8vLyTlrl5qZNmwi1tVEcjfKtM85AAF5saGBXSwtbGhoZ\nGppJYeHk15eQUICipNLX109LSwtVVTUMDoosXFg+6fhDdiutrb24XK4pbQtORmZmJj/84Q9Zs2YN\n765axcbmZg7s2cOFmZksSk3FeIpbkH0SRVFo8nj4sKeHqtHR8WjaHXfcQXJy8nHPa7PZuO6661ix\nYgX79+9ncHCQWCyGxWKhpKRkUs8/FRWVLwdT+gVKTEwcF2gOh4OmpiZmzZrFyMjIeCK2isoXTX9/\nP1qtg4SEIF5vLYHABszmszEa7USjXkZHg0c8Nhweobn5j+Tnw7Jlyw4zbh2LIj/G1q1b+fjjj/H5\nfJjNZhYsWMDSpUsPy1dzu93093uRpER0ukxise6DQm0Mk2kBXu8fEYQRkpPjUJQgHk+M0dEONJpK\nzjjjNBYtmnlMW3qzZ88mNfUjqqu3kZl5IVqtkZkz78Ll2oYkVQMSgpCIwTANEIhEQng88axd20xr\n65vk5Kxh3rxC7r333s+sxpwKTqcTvF4WOxzjCflnORzs7OzEr2jQaPRHrEoUBAGdzoIk9ePxeIjF\nQKuNR6ebfF0ajRajMYVIxHfEIo+pIooil112GfPmzRuLslVX82pvL2+2t7M4NZXl6elknITP50iM\nxmLs6O+norcXpyBAejqGefOOO5p2JPR6PQsWHLu1jYqKyhfHlMTa6aefPm6Ie/HFF/Pzn/+cbdu2\nsX379glteVRUvigSExOxWnXI8lxEsR23+89AlHA4HZOJCRWGhwgG+6iufoqMjGEWLsznvPPOmzDG\nbDZzwQUXTDmXa8wM9pAdhvzpdxEEgdmz5+B0uujoGGRwEGbMMPO1r63g/PMnT+5vampiz549SJJE\naWkps2fPRhAEZs2aRWFhJi5XN1VVvyI3dwXhsJdg0I+iJCAIc7FYvo3Npmdk5HfEYunIciKjo5kM\nDBgYHu5kaKgBSXqWBx988IRFgd1uB7OZqqEhFhw0i90/NITGaiVRIxKNhvD5OrBaJ1YxxmJBgsEu\nTKYxkazTCcRiHiIRH3q9dcJ4WY4xOtqHwcC439yJcijKVllZSUVFBU3V1Wx0udhYXU2B0Uh5RgYl\nNhumkxBtkxWFLr+fLS4XHw8OEk5MhIICErKzWbp0KUuXLlXbPamoqExNrP3kJz8hHA4DcO+99yKK\nInEJ4f0AACAASURBVJWVlVx88cWsXLlyyicLh8P84he/YPv27RgMBubNm8fPfvYz2traeOihh8ab\nBj/xxBMnnDej8tVjyZIlrF+/lf7+DiyWVMLhOoaGnkOSEjAa55OUNG98rKIoeL3NOJ0VDA1VMn26\nxMKF2dx3330TOnQcC8nJyTgcCeh0HqAXgwFGRgawWnMBgdHRjzEYFKzWHHQ6A9nZOUQi28nOzuX2\n25dzySWXTDrv3/72N95+ey1OJ8gypKVtorx8AV/72tcQBIGVK1cSCv0nNTVddHY+zeBgH15vPZCM\n0TiXlJRS/P4XiEZlBGEJOt0FQDt6vZl58+5k797H2b+/mfr6+hPuA7xs2TI2rlvHrr176di9G61G\nQ68goCktZcX8+bz7bhUdHasoKfn2Yd51iqLQ0bEauz1KaWkR6enpzJ07m+bmA/T2ric3dwWSFGFg\nYCf9/buIxfyEw8MIQifTp5ficDhOaN2fRBRFFixYwIIFC+jp6aGiooId27fT1NtLk9MJjY2k6vXk\nWK1kWyzkWCxkWyxHFXCyouAMBunw+ejw++n0++kKBIgaDJCaCqedRuGcOZSXlzN37twJZsYqKipf\nXaa8DXoIjUbDN77xjeM62X/8x39gMBh4//33EQSBwcFBAB599FFuvvlmVqxYwapVq3jkkUdUOxCV\nY2b69Olcf/0KYBW9vf3IsowotgBaEhLCVFY2YDAkIQhaolEfWq2X9HQoKBA488xF3HLLLUeMvk0V\njUbD8uXLaW19h6amNxHFMgQhE7+/A42mF7//L9hskJEx1sPR7+9iYGAr8+ePiZzJ6OzsZNWqtezd\nqyEt7Xx0OgNVVR8gy7s47bTTKCsrIzk5mR/96Eds3ryZ7du309Mjs359Hb29YcxmAyDh9+8hEgFF\nKQfk8a1eg8FGevpyXK7VVFZWnrBYczgcrPz2t3nllVfo7+4GRcGclsbNt9xCXl4ejY3N7N5dQ1XV\nk2RmXoDFkkMoNEBPz3pGRyuZN28s6R/gvPPOY/fuA+zbt4ZYLMjQUDUezyCBgEw47Cca7SMlZRiP\nJ4dYLHZCQvtITJs2jZtvvpmrr76aHTt28PHHH9PZ0UG/z0e/z8cuvx8GByEQwKbVYhBFdBoNOo0G\nSVGIyjJRWWYkEhkTZlYrWCyQkgIWC8kOB3PmzGH58uXHnXOnoqLyr82UxFpRURFbtmyZ0M5keHiY\nM888k7q6us+cIxAI8Pbbb1NRUTG+zZKcnIzb7aa2tpaXXnoJgMsuu4yf/exnDA0NTbk0XUXlEJdc\ncgnFxcVs3boVj8dDcvKNJCYmcuDAAWprG4lG+5Bl0GohOdk6vtV0Mv/WLrzwQpqbmxGEWmpr1xKN\njuLzKRgMYLOZycw8h8TEYrq61tLTs5aCggjLli06Ymufffv20d8PKSnLyMu7GkmK0dnZQ0XFq0Qi\nj/Pcc8+RnJxMXFwcF154IRdeOFY1+fjjj/PMM39iYOB9fL5copEhJDkeUdASjbjQaHwIwlg1t8Fg\nJxRiPIJ+osyePZt///d/p7W1FUVRyMvLGxdS99//HX7726dpa2umq6uZUGisYMPhgJISLffccxcF\nBQUAzJo1i1tvvQ5Z/gtbtvwXAwMGJGkmWu3pGAxJmM3dKEo1bW0+3nzzTW688caTsv7JMBqNlJeX\nU15ejiRJ9Pb20tnZSXt7O52dnXR3dTEcCIyFPg/9EwTQaMb+6fUkOxzk5OSQk5NDdnY22dnZJyVP\nUEVF5V+bKYk1RVEmfT0SiUz5Sbarq4vExESefvppPv74Y8xmM/fffz9GoxGHwzEe8hdFkdTUVJxO\npyrWVI6L3NzcCdvoF1xwAYFAAJ/PRzQaJS4uDpvNdlghwclCq9Vy3333UVy8gY0bN7JvXzVNTc0o\nShyQQV/fDgYHd5CSAnPmwNKl87n99tuPON+hh5tDuW8dHZ0MDnrw+xXq6wd59dVX+e53vzvhuKuv\nvpoXX3wRvaaaSOhZNMIACFFEYSuikog25sU/oqe9vZ1g8ACJiZz0rcRDouuTTJ8+nZ///GfjBRuH\n2k2VlZWxbNmyCQ+F5513HrFYjLq6ekZG0nA4rkMUTSQmxjNt2tkYDAFqa/+dTZu2cMUVV3wudkKi\nKJKVlUVWVtZ43q4kSQwPDxONRolEIsRiMURRRKfTodPpsFgsqtWRiorKcXFUsXYo2iUIAq+99tph\nT4CSJLF7926mT58+pRNJkkRXVxfFxcX8n//zf9i/fz/f/OY3+c1vfnMCy1dRmTpms/lzi2JotVrO\nP/98zjvvPILBIC6Xi127drFr1y58Pj96vY6ioiKWL19OSUnJUZP6y8rKSE1dzd69W9BodPT29uP3\nb8dgCCFJWQwMDEw4JhKJ8NKLL7I8JYXucDfBWB09AQ0jES+y8ndSjOVkWrLp8wxTW/06cZZqioos\nn1vB0LEWbESjUVJSijCbl5GVtRStVot+vIF6CibTDAYHm2lubqa0tPTULfwoiKJ4QtYaKioqKkfi\nqGLtUAN3RVH461//elgUQqfTkZmZyWOPPTalE6Wnp6PVarnssssAmDt3Ljab7aCRaR+SJCGKIpIk\n0d/fr+ZuqEwJWZYRBOGk2RqcbARBwGw2k5+fT35+PjfeeOMxrzkzM5NrrrkMWI3LtQ6r1YPD0YLR\naKO0NInTTjttwjG7du3C09bGdEni+YsuotnrZefAAO+0t+MMNhKI+RkJJxGK+onGBrGkabjppp99\naSsPJUlCksBgmDw6JYpGJAlisdgXsDoVFRWVU8tRxdr69esBuO2223j66adJOIFeeUlJSSxatIit\nW7eyZMkS2tracLvd5ObmUlRUxOrVq1mxYgWrV6+mqKhI3QJVOSKKorBz507WrVtHe3sHWq3I7Nmz\nueiii6Yc6f0iOZ6t18svv5w5c+aMW3fodDpCoRCZmZmTerJt2rQJnE7OmzYNnShSZLNRZLNxw/Tp\nvNvZyWZXD8PhXkCiyesmPWMBs2bNOglXd2rIycnBZoOmpj3k5Fx+WBVpJOLF661n1iyB7Ozso8zy\nxSPLMu+88w4HDhw4WBBz/SkpilBRUfnXYko5ay+88MKkeWvhcBhBED6xHXF0HnvsMR5++GGeeOIJ\ntFotv/zlL4mPj+enP/0pDz30EM8++yzx8fE88cQTx3YVKl8p3njjDVatWkd7OwwPg0YjUV+/n8rK\nA3z72/cyb968z5zjn5HJcvGOhMvlAq+XOYWFh71u1Gq5Zvp0VuTmMhKJoNdo+FNTE/v1+hPqAHCq\nKS0tJTfXRldXH/X1vycv72qMxmR8vg6am/+XjIwY8+bN/tJvQ+7YsYPXX19DczNkZ3cTHx+v9uFU\nUVH5TKYk1u6//34WLlzIXXfdddjrr732Gjt37uTZZ5+d0smysrLGt1Y/SX5+Pm+88caU5lD5atPY\n2Mjq1es4cEBLbu4NFBcvJhYbpbNzNfv3V/CHP7zME08UnbAFxz87hx6uxCNstWo1GpKNRgA0B8fI\n8qfNe788iKLIPffcg9//FI2Ne9i7dw+SpEOvjzJtGpSW2rn11lu/6GV+JoODg3g84PePPWhMlm+o\noqKi8mmmtB9TWVk5aeLxWWedxd69e0/6olRUjsSWLVvo6YH09AtIT1+GRqNDr48nP/8mBCGX7u4g\nlZWVX/Qyv3DsdjvExdHg8Rx1XEyWafZ6wWz+0kelZsyYwY9+9ENuuukMli7VsXhxlLPPNnPHHefx\nwx/+8P+xd59xUR3tw8d/S49iAUTFEjEYgYggir2DUUSa3ZjYYqLRGGsi2HsUa6xRExXNrWgUFEFN\n7kg0xr8FscUCxK5EAgiKCEjbfV7wuLco4KI04fq+Ys+cM3Od3cPu9Zk5ZwYjI6OSDvGVmjdvjoWF\nAdbW0KCBtqwAI4TQiEY9a0+fPs11Nm0tLa03Xo9PiIKIjY3lyROoX79Rju0KhQJjYxuePLlNbGxs\nCUVXerRt25bd588T8s8/2Bob5/kwQ1hcHEkVKlC7QYNSf78XZD+oNGzYMIYMGUJ6ejr6+vql9uGS\n3JiZmTF37myuXbtGvXr1CnWqFCFE2aVRz5qlpSUHDhx4aXtQUFCu8ygJUVQqVqyIvj6kpES/VJac\nfB89vcJbI/Jt1rp1a/Tr1CEyK4s9t27les/p9cRE/G7eBHNzOnfu/FYlPVpaWhgYGLxVMT9jZGRE\nixYtJFETQmhMo561L7/8ktGjR3Pnzh1atWoFZN8o+8svv7BmzZoiDVCI57Vo0YLjxy8TGXmAKlUa\nUqFCDVQqFfHxF0hMPI+1tVauU1mUNxUrVuSzESP4/ulTDl+5wsWwMDqYmVGrQgVSMzM5FRvLlaQk\nVFZWNHdyyvWJUiGEEKWDRslax44d+f777/n+++9ZsGABkL0E1bp16+jYsWORBijE85o1a0bTpkdJ\nTb3JhQuzqFjRgszMFJTK+9jYQPfu3UrtXGHFzdbWlrGTJrFt2zbibt/GPyYGHj3KXvrI1BQdW1sc\nu3ShZ8+eb2UPlRBClBcaJWuQvch0XgtNC1FcdHR0GDt2LNWr7+TUqTM8fHgdbW2oWbMizs7dNJ4R\nv7ywtrZmwYIFXLp0ibNnz5KUlISuri4WFha0bdtWhoyFEOItoHGylpaWxpEjR7h37x79+/encuXK\n3L17l8qVK0tPhihW77zzDsOGDaNPnz7cu3cPHR2dHAuFi5y0tLSws7PDzs6upEMRQgjxGjRK1u7c\nucOwYcPUC2E7OztTuXJl/Pz8ePz4sXpoVIjiVKlSJT744IOSDkMIIYQoUho9Dfrtt9/Stm1bTpw4\nkWOyUUdHR06fPl1kwQkhhBBClHca9aydP3+eXbt2vTTXmpmZmcxpJYQQQghRhDReUTozM/OlbdHR\n0VSqVKlQAxJCCCGEEP+jUbLWtm1btmzZkmPbkydPWLVqlUzdIYQQQghRhDRK1ry9vTl79izdunUj\nPT2dCRMm4OjoyIMHD/j666+LOkYhhBBCiHJLo3vWatSoQWBgIMHBwVy9ehWlUkn//v1xc3PDwMCg\nqGMUQgghhCi3NJ5nzcDAgD59+hRlLEIIIYQQ4gUaJ2tXrlxh69atXL9+HQALCwuGDh1Ko0aNiiw4\nIYQQQojyTqN71vbv30+fPn2Ii4ujY8eOdOzYkfj4ePr27UtgYGBRxyiEEEIIUW5p1LP23XffMW7c\nOL744osc2zds2MDKlSvx8PAokuCEEEIIIco7jXrWEhIS6N69+0vbnZ2diY+PL/SghBBCCCFENo2S\ntZYtWxIaGvrS9tDQUJo3b17oQQkhhBBCiGwaDYN26NCBZcuWcenSJZo0aQLAhQsX+O233xgzZgz/\n/e9/1ft27dq1aCIVQgghhCiHFCqVSvWqnaysrDSrTKEgPDz8jYMqiKioKJycnAgJCaFOnTrF2rYQ\nQgghREG8Tt6iUc9aRETEGwUmhBBCCCFej0b3rOW2iPsziYmJhRaMEIUhMzOTq1evcvbsWRISEko6\nHCGEEOKNaJSs9evXj9u3b7+0/eTJk7i7uxd2TEK8tpSUFBYvXsy8eSv59tuNTJ06g3PnzpV0WEII\nIcRr0yhZMzc3p2fPnuzatQuAjIwMFi1axOeff06vXr2KNEAhCmLv3r2cPHmHq1er8M8/73P2bCab\nNm0hOTm5pEMTQgghXotG96wtX76cffv2MW/ePI4cOcK///7L48eP8fX1xcHBoahjFEJjt2/fJiYG\nrKw+pUoVS86enUNCQjT//vsvFhYWJR1euaVSqdi7dy8nTpzA0NCQAQMGaPzgkhBClHcarw3q6enJ\ntWvX2LRpEzo6OpKoiVKpcuXKVKgA0dHHSE2NIyMjDn19qFSpUkmHVq6dOHGC3bt/JTwcKlZMIj7+\nexYvXsQ777xT0qEJIUSpp/EKBl988QW7d+9m0aJFuLu7M3z4cLZu3VrU8QlRIC4uLlhZ6aCnd5aH\nD/+DtXUmHTu2onr16iUdWrl29+5d4uKgUiV7Hj82ICHhKbGxsSUdlhBCvBU06llzd3fH3Nycffv2\nUatWLTw9PenUqRMzZszg2LFjbNq0qajjFEIjFhYWTJkymd9//53U1FQsLS3p3LlzSYdV7llYWFCz\n5lEiI89jbAzVq1ekZs2aJR2WEEK8FTRK1gYOHMgXX3yBltb/OuK6du2KnZ0dU6ZM0bgxR0dH9PT0\n0NfXB+Drr7+mffv2XLhwgZkzZ5KWlkbt2rVZsmQJJiYmBTwVIbLVq1ePYcOGlXQY4jnNmzdn0KCH\n6nvW+vbtq/4eEEIIkT+NVjAoLI6Ojqxfv56GDRuqtymVSrp168bChQtxcHBg3bp13Lt3j4ULF2pU\np6xgIIQQQoi3xevkLRrdswYQGRnJ3Llz+eyzz9T3mhw+fJirV6++XrT/3+XLl9HX11c/rDBgwAB+\n+eWXN6pTCCGEEKKs0ChZO378OH369CEmJoZTp06RlpYGZN80vGbNmgI1+PXXX+Pm5sbs2bN5/Pgx\n0dHR1KpVS11ubGyMUqnk0aNHBapXCCGEEKIs0ihZW7lyJd7e3qxduxZdXV319hYtWvDXX39p3Nj2\n7dvZv38//v7+qFQq5s6dW/CIhRBCCCHKEY2StWvXrtGxY8eXtlepUqVAa4OamZkBoKenx8CBAzl3\n7hxmZmbcv39fvU9CQgJaWlpUrVpV43qFEEIIIcoqjZK1KlWqEBMT89L2q1evavz4fUpKCklJSUD2\nbOYHDx7E2toaGxsbnj59SlhYGAA7d+7E2dlZ0/iFEEIIIco0jabucHV1ZcmSJXz33XcoFAoyMzMJ\nDQ3Fx8dH47VB4+Pj+eqrr8jKykKpVGJhYcGsWbPQ0tJi8eLFzJo1K8fUHUIIIYQQQsOpOzIyMvD2\n9ubgwYOoVCq0tLRQqVS4urqyaNEitLW1iyPWXMnUHUIIIYR4W7xO3qJRz5quri7Lli1j/PjxXLly\nBaVSyQcffIC5ufmbxCuEEEIIIV5B44XcAerWrUvdunWLKhYhhBBCCPECjSfFFUIIIYQQxU+SNSGE\nEEKIUkySNSGEEEKIUkySNSGEEEKIUkzjZO3Bgwds2rSJWbNmkZCQAMDZs2e5d+9ekQUnhBBCCFHe\naZSsXb58GWdnZ4KCgvD39yc5ORmAEydO8N133xVpgEIIIYQQ5ZlGyZqPjw+DBw9m3759ORZyb9eu\nHefOnSuy4IQQQgghyjuNkrUrV67Qs2fPl7abmpry4MGDQg9KCCGEEEJk0yhZMzAwIDEx8aXtN2/e\nxMTEpNCDEkIIIYQQ2TRK1pycnFizZg3p6enqbVFRUSxdupSuXbsWWXBCCCGEEOWdRsmal5cXiYmJ\ntGrViqdPnzJw4EC6du1K5cqVGT9+fFHHKIQQQghRbmm0NqihoSF+fn6cPHmSq1evolQqadSoEW3a\ntCnq+IQQQgghyrU8kzVra2uOHz+OiYkJU6ZMYdq0abRu3ZrWrVsXZ3xCCCGEEOVansOgBgYGpKSk\nALBv374c96sJIYQQQojikWfPmr29PaNHj8bGxgaVSsX8+fPR19fPdd+FCxcWWYBCCCGEEOVZnsna\n4sWL2bRpE3fv3kWhUPDo0SP09PSKMzYhhBBCiHIvz2StWrVqeHl5AeDo6MiyZcswMjIqtsCEEEII\nIYSGT4P+/vvvRR2HEEIIIYTIRZ7J2pYtWxg4cCD6+vps2bIl30qGDRtW6IEJIYQQQoh8krWffvoJ\nT09P9PX1+emnn/KsQKFQSLImhBBCCFFE8kzWnh/6lGFQIYQQQoiSodFyU3n5559/GDduXGHFIoQQ\nQgghXqDRAwZ5SUpK4r///W9hxSKEEOItlZGRQVRUFE+fPi3pUIQoFQwMDKhTpw66urpvXNcbJWtC\nCCEEQFRUFJUqVcLc3ByFQlHS4QhRolQqFfHx8URFRVG/fv03ru+NhkGFEEIIgKdPn2JiYiKJmhBk\nP3xpYmJSaD3NkqwJIYQoFJKoCfE/hfn/kO8w6BdffJHvwcnJyYUWiBBCiLJh5MiRRVr/hg0birR+\nIUqbfJO1Vy0vZWRkRJ06dQrc6Jo1a1i9ejVBQUE0bNiQCxcuMHPmTNLS0qhduzZLlizBxMSkwPUK\nIYQoLY4VUb0dNN4zMTGR9u3b069fP6ZPn15E8WS7dOkSvr6+LFu2rEjbEeVTvsnawoULC73BK1eu\ncOHCBWrXrg2AUqnkm2++YeHChTg4OLBu3TqWLl1aJG0LIYQoPhs2aJ5YaWLkyIIlgMHBwdjZ2XHg\nwAEmT56Mnp5eocbzTGZmJo0bN5ZETRSZYr1nLT09nblz5zJ79mz1tsuXL6Ovr4+DgwMAAwYM4Jdf\nfinOsIQQQpRB/v7+jB49GktLS0JCQgBYvXo1EyZM4PPPP+fDDz9k/PjxXL16lcGDB9OlSxd8fHzU\nx8fGxjJ27Fj69OmDm5sb69evV5c5OjqydOlS+vTpw8yZMzl9+jS9evVSlx85coRevXrh7u6Op6cn\nERERAEyaNIlevXrh5ubGl19+SWJiYjG9G+JtVqxTd6xcuRJ3d/ccQ6fR0dHUqlVL/drY2BilUsmj\nR4+oWrVqcYYnhBCijIiIiODRo0e0atWKuLg4/P396d69O5A9wuPv70+FChXo2bMny5Yt48cffyQz\nMxMnJyf69++Pubk5Xl5ejB49mubNm5Oens7QoUNp3Lgxbdu2BeDJkyfs2bMHgNOnT6vbvnXrFtOn\nT2f79u2Ym5uTnp5Oeno6ANOmTcPY2BiAFStW8MMPP/D1118X51sj3kLFlqydP3+ey5cvy0UphBCi\nyO3ZswcPDw8UCgVdu3Zl/vz5xMTEANCuXTsqVaoEgKWlJVZWVujp6aGnp0f9+vW5e/cu1atXJzQ0\nlISEBHWdycnJ3LhxQ52seXp65tr2iRMn6NChA+bm5gDqugECAwMJCgoiIyODlJQU9T5C5KfYkrUz\nZ85w48YNnJycAPj3338ZPnw4gwYN4v79++r9EhIS0NLSkl41IYQQryU9PZ3g4GD09PQIDAwEsldY\nCAgIAEBfX1+9r7a29kuvs7KyUCqVKBQK9uzZk+cM9BUqVChQXGFhYfj5+bFz506MjY0JCgri559/\nLujpiXKo2JK1ESNGMGLECPVrR0dH1q9fT4MGDfj5558JCwvDwcGBnTt34uzsXFxhCSGEKCIFfSCg\nsISEhFC/fn38/PzU286fP4+Xlxdubm4a1WFoaEizZs3YuHEjX375JZB9246Ojg6mpqb5Htu2bVvW\nrVvH7du3cwyDPn78GENDQ6pWrUp6ejr+/v6vf5KiXCnx5aa0tLRYvHgxs2bNyjF1hxBCiLdZ4T4J\nWhD+/v4vJWX29vYolUpCQ0OxsbHRqJ5nMxM8q6tixYosWLDglcmaubk58+bNY8KECWRlZaGtrc2i\nRYto3749+/fvp1u3bhgZGeHg4MClS5de7yRFuaJQqVSqkg7iTURFReHk5ERISMhrzfkmhBDizYWH\nh2NtbV3SYQhRquT2f/E6eYssNyWEEEIIUYpJsiaEEEIIUYpJsiaEEEIIUYpJsiaEEEIIUYpJsiaE\nEEIIUYqV+NQdQgghypaRI0cWaf0bNmwo0vqFKG0kWRNCCFH4jhXRhLgdSm7+NiFKiiRrQgghisSG\nQk6sRhYgATx06BAbNmxApVKRlpZGo0aNWLZs2Wu3HR4ezq1bt3BxcVFvs7S05Ny5c1SsWFGjOpYs\nWcLWrVv5448/MDExyXffS5cu4evr+0Yxnz59mhEjRuRYf9TS0pLFixe/Vn2+vr64ubnlG3tiYiLt\n27enX79+TJ8+/ZV1Tps2jZ49e+Lg4PBaMQHqZSsNDQ1JS0vjo48+YsiQIa9VV0hICGFhYXh5eQGw\nYsUKfv31V4yNjZkyZcobfyavS5I1IYQQZUpsbCxz5sxh7969mJmZoVKpCA8Pf6M6w8PDOXr0aI5k\nrSCysrIIDAykadOmBAYG8umnn+a7f+PGjQslKbCwsFCvifqmtm3bRps2bfJN1oKDg7Gzs+PAgQNM\nnjxZvYB9XhYsWFAosU2fPp3OnTsTHR2Nq6srLVu2xMrKqsD1ODk5qdcwB9iyZQtHjx7F2NgYoEQS\nNZAHDIQQQpQxDx48QEdHh6pVqwKgUCj44IMP1OXHjh3D09MTNzc3hgwZwp07dwAICAhg7Nix6v2e\nvX748CGrVq3ixIkTeHh4MH/+fPU+P/30E71798bJyYlff/01z5j++OMP3n33XcaOHZsjeUpNTWXs\n2LG4uLjg7u7OuHHjgOxesV69egGQmZnJ8OHD6dWrFz169GDKlCmkp6e/0XsUGRnJwIED6dmzJy4u\nLvj6+qrLdu3aRffu3fHw8MDNzY0bN27w/fffExsby9ixY/Hw8OD69eu51uvv78/o0aOxtLQkJCRE\nvf3w4cO4ubnh4eGBq6srp0+fBrJ7xY4cOQJAUFAQffv2xdPTE09PT06ePFng8zIzM6N+/frcunWL\nuLg4Bg0apH7fnu9RTE9Px8fHB1dXV9zd3dXrvz5/DQwcOJC0tDSGDBmCj49Pjs8E4MiRI/Tq1Qt3\nd3c8PT2JiIgocLyakp41IYQQZYqVlRW2trZ06tSJli1b0rRpUzw8PDAyMiI+Pp7Jkyfzn//8hwYN\nGrB7926+/vprdu/enWd9RkZGjB07lqNHj7Jq1aocZYaGhvj7+3P27FnGjx9Pt27dcq3D39+fXr16\n4eDgQEZGBhcvXsTOzo7jx4+TnJzMwYMHgexhxBdpa2uzdOlSjIyMUKlUeHl54e/vz0cfffTK9+LG\njRt4eHioX3/44YeMGTOG2rVr4+vri56eHsnJyfTt25f27dtjYWHB4sWLOXToENWrVyc9PZ2srCxG\njRrF7t27WbVqFQ0bNsy1rYiICB49ekSrVq2Ii4vD39+f7t27A7Bq1Srmzp2Lvb09WVlZpKamvnR8\nu3btcHV1RaFQcPPmTYYOHcqxAt77eP36dW7evImlpSWVK1dm/fr1VKxYkYyMDIYPH86xY8foVBBJ\n4QAAIABJREFU0KEDGzdu5N69ewQEBKCnp0dCQsJLde3YsQNLS0t27txJxYoV1QkmwK1bt5g+fTrb\nt2/H3Nyc9PT0N06g8yPJmhBCiDJFS0uLdevW8ffff3PmzBkOHz7Mpk2bCAoK4uLFi1hZWdGgQQMA\nevfuzZw5c3jy5MlrtfVsWLRJkybExsaSlpaGvr5+jn3i4+MJDQ3Fx8cHAE9PT/z9/bGzs8PKyoob\nN24wZ84cWrRoQadOnV5qQ6lUsnnzZo4dO4ZSqSQxMREDAwON4strGPTp06fMnj2byMhIFAoFsbGx\nREREYGFhQatWrfD29qZz58506tSJunXratTWnj178PDwQKFQ0LVrV+bPn09MTAw1atSgVatWLFy4\nkK5du9KhQ4dcE7579+4xadIkYmJi0NHR4cGDB8TFxWFqavrKtufPn893332Hvr4+c+fO5b333iMl\nJYXFixdz/vx5VCoVDx48ICIigg4dOnDkyBG8vb3Vw7TPhjk1deLECTp06KC+H1BPT++VQ75vQpI1\nIYQQZVLDhg1p2LAhH3/8MS4uLoSGhqKjk/fPnra2NkqlUv06LS3tlW08S8y0tbWB7CHLF5O1wMBA\nMjMzcXd3V++TmprK1KlTqVu3LsHBwZw6dYpjx46xYsUKgoKCchwfFBTE2bNn2b59O4aGhqxfv57b\nt29r9B7kZfny5ZiamrJo0SJ0dHT49NNP1ee7Zs0aLl26xKlTpxg8eDCzZ8+mY8eO+daXnp5OcHAw\nenp6BAYGApCRkUFAQACjRo1i6tSpREZGcurUKcaNG8ewYcPo169fjjomTpyIt7c3Xbp0QalUYmdn\np9FnAP+7Z+15W7Zs4fHjx+zevRt9fX1mzJihcX2ljSRrQgghikRBnt4sTDExMdy/fx97e3sA/v33\nXxISEqhTpw41a9Zk6tSp3LhxAwsLC/bu3csHH3yAoaEh9erVIzIyUj2c9euvv1K5cmUge7gzKSnp\nteIJCAhg7dq1tGnTRr1t+PDh/PLLL7Rq1YoqVarQpUsX2rZtS/v27Xn06FGO45OSkjAyMlLHEBwc\njI2NjfpchwwZwi+//FKgmJKSkrC0tERHR4e///6bsLAwXF1dyczM5P79+9ja2mJra8vdu3cJDw+n\nY8eOVKxYMc/3ICQkhPr16+Pn56fedv78eby8vBg1apR6aNLS0pKUlBQuXbr0UrKWlJREnTp1gOxh\n4+eHFZctW0aNGjX45JNPCnSOpqam6OvrExMTQ0hIiHrouHPnzmzduhU7Ozv1MGhBetfatm3LunXr\nuH37do5hUENDQ43rKAhJ1oQQQhS+EpwPLTMzk9WrV/PPP/9gYGCAUqlk/Pjx6ocMFi9ezNdff01m\nZibGxsYsWbIEyB7KbN26NT169KB69epYWVkRFxcHQOvWrdm8eTPu7u60aNFCo2kpAC5evKi+j+t5\nbm5u+Pv7Y2RkpH7CUKlUMmLECGrUqJGj58zT05OQkBCcnZ0xMTGhWbNm6h6iZ0OGeXnxnrXq1avz\nww8/MGrUKCZPnsyePXuoX78+zZs3V8fg7e1NUlISCoUCMzMzJk2aBMDgwYOZOnUqBgYGLFu2TD2U\nDNnJlZubW4627e3tUSqVhIaGsnXrVu7cuYO2tjaVK1fO9SnQKVOmMHr0aKpUqUL79u3VD4hA9gMR\njRo1yve9ftGgQYMYN24crq6u1KhRg9atW6vLRowYwbJly/D09ERXV5d69eq9dD9ifszNzZk3bx4T\nJkwgKysLbW1tFi1ahKWlZYFi1JRCpVKpiqTmYhIVFYWTkxMhISHqjFwIIUTxCg8Px9rauqTDKHe2\nbNmCsbFxjoSsrFEqlfTv359du3ahpfV2TWKR2//F6+Qt0rMmhBBCvKWGDRtW0iEUOS0trXyf1i0P\n3q4UVQghhBCinJFkTQghhBCiFJNkTQghhBCiFJNkTQghhBCiFJMHDIQQQhSqkSNHFmn9GzZsKNL6\nhShtJFkTQghR6IpqPlxNp287dOgQGzZsQKVSkZaWRqNGjdTzmeUlKiqK3r1751gDMj/bt29n586d\nKBQK0tPT6dy5M15eXvkeExAQkOsaoyWtb9++pKenq1cfeGbFihX8+uuvGBsbs2PHjpeOW7lyJe+/\n/7562S1RNCRZE0IIUSQ6dCjcHrBjxzTrsYuNjWXOnDns3bsXMzMzVCoV4eHhhRrLX3/9xdatW9mz\nZw+VK1cmKyuLa9euFWobecnMzMx3ItyCunbtGg8ePEBXV5fLly+rV0eA7Hncjh49muvs/llZWYwb\nN67Q4hB5k2RNCCFEmfLgwQN0dHTUM+ArFAr16gUv9p7l1pu2aNEi/u///g+AWbNm4eDg8FIbMTEx\nGBoaUqFCBSB7bVArKysgO5kaOXIkDx8+JC0tDVtbW+bMmaNe6PvJkyeMHz+ea9euUalSJVavXo2p\nqSmRkZHMmTOH1NRU0tLS6NevH0OHDgXA29sbbW1tbt26RXJyMoGBgUyaNIlbt26RkZHBu+++y7ff\nfkuVKlU4ffo03377LXZ2dpw/fx6FQsGKFSuwsLDI9f3y9/fHw8MDPT09/P391cnawIEDSUtLY8iQ\nIbRr145OnToxf/58bGxsuHr1KuPHj+fXX3/FxsaGTz75hPT0dFasWMGff/6JlpYWdevWZe3atfme\nl9CMPGAghBCiTLGyssLW1pZOnToxduxYfH19efjwoUbHPnr0CCsrK4KCgpg+fToTJ07MsUblM23b\ntkVHR4fOnTszadIkdu3aRWpqKpCduC1dupSAgACCg4PJysrC399ffeylS5fw8vLiwIEDNGjQgP/8\n5z8A1K5dG19fX/bu3cvu3bv5+eefuXHjhvq48PBwfvzxR/VQ5bRp0wgICCAoKIgGDRrwww8/qPe9\nfv06AwYMICgoiO7du7Nu3bpczzcjI4OgoCB69epFz549OXjwoHopq2fDnjt37lQP716/fp1+/foR\nGBj40sLpGzdu5N69ewQEBLB//37mzZun0XmJV5OeNSGEEGWKlpYW69at4++//+bMmTMcPnyYTZs2\nERQU9MpjdXV1cXd3B6Bly5YYGBhw8+ZNda/ZMxUqVGDXrl1cunSJs2fPsnv3brZv386ePXvQ1tZm\n8+bNHDt2DKVSSWJiIgYGBupjmzZtipmZGQB2dnacOHECgKdPnzJ79mwiIyNRKBTExsYSERGh7hFz\ndnZW9+QBBAYGEhQUREZGBikpKZibm6vL6tevr+5NbNKkCUeOHMn1fI8ePYq5uTnvvvsuAB988AG/\n/fYbrq6uue5fr1497O3tcy07cuQI3t7e6h7EZ0Onrzov8WqSrAkhhCiTGjZsSMOGDfn4449xcXEh\nNDQUW1tbnl8S+1kv0qt8//33/PLLL0D2guOtWrVCoVBga2uLra0tH3/8MW3atOHatWtcu3aNs2fP\nsn37dgwNDVm/fn2Ohdn19fXVf2tra5OVlQXA8uXLMTU1ZdGiRejo6PDpp5/miO/5RC0sLAw/Pz92\n7tyJsbExQUFB/Pzzz+ryZwkTZCevmZmZuZ6Xv78/169fx9HREYCUlBT8/f3zTNaej0FTrzov8WqS\nrAkhhCgSmj4QUNhiYmK4f/++ugfo33//JSEhgTp16lCtWjUyMjK4c+cO9erVIzg4OMexz4YFPTw8\nCAsL4+nTp7z33ntYWVkxatQo9X43btwgKyuLhg0bAqjvHatZsybnzp3DyMgIQ0NDkpKSCA4OznHT\nfl6SkpKwtLRER0eHv//+m7CwsDyTpsePH2NoaEjVqlVJT0/PMcyqqbi4OEJDQzl27BiGhoZAdvLa\nrl077t+/T61atQpUX+fOndm6dSt2dnbo6emRkJCAsbFxgc5L5E6SNSGEEIVO0yk2ikJmZiarV6/m\nn3/+wcDAAKVSyfjx49XDgtOmTWPYsGEYGxvTqVOnHMdWrVqViIgIfvzxRyC7V+j5Xqpnnj59yrff\nfkt8fDz6+vpoa2uzZMkSTExM8PT0JCQkBGdnZ0xMTGjWrJlGPUmjRo1i8uTJ7Nmzh/r169O8efM8\n923fvj379++nW7duGBkZ4eDgwKVLlwrwLsHevXvp0KGDOlGD7F6/Ll26EBAQwJgxYwpU34gRI1i2\nbBmenp7o6upSr149Vq1aVaDzErlTqJ7vDy5io0ePJioqCi0tLSpUqMCMGTOwtrbm1q1beHt78+jR\nI6pWrYqPj0+Osff8REVF4eTkREhICHXq1CnaExBCCJGr8PBwrK2tSzoMIUqV3P4vXidvKdaeNR8f\nHypVqgTA4cOHmTp1Knv37mXWrFkMHDgQDw8PAgMDmTlzJtu2bSvO0IQQQgghSqVinbrjWaIG2fPM\nKBQK4uPjuXr1qnr82tXVlatXr5KQkFCcoQkhhBBClErFfs/atGnT+L//+z9UKhU//vgj0dHR1KhR\nA21tbSD7yZjq1asTHR2d64zJQgghhBDlSbFPirtgwQKOHj3KhAkTWLx4cXE3L4QQQgjxVimxFQw8\nPT05ffo0NWvWJCYmRj3PTFZWFrGxseoJA4UQQgghyrNiGwZNTk7m8ePH6iTs999/p0qVKpiYmGBt\nbU1wcDAeHh4EBwdjbW0tQ6BCCPGWGjmyaOdX27ChcBeIF6K0K7ZkLTU1lXHjxpGamoqWlhZVqlRh\n/fr1KBQKZs+ejbe3N+vWraNy5cr4+PgUV1hCCCGKQuyxoqm3eglO4CZECSm2ZK1atWo5lsJ4noWF\nBbt37y6uUIQQQhSDDVMKN7EauVDzBNDR0RE9Pb0cSzutXbu21M/HqVKp2LZtm/r3UldXFxsbGyZP\nnkzlypVfq87w8HBu3bqFi4vLax3v7e2NjY0Nn3zySa7liYmJtG/fnn79+jF9+vRX1jdt2jR69uyJ\ng4PDa8VTHskKBkIIIcqkVatWqZeDeh2ZmZno6BTvz+R3333HmTNn2Lp1K9WqVUOlUvHbb7+RmJj4\nRsna0aNH80zW3vQ8g4ODsbOz48CBA0yePDnXFR+et2DBgtduq7ySZE0IIUS5ERUVRe/evTl9+vRL\nr5/93atXL06dOkW/fv1wd3dn/vz56qWcPDw8+PzzzwEYNGgQVlZWnD9/nsTERLp3787EiRMBiI2N\nZf78+dy/f5+0tDR69OjBF198kW9sycnJbNmyhX379lGtWjUAFAoFXbt2Ve+zd+9eduzYQVZWFoaG\nhsyePZv33nuPgIAAgoODqVy5MteuXaNSpUqsXr0aHR0dVq1axZMnT/Dw8KB58+ZMnz4dS0tLxowZ\nw9GjR2nfvj3du3dnzpw5pKamkpaWRr9+/Rg6dKhG76m/vz/ffPMNGzZsICQkhO7duwPZk9+vXLkS\nLS0tsrKymDFjBi1btmTQoEF8+umndO7cmaCgILZt20ZGRgYAXl5etG7dWsNPs/yQZE0IIUSZNHbs\nWPUwqLa2NgEBAa885tGjRzRu3BgvLy8AlixZglKpJCgoiOTkZPr370/Dhg3p2LEjkL2g+86dO0lL\nS2PAgAHY29vTuXNnvLy8GD16NM2bNyc9PZ2hQ4fSuHFj2rZtm2fbN27cQE9Pj/feey/X8rCwMA4d\nOsT27dvR09Pjjz/+YOrUqezcuROAS5cusX//fszMzJg+fTr/+c9/mDBhAmPHjuXo0aOsWrUqR336\n+vrqBeCfPHmCr68venp6JCcn07dvX9q3b4+FhUW+71dERASPHj2iVatWxMXF4e/vr07WVq1axdy5\nc7G3tycrK4vU1NSXjm/Xrh2urq4oFApu3rzJ0KFDOXasiO53fItJsiaEEKJMep1hUH19fXWyAXDy\n5EmmTp2KQqHA0NCQHj16cPLkSXWy5unpiY6ODjo6Ori4uHDq1ClatmxJaGhojpV4kpOTuXHjRr7J\n2qv8/vvvRERE0LdvXyD7/rbHjx+ry5s2baqeccHOzo4TJ07kW1/Pnj3Vfz99+pTZs2cTGRmJQqEg\nNjaWiIiIVyZre/bswcPDQ90DOH/+fGJiYqhRowatWrVi4cKFdO3alQ4dOuT6Wdy7d49JkyYRExOD\njo4ODx48IC4uDlNTU43fl/JAkjUhhBDlho6ODiqVSv06LS0tR/k777yDQqF4ozaUSiUKhYI9e/ag\nq6ur8XEWFhakpaVx69Yt6tev/1K5SqWid+/ejBs3Ltfjn3+YQltbWz1/aV4qVKig/nv58uWYmpqy\naNEidHR0+PTTT196b16Unp5OcHAwenp6BAYGApCRkUFAQACjRo1i6tSpREZGcurUKcaNG8ewYcPo\n169fjjomTpyIt7c3Xbp0QalUYmdn98p2yyNJ1oQQQhSJgjy9WVyqVatGRkYGd+7coV69egQHB+e7\nf+vWrfH396dZs2YkJydz8OBBJk+erC7fv38/Li4upKenc+jQISZMmIChoSHNmjVj48aNfPnllwBE\nR0ejo6ODqakpy5Yto0aNGi89XVmxYkWGDh3KzJkz+e677zAxMUGlUhESEoKlpSWOjo54eXnRv39/\natasSVZWFuHh4djY2OR7DoaGhiQlJeW7T1JSEpaWlujo6PD3338TFhamXrM7LyEhIdSvXx8/Pz/1\ntvPnz+Pl5cWoUaO4efMmlpaWWFpakpKSwqVLl15K1pKSktRP6Pr7+5Oenp5vm+WVJGtCCCEKXymY\nD+35e9YA5s+fT+PGjZk2bRrDhg3D2NiYTp065VvH6NGjmTdvHm5ubgC4u7vTocP/zu29995jwIAB\n6gcMOnfuDMDSpUtZuHCh+riKFSuyYMECTE1NiYyMpFGjRrm2N3HiRHx9fRk0aBCQ3Zvm4OBAixYt\nqFu3LuPHj2fUqFFkZWWRkZGBs7PzK5O11q1bs3nzZtzd3WnRokWu02uMGjWKyZMns2fPHurXr0/z\n5s3zrROyk6tn5/eMvb09SqWS0NBQtm7dyp07d9DW1qZy5cq5PgU6ZcoURo8eTZUqVWjfvj1Vq1Z9\nZbvlkUL1fH/wWygqKgonJydCQkJK/fw5QghRVoWHh2NtbV3SYRSr559q1JRSqaR///7s2rULLa0S\nW/FRFJPc/i9eJ2+RnjUhhBCimGhpackk8KLAJFkTQgghXsNPP/1U0iGIckL6YIUQQgghSjFJ1oQQ\nQgghSjFJ1oQQQgghSjG5Z00IIUShGjlyZJHWv2HDhiKtX4jSRpI1IYQQhe7YnaKZELdDPc3mb3N0\ndCQ9PZ0//vgDbW1tAAICApgyZQozZszgk08+wc/Pj7S0tFwXLA8ICMh1Pc0Xy/LbLz+DBg3i/v37\nGBoaqrfNmjWLpk2bFqgeyJ4e4tatW7i4uGi0v6OjIxUqVGD//v3q6UMcHR1Zv359gZfnyq1tS0tL\nzp07R8WKFTWqY8mSJWzdupU//vgDExMT9fbDhw+zbNky9PX1Wb58+UtrpoaEhBAWFqZex7Usk2RN\nCCFEkejwZeFOjHtsbcESwOrVq3P8+HH1Op579+7NMRntRx99VKjxFdT06dMLNEdbXsLDwzl69KjG\nyRpASkoKgYGBOdYHLajMzMzXavt5WVlZBAYG0rRpUwIDA/n000/VZTt37mTs2LE51mp9vm0nJyec\nnJxeO/63iSRrQgghyqSePXsSEBBAx44duXfvHikpKTl6jlavXk1KSgpeXl6kp6czf/58Tp06hZGR\nUY6JTPMre9HevXvZsWMHWVlZGBoaMnv27Jd6hF7Fx8eH0NBQMjIyMDIy4ttvv6V27drEx8czadIk\n4uPjgeyVCUaNGsWqVat48uQJHh4eNG/ePNcVCl40ZswY1qxZQ48ePdDT08tRdufOHWbOnElCQgI6\nOjpMmDBBvWqDpaUlY8aM4ejRozRp0oSQkJBc2/7pp5/47bffePToEZMnT6Zbt265xvHHH3/w7rvv\nMnbsWGbPnq1O1r799lvOnj3LrVu32LFjBz/99FOOttu3b8+7776bo1dzz549bNu2DQBdXV02bNhA\n1apVGTlyJA8fPiQtLQ1bW1vmzJnz0jmXdpKsCSGEKJNatGjBjh07SExMZO/evXh6enLlypVc9921\naxdRUVEcOHCAzMxMPv74Y/Xs8vmVPS8sLIxDhw6xfft29PT0+OOPP5g6dSo7d+7Mtc358+fz3Xff\nqV9v3rwZExMTPv/8c/XQ3u7du1m6dCkrVqwgKCiId999F19fXwASExOpUqUKY8eOLfBQrI2NDY0a\nNcLPz48hQ4bkKPv666/p168fffv25fr163z88cccOnQIY2NjIHvBeH9/fwAaNWqUa9uGhob4+/tz\n9uxZxo8fn2ey5u/vT69evXBwcCAjI4OLFy9iZ2fH1KlTCQ8Pf2mFiOfbDggIUG8/ffo0GzZsYMeO\nHZiampKcnIyOjg7a2tosXboUIyMjVCoVXl5e+Pv7l3ivakFJsiaEEKJMUigUdO/enQMHDnDgwAF2\n7tyZZ7J2+vRpPD090dXVRVdXF3d3d86dO/fKsuf9/vvvRERE0LdvXyB7Xc/Hjx/nGV9ew6DHjh1j\nx44dpKSkkJmZqd5uZ2eHr68vPj4+tGjRgnbt2hXo/XjR+PHjGTx4MH369FFve/LkCeHh4fTu3RuA\nBg0aYG1tzYULF3B0dATQaOj02bBokyZNiI2NJS0tLcc6rQDx8fGEhobi4+MDgKenJ/7+/tjZ2eVZ\nb15tHz16FA8PD0xNTQHU98tlZWWxefNmjh07hlKpJDExEQMDg1fGX9pIsiaEEKLM6tmzJ3379qV5\n8+YYGRkVaVsqlYrevXszbty4167jn3/+YeHChezZs4e6dety7tw5vv76ayB7kfS9e/dy4sQJAgMD\n2bhxI35+fq/d1nvvvUfHjh3ZsmVLgY6rUKHCK/d5lpg9e7gjMzPzpWQtMDCQzMxM3N3d1fukpqYy\nderUPBMqTdp+XlBQEGfPnmX79u0YGhqyfv16bt++XaA6SgNJ1oQQQhSJgj4QUBTq1q3LhAkTsLW1\nzXe/Vq1aERgYiIuLC5mZmQQHB1OrVq1Xlj3P0dERLy8v+vfvT82aNcnKyiI8PBwbGxuN433y5Am6\nurqYmpqiVCpzDKHeu3ePmjVr0qNHDxwcHPjwww9RKpUYGhqSlJSUo57Jkyfz4Ycf8uGHH+bb3ldf\nfUWvXr3IysoCsocvra2t2bt3L7179+bGjRtERETQpEmTXI/PrW1NBQQEsHbtWtq0aaPeNnz4cH75\n5Rc8PT0LVFenTp2YPn06AwYMoFq1auph0KSkJIyMjNRxBgcHF+jzKC0kWRNCCFHoNJ1iozj079//\nlfv069ePyMhIXFxcMDIyonHjxuob+fMre17z5s0ZP348o0aNIisri4yMDJydnfNMDl68Z23s2LE4\nOTnh7Oysbqtjx46EhYUBEBoaiq+vL1paWiiVSubMmYOWlhatW7dm8+bNuLu706JFC6ZPn86VK1cY\nNGjQK8+7Zs2aeHh4sHnzZvW2pUuXMnPmTHx9fdHR0WHx4sXq+9VelFvbmrh48SKPHj2iVatWOba7\nubnh7+9f4GStZcuWjBgxgmHDhqFQKNDT02P9+vV4enoSEhKCs7MzJiYmNGvWjLS0tALVXRooVCqV\nqqSDeBNRUVE4OTkREhKS6w2fQgghil54eHi+T0mK4vPw4UMmTpxY4OFNUfhy+794nbxFlpsSQggh\nyhAjIyNJ1MoYSdaEEEIIIUoxSdaEEEIIIUoxSdaEEEIUirf8FmghClVh/j9IsiaEEOKNGRgYEB8f\nLwmbEGQnavHx8YU2Aa9M3SGEEOKN1alTh6ioKOLi4ko6FCFKBQMDg0KbpUKSNSGEEG9MV1eX+vXr\nl3QYQpRJxZasPXz4kMmTJ3P37l309PSoV68ec+fOxdjYmAsXLjBz5kzS0tKoXbs2S5YswcTEpLhC\nE0IIIYQotYrtnjWFQsFnn33Gr7/+SlBQEHXr1mXp0qUolUq++eYbZs6cya+//oqDgwNLly4trrCE\nEEIIIUq1YutZq1q1Ki1btlS/btKkCX5+fly+fBl9fX0cHBwAGDBgAE5OTixcuFCjep+tZ/bvv/8W\nftBCCCGEEIXoWb7yLH/RRIncs6ZUKvHz88PR0ZHo6OgcC+IaGxujVCp59OgRVatWfWVdz25m/fjj\nj4ssXiGEEEKIwhQXF0e9evU02rdEkrV58+ZRoUIFPvnkE3777bc3qsvGxobt27djamqKtrZ2IUUo\nhBBCCFH4srKyiIuLw8bGRuNjij1Z8/Hx4c6dO6xfvx4tLS3MzMy4f/++ujwhIQEtLS2NetUg+9HY\nZ0OoQgghhBClnaY9as8U66S4y5cv5/Lly6xduxY9PT0gu2fs6dOnhIWFAbBz506cnZ2LMywhhBBC\niFJLoSqm6aavXbuGq6sr5ubm6hl969Spw9q1azl37hyzZs3KMXVHtWrViiMsIYQQQohSrdiSNSGE\nEEIIUXCyNqgQQgghRCkmyZoQQgghRCkmyZoQQgghRCkmyZoQQgghRCkmyZoQQgghRClWqpO11atX\n53jt4+ODo6MjlpaW/P333znKbt26Rf/+/enWrRv9+/fn9u3bGpUJAQW71l60du1aunTpQpcuXVi7\ndm2hlImyr7C+314k16PIS0n8psr1WEhUpdC+fftUPXv2VLVp00bVs2dPVXBwsEqlUqnOnDmjun//\nvqpz586qyMjIHMcMGjRItW/fPvXxgwYN0qhMlG+vc609LzQ0VOXq6qpKTU1VpaamqlxdXVWhoaFv\nVCbKtsL+fnueXI8iNyX1myrXY+EpdT1rKSkpzJw5k5UrVzJgwAB++uknGjVqBICDgwNmZmYvHRMf\nH8/Vq1dxdXUFwNXVlatXr5KQkJBvmSjfXudae9HBgwfx9PTEwMAAAwMDPD09OXjw4BuVibKrsL/f\nXiTXo3hRSf6myvVYeEpdsqZQKNDS0uLBgwcAVKxYEXNz83yPiY6OpkaNGuqF3LW1talevTrR0dH5\nlony7XWutRdFR0dTq1Yt9WszMzP1tfW6ZaLsKuzvt9z2letRPK8kf1Pleiw8xb6Q+6vwlPC4AAAN\nL0lEQVS88847rF27llWrVnHlyhUiIyMZM2YMVlZWJR2aKGPkWhPFTa45UdzkmisbSl3PGkCbNm3Y\nsmULH330EV27duXzzz/Pd38zMzNiYmLIysoCICsri9jYWMzMzPItE6Kg19qLzMzMuH//vvp1dHS0\n+tp63TJRthXm91tu+8r1KF5UUr+pcj0WnlKXrCUnJ6ufLNHR0cHW1pbk5GSUSmWex5iYmGBtbU1w\ncDAAwcHBWFtbY2xsnG+ZKN9e51oDmDx5Mr/99hsAzs7O7Nu3j6dPn/L06VP27dtH9+7d36hMlF2F\n/f0Gcj2K/BX3b6pcj0Wj1C3knpiYyDfffMPjx4+Jjo6mUqVKjB49GhcXF+bPn89///tfHjx4gJGR\nEVWrVuXAgQMA3LhxA29vbx4/fkzlypXx8fHhvffee2WZKL9e91rr0aMHixYtonHjxkD24/D79u0D\nwNPTk6+++krdxuuWibKpKL7f5HoU+Snu31S5HotGqUvWnrd69epy/wGJ4qHptfbw4UMmTpzIli1b\niiEqUZYVxvebXI+iIIr6N1Wux6JTqpO106dP07Jly5IOQ5QDcq2J4ibXnChucs29vUp1siaEEEII\nUd6VugcMhBBCCCHE/0iyJoQQQghRikmyJoQQQghRikmyJoQQQghRikmyJoQQQghRikmyJoQQQghR\nikmyJoQQQghRikmyJoQQQghRikmyJoQoVaKiorC0tOTSpUuFXvfq1atxdXUt9HpLk9u3b9OmTRuS\nkpJeKvP29iYqKqoEooL09HQ6depUJJ+rEGWdJGtCvOW8vb2xtLTE0tKSRo0a4eTkhI+PDykpKSUd\n2msxMzPj+PHjWFtbA9lL5FhaWpKQkPDGdX/66af89NNPb1xPabZ8+XIGDhxIpUqVND4mICBAfQ1Z\nWlrSrl07xo0bx71799T7ODo6qsvt7OxwdXVl165dGtehp6fH8OHDWbp0aeGdrBDlhCRrQpQBbdq0\n4fjx4xw+fJjx48ezY8cOfHx8Xru+9PT0QoyuYLS1tTE1NUVHR6fQ665YsSJGRkaFXm9pER0dTUhI\nCL169cqxffv27bi6uhIcHEyfPn0YMGAAf/75Z4593nnnHY4fP86ff/7J0qVLiYiIYPTo0WRlZan3\n+fLLLzl+/Dj79+/HycmJmTNncvDgQY3rcHNz4+zZs1y7dq0I3wUhyh5J1oQoA/T09DA1NcXMzAw3\nNzfc3NwICQlRl1+/fp0RI0Zgb29P69atmThxInFxcepyb29vRo4cycaNG+nQoQMdO3bMs60LFy4w\nePBgmjRpQrNmzRg8eDAxMTEAHDt2jIEDB9K8eXNatGjB8OHDuXHjhvrYZ0OcQUFBfPTRRzRu3Bhn\nZ2eOHz/+0j6XLl0iKiqKwYMHA9C6dWssLS3x9vbWqK3cvDgM+uy8t27dSvv27WnevDlTpkwhNTVV\nvY9KpWLz5s107doVGxsbOnTowLJly9TlkZGRDB06FFtbW1q0aIG3t3eOIcjn39u2bdvSrFkzli5d\nilKpZPXq1bRu3Zq2bduycePGHLEmJSUxY8YMWrdujb29PZ988skrhxAPHjzI+++/T61atdTbTp48\nybx58+jXrx8dO3Zk4cKF9OvXj4yMjBzHKhQKTE1NqV69Oq1ateLLL7/k77//5s6dO+p9KlasiKmp\nKfXq1WPChAmYm5tz+PBhjeuoWrUqTZs2JTg4ON/zEELkJMmaEGWQgYGB+sc4NjaWjz/+mPfff589\ne/awZcsWUlJSGD16NEqlUn1MaGgokZGR/Pjjj/j6+uZab0REBIMHD6ZevXr4+fnx888/4+Liou45\nSU1NZciQIezevZtt27ZhaGjIF1988VJP3ZIlSxg0aBD79u2jbdu2jB49Wp3wPc/MzIzVq1cDcODA\nAY4fP860adMK1NarhIWFce3aNXx9fVmxYgW//fYb27ZtU5cvX76cdevWMWLECA4cOMDKlSupWbMm\nACkpKQwfPpwKFSqwe/du1qxZw/nz55k6dWqONs6cOUNUVBTbtm1jzpw5/Pjjj3z++eekp6ezY8cO\nxowZw7Jly7h8+TKQnSCOGDGCmJgYNmzYwL59+3BwcGDIkCHExsbmey42NjY5tl29epVatWoxePBg\nKlWqxPvvv0+vXr1wdHTM930xMDAAIDMzM8999PT08i3PrQ5bW1vOnDmTb9tCiJwKf5xBCFGi/vrr\nL4KCgmjdujUAfn5+WFlZ8c0336j38fHxoUWLFly+fBlbW1sA9PX1WbhwIXp6ennW/cMPP2Btbc28\nefPU2ywsLNR/d+vWLcf+CxcupFmzZvz11184ODiot3/00Ue4uLgAMG3aNI4fP86OHTuYMGFCjuO1\ntbWpUqUKAMbGxhgbGxe4rVcxNDRkzpw5aGtrY2FhgbOzMydPnmTkyJEkJyfj6+vL1KlT6dOnDwD1\n6tXD3t4egODgYFJTU1m8eDGGhoYAzJ07l8GDB3Pnzh3q1asHQKVKlZg1a5a6jc2bNxMXF8ekSZMA\nqF+/Pj/88AOnT5/GxsaGU6dOERERwcmTJ9UJz/jx4zly5AiBgYF8/vnnuZ7L/fv31ff6PdOkSROW\nLl3Kxo0befTokUbvyb///sumTZuoWbMm5ubmL5VnZmayf/9+/v77bz766KMC1VG9enX++ecfjeIQ\nQmSTZE2IMuDPP//E3t6ezMxMMjMzcXJyYsaMGQBcuXKFsLAwdYLxvLt376qTtffffz/fRA0gPDyc\nDz/8MM/yu3fvsnLlSi5evEhCQgIqlQqlUkl0dHSO/Zo0aaL+W0tLC1tb21cOYb5uW6/SoEEDtLW1\n1a+rV6/OxYsXAbhx4wbp6enqxPdFN27cwNLSUp2oAdjb26OlpcX169fVydqLbVSrVu2lBwBMTEyI\nj48Hsj+z1NTUl9pNS0vLcdP/i54+fYq+vn6Obc2aNWP16tVs2bKFixcv0rt3bzp06MCECRNyDJem\npKRgb2+PSqUiNTWVRo0asXr16hzXxIoVK1izZg3p6eno6uoyfPhwBgwYUKA6DAwMePr0aZ7nIIR4\nmSRrQpQBDg4OzJs3Dx0dHapXr46urq66TKlU0rFjR7y8vF46zsTERP13hQoV3jiOkSNHUrNmTebO\nnUuNGjXQ1tamR48eL90fVRgKq60XH2RQKBSoVKo3jk+hUOTbxvOf0YvtKpVKqlWrxvbt21+q9/nE\n8EVGRkYkJia+tL1Lly506dIFb29vOnTowI4dOxg+fDiHDh1S7/POO++wb98+tLS0MDExyfV6GDZs\nGH369MHAwIDq1avnOEdN63j06FGOHlIhxKtJsiZEGfDOO++oe3Fe1KhRIw4dOkStWrVeShAKytra\nmlOnTuVa9vDhQ27evMmsWbNo1aoVkN1DlNs9TRcvXlT3GqlUKv766y+cnZ1zrfdZzM/fX1eQtt7E\ne++9h56eHidPnsx1ONDCwgJ/f3+ePHmiTqLOnz+PUqnMMTxcUI0aNeLBgwdoaWlRt25djY/74IMP\nXtlDaWtri4mJCYMHD+bhw4fqp2MVCkWe19AzVatWzXcfTeq4du0aH3zwQb77CCFykgcMhCjjBg4c\nSFJSEhMmTODixYvcu3ePEydOMGPGDJ48eVKguj777DOuXr3KjBkziIiI4ObNm+zevZv79+9TpUoV\njIyM2L17N3fu3CE0NJRZs2blOgWHn58fv/zyCzdv3mTBggXcv38/z3ufateujUKh4OjRoyQkJJCc\nnFygtt6EoaEhgwcPZvny5fj7+3P37l3++usvduzYAWRPRWFgYICXlxeRkZGcOXOGmTNn0rVr11cm\nLflp06YNTZs2ZfTo0fzxxx/cu3eP8+fPs2rVKsLCwvI8rl27dly4cCFH0rpv3z52795NdHQ0KpWK\nBw8esHPnTmrVqlUi05icPXuW9u3bF3u7QrzNJFkTooyrUaMGfn5+aGlp8dlnn9GjRw/mzJmDnp7e\nK+9Re5G1tTVbtmzh5s2b9OvXj379+nHgwAF0dHTQ0tJixYoVREZG4urqyty5cxk3blyubUyaNAlf\nX188PDz4888/WbNmjfoJy9zi/+qrr/juu+9o06YN8+bNK1Bbb2rSpEl8/vnnrFu3DhcXF7766iv1\nk6vvvPMOmzZt4smTJ/Tt25fRo0djb2/Pt99++0ZtKhQKNm7cSMuWLZkxYwbdu3dn/Pjx3Lp1i//X\n3t3iOghEYRj+rmMFKBIkCQlrQLAFggaHIGg2wgLwKDxrYBM4FBmHuVUVTUvSv3uZNu9jJ5M58svJ\nmRnXdXf3xXEsx3EunkLxfV/jOCpNUw3DoKIotCyL2rZ9qcZnTNMkY8xuFxXAbT+/7xjOAIA7zPOs\nJEnU972iKDq6nK907lp2XXe11jSNqqqS53kHVCbVda0wDFWW5SHnA5+KmTUA+CJZlmldVxljHvpy\n6q9t26YgCJTn+dGlAB+HzhqAf0NnDQAeR1gDAACwGBcMAAAALEZYAwAAsBhhDQAAwGKENQAAAIsR\n1gAAACxGWAMAALDYCeVIv5PtS6TtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file