From 130c43006dbf85fa87341f491108b4d8ed1ecf2c Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Tue, 13 Nov 2018 16:50:16 -0500 Subject: [PATCH 01/12] Created using Colaboratory --- ...22_Choose_appropriate_visualizations.ipynb | 3945 ++++++++++++++--- 1 file changed, 3294 insertions(+), 651 deletions(-) diff --git a/module2-choose-appropriate-visualizations/LS_DS_122_Choose_appropriate_visualizations.ipynb b/module2-choose-appropriate-visualizations/LS_DS_122_Choose_appropriate_visualizations.ipynb index 964e477..fe02094 100644 --- a/module2-choose-appropriate-visualizations/LS_DS_122_Choose_appropriate_visualizations.ipynb +++ b/module2-choose-appropriate-visualizations/LS_DS_122_Choose_appropriate_visualizations.ipynb @@ -1,652 +1,3295 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_Lambda School Data Science_\n", - "# Choose appropriate visualizations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Upgrade Seaborn\n", - "\n", - "Make sure you have at least version 0.9.0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!pip install --upgrade seaborn" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import seaborn as sns\n", - "sns.__version__" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fix misleading visualizations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!wget https://raw.githubusercontent.com/LambdaSchool/DS-Sprint-02-Storytelling-With-Data/master/module2-choose-appropriate-visualizations/misleading.py\n", - " \n", - "import misleading" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix misleading plot #1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "misleading.plot1()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix misleading plot #2" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "misleading.plot2()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix misleading plot #3" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "misleading.plot3()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix misleading plot #4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_If you're on Jupyter (not Colab) then uncomment and run this cell below:_" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# import altair as alt\n", - "# alt.renderers.enable('notebook')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "misleading.plot4()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Links\n", - "- [How to Spot Visualization Lies](https://flowingdata.com/2017/02/09/how-to-spot-visualization-lies/)\n", - "- [Where to Start and End Your Y-Axis Scale](http://stephanieevergreen.com/y-axis/)\n", - "- [xkcd heatmap](https://xkcd.com/1138/)\n", - "- [Surprise Maps: Showing the Unexpected](https://medium.com/@uwdata/surprise-maps-showing-the-unexpected-e92b67398865)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Use Seaborn to visualize distributions and relationships with continuous and discrete variables\n", - "\n", - "#### Links\n", - "- [Seaborn tutorial](https://seaborn.pydata.org/tutorial.html)\n", - "- [Seaborn example gallery](https://seaborn.pydata.org/examples/index.html)\n", - "- [Chart Chooser](https://extremepresentation.typepad.com/files/choosing-a-good-chart-09.pdf)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Anscombe dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df = sns.load_dataset('anscombe')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the data's shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Group by](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.groupby.html) `'dataset'`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) the groups" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the [count](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.count.html), for each column in each group" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the [mean](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.mean.html) ..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the [standard deviation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.std.html) ..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the [correlation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html) ..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Use pandas to [plot](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html) the groups, as scatter plots" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Use Seaborn to make [relational plots](http://seaborn.pydata.org/generated/seaborn.relplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Use Seaborn to make [linear model plots](http://seaborn.pydata.org/generated/seaborn.lmplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Links\n", - "- [Seaborn examples: Anscombe's quartet](http://seaborn.pydata.org/examples/anscombes_quartet.html)\n", - "- [Wikipedia: Anscombe's quartet](https://en.wikipedia.org/wiki/Anscombe%27s_quartet)\n", - "- [The Datasaurus Dozen](https://www.autodeskresearch.com/publications/samestats)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Tips dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "tips = sns.load_dataset('tips')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the data's shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the first 5 rows" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Describe the data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make univariate [distribution plots](https://seaborn.pydata.org/generated/seaborn.distplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make bivariate [relational plots](https://seaborn.pydata.org/generated/seaborn.relplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make univariate [categorical plots](https://seaborn.pydata.org/generated/seaborn.catplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make bivariate [categorical plots](https://seaborn.pydata.org/generated/seaborn.catplot.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Flights" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "flights = sns.load_dataset('flights')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the data's shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### See the first 5 rows" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Describe the data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot year & passengers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot month & passengers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create a [pivot table](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot_table.html) of passengers by month and year" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot the pivot table as a [heat map](https://seaborn.pydata.org/generated/seaborn.heatmap.html)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "LS_DS_122_Choose_appropriate_visualizations.ipynb", + "version": "0.3.2", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "cells": [ + { + "metadata": { + "id": "cGJvcj1wCbf9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "_Lambda School Data Science_\n", + "# Choose appropriate visualizations" + ] + }, + { + "metadata": { + "id": "mwahqSwXCbgA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Upgrade Seaborn\n", + "\n", + "Make sure you have at least version 0.9.0" + ] + }, + { + "metadata": { + "id": "yhmjR501CbgA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 202 + }, + "outputId": "abd8d72e-674c-4159-9b08-e18f9d31a0d7" + }, + "cell_type": "code", + "source": [ + "!pip install --upgrade seaborn" + ], + "execution_count": 31, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already up-to-date: seaborn in /usr/local/lib/python3.6/dist-packages (0.9.0)\n", + "Requirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", + "Requirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", + "Requirement already satisfied, skipping upgrade: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.1.0)\n", + "Requirement already satisfied, skipping upgrade: matplotlib>=1.4.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (2.1.2)\n", + "Requirement already satisfied, skipping upgrade: python-dateutil>=2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2.5.3)\n", + "Requirement already satisfied, skipping upgrade: pytz>=2011k in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2018.7)\n", + "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n", + "Requirement already satisfied, skipping upgrade: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.3.0)\n", + "Requirement already satisfied, skipping upgrade: six>=1.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (1.11.0)\n", + "^C\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "C40u00OwCbgE", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "a1dc8818-c6fd-47b1-e374-0d17aeab56ed" + }, + "cell_type": "code", + "source": [ + "import seaborn as sns\n", + "sns.__version__" + ], + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'0.9.0'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 32 + } + ] + }, + { + "metadata": { + "id": "7iKLAmDrCbgH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Fix misleading visualizations" + ] + }, + { + "metadata": { + "id": "JaCa7gvlCbgH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "I5UYnCrLCbgL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 202 + }, + "outputId": "e4d40387-9212-4853-f2e9-239a6e611b5f" + }, + "cell_type": "code", + "source": [ + "!wget https://raw.githubusercontent.com/LambdaSchool/DS-Sprint-02-Storytelling-With-Data/master/module2-choose-appropriate-visualizations/misleading.py\n", + " \n", + "import misleading" + ], + "execution_count": 34, + "outputs": [ + { + "output_type": "stream", + "text": [ + "--2018-11-13 17:37:30-- https://raw.githubusercontent.com/LambdaSchool/DS-Sprint-02-Storytelling-With-Data/master/module2-choose-appropriate-visualizations/misleading.py\n", + "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n", + "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 1641 (1.6K) [text/plain]\n", + "Saving to: ‘misleading.py.1’\n", + "\n", + "\rmisleading.py.1 0%[ ] 0 --.-KB/s \rmisleading.py.1 100%[===================>] 1.60K --.-KB/s in 0s \n", + "\n", + "2018-11-13 17:37:30 (181 MB/s) - ‘misleading.py.1’ saved [1641/1641]\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "p42rv0WXGSyq", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 106 + }, + "outputId": "bff719ed-37aa-412a-a53f-7d91d8721080" + }, + "cell_type": "code", + "source": [ + "insurance" + ], + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Market Share %
State Farm18.07
GEICO12.79
\n", + "
" + ], + "text/plain": [ + " Market Share %\n", + "State Farm 18.07\n", + "GEICO 12.79" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 35 + } + ] + }, + { + "metadata": { + "id": "TWLBoC4ECbgO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Fix misleading plot #1" + ] + }, + { + "metadata": { + "id": "QQj7BhlZCbgP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + }, + "outputId": "77499cae-8298-48c4-d2f4-9e1175beec0d" + }, + "cell_type": "code", + "source": [ + "misleading.plot1();" + ], + "execution_count": 36, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEpCAYAAACDc9l6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFTlJREFUeJzt3X2UVfV97/H3F6WiiMWHqUXRQL2K\nRCNQMYT03lsfanxcmgtJjdGIJYHosk3sSmKVaOwVk4u9LruMaa26pJgbLzENRgnaXEyuYBKNiICI\nWkvMQjvXJCA+1IgECN/7x5yZDpMZzjyc4cz5zfu1Fmv2/u19Zn8WzPrM5nf23icyE0lS4xtS7wCS\npNqw0CWpEBa6JBXCQpekQljoklQIC12SClG10CPiiIh4NCKej4jnIuKzlfGDIuKRiFhf+Xpg/8eV\nJHUlql2HHhGjgFGZuSoiRgBPAx8GLgVez8x5EXE1cGBm/lV/B5Ykda7qGXpm/jwzV1WW3wZeAA4H\nzgfuqex2Dy0lL0mqk6pn6LvsHDEGeAw4HnglM0dWxgN4o3W9w2tmA7MBhg8ffuKxxx7b99SSNIg8\n/fTTr2VmU7X9ul3oEbE/sBz4cmbeHxFvti/wiHgjM3c7jz558uRcuXJlt44nSWoREU9n5uRq+3Xr\nKpeIGAosAu7NzPsrw7+szK+3zrNv7G1YSVLfdecqlwDuBl7IzFvabVoMzKgszwAerH08SVJ37d2N\nff4I+ATwbESsqYzNAeYB34qITwIvA3/aPxElSd1RtdAz80dAdLH5tNrGkdQb27dvp7m5ma1bt9Y7\nivpg2LBhjB49mqFDh/bq9d05Q5c0wDU3NzNixAjGjBlDyyypGk1msnnzZpqbmxk7dmyvvoe3/ksF\n2Lp1KwcffLBl3sAigoMPPrhP/8uy0KVCWOaNr6//hha6JBXCOXSpQGOufqim32/DvHOq7hMRXHTR\nRXzjG98AYMeOHYwaNYopU6awZMmSbh9r2bJl3Hzzzd1+zZo1a3j11Vc5++yzf2vbli1bmDVrFmvX\nriUzGTlyJN/73vd47bXXOPfcc1m3bl23c/XGiy++yMc//nG2b9/OHXfcwdSpU9mxYwdnnnkmixcv\nZr/99qvp8Sx0STUxfPhw1q1bx7vvvsu+++7LI488wuGHH96j77Fjx44eH3fNmjWsXLmy00K/9dZb\nOfTQQ3n22WeBloLt7RUkHXPuvXf1+rzjjju49dZbGTNmDJ/97GdZtGgRt99+OxdffHHNyxyccpFU\nQ2effTYPPdTyv4OFCxdy4YUXtm1bsWIFU6dOZdKkSXzwgx/kxRdfBGDBggWcd955nHrqqZx22q5X\nQj/11FNMmjSJl156iXfeeYeZM2fy/ve/n0mTJvHggw+ybds2vvSlL3HfffcxceJE7rvvvl1e//Of\n/3yXXyrjxo1jn332AeA3v/kNs2bN4rjjjuNDH/oQ7777LgB33XUXJ510EhMmTGD69Ols2bIFgEsv\nvZTLLruMKVOmcNVVV3Wap6OhQ4eyZcsWtmzZwtChQ3nzzTf57ne/yyWXXNLXv+pOWeiSauZjH/sY\n3/zmN9m6dStr165lypQpbduOPfZYfvjDH7J69WpuuOEG5syZ07Zt1apVfPvb32b58uVtY48//jiX\nXXYZDz74IEcddRRf/vKXOfXUU1mxYgWPPvooX/jCF9i+fTs33HADF1xwAWvWrOGCCy7YJc/MmTO5\n6aabmDp1Ktdeey3r169v27Z+/XquuOIKnnvuOUaOHMmiRYsAmDZtGk899RTPPPMM48eP5+677257\nTXNzM48//ji33HJLp3neeeedXY5/xRVX8JWvfIUZM2YwZ84c5s6dy5w5cxgypH+q1ykXSTVzwgkn\nsGHDBhYuXPhbUyBvvfUWM2bMYP369UQE27dvb9t2+umnc9BBB7Wtv/DCC8yePZulS5dy2GGHAbB0\n6VIWL17MzTffDLRcqvnKK6/sNs/EiRP52c9+xtKlS/n+97/PSSedxBNPPMG+++7L2LFjmThxIgAn\nnngiGzZsAGDdunVce+21vPnmm/zqV7/ijDPOaPt+H/3oR9lrr712m2f8+PFt+x955JEsW7YMgJ/+\n9Kc0Nzczfvx4PvGJT7Bt2zbmzp3LMccc0+2/32osdEk1dd555/H5z3+eZcuWsXnz5rbx6667jlNO\nOYXvfOc7bNiwgZNPPrlt2/Dhw3f5HqNGjWLr1q2sXr26rdAzk0WLFjFu3Lhd9n3yySd3m2f//fdn\n2rRpTJs2jSFDhvDwww8zffr0tqkXgL322qttyuXSSy/lgQceYMKECSxYsKCtkDvm7CpPV774xS9y\n44038tWvfpVPfepTjBkzhjlz5nDvvfd26/Xd4ZSLpJqaOXMm119/Pe973/t2GX/rrbfa5rMXLFiw\n2+8xcuRIHnroIa655pq2Qj3jjDO47bbbaH3k9+rVqwEYMWIEb7/9dqff58c//jFvvPEGANu2beP5\n55/nPe95z26P/fbbbzNq1Ci2b9++27LtKk9nli9fzmGHHcbRRx/Nli1bGDJkCEOGDGmbn68Vz9Cl\nAnXnMsP+Mnr0aD7zmc/81vhVV13FjBkzuPHGGznnnOr5Dj30UJYsWcJZZ53F/Pnzue6667jyyis5\n4YQT2LlzJ2PHjmXJkiWccsopzJs3j4kTJ3LNNdfsMo/+0ksvcfnll5OZ7Ny5k3POOYfp06fz8ssv\nd3ncuXPnMmXKFJqampgyZUqXvyy6ytNRZnLjjTe2vWE7e/ZsLrroInbs2MHtt99e9e+hJ3r0iUV9\n5QdcSP3jhRde2GXuVo2rs3/Lmn7AhSRp4LPQJakQFrpUiD05far+0dd/QwtdKsCwYcPYvHmzpd7A\nWp+HPmzYsF5/D69ykQowevRompub2bRpU72jqA9aP7Gotyx0qQBDhw7t9afcqBxOuUhSISx0SSqE\nhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQljo\nklQIC12SClG10CNifkRsjIh17cYmRsRPImJNRKyMiPf3b0xJUjXd+cSiBcDXgK+3G/sb4L9n5j9H\nxNmV9ZNrnq5Oxlz9UL0jFGXDvHPqHUEaFKqeoWfmY8DrHYeBAyrLvwu8WuNckqQe6u1nil4J/J+I\nuJmWXwof7GrHiJgNzAY48sgje3k4SVI1vX1T9HLgLzPzCOAvgbu72jEz78zMyZk5uampqZeHkyRV\n09tCnwHcX1n+J8A3RSWpznpb6K8Cf1xZPhVYX5s4kqTeqjqHHhELabmC5ZCIaAauB2YBt0bE3sBW\nKnPkkqT6qVromXlhF5tOrHEWSVIfeKeoJBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAl\nqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIK\nYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAW\nuiQVwkKXpEJULfSImB8RGyNiXYfxv4iIf4mI5yLib/ovoiSpO7pzhr4AOLP9QEScApwPTMjM44Cb\nax9NktQTVQs9Mx8DXu8wfDkwLzN/XdlnYz9kkyT1QG/n0I8B/ktEPBkRyyPipK52jIjZEbEyIlZu\n2rSpl4eTJFXT20LfGzgI+ADwBeBbERGd7ZiZd2bm5Myc3NTU1MvDSZKq6W2hNwP3Z4sVwE7gkNrF\nkiT1VG8L/QHgFICIOAb4HeC1WoWSJPXc3tV2iIiFwMnAIRHRDFwPzAfmVy5l3AbMyMzsz6CSpN2r\nWuiZeWEXmy6ucRZJUh94p6gkFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXC\nQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0\nSSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpek\nQljoklSIqoUeEfMjYmNErOtk2+ciIiPikP6JJ0nqru6coS8Azuw4GBFHAB8CXqlxJklSL1Qt9Mx8\nDHi9k01/C1wFZK1DSZJ6rldz6BFxPvD/MvOZbuw7OyJWRsTKTZs29eZwkqRu6HGhR8R+wBzgS93Z\nPzPvzMzJmTm5qampp4eTJHVTb87QjwLGAs9ExAZgNLAqIn6/lsEkST2zd09fkJnPAr/Xul4p9cmZ\n+VoNc0mSeqg7ly0uBJ4AxkVEc0R8sv9jSZJ6quoZemZeWGX7mJqlkST1mneKSlIhLHRJKoSFLkmF\nsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgL\nXZIKYaFLUiEsdEkqhIUuSYWw0CWpEFU/JFrSwDHm6ofqHaEoG+adU+8INeUZuiQVwkKXpEJY6JJU\nCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiGqFnpEzI+IjRGx\nrt3Y/4yIf4mItRHxnYgY2b8xJUnVdOcMfQFwZoexR4DjM/ME4F+Ba2qcS5LUQ1ULPTMfA17vMLY0\nM3dUVn8CjO6HbJKkHqjFHPpM4J+72hgRsyNiZUSs3LRpUw0OJ0nqTJ8KPSK+COwA7u1qn8y8MzMn\nZ+bkpqamvhxOkrQbvf4Iuoi4FDgXOC0zs2aJJEm90qtCj4gzgauAP87MLbWNJEnqje5ctrgQeAIY\nFxHNEfFJ4GvACOCRiFgTEf/QzzklSVVUPUPPzAs7Gb67H7JIkvrAO0UlqRAWuiQVwkKXpEJY6JJU\nCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw\n0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtd\nkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCVC30iJgfERsjYl27sYMi4pGIWF/5emD/xpQk\nVdOdM/QFwJkdxq4GfpCZRwM/qKxLkuqoaqFn5mPA6x2GzwfuqSzfA3y4xrkkST0UmVl9p4gxwJLM\nPL6y/mZmjqwsB/BG63onr50NzK6sjgNe7HtsVRwCvFbvEFIn/NmsrfdkZlO1nfbu61EyMyOiy98K\nmXkncGdfj6PfFhErM3NyvXNIHfmzWR+9vcrllxExCqDydWPtIkmSeqO3hb4YmFFZngE8WJs4kqTe\n6s5liwuBJ4BxEdEcEZ8E5gGnR8R64E8q69rznMrSQOXPZh10601RSdLA552iklQIC12SCmGhS1Ih\n+nwduvasynNzjqDdv11mrqpfIkkDhYXeQCJiLnAp8BLQ+m52AqfWK5MEEBFnAdcA760MPQfclJkP\n1y/V4GOhN5Y/BY7KzG31DiK1iohZwKeBq4CVleHJwLyIGF25W1x7gJctNpCIWARcnpnemasBIyKe\nB/5zZr7eYfxg4EeZOb4+yQYfz9Aby/8AVleeTf/r1sHMPK9+kSSiY5kDZObmlmf3aU+x0BvLPcBN\nwLPAzjpnkVr9e0RMyMxn2g9GxATg7TplGpQs9MayJTO/Wu8QUgefAxZHxD8CT1fGJtPynKeL65Zq\nEHIOvYFExC20TLUsZtcpFy9bVF1FxKHAFcBxlaHngb/LzF/UL9XgY6E3kIh4tJPhzEwvW1TdREQT\n0JSZz3cYfy+wKTM31SfZ4OOUS4OIiCHA7Zn5rXpnkTq4Dfj7TsYPBq4FPr5n4wxenqE3ED8FRgPR\n7n4uI2Jd60dXqv/5LJfG8v2I+HxEHBERB7X+qXcoDXojdrNt6B5LIadcGswFla9XtBtL4A/qkEVq\n9dOIOLvjbf6VxwH8rE6ZBiWnXCT1SUQcDTwEPM6uly1OBc7NzH+tV7bBxkJvMBFxPC0PQBrWOpaZ\nX69fIgkiYh9a3vxsnS9/Dvjfmbm1fqkGHwu9gUTE9cDJtBT6w8BZtDwr4yP1zCVpYLDQG0hEPAtM\nAFZn5oTKzRzfyMzT6xxNg1hEvM1/PM55l0203CdxwB6ONGj5pmhjeTczd0bEjog4ANhIy4ddSHWT\nmbu7ykV7kJctNpaVETESuIuWN59WAU/UN5IGu4g4td3y2A7bpu35RIOXUy4NKiLGAAdk5to6R9Eg\nFxGrMvMPOy53tq7+5Rl6A4iIP2+3fBxAZm6wzDVARBfLna2rH1nojWFmu+X/VbcUUueyi+XO1tWP\nfFO08XjGo4HmDyJiMS0/m63LVNbHdv0y1ZqF3hhGRsR/o+V/VAd0fKMpM++vTywJgPPbLd9c+Zod\n1rUH+KZoA6h8EkxXMjNn7ma71K8i4nxgdGb+XWV9BdBES6n/VWb+Uz3zDSYWuqQ+iYgfAx/LzH+r\nrK8BTgOGA/+YmafVM99g4pSLpL76ndYyr/hRZm4GNkfE8HqFGoy8ykVSXx3YfiUz/7zdatMezjKo\nWeiS+urJiJjVcTAiPg2sqEOeQcs59AYSEfsBnwOOzMxZledQj8vMJXWOpkEsIn4PeAD4NS2PowA4\nEdgH+HBm/rJe2QYbC72BRMR9tDzD5ZLMPL5S8I9n5sQ6R5Nan+lyXGX1ucz8v/XMMxhZ6A2k9cN4\nI2J1Zk6qjD2TmRPqnU1S/TmH3li2RcS+VG7aiIijaPlvriR52WKD+Wvge8AREXEv8EfAn9U1kaQB\nwymXBhMRBwMfoOU5GT/JzNfqHEnSAGGhN5CI+EHHu+46G5M0ODnl0gAiYhiwH3BIRBzIfzxx8QDg\n8LoFkzSgWOiN4dPAlcBhtFy22Fro/w58rV6hJA0sTrk0kIj4i8y8rd45JA1MFnqDiYjjgfcCw1rH\nMvPr9UskaaCw0BtIRFwPnExLoT8MnEXLk+0+Us9ckgYGbyxqLB+h5TnTv8jMPwMmAL9b30iSBgoL\nvbG8m5k7gR0RcQCwETiizpkkDRBe5dJYVkbESOAuWq52+RXwRH0jSRoonENvUBExBjggM9fWOYqk\nAcIplwYSET9oXc7MDZm5tv2YpMHNKZcG4J2ikrrDQm8M3ikqqSrn0BuId4pK2h0LvQFExEnAv2Xm\nLyrrlwDTgZeBv87M1+uZT9LA4JuijeEOYBtARPxXYB7wdeAt4M465pI0gDiH3hj2ancWfgFwZ2Yu\nAhZFxJo65pI0gHiG3hj2iojWX76nAe0/Td1fypIAy6BRLASWR8RrwLvADwEi4j/RMu0iSb4p2igi\n4gPAKGBpZr5TGTsG2D8zV9U1nKQBwUKXpEI4hy5JhbDQJakQFrokFcJCl6RC/H/SiPUgIAVT3wAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "DmjxOeAUEH1F", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + }, + "outputId": "cecf74f4-144e-4bd3-91b6-f4d59c49ea6d" + }, + "cell_type": "code", + "source": [ + "insurance = pd.DataFrame(\n", + " index=['State Farm', 'GEICO'],\n", + " data={'Market Share %': [18.07, 12.79]}\n", + ")\n", + "\n", + "insurance.plot.bar();" + ], + "execution_count": 37, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEpCAYAAACUUUmzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGOZJREFUeJzt3X+01XWd7/HnGyRRw8HwxKCoMI2R\nPxKYUKLpzvXH+Au9NoN21SwxSrJlU651y5uk2RJr2brWLNOWiiNDTQ5xb4xKSoY1aZqmIqCiDgM6\nlEctERNRYODI+/5x9jlzOO4Dp7M37OP+PB9rnXW+38/ns7/fNxx47e/57M/+7shMJEnlGNDoAiRJ\nu5bBL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYQx+SSrMbo0uoJp99903R40a1egyJOlt\n49FHH305M1t6M7ZfBv+oUaNYvHhxo8uQpLeNiPhNb8c61SNJhTH4JakwBr8kFaZfzvFLqr8tW7bQ\n2trKpk2bGl2KajB48GBGjhzJoEGD+nwMg18qRGtrK0OGDGHUqFFERKPLUR9kJmvXrqW1tZXRo0f3\n+ThO9UiF2LRpE8OGDTP038YigmHDhtX8W5vBLxXE0H/7q8fP0OCXpMI4xy8VatSX76zr8VZfdcoO\nx0QE55xzDj/4wQ8AaGtrY8SIEUycOJE77rij1+e65557uPrqq3v9mGXLlvHCCy8wefLkt/Rt2LCB\n888/n8cff5zMZOjQodx11128/PLLnHrqqSxfvrzXdfXFihUr+NjHPsaWLVu48cYbmTRpEm1tbZx0\n0kksWLCAPffcs+7nNPj7qN7/aUrXm9DQ299ee+3F8uXL2bhxI3vssQd33303+++//x91jLa2tj/6\nvMuWLWPx4sVVg/+aa65h+PDhPPHEE0B7ENeyYqZrnbvttuOIvfHGG7nmmmsYNWoUX/jCF5g/fz7X\nX389H//4x3dK6INTPZJ2scmTJ3Pnne0XTnPnzuXss8/u7Hv44YeZNGkS48eP50Mf+hArVqwAYM6c\nOZx22mkce+yxHHfccdsc75FHHmH8+PE888wzvPHGG0ybNo2jjjqK8ePHc/vtt7N582a++tWvMm/e\nPMaNG8e8efO2efyLL764zZPPmDFj2H333QF48803Of/88znssMM44YQT2LhxIwA33XQTRx55JGPH\njuX0009nw4YNAJx33nlccMEFTJw4kYsvvrhqPd0NGjSIDRs2sGHDBgYNGsSrr77Kj3/8Y84999xa\n/6p7ZPBL2qXOOussfvjDH7Jp0yYef/xxJk6c2Nn3vve9j/vuu4+lS5dyxRVXMGPGjM6+JUuW8KMf\n/Yh77723s+2BBx7gggsu4Pbbb+c973kPX//61zn22GN5+OGH+cUvfsGXvvQltmzZwhVXXMGZZ57J\nsmXLOPPMM7epZ9q0aXzzm99k0qRJXHrppaxcubKzb+XKlVx44YU8+eSTDB06lPnz5wMwZcoUHnnk\nER577DEOOeQQbr755s7HtLa28sADD/Dtb3+7aj1vvPHGNue/8MIL+cY3vsHUqVOZMWMGM2fOZMaM\nGQwYsPPieYe/h0TEbOBU4KXMPLzSNg8YUxkyFHg1M8dVeexqYD3wJtCWmRPqVLekt6kjjjiC1atX\nM3fu3LdMvaxbt46pU6eycuVKIoItW7Z09h1//PG8613v6tx/+umnmT59OosWLWK//fYDYNGiRSxY\nsICrr74aaF/C+tvf/na79YwbN45nn32WRYsW8bOf/YwjjzySBx98kD322IPRo0czblx7tH3gAx9g\n9erVACxfvpxLL72UV199lddff50TTzyx83gf/ehHGThw4HbrOeSQQzrHH3jggdxzzz0ArFq1itbW\nVg455BA+8YlPsHnzZmbOnMl73/veXv/99kZv5vjnANcB3+9oyMzOp8yI+BawbjuPPyYzX+5rgZKa\nz2mnncYXv/hF7rnnHtauXdvZftlll3HMMcdw6623snr1ao4++ujOvr322mubY4wYMYJNmzaxdOnS\nzuDPTObPn8+YMWO2GfvQQw9tt553vvOdTJkyhSlTpjBgwAAWLlzI6aef3jnlAzBw4MDOqZ7zzjuP\n2267jbFjxzJnzpzO4O5eZ0/19OQrX/kKV155Jd/5znf49Kc/zahRo5gxYwa33HJLrx7fWzv8XSIz\nfwm8Uq0v2heU/k9gbl2rktTUpk2bxuWXX8773//+bdrXrVvXOd8+Z86c7R5j6NCh3HnnnVxyySWd\nwXviiSdy7bXXkpkALF26FIAhQ4awfv36qsf51a9+xR/+8AcANm/ezFNPPcVBBx203XOvX7+eESNG\nsGXLlu2Gck/1VHPvvfey3377cfDBB7NhwwYGDBjAgAEDOl8/qKdaV/X8N+D3mbmyh/4EFkVEAjdm\n5qyeDhQR04Hp0P6rj6Sdq5ErqUaOHMnnP//5t7RffPHFTJ06lSuvvJJTTtlxfcOHD+eOO+7g5JNP\nZvbs2Vx22WVcdNFFHHHEEWzdupXRo0dzxx13cMwxx3DVVVcxbtw4Lrnkkm3m+Z955hk++9nPkpls\n3bqVU045hdNPP53f/Kbn29vPnDmTiRMn0tLSwsSJE3t8Uumpnu4ykyuvvLLzhefp06dzzjnn0NbW\nxvXXX7/Dv4c/VnQ8E213UMQo4I6OOf4u7dcDqzLzWz08bv/MfD4i3g3cDfxd5TeI7ZowYUL29w9i\ncTlnfbmcc+d7+umnt5lb1ttXtZ9lRDza29dR+/yycUTsBkwB5vU0JjOfr3x/CbgVOKqv55Mk1Uct\n64X+Gvi3zGyt1hkRe0XEkI5t4ARg574FTpK0QzsM/oiYCzwIjImI1oj4VKXrLLq9qBsR+0XEwsru\ncOD+iHgMeBi4MzPvql/pkv5YvZnaVf9Wj5/hDl/czcyze2g/r0rbC8DkyvazwNga65NUJ4MHD2bt\n2rXemvltrON+/IMHD67pON6rRyrEyJEjaW1tZc2aNY0uRTXo+ASuWhj8UiEGDRpU06c2qXl4rx5J\nKozBL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqMwS9JhTH4JakwBr8kFcbgl6TC\nGPySVBiDX5IKY/BLUmEMfkkqTG8+bH12RLwUEcu7tH0tIp6PiGWVr8k9PPakiFgREasi4sv1LFyS\n1De9ueKfA5xUpf3vM3Nc5Wth986IGAh8FzgZOBQ4OyIOraVYSVLtdhj8mflL4JU+HPsoYFVmPpuZ\nm4EfAh/pw3EkSXVUyxz/5yLi8cpU0D5V+vcHnuuy31ppkyQ1UF+D/3rgPcA44EXgW7UWEhHTI2Jx\nRCxes2ZNrYeTJPWgT8Gfmb/PzDczcytwE+3TOt09DxzQZX9kpa2nY87KzAmZOaGlpaUvZUmSeqFP\nwR8RI7rs/i2wvMqwR4CDI2J0RLwDOAtY0JfzSZLqZ7cdDYiIucDRwL4R0QpcDhwdEeOABFYDn6mM\n3Q/4h8ycnJltEfE54KfAQGB2Zj65U/4UkqRe22HwZ+bZVZpv7mHsC8DkLvsLgbcs9ZQkNY7v3JWk\nwhj8klQYg1+SCmPwS1JhDH5JKozBL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqM\nwS9JhTH4JakwBr8kFcbgl6TCGPySVBiDX5IKY/BLUmF2+GHrETEbOBV4KTMPr7T9H+B/AJuBZ4BP\nZuarVR67GlgPvAm0ZeaE+pUuqSejvnxno0toKquvOqXRJdRVb6745wAndWu7Gzg8M48A/h24ZDuP\nPyYzxxn6ktQ/7DD4M/OXwCvd2hZlZltl99fAyJ1QmyRpJ6jHHP804Cc99CWwKCIejYjpdTiXJKlG\nO5zj356I+ArQBtzSw5APZ+bzEfFu4O6I+LfKbxDVjjUdmA5w4IEH1lKWJGk7+nzFHxHn0f6i7zmZ\nmdXGZObzle8vAbcCR/V0vMyclZkTMnNCS0tLX8uSJO1An4I/Ik4CLgZOy8wNPYzZKyKGdGwDJwDL\n+1qoJKk+dhj8ETEXeBAYExGtEfEp4DpgCO3TN8si4obK2P0iYmHlocOB+yPiMeBh4M7MvGun/Ckk\nSb22wzn+zDy7SvPNPYx9AZhc2X4WGFtTdZKkuvOdu5JUGINfkgpj8EtSYQx+SSqMwS9JhTH4Jakw\nBr8kFcbgl6TCGPySVBiDX5IKY/BLUmEMfkkqjMEvSYUx+CWpMAa/JBXG4Jekwhj8klQYg1+SCmPw\nS1JhDH5JKkyvgj8iZkfESxGxvEvbuyLi7ohYWfm+Tw+PnVoZszIiptarcElS3/T2in8OcFK3ti8D\nP8/Mg4GfV/a3ERHvAi4HJgJHAZf39AQhSdo1ehX8mflL4JVuzR8BvlfZ/h7wN1UeeiJwd2a+kpl/\nAO7mrU8gkqRdqJY5/uGZ+WJl+3fA8Cpj9gee67LfWml7i4iYHhGLI2LxmjVraihLkrQ9dXlxNzMT\nyBqPMSszJ2TmhJaWlnqUJUmqopbg/31EjACofH+pypjngQO67I+stEmSGqSW4F8AdKzSmQrcXmXM\nT4ETImKfyou6J1TaJEkN0tvlnHOBB4ExEdEaEZ8CrgKOj4iVwF9X9omICRHxDwCZ+QowE3ik8nVF\npU2S1CC79WZQZp7dQ9dxVcYuBj7dZX82MLtP1UmS6s537kpSYQx+SSqMwS9JhTH4JakwBr8kFcbg\nl6TCGPySVBiDX5IKY/BLUmEMfkkqjMEvSYUx+CWpMAa/JBXG4Jekwhj8klQYg1+SCmPwS1JhDH5J\nKozBL0mF6XPwR8SYiFjW5eu1iLio25ijI2JdlzFfrb1kSVItevVh69Vk5gpgHEBEDASeB26tMvS+\nzDy1r+eRJNVXvaZ6jgOeyczf1Ol4kqSdpF7BfxYwt4e+SRHxWET8JCIOq9P5JEl9VHPwR8Q7gNOA\n/1elewlwUGaOBa4FbtvOcaZHxOKIWLxmzZpay5Ik9aAeV/wnA0sy8/fdOzLztcx8vbK9EBgUEftW\nO0hmzsrMCZk5oaWlpQ5lSZKqqUfwn00P0zwR8acREZXtoyrnW1uHc0qS+qjPq3oAImIv4HjgM13a\nLgDIzBuAM4DPRkQbsBE4KzOzlnNKkmpTU/Bn5hvAsG5tN3TZvg64rpZzSJLqy3fuSlJhDH5JKozB\nL0mFMfglqTAGvyQVxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqMwS9JhTH4JakwBr8kFcbgl6TCGPyS\nVBiDX5IKY/BLUmEMfkkqjMEvSYUx+CWpMDUHf0SsjognImJZRCyu0h8R8Z2IWBURj0fEX9R6TklS\n3+1Wp+Mck5kv99B3MnBw5WsicH3luySpAXbFVM9HgO9nu18DQyNixC44rySpinoEfwKLIuLRiJhe\npX9/4Lku+62Vtm1ExPSIWBwRi9esWVOHsiRJ1dQj+D+cmX9B+5TOhRHxV305SGbOyswJmTmhpaWl\nDmVJkqqpOfgz8/nK95eAW4Gjug15Hjigy/7ISpskqQFqCv6I2CsihnRsAycAy7sNWwCcW1nd80Fg\nXWa+WMt5JUl9V+uqnuHArRHRcax/zsy7IuICgMy8AVgITAZWARuAT9Z4TklSDWoK/sx8Fhhbpf2G\nLtsJXFjLeSRJ9eM7dyWpMAa/JBXG4Jekwhj8klQYg1+SCmPwS1JhDH5JKozBL0mFMfglqTAGvyQV\nxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqMwS9JhTH4JakwBr8kFcbgl6TC9Dn4I+KAiPhFRDwVEU9G\nxBeqjDk6ItZFxLLK11drK1eSVKtaPmy9DfhfmbkkIoYAj0bE3Zn5VLdx92XmqTWcR5JUR32+4s/M\nFzNzSWV7PfA0sH+9CpMk7Rx1meOPiFHAeOChKt2TIuKxiPhJRBxWj/NJkvqulqkeACLincB84KLM\nfK1b9xLgoMx8PSImA7cBB/dwnOnAdIADDzyw1rIkST2o6Yo/IgbRHvq3ZOa/dO/PzNcy8/XK9kJg\nUETsW+1YmTkrMydk5oSWlpZaypIkbUctq3oCuBl4OjO/3cOYP62MIyKOqpxvbV/PKUmqXS1TPX8J\nfAJ4IiKWVdpmAAcCZOYNwBnAZyOiDdgInJWZWcM5JUk16nPwZ+b9QOxgzHXAdX09hySp/nznriQV\nxuCXpMIY/JJUGINfkgpj8EtSYQx+SSqMwS9JhTH4JakwBr8kFcbgl6TCGPySVBiDX5IKY/BLUmEM\nfkkqjMEvSYUx+CWpMAa/JBXG4Jekwhj8klQYg1+SClNT8EfESRGxIiJWRcSXq/TvHhHzKv0PRcSo\nWs4nSapdn4M/IgYC3wVOBg4Fzo6IQ7sN+xTwh8z8c+DvgW/29XySpPqo5Yr/KGBVZj6bmZuBHwIf\n6TbmI8D3Kts/Ao6LiKjhnJKkGtUS/PsDz3XZb620VR2TmW3AOmBYDeeUJNVot0YX0CEipgPTK7uv\nR8SKRtbTRPYFXm50ETsSTgKWyn+f9XNQbwfWEvzPAwd02R9Zaas2pjUidgP+BFhb7WCZOQuYVUM9\nqiIiFmfmhEbXIVXjv8/GqGWq5xHg4IgYHRHvAM4CFnQbswCYWtk+A/jXzMwazilJqlGfr/gzsy0i\nPgf8FBgIzM7MJyPiCmBxZi4Abgb+KSJWAa/Q/uQgSWqg8AK8uUXE9Mo0mtTv+O+zMQx+SSqMt2yQ\npMIY/JJUmH6zjl/1ExH70L6MtvPnm5lLGleRpP7E4G8yETETOA94Buh4ASeBYxtVk6T+xRd3m0zl\nHc/vr9w/Seo3IuJk4BLab+oI8CTwzcxc2LiqyuQVf/NZDgwFXmp0IVKHiDgf+AxwMbC40jwBuCoi\nRrqkc9fyir/JRMQE4HbanwD+s6M9M09rWFEqXkQ8BXw4M1/p1j4MuD8zD2lMZWXyir/5fI/2zz14\nAtja4FqkDtE99AEyc613at/1DP7msyEzv9PoIqRuXouIsZn5WNfGiBgLrG9QTcVyqqfJRMS3aZ/i\nWcC2Uz0u51TDRMSHgVuAfwQerTRPoP0mjh/PzPsbVVuJDP4mExG/qNKcmelyTjVURAwHLgQOqzQ9\nBXw3M3/XuKrKZPA3kYgYAJyRmf+30bVIXUVEC9CSmU91az8UWJOZaxpTWZm8ZUMTycyttC+Xk/qb\na2n/tK3uhgHX7OJaiucVf5OJiKto/yi7ecAbHe3VVlRIu8r2PmkrIpZn5uG7uqaSGfxNJiL+o0pz\nZuaf7fJipIqIWJGZY/7YPu0cLudsMpk5utE1SFWsiojJ3W/PULmNw7MNqqlYXvE3oYg4nPb7oQzu\naMvM7zeuIpUuIg4G7gQeYNvlnJOAUzPz3xtVW4kM/iYTEZcDR9Me/AuBk2l/S/wZjaxLiojdgY8B\nHfP5TwL/nJmbGldVmQz+JhMRTwBjgaWZObaydvoHmXl8g0uT1E84x998Nmbm1ohoi4i9ab9L5wGN\nLkpli4j1/NfnQ2zTRfvig713cUlFM/ibz+KIGArcRPtc6uvAg40tSaXLzCGNrkH/xameJhYRo4C9\nM/PxBpeiwkXEsZn5r5Xt0Zn5H136pmTmvzSuuvL4zt0mERGf67J9GEBmrjb01U9c3WV7fre+S3dl\nITL4m8m0Ltv/1LAqpOqih+1q+9rJDP7m5H8k9TfZw3a1fe1kvrjbPIZGxN/S/mS+d0RM6drpHKoa\n7M8iYgHtFyUd21T2fbf5LuaLu00iIv5xO92ZmdO20y/tVBHx36s0d4RPZOa9u7Ke0nnF3yQy85ON\nrkHajqHAyMz8LkBEPAy00B7+/7uRhZXIOX5Ju8LFtH8caId30H6vnqOBCxpRUMm84pe0K7wjM5/r\nsn9/Zq4F1kbEXo0qqlRe8UvaFfbpupOZn+uy27KLaymewd9kImLPiLgsIm6q7B8cEac2ui4V76GI\nOL97Y0R8Bni4AfUUzVU9TSYi5tF+j55zM/PwiNgTeCAzxzW4NBUsIt4N3Ab8J7Ck0vwBYHfgbzLz\n942qrUQGf5Pp+GzTiFiameMrbY9l5thG1yZFxLHAYZXdJzvu36Ndyxd3m8/miNiDyhrpiHgP7VdZ\nUsNVgt6wbzCDv/l8DbgLOCAibgH+EnCNv6ROTvU0oYgYBnyQ9rfD/zozX25wSZL6EYO/yUTEzzPz\nuB21SSqXUz1NIiIGA3sC+0bEPvzXHTr3BvZvWGGS+h2Dv3l8BrgI2I/25Zwdwf8acF2jipLU/zjV\n02Qi4u8y89pG1yGp/zL4m1BEHA4cCgzuaMvM7zeuIkn9icHfZCLictrveHgosBA4mfYbYp3RyLok\n9R/eq6f5nAEcB/yuco/+scCfNLYkSf2Jwd98NmbmVqAtIvYGXgIOaHBNkvoRV/U0n8URMRS4ifbV\nPa8DDza2JEn9iXP8TSwiRgF7Z+bjDS5FUj/iVE+TiYifd2xn5urMfLxrmyQ51dMkfOeupN4y+JuH\n79yV1CvO8TcZ37kraUcM/iYREUcCz2Xm7yr75wKnA78BvpaZrzSyPkn9hy/uNo8bgc0AEfFXwFXA\n94F1wKwG1iWpn3GOv3kM7HJVfyYwKzPnA/MjYlkD65LUz3jF3zwGRkTHE/lxbPu5pj7BS+pkIDSP\nucC9EfEysBG4DyAi/pz26R5JAnxxt6lExAeBEcCizHyj0vZe4J2ZuaShxUnqNwx+SSqMc/ySVBiD\nX5IKY/BLUmEMfkkqjMEvSYX5/2KJk5sswskbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "fF_vi1jUCbgU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Fix misleading plot #2" + ] + }, + { + "metadata": { + "id": "mB4TJEfYCbgW", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 310 + }, + "outputId": "07610ba1-45e8-458a-85a2-7685e48c2fd5" + }, + "cell_type": "code", + "source": [ + "misleading.plot2(); # does not show 100%" + ], + "execution_count": 38, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATYAAAElCAYAAABu/s6cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VOW9x/HPLythMQoCKiAHRAxh\nEcG1olBr3QJeW+vV4kortlxbrKWtU7V1qlSj1datF7eqaF0Q7VXx1LUVrKggKDsUtygqKCoO+xLy\n3D/OpMSYTCaTmXnO8nu/XvMKTM7MfAMvvjxnex4xxqCUUmFSYDuAUkplmxabUip0tNiUUqGjxaaU\nCh0tNqVU6GixKaVCR4tNKRU6WmxKqdDRYlNKhY4Wm1IqdLTYlFKho8WmlAodLTalVOhosSmlQkeL\nTSkVOkW2AygVJPPnz+9WVFR0FzAIHRjkSh2wpLa29vzhw4d/mskbaLEp1QpFRUV37bXXXgO6du26\nrqCgQGdpzYG6ujpZu3Zt5Zo1a+4CTs7kPfR/HKVaZ1DXrl3Xa6nlTkFBgenatWsCb1Sc2XtkMY9S\nUVCgpZZ7yT/jjPtJi02pgLnkkkv26tev38D+/ftXVlRUVP7zn//sAHDllVd227BhQ4v/ptPdrqFT\nTz3V6dGjx+CKiorKioqKysmTJ3fLNH8+6DE2pdrAibnDs/l+NdVV81N9/4UXXujw7LPP7r548eJl\nZWVlZvXq1UXbtm0TgNtvv737+PHjv+jUqVNdqvdId7vGJk+e/OG4cePWteY1ALW1tRQV5bdqdMSm\nVIB89NFHxZ07d64tKyszAHvvvXet4zg7Jk+e3O3TTz8tHjlyZP/DDjusP8CZZ56576BBgwb069dv\n4MUXX7wPQFPb/e1vf9tt6NChFZWVlQNOPPHEvolEIu1eaOozAHr06DF4woQJPSorKwfcfffdexx6\n6KEH/PCHP+w1aNCgAX379h04a9as9scdd9x+vXv3HjRx4sR9Un1GJrTYlAqQU045Zf3HH39c4jjO\noLPOOmtf13U7Alx++eWfduvWbcesWbNWzpkzZyXAH//4x4+WLFmyfMWKFUtnz57dac6cOWWNt1u9\nenXR1VdfvfdLL720ctmyZcuHDRu2+aqrrure1GdffvnlPet3RefOnVvW3GfUb9+lS5faZcuWLb/g\nggvWAZSUlNQtWbJk+bhx49aedtpp/e68884PVqxYsXTatGl7rlmzpjCbf05abEoFSHl5ed2SJUuW\n3Xrrre937dq19txzz93v5ptv7tLUtlOnTu1cWVk5oLKysvKtt95qt3DhwnaNt5k5c2aHd955p92h\nhx5aUVFRUfnwww93+eCDD0qaer/Jkyd/uGLFimUrVqxYduihh25p6TPOOeecr+y2fuc73/kS4MAD\nD9zSr1+/Lb17995RVlZmevXqte3dd99t8jMzpcfYlAqYoqIiRo8evWH06NEbhgwZsuX+++/vMnHi\nxM8bbrNixYqSW2+9tfv8+fOXd+3adeepp57qbN269WsDGWMMI0aMWD9jxoz3Wpujpc9ofAyvXbt2\nBqCgoIDS0tL/nFkuKCigtrZWWvv5qeiILU0icpmILBWRRSKyQEQOSz7/MxFpn8br09qu0WvuFZH3\nkp+3QEQmZppfhcPChQtLFy9eXFr/+zfffLOsZ8+e2wE6dOiws/742Lp16wrLysrqOnfuvHPVqlVF\nM2fOLK9/TcPtRo0atWnevHkdlyxZUgqwfv36gkWLFpWShlSfYZuO2NIgIkcAo4FhxphtIrInUD90\n/hnwV2BzC2+T7naN/dIY82grX4OIFBpjdrb2dcrf1q9fXzhx4sR9169fX1hYWGgcx9k2derU9wHO\nPffcz0444YT+3bt33z5nzpyVgwYN2rzffvsN2nvvvbcPHz58Y/17NN7u9ttvrznjjDP6bt++XQCu\nuOKKj4YMGbKtpSxHHHHEluY+wzYxRq81bImIfBcYZ4wZ0+j5icD1wL+Bz4wx3xSRKcAhQBnwqDHm\nima2Ow74HVAKvJN8/42N3v9e4KnGxdbUZySfrwGmAd8GrgN+DLwJHAV0AM4Bfg0MBqYZYy7Pwh9P\npCxcuLDmwAMP/Mx2jihYuHDhngceeKCTyWt1VzQ9zwG9RGSliPyviIwEMMbcDHwMfNMY883ktpcZ\nYw4GhgAjRWRI4+2SI77LgWONMcOAecDPm/nsPzTYFR3c3Gc02P5zY8wwY8zDyd9vT257G/AEcCHe\nrSrniUiTB52VCjottjQkR1LDgQuAtcA0ETmvmc3/W0TewBspDQQqm9jm8OTzs0VkAXAu0LuZ9/ul\nMWZo8rE4jc+Y1uj1Tya/LgaWGmNWG2O2Ae8CvZr5TKUCTY+xpSl5vGomMFNEFuOV0b0NtxGRPsAv\ngEOMMeuSu5JfO8UOCPC8Meb7rc2RxmdsavSS+mMldQ1+Xf97/ftXoaQjtjSIyAEisn+Dp4YC7yd/\nvQHolPz1bnjFkhCR7sCJDV7TcLvXgCNFpF/y/TuISP8046T6DKUU+j92ujoCt4jI7kAt8DbebinA\nHcAzIvJx8vjZm8AKYBUwu8F7NN7uPOAhEak/tX45sLKlIMaYhSk+QymFnhVVqlX0rGj+6FlRpSJm\n1apVRWPGjOnTs2fPwQMHDhwwdOjQivvuu2/3p556qlOnTp2G1t/TWVFRUfn44493Amjfvv1B9a9f\ntGhR6ciRI/v17t17UGVl5YCTTjqp76pVq4oAnn322Y6DBw8e0KdPn4F9+vQZeP311+9p6+fMlO6K\nKtUW8fKsTltEPJFy2iKAuro6xowZ02/s2LGf198KtXLlypLp06fv3rlz5y0HH3zwxhdffPHt5l6/\nefNmGTNmzP7XXHPNqrFjxyYAnnrqqU5r1qwpMsZw3nnn9Zk+ffo7I0aM2Lx69eqiY489dv+ePXvu\nOOOMMxLZ+0FzS4tN5ZwTcwuA9g0eZU38uh3eXRmfN3h8UVNdpXdPNDJjxoxOxcXF5le/+tXa+uf6\n9++//bLLLvv0qaee6pTqtQB33HFH52HDhm2sLzWA0aNHbwC46KKL9jn99NM/HzFixGbwpkW6+uqr\nP7zyyiv30WJTkeHE3E7AAUD/Bl/7A3uxq7wynbnBODF3PV8tu4aPT/Hu5lhaU12V0WpGQbR48eKy\nIUOGNHtr3rx58zpWVFT859rGxx577J2BAwf+51KfJUuWlA0bNqzJ1y9fvrzsnHPO+coN9SNGjNj8\n9ttvlzW1vV9psakWOTG3COiDV1yNS2zvHH60AOXJR98WMq4FliYfS/AuXl5QU13V4j2PQXf22Wfv\nO3fu3I7FxcWmurr6w5Z2RaNAi019jRNzOwDfAEYBI/HuS83qfFk50BUv76gGz+1wYu5i4HVgbvLr\nsqDv3g4ePHjLE088sUf97++///4PVq9eXXTwwQcPSOf1AwcO3PrSSy91bOp7FRUVW+bNm9f+rLPO\n+rL+udmzZ7fv16/flrYnzx89K6pwYm6xE3OPcWLu1U7MfQVYh3d/7KXAkfi/1JpTDAwDfgT8BVgE\nfOLE3KlOzP1ussADZ8yYMRu2bdsm1157bdf65zZu3Jj2v+Xx48d/Pn/+/I4PP/zwf6YZevrppzu+\n/vrr7SZNmrR22rRpXV555ZUygDVr1hReeumlPSdNmrQmuz9FbumILaKcmLsPcFLycSy77ooIuy54\ns5ycA2x1Yu4/8CYHmFFTXRWIf7wFBQXMmDHjnQsvvLDXzTffvFfnzp1r27dvvzMej38IXz/Gdskl\nl6xuuAhLx44dzRNPPPH2xIkTe11yySW9ioqKzIABA7ZMmTLlg169etXefffd711wwQXOpk2bCowx\nMmHChE8anmgIAr1AN0KSZTYOOA040HIcvzHAHLySe6Kmump5UxvpBbr505YLdHXEFnJOzC3EG5WN\nT37N6qIZISJ4s64cDlzjxNy38GZGmV5TXTXHajLValpsIeXE3D7AD/FGaFlf3iwC9gcmAZOcmPs6\ncBPwyBPf72k3lUqLFluIODG3BDgFOB/vuFlWF8iIsEPwpnW/btP2uvY7dtZ9WVxYUGs7lGqeFlsI\nODG3Aq/MzsG77EHlxj4bd9SxfPX68vKy4s+7dir9tH1JUaAugwiKuro6wZszMCNabAHmxNyBwNXA\nybazRMX7X+6gS5eEfGl22zOxZcee7UuKNnTpWPLJ7mXFCREdIGdDXV2drF27thzvQuuMaLEFkBNz\nHbyFYM5Cr0XMq1vmrOOnQO/dP0O8Pf1O70GnwgJqy4oKNpQVywbxzrCqzNUBS2pra8/P9A30co8A\ncWJuN7wJKX9EcC+aDbuPgBjwQE11lf7jskSLLQCcmLsb3joHF+PN5qv871XgoprqqtdtB4kiLTYf\nc2JuKfATvLVAdam84DHAfUAsKHc1hIUWmw8lL6o9D7gCXSIvDDbgneT5UxRmG/EDLTafcWLuALz/\n5Q+2nUVl3TvApJrqqidsBwk7LTafcGKu4B1D+z1Nr0WqwuN54Gc11VXLbAcJKy02H3Bibm+8xZdH\n2U2i8qgWuA64oqa6Su9iyDItNsucmPsD4EaiM22Q+qrXgbE11VWRnvE227TYLHFibnfgTmCM7SzK\nuk14l4b8xXaQsNBis8CJuacCtwGBW69R5dSjwAU11VXrWtxSpaTFlkdOzN0duBU403YW5VvvA9+r\nqa6aZztIkOl9hnnixNyD8Obc11JTqfQGXnZi7o9tBwkyHbHlQXLX8z68NTaVStf9wI9rqquaXUNU\nNU1HbDnmxNzLgOloqanWOxt4zYm5/WwHCRodseVI8j7Pv6C7nqrt1gLH11RXvWk7SFBoseWAE3M7\nAzPwFh1WKhsSwOia6qqXbQcJAt0VzTIn5vYCXkZLTWVXOfCsE3OPtx0kCLTYsig5VferwADbWVQo\ntQeedGLu92wH8TsttixxYu4I4F9AD9tZVKiVAA8nb8VTzdBiywIn5p6IN2PDHrazqEgoBO5yYu7F\ntoP4lRZbGzkx90jgMXSqIZVfAvzRibm/sx3Ej/SsaBs4MXcw8BKwu+0sKtJuAi7WxWN20RFbhpJL\n4D2Dlpqy7yLgdtsh/ESLLQNOzO0KPAfsYzuLUknjnZh7qe0QfqG7oq3kxNxOwIvAcNtZlGrEAKfX\nVFdNtx3ENi22VnBibgnwd+BbtrMo1YwtwMior2equ6JpcmJuAfBXtNSUv5XhXcQb6WUbtdjSdytw\nmu0QSqVhL+ApJ+Z2tB3EFi22NDgx9wpggu0cSrXCEOCh5J5G5ETyh24NJ+aOBuK2cyiVgdHADbZD\n2KAnD1JwYu7eeNN566IrKsgm1FRX3WY7RD5psTUjuTL7c8CxtrMo1Ua1wEk11VXP2w6SL7or2rxf\noKWmwqEImObE3L1sB8kXLbYmODF3OPB72zmUyqI9iNBtV1psjSRPkT8EFNvOolSWnezE3LNsh8gH\nLbavuwXY33YIpXLkpijskmqxNeDE3NOB82znUCqHOhOBXVI9K5qUnIZoAd6iGUqF3Vk11VUP2A6R\nK1psgBNzC/EmjNSVpVRUfAEMrKmuWmM7SC7orqjnp2ipqWjpDIT2ot3Ij9icmLsH8DbeX7RSUXNm\nTXXVg7ZDZJuO2OBytNRUdN3ixNzutkNkW6SLzYm5+wE/sZ1DKYs6A3+2HSLbIl1sQDXeArRKRdmp\nTswN1THmyBZb8i/ye7ZzKOUT1bYDZFNki42IzlOlVDOOcmJule0Q2RLJYnNi7n8Dh9vOoZTPXJ2c\nrivwIldsTswtJWTDbqWyZAgw1naIbIhcseFdjNvHdgilfOp3yTtxAi1SxebE3C7AZbZzKOVj+wFn\n2A7RVpEqNuBnwO62Qyjlc5cG/VhbZIrNibntgB/bzqFUAFQC37Udoi0iU2zAmehqU0qlK9CHbKJU\nbBfZDqBUgBzkxNyTbIfIVCSKzYm5xwCDbedQKmAm2A6QqUgUGzpaUyoTJzgxt5vtEJkIfbE5Mbcn\nMNp2DqUCqIiAXrAb+mIDfkA0fk6lcuEc2wEykfY/eBHpJyJ/FZHHROSIXIbKluS1OONs51AqwA5y\nYu4g2yFaq9liE5F2jZ66Cvg13kWuU3IZKouOBRzbIZQKuHNtB2itVCO2GSLScBi6A68kegM7cxkq\ni863HUCpEDgzaPePpiq2E4DdROQZETka+AVwPPAdvItdfc2JuZ2BU2znUCoE9ga+bTtEazRbbMaY\nncaYW4HTgZOBm4B7jDGTjDEr8hWwDU5Ep/1WKlsCdRIh1TG2w0TkUbzjaffireb0exG5QUSCcCP5\n8bYDKBUipzgxdzfbIdKValf0dmAiEAduN8a8Y4w5A3gSmJaHbBlLng09znYOpUKkDDjNdoh0pSq2\nWnadLNhe/6QxZpYxxu+joYOA0K2VqJRlvj+2Xi9VsY0FTgWOIWD713gnPpRS2XVkcvov3ytq7hvG\nmJXApDxmySYtNqWyrwQ4DJhlO0hLQnerUfIAZyDujFAqgI6yHSAdoSs2vLsNmh2JKqXa5GjbAdKR\nVrGJSJmIHJDrMFmiu6FK5c4RQbgLocViE5ExwALgmeTvh4rIk7kO1gZ+P2OrVJB1BIbZDtGSdEZs\nceBQ4EsAY8wCfLoupxNzK4F9bedQKuR8f5wtnWLbYYxJNHrO5CJMFuhFuUrlnu+Ps6VTbEtFZCxQ\nKCL7i8gtwCs5zpUp3w+RlQqBEX5fdzSdYvspMBDYBjwIJPDmZPOjAbYDKBUBXfDWHvWtlJdFiEgh\ncKUx5hcEY53BoJy5VSrojgKW2g7RnJQjNmPMTmBEnrK0iRNzewCdbOdQKiJ83QvpXMj6ZvLyjunA\npvonjTF/y1mqzOhuqFL54+u9o3SKrR3wOd7N8PUM4Ldiq7AdQKkI8fVlVS0WmzEmKKs8abEplT/d\nnJjbrqa6aqvtIE1psdiSq1X9EO/M6H+mLDHG/CCHuTKhxaZUfu0LrLQdoinpXO5xP7AX3q1Ks4Ce\nwIZchsqQHmNTKr962w7QnHSKrZ8x5jfAJmPMVKAKb04m33BibidgH9s5lIoY3x5nS+uWquTXL0Vk\nEFAOdMtdpIzobqhS+efbYkvnrOgdIrIH8Bu8hVw6Ar/NaarW091QpfLPt7ui6ZwVvSv5y1lA39zG\nyVgP2wGUiqDgjthEpBRvURen4fbGmCtzF6vV2tsOoFQE+bbY0jnG9gTwX3jL8W1q8PATLTal8q+X\nX2f5SOcYW09jjN+n29ZiUyr/SvAuBVttO0hj6YzYXhGRwTlP0jZabErZ0dV2gKY0O2ITkcV494QW\nAeNE5F28OdkEMMaYIfmJmBYtNqXsKLYdoCmpdkVH5y1F22mxKWVH4IptLd56BzsAksvvnQS878Mp\ni8psB1AqonxZbKmOsT2Dd4kHItIPeBXvOrYLReSa3EdrFR2xKWVH4IptD2PMW8lfnws8ZIz5KXAi\n/ttN1WJTyg5fFluqXdGGS+wdA/wBwBizXUTqcpqq9bTYAqiU7Vt/V3TvawMKPvD9yuKqae+Zveq8\neTH8JVWxLRKR64GPgH7AcwAisns+grWSFlvAnFP43Gu/Kbq/Z7HsHGU7i8rcgbzry/+UUhXbeOAi\nvONsxxljNiefrwSuz3Gu1iq1HUClZ4i889Y9Jddt7CIbDredRWXFTtsBmtJssRljtgDVTTz/Cv5b\nMHkT0Nl2CNW83dmw7q6SGxYPl5VHiuDL/+VVRmptB2hKOrdUBUEC6GU7hPq6Aup2Xlb0wMvjCp8e\nUiAcbTuPyjotthz60nYA9XUnFMx548bi/+3UTnaMtJ1F5UzCdoCmpDNt0WnGmOktPWeZL/9wo8qR\n1avuK67+aN+CtXocLfzW2g7QlHRugv91ms/ZpMXmA+3ZuunO4utnvlgyqZuWWiQYfFpsqW6CPxHv\nFqoeInJzg2/thv/2q3VX1LIfFc6Y/auiaX0LpW6U7Swqb74knvBbFwCpd0U/BuYBJwPzGzy/Abg4\nl6Ey8KntAFF1qCxfdmfJDTvLZfORtrOovPPtv7tUl3ssBBaKyIPJ7fY1xvw7b8lax3cT3YVdN9at\nvafkun9XyvtHiuDLWVRVzvm22NI5xnYCsADvpnhEZKiIPJnTVK33se0AUVFE7Y5riu6cNaf0wtKB\nBe+P0FKLNF8eX4P0LveIA4cCMwGMMQtEpE8OM2VCR2x5cGrBS69fU3zXniVSq5dvKPDxiC2dYtth\njEmIfOU/ZtPcxpboiC2HDpAP3ptacu3ne8m6Q2xnUb4S6GJbKiJjgUIR2R+YiP9uqfoU7541vVUn\nizqxKTGl+KYFRxYs+YYIfhulK/v8esw9rWNsPwUG4q138CCwHvhZLkO1Vk111U7gPds5wkKoq/t5\n0SMvLyy9YPuIwiUjRfw555aybqntAM1JZ8TW3RhzGXBZ/RMicgjwes5SZWY+3vRKqg2OLli4aErx\nTcUdZOsI21mUr+0EVtgO0Zx0RmyPiUiP+t+IyNHA3bmLlLH5LW+imtODtatfKPnFK/eVXDukg2wd\nYDuP8r23iSe22Q7RnHRGbD8CHheRMcAw4Bq8OxL8Zp7tAEFUyvat1xXf8drJBa8cIsI3bOdRgeHb\n3VBIo9iMMa+LyES8GXS3AscaY/x4/cobeGdr9bqqNJ1d+Nxrv9VZbFVmfF1sYkzTV26IyAy+ellH\nJd71YusAjDEn5zxdKzkx9y30OFuLGsxie5DtLCqwTieeeMR2iOakGrH5bfrvdOgJhBR0FluVRb4e\nsaW6V3SWiBQCLxhjvpnHTG0xDzjddgi/KaBu56VFD8z+QeHTg3UWW5UFW4GVtkOkkvIYmzFmp4jU\niUi5MSYIc57pmdFGji+Y++ZNxX/u2E52aKGpbHmFeGKH7RCppHNWdCOwWESex1s0BQBjzMScpcqc\nnkBISs5i+/G+BWsPs51Fhc4/bQdoSbMnD/6zgci5TT1vjJmak0Rt5MTclcD+tnPY0p6tm24q/vO8\nYwvmHyZCO9t5VCgdSTzht9sqvyKdyz18WWApzCeixdZgFludfUPlykZgru0QLUlnMZf98S7KrYRd\nIwBjTN8c5mqL2cAZtkPkk85iq/LoZb9OB95QOsfY7gGuAP4EfBMYR3q3YtnyOHAzETjO1o11a+8u\n+cOKgVKjEz6qfPH98TVIr6DKjDH/wDse974xJg5U5TZW5mqqqz4kAEPltiiidsfVRXfNmlN6Yemg\ngpqjtNRUHr1oO0A60hmxbRORAuAtEfkJ8BHQMbex2uxRIJRnA79T8K/Xry2+U2exVTZ8iXflge+l\nU2wXAe3xJpi8CjgGaPJMqY88BvzBdohs0llslQ/8nXiiznaIdLR4uUdQOTF3Pt5sJIHWkc3rpxTf\n+OYIbxZbnfBR2TSGeOIp2yHSkWrB5JQrUfnxJvhGHiPAxSbU1f2s6LHZPy18vKJAjO52Ktu+AJ61\nHSJdqXZFjwBWAQ8BcwjeWcZHgd/bDpGJowoWLb6t+MaiDrL1KNtZlEp6zO+3UTWUatqiQuDbwPeB\nIYALPGSM8fVd/Q05MXcxMMh2jnTtw2erp5ZUv7t/wcd6PZrym2OIJwJxRhRSXO5hjNlpjHnGGHMu\ncDjwNjAzeWY0KB61HSAdpWzfemPxrbNml07cTUtN+dBqYJbtEK2R8qyoiJTiXbP2fcDBu/D1/3If\nK2sew1vw2bfOLnz+td8W3dejWHbqcTTlV48E5WxovVS7ovfh7cb9HXjYGLMkn8GyxYm5K4ADbOdo\nTGexVQFyOPHEHNshWiNVsdWxa5qihhsJYIwxu+U4W1Y4MfdSfHQSQWexVQHzb+KJCtshWivVDLp+\nvh+0NaYAlwIdbIbQWWxVQN1kO0AmwlJezaqprloH3Gkzw/EFc99cVjru3fOLnj66QNjDZhalWuEL\nIGjTlgHp3VIVBn8EfkKef97esubD+4urP9y34NPD8/m5SmXJHcQTm22HyEToR2wANdVVq4CH8/V5\n7dm66Y7iG2bOLPn5nlpqKqB2ALfYDpGpSBRb0nX5+JAfFc54ZXHp+euPK5w/SqfmVgH2CPHEx7ZD\nZCq0N8E3xYm5TwMn5OK9D5EVy+8qub62XDYPzsX7K5VnBxNPBHbVt6gcY6t3HVkutgaz2B4pEqkR\nsAqvfwW51CBau6LUVFe9CLyejfdqYhbbSP1ZqlAL/FyGURuxgfeX9khb3kBnsVUhNpt4YobtEG0V\nxWJ7DO+G/n6tfWF/WfXefSXVn+kstirEfmk7QDZE6uRBPSfmjgfuSHd7bxbbm94cUbBYZ7FVYfY3\n4olTbYfIhqgeF7obWNzSRkJd3cVF019eWDp+21GFi0dqqakQqwV+bTtEtkRyxAbgxNxRpFhKrMEs\ntgPyl0opa6YQT/yP7RDZEtliA3Bi7nTgew2f01lsVQRtBPoRT3xiO0i2RHVXtN4kYAt4s9j+qfjP\nM3UWWxVB14ep1CDiIzYAJ+b+9qzC50+8wpvFtpftPErlWQ0wiHhiU0sbBknki+3DK/Yr7SmfLSGD\nyz+UCoFvE0+8YDtEtkV9V5Sev3tnG/Bj2zmUsuAvYSw10GLzxBP/AO6zHUOpPPoI7xhzKGmx7fJz\nYK3tEErlyY+IJxK2Q+SKFlu9eOJz4HzbMZTKgweIJ1zbIXJJi62heOJJAjxrqFJp+ASYaDtErmmx\nfd0vgQW2QyiVI/9DPPGF7RC5psXWWDyxDTidXWuqKhUWU4gn/mY7RD5osTUlnliJt6qVUmExH7jY\ndoh8ifwFuinFy/8KnGk7hlJt9CUwjHjiPdtB8kVHbKlNwJuUUqmgMsA5USo10GJLLZ7YAHwXWG87\nilIZiodhqu/W0mJrSTyxGDgNbyI+pYLkceAq2yFs0GJLRzzxHN5uqVJBsQxvFzSSB9G12NIVT9wF\nXGM7hlJpWAWckDyUEklabK1zGfCw7RBKpbAWbyqiVbaD2KSXe7RWvLwUeAEYYTuKUo1sAL4Z9FXc\ns0GLLRPx8s7Aq0B/21GUStoGnEg80ewCRVGiu6KZ8O61OwZYaTuKUsBO4AwttV202DIVT3wEjAKW\nW06ios0A44knHrcdxE+02NoinliNV25LLSdR0WSAi4gn7rEdxG/0GFs2xMv3BP4BDLEdRUVGLfAD\n4on7bQfxIy22bImXdwGeBw5sywOKAAAFfklEQVSyHUWF3hbgtLDPgtsWWmzZFC/fA3gOONh2FBVa\nXwKjiSdm2w7iZ3qMLZviiXXAt4C/246iQmk1cLSWWsu02LItnlgPjAH+ZDuKCpV3gBHJSRlUC3RX\nNJfi5T8EpgDFtqOoQJsL/BfxxBrbQYJCR2y5FE/8Bfg28LntKCqwbgOO0lJrHR2x5UO8vC8wA6i0\nHUUFxhZgAvHEVNtBgkiLLV/i5bsBDwEn2Y6ifO9d4LvEEwttBwkq3RXNF++kwmjg53g3LCvVFBcY\nrqXWNjpisyFePgR4ABhkO4ryjTrgd8BVUZ31Npu02Gzx5nWrBi4CxHIaZddKvNuj9Pq0LNFisy1e\nfhxwL7C35SQq/3YCfwR+Szyx1XaYMNFi8wPvPtM78Jb6U9GwFG+UNtd2kDDSYvOTePl38f4H7207\nisqZWuBa4Eriie22w4SVFpvfxMvLgBjwK6Cd5TQquxbgjdLetB0k7LTY/Cpe3gdv9HaK7SiqzT4G\nrgDuIZ7YaTtMFGix+V28/HjgJuAA21FUq20ErgNuIJ7YbDtMlGixBUG8vBjvspAY0MVyGtWyWuBO\nIE488antMFGkxRYk8fKOwARgEtDdchrVtMeBGPHEv20HiTIttiDyTjCMxzvB0MNyGuXdNfAE8Afi\niVdth1FabMHm3b0wDm8XVS8Ryb/NwD3AjcQTb9sOo3bRYgsD7xjc2XjH4XSlrNxbDdwK3JZcPFv5\njBZb2MTLvwH8GDgNvQ4u2xbjXYLzoF5c629abGEVL++MN4o7DxhqN0ygrcGbR+8B4on5tsOo9Gix\nRUG8fChewX0f6GY3TCBsAP4P+CvwT72oNni02KIkXl4AHI63itYYYKDdQL6yA3gWr8yeJJ7YYjmP\nagMttijz1mKoL7mjid5qWquAZ5KPF5KzHKsQ0GJTnnh5OXA8cCxwGN5ortBqpuz7ApgFvIi3i7nU\nch6VI1psqmneXQ6H4JXc4cmve1nN1Dqb8c5iLkw+XgEWEU/UWU2l8kKLTaUvXt6bXaO5/YC+ya+2\nT0h8yK4Cq3+8pSUWXVpsqu280V3fBo/9gK5AObBbo0cnWl7jYQewPfn4Am/an4+Bjxp99R46c4Zq\nRItN5Ve8XPDKbTe85R+3f+WhF76qLNBiU0qFji6YrFSSiHQXkQdF5F0RmS8ir4rId0RklIgkRGRB\ng8exyddsbPD6/iLydxF5S0TeEJFHRKR78nsjRGSuiKxIPi6w9XNGQZHtAEr5gYgI3lxqU40xY5PP\n9QZOBtYB/zLGjE7x+nZ4q7j/3BgzI/ncKKBr8r0fBE4xxrwhInsCz4rIR8YYN5c/V1TpiE0pzzHA\ndmPMbfVPGGPeN8bckubrxwKv1pda8vUzjTFLgAuBe40xbySf/wxvLr1Y1tKrr9BiU8ozEHgjxfeP\narQrul+j7w8CmrtJfmAT35uH3tKWM7orqlQTROTPwAi8s7W/pIVdUeUvOmJTyrMUGFb/G2PMhcC3\n8K7HS/f1w5v53rImvjc8+RqVA1psSnn+CbQTkQkNnmvfitc/CHxDRKrqnxCRo0VkEPBn4DwRGZp8\nvgveavDXtT22aopex6ZUkojsDfwJ77axtcAm4DbgE7zFWt5rsPlkY8yjIrLRGNMx+foK4Ea8Oy92\nAIuAi4wxn4jI0cAN7Lrz4kZjzJT8/GTRo8WmlAod3RVVSoWOFptSKnS02JRSoaPFppQKHS02pVTo\naLEppUJHi00pFTpabEqp0NFiU0qFjhabUip0tNiUUqGjxaaUCh0tNqVU6GixKaVCR4tNKRU6WmxK\nqdDRYlNKhY4Wm1IqdLTYlFKho8WmlAodLTalVOhosSmlQkeLTSkVOlpsSqnQ0WJTSoWOFptSKnS0\n2JRSofP/LrNWcuvLhmgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "zJjlGbueCbgY", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# make a new row\n", + "other = pd.DataFrame(\n", + " index=['Other'],\n", + " data={'Market Share %': [100 - 18.07 - 12.79]})\n", + "\n", + "insurance_appended = insurance.append(other)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "oA78g53TGjMr", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 364 + }, + "outputId": "e9ca5ead-6710-4a13-debc-d27437c63989" + }, + "cell_type": "code", + "source": [ + "insurance_appended.plot.pie('Market Share %', figsize=(6, 6));" + ], + "execution_count": 40, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAFbCAYAAAAurs6zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VNX9//HXmUwSAllIEBABHRWQ\n7YKCorbUfS1gtWi1Lh2pu1asK7HSX1O1ihU3VFyrjrRW61IVU/X7tV/BHWS/rLIY9lUx7CGTOb8/\n7gQjZhmSuXNm7v08H495QCZ35r7D8s7Nufeeo7TWCCGE8JaA6QBCCCGST8pdCCE8SMpdCCE8SMpd\nCCE8SMpdCCE8SMpdCCE8SMpdCCE8SMpdCCE8SMpdCCE8SMpdCCE8SMpdCCE8SMpdCCE8SMpdCCE8\nSMpdCCE8KJiqHU2fPr1DMBh8FuiLfFNxSwyYG41GLx84cOAG02GEEOakrNyDweCz+++/f6/27dtv\nDgQCMom8C2KxmNq4cWPvdevWPQucZTqPEMKcVB5B923fvv0WKXb3BAIB3b59+0qcn46EED6WynIP\nSLG7L/5nLMNeQviclIAQQnhQysbc9xYqLR+YzPerGDNkelPbjBo1av/XX3+9XSAQ0IFAgPHjxy8/\n6aSTtt95550dbrzxxk0FBQWxxl6f6HZ1DR8+PPTFF18UFBQU1ABcfPHFm0aPHi0nO4UQrjJW7qn2\nwQcftHn//ffb2rY9Py8vT69duzZYVVWlAJ566qmOV1xxxbdNlXai2+3t7rvvXjVixIjN+5o5Go0S\nDPrmr0gIkUS+GZZZvXp1dklJSTQvL08DdOrUKRoKharvvvvuDhs2bMg+/vjjexx99NE9AC666KID\n+/bt26tbt259brzxxgMA6tvujTfeKDz88MN79u7du9eZZ555SGVlZcJ/nvXtA6Bz587WNddc07l3\n7969nnvuueJBgwYddtlll3Xt27dvr0MOOaTP5MmTW5922mmHHnTQQX1Hjhx5QGP7EEL4l2/K/eyz\nz96yZs2anFAo1Pfiiy8+sLy8PB9g9OjRGzp06FA9efLkr6ZMmfIVwIMPPrh67ty5CxYuXDjv008/\nLZgyZUre3tutXbs2eM8993T66KOPvpo/f/6CAQMG7Ljrrrs61rfv0aNHd+nZs2fvnj179p46dWpe\nQ/uo3b5du3bR+fPnL7jyyis3A+Tk5MTmzp27YMSIERvPO++8bs8888yKhQsXznvllVf2W7duXZb7\nf3pCiEzjm3IvKiqKzZ07d/5jjz22vH379tFwOHzouHHj2tW3bSQSKendu3ev3r179168eHGr2bNn\nt9p7m0mTJrVZunRpq0GDBvXs2bNn75dffrndihUrcup7v7vvvnvVwoUL5y9cuHD+oEGDdja1j9/8\n5jc/GMI555xzvgPo37//zm7duu086KCDqvPy8nTXrl2rli1bVu8+hRD+5qsB3WAwyNChQ7cOHTp0\na79+/XZOmDCh3ciRI7+pu83ChQtzHnvssY7Tp09f0L59+5rhw4eHdu3a9aNvglprBg8evGXixIlf\n72uOpvax95h+q1atNEAgECA3N3fP5aSBQIBoNKr2df+ifkqpjsBDwDHAZmA38Nf4798C6v5d36K1\n/kAptU1rnR9/fQ/gYaA7sBVYAlyvtV6vlBoMPAgUxl//oNb66RR8WcKnfHPkPnv27FzbtnNrP545\nc2Zely5ddgO0adOmpna8fPPmzVl5eXmxkpKSmpUrVwYnTZpUVPuautudcMIJ26dNm5Y/d+7cXIAt\nW7YE5syZk0sCGtuHMEMppYA3gY+01odorQcCFwBd4pt8rLU+vM7jg71e3wooB57QWnfXWg8AxgPt\nlVL7Ay8BV2utewKDgauUUkNS9OUJHzJ25J7IpYvJtGXLlqyRI0ceuGXLlqysrCwdCoWqIpHIcoBw\nOLzpjDPO6NGxY8fdU6ZM+apv3747Dj300L6dOnXaPXDgwG2177H3dk899VTFBRdccMju3bsVwJ/+\n9KfV/fr1q2oqy7HHHruzoX0IY04Cdmutn6x9Qmu9HHhUKXVCAq+/EPhcaz2xzusnASil7gJe0FrP\niD+/SSl1G1CG8w1BiKRTWqfmptHZs2dX9O/ff1NKduZzs2fP3q9///4h0zkyiVJqJHCw1vrGej53\nAj8elhmutV5aOyyjlHoQWK61fqSe178BRLTWb9V5rgj4WmtdkuyvRQjw2Zi7EIlSSj2OM3yyG7gV\nZ1hmqNlUQiTON2PuQjRhHjCg9gOt9XXAyUD7fXh9Q3ddz6/ncwPjrxHCFVLuQjj+D2illLqmznOt\n9+H1LwE/qXuSVCl1nFKqL/A4cKlS6vD48+2A+3CuxBHCFVLuQgDaOfl0NnC8UuprpdRUIAKMim/y\nM6XUrDqPc/d6/U5gKHC9UmqxUmo+cC2wUWu9FrgYeEYptRD4DHiu7slXIZJNxtyFiIuX8AUNfLre\ny1Vrr3GP/34hcEYD230EHNXSjEIkSo7chRDCg8wduZcVJXXKX8oqE7pufuXKlcFrr72268yZM/OL\nioqi2dnZ+qabblpXUlJS8+tf//rQzp07767ddsyYMSvPPvvsra1btz5ix44dMwHmzJmTe/3113et\nqKho1aZNm5pQKFT11FNPrejatWv0/fffz7/lllu6btu2LQBw3XXXrb/lllvk8k8hRMr5algmFosx\nbNiwbhdeeOE3tdMGfPXVVzmvvvpq25KSkp1HHnnktg8//HBJQ6/fsWOHGjZsWPd777135YUXXlgJ\n8M477xSsW7cuqLXm0ksvPfjVV19dOnjw4B1r164NnnLKKd27dOlSfcEFF1Sm6msUQgjw2bDMxIkT\nC7Kzs/Vtt922sfa5Hj167L7jjjsSWjzj6aefLhkwYMC22mIHGDp06Najjjpq1wMPPNDh/PPP/2bw\n4ME7wJlS+J577ll1//3375/8r0QIIRrnq3K3bTuvX79+Oxr6/LRp0/Jrp+bt2bNn73nz5v1grpi5\nc+fmDRgwoN7XL1iwIO/II4/8wecGDx68Y8mSJXn1bS+EEG7y1bDM3i655JIDp06dmp+dna3HjBmz\nqqlhGSGEyBS+OnK3LGvnnDlz9tyYMmHChBWTJk36avPmzQl9k+vTp8+uGTNm1HtjS8+ePXdOmzbt\nB5/79NNPW3fr1m1ny1ILIcS+81W5Dxs2bGtVVZW677779txSXntlSyKuuOKKb6ZPn57/8ssv77nm\n+d13383/8ssvW918880bX3nllXafffZZHsC6deuy/vCHP3S5+eab1yX3qxBCiKb5blbI5cuXZ193\n3XVdZ86c2aakpCTaunXrmssvv3xjp06dontfCjlq1Ki1I0aM2Fz3UsiZM2e2GjlyZNcVK1bkBoNB\n3atXr51PPPHEiq5du0bffffd/FtvvbXr9u3bA1prdc0116wfNWrUxobTuENmhQTKinKB4jqPfCAG\nRIHq+K+1j13ANpwFNrZRVrlPC6ALkY58V+5+4MlyLyvKBnoAvXAW0Cje69F2r49/tDRigjSwE6fo\ntwJrgGU40/0u2/Moq5SfyERa8/UJVZGGnCPuw4A+QO86j26k5t+rwpkwrDXQMb7f4+rJuQOo4MfF\n/zWwmLLKXSnIKkSDpNyFOWVFfYAj+GGJHwJkmYyVoNZ8n3lvuykrmgF8En98Slml/NQqUkrKXaRO\nWVFn4FTgFJy50r16g1cOziLbxwC3AFBWtAj4lO/L/itj6YQvSLkL95QVFQIn4JT5qUBPo3nMOiz+\n+C0AZUUbcKb+dcoeplNWWW0snfAcKXeRPGVFQZyj1dqj80HIv7GGdMCZP/7s+MebKSv6N/Av4L+U\nVUaNJROeIP/xRMs4J0CHAhfilHqB2UAZqxjnqP63wCbKit4AXgEmU1ZZYzSZyEjGyt2KWEmd8tcO\n2wlN+bt06dLsK6+88sAlS5bkxWIxTjnllMonnnhi1YwZM1qtXLky5/zzz68EuOmmmw7Iz8+vufPO\nO9cnM6cnlBUp4Hic1YWG41yGKJJnP+DK+GM9ZUWv4xT9J3INvkiUr+5QjcVinH322d3OOuus75Yv\nXz7366+/nrt9+/bADTfc0HnatGmty8vL611tpzmiUe/9VG1FrMOee6jLbcAK4EPgMqTY3dYRZ7m+\nycBKyooeoazoJ/FvsEI0yFfDMhMnTizIzc2N3XDDDd8ABINBnnzyyZWhUKhfMBjUWmt69uyZf/PN\nN68FZ6bHQYMGHbZmzZqcq6++ev3o0aM3AIwfP77kiSee6FhdXa0GDBiw/cUXX1weDAZp3br1ERdd\ndNHGjz76qHDcuHErTj/99G0mv95ksCJWG+A84HLgp0+1LZr/28qtXQzH8qsDgJHxxwrKiv4GPElZ\nZUJTVgt/8dWRu23bef379//BtLwlJSWxzp07777pppvWDhs2bPPChQvnX3HFFZsBlixZ0mry5Mlf\nffnllwvGjh17QFVVlZoxY0ar1157rWTatGkLFy5cOD8QCOgnn3yyHcDOnTsDRx999PZFixbNz/Ri\ntyLWgVbEegjnDs3ngZ8C7AgEes/OzVlkNJwAOBD4M07Jv0BZ0RGmA4n04qsj93112mmnfZeXl6fz\n8vKiJSUl1atWrQq+9957BXPnzm3dv3//XgC7du0KdOjQIQqQlZXFpZdeutls6paxItYRwK04R+v1\n/vsYW1K8fsLa9YelNJhoSC4QBsKUFX0MPPJw9Jdv/P7u51Mzr4hIW74q9759++588803i+s+9+23\n3wbWrl2bEwwGf/SfITc3d89zWVlZRKNRpbVW55133jePP/746r23z8nJiQWDmflHakWsM3FuuDmp\nqW1n5eb036nUjjyt653+WBjzsx06t8PD0XPve7i0/AHg+YoxQ2QaBJ/y1bDMWWedtXXXrl2Bxx57\nrB04Jz2vvfbaruedd96m/fffvzqR6X/POOOMLe+8807x6tWrgwDr16/P+uqrr3Lczu4GK2JlWxHr\nUiti2cB/SKDYAVCqKFJUMMPVcKJZ7oue/y1wKDAeqAiVlt8eKk3ehQIicxg7zEz00sVkCgQCvPnm\nm0uuvPLKg+6///5OsViMk046qXLcuHGrt2zZEhg7dmynnj179q49oVqfgQMH7ho9evTqk08+uUcs\nFiM7O1uPGzduRY8ePXY39Jp0Y0UsBfwauAtnLpd99mJhYdHV321Jai7RMlU6+PWLNacdXeepjsA9\nwK2h0vJ7gUflSN4/ZMpfD2psyl8rYp0O3IszYVeLvLJ67ZLeu6u7tfR9RHI8WD38k3E1wwc3sslK\n4E9ApGLMELle3uN8NSzjZ1bEOtKKWB8A75GEYgcYW1L8o/MOwoyoDqweX/OLo5vYrCvwHDA7VFo+\nNAWxhEGZefZPJMyKWN1wfjQ/F2eu8qSZ1iq3X5ViV65u9sIYIkkiNacviRLsnODmfYGJodLyj4BR\nFWOGfOFiNGFIKo/cY7FYTO6qc1n8zzhmRaw2VsS6H1iAc1lj0v/stVLF/ygsSPm5E/FDNVpt/Gv0\n/KaO2utzHPB5qLT81VBpudyY5jGpLPe5GzduLJKCd08sFlMbN24s+rb62w3APJxLG1396ey5osI2\nbr6/aNobNT+bX0VOS356OheYHyotvz5UWi5DtR6RshOq06dP7xAMBp/F+ZFQ/gG5IEZMLd2+NPjg\nsgcP2FqzNWX7/feqtV93q64+OGU7FHtoTaVV9azaRuvCJL3lF8AVFWOGzE3S+wlDUlbuwj1WxAoA\nV+OMraf8muaf7Ng5+an1G49P9X4FvF9z5KSrqm86IclvWw3cD9wll05mLin3DGdFLAt4GmeRDCOU\n1pumVawszHGWlxMpojXbB1Q9WbWZwhKXdrEYuKpizJAPXXp/4SIZHslQVsRSVsS6BZiGwWIH0Ert\n9y85sZpyn8d6T3Ox2AG6A/8XKi1/NlRanu/ifoQLpNwzkBWxOgLv4vzonBZHy8+0Lcw1ncFPtGb3\nLdVX90jR7i4DpodKy/unaH8iCaTcM4wVsc4A5gCnm85S17eBwBEVweAK0zn8wtYHT1nDfp1SuMse\nwJRQafl1KdynaAEZc88QVsTKwZk24EZcuGY9GY7fsWPSY+s3nWA6h9dpTc3Ju8euWqYPOMhQhDeA\nyyrGDPnO0P5FAuTIPQNYEas78DlwE2la7AAf5+X1joL31hdMM0v1AVMMFjvAL4FZodJyo+d6ROOk\n3NOcFbF+CcwABpjO0pSYUh3eKMiXE6su0hp9U/U17U3nAA4CPg6Vlo8KlZan7QGHn0m5pzErYo0G\nXgMy5kqFJ9sWZpnO4GVraPflHH1od9M54oLAGOCNUGm5LNySZqTc05AVsVpZEeslnPnWM+qoaGNW\n1oBVwSyZLdIlt1ZflY7TPZwNfBQqLU/lCV7RBCn3NGNFrP2ByTiLaWQepQIPlBQvNh3Dizbpwpmf\nxfr2MZ2jAQOBqXK5ZPqQck8j8cWpvwQGmc7SEv/XOu+wGqgxncNrRlf/1nSEpnQBPgmVlv/cdBAh\n5Z42rIg1HPgE5z9IRosp1WlifhtZYzWJtuq8ee/FBiVlkRWX5QNvh0rLrzcdxO+k3NOAFbGuAV4F\nPHNSanxxkdxAkUR3RS/ebjrDPsgCxoVKyx8NlZbLCXZDpNwNsyLWzTgr1WfUidOmrM3KGrguK2ud\n6RxesFPnLP5XzQlHmc7RDL8DXg2VlmebDuJHUu4GWRGrDBhrOocrlMp6qKTtItMxvOCh6LkbQWXq\nN/9zgNdCpeVpMQeSn8j0A4bEl8C7xXQON2VpvWpmxcrOymM/laRStc5aflhVpEuMQKYPb/wH+GXF\nmCFVpoP4hRy5p1h8qt7xeLzYAWqU6vJum9ZyYrUFnqoZusIDxQ7wc+CtUGm5LKaeIlLuKWRFrCzg\nBeAaw1FS5tHiomrTGTJVjQ6sfSQ6vDkLX6er04GJodLyPNNB/EDKPUWsiKVwiv03hqOk1KpgcOCm\nrMBG0zky0Us1J31VTdBrY9WnAOWh0vJ0vNPWU6TcU+dB4GLTIVJOqexHitvONx0j08S0+ube6IVH\nms7hkhOBd6Xg3SXlngJWxLod+L3pHKa8k98mpEHO3O+DibFj7R208nL5/Qx4Ra6Dd4+Uu8usiHUZ\ncI/pHCZFlTrov63zZpvOkSm0Zssfqy/NhLtRW2oIzj0ewgVS7i6yItbZwFOmc6SDR4rb7jCdIVN8\nGDt85hbyi0znSJErQ6Xlo02H8CK5zt0lVsQ6HngPkEu/ALSu+mjF6u3FsViJ6SjpTGt2HlU1ftsm\n2qbDghypdGnFmCER0yG8RI7cXWBFrP7AW0ixf0+p3MeKi2zTMdLdl/qwqT4sdoBnQqXlp5oO4SVS\n7klmRawOwETALz9WJ+zNgvyupjOkM62pvrn6mm6mcxiSjTNNgcwHnyRS7klkRawc4HVASqweu5U6\n5OO8VnNM50hX8/VBU1bqDp1N5zCoEPhPqLQ846e9TgdS7sn1GDDYdIh09lBJ262mM6QjrYndVH2N\nn4u91gG4MJOkUuoOpdQ8pdQcpdQspdTR8ed/r5RqcqrtRLfb6zUvKKW+ju9vllJqZHPzN4eUe5JY\nEesq4ArTOdLd4uzsAZUBVWk6R7qp0B2nLNIHHmw6R5o4hiTOlqqUOhYYCgzQWvfDuUt2ZfzTvyex\ndRQS3W5vt2qtD48/xiX6IqVUi6//l3JPAitiDQIS/ovzNaXynmxbJNe87+Wm6mvlKqIfGhkqLT83\nSe/VCdikta4C0Fpv0lqviR9JHwB8qJT6EEAp9YRSalr8KP/P8efq2+40pdTnSqkZSqlXlVL5iYap\nbx/x5yuUUvcppWYA5ymlJimlHopvu0ApdZRS6g2l1GKl1N1N7kcuhWwZK2LtB8xAxtkTlhuLLZ62\nfFV30znSxTpdPO2Yqse9OtVAS2wBjqwYM6RFC67Hi/cTnCPvD4BXtNaT45+rAI7UWm+Kf1yitf42\nfuT8X2Ck1npO3e2UUvsBbwBnaq23K6VGAbla6zv32u8LwPFA7U+ql2it7Sb2MV5r/df46ycBU7TW\no5RSNwCjcBYi/xZYCvTXWn/T0NctR+4tYEWsAPASUuz7pCoQ6D6lVe480znSxW3VV3ptcrBkKcS5\ngqZFs0hqrbfhlOKVwEbgFaXUpQ1s/qv4kfNMoA/Qu55tjok//6lSahYQBg5q4P3qDsvUXgrc2D5e\n2ev1b8d/tYF5Wuu18Z9AltFE70i5t8zNgFyb2wwPlBRvNp0hHWzW+bM/ivXvZzpHGusHPN7SN9Fa\n12itJ2mt/4Sz/N/wvbdRSh2Ms87CyfGx+XLqv1dFAf9bp7R7a60vSyRHAvvYe63c2sVNYnV+X/tx\nsLF9Sbk3kxWxLOAu0zky1YKc7CO2KeX7K2f+X/WlUdMZMsCIUGn5iOa+WCl1mFKq7jDg4cDy+O+3\nAgXx3xfilGulUqojcGad19Td7gvgp0qpbvH3b6OU6pFgnMb2kVRS7s0Qv559ApBrOkvGUqrNM20L\nZ5qOYdJ23WrBxNhPBprOkSEeD5WWJ1qge8sHIkqp+UqpOTjDIGXxzz0NvKeU+lBrPRtnqGQhznDr\np3Xeo+52G4FLgX/G3+9zoGciQZrYR1LJCdVmsCLWPcDtpnNkurxYbOHU5asS+k/hRX+sHvHFhJpT\njzGdI4N8DgyuGDMkZjpIJpAj931kRayfALeZzuEFOwOBnjNycxaYzmFClc5eOqHmFC8toZcKx+Kc\n5xIJkHLfB1bEagO8CMgCA0kytqR4k+kMJoyLnrMOlDKdIwPdGSot72U6RCaQct83DwCHmg7hJXZu\nzuE7lNr7CgFPq9ZZq56sGSZH7c3TCnguVFou3dUE+QNKkBWxTgSuMp3Dc5QqeL6ocIbpGKn0fM0Z\ny2rIavQyNtGoY4BrTYdId3JCNQFWxAoCs3BuOBBJlh+Lzft8+Spf/NnWaLWhd9XzhVXkyFz/LbMV\n6F0xZsgq00HSlRy5J+Z3SLG7Zlsg0GduTk6LbjHPFK/WHD9fij0pCpD1VxslR+5NsCJWR2ARsviG\nqwbs2vVRZO2G40zncFNM851V9bfgdvISnmRKNGlYxZgh75gOkY7kyL1p9yHF7roZubn9dym103QO\nN70XGzRbij3p/hoqLZer1+oh5d4IK2IdC/zGdA5fUKpoQmGBZ0+sas22P1RfJnPIJF8vZB2Fekm5\nNyA+4+NjOJMEiRR4oaigoOmtMtMnMWv6dxQUm87hUX8OlZZ79t9Oc0m5N+xyYIDpEH6yJSur38Kc\n7KWmcySb1lTdWn2Vb6dZSIEOQKnpEOlGyr0eVsTKA/7c5IYi6R4oKfbcpW2zdLep6yjpaDqHx90o\nC2v/kJR7/a4C9jcdwo+mtMq1dv9w3uqMpjU1N1ZfEzKdwwfygL+YDpFOpNz3Ej9qH2U6h19ppUpe\nLiyYbjpHsnylu3xRoTvJSl2pcUmotPwI0yHShZT7j12DHLUb9WzbwuasMp92tEbfWH2t/FtKHYUc\nve8h5V6HFbFaI0ftxm0OBPovyw4ub3rL9LZKt586X4dkornUOjNUWi6XnCLlvrdrcc68C5OUUmNL\nir82HaOlbqm+Si7PM0MO0JDpB/aIH7VXAO0NRxGA0nrj9IqVbbMh23SW5tioi6YfVfWELKFnRg3Q\nrWLMkArTQUySI/fvXYsUe9rQSrV/vSA/Y0+s3l59mUzpa04WsmKTlDuAFbGygBtM5xA/9FTboows\nyErd2v4gdmR/0zl87reh0vL9TIcwScrd8QtAboBIM5uyAgNWBIMZd1PTXdFLdpnOIGgNjDQdwiQp\nd8fvTAcQ9VAq8EBJ2yWmY+yLHTpn0Ws1xx9lOocA4LpQaXkb0yFM8X25WxGrN3Ci6RyifpNa5/Ws\ncU6QZYSx0fO/NZ1B7FECXGY6hCm+L3dkLca0FlNq/7fy22TEidXdOljxfM3psvB1ernSdABTfF3u\nVsQqQOZrT3vjizNjrZQnaoat0gR8/X8qDfUJlZb7cpjM7/8Qf4OzFqNIY+uzsgauCWatNZ2jMVEd\nWPNo9Bw5ak9PI0wHMMHv5S5DMplAqayHitsuMh2jMRNqTl0SJZiRN1z5wK9DpeW+W5Tct+VuRayj\ngd6mc4jE/G+b1t1jEDOdoz4xrTbdF73Alz/6Z4i2wDmmQ6Sab8sdON90AJG4GqU6/6dN67RcY/XN\n2E/n7SI3z3QO0SjfDc34cm4ZK2IpYAVy41JG6Vwd/eK9VWuOMZ2jLq2p7Ff1DFtpkxlnff0rBoQq\nxgxZaTpIqvj1yP2nSLFnnNXBrCM3ZGVtMJ2jrg9iA2dJsWeEABA2HSKV/FruF5gOIJpBqeDDxUXz\nTceopTU7Sqsv72M6h0jYxaYDpJLvyj0+Sdi5pnOI5nk3v80hGtJiLHGK7jXtG4p8PTlVhjksVFre\n3XSIVPFduQPHA7ISfYaKKnXg/7bOm2U6h9bsvnn31b4pCg8ZZjpAqiRc7kqpbkqpvyulXldKHetm\nKJfJVTIZblxJW+OzLs7VB09dTftOpnOIfeabcm/wahmlVCut9a46H/8TuC3+4USt9eEpyJdU8atk\n1iOLcmQ2rXdPWrF6S7tYzMiQiNbUnLL7/lVLdeeDTOxftEgUaF8xZsh3poO4rbEj94lKqbrzrlQD\nIeAgMmiWvr0cgRR75lMq59HitvNM7X6Z7jRVij1jBYEzTIdIhcbK/QygUCn1nlLqOOAW4HScO70u\nSkU4F5xiOoBIjrcL2hxoYr9ao2+qvqadiX2LpPHF0EyD5a61rtFaP4YzRn0W8AjwvNb6Zq31wlQF\nTLKTTQcQyVGt1MGT8vJmp3q/a2k3bbbu1iPV+xVJdUaotDzLdAi3NVjuSqmjlVKvAU8ALwCjgb8o\npR5QSrVNUb6ksSJWLjDYdA6RPA+XtN2W6n3eWn2VTDOQ+UpwbmT0tMaGZZ7CWYOwDHhKa71Ua30B\n8DbwSgqyJdtPcNZVFB6xNDs48LtAYHOq9vetLpj1aaxv31TtT7jqVNMB3NZYuUf5/gTq7tontdaT\ntdanu5zLDTLe7jVKtRpfXDQnVbv7Y/WItJyVUjRLJl/OnZDGyv1CYDhwEt5YrUjK3YPeyG/TORX7\n2aZbzS+PHTMgFfsSKTEoVFrwbSuhAAAU5klEQVTu6Zs4Gzuh+lX85OntWuuMnknNilhFwEDTOUTy\nVQUC3T7LazXX7f38JXpRysf3hasKAE8PsXn6O1cdgwDPnx33qweL27p6Q8ounb3knzUnyWIc3uPp\noRm/lPsRpgMI9yzKyR6wJaAq3Xr/h6PDN4BSbr2/MCat1gZItoTKXSmVp5Q6zO0wLpJy9zKlWj/d\ntsiVa96rddaKp2uGysLX3uTvI3el1DBgFvBe/OPDlVJvux0syaTcPe6VgnxXZvp8pmbI8hgBGdLz\nph6h0vIS0yHcksiRexnOmPV3AFrrWcDBLmZKKititQFkalaP2xUIHPZlq9ykLuRRo9W6h6PDByXz\nPUVaUXh4aCaRcq/WWu89npkWiyUkqD/+Obfgaw+UtP0mme/3cs2Ji3aTnZvM9xRpx7OXtyZSevOU\nUhcCWUqp7kqpR4HPXM6VTDIk4xPzcnKO2K5UUi5ZjGn17V+iFx+ZjPcSac2z8wQlUu7XA32AKuAl\noBL4vZuhkkzK3S+Uyv9b28KZyXird2LH2Dto1SYZ7yXSmj/LXSmVBdyptb5Da31U/DG67iIeGSDj\nFhURzfdSYUGLp+PVmq1/rB7RPxl5RNrz7Pm4Rstda11D5s+k6Nm/PPFj2wOB3nNycxa15D0mx/rN\nqCQ/42Y+Fc1SEiot9+T8/IkMy8xUSr2tlLpEKfXL2ofryZLAiljtgELTOURq3V9SvL65r9WaXaOq\nr+yVzDwi7XlyaCaYwDatgG9wJhCrpYE3XEmUXIeYDiBSb1ZuTv+dSu3I03qfp3ierntMXU/JcW7k\nEmmrB/C56RDJ1mS5a61HpCKIS6Tc/UipokhRwadXf7dlnxZk0JroTdXXyL8Z//Hk0G2T5a6UagVc\nhnPFTKva57XWv3UxV7IYWWdTmPdiYWHh1d9t2afXLNRdp6zQHT2/Qo/4EU8OyyQy5j4B2B9ncezJ\nQBdgq5uhkqir6QDCjK1ZAWtBTvbSRLfXmtiN1dd1cjOTSFsZc8f9vkik3Ltprf8IbNdaR4AhQKZM\npJSShRxEerq/pHh1otuu0B2mLtQHypCMP+1nOoAbEpp+IP7rd0qpvkAR0MG9SEnVxXQAYc60VrnW\nbufmuybdXH1Nkdt5RNry5ORhiZT700qpYuCPOItjzwf+6mqq5JEfs31MK1X896KC6U1tt163nT5N\nHyaXP/pXYai0PNt0iGRL5GqZZ+O/nUzmXX0iR2M+91xRYevfVjZ+iqi0+opELgkW3lYCNPv+iHSU\nyNUyuTgLZYfqbq+1vtO9WEmTbzqAMKsyK+vwJdnZX3errq73pNl3us2cD2NHyFQDoh0eK/dEhmXe\nAn4BRIHtdR5pLT6Pu0z1K7i/pO2Khj5XVh3encosIm15bgqCRH4c7aK1PsP1JMknR+0CgM/zWvXZ\nDbtzIKfu8zt07sI3Y4NlWl8BHjypmsiR7WdKKcv1JMlXYDqASA9aqf1eLcz/0YnVMdELNpvII9KS\nf47clVI2zhwyQWCEUmoZzmVlCtBa636pidhsUu5ij2faFuVetOX7dTyqdHDZhJpTM+V+DeE+zx25\nNzYsMzRlKdwh5S72+CYQOKIiGFwRikYPBHgsevZaTSDTrv4S7vHcpZCNDctsBNZorZdrrZfjzCvz\nS2Bg/ON0J2Pu4ntKqbHt2n4NENWBVeNrfiFH7aKuLNMBkq2xcn8P5/JHlFLdcKbEPAS4Til1r/vR\nWizPdACRXj7Oy+sVhegLNWcsqyFLrm0Xdfmq3Iu11ovjvw8D/9RaXw+cSWYM2URNBxDpJaZUhwkF\nxR/fH/3VINNZRNrxXLk3dvSi6/z+JOB+AK31bqVUzNVUyVHd9CbCbx5sV9Anu/gvSz03wCpaRNfk\nb3PmRPSOxsp9jlJqLLAa6Ab8D4BSKlPWlpRyFz+m6KCyqjJl4juRIiqrap9X7Up3jQ3LXAFswhl3\nP01rvSP+fG9grMu5kkHKXQiRqBrTAZKtwSN3rfVOYEw9z38GfOZmqCSRchdCJMpz5e7luVek3IUQ\niZJyzyBS7kKIRO3bgrsZoMlyV0qdl8hzaUjKXQiRqG9NB0i2RI7cb0/wuXSzrelNhBAC8GC5NzZx\n2JnAz4HOSqlxdT5VSGbcILTBdAAhRMbwXLk3duS+BpgG7AKm13m8DZzufrSWscP2DuToXQiRGM+V\ne2OXQs4GZiulXopvd6DWelHKkiXHemQCMSFE0zxX7omMuZ8BzMKZSAyl1OFKqbddTZU8nloTUQjh\niqgdtitNh0i2RMq9DBgEfAegtZ4F1LvYcBpaZzqAECLtfWc6gBsSKfdqrfXe39V0vVumHzlyF0I0\nZZPpAG5IZE7reUqpC4EspVR3YCSZMf0ASLkLIZq2zHQANyRy5H490Adn/dSXcO7k+r2boZJIyl0I\n0ZQlpgO4IZEj945a6zuAO2qfUEodBXzpWqrkqTAdQAiR9paaDuCGRI7cX1dKda79QCl1HPCce5GS\naoHpAEKItOfJI/dEyv0q4E2l1P5KqZ8Dj+LcuZoJVgDbTYcQQqQ1f5a71vpLnJOo/4NzWeQpWuuV\nLudKCjtsayDTbrwSQqRODfC16RBuaGxumYn88JLH1kAl8DelFFrrs9wOlyQLgAGmQwgh0tIKO2x7\ncgbZxk6oZsJSeomQcXchREM8OSQDjc8tM1kplQV8oLU+MYWZkk3KXQjREM/2Q6Nj7lrrGiCmlCpK\nUR43ePYvTwjRYplwSXezJHKd+zbAVkr9L3WuPNFaj3QtVXItAXYDOaaDCCHSzhTTAdyitG58mhil\nVLi+57XWEVcSucCKWF8AR5vOIYRIK5vtsF1iOoRbmjxyz6QSb8SnSLkLIX7Is0MykNgC2d2VUq8p\npeYrpZbVPlIRLok+MR1ACJF2PDskA4ndofo88ATOuqknAi8Cf3czlAs+NR1ACJF2ppoO4KZEyj1P\na/1fnPH55VrrMmCIu7GSyw7bG4DFpnMIIdKKp8s9katlqpRSAWCxUup3wGoyc13ST4DupkMIIdJC\nRfygz7MSOXK/AWfqgZHAQOASoN4raNKcDM0IIWp9aDqA2xK5Wqb2jPI2YIS7cVwlJ1WFELXeNR3A\nbQ1e566UeruxF2bQxGF7WBFrDdDJdA4hhFE1wH522Pbkwti1GjtyPxZYCfwT55IhlZJE7noHuMJ0\nCCGEUZ97vdih8TH3/YE/AH2BR4BTgU1a68la68mpCOeCRn8aEUL4wn9MB0iFBstda12jtX5Pax0G\njsGZo2VS/IqZTPUBsjKTEH7n+fF2aGJuGaVULs417b8GQjhHvs9prVenJJ0LrIj1b+Bs0zmEEEas\ntcP2AaZDpEJjKzG9iDMk8x/gz1rruSlL5a63kHIXwq/eMx0gVRo7oXoxzhDGDcBIpfacT1WA1loX\nupzNLe8AMRK7xl8I4S0TTQdIlcbG3ANa64L4o7DOoyCDix07bG8CPjedQwiRct/hk5Op4N+j1zdN\nBxBCpNyrdtiuMh0iVfxa7v/EGZoRQvjHBNMBUsmX5W6H7dXA+6ZzCCFSpgKfTUHiy3KPe850ACFE\nyvzDDtuNrynqMX4u97eBTaZDCCFSwldDMuDjcrfD9m4yb0UpIcS+m2aH7UWmQ6Sab8s97m+mAwgh\nXOe7o3bwebnbYXsuHl8BXQif2wZETIcwwdflHicnVoXwrufssF1pOoQJUu7wD8CXf/lCeFwMZ7py\nX/J9udtheyvwjOkcQoike9sO28tMhzDF9+Ue9whQbTqEECKpHjIdwCQpd8AO26uAV0znEEIkzXQ7\nbH9kOoRJUu7f+yvgqzvYhPAwXx+1g5T7HnbYtnHmehdCZLY1wL9MhzBNyv2H7jYdQAjRYvfaYdv3\n59Ck3Ouww/ZUnEW0hRCZ6WvgadMh0oGU+4+VmQ4ghGi2P8XnjfI9Kfe92GH7U+DfpnMIIfbZXJyb\nEgVS7g0ZhVz3LkSmGW2HbVlhLU7KvR522F4MPGk6hxAiYV/YYfst0yHSiZR7w+5E5pwRIlPcbjpA\nupFyb4AdtjcB95rOIYRo0v/YYXuS6RDpRsq9cY8AK0yHEEI0qBq40XSIdCTl3gg7bO8C7jCdQwjR\noIftsD3fdIh0JOXetH8Avp6ASIg0tQr4s+kQ6UrKvQl22NbA5cAu01mEED9wox22t5sOka6k3BMQ\nvzSyzHQOIcQe79hh+zXTIdKZlHviHgBmmA4hhGAbcK3pEOlOyj1BdtiOApcBUdNZhPC5O+ywvdJ0\niHQn5b4P7LA9C7jfdA4hfOwz4DHTITKBlPu+uxNYZDqEED60BbhI5o9JjJT7Popf+34ZUGM6ixA+\nc7UdtitMh8gUUu7NEJ8WuMx0DiF8ZIIdtv9pOkQmkXJvvnuA/zEdQggfWApcZzpEplFaa9MZMpYV\nsToAs4BOprMI4VHVwOD4EphiH8iRewvYYXsDcCEy/i6EW/4kxd48Uu4tFJ9qVOa3ECL5/g+4z3SI\nTCXlnhx/AT4wHUIID/ka+JVc9th8MuaeJPHx9xlAZ9NZhMhwW4Fj7bA9z3SQTCZH7kkSH38fhjPv\nhRCieWLAhVLsLSflnkR22J4JXICcYBWiuW63w/Y7pkN4gZR7ktlhuxz4vekcQmSgF+2w/VfTIbxC\nyt0Fdth+DGf9VSFEYj4HrjQdwkuk3N1zE/CW6RBCZIAK4Bw7bFeZDuIlcrWMi6yI1Rpn/dWBprMI\nkabWAD+zw/Yy00G8Ro7cXWSH7R3AUJy5MYQQP7QJOEWK3R1S7i6zw/Y64ERA/gEL8b1K4DQ7bC8w\nHcSrpNxTIL4k2Ik4Y4tC+N124Mz4pcPCJVLuKWKH7RU4Bb/CdBYhDKoCfmGH7c9NB/E6KfcUiq8i\ncyIgi/sKP4oC59lh+7+mg/iBlHuKxU8enQSsNp1FiBTaBQy3w/ZE00H8Qi6FNMSKWD2AD4EDTGcR\nwmWVwFl22P7IdBA/kSN3Q+yw/RVwLCBXCwgvWw+cIMWeelLuBsVPsv4U+Nh0FiFcsAz4qR22Z5kO\n4kdS7obZYXszcCrwmuksQiTRHJxilxv4DJFyTwPxOTXOBx42nUWIJPgEOD5+A58wRE6ophkrYt0I\nPAAo01mEaIZ/AFfYYXun6SB+J+WehqyI9SvgBSDPcBQhElUD3GqH7YdMBxEOKfc0ZUWsw3HG4Q81\nnUWIJnwDnC83J6UXGXNPU/ErDAYic8KL9DYLOFKKPf1IuacxO2xXAucApci6rCL9/BPnipgK00HE\nj8mwTIawItYJwMtAR8NRhIjiLGQ91nQQ0TAp9wxiRaxOwL+AwaazCN9aBFxsh+1ppoOIxsmwTAax\nw/ZanFkl70aGaUTqPQ4cIcWeGeTIPUNZEWsQ8CJwmOkswvPWAiPssP2+6SAicXLknqHssD0VOAIY\nB8h3aOGW1wBLij3zyJG7B1gR62fAs0AP01mEZ1QC19the4LpIKJ55MjdA+yw/THQH/grMhYvWu7v\nQE8p9swmR+4eY0WsAcCjwE9MZxEZZy5wncy97g1S7h5lRaxfA/cBXU1nEWlvC1AGPGqH7ajhLCJJ\npNw9zIpYecBt8Udrw3FEenoJuCV+ma3wECl3H7AiVheco/gLTWcRaWMmcKMdtiebDiLcIeXeAkqp\nLjg3dvTGOTn9DnBr/OMDtNb/iW9XBmzTWhu9XduKWMcCDwFHm8whjFoE/BF4zQ7b8p/fw+RqmWZS\nSingDeBNrXV3nMsQ84G/AIcDP0/ivrKS8T522P7cDtvHAGcCnyXjPUXGWAFcDvSxw/arUuzeJ0fu\nzaSUOhn4k9b6uDrPFQLLgWqclZRWA/cCvYADgUPivz6stR4Xf83FwEggB5gCXKu1rlFKbQOeAk4B\nrtNaf5Lsr8GKWCfjHMUdn+z3FmljBXAP8JwdtqtNhxGpI+XeTEqpkcDBWusb93p+JvA80ENr/bv4\nc2XAaTjzwhTg/Gi8P9AN59r0X2qtq5VS44EvtNYvKqU0cL7W+l9ufy3xm6D+H843EuENS4H7kVL3\nraDpAD5SrrWuAqqUUhtwpu49GWdBji+dUR7ygA3x7WuA11MRLH4T1KlWxDoGGI0zpCRruGamD3Cm\npCi3w3bMdBhhjpR7880Hzq37RHxY5kCc+a73VlXn9zU4f/YKiGitb69n+11a65TebWqH7S+AoVbE\nOgS4Evgt0D6VGUSz7AAmAOPssD3fdBiRHuSEavP9F2itlPoN7Dnp+QDOwtbrcYZfEnmPc5VSHeLv\nUaKUOsiduImzw/YyO2yXAl2Ai4CPDUcS9VuOcw9DFztsXy3FLuqSMfcWUEp1BcYDPXG+Uf4HuAVo\nA7wPZPP9CdU9l0IqpeYCQ7XWFUqp84Hb46+vxjl5+oVSapvWOj/VX1NDrIjVF7gauAQoNBzHz3bi\nXHL7d5yhF5lLSNRLyl3sEytitQF+AfwKOAPINZvIF2pwfsp7CXjDDttbDecRGUDKXTSbFbEKgLOA\n85Cid8NUnEJ/xQ7b60yHEZlFyl0khRR9UuzGOb/xHvCWHbYXG84jMpiUu0i6+NDNcTiXep6Ec8eu\nXFpZv6U4Zf4e8KEdtrcbziM8QspduM6KWO1wbuA6Of7objaRUd8An+OccH/PDttLDOcRHiXlLlLO\nilhdcaY8OAIYgHNk39ZoKHfsBGYAX+KMn0+1w/ZSs5GEX0i5i7RgRayDccq+7uMAo6H2zRpgCc7U\nEtNwynyuLH4hTJFyF2nLiljFQKjO46C9fp/Ko/0qYCOwDFiMU+SL44+lMlYu0o2Uu8hYVsQqAjoD\nJUBxnV8LcaZfbhP/NQ+IxR81DfxaDXyLMya+aa9fv7HD9rZUfV1CJIOUuxBCeJDMLSOEEB4k5S6E\nEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k\n5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6E\nEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k\n5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6EEB4k5S6E\nEB4k5S6EEB4k5S6EEB70/wG6aF0DBy/cAAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "voqZAGUkCbgb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Fix misleading plot #3" + ] + }, + { + "metadata": { + "id": "aG8uWsoSCbgd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 336 + }, + "outputId": "a1ea7ff0-4825-4d53-f9a0-bbd447c3285c" + }, + "cell_type": "code", + "source": [ + "misleading.plot3()" + ], + "execution_count": 41, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAE/CAYAAACEto0QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYJVV9//H3YXNDQFQEgz8rKAZX\nFhWXqLhHLYzi9kSN4hpEXJIoWi6AK1aMxhhcQENEo2Dc4kLhBrggKKKgokHBpRQEZGcQUIaZ+v1R\nNdozzAzTPbf7W8v79Tz3aWa65/bnNrduf+6pU+ekpmmQJEnSxtskOoAkSdJYWKwkSZJmxGIlSZI0\nIxYrSZKkGbFYSZIkzYjFSpIkaUYsVpIkSTNisZJGJKX0oJTSKSmlK1NKl6WUTk4p3bf73HNSSt+a\nx31lKaUmpbTZArOs+ve/n3P74ULuq09SSs9MKZ2WUro6pXRRSuk7KaUXzfn8R1NK163xuL/ffe7O\nKaVmjfu7f0rpS3P+n52aUnr2nM9vm1I6PKX0u5TSNSmlH839vKR+sVhJI5FS2go4FjgM2Bb4C+CN\nwB8jcwHbNE2zZXfbdb7/eKHFbjGklF4NvBN4G3C77vZiYK+U0qZzvvTQOY95y6Zp7r2O+3sQcDxw\nArATcGvgJcDjus/fpPvcjsCewDZAAbwzpfSyRXiIkjaSxUoaj7sANE1zTNM0K5qmubZpmq80TfOj\nlNJdgcOBB3QjKFcApJTylNIZKaVlKaVzU0pvmHN/3+w+XtH9mwd0/+Z5KaWzUkqXp5S+nFK643yD\nppR2Til9rRuhuSSl9N8ppa3nfP68lNKBKaUzgavn/N0rU0o/7vJ8IKV0uy7DspTSV1JK26zj+52T\nUnrMnD9v0X3ve6WUbp5SOjqldGlK6YqU0ndTSrdZy33cCngDsF/TNJ9pmub3Tev0pmme3jTNivn+\nHIB3AEc2TfOvTdNc2t3faU3T/F33+ecAOwBPa5rm103TXNc0zXHAPwJvSSltuYDvKWkRWayk8Tgb\nWJFS+nBK6bFdEQCgaZqzgBcB3+5GUFYVkKuBZ9OOhOTA/imlJ3afe0j3cdWI07dTSk8AXgs8Cbgt\ncBJwzAKyJuAtwPbA3WhHaw5a42v+Dnhsl22VfYCHA7sATwYq4FXAdsBNgAPW8f2OAZ4+58+PBc5v\nmuZHwHOBm9OOCt2adgTqD2u5j7+mfc38woY8wBuTUrol7SjUp9bzZY8CqqZprlnj7z8FbAncbxZZ\nJM2OxUoaiaZplgEPAhrgg8DFKaXPp5Rut55/8/Wmac5smmZlVzKOAfZaz7d5EfC2pmnOaprmeuBQ\nYLcbGbW6pBsJuiKl9Mru+57dNM0J3QjMRcC71vJ93900zXlN01w75+/+o2mai5qmOQ/4Fm1R/GHT\nNH8APgvsvo4MRwNPTCndtPvzM7q/A1gO3Aa4czfS972maX6/lvu4DXBx0zQrV/1FN7p1RUrp2pTS\nA+d8bTHnMV+RUjpyLfe3LW3BvGAdmVd9zxt8vmmaPwKXdZ+X1CMWK2lEusLznKZpdgTuAdwe+Pd1\nfX1K6X7dKbmLU0pX0han9f2yviPw7lWFgfaXe6Kdz7Uut2maZpvu9o7u+26fUvpESum3KaVlwFFr\n+b7nruW+fjfnv69dy5/XemqsaZqfAr8A8u702d78uVgdRTvPaVWech3zui4Ftksp/el1s2maPbvR\nvytZ/fW0nPOYt2ma5vlrub/LaEvwDmvL3LlkbZ/v5l5t231eUo9YrKSR6srEUbQFC9pf4ms6Gvg8\ncIemabamnYeV1vP159LOMZpbGm7WNM0p84z3L7ST6u/ZNM1WtHOJ0hpfs7bvvzFWnQ7cB/hB0zQ1\nQDdq9oamae5KO+K3D/DMtfz7k4EVwONnEaZpmquA79Ke0lyX44HHpZRutsbfP4X2NO53Z5FF0uxY\nrKSRSCntklJ6RUppx+7Pd6AtEt/pvuR3wI4ppS3m/LNbApc1TfOHlNKetKfIVrkYWEk7/2mVw4HX\npJTu3n2PrVNKT11A3FvSFoMru5yvXMB9zNcxtHOr/oE/j1aRUnp4Suke3UjUMtpTgyvX/MdN01wG\nvBk4PKX0pJTSlimlTVJKuwNrFp8NdSDwgpTSP6eUtu3y7J5SWpXvw8BFtKNpd+wm3T+W9tTpwV05\nk9QjFitpPK6incx8akrpatpC9WPgFd3nTwR+AlyYUlp1CunFwJtSSlcBBwOfWHVn3YTptwInd6f+\n7t80zf/SjjZ9vDuF92PasjJfh9BO3L6SdsTs0wu4j3np5mV9D7g/cx4n7enSz9CWqp/QjhIdfYM7\naO/jUODVtBP4LwIuBN5P+zM+dc6Xvjatvo7Vheu4v5OARwJ/A9Qppcu6+zuu+/y1tJP1LwROo/15\nvR14ddM075rvz0DS4ktNM+vRdkmSpGlyxEqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRi\nJUmSNCMWK0mSpBmxWEmSJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmSNCMW\nK0mSpBmxWEmSJM2IxUqSJGlGLFaSJEkzsll0AI1bVlS3AHYAtu8+7rDGn7cFNqd9Ls69bQqsAK6f\nc1ve3S4BLgQumHP705/rMv/D0jw6SZJWl5qmic6gAcuKKgE7AXsAu3f/Pbc43TIg1hWsXrx+DpwB\nnF6X+W8C8kiSJsJipQ2WFdUmwC60JWrVbTdg68hc83QJbck6Azi9u/28LnMPBEnSRrNYaZ2yorob\n8ADakag9gF2Bm4eGWhzLgB/w56J1cl3mv4yNJEkaIouV/iQrqpsADwP2BnIgCw0U62fAsd3tW3WZ\nXx+cR5I0ABaricuKagfaErU38EjgFrGJeukK4Mu0JeuLdZlfGpxHktRTFquJ6Sab34e2SO1Ne5ov\nhYYalpXAd+hGs+oyPzM4jySpRyxWE9HNl9oPeBrtFXuajV8DxwAfqMv8V9FhJEmxLFYj1s2Zegpt\noXpwcJyxa4CvAEcAX3BOliRNk8VqhLKiugttmdoXuHVwnCk6HzgS+GBd5udGh5EkLR2L1UhkRbU5\n8CTaQvWw4DhqrQC+SDuKdVxd5iuD80iSFpnFauCyosqAFwHPBbaLTaP1+A3wn7SjWBdGh5EkLQ6L\n1UBlRbUjcBDwPNzzcUiuBd4LlC7bIEnjY7EamKyotgNeA+wP3CQ4jhbuKuBdwDvrMl8WHUaSNBsW\nq4HIimob4EDg5biI55hcBrwdOKwu82uiw0iSNo7FqueyoroFbZk6ENgmOI4Wz4XAW2nXw7ouOowk\naWEsVj3VrUG1P+1pPyelT8evgTcBH67LfEV0GEnS/FiseigrqmcBhwI7RmdRmLOBV9Rlfmx0EEnS\nhrNY9UhWVHekXfPob6KzqDc+DrysLvOLo4NIkm6cxaoHuo2RDwDeBmwZHEf9cwnwj3WZfyw6iCRp\n/SxWwbKi+ivahSMfFJ1FvXcssH9d5udFB5EkrZ3FKkhWVJvRXul3CK5HpQ23DHg1cERd5h68ktQz\nFqsAWVHtTrtJ7+7RWTRY3wBeUJf5z6ODSJL+zGK1hLolFA6hHalyGxptrGtpn0//5tIMktQPFqsl\nkhXVzsD/AnePzqLR+TbwlLrMz48OIklTt0l0gCnIiioHTsNSpcXxAOB7WVE9MDqIJE2dI1aLqFtG\n4SDgDUCKTaMJWA68vC7z90cHkaSpslgtkqyobgl8BHhidBZNzpHAAXWZ/zE6iCRNjcVqEXRrU30W\n2CU6iybrVODJdZn/NjqIJE2Jc6xmLCuqxwPfxVKlWPcDvp8VlQvPStIScsRqRrr5VIcAB+N8KvXH\nctrtcN4XHUSSpsBiNQPdfKqPAn8bnUVahw/RbofjvCtJWkQWq42UFdVtgC8B947OIt2I44En1mV+\ndXQQSRori9VGyIrq9rS/rO4anUXaQKcAeV3mV0QHkaQxslgtUFZUO9GWqr+MziLN0w+AR9dlfnF0\nEEkaG68KXICsqO4GnISlSsO0G3BSVlQ7RgeRllp3oZG0aByxmqesqO4BnAjcNjqLtJFq4KF1mf86\nOoi0EN2bg9sD2wM7rHFb9XdbAZt3t01pr9pugOu723LgCuCCNW4Xzvnv39ZlfuFSPS4Nm8VqHrKi\nujvwNSxVGo9fAXvVZX5udBBpXbKi2oR2bcA9utvutCOv2yxhjEuAM4DT53z8eV3m/hLVaixWG6gr\nVScC20VnkWbsl7Tl6rzoIBL86Wrrx9BuML47sCtw89BQa7eMds7i6bQXhnylLvMrYyMpmsVqA3Rz\nqr6GpUrj9QvacuUWOAqRFdW9gL272/0Y5hzg5cC3gGOBL9Rlfk5wHgWwWN2IrKjuBJwM3C46i7TI\nfg480KsFtRSyorop8HDaIpUD/y820aI4h7ZkHQucVJf58uA8WgIWq/XIimob4Nu475+m42TgEa7Q\nrsWSFdW9gf2ApwNbBsdZSpcDHwGOqMv8rOgwWjwWq3XIimoz4DjgUdFZpCX20brMnxUdQuORFdUt\ngGfQFip3qWiX6zkc+LRvYsbHYrUOWVG9F3hxdA4pyOvqMj80OoSGLSuqXWnL1DNplz3Q6i4FjgI+\nUJf52cFZNCMWq7XIiuolwGHROaRADfDUusw/HR1Ew5MV1WOBg2iv6tONa4ATgDfUZX5ydBhtHIvV\nGrKi+hugol1ITpqya4CH1GX+/eggGoasqB4CvBV4UHSWAfsi7YjxGdFBtDAWqzm6ZRVOAbaOziL1\nxPnAni7DoPXJiuq+wFuAR0dnGYkG+DRwsBPdh8di1ekWpDsV2Ck6i9QzpwMPrsv8mugg6pdui683\nA0+MzjJSK4GP0p4i/FV0GG0YixWQFdUWtOe3Hb6W1u7TtHOufMEQWVFtC7wD2JdhLuQ5NMuB9wAH\n1WV+dXQYrZ8HROsILFXS+jyZ9lSPJi4rqqcC/wc8F3+HLJXNgX8CzsyK6pHRYbR+kx+xyorq74H/\njs4hDUADPKou8xOig2jpZUW1PfA+YJ/oLOJI4BXuS9hPky5WWVHtCJzJ0u6QLg3ZucA9fUGflqyo\nngu8E7hVdBb9yfnAi+sy/1x0EK1ussUqK6oEfBlXVpfm68N1mT8nOoQWX1ZUGfABfJ3ss08AL63L\n/KLoIGpN+fz4/vhiIS3EvllRPSE6hBZX9//4h/g62XdPA36UFdWDo4OoNckRq6yo7kz7gnHz6CzS\nQF0E3KMu84ujg2i2utH8NwKvB1JwHG245cA/12X+nuggUze5EausqDYBPoylStoY29FeTasRyYpq\na+DztNvRWKqGZXPgsKyoPpQV1U2jw0zZ5IoV8CrggdEhpBHYJyuqZ0WH0GxkRXVX4LvA3tFZtFGe\nA5yUFdUdooNM1aROBWZFdS/gNGCL6CzSSFxJe0rwvOggWrisqPahHcm/ZXQWzczFtIv6fiM6yNRM\nZsSqW139I1iqpFnaGvhQNy9HA5QV1cG0K+tbqsbltsDxWVHtFx1kaiZTrICDgV2jQ0gj9EjgxdEh\nND9ZUaWsqN5NO1HdYjxOmwGHZ0X16uggUzKJU4FZUd0JOIt2cp+k2bsSuFNd5pdGB9GNy4pqU+CD\ntNvSaBrKusxfEx1iCqYyYvU2LFXSYtqa9koy9VxWVJsBx2CpmpoiK6rDokNMwehHrLKi2hM4NTqH\nNAHXAXety/yX0UG0dl2pOhp4anQWhTmsLvOXRYcYsymMWL0jOoA0EVsAh0aH0Np1p/8+hqVq6l7a\nza3TIhl1seq2ZHCZf2npPK0bJVaPdFdtfoR2+xPpZVlR/Wt0iLEabbHq3p2V0TmkiUnA26ND6Abe\nBDwjOoR65ZVZUb0oOsQYjbZYAS8AdokOIU3QXllRPT46hFpZUT2Tdt8/aU2HZUX1yOgQYzPKyetZ\nUW0J/By4XXQWaaLOAu5Zl/mK6CBTlhXVA4ETgZtEZ1FvXQHcvy7zn0UHGYuxjli9EkuVFOmuwPOj\nQ0xZVlR3BP4XS5XWbxvg2Kyoto0OMhajG7HKimp74Bxgy+gs0sRdAOxcl/nV0UGmJiuqWwKnAPeI\nzqLB+AbwqLrMl0cHGboxjli9FkuV1Ac7AK6Xs8S6C3c+jqVK87MX8P7oEGMwqmKVFdVWuJqw1CcH\ndItSaukcDDwuOoQG6flu2rzxRlWsaEuVo1VSf/wFsE90iKnIiuq+tKP20kK9IyuqnaJDDNloilW3\nAN4B0Tkk3cBLowNMQVZUN6NdBNQRQm2MLYEPZ0U1mn6w1Mb0g3sMsHN0CEk38OCsqHaNDjEBb8O1\n+zQbDwJeER1iqMZUrHxXLPWXx+ciyorqYXihgGbrzVlReQHEAoxiuYWsqO4MnE27nYak/rkW2LEu\n88uig4xNd9HOj4A7RmfR6JwB3M8lGOZnLCNWB2CpkvrsZrhg6GL5dyxVWhy7015lqnkY/IhVVlS3\nAH4LbB2dRdJ61cCd6jJfGR1kLLKiegRwfHQOjdoKYLe6zH8cHWQoxjBi9WwsVdIQZICbM89IdyX0\nO6JzaPQ2Bd4eHWJIxlCsXhIdQNIGcxL77Pw9sFt0CE3CY7Oienh0iKEY9KnArKj2Ar4enUPSvPxV\nXeZnR4cYsqyobgr8DPh/0Vk0GacD96nLfLilYYkMfcTqKdEBJM3bk6MDjMDLsFRpae0BPCM6xBAM\nvVg9ITqApHnzuN0IWVFtC7wmOocm6S1ZUd0kOkTfDbZYZUV1b+AO0TkkzdueWVHtEB1iwF4PbBMd\nQpOU4bzmGzXYYoXveqWhSnj8LkhWVBnuiapYr8uKymK/HkMuVk+MDiBpwTx+F+blwBbRITRptwJe\nEB2izwZ5VWBWVDsBv4jOIWnBrgNuW5f5suggQ+FiyOqRXwF3drHftRvqiJXvdqVh2wJ4XHSIgXkW\nlir1w18CeXSIvrJYSYriPKv5cdKw+sTFftdhcKcCs6K6LXAB7TL7koZrGe3pwOuig/Rdt+r1CdE5\npDka4G51mf80OkjfDHHE6vFYqqQx2Ap4WHSIgXB0QH2TcBR1rYZYrDx9II2Hp/VvRFZUd8TNq9VP\n+2ZFtVV0iL4ZVLHqdnN/aHQOSTPjiNWN2w9H6dVPWwLPjg7RN4MqVsBdaE8fSBqHu/iO90Y9NTqA\ntB4+P9cwtGJ13+gAkmYqAfeODtFXWVHdHbhzdA5pPf46K6pbR4fok6EVq/tEB5A0cx7X6+YcNPXd\npjgHcDVDK1aOWEnj43G9bhYrDYHP0zkGU6yyotoU2C06h6SZc8RqLbKi2hFPk2oYHp0V1c2jQ/TF\nYIoVcHfA/3HS+PxlVlS3iQ7RQ0+gnYMm9d3NgEdHh+iLIRUrTxdI4+Wo1Q15ekVD4vO1M6Ri5Quv\nNF4e33N0S1DsFZ1Dmoe9s6IaUqdYNEP6IThiJY2Xx/fq7gdsHh1CmodbA7tEh+iDQRSrrKi2AO4Z\nnUPSonHEanX+PDREPm8ZSLEC7gVsER1C0qK5fVZUO0SH6BFH8DREPm8ZTrHaKTqApEXncf5nvvPX\nEFmsGE6xun10AEmLzuMcyIrqdsAdonNIC7BrVlSTnxtosZLUFx7nLUerNFQ3Be4RHSKaxUpSX3ic\ntzydoiGb/BsDi5WkvvA4b03+F5MGbfJvDCxWkvrC47zlWkAasrtGB4hmsZLUFx7nLX8OGrLJP397\nX6yyotoSuGV0DkmLbvIvyFlR3Yp2Q1tpqCa/Hl3vixW+2EpTsVVWVLeIDhHM1zsN3c26NwiTZbGS\n1CdTP97/IjqANAOTPo4tVpL6ZOrH+9Qfv8Zh0s9ji5WkPpn68T71x69xmPTzeAjFaupzLqQpmfrx\nPulfSBqNST+Ph1CsJr/vkDQhUz/et48OIM3ApJ/HQyhWm0UHkLRkpn683zQ6gDQDk34eD6FYTf0d\nrDQlUz/ep/74NQ6Tfh4PoVhN/R2sNCVTP96n/vg1DpN+HlusJPXJpN/p4uudxmHSx/EQipWk6Wii\nA0jaaJM+jodQrJZHB5C0ZKZ+vE/98WscJv08HkKxuj46gKQlM/XjfeqPX+Mw6efxEIrVpJuvNDFT\nP96n/vg1DpN+Hg+hWE26+UoTM/Xj/eroANIMTPp5PIRiNenmK03M1I/3C6IDSDMw6efxEIrVldEB\nJC2ZqR/v50cHkGZg0s/jIRSrSf8PkiZm6sf71B+/xmHSz2OLlaQ+mfrx/tvoANIMTPo4tlhJ6pOp\nH+9Tf/wah0k/jy1Wkvri0rrMr4sOEczXOw3dVXWZ/z46RKTeF6u6zP8IXBadQ9Kim3yp6H4hXRWd\nQ9oIkz+Oe1+sOpP/HyVNgMd567zoANJGmPw8QYuVpL7wOG/9ODqAtBF+FB0gmsVKUl94nLdOiw4g\nbYTvRQeIZrGS1Bce563J/2LSoE3+jYHFSlJfeJy3vg800SGkBbgSOCc6RDSLlaS+8DgH6jJfBpwd\nnUNagO/XZT75NwVDKVY/iw4gaVE1WCbmmvzpFA2Sp7EZTrH6KTDpBcekkftFXeZXRIfoEX9BaYh8\nQ8BAilVd5iuB06NzSFo0viCvzp+HhsjnLQMpVh3fwUnj5fG9uu/jKL2Gpa7L/NfRIfpgSMXKJiyN\nl8f3HN1WXl+KziHNw+eiA/TFkIqV72ilcfJU/9p9NjqANA8+XzuDKVZ1mf8cuDw6h6SZO6su86uj\nQ/RQBSyPDiFtgEuBk6JD9MVgilXHUStpfDwNuBbdVZLfiM4hbYBj6zJfER2iLyxWkqJ5XK+bp1c0\nBD5P5xhasfKdrTQ+Htfr5oRg9d21wFeiQ/TJ0IqV72ylcVkO/DA6RF/VZX4e7dILUl99tS7za6JD\n9MmgilVd5ucCF0bnkDQzZ3ZLC2jdjo4OIK3HMdEB+mZQxarz1egAkmbGUwg37kOAIwLqowuAT0eH\n6JshFisnyUnj4fF8I+oyvxz4aHQOaS0Or8vcJUHWMMRi9SXayXKShu184LvRIQbisOgA0hquA46I\nDtFHgytW3SS546NzSNpon6/LvIkOMQR1mf8Y+Hp0DmmOT9Zl/rvoEH00uGLV8fSBNHwuJTA/jlqp\nT3w+rsNQi9XnAVd5lYZrGXBidIiB+RxwbnQICTitLvNTo0P01SCLVV3mlwCnROeQtGBfrMv8uugQ\nQ9JtGfL+6BwS8J7oAH02yGLV8TSCNFyezl+Y9wOXRYfQpP0S+Hh0iD4bcrHyhVkapuuA46JDDFG3\nMfNbo3No0l7raPP6DbZY1WX+C+DH0TkkzdvX6jJfFh1iwN4D1NEhNEnfBT4RHaLvBlusOo5aScPj\nafyN0I0WvDY6hybpQJdIuXFDL1b/Ex1A0rwsBz4THWIEPo6b0mtpfaEu829GhxiCQRerbtG8b0Tn\nkLTBPuWighuvGzU4MDqHJmMF8OroEEMx6GLVcZEyaTg8XmekLvOv40UAWhr/VZf5WdEhhmIMxeqz\nuGieNATfr8v829EhRuZA2tOr0mJZBhwSHWJIBl+sukXzDo/OIelGuajgjNVl/n/AG6NzaNReXpf5\nBdEhhmTwxarzQeCP0SEkrdMluKjgYimB70SH0Ch9ri7zo6JDDM0oilVd5hfji7bUZx+sy/wP0SHG\nqBu13xe4JjqLRuVi4B+iQwzRKIpVx0mxUj+5x90iq8v8bKCIzqFReVFd5hdFhxii0RSrusy/Dzgx\nVuqfz9Zl7gUmi+89wAnRITQKH63L3PXmFmg0xarjqJXUPx6XS6Bb2+q5wJXRWTRo5wEviQ4xZGMr\nVp8CvHpB6o8z6zJ3Ed8l0o0M+ktRC7USeG5d5pbzjTCqYlWX+XJ8dyz1yb9FB5iausw/ij93LcyB\ndZkfHx1i6EZVrDrvBs6PDiGJHwMfiQ4xUQcCx0aH0KB8sC5zC/kMjK5Y1WV+DXBwdA5JvKou85XR\nIaao+7k/HfhRdBYNwteAA6JDjMXoilXnKNp3y5JinFCX+RejQ0xZXea/Bx4PuOm11ucc4MndVBrN\nwCiLVbdgnmu6SDEa4FXRIQR1mf8GeCLg4qxam8uBvesyvzw6yJiMslgB1GVe0Q5vSlpax9Rlfnp0\nCLXqMv8O8LzoHOqd64GndIvLaoZGW6w6r6J99yxpafwReF10CK2uLvNjgFdH51BvrASeV5f5idFB\nxmjUxaou8+/hHoLSUnpPXeZ1dAjdUF3mbwdeG51D4VYCz6/L/L+jg4zVqItV57XAddEhpAm4HHhr\ndAitW13mb8MRxSlrgBfUZX5UdJAxG32x6t49vzc6hzQBhzoJtv/qMj8UeE10Di25FbQjVR+KDjJ2\noy9WnbcAV0SHkEbs17jrwWDUZV7Sbn3jHNRpWA483VK1NCZRrOoyvwx4RXQOacT2r8v8j9EhtOHq\nMn8v8BzakQyN17XAE+oy/2R0kKmYRLECqMv8v3CLB2kxfMDFQIepLvOPAPsAV0Vn0aK4CHi0x+fS\nmkyx6rwQuDQ6hDQiv8TR4EGry/wLwP0A1zMal+8B96nL/FvRQaZmUsWqLvMLgf2jc0gjsRLYt9s6\nRQNWl/lZwJ7AF6KzaCaOAh5cl/m50UGmKDXN9OYuZkV1NO0GpZIW7h11mR8YHUKzkxVVAt4AHASk\n2DRagOXAP3Xz5xRkUiNWcxwAnB8dQhqwnwCvjw6h2arLvKnL/BDaeVfLovNoXn4HPMJSFW+Sxapb\na+f50TmkgVoOPNurAMerLvPP0c67Ois6izbIqbTzqU6KDqKJFiuAusy/BBwRnUMaoDe7yfL41WX+\nU2APoKTdsFf9cy3tHpB/XZf5edFh1JrkHKtVsqLaEvghsFN0FmkgTgMeWJe5v2gnJCuq3YH/AnaL\nzqI/+QbwwrrMz4kOotVNdsQKoLuaaV/aq5skrd+1tKcALVUTU5f5GcB9afde9RRwrGW0V7c/zFLV\nT5MesVolK6oDgbdH55B67pl1mR8dHUKxsqL6K+BI4K+js0zQccB+nvbrN4tVJyuqI4HnReeQeuot\ndZkfFB1C/dAty7A/cAiwXXCcKfgN8Brf2AzDpE8FruFFwDejQ0g99Eng4OgQ6o9uWYb30c5PfR1u\ncr9YLgReCuxsqRoOR6zmyIrq1rSXrd4pOovUE98DHlKX+bXRQdRfWVFtAxwIvBy4RXCcMbiMdnrK\nYXWZXxMdRvNjsVpDVlS7AN8KmNeLAAAHE0lEQVQGtonOIgU7D9izLvMLooNoGLKi2g54De1pwpsE\nxxmiq4B3Af9Wl/mV0WG0MBartciK6lG0kwQ3i84iBbmadq+xM6KDaHiyotqRdn2lZwNbBccZgotp\nLwh4Z13ml0SH0caxWK1DVlT7A++LziEFaIAn1WX+2eggGrasqG5Ouy/rfrTLNWh1X6ddqPozdZlf\nF5xFM2KxWo+sqP6DduKgNCVFXeb/Eh1C49ItMrof8Exgy+A4kS4DPgwcUZf5z6LDaPYsVuuRFdWm\nwLHAY6KzSEvkw3WZPyc6hMar2/HiGbTL2+wJpNhES2IFcBLt6b5P1WX+h+A8WkQWqxuRFdVWwInA\nvaOzSIvsq8DenpLQUsmK6nZADuwNPIpxjWRdDnyJ9s35l+oyvyw4j5aIxWoDZEV1K+AEYPfoLNIi\nOR74W5dVUJSsqLYA9qItWXszzD1c/4+2SB0LnFKX+YrgPApgsdpAWVFtS/vLx3KlsTmRdqTKUqXe\n6LbOeQCwR3fblX6NaF0BnAGc3n08pS7zX8VGUh9YrOahK1cn4A7vGo+v0ZYqFyFUr2VFtQmwM38u\nWnsAd6fdUmcx52mtAH4HnElbok4HTq/L/JeL+D01YBareepWZz+B9t2TNGRfB3JLlYYsK6rNaMvV\nDmvctu8+bk27JuHm3cdNaMvS9XNulwMXrHG7sPt4UV3mK5fuEWnoLFYL0M25Og64f3QWaYGOA57i\n6T9Jmi03YV6Auswvp72C5cToLNICfAJ4oqVKkmbPYrVAdZn/Hngc8PnoLNI8HAk8vS7z5dFBJGmM\nLFYboS7zPwJPBo6OziJtgHcBL3S+iCQtHudYzUBWVAk4BDiYaawirGFZDvxjXebufSlJi8xiNUNZ\nUT0e+Cju5q7++B3tJPVvRQeRpCmwWM1Yt6jdZ4FdorNo8k4FnlyX+W+jg0jSVDjHasa63cr3BD4X\nnUWTdiSwl6VKkpaWI1aLpJt39XrgjTjvSktnOfCyuswPjw4iSVNksVpkWVHlwMdoV/+VFtOFtPOp\nTo4OIklTZbFaAllR7Uw77+pu0Vk0Wt+mLVXnRweRpClzjtUSqMv8HOB+wP9EZ9EovR94qKVKkuI5\nYrXEsqJ6MvAe2g1CpY3xS9oFP91aSZJ6whGrJVaX+adpTwkeFRxFw7WSdhX1e1qqJKlfHLEKlBXV\no4EjgCw4iobjJ8Dz6zI/NTqIJOmGHLEKVJf5V4B7AIfRjkJI67IceBOwh6VKkvrLEaueyIrqgbSL\nOrpiu9Z0Gu0o1ZnRQSRJ6+eIVU/UZX4KsBtwKHB9cBz1w7XAK4EHWKokaRgcseqhrKjuBfwL8Jjo\nLArRAJ8EXluX+S+iw0iSNpzFqseyonoQ8FbgIdFZtGSOBQ6qy/wH0UEkSfNnsRqA7urBtwL3ic6i\nRfM14HV1mX87OogkaeEsVgOSFdU+wJuBu0dn0cycSluoTogOIknaeBargcmKahPg6cAbgTsFx9HC\n/Qh4fV3mX4gOIkmaHYvVQGVFtRnwXOAg4A7BcbThzgYOAf6nLnMPPkkaGYvVwGVFtTnwBGA/4BFA\nik2ktVhBOyn9CODLdZm7GKwkjZTFakSyoroz8ELakazbBscRnAf8J3BkXebnRYeRJC0+i9UIZUW1\nBfAk2lGsh8ammZyVwJeAw4Hj6jJfEZxHkrSELFYjlxXVLsA/APsC2wbHGbMLaLck+s+6zH8dHUaS\nFMNiNRFZUd0UeArwd8DDgZvFJhqFq4CvAh8DPl+XuVsRSdLEWawmKCuqm9FOdN8byIEdYxMNyi9o\nJ6IfC3yzLvPrgvNIknrEYiWyotqNtmTtDdwXN+ee63rgZLoyVZf5T4PzSJJ6zGKl1WRFtR3wWNqS\n9Whgq9hEIS4Fvkhbpr5cl/kVwXkkSQNhsdI6dYuQ3g3YY85tV2DLyFwzdgXwA+D0ObefudaUJGkh\nLFaal25LnZ1ZvWztDtwqMtcGugg4gzklqi7zX8ZGkiSNicVKM5EVVUZbsHYCdgC27z6uum2zBDEu\nBS6kXfpg7u0XtCXqt0uQQZI0YRYrLYluuYe1Fa5tgc2Bzda4bUq7Fcz1c27Lu9sl3LBAXegVepKk\naBYrSZKkGfGyekmSpBmxWEmSJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmS\nNCMWK0mSpBmxWEmSJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmSNCMWK0mS\npBmxWEmSJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmSNCMWK0mSpBmxWEmS\nJM2IxUqSJGlGLFaSJEkzYrGSJEmaEYuVJEnSjFisJEmSZsRiJUmSNCMWK0mSpBmxWEmSJM2IxUqS\nJGlGLFaSJEkz8v8B7VusKzwbg08AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "tKEjBxYSIink", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "7c763b73-3842-4830-e3c2-1fc2a7074e61" + }, + "cell_type": "code", + "source": [ + "18.07 / 12.79" + ], + "execution_count": 42, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1.4128225175918687" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 42 + } + ] + }, + { + "metadata": { + "id": "r3Ekry-PInza", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "0e8255dc-c4d0-4485-87c6-be6041aadcd4" + }, + "cell_type": "code", + "source": [ + "from math import pi\n", + "\n", + "(pi*18.07**2) / (pi*12.79**2)" + ], + "execution_count": 43, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1.9960674662146263" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 43 + } + ] + }, + { + "metadata": { + "id": "49NI_e4HI0KJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "8cb4f4fd-e092-4a48-acfd-9140eecf724e" + }, + "cell_type": "code", + "source": [ + "from math import sqrt\n", + "sqrt(18.07)**2 / sqrt(12.79)**2" + ], + "execution_count": 44, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1.4128225175918685" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 44 + } + ] + }, + { + "metadata": { + "id": "NB5GBRNrCbgf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 128 + }, + "outputId": "99b336be-46e7-4184-96af-bbc139049f4d" + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 5))\n", + "ax.set_xlim((0, 80))\n", + "ax.set_ylim((0, 40))\n", + "plt.axis('off')\n", + "\n", + "circle = plt.Circle(xy=(20, 20), radius=sqrt(18.07)\n", + "ax.add_artist(circle)\n", + "\n", + "circle = plt.Circle(xy=(60, 20), radius=sqrt(12.79)\n", + "ax.add_artist(circle)\n", + "\n", + "plt.title('State Farm vs GEICO')\n", + "plt.show()" + ], + "execution_count": 46, + "outputs": [ + { + "output_type": "error", + "ename": "SyntaxError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m9\u001b[0m\n\u001b[0;31m ax.add_artist(circle)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ] + }, + { + "metadata": { + "id": "D76RfkFkCbgi", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Fix misleading plot #4" + ] + }, + { + "metadata": { + "id": "9Qjq-AiyCbgi", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "_If you're on Jupyter (not Colab) then uncomment and run this cell below:_" + ] + }, + { + "metadata": { + "id": "Gt1u-VCECbgk", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# import altair as alt\n", + "# alt.renderers.enable('notebook')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ox2k1t6TCbgm", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 348 + }, + "outputId": "26974673-da74-4649-fce6-357ea07e2fbd" + }, + "cell_type": "code", + "source": [ + "misleading.plot4()" + ], + "execution_count": 47, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Chart({\n", + " data: UrlData({\n", + " format: TopoDataFormat({\n", + " feature: 'states',\n", + " type: 'topojson'\n", + " }),\n", + " url: 'https://vega.github.io/vega-datasets/data/us-10m.json'\n", + " }),\n", + " encoding: EncodingWithFacet({\n", + " color: Color({\n", + " shorthand: 'State Farm policy premiums',\n", + " type: 'quantitative'\n", + " })\n", + " }),\n", + " height: 300,\n", + " mark: 'geoshape',\n", + " projection: Projection({\n", + " type: 'albersUsa'\n", + " }),\n", + " transform: [LookupTransform({\n", + " from: LookupData({\n", + " data: state id State Farm policy premiums \\\n", + " 0 Alabama 1 768213 \n", + " 1 Alaska 2 128613 \n", + " 2 Arizona 4 760003 \n", + " 3 Arkansas 5 454931 \n", + " 4 California 6 3655463 \n", + " 5 Colorado 8 827143 \n", + " 6 Connecticut 9 169773 \n", + " 7 Delaware 10 191319 \n", + " 8 District of Columbia 11 67231 \n", + " 9 Florida 12 2806322 \n", + " 10 Georgia 13 1761224 \n", + " 11 Hawaii 15 133498 \n", + " 12 Idaho 16 130613 \n", + " 13 Illinois 17 2256543 \n", + " 14 Indiana 18 861382 \n", + " 15 Iowa 19 368898 \n", + " 16 Kansas 20 351343 \n", + " 17 Kentucky 21 680433 \n", + " 18 Louisiana 22 1415980 \n", + " 19 Maine 23 101111 \n", + " 20 Maryland 24 883401 \n", + " 21 Massachusetts 25 0 \n", + " 22 Michigan 26 1580398 \n", + " 23 Minnesota 27 851940 \n", + " 24 Mississippi 28 467887 \n", + " 25 Missouri 29 883774 \n", + " 26 Montana 30 156816 \n", + " 27 Nebraska 31 273727 \n", + " 28 Nevada 32 404688 \n", + " 29 New Hampshire 33 103340 \n", + " 30 New Jersey 34 619623 \n", + " 31 New Mexico 35 261922 \n", + " 32 New York 36 1666653 \n", + " 33 North Carolina 37 842368 \n", + " 34 North Dakota 38 67282 \n", + " 35 Ohio 39 1240075 \n", + " 36 Oklahoma 40 636063 \n", + " 37 Oregon 41 564416 \n", + " 38 Pennsylvania 42 1654528 \n", + " 39 Rhode Island 44 0 \n", + " 40 South Carolina 45 874436 \n", + " 41 South Dakota 46 101912 \n", + " 42 Tennessee 47 889329 \n", + " 43 Texas 48 3395165 \n", + " 44 Utah 49 300403 \n", + " 45 Vermont 50 30003 \n", + " 46 Virginia 51 878312 \n", + " 47 Washington 53 794882 \n", + " 48 West Virginia 54 323608 \n", + " 49 Wisconsin 55 443680 \n", + " 50 Wyoming 56 90412 \n", + " 51 Puerto Rico 72 0 \n", + " \n", + " BERKSHIRE HATHAWAY GRP STATE TOTAL \n", + " 0 282947 3025561 \n", + " 1 81366 454623 \n", + " 2 604049 4373055 \n", + " 3 96908 1777917 \n", + " 4 2091720 25255501 \n", + " 5 365797 4057463 \n", + " 6 486498 2795415 \n", + " 7 129033 802005 \n", + " 8 115149 325239 \n", + " 9 3952147 17333354 \n", + " 10 821326 7571988 \n", + " 11 184743 722550 \n", + " 12 87222 863636 \n", + " 13 412978 7028885 \n", + " 14 201200 3506499 \n", + " 15 58105 1650388 \n", + " 16 76533 1725608 \n", + " 17 186915 2805864 \n", + " 18 369492 4136224 \n", + " 19 68109 699558 \n", + " 20 1059508 4554586 \n", + " 21 473913 4924736 \n", + " 22 0 8462142 \n", + " 23 108942 3412460 \n", + " 24 100827 1760180 \n", + " 25 214191 3606590 \n", + " 26 33538 668513 \n", + " 27 61046 1167135 \n", + " 28 262815 2129828 \n", + " 29 103403 806545 \n", + " 30 1441019 7375823 \n", + " 31 174865 1284430 \n", + " 32 3926684 12633982 \n", + " 33 560700 5543700 \n", + " 34 15516 454376 \n", + " 35 405652 6303148 \n", + " 36 151388 2515842 \n", + " 37 223187 2647434 \n", + " 38 602848 8270326 \n", + " 39 97597 867558 \n", + " 40 426033 3583918 \n", + " 41 15682 508569 \n", + " 42 292357 3769652 \n", + " 43 2127633 19180816 \n", + " 44 139315 1723931 \n", + " 45 52939 359996 \n", + " 46 884489 5105360 \n", + " 47 478922 4780616 \n", + " 48 110806 1209872 \n", + " 49 131845 2950711 \n", + " 50 30187 374169 \n", + " 51 0 444480 ,\n", + " fields: ['State Farm policy premiums'],\n", + " key: 'id'\n", + " }),\n", + " lookup: 'id'\n", + " })],\n", + " width: 500\n", + "})" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 47 + } + ] + }, + { + "metadata": { + "id": "vICGJrAKLn8i", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "url = 'https://raw.githubusercontent.com/LambdaSchool/DS-Sprint-02-Storytelling-With-Data/master/module2-choose-appropriate-visualizations/direct_written_premium_by_state_by_group_private_passenger_auto.csv'\n", + "df = pd.read_csv(url)\n", + "df.rename(columns={'STATE FARM GRP': 'State Farm policy premiums'}, inplace=True)\n", + "variable = 'State Farm policy premiums'" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "_bkJ2qryLt2R", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "fe24b046-884b-4f0b-ee54-1774e8806d39" + }, + "cell_type": "code", + "source": [ + "df.head() # want to examine state farm policy premiums / Total" + ], + "execution_count": 50, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateidState Farm policy premiumsBERKSHIRE HATHAWAY GRPSTATE TOTAL
0Alabama17682132829473025561
1Alaska212861381366454623
2Arizona47600036040494373055
3Arkansas5454931969081777917
4California63655463209172025255501
\n", + "
" + ], + "text/plain": [ + " state id State Farm policy premiums BERKSHIRE HATHAWAY GRP \\\n", + "0 Alabama 1 768213 282947 \n", + "1 Alaska 2 128613 81366 \n", + "2 Arizona 4 760003 604049 \n", + "3 Arkansas 5 454931 96908 \n", + "4 California 6 3655463 2091720 \n", + "\n", + " STATE TOTAL \n", + "0 3025561 \n", + "1 454623 \n", + "2 4373055 \n", + "3 1777917 \n", + "4 25255501 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 50 + } + ] + }, + { + "metadata": { + "id": "Px8qFtLLCbgr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Links\n", + "- [How to Spot Visualization Lies](https://flowingdata.com/2017/02/09/how-to-spot-visualization-lies/)\n", + "- [Where to Start and End Your Y-Axis Scale](http://stephanieevergreen.com/y-axis/)\n", + "- [xkcd heatmap](https://xkcd.com/1138/)\n", + "- [Surprise Maps: Showing the Unexpected](https://medium.com/@uwdata/surprise-maps-showing-the-unexpected-e92b67398865)" + ] + }, + { + "metadata": { + "id": "inmy6QpZCbgs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Use Seaborn to visualize distributions and relationships with continuous and discrete variables\n", + "\n", + "#### Links\n", + "- [Seaborn tutorial](https://seaborn.pydata.org/tutorial.html)\n", + "- [Seaborn example gallery](https://seaborn.pydata.org/examples/index.html)\n", + "- [Chart Chooser](https://extremepresentation.typepad.com/files/choosing-a-good-chart-09.pdf)" + ] + }, + { + "metadata": { + "id": "0MutqrlnCbgu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 1. Anscombe dataset" + ] + }, + { + "metadata": { + "id": "KWkpy0vzCbgu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Load dataset" + ] + }, + { + "metadata": { + "id": "Wm0nWRa0Cbgw", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "df = sns.load_dataset('anscombe')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "H6RXFuCJCbg2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the data's shape" + ] + }, + { + "metadata": { + "id": "Xo8EwGF_Cbg4", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "f4043abd-5abe-474a-ad41-8e4e82afaa05" + }, + "cell_type": "code", + "source": [ + "df.shape\n" + ], + "execution_count": 53, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(44, 3)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 53 + } + ] + }, + { + "metadata": { + "id": "cTJnWQmRCbg6", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the data" + ] + }, + { + "metadata": { + "id": "Oi7LPGvGCbg7", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "f4218631-0608-46e8-dbfa-e0d204bf4097" + }, + "cell_type": "code", + "source": [ + "df.head()" + ], + "execution_count": 56, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
datasetxy
0I10.08.04
1I8.06.95
2I13.07.58
3I9.08.81
4I11.08.33
\n", + "
" + ], + "text/plain": [ + " dataset x y\n", + "0 I 10.0 8.04\n", + "1 I 8.0 6.95\n", + "2 I 13.0 7.58\n", + "3 I 9.0 8.81\n", + "4 I 11.0 8.33" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 56 + } + ] + }, + { + "metadata": { + "id": "3Rps4xrkCbg9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### [Group by](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.groupby.html) `'dataset'`" + ] + }, + { + "metadata": { + "id": "S3ns5XdvCbg-", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "groups = df.groupby('dataset')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "IVeyv7GVCbhA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### [Describe](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html) the groups" + ] + }, + { + "metadata": { + "id": "fZ61fr1CCbhB", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "outputId": "f92aadf1-eb8f-4761-b692-9b9b9fb01acb" + }, + "cell_type": "code", + "source": [ + "groups.describe()" + ], + "execution_count": 58, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
dataset
I11.09.03.3166254.06.59.011.514.011.07.5009092.0315684.266.3157.588.5710.84
II11.09.03.3166254.06.59.011.514.011.07.5009092.0316573.106.6958.148.959.26
III11.09.03.3166254.06.59.011.514.011.07.5000002.0304245.396.2507.117.9812.74
IV11.09.03.3166258.08.08.08.019.011.07.5009092.0305795.256.1707.048.1912.50
\n", + "
" + ], + "text/plain": [ + " x y \\\n", + " count mean std min 25% 50% 75% max count mean \n", + "dataset \n", + "I 11.0 9.0 3.316625 4.0 6.5 9.0 11.5 14.0 11.0 7.500909 \n", + "II 11.0 9.0 3.316625 4.0 6.5 9.0 11.5 14.0 11.0 7.500909 \n", + "III 11.0 9.0 3.316625 4.0 6.5 9.0 11.5 14.0 11.0 7.500000 \n", + "IV 11.0 9.0 3.316625 8.0 8.0 8.0 8.0 19.0 11.0 7.500909 \n", + "\n", + " \n", + " std min 25% 50% 75% max \n", + "dataset \n", + "I 2.031568 4.26 6.315 7.58 8.57 10.84 \n", + "II 2.031657 3.10 6.695 8.14 8.95 9.26 \n", + "III 2.030424 5.39 6.250 7.11 7.98 12.74 \n", + "IV 2.030579 5.25 6.170 7.04 8.19 12.50 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 58 + } + ] + }, + { + "metadata": { + "id": "HHRzZXgDCbhD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Get the [count](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.count.html), for each column in each group" + ] + }, + { + "metadata": { + "id": "WjDuhyiBCbhE", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "f9302e4d-3c41-4b56-86c8-7fd518b5c985" + }, + "cell_type": "code", + "source": [ + "groups.count()" + ], + "execution_count": 60, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
dataset
I1111
II1111
III1111
IV1111
\n", + "
" + ], + "text/plain": [ + " x y\n", + "dataset \n", + "I 11 11\n", + "II 11 11\n", + "III 11 11\n", + "IV 11 11" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 60 + } + ] + }, + { + "metadata": { + "id": "v2JMcRfgCbhG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Get the [mean](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.mean.html) ..." + ] + }, + { + "metadata": { + "id": "r3P7Vp0qCbhG", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "710d8be0-393e-4f06-dc44-ac1cd721f730" + }, + "cell_type": "code", + "source": [ + "groups.mean()" + ], + "execution_count": 61, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
dataset
I9.07.500909
II9.07.500909
III9.07.500000
IV9.07.500909
\n", + "
" + ], + "text/plain": [ + " x y\n", + "dataset \n", + "I 9.0 7.500909\n", + "II 9.0 7.500909\n", + "III 9.0 7.500000\n", + "IV 9.0 7.500909" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 61 + } + ] + }, + { + "metadata": { + "id": "kdM_HV3iCbhJ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Get the [standard deviation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.std.html) ..." + ] + }, + { + "metadata": { + "id": "eGC-IJhgCbhJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "da80d609-8bb5-442c-db24-164d2362033a" + }, + "cell_type": "code", + "source": [ + "groups.std()" + ], + "execution_count": 62, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
dataset
I3.3166252.031568
II3.3166252.031657
III3.3166252.030424
IV3.3166252.030579
\n", + "
" + ], + "text/plain": [ + " x y\n", + "dataset \n", + "I 3.316625 2.031568\n", + "II 3.316625 2.031657\n", + "III 3.316625 2.030424\n", + "IV 3.316625 2.030579" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 62 + } + ] + }, + { + "metadata": { + "id": "sSly-4EgCbhM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Get the [correlation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html) ..." + ] + }, + { + "metadata": { + "id": "tVrDGvfqCbhM", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + }, + "outputId": "40f61de9-b30b-4ff2-eaac-12348c118aa8" + }, + "cell_type": "code", + "source": [ + "groups.corr()" + ], + "execution_count": 63, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
dataset
Ix1.0000000.816421
y0.8164211.000000
IIx1.0000000.816237
y0.8162371.000000
IIIx1.0000000.816287
y0.8162871.000000
IVx1.0000000.816521
y0.8165211.000000
\n", + "
" + ], + "text/plain": [ + " x y\n", + "dataset \n", + "I x 1.000000 0.816421\n", + " y 0.816421 1.000000\n", + "II x 1.000000 0.816237\n", + " y 0.816237 1.000000\n", + "III x 1.000000 0.816287\n", + " y 0.816287 1.000000\n", + "IV x 1.000000 0.816521\n", + " y 0.816521 1.000000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 63 + } + ] + }, + { + "metadata": { + "id": "ip3WlhacCbhP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Use pandas to [plot](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html) the groups, as scatter plots" + ] + }, + { + "metadata": { + "id": "JvQD-G-1CbhQ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1082 + }, + "outputId": "24579881-204d-44aa-b1a7-9d8bff30357e" + }, + "cell_type": "code", + "source": [ + "groups.plot('x', 'y', kind='scatter');" + ], + "execution_count": 67, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEXlJREFUeJzt3X9sXWd9x/HP59bGduIIjG06sOnS\nkaqbVBnTeQjIqBgFVrbKRXhIoCEKY8sfY8DQtgS2Cf6ZGPOQBtokpqiFVhp0P2KqVJuGWhWx/jFW\n4ZbEBMqoxqBxaMmtcVBdbHPD/e6Pe9HiEMeOfc957PO8X1Lke8+90fM5reOPz4/nuY4IAQDyVUsd\nAACQFkUAAJmjCAAgcxQBAGSOIgCAzFEEAJA5igAAMkcRAEDmKAIAyFxX6gCbMTQ0FPv3708dAwB2\nlUceeeTpiBje6H27ogj279+v2dnZ1DEAYFex/d3NvK+wU0O2P237rO1TF2x7i+2v227anihqbADA\n5hV5jeAuSbdctO2UpDdLeqjAcQEAV6CwU0MR8ZDt/Rdte0ySbBc1LADgCnHXEABkbscWge1Dtmdt\nz9br9dRxAKCydmwRRMTRiJiIiInh4Q3vfgIAbNGOLQIAuNDC0qpOnj6nhaXV1FEqp7CLxbbvkfQa\nSUO25yV9RNIPJP2tpGFJ/2b7RET8elEZAFTD8RNndGRmTt21mhrNpqanxjQ5PpI6VmUUedfQ29Z5\n6d6ixgRQPQtLqzoyM6eVRlMrakqSDs/M6eCBIQ329yROVw2cGgKwo80vLqu7tvZHVXetpvnF5USJ\nqociALCjjQ70qdFsrtnWaDY1OtCXKFH1UAQAdrTB/h5NT42pt7umfT1d6u2uaXpqjNNCHbQrFp0D\nkLfJ8REdPDCk+cVljQ70UQIdRhEA2BUG+3sogIJwaggAMkcRAEDmKAIAyBxFAACZowgAIHMUAQBk\njiIAgMxRBACQOYoAADJHEQBA5igCAMgcRQAAmaMIACBzFAEAZI4iAIDMUQQAkLnCisD2p22ftX3q\ngm3Pt/2A7cfbXweKGh8AsDlFHhHcJemWi7Z9UNKDEXGdpAfbzwEACRVWBBHxkKQfXLT5Nkl3tx/f\nLelNRY0PALvZwtKqTp4+p4Wl1cLHKvszi6+OiCfbj5+SdHXJ4wPAjnf8xBkdmZlTd62mRrOp6akx\nTY6PFDZesovFERGSYr3XbR+yPWt7tl6vl5gMANJZWFrVkZk5rTSaemb1vFYaTR2emSv0yKDsIvi+\n7RdKUvvr2fXeGBFHI2IiIiaGh4dLCwgAKc0vLqu7tvZHc3etpvnF5cLGLLsI7pN0e/vx7ZKOlzw+\nAOxoowN9ajSba7Y1mk2NDvQVNmaRt4/eI+nLkq63PW/73ZI+Jun1th+X9Lr2cwBA22B/j6anxtTb\nXdO+ni71dtc0PTWmwf6ewsYs7GJxRLxtnZduLmpMAKiCyfERHTwwpPnFZY0O9BVaAlL5dw0BADZh\nsL+n8AL4KZaYAIDMUQQAkDmKAAAyRxEAQOYoAgDIHEUAAJmjCAAgcxQBAGSOIgCAzFEEAJA5igAA\nMkcRAEDmKAIAyBxFAACZowgAIHMUAQBkjiIAgMxRBACQOYoAADJHEQBA5pIUge332z5l++u2/zBF\nBgBAS+lFYPsGSb8n6eWSXirpVtsHys4BAGhJcUTwS5IejogfRcR5Sf8h6c0JcgAAlKYITkl6te1B\n23sk/YakFyfIAQCQ1FX2gBHxmO2/knS/pGclnZD0k4vfZ/uQpEOSdM0115SaEQBykuRicUTcGRG/\nHBE3SVqU9K1LvOdoRExExMTw8HD5IQEgE6nuGnpB++s1al0f+FyKHMB2LCyt6uTpc1pYWk0dBdiW\n0k8Ntc3YHpTUkPSeiDiXKAewJcdPnNGRmTl112pqNJuanhrT5PhI6ljAliQpgoh4dYpxgU5YWFrV\nkZk5rTSaWlFTknR4Zk4HDwxpsL8ncTrgyjGzGLhC84vL6q6t/afTXatpfnE5USJgeygC4AqNDvSp\n0Wyu2dZoNjU60JcoEbA9FAFwhQb7ezQ9Nabe7pr29XSpt7um6akxTgth10p1sRjY1SbHR3TwwJDm\nF5c1OtBHCWBXowiALRrs76EAUAmcGgKAzFEEAJA5igAAMkcRAEDmKAIAyBxFAACZowgAIHMUAYBN\nY+ntamJCGYBNYent6uKIAMCGLlx6+5nV81ppNHV4Zo4jg4qgCABsiKW3q40iALAhlt6uNooAwIZY\nervauFgMYFNYeru6KAIAm8bS29XEqSFgF+J+fnRSkiMC2x+Q9LuSQtLXJL0rIlZSZAF2G+7nR6eV\nfkRge0TS+yRNRMQNkq6S9NaycwC7EffzowipTg11Seqz3SVpj6TvJcoB7Crcz48ilF4EEXFG0scl\nPSHpSUk/jIj7y84B7Ebcz48ipDg1NCDpNknXSnqRpL22336J9x2yPWt7tl6vlx0T2JG4nx9FcESU\nO6D9Fkm3RMS728/fIekVEfH76/2diYmJmJ2dLSsisOMtLK1yPz82ZPuRiJjY6H0p7hp6QtIrbO+R\ntCzpZkn8lAeuAPfzo5NSXCN4WNIxSY+qdetoTdLRsnMAAFqSzCOIiI9I+kiKsQEAazGzGAAyRxEA\nQOYoAgDIHEUAAJmjCADgMnJY6ZXPIwCAdeSy0uuGRwS239teFgIAspHTSq+bOTV0taSv2P5n27fY\ndtGhACC1nFZ63bAIIuLPJV0n6U5J75T0uO2P2n5JwdkAIJmcVnrd1MXiaK1M91T7z3lJA5KO2Z4u\nMBsAJJPTSq8bXiy2/X5J75D0tKQ7JP1JRDRs1yQ9LulwsREBII3J8REdPDBU+ZVeN3PX0PMlvTki\nvnvhxoho2r61mFgAsDPksNLrhkXQXiBuvdce62wcAEDZmFAGAJmjCComh1mQADqLmcUVksssSACd\nxRFBReQ0CxJAZ1EEFZHTLEgAnUURVEROsyABdBZFUBE5zYIE0FlcLK6QXGZBAuis0ovA9vWS/umC\nTb8g6cMR8Ymys1RRDrMgAXRW6UUQEf8taVySbF8l6Yyke8vOAQBoSX2N4GZJ/3PxOkbAlWASHbA9\nqa8RvFXSPYkzYBdjEh2wfcmOCGw/R9KkpH9Z5/VDtmdtz9br9XLDYVdgEh3QGSlPDb1R0qMR8f1L\nvRgRRyNiIiImhoeHS46G3YBJdEBnpCyCt4nTQtgGJtEBnZGkCGzvlfR6SZ9PMT6qgUl0QGckuVgc\nEc9KGkwxNqqFSXTA9qW+awjYNibRAduTeh4BACAxigAAMkcRAEDmKAIAyBxFAACZowgAIHMUAQBk\njiIAgMxRBACQOYoAADJHEQBA5igCAMgcRQAAmaMIACBzFAEAZI4iAIDMUQQAkDmKAAAyRxEAQOYo\nAgDIXJIisP0828dsf9P2Y7ZfmSIHAEDqSjTuJyV9ISJ+y/ZzJO1JlAMAsld6Edh+rqSbJL1TkiLi\nx5J+XHYOAEBLilND10qqS/qM7a/avsP23ovfZPuQ7Vnbs/V6vfyUAJCJFEXQJelGSZ+KiJdJelbS\nBy9+U0QcjYiJiJgYHh4uOyMAZCNFEcxLmo+Ih9vPj6lVDACABEovgoh4StJp29e3N90s6Rtl5wAA\ntKS6a+i9kj7bvmPo25LelSgHAGQvSRFExAlJEynGBgCsxcxiAMgcRVCQhaVVnTx9TgtLq6mjAMBl\npbpGUGnHT5zRkZk5dddqajSbmp4a0+T4SOpYAHBJHBF02MLSqo7MzGml0dQzq+e10mjq8MwcRwYA\ndiyKoMPmF5fVXVv7n7W7VtP84nKiRABweRRBh40O9KnRbK7Z1mg2NTrQlygRAFweRdBhg/09mp4a\nU293Tft6utTbXdP01JgG+3tSRwOAS+JicQEmx0d08MCQ5heXNTrQRwkA2NEogoIM9vdQAAB2BU4N\nAUDmKAIAyBxFAACZowgAIHMUAQBkjiIAgMxRBACQOYoAADJHEQBA5igCAMgcRQAAmaMIACBzSRad\ns/0dSc9I+omk8xExkSIHACDt6qO/FhFPJxwfACBODQFA9lIVQUi63/Yjtg9d6g22D9metT1br9dL\njgcA+UhVBL8aETdKeqOk99i+6eI3RMTRiJiIiInh4eHyEwJAJpIUQUScaX89K+leSS9PkQMAkKAI\nbO+1ve+njyW9QdKpsnOg8xaWVnXy9DktLK2mjgLgCqS4a+hqSffa/un4n4uILyTIgQ46fuKMjszM\nqbtWU6PZ1PTUmCbHR1LHArAJpRdBRHxb0kvLHhfFWVha1ZGZOa00mlpRU5J0eGZOBw8MabC/J3E6\nABvh9lFs2/zisrpra7+Vums1zS8uJ0oE4EpQBNi20YE+NZrNNdsazaZGB/oSJQJwJSgCbNtgf4+m\np8bU213Tvp4u9XbXND01xmkhYJdIucQEKmRyfEQHDwxpfnFZowN9lACwi1AE6JjB/h4KANiFODUE\nAJmjCAAgcxQBAGSOIgCAzFEEAJA5igAAMkcRAEDmKAIAyBxFAACZq3QR8EEpALCxyi4xwQelAMDm\nVPKI4MIPSnlm9bxWGk0dnpnjyAAALqGSRcAHpQDA5lWyCPigFADYvEoWAR+UAgCbV9mLxXxQCgBs\nTrIisH2VpFlJZyLi1iLG4INSAGBjKU8NvV/SYwnHBwAoURHYHpX0m5LuSDE+AOD/pToi+ISkw5Ka\n673B9iHbs7Zn6/V6eckAIDOlF4HtWyWdjYhHLve+iDgaERMRMTE8PFxSOgDIT4ojgoOSJm1/R9I/\nSnqt7X9IkAMAIMkRkW5w+zWS/niju4Zs1yV9d4vDDEl6eot/d7din/PAPlffdvf35yNiw1Mqu2Ie\nwWZ2ZD22ZyNiopN5djr2OQ/sc/WVtb9JiyAiviTpSykzAEDuKrnEBABg83IogqOpAyTAPueBfa6+\nUvY36cViAEB6ORwRAAAuo/JFYPsq21+1/a+ps5TB9vNsH7P9TduP2X5l6kxFsv0B21+3fcr2PbZ7\nU2cqgu1P2z5r+9QF255v+wHbj7e/DqTM2Enr7O9ft7+v52zfa/t5KTN22qX2+YLX/sh22B4qYuzK\nF4HyW9zuk5K+EBG/KOmlqvC+2x6R9D5JExFxg6SrJL01barC3CXplou2fVDSgxFxnaQH28+r4i79\n7P4+IOmGiBiT9C1JHyo7VMHu0s/us2y/WNIbJD1R1MCVLoLcFrez/VxJN0m6U5Ii4scRcS5tqsJ1\nSeqz3SVpj6TvJc5TiIh4SNIPLtp8m6S724/vlvSmUkMV6FL7GxH3R8T59tP/kjRaerACrfP/WJL+\nRq212Qq7oFvpItAmFrermGsl1SV9pn067A7be1OHKkpEnJH0cbV+U3pS0g8j4v60qUp1dUQ82X78\nlKSrU4Yp2e9I+vfUIYpm+za1PrPlZJHjVLYINru4XcV0SbpR0qci4mWSnlW1Thes0T4nfptaBfgi\nSXttvz1tqjSidftfFrcA2v4zSeclfTZ1liLZ3iPpTyV9uOixKlsEynNxu3lJ8xHxcPv5MbWKoape\nJ+l/I6IeEQ1Jn5f0qsSZyvR92y+UpPbXs4nzFM72OyXdKum3o/r3vr9ErV9yTrZ/jo1KetT2z3V6\noMoWQUR8KCJGI2K/WhcQvxgRlf5tMSKeknTa9vXtTTdL+kbCSEV7QtIrbO+xbbX2t7IXxy/hPkm3\ntx/fLul4wiyFs32LWqd6JyPiR6nzFC0ivhYRL4iI/e2fY/OSbmz/O++oyhZBxt4r6bO25ySNS/po\n4jyFaR/5HJP0qKSvqfX9XMmZp7bvkfRlSdfbnrf9bkkfk/R624+rdXT0sZQZO2md/f07SfskPWD7\nhO2/Txqyw9bZ53LGrv7RFQDgcjgiAIDMUQQAkDmKAAAyRxEAQOYoAgDIHEUAAJmjCAAgcxQBsAW2\nf6W9Ln6v7b3tz0S4IXUuYCuYUAZske2/kNQrqU+tNZ7+MnEkYEsoAmCLbD9H0lckrUh6VUT8JHEk\nYEs4NQRs3aCkfrXWv6nkR2QiDxwRAFtk+z61lji/VtILI+IPEkcCtqQrdQBgN7L9DkmNiPic7ask\n/aft10bEF1NnA64URwQAkDmuEQBA5igCAMgcRQAAmaMIACBzFAEAZI4iAIDMUQQAkDmKAAAy93/Z\nomF0EMrjugAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEUVJREFUeJzt3X1sXXd9x/H399bGduuKGMd0LG6W\nbp26SZ0TwEOFbEhrAXWjSie8PzqtGnvQIk0bdGhSAnsATdoDeEgDCYkpakeRgDKoqYqQhlrRMaQ9\ndCQlMYV2IB7aOFAaPAfVxTE3vd/94ZuRpPFDXJ977Pt7v6TI9vHx/X5P4nzO7/zueYjMRJLU/Rp1\nNyBJ6gwDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klSInrobONf27dtz165ddbch\nSVvGkSNHvp+ZI2tZd1MF/q5duzh8+HDdbUjSlhERT6x1Xad0JKkQBr4kFcLAl6RCGPiSVAgDX5IK\nYeBLUiEMfEnPMzu/yLHjp5idX6y7FW2gTXUevqT63X/0BAenpultNGi2WkxOjLFvz46629IGcIQv\n6f/Nzi9ycGqa080Wzyye4XSzxYGpaUf6XcLAlzapOqZVZuYW6G2cHwu9jQYzcwsd60HVcUpH2oTq\nmlYZHRqg2Wqdt6zZajE6NFB5bVjayc3MLTA6NMDwYF9HapbEEb60ydQ5rTI82MfkxBj9vQ2u7Ouh\nv7fB5MRYR8L3/qMn2Pueh7j9zofZ+56H+PTRE5XXLI0jfGmTOTutcpofj7TPTqt0Inj37dnB3mu3\nd3Skfe5O7ux2H5iaZu+12x3pb6BKR/gRcUdEPBoRX4mIP6myltQt6p5WgaWR/u6rt3UsbH3voDMq\nC/yIuB74A+BVwG7gloi4tqp6Ureoc1qlLpthJ1eCKqd0fh54ODN/CBAR/wa8CZissKbUFeqYVqnT\n2Z3cgQveqO727e60KgP/UeBvImIYWAB+DfDpJtIaDQ/2FRV4pe3k6lBZ4GfmYxHxHuAB4FngKPDc\nhetFxH5gP8DOnTurakfSFlDaTq7TKn3TNjPvysxXZuZrgTngaxdZ51Bmjmfm+MjImh7LKElah0pP\ny4yIl2bm0xGxk6X5+xuqrCdJWl7V5+FPtefwm8AfZeapiutJkpZRaeBn5i9X+fpSJ3i5v7qFV9pK\nK/BWweUoYcdu4EvL8HL/cpSyY/fmadIyvNy/DCU9A8DAl5bh5f5lKGnHbuBLyyjxnjYlKmnH7hy+\ntAIv9+9+Jd3Hx8CXVuHl/t2vlB27gS9JlLFjdw5fkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLA\nl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIGvLWN2fpFjx0915YMppE7w5mnaEkp5BJ1UJUf42vRKegSd\nytPJI1dH+Nr0zj6C7uyDxOHHj6Dr9tvZqrt1+si10hF+RLwtIr4SEY9GxD0R0V9lPXWnkh5Bp3LU\nceRaWeBHxA7grcB4Zl4PXAbcVlU9dS+fLatuVMfD06ue0ukBBiKiCVwOfKfieupSpTyCTuWo48i1\nshF+Zp4A3gs8CXwX+EFmPlBVPXW/4cE+dl+9zbBXV6jjyLWyEX5EDAG3AtcAp4BPRsTtmfmRC9bb\nD+wH2LlzZ1XtSNKm0+kj1yrftH0d8K3MPJmZTeBTwGsuXCkzD2XmeGaOj4yMVNiOJG0+nTxyrTLw\nnwRuiIjLIyKAm4DHKqwnSVpBlXP4DwP3Ao8AX27XOlRVPUnSyio9Sycz3wW8q8oakqS18dYKklQI\nA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDw\nJakQBr4kFcLAl6RCGPi6JLPzixw7forZ+cW6W5F0iSp94pW6y/1HT3BwapreRoNmq8XkxBj79uyo\nuy1Ja+QIX2syO7/IwalpTjdbPLN4htPNFgemph3pS1uIga81mZlboLdx/q9Lb6PBzNxCTR1JulQG\nvtZkdGiAZqt13rJmq8Xo0EBNHUm6VAa+1mR4sI/JiTH6extc2ddDf2+DyYkxhgf76m5N0hr5pq3W\nbN+eHey9djszcwuMDg0Y9tIWU1ngR8R1wD+fs+ingXdm5vuqqqnqDQ/2GfTSFlVZ4Gfm/wB7ACLi\nMuAEcF9V9SRJK+vUHP5NwDcy84kO1ZMkXaBTgX8bcE+HakmSLqLywI+IFwH7gE8u8/39EXE4Ig6f\nPHmy6nYkqVidGOH/KvBIZn7vYt/MzEOZOZ6Z4yMjIx1oR5LK1InA/02czpGk2lUa+BFxBfB64FNV\n1pEkra7SC68y81lguMoakqS18dYKklQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY\n+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiFWDfyIeEtE\nDHWiGUlSddYywr8K+GJEfCIibo6IqLoprW52fpFjx08xO79YdyuStoie1VbIzL+IiL8E3gD8LvCB\niPgEcFdmfqPqBvV89x89wcGpaXobDZqtFpMTY+zbs6PutiRtcmuaw8/MBJ5q/zkDDAH3RsRkhb3p\nImbnFzk4Nc3pZotnFs9wutniwNS0I31Jq1rLHP4dEXEEmAT+HfiFzPxD4JXAxCo/uy0i7o2IxyPi\nsYh49YZ0XbCZuQV6G+f/s/U2GszMLdTUkaStYtUpHeAlwJsy84lzF2ZmKyJuWeVn3w98NjN/IyJe\nBFy+zj7VNjo0QLPVOm9Zs9VidGigpo4kbRWrjvAz810Xhv0533tsuZ+LiBcDrwXuaq/7o8w8td5G\ntWR4sI/JiTH6extc2ddDf2+DyYkxhgf76m5N0ia3lhH+el0DnAQ+FBG7gSPAHZn5bIU1i7Bvzw72\nXrudmbkFRocGDHtJa1LlhVc9wCuAD2bmy4FngbdfuFJE7I+IwxFx+OTJkxW2012GB/vYffU2w17S\nmlUZ+DPATGY+3P76XpZ2AOfJzEOZOZ6Z4yMjIxW2I0llqyzwM/Mp4HhEXNdedBPw1arqSZJWVuUc\nPsBbgI+2z9D5JksXbkmSalBp4GfmUWC8yhqSpLXxbpmSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWp\nEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph\n4EtSIQx8SSqEgS9JhTDwJakQBr4kFaKnyhePiG8DzwDPAWcyc7zKepKk5VUa+G2/kpnf70AdSdIK\nnNKRpEJUHfgJPBARRyJif8W1JEkrqHpK55cy80REvBR4MCIez8wvnLtCe0ewH2Dnzp0VtyNJ5ap0\nhJ+ZJ9ofnwbuA151kXUOZeZ4Zo6PjIxU2Y4kFa2ywI+IKyLiyrOfA28AHq2qniRpZVVO6VwF3BcR\nZ+t8LDM/W2E9SdIKKgv8zPwmsLuq15ckXRpPy3wBZucXOXb8FLPzi3W3Ikmr6sSFV13p/qMnODg1\nTW+jQbPVYnJijH17dtTdliQtyxH+OszOL3JwaprTzRbPLJ7hdLPFgalpR/qSNjUDfx1m5hbobZz/\nV9fbaDAzt1BTR5K0OgN/HUaHBmi2Wucta7ZajA4N1NSRJK3OwF+H4cE+JifG6O9tcGVfD/29DSYn\nxhge7Ku7NUlalm/artO+PTvYe+12ZuYWGB0aMOwlbXoG/gswPNhn0EvaMpzSkaRCGPiSVAgDX5IK\nYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRCV\nB35EXBYRX4qIz1RdS5K0vE6M8O8AHutAHUnSCioN/IgYBd4I3FllHUnS6qoe4b8POAC0Kq4jSVpF\nZYEfEbcAT2fmkVXW2x8RhyPi8MmTJ6tqR5KKV+UIfy+wLyK+DXwcuDEiPnLhSpl5KDPHM3N8ZGSk\nwnYkqWyVBX5mviMzRzNzF3Ab8FBm3l5VPUnSyjwPX5IK0dOJIpn5eeDznaglSbo4R/iSVAgDX5IK\nYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAG\nviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JheiKwJ+dX+TY8VPMzi/W3YokbVo9dTfwQt1/\n9AQHp6bpbTRotlpMToyxb8+OutuSpE2nshF+RPRHxH9HxLGI+EpE/NVG15idX+Tg1DSnmy2eWTzD\n6WaLA1PTjvQl6SKqnNJZBG7MzN3AHuDmiLhhIwvMzC3Q2zh/E3obDWbmFjayjCR1hcqmdDIzgfn2\nl73tP7mRNUaHBmi2Wucta7ZajA4NbGQZSeoKlb5pGxGXRcRR4Gngwcx8eCNff3iwj8mJMfp7G1zZ\n10N/b4PJiTGGB/s2sowkdYVK37TNzOeAPRGxDbgvIq7PzEfPXSci9gP7AXbu3HnJNfbt2cHea7cz\nM7fA6NCAYS9Jy+jIaZmZeQr4V+Dmi3zvUGaOZ+b4yMjIul5/eLCP3VdvM+wlaQVVnqUz0h7ZExED\nwOuBx6uqJ0laWZVTOi8DPhwRl7G0Y/lEZn6mwnqSpBVUeZbONPDyql5fknRpuuLWCpKk1Rn4klSI\nWLo+anOIiJPAE+v88e3A9zewna3Abe5+pW0vuM2X6qcyc02nOG6qwH8hIuJwZo7X3Ucnuc3dr7Tt\nBbe5Sk7pSFIhDHxJKkQ3Bf6huhuogdvc/UrbXnCbK9M1c/iSpJV10whfkrSCrgj89m2YvxQRRdy6\nISK2RcS9EfF4RDwWEa+uu6eqRcTb2k9OezQi7omI/rp72mgR8U8R8XREPHrOspdExIMR8fX2x6E6\ne9xoy2zz37d/t6cj4r6z9+TqFhfb5nO+96cRkRGxvYraXRH4wB3AY3U30UHvBz6bmT8H7KbLtz0i\ndgBvBcYz83rgMuC2eruqxN08/46ybwc+l5k/C3yu/XU3uZvnb/ODwPWZOQZ8DXhHp5uq2N1c5M7B\nEXE18AbgyaoKb/nAj4hR4I3AnXX30gkR8WLgtcBdAJn5o/btp7tdDzAQET3A5cB3au5nw2XmF4D/\nvWDxrcCH259/GPj1jjZVsYttc2Y+kJln2l/+FzDa8cYqtMy/M8A/AAfY4CcDnmvLBz7wPpb+klqr\nrdglrgFOAh9qT2PdGRFX1N1UlTLzBPBelkY+3wV+kJkP1NtVx1yVmd9tf/4UcFWdzdTg94B/qbuJ\nqkXErcCJzDxWZZ0tHfgRcQvwdGYeqbuXDuoBXgF8MDNfDjxL9x3mn6c9b30rSzu7nwSuiIjb6+2q\n89rPiS7mtLqI+HPgDPDRunupUkRcDvwZ8M6qa23pwAf2Avsi4tvAx4EbI+Ij9bZUuRlg5pznA9/L\n0g6gm70O+FZmnszMJvAp4DU199Qp34uIlwG0Pz5dcz8dERG/A9wC/FZ2/7njP8PSYOZYO8tGgUci\n4ic2utCWDvzMfEdmjmbmLpbexHsoM7t65JeZTwHHI+K69qKbgK/W2FInPAncEBGXR0SwtM1d/Ub1\nOT4NvLn9+ZuB+2vspSMi4maWpmn3ZeYP6+6napn55cx8aWbuamfZDPCK9v/1DbWlA79gbwE+GhHT\nwB7gb2vup1Lto5l7gUeAL7P0e9t1V2NGxD3AfwLXRcRMRPw+8G7g9RHxdZaOdN5dZ48bbZlt/gBw\nJfBgRByNiH+stckNtsw2d6Z29x8tSZLAEb4kFcPAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw\n8KVlRMQvtu/J3h8RV7Tvx3993X1J6+WFV9IKIuKvgX5ggKV7GP1dzS1J62bgSyuIiBcBXwROA6/J\nzOdqbklaN6d0pJUNA4Ms3dul6x6rqLI4wpdWEBGfZunW29cAL8vMP665JWndeupuQNqsIuK3gWZm\nfiwiLgP+IyJuzMyH6u5NWg9H+JJUCOfwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEv\nSYX4Pzb0WgKqz8lLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEQ9JREFUeJzt3X+MZWV9x/H3Z9h1WVgq6+5IlcVC\nhGBbAtROG5VKa9GWWgJW0kRSK1TSTZP6M01Ba1ubtLUWTVoTk5oNIDRFmpaVYNpoIZiUP4rEWcR1\nEZRUKw6IOwKKq7DuOt/+MXfbZd1xZmfn3DP3Pu9Xstl7zz3c53tg2c+c5znfc1JVSJLaNdF3AZKk\nfhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMat6eqLk1wPXATsrqqzBtv+ErgE\nmAN2A1dU1aOLfdfmzZvr1FNP7apUSRpLO3bs+FZVTS62X7q6xUSS84E9wD8eFAQ/UVVPDV6/DfiZ\nqvqDxb5ramqqpqenO6lTksZVkh1VNbXYfp1NDVXVXcATh2x76qC3xwPe6EiSetbZ1NBCkvw18Cbg\nO8Crhj2+JOnZhr5YXFXvqapTgJuAtyy0X5KtSaaTTM/Ozg6vQElqTJ9XDd0EXLrQh1W1raqmqmpq\ncnLRtQ5J0jINNQiSnHHQ20uAB4c5viTpR3V5+ejNwK8Am5PMAO8FXpvkTOYvH/0asOgVQ5KkbnUW\nBFV12WE2X9fVeJLUhcf37GXmyafZsnE9mzas67ucTgz9qiFJGhW33fcIV2/fydqJCfbNzXHNpWdz\n8bkn913WivMWE5J0GI/v2cvV23fyzL45vrt3P8/sm+Oq7Tt5fM/evktbcQaBJB3GzJNPs3bi2X9F\nrp2YYObJp3uqqDsGgSQdxpaN69k3N/esbfvm5tiycX1PFXXHIJCkw9i0YR3XXHo2x66d4IR1azh2\n7QTXXHr2WC4Yu1gsSQu4+NyTOe/0zV41JEkt27Rh3dgGwAFODUlS4wwCSWqcQSBJjTMIJKlxBoEk\nNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY3rLAiSXJ9kd5JdB237QJIHk+xMcmuSE7saX5K0\nNF2eEdwAXHjItjuAs6rqbODLwLs7HF+StASdBUFV3QU8cci226tq/+DtZ4AtXY0vSVqaPtcI3gx8\ncqEPk2xNMp1kenZ2dohlSVJbegmCJO8B9gM3LbRPVW2rqqmqmpqcnBxecZLUmKE/mCbJFcBFwAVV\nVcMeX5L0bEMNgiQXAlcBv1xV3x/m2JKkw+vy8tGbgbuBM5PMJLkS+DBwAnBHkvuSfKSr8SVJS9PZ\nGUFVXXaYzdd1NZ4kaXnsLJakxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZ\nBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1Lgun1l8fZLdSXYdtO23k9yf\nZC7JVFdjS5KWrsszghuACw/Ztgt4PXBXh+NKko5Alw+vvyvJqYdsewAgSVfDSpKO0KpdI0iyNcl0\nkunZ2dm+y5GksbVqg6CqtlXVVFVNTU5O9l2OJI2tVRsEkqThMAgkqXFdXj56M3A3cGaSmSRXJvmt\nJDPAy4F/T/IfXY0vSVqaLq8aumyBj27takxJ0pFzakiSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1\nziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIa1+WjKq9P\nsjvJroO2PS/JHUkeGvy+savxJUlL0+UZwQ3AhYdsexdwZ1WdAdw5eC9J6lFnQVBVdwFPHLL5EuDG\nwesbgdd1Nb4kaWmGvUZwUlV9Y/D6MeCkIY8vSTpEb4vFVVVALfR5kq1JppNMz87ODrEySWrLsIPg\nm0leADD4ffdCO1bVtqqaqqqpycnJoRUoSa0ZdhB8Arh88Ppy4LYhjy9JOkSXl4/eDNwNnJlkJsmV\nwPuB1yR5CHj14L0kqUdruvriqrpsgY8u6GpMSdKRs7NYkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEk\nNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLj\nFg2CJG9NsnElB03y9iS7ktyf5B0r+d2SpCOzlDOCk4DPJvmXJBcmydEMmOQs4PeBXwTOAS5KcvrR\nfKckafkWDYKq+lPgDOA64ArgoSTvS/LiZY7508A9VfX9qtoP/Cfw+mV+lyTpKC1pjaCqCnhs8Gs/\nsBG4Jck1yxhzF/DKJJuSHAe8FjhlGd8jSVoBaxbbIcnbgTcB3wKuBf64qvYlmQAeAq46kgGr6oEk\nfwvcDnwPuA/44WHG3QpsBXjRi150JENIko7AUs4Inge8vqp+var+tar2AVTVHHDRcgatquuq6uer\n6nzgSeDLh9lnW1VNVdXU5OTkcoaRpJH1+J69fP7r3+bxPXs7H2vRM4Kqeu+P+eyB5Qya5PlVtTvJ\ni5hfH3jZcr5HksbRbfc9wtXbd7J2YoJ9c3Ncc+nZXHzuyZ2Nt2gQdGR7kk3APuAPq+rbPdUhSavK\n43v2cvX2nTyzb45nmAPgqu07Oe/0zWzasK6TMXsJgqp6ZR/jStJqN/Pk06ydmPi/EABYOzHBzJNP\ndxYEdhZL0iqyZeN69s3NPWvbvrk5tmxc39mYBoEkrSKbNqzjmkvP5ti1E5ywbg3Hrp3gmkvP7uxs\nAPpbI5AkLeDic0/mvNM3M/Pk02zZuL7TEACDQJJWpU0b1nUeAAc4NSRJjTMIJKlxBoEkNc4gkKTG\nGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJA0Eob56MbWeNM5SavesB/d2BrPCCSt\nagc/uvG7e/fzzL45rtq+0zODFdRLECR5Z5L7k+xKcnOSY/uoQ9Lqd+DRjQc78OhGrYyhB0GSk4G3\nAVNVdRZwDPCGYdchaTT08ejG1vQ1NbQGWJ9kDXAc8GhPdUha5fp4dGNrhr5YXFWPJPkg8DDwNHB7\nVd0+7DokjY5hP7qxNX1MDW0ELgFOA14IHJ/kjYfZb2uS6STTs7Ozwy5T0iqzacM6zjnlREOgA31M\nDb0a+GpVzVbVPuDjwCsO3amqtlXVVFVNTU5ODr1ISWpFH0HwMPCyJMclCXAB8EAPdUg6QjZ1jac+\n1gjuSXILcC+wH/gcsG3YdUg6MjZ1ja9erhqqqvdW1Uuq6qyq+t2q8scLaRWzqWu82VksaVE2dY03\ng0DSomzqGm8GgaRF2dQ13rz7qKQlsalrfBkEkpZs04Z1BsAYcmpIkhpnEEgjyMYurSSnhqQRY2OX\nVppnBNIIsbFLXTAIpBFiY5e6YBBII8TGLnXBIJBGiI1d6oKLxdKIsbFLK80gkEaQjV1aSU4NSVLj\nDAJJapxBIC2T3b0aF64RSMtgd6/GydDPCJKcmeS+g349leQdw65DWi67ezVu+nh4/ZeAcwGSHAM8\nAtw67Dqk5TrQ3fsM/9/YdaC71yt5NIr6XiO4APjvqvpaz3VIS2Z3r8ZN30HwBuDmw32QZGuS6STT\ns7OzQy5LWpjdvRo3qap+Bk6eAzwK/GxVffPH7Ts1NVXT09PDKUxaosf37LW7V6takh1VNbXYfn1e\nNfQbwL2LhYC0Wtndq3HR59TQZSwwLSRJGp5egiDJ8cBrgI/3Mb7Gi41d0tHpZWqoqr4HbOpjbI0X\nG7uko9f3VUPSstnYJa0Mg0Ajy8c2SivDINDIsrFLWhkGgUaWjV3SyvDuoxppPrZROnoGgUaejV3S\n0XFqSJIaZxBoxdjYJY0mp4a0ImzskkaXZwQ6ajZ2SaPNINBRs7FLGm0GgY6ajV3SaDMIdNRs7JJG\nm4vFWhE2dkmjyyDQirGxSxpNTg1JUuMMgjFjU5ekI+XU0BixqUvScvT1zOITk9yS5MEkDyR5eR91\njBObuiQtV19TQx8CPlVVLwHOAR7oqY6xYVOXpOUa+tRQkucC5wNXAFTVD4AfDLuOcWNTl6Tl6uOM\n4DRgFvhoks8luTbJ8YfulGRrkukk07Ozs8OvcsTY1CVpuVJVwx0wmQI+A5xXVfck+RDwVFX92UL/\nzNTUVE1PTw+txlH2+J69NnVJAiDJjqqaWmy/Pq4amgFmquqewftbgHf1UMdYsqlL0pEa+tRQVT0G\nfD3JmYNNFwBfHHYdkqR5ffURvBW4KclzgK8Av9dTHZLUvF6CoKruAxadtxplztVLGhV2FnfADl9J\no8R7Da0wO3wljRqDYIXZ4Stp1BgEK8wOX0mjxiBYYXb4Sho1LhZ3wMc2SholBkFH7PCVNCqcGpKk\nxo11EPjYRkla3NhODdnUJUlLM5ZnBDZ1SdLSjWUQ2NQlSUs3lkFgU5ckLd1YBoFNXZK0dGO7WGxT\nlyQtzdgGAdjUJUlLMZZTQ5KkpevljCDJ/wDfBX4I7K+qsX5amSStZn1ODb2qqr7V4/iSJJwakqTm\n9RUEBdyeZEeSrT3VIEmiv6mhX6qqR5I8H7gjyYNVddfBOwwC4kBI7EnypWWOtRlobQrKY26Dxzz+\njvZ4f2opO6WqjmKMo5fkL4A9VfXBjr5/urXFaI+5DR7z+BvW8Q59aijJ8UlOOPAa+DVg17DrkCTN\n62Nq6CTg1iQHxv9YVX2qhzokSfQQBFX1FeCcIQ65bYhjrRYecxs85vE3lOPtfY1AktQv+wgkqXFj\nHwRJjknyuST/1nctw5DkxCS3JHkwyQNJXt53TV1K8s4k9yfZleTmJMf2XVMXklyfZHeSXQdte16S\nO5I8NPh9Y581rqQFjvcDgz/XO5PcmuTEPmtcaYc75oM++6MklWRzF2OPfRAAbwce6LuIIfoQ8Kmq\negnzazFje+xJTgbeBkxV1VnAMcAb+q2qMzcAFx6y7V3AnVV1BnDn4P24uIEfPd47gLOq6mzgy8C7\nh11Ux27gR4+ZJKcwf3Xlw10NPNZBkGQL8JvAtX3XMgxJngucD1wHUFU/qKpv91tV59YA65OsAY4D\nHu25nk4MGi6fOGTzJcCNg9c3Aq8balEdOtzxVtXtVbV/8PYzwJahF9ahBf4bA/wdcBXzd2ToxFgH\nAfD3zP8LnFtsxzFxGjALfHQwHXbtoFdjLFXVI8AHmf9J6RvAd6rq9n6rGqqTquobg9ePMX9pdive\nDHyy7yK6luQS4JGq+nyX44xtECS5CNhdVTv6rmWI1gAvBf6hqn4O+B7jNV3wLIM58UuYD8AXAscn\neWO/VfWj5i//a+ISwCTvAfYDN/VdS5eSHAf8CfDnXY81tkEAnAdcPHj2wT8Dv5rkn/otqXMzwExV\n3TN4fwvzwTCuXg18tapmq2of8HHgFT3XNEzfTPICgMHvu3uup3NJrgAuAn6nxv/a9xcz/0PO5wd/\nj20B7k3ykys90NgGQVW9u6q2VNWpzC8gfrqqxvqnxap6DPh6kjMHmy4AvthjSV17GHhZkuMy36p+\nAWO8OH4YnwAuH7y+HLitx1o6l+RC5qd6L66q7/ddT9eq6gtV9fyqOnXw99gM8NLB/+cramyDoGFv\nBW5KshM4F3hfz/V0ZnDmcwtwL/AF5v88j2XnaZKbgbuBM5PMJLkSeD/wmiQPMX929P4+a1xJCxzv\nh4ETmL9j8X1JPtJrkStsgWMeztjjf3YlSfpxPCOQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMI\nJKlxBoG0DEl+YXBf/GOTHD94JsJZfdclLYcNZdIyJfkr4FhgPfP3ePqbnkuSlsUgkJYpyXOAzwLP\nAK+oqh/2XJK0LE4NScu3CdjA/P1vxvIRmWqDZwTSMiX5BPO3OD8NeEFVvaXnkqRlWdN3AdIoSvIm\nYF9VfSzJMcB/JfnVqvp037VJR8ozAklqnGsEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1\nziCQpMb9L7j03E/e/Y69AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEUBJREFUeJzt3X9sXeV9x/HP52LjOCQtJrnNWEwW\n2tDsR+R61K0oDCoKbOmEko5sFahdYUWNVHW0oKkJXadVk7aOGaZpUqVVUcmCNJoJCAymqWsiJpU/\nBqyGJSE0jGjrIA6EmJB0BBJjc7/7495UibHjY+eee3zP835J0b333Jv7fB8l8sfPec7zHEeEAADp\nqhRdAACgWAQBACSOIACAxBEEAJA4ggAAEkcQAEDiCAIASBxBAACJIwgAIHEdRReQxeLFi2P58uVF\nlwEAbeWZZ555PSKq032uLYJg+fLlGhoaKroMAGgrtl/K8jlODQFA4ggCAEgcQQAAiSMIACBxBAEA\nJI4gAIDEEQQAMAcdPjaqXfuP6vCx0dzbaot1BACQkkd3HtDGbbvVWalorFbT4Lo+relfmlt7jAgA\nYA45fGxUG7ft1omxmt4cHdeJsZo2bNud68iAIACAOWT4yHF1Vk7/0dxZqWj4yPHc2iQIAGAO6e3p\n1litdtqxsVpNvT3dubVJEADAHLJoQZcG1/VpXmdFC7s6NK+zosF1fVq0oCu3NpksBoA5Zk3/Ul2x\nYrGGjxxXb093riEgEQQAMCctWtCVewCcxKkhAEgcQQAAiSMIACBxBAEAJC63ILC92fYh23tOOXa3\n7Rds77b9iO3z82ofAJBNniOCLZJWTzi2Q9KqiOiT9KKkb+TYPgAgg9yCICKekPTGhGPbI2K88fIp\nSb15tQ8AyKbIOYIvSvpBge0DAFRQENj+pqRxSfef4TPrbQ/ZHhoZGWldcQCQmJYHge1bJF0v6XMR\nEVN9LiI2RcRARAxUq9WW1QcAqWnpFhO2V0vaIOmTEfF2K9sGAEwuz8tHt0p6UtJK28O2b5X0HUkL\nJe2wvdP2d/NqHwCQTW4jgoi4aZLD9+bVHgBgdlhZDACJIwgAIHEEAQAkjiAAgMQRBACQOIIAABJH\nEABA4ggCAEgcQQAAiSMIACBxBAEAJI4gAIDEEQQAkDiCAAASRxAAQOIIAgBIHEEAAIkjCAAgcQQB\nACQuz5vXb7Z9yPaeU479nu3nbddsD+TVNgAguzxHBFskrZ5wbI+kGyQ9kWO7AIAZ6MjriyPiCdvL\nJxzbK0m282oWADBDc3aOwPZ620O2h0ZGRoouBwBKa84GQURsioiBiBioVqtFlwMApTVngwAA0BoE\nAQAkLs/LR7dKelLSStvDtm+1/Tu2hyV9QtK/2P5hXu0DALLJ86qhm6Z465G82gQAzBynhgAgcQQB\nACSOIACAxBEEAJA4ggAAEkcQAEDiCAIASBxBAACJIwgAIHEEAQAkjiAAgMQRBACQOIIAABJHEABA\n4ggCAEgcQQAAiSMIACBxBAEAJC7PexZvtn3I9p5Tjl1ge4ftfY3HnrzaBwBkk+eIYIuk1ROO3Snp\n8Yi4RNLjjdcAgALlFgQR8YSkNyYcXivpvsbz+yR9Jq/2AQDZtHqOYElEvNp4flDSkqk+aHu97SHb\nQyMjI62pDgASVNhkcUSEpDjD+5siYiAiBqrVagsrA4C0tDoIXrN9oSQ1Hg+1uH0AwAStDoLHJN3c\neH6zpEdb3D4AYII8Lx/dKulJSSttD9u+VdJdkq6zvU/StY3XAIACdeT1xRFx0xRvXZNXmwCAmWNl\nMQAkjiAAgMQRBACQOIIAABJHEABA4ggCAEgcQQAAiSMIACBxBAEAJI4gAIDEEQQAkDiCAAASRxAA\nQOIIAgBIHEEAAIkjCAAgcQQBACSOIACAxBUSBLa/ZnuP7edt315EDQCAupYHge1Vkr4k6eOSPiLp\netsrWl0HAKCuiBHBr0h6OiLejohxST+SdEMBdQAAVEwQ7JF0pe1FtudL+m1JFxVQBwBAUkerG4yI\nvbb/StJ2SW9J2inp3Ymfs71e0npJWrZsWUtrBICUTDsisH2b7Z5mNhoR90bERyPiKklHJL04yWc2\nRcRARAxUq9VZtXP42Kh27T+qw8dGz7JiACivLCOCJZJ+bPtZSZsl/TAi4mwatf2BiDhke5nq8wOX\nnc33TebRnQe0cdtudVYqGqvVNLiuT2v6lza7GQBoe9OOCCLiTyRdIuleSbdI2mf727Y/dBbtbrP9\nE0n/LOkrEXH0LL7rPQ4fG9XGbbt1YqymN0fHdWKspg3bdjMyAIBJZJojiIiwfVDSQUnjknokPWR7\nR0RsmGmjEXHlTP/OTAwfOa7OSkUnVPv5sc5KRcNHjmvRgq48mwaAtjNtENj+mqQvSHpd0vckfT0i\nxmxXJO2TNOMgyFtvT7fGarXTjo3Vaurt6S6oIgCYu7JcPnqBpBsi4rci4sGIGJOkiKhJuj7X6mZp\n0YIuDa7r07zOihZ2dWheZ0WD6/oYDQDAJKYdEUTEt87w3t7mltM8a/qX6ooVizV85Lh6e7oJAQCY\nQsvXEbTSogVdBAAATIPdRwEgcQQBACSu1EHAymIAmF5p5whYWQwA2ZRyRMDKYgDIrpRBcHJl8alO\nriwGAJyulEHAymIAyK6UQcDKYgDIrrSTxawsBoBsShsEEiuLASCLUp4aAgBkRxAAQOIIAgBIHEEA\nAIkrJAhs32H7edt7bG+1Pa+IOgAABQSB7aWSvippICJWSTpH0o2trgMAUFfUqaEOSd22OyTNl/RK\nQXUAQPJaHgQRcUDSPZJelvSqpJ9FxPY82mIbagCYXssXlNnukbRW0sWSjkp60PbnI+IfJnxuvaT1\nkrRs2bIZt8M21ACQTRGnhq6V9NOIGImIMUkPS7p84ociYlNEDETEQLVanVEDbEMNANkVEQQvS7rM\n9nzblnSNpL3NbIBtqAEguyLmCJ6W9JCkZyU916hhUzPbYBtqAMiukKuGIuJbEfHLEbEqIn4/Ipp6\nzoZtqAEgu9LuPrqmf6l+9cL3aef+o+q/6HytWLKw6JIAYE4qbRBw1RAAZFPKvYa4aggAsitlEHDV\nEABkV8og4KohAMiulEHAVUMAkF1pJ4u5eT0AZFPaIJC4eT0AZFHKU0MAgOwIAgBIHEEAAIkjCAAg\ncQQBACSOIACAxBEEAJA4ggAAEkcQAEDiCAIASFzLg8D2Sts7T/nzf7Zvz6Otw8dGtWv/Ue5DAABn\n0PK9hiLivyT1S5LtcyQdkPRIs9vhDmUAkE3Rp4aukfTfEfFSM7+UO5QBQHZFB8GNkrY2+0u5QxkA\nZFdYENg+V9IaSQ9O8f5620O2h0ZGRmb03dyhDACyK3JE8GlJz0bEa5O9GRGbImIgIgaq1eqMvnjR\ngi599qO9px377EAv9yYAgEkUGQQ3KYfTQlJ9juCBZ4ZPO/bA0DBzBAAwiUKCwPZ5kq6T9HAe388c\nAQBkV8itKiPiLUmL8vp+5ggAILuirxrKxaIFXRpc16d5nRUt7OrQvM6KBtf1MUcAAJMo7c3r1/Qv\n1RUrFmv4yHH19nQTAgAwhdIGgVQfGRAAAHBmpTw1dBJ7DQHA9Eo7ImCvIQDIppQjAvYaAoDsShkE\nrCMAgOxKGQSsIwCA7EoZBKwjAIDsSjtZzDoCAMimtEEgsY4AALIo5akhAEB2BAEAJI4gAIDEEQQA\nkDiCAAASRxAAQOIIAgBIHEEAAIkr6ub159t+yPYLtvfa/kQRdQAAiltZ/LeS/jUiftf2uZLmF1QH\nACSv5UFg+/2SrpJ0iyRFxDuS3ml1HQCAuiJODV0saUTS39v+T9vfs33exA/ZXm97yPbQyMhI66sE\ngEQUEQQdki6V9HcR8euS3pJ058QPRcSmiBiIiIFqtdrqGgEgGUUEwbCk4Yh4uvH6IdWDAQBQgJYH\nQUQclLTf9srGoWsk/aTVdQAA6oq6aug2Sfc3rhj6H0l/kEcjh4+NcmMaAJhGIUEQETslDeTZxqM7\nD2jjtt3qrFQ0VqtpcF2f1vQvzbNJAGhLpVxZfPjYqDZu260TYzW9OTquE2M1bdi2W4ePjRZdGgDM\nOaUMguEjx9VZOb1rnZWKho8cL6giAJi7ShkEvT3dGqvVTjs2Vqupt6e7oIoAYO4qZRAsWtClwXV9\n6uqw5neeo64Oa3BdHxPGADCJUgaBJIUkyZIbjwCASZUyCE5OFo+O1/T2O+9qdJzJYgCYSimDgMli\nAMiulEHAZDEAZFfKIDg5WTyvs6KFXR2a11lhshgAplDUFhO5W9O/VFesWMwWEwAwjdIGgVQfGRAA\nAHBmpTw1BADIrtRBcPjYqHbtP8plowBwBqU9NcTuowCQTSlHBOw+CgDZlTIIWFAGANmVMghYUAYA\n2ZUyCFhQBgDZFTJZbPt/Jb0p6V1J4xHR9NtWsqAMALIp8qqhqyPi9TwbYEEZAEyvlKeGAADZFRUE\nIWm77Wdsr5/sA7bX2x6yPTQyMtLi8gAgHUUFwW9ExKWSPi3pK7avmviBiNgUEQMRMVCtVltfIQAk\nopAgiIgDjcdDkh6R9PEi6gAAFBAEts+zvfDkc0m/KWlPq+sAANQ5IlrboP1B1UcBUv2qpe9HxF9M\n83dGJL00yyYXS8r16qSClbl/9K09lblvUnv175ciYtpz6y0PglazPZTHOoW5osz9o2/tqcx9k8rZ\nPy4fBYDEEQQAkLgUgmBT0QXkrMz9o2/tqcx9k0rYv9LPEQAAziyFEQEA4AxKHQS277D9vO09trfa\nnld0TbNle7PtQ7b3nHLsAts7bO9rPPYUWePZmKJ/d9t+wfZu24/YPr/IGmdrsr6d8t4f2Q7bi4uo\n7WxN1TfbtzX+7Z63PVhUfWdriv+X/bafsr2zsQ1O2y+ILW0Q2F4q6auSBiJilaRzJN1YbFVnZYuk\n1ROO3Snp8Yi4RNLjjdftaove278dklZFRJ+kFyV9o9VFNckWvbdvsn2R6gsqX251QU20RRP6Zvtq\nSWslfSQifk3SPQXU1Sxb9N5/u0FJfxYR/ZL+tPG6rZU2CBo6JHXb7pA0X9IrBdczaxHxhKQ3Jhxe\nK+m+xvP7JH2mpUU10WT9i4jtETHeePmUpN6WF9YEU/zbSdLfSNqg+iaMbWmKvn1Z0l0RMdr4zKGW\nF9YkU/QvJL2v8fz9auOfKyeVNgga+xndo/pvW69K+llEbC+2qqZbEhGvNp4flLSkyGJy9kVJPyi6\niGaxvVbSgYjYVXQtOfiwpCttP237R7Y/VnRBTXa7pLtt71f9Z0y7jlR/rrRB0DhfvlbSxZJ+UdJ5\ntj9fbFX5ifrlX237m+WZ2P6mpHFJ9xddSzPYni/pj1U/rVBGHZIukHSZpK9LesC2iy2pqb4s6Y6I\nuEjSHZLuLbies1baIJB0raSfRsRIRIxJeljS5QXX1Gyv2b5QkhqPbTsEn4rtWyRdL+lzUZ5rnT+k\n+i8ouxq3be2V9KztXyi0quYZlvRw1P2HpJrq+/OUxc2q/zyRpAdVgt2TyxwEL0u6zPb8xm8j10ja\nW3BNzfaY6v8p1Xh8tMBams72atXPoa+JiLeLrqdZIuK5iPhARCyPiOWq/+C8NCIOFlxas/yTpKsl\nyfaHJZ2r9tmkLYtXJH2y8fxTkvYVWEtTlDYIIuJpSQ9JelbSc6r3tW1XBNreKulJSSttD9u+VdJd\nkq6zvU/1EdBdRdZ4Nqbo33ckLZS0o3Gp3ncLLXKWpuhbKUzRt82SPti45PIfJd3crqO5Kfr3JUl/\nbXuXpG9LmvQui+2ElcUAkLjSjggAANkQBACQOIIAABJHEABA4ggCAEgcQQAAiSMIACBxBAEwC7Y/\n1rhPwjzb5zX23V9VdF3AbLCgDJgl238uaZ6kbknDEfGXBZcEzApBAMyS7XMl/VjSCUmXR8S7BZcE\nzAqnhoDZWyRpger7IbXtbVABRgTALNl+TPVN1S6WdGFE/GHBJQGz0lF0AUA7sv0FSWMR8X3b50j6\nd9ufioh/K7o2YKYYEQBA4pgjAIDEEQQAkDiCAAASRxAAQOIIAgBIHEEAAIkjCAAgcQQBACTu/wGE\nQ3JPiBbZVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "fqjHIx3-CbhS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Use Seaborn to make [relational plots](http://seaborn.pydata.org/generated/seaborn.relplot.html)" + ] + }, + { + "metadata": { + "id": "H-889umCCbhT", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "outputId": "d687629f-b312-4cd3-ebc7-c1a6e5e82bc7" + }, + "cell_type": "code", + "source": [ + "sns.relplot('x', 'y', col='dataset', hue='dataset', col_wrap=2, data=df);" + ], + "execution_count": 73, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAALICAYAAAAE1K0IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYZVVhLvx3dVV1VVfPE7MMIuCA\ngNrGIXEKRkkkSowDDolEAg75jNcb9Xo1MXqvl5hrEqMx1zglmC8KDtFoTOJw9VMckQZBieKEgiDQ\n3XTT9FxdVev7o44NPdH07jq1T1X9fs9TT9VZZ9febzf0PvXWXmufUmsNAADAwZrTdgAAAGB6UiYA\nAIBGlAkAAKARZQIAAGhEmQAAABpRJgAAgEaUCWaMUsobSimvPMA255RSHjjJxz2+lPLcSdrXxaWU\nZ0zGvgCamGnn0lLKF0spqyZjv8DelAlmm3OSTOoLYJLjk0zKCyDANOFcCiRRJpjmSimvK6X8oJTy\nlSSn3G38glLKFaWUa0op/1xKGS6lPDrJU5O8pZRydSnlxH1t1/n+Z5ZSru2MX9YZ6yulvKWz/bdL\nKS/qHO7NSR7T2ecrpvivAOCQOZcCTfW3HQCaKqU8LMm5Sc7IxP/LVyW5svP0x2qt7+ls96Yk59da\n/6aU8skkn6q1frTz3B17bpfkb5K8PsmTa603l1KWdPZ5fpKNtdaHl1IGk3y1lPLZJK9J8spa69n7\nyLgwyZf380d4bq31u4f41wBwSJxLgUOhTDCdPSbJx2utW5Ok8+L2C6d2XtCWJFmQ5DP72cf+tvtq\nkotLKR9O8rHO2JOSnHa3NQ2Lk5yUZGR/AWutmzLxAg3Qq5xLgcaUCWaqi5OcU2u9ppRyXpLHH8x2\ntdYXl1IekeQpSa7s/OauJHlZrXW3F9NSyv727bdpwHR3cZxLgXtgzQTT2WVJzimlzOu80Pzm3Z5b\nmOSWUspAkufdbXxT57l73K6UcmKt9fJa6+uTrE1yn0z8pu0lnW1TSjm5lDJ/H/vcpda6qdZ6xn4+\nvPgBvcC5FGjMlQmmrVrrVaWUDyW5JsmaJFfc7ek/SXJ5Jl68Ls9dL1CXJnlPKeUPkzzjHrZ7Synl\npEz8Bu3znWN8OxN3G7mqlFI633NOZ3yslHJNkotrrW/tyh8YoAucS4FDUWqtbWcAAACmIdOcAACA\nRpQJAACgEWUCAABoRJkAAAAamRZ3czrrrLPqpz/96bZjALStHOoOnE8BkkzC+ZQJ0+LKxLp169qO\nADAjOJ8CMJmmRZkAAAB6jzIBAAA0okwAAACNKBMAAEAjygQAANCIMgEAADSiTAAAAI0oEwAAQCPK\nBAAA0IgyAQAANKJMAAAAjSgTAABAI8oEAADQiDIBAAA0okwAAACNKBMAAEAjygQAANCIMgEAADSi\nTAAAAI0oEwAAQCPKBAAA0IgyAQAANKJMAAAAjSgTAABAI8oEAADQiDIBAAA0okwAAACNKBMAAEAj\nygQAANCIMgEAADSiTAAAAI0oEwAAQCPKBAAA0EjXykQp5e9LKWtKKdfebewtpZTrSinfLqV8vJSy\npFvHBwAAuqubVyYuTnLWHmOfS3JqrfW0JD9I8t+7eHwAAKCLulYmaq2XJVm/x9hna62jnYffSHJM\nt44PAAB0V5trJl6Y5D/292Qp5cJSyupSyuq1a9dOYSyAmcX5FIBuaaVMlFJel2Q0yQf2t02t9d21\n1lW11lUrV66cunAAM4zzKQDd0j/VByylnJfk7CRn1lrrVB8fAACYHFNaJkopZyV5dZLH1Vq3TuWx\nAQCAydXNW8NekuTrSU4ppdxUSjk/yTuSLEzyuVLK1aWUv+vW8QEAgO7q2pWJWutz9jH8vm4dDwAA\nmFreARsAAGhEmQAAABpRJgAAgEaUCQAAoBFlAgAAaESZAAAAGlEmAACARpQJAACgEWUCAABoRJkA\nAAAaUSYAAIBGlAkAAKARZQIAAGhEmQAAABpRJgAAgEaUCQAAoBFlAgAAaESZAAAAGlEmAACARpQJ\nAACgEWUCAABoRJkAAAAaUSYAAIBGlAkAAKARZQIAAGikv+0AMN1t3zmWtZt25FPfviXL58/NE+6/\nMisXDrUdCwCg65QJOEQ3rt+as9/+lYyMjSdJjlk6Lx9/6aMVCgBgxjPNCQ7BtpHRvO3//mBXkUiS\nmzZsy7duvKPFVAAAU0OZgEMwXpMdo+N7jW/fxxgAwEyjTMAhmD/Ynz94wv1Syl1jS4YH8ogTlrUX\nCgBgilgzAYfopMMX5lMv+5X8/Vd+khULBvOCRx+flQsG244FANB1ygQcogWD/XnQUYvz5t8+LXNK\n0jfHBT8AYHZQJmCSDPQpEQDA7OKnHwAAoBFlAgAAaESZAAAAGlEmAACARpQJAACgEWUCAABoRJkA\nAAAaUSYAAIBGlAkAAKARZQIAAGhEmQAAABpRJgAAgEaUCQAAoBFlAgAAaESZAAAAGlEmAACARrpW\nJkopf19KWVNKufZuY8tKKZ8rpfyw83lpt44PAAB0VzevTFyc5Kw9xl6T5PO11pOSfL7zGOii2zfv\nyJpN23PH1pG2owAAM0zXykSt9bIk6/cYflqS93e+fn+Sc7p1fJjtxsdrfnjbprzgH76ZR170+fw/\nH7wqP79jW9uxAIAZZKrXTBxea72l8/WtSQ7f34allAtLKatLKavXrl07NelgBlm3ZUee/77Lc+3N\nd2a8Jl/50e35rx++2hWKWcj5FIBuaW0Bdq21Jqn38Py7a62raq2rVq5cOYXJYGbYNjKW2+7csdvY\nN65fnx2j4y0loi3OpwB0y1SXidtKKUcmSefzmik+PswaQwN9GZ7bt9vYfVfMT18pLSUCAGaaqS4T\nn0zygs7XL0jyiSk+Pswai+cN5K3PPiNDAxP/zJcMD+Rt5z4kKxYOtpwMAJgp+ru141LKJUken2RF\nKeWmJH+a5M1JPlxKOT/JDUme1a3jw2w3NNCXx528Ml961ROydWQ08+f2Z9n8uW3HAgBmkK6ViVrr\nc/bz1JndOiawu6GBvgwN9B14QwCABrwDNgAA0IgyAQAANKJMAAAAjSgTAABAI8oEAADQiDIBAAA0\nokwAAACNKBMAAEAjygQAANCIMgEAADSiTAAAAI0oEwAAQCPKBABw6MZGk/HRtlMAU6y/7QAAwDS2\nc3uy8abk63+blDnJo16aLD4m6R9sOxkwBZQJAKC5O29O3vmoZGxk4vHV/5T8wTeTpce1mwuYEqY5\nAQDNXfG+u4pEkoxuT771T+3lAaaUKxMAMBttXpPs3Jr0DSZDi5K585vtZ2D43o0djG0bktGRZN4S\n06Wgx7kyAQCzzR03Jv9wVvK205O3n5F856PJ9k3N9rXqBcnQ4rsez1uanP7sZvsa25nc9p/Jpc9N\n3vfE5Et/nmxZ12xfwJRwZQIAZpPtG5N/f1Vy+48nHo9uTz71X5L7nZkMLTz4/S04KnnpN5LvfiIp\nfckDzk4WHN4s29bbk/c9KRnZPPH4y3+ZzOlPHvPKpH9us30CXeXKBADMJju3J7dcvftYHU823dps\nf319yaKjkke+JHnEhRNfz+lrtq/1199VJH7hOx9Jtt/RbH9A1ykTADCbDC5I7vuru4/1DyaLjm4n\nz90tOGzvsaXHJ32uSkCvUiYAYDaZOz954huS+/1aUkqy+D7Jcz86sdi5bfOWJw///bseDy1Jzvrz\n3sgG7JM1EwAw2yw8PPnt9yaj2ybeaG54ZTKnB36/OLw0ecIfJ4/6fybWTyw+ZiIb0LOUCQCYjeYt\nSdKDv/EfXjrxseyEtpMA90IP/BoCAACYjpQJAACgEdOc6JrRsfGs2bQjH73yZxkdq3nWqvvksEWD\nmdvf8JaBAAD0FGWCrlmzaUee/NbLsmnHaJLk3V++Pp99xeNy7LLhlpMBTENbNySbbknW/Gdy1MOS\n+SuSoUVtpwJmOdOc6JpPXP3zXUUiSbbvHM8/fu2nqbW2mApgGtqxKfn6O5J3Pir5599P/uYhyQ8+\nk4ztbDtZb9u6PvnpV5P/+8bkR19IttzediKYcZQJumZfpaFGkQA4aNvvTL761t3HPv3fJn5YZt9G\ntibf+Lvk4t9IvvJXyT/9VvKF/5ls39h2MphRlAm65pyHHJ0Fg3fNpBvsn5MXPPqElFJaTAUwDY2P\nJuNju49t35j4Bc3+7diYfO1tu49d9f5kZEs7eWCGsmaCrjls4WA+818em0uuuDGjY+N57iOOyxGL\nBtuOBTD9zJ2fHPXQ5OdX3TX24GdOjLN/dWzPgcRUW5hUygRd0983J0cvnZdXPumUtqMATG/zVyTP\nuST52juSmy5PTv715KG/kwwubDtZ75q7MHnYC5NvvuuusQc8TQGDSaZMAMB0sPCI5Mw/mZimM7go\n6fMSfo8GFySPe3Vy3KOT6z6V3PdXk5Of1Hnnb2CyOBMBwHTRPzjxwb0zf0XyoHOS+5+tfEGXWIAN\nAMxsigR0jTIBAAA0okwAAACNKBMAAEAjygSz2s6x8bYjAABMW1YkMStt2DKSb1x/e/79O7fkl05Y\nlt948JFZvsAdUgAADoYywayzbWQs7/7y9XnnF3+cJPnXb9+Sz333trzt3Idk6fy5LacDAJg+THNi\n1tm0Y2f+4as/2W3ssh+uy5aR0ZYSAQBMT8oEs9Lcvr3/159TSgtJAACmL2WCWWfJvLl5+RNP2m3s\ntx5ydObPNesPAOBg+OmJWWdu/5z89kOPyUOPXZovXLcmDztuaR589OIsHh5oOxow0+zYkuzYmNTx\nZGBeMry87UQAk0qZYFZaMjw3Dzl2bh5y7NK2owAz1dYNyTffnXz5L5KxkeSExyW//d5kwWFtJ6Op\nkS3Jjs1JSTK8Mpljggf4VwAA3XDnzckXL5ooEknyky8lV7wvGdvZbi6a2bIu+b9vTN5+RvLeX0t+\n9LmJYgGznDLBtLF5+2hu3bgt16/dnLWbtmd8vLYdCWD/brl677Gffnnit9tML2OjydUfTL75rmTn\n1uSOG5JLzk223t52MmhdK9OcSimvSPL7SWqS7yT5vVrr9jayMD1s2r4zH7riZ/mz/7guY+M1hy0c\nzKUXPjL3Xbmg7WgA+3bMw/ceO+nXkrnOW9POjjuT731i97E6ntx8ZbL0uHYyQY+Y8isTpZSjk/xh\nklW11lOT9CU5d6pzML1s2j6a//Xv38tY52rEmk078rp/uTZ3bB1pORnAfiw4PHnKXyaDC5MyJ3nQ\nbyUP+Z2kz3LFaWdgXnLE6XuPrzx56rNAj2nrjNafZF4pZWeS4SQ/bykH08TtW0ZS95jV9KPbNmdk\ndLydQAAHMm/JRHm4/9lJrcnc4WRocdupaGJgXvLYV05MU1v3g6SU5JdelCw8qu1k0LopLxO11ptL\nKX+R5MYk25J8ttb62anOwfRy+MLBDM/ty9aRsV1jv/qAw7Jg0G/4gB7WP5gsPKLtFEyGRUcl5/1b\nMrI56Zs7MV1t3pK2U0HrDjjNqZTyslLKpN0/s7OvpyU5IclRSeaXUp6/j+0uLKWsLqWsXrt27WQd\nnmlqyfBALrngkTnl8IUZ7J+Tp55+ZF75pFMyrEzAATmfwiRZcFiy7L7J4mMUCegodc+5I3tuUMqb\nMrGm4aokf5/kM/VA33TP+3tmkrNqred3Hv9ukkfWWl+6v+9ZtWpVXb16ddNDMoOs27wj47VmeKAv\nC4a8yRyzTjnUHTifAiSZhPMpEw54ZaLW+sdJTkryviTnJflhKeWiUsqJDY95Y5JHllKGSyklyZlJ\nvtdwX8wyKxYM5rCFQ4oEAEAPuFd3c+pcibi18zGaZGmSj5ZS/vfBHrDWenmSj2biSsd3OhnefbD7\nAQAA2nXACeellJcn+d0k65K8N8mraq07SylzkvwwyasP9qC11j9N8qcH+30AAEDvuDerV5cleXqt\n9Ya7D9Zax0spZ3cnFgAA0OsOWCY6VxH295y1DgAAMEtN+TtgAwAAM4Ob9EMPWr9lR8bGk2XDA+nr\n0/kBgN6kTEAP2bZzNP/58zvzvz71vWzctjPnPfr4/ObpR2Xp/LltRwMA2IsyAT3k9s0jOfdd38jo\n+MT7Qr7+k/+ZJcMDeeoZR7ecDABgb+ZPQA/5+o9v31UkfuFDq3+WO7ftbCkRAMD+KRPQQ45bPrzX\n2H1XLMhgv3+qAEDv8RMK9JATVy7I409euevx4YsG85LHn5jBgb4WUwEA7Js1E9BDli8YzF89+/Tc\nvnkkW0fGctSSoaxcONR2LACAfVImoMcsmz+YZfMH244BAHBApjkBAACNKBMAAEAjpjm1ZGy8Zv2W\nkdRaM3+wP/MH/acAaN3ItmTTz5NvfSCZvyI59beShUe2nQqgZ/kJtgVbduzM1368Pn/yL9fm9i07\n8lsPOTr/7az7Z/kC8+QBWrXh+uRdj03GRycef+3tyYVfShYe3m4ugB5lmlML1m/ZmQv/39W59c7t\n2TlW8+HVN+WDl9+YnWPjbUcDmL1GtiZf+t93FYkk2XRLcuPX28sE0OOUiRZc+/ONqbu/yXE++93b\nsmm7dzkGaFXdxy91xsemPgfANKFMtODElQv2GnvwMYszb65ZZwCtmTucPPaVSbnbS+P8Fcnxv9xe\nJoAep0y04LCFg3np40/MnDLx+JTDF+YPf/V+meddjgHatex+yUu/kTz8guTxr01e9OVkgfUSAPtT\n6p7zbXrQqlWr6urVq9uOMak2bd+ZzTtGs3N0PMOD/Vlh8TVwYOVQdzATz6ddUWtSDvmvG+hd/oFP\nEvNqWrJwaCALhwbajgHAvigSAPeKaU4AAEAjrkywm03bd+bmDdvysatuzn0Pm58z7394Vi40BQsA\ngL0pE+zmqhvvyAv+/pu7Hp9y+E/zgQseYU0HAAB7Mc2JXW7fvCN/+dnv7zb2/ds25ZY7trWUCACA\nXqZMsJvxfdzda6z3b/gFAEALlAl2Wb5gMC8/86Tdxk5YMT/HLJnXUiIAAHqZNRPs5hEnLM8n/uCX\nc8k3b8z9DluQp55xVFZYgA0AwD4oE+xm0byBnH6fJTntmMUp7rMOAMA9MM2JfVIkAAA4EGUCAABo\nRJkAAAAaUSYAAIBGlAkAAKARZQIAAGhEmQAAABpRJgAAgEaUCQAAoBFlAgAAaESZAAAAGlEmAACA\nRpQJAACgEWUCAABoRJkAAAAaUSYAAIBGlAkApr+xsWTrhmR0R9tJAGaV/rYDAMAh2bIuufqDyXWf\nSo5+WPLLL08WHtF2KoBZQZkAYPrasTn5/P9Irnr/xOOfXZ7c8NXk+f+czF/ZbjaAWcA0JwCmr5Et\nyTUf3H3slmsmxgHoulbKRCllSSnlo6WU60op3yulPKqNHADMAPOW7v64zEn6BtrJAjDLtHVl4m1J\nPl1rvX+S05N8r6UcAExnw8uTX//fu4896mXJ3IXt5AGYZaZ8zUQpZXGSxyY5L0lqrSNJRqY6BwAz\nQF9/cuKZyR9+K7lpdXLYA5NFRyVDi9pOBjArtLEA+4Qka5P8Qynl9CRXJnl5rdUEVwAO3tCiiY9l\n9207CcCs08Y0p/4kD03yzlrrQ5JsSfKaPTcqpVxYSlldSlm9du3aqc4IMGM4nwLQLW2UiZuS3FRr\nvbzz+KOZKBe7qbW+u9a6qta6auVKt/cDaMr5FIBumfIyUWu9NcnPSimndIbOTPLdqc4BAAAcmrbe\ntO5lST5QSpmb5Pokv9dSDgAAoKFWykSt9eokq9o4NgAAMDm8A/ZB2r5zLCOj423HAACA1rU1zWna\n2bJjNNev25J3fenHmT+3Py99wok5aslQBvr62o4GAACtUCbupZ+s25KnvuMrqXXi8Sev+Xk+/0eP\ny1FL5rUbDAAAWmKa072wY+dY3vPl63cViSTZtnMsn/vube2FAgCAlikT98KcUrJwaO+LOPsaAwCA\n2UKZuBcG+ufkwseemPlz71ofcfSSefmVk1a0mAoAANrlV+v30pGLh/L5P3p8vnDdbZk/2J9Hnbg8\nhy0cajsWAAC0Rpm4lwb65uSIxUN57iOOazsKAAD0BNOcAACARpQJAACgEWUCAABoRJkAAAAaUSYA\nAIBGlAkAAKARZQIAAGhEmQAAABpRJgAAgEaUCQAAoBFlAgAAaESZAAAAGlEmAACARpQJAACgEWUC\nAABoRJkAAAAaUSYAAIBGlIkZYnRsPJu278zYeG07CgAAs0R/2wE4dOs278iHr/hZvvbj2/OE+6/M\nOWccneULBtuOBQDADKdMTHN3bB3JKz9yTb74/bVJkq/8aF2+fdPG/M+nnZpF8wZaTgcAwExmmtM0\nt3VkbFeR+IV/vebn2Toy1lIigHth6+3Jrdcm1/1bsvGmZOe2thMB0IArE9PcnFIy0Feyc+yutRJD\nA30ppcVQAPdk64bks3+SXP2Bicd9A8kL/i059hHt5gLgoLkyMc0tHOrPSx5/4m5jf/Skk7PYFCeg\nV+3YeFeRSJKxncm/vzLZsnb/3wNAT3JlYpqbP9if33v0CXnyA4/IVTduyMNPWJYjF83L0EBf29EA\n9m1k895jW9Yk4+NTnwWAQ6JMzABL58/N0vlz86CjF7cdBeDAhlcmi45K7vz5XWMP+Z1k3pL2MgHQ\niDIBwNRacFjyws8kX3hTsu6HyYOfkZz27KTfLa0BphtlAoCpVUqy5Njk7L9Odm5NhpYmfaZmAkxH\nygQA7Zg7PPEBwLTlbk4AAEAjygQAANCIMgEAADSiTAAAAI0oEwAAQCPKBAAA0MiMvjXspu07s27z\nSL5x/e055YiFOX75cJbN96ZIAAAwGWZsmRgbr/n6j2/Pi/7pytQ6MfaMhx2TP37KA7JkeG674QAA\nYAaYsdOc1m/Zkf/xqe/uKhJJ8tErb8rWkbH2QgEAwAwyY8tETXLntp17jY+MjU99GAAAmIFmbJlY\nNDSQ5z3iuN3GTj58QRYMztiZXQAAMKVm7E/WQwN9ueCxJ+TY5cP512t+ngcfvTgv/JUTsmKBBdgA\nADAZZmyZSJJl8wdz7sPvk6c8+MjMG+jLQP+MvRADAABTrrWfrkspfaWUb5VSPtXl42TRvAFFAgAA\nJlmbP2G/PMn3Wjw+AABwCFopE6WUY5I8Jcl72zg+AABw6Nq6MvHXSV6dxH1aAQBgmpryMlFKOTvJ\nmlrrlQfY7sJSyupSyuq1a9dOUTqAmcf5FIBuaePKxC8neWop5adJLk3yq6WUf9pzo1rru2utq2qt\nq1auXDnVGQFmDOdTALplystErfW/11qPqbUen+TcJF+otT5/qnMAAACHxv1SAQCARlp907pa6xeT\nfLHNDAAAQDOuTAAAAI0oEwAAQCPKBAAA0IgyAQAANKJMAAAAjSgTAABAI8oEAADQiDIBAAA0okwA\nAACNKBMAAEAjygQAANCIMgEAADSiTAAAAI0oEwAAQCPKBAAA0IgyAQAANKJMAAAAjSgTANx72+9M\ntm9sOwUAPaK/7QAATAMjW5K130/+vzcl42PJY1+dHHlaMriw7WQAtEiZAODA7rwled8TJ4pEklz/\nxeRFX54oFADMWqY5AXBg3/7QXUXiF775nmR8vJ08APQEZQKAA1t01N5ji49J5ngZAZjNvAoAcGCn\n/Eay9IS7Hi88Mnno77aXB4CeYM0EAAe28PDk/M8kt303GduZHHn6xBgAs5oyAcC9s+DwiQ8A6DDN\nCQAAelAp5Q2llFfew/PnlFIeOMnHPL6U8tx7u70yAQAA09M5SSa1TCQ5PokyAQAA000p5XWllB+U\nUr6S5JTO2AWllCtKKdeUUv65lDJcSnl0kqcmeUsp5epSyon72q7z/c8spVzbGb+sM9ZXSnlLZ/tv\nl1Je1Inw5iSP6ezzFQfKq0wAAEAPKKU8LMm5Sc5I8htJHt556mO11ofXWk9P8r0k59dav5bkk0le\nVWs9o9b6431t1/n+1yd5cmf8qZ2x85NsrLU+vHOcC0opJyR5TZIvd/b51gNltgAbAAB6w2OSfLzW\nujVJSimf7IyfWkp5U5IlSRYk+cx+vn9/2301ycWllA8n+Vhn7ElJTiulPKPzeHGSk5KMHExgZQIA\nAHrbxUnOqbVeU0o5L8njD2a7WuuLSymPSPKUJFd2roCUJC+rte5WTEop+9v3PpnmBAAAveGyJOeU\nUuaVUhYm+c3O+MIkt5RSBpI8727bb+o8l3varpRyYq318lrr65OsTXKfTFy1eEln25RSTi6lzN/H\nPu+RKxMAANADaq1XlVI+lOSaJGuSXNF56k+SXJ6JInB57vph/9Ik7yml/GGSZ9zDdm8ppZyUiasR\nn+/s/9uZuHPTVaWU0vmeczrjY6WUa5JcfKB1E6XWeoh/7O5btWpVXb16ddsxANpWDnUHzqcASSbh\nfMoE05wAAIBGlAkAAKARZQIAAGhkWqyZKKWsTXLDIe5mRZJ1kxBnsvVqrqR3s/VqrqR3s/VqrkS2\ng7Gu1nrWoexghp9Pk97N1qu5kt7N1qu5kt7N1qu5kt7LdsjnUyZMizIxGUopq2utq9rOsadezZX0\nbrZezZX0brZezZXINh318t9Lr2br1VxJ72br1VxJ72br1VxJb2fj0JjmBAAANKJMAABADyilbG47\nw8GaTWXi3W0H2I9ezZX0brZezZX0brZezZXINh318t9Lr2br1VxJ72br1VxJ72br1VxJb2fjEMya\nNRMAADBZjn/Nvz03yUVJjk1yY5LX/vTNT/ngoeyzlLK51rpgMvJNFWUCAAAOQqdIvCfJ8N2Gtya5\n4FAKxXQsE7NpmhMAAEyGi7J7kUjn8UUtZGmVMgEAAAfn2IMcn7GUCQAAODg3HuT4jKVMAADAwXlt\nJtZI3N3WzvisokwAAMBB6CyyviDJDUlq5/MhLb5Okum2+DpxNycAAKAhVyYAAIBGlAkAAKARZYJp\nrZTyhlLKKw+wzTmllAdO8nGPL6U8d5L2dXEp5Rmdr79YSlnV+fqnpZQVk3EMgAOZSefTUsqfllL+\nbI/nziilfG8yjgPcRZlgNjgnyaS++CU5PsmkvPgBTCPT5Xx6SZJn7zF2bmccmETKBNNOKeV1pZQf\nlFK+kuSUu41fUEq5opRyTSnln0spw6WURyd5apK3lFKuLqWcuK/tOt//zFLKtZ3xyzpjfaWUt3S2\n/3Yp5UWdw705yWM6+3zFFP8Ya59uAAAgAElEQVQVAEyKmXo+rbX+IMmGUsoj7jb8rCgTMOn62w4A\nB6OU8rBM/HbpjEz8/3tVkis7T3+s1vqeznZvSnJ+rfVvSimfTPKpWutHO8/dsed2Sf4myeuTPLnW\nenMpZUlnn+cn2VhrfXgpZTDJV0spn03ymiSvrLWevY+MC5N8eT9/hOfWWr97iH8NAIdsFpxPL+n8\n+S4vpTwyyfpa6w/vxV8NtKaUsrnWuqCUcnwm/q2d2nKkA1ImmG4ek+TjtdatSdJ5YfuFUzsvZkuS\nLEjymf3sY3/bfTXJxaWUDyf5WGfsSUlO+8WahiSLk5yUZGR/AWutmzLx4gzQy2b6+fRDSb5WSvmj\nmOIEXaNMMJNcnOScWus1pZTzkjz+YLartb64c0n8KUmu7PzWriR5Wa11txfSUsr+9u3KBDATXJxp\nfj6ttf6slPKTJI9L8ttJHrW/baGRNyx+bpKLkhyb5MYkr80bNh7Sm9ZNR9ZMMN1cluScUsq8zovM\nb97tuYVJbimlDCR53t3GN3Weu8ftSikn1lovr7W+PsnaJPfJxG/ZXtLZNqWUk0sp8/exz11qrZtq\nrWfs50ORAHrFbDifXpLkrUmur7XedC+2h3tnoki8J8lxmSjKxyV5T2d8VlEmmFZqrVdl4tL1NUn+\nI8kVd3v6T5JcnonL69fdbfzSJK8qpXyrlHLiPWz3llLKd0op1yb5WucY703y3SRXdcbflYkret9O\nMtZZXGgBNjDtzJLz6UeSPCimODH5LkoyvMfYcGd8Vim11rYzAADA9PGGxeOZuCKxp5o3bGz8y/rp\nuADblQkAADg4Nx7k+IylTAAAwMF5bZKte4xt7YzPKqY5AQDAwXI3pyTKBAAA0NC0eJ+Js846q376\n059uOwZA2/a12O+gOJ8CJJmE8ykTpsWaiXXr1rUdAWBGcD4FYDJNizIBAAD0HmUCAABoRJkAAAAa\nUSYAAKAHlFI2dz4fX0q5tvP140spn2o32f4pEwAAQCPT4tawAADQSx78/gfv9aZ133nBd2bdm9a5\nMgEAAAehUyTek+S4TLxnxXFJ3tMZn1WUCQAAODgXJRneY2y4Mz6rKBMAAHBwjj3I8RlLmQAAgINz\n40GOz1jKBAAAHJzXJtm6x9jWzvisokxAD7pj+x25fdvtGRsfazsKALCHzl2bLkhyQ5La+XzBod7N\nqda6oPP5p7XWUztff7HWevYhRu4at4aFHrJtdFt+sP4Hecvqt+TOkTvzvAc8L08+/slZMrik7WgA\nwN10isOsuxXsnpQJ6CEbtm/IeZ8+L6N1NEnypm+8KYsGFuXX7/vrLScDANibaU7QQ6649YpdReIX\nPvajj2XTyKaWEgEA7J8yAT3k6AVH7zV27MJjM9g32EIaAIB7pkxAD7nv4vvm0Uc9etfjlfNW5vdP\n+/3M7ZvbYioAgH2zZgJ6yLJ5y/Jnj/mzrN++Plt3bs2R84/Minkr2o4FALBPygT0mGVDy7JsaFnb\nMQCg54xu2JCMjmbOkiWZMzDQdpxJV0rZXGtdUEq5Psmv11q/f7fn/jrJLbXWP28v4d5McwIAoKeN\n79iRbd/5Tn72ohfnJ896dm5/17snisXMdWmSc3/xoJQyJ8kzOuM9xZUJAAB62tgdd+SG5z0/dWQk\nSbLuHe/InPnDWfa7v5vS19dKpu/d/wHPTXJRkmOT3JjktQ+47nuT9b4TlyT5UJI3dh4/NskNtdYb\nJmn/k8aVCQAAetr2735vV5H4hTv/9VMZ27ixlTydIvGeJMclKZ3P7+mMH7Ja63eSjJdSTu8MnZuJ\ngtFzlAkAAHrawFFH7j123HEpg63dOv2iJMN7jA13xifLJUnOLaX0JzknyUcmcd+TRpkAAKCn9R92\nWBadc86ux30rVuSw//qK9M2f31akYw9yvIlLkzwryROTfLvWetsk7nvSWDMBAEBP61+6NIe/5r9l\n5UtfkrFNm9N/2Mr0r2j11uk3ZmJq077GJ0Wt9cellHVJ3pzkbZO138nmygQAAD2vf8mSzD322Mx7\n0AMzsHJlSiltxnltkq17jG3tjE+mS5LcP8nHJnm/k0aZAACAg9C5a9MFSW5IUjufLzjUuznVWhfs\n8fiva61DtdZ2VprfC6Y5AQDAQeoUh8m6Fey05coEAADQiDIBAAA0okwAAACNKBMAAEAjygQAANBI\n18pEKeXvSylrSinX3m3sLaWU60op3y6lfLyUsqRbxwcAALqrm1cmLk5y1h5jn0tyaq31tCQ/SPLf\nu3h8AACgi7pWJmqtlyVZv8fYZ2uto52H30hyTLeODwAAdFebayZemOQ/9vdkKeXCUsrqUsrqtWvX\nTmEsgJnF+RSAbmmlTJRSXpdkNMkH9rdNrfXdtdZVtdZVK1eunLpwADOM8ykA3dI/1QcspZyX5Owk\nZ9Za61QfHwAAmBxTWiZKKWcleXWSx9Vat07lsQEAgMnVzVvDXpLk60lOKaXcVEo5P8k7kixM8rlS\nytWllL/r1vEBAIDu6tqViVrrc/Yx/L5uHQ8AAJha3gEbAABoRJkAAAAaUSYAAIBGlAkAAKARZQIA\nAGhEmQAAABpRJgAAgEaUCQAAoBFlAgAAaESZAAAAGlEmAACARpQJAACgEWUCAABoRJkAAAAaUSYA\nAIBGlAkAAKARZQIAAGhEmQAAABpRJgAAgEaUCQAAoBFlAgAAaESZAAAAGlEmAACARpQJAACgEWUC\nAABoRJkAAAAaUSYAAIBGlAkAAKARZQIAAGhEmQAAABpRJgAAgEaUCQAAoBFlAgAAaESZAAAAGlEm\nAACARpQJAACgEWUCAABoRJkAAAAaUSYAAIBGlAkAAKARZQIAAGhEmQAAABpRJgAAgEaUCQAAoBFl\nAgAAaESZAAAAGlEmAACARpQJAACgEWUCAABopGtlopTy96WUNaWUa+82tqyU8rlSyg87n5d26/gA\nAEB3dfPKxMVJztpj7DVJPl9rPSnJ5zuPAQCAaahrZaLWelmS9XsMPy3J+ztfvz/JOd06PgAA0F1T\nvWbi8FrrLZ2vb01y+P42LKVcWEpZXUpZvXbt2qlJBzADOZ8C0C2tLcCutdYk9R6ef3etdVWtddXK\nlSunMBnAzOJ8CkC3THWZuK2UcmSSdD6vmeLjAwAAk2Sqy8Qnk7yg8/ULknxiio8PAABMkm7eGvaS\nJF9Pckop5aZSyvlJ3pzk10opP0zyxM5jAABgGurv1o5rrc/Zz1NnduuYAADA1PEO2AAAQCPKBAAA\n0IgyAQAANKJMAAAAjSgTAABAI8oEAADQiDIBAAA0okwAAACNKBMAAEAjygQAANCIMgEAADSiTAAA\nAI0oEwAAQCPKBAAA0IgyAQAANKJMAAAAjSgTAABAI8oEAADQiDIBAAA0okwAAACNKBMAAEAjygQA\nANCIMgEAADSiTAAAAI0oEwAAQCP9bQcAumf99vX52s+/lm/e8s086fgn5dTlp2bJ0JK2Y8GsUGvN\n6Nq12fjxj2d0zdosfc656T/yyPTNn992NIBJo0zADLVxx8a88WtvzBd+9oUkycd/9PG8+PQX5/xT\nz89Q/1DL6WDmG123Lj99xjMyumZtkmTDJZfk+A99KPMefGrLyQAmj2lOMENt3bl1V5H4hff/5/uz\naWRTS4lgdtl29dW7ikSSZHw86/7P32Zsy5b2QgFMMmUCZqqyr6F9DAJdUebs4yV2Tt/UBwHoImUC\nZqjh/uE86bgn7TZ2/oPPz6LBRS0lgtll3mmnpf+II+4a6OvLyj94qTUTwIxizQTMUIsHF+d1j3xd\nzjrhrFxxyxV54nFPzMnLTs5g32Db0WBW6F+5Msd/+EO58z8+ndE1a7LkGb+dgbuXC4AZoNRa285w\nQKtWraqrV69uOwZA2w55nprzKUCSSTifMsE0JwAAoBFlAgAAaESZAAAAGrEAGwC6aHTDhmRsLH1L\nl6b0uTUsMLMoEwDQBePbt2f7dddlzZv/PGMbN2bp856XRWc/Jf1LlrQdDWDSKBMA0AWj69fnhuf/\nTjI6miS57U1vSt/ixVn8m2e3nAxg8lgzAQBdsPWb39xVJH7hjo9+NGN33tlSIoDJp0wAQBfMPeY+\ne48df3zKXG8cCcwcygQAdMHc+56Q+Y99zK7H/YetzIoXXZg5Q8oEMHNYMwEAXdC/bFmOevObM7Z+\nfca3bE3/UUemf8WKtmMBTCplAgC6pH/ZsvQvW9Z2DICuMc0JAABoRJkAAAAaMc0JDtH20e1Zs3VN\nPvGjT2TpvKV58nFPzsrhlW3HAgDoOmUCDtGNm27Ms//12RmtE/eTv/jai3Pp2ZdmxTwLLQGAmc00\nJzgE23Zuy99d83e7ikSS3Lb1tly95uoWUwEATA1lAg5BTc3o+Ohe42N1rIU0AABTq5UyUUp5RSnl\nP0sp15ZSLimlDLWRAw7V8MBwXnTaizKn3PVPafnQ8jz0sIe2mAoAYGpM+ZqJUsrRSf4wyQNrrdtK\nKR9Ocm6Si6c6C0yGExafkH9+6j/n0usuzfKh5Xn6SU+3XgIAmBXaWoDdn2ReKWVnkuEkP28pBxyy\n4YHh3G/J/fK6R7wupZS24wAATJkpLxO11ptLKX+R5MYk25J8ttb62T23K6VcmOTCJDn22GOnNiQ0\noEjQq5xP21FrzeiaNdn4yU9mdO26LH32szJw5JGZMzzcdjSASXPANROllJeVUpZO1gE7+3pakhOS\nHJVkfinl+XtuV2t9d611Va111cqV7tkP0JTzaTtG163LT5/5zKz9y7/Khn/8x1z/m0/Njp/8pO1Y\nAJPq3izAPjzJFaWUD5dSziqH/uvXJyb5Sa11ba11Z5KPJXn0Ie4TDlqtNVt2bsnYuDsvAZNv2zXX\nZHTN2rsGxsez7m//T8a2bGkvFMAkO2CZqLX+cZKTkrwvyXlJflhKuaiUcmLDY96Y5JGllOFOMTkz\nyfca7gsa2bB9Q/7lR/+SV33pVfmHa/8ht2+7ve1IwGxgOiQww9yrNRO11lpKuTXJrUlGkyxN8tFS\nyudqra8+mAPWWi8vpXw0yVWdfX0rybsPLjY0t23ntrzr2+/KB773gSTJl2/+cr5y81fy1ie8NUuH\nJm1GHzDLDZ9+evoPPzyjt902MdDXlxUvfUn65s9vNxjAJDpgmSilvDzJ7yZZl+S9SV5Va91ZSpmT\n5IdJDqpMJEmt9U+T/OnBfh9Mhs07N+cj3//IbmNXrrky20a3ZWmUCWBy9K9cmeM/8uHc+al/y+ja\ntVnyzGdm4IjD244FMKnuzZWJZUmeXmu94e6DtdbxUsrZ3YkF3VNSMtQ/lJGRkd3G7v7GcwCHanxk\nJGMbN2Z865aUocHsuP7H6V++rO1YAJPqgGWicxVhf89Z68C0s3hocV7xsFfkjV9/466xZ5z8jAz3\nu10jMHnG1q/PT5/xzNQdO3aNHfO378jCM89sMRXA5GrrTeugNQNzBvKk456U01aelm/8/Bt58IoH\n5/jFx2fR4KK2owEzyNZvfnO3IpEkGz7wwQz/0i+lb+HCllIBTC5lgllp0eCiLBpclJOXntx2FGCG\n6j/ssL3HDj8sZWCghTQA3WGSOAB0weBJJ2XojNN3PZ6zaFFW/MEfZM7QUIupACaXKxMA0AX9y5fn\nPn/7fzLysxsztvHOzHvA/dO3fHnbsQAmlTIBAF3Sv3yZOzgBM5oywbSxftv6fGvtt/LDDT/Mmcee\nmSPmH5GFcy1iBABoizLBtLBh+4a88rJX5opbr0iS/O3Vf5u3PeFtecJ9npBSSsvpAABmJwuwmRY2\n7ti4q0j8wtuuelvWb1/fUiIAAJQJpoXROrrX2MjYSGpqC2kAAEiUCaaJpYNLc+KSE3cbe+GpL8zS\nwaUtJQIAwJoJpoXl85bnvb/23vzLj/8l162/Lk+/39PzoBUPSt+cvrajAQDMWsoE08aK4RV54akv\nzOj4aOb2zW07DgDArGeaE9PKnDJHkQAA6BHKBAAA0IgyAQAANGLNBF11+7bb87NNP8t4Hc+xi47N\ninkr2o4EAMAkUSbomnXb1uWFn3lhfrLxJ0mSYxYck3/89X/MyuGVLScDAGAymOZE13zppi/tKhJJ\nctPmm/LJH3+yxUQAU2t0/fps/8EPs/Vb38ro2rWp1RttAjOLKxN0zU133rTX2I2bbsx4Hc+coscC\nM9vo+vW5+VWvztavfjVJ0r9yZY7/0KUZOOqolpMBTB4/0dE1Z594dkrKbmPPOvlZigQwK4xcf/2u\nIpEko2vXZt3fvSvjO3a0mApgcvmpjq45YviIvO/J78tDDntITl95et75xHfm2EXHth0LYEqM3LT3\n1dmRG25IVSaAGcQ0J7pm/tz5efgRD8/bf/XtSU2WDC1pOxLAlBn+pV/KgjPPzOKnPS1z5s/Plssu\ny9AZp6dv0aK2owFMGmWCrlsyqEQAs8+c4eEsPvspue1Nb8rYnXdmydOfnuFVq9qOBTCpTHMCgC4Y\n37gxN7/iv2Z0zZrU7duz4YMfzKbPfCZ1fLztaACTRpkAgC7YeuWVe41t+uxnM755cwtpALrDNCd2\ns3Xn1ty+/fZc9rPLcsyiY3Lq8lOzfN7ytmMBTDuDJ5+819jQqQ9OmTevhTQA3aFMsJvvr/9+fu8z\nv5exOpYkOX3l6Xn7r749y4aWtZwMYHoZOProLH3Oc7Lh0kuTWjN4yilZdt55mTMw0HY0gEmjTLDL\nHdvvyF9d+Ve7ikSSXLP2mqzZukaZADhI/UuXZuUr/kuWX3hB6uho5gwPp3+5K73AzKJMsMt4Hc/W\n0a17jW8f3d5CGoDpr2/RIreCBWY0C7DZZcnQkpz3oPN2Gzt8+PAcs/CYdgIBANDTXJlglzllTh57\nzGPzzie+Mx/5/kdy7KJj8/wHPD8r5q1oOxrAtFTHxjK2YUNqrelbsCBzLL4GZhhlgt0sHlycXzn6\nV/Kwwx+WgTkD6Z/jfxGAJsY2b86Wr30tt/2vizK2cWOWPOtZWfHiF6d/2dK2owFMGtOc2Kd5/fMU\nCYBDMHb77bn5D1+e0dtum3jTun/8x9z57//mTeuAGUWZAIAu8KZ1wGygTABAF3jTOmA2UCZmgC07\nt+SWzbfkiluvyK1bbs3WnXvf3hWAqfWLN61LKUniTeuAGcmk+Glux+iOfO6Gz+X1X319amr6Sl/+\n4nF/kccd87gM9HnBAmiLN60DZgNXJqa5jSMbc9HlF6WmJknG6lje+PU35o4dd7ScDIC+RYsycOSR\nmXuf+ygSwIykTExzo+Oj2Ta6bbexO3bckfHqbiEAAHSXMjHNDfUP5YHLH7jb2COOeEQG+wdbSgQA\nwGyhTExzy4aW5e1PeHuect+n5JgFx+Tp93t6/uwxf5b/v717j9W7ru8A/v70tD29IG0P5TYq0m2A\nTB2MFRHNmKJZTESYc4phXqZjZIuoQzMzZtiyZMwFl0y2JSSKCpmOi8RtxmReInH7Y6GICA5BJTLE\nci0tyKWl9PLdH+dZLS2l5df2/H59+nr9c87zO5fnndPzfE7fv9t38eTivqMBADDmXIA9Bg5feHgu\nftXFWb9xfRbOWZj5c9x2EACAfU+ZGBML5yzMwjkL+44BAMABxGlOAABAJ8oEAADQidOcerJm/Zr8\n8NEfZvW61Xnlka/MIfMOydyJuX3HAgCA3aZM9GDN+jW54JsX5PY1tydJJicmc/Wbrs6xS47tORkA\nAOy+Xk5zqqrFVXV9Vf2gqu6sqtP6yNGXe5+4d2uRSJINmzfkslsuy5PPPNljKgAAeGH6OjJxWZKv\nttZ+t6rmJlnQU45ePPHMEztse/yZx7OpbeohDQAAdDPjRyaqalGS05N8Jklaa8+01h6b6Rx9OmHq\nhBw89+BnbXv3r7zbQnMAAOxX+jgysTzJ6iSfq6oTk3wnyYdaa09t+0lVdX6S85Pk6KOPnvGQ+9LU\nvKlce+a1+fT3Pp2H1j2Uc084NyceemLfsYAxNc7zFIB+VWttZp+wakWSG5O8prW2sqouS/J4a+3i\nnX3NihUr2s033zxjGWfKhk0bsnHLxhw096C+owD7h9rTbzCu8xTgBdrjecq0Pi7AXpVkVWtt5ejx\n9UlO7iFH7yZnTyoSAADst2a8TLTWHkzy06o6frTp9UnumOkcAADAnunrbk4fSPKF0Z2c7k7y3p5y\nAMA+s/nJJ7PlySfTNm/OrPnzM3tqqu9IAHtVL2WitXZrkhV9PPeeWLN+TdasX5M5E3OyaHJRpub5\nowDAc9v02GNZc8UVWfu5K5PNmzP/pJOy7J/+MbOXLu07GsBeYwXs3bR63eq872vvyz2P35MkOfWI\nU3Pp6Zdmar5CAcCONj3wQNZe8Zmtj9ffemvW/vPns/SC92fWnDk9JgPYe3pZAXt/s3nL5lz3w+u2\nFokkWfngymetYg0A23r6jh0vB1x/yy1p69f3kAZg31AmdsPGLRtz12N37bD9x4/9uIc0AOwP5p+8\n440KDzrjjMxauLCHNAD7hjKxG+bNnpe3/PJbnrWtUnnti1/bTyAABm/20qU58uN/kzlHH53ZRx2V\nRW/9nSw6+6zUxETf0QD2GtdM7KYTDzsxHzv1Y7nqjqsyf2J+Lvz1C3PYgsP6jgXAQE286EU56PTT\nM3nccdnyxBOZu3x5JhYv7jsWwF6lTOymxZOL87bj3pY3HP2GzKpZLrwG4HltWrM291344ay76aYk\nycSSJTnm+i9m7lFH9ZwMYO9xmtMLMDFrIksXLFUkANilDXf/eGuRSJLNjz6aRy6/PFs2bOgxFcDe\npUwAwD6w6f77d9i2cdV9acoEMEaUCQDYBxacckpqu/UklrzjnEwcfHBPiQD2vrG+ZmLdxnV59OlH\nc9vq27J80fIcufDILJ7n4jcA9r2JQw7JS665Og9f+ols/tnPMvWud2XBaaf1HQtgrxrbMrGlbckt\nD92S99/w/mxpW5Ik5xx3Tj548gdz8KS9QgDsW7MmJzP/ZS/Lsn+4LG3z5kwsXpya5YQAYLyM7VRb\n+/TaXHLTJVuLRJJc+6Nr89Smp3pMBcCBZmLRosyemlIkgLE0vpOtJY8+/egOmzdu3thDGAAAGD9j\nWyYOmntQ3nrsW5+1bfnBy7NwzsKeEgFwoNm0dm2evvPOPHXTt7Nx9eq0LVt2/UUA+5GxvWZi3ux5\nOe8V5+WIhUfka/d8LSdMnZDzXnFeDpl/SN/RADgAbFqzJvd9+CNZt3JlkmRiairHfPE6i9YBY2Vs\ny0SSLJm3JOe+9Ny8+RffnPlz5mdyYrLvSAAcIDbcfffWIpEkm9euzSOXX54jLr44syb9PQLGw1iX\niWR61Wq3gwVgpj3vonXKBDAmxvaaCQDo03MuWnfO2y1aB4wVZQIA9oGJqam85Jqrs+DUUzN5/PE5\n8pJLLFoHjJ2xP80JAPowa968ny9at2lzJpZYtA4YP8oEAOxDE4sW9R0BYJ+xiwQAAOhEmQAAADpR\nJgAAgE6UCQAAoBNlAgAA6ESZAAAAOlEmAACATpQJAACgE2UCAADoRJkAAAA6USYAAIBOlAkAAKAT\nZQIAAOhEmQAAADpRJgAAgE6UCQAAoBNlAgAA6ESZAAAAOlEmAACATpQJAACgE2UCAADoRJkAAAA6\nUSYAAIBOlAkAAKATZQIAAOhEmQAAADpRJgAAgE6UCQAAoJPeykRVTVTVd6vqK31lAAAAuuvzyMSH\nktzZ4/MDAAB7oJcyUVXLkrwpyRV9PD8AALDn+joy8ckkH02ypafnBwAA9tCMl4mqOjPJw6217+zi\n886vqpur6ubVq1fPUDqA8WOeArCv9HFk4jVJzqqqe5Jck+SMqvr89p/UWvtUa21Fa23FoYceOtMZ\nAcaGeQrAvjLjZaK1dlFrbVlr7Zgk70hyQ2vtnTOdAwAA2DPWmQAAADqZ3eeTt9a+leRbfWYAAAC6\ncWQCAADoRJkAAAA6USYAAIBOlAkAAKATZQIAAOhEmQAAADpRJgAAgE6UCQAAoBNlAgAA6ESZAAAA\nOlEmAACATpQJAACgE2UCAADoRJkAAAA6USYAAIBOlAkAAKATZQIAAOhEmQAAADpRJgAAgE6UCQAA\noBNlAgAA6ESZAAAAOlEmAACATpQJAACgE2UCAADoRJkAAAA6USYAAIBOlAkAAKATZQIAAOhEmQAA\nADpRJgAAgE6UCQAAoBNlAgAA6ESZAAAAOlEmAACATpQJAACgE2UCAADopFprfWfYpapaneQne/ht\nliZ5ZC/E2duGmisZbrah5kqGm22ouRLZXohHWmtv3JNvMObzNBlutqHmSoabbai5kuFmG2quZHjZ\n9nieMm2/KBN7Q1Xd3Fpb0XeO7Q01VzLcbEPNlQw321BzJbLtj4b8cxlqtqHmSoabbai5kuFmG2qu\nZNjZ2DNOcwIAADpRJgAAgE4OpDLxqb4D7MRQcyXDzTbUXMlwsw01VyLb/mjIP5ehZhtqrmS42Yaa\nKxlutqHmSoadjT1wwFwzAQAA7F0H0pEJAABgL1ImAACATg6IMlFVE1X13ar6St9ZtlVVi6vq+qr6\nQVXdWVWn9Z0pSarqwqr6flXdXlVXV9W8HrN8tqoerqrbt9k2VVXfqKq7Rm+XDCjbJ0b/nt+rqn+t\nqsVDyLXNxz5SVa2qls50rufLVlUfGP3cvl9Vlw4hV1WdVFU3VtWtVXVzVb1ypnMNkXn6wpmpnXP1\nPk93lm2bj/U2U4c6T3eWzUwdXwdEmUjyoSR39h3iOVyW5KuttZcmOTEDyFhVRyX5YJIVrbWXJ5lI\n8o4eI12ZZPtFZf4syTdba8cm+ebocR+uzI7ZvpHk5a21X03yoyQXzXSoPHeuVNWLk/xWkntnOtA2\nrsx22arqdUnOTnJia+1lSf5uCLmSXJrkr1prJyX5i9FjzNMXxEzdbVdmmPM0Ge5MvTLDnKeJmXpA\nGfsyUVXLkrwpyRV9Z9lWVS1KcnqSzyRJa+2Z1tpj/abaanaS+VU1O8mCJPf3FaS19l9J1m63+ewk\nV43evyrJb89oqJHnyj0z/CAAAAQeSURBVNZa+3prbdPo4Y1Jlg0h18jfJ/lokt7uurCTbH+c5G9b\naxtGn/PwQHK1JAeP3l+UHl8HQ2Gedmam7sJQ5+koxyBn6lDn6eh5zdQDyNiXiSSfzPSLfUvfQbaz\nPMnqJJ8bnTJwRVUt7DtUa+2+TO/JuDfJA0l+1lr7er+pdnB4a+2B0fsPJjm8zzDP431J/qPvEElS\nVWcnua+1dlvfWZ7DcUl+o6pWVtV/VtUpfQca+ZMkn6iqn2b6NdHXXtEhMU9fIDN1rxnMPE0GPVOH\nOk8TM3VsjXWZqKozkzzcWvtO31mew+wkJye5vLX2a0meSn+n62w1Olf27Ez/cf6FJAur6p39ptq5\nNn1v48Hd37iqPpZkU5IvDCDLgiR/nunDykM0O8lUklcl+dMk11VV9RspyfQevgtbay9OcmFGe70P\nVOZpN2bqnhvSPE0GP1OHOk8TM3VsjXWZSPKaJGdV1T1JrklyRlV9vt9IW61Ksqq1tnL0+PpM/zHs\n2xuS/G9rbXVrbWOSLyV5dc+ZtvdQVR2ZJKO3vRzG3Zmq+v0kZyb5vTaMhVx+KdP/kblt9FpYluSW\nqjqi11Q/tyrJl9q0mzK917uXC8S3855M//4nyReTHOgXC5qn3Zipe2CA8zQZ9kwd6jxNzNSxNdZl\norV2UWttWWvtmExf8HZDa20Qe4Raaw8m+WlVHT/a9Pokd/QY6f/dm+RVVbVgtDfj9RnIhYzb+HKm\nh1JGb/+9xyzPUlVvzPRpIGe11tb1nSdJWmv/01o7rLV2zOi1sCrJyaPfwSH4tySvS5KqOi7J3CSP\n9Jpo2v1JfnP0/hlJ7uoxS+/M087M1I6GOE+Twc/Uoc7TxEwdW7P7DnCA+0CSL1TV3CR3J3lvz3nS\nWltZVdcnuSXTh5W/m+RTfeWpqquTvDbJ0qpaleQvk/xtpg/d/kGSnyR5+4CyXZRkMsk3RkeWb2yt\n/VHfuVprgzicvJOf2WeTfHZ0C8FnkrxnpvdA7iTXHya5bHTR7NNJzp/JTLxgg5uniZm6h7l6n6c7\nyzaEmTrUefo82czUMVXDOWoIAADsT8b6NCcAAGDfUSYAAIBOlAkAAKATZQIAAOhEmQAAADpRJgAA\ngE6UCQAAoBNlAp5HVZ1SVd+rqnlVtbCqvl9VL+87F8D+xjyF8WTROtiFqvrrJPOSzE+yqrX28Z4j\nAeyXzFMYP8oE7EJVzU3y7SRPJ3l1a21zz5EA9kvmKYwfpznBrh2S5KAkL8r0HjUAujFPYcw4MgG7\nUFVfTnJNkuVJjmytXdBzJID9knkK42d23wFgyKrq3Uk2ttb+paomkvx3VZ3RWruh72wA+xPzFMaT\nIxMAAEAnrpkAAAA6USYAAIBOlAkAAKATZQIAAOhEmQAAADpRJgAAgE6UCQAAoJP/A5aKRS2zboA2\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "OLhQEhEMCbhV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Use Seaborn to make [linear model plots](http://seaborn.pydata.org/generated/seaborn.lmplot.html)" + ] + }, + { + "metadata": { + "id": "ZPF1SfgKCbhX", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "outputId": "520cff25-40c5-4b9e-9cbc-1a8dd868b70a" + }, + "cell_type": "code", + "source": [ + "sns.lmplot('x', 'y', col='dataset', hue='dataset', col_wrap=2, data=df);" + ], + "execution_count": 74, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmQ3OWd5/n3k3fWparSfVRJCBDi\n1i3ZNBjbjY3bDKZtsAXCxjYeMxM7Pd6J8Yx7drbpCcduTPd273Q4ZnY38DS2cUtGxuADu23a2DQt\njFsXkhCISyCkKp2lUp1ZeWc++8eTVZkCXVWVd35eERUlPZX1+z0I+NVHT36f72OstYiIiIiIiOOp\n9ARERERERKqJArKIiIiISAEFZBERERGRAgrIIiIiIiIFFJBFRERERAooIIuIiIiIFFBAlppmjPkv\nxpivX+Q1dxljrinyfZcYY+4r0rW+Z4y5uxjXEhGZrHp7jhpjnjfGrCnGdaVxKSBLI7gLKOqDHVgC\nFOXBLiJSA/QclYaigCw1xxjzn40xbxljfgdcVTD+L40xu4wxLxtjnjLGNBljPgjcCfyVMWafMeby\nc70u9/33GGNezY1vy415jTF/lXv9fmPMQ7nb/QVwc+6a/67MfwQiItOi56jIhfkqPQGRyTDGrAY2\nAitw//3uAV7KffnH1tr/mXvd/wE8aK3978aYp4FfWGufzH1t6L2vA/478DDwcWvtMWNMe+6aDwLD\n1tq1xpgg8KIx5tfAnwJft9becY45tgIvnOcf4T5r7WvT/GMQEZkyPUdFLk4BWWrNzcBPrLVRgNxD\ne9x1uQd1O9AC/MN5rnG+170IfM8Y8wTw49zYx4AbCmqEZwBXAsnzTdBaO4r7wSMiUo30HBW5CAVk\nqSffA+6y1r5sjPkicOtkXmet/VfGmPXAJ4GXcqssBvgTa+1ZPySMMee7tlY+RKSWfQ89R0VUgyw1\nZxtwlzEmnHuA/ouCr7UCJ4wxfmBTwfho7msXfJ0x5nJr7Q5r7cPAaaALtyryr3OvxRizzBjTfI5r\nTrDWjlprV5znQw91Eak0PUdFLkIryFJTrLV7jDE/BF4G+oBdBV/+M2AH7qG8g/yDdyvwP40x/xa4\n+wKv+ytjzJW41Y7f5u6xH7fTeo8xxuS+567ceMYY8zLwPWvt35TkH1hEpMj0HBW5OGOtrfQcRERE\nRESqhkosREREREQKKCCLiIiIiBRQQBYRERERKaCALCIiIiJSoCa6WNx+++32mWeeqfQ0RETKxZTi\nonqWikiDmfKztCZWkPv7+ys9BRGRmqdnqYjIpamJgCwiIiIiUi4KyCIiIiIiBRSQRUREREQKKCCL\niIiIiBRQQBYRERERKaCALCIiIiJSQAFZRERERKSAArKIiIiISAEFZBERERGRAgrIIiIiIiIFFJBF\nRERERAooIIuIiIiIFFBAFhEREREpoIAsIiIiIlJAAVlEREREpIACsoiIiIhIAQVkEREREZECCsgi\nIiIiIgUUkEVERERECiggi4iIiIgUUEAWERERESmggCwiIiIiUkABWURERESkgAKyiIiIiEgBBWQR\nERERkQIlC8jGmC5jzD8aY14zxhwwxnwtN95pjHnWGHMw97mjVHMQEREREZmsUq4gp4F/b629BtgA\n/C/GmGuAPwV+a629Evht7vciIiIiIlWhZAHZWnvCWrsn9+tR4HVgIfAp4LHcyx4D7irVHERERERE\nJqssNcjGmCXASmAHMNdaeyL3pZPA3PN8z1eNMbuNMbtPnz5djmmKiNQdPUtFRCav5AHZGNMCPAX8\nr9bakcKvWWstYM/1fdbab1tr11hr18yePbvU0xQRqUt6loqITF5JA7Ixxo8Lx1ustT/ODZ8yxszP\nfX0+0FfKOYiIiIiITEYpu1gY4FHgdWvtfyv40tPAA7lfPwD8rFRzEBERERGZLF8Jr30T8HngFWPM\nvtzY/wb8BfCEMeZB4Ajw2RLOQURERERkUkoWkK21vwPMeb780VLdV0RERERkOnSSnoiIiIhIAQVk\nEREREZECCsgiIiIiIgUUkEVERERECiggi4iIiIgUUEAWERERESmggCwiIiIiUkABWURERESkgAKy\niIiIiEgBBWQRERERkQIKyCIiIiIiBRSQRUREREQKKCCLiIiIiBRQQBYRERERKaCALCIiIiJSQAFZ\nRERERKSAArKIiIiIlF46UekZXDIFZBEREREprfgwjByv9Cwuma/SExARERGROjbWD7Eh8NTOuqwC\nsoiIiIgUXzYLkZOQjFZ6JpOmgCwiIiIixZVOwugJyKQqPZMpUUAWERERkeJJRt3KcTZb6ZlMmQKy\niIiIiBRHbAiiZ8DaSs9kWhSQRURERGR6rIWx0xAfqfRMikIBWURERESmLpuB0ZOQilV6JkWjgCwi\nIiIiU5NOwuhxyKQrPZOiUkAWERERkclLjrmV4xqvNz4XBWQRERERmZzYIIydqfQsSkYBWUREREQu\njbUQ6YPEaKVnUlIKyCIiIiJycdmMO/wjFa/0TEpOAVlERERELiydgJHjLiQ3AAVkERERETm/RAQi\np+pyM975KCCLiIiIyLlFB9xHg1FAFhEREZGzWetWjRORSs+kIhSQRURERCQvk3ab8dKJSs+kYhSQ\nRURERMRJxV04bpDNeOejgCwiIiIirrdxpK+hNuOdjwKyiIiISKMbO+NOxxNAAVlERESkcWWzbjNe\ncqzSM6kqCsgiIiIijSiTym3GS1Z6JlVHAVlERESk0aRiuc142UrPpCopIIuIiIg0kvgwjPVrM94F\nKCCLiIiINIqxfogNVXoWVU8BWURERKTeZbOupCIVq/RMaoICsoiIiEg9SyddOM6kKj2TmqGALCIi\nIlKvklGInNRmvEnyVHoCIiLllkzrB4WINIDYkDpVTJECsog0jHQmy4nhGKNxvc0oInXMWndktDpV\nTJlKLESkIYwl0vRHEmSylkBYawMiUqeyGRg9qc1406SALCJ1zVpLfySpVWMRqX/pJIweh0y60jOp\neQrIIlK3EukMfSMJUhnV34lInUuOuZVjlVQUhQKyiNSl4ViKgbEkVj8sRKTexQZh7EylZ1FXFJBF\npK5kspbTowmiSb3FKCJ1bnwzXmK00jOpOwrIIlI3YskMp0cTpNXSSETqXTYDI8chnaj0TOqSArKI\n1DxrLQNjSYZj2ognIg0gnXDhOJup9EzqlgKyiNS0ZDpL32hch3+ISGNIRCBySpvxSkwBWURq1kg8\nxUAkSVY/KESkEUQH3IeUnAKyiNScbNbSH0kQSWgjnog0AGvdqnEiUumZNAwFZBGpKfGU622sjXgi\n0hAyaRg9oc14ZVay81aNMd8xxvQZY14tGPsvxphjxph9uY8/KtX9RaT+DI4lOT4UUzgWkcaQisNw\nr8JxBZQsIAPfA24/x/jfWGtX5D5+WcL7i0idSGWyHB+KMRhNVnoqIiLlER+BkWPqVFEhJSuxsNZu\nM8YsKdX1RaQxRBJp+kcT2ognIo1j7Iw7HU8qppQryOfzb4wx+3MlGB3ne5Ex5qvGmN3GmN2nT58u\n5/xEpApks5a+0Th9I3GF42nQs1SkhmSzMHJC4bgKlDsg/3/A5cAK4ATwf5/vhdbab1tr11hr18ye\nPbtc8xORKhBPZTg2FCMSV5eK6dKzVKRGZFIwchSSY5WeiVDmLhbW2lPjvzbG/E/gF+W8v4hUv6Fo\nksFoCqtVYxFpFKmY61ShDchVo6wB2Rgz31p7IvfbPwZevdDrRaRxpDNZTkcSxJLakCIiDSQ+DGP9\nOhmvypQsIBtjHgduBWYZY44Cfw7caoxZAVjgMPBQqe4vIrUjmkxzejRBJqsfECLSQMb6ITZU6VnI\nOZSyi8W95xh+tFT3E5HaY63lzFiSkViq0lMRESmfbNaVVKRilZ6JnIdO0hORioinMpweTZDKqOZO\nRBpIOunCcUYLA9VMAVlEyk4b8USkISWjEDmpzXg1QAFZRMomlclyejRBPKWNeCLSYGJDED2jzXg1\nQgFZRMpiJJ5iIJLUoR8i0lishbHT7uhoqRkKyCJSUpmspT+SYCyhQz9EpMFkM7nNePFKz0QmSQFZ\nREpG7dtEpGGlkzB6HDJaHKhFCsgiUnTZrGvfNhrXLm0RaUDJMRg9qXrjGqaALCJFpfZtItLQYoMw\ndqbSs5BpUkAWkaKw1jIUTTEYTVZ6KiIi5WctRPogMVrpmUgRKCCLyLQl01lORxIk1L5NRBpRNgMj\nxyGdqPRMpEgUkEVkWoZjKQbGkjr0Q0QaUzrhwnFWCwT1RAFZRKYkncnSH0kSTWqHtog0qEQEIqe0\nGa8OKSCLyKSNJdL0R9S+TUQaWHTAfUhdUkAWkUuWzVr6xxJE4lo1FpEGZa1bNU5EKj0TKSEFZBG5\nJGrfJiINL5N2J+NpM97UJUYh2FrpWVyUArKIXJC1lsFoiiG1bxORRpaKu3CszXiTZy0c2wW7v+P+\n/P7lc2BMpWd1QQrIInJeat8mIgLER2DstDbjTZa1cOR3Lhif3J8f79kOiz9QuXldAgVkETmnkXiK\ngUiSrH4giEgjGzvjTseTS2ez8M5zLhj3v5kfX7AKPvpn0L2hcnO7RArIInIWbcQTEQGyWbcZLzlW\n6ZnUjmwaDv7aBePBd/PjXethzVegaw10Lq3c/CZBAVlEJiTTWU6NxLURT0QaWyaV24ynvReXJJOE\nN34Bex6D4aP58SW3wNoHYe51lZvbFCkgiwgAkUSa/tFEQ5RUvHFyhOXz2pjZEqz0VESk2qRiuc14\nWii4qHQcDvwU9n7frbYDYODK22D1l2HWlRWd3nQoIIs0OGst/ZEko/FUpadScgeOD7NlRw/bDw3w\nr2+9nG/cvrzSUxKRahIfhrF+bca7mOQYvPoU7NsM0TNuzHjhqk/A6i9Bx5KKTq8YFJBFGlgynaVv\nNE4yXb8rJdZaXj46zObtR9jTMzQxvuPQGay1mCpvNSQiZTLWD7Ghi7+ukcVHYP9WePlxSIy4MY8f\nrr4TVj8AbQsrO78iUkAWaVDDsRQDY0lsna6UWGvZeXiAzdt7OHB8ZGJ82dwW/uXNS/nMqkUKxyKS\n24x3EpLRSs+kesUGYd8W2P8EpHKbFn1BuPbTsPIL0DKnsvMrAQVkkQaTTGfpjySI12lv46y1vPj2\nGTZvP8LBvvxRsNcuaOP+Dd2sW9JJe1MAj0fhWKThZdIwelyb8c4n0gd7/w4OPJU/PdDfDNffAys2\nQVNnZedXQgrIIg1kOJpiIFqfq8aZrOX5N0+zZccRDp/JrwSt6m5n0/puVnS1a8VYRPLSCRg5rpPx\nzmXkGLz0GLz+NGRz+1OCM+DGjXDDRgi1VXZ+ZaCALNIA6vlEvFQmy29eO8UPdvZybCg2Mb5haSf3\nr1/MNQvq/0EuIpOUHIPRk9qM916Dh+Gl78KbvwKb+3kR7oSV98N1d0OguaLTKycFZJE6NxRNMhhN\n1d2qcTKd5ZevnGDrrl76Rt1bfwa4edks7l+/mCvmtFR2giJSnWJDbkOe5PUfhN2Pwtu/AXI/K1rm\nwsrPw7V/DL5QRadXCQrIInUqkc7QH0nW3apxLJnh5/uP88TuowyMubpBj4GPLJ/DpvXdLJ7ZOCsc\nIjJJkdOulZs4p151p969+0/5sbaFrlXb8jvA66/c3CpMAVmkzlhrGY6l6m7VOBJP89N9x3jypaOM\n5I7B9nkMt183j41ru1jQHq7wDEWkaunY6LMd2+NWjHu358c6LoM1X4YrPwYexUP9CYjUkXqsNR6O\npnhyz1F+uvcYY0n3zxXwebjj+vl8ds0i5rQ13lt/IjIJmXTu2OhEpWdSWda6QLz7UTi+Nz8+6yoX\njC//CBhP5eZXZRSQRepEvfU1PhNJ8MTuo/z85ePEcweZhP1e7rxxPves6aKzOVDhGYpI1VOnCrBZ\nOPwC7HoU+g7kx+de74LxkptBHX7eRwFZpMZls5b+SIJIIl3pqRTFyZE4P9zZyy9fPUEq48J+S9DH\np1cu5NOrFtIWbtyaOBGZhEbvVJHNwDu/dSvGZ97Ojy9cDWu/AgvXKhhfgAKySA1LpDP0jSRIZWr/\nqOijg1Ee39nLr187RSbrfqDNCPu5Z/UiPrViAc1BPa5E5BLFBmHsTKVnURmZFLz1jGvXNnQkP774\nJrdiPH9F5eZWQ/QTR6RGjcRTnInUfknFu/1j/GBHD//4Zh+5XMzMlgCfW9PFJ2+YT9jvrewERaR2\nWAtjpyE+cvHX1pt0At74uTvgY/R4fnzpR1wwnnN15eZWgxSQRWpMvZRUvHVqlM3be/jd2/l+pPPa\nQty7rouPXzuPgE+bRURkEjJpiJyEVLzSMymvVAwO/AT2ft/95QDcZrsrP+batc28orLzq1EKyCI1\npB5KKl49NszmHT3sfHdgYmxRR5hN67v56PI5+LwKxiIySam461TRSJvxkhHY/wTs2wLxITfm8cJV\nd7hg3N5V2fnVOAVkkRpRyyUV1lr29gyxeccR9vXmm/Qvnd3M/eu7ufnK2Xg92iwiIlMQH3ErpzX4\nbJyS2BDs3+o+EqNuzBuAa+6ClV+AtvmVnV+dUEAWqXLWWk5HEkTitVdSYa1l+6EBtuw4wmsnRifG\nr5rXyv3ru/ng5TMx2kUtIlM11u8CYyMY63erxa/+yJVVAPjDcN3dsGITNM+u7PzqjAKySBVLprOc\nGonXXElF1lpeONjPlu09vH06MjF+w6IZbFrfzZrFHQrGIjJ12Yxr4TYeFOvZ6EnY83147aeQyR12\nEmiGGzbCjfdCuKOy86tTCsgiVWo0V1KRraG3DTNZy3Nv9PGDHT0cGYhOjK9Z3MGmDd3cuKi9grMT\nkbqQTrouDZnae1dtUoZ74aXvwRu/gGzunzU0w60WX/9ZCLZWdHr1TgFZpMpYa+mPJBmNpyo9lUuW\nTGf59WuneHxnDyeG8zvIP3j5TO7f0M3yeW0VnJ2I1I1EBCKn6rveeOAQ7P4OHPwHdwoeQNMsWPl5\nuO4zrqxCSk4BWaSKJNIZTo8mSKZro6Qikcrw96+c5Ie7ejkdcW/9GeDWq2Zz3/puLp/dUtkJikj9\niA64j3p1+g0XjN95Dsj9BaB1Hqz6Ilx9J/iClZxdw1FAFqkSQ9Ekg9FUTXSpiCbTPL3vOD966SiD\nUbfS7TFw2zVzuXddN92dTRWeoYjUjWzWrRonxyo9k9I4sd8dB33kd/mxGd2uVdtVnwCvv3Jza2AK\nyCIVlkhn6I8kSaSqv3/naDzFT/Ye48d7jjGS66rh9xpuv24eG9d2MX+G3voTkSLKpFx/43Sy0jMp\nLmvh2G4XjI/uyo93Xu5OvbviNtfTWCpGAVmkQqy1DEVTDMWqf9V4MJrkyZeO8rN9x4kmXZAP+jzc\nccN8Prumi9mteutPRIosGXUn42Vro+TsklgLR150wfjk/vz47Kth7YNw2YfcKXhScQrIIhUQT7la\n42pv39YfSfDDXb38Yv8JErm66KaAl0+tWMDdqxfR0RSo8AxFpC7FBmHsTKVnUTw2C4eeh91/C6ff\nzI/PvxHWfAW6PwBqfVlVFJBFyshay2A0xVC0ut8uPDEcY+uuXp559SSpjFvdbg35+PTKhXx61UJa\nQ6qJE5ESsBYiffkT4mpdNg0Hfw0vfdd1pxjXtd4F44WrKjc3uSAFZJFJev6NPh7ZdojewShdHU08\ndMtSbl0+56Lfl0hn6Bup7lXjnoEoj+/s4dnXTpHNVX10NPm5Z/Ui7lyxgKaAHhkiUiKZdK7eOFHp\nmUxfJgVv/r0LxsNH8+NLbnE1xvOur9zc5JLop53IJDz/Rh8PP30Av9fQHvbTNxrn4acP8E24YEge\nyR36Ua21xodOR9iyo4fn3zw93lyI2S1BPre2i09eP4+gX5tFRKSEUjF3Yly2+jcrX1A6Dq89DXu+\n5zpvAGDgij90wXjWskrOTiZBAVlkEh7Zdgi/10yspDYFfESTaR7ZduicATmbtfSPJYjEq/PEp9dP\njLBlRw+/fydf6zd/Roj71nXzsWvn4vdqs4iIlFh8GMb6a/vwj+QYvPoU7NsM0dzz1Hhh2e2w5kvQ\ncVll5yeTdtGAbIz5E2CztXawDPMRqWq9g1Haw2fX34b9Xo4ORt/32mouqdh/dIjN23vYfST/v/Xi\nzibuW9/NR5bPwevRZhERKTFrXTCOD1d6JlOXGIX9W2Hf45DI/XN4fHD1p2DVF2DGosrOT6bsUlaQ\n5wK7jDF7gO8A/2Cr9X1ikRLr6miibzR+Vi1uLJVhUcfZB2NUY0mFtZbdRwbZvL2HV47lfyBdMbuF\nTRu6ufnKWXi0i1pEyiGbcSUVqVilZzI1sUHY9wN45Yf5A0y8Qbju0+5I6Ja5lZ2fTNtFA7K19n83\nxvwZ8DHgS8D/MMY8ATxqrX2n1BMUqSYP3bKUh58+QDSZJuz3EktlSGUsD92yFMiVVEQSRBLVU1KR\ntZZ/fucMm3f08ObJ/M7wa+a3smn9YjYs7cQoGItIuaSTMHrcbcqrNZHTsPfv4MBTrt4YwN8E198D\nKzZB08zKzk+K5pJqkK211hhzEjgJpIEO4EljzLPW2v9YygmKVJNbl8/hm7ha5KODURYVdLGotpKK\nTNay7a3TbNnRw6H+/BGtK7rauX99Nyu72xWMRaS8kmNu5biK3l27JCPHYc9j8NrPIJtyY8FWuOFe\nuHEjhGZUdn5SdJdSg/w14AtAP/C3wH+w1qaMMR7gIKCALA3l1uVz3rchbziaYiBaHSUV6UyW37ze\nxw929nB0MP/25brLOrl/fTfXLdSDXEQqoBYP/xg84lq1vfXLfIeNcIdbLb7+Hgi0VHZ+UjKXsoLc\nCXzaWnukcNBamzXG3FGaaYnUhkQ6Q38kSSJV+dZEyXSWZw6c5PGdPZwayfcR/YMrZnH/hm6WzW2t\n4OxEpGHV4uEf/QddMH77WXcKHkDzHLfx7pq7wB+u7Pyk5C6lBvnPL/C114s7HZHaUS2rxrFUhr/f\nf4If7u7lTMSd0Ocx8OGr5nDf+m4um9Vc0fmJSAOrtcM/Tr3mjoN+95/yY20LYdUX4eo7wBuo2NSk\nvNQHWWSSrLWcHq38RryxRJqf7TvOky8dZSjmauK8HsPHrpnLveu63tdZQ0SkrNIJV7tbC4d/HN8L\nux+Fnn/Oj7Uvdod7XPlx8PrP/71Sl0oWkI0x3wHuAPqstdflxjqBHwJLgMPAZ9VfWWpJOpPl5Eic\nZLpyG/FGYil+vOcYP957bCKk+72GP7p+Pp9b28W8tlDF5lbtAj4PTQEfLUGtDYiUVGLUlVVUwb6M\n87IWene4YHx8T3585pUuGF/+UfDoFNFGVcqfEt8D/gfw/YKxPwV+a639C2PMn+Z+/40SzkGkaOIp\n16UinS1vON55aICtu3o5OhTFg2EonpoI6CG/hztvXMA9qxcxsyVY1nnVAq/HEA54Cfu9NAV8OgBF\npByiA+6jWlkLh19wpRSnDuTH514La74CS24GdfhpeCULyNbabcaYJe8Z/hRwa+7XjwHPo4AsNaBS\nB3/sPDTAf/vNW0STacYSGcbvHvR5uHv1Iu5etYgZTXrrD8AYg99rCPg8BH1eQn73WUTKxFrXwi05\ndvHXVkI2A4eeg12PwpmD+fGFq2HNg7BonYKxTCj3+4xzrbUncr8+iTulT6RqVfLgj2NDMf7q129y\nZiw5MeYx0Br00dXZxIN/cFnZ51Rtgn4vTX4v4YCXoM+jvs4ilZJJu8M/0smLv7bcMik4+A+uK8Xg\n4fx49wdcMF6wsmJTk+pVsUK83OEj512OM8Z8FfgqQHd3d9nmJTIunspwerT8B38cOTPGlh09PPdG\nH9nc/yFej6GjyU97yI/xQH+kRnaEl0DQ76Ul4KMp6MXv9VR6OlVPz1IpuVTcheMyl59dVCYJr/8c\nXvqem9+4pbfC6gdh7jUVmpjUgnIH5FPGmPnW2hPGmPlA3/leaK39NvBtgDVr1lRxlb/Uo0q0cDt4\napQtO3t44a3+iVIKv9fQHPAxqyWAJ7c6GktlmNfWWD04g34vzQEvzUGfQvEk6VkqJRUfgbHT1bUZ\nLxWD134Ce77v5gZgPHDFbbD6SzDrysrOr5EY4zqAePy5z7WzQbrcM30aeAD4i9znn5X5/iIXlMpk\nOT2aIF7Ggz8OHB9my44eth/Kb2pZ2B7mvvXdtIf8/I/n3yaRzhLye4insqSzlo1ru8o2v0owxhDO\nlU40B7z4FIpFqs9YP8SGKj2LvGQEXnkS9m12p/aB60Jx1SddH+OOxRWdXl0yxoVejy8fgM8KxLW7\nD6SUbd4ex23Im2WMOQr8OS4YP2GMeRA4Any2VPcXmayReIqBSJJsGVZCrLW8fHSYzduPsKcn/wNm\nycwmNq1fzK1XzZ7ouOD1GLbu6uXkSIx5bWE2ru1i3dLOks+x3IJ+120i7Hcb7FRPLFKlslmInIRk\ntNIzceLD8PJW2L8VEiNuzBuAaz4FKx+AtvmVnV+t83jfvwo88fvaWRGerFJ2sbj3PF/6aKnuKTIV\nyXSW/kh5Vo2ttew8PMDm7T0cOD4yMb5sbgub1i/mpitmTpRSjFu3tLMuA7HP4yEU8BDKbbTTKrFI\nDaimzXjRM7BvC7zyI0jlwrovBNd9BlZ8HlpmV3Z+tcLjKQi/udDrKQjCDbpYUb/RX+QirLUMRlMM\nx1IlrzXOWsuLb59h8/YjHOyLTIxft6CNTRu6Wbeks65XTMdbsIX8XkJ+13FCtcQiNSadhJFjlT8Z\nL3LK1Rcf+AlkchuWA81w/edgxX0Q7qjs/KqZx+P+EuELgT8M3qAbk/dRQJaGVK4OFZms5fk3T7Nl\nxxEOn8m/Hbmqu537NyzmxkUz6jYYF5ZMBH0ePDqkQ6R2Jcdcj+NKbsYbPgp7HoPXn4ZsrvVmcIYL\nxTd8DoKtlZtbtfL6wBcGf8h99gUqPaOaoYAsDSWTtQyMJRmNp0p6n1Qmy7OvneLxnb0cG4pNjG9Y\n2sn96xdzzYK2kt6/Erye/MY6nVonUkdigzB25vxfP/wi7H0MRo5D2wJX97vkpuLdf+Bd18P4rWfA\n5lavm2bCys/DtZ+BQFPx7lVLPN7cR26TnCn4/Xi5hFaHp0wBWRpGJJHmTCRBJlu6FZBEKsOvXj3J\n1l299I26t/4McMuy2Wxa382yLWjEAAAgAElEQVQVc1pKdu9yM8YQ9HkmQnHIX7u7lUUEeOtZ+P23\nYOgItC+GD/xbWLjCtXI7n8Mvwra/dGEsOMMF6W1/CXzj4iH5YsG6/y3Y/Si8/VsYb37ZMtd1pLjm\nTlcmUO+8fvAF3abDidDrq+vNcdVCf8JS9zK50/DGSngaXiyZ4ef7j/PE7qMM5E6+8xj46NVzuW9d\nF4tnNpfs3uXk83hoCnppDvjUaUKknrz1LPzq6+AJQKgDRk7CL/8d3PwfLxx09z7mQps/F1b9IUjl\nxi/0fRcK1qE2F4wPv5B//YwuWP1F17LN6y/CP3CVMcaFYF8wF4hzn/WMrRgFZKlr0WSa06OlWzWO\nxNP8ZN8xnnrpKCNxF8B9HsPHr53HxnVdLGyv/QM9Co9z1iqxSJ36/bdcOA40gc26Fcqs7+JBd+S4\nC7iFfCEYOXHh+703WPuCEI/Ds/8ZEqP513UuhdVfhitvq6lDJi5ofKOcN+hqgsc/S1Wpk//aRM6W\nzmQZiCaJxEuzajwcTfHknqP8dO8xxpKuJi7g8/DJ6+fzuTWLmNNWu2/9qZZYpAENHXErx9l0rkuF\nvbSg27bArf76C5556fjFew+PB2trITXmrpHO79dg9nJY86A7FtrUcB1tYYnE+MqwyiNqgv4tSV2x\n1jIUTTFUotZtZyIJnth9lJ+/fJx42nXACPu93HnjfO5Z00Vnc+2tAvg8HoJ+DyGf133WKrFI45nR\n7UJr4UrmpQTdlQ+40ogULlCn45BNufELaZ0PQ72QHHXfMy7QDB//r9D9wdoqL/D683XCXn8uCAe0\nSa6GKSBLVXj+jT4e2XaI3sEoXR1NPHTLUm5dPmdS1yhl67aTI3F+uLOXX756glTGBe+WoI9Pr1zI\nH69ayIxw7dTEjR/j3BR0LdjUj1ikzrx3s90HvwbLbjv/6xOjcMNG+Kf/6sorJhN0l9wEfCO32e6E\nC9QX6mKRzcDbz8LoCYiezo/7QhBogQ//GSwuYgeMYlOtcMMwpT4goRjWrFljd+/eXelpSIk8/0Yf\nDz99AL/XBbdYKkMqY/nmnddeUkguZeu2o4NRHt/Zy69fOzVRx9we9nP36kV8asUCmoO18XdMjzE0\nBbw0BX00+b3qSVz9SvIvSM/SBlC42c4fhlQMskn4xF+/PyRnMxDpcz2OoaCrxCUE3cnKpODNX8JL\n34Phnvx4cIZbce1YfOn3K3VbOXArv95Awapwwa+llkz5WVobP92lrj2y7RB+r6Ep4P5zbAr4iCbT\nPLLt0EUD8mg8xcBYsuib8N7tH2PLjh6ef7OP8UvPbAnwuTVd3HHD/JooQ/B6DOGAl5agj7Dfq44T\nIo2gcLMduM/J3HhhQE5EYKwPsgXvuC25qfhBM52A13/mDvgYPZkbNHD5R2DNl12t8WRMp63c+Yz3\nDvYF3V8qfGHVCYsCslRe72CU9veUKIT9Xo4ORs/zHZBMZzkzliCWLO6Rp2+dGmXz9h5+93b/xNi8\nthAb13Vx+7XzCPiquxyhsA1bOFD9IV5Eimx8s10hfxiGcqu22SyMnT67U0QpJKNw4CnYuxmiueep\n8cCy22H1l1x3iqmYalu5ceMlEv4m9+fiD6s8Qs5JAVkqrqujib7R+MQKMkAslWFRx/tPRyrVJrxX\njw2zeUcPO98dKJhXmPvWd/PR5XPwVXGdrt/roTnoo0lt2ESkfTGMnjr7dLlUDNq7XSlFpC/XpaJE\nEqPwyhOwbwvEh92YxwfL/wWsfsD1M56OybSVM8Z9zRcqqBlWiYRcGgVkqbiHblnKw08fIJpMn1WD\n/NAtZ68wFHsTnrWWvT1DbN5xhH29wxPjS2c3s2ldN7csm12VLc4K+xIHvB7VE4tI3ge/5mqQk+Rr\nkDNxuPG+i7dsm47YILz8OOz/ISQjbswbhGvvgpVfgNZ5xbnPhdrKjQdif9itEGvznEyDArJU3K3L\n5/BNXC3y0cEoi97TxaLYm/CstfzdPx/hiZeOEi0o0Vg+r5VN67v54OUzq6ped7yWuCngaomrMbSL\nSJVYdhvw167mePAItM6FFf8GutaV5n5jp10ZxatP5tu1+ZvgurthxSZonlXc+xW2lfOHIZ0EsvAH\nX3dlG1X07JbapoAsVeHW5XPetyEvk7WMxFKMxFNF2YSXtZYXDvbz7W2HODGc77sZ9HloDnh5YMNi\n1l8+c9r3KYaQ30tTwK0SB30qmxCRSbj8w7BgRb7EoRRGTri639d+BpmkGwu2unZxN2yEcHtx7ze+\nOnztndA8G3b8v66uur374m3sRKZAAVmqTrHrjDNZy2/f6OPxHT0cGchv/GsKeOlsCtAUcGUdP9x9\ntOwB2WMMAZ8Hv9dDwOsh4PMQ9KlsQkSmIJ10pQ7JiDuhrhSGelyrtjd/ka9lDrXDyvvh+ntcL+Ni\n8vog2AahGa7bBMDVf+Q+REpIAVmqSjSZ5kwkWZQ642Q6y69fO8njO3vft2I8pzVA2J//zz/k93By\nJHauyxSd3+shHHCdJkJ+T1WVc4hIlZjMYR+pWC4Yn7/zz7SdeQd2P+oO+bC553PzbFdffO0fu3KH\nYjHGrUYHW4t7XZFJUECWqpDOZBkYSxJJpCf1fTsPDbB1Vy8nRmLMbwuzcW0XN3TN4JevnGDrrl76\nI+6tPwN8aNlsNm3o5v957h3OjCXOuk48lWVeW2kexH6vO745HPCqhlhELq7wsI9Qh+tK8auvA7nD\nPqyFVNQF4lTUHcJRKn2vu2B86B/zY60LXEeKq+90LdOKxR9yq8XB1tLUEk/2hEFpaArIUlHpTJaR\neJqRWIrsJN8S3HlogG89dxCfx9AW8nE6Euf//NXrWMtE0PYYuO2audy7rpvuTtf2aOPaLr713EFi\nqQwhv4d4Kks6a9m4dprthwr4vR6aAl6agz61XhORyTnXYR+JLLzw1zD3GrcZrtSn4J7YB7sehZ7f\n58faF7sexstuL167NI8nF4rbwFfEsP1eF/tLh8h7KCBLRcSSGUbjKcaSmSnXGW/d1YvPYwh4PQyM\npRiMJidOvfN7DbdfN49713Yzb0borO9bt7STr3ElW3f1cnIkxrzcyvO6pZ1TmofHuC4Tfq8HX+64\nbH8V900WkSo3eNjV9WbTLgjbrOslPNTjyilKxVo4ugt2/y0ceyk/PvMKWPMgXP7RfB3wdBgDgeZc\nCUVTeTpPXOoJgyI5CshSVmOJNANjxakxPjYUJZ21DMdSE8HYAOGAl+9+cS2zW4Pn/d51SzunHIjH\nhQNeWkN+mgM6xllEpiiTcl0gMkm3yS4dh5Y55+/1WwrWwuEXYPd34NQr+fE518Lar8CSm4sTYn3B\nfG1xMYL2ZFzshEGR91BAlrJIpl2NcTQ5uRrjczk9muCHu3vpH0tOvMvoMTAj7Cfs9zKnNXTBcDwd\nxhiag15mhP1qvyYily6byYXgxNmfz/UOWmGvX1/IheNsyo0Xk83CO8+5GuP+t/LjC1bBmi9D14bp\nB+PxLhSBltKWUFzMhU4YFDkHBWQpqXgqw3AsxdgkN9+dy4nhGFt39vLMgZOkMu6HijHQGvQxqyVA\nKmOLXks8LuR3XSdaQj5tshORC0snIZMo+JyY3PHOS24CvuH6DI+ccCvHKx/IjRdBNg1v/QO89F0Y\nfDc/3rXBrRgvWDn9ewSaXGu2QPP0r1UM5zphMJt04yLnoIAsJRFJuI138dQkfiicR89AlMd39vDs\na6cmSik6mvzcs3oRC2eE+cm+40WpJS5kjKEp4M19KBSLyDlkM/mV4IutCk/WkpuKF4jHZZLwxi9c\nH+ORY/nxyz7kaoznXju964+vFgdbi7eJr1gKTxjUASNyCRSQpagiiTSDRaoxfud0hC3be/int04z\n/uNmdkuQz63t4pPXzyOY6w5x81Wzp32vcQGfh7awn5aAr+iHdTz/Rh+PbDtE72CUrvccpy0iVSyT\nzofgwo/s9J9zZZGKwWs/hb1/B5FTuUEDV94Gq78Ms66c+rWNceUTwdazyxeq0bLbFIjlkikgy7Rl\ns5bReJqReKoowfj1EyNs2dHD7985MzE2f0aI+9Z187Fr5xa9Q0TA56E54KMpWLpjnZ9/o4+Hnz6A\n32toD/vpG43z8NMH+CYoJItUWibtyg4mPjLu83gQLnVLtVJJjsGrT8LezRAbcGPGC1f9Eaz+InQs\nmfq1x3sWB1pcqzaROqOALFNirSWWyhCJp4kmM5PuYXwuLx8dYsv2HnYfGZwY6+5sYtP6bj6yfE5R\nyxy8HkNTwEdrqDx9ih/Zdgi/190ToCngI5pM88i2QwrIIuWQzbp64PFuEZmE6yBhs7UbgM8nPgL7\nt8LLj0NixI15/HDNnbDqi9C2YGrX9QVyq8VtrpxCpI7pv3CZlEzWMhpPMRJLky7C24vWWnYfGWTz\n9h5eOTY8MX7F7Bbu39DNH1w5C0+RWqhV8ojn3sEo7eGza/LCfi9HB0t4NKxIo0on31MXnHCrxPUu\nOgD7tsArP4LUmBvzheDaz8DKz0PLFMrRJo59bju77ZxInVNArnPFqHtNZbLEUxnGEhliqakf7FEo\nay3//M4ZNm/v4c1ToxPjV89v5f71i9mwtLMoATbo99IS9NEc8OKr4OEdXR1N9I3GJ1aQAWKpDIs6\nqrxmT6RaWetWgLOpfC/hYm6SK5bDL+a6URx3K7fF7EYxLtLn6osPPOX+DAD8zXDDZ2HFJgh3XPj7\nz8UXyJ9wpxIKaUAKyHVsqnWv8VSGRCpLLJUhkc6QyRbvh00ma9n21mm27OjhUP/YxPiKrnbuX9/N\nyu72aQdjv9dDc9BHS9BHwFcdD/aHblnKw08fIJpME/Z7iaUypDKWh25ZWumpiVSnbNaF32w6F4TT\nBb9O1cYGucMvun7GHj8EZ7jDP7b9JfCN4oTkkWPw0mPw+tPuzwTcfVbcC9d/DkJtk79moMmd4lft\nG+5ESkwBuY5Npu41lckSTWSKttHuvdKZLL95vY8f7Ozh6GD+qNR1l3Vy//purls4Y1rX93rMRCgu\nR03xZN26fA7fxP07OToYZZG6WEijy2YKgm+qYKPc+FgNBOCL2fuYC8fjpQn+kDv8Y+9j0wvIg+/C\n7u/CW8+AzbXSbJoJK+6H6z4z+d7D42UUoRnutDsRUUCuZ+ere+0dGGM4miKRyZBMZ0llbFHKJs4l\nmc7yzIGTPL6zh1MjiYnxm6+cxab13Syb2zrla3uMoSVUvaH4vW5dPkeBWBrL+OlxmYIyiPGSiGoq\ngyiVkeNuRbeQL+QO/5iK/rfccdBv/wbGm1+2zIVVD8A1n3LXngyPx60Wh2aU/+hnkSqngFzHCute\ns9ZiLUQSKWa1hDgzlrj4BaZg56EBtu7q5fhwFJ/H4w4MibvNMR4DH75qDvet7+ayWVM/Xcnvdb2K\nW4PF71UsIkWSzcLAuxd/XT1rW+DKKgo3t6Xj7mS8yTj1Kux6FA5vy4/NWOQ6Uiy/Y/KHcni80NTp\n6ovLuFlZpJYoINcpay1f/MBivvn3r5PKJAn6PMRT2ZIdxQwuHP/Nb98inswQSaTJnQaNx8DHr53H\nveu6prUpLRzwMiPsP2ujm4hUqwZYIb6YlQ+4muMUbnU3HXcr6CsfuLTvP7YHdv8t9O7Ij3VcBmu+\nDFd+DDyTfBZ6PBDudCvGCsYiF6SkUUcmehMn0sSSGa6c18qffPgKtu7qLfpRzO81EkvxN795i75I\nYuKdUwM0B710dzTzHz5+1ZSua4yhOeiCcakO8RARKYklNwHfyHWxOOFWji/WxcJa6Pln2P0onNiX\nH591Faz9Ciy9FcwkNx97/RBu14qxyCQoINc4ay3RZIaxZJpo4v0Hdqxb2lmSQDxuYCzJky8d5Wf7\njhNLuc0ixkB72E9H2I/XaxiITr6cw+fx0Bb20RryF/WAEBGRslpy06VtyLNZeHebC8Z9r+XH517v\ngvHimyYfbn0Bt2IcbJnc94mIAnItulgoLoe+kTg/3H2Uv3/lBMm0223uMdAS9DG7JTgRamOpDPPa\nwpd83ZDfS1vYT3PAW9aDPEREKiKbcZvuXvoOnHk7P75wDax9EBaunXww9vpzNcZT3wQt0ugUkGvE\nRChOFO9o56k4NhTj8Z09/PrAKdK5/shtIR93r15Ed0cTj7xwiGQmS8hz6TXPHuNatLWFfSqjEJHG\nkEnBW79y7dqGe/Lji2+CNQ/C/Bsnf02v3x0KMpX+xyJyFgXkKpbKZBlLpImlMsRT2ZK1YrsUh8+M\n8YMdPTz3Rh/j54Z0Ngf43JpF3HHjAsK5Nmshv/eSa56bAj5aQz6atFosIo0inXAHe+x5DEYL2r1d\n/lG3+W728slf0+vLbb5TMBYpFgXkKpJMZ0lmsiTTuVPscjW9lXTw1ChbdvTwwsH+iT3pc1qD3Luu\ni09cN/99J9VdSs1zOOCloylQE72LRUSKIhWDV59yR0JH+92Y8cCVH4fVX4KZl0/+mmrXJlIyCsgV\nlkxniSTSjCXSJTnBbqoOHB9my44eth8amBhb2B7mvvXd/OHVc/B7J7eL2hhDi8ooRKTRJEbhlR/B\nvi0QH3JjHh8s/ySs+hK0T6HtpseTK6VoVzAWKREF5DLLZi3JTJZEKstYMk28ClaJx1lr2dc7xOYd\nPeztGZoYXzKziU3rF3PrVbMn3VHCGENbyMeMsB/fJEO1iEjNig3B/sfh5a2QjLgxbwCuuQtWfQFa\nJ3lYCCgYi5SRAnKJZbKWaDKdK5nIVtUq8ThrLTsPD7B5ew8Hjo9MjC+b28Km9Yu56YqZeCb5MDbG\n0Bry0a5gLCKNZKwf9m2GV590ZRUA/jBcdw+s2ATNsyZ/TQVjkbJTQC6BZDpLLNeGrZpWiN8ray0v\nvn2GzduPcLAvMjF+7YI2Pr9hMWuXdExp81xLyEdHU2DSZRgiIlXr8Iu5Az+OuyOk33vgx+gJ2PN9\neO2nkEm6sUAL3LgRbrjXHdQxWR6PC8XhDgVjkTJTQC6SeCoz0YatGleJC2Wyluff7GPLjh4On4lO\njK/qbufzGxZzw6IZUwrGTQEfHc068U5E6szhF92R0R4/BGfA2Bn3e74B7d2w57vwxt9DNu1eH2p3\nq8XX3zO1XsTjwTjU7n4tImWngDxNw7EUQ9EkmWzlWrBdqlQmy29eO8UPdvZybCg2Mb5haSf3r1/M\nNQum1iJIXSlEpK7tfcyFY3/I/d4fgngSfvtf3MY7m1sUaZrl6ouv/bQrq5gsBWORqqGAPE2JdKbq\nw3EileFXr55k665e+kbdsc8GuGXZbDat7+aKOVM7hjTg8zCzOUg4oGAsInVs5LhbOQZIxV2btmS+\nLI3W+bDqAbj6TvAFJ399Y/I1xgrGIlVBAbmOxZIZfr7/OE/sPsrAmKuJ8xj46NVzuW9dF4tnNk/p\nun6vh47mAC1B/ecjIg2gbQEMH4PkKCTH8uPeIHzoT+GqT7hT7CbLmFyNcbvraSwiVUMJpw5F4ml+\nsu8YT710lJG4q4nzeQy3XzePjWu7WNA+hbf+AK/H0B4O0Bb26eQ7Eal/1sKxXRAfgcjJ/LjHD8EW\n+Mifw2U3T/66xkBohls1VjAWqUoKyHVkOJriyT1H+eneY4wlXfeMgM/DJ6+fz+fWLGJOW2hK1x1v\n2dbRFJh0H2QRkZpjLRz5Hez+Dpzcnx/3N7lV487LYNUXz+5icSnGg3Go3R0PLSJVS/+H1oidhwbY\nuquXEyMx5reF2bi2a+JI5zORBE/sPsrPXz5OPO02i4T9Xu68cT73rOmiszkwpXuql7GINBSbhXf+\nEXY/Cv1v5sfnr4C1X4GuDVNvtxZqg3CngrFIjdD/qTVg56EBvvXcQXwedyrdmbEE33ruIF+ILuaN\nk6P88tUTpDJuo2BL0MenVy3k0ysX0haeQk0cCsYi0mCyaTj4a3jpuzBwKD/etR7WfAUWrpr6tQNN\nrruFb2oLFSJSGQrINWDrrl58HkM410bNawwDsSR/+Q/5FY72sJ+7Vy/iUysW0DyNzXM65ENEGkYm\nBW/8wgXjkWP58cs+BGu+DHOvm/q1fQEXjANN05+niJSdAnINODESoy3kI5HOMDCWYjSRnvjazJYA\nG9d28cnr50+rD3HI76WzWb2MRaQBpOPw2s9gz2MQOZUbNHDFH7pgPGvZ1K/t8UDTTFdrLCI1SwG5\nBswI+ekdjBJL5U/o83oM89tC/O0Dawj4pr7a6/d66GwOTGvVWUSkJiTH4NWnYN9miJ5xY8YLy26H\nNV+Cjsumd/1QmwvH6kwhUvOUiqrYq8eG2byjh7f68g3p/V5Da9BHwOfh33z4iimHY6/H0N4UoC2k\nlm0iUucSo7B/K+x7HBLDbszjdwd7rH4A2hZO7/r+EDTPntohISJSlRSQq4y1lr09Q2zecYR9vcMT\n4/PaQgR9HuKpNPNnNJ3VxWIy1LJNRBpGbBD2bYH9T0Aqd8CHL+iOgl75eWiZO73re/1uxTg4tdNI\nRaR6KSBXCWst2w8NsHnHEV4/MToxftW8Vj6/oZsPLJ057ZXe5qALxtMpyRARqXqR07D3+3DgKUgn\n3Ji/Ga6/G1bcD02TX1w4izHQPEt1xiJ1TAG5wjJZywsH+9my4wjvnM4fYXr9whl8fkM3qxd3TDsY\nB/1eZmoDnojUu5HjsOd78NrTkE25sWAb3Hgv3LDR1QhPV6DZlVOon7FIXavI/+HGmMPAKJAB0tba\nNZWYRyVlspbfvtHHD3b00DMQnRhfs7iDTRu6uXFR+7Tv4fN46Gj20xqaWj9kEZGaMHjYtWp781dg\n3SmihDthxSa4/h4XaqfLF3TlFGrbJtIQKvlX4A9ba/sreP+KSKaz/Pq1Uzy+s4cTw/GJ8Zsun8mm\nDd0snzf9FQ6PMbQ3+ZkR9msDnojUr/6D8NJ34OCzgDssieY5sOoLcM1d4A9P/x4er1sxVp2xSEPR\ne0RlEk9l+OUrJ9i6q5f+SBIAA9x61WzuW9/N5bOL8/BtDfnpaJr+CXjPv9HHI9sO0TsYpaujiYdu\nWcqty+cUZY4iItNy6oA7Dvrdf8qPtS2EVV+Eq+8Ab5FOrQu1ucM+PNq3IdJoKhWQLfBrY4wFHrHW\nfvu9LzDGfBX4KkB3d3eZp1c80WSan+07zpMvHWUw6mrivB7DH149h3vXddPdWZy36/xeD7Nbg0Wp\nM37+jT4efvoAfq+hPeynbzTOw08f4JugkCxSY+rlWQrA8b2w62+hd3t+rGMJrP4yLPs4eC7hR9rh\nF2HvY65euW0BrHwAltx09mu8frdqrHIKkYZlrLXlv6kxC621x4wxc4BngT+x1m473+vXrFljd+/e\nXb4JTkLfaJxIPP2+8dF4ih/vOcaP9x5jNPd1v9fwievms3FtF/NmhIpyf48xdDQFaAsXr5/xvd/e\nTt9onKZA/odNNJlmTmuIx7+6oSj3EJELKkltVFmfpdkMDLw7/etY6wLx7kddQB43a5k79W7pRy79\nYI7DL8K2v3Q9kH0hd6JeNgW3fMOFZGNch4tQu/u1iNS6Kf+PXJEVZGvtsdznPmPMT4B1wHkDci0Z\njCZ58qWj/GzfcaJJt1kk6PNwxw3z+dzaLma1FK+RfEvIx8zmYNH7GfcORmkPn72xL+z3cnQwep7v\nEBEpMpuFwy/Arkeh70B+fO51sOZBWHLz5EPs3sdcOPbnFij8IUjlxq/8Q2iZ41aPRaThlT0gG2Oa\nAY+1djT3648B3yz3PIrt9GiCJ3b38ov9J0ik3ZHQTQEvd61YwN2rF9HeVKSaOErftq2ro+l9K8ix\nVIZFHXq7UURKLJuBd34Lu78DZw7mxxeudsF40bqpr+6OHIfge3oX+0Iw2gczpnmanojUlUqsIM8F\nfpIrB/ABP7DWPlOBeRTFsaEY33nhXZ45cJJUxpWrtIZ83L1qEXetXFDUFmtej6GzOVDytm0P3bKU\nh58+QDSZJuz3EktlSGUsD92ytKT3FZEGlknBW8+4dm1DR/Lj3R90pRQLVk7/Hm0LYOxMfgUZ40os\nOpdM/9oiUlfKHpCttYeAG8t932JLprP8px+/wk/3HiOTq+PuaPJzz5ou7rxx/lmrr9M1fjx0Z1MA\nTxmOh751+Ry+CTyy7RBHB6MsUhcLESmVTBJefxpeegxGj+fHl37YrRjPubp491r5gKtBTuFawGXS\nYNPwwa8V7x4iUhfU5m2KAj4Px4diZKxldkuQjeu6+KPr5hEsctlDOOBlZnOw7MdD37p8jgKxiJRO\nKgYHfuKOhB477caMB664za0Yz7yi+PdcchOY/wT7tsDIMehY7MLxstuKfy8RqWkKyNPw7z+2jD09\ng3xo2Wz8l9B3eOehAbbu6uXESIz5bWE2ru1i3dLOc77WYwydLQHadAqeiNSTZARe+ZELqbFBN+bx\nwlV3wOovQnsJW9EFW2HlfbD686W7h4jUBQXkaVizpJPumU3nbPP2XjsPDfCt5w7i8xjaQj7OjCX4\n1nMH+RpXvi8kNwV8zGwJXFLoFhGpCfFhePlx2L8VEqNuzBuAaz7lSh/a5pfu3h6v61BRjCOnRaQh\nKCCXydZdvfg8hnCuBGN889vWXb0TAdnv9dDZHKA5qH8tIlInomfcavErP4JUrlWkLwTX3Q0r73cH\ncpRSsMUdP63T8ERkEpTEyuTESIy20Nl/3CG/h5MjMYwxzAi7I6KLddiHiEhFDR+Fbf8XHPgpZBJu\nLNAMN2yEG++FcEdp728MNM2EcHtp7yMidUkBuUzmt4U5M5aYWEEGiKeyLGgPs6A9RNBXmp7GIiJl\n99rP4MkHXQs1gNAMWLEJrv+sqwMuNV8QWuaCr3j950WksSggl8nGtV1867mDxFIZQn4PiXQWC/zb\nj1ypcCwi9aVrg6v7DbXByi/AtZ+GQBkOGho/KrrUq9MiUvcUkMtk3dJOvsaVbN3dS99InO7OJv7V\nhy5XKzURqT+tc2HTUy6o+oLluafHC63zCw4BERGZOgXkMrp1+Rw+s2aRulOISP1b/AEYeLc89/KH\nXDj26N04ESkOBeQy8FsO1HgAACAASURBVHoMM1uCtKg7hYhIcYXb3WY8bXAWkSJSYiuxpoCPWS0B\nfFo1FhEpHmNcb+NybPoTkYajgFwiHmPoaA4wI6yT8EREisrrh9Z55atvFpGGo4BcAs1BHzObtWos\nIlJ0OvhDRMpAAbmIPMYwsyVAa0irxiIiReXxQNMs1zpORKTEFJCLJBzwMrslqFVjEZFiCzS7emN1\nqRCRMlFAniaPMcxqDdKmVWMRkeLScdEiUiEKyNM0szmAUXshEZHi8vpcb2NtxBORClBAniaFYxGR\nIvOHXZeKC5VUvPUs/P5bMHQE2hfDB78Gy24r3xxFpK6pYFZERKpHqA3aFlw8HP/q6zB6CkId7vOv\nvu7GRUSKQAFZREQqzxhonuU2413snbnffws8AQg0udcGmtzvf/+t8sxVROqeArKIiFSWMa7e+FI3\n4w0dcWUYhfxhGOop/txEpCEpIIuISOV4fTCjy60CX6r2xZCKnT2WikF7d3HnJiINSwFZREQqwxd0\n4dgXmNz3ffBrkE1CMgrWus/ZpBsXESkCBWQRESm/QBO0LZza4R/LboNP/DW0zoX4kPv8ib9WFwsR\nKRq1eRMRkfIKtbnNeNOx7DYFYhEpGQVkEREpn6ZO9yEiUsUUkEVEpPQ8HmiZC4HmSs9EROSiFJBF\nRKS0fAHXxs3rr/RMREQuiQKyiIiUTrDFrRxf7PAPEZEqooAsIiIlYKB5JoQ7Kj0REZFJU5s3EREp\nPo9H4VhEapYCsoiIiIhIAQVkEREREZECCsgiIiIiIgUUkEVERERECigg///s3XmQVNedJ/rvya0q\na8usKhAgdgGFLcmSrEYt0TJI1o4kdqoK3G5bi612R/fMvBcz88bP77V7wu7Q64h+8yZixh3Pdrcd\n6omZp6osKAwIjIS2QZuxaO3IotiE2Kpyz8r9buf9cZOsRFRBFZWZN5fvJ0IhOJl1768wvvXVyXN+\nh4iIiIioAAMyEREREVEBBmQiIiIiogIMyEREREREBRiQiYiIiIgKMCATERERERVgQCYiIiIiKsCA\nTERERERUgAGZiIiIiKgAAzIRERERUQEGZCIiIiKiAgzIREREREQFGJCJiIiIiAowIBMRERERFWBA\nJiIiIiIqwIBMRERERFSAAZmIiIiIqAADMhERERFRAQZkIiIiIqICDMhERERERAUYkImIiIiICjAg\nExEREREVYEAmIiIiIirAgExEREREVMCSgCyEeEQIcVQIcVwI8UMraiAiIiIiGk/ZA7IQwg7gHwCs\nAXAjgG1CiBvLXQcRERER0XismEH+YwDHpZQnpZQKgD4A6y2og4iIiIjoMlYE5LkAzhT8/mxu7BJC\niGeEEIeFEIcDgUDZiiMiqiV8lhIRTV3FbtKTUv5SSrlCSrli5syZVpdDRFSV+CwlIpo6KwLyOQDz\nC34/LzdGRERERGQ5KwLyuwCWCSEWCyFcALYC2G1BHUREREREl3GU+4ZSSk0I8VcAXgRgB/BrKeWR\nctdBRERERDSesgdkAJBS7gOwz4p7ExERERFdScVu0iMiIiIisgIDMhERERFRAQZkIiIiIqICDMhE\nRERERAWElNLqGq5KCBEAcNqi288AELTo3uOppHpYy8QqqR7WMrFKqqewlqCU8pFi38DiZylQuX/e\nVqukWoDKqoe1TKyS6qnUWq75WVoVAdlKQojDUsoVVtdxUSXVw1omVkn1sJaJVVI9lVRLqVTS98ha\nJlZJ9bCWiVVSPbVYC5dYEBEREREVYEAmIiIiIirAgHx1v7S6gC+ppHpYy8QqqR7WMrFKqqeSaimV\nSvoeWcvEKqke1jKxSqqn5mrhGmQiIiIiogKcQSYiIiIiKsCATERERERUgAGZiIiIiKgAAzIRERER\nUQEGZCIiIiKiAgzIREREREQFGJCJiIiIiAowIBMRERERFWBAJiIiIiIqwIBMVUcI8R+FEP/uKu/Z\nIIS4scj3XSSE+FaRrvWcEGJL7tevCyFW5H79uRBiRjHuQUR0JbX0LBVC/I0Q4v/60mu3CSH+UIz7\nUP1hQKZatQFAUR/qABYBKMpDnYioSlTLs/R5AL1fGtuaGyeaMgZkqgpCiP9DCDEkhHgTwPKC8e8L\nId4VQnwohNghhGgSQvwJgHUA/l4I8YEQYsl478t9fbcQ4pPc+MHcmF0I8fe5938khPjz3O3+DsCq\n3DX/1zL/ERARTVutPkullEMAIkKIOwuGe8CATNfIYXUBRFcjhPgjmDMBt8H8O/segH/JvTwopfzH\n3Pv+FsDTUsr/KoTYDeAFKeX23GvRL78PwH8F8GMAD0spzwkhvLlrPg0gJqW8QwjRAOAtIcRLAH4I\n4N9JKR8fp8ZWAG9M8C18S0r56TT/GIiIpqUOnqXP576/Q0KIuwCEpZTHJvFHQ3QZBmSqBqsA7JRS\npgAg98C+6ObcQ9oLoAXAixNcY6L3vQXgOSGED8BgbuwhALdcXCMMwANgGQBlogKllHGYP3SIiCpV\nrT9L+wG8LYT4t+DyCpomBmSqds8B2CCl/FAI8QSAe6fyPinlD3IfyT0G4F9yMywCwL+SUl7yA0II\nMdG1OYNMRNXuOVT5s1RKeUYIcQrAPQA2A1g50XuJroZrkKkaHASwQQjhzj081xa81grgghDCCeBP\nC8bjudeu+D4hxBIp5SEp5Y8BBADMhzkj8he590II0SWEaB7nmnlSyriU8rYJ/mE4JqJKUA/P0ucB\n/GcAJ6WUZyfxfqJxMSBTxZNSvgfzo7MPAfwWwLsFL/81gEMwP977rGC8D8C/F0K8L4RYcoX3/b0Q\n4mMhxCcA3s7d458AfArgvdz4L2B+2vIRAD23CYWb9IioqtTJs3QAwE3g8gqaJiGltLoGIiIiIqKK\nwRlkIiIiIqICDMhERERERAUYkImIiIiICjAgExEREREVqIo+yI888ojcv3+/1WUQEZWLKMVF+Swl\nojpzzc/SqphBDgaDVpdARFT1+CwlIpqcqgjIRERERETlwoBMRERERFSAAZmIiIiIqAADMhERERFR\nAQZkIiIiIqICDMhERERERAUYkImIiIiICjAgExEREREVYEAmIiIiIirAgExEREREVIABmYiIiIio\nAAMyEREREVEBBmQiIiIiogIMyERERERUM6SUUEf807qGo0i1EBERERFZSuo6tJERGNnstK7DgExE\nREREVU+qKtQRP6SqTPtaDMhEREREVNUMRYE2MgKpaUW5HgMyEREREVUtI52G5vdDGkbRrsmATERE\nRERVSU8koQcDkFIW9boMyERERERUdfRYDFo4XJJrMyATERERUVXRwmHosVjJrs+ATERERERVQUoJ\nLRCAkUyW9D4MyERERERU8aRhQPP7YaTTJb8XAzIRERERVTSpaeYBIMr0exxPBgMyEREREVUsqShQ\n/X5IVS3bPW2lurAQYr4Q4jUhxKdCiCNCiH+TG+8QQhwQQhzL/bu9VDUQERERUfUyMhmow8NlDcdA\nCQMyAA3Av5VS3gjgLgB/KYS4EcAPAbwipVwG4JXc74mIiIiI8oxkEtrwMKSul/3eJQvIUsoLUsr3\ncr+OA/gDgLkA1gP459zb/hnAhlLVQERERETVR4/HzWUVRT4AZLJKOYOcJ4RYBODrAA4BmCWlvJB7\naRjArAm+5hkhxGEhxOFAIFCOMomIag6fpURUbbRIBFowaGkNJQ/IQogWADsA/C9SytHC16T5nwXj\n/qeBlPKXUsoVUsoVM2fOLHWZREQ1ic9SIqoWUkpowSD0aNTqUkobkIUQTpjh+H9IKQdzwyNCiDm5\n1+cA8JeyBiIiIiKqbFJKaH4/9Hjc6lIAlLaLhQDwKwB/kFL+PwUv7Qbw3dyvvwtgV6lqICIiIqLK\nJnUd2oULMFIpq0vJK2Uf5LsB/BmAj4UQH+TGfgTg7wD4hBBPAzgNoKeENRARERFRhZKqCnXED6mW\n5wCQySpZQJZSvglATPDy/aW6LxERERFVPkNRLGvjdjU8SY+IiIiIyspIp6H5/ZCGYXUp42JAJiIi\nIqKy0RMJ6MGgZT2OJ4MBmYiIiIjKQo9GoUUiVpdxVQzIRERERFRyWigEfXT06m+sAAzIRERERFQy\nUkpogQCMZNLqUiaNAZmIiIiISkIaBrSRERiZjNWlTAkDMhEREREVndQ0MxwrldXjeDIYkImIiIio\nqKSiQB0ZgdQ0q0u5JgzIRERERFQ0RiZj9jiuwANAJosBmYiIiIiKwkgmoQUCFd3jeDIYkImIiIho\n2vTRUWihkNVlFAUDMhERERFNixaJQI9GrS6jaBiQiYiIiOiaSCmhB4PQEwmrSykqm9UFEBHVIs2o\nzp3bRESTJQ0Dmt9fc+EYYEAmIioqKSVC6RBGleo4TpWI6FpIXYc2PAwjlbK6lJJgQCYiKhLN0DCS\nGkFciVtdChFRyUhVhXrhAoxs1upSSoZrkImIiiCrZ+FP+aEb1dv3k4joaoxsFtrISFX3OJ4MBmQi\nomlKqkkE08Gq7/tJRHQlRipl9jg2DKtLKTkGZCKiaYhkIohlY1aXQURUUnoiAT1YPxMBDMhERNdA\nMzQE00FktIzVpRARlZQejUKLRKwuo6wYkImIpiilphBKh6DL2l6DR0SkhULQR+uvKw8DMhHRFHBJ\nBRHVAyklNH8ARippdSmWYEAmIpoELqkgonohdR2a3w8jU7/POwZkIqKrSGtpBFNBLqkgoponNQ3q\n8AikqlhdiqUYkImIroBLKoioXhiKYvY41jSrS7EcAzIR0Ti4pIKI6omRyZjhuA56HE8GAzIR0Zdw\nSQUR1RM9kYQeDNRNj+PJYEAmIirAJRVEVE/00VFooZDVZVQcBmQiInBJBRHVHy0SgR6NWl1GRWJA\nJqK6xyUVRFRPpJTQg0HoiYTVpVQsBmQiqmtcUkFE9UQahtnjOJ22upSKxoBMRHWJSyqIqN5IXYc2\nPAxDqe8ex5PBgExEdYdLKoio3khFger3Q6qq1aVUBQZkIqor0UwU0Sw3pRBR/TCyWbPHsc5Jgcli\nQCaiusAlFURUj4xUCprfzx7HU8SATEQ1j0sqiKge6fE49FCI4fgaMCATUU3jkgoiqkfscTw9DMhE\nVJN0Q0cgHeCSCiKqO1owCD0et7qMqsaATEQ1J62lEUwHoRtcUkFE9UNKCc0fgJFKWl1K1WNAJqKa\nwiUVRFSPpK6bB4Bk+KlZMTAgE1FN4JIKIqpXUlWhjvghVR4AUiwMyERU9bikgojqlaEoZo9jTbO6\nlJrCgExEVS2WjSGSiVhdBhFR2RnptNnj2DCsLqXmMCATUVUypIFgOoiUmrK6FCKistMTSejBAHsc\nlwgDMhFVHVVX4U/7oeqq1aUQEZWdHotBC4etLqOmMSATUVVJa2kEUgEYkh8pElH90cJh6LGY1WXU\nPAZkIqoaXG9MRPVKSgktEICRZI/jcmBAJqKKJ6VEKBNCQklYXQoRUdlJwzB7HKfTVpdSNxiQiaii\nsb8xEdUzqWnQRkZgKOxxXE4MyERUsRRdwUhqhP2NiaguSUWB6vdDqtyQXG4MyERUkVJqCsF0kJvx\niKguGdmseQCIzgkCKzAgE1HFiWaiiGajVpdBRGQJI5mEFmCPYysxIBNRxZBSIpgOIqlylzYR1Sc9\nHocWDFpdRt1jQCaiiqAZGvwpPxSdG1GIqD5pkQj0KD89qwQMyERkuayehT/l52Y8IqpbWjAIPR63\nugzKYUAmIksllARCmRDX2hFRXZJSmj2OUymrS6ECDMhEZJlIJoJYlkemElF9krpu9jjOZq0uhb6E\nAZmIyk5KiUA6gJTKGRMiqk9SVaGO+CFV7ruoRAzIRFRWmqEhkAogq3PGhIjqk6EoZo9jTbO6FJqA\nrVQXFkL8WgjhF0J8UjD2H4UQ54QQH+T+ebRU9yeiyqPoCi4kLzAcE1HdMtJpaBcuMBxXuJIFZADP\nAXhknPH/LKW8LffPvhLen4gqSFpLYzg5zE4VRFS39ETCnDk2eEJopSvZEgsp5UEhxKJSXZ+Iqkdc\niSOcCbNTBRHVLT0WgxYOW10GTVIpZ5An8ldCiI9ySzDaJ3qTEOIZIcRhIcThQCBQzvqIqEgunowX\nSrONm1X4LCWynhYOMxxXmXIH5P8XwBIAtwG4AOA/TfRGKeUvpZQrpJQrZs6cWa76iKhINEPDcHIY\nCSVhdSl1jc9SIutIKaH6/dBjbGdZbcraxUJKOXLx10KIfwTwQjnvT0TlkdbSCKaC0CXXGxNRfZKG\nYR4Akk5bXQpdg7IGZCHEHCnlhdxvNwL45ErvJ6LqE8vGEMlErC6DiMgyUtPMA0AU9jiuViULyEKI\n5wHcC2CGEOIsgL8BcK8Q4jYAEsDnAP68VPcnovIypIFgOsjDP4iorklFgcoex1WvlF0sto0z/KtS\n3Y+IrKMZGvwpPxSdsyVEVL+MTAaa3w+pc3lZteNJekQ0LVk9C3/Kz/7GRFTXjGQSWiDAjj01ggGZ\niK5ZUk0imA7yBwIR1TV9dBRaKGR1GVRguuu/reiDTEQ1IJKJIJDibAkR1TctEmE4riBGJoPo4CDO\nPPnUtK7DGWQimhJuxiMiMnsc68Eg9AR7vVcCI5lEbM8LiO3cCWN0dNrXY0AmoklTDRWBVICb8Yio\nrknDgBYIwEhxosBqeiyG2K5dGN29B0YyCQAQLhdaH354WtdlQCaiScloGQRSAR7+QUR1Teq62eM4\nm7W6lLqmhcOI7RjE6L59kJkMAEA0NqLt8cfg2bgRjo6OaV2fAZmIriquxBHOhLnemIjqmlRVs8ex\nqlpdSt3S/H5Et29HfP+L+f8dbM3NaFu/Hp7162Bva4OtoQG2trZp3YcBmYiuKJQOIa7ErS6DiMhS\nRjYLbWSEPY4top4/j2i/D/FXXgFy/xvY2trg2bQRnscfh72lBaKpCXaPB7aGhmnfjwGZiMalGzoC\n6QAyWsbqUqqOLnW8fPpl3DXnLixoW2B1OUQ0TUYqZfY4NgyrS6k7yunTiPb1I3HwIJD787d3dsKz\neRPa1qyBvaUFtpYW2FtbIRzFi7UMyER0GVVX4U/7oer8GHEqNEPD62dex8DQAM4nz2PD0g346d0/\ntbosIpoGPZGAHmS/93LLHj+OSF8fUm+9nR9zzJoFb/cWtDz4IBxtbbC1tsHW3AQhRNHvz4BMRJdI\nqSkE00EYkjMlk6XoCg6cPoAdx3YgkA4AAAQEsnoWUsqSPLyJqPT0aBRaJGJ1GXUlc+QIIn39SB8+\nnB9zzp0Lb28vWu/7prmEwuOBzeUqaR0MyESUF8vGEMnwh8FkpbU09p/aj53HdyKSNf/cbLBh9bzV\nePLmJ3H7rNstrpCIrpUWCkEvQj9dujopJTIffIhIXx8yH32UH3ctWgTvtq1oufdeODwe2FpbIez2\nstTEgExEkFIilAkhobDh/WQk1SReOPkCdp3Yld/A6BAO3LfgPmxethnXt1yPtobp7aAmImtIKaH5\nAzBSSatLqXlSSqR+/3tEn+9D9ujR/HhDV5cZjO+5xwzGzc1lr40BmajOaYaGQCqArM6enlcTy8aw\n+8Ru7D25F0nN/OHpsrnw0KKHsGnpJsxsmmlxhUQ0HdIwzB7HGW5OLiVpGEi+9TaifX1QTp7Mjzfe\nfBPat21D8z33wNHWBlHiZRRXwoBMVMfSWhrBVJCHf1xFOBPGzmM78dvPf5v/Dwm3w41HFz+K9UvW\no72x3eIKiWi6pKZBHR6BVHlSaKlIXUfif/5PRPv6oZ45kx9333472r/9bbTc/SfmMgqbzcIqTQzI\nRHVqVBlFOB22uoyK5k/5sePYDhw4fQCqYXb0aHY2Y90N67B2yVq0ulotrpCIisFQFLPHsaZZXUpN\nkoqK+CuvIOrzQRsezo83rbwLHd99As1/fAdsTU0WVng5BmSiOsTDP67sfOI8BoYG8NqZ1/Kz6x6X\nB+uXrsdjix9Dk7OyHuREdO2MTMYMx+xxXHRGNov4/hcR3b4dejBoDgqBltWr0fH0U2j6+tchnE5r\ni5wAAzJRHeHhH1d2evQ0fEM+vHn2TRgwf1h2NHZg09JNeHjRw2h0NFpcIREVk55IQg8G2OO4yIxU\nCqN79yI2uBN6NGoO2mxofeABdH7/+2i8+aaKb3/JgExUJzJaBoF0ALrB9cZfdixyDL4hH3534Xf5\nsVlNs7Clawvun38/nPbKnOEgomunj45CC4WsLqOm6PE4RnfvRuw3u2Akcl2RnA60PfoYZjzzfTQs\nWWJtgVPAgExUB9jfeHxHQkfgO+rDe/738mPzWuahu6sb98y7B3ZbefptElF5aZHI2MwmTZsejSI6\nuBOjL7wAmU4DAERDAzwbNqDzz5+B6/rrLa5w6hiQiWoYl1RcTkqJDwIfwHfUh09Cn+THF7UtQu/y\nXqy8fiXsgsGYqBZJKaEHg9AT7PleDFogiOiOHYjv3w+ZNTv8iKYmtPf2oON734Ozs9PiCq8dAzJR\njUpraQTTQS6pyJFS4t3hd9E/1I+hyFB+vKu9C73Le3HHrDsqfk0cEV07aRjQAgEYqZTVpVQ99cIF\nRAe2I37gAJDr/GFra0P7t7+Nzu9+B3aPx+IKp48BmahM3jj7Bp478hzOJc5hbstcPHHTE1g1b1VJ\n7hXNRBHN8uNDANCljrfPvw3fUR8+H/08P35z583oXd6LW2feymBMVOOkrpsHgGR5INJ0KGfOINrv\nQ+K114Bc1w97Rwc6nnwC7du+BXtL+U+8KxUGZKIyeOPsG3j20LNw2p1oc7UhkA7g2UPP4kf4UVFD\nsmZoCKaDXFIB88/i4NmD8A35cC5xLj9++3W3o2d5D27qvMnC6oioXKSqQh0ZgVRVq0upWtmTJxHt\n70fyjTeBXMcPx6xZ6Pz+9+DdsgW2xtrr8MOATFQGzx15Dk67E26HGwDy/37uyHNFC8g8Fc+k6ipe\n/uJl7Di2AyOpkfz4yjkr0d3VjWXtyyysjojKychmzR7Hen0/F69V5rPPEO3rR+rQofyYc/58dD7z\nfXjXr7f0KOhSY0AmKoNziXNoc7VdMtZob7xkZnM6IpkIYtlYUa5VrTJaBi9+/iIGjw8inDFPCLTB\nhlXzVqG7qxsL2xZaXCERlZORSkELBHgAyCQkDx9GbGA7tOFh2GfNQtMdK5B5/32k3/8g/x7XkiWY\n8efPoO3RRyEctR8fa/87JKoAc1vmIpAO5GeOASCjZzC3Ze60rsslFUBKTWHvqb3YdXwXYor5Hwl2\nYcd98+/Dlq4tuL6l+toLEdH06PE49FCIB4BMQvLwYYR+9g+AwwFpt0M5ehTZjz/Ov954443o/MGf\no/WBByBsNgsrLS8GZKIyeOKmJ/DsoWcBmDPHGT0DVVfxxE1PXPM1U2oKoXSobpdUjCqj2HNiD/ac\n3IOkmgQAOG1OPLjwQWxethnXNV1ncYVEZAX2OJ6aqG8AUtNgRKP5Vm0AYGtpwdz/9H+jefXqutzI\nzIBMVAar5q3Cj/CjonSxkFIimo3W7ZKKSCaC3xz/Dfad2oeMbs6cN9obsWbxGmxYugEdjR0WV0hE\nVtGCQejxuNVlVAWp60i+8Sayn34KFKzRtjU3wz5jBqSqouWeeyys0FoMyERlsmreqmlvyNMMDYFU\nAFm9/loVBVIBDB4fxEufvwTFUAAATY4mrL1hLdYuWQtPQ/X33SSiayOlhOYPwEglrS6l4klNQ+LV\nVxH1+aCeO58ft7W0wDFzJmxNTTDSaThnz7awSusxIBNViXpdUnEheQHbh7bj1S9ehSbNhvStrlas\nX7Iej9/wOJqdtdN3k4imTuo6NL8fRqZ+92JMhqEoSLx0ANGBAWh+f37cffvtUM+eha2lBaKxEUY6\nDako6Hj6KQurtR4DMlGFk1Iiko1gNDtqdSll9cXoFxgYGsDBswdhwNyF3t7Qjk3LNuGRRY+g0VF7\nfTeJaGrMHsd+SFWxupSKZWQyGN23D7Edg9DDZocf2Gxoe+wxzHjm+2hYtgzxgwcR/tWvoZ49C+e8\neeh4+im0rl5tbeEWY0AmqmD1uKTiRPQEfEM+vHP+HUiYO9BnumdiS9cWPLDgAbjstdt3k4gmz1AU\ns8dx7qhjupSRTCK25wXEdu6EMZqbYHE44N24AZ3f+x5cC8daX7auXl33gfjLGJCJKlS9Hfzxh9Af\n4Bvy4fDI4fzYnOY56O7qxjfnfxMOGx9XRGQy0mlofj97HI9Dj8UQ27ULo7v3wEiaa7JFQwO83d3o\nfPopOOfMsbjC6sCfOEQVKJaNIZqN1nwPTyklPgp+BN9RHz4KfpQfX9C6AD3Le/CNud+AXdgtrJCI\nKo2eSEIPBmr++ThVWjiM2I5BjO7bB5lbjy3cbrRv24bOJ5+AY+ZMiyusLgzIRBVESolQJoSEkrC6\nlJKSUuLwyGH0H+3H0cjR/PhS71L0dPXgzjl3wibqpyE9EU2OHotBu7iOlgAAmt+P6PbtiO9/EVJV\nAZgdKdq//W10fPc7cLS3W1xhdWJAJqoQ9bDe2JAG3jn/DnxDPpyMncyP39h5I3q6enD7dbfXZUN6\nIro6LRyGHqvP/u/jUc+dQ9Q3gPgrr+T7GNs8HnR89zvo+LM/g7211eIKqxsDMlEFyGgZBFKBml1v\nrBs6Dp47iIGhAZyJn8mP3zbzNvQu78XNM262sDoiqmRSSmiBQH49bb1TTp9GtK8fiYMHgdwabHtn\nJzqeehId27bB1tRkcYW1gQGZyGKjyigimUhNrqdTdRWvnnkV24e2Yzg1nB+/c/ad6Fneg672Lgur\nI6JKJw3D7HGcTltdiuWyx48j0teH1Ftv58ccs2ej86kn4e3tha2hwcLqag8DMpFFanm9cVbP4qXP\nX8Lg8UEE00EAgIDA3XPvRk9XDxZ7FltcIRFVOqlp0EZGYCj13eM4c+QIIn39SB8e6/DjnDcPHU89\nhfbuLRBOp4XV1S4GZCILqLqKQDoARa+tB39KTWH/5/ux8/hORLNRAIBN2HDvvHuxpWsL5rfOt7hC\nIqoGUlGg+v35JaXbDAAAIABJREFUTWf1RkqJzAcfItLXh8xHYx1+XIsXo/Ppp9C2YQNsDka4UuKf\nLlGZxZU4wplwTS2pSCgJ7Dm5B7tP7EZCNWfEHTYHHljwADYv24zZzbMtrpCIqoWRzZoHgOi1uSfj\nSqSUSP3+94g+34fs0bEOPw1dXeh46im0PfYobJwxLgsGZKIyqcUlFdFsFLuO78LeU3uR1sw1gi67\nC48segSblm5Cp7vT4grLSwiBJkcTmpxNaHJwowzRVBmplHkASA1NIEyG1HUk334b0b5+KCfHOvw0\n3nQTOp58Eq0PPQibi6eIlhMDMlEZ1NqSilA6hMFjg9h/en/+e3I73Hj8hsexbsk6eBu8FldYPoWh\n2O1ws38z0TXS43FowaDVZZSV1HUkXn8d0X4f1DNjHX7ct9+Oju9+By333svNdxZhQCYqsZSaQjAd\nhCGr/0jU4eQwdhzbgZe/eBmaoQEAWp2tWLtkLdbesBYtrhaLKywPhmKi4tIiEejRqNVllI1UVMRf\neQVRnw/a8FiHn6a77kLHn30bzStXsl2bxRiQiUoolo0hkolYXca0nY2fxcDQAF4/+3o+6HsbvNi4\ndCMeWfQImpy1/yAXQsDtcKPZ2cxQTFREWjAIPR63uoyyMLJZxPe/iOj27dAvzpYLgeZVq9D+p99C\n0+2384CPCsGATFQChjQQSoeQVKu7sf2p2Cn4hnx469xbkDDXBM5wz8DmZZvx4MIH0WCv7Y/+GIqJ\nSkdKafY4TqWsLqXkjFQKo3v3Ija4c2ym3G5Hy33fRHtvL9w33wybx8OTRCsIAzJRkSm6gkA6AFWv\n3vZEQ5Eh9B/tx++Hf58fm9M8B5uXbcZ9C+6D01a7u6gZiolKT+q62eM4m7W6lJLS43GM7t6N2G92\nwUjkNmg7HGh7+GF4u7vRsGwp7F4vhN1ubaF0GQZkoiJKKAmEMqGq3YH9SfAT9B/txweBD/Jj81vn\no6erB6vmroLdVpsPcYZiovKRqgp1xA+p1sam5fHo0ShiO3citucFyNwpgKKhAa1r1sC7ZTNcCxbA\n0d7OQz4qGAMyURFIKRHOhBFXqm8dnZQS7/vfR/9QPz4NfZofv8FzA3q6erDy+pU1GRgZionKz1AU\ns8explldSklowSCi23cgvn8/ZG52XLjd8KxbC8+GjXDOmQ17ezs7U1QBBmSiadIMDcF0EBktY3Up\nU2JIA4cuHIJvyIfj0eP58a90fAW9Xb34o1l/VHPr4RiKiaxjpNNmj2Oj+jv6fJk6PIzowADiLx0A\ncuHf1toKz/r1aFu3Fs7OTjMYszNF1bhqQBZC/CsA/11KWf1b8YmKLKtn4U/5oRvVc+KTLnW8ee5N\nDAwN4PTo6fz4LTNuQc/yHtwy45aaCsYMxUTW0xMJ6MFg1S4/m4hy9iyi/T4kXn0VyAV/e3s7PJs2\nou3RR2Fva4Pd62Vniio0mRnkWQDeFUK8B+DXAF6UtfY3nOgaVNuR0Zqh4fUzr2NgaADnk+fz4ytm\nrUDv8l58peMrFlZXXAzFRJVDj8WghcNWl1FU2VOnEO3rQ/KNN4HczwD7jBnwdnej9eGHYHe7Yfd4\n2Jmiil01IEsp/08hxF8DeAjAkwB+JoTwAfiVlPJEqQskqjSGNBDOhKvmyGhFV3Dg9AHsOLYDgXQA\nACAgsPL6lejp6sES7xKLKywOhmKiyqOFw9BjMavLKJrMZ58h2teP1KFD+THHnDnw9nSj9f77YXO5\nYGtrg93jYWeKKjepNchSSimEGAYwDEAD0A5guxDigJTyfytlgUSVJKNlEEwH86fIVbK0lsb+U/ux\n8/hORLLmCikbbFg9bzW6u7qxoG2BxRVOH0MxUWWSUkILBGAkq7sXPGB+L5mPP0G0rw/p99/Pjzvn\nz4d361a03LMawm6HrbmZnSlqyGTWIP8bAN8BEATwTwD+vZRSFULYABwDwIBMdSGaiSKarfyjUBNK\nAntP7cWuE7vyXTUcwoH7FtyHLV1bMKd5jsUVTg9DMVFlk4ZhHgCSa29WraSUSL/3HqLP9yFz5Eh+\n3LVkCdq3bUXTypUQNhtsbjc7U9SgycwgdwDYJKU8XTgopTSEEI+XpiyiylEtXSpi2Rh2n9iNF06+\ngJRmnkzlsrnw0KKHsGnpJsxsmmlxhdeOoZioOkhNMw8AUaq3x7E0DKR+9ztE+vqgHBvr8NPwla+g\nfdtWuO+4A0II2FwudqaoYZNZg/w3V3jtD8Uth6iypNQUQukQdFm5XSrCmTB2Ht+J3576LbK62XfT\n7XBjzaI12LB0A9ob2y2u8NowFBNVF6koUKu4x7HUdSTfeBOR/j6on4/NCTbeeivat21F4y1mhx/h\ncMDe3g57S4uF1VKpsQ8y0Tiq4eAPf8qPHcd24MDpA1AN81jrZmcz1t6wFmuXrEWbq83iCqeOoZio\nOhmZjNnjWK/cyYSJSE1D4rXXEO3vh3purMNP0x/fAe/WrWj86lcBAMJmY2eKOlKygCyE+DWAxwH4\npZQ358Y6APQDWATgcwA97K9MlUbVVQTSASh6ZX5EeD5xHgNDA3jtzGv5mW2Py4P1S9fjscWPoclZ\nXR/3MRQTVTcjmYQWCFRNy8uLDEVB4qUDiA4MQPP7zUEh0PwnfwLv1q1oWLokNyTYmaIOlXIG+TkA\nPwPw3wrGfgjgFSnl3wkhfpj7/X8oYQ1EU5JSUwimgzBk5Z30dHr0NHxDPrx59k0YMOvraOzA5mWb\n8dDCh9DoaLS4wsljKCaqDXo8Di0YtLqMKTEyGYzu24fYjkHoF/sz22xoufceeHt64Vo41uGHnSnq\nV8kCspTyoBBi0ZeG1wO4N/frfwbwOhiQqULEsjFEMpX3gcbx6HH4jvrwzoV38mPXNV2HLcu24IEF\nD8Bpr44H98VQ3ORoQpOziaGYqMppkQj0aOV39rnISCYR2/MCYjt3whgdNQcdDrQ+8AC83d1wXj/W\n4YedKajca5BnSSkv5H49DPOUvnEJIZ4B8AwALFhQ/f1aqXLpho5gOoi0VlktiY6EjsB31If3/O/l\nx+a2zEVPVw9Wz1sNh63ytxAwFFuPz1IqNikl9FAIerxy92gU0mMxxHbtwujuPfm+zMLlQusjj8C7\nZTMcM8c6/LAzBV1k2U/Y3OEjEy5YklL+EsAvAWDFihXVtbCJqkZGyyCQDkA3KmNjiZQSHwQ+gO+o\nD5+EPsmPL25bjJ7lPVh5/UrYRWWvgWMorix8llIxSSnNHseplNWlXJUWDiM2uBOje/dCZsw2naKx\nEW2PPQbPpo1wdHTk38vOFPRl5Q7II0KIOVLKC0KIOQD8Zb4/UV5CSSCUCVXExhIpJd4dfhf9Q/0Y\nigzlx5e3L0dPVw/umH1HRe+aZigmqn1S180ex9ms1aVckeb3I7p9O+L7X4RUzQ4/tuZmtK1bB8+G\n9bC3jXX4YWcKmki5A/JuAN8F8He5f+8q8/2JAFTOemNd6nj7/NsYODqAU6On8uM3dd6Ercu34taZ\nt1bsQ5uhmKh+SFWFOuKHVCuzuw8AqOfOIeobQPyVV4BcuzlbWxs8mzbC8/jjsDU359/LzhR0NaVs\n8/Y8zA15M4QQZwH8Dcxg7BNCPA3gNICeUt2faDxSSoQyISSUhKV1aIaGg2cPwjfkw7nEufz47dfd\njp6uHtw04yYLq5sYQzFR/TEUBdrwcMX2OFZOn0a0rx+JgwcBw+zwY+/shHfzZrSueQS2xks7/LAz\nBU1GKbtYbJvgpftLdU+iK1F0BYF0AKquWlaDqqt4+YuXsf3YdvhTYyuM7ppzF3q6erCsfZlltU2E\noZiofhnptHkAiFF5rS+zx44h0teP1Ntv58cc110Hb3c3Wh56EDaX65L3szMFTUXlb4MnmiYpJWLZ\nGGJKzLL1xhktg5dOv4TBY4MIZUIAABts+Ma8b6B7WTcWeRZZUtdEGIqJSE8koAeDFbFPo1DmyBFE\n+vqRPnw4P+acOxfe3l60fPNeCMel0YadKehaMCBTTVMNFcFUEFndmk0lKTWFvaf2YtfxXYgpMQCA\nXdjxzfnfxJauLZjbMteSusYjhECjvRHNzmaGYqI6p0ej0CLW79O4SEqJzAcfItLXh8xHH+XHXYsX\nw7u1F813333ZWmJ2pqDpYECmmhVX4ohkIpacihdX4thzYg92n9yNpGr23XTanHhw4YPYvGwzrmu6\nruw1jYehmIi+TAuFoF88SMNiUkqkfv97RPv6kf3ss/x4Q1cXvNu2ounOOy/byMzOFFQMDMhUcwxp\nIJwJW7IRL5KJYNeJXdh3al/+4JEGewPWLFqDDUs3oNPdWfaavoyhmIjGI6WEFgjkD9OwtBbDQPKt\ntxHt64Ny8mR+vPHmm+Ddtg3ur3/98mDMzhRURAzIVFNUXYU/7S/7RrxAKoDB44N46fOXoBhmG6Qm\nRxMev+FxrFuyDp4GT1nr+TKGYiK6EmkYZo/j3IEaltWh60i8/jqi/T6oZ87kx9233w7v1l64v/a1\ncb+OnSmo2BiQqWYklATCmXBZl1RcSF7AjqEdeOWLV6BJDQDQ6mrFhiUb8NgNj6HZ2XyVK5QOQzER\nTYbUNDMcK9b1OJaKivgrryDq80EbHs6PN911F7xbe9G4fPm4X8fOFFQqDMhU9azobXwmfga+oz4c\nPHsQBsxA3t7Qjk3LNuHhRQ/D7XCXrZZCDMVENBVGNmu2cdM0y+4f3/8iotu3Qw8GzUEh0LxqFbxb\ne9GwePG4X8fOFFRqDMhU1crd2/hE9AR8Qz68c/4dSJitj2a6Z2Lzss14cOGDcNldV7nC1B0eOYzB\nY4MYSY1gVtMsbFq2CStmrci/zlBMVHviBw8i/KtfQz17Fs5589Dx9FNoXb26qPfQE0nowYAlbdyM\nVAqje/ciNrgTejRqDtpsaLn/Pnh7euCaN2/cr2NnCioXBmSqWrFsDNFstCwP98/Cn6H/aD8Oj4z1\n3by++Xp0d3Xj3vn3wmErzf+VDo8cxs8//DmcNidanC2IZCL4+Yc/x1/c+hf4xtxvMBQT1aD4wYMY\n+clPIVwu2DweaIEARn7yU+DHf120kGxVGzc9Hsfo7t2I/WYXjETuUz+HA60PPQRvTzecs2aN+3Xs\nTEHlxoBMVceQBgKpQL5LRKlIKfFx8GP0H+3HR8GxvpsL2xaip6sHd8+9G3ZR2p3Sg8cG4bQ50eAw\n19e5HW7YDTv2ntyLzV2bS3pvIrJG+Fe/NsOx21yqJdxuGLnxYgRkK9q46dEoYjt3IrbnBci0+ewW\nDQ1oe3QNPJs3w9E5focfdqYgqzAgU1UpR5cKKSUOjxyGb8iHz8JjfTeXepeip6sHd865s2wztv6U\nH62uVtiFHTZhgxACDpsD55Pny3J/Iio/9exZ2DyXdr4RjY1Qz56d1nWtaOOmBYKI7tiB+P79kFnz\nwCbhdsOzbi08GzbA7vVO+LXsTEFWYkCmqpFSUwimgyXrUmFIA++cfwe+IR9Oxsb6bt7YeSN6u3rx\n9esu77tZCoVrihe0LkAwE7xkbXNGz1TUCXxEVFzOefOgBQIQ7rHNvjKTgXOCdbmTUe42burwMKID\nA4i/dADIbQC0tbbCs3492tathb21dcKvtbndsHd0wOYq/p4OosliQKaKJ6VEOBNGXImX5Pq6oePg\nuYMYGBrAmfhY383bZt6G3uW9uHnGzSW5b6GJNto9efOTePbQswCARnsjMnoGqq7iiZueKHlNRGSN\njqefwvn//UeQ589D6jqE3Q7R3Izrfvgfrul65Wzjppw9i2hfPxKvvQYY5mSGvb0dnk0b0fboo1fs\nOsHOFFRJGJCpoqm6imA6iKyeLf61DRWvfvEqtg9tx3BqrO/mnbPvRM/yHnS1dxX9noUm031i1bxV\n+BF+hOeOPIdziXOY2zIXT9z0BFbNW1XS2ojIWkIIs09ObhPytX56JRUF6shIydu4ZU+eRLS/H8k3\n3szXbJ8xA94tW9D6yMNX7FPMzhRUiRiQqWKVqktFVs/ipc9fwuDxQQTTZt9NAYG7596Nnq4eLPaM\n33ezGApDsdvhht129U0nq+atYiAmqiPhX/0a9ra2Szo6GOn0lDfpGckktGAQ0ijd4UmZo0cRfb4P\nqUOH8mOOOXPg7e1B6333XXH9MDtTUCVjQKaKU6pZ45Sawv7P92Pn8Z2IZs2+mzZhw73z7sWWri2Y\n3zq/qPe76FpCMRHVr+lu0pNSQo9EoMdipSgPAJD++GNEn+9D+v3382POBQvg7e1Fyz2rr9hxgp0p\nqBowIFNFKcWscUJJYM/JPdh9YjcSqtl302Fz4IEFD2Dzss2Y3Ty7aPe6iKGYiK7VdDbpSU0zO1WU\nYDOelBLpf/kXRPv6kTlyJD/uWrIE7du2omnlSgjblTv8sDMFVQsGZKoIpZg1jmVj2HViF144+UK+\nZ7LL7sIjCx/BxmUbMcM945quO9HJdgzFRFQMHU8/hZGf/BQGzJljmclAKgo6nn7qil9npFLmkgpd\nL2o90jCQ+t3vEO3rR/bYsfx4w1e+gvZtW+G+446rLpFgZwqqNgzIZLlizxqH0iEMHh/E/s/3Q9HN\nXdtuhxuPLn4UG5ZugLdh4r6bVzPeyXa//PCXaLujDfcvuJ+hmIimrXX1auDHfz3po6ZLtaRC6jqS\nb7yBSF8/1NOn8+ONt96C9q1b0XjrrVcPxuxMQVWKAZksoxoqQukQMlpxPgocTg5jx7EdePmLl6EZ\n5o7tFmcL1i1Zh7U3rEWLa/o7pC+ebOd2uGETNjTYG5DRM+g/2o+HFj007esTEQFmSJ7MhjypadD8\nfhjZ4n36JjUNiVdfRdTng3pu7FAi9x13oH1rLxpvvPGq12BnCqp2DMhkiVFlFNFMtCiHfpyJn8H2\noe14/ezr+et5G7zYsHQD1ixagybn9GcuLi6fCKaD8Lg8sBWss2u0N+Jc4ty070FEdFH84MGrziAb\n6TS0QKBoSyoMRUHipQOIDgxA8/vz48133w3v1l40LF161WuwMwXVCgZkKivN0BBKh/JrgqfjVOwU\nfEM+vHXuLUizYyhmuGdg09JNeGjRQ2iwT9x3c6J1xIUuhuImZxOaHE2w2+yY3zofgXQAbtvY5hme\nbEdExRQ/eBAjP/kphMsFm8cDLRDAyE9+Cvz4r9G6ejWklDBiMWiRSFHuZ2QyGN23D7Edg9DDYXPQ\nZkPLvffA29ML18IFV70GO1NQrWFAprJJqSmE0iHocnqzHUORIfiO+nBoeKzv5uym2djStQX3LbgP\nTtuVd0ePt4745x/+HD+49Qe4Y/Ydl4XiQk/c9ARPtiOikgr/6tdmOM51sRBuN4zcePNdd0EPBIpy\nKp6RTCK25wXEdu6EMTpqDjocaH3gfni7u+G8/vpJXcfe0gK718vOFFRTGJCp5AxpIJwJI6EkpnWd\nT4KfoP9oPz4IfJAfm986H91d3Vg9d/WkN8hdXEfc4DBnmBscDRC6wJ4Te7Bx6cYrXocn2xFRqaln\nz0LabdA+H4FUFAiXC6KjHcbp09DOn5/2hmY9FkNs1y6M7t4DI5kEAAiXC62PPALvls1wzJw5qeuw\nMwXVMgZkKqmsnkUgFchvmpsqKSXe97+P/qF+fBr6ND9+g+cG9HT1YOX1K8c9ovlKRlIjaHW2wgYb\nbML8x2VzYSQ1wpPtiMhytpYWZI8fh7DbIW02SEUBzp2Hc+HCaYVjLRxGbMcgRvftg8z1SRaNjWh7\n/DF4Nm6Eo6NjcvWxMwXVAQZkKploJoqYErumB7ohDRy6cAi+IR+OR4/nx5e3L8fW5VvxR7P+aMob\nQIQQaLA3YF7LPIQz4fwMMgCktTTXERNRRZBSAkJc+uwUArjGcKz5/Yhu3474/hchVRWAeWBH27p1\n8GxYD3tb26Suw84UVE8YkKnoVENFMHVth37oUseb597EwNAATo+O9d28ZcYt6F3ei6/N+Nolwfhq\nm+0uhuJmZ3N+TfH3vvY9PHvoWaS1NNcRE1HFMRIJ2GfOhBGNQqoqhNMJm8cDmUpN6Trq+fOI9vsQ\nf+UVINfpwtbWBs+mjfA8/jhszc2Tug47U1A9YkCmokooCYQz4Sm3b9MMDa+feR0DQwM4nxzru7li\n1gr0dPXgq51fvexrJtps9xe3/gXunnv3JaG4ENcRE1ElkooCLRqFY8YM6OEw7HPHPtWSmQzsk1wC\noZw+jWhfPxIHDwKG+Sy2d3bCs3kT2tasga2xcVLXEULA1tpqbsBjZwqqMwzIVBS6oSOcCSOpJqf0\ndYqu4MDpAxg8Ngh/eqzv5so5K9GzvAdLvRP33fzyZju3ww27Ycfek3uxuWvzFe/LdcREVCkuBuOL\nG+Y83VsQ+tk/mC82NADZLKSqwtO95YrXyR4/jkhfH1JvvZ0fc1x3Hbw93Wh58MEpbaazNTfD0d7O\nzhRUtxiQadrSWhrBdBC6Mfn2bRktg/2f78fO4zsRzph9N22wYfW81djStQUL2xZe9RojqRG0udpg\nF3bYhA1CCDhsjktmoImIKpVUVejRKPTEpR1+mlesAP7qLxEb2A5teBiO2bPh6d5ijo8j8+mniDzf\nh/Thw/kx59y58Pb2ouWb90I4Jv+j3uZ2mxvwGibuI09UDxiQaVqimSii2eik359QEth7ai92ndiF\nuBIHADiEA/ctuA+bl23G9S1X77vZ6GhEs7MZC1sXIpgJwmUfmxXhoR1EVOkMRYExOgojkZhwE3Pz\nihUTBmLA3MiX+eBDRPr6kPnoo/y4a9EieLf2ovkb35jSsgh2piC6FAMyXRPd0BFIB5DRMpN6fywb\nw+4Tu7H35F4kNfNjRJfNhYcWPoRNyzbhdPw0fvbBzybcbHcxFBeuKX7y5id5aAcRVQ0jmYQ+Ogoj\nM7nn5niklEj9/veI9vUj+9ln+fGGri54t21F0x//MYRt8q0vhcMBu9cLe2vrNddEVIsYkGnKprKk\nIpwJY+fxnfjtqd/mu1q4HW6sWbQGG5ZuQHtj+4Sb7f711/81vrngm+NutAO42Y6IKp/UdRjxOPR4\nHFKbfD/45OHDlyyxaNu8CcgqiPb1QTl5Mv++xptvhnfbVri//vUpdZhgZwqiK2NApimZ7JIKf8qP\nHcd24MDpA1ANs+9ms7MZa29Yi7VL1qLNNdZ3s3CznQ02NDubkdWz2HViF9YtXXfF+3CzHRFVIiOb\nNZdRJJNT7gWfPHwYoZ/9g7lBrqUF6pkz8P/kp/lWbQDgvv12eLf2wv21r03p2uxMQTQ5DMg0KZqh\nIZgOXnVJxfnEeQwMDeC1M69Bl+bD3OPyYP3S9Xhs8WNocl6+vi2QCpib7Wz2/EyGW7hxLnGu+N8I\nEVGJSClhJJNmMM5OvQ/8RbGB7dBVFTIcBnIHe1zUtPIueHu3onF515Sva2tqhqODnSmIJoMBma5q\nMr2NT4+ehm/IhzfPvgkD5vs6GjuwaekmPLzoYTQ6Lu272ehoRJOzCc2OZixoW4BAOgCHGPvryM12\nRFQtpKZBj8dhxOOQ+uS7+YzHyGaRGRoCvrxOWQiguRmzf/zjKV/T1tgIe0cHO1MQTQEDMk1IN3SE\nMiGk1IlPbzoePQ7fUR/eufBOfsxpc6LR3og5zXMwt3VuPhxfDMVNjiY4bGN/9Z646QlutiOiqmNk\nMtBHRyFTqSkvo7jsWqkURvfuRWxw56Xh2GYD7HbAMCCmeA/hdMHR7p30iXlENIYBmcaVUBKIZCL5\nZRJfdiR0BL6jPrznfy8/1tnYCdVQ0epsRYOjAbFsDL/48BdoXdGK+xfef0koLsTNdkRULaSUMBIJ\ncxmFokz7eno8jtHduxH7zS4Yhf2QhTCDsc0G5ILxZJdGsDMF0fQxINMlVENFOB1GWktf9pqUEh8G\nPkT/0X58EvokP76obRF6unqw79Q+RLNRNDgaICDQ4mpBVs/CN+TDw4sfvuJ9udmOiCqZVFVzGUUi\nMe1lFACgR6OI7dyJ2J4XINPm81Y0NKDt0TXIfHYUyrlzkPE4oGmAEBCtrXAtWHDFawqbDba2Ntg9\nnim1eiOiyzEgU96oMopoJnrZWmMpJd4dfhe+IR+ORo7mx5d5l2Hr8q24Y/YdEELguU+fQ6uzFQ7h\nyLdla7Q3crMdEVUtI52GPhqHkUoW5XpaIIjojh2I798PmdvIJ9xueNY+Ds/GTbB7PQj/j/8P2aNH\nzdljmw0wDMhEAo233DLuNdmZgqj4GJAJiq4glA7l+xQDwOGRw9gxtANfxL+AoivI6GNr4m7uvBk9\ny3tw28zbLumfeX3z9eYMsm1sIwg32xFRtZGGASORgD4ah1Snv4wCANThYUQHBhB/6YA5KwzA1toK\nz4b1aFu79pLlEJmPPoKtvd1c26yqEC4XRFOTeWLen37rkuvamprhaPdCuFwgouJhQK5jUkpEs1GM\nKqOXbDA5dOEQ/sv7/wUpNQVNjjW2X+JZgu9/7fu4acZNl1zHbrOjs7ETz9zyDJ499CzSWpqb7Yio\n6khFGVtGYUzctWcqlDNnEO33IfHaa0Dumvb2dng2bUTbo4+Oe7SzNjxszga3t4/VJiW04eH8720N\nDbB3drIzBVGJMCDXqYyWQSgTgqqP9dhUdRUvf/Ey/vHjf8wf7gEATY4mtDhb0ORsuiwct7ha0NHY\nAZuwcbMdEVUlI5Uyj4BOX7734lplT55EtL8fyTfezG+ys8+YAW93N1offuiKwdYxezb0cBhoLGiP\nmc3CMXs2hBCwt7fD7vEUrVYiuhwDcp2RUiKcCSOuxPNjGS2Dl06/hMFjgwhlQvnxFmcLvI1eNNgb\nIKXESGok/5pd2NHp7rzs4A9utiOiaiB13VxGEY9DfukwjunIHD2K6PN9SB06lB9zzJkDb083Wu+/\nf1KdKDzdWxD62T+Yv2loALJZSFWF91vb4Lz+ei6nICoDBuQ6ougKAulAftY4paaw99Re7Dq+CzEl\nBsAMvm2uNrjsLrS4Wi752llNswCYs8btDe35jXhERNXCUBSzRVsiMe3exYXSH3+M6PN9SL//fn7M\nuWABvL0FJd9tAAAevklEQVS9aLln9ZQ2zzWvWAH81V8iNrAd2vAwHHPmoOOpJ+F5+MrdgIioeBiQ\na9wbZ9/Ac0eew5n4Gcx0z8TGZRuxvH05dp/YjT0n9yCpmjuznTYnHlj4ADYv3YwziTP4+Yc/R1bL\nwmV3QdEVqIaK7q5uzGqeBbfDbfF3RUQ0eeYR0CkY8VEYXz6hbprXTb/3HqLP9yFz5Eh+3LVkCdq3\nbUXTypXX3G6tecUKNK9YAXtbG+zt7WzbRlRmDMg17I2zb+Bvf/e3sNlscDvcCKQC+Pt3/x6aoUEx\nzJ3ZDfYGrFm8BhuXbkRHYwcAYFbzLPzg1h9g8NggRlIjmNU0C9u+sg2PLn6Us8ZEVDWkrsOIx81l\nFJp29S+Y7HUNA6nf/Q6Rvj4ox47nxxu++lW0b90K9x0rLunwcy2E0wlHZydsbk5IEFmBAblGpbU0\nfvHRL2ATNtiFHaF0yOxWAfMjxSZHEx6/4XGsW7IOnobLN3usmLUCK2aZD3lvg3fc9xARVSIjmzWX\nUSSTRV1GIXUdyTfeQKS/H+rnp/PjjbfeivatvWi89dZpB2MAsLe2wt7RwVljIgsxINcYRVcQyUSQ\n1tI4Ez8DVVcRV8c25NmEOZv8Tw/+0yVrjMfjtDsxwz0DDXa2ESKiymYuo0iawTibvfoXTOXamobE\nq68i6vNBPXc+P+5esQLt27ai8cYbi3IfzhoTVQ4G5Bqh6iqi2SiSahJfjH6BgaEBhDPh/Ot2YYe3\nwexI0enuvGo4LmzfRkRUqaSmmb2L4/GiHAFdyFAUJF46gOiAD5o/kB9vvvtueLf2omHp0qLdy+7x\nmGuNczPQ8YMHEf7Vr6GePQvnvHnoePoptK5eXbT7EdGVMSBXiYub7b7cX1jRFYwqo0goCZyInoBv\nyId3zr+TX0phEza0udrgbfBCMzSohopNyzZNeB+7sKPD3YFmZ3O5vjUioikzMhnoo6PmaXNFXEZx\n8dqj+/YhtmPQ7EcMADYbWu65B97eHrgWLizavWwuF+z/f3v3HhxXeeZ5/Puc01ddW1K3jLENNrFN\nYCZkSRwSQiABwsWAAYMtm9mpyS6pSqU22ez8sbWVnalJTYVUtma3dv+Y2dRmcytmp2YiG2wPl2FM\nHC5FCAWEJIRAAthcHGzAl9iSdbVa3e/+cRq5UdSyLffpc1r6fapUbp0+0vvo6PSjx6ff87z5/Pv6\nIg898QQHvn4XlkrhdXYyeegQB75+F3ztr1QkizSICuQm8JN9P+Gbz3yTpJ+kI9XBwdGDfOPpb/Cl\nf/MlLipcxMtHXmbLK1t47sBzU1+zuHUxfav7aE+1c99r903dbHfbqttYs2jNjONkEhny2TwJT6eF\niMSPc47y8HAwjWKiPktAVyuPjDD4wIMM7thB+dixYGMiQftnrya3cSPJs8+u21hmhtfZGayYN23e\n8pHv/yAojitTLSybpVzZrgJZpDFUCTWBu1+6m4SXIO2nKbkSCS9BsVTke7/+Hu2pdl44/MLUvue0\nn8PG1Ru5fMnlUx0nPr7447N+f888cpkcHamOUH8OEZG5cMXiiSWg6zyNAqA0OMjgffdx7P4HKI8E\nrS8tlaL9+uvJbbidRKFQ1/G8dDq4alxjwY/ivn04z2PywAHKExN4qRRedzfFffvqGoeI1KYCOcac\nc4yXxvndsd/RmmylWC7inGN0cpSj40c5XjpxI8rK3Er6Vvfx8cUfP615w9lElp5sj64ai0jslMfG\ngiWgR0dD+f6TR44wuG07xx56CFfpj2yZDB033UjnbbeR6Oqq63hmhp/L4edys+/X2krx9dfB88Dz\nKBeLlN95h9R559U1HhGpTVVRA9WaRzzd2OQYI8URxopjlFyJQkuBI2NHmHSTHD1+lInSibcWL+i+\ngM3nb+bi3otPq72Q7/l0ZzTXWETixZXLwRLQx4ZwxfpPowCYPHiQgXvvZWjnw1PLTHutrXTccgud\nt9yM31H/d9O8bJZET88pLTVtZuAcFnwCzuGcq0sLORE5NSqQG2T6POJDY4f45jPf5C/4Cy5fevkf\nFMXvKZVLrMyt5P7f3/++7SkvxR0fvIPbV91+2kmzPdVOV6ZLHSpEJDbcxMSJaRTlcihjFN9+m4Et\nWxl65BGoTNXwOjrovG09nTfdhNda/wsG5vv43d34bbN3DqpWHh4mseRsyr8/gpuYwFIp/LMWUR4e\nrnt8IjIzFcgNcvdLd5P0k1PLNGcTWcquzHdf+C7LO5a/r/gFKJaLPPq7R9m2exvvjLwztT3lpVjW\nvow/vfBPa95sV4tvPj3ZHlqSLWf+A4mI1EF5ZCQojMfGQhtjYu9eBvq3MPzEE1Apvv2eHjpvv42O\ntWvxMplQxvVaWknkezD/9FYgTS5dyvG9b75vm5uYIHXu8voFJyKzUoHcIPuH99OR6qDsylMfvvns\nH9n/vuL4eOk4u/buYtvubRweOwyAYVy25DL6VvexonPFnMZP+2nyLXmS3snf3hMRCZMrlYJpFEND\nU1McwnB8zx6O9vcz+tOnprYlFi0it3EDbddcU/MmuTMVXDXuwW+b2xXp7CWXMPrcc8H0Ct/HHT8O\n4+NkN/bVOVIRqUUFcgOMTY7Rm+3l0Ngh0okTvS4nShMsalkEwGhxlJ1v7mTHnh0MHB8Agu4Sn1n6\nGTas3sCy9mVzHr891U53plvz10QkUuWJiaBF2/Bw3XsXVxv/zW84+sN+xp470foyuWQJuU19tF15\nJZYI70+f19JCIp8/7avG1caefRY/n8cNDwddLNJprK2NsWefhS/9hzpGKyK1qEAOyfQ5xTevvJlv\n/+rbMAkpP8VEaYJiucjaFWv54cs/5IHXHphaEjrhJbj6nKvZsGoDZ7WeNecYNKVCRKIWLAE9Snno\nGOVKp4iwxhl//lcc7e9n/IUTrS9Ty5eTu2MzrZdddkZF68mYWTDXuA43+BX37Qtu6Mvnp7Y559Tm\nTaSBIimQzexNYAgoAZPOudObTBtTtW60A1izaA1f/PAX2b57OwdGD9CT6aEn28Pf/fLvGJsM5t6l\n/BTXn3s961etJ5/NzzTEKdOiHyISJVcqBS3ahodxk5PhjeMco88+y0D/Fo6//PLU9vSqVeT+5A5a\nLrkE88K9IdlLpUgUClidpmwkly5l8tAhrLJQCIAbHye5dGldvr+InFyU1dOVzrnDEY5fF7MVxdOt\nWbSGFR0r2L5nOzvf3Mlvj/wWCG7Yu3HFjdyy8hZy6dn7Y56KznQnufQfrs4kIhK28vHjwTSKkZFQ\np1G4UomRp55ioH8LE6+/PrU988d/RG7zZrIf+UhDcqDf2Ynf1VXXsbo/fycHvn4XZYK+zG58HDcx\nQffn76zbGCIyO11enIPTKYrf8+7Iu2zbvY0f/+7HTJaDqyntyXbWfWAd685bR1vq1FsA1aIpFSIS\nhWAaxUhQGB8/fvIvOJOxSiWGH3+cgS1bKb711tT27MUXk7tjM9kPfSjU8d9jvk8in8drqX++bb/i\nCvjaX3Hk+z+guG8fyaVL6f78nVpmWqSBLMz/4dcc1OwN4CjggP/rnPvODPt8AfgCwDnnnPPRvXv3\nNjbIaeZSFAPsG9rHPa/ew+P7HqfsgvZCuXSOW1feytrla+tWzGpKhci8UrfLkWHmUjc5GbRoGxoK\nZQno941VLDL040cY2LqVyXffndrecuknyG3aTOb81aGOX60eN+KJSEPMOZdGVSAvcc7tN7NeYBfw\nH51zT9Taf82aNe65qruRG2WuRTHAG4NvcM+r9/Dk/idxBMc4n81z+6rbuebca0j76ZN8h1PXme6k\nK1PfJVFFJFKhzA2oVy4NloAeojw6UoeoTjLW8eMM7XyYgXvvpXS4MivPjNbLLye3eRPpFXNrfTkX\nZobf1YXf2dmwMUXkjMw5l0ZyudE5t7/y70Ez2wFcAtQskBvpTIpigFePvsrWV7byzLvPTG07q+Us\nNqzewFXnXFXXPsSeeeSzeU2pEJHQOecoDw8H0ygmwlkCulp5dJRj//IvDG7fQWkgaH2J59F29VXk\n+vpINfiGNUskSPT24qXrd3FDROKr4QWymbUCnnNuqPL4WuDrjY6j2pkWxQAvHn6RLa9s4flDz09t\nW9a+jI2rN3LFkivwvfq+FZfyUxRaClr4Q0RC5YrFE0tAhzyNAqA0NMSx++9n8J/vO7G0ciJBx3XX\n0blxA8lFi0KPYTpNqRBZeKK4grwI2FG54zcB/JNzbmejg6hHUeyc45cHf8nWV7fy0u9fmtp+Xud5\n9K3u49KzL8Wz+rcXak22ks/m1aVCREJTHh0NCuPR0YaMVxoYYHDHDgYfeBBXWXba0mna164lt+F2\nEj09DYljOj+XI9GlKWwiC03DC2Tn3OvAhxs9LtSnKAYouzLPvvssW17Zwp6BPVPbP9j9QfpW97Fm\n0ZpQilczI5fO0ZnW/DcRqT9XLgdLQB8bwhXDn0YBMHnoMAPbtjG0c2ewpDJg2SydN6+j89b1+Llo\n8p0lEiQKBbxMJpLxRSRa877lwdjkGKPFUUaLo2dUFAOUXImf7v8pW1/dyt5jJ+4Evyh/EX3n93FR\n/qLQrur65lNoKZBJKFmLSH25iYkT0yjK5YaMWXznHQbuuZehXbugspCI195O56230LFuHX57e0Pi\nmInX2hpMqQh5gRERia95XSAfHjvM8MTwGX+fyfIkj7/1OPe8eg9vj7w9tf2jiz7KptWbuKDngjMe\nYzYpP0VvS69auIlIXZVHRoLCuDKloREm3nqLgS1bGX7sMagU435XF523rafjhhtC6St8quq5XLSI\nNDdVXLOYKE2wa+8utu/ezsGxg1PbL118KX3n97EytzL0GDTfWETqyZVKlIeGKA0P44rFho17/I03\nGOjvZ+QnT0Klvaifz5PbuJH2666NvDuEulSISDUVyDMYmxxj5xs72bFnB0ePHwXAw+OKpVewYfUG\nzu04tyFxqL+xiNRVuUzxrbdCXQJ6uvGXX2agfwujz5xofZlYvJjcpj7ar7oKS0bfiUddKkRkOhXI\nVUaKIzz4+oPc99p9DE0MAZCwBFeecyUbVm3g7LazGxKHmdGd6aY9Fd0cPBGZf1y53JDi2DnH+K9f\nZKC/n7Ff/nJqe3LZMnKbN9P26StiU4wmurrwc7mowxCRmFGBDAweH+SB1x7gwdcfZGQyWBkq5aW4\n9txrWb9qPb0tvQ2LxTeffEuebCLbsDFFROrBOcfYz3/OQP8Wxl860foy9YEP0HXHZlouvTQ2N76p\nS4WIzGZBF8hHxo+wY88Odr6xk/HSOADZRJa1y9dy68pbGz69Iekn6c32kvSjf8tRRORUuXKZ0aef\n5mh/PxO7T7S+TF9wAV2bN5P9WDitL+fKy2ZJFAqxuYotIvGzIAvkg6MH2bZ7G7v27qJYDm5SaU22\nsu68daz7wDo6Uo2/gzmbyFJoKYSysIiISBhcqcTIT57k6JZ+im+eaH2Z+fBFdN1xB5mLwmt9OVda\n+ENETsWCKpDfHn6be1+9l0ffenSqJ3JHqoNbV97KjStupCUZTXsh3YwnIs3ETU4y/NhjDGzZQnH/\nidaX2Y99jK7Nm8hceGGE0c3MPI9EPo/X2hp1KCLSBBZEgbz32F62vrqVJ/c9SZmg72Z3ppvbVt7G\ndcuvi2zxDc888tl8ZIW5iMjpKE9MMPyjXQzccw+TB0+0vmy97DJymzeRXhl+68u58FIpEr29seiY\nISLNYV4XyK8ceYW7X7qbp995empbb0svG1Zt4OpzriblpyKLTfONRaRZlMfHOfbQQwxu207pyJFg\no+fR9ulPk9vUR+rcxrS+nAu/vR2/pyd2Uz1EJN7mZYE8UZrgK499hZ/u/+nUtiVtS9i4eiOfXvrp\nyFeka0220pPt0XxjEYm18sgIgw88yOCOHZSPHQs2JhK0f/Zqchs3kjy7Ma0v58LM8PN5/La2qEMR\nkSY0LwvklJ/CCK4WLO9YTt/5fXzy7E/iW7R3LJsZuXSOznRnpHGIiMymNDjI4H33cez+ByiPBK0v\nLZWi/brryG3cQKJQiDjC2VkyGayKl4ruXUIRaW7zskAG+MrFX2HtirV8qOdDsXhrzfd8elt6Sfta\nxlRE4mnyyBEGt23n2EMP4caD1peWydBx0410rl9Pors74ghPzmtpJVHIx6bfsog0p3lbIF/QcwGF\nlgLDE8NRh0ImkaGQLeB76rkpIvEzefAgA/fey9DOh3HFoPWl19pKx80303nrLfgdjW99ebrMDL+7\nuyliFZH4m7cFclx0pDvozsT/qouILDzF/fsZ2HoPQ488AqWg9aXX0UHn+vV0rrupaVqiWTIZrIqX\n1jt0IlIfKpBD4plHT7aH1mRz/IERkYVjYu9eBvq3MPzEE1AOWl/63d3kNmygfe31TbX8stfSQiKf\n16p4IlJXKpBDkPbT5FvyJD21cBOR+HDj47x71zcYfeqpqW2J3l5yfRtpu+aaprupLdHVhZ/LRR2G\niMxDKpDrrDPdSS6di8WNgSIi1Sbe3MtopcNPcskScpv6aLvySizRXH8KzPeDKRXZbNShiMg81VxZ\nMcZ8zyefzZNNKGGLSHylli8nt3kTrZ/6VFNOS/AyGRKFQtMV9SLSXJRh6qAl2UJPpkddKkQk1pJL\nl7DkW/+7aVug+Z2d+F1deodOREKnAvkMmBldmS46UmorJCLx57W1NWVxbJ6H35PHb9NNzyLSGCqQ\n5yjlpyhkCyR93YgnIhIWL5UKplQ02Q2EItLcVCDPQVuqjZ5Mj97mExEJkd/Whp/PK9eKSMOpQD4N\n6m0sIhI+M8Pv6cFvb486FBFZoFQgn6KEl2BRyyJNqRARCZFWxROROFCBfAoyiQyFbEFdKkREQqRV\n8UQkLlQgn4TmG4uIhM/P5Uh0dUUdhogIoAK5JjOjO9NNe0pz4EREwqJV8UQkjlQgzyDpJylkC6R8\ntRUSEQmLl06T6O3VqngiEjvKStO0pdroznTjWfM10xcRaRZ+Rwd+d7emr4lILKlArvDNpzvbrRZu\nIiIh0qp4ItIMVCATdKnIZ/MkPB0OEZGwWDJFsler4olI/C34irAr00VnujPqMERE5jWvtTVo4eZp\n+pqIxN+CLZB988m35MkmdOe0iEhYzAy/uxu/oyPqUERETtmCLJDTfppCS0FTKkREQmSJBIneXq2K\nJyJNZ8FViFr4Q0QkfF42S6JQ0Kp4ItKUFlSBrPnGIiLh06p4ItLsFkSBrPnGIiLhM98nkc/jtbRE\nHYqIyBmZ9wVy0k/S29JL0ktGHYqIyLylVfFEZD6Z15ksm8hqVTwRkZBpVTwRmW/mdYGsVfFERMIT\nrIrXg9/WFnUoIiJ1Na8LZBERCYdWxROR+UwFsoiInBatiici850KZBEROSVmht/Vhd+pdpkiMr+p\nQBYRkZOyRIJEoYCXyUQdiohI6FQgi4jIrLQqnogsNCqQRUSkJq2KJyILkQpkERH5A1oVT0QWMhXI\nIiLyPl46HUypSGoFUhFZmFQgi4jIFL+9Hb+nR6viiciCpgJZRESCFm75vFbFExFBBbKIyIJnyRSJ\n3gKeVsUTEQFUIIuILGheSyuJglbFExGppgJZRGQB0qp4IiK1qUAWEVlgtCqeiMjsVCCLiCwgXiZD\nordXq+KJiMxCBbKIyAJhvk9y8eKowxARiT3dlSEislCot7GIyCmJpEA2s+vN7BUz22NmX40iBhER\nERGRmTS8QDYzH/gWsBa4ELjDzC5sdBwiIiIiIjOJ4gryJcAe59zrzrkJoB+4JYI4RERERET+QBQF\n8hLgrarP91W2vY+ZfcHMnjOz5w4dOtSw4ERE5hPlUhGR0xfbm/Scc99xzq1xzq0pFApRhyMi0pSU\nS0VETl8UBfJ+YFnV50sr20REREREIhdFgfwzYJWZrTCzFLAZuD+COERERERE/kDDFwpxzk2a2ZeB\nhwEf+IFz7qVGxyEiIiIiMpNIVtJzzj0EPBTF2CIiIiIis4ntTXoiIiIiIlFQgSwiIiIiUkUFsoiI\niIhIFRXIIiIiIiJVzDkXdQwnZWaHgL0RDZ8HDkc09kziFI9iqS1O8SiW2uIUT3Ush51z19d7gIhz\nKcT3eEctTrFAvOJRLLXFKZ64xjLnXNoUBXKUzOw559yaqON4T5ziUSy1xSkexVJbnOKJUyxhidPP\nqFhqi1M8iqW2OMUzH2PRFAsRERERkSoqkEVEREREqqhAPrnvRB3ANHGKR7HUFqd4FEttcYonTrGE\nJU4/o2KpLU7xKJba4hTPvItFc5BFRERERKroCrKIiIiISBUVyCIiIiIiVVQgA2a2zMweM7PfmNlL\nZvafZtjnM2Y2aGbPVz6+FmI8b5rZryvjPDfD82Zmf2tme8zsBTP7SIixnF/1Mz9vZsfM7M+n7RPa\nsTGzH5jZQTN7sWpbt5ntMrPdlX+7anzt5yr77Dazz4UYz/8ws5crv4sdZpar8bWz/l7rFMtfm9n+\nqt/FDTW+9noze6VyDn01pFi2VMXxppk9X+Nr631cZnw9R3XezBJPJOdNmOKWSyvjxSKfRp1LK98/\nNvlUufS041nw+bThudQ5t+A/gMXARyqP24FXgQun7fMZ4MEGxfMmkJ/l+RuAfwUM+ATwTIPi8oF3\ngXMbdWyAK4CPAC9WbfvvwFcrj78K/M0MX9cNvF75t6vyuCukeK4FEpXHfzNTPKfye61TLH8N/OdT\n+D2+BpwHpIBfTT/f6xHLtOf/J/C1Bh2XGV/PUZ03s8QTyXkT5kfccumpHL8o8mkUubTy/WOTT5VL\nTy+eac8vyHza6FyqK8iAc+4d59wvKo+HgN8CS6KNala3AP/PBZ4Gcma2uAHjXg285pxr2Epczrkn\ngCPTNt8C/H3l8d8Dt87wpdcBu5xzR5xzR4FdwBmvTDZTPM65HznnJiufPg0sPdNx5hrLKboE2OOc\ne905NwH0ExzTUGIxMwP6gB+eyRinEUut13Mk502teKI6b8LUhLkUosmnDc+lEK98qlw6t3gWcj5t\ndC5VgTyNmS0HLgaemeHpS83sV2b2r2b2RyGG4YAfmdnPzewLMzy/BHir6vN9NOaP0GZqvygbdWwA\nFjnn3qk8fhdYNMM+UR2jOwmuRs3kZL/Xevly5a2mH9R426vRx+Zy4IBzbneN50M7LtNez5GfN7Pk\nlzicN3UVk1wK8cynccmlEIPXRQ1xeE3ELZeC8ulMsVSr23mTOJMA5xszawO2AX/unDs27elfELwd\nNlyZi/TPwKqQQvmUc26/mfUCu8zs5cr/KCNjZingZuC/zvB0I4/N+zjnnJnFolehmf0lMAn8Y41d\nGvF7/T/AXQSJ4C6Ct+LurPMYp+sOZr/aEcpxmf56Di68BKI4b2rll5icN3UVo1wKMTt+cc2lEJ98\nGpPXRBxzKSifNiyX6gpyhZklCQ74Pzrntk9/3jl3zDk3XHn8EJA0s3wYsTjn9lf+PQjsIHgbp9p+\nYFnV50sr28K0FviFc+7A9CcaeWwqDrz3Fmjl34Mz7NPQY2Rm/w64Cfi3rjLZabpT+L2eMefcAedc\nyTlXBr5bY4yGHRszSwC3AVtq7RPGcanxeo7svKmVX+Jy3tRTnHJpZYy45dM45VKIWT6Ny2sibrkU\nlE9niSWU80YFMlNzer4P/NY5979q7HNWZT/M7BKCY/f7EGJpNbP29x4TTD5/cdpu9wN/ZoFPAINV\nb3WEpeb/Wht1bKrcD7x3N+zngPtm2Odh4Foz66q8NXZtZVvdmdn1wH8BbnbOjdbY51R+r/WIpXru\n5PoaY/wMWGVmKypXszYTHNMwfBZ42Tm3b6Ynwzgus7yeIzlvasUTp/OmXuKUSyvfP475NE65FGKU\nT+P0mohhLoUFnk8bnktdne50bOYP4FMEb6O8ADxf+bgB+CLwxco+XwZeIrhL9WngkyHFcl5ljF9V\nxvvLyvbqWAz4FsHds78G1oR8fFoJknRn1baGHBuCPyTvAEWC+UufB3qAR4DdwI+B7sq+a4DvVX3t\nncCeyse/DzGePQTzrN47d75d2fds4KHZfq8hxPIPlXPiBYIEtnh6LJXPbyC4A/i1sGKpbL/7vfOk\nat+wj0ut13Mk580s8URy3oT5McvP2vBcOtvxI6J8SoS5tPL9Y5NPa8Sy4HNprXgq2+9mAefTWWIJ\n5bzRUtMiIiIiIlU0xUJEREREpIoKZBERERGRKiqQRURERESqqEAWEREREamiAllEREREpIoKZBER\nERGRKiqQRURERESqqEAWmcbMPmZmL5hZprL6zktm9sdRxyUi0kyUS6WZaaEQkRmY2TeADJAF9jnn\n/lvEIYmINB3lUmlWKpBFZmBmKeBnwDjBcq+liEMSEWk6yqXSrDTFQmRmPUAb0E5w9UNERE6fcqk0\nJV1BFpmBmd0P9AMrgMXOuS9HHJKISNNRLpVmlYg6AJG4MbM/A4rOuX8yMx94ysyucs49GnVsIiLN\nQrlUmpmuIIuIiIiIVNEcZBERERGRKiqQRURERESqqEAWEREREamiAllEREREpIoKZBERERGRKiqQ\nRURERESqqEAWEREREany/wG6uZn9CVpH5QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "PVjhJh6mCbhZ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Links\n", + "- [Seaborn examples: Anscombe's quartet](http://seaborn.pydata.org/examples/anscombes_quartet.html)\n", + "- [Wikipedia: Anscombe's quartet](https://en.wikipedia.org/wiki/Anscombe%27s_quartet)\n", + "- [The Datasaurus Dozen](https://www.autodeskresearch.com/publications/samestats)" + ] + }, + { + "metadata": { + "id": "OjxvXAQiCbhZ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 2. Tips dataset" + ] + }, + { + "metadata": { + "id": "eflBDsngCbhb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Load dataset" + ] + }, + { + "metadata": { + "id": "YfH_JF5BCbhb", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "tips = sns.load_dataset('tips')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "lODejp-tCbhd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the data's shape" + ] + }, + { + "metadata": { + "id": "7PUxT6S_Cbhe", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "1ea739cc-2f37-475f-bc15-71515f936dba" + }, + "cell_type": "code", + "source": [ + "tips.shape" + ], + "execution_count": 76, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(244, 7)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 76 + } + ] + }, + { + "metadata": { + "id": "9kvVhgplCbhg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the first 5 rows" + ] + }, + { + "metadata": { + "id": "soVbZvrFCbhg", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "f3b2fcc6-5632-4ea7-9d5c-cc3d37bc8f4b" + }, + "cell_type": "code", + "source": [ + "tips.head()" + ], + "execution_count": 78, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
total_billtipsexsmokerdaytimesize
016.991.01FemaleNoSunDinner2
110.341.66MaleNoSunDinner3
221.013.50MaleNoSunDinner3
323.683.31MaleNoSunDinner2
424.593.61FemaleNoSunDinner4
\n", + "
" + ], + "text/plain": [ + " total_bill tip sex smoker day time size\n", + "0 16.99 1.01 Female No Sun Dinner 2\n", + "1 10.34 1.66 Male No Sun Dinner 3\n", + "2 21.01 3.50 Male No Sun Dinner 3\n", + "3 23.68 3.31 Male No Sun Dinner 2\n", + "4 24.59 3.61 Female No Sun Dinner 4" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 78 + } + ] + }, + { + "metadata": { + "id": "1awjAV3GCbhi", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Describe the data" + ] + }, + { + "metadata": { + "id": "ic9Z4ONUCbhj", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 284 + }, + "outputId": "d779e115-2ac0-4519-ee36-3972ee3378ed" + }, + "cell_type": "code", + "source": [ + "tips.describe()" + ], + "execution_count": 79, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
total_billtipsize
count244.000000244.000000244.000000
mean19.7859432.9982792.569672
std8.9024121.3836380.951100
min3.0700001.0000001.000000
25%13.3475002.0000002.000000
50%17.7950002.9000002.000000
75%24.1275003.5625003.000000
max50.81000010.0000006.000000
\n", + "
" + ], + "text/plain": [ + " total_bill tip size\n", + "count 244.000000 244.000000 244.000000\n", + "mean 19.785943 2.998279 2.569672\n", + "std 8.902412 1.383638 0.951100\n", + "min 3.070000 1.000000 1.000000\n", + "25% 13.347500 2.000000 2.000000\n", + "50% 17.795000 2.900000 2.000000\n", + "75% 24.127500 3.562500 3.000000\n", + "max 50.810000 10.000000 6.000000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 79 + } + ] + }, + { + "metadata": { + "id": "z1IjGFhNCbhm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make univariate [distribution plots](https://seaborn.pydata.org/generated/seaborn.distplot.html)" + ] + }, + { + "metadata": { + "id": "wBP_jb5XCbhn", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 283 + }, + "outputId": "1ecdd126-dd06-4072-c326-3235bcc91220" + }, + "cell_type": "code", + "source": [ + "sns.distplot(tips.tip);" + ], + "execution_count": 86, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4XPV97/H3d2Y02nfJWm3LG9jy\ngsHGbAkEAgkEgml20uQmTVrSm6RNe/u0oW2a5knv05ulT+7NbbltaJo9hCzQGxdMCE0gEIKNF4xt\nyfumXZa179v87h8a+QpHRmNrRkdz9Hk9D49mzhxpPiPkz5z5nXN+x5xziIiIvwS8DiAiIvGnchcR\n8SGVu4iID6ncRUR8SOUuIuJDKncRER9SuYuI+JDKXUTEh1TuIiI+FPLqiYuKilxVVZVXTy8ikpT2\n7NlzzjlXPNN6npV7VVUVu3fv9urpRUSSkpmdiWU9DcuIiPiQyl1ExIdU7iIiPqRyFxHxIZW7iIgP\nqdxFRHxI5S4i4kMqdxERH1K5i4j4kGdnqEpsHtlZd1nf9/7rlsQ5iYgkE225i4j4kMpdRMSHVO4i\nIj6kchcR8SGVu4iID6ncRUR8SOUuIuJDKncRER9SuYuI+JDKXUTEh1TuIiI+FFO5m9mdZnbEzI6b\n2YOvs947zcyZ2eb4RRQRkUs1Y7mbWRB4CLgLqAbuN7PqadbLBj4F7Ix3SBERuTSxbLlvAY475046\n50aAR4Gt06z3d8AXgaE45hMRkcsQy5S/FUD9lPsNwHVTVzCza4DFzrknzezP45hP5tDlTC+sqYVF\n5qdZ71A1swDwFeDPYlj3ATPbbWa729raZvvUIiJyEbGUeyOweMr9yuiySdnAOuA5MzsNXA9sm26n\nqnPuYefcZufc5uLi4stPLSIiryuWct8FrDKzZWYWBt4HbJt80DnX7Zwrcs5VOeeqgB3Avc653QlJ\nLCIiM5qx3J1zY8AngaeBQ8CPnHM1ZvZ5M7s30QFFROTSxXQNVefcdmD7Bcs+e5F13zT7WCIiMhs6\nQ1VExIdU7iIiPqRyFxHxIZW7iIgPqdxFRHxI5S4i4kMqdxERH1K5i4j4kMpdRMSHVO4iIj6kchcR\n8SGVu4iID6ncRUR8SOUuIuJDKncRER9SuYuI+JDKXUTEh1TuIiI+pHIXEfEhlbuIiA+p3EVEfEjl\nLiLiQyp3EREfUrmLiPiQyl1ExIdU7iIiPqRyn+dGxiI0dg0yMhbxOoqIJJGQ1wHk4s609/PQs8dp\n6xvGgOLsVN5+VTkrirO8jiYi85y23OepnSfbue+hF+kbHuO+jRXcunoREef4zkunOdHW53U8EZnn\nVO7zUHvfMB/51i7yM8N8/E0r2LKsgNvXlPDAzSsoyAyr4EVkRir3eejh508yODrOwx/cTGFW6vnl\nWakhPvqG5eRnhPnBy3X0Do16mFJE5jOV+zxztneIb790mq0bK1i56LfH1rNSQ9y/ZQnDYxG2vdqE\nc27uQ4rIvKdyn2f+5bmTjI47/vjNqy66TklOGrevKaGmqYf9jd1zmE5EkoXKfR5p7RniezvP8I6r\nK1hWlPm6675hZRGV+en8x6tN9A2PzVFCEUkWKvd55LG9DYyMRfjErStnXDcYMN55TSVDo+M8fbBl\nDtKJSDJRuc8jTx1oYePiPKpm2GqfVJKTxhtWFrOnrpMz7f0JTiciyUTlPk/UdwxwoLGbt60vvaTv\nu231InLTU/jpvibGI9q5KiITVO7zxFMHmwG4a13ZJX1fOBTgng1ltPQM8ZsT5xIRTUSSkMp9nth+\noIX1FbksLsi45O+tLsthTWk2z9S2crZ3KAHpRCTZxFTuZnanmR0xs+Nm9uA0j/+hmR0ws31m9msz\nq45/VP9q7BpkX30Xd13ikMwkM+O+qytICQZ4bE+DhmdEZOZyN7Mg8BBwF1AN3D9NeT/inFvvnNsI\nfAn4StyT+tjPoke7XOqQzFTZaSncu7Gc+s5Bfn2sLV7RRCRJxbLlvgU47pw76ZwbAR4Ftk5dwTnX\nM+VuJqBNx0vwTG0Lq0uzZzy2fSYbKnJZV5HLM4daefbw2TilE5FkFEu5VwD1U+43RJe9hpl9wsxO\nMLHl/sfxied/Q6Pj7K3r4uYrimf9s8yMd1xdQWlOGh///l5eqeuMQ0IRSUZx26HqnHvIObcC+DTw\nmenWMbMHzGy3me1ua9PQAcDeuk5GxiJcv7wgLj8vLSXIh26sYlFOKh/51i5ePtURl58rIskllnJv\nBBZPuV8ZXXYxjwL3TfeAc+5h59xm59zm4uLZb6n6wY6THQQMNlfFp9xhYvz9ux+5jqy0EO/52kv8\n9b8foHtAM0iKLCSxXIlpF7DKzJYxUervA94/dQUzW+WcOxa9ezdwDInJjpPtrKvIJSctJa4/d0lh\nBk//yc185edH+caLp3h0Vz1ry3PYuDiPrNQQqaEgqSkBUkOBiTNdVxXF9flFxFszlrtzbszMPgk8\nDQSBbzjnaszs88Bu59w24JNmdjswCnQCH0pkaL8YGh1nX10XH76pKiE/PyMc4jP3VPOOayr52cFm\ndpzq4PG9jQyNjjN2weGSKUGjqjCTt64tpTwvPSF5RGTuxHQNVefcdmD7Bcs+O+X2p+Kca0HYW9fJ\nyHiEG5YXJvR5qstzqC7Pec2ysfEII+MRRsYiHD/bxzOHWnlkRx3/8qsTbN1Yzqal8RsmEpG5pwtk\ne2jHifboeHv+nD93KBggFAyQEZ4Y799cVUBhZio/3FXHY3sbOds7PKvj7kXEW5p+wEM7TnawviKX\n7DiPt1+urNQQv3fTMrYsK+CFY+c4oAuBiCQtlbtHhkbH2VffxfUJHpK5VAEz3r6hnMX56Ty+t4H2\nvmGvI4nIZVC5e2R/Qzcj4xGujeMhkPESDBjvu3YJZvDornrNVSOShFTuHnm1vguAjUvyPE4yvfzM\nML9zdSWNXYPsPaMzXUWSjcrdI/vqu6jMT6coK9XrKBe1rjyHxfnp/PLIWUbHI17HEZFLoHL3yL76\nLq5aPD+32ieZGXdUl9I9OKppDESSjMrdA229wzR2DXL1PC93gJWLslhenMlzR9sYHhv3Oo6IxEjl\n7oHJ8fb5vuU+6S3VpfQPj7HzpLbeRZKFyt0D++q7CAaMdeW5XkeJyZKCDJYVZbLzVDsRpyNnRJKB\nyt0DrzZ0cWVJNunhoNdRYnb98kI6B0Y52trrdRQRiYHKfY5FIi4pdqZeqLosh+zUkIZmRJKEyn2O\nnWrvp3doLCl2pk4VDBibqwo42tpLR/+I13FEZAYq9zm2ry65dqZOtWVZAWbosEiRJKByn2MHGrvJ\nCAdZuSjL6yiXLDc9hdWlOew506EpCUTmOZX7HKtp6mZNWQ7BgHkd5bJsWppP/8g4x89qx6rIfKZy\nn0ORiONQcy9rL7hwRjJZVZJFekqQV6LH6ovI/KRyn0N1HQP0DY9RXZa85R4KBNhQmcuh5h6GR3XG\nqsh8pXKfQ7XNPQCsTZKTly5m4+I8RscdNdHXIyLzj8p9DtU0dRMMGKtKkm9n6lRLCjLIz0hhn4Zm\nROYtlfscqm3qYdWiLNJSkufM1OmYGRsX53PibB+tPUNexxGRaajc51BNU09Sj7dPtXFxHg54cn+z\n11FEZBoq9znS1jvM2d5hqpP4SJmpirNTKctN44n9TV5HEZFpqNznyOTOVL+UO8D6ilz21nXR2DXo\ndRQRuYDKfY7UNkWPlClL7iNlplpfMfFanjqgoRmR+UblPkdqmrqpyEsnNyPF6yhxU5iVyrqKHP5D\n4+4i847KfY7UNvck9ZmpF3P3+nJere+ivmPA6ygiMoXKfQ70D49x6lx/0p+8NJ2715cBsF1DMyLz\nSsjrAAvB4ZYenINzfcM8srPO6zhxtaQwg6sqc3lifzMfu2WF13FEJEpb7nNgcmdqWW6ax0kS4+4N\nZRxo7OZMe7/XUUQkSuU+B2qaesjLSCE33T87U6d6W3Ro5kkNzYjMGyr3OTC5M9UsOedwn0llfgYb\nF+fpbFWReUTlnmCj4xEOt/T6ZtqBi7lnQxk1TT2cOqehGZH5QOWeYCfb+hkZi/jySJmpzg/NaDoC\nkXlB5Z5gNU3dgL+mHZhOeV46m5bm84SGZkTmBZV7gtU29ZAaCrC8KNPrKAl3z4YyDrf0cvxsn9dR\nRBY8lXuC1TT1sLo0m1DQ/7/qu9aVYaZpgEXmA/83joecc9Q291Dt8/H2SaW5aVy7tIAnD2jcXcRr\nKvcEauwapHtw1JdzylzMPVeVcbS1j6OtvV5HEVnQYip3M7vTzI6Y2XEze3Cax/+bmdWa2X4z+4WZ\nLY1/1OQzeWaq33emTnXnulLM0I5VEY/NOLeMmQWBh4A7gAZgl5ltc87VTlntFWCzc27AzP4r8CXg\nvYkInExqm3sIGKwpnfty92oOm0XZaVy3rIAn9zfxp7ev8u2JWyLzXSxb7luA4865k865EeBRYOvU\nFZxzzzrnJud83QFUxjdmcqpt6mFZUSbp4eS+IPalumdDOSfa+jmioRkRz8RS7hVA/ZT7DdFlF/NR\n4KnpHjCzB8xst5ntbmtriz1lkqppWjg7U6e6c10pAYMnXtXQjIhX4rpD1cw+AGwGvjzd4865h51z\nm51zm4uLi+P51PNO98AojV2Dvp92YDpFWancsKKQJw8045zzOo7IghRLuTcCi6fcr4wuew0zux34\na+Be59xwfOIlLz9eEPtS3L2+nFPn+s//HkRkbsVS7ruAVWa2zMzCwPuAbVNXMLOrga8xUexn4x8z\n+Zwv9wW45Q4TQzPBgOmoGRGPzFjuzrkx4JPA08Ah4EfOuRoz+7yZ3Rtd7ctAFvBjM9tnZtsu8uMW\njNqmHhZlp1Kcnep1FE8UZIa5cUUhT+7X0IyIF2K6zJ5zbjuw/YJln51y+/Y450p6NU3dC3ZIZtI9\nG8r49GMHONjYw/rKhbdjWcRLOkM1AYbHxjl+tm/BDslMeuvaUkIB4wlNAywy51TuCXCstY+xiFvw\nW+55GWHesKqIJzQ0IzLnVO4JsNB3pk519/oyGrsGebWh2+soIguKyj0Bapt6yAgHqSr0/xzuM3nL\n2lJSgqYrNInMMZV7AtQ29bCmLIdAQPOq5KancPOqYp7c30wkoqEZkbmico+zSCQ6h7uGZM67e0MZ\nTd1DvFLf5XUUkQVD5R5nDZ2D9A2PLfidqVPdUV1COBTQFZpE5pDKPc5qm6MXxNaW+3nZaSncckUx\n2w9oaEZkrsR0EpPErraph2DAuLI02+so88o9G8p4praVXac7uG554WXNN//+65YkIJmIP2nLPc5q\nmnpYUZxJWsrCmsN9JrevKSEjHOTxvb8155yIJIDKPc60M3V6makh7l5fxhP7mxgYGfM6jojvqdzj\nqKN/hObuIe1MvYh3baqkf2Scpw60eB1FxPdU7nF06PyZqZokazpblhWwpCCDn+xp8DqKiO+p3OOo\npil6pIy23KdlZrxrUyUvnWyno3/E6zgivqZyj6Paph7KctMoyAx7HWXeeuemSszglbpOr6OI+JrK\nPY60M3VmFXnp3LiikL11nUQ0U6RIwug49zgZGh3nRFs/b11b6nWUOXU5x6tX5KXz4vF2Tp/rZ3lx\nVgJSiYi23OPkcEsv4xHHWo23z6i6LJfUUIA9ZzQ0I5IoKvc4OdAwMSnW+so8j5PMf+FQgA2VuRxs\n6mZ4dNzrOCK+pHKPk/0N3RRmhinPTfM6SlK4Zkk+o+OOA426iIdIIqjc4+RAYzfrK3Mx0xzusVhS\nkEFRVpg9OmpGJCFU7nEwODLO0dZeNlTo5KVYmRnXLMnnTPsAbb3DXscR8R2VexzUNncTcRpvv1Sb\nluYTNOPlU+1eRxHxHR0KeZmmHgL4mxPnADh+tk9boZcgOy2F6vIc9tR1ckd1KeGQtjVE4kX/muKg\nsXOQ7NQQOWl6r7xU1y8vZGg0wv4GXYJPJJ5U7nHQ2DVIRX66dqZehqrCDBZlp7LzVIfXUUR8ReU+\nS8Nj47T1DlORl+51lKRkZly3vJDGrkHqOwa8jiPiGxpHmKWmriEcUJGvcr9cVy/O4+maFl462c7i\ngoy4/mxdzk8WKm25z1Jj1yCAttxnIS0lyLVL89nf0EXXgKYCFokHlfss1XcMkJueQnZaitdRktqN\nK4sA+M0JHRYpEg8q91mq7xhgSZyHEhai/Iww6ytyefl0B4Mjmm9GZLZU7rPQMzhK1+Bo3MeJF6o3\nripmZCzCrtM6ckZktlTus1DfOXF0h7bc46M8L50VxZm8ePwcI2MRr+OIJDWV+yzUdQwQDJhmgoyj\nN68uoXd4jJdOauxdZDZU7rNQ3zFAeW4aoaB+jfFSVZTJlSXZPH+0TWPvIrOgVrpM4xFHY9eghmQS\n4C1rSxgcHeeFY21eRxFJWir3y9TSPcTouNPO1AQoy01nQ2UuL544R8/QqNdxRJKSyv0y1WlnakLd\nsaYE52Dbviacc17HEUk6MZW7md1pZkfM7LiZPTjN4zeb2V4zGzOzd8U/5vxT3zFAdlqI3HSdvJQI\nhVmp3L6mhNrmHg429XgdRyTpzFjuZhYEHgLuAqqB+82s+oLV6oAPA4/EO+B8VdcxwOL8DM0EmUA3\nrSyiIi+dbfsa6R8e8zqOSFKJZct9C3DcOXfSOTcCPApsnbqCc+60c24/sCAOTm7tGaKjf4SqQg3J\nJFIwYLzzmkqGRiM8treB8YiGZ0RiFUu5VwD1U+43RJctWDuix2AvK8ryOIn/leam8bb1pRxu6eVz\n22o0/i4Sozmd8tfMHgAeAFiyJHmnVX35VAepoQClOnlpTtywoojuwVG+u+MMpblpfOLWlV5HEpn3\nYtlybwQWT7lfGV12yZxzDzvnNjvnNhcXF1/Oj5gXdp7qYGlhBsGAxtvnylvWlnLfxnK+/PQR/urf\nDzA0qhOcRF5PLOW+C1hlZsvMLAy8D9iW2Fjz17m+YY6f7WNZYabXURaUgBn/8O6r+MNbVvDIzjp+\n5//8RtddFXkdM5a7c24M+CTwNHAI+JFzrsbMPm9m9wKY2bVm1gC8G/iamdUkMrSXdkWv9bmsSOU+\n10LBAA/etZpvfHgzLd2D3PtPL/KBr+/k2cNnGR1fEPvyRWIW05i7c247sP2CZZ+dcnsXE8M1vrfz\nVAdpKQHKdVk9z9y2uoTn/+JWHtlZx9d/fYrf+9YuctNTuH1NCW9bX8obVhWRGgp6HVPEU7qG6iXa\neaqDTUvzCQV0cq+XstNS+NgtK/jwTVW8cPQc2w8280xtC4/tbSArNcTbryrnYzcv9zqmiGdU7peg\ne2CUwy09/OntV3gdRaJSQ0Fury7h9uoSRsYivHSynSdebeKxvQ38cFcdGyrzuHt9GZmp+lOXhUWb\nn5dg56l2nIMtywq8jiLTCIcC3HJFMV9+91X8+tO38gc3L+dAYzf/+xfHOHa21+t4InNK5X4Jnj/W\nRkY4yDVL8r2OIjNYlJ3GX961ho+/aQXp4SDffPE0zx/VFMKycKjcY+Sc41dH27hheSHhkH5tyaIs\nN51P3LqS9RW5/KymheeOnPU6ksic0EBkjE63D1DfMcgfvFE76ZJNSjDAezYvJhgwfl7bCsCbrlzk\ncSqRxFK5x2jyI/3Nq5L3zNqFLBgw3rVp4mjdn9e2UpAZZkNlnsepRBJH4wsxev5oG0sLM6jSyUtJ\nK2DGO66pYGlBBo/tbaCpa9DrSCIJo3KPwfDYOL850a6tdh8IBQK8/7olZIRDfHfHGfo0T7z4lMo9\nBntOdzI4Os4tV6jc/SA7LYUPXL+U/uExHt/boGmExZdU7jH41dE2UoLGDSsKvY4icVKRl85b107M\nE78zOl+QiJ+o3GPwn4daubaqQGc5+syNKwq5oiSL7Qeaae0Z8jqOSFyp3GdwrLWXE2393LWu1Oso\nEmdmE5fxSw0F+OGues0sKb6icp/B9gMtmMFb16rc/Sg7LYV3baqkpWeIn9e0eB1HJG40zjCDpw42\ns2lJPotydEk9v7qyNIcblhfy4ol2VpVkex1HJC605f46Tp/r53BLL3dqSMb37lxXSklOKj/Z08C5\nvmGv44jMmsr9dTx1cOJj+l3ryzxOIomWEgzw3muXMDQ6zp//+FUdHilJT+X+Op462MxVlblU5Omq\nSwtBaU4ad60r5dkjbXz7N6e9jiMyKyr3izjT3s/+hm7uXKet9oXk+uWF3LZ6EX//1GEONfd4HUfk\nsqncL+JHu+sJGNx3dbnXUWQOmRlfetcG8tJT+Nh399A1MOJ1JJHLonKfxth4hB/vbuBNVy6iLFdD\nMgtNUVYq//yBTTR3D/JHP3iF8YjG3yX5qNyn8dyRNs72DvPeaxd7HUU8smlpPp/fuo4Xjp3jiz87\n7HUckUum49yn8eiueoqyUrlttS7osJDdv2UJtU09PPz8SYqywjxw8wqvI4nETOV+gdaeIZ49cpY/\neONyUoL6YLPQfe7etXQMjPD32w+TnZbC/VuWeB1JJCYq9wv8cFc94xGnIRkBJq7g9D/fs5G+oTH+\n6t8PMDYe4YM3VHkdS2RG2jSdon94jG++eIrbVi9ima64JFHhUIB/+cAm3rx6EX/z0xr+x/ZDRLST\nVeY5lfsUP3i5js6BUT5x60qvo8g8kx4O8rUPbuaD1y/la8+f5Pe/s5u2Xk1TIPOXhmWihkbH+drz\nJ7lxRSGbluZ7HUem8cjOOs+fZ3VpNm/fUMZTB1u45cvPsnVjBevKczAz3n/dpY/HX85rupznkYVH\n5R714z0NtPUO89X3bvQ6isxjZsYNK4pYUZzFj/c08IOX61hakMFbNCW0zDMalgEGRsb452ePc/WS\nPF1KT2KyKCeNP7xlBVs3ltM5MMK/vnCS+x56kR/uqqNfF92WeUBb7sBXf3GMpu4hvnr/1ZiZ13Ek\nSQQDxnXLCrl6cT67z3RwpKWXTz92gL/5aQ03LC/k1iuLuWZpPleWZpMaCnodVxaYBV/uR1p6+bcX\nTvGezZVcW1XgdRxJQuFQgBtXFPGP91/NnjOdPHWwhV8ePsvn/qN24vFggNVl2WyozGV9RS5ry3NZ\nVZKlwpeEWtDlHok4PvN/D5CVFuLBu9Z4HUeSnJmxuaqAzVUF/M091dR3DLC/oZv9jV3sr+/mp680\n8b0dEztQQwFj5aIs0lKCVOSlU1WYSWluGsGAPjlKfCzocv/XF06y63QnX3znegoyw17HEZ9ZXJDB\n4oIM7t4wMW10JOI43d7PoeZeapu7qW3qYc+ZTvbVdwGQGgqwqiSbNaXZXFmaTUZ4Qf/zlFlasH89\nzx05yxd/dpi715fxns06G1USLxAwlhdnsbw463zhP7Kzjq6BEc50DHDibB9HWno52NhNwGBpYSbV\nZTmsr8wlJy3F4/SSbBZkuZ86188f/eAVrizN4cvv3qCdqOKpvIwweRlhrqrMI+IcjZ2DHGruoba5\nhycPNLP9QDPLizO5qjKPteW5XseVJLHgyv1Yay//5RsvkxIM8PAHN+mjr8wrAbPzwzlvWVvK2d4h\n9jd0s6++i8dfaeSnrzbx8ul2tm6s4LbVi0hL0U5Zmd6Carbdpzv46Ld3Ew4F+O5Ht7C4IMPrSCKv\na1F2GrevSePNqxfR2DXIq/Vd7K3r4umaVjLDQW6+opjbVi/ijauKKc1N8zquzCMLotxHxiJ87Vcn\n+MdfHqciP53vfETFLsnFzKjMz6AyP4PvXLuYHSfbeWJ/M7883MpTB1sAWFqYwaal+awpzeGK0myu\nLMmmJCdVw44LVEzlbmZ3Al8FgsDXnXNfuODxVOA7wCagHXivc+50fKNeuvGI4z8PtfIPTx/h2Nk+\n7t5Qxt9tXacjYyQh5mrum2DAuGllETetLMK5ddQ09bDjZDs7T3XwwrFzPL638fy6uekpVBVlUp6b\nRs/gKLnpKeRmhCe+pqeQnRYi8DrlP5fz2MzV72+hzM0zY7mbWRB4CLgDaAB2mdk251ztlNU+CnQ6\n51aa2fuALwLvTUTgmUQijoNN3Tx3pI0f7qqnsWuQyvx0vvHhzdy2usSLSCIJY2asq8hlXUUuv//G\n5QB09I9wtLWXo629HG7ppa59gCOtvdR3DDA6/tqpigMGWakhstNSyEkLkZ0e/Rq9X9PUTUlOGrnp\nKTFdvGY84ugeHKVzYITO/hE6+kfoHBiho3+UroHJ+xO3uwdHGR6LMDIWYXhsnP6RcZxzBMwIBoyg\nGYHAxO2AGQHj/BvR5PuRGRgTdyLOMR5xRNzE7UjEMT71qwMDvvLMUTLCQdJTgqSFg+Slp1CUlUpx\n9pT/ptzPSQsl5aefWLbctwDHnXMnAczsUWArMLXctwKfi97+CfBPZmbOubhPej04Mk5b7/DEH8yU\nP6CGzkGOne2ltqmHzoFRAK5bVsBn7l7DHdUlhHRVJVkgCjLDXL+8kOuXv3aepO/vOMPQaISuwYli\nnfyvd2iM3qFROgdGOdMxwMDI+Pnv+fZLZ87fDgcDZKQGyQyHyAgHiTjHWMQxNu4Yi0QYHovQPTjK\nxf7Vh0MBCjLC5GWkkJ8RZkVxFmkpAcKhAKmhICfb+giYMX6+pB3jkaml7XAOHIBzTD7NxDJ3/s1g\n8s1h8g0hOGVZxDmWFmYyNDrO4Mg4A6PjdA2McKy1l7a+4d9685vMXZyVStEFpV+YGSY7LURWaois\ntBDZqSmkhwOEAgFCQSMlGCAUsPP3gwHDRd94UoITrzuRYin3CqB+yv0G4LqLreOcGzOzbqAQOBeP\nkFN98zen+NLPjvzW8oxwkFWLsrijuoQbV0x8ZC3OTo3304skLTMjPRwkPZxOWW76RdcbG4/QOzxG\n79AYGxfn0tozTO/QKH3D4wyMjNE3PMbgyDiBgP3/8goY4VCA/IwU8jPDFGSGyc+Y+DpZ5hnh4Otu\nAXs9LOPcxKeOtt5h2vqGJ75ecLuhc4B99Z20949c9E0sFv/9vnV84Pqll/8DYjCnO1TN7AHggejd\nPjP77ZaehUNQRALeUDzmx9cE/nxdc/KafjfRT/Bavvv/9Lvz4DV98Ivwwcv/9pjeFWIp90Zg6imc\nldFl063TYGYhIJeJHauv4Zx7GHg4lmCXw8x2O+c2J+rne8GPrwn8+br0mpKDH1/TdGIZ9NkFrDKz\nZWYWBt4HbLtgnW3Ah6K33wVAXs9jAAAELklEQVT8MhHj7SIiEpsZt9yjY+ifBJ5m4lDIbzjnaszs\n88Bu59w24N+A75rZcaCDiTcAERHxSExj7s657cD2C5Z9dsrtIeDd8Y12WRI25OMhP74m8Ofr0mtK\nDn58Tb/FNHoiIuI/OvhbRMSHfFPuZnanmR0xs+Nm9qDXeWbLzBab2bNmVmtmNWb2Ka8zxYuZBc3s\nFTN7wuss8WBmeWb2EzM7bGaHzOwGrzPNlpn9afTv7qCZ/cDMknJWMjP7hpmdNbODU5YVmNkzZnYs\n+jXfy4yJ4otynzJFwl1ANXC/mVV7m2rWxoA/c85VA9cDn/DBa5r0KeCQ1yHi6KvAz5xzq4GrSPLX\nZmYVwB8Dm51z65g4kCJZD5L4FnDnBcseBH7hnFsF/CJ633d8Ue5MmSLBOTcCTE6RkLScc83Oub3R\n271MFEaFt6lmz8wqgbuBr3udJR7MLBe4mYkjxnDOjTjnurxNFRchID163koG0ORxnsvinHueiSP4\nptoKfDt6+9vAfXMaao74pdynmyIh6YtwkplVAVcDO71NEhf/C/gLIOJ1kDhZBrQB34wONX3dzDK9\nDjUbzrlG4B+AOqAZ6HbO/dzbVHFV4pxrjt5uAXw5o6Bfyt23zCwLeAz4E+dcj9d5ZsPM7gHOOuf2\neJ0ljkLANcA/O+euBvpJ8o/50THorUy8cZUDmWb2AW9TJUb0ZEtfHjLol3KPZYqEpGNmKUwU+/ed\nc497nScObgLuNbPTTAyd3WZm3/M20qw1AA3OuclPVT9houyT2e3AKedcm3NuFHgcuNHjTPHUamZl\nANGvZz3OkxB+KfdYpkhIKjYxfd6/AYecc1/xOk88OOf+0jlX6ZyrYuL/0S+dc0m9ReicawHqzezK\n6KI389rpsJNRHXC9mWVE/w7fTJLvJL7A1OlSPgT81MMsCeOLy+xdbIoEj2PN1k1MTBx3wMz2RZf9\nVfRsYZlf/gj4fnTD4iTwex7nmRXn3E4z+wmwl4mjtl4hSc/qNLMfAG8CisysAfhb4AvAj8zso8AZ\n4D3eJUwcnaEqIuJDfhmWERGRKVTuIiI+pHIXEfEhlbuIiA+p3EVEfEjlLgtWdDbHj0dvl0cP/xPx\nBR0KKQtWdM6eJ6IzH4r4irbcZSH7ArDCzPaZ2Y8n5/w2sw+b2U/N7LnonN9/63FOkUvmizNURS7T\ng8A659zGya34KY9tAdYBA8AuM3vSObd77iOKXB5tuYtM7xnnXLtzbpCJibPe4HUgkUuhcheZ3oU7\no7RzSpKKyl0Wsl4g+yKP3RG91mY6E1fqeXHuYonMnsbcZcFyzrWb2YvRHakXTmn7MhNz6VcC39N4\nuyQblbssaM6591/koQbnnC+vrSkLg4ZlRER8SCcxiYj4kLbcRUR8SOUuIuJDKncRER9SuYuI+JDK\nXUTEh1TuIiI+9P8AyBBshPmmH7UAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "zx5OdmAAc_q8", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 301 + }, + "outputId": "862c4785-cc8e-422f-a87f-be2eec76752a" + }, + "cell_type": "code", + "source": [ + "tips['percent'] = tips.tip / tips.total_bill\n", + "sns.distplot(tips['total_bill'])" + ], + "execution_count": 87, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 87 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAELCAYAAAA1AlaNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8XNWZ5//PU1pK+75YqyVveJM3\njG0IISRAwpLgkMDgkO5AhwmhEzrpzvR0w/Rr6HSmO935TSakp6Gnwy9ASAiYDFlwghOTsATC4n0R\ntjGWZVmLF+2y9qXqmT/qigghWyWrpFvL83699KLq1inVU6j81dG5554jqooxxpjY4HG7AGOMMbPH\nQt8YY2KIhb4xxsQQC31jjIkhFvrGGBNDLPSNMSaGWOgbY0wMsdA3xpgYElToi8i1InJERGpE5N4J\nHveKyNPO49tFpGLMYytE5A0ROSgi1SKSFLryjTHGTIVMdkWuiMQB7wDXAI3ATuAzqnpoTJsvAStU\n9W4R2QTcpKq3ikg8sAf4U1XdLyK5QKeq+s71enl5eVpRUTHd92WMMTFl9+7draqaP1m7+CC+1zqg\nRlVrAURkM7ARODSmzUbg687tZ4AHRUSAjwIHVHU/gKq2TfZiFRUV7Nq1K4iyjDHGjBKRE8G0C2Z4\npwRoGHO/0Tk2YRtVHQG6gFxgEaAisk1E9ojI3wRTlDHGmJkRTE9/ut//cuASoA94QUR2q+oLYxuJ\nyF3AXQDl5eUzXJIxxsSuYHr6TUDZmPulzrEJ2zjj+JlAG4G/Cl5R1VZV7QO2AmvGv4CqPqyqa1V1\nbX7+pENSxhhjLlAwob8TWCgilSKSCGwCtoxrswW43bl9M/CiBs4QbwOqRCTF+WXwId57LsAYY8ws\nmnR4R1VHROQeAgEeBzyqqgdF5BvALlXdAjwC/EhEaoB2Ar8YUNUOEfkOgV8cCmxV1edm6L0YY4yZ\nxKRTNmfb2rVr1WbvGGPM1DjnS9dO1s6uyDXGmBhioW+MMTHEQt8YY2LITM/TN1Hmye3103r+bevt\nOgxj3GQ9fWOMiSEW+sYYE0Ms9I0xJoZY6BtjTAyx0DfGmBhioW+MMTHEQt8YY2KIhb4xxsQQC31j\njIkhFvrGGBNDLPSNMSaGWOgbY0wMsQXXYsh0F0sLRlvPIPsbO1GF7JRESrKTKcxImvHXNcYEx0Lf\nhMTpswP8cv9Jjrf2Is6x0T3Z1lfm8LFlc0hKiHOrPGOMw0LfTFttaw9PvHmCOI+Hjy4tZHV5NqmJ\ncXT2D7O9to3Xj7Vx+NRZ/vTSCrdLNSbm2Zi+mZZDJ7t47LU60r0JfOnK+Vx5UQGZyQnEx3nIS/Ny\nw4pi7v7QfDwiPP56HQ3tfW6XbExMs9A3F6yle5CndzVQlJnEF6+YR3ZK4oTtynJSuOOyCkb8fu54\nbAedfUOzXKkxZpSFvrkgI34/T++qJ97j4bPr55LiPf9IYUFGEn+6oYKG9n6+snkfqnre9saYmWGh\nby7Ibw+d4WTnAJ9eU0JmckJQz6nMS+XvbljCK++0sGX/yRmu0BgzEQt9M2VNHf384Wgr6ypyWFqc\nOaXn/smGuawsy+J//OoQXX3DM1ShMeZcLPTNlG07dJrkxDiuXT5nys+N8wjfvGk5HX3D/Mtv3p6B\n6owx52Ohb6bkWEsPNc09XLko/4Ln3S8rzuTPLqvgqR31vNXUFeIKjTHnY6FvgqaqPH/wNJnJCayf\nlzut7/UXVy0kPSmeB1+sCVF1xphgBBX6InKtiBwRkRoRuXeCx70i8rTz+HYRqXCOV4hIv4jsc77+\nI7Tlm9l0+FQ3DR39XLW4gIS46fUXMpMT+LMPVPKbg6d5+/TZEFVojJnMpP9yRSQOeAi4DlgKfEZE\nlo5rdifQoaoLgAeAb4157JiqrnK+7g5R3cYFr9a0kJOayOry7JB8v89/oII0bzz/Zr19Y2ZNMN21\ndUCNqtaq6hCwGdg4rs1G4HHn9jPAVSIimKhxsrOfE219bJiXS5wnND/arJREbr9sLlurT3H0THdI\nvqcx5vyCCf0SoGHM/Ubn2IRtVHUE6AJGB30rRWSviPxeRD440QuIyF0isktEdrW0tEzpDZjZ8WZt\nGwlxwsUh6uWPuvPyeSQnxPG9V2pD+n2NMROb6RO5p4ByVV0NfA14UkQyxjdS1YdVda2qrs3Pz5/h\nksxU9Q/52N/YyaqyLJITQ7tSZk5qIp9cXcIv95+ko9eWZzBmpgUT+k1A2Zj7pc6xCduISDyQCbSp\n6qCqtgGo6m7gGLBoukWb2bX7RDvDPmXDNGfsnMvnLp3L4Iifn+xqmLyxMWZaggn9ncBCEakUkURg\nE7BlXJstwO3O7ZuBF1VVRSTfORGMiMwDFgL2d3wEUVXePN5ORW4KRZnJM/Iai+dksK4yhye2n8Dn\ntzV5jJlJk4a+M0Z/D7ANOAz8RFUPisg3RORGp9kjQK6I1BAYxhmd1nkFcEBE9hE4wXu3qraH+k2Y\nmdPQ3kd77xBr5+bM6Ot87tK5NLT38/t3mmf0dYyJdUFtoqKqW4Gt447dP+b2AHDLBM/7KfDTadZo\nXLS/sYt4j7C0+H2nYkLqY8vmUJDu5YdvnOAjiwtn9LWMiWV2Ra45J59fOdDUxeI56TO+1WFCnIdN\nl5Tx+3daONXVP6OvZUwss9A351Tb0kPv4Agry7Jm5fU+fXEpqvCzPePnCRhjQsVC35zT/sZOkhI8\nLCpMn5XXm5ubyrqKHH66p9E2WTFmhljomwkN+/wcPHmWZcWZ015nZypuvriU2pZe9jZ0ztprGhNL\nLPTNhN45083giJ+VpbMztDPquqo5JCV4eGZ346y+rjGxwkLfTOjwqbMkJ8RRmZc6q6+bnpTAtcvm\n8Mv9JxkY9s3qaxsTC4Kasmlii1+Vt093c9Gc9JAtrjbqye31k7bJSfXSPTDCP/zyEFUl792O8bb1\n5SGtx5hYYz198z4N7X30DflYPGd2TuCONy8/lTRvPAcabVzfmFCz0Dfvc/hUNx5h1mbtjOcRYXlJ\nBkdOdzNoQzzGhJSFvnmft0+fpTIvdcYvyDqfqpIsRvzK4dO2zr4xoWShb96jrWeQ5u5BFs+Z2WUX\nJjM3N4WMpHiqbeN0Y0LKQt+8x9tOz3pJkbuh7xGhqiSTd8502yweY0LIQt+8x5HT3RSke8lJTXS7\nFKpKMvH5lUOnbON0Y0LFQt+8a9jnp66t17UTuOOV5aSQlZxAdaMN8RgTKhb65l11bb2M+JX5+Wlu\nlwKAOEM8Nc099A/ZEI8xoWChb951rLmHOJFZvwr3fKpKM/GpcvCk9faNCQULffOumuYeynNTSIwP\nn49FSVYyOamJNovHmBAJn3/dxlW9gyOc7BpgQUF4DO2MGh3iOeas7W+MmR4LfQPAsZYeABaEyXj+\nWFUlmfgVDp60WTzGTJeFvgECQztJCR6Ks5LdLuV9ijKTyEtL5ECTrcVjzHRZ6BtUlZqWHublpYV8\nVc1QGB3iOd7SS0v3oNvlGBPRLPQN7b1DdPYNMz/MxvPHqirJQoFtB0+7XYoxEc1C31DX1gvAvDCa\nqjleYYaXvDQvW6tPuV2KMRHNQt9wvLWPlMQ4CtK9bpdyToEhngzerG2jtceGeIy5UBb6hrq2Xipy\nUxEJv/H8sZY7s3hsiMeYC2ehH+O6+odp7x2iIoyHdkbNyUiiMi+VX1db6BtzoSz0Y9zoeH5lbviH\nvohwfdUc3qhto713yO1yjIlIQYW+iFwrIkdEpEZE7p3gca+IPO08vl1EKsY9Xi4iPSLy16Ep24RK\nXWsv3ngPczKT3C4lKNdXFeHzqw3xGHOBJg19EYkDHgKuA5YCnxGRpeOa3Ql0qOoC4AHgW+Me/w7w\n6+mXa0LteGsvc3NTwnJ+/kSWFmUwNzfFZvEYc4GC6emvA2pUtVZVh4DNwMZxbTYCjzu3nwGuEues\noIh8EjgOHAxNySZUegdHaO4epCIChnZGBYZ4inj9WBsdNsRjzJQFE/olQMOY+43OsQnbqOoI0AXk\nikga8LfAP5zvBUTkLhHZJSK7Wlpagq3dTNOJ0fH8CDiJO9YNzhDP84dsiMeYqZrpE7lfBx5Q1Z7z\nNVLVh1V1raquzc/Pn+GSzKi6tj7iPUJJGK63cz7LijMoz0nhOZvFY8yUxQfRpgkoG3O/1Dk2UZtG\nEYkHMoE2YD1ws4j8f0AW4BeRAVV9cNqVm2mrb++jJCuZ+LjImsQlIlxXNYdHXj1OZ98QWSnu7+dr\nTKQI5l/7TmChiFSKSCKwCdgyrs0W4Hbn9s3AixrwQVWtUNUK4LvANy3ww8OIz09TZz/luSlul3JB\nbqgqYsSvPH/ojNulGBNRJg19Z4z+HmAbcBj4iaoeFJFviMiNTrNHCIzh1wBfA943rdOEl5Od/fj8\nSnlOZIZ+VUkmpdnJNovHmCkKZngHVd0KbB137P4xtweAWyb5Hl+/gPrMDDnR3gcQsaEvItxQVcSj\nrx2nq2+YzJQEt0syJiJE1mCuCZn69j6yUxJIT4rcsLyuqohhn83iMWYqLPRjkKrS0N4Xsb38UStL\nMynJSubXb1noGxMsC/0Y1Nk/zNmBEcoj6KKsiYyuxfPq0Ra6+ofdLseYiGChH4PqI3w8f6zrnSGe\n39ksHmOCYqEfg+rb+kiIE+ZkRMYia+ezqiyL4swkm8VjTJAs9GNQfXsfpdmRs8ja+QQu1Cri1aOt\nnB2wIR5jJmOhH2OGfX5OdfVHxdDOqOurihjy+Xn+oA3xGDMZC/0Yc6qzH79CWXZkrbdzPmvKsyjL\nSebZfeNXBzHGjBfUxVkmejR09ANQmh2ZPf0nt9dPeHxBfjovH2nmP14+Rkbyua89uG19+UyVZkxE\nsJ5+jGno6CMzOeG8wRiJVpVlocCBxk63SzEmrFnox5jGjn5Ko2hoZ1R+upfS7GT2NVjoG3M+Fvox\npG9whPbeoYgd2pnMqrIsTnYNcObsgNulGBO2LPRjyOh4fjSdxB1rRWkWHsF6+8ach4V+DGns6EMg\n4nbKClaaN56FBensa+jEr+p2OcaEJQv9GNLQ0Ud+uhdvQpzbpcyYVWVZdPUPU+fs/2uMeS8L/Rih\nqjR29FMWRRdlTWRJUQaJ8R721dsQjzETsdCPEQ3t/fQN+aJy5s5YifEelhVl8NbJLoZ9frfLMSbs\nWOjHiH3O/PWyKJ25M9bq8mwGhv0cOd3tdinGhB0L/RhR3dhJvEcojIKVNSczLz+V9KR4m8VjzAQs\n9GPE/sYuijKTomJlzcl4RFhZmsWR0930DY64XY4xYcVCPwb4/MrBpi5KYmBoZ9Saudn4VNlrvX1j\n3sNCPwYcb+2hd8hHaZTOz5/InIwkyrKT2VnXjtqcfWPeZaEfA/Y3dAFQEuUzd8ZbW5FDc/fgu1ci\nG2Ms9GNCdVMXKYlx5Kd73S5lVq0oySQxzsOuuna3SzEmbFjox4ADjZ0sL87EI9F/Encsb0IcK0oz\nOdDYxeCwz+1yjAkLFvpRbsTn5+DJs1SVZrpdiivWVuQw5PNzoLHL7VKMCQtBhb6IXCsiR0SkRkTu\nneBxr4g87Ty+XUQqnOPrRGSf87VfRG4KbflmMu+c6WFwxM+KGA39suxk5mQk8ebxNjuhawxBhL6I\nxAEPAdcBS4HPiMjScc3uBDpUdQHwAPAt5/hbwFpVXQVcC3xPRGyLxllU3RSYsriiNMvlStwhIqyf\nl8OprgE7oWsMwfX01wE1qlqrqkPAZmDjuDYbgced288AV4mIqGqfqo5eHZMEWFdrlh1o7CI9KZ65\nUb7Q2vmsKsvCG+/hzdo2t0sxxnXBhH4J0DDmfqNzbMI2Tsh3AbkAIrJeRA4C1cDdY34JmFlwoLGL\nqpJMPDFwJe65eOPjWF2eTXVTF209g26XY4yrZvxErqpuV9VlwCXAfSLyvsVfROQuEdklIrtaWlpm\nuqSYMTji4+3TZ2N2aGesDZU5+PzK07saJm9sTBQLJvSbgLIx90udYxO2ccbsM4H3/C2tqoeBHmD5\n+BdQ1YdVda2qrs3Pzw++enNeR053M+zTmD2JO1ZBRhLz8lL58Zv1jNiSyyaGBRP6O4GFIlIpIonA\nJmDLuDZbgNud2zcDL6qqOs+JBxCRucBioC4klZtJjU5TrCqx0Ae4bH4uTZ39PH/ojNulGOOaSUPf\nGYO/B9gGHAZ+oqoHReQbInKj0+wRIFdEaoCvAaPTOi8H9ovIPuDnwJdUtTXUb8JM7EBjJzmpiVG/\ncUqwFhdlUJ6TwvdfrXW7FGNcE9T0SVXdCmwdd+z+MbcHgFsmeN6PgB9Ns0ZzgUZP4kqMXYl7Lh4R\nPv+BCr7+y0Psre9gdXm22yUZM+vsitwo1T/k42hzj43nj3PL2jLSk+J55A/H3S7FGFdY6EepQ6e6\n8PnVZu6Mk+qN5zPryvn1W6dp6rSLtUzssdCPUqMnca2n/353XFaBgI3tm5hkoR+lqhu7KEj3xsSe\nuFNVnJXMxlUlbN7RQHvvkNvlGDOrLPSj1P7GTuvln8fdH5pH/7CPH7xe53YpxswqC/0o1DM4Qm1r\nr43nn8fCwnSuWVrI46/X0Wubp5sYYqEfhaobu1AlZtfQD9afXzmfrv5hntpR73YpxswaC/0otL8x\nsJzySuvpn9ea8mwunZfL916pZcB21jIxwkI/Ch1o7KQsJ5mc1ES3Swl7X7lqIS3dgzy53Xr7JjZY\n6Eeh/Q1d1ssP0qXzc1lfmcN//P6Y9fZNTLDQjzKtPYM0dfZb6E/BX169iObuQRvbNzHBQj/KHBgd\nzy+z0A/WaG///7xsvX0T/Wy/2iizr6ELj8Dykgy3SwlL5xq7ryrNZPvxdv7q6X18cOG593S4bX35\nTJVmzKywnn6UOdDYyaLCdFIS7ff5VMzLS2NhQRovH2mx3r6Jahb6UURV2d9gV+JeqI8um0P/sI9X\nj9qWDyZ6WehHkcaOfjr6hm08/wKVZCWzvCST12pa6bGrdE2UstCPIvsa7KKs6bpmSSEjfj8vHLYt\nFU10stCPIgcaO0mM93DRnHS3S4lY+ele1lXmsON4O6fPDrhdjjEhZ6EfRfY3dLGsOIOEOPuxTsfV\niwtJSohj64FTqKrb5RgTUpYOUWLE56e6ya7EDYUUbzxXLSmgpqWHt093u12OMSFloR8lalp66B/2\nsbLMZu6EwvrKXPLTvWytPsWI3+92OcaEjIV+lDjQMLo9ovX0QyHOI9xQVURb7xBvHGtzuxxjQsZC\nP0rsb+wkPSmeytxUt0uJGosK07moMJ0X3262KZwmaljoR4nR7RE9HnG7lKhyXdUchn1+fnvIpnCa\n6GChHwUGhn28farbTuLOgIL0JDbMy2VXXTsnO/vdLseYabPQjwKHTp1lxK82nj9DrlpcSKo3np/v\nbWLEZyd1TWSz0I8CB5wrcVfZ8gszIjkxjk+sLKaps5/HXqtzuxxjpiWo0BeRa0XkiIjUiMi9Ezzu\nFZGnnce3i0iFc/waEdktItXOfz8S2vINwP7GLgrSvczJTHK7lKi1vDiDJXPS+V+/PUJ9W5/b5Rhz\nwSYNfRGJAx4CrgOWAp8RkaXjmt0JdKjqAuAB4FvO8VbgE6paBdwO/ChUhZs/CpzEtV7+TBIRblxV\nQrzHw9/9otqu1DURK5ie/jqgRlVrVXUI2AxsHNdmI/C4c/sZ4CoREVXdq6onneMHgWQR8YaicBPQ\n2TdEbUsvq8st9GdaZnICf3vtRbx6tJWf7WlyuxxjLkgwoV8CNIy53+gcm7CNqo4AXUDuuDafBvao\n6uCFlWomsrc+MJ6/pjzb5Upiw2fXz+Xiudn8j+cO0dpjH2UTeWblRK6ILCMw5PPFczx+l4jsEpFd\nLS0ts1FS1Nh9ooM4j9jyC7PE4xH+5VNV9A6O8I1fHnK7HGOmLJjQbwLKxtwvdY5N2EZE4oFMoM25\nXwr8HPicqh6b6AVU9WFVXauqa/Pzz70/qXm/PfUdLCmy7RFn08LCdL784QVs2X+SrdWn3C7HmCkJ\nJvR3AgtFpFJEEoFNwJZxbbYQOFELcDPwoqqqiGQBzwH3quproSraBIz4/Oxv6LShHRd8+cMLWFma\nyX0/q+ZUl120ZSLHpKHvjNHfA2wDDgM/UdWDIvINEbnRafYIkCsiNcDXgNFpnfcAC4D7RWSf81UQ\n8ncRo46c6aZ3yMfFcy30Z1tCnIfvblrNsM/P157ej89vs3lMZAhqTEBVtwJbxx27f8ztAeCWCZ73\nj8A/TrNGcw577CSuqyrzUvn6J5bxNz89wP//ai13f2i+2yUZMym7IjeC7TnRQV6al9LsZLdLiVm3\nrC3l+qo5fHvbEaobu9wux5hJWehHsD31HVw8NwsRW1nTLSLCN2+qIi/Ny1c376VvyJZgNuHNpnxE\nqNaeQU609XHbunK3S4kpT26vn/D4DSuKePQPx/ncIzv41JrScz7/tvX28zLusp5+hNp9ogOANXYS\nNyzMz0/jikX57DrRwe4T7W6XY8w5WehHqJ3H20mM97Ci1C7KChdXLylkfn4qz+47SVOHTeM04clC\nP0LtqGtndVkW3vg4t0sxjjiPcOsl5aR54/nx9hP02haLJgzZmH4EGR1PHhz2Ud3YxZUXFZxzjNm4\nI80bz23ry3n4lVo276znjssqibMtLE0YsZ5+BDrR3ocCFXkpbpdiJlCancLGVcUca+m1vXVN2LHQ\nj0B1rb14BMpzLPTD1cVzc1hXmcMrR1uobrL5+yZ8WOhHoONtvRRnJdt4fpj7eFUR5TkpPLO7gYZ2\n223LhAcL/Qgz7PPT2NFPZW6q26WYScTHefiTDXNJ88bzwzfqaO8dcrskYyz0I01DRx8+v1KRZ6Ef\nCdK88dx+WQV+hcdfr6Orb9jtkkyMs9CPMHWtvQhQYT39iFGQnsRnN5TT3jvEF5/YxdCI3+2STAyz\n0I8wta29FGYkkZxo4/mRZF5eGp9aU8Kbte3c+9MDtrG6cY3N048gwz4/9W19rK/McbsUcwFWl2dT\nmp3CA797h6KsJP7rxxa7XZKJQRb6EaSurZcRv7KgIM3tUswF+spVCzjV1c9DLx0jKzmRL1wxz+2S\nTIyx0I8gx5p7iBOxk7gRTET4p5uq6B4Y4Z+2HiYjOZ5bL7GVN83ssdCPIDUtPZTlpNj8/AgX5xEe\nuHUVPYMj3PezatKTEri+qsjtskyMsBO5EaK9d4hTnQMsKLBefjRIjPfwH39yMWvKs/nq5r288k6L\n2yWZGGGhHyFeP9aKAgsK0t0uxYRIcmIcj9xxCQsL0vnij3az47itw29mnoV+hHitphVvvIeSLNsP\nN5pkJifw+OfXUZyVxB2P7WBnnQW/mVkW+hFAVXn1aCvz8tNsmd4olJ/u5akvbGBOZhJ3PLqDXRb8\nZgZZ6EeA4629NHb021TNKFaQkcTmL2ygMCOJ2x/dYVsumhljoR8BXny7GYDFhTaeH80KMpJ46q7R\n4N/57j7IxoSShX4E+N3hM1xUmE52aqLbpZgZVugEf366l9sf3WEnd03IWeiHua6+YXbWdXDVkgK3\nSzGzpDAjiae+sIHCDC+fe3Q7rx616ZwmdCz0w9zL7zTj8ytXLSl0uxQzi+ZkJvH0Fy+lMi+NO3+w\ny7ZdNCETVOiLyLUickREakTk3gke94rI087j20WkwjmeKyIviUiPiDwY2tJjwwuHm8lNTWRVWZbb\npZhZlpfmZfMXNrC0OIO7n9jNlv0n3S7JRIFJl2EQkTjgIeAaoBHYKSJbVPXQmGZ3Ah2qukBENgHf\nAm4FBoD/Dix3vswUDPv8vHykmY8um2NTNaPEk9vrp/ycjSuL6ewb5qtP7aV/aMTW6jHTEkxPfx1Q\no6q1qjoEbAY2jmuzEXjcuf0McJWIiKr2quofCIS/maJddR2cHRjhahvPj2nehDjuuKyChYVp/O1P\nq3nwxaO2Hr+5YMGEfgnQMOZ+o3NswjaqOgJ0AbmhKDCWbTt4msR4D5cvzHe7FOOyxPjAfrs3rS7h\n28+/w/3PHsTnt+A3UxcWq2yKyF3AXQDl5fanK4DPrzxXfYqPXFRAmjcsfkzGZfEeD//rlpUUZHj5\n3u9raeke5LubVpGUYKuumuAF09NvAsrG3C91jk3YRkTigUygLdgiVPVhVV2rqmvz861XC7C9to2W\n7kE+sbLY7VJMGPF4hPuuW8L9H1/KtkOn+dwjO2yzdTMlwYT+TmChiFSKSCKwCdgyrs0W4Hbn9s3A\ni2qDjtPyywMnSU2M4yOLbTzfvN/nL6/kf29azb6GTm7699c41tLjdkkmQkwa+s4Y/T3ANuAw8BNV\nPSgi3xCRG51mjwC5IlIDfA14d1qniNQB3wHuEJFGEVka4vcQdYZG/GytPs01SwttA3RzTp9YWcwT\n/3k9Xf3DfPLB13jpSLPbJZkIENRgsapuBbaOO3b/mNsDwC3neG7FNOqLSX+oaaGrf9iGdsyk1lXm\n8Ow9H+CuH+7m8z/Yyb3XLuauK+YhYlN8zcTsitwwtGXfSTKTE/igzdoxQSjNTuGZP7+U66uK+Odf\nv81fPr2PgWGf22WZMGXTQsLM2YFhth08wydXF5MYb7+TzXud7+Kuy+blMjziZ8u+k7xZ28amS8op\nzEh6T5vb1tvsuFhnqRJmfrG3if5hH59ZZ/84zdSICFdeVMAdl1XQM+jj31+uYWddu13IZd7DQj+M\nqCo/frOeqpJMVpTaWjvmwiwsTOcvPrKA8pwUfr63iR++cYKz/Tat0wRY6IeR3Sc6OHKmm8/an+Bm\nmjKSEvizD1Ty8RVF1Lb28N0X3mHH8Xb8dhVvzLMx/TDy4+31pHvjbdaOCQmPCJfNz2NRQTo/39fE\nL/Y1sftEOzeuLKEkO/mCvqedE4h81tMPEx29QzxXfYqb1pSQassumBDKS/fyny+v5OaLS2nvHeKh\nl2t4ckc9Ld2DbpdmXGDpEiYef6OOoRE/n10/1+1STBQSEdaUZ7O0KINXj7byWk0rh052saY8m6uW\nFJKZnOB2iWaWWOiHge6BYR57rY5rlhZy0Rzb/NzMnKSEOK5ZWsil83N56UgzO463s6+hkzVzs7l8\nfh556V63SzQzzEI/DDzxZj1d/cP8xUcWuF2KiRFp3ng+saKYyxfk8dLbzew50cGO4+0snpPO5Qvy\nqMxLtat6o5SFvsv6h3x8/9VM6Zf5AAANd0lEQVRaPrQo36ZpmlmXnZLIp9aUcs3SQrYfb+fN2ja+\n/4fjFGcmsX5eLitKM/HG2/pP0cRC32VP7qinrXfIevnGVelJCVy9pJAPLcpnb30nrx9r5ed7m3iu\n+hSrSrO4pDKHkqwLm/FjwouFvos6eof4txeP8oEFuaytyHG7HGNIiPOwrjKHSyqyqW/vY2ddO3vq\nO9hR105JVjIigdU9bWOfyGU/ORd9+/kjdA+McP/Hl7ldijHvISLMzU1lbm4qN1QVs68hEPz3/aya\nf/zVIa6vKuJTa0pZX5mDx2Nj/5HEQt8lbzV18eSOeu64rMJm7JiwlpwYx6Xz89gwL5clxRls3lHP\n1urT/N/djZRkJXPT6hJuWlPC/Py0Ga/lfAvOBcMuLrPQd4Xfr/z9loPkpCTyl1cvcrscY4IyOtd/\nTXk2/3Djcp4/dJqf7Wni31+u4cGXarioMJ2PLZ/Dx5YVsrQow2b/hCkLfRd875Vadp/o4Nu3rLSL\nYkxESk6MY+OqEjauKqH57AC/OnCKbQdP8+CLR/nfLxylLCeZq5cUsmFeLpdU5JCTmuh2ycZhoT/L\ndp/o4NvPH+GGFUV8ek2J2+UYM20FGUl8/vJKPn95JW09g/zu8Bl+89Zpntxez2Ov1QGwqDCNdZU5\nrCzNYkFBGvML0shIsg6PGyz0Z1FX/zBfeWovRZlJ/POnquzPXxN1ctO83HpJObdeUs7giI/qxi62\nH29nx/F2frH3JE+8+ccx+YJ0LwsK0ijJSqYgw0tBehIF6V4KMrzkpyWRn+61PaJngIX+LBkc8fHn\nT+zmzNkBfnL3pdbLMVHPGx/H2ooc1lbk8OUPw4jPT317H8daeqlp7qGmuYdjLT28crSF1p4hfBMs\n+5zmjScvLZH8dC/56V7ae4fISfVSkO6lMCOJjKR46zxNkYX+LPD5la8+tY/Xj7Xxnf+0kjXl2W6X\nZMysi4/zMC8/jXn5aVyztPA9j/n8SnvvEC3dgzR3D9DSPUhLzyCt3UO09AzS0j3AO2d6aOzoY2DY\n/+7zvPEeCtK9zM1NZV5+KhW5qSQl2F8H52OhP8NGfH7+28+r+c3B0/z3jy/lU2tK3S7JmLAT55F3\ne/NLyThnuye319MzOEJz9wDNZwdp7h7kdNcAb9a28YeaVjwCJVnJzM9PY1lxJsVZSfaXwDgSbvtn\nrl27Vnft2uV2GSHRPTDMXzy1l5ePtPCVqxYyZ9wm1caY0Bh2ho5qW3o41tJLY0cffoXslASqSjKp\nKsmiOCuJz26I3qXLRWS3qq6drJ319GdIbUsPX/rxHo429/DNm6q4bX35tC8sMcZMLCHOw/z8NObn\np3EN0Dc0wqGTZ6lu6uIPNa28crSVnNRETp8dYOOqEhYUzPyFZOHKQj/EfH7lsdeO8z+3HSEpIY7H\n7riEKxblu12WMTElJTH+3ZPIo78ADjR28dBLNfzbizVUlWSycVUxN64spiDG/gK34Z0QUVVePtLC\nt58/wsGTZ7l6SQHfvKnqPR8o6+kb466rlxSwZf9Jnt13kuqmLjwCl83PY+OqYq5dPof0CJ5VF+zw\njoX+NA2O+PjNW6d5/PU69tR3UpaTzF9/9CJuXFn8vhNIFvrGuGvs2js1zT08u6+JZ/edpL69D2+8\nh6uXFPKx5XO4YmEeWSmRdRVxSMf0ReRa4F+BOOD7qvov4x73Aj8ELgbagFtVtc557D7gTsAHfEVV\nt03hfYSlwREfbxxr4/lDgSsP23uHKM9J4R8/uZz/tLaMxHjbb96YcLegII3/8tGL+No1i9hT38mz\n+5r41YFTPFd9Co/AqrIsrryogA8tymdpcQYJcdHx73rS0BeROOAh4BqgEdgpIltU9dCYZncCHaq6\nQEQ2Ad8CbhWRpcAmYBlQDPxORBapqi/Ub2SmDI74qGvto6a5h7dPn2VnXWBP0YFhPymJcXx4cQGb\nLinjA/PzbIlZYyKQiHDx3GwunpvN339iGfsbO3n5SAu/P9LMA797h+/89h288R6WFWewojSLlWWZ\nVJVkUpqdEpHXBATT018H1KhqLYCIbAY2AmNDfyPwdef2M8CDEhjb2AhsVtVB4LiI1Djf743QlB88\nVWXEr/j8yuCIn76hEXoHffQOjtA7NEJH7zCtPYO09gwGLgzpHuR4ay8n2vvevVLQI7C0OIPb1s3l\n8oW5XDY/LyJ/6MaYicV5/riS6NeuWURbzyCvHWtjf0MnBxo7eXpnAz94vQ4AEZiTkURZTgpl2SmU\nZCWRlZJITmoiWSkJZKckkpYUjzfegzc+Dm+CB2+8h8Q4j6vXDgQT+iVAw5j7jcD6c7VR1RER6QJy\nneNvjnvujKwydvBkF3/22E58/j+G++jXiN/PBFd4T8gjkJPqJS8tkUWF6VxfVcTCwrR3p4PZWiDG\nxI7cNC83rgzM8oHAxZY1LT0cPnWW+rZ+6tv7aGjv47WaVs50DxDsKdI/hn/gF41HBBHho8sK+eZN\nVTP4jsJkyqaI3AXc5dztEZEjbtZzfPImeUDrjBcyM6x2d1jt7nhP7Z91sZBg7Ab++Y93p/r/Pagr\nz4IJ/SagbMz9UufYRG0aRSQeyCRwQjeY56KqDwMPB1NwOBCRXcGcJQ9HVrs7rHZ3WO3vF8zp6J3A\nQhGpFJFEAidmt4xrswW43bl9M/CiBuaCbgE2iYhXRCqBhcCO0JRujDFmqibt6Ttj9PcA2whM2XxU\nVQ+KyDeAXaq6BXgE+JFzoradwC8GnHY/IXDSdwT4ciTN3DHGmGgT1Ji+qm4Fto47dv+Y2wPALed4\n7j8B/zSNGsNRxAxFTcBqd4fV7g6rfZywuyLXGGPMzImOS8yMMcYExUJ/CkTkWhE5IiI1InKv2/VM\nRkQeFZFmEXlrzLEcEfmtiBx1/ht223iJSJmIvCQih0TkoIh81Tke9rUDiEiSiOwQkf1O/f/gHK8U\nke3O5+dpZ2JE2BGROBHZKyK/cu5HRN0AIlInItUisk9EdjnHIuVzkyUiz4jI2yJyWEQunYnaLfSD\nNGY5iuuApcBnnGUmwtkPgGvHHbsXeEFVFwIvOPfDzQjwX1R1KbAB+LLz/zoSagcYBD6iqiuBVcC1\nIrKBwPIkD6jqAqCDwPIl4eirwOEx9yOl7lEfVtVVY6Y7Rsrn5l+B36jqYmAlgZ9B6GtXVfsK4gu4\nFNg25v59wH1u1xVE3RXAW2PuHwGKnNtFwBG3awziPTxLYO2nSKw9BdhD4Cr2ViB+os9TuHwRuJbm\nBeAjwK8AiYS6x9RfB+SNOxb2nxsC1zYdxznPOpO1W08/eBMtRzEjS0rMsEJVPeXcPg0Unq+x20Sk\nAlgNbCeCaneGSPYBzcBvgWNAp6qOOE3C9fPzXeBvgNHdx3OJjLpHKfC8iOx2rvSHyPjcVAItwGPO\n0Nr3RSSVGajdQj+GaaD7ELbTt0QkDfgp8JeqenbsY+Feu6r6VHUVgZ7zOmCxyyVNSkQ+DjSr6m63\na5mGy1V1DYFh2C+LyBVjHwzjz008sAb4P6q6Guhl3FBOqGq30A9eUEtKRIAzIlIE4Py32eV6JiQi\nCQQC/8eq+jPncETUPpaqdgIvERgWyXKWKYHw/Px8ALhRROqAzQSGeP6V8K/7Xara5Py3Gfg5gV+4\nkfC5aQQaVXW7c/8ZAr8EQl67hX7wglmOIhKMXTLjdgLj5WHFWZb7EeCwqn5nzENhXzuAiOSLSJZz\nO5nA+YjDBML/ZqdZ2NWvqvepaqmqVhD4fL+oqp8lzOseJSKpIpI+ehv4KPAWEfC5UdXTQIOIXOQc\nuorASgahr93tExiR9AVcD7xDYHz279yuJ4h6nwJOAcMEehJ3EhijfQE4CvwOyHG7zgnqvpzAn7EH\ngH3O1/WRULtT/wpgr1P/W8D9zvF5BNaeqgH+L+B1u9bzvIcrgV9FUt1Onfudr4Oj/0Yj6HOzCtjl\nfG5+AWTPRO12Ra4xxsQQG94xxpgYYqFvjDExxELfGGNiiIW+McbEEAt9Y4yJIRb6xhgTQyz0TdRy\nlqr90iRtKkTktiC+V8XYJaonePwOEXnwHI+9Pv57iMiVo0sXGzObLPRNNMsCzhv6BFYhnTT0p0NV\nL5vJ72/MVFjom2j2L8B8Z0ON/+l8veVssnHrmDYfdNr8ldMbf1VE9jhfUwnsMhF52dnw4u9HD4pI\nTyjflDHTEdTG6MZEqHuB5aq6SkQ+DdxNYHOKPGCniLzitPlrVf04gIikANeo6oCILCSwlMXaib/9\n+6wDlgN9zvd/TlV3hfYtGTM9FvomVlwOPKWqPgIrF/4euAQ4O65dAvCgiKwCfMCiKbzGb1W1DUBE\nfua8poW+CSsW+sa8118BZwj8ReABBqbw3PELWdnCVibs2Ji+iWbdQLpz+1XgVmdHq3zgCgIrR45t\nA4Ft606pqh/4UyBuCq93jbORdTLwSeC16b4BY0LNevomaqlqm4i85kyT/DWBJWv3E+iB/42qnhaR\nNsAnIvsJbCT/78BPReRzwG8I7GAUrB0ENn4pBZ6w8XwTjmxpZWOMiSE2vGOMMTHEhneMmQIR+Rjw\nrXGHj6vqTW7UY8xU2fCOMcbEEBveMcaYGGKhb4wxMcRC3xhjYoiFvjHGxBALfWOMiSH/D1s1tvxs\nJmpDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "fthYISVbCbho", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make bivariate [relational plots](https://seaborn.pydata.org/generated/seaborn.relplot.html)" + ] + }, + { + "metadata": { + "id": "sHQePtCzc9OO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "aa9d6e13-a11b-41ae-d619-ba67de66c52f" + }, + "cell_type": "code", + "source": [ + "sns.relplot('tip', 'total_bill', data=tips, alpha=.4);" + ], + "execution_count": 91, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlwnPl95/f373n66bvRQDdAEBwC\n5Aw5Gg3nEmVqVsdYtq6sylIsZ+OdSN7VylWqmqpssus9Kis5lYqTVCrRppzdVTmpTabsXSu1tmRb\nliPFh2Kddmmc0oij0WgOjmY44oDkEMTRABp9Pv308/zyRx/TAHE0gO5+up/+vqpYBEAAzw9N9Ke/\nz+9UWmuEEEIMnuF3A4QQYlxJAAshhE8kgIUQwicSwEII4RMJYCGE8IkEsBBC+EQCWAghfCIBLIQQ\nPpEAFkIIn4T8bkC3PvzhD+uvf/3rfjdDCCG6obr5pJGpgNfW1vxughBC9NTIBLAQQgSNBLAQQvhE\nAlgIIXwiASyEED6RABZCCJ9IAAshhE8kgIUQwicSwEII4RMJYCGE8MnILEUWQohB0VqTK9Uo2XUS\nkRDZRBilulpdfCgSwEII0UFrzQu3trhya4u6pwkZivtPTfDgqYmeh7B0QQghRIdcqdYOX4C6p7ly\na4tcqdbza0kACyFEh5Jdb4dvS93TlOx6z6/V9y4IpdTrQAFwgbrW+pJSKgP8AXAWeB14XGu90e+2\nCCHEQRKRECFDbQvhkKFIRHofl4OqgN+ntX6b1vpS8/3PAt/SWt8LfKv5vhBC+C6bCHP/qQlCRqO/\nt9UHnE2Ee34tvwbhPgb8fPPtLwDfBT7jU1uEEKJNKcWDpyaYS0f7PgtiEBWwBv5SKfWMUuqJ5sdm\ntdZLzbdvA7O7faFS6gml1GWl1OXV1dUBNFUIIRohPJ2McCabYDoZ6Uv4wmAq4Me01m8opU4A31BK\nvdz5j1prrZTSu32h1vpJ4EmAS5cu7fo5QggxqvpeAWut32j+vQL8CfAosKyUmgNo/r3S73YIIcSw\n6WsAK6USSqlU623gPwJeAL4GfKr5aZ8CvtrPdgghxDDqdxfELPAnzf6TEPD7WuuvK6V+APyhUurT\nwCLweJ/bIYQQQ6evAay1/inwyC4fzwEf6Oe1hRBi2MlKOCGE8IlsxiPEkBjUDlyjJOiPiQSwGFlB\nenIOcgeuUTEOj4kEsBhJQXty7rUD11w6ynQy4nPr/DEOj4n0AYuRNMgtAwdhkDtwjYpxeEwkgMVI\nCtqTs7UDV6d+7cA1KsbhMZEAFiMpaE/OQe7ANSrG4TEZzd9WMfZaT86dfcCj+uQc5A5co2IcHhMJ\nYDGSgvjkbO3AFZQBpl4I+mMiASxGVtCfnCL4pA9YCCF8IgEshBA+kQAWQgifSAALIYRPJICFEMIn\nEsBCCOETCWAhhPCJBLAQQvhEFmKIQO2rK8QokQAec0HbV1eIUSJdEGMuaPvqCjFKJIDHXND21RVi\nlEgAj7mg7asrxCiRAB5z47DptRDDSsqcIeLHbIQg7qsrxKiQAB4Sfs5GkH11hfCHdEEMCZmNIMT4\nkQAeEjIbQYjxIwE8JGQ2ghDjRwJ4SMhsBCHGj5RXQ0JmIwgxfiSAh4jMRjgc2URIjDoJYDGSZBMh\nEQTSByxGkkzbE0EgASxGkkzbE0EgASxGkkzbE0EgASxGkkzbE0Eg5YIYSTJtTwSBBLAYWTJtT4w6\n6YIQQgifSAALIYRPJICFEMIn0gcsRpYsRRajTgJYjCRZiiyCQLogxEiSpcgiCCSAxUiSpcgiCKQL\nIiDGrT+0tRS5M4RlKbIYNfLbGgDj2B/aWoq882eWpchilEgAB8Be/aFz6ehIrxLbr6qXpcgiCAYS\nwEopE7gMvKG1/qhS6m7gS0AWeAb4pNZaRk+OaL/+0FEN4G6qelmKLEbdoAbhfg240vH+vwT+tdb6\nPLABfHpA7QikIG7NKLMcxDjoewArpU4DHwF+u/m+At4PfLn5KV8Afqnf7QiyIG7NKLMcxDgYRIn0\nb4B/AaSa72eBTa1165l0E7hrty9USj0BPAGwsLDQ52aOriD2h8osBzEO+loBK6U+CqxorZ85ytdr\nrZ/UWl/SWl+amZnpceuCpdUfeiabYDoZGenwhWBW9cNCa81a0WYxV2KtaKO1PviLRF/0u5x4D/CL\nSqlfAKLABPB5YFIpFWpWwaeBN/rcDjFigljVD4NxnLI4zPpaAWutf11rfVprfRb4OPBtrfXfA74D\n/HLz0z4FfLWf7RCjKWhV/TCQwc3h4tdS5M8A/0wpdZVGn/Dv+NQOIcaKDG4Ol4GNaGitvwt8t/n2\nT4FHB3XtcTBuS5HF0cjg5nCRRz0ApF9PdEuWcA8XCeAACOpSZNF7Mrg5XCSAA8DPpcjS9TF6ZAn3\n8JAADoBEJIRpQL7iYNc9IiGDdMzqe7+edH0IcTyyIXsAZOIW08kI11ZLvLZS4tpqielkhEzc6ut1\nZUqTEMcjFXAArJcdChWHd5/L4ngay1AUKg7rZaevt5lB3IVNiEGSAA6Akl2n7Hjt96sdH+9nEMqU\nJiGOR7ogAsCv7ShlvwYhjkdKlQDwa26nTGkS4ngkgAPAzyCUKU1CHJ0EcEBIEAoxeqQPWAghfCIB\nLIQQPpEAFkIIn0gACyGET2QQTgwd2eBHjAsJYDFUZIMfMU6kC0IMFdngR4wTCWAxVOTMMjFOpAtC\nDJXDbPAjfcVi1EkAi6HS7b4W0lcsgkACWAyVbve12PscvAhaw2rBxjAU08kw2UREQlkMJQlg0bbz\nlj4Tt1gvO0O5wc9ufcWGgp8sFfjB4gbXc2Us0+Di/CQPzae5MCeVsRg+EsACuPOWPm4ZpGIWa0Ub\n12PobvF36yuOhU2efyPP9VwZT4Nd93j2xiapWIjZCTkhWgwfmQUhgDtv6U1D8c2XlslXHGD4poPt\nthl8JhHBcT06C2O77mHXvaGfRaG1Zq1os5grsVa00Vof/EVi5EkFLIA7b+kdT1NxGuHVKhyH6by3\n3fqKtda8fDuPoWiHcCRkEAkZQ31Mkgwojq/h/a0UA7Xzlt4yFDGrEV4tw3be286+Yq01l85kyFfq\n2/qAz04nhvqYpL0HFKXbJOiG59kkfLVz+pfraT54YfaOPuBhDjKlFA/eleZkOjpSsyDkdOnxJQEs\ngN1v6f2aBXEcSilmUlFmUlG/m9I1OV16fMn/sGjbbfqXHHPUf34dqir8JwEshM/kdOnxJQEsxBCQ\nQ1XHkwRwAMkmNUKMhrEK4HEIJplTKsToGJsAHpdgGqc5pePwgiqCbWwCeFyCaVzmlPr5girBL3pl\nbAJ4XIJpXOaU+vWCOi53UmIwxmYznlYwdQpiMO22SU0Q55T6dXSRnFkneilY6bOPcZnsvnNOaTxs\nohRcXy8H6nbZr0p/XO6kxGCMTQCP02T31pzSbCI89LfLR+1P9esFdVy6eMRgjNVvzbhNdh/2gcfj\n9Kf69YI6LndSYjDGKoDHzbDfLh/3BcKPF9RxupMS/ScBHGDDfrt83BcIv6aDjdudlOif4Xgmir4Y\n9tvl47xAyHQwEQQSwAE27LfLx3mBGPb+bSG6IQEccMN8u3ycF4hh798WohsSwD0my1QP56gvEMPe\nvy1EN+S3tYekX3Jwetm/LS+awi8SwD00LP2S4xAoverflhdN4ae+BrBSKgr8NRBpXuvLWuvfUErd\nDXwJyALPAJ/UWo/8YvqSXcdQkIqYOJ7GMhR23Rtov+Q4BUov+reH5UVTjKd+V8A28H6tdVEpZQHf\nU0r9BfDPgH+ttf6SUur/AD4N/Ns+t6XvEhGTuqv5wes57LpHJGRwcX6SRMQcWBuGJVAGWYW3rlW2\n6zR+bE0yanV1TRnME37qawBrrTVQbL5rNf9o4P3ArzQ//gXgvyMAAaw13C5UcVwPAMf1uF2oovUB\nX9hDwxAog6zCW9d6bblA2XF5/maeTDLCQibGhVPpA68pg3nCT/v+liml/h8agbkrrfUvHnQBpZRJ\no5vhPPC/A68Bm1rr1r6BN4G79vjaJ4AnABYWFg66lO/KNZeZVIR42GxXwIlIiHLNHVgbhiFQBlmF\nt64Vswyeu5HHrnssbVZIx0JdXXPYF6uIYDvoWfmbx72A1toF3qaUmgT+BHjrIb72SeBJgEuXLg2w\njjyaRCSEZRgkIxat5/ygw28YAmWQVXjrWo6nseuNOw9Pg133urrmsC9WEcG2bzJorf+qVxfSWm8q\npb4DvAuYVEqFmlXwaeCNXl3HT8MQfsMQKIOswlvXsgxFJGRg1z0MBZGQ0fU1h3mxigi2g7ognmf/\nLoiHD/j6GcBphm8M+BDwL4HvAL9MYybEp4CvHrLdQ8nP8Ntt0MuvQBnkC1HrWq8tF3hkPt3uA07H\nrJ5fcxym94nBUnqfESKl1Jn9vlhrvbjvN1fqYRqDbCaN44/+UGv9Pyil7qERvhngWeDva63t/b7X\npUuX9OXLl/f7lLE1jFPP/JwFoZQmEeluFsRhrjFsj7EYal39UhzUBbFvwB5Ea/1j4OIuH/8p8Ohx\nvrd407BMPes0yNv61rXo47WG8TEWo2/fQzmVUt9r/l1QSm3t/HswTRw9WmvWijaLuRJrRZv97jJ6\n8fV+HVA5TuQxFv1wUAX8WPPv1GCaM/qOe6t6lK8fhqlnQSePseiHro+lV0q9XSn1j5VS/0gpdUe3\ngmg47rHlR/n6bCLMA3dNkI6FiFoG6ViIB+6Suay91BrsCxmNF8GjDiwe9+5IBEtXL99Kqf8W+LvA\nV5of+l2l1B9prf/HvrVsRB13DuxRv97zNCuFKkXbJRkxWcjEj/YDiF31YoaLDOSJnbq9f/p7wCNa\n6yqAUupzwI8ACeAdjnurepSvz5VqXFkqEAmFiIQan3dlqcDcZEwGiHrouAOLMpAnduq2C+IWEO14\nP0JAFk/02nFvVY/y9TJANBrk/0nsdNBCjN+isRAjD7yolPpG8/0PAU/3v3mj57i3qkf5ehkgGg3y\n/yR2Ouh/vrXy4Rka+zi0fLcvrQmAXixAOOytrp9LoD3P4/p6hY1yjal4mIVMDMPoemx3rAzDUnUx\nXA6ahvaFbr6JUuqPtdb/aW+aNLr8GmTxawm053l85yerfPOlZSqOR8wy+OCFWd5338xAQnjUlgYP\nwz4dYrj06t7nnh59n5Hm5yDLzqrZ8zwWc+W+VqbX1yvt8AWoOB7ffGmZczNJzk4nenqtnUZ1RoFs\n/CM69SqAZTIjw7EZOgyuMt0o19rh21JxPDbKNc7S3wCWGQUiCKSzrodagyyd/Bhk2asyvb5e2fZ5\nx10UMBUPE7O2/wrFLIOpeP/7NGVGgQiCXgXw8N7zHcFRg6lXq6WOa7/KtKV1C//tKys8dTXHt6+s\n8MKtrUOF8EImxgcvzLZDuFVpL2RivflB9jEsL3ZCHEevfls/06Pv47vj9C0OyyBLqzLtDOGdlWkv\nbuENw+B9981wbiY58FkQMqNABMFRN2RXNM7cfJjGG3/Zh7b54rjBNAyDLK3KdGcfcGdl2qv+asMw\nODud6Huf707D8mInxHEcVAF/dCCtGCLDMpB2HN1UpkFYFLDbi92oTU0T462vG7KPoiAEExxcmfbq\nFn6YAm9Up6aJ8dXtbmjvBH4LuB8I0zhiqKS1nuhj23wxLn2Lfuzu1e+wlqlpYtR0W9b9b8DHgT8C\nLgH/AHhLvxrlp3HqWxzk7l79COudn1OsOiPffSTGS9f31Vrrq0opU2vtAv9eKfUs8Ov9a5p/hmEg\nbRR021+utWYxV+a1lQIxq3F0fM09Xljv9jn3ziYxDXA7ZuCNYveRGB/d/maWlVJh4EdKqf8FWEIW\ncYyNvarRbvrLW0H51NVVXl4qEgkZPDKfJmwa1Nzdq9NuKuvdPmdxrcTZbILFXDnQ3UciOLoN4E/S\nCNz/EvinwDzwd/rVKDE89qtGu+kvbwWloRSGArvu8dyNPI+dz+Jpb9fqtJvKerfPKTsec+ko504k\nA999JIKh2wD+Ja3154Eq8N8DKKV+Dfh8vxom/NNZ8WoNL93Kt2/rd1ajB/WXt4IyEQkxNxljabOC\nXffwNHtWp91U1nt9TjwS6nn30TDN9BDB0m0Af4o7w/ZXd/nY2BvFJ2tnm+Nhk5WCzYtvNKraeNjg\n+nqFU5NRVHPFeWc1elB/+ZtBCacmo6RjITyteWR+kjPZ+K6PTTeV9aBmq8jUNtFPB62E+wTwK8Dd\nSqmvdfzTBLDez4aNotaT9bXlAqahcLXmTDbBI6fTQ7tJ+c6Aset1YqEQIbMRLqZSrBdt0rEQyYgF\nHG5ga3tQwmSs8f5e4QvdzUQZ1GwVmdom+umgZ9Hf0Bhwmwb+146PF4Af96tRoypXqvHacoGy4/Lc\njTx23SNmrVOrezx6d6YvFdNxK+6dAVO0XV5eKvLY+Sw118Wuezx0Os1W1QEOv8HQUYOym5kog5it\nEoSVkWJ4dbMSbhF4l1JqFnhH85+uaK1l378dSnadqGVwc6PCXLpxhulqwebZGxucO5Hs6gl7mEDt\nxe3xzoCJhAwMA1CQipjYdY+4ZfLuc9MoxZFCfpSn9QVlZaQYTt2uhPu7wG/SOAtOAb+llPqvtNZf\n7mPbRk4iYlKw63zvao6q4xK1TC6dnSRmmV1VTIcN1F7cHncGjEaTLztslR1+ulri1maVi/OTB3YZ\nBNm4rIwU/uj2Zfy/Ad6htV4BUErNAN8EJIA7aA031yu4XmPKgF13ubpS5K1zqa4qpsMG6mFvj3er\nrjsDZrPisF6q8Z57p3FcD8NQVOp1TqQiYxm+MF4rI8XgdRvARit8m3LIQow7lGsuJyYivG1hkhvr\nZZRSxCyT6WS0q4rpsIF6mNvj/arrVsDcWC8zNxHFrnuAIpsw2z/XOBvlLhQx3LoN4L9QSv2/wBeb\n7/9nwJ/3p0mjKxEJYZkmZ6cTzKQi2HWPZMTk3Eyiq4rpsP2Nh7k9Pqi6boXLq8vFsezvHMXpg2L0\ndfvM0sD/CTzWfP9J4J19adEI6wzEZMRiMtYIxG4rp8P2Nx7m9rib6voo/Z1BCK5BzvUNwuMlekd1\ncwaYUuqHWuu37/jYj1snYgzCpUuX9OXLlwd1uSM77hOsX0/QtaLNt6+s3FHdvv/+E0fe0DwoixS6\nfWyOKyiPl+hKV/+hBy3E+M+Bfwjco5TqnPebAp46etuC67inNBy1v/Gga2TiFvfOJlnMlTCVwvU0\n52ZTd1S3h7l+UBYpDGqub1AeL9E7B3VB/D7wF8D/DHy24+MFrbWshNvFziDMxC1eXCr0teo5qLLS\nWvPiUoFXlgvkKw6e1lycn+KBudSx2hCURQqDmusblMdL9M5BCzHyQB74xGCaM9p2C8Iz2ThLm5W+\nVj0HVVatf3c92suJF3Pl9uIQz/O4vl459MnGQVmkMKi5vkF5vETvyP98D+0WhM/e2OCudGzb5/W6\n6jmostrv3zNxi+/8ZPWOE5Tfd9/MgSHs9yKFXvWXD2qur9+Plxg+EsA9tFvQGUqx40M9qXp2bhkZ\ntwzKzptHQXReY7/K6/p6pR2+ABXH45svLXNuJsnZ6f2PmvdzkUKvB7QGMddXFnWInSSAe2i3oEvH\nLBay8fb82l5UPTvDxzRoBodD2fHuuMZ+ldeN9XI7fFsqjsdGubbnicqd/FqkMKoDWrKoQ3SSAO6h\nvYLugbkU85l4z6qeneHjeo2pVH/r7uyuG+bsV3lNxcPELGNbCMcsg6l47/fV7eX0OhnQEkEgAdxD\n+wVdL6ue3cLH9UApOJPdvWrdqw0LmRgffvAkL76Rp+ZqwqbigbvSLGRiu36fFr/nC8uAlggC+W3t\nsUHcYvYyfJRSZOIWhqGw7TpRyyITt/YNRj92bdtJBrREEEgAj6Bdw2cuBWgWc6VD3eLnSjWu3C4y\nEQszEWuE15XbReam4nuGY793beuGDGiJIJAAHkE7wyceNlkr2nz/p+vYdY9IyODsdIILcwff4pfs\nOo7nUbLr7a9NREL7hmM/d207DBnQEqNOAnhEdYbPWrHKc9fzPHtjsx2ihUqd2YkI08novt8nHjYp\nVBzsuofWUPFcPE8TD5t7fs3egdp4IdhZkUp3gRC7kwAeoL0Gro47Q2CtWGuHL4Bd93j2xiZvOzO5\nawB3Xk9pmIxb/OmPlyhWXZJRk488NIdSe2/StFugPnDXBEubVa4sFXbtF+5Hd4HsLCZGnQTwgOw1\ncPXAXOrYe0V4XmP2wlw63v5Yrmjj7VwBsks7TAOev5lnIRPHcTWmghfeyHPxzBTTyd1nQnQGatmu\n42ko2Q7LW1XiYQOtGy8Cnf3Cve4ukJ3FRBBIAA/IXgNXqUioqwGt7dWeidaNkyoSkRAzKYv5bJzv\nvLxKpeYSC5u8760zzKTCd1SJoLddT2vNK8tFzs0kcFyNAxhK7xrenVpdC0v5Ki/dyvOT243Nfh4+\nPUml5nLvbJKwafRtXu6oLsQQopMEcI/tdVu818DVRrl24IBWZ7VnKKi7mtuFKjOpCJZhcO9skkrN\nJZu0sOsmkZBB2XbRWt1RJZ6ajGJ0FIjxcIhsMkyrBYaChWycmVT321HmKw4rhSol2+WHi5u8854M\nz93I8963TPdtXq4sxBBB0NcAVkrNA/8XMEvjVI0ntdafV0plgD8AzgKvA49rrTf62ZZB2O+2eK+B\nq6l4+MAZAp3VXipi8oPXcziuRzxskoxYLOZKRC2Th09PbpvJsFa0uZ4rETIVMcvArnu8ulLgRCpK\nrVIHoFb3+Lm3zJCvODieJhkxuXQm01WItULQrnuYhkE6bpEvOwA4rkc2GenbQJssxBBB0O/f1jrw\nz7XWP1RKpYBnlFLfAH4V+JbW+nNKqc/S2Gv4M31uS9/lSjVeWy4QswwcT2MZiteWC8ylo3vOBFjI\nxCjY+88Q6Kz2nGbgAc0z58BUCo0mFQnTyk3TgI1yjb96ZZVCtY5pwKUzUyTDJtlkhJLtUvc0noaH\n5yc5kYq0uzS6HcxqhWAkZGAqRTpmMRmzODER4cREmNlUhOvr5b4MkMnMChEEfQ1grfUSsNR8u6CU\nugLcBXwM+Pnmp30B+C4BCOCyXafsuDx3I9+uRB+ZT1Nu3hbvNRPgoBkCndWe1Qw8x218fwDXa2yw\n/tJSnqLtkoyYXJhLc3WlQK5YY71UQ2vIFVf4yMMnuWc6wfkTyWPPHmiF4Eu38sxNxlgv2jx0Ok06\nGiIaDvH06+u4Hn0ZIJOFGCIIBna/ppQ6C1wEvg/MNsMZ4DaNLordvuYJ4AmAhYWF/jfymDzdmFHQ\nWaE+fzPPu89NA3svHDhohkBntWfXPS7OT3K7UG0H87kTScIhxfxUnIrjErNMLANKtToTUYt8xaHu\nahzXIxEOYTR3TzvqsUmd7X4zBB20Vhiq8Th8/1oOt7m/T78GyGQhhhh1AwlgpVQS+GPgn2ittzqf\n2FprrfaYdKq1fpLGCcxcunTp4NNDfafJJCMsbVbwdGNAK5OM7Duntht3VnvbZ0GAxzdfXN22EOPR\nu6dQNLoizs8kcHVjl7OIZVCyXaaTHa0+xpSu3UJwMVdqh2+LDJAJcae+B7BSyqIRvr+ntf5K88PL\nSqk5rfWSUmoOWOl3Ow7jqBP8k1GLhUyMdCzUDsJ0zCLRPAboOPar9l6+vXXHQowfLm7wtx84yU9X\nG/v9RkIGb52boOZ4dwxU9XpKlwyQCdGdfs+CUMDvAFe01v+q45++BnwK+Fzz76/2sx2HcZxqMJsI\nc+FUeuADQ57X6F7oVHE8plNhHn/HPNdzZQzFnich93pKlwyQCdGdfpck7wE+CTyvlPpR82P/NY3g\n/UOl1KeBReDxPreja8epBv0aGJpJRXjLbLK9n4NSEAkZzKQabT5oM/jjVKx73S3IAJkQB+v3LIjv\nAXs96z7Qz2t3a2eAlI9ZDXYzMNTrPQyyiTD3nkjy5y8ssVWtMxEN8QsPznW9GfxRK9aD7hZkgEyI\n/Y11p9xex8jvd8BlP6553Cla62WHtaLN2WyScq1OPNxYhLFedrp+0ThKxSrLgYU4nrEO4N0C5PVc\nibfMpnp6iOZB12yFVjYRPlJlXKw63Niskiva1F1NyHSwXY+S7Wxbzrzf996vYvU8j+vrFTbKNabi\nYRYyMQzDONJewkKIN411AO91tlomYfH++0/0pf9y7wEvh6V89ciV8WbRZq1gt6e/mYBuXuagqnu/\ncPY8j+/8ZLV9dH3MMvjghVned98M8bDJasHmeq7cvu5CNr7vXsJCiDeNdQDvPfhkHbn/8qBKc69r\naq2OfDtf9zwWsnF+eD3PVtXhRCrCz913gvWiTTJqobXet+reL5yvr1fa4QuN2RXffGmZczNJklGT\nk6koS5tV7LpHyFRkEhYb5Vp7tzQZeBNib2MdwEcZfNovYLvp3+1cvpuvOHi6sYxYoY88+FeyXS6/\nvsHFhUkSEZPJeJg/e+4WtzYnOZstM5+J47gupZp7R1cBsG/wb5Rr246sh0YIN0I2TMhUPHY+i+Np\nCtU6r94ukIxY1F0t+/MKcYCxDuDDDj4dFLDdDEoppXhgLkXd9drzc5c2K4RDBqbBthVkcauxuflB\nB22GDEUsbKIUTMbDXFsr4mqNaRjUPU2uVGVly+bGRuWOroKD5gBPxcPELGNbCMcsg6l4mEQkhKeh\nYLsUbYeXlwpYpoFlKKqOJwNyQhzA8LsBfmsNPp3JJtonN+xlr4DNlWrA/gsaOq2XHV5dLlKquRRs\nl7LjsbhW4mw2QdwySEVM0jGTRCTE93+6xlNXc3z7ygov3NpC6+3fH+DERIQH7krzynKB71/L8aMb\nmzx8Ot2u5HPFGqczcSyz8d9tmQYnU1GUanSJmAYUbYdcyaZoO5gG7VkfC5kYH7wwS8xqfG2rD3gh\nE2tX8yFDYdc9LLOx+VBrRd5uP7sQ4k1jXQEf1kHVYrcLGnb7PmXH41S6cX7bszc2yCbCfG8xRyYZ\n4Ww2RipicmujTL3ucToT2/FioSjbLicmIoQMg62qw831Cg+fnqRou1Qcl9lUpN1VYDUDs2S7zE/F\nmE6Eefpabtsc4ky8sXzaMAzed98M52aSd8yCANp3ECtbVa6tlajUXGqu3vNnF0K8KbDPjn4c2HhQ\nwHbbp7zX93E1LObKTETDmEYfDnZXAAAa8UlEQVTjtn+rXKM+GeGlpQJPX9tgMh7irXMTfOCtJ3jw\nrjRKKco1l5lUGNOYoOLUmYqHyVdq7TZcnJ9iabPSnttc7Wh3rlTj1ZUiC5lEexXdqytFHp6fZCbV\neEEwjMYx92dJ3PGYtO4gsokwrm70J7d+Hll+LMT+AhnA/Tqw8aCA7bZPea/vQ8dAXGvf32wywlK+\nytPXNrHrLkpZXM+Vuby4ztxkoxKOh01WizWu58q4WqPQzKVjnJtJcGqy0VXw4lJo13ZfWdrileUi\nFcel7nmEDIOY1Zhe1grggx7r1gvdyYkIc+kZSvbhNnYXYlwFMoD7tUKrm4DtZgnuXt8nV6q1K2O7\n7vHIfJqNUo2KA3bdJR23CIcMPA1F2213fSgFJ1NRbm1WWC/UsB2PhUyC5a0qhmHsuhl8Jm6RK9Wo\n1OqUbIe1Yg3Xa1TAsxMRjC5GB+RkYiGOJ5AB3M8DGw8K2G67Pnb7Pp2Vcc3VxC2T++7JcnW1wJls\nHA0oGpueJyNmu+ujZLuETMU7zk5xa7OK1rBasCnabvOFJwKobeH74lKBK7e2iITg1GSMfKWOxiNs\nmtx3MkUsdPCvxn5HMMnMByEOFsgA9ms/Wq01L7yR5/LievtooEtnMu2+2s7P2xnSALmSjWXAvSeS\nxCMm2WSYTDxMNGyiPcWzNzZx3Maii0tnMu2va00HWy7YXFsrA43d0CxD4Xmal5cK3NqsbtvvYmmz\nQt3T5AsOmUSYB05NkElYaK04mW5U1Xu1tfWz7HcEEzsCuB998kKMukAGsF/70a4VbZ66utbeFnKr\nUuepq2ucTEfb/am73rbPpQiZiitvbHErX6WuNdPJMBfnJ8kmIlyYm2B2IsLbzkzieZqZVGTbLIjW\nz1t63cFQbJsOFgubvLpSINKsaOue5tkbG9yVjjXaA6xs2WSTERayCdCNfYPjkdCBXQwHHcHUIl0V\nQuwukAHs1360uaJNxXF57uYmZdslHjF5+8IUuWJjQEtrzWKuzFNXVzFUoyKve3B5cZ27swleXy/z\n9LUNqo5LLGziac1sOsp08s0/e/28D8ylSIZN7plJ4dRdynadal2TSUTYrDjbPt9ohic0queJeJjl\nrSrnZhJUHK/9YnVwX3p3RzDJrmlC7C6QAQz+HNhYdzXPLG7wk9sFSjW3sSKs5vHOu6fwPI8Xb21x\nZSnPM4sbREIGZzIJTk3FKNoujqvb4QtQqbk8fW2dR+/O7hm8LVrrdp+u43nU6i73nkjx1rkkhYrL\nczc32oGvaBwfv5CNN3d8ayy2eO+908ylo8Q7XqwO6kvv9gimfvbJCzHKAhvAx3HU/sqK4+IBjqsb\nO5GpRtDkK3UWc2W+9fIKCihUXNbqNSo1j4mYRTJiomlsqtPSupzn3bnybafOwbCQp5iIhFhtnpq8\nuFZiImrx/M08mWSEhUyMC6fSPDCXOvZJGd0ewSRnxAmxO3kG7HCc/kpDQcRQfOShOUxT4bqaV1e2\nANXetjFmmbz9zCQ/XNxkvVTDrru8+9wJtNacn0lydbWI62kyiTDnZ1LMpA6uEBuneHjc3LDbbc4m\nrfbii7Bp8O5zWTwNj8xPciYb78lJGced9yyLNMS4kwDeobO/UqPZrDj8zdVVLEMRtQySUWvPingm\nGeVv3ZPlSz+4znrZYSpm8cs/c5qYZRALm1imQanW6GJ45z0ZQqbi594yw4N3pdFa85+83ePp13PU\n6pqpuMU7zma6ukXXGm5sVHjqao5SrU4iHOLRs1PMnY2xWalTczU1t3Fdpei6L7zf855lAE6MOwng\nHVr9lRrNrc0qq1tVaq5H3dWUHa99C79bRRwNm6yXatydTXIy7WIqxe18lYm3WMxNRrg4P8mzNzYp\n1Vzq+SoX5yeZm4yilEIpxaN3Zzh3InnokCrX6jx3c5PVgo3racq2y4tLW1xcmNr2eUe57e9VX7qc\nESfEnSSAd2j1V25WnMY2kaZqnreWYGmzQjoW2nMEv1yrM50KY5kTVB0XK2QQtQxCpkEmHuGh+TSp\njgGrs9MJsok3v8dRQ6rqeFRqLplkGNfTmIaiVveIWGa771Vu+4UYPhLAO7T6K5+6uoqnIWQaPHx6\nktXmcT923dt1BF9rzUbZ4dpqGcf1cD3Yqjpkk2GurZVwNTwwl2J2ove34bGwwcmJKM+/sUXFcQmb\niodPp5lNhblwaoKS7aB1YwVdrlST238hhoQE8A6t/spUJMTcxCbxsMnfvJajVHMbg2whY9db+Vyp\nxuJaiYdOp3l5aYuXmpuT/+xcikrN5bXlAqlIqL0Hby9DMGaFuPdEinKtTsF2CZsGpyajjao4bh3r\nrDkhRP9IAO9CqcZy3YJd57XlAvfOJtvTuNIxa9db+ZJdp+x4TMVCfPD+WR6eT2OZBtVaY0PysuPy\n9ReXmIiGex6CSkE2aXE6k8B1NYahSEYsbuWrTCYqsghCiCElAbyHzpH7sl3n3eemUUqTiOw+CyIR\nCZGOmmxU6vzB5ZtcWyuTjIT4+KOnOZUI8c2XV7l7prGf7l4heNT5x/FIo185HX1zAcR6yeFsVrNR\nrvV1EYTs8SDE0UkA76M1KLZzY5ndZBNhTqZjfOXZq1imwfkTSRzX49svr/AP3nWWTPPEjJadIai1\n5qWlLV5fK20bpLswd3CVnE2EuX8uzf/97BtUnDc3xXE9zVQ83LdFELLHgxDHIwHcI0o1BrliYZPF\nXLkxgGco7pqKEQ0ZLGRi2w7c3BmCuZLN8zfyPHtjsx3AhUqd2YnIgUuRlVJcOjNJyFCsFKrErBDV\nep3ZiRjzU1EKdn8WQcgeD0IcjwRwD8XCISo1l2wigkajUNiOy2Q8TDIW3jcE14q1dvhCY7bFszc2\neduZya72gnjpdpGrKwWurpZY2apycWGSSs0lZBo8MJfqyyII2eNBiOORAO6hWMjgnfdk+eLT11kv\nOWQSFp94dIFE2GQ+m9g3BD1P43SWyIDjel3vBXHl1hb5ap1csYZSBleWijx2PrutIu11KMoeD0Ic\njzxT9tE5wBQPmyjFvuedVeoery7nefzSfPP0Cnh1Oc/P3jtz4CKLmVSEhWyc683ui1TE5L65FFpr\n1or2vlVrqxK16157m0m77uF4uquK9KgDabLHgxDHIwG8h84BJsfzWC3YnExFCZmNvXR3G2yqOXUm\nE1F+/+nrbFXqTMRCfPjBkzj1+oHXm05G+ND9J/jJ7QI11yNqmdzOV/nRzTzWrQIP3DXBiVSEcu3O\nF4BWJRoJGRgKPP3miRj1AyrS4wykyR4PQhyPBPAeOgeYSnad67kyS5tVHjufpdA+a237YJNSBs9d\n3+BE88QKQ8Fz1zf4jx861dU1PQ35qsNG2eGNjTI/cyZD2GycjvnjG5vkKw6Op+846qhVib50K8/c\nZIz1os1DpxuzIA6qSI87kCZ7PAhxdIEP4KPeXncOMLVu7Vu39bD7YJOnNW89OYEHaK1QSmM023CQ\nXKnGlaXG0UGW6eJ6iudu5HnsfBYNfPPKMumYhV3XGArylXr7qKPtleiby47jXfy8MpAmhH8CHcDH\nub3uHGBq3dpbZuO2vsrug02WqUjFQjx7PU+17hINmVxcSBMyVbs9e70YlOw6judRsuvU6h6xsIHT\nDPxa3SVXrDEZayy08DRcz5VZLdjts+aOWonKQJoQ/gnks6wVdCtbVa7nShjNrD3M7XXnAFMiEmIh\nG+dkKopd9/YcbLIdl5+ulvjxzU3KNZd42Gwc1+O4B74YxMMmq1s2V1cLjUq7rjk5ESFqGTiuxz0z\niW0haZkGhnH8vlYZSBPCP4EL4M6gWy5Uuble4ZH5NGHToOYeblZAOhri0bszKKWJh0PbZkFk4tYd\n1Wyh5vHM9U0mYmHS8cZG6c9c3+QTNa+rAy7jEZONkoNdbxzKefd0gvMzCSKhEIaCy69vUvcaizQu\nzk8ynTx+SMpAmhD+CVwAdwZdJNSoHlt9qTXXPfD2eq9KdSGTaN7m7/050ZDBVNzidr7aPiX4ZDpK\nNGRQtuvELAPH01iGwq571Nw3XwxWCzVubVR4x9kpNisOTl3z/Wvr3H8qzWPnUxRraeLhvfcSPg4Z\nSBPCH4EL4M5BpUQkxNxkjKXNCk6Xt9e5Uo2XbuXJV5x22L10K7+t22Kvavbi/AQffuAkf/b8bYq2\nQzJi8bcfOMnsRJilfJW/eS23ba+GuGW2XwwMQ+Fpzfeu5qi7je8btUyW8hXWyw4X5ib6spewEMI/\ngQvgzkElheLUZJTppMWFUxNMJyMHBlex6nB9vcLSZqVdxd4zk2CtWG2HX3mXmQOO57FZcQibip+/\nbxrPg7hlMjsRwdXweq5EJhlhabOCXfd4/maex98x334xmE6Geeh0mleWS9Rdl6hlcunsJFXHbVfJ\nUqUKESyBC+Cdg0qWYfDw2Unum011WTEq1ot2e0VZzDJxXI/vvrzKRKyxs9iZbJy4ZVB23lw6XKu7\nrBZr3NysMhUP45kaZUCtrtms1HE9ODUZbQzK1V3QCsWbJ1RkExHum03x3nuz1FyNUmAaimhHlSyE\nCJbAPbOPO6hkKPiZM5PczjeOeJ9NRXhlpXG6BTS6G17PlXjLbIpXl4vtPuCFEym2qg6uB29sVtvf\nLx4JdWwJ2ajQ85U668UqN9bLvLJcbM+GePCuNBXH49kbGxhKkY5ZXDiV7suMBNnHVwj/BS6A4XiD\nSvGIiQZWClUqjsdGuUY6apGKvvlQuR5kEhbvv/9EO8BA871X1nj7wiQv3spTcTziEZOL81MsZGLt\nLSE3K057pVrrfLnWbIhsIsy5EwnScQvP08w0V9T1OhhlH18hhkMgA/g4tIZb+Wp7xZunNa+tFTk/\ne5Ki7aJpLIyoOB6JCCxk4iil0Fpz78kUP7m1xYlUFFdrsskwyYi5rSq/sV5mbiLangUBrZVnzq5n\nt/Wjz1f28RViOBh+N2DYlOw6NcejUHXYrNQoVB2yiTCe1mg0qwWbWCjECzfzfPvKCi/c2kJrjVKK\nmWSElaJNqVbHUI0+3hdvFciVau2qfD4Tp+K8Gb7QWHmmtdo1FHOlWl9+xr2WHwshBkcq4B0UikTY\n5PxMCoDVgo3WNPZ40JprayUqNbcdoJ3dB6+tlnhludicPWFTrcc4NRndtvBjr5VnhmJgezLI8mMh\nhoM84zporbm5UWZxvcxPbhcwDMW7z2V5y4kktbpL2DK3hS9srxzXSzbpmEW6uWeDUqDQ24Jtr0HC\nXKk2sFCU5cdCDIexDOC9ZgDkSjV+slwgX3HIJiOYhmI5XyUSMljasgmHFLFQiLCp2iHcCsmSXcd1\nPe6dTfLnzy9RrLokoyafeHSBTNzadv3dBgkHGYqy/FiI4TB2AbzfDIBW32jMCrFWLJOOWTx7Y5O7\npuKNgbea5ma1wrmZBMWaSzpmbQtJ0zRYXMvz2Plp6p5HyDDIV2zWy86B3Qg7Q7F1Asf19XJfAlKW\nHwvhv7EL4FypxmvLhW37Mry2XGAuHSURCeFpjWnA+ZkEKLDrLrbrsp6v8dpqkUK1zumpODPJCOdP\nJJhNRbi+XiYeNjk5EeFa1OKnayVcTxOzTM6HEpRtp6uj7VuhmE2EZZqYEGOgrwGslPp3wEeBFa31\ng82PZYA/AM4CrwOPa603+tmOTmW7Ttlxee5Gvr3XwyPzacp2nflMnIvzUyyulSk7LomwyQOnJri2\nWiRkGKwWaoRDBq+tFtFa42nN5cUNIqHGoNb5mTirJZvLi+tUah7JSAjLVFQd7+CGdZBpYkKMh35P\nQ/td4MM7PvZZ4Fta63uBbzXfHxhPw/M389uOf3/+Zh5PNyrQd5yd4vF3zPMzC5MsZOLEwyamMqi5\nHumoxWPnp4lZBvecSLJasNsb59Q9zUbF4cqtAq4LplLU6h5XlgoUqoeb3iXTxIQYD32tgLXWf62U\nOrvjwx8Dfr759heA7wKf6Wc7ttPtTXFcrXE9j1jYolyr43ke62WHRMQkGQmRjFqYqjGLYXXL5l13\nZ3kjX+GvXl1jfipGzfX4wFtPtAflXLexKc9MKozWjVkQGjAO2W0wStPEZEmzEEfnxzN6Vmu91Hz7\nNjC71ycqpZ4AngBYWFjoycWTUYuFTIyJaIjVok3JrjdOslgrspSvUqg4eMD3ruaYm4xxKh1hs1Jn\nrVTj7HSc713NYRmNRRerpRovLRX42fPT1FwXQ8Ejp6d48Y18YyMgU/HQ6TR3TcUO1cZRmSYmS5qF\nOB5fSyqttVZK7Xlipdb6SeBJgEuXLh18smUXsokwF06lufx6jvViDcs0eGg+Ta5Y4+WlHO8+l8Wk\nceTP0maFdCzUXGhhcXY6yfvum8EKGSQjJtlyhKXmsuWQoZibivF3Lp7i5ESEfMUhHbN4z7ksM6nD\n9duOyjQx6asW4nj8COBlpdSc1npJKTUHrAzy4q1ws0xFOhZun06RK9WoOI1DMD1P88h8uj1QNxlr\nbGl5ciLCjfVKx4bvFtOp8La9hgFOTcWPHZyjME1MTlQW4nj8COCvAZ8CPtf8+6uDbkAr3Oqubs9Q\niIQMYlbj1OOC4xE2Dd77lmnunk5wYiLaDtdu9hoe9uDslVHqqxZiGPV7GtoXaQy4TSulbgK/QSN4\n/1Ap9WlgEXi8n23Yy85+1nTM4oMXZilUHKAxW2Ihm+D+ue39mQd1DYzToNSo9FULMayU1j3pWu27\nS5cu6cuXL/f0e+4My0zcYr1cY61YO9R+vK3vU6w6bJQdFtdKlB1vLAalxukFR4hD6OpJMJb3ijtD\no3NP36W8zWvLBUxD8cpygTPZBI+cTmMYu0+Z7pwJsFmpcW21xEOn04RNg5ob/EGpUeirFmJYjV0A\n7zd1qrVMuXOlXMxap1b3ePTuzK6VXedMALvuUXE8nruR57HzWWquK4NSQog9jd2G7HtNnWpVxKah\n2uELtM9o22tj9M6ZAJGQgaEaq+taJ2rIoJQQYi9jF8D7TZ1KREK4WrfDFxqHdBpK7bkMuDUToPX2\n3GSsPZtCBqWEEPsZu9Jsv6lTmbjF/FSce08kcFxNrmgzEQ+Tjll7VrHbZwLAQibGe++dZi4dJS6D\nUkKIfYxdAO81dSoTt3jx1hbP3dxktVjDdlwunJogGTE5P7t3FbvXPr4l2x3wTyaEGDVjF8B7LfNd\nK9p86+UVrufK7U163tio8PFH5zmTTexbxco+vkKIowhkAB80N3W3qVOrBZvruXJjW0oUIcNkpWBT\nrrldh6fsjeAvmZMsRk3gAvioO3QZhsIyjW0DcJZpYBjdP4FlbwT/yM5sYhQFbhbEftPM9jOdDHNx\nfpJIqPGQREIGF+cnmU52P4Ohc0ZEi0xDG4yj/r8L4afAJcNRq9BsIsJD82lSsVD7qKKz0wmyie4r\nV9kbwT9y9yFGUeAC+Kg7dCmluDA3wezE0ffgHZV9fINIdmYToyhwXRCtKrTVFXCYKrQ1OHcmm+hq\nE55+fQ9xeMf5fxfCL4ErD6QKHU/y/y5GUeACGGSHrnEl/+9i1AQygGU+qBBiFAQugGU+qBBiVARu\nEE7mgwohRkXgAni/+aBCCDFMAhfAshpNCDEqAhfAMh9UCDEqAlcWynxQIcSoCFwAg8wHFUKMhsB1\nQQghxKiQABZCCJ9IAAshhE8kgIUQwicSwEII4RMJYCGE8IkEsBBC+EQCWAghfBLIhRiyH7AQYhQE\nLoBlP2AhxKgIXBeE7AcshBgVgQtg2Q9YCDEqAhfAsh+wEGJUBC6AZT9gIcSoCFxZKPsBCyFGReAC\nGGQ/YCHEaAhcF4QQQowKCWAhhPCJBLAQQvhEAlgIIXwiASyEED6RABZCCJ9IAAshhE8kgIUQwicS\nwEII4ROltT74s4aAUmoVWPS7HYcwDaz53YgBGrefF+RnHgdH/XnXtNYfPuiTRiaAR41S6rLW+pLf\n7RiUcft5QX7mcdDvn1e6IIQQwicSwEII4RMJ4P550u8GDNi4/bwgP/M46OvPK33AQgjhE6mAhRDC\nJxLAQgjhEwngHlJKzSulvqOUekkp9aJS6tf8btOgKKVMpdSzSqk/9bstg6CUmlRKfVkp9bJS6opS\n6l1+t6mflFL/tPk7/YJS6otKqajfbeo1pdS/U0qtKKVe6PhYRin1DaXUq82/p3p5TQng3qoD/1xr\nfQF4J/BfKKUu+NymQfk14IrfjRigzwNf11q/FXiEAP/sSqm7gH8MXNJaPwiYwMf9bVVf/C6wc/HE\nZ4Fvaa3vBb7VfL9nJIB7SGu9pLX+YfPtAo0n5V3+tqr/lFKngY8Av+13WwZBKZUG3gv8DoDWuqa1\n3vS3VX0XAmJKqRAQB2753J6e01r/NbC+48MfA77QfPsLwC/18poSwH2ilDoLXAS+729LBuLfAP8C\n8PxuyIDcDawC/77Z7fLbSqmE343qF631G8BvAteBJSCvtf5Lf1s1MLNa66Xm27eB2V5+cwngPlBK\nJYE/Bv6J1nrL7/b0k1Lqo8CK1voZv9syQCHg7cC/1VpfBEr0+NZ0mDT7PT9G44XnFJBQSv19f1s1\neLoxZ7en83YlgHtMKWXRCN/f01p/xe/2DMB7gF9USr0OfAl4v1LqP/jbpL67CdzUWrfubr5MI5CD\n6oPANa31qtbaAb4CvNvnNg3KslJqDqD590ovv7kEcA8ppRSNfsErWut/5Xd7BkFr/eta69Na67M0\nBma+rbUOdHWktb4N3FBK3df80AeAl3xsUr9dB96plIo3f8c/QIAHHXf4GvCp5tufAr7ay28uAdxb\n7wE+SaMK/FHzzy/43SjRF/8I+D2l1I+BtwH/k8/t6Ztmpf9l4IfA8zRyI3BLkpVSXwT+P+A+pdRN\npdSngc8BH1JKvUrjTuBzPb2mLEUWQgh/SAUshBA+kQAWQgifSAALIYRPJICFEMInEsBCCOETCWAx\nFpq7l/3D5tunlFJf9rtNQsg0NDEWmntz/GlzNy8hhoJUwGJcfA4411wc80etPV+VUr+qlPqqUuq7\nzT1ff8PndooxEvK7AUIMyGeBB7XWb2tVwx3/9ijwIFAGfqCU+jOt9eXBN1GMG6mAhYBvaK1zWusK\njY1mHvO7QWI8SAALcecWgzIwIgZCAliMiwKQ2uPfPtQ8+ytG48SDpwbXLDHOpA9YjAWtdU4p9VRz\n8G3nVopP09jD+TTwH6T/VwyKBLAYG1rrX9njn25qrXt61pcQ3ZAuCCGE8IksxBBCCJ9IBSyEED6R\nABZCCJ9IAAshhE8kgIUQwicSwEII4ZP/H0RkL0IP/WmBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "_Ofb17-7dbFe", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 386 + }, + "outputId": "603018cf-a7ec-443b-842a-c1562aa4c4c8" + }, + "cell_type": "code", + "source": [ + "sns.relplot('total_bill', 'percent', data=tips, alpha=.3)" + ], + "execution_count": 94, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 94 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmQo/d93/n398F9Nfqe6ek5OTMU\nD4miqBYpy97IdqwskziSd52K6WPXrjhheTfaOM46iZLdiitKJWUnVXa8aya1XFsVbza27LVjezax\nrXhjOb5im2NSlERSQw6PuWd6+kTjPp7v/vEAaHQP0I3uBvoB0N9XFYsD9APg9zQaH/ye3ymqijHG\nmMPn+F0AY4w5qiyAjTHGJxbAxhjjEwtgY4zxiQWwMcb4xALYGGN8YgFsjDE+sQA2xhifWAAbY4xP\ngn4XYK+effZZ/c3f/E2/i2GMMTuRbg4auhrw0tKS30UwxpieGLoANsaYUWEBbIwxPrEANsYYn1gA\nG2OMTyyAjTHGJxbAxhjjEwtgY4zxiQWwMcb4xALYGGN8MnRTkQeJqrJeqJAv14iHA6RjIUS6moFo\njDEWwPulqlxdzHJjJY+r4AicmoxzYTZpIWyM6Yo1QezTeqHSDF8AV+HGSp71QsXfghljhoYF8D7l\ny7Vm+Da46t1vjDHd6GsAi8izInJFRK6KyGfa/PwnRORL9f/eFJG1fpanl+LhAM62lgZHvPuNMaYb\nfWsDFpEA8ALwCeAm8JKIXFLV1xvHqOoPtRz/PwEf6ld5ei0dC3FqMv5AG3A6FvK7aMaYIdHPTrin\ngauq+g6AiHwe+BTweofjvxP4kT6Wp6dEhAuzSWZSERsFYYzZl34G8Dxwo+X2TeCZdgeKyBngHPDb\nHX7+PPA8wOnTp3tbygMQEcbjYcbjfpfEGDOMBqUT7jngl1S1bQ+Wqr6oqguqujAzM3PIRTPGmP7o\nZwDfAk613D5Zv6+d54Cf72NZjDFm4PQzgF8CLorIOREJ44Xspe0HicgjwATwX/pYFmOMGTh9C2BV\nrQKfBr4AvAH8oqq+JiKfFZFPthz6HPB5VdV2z2OMMaNKhi33FhYW9PLly34XwxhjdjKa29IbY8yo\nsAA2xhifWAAbY4xPLICNMcYnFsDGGOMTC2BjjPGJBbAxxvjEAtgYY3xiAWyMMT6xADbGGJ9YABtj\njE8sgI0xxicWwMYY4xMLYGOM8YkFsDHG+MQC2BhjfGIBbIwxPrEANsYYn1gAG2OMTyyAjTHGJxbA\nxhjjEwtgY4zxiQWwMcb4xALYGGN8YgFsjDE+sQA2xhifWAAbY4xPLICNMcYnFsDGGOMTC2BjjPGJ\nBbAxxvjEAtgYY3zS1wAWkWdF5IqIXBWRz3Q45q+IyOsi8pqI/Fw/y2OMMYMk2K8nFpEA8ALwCeAm\n8JKIXFLV11uOuQj8feDrVXVVRGb7VR5jjBk0/awBPw1cVdV3VLUMfB741LZj/jrwgqquAqjqYh/L\nY4wxA6WfATwP3Gi5fbN+X6uHgYdF5A9E5I9E5Nl2TyQiz4vIZRG5fP/+/T4V1xhjDpffnXBB4CLw\njcB3Av+niIxvP0hVX1TVBVVdmJmZOeQiGmNMf/QzgG8Bp1pun6zf1+omcElVK6r6LvAmXiAbY8zI\n62cAvwRcFJFzIhIGngMubTvmV/Fqv4jINF6TxDt9LJMxxgyMvgWwqlaBTwNfAN4AflFVXxORz4rI\nJ+uHfQFYFpHXgS8Cf0dVl/tVJmOMGSSiqn6XYU8WFhb08uXLfhfDGGN2It0c5HcnnDHGHFkWwMYY\n4xMLYGOM8YkFsDHG+MQC2BhjfGIBbIwxPrEANsYYn1gAG2OMTyyAjTHGJxbAxhjjEwtgY4zxiQWw\nMcb4xALYGGN8YgFsjDE+sQA2xhifWAAbY4xPLICNMcYnFsDGGOMTC2BjjPGJBbAxxvjEAtgYY3xi\nAWyMMT6xADbGGJ9YABtjjE8sgI0xxicWwMYY4xMLYGOM8YkFsDHG+MQC2BhjfGIBbIwxPrEANsYY\nn1gAG2OMT/oawCLyrIhcEZGrIvKZNj//PhG5LyJfqv/31/pZHmOMGSTBfj2xiASAF4BPADeBl0Tk\nkqq+vu3QX1DVT/erHMYYM6j6WQN+Griqqu+oahn4PPCpPr6eMcYMlX4G8Dxwo+X2zfp92327iHxZ\nRH5JRE61eyIReV5ELovI5fv37/ejrMYYc+j87oT7f4GzqvoE8FvAz7Y7SFVfVNUFVV2YmZk51AIa\nY0y/9DOAbwGtNdqT9fuaVHVZVUv1mz8NfLiP5THGmIHSzwB+CbgoIudEJAw8B1xqPUBE5lpufhJ4\no4/lMcaYgdK3URCqWhWRTwNfAALA51T1NRH5LHBZVS8Bf1NEPglUgRXg+/pVHmOMGTSiqn6XYU8W\nFhb08uXLfhfDGGN2It0c5HcnnDHGHFkWwMYY4xMLYGOM8YkFsDHG+MQC2BhjfGIBbIwxPrEANsYY\nn1gAG2OMTyyAjTHGJxbAxhjjEwtgY4zxiQWwMcb4xALYGGN8YgFsjDE+sQA2xhifWAAbY4xPLICN\nMcYnFsDGGOMTC2BjjPGJBbAxxvjEAtgYY3xiAWyMMT6xADbGGJ9YABtjjE8sgI0xxidBvwtwFKkq\n64UK+XKNeDhAOhZCRPwuljHmkFkAHzJV5epilhsreVwFR+DUZJwLs0kLYWOOGGuCOGTrhUozfAFc\nhRsredYLFX8LZow5dF0FsIic6+Y+s7t8udYM3wZXvfuNMUdLtzXgX25z3y/1siBHRTwcwNnW0uCI\nd78x5mjZsQ1YRB4BHgfSIvLftvxoDIj2s2CjKh0LcWoy/kAbcDoW8rtoxphDtlsn3PuAbwXGgb/U\ncv8G8Nd3e3IReRb4SSAA/LSq/miH474dr0b9EVW93EW5h5aIcGE2yUwqYqMgjDnidgxgVf014NdE\n5OtU9b/s5YlFJAC8AHwCuAm8JCKXVPX1bcelgB8E/nhPJR9iIsJ4PMx43O+SGGP81O0wtKsi8g+A\ns62PUdW/usNjngauquo7ACLyeeBTwOvbjvvHwI8Bf6fLshhjzEjoNoB/Dfg94P8Duu2unwdutNy+\nCTzTeoCIPAWcUtX/ICIdA1hEngeeBzh9+nSXL2+MMYOt2wCOq+rf6+ULi4gD/Djwfbsdq6ovAi8C\nLCws6C6HG2PMUOh2GNq/F5G/sMfnvgWcarl9sn5fQwp4P/A7IvIe8FHgkogs7PF1jDFmKHUbwD+I\nF8JFEcmIyIaIZHZ5zEvARRE5JyJh4DngUuOHqrquqtOqelZVzwJ/BHxy1EdBGGNMQ1dNEKqa2usT\nq2pVRD4NfAFvGNrnVPU1EfkscFlVL+38DMYYM9pEdfcmVfEGqX43cE5V/7GInALmVPVP+l3A7RYW\nFvTyZaskG2MGWlcD+7ttgviXwNcB31W/ncUb42uMMWafuh0F8YyqPiUirwCo6mq9XdcYY8w+dVsD\nrtRntimAiMwAbt9KZYwxR0C3Afy/Ab8CzIrIPwF+H/infSuVMcYcAd2Ogvi3IvKnwJ/Fa1z+NlV9\no68lM8aYEddVAIvIR4HXVPWF+u0xEXlGVY/MAjrGGNNr3TZB/Cu8kQ8N2fp9xhhj9qnbABZtGTCs\nqi62oacxxhxItwH8joj8TREJ1f/7QeCdfhbMGGNGXbcB/APAx/AW02ksK/l8vwpljDFHwa7NCPXx\nv9+tqs8dQnmMMebI2LUGrKo14DsPoSzGGHOkdNuR9gci8lPALwC5xp2q+nJfSmWMMUdAtwH8ZP3/\nn225T4Fv7m1xjDHm6Oh2Jtw39bsgxhhz1HQ1CkJEjonIz4jIb9RvPyYi39/fohljzGjrdhjav8bb\n2eJE/fabwN/qR4GMMeao6DaAp1X1F6kvQamqVbrfnt4YY0wb3QZwTkSm2FwP+KPAet9KZYwxR0C3\noyD+Nt6Oxg+JyB8AM8Bf7lupjDHmCOg2gF/HW5A9D2wAv4rXDmyMMWafum2C+L+AR/B2wfjfgYeB\nf9OvQhljzFHQbQ34/ar6WMvtL4rI6/0oUK+pKuuFCvlyjXg4QDoWQqSrHaONMaavug3gl0Xko6r6\nRwAi8gxwuX/F6g1V5epilhsreVwFR+DUZJwLs0kLYWOM77oN4A8Dfygi1+u3TwNXROQrgKrqE30p\n3QGtFyrN8AVwFW6s5JlJRRiPh/0tnDHmyOs2gJ/tayn6JF+uNcO3wVXv/vG4P2UyxpiGbteCuNbv\ngvRDPBzAEbaEsCPe/cYY47duR0EMpXQsxKnJOE69ubfRBpyOhfwtmDHGMOIba4oIF2aTzKQiNgrC\nGDNwRjqAwQvh8XjY2nyNMQNnpJsgjDFmkFkAG2OMT/oawCLyrIhcEZGrIvKZNj//ARH5ioh8SUR+\nX0Qea/c8xhgzivoWwPXt7F8A/jzwGPCdbQL251T1A6r6JPDPgB/vV3mMMWbQ9LMG/DRwVVXfUdUy\n8HngU60HqGqm5WaC+nrDxhhzFPRzFMQ8cKPl9k3gme0HicjfwFtvOEyHXZZF5HngeYDTp0/3vKCD\nzBYTMmZ0+d4Jp6ovqOp54O8B/2uHY15U1QVVXZiZmTncAvqosZjQy9dWef12hpevrXJ1MYuqXSgY\nMwr6GcC3gFMtt0/W7+vk88C39bE8Q6fTYkLrhYq/BTPG9EQ/A/gl4KKInBORMPAc3rZGTSJyseXm\nXwTe6mN5hs5OiwkZY4Zf39qAVbUqIp/G284+AHxOVV8Tkc8Cl1X1EvBpEfkWoAKsAt/br/IMI1tM\nyJjRJsPWnriwsKCXLw/8WvA9cdAF5UepA2+UzsUcCV39cY78WhDD7CCLCY3SbiCjdC7GtPJ9FITZ\nWWMxoRPjMcbj4a4DZ5Q68EbpXIxpZQE8okapA2+UzsWYVhbAI6rRgddqWDvwRulcjGllATyiRmk3\nkFE6F2NaWSdcDwxiD/0o7QYySudiTCsL4AMa5B76ve4GMohfJA22s4kZRRbAB9Sph34mFWE8Hva3\ncHswyF8kxowqawM+oEHpoVdV1vJlbq8VWMuX97xgjw31MubwWQ34gAZhunAvaq87fZHYZb8x/WE1\n4APqRQ/9INRebaiXMYfPasAHdNAe+kGpvTa+SLaXw4Z6GdM/FsA9cJAe+l504vWiGcSGehlz+KwJ\nwme96MTr1USF/a47YYzZH6sB+8xqr8YcXRbAPutV22uvJir0ezLGQZ5/kCeKGLMfFsA+G6Taa2uH\nYE2VUtnl2HiUizMJ0j1okjhIh6NNFDGjyAJ4AAzKNNtGh2BNlTtrRZayJa7ez5IrVpifOHjYHaTD\ncbfHWu3YDCMLYNPU6BDMl2osZUu4Cq4qpar2ZHr1QYbL7fTYdMxqx2Y42SgI09ToECxV3WbYBR0h\nHJCeTK8+yGSPnR7bj2nUB50cY0w3rAbcZ8N0adzoEMyXajgCjgjnphNAb2bFHaTDcafH3lkv9nQa\ntbU3m8NiAdxHw/hBnkmGcU6kmEqFKFZcUFA2w+4gXygH6XDc6bG9Xo9jVFa4M4PPAriP1vNlbq3m\nqdSUcMALmUH9IG//sgg5MFsvZyISbNZSD/qFsluH404B3+mxvZ5GbQsTmcNiAdwnqspb93N86cY6\nVVcJOt7l/Fg0OJAf5O21vooL9zIl5ifizS+LtXy5rzXD/V4x9Hoo3yCscGeOBuuE65P1QoV7a0Xc\neudN1VXeXcohe/gg77cjqN3jdnuubqZEtx4TEO+/Sk1Zzvamk+ognWm9nEZte9CZw2I14D7Jl2tE\nwg7TyciWIV2pWKirD/J+a4PtHndyIoYjcH2l0PG5uqn1NY4RIFOs8u5SDleVStXFVT1w2/agXPoP\n0uQYM9osgPskHg4QEGFuPEo6FqJUdYmHAjw0nejqg7zfjqDG4wSvhlquKe/ezxEPOzs+VzftqI1j\nbq3mm+E7NxYlHgnw3lKOeDjAifHYSFz6D8rkGDPaLID7pDXQEpEgqagXaN22le63Npgv17bUUKuu\nUqrUePzEGOlYiJq2f65uan2NY0BZ3CiTCDtUXOXLN7127kyxyhMn082a8F5HTNiaxOaosQDuk4Ne\nxu6lNtgadKpK0KEZvt7jhBuredKx9I7P1U2tT0SYSUWZThYQ4NV6+DriTdpo1KzTsdCem1Ds0t8c\nNRbAfXSQy9hua4Pb23xFFFUIOlB1vcedmIji4HUEikjXNctONdh0LMTpyRjvLucp11xCAWE6ESYe\nCWzpuNtPE4pd+pujxAJ4QHVbG3ywzRdUXR45nmIlXyUSdIhHAjgoZ6cSFKsu4/EQc+lox5plY8TE\nO0s5NgoVtGUyhtcEATWFYqVGplgmFAgwmfBCtVGzHpQOtV4aplmNZjhYAA+wTrXB1iDIlSqAkinW\nms0OQQfeP5/mWCpMxfVqxZFgkJur+fr43iL5cq1tc0CjRn3lzgZvLm4QDTqcm04QDDjcWs0zkwyj\nwOX3VlnNlTieivH2Upa3qi6T8TCPzI01a9aD0qHWC8M4q9EMvr4GsIg8C/wkEAB+WlV/dNvP/zbw\n14AqcB/4q6p6rZ9lGnaqylv3NnjzbpZ8pUY6GiRbqXJjOU/V9Y5xFQrlGo+emWh2hl29t0HF9WrJ\nQHPUwlw6SqZYbdbqUG/ls3ylRtDxFuH5/bfuc342iasQjwSZige5l/HWXwgH4PG5MRR4aCbRDKRB\n6lDrRc3VpiebfuhbAItIAHgB+ARwE3hJRC6p6usth70CLKhqXkT+B+CfAd/RrzINmm6DofU413W5\n/N4KK7ky0VCAXLFMOhGhVKkRCHgdd9PJCNFwABHhxHiM22uFZvi2jo7Il6tMJSOUqjVUvbbhdDxE\nQCAScpgdi/C12xmCwQCv3lynprCaq/D0Q5NEgw75iku5ppQLVYKOEA0Ft0wbbm1CiYUcBLizXnzg\nXPtxab/5nFXub5RYypaa57ifmusoNqmYnR1Gk1M/a8BPA1dV9R0AEfk88CmgGcCq+sWW4/8I+J4+\nlmegbNl9wnVZL1aZSUa4MJtgLh3DcZwHjnMViuUqd9YLRENBvno7Q6WmnJuKkogEGY+HcVUZiwW3\nXO63LuX47lIOR2AiHiQcdHjl+iqnJ+MkIiEEeHcxx51MgVLVpVCuMp4I89rtdaKhIGPREOLAzdU8\nD80k+NrdbHOa9fmZBFOJrbXbRhNKY73e26veOVRcl+lkmOPpKLFQkOVsacdJIgf53QrwlVvrjMfD\nzI1HcVX2VXP1c4yytT0fvsNqcupnAM8DN1pu3wSe2eH47wd+o90PROR54HmA06dP96p8vmruPuG6\nvHF3g7cXs4gIT55Kc2E2xcfOT+E4TttL36qrvH0/S6U+qHclW+HcTITVfJlSVVnLV3jqzARjUe/t\nbTQHvFcP34Aj3MsUSUaCBByhVHMZd7wZbjfX8kTDASo1JREJcW+9yIXZFNWaSyQUwBEhHQsylYzw\n+LyDIEQCMDceI90h0NYLFW6v5lkrVHl3KcviRplytcrHH54l5AgVV0lGgs3zO+ilfevvrOYq5Zqy\nlC2RjoVIRIL7qrn61aTiV9vzUQ/9w2pyGohOOBH5HmAB+Hi7n6vqi8CLAAsLCwO3MvZ+/lgbl7Qr\n+QpvL2br7bfe7hMvX1vl3HSC+Yn4A5e+AQeOpaLcWC16twXGE2E2imWeODVJzfVWXqvVXDLFanNd\nhAuzSeLhAMVqjat3N5iIh/nKrTVeub5OMhri689P8tB0gqAjHB+LIgilao1EJEDQEVbzVRyBubEo\nrsLd+hq8VVe5MJvgoZnOgdA4h3eXcuRKNTJFb2TFW4tZLswkeWcpxwdPbo5RPuilfevvLBwQgo54\nE1KqLonI/mqufo1R9qPt2TocD6/JqZ8BfAs41XL7ZP2+LUTkW4D/Bfi4qpb6WJ6+aPyxNi6vq65y\nYjzKo3NjzWaEdhqXtLlStdl5FgkKIQfWqy6LmSInxmMPXPqGQwEm4xEePZYkV/HG4MbDAWo1l5AD\ntZaOuO0z3U6Mx7ibKbKYKfLO/SzXlvNMJSNUqjXevJsjFQ1ydiZBPBTAVSERCTKVCDGRCPPuUoGg\nI4zFgtxeKzI7FkHwPozL2XIz7Duda9VVqq5SqXnjlAP1NSVUvDUyyjUlUG8nOeilfTwcQETJFmvU\nXJcT4zHurOeJBJ0D1Vz9GKPsR9vzKHU47rcmf1hNTv0M4JeAiyJyDi94nwO+q/UAEfkQ8H8Az6rq\nYh/L0jdbL6+9zq037mSousoTJ8c7vtmNS9qVfJmg4zULnJ6I87W7G1RcZTFT4upilvMziS2XvgER\nHj2R5MxMjKuL+fqWQZAruXz55jql2mabbDy09QtARHhoOsGd1QK3VovEwyGiIaFUC5AtN4a1VVEX\nkpFgfexvkvMzCR6aSZErVVnNlbm/USJfqhGPBBBk10BIx0KcGI/yxp0MoYAQdGA2FSXoCKlIkGNj\nUSJBaU4cOeil/Vg0SCQY4LXlDOWakgw7fPjMJGen4iSjob51AO7lubo91o+251HpcDxITf6wmpz6\nFsCqWhWRTwNfwBuG9jlVfU1EPgtcVtVLwD8HksD/U/+FXFfVT/arTP3QenndmPpbrilXF3OcmUp0\nrDGI1EMyKCQjQW6t5LlyzwvfD52cIBTc7Cxqd+kLcGYq2RwZ8btv3qdSf31XvXUZ2rXVjMfDnJtJ\n8O5yzhsZAJQqVcbjIeLhIDPJKPlSjdOT8fpICm/kxFg02BxNcLu+zOZ0MsLceJRAfVeKTkSER+fG\nqLrKW4tZ5saj5EtVTk0mCAgsnJ0gGQmwlq/uOkmkG5lilVrN5QPzacq1zSaZZDS05f3o5aX2Xp5r\nL8f60fY8SIsiHcRBavKH1eTU1zZgVf114Ne33fcPW/79Lf18/cPQennd4HV0wf2NYsc3T1V5+36O\nGyt54kGHczNJgkGHmWSYaNBho1ijVHW5v1EkHQs1RxOsFypbhnKNx8PcXiswMxYlEfFWXWvMfitU\nXCa2lXczDF2ioQDXlvMEHHj42BizqQgCRMIOa8UK6y0f+qlkmLVcGVU4N53g3SUvwCfjYd43l9oS\nCO1qd47j8MTJcc5MJciVqvWyQCwUYDlb4srdLK7uPEmkW/lyjUq9KSbgCDX1Zu5tr8H18lJ7L8+1\nl2P9aHsepDHcB3HQmvxhNDkNRCfcMGu9vC7XtBlW+VKVW6sFqm6hbQ2ndbsiCQgBgfV8hXQsxFLW\nq2k6IsymwoBXW24E9vZaU2Ppy0QkSCLilctbE0K5vVZ44EPrheEEpycT3FotsJgpEXRoBlWp7LLh\nVLYExNXFHJNxbzW1sWiQD53yapezqQgzye5rld4f9Obxa/lycwha47UO2t7YbQ2ul5fae3muvb7u\nYbc9j8qiSMNQk7cA3kE37XStl9dXF3MEHS9MFdAOodJuu6KLswnOTSfIFCvN8D0/k8DBm7XmANdX\ncqhK8zmvr+TqHU5e6DcmG3hTjwO8dS/DeqHWHKnwgfl0s2NQRJhIeOWJhLYG5rHxKNlCpTlrrlxT\n4iGnvuuFd+daocq15Rz5coLlXLkZsnutVfajvbHbGlwvP6B7ea5hCIZRWBRpGGryFsAd7KWdrvXy\nOl+uUSjXuL6co6pKvlRrNgvkSt5IgXbbFb21mOPDp9Ocn01yY6VANChkS1Verod0tlRlo1hlbtwb\nIqYot1eLuK73YQk5cHws2gy5t+5luL5SbO7GcWvV67B77ES67Rq/rbUdVHn1xtqWjsVEWHj8RJpa\nfbTCrZUcyWiwudB7I2T3GqjdhNFeO8q6rcH14gPaKFuuVOXYWISljRKVXToThyEYRsEw1OQtgDvY\na02utcawli/z3nKWO2ubARgOCBdmE5wYj3XcrigeDXEiHW2OsX1rMddcazcadLiRLzcnE+RLNdby\nZU5NxKjp1k008+Ua64Va87nBq8XeXitu2WSzXdnBC5XpVKS51m80KCTCYV69sUowEGStUCYWDFAr\nVbiz7jRnmDX+yPdSu9stjPbTUdYaigD5crX5Wrt9+ezlA7p9XY5YyOH0VIyZVJR4ONjxuYYhGEbF\noNfkLYA7OMilcToWYjoZ4bVbGVz1Fio/M5VgaaPEeqGyZbuisViQTKFCMOBwPBVhrGXWWiN8p5MR\nIiGHM1OJZmdf1VXOTCXalq/RMdha/qDjTUjopvyNP9ozUwlKVZdUJMCVexuoCquFEqlIkBureR6d\nG2vOMEtFg80g2a1257oud9aLrOUrjMdDPDQd7xhGe/0ibAT29ZUct1aLrOXL3miUWJATEw8G90E+\noGv5Mi+9t9pcmMipjxj5Cx/oPPqlF69rRocFcAcHaafzdo2IbBkGBV4tNV+uMZeOcmoyzvWVHJlC\nlbV8hTNTCa4uZslXXG94WjhApugtchOPBKgpRALCxWNJQgEhFkry9mK22dvfWr50LMSF2QS3VvOU\n6+OCz00n9tTO6G2jFCRRn85bdQFVAuI1f6SiIXKlKsu5MsfGKjxaHwmxW+3OdV3+8O1lXr622vzd\nPHVmgo+dn+pJG3EjsLPFzSuAd+sz7Xo9mWApW2qGb6Nc9zLeVc9EozfUmB1YAHdw0Ha6eNibyNAY\nBgWbAdk6Ndh14cxkDAEKVW2uuXtiPMYT9dCoqTcxYywaZClTxMVbtWw8EWIpW96yylcj7D4wnybo\nCLfXigQdqe+M0X35W88/EBDCASEZDbGaK7GULbOer3BsLEI8HGAiHqZS8bZDEpEd1zF+936Oy++u\neL8b8cL9leurTMRDzE/EH7gU3+sXYSOwS1W3+ZiquznTrpeTCRxxcESabfnefYIjnWdAGtPKAriD\ng7bT7RbgjaAKOsJqocKVOxsUKi6xkEMiEmTh7GTz9e9vFAk5ggOsFja3g3/seIpTU16bbiKytc3R\ncRweO5Futgnvtfxbz7/KZDLM0kaRmqtcXy4wMxbh9dsZplIR/uSdZbLzY2QrNR4+lmquP9HaeRYL\nOSxnS3zlVoa37ucICJwYr68rsVTkRDrOvUzpgfbdvX4RNgK7Me240QQUDghKb0caTCVCzeGBnVaF\nO+qL2pidWQDv4CDtdN0EeDzk4DhwbSlPVZWNUoXVvMvrdzJcmEkgjtPcX63iKkGRlhl3ymq+TEWV\nc1Ptg+Wg7Ywiwlg0SK5UJeQCqzdOAAAe7ElEQVQ4nJ1Kcjwd4eR4jJureUIBh3ypSjDg8Mr1Na4v\nF7ifKfO+uVQzmG6v5oH6bs0C49EAibCQKytrhQrFco1AQB4YTdFoJtjrF2EjsK+v5JhORpptwHu9\nAuhGOh7m0bkUqWiQUlWJBIWTE5urwtmiNmY3FsB9tFMAqiqLGyXeuJPhD99eIhBweN+xJIlwgFyx\nwmt3NijXL6ODDixmSkwlw83wLZRrrBQq/PF7q5wcjzE3HuMjZye4eCzVsw93u/ba98+PEXTgTqbE\nvUyJuXSUK/c2mB+Pepf4lRrXV7xxy9eWc1RrLm/czvDG3Sz5SpVveniGJ+Yn+PKtVar1tpkPnZwg\nEnLqo0G8BYpUtT4e2mEqESK9bQLHTr/zRmA/crwKKMWKW5863duFZESE87MpplPRnnQgmqPHAviQ\nNS5Jl7Nl3rybJRkJMpf2wisacpgbjxFyhDtrhWZHjtZnn0n9crpQdplJRnhzcYNkyGE6GSJbrPDy\n9VXiIWF+cn81rO2jE8Bthi94Q9m+cmudjz88w8mJGMvZEgFHmElGGI+FEPFWdLu1WiRTn6hxYyVP\nOh4iEXFYLbh8+dY6Hzk7ziceO06xvgxcIuytvgbeDL7VfJnfubLOvUyxOSHl0bkU52e7+3LZXAg+\ntKUGemOl0PMa6E5fst10IFoTxdFmAXyIWi9JKzXlzcUNUtEAZyZjZEo1Xr2ZYTlbZjoZ4ey0t1BN\nY3pwMhLkzFScyVSEt+5tkCtViQcdxpNhLr16h7sbRcYiIco15cMnKzw6P75lOczdPuiN2u6fXlsh\nW6whjrfXWzjg7bQMSqniki0qNRe+7YNzPH5ijEKpxmu316m4ymQiggKr+RKhgHBnvcCd9SJX7m2w\ncGaSTKHq1XDL3oy6R4+ncBVurhaAxpoTEW4u55ujC9z6mhmpaJDpVHRLzbHdOQHN+1S1uUwoHH4N\ndLcOxIOMcbbAHg0WwH3S7oPSekkaDgiOCJlilVMTcW68u8JkIsz8eIyxWIg76wVmkptDmRSYTEY4\nN5PkRDrKlTsbRILCpVdvc3ejSLmqlIMur1xfJRUJUlX4wEkvhLv5oN9ZL/Kn11a4lyk3F0xfy5V4\nfD5NtlRiJV8lU6wQCQi5UoXlfIiPnJ0kU6iQiIW4t1YkEnbIFKrMpePcy+SJh0OEg0XKNUVdl8fm\nx4iHApyZivHYiRQn6tXA2bHNS/h8udpcmKfBW0xdH6g5tp6TiDKbjFCsudxbKzXLEnS8duxaSwhv\nHwnRr1DbrQNxP2Oc317c4OZqYUubc7dXBmbwWAD3QafAS0QCW4KlsapYwHGYSUYZT3gz4eLhAHfW\nHaquN6xr+xCzuXSU9XyZ9WKFag3UhVQkwPmZJF+9uc58OsqNlTz3s2UenUsRDwV2/aCv5Stki5u7\nVQAUK0o6EuZmrcBytkTIcfjwQ5NofefkmVSE8USEhXiY9dnNWufl91YoVSEVDfDQdIqpeJixRIR3\nFrPMT8RIZ8vkSl7nYrtL+Hhoa80x6AiR4NYlL1vDqzEt+8ZKno1ClYrrLZU5FgtybTnHB+Y3d9to\nN825X6G2Wwfinsc458u8cWdjy6iLjWKV6aT3PpjhYwHcB51qNu87nmoGS2NVsSdPpZlJRYgEA0TC\nTnOXifmJKI8cH0Pqa+02PriNZSzvZIokwg7nZuJMJELEwwHevJv1lsIMCC/fWOWN2xs8c36CkxPx\n+qacLU0O2z7o43Fvw82WIa2EAsJUMsTHH57lvSVvoaFMocy1FfXW9K0/vjVEVZWz0wmuLecp12Ai\nHuKZhya4cneDD5+dYCoRbpY14DhMJcNbQikdC/Hw8STrxQr3N4oERDg1FWc2FWnucQdbw6tcqVGp\n1QgFAkTCAbRcq8/Q8zYqbfdF1nyv+hxqm+3RDy4lutcxzsu5SrOcoORKNb58c52HZhKk60P/zHCx\nAO6DTjUbYMslqQInJ+Kcn0kQDga4vpIjW6w2Vy+bS0cf2NaoEe6qQiTo8KFTk3zxjXvkSjVc4Jve\nN8vb9zYolmtE497mml+9tc7759PNNmXY/KCrKuv5MuVKlSfm09zPFL2908IBnjk3TbFSIxKCpWy5\nOQ06W/bWAe409G37JBBUSUa9NSwUbz+5xWyJGkq1tnWlNhHh4rEU08kwV+5tsJQt4wB3MkVCwQAX\nZpPAZrNBNCisFSp85VaGaMihVnM5M5Uk6ECpqh2/yBq2hlpjw9Mcj51I7xrA3TZddLoi2r7byW5j\nnF1165M+lJVchUyxggPcXi8Srv9uLIS3GvQ2cwvgA+j05naq2SQiQU6Mx9pekp6fSVCu1rjteqG1\nlivz9v1c80PVeK1bqwUEbxZZxRXOTEb57q87BTjcXM2TzVf4cq5CLOStN7GeL1OuKcsbJVKxIJGA\nkC27nJ1OkIoEeHtxgzfubHBjJU8yGuDJ0+OUq0o6GmQs5jCZipIrVJrNJd76FMKx8WjHoNg6CaTK\n3fUCG7crrOQqVKouLi5uTVnaKLKarz6wUpuI4DgOhbJLLBSs/669q4jpZJilbJnb9cfcz5a4ej+L\nq8p4LFSfepzlsRNee/PpSW8BpE4fus1Qa71PcdVte3zre99tB9pObb17GeM8nYxwbCzK9eV8M3zn\nx2OEHbHhbW0MwzhsC+B92unN3anzRUSawdWYZJGOhcgUqyxtlAg60hxze3vV+1C1DqfaKHrDu85M\nJRiLBqm4giMBPlRvynj1xhqT8QiRsMNMMkLVdXnt9gbL2RIbpSpf99Akx8eibOTLfPV2hkzeC/pk\nJMDL19cRlLl0jEjQoVwVjqciXMlXGIsG+eBJb22LSFC4MB3fsWbRuPQGyBQqzKXj3uiNsres5odO\np8kWvfNvt1Jbp6uIpWyJG/UF3MfqCwAtZcucmohTKNdQhZOTcd53fIzHT4w1Z+V10gi11gV1jo1F\nmU7uXPvdSwfazm294a4ny4zHw3zk7ARSb2aKBR3OTiea46eHbc+2fhuGcdgWwPu025vbqWbTKbjj\nYWfL+ruRgHB2OsHt1QK5UrW5GHs8EmA8Hm52LjUeP57w2ixPTcQ4NRHnvaUsS7kyX721wVg0SKFS\nYzVf4c17WUCITgW5upgjHQtRddVb0rLePpEvu0RDQaLhAIhs+TIJBbzdlZdzmztZ7FSz8MpeJFMo\nc2wsghJhvVAGaI4vbrdSW6erCEec5n01bTzWYSIe5vhYgFLVJR4K8PiJsa4WxGmEWmNJyXgowMPH\nk7t+QPfSgdarBdgbzTOJSJDXb2e85h2838OgLeg+CIZhc1EL4H3a7c3tNEC/U3CfmYx7M8dcJVBf\n1vA/v7noBcyaw531YnMx9rn65f/sWNQbVdBS+5xMRvn4+8Kcnozz1dvr5Ms1VnJlssUajgg11xvO\nlSlUCDpC1XWZSoRwxAvXqqtEgk5zLYXWZpPG+rqlSo3Xb280Ow13q1ms1ZtBitUqgUYnpFf5fWCl\ntta1fGfHvDHBmdJmME4lQlxb3hpm52cSCEI0HCAVrX8hdVnDaYRa61C4btoJ9xKqvVyAXUSaa0q3\nPt/pyVjHLaiOqmHYecQCeJ/2++Z2Cu5i1bscXcqWAFjcKJKIhAjWVyKr1GpUq95GmjUVUtEg8xOx\ntkHjOA4PzSYpVmu8eTfLfS0TDgonYhE2ijXK1SrLuRJfu5vh1GSCfLnKRDzC43Mpbq8XOTERJRkN\nPNBscn+jtGUSSWNX5J22pheBM1Ob7cciwuNzYxxLR1nNVbas1DYWDTavDmqq3M8UScVCTMa934Mj\nNNdLbu3IfHQuxVQyQqHidhU+7dru97pmxl5CtdcLsD/wfCGHxY0Sr1xfG9i2Tj8Mw84jFsD7tN83\nt1Nwj8fDzE94NdvlXInZcpRUNEC1pnztzjrrxQo3VwtcnE0xGQ/xUL2tuaFdqDR2P37pvVU2ilVW\ncyWmkwGOpWK8enONdCyCusrZ6RjZosvDsymeOTfJZCJMMrZ1eFi7SSSNxdgTkeAO+58FGY9tth+H\n60F6YSYJs7KlvK2vkS/VuJspsbhR5oMn01RduL5SYDoV7Rhm23eAbqdXHTN7DdVeL8C+fQeWm6u9\n3dh0FAzDziMWwPu03ze3NbgFr4aYioWIhRzOTMa5vuJNy80Wq82RB6WaS7WmTMRD3M0UOTkRrY/r\n9ewUKo3dj5eyJfKlKhuFCrmyy/F0zDsP4K17ea7e26BQqZEpVHnyVJqPnZ0ANgN+e829Ubaa6xJ0\nvHNQ1eaawK3ne2Kivq6w4y0JeWIi3hy32hpIra/RWM/X1c21fPfTcbVdLztmBmVXi2Fo6/TLoLxH\nnVgAH8B+3txmcCfDvHU/x721IhVXWc9XODkR46nT4+TKNS7MJri3XiRfcalUlXBwc7WwUlW5uVpA\ngZlUtDkzrVOoTCQiTCS8pRlfvrZKOOiNt21sefS1OxmSkRDvLGa5ci/Lu/dz1GrK+dkkj8yN4TjO\nlpp7YxLJh0+nEcdhLVdpnsP22uRevqhaX6PRBu2I1wTTrqNpP2M8RzGs/GzrHPRxtoPOAtgHIgIi\nbBQq3kgDoKa6ZXbYXNpbeGa1UCVf9oaoNbYlqtZcXrudZXGjzHSyQDoeArztglq3QNoeKo3a9+3V\nPOemE1xbzlFzlXQsTCQU4OZKjlQsxJV7G/zHNwJ8OF+m4ipPnBx/oMlF8damuJspNs+hU21y+0y5\nTh/Y1teIRwIcG4s2Z7/1YrNOGI6Omb06jLbOTgsfDfo420FnAeyT1pqYos0dlENBh2vL0pwp9cTJ\nNFfubHC/Pkb4bP3S31VvtIKrkC9WWMlWuLlW2LIzQzy0dRbd9l0uFs5OcC9TJB4J8sWvLRIIONyq\nr0wmeDXtq4vemON2Q+typSp31ktbXmOn2uRuobm9trxwxkGAfJvOtf02JbSGVc11WS9WmUlGyJW8\nsc7bZx4Og363dXZ636aT4T0vJmS15a0sgH3SWhPLl2r1xcc3L7dbZ0pNJ8PMTUTZKFSo1pRi1WU6\nGSEe2ax5rhbKzRldriqZYhVt87qbtVHvA3J8LMJytsTvBzb3NntoJkEkIAQdtozPbdfkspfaZDeh\n2e41xts8136bEhphNZUI8eqNdbLFCrdXC7x6Y625OeiwhnC/2jo7vW+gXb8HwzArzQ8WwD5prYmV\nqi6OeONhG1o7nCYSEZ6Kh5sLuRcr7paFe8o1ZTYVYTYVpVR1iQQd4pEAhYq768iAQCDAN71vhlg4\nyJeurzKbyhIU4exMkngoSDIa6NjuGgs5nJ6MPTAho9Olby/bXw+6a3Wh4vKVW+vNySAAL19b5dx0\ngvmJIW0M7pNO75u3KWl378EwzErzgwWwT1ovG+9vFJlNhVF9cLGc1uMbuzy4LZ1ujsCxdJS7mSKq\nQmPy117aNYPBIF9/YZrH5lJbFsCJhr21FHZqd210HLZrJtguHg4QcrwPX+uQtP20vx603XMtX9kS\nvuCVaS1fYb6b8WxHSKcvu6lECFe7ew9GsfOzFyyAfdQaqiD1y7q9D+ofiwYJBwNdh1GntrjJZJSP\nJiId2+na1WJurhaYHYtyYjy26/mORYMEAg6vtuwx99SZiS3LTO7FTDJc3xbea5LZbd2HVuPxEOGA\nbAnhcEDqWzENZntlL8u0l+fq+GUXD5OOh/c8wqVh2Ds/e8ECeAD0YlB/t4/vpiPsIHuc7SRTrFKq\n1jgzlWg2lZSqNTLF6p4uQ9udA8ienmMuHeWpMxNbNhx96swEc+nojstHZorVtut79DusVZW37m08\nsGbFfjZh3Wt77G5/n920Pfs1K20Qv0hb9TWAReRZ4CeBAPDTqvqj237+Z4B/ATwBPKeqv9TP8gyy\ng3aidPv4Ri22pkq+VKNUdcmXakwnw7suXrOXWky7P3xvxwwhEQk2m0p0H5ehvWhPdByHj52f4tx0\norkJaWP95bV8+YHnv76So1ytcS9TeiCU376f63vn0lq+zEvvrW5ZtW29WGEmFelq0aFW+/n99eLv\n87BnpQ1Dx1/fAlhEAsALwCeAm8BLInJJVV9vOew68H3AD/erHGarfLlGTTeHvTX+MOcmojy1yyX8\nWDTIsbFIc6H1xhoO22sx7fZrm05GSEaCFMu1LR2I+7kM7VV7ouM4zE/EH2jzbff82aK3VnPj99MI\nrXh49+2eGg5SG1vKlprh23idexnvPdxrAPvVHnvYs9KGoeOvnzXgp4GrqvoOgIh8HvgU0AxgVX2v\n/rOdV782PRMPByiVXZay3rjiRvjlihXW8+WOu0A0tkK6mymSL9eau3acn0nsuAB5Y7+2125lePJk\nGkVZzJSYHYt42w3tchnaLrT63Z7Y7vkb46tb++1c9Trzugmzg9bGvBEHm0MFvfsER/Y+ZO6otMcO\nQ8dfPwc8zgM3Wm7frN9nfJSOhTg2HiUa9D7Qb9zJcC9T4tUb67x1P4du2x2ioXUrpEQk6C0alC2T\nKVYfOLb1D78xxrlcUwpVJRkJMj8e5exUnKfOTOy6BfvVxSwvX1vl9dsZXr62ytXFLGPRIKcmG/vc\n9b49sdFe2fr8F2YTW9bfaNw/Hg+1vX97mHWqja0XKqgqa/kyt9cKrOXLbd+DqUSI8zOJ5hrAjck2\nU4m9n3O78xu0VcJ6ofFF02rQvmiGohNORJ4Hngc4ffq0z6UZbiLCxZkEhVKFy9fWOFkf81pxlXtr\nRdZnK20vz/a7AHljUZ2gsznJBIVEJLTrZWCvtvLZq04jTdq19c6low+szdsuzDr//qrNZT53qhmn\n42EenUuRiga37N6c3sel9DCsEtYLR305ylvAqZbbJ+v37Zmqvgi8CLCwsNC+ima6lo6HSUS9P8LG\nIjfTSW8bo06XZ/tdgDwSdAgHhDNTiV0ft12+XEWAmru5vkWtZYJKP9sTN4cIek0gdzMlppNhZpLh\nB8Y8dxNmnX5/jb3udmunFBHOz6aYTu1t4fjdzm9QLsX7YRi+aPoZwC8BF0XkHF7wPgd8Vx9f78jZ\nb6eOiPDQdII7q0XylVpz5lxApGMw7ncB8lypyoXZBEsbJSpu97UQVeX+Rqk5W62xc8Z4LHhol5Dd\nttt2E2adfn9A11cWRyE0e23Qf2d9C2BVrYrIp4Ev4A1D+5yqviYinwUuq+olEfkI8CvABPCXROQf\nqerj/SrTKDlop854PMz75lJdX57tf6xymBPjsT1/UawXKixlS81dQqqucm05x4VHZ0nX1x5ubF3k\nvZ63+Hsvazi9Xju43e9vvVA5Eh1ipr2+tgGr6q8Dv77tvn/Y8u+X8JomzB4dNBz2c3m239rEfh7X\nGDPc2P+uMXGjcW5XF7NcX8lxa7XIWr7M6ak40YDD1FiUizOJ5oLvB9HrXvR2v4dhaKc0/TMUnXDm\nQTu3j3b3HL28POv1jKPNNtPNiRuNTUIbXz7ZYq0+lll55foapydjfO1ellyxwvzEwQfcH8ZwLb/a\nKQd9hthRYQE8hAahfXR7eXo942inmuGd9eKWERalistyrsyJ8RhVVylVtScD7g+rdnrY7ZTt3q/T\nk7E9bWx6WEb9i8ICeAjt1j7qR3l6PeNop5pho2ba2LaoUv8SCsjW4W7dXA3s9AEfhl70/dj+fgnw\nxp0NhCzR+u+20xfoYQbiMEwlPigL4CG0U/voYf9hqirL2TKV2tamkF7MOOpUM2zUTK+v5JhORqjV\nlJlUknLVba6p3E1TwVH4gLfTrm377fs5TozHiIYDHb9AD/v3NQxTiQ/KAngI7dQ+epgaH8grdzZ4\nc3Gjuaj8WDSI0r+e/Naa6SPHq16TTLbEer6CqrdfXTdNBbt9wEc1oLe3bZdrSmOLq4Z2X6CHHYjD\nMJX4oCyAh9Cg9Jw3PpCRsMN0MsJStsS7SzmePJXmZJtFenpp+9ZK8xPxnu+Q3G3gHMaQuF7a/vcT\nCQrHxqLNLa6g/RXEYQfiUVizwgJ4CA1K22TjAylsbQ6Zn4gdei1xPx1Zu33AuwmcRi25dUjcmSmv\nQ/RED0Zi9MMDfz8hhxPjJW6u7ry11GEH4qBUNPrJAnhIDcIMn9YPpOA1h6SiMJOKDlzotLPbB7yb\nwHlwSBy8u5TjgyfTA91euf3vJx0PMzu28zTnww7EQalo9JMFsOlotx7vYa+h7PYB7+b8GrXkxpA4\n8JauLNeUQMuO0oOumy90PwJxECoa/WQBbNrqpgNqGGso7b5UOn3Auzm/7UPiWld+62dHpF/6FYij\nPt63Ewtg01a3HVDDVEPZz6iG3c5v+5C4Rhtwp91CzINGdbRJNyyATVujOASo3xNGHjk+HKMgBs1R\nGO/biQWwaWsUhwD160tl+5A4szej+GXfrX5uSWSG2ChuWzMMW9QcRUf5fbEasGlrGDvYdjPsozZG\n1VF+XyyATUfD1MHWjVH8UhkFR/l9sQA2R8qofamMiqP6vlgbsDHG+MRqwMb47KhOQjAWwMb46ihP\nQjDWBGGMrzpNQlgvVPwtmDkUFsDG+GinSQhm9FkAG+OjozwJwVgAG+OrUZxxaLpnnXDG+OgoT0Iw\nFsDG+O6oTkIw1gRhjDG+sQA2xhifWAAbY4xPLICNMcYnFsDGGOMTC2BjjPFJXwNYRJ4VkSsiclVE\nPtPm5xER+YX6z/9YRM72szzGGDNI+hbAIhIAXgD+PPAY8J0i8ti2w74fWFXVC8BPAD/Wr/IYY8yg\n6WcN+Gngqqq+o6pl4PPAp7Yd8yngZ+v//iXgz4pNATLGHBH9nAk3D9xouX0TeKbTMapaFZF1YApY\naj1IRJ4Hnq/fzIrIlb6U2D/TbDvnETTq5zjq5wd2jnvxm6r67G4HDcVUZFV9EXjR73L0i4hcVtUF\nv8vRT6N+jqN+fmDn2A/9bIK4BZxquX2yfl/bY0QkCKSB5T6WyRhjBkY/A/gl4KKInBORMPAccGnb\nMZeA763/+y8Dv62q25anNsaY0dS3Joh6m+6ngS8AAeBzqvqaiHwWuKyql4CfAf6NiFwFVvBC+iga\n2eaVFqN+jqN+fmDn2HNiFU5jjPGHzYQzxhifWAAbY4xPLIAPmYh8TkQWReSrLfdNishvichb9f9P\n+FnGgxCRUyLyRRF5XUReE5EfrN8/SucYFZE/EZFX6+f4j+r3n6tPqb9an2If9rusByEiARF5RUT+\nff32qJ3feyLyFRH5kohcrt93qH+nFsCH718D2wdofwb4T6p6EfhP9dvDqgr8z6r6GPBR4G/Up6CP\n0jmWgG9W1Q8CTwLPishH8abS/0R9av0q3lT7YfaDwBstt0ft/AC+SVWfbBn7e6h/pxbAh0xVfxdv\nxEer1inZPwt826EWqodU9Y6qvlz/9wbeB3ie0TpHVdVs/Wao/p8C34w3pR6G/BxF5CTwF4Gfrt8W\nRuj8dnCof6cWwIPhmKreqf/7LnDMz8L0Sn11uw8Bf8yInWP98vxLwCLwW8DbwJqqVuuH3MT74hlW\n/wL4u4Bbvz3FaJ0feF+a/1FE/rS+3AEc8t/pUExFPkpUVUVk6McGikgS+GXgb6lqpnWNpVE4R1Wt\nAU+KyDjwK8AjPhepZ0TkW4FFVf1TEflGv8vTR9+gqrdEZBb4LRH5WusPD+Pv1GrAg+GeiMwB1P+/\n6HN5DkREQnjh+29V9d/V7x6pc2xQ1TXgi8DXAeP1KfXQfur9sPh64JMi8h7eKobfDPwko3N+AKjq\nrfr/F/G+RJ/mkP9OLYAHQ+uU7O8Ffs3HshxIva3wZ4A3VPXHW340Suc4U6/5IiIx4BN4bd1fxJtS\nD0N8jqr691X1pKqexZud+tuq+t2MyPkBiEhCRFKNfwN/Dvgqh/x3ajPhDpmI/DzwjXjL3t0DfgT4\nVeAXgdPANeCvqOr2jrqhICLfAPwe8BU22w//AV478Kic4xN4HTQBvErML6rqZ0XkIbwa4yTwCvA9\nqlryr6QHV2+C+GFV/dZROr/6ufxK/WYQ+DlV/SciMsUh/p1aABtjjE+sCcIYY3xiAWyMMT6xADbG\nGJ9YABtjjE8sgI0xxicWwMYY4xMLYDNURGRcRP7HXY45KyLf1cVznW1dFrTNz79PRH6qw8/+cPtz\niMg3NpZuNKYbFsBm2IwDOwYwcBbYNYAPQlU/1s/nN0eDBbAZNj8KnK8vov3P6/99tb6w9ne0HPNf\n1Y/5oXot9fdE5OX6f3sJz1Mi8jv1Bbp/pHGniGR3epAx3bDV0Myw+QzwflV9UkS+HfgB4IN4U7tf\nEpHfrR/zw6r6rQAiEgc+oapFEbkI/Dyw0P7pH/A08H4gX3/+/6Cql3t7SuaosgA2w+wbgJ+vLw15\nT0T+M/ARILPtuBDwUyLyJFADHt7Da/yWqi4DiMi/q7+mBbDpCQtgcxT8EN7CRx/Ea3Yr7uGx2xdL\nscVTTM9YG7AZNhtAqv7v3wO+o747xQzwZ4A/2XYMQBq4o6ou8N/hrWLWrU/UN2qM4W1P8wcHPQFj\nGqwGbIaKqi6LyB/Uh379BvBl4FW8munfVdW7IrIM1ETkVbxNUP8l8Msi8t8Dvwnk9vCSf4K3uPxJ\n4P+29l/TS7YcpTHG+MSaIIwxxifWBGGOPBH5r4Ef23b3u6r63/hRHnN0WBOEMcb4xJogjDHGJxbA\nxhjjEwtgY4zxiQWwMcb45P8HlZC8yjXVg44AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "Ajwvn7NdCbhu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make univariate [categorical plots](https://seaborn.pydata.org/generated/seaborn.catplot.html)" + ] + }, + { + "metadata": { + "id": "LXBcuDaUCbhv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67 + }, + "outputId": "19f0862e-254d-4fcf-ef7c-d59caf298b92" + }, + "cell_type": "code", + "source": [ + "tips.sex.value_counts()" + ], + "execution_count": 95, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Male 157\n", + "Female 87\n", + "Name: sex, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 95 + } + ] + }, + { + "metadata": { + "id": "Z6GPm-b1eAhy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 295 + }, + "outputId": "e2652067-3ccd-4cff-da94-c9be4d69064e" + }, + "cell_type": "code", + "source": [ + "tips.sex.value_counts().plot.bar();" + ], + "execution_count": 96, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEWCAYAAABollyxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEORJREFUeJzt3WuwXXV9xvHvYyIIOhowR4pJMLFG\nO/FOj4gydRSqoljDC8eBtppaphlb6qU6VbAv0OkwxcuUeqlMU0HClAEpXsBqVaQq7bRED4hAuJQM\nCkkK5lgErc6AgV9f7IUeQ5KT7HV2Nvmf7+fN3uu/1tr7mWHPw8r/rEuqCklSux4z7gCSpNGy6CWp\ncRa9JDXOopekxln0ktQ4i16SGmfRS1LjLHpJapxFL0mNWzjuAACLFy+u5cuXjzuGJO1Xrrnmmh9V\n1cRs2z0qin758uVMTU2NO4Yk7VeS3LEn2zl1I0mNm7Xok5yXZFuSG3cYf1uSW5JsTPKhGeOnJ9mU\n5NYkrx5FaEnSntuTqZvzgU8AFzw8kOQVwGrg+VV1f5KndOOrgJOAZwNPBb6e5JlV9eBcB5ck7ZlZ\nj+ir6irgnh2G/xQ4q6ru77bZ1o2vBi6uqvur6vvAJuCoOcwrSdpLw87RPxP4nSQbknwryYu68SXA\n5hnbbenGHiHJ2iRTSaamp6eHjCFJms2wRb8QOBQ4GvhL4JIk2ZsPqKp1VTVZVZMTE7OeHSRJGtKw\nRb8F+FwNfBt4CFgMbAWWzdhuaTcmSRqTYYv+C8ArAJI8EzgA+BFwOXBSkgOTrABWAt+ei6CSpOHM\netZNkouAlwOLk2wBzgDOA87rTrl8AFhTg4fPbkxyCXATsB04taUzbpaf9qVxR2jKD846YdwRpHlh\n1qKvqpN3seoPd7H9mcCZfUJJkuaOV8ZKUuMseklqnEUvSY2z6CWpcRa9JDXOopekxln0ktQ4i16S\nGmfRS1LjLHpJapxFL0mNs+glqXEWvSQ1zqKXpMZZ9JLUOItekhpn0UtS42Yt+iTnJdnWPTZwx3Xv\nTlJJFnfLSfKxJJuSXJ/kyFGEliTtuT05oj8fOH7HwSTLgFcBd84Yfg2DB4KvBNYC5/SPKEnqY9ai\nr6qrgHt2sups4D1AzRhbDVxQA1cDi5IcPidJJUlDGWqOPslqYGtVfW+HVUuAzTOWt3RjkqQxWbi3\nOyQ5GHgfg2mboSVZy2B6hyOOOKLPR0mSdmOYI/rfBFYA30vyA2ApcG2S3wC2AstmbLu0G3uEqlpX\nVZNVNTkxMTFEDEnSntjroq+qG6rqKVW1vKqWM5ieObKq7gYuB97cnX1zNHBfVd01t5ElSXtjT06v\nvAj4L+BZSbYkOWU3m38ZuB3YBPwj8GdzklKSNLRZ5+ir6uRZ1i+f8b6AU/vHkiTNFa+MlaTGWfSS\n1DiLXpIaZ9FLUuMseklqnEUvSY2z6CWpcRa9JDXOopekxln0ktQ4i16SGmfRS1LjLHpJapxFL0mN\ns+glqXEWvSQ1zqKXpMZZ9JLUuD15Zux5SbYluXHG2IeT3JLk+iSfT7JoxrrTk2xKcmuSV48quCRp\nz+zJEf35wPE7jF0BPKeqngf8N3A6QJJVwEnAs7t9PplkwZyllSTttVmLvqquAu7ZYexrVbW9W7wa\nWNq9Xw1cXFX3V9X3gU3AUXOYV5K0l+Zijv6PgX/t3i8BNs9Yt6Ube4Qka5NMJZmanp6egxiSpJ3p\nVfRJ/grYDly4t/tW1bqqmqyqyYmJiT4xJEm7sXDYHZP8EfA64Liqqm54K7BsxmZLuzFJ0pgMdUSf\n5HjgPcDrq+rnM1ZdDpyU5MAkK4CVwLf7x5QkDWvWI/okFwEvBxYn2QKcweAsmwOBK5IAXF1Vb62q\njUkuAW5iMKVzalU9OKrwkqTZzVr0VXXyTobP3c32ZwJn9gklSZo7XhkrSY2z6CWpcRa9JDXOopek\nxln0ktQ4i16SGmfRS1LjLHpJapxFL0mNs+glqXEWvSQ1zqKXpMZZ9JLUOItekhpn0UtS4yx6SWqc\nRS9JjZu16JOcl2RbkhtnjB2a5Iokt3Wvh3TjSfKxJJuSXJ/kyFGGlyTNbk+O6M8Hjt9h7DTgyqpa\nCVzZLQO8hsEDwVcCa4Fz5iamJGlYsxZ9VV0F3LPD8Gpgffd+PXDijPELauBqYFGSw+cqrCRp7w07\nR39YVd3Vvb8bOKx7vwTYPGO7Ld3YIyRZm2QqydT09PSQMSRJs+n9x9iqKqCG2G9dVU1W1eTExETf\nGJKkXRi26H/48JRM97qtG98KLJux3dJuTJI0JsMW/eXAmu79GuCyGeNv7s6+ORq4b8YUjyRpDBbO\ntkGSi4CXA4uTbAHOAM4CLklyCnAH8MZu8y8DrwU2AT8H3jKCzJKkvTBr0VfVybtYddxOti3g1L6h\nJElzxytjJalxFr0kNc6il6TGWfSS1DiLXpIaZ9FLUuMseklqnEUvSY2z6CWpcRa9JDXOopekxs16\nrxtJ+4H3P2ncCdry/vvGnWBOeUQvSY2z6CWpcRa9JDXOopekxln0ktQ4i16SGter6JP8RZKNSW5M\nclGSxyVZkWRDkk1JPpPkgLkKK0nae0MXfZIlwNuByap6DrAAOAn4IHB2VT0D+DFwylwElSQNp+/U\nzULgoCQLgYOBu4BjgUu79euBE3t+hySph6GLvqq2Ah8B7mRQ8PcB1wD3VtX2brMtwJKd7Z9kbZKp\nJFPT09PDxpAkzaLP1M0hwGpgBfBU4PHA8Xu6f1Wtq6rJqpqcmJgYNoYkaRZ9pm5+F/h+VU1X1S+A\nzwHHAIu6qRyApcDWnhklST30Kfo7gaOTHJwkwHHATcA3gDd026wBLusXUZLUR585+g0M/uh6LXBD\n91nrgPcC70qyCXgycO4c5JQkDanXbYqr6gzgjB2GbweO6vO5kqS545WxktQ4i16SGmfRS1LjLHpJ\napxFL0mNs+glqXEWvSQ1zqKXpMZZ9JLUOItekhpn0UtS4yx6SWqcRS9JjbPoJalxFr0kNc6il6TG\nWfSS1LheRZ9kUZJLk9yS5OYkL0lyaJIrktzWvR4yV2ElSXuv7xH9R4GvVNVvAc8HbgZOA66sqpXA\nld2yJGlMhi76JE8CXkb38O+qeqCq7gVWA+u7zdYDJ/YNKUkaXp8j+hXANPDpJN9N8qkkjwcOq6q7\num3uBg7b2c5J1iaZSjI1PT3dI4YkaXf6FP1C4EjgnKp6IfAzdpimqaoCamc7V9W6qpqsqsmJiYke\nMSRJu9On6LcAW6pqQ7d8KYPi/2GSwwG61239IkqS+hi66KvqbmBzkmd1Q8cBNwGXA2u6sTXAZb0S\nSpJ6Wdhz/7cBFyY5ALgdeAuD/3lckuQU4A7gjT2/Q5LUQ6+ir6rrgMmdrDquz+dKkuaOV8ZKUuMs\neklqnEUvSY2z6CWpcRa9JDXOopekxln0ktQ4i16SGmfRS1LjLHpJapxFL0mNs+glqXEWvSQ1zqKX\npMZZ9JLUOItekhpn0UtS43oXfZIFSb6b5F+65RVJNiTZlOQz3WMGJUljMhdH9O8Abp6x/EHg7Kp6\nBvBj4JQ5+A5J0pB6FX2SpcAJwKe65QDHApd2m6wHTuzzHZKkfvoe0f8d8B7goW75ycC9VbW9W94C\nLNnZjknWJplKMjU9Pd0zhiRpV4Yu+iSvA7ZV1TXD7F9V66pqsqomJyYmho0hSZrFwh77HgO8Pslr\ngccBTwQ+CixKsrA7ql8KbO0fU5I0rKGP6Kvq9KpaWlXLgZOAf6uqPwC+Abyh22wNcFnvlJKkoY3i\nPPr3Au9KsonBnP25I/gOSdIe6jN180tV9U3gm93724Gj5uJzJUn9eWWsJDXOopekxln0ktQ4i16S\nGmfRS1LjLHpJapxFL0mNs+glqXEWvSQ1zqKXpMZZ9JLUOItekhpn0UtS4yx6SWqcRS9JjbPoJalx\nFr0kNc6il6TGDV30SZYl+UaSm5JsTPKObvzQJFckua17PWTu4kqS9lafI/rtwLurahVwNHBqklXA\nacCVVbUSuLJbliSNydBFX1V3VdW13fufAjcDS4DVwPpus/XAiX1DSpKGNydz9EmWAy8ENgCHVdVd\n3aq7gcN2sc/aJFNJpqanp+cihiRpJ3oXfZInAJ8F3llVP5m5rqoKqJ3tV1XrqmqyqiYnJib6xpAk\n7UKvok/yWAYlf2FVfa4b/mGSw7v1hwPb+kWUJPXR56ybAOcCN1fV385YdTmwpnu/Brhs+HiSpL4W\n9tj3GOBNwA1JruvG3gecBVyS5BTgDuCN/SJKkvoYuuir6j+A7GL1ccN+riRpbnllrCQ1zqKXpMZZ\n9JLUOItekhpn0UtS4yx6SWqcRS9JjbPoJalxFr0kNc6il6TGWfSS1DiLXpIaZ9FLUuMseklqnEUv\nSY2z6CWpcRa9JDVuZEWf5PgktybZlOS0UX2PJGn3RlL0SRYAfw+8BlgFnJxk1Si+S5K0e6M6oj8K\n2FRVt1fVA8DFwOoRfZckaTeGfjj4LJYAm2csbwFePHODJGuBtd3i/yW5dURZ5qPFwI/GHWI2+eC4\nE2gM9ovfJh/IuBPsqaftyUajKvpZVdU6YN24vr9lSaaqanLcOaQd+dscj1FN3WwFls1YXtqNSZL2\nsVEV/XeAlUlWJDkAOAm4fETfJUnajZFM3VTV9iR/DnwVWACcV1UbR/Fd2imnxPRo5W9zDFJV484g\nSRohr4yVpMZZ9JLUOItekhpn0UtS4yz6hiQ5KMmzxp1D2pkkB487w3xl0Tciye8B1wFf6ZZfkMRr\nFzR2SV6a5Cbglm75+Uk+OeZY84pF3473M7iZ3L0AVXUdsGKcgaTO2cCrgf8FqKrvAS8ba6J5xqJv\nxy+q6r4dxrxIQo8KVbV5h6EHxxJknhrbTc005zYm+X1gQZKVwNuB/xxzJglgc5KXApXkscA7gJvH\nnGle8Yi+HW8Dng3cD1wE/AR451gTSQNvBU5lcPvyrcALumXtI94CQZIa59TNfi7JF9nNXHxVvX4f\nxpF+KcnH2f1v8+37MM68ZtHv/z4y7gDSLkyNO4AGnLqRpMZ5RN+I7kybvwFWAY97eLyqnj62UBKQ\nZAJ4L4/8bR47tlDzjGfdtOPTwDnAduAVwAXAP401kTRwIYPTKVcAHwB+wOApdNpHnLppRJJrquq3\nk9xQVc+dOTbubJrfZvw2r6+q53Vj36mqF40723zh1E077k/yGOC27jGOW4EnjDmTBPCL7vWuJCcA\n/wMcOsY8845H9I1I8iIG/zxeBPw18CTgQ1V19ViDad5L8jrg34FlwMeBJwIfqCpvurePWPSS1Din\nbvZzs92K2AumNG5JVjC4RcdyZnSOv819x6Lf/70E2Mzg/jYbgIw3jvQIXwDOBb4IPDTmLPOSUzf7\nuSQLgFcCJwPPA74EXFRVG8caTOok2VBVLx53jvnMom9IkgMZFP6HGfyx6xNjjiTR3T57JfA1BndX\nBaCqrh1bqHnGqZsGdAV/AoOSXw58DPj8ODNJMzwXeBNwLL+auqluWfuAR/T7uSQXAM8BvgxcXFU3\njjmS9GuSbAJWVdUD484yX1n0+7kkDwE/6xZn/scMUFX1xH2fSvqVJF8A1lbVtnFnma+cutnPVZX3\nK9Kj3SLgliTf4dfn6D29ch+x6CWN2hnjDjDfOXUjaeSSPA1YWVVfT3IwsKCqfjruXPOF/+yXNFJJ\n/gS4FPiHbmgJg4uotI9Y9JJG7VTgGOAnAFV1G/CUsSaaZyx6SaN2/8xTK5MsZDcPDdfcs+gljdq3\nkrwPOCjJK4F/ZnDfG+0j/jFW0kh1D8Q5BXgVg+s7vgp8qiyffcailzQSSY6oqjvHnUNO3UganV+e\nWZPks+MMMt9Z9JJGZeazEZ4+thSy6CWNTO3ivfYx5+gljUSSBxnccC/AQcDPH16FN9zbpyx6SWqc\nUzeS1DiLXpIaZ9FLUuMseklq3P8DVSQa6xNJ5bMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "PguacIo5eFEz", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "559e251e-6ce5-4184-f421-c5dd3d46d56d" + }, + "cell_type": "code", + "source": [ + "sns.catplot('sex', data=tips, kind='count');" + ], + "execution_count": 98, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFgCAYAAACbqJP/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAE+dJREFUeJzt3X+w3XV95/HnSwKitoDIlcUEhowN\ndtFqwSvFOjpYWo3aGquuhXU1KNO0LsV2263Vdkbcdmm12FrU1mkqkdA6IKKWrGtBxF/TqQIXfwAJ\nWlNcJVkwlyK2VQtG3vvH+YJnrzfkcMn3nPO5eT5m7uR8P+f7PefNzJ1nvnzvud+kqpAkteNhkx5A\nkvTgGG5JaozhlqTGGG5JaozhlqTGGG5JaozhlqTGGG5JaozhlqTGrJj0AA/F2rVr64orrpj0GJK0\nr2SUnZo+477jjjsmPYIkjV3T4Zak/ZHhlqTGGG5JaozhlqTG9BbuJJuS7Epy04L1s5N8KcnWJH88\ntP6GJNuTfDnJc/uaS5Ja1+fHAS8E3glcdN9CkmcD64CnVNXdSR7brR8PnAY8EXgc8LEkx1XV93uc\nT5Ka1NsZd1V9GrhzwfJrgDdX1d3dPru69XXAJVV1d1V9FdgOnNTXbJLUsnFf4z4OeGaSa5J8KsnT\nuvWVwK1D++3o1n5Ikg1J5pLMzc/P9zyuJE2fcYd7BXA4cDLw28ClSUb6TaH7VNXGqpqtqtmZmZk+\nZpSkqTbucO8APlgD1wL3AkcAO4Gjh/Zb1a1JkhYYd7j/Fng2QJLjgIOAO4AtwGlJHp5kNbAGuHbM\ns0lSE3r7VEmSi4FTgCOS7ADOATYBm7qPCN4DrK+qArYmuRTYBuwGzvITJZK0uAy62abZ2dmam5tb\n8vFP/e2L9r6TloXrz3vlpEeQRrH87w4oSfsjwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1J\njTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHc\nktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1Jjekt3Ek2JdmV5KZFnvutJJXkiG47Sd6e\nZHuSG5Kc2NdcktS6Ps+4LwTWLlxMcjTwHODrQ8vPA9Z0XxuAd/U4lyQ1rbdwV9WngTsXeeptwOuA\nGlpbB1xUA58FDktyVF+zSVLLxnqNO8k6YGdVfXHBUyuBW4e2d3Rri73GhiRzSebm5+d7mlSSptfY\nwp3kkcDvAm98KK9TVRuraraqZmdmZvbNcJLUkBVjfK/HA6uBLyYBWAV8LslJwE7g6KF9V3VrkqQF\nxnbGXVU3VtVjq+rYqjqWweWQE6vqdmAL8Mru0yUnA9+qqtvGNZsktaTPjwNeDHwGeEKSHUnOfIDd\nPwLcAmwH/gr4r33NJUmt6+1SSVWdvpfnjx16XMBZfc0iScuJvzkpSY0x3JLUGMMtSY0x3JLUGMMt\nSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x\n3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY3pLdxJNiXZleSmobXz\nknwpyQ1JPpTksKHn3pBke5IvJ3luX3NJUuv6POO+EFi7YO0q4ElV9WTgH4E3ACQ5HjgNeGJ3zF8k\nOaDH2SSpWb2Fu6o+Ddy5YO2jVbW72/wssKp7vA64pKrurqqvAtuBk/qaTZJaNslr3K8G/q57vBK4\ndei5Hd2aJGmBiYQ7ye8Bu4H3LuHYDUnmkszNz8/v++EkacqNPdxJzgB+Hnh5VVW3vBM4emi3Vd3a\nD6mqjVU1W1WzMzMzvc4qSdNorOFOshZ4HfDCqvrO0FNbgNOSPDzJamANcO04Z5OkVqzo64WTXAyc\nAhyRZAdwDoNPkTwcuCoJwGer6leramuSS4FtDC6hnFVV3+9rNklqWW/hrqrTF1m+4AH2Pxc4t695\nJGm58DcnJakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluS\nGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4\nJakxhluSGmO4JakxhluSGtNbuJNsSrIryU1Da4cnuSrJV7o/H92tJ8nbk2xPckOSE/uaS5Ja1+cZ\n94XA2gVrrweurqo1wNXdNsDzgDXd1wbgXT3OJUlN6y3cVfVp4M4Fy+uAzd3jzcCLhtYvqoHPAocl\nOaqv2SSpZeO+xn1kVd3WPb4dOLJ7vBK4dWi/Hd3aD0myIclckrn5+fn+JpWkKTWxH05WVQG1hOM2\nVtVsVc3OzMz0MJkkTbdxh/sb910C6f7c1a3vBI4e2m9VtyZJWmDc4d4CrO8erwcuH1p/ZffpkpOB\nbw1dUpEkDVnR1wsnuRg4BTgiyQ7gHODNwKVJzgS+Brys2/0jwPOB7cB3gFf1NZckta63cFfV6Xt4\n6tRF9i3grL5mkaTlxN+clKTGGG5JaozhlqTGGG5JaozhlqTGGG5JaozhlqTGGG5JaozhlqTGGG5J\naozhlqTGGG5JaozhlqTGGG5JaozhlqTGGG5JasxI4U5y9ShrkqT+PeC/gJPkYOCRDP75sUcD6Z46\nBFjZ82ySpEXs7Z8u+xXgN4DHAdfzg3D/C/DOHueSlo2v//5PTHoEjdExb7yx9/d4wHBX1fnA+UnO\nrqp39D6NJGmvRvrHgqvqHUl+Gjh2+JiquqinuSRJezBSuJP8NfB44AvA97vlAgy3JI3ZSOEGZoHj\nq6r6HEaStHejfo77JuA/9DmIJGk0o55xHwFsS3ItcPd9i1X1wl6mkiTt0ajhflOfQ0iSRjfqp0o+\n1fcgkqTRjPqpkn9l8CkSgIOAA4FvV9UhfQ0mSVrcSD+crKofrapDulA/AngJ8BdLfdMk/y3J1iQ3\nJbk4ycFJVie5Jsn2JO9LctBSX1+SlrMHfXfAGvhb4LlLecMkK4HXArNV9STgAOA04C3A26rqx4Bv\nAmcu5fUlabkb9VLJi4c2H8bgc93//hDf9xFJvsfgJla3AT8D/Ofu+c0MfiD6rofwHpK0LI36qZJf\nGHq8G/g/wLqlvGFV7UzyVuDrwHeBjzK4gdVdVbW7220He7j7YJINwAaAY445ZikjSFLTRv1Uyav2\n1Rt2t4ddB6wG7gLeD6wd9fiq2ghsBJidnfU3OSXtd0b9hxRWJflQkl3d1weSrFrie/4s8NWqmq+q\n7wEfBJ4BHJbkvr9IVgE7l/j6krSsjfrDyfcAWxjcl/txwP/q1pbi68DJSR6ZJMCpwDbgE8BLu33W\nA5cv8fUlaVkbNdwzVfWeqtrdfV0IzCzlDavqGuAy4HPAjd0MG4HfAX4zyXbgMcAFS3l9SVruRv3h\n5D8n+S/Axd326cA/L/VNq+oc4JwFy7cAJy31NSVpfzHqGfergZcBtzP46N5LgTN6mkmS9ABGPeP+\nfWB9VX0TIMnhwFsZBF2SNEajnnE/+b5oA1TVncAJ/YwkSXogo4b7Yd3nr4H7z7hHPVuXJO1Do8b3\nT4DPJHl/t/2fgHP7GUmS9EBG/c3Ji5LMMbifCMCLq2pbf2NJkvZk5MsdXaiNtSRN2IO+raskabIM\ntyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1\nxnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMMtyQ1xnBLUmMmEu4khyW5LMmXktyc5OlJDk9yVZKvdH8+\nehKzSdK0m9QZ9/nAFVX148BTgJuB1wNXV9Ua4OpuW5K0wNjDneRQ4FnABQBVdU9V3QWsAzZ3u20G\nXjTu2SSpBZM4414NzAPvSfL5JO9O8ijgyKq6rdvnduDIxQ5OsiHJXJK5+fn5MY0sSdNjEuFeAZwI\nvKuqTgC+zYLLIlVVQC12cFVtrKrZqpqdmZnpfVhJmjaTCPcOYEdVXdNtX8Yg5N9IchRA9+euCcwm\nSVNv7OGuqtuBW5M8oVs6FdgGbAHWd2vrgcvHPZsktWDFhN73bOC9SQ4CbgFexeAvkUuTnAl8DXjZ\nhGaTpKk2kXBX1ReA2UWeOnXcs0hSa/zNSUlqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGW\npMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYY\nbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMZMLNxJDkjy+SQf7rZXJ7kmyfYk70ty\n0KRmk6RpNskz7l8Hbh7afgvwtqr6MeCbwJkTmUqSptxEwp1kFfAC4N3ddoCfAS7rdtkMvGgSs0nS\ntJvUGfefAa8D7u22HwPcVVW7u+0dwMrFDkyyIclckrn5+fn+J5WkKTP2cCf5eWBXVV2/lOOramNV\nzVbV7MzMzD6eTpKm34oJvOczgBcmeT5wMHAIcD5wWJIV3Vn3KmDnBGaTpKk39jPuqnpDVa2qqmOB\n04CPV9XLgU8AL+12Ww9cPu7ZJKkF0/Q57t8BfjPJdgbXvC+Y8DySNJUmcankflX1SeCT3eNbgJMm\nOY8ktWCazrglSSMw3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x\n3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLUGMMtSY0x3JLU\nGMMtSY0x3JLUGMMtSY0x3JLUmLGHO8nRST6RZFuSrUl+vVs/PMlVSb7S/fnocc8mSS2YxBn3buC3\nqup44GTgrCTHA68Hrq6qNcDV3bYkaYGxh7uqbquqz3WP/xW4GVgJrAM2d7ttBl407tkkqQUTvcad\n5FjgBOAa4Miquq176nbgyD0csyHJXJK5+fn5scwpSdNkYuFO8iPAB4DfqKp/GX6uqgqoxY6rqo1V\nNVtVszMzM2OYVJKmy0TCneRABtF+b1V9sFv+RpKjuuePAnZNYjZJmnaT+FRJgAuAm6vqT4ee2gKs\n7x6vBy4f92yS1IIVE3jPZwCvAG5M8oVu7XeBNwOXJjkT+BrwsgnMJklTb+zhrqq/B7KHp08d5yyS\n1CJ/c1KSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4Jakx\nhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluSGmO4JakxhluS\nGmO4JakxhluSGmO4JakxUxfuJGuTfDnJ9iSvn/Q8kjRtpircSQ4A/hx4HnA8cHqS4yc7lSRNl6kK\nN3ASsL2qbqmqe4BLgHUTnkmSpsqKSQ+wwErg1qHtHcBPDe+QZAOwodv8tyRfHtNsy8URwB2THmLc\n8tb1kx5hf7Rffq9xTh7K0VdU1dq97TRt4d6rqtoIbJz0HK1KMldVs5OeQ8uf32v9mbZLJTuBo4e2\nV3VrkqTOtIX7OmBNktVJDgJOA7ZMeCZJmipTdamkqnYn+TXgSuAAYFNVbZ3wWMuNl5k0Ln6v9SRV\nNekZJEkPwrRdKpEk7YXhlqTGGO5lIkkl+Zuh7RVJ5pN8eC/HnbK3fbT/SfL9JF8Y+jq2x/c6I8k7\n+3r95Wiqfjiph+TbwJOSPKKqvgv8HH6UUkv33ar6yUkPocV5xr28fAR4Qff4dODi+55IclKSzyT5\nfJJ/SPKEhQcneVSSTUmu7fbzdgO6X5IDkpyX5LokNyT5lW79lCSfSnJ5kluSvDnJy7vvoxuTPL7b\n7xeSXNN9b30syZGLvMdMkg9073FdkmeM+7+zBYZ7ebkEOC3JwcCTgWuGnvsS8MyqOgF4I/CHixz/\ne8DHq+ok4NnAeUke1fPMmk6PGLpM8qFu7UzgW1X1NOBpwC8nWd099xTgV4H/CLwCOK77Pno3cHa3\nz98DJ3ffg5cAr1vkfc8H3ta9x0u647WAl0qWkaq6obsWeTqDs+9hhwKbk6wBCjhwkZd4DvDCJP+9\n2z4YOAa4uZeBNc0Wu1TyHODJSV7abR8KrAHuAa6rqtsAkvwT8NFunxsZnATA4Deh35fkKOAg4KuL\nvO/PAscn99/v45AkP1JV/7YP/puWDcO9/GwB3gqcAjxmaP0PgE9U1S92cf/kIscGeElVeeMuLSbA\n2VV15f+3mJwC3D20dO/Q9r38oDPvAP60qrZ0x7xpkfd4GIOz8n/fd2MvP14qWX42Af+jqm5csH4o\nP/hh5Rl7OPZK4Ox0pztJTuhlQrXqSuA1SQ4ESHLcg7yUNvw9uKfbNX6UH1xaIYk/IF2E4V5mqmpH\nVb19kaf+GPijJJ9nz/+n9QcMLqHckGRrty3d593ANuBzSW4C/pIH93/tbwLen+R69ny719cCs90P\nP7cxuG6uBfyVd0lqjGfcktQYwy1JjTHcktQYwy1JjTHcktQYwy1JjTHcktQYwy1x/50R/3eSLya5\nKckvJXlqd9e765NcmeSo7j7n13W/sk2SP0py7oTH137Ge5VIA2uB/1tVLwBIcijwd8C6qppP8kvA\nuVX16iRnAJclObs77qcmNbT2T4ZbGrgR+JMkbwE+DHwTeBJwVXfrlgOA2wCqamuSv+72e3pV3TOZ\nkbW/MtwSUFX/mORE4PnA/wQ+Dmytqqfv4ZCfAO4CHjumEaX7eY1bApI8DvhOVf0NcB6Dyx8zSZ7e\nPX9gkid2j18MHA48C3hHksMmNLb2U95kSgKSPJdBsO8Fvge8BtgNvJ3B7UhXAH8GfAj4B+DUqro1\nyWuBp1bVnm5TKu1zhluSGuOlEklqjOGWpMYYbklqjOGWpMYYbklqjOGWpMYYbklqzP8D26SGnSPb\n8qAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i2EBfxiOCbhx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Make bivariate [categorical plots](https://seaborn.pydata.org/generated/seaborn.catplot.html)" + ] + }, + { + "metadata": { + "id": "JgEFCLhICbhy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "16099b8e-3691-49c7-aefe-141a55a59989" + }, + "cell_type": "code", + "source": [ + "sns.catplot('sex', 'tip', data=tips, kind='box');" + ], + "execution_count": 100, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEslJREFUeJzt3X+Q3Hddx/HXK7eFpi0UusQIF2vB\nK6Ai2LIgFWEqvcOdVqkKw48BclXGKM7c3Tgqgz8GcPgpvyScM04yiG4EQeTHwGDZclcoDqCl2x/m\nmqbKCWnhCOG61dofoWXv3v5xW7nGJLeE2+/79nvPx0wmt3vfzeedue8888n39nYdEQIAFG9L9gAA\nsFkRYABIQoABIAkBBoAkBBgAkhBgAEhCgAEgCQEGgCQEGACSVLIH6EW9Xo9ms5k9BgD0yr0cNBA7\n4DvuuCN7BABYdwMRYAAoIwIMAEkIMAAkIcAAkIQAA0ASAgwASQgwACQhwACQhACXSLvd1uTkpNrt\ndvYoAHrQtwDbfr/t79i+edV959iesf3V7u+P7tf6m1Gj0dDc3Jz27duXPQqAHvRzB/y3kurH3Pda\nSVdHxPmSru7exjpot9tqNpuKCDWbTXbBwADoW4Aj4p8l3XnM3ZdLanQ/bkj61X6tv9k0Gg0tLy9L\nkpaWltgFAwOg6GvA2yPicPfjb0vafqIDbe+y3bLdWlxcLGa6ATY7O6tOpyNJ6nQ6mpmZSZ4IwFrS\nvgkXESEpTvL5vRFRi4jatm3bCpxsMI2OjqpSWXl10UqlorGxseSJAKyl6AAfsf1YSer+/p2C1y+t\n8fFxbdmy8uUcGhrSzp07kycCsJaiA/wpSePdj8clfbLg9UurWq2qXq/Ltur1uqrVavZIANbQt3fE\nsP0hSRdLeoztb0p6vaS3SfqI7VdJuk3Si/u1/mY0Pj6uQ4cOsfsFBoRXLsVubLVaLVqtVvYYANCr\n8rwlEQCUEQEGgCQEGACSEGAASEKAASAJAQaAJAQYAJIQYABIQoABIAkBBoAkBBgAkhBgAEhCgAEg\nCQEGgCQEGACSEGAASEKAASAJAQaAJAQYAJIQYABIQoBLpN1ua3JyUu12O3sUAD0gwCXSaDQ0Nzen\nffv2ZY8CoAcEuCTa7baazaYiQs1mk10wMAAIcEk0Gg0tLy9LkpaWltgFAwOAAJfE7OysOp2OJKnT\n6WhmZiZ5IgBrIcAlMTo6qkqlIkmqVCoaGxtLngjAWghwSYyPj2vLlpUv59DQkHbu3Jk8EYC1EOCS\nqFarqtfrsq16va5qtZo9EoA1VLIHwPoZHx/XoUOH2P0CA8IRkT3Dmmq1WrRarewxAKBX7uUgLkEA\nQBICDABJCDAAJCHAAJCEAANAEgIMAEkIMAAkIcAAkIQAA0ASAgwASQgwACQhwACQhAADQBICDABJ\nCDAAJCHAAJCEAANAEgIMAEkIMAAkIcAAkIQAA0ASAgwASVICbPv3bB+wfbPtD9k+PWMOAMhUeIBt\nD0ualFSLiKdIGpL00qLnAIBsWZcgKpK22q5IOkPSt5LmAIA0hQc4IhYkvVPS7ZIOS7orIj577HG2\nd9lu2W4tLi4WPSYA9F3GJYhHS7pc0uMlPU7SmbZfcexxEbE3ImoRUdu2bVvRYwJA32VcghiV9PWI\nWIyI70n6uKSfT5gDAFJlBPh2Sc+yfYZtS7pE0sGEOQAgVcY14GslfVTSDZLmujPsLXoOAMhWyVg0\nIl4v6fUZawPARsFPwgFAEgIMAEkIMAAkIcAl0m63NTk5qXa7nT0KgB4Q4BJpNBqam5vTvn37skcB\n0AMCXBLtdlvNZlMRoWazyS4YGAAEuCQajYaWl5clSUtLS+yCgQFAgEtidnZWnU5HktTpdDQzM5M8\nEYC1EOCSGB0dVaWy8nM1lUpFY2NjyRMBWAsBLonx8XFt2bLy5RwaGtLOnTuTJwKwFgJcEtVqVfV6\nXbZVr9dVrVazRwKwhpTXgkB/jI+P69ChQ+x+gQHhiMieYU21Wi1arVb2GADQK/dyEJcgACAJAQaA\nJAQYAJIQYABIQoABIAkBBoAkBBgAkhBgAEhCgAEgCQEGgCQEGACSEGAASEKAASAJAQaAJAQYAJIQ\nYABIQoBLpN1ua3JyUu12O3sUAD0gwCWyZ88e7d+/X3v37s0eBUAPCHBJtNttzc7OSpJmZmbYBQMD\ngACXxJ49e7S8vCxJWl5eZhcMDAACXBJXX331Q24/uBsGsHER4JKwfdLbADYeAlwSl1xyyUlvA9h4\nCHBJ7Nq16/92vba1a9eu5IlQJjzFsT8IcElUq1Xt2LFDkrRjxw5Vq9XkiVAmjUZDc3Nz2rdvX/Yo\npUKAS6LdbuvIkSOSpCNHjrBTwbppt9tqNpuKCDWbTc6tdUSAS6LRaDzkaWjsVLBeVp9bS0tLnFvr\niACXxOzsrDqdjiSp0+loZmYmeSKUBedW/xDgkhgdHVWlUpEkVSoVjY2NJU+EsuDc6h8CXBLj4+Pa\nsmXlyzk0NKSdO3cmT4Sy4NzqHwJcEtVqVfV6XbZVr9d5FgTWDedW/1SyB8D6GR8f16FDh9ihYN1x\nbvWHIyJ7hjXVarVotVrZYwBAr3p6LQAuQQBAEgIMAEkIMAAkIcAAkIQAA0ASAgwASVICbPtRtj9q\n+1bbB21flDEHAGTK+kGM3ZKaEfEi2w+TdEbSHACQpvAA2z5b0nMlXSFJEfGApAeKngMAsmXsgB8v\naVHS39h+mqTrJU1FxL0Js/TF9PS05ufnC193YWFBkjQ8PFz42iMjI5qYmCh8XWCQZVwDrki6UNJf\nRcQFku6V9NpjD7K9y3bLdmtxcbHoGQfS0aNHdfTo0ewxAPSo8NeCsP2jkv41Is7r3n6OpNdGxGUn\negyvBdGbqakpSdLu3buTJwE2vY35WhAR8W1J37D9pO5dl0i6peg5ACBb1rMgJiR9sPsMiK9J+o2k\nOQAgTUqAI+ImSbWMtQFgo+An4QAgCQEGgCQEGACSEGAASEKAASAJAQaAJD09Dc32hZJ+QVJI+lJE\n3NDXqQBgE1hzB2z7dZIakqqSHqOVF9H5034PBgBl18sO+OWSnhYR35Uk22+TdJOkN/VzMAAou16u\nAX9L0umrbj9c0kJ/xgGAzaOXHfBdkg7YntHKNeAxSV+x/V5JiojJPs4HAKXVS4A/0f31oGv6MwoA\nbC5rBjgiGkUMAgCbzQkDbPsjEfFi23NaufTwEBHx1L5OBgAld7Id8FT394OS/nDV/Zb09r5NBACb\nxAkDHBGHux+ORMRtqz9n+8l9nQoANoGTXYJ4taTflfQE2/tXfeoRkr7U78EAoOxOdgni7yV9RtJb\n9dB3Lb47Iu7s61QAsAmc7BLEXVp5DvDLihsHwMlMT09rfn6+8HUXFlZ+9mp4eLjwtUdGRjQxMVH4\nukXIelNOAAPk6NGj2SOUEgEGBkjWTnBqauVJUbt3705Zv6x4PWAASEKAASAJAQaAJAQYAJIQYABI\nQoABIAkBBoAkBBgAkhBgAEhCgAEgCQEGgCQEGACSEGAASEKAASAJAQaAJAQYAJIQYABIQoABIAkB\nBoAkBBgAkhBgAEhCgAEgCQEGgCQEGACSEGAASEKAASAJAQaAJAQYAJIQYABIQoABIAkBBoAkBBgA\nkqQF2PaQ7RttfzprBgDIlLkDnpJ0MHF9AEiVEmDbOyRdJul9GesDwEaQtQN+j6TXSFo+0QG2d9lu\n2W4tLi4WNxkAFKTwANv+ZUnfiYjrT3ZcROyNiFpE1LZt21bQdABQnIwd8LMlvcD2IUkflvQ82x9I\nmAMAUhUe4Ij4o4jYERHnSXqppM9FxCuKngMAsvE8YABIUslcPCKukXRN5gwAkCU1wP02PT2t+fn5\n7DEK8+DfdWpqKnmS4oyMjGhiYiJ7DOCUlDrA8/Pzuunmg1o645zsUQqx5YGQJF3/tSPJkxRj6L47\ns0cAfiilDrAkLZ1xjo4++dLsMdAHW2+9MnsE4IfCN+EAIAkBBoAkBBgAkhBgAEhCgAEgSemfBQH0\nA88xL78inmNOgIFTMD8/r68euFHnnrWUPUohHva9lf8s339bK3mSYtx+z1Ah6xBg4BSde9aS/vjC\n/8keA33wlhseWcg6XAMGgCQEGACSEGAASEKAASAJAQaAJAQYAJIQYABIQoABIAkBBoAkBBgAkhBg\nAEhCgAEgCQEGgCSlfjW0hYUFDd13F++eW1JD97W1sNDJHgM4ZeyAASBJqXfAw8PD+vb9FR198qXZ\no6APtt56pYaHt2ePAZwydsAAkIQAA0ASAgwASQgwACQp9TfhgH5ZWFjQvXcPFfbmjSjWbXcP6cyF\nhb6vww4YAJKwAwZOwfDwsO7vHOZt6UvqLTc8Ug8fHu77OuyAASAJAQaAJAQYAJIQYABIQoABIAkB\nBoAkBBgAkhBgAEhCgAEgCQEGgCQEGACSEGAASEKAASAJAQaAJAQYAJIQYABIQoABIAkBBoAkhQfY\n9o/Z/rztW2wfsD1V9AwAsBFkvCdcR9LvR8QNth8h6XrbMxFxS8IsAJCm8ABHxGFJh7sf3237oKRh\nSX0J8NB9d2rrrVf244/ecLZ8d+UNIpdP3xxvlT50352Stqetf/s9m+dt6Y/ct/Kf5e1nLCdPUozb\n7xnS+QWsk/quyLbPk3SBpGuP87ldknZJ0rnnnntKf/7IyMipDzeA5ufvliSNPCEvSsXanvY13mzn\n1gPz85Kkh//45vh7n69ivsaOiL4vctyF7bMkfUHSmyPi4yc7tlarRavVKmawATY1tXI5fffu3cmT\noGw4t35g7uWglGdB2D5N0sckfXCt+AJAWWU8C8KS/lrSwYh4d9HrA8BGkbEDfrakV0p6nu2bur8u\nTZgDAFJlPAvii+rx+ggAlBk/CQcASQgwACQhwACQhAADQBICDABJCDAAJCHAAJCEAANAEgIMAEkI\nMAAkIcAAkIQAA0ASAgwASQgwACQhwACQhAADQBICDABJCDAAJCHAAJCEAANAEgIMAEkIMAAkIcAA\nkIQAA0ASR0T2DGuq1WrRarWyx+jZ9PS05ufnC1/3wTVHRkYKX3tkZEQTExOFr7vZcG4NDPdyUKXf\nU6A4W7duzR4BJcW51R/sgAFg/fW0A+YaMAAkIcAAkIQAA0ASAgwASQgwACQhwACQhAADQBICDABJ\nCDAAJCHAAJCEAANAEgIMAEkG4sV4bC9Kui17jgHxGEl3ZA+BUuLc6t0dEVFf66CBCDB6Z7sVEbXs\nOVA+nFvrj0sQAJCEAANAEgJcPnuzB0BpcW6tM64BA0ASdsAAkIQAA0ASAjwAbIftD6y6XbG9aPvT\nazzu4rWOQfnZXrJ906pf5/VxrSts/2W//vyy4W3pB8O9kp5ie2tEHJU0JmkheSYMjqMR8bPZQ+D/\nYwc8OK6UdFn345dJ+tCDn7D9TNv/YvtG21+2/aRjH2z7TNvvt/2V7nGXFzQ3NiDbQ7bfYfs62/tt\n/3b3/ottf8H2J21/zfbbbL+8e97M2f6J7nG/Yvva7rk0a3v7cdbYZvtj3TWus/3sov+eGx0BHhwf\nlvRS26dLeqqka1d97lZJz4mICyS9TtJbjvP4P5H0uYh4pqRflPQO22f2eWZsDFtXXX74RPe+V0m6\nKyKeIekZkn7L9uO7n3uapN+R9JOSXinpid3z5n2SJrrHfFHSs7rn3IclveY46+6W9BfdNV7YfTxW\n4RLEgIiI/d1rdy/Tym54tbMlNWyfLykknXacP+L5kl5g+w+6t0+XdK6kg30ZGBvJ8S5BPF/SU22/\nqHv7bEnnS3pA0nURcViSbP+npM92j5nTyj/ekrRD0j/Yfqykh0n6+nHWHZX0U7YfvP1I22dFxD3r\n8HcqBQI8WD4l6Z2SLpZUXXX/GyV9PiJ+rRvpa47zWEt6YUT8e39HxICwpImIuOohd9oXS7p/1V3L\nq24v6/vNmJb07oj4VPcxbzjOGlu0skv+7vqNXS5cghgs75f0ZxExd8z9Z+v735S74gSPvUrShLvb\nEdsX9GVCDIqrJL3a9mmSZPuJP+AlqdXn3PgJjvmsvn/JQrb5RuAxCPAAiYhvRsR7j/Opt0t6q+0b\ndeL/1bxRK5cm9ts+0L2Nzet9km6RdIPtmyXt0Q/2P+I3SPpH29frxC9ROSmp1v0m3y1aua6MVfhR\nZABIwg4YAJIQYABIQoABIAkBBoAkBBgAkhBgAEhCgAEgCQFGaXVfAe6fbP+b7Zttv8T207uv9nW9\n7atsP7b7+srXdX+kVrbfavvNyeNjE+C1IFBmdUnfiojLJMn22ZI+I+nyiFi0/RJJb46I37R9haSP\n2p7oPu7nsobG5kGAUWZzkt5l+88lfVrSf0l6iqSZ7ktiDEk6LEkRccD233WPuygiHsgZGZsJAUZp\nRcR/2L5Q0qWS3iTpc5IORMRFJ3jIz0j6b0k/UtCI2OS4BozSsv04SfdFxAckvUMrlxW22b6o+/nT\nbP909+Nfl3SOpOdKmrb9qKSxsYnwYjwoLdu/pJXwLkv6nqRXS+pIeq9WXk6xIuk9kj4h6cuSLomI\nb9ielPT0iDjRyywC64IAA0ASLkEAQBICDABJCDAAJCHAAJCEAANAEgIMAEkIMAAk+V8xk3d3lc1j\ntwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "7oOhLxr1eX52", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "dd38d07a-d640-4871-ed62-27d8f5f75d77" + }, + "cell_type": "code", + "source": [ + "sns.catplot('sex', 'tip', data=tips, kind='strip', alpha=.4);" + ], + "execution_count": 102, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XeQ5Ol93/f38+ucpyeHnc35dm9v\n7/YCDsAB0CERIAEG0SSKZJE2y7DpKpJyWVap5CpJLkWLki1SrrKNoinRJk1JJAGRIkEEIt8Bd8Be\n3HCbw+SZnunpnH+/x388PTns7N3O/Hqmv6+qqZ3u+XX3M7s9n33mCd9Haa0RQgix8yy3GyCEEO1K\nAlgIIVwiASyEEC6RABZCCJdIAAshhEskgIUQwiUSwEII4RIJYCGEcIkEsBBCuMTrdgO24pOf/KT+\nyle+4nYzhBBiq9RWLtoVPeDZ2Vm3myCEEI/crghgIYTYiySAhRDCJRLAQgjhEglgIYRwiQSwEEK4\nRAJYCCFcIgEshBAukQAWQgiXSAALIYRLti2AlVK/p5SaUUpdXnZfp1Lq60qpm80/k9v1+gIcR3M7\nVeCt0QyzharbzRFCrLKdPeB/B3xy1X1/F/iG1voY8I3mbbFNXro1y6t30lyZyPH1q9OMpktuN0kI\nscy2BbDW+rtAetXdnwV+v/n57wM/uV2v3+4K1QZj8+XF21rDjem8iy0SQqy202PAfVrryebnU0Df\nRhcqpT6vlLqolLqYSqV2pnV7iLVOLSZrvTuFEK5xbRJOa60BvcnXv6C1vqC1vtDT07ODLdsbwn4v\nh3sii7ctBacH4i62SAix2k7XA55WSg1orSeVUgPAzA6/flt57nAX+zvD5CsNBjuCxII+t5skhFhm\np3vAfw78cvPzXwb+bIdfv+0MdoQ40R+T8BWiBW3nMrQ/An4AnFBKjSmlfhX458DHlFI3gY82bwsh\nRFvatiEIrfXnNvjSi9v1mkIIsZvITjghhHCJBLAQQrhEAlgIIVwiASyEEC6RABZCCJdIAAshhEsk\ngIUQwiUSwEII4RIJYCGEcIkEsBBCuEQCWAghXCIBLIQQLpEAFkIIl0gACyGESySAhRDCJRLAQgjh\nEglgIYRwiQSwEEK4RAJYCCFcIgEshBAukQAWQgiXSAC3oErdptZw3G6GEGKbbdux9OLh2Y7m5Vuz\njM2XsRScHozz+L4Ot5slhNgm0gNuIbdmCozNlwFwNFwez5Eu1lxulRBiu0gAt5Bsub6l+4QQe4ME\ncAsZ7AiuuO2xoD8e3OBqIcRuJ2PALWRfMswzh5LcmingtSzO7ksQ8nvcbpYQYptIALeYo70xjvbG\n3G6GEGIHyBCEEEK4RAJYCCFcIgEshBAukQAWQgiXSAALIYRLJICFEMIlEsBCCOESCWAhhHCJBLAQ\nQrhEAlgIIVwiASyEEC6RABZCCJdIAAshhEskgIUQwiUSwEII4RIJYCGEcIkEsBBCuEQCWAghXCIB\nLIQQLpEAFkIIl0gACyGESySAhRDCJRLAQgjhEglgIYRwiSsBrJT675VSV5RSl5VSf6SUCrrRDiGE\ncNOOB7BSagj4DeCC1voM4AF+fqfbIYQQbnNrCMILhJRSXiAMTLjUDiGEcM2OB7DWehz4l8AIMAlk\ntdZfW32dUurzSqmLSqmLqVRqp5sphBDbzo0hiCTwWeAQMAhElFK/uPo6rfUXtNYXtNYXenp6drqZ\nQgix7dwYgvgocFdrndJa14EvAs+70A4hhHCVGwE8AjynlAorpRTwIvCOC+0QQghXuTEG/CrwJ8Dr\nwKVmG76w0+0QQgi3ed14Ua31PwD+gRuvLYQQrUJ2wgkhhEskgIUQwiUSwEII4RIJYCGEcIkrk3DC\nXZPZMm+MZCjVbA51hzk/nMSylNvNEqLtSAC3mWrD5ns3Zmk4GoDrUwXCfi+nBuIut0yI9iNDEG1m\nvlhfDN8FM/mqS60Ror1JALeZjrAPz6p/9a6I353GCNHmJIDbTNDn4X2Huwn7PVgKDnaHOdkfc7tZ\nQrQlGQNuQ/u7wuzvCqO1xpTjEEK4QXrAbUzCVwh3SQALIYRLJICFEMIlEsBCCOESCWAhhHCJBLAQ\nQrhEAlgIIVwiASyEEC6RABZCCJdIAAshhEskgIUQwiUSwEII4RIJYCGEcIkEsBBCuEQCWAghXCIB\nLIQQLpEAFkIIl0gACyGESySAhRDCJRLAu0Tddqg1HLebIYR4hORQzhZWbdiUazZ3Z4tcn8qjgUPd\nEZ491CnnuQmxB0gAt6hbMwVeu58mU6pzZ7bIib4YQZ+HO6kiffEgh7ojbjdRCPEeyRBEC6o1HF6/\nP4/tQKlmU607jM2XF7+eKdVcbJ0Q4lGRAG5B5bpNw9EAxEM+lDLDEQsGO0JuNU0I8QjJEEQLSoR8\ndIR9ZEp1Qj4PR3uiBHwWHWEfJ/pj9MWDbjdRCPEISAC3qA8d7+HSeJZ8pcETwx2cGojJxJsQe4wE\ncIuKBLw8d7jrPT9PpW7jtRRej4w2iR1Sr4DlAY/P7Za0PAngPapuO7x8a5aJTAWvpXh8OMHJ/rjb\nzRJ7mWPD3e/A/H0TwAPnzIfYkHSL9qjrU3kmMhUAGo7m9fsZ8pW6y60Se1rquglfMGE8/jqU0u62\nqcVJAO9R2fLasF3vPiEemfL81u4TiySA96iBxMqVEl6PoicWcKk1oi0khlbetjwQG3CnLbuEjAHv\nUYd7olQbDndSRYI+i7P7EgS8HrebJfay5EHY/5wZivD4YfAJ8IfdblVLkwDew04NxDk1IBNvYgf1\nnjIfYktkCEIIIVwiASyEEC6RABZCCJdIAAshhEskgIUQwiUSwEII4RIJYCGEcIkEsBBCuMSVAFZK\ndSil/kQpdU0p9Y5S6n1utEMIIdzk1k643wa+orX+m0opPyD7FV3iOJo3xzKMzJUI+z2c35+UmhFC\n7JAd7wErpRLAC8D/DaC1rmmtMzvdDmFcm8pzbTJPqWYzW6jxnRspGrbjdrOEaAtuDEEcAlLAv1VK\nvaGU+l2llJyx/ojNFapcmcgykSlvet10rrLidq3hkJZTl4XYEW4EsBd4Evg/tNbngSLwd1dfpJT6\nvFLqolLqYiqV2uk27mp3Z4t89co0b41m+fb1FG+MbFyTNRnxr7jtsSAelKNkhNgJbgTwGDCmtX61\neftPMIG8gtb6C1rrC1rrCz09PTvawN3u6kRuxe0b0/kNhxVO9ccI+iwypRo+j+LZQ10EfVK2Uoid\nsOMBrLWeAkaVUiead70IXN3pdrQTrde/v2E7fOt6ikrdIRb0EvZ72JcM7WzjhGhjbq0D/nXgD5VS\nbwNPAP/UpXbsSacGYituH+uLrXsq8ki6RLpoxns9lkW23ODeXGlH2iiEcGkZmtb6TeCCG6/dDg73\nRIkFfUznKnSEfexLrr/Kr7bOsEStISsghNgpciLGHtUTCzxwPe/+zjCXxrLUbTNG4fUoDnTJkmwh\ndooEcBsL+7184kw/N6cLgOZob4xIQN4SQuwU+WlrEwtjvZ2rlp3Fgz6eOpB0o0lCtD0J4D3OdjTf\nuTHDVLYKQH8iwIeO9+KxlMstE0JIALew6VyF61N5lIKT/fF3VaNhJF1aDF+AqWyVkXSJQ92y+VAI\nt0kAt6hMqca3rs3gNNfwTmTKfPrxQaIPOUZbqjXW3Feu2Y+iiUKI90jqAbeo0XR5MXwBbAfG5zev\n67Ce/Z1hli8B9lgw3CmbLYRoBVvqTimlngQ+AGjgZa3169vaKkE4sHY7cNj/8FuEY0EfL57q48ZU\nHoDj/TFiUutBiJbwwABWSv194GeBLzbv+rdKqT/WWv/jbW1ZmzvYFWFkrsRk1lQrG+4Mvettwt3R\nAN1HpcavEK1G6Y0KBSxcoNR14JzWutK8HQLe1Fqf2PSBj9CFCxf0xYsXd+rlWkq2VAcFiZD0WoXY\nRba0zGgrQxATQBBYKBwbAMbfZaPEQ0qEJXiF2Ku2EsBZ4IpS6uuYMeCPAT9USv0OgNb6N7axfUII\nsWdtJYC/1PxY8O3taYoQQrSXBwaw1vr3d6IhQgjRbjYMYKXUf9Ra/xdKqUuYoYcVtNaPb2vLhBBi\nj9usB/ybzT/fAf7HZfcr4F9sW4uEEKJNbBjAWuvJ5qdHtdb3l39NKXVyW1slhNjdCimYvwu+MHQf\nB6//wY9pQ5sNQfwa8N8Bh5tHBy2IAS9vd8PaWa3h4Pc+3C7xdLFGrlynLx4k9C52zAmxQvouZO5D\nIAa9j4EvuPXH5ibg5teWDiOcvwunfmJ72rnLbTYE8f8BfwX8M1YeG5/XWqe3tVVtKlOq8f3bc2RK\ndTrCPp4/0kVH+ME9hzdHM4snIXstxYdP9tAbe4gfGCGWm70F9763dHvybUgMg2VB31mIPuCU8tT1\nlSfBFmdNj/hBj2tDG3aztNZZrfU9rfXntNb3l31I+G6TV++myZTqAGRKdV658+C/6mrD5trk0jH0\nDUdzZTy3ySOEeIC5m0ufV/Nw/wcwex3m78ONr0CtuPnjrXX6dR4pvLgeqYbWQuabp1YsyJRqG1y5\nxHY0jjaPvTNbYCJbplyXcpPiPfAu++2pNGem3RdC1WlAdmzzx/c9Bp5lv7l1HoKQnLqyHvlvqYX0\nxYOLxXcWbj9I2G/+CW/OFBbvG0zI8IN4DwbOQX4KGhUTxvGhlYHqj27++HAnnPkZE9T+CMQHtre9\nu5gEcAt57nAXF++nuT9XQmtNfyKI7egVxwdprRlNl7kzW6DWcAj4LMq1BrGARaHmNCumKYrVxoYH\nbNZth3uzReq25kBXWA7ibFe5CShMQ6QXEkNL94c74ezPQn4SfCEYu2g+B+g6uvLa7DjM3QDbhq7D\n5rnm74GyoOsIeKUK32bkJ6+FhPweTvTHGJ8v42jFGyMZprIVPnKyd/GaV++meenmLHdSBSazFbpj\nAXLlGhrFQCLI2HyZaMCL17N+MSbb0XztyjTZshlrvjKR5ZNn+qVGcLuZugxjP1q6PXgeBp9Yuu3x\nQsew+fzEJ6E8D8oDwfjSNRNvwq1vmEk3tOkpAyQPmD9nrsKpz8gStE3IGHCLuT6VX3ESxmS2sjgW\nXKnb3J0tMpWtkKs00BrShSqlmkPddqjWHbQGv9ci4F1/KdpEprwYvgB1W3Nr2fCFaBPTl1fdvrL5\n9aHkyvBdeEx+ksWNsqlrkBsHuzl3Uc2bpWxiQ9IDbjFqK2VEV13i81gMdQTZlwzRFQ1seuCmWufp\n1Xp3ij1u1b/5o3gPqPX6c/Le2oz0gFvMif7YijPcBjuCi2uBgz4PR3ujDCSCxENeM8wWDbC/M0xH\n2M9wZ4RowMupgfgGzw6DiRDJZTWG/V6Lo70PmFQRe0//2c1vb/U54oNL4d1zwqwXXpiwC8aXhiPE\nuh54IkYraLcTMfKVOmPzZSJ+L/uSISxrZS9iPFPmbqpIw7Hxez0MxIMopSjXbYaSIeIPGM9t2A4j\n6RJ1W7O/Myw759pVftpMwkV7Idb/Lp9jCuZug103y82ivWa9sLIgebCdx3+31PWXABZCiEdvSwEs\nQxBCCOESCeA2linVmMpWcJzW/y1IiL1IVkG0CdvRXJvKkS7W6I0FSReq3J0rARANevnYqT4ZCxZi\nh0kAt4kf3k1zd9YUUbk2mWe2WOVAp1muVqg0eGcqx5P7Zb++2ILCjJl8ey+TdwKQAG4LWmvuzy1V\nsKrbDnOF2mIAg9nkIcQDzbwDI68s3R56CgbkdLJ3S8aA24BSioBv6Z86HvIRXVX/YbPNG0Ismnx7\n5e2pS+60Y4+QHnCbeHJ/kh/cnsPR4PdY/MJz+8mV61TqDod7IgwkQm43UYi2IwHcJg50ReiNBZkv\n1eiM+An6ZMJNvAt9j60s4tP3mHtt2QMkgPeYSt1mrlijM+xfs6oh5PcQ8ktPV7wH/WdMucrCNER6\nILHP7RbtahLAe8h4psxLN1PYDljK1Bc+KGO74lGLD5oP8Z7JJNwe8uZIBtsxnzsa3hidd7dBQohN\nSQDvIauXklXrjuxyE6KFSQDvIYd6Vg43HOiKrKmkJoRoHTIGvIecH+4gGvAyk6vSGfFzoj8GQLZc\nZypboSPs29JBn0KInSEBvAulizWCPmvxROQFSimO98U43hdbvG80XeKlW7MsVB09NRDjvGw5Fjuh\nlDaHcvplIngjEsC7SKVu881rM2RKdZSC0wNxzg13rLnuTqrA1ckcWkMqX12x5vf6VJ4zQwl8Hhl9\nEtukXoGbXzUBrBT0nYV9T7ndqpYkP4W7yNXJHJmSOVBTa7gykSNfqa+4Jl2s8cqdNLlyg3ylwa2Z\nArll1+jmY4XYNtOXTfiCebNNvQ3ljLttalESwLtIsdpY576VKx+mc5UVt/sSAXLLTkE+1B3B75V/\ndrEOxzHHz9tr32cPpZpfe1+tuPY+IUMQu8n+zjCj6fLi7ZDfoicWWHFNZ2TlGVw90SCnB2KgFB0h\nHwe6wjvSVrHLFOfg9jdMUHr8cOgF6Bje/DHZcZh80xxD330C+k6b+zsPwfy9pet8IYj2bVvTdzMJ\n4F3kQFcER8Pd2QJBn4czQwk8q5aZ9cWDnBmKc20yj0ZzrC/GEzLpJh5k9NWlXqpdg5EfmG3GGx1X\nXyuZwHbspcf7w+YgzuRBE+Bzt8EXhP7HwSNRsx75W9llDnVHHlg68vF9HTw2mABYE9BCrGv1sEGt\nCE4DPBucsJ2fXArfBdlxE74AXUfMh9iUDAa2sJG5Em+NZtaM626Fx1ISvmLrOvavvB0f2jh8AULr\n/Fa1/L5SGsZfh9SNtUEtFkkPuMU0bIfX7s/z0q1ZMqU6B7rChP1enj6Y5Niy9b1CPFL7njZjv/kJ\nCHfB4JObXx/uNKdhTL5lesrJg9BzwnwtNwE3v7a03Gb+Hhz/+Ha2ftdyLYCVUh7gIjCutf5xt9rR\nat4ay3BzOs/YfBnH0VydyHFuX4JrU3n2d4XxKEXD0Ytrex1HU7Mdgj4PtYaDpcC7bI2v7Wjqza8v\n3M5X6sSDPtmm3I7qFRO01qpffj3e5lrdLazXtRugHXMUUe9p0LbZcAFg100oL1/rmBs3qyvW6zW3\nOTd7wL8JvAPEXWxDy5nOVUEp8uU6Y5kyxWqD0XSJgUSQyWyZe7MluqJ+jvXFONwd5sZ0gVLNJl2s\nkQj5CPosTg8kOLsvwZ1Ugdfuz1O3Nf2JAB1hH//pjQly5QY9MT+/+NwBDnTJLqW20KjC7W+ZsVtv\nAIaffXdjtFOXYOLNpV7voRfA0wzf0R/BzFVIXQPLC8lDS5N4SkY71+PK34pSah/waeB33Xj9VpYM\n+6k3HMp1m0KlgVKmlsN0vspboxlKNZvRdJnpbJn/eHGMSt1htlDlTqrIaLqE7cCl8SwTmTI/vJum\nbpueyGi6zO+9dI9c2azxTOVrfPH1camW1i4m3zLhCyaM779s/nwY5XkYu2jCF8zQQuq6+Tw3YTZg\naAdiA+bk5NKc+VryIAQTj+K72HPc+m/pXwN/B3A2ukAp9Xml1EWl1MVUKrVzLXPZ+f0dRAIewgEv\nnVE/+zrDJCM+PJZaDE/A7HRr3p7IlEkVKoxnyjiO+Ssdmy+xPFsrdXvFhgyATKlGtbHhP4HYSxZ2\npi1wbKjk3ttzgAnl1V8LxGDwCeg8DEdfhMMffrjXaSM7HsBKqR8HZrTWr212ndb6C1rrC1rrCz09\nPTvUOvcFfR4+e36IF451c7QnSm80SCzoJ+Tz0Bc3v+pZCrpifvoSAcbny2RKdYoVm1LV5u5cCUvB\n8b4YgWU73sJ+LwMdK48j2pcMrzm2SOxRiaGVt30hM5H2MGIDYK16vyycjBEfXLlm2BuEgx8wqys2\nWkssXBkDfj/wGaXUp4AgEFdK/YHW+hddaEtLCng9fOJMPwGfh5vTeU4ORNmfjFBt2IzOl0iEfBzt\njfFjZwb4vZfukgz76QiZSbVq3eb5I110hP18+EQPb45mKNZsDnaF+djpHv7TGxNMZisc6o7w008O\nPbgxYm/ofcxssEjfNT3UoQtrw/RB/GE48iJMvGGeq+eE2fUGJswPfciMEWsH+s5ATHa/PYjSLlZm\nUUp9GPjbD1oFceHCBX3x4sWdadQu85XLU6SLtcXbfq/FT58fkhUOQrhrSz+AMjW5y50bTuBthq1S\n8MRwQsJXiF3C1Y0YWutvA992sw273UAixGeeGGS2UCUZ9hMJbO2f9MZ0nnuzRQJeC69lka82SIZ9\nnBvuWFE/WIh3LTdpjq+P9sopyhuQnXAtJlepU67Z9EQDW+7JBn0e9iW3XuXsdqrAxXtm9vp+uki6\nUOPccAfpYo18pcFHT8vYnXiPpi6ZJWsLhp4yGzfEChLALeTN0QxXJ8zSoEjAw9842UssuMl+/Hfp\nxnSe2UKVaMBLplijbmsKlQbxkI+ZfJVqwybglV6weA+mLq+8PX1ZAngdEsAtolBtLIYvmELrVydy\nPHu465G+zq2ZAm+NZpjKVlGARqNQBHxmOiDos/Ct3qYqxHsm8xLrkZ+0FlGpr60YVV7nvvfq7bEM\nA4kQkYAHjVlTfKwvSsDrwedRPH2wUybx2lFx7uE3Zmym/+yq22ce3XPvIdIDbhFdET/xkHfFbrfl\ndX9vpwpcmcihteZkf3zxyPmH1bA1Po/FY4MJKnWbsN/Dzz09TK7cIBLwrCjkI9pAowo3vrq0bbjn\nJBx433t/3v4zEOk2W5IjPRAfeO/PuQdJALcIpRQvnuzj6mSOUq3Bgc4I+5vHB6WLNV69s7TV87X7\n8yRCPvoTwYd+nSO9Ea5PFag2bHKVOoe6wyilSIQf/Viz2AVmri6FL5hCOt3HTHi+V7F+8yE2JN2d\nFhLye3jqQJIPHutZDF+AmfzaguwPKtLuOJp0sUbDXlnr4cn9SQ73hJnMVrCUYjJb5fWR+UfzDYjd\nZ73DMmuFnW9Hm5IecIsZz5S5NJahbmuO9kY5NRAnGvCSLdcJ+TyLJxqvPnxzQaVu861rM7x0axa/\n1yLs95Avm6pq54Y7+KnzQxSrNgeXlaG8MZXnscG4rHxoF/WKOcOtMA0oMwyxUM/XGzSnI7/yf8L8\nXXMu3KmfgGrBrGRoVEyNh66jm7/G7C2zZbmah30XZAXEBiSAW0ix2uB7N1KLVczeGMlQqjW4PVOk\nWG1wK5XnSHeU9x3pYrhz/XW/F+/N8/KtWYpVm/lSjRvTeRIhH8PJCN+9MUs86MNetf3c0eZnTrSJ\nkR+sPbU4PgReP3QegUt/DNNXzNdKachPgS8MmRFT5+H+D+D9v7l0CvJqhRRc/zLMvGNKV46+Ak/9\nl49mbHmPkSGIFjKTr+Jo04u1myn88q05Go5msCPEk8NJ+uNBzm9yyvFktrxYYrJQaVCpOTRsjdbm\nvpvTeY6vOtpof6dURWsruYmVt7UDR/6GKa7eqCyVmFx+feqauW7h+tvf3OT5x01YL9QN1hruftuc\npCFWkB5wCwn6LC6PZynVbCxlgtG/rKSkUoqa7eA4esOlYsmwn2TYz0y+SsDroeE4lGo2M/kqPo+F\nrSMMJIK8eKqX8UyZeNDH4Qecsiz2mHCn6dUuCCaWjigKJcG/6v0QSq6tBbzZCRfhTlMtbTlPoHnK\nskTOctIDbiGj6TJdUT+WAg0Uaw3OD3esuGZ/V3jTdbpPH+rk7FCCwY4gyoLTA3HCfg9jmTKlWoNY\n0MdXr0zRGfHz5P4kR3uj5JvHHq23FlnsQfvft3Q+WyAGBz+49LVwJxz/MVM/WFkQ7YNzn4P9z5pq\nT5bHnHCx2Zhux35z5JFS5jnig2ZdsO/hV+3sda6Wo9yqdilH+Y13ppnKVqg2HHwehcey+NipXtKl\nOtO5Cp0RP6cG4ls6br5YbfBnb5pfNe/PFRnLlAj5vDzZHL5435EuDnVHuDqR483RDABeS/HhEz30\nxuUHpS3UKxuHomObyTmP3/RaHQem3oZiyoRy32MPric8fQWy42ZJW//ZzY+533u2tJtJfh9oIV6P\n4o3RDA1bE/Z7ODecoCsaoCcefOiNF5GAl1jQS77SwOex8FkeQsuqnHmUomE7XB7PLt7XcDRvj2X5\n6GkJ4LawWY/U8pgC7Iu3LXPM0MPoe8x8iA1JALcIx9GkclUGEkHmCjUCPouOkH/NcMPCMrWarTna\nE+X04MaHSj97uJOXb83SHQ2QrdQ50Fw50RnxMZQMUbcdGqsO5azZshyirdgNsxwtEDNDBpWcKR/Z\nXr1V10gAt4hy3aZmawYSIQYS5uy2+qq1Yal8hT96dYRirUEi5KNQaRANeFds2liuNxbks+eGKNdt\nfB6LsfkSHkuxLxnGYyk8loehZIjx+fLiYw73yITcnjd7C7IjgILsmJkcy02Y1Q2JfWZN8LFPQOTR\nFoISa0kAt4hIwEtH2EemtHRy8WDzEM1MqcZLt2b5yuUpJrMV+mIB5ot1Go5mMltmf1eYYrWBx1Jr\niqlbllos0n64J7rmdd9/pIsb0wUy5RqDiRAHZUXE3jZ91WzCALO0zGmY+g+ZEUCbrcMNzCaKYx91\ns6VtQQK4hXzwWDdvjGTIlusMdoQ4t8+sgPjuzRQv3Zzl3myJ+WKVTLHKUDJCQzt8+uwA37mRYny+\njFJwvC/KUwe2ftqt12NtOowh9pi5W0uf23WzU61WWlrj6zTA8kK95E772owEcAuJBX28cLxnzf2X\nx3NU6zalWoNCrcF8WdNwNMc8MW5O5ylUzfIxreH6VIHhzjC9saUJls3WDYs24wsDzeI7kR5TC8If\nhmDcvIG8zffN8q3GU5fMrjZlwcAT0P2AbchiyySAd4GQz8NssUax1qDe0FgKgj4v+7siXJvKrzmO\nKFdu0BuDuu3wg9tzjGfKhJuFfpZf6ziact3e8jlyYg8YPA/FGbPELD5gAtUXbNbvVVAvQmL/Ushm\nRuHuS1DJmC3L1bxZKxze+m9ZYmPyk9disqU6o/MlQn4PB7sieCzFh45389LNFAGvByeg8XosYkFT\nQL07GljxeI8Fgx2mF3N5PMtYc4KtWLX5/u05fvKJIH6vxXSuwvdvz1KuOcSCXl441iMlKdtBpAvO\n/qxZ+RBMmNUP69Ha9Hwv/6kZDw51mpUR8UHzWAngR0ICuIXM5Ct8852ZxWI892aLvHiqj7NDCZ49\n3MXr9+epNJzFOhGdET8fONZ/xdknAAAgAElEQVSN32Nxc6aA11I8Nhgn7Df/rOniyu2gDVuTq9Tp\njgZ45c4c5ZoZ98tXGly8n+bFU3IYZ1vw+Mxqh83MvAPjr5mNFLWCqRHRsR/ykxBYNWfQqJlQDiUh\nsHaiV2xMAriF3JgqsHxZ7kSmwl++PcFouoTtaM7t62B0vkS14fDMwU7ODCWYylboiwf54LEuLo1n\n+fLlKcJ+iwsHOumNBbk1U+DqRJZqQ5MIeUnlK1ybyjGaLuOzLGJhD0Gvl4FEkH3JMMf7oigl48Vt\nLX0Hrvw5ZO9DOQ3KaybsirOm5zvyCoQ6TG84mITbf22+PnvD9Jz7HjMlLMEUfLfr0H1cTsVYhwRw\nC1k9T/bOZI5suYbP46FSt5krVnlsMEFnxM98ucbtVAGvZTE2X+Zb12cYny+Tr5iKU+PzFV482cvr\n9+dJFWpUGzZvjVXxWhb5aoNyrYFC4fMqYgEfmVKNV+7MUao1Nq22Jva42Vtw73swe82sFXYcswvO\nsU0Pt1GDG18x9SDig6ZOcCBqth1PvG4m6kqzpgfdf8aMNYOpLXzi0xBdO8nczqQYTws53h/D20xh\n29GL4QumMI+jIRnx0RnxM52tkm2uGa7Uba5N5RfDF2CuUOX7t2cJ+b3s7wzjVQpQzJdqLNX/0GZS\nz1JYSpEp17g7u84JCaJ9pG+bJWmWZSqYWZbp5Xr80Hl4aftyMWX+zI6YPxfqC2vHhPb8nZVlL7U2\nPWuxgvSAW0h3NMCnHh9gbL5E0OthvljlzqxZj+mxFB6l8HksFKZuhK9ZqtJrKcI+00teGMLweiyS\ny07N8HosLKXwWAqFCWOvR2EpswnE67HweawV9SJEG/IGAWV2wyX2mVUPvhA0ymZFRKNqrvE031sd\nB5Y9DrPMzfKA5W+ermEvFe3xhXb822l10gNuMdGAl5P9cQ52R/jEmQGiAfPm7Qj5OD0YJxHyoZTi\n2cOddITMqoWgz8MnzvSxLxlCKRPOh7sjfPx0P+eGEwD0xQPEQ14Od0XwehTRgIegz0NfLEQ04OFA\nV5iuiJ8n9nds2DbRBgbOmXrAHYea5Sd9JmwHHjf1vbQ2k3gdw+bPMz8DB95vhhfigxDrAxQc/rBZ\nujb6Kky+ZZ6j54S731sLknKULa5UbXB7tkBvLEhvLECqWVg9GfFTrtlkyjU6I34CXg+FaoOpbIWA\nTzEQDy0eMT8yVyRXaXC8J8Kt2SLlWoNizaEr7EMrSIT8eD1q8XlEm3Nss6pBeeDKl5o9Wq/p/TYq\n8OQvmVKWkR5zjNGCetVMyCmvWWvsNMxGD22bjR0nP+3e97TzpBzlXhAOeDk7tNQrXV6rN+T3EPIv\n/VoXDXg52rt2GdD+ZQdwnh5MbFNLxZ5heUxvFmDoKXMYJ5hhiZ7jEN6gSM/kG1CYMZ/f/z50HTG1\ngwFKc9vb5l1KAliIdrRZMfblhp4yY7f5SbNxo+/s+tfZDUhdX7odTJhJuIUAjskStPVIALew6VyF\ndyZzaG1WSAx1vLdJjErdpmY7xIOy461tldJw59tQyZpdcIc/snnZScsy63qrebO0LHUNek+bo+ZX\nU82ztMAMORRnTK852gv7n9+O72bXkwBuUflKnW9dW9oVN5Wr8InH+vF7LV6/P0+mXGcgEeT8cMfi\nWO9mLo9nuTyexdHQHfXzoRM9Mt7bju5/34QvmFC9/xKc/uzmj8ncN8ELJmCnLpkhioVhCjDHFvU+\nZo4tAhO8T/yCGYYQG5IAblHjmfKKXXFaw9h8iYlMmXTRrP+9WSkA8PTBzffl5yp13h5bOnpotlDj\n+lSex/fJioe2U151uvHqI+jXs/pE5IX7lgcwwL6nzH2lOfOn1It4IFmG1qKi61Qo83msxfBdMJmt\nPPC5lm/QWDBXqPHa/TTfvDbNtakcu2E1jHgEVodmbHD961Y8ZujBz7N4/4DZASfhuyUSwC1qqCPE\nwe6l0pH7kiGO9UQJ+Vf+ky2sBd5MbyyA37vyceOZMtenCkxlq7x+P8OVidyjabhobQPnzdBD6hrY\nNXNE/WayY+aj84ip/xDuhMMfkoB9RGQIokUppXj+SDfn9jVwtCbWnDh77nDXYiWzeNBLfzxAplSj\nI+zf8Ll8HosXT/ZyaTxLpW4z2BHk7bGVgTuSLnFmSJao7Xn3XzKTbz0nze3Z6+tPqIEZ6x1btv5+\n4HGzKkI8MhLALS4S8FKsNvjrq9PM5Kt0Rvx85HgvNdvh5duzXLyfAeBE/+ZHESUj/sXTNhq2w9XJ\nPA3bDDuUaza5Sp2Xb81ytDdKX1yOpd+TasWl8Vy7bjZXZEY2DuDpqytvz7wDg0+a1Q7ikZAA3gV+\neDfNZLbCfLHGZLZMpd6gPxFivlhnPFOmVreZL9U43hdb7ClvpNZwuD9XJBn2M5U1E33Xp3N0hv28\nejfN7VSBT58doGtVoXexB3iDJjwnL0E1a3a29Z0xE3GhpCmik7lnKpx17DeFdfJT5s9It9khN3XJ\nbFVOHjJL1B4kM2om/uJD5jnEChLAu8BMvsL1qdzi2W8TmTJPHUjy/duzzOZN0fWbqQJnh+K8cLx3\nw+ep2w5fvTK1OCnn91oMJEJcncgylTNlAyczZY72RnleAnjvsTzgj5kDNwszprSk5wZc/hKc+KTp\n4Waa1c3GLprtyAsVzOZumhKU482li5NvmZD2+E2t3/U2dYy8auoBA4y/DodekGVpq0gA7wJ+r7UY\nvmCK70xmKyuOsLcduDlT4ANHezY8gHNsWb3ghcdMZstUG0srIOq2Zq5QW+/hYi/wBszGinrZFNMB\n0+N97d/B/H2z663ziKn5UJ43477VHORnWCxvUCuaouz9Z01vePYGPPZTS1XPwAxxLKwdXjB9WQJ4\nFVkFsQucH+4gEfZiKYgFvRzpiZIM++mPB4kEvCRCPvrjwXd1kkUy7CcZWRq2iAQ87EtK2cA9Kz5o\ngnIhfL0Bs2MtP22GGmpFMzG3sKXNHzVL1ZaXkizMLB1jD2ZVRXZsx76FvUR6wLvAga4Izx/pXuyZ\nej2Kpw4kKVTr3EmZesHxkJcLB5KbHj+/LxkiFvQu9oKDPovnDndSbThM5yrYjqY7GuBE/wYHNYrd\nb+CJZrWzGdPzTR6AuVtmeKEwZSbpGlXTsw0vG7NdPuZrecySNP9SkafFQF9+u+fk0hAEmPFmsYKU\no2xRWmtupwrMFmr0xgLs7wwzkjbnwe3vDBMJeMk3d7gVqw0eG4wztOp4+vUsTMI5Gg50hQn6PNQa\nDiPpIg1Hc7ArQlCKsu99jmO2GFfzpmhOftL0aktpQMHTv2qOGkrfMWUlk4fAqZthCpQZTmg0NwHF\nBuD4J9ZfHdG+k3Bb+nVUArhFXbyX5sZ0YfH2we4wXsui2rA53BNlqCPUXE6WI12s0RcPcqIvtmkP\nWAjqZTNc4AtDornDrVE158Blx8yJxwfe3yysvolGDbKjZhIuPrS1FRHtReoB71YLvd8FtqP5i7cm\nFzdKjKbLfORkD7dnioykzRDERKZCuW7zpByoKTZSnIMbf2UmyMCc8Xb4Q2Yc+OhHH+65vH6ZUHsE\nJIBbkGqe/WY7ZqIjV6ljr/pN5fZMgdH58or77s8V1w1g29HcSRXIVeoMdoSIBLzcSRXxKMWR3ghh\nv7wN2sL05aXwBTO80HXUDB1Eek1Fs3erPG96xdFe2ajxEOQnr0WdG+7g1Ttm11LAazG8anw3GvAS\n8FpU6iakqw2bhuOQLdVJhFdOiHz/9iyjaRPWb41mKddtks2ty7dSeT51dkBKU7YDZ1VRpvyEOXLI\nHzGbNI5/Yv0aD5UsFGfNEUTB+Nqv3/2emcgDU4j9xKe2VuxdyDK0VnWkJ8pPnBvg+SNdfO6Z/Txz\nqJOG7TAyV+T+XBFba54Y7sBSMF+qcXkiS6lm85eXJrk2tVTnoVyzF8MXTBW0iUx52dedFV8Xe1jP\nyaXeqWNDaX5pJUOjYjZLrJa6AZe/CHe/C1e+CHO3V369kFoKXzBhPbNqC7PYkARwC4sFfRzsjhAJ\neHnmUCddUT/JiJ/9XWGuTxXIlOv85PkhkmEf5/Z1LJ50cWksi9MsJmxZsHxezrLMEffL+TzyK2Nb\nSAyZ04v7zsDgE0sFeRbUS2sfM7EslLWGiTce/Ji6/Ie+VRLAu0TddsiWG8SCPlRzgnVkrkTQ5yES\n8K4IVdvROM0x44DXs2Jdb188wLFlB3d2Rnzs28LyNbFHRHtg+GlTgGd1Td/1JtXs+ua346s2aYCZ\n3BNbImPAu4TXUgR9S2O+QHMyrcDIXIk7s0V6ogEOdIU50B1dcUzR+f1J9iXD5CrmGCO/x2I8U8ZS\niqGOkCxda1dHX4Spy1DJmLoO3cfWXtN9fOWQQvfxlV/3+MyY7/QVM4zRfdwUZRdbIgG8SyiluHCg\nk1fuzNFwNAGvxfG+KF++NEmqUAU0+WqdeMjL6YG1O9l6YgF6YqbATqHaoDPif2DlNLHHeQPmGKHN\nDD9jKqUVU+aE4+6ja68JxuHAAwq7i3XteAArpYaB/wfow2w4/4LW+rd3uh2tqm47zBaqxIM+IgEv\nqXyVe7MFxufL9MQD/PjjA5TqNrW6wyt3ZnlzZB5LWThac2u6wGyuysV785RqNoOJIEf6opzf34HX\nskgEfXznRorX7qfxWIpTA3E+dKyHiu3QHQ3g28LhnmIXq+TMagbLY2o8NComVJcvP8tNmiVlsX6z\nIkIp6DluPhzb7JqzfFArmJ1zsQFTPwJMoffSHIS7TK3hsYvQKENi2AxvyPK0NdzoATeA/0Fr/bpS\nKga8ppT6uta67adO5wpVvnU9Ra3h4GhNpd7gezdneXs0Q9XWhP0ezg138MKxHt4YmefGdIHpXIWg\nzyJfqVOpO9yeLeC1LMJ+D17LBHNXNMC+ZJB8xdSOaNgaW2si/in+6u1JnjnSTSLk4yMneqQO8F41\n+Rbc/DrM3jTVzbxBc3ZbbBCOfdz0Yq/+Z7j7bTOJFkqaCbsjHzKPr2Th+ldMAE+8DvWKqQehrGa4\nekwtie4T5qijzIgJY6Wg44AZ7tj/nKt/Ba1oxwNYaz0JTDY/zyul3gGGgLYP4LfHstQaZox3Nl/l\ntftp7qQKFGs2GshXNBfvpXlnIkdnxE/ddvBYivlSjUZz1YPWUK3b1Bo20aAPrWG2WCVbqlOzbXLl\nBqDxez3Ml+tMZCtMZMqEfB7eHsvykZMb1xMWu1S9AhNvwvw9M4lWmDHLz+bvQajTrGxIDMH0paUV\nDOV5GL8IfafNxN3kW2bFw/w9MxyxMBlXyZoetbLMlubSrAne6atmgk5rE8bTV2HfM7JleRVX/zaU\nUgeB88Cr63zt80qpi0qpi6lUaqeb5opyfanmb812qNqact1ZKAyIozXVuk3ddqg3NLWGTchn4bUs\n/B4Lr8fCYyk04GiwlEJr0I6m7thU6w51x6HhaBztgDY/O3XbWfP6Yg9pVMxwgV1vlpHUZjhhIUTr\nJfOxZsVDbWmZ2UIwOzXzWLT5XDfM4+xmDWm7vux1mhY+lyGINVwLYKVUFPhT4G9prdccyau1/oLW\n+oLW+kJPT8/ON9AFB7uWyvt1Rvwc7AoT8XtQylT2UIDPa9GfCOL3WjgaEiFzXVfUTzzoJeD1EPGb\nGsEBr0U85CXk96BQBP0WPo/VrBusiId89MaCdEX9a15f7CGhDlOJLNJjVi14g6bSWaT5c9V1xFQ7\niy777cfyml7xwpH0nc0lapEeM9br8ZvecyDefO5e0wsOd5lruo+yWI8mGDfDDxLAa7iyCkIp5cOE\n7x9qrb/oRhta0enBOH6vxUSmTEfYx6fODnCwK8KXL0+SLdXwWhYn+mM8fbCLKxNZyvUGTwwnOdYb\nZSJb5tJYjrrj8NSBDk71x7g5XWCuWCNbqfPmSBafR1Gq2VTqNomQjx8/O0B3PEDI52WwI8TRZeuD\nxR5z9GMQ7Yept01Q+qNmnDd5cGllw7mfh8Q+MxHXfdQcWb8wQdd91Py6lB6G3sfM0jVlLQWzts2q\nCrtuJvYsnzkpQzdg//MPrq7Wpna8HKUy3a/fB9Ja67+1lce0YznK5UbTJSazFSJ+D/OlGqlClWTY\nz1MHkltaSuY4mj99fYxUoUrQ6yHoM6deLJySLMQa9bL5WK82xHKpGzD2IzMEERuAIx8xQSxathzl\n+4FfAi4ppd5s3vf3tNZfdqEtu8JwZ5jhzne/W82yFM8f7eaV23NUGw6JkI/z+zseYQvFnjL5tpmY\n044Zvjj2CfCv8/6rl2HkB0tjvPlJ89jhp3e2vbuYG6sgXmKL/zsIaDQnyLxbWKNbqdu8ejfNZHMI\n45lDXXRGzPjuUEeInzo/RLluM1eo8dZolkjAw6mBuJyAIZbUimaZ2cJvxuWMGbZYbwlZJbdysg3M\n6gmxZbITroWZtb55AI71xdbU+nUczdh8mVK9wVBHiMvjOcabNYLTxTrfu5niM+cGFw/rtCzFTL7K\nD27PLT7HZLbCp87K1lHRVCsuhe+Can79a8NdZkJv4WgiMGPIYsskgFvURKbMO5NLb/xrk3n64kGG\nOpYKn3zv1uxi4L41mqFh6xUnIxerNuW6vaLg+t3ZpZM2ADKlOvPFGslmT1m0ofyUWacb7jQF2v1R\ns9NtQceB9R/n8ZpNHOOvmes7D0PvqZ1p8x4hAdyi5ku1tfcVa4sBnC7UuDKexWoW6bk3XSSVr9Id\nC3CwK2KWowU8hFYNL6weblAKAj5ZHN+27r4Eb/6hKdbuC5rNEsc/Cal3TG84echsQ95IpAuOf3yp\n1yxLzR6KBHCL6osHgew695mx3q9dnVo8tDNfqRMNeOmM+lEo7s0Wee5wF88c6lzRIwZ4bDDBdK5C\nuWbG7k4NxOVIonZVycGdbzVXPJTMn7M3YfhZOPTC1p9n/HVTDU0p6HsMBs9vX5v3GPnJa1Hd0QBP\nH0zy3Ruz1Gyb5490L1YzuzVTaG7C8JItN5gr1vB5LIY6wsSDPpSCH9tgXDcR8vETjw+SKlSJBLzY\ntqZSt2Uirh3VS1AtmNONF/ZbWl6z3nersmNmm/KCiTfNOuDVtYbFuiSAW9i9uRIhv4cQHq5N5RhK\nhuiOBqg260Uc64uRLlap2TaHuqKLJ2J0PmA81+uxSIR8fOn1ca5O5rAdzXNHuvjJJ4a2/XsSLSTS\nPEDT8iydF2d5zIaNrSrOrn+fBPCWyOBfi5otVEnlq4u3G47mjZF5tNYc6o5gKVProTsa5ANHuzk9\naA5L7Ah716yWsB29WO9hwRsjGV67P28m6mo233pnhsvjme3/xkTrsCwYetKcjtF5xIz/HnjehHK9\nubKhUQPH2fg5Yqt+03JsE+xiS6QH3KKWj9ymChW+f2sWj7J4+dYsv/DsAT52uo/bqSJej+JEX4xI\nwMvoXImLI2m+fnWanliADx7r5sZUnpdvz1Gp25wbTvDh471YlmIiW8bRUKjUSZdqOA58+dIUJ/rj\nUhe4nQych8k3TehWMlAtwvUvm/W/xRmzXTkQh6GnoPfk2sfH+swa4Yk3Yeaamci7800T5usVbxcr\nSAC3qK5ogIFEkCsTWf7zm5NU6jadUT9T2Sr/4Uej/L1PneKZQ0tbPhu2wyt356g1HGaLVUbSRTKl\nKlcmcmRK5tfL0XSJWNDH0wc7Odkf43vXZ5kt1poHeGq0A1cncpwbll1ybUM3e6yWD3xhU7/BskwY\nz9+HUMYsLRv5gRlWWO9Y+t5TUCstrQduVOH+y6aYz+rz4sQK0tVpYcf7o1ybylOsNdBAveGQLtbI\nluuUVpWOLNZs6rbmzmyRu6kSU9kqX7s6zdj80gm1jjYnJgOcHerghRPdWApK9QYhv5epXJnbqZXr\nhMUeV05DMGGK8oS7wK6aMF045WLhT9h8l1s5vfK2dkytYLEpCeAW9sZIBp9lkQz7UECpZmoB9yeC\nRAMrf3mJB734PIq5wtL64d5okHylseK6ZGSpeM9nnxjiRF+M0wNxBhIhNIp0ce36Y7GHLZ8sszym\n1GQwbkIZTC0IMKsjoptUNFs96eYNQLj70bZ1D5IhiBZWqtl0hH0c7I5wf65EqdbgeF+UX37fwTXX\nKqV44Xg3V8azlOoOybCP4c4wPo+iZptj6vvjQd5/dOmHwmspDvVEGE2XqTVsuqIBEiE5qLOtJA/C\nvqdh9roZhnjm85Abg+yE6cHadbMV+cxPm/HdjfSeNkMQ6btmKGPfhZVnzYl1yd9QCzvYFaFSt/F5\nLDpCfo73R/mFZw9sOEnWFw/xmfNDXGtuYa7Wbd53pAtbm1ORj/fFVgSsUoozgwmigaX7DnZLUfa2\n03/GfCzoPQmXv7jyCPpiavM6D0qZibqhB5yyLFaQAG5hFw4kiQQ8DHeG6YkGODUQx2NtvtXzyf1J\n9iVDTGbKvDWWZa5ojpkp12zODiXWXP/MoU5iQR+zxSq9sQCn+teZZBHtpZJdO36bGZUdbttAArjF\npPJVZvIVEkEfVdvBa1k8d6iLkH/ru5N6Y0FmclW8yw5ArDYcRtMljvXFVlzr9Vic3bc2mEUbyk2a\nnm64yxxdtPyMuKC8R7aDBHALuTWT54d3zWaLKxM5kmE/Q8kQl8azfOKxvi2dfrFgvWEKWd8rNjT5\ntqlqtiA+aHa02TUzETf0pHtt28MkgFvIlQlzNmmmVG+e3VamLxHAqWtup4o88RDrcw91R7g5k28e\nQ2+2J7+XUzXEHjd9eeXtcgYe/zlTL2K9tb/ikZAAbmHpYo03RjIoIOC1HiqA/V6LHzszwESmjGUp\nBuJBrAeMH4s2tuZsSG1WMXgkfLeT/E7aQk4PmDd7IuxDo9GYnwulIF9pMJktb/4Eq3gsxXBnmKGO\nkISv2NzyVRAAfWfWv048UtIDbiHH+mIkwj5mclX64wEuT5hKZV1RP36Ph7lCjYGEbO0U22DgnNk4\nUUw1y0luckzV5NuQum4m6gbPQ3KDEzPEA0kAt5jeWJDeWJC+eJCZ/MpdaQsF2YXYFokh87GZ+Xsr\nJ+vufNts0gjENnqE2IQMQbSonliAZw4liQa9RINenjmUXCzILoRrcpMrb9cKkBlzpy17gPSAW1jD\n0VgK/B6LSED+qcQ2KaVh7CJUc+YATo8P0nfMicdDT0JsWYH2cJf5s1GG6XfM9mPlAa8fuo6Yr9l1\nGPsR5CZMOcvhZyEQ3fnvaxeQHnCLGpkr8fr9DLlyg9lCje/eSFGu2Q9+oBAPw3Hg1jcgN25qPtz+\nFlz9c7MTrjANN79uyksu6DpqtihnRsGpm1oS3gCMvAJ2s/DT6A/NGHE1D5kRc+6cWJcEcIuaWLXi\nwXZgJl9xqTViz6pkVh5BX5k3HwuchgniBZYFB98PQxdMEZ+FKmh2zfSKwYT5csXZlSEuFkkAt6hk\neO25bh2hzc96E+KhBWJmyGGBL2I+lguus/688xCoZfER7lqaiAt1rrzWHwWPvHfXIwOLLepob5RU\nvspIuoTXUpwZSpAIS6lI8Yh5fHDg/WYIoVExy9Esj+n1enww+OT6O+EGnjABnB0zdSKWb1Uefsb0\nqsvz4I/AwQ+YxexiDaXX7IBpPRcuXNAXL150uxmuqDZsPErhlToOYjs5jhlGWKj526iaybX3UtO3\nXjYTee0Zvlv6pqUH3OIC3q1XQRPiXbMssJatM/c+giWPch7cA0m3SgghXCIBLIQQLpEAFkIIl0gA\nCyGESySAhRDCJRLAQgjhEglgIYRwiQSwEEK4RAJYCCFcIgEshBAukQAWQgiXSAALIYRLdkU1NKVU\nCrjvdjt2iW5g1u1GiD1J3ltbN6u1/uSDLtoVASy2Til1UWt9we12iL1H3luPngxBCCGESySAhRDC\nJRLAe88X3G6A2LPkvfWIyRiwEEK4RHrAQgjhEglgIYRwiQTwLqCU0kqpP1h226uUSiml/uIBj/vw\ng64Re59SylZKvbns4+A2vtavKKX+9+16/r1GTkXeHYrAGaVUSGtdBj4GjLvcJrF7lLXWT7jdCLGW\n9IB3jy8Dn25+/jngjxa+oJR6Rin1A6XUG0qp7yulTqx+sFIqopT6PaXUD5vXfXaH2i1akFLKo5T6\nLaXUj5RSbyul/pvm/R9WSn1HKfVnSqk7Sql/rpT6heb75pJS6kjzup9QSr3afC/9tVKqb53X6FFK\n/WnzNX6klHr/Tn+frU4CePf498DPK6WCwOPAq8u+dg34oNb6PPD3gX+6zuP/J+CbWutngI8Av6WU\nimxzm0VrCC0bfvhS875fBbJa66eBp4H/Wil1qPm1c8B/C5wCfgk43nzf/C7w681rXgKea77n/j3w\nd9Z53d8G/rfma/xM8/FiGRmC2CW01m83x+4+h+kNL5cAfl8pdQzQgG+dp/g48Bml1N9u3g4C+4F3\ntqXBopWsNwTxceBxpdTfbN5OAMeAGvAjrfUkgFLqNvC15jWXMP95A+wD/oNSagDwA3fXed2PAqeV\nUgu340qpqNa68Ai+pz1BAnh3+XPgXwIfBrqW3f+PgG9prX+qGdLfXuexCvgZrfX17W2i2CUU8Ota\n66+uuFOpDwPVZXc5y247LGXGvwH+V631nzcf8w/XeQ0L00uuPLpm7y0yBLG7/B7wP2utL626P8HS\npNyvbPDYrwK/rprdEaXU+W1podgtvgr8mlLKB6CUOv6QQ1LL33O/vME1X2NpyAKllEwEriIBvIto\nrce01r+zzpf+BfDPlFJvsPFvNf8IMzTxtlLqSvO2aF+/C1wFXldKXQb+Lx7uN+J/CPyxUuo1Ni5R\n+RvAheYk31XMuLJYRrYiCyGES6QHLIQQLpEAFkIIl0gACyGESySAhRDCJRLAQgjhEglgIYRwiQSw\nEEK4RAJY7FnNCnB/qZR6Syl1WSn1c0qpp5rVvl5TSn1VKTXQrK/8o+aWWpRS/0wp9U9cbr5oA1IL\nQuxlnwQmtNafBlBKJYC/Aj6rtU4ppX4O+Cda6/9KKfUrwJ8opX69+bhn3Wq0aB8SwGIvuwT8K6XU\n/wL8BTAPnAG+3iyJ4czJJiMAAADLSURBVAEmAbTWV5RS/2/zuvdprWvuNFm0EwlgsWdprW8opZ4E\nPgX8Y+CbwBWt9fs2eMhZIAP07lATRZuTMWCxZymlBoGS1voPgN/CDCv0KKXe1/y6Tyn1WPPznwY6\ngReAf6OU6nCp2aKNSDEesWcppT6BCV4HqAO/BjSA38GUU/QC/xr4EvB94EWt9ahS6jeAp7TWG5VZ\nFOKRkAAWQgiXyBCEEEK4RAJYCCFcIgEshBAukQAWQgiXSAALIYRLJICFEMIlEsBCCOGS/x94p4Vd\nWRYX+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "P_bVmUfEeqdw", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "1dadee56-fe89-4d53-b0fe-b6a696e0e2e2" + }, + "cell_type": "code", + "source": [ + "sns.catplot('sex', 'tip', data=tips, kind='swarm', alpha=.4);" + ], + "execution_count": 105, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3VdsZFme5/fvueG9IRn0ZHpbmVVZ\nlVVd1b672s1098ysNDvSAivsg4AGJEC7K4uFHrQvchAEQasXAQ1Jq1nsaoHdnlnNzmja26ku11lV\nWel9Jr0N7929ejhkBC+DVcmsSvKSzP8HIDLjMswhk/zljXP/53+UZVkIIYTYfYbTAxBCiGeVBLAQ\nQjhEAlgIIRwiASyEEA6RABZCCIdIAAshhEMkgIUQwiESwEII4RAJYCGEcIjb6QFsx7e+9S3rRz/6\nkdPDEEKI7VLbudO+OANeXV11eghCCPHU7YsAFkKIg0gCWAghHCIBLIQQDpEAFkIIh0gACyGEQySA\nhRDCIRLAQgjhEAlgIYRwiASwEEI4ZMcCWCn1fymllpVS1zYcSyqlfqqUurv2Z2KnXv9Z02iZ3F4s\ncnU2T6HWdHo4Qoht2Mkz4P8b+NamY/8I+LllWceBn6/dFp+SaVr89MYS701luTqX50dXF8lVGk4P\nSwjxGDsWwJZl/QbIbDr8h8Cfrv39T4E/2qnXf5YsFGrkq92z3pZpcW+55OCIhBDbsdtzwIOWZS2s\n/X0RGPyoOyqlvqeUuqSUurSysrI7o9unXKq38ZJhbKsZkxDCQY5dhLMsywKsj/n89y3LumhZ1sWB\ngYFdHNn+Mxj1MRDxdW573QbHU2EHRySE2I7d7ge8pJQatixrQSk1DCzv8usfSEopXj+VYjZbpdFu\nM5YI4ve4nB6WEOIxdvsM+N8Cf2/t738P+Itdfv0DyzAUE31BjqUiEr5C7BM7WYb2L4G3gJNKqVml\n1H8I/I/A15VSd4Gvrd0WQohn0o5NQViW9Xc+4lOv79RrCiHEfiIr4YQQwiESwEII4RAJYCGEcIgE\nsBBCOEQCWAghHCIBLIQQDpEAFkIIh0gACyGEQySAhRDCIRLAQgjhEAlgIYRwiASwEEI4RAJYCCEc\nIgEshBAOkQAWQgiHSAALIYRDJICFEMIhEsBCCOEQCWAhhHCIBLAQQjhEAlgIIRwiAXyANFom1Ubb\n6WEIIbZpx7alF7vr2lye6/N52iaMxP18/lg/bpf8/yrEXia/oQdAvtLkyqwOX4D5XI27yyVnByWE\neCwJ4AMgX232HMtVeo8JIfYWCeADIBX14TaU7dhYIuDQaIQQ2yVzwAeA3+PiyycHuDqXp9EyOZoK\nM54MOj0sIcRjSAAfEKmon9ejfqeHIYR4AjIFIYQQDpEAFkIIh0gACyGEQySAhRDCIRLAQgjhEAlg\nIYRwiASwEEI4RAJYCCEcIgEshBAOkQAWQgiHSAALIYRDJICFEMIhEsBCCOEQCWAhhHCIBLAQQjhE\nAlgIIRwiASyEEA6RABZCCIdIAAshhEMkgIUQwiESwEII4RAJYCGEcIgEsBBCOEQCWAghHOJIACul\n/lOl1HWl1DWl1L9USvmdGIcQQjhp1wNYKTUK/H3gomVZzwEu4N/f7XEIIYTTnJqCcAMBpZQbCALz\nDo1DCCEcs+sBbFnWHPA/A9PAApC3LOsnm++nlPqeUuqSUurSysrKbg9TCCF2nBNTEAngD4HDwAgQ\nUkr93c33syzr+5ZlXbQs6+LAwMBuD1MIIXacE1MQXwMeWpa1YllWE/hz4LMOjEMIIRzlRABPA68q\npYJKKQW8Dtx0YBxCCOEoJ+aA3wF+ALwPXF0bw/d3exxCCOE0txMvalnWPwb+sROvLYQQe4WshBNC\nCIdIAAshhEMkgIUQwiESwEII4RBHLsKJp28mU+HyTI5Gy+RoKswL43GnhySEeAwJ4AOgXG/x23ur\nmJa+fWO+QMTv5uhA2NmBCSE+lkxBHADpUqMTvuuWC3VnBiOE2DYJ4AMgEfKglP1Yf9jrzGCEENsm\nAXwARPweXjmcxOc2MBQcS4Vl+kGIfUDmgA+IowM6dC3LQm0+HRZC7ElyBnzASPgKsX9IAAshhEMk\ngIUQwiESwEII4RAJYCGEcIgEsBBCOEQCWAghHCIBLIQQDpEAFkIIh0gACyGEQySAhRDCIRLAQgjh\nEAlgIYRwiASwEEI4RAJYCCEcIgEshBAOkQAWQgiHSAALIYRDJICFEMIhEsD7VLNtUm+1nR6GEOJT\nkE0596Grs3luLOQxLZhMBnn1SB+Goag22jTaJrGAx+khCiG2QQJ4n0mX6lydy3duP0pXSEX9FGpN\nbi8WsSwYiPj40okBvG55gyPEXia/oftMrtrsOTadqXBrQYcvwEqxzp2l4i6PTAjxpCSA95mhqB9j\n087zEV/vG5lSvbVLIxJCfFISwPtMyOfmiycG6At7iQc9vHwowfnxGB6XPZXHk0GHRiiE2C6ZA96H\nRuIBRuIB27HXTw9yfT5Po2VydCDM6KbPCyH2HgngAyIZ8vLakT5apoXf43J6OOKgaVbB8IBLIuNp\nku/mAXF9Ps/1uQIt02IsEeCzR/twu2SGSXxKrQY8+CUU5sHlgdGLkDrl9KgODPkNPQDylSYfzuRp\nmboMYjZb5e5yyeFRiQNh8aoOX4B2E2begUbF2TEdIBLAB0B+i9K0XKX3mBBPrJq137ZMqOW3vq94\nYhLAB0Aq6sO9qTZNLsKJpyI2Zr/t9kFowJmxHEAyB3wA+D0uvnRygCuzeZptXQUx0SdlaOIpSJ2C\ndh3S98EbgpEX5ULcUyTfyQNiMOrn62f8Tg9DHETDz+sP8dTJFIQQQjhEAlgIIRwiASyEEA6RABZC\nCIdIAAshhEMkgIUQwiESwEII4RAJYCGEcIgjAayUiiulfqCUuqWUuqmUes2JcQghhJOcWgn3T4Af\nWZb1x0opLyDrZp+CtmlxeSbLTKZK2OfmxckEyZDX6WEJIT7Crp8BK6ViwBeB/xPAsqyGZVm53R7H\nQXR9Ps/txRKVRpvlYp1f31nGXGtRKYTYe5yYgjgMrAD/VCn1gVLq/1BKhRwYx762UqxzfT7PUqHW\nObaYr9nuU22YW7aqFELsDU4EsBt4EfjfLcu6AJSBf7T5Tkqp7ymlLimlLq2srOz2GPe0u0tFfnpj\niQ9n8vz85jLX5nR/1sSm6Qa3SxH2S78lIfYqJwJ4Fpi1LOudtds/QAeyjWVZ37cs66JlWRcHBqT/\n6EY3Fgo9ty3LYmitL7BpmgS8Bq8d6cMj2xIJsWft+umRZVmLSqkZpdRJy7JuA68DN3Z7HPuZtcW0\n7q/vrDCf01MQQZ+bb5wZJOTz7PLIhBBPwqnTo/8E+BdKqSvAC8B/79A49qXTw1Hb7VTE1wlfgFrT\n5O5yebeHJYR4Qo5MEFqWdRm46MRrHwQnhyIkgh6Wi3WSIS+mZdkCGKDRMh0anRBiu+QKzT6VivpJ\nRfUOGK22ScjnolxvA2AoODIghSVC7HUSwAeA22XwjTND3Fkq0mibHO4P0R/2OT0sIcRjSADvU6V6\ni0q9RX/Yh2EoAl4Xz4/HnR6WEOIJSADvQ1dn81xdq/0Nel28fjpFxC8VD0LsNxLA+0y10ebafL5z\nu9Joc22uwOnhCDfmC9TbJscGwownpb2GEHudBPA+U222e+qAC7UmP7u53Kl8WMjV+MqpAYZjAQdG\nKITYLlkmtc8kgh5iAft0Q9jn7ik7m05XdnNYQohPYFtnwEqpF4HPAxbwW8uy3t/RUYmPpJTiq6dS\n3FjIU663mUgGifjdTG0K3JBP3twIsdc99rdUKfXfAH8b+PO1Q/9UKfWvLcv6b3d0ZOIjBbwuXppM\n2o6dGAxzZ6kEQDLk5fhg2ImhCSGegLK2aiyw8Q5K3QaetyyrtnY7AFy2LOvkLowPgIsXL1qXLl3a\nrZfbt0r1Fo2WKU3YhXCe2s6dtvM+dR7wA+trXX3A3CcclNhBYZ9b/+sIIfaF7QRwHriulPopeg74\n68C7Sqn/DcCyrL+/g+MTQogDazsB/G/WPtb9ameGIoQQz5bHBrBlWX+6GwMRQohnzUcGsFLqX1mW\n9SdKqavoqQcby7LO7+jIhBDigPu4M+B/sPbnTeC/3HBcAf/Tjo1ICCGeER8ZwJZlLaz99ZhlWVMb\nP6eUOrWjoxJC7K7CPORmwB+F/hNguJwe0TPh46Yg/iPgPwaOrG0dtC4C/HanByaeTKNl4nV3V5bX\nmm0W8zXCfrf0BhYfL30fHv6mezs/B8e/1ns/04TlG1BegfAgDJwCQ7oZfBofNwXx/wA/BP4H7NvG\nFy3LyuzoqMS2leot3ri7SqbcIOx389qRPlyG4mc3l2i19dT9icEwFw8lH/NM4pm1ctt+Oz8DlQyk\n70ElDZFhGDoP02/B6h19n+wjaJRg/JVdH+5B8nFTEHl0DfDf2b3hiCd16VGGTLkBQKnW4q0HaRJB\nTyd8Ae4ulzgzEiXolf4QYgvGpp8LpWD6bSgt6dvFRWjWdCBvtHpXAvhTkvcP+1y20rDdLtVaVBpt\n2zHLgmb7o5ecF2pN3pvK8t5Uhtym5xPPgOHz9hDuP9kN33W5KXD77cc8m26LJyYBvM8NRu2/BMmQ\nh9NDvdvWb25hua7aaPOT60vcXixye7HET64vUaw1d2y8Yg+KDMFz/y4c+gKc+jZMvAqeTQ39fWEY\nfxnUWmQYLhh7effHesDIe9I9JFdpMJutEva5mUgGMQxFud7iUbqMz20w2RfC4zKoNdud9pPPjcQA\nmM9VabRM+kJekmEvXz2VYipdplhr0R/2kqs0iAd1k57ZbIVsuclgzEeu0rT1Em6ZFlPpCs+Nxnb/\nGyB2V34Oysv6glp0BPqPQXkVFj6E2ChkHoDZBssEb0hfhHvu34FqTgd0cQGWb0HyCLilAdQnIQG8\nRyzma/zq9jLm2kzBdKbC8+Nxfnx9sTOfe3epxJdODPCTG0udaYag18U3zwxSqDbJtJrcXS7zMF3h\nm2eGqLdMlot1lot1bi0W+dLJARbzNW4uFAG4Ogej8d63kT63vDE68BauwNx73dujL4EvAg9+1T2W\nOKzPjmfehsxD/REZhkOfh5t/Ca21/lzL1+H0H4JL4uRJyXdsj7i1WOiEL8BstopSlu1iWrbS5P2Z\nrG2Ot9Joc2k6S6bcnTZotS2uzGWZzdY6x0wLbswXWC3Vba+bqzTpD3tZLem533jQw2Rf6Gl/eWKv\nWbq26fZ1HcAb5R6B2cS2B1ZxAWZ/1w1fgFpBzxH3Hd2x4R5UEsB7Wm9LUbXFMWPLzqNbPXb98d1f\nKJdL8fUzgywV6piWxVDUj7H1E4oDZZv/xmqrd0NbPFbJz8wnIe8194jTw1FbkE4kgzw/Hsfj6h5M\nhry8NBkn5OuuUgr5XLw0mbA1Yfe4FM+Px5nYsDOyoeDsaIyTQ/aznNPDUZRSDMX8jMQDEr7PiqFz\n9tvD5/WxjUHafxKGn7dXSERH9cU4z4YNXwNxiE3s7HgPqMfuiLEXPCs7YhRqTebWLsKNJQIopag2\n2kxnKnhciolkELfLoNEymUqXAZjoC+Jzu2i1TaYzFZpti/FkgKDXjWVZzGarlOotRhMBon5dCbGQ\nr5IpNxiK+umTVXLPruKSLjcLD0JkUB+rZKAwB/44xMf1sXoRslPgDUL8kF791qzqxRjKBcnD4Nq6\nyuYZtq0zGQlgIYR4+rYVwDIFIYQQDpEA3qdWS3WWizX2wzsYIcTWpApinzFNi1/fWWEhr8uA+sJe\nXj+Votpsc3uxSKNlcmQgzFBMlokKsddJAO8zc7lqJ3wB0qUGd5aL3F4sUm3oFW1TmQqvn0qRikoI\ni6dgq4tw4qmQAN5nqs12z7H5bK0TvqDr5h+uliWAxadXXoXbPwSzpW9H78GJbzg7pgNE/ivbZ8YT\nQdwbaoNdBhwZ6F25FvDKjgbiKVi+0Q1f0CVq5bRz4zlg5Ax4nwl4XXzjzCC3F4uYFhwfDNMf9rGY\nr/ForUFPNODmxGDkMc8kxDZseZFXLvw+LRLA+1A86OUzR/psxz57rJ/Tww0abZOBsE9WtImnI3VG\n93kw16a+IkMQ6nd2TAeIBPABYvERJyxCfFLhATj9BzqEPUHdelI8NRLAB8Rv7612egRH/G6+fmYQ\nv0fmgcVTEIjrD/HUyUW4A2ClWO+EL0Cx1uLOUtHBEQkhtkMC+ACobVGaVm30HhNC7C0SwAfAcMxP\nwNv9p1QKDm9RmiaE2FtkDvgAcLsMvn5miNuLBeotk6MDYVIRP622yUy2imVZjCeDeFzy/60Qe4kE\n8D5VqDWxLDq7HYd9bl6aTHY+32yb/Pj6IoWqLqK/Nl/gm2cH8bnlwpzYhnoR2k0IJh9/X/GJSQDv\nM6Zp8ca9VWazVQBGEwG+cKyfhUKNKzM5Gm19Buz3uDrhC1CqtXi0WunZEUOIHo9+C6t39N/Dg3D8\n69JwfYdIAO8zs9lqJ3wB5rJV7iwVuTyT62zqeWU2z/AW3dBMKRIWj1Nc7IYv6B0zVm7D0HPOjekA\nk0nBfaZUb/Ucm81WbTsqAxhK2S7M+dwGh2S3Y/E49VLvsUb5I+5bhEZl68+JbZEz4H1mLBngymz3\nbNdQcGo4wnLRvt38UMzPK4eTPFgtYVm6YY806BGPFRvV0w3tZvdYowTX/gw8IRh9CQIJePAryM/o\nkpuBUzDxqmND3s9kT7h9aLlQ49ZiEQs4NRRhMOrnzlKRD2dytEyLyb4grx7uk34Q4pMpp2Hxiu6C\nZrh0L+B1bh8MnoO5Tb+PJ39P94kQ67b1yydnwPtQKurv6fV7YjDCsYEwpmXhlnIz8WmE+uDoV/Tf\n7/7M/rlWXZ/5blYrSAB/AvKbekA0Wib3VkrcWixSrDUf/wAh2i19gW3+A6hmt75PIGG/rQw95bCR\n4dZTF+KJyRnwAWCaFj+7uUSuooP3xnyBb5wdJB70PtXX+GAmx3SmTNDr5sJEnFREdtzY1+7+GErL\n+u8LV/Q0Qjhlv8/QOaikdSN2lxfGLkLfET33u3ILDI++j1cu8H4SjgWwUsoFXALmLMv6jlPj2C2t\ntknbsmwLIUzTotE2bV3LLMui3jJ7OpnVmm18bgOllO2Y12WwWKh1whegZVrcWy5x8VDyYx+3cY64\n3mrjUso2fdFs622OPC6Dm4sFbi/qBj/VRoPf3Fnlj14YkemO/aq00g1fAMuE5Zs6gJtVcPn03m9u\nr96CqJYHd0DfBkgehuioPiN2yXncJ+Xkd+4fADeBqINj2BU3Fwpcnc3TMi0mkkFeO9rHbLbCpUdZ\n6i2TVMTH54/3U6g1eet+mnK9TTzo4XPH+lEK3ri7Sq7SJORz8drRPqJ+D2/cXWW5WMfnNpjsC/a8\nZrXZ5q+vLnzs4y4eSjCWCPLW/TTTmQpuQ3FuLMbp4SjvTWW4u6RLko4Phm2LOkBPeWQqDTkL3q/U\nFv9xthtw8y/1PnCeIBz6HIRS8PDXkJ9dOwN+GfqOwdRvIXNfP8/gczD64u5/DQeAIwGslBoDvg38\nd8B/5sQYdku+2uSD6Vzn9nSmQizg4eZCgdZaLdlysc7VuTwL+Rrluu5ilqs0eX8q2/k7QLne5u0H\nGYZj/k7ZWb1lcn+5RDzo6dzP6zYoVlvkqh//uHceZCgMt5jO6FrOlml1xnp7sVsPenuxxEDEZ/u6\nXEZ3GbTYh0J9EBvTwQq69KxZgUpG325W4OHfQP+x7n3aDZh+S1+IS9/Tx6w2LHwIsXHdvF08Eafe\nP/6vwH8FmB91B6XU95RSl5RSl1ZWVnZvZE9ZvtJ7QWwhX+2E77p0qU6pZj/LzFYaZCsN27FSrcVq\nyV7z27bg7HCUWMCDx6V45VCCWqvd87j0pse1TIuFfJXN5rK9xwbCXsYSAQACXoPXjvRLX4n97ujr\nutph4lU4+7e62w6ta9WgsGg/ZpmQn+59rmpm58Z5gO16ACulvgMsW5b13sfdz7Ks71uWddGyrIsD\nA/v3f9ZU1MfmadLjqTDBTYsixhJB+sP2i2bDsQDDsYDtWH/Yy3jCPuXgcysuTWfIV5s02xa/vZ/u\nWXTRH/YytulxQa+L46mw7ZjLgDMjvbNC48kgXzwxwJ9cHOOPXhhlYotpD7HPGAYkDkHqtL6IFhuz\nf94f02fAG7m8esphI2VAZHhHh3pQOTEF8TngD5RSvw/4gahS6p9blvV3HRjLjvN7XHzpRIors91G\nOYcHwsSDXi7P5CjWW4wnApwZjnK4P8T701ky5QZDUT8XJnQJkKFgsVAjGfLy4kSCgMdFc63VZMTn\nZiDi48psvvOalgUxv4dk0Puxj3thPE4i5KXWMrm/UsLrMjg/Fmco5uezR/u4uVAA4PRwlL6wnoKQ\ni24H2MiLa2e4s+CPw/jL4IvqM+HMAz0vPPqSvlA3+Vm9Zb3hhuHnwX/gL+XsCEdXwimlvgz8F4+r\ngpCVcB9vuVjjZzeWbcfOjkR5flz28RLCIdtaCSenMwdAKuJnItmdEgj73ZwYlLaTQux1jhbwWZb1\nK+BXTo5hr2u1Ta7NF1jM66mE82MxfG6DmwtFZrIVIj4358ZifP54P+lSnUbbZDDilz4Q4ump5XU/\nCE9Q1/8acvH1aZEK6j3ug5lcpx43U25QqjcZjgW4PKPLxdKlBqvlBt89P9yZp90oX21Sa7YZCPsk\nlMWTK63AnR92KyTS9+Dkt5wd0wEiAbzHzWbt/VYX83XqLXv1XqnWIldpUm+ZNFomI3E/bpfB7x51\nF1OE/W6+djpF0Cv/5OIJLN+wl6cVF/RCjVC/c2M6QOS3cY8L+zxUG9363aDXRTzgIVvu1he7DPjd\nowyrpUbnPq8cTnTCF3RI31wo8tLkpuYqQjwxeSf1tMhFuD3upclEp2bY41K8fDjJ+bF4ZxWa21BM\nJoOd8AWoNNrcWCj2PFet2e45Jg4o09TTB592x4rBs7rUbF10RK+iE0+FNGTfB0zTolhrEfK5bHW4\n+WqTgMfFcrHGb+6s2h5zZCDEUqG7tBngxck4c9kq2UqT4Zifi4cSsprtIKoV4M6P9U4WSuna3aFz\nn+75ctPgCUDisF7AIR5HGrIfFIahiAXtfRfylSbLxRp9YR/DsQAhn6sTtobSq+3Ojca4uVCg1jQ5\n1B/kymy+0y9iKl1BKfjsUZnLO3AWLuvwBb0qZ+593UDHE/j4x30Uf1Q25dwhEsD70IOVEm8/6K69\nf3EyzjfPDnFnqUizbXK4P0wypJc1nx2J0WiZ+L2GrWUlwHLB3htCHBCbN9G0TN1i8pMGsNgxEsAO\nqjbaXJrKkC41SEV8vDiZwGUo3p/KslioEQt4eGkyQcRvP/u9Nl+w354rcGooykQySL1lEl+bH74y\nm+P6fAHLgmTIi89t2CookiEvM5kK1+fzNNsWJwYjnByKsFKsc3kmR6XR4lBfiPNjMVs/YbHHJQ7r\n7eXXuX36LLia1XO446/oyoaZd/S286F+GP+M7gfRbuo+wf4Y+Nb6hJgmlBZ1HXBgbXXl4jVYva0b\nso9cgPg4pO/D4lXA0v0i+o9DYV6/dqumbw8/v+vfjr1MAthBb95fZWntLPRRutJp2H5/RZ/BlOtt\nKo1Vfv+cvdFJ27SXoZmmxW/vrTCV1l3MogE3nzmc5NpcN6gz5QYjcT+leotCtcVAxMfJwTC/vL3S\n2WH5vaksfq/B7x5maawF9fX5Aj6PwakhWeu/b6RO6QY52Ufgi+g93Nb3cVu9o/9s17ubbTbK0Gro\nueK7P9FtJ5WCsVcgPgG3f9id0kid0b0gZn/Xfb37v4AjX4GHv+kee/SGbur+8Nd6c0/QQewJ9Tb4\neYZJADvENK1O+K5byNfwue0XOHIVvZBi4w4ZJwYjfDjTbb7TH/F1whegUG1xdS7PZm7D4DvnR8hX\nGvg8LmazVTZ1xeTuYrETvhvHJQG8zwyc0B/Nmt46aKPCvA7ZjYoLMPde97hl6duVdDd8QdcF1zf9\nbFkmLF/vHcPStW74dl57TgJ4AwlghxiGsjVRB0gE9TRBud4NU69bcXU2x1KxTiLo5cJEnLMjMdqm\nxY2FAiMxP5N9IRbzNdvz+92unimH4ZiPX95eZiFXw1AwHO+dExyJB1gtNWzBnHiKe8uJXeb26amF\njfPCwaRuql5a6h4LxPU0wUZmC+q95Yx4tmhFGp+wT3sAxCftr7H+2qJD6kkc9JnDScJ+/X9gLODh\nlUNJXpxMdC6ghXwuQl43d5fLFKotptIVfnsvzVyuyvX5AqYJs9kad5aL+D32f8pjqTBfOz1INODG\n7VK8fChBo22xkNO/ZKalG68f6gviNhRK6dK1U0NRXjmcxLt2Jj4S93NmWM5+9y2l4NAXwLs2nxvs\n03PAk69153N9EX2fvqP2x0ZHdB3wRr4IjL+q76uU3klj7KK+39B53SdCGXqqYuisbvbu8ur7Jg7B\nwOkd/5L3E6kD3gM2TzGA3iTT6zL4fy/PUW3YpwQGwl5WSva3kF8+OcBUukytaXJqOMJwLMCvbi8z\nvxa4Yb+bRNDDTMa+28XnjvUxlghiWhaeDTXGpmnRMq1OEIt9zrL0Wa9n0x5+zZr92ModPV8cSOgL\naW6vnite7wc89Fx3B+R2U4ftxuY87bUph40bdZpt/eF+pt5JSR3wfrE5fIHOAol4wEu10X1rGPK5\n8GwRinO5CjMZvdWRy1C021YnfEEvRQ5t2iXDbSgGo35chsK16efFMBRead5zcCjVG77Qe2x97nij\nxKT+2My1xZ6AW+2QbLikg9pHkADeA0zT4vJsjplMhZDXzYWJeKez2YuTCf7m7gqFaouA1+Azh/sw\nDFgq1FjbNZ5UxMfdpe4c32y2Ssvs3W4vHvRwqD/EveUSXrfBcyOxLcNfPINqBT3fGx78+G3mmzWo\nrEIgCV7ZlurTkgDeA24sFLi11ruhXG/z6zsr/OELo7gMhd+jKxfK9RYBj6vTUvI750eYz1UJ+900\nW1Znt+N1HpdBwGt0pi8MBYf6QvSFfRwd6O4D92i1zGxWP8/p4YgsTX4WLVzRFQ8Abj8c/4auA16+\nrqsgIiMwcFJvVfTgl3o6QRlw+AuQPOLs2Pc5CeA9YHMFQ61p8mi1zM3FAoVqi1jAw+eO9RHyuXVf\niHqLsM/N8bVdL2rNNm5D2XZ2VPshAAAgAElEQVRankyGeHEiwe2lIs2WydFUmL6wj2Ktiddt4HO7\nuLdc5N2H2c5jlgo1vnl2aHe+aLE3tOow/8GG2zVY+ACUS9cRg54Dbpb1n+utKS0TZi9JAH9KEsB7\nQCLktZ3Bug3FzYU8hZr+Yc9Xm7z7MNOZjqg2THxug88f72cw6sdtKM6ORJnK6M5XRwfCBH0u7iwV\nifjcHBkL0zYtfnpjiZViHUPBc6Mx5nP2C3LpUoNCrUnUv8XcnjiYWnUdphvVS1DL2Y+l7/fW9Dar\n+uKerJL8xCSAP0J77WLWbnhuNEqh2uwsxHj5UJI37tm7m2UrDS49ynamFOotk3cfZvjMkSS/ubNK\no2XiMuAzh/twuxQ/ud6tv5zNVukLe1lZC3nTgiuzefrC9qvShgLvHtj1uN5qs1yoE/G7iUsN8s7y\nR/W878Z63b7jsHjFXhfsCUAopRdirIuN6lVwxUVd3jb5mp66ENsmAbxJodbkzXtpMuUGiaCHzx7t\n7+lE9rT53C6+cipFo2XiNhSGoRhe8bOwYWpiKBZguWCfqijWWnww1V023Db1cuL4pvEu5Gs0270X\n5SaTQUq1VmexxnOjzlyUqzRa+NwuXIYiXarzi1vLNNt6OkV2d94Fx17Xq9ZqBb2gou+oXsAx9Vt9\ndmyZepv6yJDuD1FagtCADt71Jc7FBXjwazjzB85+LfuMBPAm7z7IkCnrGttspclbD9J88+wgs9kq\n2UqDoZifVGSLcp6nYGPN7atH+rg0lWG1VCcV8fPSZIIPpnM8XO1WO4wmAuQq9nrgesvc8h3hWCJg\na9rudRscTYU5lgqzUqoT9rl7mv7stGqjzW/urpAuNfC4FBcPJZnOVDrhC3BzocDJoYhUa+wkt0/3\ngdio/xhEhyHzUPd9SN/TH/FxOPY1fZ/Fa/bHVNK6Dvjjqii2Us3qPhGNsp5TfoZaX0oAb7Ievhtv\nX5rKdrb3uTZX4NUjSY5sqCTYCQGviy8cH7Adu3gogdetWCnWSYZ8PD8e48Z8gZsbdr8YTQQ4Mxxl\ntbjcuSh3ZCDEmZEYHpfBg9Uyfo+Lc6OxzsKL4ZgzbQqvzOZIr/2n0Gxb/O5hhojf/iNpWtBsmxLA\n21XJ6KmD8NCnb5zuDelw3Cg3o18jmNRnwetnwKBX1j1p+JptuPMTaK7t3FFJ6x04Uqc+3dj3CQng\nTQaivs5yXYBkyMP95ZLtPrcWiwxEfNxaa1xzZCDEcCxArdnm5kKBUr3FeCLIof4QrbbJrcUimXKD\nwaifE4M6uO8ulzpbzZ8aiuB2GUyly0xnKoR9bk4PR/F7XCzma9xf0XW7p4YivDSZJFNucHuxyPtT\nOY4PhvF7XDxcLa31lbBomxbfPj/Mo9Uy8/kqzbbJVLrM8cEIh/tD3Foscm0uz1DMz/HUR4/n0WqZ\nmax9PAv5Kg9Wyp3xRPyezngATg5FSIa8FGvNzvfn6ECYoZjf9v2ZSAbJV+39iVumxVDUT3ZDf4zB\nqG/Xz8z3rYd/o89SQS8ZPvn7+gLZ4jVoFHWbyuRhfZa6dE2HXXRUl5itv21qNWDpKlRzejrC2mIb\nq3oRVu+udU0z9BSFL6Lnf+/9XD+u/7huY7l8Xbe3DA/q5cmGYV9tFxrohu+6/IwE8LPq1cN9vPMw\nzUqxTn/Ex4XxOD+6Zm8yYpoWP7u51LkgNpWu8PrpFB9MZ8msbZY5k6nStnTvhem16oTZbJVqs41C\nt3lcP5arNBmJ+21N1hfzNV6aTPDL28usrxafyVT48skBfnaje3Y7k6nwtTMpbi0WAMVctsZ8rsbr\np1LMZCu28bTM3vFUGvoX7Mam8QzH/byzYTxLhRovTiT45a2VzrHZbIUvn+gdz9fPDvLLW8vUmvr7\nM52p8PqpFO9NZTvhOpOp0heyB2vI5+L58Tj9ER+z2SoRv5uTQ5En+vd7ZpVXu+ELOiSXb+ja3fWz\n2OyUDsvsI73FEOg/mxUYfVHfvv8LPZ+7/rnkkW7IAgT79ZTExiY9R78Cy7e67S1z07q6ol6Aldvd\nY/WinkOevdQ9FuyzPz+A79npPSK9ILbh/elsZ6GEUnC4L8SDVfuuA0NRH4ub2kv2hTxkKk02fouD\nXhdKYdurTSnoC3ltc7QAgxEfS5sWWAxF/Sxuuhg3HLNfsPuox/aHvaTLjZ7xAJ0g/tjxRH09LTS3\neu2txrjV92cg4mUw6u+c9V8YT+z4Bc8DKzcD935mPxZKQXnZfiyc0mekG/kicO6P9RzslX9l/1ww\nCROfg/n39RlreBDu/3zTcw7phu2bH1fL27e0N9z6tTZPaww9r8+UzZY+Iz72+kHYvUN6QTwtL04k\nGI759ZlhzE/LtHoCOBLwsFys29o4hnxuSvW2rSWk7lqmbAHsdRmdIFynlG6svjlEY0FPT7hFA56e\nEIwG3CyX6j1hW6wZm8bjAixbAG81HkPp19kcwNGAm4VN7WG3GmPEr7+WjeMJed2cH4tzfkyqHD61\n6Ehv28nUKXi0gu2b7o2AK2fvB+wJ6KB0eXVIbqz3VQY8/JU+ey3M9W53BOCP6OXJGx/nCepmPRvP\nlD0B/bExgA03DJ/XF95aNV0W9wxxvuhznxiOBTg9HCUe9NIf9nGov7sOPhpwc240xtmRbg2k32Nw\nbjTOhYk46+XEbkPxwniCCxNx3C590FBwYSLOubE4AW/3n+PsSJRzY3Gige7/kYf6grwwHicV8XWO\npSI+XhiP945nLM5zG8YT8BqcG9s0HpfiwkScCxOJ3vGMxm0tLs+OxDg3GrOPpz/IC+OJrcfT1zue\nsyPdX66A1+DsqNSMPjWGS8/5ps7oaYPj39DlZBt3Q/YEYeR5GHtZBysASm9d//4/g+v/Rpearc8H\nu316y6GNIZp9qOd41/kiMPyCnsLY+LiRC/p11pvwGC59e+RF/Xno7tjscutOac9Y+IJMQXwquUqD\nRsukP+zr9Ggo1pqU6236w97OFvLVRptctUFfyNcpNWu0TNLlOvGAl8Da2WarbbJaahDyuToXnizL\nYqVYx+s2bIsSVkv6TLQ/7OsZz0DE19nD7WmPxzQtVktPdzxih9Xy+sw1PNgNxEZZX2jLTdt3zDDc\ncOrbepVbOKW3GVqfL1537Ou6Fria1cG73mS9XtKvFU51O6U1a/piX7Cv23ltq33nDp5tTUFIAAvx\nLLv9o+5Ft3WnvgPhtRLIzEN48Kvu53wRfQZbXlupabjgxO917y/WyRywEOIxIkP2AHb79Dzteo+H\n5GF9fOWWrk6IjuqOaOvMNqzclAD+hCSA95lm26RSbxMNuLe9VXy91ebqbJ70Wi3ycyNRefsvtKFz\n+uJX5qGefmjV4eq/1vPFhz6nKynS9/Wy40pG36eHNOP5pCSA95GpdJl3HmZotS3CfjdfOjFALGAv\n2yrVW7w/lSVX1RUbL4zHeet+urM7Rrqk52VfOSybIwr0FMLEq/rjwa90EIOuDX70hr6Qt77ard3Q\nZ8LBfl31ADqQN+8bJ7ZNAnifaJsW766FL+gthj6cyfHFE/a3fm/cXeksvrhbK/VsTQR6sYQEsOhR\nydhvN6tQ2FTfa5kwekFfSGtWdUXEwb2QtuMkgPeJeqtta1IDunPbo9UyD9NlAh4XxwZCnfBdt1Ss\nEfK5bHXHYb/8s4stREd1FcM6f0yfAVc2tEZ1ede2LZIFM0+D/CbuE0Gvm2TIYwtYj2Hw5v105/ZC\nrorfY3SWAIPe7v74YIQ3763SbFsEvAYvTSZ2dezCAUs39NJkT0DX5Ib6H/+Y0Zf0GW5+Vq96G7kA\n5RW9TVG7oVepjV2U8H2KJID3kS+eGODDmTz5apPReIBMpQ4bFiZVmybnxqLcWy5RbZjEgx5emkwQ\n8Xv4WxdGKdb09kbGNhvNl+stspUG/WGfdCPbT9L3Yead7u3SMpz/k8cHp8utm6qvu/XX3UbtytAB\nHU49/fE+wySA95DFfI17yyU8LsWp4WjPBbag181rR/s6t9+bygL2+d1DfSHODseot8zOggoAt8sg\nEdp6d4mlQo13H2Yo1VuMJQJ85nAfM9kK7z7MYFngMnT4O9W2UjyhzQsn2g0dpLGx7T9HacW+S4Zl\n6gtwkcGnM8Z2U5e6uZ/tHU8kgPeIlWLd1vlsNlvlu8+P0GybTGcqeN0Gk8kgbpdBrdlmOlPB41IE\nPAbVpolpWSSCHmazVSaSwc4GnrPZKsV6k7F4sNPoZj5XJVPWzeUTQS9v3F3t9IeYyVQJeLJMpaud\nsbRNuDydY/icBPC+sNW2QI0qLHyoy8qiw/pYOQ2FtemGjcuLYcNS5Y84VsnoqQp/TD9WKb2jRm5K\nl7AlDukKi2ZVV1YoQy+Rdnth9j3dfMeydNvKidee2X3lJID3iKl02dYzpd4yub1U5NZCoXPx7e5S\nkS8eH+CnN5c6F9WCXoMvn+zn3YcZ8tUWH0znuDaX5xtnh7gym2MmozfevDqb58snUywWap3Wk1dm\n85waitia8wCsFBs0Nm1htPk+Yg8bfE5POxQXdAh6wzD1RvfzYy/rxj0bV7gNnNLTD4UFXXbmi+oG\nP4V5/XnDrftMgG47+eCX3SY//cdh4DTc/utuQ57VO3D4i3DzL3UIgw7dsVf0fnPrVm7rxSDP6O7K\nEsB7xFZzrEv5qq3yIVNu8v5M1lbRUGmYPFwtU2l0A7LZtrgym2Um052eMC24MZ/vaTE5k6n0XLgb\njPmJBTw8SncbZR/uD326L1DsHrcXTn5L92ZweeHaD+yfX7qmA3ij1dv6THj6re6x6Cgc/jLMvK1D\n9OGvYfwVWLpu77CWvqcXc2zshlZchJnfdcMX9Bny0vXe8W5uT/kMkQDeI44PhpnJVDoNyyf7gvg9\nBsvFxmMe+WQs7KVshqF47Ugf7z3KUqy1GEsGODcaw1CKeNBLttJgMOrj6A5vwSR2wJPW5643T19X\nmNMdylq1tSmGPNz/5afrWhYe1L2DNwZ4dPSTP98+JwG8R/jcLr713BArpTpel+40lq82ebBS7pwF\nJ0MeXhxPkC41OmfBIZ+LF8cTFGutTomax6U4P5YAulMQhoIzIzHbFATA6eEoqYif3zs33DOmMyPP\nXnvAA2nwOZh7z3578xRE/0nddnLDCaveOSCNjdmCyIg+a10P0b5jegqisNA9C44MwfjLOmzXz4L9\nUd33NxCHxav6wt7gWX3fZ5R0Q9vjyvVWz0W4eqvN1Nr0wEQyiN/jotU2mcpUaLTMzkW4cq3FG/dW\nydeaXJxMdDYS3XgRbmP7SHGAFRb07hhbXYTzxyExqacN7v6ku4tF6oxuzjP/Qfd5DBec+xO9VDk/\nox/7pBfhng3SjnK/WshXub9cxu1SnN6iHG0rhVqTm/MFGm29CeZg1M9fXZnvnCkbCr52ZlACV3SZ\npg7gdhNi4zocG2XIz+nqhsigDuOpNyHzQAfr+Ms6XMXjSDvK/Wi5WONXt1ds5Wh/8PxIp3H6Vppt\nk5/dWOpcSJvJVDkzErFdrDMteLBSlgAWmmXB3R/rs17Q4Xrq23reeOBE936GCw5/QX+Ip04CeI+Z\nTlds1ycaLZP5nJ5DWy3VGYj4mOyzX8FezNdsVQwAS5v2iNMsrs3labZNjvSHZQPMZ1lhvhu+oKcU\nVm7DyAu6hM0b+viLbaappzTcfj2nKz4RCeA9JuDtLUd7sFpmcS1Q7yyVyFWaPD8ep1Brkik1tqxh\nH4kH8XnqnU5ofo/Bo3SZ1tpJ8Z2lIt88O2TbVkg8QzaWjK2r5eDan3U33hx+Xm851GroqQpPSE9L\nNCpw54d6zheg/4TuHSyemATwHnMsFWY63S1HO9QXZDZXtd3n7nKJkM/Fuw91/aRSEPa5KK1NOcSD\nHiaSAeqtNj63oi/sYyIZ4O0H3XrLtgn3V8q8NCkB/EyKjenthdY33DRcuhn7xl2PF6/oLecf/lqX\nooG+kOYNd8MX9KKL1Onu3nBi2ySA95j1crTVUgOvyyAW9PDn7892+gCD3l35w5lu20C9e4zi2+eH\n1zYJ9fLTG0udRRfzuRrmFgvZ3NtsyiMOIMOl935bvaMvwvUd0QsnNrIsWLjcDV/QF+O2asjTKEsA\nfwKyL80epJRiIOLrzNGeH7PPsT03GqW1KVGbbZNYwEN/2Eu12e5Z8VZptGzbxwe8BscHZXHFM83j\nh+HzMPaSXgW3eTlwIKHbWW62uamPNwSR3jpy8XhyBrwPHEuFGQj7WFm7CBcLeMhWmtxdKnXu4/e4\n+PP3Z2m0TA71h3AbipbZPWsO+9188fgAC4UazZbJaCKAR/aFExv1HwPD0HW7vohesFHN6tre9SvD\ngQQMnYdAUi9Bdvv14gqXRMkncaDrgPPVJh6XIug9eD8clmVxf6VMulQn5HNxda5gq54YiurAbpsQ\n9Lr48smBA3XBrdZs895UlsV8jSMDIc6PxXHJlMrOKC7pqQdvUDftcUsp4zbszTpgpdQ48M+AQcAC\nvm9Z1j95mq/RbJv887enePtBGq/L4PfPD/Ots3qZr9swSG7oi5su1WlbFqmIv3MsX21Sa7YZCPs6\nzcvL9RaFWpOBsK+zo3Ct2SZbaZAIejvNdJptk9VSnajfQ8inv72mabFSquP3uDqLKizL2v54Kk1q\nLft4lFIcS4U5lgr3dFIDCHjd/NGFfkq1Fomg97FN2Au1JpV6m4GIrxNklUaLfLVJX8jXqUOut9pk\nyvavudU2WSnVifg9hDd/zW6XrdxtpVjHUNC3oR45W27QNE0Gwr7OTs+PG8+fvTfLz28tUaq36Qt5\n+fdeHufLJw9ws/BqTjdaVwoGTnab6ZTTuqIhnOq2dKzm9Aq08KA+owXdmKeW1/dbb8zerEElDcE+\nPR0Bej64tKwXYqz3kggN6GXDnkA3fC1L389wQ6jbo/qpj+eAc+LUsAX855Zlva+UigDvKaV+alnW\njaf1Aj+9vsS/eHuqUxt7f6XEarGGy9CBMZYI8Pljffzm7mqnTCsZ8vL66RSXZ3Kdt/Yhn4uvnxlk\nKl3h8kwOywKv2+Crp1KU6y3evL9K29QNyz93rB+/x8Uvby3TbFsoBS9NJhiJB/j5hvaRp4YjPDcS\n4+c3lzqVDmOJAJ872sdv7q2ysDaevrCXr57aejxBr+71a1oWbpdBf9iHofRii3WpqA+PYVBttqnk\nqozGAxiGolRvcXuxQL3VXTF3eSbX6Q8R9Lp4/XSKpUKN3z3KYlm6t8SXTg7Qalu8cXeVlmlhKHjt\naB9Rv4df3FrutKt8fjzGkf4wP725RKmmS52ODoR4aTLBL24td+amh2N+vnRigDfvp5nO6GXV8aCH\n10+nuDFf4OZC8SPHY1omP7g0y2q5AZZeOeh6j4MbwLUC3PorHY4Aq3fhzB/qXYvXdywO9sHJ34O5\n92F57VfJG9bHclMw+7u1Bug+OP4NfdHs4a/1SjfDBYe/pEP97k90NYRSunVkfAJu/xAaa9NdqTN6\nq6I7P9JhCRAfhyNfhfu/6I4n1A8nvqV7UCzf1Md8EX1sO+M58uXeHsUH0K4HsGVZC8DC2t+LSqmb\nwCjw1AL4F7eXbAsT0qUG7z7M8NpRvYPwbLbK+9M5227BmXKDKzN527xqud7mymzedobZaJlcmc2R\nrzZZb5nbNuGD6RxBr6vTOMey4PJMztY4B+DWQhHTtDrhuz6ey7O5Tviuj3mr8dxcKBILuPlgOkfL\ntJhIBnn1SB+fO9bP5ZkcjZbJ0VSYyWSQn9xY7DToiQU8fPXUAD+9sUh1rXXlVLrCa0eStuY8lUab\nq7N55nLdhuzNtsWHM3kaLbMzr2xa8P50lr6Qz9Yr+OpsnlK91Qlf0OVubkPZLgwu5Gtcnsl1whcg\nV2lydTbPnQ1fc6XR5tpsntkN46k2Wszlq/hc+j9Uy4TpjL1U70BJ3+uGL+hFEzPvdsMOdBhuDF/Q\noblwWc/prn/zWnV9v3qh2/PBbOtA9EX150Hff+49/byN7r9H5/krG5r05GZg7pJ9POXVtfHc7B6r\nF3VT+MwD+3jmP9BnwxvHM/OuBPBOU0odAi4A72zxue8B3wOYmHiyf4iY377Cy6J3gUOpbt89GPTU\nw2alWotNvcmpNdtUG23bsWqzjbFpRUSrbVGq9xa852u9r1PY4rW3Gk+20uDOUrHz8zuVrpAIeukP\newl6XbgNRdDrYjpTsW3gma82eW8q2wlfWFuNuiHsOl9zo9WzA3O12aaxqSl7vWlSbdi/PtOC4lZf\nyxZf83a/D8W6fTxuw0XI66JtsrZlkmI4eoDfsm61l9tWCymqud5j9ULvfVtVHeIbNat6OmHza6zX\nCW9U2+J1Nu6m/HHjqW0xnmZl6/E8Axy7DK6UCgN/BvxDy7IKmz9vWdb3Lcu6aFnWxYGBgSd67r/9\n8jhDMT8et4HPY3AiFba1VvS4FC+MJfC4uoFpKHhhPEbIZw/q0yNRW/kWwKH+EIc2NSg/3B/iUH/Q\ndmw45ufkYMR2LOJ388JYnI1Tsl63wYXx7Y0nHvD0zPeu949YKtTJVppcepRlOr3pB5qtd31Zr6rY\n6EQqwkjcHmhH+kMc3vT1TfQFObypT3B/2MuZEfuWOEGviwvjCTYWXbhdigvjcXwbelwoBefGYkQD\n9iA4OWQfj8/j4mtnBplMBhmM+jjUH+SPLz7Bfmf7Td9x/fZ9XahfN0Z3bbiour5pps/+80bqbG+J\nWPKo/rC9xlH9sVF0RLeL3MgXgZEX7dsTubwwerF3PGNbjGdou+M5xrPAkSoIpZQH+Cvgx5Zl/S+P\nu/8nqYK4Npfnjbsr+DwuvnF2EI/L4N5SCZfR3fAyV2lwe7FI27I4noowEPFRrre4tVig2jA51B9k\nLBGk3mpza6FIvtpkLBHgyEAY07S4uVggXWowEPFxcjCCYSjuLZeYz1WJBz2cGoridRvMZCpMpSsE\nvC7ODEcJeF0sF/QGnE8ynsMDIfpCXv7t5XlbidlEMmh7Kw8wEvezWmp0zlo9LsXvnxvmw5lcZ6eL\nsN/N10/rTRZvLhao1NtMJINM9AVptk1uLRTJVhqMxP0cS0UwTYs7y0WWC3X6wl5ODUVxGYoHKyXm\nclUifg+nhyP43C7mclUerpTxewxOD0cJ+dyslurcWSpiKMWpoUin5/HtxSKttp46GYz6qTbanfFM\n9gUZT+rx3FwokKs0GYn7mewL8c6DDHO5CqeGIjw/nniin499p93Sb/ENF0TH9MWsalZvP2+2dHVC\nZFDPpS5e02eUfUf12/hWA5au6jPS+ITeQsg09RZBpWV9cSx1Rj/nyh39OoGELkNze/UWROvd0IbW\negnnZvR9PX4YPKPvvxPj2b/2ZjtKpS9z/ymQsSzrH27nMc9aO8rHWchX+XAmT73V5kh/mIlkkP/v\n6oLtPhcm4owlAtxfKWNaFsdSYaJrUzOZsg7mVMS37S3qxTOsltdntOtns1Nv6RV0oPtAbNzKXqzb\nm2VowOeA/wC4qpS6vHbsv7Ys668dGMu+NBwL9GwRf34sxvX5PG0TRhMBjqfCuF0GL4z3dqpKfsT2\n9ELYmG29BdH6xbW+oxCf1NvTr1u5BbHRZ+KC2U5wogriDbb5v4PQVRduQ33smepSoUah2mQyGeRo\nKsxA5PEXpG4vFrk+n8ey9Bzrc6NbbGUunm3p+/bKhvR9Xau7WTUrAfwJHbwlYgdEo2Xy5n1dp+xz\nG7w0mei58Af6Atwvbi13LszN52t89/kR2zLjtmkxvWG7olK9xXtT3c5oV2bzJENeRuJbrPsXz67G\nFhUQmy+qgZ6TFp+IBPAedWOh0KlTrrdM3nmYZijm79m+/tGqvYF7rWmymK8xntQVC5Zl8bObS6TX\nanCvzOa2DPLVUl0CWNjFJ9c2z1z7AVOG3kDTF9IX5gASR/RZcn5GX0zbvN29+FgSwHtUtmzvZtY2\nYSZT4eFqmXy1yWg8wMVDSQKbAhnAtCym0xWSYS+lWqsTvqAXVeSrvVvdy1ZFokcgCUe/qnfKaLf0\nDhjrOykPnIThF+DGX3TbVa7cgjN/9MwsI34aJID3qMGon4UN2wp5XYpr84XOApBH6Qpul8H5sRhT\nmTKFqi5uD3gN3rqfxrR0Xe2hvt4zknjAy1giyPW5AhZwaigiZ7/PIrOtlwWbpp7DXd+x2LJg+m1d\n6eDy6LrfVlVvMb9u5bZ+3MZewc0qZB/q5uxiWySA96hTQxHqrTbTmQpBr5sTg2F+ey9tu89ysUa9\nFWEiGaTSaHN0IMQ7DzOd1W6WBbPZComgp7P02W3oJj7xoK7jfRrWVwbGg55OMx2xx5lt3V+iktG3\nvSE4/V3dcGf1brfSoVWH6bf0oozN2vXeY6r3HZn4aBLAu+DecpFbi0UUirMj0S3nYDczDMWFiQQX\nJvQCA9O0CHpzVDYsgXYbih9dW+gslS7WWj3LhdumxVdPpZjJVqi3TCb7Qp2OZU/DzYUCH87kMC2I\nBtx85WSq0wVO7GG56W74gl4wsXpXN2gvr/Te3xcF5ru33X6YeFVXQKwvV/bHIHl4R4d90Mhvyg5b\nLtQ6e7cBvHk/TSzgIRHyblli1mybGEr19LY1DMVnj/XxzoMMxVqL4ZgfpbD1e1gp1hlN+JnLdt8W\nHu4P4fO4OJba4ur1BpZl0Wib+Nz2M5has91z4a/eauN1GdRbZid8AQrVFtfm8nzmSB9ijzPbWxxr\n6VVq4cHuQgvQc1n9J/US4sx9veR46Jz+8/R3IT+r7xef1H+2m1v3rxA9JIB32MIW28NPZyp8MJNl\nMV/H5zZ4+VCS0USAdx6kmcpUcBmK82MxTg1FqTXbzGQqKKWYSAb57vMjmKaFYSjeup/uee7nRmKM\nJYIsFWr0hXwcT/VuO9Rsm1Qa7U4PiKVCjbfup6k02iRDXr5wvF+3nry3Sr7aJOJ387lj/QQ8Lt64\nt8pKsU7Aa3BiMGJrgQls2XxI7EHxCd2ucr3TmTL0WfHCh/rsNtSvdz9Whp6GuPkXunXk2Mu6T8PU\nm7pLmzJ0GI+8oLuaLdAm8aEAAAubSURBVF7T7en6j8PEa1s3IBEdEsA7bKtVZ8vFGitFXYlQb5m8\n/SDNmZFop0dDq23x/lSOZNDLm2vBCLo07feeG6LZNnmwUqZtWrRNE9famvlowI2FbpxzdK1JTrne\notxo0R/Sy44frpb53aMMrbZFNODmC8f6efP+amfeOFNu8P50lmqj3enGVqy1ePtBmkTQy0pRz/tV\nGyY35gsEvS7btMhE0t6wR+xRbi+c/o6edrDaUC1A9oH+XKsGZhPO/YluP7nw4drxug7eZq17hmyZ\nOnhdPpi/3H3+ldv6THpzgx9hIwG8w8aTQU4Ohbm7VNJNaIYjLBXsFy9apsV8vrf93tW5vC3cSrUW\nd5f0fPJ6v2OXoeeVp9JlcpUmP7m+RDzo4aunUtxbLnF1Tq92C3pdfPFEfyd8QU8ZvDdtb1EJkK00\nqW1qt5mrNNGNPbuabYvPH0/yaLVCud5isi/I8cGPn+oQe4gnoOd8Ae782P45s61bWW6cJwYduPnp\n3ufKPeo9VslIAD+GBPAueGkyyfNjcdTa3O61uXznTBJ06dixgTCrxe4Pu8uARNDbE9ZzuZqt2Two\nKo0WpXq3H3Gu0uTaXJ57y6VODX2l0eb9qaxte3vQPX3jQc9awGrDMd2RbDbb/U9hKOYjHvSSq3RX\nR4X9boai/p6+FGIfio5AYdNFtkBSH9+4HNnl1S0uS8vdY0rptpWlJWyrgraqnBA2EsC7xL1hafCZ\n4SiNtslMpkLY5+bCRIJkyEutaXJvpYR3rb43EfTyKF3uBG7I52IsEbCFN9DTPB30PnKb52dB9YTt\nWCLIZH+Q96ey5KtNhqJ+XhiP0zYt3EaW5aJuPXlxMonHpTBNi7lclajfw4sTCSk7OyhSZ/UFuOxD\naDd028s7P9IX34af77ajHH1Jt5lsvap3uzBcekFGfEJvI7TwoT57Tp3RTXrExzrQuyIfBLWm7kU8\nky0zEPFxpD/Mu48ynYUXEb+br55K8aNri7atgb56KsX701lb2L5yOMFwLMCHMzkKtSZjiSBnhqPS\nklJ0NSpw7Qf2Konj35AwfXJ7th2leAIuQ/EoXabSaFOs6cbur59OUa63sSy9oafbZfC1M4PcXCh0\n9oQbivn5yskUNxbyFGstJpJBjqxdmPvssX6HvyqxZxXme0vU8jMSwDtEAniPW8jVbBfi2iZMpasc\nS4WZy1aZz9UYSwSIBTy8uqn+ttxo4fe4GIn39g8WYkv+LdqS/v/t3X1sVXcdx/H3p/e2a2+B2/K4\nDgYsBpzImDiYMtHgwx50UeJmxMUYicbo/mB/Gf8xMTNzTsXHzX80yxLjEmfULC7TBTS4RTODbDLp\nmBsD1I3xVBRoKZTS9usf55Te294CHYXTe/t5JU16nnp+F04+/fV3zvn+lEseL6tvgtZrqn2mignF\nATzB5XMj/5Lp6jnDU+0Hzo7xzp9eYPWi8l7tno4TbN07dFNvyVXTKhZnNyszZVbyXO+hnckTD43F\n5FG0SIe3/rsbFt+abRtriH+VTXBtxUbmTBuqVNZ8RY7Tff1lN9he+99JunrOEBH0pxtKp5oH2HWw\n6+w2s3OatwKWrYNln4TCjKHwhWSIonvkC0D25rgHPMFJ4gPXzuZgZw99/UFbsZE/7z4ClE/fvrfj\nBK8e7qavf4CFM5sZfnM1cPjaGJyzpKSvpfHiHnAVkERbsYmrpxfI5+q49sqpZdPaz2iuZ+f+Lnr7\nBhgI2NvRTWFYQZzFc6aOqC9hdl6zlySPmg2a2pa8pmzjwj3gKtRWbOLDS9t4/ehJpjbmiUiK/JRq\nbshz85IWDnX20NrcwFzX+7U3Y8osWLI2mQGjvjB6tbOD7XD45bR+8HJoXXB521mlHMBVqliop1hI\n7lif7O2jTpSNC8+ZdgWzpiZfZhelsTj0ynIlR/8N+0qe09/7NCy9o/L8cVbGQxA1oNCQZ/WimbQU\n6ik05LhubvHsM79moxroT+o1VCpNORadB8qXYwC6Dl3cz5wk3AOuEfm6OvJ1YiCnio+umZXpOgR7\ntiSVz/KNyWvEzbPgjeeS+r6NLXD1yqQQ+4EXSl5FXpEMS3S8kjyeVpev3NMtTL/cn6gqOYBrQM+Z\nfp7ZdfjszBjbXztGoSHHggrzwZkByTRDg/O59fUky8V5SX0HSGa5ON2ZzO82WGaypxNe3QwLVydl\nKQd1H4Fpc6HrQBLIbdc7gC+QA7gGHO48fTZ8B+0/1uMAttGd7hy23DU0s8WgnuNwZHf5uv7e5CWN\n4VoXJDMoq85vyo2B/6VqQLEwcvqX1mZPCWPn0DLsKYWW+dDUWr4u3wjTrixfp7qkpzxcUyvk8g7f\nMXIPuAYUm+pZPr+F9n3H6RsI5k8vsOg8c8DZJLfgpqS2w4lD0Dw7eXSsvzeZoqj7SDLeu+CmZFaL\nU8eS3nGuYWhKop7jyfxwqoM5S2HK7Kw/UVVyOcoa0tc/QH/EiIk1zcbkzKlkiqHS3uyZnuQZ39KX\nMvp6kwDOuR9XgctRTjb5XJ3/Q+3i1Vd4aafSq8n5kfMd2th4wMbMLCMOYDOzjDiAzcwy4gA2M8uI\nA9jMLCMOYDOzjDiAzcwy4gA2M8uIA9jMLCMOYDOzjDiAzcwy4gA2M8tIVVRDk9QB/CfrdlSJmcCR\nrBthNcnX1oU7EhG3nW+nqghgu3CSnouIFVm3w2qPr63x5yEIM7OMOIDNzDLiAK49P826AVazfG2N\nM48Bm5llxD1gM7OMOIDNzDLiAK4CkkLSoyXLeUkdkp48z3FrzreP1T5J/ZJeKPlaeAnPtV7Sjy/V\nz681nkS3OnQDSyU1RcQp4GbgjYzbZNXjVES8I+tG2EjuAVeP3wO3p9/fBfxicIOkGyX9VdJ2Sc9K\neuvwgyU1S3pE0t/S/dZepnbbBCQpJ2mjpG2Sdkj6Yrp+jaRnJP1W0l5J35L06fS6aZf0lnS/j0ra\nml5Lf5Q0p8I5Zkn6TXqObZLec7k/50TnAK4ejwGfktQILAO2lmx7GXhvRCwHvgZ8s8LxXwW2RMSN\nwPuBjZKaL3GbbWJoKhl+eDxd93ngeESsBFYCX5B0TbrteuBLwNuAzwCL0+vmYWBDus9fgHen19xj\nwFcqnPdHwA/Sc9yZHm8lPARRJSJiRzp2dxdJb7hUEfiZpEVAAPUVfsQtwMckfTldbgTmA/+8JA22\niaTSEMQtwDJJn0iXi8AioBfYFhEHACTtATan+7ST/PIGmAf8UlIb0AD8q8J5PwQskTS4PE3SlIg4\nMQ6fqSY4gKvLE8B3gTXAjJL19wF/ioiPpyH9dIVjBdwZEa9c2iZalRCwISI2la2U1gCnS1YNlCwP\nMJQZDwHfj4gn0mPurXCOOpJecs/4Nbu2eAiiujwCfD0i2oetLzJ0U279KMduAjYo7Y5IWn5JWmjV\nYhNwt6R6AEmLxzgkVXrNfXaUfTYzNGSBJN8IHMYBXEUiYl9EPFhh03eAByRtZ/S/au4jGZrYIWln\numyT18PAS8DfJb0I/ISx/UV8L/ArSc8zeonKe4AV6U2+l0jGla2EX0U2M8uIe8BmZhlxAJuZZcQB\nbGaWEQewmVlGHMBmZhlxAJuZZcQBbGaWEQew1ay0AtzvJP1D0ouS1km6Ia329bykTZLa0vrK29JX\napH0gKT7M26+TQKuBWG17DZgf0TcDiCpCDwFrI2IDknrgPsj4nOS1gO/lrQhPe5dWTXaJg8HsNWy\nduB7kr4NPAkcBZYCf0hLYuSAAwARsVPSz9P9VkVEbzZNtsnEAWw1KyJ2SXon8BHgG8AWYGdErBrl\nkOuAY8Dsy9REm+Q8Bmw1S9JVwMmIeBTYSDKsMEvSqnR7vaS3p9/fAUwH3gc8JKklo2bbJOJiPFaz\nJN1KErwDwBngbqAPeJCknGIe+CHwOPAs8MGIeF3SPcANETFamUWzceEANjPLiIcgzMwy4gA2M8uI\nA9jMLCMOYDOzjDiAzcwy4gA2M8uIA9jMLCP/Bz98Gt9eFxJdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "YZrRTHoie67v", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "dd148ab0-b53b-4922-abc0-dc30e9da498c" + }, + "cell_type": "code", + "source": [ + "sns.catplot('sex', 'tip', data=tips, kind='bar');" + ], + "execution_count": 106, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEkBJREFUeJzt3X+w5XVdx/Hny91VHDWY5BYEGJZY\n+QNEbihjNZRh649gSkqYRsW0LVLRGctRazBRM7G0kCbbUXL9kWL4o9VAohHzVyIXXBaX1WazSUAY\nr6ArpGIr7/64X/JyvXd3k/3e99l7n4+ZM3u+53zOOe9l7jw5+73f8z2pKiRJy+9e3QNI0mplgCWp\niQGWpCYGWJKaGGBJamKAJamJAZakJqMFOMkBST6T5Jok25K8YpE1ZySZTbJluDxnrHkkadKsHfG5\n7wB+qapuT7IO+ESSS6rq0wvWXVhVzxtxDkmaSKMFuOY+Ynf7sLluuNzjj92tX7++PvzhD9/Tp5Gk\nMWVvFo26DzjJmiRbgK8Al1XVFYsse2qSrUkuSnLEEs+zIclMkpnt27ePObIkLZtRA1xV362qRwGH\nA8cnecSCJR8Ejqyqo4HLgE1LPM/GqpququmpqakxR5akZbMsR0FU1deBy4H1C26/paruGDbfDBy3\nHPNI0iQY8yiIqSQHDdfvC5wEfH7BmkPnbZ4MuH9B0qox5lEQhwKbkqxhLvTvqaoPJTkHmKmqzcBZ\nSU4GdgG3AmeMOI8kTZTsb+cDnp6erpmZme4xJGl3+o+CkCQtzQBLUhMDLElNDLAkNTHAktTEAEtS\nkzGPA1ajF7/4xdx8880ccsghnHvuud3jSFqEAV6hbr75Zm688cbuMSTthrsgJKmJAZakJgZYkpoY\nYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAl\nqYkBlqQmBliSmhhgSWril3JK2it+0/a+t6oCfNwfvq17hGXzgK/exhrgS1+9bVX8va963TO6R1jx\n/Kbtfc9dEJLUxABLUhMDLElNDLAkNRktwEkOSPKZJNck2ZbkFYusuU+SC5PsSHJFkiPHmkeSJs2Y\n74DvAH6pqo4BHgWsT/LYBWueDXytqh4CvAF47YjzSNJEGS3ANef2YXPdcKkFy04BNg3XLwIenyRj\nzSRJk2TUfcBJ1iTZAnwFuKyqrliw5DDgeoCq2gXsBB64yPNsSDKTZGZ2dnbMkSVp2Ywa4Kr6blU9\nCjgcOD7JI37A59lYVdNVNT01NbVvh5SkJstyFERVfR24HFi/4K4bgSMAkqwFDgRuWY6ZJKnbmEdB\nTCU5aLh+X+Ak4PMLlm0GnjlcPxX4SFUt3E8sSSvSmOeCOBTYlGQNc6F/T1V9KMk5wExVbQbeArw9\nyQ7gVuC0EeeRpIkyWoCraitw7CK3nz3v+reB3xhrBkmaZH4STpKaGGBJamKAJamJAZakJgZYkpqs\nqq8kWk3uvPf97vanpMljgFeo/z7qCd0jSNoDd0FIUhMDLElN3AUh3QNfOueR3SMsm123/jCwll23\n/teq+Hs/6OxrR38N3wFLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQyw\nJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQv5ZS0Vw4+4E5g1/Cn9gUD\nLGmv/MHRX+8eYcVxF4QkNTHAktRktAAnOSLJ5UmuS7ItyQsWWXNikp1JtgyXs8eaR5ImzZj7gHcB\nL6qqq5M8ALgqyWVVdd2CdR+vqqeMOIckTaTR3gFX1U1VdfVw/TZgO3DYWK8nSfubZdkHnORI4Fjg\nikXuPiHJNUkuSfLwJR6/IclMkpnZ2dkRJ5Wk5TN6gJPcH3gv8MKq+saCu68GfryqjgHeCHxgseeo\nqo1VNV1V01NTU+MOLEnLZNQAJ1nHXHzfWVXvW3h/VX2jqm4frl8MrEty8JgzSdKkGPMoiABvAbZX\n1euXWHPIsI4kxw/z3DLWTJI0ScY8CuJxwNOBa5NsGW57GfAggKp6E3AqcGaSXcC3gNOqqkacSZIm\nxmgBrqpPANnDmvOB88eaQZImmZ+Ek6QmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZak\nJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoY\nYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqMlqA\nkxyR5PIk1yXZluQFi6xJkvOS7EiyNcmjx5pHkibN2hGfexfwoqq6OskDgKuSXFZV181b80TgqOHy\nGOBvhj8lacUb7R1wVd1UVVcP128DtgOHLVh2CvC2mvNp4KAkh441kyRNkmXZB5zkSOBY4IoFdx0G\nXD9v+wa+P9Ik2ZBkJsnM7OzsWGNK0rIaPcBJ7g+8F3hhVX3jB3mOqtpYVdNVNT01NbVvB5SkJqMG\nOMk65uL7zqp63yJLbgSOmLd9+HCbJK14Yx4FEeAtwPaqev0SyzYDzxiOhngssLOqbhprJkmaJGMe\nBfE44OnAtUm2DLe9DHgQQFW9CbgYeBKwA/gm8KwR55GkiTJagKvqE0D2sKaA5441gyRNMj8JJ0lN\nDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUZK/OBTF8V9vPAQV88q5v\nupAk/eD2+A44ydnAJuCBwMHA3yX547EHk6SVbm/eAf8WcExVfRsgyZ8BW4BXjTmYJK10e7MP+MvA\nAfO274PfWiFJ99jevAPeCWxLchlz+4BPAj6T5DyAqjprxPkkacXamwC/f7jc5aPjjCJJq8seA1xV\nm5ZjEElabZYMcJL3VNVvJrmWuV0Pd1NVR486mSStcLt7B/yC4c/twB/Ouz3AuaNNJEmrxJIBnvf1\n8A+pqv+af1+Snx51KklaBXa3C+JM4PeBn0iydd5dDwA+OfZgkrTS7W4XxN8DlwCvAV4y7/bbqurW\nUaeSpFVgd7sgdjJ3DPDpyzeOJK0eng1NkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYG\nWJKaGGBJajJagJNckOQrST63xP0nJtmZZMtwOXusWSRpEu3NVxL9oN4KnA+8bTdrPl5VTxlxBkma\nWKO9A66qjwGeNU2SltC9D/iEJNckuSTJw5dalGRDkpkkM7Ozs8s5nySNpjPAVwM/XlXHAG8EPrDU\nwqraWFXTVTU9NTW1bANK0pjaAlxV36iq24frFwPrkhzcNY8kLbe2ACc5JEmG68cPs9zSNY8kLbfR\njoJI8i7gRODgJDcALwfWAVTVm4BTgTOT7AK+BZxWVTXWPJI0aUYLcFXt9quMqup85g5Tk6RVqfso\nCElatQywJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQyw\nJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLU\nxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1GS3ASS5I8pUkn1vi/iQ5L8mOJFuTPHqsWSRp\nEo35DvitwPrd3P9E4KjhsgH4mxFnkaSJM1qAq+pjwK27WXIK8Laa82ngoCSHjjWPJE2azn3AhwHX\nz9u+Ybjt+yTZkGQmyczs7OyyDCdJY9svfglXVRurarqqpqemprrHkaR9ojPANwJHzNs+fLhNklaF\nzgBvBp4xHA3xWGBnVd3UOI8kLau1Yz1xkncBJwIHJ7kBeDmwDqCq3gRcDDwJ2AF8E3jWWLNI0iQa\nLcBVdfoe7i/guWO9viRNuv3il3CStBIZYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKa\nGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKA\nJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJajJqgJOsT/KF\nJDuSvGSR+89IMptky3B5zpjzSNIkWTvWEydZA/w1cBJwA3Blks1Vdd2CpRdW1fPGmkOSJtWY74CP\nB3ZU1Rer6jvAu4FTRnw9SdqvjBngw4Dr523fMNy20FOTbE1yUZIjRpxHkiZK9y/hPggcWVVHA5cB\nmxZblGRDkpkkM7Ozs8s6oCSNZcwA3wjMf0d7+HDb/6mqW6rqjmHzzcBxiz1RVW2squmqmp6amhpl\nWElabmMG+ErgqCQPTnJv4DRg8/wFSQ6dt3kysH3EeSRpoox2FERV7UryPOBSYA1wQVVtS3IOMFNV\nm4GzkpwM7AJuBc4Yax5JmjSjBRigqi4GLl5w29nzrr8UeOmYM0jSpOr+JZwkrVoGWJKaGGBJamKA\nJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZak\nJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoY\nYElqYoAlqYkBlqQmBliSmhhgSWoyaoCTrE/yhSQ7krxkkfvvk+TC4f4rkhw55jySNElGC3CSNcBf\nA08EHgacnuRhC5Y9G/haVT0EeAPw2rHmkaRJM+Y74OOBHVX1xar6DvBu4JQFa04BNg3XLwIenyQj\nziRJE2PtiM99GHD9vO0bgMcstaaqdiXZCTwQ+Or8RUk2ABuGzduTfGGUiVeeg1nw33Klyp8/s3uE\n1WLV/Ezx8nv0XvDDVbV+T4vGDPA+U1UbgY3dc+xvksxU1XT3HFo5/Jnat8bcBXEjcMS87cOH2xZd\nk2QtcCBwy4gzSdLEGDPAVwJHJXlwknsDpwGbF6zZDNz1b8dTgY9UVY04kyRNjNF2QQz7dJ8HXAqs\nAS6oqm1JzgFmqmoz8Bbg7Ul2ALcyF2ntO+620b7mz9Q+FN9wSlIPPwknSU0MsCQ1McD7mSSV5B3z\nttcmmU3yoT087sQ9rdHKleS7SbbMuxw54mudkeT8sZ5/JdkvjgPW3fw38Igk962qbwEn8f2H90kL\nfauqHtU9hO7Od8D7p4uBJw/XTwfeddcdSY5P8m9JPpvkU0l+auGDk9wvyQVJPjOsW/gRca0CSdYk\neV2SK5NsTfK7w+0nJvnXJP+Y5ItJ/izJbw0/L9cm+clh3a8OJ9H6bJJ/SfKji7zGVJL3Dq9xZZLH\nLfffc5IZ4P3Tu4HTkhwAHA1cMe++zwM/X1XHAmcDf7rI4/+IuWOujwd+EXhdkvuNPLN63Xfe7of3\nD7c9G9hZVT8L/CzwO0kePNx3DPB7wM8ATwceOvy8vBl4/rDmE8Bjh5+1dwMvXuR1/wp4w/AaTx0e\nr4G7IPZDVbV12Id3OnPvhuc7ENiU5CiggHWLPMUTgJOT/MGwfQDwIGD7KANrEiy2C+IJwNFJTh22\nDwSOAr4DXFlVNwEk+Q/gn4c11zL3P22Y+3TrhUkOBe4N/Ocir/vLwMPmnWPrh5Lcv6pu3wd/p/2e\nAd5/bQb+HDiRuRMY3eWVwOVV9WtDpD+6yGMDPLWqPKnR6hbg+VV16d1uTE4E7ph3053ztu/ke914\nI/D6qto8POZPFnmNezH3Lvnb+27slcNdEPuvC4BXVNW1C24/kO/9Uu6MJR57KfD8u079meTYUSbU\npLsUODPJOoAkD/1/7oqa/7O21Ono/pnv7bIgib8InMcA76eq6oaqOm+Ru84FXpPksyz9L5xXMrdr\nYmuSbcO2Vp83A9cBVyf5HPC3/P/+VfwnwD8kuYqlT1F5FjA9/JLvOub2K2vgR5ElqYnvgCWpiQGW\npCYGWJKaGGBJamKAJamJAZakJgZYkpoYYK14w9nf/inJNUk+l+RpSY4bzvh1VZJLkxw6nFv5yuFj\ntSR5TZJXN4+vFcxzQWg1WA98uaqeDJDkQOAS4JSqmk3yNODVVfXbSc4ALkry/OFxj+kaWiufAdZq\ncC3wF0leC3wI+BrwCOCy4XQYa4CbAIZv7n77sO6EqvpOz8haDQywVryq+vckjwaeBLwK+AiwrapO\nWOIhjwS+DvzIMo2oVcp9wFrxkvwY8M2qegfwOuZ2K0wlOWG4f12Shw/Xfx34YeAXgDcmOahpbK0C\nnoxHK16SX2EuvHcC/wOcCewCzmPulIprgb8E3g98Cnh8VV2f5CzguKpa6lSL0j1igCWpibsgJKmJ\nAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmvwvXlJJrZwzlpgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "mfwv4B3UCbh1", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## 3. Flights" + ] + }, + { + "metadata": { + "id": "reMBw5hkCbh2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Load dataset" + ] + }, + { + "metadata": { + "id": "1k2SQyJ3Cbh3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "flights = sns.load_dataset('flights')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "nsonr-LyCbh4", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the data's shape" + ] + }, + { + "metadata": { + "id": "FIRgLwjoCbh5", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "3c34d106-86e9-4bb6-d131-4555f398fcc0" + }, + "cell_type": "code", + "source": [ + "flights.shape" + ], + "execution_count": 108, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(144, 3)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 108 + } + ] + }, + { + "metadata": { + "id": "vHfioJA9Cbh7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### See the first 5 rows" + ] + }, + { + "metadata": { + "id": "yeMaMlUWCbh7", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "7a83a33a-19e3-4635-a246-eeafdf1c4fcb" + }, + "cell_type": "code", + "source": [ + "flights.head()" + ], + "execution_count": 109, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearmonthpassengers
01949January112
11949February118
21949March132
31949April129
41949May121
\n", + "
" + ], + "text/plain": [ + " year month passengers\n", + "0 1949 January 112\n", + "1 1949 February 118\n", + "2 1949 March 132\n", + "3 1949 April 129\n", + "4 1949 May 121" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 109 + } + ] + }, + { + "metadata": { + "id": "3Q1-HfVgCbh8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Describe the data" + ] + }, + { + "metadata": { + "id": "ZiSATbJDCbh_", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 284 + }, + "outputId": "a3dae0ec-3e75-4b36-e6bd-da4c7e9869ee" + }, + "cell_type": "code", + "source": [ + "flights.describe()" + ], + "execution_count": 114, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearpassengers
count144.000000144.000000
mean1954.500000280.298611
std3.464102119.966317
min1949.000000104.000000
25%1951.750000180.000000
50%1954.500000265.500000
75%1957.250000360.500000
max1960.000000622.000000
\n", + "
" + ], + "text/plain": [ + " year passengers\n", + "count 144.000000 144.000000\n", + "mean 1954.500000 280.298611\n", + "std 3.464102 119.966317\n", + "min 1949.000000 104.000000\n", + "25% 1951.750000 180.000000\n", + "50% 1954.500000 265.500000\n", + "75% 1957.250000 360.500000\n", + "max 1960.000000 622.000000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 114 + } + ] + }, + { + "metadata": { + "id": "_z2L6XpHCbiC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Plot year & passengers" + ] + }, + { + "metadata": { + "id": "40qlBdMTCbiD", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "6a242a49-a796-4326-cebf-8f89102522e3" + }, + "cell_type": "code", + "source": [ + "sns.catplot('year', 'passengers', data=flights, kind='strip', alpha=.8);" + ], + "execution_count": 117, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl4JFd97//3t6p6Uau1bzMjzb5v\n9tger9jYxoANGOyAAXMTMARiSAgJ92Yjyc0N9xeykAUCyQ3gBIhJSNgTDBiD8YoBr2PP5tlXSaPR\nMtqXXqrq/P7oGo2kGc9opqun1dL39Tx61FVdfc5pjfSZ6lOnzhFjDEoppS4+q9gNUEqpuUoDWCml\nikQDWCmlikQDWCmlikQDWCmlikQDWCmlikQDWCmlikQDWCmlikQDWCmlisQpdgPycdttt5mHHnqo\n2M1QSqmpZDoHlfQZcE9PT7GboJRSF6ykA1gppUqZBrBSShWJBrBSShWJBrBSShWJBrBSShWJBrBS\nShWJBrBSShWJBrBSShWJBrBSShWJBrBSShWJBrBSShVJSU/Go5RSF4PfNYq/qw9swdpQh1UdC6Vc\nDWCllDoLvzdF9nuHwDe57QMDRN6xEinLPz61C0Ippc7CPzAwHr4AJuPhHxkKpWwNYKWUOguJ26fv\nKzt934XQAFZKqbOwVtcgdfFT2y1JZFFFKGVrH7BSSp2FRG0iv7Qc0zECtoXVlAitbA1gpZQ6BxFB\nFiRDL1e7IJRSqkg0gJVS6iz8vjRmOFuQsrULQimlzsBkPdwfHcXvGAER7DU1ONcvCLUOPQNWSqkz\n8Hf35cIXwBi8Xb34naOh1lHQABaRahH5lojsFpFdInKtiNSKyMMisi/4XhMcKyLyWRHZLyLbROTy\nQrZNKaXOxgye3u1gBjOh1lHoM+DPAA8ZY9YAlwK7gI8BjxhjVgKPBNsAbwBWBl/3Ap8rcNuUUuoV\nWUunjPWN2Fgt4Y6EKFgAi0gV8GrgiwDGmIwxph+4A7g/OOx+4M7g8R3AV0zO00C1iMwvVPuUUups\nrAVJnNcuwmpOYi2pJPKmJaHM/zBRIS/CLQW6gS+LyKXAC8BvA03GmI7gmONAU/C4GWid8Pq2YF/H\nhH2IyL3kzpBZtGhRwRqvlFL20krspZUFK7+QXRAOcDnwOWPMZcAIp7obADDGGMCc4bWvyBhznzFm\nszFmc0NDQ2iNVUqpi62QAdwGtBljngm2v0UukDtPdi0E37uC59uBhRNe3xLsU0qpWalgAWyMOQ60\nisjqYNctwMvAA8A9wb57gO8Gjx8A3hOMhrgGGJjQVaGUUrNOoW/E+AjwVRGJAgeB95EL/W+IyPuB\nI8A7gmMfBN4I7AdGg2OVUmrWKmgAG2NeAjaf4albznCsAT5cyPYopdRMonfCKaVUkWgAK6VUkWgA\nK6VUkWgAK6VUkWgAK6VUkWgAK6VUkWgAK6VUkWgAK6VUkWgAK6VUkWgAK6VUkWgAK6VUkWgAK6VU\nkWgAK6VUkRR6OkqllAqV8Q1uuw+O4MwTRKTYTbpgGsBKqZLhpw3DD2Tx+nwAnGaL5BsiiFWaIaxd\nEEqpkpHZ442HL4Db7pNt9c/yiplNA1gpVTJManr7SoUGsFKqZERXWGCf6m6QuBBZXLoxpn3ASqmS\nYddaVLwlQnq3h9gQ2+BgxUuz/xc0gJVSJcZpsMCC7BEfr8vHSlolexFOA1gpVVKyrR7DD2XB5LYj\nh2ySr4sUt1EXqHQ7T5RSc1JquzcevgDZQx7ekHnlF8xgGsBKqZJSwvddnEYDWClVUmKXOJOSK7rc\nxq4ozVTWPmClVEmJNFtU3hUle8THqhQiS0r3PFIDWClVcuxqC7u6dIP3JA1gpZR6Bf7xEfx9A1Dm\nYK+vRcrCjUwNYKWUOgP/2DDZB4+AyY2w8A8OELlrRahjjkv/HF4ppQrA29M/Hr4AZiCN6RgJtQ4N\nYKWUOgOJ2qfvjJ1hXx40gJVS6gzsjXWT+nytZVVY9WWh1qF9wEopdQZSGSXyzpX4bSNImYM1LxF6\nHRrASin1CiRiYy+tLFj52gWhlFJFogGslFJFogGslFJFogGslFJFogGslFJFogGslFJFogGslFJF\nogGslFJnYEayeAcHMMOZgtWhN2IopdQU3oEB3MfacpPxiODc2Iy9sjr0ejSAlVKh6mz16GzziMaE\nxatsypKl90Hbe67z1ExoxuA916kBrJSa2braPHZtyY5v93X7XP3aKJZdWmu2mbQ3eTvlvcKR+Sno\nf00iclhEtovISyLyfLCvVkQeFpF9wfeaYL+IyGdFZL+IbBORywvZNqVU+LqP+ZO20ynDQG/pLRlv\nr64563ZYLsZng5uNMZuMMZuD7Y8BjxhjVgKPBNsAbwBWBl/3Ap+7CG1TSoUoNmW2RgHi4c7geFHY\nVzfhXL8Aa0U1zqsWYF83ryD1FKNz5g7g/uDx/cCdE/Z/xeQ8DVSLyPwitE8pdYEWrnQor8jFigCL\nVjol2QcsIthra4nc3IK9rhaRwnShFLoP2AA/FhEDfMEYcx/QZIzpCJ4/DjQFj5uB1gmvbQv2dUzY\nh4jcS+4MmUWLFhWw6Uqp8xWLC5tvjjA8YIjEhHhZafX9XmyFDuDrjTHtItIIPCwiuyc+aYwxQThP\nWxDi9wFs3ry59DqXlJrlRISKag3e6SjoZwNjTHvwvQv4L+AqoPNk10LwvSs4vB1YOOHlLcE+pVSJ\nyaQM3cc8xob9cx88hxUsgEWkXEQqTj4GXg/sAB4A7gkOuwf4bvD4AeA9wWiIa4CBCV0VSqkScaLT\n4+mHM+x8Lsuzj2Q4dqgwQ7hmg0J2QTQB/xV0XjvAfxhjHhKR54BviMj7gSPAO4LjHwTeCOwHRoH3\nFbBtSqkCOfSyh+/negcNcGiXy/zFFmJpt8RUBQtgY8xB4NIz7D8B3HKG/Qb4cKHao5S6ONysOW3b\nNxDugu6zQ+mND1FKzWjzFk2O2sYWG7vE7oS7WPRWZKVUqBavtoknhL5un4pqYcFSPfd9JRrASqlQ\niQjzFtmnnQmr02kXhFJKFYkGsFJKFYkGsFJKFYkGsFKq5HgDPtljPsYr3GwEfl8K/9gIxi9cHXoR\nTilVUkafdklvcwGwkkLyzVHsinCHublPHcPb1QuAVEaJ3L4UKY+EWgfoGbBSqoR4g4b0dnd82x82\npF5yz/KK8+f3psbDF8AMZvC2nwi1jpP0DFipOWR/n8+2Lo+qmHBts00iUlo3SJhRk7u/eeq+MI2e\nHujmDPvCoAGs1Byx+4THv20/tV7b9i6Py5osRl1hU5PF/BKYON1uEqwqwR84FbrRleGON5b5CaQ8\nghk59bOyV1aFWsdJGsBKzRHPd0yeGnJnj0/7kE/UFn7RDvduitJSObNDWESouD1KaquLPwLRFRZW\npTD2gotVIUSXW0ietz2LbRF581K8bScwYy72qmqshRUhvYPJNICVmiMSE64hpT3I+nBygjLPh2c7\nvBkfwABWuZC4Lvdmsm0+Q9/JjHdLZA9aJG+L5l2HVESxr2nCPziIGcrgtQ/BiTRSF8dqTuZd/kka\nwErNETcstNnV4zOaNQhQ7oAzYYrIaAneOZze7k7qE84e9fEGfOyq/P4jMcaQ/f5hTNcopD3McBaq\no4htYV/agHNV07kLmQYNYKXmiIaExe9eHWV/n09VTHjksMve3ly3RCIiXNtcgnFwppwNYQFN0z6S\nC1+CC3AGGPMgaeHtOIF9eQPi5P9poQR/4kqpCxVzhPUNuVPdd2+MsL/PZyQDq+uskhsRARC7xCHb\nloXghozIchu7MoT3Yc4yssKcPhLjQmkAKzVHWSKsqi3BfocJIvMtKu+KkD3qY1UIkcXh9GFLcxKp\njWN6U0iZk+uCiOd+VvaaWiQSTj0awEqpkmZXWdgbw714KJYQectS/H0DmLSHVEQw/ZncRbgl4Y2I\n0ABWSqkzkIiNva62oHXM/DEnSik1S2kAK6VUkWgAK6VUkWgAK6VUkWgAK6VUkWgAK6VUkWgAK6VU\nkeg4YKVUQfi+of2gx0CPT0WtxcLlNlaeU0XONhrASqmCOLDDpf2QB0BPp8/YsGHN5eGvq1YoZjQL\ncQexCvefhgawUqogutr8Kdseqy9zkBBmKyskM5Qh+/BRzIncPBDOjc0Fm5Bd+4CVUgURjU3ejsRk\nxocvgPv0ccyJFABmzMV9or1gS9NrACulCmLZBgc7+PhuCazYWBofuE1fevL2mAtjuiinUqqE1DXZ\nXHOrxVC/IVklRGMz/+wXwGpJ4g2cCmGpjSPlhem71gBWShVMJCrUNpZG8J5kB8sN+a3DSE0M55p5\nBatLA1ipOSbjGR4+5HKo39BSIbxumUN5Ca6GUSjiWDjXzb8odWkAKzXHfG+fy5bjueFhHcMwkDbc\nc0n+KwkXS+awR2aXBxEhvsnGqQ/n0pbxDaZnDKmIImWFiUoNYKXmmF0nJg8P29fn4/pm0grJpSLb\n4TPycHZ8jTa3zafy7ihWPL/34vencb9/KLcUUcTCuWYe9vq6EFo8mY6CUGqOaUhMDqeauJRk+AJk\nD3qTFsg0GUO21X/lF0y33B8cxm8dxvSlMb3p3NC0jJd3uVNpACs1Q2V9H+9sq/NeoNtXOFQGIxIS\nEeGOVaVzd9pUVvL0/zjsivz+MzGDGcyxkVM7XB8zlC3IUDTtglBqhnF9w/0HjvNMzxBljsVbF9Vz\nY1N1aOU3V1j83jVRToyZkj77BYits8ke9nE7fRCIrrZx5uV3XmkG0hC1wD11Ji1RC6mKneVVF0YD\nWKkZ5rHj/TzdMwjAqOvx1YOdrKtK0BAP70KZJXJaV0QpkohQcUcUr9eHiOR99gsg8xJIdQwjQMYH\nW7Bf3Zx/Y89gWv9ViMjbRaQiePy/ReQ7InJ5QVqk1Bx3dCQ1adsAR0fSZz5YAWDXWqGEL+RWQ47c\nvgR7TS32qmoity3G2RD+BTiY/hnwnxhjviki1wOvBf4G+BxwdUFapdQctroqMX4GDOBYwoqKsiK2\naGbyRw2jP3fxun3seiHSYuE0Wdi1+V/asurKsF6/KIRWnt10A/jk5b83AfcZY34gIp8oUJuUmrOG\nsi77B8cQYNTzWZ6Mc9fiBqqihekt7Bj2GXNhSZVghTRRjjGGwV6DWFBZE/51fve4z9gWl+xBH+Mb\nxBYyh3xSWz3sSiF+hUPZFaXRuzrdVraLyBeA1wGfFJEYOoJCqdD9y77jvDyQuwJfZlssTZaxsSZZ\nkLq+sSvL1s7cuVVDQvjApijJaH4h7LqGrT/LMtSfu4BV22ix8epIaHPq+qOGoQez4Bq8wWCEiJX7\nbrK5zdRLHvGNNpLne7kYphui7wB+BNxqjOkHaoHfm84LRcQWkRdF5PvB9lIReUZE9ovI10UkGuyP\nBdv7g+eXnPe7UaqEZX1/PHxP2to3XJC6jg744+EL0D1qeOZY/uNcO4964+EL0Nvlc6Iz/3G5J2Xb\nfXBzgSt2sDNo9qltgynM5GWhO2cAi4gNbDHGfMcYsw/AGNNhjPnxNOv4bWDXhO1PAp82xqwA+oD3\nB/vfD/QF+z8dHKfUnOGIUBebPCZ3XllhbhEeypw+vvhM+85X5gzXCjOp0/ddKLv61FmtVSGIBRLL\nha8VfFCILLKwSmSExzkD2BjjAXtE5Lx7pEWkhVy/8b8E2wK8BvhWcMj9wJ3B4zuCbYLnb5FSmL1Z\nqZCICO9Z1kTSyZ3K1cYivGtpY0HqWlFjTepuEIFNjfZZXjE9jc0WE3sbHEeomx9eb6XTYBG71AEB\ncSB2qU3NB2NUvD1CbL1D2dUO5a8tnRtLptsHXAPsFJFngfHPSMaYt5zjdX8P/D5wcj2POqDfmPEP\nCG3AyQF2zUBrUK4rIgPB8T0TCxSRe4F7ARYtKvxVSqUupnXV5fz1FcvoTbs0xCOhXRibKuYI914W\n5WdtLmNZuGK+zZLq/IOyvNJi0/VRjh32EIGW5TaxPOdlmMi4Bn/I5C6+RYXoChu7wsKusIgtC62a\ni2baw9DOt2ARuR3oMsa8ICI3ne/rX4kx5j7gPoDNmzcXZp0QpYooYlk0FajrYaK6MuEtK8M/W6ys\ntagMYSjYmaS2eWQPermljbIw+kSWSHPpdDlMNa0ANsY8ISKLgZXGmJ+ISAI41+eVVwFvEZE3AnGg\nEvgMUC0iTnAW3AK0B8e3AwuBNhFxgCrgxHm/I6XUrOV1Tznn8sHrNaEHsDEG0zaMGXWxFlUUbDrK\n6d4J92vk+mW/EOxqBv77bK8xxvyhMabFGLMEuBt41Bjzy8BjwF3BYfcA3w0ePxBsEzz/qDEFmIlE\nKVWynObJQSsRwW4I/+zXfbSNzA8Pk33wMOl/3Ermvw/k5ogI2XQ/J3yY3BntIEAwGuJCrw78AfC/\nRGQ/uT7eLwb7vwjUBfv/F/CxCyxfKTVLxdbbxDc5WOWC3WBR/voIVshrzfl9KfyDAzDiQsoD1+Af\nHCT746OEfU443fPqtDEmc3JQQtBFMO2WGGMeBx4PHh8ErjrDMSng7dMtUyk194gIZVc5lF1VwDvd\ngnHGZCeMXzYG05+GkSwkQ5wUaZrHPSEifwSUicjrgG8C3wutFUopNUNIfRyrMQH2hGF6ZQ4SdyDk\nvuDpBvDHgG5gO/BB4EHgf4faEqWUmgFEBOeNi3FubEYa4kh1DKmK4dzUjNjhju6QUr7OtXnzZvP8\n888XuxlKqVnMjLkQs893PotpHTyt82kR2c7pfb4DwPPAJ4wxOlxMKTUrFWoIGkz/ItwPyU158R/B\n9t1AAjgO/Cvw5tBbppRSs9x0A/i1xpiJK2BsF5EtxpjLReRXCtEwpeaivnSW7f0jNMSjrKksQ6dD\nmd2mG8C2iFxljHkWQESu5NSdcCUy8ZtSM9uBoTH+7uU2sn5u+NP1jVXcs3xekVulCmm6AfwB4Esi\nkiTXuTwIfEBEyoG/LFTjlJpLftjeOx6+AD/rGuDNLXXUxkpndi91fqY7F8RzwEYRqQq2ByY8/Y1C\nNEypuSbjT77ObYCsX7qjlNS5TXcURAx4G7AEcE72Sxlj/r+CtUypOeY186rZPTAyPtxoXVX5RZkV\nTRXPdLsgvktu2NkLgK6Prea0vkyaCieCY4U7KH9TbZLfX7+ILb1DNMajXNdYGWr5auaZbgC3GGNu\nK2hLlJrhulNj/OO+l2kbHaEiEuF9y1ZxaXVdqHWsqCxjReXsWILe9w0YONHp09/tk6y2mLfQCmWB\nTuMb8EGc0h4lMt0A/rmIbDTGbC9oa5Sawb7Reoi20dyCMEPZLP96cC9/s+nq0M+EZ4Mje11a93qM\njfr4HsTKBMRjsNdm9WX5XVRM7/IYe9bFZAzR5TaJGx3ELs0gnm4AXw+8V0QOkeuCEMAYYy4pWMuU\nmmHaRyevWDyYzTLkZqmJxorUopmpq81jz4tZLAvSKcCA7YATheOtHis2OtgXeObqDRlGn8qO35eb\n2e8hCXA7DV6XjzPPInFTBLuiNAJ5ugH8hoK2QqkSsLG6ls7j7ePbLYlyDd8pBk74bPtFdnwlZOOD\nWOB5ubCxrdxKxhfK6/FPmxQh9aI3viS92+Ez+mSWijeVxsXL6Q5DOyIi15NbkujLItIAJAvbNKVm\nlrctXIIA2/p7aUmU845F4a8C6fqGHf0jRCxhbVWiYItyDqYNX3s5S+ugz9o6iztXR0hE8q+r7YCH\nNWWxMmPACZJm8WobK48+YGeelZsm0juVwiZrJnVBeF2lM3RvusPQ/hTYDKwGvgxEgH8nt0qGUnNC\n1LK5e/Fy7l68vCDlj7oef7njKMfHMgAsryjjd9ctxAnhotVUf/dMmiODuaBqH/IYzsK9l+V/1mgM\nWDbEE0ImZTAWLF9vU1VnU1EtJKvy6y+3yoTk6x3GnvMwKUN0tU2m1cOfELrOvNLofoDpd0H8EnAZ\nsAXAGHNMRCrO/hKl1Pn4WdfgePhC7tbkrX3DXFEX7p9a75g/Hr4APrCtywul7OZlNr2dHk4UnKhQ\n12ix5vJwuwMiC20iC0+dZkdXWIw+6eJ2GZx5QuLVpXPn4HQDOGOMMSJiAIJbkJVSIRr1Tg/BETec\nYJzI9cGxct9Pioc0nKumweKKm6L0dPjEE0JDc+FHiNhVFhVvLo0+36mm+9P5hoh8gdyS8r8G/AT4\n58I1S6mZxzeG3nQav0CLGFxTX0l0wpC2pGNzWW34l1oayy3W11vYgO/nug1aKoWOYf+cr52O8kqL\nxasdyquE/dtd9m3LMjIUTtmzzbRXxAjWgns9uSFoPzLGPFzIhk2HroihLpYjI0P8075d9KRT1MVi\nfGjFWpYlw79TrX00zZOdA0Qs4aamaurj4X+cHs0avrI9y45uj8EMVESgOi5EbOEjm6PUleV/Njw2\nYnj+sQxecLHMcYQrXxPNjQeeG6b1Rqd1Bhx0OTxqjPk9cme+ZSJSOh0tSuXpK4f205POja06kU5z\n/6F9BamnORHjXUsbuWtxQ0HCF+CxIy6tgz6OJVgCoy54xpD1DNtD6gvubvfGwxfAdQ3dx8LvTil1\n0+2CeBKIiUgz8BDwbnIrYSg1J7SPTb4J49jYaJFakr/OkVwwnhxcYQAv6CEIYyga5C7ATRU5w758\nZTt8Ui+5ZDtKs4tjugEsxphR4K3A54wxbwfWF65ZSs0sl1TXTtreUFVTpJbkb3Vd7s8+7kDUzgVx\nxIIFFRaXNoZz0SxRAY4t+MFJb1WNRcOCcC/Ipba5DH8vw9izue+pbaW3NsR0R0GIiFwL/DLw/mCf\nfZbjlZpV7lm6kjLbYd/QAMuTlQW5CeNiubbZJuPBti6fVbWwrs6iNmGxrFpCufGj/aDLvu0uxhiM\nD80rHVZscEJfXin1knfadvySwi2gWQjTbe1HgT8E/ssYs1NElgGPFa5ZSs0s5U5u9rPZwBLh5sUO\nGxp8+lKGpVUWkRAnszm828P4hnQKfBeO7vZYusbBKfRVo9K5AW7cdG9FfgJ4AkBELKDHGPNbhWyY\nUqpwHjrg8tPW3Ef2ZFT4wKYIDYn8uwiMMfg+pMbAy+b2pcYMe19yWXdluAkcv8Rm7NlT3Q7xS0vv\nQ/l0R0H8h4hUBqMhdgAvi8jvFbZpSqlC6E8Znmo7FVzDGcMTR8MZoSAiNC+zx8MXchffeo6Hf5Es\nvskh+aYo8SuC75tKq/sBpn8Rbp0xZhC4E/ghsJTcSAilVIkZyRqmDv8fyYT3+X3pWpvqeotINDcn\nRLQMygs0PWSk2aLsCofIRbjjrhCm2+pIMO73TuABY0yWkuxxUUotSApNycl/+pfNC+/ju4iw8ZoI\nlTUWThRicWFliV0cu1im+1P5AnAY2Ao8KSKLyS1Nr5QqMSLCr14S4alWj/60YWODxfqGcPtPq+os\nrn59lPSoIZ6QUJYhmo2mfSvyaS8UcYwxRR14p7ciK6VmqGn9jzPtzwUi8iZyN1/EJ+zWZemVUuoC\nTXcUxOeBdwIfIZfsbwcWF7BdSik16033Itx1xpj3AH3GmP8LXAvMjlHpSilVJNPtghgLvo+KyALg\nBDC/ME1Sau7qTmX4r6M9nEi7LKuI8+aWOhJO6d1g0H3M49ghDyciLFxpU1lTmsPECm26Afx9EakG\n/hp4Idj3L4VpklKlY8TN0p/JsKAskfdcB4909PFPe44xmHVxLGHPYJTuVJbfXNMcUmtPMcbQNWqo\niEpoM6Cd1Nfts/O5U3di9HX5XP26KJGYjoSYaroB/LfArwM3AL8Afgp8rlCNUqoU/Ph4G99uPYzr\n+7Qkyvno6g0XvEz9qOvxraPd40sQub6hN51la98wWd8nYoV3BjmQNty/PUvncG5O4FuX2VzXEt44\n3anz/rqeobfLp2lh6Z3JF9p0/1XvJzcC4rPAPwDrgK8UqlFKzWRZ3+d77Uf43L5dDGVzi2i2jY7w\ng2OtF1zmUNbD9Q2OJRgg6xsGXY+uVJa2kXRILc95/IhLZ7D8kOsbHjroMhzinXBlidPPdOPlevZ7\nJtMN4A3GmPcbYx4Lvn4N2FDIhik1U31+/y6+fvQgg9ksnakUw27u43ZXauwcr3xlTWVRFpfHqYk6\neMZgAEeEpGPx74e6Qmp5zomxyWHr+bn5IcIyf6lNdTDnsJc1lJUJ6THDhd5zMJtNN4C3iMg1JzdE\n5GpA74BQc05/Js1LfSeIWjZOcHfXUDYXwJfX1OVV9m+taeaNzXVUODb1sQiLy2MkHJtjY+GeAa+r\nn9wVUB0XFoQ4V4PjCJuuj7JopY1lC2Njhpefz3JgR+lNmF5o0+34uQL4uYgcDbYXAXtEZDtgjDGX\nFKR1Ss0wEcvCFsEzhqZ4Gf2ZDEnH4V2Ll3NjY34DgyqjDjc2VfFS7zAdY2msoJ7GSJStfcNsrC4P\nZcL0qxdY+MZhe7dPdUy4ZYkdSrlTdbf7yIRTvGOHPJatc7BCnHu41E03gG8raCuUKhHlToRb57fw\n4LFWImKxoCzBR1dvYE1ldd5lP9M9yBf3d+AaGAouxqU8n+Nk+Mfd7WysLue31rbkXY+IcF2Lw3Ut\nMJQx/GC/y5GBLIurLG5f4ZAMae22qdcNdT6I0013QvYjhW6IUmHoTg9zbGyAFcl6yp0LG5FwLm9b\nuJTLa+rpSI2ytrL6gkc+TPW9thMYwBaoj0Xoz7hURZ3xSQW2949weDjFkmT8bMWcl+/szrK3N3dB\nbnuXR9Y3vHtDNJSyF6122P1CdnzaxIUrbD37naJgc8SJSJxgNeWgnm8ZY/5URJYCXwPqyI0pfrcx\nJiMiMXIjK64gd6PHO40xhwvVPjX7PNq1l68efQGDIWZF+OjKG1ld0ViQupYmK1iarAi1THfKRSrf\nmNykrxMyK+OHN7G5MYYXO33GXIMtUBkT9veGd6GsqcUmWSn0dftUVFtU1enNGFMV8ieSBl5jjLkU\n2ATcFlzI+yTwaWPMCqCPU4t8vp/crc4rgE8Hxyk1LVnf45ttWzHB+Vbaz/Kd9q1FbtX5ec28yd0Y\nN8+rGb/QB7CoPM6KirLQ6vtFu8dI1pD2YNSFnjFDU3loxQNQXmnRstzR8H0FBTsDNrkxJ8PBZiT4\nMsBrgP8R7L8f+Di5mzruCB4DfAv4RxERo2NX1DRkfJe0P/kq+2A2VaTWXJjXL6hlflmUXQOjLEnG\n2VxXQftohmd7BqmOOryqsSrmlWPAAAAgAElEQVTUi2U7e3yqY9CXAtcABq7XmyUuqoJOUy8iNrlu\nhhXA/wMOAP0T5hFuA07eZ9kMtAIYY1wRGSDXTdEzpcx7gXsBFi1aVMjmqxJS7sS4tGoBWwfax/e9\nqr70lo7fWJNkY01yfHtheYyF5Q0FqasmLkRtoTFh8IGoLSyv0QC+mAr6ucAY4xljNgEtwFXAmhDK\nvM8Ys9kYs7mhoTC/mKo0fWjZq3hr86WsqWhibUUTMbEZdTPFbtaMdcsSh/qEIJIL4tuWOZSHPC+E\nOruLslCTMaZfRB4jN41l9YTVNFqAk6cs7cBCoE1EHKCK3MU4paYlZjtcUrWA7x3bQdZ47Brq5MkT\nB/j4ujdgi/ZBTlUTF377yiidI4aqWPiT8qhzK9hvpYg0BDOoISJlwOuAXcBjwF3BYfcA3w0ePxBs\nEzz/qPb/qvP1ePd+subUZDDtYwO8PHi8iC2a2SwR5ictDd8iKeQZ8Hzg/qAf2AK+YYz5voi8DHxN\nRD4BvAh8MTj+i8C/ich+oBe4u4BtU7OUc4YzXUe0X1PNTIUcBbENuOwM+w+S6w+euj9FbqkjpS7Y\nLY2r+PmJQ4x6ub7fVcnGgo0FVipfF6UPWKmLpSlewV9suJ0t/W0knRibqpoLMs9BIWV9n++39bJn\nMDcc7S0luiqGOjcNYDXrVEbi3NSwotjNuGBfO9zNk539ABwYGqOnQKtiqOLTS8NKzTAvnBiatL2t\nbxjX1+vRs5GeASt1njxjeKr7OEdGhllbWc2VdeGNR8/6PrUxZ3xpIoCaWASdw2Z20gBW6jz926F9\n/LQ7N7Ttia4OetIp3rBgYd7l/vhYLw+0nWAo65H2fJKORcKx+eWljXkv+KlmJg1gpc5D59gYD3a0\nIkC54yAIj3d15B3AbSNpvnmkG4CoJUTE5g3NtdzeUkfM1p7C2UoDWF0Uvelu9g5soz4+j+UV60ry\njO7Y2Cif2LGFvkwa38CQm2V+PEHczn+EQuvo5ImDRGDU8zV8ZzkNYFVwh4Z286V9f4vn59ZOu7Lh\nZn5p8XuL26gL8FjnMdK+T7ntMOBmSXsead/jjubFeZe9qjIxvtSRbwx9GZenOgfoTWe5e0kjTWXh\nTJKuZhb971UV3BPHfzAevgDP9TzOYKaviC26MBnP48jIML2ZDH4wMfp7lqzg8tr6vMuui0X40KoF\nLCyPk/ENjmXhY9jRP8I/7T2Wd/lqZtIAVgWX9afMSGYMrim9FXIPDA+S9j0MBo/ciIXHOjsY88J5\nL5tqk/yfSxazsDxGVeRUt8ax0TT9mdL7ealz0wBWBXdd4+tynZqBpRV5z0o6LcfGBkKdlP3I6DCR\nCXNN+MCuwX6+fHBvaHUALExMXvOtOupQEdE74WYj7QNWBbe+ZjMfXP3H7Ox7gd0DL3FwcBd/u/13\nWV+zmbuX/jq2Fe6v4Yib5lP7HufQyAkshNvnr+fO5kvyLndFsoquVIqs5yOAICSdCC/2ncA3JrRb\nnt+xpIHeTJbDwylqohHeu7wJuwQvWqpz0wBWF8Xi5EqGswM81fnD8REQO/ueZ0fN81xae02odT3U\nuZtDI7mppH0MD3Ts4Jq6JcyLV+ZV7nuWrqQvk2b7QC++gYZYnJhtUx+LhTrfRF0swh9vXMyI61Fm\nWyU3l4WaPg1gddGcSHedvi/VGXo9h4ZP0JcZwxKhwoliiUV3ejjvAF6arOBTl1/Dcye6+eqR/Yy4\nLgnH4VeWrAyp5ZOV6wQ8s54GsLpo1lRt4sft38IPJkwXsVhbfdqMpXk5OtrHi/1tDGTHABh206xK\nNrAqGc6UlJYIV9c3cnltPR1jozTFy4iFMA5YzU0awOqiaSxbwHtX/g5PdT6Eb3xe1XQr8xPhLqz6\nRPd+YrZDXaycYTeNLRZ3LriEmB3ur3rEslhUnjz3gUqdhQawuqhWVK5nReX6gpV/cvWLCidGhRMD\nYH5Zfl0PShWKDkNTs8otjSspt2Pj2yuTjaypaCpii5R6ZXoGrGaVxngFf77hTbzY30Z5ia6IoeYO\nDWA161RG4txYwitiqLlDuyCUUqpINIBV0WS8FO6ESXqUmmu0C0KNc90U7Z1Pkc70M6/hKiqT4Q4R\nO8k3Hv995H5eOPEUjuVw07zbuXn+WwpSVyGMui4/6+lk2M1ydV0jC8oSxW6SKlEawAoAYwzPbvsk\nA0MHATjY9iBXX/IxaqpWhV7Xiyd+zvM9TwCQ9Twebv82Kys30FK+LPS6wuYZwyd3baVtdASAH3W0\n8YfrLmVxeUWRW6ZKkXZBKAD6B/ePhy+A8T2OdjxakLqOjR45w76jBakrbLsH+8fDF3JTUj7RdbyI\nLVKlTM+AFQDWGWYksyT8X4+Dg7vZP7STjrFWbHGoitQQdxIsq1gbel2F4ARD2jK+T18mTdb32dZ/\ngrS3TG9JVudNA1gBUFWxlIa6S+k+sRUAxyljSfOtoZV/dHg/X9jz57SNHMIz7viMaINuP7+8/Dep\nj+d/s8RINs0XDv2c1tE+1lTO4+0tm6iNhts/u6qiitUVVTzadYysb7AFutIp/qvtMHcvXh5qXWr2\n0wBW465Y/1G6ereSTvfTVH85sWhVKOWm3FHu2/MXtI4cxPWzGHxsHGJOnNpoA+WR/OsZyI7x61u+\nyfHUIAD7RnroSQ/zx2tfn3fZE23t7yXlu4BQGXGoikSxRXh5sD/UetTcoAGsxolYNNVdRiY7RDrd\nTzRSGcrqxYeG95DyRoM6BGPA4GOMydVZ1px3HT/p2kt3enh8e9TNsHPwOCNumnIndpZXTt+B4UH+\ncd9OfN/gG58h16cyEgGERYnyUOpQc4sGsJrkUOsP2XP4mxjfI1newpUbf4d4rDavMhviC4jacSIS\nCc6Ac2pi9dyx6B6qo3V5t7svPYqPIet7udUqRBhy0/z8xGFe07gSW/K/3ryltwdjcmXXx+KcSKcZ\n8zwuq6nmroVL8y5fzT06CkKNS6X72XMoF74AwyNtHDj6vbzLrY83ceuCtyMiWGIRs2I0xBZw99Jf\n56qGm/IuH2DPUBcZ38PH4GJwjSFhR/jP1hf4euuLodTRGC8bf1xmOzSXJfiDtZfwh+s2UR0N5yxb\nzS0awGrcWLoHE0yWftLo2OmrWFyIFZXrqI/PpzmxhObEEhJOOS/1/iKUsncPdfJCfxt2EPACJOwI\n5U4UgKd6Dp69gGm6rr6JjdW5TwMicEPjfC6vyX9JejV3aReEGleVXEJZvJ6xVM/4vqb6zaGUXeYk\nscQCTvUplzvhzNO7pa8VEbCMYImQMWbS85WR+Cu88vxELIuPrt5AZ2qMiFjUxvSsV+VHz4DVOMty\nuHLj77Gg6VpqqlazbsW7WbTg5lDKro018KrGUyMSyiOV3DT/9lDKrnDiVEdOdQ84lkVVELq2WLy9\nZVMo9ZzUFC/T8FWhEDPlbKGUbN682Tz//PPFboY6D8fH2hjInGBpcg1RO5wQG8ym+MSuH9ORGiDr\ne2yonM+Hlr+K1rF+lpXXUTUhnJW6SKY1fEgDWE3SdWIrB1u/h++7LG5+Pc1N1xW7SdOS8V22DXQQ\ns2zWV87XSdhVsU3rF1D7gNW4kdHjbNn5mfELcdt2f4GyeB21VauL3LJzi1oOm2sWFrsZSp0X7QNW\n43r6dpw2CuLkrclKqfBpAKtxycSC0/eVn77vQg1m+hl1h899oFJzhHZBqHF1NetY0nIrh9p+BEBz\n07XMb7w273JdP8vXDn2Ol/tewBKb65tu47aWd+RdrlKlTs+A1bjhkWP09O0A41MWq2VJ8+uxJP8p\nFp/veZKX+14AcqthPHn8B7SOhHNzhFKlTANYjdu5/18ZHmlHxCKV7mXbnn8Jpdyu1LHT9421h1K2\nUqVMA1iNGxyevCrF8Eg7vu/mXe6aqsk3QthWhBWV6/Mu92yyvsczvUd4svsAI266oHUpdaG0D1iN\nq6teT2fPqXHVtdVrzrhSxvlaVbWRty55P890P0rMinPz/LdQFc1vhrWz2T/UzR/t/D59mTESTpQl\niVr+dN1toU/OrlS+ChbAIrIQ+ArQBBjgPmPMZ0SkFvg6sAQ4DLzDGNMnuYlnPwO8ERgF3muM2VKo\n9qnTbVj1Pmw7Qm//bqoqlrNuxS+HVvbm+lezuf7VAGztfZr/t+vj2GJz47zbWVt9WWj1uL7HX+x5\nmJ50bt22oWyK1tE+nuw5wJ0LNoZWj1JhKOQZsAv8jjFmi4hUAC+IyMPAe4FHjDF/JSIfAz4G/AHw\nBmBl8HU18Lng+5zX3/4UHTu+jJcdobrlBhZsvBfLjoReTzSS5NI1Hwq93ImODO/j6wc/N7797wc+\ny2+v+3May8IZ7tY2NsCwm5m0b8zP4vreK7xCqeIpWB+wMabj5BmsMWYI2AU0A3cA9weH3Q/cGTy+\nA/iKyXkaqBaR+YVqX6kY7dvH4ac/wVj/ATIjx+na+y06dn652M26IGkvxbPdj+EZj4yfwWAwxmfv\n4PbQ6pgXr6A2ksCxTv1qJ+wo19fP/CXv1dxzUS7CicgS4DLgGaDJGNMRPHWcXBcF5MK5dcLL2oJ9\nU8u6V0SeF5Hnu7u7C9bmmWKg4xl8N3VqhzH0tz0Vej1Zd4RUujf0ck/a1f8if7Xtozx67Lu0jhyg\nM9XG8bE2Mn6Gpnh4N3vE7QgfWHYtq5NN1EQTrK1s4lOX3Mm8eDhTXyoVpoJfhBORJPBt4KPGmMGJ\na4wZY4yInNdsQMaY+4D7IDcZT5htnYliyQUgNky4RTianBdqHfuPfJcDRx/A910aai9hw6oPcKzr\nZ4yOdTGvYTP1NRvyKt83Pt89ej8pd5RRbwQQPN/DsizKnAQrKvMrf6rNNQu5vLqFtO9SVoCuGqXC\nUtAAFpEIufD9qjHmO8HuThGZb4zpCLoYTi650A5MnE2lJdg3p1U330Dl/KsY7HgajCFS1kDLpb8R\nWvlDI+3sO/wdMu4wvpeho/sZegf24XljALR2PMamdR9mfsNVF1yHZ1wGs/34+BgMjhXBQphX1kJl\npCaUhT+nskQ0fNWMV8hREAJ8EdhljPnUhKceAO4B/ir4/t0J+39TRL5G7uLbwISuijnLsiOsuOEv\nGRtsxUv3U163FglhaNhJI6PHGEv3kMnm5mhIZwYYS/VSUX6q96e14/G8AjhiRVlVuZG9A9uIWTHS\nfpqEk8QSmw01V+b9HpQqVYU8A34V8G5gu4i8FOz7I3LB+w0ReT9wBDg5KcCD5Iag7Sc3DO19BWxb\nySmrXMjkDwjhqEwuJZsdnbTPN5NvvnDs/Cc0f8fSD/LIsf/m8PAeUl6KpFPB6qpLuXHem/Iue6pH\nuvbyg46d+MZw27y13DZvbeh1KBWGggWwMeYpXnlS4lvOcLwBPlyo9qgzi0UrSCYWBAty+kQjSSKR\n5PjzjlPG8kX5Lx2UcJK8edGv5F3Ouewf7uarR0/dTPKNthdZlKhhXWW4/eZKhUHvhCsx/e0/o/fI\nw1h2hPplbybZcEle5dl2jJVL38aBI7meIBGLtct/BdcdIxIpY17D1UQnBPJMt2/49JExe4e7NYDV\njKQBXEJGTuzi2PZ/Ht9u3fIZlt/wl0QTjXmVu2rJW2mo2cDgSCvZ7DDb9/4LIEScBPFYLY114d2p\nVmjLyk9fJn55eV0RWqLUuelkPCVkuHvbpG1jPIZ7doRSdk3VKuY3XM2Wl/+BweEjDA4fYXiknT2H\nvhlK+SdlvBQ/bv82X9r7NzzW8QBuCJP9TLS6opG7mjeRsKPErQhvWbCRjVXhjTNWKkx6Blwihrpe\nYrBrC+nhdkQc7EgCO1qRGycckq27v0A2e2rFinSmn5HR46GVD/DtI19ie+8zAOwf3MFgtp87Fr0n\n1DreOH8db5y/DmNMQYa4KRUWPQMuAYOdL9C65e8Z7t6Glx3FzQyQHTtBrKKF8to1odXT278bmTAB\nu8FQngjvbnDf+Ozoe27Svm29T4dW/lQavmqm0wAuAQPtT2GMh3HHsKwIIhEiiSaMlzn3i89DbdVq\nRGxEHEQsLCvCJavvDa18SywqI9WT9hVyWkqlZjoN4BJgRysBC0QwGMDHd8cQKxZqPSuXvJXysiYc\nO0YsWs2Glb9KVcXiUOu4feGvELGiAMTsMt7U8j9CLV+pUqJ9wCEyqUG8nQ9CahBrzWux6sKZgat+\n2ZsY7t6KlxkiM3ocwcLLDpEaOkp6+Fje/cC9/bvZvvdLdPa8gG3HKIvXk0wsYO2Kd4XS/onW11zB\nH1R8ms6xdhYkFhOz46HXoVSp0DPgkJjB42S+9iG8n/8z3pavk/3mR/D2/zSUsqOJRla8+m+Yt+7d\nxJMLiSYXEKtoQUToa308r7I9L8OWl/+BvoE9+MYl647gumOk0r109rwQSvunSjhJllas1vBVc54G\ncEjc3T+BiTcBZFN4W74eWvmWHSFRvRyxoxDMowtAnheahkePTRr5AOB6qaBo/fVQqpC0CyIs5gwr\nLvjZcKswhuxY9/j8wNHy+dQsvDmvMpOJ+UScBL7vks4OYoyPY8coT8yjqe7yMJqtlHoFGsAhsVfe\nhL/j+zAaTGpuR7EuufPsL5qm0f799B7+Mf1tT2JHyrHsOIiFE6sgWnb6nV/nw7ZjbFr3YXbu+woi\nNomyRpY0v56Wea/GtsO9yKeUmkwDOCRW7WIib/sM3kvfgvQQ1tpbsRdtzrvczGgXR579JL6XIT3c\njvFdxI5iO2X4Xia3nef0lPU1G7jxqr/WGxeUusg0gENi0iNIZSORm34r1HKHul7E+Fl8LwUmWADE\nePhuimhiHpYT3oUsDV+lLi4N4DyZ1CDuU5/HdO6BeAXOle/GWnRFaOVH4rkbFYzvgtiICJYdx44m\nSdbnNxOaUqq49DJ3nrxt382FL0BqCPfpL2GyqbO/6DxUNF5ORcMmbKcMsSzsSDmx5AKcWDWV83U1\nCaVKmZ4B58n0t07ekU1hhruQmkWhlC+WzcIrPkp6uJ2x/oNBl0SGmkW3kKhZGUodSqni0ADOkzVv\nPV73gfFtSdQgVc1necWFiSWbiSWbqW65IfSylVLFoQGcJ2v9mzBuCtO6BcrrsFouw/QeQerDuQ15\nImN8eg48wODx54jEa2lc9XbileGcaSulLj4xJ6+sl6DNmzeb559//twHBtxfvIS3Yx/i2NjXbsJe\nE15ImtE+3B//JWbkBADW4qtwrv9gaOUDnDj8Izp3/+f4thOtYsWNf4uly68rNdNMa0jRnLkI523b\ng/fzF2FwGNM7gPvDJ/F7+8Mrf/fD4+EL4B95Fv/EodDK970s3fsfID1ynMxoN76Xwc0MkBo8HFod\nSqmLa+4E8J6Dk3f4Bn/n/vAqSA9Pb98FGOs/yJ6HP8hI91a89EBuVrSR44AQLdfFJpUqVXMmgKW6\n8vR9DeFMBm6Mj7RsggmT10h5HdIUzmoVnbv/k8xYF1g2iIUxLmCoar4eJ1oRSh1KqYtvzlyEs2/Y\njH+0A/qHQEAWzg+lD9g/vgvvF1/EjPZhxEKiCaR2MfY1v4qE1DebGevOrVKBIFYEgyGWbKE2z4l4\nlFLFNWcC2IrHiL3/LvxjXRCLYtVVn/tF52CMfyp8x/phrB8TTUBmFLP3UbjsrhBaDpVNm8mmTuC5\noxgvg+0kqF18C2XV4Y+0UEpdPLM+gE3WxT/SDoC1uBlrQWN4haeHMaN9ucepodx3N7dOm7f3UaxN\nbwtlfoXG1e/EjiYZ7tmBE62ifvmbKatakne5SqnimtUBbDJZ3O8/ht/VC6k0RByc116HvXppKOVL\nvBKpWYjpa80NOvE8MD5m6DhSvTC0yW0sO0LDijtpWBHO9JZKqZlhVl+E8w+1YU70w8gYeD6k0rg/\n+Tne4bbQ6nBu+A2slk0QSYDxwfdyZ8bZ1KlVK5RS6gxmdQDj+ZisG2yYXAiPpnAfegr3mW2hVCEV\njTg3fgSJV4Dl5EZCiAXDXTBhXLBSSk01qwNYWppyDzwvF76Y3Bpqjo2/+wBmaCS0uoybyZUdDBXD\ndzG6ooRS6ixmdQD7z22HeBRiEcbDt7wMieS6vk06E1pdVstlcHJydLGRumVIPBla+Uqp2WfWBrDJ\nuvhtxxHbzt2EUVUBto0kciEpNVVICEPRTnKuvgepXZxbtcLL5uYEHuoKrXyl1OwzawMYx4b4qS4A\niceQhfOxli3CvmQ1zq3Xh7sET7IeM3g8qEygv5XsI38bXvlKqVln1g5DExHsKzfiPvo0ZF0ojxO5\n8UqsxrqC1GeGuiA1mAvfk/t6DpzlFUqpuW72ngEDpqMbsW2wBEZSmLbOgtUlyXqIxKfsayhYfUqp\n0jdrA9ik0vgHjmKyWRgeg+FR3J/8nPSnvkzmGz/EDI+GWp84Meyr7oFoEuwoJGqxX/2RUOtQSs0u\ns7YLYrwrYCxYzt0PbopwXUxrB9mHfkr0rltDqcpkU5jO3VhLrsJedh1moB1pXI2UVYVSvlJqdpq1\nASyxKNbKJXjPbM0F8BSm6wTG8xE7vw8BZvA42Yc/iRkbgNQgUlaJteRq7NoleZWrlJr9Zm0XBIC1\neinSWAuWdeqMWCxAkKpk3uEL4L38w9zFt/QQjPVheo/gH/wZ7qOf0luRlVJnNWsD2KQzuD/6aW4E\nRFU5RB2IOGBbSHUF9q0hrS58ctWLzIQ+Zd/HDHdj+sKbc0IpNfvM2i4Ic6wLMlkAJBKBmipkxSLs\ny9djlcXP8erps5Zfj9/2EtgOuOQuwDkxsCNIeTgrbiilZqdZG8AkE6ftsiqSoYYv5G5Bdm7+n3j7\nHse0bcnNiGZHsS9/BxLTW5GVUq9s1gaw1VCLtWoJ/t7DmKyLRCOQKMMYE+4dcIC1YAPWgg0YY2Dw\nOJRVIdHT/wNQSqmJZm0fMIBz7WXYm9bmAtc3eD97Ae/Z7QWrT0SQqvkavkqpaSlYAIvIl0SkS0R2\nTNhXKyIPi8i+4HtNsF9E5LMisl9EtonI5WG1wz/UlpsXIjjp9fcemjBHsFJKFU8hz4D/Fbhtyr6P\nAY8YY1YCjwTbAG8AVgZf9wKfC60VZ+puCLcHQimlLkjBAtgY8yTQO2X3HcD9weP7gTsn7P+KyXka\nqBaR+WG0w9qwavL22uWIM2u7vpVSJeRiJ1GTMaYjeHwcCJasoBlonXBcW7CvgylE5F5yZ8ksWrTo\nnBXayxci1RWYji6kpgqruemcr1FKqYuhaKeCxhgjIqffI3zu190H3AewefPmab3eqquGECdfV0qp\nMFzsURCdJ7sWgu8nl4xoBxZOOK4l2KeUUrPWxQ7gB4B7gsf3AN+dsP89wWiIa4CBCV0VSik1KxWs\nC0JE/hO4CagXkTbgT4G/Ar4hIu8HjgDvCA5/EHgjsB8YBd5XqHYppdRMUbAANsa86xWeuuUMxxrg\nw4Vqi1JKzUSz+k44pZSayTSAlVKqSDSAlVKqSDSAlVKqSDSAlVKqSDSAlVKqSMScYcXgUiEi3eTG\nE09XPdBToObMpjr0PcyMOmbDe7gYdczE99BjjJk6G+RpSjqAz5eIPG+M2ax1FLf8i1GHvoe5U0cp\nvwftglBKqSLRAFZKqSKZawF8n9YxI8q/GHXoe5g7dZTse5hTfcBKKTWTzLUzYKWUmjE0gJVSqliM\nMSX9BXyJ3MoaOybsuxT4BbAd+B5QOeU1i4Bh4Hcn7PttYAewE/johZQPLAHGgJeCr89PeM0VwfH7\ngc8SdP+EXMefk1tbb/hCf0avVD6QAH4A7A5+Rn8Vdh3Bcw8BW4M6Pg/YYdcx4bUPTCkrrPfwOLBn\nwnONBagjSq5fcm/wb/K2EP+tKybse4nc+Ne/L8B7eFdw/Lbg372+AHW8Myh/J/DJC80N4JLguZ3B\n8/Fz/V1PK7+KHaD5fgGvBi6f8oN8DrgxePyrwJ9Nec23gG8SBDCwgVz4JsjNkfwTYMX5lh/8Iux4\nhXY+C1wDCPBD4A0X8h7OUcc1wHxOD+C8yw9+NjebU3/8Py3Qezj5RyXAt4G7w64jeP6twH9MKSus\n9/A4sDnf39dz1PF/gU8Ejy2C8ArzZzTh9S8Arw7598khF4An2/3XwMdDrqMOOAo0BNv3A7dcQPkO\nuRC/dEK59rn+rqfzVfQADeNr6j8AMMCpC4wLgZcnPHcn8DfAxzkVwG8HvjjhmD8Bfv98yz/LL8J8\nYPeE7XcBX7iQ9zCdPxqmBHDY5QfHfQb4tQK+hwi5s5B3hl0HkASeAtZNPSak8h/nFQI4xDpagfJC\nlT/htauCuiTMOoJ/325gMbnw+jxwb8h1XAk8MmH73cA/XUD5bwT+/Qzln/Pv+lxfs7UPeCdwR/D4\n7QQLfopIEvgDcmcPE+0AbhCROhFJkPuBL+SVnbH8wFIReVFEnhCRG4J9zUDbhGPagn3n/R7OUsf5\nuuDyRaQaeDPwSCHqEJEfkTs7GiL3aSXsOv4M+Dtyy1+dy4X+nL4sIi+JyJ+IiIRZR/DzB/gzEdki\nIt8UkaYCvAeAu4GvmyBhwqrDGJMFfp3cx/dj5P4z/GKYdZDrFlgtIktExCF38nUhf9erACMiPwp+\n3r8f7L+Qv+tJZmsA/yrwGyLyArn+rEyw/+PAp40x/397ZxdqRRXF8d/frhQZSZh9GJoUhgmiNyUS\n1CT7gupBIjAsCQsRCZPAh6CgoqykoEyIQIJekh7CeokUJKnok0wlFYzEh+r2YkrcIopaPax96KhX\nr3PuHMeO/x8M55w9M2vNmr33OnvW/pjB9oMjYh/wArCVjEXtBP7uQP4AMCki+oFHgbckXVizDXXp\n6Eh+KcibgPURcaAbOiLiNrJ1cS5wU506JM0Ero6IzcPIHYkNSyJiOjCvbPfXrKOPfHP4pxFxHRmb\nfLFmG1osJvN7OKrmw2jSAfcDE8hH/Mfq1BERh4uOt8mQ2UE6q9d9wFxgSflcJOm4V6t1RJXm8pm6\ncfJHtWuAL8v3ViYcBI4AvwAPD3HOWmBlVflD7NsOzKaDEERVHcekDRuC6FQ+2XmxfiT5cCo2lPSl\nwIY6dZAV8qdSBn4gK4CblX0AAAMrSURBVNn2LtrwQBdsEPAbMKqkTwT2dCGvZwD7u5HXHB8emA+8\n3+XytBxYV1U++Sf0Ztu+J4A1OAQxNJIuKZ+jgMfJ+BIRMS8iJkfEZOBlYG1EbDjmnEn810FTSb6k\n8ZLOKd+vAqYAByJiAPhV0g3lcXQp8F4nNpxIR5X706l8Sc8AY4HV3dAh6QJJl5f0PuAOsoe/Nh0R\n8VpETChlYC7pYBbUaEOfpItL+mjgTjLEVacNQcbHW9e9ENhbl/y2U+/l1Fq/nej4EZgmaXwRcQuw\nr2Yd7edcBKwENlaVD2wBpks6v5TLG8n4cOV6fRxVvPWZuJEFZAD4i2zRPEgOKdtftucZYmgIbZ1w\n5ffHZCHeRekprSofuJuMI+0EdgB3tcmZTVbE74EN7ddUo4515fx/yueTdcknH3mDrCSt4T4P1WkD\ncCnZE7273KtXgb6679OJWkA12TCGHDXQGvr0CkcPpasrr68EPip6tpGP4LXeI9KJTR1JnRvGhhVk\nedpN/qGM64KOTWS93svRI2oq+Q3gvqLjW45uRZ+wXp/K5qnIxhjTED0ZgjDGmP8DdsDGGNMQdsDG\nGNMQdsDGGNMQdsDGGNMQdsDGGNMQdsDGVKQ16N+YkWIHbHoaSU9LWt32+1lJj0haI+krSbslPdW2\n/11JX0vaI2l5W/qgpJck7QLmnGYzTI9iB2x6nTfIKaKtKaaLgZ/J6arXAzOBWZLml+OXRcQscobT\nKknjSvoY4IuImBERn5xOA0zv0tf0BRjTTSLioKRDkvrJqc7fkAvB3Fq+Q64PPIWc2rtK0qKSPrGk\nHyJX0XrndF676X3sgM3ZwEZyVbLLyBbxQuC5iHi9/SBJC4CbgTkR8buk7cB5ZfcfEXGypQyNqYxD\nEOZsYDNwO9ny3VK2ZcoF+pF0RVkJayxwuDjfqeSrZozpGm4Bm54nIv6U9CFwpLRit0q6FvgsVxFk\nkFzt6gNghaR95Es1P2/qms3ZgVdDMz1P6XzbAdwTEd81fT3GtHAIwvQ0kqaR7wbbZudrzjTcAjbG\nmIZwC9gYYxrCDtgYYxrCDtgYYxrCDtgYYxrCDtgYYxriX7zP1hwCBm7MAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "LXwjfsSUCbiI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Plot month & passengers" + ] + }, + { + "metadata": { + "id": "TLTyH_SqCbiJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1035 + }, + "outputId": "ce141ca1-4a6d-4128-e2a3-87d6bd013342" + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots(figsize=(11,11))\n", + "\n", + "sns.catplot('month', 'passengers', data=flights, kind='swarm', ax=ax)\n", + "\n", + "plt.show() # not sure why i'm getting a secondary plot below the swarm?" + ], + "execution_count": 139, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp8AAAKGCAYAAAAMMfBbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8nNWB7vHnTFMvlizLKpbligvG\nGIRNryGBAAHSyKb3TdmUm2x2s5tsuGmb7KZsuHuzJNyQQnYTINklpNFCMQRIwAWwDe6yZcu2rN6l\nKe+5f2gsLGzFsqx5z8zo9/18/LHO8TvOo1hIz5zzFmOtFQAAAOCHgOsAAAAAmD4onwAAAPAN5RMA\nAAC+oXwCAADAN5RPAAAA+IbyCQAAAN9QPgEAAOAbyicAAAB8Q/kEAACAb0KuA5yKmTNn2vr6etcx\nAAAApr3169e3WWsrTnRcRpfP+vp6rVu3znUMAACAac8Ys3cix7HtDgAAAN9QPgEAAOAbyicAAAB8\nQ/kEAACAbyifAAAA8A3lEwAAAL6hfAIAAMA3lE8AAAD4hvIJAAAA31A+AQAA4BvKJwAAAHxD+QQA\nAIBvKJ8AAADwDeUTAAAAvqF8AgAAwDeUTwAAAPiG8gkAAADfUD4BAADgG8onAAAAfEP5BAAAgG8o\nnwAAAPAN5RMAAAC+oXwCAADAN5RPAAAA+IbyCQBZbkdvt37RtFubuzpcRwEAhVwHAACkzn0H9umf\nX3xONjn+0MKlenv9QqeZAExvrHwCQBb7ceP20eIpST9t3KGEteMeDwCpRvkEgCwW87wx47j1ZCmf\nAByifAJAFntz3fwx4xtr6xUK8K0fgDuc8wkAWewtcxeovqBIGzvbtaS4RJfOqnIdCcA0R/kEgCx3\n7sxZOnfmLNcxAEAS2+4AAADwEeUTAAAAvqF8AgAAwDeUTwAAAPiG8gkAAADfUD4BAADgG8onAAAA\nfEP5BAAAgG8onwAAAPAN5RMAAAC+4fGaAICM4Fmru/e26omWblXnR/TehbNVlZfjOhaAk0T5BABk\nhLv3tuo/th2QJG3q6tdL3QP66QVLZIxxnAzAyWDbHQCQER5v6R4zbuofVmPfkKM0ACaL8gkAyAg1\n+ZEx40jAqCI37CgNgMmifAIAMsJ7FsxWXcHIOZ6RgNHHltSoKMzZY0Cm4b9aAEBGqM7P0R0XLFFj\n35Bm5YYpnkCGSunKpzGm1BjzS2PMVmPMS8aY84wxZcaYh4wxO5K/z0gea4wx/8cYs9MY84Ix5qxU\nZgMAZJ6AMVpQlEfxBDJYqrfdb5F0v7V2iaSVkl6S9FlJD1trF0l6ODmWpKslLUr++qCkW1OcDQAA\nAD5LWfk0xpRIuljS7ZJkrY1aa7skXS/pJ8nDfiLphuTH10u6w474k6RSY0xVqvIBAADAf6lc+Zwn\nqVXSj4wxG40xPzDGFEiqtNYeTB5zSFJl8uMaSfuOev3+5NwYxpgPGmPWGWPWtba2pjA+AAAAploq\ny2dI0lmSbrXWrpLUr5e32CVJ1loryZ7MX2qtvc1a22CtbaioqJiysAAAAEi9VJbP/ZL2W2v/nBz/\nUiNltOXIdnry98PJP2+WNOeo19cm5wAAAJAlUlY+rbWHJO0zxpyWnLpC0ouSfi3pXcm5d0m6N/nx\nryW9M3nV+7mSuo/angcAAEAWSPW9Kj4m6b+MMRFJuyW9RyOF925jzPsk7ZX05uSxv5f0Wkk7JQ0k\njwUAAEAWSWn5tNY+J6nhOH90xXGOtZI+mso8AAAAcIvHawIAAMA3lE8AAAD4hvIJAAAA31A+AQAA\n4BvKJwAAAHxD+QQAAIBvKJ8AAADwDeUTAAAAvqF8AgAAwDeUTwAAAPiG8gkAAADfUD4BAADgG8on\nAAAAfEP5BAAAgG8onwAAAPAN5RMAAAC+oXwCAADAN5RPAAAA+IbyCQAAAN9QPgEAAOAbyicAAAB8\nQ/kEAACAbyifAAAA8A3lEwAAAL6hfAIAAMA3lE8AAAD4hvIJAAAA31A+AQAA4BvKJwAAAHxD+QQA\nAIBvKJ8AAADwDeUTAAAAvqF8AgAAwDeUTwAAAPgm5DoAAAATEfesfrDzoB5v6VZNfkQfXlyt+UV5\nrmMBOEmUTwBARvjp7hb9rPGwJGn/wLD29O3Wzy9aplDAOE4G4GSw7Q4AyAjPtPWMGbcMxbS3f8hR\nGgCTRfkEAGSEV26x5wUDqsqLOEoDYLIonwCAjPDehbO1vDRfklQcDurvls9RfijoOBWAk8U5nwCA\njFCeE9ataxarfTimonBQkQDrJ0AmonwCADJKeU7YdQQAp4C3jQAAAPAN5RMAAAC+oXwCAADAN5RP\nAAAA+IbyCQBZbndfr+7Zv0cvdXe5jgIAXO0OANnsgYP79ZUtG2WT448sWqa3zl3gNBOA6Y2VTwDI\nYj9q3D5aPCXpjsbtSlg77vEAkGqUTwDIYtFEYuzY82QpnwAconwCQBZ745x5Y8Y31tYrxJOBADjE\nOZ8AkMXeWr9QcwuKtKGzTUuLS3VFZbXrSACmOconAGS5CyoqdUFFpesYACCJbXcAAAD4iPIJAAAA\n31A+AQAA4BvKJwAAAHxD+QQAAIBvKJ8AAADwDeUTAAAAvuE+nwDwCs2D3bplx1rt6GvV6rK5+vjC\ni1UQiriOBQBZgfIJAK/wuc2/1fa+VknSbw5ulpH02SWvchsKALIE2+4AcJSu6OBo8Tzizx17HaUB\ngOxD+QSAoxSFc1SZUzRmblFhhaM0AJB9KJ8AcJSgCeiflr56tICeVjhLn1x0ieNUAJA9OOcTAF7h\nrBlz9Mvz3qPe2LBKI3mu4wBAVmHlEwCOI2gCFE8ASAHKJwAAAHxD+QQAAIBvKJ8AAADwDeUTAAAA\nvqF8AgAAwDeUTwAAAPiG8gkAAADfUD4BAADgG8onAAAAfEP5BAAAgG8onwAAAPAN5RMAAAC+oXwC\nAADAN5RPAAAA+IbyCQAAAN9QPgEAAOAbyicAAAB8Q/kEAACAbyifAAAA8A3lEwAAAL6hfAIAAMA3\nIdcBAACYjp7YF9djexMqjEg3LA5rXinrQZgeKJ8AAPhs/aGEbt0QGx1vaR3WLa/OVUHYOEwF+IO3\nWQAA+OzZA4kx44G4tKXVc5QG8BcrnwCAjPHYoS493tKl6vwc3VRfoaJwZv4Yqyw4doVz9nHmgGyU\nmf/VAgCmnd83t+vrm/eNjte39+rWcxc7TDR5r5kf0guHPW3r8BQw0jULQqorYTMS0wPlEwCQEe5r\n7hgz3tI9oL19Q5pbmOso0eTlh41uvihHB3o95YeNSnNZ9cT0QfkEAGSE0sjYH1lBIxWFg47STI3q\nIlY7Mf3wVQ8AyAjvmj9bJUeVzbfPq1RZTthhIgCTkdKVT2PMHkm9khKS4tbaBmNMmaS7JNVL2iPp\nzdbaTmOMkXSLpNdKGpD0bmvthlTmAwBkjoXFebrr4mV6vrNP1Xk5GbndDsCflc/LrLVnWmsbkuPP\nSnrYWrtI0sPJsSRdLWlR8tcHJd3qQzYAQAbJDwV1XkUJxRPIYC623a+X9JPkxz+RdMNR83fYEX+S\nVGqMqXKQDwAAACmS6vJpJT1ojFlvjPlgcq7SWnsw+fEhSZXJj2sk7TvqtfuTc2MYYz5ojFlnjFnX\n2tqaqtwAAABIgVRf7X6htbbZGDNL0kPGmK1H/6G11hpj7Mn8hdba2yTdJkkNDQ0n9VoAAAC4ldKV\nT2ttc/L3w5LukbRaUsuR7fTk74eThzdLmnPUy2uTcwAAAMgSKSufxpgCY0zRkY8lvVrSZkm/lvSu\n5GHvknRv8uNfS3qnGXGupO6jtucBAACQBVK57V4p6Z6ROygpJOln1tr7jTHPSrrbGPM+SXslvTl5\n/O81cpulnRq51dJ7UpgNAAAADqSsfFprd0taeZz5dklXHGfeSvpoqvIAAADAPZ5wBADTQGd0WJ7l\nGk0A7vFsdwDIYo19vfqnTeu0p79PVbl5uvn0s3R6aZnrWACmMVY+ASCLfWvrJu3p75MkHRwa1D+/\n+JzjRACmO8onAGSxXX09Y8ZNA/2KeglHaQCA8gkAWW11ecWY8Zml5YoEgo7SAADnfAJAVvv0khXK\nCQS1obNNS4pL9YnFy11HAjDNUT4BIIsVhyP6x+Vnuo4BAKPYdgcAAIBvKJ8AAADwDeUTAAAAvqF8\nAgAAwDeUTwAAAPiG8gkAAADfUD4BAADgG8onAAAAfEP5BAAAgG8onwAAAPAN5RMAAAC+oXwCAADA\nN5RPAAAA+IbyCWDK7O3brvVtf9RQYtB1lFO2f7BLa1t3qiua+Z8LAKSTkOsAALLDj3d8S/c33y1J\nKgnP0BfO/J5qCurdhpqkX+x/Tt/Z8ZispNxASP96xvVqmDHHdSwAyAqsfAI4ZS2DzXqg+Rej4+5Y\np+5tusNhosmLenF9f/dTssnxkBfXbbufcpoJALIJ5RPAKeuLdcuO1rURvbEuR2lOzXAirsFEdMxc\nd4ytdwCYKpRPAKdsftFS1RUsHDN3adW1jtKcmqJwri6pGPu5XFO1zFEaAMg+nPMJ4JQZY/T5ld/V\nffvvVNvwIZ0/60qtKr/AdaxJu3npVVpW9Jx29rdq9Yy5ei3lM620DcdUHA4qEmD9BMhExlp74qPS\nVENDg123bp3rGAAAH7QPx/S5jY16sXtARaGgPrWsVldUzXAdC0CSMWa9tbbhRMfxthEApoGol3Ad\n4ZTdvuOgXuwekCT1xhP61y37NBDP/M8LmG7YdgeALNY80K8vbdmoLd2dWlBYpM8vX6VFRSWuY01K\nY9/QmPFgwtPBwagWFOU5SgRgMlj5BIAs9q2tm7Slu1OStKuvV1/ZstFxosk7t6J4zHh2blj1hbmO\n0gCYLFY+ASCLvdQz9pZXu/p6NZxIKCcYdJRo8t42r1JRz2ptS5dq8nP04cXVChrjOtakeNbq7pfi\nenRvXIVho5uWhbW6OvP+TYDJoHwCQBY7c0a5nmg9NDpeVlyakcVTkkIBow8sqtIHFlW5jnLK1jYl\n9OsdcUlSb9Tq39dFdcuVuSrLy8wyDZwMyifgUHPLU9q0/QeKx4e0uP71Wjzvja4jIct8ZskZkqSN\nne1aUlwyOoZbW9u9MeOElbZ3eDq3JjPfGOzfFdfOTSNleuGKkGoXUC8wPr46AEf6Bg7q8Wc+I8+O\nfMN+dtM3lJ83W7WzL3ScDNmkLCdHX1t5jusYeIUFpQE9se/lK/WNpPmlmbnq2dnqaf1jsdHx+sdi\nKigOaEYFl5Xg+PjKABxpaVs3WjyPOHj4aUdpAPjpivqgLp8bVCggFedIHzgzrFkFmfkj+XDzsbe7\naj3OHHAEK5+AI6XFC48zt8BBEgB+CwaM3n9mRO9daWU08pSwTFU849jSXFyWmUUa/uCrA3CkvHSp\nzjjtAwoGcmQUUH3NazS/7jrXsQD4KGBMRhdPSZpdF9C8ZUGZgGQC0rxlQVXOoV5gfDxeE3AsHh9U\nwospJ1J84oMBIE3FoiN9IhzJ7DKNyZvo4zXZdgccC4XyFBJPaAGQ2SidmCjWxQEAAOAbyicAAAB8\nQ/kEAACAbyifAAAA8A3lEwAAAL6hfAIAAMA3lE8AAAD4hvIJAAAA31A+AQAA4BvKJwAAAHxD+QQA\nAIBvKJ8AAADwDeUTAAAAvqF8AgAAwDeUTwAAAPiG8gkAAADfUD4BAADgG8onAAAAfEP5BAAAgG8o\nnwAAAPBNyHUAAEg3bcP9+t7uJ7Wzr1Wry+bqffXnKifIt0sAmAp8NwWAV/j8lt/phe4DkqTtfa2K\nenF9ctGlbkMBQJZg2x0AjtIdGxwtnkc80bbbURoAyD6sfALAUQqCOSqL5KsjOjA6Nyev1GEiAJgc\nOxBT/KlDsp1DCi6ZoeCKma4jSWLlEwDGCAUC+vvTrlBRKEeSVJ1brI8vusRxKgA4edGfbVfiqYPy\nXupU7J7dim847DqSJFY+AeAYF81coHvPf78ODfVqTn6pgob36QAyi9c6KHugf8xc4oV2hc6a5SjR\nyyifAHAcucGw6gvKXMcAgEkx+SEpYCTPvjxXGHaY6GW8nQcAAMgypiCs0MXVL08UhMaOHWLlEwAA\nIAuFLq5R4PRy2c5hBeqKZMLpseZI+QQAAMhSgbJcqSzXdYwx0qMCAwAAYFqgfAIAAMA3lE8AAAD4\nhvIJAMfROtynP3fsVX982HUUAMgqXHAEAK9w74FN+ub2R5WwngqCEX3zjOu1srTGdSwAyAqsfAKY\nMj3RTjX17ZS19sQHp6moF9d3dz2hhPUkSf2JqL63+0nHqQAge7DyiYwUHTgsY4IK55W7joKk3zT9\nVHc2fk8JG1dt/nz948pbVJbj/jFuJ2soEVdfPDpmri3aP87RAICTxconMornxbXriX/UC796nZ7/\n1XXa+8y/ZPQqW7boGG7Vz3ffqoSNS5L2D+zWPXt/7DbUJBWHc3VB+bwxc1dVLnWUBgCyDyufJ2CH\nhqVIWCZAT08HHXseUOe+R0YG1lPrzntUOudSlVStcRtsmmsbOiRPiTFzhwebHaU5dV9cdrV+tm+9\ndva1aXVZnW6oPsN1JADIGpTPcdjefsXufVi2uUUqLFD46osUmD/Hdaxpb6in6Zi54Z4mifLp1Pyi\npZqZU6W24YOjc6srLnOY6NTkhyJ6/7zzXMcAgKzEct444o89M1I8JamvX7HfPSabSPzlFyHlSmsu\nlGRGxyYQUnE1JcG1UCCkz6/8d11YeZWWlqzSexf9na6ovsF1LABAGmLlcxz2cPvYiYEhqbdfKi12\nEwiSpMKKFZp/4Vd1eNtdMoGwZi97h3KLal3HgqTZ+XP0N0u/6DoGACDNUT7HEaivUaKtc3RsZhRL\nJUUOE+GIsrrLVVZ3uesYAABgEiif4whefI5sIiFvZ5NMealCV5wnY8yJXwgAaaQrOqx/27ZZGzvb\ntaS4RJ86bYVm5+W7jgVgGqN8jsOEQwq/+kLp1a6TAMDkfXPrJj12eORCsKfaDqs3tkG3nnOh41QA\npjMuOAKALLa+o23MeFN3p4a5eBKAQ5RPAMhii4tLxozrCwqVEww6SgMAlE8AyGp/u2SFFheNFNC6\n/AJ9fvkqx4kATHec8wkAWWxOfqF+uOZi9cdjKgiFXccBAMonAEwHFE+kUne7p8aX4pKkeUtDKiln\nYxXjo3wi4wx07VTbzl/JBMKqWPQGbjIPAA7193p64rfDSox0T+3fldDlr89RfhEFFMdH+URGGepp\n0tYH3i8vMSRJam/8vZZfc6fCuTMcJwPgh/Xtvfrj4W5V5+foutpy5QYpOK4daEyMFk9JSsSl5saE\nFp3Bv41rNpZQYkOrbOewAqfNUHBeejylkfKJjNK+54HR4ilJ8eFude1fq4qFPEccyHaPHurSzc/v\nGR0/3dqjbzcscBfoJGw6nNCmVk91xUbn1wYVMEbNvZ6e3J9QYcTokrqgCsKZ+SCTnLxjcx9vDv6L\n3blDXmOPJCnxTIv0xoUKLitznIryiQwTihz7ri0Y4bGnwHTwq31j71m6rr1X+/uHVVuQ4yjRxDy8\nJ67bn4+Njl9q93TlvJBufnxYMW9k7tG9cX3t0hyFAplX2mrmBbV3W0IdLSOfTFllQDXzuJ2Xa17H\n0GjxPCKxroXyCZys8vnXqHXXvRrq3i1JKqw4Q6U1FztOBcAPea/YYg9IGbHtfv/u+Jjx400JydrR\n4ilJzb1Wm1s9nVmZeaUtGDK68JrImPLJ46jdM6GAZCTZoyYj6fH1RflERglFCrXs6jvUc/AZBYIh\nFVU2yJj0/+ED4NS9Y36lNnb0aTAxUnKunzNTM3PT/yr+8Cu+RQWMFD5OB3jlcZnEGKPy2elRbDDC\nFEcUbJilxLOHRybCAYUurHYbKinl5dMYE5S0TlKztfZaY8w8SXdKKpe0XtI7rLVRY0yOpDsknS2p\nXdJN1to9qc6HzBMIhFRac77rGAB8try0QD+7aKmeaetVbX5EK2YUuo40ITcsDuuWZ6OjC1DXLAzp\nkrqgnmoeVl90ZG5JeUBLZ2Zw+0RaCl9dr+DyctnOIQUWlMoUpsebNWOtPfFRp/I/YMynJDVIKk6W\nz7sl/Y+19k5jzPckPW+tvdUY8xFJZ1hrP2SMeYukG621N/2lv7uhocGuW7cupfkBADhVzb2etrR6\nqisxWlI+skLYM2y1/lBCBWGjs2YHMvJ8T+Boxpj11tqGEx2X0rdZxphaSddI+kFybCRdLumXyUN+\nIunIZcrXJ8dK/vkVhpNGAABZoKYooFfPD40WT0kqzjG6bG5Iq6uDFE9MK6le4/+OpL+TdOS06nJJ\nXdbaI2df75dUk/y4RtI+SUr+eXfy+DGMMR80xqwzxqxrbW1NZXYAAABMsZSVT2PMtZIOW2vXT+Xf\na629zVrbYK1tqKiomMq/GnCit79ZnT07XccAAMAXqbzg6AJJrzPGvFZSrqRiSbdIKjXGhJKrm7WS\nmpPHN0uaI2m/MSYkqUQjFx4BWetPz31Fu5p+I0mqKFupy879jsKhfMepAABInZStfFpr/8FaW2ut\nrZf0FkmPWGvfJulRSW9MHvYuSfcmP/51cqzknz9iU301FOBQS/vG0eIpSa0dz2vn3nv/wisAAMh8\nLu7r8PeSPmWM2amRczpvT87fLqk8Of8pSZ91kA3wTf/AwePMHXCQBAAA//hyk3lr7WOSHkt+vFvS\n6uMcMyTpTX7kAdJB9axzFQrlKx4fSM4Y1VVf7jQTAACpxhOOphHrJWQCPIEiXeTmlOnK82/Vlp0/\nVTw+oEX1r9es8lWuYwEAkFKUz2nAxqOKP/wNeVsfkvJKFbrkYwqedoXrWJBUVrpEFzV81XUMAAB8\nQ/mcBhIb75b34n0jg/42xR/4igK1q2QKytwGAwAgzQxtjqv/4bjsoFXuqpAKXh0Sz7yZWjxIdhqw\nB7eMnUjEZFu3uwkDAECaSnR76v2fmLwuKzssDf4prqENCdexsg7lcxowtWeOnQjlyFQudRMGAIA0\nFd9vpVfc5DG2zzv+wZg0tt2ngeCZb5B6Dinx4v0yBeUKXvxRmbwS17EAAEgroRojGY0poOFa1umm\nGuVzGjCBkEKXfkKhSz/hOgoAAGkrWBpQ0Q1h9f8hJm9Qyl0VVO5Z3CVmqk2ofBpj3iTpfmttrzHm\n85LOkvQVa+2GlKYDAADwUe4ZIeWewdpcKk10LfmfksXzQkmv0sjTiG5NXSwAAABko4mWzyOXel0j\n6TZr7e8kRVITCQAAANlqouWz2RjzfUk3Sfq9MSbnJF4LAAAASJp4gXyzpAckvcZa2yWpTNJnUpYK\nAAAAWemEZ9QaY4KSNlhrlxyZs9YelHQwlcEAAACQfU648mmtTUjaZoyp8yEPAAAAsthE7yUwQ9IW\nY8wzkvqPTFprX5eSVAAAAMhKEy2f/5TSFAAAAJgWJlQ+rbVrjTFzJS2y1v7BGJMviVv+AwAA4KRM\n6Gp3Y8wHJP1S0veTUzWSfpWqUAAAAMhOE73V0kclXSCpR5KstTskzUpVKABwbf9Al9a27lRXdNB1\nFADIKhM953PYWhs1xkiSjDEhSTZlqQDAobv3b9QtO9bKSsoJhPSNM65Xw4w5rmMBQFaY6MrnWmPM\nP0rKM8ZcKekXkn6TulgA4MZwIq7bdj89+u562Ivrtt1POc0EANlkouXzs5JaJW2S9NeSfi/p86kK\nBQCuRL24BhPRMXPdMbbeAWCqTPRqd0/S/0v+AoCsVRTO1SUVC/VY687RuWuqljtMBADZZULl0xiz\nScee49ktaZ2kr1hr26c6GAC4cvPSq7S8+Dnt6GvTmrI6XT17metIAJA1JnrB0X2SEpJ+lhy/RVK+\npEOSfizpuilPBgCO5ARDeltdg+sYAJCVJlo+X2WtPeuo8SZjzAZr7VnGmLenIhgAAACyz0QvOAoa\nY1YfGRhjztHLTziKT3kqAAAAZKWJrny+X9IPjTGFkoxGbjb/fmNMgaSvpSocAAAAsstEr3Z/VtIK\nY0xJctx91B/fnYpgAAAAyD4Tvdo9R9IbJNVLCh150pG19kspSwYAOGVd0WF9e9tmbexs05KiUn16\nyQrNzst3HQvANDbRcz7vlXS9Rs7v7D/qFwBIknb1vKQvP/dRffLPb9Bdjd+TZxOuI0HSN7du0iMt\nB9QZjerp9sP64uYNriMBmOYmes5nrbX2qpQmASaofc+DOrztLplAWFXL36mS6vNdR5r2ookh/cum\n/6WeWKck6Z69P1JBqEjXznmb42RY39E2Zrypu1PDiYRygsFxXgFMb7GmhPrXxmUHrXJXhZR3zkSr\nEiZqoiufTxljVqQ0CTABva3Pq/GpL6i/fYv6Wp/TzrWf0VBPk+tY015j37bR4nnE8x1/cpQGR1tc\nXDJmXF9QSPEExuENWHX9Z1Sx3Z7iB636fh/T8Ivs4ky1iZbPCyWtN8ZsM8a8YIzZZIx5IZXBXLPW\nKv7MC4r+/LeKPfikbP+A60iQ1N385JixtQl1H6TkuFaVN1dhExkzV1ew0FEaHO1vl6zQ4qKRAlqX\nX6DPL1/lOBGQvmJ7PCk2dm54O+Vzqk10LfnqlKZIQ4mnNyrxxHpJkm06qNihNkXeeb3jVMgrmTeh\nOfirOFKq95/2Wd2x8zvqj/doxYzVunHue1zHgqQ5+YX64ZqLNRCPKz/E9iFSo+Owp8YXR277PW9Z\nSGWzJrq2lV6CM80xc6GKY+dwaiZ6q6W9xpgLJS2y1v7IGFMhqTC10dzytjaOGduDh2V7+mSKs/rT\nTntlc69U94Gn1bH3IckENGvR61U8+xzXsSDpktnX6PxZV2owPqDiSKnrOHgFiidSpa/b05O/H5aX\nXCA8sCehy16fo8LizCugoVkB5V8a0sATcSkhhRcGOOczBSZ6q6WbJTVIOk3SjySFJf2npAtSF80t\nU1Io29rx8kQkLOXmuAsESZIJhDT/gi9pzlmfkAmEFMopOfGL4JtwIKJwJHLiAwFkjYN7EqPFU5K8\nhHSwMaFFKzOvfEpSwSVh5a0JycakYBGrnqkw0a+MGyW9TsnbK1lrD0gqSlWodBC8+BypsCA5CCp0\n+bkykbDbUJAkDfU0qWXrz9Wy9U5F+1tcxwGAaS234NiCdry5TBLINRTPFJroWnLUWmuNMVaSko/V\nzGqBijJFPvQW2cPtMqVFMnlWqC+LAAAgAElEQVS5riNB0nBfs168/93y4iMXgLXuulenX/NzVkDT\nwHBiSGsP/Vbtwy1aU3G55hctdR0JSGvNvZ6e3J9QQVi6dG5IBeHMLDs184LatyOh1gOeJKmiOqCa\nedxRAeObaPm82xjzfUmlxpgPSHqvpP+XuljpwQQDMlUVrmPgKO2N948WT0mKD3Woc9+jqlh4g8NU\nkKSvv/BJvdS9UZL0m6b/0j+c8R2tKFvtOBWQnvZ0e7r58WHFRvqaHmtK6GuX5igUyLwCGgganX91\njrraRj6Z0pmZud0O/0zoK8Ra+01Jv5T03xo57/ML1tp/T2Uw4HgCobxj5oKhrF+IT3t7erePFk9J\n8pTQgwd+6TARkN4e2RMfLZ6S1NxrtbnVG/8FGaB0ZoDiiQmZ0FdJcpv9EWvtZzSy4plnjOEESPhu\n5vxrlFM0Z3ScX7ZUpXMudpgI0siFRhOZAzAifJxd6TC9DdPERLfdH5d0kTFmhqT7Ja2TdJMknp0H\nX4VySrT86p+q68BTCgTCKq4+T4EAt8FwraagXudWvEp/av2DJCknkKdravn2AIzn1fNCemJfQn3R\nkfHS8oCWsWqIacJYa098kDEbrLVnGWM+JinPWvuvxpjnrLVnpj7i+BoaGuy6detcRgCQ5FlPz3f8\nSe3Dh3RW+YUqy5nlOhKQ1nqGrdYfSqgwbLRqdiAjz/cEjmaMWW+tbTjRcRNdMjLGmPM0stL5vuQc\nl7IBGBUwAa0qP991DCBjFOcYXTaXnRtMPxNd4/+kpH+QdI+1dosxZr6kR1MXC8g+nk3ocPvz6u4d\n+/Ssrp5dauvYpInsQgAAkOkm+njNtZLWSpIxJiCpzVr78VQGA7LJ0HCn/vDUR9Tdu1uStKDuOq1Z\n+Tk9uf7z2ntg5DzJspLTdMX5/6FImEe4AuOJe1Y7egdVmRtWWQ7XvaaT3q6Rq/WLSjl3FX/ZRB+v\n+TNJH5KUkPSspGJjzC3W2m+kMhyQLbY13j1aPCVpV9NvVFaydLR4SlJH9zbt3HuPli18h4uIQNrb\n3z+sT63fpUODUYWM0YdPq9ab5nIvZtc8z+rZh6M61DRSPmfXBXTOFREFOIcV45jo25Nl1toeSTdI\nuk/SPEn8hAQmaHCo9Zi5nr69x8wNHOc4ACN+uOuQDg2OXB4et1bf335APdG441Q40JgYLZ6SdKjJ\n04HGxF94Baa7iZbPcPK+njdI+rW1NiaJE9SACaqveY2kl1cBciMztHTBWxUJF4/OGQVUX32lg3RA\nZjhSPI+Ielbt0ZijNDhioO/YOnC8OeCIiV5m931JeyQ9L+lxY8xcST2pCgVkm9kV5+jSNd/SrqZf\nKydSoqUL3q6C/Nm68oLv66Vd/6V4YlCL5t6omWUrXEcF0tZls0u1uat/dDyvMFf1BbkOE0GSquYG\ntW1DXF5y8TMQGJkDxjOh+3we94XGhKy1Tvc7uM/nybFeQibANwQAmclaq3v3tWttS5dq8nP0rgWV\nqsjlSVrpoO1gQru2jFSCBctDmlnFz5rpaKrv8yljzDWSlks6+m3mlyaRDT6z8ajiD39D3tYHpbwZ\nCl3yMQVPu8J1LAA4KcYY3VA3UzfUzXQdBa8wsypI4cSETfTZ7t/TyOM0P6aRE9feJGluCnNhCiU2\n3CXvxfskLyH1tyl+/5dl+ztcxwIAANPQRFc+z7fWnmGMecFa+0VjzLc0ctV71rLDUcUfelLern0y\n5aUKXXmBApXlrmNNij304tgJLy7bul2m4Fw3gQAAwLQ10avdB5O/DxhjqiXFJFWlJlJ6iK99Vt6W\nndLQsGxzi2L3PJSxT6AxtavGToRyZGYvcxMGAABMaxNd+fytMaZU0r9KWp+c+0FqIqUH23Rg7ER3\n78iv0uLjvyCNBc98vdRzSImX7pfJL1Pw4o/K5Gbe5wEAADLfRMvnNyV9WNJFkp6W9ISkW1MVKh2Y\nqgrZ9q6XJwrypKLMfOyhCYQUuvTjCl3KE1EBAMhGXnOf4mubZQfiCq6qUOjsWa4jjWui5fMnknol\n/Z/k+K2S7pD05lSESgehS9co1jcgu6dZZkaxQlddJBPkebUAACC92KG4ov+5TRoeebJU/EC/TF5I\ngeoCxdc2y+scVnDJDAXXVMoY9489nWj5PN1ae/RJgo8aY14c9+gsYAryFLnptbLxhEyI20cAAID0\n5O3tHS2eRyS2dSr+2H7ZtiFJUrypV5IUOne27/leaaJLeRuMMaOXRhtj1kiaFnd3p3gCAIB0ZsqO\nfdKXyQ2OFs8jEi+mx20WJ1o+z5b0lDFmjzFmj0bO+zzHGLPJGPNCytIBAADgLwpU5Cl0SY0UHNlS\nD9QXKXhelRQau8VuZuS4iHeMiW67X5XSFAAAAJi00CU1Cq6ulB1OKFA6UjJDV9Yp/mCTlLAyZTkK\nXVrrOOWICZVPa+3eVAcBAADA5Jm8kEzey9UudE6lgsvLZHtiMpV5aXGxkXQSz3YHAABAZjH5YZn8\nsOsYY3DvIAAAAPiG8gkAAADfUD4BAADgG8onAAAAfEP5BAAAgG8onwAAAPAN5RMAAAC+oXwCAADA\nN5RPAAAA+IbyCQAAAN9QPgEAAOAbyuc0YuNRWeu5joEs5llP0cSw6xgAgDQWch0AqWfjw4o/+DV5\n2x+V8ooVuvhvFFz6GtexkGX+3PqIfrzjW+qKdqhh5sX6yJIvKC9U4DoWACDNsPI5DSQ23CVv2x8k\nm5AGOhV/8GuyfW2uY01a8wu3aeMvrtBz//0atWy7y3UcSOqL9ei7L/1vdUbbZOXp2bbH9KumH7uO\nBQBIQ5TPacC2bB074cVl23a6CXOKOvc/roObf6hErF/x4W7tW/9v6mvb4jrWtNc80KioN3a7fXfv\n1nGOBgBMZ2y7j8NGY4r/4Sl5u/bJzCxV6FXnK1BR5jrWpARqz5K38/GXJ0K5MrOXuQt0CvrbNh07\n175ZhTOXO0iDI+YWLlZBqEj98d7RuWWlZztMdGqaBjr1re2Pamdfm1aX1elTiy5VUTjXdSwAyAqs\nfI4jvvYZeZu2SwODsk0HFfufh2StdR1rUgIrb1Tw7LdK+WUyFYsUft3XZHKLXcealMKKlROag79y\ng3n629O/oflFS1USnqGrat6s6+a8zXWsSfvc5t/p2c4mdcYG9EDLVt1y9Js3AMApYeVzHHbvgbET\nXT1Sd69UmnmlzQSCCl38EYUu/ojrKKestOZC1az8kFq23ikTCKvq9PeooGyJ61iTdqh1nTZvv12x\nxKAW179BC+qucx1p0paWrtI/n/1j1zFOWWd0QLv6x54Tvb5zn6M0AJB9KJ/jMLNnyrZ3vTyRnycV\nceVuOqha/m5VLX+36xinbGCwRY/++X/J86KSpD899xXl5Vaoeta5jpNNbyXhPM3OLdKhoZdPITit\naJbDRMhWjzfF9ejehAoj0o2Lw5o/g81ITA98pY8jdOkambqqkUFJocLXXSYTDLoNhaxysPXZ0eJ5\nRHPLHx2lwREBY/S/l16tmrwSSdKK4ip9ctEljlMh26w7mND3Nsa0rcPT+kOevvrUsPqimXlqF3Cy\nWPkchynMV+SvrpWNxqRwSMYY15GQZUqK6o+dKzx2Dv47o7Rad695twYTMeWHIq7jIAutO5gYMx6M\nSy+2eVpdzSKHa/F2T4NPxuUNWuWuCilnMf8mU42VzxMwkTDFEykxc8bpWrbwnQqYkfeAc6ou1YK6\n1zlOhSOMMRRPpMzsgmN/rhxvDv6yUauuHw1raGNC0a2een4eVXR34sQvxElh5RNwaNWyj2rZwnfI\n82LKyy13HQeAT149P6QXWj1tbfcUNNI1C0OqK2E9yLXobk+2f+zc8KaEIvNZ/ZxKlE/AsZxI5t1B\nAcCpyQ8bfeHCHB3q85QXNirJYdUzHQSKjv13CBTzbzPVKJ8AADgyuzA7VjsH+62atsclSXWLQ8rL\n0FMIwjUB5a4KamjjyFZ7cJZR3prMrUo27inxfJts57CCp5UqMKfIdSRJlE8AAHAKhgatHvvVkKJD\nI+PdL8Z12etzlZuXmQW08KqwAsVGiT6r/PODCuRn5uchSbG7d8jb2S1JSjx1UOE3L1JwyQzHqbjg\nCAAAnILmXYnR4ilJ0aGRuUxkvZELjgbWxjW8PqHO70UVP+y5jjUpXsfQaPE8IvFsi6M0Y1E+AQDA\npAWOcy1OMEP3VWO7PcUPHXW/1Zg0uC7uLtApMKHjVLxQeqziUj4BIMvtG+jTb5ubtLO3x3UUZKHa\nBUEVlLxcagpKjGoy9erw47Qik6FNyRRHFFxV8fJEyCh0frW7QEfJ0PcmOFk2OiBv77MyBWUKVK9w\nHQeATx4+1Kwvbt6gIxuHn1i8XG+qm+80E7JLOGJ06Q05OrhnZKu9qj6oUJqssJ2scH1AoVqj+P6R\n1U+TK+Wek7lVKXRtvQLLy2Q7hhVcVCJTkuM6kqQUlk9jTK6kxyXlJP93fmmtvdkYM0/SnZLKJa2X\n9A5rbdQYkyPpDklnS2qXdJO1dk+q8k0ntqtZ0bs+LA10SJICS65U+OqbHacC4Icf7N6mo89Yu333\ndr1+zjwFeXgGplAoZDRnYeaWtCNMwKj0XTkafjEhOyhFlgUVPM7tlzKFMUbB+SVSmr3fTOVi8rCk\ny621KyWdKekqY8y5kv5F0r9ZaxdK6pT0vuTx75PUmZz/t+RxmALx9T8fLZ6S5G19SF7rDoeJAPhl\nKDH2wo+ol5C1PEMcGI8JGeWeEVLemlBGF890lrLyaUf0JYfh5C8r6XJJv0zO/0TSDcmPr0+Olfzz\nKwzPtZwaw33Hzg31+p8DgO9urK0fM762uk6hQIaexAYgK6R0jdwYE9TI1vpCSd+VtEtSl7X2yKVj\n+yXVJD+ukbRPkqy1cWNMt0a25tte8Xd+UNIHJamuri6V8bNG8PRr5W1/RLIjm2+mbK5MzUrHqQD4\n4Z3zFmlOfoE2drZrSXGprqqqdR0JwDSX0vJprU1IOtMYUyrpHklLpuDvvE3SbZLU0NDA3tEEBOoa\nFH7jvyux9QGZgnIFV75e5nj3xgCQlS6rrNZllelxlSsA+HJ2sLW2yxjzqKTzJJUaY0LJ1c9aSc3J\nw5olzZG03xgTklSikQuPMAUCtSsVqGW1EwAAuJWyE3+MMRXJFU8ZY/IkXSnpJUmPSnpj8rB3Sbo3\n+fGvk2Ml//wRy1nxAAAAWSWVK59Vkn6SPO8zIOlua+1vjTEvSrrTGPMVSRsl3Z48/nZJPzXG7JTU\nIektKcwGAMhQcc8qFOB6VCBTpax8WmtfkLTqOPO7Ja0+zvyQpDelKg8AILP1xuL62uYmPXm4R7Pz\nIvr0slqtnlnsOhaAk8T9NgAAGeGHOw/pj4d7ZCUdHIzqi8/v1XDCO+HrAKQXyicAICO81D0wZtwb\nT2j/wLCjNAAmi/IJAMgIK2cUjhmXRUKqK0iPZ1UDmLjMfxArAGBaeM/C2eqOxfV4S5dq8nP0iaW1\nCvO0JiDjUD4BABkhNxjQZ0+v02dP5+l2QCbjLSMAAAB8Q/kEAACAbyifAAAA8A3nfP4FiRd3ytvV\nJFNequDZp8vkRFxHAgAAyGiUz3Ek1m9W/A9Pj469fYcUuem1DhMBAABkPrbdx5HYtH3M2O5plu3t\nd5QGAAAgO1A+x5OXO3YcCkqRsJssAAAAWYLyOY7QhWePKZvBC87inE8AAIBTxDmf4wjUVCry4b+S\nt++QTHmJAmWlriMBAABkPMrnX2BycxRcNNd1DAAAgElJNPbIdg4puLBUpjg9dnApn9OEHe6Tt+dP\nMvllMrWrZIxxHQkAAKRQ7LeNSmxolSTFQwFF3n6aAnVFjlNRPqcFr3OfYnd9WBrskiQFFl2m8LVf\ndpwKAACkiu2JjhZPSVLcU/zJg4qkQfnkgqNpILHhrtHiKUnejkflHd7hMBEAAEglG/eOnTzenAOU\nz+kgepz7kx5vDgCASeru8NTdkR7lBlKgLFeBBSVj5oLnzHKUZiy23aeB4OnXydv2iGQTkiRTPl+m\neoXjVACAbOAlrP78UFSHm0eK56yagNZcGVEgyLUFroVvWqTEc22yHUMKLpmRFud7SpTPaSEw5yyF\n3/xdJbY+KFNQruDKG2UCQdexAOCkWWu1f2BYZTlhFYT4PpYOmhsTo8VTkg43ezqwJ6HaBVQM10wo\noFBDeqx2Ho2vjGkiUH26AtWnu44BAJPWMhjV323Yrca+IeUGA/r4khpdW1vuOta0N9Rvj5kb7Dt2\nLpN4w1aKSYFCVm9TgXM+AUyZuBdXX6zHdQxkqdt3HlRj35AkaSjh6ZaX9qs3FnecClX1QR29mRYI\njsxlqoEnYmr/5pDavzWk7p8Py8Yyu0inI1Y+Acc8Ly4rq2AgfOKD09gTh+7TT3Z+W33xHp0xY40+\nseyrKginx/lFyA77BobHjIc9q9ahmIrC/ChzqbAkoAuujmjXlpHrChYsD6qwJDPXtuKtnvofefkN\nTXS7p8Fn4sq/ILO/P6cb/osFHNq66+d6YdsPlPCGtaDudWpY8WkFTOatGPTGunXbtn9WzEYlSS90\n/ln3NP1Ib1/wccfJkE0urCjRlq6B0XFtfo7qC3MdJsIRZZVBlVVm3veuV0q0HrvKGT/OHE4N5RNw\npLN7h9Zv+c7oeMee/1Z56VItqLvOYarJOTCwZ7R4HrG3j3vJYmr91bxZspIeb+lSTX6O3r+oSgGe\n1oYpFK4PSGFJsZfnchZlfqlON5RPZJyDW+5Qy7Y7FQiEVXX6e1Sx8AbXkSalo3vrMXPtXS9lZPmc\nV3iaisKl6o29/DCDM2ascZgI2ShgjN4+v1Jvn1/pOgqyVCDfqORtEQ08Fpc3aJW3KqSc5ZTPqUb5\nREbpan5Szc//x+h47zNfV0HZUuWXneYw1eTMKjtTxgRlk/dflaTZMxscJpq8SDBXf7/i2/qvXf9X\n7cOHdN6sK/Xa2re4jgUAJy0yN6jIuyicqUT5REbpa33umLne1ucysnwWFc7RBWd/WS9svU3xxKAW\n179BddWXu441aQuLl+vmVbe6jgEASHOUT2SUgvJj71VaUL7cQZKpMbf6Cs2tvsJ1DLzC4aFefXfX\nH7Wzr1Wry+bqr+efr9xgZl7tOhCP69adL2ljZ5uWFJfqo4uWaUYkx3UsANMY5RMZZcacS1S1/N1q\n2Xa3TCCkqtPfo8KZ3DwfU+tzW36nLT2HJEmNAx2KW0+fXnyZ41ST862tm/TAof2SpD39fWobHtJ3\nzjrPcSoA0xnlExmnZuWHVH3GX8twlStSoCs6OFo8j3iyfbc+rcwsn0+3t4wZr+toU9RLKMIjdgE4\nkpl3gcW0R/FEqhSFczQzUjBmbl5+5j7CcW5+4ZhxTV4+xROAU5RPADhK0AT0D0tepdJwniSpLm+G\nPrbwYsepJu9TS1aoKi9fklQeydHfL13pOBGA6c5Ym7l37m9oaLDr1q1zHQNAFop5CbUN92l2bnHG\nr7R71urQ0KBm5eQqFGDNIV1s70hobVNChWGj18wPqSwvs7/OAGPMemvtCe8ZyDmfAHAc4UBQVXkl\nrmNMiYAxqk6ufiI9bO9I6Et/jMpLrv883ZzQN6/IUSRIAUX24y0wAAA+W9uUGC2ektQ2aLWp1XMX\nCPAR5RMAAJ8Vho9d4SzMzFvJAieN8gkAgM9eMz+kmUed43lOVUCnlXMXAkwPnPMJAIDPyvKMvnlF\njja1eioMi+KJaYXyCQCAA5Gg0dmzKZ2Yfth2BwAAgG8onwAAAPAN5RMAAAC+oXwCAADAN5RPAAAA\n+IbyCQAAAN9QPgEAAOAbyicAAAB8Q/kEAACAbyifAAAA8A2P1wSAV9jee1hf3/awdva1anXZXP3j\nkitVFsl3HQsAsgLlcxx2OKr4Q0/K29kkM3OGQldeoEBluetYAFLMWqsvbLlPTYOdkqSn2ht1y461\n+uLyqx0nw3DC03de2q8nDnerOi9Hn1hao+WlBa5jAThJbLuPI772WXlbdkrDUdnmFsXueVDWWtex\nAKRYV2xwtHge8UL3AUdpcLQf7Tqk3zV3qCeW0NaeAX1uY6Ninuc6FoCTRPkch216xQ+b7j6pu9dN\nGAC+KQ3naU5e6Zi5FSVVjtLgaM919I0Zd0TjauofdpQGwGRRPsdhqmaNnSjMl4oK3YQB4BtjjL68\n/LVaUjRLQRPQeWX1+uSiS13HgqSlJWPPuy0MBVWTn+MoDYDJ4pzPcYQuW61YX7/snmaZGcUKXXWx\nTJCuDkwHi4tm6YcNb3UdA6/w3oWzdXAwqqdbe1SZF9Gnl9Yql+/LQMahfI7D5OcpctNrZRMJmWDQ\ndRwAmPaKwiF9/az5inmewoHML53PHEhobVNcBWGj1y0KqbY48z+nbBBv9TTwx7jsoFXuqpByltIB\nphrl8wQonm517X9C7Y33KZQ7Q7OXvk05hdWuIwFwLBuK5/OHE/rOs9HR8XOHE7rlVbnKCxuHqeAN\nW3X9aFh2cGQc3RFVydsjiiygC0wlyifSVlfzU9r5+GeOGj+hFdf9QoPdjWrdcY9MIKzK096k3OK5\nDlOemt7+/dq2+y7FE4NaWHe9ZpatcB0JgA/+1JwYM+6LSptbPZ1TTclxKbbbGy2eRwxvTlA+pxjl\nE2mrY8/9Y8axgcNqb7xfTeu/LZsYTh7zgE6/9k6F8zLvHqzRWK8efOL9GoqO3Nancd99es1Ft6us\ndInjZJPTH+vVgwd+qfahFp0761U6fUaD60hA2irPO3aFszyfVU/XAiXH/hscbw6nJvP3LjAhXstW\nxR//v4qv+5nsUGbcMiqcN/OYuf6OraPFU5ISsV517l/rZ6wp09zy5GjxlCTPxtW4//6/8Ir0Za3V\nV5//G93V+D394eA9+urzf6P1bU+4jgWkravmh1SfLDVG0pX1Qc0v5Ueya+HqgHIbXl7lDM02ylvD\nOt1U4//RacDb/7xi//1xyRvZ5vG2PqTw226XMen9ja5yyV+pa//jGu7bL0mqWHij8krmH3NcOKf0\nmLlMkBs5NndOhn4ujX1btbtv6+jYyurhg7/S2TMvcpgKSF+FEaOvXpKjxm6rwrA0qyC9vx9PJ0XX\nRJR/vidvUApVGRnDyudUo3xOA4lN944WT0myrTtkmzfJ1K50mOrEIvkVOv3aO9XX+oJCuWXKK6lX\nItav1t2/0WDndklSUeXZKqm92HHSyZldsVrVlRfoQMuTkqTiwnotmnuj41STkx889h64+SHuiwv8\nJcYYzS+l2KSj4IyAgjNcp8helM/pIJw7sbk0ZAIhFVWeNToOhgu07DU/Uu/hDTKBsAorVmbsu1Jj\nArpszbfV2rFJ8fiAKmeerUAgM/+TnJ0/R5dXXa9HDt4rSSoIFev6Oe90nApHbO3p0sbOdi0tLtWZ\nMzLv/GgA2SUzf9LhpATPukne9kel4ZFzPQMLLlKg8rT/396dx8lR1vse//x6mX2fTLbJDtk3lhB2\nDIsgyhFwAVEUxCOiHg96j+fqPed63I73oByuil49RxAQRAEXRAFBCIRAwhYI2QgJk33PZJvJZNbu\nfu4fVTPpSWaSySxd3T3f9+uVV6qe6er+PV3VVb96nqeqAo6q9ywUpmT4GUGH0W+qsuQK989O+l+M\nKpjAtsYNvH/UdVQXjgs6JAEe37aZ21Yv65j/7EmTuWH8pAAjkmwUizl2bvJ62IaPDROJZGajQLZx\nzpHYUI/b30L45FKsND2eCKbkcxAIVYwl59MPkVi/GCuqxMboKmTpfz9Z/Q0W734GgEW7/8a/nfIz\nJhRPDTgquX/ju53mH9y4juvHTSScoT0Gkn7aWh0L/9xCQ50DoKg0xgUfzCWao20saLEnNhJ/s9ab\njhg5108hNKY44Kh0tfugYfmlhKdfTmjs3LS/0Ggwcc6xa+9Stu1aTDzRFnQ4vba9cVNH4gnQHG/k\n8S0PBhiRtIs712k+4RzuiDKRvti2Pt6ReAI01Dm2rY8fYwlJBVff2pF4AhBzxBbtCC6gJGr5FAmI\ncwmef+Ur7Kh9BYDiwjFcet5d5GXgFe+tSbe/OlaZpN61YyZw59pVHfMfHj2eSBY8IUjSRzzWszJJ\nLRdLHF3YVVkAlHyKBGRH7WsdiSfAwUObqdn0J2ZMujG4oHppXPEkppSewjt1bwEQIsx7qz8ccFQC\ncM2YCUwoKmbp/r1MKS7j/KHDgw5Jskz1hDBrl7XR2uzN5+R5ZRKsUEUeoZNLSdTUdZSFzxgaYESH\nKfkUCUhLa12PyjLF12f9iAU7Hmdvy07OqrqYk0qmBR2S+OZUVDGnoiroMCRL5RUY867MZfO7Xlf7\nmIlh8vS0prQQvWYi8WV7cPuaCU8uT4vxnqDkUyQw1cPOJS+3guaWfQCEQlHGj7484Kh6Ly+cz/tG\nfTToMEQkAPlFISafquEc6cYiISKnp0drZzIlnyIByYkWcdn5v2TN+t8Rizdy8pgrqSjVLXBERCS7\nKfkUCVBRwUhOn3Fr0GGIiIikjNrIRURERCRllHyKiIiISMoo+RQRERGRlNGYTxGRI6xr2MP318yn\npqGWuRVj+frkSyjLyQ86LBGRrKCWTxGRJM45/nXVE6ys30FzIsbCPev4Uc0LQYclIpI1lHyKiCQ5\n0NbE5sb9ncqWHdgWUDQiItlHyaeISJKyaD6j8ss6lU0v0SMpRUT6i5JPEZEkZsZ3pl/OyYVDMOCM\n8jF8ZeK8oMMSEckauuBIROQIU4qHcf/c63HOYaZnVIuI9Ce1fIqIdEOJp4hI/1PLp4iIiPTJgT0J\nNqyOATB+aoSyIWrbku4p+RQREZFeO3QwwUtPtBD3ck+2rY9z4YdyKSxWAipd05YhIiISgA0HEty/\nopU/rmmjrsUFHU6vbd8Q70g8AeIxr0ykO2r5FBERSbGa/Qm+/WILcT/nfHFLnB9cmEs0nHnjjHPz\nj465qzKRdmr5FBERSbEXNsc6Ek+AXYccK2sTwQXUB9Xjw1QOO5xOVA4LUT0+HGBEku7U8ikiIpJi\neZGjWwbzMvSIHI4Y50bZFZkAACAASURBVH4gh/27veS5fGhId4qQY1LLp4iISIpdNj5MWe7h+dlD\nQ0ypzNxDsplRMSxMxbCwEk85rgw9z0oNV99AYuM2rLKMUPWwoMMREZEsMaQgxB0X5/HW7jhFUWN6\nlVoLZfBQ8tmNxMZttP3+aYh7V+yFz5xNZN7cgKMSEZFskR81zq7WYTjdOOdo25TANUHOySEsqpOC\n/qatvhuxl5d2JJ4A8ddXED5rNpaXe4ylREREJJPVP9RK61pv/GqoxCj7TC7hEiWg/SlzB5gMtNa2\nzvOJBMR03zIREZFs1bY53pF4AiTqHU2vxY6xRPpLHGghvqEeF0ufuykMWPJpZqPN7Hkze9vMVpnZ\nrX55hZk9Y2bv+v+X++VmZneaWY2ZLTez0wYqtp4Inza903xo0nisqCCgaERERGSgJZqOLnNNmfsA\ngNiL22n9yTLaHniHljuXkajtooIBGMiWzxjwT865acBZwBfNbBrwdWC+c24iMN+fB7gcmOj/uxn4\n+QDGdlzhmZOIXnM54dOnE7n0XCJ/d2GQ4YiI9FprIs67B+tojmd2Cw5AwjnWHWyivjXz6yLpJ+ek\nEKGypC72EOSdmpkjFN2hNmIvbIP23LmhjdjCbYHG1G7AvlHn3A5ghz990MxWA9XAlcA8/2W/AhYA\nX/PL73fOOeAVMyszsxH++wQiNH4UofGjgvp4EZE+W1m3n39Z9jr7WlsoikT45ozTOHtIZt69Y3tj\nC//8xnq2NLaQEzK+NKWaK0cPCTosySIWMcpuyqX59RiJJkfe7AjRUZk5QtE1xiDRudXW1bcGFE1n\nKflGzWwccCrwKjAsKaHcCbTvBauBLUmLbfXLjnyvm81siZktqa2tHbCYRUSywY/XrGRfawsADbEY\nd7yzAu8cP/Pcu24nWxq9urQmHD95ZxsH29QCKv0rXGwUXhSl+AM5GZt4AoSq8rERnYcLhmelx8na\ngH+rZlYE/AH4snOuPvlvfivnCe0FnXO/cM7Ncc7Nqaqq6sdIu/m8ltaM3VEfybU24rKg201Eem57\n06FO87uam2hz6XPhwYnY1ti51aY14ahtbuvm1SKS8/HJhM8aTmhyGdGrJhA5fWjQIQEDfKslM4vi\nJZ4POuf+6Bfvau9ON7MRwG6/fBswOmnxUX5ZIFxDI22PPYvbuguKC4lefkHGdsG7tmZiT32XRM1C\nyCsmcv4XCM+4IuiwRCQFLhg6gr9s29wxf/aQYeSEMvO52xcMK2XlgcPJ9JjCXMYX5QUYkUh6s8Io\n0UvHBB3GUQbyancDfgmsds7936Q//Rm4wZ++AXgsqfxT/lXvZwF1QY73jC141Us8AQ4eou3x53Hx\nzLzVUvyNh0jUvAA4aK4nNv92XIOGLIgMBl+eNIPrx53M9NJyPjxqHN+YfmrQIfXaNWOr+OLkkcwo\nK+SykeXcfvoEPRVIJAMNZMvnucAngRVm9pZf9i/AbcAjZvYZYBNwjf+3J4H3AzVAI/DpAYztuNzO\nPZ0LGpvh4CEoKwkmoD5wtWs7FyTiuD3rsaKBH7YgIsHKDYe55eSpQYfRL0JmXDtuKNeOS4+uQ5F0\nl9hYT9tfN+H2NROaUk70ivFYbvA9HwN5tftLQHenpBd38XoHfHGg4jlRoXHVxPce6Ji38hIoLQ4w\not4LjZnjdbm3i+ZjI6Z3v0Ca27n6QXa98xAWijJyxk0MOUlDCERERJK5WILW39VAk3etR2LVPmLF\nOWnRDZ+ZN69KgfAFZ+BicRLrNmOV5UQuPitju3dCs64ifGgv8befwgoriZx3C5ZbFHRYvVK3fTFb\nl/6kY37jq9+joGISBeWTAoxKREQkvbi9zR2JZ7vEloMBRdOZks9uWE6U6PvODzqMfmEWInLOZ4mc\n89mgQ+mzg7uXHlHiOLh7qZJPEZEAbV0Xo2all+hMnBmheoLSi6BZZR7kRzoloKHR6dGDm7k3sJJB\nqbBy2tFlFUeXiYhIahzYk+CNBW3U7XHU7XEseb6NA3sy83Ze2cQiIaIfPRmryoewEZpRQeQ9R90+\nPRA6NZGMUjZqHsOnXs/utb/HQhGGT7+BoqqZQYclIjJo7dp69J1gdm+NUzZE7VtBC48rIfz59DtG\nKvkcJOLvPEN89VNYQSXhuZ8kVD76+AulITNj1Kn/QPXsz4MZZtq5iYgEqaT86P1wcRdlIu2UfA4C\n8bXPE/vrtwHvcVKJTa+Rc9PDWCQ32MD6wDL0JtkiItlm+JgQ46eG2fiO1wI6bkqY4WOUfEr3lHwO\nAom18zsXHNqD27YcG3tGMAGJiEjWMDNmnZPD1Dneo6ijOZl5ZxhJHSWfg4CVDD+6sGRY6gMREZGs\npaRTekrt4oNA+PTrsMrx3oyFCM/5BKHy4G8yKyIymG2uS/DgqjYeW9vGwVYXdDgiKaOWz0HACiuJ\nfvJXuF1rsYKyrltCRfqoNd7Mwl1Psrd5N3OrLmR88eSgQxJJW+sPJPjWiy3E/DsSLdwc5/sX5RIJ\nqfVQsp+Sz0HCLIQNnxJ0GJLFblvxFd4+8CYAj22+n/81+8fMLNe4YpGuPL8p1pF4Auw45FhRm+DU\nYbqYUrKfut1FAhSLNbN+y5Os3fAHmlv2Bx1Or21qWNuReAIkiPO3bb8LMCKR9JYXPrqFM095pwwS\navkcJFzjfhLrF0FBBaFxZ+pWRWkgnmjjby99lv31awFYvuYuLr/gPgoLMm9YRMSiPSoTEc+lE8K8\ntDVGXYs3P6MqxJRKtQelA5dwtK5N4JocOZPDhAo0FKK/KfkcBBJ7N9D28OehpQGA0PhziF71g4Cj\nku27FnckngAtrfup2fwnZk+5JcCoeqe6cDxnVl3Eq7XPAZAbyuOK0Z8IOCqR9FVVEOKOi/N4c2ec\nwhxj9tAQZkpyguaco+6BVto2emMirKCN8r/PJayb5vcrJZ+DQPzNRzoST4DEhsUkdr1DaFhmjgF1\niRj1O5dg4SjFQ0/N2KccORc7qiyROPoxdZni1mnfY+nexext2clpleczJC+zb+e1uXE/6xr2MLus\nmoqcgqDDkSxUEDXOG63DcDpp25joSDwBXCM0vRan6LLMPM6kK231g0GstYuyltTH0Q9irQ2sefZz\nNB1YB0BR1SlMuvinhEKZtylXDzuPkqKx1DdsAiAaKeLkMR8MOKreC1mI04ecF3QY/eLhLW9yZ81C\nHJATCnP7zCs5o0K3JxPJdl20CeBiug1Wf8u8I7acsPCsK72nHCW8X5UNnYSNnBlwVL2zd8MTHYkn\nQEPtWxzYupCKMRcFGFXvhMO5XHb+L9mw5a+0xRsZV30ZRQUjgg5r0GuJx7hrw8u0H25aE3F+sWGx\nkk+RQSBnQojwECO+x98DRCD/dKVK/U3f6CAQqp5F9ON3kXjnWSisJDz9AxnbVR1rqT+qLN5SF0Ak\n/SMnWszkCdcEHYYkaXNxmuJtncrq25oDikZEUsnCRtlNuTQvjZFogrxZYSJVmXm8TGdKPgeJUNVE\nQlUTgw6jzyrHXcqu1b8mEfeGDYRzSigb/Z6Ao5JsUhTJ5cKqiTxX+25H2d+NmBFgRCKSSqF8o+Ac\n3a1jICn5lIySVzKWKZfeTW3No1goh6GTPkw0ryLosCTLfGPqZUwrGU5Nwx7OrBjLZXpAg4hIvzHn\nMncg7Zw5c9ySJUuCDkNEfLFEG83xRoqipUGHIiLSay7mcDEI5en2VyfCzN5wzs053uvU8nkcri0G\nkbDuvyZyHAt3Psn9NT+kIVbPzPK53DrtexRFS4IOS0TkhDS+HKNxQRuuFXKnhSm+OopFlAP0J42i\n7YY71Ejrbx+n9f/eS+t/P0Ri07agQxJJW/WtB7hrzX/QEPMuCFux/zUe3XRvwFFJskzu5TpSNtVF\n0ktsT4JDf/MST4CWt+M0vd7F/ZekT5R8diO24DXc5h3eTF0DbX95HhdPHHshkUFqR9Mm2lzn+8lu\nPlQTUDSSbGdzI/+wZDHnz3+cz7y6kPUNR98xIlMcisX5xlsbuOiZZVz34tu8sfdg0CFJlonvPvrE\nJrZLJzv9TclnN9yO2s4Fh5rgYEPXLxYZ5MYXTaY4WtapbFb5mQFFI8luX72ctw7sBWDNwTq+s3Jp\nwBH13i/f3cELu+qIO9jW2Mo3l22kRY0C0o+iY0JHDUjMOUmpUn/TN9oNGzuyc0FZMZQWBxOMSJrL\nCefx9Zk/ZFrZaQzNq+aqMTfygdHXBR2WAKvqDnSar2mopyWemY9xfbuusdN8fVucrY2Z+bQ2SU+h\nIqP0uhwio4xwpVF4SYS8mbo8pr/pG+1G5D1zibXFSKzbjFWWE7nkbF10JHIMJ5VM499O+XnQYcgR\nZpdVsGjPro75KSWl5IbDAUbUe7PKCzsloGU5EUYX5gYYkWSjnAlhciZk5m8kUyj57IblRIm+Xzcv\nF5HM9s9TZ5F4exlv7t/D1JIyvjZtdtAh9dqnTxrO/tYYC3fVMaogl1unVpMTUgeeSHcSe5qIPbsF\nt7+F0JRyIu+pxkLBN6TpPp8iIiIiWcYlHK0/XYY7cPhi0MiFo4icP/IYS/VNT+/zqVNGERERkSzj\naps6JZ4A8bX7A4qmM3W7iwRof30Nq2t+TSzexMSxVzNi6FlBhyQiIlnAynIhGoK2w3eECA0tCDCi\nw5R8igSkueUAz7z0Odpi3i28tu5YyHvP+wVVFTMDjkxE5MQc2JNgw2rvZuzjp0YoG6KO1aBZbpjo\nFeNoe3ITtMSxkYVE5lUHHRag5FMkMNt3L+5IPAEcCTZtf0bJp4hklEP1CV56ooW4/yCgbevjXPih\nXAqLlYAGLTxzCKEpFdDYhpWmz50htGWIBKQgf+jRZXlHl4mIpLPtG+MdiSdAPAbbN2TmvWSzkUVD\naZV4gpJPkcAMqzydcdXv65ivLJvGxLFXBRiRiMiJy80/+tY9XZWJtFO3u0hAzIxzT/82MybdSCzW\nREXZVD3IQGQQ2XUoweKtcYpyjPNGhcmPZubvv3p8mM1r4uzd5V3YUjksRPV43aRduqfkUyRgpcXj\ngw5BRFJsS32Cf1vYQovfO/3cxhj//p5cwmlwA/ATFY4Y534gh/27veSzfGhIJ9JyTOp2FxERSbFn\nN8Y6Ek+ATfWOlXsS3S+Q5syMimFhKoaFlXjKcSn5FBERSbFwF/lZV2Ui2UjJp4iISIq9d3yEgujh\n+YnlIabp3pgySGjMp4iISIqNKArxnxfl8dr2OEU5cMaIMCF1V8sgoeRTREQkAGV5xqUTdBiWwUdt\n/CIiIiKSMko+B5HE3g24xv1BhyEiIiKDmNr7BwHXdIC2P/4TbvcaCIUJz72ByNk3BR2WSFpricfY\n3XKQ6vwyjcUTEelHavkcBOJLfuMlngCJOPFX7sUd2BZsUCJpbNGe9Vy5+G6uffVXXPvqfWw4tDfo\nkPrEOUdtcxNx54IOpV/sbWmjNZG598QUGeyUfA4C7sD2I0twdUeWiQhALJHgP9Y8S32sGYBtTXXc\nWbMw4Kh6b31DPR9/+XmufulZPvrSsyw7kLmJ9N6WNj7/ylquXrCKDy1YxfwdGkYkkomUfA4CoYnv\n6VxQUI5VzwomGJE0dyjewr7Wxk5lmxr3BRRN393xzgq2NB4CYHdLM//x9rKAI+q9X767g1V13rqp\nb4vzg1VbaIzFj7OUyIlzzuES2dFTkI405nMQCE95L8RaiL/9FFZYSfjMG7BIbtBhiaSl0mg+M0tG\nsKJ+R0fZ+UNOCjCivlnfcLDT/NbGQ7Qm4uSEwgFF1HsbGpo7zTfFE+xoauWk4vyAIpJs1PRmjEPz\n23DNkDc7TNEHopgeP9WvlHx2wzU1E3vqRRI1m7HKMiKXnUeoeljQYfVaeMYVhGdcEXQYIhnhezOu\n4OfrX6KmoZa55WP5+/FnBx1Sr501ZCjP7Dw8xvu08sqMTDwBzhxS0tHyCTA8L8q4orwAI5JsE9+f\noOHxNvAbPZuXxokMD5E/V+lSf9K32Y3YgtdIrN0IgKvdR9tj88m55WNYSCMVRLLdkNxCvjH1sqDD\n6Bf/NGUmeaEwS/fvZXJJKV+aND3okHrt+gnDaE0keGFXHdUFuXx+8gjCuhOB9KPYdteReLZr255A\nbev9S8lnN9y2XZ0LDh6C+gYoKwkmIBGRXiiKRPnatNlBh9EvIiHj5kkjuXnSyKBDkSwVGR3yroZJ\nuplCzlg1OvU3faPdsCO72IsLoaQomGBERERkwIVLjJKP5hAeYlghFJwXIfeUzBymks7U8tmNyIVn\nEmtuIbGufczn+epyTxP7Nj3LrjUPEwpFGT7tU5SOPCvokEREJEvkTgmTO0UJ50BS8tkNy8slevV7\ngw5DjtBQu5z1i75B+6Cchj3Lmf6B35JXPDrYwERERNJM4kALsQVbcftaCE8tJ3zWcCwNxkkr+ZSM\ncmDbIpJHg7tEjLrtL5M3WcmniIhIO+ccbQ+uwe31blEW29oAQOTsEUGGBWjMp2SYvJKxR5Xll45L\nfSAiIiJpzNU2dSSe7eKr0+OpYEo+JaNUjLuUirHvBQwsTNXEj1AyfG7QYYmIiKQVK86BSOcudqtI\njwfMqNtdMkooFGHCud9l1Gm3YhYmmlcedEgiIr1Ssy/Bwi0xinKM946PUJ4X/Fg8yR6WHyFy6Vhi\nf9sEMYdV5hGZNyrosAAln5KhcvKHBB1Cv2hq3kvNpkeJxZuZMPr9lBZPCDokAWKJOE/uXO094ahi\nLOcN0XqR/vXuvgTfeamFuD+EfdHWOLdflEuOHuMo/SgyZyjh6RW4g61YVX5aXGwESj5FAtMWa+Sp\nF2+isWknAGs2PMLlF9ynBDQN3LbmWZ7cuRqA329bxv+YOI+PjDol4Kgkm7ywOdaReALUNjpW1iY4\nbbhu8SP9y/IjWH56pXsa8ykSkG27FnUkngDxeAvrNj8RYEQCcCjWwtO73ulU9odtywKKRrJVYfTo\nFqiCaACB9JOWZse6lTHWrYzR0uyOv4AMaumVCov0QKyljv2bn8NCUcrHXEQ4WhB0SL0SCR/9tOBI\nRE8QDlrEwkQtTNzFOsrywzkBRiTZ6NIJERZtjbPPT9ROGx5iSmVmtnq2NDsWPNpMc6M3X7OijQuv\nziNHY1ilG0o+JaO0Ne3l7adupK2pFoCdqx9g6vvuI5yBSdvIoWdRVTGL2n3LASjIH8bEsVcFHJXk\nhiN8cuwZ3LXhZQDCFuKmcWcGHJVkm8p8446Lc1m+O0FRDkypzNyOyG3r4h2JJ0BzI2xdF2fCdKUY\n0jVtGZJR9mx4oiPxBGiu38SBLQuoHH95gFH1TigU4ZJzfs723S8TizVSPfx8opHMbMXNNp8edyZn\nV46jpmEPp5WNYmR+adAhSRbKjRhnjMzM1s5OumrgVKOnHIOST8ksLtFFUTyAQPqHWZhopBAzIxTK\n4AFfWWhK8TCmFA8LOgyRtDfqpDA1K2I0NXhDCPKLjFEnZUFSLQNGyadklMrx72fXOw8RazkAQE7h\nCMrHXBhwVL3jXILnX/kyO2pfBaC4cDSXnnc3ebllAUcmItJzObnGvKty2bbeawionhAmJ1dNn9I9\nJZ+SUXIKhjLt8gfYu/EpQqEcKse/j3C0MOiwemVH7asdiSfAwUNbqNn0KDMmfTrAqERETlxOrjF+\nqlIK6RltKYOEcw5XW4MVlGFFVUGH0yc5BVWMmPbJoMPos5bW+h6ViYiIZBMln4OAa9xP2x++jNuz\nDixE+IzriZx7c9BhDXrVw84lL7eS5pa9AIRCUcaPzrwLp5pih9jXspsRBWMJWeZesSsiIqmh5HMQ\niC/5jZd4ArgE8dceIDTtckLlo4MNbJDLiRZx2fm/ZO2G3xGLNXHS2A9SUTop6LBOyIs7/8rda79P\nS6KJ4fmj+frMHzK8QNuViIh0T80Ug4Cr33FkCdTv7PK1klpFBSM4bfo/Mnf216gsmxp0OCekJd7M\nPe/eTkuiCYCdTVv47YafBRyViIikOyWfg0Bo4hFXgxdWYtWzgglGskZd6z6a4oc6le1o3BxQNCIi\nkinU7T4IhCdfDPE24qufwgoqCZ95AxbJDTosyXBD80cytnAimw6921F2xpB5JFxCYz9FRKRb5pwL\nOoZemzNnjluyZEnQYYgMWnuad/HIhv9iW+NGhueP5p0DyzjQVsuZVRfzucn/Sm44L+gQRUQkRczs\nDefcnOO9Ti2fItJrQ/KG8YWp36Qx1sDnF1/RMf5z8e6/MSyvmmsn3BJwhCIikm6UfIpIn21uqOlI\nPNvVHFwVUDQikmob34nx7vIYABNnRRg3RemFdE9bxyDgnCP+yr3EVz+NFVYQOfcWQqNmBx2WZJGx\nRRPJDxd2ugBpSqm2MZHBYN+uOMsWtXXML1vURkm5UTFMz3cPWmJnI7FnNuP2NxOaXE7kktFYOPgx\n+cFHIAMusfwx4q/cA3XbcNtX0PbYP+NaGoIOS7JIfqSQ/zH9NkYXnkR+uJCLR1zFB8d8KuiwRCQF\nanckelQmqeUSjtaH1pLYUI870Er81V3EXtwedFiAWj4HhcTm1zoXtDbidqzCxp0ZSDySnWZWzOX2\nit8EHYaIpFj5kKPbsboqk9RytU1Q39qpLLGuDuaNCiiiw7R1+FwsRuzFJbQ++Bdi81/GtbQef6EM\nYUNOPqIgjFWODyYYERHJKkNHhZk0O0I4AuEITJodYegodbkHzcpzIadzmhcaXhBQNJ2p5dMXm/8K\nibdWAxDfuhNXd5Dohy4NOKr+ET79Y7jda0msXwS5hUTO/wJWPDTosEREJEtMnRNl8mleShEKWcDR\n9E1sT4LGRTFckyPv1Ai5kzMzkbacMNErJ9D25EY4FCM0tphIGrR6gpLPDok1GzrPv7sJF4tjkczc\n6JJZTgHRK2/DNR+EaB4WjgYdkoiIZJlMTzoBEi2OA/e24Bq9+dY1rZRen0POSZmZC4SnVhCaXA4t\ncSw/fVK+9IkkYFZWjGtqPlxQXEh87Qbc+i1YZTnh06djOZmdtFlecdAhiIiIpK229YmOxLNdy8p4\nxiafABYySKPEEzTms0PkorMh338aS06U0Emjif/leRKraogvfJ22Pz0bbIAiIiIyoEKlR7fedlUm\nfZNeqXCAQqOGkfOF63C1+7HKMtp+85dOf3cbtuIOHsKKCwOKUERERAZSdGSIvNPCNL8ZByA8zMif\nq1Spv+kbTWKRCDaiypvJO+KZ1OEwZHi3u4iIiBxb8d/lkH9OAtcEkWrDTC2f/U3d7t2InHd6p2Qz\nfO6pWG5OgBGJiIhIKkQqQ0RHhZR4DhC1fHYjNGoYObd8jMSWHVhFGaEh5UGHJCIiIpLxlHweg+Xn\nEZ6km7GLiIiI9Bd1u4uIiIhIyij5FBEREUnSti1Ba00cF3NBh5KV1O0uIiIi4qv/XSstb3u3WgqV\nGWU35RIu1oVH/UktnyIiIiJA25Z4R+IJkDjgaHotFmBE2UnJp4iIiAiQaDy6zB1S13t/G7Dk08zu\nMbPdZrYyqazCzJ4xs3f9/8v9cjOzO82sxsyWm9lpAxWXiIiISFdyJoQIlSR1sRvknZK5z3VPVwPZ\n8nkf8L4jyr4OzHfOTQTm+/MAlwMT/X83Az8fwLhEREREjmJRo+ymHPLPjpB7SpjSG3KIjlHy2d8G\n7IIj59xCMxt3RPGVwDx/+lfAAuBrfvn9zjkHvGJmZWY2wjm3Y6DiExERETlSuDRE0aUalTiQUv3t\nDktKKHcCw/zpamBL0uu2+mVHMbObzWyJmS2pra0duEhFREREpN8Fltr7rZwnPIrXOfcL59wc59yc\nqqqqAYhMRERERAZKqpPPXWY2AsD/f7dfvg0YnfS6UX6ZiIiIiGSRVCeffwZu8KdvAB5LKv+Uf9X7\nWUCdxnuKiIiIZJ8Bu+DIzH6Ld3HREDPbCnwTuA14xMw+A2wCrvFf/iTwfqAGaAQ+PVBxiYiIiEhw\nBvJq9+u6+dPFXbzWAV8cqFhEREREJD3oXgIiIiIikjJKPkVEREQkZZR8ioiIiEjKKPkUERERkZRR\n8ikiIiIiKaPkU0RERERSRsmniIiIiKSMkk8RERERSRklnyIiIiKSMko+RURERCRllHyKiIiISMoo\n+RQRERGRlFHyKSIiIiIpo+RTRERERFJGyaeIiIiIpIySTxERERFJGSWfIiIiIpIySj5FREREJGWU\nfIqIiIhIyij5FBEREZGUMedc0DH0mpnVAptS8FFDgD0p+JxUUF3Sk+qSnrKpLpBd9VFd0pPqkp5S\nVZexzrmq470oo5PPVDGzJc65OUHH0R9Ul/SkuqSnbKoLZFd9VJf0pLqkp3Sri7rdRURERCRllHyK\niIiISMoo+eyZXwQdQD9SXdKT6pKesqkukF31UV3Sk+qSntKqLhrzKSIiIiIpo5ZPEREREUkZJZ8i\nIiIikjJZnXyaWUPQMfSWmcXN7K2kf+OO8dp5ZvZ46qLrX2bmzOzXSfMRM6vtrzqZ2QIzC+wWE2Z2\nlV/HKb1Y9m4zm+ZPbzSzIf0f4QnFM6DrKpUyef/QnePVKejfQrK+/C768JlfNrOCE3j9v5rZKjNb\n7u+Hz+zFZ84zs3NOdLljvN+A7AfMbJSZPWZm75rZOjP7sZnlHOP1PfouB+p35m87dyTNf9XMvjUQ\nn9WDWPpUx6Tj/SozW2Zm/2RmgeRnqdovZnXyGQQzi/TTWzU5505J+rexr29oZuE+Lt9fdTvSIWCG\nmeX78+8Ftp3IGwxgbP3hOuAl//8eM7Owc+7vnXNvD0xYvdLndSXi69Xvoo++DPQo+TSzs4ErgNOc\nc7OAS4AtvfjMeUC/JZ990d1+0swM+CPwJ+fcRGASUAR87xhv1+PvsreOs19vAT4U9Al5X/l1bD/e\nT8fbp14OfDPYyE7ciRyHsz75NLMiM5tvZm+a2Qozu9IvH2dmq83sLv9s42/tB9Tk1gEzG2JmG5OW\nedF/rzfbz2b9M9sXzezPwNtm9h0z+3JSDN8zs1v7oS5hM7vdzF73z8Q/l/TnEjN7wszWmNl/tZ81\nmVmDmd1hZsuAejcLOQAADMhJREFUs5PPms1sjpkt8KfnmtnLZrbUzBab2WS//EYz+7OZPQfMN7P7\nzeyqpJgebP9O++hJ4AP+9HXAb5M+o0ex+WVf89fzMjO7Len9P2pmr5nZWjM7vx/i7REzKwLOAz4D\nfMwvm2dmC3u4vtKmpSpJb9bVQjM7Jel1L5nZ7JRG3QU7otfAzH5qZjf60xvN7NtJ+44pfnmhmd3j\nb09L+2n77zfHqlNS2U1m9qOk+c+a2Q9TGGN3v4vu1sX7zewdM3vDzO5sf52ZfcvMvpq0zEp/P13o\n/76W+WXXmtk/AiOB583s+R6EOQLY45xrAXDO7XHObTez083sBT+Wp81shP/ZC8xrLXzL/8y55vVY\n3QJ8xS8/38yqzOwP/n78dTM7N6kuvzLvWLLJzD5kZj/wt72nzCyaFNv/9MtfM7OT/eWP9b4PmNki\n4IFu6noR0Oycu9evaxz4CnCT/13+p1+n5Wb2pa6+SzO7zo9ppZl9/4j1/UPzjrPzzazKLzvJr9cb\nfp3bf1/3+fvEV4EfHGP9xPCu4P7KkX/wt4Hn/Hjnm9kYMyv1v9f2fW2hmW0xs+hxYvm5mb1iZuv9\nbfQe83KH+waijs653cDNwD+Yp9vjvnVxvEunuhyTcy5r/wENQAQo8eeHADWAAeP8jfcU/2+PANf7\n0wuAOUnLbPSnC4A8f3oisMSfnofXIjTenx8HvOlPh4B1QOUJxh4H3vL/PeqX3Qz8b386F1gCjPc/\nvxmYAISBZ4CP+K9zwDVJ77sRGOJPzwEW+NMlQMSfvgT4gz99I7AVqPDn34N3dgxQCmxoX66P62kW\n8Hsgz6/zPODxE4ztcmAxUODPt5cvAO7wp98PPJvCbfATwC/96cXA6Se4vpK3xY51F/Bvqjfr6gbg\nR/70JPzfThrUpSN2v+ynwI1J3/eX/OkvAHf70/+Hw/uKMmAtUBh0fXpYpwV4v/sivP1SNGnbnJnC\nOLv7XRwVt7+dbeHw/vW3Sdvbt4CvJi2zEm//+2HgrqTy0qR12qPfkP8dveWv35/h7fuifrxV/muu\nBe5J+m7v8qcvAFZ2E+NvgPP86THA6qTXveR/xmygEbjc/9ujwFVJdfhXf/pTSd/Fsd73DSD/GHX9\nR+CHXZQvBW7F+723/64rkuJoP5aMBDYDVXjH3OeS4nXAJ/zpfwN+6k/PByb602cCz/nT9wGPA+Ee\nbOslfhylwFeBb/l/+wtwgz99E4ePWY8BFyatu7t7EMtDeDnDlUA9MBPvuP4Gh/OHPtURaOiifgeA\nYXR/3O/ueBdoXXr6L527KvuLAf/HzC4AEkA13goF2OCce8uffgNvp3UsUeCn5rXgxPEOou1ec85t\nAHDObTSzvWZ2qv9ZS51ze08w7ibn3ClHlF0KzDKzj/jzpXhJcKv/+esBzOy3eK0Kv/fj/EMPPq8U\n+JWZTcTb+JLPsp9xzu3z6/aCmf3MPxv6MF5yETvBuh3FObfcvFaC6/Ba1k44Nrxk517nXKP/nvuS\nXvdH//+erOf+dB3wY3/6IX/+cfq+vgLTy3X1O+AbZvbPeAeD+1ISbN8lbzcf8qcvBT5oh1vc8vAP\n9imOrdeccw3m9RhcYWar8ZLQFSkMobvfRVemAOvb9694yefNx3n/FcAdfgvc4865F080QP87Oh04\nH7gQeBj4d2AG8IyZgXfyuCNpsd/6yy40sxIzK+virS8BpvnLg9drVeRP/9U512ZmK/z3fiqpPuOO\n/Bz///YW62O975+dc009rfsR5gE/a9/PH7FfbXcGXkNGLXg9YngJ+J/wjrsP+6/7NfBHP65zgN8l\nxZub9H6/c17r6zE55+rN7H685Dm5fmdz+Pf6AIdb5B7GSzqfx2tx/1kPYvmLc87562RX++/EzFbh\nrZO3BrKOdH/cP+p4lwF16TAYks9P4J2Nne7/qDfiHSzAGzPSLg60j2OLcXhIQl7Sa74C7MI7Kw3h\ntV61O3TE596Nd9Y+HLinTzU4zPBaYp7uVGg2D+9An6x9vvmIjaK7un0XeN45d7WfWCxI+tuRdbsf\nuB7vx/vpE6rBsf0Z+E+8nV1lL2PrTvu6jpOi7d7MKvC6s2aamcM7mDjgCXq+vtLVCa0r51yjmT2D\nd8Z9DV5LVzpI/j1A598EdL3dGPBh59yaAY6tt45Xp3Z3A/8CvAPcO9BBtTvG7+IxehZ3si7r6pxb\na2an4fV0/LuZzXfOfedEY/V/iwuABf4B+4vAKufc2d0tcpx5/HjPcs4lHz/wD+rtXfwJM2tzftMS\nXkKQvN9yXUwf632Pt598G/hIcoGZleCdVG08zrInyuHFeqCLBpZ2Pd2vA/wIeJOebcN/xmuMqsDb\nBz0HFB4nlvZ9QILOOcOR6yRZn+poZhPw9jm76f64f1kXix7vM1Nel+5k/ZhPvLOE3X7ieSEwtgfL\nbOTwwTH5B1kK7HDOJYBP4u00u/Mo8D68M8Knj/G6E/E08Hnzx/6Y2SQzK/T/NtfMxps3nuVavO6b\nrmzkcN0+nFReyuELR248Thz34Q02x/XvxTD3AN/uogWmp7E9A3za/Csw/R1MkD4CPOCcG+ucG+ec\nG403TOF8er6+0lVv1tXdwJ3A6865/QMbXo9twmstyvVbqS7uwTJPA18y/6ju93Ckkx7VyTn3KjAa\n+DhJ43ZToLvfRYiu414DTLDDd/y4Num9NgKnAfjJ5nh/eiTQ6Jz7NXB7+2uAg0BxT4I0s8l+C367\nU/Bat6vMuxgJ88YLTk96zbV++XlAnXOurovP/BvwpaTP6e6AfizXJv3/cj+873ygwMw+5S8bBu7A\n29c/DXzO/ItJkvaryfV6DXiPeddIhPFasl/w/xbi8HH048BLzrl6YIOZfdR/T7NejgH3W2IfwRs/\n3G4x/lhivAaoF/3XNgCv47W6P+6ci/dTLP1WR79X8b/wursd3R/3jzrepVtdjvchWcn/obQADwJz\n/LPWT+Gd5R/Pf+Kt7KV4Yz7b/Qy4wbyLQaZwjGzfOdeK17T/SD+2ZN2Nd4b6ppmtBP6bw2crr+ON\nkVqNtyN/tJv3+DbwYzNbgndm1e4HwH/4dT5my6Bzbpf/Of3aWuKc2+qcu7OLP/UoNufcU3hntkvM\n7C28MUBBuo6j18Mf/PKerq+01Jt15Zx7A2+cUcpa2brTvn9wzm3BO3Ct9P9f2oPFv4s3nGC53131\n3QEL9AT0sk6PAItSfDLQ3e/iY3QRt99d/AXgKTN7Ay/pqUtarsJfD/+ANz4TvLFsr/n7gW/idZeD\nd4HKU9azC46K8IaQvG1my4FpeGPgPgJ83z8OvEXnK9mb/W3/vzicDP0FuNr8C47wuojnmHfxyNt4\nFySdqHI/pls5fMFNr9/XT3Kuxrsw812877EZr2X8brzxnMv9On/cX6zju3TO7QC+jnfMWwa84Zx7\nzH/dIbyT7ZV4Ld7tLdCfAD7jv+cqvF6R3rqDzsfqL+ElZsvxGoqSL/h9GK/n7uGksr7G0tc65vvb\nxyrgWbwTiW/7f+vyuH+M413QdemRrH28pp+V3+WcmxvQ54fwugI+6px7N4gYBop/prUC7xYkdcd7\nvXRm3jCJrzrnrgg6llTyW6MWAFP83oMgYwl0/zAQelMn864a/6Fzbv7ARdZ3Zlbkj8E04P8B7zrn\nUnZ1fk+Yd+eQrzrnlgQdi0i6y8qWTzO7Ba8b6X8H9PnT8K6qn5+FiecleK11P1HiKT3ld+e9ineV\nbtCJZ6D7h4FwonUyszIzW4t3YWNaJ56+z/qtO6vwhnb8d8DxiEgfZG3Lp4iIiIikn6xs+RQRERGR\n9KTkU0RERERSRsmniIiIiKSMkk8RkTTlXxj0haT5Ts8/FxHJREo+RUTSVxnePS5FRLKGkk8RkX5g\nZuPM7B0zu8/M1prZg2Z2iZktMrN3zWyumVWY2Z/8G4G/Ymaz/GW/ZWb3mNkCM1tvZv/ov+1twEn+\nDahv98uKzOz3/mc96N/7UkQkYwyGZ7uLiKTKycBHgZvwnmL1ceA84IN4T4vZAix1zl1lZhcB9+M9\nthG8p6ZdiPfIwjVm9nO8p8bMaH+msv+AglOB6cB2YBFwLpn3eFYRGcTU8iki0n82OOdW+DfSX4X3\noAmH90SwcXiJ6AMAzrnngEozK/GXfcI51+Kc2wPsBoZ18xmv+Y83TeA93nHcgNVGRGQAKPkUEek/\nLUnTiaT5BMfvaUpeNn6M1/f0dSIiaUnJp4hI6rwIfAI6utD3OOfqj/H6g3jd8CIiWUNnzCIiqfMt\n4B4zWw40Ajcc68XOub3+BUsrgb8CTwx8iCIiA0vPdhcRERGRlFG3u4iIiIikjJJPEREREUkZJZ8i\nIiIikjJKPkVEREQkZZR8ioiIiEjKKPkUERERkZRR8ikiIiIiKfP/AS7rAXMtFmiFAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAE3lJREFUeJzt3X+w5XVdx/Hny13wJ4LG1tju8sNa\ntA2doBtiWv7CWmhaLNMgySxi08JqbJwoLY2aKbUfM84QshZDmoroTHYTlElFMHSVqxCwELYixiLF\naghOFD/03R/nS57W3b1fLvu9n3PPeT5mdrjfc77n3Pd37+6T737P93xPqgpJ0vJ7ROsBJGlWGWBJ\nasQAS1IjBliSGjHAktSIAZakRgYLcJLzk9yR5Pq93J8kb02yI8m1SY4dahZJmkRD7gFfAGzax/0n\nAhu6X1uAcwecRZImzmABrqorgP/cxyonA++okW3AIUmeNNQ8kjRpVjf83muBW8eWd3a33b77ikm2\nMNpLZuPGjT+4ffv2ZRlQknrKUh60Il6Eq6qtVTVXVXOPfvSjW48jSftFywDfBqwfW17X3SZJM6Fl\ngOeBl3dnQxwP3FVV33b4QZKm1WDHgJO8B3gucGiSncAbgAMAquptwCXAScAO4B7gF4eaRZIm0WAB\nrqpTF7m/gF8b6vtL0qRbES/CSdI0MsCS1IgBlqRGDLAkNWKAJakRAyxJjRhgSWrEAEtSIwZYkhox\nwJLUiAGWpEYMsCQ1YoAlqREDLEmNGGBJasQAS1IjBliSGjHAktSIAZakRgywJDVigCWpEQMsSY0Y\nYElqxABLUiMGWJIaMcCS1IgBlqRGDLAkNWKAJakRAyxJjRhgSWrEAEtSIwZYkhoxwJLUiAGWpEYM\nsCQ1YoAlqREDLEmNGGBJasQAS1IjBliSGjHAktSIAZakRgywJDVigCWpEQMsSY0YYElqxABLUiMG\nWJIaMcCS1IgBlqRGDLAkNTJogJNsSnJTkh1JztrD/YcluSzJ1UmuTXLSkPNI0iQZLMBJVgHnACcC\nG4FTk2zcbbXXAxdV1THAKcBfDjWPJE2aIfeAjwN2VNXNVXUfcCFw8m7rFPD47uuDgS8POI8kTZQh\nA7wWuHVseWd327g3Aqcl2QlcArx6T0+UZEuShSQLu3btGmJWSVp2rV+EOxW4oKrWAScB70zybTNV\n1daqmququTVr1iz7kJI0hCEDfBuwfmx5XXfbuNOBiwCq6lPAo4BDB5xJkibGkAG+CtiQ5MgkBzJ6\nkW1+t3X+DXgBQJLvYxRgjzFImgmDBbiqHgDOBC4FbmR0tsP2JGcn2dyt9lvAGUn+GXgP8IqqqqFm\nkqRJkpXWu7m5uVpYWGg9hiSNy1Ie1PpFOEmaWQZYkhoxwJLUiAGWpEYMsCQ1YoAlqREDLEmNGGBJ\nasQAS1IjBliSGjHAktSIAZakRgywJDVigCWpEQMsSY0YYElqxABLUiMGWJIaMcCS1IgBlqRGDLAk\nNWKAJakRAyxJjRhgSWrEAEtSIwZYkhoxwJLUiAGWpEYMsCQ1YoAlqREDLEmNGGBJasQAS1IjBliS\nGjHAktSIAZakRgywJDVigCWpEQMsSY0YYElqxABLUiMGWJIaMcCS1IgBlqRGDLAkNWKAJakRAyxJ\njRhgSWrEAEtSIwZYkhoxwJLUiAGWpEYGDXCSTUluSrIjyVl7WeelSW5Isj3Ju4ecR5ImyeqhnjjJ\nKuAc4IXATuCqJPNVdcPYOhuA3wGeVVV3JvnOoeaRpEkz5B7wccCOqrq5qu4DLgRO3m2dM4BzqupO\ngKq6Y8B5JGmiDBngtcCtY8s7u9vGHQUcleTKJNuSbNrTEyXZkmQhycKuXbsGGleSllfrF+FWAxuA\n5wKnAm9PcsjuK1XV1qqaq6q5NWvWLPOIkjSMIQN8G7B+bHldd9u4ncB8Vd1fVV8EPs8oyJI09YYM\n8FXAhiRHJjkQOAWY322dDzDa+yXJoYwOSdw84EySNDEGC3BVPQCcCVwK3AhcVFXbk5ydZHO32qXA\nV5PcAFwGvLaqvjrUTJI0SVJVi6+UvAT4cFV9PcnrgWOBP6qqzw094O7m5uZqYWFhub+tJO1LlvKg\nvnvAv9fF99nACcBfA+cu5RtKkkb6Bvgb3X9/AthaVRcDBw4zkiTNhr4Bvi3JecDPApckeeRDeKwk\naQ/6RvSljF4w+/Gq+hrwROC1g00lSTNg0WtBdNd0+FxVPfXB26rqduD2IQeTpGm36B5wVX0DuCnJ\nYcswjyTNjL5XQ3sCsD3JZ4D/evDGqtq894dIkvalb4B/b9ApJGkG9QpwVV2e5HBgQ1V9JMljgFXD\njiZJ063XWRBJzgDeD5zX3bSW0XUcJElL1Pc0tF8DngXcDVBV/wr46RWS9DD0DfC93adaAJBkNbD4\nRSQkSXvVN8CXJ/ld4NFJXgi8D/iH4caSpOnXN8BnAbuA64BfAS4BXj/UUJI0C/qeBfFN4O3dL0nS\nftArwEmu49uP+d4FLDC6LrAXUZekh6jvGzE+xOiSlO/ulk8BHgP8O3AB8JP7fTJJmnJ9A3xCVR07\ntnxdks9V1bFJThtiMEmadn1fhFuV5LgHF5L8EN96J9wD+30qSZoBffeAfxk4P8njGH320d3ALyd5\nLPDHQw0nSdOs71kQVwFPS3Jwt3zX2N0XDTGYJE27vmdBPBJ4MXAEsDoZfQBoVZ092GSSNOX6HoL4\ne0annX0WuHe4cSRpdvQN8Lqq2jToJJI0Y/qeBfHJJE8bdBJJmjF994CfDbwiyRcZHYIIUFX19MEm\nk6Qp1zfAJw46hSTNoF6HIKrqS8B64Pnd1/f0fawkac/6fiTRG4DfBn6nu+kA4G+HGkqSZkHfvdif\nAjbTfSR9VX0ZOGiooSRpFvQN8H1VVXSXpOzegixJehj6BviiJOcBh3SfkPwRvDi7JD0sfa8F8afd\nZ8HdDTwF+P2q+sdBJ5OkKdf3WhCPBT5WVf+Y5CnAU5IcUFX3DzueJE2vvocgrgAemWQt8GHg5xl9\nEoYkaYn6BjhVdQ/w08C5VfUS4PuHG0uSpl/vACd5JvAy4OLutlX7WF+StIi+Af5NRm/C+Luq2p7k\nycBlw40lSdOv71kQlwOXAyR5BPCVqvr1IQeTpGnX963I707y+O5siOuBG5K8dtjRJGm69T0EsbGq\n7gZeBHwIOJLRmRCSpCXqG+ADkhzAKMDz3fm/NdxYkjT9+gb4POAW4LHAFUkOZ/SuOEnSEvV9Ee6t\nwFvHbvpSkucNM5IkzYa+n4hBkp9g9OaLR43d7MfSS9IS9T0L4m3AzwKvZvR5cC8BDh9wLkmaen2P\nAf9wVb0cuLOq/gB4JnDUcGNJ0vTrG+D/7v57T5LvBu4HnjTMSJI0G/oeA/5gkkOANwOf7W77q2FG\nkqTZ0DfAfwq8CvgR4FPAJ4BzhxpKkmZB3wD/DfB1vnUq2s8B7wBeOsRQkjQL+h4DPrqqTq+qy7pf\nZwBHL/agJJuS3JRkR5Kz9rHei5NUkrm+g0vSStc3wJ9LcvyDC0meASzs6wFJVgHnACcCG4FTk2zc\nw3oHAb8BfLrv0JI0DfoG+AeBTya5JcktjI4D/1CS65Jcu5fHHAfsqKqbq+o+4ELg5D2s94fAm4D/\neWijS9LK1vcY8KYlPPda4Nax5Z3AM8ZXSHIssL6qLt7X5S2TbAG2ABx22GFLGEWSJk/fa0F8aX9/\n4+7C7n8OvKLH998KbAWYm5vzKmySpkLfQxBLcRuwfmx5XXfbgw5i9ELex7vDGscD874QJ2lWDBng\nq4ANSY5MciBwCjD/4J1VdVdVHVpVR1TVEcA2YHNV7fPFPUmaFoMFuKoeAM4ELgVuBC7qPtDz7CSb\nh/q+krRSpGplHVKdm5urhQV3kiVNlCzlQUMegpAk7YMBlqRGDLAkNWKAJakRAyxJjRhgSWrEAEtS\nIwZYkhoxwJLUiAGWpEYMsCQ1YoAlqREDLEmNGGBJasQAS1IjBliSGjHAktSIAZakRgywJDVigCWp\nEQMsSY0YYElqxABLUiMGWJIaMcCS1IgBlqRGDLAkNWKAJakRAyxJjRhgSWrEAEtSIwZYkhoxwJLU\niAGWpEYMsCQ1YoAlqREDLEmNGGBJasQAS1IjBliSGjHAktSIAZakRgywJDVigCWpEQMsSY0YYElq\nxABLUiMGWJIaMcCS1IgBlqRGDLAkNWKAJamRQQOcZFOSm5LsSHLWHu5/TZIbklyb5KNJDh9yHkma\nJIMFOMkq4BzgRGAjcGqSjbutdjUwV1VPB94PvHmoeSRp0gy5B3wcsKOqbq6q+4ALgZPHV6iqy6rq\nnm5xG7BuwHkkaaIMGeC1wK1jyzu72/bmdOBDe7ojyZYkC0kWdu3atR9HlKR2JuJFuCSnAXPAW/Z0\nf1Vtraq5qppbs2bN8g4nSQNZPeBz3wasH1te1932/yQ5AXgd8JyqunfAeSRpogy5B3wVsCHJkUkO\nBE4B5sdXSHIMcB6wuaruGHAWSZo4gwW4qh4AzgQuBW4ELqqq7UnOTrK5W+0twOOA9yW5Jsn8Xp5O\nkqZOqqr1DA/J3NxcLSwstB5DksZlKQ+aiBfhJGkWGWBJasQAS1IjBliSGjHAktSIAZakRgywJDVi\ngCWpEQMsSY0YYElqxABLUiMGWJIaMcCS1IgBlqRGDLAkNWKAJakRAyxJjRhgSWrEAEtSIwZYkhox\nwJLUiAGWpEYMsCQ1YoAlqREDLEmNGGBJasQAS1IjBliSGjHAktSIAZakRgywJDVigCWpEQMsSY0Y\nYElqxABLUiMGWJIaMcCS1IgBlqRGDLAkNWKAJakRAyxJjRhgSWrEAEtSIwZYkhoxwJLUiAGWpEYM\nsCQ1YoAlqREDLEmNGGBJasQAS1IjBliSGhk0wEk2JbkpyY4kZ+3h/kcmeW93/6eTHDHkPJI0SQYL\ncJJVwDnAicBG4NQkG3db7XTgzqr6XuAvgDcNNY8kTZoh94CPA3ZU1c1VdR9wIXDybuucDPxN9/X7\ngRckyYAzSdLEWD3gc68Fbh1b3gk8Y2/rVNUDSe4CvgP4yvhKSbYAW7rFe5NcP8jEk+dQdvu9mGKz\nsq2zsp0wW9t6fVUd/VAfNGSA95uq2gpsBUiyUFVzjUdaFm7r9JmV7YTZ29alPG7IQxC3AevHltd1\nt+1xnSSrgYOBrw44kyRNjCEDfBWwIcmRSQ4ETgHmd1tnHviF7uufAT5WVTXgTJI0MQY7BNEd0z0T\nuBRYBZxfVduTnA0sVNU88NfAO5PsAP6TUaQXs3WomSeQ2zp9ZmU7wW1dVNzhlKQ2fCecJDVigCWp\nkYkN8Ky8jbnHdr4myQ1Jrk3y0SSHt5hzf1hsW8fWe3GSSrJiT2Hqs61JXtr9bLcnefdyz7i/9Pgz\nfFiSy5Jc3f05PqnFnA9XkvOT3LG39yFk5K3d78O1SY5d9EmrauJ+MXrR7gvAk4EDgX8GNu62zq8C\nb+u+PgV4b+u5B9rO5wGP6b5+1Urczr7b2q13EHAFsA2Yaz33gD/XDcDVwBO65e9sPfeA27oVeFX3\n9UbgltZzL3FbfxQ4ltGbLvZ0/0nAh4AAxwOfXuw5J3UPeFbexrzodlbVZVV1T7e4jdH51CtRn58p\nwB8yuibI/yzncPtZn209Azinqu4EqKo7lnnG/aXPthbw+O7rg4EvL+N8+01VXcHobK29ORl4R41s\nAw5J8qR9PeekBnhPb2Neu7d1quoB4MG3Ma8kfbZz3OmM/g+7Ei26rd0/2dZX1cXLOdgA+vxcjwKO\nSnJlkm1JNi3bdPtXn219I3Bakp3AJcCrl2e0ZfdQ/z6vjLciC5KcBswBz2k9yxCSPAL4c+AVjUdZ\nLqsZHYZ4LqN/1VyR5GlV9bWmUw3jVOCCqvqzJM9kdO7/0VX1zdaDtTape8Cz8jbmPttJkhOA1wGb\nq+reZZptf1tsWw8CjgY+nuQWRsfQ5lfoC3F9fq47gfmqur+qvgh8nlGQV5o+23o6cBFAVX0KeBSj\nC/VMm15/n8dNaoBn5W3Mi25nkmOA8xjFd6UeJ4RFtrWq7qqqQ6vqiKo6gtHx7s1VtaSLnDTW58/v\nBxjt/ZLkUEaHJG5eziH3kz7b+m/ACwCSfB+jAO9a1imXxzzw8u5siOOBu6rq9n0+ovUri/t4xfEk\nRnsFXwBe1912NqO/lDD6Ib4P2AF8Bnhy65kH2s6PAP8BXNP9mm8981Dbutu6H2eFngXR8+caRodc\nbgCuA05pPfOA27oRuJLRGRLXAD/WeuYlbud7gNuB+xn9C+Z04JXAK8d+pud0vw/X9fnz61uRJamR\nST0EIUlTzwBLUiMGWJIaMcCS1IgBlqRGDLC0mySHJPnVseXnJvlgy5k0nQyw9O0OYXS1PWlQBlgr\nWpIjkvxLkguSfD7Ju5Kc0F3k5l+THJfkiUk+0F2jdVuSp3ePfWN3jdePJ7k5ya93T/snwPckuSbJ\nW7rbHpfk/d33etcKvPKeJpAX49E0+F7gJcAvMXpr7M8BzwY2A7/L6ApVV1fVi5I8H3gH8APdY5/K\n6JrLBwE3JTkXOAs4uqp+AEaHIIBjgO9ndCnFK4FnAf+0HBun6eUesKbBF6vquhpdXWs78NEavcXz\nOuAIRjF+J0BVfQz4jiQPXp/24qq6t6q+AtwBfNdevsdnqmpn9z2u6Z5XelgMsKbB+BXivjm2/E0W\n/1fe+GO/sY/1+64n9WaANQs+AbwM/u9wwleq6u59rP91RockpEH5f3HNgjcC5ye5FriHb13GdI+q\n6qvdi3jXM/oEkpX+CR2aUF4NTZIa8RCEJDVigCWpEQMsSY0YYElqxABLUiMGWJIaMcCS1Mj/AsA5\nioQeBnuZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "mcwgPp0vCbiK", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Create a [pivot table](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pivot_table.html) of passengers by month and year" + ] + }, + { + "metadata": { + "id": "NCq_9kFtCbiK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 373 + }, + "outputId": "41e20f7d-0898-4b38-b0a6-d1afab43817b" + }, + "cell_type": "code", + "source": [ + "flights_pivot = pd.DataFrame.pivot_table(flights, values=\"passengers\", \n", + " index=['month', 'year'])\n", + "\n", + "flights_pivot.head(10) # that's actually an awesome grouping tool! \n" + ], + "execution_count": 133, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
passengers
monthyear
January1949112
1950115
1951145
1952171
1953196
1954204
1955242
1956284
1957315
1958340
\n", + "
" + ], + "text/plain": [ + " passengers\n", + "month year \n", + "January 1949 112\n", + " 1950 115\n", + " 1951 145\n", + " 1952 171\n", + " 1953 196\n", + " 1954 204\n", + " 1955 242\n", + " 1956 284\n", + " 1957 315\n", + " 1958 340" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 133 + } + ] + }, + { + "metadata": { + "id": "giP_CPBzCbiM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Plot the pivot table as a [heat map](https://seaborn.pydata.org/generated/seaborn.heatmap.html)" + ] + }, + { + "metadata": { + "id": "mpQnVp-7CbiN", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 269 + }, + "outputId": "492c3f2f-6b25-454b-9378-1cb507367dca" + }, + "cell_type": "code", + "source": [ + "# redoing the flights problem in seaborn\n", + "\n", + "flights_sns = flights.pivot('month', 'year', 'passengers')\n", + "\n", + "ax = sns.heatmap(flights_pivot)" + ], + "execution_count": 140, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAD8CAYAAAAFdLF9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXmYXFW1vt8vExCGBEiIzGGGCCGE\nENQLEkBRERlkFhQCggOzF4XfVRFFvYgioiCIQhhEEEEUmRWIgCAYIMwBuRCEMM/zkPT3+2PvSp9U\nuqtOp6u7qzrrzVNPVe29zz77dOWpVWuftb4l2wRBEARBf2NAXy8gCIIgCHqCMHBBEARBvyQMXBAE\nQdAvCQMXBEEQ9EvCwAVBEAT9kjBwQRAEQb+k6Q2cpDf6eg21kPRRSXdKmi1pl6q+H0m6Lz927+DY\nnxevT9Kqkq6TdI+kqZJW6o1rCIIg6I80vYHrCyQN6sLw/wD7Ar+rmuPTwHhgHLApcKSkpQr9E4Cl\nq+b6CXCu7bHA94D/7fLigyAIAqBFDJykJbJnc6ekeyXtkNtHS3pQ0q8l3S/pWkmL5b6p2YggaYSk\nmYVjbspz3SnpI7l9Um6/DHhA0vckHV5Yww8kHVa9Ntszbd8DtFV1jQFutD3b9pvAPcAn81wDgR8D\n3+jgmOvz6xuAHRb4jxYEQbCQ0xVPpS95B9jJ9muSRgD/zIYIYC1gT9sHSLoI2Bn4bY25ngM+bvsd\nSWsBFwATct94YH3bj0kaDfwR+JmkAcAewMQurPlu4DuSTgSGAlsCD+S+g4HLbD8tqfqYzwInAzsB\nS0pa1vaLnZ1kkUVXDimaIAhK8e47T6j+qNq8/8Kjpb9zBo9Yvdvn6w6tYuAE/FDSR0me0orAqNz3\nmO3p+fUdwOg6cw0GTpE0DpgDrF3ou932Y5A8M0kvStoon+uuWoamGtvXStoEuAV4HrgVmCNpBWBX\nYFIHhx2Z17YvcCMwK69xHiQdCBwIMGjQMgwatETZZQVBECw0tIqB2wsYCWxs+/283bho7nu3MG4O\nsFh+PZv2LdhFC2OOAJ4FNsz97xT63qw6729I99c+AJwFaasS+DSA7XG1Fm37B8AP8nG/Ax4GNgLW\nBB7J3ttQSY/YXtP2UyQPDklLADvbfqWDec8AzgBYbLFVw4MLgqD3aJvvN3fT0ioGbhjwXDZuWwKr\nljhmJrAxcDtQjG4cBjxpu03SPsDAGnNcSgr2GAx8DsD2N4Fv1jt5vs823PaLksYCY4Frbc8mGczK\nuDdsr5lfjwBest0G/D+yUa3FckOH1RsSBEHQOObM7usVlKapDVyOZnwXOB/4i6R7gWnAjBKH/wS4\nKG/nXVFo/yVwiaQvAFczv9c2F9vvSboBeMV2hz9b8jbkpaSIyM9I+q7tD5KM4k3ZS3sN2Dsbt1pM\nAv5XkklblAfVu8hlhyxVb0gQBEHDSL+/WwM1c7kcSRsCv7bdleCORp5/AHAnsKvtf/fFGuoxfvnN\nmvcDDIKgqbjz6Zu7HfTx3pP3lv7OGbLSBhFk0hGSvgwcChxeb2wPnX8McDlwabMaN4BlBi3e10sI\ngmBhooEenKThpFiH9QED+wEPAb8nBQzOBHaz/bLSdtjJwLbAW8C+tu+sNX/TGjjbpwOn9+H5HwBW\n76vzl2WIat1CDIIgaDCNDTI5Gbja9i6ShpBSqv4HuM728ZKOBo4GjgI+RUoLW4sknnFafu6Upk/0\n7o9SXZLOlvSYpOn5Ma7QNym33S/p7715LUEQBHVxW/lHDSQNAz4KnAkp5iFHje8AnJOHnQPsmF/v\nQFJ6su1/AsMlLV/rHE3rwfUlkgaVCAipUJHqOrJqjqJU1yLAVElX2X4tD/m67YurjhlOCoL5pO3/\nSFqu3slXHRA5cEEQ9B5uXBTlaqQc4Sk53uIO4DBglO2n85hnaM95XhF4onD8k7ntaTqhJQxczgn7\nMylScTDwLdt/zmojVwE3Ax8hJUbvYPttSVOBI21Py+H302yPzsecB1RuXh1s+xZJk4DjgJeBdSVd\nSArZ/1leww9IqQonF9dme2bu71SqC5gtqSLVdVGNS/0c8Efb/8lzP1fvb7Oah9QbEgRB0Djayt+D\nK4pSZM7IebyQ7M944BDbt0k6mbQdORfbzlHlC0TTb1FmKlJd40mSVyeqXeNqLeDUHJr/CkmqqxYV\nqa7xwO7Azwt944HDbK9NykH7AsyNptyD2hJg1dwNfFLS0GxgtwRWLvT/IFcNOEnSIrltbWDprKN5\nR05lCIIgaB66sEVp+wzbEwqPMwozPUnKSb4tv7+Y9B38bGXrMT9XfujPYt7v0JVyW6e0hAdHP5Lq\nyt3/j+R6DyEpkhxFSigfREpO35qkyHKrpH/afnieP0bhV9F+wyay1dC1yi4rCIKgezQoyMT2M5Ke\nkLSO7YdI33sP5Mc+wPH5+c/5kMuAg/Pu2qbAq4WtzA5pFQPXn6S6KHwo70qaQvv9uyeBF3P1gTcl\n3ZjX+XDVvHOluq4dtYdbSVkgCIIWp7GJ3ocA5+cIykeByaTv5Ysk7Q88DuyWx15JShF4hJQmMLne\n5K1i4PqNVFfuWz5XEhApQui+fNifSd7lIJJ3tylwUolrDYIg6B0a+IM6775N6KBr6w7GmhLqTkWa\n2sD1Y6mu8yWNJG29Tge+nM/3oKSrSbXj2oDf2L6PGgwb+F6t7iAIgsbShSCTviakumqfv+mlup7d\ncovm/QCDIGgqRt3w925LZ71z95Wlv3MW3XDbPpXqatooyizVdQHwrT46/xjSXu91zWrcgiAIep0G\nJXr3Bk3twQX1WXzo6PgAgyAoxZtvzey+B3fnZeU9uPHbL9xiy5LmAPcWmnasJE93MHYSKXl7u15Y\nWikk7QocC6wHTLQ9LbcPAX5FuoHaRsqvm5r7pgLLA2/nabax/VxOg/gZKSBlj2qlk44YMqDPP8Ig\nCBYmmsAzK0szfDu+XS/cvqtIGthZUEjJ47si1XUfqQr3r6raDwCwvUGW3LpK0iZuL6a0V8UYFuhQ\n9isIgqBpmPN+X6+gNM1g4OYjh9gfTyoAughJqaRiQJaSdAWwJnAD8NUc8v8Gych8DDhI0m+BCbZf\nkDQB+IntSZImkhSsFyV5UJNtPyRpX5KhWgIYKOlxkmzWn/Kazgcusl1JOgRS5GPur76MMcD1ecxz\nkl4heXO3d3bdNWS/OmXpRZcsOzQIgqD7tFAUZTMEmSxWUNW/NLftT8pS3wTYBDhA0mq5byIpOXAM\nsAbJKEHSlrzN9oa2b65xvhnA5rY3Ao4BfljoGw/sYnsLksL1vjBX9fojzJtuUI+7ge0lDcpr35h5\nZWam5Gv+tjqwjrWQdKCkaZKmvfbOC105NAiCoHu0UJBJM3hwHW1RbgOMLZSfGUbSnHyPJKf1KICk\nC4DNSBpmc4BLSpxvGHCOpLVIBfYGF/r+avslANt/l/TLnK+2M3BJF7YtISmfrEfK23ucJNlV2Tbd\ny/YsSUvmNX8eOLfsxEUlkw+tMCmCTIIg6D1ayINrBgPXESIpTF8zT2MKMqn+Qq+8f6fqvltnUl3H\nATfY3ilXFpha6KtO+j4X2JsktDw5r2EKsBHwlO1tO7uAbAyPKKz9Ftqlumbl59ezhNdEumDgiiwx\ncJH6g4IgCBpFCxm4Ztii7IhrgK9IGgwgaW1JlfI2EyWtlpOwdyeVyumImaRtQZi3wsAw2hWo962z\njrOBw2FuhW9sT7Y9rpZxy2seWlmzpI8Ds20/kLcsR+T2wcB2tEt1BUEQNDWe837pR1/TrB7cb0hV\nAe7M96eep72q67+AU2gPMrm0owmA7wJnSjqOeb20E0hblN+izj01289KehD4U2djJO0E/IIkBn2F\npOm2PwEsB1yTA0ZmkbYhIQXNXJON20Dgb8Cv81ydyX51ynttIbQcBEEv0gT31soSid41kDSUlKM3\n3varfb2ejpg8euf4AIMgKMWUmZd0O/H67evOKP2ds9jWB4ZUVzMi6WPAg8AvmtW4BUEQ9DoRRVme\nZlUysf03SpTlabCSySrAOcBw0vbl0bavrHX+Nb1ore4gCILG0kJBJn1u4AglkyLfIiWTn5bFnq+k\nToXyEXP6dAcgCIKFjSbwzMrSlFuUkgZK+rGkf0m6R9KXCt1LSbpC0kOSTs/RlEh6Q9KJku4GPixp\nZiFacUL2mpA0UdKtku6SdIukdXL7vpIuk3Q9cJ2kcyXtWFjT+ZJ2qF6r7QdzufVq5lEyASpKJrUw\nsFR+PQx4qt7fKgiCoFeZPbv8o49pBg9uMUnT8+vHbO9EQclE0iLAPyRdm8dMJBmPx0kFSz9LSvSu\nKJn8N3QonVWhomQyO99n+yHtaQTjgbG2X5K0BSmP7U8FJZN9unBdFSWTC0gKJhUlk4pU15S8PXsJ\n8P1crfZY4FpJh+Tr+Vi9kyzVFjEmQRD0Ii3kwTWDgQslk3Ylkz2Bs22fKOnDwHmS1i9sa5Kv+0Dg\nQIDDltyYTy+2RheWFQRB0A1a6B5cU25R0q5kMi4/VrNd8eAapWSyPvCZqr7OlEwmkwwWkioakjWD\nP2zPtn1EXv8OpMCR+ZRMgIqSCSTP9aLcd2te24gO5j7D9gTbE8K4BUHQq0QUZbepKJlcb/t9SWvT\nrj4yMYsXP05SMjmjkzlmkrYFr6J7Sia3A88UlUzKXEDOoZPtN6uVTIDhucpBRcnkb/mw/wBbA2dL\nWo9k4J6vdZ7VR75SZjlBEASNoYU8uGY1cAulkgnw38CvJR1B8kz3dZ1M/A89MbNWdxAEwVxq/lou\nSxN4ZmUJJZMatIKSychh68QHGARBKZ5/9aHuK5lc9L3ySia7HdOneUzN6sH1OTnC8kzgpGY1bgCL\nDBxcf1AQBEGjaCGnKAxcJ5RVMulrVlh02b5eQhAECxMtdA+uWaMo6yLJkn5beD9I0vOSLm/Q/FMl\n1UvMRtKuku6X1FYcL2lIjri8V9LdWWasOPdDaq9kvlxu/3IeP13SzVnNJAiCoHloayv/6GNa2YN7\nE1hf0mK23wY+Tnt0ZCm6KMnVGY2U6vqd7dPz2rYHfgp8stbJFx8wpJvLD4Ig6AItFGTSygYOklbj\np0mJ3nsCFwCbQ5LkAk4mhdq/DUy2/ZCkfUkGaQlSFOMWko4i5bu1AVfZPjrPv6ukX5Jy2Pa3fVP1\nAmw/mM9X3TWPVJekilTX7dUDC3O9Vni7OPPn/M3HGoOG1RsSBEHQOOYssMxvr9OyW5SZC4E9JC0K\njAVuK/RVJLk2Ao4hSXJVGA/sYnsLSZ8CdgA2tb0hKY2gwiDbE0lVvb/TxbVVpLoG5by9ilRXhUrC\n+LdVsI6SDpL0f3kdh3Y0saQDJU2TNG3G6492cVlBEATdILYoewfb90gaTfLeqpVFSklykfQep9h+\nK8/5UmHcH/PzHdRR9e+ABZHqwvapwKmSPkeqLjCf/qXtM8gJ7vuN3qWFNgyCIGh5msBwlaWlDVzm\nMuAnwCSgGFJYkeTaKRvBqYW+akmuzng3P88h/60kTQE2Ap6yvW1nB+Z7e0dU3ku6hQ6kuiRVpLrO\nrZriQuC0egtcgbgHFwRBL9JCP6lbfYsSkqf0Xdv3VrWXleT6KzA5J3UjaZlaJ7M9OetLdmrc8jxD\nJS2eX88j1VUo41OR6rovv1+rMMWngX/XOkcQBEFv4zaXfvQ1Le/B2X4S+HkHXaUkuWxfLWkcME3S\ne6Stzv8pe/4GS3UdnBPM3wdepkR5ng++FwVPgyDoRVpoizKkulqcW5bfOT7AIAhK8ZGnL+n2L+K3\nTj249HfO0INOqXk+STOB10m3gWbbnpB30X5PinuYCexm++UcjHcysC3wFkmr985a8/eHLcogCIKg\nt2h8FOWW+bZPRSjjaOA622sB1+X3AJ8i1QVdi1QPs26MQstuUUoycL7tvfP7QcDTpKre2zVg/qnA\nkR0kY1eP25VUiXs9YGJlvKQhpOTvCaT8usNsTy30nUIKjGkDvmn7EqXq5eeSUgpeBHa3PbPW+QcP\naJ3tgiAI+gE9v0W5A+m7EeAcUoDgUbn93Fxh5Z+Shkta3vbTnU3UsgaO1lYy+SbwnO21JQ0AKoEt\n+wMv215T0h7Aj0g17zplhVWaVgc6CIL+SGNvaxm4Njssv8opUKMKRusZYFR+vSLwROHYJ3Nbpwau\n1bcoK0om0K5kAiQlE0m3SrpL0i2S1snt+0q6TNL1JPcXSUcVNCOPL8y/q6TbJT0safOOFmD7QdsP\nddA1j5IJUFEyAdgP+N/c12b7hdy+A+kXCyR1lq2LSeBBEAR9The2KIuiFPlxYNVsm9keT9p+PEjS\nR4ud2VtbYIvayh4cpFyxY7LA8lhSykDFEFWUTGbnyMQf0l7Zezww1vZLVUomb1WlCQyyPVHStiQl\nk491YW0VJZMLSAomGwMrS3o49x+XBZj/DzjY9rMUfqHkdb9Kyu17oXryCoOHto5sThAE/YAuhP8X\nRSk66a/kBD8n6VJSTvCzla1HScsDz+Xhs5hXDWol6uzatbSBa1Elk0GkD+YW21+T9DVSovrnO5uo\nmvwr6ECAxRdZjkWHhB5lEAT16fSXcldokBZlzhMekAUvFge2Ab5HEu/YBzg+P/85H3IZKZXqQmBT\n4NVa99+gxQ1cptWUTF4khbhWjOcfSPfeoP0XypM5aGZYHl8999xfRSOWWjvSBIIg6DXcuCCTUcCl\n+S7MIFI1lasl/Qu4SNL+JOdgtzz+SlKKwCOk79DJ9U7QHwzcWcArtu9VoeYaXVMyOUbS+ZUtyiov\nbh5s1/2jQlIyIeUZvllUMsl9fyEZ5OuBrYEH8mGVXy63ArsA17tOouKgAQPLLCcIgqAxNEihxPaj\nwIYdtL9I+l6sbjdwUFfO0fIGrgWVTCCFvJ4n6WfA87T/Ejkztz8CvATsUe/8IxaJ7ckgCHqRFtKi\nDCWTFmf9UR+KDzAIglLc9+w/ux2V/eb39ir9nbP4Mef3aRR4y3twCztLDlqsr5cQBMHCxOzWidwO\nA9firDd42fqDgiAIGkULbVG2eqJ3TSTtKMmS1l2AY38jaUx+PbNS4qZqzLo5mfxdSUdW9R0m6T5J\n90s6vNB+rKRZStW8p+ccOySNlvR2of30rl9xEARBD9Pm8o8+pr97cHsCN+fn75Q9SNJA218sMfQl\n4FBgx6rj1ydJdU0E3gOulnS57UfykJNs/6SD+f7P9riy6wR4r4V+TQVB0Po0ME2gx+m3Bk7SEsBm\nwJbAX4Dv5DSC75HKM6wJ3AB81XabpDdIepIfI0nGfJ86YstZgus5SZ+u6lqPJPr8Vl7L30l6lSc0\n8BIBWF1xDy4Igl6kCTyzsvTnLcodgKttPwy8KGnj3D4ROISkFbkGyfAALE4yShvavrmb574P2FzS\nsjkfblvmlZg5WNI9ks6StHShfbWsnfn3zrQvgyAI+pTYomwK9iQVx4OkWbkncDlwe04wJOtEbkYS\nNp4DXNKIE9t+UNKPgGtJqinT8/yQahgdR5IPOw44kSS+/DSwiu2KMf6TpA/afq16/qJU1+RhE9lq\n6FqNWHYQBEF9GiTV1Rv0SwOXBZO3AjbIZRgGkgzKFcyvTF15/47tmp+cpIPIZXCAbW0/1dlY22eS\nEreR9ENSaQeyqHJlvl+TjC623yVLg9m+Q9L/AWuTtCyr554r1TV11K5mzrvVQ4IgCHoEN4FnVpb+\nukW5C3Ce7VVtj7a9MvAYqdLAREmr5Tpsu5OCUEph+9RceXZcLeMGoFQDDkmrkLZBf5ffL18YthNp\nOxNJIyUNzK9XJ1WtfbTs2oIgCHqF2KLsc/YkFQstcgnwFeBfpGralSCTSxf0JJI+QPKwlgLacjrA\nmLyteImkZYH3gYNsv5IPOyFLgxmYCXwpt38U+J6k90lVvr9cSxMzCIKgT2ihKMqFSqorR1EeaXu7\nvl5Lo5g57uMLzwcYBEG3GD39r92Wznr9q58q/Z2z5C+vCqmuIAiCoEVogq3HsvR7A5eDTM63vbft\nqZJulvQ8KSWg256cpIOBw0kpByNtv5DblyaV8lkDeAfYz3blfttMUi7eHFIZnQm5fRng96TiqjOB\n3Wy/XOv8y242uFZ3EARBQ/Gc1tmi7PcGjhSmv76kxWy/DXycOmXOu8g/SJGQU6va/weYnguurguc\nyrw1jrasGMMCRwPX2T5e0tH5/VG1Tr7ilBndWXsQBAsRr53SgElayIPrr1GU1VwJVNRG9gQuqHRI\nmpj1JO+SdIukdXL7jTkYpDLuZkkdFee7y/bMDs45hlTQFNszgNGSRtVZ5w7AOfn1OVRJgAVBEPQ1\nbnPpR1+zMHhwkBK9j5F0OTCWtHVYUQqZAWxue7akjwE/BHYm5bDtCxwuaW1gUdt3d+Gcd5PSA26S\nNBFYFVgJeJYUQXlt3j79Vc5rAxhl++n8+hlSSfeaDNTC8hslCIKmoAkMV1kWCgNn+x5Jo0ne25VV\n3cNIlb/XIhmeyk2tPwDflvR1ktLI2V087fHAyZKmA/cCd9GuZrKZ7Vk5V+6vkmbYvrFqzc4GcD6K\nSiYrL7UGI4Z+oItLC4IgWEBa5xbcwmHgMpcBPwEmAcUiascBN+R7ZaPJ99JsvyXpr6Rtw92AjQEk\nXUPyrKbVqjiQc+Em52NESjR/NPfNys/PSbqUpI95I/CspOVtP50Twp/rZO65Sibjl9+sdX5OBUHQ\n8nh261i4hcnAnQW8YvvenA9XYRjtQSf7Vh3zG1Ilgpsq0Yy2P1HmZJKGA2/Zfg/4InCj7dckLQ4M\nsP16fr0NqcIBJCO8D8n72wf4c73zLDZgSJnlBEEQNIbWsW8Lj4Gz/STw8w66TiBtUX6LpFVZPOYO\nSa8BUzqbV9KhwDeADwD3SLoye3br5XkN3A/snw8ZBVyanDoGAb+zfXXuOx64SNL+wOMkz7Emqw8a\nXm9IEARBw2iG4JGyLFRKJl1F0gqkLct17easLPr5VT8bH2AQBKU47/E/dltZ5OWdJ5X+zln6kqmh\nZNKMSPoC8APga81q3AAGRxRlEAS9SCt5cHUNXA6QWMn2E72wnqbB9rnAuX29jnqs4kX6eglBECxM\nNO3P/fmp+/PfaQ+zOrS+ZZBkSb8tvB8k6fmcE9eI+Q+W9Eg+z4hC+9KSLs2Vu2+XtH6hb6akeyVN\nlzSt0P773DY9j5neiDUGQRA0Cs8u/+hrym5R3ilpE9v/6tHV9AwtI9Vle/fKa0knAq/WO/k67y/g\nqoMgCBaA5r1hMz9lDdymwF6SHicZDJGcu7E9trLGUpHquph2qa7NIUl1AScDiwJvA5NtPyTpRuBQ\n29PzuJtJdd3mUTOxfVfurz7nGFJUJLZnSBotaVSxondn5G3h3UhVyWuyqt+pNyQIgqBxtJCBKxuh\n8AmSKv5WwGeA7fJzq3AhsIekRUlSXbcV+ipSXRsBx5CkuqBdqotuSnVVjGhFqgvapbruyKok1WwO\nPGv73104XxAEQY/jtvKPvqaUB2f7cYAsLbVoj66oB2hBqa55BKGrKUp1/b/hG/LZxUd3cWlBEAQL\nRjMYrrKUMnCStgdOBFYgyUetCjwIfLDnltZwWkGqC0mDSJ7fxjXmnivV9fzHtzDULBkXBEHQMDyn\nT1PbukTZe3DHAR8C/mZ7I0lbAnv33LJ6hFaQ6gL4GDAjK68EQRA0Ff3OgwPet/2ipAGSBti+QdLP\nenRlDaZFpLoA9qDG9mQ1i41bpuzQIAiCbuO21vHgSkl1Sfobqfjm8aTtveeATWx/pGeX17e0glTX\nB4av1zqyAkEQ9CnPvPJgt63TUx/ZsvR3zgq33FD3fJIGAtOAWba3k7QaKTBwWeAO4PO235O0CEl8\nY2PgRWD3TopNz6VsFOUOwFvA4cDVwP/RWlGUXSZLdd0GfLNZjVsQBEFvY6v0oySHkWI6KvwIOMn2\nmqQAg8ru1/7Ay7n9pDyuJmWjKN+UtCqwlu1zJA0FBpZdfSvSKlJdQwe1XFBrEAQtTCN/7ktaiZSj\n/APgazkgbyvgc3nIOcCxwGkkR+vY3H4xcIokucY2ZNkoygNIYenLkPLhVgROZ15ljqZE0hu2l+jB\n+Xcl/dHXAybanpbbhwC/AiaQUiMPsz01900FlicllgNskyMqv0YKSJkNPA/sV0nR6IwRQ5Zq8BUF\nQRB0Tltjoyh/RophWDK/X5YUDFgR+nqSZG/Iz08A2J4t6dU8fh5FqCJltygPAv4LeC1P/m9gufLX\n0K+5jxTWf2NV+wEAtjcgyYOdKM0j/b+X7XH5UancfRcwISvEXEwKgAmCIGga3KbSD0kHSppWeMwV\ntpC0HfCc7Tt6aq1loyjfzTf5KgsbREqKbglyWsCRtrfL708h5bGdLWkmyQ3+DCnJe9csrbU48Atg\n/dx+rO35KmzbfjDPWd01Brg+j3lO0iskb+72ztZp+4bC239SIhVj1cFR8DQIgt6jK1GUxZzdDvgv\nYHtJ25IERJYiySYOlzQoe3Er0Z7GNQtYGXgy26BhpGCTTinrwf1d0v8Ai0n6OEnl4y8lj20FXrA9\nnrTPe2Ru+yZwve2JwJbAj7PRK8vdpA9vUI4K2pj04VSYkqsGfFsdWEfSDdWrOpq4+Kvo0TdmdmFJ\nQRAE3cMu/6g9j/+f7ZVsjyalR11vey/gBmCXPGwfoOJYXJbfk/uvr3X/Dcp7cEeTvnDvBb5Ekrv6\nTcljW4E/5uc7yPqRpATs7SVVDN6iwCrMG+1Ti7NI9+WmAY8Dt9Au1bVXlupaErgE+DyFgBZJe5O8\nvS06mrj4q+gro3drGU86CILWpxfy4I4CLpT0fdJtmzNz+5nAeZIeAV4iGcWalDVwnwbOtP3rBVhs\nMzCbeb3V6tDDd/PzHNr/JgJ2tv1QcaCkKcBGwFO2t+3shNm9PqJw3C3Aw7mvItX1uqTfkaS6zs3j\nPkbyHrew/W71vNUsE0XZgyDoRboQ/t+FOT2VdpnER0nfidVj3gF27cq8Zbcodwf+LemEXNus1Xgc\nGCNpkSyhVSb68xrgkMr2oaSNAGxPzoEhnRq3PH5oZUszb+vOtv1A3rIckdsHkyoz3Fc4x6+A7QuB\nJ0EQBE3DnDkq/ehryubB7S1pKZLK/dlZfmoKcIHt13tygd0h34h81/YTki4iGZLHSG5vPY4jhbDe\nk6MfHyMZo+pz7EQKRhkJXCGxOGgWAAAgAElEQVRpetarXA64RlIb6ebo5/Mhi+T2waRcwr8BFc/4\nx8ASwB+yXf2P7e1rLXLMe2V/owRBEHSfnvDgeopSUl1zB0vLkr6oDyfdi1oT+LntX/TM8rqHpA2B\nX+dAkX7Jvat9Ju7BBUFQig0e+0u3rdOMtbct/Z2z7sNX9qk1LPXzX9L2uazLVFLI/ETbnwI2BP67\n55a34Ej6Mkm0+Ft9vZYgCIL+QqOiKHuDshEKO5O0weZJZs410/bv5Jg+xfbpwOmS3iBt+/UIDVYy\nWZUUfTmSFCW0d72yOcuv/VqDrygIgqBzWqmaQNl7cJXcAyRtZ/vyQt91PbGwFqKiZPKrqva5Sia5\ncvdVkjYpCDfvVTGGBX4CnJv1PrcC/pf2e3cdMnCJ1vnPFgRB6zOnrXXu+y/ISr9Xf0hzIWmSpMsL\n70+RtG9+PVPSdyXdKeneSpSopMUlnSXpdkl3Sdqho7ltP1idSpCZR8kEqCiZ1GLuMaRkxw7PGQRB\n0Ff0xy3KIv3RZXjB9nhJXyUpmXyRdiWT/XJqwe2S/mb7zZJzVpRMLiApmFSUTCpSXVMkzSElen8/\nZ+TfTfIGTwZ2ApaUtKztTuVoBq++dJcvNgiCYEFpa6EoygUxcF9q+Cr6nmZRMjmSVAJiX5J486zC\nMXPJgqUHAvziwO3Z/+OblFxSEARB92ilNIHSBk7SR4DRwKDKNl6umdYKtISSie2nyAZW0hL5/K90\nMPdcqa63L/5+E2wEBEGwsNAMW49lKVsP7jxSHbjptHsUpgUKgmbmKpkAi5GUTG6uc0xFyeQQ25a0\nke27bE8uc8JcFFa5WOw8SibAcNsvFJRM/paPGQG8lANR/h/JC6zJmC/9ocxygiAIeGyX7mdN9cct\nygnAmHrKzc1GCyqZTAL+NyvF3Eiqw1eT4YN7LAMiCIJgPlopirKUkomkPwCH2n6655fUOBYGJZON\nPvBfLfWjIwiCvuOuZ/7Rbffrnyt8tvR3zoee+mOfuns1PThJfyFtRS4JPCDpdtrvV1FPJ7EvyUom\nh5JkxfotIwcvWX9QEARBg+hPW5Q/6ZVV9AAVJZO+XkdPs/zArtRgDYIg6B6tFEVZczPV9t9t/x3Y\ntvK62NY7S2wsWbqrVv9USfUSsovj15V0q6R3CykFlb7DJN0n6X5Jhxfaj5U0K1f0nq5Usr143CqS\n3qieLwiCoK9p68KjrykbZPJxUpXVIp/qoG1h5CXSVuiOxUZJ65PkuiYC7wFXS7rc9iN5yEm2O/OQ\nfwpcVebkK7HIAi06CIJgQXALaX3Uuwf3FeCrwOqS7il0LUlKXG5JJE0CjrS9XX5/CjDN9tmFMfsB\nY20fnt8fQIokPaI4V5bhek7Sp6tOsx5wm+238vF/J+W4nVBnbTuSIjZLKaasMrt1IpqCIGh9ZveX\nLUrgd8BngMvyc+Wxse29enhtfc1FwGdyOD/AZErkpRW4D9hc0rI5J25bklRXhYMl3ZP1LpeGucnd\nRwHfrTWxpAMlTZM07aY3/92FJQVBEHQPo9KPvqamB2f7VeBVYE9JA4FR+ZglJC1h+z+9sMY+wfYb\nkq4HtpP0IDDY9r1dOP5BST8CriV5Y8Uk+dNIeXbOzycC+5HK7pyUz11r7rlKJtNW2tFQ87ZiEARB\nw2iGe2tlKatkcjDpy/dZ2q/PwNieWVaPU0+6q8JvgP8BZgBTACQdRC6FQwq+eaqzk9g+EzgzH/dD\n4Mnc/mxljKRfA5VKB5sCu0g6ARgOtEl6x/YpnZ1jpdXnU/IKgiDoMZrBMytL2SCTw4F1aqnatxil\npLts3yZpZWA82ZjbPhU4tcxJJC2XC5muQrr/9qHcvnwhaX4n0nYmtjcvHHss8EYt4xYEQdDb9DsP\nDniCtFXZ0iygdNdFwDjbL3cy5wdIFQOWInlch5OCUV4DLpG0LPA+cFBBOPkESeNIXvBMulGhYfHx\nkegdBEHvMacfenCPAlMlXcG8SiY/7ZFV9RwfBP4PwPY3gG9UD7A9qappM+Ckzia0/QywUid9m3fS\nXrNKdx5zbL0xAANGLVNmWBAEQUNoax37VtrA/Sc/huRHy9FV6a5KkVPgbtvX9eTagiAIWoW2/ubB\n2f4uzA1jx3afhO3lHLFLgfVsz+jKsV2V7srbiWtLOlzS0Eo+W9V6lgUuBjYBzrZ9cKFvd1JV8IHA\n5baPqjp258qxtqdJGgL8ilS5oQ04zPbUeuscMHajspcUBEHQbVpJ3b1sFOX6wHnAMvn9C8AXbN/f\ng2vriD1JwSB7At/ppXMeDvwWmM/AAe8A3wbWzw9gruH7MSlf8HlJ50jauuIJ5krehwG3FeY6AMD2\nBpKWA66StEmuDdcpgzZtWr3rIAj6Ia0UZFJWBuMM4Gu2V7W9KvDftNcw6xWy97gZsD+wR26bJOny\nwphTJO2bX28raYakOyT9vDIu60AeWTjmPkmjJS0u6QpJd+e23SUdCqwA3CDphuo12X7T9s0kQ1dk\ndeDftp/P7/8G7FzoPw74UdVxY4Dr87zPAa+QvLkgCIKmoU0q/ehryt6DW9z23C9421Ml9baM/Q7A\n1bYflvSipI07GyhpUdJ230dtPybpghLzfxJ4yvan8xzDbL8q6WvAlrZf6MJaHwHWkTSalPu2I/ne\npaTxwMq2r5D09cIxdwPb57WuDGycn2+vdaK119mpC8sKgmBh5rEX7+72HHPqD2kaSkdRSvo2aZsS\nYG9SZGVvsidwcn59YX5/eSdj1wUetf1Yfn8BcGCd+e8FTszqI5fbvmlBF2r75azj+XuSR38LsIZS\nZfCfAvt2cNhZJP3KaaQ8vVvo5P+SpAPJ17PSkqszYugHFnSpQRAEXaKVoijLblHuB4wELsmPESRt\nxl5B0jLAVsBvJM0Evg7sRjIAZRRJinSoYmL7YVJC973A9yUd08E6diqUuKm5fWj7L7Y3tf1h4CHg\nYZJI9fqklIuZpMTvyyRNsD3b9hG2x9negaRk8nAnc59he4LtCWHcgiDoTdpQ6UdfU9aDW4O0XTYg\nH7M1yeD0llTXLsB5tucmRGd1/gF0rEjyEKkCwmjbM4HdC3PNBCpVBMYDq+XXKwAv2f6tpFeAL+bx\nr5MM0wu2LyVFcdaloGKyNKkiw25Z23NEYcxUUlWDaVmQWbbflPRxYLbtB+qdJyp6B0HQm/S7KErg\nfOBIkvJHXwTR7EkKyihyCSnYZD5FEttvS/oqqQbbm8C/qo77gqT7SVGMFS9pA+DHktpIyiNfye1n\n5Hmesr1l9cKyJ7YUMCSnMWyTDdPJkjbMw76XPcRaLAdck88/C6ibDA6wxsClygwLgiBoCK20RSm7\nvj2WdLPtzXphPQ0jVzt4Q0mW/1RSVGOniiStyldG79ZKP6iCIOhDTpt5UbfN09kr7l36O2ffWb/t\n9Hw5GPBGYBGSs3Wx7e9IWo0UZ7EscAfwedvv5Z26c0kBeC8Cu+cduk4p68F9R9JvgOuYV6rrjyWP\n7wsOkLQPKXrxLlJUZb9jeQ+uPygIgqBBzGmcB/cusFV2RAYDN0u6CvgaqWzYhZJOJ6WGnZafX7a9\npqQ9SLt6u3c2OZQ3cJNJkYmDmbdcTtMauOyt9TuPrZqlW2m/IAiClqdR96ictg8rqliD88Ok+I7P\n5fZzSKXaTiOlih2b2y8GTpEk19iGLBtFuUmO2tvH9uT82K8rF9MIJO0oyZLW7cVzHp4DQDrqW1bS\nDZLekHRKVd/uShW778+pB5X2fSU9X4jG/GKhbxVJ10p6UNIDOY8uCIKgaWjrwqMekgZKmg48B/yV\nJIb/iu3ZeciTwIr59Yqkyjbk/ldJ25idUtaDu0XSmDJRfT1Mv5DqAn5f1K0scC7wA9t/zcotdf+P\nbPDeu/WGBEEQNAx3YdOomLObOcP2GXPnsucA45TE7S8l7RQ2jLIG7kPAdEmPkfZNldbmXqvoXZDq\n2hL4C+m+4CRSmH0l7P8UYJrtsyVtS0qqfhP4B7C67e3UXkj0J/mY+0hpA8+TIjJXIgkkHweMol2q\n64XqKErbb5L2jdesWm5nUl2dViWQNAYYZPuvee5SgtZrju4vNWiDIGgFurJFmY3ZGSXGvZLlED8M\nDJc0KHtpK5GiysnPKwNPKtX2HEYKNumUsgbukyXH9ST9Qqors7Okj5JSFI6w/QSwNvCKpD+ScvP+\nBhydf+EEQRA0BY36QpI0Eng/G7fFgI+TAkduIOU+XwjsA/w5H3JZfn9r7r++1v03KF8u5/EFuoLG\n0vJSXbn7L8AFtt+V9CXSTdStSJ/F5sBGpNp7vydJep1ZPX/R7T9567HsN3bVBV1qEARBl2hgXNvy\nwDmSBpLiQS6yfbmkB4ALJX2fFAFf+Q48EzhP0iPAS2TR/VqU9eD6lIJU1waSTNpCNMmyN0yqKyub\nbEuS6rrO9veq1rET7ff+vmh7Wmcnsf0XkjGrGKQ5ub3oUv8GOCG/fhKYbvvRfMyfSFvD8xm4otv/\n1i++GnlwQRD0Gg2MoryH9IO+uv1RYGIH7e8Au3blHGWjKPuailTXqrZH216ZpFwyV6or36TcOo+f\nK9WV31dLdY2HDqW63rL9W1KAyPg8viLVhe1Ls1bkuFrGLc+3XH6uSHX9Jr9fvjBse+DB/PpfpL3n\nkfn9VkBfB/UEQRDMQyOjKHualvDg6F9SXYdK2p7kSb5Erixge45SnbrrsvrKHZSouacx4+oNCYIg\naBittGVUSqqrFVlYpLree/zO/vkBBkHQcIasOr7bd9BOWLW8VNc3Hu9cqqs3aJUtygXhgJxAeD8p\nnLRfSnUFQRD0JnO68OhrenSLUtI3SZIrc0hbsl+yfVsX55gEvGf7lq4c15lUV95SnNDFsP9a69uV\nJB+zHjCxcm9O0hCSUZ1AuvbDbE/NfVNJEURv52m2yaV1Pgr8jFSGaA/bF9c7/yob7tWIywiCYCHg\nmVcerD+oDm0ttEnZYwZO0odJCdTjc0j8CObNBSvLJJJeWZcMXE9QSD4sch/wWeb3EA8AsL1BDji5\nStImtiv3XvfqIFDlP6R7ckeWXdPwIUuUHRoEQdBtmiF4pCw96cEtTyoS+i5AxWPKCdo/BZYAXgD2\ntf109mruBrbI69qPpE/2ZWCOpL2BQ4AZwOnAKvk8h9v+R1YoWY2kIrIKcAQpzP5TpAz4z9h+Px/z\nDUmfInlQn7P9SI5e7GzeNfK8/yEFvMzF9oP5uqqvfwxwfR7znFIR1QnA7Z39wSqlH3KgSxAEQdPR\nOv5bzxq4a4FjJD1MUuX4PckL+wWwQ9Zo3B34AcmYAQy1PS5v1Z1le/1cLqEorfU7UimFmyWtAlxD\n2h6EZIi2JBmXW4GdbX9D0qXAp4E/5XGvZs/qC6Qtwe1ISeSdzTsG2Mx2ZUuxDHcD22cVlZVJNYxW\npt3ATZE0hxTV+f16GfmdsWxU9A6CoBdppV/fPWbgcgTjxiR1ji1JBu77JFHiv2aPZyDwdOGwC/Kx\nN0paKue2VfMxUu5b5f1SWacS4Crb70u6N899dW6/FxhdfZ78XLlPV2vey7po3ADOIhnIacDjJONe\nue+6l+1ZkpYkGbjPk4SWS1FUMtlg6Q1YdYlV6hwRBEHQGGardXy4Hg0yyTqKU4Gp2egcBNxv+8Od\nHVLnPaTIzw/lrPa5ZMNU2Q5tk/R+wStqY95rdQeva837ZuH9FFL2/VO2t+3kOirlHI4oHHcLOefO\n9qz8/Hr2SCfSBQNXVDL5zCrbtc7/tiAIWp5W+sLpySCTdYA22//OTeNIqh3bSPqw7VuVqriubfv+\nPGZ3knL/ZqRtxFclvU5KpK5wLele3I/zecbZnt7F5e0OHJ+fb+3KvLYnlzmBUg052X5T0seB2bYf\nyCrYw22/kK9/O9IW7gIxakAZdbIgCILGEFuUiSWAX+Rtxtkkhf0DSZ7HzyUNy+f/GSlXDeAdSXeR\nKrtW7sv9BbhY0g4kA3QocKqke/LxN5ICUbrC0vn4d2kPGlmgebM+5S+AkcAVkqbb/gSwHHBNDhiZ\nRdqGBFgktw8mbaP+jaxYImkTUk2kpYHPSPqu7Q/WOv8yDC5/1UEQBN2kldIEmkbJJEdRHllP4zGY\nl2+M3rM5PsAgCJqeE2Ze0G1lka585zTifN2hVbQog05Y//2Bfb2EIAgWImKLcgGwPamv19CKrNnW\n1eDOIAiCBWdOC21R9qgWpaRvSrpf0j2SpkvadAHmmCTpIw1c08ysqtKo+XbN19gmaUKhfYikKZLu\nlXR3lhyr9E2V9FD+m0wvlNZZRdINku7Kf7NOozSDIAj6giiXQ0h1sWBSXd8iVbU9TdIY4Ermzd+b\nj1VWeXkBriQIgmDBcAt5cCHV1URSXaQUk0pKxDDgqRpjgyAIep1m8MzK0pNblNcCK0t6WNIvJW2R\nQ+N/Aexie2OS2scPCscMtT2OVAH7rKzNeDpJQmuc7Ztol9TaBNiZXCk7swapEvb2wG+BG2xvQDJk\nny6MezW3n0JKU6DOvGOAj9mex7jVoSLVNUjSarRLdVWYkrcnv61263gssLekJ0ne2yFdOF8QBEGP\n04ZLP/qakOpqLqmuPYGzbZ+Yt3jPk7R+YVsTmFeq6+QtN2Dy+iHVFQRB79D3Zqs8IdXVXFJd+wOf\nzH23SloUGEHaqi3OPVeq661TD26l/29BELQ4s1vIxPXYFqWkdSStVWiqSHWNzN4JkgZLKip17J7b\n50p1Aa8DRcn8iqRW5TzjFmB5uxeeq6W6as5re3LeLq0Z4ShpqKTF8+t5pLoqUZwFqa778mH/AbbO\nfesBiwLPL8D1BUEQ9Ajuwr++JqS6mkiqC/hv4NeSjiB5lvvWK6Oz3NevKHnJQRAs7Lxx0CndnqOV\ngkxCqqvFGTVs3eb4AIMgaHqefXVGt6WzJo/eufR3zpSZl4RUVxAEQdAatJIH1zQGLqS6FowRiw7r\n6yUEQbAQMadJdv3K0DQGrhpJKwGnknLQBgCXA1+3/V4n4w8HzrD9Vp1537C9RK0xXVznwcDhpBy8\nkYWE9qVJqQJrAO8A+9m+L/fNJAXPzCEFn0zI7ccBO5B+JD1HugdXM9l75OAla3UHQRA0lGbIbytL\nj2pRLig58fmPwJ9srwWsTQpa+UGNww4Hhvbwujr6QfAPUg7d41Xt/wNMtz0W+AIpkbzIljkac0Kh\n7ce2x+Zk98uBYxq09CAIgoYQUZTdZyvgHdtTIOXT5cjCx7J01ndJ+WJtpAhEASuQqoG/YHtLSXuS\njIyAK2wfVZlc0knANsAzwB62n5e0BsljHAm8BRxge4aks0ke2EYkY/a14kJt35XnrL6GMaSq4eR5\nRksaZfvZzi7a9muFt4tTIqdyWFT0DoKgF4l7cN3ng8AdxQbbr0n6D/BFkirJONuzJS1j+yVJXyN5\nRS9IWgH4EUke62XgWkk72v4TyXBMs32EpGOA7wAHk9IXvmz737nqwS9JhhZgJeAjOXG9LHeTRJhv\nkjQRWDXP8yzJcF0rycCvcuI2AJJ+QPL4XiUpwMxHUclk02XGsdYSq3VhWUEQBAtObFH2LJNIRmE2\ngO2XOhizCTDV9vN53PnAR3NfG0k2DJJe5WZZkusjwB8kTSdVBli+MN8fumjcIHlvw/N8hwB30S7V\ntZnt8SQh6IMkVdaG7W/aXjmv+eCOJrZ9hu0JtieEcQuCoDeJLcru8wCwS7FB0lIkpf+ZDT6XSYb+\nlXzvqyOKUl3XAKNIXuAXO500bTdOzscIeAx4NPdVpLqek3QpSarrxqopzicJLn+n1uLXZrFa3UEQ\nBA2llaIom9WDuw4YKukLAJIGAicCZwPXAF+qBHxIWiYfU5T0uh3YQtKIfOyewN9z3wDajefngJuz\nMXpM0q55TknasKOF2f5EDg7p1LjlOYZLqtS/+yJwY95mXTyLLJOlvLYhS3VVSZvtQCoNFARB0DRE\nNYFuYttZAuuXkr5NMkpXkoJG5pCiKu+R9D4pyOQU0j20qyU9lYNMjgZuoD3I5M95+jeBiZK+RQrF\nr+hS7gWcltsHAxeS7qPVRNKhwDeAD+Q1XZmN33rAOfk+2/0kIWVI3t+lOShlEPA725WqB8dLWoe0\njfo4JaTCVpjTp0IBQRAsZDQqyETSyiSR+VGknbQzbJ+cnZbfk2ItZgK72X4574SdDGxLCgTc1/ad\nNc/RLFJdwYIxddSu8QEGQVCKSc/+odu/iLdb5dOlv3Mu/88VnZ5P0vLA8rbvzLtadwA7AvsCL9k+\nPjsqS9s+StK2pHiGbYFNgZNtb1rr/M26RRkEQRA0IY3aorT9dMUDs/06qdrMiqTbM+fkYeeQjB65\n/Vwn/kkK4lueGjTlFiX0eyWT4aSK4euTXPP9cv23Dl3zWudfbGBXgzuDIAgWnJ7Y9ZM0mpRrfBsw\nynalEPYzpC1MSMbvicJhT+a2YtHseWhKA1dQMjnN9g45UOQMkpLJ1zs57HBS2H9NA9fNdQ2qpCcU\n+AfJ+E6taq8omewkaV2Ssd46950MXG17lxyIUlFgORq4ruCaHw0cRQ1WWvWVBb6eIAiCrjKnC8Ej\nxZzdzBnFvN88ZgngEuDwHIg3ty/HYyywRW3WLcr5lExI1bH3y1GIP5F0n6R7JB2SAz0qSiY3AEja\nU9K9edyPipNLOknS/ZKukzQyt60h6WpJd0i6KRslJJ0t6XRJtwEnVC/U9l22Z3ZwDWOA6/OYGcBo\nSaOU6uB9FDgz971nu2KlOnPNgyAImoKubFEWc3bzo9q4DSYZt/Nt/zE3P1vZeszPz+X2WcDKhcNX\nym2d0pQeHP1byWQOqUr3lJyKcAdwmO036dw175SlNg6priAIeo9GbVHmnbozgQdt/7TQdRmwD0ks\nYx/gz4X2gyVdSAoyebXwfdkhzWrgajEJ+GVZJRMASRUlkz8xv5LJH6uUTCpzLFKYb0GVTE7OSib3\n0q5kMggYDxxi+zZJJ5O2Ir9dPLiWa150+zVwGAMGLN7FpQVBsDAyu/sFvRuZ3/ZfwOeBe/P3JKRb\nO8cDF0nan5QutVvuu5IUQfkI6VbU5HonaFYD15+VTIYCT9q+LQ+9mGTgILvmtp+ucs2r5z6D5HEy\naMiKkSYQBEGv0SgJLts3k/KUO2Lr6gYn1/GgrpyjWQ3cdaSk5y/YPrdKyeTfJCWTG4pblLQrmbxA\nUjL5uaQRpC3KPYFf5LkrSiYXUlAykfSYpF1t/yEbpLG250v0tv2JMheQIyXfylGfc5VMgNckPSFp\nHdsPkT7IB/JhnbnmnTJowMAyywmCIGgIrSTV1ZQGrp8rmUBKVjw/R1A+Srur3Zlr3imjFh9eb0gQ\nBEHDaAYJrrKEkkmLs+qyY+MDDIKgFI+/eE+3lUw+vOKWpb9zbp11Q59qCTalBxeUZ9khS/X1EoIg\nWIhoJacoDFyLM0TxEQZB0Hu00hZlryR6S7KkEwvvj5R0bG+cu4O1vNHg+Q6W9Ei+xhGF9qUlXZqT\n0W+XtH6hb2ZOQp8uaVqh/VhJs3L79CwuGgRB0DREwdP5eRf4rKT/rWg1tiINlOqCnJTewWlOsv2T\nsmtaemAUPA2CoPeY40YVzOl5esvAzSZFOR4BfLPYkUU2zwJGkBQ+JgOvAvcAq9luUyoMOgNYnZQL\ndyowkpTsd4DtGZLOBt4mCXYuB+wHfAH4MHCb7X0L5zyJVGj0GWAP289LWqPGvO/kef8BfK24ftt3\n5Tmrr3kMKSqSPM9oSaNsP9ulv1wdVhwYSd5BEPQerXQPrje1KE8F9spajEV+AZxjeyxwPvBz268C\n04Et8pjtgGtsv08ylIfY3hg4kiSpVWFpkkE7gpRTdhJJ9msDSZUk7opU1wdJVb6/k9trzVuR6prH\nuNWhItVFlVQXpOTya7Pu5YFVxx2ctzXPUqpIMB+SDpQ0TdK0Ga8/2oUlBUEQdI+o6N0BOZn6XOBQ\nkqdV4cNkQwCcR7ug8e9JOWo3AHuQcuLqSWr9JefQ3Qs8a/teAEn3k/Qrp9P3Ul0Am9meJWk54K+S\nZti+ETgNOI5kAI8jJbfvVz1xUcnk2FX3aoat7iAIFhJa6Qunt0PwfgbcCUwpMfYy4IdKNdI2Jinz\nL05tSa1383Nb4XXlfWfX2ttSXdielZ+fk3QpMJGkdDJ3+1LSr0n39mqy8pw+TTMJgmAhoy22KDsm\nS2pdxLyqHreQPDRIaiI35bFvAP8i1U673PacbDQek7QrJMORFfm7QkWqCwpSXWXntf0J2+NqGbc8\nx/CsVAIFqS6lcj9L5jGLk+4FVgqhFqvT7lRpD4IgaBYiirI2J5LK01Q4hFQ65uu0B5lU+D3wB1IF\ngQoLJKlVoK+lukYBl+at0EHA72xfnftOyPcKTRKV/lK98w/s+/9DQRAsRLRSFGVIdbU4/1pxp/gA\ngyAoxSazLu32PY21R04o/Z3z8PPTQqorCIIgaA2aYeuxLL1i4CTNIUUSDiblxJ1LSmjudV9X0hu2\nl2jgfAcDhwNrACMryds5xP+s3P4OsJ/tyr22maTyPnOA2bYn5PZlSNuyo0lblLvZfrnW+ZdZ+q1G\nXUoQBEFdWinIpLc8uLcrEYo5NP53wFK056C1BL2gZHI0cJ3t43O5n6OBo2qtaeyjD3XxKoIgWFh5\ns/6QurSSB9erUZSQQuOBA0kJzZI0UNKPJf0rJzjPDayQdFTWbLxb0vG5bQ1JV+ck6Zuy8UDS2ZJO\nk/RPSY9KmpSTpR/MaiQU5j1J0v2SrpM0ssS8p0u6jfYcveL13GV7ZgeXOoaU2oDtGcBoSaPq/Hl2\nAM7Jr88BdqwzPgiCoFeZ4zmlH31Nn9yDs/2oUpXu5Uhf6q/a3kTSIsA/JF0LrJv7NrX9Vt6+g5Tg\n/GXb/5a0KUlxZKvcV1Ey2Z6UR/dfpBD9f0kaZ3s67UomR0g6huRFHlxn3oqSSVc+sYqSyU1VSibP\n0q5kYuBXOXEbYJTtp/PrZ0gRlzUZvkhIdQVB0Hu0UmBiMwSZbAOMlVTJTRsGrAV8DJhi+y1IOXQL\ngZLJXPJ1dPg/Kct7Hb0+GB0AAAaNSURBVAiw4pKrsczQunYwCIKgITSDBFdZ+sTASVqd9GX/HCCS\nBuQ1VWM+0cGh9RRHWlrJBHhW0vK2n85J3891Mvdcqa6xH/hw6/xvC4Kg5QkPrgb5ntfpwCnZS7kG\n+Iqk622/L2ltYBbwV+AYSedXtiizF/eYpF1t/yEbjrG2u5LoXVEyuZCCkknZeW13ZHg7us7hwFu2\n36NKyQQYYPv1gpLJ9/JhlwH7kLy/fYA/1zvPyEFLlllOEARBQ4goyvlZLG/VVdIEzgN+mvt+Q9o+\nvDMblueBHW1fnVU9pkl6D7iSFJnYn5VMjgcukrQ/8DiwW73zD9LA+lccBEHQIFopijKUTFqcT6z8\nqfgAgyAoxTVPXNVtZZGRw9Yp/Z3z/KsPhZJJsOAsNyAqegdB0Hu0klMUBq7FWZcwcEEQ9B6tdA+u\nVxK9Jc2RND0nV98t6b8l9XqSeV7LGw2e72BJj0iypBGF9qUlXZqT12+XtH6hb2ZOYJ8uaVqh/fe5\nbXoeM72Raw2CIOgutks/+pqQ6uoC6mGpLtuVgBcknQi8Wm9NH4iCp0EQ9CKRB1eDnPt1IEld5FiS\nF3k8qebbIsCptn8FSaoL2JuUx3aV7aMlrUEyFiOBt4ADbM/IclxvAxuRFFL2A75AUja5zfa+lTVI\nOokUnv8MsIft5+vM+06e9x/A16qu5648Z/WljsnXRZ5ntKRRxardnZGjSXejXUmlU5Z/v9reBkEQ\n9BzN4JmVJaS6mkuqq8LmJCWWf3fhfEEQBD1OKxU8bYYgk5Dqml+qa0/ggs4mLkp1HbLkBLZdbI0u\nLi0IgmDBaKUgk5Dqai6pLiQNInl+G9eYe65U15ObbuVOFL2CIAgaTittUfZ6JGO1VBdQkeoanPvX\nzhJWfwUmSxqa25fJRuMxSbvmNknasItLqEh1QUGqq+y8tj9he1wt45bnGC5pSH47j1SXpCXzmIpU\n132FQz8GzLD9ZBevKwiCoMdxF/71NSHV1VxSXQB7UGN7spqhK/R9zaUgCBYeWsmDC6muFuelnbaI\nDzAIglIsc+nfu51XNGjIiqW/c2a/N6tP85jCwAVBP0TSgR1E5wbBQkWfqIkEQdDjHNjXCwiCviYM\nXBAEQdAvCQMXBEEQ9EvCwAVB/yTuvwULPRFkEgRBEPRLwoMLgiAI+iVh4IIgCIJ+SRi4IAhKk7VS\ng6AlCAMXBL1Argc4Q9L5kh6UdLGkoZKOkfQvSfdJOiPL1SHpUEkP5IrwF+a2LQoV3+8qaJp+Pc9x\nj6TvFs73oKRfS7pf0rWSFst9m+Sx0yX9WNJ9uX1gfl+Z60u5fZKkmyRdBjyQ9VSvkHR3XvfuHVxy\nEPQ5YeCCoPdYB/il7fWA14CvkkTHN7G9PrAYsF0eezSwke2xwJdz25HAQbnqxebA25K2IZWXmgiM\nAzaW9NE8fi1SAeEPAq8AO+f2KcCX8jxFMdP9ybUZgU2AAyStlvvGA4fZXhv4JPCU7Q3zuotaqkHQ\nNISBC4Le4wnb/8ivfwtsBmwp6bZcw3Ar4IO5/x7gfEl7kwTKIVWU/2kW+B5uezapGsU2pHqDd5IK\nBa+Vxz+Wi/wC3AGM/v/t3TFrVEEYheH3qIVCRMVKg0HRQouAnVhYWGiTNoWIiGglFpZqY6OgIZ0g\nFkGr4C8QgjYSUIKmXCIkjdhZWEQMgogei5mVTVhR0dyV63mq4Q4zDAPLx+zO3iNpO7DV9lx9/rBn\nfSeBs/XF6C+AnT1zvbT9urY7wAlJE5KO2X7/J5sSsV5S4CKas/Y/OaYkx4/bHgWmgM21bwy4Szk5\nzUvaZPs2JXppC/Bc0kFKnuKtGuF02PYB2/frHL2ZiF/4eXpIN5uxO9c+209q3/dMRNtLdV0d4Kak\n67+8AxENSoGLaM6IpKO1fRp4Vtvvaqr8OICkDcAe20+BK5SU+yFJ+213bE8A85TT2mPgfB2PpOGa\nFN+X7WXgg6Qj9dGpnu4fZTOuImk38NH2NDBJKXYR/5zciIpoziJwSdID4BVwD9hBCbx9SylaABuB\naUnbKKeqO7aXJd2QdJySUL8AzNj+JOkQMFfvp6wAZ1j929paF4ApSV+BWaD7FWPfbMY+40eByTr+\nM3Dxt3ciogF5k0lEAyTtBR7VSxkDJWnI9kptXwV22b484GVF/HU5wUX8f8YkXaN8/t8A5wa7nIj1\nkRNcRES0Ui6ZREREK6XARUREK6XARUREK6XARUREK6XARUREK6XARUREK30DSshMhEuS2UwAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "3-urzoOYCKa_", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 298 + }, + "outputId": "cf6a02ed-c705-48d1-ef32-805cd9329f32" + }, + "cell_type": "code", + "source": [ + "flights_sns = flights.pivot('month', 'year', 'passengers')\n", + "ax = sns.heatmap(flights_sns)\n", + "\n", + "# pixel art flame turned sideways anyone?" + ], + "execution_count": 142, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmcXFWZ//HPN93ZQxLCvkQCDIuA\nEHZwXIKIC6KAisCorDNxBUGZ0XH8qbg7iigoIkYQBBEQEVSGZWIC4gIECAmbwEDYRHYiAbJ1P78/\n7umk6PRy01Wnum7n++Z1X33r1q2nTlfofvqce+55FBGYmZnlNGywG2BmZkOfk42ZmWXnZGNmZtk5\n2ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaWXftgN2AoGTlqcpblGIYpz98E64+ZkCXu\nOiPGZ4kLMKl9bJa4I9SWJe5mw8ZliQuweYzIEneTZVnCsl7H8jyBgQltS7PEnbLNM1niAmww6zrV\nG2PZ0w+U+p0zfN0t6n6vejnZmJlVVWfHYLegNCcbM7Oqis7BbkFpTjZmZlXV6WRjZmaZhXs2ZmaW\nXcZJF43W8lOfJS0a7DaYmbWkzo5yWwmSJkr6paR7JN0taW9JkyRdK+m+9HXtdK4knSbpfknzJO3S\nX/yWTzaDQZJ7fGbW+qKz3FbO94CrImJbYCfgbuAzwMyI2AqYmR4DvB3YKm3TgR/2F7wSyUbSOEkz\nJd0qab6kA9PxKSkD/1jSnZKukTQ6PTdb0m5pf11JC2pe84cU61ZJr03Hp6XjVwB3SfqSpBNq2vBV\nSZ9o9vduZtarzs5yWz8kTQDeAPwEICKWRsTzwIHAuem0c4GD0v6BwHlR+AswUdJGfb1HJZINsBg4\nOCJ2AfYBTpHUdZPSVsAPImJ74HngPf3EehLYL8U6FDit5rldgE9ExNbA2cARAJKGAYcB53cPJmm6\npDmS5nR0eMTPzJonorPUVvt7Km3Tu4XaHHgKOEfSbZJmSBoLbBARj6dz/g5skPY3AR6pef2j6Viv\nqjJcJOBrkt4AdFJ8U13f9IMRMTft3wJM6SfWcOD7kqYCHcDWNc/dFBEPAkTEAknPSNo5vddtEbHK\n7cQRcRZwFuRbQcDMrEclpz7X/p7qRTvFH9vHRcSNkr7HyiGzrhghacC/46qSbN4PrAfsGhHL0pDY\nqPTckprzOoDRaX85K3tuo2rOORF4gmJMchhFr6nLi93edwZwFLAhRU/HzKx1dDRsbaFHgUcj4sb0\n+JcUyeYJSRtFxONpmOzJ9PxjwOSa12+ajvWqKsNoE4AnU6LZB9isxGsWALum/fd2i/V4FBPUPwj0\ntSjWZcDbgN2Bq1e30WZmWTVogkBE/B14RNI26dC+wF3AFcCR6diRwOVp/wrgiDQrbS9gYc1wW49a\numeTZoUtAS4AfiNpPjAHuKfEy78NXJzGJn9Xc/wM4FJJRwBXsWpvZoWIWCppFvB8RFRnESIzWzM0\ndgWB44ALJI0AHgCOpuiQXCzpWOAh4H3p3CuB/YH7gZfSuX1SROteZpC0E/DjiNhjkN5/GHArcEhE\n3Nff+V71ueBVn1fyqs8redXnV2rEqs9L7ri21O+ckTvsN+irPrfsMJqkDwMXAp8bpPffjiJrzyyT\naMzMmq5BU5+boWWH0SLiTODMQXz/u4AtBuv9zcz6E52ZuqEZtGyyqaL2YXmGYkYMy/PP1JZp6Oj5\nZS+y/og8Q3S5LOpY0v9JA3BnxxK2HD4xS+xl5BkCXzQsz4jLomHtjO/M02Z1DM8Sd9FTo/o/aYA2\n6P+U/rVIr6UMJxtruKolmpxyJZoqypVo1mhe9dnMzLJzpU4zM8vOPRszM8vO12zMzCy7ChVPc7Ix\nM6uqCvVsBv2mTkkdkubWbFP6OHeapN82r3VmZq0roqPU1gpaoWfzckRMbWRASW31rGUmqT0iqtM/\nNbM1k3s29ZHUJulbkm5O9a0/VPP0eEm/k/RXSWem9cuQtEjSKZJuB/aWtEDSuum53STNTvt7SPpz\nKhD0p65VTiUdJekKSb8HZko6T9JBNW26oKtCqJlZS2hsWeisWqFnM1pSV/GzByPiYOBYiiWrd5c0\nEvijpGvSOXsA21GsQHoV8G6K2gtjgRsj4lMAKwt5ruIe4PURsVzSm4GvsbK65y7AjhHxrKQ3UtS+\n+XUqmfpaVi61vUJaVXo6wIjhk2hvX2ugn4OZ2eqpUM+mFZJNT8NobwF2lNRVh2YCRfnnpRTVNB8A\nkHQh8DqKZNMBXFri/SYA50raCgiKyp1dro2IZwEi4jpJZ0hajyIZXdrT0FptBbyxY6b4Fmkzax7P\nRqubKMqTvqJgmaRpsMqCUF2PF3e7TtNbpc4vA7Mi4uA0GWF2zXPda9ucB3wAOIwS9RrMzJqqRYbI\nymjJazYUVTE/Imk4gKStJXUVMtlD0ubpWs2hwA29xFjAykqd76k5PoGV5UuP6qcdPwVOgBWrQJuZ\ntY4KlRho1WQzg6Ik6a2S7gB+xMpe2M3A94G7gQcpSjf35GTge5LmUAyxdflv4OuSbqOfnl1EPJHe\n55wBfh9mZvlUKNkM+jBaRKxSyjAiOoHPpq3WbOANZeJExB+ArXs478/djn8uHf8pRU9mBUljKK4V\nXdjnN2FmNhgqNIw26MmmVaWZaj8BTo2IhYPdHjOzVXiCQPVFxP8Cmw12O8zMetUiQ2RlONmYmVWV\nh9HWTGOGj8wSd2RbnpK3644YnyXu6GF52gswpS3PTbOdeSpkszEj8gQGtshUfn6zeDlL3OHD8v1i\n3HiLPCPdw8e0xrpivXLPxszMsnOyMTOz7KI6i5Y42ZiZVdVyz0YzM7PcPEHAzMyyq9A1m1ZdrqZf\nkkLS+TWP2yU91ahKnpJmS9qtEbHMzLKIKLe1gCr3bF4EdpA0OiJeBvZj5QKbpbgip5lVmns2TXMl\n8I60fzg1a5iVrciZjn1a0nxJt0v6Rk38QyTdJOleSa9v0vdkZlaOF+Jsml8An09DZzsCZwNdSaFs\nRc63AwcCe0bES5Im1cRvj4g9JO0PfAF4c/cG1FbqHDdqfUaNmNj479LMrAfR0eI3ndaodLKJiHmp\nANrhFL2cWqUqclIkkHMi4qUU89ma836Vvt4CTOmlDSsqda43YZvWGBw1szVDi/Rayqj6MBrAFcC3\nWbUMQFdFzh2Ad/LKap3dK3L2Zkn62kHFE7OZDUHRWW5rAUMh2ZwNnBwR87sdL1uR81rg6FS7hm7D\naGZmraszym0lSFqQrl3PTUUnkTRJ0rWS7ktf107HJek0SfdLmidpl/7iVz7ZRMSjEXFaD0+VqsgZ\nEVdR9I7mSJoLnJSnpWZmDdb4CQL7RMTUiOi67eMzwMyI2IpiQtVn0vG3UxSW3IrimvUP+wtc2aGh\nXip8zqao5rlaFTkj4hvAN7odm1az/zS9XLMxMxs0+ScIHAhMS/vnUvx+/XQ6fl5EBPAXSRMlbRQR\nj/cWqPI9GzOzNVbJno2k6ZLm1GzTe4gWwDWSbql5foOaBPJ3YIO0vwnwSM1rH03HelXZno2Z2Rqv\n5PWY2lmzfXhdRDwmaX3gWkn3dIsRkgY849Y9GzOzqmrgbLSIeCx9fRK4DNgDeELSRgDp65Pp9MeA\nyTUv35R+VnBxz6aBItMaRMs784zLvtSxpP+TBqBN+f6GyTWJc2mm6aHDpCxxATrIE3tpZ55/v1xx\nAZa9nKfU6vhdR/V/0mAq2bPpj6SxwLCIeCHtvwX4EsXkqSMprmkfCVyeXnIF8HFJvwD2BBb2db0G\nnGzMzCorGndT5wbAZSr+OGoHfh4RV0m6GbhY0rHAQ8D70vlXAvsD9wMvAUf39wZONmZmVdWg2WgR\n8QCwUw/HnwH27eF4AB9bnfdwsjEzq6oGDaM1g5ONmVlVVWhtNCcbM7OqqlDPZkhPfZZ0UKroue0A\nXjtD0nZpf4GkdRvfQjOzOnghzpZxOHBD+lqapLaI+NeIuCtPs8zMGqCBC3HmNmSTjaRxwOuAY4HD\n0rFpkq6X9DtJf5V0plTcFCJpkaRTJN0O7C1ptqTden8HM7PBFcs7Sm2tYMgmG4qF4q6KiHuBZyTt\nmo7vARwHbAdsCbw7HR8L3BgRO0XEDWXfpHbNocVLFzaw+WZm/XDPpiUcTlE2mvS1ayjtpoh4ICI6\nKAquvS4d7wAuXd03iYizImK3iNht1IgJ9bbZzKy8Cl2zGZKz0VIBtDcBr0kLx7VRrGj6u/S1Vtfj\nxSkBmZlVQ4v0WsoYqj2b9wI/i4jNImJKREwGHgReD+whafN0reZQigkEZmaVE51RamsFQzXZHE6x\nammtS9Pxm4HvA3dTJKDu55mZVcPyjnJbCxiSw2gRsU8Px06TNA84KSIO6OH5cd0eT6vZn5KhmWZm\n9WmRXksZQzLZmJmtEZxsWlNEzKaooW1mVnm5amjlsEYlGzOzIcU9mzXT0o7lWeJ2ZFrZdcToPP/8\nwzJVkARYlumegRGZqosOy/i7oG2VWfyNMWJYps+4Ld+F6rHrLc0SV6PH9X/SYHKyMTOz3GJ5a9yw\nWYaTjZlZVVUn1zjZmJlVVavcsFmGk42ZWVU52ZiZWXYVGkYbqsvVrJAqdZ5f87hd0lOSfjuY7TIz\nq1eV1kZbE3o2LwI7SBodES8D+wGPDXKbzMzqFstbI5GUMeR7NsmVwDvS/uEUdWwAkLSHpD9Luk3S\nnyRtk45fL2lqzXk3SNqpqa02M+tLZ8mtBawpyeYXwGGSRgE7AjfWPHcP8PqI2Bn4PPC1dPwnwFEA\nkrYGRkXE7d0D11bqXLr8Hxm/BTOzV6pQ7bQ1I9lExDxgCkWv5spuT08ALpF0B3AqsH06fglwgKTh\nwDHAT3uJvaJS54j28Rlab2bWiwr1bNaEazZdrgC+DUwD1qk5/mVgVkQcLGkKaaHOiHhJ0rXAgcD7\ngF2b2FYzs361Sq+ljDUp2ZwNPB8R8yVNqzk+gZUTBo7q9poZwG+AP0TEc9lbaGa2GiLPcoxZrBHD\naAAR8WhEnNbDU/8NfF3SbXRLvhFxC/AP4JwmNNHMbLVU6ZrNkO/ZdK/AmY7NZuVw2Z+BrWue/lzX\njqSNKRLyNVkbaWY2AK2SSMpYY3o2q0vSERSz1v4rokr/pGa2xgiV21rAkO/ZDFREnAecN9jtMDPr\nTZX+DHayMTOrqOhsjV5LGU42DTRm+Mg8cdtHZYnbrrYscTduXytLXIBxyvO/7KRMPwpbLcv3y2CH\nkQuzxN1o6zw3J7eNy/dZDN9iUpa4bXu29h0PnR2N/UwltQFzgMci4gBJm1PcFL8OcAvwwYhYKmkk\nxcjPrsAzwKERsaCv2L5mY2ZWURlmo30CuLvm8TeBUyPin4DngGPT8WOB59LxU9N5fXKyMTOrqOhU\nqa0MSZtSrCE5Iz0W8Cbgl+mUc4GD0v6B6THp+X3T+b1ysjEzq6iIclvtGo5pm95DuO8C/8HKBW7W\nobgRvuvW0UeBTdL+JsAjRRtiObCQV67MsgpfszEzq6iyvZaIOAs4q7fnJR0APBkRt3RbYaVhnGzM\nzCqqgRME/hl4l6T9gVHAeOB7wERJ7an3sikrl/Z6DJgMPCqpnWLZr2f6eoPSyUbSaylWTl7xmnQv\nSkuTtKinVQTMzKquUVOfI+I/gf8ESD2bkyLi/ZIuAd5LMSPtSODy9JIr0uM/p+d/HxF9VnIrlWwk\n/QzYEpgLdHS1D9/0aGY2aCL/6gCfBn4h6SvAbRR1vkhffybpfuBZ4LD+ApXt2ewGbNdf5mpVNZn6\ngPT4+8CciPippAUUsyreCQwHDomIeySNBU4HdkjHvxgRl/cU38xsMORYQaDb2pEPAHv0cM5i4JDV\niVt2NtodwIarE7hino6IXYAfAielY/9F0TXcA9gH+FZKQGZmLaEzVGprBX32bCT9hmK4bC3gLkk3\nAUu6no+Id+VtXtP8Kn29BXh32n8LxQWzruQzCngVr7zhiTSFcDrAWqM3ZMyIiflba2ZGU4bRGqa/\nYbRvN6UV+S3nlb247uu/dCXQDlZ+JgLeExF/7Stw7ZTCDSe+upLDjGZWTY1erianPofRIuK6iLgO\n2L9rv/ZYc5rYEA8B20kaKWkisG+J11wNHNd1V6yknXM20MxsdTVyBYHcyl6z2a+HY29vZENySPO/\nl0TEI8DFFNeeLqaYVdGfL1NMDJgn6c702MysZQylazYfAT4KbCFpXs1TawF/ytmwBtke+D+AiPgP\niqUYXiEiptTszwGmpf2XgQ81o5FmZgMxlK7Z/Bz4H+DrwGdqjr8QEc9ma1UDSPowcDxwwmC3xcws\nhyrdjNJnsomIhRQLrB2e6hxskF4zTtK4iHi4CW0ckIg4EzhzsNthZpZLqwyRlVF2BYGPA18EnmDl\niqAB7JinWWZm1p/OFrn4X0bZFQROALaJiD4XWlvTjW4bkSXuhPYxWeJObBudJe6YTNU0IV9FzVct\nz1NtY5thi7LEBVhv8gtZ4o589fgscYdtkKeaJsCwHfNMFm3fs7VvJRxyPRuKugV5atCamdmADKUJ\nAl0eAGZL+h2vXEHgO1laZWZm/RqKPZuH0zYibWZmNsgqNBmtXLKJiJMBJI1Lj/MNRJuZWSkdnXmu\nNeZQqqWSdpB0G3AncKekWyRtn7dpZmbWl86SWysomxbPAj4ZEZtFxGbAp4Af52tWHpL67JFJmi1p\nt2a1x8ysHoFKba2g7DWbsRExq+tBRMx2bRczs8HVWaGLNmV7Ng9I+n+SpqTtcxQz1CpH0jRJv615\n/H1JR3U75xhJ3615/G+STm1iM83M+tWJSm2toGyyOQZYD7g0besCR+dqVAu4GHinpOHp8dHA2YPY\nHjOzVVRpGK1sstkSmJzOH0FRD+b6XI0abGm23e+BAyRtCwyPiPk9nStpuqQ5kua8sNgLLJhZ83Sg\nUlsrKHvN5gLgJIp6MK0yuWGg+qva2WUG8FngHuCc3oLVVurcfJ2dKjSCamZVV6VfxmWTzVMR8Zus\nLWmeFVU7gdEUvbQbup8UETdKmgzsghccNbMWNBSTzRckzQBm8srlan6VpVUZ1FbtlNRVtfNB+q7a\neTEwNSKea0YbzcxWR6tcjymjbLI5GtiWokxybYmByiQbylXtnNbt0OsAz0Izs5ZUoQoDpZPN7hGx\nTdaWZLS6VTslTQRuAm6PiJk522ZmNlCtMq25jLLJ5k+StouIu7K2JpPVrdoZEc8DW+drkZlZ/ToG\nuwGroWyy2QuYK+lBims2AiIifOHczGyQdGro9WzelrUVNqSMoS1b7JGZ6ncszfQzu2jp8P5PGqDl\nS/Ks+KtheT4Mjcu4wtWoPNVs48Xns8QFilvj61Sley3Klhh4KHdDzMxs9QzFqc9mZtZihuJsNDMz\nazGtshRNGU42ZmYV5Z6NmZllV6VrNtUpYG1mZq8QJbf+SBol6SZJt0u6U9LJ6fjmkm6UdL+kiySN\nSMdHpsf3p+en9PcelUo2kg6SFGnZ/2a95wmS8syrNDOrQ6fKbSUsAd4UETsBU4G3SdoL+CZwakT8\nE/AccGw6/1jguXT81HRenyqVbIDDKVZoPryJ73kC4GRjZi2ns+TWnygsSg+Hpy2ANwG/TMfPBQ5K\n+wemx6Tn95X6vsO0MslG0jiKhTGPBQ5Lx3ot8Sxpf0n3SLpF0mld50n6oqSTal5zRyp1PVbS71I3\n8g5Jh0o6HtgYmCVpVvO+WzOz/nWo3FZb5DFt07vHktQmaS7wJHAtxcLFz0fE8nTKo8AmaX8T4BGA\n9PxCYJ2+2lqlCQIHAldFxL2SnpG0a28nShoF/Ah4Q0Q8KOnCEvHfBvwtIt6RYkyIiIWSPgnsExFP\n9/Je04HpAOuM2YS1RvX5eZuZNUzZCQK1RR77OKcDmJoWIr6MYqX/hqlMz4Zi6OwXaf8X9D2Uti3w\nQEQ8mB6XSTbzgf0kfVPS6yNiYZlGRcRZEbFbROzmRGNmzdSoYbRaaSHiWcDewMRUCwxgU+CxtP8Y\nMBlW1AqbADzTV9xKJBtJkyjGDmdIWgD8O/A+ikVPy5R4rtVjWeiIuJeiKud84CuSPl9/y83M8mng\nbLT1Uo8GSaOB/YC7KZLOe9NpRwKXp/0r0mPS87+PiD7fqhLJhuKb+VlEbBYRUyJiMkWVzWGkEs/p\ng9o3nf9XYIua6XiH1sRaQJFUkLQLsHna3xh4KSLOB77VdQ7wArBWpu/LzGzAGjgbbSOKa9PzgJuB\nayPit8CngU9Kup/imsxP0vk/AdZJxz8JfKa/N6jKNZvDWXVq3aUUEwVWKfEcES9L+ihwlaQXKT68\n2tcdIelO4Ebg3nT8NcC3JHUCy4CPpONnpTh/i4h9Gv6dmZkNUKNu6oyIecDOPRx/ANijh+OLgUNW\n5z0qkWx6+iUfEafVPFylxDMwKyK2TdPxfgDMSa97GXhLD+cvAK7u4X1OB04fQLPNzLKqUvG0qgyj\nDcS/pWl8d1JcvPrRILfHzKyhGjiMll0lejYDERGnUtzZamY2JFVpbbQhm2wGw8sdS7PEHdmWJ+6L\nnXniPqqXssQFWDaszITD1beoLU9FzQntI7PEBRjx8NqZIj+XJ+wf78kTF5iw58NZ4sY287LEBRjx\nsV36P6kfQ65Sp5mZtZ7OCqUbJxszs4qq0gQBJxszs4ryNRszM8uuVWaaleFkY2ZWUb5mY2Zm2VUn\n1WS+qVPSf6USo/MkzZW05wBiTJP02ga2aYGkdRsVz8xssORY9TmXbD0bSXsDBwC7RMSS9At+xABC\nTQMWAX9qYPMGRFJ7TSEhM7NB1VGhvk3OYbSNgKcjYglAV/GxVPTsO8A44GngqIh4XNJs4Hbgjald\nx1BUjPsw0CHpA8BxwD3AmcCr0vucEBF/lPRFihWct0jPnQjsBbydovbCOyNiWXrNf0h6O/Ay8C8R\ncb+k9fqIu2WK+zDNLUltZtarVum1lJFzGO0aYLKkeyWdIemNkoZTLGr53ojYFTgb+GrNa8ZExFTg\no8DZEbGAIgGcGhFTI+IPwPfS492B9wAzal6/JUXdm3cB51MsxvkaiqTyjprzFqbj3we+m471FXc7\n4M0RsUqiqS23+tLS51f7QzIzG6hOotTWCrL1bCJiUerFvB7YB7gI+AqwA3BtsRgzbcDjNS+7ML32\neknju4r5dPNmiho2XY/HSxqX9v8nIpZJmp9iX5WOzwemdH+f9LVr/bS+4l6RVovu6ftcUW51w4mv\nbo1/VTNbI1TpF07W2WippvVsYHZKAB8D7oyIvXt7ST+PoeiN7ZXqKayQkkTXkF2npGU1leM6eeX3\nGj3s9xX3xV7aa2Y2aDyMBkjaRtJWNYemUpQZXS9NHkDScEnb15xzaDr+OoqhroWsWinzGoprN13v\nM3UAzTu05uufGxjXzKxpOohSWyvI2bMZB5yehsKWA/cD0ymGnE6TNCG9/3cpas4ALJZ0GzCcYoIA\nwG+AX0o6kCIZHA/8IJUvbQeup5hEsDrWTq9fwsoL/o2Ia2bWNK1yPaaMnNdsbgF6uj/maeANvbzs\n/Ig4oVuce4Edu513aLfHRMQXuz0e19NzETEl7X662/lPl4lrZtYqqpNqvIKAmVlluWczABExbbDb\nYGZWJVWaINAyyWYoWLR0cf8nDcDKSXWN1aY880OGZ4oL+Wa0LFGeH9u12kdniQuwrCNP7KUL8nzK\no9vyVV/RsDz3uI3vfCBL3EYJ92zMzCy3VplpVoaTjZlZRXkYzczMsuvMNMSeg5ONmVlFVSfVONmY\nmVWWpz6bmVl2VZqNlrVSZz0kbSrpckn3Sfo/Sd+T1GvxNUknSBpTIu6ixrbUzGxwLCdKba2gJZON\niqWWfwX8OiK2AramWGvtq3287ASg32RTZ7vcEzSzlhEl/2sFLZlsKAqgLY6Ic2BFqYITgWMkjZX0\nbUl3SJon6ThJxwMbA7MkzQKQdLik+em8b9YGl3SqpDslzUwVOpG0paSrJN0i6Q+Stk3HfyrpTEk3\nAv/dvI/AzKxvnSW3VtCqyWZ74JbaAxHxD4qyzP9KUQhtakTsCFwQEacBfwP2iYh9JG0MfJMiaU0F\ndpd0UAo1FpgTEdsD1wFfSMfPAo5LFURPAs6oeftNgddGxCe7N7S2Uuey5S804Fs3MysnIkptraCK\nw0LTgDMiYjlARDzbwzm7A7Mj4ikASRdQrDT9a4pEf1E673zgV6ki52uBS2oqdY6siXdJ6l2torZS\n57gxm7fGv6qZrRGqNButVXs2dwG71h6QNB54VYb3CorP4fmImFqzvbrmHFfqNLOW06jiaZImS5ol\n6a50ieET6fgkSdemiVrXSlo7HZek0yTdny5n7NLfe7RqspkJjJF0BICkNuAU4KfA1cCHui7WS5qU\nXlNb0fMm4I2S1k2vPZxiyAyK7/m9af9fgBvSEN2Dkg5JMSVpp4zfn5lZ3TqJUlsJy4FPRcR2wF7A\nxyRtB3wGmJkmas1MjwHeDmyVtunAD/t7g5ZMNlEMMh4MHCLpPuBeYDHwWWAGxbWbeZJup0gYUAxl\nXSVpVkQ8TvGhzAJuB26JiMvTeS8Ce0i6g+KazpfS8fcDx6aYdwIHZv42zczq0qhrNhHxeETcmvZf\nAO4GNqH4PXhuOu1coOva94HAeVH4CzBR0kZ9vUfLXrOJiEeAd/by9CfTVnv+6cDpNY8vBC7sIe64\n7sfS8QeBt/Vw/KjSjTYza6KyM80kTafogXQ5K11v7uncKcDOwI3ABumPd4C/Axuk/U2AR2pe9mg6\n9ji9aNlkY2ZmfSt7D03tRKa+pMlSlwInRMQ/aiZMEREhacAzElpyGM3MzPrXwGs2SBpOkWguiIhf\npcNPdA2Ppa9PpuOPAZNrXr5pOtYrJxszs4rqiM5SW3/Sqi0/Ae6OiO/UPHUFcGTaPxK4vOb4EWky\n1V7Awprhth55GK2BFi9fmiXu8s485XRHtfe61FxdRg4bniUuwOLO5VniLm3LU2J5ZFu+v+c62kb2\nf9KA5InblvGWkGEP5wm++IWXssSFlVNn69HApWj+GfggMF/S3HTss8A3gIslHQs8BLwvPXclsD9w\nP/AScHR/b+BkY2ZWUY0qnhYRNwDq5el9ezg/gI+tzns42ZiZVVR11g9wsjEzq6wqLVfjZGNmVlFO\nNmZmll2ZmWatoilTnyWFpFNqnrjMAAANKElEQVRqHp8k6YvNeO8e2uJKnWY2JLh42qqWAO+WtG6T\n3i8LV+o0s1ZSpXo2zUo2yymWSjix+xOSpkj6fVqmeqakV0maIOkhScPSOWMlPSJpeD8VNX8o6S+S\nHpA0TdLZku6W9NNu7+lKnWZWeY1cQSC3Zq4g8APg/ZImdDt+OnBuV9VN4LSIWAjMBd6YzjkAuDoi\nltF3Rc21gb0pktoVwKkUVT9fI2lqOidbpc7OTpe9MbPmqVLPpmnDQmlRt/OA44GXa57aG3h32v8Z\nK3sPFwGHUpQJOAw4o0RFzd+kxeLmA09ExHwASXdSlJKeS8ZKne0jNmmNf1UzWyN0lF73efA1+xrE\nd4FbgXNKnHsF8LVUHG1X4PcUvZLnI2JqL69Zkr521ux3Pe7te31Fpc5eznGXxcxaTqNWEGiGpi7E\nGRHPAhcDx9Yc/hNFzwWKAmZ/SOcuAm4Gvgf8NiI6GlRR05U6zWxI8Gy0vp0C1M5KOw44WtI8ioXg\nPlHz3EXAB1g57AX1V9R0pU4zGxI6I0ptrUCtcvFoKMh1zaZ9WFuOsGwwdmKWuOuMGJ8lLsCITLPP\n18606vMmbWOzxAXYNPKszjy5o7f1GOuTc9Xn7TONdE9aO9+qz1vecXXdH/S26+9e6lO958mb8/yj\nrgbfN2JmVlGt0mspw8nGzKyiqrRcjZONmVlFtcrF/zKcbBpoZHueCpUTR+YZ958wPE/ctdvGZIkL\n0K4816/WHZbnms3mma6rAGyY6drKRsvyVEPNORtpoykLs8Qds3GeKrmNEu7ZmJlZbq2yFE0ZTjZm\nZhVVpdnETjZmZhXlno2ZmWXX0elrNmZmlplno3UjqQOYDwynqG1zHnBqDMJUCkmLImJcs9/XzKzR\nfM1mVS93ragsaX3g58B4VtaSqQRJ7RGRZ16omdlqqtI1m6YvxBkRTwLTgY+n1ZXbJH1L0s2pWueH\nus6V9GlJ8yXdLukb6ZgrdZqZ4eJp/YqIByS1AetTrK68MCJ2lzQS+KOka4Bt03N7RsRLqa4NFIXK\nPhwR90nak6Ki5pvSc12VOt9FUQ/nn4F/BW6WNDUi5rKyUueJkj5P0bv6eD9xuyp1rnKHl6TpFMmT\nEcMn0d6+VsM+JzOzvniCwOp5C7CjpK4aMxOArYA3A+dExEtQ1MJp9UqdY8dMaY0/IcxsjVClYbRB\nSTaStgA6gCcBAcdFxNXdznlrDy/tr6KmK3Wa2RqjVYbIymj6NZt0jeRM4PtRfFJXAx+RNDw9v7Wk\nscC1FEXVxqTjk1yp08xspSoVT2tWshktaW4azvpf4Brg5PTcDOAu4NZUPfNHQHtEXEVx3WWOpLnA\nSel8V+o0M6NaZaFdqbOBcl2zybXq8zoj81TUXC/jJIlcqz6vn2nV523JExe86nOtHaY8mSVuzlWf\nJ112Xd3/gKNHb1bqd87LLz/kSp1mZjYwnS4xYGZmuVVpZMrJxsysoqqUbErfgeqtsRswvUpxq9hm\nfxb+LIbKZzEUtqZPfbYVplcsbs7YVYubM3bV4uaMXbW4uWNXmpONmZll52RjZmbZOdkMnrMqFjdn\n7KrFzRm7anFzxq5a3NyxK803dZqZWXbu2ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdk42ZmaW\nnRfibJJUCvvdwGSKktj3Aj+PokpovbHfChwEbJIOPQZcHkUBuoaT9PmI+FL/Z/b6+rcCmwIzI2JB\nzfFjIuLsOuIKOISi1PcvKYrjHQjcA5wZ0bj12CX9PiLeVGeMdSPi6ZrHHwD2AO4AfhwDvC9B0sHA\ndRHxbKqMewqwM0WRwk9FxKN1tPk7wKUR8ceBxugl7iTg48DfgJ8AnwX2Bu4GvhYRz9URex/gPbzy\nZ29GRNzfgHY39WevynyfTRNIOh44ALge2B+4DXgeOBj4aETMriP2d4GtgfOArl8imwJHAPdFxCcG\n3vJe3/PhiHjVAF/7NeB1wK3AO4HvRsTp6blbI2KXOtp1BrA+MAL4BzCSotrrO4AnBvpZSJrX/RDF\nZ/5XgIjYcYBxV3y/kj4HvB74OcX/K49GxIkDjHtXRGyX9i8C/gJcArwZeH9E7DeQuCneU8BDwHrA\nRcCFEXHbQOPVxL0SmA+MB16d9i8G9gN2iogBVc6V9HVgQ2AmRVJ4kCLZfJQiiV1SR5ub/rNXaYO9\nEuiasFH84LSl/THA7LT/KuC2OmPf28txUfwPP9C4/+hlewFYXudn0Z72JwJXAqemx/V+FvPT1+HA\nM8CI9LgdmFdH3CuA84Ftgc2AKcAjaX+zOuLeVrN/KzC2pv3z64j715r9W7o9N7fOz/i29HVr4P9R\nlFC/B/gCsHUdcefGyv9vH2tUm2s/x/T/wR/T/trAHXV+Fll+9obq5ms2zdM1ZDkSGAcQEQ9T/GKp\nx2JJu/dwfHdgcR1xnwe2iojx3ba1gMfriNseEcsBIuJ5it7NeEmXUPRI6tEVdxlwc0QsTY+XAwMe\nQouIdwGXUixFslMUQ3/LIuKhiHiojvaOlrSzpF0p/hh5sab99dQjni3pS5JGp/2DYcVw0sI64kIx\nRElE3BsRX46I7YH3AaMo/nAYqGGS1qYY6honaQqApHWo7/+LzjREB7Ax0AYQxbBcvaWSc/3sDUm+\nZtMcM4CbJd1IMVTyTYA0nv5snbGPAn4oaS1WduUnU/xSOaqOuOdR/OX+RA/P/byOuP8n6Y0RcR1A\nRHQAx0r6CsW4ej3+LmlcRCyKiLd1HZS0IbC0nsARcZmka4AvSzqW+hMjFEn7O2n/WUkbRcTj6Rfs\n8jrifhz4L9IwH3CipBeB3wAfrCMu9PALOiLmAfOA/6wj7tcpekgAxwAzJAWwHXByHXG/Btwm6V5g\nG+AjsOJn7/Y64kK+n70hyddsmkTS9hRj0XdExD39nT+A+BtSc5EyIv7e6PdohPTXNhHxcg/PbRIR\nj2V4z7EUQ1RPNijeTsDeEXFmI+L1EL8NGBkRLzUg1gSK3uQz9bcMupJ5I2L1ELuN4nfSckntwFSK\n/5fr6Ul3TT7YArg/9aYbqio/e4PNyWaQSPpoRJyRIe44ivH0Bxr5g1W1uDljO27+2FWIK2kExXBq\npMf7ALsAd4Zno63C12yaQNInu22fAr7U9bjO2GfU7L+OYnrrKcB8SfuvKXFzxnbc/LGrFje5mWKS\nC5L+HfgqMBr4VJoFZ7UGe4bCmrBRzOC6CPg8xaydLwDPde3XGfvWmv1ZwC5pfwtgzpoSt4ptrlrc\nKrY582dxR83+HGB02q9r9uNQ3dyzaY7tKXqRY4FvRcTJwHMRcXLab5TxEXErQEQ8QON6rlWLmzO2\n4+aPXZW4/5C0Q9p/mmJGHhTJxr9bu/FstCaIYorzIZIOBK6VdGoDw2+bbjoUMEXS2hHxnKRh1Ddj\nqmpxq9jmqsWtYptzfhYfBi6QdDvwJDBH0vXAayhmwVkNJ5smiojLJc2kGD4b8JIh3by62+MX09dJ\nFMN2a0rcnLEdN3/sqsUlIuZJ2gV4C8Wkg9spfq5PjAyz3qrOs9HMzCw7jys2gaRx6Y7uOyUtlPSU\npL9IOqpVY1ctbhXbXLW4VWxzFT+Loco9myaQdDlwGfC/FEt7jAV+AXyO4iawz7Za7KrFrWKbqxa3\nim2u4mcxZA32dLg1YQNu7/b45vR1GHBPK8auWtwqtrlqcavY5ip+FkN18zBac7yo4oYyJL2LtB5a\nFPVV6l0MMFfsqsXNGdtx88euWtzcsYeewc52a8IG7AjcRHEj5w2kpdgpaoIc34qxqxa3im2uWtwq\ntrmKn8VQ3Tz1uQmiWBV3jx6OPyXphVaMXbW4OWM7bv7YVYubO/ZQ5AkCg0x1VL0crNhVi5sztuPm\nj121uLljV5V7Nk2gVcsKr3gK2KAVY1ctbs7Yjps/dtXi5o49FDnZNMcGwFspxnZrCfhTi8auWtyc\nsR03f+yqxc0de8hxsmmO3wLjImJu9yckzW7R2FWLmzO24+aPXbW4uWMPOb5mY2Zm2fk+GzMzy87J\nxszMsnOyMTOz7JxszFqEpLbBboNZLk42ZgOQlpY/oebxVyV9QtK/S7pZ0jxJJ9c8/2tJt6Tl6KfX\nHF8k6RQV1R73bvK3YdY0TjZmA3M2cASAihLDhwF/B7aiWMJkKrCrpDek84+JiF2B3YDjJa2Tjo8F\nboyInSLihmZ+A2bN5PtszAYgIhZIekbSzhQ3990G7E5RIvi2dNo4iuRzPUWCOTgdn5yOPwN0AJc2\ns+1mg8HJxmzgZgBHARtS9HT2Bb4eET+qPUnSNODNwN4R8VK64W9UenpxRHQ0q8Fmg8XDaGYDdxnw\nNooezdVpO0bSOABJm0haH5gAPJcSzbbAXoPVYLPB4p6N2QBFxFJJs4DnU+/kGkmvBv4sCWAR8AHg\nKuDDku4G/gr8ZbDabDZYvFyN2QCliQG3AodExH2D3R6zVuZhNLMBkLQdcD8w04nGrH/u2ZiZWXbu\n2ZiZWXZONmZmlp2TjZmZZedkY2Zm2TnZmJlZdv8feIFhH4SGn0MAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "pgVeMQz7DCag", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From c0781d3596743c394f119e869ee6451702591246 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Wed, 14 Nov 2018 17:58:30 -0500 Subject: [PATCH 02/12] Created using Colaboratory --- ..._123_Make_explanatory_visualizations.ipynb | 1112 ++++++++++++++++- 1 file changed, 1056 insertions(+), 56 deletions(-) diff --git a/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb index 94dbed8..ee04309 100644 --- a/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb +++ b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb @@ -1,58 +1,1058 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_Lambda School Data Science_\n", - "\n", - "# Choose appropriate visualizations\n", - "\n", - "\n", - "Recreate this [example by FiveThirtyEight:](https://fivethirtyeight.com/features/al-gores-new-movie-exposes-the-big-flaw-in-online-movie-ratings/)\n", - "\n", - "![](https://fivethirtyeight.com/wp-content/uploads/2017/09/mehtahickey-inconvenient-0830-1.png?w=575)\n", - "\n", - "Using this data:\n", - "\n", - "https://github.com/fivethirtyeight/data/tree/master/inconvenient-sequel\n", - "\n", - "### Stretch goals\n", - "\n", - "Recreate more examples from [FiveThityEight's shared data repository](https://data.fivethirtyeight.com/).\n", - "\n", - "For example:\n", - "- [thanksgiving-2015](https://fivethirtyeight.com/features/heres-what-your-part-of-america-eats-on-thanksgiving/) ([`altair`](https://altair-viz.github.io/gallery/index.html#maps))\n", - "- [candy-power-ranking](https://fivethirtyeight.com/features/the-ultimate-halloween-candy-power-ranking/) ([`statsmodels`](https://www.statsmodels.org/stable/index.html))" - ] + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "LS_DS_123_Make_explanatory_visualizations.ipynb", + "version": "0.3.2", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "cells": [ + { + "metadata": { + "id": "nptHDjRKFfqG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "_Lambda School Data Science_\n", + "\n", + "# Choose appropriate visualizations\n", + "\n", + "\n", + "Recreate this [example by FiveThirtyEight:](https://fivethirtyeight.com/features/al-gores-new-movie-exposes-the-big-flaw-in-online-movie-ratings/)\n", + "\n", + "![](https://fivethirtyeight.com/wp-content/uploads/2017/09/mehtahickey-inconvenient-0830-1.png?w=575)\n", + "\n", + "Using this data:\n", + "\n", + "https://github.com/fivethirtyeight/data/tree/master/inconvenient-sequel\n", + "\n", + "### Stretch goals\n", + "\n", + "Recreate more examples from [FiveThityEight's shared data repository](https://data.fivethirtyeight.com/).\n", + "\n", + "For example:\n", + "- [thanksgiving-2015](https://fivethirtyeight.com/features/heres-what-your-part-of-america-eats-on-thanksgiving/) ([`altair`](https://altair-viz.github.io/gallery/index.html#maps))\n", + "- [candy-power-ranking](https://fivethirtyeight.com/features/the-ultimate-halloween-candy-power-ranking/) ([`statsmodels`](https://www.statsmodels.org/stable/index.html))" + ] + }, + { + "metadata": { + "id": "Ll2pDRKeFfqI", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy\n", + "\n", + "chess_df = pd.read_csv('https://raw.githubusercontent.com/fivethirtyeight/data/master/chess-transfers/transfers.csv')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FaJ73V1DFmyC", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "ae16a0e0-c31d-408d-f820-02bb856570d5" + }, + "cell_type": "code", + "source": [ + "chess_df.head()" + ], + "execution_count": 101, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
urlIDFederationForm.FedTransfer Date
0https://ratings.fide.com/fedchange.phtml?year=...2019221USAPHI12/15/00
1https://ratings.fide.com/fedchange.phtml?year=...14401754BIHCRO1/31/00
2https://ratings.fide.com/fedchange.phtml?year=...14401762BIHYUG1/31/00
3https://ratings.fide.com/fedchange.phtml?year=...2019221USAPHI12/15/00
4https://ratings.fide.com/fedchange.phtml?year=...14401754BIHCRO1/31/00
\n", + "
" + ], + "text/plain": [ + " url ID Federation \\\n", + "0 https://ratings.fide.com/fedchange.phtml?year=... 2019221 USA \n", + "1 https://ratings.fide.com/fedchange.phtml?year=... 14401754 BIH \n", + "2 https://ratings.fide.com/fedchange.phtml?year=... 14401762 BIH \n", + "3 https://ratings.fide.com/fedchange.phtml?year=... 2019221 USA \n", + "4 https://ratings.fide.com/fedchange.phtml?year=... 14401754 BIH \n", + "\n", + " Form.Fed Transfer Date \n", + "0 PHI 12/15/00 \n", + "1 CRO 1/31/00 \n", + "2 YUG 1/31/00 \n", + "3 PHI 12/15/00 \n", + "4 CRO 1/31/00 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 101 + } + ] + }, + { + "metadata": { + "id": "J-jJO-ipH5fo", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "de5b5a4d-bcc6-4420-c42c-d7d413e0e8ba" + }, + "cell_type": "code", + "source": [ + "chess_df['Transfer Date'].count() \n", + "# many of these are duplicate player ID, even the same transfer date.\n", + "\n", + "# cross reference from World Chess Federation\n", + "# to note the duplicates are not listed on the site\n", + "\n", + "# https://ratings.fide.com/fedchange.phtml?year=\n", + "# examining the years shows a disparity between the created dataframe and the \n", + "# World Chess Federation's listed data" + ], + "execution_count": 102, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "932" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 102 + } + ] + }, + { + "metadata": { + "id": "HtcbMnERJLzi", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1058 + }, + "outputId": "d8306f32-914f-4bf0-8d9e-879a4c2f415b" + }, + "cell_type": "code", + "source": [ + "# transfer by country\n", + "chess_df['Federation'].value_counts()" + ], + "execution_count": 103, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "USA 89\n", + "GER 55\n", + "CAN 44\n", + "ESP 41\n", + "RUS 36\n", + "FRA 34\n", + "CRO 32\n", + "BIH 32\n", + "TUR 31\n", + "CZE 29\n", + "AUT 29\n", + "SUI 25\n", + "MNC 24\n", + "AUS 23\n", + "ENG 19\n", + "SRB 17\n", + "UKR 15\n", + "ITA 14\n", + "BEL 13\n", + "SWE 12\n", + "AND 11\n", + "SCO 10\n", + "SIN 10\n", + "ROU 10\n", + "PLE 9\n", + "FIN 9\n", + "ISR 9\n", + "NOR 9\n", + "ARM 9\n", + "YUG 8\n", + " ..\n", + "JOR 2\n", + "BAN 2\n", + "EGY 2\n", + "JAP 2\n", + "BER 2\n", + "HON 2\n", + "URU 1\n", + "LBN 1\n", + "LBA 1\n", + "MGL 1\n", + "MAD 1\n", + "ARU 1\n", + "MYA 1\n", + "PUR 1\n", + "MAC 1\n", + "VIE 1\n", + "TJK 1\n", + "HUN 1\n", + "CYP 1\n", + "TOG 1\n", + "KOS 1\n", + "QAT 1\n", + "ARG 1\n", + "GUY 1\n", + "DOM 1\n", + "ALB 1\n", + "ALG 1\n", + "TTO 1\n", + "KEN 1\n", + "MLT 1\n", + "Name: Federation, Length: 105, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 103 + } + ] + }, + { + "metadata": { + "id": "sZSRRJ3SVsuU", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Split the duplicate entries into a new dataframe to research\n", + "\n", + "# rename Transfer Date to make it usable below\n", + "\n", + "chess_df.rename(columns={'Transfer Date':'Transfer_Date',\n", + " 'Form.Fed' : 'Former_Fed'}, inplace=True)\n", + "\n", + "\n", + "#id_dups = chess_df.ID[chess_df.ID.duplicated()].values\n", + "transfer_dups = chess_df.Transfer_Date[chess_df.Transfer_Date.duplicated()].values\n", + "#former_fed = chess_df.Former_Fed[chess_df.Former_Fed.duplicated()].values\n", + "\n", + "'''\n", + "duplicate_transfers = (chess_df[chess_df.ID.isin(id_dups) & \n", + " chess_df.Transfer_Date.isin(transfer_dups)\n", + " & chess_df.Former_Fed.isin(former_fed)])\n", + "'''\n", + "\n", + "duplicate_transfers = chess_df[chess_df.Transfer_Date.isin(transfer_dups)]\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "xZ_vQLnbWd06", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 639 + }, + "outputId": "69e7061a-162d-4b8c-fa68-a20dd35314fa" + }, + "cell_type": "code", + "source": [ + "duplicate_transfers.head(20) \n", + "# note that there are instances of transfer dates being the same, and dup Feds\n", + "# for which I have taken into account, but also note the dropped instances are \n", + "# cases like rows 0 and 3, where the data has been duplicated exactly\n", + "\n", + "# simply looking at year 00 you can see every value has a duplicate" + ], + "execution_count": 109, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
urlIDFederationFormer_FedTransfer_Date
0https://ratings.fide.com/fedchange.phtml?year=...2019221USAPHI12/15/00
1https://ratings.fide.com/fedchange.phtml?year=...14401754BIHCRO1/31/00
2https://ratings.fide.com/fedchange.phtml?year=...14401762BIHYUG1/31/00
3https://ratings.fide.com/fedchange.phtml?year=...2019221USAPHI12/15/00
4https://ratings.fide.com/fedchange.phtml?year=...14401754BIHCRO1/31/00
5https://ratings.fide.com/fedchange.phtml?year=...14401762BIHYUG1/31/00
6https://ratings.fide.com/fedchange.phtml?year=...6700284ESAHON11/15/01
7https://ratings.fide.com/fedchange.phtml?year=...1613782AUTISR7/9/01
8https://ratings.fide.com/fedchange.phtml?year=...2600536AUSCAN11/9/01
9https://ratings.fide.com/fedchange.phtml?year=...2603977CANYUG5/25/01
10https://ratings.fide.com/fedchange.phtml?year=...2019523USAAZE3/30/01
11https://ratings.fide.com/fedchange.phtml?year=...2603985CANENG5/25/01
12https://ratings.fide.com/fedchange.phtml?year=...4682084ITAGER9/12/01
13https://ratings.fide.com/fedchange.phtml?year=...2209381PARESP12/10/01
14https://ratings.fide.com/fedchange.phtml?year=...13601105USAGEO2/13/01
15https://ratings.fide.com/fedchange.phtml?year=...4613424SUIGER12/1/01
16https://ratings.fide.com/fedchange.phtml?year=...2604019CANYUG6/9/01
17https://ratings.fide.com/fedchange.phtml?year=...933511YUGBEL2/7/01
18https://ratings.fide.com/fedchange.phtml?year=...3405400CHICRO6/13/01
19https://ratings.fide.com/fedchange.phtml?year=...4154142UKRRUS1/23/01
\n", + "
" + ], + "text/plain": [ + " url ID Federation \\\n", + "0 https://ratings.fide.com/fedchange.phtml?year=... 2019221 USA \n", + "1 https://ratings.fide.com/fedchange.phtml?year=... 14401754 BIH \n", + "2 https://ratings.fide.com/fedchange.phtml?year=... 14401762 BIH \n", + "3 https://ratings.fide.com/fedchange.phtml?year=... 2019221 USA \n", + "4 https://ratings.fide.com/fedchange.phtml?year=... 14401754 BIH \n", + "5 https://ratings.fide.com/fedchange.phtml?year=... 14401762 BIH \n", + "6 https://ratings.fide.com/fedchange.phtml?year=... 6700284 ESA \n", + "7 https://ratings.fide.com/fedchange.phtml?year=... 1613782 AUT \n", + "8 https://ratings.fide.com/fedchange.phtml?year=... 2600536 AUS \n", + "9 https://ratings.fide.com/fedchange.phtml?year=... 2603977 CAN \n", + "10 https://ratings.fide.com/fedchange.phtml?year=... 2019523 USA \n", + "11 https://ratings.fide.com/fedchange.phtml?year=... 2603985 CAN \n", + "12 https://ratings.fide.com/fedchange.phtml?year=... 4682084 ITA \n", + "13 https://ratings.fide.com/fedchange.phtml?year=... 2209381 PAR \n", + "14 https://ratings.fide.com/fedchange.phtml?year=... 13601105 USA \n", + "15 https://ratings.fide.com/fedchange.phtml?year=... 4613424 SUI \n", + "16 https://ratings.fide.com/fedchange.phtml?year=... 2604019 CAN \n", + "17 https://ratings.fide.com/fedchange.phtml?year=... 933511 YUG \n", + "18 https://ratings.fide.com/fedchange.phtml?year=... 3405400 CHI \n", + "19 https://ratings.fide.com/fedchange.phtml?year=... 4154142 UKR \n", + "\n", + " Former_Fed Transfer_Date \n", + "0 PHI 12/15/00 \n", + "1 CRO 1/31/00 \n", + "2 YUG 1/31/00 \n", + "3 PHI 12/15/00 \n", + "4 CRO 1/31/00 \n", + "5 YUG 1/31/00 \n", + "6 HON 11/15/01 \n", + "7 ISR 7/9/01 \n", + "8 CAN 11/9/01 \n", + "9 YUG 5/25/01 \n", + "10 AZE 3/30/01 \n", + "11 ENG 5/25/01 \n", + "12 GER 9/12/01 \n", + "13 ESP 12/10/01 \n", + "14 GEO 2/13/01 \n", + "15 GER 12/1/01 \n", + "16 YUG 6/9/01 \n", + "17 BEL 2/7/01 \n", + "18 CRO 6/13/01 \n", + "19 RUS 1/23/01 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 109 + } + ] + }, + { + "metadata": { + "id": "7vTBbtCGJsqA", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "chess_df = chess_df.drop_duplicates() \n", + "# we want to find unique transfers into countries, so i removed the duplicates\n", + "# after confirming them above" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "gaym5SjKKNiu", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1058 + }, + "outputId": "7887a6d3-1121-4aa0-aa45-c3a9393f995e" + }, + "cell_type": "code", + "source": [ + "chess_df['Federation'].value_counts() " + ], + "execution_count": 111, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "USA 66\n", + "GER 41\n", + "ESP 32\n", + "CAN 30\n", + "CRO 28\n", + "BIH 28\n", + "RUS 27\n", + "FRA 27\n", + "CZE 26\n", + "TUR 26\n", + "MNC 24\n", + "AUT 21\n", + "SUI 20\n", + "AUS 18\n", + "ENG 18\n", + "SRB 16\n", + "BEL 13\n", + "ITA 11\n", + "UKR 11\n", + "SIN 10\n", + "SWE 10\n", + "NOR 9\n", + "ROU 9\n", + "AND 9\n", + "WLS 8\n", + "ISR 8\n", + "SCO 8\n", + "LIE 7\n", + "MNE 7\n", + "FIN 7\n", + " ..\n", + "ARU 1\n", + "SGP 1\n", + "URU 1\n", + "MGL 1\n", + "KEN 1\n", + "TTO 1\n", + "MKD 1\n", + "MYA 1\n", + "BLR 1\n", + "ESA 1\n", + "HON 1\n", + "PUR 1\n", + "BAN 1\n", + "MAC 1\n", + "VIE 1\n", + "BER 1\n", + "TJK 1\n", + "HUN 1\n", + "ROM 1\n", + "CYP 1\n", + "TOG 1\n", + "KOS 1\n", + "QAT 1\n", + "ARG 1\n", + "GUY 1\n", + "DOM 1\n", + "ALB 1\n", + "JOR 1\n", + "ALG 1\n", + "MLT 1\n", + "Name: Federation, Length: 105, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 111 + } + ] + }, + { + "metadata": { + "id": "CkN1RzdcWJip", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 118 + }, + "outputId": "61e1e42b-bb93-4d9f-e83d-373fb575891e" + }, + "cell_type": "code", + "source": [ + "chess_df.count()" + ], + "execution_count": 112, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "url 753\n", + "ID 753\n", + "Federation 753\n", + "Former_Fed 749\n", + "Transfer_Date 753\n", + "dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 112 + } + ] + }, + { + "metadata": { + "id": "vZ_CIaaFKUnG", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "transfer_country_chess = chess_df[['Federation', 'Former_Fed', 'Transfer_Date']].copy()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "KakKF3jSODDT", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "7a188e6e-ce70-42b9-ba10-a4d95ee8cd75" + }, + "cell_type": "code", + "source": [ + "transfer_country_chess.head()" + ], + "execution_count": 116, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FederationFormer_FedTransfer_Date
0USAPHI12/15/00
1BIHCRO1/31/00
2BIHYUG1/31/00
6ESAHON11/15/01
7AUTISR7/9/01
\n", + "
" + ], + "text/plain": [ + " Federation Former_Fed Transfer_Date\n", + "0 USA PHI 12/15/00\n", + "1 BIH CRO 1/31/00\n", + "2 BIH YUG 1/31/00\n", + "6 ESA HON 11/15/01\n", + "7 AUT ISR 7/9/01" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 116 + } + ] + }, + { + "metadata": { + "id": "TaWpif1XOFfZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "transfered_to_usa = chess_df[chess_df.Federation.isin(['USA'])]\n", + "\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g__av0yrSJ6C", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "0801de7c-b5a9-4de7-b59d-07b0bb46681a" + }, + "cell_type": "code", + "source": [ + "transfered_to_usa.head()" + ], + "execution_count": 118, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
urlIDFederationFormer_FedTransfer_Date
0https://ratings.fide.com/fedchange.phtml?year=...2019221USAPHI12/15/00
10https://ratings.fide.com/fedchange.phtml?year=...2019523USAAZE3/30/01
14https://ratings.fide.com/fedchange.phtml?year=...13601105USAGEO2/13/01
23https://ratings.fide.com/fedchange.phtml?year=...2019574USARUS4/2/01
44https://ratings.fide.com/fedchange.phtml?year=...13301918USAARM3/5/02
\n", + "
" + ], + "text/plain": [ + " url ID Federation \\\n", + "0 https://ratings.fide.com/fedchange.phtml?year=... 2019221 USA \n", + "10 https://ratings.fide.com/fedchange.phtml?year=... 2019523 USA \n", + "14 https://ratings.fide.com/fedchange.phtml?year=... 13601105 USA \n", + "23 https://ratings.fide.com/fedchange.phtml?year=... 2019574 USA \n", + "44 https://ratings.fide.com/fedchange.phtml?year=... 13301918 USA \n", + "\n", + " Former_Fed Transfer_Date \n", + "0 PHI 12/15/00 \n", + "10 AZE 3/30/01 \n", + "14 GEO 2/13/01 \n", + "23 RUS 4/2/01 \n", + "44 ARM 3/5/02 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 118 + } + ] + }, + { + "metadata": { + "id": "aCLgoqHSSY_r", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 605 + }, + "outputId": "9ada1281-1099-4306-9b8a-78c17e6e8080" + }, + "cell_type": "code", + "source": [ + "transfered_to_usa['Former_Fed'].value_counts()" + ], + "execution_count": 120, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "IND 10\n", + "UKR 5\n", + "CUB 5\n", + "RUS 4\n", + "PHI 4\n", + "ARM 4\n", + "GEO 3\n", + "BLR 3\n", + "AZE 2\n", + "PER 1\n", + "PLE 1\n", + "CHN 1\n", + "BIH 1\n", + "CRC 1\n", + "ROU 1\n", + "UZB 1\n", + "POL 1\n", + "LTU 1\n", + "FRA 1\n", + "SRI 1\n", + "ROM 1\n", + "CZE 1\n", + "ISV 1\n", + "LAT 1\n", + "ISR 1\n", + "EST 1\n", + "ITA 1\n", + "ENG 1\n", + "IRI 1\n", + "CAN 1\n", + "MAS 1\n", + "COL 1\n", + "MGL 1\n", + "FID 1\n", + "Name: Former_Fed, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 120 + } + ] + }, + { + "metadata": { + "id": "zvuErhNYcBZu", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 095141023456a089b134020cfe92c6188564af37 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Wed, 14 Nov 2018 18:15:26 -0500 Subject: [PATCH 03/12] Created using Colaboratory --- ..._123_Make_explanatory_visualizations.ipynb | 386 ++++++++++++------ 1 file changed, 251 insertions(+), 135 deletions(-) diff --git a/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb index ee04309..2cdbd4c 100644 --- a/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb +++ b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb @@ -617,97 +617,6 @@ "execution_count": 0, "outputs": [] }, - { - "metadata": { - "id": "gaym5SjKKNiu", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1058 - }, - "outputId": "7887a6d3-1121-4aa0-aa45-c3a9393f995e" - }, - "cell_type": "code", - "source": [ - "chess_df['Federation'].value_counts() " - ], - "execution_count": 111, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "USA 66\n", - "GER 41\n", - "ESP 32\n", - "CAN 30\n", - "CRO 28\n", - "BIH 28\n", - "RUS 27\n", - "FRA 27\n", - "CZE 26\n", - "TUR 26\n", - "MNC 24\n", - "AUT 21\n", - "SUI 20\n", - "AUS 18\n", - "ENG 18\n", - "SRB 16\n", - "BEL 13\n", - "ITA 11\n", - "UKR 11\n", - "SIN 10\n", - "SWE 10\n", - "NOR 9\n", - "ROU 9\n", - "AND 9\n", - "WLS 8\n", - "ISR 8\n", - "SCO 8\n", - "LIE 7\n", - "MNE 7\n", - "FIN 7\n", - " ..\n", - "ARU 1\n", - "SGP 1\n", - "URU 1\n", - "MGL 1\n", - "KEN 1\n", - "TTO 1\n", - "MKD 1\n", - "MYA 1\n", - "BLR 1\n", - "ESA 1\n", - "HON 1\n", - "PUR 1\n", - "BAN 1\n", - "MAC 1\n", - "VIE 1\n", - "BER 1\n", - "TJK 1\n", - "HUN 1\n", - "ROM 1\n", - "CYP 1\n", - "TOG 1\n", - "KOS 1\n", - "QAT 1\n", - "ARG 1\n", - "GUY 1\n", - "DOM 1\n", - "ALB 1\n", - "JOR 1\n", - "ALG 1\n", - "MLT 1\n", - "Name: Federation, Length: 105, dtype: int64" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 111 - } - ] - }, { "metadata": { "id": "CkN1RzdcWJip", @@ -716,13 +625,13 @@ "base_uri": "https://localhost:8080/", "height": 118 }, - "outputId": "61e1e42b-bb93-4d9f-e83d-373fb575891e" + "outputId": "24a2a3dd-520c-4d02-f933-7289231f25c5" }, "cell_type": "code", "source": [ "chess_df.count()" ], - "execution_count": 112, + "execution_count": 134, "outputs": [ { "output_type": "execute_result", @@ -739,7 +648,7 @@ "metadata": { "tags": [] }, - "execution_count": 112 + "execution_count": 134 } ] }, @@ -981,69 +890,276 @@ "metadata": { "id": "aCLgoqHSSY_r", "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# we will use this to create new dataframes of the unique transfers\n", + "\n", + "federation_placeholder = chess_df['Federation'].value_counts(sort=True) \n", + "transfer_placeholder = transfered_to_usa['Former_Fed'].value_counts(sort=True)\n", + "\n", + "# we only want the top 10 in each, transfers into usa only has 10\n", + "\n", + "federation_placeholder_2 = federation_placeholder.head(10)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZA4hhkpCdpTf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 + }, + "outputId": "8b43c5fe-9e86-48df-db9a-17b178fc17b4" + }, + "cell_type": "code", + "source": [ + "sorted_usa_transfer = transfer_placeholder.rename_axis('Former_Fed').reset_index(name='Unique_Transfers')\n", + "\n", + "sorted_usa_transfer.head(10)" + ], + "execution_count": 144, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Former_FedUnique_Transfers
0IND10
1UKR5
2CUB5
3RUS4
4PHI4
5ARM4
6GEO3
7BLR3
8AZE2
9PER1
\n", + "
" + ], + "text/plain": [ + " Former_Fed Unique_Transfers\n", + "0 IND 10\n", + "1 UKR 5\n", + "2 CUB 5\n", + "3 RUS 4\n", + "4 PHI 4\n", + "5 ARM 4\n", + "6 GEO 3\n", + "7 BLR 3\n", + "8 AZE 2\n", + "9 PER 1" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 144 + } + ] + }, + { + "metadata": { + "id": "89AmrRGldHjQ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "sorted_top_ten_transfers = federation_placeholder_2.rename_axis('Federation').reset_index(name='Total_Transfers')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "V4hzaYoKgNhv", + "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 605 + "height": 343 }, - "outputId": "9ada1281-1099-4306-9b8a-78c17e6e8080" + "outputId": "3b64648b-c592-4ebe-e049-50fdaf67c9b8" }, "cell_type": "code", "source": [ - "transfered_to_usa['Former_Fed'].value_counts()" + "sorted_top_ten_transfers.head(10) " ], - "execution_count": 120, + "execution_count": 146, "outputs": [ { "output_type": "execute_result", "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FederationTotal_Transfers
0USA66
1GER41
2ESP32
3CAN30
4CRO28
5BIH28
6RUS27
7FRA27
8CZE26
9TUR26
\n", + "
" + ], "text/plain": [ - "IND 10\n", - "UKR 5\n", - "CUB 5\n", - "RUS 4\n", - "PHI 4\n", - "ARM 4\n", - "GEO 3\n", - "BLR 3\n", - "AZE 2\n", - "PER 1\n", - "PLE 1\n", - "CHN 1\n", - "BIH 1\n", - "CRC 1\n", - "ROU 1\n", - "UZB 1\n", - "POL 1\n", - "LTU 1\n", - "FRA 1\n", - "SRI 1\n", - "ROM 1\n", - "CZE 1\n", - "ISV 1\n", - "LAT 1\n", - "ISR 1\n", - "EST 1\n", - "ITA 1\n", - "ENG 1\n", - "IRI 1\n", - "CAN 1\n", - "MAS 1\n", - "COL 1\n", - "MGL 1\n", - "FID 1\n", - "Name: Former_Fed, dtype: int64" + " Federation Total_Transfers\n", + "0 USA 66\n", + "1 GER 41\n", + "2 ESP 32\n", + "3 CAN 30\n", + "4 CRO 28\n", + "5 BIH 28\n", + "6 RUS 27\n", + "7 FRA 27\n", + "8 CZE 26\n", + "9 TUR 26" ] }, "metadata": { "tags": [] }, - "execution_count": 120 + "execution_count": 146 } ] }, { "metadata": { - "id": "zvuErhNYcBZu", + "id": "QsKuehjZgPlW", "colab_type": "code", "colab": {} }, From af64eff4cb0ab7c0174f953d9248219049da4984 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Wed, 14 Nov 2018 18:35:15 -0500 Subject: [PATCH 04/12] Created using Colaboratory --- ..._123_Make_explanatory_visualizations.ipynb | 69 +++++++++++++++++++ 1 file changed, 69 insertions(+) diff --git a/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb index 2cdbd4c..9f8a225 100644 --- a/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb +++ b/module3-make-explanatory-visualizations/LS_DS_123_Make_explanatory_visualizations.ipynb @@ -1164,6 +1164,75 @@ "colab": {} }, "cell_type": "code", + "source": [ + "inverse_top_ten = sorted_top_ten_transfers.reindex(index=sorted_top_ten_transfers.index[::-1])\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "8uEXiIQBg-aX", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 654 + }, + "outputId": "239814a4-00d4-4367-8828-8cd63ca86071" + }, + "cell_type": "code", + "source": [ + "import seaborn as sns\n", + "\n", + "title= 'Nations that received the highest number of player transfers, 2000-17'\n", + "\n", + "sns.set(style=\"whitegrid\")\n", + "\n", + "figure, ax = plt.subplots(figsize=(8, 10))\n", + "\n", + "sns.set_color_codes(\"pastel\")\n", + "\n", + "# seaborn removed my inverse sort. Inverse sort shows in pandas plots, but I'm\n", + "# going to assume it sorts from least to most built-in \n", + "# order allows us to plot as desired\n", + "\n", + "sns.barplot(x=\"Total_Transfers\", y=\"Federation\", data=inverse_top_ten,\n", + " color=\"b\", order=[\"USA\", \"GER\", \"ESP\", \"CAN\", \"CRO\",\n", + " \"BIH\", \"RUS\", \"FRA\", \"CZE\", \"TUR\"]).set_title(title);\n", + "\n", + "# TODO : split the incorrect original data and plot alongside to compare" + ], + "execution_count": 167, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1428: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n", + " stat_data = remove_na(group_data)\n" + ], + "name": "stderr" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAJbCAYAAAAISIaiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd0VNXexvFnkhBiKCJI6CgoibQA\nBkNVOiEBRBAUkQgqNroBpBfpUqQLXkFFLMiVXgSRpqAEyOUq4EVBivQWWiCNZL9/sJiXEQgBmQzs\nfD9rsRZz6m/vyeSZvc+ZicMYYwQAAKzi5ekCAADAnUfAAwBgIQIeAAALEfAAAFiIgAcAwEIEPAAA\nFiLgM0BQUJD69Onjsiw6OlqRkZE33XfPnj3avHmzJGnlypXq3bu3W2q82o8//qjDhw9LkiZNmqS+\nffve8jGWLVumuLi4O13aTTVo0EAnT568I8dq27at5s2bd83yq5+T6Oho1atX7x+dJ60+btOmjXbs\n2HHb+9+OOXPm3LFjpdfBgwdVqlSpDDvfL7/8oho1aujNN99M9z7z5s1T27Zt3VfUDfzyyy/auXNn\nhpzr+++/V/Xq1TVw4EC3nysmJkYtWrRQeHi4mjVr5nxNSdLSpUvVqFEjhYWFqVOnTjp//rwkyRij\nMWPGKCwsTA0aNNDYsWOd+5w7d04dO3ZUWFiYGjVqpGXLlt3w3MnJyRo5cqSCgoJ09OhR5/JRo0ap\nQYMGzn81a9ZUs2bN3ND6jEHAZ5DNmzfrt99+u+X9vv/+e+cPfr169TRixIg7Xdo1Pv30U2fA366J\nEyd6JOCXL1+uBx980K3nuPo5cbeZM2eqdOnSGXIuSUpJSdGoUaMy7Hyesn79eoWGhmratGmeLuWm\n5s6dq99//z1DzrV69Wo1b95c7777rlvPk5SUpPbt26tbt2769ttv1aVLF0VFRUmSDh8+rCFDhuhf\n//qXVqxYoUKFCmncuHGSLg8cNm3apMWLF2vRokXatGmTli9fLkkaM2aMChQooBUrVmj69OkaMmSI\njh07dt3zt2/fXv7+/tcsf+edd7R8+XLnv5o1a6pp06Zu6gX3I+AzSFRUlIYPH37ddampqXr33XcV\nFham2rVrq0ePHkpOTtbq1av14Ycf6rPPPtPIkSNdRhBnzpxRly5dFBYWpoiICP3rX/9yHi8oKEgL\nFizQM888o+rVq+vTTz+VJF24cEEdOnRQeHi46tSpo379+ik5OdmllvHjx2vjxo3q0aOH8x1wUlKS\noqKiVLt2bT333HPOF82ePXv0wgsvKDw8XPXq1dOSJUskSb1799bevXsVGRmpLVu2uBw/OjpaLVu2\nVJcuXdStWzdJlwOzcePGqlOnjl555RXFxsZKkhISEvTOO++odu3aCg8P18KFC531DB061NlfV/+S\nDgoK0uHDh1W9enVt377dufzTTz/V22+/LUn6+uuv1aBBA9WuXVtRUVFKSEiQJB04cEAtWrRQ3bp1\n1a1bN6WkpFzzXP39Obli6tSpCg8PV926dbVx48ab1vl3N+rj2rVrO/tw2rRpqlKlip599ll98cUX\nql279k33P3r0qN58802FhYUpLCxM69atkyRdunRJffv2VVhYmOrVq6eOHTsqLi5OL7/8ss6fP68G\nDRrowIEDLjXOmzdPnTt3Vp8+fZw/d7t27ZIkRUZGOp+fvz8OCgrSnDlz1LhxY9WoUUM///yzoqKi\nVKtWLbVr106XLl1y7vfJJ58oPDxctWvX1vfffy/p8qht8uTJCgsLU61atTR06FDncxMZGalx48Yp\nPDxc//nPf67p188++0wRERFq0KCB3nrrLcXGxmr58uX67LPPtGbNGr322mvX7BMUFKTPPvtMTZo0\nUZUqVfTVV19ds83Jkyf16quvOn+OPvnkE0nSe++9p8GDBzu3O3v2rMqVK6fY2Fjt3r1brVu3VlhY\nmBo3bqxt27ZJuv5r4oqvvvpKCxcu1OjRo/XJJ59o3rx56tixo9q0aeN8IzZlyhSFhYWpbt26euON\nN3Tu3DlJl2d2Bg8erA4dOqhOnTpq3ry5jh8/Lkn69ttv1ahRI4WHh6tx48aKjo7WzJkztWLFCs2e\nPVv9+vW7pX7ftGmTmjZtqoiICIWHh+vbb7+9ps+ulpycrCFDhqhy5cqSpJCQEB0/flznzp3TqlWr\nVKVKFRUsWFCS1Lx5c2eIL1++XE2bNpWvr698fX319NNPO9etWLFCLVu2lCTlz59foaGhWrVq1XXP\n3759e3Xu3DnNGv/44w9t3rxZL7zwQprb3dUM3C4wMNAYY0yrVq3Mt99+a4wxZuPGjaZ169bGGGOW\nL19uGjVqZJKSkkxCQoIJDw83CxYsMMYY07NnTzNlyhRjjDFz5841bdq0McYY079/f9O/f39jjDGn\nT582NWvWNJs3b3aeb/To0cYYY3755RdTtmxZc+nSJfP555+bXr16GWOMSU5ONgMGDDC//fbbNfXW\nqlXLeayJEyeaatWqmYMHDxpjjHnjjTfM5MmTnf//8MMPjTHGbNq0yQQHB5ukpCRnDUeOHLnm2Bs3\nbjRly5Y1P/30kzHGmL/++stUqFDB/P7778YYY6ZNm2Y6depkjDFmypQppmvXrsYYY44cOWJCQkLM\n0aNHzeTJk02bNm1MYmKiuXDhgnnmmWfM6tWrXc47cOBAM2HCBOd5X3zxRbNixQqzefNmU6VKFXP0\n6FFnP44cOdIYY0znzp3N2LFjnf1WqlQpM3fu3GvacPVzsnHjRlOmTBnz/fffG2OMmT59unnppZeM\nMSbNOq+WVh9feS7++OMPExISYo4dO2YSEhJM69atTa1atW66/0svvWTGjRtnjDFm3759JjQ01MTG\nxpo1a9aYl156yaSmpprU1FQzbtw488MPP5gDBw6YkiVLXlOjMZd//sqVK2e2bdtmjDFm0KBBpm/f\nvsYYY1q3bu38mf3748DAQDNt2jRjjDEjR440FStWNHv27DGJiYnmySefND/99JM5cOCACQwMNB99\n9JExxpj169ebypUrm6SkJDN//nzTsGFDc+7cOZOcnGxef/11M2vWLOd5XnnlFZOSknJNvVu3bjVP\nPfWUOXnypDHGmMGDB5s+ffo4++zK//8uMDDQDB482BhjzJ9//mnKlCljYmNjXV5/gwcPNgMGDDDG\nXP4ZLl26tDl8+LDZvn27qVKliklOTjbGGDN//nxnffXr1zdz5swxxhizZcsWU716dZOcnHzNa+Lv\nru7LuXPnmvLly5u9e/caY4zZtm2bqVKlijl//rxJSUkxbdu2df5sTpw40VSpUsUcPHjQpKammtdf\nf9188MEHxhhjKlWq5Px52bx5sxk+fLgxxvVn+1b6vVmzZiY6OtoYY8zevXtNVFTUddtyI0uXLjX1\n69d39u3777/vXJeYmGgCAwPNmTNnTKNGjcz69eud63744QfTuHFjExsbawIDA52/f4wxZsyYMWbI\nkCFpnvdGv6eMMaZTp05m3rx5t9SOuw0j+AzUp08fjRkzRomJiS7Lw8LCNHfuXGXJkkVZs2ZV2bJl\nrxk9/d26devUqlUrSVKuXLlUr149bdiwwbm+SZMmkqTSpUsrMTFRp06dUu7cubV161atX7/eOWtQ\nsmTJm9YdEhKiQoUKSZIee+wx5+jwgw8+0KuvvurcJjExUSdOnLjp8fz8/FSlShVJ0g8//KDQ0FAF\nBgZKklq2bKnVq1crJSVFP/zwgxo2bCjp8jvydevWKV++fFqzZo1atWolX19f+fv7q0mTJvruu+9c\nzhEWFqbVq1dLkmJjY7Vz507VqFFDq1evVkREhPLlyydJeuGFF5z7btmyRREREZKk4OBgFS9e/KZt\nkaTs2bOrTp06kqRSpUo5r+mlp84rbtTHV2zevFmhoaEKCAhQ1qxZ9eyzz950/4sXLyo6Oto56/PQ\nQw8pJCRE69atU+7cufXnn39q5cqVio+PV9euXfXkk0/etK2PPPKIypQp42zrkSNH0tVHdevWlSQF\nBgaqSJEiKlasmHx9ffXQQw+5tPXKdGi1atV06dIl/fXXX1qzZo2effZZ5ciRQz4+PmrRooVLP9ao\nUUNeXtf+Klu7dq3CwsKUJ08eSVKLFi1cXiNpudK/xYsXV7FixfTrr7+6rO/Xr5/69+8vSSpSpIjy\n5s2rgwcPqnTp0sqRI4d+/vlnSZdnpyIiIrRnzx6dOnVKzZs3l3T5+bryepRcXxM38/DDD+vhhx+W\nJJUpU0Zr165V9uzZ5eXlpQoVKrj87qhYsaIKFSokh8OhkiVLOp+vPHnyaPbs2Tp06JAqVqx43Xt7\nbqXf8+TJowULFujPP//Uww8/7HJt/GZ27typ4cOHO2c+4uPj5evr61zv6+srh8Oh+Ph4xcfHK2vW\nrM51fn5+io+PV0JCgry8vJQlSxbnuqxZsyo+Pj7ddVxt//79+uWXX9SoUaPb2v9u4ePpAjKT0qVL\n64knntAnn3yiChUqOJfHxsZqyJAh+u233+RwOHTy5Em1adMmzWPFxsYqZ86czsc5c+Z0Tr9JUo4c\nOSRJ3t7eki5fBggPD9fZs2c1YcIE7dmzR08//bR69+7t8mK6nuzZszv/7+3t7Zym+/HHHzV16lSd\nPn1aDodDxhilpqbetB/uv/9+5//Pnz+vLVu2qEGDBi7nO3PmjE6fPu1shyRly5bNuc+IESP0/vvv\nS7o8PR0cHOxyjtDQUB07dkyHDx/WTz/9pBo1aihr1qw6f/68Vq5cqfXr10u6PP175TLF2bNnXdp6\ndf+mt3+8vLycfZCeOq93jKv7+Ipz58659NuVNyhp7X/+/HkZY5zTlpJ08eJFVa5cWcHBwerXr59m\nzZqlnj17qnbt2um6serq5+N6dd7IlefOy8vL+f8rx7j6Z+aBBx5wOde5c+d0/vx5zZgxQ19//bWk\ny/cJ5M6d27nd1f1ytdjYWAUEBDgf58yZU6dOnUpXvVcf8/7773dOe1+xbds2jR07VkeOHJGXl5dO\nnDjhbEejRo20ZMkSPfHEE9q0aZOGDx+u3bt3KyEhQeHh4c5jxMXF6cyZM8qZM+cN23Cz2uLj4zVi\nxAhFR0dLuvwzXLNmTef6Gz1fU6dO1dSpU9WsWTMVKFBAffr0UWhoqMt5bqXfhw8frqlTp+rll1+W\nn5+foqKiXF7TN/Kf//xHXbt21bBhw1SpUiVJkr+/v5KSkpzbJCYmyhgjf39/3XfffS4DpPj4eOfy\n1NRUJSUlOX+fJSQkyN/fXytXrnS+4WjdurVat25907qWLVumevXqubxhuBcR8Bns7bffVrNmzVS4\ncGHnsnHjxsnHx0eLFy+Wr6/vNdfhrufBBx/UmTNnnNepzpw5k66by1q2bKmWLVvq2LFj6tSpkxYs\nWKDnnnvultuRnJysrl27avz48apRo0aa4ZWWgIAAVa1aVRMnTrxm3QMPPKDTp087Hx89elT333+/\nAgIC9Morr6hWrVo3PK63t7fq1q2rNWvW6Mcff3SOnAICAtS0aVP17Nnzmn1y5szpcmPglXsBbld6\n6kyv7Nmz6+LFi87HV7+Zu5E8efLI29tbc+fOdQnVK67cKXzmzBn16dNHM2bMUIsWLW6rvqvf2EiX\ng+Z2nD171hnyZ8+edT7ftWvXTtcv5qtdeY1ckd7XiCSdPn3aOSNy5swZ3X///S6fzujRo4fatGmj\nF154QQ6Hw2X2o2HDhnruuef01FNP6fHHH1fOnDkVEBCgbNmyOa8XX+1KON+OmTNnat++fZo3b56y\nZcumcePG3fDGsqsVLVpUI0aMUGpqqhYsWKBu3brpxx9/dNnmVvr9wQcfVP/+/dW/f3+tX79enTp1\n0pNPPnndn7srdu7cqS5dumjcuHGqWLGic3mxYsVcbmLdt2+f8ubNq5w5c6p48eLav3+/qlWrJuny\nSPvRRx9Vrly5lDt3bh04cECPPPKIc1316tVVr169W/6ky9q1a9WhQ4db2uduxBR9BgsICNCLL76o\nSZMmOZedOnVKgYGB8vX11c6dO7V161bnL3MfHx/nR0SuVrNmTec769jYWK1cudLlnfv1TJkyRd98\n842kyyPAwoULy+FwXLPdjc55tfj4eF28eNE5XTtz5kxlyZLFpe6/j3qup3r16tqyZYtzWvHXX3/V\n0KFDJV2+wWzBggUyxujEiRN65plndPr0adWpU0f//ve/lZKSImOMPvjgA/3www/XHPvKNP22bdv0\n1FNPOY/53XffOcP7+++/d96gWL58ea1cuVLS5ZHFX3/9dd2a09M/ktJdZ3oEBwcrOjpasbGxSkpK\n0oIFC266j4+Pj2rUqKHZs2dLuvyc9e7dW0eOHNHcuXM1ZcoUSZcv8Vy5HJElSxalpqbe8icg8ubN\n6/wo19atW7Vv375b2v+KxYsXS5I2bNig++67T0WLFlWdOnW0cOFC53Tr7NmzNX/+/Jseq2bNmlq5\ncqXzTeLs2bNVo0aNdNWxdOlSSdKff/6p/fv3q1y5ci7rT506pTJlysjhcGj+/PnO14N0eVq/aNGi\nGjt2rHPEXqhQIeXPn98Z8LGxsYqKinJ503Yjaf28nTp1SsWLF1e2bNl06NAhrVu37qbHjI2N1csv\nv6y4uDh5eXmpXLly1/09kN5+T05OVmRkpPNNZ+nSpeXj43PdyyZXGGPUq1cvDRw40CXcpcuXc37+\n+Wft2bNH0uUbZK9MlYeHh2vOnDm6ePGiLly4oDlz5jgv44WHh2vmzJmSpN27d2vTpk3OS2e36vff\nf3e+UbiXMYL3gFdeeUX//ve/XR737NlT8+bNU8WKFdWzZ0/17dtXwcHBqlWrlrp3765Dhw65BHjX\nrl01aNAgNWjQQF5eXnr99ddvOoJu0qSJevfurY8++kgOh0PlypVzXqu/WlhYmKKiotK8yzRnzpxq\n166dnnnmGeXJk0dvvfWW6tatqzfffFNLlixRgwYN1LJlSw0dOtR5Xft6AgICNGTIEHXo0EHJycnK\nli2b8zsD2rZtq/3796tWrVry8/NTz549VbBgQbVq1UoHDx5Uw4YNZYxRmTJlrntJo3LlyurWrZue\neuop57Rd6dKl9eabbyoyMlKpqanKkyeP8yNBPXr0ULdu3bRw4UKVK1dOVatWvW7NVz8nL7744g3b\nlt460yM4OFhNmzZV06ZNVaBAAUVERDg/HZGWQYMGaeDAgc6ft6effloFChRQnTp11KdPH9WvX1/e\n3t566KGHNHLkSOXMmVMhISGqVauWPvzwQz3++OPpqu/ll19WVFSU856KKyOsW+Hv76/U1FQ1atRI\nCQkJGjZsmHx8fFS3bl3t2rXLeX2+aNGiGjZs2E2PFxwcrNdff10vvviiUlNTVbJkSQ0aNChdteTO\nnVtNmjTRsWPH1K9fv2um0Lt06aIOHTooV65catmypZ5//nn1799fX375pYoWLaqGDRtqwoQJzoBx\nOBx6//33NWjQII0fP15eXl56+eWXr/tRrb+rW7euRo8erQMHDigoKMhlXcuWLdW5c2eFhYUpKChI\nvXr1UqdOndL82cidO7eefPJJPfvss/L29laWLFmu25/p7fcsWbKoefPmzns9vLy81K9fP913331a\nuXKlVq9efc3He//73//q999/15gxYzRmzBjn8rFjx6p06dIaOHCgOnTooJSUFJUqVUr9+vWTdHnW\naceOHXrmmWfkcDjUqFEj56dJoqKi1KtXL9WrV09Zs2bVsGHDrjtjc/LkSZdZicjISHl7e2vmzJnK\nly+fzpw5o/j4eOXNm/eGfXivcBjD34MH7gXGGOdIa+3atRo/fny6RvK4NUFBQVq3bp3y589/28dY\ntmyZVqxYoQkTJtzByu49ycnJ6tu3b6b4boW7EVP0wD0gNjZWlStX1qFDh2SM0bfffqvy5ct7uixc\nR3x8vKZPn56ub6q03ZEjR5yf9kHGI+CBe0Du3LnVtWtXtW3bVmFhYTp79qw6derk6bLwN2vWrFF4\neLhq1ap1zbXlzKho0aK8EfUgpugBALAQI3gAACxkzV30MTExni4BAIAMFxISct3l1gS8dONGZhYx\nMTGZug8ye/sl+iCzt1+iDzJb+9Ma3DJFDwCAhQh4AAAsRMADAGAhAh4AAAtZ8zn4mJgYbU8u4eky\nAAC4rjaV0/cnqG9FWjcVMoIHAMBCBDwAABYi4AEAsBABDwCAhQh4AAAsRMADAGAhAh4AAAsR8AAA\nWIiABwDAQgQ8AAAWIuABALAQAQ8AgIUIeAAALETAAwBgIQIeAAALEfAAAFiIgAcAwEJuD/jo6Gh1\n7tzZZdmkSZP0+eefKzo6Wq1atVLr1q3VtGlTffrppy7bffjhh6pcubIuXbrk7jIBALCKjydPPmDA\nAH322WfKly+fEhIS1LZtW0VERCggIECStGTJEuXKlUs//fSTnnrqKU+WCgDAPcWjU/RnzpzRxYsX\nJUl+fn6aPXu2M9x///13paam6pVXXtHSpUs9WSYAAPccjwZ8ly5d1Lx5c7311lv64osvdPbsWee6\nJUuWKCIiQvXr19e6deuUmJjowUoBALi3eCzgHQ6HWrVqpeXLl6t+/fr66aef1LBhQx0/flzGGC1d\nulSNGjVSrly5VL58ea1bt85TpQIAcM9x+zX43Llz69y5cy7LYmNjFRQUpISEBOXNm1dNmzZV06ZN\n1bt3b23YsEFFixbVqVOnnDfnnT9/XkuXLlX9+vXdXS4AAFZw+wj+4Ycf1tGjR7V//35Jl8M9Ojpa\n+fLlU7NmzXThwgVJUmpqqo4fP64iRYpoyZIl6t69uxYuXKiFCxdqyZIl2rx5s3NbAACQNreP4LNk\nyaIxY8aof//+MsbIGKN+/fqpXLlyeu2119S2bVv5+fkpOTlZtWvXVvny5dWtWzeXj9b5+/urZs2a\nWrVqlZ5++ml3lwwAwD3PYYwxni7iToiJidH25BKeLgMAgOtqUznnHT9mTEyMQkJCrruOb7IDAMBC\nBDwAABYi4AEAsBABDwCAhQh4AAAsRMADAGAhAh4AAAsR8AAAWIiABwDAQgQ8AAAWIuABALAQAQ8A\ngIUIeAAALETAAwBgIQIeAAALEfAAAFjIx9MF3EltKuf0dAkeFRMTo5CQEE+X4TGZvf0SfZDZ2y/R\nB5m9/VdjBA8AgIUIeAAALETAAwBgIQIeAAALEfAAAFiIgAcAwEIEPAAAFiLgAQCwEAEPAICFCHgA\nACxk1VfVztx4ztMleFgJbc/UfZDZ2y/RBzduf2b/KmtkPozgAQCwEAEPAICFCHgAACxEwAMAYCEC\nHgAACxHwAABYiIAHAMBCBDwAABYi4AEAsBABDwCAhQh4AAAsRMADAGAhAh4AAAsR8AAAWIiABwDA\nQgQ8AAAWIuABALAQAQ8AgIV83Hnw/fv3a8SIETp16pQkqWDBgho4cKDWrl2rCRMmqGjRos5tCxQo\noFGjRqlXr17asWOHcuXKJWOMkpOT1aNHD1WsWNGdpQIAYBW3BXxKSoo6deqkAQMGOMP5X//6l4YN\nG6Zq1aopIiJCPXv2vO6+UVFRqlWrliTpr7/+0muvvaYVK1a4q1QAAKzjtoDfsGGDSpQo4TLybteu\nnYwxWrhwYbqPU7RoUcXFxSklJUXe3t7uKBUAAOu4LeD37NmjoKAgl2VeXrd+yX/z5s3Kmzcv4Q4A\nwC1wW8B7eXnp0qVLzsdvvfWW4uLidPToUbVt21bLli3T9u3bnevDw8PVqlUrSdL777+vjz/+WKdP\nn5a/v7/Gjh3rrjIBALCS2wK+RIkS+uyzz5yPp06dKkmqXbu2jDHpuga/c+dO9e3bV8WKFXNXmQAA\nWMltH5OrXLmyjh49qtWrVzuX7dixQxcuXEj3VP1jjz2m0qVL66uvvnJXmQAAWMltI3iHw6Hp06dr\n8ODBmjJlirJkySJ/f39NnTpV+/btu2aKXpJmzJhxzXG6du2q5s2bq0GDBsqTJ4+7ygUAwCoOY4zx\ndBF3QkxMjLYnl/B0GQDuUm0q5/R0CRkiJiZGISEhni7DYzJb+9NqL99kBwCAhQh4AAAsRMADAGAh\nAh4AAAsR8AAAWIiABwDAQgQ8AAAWIuABALAQAQ8AgIUIeAAALETAAwBgIQIeAAALEfAAAFiIgAcA\nwEIEPAAAFvLxdAF3Umb5e883ktn+DvLfZfb2S/RBZm8/cDVG8AAAWIiABwDAQgQ8AAAWIuABALAQ\nAQ8AgIUIeAAALETAAwBgIQIeAAALEfAAAFiIgAcAwEJWfVXtzI3nPF2Ch5XQ9kzdB5m9/dLt9EFm\n/4pnwFaM4AEAsBABDwCAhQh4AAAsRMADAGAhAh4AAAsR8AAAWIiABwDAQgQ8AAAWIuABALAQAQ8A\ngIUIeAAALETAAwBgIQIeAAALEfAAAFiIgAcAwEIEPAAAFiLgAQCwEAEPAICFfNx9goMHD6px48Yq\nU6aMy/Jx48Zp4sSJ+uOPP+Tt7S1vb2+NHDlSBQsWVGRkpC5evCh/f38lJycrMDBQAwcOlLe3t7vL\nBQDACm4PeEkqVqyYZs2a5bJs/vz58vLy0uzZs52Pv/zyS3Xv3l2SNGLECAUGBkqSevfurSVLlqhJ\nkyYZUS4AAPe8DAn46zl37pwuXLjgfNy0adMbbhscHKz9+/dnRFkAAFjBY9fgn376ae3atUthYWEa\nPny4tmzZct3tUlJS9OOPPyo4ODiDKwQA4N6VISP4vXv3KjIy0vm4WLFiGjx4sObPn6+YmBitX79e\n3bp107PPPqvOnTtLujwt7+/vr9TUVD355JOqWbNmRpQKAIAVPHYNPikpST4+PqpYsaIqVqyoFi1a\nKDIy0hnwV1+DBwAAt8ZjU/R9+vTR3LlznY+PHj2qIkWKeKocAACs4pEpeknq3r27PvroI82bN0++\nvr7y8fHRoEGDMqIcAACs5/aAL1y4sLZu3XrddZMnT77u8r9P5wMAgFvDN9kBAGAhAh4AAAsR8AAA\nWIiABwDAQgQ8AAAWIuABALAQAQ8AgIUIeAAALETAAwBgIQIeAAALEfAAAFiIgAcAwEIEPAAAFiLg\nAQCwEAEPAICFCHgAACzk4+kC7qQ2lXN6ugSPiomJUUhIiKfL8JjM3n6JPgDw/xjBAwBgIQIeAAAL\nEfAAAFiIgAcAwEIEPAAAFiJY5UkVAAAgAElEQVTgAQCwEAEPAICFCHgAACxEwAMAYCECHgAAC1n1\nVbUzN57zdAkeVkLbM3UfZPb2S2WyeLoCAHcLRvAAAFiIgAcAwEIEPAAAFiLgAQCwEAEPAICFCHgA\nACxEwAMAYCECHgAACxHwAABYiIAHAMBCBDwAABYi4AEAsBABDwCAhQh4AAAsRMADAGAhAh4AAAsR\n8AAAWMjtAb9v3z69/vrrat68uZo1a6YhQ4YoKSlJknTs2DGVLFlS33//vXP76OhoVahQQSdOnHAu\nmzRpkqKjo91dKgAA1nBrwKekpKhTp05q166dvvnmG82dO1eSNGXKFEnS0qVL9dBDD2np0qUu+xUu\nXFiTJ092Z2kAAFjNrQG/YcMGFS9eXKGhoZIkh8OhHj16qEOHDpKkJUuWaMCAAfrpp5908eJF5371\n69fX77//rr1797qzPAAArOXWgN+zZ49KlizpsszPz0++vr7as2ePzp8/r6pVq6pSpUpavXq1y3Zv\nv/223n//fXeWBwCAtdwa8A6HQykpKdddt2TJEkVEREiSGjVqpCVLlrisr1SpkpKSkvTf//7XnSUC\nAGAlH3cevHjx4vriiy9cliUlJWnfvn1aunSpHA6H1q5dq9TUVB04cEDnzp1z2TYqKkpDhw51TvED\nAID0cesIvlq1ajp06JBz+j01NVWjR4/WqFGjlC1bNi1fvlwLFy7U4sWLFR4erhUrVrjsHxQUpEKF\nCmnNmjXuLBMAAOu4NeC9vLw0Y8YMzZkzR82aNVOrVq2UI0cOFS9eXM2aNXPZ9tlnn9WyZcuuOUaX\nLl20e/dud5YJAIB13DpFL0kBAQGaNm3aTberWLGiPvnkE0mXr79fUaBAAf36669uqw8AABvxTXYA\nAFiIgAcAwEIEPAAAFiLgAQCwEAEPAICFCHgAACxEwAMAYCECHgAACxHwAABYiIAHAMBCBDwAABYi\n4AEAsBABDwCAhQh4AAAsRMADAGAhAh4AAAv5eLqAO6lN5ZyeLsGjYmJiFBIS4ukyPCazt1+SYmI8\nXQGAuwUjeAAALETAAwBgIQIeAAALEfAAAFiIgAcAwEIEPAAAFiLgAQCwEAEPAICFCHgAACxEwAMA\nYCGrvqp25sZzni7Bw0poe6buA7van9m/ehnAP8MIHgAACxHwAABYiIAHAMBCBDwAABYi4AEAsBAB\nDwCAhQh4AAAsRMADAGAhAh4AAAsR8AAAWIiABwDAQgQ8AAAWIuABALAQAQ8AgIUIeAAALETAAwBg\nIQIeAAALEfAAAFjIx50H37dvn4YPH67Y2FilpqaqQoUK6tmzpxo0aKD8+fPL29tbqamp8vPz0/Dh\nw5UvXz5J0qeffqqFCxfK19dXktS9e3c98cQT7iwVAACruC3gU1JS1KlTJ/Xv31+hoaEyxmjo0KGa\nMmWKJOmjjz5StmzZJEnz5s3ThAkTNHz4cC1dulQbNmzQV199JT8/Px07dkyvvvqqJk6cqOLFi7ur\nXAAArOK2KfoNGzaoePHiCg0NlSQ5HA716NFDHTp0uGbbcuXKaf/+/ZKkmTNnqmfPnvLz85Mk5cuX\nT+3atdPnn3/urlIBALCO2wJ+z549KlmypMsyPz8/57T71ZYvX65SpUpJkg4dOqRHHnnEZf1jjz2m\nvXv3uqtUAACs47YpeofDoZSUlBuuf+211+Tt7a0DBw4oJCRE7777bprH8/LifkAAANLLbalZvHhx\nbdu2zWVZUlKS/vjjD0mXr8HPmjVL7dq10wMPPKDs2bNLkgoXLqydO3e67Pe///1Pjz76qLtKBQDA\nOrcU8MYYpaamOv+lpVq1ajp06JBWr14tSUpNTdXo0aO1bNkyl+1atmypTZs2OUO9TZs2eu+99xQf\nHy9JOn78uD7++GO1bt36VkoFACBTS9cU/fTp0zVt2jRduHBB0uWgdzgc+t///nfDfby8vDRjxgwN\nGDBAkydPlq+vr6pWraqOHTtq0aJF/1+Aj4/eeecdDRo0SF999ZUiIiJ08eJFtWzZUlmzZnXenFek\nSJF/2FQAADKPdAX83LlztWjRIhUsWPCWDh4QEKBp06Zds/zKqP6K6tWrq3r16s7HzZs3V/PmzW/p\nXAAA4P+la4r+oYceuuVwBwAAnpOuEXxQUJC6deum0NBQeXt7O5czygYA4O6UroA/fvy4fH199d//\n/tdlOQEPAMDdKV0BP2LECEnSmTNn5HA4dP/997u1KAAA8M+kK+D/85//6J133tGFCxdkjFGuXLk0\nevRolS1b1t31AQCA25CugB87dqw++OADBQYGSpJ+++03DRs2TF988YVbiwMAALcnXXfRe3l5OcNd\nkkqVKuVysx0AALi7pDvgv/vuO8XFxSkuLk7Lli0j4AEAuIula4r+3Xff1ZAhQ9S3b185HA6VL1/+\npn8cBgAAeE66Av7hhx/WjBkz3F0LAAC4Q9IM+KFDh6pfv35q1aqVHA7HNeu5yQ4AgLtTmgF/5Yts\nunbtmiHFAACAOyPNgH/sscckSfPmzdPIkSNd1r366qsKDQ11X2UAAOC2pRnwixYt0uzZs7Vr1y69\n+OKLzuWXLl3SiRMn3F4cAAC4PWkG/NNPP61KlSqpe/fu6tSpk3O5l5eXHn30UbcXBwAAbs9N76LP\nly+fZs2a5bIsOTlZ3bp108SJE91WGAAAuH3p+pjcwoULNWLECJ09e1bS5RF85cqV3VrY7WhTOaen\nS/ComJgYhYSEeLoMj8ns7QeAq6Ur4D/77DMtXrxYUVFR+vDDD7V48WLlyJHD3bUBAIDblK6vqs2R\nI4fy5s2rlJQU+fv76/nnn9fcuXPdXRsAALhN6RrBe3t7a82aNSpQoIAmTZqkRx99VIcOHXJ3bQAA\n4DalawQ/atQo5c+fX3369NHx48e1aNEi9e/f3921AQCA25SuEfzatWv17LPPSpKGDBni1oIAAMA/\nl64R/MqVK3X+/Hl31wIAAO6QdI3gExISVLt2bRUrVkxZsmRxLuePzQAAcHdKV8C3b9/e3XUAAIA7\nKF1T9KGhobp48aL++OMPhYaGKn/+/HriiSfcXRsAALhN6RrBjx49Wvv379fhw4fVunVrLV68WLGx\nsXfdnfQzN57zdAkeVkLbM3Uf2NX+zP7NjAD+mXSN4Ddv3qzJkycrW7ZskqQOHTpox44dbi0MAADc\nvnQFfNasWSVJDodDkpSSkqKUlBT3VQUAAP6RdE3RP/744+rdu7eOHz+uTz75RN99951CQ0PdXRsA\nALhN6Qr4t99+W8uXL5efn5+OHj2ql19+WfXr13d3bQAA4DalGfCHDx92/j84OFjBwcEu6woWLOi+\nygAAwG1LM+BfeOEFORwOGWN0/Phx5ciRQ5cuXVJ8fLyKFCmi7777LqPqBAAAtyDNgF+3bp0kadiw\nYWratKlKlSolSfrll1+0ePFi91cHAABuS7ruov/tt9+c4S5J5cqV0+7du91WFAAA+GfSdZOdl5eX\nxo4dq5CQEDkcDm3dulWJiYnurg0AANymdI3gx48fLy8vL82ePVtfffWVkpOTNX78eHfXBgAAblO6\nRvB58uRR27ZtdfDgQZUtW1apqany8krXewMAAOAB6UrpJUuW6Pnnn1fv3r0lSUOGDNG///1vtxYG\nAABuX7oC/pNPPtHChQv1wAMPSJJ69uypOXPmuLUwAABw+9IV8Dly5NB9993nfOzn56csWbK4rSgA\nAPDPpOsa/AMPPKD58+crMTFRO3bs0LJly5Q7d2531wYAAG5TmiP4nTt3SpLeffddbdu2TXFxcerX\nr58SExM1dOjQDCkQAADcujQDfvjw4ZKknDlzasCAAcqTJ4/mz5+vfv36KVeuXBlSIAAAuHVpBrwx\nxuXxlb8HDwAA7m5pXoP/e6D/PfBvx8GDB9W4cWOVKVNGkpSUlKQePXror7/+0q5du9SzZ0/16tVL\nYWFhqlWrlnO/SpUqKTo6+h+fHwCAzCBdN9ldcadG8MWKFdOsWbMkSZs3b9bUqVPVsGHDO3JsAABw\nk4DfunWratas6Xx86tQp1axZU8YYORwOrV279h8XcPLkSQUEBPzj4wAAgP+XZsAvX77cLSfdu3ev\nIiMjlZiYqGPHjmnGjBn69ddfXbZ5//339fHHH7vl/AAA2C7NgC9UqJBbTnr1FP2ff/6prl276qWX\nXnLZJioq6ppr8AAAIH08/hdjHnnkEWXNmpU/XgMAwB3k8VQ9c+aMTpw4oUuXLnm6FAAArHFLd9Hf\nKVeuwUtSYmKi+vfvr3PnznmiFAAArJThAV+4cGFt3bo1zW1Gjhx5zTI+Aw8AQPp5fIoeAADceQQ8\nAAAWIuABALAQAQ8AgIUIeAAALETAAwBgIQIeAAALEfAAAFiIgAcAwEIEPAAAFiLgAQCwEAEPAICF\nCHgAACxEwAMAYCECHgAACxHwAABYyMfTBdxJbSrn9HQJHhUTE6OQkBBPl+Exmb39AHA1RvAAAFiI\ngAcAwEIEPAAAFiLgAQCwEAEPAICFCHgAACxEwAMAYCECHgAACxHwAABYiIAHAMBCVn1V7cyN5zxd\ngoeV0PZM3Qf3Xvsz+9crA3AfRvAAAFiIgAcAwEIEPAAAFiLgAQCwEAEPAICFCHgAACxEwAMAYCEC\nHgAACxHwAABYiIAHAMBCBDwAABYi4AEAsBABDwCAhQh4AAAsRMADAGAhAh4AAAsR8AAAWIiABwDA\nQj7uPPjBgwfVuHFjlSlTRpKUlJSkwMBADRo0SFWrVlV0dLRz2+joaH3xxReaOHGijh49qv79+ys+\nPl4JCQkqUaKE3n33Xfn6+rqzXAAArOH2EXyxYsU0a9YszZo1S19//bWSk5O1ePHiNPeZMGGCmjVr\nps8//1zffPONsmTJoh9//NHdpQIAYA23juCvJzg4WPv3709zm3PnzikuLs75ePDgwe4uCwAAq2To\nNfjk5GStWrVKpUuXTnO71157TePGjdMLL7ygyZMn3/QNAQAAcOX2gN+7d68iIyMVGRmpatWqqVKl\nSqpbt26a+5QvX16rVq3Sq6++quPHj6t58+Zav369u0sFAMAabp+iv3INXpI6d+6sYsWKSZJ8fX2V\nmpoqL6/L7zFiY2MVEBAgSUpISNB9992nunXrqm7duqpQoYKWLl2q6tWru7tcAACskKFT9D169NCY\nMWMUHx+vihUraunSpZIuT90vWLBATz75pFJTU9W4cWPt3r3bud/Ro0dVuHDhjCwVAIB7WobeZFek\nSBGFhYVp6tSp6t+/vwYNGqQ5c+YoOTlZ4eHhqlGjhiRp7NixGjRokHO/woULa8CAARlZKgAA9zS3\nBnzhwoU1b948l2VRUVHO/0+cOPG6+wUHB+vzzz93Z2kAAFiNb7IDAMBCBDwAABYi4AEAsBABDwCA\nhQh4AAAsRMADAGAhAh4AAAsR8AAAWIiABwDAQgQ8AAAWIuABALAQAQ8AgIUIeAAALETAAwBgIQIe\nAAALufXvwWe0NpVzeroEj4qJiVFISIiny/CYzN5+ALgaI3gAACxEwAMAYCECHgAACxHwAABYiIAH\nAMBCBDwAABYi4AEAsBABDwCAhQh4AAAsRMADAGAhq76qdubGc54uwcNKaHum7oN7r/2Z/euVAbgP\nI3gAACxEwAMAYCECHgAACxHwAABYiIAHAMBCBDwAABYi4AEAsBABDwCAhQh4AAAsRMADAGAhAh4A\nAAsR8AAAWIiABwDAQgQ8AAAWIuABALAQAQ8AgIUIeAAALETAAwBgIR93n+DgwYNq3LixypQp41z2\n2GOP6csvv9Tjjz8uSbp06ZLy5s2r4cOHK3v27JKkxMREVatWTR07dlTbtm3dXSYAAFZxe8BLUrFi\nxTRr1iyXZYsWLXJZNmnSJM2cOVMdOnSQJK1du1YPPvigli1bRsADAHCL7pop+uDgYO3fv9/5eMmS\nJercubOOHTumAwcOeLAyAADuPXdFwBtj9N1336lUqVKSpLi4OG3evFm1a9dWRESEli1b5uEKAQC4\nt2TIFP3evXsVGRnpfFy1alXFxcU5l+3evVuNGzdW69atJUkrVqxQ9erV5efnp0aNGqlXr1564403\nMqJUAACs4LFr8J9++qlz2Xvvvad8+fLJx+dyOUuWLNFff/2lJk2aSJL27dun3bt369FHH82IcgEA\nuOdlSMDfTPv27dWsWTNFRETI4XBo9+7dWrNmjTPwJ0+erCVLlqhr164erhQAgHvDXXENPkeOHGrX\nrp3ee+89LVu2TI0aNXKGuyQ1bdpU3377rQcrBADg3uL2EXzhwoU1b968a5ZHR0e7PH7++ef1/PPP\nX/cYhQoV0ooVK9xSHwAANrorRvAAAODOIuABALAQAQ8AgIUIeAAALETAAwBgIQIeAAALEfAAAFiI\ngAcAwEIEPAAAFiLgAQCwEAEPAICFCHgAACxEwAMAYCECHgAACxHwAABYiIAHAMBCPp4u4E5qUzmn\np0vwqJiYGIWEhHi6DI/J7O0HgKsxggcAwEIEPAAAFiLgAQCwEAEPAICFCHgAACxEwAMAYCECHgAA\nCxHwAABYiIAHAMBCBDwAABay6qtqZ2485+kSPKyEtmfqPrh725/Zv0YZQMZjBA8AgIUIeAAALETA\nAwBgIQIeAAALEfAAAFiIgAcAwEIEPAAAFiLgAQCwEAEPAICFCHgAACxEwAMAYCECHgAACxHwAABY\niIAHAMBCBDwAABYi4AEAsBABDwCAhXwy4iT79u3T8OHDFRsbq9TUVFWoUEE9e/bUq6++6tzm7Nmz\nSk5O1rfffqvIyEhdvHhR/v7+zvXPPfecGjdunBHlAgBwz3N7wKekpKhTp07q37+/QkNDZYzR0KFD\nNWXKFM2aNcu5XefOnRUWFuZ8PGLECAUGBrq7PAAArOT2gN+wYYOKFy+u0NBQSZLD4VCPHj3k5fX/\nVwdWrVqlhIQENWzY0N3lAACQKbg94Pfs2aOSJUu6LPPz83P+Py4uTmPGjNGMGTPcXQoAAJmG2wPe\n4XAoJSXlhuvHjh2rli1bqmDBgi7Le/fu7XINfvjw4SpSpIjb6gQAwCZuD/jixYvriy++cFmWlJSk\nffv2KS4uTjt27FD//v2v2Y9r8AAA3D63f0yuWrVqOnTokFavXi1JSk1N1ejRo7V48WK9++67Gjx4\nsMv1eAAA8M+5fQTv5eWlGTNmaMCAAZo8ebJ8fX1VtWpVFStWTF9++aWGDRvmsv2ECRMkXTtFX6lS\nJXXs2NHd5QIAYIUM+Rx8QECApk2bds3yG32u/eqPzwEAgFvH3DgAABYi4AEAsBABDwCAhQh4AAAs\nRMADAGAhAh4AAAsR8AAAWIiABwDAQgQ8AAAWIuABALAQAQ8AgIUIeAAALETAAwBgIQIeAAALEfAA\nAFiIgAcAwEI+ni7gTmpTOaenS/ComJgYhYSEeLoMj8ns7QeAqzGCBwDAQgQ8AAAWIuABALAQAQ8A\ngIUIeAAALETAAwBgIQIeAAALEfAAAFiIgAcAwEIEPAAAFrLqq2pnbjzn6RI8rIS2Z+o+uHvbn9m/\nRhlAxmMEDwCAhQh4AAAsRMADAGAhAh4AAAsR8AAAWIiABwDAQgQ8AAAWIuABALAQAQ8AgIUIeAAA\nLETAAwBgIQIeAAALEfAAAFiIgAcAwEIEPAAAFiLgAQCwEAEPAICFCHgAACzk486Djxw5Ujt27NCJ\nEycUHx+vokWL6v7779fhw4c1b94853bz5s3Trl271LNnT0VGRurixYvy9/eXMUYOh0MDBw7Uo48+\n6s5SAQCwilsDvlevXpJcA/zgwYPq3LlzmvuNGDFCgYGBkqTo6GgNGTJEM2fOdGepAABY5a6foi9X\nrpz279/v6TIAALin3PUBv3z5cpUqVcrTZQAAcE9x6xT97erdu7f8/f11/PhxFS5cWCNGjPB0SQAA\n3FMyPOAfeOABxcXFuSyLjY1VQECA8/GVa/Br1qzRnDlzXNYBAICby/Ap+mzZsil37tzasmWLJOni\nxYtavny5qlates22tWrVUlJSktauXZvBVQIAcG/zyBT9qFGjNGTIEE2YMEHJycl6+eWXFRQUdN1t\ne/furQ4dOqhKlSrKmjVrBlcKAMC9KUMCvlmzZi6PixYtqo8++ui6286aNcvl8aOPPqoVK1a4rTYA\nAGx0199FDwAAbh0BDwCAhQh4AAAsRMADAGAhAh4AAAsR8AAAWIiABwDAQgQ8AAAWIuABALAQAQ8A\ngIUIeAAALETAAwBgIQIeAAALEfAAAFiIgAcAwEIZ8vfgM0qbyjk9XYJHxcTEKCQkxNNleExmbz8A\nXI0RPAAAFiLgAQCwEAEPAICFCHgAACxEwAMAYCGHMcZ4uog7ISYmxtMlAACQ4W706SFrAh4AAPw/\npugBALAQAQ8AgIUIeAAALETAAwBgIQIeAAALEfAAAFjIir8mN3z4cP3yyy9yOBzq06ePgoODPV1S\nhvjjjz/Uvn17tW3bVq1bt9aRI0f0zjvvKCUlRXnz5tXo0aPl6+vr6TLdZtSoUYqJidGlS5f0xhtv\nqGzZspmm/fHx8erVq5dOnTqlxMREtW/fXo899limaf/VEhIS1KhRI7Vv315VqlTJNH0QHR2tLl26\nqESJEpKkwMBAtWvXLtO0/4pFixZp+vTp8vHxUefOnRUUFJTp+uBG7vkR/KZNm7R//359/fXXGjZs\nmIYNG+bpkjLExYsXNWTIEFWpUsW5bOLEiWrVqpW+/PJLPfTQQ/rmm288WKF7bdy4Ubt27dLXX3+t\n6dOna/jw4Zmq/WvWrFGZMmX0+eefa/z48Ro5cmSmav/Vpk6dqvvvv19S5noNSFJoaKhmzZqlWbNm\nqX///pmu/adPn9aUKVP05Zdfatq0aVq1alWm64O03PMB//PPP6tu3bqSpEceeURnz55VXFych6ty\nP19fX3300UcKCAhwLouOjladOnUkSbVq1dLPP//sqfLc7oknntCECRMkSTlz5lR8fHyman9ERIRe\ne+01SdKRI0eUL1++TNX+K/7880/t3r1bNWvWlJS5XgPXk9na//PPP6tKlSrKnj27AgICNGTIkEzX\nB2m55wP+5MmTeuCBB5yPc+fOrRMnTniwoozh4+MjPz8/l2Xx8fHOqag8efJY3Q/e3t7y9/eXJH3z\nzTd66qmnMlX7r2jZsqW6d++uPn36ZMr2v/fee+rVq5fzcWbrg927d+vNN9/UCy+8oA0bNmS69h88\neFAJCQl688031apVK/3888+Zrg/SYsU1+KvxzbuXZZZ++P777/XNN9/o448/Vv369Z3LM0v7Z8+e\nrf/973/q0aOHS5szQ/sXLFig8uXLq0iRItddb3sfPPzww+rYsaPCw8N14MABvfTSS0pJSXGut739\nV5w5c0aTJ0/W4cOH9dJLL2W610Fa7vmADwgI0MmTJ52Pjx8/rrx583qwIs/x9/dXQkKC/Pz8dOzY\nMZfpexv9+OOPmjZtmqZPn64cOXJkqvZv375defLkUYECBVSyZEmlpKQoW7Zsmab9krR27VodOHBA\na9eu1dGjR+Xr65upfgby5cuniIgISVLRokX14IMPatu2bZmm/dLlEXqFChXk4+OjokWLKlu2bPL2\n9s5UfZCWe36Kvlq1alqxYoUkaceOHQoICFD27Nk9XJVnVK1a1dkX3333nZ588kkPV+Q+58+f16hR\no/Thhx8qV65ckjJX+7ds2aKPP/5Y0uXLVBcvXsxU7Zek8ePHa+7cuZozZ45atGih9u3bZ6o+WLRo\nkWbMmCFJOnHihE6dOqVmzZplmvZLUvXq1bVx40alpqbq9OnTmfJ1kBYr/prcmDFjtGXLFjkcDg0c\nOFCPPfaYp0tyu+3bt+u9997ToUOH5OPjo3z58mnMmDHq1auXEhMTVbBgQY0YMUJZsmTxdKlu8fXX\nX2vSpEkqVqyYc9nIkSPVr1+/TNH+hIQE9e3bV0eOHFFCQoI6duyoMmXKqGfPnpmi/X83adIkFSpU\nSNWrV880fRAXF6fu3bvr3LlzSk5OVseOHVWyZMlM0/4rZs+e7bxT/q233lLZsmUzXR/ciBUBDwAA\nXN3zU/QAAOBaBDwAABYi4AEAsBABDwCAhQh4AAAsRMADFtq1a5ciIyM1f/58RUZGKjIyUmXLllWL\nFi0UGRmpkSNHprn/woULb3qOp556SgcPHrzh+pEjRyoyMlItWrRQ2bJlnXUsXrz4ltuTXh9//LHC\nwsK0bt262z5GUlKSIiMjtWvXrjtYGeABBoBVUlJSTJMmTczu3btdlteqVcvs27cvXceoVavWTbd5\n8sknzYEDB2663b59+9J1vDvhxRdfNOvXr//Hx/n9999NkyZNTGpq6h2oCvCMe/6raoF7QXR0tKZN\nm6b8+fNr27ZtKleunIKCgrRy5UqdOXNGH330kfbt26cpU6bIGCMfHx8NGTJERYoU0cqVKzV9+nT5\n+voqJSVFo0aNUuHChRUZGakqVapo69at2rdvnzp16qSnn35aq1atUv78+fXII4/ctK7Jkyfrhx9+\nkI+Pj4KCgtS3b19NmjRJhw4dUmRkpD744AMtXLhQixcvVpYs/9fe/YU03YVxAP82e9ckIpuKbIsY\nlFIwSZP0IjIkihK9sAz7YxANg0DJUBNXBiaCtmYp0booEBqlUKwgaFCRF9UWeqEpiVbEYkIltawE\n25++74X4I/VN38qyd+/zudvO2XnO87vYs/Pbj3P+gkajwZkzZ356t8jTp0/jzZs38Pl8sFgs+PTp\nE2w2G9RqNUZHR1FTU4NVq1ahvLwcBoMB/f39ePHiBQoKCrB//3643W7YbDZER0cjGAyiuroanZ2d\n6Ovrw8mTJ3H48GEkJCSgoaEB4XAYoVBI2QRr165dSE5OxpMnT9DS0gKLxYKXL18CAEwmE44dO4ak\npCQkJCSgvb0dWVlZP5WrEHNmrn9hCPF/4PF4uGbNGvr9fo6OjjI5OZlOp5MkWVlZSbvdzs2bN9Pv\n95Mkb9++zeLiYpLk1cYYngEAAARkSURBVKtXOTg4SJI8f/486+vrSZKFhYW0Wq0kyUePHjE3N5ck\nWV1dTYfDMWUOk1fwHR0dzMvLYzAYJEkePHiQN27cYDAYZFJSktLvwoULHBkZIUlWVVXx8uXLJH9u\nBd/Y2MjCwkJlhexyudjf30+SdDqdLC0tJUmWlZWxrKyMJOn1epmenk6SLCoqosvlIkk+e/aM9+7d\nI0nu3LmTHo+HJJmdna3Mr6enh/n5+Uqf5uZmkmR3dzdzcnKUeV25coUfP34kSba0tLCmpmbG/IT4\nU8kKXojfZPny5cq++TExMUhNTQUwdmhIKBTC0NAQSkpKAADhcBjz5s0DAMTFxaGyshIkMTQ0pHwO\nANLT0wEAer0ew8PDAMbOh9+wYcOM8+nu7kZGRgbmz5+vjNXT06McYDJu8eLFMJvNiIqKgs/nw9Kl\nS3/mMihSU1OVHOPj41FfX49AIIDh4WHExsYq/TIyMpQc379/DwDIzc3FqVOn0NXVhY0bNyrnwY97\n/fo1vF4vqqqqlPc+fPgwITYAJCYmYuHChThw4ACysrKwdetW5e6EwWDAw4cPZyVXIeaCFHghfpOo\nqKhvvu7r64Ner8elS5cm9AkGgygtLYXT6YTRaITD4UBvb6/SPl6cge8/GnO8uE73ns/nQ2NjI27e\nvAmtVou6urrvijGdr/cHLy8vR0NDA9auXYs7d+7A4XAobZOvGzBW4DMzM/HgwQM0NzcjLS0Nhw4d\nUtrVajU0Gs2U6zk5dnR0NFpbW9Hb24v29nZs374dbW1tiIuLm600hZgz8hS9EH8Ao9EIv9+PgYEB\nAEBHRwfa2towMjIClUoFg8GAz58/4+7duwgEAtOOpdPp8OrVqxljrl69Gh6PB6FQCCThdruRkpIC\nlWrsayEYDOLdu3eIjY2FVquF3++H2+2eMf6PePv2LVasWIFwOAyXyzVjjKamJgBAdnY2LBYLurq6\nJrQvWbIE8fHxuH//PgDg+fPnsNvtU8Z5/Pgxrl+/DpPJhOLiYqxcuRJerxcAMDg4CIPBMBvpCTEn\nZAUvxB9Ao9HAarXi6NGjWLBgAQDgxIkTiImJQU5ODvLz86HX62E2m3HkyBHcunXrm2OtX78e165d\nw549e6aNmZaWhk2bNmH37t1QqVQwmUzYsmULVCoV1q1bh7y8PJw7dw46nQ47duzAsmXLUFJSgtra\nWmRmZs5q/kVFRdi7dy90Oh3MZjMqKiq+ufoGxs4/37dvHxYtWgSSE1bv46xWK+rq6mC32xEOhyfc\nrv96nLNnz6K1tRVqtRpGoxEpKSkAALfbjYKCgtlLUojfTE6TEyLCfPnyBdu2bYPNZvtXT9KLqZ4+\nfYqKigo4nc5//CtDiP8CKfBCRKCBgQHU1tbi4sWLUKvVvyxOZ2encrt8sqamJmi12l8W+1cJBAIw\nm804fvw4EhMT53o6QvwwKfBCCCFEBJKH7IQQQogIJAVeCCGEiEBS4IUQQogIJAVeCCGEiEBS4IUQ\nQogI9DeRVd/xcegIAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "p3SAxdJyhkmI", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", "source": [ "" ], From 2bd4e88cc14fd3b0bce7a6a437f8fdac6420e342 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Thu, 15 Nov 2018 14:09:33 -0500 Subject: [PATCH 05/12] Created using Colaboratory --- .../LS_DS_124_Sequence_your_narrative.ipynb | 4954 ++++++++++++++++- 1 file changed, 4901 insertions(+), 53 deletions(-) diff --git a/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb b/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb index b3c2b22..ef7dd56 100644 --- a/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb +++ b/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb @@ -1,55 +1,4903 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_Lambda School Data Science_\n", - "\n", - "# Sequence your narrative\n", - "\n", - "Create a sequence of visualizations inspired by [Hans Rosling's 200 Countries, 200 Years, 4 Minutes](https://www.youtube.com/watch?v=jbkSRLYSojo).\n", - "\n", - "Using this [data from Gapminder](https://github.com/open-numbers/ddf--gapminder--systema_globalis/):\n", - "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--income_per_person_gdppercapita_ppp_inflation_adjusted--by--geo--time.csv\n", - "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--life_expectancy_years--by--geo--time.csv\n", - "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--entities--geo--country.csv\n", - "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--concepts.csv\n", - "\n", - "### Stretch goals\n", - "- [ipywidgets](https://github.com/jupyter-widgets/ipywidgets)\n", - "- [Matplotlib animation](https://matplotlib.org/examples/animation/index.html)\n", - "- [Connected scatter plots](http://www.thefunctionalart.com/2012/09/in-praise-of-connected-scatter-plots.html)\n", - "- [Idyll markup language](https://idyll-lang.org/) for \"scrollytelling\"" - ] + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "LS_DS_124_Sequence_your_narrative.ipynb", + "version": "0.3.2", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "cells": [ + { + "metadata": { + "id": "mRXkzR99XE23", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "_Lambda School Data Science_\n", + "\n", + "# Sequence your narrative\n", + "\n", + "Create a sequence of visualizations inspired by [Hans Rosling's 200 Countries, 200 Years, 4 Minutes](https://www.youtube.com/watch?v=jbkSRLYSojo).\n", + "\n", + "Using this [data from Gapminder](https://github.com/open-numbers/ddf--gapminder--systema_globalis/):\n", + "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--income_per_person_gdppercapita_ppp_inflation_adjusted--by--geo--time.csv\n", + "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--life_expectancy_years--by--geo--time.csv\n", + "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--entities--geo--country.csv\n", + "- https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--concepts.csv\n", + "\n", + "### Stretch goals\n", + "- [ipywidgets](https://github.com/jupyter-widgets/ipywidgets)\n", + "- [Matplotlib animation](https://matplotlib.org/examples/animation/index.html)\n", + "- [Connected scatter plots](http://www.thefunctionalart.com/2012/09/in-praise-of-connected-scatter-plots.html)\n", + "- [Idyll markup language](https://idyll-lang.org/) for \"scrollytelling\"" + ] + }, + { + "metadata": { + "id": "jr3-aqnRXP_p", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Variables --> Visual Encodings \n", + " \n", + " - Income --> x-axis\n", + " - Lifespan --> y-axis\n", + " - Region --> color\n", + " - Population --> bubble size\n", + " - Year --> animation sequence(alternative: small multiple)\n", + " - Country --> annotations\n", + " \n", + "Qualitative --> Verbal\n", + " - Editorial / contexual explanation --> audio narration (alternative: text)\n", + " " + ] + }, + { + "metadata": { + "id": "xOCwT0RNXE24", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 322 + }, + "outputId": "3e29c6e7-6256-4b63-80a3-8b4f98548023" + }, + "cell_type": "code", + "source": [ + "!pip install --upgrade seaborn" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting seaborn\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/a8/76/220ba4420459d9c4c9c9587c6ce607bf56c25b3d3d2de62056efe482dadc/seaborn-0.9.0-py3-none-any.whl (208kB)\n", + "\u001b[K 100% |████████████████████████████████| 215kB 24.7MB/s \n", + "\u001b[?25hRequirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", + "Requirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", + "Requirement already satisfied, skipping upgrade: matplotlib>=1.4.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (2.1.2)\n", + "Requirement already satisfied, skipping upgrade: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.1.0)\n", + "Requirement already satisfied, skipping upgrade: pytz>=2011k in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2018.7)\n", + "Requirement already satisfied, skipping upgrade: python-dateutil>=2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2.5.3)\n", + "Requirement already satisfied, skipping upgrade: six>=1.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (1.11.0)\n", + "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n", + "Requirement already satisfied, skipping upgrade: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.3.0)\n", + "Installing collected packages: seaborn\n", + " Found existing installation: seaborn 0.7.1\n", + " Uninstalling seaborn-0.7.1:\n", + " Successfully uninstalled seaborn-0.7.1\n", + "Successfully installed seaborn-0.9.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "PKzhk5UCYf0w", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "d-h5yBhAYspx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "incomes = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--income_per_person_gdppercapita_ppp_inflation_adjusted--by--geo--time.csv')\n", + "life_exp = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--life_expectancy_years--by--geo--time.csv')\n", + "population = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--population_total--by--geo--time.csv')\n", + "entities = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--entities--geo--country.csv')\n", + "concepts = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--concepts.csv')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "RhU2Y1s7Y4vN", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "08abff9c-340e-440a-a409-6409e5cccb3e" + }, + "cell_type": "code", + "source": [ + "incomes.shape, life_exp.shape, population.shape, entities.shape, concepts.shape" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "((44268, 3), (44370, 3), (51939, 3), (273, 33), (590, 16))" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "Qs-LXzp-ZtNr", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 266 + }, + "outputId": "c472d6c7-1e8f-4940-b4a7-b0294210f1e7" + }, + "cell_type": "code", + "source": [ + "pd.options.display.max_columns = None\n", + "entities.head()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countryalt_5alternative_1alternative_2alternative_3alternative_4_cdiacarb1arb2arb3arb4arb5arb6g77_and_oecd_countriesgapminder_listgod_idgwidincome_groupsis--countryiso3166_1_alpha2iso3166_1_alpha3iso3166_1_numericiso3166_2landlockedlatitudelongitudemain_religion_2008namepandgun_stateunicode_region_subtagupper_case_nameworld_4regionworld_6region
0abkhNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNothersAbkhaziaGE-ABi0NaNTrueNaNNaNNaNNaNNaNNaNNaNNaNAbkhaziaNaNFalseNaNNaNeuropeeurope_central_asia
1abwNaNNaNNaNNaNArubaNaNNaNNaNNaNNaNNaNothersArubaAWi12high_incomeTrueAWABW533.0NaNcoastline12.50000-69.96667christianArubaNaNFalseAWARUBAamericasamerica
2afgNaNIslamic Republic of AfghanistanNaNNaNAfghanistanNaNNaNNaNNaNNaNNaNg77AfghanistanAFi1low_incomeTrueAFAFG4.0NaNlandlocked33.0000066.00000muslimAfghanistanAFGHANISTANTrueAFAFGHANISTANasiasouth_asia
3agoNaNNaNNaNNaNAngolaNaNNaNNaNNaNNaNNaNg77AngolaAOi7upper_middle_incomeTrueAOAGO24.0NaNcoastline-12.5000018.50000christianAngolaANGOLATrueAOANGOLAafricasub_saharan_africa
4aiaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNothersAnguillaAIi8NaNTrueAIAIA660.0NaNcoastline18.21667-63.05000christianAnguillaNaNFalseAIANGUILLAamericasamerica
\n", + "
" + ], + "text/plain": [ + " country alt_5 alternative_1 alternative_2 alternative_3 \\\n", + "0 abkh NaN NaN NaN NaN \n", + "1 abw NaN NaN NaN NaN \n", + "2 afg NaN Islamic Republic of Afghanistan NaN NaN \n", + "3 ago NaN NaN NaN NaN \n", + "4 aia NaN NaN NaN NaN \n", + "\n", + " alternative_4_cdiac arb1 arb2 arb3 arb4 arb5 arb6 g77_and_oecd_countries \\\n", + "0 NaN NaN NaN NaN NaN NaN NaN others \n", + "1 Aruba NaN NaN NaN NaN NaN NaN others \n", + "2 Afghanistan NaN NaN NaN NaN NaN NaN g77 \n", + "3 Angola NaN NaN NaN NaN NaN NaN g77 \n", + "4 NaN NaN NaN NaN NaN NaN NaN others \n", + "\n", + " gapminder_list god_id gwid income_groups is--country \\\n", + "0 Abkhazia GE-AB i0 NaN True \n", + "1 Aruba AW i12 high_income True \n", + "2 Afghanistan AF i1 low_income True \n", + "3 Angola AO i7 upper_middle_income True \n", + "4 Anguilla AI i8 NaN True \n", + "\n", + " iso3166_1_alpha2 iso3166_1_alpha3 iso3166_1_numeric iso3166_2 landlocked \\\n", + "0 NaN NaN NaN NaN NaN \n", + "1 AW ABW 533.0 NaN coastline \n", + "2 AF AFG 4.0 NaN landlocked \n", + "3 AO AGO 24.0 NaN coastline \n", + "4 AI AIA 660.0 NaN coastline \n", + "\n", + " latitude longitude main_religion_2008 name pandg un_state \\\n", + "0 NaN NaN NaN Abkhazia NaN False \n", + "1 12.50000 -69.96667 christian Aruba NaN False \n", + "2 33.00000 66.00000 muslim Afghanistan AFGHANISTAN True \n", + "3 -12.50000 18.50000 christian Angola ANGOLA True \n", + "4 18.21667 -63.05000 christian Anguilla NaN False \n", + "\n", + " unicode_region_subtag upper_case_name world_4region world_6region \n", + "0 NaN NaN europe europe_central_asia \n", + "1 AW ARUBA americas america \n", + "2 AF AFGHANISTAN asia south_asia \n", + "3 AO ANGOLA africa sub_saharan_africa \n", + "4 AI ANGUILLA americas america " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "3G13FulWaqIO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "9ec6bca5-1d7a-42d2-eba9-ece3017eca4c" + }, + "cell_type": "code", + "source": [ + "incomes.head()" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geotimeincome_per_person_gdppercapita_ppp_inflation_adjusted
0abw1800833
1abw1801833
2abw1802833
3abw1803833
4abw1804833
\n", + "
" + ], + "text/plain": [ + " geo time income_per_person_gdppercapita_ppp_inflation_adjusted\n", + "0 abw 1800 833 \n", + "1 abw 1801 833 \n", + "2 abw 1802 833 \n", + "3 abw 1803 833 \n", + "4 abw 1804 833 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "metadata": { + "id": "IaB-22CXaAao", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 551 + }, + "outputId": "ec9ba90d-198d-4110-cd5d-517311dbc06b" + }, + "cell_type": "code", + "source": [ + "concepts.head() # data dictionary" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
conceptcolorconcept_typedescriptiondescription_longdomaindrill_upindicator_urlnamename_catalogname_shortscalessourcesource_longsource_urltags
0adults_with_hiv_percent_age_15_49NaNmeasureThe estimated percentage of adults aged 15 to ...NaNNaNNaNNaNAdults with HIV (%, age 15-49)Adults with HIV (%, age 15-49)Adults with HIV[\"log\", \"linear\"]NaNNaNhttp://www.gapminder.org/gapminder-world/docum...hiv
1age_at_1st_marriage_womenNaNmeasureThe mean age, in years, of first marriage for ...NaNNaNNaNNaNAge at 1st marriage (women)Age at 1st marriage (women)Age at 1st marriage[\"linear\", \"log\"]NaNNaNhttp://spreadsheets.google.com/pub?key=t4eF8H_...population
2aged_15_24_employment_rate_percentNaNmeasurePercentage of total population, age group 15-2...NaNNaNNaNNaNAged 15-24 employment rate (%)Aged 15-24Employment rate (%)[\"linear\", \"log\"]NaNNaNhttp://ilo.org/legacy/english/global-reports/k...employment_rate
3aged_15_24_unemployment_rate_percentNaNmeasurePercentage of total population, age group 15-2...NaNNaNNaNNaNAged 15-24 unemployment rate (%)Aged 15-24Unemployment rate (%)[\"linear\", \"log\"]NaNNaNhttp://ilo.org/legacy/english/global-reports/k...unemployment
4aged_15_64_labour_force_participation_rate_per...NaNmeasureFor age group 15-64, percentage of all labour ...NaNNaNNaNNaNAged 15-64 labour force participation rate (%)Aged 15-64Labour force participation rate (%)[\"linear\", \"log\"]NaNNaNhttp://ilo.org/legacy/english/global-reports/k...labour_force_participation
\n", + "
" + ], + "text/plain": [ + " concept color concept_type \\\n", + "0 adults_with_hiv_percent_age_15_49 NaN measure \n", + "1 age_at_1st_marriage_women NaN measure \n", + "2 aged_15_24_employment_rate_percent NaN measure \n", + "3 aged_15_24_unemployment_rate_percent NaN measure \n", + "4 aged_15_64_labour_force_participation_rate_per... NaN measure \n", + "\n", + " description description_long domain \\\n", + "0 The estimated percentage of adults aged 15 to ... NaN NaN \n", + "1 The mean age, in years, of first marriage for ... NaN NaN \n", + "2 Percentage of total population, age group 15-2... NaN NaN \n", + "3 Percentage of total population, age group 15-2... NaN NaN \n", + "4 For age group 15-64, percentage of all labour ... NaN NaN \n", + "\n", + " drill_up indicator_url name \\\n", + "0 NaN NaN Adults with HIV (%, age 15-49) \n", + "1 NaN NaN Age at 1st marriage (women) \n", + "2 NaN NaN Aged 15-24 employment rate (%) \n", + "3 NaN NaN Aged 15-24 unemployment rate (%) \n", + "4 NaN NaN Aged 15-64 labour force participation rate (%) \n", + "\n", + " name_catalog name_short \\\n", + "0 Adults with HIV (%, age 15-49) Adults with HIV \n", + "1 Age at 1st marriage (women) Age at 1st marriage \n", + "2 Aged 15-24 Employment rate (%) \n", + "3 Aged 15-24 Unemployment rate (%) \n", + "4 Aged 15-64 Labour force participation rate (%) \n", + "\n", + " scales source source_long \\\n", + "0 [\"log\", \"linear\"] NaN NaN \n", + "1 [\"linear\", \"log\"] NaN NaN \n", + "2 [\"linear\", \"log\"] NaN NaN \n", + "3 [\"linear\", \"log\"] NaN NaN \n", + "4 [\"linear\", \"log\"] NaN NaN \n", + "\n", + " source_url \\\n", + "0 http://www.gapminder.org/gapminder-world/docum... \n", + "1 http://spreadsheets.google.com/pub?key=t4eF8H_... \n", + "2 http://ilo.org/legacy/english/global-reports/k... \n", + "3 http://ilo.org/legacy/english/global-reports/k... \n", + "4 http://ilo.org/legacy/english/global-reports/k... \n", + "\n", + " tags \n", + "0 hiv \n", + "1 population \n", + "2 employment_rate \n", + "3 unemployment \n", + "4 labour_force_participation " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "oGlxPCH1aI92", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "df1 = pd.merge(incomes, life_exp)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "_PUnmOElbc9L", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "79097abf-8a46-4f50-9813-ba9a9e9161f8" + }, + "cell_type": "code", + "source": [ + "incomes.shape, life_exp.shape, df1.shape" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "((44268, 3), (44370, 3), (41790, 4))" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "huCO-0cLbjIp", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 215 + }, + "outputId": "9e066052-28a0-484d-c0a3-bada93cacee9" + }, + "cell_type": "code", + "source": [ + "df1.head()" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geotimeincome_per_person_gdppercapita_ppp_inflation_adjustedlife_expectancy_years
0abw180083334.42
1abw180183334.42
2abw180283334.42
3abw180383334.42
4abw180483334.42
\n", + "
" + ], + "text/plain": [ + " geo time income_per_person_gdppercapita_ppp_inflation_adjusted \\\n", + "0 abw 1800 833 \n", + "1 abw 1801 833 \n", + "2 abw 1802 833 \n", + "3 abw 1803 833 \n", + "4 abw 1804 833 \n", + "\n", + " life_expectancy_years \n", + "0 34.42 \n", + "1 34.42 \n", + "2 34.42 \n", + "3 34.42 \n", + "4 34.42 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "id": "qeWegGZNboI2", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 266 + }, + "outputId": "908c87cf-1a61-4ff6-bfcb-0ed34b580dd8" + }, + "cell_type": "code", + "source": [ + "entities.head() # want real name and geographic region" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countryalt_5alternative_1alternative_2alternative_3alternative_4_cdiacarb1arb2arb3arb4arb5arb6g77_and_oecd_countriesgapminder_listgod_idgwidincome_groupsis--countryiso3166_1_alpha2iso3166_1_alpha3iso3166_1_numericiso3166_2landlockedlatitudelongitudemain_religion_2008namepandgun_stateunicode_region_subtagupper_case_nameworld_4regionworld_6region
0abkhNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNothersAbkhaziaGE-ABi0NaNTrueNaNNaNNaNNaNNaNNaNNaNNaNAbkhaziaNaNFalseNaNNaNeuropeeurope_central_asia
1abwNaNNaNNaNNaNArubaNaNNaNNaNNaNNaNNaNothersArubaAWi12high_incomeTrueAWABW533.0NaNcoastline12.50000-69.96667christianArubaNaNFalseAWARUBAamericasamerica
2afgNaNIslamic Republic of AfghanistanNaNNaNAfghanistanNaNNaNNaNNaNNaNNaNg77AfghanistanAFi1low_incomeTrueAFAFG4.0NaNlandlocked33.0000066.00000muslimAfghanistanAFGHANISTANTrueAFAFGHANISTANasiasouth_asia
3agoNaNNaNNaNNaNAngolaNaNNaNNaNNaNNaNNaNg77AngolaAOi7upper_middle_incomeTrueAOAGO24.0NaNcoastline-12.5000018.50000christianAngolaANGOLATrueAOANGOLAafricasub_saharan_africa
4aiaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNothersAnguillaAIi8NaNTrueAIAIA660.0NaNcoastline18.21667-63.05000christianAnguillaNaNFalseAIANGUILLAamericasamerica
\n", + "
" + ], + "text/plain": [ + " country alt_5 alternative_1 alternative_2 alternative_3 \\\n", + "0 abkh NaN NaN NaN NaN \n", + "1 abw NaN NaN NaN NaN \n", + "2 afg NaN Islamic Republic of Afghanistan NaN NaN \n", + "3 ago NaN NaN NaN NaN \n", + "4 aia NaN NaN NaN NaN \n", + "\n", + " alternative_4_cdiac arb1 arb2 arb3 arb4 arb5 arb6 g77_and_oecd_countries \\\n", + "0 NaN NaN NaN NaN NaN NaN NaN others \n", + "1 Aruba NaN NaN NaN NaN NaN NaN others \n", + "2 Afghanistan NaN NaN NaN NaN NaN NaN g77 \n", + "3 Angola NaN NaN NaN NaN NaN NaN g77 \n", + "4 NaN NaN NaN NaN NaN NaN NaN others \n", + "\n", + " gapminder_list god_id gwid income_groups is--country \\\n", + "0 Abkhazia GE-AB i0 NaN True \n", + "1 Aruba AW i12 high_income True \n", + "2 Afghanistan AF i1 low_income True \n", + "3 Angola AO i7 upper_middle_income True \n", + "4 Anguilla AI i8 NaN True \n", + "\n", + " iso3166_1_alpha2 iso3166_1_alpha3 iso3166_1_numeric iso3166_2 landlocked \\\n", + "0 NaN NaN NaN NaN NaN \n", + "1 AW ABW 533.0 NaN coastline \n", + "2 AF AFG 4.0 NaN landlocked \n", + "3 AO AGO 24.0 NaN coastline \n", + "4 AI AIA 660.0 NaN coastline \n", + "\n", + " latitude longitude main_religion_2008 name pandg un_state \\\n", + "0 NaN NaN NaN Abkhazia NaN False \n", + "1 12.50000 -69.96667 christian Aruba NaN False \n", + "2 33.00000 66.00000 muslim Afghanistan AFGHANISTAN True \n", + "3 -12.50000 18.50000 christian Angola ANGOLA True \n", + "4 18.21667 -63.05000 christian Anguilla NaN False \n", + "\n", + " unicode_region_subtag upper_case_name world_4region world_6region \n", + "0 NaN NaN europe europe_central_asia \n", + "1 AW ARUBA americas america \n", + "2 AF AFGHANISTAN asia south_asia \n", + "3 AO ANGOLA africa sub_saharan_africa \n", + "4 AI ANGUILLA americas america " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "id": "MVbiK6kJcdq0", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 101 + }, + "outputId": "b9792081-3db9-4db4-9d70-ec2366d5e024" + }, + "cell_type": "code", + "source": [ + "entities.world_4region.value_counts()" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "asia 80\n", + "europe 73\n", + "africa 61\n", + "americas 57\n", + "Name: world_4region, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "metadata": { + "id": "PP7Db1NqcWLl", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134 + }, + "outputId": "f8d687b3-f5ec-472b-fad6-a0483e25d35f" + }, + "cell_type": "code", + "source": [ + "entities.world_6region.value_counts()" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "europe_central_asia 77\n", + "sub_saharan_africa 53\n", + "america 53\n", + "east_asia_pacific 46\n", + "middle_east_north_africa 23\n", + "south_asia 8\n", + "Name: world_6region, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } + ] + }, + { + "metadata": { + "id": "DHH06jFqcvNK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "82b3d909-82ce-40a6-d676-e1c7840207bd" + }, + "cell_type": "code", + "source": [ + "variables = ['country', 'name', 'world_6region']\n", + "entities[variables].head() # show variables, very cool filter process" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countrynameworld_6region
0abkhAbkhaziaeurope_central_asia
1abwArubaamerica
2afgAfghanistansouth_asia
3agoAngolasub_saharan_africa
4aiaAnguillaamerica
\n", + "
" + ], + "text/plain": [ + " country name world_6region\n", + "0 abkh Abkhazia europe_central_asia\n", + "1 abw Aruba america\n", + "2 afg Afghanistan south_asia\n", + "3 ago Angola sub_saharan_africa\n", + "4 aia Anguilla america" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } + ] + }, + { + "metadata": { + "id": "EcN86p-ldBKV", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 215 + }, + "outputId": "028782f5-0699-4ee1-eb1e-4fea058600a9" + }, + "cell_type": "code", + "source": [ + "# preview before assigning\n", + "pd.merge(df1, entities[variables], how='inner', left_on='geo', \n", + " right_on='country').head()" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geotimeincome_per_person_gdppercapita_ppp_inflation_adjustedlife_expectancy_yearspopulation_totalcountrynameworld_6region
0abw180083334.4219286abwArubaamerica
1abw180183334.4219286abwArubaamerica
2abw180283334.4219286abwArubaamerica
3abw180383334.4219286abwArubaamerica
4abw180483334.4219286abwArubaamerica
\n", + "
" + ], + "text/plain": [ + " geo time income_per_person_gdppercapita_ppp_inflation_adjusted \\\n", + "0 abw 1800 833 \n", + "1 abw 1801 833 \n", + "2 abw 1802 833 \n", + "3 abw 1803 833 \n", + "4 abw 1804 833 \n", + "\n", + " life_expectancy_years population_total country name world_6region \n", + "0 34.42 19286 abw Aruba america \n", + "1 34.42 19286 abw Aruba america \n", + "2 34.42 19286 abw Aruba america \n", + "3 34.42 19286 abw Aruba america \n", + "4 34.42 19286 abw Aruba america " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 22 + } + ] + }, + { + "metadata": { + "id": "CwpsEDhIeS-a", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "df1 = pd.merge(df1, population)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "IUF3eAIRdkth", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "079aec53-0192-4968-abed-3c011d4155ba" + }, + "cell_type": "code", + "source": [ + "# drop and rename\n", + "df1 = pd.merge(df1, entities[variables], how='inner', left_on='geo', \n", + " right_on='country')\n", + "\n", + "df1.drop(columns=['geo', 'country'], inplace = True)\n", + "\n", + "df1.rename(columns={\n", + " 'time': 'year', \n", + " 'income_per_person_gdppercapita_ppp_inflation_adjusted': 'income',\n", + " 'life_expectancy_years': 'lifespan',\n", + " 'population_total': 'population',\n", + " 'name': 'country',\n", + " 'world_6region': 'region'\n", + "}, inplace=True)\n", + "\n", + "df1.shape" + ], + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(41790, 6)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 24 + } + ] + }, + { + "metadata": { + "id": "4c5yn5agelG9", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "6384ca6b-7243-4062-9abe-faa51ce4667e" + }, + "cell_type": "code", + "source": [ + "df1.head()" + ], + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
0180083334.4219286Arubaamerica
1180183334.4219286Arubaamerica
2180283334.4219286Arubaamerica
3180383334.4219286Arubaamerica
4180483334.4219286Arubaamerica
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "0 1800 833 34.42 19286 Aruba america\n", + "1 1801 833 34.42 19286 Aruba america\n", + "2 1802 833 34.42 19286 Aruba america\n", + "3 1803 833 34.42 19286 Aruba america\n", + "4 1804 833 34.42 19286 Aruba america" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 25 + } + ] + }, + { + "metadata": { + "id": "dbLg4S9xeoy3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "outputId": "875a5523-857d-43d6-e4b2-6a26b101a05c" + }, + "cell_type": "code", + "source": [ + "df1.describe(exclude=[np.number])" + ], + "execution_count": 27, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countryregion
count4179041790
unique1946
topItalyeurope_central_asia
freq21910991
\n", + "
" + ], + "text/plain": [ + " country region\n", + "count 41790 41790\n", + "unique 194 6\n", + "top Italy europe_central_asia\n", + "freq 219 10991" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 27 + } + ] + }, + { + "metadata": { + "id": "qF650OSWe7uc", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 689 + }, + "outputId": "746d5e3b-459e-4338-f3de-0581a3b84240" + }, + "cell_type": "code", + "source": [ + "df1.country.unique()" + ], + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['Aruba', 'Afghanistan', 'Angola', 'Albania', 'Andorra',\n", + " 'United Arab Emirates', 'Argentina', 'Armenia',\n", + " 'Antigua and Barbuda', 'Australia', 'Austria', 'Azerbaijan',\n", + " 'Burundi', 'Belgium', 'Benin', 'Burkina Faso', 'Bangladesh',\n", + " 'Bulgaria', 'Bahrain', 'Bahamas', 'Bosnia and Herzegovina',\n", + " 'Belarus', 'Belize', 'Bermuda', 'Bolivia', 'Brazil', 'Barbados',\n", + " 'Brunei', 'Bhutan', 'Botswana', 'Central African Republic',\n", + " 'Canada', 'Switzerland', 'Chile', 'China', \"Cote d'Ivoire\",\n", + " 'Cameroon', 'Congo, Dem. Rep.', 'Congo, Rep.', 'Colombia',\n", + " 'Comoros', 'Cape Verde', 'Costa Rica', 'Cuba', 'Cyprus',\n", + " 'Czech Republic', 'Germany', 'Djibouti', 'Dominica', 'Denmark',\n", + " 'Dominican Republic', 'Algeria', 'Ecuador', 'Egypt', 'Eritrea',\n", + " 'Spain', 'Estonia', 'Ethiopia', 'Finland', 'Fiji', 'France',\n", + " 'Micronesia, Fed. Sts.', 'Gabon', 'United Kingdom', 'Georgia',\n", + " 'Ghana', 'Guinea', 'Gambia', 'Guinea-Bissau', 'Equatorial Guinea',\n", + " 'Greece', 'Grenada', 'Greenland', 'Guatemala', 'Guyana',\n", + " 'Hong Kong, China', 'Honduras', 'Croatia', 'Haiti', 'Hungary',\n", + " 'Indonesia', 'India', 'Ireland', 'Iran', 'Iraq', 'Iceland',\n", + " 'Israel', 'Italy', 'Jamaica', 'Jordan', 'Japan', 'Kazakhstan',\n", + " 'Kenya', 'Kyrgyz Republic', 'Cambodia', 'Kiribati', 'South Korea',\n", + " 'Kuwait', 'Lao', 'Lebanon', 'Liberia', 'Libya', 'St. Lucia',\n", + " 'Sri Lanka', 'Lesotho', 'Lithuania', 'Luxembourg', 'Latvia',\n", + " 'Macao, China', 'Morocco', 'Moldova', 'Madagascar', 'Maldives',\n", + " 'Mexico', 'Marshall Islands', 'Macedonia, FYR', 'Mali', 'Malta',\n", + " 'Myanmar', 'Montenegro', 'Mongolia', 'Mozambique', 'Mauritania',\n", + " 'Mauritius', 'Malawi', 'Malaysia', 'Namibia', 'Niger', 'Nigeria',\n", + " 'Nicaragua', 'Netherlands', 'Norway', 'Nepal', 'New Zealand',\n", + " 'Oman', 'Pakistan', 'Panama', 'Peru', 'Philippines',\n", + " 'Papua New Guinea', 'Poland', 'Puerto Rico', 'North Korea',\n", + " 'Portugal', 'Paraguay', 'Palestine', 'Qatar', 'Romania', 'Russia',\n", + " 'Rwanda', 'Saudi Arabia', 'Sudan', 'Senegal', 'Singapore',\n", + " 'Solomon Islands', 'Sierra Leone', 'El Salvador', 'Somalia',\n", + " 'Serbia', 'South Sudan', 'Sao Tome and Principe', 'Suriname',\n", + " 'Slovak Republic', 'Slovenia', 'Sweden', 'Swaziland', 'Seychelles',\n", + " 'Syria', 'Chad', 'Togo', 'Thailand', 'Tajikistan', 'Turkmenistan',\n", + " 'Timor-Leste', 'Tonga', 'Trinidad and Tobago', 'Tunisia', 'Turkey',\n", + " 'Taiwan', 'Tanzania', 'Uganda', 'Ukraine', 'Uruguay',\n", + " 'United States', 'Uzbekistan', 'St. Vincent and the Grenadines',\n", + " 'Venezuela', 'Vietnam', 'Vanuatu', 'Samoa', 'Yemen',\n", + " 'South Africa', 'Zambia', 'Zimbabwe'], dtype=object)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 29 + } + ] + }, + { + "metadata": { + "id": "P9A0mufcfkWd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1058 + }, + "outputId": "73e8b390-829e-4e48-acdb-a4c667a159ab" + }, + "cell_type": "code", + "source": [ + "df1.country == 'United States'" + ], + "execution_count": 31, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + "5 False\n", + "6 False\n", + "7 False\n", + "8 False\n", + "9 False\n", + "10 False\n", + "11 False\n", + "12 False\n", + "13 False\n", + "14 False\n", + "15 False\n", + "16 False\n", + "17 False\n", + "18 False\n", + "19 False\n", + "20 False\n", + "21 False\n", + "22 False\n", + "23 False\n", + "24 False\n", + "25 False\n", + "26 False\n", + "27 False\n", + "28 False\n", + "29 False\n", + " ... \n", + "41760 False\n", + "41761 False\n", + "41762 False\n", + "41763 False\n", + "41764 False\n", + "41765 False\n", + "41766 False\n", + "41767 False\n", + "41768 False\n", + "41769 False\n", + "41770 False\n", + "41771 False\n", + "41772 False\n", + "41773 False\n", + "41774 False\n", + "41775 False\n", + "41776 False\n", + "41777 False\n", + "41778 False\n", + "41779 False\n", + "41780 False\n", + "41781 False\n", + "41782 False\n", + "41783 False\n", + "41784 False\n", + "41785 False\n", + "41786 False\n", + "41787 False\n", + "41788 False\n", + "41789 False\n", + "Name: country, Length: 41790, dtype: bool" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 31 + } + ] + }, + { + "metadata": { + "id": "7Yuat41ufr0r", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1882 + }, + "outputId": "4e7849d2-7d04-404d-e27c-98039d7c8ee8" + }, + "cell_type": "code", + "source": [ + "df1[df1.country == 'United States'] # boolean indexing, aka return true" + ], + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
393811800212739.416801854United Statesamerica
393821801216739.416933517United Statesamerica
393831802220239.417067728United Statesamerica
393841803216639.417204538United Statesamerica
393851804216539.417343995United Statesamerica
393861805220939.417486152United Statesamerica
393871806225139.417631061United Statesamerica
393881807227339.417778775United Statesamerica
393891808211339.417929348United Statesamerica
393901809221739.418082836United Statesamerica
393911810228239.418294928United Statesamerica
393921811232639.418461458United Statesamerica
393931812228739.418637266United Statesamerica
393941813231239.418822188United Statesamerica
393951814235739.419016100United Statesamerica
393961815234839.419218879United Statesamerica
393971816225339.419430398United Statesamerica
393981817225139.419650391United Statesamerica
393991818225839.419879049United Statesamerica
394001819225439.4110116052United Statesamerica
394011820224139.4110361646United Statesamerica
394021821227639.4110619707United Statesamerica
394031822233939.4110890141United Statesamerica
394041823231439.4111172754United Statesamerica
394051824237739.4111467399United Statesamerica
394061825243039.4111773972United Statesamerica
394071826244739.4112092272United Statesamerica
394081827245739.4112422142United Statesamerica
394091828245839.4112763468United Statesamerica
394101829237739.4113116042United Statesamerica
.....................
3957019893683075.16250113187United Statesamerica
3957119903706275.40252529950United Statesamerica
3957219913654375.55254974819United Statesamerica
3957319923732175.71257454273United Statesamerica
3957419933784475.72260020186United Statesamerica
3957519943889275.79262741566United Statesamerica
3957619953947675.91265658849United Statesamerica
3957719964050176.24268803424United Statesamerica
3957819974181276.60272136551United Statesamerica
3957919984316676.74275542603United Statesamerica
3958019994467376.78278862277United Statesamerica
3958120004598676.90281982778United Statesamerica
3958220014597876.99284852391United Statesamerica
3958320024636777.12287506847United Statesamerica
3958420034726077.27290027624United Statesamerica
3958520044859777.49292539324United Statesamerica
3958620054976277.65295129501United Statesamerica
3958720065059977.91297827356United Statesamerica
3958820075101178.12300595175United Statesamerica
3958920085038478.33303374067United Statesamerica
3959020094855878.56306076362United Statesamerica
3959120104937378.74308641391United Statesamerica
3959220114979178.83311051373United Statesamerica
3959320125052078.91313335423United Statesamerica
3959420135100878.93315536676United Statesamerica
3959520145183178.92317718779United Statesamerica
3959620155279078.85319929162United Statesamerica
3959720165327378.84322179605United Statesamerica
3959820175416378.99324459463United Statesamerica
3959920185489879.14326766748United Statesamerica
\n", + "

219 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "39381 1800 2127 39.41 6801854 United States america\n", + "39382 1801 2167 39.41 6933517 United States america\n", + "39383 1802 2202 39.41 7067728 United States america\n", + "39384 1803 2166 39.41 7204538 United States america\n", + "39385 1804 2165 39.41 7343995 United States america\n", + "39386 1805 2209 39.41 7486152 United States america\n", + "39387 1806 2251 39.41 7631061 United States america\n", + "39388 1807 2273 39.41 7778775 United States america\n", + "39389 1808 2113 39.41 7929348 United States america\n", + "39390 1809 2217 39.41 8082836 United States america\n", + "39391 1810 2282 39.41 8294928 United States america\n", + "39392 1811 2326 39.41 8461458 United States america\n", + "39393 1812 2287 39.41 8637266 United States america\n", + "39394 1813 2312 39.41 8822188 United States america\n", + "39395 1814 2357 39.41 9016100 United States america\n", + "39396 1815 2348 39.41 9218879 United States america\n", + "39397 1816 2253 39.41 9430398 United States america\n", + "39398 1817 2251 39.41 9650391 United States america\n", + "39399 1818 2258 39.41 9879049 United States america\n", + "39400 1819 2254 39.41 10116052 United States america\n", + "39401 1820 2241 39.41 10361646 United States america\n", + "39402 1821 2276 39.41 10619707 United States america\n", + "39403 1822 2339 39.41 10890141 United States america\n", + "39404 1823 2314 39.41 11172754 United States america\n", + "39405 1824 2377 39.41 11467399 United States america\n", + "39406 1825 2430 39.41 11773972 United States america\n", + "39407 1826 2447 39.41 12092272 United States america\n", + "39408 1827 2457 39.41 12422142 United States america\n", + "39409 1828 2458 39.41 12763468 United States america\n", + "39410 1829 2377 39.41 13116042 United States america\n", + "... ... ... ... ... ... ...\n", + "39570 1989 36830 75.16 250113187 United States america\n", + "39571 1990 37062 75.40 252529950 United States america\n", + "39572 1991 36543 75.55 254974819 United States america\n", + "39573 1992 37321 75.71 257454273 United States america\n", + "39574 1993 37844 75.72 260020186 United States america\n", + "39575 1994 38892 75.79 262741566 United States america\n", + "39576 1995 39476 75.91 265658849 United States america\n", + "39577 1996 40501 76.24 268803424 United States america\n", + "39578 1997 41812 76.60 272136551 United States america\n", + "39579 1998 43166 76.74 275542603 United States america\n", + "39580 1999 44673 76.78 278862277 United States america\n", + "39581 2000 45986 76.90 281982778 United States america\n", + "39582 2001 45978 76.99 284852391 United States america\n", + "39583 2002 46367 77.12 287506847 United States america\n", + "39584 2003 47260 77.27 290027624 United States america\n", + "39585 2004 48597 77.49 292539324 United States america\n", + "39586 2005 49762 77.65 295129501 United States america\n", + "39587 2006 50599 77.91 297827356 United States america\n", + "39588 2007 51011 78.12 300595175 United States america\n", + "39589 2008 50384 78.33 303374067 United States america\n", + "39590 2009 48558 78.56 306076362 United States america\n", + "39591 2010 49373 78.74 308641391 United States america\n", + "39592 2011 49791 78.83 311051373 United States america\n", + "39593 2012 50520 78.91 313335423 United States america\n", + "39594 2013 51008 78.93 315536676 United States america\n", + "39595 2014 51831 78.92 317718779 United States america\n", + "39596 2015 52790 78.85 319929162 United States america\n", + "39597 2016 53273 78.84 322179605 United States america\n", + "39598 2017 54163 78.99 324459463 United States america\n", + "39599 2018 54898 79.14 326766748 United States america\n", + "\n", + "[219 rows x 6 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 32 + } + ] + }, + { + "metadata": { + "id": "gspJjSV2fx0H", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 136 + }, + "outputId": "74f8fa04-e9a9-4972-fcf6-42441feeda55" + }, + "cell_type": "code", + "source": [ + "usa = df1[df1.country=='United States']\n", + "usa[usa.year.isin([1818, 1918, 2018])]" + ], + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
393991818225839.419879049United Statesamerica
394991918937147.18106721812United Statesamerica
3959920185489879.14326766748United Statesamerica
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "39399 1818 2258 39.41 9879049 United States america\n", + "39499 1918 9371 47.18 106721812 United States america\n", + "39599 2018 54898 79.14 326766748 United States america" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 34 + } + ] + }, + { + "metadata": { + "id": "SDmbtDpBf77p", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 136 + }, + "outputId": "29c32379-e761-42cb-8d10-cf9bdfa6e2dd" + }, + "cell_type": "code", + "source": [ + "china = df1[df1.country=='China']\n", + "china[china.year.isin([1818,1918,2018])]" + ], + "execution_count": 36, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
7120181898532.00374161494Chinaeast_asia_pacific
7220191898922.13462444535Chinaeast_asia_pacific
732020181601876.921415045928Chinaeast_asia_pacific
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "7120 1818 985 32.00 374161494 China east_asia_pacific\n", + "7220 1918 989 22.13 462444535 China east_asia_pacific\n", + "7320 2018 16018 76.92 1415045928 China east_asia_pacific" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 36 + } + ] + }, + { + "metadata": { + "id": "-lEPBJPOgFNp", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "this_year = df1[df1.year==2018]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7_pJr5BcgVwU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 360 + }, + "outputId": "caeb7a2e-5063-4bce-ee7a-2da670814d96" + }, + "cell_type": "code", + "source": [ + "print(this_year.shape)\n", + "this_year.sample(10)" + ], + "execution_count": 39, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(188, 6)\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
3719220181785670.485851466Turkmenistaneurope_central_asia
245520181655272.309923914Azerbaijaneurope_central_asia
3828720182488179.6181916871Turkeyeurope_central_asia
237862018533072.414041065Moldovaeurope_central_asia
21820183921976.14105670Arubaamerica
1328020181746367.332067561Gabonsub_saharan_africa
86342018143968.00832347Comorossub_saharan_africa
328122018257366.8516294270Senegalsub_saharan_africa
1699720182693675.909688847Hungaryeurope_central_asia
3478320181315071.62568301Surinameamerica
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "37192 2018 17856 70.48 5851466 Turkmenistan europe_central_asia\n", + "2455 2018 16552 72.30 9923914 Azerbaijan europe_central_asia\n", + "38287 2018 24881 79.61 81916871 Turkey europe_central_asia\n", + "23786 2018 5330 72.41 4041065 Moldova europe_central_asia\n", + "218 2018 39219 76.14 105670 Aruba america\n", + "13280 2018 17463 67.33 2067561 Gabon sub_saharan_africa\n", + "8634 2018 1439 68.00 832347 Comoros sub_saharan_africa\n", + "32812 2018 2573 66.85 16294270 Senegal sub_saharan_africa\n", + "16997 2018 26936 75.90 9688847 Hungary europe_central_asia\n", + "34783 2018 13150 71.62 568301 Suriname america" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 39 + } + ] + }, + { + "metadata": { + "id": "nXTGQNi7gv6L", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import seaborn as sns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "dbn1x_95g4zh", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 369 + }, + "outputId": "a0bc78fc-134e-48ca-ce93-daf6d71973ba" + }, + "cell_type": "code", + "source": [ + "sns.relplot(x='income', y='lifespan', hue='region', size='population', \n", + " sizes=(5, 200), data=this_year);" + ], + "execution_count": 46, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFgCAYAAABNIYvfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4HNXVwOHf2SrtqsvCDdwwxhgb\nDBjTCR0SeichoeNAIHwhhHQIJBAIJYQQIPSSECD0FnoP1QZXMCUYG3erd2nb+f6Yka2yklfSriRL\n530eHuQpd+4sRmfvnTvniKpijDHGmE2bp787YIwxxpjes4BujDHGDAIW0I0xxphBwAK6McYYMwhY\nQDfGGGMGAQvoxhhjzCBgAd0YY4wZBCygG2OMMYOABXRjjDFmEPD1dwdSccghh+gLL7zQ390wxgxt\n0t8dMKYrm8QIvaysrL+7YIwxxgxom0RAN8YYY0zXLKAbY4wxg0BGA7qIXCgin4jIIhF5UESyRORe\nEflaROa5/0zPZB+MMcaYoSBji+JEZDRwATBFVRtF5N/ASe7ui1X10Uxd2xhjjBlqMj3l7gOyRcQH\nhIBVGb6eMcYYMyRlLKCr6krgOuAbYDVQraovubuvFJEFInKDiASTnS8is0RkjojMKS0tzVQ3jTHG\nmEEhYwFdRAqBI4HxwCggLCLfB34FTAZ2BoqAXyQ7X1VvV9UZqjqjpKQkU900xhhjBoVMTrkfAHyt\nqqWqGgUeB3ZX1dXqaAbuAWZmsA/GGGPMkJDJgP4NsKuIhEREgP2BxSIyEsDddhSwKIN9MMYYY4aE\njK1yV9UPRORR4GMgBswFbgeeF5ESnDSK84BzMtUH03uaSFBfXUWkoYFAKEROYVF/d8kYY0wSoqr9\n3YeNmjFjhs6ZM6e/uzEkVa9bywO/vpDG2hpyh5XwvT9cR05RcX93y5j+YLnczYBmmeJMl7788D0a\na2sAqC0rZfX/vujnHg1diXic+soKYpHm/u6KMWYAsoBuulS8+RZt/lwwfEQ/9cQ0VFfxr0t+RtXa\nNf3dFWPMALRJlE81/WfExEkc9MMLWDJ3NlP22pfcYfYKYX8Rj4eRW00mkJXd310xxgxA9gzdbJSq\nEo9G8AWS5gDqF7FolJWLF9FQU82EnWYSzA71d5f6RCwSwRcI9Hc3hip7hm4GNBuhm40SkQEVzAHi\n0SgLXnmB6tK1jJ22AwyRQasFc2NMZyygm01SMBRi/zPPRVXxx2LEysrwDRvW390yxph+Y4vihrhE\nczOJaLS/u9EjofwCgvEEy888i1W//BXxmpr+7pIxxvQbG6EPYbHyctZdfz3+zTen8LvfxVdY2N9d\n6jbJymLYuefgyc1FggPrscBg0FhbQ6SxkWA4TFY4p7+7Y4zpgo3Qh7DGRZ9Q/fgTlP31JhJ1df3d\nnR7xhsPkHXwwObvvjscCeto1VFdz54/PJNLY2N9dMcZshI3Qh7CsyZPJ2m47/KNG4gkNjVXipntC\n+fmcddNdBLKHyKpDYzZh9traEBerqEC8Xrz5+elvOxKhfOVymurqGD5hS5uyNZs6e23NDGg25T7E\n+YqKwO8n0dx5OtFEQwOxqqput91cX8e/L/8Vj17xGyKNDb3ppjHGmI2wKfchLrpuHWuv/CP+0aMp\nPvusDgvjYpWVlN9xJ40LFjDyD38gOH5cym37gkH2P/NcakrX4Q9kofE48cpKvPn5iN+f3hsxxpgh\nzkboQ1z1U09T++KLVNx9N7HS0g7749XVVNx9N41z5lB6/fUkmppSbjsYCjNlr33Z5egTyM7LI1ZW\nxrJTTyNWXp7OWzDGGIMF9CEnHk9QuaaeilX1xKNxwrvvhgQC+DbbLOlra55wGN/IkQDkHHBAj0bW\nIu6jx0CA0Tf8mYH2KFJjMaJr1xIrK+vvrgx4zme1jlhFRX93xRjTjgX0ISbSGOPV+xbz4p2LaG6M\nE9xyS7Z8+SXGP/Yo3iSZ1vwlJYz798NMfO1VcvffD/F6u2w/Gk90uk/icZbP+iFr/3Q18fr6Xt9L\nusQqK1l6/PGU3vhXNB7v7+4MaPHKSr4+9ljqXn+jv7tijGnHVrkPMapKQ3UEVQjlB/B40jdaXlvT\nxNXPf8bxMzZnpzGFBP1tg3+8upqqJ58kOHEioZkz8QyQ5+iJhgYiS5fhLcjHP2pUf3dnQEs0NBBd\nswZvfj6+4uL+7k5fG1hTS8a0YwHdpEzjcSJLl6HNTQS23LJDIpd73vmay5/5lPHDwvz7h7tRktsx\n0YuqbpiCN2bTYn9xzYBmq9xNyhKNjay79lpiZaVscdvtHQL6IVNH8MHXFZwwYwtyA8mf5ogIGosR\nWbGCeHk5wUmT8Obm9kX3jTFmULMRulmvuaGBWKSZYCiMLxAgXl+PeL14srLWHxMrK3MqnJWUJG2j\nMRLD21BP2XXXMuzcHxEY3XEKO1ZezvKzZ9H06adMfPMN/MOHZ+yejEkjG6GbAc0WxZn1qtet4c4f\nn0VjbQ3x2lrKbv07ta+/3uYY37BhnQZzgOyAD2mop/qpp4muWJH0GG9eHiOvvorNb/s7Hkspaowx\naWFT7ma9UH4BM488Dq/PByL4NyvBV1DQ7Xa8RUVMfPWVNiP71sTvJ2vSJLImTeptl9MuEY0OmMV6\nxhjTHTblnkFVDRGaogkKQ/4OK74HquaGeqLNzQSys/H7/CCy0VfVBotYWRnrrruOkgsvtMcAJhmb\ncjcDmk25Z9DH31Sx9zWvU9kQSUt7sYoKKv/9b6Jr167fpokE0XXrkmZ5667Gmmqe/9v13H7uaXyz\ncB7i87UJ5onmZmLl5SQaNp6XPVZaSuXDD9O4YCHxTaQ0q8bjNMyendL9GWPMQGMBPYO2HZXHlUdP\nxe9Lz8ecqKtnzaW/o+7V19Zvi5WXs/TEk1j1q18Tr6npVfvxeJyl8z9GNcGXH75HvFWSlURTE/Xv\nvsuyH5xC5YMPtblWdO061l1//fpMa/GqKlZedBFrfncZS088kVjpppGBzVdczNiHHrJ30Y0xmyQL\n6Bk0PC+L42dsQXG44/vYPeEtyGfLl14k95CD12/zZGWx2U8vpHjW2Ui7Z9ax8nLK77sv5ZSmwVCY\nY371e7Y/8NvsedIpeFuPzmtrWfOHK4gsWcK6a68l0di4fl/zl19QfsedRNetA5z0oLEyN1+7KsRj\nNM6fT3TVqp7eep8Qnw9/SUmH1/GMMWZTYAF9E+LNyyMwZoxT8rRlW24u+YcfTnjmTDyBQJvjNRaj\n/Na/E6+tTal9fzDImKnbsf+ZPyK3uG0aWMnOJu+ggwAI7bprm5zuWVOnsuWrrxAYPdrpU1ERm9/4\nF8J77sGw887Dk5PD8h+eQ9kdd6KJzlPDGmOM6TlbFDeIJaJR4lVVeMNhJBgk0diINyenx+3FKqvQ\nxkYkGNho2k9VJVFfjwQCiAixigrE68M3bMilCzWDhy2KMwOajdAHsIr6CJX1PV9Q5/H7nSnkUIjI\nsm9YdfHPe1VRzFdYgH/UyJRyeIsI3pwcPIEA4vfjHz7cgrkZEOqrm2moSc9CVWMGEgvoA1R5XTPn\n/+tjfvPkIip6EdRbiM+LJy8XLI+6GcKaGqK8cu+nvPng50SaYv3dHWPSyhLLpEFTfZREXMnO9aet\n8IgCq6ubaIzEScdjEf8WWzDy8ss7TfZizFDgD3rZ+8RJeDyCPzA08iuYocMCehp8/v5q5r2ynON/\ntTOhvMDGT0jBsJwgj/xwNxAozun9qmsR6bAK3pihxuv1UDgi3N/dMCYjMhrQReRC4CycAedC4HRg\nJPAQUAx8BPxAVTfJB1oV9RFWVjUyfMcStgc8aX6AMSxJ+VFjjDEmmYw9QxeR0cAFwAxVnQp4gZOA\nPwE3qOpEoBI4M1N9yLS3vijl8Jv+yy+fXMj43UeSlZOe0bkxxhjTXZleFOcDskXEB4SA1cB+wKPu\n/vuAozLch4zZarMc8rJ97LJFDoG4pQsdrBIJpaGmmXjM3qE3xgxcGQvoqroSuA74BieQV+NMsVep\nasvy0hXA6Ez1IdMmbpbDKz/ehZPH15LttV/2g1VjTYSnbphHXWVTf3fFGGM6lckp90LgSGA8MAoI\nA4d04/xZIjJHROaUpqHwSCYE/V42Kyogb8JMyC7M6LUSTU3Eq6st01o/EIHi0Tl405ST3xhjMiGT\nv6EOAL5W1VJVjQKPA3sABe4UPMDmwMpkJ6vq7ao6Q1VnlJSUZLCbaZDhd7tjlZWU3XwLy887n6bP\nPkNbFU0xmRfKD7LfqZPJKbS3BIwxA1cmA/o3wK4iEhLn5ez9gU+B14Hj3GNOBZ7KYB8GhejKlZTf\ncQeNc+aw8icXEquo7O8uDTm+TaSevTFm6MrYa2uq+oGIPAp8DMSAucDtwHPAQyJyhbvtrkz1YaBL\nJJTqpij5WX48no6j/HU1TSBQkF/gvBOXSOAfORLxdT+4JBoaiNfX48nKwpubm47u96lEQimrb+ab\n8gZiCWXCsDCFYT9+rwVaY4wBK87Sr1ZUNnDhw/O4/oTpjCkKtdlXWR/hh//8iJDfyy3HbYNn9Wqa\nv/iC8G674hs2rJMWO9f89dcsOfwIxv3zn2RP3z5dt9BnlpTWceJt71Na1wxATtDHA2ftwtTR+XiT\nfBkyJgPsL5oZ0CxTXD9qaI6zeHUtDc0dc0rnZvm45rjt8IiQlZONZ+tJZG09qcfX8oTDFBx3HL5R\nI3vT5X5RURfhJw/PWx/MAeqaY5zzz494+vw9KMm1Z9vGGGMBvR9tUZTNaxd9i5ysjv8ZfF4P44rT\nl6LSv9lm1J1zIV9WNbNTfoxwcNP5T98ci7NgRXWH7aurm2iI2AJBY4wBq7bWr7IDPjbLyyIUyHxw\njSUSPDRnBX964TMao5tWEPR4hFCSQhoegYDX/gobYwxYQB8yfB4PP9p3S+49fSbD0lDspS/lZ/s5\nc8/xHbYfsf2oTWqmwRhjMmlI/zasrI/w4qdr2G1CMWN7Mb1d0xilpilKwOuhJDeYthKq6VYc3rQC\neYssv5cz9hhPSU6Qe95dSjSe4IQZW3DyLmPIy/b3d/eMMWZAGNIBPRpPcMWzi7nooEmcvkfHEWCq\n5i2v4pS7P2R4XpBnzt+TzfJskVa6FYYDnLzrWL4zbSSKUhAK4LfpdmOMWW9IB/TCcIBXL/pWrwPD\n6upGAKoaoiQG/luAmyyvR6ykrDHGdGJIB3S/18PwFEfT62qaiCWUonCArHZZww6cMoJhOUHGFoco\nDNkUsDHGmL5nc5YpqKyP8KMHPmafa9+guiHaYX9ROMD+2wxn4ma5BNsF+4aaaj575y1W/+9zmhvS\nX2I1smIFlQ89RKysLO1tG2OM2XQM6RF6qrIDXmbtPYGFK6vxd6PiViIeZ/bTjzHnmccBOOMvtxMM\nhTZyVupilZWsuvhiGufOI7pqNZv99MK0td1aY20EgOzcQEbaN8YY03sW0FOQ5fdy4JTh7L/NZng9\nHhpqIsQjMXxNNVC2luC2U4jGBI9X8Ld5X1qJNm2ooR2PdcwI1xue7GzyDj+c6Oo15Oy/X1rbbtHc\nGOPNBz8HhX1/MJmgPVIwxpgByQJ6ikQErwixSJy3H/6CJXNL+cHvZxDavICmxgSv3f8Zw7bIZfr+\nm5OV44xkPV4fux//PQpGjKRw1GhyiorS2idPVhb5Rx5J7oEH4s3PT2vbLbxeYZs9RoFi9cCNMWYA\ns4DeTV6/h50PG8+E7YvxffEknvm3wlGPsGxROcsWlTN171Ftjg/lFzDjsKO7fR1NJBDPxgOoNxzG\nG05fitj2fAEvY7ctzlj7APF4gub6GIEsL74kGeGMMcZsnA25uklEKBoZZqupWQSXvwiTD8cfzmbr\nXUaw5wlb4Qt4qa+uomLlCpZ/spCVn31KTek6mupqu2x3XU0Tq6qc198iy5ez9qqriJWXd7t/0VWr\nKP3bzcQqKnp0f/2hYlU9T/1lLssXVxCPJ/q7O8YYs0myEXpPhQqRI28G8eEPhtnn5HxikSaWfPxf\nPnj8YSpWrWhz+Jhp27PnSadSNGo0wVDbEXVFfTOfr63lyucWc/8ZM8kpLaXurbcpPvvsbncrVl5O\n3euvUXjSib26vb709bxSKlbVs/jd1Ww+uRCvJYwxxphus3roadJQU82Lt97Iko8/XL/N4/Vy8A/O\nIq9oGC88cBfVa9ew3xnnMmWvfdoE9eZonFXVjdz136/5yQGTKJQY2tiIt7i422lkE42NJBoa8BVn\ndpo8nRpqIixfXM7oSYXkFA7uLHuNdbXEI1GycnPw+e2tgU3MwMzpbIzLhkJp0NxQz38fur9NMAcY\nv8MMir5ZRfT6v7DXYccA8Nrdt7Lqi8/aHBf0exk/LIfLDt+WYTlBvOEwvmHDepQT3pOdvUkFc4BQ\nXoCtdxk56IM5QNXqVdx5wZk01Xb9CMYYY7rLAnoaNDc0sOi1lztsL1+xnOCee5D3o3NY/tWX67e/\ncf+d1FdXdTjel4Gp5lh5OVWPPd5nz9QjzTG+mL2GNUs61i83kD98BCdcehW+gI3OjTHpZQG9lxLx\nGJ+8+QqqHRdzVa1ZxcN//RMvvfY85evWUDhyNAAVK5dTXV5OZX0k4/2LlZez+je/IVFXl/FrASRi\nytIFZaxZUo1aYvsOQnn5jJo0mayc3P7uijFmkLFFcb3U3NDA13M/6nR/0ZjxTD1pFm99VcWUEWF0\nyTzmPHgXn8+di26bw36Th2e0f77hI5j4xut4MvhqW2tZYT97nzgJ8QjiGRyPHBtqIkSaYmTnBghm\n2/8yxpiByX479ZKqEos0J93n8XrZ8fvncORdC6iPxAG46ZhpjJ68LYnmJkpyMl85zJefB/l5Gb9O\nay2JdQaLBa8t56MXlnHKH3e3gG6MGbDst1MnGmojRBpjhHIDBLr4Je71+QjlJc/Slp2XzzflDeuD\nOcAbX9dx4MjRlIzYjC1LctLeb5N+U781mlFbFeAPWtIbY8zAZc/QO7Hw9RU8cOn7NDduyL9eUd/M\n0/NWUVa7YUQeDIWZfvBhSdtorKlmbHGYnOCGLwQHTymhatVKxm23A+GgfZ/aFOQUZjFm22KywpbH\n3hgzcFlE6cS2e41i+Pi8NsVWonHl8mc+4cFZuzIsd8N0+YiJkwiGwzTX17dpIxGPU/HJRzw5ay/e\n+ryMycNzGRkUlk2alNaqa8YY0x0icgQwRVWv7u++mPSxxDLdEIsnqGiIEA742oyu49EoSxfM5clr\nfu9sEAH3c93p0OOIM5PqtY3UV0eYuvcwttq5iJzCTetdcWPMwEwsI07CCtFkr9qYIcUCepo0NzSw\n4rNPyAsEyc4Os2LNal6+46/4s7I46uKrWPB6Jdm5XqYfOIZwQRYez6b1PLa8rplQ0Eu23yZ1zJA1\nYAK6iIwDXgQ+AHYCrgHOAYLAV8DpqlonIt8B/gzUA+8AE1T1MBE5DZihque7bd0NDANK3XO/EZF7\ngRpgBjAC+LmqPtpHt2h6wJ6hp0kwFGLstOkknn+J5UccScHIsex+9oU01dbwziO3s/3+Ocz4zhbk\nFoU3uWBeWtvMaffM5ou1ffMuuzEmJVsBtwDfAs4EDlDVHYE5wE9FJAu4Dfi2qu4ElHTSzk3Afaq6\nHfAA8NdW+0YCewKHATY9P8DZcKsTsapqGt57l+zp0/GPHLnR46sbI3xT3kjuqT9k2EHf5r8r6th9\nu+0462934/F6O10J31OaSNBQVUnZim8oGTch7e235vUIx+w4uk9eszPGpGyZqr4vIocBU4B33HTR\nAeA9YDKwRFW/do9/EJiVpJ3dgGPcn/+BM9pv8aQ7lf+piGQ2aYbpNQvonYgiVL//IZpIkH/ooV0e\n29Aco7wuwuF/+y9Zfg8v/WRvdhvnYXh+NpCZhC6xmhre+fc/Wfj6y8w8+gT2OumUjFwHoCgc4PQ9\nxmesfWNMj7SswhXgZVX9buudIjI9DddonWRjwDxyMMnZlHsSNU1R7pm7jtlHnEFgr29t9PjqpigV\n9RGmjs5jr61K+OibKl7+dC2JDKY+FfEwYdoO5BaXMH77HTN2HWPMgPc+sIeITAQQkbCITAI+Bya4\nz8gBOqup/C5wkvvzycDbmeuqySQboScRiyeYv6KKyqIQ35628en25RUN/OyRBZy/30TqmmL87qlF\n7Di2kGN23LxX75rHysoA8A0b1mGfLz+PMdN35OQpUwmGLUGNMUOVqpa6i9weFJGW52K/VdUvRORH\nwAsiUg/M7qSJHwP3iMjFuIviMt5pkxG2yr2d+qpmPnpxGRP3GUV22E9hCs+NV1U1suefXqP1gPzS\nw6Zw6u7j8LbKZ97cEKO6tIFwQZBwftftxsrLWT5rFvGaWsY9+K+kQd0Y06c2uSlnEclxV7sLcDPw\npare0N/9MplhU+7tfDV3HQtfX8HrtywimEjt/9/8bD83n7wjReEAXo9w9A6jOHL6qDbBHCAWifPY\nnz5i0ZsriVVvpLyox4Nv+Ah8JSXOe+3dFK+tJVZWhibs1VRjhrCzRWQe8AmQj7Pq3QxSGRuhi8jW\nwMOtNk0ALgUKgLNxpnYAfq2q/+mqrb4coddVNvHfR75km91Hkjc2lzw3SG9MtDlCc00djVlhsvwe\ncrM6pgmNNsdorI1CZSnlv/05W9z8ty5H3rHKSlDFV1TU/ft45x1W/fwXTHjyCedLgTGmtza5EboZ\nWjI2QlfVz1V1uqpOx0l80AA84e6+oWXfxoJ5X8spzGL/U6cQ3DzMMbe9R1ld8kpq7SVWLKf84oso\nbKpNGswB/EEfuQV+/JFaSn58PrKR9K++wsI2wTxWVUXtK68SLS3t4ixHcMIEhp13HvhsmYQxxgwF\nffXbfn/gK1VdJj2YPs60pvo66israKqvp3DkKEJ5+UizsPdWw1IanQOIP4Bv+HDYyPHi85G97bY9\n6qdGo6z61a8YfcOf8W9k1O0fOZKi7323y2OMMcYMHn2yKE5E7gY+VtW/ichlwGk4KQXnABepamWS\nc2bhJkEYM2bMTsuWLctY/7766MP1edinH3Qoe37vVILZIVQVEYF4DBrKIasA/MkXs6kqGongCXY/\n+UpdpI5Pyz9lTN4YRoRHdHqcxmLEKivxBAJ48zOXSMYYk9TAG40Y00rGF8WJSAA4AnjE3XQrsCUw\nHVgNXJ/sPFW9XVVnqOqMkgw/A/567obn898smk8s4kyzxxPKe1+V8dBHK6md9yQ0lHXahoj0KJgD\nNMWbuPTdS3lv1XtdHic+H/6SEgvmxhhjOuiLVe7fxhmdrwVQ1bWqGnfTCd4BzOyDPnRp+kGHEsjO\nBhF2OfoEgtlOdrdoXHlq3iruf+8bIhMOAF8gI9cvzirmn9/5J/tusW9G2jfGmJ4QkXf7uw8mdRmf\ncheRh4AXVfUe988jVXW1+/OFwC6qelJXbWR6lXs8HqexphpNJAiGwk5wd5XXNZNQKMm1PObGDHE9\nnnIf98vnvgf8ERgDfAP8eunVh/4rXR1LNxHxqWqsv/thuiejI3QRCQMHAo+32nyNiCwUkQXAvsCF\nmexDKrxeLzmFReQWD2sTzAGKc4KU5AbtfW5jTI+4wfwOYCzOl4KxwB3u9h4TkSdF5CMR+cRdc4SI\n1InIte62V0Rkpoi8ISJLROQI9xive8xsEVkgIj90t+8jIm+LyNPApy3ttbreL9zf3fNF5Gp329lu\nO/NF5DER6frVHZNRGV3lrqr1QHG7bT/I5DUzIVZVRdXDDxPeYw+yp07t7+60UROpIZ6IU5hV2N9d\nMcYk90egfaALudt7M0o/Q1UrRCQbmC0ij+FUg3pNVS8WkSeAK3AGVVOA+4CncUqtVqvqzm6q2HdE\n5CW3zR2Bqa0qtAEgIt8GjsSZUW0QkZb3aR9X1TvcY65w276pF/dkesEyxaUiHqf2tddp+vzzjF+q\nqiFCYzT1ma7nlzzP79/7PdXNG8k8Z4zpL2O6uT1VF4jIfJziLFvg1EePAC+4+xcCb6pq1P15nLv9\nIOAUN4PcBziDrq3cfR+2D+auA4B7VLUBQFUr3O1T3VH9QpzCLj17J9ekhWUdwXltbF7pPMbkjiXf\nN5z8UNvFb77iYra45RYkkDxhTLqU1zfzmycWcfIuY9hrq9RW9u88YmdG5Ywi4MnMgj1jTK99gzPN\nnmx7j4jIPjhBdjd3xPwGkAVEdcPCqARu+VNVTYhIy+97AX6sqi8mabOe7rkXOEpV57sFYvbp7r2Y\n9LEROhBJRLht/m28s+ID7nl3KRX1kQ7H+IqL8ObmZrQfXhF2HFPI8LyslM+ZUDCBvTbfi2x/9sYP\nNsb0h1/jZMpsrcHd3lP5QKUbzCcDu3bj3BeBc0XEDyAik9z1Tl15GTi95Rl5qyn3XGC129bJ3boD\nk3YW0IGirCKu/9YNjPDvzNLy+rRnj4hVVhJdu5ZEQ/v/p9sqCAWYtfcEJg3P7BcHY0zfcVeznw0s\nA9T999m9XOX+AuATkcXA1TjT7qm6E2fR28cisginYEuXs7Wq+gLO8/c57lT9z9xdl+BM278DfNat\nOzBpZ+VTW6lpjKIK+aH0Tq1XP/ccqy7+ORNffQX/yI3XVzfGDEiWKc4MaEPnGXoiAbWrYe4/ISsX\nph4LOcPbHJKXnZln5NnTp1M862wkYM+5jTHGZMbQGaHXroFbd3dysgOMmAbffwJyBmdp0Wg8QSSW\nIBwcOt/ZjMkwG6GbAW3QPkNPxOOsW/oVa776gngsBlXfbAjmAGsWQrS7Czo3HZ+srObyZz5JusDP\nGGPM4DNoA3o8FmPeS8/z0XNPEYtGIHcEtC7dmlUIvo7pXJeU1nHfu0spT7EO+kAlIm7p14E/A2OM\nMab3BvWUe0ONk2wllJcPzbXw1evwyu9o2uZYyne8gGAgwLDcDa+INcfiXPTv+Ty7YDVvXbwPY4o3\n9ibHwBWLJ4jEE4QCNuVuTJrYlLsZ0AZ1QO8gEYeGctbFw+xxzZscOm0U1xy3HQHfhomKtTVNrKhs\nZMuSMAUhW8RmjFnPAroZ0IbW8M3jhZzNyGqMcv8Zu7B5YXabYA4wPC+rW4ldjDHGmIFgaAV0V162\nn922LN74ge001kaIxxJ4fB5CuTZ6N8ak6LL8DuVTuay6X8unuqleI6r6rvvne4FnVfXRDFzrTuDP\nqvpputs2GwzJgN4TjbURXr1mnCZXAAAgAElEQVRvMcsWlTNyYj6HzJpGKM+CujFmI5xgfgcbKq6N\nBe7gsnz6OajvA9QB72b6Qqp6VqavYQbxKvdUqCrx2to226LxBOtqm6hujLbZ3twYY9ki57W31f+r\npqFm014Fb4zpM12VT+0REQmLyHNuHfJFInKiiOwvInPdmuV3u6VREZGlIjLM/XmGWx99HHAOcKGI\nzBORvdym9xaRd9366cd1cf0cEXlVRD52r3dkZ/1yt78hIjPcn28VkTluzfbLe/oZmI6GdECPrVlD\n+TPPsHzRAmrLSwGorI9wzdML8FeUEV2zhkRTEwD+gJdgyIfHK2y5YwnhwtRG57GqKmKVlRm7B2PM\ngJeJ8qmHAKtUdXtVnYqT2/1e4ERVnYYz+3puZyer6lLg78ANqjpdVd92d40E9gQOw8kR35km4GhV\n3RHYF7heRKSTfrX3G1WdAWwHfEtEtkv1pk3XhkRAV1Wa15UTXVfadnsigXfcWF679zaWf7IQgIDP\nw+Xf2pxvvn0I/zvwIOJuMM7O9XPSpTP57qVTKdrsc96492aWLZxHY21Np9eN19Sw7trrWH3JJcQq\nqzJ3g8aYgayzMqk9Lp+KU9/8QBH5kzu6Hgd8rapfuPvvA/buQbtPqmrCfdY9vIvjBPijiCwAXgFG\nu8e36ZeqVic59wQR+RiYi1M/fUoP+mmSGBLP0Jtrm6i87z7qX/gP4x5+CN+wYQD4R4wgPzeX47a9\nAo/X+SgKQgGi1YImEqDq/AN4vB7QBh75/S8oGDGSsuXL+PSt19j1mJPY+ajjCASTrIz3ePCPGIEn\nJ4x47I0XY4aoX9P2GTr0snyqqn4hIjsC3wGuAF7r4vAYGwZvG3uFp/WzxK5+aZ0MlAA7qWpURJYC\nWe37JSKvqurv1zcoMh6nUtvOqlrpLsSz14rSZEgEdDwesqfvAM2N4PWu3yxeL768vA4fgrewkIkv\nvQiqeAsL129fOv9jpp9wGp9qCQeNzeXZ3/0fs595jO0O/HbSgO7NyaHojNOddnJyetT1eH09iZoa\nJBDAV9z9lfnGmH52WfW/uCwf0rjKXURGARWq+k8RqQLOB8aJyERV/R/wA+BN9/ClwE7A88CxrZqp\nBfJ62IV8YJ0bzPfFWeiXrF/tF8PlAfVAtYgMB74NvNHDPph2hkRAz8oJ4t9nT/L23h1PsGO61/Y8\nWVl4Ro3qsL2uopz8bXbkvudWMnVkDsHsEPVVlcRjcdZWN1EQ8hP0e9uc4w33Lttcoqqa/x1wAPnH\nHsuIS36bUv+NMQOME7zTuaJ9GnCtiCSAKM7z8nzgERHxAbNxnpEDXA7cJSJ/oG3wfAZ41F3Q9uNu\nXv8B4BkRWQjMYUMt9GT9Wk9V54vIXPf45Th11E2aDImADuD197406qRd9uDZv17DdUf/gFVvPE19\nVSUjJk6iUT3sc+3rvPXzfRneLqD3lgQD5OzzLfIOPADxDZn/XMaYLqjqi8CLSXbtkOTYt4FJSbZ/\ngbMwrcXb7fZ3Oq2oqmXAbkl2LU3WL1Xdp9XPp3XWrumdoZX6tZeaGxpYtnAur91zG/WVFYyZtj37\nn3cxzRKkKRanKBwkPwM11eN1dUgwiCcNX0qMMT1mC2HMgDb4h3xNNfDNu1C3Dt36UBJxP968nj02\nCoZCTJyxK6O3noJqAp8/SGXMy57XvM4L/7dXRoI50OPn78YY0xsiMg34R7vNzaq6S3/0x3Rt8Af0\naAM8eJKzWv283Vn5q6sZddVV+EpKetScx+slXLBhoVxWfYRHz9mNohzLGmeMGVxUdSEwvb/7YVIz\n+AO6LwsO/QvUriIhQWKlZaTzMUNhOEBhOPPBPFZZCYmErXQ3xhiT1KAN6E31ddSWlZKVm0vuTqeC\nKhKPM+buu/AWFfV391KmiQTNX33FmksuJdHYyPDf/Jrs7bbDk2WvbhpjjNlg0GaKa6qr5f6f/5gn\nrr6c+ppq8Hjw+P34iotxMhRuGuIVFaw451wa582j+fPPWT7rh8SrO89OZ4wxZmgatAHdH8xi/A4z\n2O6AQ/C77243RBuIJWL93LPu0YQSW7duw5+bmtBYtIszjDFmAxG5TER+lqG21xd+GYhEpEREPnCL\n1uyVZP+dIjJoUs8O2in3cEEhh15wMV6fD18gSEVTBdfPuZ5TppzC1kVb93f3UubJCVN0+umU3347\nAOF998UTal+4yRgzkE27b1qHeugLT13Yr/XQ+5uI+FQ10yOs/YGFycq3ioh3sJV1HbQjdIBgKIwv\n4IzOBSHkC+GVDYlfIk1NrF3yJXUV5eu3xSLN1JaXUbl6JQ01/T+17Q2FKDrjdCb85znGP/Uko668\nAl+rdLTGmIHNDeZ34KRHFfffd7jbe6ST8qkdyqS2OmV7EXlPRL4UkbO7aHekiLzlllRd1DKq3UjJ\n0x+3KqM62T1+pnu9uW451q3d7aeJyNMi8hrwahdlWMeJyGIRucO95ksikt1Fv88Wkdnu5/GYiIRE\nZDpwDXCkez/ZIlInIteLyHxgt3ZlXQ9x+zFfRF7t6j4GqkEd0FsrzCrkgh0vwCte1jU4U9jRpkae\nv/kGlsz7iFhFBZGVK2lcu5a7LjiLu3/yQ9564G6a6mo30nLqNJHo0Qp7X0EBwQkTyNp6a3yb0II+\nYwyQgXropFamtLXtgP1wsrtd6uZcT+Z7wIuqOh3YHpjnbu+q5GmZW0b1VpzCK+Ckdt1LVXcALqXt\nve4IHKeq36LzMqwAWwE3q+q2QBVt89C397iq7qyq2wOLgTNVdZ577YfdErGNQBj4wP3c/ttysoiU\n4HzpOtZt4/gU7mPAGTIBHaA53sz3n/8+Dy5+EHCm5Y+/5Eom7TiTsttu56v9D6D5w9mMnLQNAJ+8\n+SqxaHqeV8draqi4/37q33kXjcfT0qYxZpOQiXroqZQpbe0pVW10U7a+Dszs5LjZwOkichkwTVVb\nRjRdlTx93P33RzhlXGFDXvlFwA3uOS1eVtUK9+fOyrCCUw625QtF67aTmSoib7u55U9ud73W4sBj\nSbbvCrylql8DtOpfV/cx4AzaZ+jJ5AfyeeLIJ9pMu4vHw9J5H5Hvfin0ZWWhmgBgiynT8KYpf7rG\nYtS+9DLxikpCM3dGvOnN+W6MGbC+wa1GlmR7jyQrU0rXZVLbTw0mnSpU1bdEZG/gUOBeEfkzTo73\nrkqetpRcjbMhpvwBeF1VjxaRcbQtClPf6uekZVjbtdvSdqdT7sC9wFFu8ZfTgH06Oa5JVbszourq\nPgacjAV091nDw602TcCZsrjf3T4OJ5H/Capamal+tOb3+tkstFmbbc319bxw21/5zhk/YswJx+Ev\nKODA7adRV1lOyZgJZOf2tLpgW76iIja/6a/g9eIJWFY5Y4aQtNdD76RM6VKSl0kF5znyVThTzvsA\nv+yk3bHAClW9Q0SCONPj8+l+ydN8YKX782kbOa5DGdYeyAVWi4gf50vCyo0c3977wC0iMl5VvxaR\nIneUnup9DAgZm3JX1c/d5xbTcf6SNQBP4PxFelVVtwJepZO/WH0lEAoxctI2vPnEw0RC2QSKiine\nfAxjp+1AKD8/rdfyFRfjKyhIa5vGmIHNXc1+NrAMZ2S8DDi7l6vcpwEfisg84HfAFThlUm8UkTk4\nI9rWFuBMtb8P/EFVV3XS7j5AS4nTE4EbVXU+zlT7ZzglYFMpeXoNcJXbTlcDxweAGe5U+SlsKMPa\nXZcAH7h963YbqloKzAIedxfMtQxGU72PAaFPqq2JyEHA71R1DxH5HNhHVVeLyEjgDVXtcuVgpqut\nNdTUoIk4obx8xDOklhUYY1K36WSkMkNSX33jOAl40P15uKqudn9ew4YFEG2IyCycb0yMGdObtSOg\nqjRUR4hFE4TyA/gDbZ9fh/LyoKkWGspBBAJh8Hf1uMYYY4wZWDI+QheRALAK2FZV14pIlaoWtNpf\nqapdvljd2xF6Q22EZ/46j4qV9fzgj7uRU+CuuVCF+nVQ/hW8cyNULQOPDzbfGXb9EYSKIGTFUIwx\nwCAaoW+qZVFF5GZgj3abb1TVe/qjPwNNX4zQvw18rKpr3T+vFZGRrabc13Vxblr4g152PnQ85Svr\n8PrcKfV41AnkDxwL1SvanrBmIcy5GybsA8fcDjlJJxGMMWaTtKmWRVXV8/q7DwNZSgHdfen+bJyV\n6evPUdUzUjj9u2yYbgd4GjgVuNr991Mp9rXH/AEvE6aXMH67YYjH/ZJd8TXcuT9E6jo/cckb8I9j\n4AdPQk7P6qcbY4wxfSHVEfpTOO8ivkLH1ZOdEpEwcCDww1abrwb+LSJn4qz2PCHV9npLPEJteRnN\n9bXkLn2BYFfBvMXaRfDxfbDHT8A74Bc5GmOMGaJSjVAhVf1FdxtX1XqguN22cpyE+X2usa6W/9x0\nHSs++4RZV/6eYKonfnAr7PADyLWpd2OMMQNTqgH9WRH5jqr+J6O9ybBAdjb7nHIW675ajG/d/NRP\nrC+DmlUW0I0xxgxYqb50/X84Qb1RRGpEpFZE+r8UWTd5vT6GjxnLtMBisl/6SfdOri/NTKeMMcZ0\nICIFIvKjHp6btjrtIvJ7ETkgHW1lWkojdFXNzXRH+ozHS8yXRd2Bvyfnq9fxffVaaufZe+nGmB5a\nPHmbDvXQt/lscb/UQ5e+qUOeDgXAj4Bb2u/oy3tQ1Uv74jrpkHJaNBEpdGvD7t3yTyY7lilxlPnj\nZ3J+1Ycs3Ot84uP22vhJHi8UT+iwOZFIZKCHxpjBxA3mHeqhu9t7TES+LyIfurW+bxMRr4jUtdp/\nnFtIBRG5V0T+LiIfANeISJGIPCkiC0Tk/ZZyqCJymYj8Q5LUTheRi92a4wukY0309n07xT1uvoj8\nw91W4tYqn+3+s0era97t1iZfIiIXuM1cDWzp3t+1IrKPW1HtaeBT99wnReQjcWqmz+rGZ9fhPPfz\nu1ecOvALReTCVp/dce7Pl7p9XyQit4vIgMpNkOpra2fhTLtvjlMfd1fgPZz6upuUxlgjt31yN/NL\n53P7/x7lujG7EF76dtcnbX0YBNpOUlSsWsHCV19k5yOPI5SX3pzvxphBpat66D0apYvINji51vdw\nC5vcglOUpCubA7uralxEbgLmqupRIrIfTtGslvfSt8P5HR8G5orIc8BUnPrkM3G+lDwtInur6ltJ\n+rYt8Fv3WmUiUuTuuhG4QVX/KyJjgBeBbdx9k3HqoecCn4vIrTh1Pqa69UAQkX1wisVMbSlzCpyh\nqhUikg3MFpHH3IXXG9PhPJzXske79eURkWSFN/6mqr939/8DOAx4JoXr9YnuPEPfGVimqvsCO+AU\nnN/khP1hfrbTRRw49kAu2uZUQv/byJS7Lwv2vwSy2lZdq6usYPmnC1EbpRtjupaJeuj74xS9mu0W\naNkfp6JlVx5pVTp0T9xMcar6GlAsIi2/5JLVTj/I/Wcu8DFOAN6qk+vs516rzG2/pbb4AcDf3P4+\nDeSJSI677zlVbXbPWUcnKcGBD1sFc4AL3GIq7wNbdNGn9pKdtwSYICI3icghQLJ1YvuKyAduMZn9\nGGD10VNd5d6kqk0igogEVfUzccqjDniN0UYAst1n4CLCpKKtuXrX3xH45HFY9XHnJ/uz4ftPQEHH\nin4jtpzEMb+8jFC+VU8zxnQp7fXQcUbJ96nqr9psFLmo1R/b10SvJzXJaqcLcJWq3tatXrblAXZV\n1abWG91Z6/a1zzuLTevvwR2xHwDspqoNIvIGHe+5g87Oc2u9bw8cDJyDkyPljFbnZeE8z5+hqstF\n5LJUrteXUh2hr3CnH54EXhaRp3CSwgxoNc013LHwDu5adBc1kbZftgJZ+TDlaJj1Bmz9HZBWH0Uw\nF3b7MZz3IYzeCXwd65cHsrIsmBtjUvFrnPLRrfWqHjpO6enjRGQzAPeZ+Fic1NrbiIgHOLqL89/G\nnaJ3A1yZqrb8kjxSRLJEpBinnOpsnOnxM1pG1CIyuuXaSbwGHO+eT6sp95eAH7ccJCIbSz1bizMF\n35l8oNINypNxHhOkIul54qyK96jqYziPDHZsd15L8C5zP4fjUrxen0l1lXvLX4zLROR1nA/khYz1\nKk3iGmf2mtl4xMPJ27R7vNRUDZF6CObBoX+Gw/8CzXUoQtyXRbMvn3A43D8dN8YMGtt8tvhfiydv\nA2lc5a6qn4rIb4GX3OAdBc7Dee78LFAKzAFyOmniMuBuEVmA8+Xi1Fb7WmqnD2ND7fRV7nP799wR\ndR3wfZLU4lDVT0TkSuBNEYnjTNOfBlwA3Oxe0we8hTMS7uwey0XkHRFZBDwPPNfukBeAc0RkMfA5\nzvR5Kjo7bzRwj/t5ArSZ/VDVKhG5A1iEUyl0dorX6zMpV1sTkR1xnrso8I6qdjFXnV49rbZW21xL\nY7wRr3gpzm6VsK6pGt6/Fd682qm4NmwSnPoM5I6gtLaJfa97k+tP2I6Dtx3Z4z7XVzWzZH4p46YN\nI7doQM3KGGN6ZkCtaM4Edxq5TlWv6+++mO5LacpdRC4F7sNJ4zoM51vMbzPZsd6qjdRy36f3sbBs\nIYXBdtVZm2s3BHOAsi9IzL6L5vpasvxeHv7hruw0tqhjoymKxxK8+/j/eOvBL3jzX58TadwUXvk0\nxhizKUt1UdzJwPYtixlE5Gqc19euyFTHessvfg4ZdwiLKxZTF60jL9hqlXq0cUMwd0nF19SVl1I8\nZgLbjurda2gerzBxxnCWL65g4ozN8PlTft3fGGP6japeluqx7jPyV5Ps2j/FV8cyaqD3LxNSDeir\ncBYEtKxODAIrM9KjNMnyZ/FpxafcufBOdh+1e7ud+VA0ASqWrN+kM2cRKkxPiVQRYfOtCzjxtzPx\nZ3nx+CygG2MGFzcoDtia6gO9f5mQ0jN0EXkS5z30l3GeoR8IfAisAFDVCzo/u/d6+gy9urmaaCLK\nsOwkKX1rVsOHt0PVMtj1R1CytbO63Rhjkhv0z9DNpi3VEfoT7j8t3kh/V9IvP7hh6rwuUkdjrJGA\nN+BszxsJ+/0G4nHwp1xI1RhjjBmQUn1t7b6Wn0WkENhCVRdkrFdpFolHeGnZS1z+3uWcPPlkzp1+\nLrmBXPD4nH/6QGlDKYpSkl3SkkjBGGOMSZtUV7m/ISJ5boKAj4E7ROTPme1a+jTXxZka2p7JhZN5\n+ZuXaYo1bfykNGqINnDlB1fy67d/3SHBjTHGGJMOqa7WynezCB0D3K+qu+CkzhvwGmsjPH/zIt65\ncTXXz7yRa/e8jpB2lmshM0L+EL/d5bdctddVbR4DGGNMpojIESLyy0721XWyvXVlsTdEZEYm+9gZ\nEZkuIt/pg+v8utXP49wkNr1ts8TN9z5XRDqU8xSRO0VkSm+vk0yq880+ERmJk9v2N5noSKaoKk11\nUSKNMfL9Bbz79+VMmIVTR6gPVDdX4/f4GRZKsjDPGDMk3HzOax3qoZ/39/0yWg9dVZ/GKYKyKZoO\nzAD+k4nG3bKngpN+949pbn5/YKGqnpXkut5k29Ml1RH673Fy+X6lqrNFZALwZaY6lU6hvCBHXTyd\nY383nVigme+cO41gqG+em1c2VfKH9//A68tf75PrGWMGHjeYd6iH7m7vEXc0+Zk7ov5CRB4QkQPc\nVKlfishMETlNRP7mHj9enBrnC0XkilbtiIj8TUQ+F5FXgKT52UXkIPf8j0XkkVZV0pIdu5OIvClO\nvfEX3cEgInK2OLXE54tTFz3kbj9enPri80XkLREJ4MScE8WphX5iJ9fprI46IvJTt81FIvKTVp/Z\n5yJyP0761ruAbPcaD7inekXkDnHqpL8kTnnVzu6zw/24+emvwcmHP09EskWkTkSuF6e6226tZz5E\n5BD3M50vIq+622a6n/VcEXlXulEILaWArqqPqOp2qnqu++clqnpsqhfpbw8vf4B9n9uLpQ1LyCnM\nIpDtIxKPZPy6XvGydeHWjAqPyvi1jDEDVlf10HtjInA9TinTycD3cNJz/4yOhV9uBG5V1WnA6lbb\njwa2BqYApwDtknasL1ryW+AAVd0RJ0f8T5N1SET8wE3Acaq6E3A3cKW7+3FV3VlVtwcWA2e62y8F\nDna3H6GqEXfbw6o6XVUf7uIzmIxTHW0m8DsR8YvITsDpwC44hVfOFpEd3OO3Am5R1W1V9XSg0b3G\nya3236yq2+KUCO8qznW4H1Wd167vjTjzwR+o6vaq+t9Wn1UJzhe9Y902jnd3fQbspao7uG2l/Pck\npaGqiEwCbgWGq+pUEdkO54MfsJniwJlub4g1cNTEoxiTN4ZxeeOIJ+IsKFvAvxb/i4t3vpjNQp0V\nDOq9vGAep089Ha94M3YNY8yAl4l66ABfq+pCABH5BHhVVVWcWt3j2h27BxuC0z+AP7k/7w086NZJ\nXyUiryW5zq44Af8d9w2dAPBeJ33aGpiKU5UTwMuGLxBT3dmBApyiMS+6298B7hWRfwOPp3DfrT2n\nqs1As4i01FHfE3hCVesBRORxYC+cxw/LVLWrIi5fu0EZ4CM6fo6tdXY/7cWBx5Js3xV4q6W+e6u6\n8fnAfSKyFU7eF38XfWgj1Sn3O3Aqz0TdCy8ATkr1Iv0hEo+wsGwhP3vzZzz2xWPsNnI3CrMKaYg1\ncMu8W3hh6QvMXpP5Yjk+j89eUzNmaOus7nlv6qFD2xriiVZ/TpB8sJZaJa6OBHjZHXFOV9Upqnpm\nF8d+0urYaap6kLvvXuB8d5bgctxypKp6Ds4MwBbAR+KWXU1RqnXUW2ysJnx32ruXJPeTRJP7hSlV\nfwBeV9WpwOFdtNtBqgE9pKoftts2oCuOVDVXceaLZ/Lflf/l5vk38+aKNwHI8edwya6X8Iudf8Fu\nI3ejtLGUsoYyooloP/fYGDNIZaIeene9w4ZBWOta0m/hPKv2us+6901y7vvAHiIyEUBEwu6sbTKf\nAyUispt7rF9EtnX35QKr3Wn59X0QkS1V9QNVvRSn7OsWbLwWelfeBo5yn2mHcR4rvN3JsVG3Pz2R\n9H664X1gbxEZD23qxuezIbX6ad1pMNWAXiYiW+J+wxPntYbVXZ/SvxKaoDm+4ctWy/vfIsKYvDEc\nvuXhPPv1sxzxxBEc9fRRPLfkOWojtf3VXWPMIOWuZj8bWIbzO3QZcHamV7m383/Aee50/OhW25/A\nWeD8KXA/SabSVbUUJ7A8KE4t8/dwnl134D7/Pg74k7sIbB4bnstfAnyA8+Xis1anXesu1lsEvAvM\nx6nHPqWrRXGdcUt734uTnvwD4E5VndvJ4bcDC1otiuuOzu4n1X6WArOAx93PqmWtwDXAVSIyl9Tf\nRANSz+U+AefGdwcqga+Bk1V1WXcu1lM9yeVeH63n5WUvc9Pcm5hYMJE/7vnHNjXRP6v4jOOfOb7N\nOc8e/Sxj88ampc+pqo3UUhupJeQLUZBV0KfXNsZ0iz07MwNal9FfRP5PVW8ERqrqAe70hUdVB/xQ\nNuwPc/C4g9lz1J74vD4Kgm2D5aKyjvkDvqr6qs8Den20noMfO5iHDn3IAroxxpge29hw/nSc1x1u\nAnZsWTW4qcj2ZZPtS/4a4YzhMxAEddeJeMXL5KKks0gZFfKF+M8x/yHH37fZ64wxpjdE5AlgfLvN\nv1DVzlZ79/Q6p+M8MmjtHVU9L53X6eL6N+O8JdDajap6T19cvzu6nHIXkQdxsvWMAr5qvQtQVd0u\ns91z9LR8ant1FeVUrFrB8AkTifnh47Ufc9Pcm/B6vFy000VMKZ5CyN/2ddHmhnqizc1khXPwBQK9\n7oMxZpNlU+5mQOtyhK6q3xWRETjv1x3RN13KnNVffsZb/7qPky7/E+FQIXttvhfbDtsWQSjMKkx6\nTm1FOQ/88if84JbbmL3qY8bkjmGb4m36uOfGGGNM11JaFNffejtCr26uprypnGxvNuFEkLy8oo2f\n5GqormbNV1+Qt9U4fvnur9h15K6cMe0MPJLqCwLGmEHCRuhmQNvYlPu/VfUE91WH1gcO6Cn3yqZK\n5pXOY/uS7SnKKuLlpS/z0zd/StAb5Lmjn2N4eHiP+lHRWIHX47WKacYMTRbQzYC2sUVxLQsRDst0\nR9KpJlLDBa9dwBNHPEFRVhFr6tcA0BxvJpJom8NdVamL1hHyhfB6uk7RWpSd+sjeGGOM6Usbe4a+\n2v13j943F5EC4E6c3L4KnIGTSP9snIxAAL9W1bSWyCsMFvLSsS8R9js1Ug/d8lACvgBb5G7R4fW1\nb2q/4coPruS87c9ju5LtLE2rMWZIEJGjgC9U9dM0tTcDOEVVL9jowRkgIkcAU1T1arfwybM4eecv\nwEld/j1VreqPvvWVjb2HXkvy/L8tU+55G2n/RuAFVT3OLYkXwgnoN6jqdT3pcCrygnnkBZ2uqSp+\nj58TJp2QNFi/tPQl3lv1Hnn+PK7c80qCvmCmumWMGaKuP/GwDvXQL3r42b7MFJfMUThBLy0BXVXn\n4FRi6xft6r+3r0neWerXQaXLlV2qmquqeUn+yd1YMBeRfJxKPne5bUX649vR6vrVXPTmRayqX5V0\n/zFbHcMlu17Cz3b+mQVzY0zaucG8Qz10d3uPicj3ReRDNz3qbW4+9ltFZI5bz/vyVsdeLSKfisgC\nEblORHbHeXPpWvf8LTu5Rko1zN1t+4jIs+7PKdf0Fqdu+1NunfAvReR3rfY9KU5d9U9EZFar7cnq\niJ8mTm33ZDXJl7plYBGRU9zPYb6I/KPn/wUGnm7lie2m8TjT6veIyPY4pehansmfLyKn4Hybu0hV\nK9uf7P7HmwUwZkzPqwzWReuYvWY2NZEaRrdJYewozi7mhK1P6HH7xhizEV3VQ+/RKF1EtgFOBPZQ\n1aiI3IJTIOQ3qlohIl7gVbfU9UqcAiWT3fKqBapaJSJPA8+q6qNdXOpxVb3DveYVODXMb2JDDfOV\n7qPV9lpqesdE5AD3XruqLT4T59FsAzBbRJ5zR/xnuPeT7W5/DGcgegewt6p+3aqoCQCqOk9ELgVm\nqOr5bt9bPrdtcSq77RN4R38AABzmSURBVK6qZe3P3dRl8t0rH7AjcKtbqL0e+CVOXfUtgek4BV6u\nT3ayqt6uqjNUdUZJSUmPO7F5zua8dOxLjMntbelhY4zpkUzUQ98f2AknyM1z/zwBOEFEPgbmAtvi\n1DGvBpqAu0TkGDpWfuvKVBF5233T6WS3TdhQw/xsnJrn7eUDj7gFV25odV5nXlbVclVtxKmJvqe7\n/QK3cMn7OFXYtqLzOuKp2A94RFXLenDugJfJgL4CWKGqH7h/fhQnfexaVY2ragLnW9bMTFy85v/b\nu/soqaoz3+Pfp9+gaRpoXiT4NpCEaNAJaCpGR5dLY1R0uTQmmojGlxkT72gyNzfO3KuOWTFjbiaj\nN1GTMWp8iy/XdzJGJRHlKkmMRqVYKIiCoKCAKC1gA93QTVc/94+zW8umq+mqrlNVffr3WatWVe3a\n5+zdp1+ePvvss5/2LWxo3UhLmzOqduyHE+REREosjnzoBtyZlXd8P+BO4F+AY8Itxb8Hhrt7J9Hf\n2dlEdyzNzaOdOygsh3m+Ob17ztVyMzsK+DJwmLtPJ/onpd+5wYei2AK6u78LrMm6dnIM8KpFOXe7\nnQrsmiWlCDbv2MzazW2cduMLvL0pn39IRUSKKo586E8Bp5nZHvBhLu19iUZCW8xsInBC+GwkMDrc\nTfR9YHrYR39yjueTwzxbvjm9jzWzsWFo/StEIwCjgc3u3mZm+xOdmUPuPOL98TRwevc/IBpyz88/\nAfdYlEN3BtF1lKstyn27GDia6Aes6KKZ7o00Dq+husrY0bqNti0tcTQlIpJTmM2+Sz70gcxyD7ea\n/QB4MvwtnQe0E53FLiO6Nv9sqN4IzAn1/gJcHMrvB/5nmLjW66Q48sthni3fnN4vAr8FFgO/DdfP\n5wI1ZvYa8B9EgbyvPOK75e5LgZ8AfwrbXtPfbQeDRC/9msl0sbltJ2NG1LL4yTmsW/YaX/72RdSP\n3N0/pSIiu9AiFTEws/PImsAmhYtzlnvZVVdXMb4xuhVt3wOm0/SJPampqS1zr0RERIov0QE92/h9\n/4bx+/5NubshIlJxrAQ5v83seOCqHsWr3P1Uosl3MkBDJqDnsqFtA51dnewxYg9qqob84RCRIcjd\nv1OCNp4gSsUtMRnSOUBbd7by4+d/zEVPXcQH7Yle4ldERBIu8aekmUwnHW1t1DfuulJtQ20DPzz0\nh3R6J03DmvLbb1eGze2bqauq+3DdeBERkXJJ9Bn6js4dbGnewCM//wmtH+yyuiwAE0ZMYFLDpN2m\nTu3pjQ/e4JzHz+GnL/6UTTsStdiQiIgMQokN6Jt3bOb6RdfTYZ1M2HdKUdOidnkXd792N2u2rmHO\nm3PYvnN70fYtIlJuZjY53GO+uzpnZr1Pmdkv4++d5JLYIfeOTAd3vXoXf1n3F+4+6y5GFHFYvMqq\nOPuzZ7PwvYXMmDCD+tr6ou1bRGSQmAycSUgwU+70qZLghWVaO1rZuGMjVVbFhPoJRU+NqmvoIkNO\nxSwsY2aTiVZSW0iUBGspcA5wGPAzopO1BcCF7t5uZquBB4mWg90OnOnuK83sDrIyrpnZNncfGfY/\nx90PDK/vBroTYnzX3Z8zs+eBzwKriNaRXwT8i7ufFJZUvZ0oYUwbcIG7LzazHxEtUfvJ8Hydu+us\nvkgSO+Se8Qy3LrmV2a/PpiPTUfT9V1dVM75+vIK5iJTLfsAN7v5ZYAvRkq53AN8IyVRqgAuz6reE\n8uuB6/JoZwNwrLsfTJSytTsAXwo8E5LDXNtjm38DFoUkMf8K3JX12f7A8UQJY64I68RLESQ2oFdZ\nFWfufybTxk2jeXszH+zQbWkikihr3L17vfb/S5QAa5W7vx7K7gSOzKp/X9bzYXm0UwvcElKoPkSU\nknV3jiA6q8fdnwbGmVn32c/v3b09pDDdAEzMoy/Sh8QG9JF1I1m6cSn//Kd/5pt/+CbbOzVxTUQS\npef10t2dtXgvrzsJccDMqoC6Xrb7PvAeUZa2VI46+WjPep0hwXO5Si2xAR1g8ujJVFkV+4zaJ+/b\n0kREKty+ZtZ9pn0m0YS0yWb26VB2NvCnrPrfyHr+a3i9Gvh8eH0y0dl4T6OB9e7eFfbZ/ce0r/Sr\nzxDSrYa85u+7+5Z+fVVSsET+Z7Rp+yY6vZPJoybz5NeepKaqhnH148rdLRGRYloOfMfMbgdeBf47\nUYrRh8yse1LcTVn1m0IK1XZgVii7BXgkpBKdS5RPvacbgN+a2Tk96iwGMmHbO4gmxXX7EXB7aK8N\nOHdgX6r0R+JmuW/cvpFVLat48PUHmT5+OjOnzFQwF5FiqLRZ7nPc/cB+1l9NlKL0/Ri7JWWWuCH3\nbTu3UVtdy9xVc/ndG7+js6uz3F0SERGJXeKG3BtqG5i7ai53n3A3TcOb2Lb8LTKNm9lz6v7l7pqI\nSFG4+2qgX2fnof7k2DojFSNxZ+jj68fztc98jfH14xnNSFYvSrNp7Zpyd0tERCRWiTtDhyiob+/c\nTmtHK4ecfgbDtDSriIgkXOLO0Lu91/oex84+liXbllFXr4AuIiLJltiAXl9Tz0ETD2LiCC1CJCIi\nyZfYgD6xYSL/fvi/89d3/sq7re+WuzsiIkVlZjPNbLmZrTSzS8vdHym/xAZ0gOfffZ6rFlzFn9f+\nudxdEREpGjOrBn5FlD1tGjDLzPqzxrokWCInxXU7cq8jufW4W5naNLXcXRERKaZDgJXu/iaAmd0P\nnEK0YpwMUYkN6JmuDGPrx/LF+i8CsK1jG4s2LGLfxn0ZVTeKpvqmMvdQRIaSVCpVBUwANqTT6YEu\n0bkXkH0/7lrgiwPcpwxyiRxyX7FpBeu2rWN1y2pa2ltob2tlxR//xJh3nd+/MYfHVz/O+9u1AqKI\nlEYI5k8TBd754b1IUSXyh6qjq4Pn3nmOHzz7A1raW+js6OClxx/jrWef54R9jufF9S8yGNawF5HE\nmAAcTjQqenh4PxDrgH2y3u8dymQIS+SQ+54Ne3LfsvtYunEp1VXVNIxq4utX/BTM6KhzLj/0csbX\njy93N0Vk6NgAPEsUzJ8N7wdiATDVzKYQBfIziFKoyhCWuGxr3Zrbmsl0ZcCgtqpWGddEZKAGlG2t\nyNfQMbMTgeuI8pPf7u4/Geg+ZXBLbECHaLW4y/9yOalPpPjW336LmqpEDkiISGlUTPpUkd4kOsKZ\nGTOnzGTauGmYfhdFRCTBEjkprpu7c+Vfr+S6hdfR1tlW7u6IiIjEJtFn6A21DTz+1ccZXjOcxrrG\ncndHREQkNrGeoZvZGDObbWbLzOw1MzvMzMaa2TwzWxGeY1vhxXHmr5nPA8sfoKW9Ja5mREREyi7u\nIfdfAHPdfX9gOvAacCnwlLtPBZ4K72PRurOVB5Y/wL3L7mVn1864mhERESm72IbczWw0cCRwHoC7\ndwAdZnYKcFSodifwR+CSYre/pX0Lty25jauPvJqm4U00DdNSryIiklxxnqFPAZqB35jZIjO71cwa\ngInuvj7UeRfoNWG5mV1gZmkzSzc3N+fd+LDqYRy1z1Gs3baWUXWjqK6qLvTrEBEZkFQqZalUanoq\nlTohPA/4thszW21mS8zsJTNLh7JeL2la5Jch1epiMzs4az/nhvorzOzcrPLPh/2vDNtaqdqQwsQZ\n0GuAg4Eb3f0goJUew+se3QTf643w7n6zu6fcPTVhQv6rJA6rGcaB4w8kNTHF8Jrh+fdeRKQIUqnU\n0cDrRCvE3ReeXw/lA3W0u89w91R4n+uS5gnA1PC4ALgRouAMXEGU2OUQ4IqseU03At/O2m5mCduQ\nAsQZ0NcCa939hfB+NlGAf8/MJgGE54EugZjTnUvv5OzHz2bTjk1xNSEiklMI2nOATwMNwOjw/Glg\nTpGCerZTiC5lEp6/klV+l0eeB8aEv7/HA/PcfZO7bwbmATPDZ6Pc/flw4nVXj33F3YYUILaA7u7v\nAmvMbL9QdAxRrt5Hge4hl3OBR+Lqw6z9Z3H9l66nsTa6ZS3TlWHJ+0u4ftH1CvIiEqswrH4zMCJH\nlRHAzQMYfnfgSTNbaGYXhLJclzR7S7e6127K1/ZSXqo2pABx34f+T8A9ZlYHvAn8PdE/EQ+a2fnA\nW8DX42p8wogJTMhKarQjs4NbFt/C/DXz+erUr8bVrIgIwOeASbupMynUe7mA/R/h7uvMbA9gnpkt\ny/7Q3d3MYl3buxRtSP/FGtDd/SUg1ctHx8TZbi4NtQ388NAf8r2Dv6eFZkQkbnsCnbup0xnq5R3Q\n3X1deN5gZg8TXZ9+z8wmufv6Hpc0c6VbXcdHdx11l/8xlO/dS31K1IYUINFLv/Zm/IjxfGrMpxTQ\nRSRu77D7k6aaUC8vZtZgZo3dr4HjgFfIfUnzUeCcMBP9UKAlDJs/ARxnZk1hotpxwBPhsy1mdmiY\neX5Oj33F3YYUINFLv4qIlNFiYD3RBLhc3gn18jUReDjc5VUD3Ovuc81sAb1f0vwDcCKwEmgjuvyJ\nu28ysx8T5VcHuNLduycYXQTcAdQDj4cHwH+UoA0pQKLTp4qIFFHek9eyZrn3NjGuDTgpnU7PH2jH\nRCDpQ+5tm+DVR2H9y7Bze7l7IyJDTAjWJxGdtbYCLeF5BQrmUmTJDugfvA0Png23HgM7+pecpbmt\nmasXXM3G7Rtj7pyIDAUhaH8GOByYFZ73UzCXYkv2NfTGT8AnPgd7fBaqa/u1SXumnRfWv8B5B5wX\nb99EZMhIp9NONJO9kNvTRPol+dfQW5uhqhbqx/Sr+s7MTrZ0bGHs8LFoWWERyaI/CFLRkn2GDtCQ\n3zrwtdW1jKsfF1NnRERE4pHIgN6Z6SRDhmHVw8rdFREZ4lKp1AzgYuBkotnubUT3bF+TTqdfKmff\nJFkSNymuvbOdeW/P4+cLfq712kWkbFKpVE0qlbqNKLvamUSJWWrD85nAs6lU6rZUKlXQiZWZ3W5m\nG8zslayyRKRPzdWG9C1xAb2jq4PH3niMR954hExXptzdEZGh69fAGURn5dU9PqsO5WcANxW4/zvY\nNd1oUtKn5mpD+pC4gN5Y18iVh1/JY6c+RtMw/VMnIqUXhtm7g3lfRgCzUqnU9HzbcPc/Az2HIZOS\nPjVXG9KHxAV0gPH149ljxB7UVCdyioCIVL6Lgf5O4qkL9YshKelTc7UhfUhkQBcRKbOT2XWYPZca\nojPSogpnvbGnT01CG0mhgC4iUny7G2ofaP1c3gtD2eSR2jRXeZ/pU8vUhvRBAV1EpPjaYq6fS1LS\np+ZqQ/qgi8wiIsX3KNGtaf0Zdu+kgIBlZvcBRwHjzWwt0UzyUqQ2LWcb0ofkL/0qIlIc/V76Ncxy\nf5b+DaW3AX+XTqe1zrsMiIbcRUSKLKwAdz+7H0pvA+5TMJdi0JC7iEg8/hvR7OxZRLemZf+97QQ6\ngPuAfyx91ySJNOQuItI/BWVbC8Pv3ye6Na17LfdHgGu1lrsUk87QRURiFIL2uWHN9gZgWzqd1rrU\nUnQK6CIiMUmlUsOA04FLgAOAnUBtKpVaClwFPJROp9vL2EVJEE2KExGJQSqVOgR4B7gBOJBoyL4u\nPB8Yyt9JpVJfKFsnJVEU0EVEiiwE6aeBsUBjjmqN4fP5hQT1HOlTf2Rm68zspfA4Meuzy0Ka0uVm\ndnxW+cxQttLMLs0qn2JmL4TyB8ysLpQPC+9Xhs8nl7INyU0BXUSkiMIw+1yi6+X90QDMDdvl4w52\nTZ8KcK27zwiPPwCY2TSi7G8HhG1uMLNqM6sGfkWU+nQaMCvUheiSwLXu/mlgM3B+KD8f2BzKrw31\nStKG9E0BXUSkuE4HavPcpg44LZ8NcqRPzeUU4H53b3f3VUSruR0SHivd/U137yC6d/6UsBTrl4DZ\nYfueaVK7U5vOBo4J9UvRhvRBAV1EpLguIfcwey4jgUt3W6t/vmtmi8OQfFMoyze16TjgA3fv7FH+\nsX2Fz1tC/VK0IX1QQBcRKZJUKlVNNORciAPC9gNxI/ApYAawHvj5APcng4gCuohI8YwkujWtEJ1h\n+4K5+3vunnH3LuAWouFuyD+16UZgjJnV9Cj/2L7C56ND/VK0IX1QQBcRKZ5t5H/9vFtN2L5g3TnE\ng1OB7hnwjwJnhNnjU4CpwItEGdCmhtnmdUST2h71aAnR+Xx0Xb9nmtTu1KanAU+H+qVoQ/qghWVE\nRIoknU5nwqIxBxaw+dJ8VpDLkT71KDObQbSG/Gqi9eRx96Vm9iDwKtFIwHfcPRP2812inOXVwO3u\nvjQ0cQlwv5n9b2ARcFsovw2428xWEk3KO6NUbUjfYl3L3cxWA1uBDNDp7ikz+xHwbaA5VPvX7lsr\nctFa7iJSAfo1yzqVSn2TaNGYfCbGbQUuTKfT9xTSMREozRn60e7+fo+ya939ZyVoW0Sk1B4CfpHn\nNjv56PYtkYLoGrqISBGFtdlnAq393KQVmKk13WWg4g7oDjxpZgvN7IKs8t7ukxQRSYR0Or0AOJro\n+u/WHNW2hs+PDvVFBiTugH6Eux9MtOTfd8zsSPp5n6SZXWBmaTNLNzc391ZFRKRihSC9J3Ah0Wxz\nJxpad2BJKN9TwVyKJdZJcR9rKJoMty372nlYcH+Ou/c5I1ST4kSkAgxo6dGwaMxIlA9dYhLbpDgz\nawCq3H1reH0ccKWZTXL39aFa9n2SIiKJFYJ4S7n7IckV5yz3icDDYT39GuBed59rZnf3dp+kiIiI\nFC62gO7ubwLTeyk/O642RUREhirdtiYiIpIACugiIiIJoIAuIiKSAAroIiIiCaCALiIikgAK6CIi\nIgmggC4iIpIACugiIiIJoIAuIiKSAAroIiIiCaCALiIikgAK6CIiIgmggC4iIpIACugiIiIJoIAu\nIiKSAAroIiIiCaCALiIikgAK6CIiIgmggC4iIpIACugiIiIJoIAuIiKSAIkN6JmuTLm7ICIiUjKJ\nDOhvfPAG1yy8hk07NpW7KyIiIiWRyIC+dutanln7jM7SRURkyDB3L3cfdiuVSnk6ne53/W0d22jP\ntDOuflyMvRKRIcbK3QGRvtSUuwNxGFk3kpGM/FjZzsxO2jPtjKwbmWMrERGRwSuRQ+69eW3Ta1zx\n3BVs2q7r6iIikjxDJqBXWzX1NfWYadRMRESSJ5HX0HvT2dVJR6aDEbUjitQrERlidDYgFS2R19B7\nU1NVQ03VkPlyRURkiBkyQ+4iIiJJpoAuIiKSAAroIiIiCRDrRWUzWw1sBTJAp7unzGws8AAwGVgN\nfN3dN8fZDxERkaQrxRn60e4+w91T4f2lwFPuPhV4KrwXERGRASjHkPspwJ3h9Z3AV8rQBxERkUSJ\nO6A78KSZLTSzC0LZRHdfH16/C0zsbUMzu8DM0maWbm5ujrmbIiIig1vcN2Yf4e7rzGwPYJ6ZLcv+\n0N3dzHpd2cbdbwZuhmhhmZj7KSIiMqjFeobu7uvC8wbgYeAQ4D0zmwQQnjfE2QcREZGhILaAbmYN\nZtbY/Ro4DngFeBQ4N1Q7F3gkrj6IiIgMFXEOuU8EHg7JUGqAe919rpktAB40s/OBt4Cvx9gHERGR\nIWFQJGcxs2ai4N9f44H3Y+pOHAZTfwdTX0H9jdtQ6u/77j6zmJ0RKaZBEdDzZWbprPveK95g6u9g\n6iuov3FTf0Uqh5Z+FRERSQAFdBERkQRIakC/udwdyNNg6u9g6iuov3FTf0UqRCKvoYuIiAw1ST1D\nFxERGVIU0EVERBIgUQHdzGaa2XIzW2lmJU3Lamb7mNl8M3vVzJaa2fdC+Vgzm2dmK8JzUyg3M/tl\n6OtiMzs4a1/nhvorzOzcrPLPm9mSsM0vLazaM4A+V5vZIjObE95PMbMXwv4fMLO6UD4svF8ZPp+c\ntY/LQvlyMzs+q7yo3wszG2Nms81smZm9ZmaHVfix/X74OXjFzO4zs+GVdHzN7HYz22Bmr2SVxX48\nc7VRYH//T/h5WGxmD5vZmEKPWyHfG5GK4+6JeADVwBvAJ4E64GVgWgnbnwQcHF43Aq8D04CrgUtD\n+aXAVeH1icDjgAGHAi+E8rHAm+G5KbxuCp+9GOpa2PaEAfb5YuBeYE54/yBwRnh9E3BheH0RcFN4\nfQbwQHg9LRznYcCUcPyr4/heEKXa/VZ4XQeMqdRjC+wFrALqs47reZV0fIEjgYOBV7LKYj+eudoo\nsL/HATXh9VVZ/c37uOX7vdFDj0p8lL0DRftC4DDgiaz3lwGXlbE/jwDHAsuBSaFsErA8vP41MCur\n/vLw+Szg11nlvw5lk4BlWeUfq1dA//YGngK+BMwJf3jfz/oD+eHxBJ4ADguva0I963mMu+sV+3sB\njCYKkNajvFKP7V7AGqJAVxOO7/GVdnyByXw8QMZ+PHO1UUh/e3x2KnBPb8djd8etkJ/9Qn829NAj\nzkeShty7/4h2WxvKSi4Myx0EvEDu/O+5+ttX+dpeygt1HfC/gK7wfhzwgbt39rL/D/sUPm8J9fP9\nGgo1BWgGfmPRJYJbLUr4U5HH1qMsgz8D3gbWEx2vhVTu8e1WiuOZq42B+geikYBC+lvIz75IxUlS\nQK8IZjYS+C3wP9x9S/Zn7u5A2e8TNLOTgA3uvrDcfemnGqLh1hvd/SCglWi49kOVcmwBwnXhU4j+\nEdkTaAAG1RrgpTiexWrDzC4HOoF7BtwpkUEsSQF9HbBP1vu9Q1nJmFktUTC/x93/KxTnyv+eq799\nle/dS3khDgdONrPVwP1Ew+6/AMaYWXcGvuz9f9in8PloYGMBX0Oh1gJr3f2F8H42UYCvxGML8GVg\nlbs3u/tO4L+IjnmlHt9upTieudooiJmdB5wEnBX+QSikvxvJ/3sjUnGSFNAXAFPDbNU6ogksj5aq\n8TCL9zbgNXe/JuujXPnfHwXOCTOIDwVawlDkE8BxZtYUzvSOI7qetx7YYmaHhrbOocBc8u5+mbvv\n7e6TiY7T0+5+FjAfOC1HX7u/htNCfQ/lZ4SZwFOAqUSToYr6vXD3d4E1ZrZfKDoGeJUKPLbB28Ch\nZjYi7K+7vxV5fLOU4njmaiNvZjaT6LLRye7e1uPr6PdxC8c63++NSOUp90X8Yj6IZuO+TjST9fIS\nt30E0fDhYuCl8DiR6HrbU8AK4P8BY0N9A34V+roESGXt6x+AleHx91nlKeCVsM31FGFyDnAUH81y\n/yTRH76VwEPAsFA+PLxfGT7/ZNb2l4f+LCdrZnixvxfADCAdju/viGZVV+yxBf4NWBb2eTfRjOuK\nOb7AfUTX93cSjYCcX4rjmauNAvu7kuj6dvfv202FHrdCvjd66FFpDy39KiIikgBJGnIXEREZshTQ\nRUREEkABXUREJAEU0EVERBJAAV1ERCQBFNCl4pnZc+Xug4hIpdNtayIiIgmgM3SpeGa2LTwfZWZ/\ntI/yot+TlWf7C2b2nJm9bGYvmlmjRTnIf2NRXu5FZnZ0qHuemf3Oonzcq83su2Z2cajzvJmNDfU+\nZWZzzWyhmT1jZvuX7yiIiPStZvdVRCrKQcABwDvAs8DhZvYi8ADwDXdfYGajgO3A94hygPxtCMZP\nmtlnwn4ODPsaTrQK2CXufpCZXUu0VOl1wM3AP7r7CjP7InAD0br3IiIVRwFdBpsX3X0tgJm9RJQj\nuwVY7+4LADxkuTOzI4D/DGXLzOwtoDugz3f3rcBWM2sBHgvlS4DPhax5fwc8FAYBIFq+VUSkIimg\ny2DTnvU6Q+E/w9n76cp63xX2WUWUI3tGgfsXESkpXUOXJFgOTDKzLwCE6+c1wDPAWaHsM8C+oe5u\nhbP8VWZ2etjezGx6HJ0XESkGBXQZ9Ny9A/gG8J9m9jIwj+ja+A1AlZktIbrGfp67t+fe0y7OAs4P\n+1wKnFLcnouIFI9uWxMREUkAnaGLiIgkgAK6iIhIAiigi4iIJIACuoiISAIooIuIiCSAArqIiEgC\nKKCLiIgkwP8H/tBCpRdd1xEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "XAww6V5DmWsU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "outputId": "8b651dcb-456d-4dfe-b1bf-069d714fa037" + }, + "cell_type": "code", + "source": [ + "this_year[this_year.income > 80000]" + ], + "execution_count": 49, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
2291020189903482.39590321Luxembourgeurope_central_asia
2334820189705783.24632418Macao, Chinaeast_asia_pacific
31498201812103380.712694849Qatarmiddle_east_north_africa
3303120188388884.035791901Singaporeeast_asia_pacific
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country \\\n", + "22910 2018 99034 82.39 590321 Luxembourg \n", + "23348 2018 97057 83.24 632418 Macao, China \n", + "31498 2018 121033 80.71 2694849 Qatar \n", + "33031 2018 83888 84.03 5791901 Singapore \n", + "\n", + " region \n", + "22910 europe_central_asia \n", + "23348 east_asia_pacific \n", + "31498 middle_east_north_africa \n", + "33031 east_asia_pacific " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 49 + } + ] + }, + { + "metadata": { + "id": "2QTzH_9tm904", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1024 + }, + "outputId": "7236f6bd-625e-47b6-b023-179842d0abf6" + }, + "cell_type": "code", + "source": [ + "entities[entities.name=='Macao, China'].T" + ], + "execution_count": 58, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
145
countrymac
alt_5MACAU SPECIAL ADMINISTRATIVE REGION OF CHINA
alternative_1Macau
alternative_2Macao
alternative_3China, Macao SAR
alternative_4_cdiacMacau
arb1Macao SAR, China
arb2NaN
arb3NaN
arb4NaN
arb5NaN
arb6NaN
g77_and_oecd_countriesothers
gapminder_listMacao, China
god_idMO
gwidi130
income_groupshigh_income
is--countryTrue
iso3166_1_alpha2MO
iso3166_1_alpha3MAC
iso3166_1_numeric446
iso3166_2NaN
landlockedcoastline
latitude22.2006
longitude113.546
main_religion_2008eastern_religions
nameMacao, China
pandgNaN
un_stateFalse
unicode_region_subtagMO
upper_case_nameMACAU
world_4regionasia
world_6regioneast_asia_pacific
\n", + "
" + ], + "text/plain": [ + " 145\n", + "country mac\n", + "alt_5 MACAU SPECIAL ADMINISTRATIVE REGION OF CHINA\n", + "alternative_1 Macau\n", + "alternative_2 Macao\n", + "alternative_3 China, Macao SAR\n", + "alternative_4_cdiac Macau\n", + "arb1 Macao SAR, China\n", + "arb2 NaN\n", + "arb3 NaN\n", + "arb4 NaN\n", + "arb5 NaN\n", + "arb6 NaN\n", + "g77_and_oecd_countries others\n", + "gapminder_list Macao, China\n", + "god_id MO\n", + "gwid i130\n", + "income_groups high_income\n", + "is--country True\n", + "iso3166_1_alpha2 MO\n", + "iso3166_1_alpha3 MAC\n", + "iso3166_1_numeric 446\n", + "iso3166_2 NaN\n", + "landlocked coastline\n", + "latitude 22.2006\n", + "longitude 113.546\n", + "main_religion_2008 eastern_religions\n", + "name Macao, China\n", + "pandg NaN\n", + "un_state False\n", + "unicode_region_subtag MO\n", + "upper_case_name MACAU\n", + "world_4region asia\n", + "world_6region east_asia_pacific" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 58 + } + ] + }, + { + "metadata": { + "id": "73I-YCgCnpAJ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "qatar = this_year[this_year.country=='Qatar']" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "adPr6szPn1tY", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 50 + }, + "outputId": "f28aba33-37af-4c7a-acb0-d1e3ecbfcd58" + }, + "cell_type": "code", + "source": [ + "qatar.income" + ], + "execution_count": 65, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "31498 121033\n", + "Name: income, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 65 + } + ] + }, + { + "metadata": { + "id": "vyamBGBUn_hd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "d192e5ce-36d9-4922-cb9e-065c1b6948d7" + }, + "cell_type": "code", + "source": [ + "qatar.income.values" + ], + "execution_count": 66, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([121033])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 66 + } + ] + }, + { + "metadata": { + "id": "rRWGyuqzoBRK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "5b7fe402-1984-4102-86b2-0906fc8b1193" + }, + "cell_type": "code", + "source": [ + "type(qatar.income.values)" + ], + "execution_count": 69, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "numpy.ndarray" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 69 + } + ] + }, + { + "metadata": { + "id": "yG88fJ-CoIQ8", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "0075c006-9fe2-4324-fa39-cf7279c63a5d" + }, + "cell_type": "code", + "source": [ + "type(qatar.income.values[0])" + ], + "execution_count": 70, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "numpy.int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 70 + } + ] + }, + { + "metadata": { + "id": "a2X7q4ucoJQV", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "qatar_income = qatar.income.values[0]\n", + "qatar_lifespan = qatar.lifespan.values[0]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "wv39rkyRoQ3c", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 382 + }, + "outputId": "a32f391e-0343-44f2-ce4c-c4f3d6e054f0" + }, + "cell_type": "code", + "source": [ + "sns.relplot(x='income', y='lifespan', hue='region', size='population', \n", + " data=this_year)\n", + "\n", + "plt.text(x=qatar_income-5000, y=qatar_lifespan+1, s='Qatar')\n", + "\n", + "plt.title('Qatar has the highest incomes in 2018');" + ], + "execution_count": 82, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFtCAYAAADxv5gBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVNX5wPHve6fszM5s32XpLB0E\nERC7IgjWGEti7w2TGJLYe+EXeyUxiTVRsEZFNNiClQiiKFVAUdrSWbbPlulzfn/cu8uy7C7bhm3n\n8zz7MHPLuefOLvPec+655xWlFJqmaZqmdWxGW1dA0zRN07SW0wFd0zRN0zoBHdA1TdM0rRPQAV3T\nNE3TOgEd0DVN0zStE9ABXdM0TdM6AR3QOxARyRWRyW1w3HkiclUrlVXvOYjIMSLyUyPLmSAiW1uj\nTk3RlDp2JCLSV0TKRcTW1nXRNK15dECvh4hcJiIrRaRSRHaKyFMiktKE/ZWIDIpnHeNBRKaJyCtt\ncWyl1Hyl1NC2OHaVfV00tYc6xoNSarNSyquUijZ1XxE5XEQ+EZEiEckXkbdEpEeN9SIiD4tIofXz\nsIhIjfXPichPIhITkctqlS0icp+IbBORUuvickSLTlbTOikd0OsgIjcADwM3ASnA4UAO8LGIOPbD\n8UVE9O9G6yjSgOcw/4/0A8qAF2usvxo4AzgIGAX8EvhNjfUrgGuApXWUfTZwBXAMkA58DbzcqrXX\ntM5CKaV/avwAyUA5cE6t5V4gH7jUen8o5pdLCbAD+DvgtNZ9CSigwirrXMwvvfetMoqt171rlD8P\nuB/4CvADg+qoWy5wI/A9UAq8Abisdfsq/zJgA+aX7UbgwjrKPwkIAWGr3itq1O1eq25lwMdAZo39\nDgcWWp/FCmBCA59vQ+cwAdhaY9uxwDLrmG9Z295Xc1vgBmCX9Tu4vMa+CcBjwGYgD3gGcFvrMq3P\npwQoAuZjXty+DMSsz78cuLmO+teuY73nY60/HVgO+ID1wEnW8p7AHOv464ApNfaZZp3vK9a5rwSG\nALdZ57oFOKHG9inAv6zPYBtwH2Cz1g0C/mfVrQB4o57fSw7m36y9Mb/zffwfGguU1Xi/ELi6xvsr\ngW/q2G8BcFmtZbcAb9Z4PwIItPX3hP7RP+3xp80r0N5+MINapOqLrda6mcCr1uuDMQOZ3foy/BG4\ntsa2ihpBGcgAfg0kAknWF/a7NdbPs4LPCKtMRx3HzwW+tYJBunXM3+6rfMBjBZSh1vsewIh6zn8a\n8EqtZfOsYDQEcFvvH7LW9QIKgVMwg+Lx1vusespv6BwmYAVLwAlsAv4EOIBfYV5s1AzoEeDP1vpT\ngEogzVo/HTNgplufx3vAg9a6BzEDvMP6OQaQGvWb3MDfR3UdG3E+h2IG0uOtz6YXMMxa9yXwFOAC\nRmNeiB1X43cQAE60/hZewrwIu8Oq7xRgY406vAM8a/2eu1n1+Y217nVrP8M61tH1nFcOewf0On/n\njfg/dC01Arb1GRxW4/04agT8GsvrCuj9gCVWPRzAI9T4f6N/9I/+2f2ju3X3lgkUKKUidazbAWQB\nKKWWKKW+UUpFlFK5mF+ox9ZXqFKqUCn1tlKqUilVhtkar739DKXUaqvMcD1FPamU2q6UKsIMUqMb\nWX4MGCkibqXUDqXU6n19ELW8qJT6WSnlB96sOi5wEfChUupDpVRMKfUJsBgzwNanznOopepi6Uml\nVFgpNRszUNUUBv5srf8Qs1U91Lo/ezVwnVKqyPo8HgDOq7FfD6Cfte98pVRLkhrUdz5XAi8opT6x\nPpttSqk1ItIHOAq4RSkVUEotB/4JXFKjzPlKqbnW3+FbmH93D1l/F/8GckQkVUSyMT/ra5VSFUqp\nXZgXMzXPtR/Q0zrWgiacV32/83qJyCjgbszbVVW8mEG9SingrXkfvQE7MAP9T5g9J2cD1zWu+prW\nteiAvrcCIFNE7HWs62GtR0SGiMj71oA5H2bAyKyvUBFJFJFnRWSTtf2XQGqtUcVbGlG/nTVeV2J+\nWTZYvlKqArPb/7fADhH5QESGNeJY+zwuZrA4W0RKqn6AozE/q6aWVVNPYFutQFv78ymsdeFVVVYW\nZk/Fkhp1+q+1HOBRzG7uj0Vkg4jc2kBdG6O+8+mD2cqtrSdQdaFRZRNmC75KXo3XfsyLzGiN91jH\n6YfZct1R41yfxWypA9wMCPCtiKwWkSta4bzqZA0C/Qj4k1Jqfo1V5Zi3sqokA+WNvIi6GzgE87N0\nAf8HfC4iiY3YV9O6FB3Q9/Y1EMTs4q0mIl7gZMyuR4CngTXAYKVUMnA75hdnfW4AhmJ2PSYD46uK\nrrFNS1qJDZZvtfaOxwy0a4Dn6ymnqXXYAryslEqt8eNRSj3U9FPYww6gV61WXJ9G7luAGfRG1KhT\nilLKC6CUKlNK3aCUGgCcBlwvIpOsfVsz/eAWYGAdy7cD6SKSVGNZX8z73805RhDz/nbVuSYrpUYA\nKKV2KqWmKKV6Yg5EeyoeT1+ISD/gU+BepVTtQWurMQfEVTnIWtYYozHv+2+1eq5mYI4XOaCFVda0\nTkcH9FqUUqWYrYC/ichJIuIQkRzMLscC4FVr0yTM+9LlVmv3d7WKygMG1HifhBlkSkQkHbinlate\nb/kiki0ip4uIB/PLvxyzC74ueZjduY3923gF+KWInCgiNhFxWc+I927+qQDmhVUUmCoidhE5HfOe\n9D4ppWKYFyzTRaQbgIj0EpETrdenisgg62Kh1DpO1edR+/fWEv8CLheRSSJiWHUYppTagjlQ7EHr\n8xqF2T3f5McFlVI7MAesPS4iydZxBorIsQAicnaN30Ux5gVLfb/7ZhGRXsDnwN+VUs/UsclLmBdN\nvUSkJ+bF54wa+ztFxIV58emwPpOqv7/vMHuAsq1zuxizR2Jda56DpnUGOqDXQSn1CGaL+zF2jwpP\nxBwsVWFtdiNwgbX+eczRzTVNA2Za3aDnAH/BHFxUAHyD2QXcmhoq3wCux2wZFmHeW699AVLlLevf\nQhGp6zGiPVjB6XTMzysfs8V4Ey3821JKhTB7Sa7EHI1+EebI9GAji7gF80v/G+sWxKeYPRgAg633\n5ZgXDk8ppb6w1j0I3Gn93m5s4Tl8C1yOeU+7FHO0eT9r9fmYA9G2Yw5qu0cp9WkzD3UJ5iDCHzCD\n9ix23/I4BFgkIuWYgwT/pJTa0Mzj1OcqzIugaWJOTlNuHa/Ks5hjC1YCq4APrGVVPsa8GD0S8/E3\nP7t7mB7GfHJiOebfwXXAr5VSJa18DprW4VWN7NUaICKXY46mPkoptbmt69NVicgi4Bml1Iv73FjT\nNK2LqWvgl1aLUupFEYlgtiB0QN9PrG7jnzB7HS7EnJSktXs2NE3TOgUd0BupjoE+WvwNxRy74MGc\nFOcs656xpmmaVovuctc0TdO0TkAPitM0TdO0TkAHdE3TNE3rBDrEPfSTTjpJ/fe/eiyUpmltqjFT\n1Wpam+kQLfSCgoK2roKmaZqmtWsdIqBrmqZpmtawuAZ0EbnOSgixSkRet6Z0nCEiG0VkufWzzwxO\nmqZpmqY1LG730K35nf8IHKCU8ovIm+xO6XiTUmpWvI6taZqmaV1NvLvc7YDbSkWaiDlvtaZpmqZp\nrSxuAV0ptQ0zuclmzFSYpUqpj63V94vI9yIyXUQS4lUHTdM0Tesq4hbQRSQNMwtXf6An4BGRi4Db\ngGGYWaDSMbNi1bX/1SKyWEQW5+fnx6uamqZpmtYpxLPLfTKwUSmVr5QKA7OBI5VSO5QpCLxIPTmu\nlVLPKaXGKaXGZWVlxbGamqZpmtbxxTOgbwYOF5FEERFgEvCjiPQAsJadgZkfWdM0TdO0FojbKHel\n1CIRmQUsBSLAMuA54CMRycKcdWk58Nt41UHTNE3TuooOkW1t3LhxavHixW1djS4pFotSWVpKsKKc\nBI8Xb1p6W1dJ09qKnvpVa9c6xFzuWtvx5e/i1duuI1BRjjc9gwvuf4Kk9Iy2rlaXFAmFCPkrsSck\n4HS527o6mqa1M3rqV61BP3+zgEBFOQDlRYVs/+mHNq5R1xSsrODHBfN48947+Gb2G/jLfG1dJU3T\n2hndQtcalNGr7x7vU7J7tFFNurZgZSUfP/skAIVbNjH8qAm4k5LbuFaaprUnOqBrDeo5dDiTrvwd\nucuXMOzoCaRmd2/rKgHgL/OxefX3hAMBBowZR2JKaltXKa4Mw8DuTCASCoIIDperraukaVo7owfF\nafukYjEioRD2hATMpw3bvj7fznmbBa/PBGDkcScw8dIpnfq+ciQcpnDrJlZ88hGDDz2SnkOGk5CY\n2NbV6mra/o9f0xqgW+jaPolhtKsWYSwWpWDTxur3RVs3Eykrw+FMQIzOOSzE7nCQ3X8Qx0+Z2i4u\nqjRNa38657ef1qnZ7A6OPOcikrOySUxJZfwZ51Jw9zRCGza0ddXiTgdzTdPqo1voXVikpISYz4c4\nHBgpKdg6UBduavcenD/tIUK5ufiefhb/gq/Idzro+cgjGAk6309rqSgpJuSvxJmYiCclra2ro2la\nA3RA76Ki5eUUvTiDwmefBcOgzzNP4znmmA7TAhQREj1eyj6ai3/BVwC4DhiBOBxtXLPOo6K4mNfu\nuhFffh7ZAwZx5q336KCuae2YDuhdVMzvp+TNN603MYpffx33uHEdqpVuuN1k/f4aEscdjJHgwj1m\ndKe9h94WKn0l+PLzAMjbsI5IMNTGNdI0rSH626+LMpxOPEceUf3eO3EiRisPfAsHg5QVFlCan0ew\nsqJVy65iT08n5eSTSTpuIvY03XpsTYkpqaR0ywag+8Ah2J3ONq6RpmkN0Y+tdWGRoiKCa9ZgJCfj\n7NMHW0pKq5a/5YeVzLrvTmLRKJOu/B0jjp2MQ9/f7lAqSooJBfw43Yl4Ovmz/o3QMe5HaV2WbqF3\nYfb0dFwjR2JLSyMWCBALBPbaRoXDhPN2EdqyhUhxcaPLjoRCLP1oDrFoFIClH71HpKKcSEEB0Yr4\ntNa11udJTSOte08dzDWtA9ABvQuLlpdT/NrrrJ80mfWTjyewahW1e2yCGzay/uSTWX/8Cex6+BEi\nxSWNKtvmcDBo3OHV70+46AoqZs0m9/wLKHzuOSIljStH0zRNaxw9KK6LCVSGCZSFUUrhkUoKnn0W\nMFvihc//k57Dh2PzeMxlSlH86quoykoASt99l6xr/9So44gIA8cdxiWP/p1wIECG20P+9y+Tfcft\nqEDALDO1fbT6omVlxMrLwWbDnp6O2PV/i/pEfT7zs3I4sGdmdpinIjStK9At9C4kFlPkrijg1Xu+\n4bVpiygvjeAaNqx6veugUXs8wy0iuMeOqX5v79mzScHO5fGS1TeHnkOGYbhcpJxxOttvuZVdT0xH\nRSKtc1ItFAsE8H3wIesmHseGk08hlJvb1lVqt6Ll5RS9+irrjpvExjPOJLx9e1tXqU5bt27l9NNP\nZ/DgwQwYMICpU6cSDAbr3T43N5fXXnttP9ZQ0+JDB/QuJBqOsm7prur3i74opNdf/0r2HXfQ84nH\nSTv//L0CtnfCBHr/4+9k3XgDOa++gj0zs97yC8qD/LSzjJ2+AGHr3nlN+X99klhpKeHNmyn8179Q\nsVjrnVwzxcrKKPzXv8zXFRWUvD27jWvUfsX8fopeeBGAaGEhFfMXtHGN9qaU4le/+hVnnHEGa9eu\nZe3atfj9fm6++eZ692lOQBcR3Y2jtTs6oHchdqeNURN7I4YgAkMOzcbIyCD94otIOeWUOh/7sqem\nkjRpEplXXYXh8eBfvZrK5cv3GiBXUB7kNy8v4cS/fMnER+exrXjPAXZGQgLOAf2r3ycMG94unhkX\ntxvPMcdYbwTvhGPbtkLtmDiceI480nxjt+/Re9NefP7557hcLi6//HIAbDYb06dP56WXXmLVqlUc\nc8wxjB07lrFjx7Jw4UIAbr31VubPn8/o0aOZPn06ubm5dW4nIhNEZL6IzAF+aKtz1LT66MfWuphw\nMEKwMoJSkJBox+lqXENDKUXJrFnsvOtuADJ/fw0ZU67GcJld9NuK/Rz18OfV2z/4qwM5/9A9c6lH\nCgsp++xzbGmpuEeNQgWD2JKTsbXxvfRIcTHh7duxJSVhS0/H5vW2aX3as0hREeEdO7CnpWNLT2v1\nuQta6sknn2Tjxo1Mnz59j+VjxozhH//4B2PHjsXlcrF27VrOP/98Fi9ezLx583jsscd4//33Aais\nrMQwjL22E5GJwAfASKXUxr2PrmltS3cbdTGOBDuOhLp/7f7yMqLhMI6EBBISPUR9PrDbsSUmokIh\nKqwpVgEqvv6G9EsuASugJzgMRvZKZtU2Hwl2g0Oy3fh/+AFnv37Vg+zsGRmknXM2/jVrWDdpMkQi\nZP5hKumXXVa9TVuwp6XpSWkayZ6ejj09va2r0SzhcJgpU6awfPlybDYbP//8c73bTZ06tb7tvtXB\nXGuvdEDXAKj0lfLFjOfYuGwxY07+JaOPnUzhHXdiS00j+9ZbsGdmknHVVZR/+SUqEiHzmmswarRk\nM70JzLjsULYWVZAR9RN+4gFyP/mYgR/P3SNYK6UofuUVsAbFlc5+h9Rzzm3TgK51HgcccACzZs3a\nY5nP52Pnzp18+OGHZGdns2LFCmKxGK56ehemT5/e0HZ6EgWt3Wr7m5hau1BeWMCar/5HsLKCb97+\nN4GiIioWfIXv/fcpmvkSAAnDhjJw7n8Z9OknJI47GLHZ9igjMymBEY4g5b88keDc/0IsRrTWvXYR\nIeXUU8G6f5504okY7vbVbat1XJMmTaKyspKXXjL/ZqPRKDfccANTp04lFArRo0cPDMPg5ZdfJmoN\n3ExKSqKsrKy6jNLS0jq307T2Tgf0OCosD7LLF8DnD7d1VfbJlZSMYQVol8eLrcaANcNK2GI4HDi6\ndcORnV3vvVPD6yHrD1OxpaaSfOqpOHr12vtYBx7IoE8/YcAH75MxZUq7uGcdCwbxr17Nzj//mYpF\ni/Rsdh2UiPDOO+8wa9YsBg8eTEZGBoZhcMcdd3DNNdcwc+ZMDjroINasWYPH6hUaNWoUNpuNgw46\niOnTp9e7naa1d3pQXJwUlAW5cuZ3fL+tlKkTB3HVMf1JcbcsuUWkoIDg2rU4+vXDnpmJ4XQSCwaJ\n+nwIYEtP36vV3FjhYJDiHVvZvHIF/UaNIdntofCvf8WWnkHGZZdiz8hodFnRigpigQCiFIbX2+4G\nTtUlnJfH+hNORAWDYBgM+vQTHD17tnW1tBZauHAh559/Pu+88w5jx45taXF6Fh2tXdP30OPkx50+\nVmwtBeBvn6/jwsP6keJufnmRggI2XXwJoY0bkYQEBnz4AY5u3fAvXcqW3/4Ow+2m36uvkDBwYLPK\ndyQkEI1E2bBsMd+9NxuXN4nzpz1Mgtdb/XhZpKCAaHk5RqIHe2YGYhjEwmEi23fgX7EC98FjcXTv\njthshNavp+Dvf8c5cBBZf5ja7gdSqWjUDOYAsRgxv79tK6S1iiOPPJJNmza1dTU0bb/QAT1O+qYn\nYjOEaExVv24JFQoT2mgOrlXBIKHcTRhuN7sefQwVDBINBil49jl6PnA/YrejolHC27ZR/sU8Eg8/\nDGe/fvtsKe9c9xNbVn8PQGVpCcGAH1dyMmAG881XXEHw57XY0tPp//YsHD16EC0qYsMZZ6D8foyU\nFAa8NweUYsuVV6HCYfzfryTt3HMIbd6MPTUVW2Zmu+hir83m9ZJ9110Uv/oqSccf36QeCU3TtPZA\nB/Q46ZaUwMfXjufHnT7G5aSTldSytKHidpF86qn43n8fR79+uIYMRhISSDjgAAI/mHNcuMeMqZ7p\nLVJYyMazzyFWWgoOB4M+/hijR/cGjzFw3OF8+59ZlBcVMuyoY3G6dncpRIqKCf68FoBoURGVi5eQ\n8stTiZaWoqzWbKy0FBUIgM2GCpvjBjKmTKHwxRn4/vMfEKHvzBl4Dj20RZ9FPNiSk0n99a9IPulE\nxO3GZo0b0DRN6yh0QI8Tt9POwG5eBnZrndaoPS2N7Dtup9v11yFOZ/UUrN2uvw7v+PEYSV5cw4fv\n3iEcNoO59TrqK8XwejA8nnpnaEvOzOLCB/9CLBzG4XLhTkquXmdLTcHwJBKrqAQREoYNNeuVkUHi\nkUdSuXAhyaecjOFNQmwGmb+/hoKnnyFh8CBKqh4jUoqKhQvbZUAHMFyuDnG/X9M0rS56UFw7ForE\nEAGHrekPI0RKSyl+6WWKX30Vz7HjSb/0UnY9+hhZf5iKa+RIDGfTBuipcJjwjh2UL/iKxDGjcfTt\nW/3seKSoGBUJmxca1qxv0bIy8z60YVD+6WfsnDYNIzmZnDf+TUL//g0dStPiJhKOEawwe49cXjs2\ne5MGkepBcVq7pgN6O5XnC/Dwf9eQYDO4/oQhZCU1veUYLS8n5vcT9fnIPetslN+PuFwM/Hgujm7d\n4lDrBupRMz1pM0fia1pLqJhi+9oS5vxtOYYIZ1w/huz+KU0pQgd0rV3TXe6twF8eIhZVuBLt2Bwt\nD1ZlgTC3zV7J52vMzGhRpbj39JEkNLFsm9eLzeslvH179X1usRmwn3NYV9VD09pSKBBh8Ye5xCKK\nGIolczdxwhUjsDv1BabWOeiJZVqoojTIR8+s4q0HF7NtbSmRcMtnlYrFFP4a5ZQHI7Qk0aizXw7Z\nd91J0gnH0/fll6u7xTWtK7E7bfQ+YPec/X2Hp2Oz669ArfPQXe4tUBYIU1QUYNeGUr5/dyMicO6d\nh+JJadmIdoDNRZXc+NYKHDbhsbMPokdLHmIHVCyGCocxElpeN03rqALlYUoL/BiGkJThwuVxNGV3\n3eWutWtx7XIXkeuAqwAFrAQuB3oA/wYygCXAxUqpUDzrEQ+llSFmfp3L0/M2MLZvKvf9cRRLXl+L\n0cLnzav0TU/k2YsPxhBaPMMcgBgGooO51sW5vA5c3iYFcU3rMOLW3yQivYA/AuOUUiMBG3Ae8DAw\nXSk1CCgGroxXHeKpPBjhiU/W4g9H+Wp9IWuKfZz6+5G4k1oefKukJTpbJZhrLROJxPCXhQiHdJIO\nTdPar3jfQLIDbhGxA4nADuA4oCq/4UzgjDjXIS7sNgNPjcE0PVwhXJQ1sIfWEQX9YX5etJM5Ty7n\n+8+2EKho/4l2NE3rmuLW5a6U2iYijwGbAT/wMWYXe4lSKmJtthXYOx1XB5DucTL7N+N4ZdFWju6T\nQP+ypcCEtq6W1spClRG+eHkNAAVbyhkwJqup9101TdP2i3h2uacBpwP9gZ6ABzipCftfLSKLRWRx\nfn5+nGrZfA6bwdB0O/eOLuHE8KekDDoMvFlxO16koIBw3i6iPl/cjqHtTQzBsFvjIgRsDj0qWtO0\n9imeg+ImAxuVUvkAIjIbOApIFRG71UrvDWyra2el1HPAc2COco9jPZvPnQoDJkD/Y+P6bHdo+3Y2\nXXQxke3bSb/0EjJ/9zts+tGz/cLlcXDm9WNZPX8bgw/J1q1zTdParXg2NzYDh4tIoogIMAn4AfgC\nOMva5lLgP3Gsw/7RgmAejdX9hHllKMKOUj/FlSGKXpxBZPt2AIpmvkS0vLzpx6msJJKf36x9uzK7\n00b3ASlMvHg4fQ/IwOnSczFpmtY+xS2gK6UWYQ5+W4r5yJqB2eK+BbheRNZhPrr2r3jVoT2rCEZY\nuK6AG978ngXrCqgIRqrXRWOKbzcWcfTDX3Dr299j9OhRvU6cTsTRtFZipLSUohkz2Xj2OeT/5a9E\niotb7Ty6itZ6HFHTNC1e4trcUErdA9xTa/EGoH2m29qPSv1hLn7hW6IxxZwV21hwy3F4EsxfR0Uw\nwvPzNxCNKT77cRc3X3486UWFBH/6mczf/bbJ3e0xXxkFTz6Js38OlUuWECkowJ6Wts/92ps8X4C3\nl2zFH45y3iF96Z6cgK0ZiWs0TdM6I91/2EbC0RjRmDk0IKYgFN3d9e522jh+eDZfrSskElMsK1Wc\n8cc/IeEQRmIi0sQufnE68Dz4CLm9h1JUGSY5qycdLUloflmAM//xFdtLAwDMXJjLJ9cfS3ZyRzsT\nTdO0+NABvY2kuh3cfspwZi3Zwq/G9ibVvbsb3WEzOGNML44clIkhkOV1YXc6wNm8AVm2tDSW9DmI\n62atBOCMHSHuPWMkSa6OM8ArzxesDuYAvkCEZVtKOGlE9zaslaZpWvuhA3obSUl0cvERffnV2F54\nnHbctTI+pSY6SU1snVniDKeT5dt3T3rzww4fwUiMpFYpff9Ice998dEzRbfONU3TqnTpG5D5ZQHe\nXbaNlVtLKAu0bAYwfyhCONq0nGhuh51Mb8JewTwerjy6P73T3HicNqadNqLOANmeJbsd3HjCEBw2\nwRC46LC+9E5LbOtqaZqmtRtdNttaYXmQy2d8x/dbSwF495qjGN236c92R2OK9fnlPDr3J3IyPPz2\n2AFkeNtnEpT8siAKRarbibMDpo2sCEYoC0RQKDxOO8kd7KJE6/D0ow5au9Zlu9yjSvHTzt3d0Gt2\n+poV0Asrgpz77NcUV5ot/DSPg2smDGq1eramrKT2eaHRWJ4Ee/WTAJqmadqeOl4zrZV4nHamnTYC\nuyEM7uZl4rBu9W4biynyy4Lk+QL4a2fcUmbmtSoFZcF4VVnTNE3T6tVlmzueBDu/PKgnk4Z1wzCE\nzAa6yXMLKzjrma8p9Yd58vwxTBrWDZfDvO/tddn52/ljuOOdVfRKc3P1+IF77BuLRQmUl2Oz2Unw\neFr9PCIFBahwGHG5OuSz5ZqmaVrr6LIBHcCbYMe7jy5cpRT/nL+BoooQAA9++COH5qRXB/REp50J\nQ7vx0bXHYBPZ4/55NBIhb8NaPnvhGbzpGRw/ZSretPRWq38kP59Nl15GaMMGkk48ge733IM9vfXK\nB/P8K33muScmO5v8DLymaZq2f3TZLvfGEhHG5ewOkmeO7okroigrqKBi8w7KvpyPvayUbkmuvQbD\nBcp8zLrvLnZtXM+GJd+y8M1XiUajtQ/RbP4V3xPasAGAsrkfEyuvaLWyq5TkVfLOY0uZ/ehSSvIq\nW718TdM0rXV06RZ6Yx03rBuvTzmMimCUsele3rj3W4KVEY7+9QCGjh5CMBCjYH0JLq8Td7KTBLf5\nsSrMLvcqkXAIVAxoncfUnP0HOqT2AAAgAElEQVRzzMQwSmGkpCCu1h30Fg5GWPj2Okrz/QB89fY6\nTrhyhE5Qomma1g7pb+ZGSE10csTATAC++c96gpXmILglH29hUG8n9uR0Pn4hn7LCAL/4/ShyDjS3\ndXm8nH7jnXzy3N/xpKVxzPmXYrO33qNW9u7dyXnrTfzLluE99ljsGRmtVjaAYTNI7e6BlYUApGYn\nYnTAx900TdO6gi77HHpzbfu5mHefWAbAwNFpTBixFGf+d3xZ+QdWL8hjyGHdmXTpMAzDDHyRcJhg\nRRli2EhMTqmzzIpghPJghEg0RoZdEV78LRXffkvaeefh7NMHMRoXRKM+H5WLF1O5eAlp552Lo0+f\nFt/z9peFyLUCes6BGbiTWmf2uiqxaIyyoiBbfiikx6BUkrPcOPbDRDua1gx6AInWrukWehNl9Uni\n/LsPoTK/gAx3Ia637yFyxHUECmKIIQw/snt1MAewOxzYU+sfqBYIR9lZGuDZLzewYksJN0wexJAv\nF+B//TV8/5lD//+8iyMrq1F1C23ewtZrfg+A7/336D97NvbMzBadrzvJyfAje+x7w2byl4V584Hv\nCPkjGIZwwZ8PJyXTHbfjaZqmdVY6oDeR020n3Z1EekoAlsyGE+5HhpzCoUMTOeqswbgS9+xSjxQU\noJTClpSE4dp77vHKYJg1O328uXgLANe8vpwvzjsHXn+NaGkpNKEHJVpUtPt1cQkq1rSpaNtCOBQl\n5DdvYcRiirLCQKcO6BWlJcQiEezOBNxJHWk2fU3T2jsd0JvLkwXjbwDMIW7pdXw3h7ZvZ/NllxMp\nKKD3X/9C4uGHYzj2DPgJdhuZNWZw87rs2NxunP1zyLr2OmxN+NJ3jRxByhmn4/9+Jd1uuhFbcnJz\nzmy/SnDbyTkwg9yVhWT08pLeo/Wf1W8vKkqKmXXfnRRs2cRBx5/CUederIO6pmmtRt9DjwN/mY9Q\nIID/5Vcofu55AJw5OfR75eU6u8B3+QJ8m1vE1+sLuezIHHI8BhLwYyQlYSQ0beR6tKwMFQxiJCcj\nhkE4L4/Ajz/iHjECe3Z2o+/HN1elL8jqBdtxe50MHJPVqHvu/vIQkVAMm90gMbl179G3J1tWr+TN\nP99W/f7qp2aQlNGyWyLaftVp7qGLyGnAAUqph9q6Llrr0S30VlbpK+XjZ56k0lfC5EPGVy93Dh1K\nzAqmxZUhwpEYSS47bqedbskuTh3Vk1NH9dxdkLd5LVVbUhJYrb7wrl1sPP0MYuXl2FJT6T9nDo5u\njbsf3xxBf4R5r/7ExhUFAERCUUZP7rvP/dzezhvEa0rJ7o7dmUAkFCSjd18Mu/7vp7WcmCNfRSnV\n6HtsSqk5wJz41UprC/obpRXFolFW/+8z1i9ZBMD2cYfT+5mniBYU4hg5gopQAF95gD/9eznrdpVz\n+ynDOX54NolxSjgSKy8nVl4OQLSkBBXwx+U41ceLxqgsDVW/LysMoJTq0LPLqZiisixENBzD4bK1\n6OLDk5LK5dOfpiRvJxm9+uBJaXoyIE0DEJEcYC6wCDgYeEREfgskAOuBy5VS5SJyCvAEUAF8BQxQ\nSp0qIpcB45RSU62yXgAygXxr380iMgPwAeOA7sDNSqlZ++sctabTDxW3In+Zj6Uf/qf6/Wevz2TR\n6uWUH3YMs7ZE+bFEke8L8NW6QvJ8Qa57Yzm+QKSBElvGlpKK5+ijAUg64XgMrzduxwJweRxMvHgY\n6T099BiUypgT+3boYA5QVhzg3/d+y8t3fs2iORsJVISbXZbN4SA5sxt9R4zCk6rn3ddabDDwFHAs\ncCUwWSk1FlgMXC8iLuBZ4GSl1MFAfd1zfwNmKqVGAa8CT9ZY1wM4GjgV0N3z7ZxuodehJa2yipLi\n6teGzcbQU8/ltOeXURGKApt45qKxHJKTxne5xbgdNow4xjt7Rjo9H3kEFQkjDkfck7eICOk9PJx+\n7WjEkE7Rlb51TTGBcjOIr56/jUN+kdO2FdK03TYppb4RkVOBA4CvrAtoJ/A1MAzYoJTaaG3/OnB1\nHeUcAfzKev0y8EiNde9aXfk/iEh2HM5Ba0U6oNehvDjIWw99h78szAFH9+SIMweSkGhnR2mA+Wvz\nGdM3jT5pbtzOPT8+w2ajx6AhbP95DQDu5BQ2F1Zawdz0yQ95XHFUf5JcDq6bPIQ0T3yDnj19/7YE\nxRASkzt23vWaegxMwbALsYiiz/B0DFvH7nHQOpWq5A0CfKKUOr/mShEZ3QrHqJkPWv/xt3M6oNdh\n29pi/GVmq+yHBds59Jf9yS8PcuZTX5HnC2I3hHk3TaB3rYDuTkpm/IVX8O97bgagsrSEAdnJeBPs\n1TnTTx7ZgwlDsxg/JAtPnO6da60nKcPFxfceQaUvRFK6q1P0OmidzjfAP0RkkFJqnYh4gF7AT8AA\nEclRSuUC59az/0LgPMzW+YXA/P1QZy0OdESpQ3ZOcnWrrNeQVAybEI3GyPOZF6uRmGJXWZDeaYl7\n7ZvVL4czb7mHz154Gl/+Lmxl5bx9+WF8taGQYdlJeHwRYqEYHrf+6DsCu8OGN82GN23vSYE0rT1Q\nSuVbg9xeF5Gq7rE7lVI/i8g1wH9FpAL4rp4i/gC8KCI3YQ2Ki3ultbjQz6HXIRKO4i8L4/eF8Ga4\nSExy4vOHeenrXJ6at54jBmTwyFmj9kqXqqJRIoWFqHAYlZBAQEUxDC+zH19OUpqLitIQ3vQETv7N\ngbg8rZekJd5CkRil/hAJdhvJ7o5Tb01rZR2uy1lEvNZodwH+AaxVSk1v63pp8aEDehOUBcL4Q1Ec\nNqPOe9+hzZvJPedcoiUlJE+5Gu+ll+FJTmbrT8V88q/VON12fvnH0R1qNjR/OMKCtQXc98GPjOqV\nwrTTRux1IaNpXURHDOjXAZdiDpRbBkxRSlW2ba20eNEBvR6R/HwqFi7EOWAAzpycfU7BGghHKd5Z\nQGTHDiJPPk7oxx+QV94mq29Pkhw2gtZ85YnJzlZ5lCsWDuMvLUGJYHM6cSfFZ5rXXb4ARz/8BaGo\nOWfFPy8dx+TherCr1iV1uICudS36OfQ6RIqKKXrtNcq+mMemCy8ilJvb4PahSJSv1xcy4dmlnDE3\nn8Ad9+E9/Qw2loSIxhR2pw1PSgKelITWCeahEJUF+fz3mb/y7DWX8ek//0Glr7TF5dZFRMiqMdd8\ndpJunWuaprVHOqDXochI4Nl+E3lz8hUkz3iV4IYNDW5f6g9z95xVBCMxCitCPLmkAHXVNQwY0IOM\nOIyKjvp8lGzZTO7K5QD8/M1X+Mt8rX4cgKykBN74zeH8adJgZl5xKH0zOs7tAk3TtK5ED7WupTwQ\n5q73fmDu6jwAQkf15caJE/e5X06Ghy1F5tSqg7p5cSV56OVtWYs8WlqKUgp76p5ThIoInvR0xDBQ\nsRg2hwOne+8R962ld1oi1x0/JG7la5qmaS2nA3otgUCUUv/u6T2LgjHw7HvK1OsmD2F0n1SS3Q5y\nMjysz68gM2nPR538ZSEqfCFciXZcHgd2p63e8sI7drL99ttR4TA9H3wAZ58+1evsGRm4o1HOu+Ne\ncletYPDhR+P26jScmqZpXZkO6DVUloVY9s567j5+GHd+9ANup43rjx+K3dbwnQmn3eC5+evxh2KE\nIjGWbynm8xsn7LFNoCLMl2/8zLrFuzDswjm3jiMty1lnetSY30/eQw9S+fXXAOy48y56P/lXbCkp\n1du4unWjZ7du9Bx5UJ11ihSXoCJhbF4vhtvdxE9C0zQNRGShUurItq6H1jg6oNcQDcX4eVEeBVvK\nuemoPnTvn0yaZ98fUYrbySOnDWfd5gIW5QX4v9NGkJ64573zaCRGrpVWNBZRbF22hcQBCtfQoUjt\nNJqGgZG4+161kegGW/2t+doihYVsu+kmAqt/IPvmm0g66SRsHn3vW9O0xhERu1IqooN5xxK3QXEi\nMlREltf48YnItSIyTUS21Vh+Srzq0FQ2h0FmHy9F2ytY8c4GFPDeih2UBRrOsBUpLiYw8wXSH7yD\niz3FDEp1kODYMwDbHQYjxvcCICHRTu+BXnY9/gTRsrK9yjMSEuh2w/WknHUWyaedRvdp/4fN6yWS\nn4/vw48IrF1LtKJir/2q+JevoHLh18RKS9lx192oSv3Yqaa1pZxbP7gg59YPcnNu/SBm/XtBS8sU\nkXdFZImIrBaRq61l5SLyqLXsUxE5VETmicgGETnN2sZmbfOdiHwvIr+xlk8QkfkiMgf4oaq8Gse7\nRURWisgKEXnIWjbFKmeFiLwtIvEbzKPt0355Dl1EbMA24DDMaQXLlVKPNXb//fkceqUvRHF+JSGH\n8Mi8tXz0Qx5f3XIcvdLq77auXLqUTRdcCIA4nQz89BMc3brttV2gIkygyIcqKabk0ftwDR5Etxuu\nx5ZY9/+BWDgMSmE4nUQKC9l06WWE1q0Dw2DAe3NIGDiwzv0CP/3ExtPPAMDRpw85/34de0ZGUz8K\nTdP21KwRrlbwfh6o+R+9EpiS+9AvXmt2ZUTSlVJFIuLGnNb1WKAAOEUp9ZGIvAN4gF9gZmObqZQa\nbQX/bkqp+6ypYr8Czgb6AR8AI6sytIlIuVLKKyInA3dhpmitrHHsDKVUobXtfUCeUupvzT0nrWX2\nV5f7JGC9UmpTe8yPXekrZf2SRfh9Pg44ZiK2zEROeOQLIjHFEQMzcDsEynaCIxFce0/gIs7d98HF\n4aC+//cujwN72EZwZzGZV1yO+6BR2BITKfQXsmzXMnp5e9E7qTdJTnOAm+HYPc2qikYJrV9vvonF\nCOVuqjegO3r2ot/rrxNYvZqkyZN0MNe0tvUAewZzrPcPAM0O6MAfReRM63UfzPzoIeC/1rKVQFAp\nFRaRlUCOtfwEYJSInGW9T6mx77c10q3WNBl4sWqWOaVUkbV8pBXIUwEvMLcF56O10P4K6Odh5uKt\nMlVELgEWAzcopYpr72BdRV4N0Ldv37hVLBwMsmj2Gyz9aA4AP3z5Ob++835eufIwHDZhc5Gf95dv\n4ZQ+YTJ/egqO/hMk7hkgnX160+O+eyn/aiGZU67CnpZa16EAsKemYj/kkOr3JYESbltwG19vNwfA\nvXTyS4zpNmav/YzERLrddBO7Hn8c1/BhuA8aVe8xbEleEseMJnFMa2RP1DSther7Amv2F5uITMAM\nskdYLeZ5gAsIq93drjGs9KdKqZiIVH3fC/AHpdTcOsqs/15e3WYAZyilVlgJYiY09Vy01hP3iWVE\nxAmcBrxlLXoaGAiMBnYAj9e1n1LqOaXUOKXUuKysrLjVLxIMVOcvByjcuhlBcdiADJZvLeXaN5Zz\n9/s/M21+OWWOdPDvde2BLSWF1LPOoucjD+M64ACrld444ViYNYW7j/9j4Y91bmfzekk952wGzfuC\nPs89hz0zswlnqWlaG9rcxOWNkQIUW8F8GHB4E/adC/xORBwAIjLESrnakE+Ay6vukYtIurU8Cdhh\nlXVhk85Aa3X7Y6a4k4GlSqk8AKVUnlIqqpSKYd5XOnQ/1KFeTncio088tfr9sKOOxWa3E4spft65\ne8DaxqIgocRscNT/d280IZBX8Tq93HzozdgNOznJOUzqO6nebW1eL46sLOzp6fVuo2lau3M75j3z\nmiqt5c31X8AuIj8CD2HmRG+sf2IOelsqIquAZ9lHb61S6r/AHGCxiCwHbrRW3QUswrwPv6ae3bX9\nJO6D4kTk38BcpdSL1vseSqkd1uvrgMOUUuc1VEa8B8UFKyvwl/kIB4N4UtNITDaf995aVMnlM77D\nFwjz3AWjGJkWw+ZJA3vrzmfuD/spj5RjYJDh1ve7Na2davYAIGtg3AOY3eybgdtbMiBO0+oS14Bu\ndeNsBgYopUqtZS9jdrcrIBf4TVWAr09bpk8tKAsSDYWwf/ExNkPwTjyuwXvk+1tRoIiYipGWkIbN\naPyz6pqmNVn7G9GraTXEdVCcUqoCyKi17OJ4HrO1pYYr2PLb3xJYuRKAXk88QfIpJ8flWNGYoqQy\nhNNukOTad/d9XkUe1867lpJACY8e+yjD04froK5pmtZF6WxrQKG/kNlrZ7Nw29cUVtYa9BaNEiks\nrH4b3pUXlzpEozFWby/lshe/4/bZKykoD+5zn1d+fIVVBavYWr6VaQunURqKTwpVTdM0rf3r8gG9\nJFjCnV/dyT0L7+E3n17N19sWk18WqF5vS0uj1xOP4xw4EM+x40k59dQGSmu+wsoQv3tlKSu3lfLe\n9zuYu3rnPvfpn9K/+nWfpD44jKYPytM0TdM6hy4/l3skFiG3NLf6/dqSdazZ0Ierxw8k2e1A7Hbc\nI0fSb+YMxOHYI0FKo49RVISKRjFcLmxJdWdFM0RITXSwrcRMwVp7Lvi6HNfnOLzHeinwF3BizonV\nE9JomqZpXU+Xb6GnOFO454h7SHelMzx9OBN7ncLGggpqTmgndjv2zMzmBfPCQrb+4Y+smzCRwhde\nJFpad7d4pjeB5y8Zx+VH5vDAmSM5fMC+R7unulI5IecELhh+gR4dr2ma1sXtl7ncWyreo9xD0RAF\nlcVsLPDz8ffl/G7CQLqntE7K0fKFX7Pliiuq3w/64nMcPXq0Stmapu1XepS71q51rS738nzYtdqc\nkz19AHjM2dacNic9k7LJcEcZ2xvcjtYbKe7s1RMMA2Ix7NnZe6dKjZNwJEYoGsOT0LV+xZqmNY41\n1WtIKbXQej8DeF8pNSsOx/on8IRS6ofWLlvbrdN+21eW+dj242pULEbvA0aSaAvDGxfBFmtCpUOu\ngsnTIGH3fecEe+s/8mXPyqL/O7Pxr1yJ96ijsMdxGtsqRRUhnp+/gZ92lnHbycMYmOXFMHTjQtPa\nzLSUvSaWYVppW08sMwEoBxbG+0BKqavifQytk95Dj8VifP/xh8x5/H7em/4gi9+bTSQa3R3MAZbO\nhNCeszH6QxG2FleyZFNxox4bawwjMRHX0KGknXXWfutq/2pdAU/PW8/na3Zx+YzvKKxonXPRNK0Z\nzGD+PGZ6UrH+fd5a3iwi4hGRD6w85KtE5FwRmSQiy6yc5S9YqVERkVwRybRej7Pyo+cAvwWuE5Hl\nInKMVfR4EVlo5U8/q86Dm+V4ReQzEVlqHe/0+uplLZ8nIuOs10+LyGIrZ/v/Nfcz0PbWKVvosUiY\nvNz11e93bdpINGZgT0wHfwm+4x6mLOcE7FEvGdEYdpt5XbO5yM8vnpxPJKY4rH86T190MOmefY82\n1zRNa0A80qeeBGxXSv0CQERSgFXAJKXUzyLyEvA74C917ayUyhWRZ4BypdRjVhlXAj2Ao4FhmHO3\n19f9HgDOVEr5rIuFb0RkTj31qu0OK5e6DfhMREYppb5vzoeg7alTttDtzgSOPu8SkjIy8aSlc+yF\nl+P0psEVc6n4xdO8Gjqao/6xmknTF5BbuDtb4He5RURi5iDBRRuLiERjbXUKLXLUoEymThzE5OHd\nmHH5oWR6W3fueU3TmqTV06di5jo/XkQetlrXOcBGpdTP1vqZwPhmlPuuUipm3evObmA7AR4Qke+B\nT4Fe1vZ71Ktqyu9azhGRpcAyYARwQDPqqdWhU7bQAdJ79OLCB6ajlCIxJQUxbJA5hApHb174m3nL\nqDwY4T/Lt3PDCUMBGD8ki9REByWVYc47pA9Oe8e83kn3OPnT5MGEIzES9aA4TWtrmzG72eta3ixW\nK3wscApwH/B5A5tH2N14c+2j6Jr35xoaeHMhkAUcrJQKi0gu4KpdLxH5TCn15+oCRfpjZmo7RClV\nbA3E21edtEbqtN/2Yhh4UtP2Wu5yOhg/JJO3l27DEDh2yO5Bar1S3cy9djzBSIykBDupjZjcpb1y\n2Awcto55QaJpncztmPfQa3a7tyh9qoj0BIqUUq+ISAkwFcgRkUFKqXXAxcD/rM1zgYOBj4Bf1yim\nDEhuZhVSgF1WMJ+IdcFSR71qD4ZLBiqAUhHJxkyvPa+ZddBq6bQBvT7Jbgd3/GI4lx6ZQ1qik7TE\n3dOl2gwhO7n+i8WK0iAhfwSn205ishMRPXJc07R9mFb6GtNSoHVHuR8IPCoiMSCMeb88BXhLROzA\nd8Az1rb/B/xLRO5lz+D5HjDLGtD2hyYe/1XgPRFZCSxmdy70uupVTSm1QkSWWdtvwcyjrrWSLj2x\njIrFiAUCGG53dXAu9YcJhKPYDSGjxr3nipIgbz+yhLKiAO4kB2ffdghJ6bqnSNO6EH0Fr7VrXbZP\nNurzUfbJJ5Rv3cJPX37OjrVr8JX6+Of8Dfz66YX8b9lGygt3Z17L31JGWZGZtMVfFmbbT8X1Fb3X\ncaI+X1zOQdM0TdOqdIku90gkRqS4GEPFcKSnIXY70ZISKgsLWPDdfDatXA7Ar++6nxVbA/z79P7E\nHnuAIhXD+ec/4+zVi5Qst3l9bnVopPfw7PO44bw8dtx5FyoSocd995mzxmmapnUQInIg8HKtxUGl\n1GFtUR+tYZ0+oIeDESL5Bey64xYiu3bR48EHcY8ciYrFMLKyKPhybvW2BbkbuergMcQe+TMVC82R\n8Dtuu41eTz6JJ9XLmdePJX+rj/6jkrEZUQLlZbi8dWc4iwWD7HrkUSrmzwdg57Rp9Hri8XqzrWma\nprU3SqmVwOi2rofWOJ2+yz0aUZS89RaVi74ltDGX7TfeRLS4BHt6OgkeDxPPvQS7M4GM3n0ZesTR\njO2djIpGqvdX1rPoTpednoNTSTswjZeXbGXZ1lJWffstlaUldR/YMBDP7kGthtttzune1PpXVhLJ\nzydSVNTkfTVN07Suo9O30JVS2LK6Vb+3Z2aCzcCWnEzyoYfhqqjgytFjzcfcUlIBcN5/P9tvvgVU\njJ4PPoA91VyeV1LB2c8tIs8XRATmXHkQW9esJmvkIfjDUdxOG2nWo26Gw0G3P/4Rw+4gFgqR9ac/\nYvPsu5u+pmhFBb4PPiDvwYdIGDiQPk8/tV/mgtc0TdM6nk4f0F0eB8YJkxFiRLdvJf2Si7GnpwNm\nnvOElBRqz6Pm7N2b3v/4OwD2tN3PsseAXWXmvAtKwc5SPxnFRcyYu4bXvt3CeYf04ZaTh1UHdXtm\nJtm334YCjGZkWYtVVLBz2v9BLEZg1SrK5s0j7eyzm1yOpmma1vl1+oAuIiR0yyDrovObtF/NQF7F\n47Rz/y+HM/2LDYztnUw/DyTnHMuZvgjjh3Tjnjmr+NPkwXse325v9rMuYhg4evQgvG0bAM5+dU02\npWmapmldIKATLIdACUTDKHcqykjESGje3ObJiQmcemA24welESkvxZOWyd0f/MRHq3YyslcyT194\ncKvOzmbPzKTfKy9T+t57uA44ANfQoa1WtqZpXYOITKNGEpZWLjsXGKeUKmjtsluDiGQB7wNO4I9K\nqfm11neqPO2dO6ArBbkL4N/ng4qhJt6DL687zgFDcI08EMPV9MCenOQhOckD3dLYWlzJR6t2ArBq\nmw+n3Wj1RCiOHj3IvPrqVi1T07T968CZB+6VD33lpSvbOh96mxIRu1Iqsu8tW2QSsLKufOwiYuts\nedo79yj3cCUseRGUOVLd+P5VbC4bmy+/gmh9o9ObIMFuIyfDHMme7LaTlaSzmmmaticrmO+VD91a\n3iz15EPfK+95jV0OEpGvRWStiExpoNweIvKllSN9VVWe9H3kMP9Djbzow6ztD7WOt8zKrz7UWn6Z\niMwRkc8xU6fWl1c9R0R+FJHnrWN+LCLuBuo9RUS+sz6Pt0UkUURGA48Ap1vn4xaRchF5XERWAEfU\nytN+klWPFSLyWUPn0V512hZ6yF9JyB9AJj5Iom8nsnM5sZzJBH7eiIpGzdZ7C2UlJfDmb49gU0El\nfdLdZMQxd3rU54NYDCMlRc8hr2kdy/7Kh/5wA9uPAg4HPMAyEflAKbW9ju0uAOYqpe638pVX1buh\nHOYFSqmxInINZia1qzDnaj9GKRURkcnWuVYlhhkLjLLKs1N3XnWAwcD5SqkpIvKmtf8r9ZzfbKXU\n89ZncR9wpVLqbyJyN+YtganWOg+wSCl1g/Ue698szIuu8UqpjSKSbpXb0Hm0O50yoIcCfn5c8D8+\n/ddTeFLTOH/aayRTQsQXpeKtx+n1179gJDc3ydCeuiW56JYU3zndQ9u2sfOee4gFgnS/8w4SBg9G\nbLa4HlPTtFYTr3zoj4vIw8D7Sqn5+7jQ/49Syg/4ReQL4FDg3Tq2+w54QUQcmLnRl1vLzxGRqzFj\nRg/MHOZVAX229e8S4FfW6xRgpogMxpxfc3cWLPhEKVU1sUZVXvXxmA8SVeVVBzO/e9Xxl2DmfK/P\nSCuQpwJeYG4920WBt+tYfjjwpVJqI0CN+jV0Hu1Op+xyD/n9/O/lf4FSVBQX8f0Xn0L2AQT75ND9\nqb+RNGECtsTaF8ztU6SwkK3X/J6KBV/hX7yYTRdfoieZ0bSOpb685y3Kh47Z0l2JmXf8bhrOe167\nS7LOLkql1JfAeGAbMENELqmRw3ySUmoU8EGt8qtyqEfZ3Ui8F/hCKTUS+GWt7StqvK6ZV300kFdj\n25q52WuWXZcZwFSl1IH8f3t3Hh5VdT5w/Ptmsu8riygQV0BFhRG1LnWXqnWvS90tUq1WrdXWpb+q\nra222lK17nsrti4VpWpRXFCrFQ2CLAICArJDWJIQsuf9/XFOYAhZJpOZJAzv53nmmbnnLufMDeTN\nPffc87rscq1dZVWrakMbx2mure/R48RlQE8IBCjYZcsfvwP2O4Cv13/NDf+9kUfmPsWGho3d2LqO\n0cZG6let2rzcWFEBDR3592iM6Wa34PKfh4pGPvRNqvoccA8uuC/C5T2HbbuFTxWRVBEpAI7EXYm3\ndNwBwCrfff2EP25LOczbk4P7owDgkna22yavegSygBW+Z+H8CPb/FDjC//FCSJd7uN+jR4jLLvf0\n7BxOu/FXLCj5jJxefUjt35uL3jiHtdVr+WT5J+xbtC/H9D+GTWVlrPpmHpn5hWQXFZGS3rGZ3LpC\nICODwmuuYdVvfgNA7snQAUMAACAASURBVHnnIWmtjg0xxvQwMy6e8fy+z+4L0R3l3lLe8TRaznsO\nrnv8faAQ+G0r98/BBfsbRaQO2Ahc5O8pdzSH+R9xXdW/wl3Rt6a1vOod9X/AZGCNf+9Q0gxVXeNv\nKbwiIgnAauA4wv8ePcIOkQ+9dFMp57xxDqs3rQbg/qPu58DcA3j38QeZ/9n/kIQELrnrPrJzcmlI\nDFCxYT2VG9ZT2H/g5ulgu1NDRYUbFFdfT0JOzuapaI0xXcpGo5oeLS6v0JvLT8vn0eMe5cGpD7Jb\n7m7UNNRQWV3ByvlfA3DK6Guoe/U1lvz3Y3LOO5d51RV8Mv5lehXvxhk33xGVoF5fWsr6F14gMb+A\nrBNOIDF/25noWhPIyrIsbcYYY9oUl/fQm0uQBPJT8inOKWZJxRJ++dEvmV05j+9ecBkZefnkJaWw\n7pFHqZ45k1W3/opB+7nbUKsXLqC+tqado7evobyc5bf+itIH/srKO+6gbPxrnT6mMcZESkT29c9m\nh74md3e72iMiD7bQ7ku7u109Rcyu0P0D+C+EFO0K/Br4my8fiBvEcbaqro9VO5qkJKaQnZzN4wsf\nJzs5m+KC3ejbtxd9dt+LxGUht5NE3AvILupNYlLnny3XujrqV6/evNw0N7sxxnSH7TXPuape1d1t\n6Mm65B66n4xgGXAQcBWwTlXvFpGbgDxV/WVb+3f2HnqTitoKNtZtJFESyU/Np7Gunjfvv4dBBxxI\n9uyvqfl0Mnnn/5DaPXZjyfy57DHiO2QVFHa6Xm1spObrr1l2/c8J5OTQ7y9jSOrdu/0djTE9id1D\nNz1aVwX044HbVPVQEZkLHKmqK0SkLzBJVducTi9aAb05VWXm+xN5+7EH2Pfwoynee1/6Dx9BSlZ0\nJp3Zqq6GBhrWr4dAoMVMbsaYHs8CuunRumpQ3LnAP/zn3qq6wn9eyZZZgWKmoaGR6o11qEJyWoDk\nFPe1RYQ9RhxC0YCBVJWX03vXPWISzAEkECCxsPNX+8YYY0xLYh7QRSQZOAW4ufk6VVURabGLwD8T\nOBqgf//OzJAIG1Zu4pV7plBX08Cxlw5h1/2LSEx2U6emZmbRJ9NGkBtjjNm+dcUo9+8BX6hq03Rn\nq3xXO/59dUs7qepjqhpU1WBRUVHElTc2KtPe+Zba6gZUYfL4hdRWxzpjnzHGmM4QkVyf8CWSfTdn\nnotCO37jE7P0eF0R0M9jS3c7wHjgYv/5YiCmz3AlJAj99tpyz7rPrtkEkiyxiTGm68weNPiHswcN\nXjR70OBG/x5x6tTO8hnOtge5QIsBvSu/g6r+WlXf6ar6OiOsQXE+tdzluEfNNp9IVb2snf0ycNMc\n7qqqZb6sAHgRNwXiYtxja21mG+nsoLjqyjrWr9xE9cZaeg3IoKG+kuS0NFIzMrdsVFkK9TUgCZCS\nCSnWDW+M2UpEg+J88H6crVOobgIuHzxndsTTv4rIBcA1QDJuutOfAGWqmunXnwWcrKqXiMgzQDVw\nAG7q1juBp3CPE28CRqvqdBG5HdgN2B03TewfQ9KS3gicDaQA41T1tjbadhEuoYsC01X1Qh9HHmFL\nlrnrVPVjX2d/35b+wF9U9X4R+SdwKjAXmIibevW3wHpgkKruKSKvArvgkqbcp6qP+foX4dKmlrbS\nvm32809jPQkEfbufUtUx/ty9rqov+yQ438dNs/sJ8GPtQdOthvtXzmvAR8A7uKw3YVHVSqCgWdla\n4JhwjxENqRlJ9N0th/XLl/HUtVdRW72JI86/lP2OP5HkBGD1LHjj57BiGiQEYK+TYORdkLNzVzbT\nGBOfop4PXUQGA+cAh/rEJg/RflKSnYHvqGqDiDwATFXV00TkaNz8IE3PpW+TOx3YB5effATuD5vx\nInKEz87WvG17A7/ydZWGJDq5Dxijqv8Vkf64FKeD/bpBwFG4OdjnisjDwE3APj4LGyJyJC5ZzD5N\naU6By3xe9TTgcxH5l48x7dlmP9wFaz+fWQ0RaWmK0L+q6m/8+r8DJwP/DqO+LhFuQE9v71nx7cG0\niW9SW+2SHk158zWGHH4UyXWr4KkToNHfV29sgNnjYflUGPUuZNnz4saYTolFPvRjcJnVPvd50NNo\nZTxSiJdCUocehs/IpqrviUiBiDQ94tNS7vTDgOOBqX6bTFyA3yagA0f7ukr98Zt6YI8FhoTkbc8W\nkaZu0jdUtQaoEZHVtP7002chwRzgGhE53X/exbcpnIDe0n5zgV39HztvAG+3sN9RIvIL3B9k+cAs\nelBAD/ce+usicmJMW9IFdh124ObPA/bdn0AAePc3W4J5qLIlsOijrmucMSZeRT0fOu4q+VlV3d+/\n9lLV29k6z3nz3N2VhKel3OkC3BVS3+6q+mQH25wAHBxyjH6q2pTLOtzc55u/g79iPxY4RFX3w/2x\n0W6+8tb28zOW7ofLVHcFLn1s6H6pwEPAWT7v+uPh1NeVwg3o1+KCepWIlItIhYiUx7JhsdBntz24\ndMyjnPebezjyolGkSh0saWP64nlvuyt2Y4yJXNTzoQPvAmeJSC9w+bubcpmLyGCfAvT0Nvb/CN9F\n7wNcqao2/U5vKXf6W8BlTVfUItKvqe4WvAf8wO8fmlv8beCnTRuJSHtTz1bQdhrUHGC9qm4SkUG4\n2wThaHE/Pyo+QVX/hbtlMKzZfk3Bu9Sfh7PCrK/LhNXlrqpxMUIsJT2DxNRU6nISmV4+m+Ks/hTs\ndjSBGS+1vEPuAHdP3RhjIjR4zuznZw8aDM3yoXdmQJyqfuVzdL/tg3cdblrtm4DXcXnBS3Bd4y25\nHXhKRKbj/ri4OGRdS7nTl/v79v/zXeYbgQtooZtfVWeJyO+AD0SkAXcFfAluAN+Dvs5EXHf9FW18\nx7Ui8rGIzAT+w7b5yCcAV4jIbFx3+aetHSvM/foBT/vzCc3mTlHVDSLyODATNyna52HW12XCnvpV\nRPJw9xk2dzG0NCAiFqI59euaTWs47bXTKK8tJyclh3HfG0vRmKHbbigJcM1UyBu4zarqjRUsnDqF\nFfPnMOzEU8np1YeQ+0LGmPgU9//J/Yjzjap6b3e3xXRcWF3uIjIK99fUW8Ad/v322DUrdlZWrqS8\n1vUsldWUUVq3EQ68fOuNAslw1tOQ0fKENmu+Xcybf72XqRNe58U7bmFT2YZYN9sYY4xpU7ij3K8F\nDgQ+VdWj/H2H38euWbHTN7MvfTP6sqJyBf0y+1GU3huOvhUOuQoW/dc9g77LwZCWA0nNnzRxqiu2\nDB+o3lhBD3oM0RhjIuYH1oXF3yN/t4VVx4T56FhM9fT2xUK4Ab1aVatFBBFJUdU5Pt95j7a2ai1j\nZ48F4PzB51OQVkBhWiHPn/Q85bXlZCdlU5juZwdMy4P84rCO22/w3gw54mhWL/rGDa7LbO02lTHG\nxCcfFHtsTvWe3r5YCDegL/UP2b8KTBSR9bhZ3nqs6vpq7ptyH+MWjAOgtKqUWw+6lZTEFArTCilM\na3ma37KqWjbVNpCYIBRltfxEQnp2Dkdf+mMa6upIycwkENheZlI0xhgTr8Id5d70+MPtfqKBHNxI\nwR6robGB0uots/6trV5LvdaTQsqWjSrXumfQ0/MhkER5VR1PfLSQB96bz855abx8xSH0yUlr8fgp\n6Rlt1l9VUUt9fSOJiQmkZSVH5TsZY4wxrQn70lJEhuFmC1LgY1WtjVmromB9zXquPuBq1lavRRBu\nHnEzGUkhQXjtAhg3GsqXo4ffQHXxCZCQxodz3VMYS9dX8fmi9Xx/v5YDels2VdTy9hMzWTZ3A72L\nsznxyqGkZ1tQN8YYEzvhjnL/NfAsbl72Qtyzer+KZcM6Y0P1BqaunsraqrX8IvgL/njEH9kpc6ct\nG1SWwr9GwdISKF+OvHE9DRtW8MKvb+T+0/cAICkgDOmb3UoNbauqqGXZXDfyfdXCcspLqzr9nYwx\nxpi2hDtT3PnAgap6m8+wczBwYeya1TnJgWTSEtP4ybs/4ZK3LuHW/95KWU3Zlg0aG6B86Vb7SPV6\n6mpqSKou55Urv8P7NxxJv7yOX50DpKQnEkhypzYhQcjIsatzY0zXEpFTROSmVtZtbKX8GZ+lDRGZ\nJCLBWLaxNSKyf1dMNy4it4R8HugnsensMYtEZLKITBWRw1tY/4SIDOlsPS0Jt8t9OW5CmWq/nAIs\ni0WDoiE9KZ3Vm7ZMYLSkYgn1ofO1p+XCYdfDBP9vvWB3qgJ5JKWkklNYxE65eXRGWkYSZ99yIItn\nrmWXwfl2D92YHdyDV7z3Q5rNFHfVI0dHPFNcOFR1PDA+lnXE0P64NKZvxuLg4mYCE9z0u9F+BPsY\nYIaqjmqh3kBL5dES7hV6GTDL//X2NG7quw0icr+I3B+rxnXGcQOOY2jhUPJS8rjj0DvITg7pPk9M\ngf3Og6s/h8veouGi10kuHMAP77yXjE4Gc4BAUoD8vhkccFx/CnfOJDHZpo81Zkflg/njwABcEBkA\nPO7LI+KvJuf438lfi8hYETnWT5U6T0RGiMglIvJXv32xiPxPRGaIyJ0hxxER+auIzBWRd4AW52cX\nkeP9/l+IyEshWdJa2na4iHwgIlNE5C0R6evLLxeRz0XkSxH5l4ik+/IfiMhMX/6hiCQDvwHOEZFp\nInJOK/XcLiJP+Z6Eb0TkmpB11/tjzhSR60LO2VwR+Rsuhj0JpPk6xvpdAyLyuIjMEpG3xaVXbe17\nbvN9xM1P/0fcfPjTRCRNRDaKyJ9E5EvgkNCeDxEZ6c/plyLyri8b4c/1VBH5pCOPiIc19auIXNzW\nelV9NtwKIxHp1K/rqtfR0NhAZmImq6pW8cHSDziwz4EMzB5IeiuTxsRCZV0lZTVlKEp2cjZZyXEx\nNb4xO5qIpn598Ir3FuGCeHOLr3rk6IERNURkIDAfOACXwvNz4EvgR8ApwKW4x4yDqnq1iIwHXlbV\nv4nIVcAfVDVTRM4ArgRG4lKWfgWMUtWXRWQScAOwCHgF+J6qVorIL4GUprzgzdqVBHwAnKqqa3ww\nPkFVLxORgqYJXfwfFatU9QERmQGMVNVlIpLr50y/pKntbZyD23EpXTfnUQf64PK5P4O7NSzAZNy8\n8+uBb3B52j/1x9ioqk0JZ5rOaVBVp4nIi8B4VX2ulfpb+z5btV1EFDhHVV/0y03ndTHwBXCEqi4U\nkXyfoz0b2KSq9SJyLHClqp7Z2nkIFe5ja5sDtrg53XdR1enh7Nud8lNdkp+yTWWM//rfvL743/x5\nyp959dRXKc4JbxKZzlJVJq+YzHXvX4ei/O7Q33Fi8Ykk2rPrxuwoYpEPHWChqs4AEJFZwLuqqj5A\nDmy27aH4/OfA34E/+M9HAP/wedKXi8h7LdRzMDAE+Nj1VJMM/K+VNu0F7IObrwQgAKzw6/bxgS8X\nlzTmLV/+MfCMD6CvhPG9Q7WUR/0wYJyqVgKIyCvA4bjbD4ubgnkrFqrqNP95Ctuex1CtfZ/mGoB/\ntVB+MPBhU373kLzxOcCzIrIH7qmypDbasJVwR7lPEpFscWnwvgAeF5E/h1tJd9pUXssX41aw17Sj\neOTgJ9glaxcWbVjUZdO11jTU8NqC11CfYnj8gvFUNdiod2N2ILHIhw5b5xBvDFlupOWLtUh/6Qkw\nMSSP+RBV/VEb284K2XZfVT3er3sGuNrnEr8Dn+hLVa/ApSvdBZgiPu1qmMLNo96kvZzwHTneM7Tw\nfVpQ7f9gCtdvgfdVdR/g+20cdxvh3kPP8blyzwD+pqoH4RLE92iNDY2UvLmQrz5azvwpq/li7Gp+\nOuhnDEzcnU3lsX+MXlWpb6znzD3OJEESEISz9jyLtMTIRs8bY7ZLsciH3lEfA+f6z+eHlH+Iu1cd\n8Pe6j2ph30+BQ0VkdwARyRCRPVupZy5QJCKH+G2TRGRvvy4LWOG75Te3QUR2U9XJqvprXNrXXWg/\nF3pbPgJO8/e0M3B54T9qZds6355ItPh9OuBT4AgRKYat8sbnsGXQ+SUdOWC4AT3R/7DPxuXa3S6o\nQm31lj+M6moaGJY3nI8fXUpddX0be3ZeozayYMMCrnjnClZVruLNM95kwpkTOKzfYSQmWHe7MTsK\nP5r9ctw9U/Xvl8d6lHsz1wJX+e74fiHl44B5uHvnf6OFrnRVXYMLLP8Ql8v8f8CglirxE46dBfzB\nDwKbBnzHr/4/3P3sj4E5IbvdI26w3kzgE9xYgPeBIW0NimuNqn6Bu3r+zNf3hKpObWXzx4DpIYPi\nOqK17xNuO9cAo4FX/Ll6wa/6I3CXiEylA5O/QfiD4n6Aa/zHqnqliOwK3BPujfrO6kw+9PJ1m3j3\nmTnUVtUz4oc7oyhfvrKKkaP3ienjZGur1jLq7VHM3zAfgGsOuIbLh17ezl7GmB4s7vOhm+1bWFfo\nqvqSqg5V1Sv98jddFcw7a2HDPGqOWUDKKau4ddYNJOU3MmJ0b6ZvnEppVWn7B4hQgiSQmbTlyY7c\nlNyY1WWMMcaEdTnv75c8DPRW1X1EZChwiqre2c6u3aqmvobe6b25ds61rK1ey5CCIQQCAU4edzJ1\njXUUZxfz1MinWs281hl5qXnc+917eXzG4/TL7MexA3r8kANjjAmbiIwDmj8u9EtVbW20d6T1XIq7\nZRDqY1W9Kpr1tFH/g7inBELdp6pPd0X9HRFul/sHwI3Ao6p6gC+b6UfhxVwkXe4bazcyackk3vv2\nPUbvN5rkhGRyUnKYvmY617y/ef4B3jrzra3neY+yRm0kQcIdqmCM6cGsy930aOFGmnRV/axZWWxH\nlXVSeW05t/z3FiZ+O5Ef/PsHvDLvFfJT8xmUP2jz8+kjB44kPTGd2obYjXi3YG6MMaYrhDuCrlRE\ndsM/xyhu8v4Vbe/Sveob6zc/+w1QUVdBozbSO6M3L3//Zeob66lrrONPU/5EckIyo/YdRd/Mvl3e\nzrVVa6msqyQtMY2i9KIur98YY0x8CDegX4Ub3j9IRJYBC4nsubsuk52czQWDL2Ds7LH0y+zHj4f+\nmECCm1O9KL2INZvWcP6b57Omag0Ak1dO5tmRz1KQ1pE5DTpnXdU6fj7p50xZPYW+GX0Ze+JYC+rG\nGGMi0mZ/sIg0DUToq6rHAkXAIFU9TFUXx7x1nZCbmsuV+13Juz94l+dOfG6b++Q1DTWbgznA4vLF\n1DbGfrKZUNUN1UxZPQWAFZUrWFm5skvrN8bsuETkNIliGk8RCUo3JuuSkHSx0iyFqYi8KSJx/6hR\nezd4L/XvDwCoaqWqVsS2SdGTnZJNUXoRBWkF1GyqZNU385nzyYdUblhPWmLaVvO5Dy0cSkogZZtj\nbCovY+P6dVRtjP7XTgmkMLRwKAC90nvRN6Pru/yNMTus03BztEeFqpao6jXtbxkbqjpeVe/2i00p\nTA9Q1Y9U9URV3dBdbesqbY5yF5F/4HLS7gQsCF0FqKoOjW3znM5MLNNk+bw5/ONXNwDQb/A+nHrD\nr9iYUMVbi94iKSGJYwYcs83ja5VlG3h9zB8oXbKIU353Jx+s+x+FaYUc3PdgclOj88fe2qq1bKzd\nSEZSBgVpBfiEBsaYnifi/5x/OufkbfKh//yF1zs1U5yIXABcg0uWMhn4CfBX4EAgDZdd7Ta/7d24\nLGz1wNu4JCiv41JjlwFnquqCFuq4HDebWTIuE9mFqrrJTzZ2G26+8zJVPUJEjgRuUNWTRWQEcB9u\nHvIq4FJVndvK97gENz1rDm4Wu+dU9Q6/7lXcVLCpuEfFHvPlI3HnMwCUquoxTVnOgCdwiVjScFOo\nHgLMxmVAKxWRi3DZzhSYrqoXhnvOe7o276Gr6nki0geXReaUrmlSbNRoHUO/dxJzJr1P6bcLaair\npSiviAuGXNDqPhWla1g6ewYHXnA+98z6C+8vnQTAbYfcxll7nhWVdhWkFXTpfXtjTNfywfxxoCln\n8wDg8T+dczKRBnURGQycAxyqqnUi8hBuXNOtPgVnAHjXzxmyDBcwB/lsbE0pSscDr6vqy21U9Yqq\nPu7rvBOXnvUB4Ne4tKjLWunKngMcHpIC9PdsyfbWkhG4LG2bgM9F5A1VLQEu898nzZf/C9ez/Dgh\naUdDD+RTn/6arVOYNp23vXGJYL7jg/tW+27v2h0Up6orgf26oC1RoaqsqVrDwrKFDMwZSGFqIUsq\nlnDvkkco3L2AC4/4PxpWbSAlvf186Bm5eSQmp5CUmcGyiuWbyxeVLYrhNzDGxJnfsyWYN0n35ZFe\npR8DDMcFOXBXo6uBs0VkNO53e19cl/pXQDXwpIi8TsfycUSa8rSjKUAnhuQWfwWXArUEuEZETvfb\n7ALsgRvL1VLa0XAcDbykqqUR7NvjtRnQReRFVT3bT+gf2jffpV3uHVFaVco5r59DaVUpeSl5vHDy\nC4x6exSrNq0CIDkxhZ8Pu56klPYz0qVl53DxvQ9Svm41t+99Gzd8eCN5qXltXtUbY0wzsciHLsCz\nqnrz5gKXtWsicKCqrheRZ4BUf5U8AvdHwFnA1bjAFo5ngNNU9UvfpX0kuJSnInIQcBIu5enwZvs1\npQA9XUQGApPaqaf5vV/1XfjHAof4bv5JdCCV6I6ovSv0plHuJ0dycN8V8wSuK0WBy4ATcJmHmoaY\n36Kqb0Zy/JZU1VdtnqN9fc16GrWR8tryzevXV69HEt1YwEZtZPWm1cwqncVe+XvRK70XyYEtCVsS\nk5LI7d2H3N59qG+s57kTnyOQENg8MY0xxoThW1w3e0vlkXoXeE1Exqjqat913B+X77tMRHoD3wMm\niUgmbnKwN0XkY+Abf4xwUpQ2TxG6DLakPAUmi8j3cFfPoTqaAvQ4/x2qcIP1LsPdT1/vg/kg4GC/\n7afAQyJS3NTl3oEr7feAcSLyZ1Vd28F9e7w2R7mr6gr/vrilVxjHvw+YoKqDcN32s335GFXd37+i\nFswBMpMyOaTvIQAM7zWc1MRU7vnuPeSk5FCcXcx1w6/bPJp9bdVazn39XK6bdB2nvXZam8laEhMS\nKUovsmBujOmoqOdDV9WvcPeC3/YpTScCNcBU3P3r53Hd4uCC8ut+u/8C1/vyfwI3+ke7dmulqo6k\nPA3V0RSgnwH/AqYD//L3zyfgUnfPBu7GBfK20o62S1VnAb8DPvD7/jncfbcH7Y1yr2DbrhDY0uWe\n3ca+ObhcuLtqSCUicjuwUVXvDbeRHR3lvq56HbUNtQQkwMrKlcxZN4cRfUaQlpRGr/Rem7f7tvxb\nThp30ublp054igP7HBh2PcaYHUqPGuUeL5pGpzcNYDORa2+Ue3vdMW0pxnWrPy0i+wFT2NKFf7V/\ndKAE+Lmqru9EPdtouopeWbmSi/5zEfVaT0ACTDhzwlbbZSRlMLzXcKasnkL/rP4UZzdPHGSMMZ3n\ng7cFcBNT4U79GumxhwE/VdXJInIfcBPuOcnf4q78fwv8CXe/ZCt+pOZogP79Ixs7UtdQR726HDIN\n2kBNQ81W6wvSCvjTkX+iur6alMSUmKRRNcaYnq4rUoSKyAnAH5oVL1TV03GD70wnhZU+NaIDu+fX\nP1XVgX75cOAmVT0pZJuBuOcg20zDGsnEMuuq11HfoGysrmP8wpdITgxw/uDzyUnJ6eA3McYYwNKn\nmh4uZlfoqrpSRJaIyF5+hqBjgK9EpG/TYDvcZAczo133uqp1TFr8KRUbduX1aes4/YBTOGFwL3JS\n0qJdlTHGGNMjxLLLHeCnwFgRScY9KnEpcL+I7I/rcl8E/DjalW6s28iu2ftw2jMzAFhdUcPxu2ZS\nWVdNWlY2CYFAtKs0xhhjulVMA7qqTsPNrRsq5vPmpiWmEZAaRKAgI5knztydCWPupHpjBd//2U0U\nDSgmIcGCujHGmPjRXra17VJBWgFFmZk8eP7+XH74rnz74X9YtWAeZatW8vajD1C9cWN3N9EYY3os\nERnonzFvb5sfhix3a/pUE/su926RIAn0ycpl5JAcahsamVu78+Z1ub37EEhsb1phY4wx7RgI/BD/\nOJ6fDKZzaTFNp8RlQG+SkCCkJgTY8+DDSMnIpKq8jD0POXxzYpbKukrKa8qp13pyknPITml1nhxj\njOkx/BNCE3DzewwDZgEX4VKF3ov73f45cKWq1ojIIuBF3HSwVcAPVXW+n+99c8Y1Edmoqpkt1PV3\nIMMXXa2qn+BmbxssItOAZ3Gz1DWlT80HngJ2xc2KN1pVp/uJxfr78v7AX1TVruqjJC673JtLy8pm\n0HeO4ICR3ycjZ0umv2mrpzHylZGc+MqJvLHwDWrqa9o4ijHG9Ch7AQ+p6mCgHDel6zPAOaq6Ly6o\nXxmyfZkv/yvwlw7Usxo4TlWH4VK2NgXgm4CP/BTeY5rtcwcw1SfwugX4W8i6QbicHiOA2/w88SYK\n4j6g19XUsKm8jIb6+q3K6xvreW3BazRqIwDjF4xnU33z6ZaNMabHWqKqTfO1P4d7NHihqn7ty54F\njgjZ/h8h74d0oJ4k4HGfdfMlXErW9hyGu6pHVd8DCkSkqQv0DVWt8SlMVwO9O9AW04a4DuhVFeVM\nHvcCr9x1Gwunfk5tdfXmdYkJiZy5x5kExI12P2OPM8hIymjtUNtYV7WOL1Z9wZKKJWyqsz8EjDFd\nrvmsYBs6sH3T53p8HBCRBCC5+U7Az4BVuARbwVa26YjQrtAG4vzWb1eK24C+oXoDpSuXMHnci6z6\nZj7j/3wXNZu2Ht0+tHAoE86cwIQzJzBy4MitUqe2ZV31Oq59/1ounnAxJ487mdnrZre/kzHGRFd/\nEWm60v4hbkDaQBHZ3ZddCHwQsv05Ie//858XAU25zE/BXY03lwOsUNVGf8ymZ37bSr/6ES7dKj6v\neamqlreyrYmSuAzolXWVPDb9MaoTtnSzJyan4P4A3SItKY0+GX3ol9mPrOTw89DUNdQxbc00wOVU\nn7BwQjt7GGNM1M0FrvLpRfOAMbjJu17y3eONwCMh2+f5FKrX4q66AR4HvutTiR6Cy6fe3EPAxX6b\nQSHbTAcaRORLlhE2eAAAGSdJREFUEflZs31uB4b7+u4GLu7UNzVhidlc7tEUSfrU//v4/7hwrwso\nashm6UeTGXzYkRTs0p9AoPO9O+uq13Hde9cxdc1UEiSBp054iuG9h7e/ozFme9Zj5nIPNw9GyPaL\ncClKS2PYLNPN4vLeRVZSFr848Bfc+emdqCq3n3o7RZn9EInO/8f81Hz+ctRf+LbiWwrTCslLzYvK\ncY0xxphIxWVAr2+sZ8yUMQzIHsB3d/4ui8sXk5mUSW5qbvs7hyk/LZ/8tPyoHc8YY8KlqouAsK7O\n/fYDY9YY02PE5T10EeGY/sfQP6s/N3xwA/d/cT9ltWWU1ZR1d9OMMcaYmIjLgJ6amEqwd5B7S+5l\nU/0mvlr3Fa/Oe3XbhzyMMcaYOBGXAR3cc+ahU7n2zexLUsAmJDLGGBOf4u4eek19DRtqNjCjdAZP\nHP8Ez8x8hj3z9+SoXY4iPSm9u5tnjDHGxETcBfQ1VWu47ZPb+GzlZwzIHsBvv/NbDuh9QHc3yxhj\nokpERgL34SZ6eUJV7+7mJpluFndd7uW15SzYsACAxeWLefObN/jmi8/ZVG4D4owx8UFEAsCDuOxp\nQ4DzRCScOdZNHIu7gJ6VlMWV+19JQAIUphVy5s6n8M4TDzFr0jvd3TRjzA4sGAwmBoPBPsFgMBo9\noyOA+ar6jarWAv8ETo3Ccc12LO4CemF6IYftdBj/Of1NHgveR8nDT1Oxdg2VG9Z3d9OMMTuoYDD4\nHWANsBBY45c7ox+wJGR5qS8zO7C4C+hpiWlkJWfxxeqpBCQBEWHg/sMJfv+M7m6aMWYH5K/I3wBy\ngVT//kYwGAy0uaMxHRR3g+IANtZt5Kb/3sSg/EH84KzTOLT/d8nMs1ndjDHdohAXyEOlAkXAygiP\nuQzYJWR5Z19mdmBxd4UOEEgIkBJIYc66Odw5/Q/UJDVQ31jf/o7GGBN9pUB1s7JqXBd8pD4H9hCR\nYhFJBs4FxnfieCYOxGVAz03J5ZmRz3DGHmdw9xF3M37+eNZVr+vuZhljdkAlJSX1wEnABlwg3wCc\nVFJS0hDpMVW1HrgaeAuYDbyoqrOi0FyzHYvLgJ4SSCE3JZe6hjrGfjWWx2Y8RnlteXc3yxizgyop\nKfkE1/VeDBT65U5R1TdVdU9V3U1Vf9fpRprtXlzeQwc3OG5h+UJmls7k4D4Hk5+Sz8qNK5EEITs5\nm7TEtO5uojFmB+KvyCO9Z25Mu+IuoFfUVjBv3Tzy0vJ4+JiHqW2oJbU2ga8+mERCajLVO6VRWNCX\norQiitKLuru5xhhjTFTEXZf7gg0LyE/L55Pln3D/1PtpqKnlg789ycdPP8VHDz9CwpzVLK1YynOz\nn2Nj7cbubq4xxhgTFXF3hV7bUMucdXO4+zM3rfHw7KFsWL7laY6KZSvZ6/ARTFw8kUYau6uZxhhj\nTFTF3RX6Xvl7sbZ6LQAXDrmQ/r1245hf3kif3fckr+9OjDj9bD5c9hHXDruW7OTsdo5mjDHGbB/i\n7go9JyWHY/sfCwoN2sC1711LYXoh9998H1kNaTSmBTgt9zRyU3O7u6nGGGNM1MTdFTpA74zeHDfg\nOIpzirn1kFu55aBbWFi+iIycXLKSsyyYG2O2eyKySERmiMg0ESnxZfkiMlFE5vn3PF8uInK/iMwX\nkekiMizkOBf77eeJyMUh5cP98ef7faWr6jCRicuADoDA+AXjue7967joPxch2L8TY0z3CQaDEgwG\nU4PBYDR/GR2lqvuratAv3wS8q6p7AO/6ZXBpVvfwr9HAw+CCM3AbcBAug9ttTQHab3N5yH4ju7AO\nE4G4DeiCULKqhH0L92Vo0VA+XfFpdzfJGLMD8oH8SmAVUAmsCgaDV0Y5sDc5FXjWf34WOC2k/G/q\nfArkikhf4ARgoqquU9X1wERgpF+XraqfqqoCf2t2rFjXYSIQ03voIpILPAHsAyhwGTAXeAEYCCwC\nzvY/5KhKT0rn4WMfZurqqdQ11HHcgOOiXYUxxoTjCuBeIN0vF/ll8FexEVLgbRFR4FFVfQzoraor\n/PqVQG//ubV0q22VL22hnC6qw0Qg1lfo9wETVHUQsB9uzuHWumuiKjkhmYmLJ/L7yb/nnpJ7eGz6\nY2yq2xSLqowxpkX+KvwOtgTzJunAHZ28Sj9MVYfhurqvEpEjQlf6q17txPHb1RV1mPDFLKCLSA5w\nBPAkgKrWquoGWu+uiarVVav5ev3Xm5fnbZhHbWNtLKoyxpjWpAAFrawr8OsjoqrL/PtqYBzu/vQq\n35WNf1/tN28t3Wpb5Tu3UE4X1WEiEMsr9GJcesCnRWSqiDwhIhm03l0TNdX11Tz31XNcMPgC8lLy\nyEzK5IbgDWQlZUW7KmOMaUsNsLaVdWv9+g4TkQwRyWr6DBwPzMSlUG0aRX4x8Jr/PB64yI9EPxgo\n87+H3wKOF5E8P1DteOAtv65cRA72I88vanasWNdhIhDLe+iJwDDgp6o6WUTuo1n3uqqqv/+zDREZ\njRspSf/+/TtWcUIi2SnZPDr9UX532O/IT82nOKeYQEIgoi9ijDGRKCkp0WAweBtb30MH2ATcVlJS\nEml3dW9gnH/KKxF4XlUniMjnwIsi8iNgMXC23/5N4ERgvq/7UgBVXSciv8XlVwf4jao25Zr+CfAM\nkAb8x78A7u6COkwExN0CicGBRfoAn6rqQL98OC6g7w4cqaorfHfNJFXdq61jBYNBLSkp6VD9Kzau\n4ONlH1PbWMtBfQ+iX2Y/UhNTI/ouxhgDkT376u+TX4G7l16AuzK/DXikEwHdmG3ELKADiMhHwChV\nnSsitwMZftVaVb1bRG4C8lX1F20dJ5KAft+U+/hk+SckJCRQXlvOsyOfJTWQysrKlSyvXM7eBXtT\nkNbarS1jjNlGpx4z84E9BaixQG5iIdZTv/4UGCsiycA3uC6YBFruromqw3c+nCdnPominLfXeaQF\n0vh6w9dc9J+LABjeazhjjhpDXmpeO0cyxpjO80G8urvbYeJXTAO6qk4Dgi2sOiaW9YJL0vLmGW9S\nUVtBn4w+ZCRnMG31tM3rp5dOp76xPtbNMMYYY7pE3M4Ul5GUwc5ZOzO4YPDmq/DjBhxHQarrZh89\ndDRpiWnd2URjjDEmauIu21pb+mX246Xvv0SDNpCemE5mcmZ3N8kYY4yJih0qoIsIRelF3d0MY4wx\nJuritssdgJoKKF8OFSuhoaG7W2OMMVEjIk+JyGoRmRlSFhfpU1urw7QtfgN6bSXMeBnGDIEHR0Dp\n3HZ3qayt5LOVn3HX5LuYu24udQ11XdBQY0y8CwaDBwWDwbHBYPBz/35QFA77DNumG42X9KldkvMj\n3sRvQK+pgHfvAFWoLoOP74N2RrVvqN3AqLdG8fyc57nwPxeyvibqSeCMMTuYYDB4O/AecC7uqZ9z\ngfd8ecRU9UNgXbPieEmf2iU5P+JN/Ab0QBL02nvL8i4jIKHtIQNV9VWoTxxUVV9FQ6N10xtjIuev\nxG/ETfva9Ps2wS/fGKUr9VDxkj415jk/4lH8DopLL4AfPA1z3oCsPrBL+/9vCtMKGbXvKN5f8j4X\nDr6QrGRL5mKM6ZRrgNbmnE7168+PRcVt5cqwOuJT/AZ0gMxeELw07M1zU3IZve9oLhh8AZlJmaQk\nRpzZ0BhjAPak9Z7QBNx942haJSJ9Q3JlhJPa9Mhm5ZMII31qN9Vh2hB3Xe4bqjfw1qK3+PtXf6e0\nqrTD+6clpVGQVmDB3BgTDV8Dja2sawTmRbm+eEmf2lodpg1xd4X+zrfvcMf/7gDgo6Ufcc937yEn\nJaebW2WM2UHdjxvQld7Cumq/PiIi8g/clW+hiCzFjSTvitSm3VmHaUNMs61FS0eyrd01+S6en/M8\n4GaGe+7E5yhMK4xl84wxO4ZI06fejhsYl4rrFW3EBfN7SkpKbo9W44yJuy73i/e+mOLsYrKTs7nt\nkNvISbarc2NM9/FB+2jgn7ir1H8CR1swN9EWd1foAGur1tKojeSk5JAcSI5hy4wxO5BO5UM3Jtbi\n7h46QEFaQXc3wRhjjOlScdflbowxxuyILKAbY4wxccACujHGGBMHLKAbY0wXCAaDxcFg8NBgMFgc\njeO1kj71dhFZJiLT/OvEkHU3+zSlc0XkhJDykb5svojcFFJeLCKTffkLIpLsy1P88ny/fmBX1mFa\nZwHdGGNiKOhMAWYBbwCzgsHglGAwGOzkoZ9h2/SpAGNUdX//ehNARIbgsrzt7fd5SEQCIhIAHsSl\nPh0CnOe3BfiDP9buwHrgR778R8B6Xz7Gb9cldZi2WUA3xpgY8UF7EjAMNxtajn8fBkzqTFBvJX1q\na04F/qmqNaq6EDeb2wj/mq+q36hqLe4Z+VP9VKxHAy/7/ZunSW1KbfoycIzfvivqMG2wgG6MMbHz\nKJDRyroM4JEY1Hm1iEz3XfJ5vqyjqU0LgA2qWt+sfKtj+fVlfvuuqMO0wQK6McbEgL9XPridzYZE\n65669zCwG7A/sAL4UxSPbXo4C+jGGBMbOwG17WxT67eLClVdpaoNqtoIPI7r7oa2U5u2VL4WyBWR\nxGblWx3Lr8/x23dFHaYNFtCNMSY2lgPtzT2d7LeLCp87vMnpQNMI+PHAuX70eDEuD/tnuLnl9/Cj\nzZNxg9rGq5sT/H3gLL9/8zSpTalNzwLe89t3RR2mDXE59asxxnS3kpKShcFgcDZuAFxrviopKVkY\nyfFbSZ96pIjsDyiwCPgxgKrOEpEXga+AeuAqVW3wx7kal7M8ADylqrN8Fb8E/ikidwJTgSd9+ZPA\n30VkPm5Q3rldVYdpW1wmZzHGmBjo8CjrkFHuLQ2MqwSOLLFfbiZKrMvdGGNixAfrI4EpQBVutHaV\nX7ZgbqLKutyNMSaGfNAO+tHsOwHLI+1mN6YtFtCNMaYL+CBugdzEjHW5G2OMMXHAAroxxhgTByyg\nG2OMMXEgpgFdRBaJyAyfxq/El7Wa3s8YY4wxkemKQXFHqWpps7IxqnpvF9RtjDHG7BCsy90YY4yJ\nA7EO6Aq8LSJTRGR0SHlL6f2MMcYYE6FYB/TDVHUY8D3gKhE5gjDT+4nIaBEpEZGSNWvWxLiZxhhj\nzPYtpgFdVZf599XAOGBEG+n9mu/7mKoGVTVYVFQUy2YaY4wx272YBXQRyRCRrKbPwPHAzDbS+xlj\njDEmQrEc5d4bGCciTfU8r6oTROTvLaX3M8YYY0zkYhbQVfUbYL8Wyi+MVZ3GGGPMjsoeWzPGGGPi\ngAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfG\nGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5Y\nQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPiQNwF9LKaMiYsnMC9n9/L0oql3d0c\nY4wxpkskdncDou3r9V9z44c3AjBx8UTGnjSWwrTCbm6VMcYYE1txd4W+rmrd5s/ra9ajqt3YGmOM\nMaZrxF1AP7DPgYwcOJLi7GLGHDmG7ORsAGobatlYu9ECvDHGmLgk20OACwaDWlJSEvb2FbUV1DbU\nkp2cTVIgifXV63l61tPMXTeX64dfz+65uxNICMSwxcaYOCTd3QBj2hJ399ABspKztlouWVnC0zOf\nBtw99pe+/5LdVzfGGBNX4q7LvSUJCVu+ZkDsytwYY0z8icsr9OaG9RrGVftfxex1s7nmgGvIT83v\n7iYZY4wxUbVDBPS81DxG7TuK+sZ6UhNTu7s5xhhjTNTtEAEdIDEhkcSEHebrGmOM2cHsEPfQjTHG\nmHhnAd0YY4yJAzHtgxaRRUAF0ADUq2pQRPKBF4CBwCLgbFVdH8t2GGOMMfGuK67Qj1LV/VU16Jdv\nAt5V1T2Ad/2yMcYYYzqhO7rcTwWe9Z+fBU7rhjYYY4wxcSXWAV2Bt0VkioiM9mW9VXWF/7wS6N3S\njiIyWkRKRKRkzZo1MW6mMcYYs32L9XNch6nqMhHpBUwUkTmhK1VVRaTFyeRV9THgMXBzuce4ncYY\nY8x2LaZX6Kq6zL+vBsYBI4BVItIXwL+vjmUbjDHGmB1BzAK6iGSISFbTZ+B4YCYwHrjYb3Yx8Fqs\n2mCMMcbsKGLZ5d4bGCciTfU8r6oTRORz4EUR+RGwGDg7hm0wxhhjdgjbRT50EVmDC/7hKgRKY9Sc\nWNie2rs9tRWsvbG2I7W3VFVHRrMxxkTTdhHQO0pESkKee+/xtqf2bk9tBWtvrFl7jek5bOpXY4wx\nJg5YQDfGGGPiQLwG9Me6uwEdtD21d3tqK1h7Y83aa0wPEZf30I0xxpgdTbxeoRtjjDE7lLgK6CIy\nUkTmish8EenSLG4isouIvC8iX4nILBG51pfni8hEEZnn3/N8uYjI/b6t00VkWMixLvbbzxORi0PK\nh4vIDL/P/eIf8u9EmwMiMlVEXvfLxSIy2R//BRFJ9uUpfnm+Xz8w5Bg3+/K5InJCSHlUfxYikisi\nL4vIHBGZLSKH9PBz+zP/72CmiPxDRFJ70vkVkadEZLWIzAwpi/n5bK2OCNt7j//3MF1ExolIbqTn\nLZKfjTE9jqrGxQsIAAuAXYFk4EtgSBfW3xcY5j9nAV8DQ4A/Ajf58puAP/jPJwL/AQQ4GJjsy/OB\nb/x7nv+c59d95rcVv+/3Otnm64Hngdf98ovAuf7zI8CV/vNPgEf853OBF/znIf48pwDF/vwHYvGz\nwGXmG+U/JwO5PfXcAv2AhUBayHm9pCedX+AIYBgwM6Qs5ueztToibO/xQKL//IeQ9nb4vHX0Z2Mv\ne/XEV7c3IGpfBA4B3gpZvhm4uRvb8xpwHDAX6OvL+gJz/edHgfNCtp/r158HPBpS/qgv6wvMCSnf\narsI2rczLh/90cDr/hdvacgvyM3nE3gLOMR/TvTbSfNz3LRdtH8WQA4uQEqz8p56bvsBS3CBLtGf\n3xN62vkFBrJ1gIz5+Wytjkja22zd6cDYls5He+ctkn/7kf7bsJe9YvmKpy73pl+iTZb6si7nu+UO\nACbTerrY1trbVvnSFsoj9RfgF0CjXy4ANqhqfQvH39wmv77Mb9/R7xCpYmAN8LS4WwRPiMsP0CPP\nrbqkRPcC3wIrcOdrCj33/DbpivMZVvrkCFyG6wmIpL2R/Ns3pseJp4DeI4hIJvAv4DpVLQ9dp6qK\nyxHfrUTkZGC1qk7p7raEKRHX3fqwqh4AVOK6azfrKecWwN8XPhX3h8hOQAawXU0Z2hXnM1p1iMit\nQD0wttONMmY7Fk8BfRmwS8jyzr6sy4hIEi6Yj1XVV3xxa+liW2tvW+U7t1AeiUOBU0RkEfBPXLf7\nfUCuiDQl7Ak9/uY2+fU5wNoIvkOklgJLVXWyX34ZF+B74rkFOBZYqKprVLUOeAV3znvq+W3SFecz\nqumTReQS4GTgfP8HQiTtXUvHfzbG9DjxFNA/B/bwo1WTcQNYxndV5X4U75PAbFX9c8iq1tLFjgcu\n8iOIDwbKfFfkW8DxIpLnr/SOx93PWwGUi8jBvq6LiDD1rKrerKo7q+pA3Hl6T1XPB94HzmqlrU3f\n4Sy/vfryc/1I4GJgD9xgqKj+LFR1JbBERPbyRccAX9EDz633LXCwiKT74zW1t0ee3xBdcT6jlj5Z\nREbibhudoqqbmn2PsM+bP9cd/dkY0/N09038aL5wo3G/xo1kvbWL6z4M1304HZjmXyfi7re9C8wD\n3gHy/fYCPOjbOgMIhhzrMmC+f10aUh7E5ZRfAPyVKAzOAY5kyyj3XXG/+OYDLwEpvjzVL8/363cN\n2f9W3565hIwMj/bPAtgfKPHn91XcqOoee26BO4A5/ph/x4247jHnF/gH7v5+Ha4H5EddcT5bqyPC\n9s7H3d9u+v/2SKTnLZKfjb3s1dNeNlOcMcYYEwfiqcvdGGOM2WFZQDfGGGPigAV0Y4wxJg5YQDfG\nGGPigAV0Y4wxJg5YQDc9noh80t1tMMaYns4eWzPGGGPigF2hmx5PRDb69yNFZJJsyYs+NiTP9oEi\n8omIfCkin4lIlrgc5E+Ly8s9VUSO8tteIiKvisvHvUhErhaR6/02n4pIvt9uNxGZICJTROQjERnU\nfWfBGGPaltj+Jsb0KAcAewPLgY+BQ0XkM+AF4BxV/VxEsoEq4FpcDpB9fTB+W0T29MfZxx8rFTcL\n2C9V9QARGYObqvQvwGPAFao6T0QOAh7CzXtvjDE9jgV0s735TFWXAojINFyO7DJghap+DqA+y52I\nHAY84MvmiMhioCmgv6+qFUCFiJQB//blM4ChPmved4CXfCcAuOlbjTGmR7KAbrY3NSGfG4j833Do\ncRpDlhv9MRNwObL3j/D4xhjTpeweuokHc4G+InIggL9/ngh8BJzvy/YE+vtt2+Wv8heKyA/8/iIi\n+8Wi8cYYEw0W0M12T1VrgXOAB0TkS2Ai7t74Q0CCiMzA3WO/RFVrWj/SNs4HfuSPOQs4NbotN8aY\n6LHH1owxxpg4YFfoxhhjTBywgG6MMcbEAQvoxhhjTBywgG6MMcbEAQvoxhhjTBywgG6MMcbEAQvo\nxhhjTBywgG6MMcbEgf8HfNGCjdsVDBEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "Fh42sjX7pViu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#plot multiyears" + ] + }, + { + "metadata": { + "id": "KRkoteYfpSYh", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "framing_years = [1818, 1918, 2018]\n", + "\n", + "centuries = df1[df1.year.isin(framing_years)]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "NBfTFlJcpgdh", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "5ce3848e-a620-400e-985e-1301679fec96" + }, + "cell_type": "code", + "source": [ + "centuries.sample(5)" + ], + "execution_count": 85, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
94101918268825.77300440Cypruseurope_central_asia
26480181835130.30737000Malawisub_saharan_africa
188681918118526.50848676Jamaicaamerica
246091918166919.97939985Macedonia, FYReurope_central_asia
345831818164132.9081786Surinameamerica
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "9410 1918 2688 25.77 300440 Cyprus europe_central_asia\n", + "26480 1818 351 30.30 737000 Malawi sub_saharan_africa\n", + "18868 1918 1185 26.50 848676 Jamaica america\n", + "24609 1918 1669 19.97 939985 Macedonia, FYR europe_central_asia\n", + "34583 1818 1641 32.90 81786 Suriname america" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 85 + } + ] + }, + { + "metadata": { + "id": "4QPRRQjfplIW", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 393 + }, + "outputId": "38d67e60-6323-4d24-fb88-e60554692eee" + }, + "cell_type": "code", + "source": [ + "sns.relplot(x='income', y='lifespan', hue='region', size='population', \n", + " col='year', data=centuries)\n", + "\n", + "plt.xscale('log');" + ], + "execution_count": 91, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAAFkCAYAAAAOk60fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVNX9x/H3mV52Z2f70pYFFBBQ\naaKIvZvYYtdY0CRG/UUTk9hiitHYC4ldE429xp4odqyIYkcRUJBetpfp5fz+mHVhZZddYBGQz+t5\nfJ6Ze88599xV7zPzne/5HmOtRURERERERERERDrn2NgTEBERERERERER2dQpiCYiIiIiIiIiItIF\nBdFERERERERERES6oCCaiIiIiIiIiIhIFxREExERERERERER6YKCaCIiIiIiIiIiIl1QEE2khxhj\nJhtjGowx//3O8b2NMR8aYz42xrxljNmq9fhurcfTxpgjv9PnamPM58aYmcaYG4wx5vu8FxGRTc0a\nnrF7tT5LZxhj7jHGuFqPDzXGTDXGJIwxv/9On3Nan7EzjDEPGWN83+e9iIhsSowxI1ufl58bYz41\nxhyzyrkBxphpxpivjDGPGGM8rcf1OVZEtkgKoom0MsY413OIa4ATOzh+K/BTa+1I4EHgj63HFwAT\nW4+tOo+dgQnAdsAIYAdg9/Wcm4jIRrUhnrHGGAdwD3CstXYEMB84ufV0HXA2cO13+vRpPT62tY8T\nOHY95yYislGt5zM2CpxkrR0OHAD83RgTbj13FTDJWrsVUA/8rPW4PseKyBZJQTTZ7BhjLjHG/GaV\n95cZY37d+vpcY8z7rb+i/XWVNk8ZYz5o/VXstFWOtxhjrjPGfAKMX595WWtfAZo7OgWEWl8XAEta\n239jrf0UyHbQ3gd4AC/gBpavz9xERLprM3vGFgNJa+3s1vcvAUe0tl9hrX0fSHUwnAvwt2atBWh9\nLouIbGib4jPWWjvbWjun9fUSYAVQ2ppBthfwn9am9wCHtbbT51gR2SK5NvYERNbBXcAT5H4lc5DL\nIBhnjNkP2BoYBxjgGWPMbtbaN4BTrbV1xhg/8L4x5nFrbS0QBKZZa3/33YsYY84FftrB9d+w1p69\nFvP9OfCcMSYGNAE7ramxtXaqMeY1YGnrfdxkrZ25FtcTEVkfm9MztgZwGWPGWmunA0cC/dbUwVq7\n2BhzLbksihjworX2xW5eT0RkfW3Sz1hjzDhyAbCvyf1Q0WCtTbeeXgT0WdPN6XOsiPzQKYgmmx1r\n7TfGmFpjzCigHPjIWlvb+uFjP+Cj1qZ55D6MvAGcbYz5Sevxfq3Ha4EM8Hgn17mG3PKh9XUO8CNr\n7bTWDzTXkwusdcjkaqZtA/RtPfSSMWZXa+2bPTAXEZE12pyesdZaa4w5FphkjPECL7Zes1PGmELg\nUGAA0AA8Zow5wVp7//rMRUSkOzblZ6wxphdwH3CytTa7LqXM9DlWRH7oFESTzdW/yNVhqCD3ix7k\nfu26wlp7+6oNjTF7APsA4621UWPMFHJp5gBxa22HX7h6IkvCGFMKbG+tndZ66BFgchfdfgK8a61t\naR3jeXIp+vrwISLfl83iGQu5rAdg19Yx9wMGd9FlH2Cetba6tc8TwM6Agmgi8n3Z5J6xxpgQ8D/g\nImvtu62Ha4GwMcbVmo3WF1jcxb3pc6yI/KCpJppsrp4kV/h0B+CF1mMvAKcaY/IgVzzaGFNGrg5Z\nfesHj6F0sZzyW9baa6y1Izv4Z22WctYDBcaYb7/U7Qt0ldK+ANjdGOMyxrjJFWNVGryIfJ82l2cs\nrXOgNRPtfOC2LrosAHYyxgRa6/3sjZ6xIvL92qSesSa34+aTwL3W2v+sMoYFXiO3VB5yG7c83cWl\n9TlWRH7QlIkmmyVrbbK13kLDt7/AWWtfNMZsA0xtTT9vAU4gl/l1ujFmJjALeLeTYdeLMeZNYCiQ\nZ4xZBPzMWvuCMeYXwOPGmCy5oNqpre13IPeBpRA42Bjz19Zdkf5DrojrZ+SKs0621j67IeYsItKR\nzekZC5xrjDmI3A+Dt1prX21tXwFMJ7exS7a1kPew1qX1/wE+BNLklk7dsSHmLCLSkU3wGXs0sBtQ\nbIyZ2HpsorX2Y3I/TjxsjPkbueflnaDPsSKy5TK5HxhENi+thVg/BI76djchERHpGXrGiohsOHrG\niohsvrScUzY7xphhwFfAK/rgISLSs/SMFRHZcPSMFRHZvCkTTUREREREREREpAvKRBMRERERERER\nEemCgmgiIiIiIiIiIiJdUBBNRERERERERESkC66NPYHuOOCAA+zkyZM39jRERDY1picG0TNWRKRD\n6/2M1fNVRKRDPfIZVmRj2Cwy0Wpqajb2FEREfrD0jBUR2TD0fBUREflh2SyCaCIiIiIiIiIiIhuT\ngmgiIiIiIiIiIiJdUBBNRERERERERESkCwqiiYiIiIiIiIiIdEFBNBERERERERERkS4oiCYiIiIi\nIiIiItIFBdFERERERERERES6oCCaiIiIiIiIiIhIFxREExERERERERER6YKCaCIiIiIiIiIiIl1w\nbewJiIiIiIiIiGzukrEoNQvnM+e9qQwYOZbygYPwBoIbe1ptIo0NGCBQEN7YUxHZbCmIJiIiIiIi\nIrKeGqtX8NCfzwNrmf7sExx36bX0Hjx0ncZKJ5MkIi1gDMFw4XrPrX7pYp6ddCUOp5ODf3shBaXl\n6z2myJZIyzlFRERERERE1tOKeV+DtW3vl8z5cp3GSadSLPziM+789Wk89Kff07h86XrNKxGN8Mpd\nt1E9fx7L537FG/ffRTqZXK8xRbZUCqKJiIiIiIiIdJPNZEgtXUrT5BdILlhANpEAoO82w3F7fQA4\n3W4GjhyzTuMnIi28etdtpBJxGlcs58P/PU2mqWmd5+twusgvKml7n19SinGsDAWkk0kaq1ew8IvP\niDY2rPN1RLYEWs4pIiIiIiIi0k3p2jrm/eRwXBUVuAoLqfjbpXj69CGvqISJ199KzcJvKO5b2eEy\nzJaGOlKxGB5/oNNlmk6Xm+J+lTS0ZqCV9epDctEi/MOGrdN83V4vux5/MuFevXG6XAzbdS+crpWh\ngJa6Wu7+3Rlk0mnKBw3m8PP/rLppIp1QEE1ERERERESkG2zWksoYel11FZn6etJLlkAmkzsZj+Ne\nspTCOfPwFZbhDJt2fSMN9Tz0x3MZtO1IdjzgEBItEZz5+bgKCtq18+Xlse/PzmTQ0BEEQwUEq+tw\nhkLt59F6TeN0dmvegYIwOx52VIfnahctIJNOA7D869lks9lujSmyJVIQTURERERERKQL6VSW5fMa\nWfB5A4Mztaz44x8AaHj6aaoefIB0dTXfHH0MAI5ggIHPP4+7rAyAmpYEyYyToXsdwOjh25GaPp2m\nTz8jfMThmIEDcebltbtWsKiYbXbejfgXX+AeMwZXycrlmOmaGmpuux2speSM09udWxflg7YmXNGb\nhmVLGHPAwZhoDBvKdDtAJ7IlURBNREREREREpAvxSJJnb/iErceWEZ/zIQCu3r0J7LIL1uEg09xM\n/v770fLGm2QjUdLLlmMcDqrdQY7/5zQW18e495TdMU2LWHrRHwFoev55Bj791GpBNABXcTF5u+7a\n7lg2kWDF9ZNofOIJADKRCL3+ejEOr3ed7yuvsIijL7iY5PLlpD75lEVHHc2gp5/CVVq6zmOK/FBp\nYwERERERERGRLhgMFsuyeU0EfnI03m22ofimG/go5GHqc0+RKSrEXVVF5R134B83jkxzE8uvuZbZ\n86uZVxMhmcly3UtfkY1E28bMtrSQrq4mXVPbvUlks2QjLW1vbSTStrRzfTgXLWHFscdTf8WV2JYW\n7Cq7jIrISspEExERERERkU1OQzTJu3Nr+XRRI8fvWEnfwkCPjZ1paCC1fAUYcJWX4yooIF1TQzYS\nxRHwd5iF5Q24OOSskXwweT51tpjy22/l6X9cxbKvZgPgc7np9eUsGhsa6H31VcQ/+QTjclLic+J3\nO7nhRwMYVuDEWxKi4LBDiX74EcUTJ9L43/9RdOIJQHGX83b4/ZRfcAHZSASA0l+fjU2l1vvv4dlq\nEMWn/YLo+9Mp/fXZOL9Tp01EchREExERERERkU3OrGXNnH5/btnkfz9dyuNn7Exp/rovW/xWNpWi\n4amnWXHllQCU//nPhPbdhwWn/ZLEzJm4+/en6oH7cZWUkFy4kLp/341v2xHk7bknvbcOU1KZj9vt\nIB5pIrNKACuTToPDQaa+nvoHHiTy+hT63nILruo6njtxGM47bsTdpzexEdtS8qtfEf3wQyJvvkX8\ns88o+cXPu38DLheBMWMAw8Jfnk7fm25cbXOCteUqLKTkzDPJxuM48/NVD02kEwqiiYiIiIiIyCZn\nWWO87XV1c2K9lhjWtCSIJNL4PU6KbZKW115rO9fy6qsEd96ZxMyZAKTmzyddVwfAglNOJbVoEQB9\nb74Z4/fhGz4ch7+AQEGYA3/1O6bc+0/yCosZNnYnGl97i5LTT2fROeeQXrKE2jvvJNsSoeKkE1n4\n1lsU/30SCyaegn/MGMov+gOefpV4+vVdu80BrKXmttuxiQQAxutb57/Lqhw+Hw7fmseyWUu0OUmk\nPkFeoZdAwfoHNUU2Jxu0Jpox5hxjzOfGmBnGmIeMMT5jzABjzDRjzFfGmEeMMZ4NOQcRERERERHZ\nNDTFUjTFUkQbE8x4YzFLv24gEe14OeKErUvYd1g5lUUBbvnpaAr87nW6Zk1LgjMf+IDdr5nC4be8\nQ5NxU3TKRHA6weWiaOJEHMEAnqoqAFxlZbgKC7HWkmlsbBsntWwZ1ddeR+LLL9uOBQvCVG0/hsLe\nfVm+ZBFll13Gkj//ifSSJQA4w4XYRJxscwvuyn6kq6sBiH3wAd8ceRTuPr3XendNZzhM//vuI3TQ\nQfSZNAlXSdfLQHtKtDnJw5e+x2NXTueJ6z4k0pj43q4tsinYYJloxpg+wNnAMGttzBjzKHAs8CNg\nkrX2YWPMbcDPgFs31DxERERERERk41tUH+XCJz7D5XBw2aFDcRPhiWtmceQFYymvWj1AVpLn5doj\ntyOZyVLgd+NxrdsSw2gyw3vz6lvnEGN2dZQdxo1jq1deBsBZUIDD76f//feRrqvHVRjGWVKCTafp\nd8stLLvsMrxbDcI7aCDx2bNJL1veNnagIMw2u+xBKhHH4/PjCebR+2+XUT1pEp4BAyg87jiiH3xA\nJhGnz7XXko1GyT9gf2IffUzp2WfjCAbX+n4cHg/+7bal15VXkMkY4vE0zkgKX3DdgoxrI9acJN6S\nC3o2roiRSWU3+DVFNiUbejmnC/AbY1JAAFgK7AUc33r+HuBiFEQTERERERH5wWqIJjn3sU+ZOje3\nC+Vf/mu4doKDgdsX0bA8SnlVqMN+BYH1X7jkdzsYUBJkXk2EkM/F0AInmUgE43K3y+JylZS0ywoz\nbjf+USPp9887yNTVsfi888nbfTeCu0xoN35eYVG7974Rw+lzwz8wbjcOr5eCAw9od77XX/+KTSZx\n5Od3uXxyTdIpmP3+Mt57di4VAwrY88Sh+PM37EKvQMhDcZ8gtYsj9NumEJdXtdNky7LBgmjW2sXG\nmGuBBUAMeBH4AGiw1qZbmy0C+myoOYiIiIiIiMimwdK+ppmz8Wv6Dx1Jv6GF6z12SzxFNJXB5XBQ\nFGwfSCrN9/HQL3YkmsxQYlKk/vcMX193Pe5+/aj81z9xV1R0Oq5xuXCXlmL8fipvuxWMwRkOr3Eu\nxhiceXmdnu9q58uWeIpoMoPb6aAw2HlQLJnI8PpDs8DCvE9r2HZhM/2GbdilnYGQl0N+PYp0KoPb\n49zgQTuRTc0Gq4lmjCkEDgUGAL2BIHDAGju173+aMWa6MWZ6deu6cRER6Rl6xoqIbBh6vop0LBzw\ncO2R27PLViXsMbiUS/YsIljUl0Hj+q93cfrmeIoH31vIble/xpkPfEBNS/s6XbWRBH98agZ7Xfc6\nTbUNrLj8CmwiQfKrr6i59VZsds1LErOpFInPP2fZ0loW10WprWlcY/v1UdOSm+se107hF/dOZ2Fd\ntNO2DpPLDPtWsLBnNhjoSiDkIVTsVwBNtkgbcmOBfYB51tpqa20KeAKYAISNMd9mwPUFFnfU2Vp7\nh7V2rLV2bGlp6QacpojIlkfPWBGRDUPPV9kY6qNJqpvjNMaSG3sqa9S3KMDNx23LDUcMplc4iO29\nPXGHIZ7KrNe4LYk0lz83k3gqy7tz6/h0UUO78/FklpdnrgAgZQ3GvbJ2mCMUAmPWOH62qYn60j4c\n/cJy9rh3Jn9/cwEN0Z7/W6cyWe6d+g1PfbyEaDLD9Pn1nP3QR9RFOr6WP+ThiPPGMP7wQRx+7miC\nYe2UKbKhbcgg2gJgJ2NMwBhjgL2BL4DXgCNb25wMPL0B5yAiIiIiIvKDVRdJcNETn7Hzla9yzeRZ\n1HcScNmQ4qkMqUz3CswXBAOECsIk/CVMXxzjl/dN5+rJX1IXWfddHl0OQ3loZQCpb2Gg3Xmv28HQ\ninwA7plRR5/bb8e37baEDjmE4okTMV0E0YzPx6fVcZY2xgG4f/pikumeL6gfTWZ4v3UDhG/NWNJI\nupNMOWMMoWI/o/frT69BYbz+DV3yXEQ2ZE20acaY/wAfAmngI+AO4H/Aw8aYv7Ueu3NDzUFERERE\nROSHrLo5yXMzlgFw/7QFnLbbwDXW0eppi+qjXP7cTEryvJy999aU5HWeDZWJRnPF9t1u6iMpTrzz\nPXxuJx/Ob2BIRT7H7FDZYb90MkmsuZFIQwP5JaUEC9rXJCvN9/H4GTvzwufLGV0ZpldB+2WNJXle\n7vvZjixrilOW78Xvc9DvjtsxHg/O1t0xM42NpJYsJRtpwTNoEK7ClXXanMEgwwdV4HXNIZHOMrZ/\nIU5Hx4G3eCRFNp3FG3DhdK9d0f18r4uDt+/VtvkCwF5Dy/Ct466kItLzNmio2lr7F+Av3zk8Fxi3\nIa8rIiIiIiKyJSjwu/G6HCTSWUJ+F961DNysj9pIgrMe/IiPFuaWT+Z5XZy7/xCMMSSiKZbMaWDJ\nVw0MH19OkFpcrgyZeJpsQS/Aw/0njsWfhGC+h6XxzjPo6pcu5oE/nEMmnaa0/wCO+MMlBMPtNyPo\nWxjgZ7sM6HSM0nwvpfmrBPg8KwONNpul+ZVXWPqHiwAoOOIIyi84H2d+flubigI/U36/B8ub4/Qt\nDFDcQbAw2pTktfu/pG5JC7seO5i+gwtxebr/78PhMBw4oheZLDz18WJGV4Y5bbdBhPzurjuLyPdC\n+Z4iIiIiIiKbqcKAm+d+vSvvzatjwlYlFH+PWWjWQmKVZY2xVAZrcyXG6pdHee7WzwCY9e4yjvm/\nMtx3jMNVWEX2uKfI8/Vm2UuLWTCjDgwc+ptR7caONTURa2kiFYvx1QfTyKTTAFTPn0cq0fnSz2gi\nTUM0xZKmGKV5XgpNmvg9d+Hw+ggfewyuoqLV7yORoPmVV9veR958k9QJP6X6iScpOvkkPH374nU7\n6RX20yvs7/Tai76s45tPawB44Y4ZnHDp+C6DaNGmJJ+9vohsxrL9Xn0pDHk5fsdKDt6+FwGPC49r\n3SswZTMZHE5lsYn0JAXRRERERERENlNet5NBpXkMKs373q9dHPRw4/GjuODxTykKejhjj0E4Wpc5\nRhtXZpbFW1KQbd08oP4bqJ2No09vFnxelztm4euPVtB3SC67rKW+jv/+4yoWz/ycfU78BZXbjOBd\nY8BaQqVluL2dLxmtaUlw/UtzeOrjxTgMPHbS9oRfepnk3LlkWpop+93vMN8JLDn8fgqPO46WKVMg\nkyF81FE0PvU09ffdR/Sjj+h3803gcODweHAWFHR67VUL+wcLvO32K0jG0yTjGYyBQL4H4zCkEhmm\nPvkVX07NLcdtXBFlzxO3wet3EQ6sezA0k05Ts3A+H/z3SQaN3Yn+243EF/z+//sQ+SFSEE1ERERE\nRETWmjGGQaV53HHSWFwOQ75v5bLDikEFDNy+hOXzmxl/aBXubx7NnXD7MRXb4HAYBo4qZe6H1RiH\nYfAOFQDEW1p44fYbWDzzc1weL5X9+hP532ROuPAS6pYsou/YHUl7cnXM6iIJXp9VTSZr2XNoGcV5\nXqLJDO98ncsGy1p4e149P+nXj+TcuaRrarHZ7GpBNAD/qJFs9fJL2FSKTCTCN0fk9sIrP+9cFv/+\nXGLvv0/4+OMpPfssXOHwav0BivvkceDp27JifhPDd+lDoHWzg3Qyw9yPa3j1ni/wBt0cce4YwuUB\nspkszXUrs+qa6+Jku7lBw7eiTUlSiQxur6PterHmJh75y/mkEnFmvjWFidffqiCaSA9REE1ERERE\nRETaSSUzRBsS1C6JUF4Vapdl9V2FrVlTqUyGukiKTNaS73Ox50nbkElncdkUbo7GVo6EkkGYvAp8\nLg97HDeEcT8egMfvwhfMfTVNxmN889F0ABxOJ9lIhOa778H5zLN4SoqpuWoEFz05l38cN4qbXpnD\nPe/OB+DIMX25+OBhFAU9nDS+P9e+OJsCv5sfj67EPusgMG4Hyn57Dg53x/XFnMFg2yYD6bo6Qgcd\nRGrRIozTSez99wFoePBBin92KnQSRPMF3QwcWcrAkaXtjifjad7/7zyszWXlffnuUnY6dBAev4td\nj96aZ2/8BJu17HH8EHyB7tc/izYlmXzHZyz9qpGCMj+H/240gQIv1mbJpFNt7dLJ73/HVpEfKgXR\nREREREREpJ1YU5IHL5lGNm0Jlfg44twxBAo6D6QBfL0iwuG3vkMsleHqI7bjkO17Ewy6AS+QB+E+\n7dr78z3481cuW8zG47hicX5yzoXMmzWTWW++Sn0qQfjUU4hNfRfPSadw/8wG3plby4zFjcTSmba+\nMxY3kkhnKQv5OHpsPw4d2QeX01CW78Nedhk4TKcZZN/lKiqi4s9/wiYS2GQS4/Fgk0lcZWUYz5qX\nWWaylpZ4Gp/b0bbJg9PtpPfgME01MYC2ZavGGAp7BTnqwrG5v0eeG9PJrp8dSSUyLP2qEYDGFTFa\nGhIECrz4gnkc8ruLmPbko1SNHEOopLSLkUSkuxREExERERERkXYiTQn6DS2iZlELTTVx0sk01now\npvMgzyPvLySazAW2/vnmXPYcWtat3UJrWxLEkmlczY3EzjsXV/8qBv7yV/TfdT9eueZP7HTwEXgP\nOZZJ7y3j2S+WAOCx8ItdBvDEh4uxwG/3HUy+L/f1tizka3+BokLWJBOJEItFyWYzuP0B/PkhnHl5\nkJdHNpFgwDNPk/hiJv7Ro3CVlHQ6TiKV4ZNFDVz34mzGDSjilAkDKAp68Ppd7PyTQWyzcy/8eW6C\nqwQjHQ7T7v3acHsdhMsDNCyP4stzt2ULur0+qkaOpvfgobi8PtxdBP5EpPsURBMREREREREyqSzG\naYinMix3WeYM8rLvgf2Iz64nMfVN/DuNxl1W1mn//YZXcPfUb7AW9tmmnEA3Amg1zQnOfvgj3vm6\nluG9Q/zzootpPPonBPY/iNsb8tlv9/147cF/c+wN95G0KyjL9/Lj4RVUhf2UFQd454I9yVgI+z14\nXJ1fLxuPk21pwXi9OPPzV95zJEJLXS2PXvVXmqqXM3yPfdj9hFPx54cAcHi9eKuq8FZVdXkvjbEU\nJ975Hol0lmnz6thlqxJ2HFgMrJ511xMCIS8/+e0oIo1JAgUeAquM73S62u5BRHqOgmgiIiIiIiJb\nMGstjdUxpj09l8KKAL12ruDwW98ha+Hf0+bzwpk7UXvA0QTv/Ncag2jb9i3gzXP3JJLMUJbvJeDt\n+utmQyzJO1/XAvD5kiYWpcoJh8O4igqJLE+Ay0kmlWL+6y/wl333o74+QUmxj4UfVjOrNs4OB1Ti\nc8RxOTqvJZaJRGh57TWqb7wJ/8jtKT//fFxFRbl7z2ZZ8NF0mqqX5+Yw5WV2PvJ4/PkhMk1NZFta\nwOXCVVzc4YYE7Rjwuhwk0rnNAbwuR5f3v74CBd4ul9mKSM9REE1EREREROQHLt7SQiadxNFBhlKs\nKcnTkz6ipT6B2+fENTxM1ubONcXTNKSh4JY78PTtu8Zr5Hld5HUjcPatbCpFnhPyvS6aE2k8Tge9\nK4pw/e1ypsc9nL9/f9xNBYzefXc8/gC+YJCSQh9fvruMac/MA6BucYTdhqygYPRwvP37AxBNRUlm\nk4Q8IRzGQba5mSXnnQ/ZLKn58wkdeCD+kSNpfv55MA7Kxo4CY8Ba8otLcLjdZCIR6h9+mOrrJ+EM\nh6l69BE8lZVrvJ/igIdHfzmeW6Z8zfhBxVSVBLv9txCRzYOCaCIiIiIiIj9g0aZG3njgbmZNfYPK\n4dux/xm/IRAqaDtvgUQ0DUAqnqHY5eSI0X14fXY1x46r5PU5NVSGKxgfKOCz2dVEEml2rApT1DgD\nPn0MtjsGyoeD29fxBDqRqa8n9qc/89Q5FzJtYSM7DK/k8/oY48bvzG4OByG/G4rz2vXx+B0kYum2\n98lEGpwuWqZMwXvyydTF6vj7h39nXuM8LtzxQoYUDgGHA4ffTzYSAcAZKqDh8SeovuYaAEqvvpIT\nLr2WFfPn0n/7MeSFC0mtqKburn/n5tnQQPMrr1J8ysQ13o/T6WBorxDXHb09bueGz0ITke+f/s8W\nERERERH5AatfupjPp7xEOpFg7ofvM//Tj9qd9wbc7H/aCPIKvfQaVEBJgY/zDhjCFYdvSyyZ4erJ\nX1JW4OeZTxZz0l3vccYDH3LtS3OIzJtOumQHUjU1ZKONaz8xa4m/8w6Ziccy/l+XU1a3hDGVRRQG\nvbkAWieG79KHQaNLKR8QYp8j+hB59H6CO+0EwBuL3+DJr57k4+qPOfvVs6mL1+EqLKT/A/cTOvQQ\nel1xOZ4BVSRmftE2XvSpZyjp3Zche+5NoDi3zNPh8xLcdddcA6eTwI7jun1bCqCJ/HApE01ERERE\nROQHzHwnqONwuamLJHA6DAV+Dy63g76Dwxx5wVgcToM/z4Mva6ksSvPgtIWcsfsgti7P4/53F7SN\n8fmSJuLjD2P5L08nvWIFfSZdj39sEQ5358Gv73IWhOl3++3U3n4bwQkTyOvbG2d+1/W9AiEPe544\nlEw0jqO5lsJrr8YZDgOQ517ydFVZAAAgAElEQVSZuRZwB4gls9RmspQMHUrvyy7DuHJfgUvPOYfk\nN99gk0nK/3ox1TQz6e1JlPpLOXXbUykKFVF+4QUUTZyIKxzG2cUOnyKyZVAQTURERERE5AeqNlbL\nfFPNdgcfzDfvvkfliO0JDRjCYTe/zbBeBVz2kxEU53lxup0EC1YWznc6DEMq8rnp+FF4nA7cLgdn\n7bUVb39VQzSZ5qIfb4N98xUSs2cDsPQvF1P14AM4Skq6PTeHz0twx3H4RwzH+Hw4PJ3vXpmJRMg2\nNWGzWZyhEN78fPC7oTi/Xbsx5WM4b4fzmF0/hyMHTuS0u2fh9zj550ljKclbGaDz9OlDvzvuAGtp\nCTq5cMo5TF8+HYCwN8zPt/s5rqKitg0IRERAQTQREREREdlMZbMZYs3NOJxO/Hn5XXfYVERqYMUX\nkIpD75GQ1/mOl+t9qVSEM94+i5O3PoERow9n+16j2WPSdKLJDAvqYhw2qjcHjOjVaf/gKhsFDCgJ\n8tyvd8VaSzjgJj5z5d/cM6AKXGv/9dI4nThDoTW2sdYSff99Fp35f5DN0uuKKwgd9OMOs94KfYWc\nOOxEvq5u5KQ7P2BxQwyAVOuOmatqC5DFG0hnV9ZZS2VTAEQTaVoSaVxOQ1FQO2CKiIJoIiIiIiKy\nGcpmM1TP/4bnb76evMIiDvy/cwiGN4OsoXgjvHgRfPJw7n3leDjmfgh2nMHVFEsRT2dwORwUBTvP\n1OpMwB2gV14v7pp9D72Cvbi3/wMEPE6iyUzu8sVBFtfHmDavlpH9wvQJ+/G6nR2O5XAYSldZbunY\neTz97rid1LJl5O+9N67WJZU9zcbjNDz6GGRzgbCGxx4jf889YA3Xy/d6MSb3ev/h5XjdndcpC/vC\nXLHrFVzx3hUU+4o5esjRRJNpXvxiOX96agaDK/K57YQx7e5dRLZMCqKJiIiIiMhmJ9bcxHM3Xkvd\n4oXULpzPp6+8wPgjjtvY0+paKgafPrry/YKpuWMdaIwmufPtedw65WvG9i/kxuNHt1uS2B0l/hLu\nO/A+amO1FPuLKfYV85/Td+a+d+cztn8hhQE3P77hLeoiSTxOB1PO3YPeYX+3xnaFw+Tttlu7Y9Za\nzLfRqx5ifD4KDjuUlldfBSB0yMGYQGCNfcpCPp48c2fiqSwBr7PLTLK++X25erercRonPpePFU1x\nzn/8UxLpLB/Mr+ftr2o4bFSfHrsnEdk8KYgmIiIiIiKbHYfDSTAcpm7xQgBCJaUbeUbd5HBBxXaw\n9OPc+/wKcHZcjD+SzHDDK18BMHVuHXOWN68WREvX1UE2i7OgANO6vDGTyZCMtODyeHH7fJT4Syjx\nr8x0qyoJ8qeDhgGwoDZCXSQJQDKTZWljrNtBtO9qaUjw8UsLcHkcbLdnPwKhtc+c64gxhuD4nRn0\nysuQyeIMF6yxftq3SvN9a3WdoDvY9trhMAwsDTJzaTMAA0uDnXUTkS2IgmgiIiIiIrLZ8eeH+NFZ\n5/LpS88RKi1n4Khx39u1E7E0iWgKYwzegAtnIkKmqQnjduMMh3H41hC8CZbAcQ/CG9dBMgJ7nA/B\njmuiuZyGsnwvK5oTOAz0Kmgf3EotX86is39Npqaa3tddh3/ECDLZLEtmz+SNB++m99ZDGX/EsfhD\nBZ1OJ8/n4uDte/PsJ0sY1S8MGOobIviXLqD+4UfI23UXAuPGdVm3LNqc5H83fULNohaMgXBFgF5D\n8yARxel24w+FcDrX/utnuqGByDvvkJg9h8Jjjsbd5/vJBivJ83L3KeN49csVDKnIp6pEQTQRAWOt\n3dhz6NLYsWPt9OnTN/Y0REQ2NT2yVkLPWBGRDq33M1bP1x+mTCbLV9NX8PK/v8AYOPq8beHFJ6ie\n9Hdwu+l/370ERo7seqB0EmwW3J0H3Ky1LGmMM2XWCkb1K6SqOEBglUL/K/5xA7W33grkCvv3v+9+\n4k7DnWf9nHQql112xEWXUrXdqDVOZVljjAV1MZY3xbnk2S94+eRhLD34x9h4HICqxx7Fv+22axwj\n0pjg3oveIZu27HH6cN5saObjRY2csWM5c/7zL/Y44RRK+vVvax9LpmmMprAGwgE3fnfHAbbmV1/N\nbSgAeLfemsq7/42ruHiNc+lMprmZxOzZxGd8Tv5+++Lu1fmGCrJB9ex6X5HvUefVFUVERERERLZ0\nLdXQuCi3oyaQTmT44q0lAFgLyboWGp54Mtc2laLx6ac7HMZmMqRra0k3NOYOuDxrDKBBbhljn7Cf\nn+7Yn2G9Q+0CaACeysq21+7efcDlwhiD278yY83bRe0wAI/LwTUvfMlZD31ETSSBO5NuC6ABpJYs\n7XIMl8fBqH0qCZcHWOrIcuXkWUyesYyfP/IlQw48ktfvv4tENArAiqY4b8ypYWlTnEue/ZyP5jd0\nOm5q6cprp5Yvx2ZX32Wzu5Lz5jH/pyew/IormH/CCaRratZ5LBHZMmk5p4iIiIiIbDbikRYyqRQe\nfwC3dwPvlthSDQ8eBUs+ggG7wxF34vYVM2SnCpbMaQADnnAeroN+TO3Nt4DTScFBB602jM1kSMye\nzZLzz8dZXELvq67CXbb+Ndzy9tiDPtdfR2rpMgoOPQRXuABnNsuxf72K6c8+Sd9hIwhX9O5ynKKg\nl1t/OoZPFjVQWRzA4UxReMJPqX/wIXzbbUtgzJgux/D63Yzct5Lhu/XmvWWNbcfT2SwYg81kwFqq\nmxMce8e7zK2J4HU5ePSX47njja8ZVVmI37P6rqCh/fen+aWXSc6fT69LL+lyWemaJObOxXi9lJx+\nOt7BW2PT6XUeS0S2TFrOKSKy+dJyThGRDUfLOTdB0cZGXrv7dpbMmcX4I49j8I474/F3nWm1zhZN\nh3/tvfL9r6ZDydYkoikS0XRbTTRHooVMQwMOnw9nKIQjEKAuXkcmmyHfk4+roYUFp5xKYs4cAIpP\nO42y356z4eYN2GwW41j3hUeZxkZsMglOJ66iorXqWxdJcuebX/Pp4ibOntCbBU/fzS5HH0/5gEEs\nbYwx/opX29redNwo3E4H+w0v73RXz0xDAzaVwlHQvQ0FOpOuribx9dc0PPEkLa+/jn/UKHpf9rd1\nXh4q60zLOWWzpUw0ERERERHZLCyZ8yVfvvMGAC/c9g/6bztywwbR8nuBywvpBHhD4MkDwBtw4w2s\nsqOmP4wrHG57uyK6gv975f9Y2LyQyyZcxvjC0TiLCgFwVVTAEQeyIroCr9NLgbfzov/d1VJfx/xP\nP6KkX3/CvXrj9Qc6DKBlolFsJILx+XDm569+PpMh1thAKpnA6w8QKF23bLmioIez9tqaSDQGkUa2\n+cWZ+Fqv53c7+dkuA7jzrXmM6BNiTFUhQa+r0wAagHOVvy1ApqUFrO3wHtbEVVpK7LPPaHrmGQAi\nU6bQ+NTTFP/s1LW8QxHZUimIJiIiIiIimwVfcOUOiW6Pd42Blx4RKIHT34GF06BqAgS7F1R6Zf4r\nfFn3JQCXvnspjx38GL2vuYa6e+/DnHQ4Z757LrPqZ3HckOM4c9SZhL3hLkbsXLSxgSeu+AvV8+cB\ncOJVN1BWNZBYcxPNtTUYY8grKsGTzVL/yKPUP/ggwQkTKPv973AVFrYbq2HZEh686HckY1F6bT2U\nQ8/9I8GCdZubz+PC58mHcPtAVzjg4ay9tuK03QbichiK89ZuSW5qxQqWXXIpNpGg118vxt276+Wq\nq8quUusNIBuNrFV/EdmyaWMBERERERHZLBT3689+vzyLoRN255i/XoU/tP5ZXGvk9kLJVjDqp1BY\nBc6OcxCstaQSGb4tlbNV4VZt5wYWDMTlcOEuK6P897/jm0w1s+pnAfDQrIeIp+Mdjtld2WyWusUL\n297XL11MKhHng/89xX3nn829553FZ6++QKapierrrye9bBmNjz9Ocu7c1cb6ePKzJGO54v9L53xJ\nrKlxtTY9IRzwUB7yrXUALZtKUT3p77S8/DKRN99k6V8uJtPcvFZjBMeNw7f99gB4qqoIH3XUWvUX\nkS2bMtFERERERGSz4M/LZ9u99mfY7vvgdK5ehH5jSMbSLJxZx6xpyxg6vhd9hxQytGgo9x14Hwub\nFzK+93gKfSszvvrm98XtcJPKpqjMr8TlWL+vZB6/n71//n+8+u/bKK2sou82I0jG4sx+9+22NrOm\nvsnIHXYGlwtai+k7fG5oWgyefPDlivWX9B/Q1sfhdOENBNmUGGMw/pU7mjp8XljLum+ukhL63XIz\nNpnEuN24Skp6epoi8gOmIJqIiIiIiGxWNpUAGkA8kmLyHTMAmPdpDSf+bTyh4nxGlo1kZNnI1doX\n+4p55rBnmNs4l6HhIXhaskQS9QTDhau17Q6Pz8+Q8bswYOQYHE4ngVAByXicITvvyruPPwzA0Am7\nY4IBKu+4hfpH/kPehB1wr5gC//kL7Pp7GH8m+AsZPG4CqXicpXNmMfrAQ/DlrV3NsQ3NuFyUnnkm\nBsjGE5T+5tc4g2sf6NNGAiKyrhREExERERERWUfZrF35xoLNrrm91+Wlb35fimw+T1x2McvnzqGw\nVx+OufjK9QqkeXz+Vd77GP2jQxm844TWmmjFuOPLcc+8BP++o3E0PAmvv5xr/MbVULkTbLU3/lCI\nMT8+jGw6jdPt7uRqG5erpITyP/wBay2OTXSOIvLDpSCaiIiIiIjIOvLnuZlw5FZtyzm9we59xUpE\nWlg+dw6Qq2MWbWxoF0Srj9fzZd2XeJweBoUHrfXmA/68fPzfZpJlUvDGHbDwPRwL31u98ZvXQe/R\nECjEGNPjAbRoYwOZdBqX290jdeyMy8UG3lJCRKRDCqKJiIiIiMgWw1pLbbwWLBT6CnE61m9pqDfg\nZsTufRiyYwVunxOXu3vjefwBQqVlNFWvIBgubBdciqQi3PLxLTw8K7cc86xRZzFx+EQ8Ts+6TTKT\ngob5nZ9vXgrZ1LqN3YVoYwNPX3cZS2bNZOsdJ7DPz88ksKE3hBAR2UAURBMRERERkc1OY6KRdDZN\ngbdgrYrzz2+azxkvn0Eqm+LmvW9mcOFgjFm/vCaXu/vBs28Fw4Uc/7fraKmrJVhY1C4LLZ6OM23Z\ntLb3U5dM5Zghx7QPoiUjEG/MrR/15IG/80y1jHHhHHUCzJ7ccYO+OxDDx+yFDfjcTioKvBT41zFg\n9x2RxgaWzJoJwJxpb7P7CadAN4Jo2awl1pwEwOt34fJsOnXwRGTLtXZbmYiIiIiIiGxkNbEaLnjz\nAiZOnsiMmhmkM2lqY7VMWzqNRc2LiKfjHfaLpWNM+mASi1oWsTy6nCvfu5KmZNP3PPuVguFCygdu\nRV5hUbtAXp47jxO3OREAh3FwwrATCLpXKaCfTsDMZ+Ef28Gk4fDKJRCtW238dCrFsq9n8/wtf2dm\nTZD4ftesPgmnB7v7+dwzvZpDb36b/f/+Bq/Pqumxe/Tn57ft8plfXILL4+1Wv4ZlUR6+9D3uu2gq\ni2bXk05lemxOIiLrSploIiIiIiKyWZk8bzJvLX4LgPPeOI/7DryP373+Oz6p/gSXcfHEoU8woGDA\nav3cDjdVoaq29/3z++Nx9EzG1beyNktdPBfQKvYVr1OWm9fl5cABBzKhT25jgJAn1D7bLlYPz/0+\nt0wTYPqdMOHXEChqN068uYlHLr6QdDLBrHfe4OSrb8C39f4w54Vcg4rt4OB/EPGW8+IXn7b1e23W\nCn60XQUux/rnXPhDYU665ibqliyipG9ltzZPSCUyvPv018Rbcvf3xoOzOeL8MbgKnERSERzGgd/l\n72IUEZGepyCaiIiIiIhsVnoFe7W9LvWXAvBZzWcApG2aWfWzOgyiuRwuJo6YSGWokmQmyf5V++N3\nrzkYE2tOkoylcXmcBEIejKPzoJi1lrmNc/nNa7/BYPj7nn9nYMHAtkBaPJIik87idDrw5a25eH+e\nJ488T17nDcx3ljd2EKyz1pJJr6x1lk6n4fA7cktByYLLD8ESfJksZ++9FT+/Zzpel4Of7zqgRwJo\nAE6nk1BJKaGS0u73cRkKKwLM+yT3PlTqw+E0LI0s5fJpl5Pvzue3Y39Lib+kR+YoItJdCqKJiIiI\niMhmZUzFGK7e9Wq+afqGIwYfgd/l57TtTuO2T26jb35fRpeN7rRvoa+QIwYf0a3rxJqTvHzPTBbM\nqMWX5+bIC0ZT764mz5PXYQCnIdHAn97+E/ObckX8//z2n7lp75so9BUSa07y1n++YvZ7yxg4spTd\njx9CIH8ds+D8RXDIjfDkLyEdh51/DZ781Zp58/I4+JwLee+px6jafhQFZRXgD61WP83ldLDjwCLe\nOn8vjIGiYM9m560th9PByH0qCRR4iUeSbD2hlCXphVz13lVMXToVgLA3zO93+D0OowpFIvL9URBN\nREREREQ2K2FvmAMHHtju2InbnMiRWx+Jy+Gi2F/c7lxdrI5UNoXb4abI337J45qkU1kWzKgFIN6S\nYtYXi7iu8c/EMjHu2v+u1QJpDuMg6FpZuyzoDuJszRhLxtPMnrYMgLkfVTP+sIGdBtEaEg28t/Q9\n5jfN55BBh1AeLG/fwOWBrfeFsz8Ea3MbC/hCq43j8foYOHoH+m4zHJfXi3sN9cj8bhf+gk3n66E/\n38Ow3St4/pvnOWfylZw0/KR2AbO12UxCZGMxxhwCDLPWXrmx5yI9Q08eERERERHZ7IW8IULe1QNJ\ntbFafvXKr5hRO4NtS7blxr1uXC3I1hmny0FR7yB1SyI4nIbiygDLpi2jLl5HJBVZLYhW4C3gsl0u\n44r3rsBguGDcBW1zcrmdeIMuEpE0Hp8Tt7fzr2JvL36bC968AIDn5z3PP/f75+pzdvtz/wCRZIS6\n5oUsbl7MwPBAin3FOB3O1ntw4c9f/e+yOYhn4jz91dM0p5p5fM7j3LzXzYS9YfI9+Zw8/OTVstAy\n2Qz1iXocONYqWCrSHSa3LttYa7Pd7WOtfQZ4ZsPNSr5vCqKJiIiIiMgP1vRl05lROwPI1U37YPkH\n7Fe1X7f6BkIeDv3NSOqWRskr9nDLrBupi9cxIDSg/W6ZqygPlnPFLleAoa34fTqZwBLlmD+MZMX8\nGKWVIXz5nddE+6r+q7bXC5oXYLFrnOdnNZ9x2kunYbEUeAt4/ODHV89e60GpRByH04nTtea6busr\n6A5yzphzOO3F00hmkrgdbi6ZcAkO41gtEy2TzfBl3Zf8ZspvCHlC3LTXTfTK69XJyCLdY4ypAl4A\npgFjgKuNMacDXuBr4BRrbYsx5kfA9UAEeBsYaK09yBgzERhrrf1V61h3ASVAdWvfBcaYu4EmYCxQ\nAZxnrf3P93WPsna0gFxERERERNZLLB0jk81s7Gl06LvZaQXegrXqHwh56TukkHBJkNNG/ZynD3ua\nuw7ILeVsTDRSHa0mkoq06+N3+9sCaMlYjFnvvs3Dfz6Xdx67m95b+QiV+HE6O/8qdtSQo+iT1weX\ncXHRjhcRcAU6bduUaOKOz+5oC7Q1Jhp5e8nba3WPa6Nh+TKeu/E63njgbqJNjQCkMinmNs7lzs/u\nZHbdbBLpRI9cy2EcDC0cyjM/eYbHD3mcylAlHqenw6WcjclGLnn3EpZFljG7fjZ3zbirR+YgAmwN\n3ALsDvwM2MdaOxqYDvzWGOMDbgcOtNaOATrbReNG4B5r7XbAA8ANq5zrBewCHARo6ecmTJloIiIi\nIiKyTtKZNLMbZnPrJ7cypmwMh219GGFvuOuO36NtirbhjO3P4LWFr7F3v70ZUjRknccqCZRQQm4J\nZ12sjovfuZhPaz7lpGEnceTgIztcTpqMRZl8yySwlsblyxix5770Ca05kNc7rzf3/+h+rLUE3UEC\n7s6DaF6nl6r8Kt5f9n7bsT55faiP11PoK1zHO+1YtLGBZyddwYp5XwNQUFbO6AMPoT5Rz7H/PZZY\nOsbNH9/M84c/T7mrZzLhXE5Xt3bh9Dg89M/vzxe1XwCwVeFWPXJ9EWC+tfZdY8xBwDDg7dYddz3A\nVGAoMNdaO6+1/UPAaR2MMx44vPX1fcDVq5x7qnWZ6BfGmA2XRirrTUE0ERERERFZJ/WJek594VQi\nqQhTFk5hRMkIxlaM3djTaifsC3PqiFM5duixBFwBfC5fh+3q4nXURGsIeUOEveFO233r7SVv89qi\n1wCY9OEk9qvar8MgmnE48OflE2tuAuh2fbLuBI4AvC4vZ4w8g7pEHV/UfsEhgw6hOlrNJVMv4V/7\n/WuDLmm0Npf9lswkiaVjAKSyKaLp6Aa7ZmfyPHlcMO4CxlaMJewNM65i3Pc+B/nB+jbV1AAvWWuP\nW/WkMWZkD1xj1fRN0wPjyQaiIJqIiIiIiKyz7Co1tjO2Z5d01sXqyNgMIW8Ir7PznSU7Ux9NYoBw\nwLfGoFhjopHLp13OC9+8gMvh4pGDHmFw4eA1jr1qdpjDONoK+a/WLlTAcZdeyxdvvkrl8O0Jhns2\nOwygNFDK3yb8jaZkE3d9dhd/+uxPpG2ah2Y9xG/H/LbHrhMoCHPwORfy+r3/Ir+0jG122QOAfE8+\np213Go/Pfpz9+u9Hobfn77E7ivxFHD3k6I1ybdkivAvcbIzZylr7lTEmCPQBZgEDjTFV1tpvgGM6\n6f8OcCy5LLSfAm9+D3OWHqYgmoiIiIiIrJOwN8w/9/0nN318EyPLRnYZeFobK6IrOOvVs1geWc7l\nu17O2PKxeJyebvdfWBflt49+jMvh4Lqjt6d32N9p21Q2xZSFUwBIZ9NMXTK1y3sZXTaaX2z7C+Y1\nzuO84b8hEHUSyzThD7XPNDMOB4W9ejPh6BO6Pfd1kefJI5FJMH3FdNI2DcDAgoE9fp1weQU/Ouv3\nuY0F3LmNBQq8BZwy/BSOHXIsPpePfE9+j19XZGOz1la3bhTwkDHm26j+H621s40xZwKTjTER4P1O\nhjgL+Lcx5lxaNxbY4JOWHme+TcHdlI0dO9ZOnz59Y09DRGRT0yOp3nrGioh0aL2fsVvK8zVrs0RS\nEbxO71oFubryr8/+xT8+/AcA5YFyHvrxQ5QGOqvX3V5TLMVZD33E67OrAfjRthVcd/RI/O6Os8Wa\nEk3c9NFNPDTrIYLuIA//+GGqCqq6vE7y/9m77/goy2yB478zM5n0nlClLahIk9VYWBdE7L1hZy1r\nuXrtut7dxbK6Kquy6lpQEQuui13EunYRxYrSRFCUXpOQnkkmU879Y15CCCmTkDAhnO/nk0/eed6n\nnHfUMTl5SqgGf1k5M+66jfwVyxiw/+84/OLLSWpmz7P2UhWsoipQxYs/vUivtF78vsfvyUjoWHvU\nGUMnXK4oIinOKZ0CTAKWqur9sY7LtD2biWaMMcYYY4xpNZe42mXmUb+0frXXvVJ7EeeKi7qt2yWk\nxG9JmKUnxuFu4tf2JInn8oGXcOHgCxG3kBWfFdU4XreXkpIS8lcsA+CXb75g9LkXAjs2iaaqrChb\nwf3f3U//jP6cO+jcNj9UYHupKoFwoE0TrcZ0IBeLyHlEDhuYS+S0TtMJWRLNGGOMMcYY0+Hkdc1j\n0phJrKlYwxF9j9hmRlVRdREFvgLS49O3OQggOd7DrScMJjslnji3i8sO7o/X0/AstKryMua9/zYr\n5n/PASefQa9BQ/G4o/81KSkjk4TkFKorK8js3gNP3I5PEm2q3sRlH17G2oq1fLL6E/qn9+e4/sft\n8DgaU1Jdwn+X/5dvN37LuYPOZa+svYj3tHyPO2M6KmfWmc082wVYEs0YY4wxxhjT4aQnpDOq16gG\n7xVXF/Pgdw9y/IDjKa4upk9aH7oldyOykioiNzWBvx0/CEFwuRqehhYMBykt2MgXL00D4PWJt3Px\nw08RFx99gicpLZ3z/jmJ0oKNZHTt3i4HB0SjPQ942F4/bPqBCd9MAGDm6pn895T/0tXTNcZRGWNM\ny1kSzRhjjDHGGLNTCYaDHNnvSG774jaWly1vdM80t8sFQKGvkGcXP0ucK46zBp5FdmI2xdXFvPbL\na4xJOmBLfU8cSMu2a3K53aRkZZOSlb39D9ZKWQlZPHLYI0z8diL9M/ozcreRMYulIfm+/NrrQDhA\nIByIYTTGGNN6lkQzxhhjjDHGRC0YDlJUXURhVSFdkrqQnZC91Qyw+vxBPyX+EioDlWQmZLbJXl1x\nrjhSvaksL1sOwEbfRkr8JQ0ePFDmL+PWL2/l0zWfArCuch03HXATCwsXcv939+MZei2jLr2M/B8W\nk3fsSSSmpm3TR0fnEhcDMgZw78H34nV7O9y+Y6N6jmJIzhAWb1rMuL3G2emdxpidliXRjDHGGGOM\nMVHb6NvI2DfGUhGoiOrUzJVlKznz7TMJhAMc0/cYxh84nvT47dt4PyMhA3/Iz6CsQfxY9CN90vo0\nmpwLapD1letrX68tX0tRwQZqgjUATFx4PyN7juQfF91JemLH2oy/pVK8KbEOoUE5STlMOnQSIQ0R\n744nzbvzJSqNMQbAFesAjDHGGGOMMTuPORvmUBGoACIJtTUVa5qs/8nqT2qX772/8v0WLeXzBXws\n3rSY5xc/z7qKdahq7b2uyV2ZdNgk3j75baYeNZWcxJwG+0jzpnHjATeSHJdMmjeNqwZeyqxHHmFQ\n0u6cNfAshuUM47zB55EQlxR1XKblshKyyE3MtQSaMQ0QkS9iHYOJjs1EM8YYY4wxxkRtUPYgXOIi\nrGES3Al0T+7eZP1Deh3C5AWTCYQDHNHnCOJccVGPVVBVwJlvn0lYw0xeMJmXj395q1lvOYk5kNhw\n20JfIa//+jpZCVmM7jWaN054nZKNG5j//CusX7qEXz78lGtPvxZ/0E+qNxW3q+HTO40xO4e+f3n7\nbGAC0BtYBYxfcdexz8U2qqaJiEdVg6r6u1jHYqJjSTRjjDHGGGNMkwqrCgmFQyTFJdEzpScvHfcS\nc/PncmD3A8lKyGqybZ+0Pvz3lP9SEaggMyGz0aWcNaEaAqEACZ4Eiv3FuMVNcXVx7amTm6o3EQwH\no4q31F/KjbNv5It1kUIuLcIAACAASURBVMkd1+97Pefu9QdCWkrx2jV0/c0AfnvkMSR6Ekn0NJKF\ni4Lf56OmugqXy0VSekbt3nAl1SWsqViDW9z0SOnR4DMXVRXhC/qI98STm9j4clhjTPOcBNoUYPOU\n0j7AlL5/eZvtTaSJyAygF5AAPKCqj4tIBfAocAywHhgP3EMkgXeNqr4hIm7gLmA0EA9MUtXJIjIa\nuB0oBgYCe4hIhaqmOOP9GRgHhIH/qupfRORi4BLAC/wC/EFVfdvzXKZ1LIlmjDHGGGOMadSGyg2M\ne2ccG30buWafazhjzzPYM2tP9szaM6r28Z54unq60pWujdYpqi5i8vzJrCpfxTX7XMOUBVNYX7me\niQdP5PA+h/PJqk84f8j5JEW55DIQDrC2Yu1Wz1Ad9pPauwfnTLgfAZLSM6LqqzE11VUsnj2Tj558\nlOSMTM76+0TSu3SlOljN80ue55H5jwDw5/3+zJkDz8Tj2vKrV1F1ETd+fiOfr/ucbsndmHbMNLok\nddmueIzZxU1gSwJtsySnfHtno/1RVYtEJBH4VkReBZKBj1X1BhF5DbgDOBwYBDwDvAFcCJSq6n4i\nEg/MFpH3nT73AYao6vK6A4nI0cCJwAGq6hORzX+lmK6qU5w6dzh9P7Sdz2VawfZEM8YYY4wxxjTq\nk1WfsNG3EYBJ8yZRHaxu8zHeWfYOzy15js/Xfs4VH1/BEX2PYEHhAh6b/xi3jbiND077gD8O+WPU\nBxJkeDP424i/kR6fzl5Ze3H+kPN589c3WVW+ilK3D3dy62efbVZTVcXsF54FVSqLi/jpy88AqA5W\n89naz2rrzVw9k6pA1VZtqwJVfL7ucyCS4Fu8afF2x2PMLq53C8tb4ioRmQ98RWRG2u5ADfCuc38h\n8KmqBpzrvk75EcC5IjIP+BrIdtoCfFM/geY4DHh68ywzVS1yyoeIyGcishA4BxjcBs9lWqFdk2gi\nkiEir4jIEhFZLCIjRCRLRD4QkaXO9537CBxjjDHGGGM6sSG5QxAiyxSHZA9pl73DQhqqvQ5ruHZZ\nZFZCFsneZHISc0j1pkbdn8ftYXjucF474TWmHDGFD1d+SHp8Oue8cw5j3xzLmoo15PvyKa4ubnXM\nbo+H7rtvmY3XY4+BACTHJTNur3EIgktcjBs0bpsZdPGeeHql9gLA6/LSP6N/q+MwxgCRPdBaUh4V\nZ+nlYcAIVd0bmEtkWWdAt5x0Egb8AKoaZsuKPwGuVNXhzlc/Vd08E62yhaFMBa5Q1aHAbU4MJgba\neznnA8C7qjpWRLxEplOOBz5S1btE5C/AX4A/t3McxhhjjDHGmFbol9aP6SdMZ03FGobmDCUzoe3/\nBn58/+P5teRXVpev5v/2+z8+W/MZFwy+gHMHn4tLGv+7f0l1CT9u+pGQhhiSM2Sr2OLcceQm5RIK\nh+iR0oNnf3yWYDjIjQfcyGPzH+PdFe9yYPcDuXvk3WQlNr2vW0MSU9M46rJr2LBsKanZuaTl5NaO\ne3Cvg3nv1PcQEdK8adskHnMSc3jmqGf4peQXeqf1bvRkUWNM1Maz9Z5oAD6nfHukA8XO0sqBwIEt\naPsecJmIfKyqARHZA1jbTJsPgFtEZNrm5ZzObLRUYL2IxBGZidZcP6adtFsSTUTSgVHA+QCqWgPU\niMiJRDbWg8ha4ZlYEs0YY4wxxpgOKcWbwgDvAAZkDmi3MbISsvjr/n+lJlxDmjeNAZkDcOPG5Wo8\ngRYMB3np55d4aG5kW6CLhlzEGQPPIMWbQkpcSm09t8vN8C7DWVi4kDkb59AtuRvvroiswvpq/Vds\n9G1sVRINIvuq/ea3+21TnhyXTHJccpNtc5NyyU3KxR/01870M8a0zoq7jn2u71/ehrY/nfNd4FIR\nWQz8RGRJZ7SeILK083uJTK8tAE5qqoGqvisiw4E5IlIDvEMkEXgzkSWhBc736KfmmjYlW2YgtnHH\nkX/wjwM/AnsD3wFXA2tVNcOpI0Syutvs6ikilxA5fYLevXvvu3LlynaJ0xhjdmKt/onbPmONMaZZ\nrfqMtc/XHccX8HHDrBuYtWYWAAd2P5DhXYZzQLcDyOuWt039oqoilpctp2tSV8546wzKasqIc8Xx\nzinv0C25244OH4CNlRu577v78Lq8XL3v1TYjzewqLGtsdlrtuZzTQ+TEiStV9WsReYDI0s1aqqoi\n0mAWT1UfJ5KEIy8vr30yfcYYs4uyz1hjjGkf9vm64yTFJXH58MuZu3EuIQ1x7qBzmbxgMmENN5hE\ny0rMIisxi1A4xAvHvcDX679mn677kBkfmy2ay2vKue3L27Y6hODmETfjdXtjEo8xxpjmtWcSbQ2w\nRlW/dl6/QiSJtlFEuqvqehHpDuS3YwzGGGOMMcaYTmqPzD2YcdIMymvK+df3/2JF2QruPOjOhisH\nqqGyAHf5enpl9qPXHmN3bLD1hDVMTaim9rU/5Ces4ZjEEggFKPYXoyjp3nQSPLZnuTHGNKTdkmiq\nukFEVovInqr6E3AokaWdPwLnAXc5319vrxiMMcYYY4wxnZfH5aFLUheS45K56YCbcImLrIRG9jcr\nWQGP/R5CAei+N5zzKqTk7tB460qPT+e2g27jltm34HV7uT7v+pglr34q/okL3r2AoAZ5eMzDHNj9\nwHY5hdUYY3Z27X0655XANOdkzmXABYALeElELgRWAqe3cwzGGGOMMcaYKG2q2oQv4CMxLnGn2aMr\nmo38WTE7kkADWD8fQv72D6wZPVN6cv/o+xERUr2x2Se8JlTD1B+mUh2qBuCJhU8wJGcI6fHpMYnH\nGGM6snZNoqnqPGDbDQkis9KMMcYYY4wxHUhhVSH/88H/8HPxzwzIGMCUI6bsNIm0Zv1mNHiToaYS\n+o6EDrJkMS0+Labje91eRvUaxXsr3wPgoJ4HkehJjGlMxhjTUbX3TDRjjDHGGGPMTqKipoKfi38G\n4JeSXyj1l3aeJFpGL7jiO/CXQWIWJHeS52oDo3cbzWsnvEYgHKBHSg873MAYYxphSTRjjDHGGGMM\nEFkW2TWpKxt9G8lNzCXNG9tZUm3K7YW07kD3WEfS4aTFp8V8RpwxnZWIjAZqVPUL5/VU4C1VfaUd\nxnoCuE9Vf2zrvk2EJdGMMcYYY4wxAOQk5vD8sc+zoXID3ZK7dZ5ZaMaYzu/W9LOBCUBvYBUwnltL\nn4ttUACMBiqAL9p7IFW9qL3H2NW5Yh2AMcYYY4wxpmMQEXKTchmaO5TcpFxEJNYhGWNM8yIJtClA\nH0Cc71Oc8lYTkWQReVtE5ovIDyJyhogcKiJzRWShiDwlIvFO3RUikuNc54nITBHpC1wKXCsi80Rk\npNP1KBH5QkSWicjYJsZPEZGPROR7Z7wTG4vLKZ8pInnO9aMiMkdEFonIbdvzPpgtLIlmjDHGmJjS\ncJiatWspefVV/MuWEfbH/sQ8Y4wxxuxUJgBJ9cqSnPLtcRSwTlX3VtUhwLvAVOAMVR1KZHXfZY01\nVtUVwGPA/ao6XFU/c251B34PHAfc1cT41cDJqroPcAhwr0T+utFQXPXdqKp5wDDgYBEZFu1Dm8ZZ\nEs0YY4wxMRUsLGTFqWNZf+NNLD/pZELFxbEOyRhjjDE7l94tLI/WQuBwEbnbmUXWF1iuqj87958B\nRrWi3xmqGnb2LuvaRD0BJojIAuBDoKdTf6u4VLW0gbani8j3wFxgMDCoFXGaeiyJZowxxpiY0kCA\nUElJ5LqmhlBpQz8HGmOMMcY0alULy6PiJMv2IZK0ugM4qYnqQbbkWBKa6brutPum1s2fA+QC+6rq\ncGAjkFA/LhG5pW4jEekH/Ak4VFWHAW9HEZOJgiXRjDHGGBNTruRkss4/H/F6STnicDy5ubEOyRhj\njDE7l/GAr16ZzylvNRHpAfhU9T/ARGAE0FdEBjhV/gB86lyvAPZ1rk+t0005kNrKENKBfFUNiMgh\nRPZ6ayiufeq1SwMqgVIR6Qoc3crxTT12OqcxxhhjYsqTkUHO/15G1oV/xBUXhzsjY5s6wZoaKkuL\nKdmwnpxefUjOyIxBpMYYY4zpkG4tfY5b06HtT+ccCkwUkTAQILL/WTrwsoh4gG+J7HkGcBvwpIjc\nDsys08ebwCvOoQBXtnD8acCbIrIQmAMsaSKuWqo6X0TmOvVXA7NbOK5phKhqrGNoVl5ens6ZMyfW\nYRhjTEfTJkem2Wes2RmU5m/g6esuIxQIkN2rD6fffCdJ6dsm24xpQ9v9GWufr8YY0yA79tfstGw5\npzHGGGM6vKJ1awkFAgBsWr2SUCgU44iMMcYYY8yuxpZzGmOMMabDy+3Tj6weu1G0bg17H34Mnjhv\nrEMyxhhjjGkTIjIUeLZesV9VD4hFPKZxlkQzxhhjTIeXkpnF6X+7i3AoiCc+nsSU1u7Pa4wxxhjT\nsajqQmB4rOMwzbMkmjHGGGN2CskNHDhgjDHGGGPMjmJ7ohljjDHGGGOMMcYY0wxLohljjDHGGGOM\nMcYY0wxLohljjDHGGGOMMcYY0wxLohljjDHGGGOMMcZsBxG5VUT+1E59rxCRnPbouy2ISK6IfC0i\nc0VkZAP3nxCRQbGIra3ZwQLGGGOMMcaYJqkqqorLZX+DN8Z0TEOfGXo2MAHoDawCxi88b+FzsY0q\n9kTEo6rBdh7mUGChql7UwPjuhsp3VvZ/QWOMMcYYY0yjiqqLmDRvEnd+cyf5vvxYh2OMMdtwEmhT\ngD6AON+nOOWtJiLJIvK2iMwXkR9E5Iy6s8JEJE9EZtZpsreIfCkiS0Xk4ib67S4is0RkntPvSKf8\nURGZIyKLROS2es2uFJHvRWShiAx06u/vjDdXRL4QkT2d8vNF5A0R+Rj4SERSROSjOu1PdOr1FZHF\nIjLFGfN9EUlsIu6LReRb5/14VUSSRGQ4cA9wovM8iSJSISL3ish8YISIzBSRPKePo5w45ovIR009\nR0dkSTRjjDGmEwmVlhJYt45Afj4aCsU6HGNMJ/DiTy8yecFkXvrpJW6afRNl/rJYh9QhbaraxOry\n1RRWFcY6FGN2RROApHplSU759jgKWKeqe6vqEODdZuoPA8YAI4BbRKRHI/XOBt5T1eHA3sA8p/xG\nVc1z+jlYRIbVaVOoqvsAjwKbl40uAUaq6m+BW9j6efcBxqrqwUA1cLLT/hDgXhERp97uwCRVHQyU\nAKc28XzTVXU/Vd0bWAxcqKrznLFfVNXhqloFJANfO+/b55sbi0gukWTnqU4fp0XxHB2KLec0xhhj\nOolQRQVF/5lG4UMP4c7IoO9LL+Lt3TvWYRljdmKqSrm/vPa1L+AjpJagr29T1SYu/+hyFm1axO4Z\nu/P4EY+Tk9hhty8ypjNq7Aee7f1BaCGRhNPdwFuq+tmW3FODXneSSFUi8gmwPzCjgXrfAk+JSBww\nw0lEAZwuIpcQydV0BwYBC5x7053v3wGnONfpwDMisjugQFydMT5Q1SLnWoAJIjIKCAM9ga7OveV1\nxv8O6NvE8w0RkTuADCAFeK+ReiHg1QbKDwRmqepygDrxNfUcHYrNRDPGGGM6iXBVFcXPPgtAqKSE\nilmzYhyRMWZnJyJcMOQCRu82mt92+S13/v5OMhMyYx1Wh+ML+Fi0aREAS0uWUlFTEeOIjNnlrGph\neVRU9WciM7oWAneIyC1AkC25lIT6TZp5vbnfWcAoYC0wVUTOFZF+RGaYHaqqw4C36/Xvd76H2DIh\n6nbgE2eW3PH16lfWuT4HyAX2dWa/baxT11+nXt2+GzIVuEJVhwK3se3zb1at2qK/uDT1HB2KJdGM\nMcaYTsLl9ZJ88MGRF3FxJO2/f7uOp6rUrF1H0TP/pmrhQkKVlc03MsbsdHKTcvnHyH/w4JgH6ZPW\nJ9bhdEiJcYn0TesLQI/kHiTHJcc2IGN2PeMBX70yn1Peas5yTJ+q/geYSCShtgLY16lSf+njiSKS\nICLZwGgiM84a6rcPsFFVpwBPOP2mEUl8lYpIV+DoKEJMJ5KIAzi/mXr5qhoQkUOI7BnXGqnAemcG\n3TmtaP8VMMpJGCIiWXXii+Y5Ys6WcxpjjDGdhDs9na5//jPZf7wAd3o67oyMdh0vWFjIyrPOIpif\nj6dnT/o8MxWtrsadlUUzSx2MMTuZFG9KrEPo0HISc3j6qKcp9ZeSHp9uSzmN2cEWnrfwuaHPDIW2\nP51zKDBRRMJAALgMSASeFJHbgZn16i8APgFygNtVdV0j/Y4GbhCRAFABnKuqy0VkLpH9wVYDs6OI\n7x4iyyBvIjJzrTHTgDdFZCEwxxmjNW4GvgYKnO+pLWmsqgXOctXpIuIC8oHDif45Yk5UG5xd2KHk\n5eXpnDlzYh2GMcZ0NG2SpbDP2Palqmyq3oSqkuZNI94TH+uQ2kTY7yewfgPLjjoKd3Y2vR6ZRP4/\n7yVUXk7Pf07E27+/JdLMzm67/wW2z1djjGmQ/YBgdlq2nNMYY4xpR6vLV3Pam6dx9PSj+T7/e4Kh\nYKxDahOhsjLK3n6b3GuvIfWIIyiZ/hq+b7/Fv2QJ68bfSKikJNYhGmOMMcYY06YsiWaMMca0o2d/\nfJbCqkL8IT/3fXcfZYGyWIfUJkRclL3zDsHCQjJOPglPt2619zzZ2YjbHcPojDHGGGNiT0SGisi8\nel9fxzqu5ojIpAbiviDWcXUEtieaMcYY04727bovL/z0AgBDc4YS7+4cyzk9Odn0fmIKJa+8SqCg\ngIyxp+JKTCBUVEzWH8bhTkuLdYjGGGOMMTGlqguB4bGOo6VU9fJYx9BRWRLNGGOMaUcjeoxg2jHT\nKPOXMThncKc6sS2ue3dyr7yi9nX2+efHLhhjjDHGGGPamSXRjDHGmHaUHp/OsNxhsQ7DGGOMMcYY\ns50siWaMMcaYdhP2+yOHDITDuNLScCd3npl4xhhjjDFm12IHCxhjjDGm3VQvXsyvhx/BL2MOpeKT\nTwjX1LSqn6qaEP5AKKq6gVCIgnI/Jb7WjWWMMcYYY0xDokqiiUiuiIwXkcdF5KnNX+0dnDHGGGN2\nXuFgkOL//AetqQFViqZOJVxR2eJ+1pVUce1L87j1zUUUVvgBCPj9lBXks/6Xn/GVldbW9QdCfLWs\niDMf/5JL//Md60ur2ux5jDHGGGM6ExHJEJH/bWXbFSKS00Zx/F1EDmuLvtpbtMs5Xwc+Az4Eovsz\nsOlwwlVVhEpKCPt8uLOy8GRmxjokY4wxDQiWlFD9ww+EKipI3n9/PFlZsQ6pVVweD6lHHknZW28D\nkHLIIbiSElvUR7GvhutemsdXy4oifcR7GH/MXpTmb+DZP19FOBSif94BHHnp1SSmplHsC3Dh1DnU\nhML8WlDJLa8v4v4z9iYlPq7Nn88YY4wxHcfigXudDUwAegOrgPF7LVn8XCxiERGPqgZjMXYLZQD/\nCzxS/8aOfAZVvWVHjNMWol3OmaSqf1bVl1T11c1f7RqZaXP+Zcv45fAjWHbscRQ+8iihioo27T9Y\nWEhgwwZCpaXNVzbGGNOo8vffZ/VFF7Pummsp+NcDhHy+WIfUaskHHkj/d9+l3xuvk3nOObgSElrc\nR1i3XIfCiiqs/3kJ4VDk73qrFs4nFIz8jKcoNaFwbX1fTZBwGGOMMcZ0Yk4CbQrQBxDn+xSnvNVE\nZJyIfCMi80Rksoi4RaSizv2xIjLVuZ4qIo+JyNfAPSKSJSIzRGSBiHwlIsOcereKyLMi8qWILBWR\ni+v0d4OIfOu0ua2Z2M516s0XkWedslwRedXp41sROajOmE+JyEwRWSYiVznd3AX0d55vooiMFpHP\nROQN4Een7QwR+U5EFonIJS1477Zp57x/U0XkBxFZKCLX1nnvxjrXtzix/+CshpRox9wRok2ivSUi\nx7RrJKbdVXz6KTi/ZJR/+CFa1XZLXAIbNrB87Gn8MvoQip55hlB5eZv1bYwxuxINh6la+EPt6+ol\nSyLLIXdS7tRUvH37kLDHHngyMlrcPjPJy32n782YgV04+bc9uWz0AFwuoc+w35KcEZlRnXf8KcTF\nxwORmWq3HT8Ij0vITY3n1uMGkZZos9CMMcaYTm4CkFSvLMkpbxUR2Qs4AzhIVYcTWZV3TjPNdgN+\np6rXAbcBc1V1GDAe+HedesOAMcAI4BYR6SEiRwC7A/sDw4F9RWRUI7ENBm4Cxqjq3sDVzq0HgPtV\ndT/gVOCJOs0GAkc6/f9NROKAvwC/qupwVb3BqbcPcLWq7uG8/qOq7gvkAVeJSHYz78FmDbUbDvRU\n1SGqOhR4uoF2D6vqfqo6BEgEjotyvB0i2uWcVwPjRcQPBIhkdlVV09otMtPm0o48iqInnyRc6SPz\nnLORNjwhzffNtwQ3bACgcMoTZJ51FqSmtln/xhizqxCXi5xLLsb35ZeEKyroOn487l3883S3zCQe\nPHM4bpeLRK8bgNScXP5w1wOEQiG8iYnEJ0X+n5ZYVcGhv37JmNOHo9XVpHz5CZx8YizDN8YYY0z7\n693C8mgcCuwLfOtMhkoE8ptp87Kqbt4C6/dEElmo6sciki0im3Mor6tqFVAlIp8QSWz9HjgCmOvU\nSSGSVJvVwDhjnLEKnf6LnPLDgEF1Jm+liUiKc/22qvoBv4jkA10beYZvVHV5nddXicjJznUvJ6ZN\nTb4Ljbf7CfiNiDwEvA2830C7Q0Tk/4gkQbOARcCbUYy3Q0SVRFPVXfun907C27sXv/nvf9FAAHdq\nKu6k+on61ksYPBg8HggGSdovL3JtjDGmVby9etH3hedRVTwZGYjbHeuQYi4lYevZZCJCcmbDe8UF\n3nqd6gm3A5B0zdUN1jHGGGNMp7KKyBLOhspbS4BnVPWvWxWKXF/nZf19KqI9QUkbeC3AP1R1coui\n3JoLOFBVq+sWOkk1f52iEI3ng2qfQURGE0nMjVBVn4jMZNtn3kZj7VS1WET2JjIj7lLgdOCPddol\nENmfLU9VV4vIrdGMtyNFu5wTEckUkf1FZNTmr/YMzLQ9iYsjrksXvD174k5r20mEcT170P+9d+nz\n3DR6TvynHVpgjDHbyZOTQ1xuLhJnSxFbwpOZSc/77iVlzBgyzjqTjNNOi3VIxhhjjGl/44H6m8j6\nnPLW+ggYKyJdAJw9zvoAG0VkLxFxASc30f4znOWfTlKpUFXLnHsnikiCs8RxNPAt8B7wx80zx0Sk\n5+axG/AxcNrmpZUisvkvi+8DV26uJCLDm3nGcqCpSVPpQLGTCBsIHNhMf022c07zdDl77N9EZOlo\nXZsTZoXO+zA2yvF2mKimC4nIRUSWdO4GzCPyBnxJZAqhMbgSEvD27Im3Z89Yh2KMMWYX591tN3r8\ncyLiduNy9kozxhhjTOe115LFzy0euBe04emcqvqjiNwEvO8kzALA5UT2EXsLKADmEFl22ZBbgadE\nZAGRhN55de4tAD4BcoDbVXUdsM7Zh+1LZ+ZYBTCOBpaQquoiEbkT+FREQkSWgJ4PXAVMcsb0EFkK\nemkTz7hJRGaLyA/Af4kssazrXeBSEVlMZCnmV431FWW7nsDTzvsJsNUsP1UtEZEpwA/ABiLJxQ5F\nVOvPImygkshCYD/gK1Ud7mQSJ6jqKe0dIEBeXp7OmTNnRwxljDE7kzY5qcY+Y40xpkHb/Rlrn6/G\nGNOgDnXa4o7mLFGsUNV/xjoW03LRLues3rymVkTiVXUJsGf7hWWMMcYYY4wxxhhjTMcR7e7va0Qk\nA5gBfCAixcDK9gvLGGOMMcYYY4wxpnNR1VujrevsefZRA7cOVdVoTshsVx09vvYQ7emcmzfLu9U5\nfjWdyBpXs4OE/X7C5eVIfDzuVDss1RhjjDHGGGOM6cycRFRzhwPETEePrz205HTOfUTkKmAYsEZV\na9ovLFNXuKqKipmfsuKccWy8806CRUWxDskYY4wxxhhjjDFmlxJVEk1EbgGeAbKJnB7xtHNKhdkB\nQuXlrL3+egIrV1I643X8S36KdUjGGGOMMcYYY4wxu5Ro90Q7B9i7zuECdwHzgDvaKzCzhYgLT2Ym\nwYICANzZ2TGOyBhjjGkZVcU5rt0YY4wxxpidUrRJtHVAAlDtvI4H1rZLRGYb7pxs+jw3jZLpr5GU\nty9xPbrHOiRjjDEmKsHiYkrfeIPAylVkX3Ixcd26xTokY4wxxhhjWiXaPdFKgUUiMlVEngZ+AEpE\n5EERebD9wjMAIoK3Vy+6XH0VKQcdZAcLGGOM2WlUzPyU/H/cRfFzz7H2mmsJFhfHOiRjjDHGmDYj\nIieIyF8auVfRSPlUERnrXM8Ukbz2jLExIjJcRI7ZAeOMr3PdV0R+aIM+c0XkaxGZKyIjG7j/hIgM\n2t5x6ot2JtprztdmM9s6EGOMMcZ0PqGSki3XZWUQCsUwGmOMMcZ0VpMu/fhsYALQG1gFjL/8sTHP\ntfe4qvoG8EZ7j9NOhgN5wDvt0blE9vIQYDyRfzZt6VBgoape1MC47obK20JUM9FU9ZnNX0T+5Zhb\nr8zsIGG/n1BFg8lsY4wxpsNJP+F4Uo85hoS996bnv+7HnZXVaN2yqgBLN5bz7fIiiirtEHBjjDHG\nRMdJoE0B+hBJ2vQBpjjlrebMmlrizBz7WUSmichhIjJbRJaKyP4icr6IPOzU7yciX4rIQhG5o04/\nIiIPi8hPIvIh0KWR8Y5w2n8vIi+LSEoTse0rIp+KyHci8p6IdHfKLxaRb0Vkvoi8KiJJTvlpIvKD\nUz5LRLzA34EzRGSeiJzRyDi3ishTzoy5ZSJyVZ171zl9/iAi19R5z34SkX8TWcX4JJDojDHNaeoW\nkSkiskhE3heRxCaec5vnEZHhwD3AiU6/iSJSISL3ish8YETdGX4icpTzns4XkY+csv2d93quiHwh\nIns2FkNd0Z7OOVNE0kQkC/gemCIi90XT1rSdYFER+f/6F2uvuRb/0l/QcDjWIRljjDFN8mRn0/3v\nt9HrsUeJ3313xNX4jx5zVhZx+P2zOG3yl9zz7hLKqwM7MFJjjDHG7MQmAEn1ypJom9lPA4B7gYHO\n19nA74E/EZlhlTnPYwAAIABJREFUVdcDwKOqOhRYX6f8ZGBPYBBwLvC7+oOISA5wE3CYqu4DzAGu\nayggEYkDHgLGquq+wFPAnc7t6aq6n6ruDSwGLnTKbwGOdMpPUNUap+xFVR2uqi828R4MBI4E9gf+\nJiJxIrIvcAFwAHAgcLGI/NapvzvwiKoOVtULgCpnjHPq3J+kqoOBEuDUJsbe5nlUdV692KuAZOBr\nVd1bVT+v817lEkmwnur0cZpzawkwUlV/6/QV1b8r0S7nTFfVMhG5CPi3qv5NRBZE2da0kcrZsyl+\neioAq5cvo88LLxCXmxvboIwxxphmuFMa/SPqVmb+VFB7/eWyTVQHwqQmtFdUxhhjjOlEerewvCWW\nq+pCABFZBHykqioiC4G+9eoexJaE0LPA3c71KOB5VQ0B60Tk4wbGOZBIkm22c6K5F/iykZj2BIYA\nHzh13WxJ2g1xZsFlACnAe075bGCqiLwETI/iuet6W1X9gF9E8oGuRBKJr6lqJYCITAdGElm9uFJV\nv2qiv+VOIgzgO7Z9H+tq7HnqCwGvNlB+IDBLVZcDqGqRU54OPCMiuwMKxDURQ61ok2geZ2rg6cCN\nUbYxbc3t3nLticP5j8UYY4zpFMYd2IcZc9dS7g9y5ZgBpMS7m2/UAA0EIgcYBIO4UlJwp6W1caTG\nGGOM6WBWEVnC2VD59vLXuQ7XeR2m4ZyKtnIcAT5Q1bOirLtIVUc0cG8qcJKqzheR84HRAKp6qYgc\nABwLfOfMJItW3fcgRPO5pMoW9tfock4aeZ4GVDtJymjdDnyiqieLSF+i3Ps/2tM5/04k2/erqn4r\nIr8BlkbTUETczhrTt5zX/SRygsIvIvKisw7XRCF5xAhyrryS1COPpNfkx3BnZ7dJv6HKSoKFhYR9\nvjbpryHBkhJqVqwksGED4aqqdhvHGGPMzqt/TjIfXncwX/xlDEcN6U6iN9q/9W3Nv2wZy44+ml/G\nHErx888TKre9RI0xxphObjxQ/xdaH9sut2xvs4Eznetz6pTPIrL3mNuZoHRIA22/Ag4SkQEAIpIs\nIns0Ms5PQK6IjHDqxonIYOdeKrDeWfJZG4OI9FfVr1X1FqAA6AWUO/Vb4zPgJGePsmQiS1Y/a6Ru\nwImnNRp8nhb4ChglIv0AnG3KIDITba1zfX60nUV7sMDLqjpMVS9zXi9T1abWrNZ1NZF1q5vdDdyv\nqgOAYraszzXN8GRmknPp/9DjnruJ79u3TWaiBUtKKHrySVacfQ5F06YRLC1tg0i3FvL5KJr6DL8e\ndRS/HHY4/p9/blF7DQQIrF9P5ddfEywo2OZ+qLSUqh9/pGrRIoJ1ToEzxhizc3G7XXRJS6B7eiIp\n8a1LoGkoRNHTTxOujPwcXfjIo4Sr7Y83xhhjTGfmnMJ5MbCSyEywlcDFO+J0znquBi53lnr2rFP+\nGpGJSD8C/6aBZZqqWkAkmfO8s33Wl0T2ItuGs5/ZWOBuZyP9eWzZZ+1m4GsiCb0ldZpNlMiBBz8A\nXwDzgU+AQU0dLNAYVf2eyCyxb5zxnlDVuY1UfxxYUOdggZZo7HmijbMAuASY7rxXm/d+uwf4h4jM\nJfpVmohq8zMNnezno0BXVR0iIsOIbER3RzPtdgOeIbLB3XXA8UQynt1UNehkTW9V1SOb6icvL0/n\nzJkT1QOZlqlZuZJfjzyq9nX/Dz7A22u3Num7xFdDTTBMQrCG/LPPILBiBQBZF/6RrjfcEHU/gQ0b\nWHbssYQrfcTttht9n38Oj7MXnIZCFD//PBvviOyh2OUvfyZr3DjE07pfvozZybTJmm77jDWdTcnL\nr7D+5psBSBi+N70eeQRPE6eCGtOI7f6Mtc9XY4xpkO1LZHZa0S7nnAL8FQgAqOoCtkxRbMq/gP8j\nslYYIBsoUdWg83oNW2dna4nIJSIyR0TmFDQw+8i0DYmPByfhJF4v4m3tDMutbar0c9NrP3DY/Z/y\n9PcbSL1rYu0Yacce26K+AmvX1s4oCKxZQ9i/Zfl02O+n8vPZta8rP59NuLq6DZ7AmM7NPmNNZ5Zy\n+GH0mvI43W6/nV4PP2wJNLND2eerMcYY03lFm0RLUtVv6pUFG6zpEJHjgHxV/a41ganq46qap6p5\nuXYCZbtxp6fTe9o0Ui+4gNx//4eqxOhOUGvOqk0+3lq4nrKqIPd/uJRAr370/+AD+n/wPvH9+7eo\nL2+fPnj79gUg+aCDcCVuObnYlZhI9iUXI/HxiNdL9v9cgis5uU2ewZjOzD5jTWfmycggZeRIMk8b\niycnJ9bhmF2Mfb4aY4xpSyLymrPcsu5Xk6v5WjnOBQ2MM6mtx2li/EkNjH/Bjho/WtGueSsUkf44\np0yIyFi2HJ/amIOAE0TkGCABSAMeADJExOPMRtuNLRu5mTqCJSVoIIB4PHgyM9ttnOKwi/uWCbLn\n0Xz50SbOLE/m4pG/abJNqKSEUHk54vXizszE5d32bIiclHhcAmGFtEQPcXHuVi8T9eTk0Oc/zxL2\n+3ElJm41o0BESBg8mP4fvA9EkoJ2aqkxxjQvVFlJzfLlVM1fQMrog4nr0cM+P40xxhhjOhhVPXkH\njfM08PSOGKuR8S+P1dgtEW0S7XIiG8ENFJG1wHKaORVBVf9KZAkoIjIa+JOqniMiLxPZAO8F4Dzg\n9daF3nkFi4vJv/seSmfMIHnkSHrc9Q88bXQSZ30J1T6u7BmguqSMEw/rzYKypn+BCpaUUPTEk2x6\n4gkkPp4+0/5D4pAh29TLSvYy/X8PYvYvhRwztBs5ydt3CGtTMwlc8fG4unTZrv6NMWZXE1y/nhWn\nnQ6qFD7yCP1mvEaczZoxxhhjjDGmUU0m0UTkalV9AOiuqoc5x5a6VLV8O8b8M/CCiNwBzAWe3I6+\nOqVwZSWlM2YAUPnZZ4SKi9stiRb8YjbFzib/3c84k72uubbJ+urzUfz885Frv5+SV15pMImWHO9h\neK8MhvfKaLyvcJjAhg1UfT+XxGHD8HTvhiuubfZkM8YY07SaVavAOVwotGkTWhOIcUTGGGOMMcZ0\nbM3tibZ5/elDAKpa2ZoEmqrOVNXjnOtlqrq/qg5Q1dNU1d9c+12NxMfXnj7pSk7GlZbWLuNoOEzl\n11/Vvq5ZMJ8EbXKrOxAhab/9al8m/35kq8cPFhay4pRTWfenP7HspJMIFRW1ui9jjDEtkzhsGPF7\n7glAxtln40pOaqaFMcYYY4wxu7bmlnMuFpGlQA8RWVCnXABV1WHtF9quy5OTQ9+XX6J60SLiBw5s\nsz3RQmVlALidpJy4XGRfcAHlH3xI2Ocj9+qrcaWmNtmHKyWFLjfcQNoJJxDXoztxPRs8XDUq6vcT\nKimJXPt8hCsqoGvXVvdnjDEmep6cHHo/9SQaCkX+eJOeHuuQjDHGGGOM6dCaTKKp6lki0g14Dzhh\nx4RkakI1lKQKVXn9SY9PIrMNljgGNmxg/U03g4bpfscdxHXvDoC3b19+8/rraDiEOyWl2eWU7tRU\nxOPBnZmBxMXhbibp1hRXSgrpp59G6avTSRkzBnc7HqBgjDFmW+21VYAxxhhjjAEROQn4WVV/bKP+\n8oBzVfWqtuivFeOfAAxS1btEJBd4C/ACVxHZE/9sVS2JRWw7SrMHC6jqBmDvHRDLLivs8xGurARx\n4cnJZmX5Ss5860wC4QBnDzybK357BaneppNVYb+fUGUlAludXrn5Xv49E6n8/HMANk74B93vvguC\nQcKVldSsXMXGiRPJGDuW9OOPw52S0uRYrsREXImJ2/XMAJ7MTLpcfz25V16JeOLwZDa+f5oxxhhj\njDHGGNOYe8847mxgAtAbWAWMv/7Ft56LbVScRCTR1CZJNFWdA8xpi75aOf4bwBvOy0OBhap6kfP6\ns9hEtWM1uSeaiLzkfF8oIgvqfC2st7zT1BPy+QgHmt+kOVxVRfnHH/PLmENZcfbZBNavZ86GOQTC\nkbbvr3yf6mB1k334SktYtXAev875morVqwgWFGxdweWq3VfNlZJCXN++aE0N5R9/zK9HH8PGu+5i\ntwcfoOSVVwj7fK174FbypKcTl5trCTRjjDHGGGOMMa3iJNCmAH2IbD/VB5jilLeaiIwTkW9EZJ6I\nTBYRt4g8KiJzRGSRiNxWp+5dIvKjkzP5p4j8jsiKvolO+/6NjHGxiHwrIvNF5FURSXLKTxORH5zy\nWU7ZaBF5y7neX0S+FJG5IvKFiOzZxHOcLyKvi8hMEVkqIn+rc2+GiHznPM8ldcqPEpHvnfE/qtPP\nwyIyHLgHONF5tkQRWSEiOU69c533Yb6IPNv6fwIdT3Mz0a52vh/X3oF0JjUrV7Lxnol4+/Qh+6IL\na2eGBYuKqF68BE9ODnE9uuNOTSVUUcHGO+5EAwECq1ZR8vobjPnDiTw490EqA5WM3WMsSXGNb/Yc\nDoVYNPNDZj03FYBBvxvF70YdRrpzMAFE9hvLvvgisi+6EA2HCZWUEPb5IuNWV+NfsoTy996j++1/\nR1zNnTVhjDHGGGOMMcZ0KBOA+r84JznlrZqNJiJ7AWcAB6lqQEQeAc4BblTVIhFxAx+JyDBgLXAy\nMFBVVUQyVLVERN4A3lLVV5oYarqqTnHGvAO4kMjhjrcAR6rqWhFpaNbJEmCkqgZF5DDnWU9tYpz9\ngSGAD/hWRN52Zrb90XmeRKf8VSITrqYAo1R1uYhstdxNVeeJyC1Anqpe4cS++X0bDNwE/E5VC+u3\n3dk1tyfaeuf7yh0Tzs4vWFjI6suvoOaXXwDw9u1D5umnEyorY+OEf1D21lsA9H76KZJHjEA8Hry7\nD6Dq28iMzISBe+KtieONE2ZQo0FSvakkxyU3Pl6ghjVLtswM3bBiGXJiZG+xsuoAFb4aKPeR8M0X\nUO2n7J13SD38cJJH/p743Xenau7cSJz9+uFOz8CTk7NV/xoMEiovR7xe3MmNx2GMMWbXFPb7CW7a\nRGD1auL799/m/yPGGGOMMTtA7xaWR+NQYF8iiSWARCAfON2ZseUBugODiCzXrAaedGaKvdWCcYY4\nybMMIIXInvQAs4GpzgrB6Q20SweeEZHdAQWa20z9A1XdBCAi04HfE1kaepWInOzU6QXsDuQCs1R1\nOYCqFrXgecYAL6tqYSvadnhNJtFEpJzIP4xtbhE5nTOtXaLa2aludR12ElFV8+bVFvu++57kESPw\nZGay2/33UzFrFnE9elD981LWXHoZmVdfQ/JpZ5Ca3PRbHBefwFHjLqTqqBMo3FRAOM5DQlYWPn+Q\nV75bw9/f/JH0xDi+Ov8AVhx5JK7kJHKvuRr/Tz/T8/77KP/4Y7y77UagoIDExISt+g4HAlQvWsTG\nOycQv8fudLn++m32WzPGmF2NBoMECwqo/ulnEvYaiKdLl9q/vO2KgoWFLDvmWNTvJ3733en99NN4\ncuzAAmOMMcbsUKuILOFsqLy1BHhGVf9aWyDSD/gA2E9Vi0VkKpDgzAbbn0jibSxwBZFkUjSmAiep\n6nwROR8YDaCql4rIAcCxwHcism+9drcDn6jqySLSF5jZzDj1czsqIqOBw4ARquoTkZlAQv2GZosm\n1+6paqqqpjXwlWoJtIa5s7PZbdLDpBwymszzziP18MMJrFlDuLqa3GuuAbcbT5dc0k86sbaNJyeH\njFNOoWblKvInTACg7JmpLF9dSGGFH7+vksriImr82+6NFszPZ81ZZ7HxjLNIfu9DfjNoGN60dCr8\nQabM+pWrRvTgsWP6oG43kpBA5rhxlLz8Muv+9CdWjhtH0ogRuHffE1/e7yiL33qmWbikhDWXXkb1\nwoWUvjqdyi++2Pp+TQ2h8nJUG8qzGmNM5xQsKmLZCSey5tJLWTH2NIKFhU3W11CIUGkpYb9/B0XY\nfsJ+/zbPUfPrMtQp8y9digab3w/UGGOMMaaNjSeyTLEun1PeWh8BY0WkC4CzLLE3UAmUikhX4Gjn\nXgqQrqrvANey5XDGcqDpUwIj99eLSByR5aI4ffZX1a9V9RaggMgssbrSiSwjBTg/iuc5XESynGWb\nJxGZ6ZYOFDsJtIHAgU7dr4BRTtKQFi7J/Bg4TUSyW9G2w7MNsNqYiBDfty897r2XLtdfhycri3B5\nOSvGnkbVd9/R75WX6fviS8T17LlN24RBe4GzJ5n3wBH8WFhNTTDEp/95mmk3XsfCj97DX1kJQFlh\nAfkrllE5fz7B/MhBAmWvv4GEQpG+4tz869j+jF0xm+xrL6Jk8mT6vTad+L32omZFZHVuYM1aNj09\nlZtmreOgR7/nXx8upaomVPdhcNU5qdOVuuW//WBRMYUPPsTaq6+hevFiNFSnnTHGdGLh8nLC5eUA\nBAsK0OrGD38JV1dT+dVXrLniSoqenkqoZOc98TuQn8/68Tey/uabtzrAJmGvgcT1ifzhN/2UU5B4\n++OlMcYYY3Ys5xTOi4GVRGZcrQQu3p7TOVX1RyJ7e73vHKz4AeAH5hLZj+w5IokoiCTC3nLqfQ5c\n55S/ANzgbP7f4MECwM3A105fS+qUT3QOdfwB+AKYX6/dPcA/RGQuze93D/AN8CqwAHjV2Q/tXcAj\nIouBu4gkz1DVAuASYLqIzAdejKJ/nLaLgDuBT52290XbdmcgO8Msory8PJ0zJ2anuG63TU89Rf49\nEwFwZ2TQb8ZrxHXrtk29UGUlweJiStblsz4xi1n5NZw+NJtpV55XW+eSR6ai4TAzJt5Ojb+ac667\niVWnnEq4spKkgw6i2z33EJ8dSfRWr17D8sMPr23b7/UZxPXqRc3Spay+/ArcqSlkPPQox738K+tL\nq9mvbyZTzs0jI8lb26Zm1WoKJ08mYfAg0o4+pvYUzfIPP2TNFVdueabXpuPp2tUOJjBmx2qTNYQ7\n+2fsjhbctIm1N9yA74svSTv6aLrefFOjS90DGzfyy2GHg3Nac99XXyFx8ODoxyopIZhfgCsxAXdG\nJu7UlOYbtTENBglu2kSwcBPl77/HpsmPk3bC8XS//XZc8fGROAsL0ZoAkpSIJ8NOWzadxnZ/xtrn\nqzHGNGjX3QcjRpxlorWHAJjWiyZbaeoJ+/2RWVpeb/OVgcQjjyS7a1dCy5bh8vtxNbJBvzs5maKQ\nmzlFLn6TncTxOWESqEHEhWqY+ORkPPHxfPv6KxSsXA7AZ++8xqg3X6e0sIx1xBPvSSQnFKagwk+a\n240kJaE+H7hcuFNScSclkTBoEP1em46IsNGdhNu1jOxkLzcfN4i0hK33IvT27tXwqZ11X7tc+Jct\nI1xdTXy/ftG/kcYY085UFV9JMaFgEG9iIgkpzc2mb54nO5ue//wnGgwiXm/TSSMRxONBnSSaxDW3\n3+sW4aoqiqdNo/ChhwHoNfkxUg4+eLtibw3/smWsPPscwhUVdPnTn8g86yxCZWVb7f9phwkYY4wx\nxphdwS6bRFNVgoWFBAsKiMvNxZObG1W7wMaNFDw8Cddpx0Hf3Yj3JpKZkNlo/aryMuZ8+gFLv5rN\nkMOOpv9BhxBISMLdSP0Fa0sZkKrMf+JuKktLOWn83zjrgYfY9POv9Oi/B/GJSeT02rJfYlVlJcXi\n4ejXVlFSFeSz/+vGpsoajrx/1v+zd9/xUVXp48c/t03vmVQ6hA7SAlJEERVRVESssCr2Al/bWtfu\nb9e6u+rqrrtiw7rYUBQV14IFEQkivRMgoaRnJtPb/f0xQ2gJhKYC572vfeXOveeecyfBZO5zz3ke\nBrZ28tBLryLP+gL7sBNQMrPIJE1Dy7zfAl1n2vVD0HUdj9WALO/+UKCx2WXmPn3wTppIZOkyPJde\nQtVzz6FmZ5P/yCPI+3CTKAiCcCgFaqp58+4/Eqitpt+o0QwcexEm64HP5mpukRXF7abNa69S89LL\nWI8fipab2+wxUuEwga++anjt//xzrEOH/qozflOJBNXPP08qEACgavJkWj77LIY2rZFNYtmmIAiC\nIAhCc0mS9E9gyC67n9Z1/eWDOMapwGO77C7RdX0M6QIGwgE6aoNoiaoq1o89l0RFBVrr1rR6/VWM\nOXu+uUkGg5T/+c9w0dk8sPl55iyYy5CCITx83MN4zI3fUIXr/cz78F0Avn/jJVzd+hGSjLT2WACo\nqI9QH07gMGtk2410L3Cw5KO3KV26mKHXXct7Gz5kdsUcruhxBR1yspAVhXZ9ihhzx/0Eaqtp33cA\nn5cEaeG2cMPJLXGYNMrqQvgjCT5fVc3yqhDTrr8Ws83Y6PVJkkSWTaM6XE1lOIFVs+Iw7r1mhOp2\nk3XFFdR/8y3ljzxKdOVKcu66UwTQBEH4Xdm0YhmB2moAfv70I/qfde6vOr6saZh79CD/0UeaPXu5\n4VybDc9ll7H5ttuRjEZcY8eSCoVQbL/ekk5ZVTH37o3/4xkAmDp3wtCuLZqYeSYIgiAIgrBPdF2f\n+CuMMROYeajHOZodtUG0VH09iYoKAOIbNxIK1KJ5s5H38oRfT+nEcpzMWT0XgNmbZxOIB3YLoiV8\nPojFUDUDsqKQSiZRjUZ0SSEcjhPyx4ihM37yXNw2A51ybNx2amc8FgPZ+Xm4C1pgKWzJ01+mq+n+\nUvELn439DLNqxmx30L5v/4axRihWhrfLxmzTMGoK8ZSJni2cLN7ko1dLF7K05yXnW4JbGDdjHDWR\nGq7vNZHzO44jy7r3QJpsNmMdMABJlpDNZkw9eu71HEEQhF9TbvtCFE0jGY/TukcvJKWpecCH1r4G\n0LadY+nfnzZvvA66Ts1LL5N9040ohYWH4Aqb5jjjDLT8fBKVldhPPlks3RQEQRAEQRCOWkdtEE2y\n23CMu5DEoN4oBiN1SgxLKo5RbnzGFqRzluXddy91eogpp0wjmVSJpuqwqJad2iVqa6n429/xvf8+\n2Q8+wIUPPsaa4rkU9B3MloiCfaOfabOW076Pl9cu6k38q08xR0CqyKYiaqBt0VC8fYYSlrY29ClL\nMlIjwTB/VZjPX1yKJEuMuLwbxiwzXpuRly/rTzyZQpUlQrEEkXgSl1nDYtz9R/5d2XfURGoAeHXZ\nFE7IPwOTYiEQSxCOJbGbVDRFxheOoyoSTrOGxZDuR/W4cYwYsV8/A0EQhEPN7vVyxdOTCfpqcXhz\nsNj3/oDgd0WHDRdfApkKyN7rr2uyaTKRIBIMoKjqQVmyuo3qcmE/6aS9X2oiQaKigvCSJZi6dkXN\nyWkoPCAIgiAIgiAIR4KjNogmezxUX3s2d35/F16zl8eyHsOo7v3Dvpabi+4PM+mfP+C0aIzqmU+P\n7O03ZbWRWqS6SnzvvovsdOI8pgPawifItznw5Q5DlWIkPJBXZeXnzzbSsaeT2sceJhCP47xoDRVF\nF1Bj8XLuv3/kplNb8eCgh5m9eRYXdx2HS9p5qWQskuC7t1dTXuIH4If313LSpV1RDQpem5FYIsW0\nBWXc8d5iFFni9SsGMKjD7jMI+ub2RZVUEnqCAbkDWVwWwGmIceazs6kJxrj79K6YNYV7PlyCKku8\nedVABrRrXj4gQRCE35KqGbBnebFnHZ6zpxSng5bPPEP15OexHn88WkFBw7FEXR2xkhJI6Sgd2rNl\nwzpmvfoCztw8Rlz9f1hdTefrPBQSNTWsG302qfp6JKOR9jM+RmvRAj2ZRFaP2o8bgiAIgiAIwhHk\n18tO/Dvji/m494f7KK0vZUHFAj5Y88Ee21eFq1hWvYzKUCU1oRiDCx3cdbaVGtNUqiIbqQhVUBep\nY9rqaVSn/CgeD9b+/VHWvg9L3iVq9fB+6Rec8cEZnPO/s1B615HbzoGqAokEAIlNpbTp5uCjX0rp\nXuAgGFQJVPXgTz1vpTDZgkBFgkh9hHC9n/rqKhKxCBbn9iVCVpdxp8IAwWiCqfNKAUimdKbOKyOR\nSu323lrbWzP97Bk8c8IUxrS+gbqAxsqt9dQEYwBIEkwtTveTSOm8M7+UVErfrR9BEATh4JLNZmxD\nj6Plc8+RdfnlKJlKoHoigW/aB2y4aBwbxo8nUlfLB48/RHXZRtbN/4kFn328Uz+1wRhLNvlYU1GP\nLxw/JNea2LqVVH19+vqiUaIrV1I79W223HkXsY0bD8mYgiAIgiAIhzNJktpKkrSkGW3G7fC6SJKk\nfxz6qxMac9Q+GlZllXxrPut86wBo5WjVcCyejJPQE5hVM5AOoE34bAIb/BvIMmXx3zOmctPIAs76\n4EzuH3Q/ryx7hRnrZjC89XCu63Udc0vnMPytF1A2lSOZSsHsprrXpXw25zYAUnqKryq+4MZLb8VI\nDGPHQvRkCu/tt5EwJhnfJ4+r+hYQri5HMyVQU0amPPQLAANHt8PWzYZJSbFk6gsMveBK7B4TsizR\ncWAexaW1FLjSSzpNisTYPi35eWMdiixxXlFL1EZyvplUE15TDprbTSCapFeBgUgiiduiURuKo+tw\nbr+WLN7kQ5Elzu3bstEqnoIgCMLBJ2kaaiZ4tk0qFiP009yG13o4jCRt//0uK9u3I/EkU+as56kv\nVgPwr/F9Ob1n/m7jJP1+UtEossGA4nTu83Vq+fmoubkkystRXC4MHTqw6Y+3okciRJYsoc3rr4l8\naoIgCIIgCPuuLTAOeBNA1/VioPi3vKCj2VEbRHManfz5uD/z8dqPybPmMbBgINFklPpYPS8sfoGt\nwa3cVnQbLewtiCQibPBvAKA6Uo0vWgdAjiWHzu7O3DP7HgA+3/A5V3W+DNsXpcTOG4ChVxckqSe4\n27FwU4oz2pzLsuqH0GSN0R1G83HV+4wuHE3wr7dTHa7inhX38MjgP5NNLj/PnM5PH7wFwMlXTqRd\nrwJKFlZTsqiaE/pkU7rBz3EXXM2MfzxAzwm3YDBbufuTpUxfuAWDIvP5zcfjlRXa+XVmXjsERZLI\ncjS9XNVsUDEbtv9zSKV0Prvp+J1yog3vkoMqp3OiCYIgCL8dxWLBe911BOf+BLqOQTNwzp8e5JvX\nXsSdV0CvEaMa2oZjSb5ZWdnw+n/Lyjm1ey7KDg9VErW1VDz5JP4Pp+MYdTo5t96G6tm35aCK10u7\nd98hXlET5TU7AAAgAElEQVSJmu0lvGgReiQCQCoUAl3MYBYEQRAE4fAiSVJb4DNgPtAXWApcAgwC\n/ko6pjIPuE7X9agkSeuBt4HTgDAwTtf1NZIkvQJ8rOv6u5l+A7qu2xoZ6zXAmtk1Sdf1H4BHga6S\nJP0CTAEWALfqun6GJEke4CWgPRACrtZ1fZEkSQ8ArTP7WwNP6bouZq8dBEdtEA3Aa/YyoccEIJ3L\n7JN1n1ARquCN5W8AUBGq4J8n/ROLZmFQwSDmbJ5DZ3dn7AY7szfN5oVTJpOKxnEYHPhjfsyqGUNS\nYfXcH6ivqmLMnfeDwwntjsOyqpLK0s5MOeVDzJrGluBG5myZw6ntTuWGX+6lKlxFZ3dnltSu4Hhn\nFptWLGq4zvWLfsbbth2SBL1OasW8aesoWVjF+kInx5x0NiRizF4bJs9pwmXRqAvFWVVeT1a+iwXT\n1jX0c/GfBzX7eyPLErkO0077HCJ4JgiC8PvRsTP5H31CwGBiiy7jMqmcc9eDKKqG0bK94I3NpDLx\nxEKueX0+RlXmiuPa7RRAA0j56/G9/Q4AvvenkXX1NfscRJMkCTU7GzU7O/26b1+cY8YQW19C7r33\nonhELk1BEARBEA5LnYErdF2fLUnSS8AtwDXASbqur5Ik6VXgOuCpTHufrus9JUm6JLPvjGaOUwGc\nout6RJKkjsBbQBFwJ5mgGYAkScN2OOdBYIGu62dLkjQceBXonTnWBTgRsAMrJUl6Ttf1Q5PX4yhy\nVAfRdrQpsAmX0YXb5G5Isq9n/ucxeXh06KNEEhEkSeLKmVeysX4jbqOb14a+yMvH/YeFdUsoajGA\n4slTANDZ+Yl7pzyNBDaWlIYZ1MFMOFnH/YPux2lwcs0x12A32IklYyT1JJLZQP+zzmPL6pXIikK/\nM8fgzG9Fj2FtiIUitOluxubOZfmcKgaNbseWlMao1m42rqzh/IsH8MR3a+jb2o2iSJxyVXeWfL2J\nTsfmYrSIH7cgCEeebVUhI8tXYOreDTUnB6mRpetHmtpoipKwwuPTFrOwzMep3XJ5eGxPsiw7zzrW\nFJkhhV5m33EikiThse7+QEQym5CtVlLBIJLFgmwxH/D1qR4Puffegx6LoTgcR8XPRBAEQRCEI1Kp\nruuzM9uvA/cCJbqur8rsmwJMZHsQ7a0dvj65D+NowLOSJPUGkkCnZpxzHDAWQNf1ryRJypIkaVvl\nwxm6rkeBqCRJFUAuULYP1yM04qiOqtSEa0iRwqgYWVy5mLdWvMWJrU5k8ojJvLbsNW7seyOqlP4W\neUzpJ+gra1aysT6dILk2WksoHuTLhx6h69DhZLd04crOxVA0kN4XnEfMoLNtLsCP5V/zn8X/wabZ\neG7tJj4Y/QG51lwARncYzbQ103jkp0do72xPkaUHthwvF/39aWqiNfyzZAp/8FxCgdKSDQu/YfGX\nn1F47BDOv+tUDCYTloTGm/f9SCqlY7ZrPPGn/sR8MZYsqiK3qwfT8FymldVxXdLL3uuPCoIgHF4S\nVVXESksJzp3Llnvvpd0H09Bycn7ryzpkthV2kSWJlK6zsMwHwMxl5dxzRjeyrLufYzYomA1NB8ZU\nj4d2094nOHculgEDUNwHp7KnYrHADrPi9pU/EicaT+EwqRg15aBckyAIgiAIwj7aNSdFHZDVzPbb\nthNkCjtK6US2hl1PAm4GyoFembaR/bnYHUR32E5ylMd/Dpaj4rFwMB6kMlRJXSaXGcCW4BbeWfUO\nC8oX4Iv6ePinhynxl/DS0pcwqSbaOdsx6atJzN0yd6e+si3ZDGs5DEVSOK/jeWhxKCwaSJ8zzmJq\n2TTajx5BalRXriu+GX/M33Ber+xelIfKWVm7kv65/TEq28NZRsXIytqVANze/SY+e/RRStYuYuJP\nt3DBrEv4ZONnxIJBUiE/Lbt2o3WPXvw0bSqhuipKl/5CoCbScFMVro+jJ3XeebSYedNLmPnUL3Rw\nW3hzXikpdJLJFKH6GOW+CD+uq2aLL0wiuXvFTkEQhMNBorKS0uuuZ+OVV6Hl5+EYNaohD9ehFI4n\n2OoLs8UXJhRLHPLxtqkKRHnssxX8vxnLUGVo57U25Kls5TFj1Pbtz7qeSpEMBAAwtG6N+7zzMLZp\ng6z99sv3qwNR7v9gKef/Zw7frKokHP/1vs+CIAiCIAg7aC1J0rbcSONIJ/VvK0lSYWbfxcA3O7S/\nYIevczLb64F+me2zSM8625UT2KLreirT57YniPWkl2Q25jtgPDQs86zSdd3fRFvhIDjiI5GBWIDp\na6fzz1/+Sd+cvjw4+EFcJhdLKpegyRp/m/83nj7xacyqmXAijCzJyJLMy0tfJqWnKK0v3ak/j8nD\nQ0MeIpwIs6Z2DSFNpv+lF3PujPOpDFfy/KLnee7k55AlGYu2/el7vrWAT8Z8Qm20ljxrHi5TutJa\nMpliQ3WIizpdxoLyBTgNTuprqrBY7AxzDmNV7SrGF15I8KdVvPLuQ0iSzBk33cHWdatRNI1Pnvkr\nVzzzJu16edm0qo5eJ7VEAlKJdFAtHk2iIPHsuD7YjSpVpQF88QSXv/8LZbVhHCaV/91ywm75zwRB\nEA4HwR/nEl2+HIDKvz9J69dfQ7bZ9nLWgdF1nQUb6rj05Z/QdXhpQn+OK/Qe8qrF8WSKf3y5mlfn\npAvd1IbiPHx2d2beNJSNNSHaZlnJsZuoDkSJxFMYNRmvrfH5x6mUTjwaI7F6JVIyCaSraypZWb+L\nABrA4k0+pv2yCYCJb/7M93cMx6wd8R9bBEEQBEH4/VkJTMzkQ1sG3AD8CLwjSdK2wgL/3qG9W5Kk\nRaRngl2U2TcZ+FCSpIWkCxUEGxnnX8B7mVxqO7ZZBCQz575CurDANg8AL2XGCwGXHthbFfbmiP80\nGowHeeSnRwCYVTaLFTUr6OTpRAdXB2755hYAnv3lWV4Z+QofrvmQIQVDkJDIs+SRZ81jVPtRu/WZ\nTCXZEtyCLMk8Nv8x7hl4D5XhdOWzUCJEtiWbV0a+gtfsBaAmGOXl2RvY6gtzyymd8Zi2L6mpDsW4\n7s35TD6/D3/t9Qx2k5HTJv2RoB6hvbM9r4x8hQLJy8z3HwdA11OsX/gzJ185kV9mfozV5SYRDdGx\nKJdB5xSiajKKJnPMSS1ZO7+SbkML8LpNtLLaSUWSfPPmSnpe0IGy2jAA/kiCaDxJKhJBNh36QFqi\npgY9kUAyGFBdrkM+niAIRzZjYYft2506ouXloR7iBPbheJIXZ5cQT6YfVrzw3Tr6tnZhMx3a4JOu\nQ31k+2ys+kicFJDnNJPnNFMdiLLVF+aPby9k9tpq+rR2MfniIrz2nQNptcEY/51XytLNPm4+vg3m\nF57B99+pSGYz7ad/iKFVq0P6Ppory7p9lYPHakCWDm2QUhAEQRAEoQkJXdf/sMu+L4E+TbR/Qtf1\nO3bcoet6OTBwh113ZPavB3pktlcDxzTSJg4M32WMWZljNcDZu16ArusP7PK6RxPXKuyjIz6IpsgK\nuZZcykPlyJKMWTMz4bMJTD5lMnbNTn28nm/LvuX2/rdTG63l34v+zYODHuSOAXdQGapk7pa5nNT6\nJKyGdJKZaCLKT1t/4k/f/4kscxZ/P+HvWFQLE7pPYFbpLC7udjFuoxubYftMiPd/3sQzX60BoFsL\nMyOPcaLKClnmLNBhfJ9WLJi6lrKVtQCcenUXOhQaWVI6g7u/v5ux7cZw+smnMuvl51FUlR7DTiYR\nj2FxujjzljsxO0y4dIn3HismmUhx1g29GTCqHX1HtEEzKhhM6R9zLKHjzrMQqYpyWrc8Pl22lb+d\n3gFn8Ww2f/wxzjFno3iyULO9aLm5SOrB/eeRqK6m9NrriCxejPP888i55RYRSBME4YBorVrRbtr7\nRNeuw3rsgIbKkAdDyB/FVxHGnmXC7DCgKOmlkkZVYWT3PL5cXgHAqd3zMDUzX1dtKMbXKypYttnP\npYPbYjEqeCwGpGYEiAyqzB0ju1AbjJFI6fy/0T2wGdOBu6r6KNe8Pp87RnZm9tpqABZsrMMfie8W\nRPtpfTWPfbaioc1/TxmF5Zh+yG3a4g9E8Dbv23PItcmy8tKE/hSvr+HC/q3w2hpLHSIIgiAIgiAI\nv54jPojmNXt59bRXmVU6i9aO1ny09iM2+DcgIfHGqDeYsW4GQ1oMIaWn+KzkMzp7OjO/Yj5/mfsX\nADRZo39ef74u/ZpeOb0wKSae+vkpknqSQlchlaFKCl2FXNvrWiZ0n4BVs2JS0zO6ookkwWiClu70\nzLNz+uVicS/n1Pfuw2l08vrpr5NnacmwjtnM+6m24ZqrNoYp7FvA2YVnM7z1cDRZw6abKex3LLKs\nEPLV8eVLzzHo3HFIskIyEWfZd1VEQ+kZCj9OX8fp1/bE6tz5xslgVjn+wk6Urqjl7lM6ce+Z3fD4\nKigZeSMA9V98Qdup/6Xk7DG0n/HxQU/MHV29msjixQD43n4H79VXgwiiCYJwABSbDaVrV0xdux7U\nfkP+GB88uYDaLSE0k8K4+4/F5k7/bldkiRHdc+nX5gR0HXLsRlSlebnIft5Qyy1vLwTgu9VV3HBS\nIX1auylwNa8aZp7TxD8u6oOug9Oyfebb8q1+5m+oJZmClm4zZbVhsu1GbMbd/8xHYtvzYEYTSdTO\nnbljWYIf55dx/bD2XNY2htP82wesHGaN4V1yGN7lyC0SIQiCIAjC79uOM8Wa2b7tIbsY4XfhiA+i\nARTYChjVfhQPz32YT0o+4bgWx2FQDOTZ8pjUZxIAwViQd858h7L6MlrYWiAhoaPT0d2RXyp/4a7v\n78KiWph+9nR6eHswofAPdKh2UT1jIaEzC/G0aIXVvL0kWm0wzMeLtvJ28SbG9m3B8xf3Q9EC/G3J\nfejo1EXr+HDNh1zV8RrsK+czclw3ard6oMCEbklQHa4my5yFw+ho6DNkVIkkIiiGfIbdeC9r/vcR\n8z6cird1W8685X6WfJvOHVPQwYmyS3LpVDxOvLSM4I8/0nrIYDSvG0nTiFTsULBD19GjMVKhEMn6\n+oMeRNMKCkBRIJlE8XiQjKJWqCAIvw/JUAhJ0xrygSUTKWq3hACIR5LU10QagmgATrMBp9lAoqaG\n0Lc/ELDbMHXrtsfZtbquU14fbnhdHYxiUGV+WFvFuf2av4TSYd592WgrjwVFlrj3wyU8N74v8aRO\nC7eZbPvuv2eHdvRyyaA2rNxazwNndWNzfZxv19YA8NSXazi/f2uczYvpCYIgCIIgCMJR5agIogE4\njU7uHHAnt/S7BYNiwG1y73TcarDS2dOZzp7OBGNB3j3rXUp8JfTK7sUfPkkvfw4lQkQSEe4deC+h\nzRX895E/ArCu+Ccm/P05bO50Hp5kKkldOMa9Hy4D0smRv7ltGDazmf6V/RuKFfS29+N/Ly/n1HM7\nU37PXSRqarD/+R5u/vlvRFNxnjv5uYa8anXROl5b+honFJzBM59XYTWqXDt0JJ2rK1j5/dfEI/Wc\ne3s/4vEUWS1sqLssLUrW1FByzjnokQiVVivtP/0ELScHNTcHz2WXUf/5TOwjRxItKcHcvz/SIUjM\nrWZn027a+4QXLsQ6eDBq1p6qAguCIBx6ejJJdM0aKp98CmOnTngmXIrq8aAaZDoW5bK6uBxPvhWn\nd/eoUjIUovLpf1A3dSoAeQ89hPv885ocqzZSS8/WOiO6ZVNSFebeMzuypCzAKd1y0w0SUYiFwGgD\nZd/yq+XYjcy8aSgrttaT4zDtsViMx2bkrtO6EkuksJtUtvjCaIpEPKmT7zShKc3LPVYTjFG8voZY\nMsXgDll4rOLBiCAIgiAIgnBkO2qCaMBugbOmWA1WOhk60cndidpILYPyB/HRuo8Y0WYEdqMdt8lN\nKL6loX0iFgX0hteBqJ9wMoIqS2iKzL/O7YwlVI1RsnJLn5sZXTgaq25n69womlGn9s23CP7wAwDS\nfQ9zwd3n8KcljxJNREmkUqiyTFW4iuLyYtTAMI5vY6OLXkHZV9MZeM4FBGuqsLpc2NzOJt9TKhxG\nj0TS28EgejQ9A011ufBOvB7XJRcT9PtIRqPYjukO9oMfRJPNZkydOmHq1Omg9y0IgrA/kjU1bLx0\nAsm6OgKzZmFo0xrX2LGYbQaGXtiRQed0QFFlLA4Duq4T8sfQdR2DUUWORomsWNHQV3jRIlznjkWS\nG1/aqcoqLy9/hn49e3OSwUtEXcn5RYOwGlUI1cKCV2HFDBg0CToMTwfTmsliUCnMsVOY01T1852Z\nDQpmQ/phS5bNyKc3DmVRmY9B7bPItu+9yEwqpfPmTxv468xVAFw+pC13jOyCsZm54QRBEARBEATh\ncHRUBdH2h9vk5tb+t3JjvxtRZRWXMb1Ux1PQkgFnn0fZssUMOm88JmvmZqd+C6YNP1BitPHcJV0w\nxGUCs97j1e+/RtUMjH/sKYqrijFJZooKh7KxvB5Dfl7DeHKWh2AqzAktTiAedXL7p4volu9gZG8z\n0WSU1lkWWkXq+d/jTwBQMm82Fz7wGBZn0wE0AMXpxHX++fg//RTnmDHI9u03WorNhmKzkbRaSCWT\naEYjRot1D70JgiAcOVLR7cvaU+Htyy3NuySyr6+O8N7j8wnVxzhxfBc6FmWTe9edlF5zLYrNivfq\nq5oMoAE4jA7uOvYuXl/+OnZZpX/+INzbqiLXlcP/7ktvl82DmxbvUxDtQJg0ZZ8CcADxVIqlm/wN\nr1dsrSeaTIkgmiAIgiAIgnBEE0G0ZnAadw9Qme0OBo69kMQZ52CwWFAUJb0M57O7MK74mMGXf8p6\npYY2agteL/4RgEQ8xqrF8/g29S0LKxdy77FGzhx3NlqsJZKqEC+vwHnheQw0RjieCxg/uZiSqiDv\ns4midkXc3v92DBKwOtBwHSGfD0lRkOU937iobjc5t/4R7/9NQjaZUOy73yxZHHsOxAmCIBxpZIeD\nVv/5N+V/eRhDhw44TjutybZr5lcQ8scA+OnjdbTpmYW5e3faf/wRkiShehuvaxlPJqkJxgnHkjjN\nTm7ud/PujXZcvimrIDUejEulUkiS1KxqnvtD13XC/hgpXcdgUhuqO+/KqCrcOqIzv5TWEU+muPv0\nrtgbKWIgCIIgCIJwuJMkaSTwNKAAL+i6/uhvfEnCb0h84j0AmsGIZmgkB0wyjvuFU3APvpHowD9y\nzEmnMn/GB5isNgq6dWPDD08B4Iv5MjMdDLgvuKDh9LZARX2EcCzZsK+kMs6YPn0BCJm8dBlyAhUl\naxl26VXbZ8HtheJwIOYICIIgbCcbjVj69qX1Sy8iGY0oe8gHmV/oAgnQM9uyhKxpyNnZexxjQ3WI\nM5+ZTTie5Jy+LbjvjG64LLtUv7R64dyXYfl0GHANmD279eOvqmDOO2/hysun50kjsTgcu7U5UIGa\nKO89UUzQF+OECzvR+dh8NFPjfznaea1Mn3Qcuq6TZTUcssCeIAiCIAjCb0WSJAX4J3AKUAbMkyRp\nuq7ry37bKxN+KyKItg8SPh8pvx9J01BcLmTTLnljDBYY+ShICsgKDLweo91B39Fj6DFiJLKqEtCi\ntLa3pn9ef87peE6TY2VZDLw0oYgHPlpGp1wbx3fcfpNmcTg5+crrScRimKw2FG3fElBDOiF0KJbA\nqMrNyn8jCIJwpJJUtVmFTrJaWBn/wEDq66JEzDL3fbqM20d22WMSf4CZS8sJx5MUtXYzcWA7YlVR\nQi6wONKBtHB9jFTKhNLuTExdRoG6+8OZkN/H9L8/Qvna1QBYXW56nHjKfrzbPVv3SyXBum2z7Upo\n1zu7ySCaLEuNVv8UBEEQBEH4rRQVFamAF6gqLi5OHIQuBwBrdF1fByBJ0n+B0YAIoh2lRBCtmVLh\nMLVTp1L19ydB02j92qvUO+w4c3Iw29JLI6sDUWTZg/vs59InqekbpC8rvuW+H9K5bu4ecDdPD38a\nk2LCZmh6xoOiyHTJczD54n4YVBmzYecfldFi3e+8ZXWhGI98upx3isvId5qYdv0Q8pwikCYIgrAn\nBpOKpMk8W7yeTbVhhnbMZvaaKk7tnpcuDtCE4ztl89QXq3j8jO589fRCosEE3lY2zvy/3gB88u9F\nlK/zc8xJLel9UmvWLy6joNCFM9uMmkn+r6d04pniMADRcOiA3ksqEiFZH0A2GXda3p/XwbF9tl0H\nJ4radI43QRAEQRCE35OioqLBwAzABESKiopGFRcX/3CA3bYASnd4XQYce4B9Cocx8em4mVLBIP5p\nH6RfxOPUzviIuJZi04p0ALqkKsj1b8xno6+Cl1e8yWsrp1ITqSGeivPjlh8b+plRMgNN1vYYQNtG\nliWcFsNuAbTmSFRXk6iqQtf13Y5F4yneKS4DYIsvwqKyun3uXxAE4fckFYvtVCBgf4X8MQJ1USKh\neJNtOufaGN4lhxe/L2H2mirC8WSTbQE6eK18c9swDLEUnQd46Tsyn3g0STKRwlcZonxdOkH/oi/L\nCNRE+PatVbz98DzC9bGGPixOJ2fdchetuh9D0Zlj6XrcsP1+j8lAAN/06Wy48ELKH3ucRG1twzF3\nbnq23eib+3DC+C6YrPs+01kQBEEQBOHXlpmBNgNwkQ6iuYAZRUVFIqORcFCJIFozyVYr9jGj0y80\nDemU40lIKapLNxLw+zAEqvjHme3Y5P+Fv8//G48XP86Li19EQuLyHpdj02xossakPpOwaTsH0CLB\nAOt+nse3b7yMr7KcqkCUkqogFf5Io0GwnSR3n6Ea37qVYFWA2oowoergbsdVVaJP63SVUaMq0yX/\n4OfVEQRB+LUkqqrY+sADbLnnXuIVFfvdT6AuSn11mPrqMOsXVjYaSNMUmSGF2dz1/mLWVgZ47+dN\nrNxav8d+LUaVApcFVxYEqz9ny/KpnHJZSzSjgs1tapjt5fCaiUXSAblUUifoi+GvTlcLlSQJT4tW\njLrhNlp374k/HGNrXZBwfN9XKaTqA2y9737imzbhe/ddYuvWNRwzmFVcuRZadnZjsRv20IsgCIIg\nCMLvipd08GxHJmDPyWv3bhPQaofXLTP7hKOUWM7ZTLLZjPXcMejDB5GQYUFoFQUbY/QYdjILZ37M\nnHffQpJkTrvjTrpndWdp9VK2BLeQSCXo4OrA9DHTQQeHwYGySyVNX0U50x57EAB3t748MGct8zfW\nkuswMvWaQXitGgYNDMr2/Dmq7kdd8ylSyTcw+AZwtQazi1Q0SiiY4sMpm6ivieDOtzD6hl5Y3eaG\n8bKsRiZfUkRZbYh8pwn3rgmuBUEQDhOpeJyKp57G9/40LKeOIBAMEFpRiTu/BRanq9n9JBIpSpdW\n89XrK1BUmdOu6Ukq0fhDDE2RcFk0qgLpmWJua/N+hy7+aiZLv/kCgHC9nzF33o/ZbuOi+4+lZnOA\nrBY21i6oxGhRadnFjdGi8s0bKxlxZXeMFo1oMMhXL/+HtieM5F+zNjJnvY9JJxZyxjH52Ey7zxhL\nVFfjnzkT2WrDdvxQVLc7fUCRka1WUsH0QxbF+fuqzJwMBkkFAiDLqB4PkiIeIAuCIAiCsFdVQISd\nA2kRoPIA+50HdJQkqR3p4NmFwLgD7FM4jIkg2h6E4iGC8SCSJOE1ezG6PIRNMpKeYlAyD7NuIBGL\nsXpuepm1rqconTefoUXHAfDHfn/EpKb/G842Nx0AD/t9DduqzcX8jemlluX+KOW+MN9sfY8lVYuZ\n2HsiTimPKn+UNrHVSNMnpU9aNRMu/gCsXiRHS+Ko1Nekc+fUbgmRiO9+I5hl0TDFUtSWriFW0AKD\ne/dKcIIgCIcFXUd2OLBefRVT7rmFZCJBQedujL71biyO3QNEeipF0FdHKpnAYDJjstmJhxMs+roM\ndEjGU6yZX05u+8Zn6WZZjbx77WDe+mkjA9tn0cJlbrTdruQdgkGSLIMkoWoKzmwzzmwzgbookgQn\nX9YNk03j55kbMZhVJFkiEowTCUkMHHs568Jx3lnwC6f3zCMUSxKMJXYLoiWDQcqfeAL/Bx8CkH3b\nrbgnXIaiyKhuN23eepPa//4X2/HHo+bmNvc7fcilwmHqP/+cLXffg2y30/aN1zEWFv7WlyUIgiAI\nwu9ccXFxoqioaBQ75EQDRhUXF+8578Ze6LqekCRpEjATUICXdF1fesAXLBy2jpogWiqZJFBbQ+X6\ndeS064DN7UnfxDQhkojw1cavuGf2PXjNXl4Z+QpfbPiCeeXzuLHvjXRwdkCRFQK1NXQdeiLfvfkK\niqbR44STObZNARd1G4fH1HRgqjZSy+ra1RhVIy07tKL7sJPZsnoFdpuFge09/LiuhhYuM7kulSu/\newKAQCzAxe0e4k/TlvDuySG82zqLByEZgfeuQBo3FbPHjqfASs3mILntHWim3X/MQV8dr97+f4Tr\n/dg8WYx/+ElsIpAmCMJhRtY0cm66EcXtomrrZpKJ9PLGzauWk0o2/pnJX1XJG3ffQtjvY9B54+h3\n+mhUg4m2x3ipKgsA0L53DiZL4/nAZFmirdfKXad33Wl/IpYkUBulqqyevA5ObK6dVxT0PHEEIV8d\ngZpqTvjD5VjsOwfpbC4jnY7NIxlPsXWtD6NFZdDZ7ZEkiaXflvHjh+swmBROuqsvVxzXjg7ZVt6Y\nu5G6cIzLBrdrmBFXE4wSj+lQ0LKh79i6EqKBKBanGUnTMHXqRP599+3Dd/rXkQwEqHjscUilSPl8\nVP3nefIfeRhZPWo+rgiCIAiCsJ+Ki4t/KCoq8pJewll5oAG0bXRd/wT45GD0JRz+jppPpSFfHa/e\nPoloMIjZ4eSSx5/ZY9AoEAvw5M9PktSTlIfKmbFuBgsqFjB782yWVi3l3bPexWv2IkkSLbv2YNxf\n/o5mNGJxurCY9rw0JpKIMGXpFF5c8iIA9w+6n9GXXUssEsZotfHMRX2oC8WJJVKs9v3ScJ7H5GHO\numo21ITYZOmCs/elaJvnweBJsOgdqNsIyQRWt5nRN/UmHk2hGRUsjt2XGsXCYcL16WTWgZpqErED\nT/pLPU0AACAASURBVMgtCIJwsMUiYSRJRjMam2yjZmeTPWkSlmAAZ04uvopy+p9xDqqh8WWWJQvn\nN8wA/nnGhxxz0khsbiu9hreiQ78cNIOMybbvy9xD/hhvPTSXVFLH7jEx9o5+RFWJr1dU4I/EObNX\nAcePvww9lWry2rblIbN7TBQW5SBJEiF/jJVzt2a+H0nCZUEuHtiGE/82C12HpZv9nN4zH7fVQIU/\nwvVv/MyGmhBPnHMuHQJBEsU/YfnDFZRvDNKuZ/Nmzf1WJFXFUFhIuLgYAFOP7iKAJgiCIAhCs2UC\nZ1t/6+sQjlxHzSfTWCRCNJP/Jez37TVopCkaPbN68mXoSwCOyT6Gmetn7tZu1dzZpBIJslu1JRKo\nx2AyE4uEMZiavlGJJqMsqFjQ8Hre1nmcXXg2VlM6X022puEx6Piqt5JrL2B85wtY5VvHhB4TUJP5\nvDG3lAteX8W0K+6kU98ylDn/gOUfwcjHwJzuw+Jo+oYTwGS10rJrT8qWL6Z93/4YzJY9thcEQfi1\n+Ssr+Orlf2O02jh+/GVYXe4m28omE+ZIhAvu/jO6JKGZTJisjVdBbtmlO7KikkomaNurL4qWnnFm\nsmmYbPtfjdJXGSaVTC+fr6+JIMsS7/1cxl9mLAdgYWkdfxnTE6uxeQE6SZIA0IwKXQbnM+f9tciq\nRJbHTDiSxKQqDZVBLVp6qehnS7dSvCFdbfPW9xbzwRXXkhh4Nl9+VM2IK/P3+70lamoIzZ+PmuXF\n2KH9IcujprrdtHzqSXyffIKWnY1l4MBDMo4gCIIgCIIg7I+jJohmstpo328A6+b/RKeBx+01aOQ0\nOrlv8H2MrRpLriUXt8nNKW1OId+Wz419bsBtTN/MdejcneCH0zEYrGyIh5k1ZTKdBg6h7+mjMdsb\nz6dj02zc0OcGrv3iWgyKgSt7Xokq7/yjUIxmPLktIeLnpj43EAPsBjvJQJDvrzqGuGZCtVlR4hoM\nvQ1OfgAsXlCbd3Nmcbo48+Y7SCYSKJrWaN4gQRCE30okEGDmf55m4+KFAJgdTk74w+UNgaVdJf1+\nyh95FP+HH4Kq0vbtqdBEYQFXbh5X/GMykUA9Nk8WZpv9oFxzVgsbWS1sVG8K0O24AmRVpqQy0HC8\ntDZMLJnCuo/9akaFbkMKKOybg6xIrF9SzbrFVbz2hyLeXbyZU3vkNSzlbOfd3ntrjwWjxYi9Z2tG\n9pP3u9pmsLqWmoceIjAz/SCpxbPP4Dj55P3qqzlUr5esSy45ZP0LgiAIgiAIwv46aoJoFqeTkdfd\nlA4aqWqTAa4deUwehrYc2vD6isLx1KdWEP/XO0RHjcLUowfJ4vnUPfdvct6Zytd//hMAP74/la5D\nT2xyDEVW6Jndk0/O+QQJCbepidkVigbWLEykMyMm6uqonvwC/o8/xjX2HGyXXgrObLDtX9Xefalc\nJwiC8GuSJAl5h0rGyl6W9KWiUYLffpt+kUgQ+nEu5m7dGm2rGow4vNk4vAda8XxnFoeBs27qTSqZ\nQtUUjGaVScM7snSzn0A0wcNjeuAy799MN5NVw2RNn+vJt/LtW6sIVIa5ZkwHWnXwoGZmovVs4WTK\n5QNYVxlgVM98sh27VnrfN75wnHVlNdiXL2/YF16w4JAG0QRBEARBEATh9+qoCaIBzQqc7UmqdBMV\n4y4FoO6ddymc9TV6JF0FU0ZCNRhJxKJIsoxm2PNySoNiINvS/Bu4cCBGMq6QlDQSFRVU/es5nGPG\nHLIlNYIgCL8lo9XKiGtv4Ls3p2Cy2eh7+ugmZ6EByBYLnksvpfKpp5CdTuwnDT/k1xgJxEgmdUw2\nDUVJF6rZdbZXgcvMSxP6k9Ihy2rY43toruxWNi7+8yASsSSRYJzqTUHceRYMJhWXxcAJnbI5odPB\nCRDGEik+XhfgshtvIXHnbSgeD+4LLzwofQuCIAiCIAjC4eaoCqIdMF3faVuPx3GcdhqR5SuIfvkl\nFz34GMt/+JaOAwZhOkjLgwBC9TG+eGkpW9f5KTrpVPL/z4Jv8nNITSSmFgRBOBLYPV5OveYGJFlC\nVvb850qxWnGPuwjnWWeCqqJmZR3w+MlkgmBNDVWlG8hu2w67p6EmMkFflM9fWEp9TYSTJ3Qjt50D\nRW284nOWbc8PVQD0VGqPFaN3pBlVYpEkHzy5gJAvBhKMf2AghkYqMYdiCSr8UTZUB+lW4CTbvvdr\n2ZHLojK8ZwteWZTionc+It9lxpCXs099CIIgCIIgCMKRQgTR9oFaUEDuXXcR+P57vNdcjeJyIRsM\n5N79J0gkUBwOctoXHvRxq8sClC5PJ4qe88lm/nDXaDwjTkTxNF1dVBAE4UiwLel/s9o6HCiOA5tx\nvKOwz8crt04kHgljc2cx/pEnG6o6r5y7lc2r6wD44pVljL2jH9a9FHRpTNLnI/jjjwS+/RbXeedh\n6twZ2bz3Cpp6Sk8H0AD0dFDPlbt7rs8tdRFGPPUtyZTOMS2dvDyhf7OCettoikJRGzcdc2zIkoRl\nH4NwgiAIgiAIhztJktYD9UASSOi6XiRJkgeYCrQF1gPn67peK6WXHTwNnA6EgAm6rv+c6edS4J5M\nt3/WdX1KZn8/4BXADHwC3Kjruv5rjHEwv09Hi+Y99hYAUF0u3OPH0eLJv2Pu1w85MxNMsVgO6o3b\nruweE9tWANncRjS3E2NhIfI+3FwKgiAIu9B18G+GlZ+BrwySCQAS8TghXx0hv494JAxAoLaaZDze\ncKrTuz3QZXObUOT9W6YZXbOGTTfehO+999nwh4tJ1tU16zzNpDJ4bCFGi0rbnll48hsvV7CqvJ5k\nKv35aMkmH8ldPiv5w3F+WFPFs1+tYVNtqNE+jJpCjsOEVwTQBEEQBEH4nSsqKpKKiopMRUVFB55D\nY2cn6rreW9f1oszrO4EvdV3vCHyZeQ1wGtAx8/+rgecAMgGx+4FjgQHA/ZIkbUuO/hxw1Q7njfwV\nxxD2kZiJto8kVUWx2X7VMa1OI+f9qT8V6/206Z6FZT9mOwiCIAi7CJTDf46HYCWYnDBxLsGUmfkf\nTaPkl2JGXn8zLbp0Z9OKpXQZcgKaaXuS/hadXYy8uge+yjCdB+Zhsu19eX0iFqWufCtly5bQtnc/\nTDYP0ZKSHRokCFXXgtOL07LnhySynKBDHwuFfXuDpCErjX9O7NfGTYdsK2srg9x8SidMqrLT8Y01\nIca9MBeA/87byAcTh+Ddh5lqgiAIgiAIvweZoNm1wINAFlBdVFR0P/Dv4uLiQzHjajQwLLM9BZgF\n3JHZ/2pmltePkiS5JEnKz7T9n67rNQCSJP0PGClJ0izAoev6j5n9rwJnA5/+SmMI+0gE0Q4Dmkkh\nu5Wd7FYHL8+aIAjCUS8eTgfQACI+9HAdX7/1Git/SFf5fO/h+zj12hs5/f9uRTMadypOY7Ia6NB3\n33KDhf1+XrvjRlLJBGa7g3Pu+ivGHv3RWrYkXlaGsaiI9bqZaHk9A9o1vVxfT6XYtGIZQV+Yio1O\nShbWcspl7bFnKagGA1aXu6GAQY7DxNSrB5HUdcyagmOX6qDl/shO26mUmNUvCIIgCMJh6Vrgr8C2\n/BbZmdeQmal1AHTgc0mSdOA/uq4/D+Tqur4lc3wrkJvZbgGU7nBuWWbfnvaXNbKfX2kMYR+J5ZyC\nIAjC0clohy5npLfbHkfK6GLVnO8bDofr/XzwxP9D11MHXN0ZIBIMkMosGQ3X+0kmEnz63y3Ynnie\nNjM/Z/ON93H312UYVZnaUKzJfmLRCPNnfIArtw3Lvq+gz4g8lnz9Li/ecCWv33kjgZrqndp77UZy\nHabdAmgAvVu5OK1HHi1cZp6+sA92k0gTIAiCIAjC4SUzC+1BtgfQtrEADx6EpZ3H6brel/QyyomS\nJB2/48HMjLBD+iTy1xhDaB4RRBMEQRCOXIEKKF8K9VshmSBRXU3Viy9SPWUKiZgCZ/4DblkO500h\nghmry73T6apmQNlLZdDmsro9dD1uGEarlWPHXkRlaZTarSG+mLaVerOHJ4srePzcXjz22QqufW0+\nZTWN5yhTDUY6HjsEWdk2U9nMsm//B0Cwrpata1c1+5qybEYeHduTaRMHM7xLDmaDsveTBEEQBEEQ\nfl+MpJdwNiYrc3y/6bq+KfO1AphGOt9YeWYJJZmvFZnmm4BWO5zeMrNvT/tbNrKfX2kMYR+JIJog\nCIJwZApWwlsXwXOD4V8D0QPlVD77Tyqf+CsVjzxK9eTJ6EYnOArA6sVst3PK1ZOQ5O1/Go//w+UY\nLY0n7d9XFoeTEyZcw5kPPo2//WBs7bycfFV3xvyxL26PiRcuKeL5b9fyw9pq5pbUcP9HSwlEE7v1\noygKnQYOweI0ct4d/dCMGm179QVAM5rIadt+n67LaTaQYzdh0kQATRAEQRCEw1IUqG7iWHXm+H6R\nJMkqSZJ92zYwAlgCTAcuzTS7FPgwsz0duERKGwj4MksyZwIjJElyZ5L9jwBmZo75JUkamKm6ecku\nfR3qMYR9JHKiCYIgCEemRAw2Fae3w7VQu55koL7hcHzTZvRkEklN/ymUZYVW3Xpy1bMvUrNlM67s\nXEx2+04FBQ6U1W4nqZo4xhpHVSWcreyYDZnxJQmPdXuBArfFgCI1vvrAZLVhsm4rcmPjtIm3EPLV\nYbLZMTucB+16BUEQBEEQfu+Ki4v1TBGBHXOiAYSA+w+wsEAuMC2Tb1YF3tR1/TNJkuYBb0uSdAWw\nATg/0/4T4HRgTWb8ywB0Xa+RJOn/AfMy7R7aVgAAuB54BTCTTva/LeH/o7/CGMI+OmRBNEmSWgGv\nkv5HpwPP67r+dKbs6lSgLbAeOF/X9dpDdR2CIAjC0SPk96GnkpjsDhTNBF3OghXTwdUGKauQnEmT\niK9dB7JMzu23IRt3nt2vmUxoJhP2rOw9jlMbijGvpIZyf5TTeuThtTd/lYDDrDWan0xVZCaeWIjD\nrBFPprhscLudllcm6uoIzf2JREU5jtNOQ/V6G45ZnC4sTlezr0EQBEEQBOEI8+/M14bqnMD9O+zf\nL7qurwN6NbK/Gjipkf06MLGJvl4CXmpkfzHQ47cYQ9h3Uvr7fwg6Tq/Zzdd1/efM9Mf5pMuoTgBq\ndF1/VJKkOwG3rut37KmvoqIivbi4+JBcpyAIwmHsQJOkAkfO79hATTUfPfkIiXicU66eRHab9iiR\nWogFQTOBLV3QKFFdDZKE6mm6AubeTPu5jJvfXgjAKd1y+et5vXCaNeLRKNFQEFmW9xrUSkUiJP31\n6PEYstWK6tpz+7r332fLn+4GwDrsBFo89hiK8+DNOtNTKZK1taCoqC4xm00QOAi/Y4+U36+CIAgH\n2UH5DNuYTBEBIxA9wBlogtCoQzYTLbPudktmu16SpOWky6iOBoZlmk0BZgF7DKIJgiAIwt4s/upz\nWg8ZiLFTC9Yky9DCLrJs2WD17tROzWoq72zTkskk0WAA1ZAuNNDKojPxuFYoskZHrw09mSIejVKy\nYB6fPfc0rtw8zrnzAWyexsfS43GilZWEf5hDzfP/wdy3H7l33bnHwF50zdqG7fiGjejx+G5tUpEI\nsQ0bCP04F9uwYWgtWyApe891pqdSRFetYvPtd6B4vRQ89iha9p5n4wmCIAiCIPzeZAJnkd/6OoQj\n169SWECSpLZAH2AukJsJsAFsJb3cUxAEQRAOSIsu3SlvkeKy767muh9u4OXlrxBOhA+430Qsxqbl\nS3j/kftZM28ua3+ex/Ipf+P/t3fn8XFV9f/HX5/ZJ/vWpjvUblCgbBEqBa2staJlE1EE/KIofgVR\nkUVRQf2i8MMdBGSzbNKWVZayVAqCINAgS2mhtHSha5qm2ZOZzCTn98cMaUqbZmkmk0zfz8djHpl7\n7rn3nplP53Qenzn3nLP2K+aQaqP5n5uoX9tINBJlwS03EIs0U7lmFe++9C8AYhUVVN50M3VPPUW8\npgaApvo6WpoaqbjqKmLrN1D32GNE33tvl+0oOutrBPfZB9+QIQz/v//b6Si01upqVp32JSp+8xtW\nnX56YtRdN7RWV7PhssuJvv8+TS+/TPW99/bwXRIRERERyXwpT6KZWQ7wIPB951xdx33Je3l3OsTS\nzL5lZuVmVl5ZWZnqZoqI7FEysY8dOm48b9W9075dXvE6kfju/xAZaWzg4Wt+QcXKFeQPGcLjf7yG\nWHMT1RsiLHlxA5Uf1vPEjW/j2vwUjhjZflzJ6L2I19ay7nsXseVPf2L9939A8+v/TZyzqYloJIIn\ne9vKn94ubi/1Dx/OmNtvY+xDDxKacgDm33Fetdb6ekiOUGurrW1/3hXz+babY80/bHi3jhORHWVi\n/yoiIiIJKV2d08z8JBJo9zrnHkoWV5jZcOfcxuS8aZt3dqxz7hbgFkjMJ5HKdoqI7GkyqY918Tjx\nqira1q3n8vHf4d2t77G8ZjkXHnwhuf7c3T6/meEPh4nHWnAOvF4f8ViMQHjbf6GBkBevx8Osi69g\n+Wv/oXD4SIZ+YhyuOUK8oqK9XmzDegCCWVn88547+Mxfb6L50cfJOXIa/hEjumxLV7ei+kpKyD/l\nFBqee47Cs87Ck5Ozy/of8ebnM+Ka37B1zhz8pcPIPe7Ybh0nIjvKpP5VREREtpfKhQWMxJxnW51z\n3+9Qfh1Q1WFhgSLn3KW7OpcmZRUR2SktLEDidsmVnz+RtoYGAmPHMuLOO6jP8ZAfyCfo6/6qmZ1x\nbW1Ub9rAosceYp+pR+L1eHn9qcf45Elfo3qzn00f1HHwcWMoLM3CPNuHpC0WI/LW22y44goCo0Yy\n4tpr8ZWU0BqPU19VyZa1HzJ8wiRWN0BhdpDSvBBez+6FtbWujrZIBE9WFt6cHJqicaLxNvJCPrze\nfpnFQSRTaGEBEZHUSNnCAiKplspv09OAs4CjzezN5GMmcA1wnJktB45NbouIiPRKbONG2hoaAGhZ\ntQpvvI2hWUM7TaA11dVSX7WFptrabp3fPB6KRozi+PMuYNT4SZT4Anz6a9/i1ncbuPa9dTwVbqGS\n1vYEWrymhubFi2lesgTX2Ej4wCnsfc/djPjd79pvmfT6fBSUDqdwn4M44ab/8vnrX2Lmn19kS0N0\nt98Pb14e/qFD8ebksLUhytXz3+V/Zi/i9Q+raYm37vb5RURERPYUZnaHmW02s3c6lBWZ2QIzW578\nW5gsNzP7s5mtMLO3zeyQDseck6y/3MzO6VB+qJktTh7z5+RgpLReQ3YtZUk059y/nXPmnJvinDso\n+ZjvnKtyzh3jnJvgnDvWObc1VW0QEZHMFxg1isC4cQDkHH8cnnC407pNtTU8+Zffc8v/fp3H/3gN\njbU13b6OeTx4s7MJ7bsvsZw8/v7aWl5YvoX7X1/H8spEEq+tpYWGl16ibvUqat96k7rnngOPB9+Q\nIfgKCnY4Z10kzrqaxOIHNU0xmlv6Nsn10gdV3Pvqh7y5toZz7lhETVP35kgTERERGWzKysoOLysr\nu7esrGxR8u/hfXDa2cCMj5VdDjzrnJsAPJvcBvgcMCH5+BZwEySSVcCVwOHAYcCVHRJWNwHndThu\nxgC4huyC7usQEZFBzVdSwl53zmb8wmcZftVV+Ao7/xEt2tzE6jdfB2Dt0sVEkyPYPq6quYrKpkqa\nYk073Z8T8HHdaQdSlB3giHHFTB2bmKusNRqlfthQHl/wGP96fzGeKQfQFu18dFleyMcJ+yUWqT5h\nv1JyQ307VWnIv+2/+YDPo5snREREJCOVlZVdBSwEzgDKkn8XJst7zTn3AvDxgT+zSExdRfLvSR3K\n73IJrwAFyXngTwAWOOe2OueqgQXAjOS+POfcK8lFF+/62LnSdQ3ZhZQuLCAiItIfOq4suTPReJS6\nljpclocRk/Zlw7J3CeXkEsjK2qFuRWMF5y04j7X1a/nlEb/k2L2OJezbfnRbVtDHcfsNZeonivB7\nPRRmB5LXifHkHTdSv6WSmoqNvLPoP0w746xO21WcE+Q3pxzAL2ftT6DDefrKoXsVcckJE3l7XS3f\nP3YixVl9e34RERGRdEuOOLsE6PjFzpPcvqSsrOzJ8vLyV/vwkqXOuY3J55uA0uTzkcDaDvXWJct2\nVb5uJ+XpvobsgpJoIiKS0aLxKC9vfJnLXriMYdnDuOniG4l8sJEhY/YmKz9/h/oLP1zIqtpVAFzz\n2jVMHT51hyQaQNjvI+zf/r9Rj9dLVn4B9VsqAcgdWkp9Sz3N8Wa85qU4vG11zaqGKK1tjqDfS1G2\nvy9fcrui7ADnf2YcLa2OsN+bkmuIiIiIpNn3gFAn+0LJ/Wem4sLOOWdmKV2JOVOukSl0O6eIiGS0\n+lg9v3711zTHm1lVu4p/LHuY1W+W4/F68Xh2TCztU7xP+/NJhZPwebr/e1NWXj6zLr6CQ088iWPO\n/Q6jDzuUe5bewzH3H8O5T59LZVMiubalPsrX/7aIw3/zLLe9uJLaFM5V5vV4lEATERGRTDaRznMb\nHhLzgPWliuRtkiT/bk6WrwdGd6g3Klm2q/JROylP9zVkF5REExGRjOb3+JlQsO2704TccXh9AXz+\nnY/+Gl8wnrknzuW3n/kt133mOgpDPVuoKLe4hOlnfZODTvg8MU8rN751IwAra1fyysZXAHivoo7F\n62txDq5fuILmmFbNFBEREeml94G2Tva1Acv7+HqPAh+tfnkO8I8O5WcnV9CcCtQmb5d8GjjezAqT\nk/0fDzyd3FdnZlOTK2ae/bFzpesasgu6nVNERDJafjCfX037Fa9seIXh2cModYUUnjSNUE7uTuvn\nBnKZXDyZycWTd/vaXvMyKmcU6xoSU1GMK0isIjqmKBu/14i1OsYNycbn1Yz/IiIiIr30ZxKT4u84\n2S1Ekvt7xczuA6YDJWa2jsQKmNcA88zsG8Aa4PRk9fnATGAF0AT8D4BzbquZ/QpYlKz3S+fcR4sV\n/C+JFUDDwJPJB2m+huyCJRZoGNjKyspceXl5upshIjLQ9EnmZTD1sa61ldatie8Dnvx8PIH0T5Qf\nr66hdWsVnqwsvPn5eD62WEFFYwUvrn+RSUWTGJs3lpxADpFYKxV1Ed6vqOfAUQUMzetsGg8RSaPd\n7mMHU/8qItKP+vzXw+QqnJeQmAPNQ2IEWgS4rry8/Kq+vp7suXQ7p4iIDBotq1ax8ouzWHHCDCKL\n38G1pvc2yNaGBqpuvYWVnz+RFcceR3TFih3qlGaXctrE0zig5AByAjkAhPxe9irO5rjJw5RAExER\nEdlNyUTZ0cAcEqOx5gBHK4EmfU23c4qIyKDQFo+z5ea/0lpdDcDm3/2O0TfdiHcnK2z2W5siEeqf\nWZDYaG2l/rnnCU+Zkrb2iIiIiOypysvLXyVFq3CKfEQj0UREZFDw+HxklZW1b4cPPggLBtPYIvBm\nZVH4tcR3NcvKIm/m59LaHhERERERSR2NRBMRkUEjd8YJBCeMp625mdB+++EJpfdWSE9WFgWnnELu\nccdhfj/ewm0reUabm4hHowTCWfjTnOwTEREREZHdpySaiIgMGr6CAnyHHtpn54vEIzTHm8nx5+D3\n+rusH6+pwcVieMJhvDmJ+c28eXl48/K2q9dUV8tL8+5h7Ttvc8jMWew77TMEs7P7rN19KV5Ti2tp\nwXxefEVF6W6OiIiIiMiApds5RUQk48Xb4mxu2sz6hvXURmsBqInUcPfSu/nOP7/Dsx8+S2Oscdfn\n2LqVjVdeyQcnzKDq9ttp2rq507oVK5fz9oInqd64nmdvv5FIY0Ofvp6+Eq+pofIPf2DFpz/N+u//\ngHhVVbqbJCIiIiIyYCmJJiIiKdUYa2TRpkVc+9q1LNu6jFhrrN/bsK5+HbMemcWMB2dw33v30Rhr\npCpSxfVvXM+SqiVc+sKl1LfUA7CxYSN3vXMXa+rWsLJmJVuatwAQ27SJhqefwTU1UXXTzVRv3UBl\nU+VOr+ftOKrNDPMMzP9u2xobqZk7F4Cm114jtmlTmlskIiIi0ntlZWVjy8rKppWVlY3ti/OZ2R1m\nttnM3ulQdpWZrTezN5OPmR32/djMVpjZMjM7oUP5jGTZCjO7vEP5WDN7NVk+18wCyfJgcntFcv/e\n/XkN6dzA/FYvIiIZoyZaw+2Lb6eyqZLvLfwe1dHqbh1XG61lweoF3Pb2bZ0mq3amqaWJtfVreWrV\nU2xo2EBrWyvPrX2OhlgDo3JGYRjNsWa85mXuiXM5e/LZBLwBDKOquYrvPvtdDhl2CGfNP4tZ/5jF\nJf+6hE2Nm/AVFoI/kRzzFhXRSAtLqpbscP2GlgbyR49k6qlfYeSkyXzh+5el7FbOrZGtPLDsAZ5Z\n/Qw1kZoeH2+BAL7S0sTzUAhfSUlfN1FEREQk5coSXgeWAE8AS8rKyl4vK+uwKlXvzAZm7KT8D865\ng5KP+QBmNhk4A9gvecyNZuY1My/wF+BzwGTgK8m6ANcmzzUeqAa+kSz/BlCdLP9Dsl6/XEN2TUk0\nERFJKcOYOmIqxeFirvvMdeC6d1z5pnJ++K8f8qc3/sQPnv8B1ZGuk2+x1hhV0Sq+9NiXuOSFSzj9\n8dPZ0ryFw4YdxhEjjuDqI6+mNlrLO1Xv8ODyB/ny41/moKEHcf+J91MYKqTVtQKwtn5te7KvvKKc\nWGuMxiwvez/0IDk/u5Tsu/7CL5f9mbF5Y2mojdKwNUJLJE5dtI47l97J8U98ng8nw4wfXsq4T04l\nGM7q9fvXmYaWBq597Vp+8covuPhfF/PMmmd6fA7/kCHsPXcuI6//M5947NHtFkYQERERGQySibLn\ngUOAMJCf/HsI8PzuJNKccy8AW7tZfRYwxzkXdc6tAlYAhyUfK5xzK51zLcAcYJaZGXA08EDy+DuB\nkzqc687k8weAY5L1++MasgtKoomISEq9sfkNflf+O/7+3t/59au/ps21te+Lt8UBqIvW8czqZ7j6\nlatZU7cG5xzrG9e316toqmiv25loPEpVpIqq5qr2+c1qo7XUtSQSWz+b+jMuePYC7n73bi5cSObh\nMAAAFzpJREFUeCHHjDmGoDfIs2ueZUzeGNpcG5saN/GjsovZO29vSrMSI7SmjZjGG5VvcNJTp1M/\nMp+8005hdbiRq4+6mlAkj3t++h/uvOJl1rxTRSwe4+a3bqYp3sSvX7+GD2Mb8HpTs4ZPrC3Gmro1\n7dvLq5f36jz+YaXkHXccgdGj8QQCfdU8ERERkf7yV6CzYf/ZwM0puOYFZvZ28nbPj36FHAms7VBn\nXbKss/JioMY5F/9Y+XbnSu6vTdbvj2vILiiJJiIiuyXempi0v6KxgqZY0w77P5pTDKA6Uk20LUp1\npJrl1cv52Us/45lVz7C6bjUX/+ti5iybwzlPnkNVpIoZe8/gsGGHMTJnJL858jcUBAs6bUNDSwNP\nrHqCh1c8jN/j56iRRwFwwl4nUN9Sz5OrnqSiqYKG2LYJ/p1z3Hr8rXz34O+2J9vOefIcxgeKGbZl\nFffMuIvHTnqMUyecyjWvXkNVpIrXK14nP5jPoaWHMiQ8hMVPbaQ11gYO3vrnWjwxP0PCQwDwmY+S\ncOpuj8wL5PHzT/2c4dnDmVQ4iXP3Pzdl1xIREREZiJJzn+3bRbXJfTVHWtJNwDjgIGAj8Ls+PLcM\ncKn5eVxERPYYH9R+wNlPnk2kNcK1R13L0WOOJuDdNqLpxE+cyGsbX2ND4wYuPvRirlt0HRcefCFX\n/PsKllUv463Kt7j0k5e2169rqSMaj/Kn//6Jb0/5NqNzR1MSLsHfcbL+j2mINXDly1fiNS9j88Zy\n6Scv5SeH/4SGWAMNLQ0EvUFeWv8SVx95Nbctvo0jRhxB3MU596lzKQgWcOMxNxLyhRidN5q2ljoK\n7/sKkaMu5r/7HMODyx+kPlZP0Btkv+L9qI5Uc8MbN+D3+Dn94HNZ9p/EZPxjDy4hJyuLe2bew6sb\nX+WAIQdQFCpK2fvu9XiZVDiJe2fei8c8FIf1w6GIiIjscUYALSRu3+xMS7Leqr64oHOu4qPnZnYr\n8Hhycz0wukPVUckyOimvAgrMzJccCdax/kfnWmdmPhK3qFb10zVkF5REExGRXnPOMee9OTTFEyPQ\nbn/ndg4ffvh2SbTicDE/nfpTyivKuWPJHSzatIhJhZMYkzeGZdXLWFe/jvEF4zl1wqks3rKYiw65\niIUfLuTMyWfyduXbFAQLukwQecxD2BemOd7MpS9cyn0n3sd5T5/HqRNP5VtTvsWTpzyJmYFLzNG2\nf8n+nPzoyUBi4YNl1cvI8mdxw9E3sLZqGSVH/5SY18f97z/A1/b9GmdNPovS7FJKwiXMXzWfee/P\nA2D4lJGc+atTcHEI5wXwB3yMCIzg5Aknp+gd357X42VI1pB+uVZ31ERqaIg1EPAGKA4V4/V4090k\nERERyWwbgK7mowgk6/UJMxvunNuY3DwZ+GjlzkeBv5vZ70kk7SYArwEGTDCzsSQSV2cAX3XOOTN7\nDjiNxBxm5wD/6HCuc4D/JPcvTNZP+TX66n3KVEqiiYhIr5kZnx3zWR5YnpirdNrIaYR8oR3q5QZy\nWV69nEWbFuEzH9NHT+codxSbmzZTVlpGjj+HSz55CdF4FICiUBHn//N8aqO1hLwhHj/l8fY5yppi\nTSytWsozq59h1vhZjMgeQX4gn7s/dzcPr3iYo0cfTWGwkL/N+BulWaXkBnLJDeQCsL5hPT/+94+5\n6lNXccTwI3hh/QvkBfLYp2gfCoOFjMwdycickXhHfIrceISL4vVc/K8fke3L5ppPX0OWP2u7BOGD\na+7nxH1mahQYiXntbnjzBuYum0teII+5J85lVO6odDdLREREMlh5efmqsrKyd0ksItCZpeXl5b0a\nhWZm9wHTgRIzWwdcCUw3s4NILJe1Gvg2gHNuiZnNA5YCceC7ziVWrTKzC4CnAS9wh3PuoyXeLwPm\nmNn/AW8AtyfLbwfuNrMVJBY2OKO/riG7ZoMh0VhWVubKy8vT3QwRkYGmT1bP2d0+tr6lnqrmKprj\nzQzPHk5BaOdzl9VEaqiJ1hDyhcgP5uP3+GmINRDyhnZIvK2uXc0XHvlC+/YDX3iASUWTANjYsJEZ\nD82gzbUR9Aa563N30dLawn7F++3ylk9IzMl29StX8/KGl/n99N8zNGsoYV8Yv8dPUbgIj+04VWhV\ncxVm1n5rZnWkmjnL5vBBzQdcdMhFjM4dvcMxe6LKpkqOf/D49gUgrvrUVZw68dQ0t0pkt+x2H6vv\nsCIiO9WnK0B2WJ1zZ4sLNALTy9UZSx/RSDQREdktHUd67UpBqGCHBFtniwXkBfOYufdM5q+ez+HD\nDm+frB8g0hppX+Ez2holEo9w4cILeWTWI13e2lgYKuSKqVcQbY0S8Aa6NWfZx0eZFYYK+fYB3ybu\n4tuNStvT+T1+po+azj8//CdBb5BDSnf1g7CIiIhI3ygvLy8vKyubTmIVzskk5kALkBitdb4SaNKX\nNBJNRGTwGhAj0VKlJlJDS1sLfo+fwlBhe3lttJa7l97NgjUL+MK4L9Dm2rj//fu57/P3pXQ1TOna\n1shWqpqryAvkURAqIOgNprtJIrtDI9FERFKjT0eidZRchXMEsKG3t3CK7IpGoomIyIDU2W2h+cF8\nzt3/XE6beBpbm6oIx3ycPnIW2b689jo1kRoa440EPIHtR6c118DWlVC/EUYfBtk9m5S/vqWemkgN\n0bYoJaGSTts4mMS3bqX28cehtY38L34RX3HvVxQtChWldEVSERERkV1JJs6UPJOUURJNREQGnSx/\nFln+LDxbmph75eW0tbZy6hW/ZOTEfamL1fP713/PwysepjSrlHtn3ktpdmJRAtYtgntPA6Bt8knE\nZl5HMGdot6+7aNMiLnruIgC+d/D3OHvy2QR9fT/aqrY5RjTWitdjFOekbjRXWyzGlr/eQvWddwLQ\n8uEaSi+/HE9QI8hERERERD5uxxmURUREBoHWWIxXH5pHS3MT8ZYoL8+7l5bmZqKtUR5e8TAAFU0V\nLK1a2n6MW7fttirPxrfYWLuaSDzSrevF2+IsWLOgffu5tc/RHG/uo1ezTW1TjBufW8Fhv36Wb9y5\niC310T6/Rrt4nPj69e2bsfUbcLFY6q4nIiIiIjKIKYkmIiKDksfnY8z+B7Zvj9p3f7yBAD6Pj7LS\nMgDCvjATiyZuO+jgM6FgL/AFqfvsj3liw0vdTqL5PD6+us9XCXqDeMzD2ZPPJtu/s0Wgdk9TLM5f\nX1gJwJtra1lR2dDn1/iIJxxm6GWXEtxnH4ITJzLsJz/Bm5OTsuuJiIiIiAxmup1TREQGldbWOPFo\nFF8wxMRPHcnQsZ+gNRaneNRofH4/Rf4ifvuZ37K5aTPF4WIKg9sWJbCCMTSe8yibGjYwZ818pu11\nLDn+7ieNJhZNZP4p8/HgISeQg9/r7/PX5/N42Ks4izVVTQS8HkYVhvv8Gh0FRo9mzO23gXP4SrQw\ng4iIiIhIZ5REExGRQSPa2MjyRf9h6QsLOfC4mYw96BCGj5+0Q73icDHF4eKdnsOfN4LcYBbfLLqQ\nvEAePm/3/ysMeoMMbTPYvCQxv9oBpyVGtlnfLTI1JDfIvG9/irfW1jBpWC4lKZwT7SO+4p2/VyIi\nIiIiso2SaCIiMmhEGut5+qY/ArB26WLOu+F2AuGsHp0j4A0wNFgE5gFPD2c1aKyEynfhri8mtl+9\nGc7/N+QO69l5ulCaF+L4/fr2nCIiIiIisnuURBMRkUHDzJMY9eUcZpbY7qm69bDwasgdDlO/A9nd\nvIUx1gzlsyGraFtZYyW0xXveBhERERERGXSURBMRkUEjlJPDrB9dwdIXnmPKsTMIZvdwEvymrfDg\nN2HNy4ntYA4c+YPuHRtrhg+ehWOvhNGHwYY3E8d6U3+7pYiIiIiIpJ+SaCIiMmgEwlmML5vK3lMO\nwRcI9PwErjWRDPtIpL77x4YK4OCvwbxz4Jifw/SfQLgAcob0vB0iIiIiIjLo9OI+GBERkfTqVQIN\nIHsInHIb7HUETJ4FU7/d/WM9Hpg0E07+K2x8G+cL0hwYwsr/LqKxtqZ37RERERERkUFDI9FERGTP\nUjIezvg7eHwQzO3ZsVlFMO6zMO6zVK5eyd3fPR+AvQ88hJkX/ohwbh4AkXiEoDeI9eGqnSIiIiIi\nkl4aiSYiInuecGHPE2gfs2HZu+3PK1auoDUeJxqP8sbmN7jsxct4ZMUj1EXrdrelIiIiIiIyQGgk\nmoiISFJjTTUtzU34Q2EqPbXc8+49TB81nYOGHkRuYPuk27iywyl/4mHqNm/m02eeSzCcRXVLLd98\n+pu0tLWw8MOFTBkyhbxgXppejYiIiIiI9CUl0dIg0hijNdaGx2uEc3s5r4+IiPSpxppqHvz1z6lc\ns4qC0uEc8aMLmLdsHvOWzeOxkx7bIYmWW1zCV355Hc45AuEw/lAI11hLm2trrxNvi/f3yxARERER\nkRRREq2fRRpjvPbYKhY/v44hY3I58YIDycpTIk1EJN1i0QiVa1YBUFOxEW+Lw2Me2lwbjfHGnR6T\nXVC43XZeMI8bjrmBv73zN44adRTDsoelvN0iIiIiItI/lETrZ/GWVhY/vw6Ayg/rqd3cpCSaiMgA\n4A+FGTp2HJtXfUDh8BEU5JcwvmA800ZMY2T2yG6dI+wLM3X4VKYMmULIF8Lv8ae41SIiIiIi0l+U\nROtnHq+RPzRM7eZmvH4POUWhdDdJRESA7PwCTrn8KloizQRCYfy52dx6/K2EvCGy/FndPo/X493h\n1k8RERERERn8lETrZ1l5QU6++BC2rG2gcFgW4VyNUhARGSiyCwrJZtstmkXeojS2RkREREREBhIl\n0dIgOz9Idn4w3c0QEREREREREZFu8qS7ASIiIiIiIiIiIgOdkmgiIiIiIiIiIiJdUBJNRERERERE\nRESkC0qiiYiIiIiIiIiIdEFJNBERERERERERkS4oiSYiIiIiIiIiItIFJdFERERERERERES6oCSa\niIiIiIiIiIhIF3zpboCIiIjsWmNNNc45AuEwgVA43c0REREREdkjaSSaiIjIAFZftYX7fn4Jt373\nf/hg0SvEotF0N0lEREREZI+kJJqIiMgA9v6rL1FbsYm21laev/t2Wpoa090kEREREZE9UlqSaGY2\nw8yWmdkKM7s8HW0QEREZDIaNm9D+vPQT4/H4/GlsjYiIiIjInqvf50QzMy/wF+A4YB2wyMwedc4t\n7e+2iIiIDHQlo/fi7P93PbWVmxkxYRLh3Nx0N0lEREREZI+UjoUFDgNWOOdWApjZHGAWoCSaiIjI\nxwSzshmy11iG7DU23U0REREREdmjpeN2zpHA2g7b65Jl2zGzb5lZuZmVV1ZW9lvjRET2BOpjRURS\nQ/2riIhI5hqwCws4525xzpU558qGDBmS7uaIiGQU9bEiIqmh/lVERCRzpSOJth4Y3WF7VLJMRERE\nRERERERkQEpHEm0RMMHMxppZADgDeDQN7RAREREREREREemWfl9YwDkXN7MLgKcBL3CHc25Jf7dD\nRERERERERESku9KxOifOufnA/HRcW0REREREREREpKcG7MICIiIiIiIiIiIiA4WSaCIiIiIiIiIi\nIl1QEk1ERERERERERKQLSqKJiIiIiIiIiIh0QUk0ERERERERERGRLphzLt1t6JKZVQJrulE1H6jt\nxSV6clx36+6qXm/27ay8BNjSjbb0h96+96k4p+K5+xTPnu1LVzy3OOdm7O5JutnH7s6/ib6OYVd1\nBlMMu6uvP5OKZ3opnj3bN2j72H74DtvTY/e0GHaXPpM926d4pubYPSmeffIdViQtnHMZ8wBuSfVx\n3a27q3q92bezcqA83e/57r73iqfiqXgOjsfu/Jvo6xh2VScTY9jXn0nFU/FUPAfWQzEcvO+/4ql4\nKp566LFnPTLtds7H+uG47tbdVb3e7Ovta+svqWif4pk+imfP9g30ePaF3XmNfR3DrupkYgz7un2K\nZ3opnj3bN9Dj2RcUw/TSZ7Jn+xTP1ByreIoMAoPidk7ZOTMrd86Vpbsd0jcUz8yieA5+imFmUTwz\ni+I5+CmGmUXxzCyKp0jnMm0k2p7mlnQ3QPqU4plZFM/BTzHMLIpnZlE8Bz/FMLMonplF8RTphEai\niYiIiIiIiIiIdEEj0URERERERERERLqgJJqIiIiIiIiIiEgXlEQTERERERERERHpgpJoGcTM9jWz\nm83sATP7TrrbI7vPzLLNrNzMTkx3W2T3mNl0M3sx+Rmdnu72SM+pj8086mMzh/rYwU39a+ZR/5pZ\n1MeKbKMk2gBnZneY2WYze+dj5TPMbJmZrTCzywGcc+86584HTgempaO9sms9iWfSZcC8/m2ldFcP\n4+mABiAErOvvtsrOqY/NLOpjM4v62MFN/WtmUf+aedTHivSOkmgD32xgRscCM/MCfwE+B0wGvmJm\nk5P7vgg8Aczv32ZKN82mm/E0s+OApcDm/m6kdNtsuv/5fNE59zkSXyp/0c/tlM7NRn1sJpmN+thM\nMhv1sYPZbNS/ZpLZqH/NNLNRHyvSY0qiDXDOuReArR8rPgxY4Zxb6ZxrAeYAs5L1H012cGf2b0ul\nO3oYz+nAVOCrwHlmps/rANOTeDrn2pL7q4FgPzZTdkF9bGZRH5tZ1McObupfM4v618yjPlakd3zp\nboD0ykhgbYftdcDhyfvTTyHRselXvMFjp/F0zl0AYGZfB7Z0+M9LBrbOPp+nACcABcAN6WiYdJv6\n2MyiPjazqI8d3NS/Zhb1r5lHfaxIF5REyyDOueeB59PcDOljzrnZ6W6D7D7n3EPAQ+luh/Se+tjM\npD42M6iPHdzUv2Ym9a+ZQ32syDYaWjs4rQdGd9gelSyTwUnxzCyK5+CnGGYWxTOzKJ6Dm+KXWRTP\nzKOYinRBSbTBaREwwczGmlkAOAN4NM1tkt5TPDOL4jn4KYaZRfHMLIrn4Kb4ZRbFM/MopiJdUBJt\ngDOz+4D/AJPMbJ2ZfcM5FwcuAJ4G3gXmOeeWpLOd0j2KZ2ZRPAc/xTCzKJ6ZRfEc3BS/zKJ4Zh7F\nVKR3zDmX7jaIiIiIiIiIiIgMaBqJJiIiIiIiIiIi0gUl0URERERERERERLqgJJqIiIiIiIiIiEgX\nlEQTERERERERERHpgpJoIiIiIiIiIiIiXVASTUREREREREREpAtKoskew8xeTncbREQylfpYEZHU\nUR8rIjIwmHMu3W0QEREREREREREZ0DQSTfYYZtaQ/DvdzJ43swfM7D0zu9fMLLnvk2b2spm9ZWav\nmVmumYXM7G9mttjM3jCzzybrft3MHjGzBWa22swuMLMfJuu8YmZFyXrjzOwpM3vdzF40s33S9y6I\niKSG+lgRkdRRHysiMjD40t0AkTQ5GNgP2AC8BEwzs9eAucCXnXOLzCwPaAYuApxz7oDkF4dnzGxi\n8jz7J88VAlYAlznnDjazPwBnA38EbgHOd84tN7PDgRuBo/vtlYqI9D/1sSIiqaM+VkQkTZREkz3V\na865dQBm9iawN1ALbHTOLQJwztUl9x8JXJ8se8/M1gAfffl4zjlXD9SbWS3wWLJ8MTDFzHKAI4D7\nkz8SAgRT/NpERNJNfayISOqojxURSRMl0WRPFe3wvJXefxY6nqetw3Zb8pweoMY5d1Avzy8iMhip\njxURSR31sSIiaaI50US2WQYMN7NPAiTnkfABLwJnJssmAmOSdbuU/BVwlZl9KXm8mdmBqWi8iMgA\npz5WRCR11MeKiPQDJdFEkpxzLcCXgevN7C1gAYk5Im4EPGa2mMRcE193zkU7P9MOzgS+kTznEmBW\n37ZcRGTgUx8rIpI66mNFRPqHOefS3QYREREREREREZEBTSPRREREREREREREuqAkmoiIiIiIiIiI\nSBeURBMREREREREREemCkmgiIiIiIiIiIiJdUBJNRERERERERESkC0qiiYiIiIiIiIiIdEFJNBER\nERERERERkS4oiSYiIiIiIiIiItKF/w+tFVXXduBccQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "RCAx6_mXrXlJ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## are country counts consistent?" + ] + }, + { + "metadata": { + "id": "b9-orbM-rWpG", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 101 + }, + "outputId": "d330b562-85f5-4bdc-e63f-b503d65b78de" + }, + "cell_type": "code", + "source": [ + "centuries.groupby('year').country.count()" + ], + "execution_count": 92, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "year\n", + "1818 190\n", + "1918 190\n", + "2018 188\n", + "Name: country, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 92 + } + ] + }, + { + "metadata": { + "id": "NRJlh_TErjpT", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 84 + }, + "outputId": "0c5a0bb5-5855-49a1-8a3b-6cd2076f84b6" + }, + "cell_type": "code", + "source": [ + "years_per_country = centuries.groupby('country').year.count()\n", + "years_per_country[years_per_country < 3]" + ], + "execution_count": 94, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "country\n", + "Greenland 2\n", + "Taiwan 2\n", + "Name: year, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 94 + } + ] + }, + { + "metadata": { + "id": "T4YRATMhsEeQ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 393 + }, + "outputId": "e7cd65d2-c725-4b6a-8cbf-2a70aa97d0af" + }, + "cell_type": "code", + "source": [ + "years = [1918, 1938, 1958, 1978, 1998, 2018]\n", + "\n", + "years_subset = df1[df1.year.isin(years)]\n", + "\n", + "sns.relplot(x='income', y='lifespan', hue='region', size='population', \n", + " col='year', data=years_subset)\n", + "\n", + "plt.xscale('log')\n", + "plt.xlim(150, 1500000);" + ], + "execution_count": 97, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACQ0AAAFkCAYAAACAKo/fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVNX9x/H3mV52dne277L0Ik0Q\nUAG7YhQTu0aJBbsmaixJTNOYGEv8WWJLjBpNTNRYYo3RYI8FjVIEkd5hYWHZPjM7fe7vjxlXVkBA\n2sJ+Xs/D48y955x77jyP370757vfYyzLQkREREREREREREREREREREREug7brp6AiIiIiIiIiIiI\niIiIiIiIiIjsXEoaEhERERERERERERERERERERHpYpQ0JCIiIiIiIiIiIiIiIiIiIiLSxShpSERE\nRERERERERERERERERESki1HSkIiIiIiIiIiIiIiIiIiIiIhIF6OkIRERERERERERERERERERERGR\nLkZJQyI7gDFmkjGm2Rjz768cP8IYM90Y87kx5m/GGEfu+EBjzEfGmLgx5idf6XO1MWZ2rs+TxhjP\nzrwXEZHdyTeIvycYYz4zxswwxkw1xhy0Xp/bcvF3rjHmXmOM2dn3IyKyO/gGsfcwY0xLLvbOMMZc\nv14fPfuKiGyBbxB7r1kv7n5ujEkbY4py5xR7RUS2wDeIvUFjzAu57x0+McYMXa+PYq+IyGYYY/bJ\nrZ3NzsXS09c719sY87ExZpEx5mljjCt3/JBcTE4ZY079ynj6vldEZCOUNCSyEcYY+zYOcTtw9lfG\ntAF/AyZYljUUWA6ckzvdCFwB3PGVPt1yx/fN9bEDE7ZxbiIindYuiL9vAcMty9oHOB94ONfnAOBA\nYBgwFNgPOHQb5yYi0intgtgL8L5lWfvk/v0210fPviLSZezs2GtZ1u1fxF3gF8C7lmU1KvaKSFey\nC557fwnMsCxrGDARuCfXR7FXRLqMbYy9bcBEy7KGAOOBu40xhblz/wfcZVlWP6AJuCB3fAVwLvCP\nr8xD3/eKiGyCkoZkt2aM+a0x5qr13t9sjLky9/oaY8yUXPbxDeu1edEYMy2XTXzxesfDxpg7jTEz\ngbHbMi/Lst4CQl85XAwkLMtakHv/BnBKrn2dZVlTgORGhnMA3txfqPiA1dsyNxGR7WEPir9hy7Ks\n3HE/8MVrC/AALsANOIG12zI3EZFttafE3s3Qs6+IdCp7aOz9HvDkeu8Ve0WkU9mDYu9g4O1c33lA\nL2NMee6cYq+IdCqdMfZalrXAsqyFudergTqgNFch6Ajg2VzTvwEn5totsyzrMyDz1eHQ970iIhul\npCHZ3f2F7F9pfPFXHROAx40xRwH9gf2BfYBRxphDcn3OtyxrFLAvcIUxpjh33A98bFnWcMuyPlj/\nIqZjGe/1/927FXOtBxzGmH1z708Fun9dB8uyVpGtPrQCqAVaLMt6fSuuKSKyo+wx8dcYc5IxZh7w\nCtlqQ1iW9RHwDtnYWwu8ZlnW3K24pojIjrDHxF5grDFmpjHmP8aYIaBnXxHptPak2Isxxkf2r7Sf\nA8VeEem09pTYOxM4OXet/YGeQLVir4h0Up069ubiqAtYTDZhs9myrFTudA3Q7ev66/teEZFNc+zq\nCYhsC8uylhljGowxI4By4FPLshpyDzFHAZ/mmuaRfah5j+yDy0m5491zxxuANLkvzTZyndvJlp/d\nlrlaxpgJwF3GGDfweu6am2SMCQInAL2BZuCfxpizLMt6fFvmIiKyrfak+GtZ1gvAC7lfdm8EjjTG\n9AMGAdW5Zm8YYw62LOv9bZmLiMi22INi73Sgp2VZYWPMt4EXgf569hWRzmgPir1fOA6YbFlWI+h7\nBxHpnPag2HsrcI8xZgYwKzfvtGKviHRGnTn2GmMqgceAcyzLymQLDW0dfd8rIrJpShqSPcHDZPcn\nrSCbCQ1ggN9ZlvXg+g2NMYcBRwJjLctqM8b8l2w5QoCYZVkbTeIxxlwDnLmRU+9ZlnXFlk40l8l8\ncG7Mo4ABm+lyJLDUsqx1uT7PAwcA+gVSRDqDPSr+Wpb1njGmjzGmBDgJ+J9lWeFcn/+QLaWrXyJF\nZFfb7WOvZVmt67V51Rhzfy72Ho6efUWkc9rtY+96JtBxazJ97yAindVuH3tzz73n5Y4bYCmwBDga\nxV4R6Zw6Xew1xuSTrRB/rWVZ/8sdbgAKjTGOXLWhamDVZu5N3/eKiGyCtieTPcELZEtr7we8ljv2\nGnC+MSYPwBjTzRhTBhQATbkHmIHAmC25gGVZt1uWtc9G/m3xL4+5eZTl/usGfgY8sJkuK4Axxhhf\n7hfLcYDKJYpIZ7Hbx19jTL9cfMUYM5LsftYNZOPvocYYhzHGCRyK4q+IdA57QuytWC/27k/299Iv\nYq+efUWkM9rtY2/uWAHZ59qX1uui2CsindVuH3uNMYXGGFeu2YVkF8RbUewVkc6rU8XeXAx9Afi7\nZVnPrjeGRXarsVNzh86h4zPuxuj7XhGRTVClIdntWZaVMMa8Q3b/0nTu2OvGmEHAR7n1iDBwFjAJ\n+L4xZi4wH/jfJobdJsaY94GBQJ4xpga4wLKs14BrjDHHkl0Y+ZNlWW/n2lcAU4F8IGOMuQoYbFnW\nx8aYZ8lu4ZAiW/7xoR0xZxGRrbUnxF/gFGCiMSYJRIHTc6XFnwWOIFs+3AImWZb18o6Ys4jI1thD\nYu+pwA+MMSmysXdC7gs/PfuKSKe0h8ReyP519euWZUXWuzfFXhHplPaQ2DsI+JsxxgJmAxfk7kOx\nV0Q6pU4Ye08DDgGKjTHn5o6da1nWDLJJmk8ZY24iG0cfATDG7Ec20SgIHGeMucGyrCGAvu8VEdkE\nk/1uVmT3ZYyxkf0F67uWZS3c1fMREekqFH9FRHY+xV4RkZ1PsVdEZOdT7BUR2fkUe0VEuiZtTya7\nNWPMYGAR8JYeYEREdh7FXxGRnU+xV0Rk51PsFRHZ+RR7RUR2PsVeEZGuS5WGRERERERERERERERE\nRERERES6GFUaEhERERERERERERERERERERHpYpQ0JCIiIiIiIiIiIiIiIiIiIiLSxShpSERERERE\nRERERERERERERESki3Hs6glsifHjx1uTJk3a1dMQEdldmO0xiGKviMhWUewVEdn5FHtFRHaNbY6/\nir0iIltNsVdEZOfbLt87iHR2u0Wlofr6+l09BRGRLkexV0Rk51PsFRHZ+RR7RUR2PsVeEZGdT7FX\nRERENma3SBoSEREREREREREREREREREREZHtR0lDIiIiIiIiIiIiIiIiIiIiIiJdjJKGRERERERE\nRERERERERERERES6GCUNiYiIiIiIiIiIiIiIiIiIiIh0MUoaEhERERERERERERERERERERHpYpQ0\nJCIiIiIiIiIiIiIiIiIiIiLSxShpSERERERERERERERERERERESki1HSkIiIiIiIiIiIiIiIiIiI\niIhIF6OkIRERERERERERERERERERERGRLkZJQyIiIiIiIiIiIiIiIiIiIiIiXYxjV09ARERERERE\nRERERERERERkV0glEsQjYbDZ8BcU7urpiIjsVEoaEhERERERERERERERERGRLicRj7Hs06m88+if\n8RUUcPyPf0lBWcUOvWakuYlENIrL58VfENyh1xIR2RxtTyYiIiIiIiIiIiIiIiIiIl1OPBzm3/fc\nRripgbplS3jtgXuJhcOb7RcNh6hfuZz6FcuIhUNbfL1IcxNPXf9T/nLVxTx38/VEmpu2ZfoiIttM\nlYZERERERERERERERERERKRLsJJJMtEoxuvFsjJYmUz7uVQigWVlvqY3ZNJp5n/4Hm898icADj/3\nYoaPG4/d5drstaOhVprX1gKwbvlSkvFYh2vbHA5sNtX9EJGdRxFHRERERERERERERERERET2eOlQ\niNZJk6i5/HKan3wSp93BQd87B4zB48/jWxddhicv8LVjJBNxFk/9uP39kulTSLS2btH1vYEA+aVl\nABR374nT7cHKZGioWcmrf7iTKf96jmhoy8YSEdkeVGlIRERERERERERERERERET2eOmWFuofeJDC\n734XLDCNTQwfN57BBx2KMTZ8wSDGGFLJBI2ralg+awb99x2Dv7gEZ66SkMvtYdS3T2TF5zMBGHHw\nEZhIBEpKNnt9f2ERZ9x0B/G2Ntw+P/7CIJHmJv5507VEmhpZ+PFkSnv2os+I/Xbo5yAi8gVVGhIR\nERERERERERERERERkT2albFI+oJ0u+8+Qq9NouXVVzEWpOfMpW7ieTT9+gYyjU0AREMh3nn0IQYO\n2htnzSqS8+aRamkBwNhsVPbsxbk33M45v7gR/+x5OPx+AFL19STXrSMTj29yHv7CIoqqqvEXBrPz\nwiKTTrefzyRTO+ojEBHZgJKGRERERERERERERERERERkj9baEGXFtBrWXHcd0U9nEJs5k9U//znx\nRYtILFlC+M03aXrqaSLxFMsihu9ccjVmdS2rf/xj1lx3Hemmpvax3MEiAsUlBEpKKTntNBwlJSRW\nrWLZhO+x+OjxtE2ZQiaZ3KJ5+QIFnPqLG+g5bAT7jj+O0rx8UutdS0RkR1LSkIiIiIiIiIiIiIiI\niIiI7NHmfLCadDIDgLt/f0ofeoCi227FfdCBVNzwG+wlJVjxOJmmRi55/FPaIjHqbr+DVN064gsW\n0vjoo6Sj0fbxHEVFOCsrcRQXA9D0xD9I1tRgtbWx9qabyeQqE22OzW6nwOXhgIIy+i2vZfXp3yMT\nDm//D0BEZCMcu3oCIiIiIiIiIiIiIiIiIiLSddWH41gWlOS5MMZ8ozEyySQ2p3OT56v6B5n83EK+\n86sbyThSPHfv/xFqaODocy+mqLGJHg//mUw0StODD3DIkONZFslQWV1NfOFCAJyVlaQbG7F367bR\n8T17D21/7erfH+NybfHcbS4XrX95FKutDVtBAcbt3uK+IiLbQklDIiIiIiIiIiIiIiIiO1i6pYXE\n6tVkwmHc/frhCAZ39ZRERDqF5Q0RLv77NNKWxUNnj6JPad5W9U+1tBB+620iH06m5NJLMXY7ra+9\nhn///XH174+VTGIlk1RWu/nWeUNI2WHRJ/+hpW4tAO899ySnnHo2sXnz8ew9FP9BB/H9flW4PptK\n6a+vp3noEOyFhTiKiojPX4BrE0lDvn33pdt995FaU4tn2DCsLdyeDMAeDNLnxReIfjoD76iR7dWL\nRER2NG1PJiIiIiIiIiIiIiIisoOFJ09m2Ukns+LsiTQ8+CCZ9ba4ERHpqqLJNLe8Oo/5a0Msqgtz\nw8tzCMe2PNkGILliBbW//CWt/36FdEMDy06fwLrf38WyM84kEwpRe+21LDn2OEIvvkChL0FxtwDl\nffu39y/r0Zv02jocJcWs/MGluEpL8L3yHMHu3Yh88gmOykpCr71O4xP/wDt82CbnYcXjrPv9nbS8\n+CLLzzqbVF3dFt+DzenE1aMHBSccj6u6GmO3b9Amk7G26nMREdkSqjQkIiIiIiIiIiIiIiKyA1mW\nReSj/wFg8/uw77cfodYW7LEovvwCbBtZHBYR2dPEoyky6Qwev7N9CzKHzdCzyNfepkeRD4d983Uv\nmtsSTF/RTEM4xvhU5MsTxka6uTk7dkkx8SVLCL/1NgB1t96Kb9RIDBZFld04+Rc3kIiEqajuiW1d\nPfFZs0itWEHolVdx9etL6K03aXjkLxRfdCEll1+Oq0ePr60AZHO7sdIZYrPnYCsowL6dqgVZlkXL\nuijTJy2nvHc+fUeW4fFvehs2EZGtsUOThowxVwMXAhYwCzgPqASeAoqBacDZlmUlduQ8RERERERE\nREREREREdhVjDMXnnEPo9dcpvum3fDTzExY8dBduv58JN9xGSfeeu3qKIiI7RDpj0RCOk0pniNZF\nmfmvZRxyxl4UV/oxNoPTbuP7h/Whe5GXdMbiuOFVeJybT6T8cHEDlz4xHYCBE4dSOnEibVOmYHxe\nSn/0IxoefhjvfvvjrKwCmw0yGRxlZaRbW4l+OgPfKScRaqhn6YyptPRbx159BlB32+0A+EaPBqcD\nKxaDTIaGBx+ibeo0qv9w39fOyVFaSq8nHidRU4OzW7fttsVYtDXBS3d9SrgpztwPa8kv8dJ9UNF2\nGVtEZIclDRljugFXAIMty4oaY54BJgDfBu6yLOspY8wDwAXAn3bUPERERERERERERERERHY1V+9e\ndH/l30RjbSx4+F4A4pEIHzz1d75zxTU43Z5dO0ERkR1gaX2Ek/80mdZoil8c1YcTz+jBG4/M5oSr\n9sGX7wagyO/m7LG9tmrcubWt7a/Pf2EBb116GSXfT2ELBHD17EnhSSeCy4VxOOj19NNEPvwQ3+j9\nWfvbGym57FI8/jwGHXgofUftj8Plwh5po9t99+Lq3gN7QT5Y4OnXD5vPR2LVaoITTscRDG52Xo7S\nUtJ5QWJtKTKNCTx+B27ftlUFsoBENNX+fv3XIiLbakdvT+YAvMaYJOADaoEjgDNy5/8G/AYlDYmI\niIiIiIiIiIiIyB4sEY/x2Xtv0Wv4SDCGwrIKAiWlFJRXYLNpezIR2TP9/aNltOaSXO5+ZzknDvTR\na1hx+/Zk39SE/XowbXkT/Yq9/HRMObZVK7DKyzEOBzanE/z+9rbevYfirO5G6M03KfnhD/GO2AcA\np8eD05NL2PT5yT/yyA2uU3jKKVs9t9ULm3j1T7PAgkO/N4BBB1Zhd2x+y7VN8fgdHHv5cD7450JK\nuweo6l/4jccSEfmqHZY0ZFnWKmPMHcAKIAq8TnY7smbLsr5If6wBum2svzHmYuBigB49euyoaYqI\nyHoUe0VEdj7FXhGRnU+xV0Rk51PsFYFkPM6KWTMZNHJ/zrj2JjyRNhKfzaLwsKOxOTa/XJNubqZt\n+nTii5dQcPxxOMvLd8KsZXem2Cudwf69gvz9o+UADK0K4Ig2ss+4wXgDri3qb1kW60Jx1oXjlAbc\nlAWyST55bgdXH9mfvWxRVp14ApnW1uz2YM89i7OsbKNjufv3xxYIwDYmLDW3JWiNpUikMgR9Torz\n3O3nUsk08/+3JlseCFjwyVr67Vu+TUlDdoed8t75HHv5cBwuG073jq4LIiJdyTePTpthjAkCJwC9\ngSrAD4zf0v6WZT1kWda+lmXtW1pauoNmKSIi61PsFRHZ+RR7RUR2PsVeEZGdT7FXuqJMPE5q3TpS\n69ZhpdPYHQ6OPO0s6s6/kEJjZ815F9D4+7tY/r0zSNXVbdA/lUgQbmok0tyElckQ/ewzai69jHV3\n3knNpZeSamzcBXcluxPFXukMDupfytMX7sfvj+/N/SdUU1TeDW/AvfmOOetCcU7442S+c+8HnPTH\nD6lrjQEwa1ULv3ppNg2fTCXTmt2qLLVuHYllyzYYI93WxrpZc5hLgEkrozRG09/4fprbEtzx2nwO\nue0djvz9u5z71ynUh+Lt5x1OO0MO7oaxZROTBh9chdO97dXkbHYb3oBLCUMist3tyKhyJLDUsqx1\nAMaY54EDgUJjjCNXbagaWLUD5yAiIiIiIiIiIiIiIrJTZZJJ2qZOpeayy7F5PPT426N499oLe34B\nDakUiRUrwMqWoUg3NJBubsa43TgKs1vOpNMpaubN5qXbbsTl83HGLXdBYSF5Rx9F+LXXSa5ajZX+\n5oveItL11IfirG6JUp7vodjvwmHfYbUlOij0uRjdrwyq3SRSFusyHmiNUbSFcwjFUtS2ZBOFVjVH\nCcdTlAFza1tZ2xrDPW4QMbsd0mmM242re/cNxrASCRYHKjnrqbkAHLQgxL1njKAoz7PV9xOOp3j8\n4xXt72etamFGTTNHDvqy+ltFnwIm3jwWKwMun2ObqgyJiOxoOzJCrQDGGGN8Jrsp5ThgDvAOcGqu\nzTnASztwDiIiIiIiIiIiIvI1rFSK5BeVMDKZXT0dEZHdUrq1lVRTU/v7TEsLa357I1YsRrq5mbo7\n7iQdDmPPz6fo/PNwduuG/5BDsPl9FF9yCeF33yXV3NLePx6J8P4/HiWVTDDsyPEsnzGNSc//g+bx\nR1L0859R+X+3Ys/PByDV0EBs/nySdXVKJBKRjaoPxZn4l084/g+TOfLOd1kXjm++01aOv7Y1RiSe\n2mSbNpufF+a2Mvp3bzHuzndZWBfeaDsrl1D5hXyvkwHleQAMqgwQ8DgBOG54JSV5bh6YG6Lbs89T\nfsNv6P3Si9iLirAyGTLxL+/R5vczt/nLuc1dGybV8TJbLJXZsGMk1vG+nW47eUEPgWIPbq8qA4lI\n57bDopRlWR8bY54FpgMp4FPgIeAV4CljzE25Y4/sqDmIiIiIiIiIiIjIplmWRWzefFZeeCHG5aTH\nXx/F3bfPrp6WiMhuJVlXR+0vf4l7vzH4TzgFT1E+GZeLgkt/QORf/yI6+UNcvXthXC5sLhfeESPI\nhMKU/fhHpNaspW3KFNbdex+BY48jHYlgJRI43G4q++1F3dLF9B6xL09e9xMAauZ+zoX3/hl/YRE2\nt5tUQwMrL72M2MyZ2AIB+rz8L5wVFbv2AxGRTieRzjCnNruFVyieYnlDG5UF3u0y9urmKKc9+BG1\nLTFuOWkoxw2rwu2wEQsnMVYGZyaKsdsJWQ7uf2cRJ+/TjWTG4v7/Lub2U4fhcWa37oq3tVG7aD7z\nP3yfgQceQkW/Abi9PkoDbp64cAxtiRQ+l53S3NZmFQVenrxoDBksnB4H+YMGAJBqaqLl+ReIzpxB\n8SWX4B4wAJvTybEjqnly2mpqmqL85vjBBDxfLpNHQwkS0RQOtx1fvotsPYyNy/c4GN27iI+XZreI\nLAu4Gdu3eLt8liIiu8IOTW20LOvXwK+/cngJsP+OvK6IiIiIiIiIiIhsXiYcpu6OO0g3NwOw7r77\nqLrt/7C5XLt4ZiIiuwcrlWLdfX/AdfA4VheNYMHDCzlkQg9WzfsfS2Z+zKiLzqfynInkDd27PbY6\nKypYdsXplF55Bam6OmILFlD+hz9iczpZe8stxOfPp+xnP+PA755Bv/3G4AsUYIwNy8qAMRi7A5s7\nu2huJZPEZs4EIBMKkVi6dKNJQ5lolEwkgvH5sPt8O+8DEpFOweO0861B5bwxdy3VQS99SvzbbewX\nPl1FTVMUgBtensO3BpbRsjLGm4/OwV/g5uhz++Fd9iolvQ/l8TP3Y+F/V2F32eh3cBVOezY5J5PJ\nEG5q4LmbfwXA5/99g/PvfhC3NxuvsolCblKZDG2JFB6HjUxjI4WAvbi4Q5JPdNo06m6/HYDwB5Pp\n+8q/sfx5VBYGeOb7Y8lYFgG3E28uWSkaSvDmo3NYMbsRX76L0365H/5C9wb3mUpliEeSeO2GP545\nknm1rbTGUuzbM9ieyCQisjtSPTQREREREREREZEuyrhceIYOoe1//wPAO3wYxuncxbMSEdk6q5ra\nmDR7LSN7FNK/LECeZ+ctfaSamik68wzS3gAv3LYAu8NGMh7i3ccezs5t3hwuvO8RHEVFAKTb2jAu\nF72ff450OIwJBAicfDLG6SL8ztu0PPc8ACsvvoR+r79Gr+EjScSinPjT65j1zhsMPexI3P4vF/uN\ny03ekUcSfvNNHJWVuPr23WCO6dZWWl54kaanniL/mPEEJ07EUVi4Ez4dEeksivwubj11b66PD8bj\ntG/XJJchVfntrweUB7AlLd746xxCDTFa62N8/t5KRidfxvr0r9j3+xNz318NQCaeofTUPkTCzSz4\n+EMKy9ZLeLQswo0NBCuq2g+FoklWt0R55IOl7F2VzxHJWqI330D3P/2pQ6XML5LhAaxolGRtLc3P\nPU/ZNT+hZCOxL5XKsGJ2tmpQW2uCxjWRDZKGUok0qxY08/bf55JX5OaY7w/joP6lW/U5RUOtZFIp\nnF4vLs/2qfIkIrI9KGlIRERERERERESki7K53RSffwG+UaOyCURDhnztdgwiIp3NulCMU/70EWta\nYxgDb1x9CP08gZ1y7WTdOpafdRbJFSsInnsuB377BD6atAabzdbexhgDubiaamyk7s47iS9YSMll\nl+IZMoTQpNeou/12/AcdRMGx32nvZ3O72/u5PF76jNyfHkOH43B1XMh2FAWp/O0NZH72U4zHg7N0\nw0XsdCjE2t/9DoD6+/9E/vHHK2lIpAsq9rsp3n4FhtqN6F7IUxePYXlDhMMHluHGhi/fRaghBkCg\n0A6rIpi6Obg9X/aLNMcJNTTy2M9+QO+9R7DXxP0p692XuqWLqeg3gKKqahKpDKFYEp/LQWNbgosf\nm8byhjaeAcqO70t/r5e1t95Kt7t+jz0vD4C8ww/Hf+ghxOfOo/iCCwi9+x6BIw4nsWQpmZJi7EVF\n7W0BHA4blf0LqF3YgtvvIFjuI5VM09aSoGlNhJLu2Z8prz38OclYmrbWBDPfXsmBJ/fb4s+oraWZ\nV+67g9qF8zl4wtkMPvRI3Kr6JiKdhJKGREREREREREREujBHUZDA4Yfv6mmIiHwjmQysac0uTFsW\n1LbE6Fe2c5KGYp9/TnLFCgCaHn2UAW+dQ119Bm9+IUf/4CoWT/2YUd85AW9edj4tL/2rvZLQqh9e\nQc+nnoR0CisaJfzmmxSdM5GSK64gPm8uJVdcQYsnwPQ5a5hXG+LY4VVUFng2uqjjKCqCXCWjjTEO\nB8bjwYrFwOHAtv6qvYjIFspkMqQSGZxue4ck8wKfizF9ihnTp7j92PhL9ubzd1YSKHHTu3gpfPAe\n1nfuxJlXgNvvwOmyc8DJfXnjoZtIJ5MM2XcM9VddzTGXXIwpLsLu9pBwenl/3lrue3sR4waWceqo\nakKxVPs1WmMpjNuNq3evDpUyHcXFVN12G5lwhIa//AVHUZDQ62/Q8tJLYAw9//43fPvt197eG3Ax\n/qK9ibclcXkdeAMuIs1x/vGbj0mnMhSUeTnhqhF481wkY9lt2PIKvn4r32g4Qc3cJozdUD2gkLpl\nS1gxawYAbz/6EP1HH6ikIRHpNJQ0JCIiIiIiIiIi0smlmpqwUilsPh92/w74E3ERkd2U323nxhOG\ncOcbCxjVI8jgyvzNdwLSGYu6UIz5a0LsVRGgLODBbtu6Smvu/v0wLhdWIoFn+HAcXhdHnD0Im81Q\nVHkEe409GFsqhdXaSqagACvinyD2AAAgAElEQVSRaO9rpdNYiST2snJseXlkwmFCr79O0QUXYHO5\niGLnnrcW8vePlgNw79sLef3qQ+ldsvU/A+zBIL2efJKWl18m/6hvYS8s2OoxRKRri0WSzP94DStm\nNzDy6J6U98rH4bJ3aJPOWNS2RJmyrJF9ewbZ9/je2I2BiAuunoNx5eF3+Pne9aMBiLfVUzP3cwDa\nImEKfH7WXXo5AP7b7+LGT8JcOW4As1e3Mnt1K6fuW839Z47kd6/OZUB5HocOLMd52ncJHHFEtjrb\nehwFBVh5eRRPPJt0cws1V12VPWFZhCdP7pA0BODLd+HL/zIRKNQQJZ3KANBSF8XuMJxw1T5MeWUp\nBWU+BoyuYFNSyTTT/rOcmW+tBGD0CX3oM7wcY2xYVoaCsnKMzb7J/iIiO5uShkRERERERERERDqx\nVEMDq35yDbHPPqP06qsoOOFE7IG8DdqlW1pomzKFtumfEvzeBJzV1dpqTET2eHkeJ6eMrOboIRW4\nnTbiqQxL6yPkue2UBjZdUac+HOeYe96nuS1Joc/Ja1cdQnn+1lXgcZSV0XfSf0jW1uLq1QtbIECm\nuQnL48Hu82HCEWpvvJHYnDmUX3ctBSefRNv0aSQWLab4kkuwFxdhXE6q77+fdCSMd/AQjN1GzaWX\n4rjmWp6esrL9Wsm0xYufruLqbw3Y6s/I5nLhGTQQz6CBW91XRASgtSHKB88sBKBmfhMTbzpgg6Sh\n+nCc4+77gKa2JD6Xnbd/fBgVBR4IlLe3sQP+gmyCj4nauPi3d2LPC7C6uZni34zC/t/3yZRXMc1b\nwRuTl3L1uAHkexy0xlLUNscY1SPIn8/ZF5/LQZ7bAaeeusk5G7sdV8+eZMqiFF90IWt/eyO2QICC\n44/foG00maI1msIAQb+LwnI/pT0CrFsRYtjh1djsNvJL3Bx+9sAOW1BuTDqZoaEm3P5+7ZIWhhzc\nj7NuvZu1SxfTa9gI/NoiUkQ6ESUNiYiIiIiIiIiIdGLRmTNp++gjANbedDP5x3x7o+0Sy5ZRc/kP\nAWh95RV6P/csjpKSnTZPEZFdxed24HM7WBeKcfL9H1LTFGWf7oU8cNZIKgq8G+0TjqVobksC0NyW\nJBxLUb5lRYra2dxubFVVOKuqyESjRD78kPp778U7chQll/6Atk+nE5o0CchuR9b3rTfpdtttZDIZ\nMjYbsfffZ/VPrgGg/Fe/wnHIIcQXLSL66Qx8dWvpXuRjUd2XC897VWz7tmtWxiIeTeFw2jZY8BcR\n2RTjsrHfmQOINcWZ/04NVioFdKzuk0hlaMrF1bZEmnA8tZGRoCWaZEV9mNW1EfZ2Z2i74nzy/vAA\nbd48pu59GA++v4S5tUvxuewUuB0c2K+E3iV+BpQHcDpslH1NQmgmkaAt1ErtgnkUVlaRX1aB2+ej\n4Ljjstvx2u04ios79EmlM0xZ2sQFf5uC22HnmUvGMrgqn2N/OBwrbWF32vD4s9ufbS5hCMDldXDA\nKf341z0zMDYYc2JfvHl+vHl9KOvVZ7P9RUR2NiUNiYiIiIiIiIiIdGLObtXtr4tv+i3Lly5g1Wvz\nGHTQYQQrq3A4s1sppJqa2tv5Ro/GSiRIrFqFPZCPPX/DheZUS0t2a5yCfGwu1wbnRUR2N2tb49Q0\nRQGYsbKZlmhyk0lDBT4no3oGmba8iVE9gxR4ndt07XQoRM1ll0MqRWz2HAKHH4arW7f2847SUgwQ\nsWDeB/+ldsEc9j/uVHyHH0bbO/8l/O67FJx4AvZgMLtd2UP3c+8td/PDVxazvKGNk0d2Y3Tvom2b\nYzpD/cowk59dRGmPPEZ8qxor04bHn4fTs3VVlkRkz2dZFtHWBElgZmOEW6csZnhVAT/5+UhCj/8V\nz9nf65CAk+d2cNaYHjw9ZSVHD64g6Nt4XP1kaSMX/X0qAAf2CXLL9y8nOmMGSwcMZ2zPUiKR7ixq\njHDaqO4EHHZuO2koDqcD71cSHa10mlRDA1YigS0vD0dhIW3NTbzw+1uoW7oYgNN/fSvVg4diDwSw\nBzaeeBmKp7jnrYUk0xbJdIqH3lvCHd8dhi/wzZ6PjTEUd/Mz4fr9AfB+w3FERHYWJQ2JiIiIiIiI\niIh0Ys6qKnr+4wmStbXUlRTyr9tvAmD6qy9xwT1/JlCcrSbkHTaMghNPJN3WRvB7E1h89HisZJLy\n666l8NRTsa23IJxqaKD2ul8RX7CA8uuvxz96/w7nrVSKRE0N4XffxT92LK4ePTqcFxHpjEryXFQV\neFjdEmNot3wy1oZtIs1xGlaHCVb4efjsUbQlM3icNorzOlbMiEXC1MydzYpZn7L3uPEUVVVjd2SX\nVFItLWRaWzFOF/bCgvb4aHO7yaSylTWMz4ezWzeqH3iA2GczKTjlFKzCIlbNmMb7jz8CwPLPZjDx\nupuJfjCZ4gsvwObzYXO76fPyv4gvWoy7zM/TF48lg4XPaSfPs22JTbFwkpfvm0E8kqJ2UTPBchvT\nX72XQ844l57DRmx0S0srY4FB212KdEHNa9t46e4ZHHDhYH7wxDSSaYtFdWGOGVJK/5nTsc48vUP7\noN/FNUfvxRXj+uOy2yj0bZgsk8lYvL9gXfv7aStbsI3qicPrpdjpZN6k5/nOUSfhdFbx7lPz+WB+\nM4d8tzc9+/qwSoOY9Sr9JGpqWHbqd8mEQgTPPJPiS3+AZVntCUMANXM/p6KqmsiHH+IZMABnVRU2\nn6/DnLxOOwf1K2Ha8mwC/uEDS3HYN19R6OvY7Lb2bdhERDo7JQ2JiIiIiIiIiIh0YvZAHr6RIwGY\n/uhD7cfTySShhvr2pCFHURHl112LZbNRd8stWMns9hBNTz5F4KijOiT9RD6YTPiddwBY/aOr6Ttp\nUsekosZGlp1yKplIBON00veN17FVVOzwexUR2RalAQ///P5Y1obi2I2hPL/jgm2kJc5zt08j1BDD\n6bZzxg1j6BbceCWixlU1vHT7jQB8/s6bnHPXAxQUl5Bua6P5yadYd/fdGKeTnk89iXfIEBzBID0f\nf4yGhx/GN3o07l69sOfnEzjsUAKHHQpAWzxJWyTafo10MoEtGKTvW29iz8/PJuY4HDgrK3FWVgKw\nvTeZdDhtxL947bKRTiaZ8dq/6bbX4A2qDbW1xJn++gocThvDxnX/xlU3RKRzS8SixEIhkvEY3vwC\nfPkFpBJp/vfiEiLNcdLJNAGPk8ZIAgC700n+7++mzenEnUzjSTZDOgXeIAXer48TmdZWJgwt5rnp\nNUQSaS46sBfeHhW0JqG7z06/Y4/Hl5/H3Mm1LJ1RD8B/n1rMdyeWYHdAi88ilUkRcAaIvfkmmVAI\ngKannqLw1FOIzpnN8HHjmfnWJDz+PAaMOZCayy8nOnUa2Gz0eeXfuHv37jAnj9POuQf24oiBZXic\nNirylSgvIl2LkoZEREREREREREQ6uVRjI5YFgw46jBmvv0ImnSYvWExBaXmHdva8PNKxGHmHHkrL\nc8+DZZF36KGkjY10MoXHmf060FHxZT9HWRl8pYKEFY+TiUSyr5NJ0qEQTiUNichO0NyWIJm2CPqc\nW13pwW4zVBV68bkduOw2/O6OSyDpVIZQQwyAZDxNqClGs5Umz+3YoCJGS92a9tfJeIx1zRGS7gAF\n0QjNzz8PZONj66uv4h0yBON04hk0iMpbb8Xm3HhFIK/LQa8hQ9nrkCNpWLqQsaedjTcQwOneOQvU\nvoCLE64awZRXllHa3YeVXkPjqpWMPWUCjq9sU5mMp/jgnwtZOLUOgFQqwwEn98Vm27bqGyLSuWTS\naVZ8/hkv3XETWBYDRh/IkRddhtuXR0FZNqly9r+X8cTE/Xh82goGVxUQjqdYHkrzf6/NYWB5gB8O\nh6IXz4Tj7oEeY8Cx6Qo7mVAr3ttvYdKVPyaFDU9hPhm3lz6lHeNgYfmX1YAKSn1kGhto2quEc/9z\nPitDK7l02KWcM/pgsNshncY3ZjTRWZ/TeNNN7H39r9j37gexO124jY21U6flLp4hsXzFBklDAEGf\ni+BGKiOJiHQFShoSERERERERERHpxFINDdRcdTXRKVMoue5azr/rQVrr1xGs6oavsLBD20w0ipVK\n4e7bl17PPE2mLYq9pJjWZ57BM2pfXPsMw+bx4B44kOo//oHYnDkUnnoqjpKOtSxsgQBF559P8zPP\nkDduHI7i4p15yyKym0uHQqSbmshEIjgqKnAEg1vUb10ozk+fnckpe1cxwOaipTbCoLGV5BVteVKN\nMWaTC79Ot50Bo8tZPquBESf3Ieqzcd2znzGqZ5BLDunTYfuvHkOGU9qzN+uWL2XgYUcxuz7Okflh\nYnPmkP/tY2h44EFwOvEecRTNayMEij3YHfZNJgx9Mbf8YCEHnnkBVjpJXl4eTvfOW6Q2NkOwws+4\ncweRSsSJtni48L6H8eQFOmz5A9mkqkQs3f4+HknCRrZ7E5HdWyIWZfqrL4KV/R98wceTOeyci/AG\nbIz4Vg+8ARexcILuhV7KCzz8+7NaLjy4Nxf8bSoNkQQfLW5geNUQvn3MYxjAEW3FBEo3eT3jdpOY\n8Smxk4/D+HxUvfoqzrwNk4yKu/k58ap9qF9ST8/eLjKffsScJouVoZUA3P/Z/Zxx4in0fW0Sqbo6\nnFVVLDnxJKxEguhzz2M76iCSDnBYDkp/9CPW3XMPnsGD8Q4dskM+RxGR3ZmShkRERERERERERHay\nVDpDY1sCuzEUb2ShZH3xxUuITpkCQP1NN9Pn4IMpGLL3hmM2NVH/hz8Smz2bsl/8HHt5OSaVpuHu\nu2j99yvgdNIvt82Yo6CAwLhxBMaN2+g1HYWFlPzg+xSddy42lwt7QcG237SIdBnRWbNYef4FABSd\nfz4ll1+G3efr0CYTi2GcTozd3n7spRmrWNUcpbtl542HPgdg4ZS1nPijkdh9dlqiSQxQkufObuW1\n/ngZi/pwnEgiTcDjoGQjsdWb5+Kg7w5g+MlpfvPvOSyZuoSfHzOQ2uYooViKP7yziNKAm5NGdKMo\nGOSEn/+WNc0RPl7Ryop1SQ4LfcrqK66k4lfX0fs//yGWMEx5r4lFf5vCmb8dS16hfYNrfpXTbiNY\nGNhsO8uyaGtNkIqncXod23VrMLvdht3rxe3d+NZsqWSaFbMb2ffbvUgnM9idNsac0BfbVlZ+EpHd\ngN1GeZ/+rJw9C4D80jJSlqE+HKck4GbEt3q0Nz19vx70Lw8woDyAw/5lDHYkk6z6xW9ILF9B7xef\nx/U1Ic5RXEzv554lOn063n32wVFchM1mNmjn9jnpNrCI8m5OiMcxx36HPqYVt91NPB1ncPFgVsVS\nVATLKKquJh0OU33P3bRNm0bijGOZ+OZ5NEQbuOuwu9j3zNMpOOlEjN2Oo6ho+312IiJ7CCUNiYiI\niIiIdCGZRIJMJILN58Pm/vpFahER2bjGSJxEysLlsFHk3/pF3FQ6w6xVLVz51AxK8tw8dPYonLEW\n5n3wXyoHDKS8ohtWfQNg4ayowFme2z7MsrCXlkJBAalMBofNRrq5mcjUqcTnzScw/miiMz4lNnsO\ny888iz5vvEE41JZNGAJIpbAcDtaF4lhYFHpduBybXgC2BwLYA5tf2BYR+arwm299+frddym+4HzI\nJQ1ZySSxhQtpuP9PePffj4Ljj8eRq5pWnu8h4HESaYp/2b8pTiaTYdqSFi56bCoFXidPXTyG3iV5\nHa5ZF4pz7H3vUx9OcPP4fpyyVz52ux17MNih+o83z8lLn9Ty6qxaAK7552c8dfEYrnx6Bp8sbQQg\nEk9x3gG9KSgKknD6OCJYRMDjgLeXQSbD2t/dStET/+Kff1zcPm4mndmun2GkJcE/b5lCW2uCnkOL\nOXziQPz5O+f5PRlL89k7NSRiKQaOraSgzIs3X9v2iHQqsVZwesG+6epmW6IlHcJ7wF6MKTqHWFML\n+xx5LKc/9jn5XicPnDWqQwJmeb6HY4ZWkslYPH7BaO54fT6DKgKMSNbTOmcuWBaxefNxVXff5PWM\n3Y6ruhpXdfVGz6caGwm/+y5kMuQdfng2ySf3PFqW9vCvE19mfv1K/LZyzn14Dj88oh9nj+2FPS8P\n/+jR+EeP5t7p91ITqgHg1k9u5dHxj1JcuunqRyIiXZ2ShkRERERERLqIdGsrrZMm0fzscxSddx6+\nkSMwDscGW86kGhtJrlqFvagIRzCI7St/FS4i0pU1hOP88MlP+XBxA98eWsGNJw7dbKWgr2pqS/Lj\nZ2ayorGNFY1ttDQ18tatvyDUUM+A/cdyYEVv1t54IwDl115Lwckn0/OJJ4h88jGZ087ihreXYLcZ\nrhw3ANe0aay6/IcAND/zNJW/u5WVF1wA6TTGyuArK6H05z8j/NrrBK+8kllhG1c+MplQLMVPj96L\n44ZXke/dtsUmEZGvKjz9NFpeepFMW5TiCy/Alvdlgk+quZkVZ08kE4kQevNNvEP3xjFyBACjexcR\nS6bp2S1I3exGmta0cdgZe5GyG25+dS6xZIZYMs4j7y/lumMH43F+WdlnWUOE+nCCYwaWcGjrYpaO\nuwbjdtPz8cfwDum4Hc36cbvQ5ySaTLO2NdZ+bGVjlBdnrOL44VWUBr5smxo7lsIJE4jPm4e/JI9h\n46pZNrOevQ+rxu3dvsstDavCtLUmAFj+eQOJRAb/dr3Cpjk9dgaOreT9pxfwyctLOeGqfTZaCUSk\nK4o0N5FKxHG6PfgKCjffYXuLtcKqqfDhH6DbSBh9Cfi/eUJMY6yRiz+4jP0q9sNX6aMoNY4Fa8N4\nnDbS6Qyt0SQBj6NDdTebzdC/PMDdE0Zgj0VZ95s/Z5Pbg8EN4u3WyCQSNDzyFxofeQSA4MSzKfvx\nj9v/4Mlld+GmiD+/sZwPF2er0dW2xDYYZ++SLytyjiofRSrpZVEo3F6Fzq54JiLSgZKGRERERERE\nuoh0a4g11/8aV+/eOMvLWHnRRQBU33cfrp49s21CIRIrVkIqSdsnU3AP3AvvoEG7ctoiIp1KNJnm\nyiP7c+lh/bjuxVlE4qmtThpy2A3l+R6W1EcA8DlshJuy1S2CpeVEPni/vW34vfcoOPmkbKLn0L35\n+fOzeGnGagBSaYtrihz4Dz6YdFMjsc9nYy/Ix9m9O8FLLsaWF8CXH8BzxhkUnngijcbNxfd+QEMk\nuwh97Yufc+iAUiUNich25+7Thz7/+Q+k09gCgY4VLi0LK53+8m0qCUBTJMGdr8+npjnK6uYo55w3\nGHsGvHkOoukMgyrzmbcmBMCgqnya2hIYDEV+Jw5j6Bn0URZwc2i1j+SDd0ImgxWN0vT4E3huvglj\n+7Ky2qiqPG47eShz14Q5ZVQ1r31eyw3HD+Gnz35G0Ofi4oN7c9XTMzl6SEWH+3IUFVH202uwEgns\ngQCjjytg1FE9cXocON2b35psawQr/Xj8TmKRJIMOqiRubd9KRl/H4bSz1+hyeu1djM1mcPu1lCQC\n2YSh5265nnXLl1I5YCAn/OQ6/Ds7cShSB4+dlH29+C3IpOGwX4AjWw0skUrTGEnS1JagLODe7HNq\nua+cg7sdzOTVkzlz0JnMq43jtBseO380f/zvYpbWR7juO4PoVxbYINnG67SDM4/ya6+l9MorMB4P\njpKSb3xrVjJJYtGi9veJxYuxkklY72dIkd/Fr48bzFVPz6DY7+LcA3ptMM7I8pE8dsxjrIuuY+/g\nAVz2jxlMXdZE0OfkP1ceQkWB5xvPUURkT6QnPRERERERkS7COOzgcBA46ls0PPgQ8QULAVhz8y10\n+/2d2PPyyLS1UfuLn5NYuoy8ceNw9e2zi2ctItJ5NITj/OSfM/nfkkZ6Ffu46/R9OlS52FJBn4sH\nTxvKwpoGmm0ufHl+xv/gKt574q8Eu/cmOHAfIpM/BKD4oovaK75lLIglv1xojybTOIYPY1XtUkoq\nu1Fud5H0eal86AFsbVEi77+Pf8wYHMVF2FwurJYYTW2JDnMJxVPb8ImISFfy5daGTlyOr499xunE\nWVa20XP2wkJ6PPpXoi0xnL16Y/KzVYjC8RRPT81uJzN5UQODS/JIf9LAqG/3wlXk4idHDWBMnyIK\nfS5K8lzc8dp8XplVy6tXHEy508mHj8zhiQmj8HssHIceSmzWLAAC48Z1SBhKNzcTu+12DnY4OO60\n72JMG2V7eUnFGnnpwlHYkglc6SgnjqjC795wCcXu87Vvteayg8uzY5ZZjM/Ot68ZgcMYWlZHWDOr\nEd8IO3avHb9nxyd7un1O3D4llYqsLx6JsG75UgBqF8wjGYvCzk4aalza8f2qqZBsa08aWtUcY/zd\n7xFPZThsQCm/P32fr91Ot8hbxI0H3kgyk8RldxOLuxh7dTXvLajn7x8tB+Ccv0zh5R8e1KHy2voc\nRUEoCgIQiyRJp5I43fatjo92v5+ya37C/7N331FSlfcfx9+3TK87s73DAguCSBUQBRERUYMNGwRL\nbNhFjTVqNLG3WBITS1TsvYGKLWJXUJr0srvAsr1NL3fu/f0xuLiwCwti+/m8zuE45dY5x7vP3Ocz\n329szRrQdbKvuALF2bEVpSRJ9M528eTpI1BlCa99+3PzWDwMyh4EQE1blAWVLUC62mdlU1iEhgRB\nELYhQkOCIAiCIAiCIAi/E4rHQ/Fjj5HctJFUa1v766b8PCRTekIgUVVFoqISgNAHH5Bz5RW/xKEK\ngiD8KkWTKb5cn64IVNkUQZWlLidPdkRraSH68CP4lyyh32WXYrVl0nvEaIr3HgTY+Pq1NQx89g0k\nIGRx4NjSDsJhUfnr5P4kUwaKLHHFhF68fd9NbFqRbs9w/LU3U9SzjNbXX6fmiitBkih+7DGiS6Ok\nYnEsw0dy4vBinvl6AwB9cpy7dfyCIPz+bGyOMP3Rr2iOJHh4+jCGlGRgUuSdr7gtw0A2maDnXnw5\nawWVzy6j55AsDjypHIsq43OYaQ4nkCXId9v4fEULTdVhco4sprzUw0F9c0imdJ6bv4GXv60G4LO1\njUzulUPt2jZq71iIJMHJVx+He8LByBYLyjatePV4nPDnn1Pwj3uonnkJWm0tmddcjbOsJ9VHpat3\n+M48k2lnno29k9DQz8VlNYEXNi9t4v1HlwOwdn4dvY/tQXG+i4xOJsoFQfhpWRx2XP4sgk0NZOTl\nY7L8AuGT3L3BkQnhxvTzkeeCbWtw6duqFuJaujLZvDUNaKn0Y625GT0USlcD8vuJRcIk43EUVcXr\nzWhf37NlaPjx6sb21wwMlFQSrSEAioLq83V6aJFggnnPrKJmbSt998tj6KGlu9S6UY/HUfx+Sp95\nGklRtrt+f0+WJTK7WenToiqM75vNByvryfNY6ZH5czV6FARB+O0QoSFBEARBEARBEITfCdlmwzF8\nGMbQITjHjMFUUAAYeI89tr1lhLmoCNlhRw9HMJeVIVnEZLIgCL89sWSK+mCcjc0RynNd3Z5U2BmL\nqtAvz8WKmiBZLgs5biuSJO18xW2P77vvaP7vfwHYePoZ9HznbUxZWZgsFiJtcapWBFjxVXqi5siL\nB3VYN89j456j+xH+aB7OZAF1Feva3ws0NaDH4kQXLQbAOXYsiXiMVpPM8iVL2MttZ+a4wZy0bxGh\nuEav7I6fjdbYSHTpd5h7lGLKyUG22Xb53ARB+G2JhZNoSR1ZkbC7ug6hPPJpBZVNEQCue30ZT585\nYtevraEG+PJBSGnE9r6Myu+aAFj/bQOjjiwjM8vG6+eNZt7qBgbmudn0SS2JqIYny0YooXH/h2u5\n/NC+rKsPMaFfLi9/U01jKM6oskzMNoW+o3JZ+UUtWSUuZI8Xa1HnlY4kVcVz1FG0Pv88yY0bAWi4\n8W+UvvhC+zKRLz7Hf9ppwC87ueyymmiuDrc/b62PEIpptEWSIjQkCL8Ah9fHtJvvIhIIYHd7cPwg\nbPNjxEIJNq9tJRbW6NXHTPjDD5GdDhz77Yeasc0+HNkw4zPYvBB8PcHVsY3iiJ4+vHYTrZEkxw4p\nxKzKaC0t1NxwA6G576J4vRS+8TpfzH6ZRXPn4M3J44QbbsOZ0TEIdPjAPFbVBalsCnPdxN5I3y2h\n4tq/oGZlUXjfvZhyO+4XoHJxI+sXNlC6j5+S/XOobW4h2bCRvNIeO/2s9GiU8BdfUH/7HVj22ovc\nv1zToUrcDteNxdAjUWSnA9nc8droc5i5fcpAwnENq1kh2yWqDAmCIGxLhIYEQRAEQRAEQRB+ZyRZ\nRvX7yTzrzO3fVBSKn3iC5KZNqDk5sBuT4YIgCL+02rYYE+6ZRzJlMKjQwyNT98FnNyFbd2+SQEvp\nqIpMlsvCrD+NoDWSwGMzdVmlJxGLEg+HQJKwOd2oWyYvmkJxPl7dwBh56y25bcOZZj3CUTN6s+jz\nJvw+FV/W9q1hPB4ntkEDaPv4Yw4//1I+eOzf+AuLKR00lNjyZXiOOJzQBx+g5OQgFRfy6tUzMXSd\nVZ9/whn3PczehTnbn2NTExvOOJP4ypWgKPScMxtLaelufV6CIPw2xMJJ5r9VwZIPNuEvcDD5wkHY\nPZ1f1wbku9sf98lxYlF3scqQFoePboYF6cCkeeC5qCYZLaljsiiYLAqyLFHks/PHkSXEwgkSPhvK\nqFxKx+Zz9suLOP+gXlSsq8aS1Hh3dZxnzhyBWZXx2c1YTAqjp/Rm5FFlSPKOA1Cq34/vtFNpfuyx\n9tcUtxvZ5UKy2zHicfwzZiC7nF1u4+fU/4AC1i6oJ9QaY/BRPXltZR3nFbl3vqIgCD8Jh9eHw9t5\npZ3dtW5RIx89tZJ9J+RQ/+rjBGfPBiDr0kvxn3F6x5C6LKeDQuWTOt1WnsfG3IvHEE+mcFpNeO1m\nkqFWQnPfBdItGrVkgkVz5wDQWldDQ1XFdqEht83E3oUeMp0WjECA+pkXoweDaDU1ND74ILnXXYek\ndGxVaRgGLr+Vfsf04LhHviYU1/jnlL6seuoxDpz+JxS7k6ZQgtV1IfrluTu0CUsFg2y66GJIJklU\nVuKeeAjuiRN3+tlprX80RPIAACAASURBVK20PPkUoXkf4TvlFJzjxm3X0szvtODfQz8iEARB+P9I\nhIYEQRAEQRAEQRCEdkY8TuVJU1HcblLNzZS9O/eXPiRBEIRdtrouSDJlALC4uo1Y9WbCzbU49tsP\nXVbY1BLlo9X1jC7LpNhnx2JSOt1OMJbkq/XNvLlkMyePKqF/vocsl2WHLb1SySSVi75h9j9uR1YV\npvzl7xT27U9CS3H/h2t5/PNKHvxDLwZffQ2pJYvwz5jR3uLBMAz0SAQWfM6ooXsTeH8u5O0P/sHb\n7cdcUkKGx4NHlph20z3IqoLN5abuvfeJzJ9P3o03omT6SVhtGLq+Zft6++NtGakU8VWrtpxEisT6\nChEaEoT/57REiiUfbAKgqTpM0+Zwp6EhPRplfFkGj506jOZwkgPLs9Kts3aFnoJQfftT29KHOOGa\nS6heG6Cw3IvVqRJJaFjVdHjI6jAzdFIJoWiSr6ua+fuRAxjkTFE38884Ru/P3kcfiaYFkWUzFlO6\nKprVsf0x6SmdaDiJoicxmWUUux0A1ePBN306RiJJctNGMi+4AN3joedbc5CQUNyudBu1XwG338pR\nlw5G0w0W17YxtVepqDIkCL910VZo25i+LhbuS1N1CACbTSJZVdW+WHzNGkilQE1P5yYbGjDicWS7\nvcsWYYoskePuGJSXTCYcY8cSnjcP2eVCMZvJ7dWH2rWrUc0WfAWF223HpMj0zXXz1zeWMfqoXmS4\nXOjBYHof3ox0eGkbPfbJIplI8dCnlWxuiwFw50cbuaxHX8Ia/G9RDR+tque4YUXc9+EaLjm4D5lb\nxtWSLKN4PKQa09U2u2pNti1t82Ya//lPADZffgW9Pnh/u9CQIAiCsGMiNCQIgiAIgiAIgiAAEA0G\niCXi+M89h+Abb+I79RRkt5tYOEQqmUBRzVh38+ab1tBAKhBA8XhQMzP38JELgiB0NKjIS89MB+sb\nw5w7shDti89omP0atgEDaDI5+MP9nxKMa1hUmXl/PpBcT+dtuFoiSc6YtQCAt5fW8vHl48j1dB4w\n+l48Euar117EMHRSSZ1v3nyVnB69SKKwsSXd2ufc2Wu5fOJIegwcy/DcbKxbfqWdamyk6qST0Oob\nkGw2Sp99FjXTv2W7EaKBNhKxKC5/JjaXG9XrBeCHU8feKcfS+tJLbDznHHJv+Cu2iROZOONClv7v\nPfqPGY/F5er0uGWbjayLLqThH/di6dMb28C9u/15C4Lw2yQrEhm5dlpqI8iqhCdr+2thKhCg7Y03\naX7ySQaecDye445D3Z1qDWY7TLwJAtWgxVGGnIg304k310kkrvHx2iae+qqKowYVtIeSJEnCZTcz\nvl+6BU7Tc8+j5uRiHjCAuqoK5j75CDaXm8mXXoPTZkd1uwknw4STYWRJxmfx07w5hBJtI/LIAxix\nKDlXX93eUkf1+8m+ZCaGpm2tROfxAOl2jVpTE7LN9ouPXaOhBB89tZKWmgj+IicFx/XuMuwqCMJP\nIx6JEI+EkCQZq8OJaTerV7ar+gyem5p+PGgag8ffSfXKFqoqEhx4zTVUn38+st1O1vnnIW0JDGkN\nDVRNnUZy40Yc48aRf9PfuwwObUvNyCD/5ptIBQLIDgeqz89Rl19HW11telzp9nS63l55Lub9eRyK\nBM5HH6Hhzrsw5eXhO3l6py167W4ze43OZ9ASg+fmp9s/9su2kwpvojkhccXLSwD436p6nvjTvqR0\no31dxe+n9OmnaH5iFrYhQ7D27t29z9JkwnnQQWSefRZGMgnSLlbCEwRBEERoSBAEQRAEQRAEQQA9\nmaR2zSrmPHAX46afQd4h/8Se6ScpwWfPzmLZxx9QPmoMY6adir2LG4pdSTY0UHn8CWg1NZjLyih5\n4vFffPJFEIT/37LdVl44exSJUJjE23OI3ns33mOPQbJYSCR0gnENgLimE4qnutxOUttalSep6+ip\nrpcFSEUi6Js3U9y3P/UV6wAoLu+HFIvh8Hj4y+F7sak5Sv98N5P65/D8N5sY0TsHrbkZI5nEiMfR\n6hsAMKJRjGSi/XpZs2YlL998HQDD/nAMo6achNm6/QS/ubSUnnNmQ0pHdjpRXE76HXAQZcNGYbbZ\nUNTObwcqLhcZU6fiOeYYJEVB7eavuwVB+O2yuy0cOXMwjRtDZOTasbnNaC2tkNJQMjKQFAU9FKLu\n738HoP72O3Dsvz9qF+HDncoohWkvgWGAY+tYsDWa5PQn5qMb8MGKej65fFynlYysPXpALEbK5WDO\nP+8kFg4Ram5i3lOPMvaQyZhKCnin9n/c8MUNZNmzmDVxFjVL4+R/OYvAG28AYMQT5N91Z3sVCklV\n2yfkv6c1Nra3a7T07Uvxo48QcZpIpBI4zA5saudB043NEZ7+qorBxRmM7OHHY98zlYr0lMHG5c0Y\nBgSbY/QZnoM7s/NjEARhz9OSCdbO/4J3/nUPkixzzJV/pWTvQUidVNrpFsOA1T+o6LvqLVwTbuDI\nmYMwDLBaJXq8+gqSJJHw2GkIVaMbOo5EkuTGdBAn8uWX6InELu1W9ftR/X7ikTCpVAqHx4vD493h\nOmZVIce9JaTo6kHBnXeAqu6wEpvZqjKhXzb5pwymuTVEP4+BEiol/oNilyndIMNuxmbZGoCUJAlz\nSQm51127a+eVm4v/zDOoOvU0jGgUS79+FD/8kLjnIAiCsAtE3FIQBEEQBEEQBOF3IhUIkGxoINXW\n1uH1ZG0ttdf/Fevsdzjlr7fztVTIH2dvYtaiBqKRMIvfewstHmfZR+8RD4d2fb+trWg1NQAk1q1D\nj0T3yPkIgvDrZ+g6oZZmWutqiATadr7CHpTpspBjV8gZPoiif/+brItnojidOK0qZx3QE7dVZcrQ\nQnyOrlu8+J1mrprYhyHFXu45rAxz1Vr0eLzL5fVAgI0nnET//FKmXHgF0/52J/mxFGyZ1OmR6eDF\nkwfy1/wwprtu5ryMAM5QC4kNG9BqatEjUdxHHA6AbdAg1Ozs9m2vW/Bl++PKRd+QaGnp9BgkRcGU\nnY0pLxfFlZ4UV1QVm8vVZWDoe4rbjSk7e7cDQ+HWOBuWNxFsjpFKdd4GbVuplE5LbZhv3qmkcWMQ\nLbHjYNauMn7wC3ZBELbn8FgoGeBPh1DaWth0/vlUTZ9ObOVKjFQKFBXJtiWgIsvIDseP3GEmOLPg\nBxUqjC3/vqdrCYim/2Y0BuMsqGympi2K0q8fjlEjke32DlU+TFYbycYmwkaM+xfej4FBfaSed6ve\nw+WzdtgX8vaVMbaVCgaJr1wJQHzVKtpMSf76xV85fvbxvFPxDuFkeLt1GoJxTnr4S/49bz1nP/kN\n6xp2fczcFcUks/e4dOsgu8dMXtmuBfgFQfhxEpEI38x5DUiPbb996w2SOxgP7pQkwfAzwJRul8jI\nc0G1YndbcHgsKBYzpqws1MxMvqr5ikkvT+KwVw7j/eB8HFOOxnraNCxvPMFyNtMca+72bg3DoKl6\nI2/+4zY+mvVI+9jcMNJX4FQgSKK6mmRtLXos1r5eNBhg3Tdfsejdt4hEI91q3eh32RjdO5tD+udQ\nmJ9Nj6HDKMiwcdWkvowq8/PfU4aT47Lg3kGrS625mWRdHVoXY97vyWYzzY89hhFN32eIr1hBYsOG\nnR6jIAiCsJWoNCQIgiAIgiAIgvA7oLW0UH/X3QTffgvn+PHkXHkVqi8DrbmZ6otnEl20CAA9EqFx\n1IksrwmwvCbA8f1HYLbZSESjqBYLJsuul2FXvRmYe5SSqKjEOqA/st2+h89OEIRfq2BzE09fPZNI\nWyu99t2PQ848r8v2Bz8FxePBtnfHNlsZdjPnH9SLMw7ogcUk47F1HRpym2WOql/EIc4k0ksvEtiw\nAe+jjyBbdtCaR9dpuPAi1Owssv75TyJtga0T7oA1EmLdWWeCYSDZbFiKi6i/7XYA8m76O1mX/ZmM\nE04kWV9HwwP/JPcv1yBbLAwcfyjL5n1IZkkpY6dMI7lwMbo/E9nc9fH/nMJtcV68dQHh1jhmm8rU\n60fg8O68hVEsmGTuQ98xZmo5oZY4VocJu1dG7sbE/o7EI0k2rmim6rsm9jm4mIxcO4oifj8pCNuK\nBgOs/3Y+TdUbGDByDHo8TqKikpqrrqb4sf+i+DIoffYZWl99Fdf48SjezqtSJKIRIoEAiUgYV2YW\nitlOPKyR0nSsDhNWR9cTwx6riQdOHMRTX29kcl8nGaueh7IRNGr9mPbIV6yqC+IwK7x/6VjyystR\nAwGOueJ6PnziIawuN/sdP53IfffjGDaAew54BBNOrIqBpESxxF04pp+BoSUhFiX78svbqwx1RXE6\nUXNz0WprsQ4YwNpgJe9VvQfA9Z9fz+iC0ThMHcNTBgaNoa0hgh8+/rGsdhPDD+vBPuOLUVQJu/vX\ncd0XhN8L1WqldJ8hNFRVANBjyDDUHzv+yuoLF3wLehIsbrBsX8EtkUowZ/0cjC2xyrcr32HCn2+j\nMrKRU96dhoHB4T0O5+oRV+O2uHe6y0hbK2/cdTPN1RupAjKLSynqP4AFb77GoHETUL/8mvpbbgWT\nieL/Popj+HBSmsbSD9/lk2ceB2DB7Fc46cY7cHgzdro/RVU7VCn22uG00T04ad9iHBYVZQdjPa2p\niU0XX0x0/gKcEw8h7/rru2zFJqkqpoLCDq91t22bIAiCkCZCQ4IgCIIgCIIgCL8DWn09bS+9BEDg\njTfxTfsjhp7CiETQGhral0vV1+PeMqcjSRA32Zh+631sWLaE0oGDiaoOosEYTqsJm0npbFfbUbMy\nKZn1JHo0gmy3o2aKljeC8HtRs2YlkbZWANZ+/TkHnXrWL3YsTaE4axtCZDktZLutZLt3HoKUVRV7\nVibN554LQOZFFyLbum4Jo3i9FD/8EC1PP4Pr0EMxZWeTceIJHSao9WAw3ZYCMBfkE3z33fb3Qp98\nin3ffamaPh2AjKkngSyjtbZiXl/F6bf8A2PDRtqefAb1sMMwkkn4lYSGtIROuDU9SZ6IasQiyW6F\nhlIpnVHH9OKjp1bSUhvB4lA56druBY66koxrBJvjzH14GQDrFjYw7YaRODy7v01B+P9q5Wfz+PCx\n/wCw7KMPOOHKy6n748moOTlIW1rQWPv2xXvhBYRbm6lbvQJ/QSEWuwOrc+skd31lBc/fcCUYBoMn\n/YG9x0/hxZsXYxgw7LASBh9Sgtna+XSE06oysczGAS0LsNV8i2n5y5D5NAl7OavqggCEEyk2NUfJ\n89hQ3W4y3W4OOf8KACxNDTgvvohWycn1r6xkyaY2yrKcPD1tb15bWoXZYqP3iTMo9Nkw5Ww/DjVS\nKfRwGMlqRTabUTIz6fHiCyTr6jDl5mKYAkhIGBhk2bOQpe0DiG6rif9MH8aNby5n7wI3Q0t3PqG+\nK6xOE1bnnml3JgjCrjFbrAyffCy9ho9CMZnwZGUjK937Ltwl1QzuvE7fikeTaAkdWZaYttc0Ptjw\nASkjxYl9T8Tl8vF15avtQaKvar8inupmSFGSOlSdVFSVD//7bzZ8t4SyPv0wnpiVfiOZpGXWk9gG\nDkTTNCoXf9u+TltdLVoyuXvnDJhVGbO68xC31tREdP4CAEJz30W/7DLoKjSkKPjPOJ1UWxvx1avx\nnTwdRbTZFQRB2CUiNCQIgiAIgiAIgvArozU2YiSSSDYrasbWCQcjlUJrakIPhlC8HlS/H8Mw0AMB\nJLN5hxPZss2WTgFtmaiWHXY2nX8+qjeDnKuvZvOVVyLbrGRfdSWDFB8TmzSOHVKAw2LG6cnDm5vH\nuoYQMx75iurWKOccWMb0kSV47d2brFazMn/chyIIwm9Sdo8yVJMZLZkgp2evnbbH+qm0RRNc/8Yy\nZi+pQZLglXP2Y3Bx9yZ07cOHU/b+exjxOIrf3+W1tiEYJ5JI4dh7CPl3DkayWJCk7X9Brebm4Dn6\nKILvvY+anUPGSScRXbQYVBXvMUcjO134zjwDSVHImDqV6JIlGNEoRqANubGJyjPORFIUdLsDedAg\nHD+2VdAeYrYq9BycxfqFDeSWebA5u/f3wWxTcXjNtNRGAIiHNYLNsd0ODcUjSdYsqMOZsTUUlkro\n7a03BEHYSk+lqFm7uv15pK0VOTuLrIsvxnvsMSiedIWI1roaXrrpWtrqatuX7Tt6LONOPau9isT6\nhfPbx5mVi76h59DDvn/Kyi9qGTC2sMvQEEDUUHFmFiJ/+0/ocygUj8AmKUwZWshL32yid7aT0syO\n1zuvb0vVoy3/jTSFWbIp3W5nXUOI1qY2junt5qgX1jB5UD5n9cza/jOIxYku/JbGBx/Esd9o3FOn\n0oKJpOrA2bMPNruZ7ISVWZNmsbB+IRNLJ5Jp235cazUpjOrp47mzRmI1ybh20HJHEITfHpvLjc21\n82o+P1YskmTp/zax4K1Kcnq4mXhWf94+9m0Mw8BtcaPKKpN6TOKpFU/RGm/lzL3P3K7yWVccHi9H\nXnYNnzw7i4y8Akr3GcJ7Dz8AQHN9HQUjRhB49VUAnPsNR2pageopYa8x49i4bAmwZWz/MwTWFa8X\n2eFAD4dRs7KQrDsO+6t+Pzl/uQYjHkd2OrvVQk0QBEHYSoSGBEEQBEEQBEEQfkW0hgaqTj6FREUF\n7iMnk3Plle3BIa2ujvVHHoUeDGIfPZqCu+9Cq6mh7qabMZeWkjXz4q5Ldlut5N92G8EPP8Q55gD0\nZJJUYxOxRYtRCwvp8fprSJKE7PMxwmJhnyIv1h9UEmqNJLjipSWsqQ8BcNe7qzl877xuh4YEQfh9\ncvmz+NO9/yHU3Iw7Owe7p/O2NnuSkUqRamtDMpvbK/zENZ2vKprT7xuwoLJlh6GhUDzJhuYoq2oD\njC7LJLuwsMtlARqCMU586EvWNYTZp9DDf6YPYmHN/wgnwxxUfBA+69Zrs+rzkX355fjPPhutvp5U\nayslzzwNkkTba69j6deP7EsuwdA0mh79L43/+AcAmeefh7W8HCQJ1yOPM2uzTOWcdVw5qR+lfnun\nAaXdkYylaG2IUFcRoGSAH5eve20pbS4zB04r54Dje6OoMjZX9/4+WO0mUkmdwr4ZbFrZgifbhtvf\n/VaYhq4TCbRh6Dpmu514FOY9s5oJp/dnn/FF1K5rY9jhpVjsYvJIELYlKwrDjjiaNV9/jhaP03f0\nWMwZPrwzzm5fJtzayiu3XE9OeTnlhx5C85r1rP38U1Z+No/MohKGTz4GWVHpP3Y8S957m3g0wvDJ\nU7D+INBYNjgLk6Xrqhx1gRjHPriA0SX5nHX0bAozvVgcfjKAaw7rxyUT+mBWZDJdOw4T2swK5Tku\nVtUFKcyw4TSSeO02Xjt/NG6rqcPY9nupQBsbzzobI5kkvr6C0NEnMvnf8whENS4a35szD+iB0+pk\nUPYgBmUP2uH+zapClutHVh8RBOF3LRlL8fWb6TZoNWvbqK8M0WNgbodlCl2FvDL5FbRUklhdEy3r\nK1EKS7B0I0juyc5l0rkzkRSFWChI+X4HsPLTeaxdtohBF83Ee/AoZKcLU2IV0kNjUXodTK8j/k3O\n7fcTbmslq6QHjp9hPK/6fPR88w1iq1Zj3asfaubOf4Sk2O0gWqELgiDsFhEaEgRBEARBEARB+BWJ\nr11LoiJ9kzDw+htkX3xx+3uxlavSbW2AyGefoYfDbDznXLSaGiLz52PbZyDeKVMA0BMJjEQC2eFA\nkiQUjwdzrzKsTU0YKT1dpSiRwFRQgPeoI9k0YwZaUzN5N/0dx8hRWK0dJ2U03SAQ61iGPJZM/ZQf\nhSAI/w+oJhMufxYu//bVHXaX1tSEHo0iW22omX7CcY1wXMNiknGbZGLLl1N7442YSnuQe9WVqH4/\nLouJSyb04epXl5LptHDogNwd7qO6Jcrh932CYUC/XBfPnTUSi0npdMIZoDWSZF1DGIDFm9qIxDWe\nXv4UixuX8F3DUv48aCYOx9YJFiOZpGLykZjLysg8ZwZVU6eBYeA69FAksxlJktCjUSJffN6+TnTJ\nUmzDhlP4wP28ErLyny/XA7CqNsiLM/YjayeT6d0VDsSpbYogF9ioD8RQzBJ2Z/e23d3qQttyeCxM\n+FN/kokUJpOMfRfaiLXV1/HMtZcRCwaZdP5Migbsi2KS+eCx5ew1Jp9DzuyPw2tBUXbeCkMQfo/8\nhcWc/o+H0JJJLDb7dpU0ooE2+kw4mIqCCM9vfoMjxx3O0KJ8vnn+Bb5563UGjJuAw5tBRm4+p979\nIHoqhcXhQMLM9JtGkYylsHssO6wytLS6jU0tUZ5vifL8oga+veZg4o1R1i9uIKvIRWahs1vBvyyX\nlSdPG0ogEMGeiOIJNqFmFJO9kwoVqCokk1jKynh/VQOBqAbArC8qmTaiGKeoGiQIws9EViRsLhPR\nYPq7d2dBalmSsSdNvHjj9TRt2gDAiTfcRkHf/gAk9SSGYWBWOh+XKVuq8NjdHg469WzG/vF05Egj\n5qfHY5ZV0GIQ3tLCfO37WOsWYC2fxJ4bze+cpKqY8vMx5ef/jHsVBEH4/RKhIUEQBEEQBEEQhJ+Y\nHo+jh0LIdvsOW4gBmEpKkKxWjFgMc8+eSD8oq23dqx+K34/icuEcf1C6MtAPwj3Slm1rzc00PfwI\n8dWryLroIiz9+iFbLFjLyzEXFCBZrEgWM6Uvv4ShadTfcgvx1WsAqL7wIso+eB/Z2vGWoN9h5prD\n+nHGrAUkUwYjevjIdne/EoQgCMKeoDU1sen8C4guXIilvBzfY7N4aVkjD360jgN6Z3LtoX1oPv98\ntPoGYt8twzlyBN4pU7CZFSYPymNceRaKLJG5kxBMRWMYw0h3dbxgfG+e+moDS6vbuGRCH8qynChy\nx6o+HruJfI+VzW0xemc7sdTVckfhBVwt/Zuq4AZiTfUdQkMYgKIQX7GCyIJv6DlnNqlAAHNxMeqW\ndkCyw0HmeeexceEikGUyzz4bc88eyE4nyS82tG8qoe3Z1lthQ+eeb6v4cHUDfoeZN8/fn5/jN9t2\n9+4FjpbN+4BoIN2O6LMXnubE/vsw5fKhrPq6jrLBWdicJhEYEoQdUFQVp8/f5fuRYBtZA/txzodT\nAVjcsJiXxz3DN8+/QDTQ1n79kRUFZ0a6qlo0FKS1Zh2GoZORV4DNuePQTXmOC6tJJpbUGV6agaoZ\nvHjrAmKh9KT5kRcPorBv59U0fygViSA9OwtbRSWmkhJMk/+AvJPAkJKRQcmTs2h6+BFch05kdK8s\nTMpqkimD8f1ysKiicpAgCD8fu9vMlCuGsfbbevLKPDi7qPho6DrNmze1P2/YWEVB3/40RZv41+J/\nEUwEmTlkJnnOvB3uz+ZyQ7QFXr0QgjWdLzT/YSjZH6yuXT6fVDJJuK2VtrpafAWFOLzdaw8sCIIg\n/LxEaEgQBEEQBEEQBOEnlAoGCbz9Ni1PP4Pr0IlknDQV1evpcnnZbqfHSy8SW7kSc2kpxg/azajZ\n2WS++TarmqJ8F0wwxuOn6D//oeG++7D06o1jv/0wdJ346tW0vf46qeZmIt8upGzuO8jZ2RjxOIkN\nGwh99jnuQydiLirC0LT2sBGk25h11uBGkiSG9/DxyeUHkdBSOK0qPseeqWohCILQXXo4THThQgCS\nNTUkZYWHPl5PUzjBa4s2c9p+Jbjz8tDq07+OVnr3pb4qwLpv6+k5JJuVoSjN8SQHlmfjc2wNqbRG\nEiRTOh6bCbOqMLTEx6AiL/3yXOS4Lfx99nI2t8WYX9HMOxcfQJbLip5MIikKkiyT7bLy2owRtDYH\nsQdbiF58HgAXPHANNrMD6evFUNynfX8RuxPvgw+RfPJxkvlFLA3LDBywN+oPJqclRcG2zz6Uvf9e\n+ly8XmRz+piPGlLIitogVU0R/nbUAPzdrATUHbJF4cPV6c+vKZxgTX2Q/IwdB15/SUUDBvLlK88B\nUNhvACaLBWeGg8yiXZ/YEgRhe96cPBLxBmRJRjd0VElFltJBvLzefVHUrVMMkUAbDVUVNFRV8PmL\nz1A2ZDh9R4+ldNDQDsttK8dt4aPLxlEfjJHvtWFE9fbAEEDt+kC3QkNGOEzr8y+g1da2v5Z13rk7\nXEc2mbANGED+7bchmc1YNJ2PLx9HIKqR5TLjEa0NBUHYDcFEkEA8gCzJuM1uHOadtw6D9Pdud6aN\nIYeU7HA5s9XKuJPP4H+zHiEjL59eQ0cQT8W579v7eGXtKwBUB6u5f/z9HdrkdsowQE92/X5KwzD0\nTu8T7Ey4rZXHZs5AS8TxFxZz3LU3ieCQIAjCr5AIDQmCIAiCIAiCIPyE9GCQ2uuuByC+ahXuiRM7\nDQ1pzc0gyxiJBBXHTkHxetEaG8m97joyTjgewzBItbby1YYw5zy3BIBD++dy+3EDybvlFiRFIdXS\nQv2dd5JqC1D04L/YdMGFaI2NGMl0iwWtpYXKE04EXaf50UfpOWc2puxssi+9DD0UTu/v2mtRMjq/\niWc3q9jNO/4aaSSTaM0tGIkEisuJ4vXucHlBEP7/SsQ0YqEk8YiG02fZ7dZVPyTbbJiKipC9XpRb\n7uL9VU3cf9Jgnvyyire/q8XvspJ99900PfIIlvJypMIyXr7uS/SUweIPNjHhz4M59ckFXDWpL2eP\nLQOgMRjnspcWs74hzN+O7E+fHBc+h5knpg2gduVSNv3vJR6fMoHL51azriGMLEskqqtpuPc+zEWF\nZEybhurz4bfIJB+6l8DrrwNgKiykj5pP8z0P4Lzyyg7nocsq92024z3kTNa3JcitCDNor+2nYmSL\nBTk7e7vXM50WbjxyAImUjtdmQpJ2ZxqncxaTzLjyLP63qgGfw0x57q87fJPTo4xT736QaKANf0Ex\nFnv3JuUEQegei91OZE0t94y4nffqP+Kw3Amsevs9JElm3KlntrczS0QjfPbck5hsNsItzZz052tJ\nvjkH5swlVVSKkpPT5T7MqkKuRyHXk66oEUnFKCj3Ur2qFbNNpdeQzG4dq2Sz4Z54CM1PzAKTCeeB\nY7t9nrIlHb60aaHtLAAAIABJREFUmhTyPDbyus74C4LwO2UYBo3RRhKpBA6TA6/Vi6ZrqHLH78iJ\nVIJ3Kt7hxi9vRELi/oPuZ2xR969H3WG22el/4MH0Hrk/kizj8HiJJCO0xlvblwkkAuiGnn4Sqofq\nb0C1QW5/cGytLKzJdmIT/4lcuxD7J3+DQHWHfcX7n8iT85uYNNBMgXfXguStdTVoiTgATZs2oKc6\nb3GeiKe/NySiGg6PBZvrx39vEARBELpPhIYEQRAEQRAEQRB+SrIMJhMkkyBJSObtb34lKqtomjUL\n2W7H98dpmHv2JL5iBQCWsp4AaA0NNPzjXpaOOL59vVV1QeJJHbfVgqHrND3+BM3/fQyAVGMjvtNO\nRbbZMOKx9GutraCnbxrqwWD6mABTdhb5t92KoWkobjeSvPttXBLV1VQeOwU9HMZ/1ln4zzwTxeXc\n7e0JgvDb1VQd5tU7v8EwoP+YAkYd3ROL7cdVbFCzsih95mkaJQtH/PsrGkMJzIrM2xcfwIyxZfjs\nZswZBeRedx2SJNFaF0FPpVvnpDSdlJa+Bq5rCJHSdRRZ5sNV9Xy0Kl1ZZ+YLi7n1mL0ZWOghVVvN\n7HtuBWD15x9z0+W3Ejc5cEVDVF9wIbHly9uPKePEE1HsdrIvvQQ90EaqtZXcG25E8fnI/+tfUTM7\nTnhnOMxcOL4Pd7+3iiK/g7PHlqF2o4VWMJbEpMhYTQoOi8pPEY/xOSzcedw+BGIaDrOy01ZuvzSL\n3ZEOChUU/dKHIgi/OalQCD0cRpJlFL+/0zGgxe6g94Bh2FYs49Dqvmx6920kRWbqTXfh/8H/d1oi\nQc3aVUiyzOFnX0TkXw8SfHM2AMn16ym479729os/1BpJ8OX6JpZWt3HSvsUUZtgxJYIcMDSJMaEn\nqqxjbtkIuf12ej6K04l/xjl4TzwR2WYT4XVBEPao2nAtJ805iaZYEzfudyNFriJeXvMyf+j5B/bJ\n3geHKT0yiyQjvLr2VQAMDF5Z+woj8kZgVfdse2+zzY7ZtrWJrN1k57Lhl7ExuJFwMszNB9xMhiUD\nwg3w9HFQsyi9YL/JMPl+sHnREnEqlizkvYfux5ubx5FnPIvjmUmQCKeXzd2bKt9I/v7SCl5fvJnH\nTxu+SxUu/QVF+AuLadq0gQHjDkHt5H4IQENVkNfvWYhhQJ/hORxwYh+sDlHpTRAE4eciQkOCIAiC\nIOxxWmMjoY/mYSouwlpejtLJjUFBEITfi4TFTP7ct9Hr6jDHE9tNXqTa2tBamjHl5mLEYqQCAYr+\n+yhtL7+MrX9/LH3S7WyMWIzQvHmccOpZvLOmhfpgnBuP7I/Hlv5al4pE0CMRbIMHIQ0dgcksYxsy\nlODcubgOPhgAU14e7iMnE/74E3ynnIzs3BrmUZx7JtgTnvcxejh9g7H1xRfJmP5HERoShN+pjcub\nMNJ5HTYsa2L44aVYdvbj5FQSIo3pgKPVDZbtq9yoWVmkWqM0hhIAJFI6sUSKAQVbx5zfV96xOkwM\nmlDMmvl19BmZy7rWCOU5Li4c3xtly+R4vmfrBE6ex0owplHbFsPW2tz+ejQYoDDDijPDi9HchB6L\ntb+nR6Ltj03Z2eTffns6hOn17rACUK7Hys1H740sSchyermElqK6Ncb8ymZG9vBT4LWiKDKGYbC+\nIcxt76zk+jH5WD/9ECMcwXPUkZh2UL1jd/mdlj3a8kwQhF8fPRol+M471Fx7HUpGBqXPPYu5uLjT\nZW0uN72GjSC/T1+MQyejKCo2V8frs9luZ+jhR/POv+6mqWo95tq69ve0ujrYUvlyW8trAsx46lsA\nXl+0mVfPHY3XMGi46ByMaPr6WvLcs90+LzXDi5qxfVgoFYmkA1KqitpFVU1BEIQdWdSwiKZYEwBl\n3jJOefsUNEPjrYq3eOeYd9pDQzbVxhE9j2Bp41IkJCaXTd6twFBci9MabyWpJ3GZXXgsO7+/WuQq\n4uFDHsYwDDKsGSiyAvHQ1sAQwIo3YNJtYPMSC4eZ++A/iEfCRIMB1ixfx6D+R0PNEhj8R9p6/oGT\nH07/oCkYS6Ibu3YODm8Gx113E7qmoZot7dXpfsgwDFZ9Wdv+vWHdwgZGHtuTYKQVRVZ23l5NEARB\n+NFEaEgQBEEQhD1Ka2lh08yZKHYH/hlnozU1gSShuLf/UigIgvBbZxhGlxPCqVCIWDLBK7fdQH3F\nOnJ7l3PUn6/dLpxjGAaBOXNoeeppAGIrlpN3661knnFGh+VkpxPbsGEoTz3K8388FT0rB6/LillV\n0FpbaXzw3zin/pGqqMIj39RycHkWhxT58P/ptPYKF6rPR+4116BfFke221Ece75GhWP0fkgWC0Y8\njuvQie2tHgRB+P3pPTyHxR9uIhHVGDyhGLO1G7ehGlfDo4dAMgyTH4D+x4J5+6SRw6xwwUG9ePTT\nCsb0ySTPYyURjWLoOpYfXNusThPDDy9l0MFFKGaFgKbxdHlmh+o5Awo8/Gf6UJZuamN8v2zumLuS\nf5w4GKdnAL2Gj6KuYi1jp/0Jm9OJIksYfj+F991L7Q03ohbk4zlycodjU1zdb+e1bXWhlnCSw+79\nhGgyhduq8t4lY8lxW2kMJTjryW84ZaCP5F23EXjvXQDaXnuNkidnbVfJSBAEYWf0UIiG+x8AwyDV\n3EzbG2+Sdf55XS4vyTIOb9dhG9VkptfwEZz5wKMgKZiuymfjn07HSCbIvfEGFE/n9wScUorJA3N4\nZ1kDDcE4hmGgZGRQ8sTjNP7nIRwjR2AuLf1R56q1tdH6wou0PDkLc2kp+XfeiamT1o+CIAg7MiBz\nAFbFSiwVQ5VVNCMdhtQNHU3fGoy0qBaO6HkE+xfsjyIreMzbh33iUY22+ggNG0OU9PfhzNg+VLS6\nZTWnvnMqCT3ByXudzNn7nI05YSUSSGCyKFgcpk7H136bv+MLqhVMdkhG0s/dBSApAMiyjCcnl/qK\ndQBkFPaAXn8DQwebj2QkyYiePjY2R7jp6L3xOXa9bZjDs+OgpiRJ9BmRy8ovajAM6DE4k7WB1Zzy\nv+kMyBzA/Qfdv/05CYIgCHuUCA0JgiAIgrBHGckkRiSK77zz2HD6GRiRCNlXXE7GCScg2+0734Ag\nCMJvQDiusbS6jdcWVnPC8CL65bmxmpT29xObN9P00MMExoxqv/lWu2YV9RXr6DFoaPtyqVCI+Jo1\nJCoq2l+Lr69obxsWCydJaTqyImHbEvgJvDUHaf4XZEyahKqmJ8aNaJSWJ54gedRxnPLcCuKazvsr\n6hkycwy+nI4TyYrbjcJPx1RURNm7c9EjERSvV4RGBeF3zJNlY+r1I9B1A7NNxWTZydXHMODLByER\nSj//5C7ofUinoSGv3cxZY3oyfWQJFlVGTYSZ+/BDxMNBDj7rfLzZue3Lmq1q+4SKtZNbYV67mYn9\ncxnV008wluTeE4eQ5bIAVibOuIiUlsRit6Oa00GjaCJFKLsA5+13Y7VbUD3dDwntTDihEU2mAAjE\nNOJbHksSmBSJ3l4ziYXfti+fqKjA2PI3QxAEYVdIFgv2YUMJzHkLAPu++/7obba3CwSMjAx6vvkG\nBqB4PEimjm1mYuEQ1SuXsWbuHI4pK+fM0w6kJi7jsqnIJhXbwIEU3HkHktmMpPy40WuqsZGGu+4C\nQKtvoOHue8i98QbkLtrkCIIgdCbXnsucY+bQFm/Da/Fy43438uLqFzm8x+HbVQFyW9y4LV1/F26r\nj/DiLQsAcPmtjLuwB4rDIN+ZD4Cmazy14ikSerqy5tMrnuaUvU7lu3frWfjuBiQJjr50CHm9OlZW\ni2txwskwdpN9a3Ujmw9OeQPmXgMmG0y6HRxZANg9Xo6+/DpWffEJ/sJisnv2AvvWsW2m08JNRw8g\nqRl4bKb26ph7Wnapi2l/G0koFMXqUZj01iEYGCxtXMra1rUiNCQIvyKSJE0G9jIM49Zf+liEPUeE\nhgRBEARB2KMUt5ucv1xDcO5cjEj6FywtTz2N+4g/iNCQIAj/b7RFk0x9+Et0A175tpqPLz+QXE96\nUjsVCFD7l2uJV1Rgm3hwh/Xs27RrNKJR6u+6m6zzzyO6aBF6IknOVVciu91EQwm+fG0dyz+roXgv\nH4ec3IvmBx6g9YUXgPSER9aFFyApCpLJhKmoCHQD3dhaL/z7x3o0SmLDBkIff4xjxEjMPXvssXZk\n25ItFuSfoFWOIAi/PbIi4/DuQrUxSUqHhBY+mX5eMjr9y+guuKwmXFYThmEw7+VXWP3lJwDMffBe\nJl9y9Xatc7YVDQZIaRqyomB3e3DbTLhtHSe1rZ1cK1fWBTnu31+Q0g3+NLqUmRP64LKatltud3jt\nJo4eXMDb39UwZWhh+3YznRYePnkYK9Zupujggwk+91z6+AbtgyQqugmCsBsUt5uca67Be/wJqJl+\n1Ow9O36TFIWoy4tugMe8/TWyrb6W127/GwCVi79lWDLBmClTsZq2TlnItp31tOwePRrt8DwVDEIq\ntUe2LQjC74dJMZFtzybbnq5UdnjPwxlXNA6basOiWohrcVriLWwKbqLEXYLf5keW5E631bgp1P44\n2BQjHA9z3sdn8/wRz5Npy0SVVUbmjeStinSwc4B/ALIhU7G4EUhn7dcvbuwQGgokAsxeN5tX1rzC\nhJIJnFB+Al6rF0wWKBwOJz0Hkgw2Lyk91f5jIqfPz9DDj+ryvJ0WE/zEw02zRaUp2cAxc4/i9jG3\nk2XLYkNwA6qsUugs/Gl3Lgi/Y1K6fLpkGIbe3XUMw3gDeOOnOyrhlyBCQ4IgCIIg7FGy1Yq1Xz8A\nmp98ClIpXAcfTEqGUO1mzFbbDkuaC4Ig/BrpsRip1tZ09ZyMDBIpM/qWbE4ipaPpW4M6SBIoClpN\nDe6qjRw0/XTWLfqG8v3G4MnK7bhhRQEMWp56msJ//QtTYSGq349sNqOForTWR3F4zGxY1kwykiC5\nubp91eSmjRipFJKioGZmUvL0U4TrGnns5KH859NKDuqbTa47Pdmu1dVTcewU0DQagNKXXsI2oP9P\n+6EJgiB0IpXSiAYCANhcbhR1m1tTPcbAjE8h2gLZe4F1x9XKosEABmC2bg0XmcwWZLnzCZrvRQJt\nfPTEw6z49KP29pEOj3eH63zv3WW1pLZc9+cuq+OcA8t2GhoKRJOsqguyYnOA8f1yyPdaO21v6XNY\nuP4Pe3HVYX2xKAoe+9btFvns5AzpgdzrQrwHj0cPR7APHYLq83XruAVBELYlu1yYS0sw4nEMbc9W\nLasLxPjLa0uJJFLcdsxACn0df0RUvXJ5h+cbly9h38QxYN3zM9Om/HwcBxxA+JNPkD0esmdevMuB\nJD2RILlhI6FPPsY5Zgym4mJk054JjAqC8NtkVsyYla0VyzaFNnH8m8eT0BP4rX5e/MOLZNmzOl23\nuL8Pd6aVQGOM8jFZLG1bQn2knpS+NdB4UNFBFE4spD5Sz4i8EXgULwMPKuTjZ1djsij0Hdnx/kJb\nvI1bvr4FgFUtqxhXPC4dGvqe3UdLrIW5K59jedNypu81nSJX0daKRL8CUS3KHQvu4OYDbqYuXEd5\nRnmHKkMNkQaiWhSnyYnPJsbAgrA7JEkqBeYCXwFDgdslSZpBOh64DjjNMIyQJEmHAXcDYeAzoKdh\nGEdIknQqMMwwjPO3bOu/QCbQsGXdDZIkPQ4EgGFALnC5YRgv/VznKOw6ERoSBEEQBGGPk61WrOXl\n9Hr/PfRwGDweXrj9Ruor1+MrKOT4624RwSFBEH5TElVVVE45DiOZJGPqVDwXX8pVk/ryxuLNTN23\nuENlCsXlIu/vf6P+9jtILV/OgEtmstdBh6BarCjbtFZQfT6KHvgn0aVLUbOyULxeZKsVPZHA1FLD\nKNdSrAeNYP7XMWSHk5xr/kL1RRchmU1kzZzZoaWCKTsbb3Y2++kG+5T4sJoUTEp60jy2ciVoWvuy\n0W+/EaEhQRB+EY0bKnnhhqswdIPjrr2J3F59OoZnbN70v26IBgN89MTD7LPfWPoPGIwWjRKLRtlv\nyklYHI4drhuPhFnx6UdAun1kQ1UFjoGDAUildAINUdYvbKB4gJ+MHDuqeev1+8hBBTz+eSWxpM60\nEcXYzTu/vba0uo1pj3wFwP0frmXOhfuT7e58gsZr77pdjllVwJeBc//9d7pPQRAE+EH4PRZD8XpR\nvVuvscmqKiqmHIcRi+E5/jhyLr0UZZvKmDtj6DpaYyNGLIbsdKL6fCRTOne9u4r3ltcDcMUrS/jX\ntKF4fjBm7jFoKB/JMoae/mH7XgeMw+LYs5Uwo6EEesrA7HCTf9ut6NEoksmE6t/1NjeplhYqpkzB\niMVouO9+yt55W1TXFAShgw+qPmhvJ9YUa6IqUNVlaMjptXLs5UNJainmN37J3Qvu4NKhl2I3bQ1Y\neqwehucOb38eaWulqK+Jk28ahKI6sDg6BhcVqeP9BpPc8f24FufhJQ/z5Ip0Vc83173J7GNmU+As\n2O1zjgTaMHQd1WLBYrP/H3v3HV5FlT5w/Htmbu+5aSSE3gWkSBOQ5oq9gGVd0F0QldW17trWde0i\nrnXt5ber2LGwdgUUFFHpAgqC9JKE9Hb7nTvz++PGhJAEQkgE9Xyeh4c7986cORP0ZO6c97wvES1S\nE9RjVg8usNJj9fDwmId5a9Nb5AfyOS7nOJzm2nv6olARf/jwDxSECjg2+1hmHjcTv00GDklSM3UD\n/gRsBuYAvzMMIyiEuBH4qxDiX8AzwCjDMLYJIV5rpJ3HgFmGYcwSQlwEPAr8lLosCxgJ9CSZmUgG\nDR3BZNCQJEmSJEmtQg+FMHQd1e8nEItSuH0rAKW5u4mGgjJoSJKkX5Tg4sUY8eTq66r580m97M/8\naXgHzjkmB5fVhNW8z8O5zEyyZtwDQtQJ7NETCeKRCCartSa7hiktFffYMXWOT5SVsf3sszEiEYTF\nwuhP5qI6VFRPR9o//18QotHMEooi6mW8sB/dF8XpQA+GEGYzzhEjDvVHIkmSdNDi0QjfvPUaseoy\nMV+/9SqnX3MTlmaWn4mFw2xf+y2DevUjf+rFdD7hBITVijV24GwZZosVs9VGPBoBIfCk1U7ohKvi\nvDlzBfFIgmUfbOPCu4/FtVfQUJd0J59fN5Z4QsdjN2OLBNECGqrPh9gnOPQnK7aX1rwuCkTRdIM9\nFRGCUQ2fw4S7ooTg4q9wHDMQc04Oiu3IWfEtSdIvW3TzZrb/YRLE4/inTSPtsj/XlKmtnDcPIxIB\noGLO/8i48sqDbl8rLGTbxLNJlJbiOuEEsu68A+H10i3DxXXje1AajJJfEUbZJ7may5/Gn+5/nB8W\nf052j15kde2B0sgY2hyhiihz/7OO0twgI87pSucB6VgOITObEY3W/KyMcBgjGm2prkqS1AoMw6Ak\nUoJhGPisvoMOYGmOYzKPqXltUSwHDMZxeJKZ1Y5xDOD9du9jUSyE4iEqo5W4LW481tqMm8GKct69\n/y7yN22kTZfunHXDP1FNdZ+teiwe7h91P3M2zeHEjieSaqsbIBmIB/hi9xc125qhsbF0Y7ODhoLl\nZbz7wD0UbtvMqAsuouOoEby+aTaLdi9iWp9pjGg7ok4Q1IE4zU7GtBvDsOxh2FQbqlL3d8LOqp0U\nhAoA+CbvG2KJWLP6LUkSADsMw1gihDgNOAr4qnoxjwX4hmSgz1bDMLZV7/8acGkD7RwLTKx+/RLw\nr70+e6e67Nl6IYSMtD7C7T9XsyRJkiRJv2p6JEJ8zx7ie/agV0/etAStuJgdF/6RLcf/jry/34xd\nKKRkZQOQ2bkLds/BrVyUJEk63FzjxqFUZ63w/f48FIcDm9lEqstaL2DoJ4rVWidgKBYJs231Ct59\n8B6+WzCXSCDQ6Pn0qqraSYlYDL2yHNWUPI8pNfWgS9GY0tPp/P775DzxBJ0//ghz2+avJJQkSWou\n1Wwhp1ffmu2cnr1RD6G0i2o2o5rNmNPTMWIxqj74gMDcudWlH/fP7vEyecZDHHvOJM6/4z7sHg+B\nslLCgSr0hE48kiwNoScMYpFEnWMtJpU2Xhvt/A6cgXJy/3YdO6deRGTjRoxEAl03KKiMsKMkSHFV\nclL59H7ZuKzJYNETj8okqiUY9+DnHP/QF9z23nr2LFnJnttuY+uEiSTKypr9M5EkSdpX1aefQnXw\ne+XHH2Ps9d3fddxxNWOm87jjwHSAMTlcDlUFEKoNhIx8v45EaXI7MH8+RiwGBgzplMqiTUVENZ3b\nz+hTL6jdbLWSmtOekef/kc4DBmN3778c5cHa/n0JeT+WEwnGWfDiD8SjiQMftB+K241/6lTU1FT8\n06aheFq2v5IktaxdVbuY9OEkJrw3gfWl6+uU/Wot3f3def7E57mi/xXMPm12k7PgpNhSSLWlsqFs\nAyfNOYmT5pzEyz+8TCBW+8wgFg6Rv2kjAHu2/EgsHKrXjsvi4oQOJ/DgmAc5s+uZdYKOfvp8XPtx\nNdsmxUQ3Xzcqo5XNuVzyN/9I/qYNJDSNr2a/QmGkkKfWPMW6knVct+g6KmMH366qqDjNznoBQwDt\n3O1qAqEGZgzEojSenVOSpAMKVv8tgPmGYfSv/nOUYRjTWugce0dY16/NLR1RZKYhSZIkSfoNC69Z\nw86LLwFdp93TT+EcMQKhHHpMcWz3bmLbkkHowS++QGgav7/9PuLRKPa4RvDtOTBwIJbOnVEPUDpC\nkiTpSGDJyaHzxx9hxGIobvdBjV3RcIhwZSXRUIB4NEruhvXsWreW9n36YXM1XIJB9ftxjBhB6Kuv\ncAwdiik945D6L8xmzNnZmLOzD6kdSZKkQ6EoCr1HH09Wt+4YukFqTruarGvN4fT6OO/We6nctYN2\ns14gtGQJ3tNOa1LZGdVkIjWnPcPPnUQ8GuHHbxbz5WuzyOrWg+MvvpbfXdYHNcWKYhLgbDwIqez1\n2QQXLwYg77rr6fDyS+QaVs564ivKQnF6Z3uYddEQ2vsdfPa30YRjCXwOMws2FBKKJSev5q0r4Maz\nOycbjMeJ7imgXHPiTrFjc7X+qnhJkn7dPCefTOnzL2BEo/jOnojY6z7W2qULXebNJVFairltW0wp\n9ctD1pSeETrWr++HFf+BHqfAqQ+CMw1rr54oTid6MIhjyBCE2UxpMMbFs1ZQFIiybFspx3ZJ5bSj\nf977UFdKbcY2u9tyyDNVppQU0v5yOakXTUXY7TXZmiRJOvJousYza54hP5gPwH3L7uPJ45/EZ2ta\nCdzmclvcDGoziEFtBtX7rCxSxvwd8wnGg5zR5QxS7XXvV0NaiBe+fwFNT5YVf2HdC5zb/VxcluRY\nY7HZ8aRnUllUgCc9A4u94Qw+qqLitrgb/MyqWpnaZyodPR1ZX7KekzudzKPfPkq/9H6c2/1crCbr\nQV1vSlY2CAGGgTczA6taO+5aFAuKaNm8FWn2NN48/U2C8SBuixu/XZYmk6QWsAR4QgjR1TCMzUII\nJ9AW2Ah0FkJ0NAxjO/D7Ro7/GjifZJahycCXP0OfpVYgg4YkSZIk6TdKD4cpnfVizYrD0lmzsA8Y\n0CIPvsxZWSgeD3plJZbOnVGsVpy+FOJFRWz/w3loRUVYe/Ui/ZmnMMIhLHY7Nqd84CZJ0pEjEqhC\nCAVr9aSKMJsxZzQvcKdg62bevOsfYBj0H38qA085gxXvzyGWgEc/+5Hzh7Qnw518uKaHwyTKy0kE\ng2TPuKfm3AebWUiSJOlIZXe7advjqBZpSygKvsw2+DLbAOAaMqTms1g4TDwaxWK3Y7bWnQApCBbw\nwroXaOdux8mdTsYcNpj79KMYhs6ezZswxYLkmXWmPbUY3YAHzu3Hmf2zMDeQwciUXlvWTE1JQVgs\nvPblTspCyXvsdXmV7CgOktbRT6andiJlSCc/PoeZ8lCc8wbloAYqQQjsQ4YSVP28dc8KhpzeiQEn\ntMdkablyPZIkHfn0aBQUBaWpmdgMAyKVoJrBUn8S2dKxI13mzcWIxVA9HlRH7T6Kw4HF4YBGslAG\nK8p578EZ7Nn8IyPOm8zRLh+2RAzWvwNjbgJnGuaMDDp//BGJigpMfj8mvx9RFcVqrp0sdjSSmbM1\nZXRwM/7i3hRsr6Tv6BzsnkPPSKG6XCCDhSTpiGdSTByVdhTvbX0PgG4p3bCoBzcGaAmN0mgpUS2K\n2+I+YMBRWTBGOJ7AYlJIc9W999QNndc3vM6Ta54EYH3Jem479raagCBIBvQMyBjAl7lfogqVkdkj\nMSm1U7hOXwqT7n6AYHkZTl8KTl/d0mRN5bf5ObnTyZRGSrlh0Q0UhYvYUbmDUzufetBBQ25/Gn/8\n12MU79hGuz79MOxmHhnzCJ/t/IzJvSaTYm1eHxujCIV0RzrppB94Z0mSmsQwjCIhxBTgNSHET4PA\nLYZh/CiEuBz4RAgRBJY30sSVwPNCiOuBImBqq3daahUyaEiSJEmSfqOE1Yr7pBMJLFgAgPuE8Sg2\n2wGOahpTaiqd338frWAP5uxsTGlpyQ90Ha2oCMXpxHfPnbx62w0ESksYNvF8jjltAjaZdUiSpCNA\necEe5j79b8wWK+OnX4nLf+CMFfuzZeWy5GQOsHPdGkZNmoovpyPvbqjgmS93URKM8bcTeuCxm4nn\n5RHbsQPF5SKyYQPuUaNQ9yp9EKooR4vFMFmtOA6y1GMiobOlOMjLS3Ywuns6gzv58dhkBgtJ+i0q\nDZeio+Myu7CZau//ghXl5G5Yx9ZVy0nv0Jkew0bg9KW0SCbKn1O4qpIlc15n+5pV9B9/Kr1GjUPX\nzCQ0HUNNcPOSm1m2ZxkATrOT8ZnjcPlTqSop4pQpl1L24ce8Ye6Dnhy6eWPFLk7olYHXUX/S233i\neAwtTjw3F/+UKaguF53TayeAhIA0d/0JmCyvnXnXjCKi6bitJtyxEGmff05xXpgPZu0AYPvaYnoP\nTUP1O39x/waSJDVPvKCAwgceRHE6Sb/iCkxpB7gPTcShYD18eis4UuHEGeBuU2cXxWpFycxsVn+K\ntm8lb+OSKaEvAAAgAElEQVR6AL58bRZH3XsnLL4XzHaonkD/Kbh+7wD7NJeFl6YN5dHPNtGnrZcB\n7Zs2cRwJBIhFwiiqmvz9IxrPD6TH4yRKSojn5mLp0KH2uUM1m9NMt0GZdBvUvGuXJOmX7dROp5Lj\nyiEYDzIsexgOc8OZeRqTF8zjvA/OIxgPcm73c7lm4DX1yn39pDQY45/vfM+H3+XTK8vNixcNJX2v\n+7+EkWBH5Y6a7dxALnE9XqcNk2Li3O7n0ju1N10t7QnmF6IGNBImrSYz56EEC+3Noljw2/wUhYsA\nOKnjSdhN9oNvx24nvX1H0tt3rHnv+A7HM6bdmAbLi0mSdGSozhzUZ6/tBcDgBnZdaBhGT5G8IXsC\nWFG9/wvAC9WvdwDj9j3QMIwp+2zLqOsjnAwakiRJkqTfKKEouMeMxTH3k2Sqcb8fcQjlIeq0bTJh\nzszAnFk3K4ficJB589+pWrCQ3O1bCZSWALD8vbfof+KpQONBQ4ZhQCLRYn2UJElqSDhQxdyn/83u\n9d8B8NXsl/ndpVegNpBdoqn6jj2B7xfMJRaJMOj0s8np1Yd31pXwybIdzJ3cA/3777AUetCzswAo\nmHkf8d27yfzHP9A1jZ/OHCwvY87M2ynctoVOAwZx0mXX4PDuf7WjrhsoSnKypSQY45ynvqYyovHi\nNzuYd+0oGTQkSb9BBcECpn86ndyqXGYcN4NRbUdhNVkJVpQzZ8atFG7fWrPvkrdf44J7H8Fit5PQ\nNMxWK1bHkR/kXbxzB6s+Sq4sX/D8M3QbcjwfPPEtJblBug7O4I+jptYEDZVGSrG73Zx/5338uORr\n0tq2p/yTT/n96SOZu24PugHnHpODw9rw7wFTSgr+Cy6o897vemXyt/HdWbG9jAuGtSfVWX9lu6oI\nMqozD4WqYnwzr5BQVYwhp3XC6swjEozTa6CXskcfxDRtKpYOHVryRyRJ0hEoUVXFnltvI/DFF0Dy\ne3Xm329CqCrhqioSWhxVVbHvHTgeLIYXToFYILkdC8KEZ8FeP7g8okWIJqK4zK4DTuZq8RiRqiq8\nGW0YfeE0vnj5v/gysxDetnDWM9BuMDgaz4QphKBTmpP7zzkak9q0oMdoKMi3c9/n6zdeweH1Mfme\nh/Dsp0SvVljI1tNOxwiHsXbrRvvn/1svcEiSpN8un83H6Hajm338kvwlBONBAN7f8j6X97u80X1D\nMY0Pv0uWQvshv4qdJcE6QUNmxcwVA65gY9lGQvEQtw67Fa+1/jjts/no5+zF67fdSPmePMxWG1Mf\nfhp3asuObeFEmJFtR/LJxE+I6TH8Nn+dhQSHSgYMSdKvxiVCiD8BFuBb4JnD3B+pFclZN0mSJEn6\nDVM9blRPw3WuW+V8bjfes8/GfcopuMIhFNWEntDI6X00yn4m5LXSUspen018927Sr/gL5uzsn63P\nkiT9tiiKUqeMjdlu3+8K56ZIyW7L1IefwdATWBxOrHYH43ubOS5VELjwfBKlpWy32ei6cAFVCz8n\nvnMn7hNOwNazJ8HFi3EOHoyank6oopzCbVsA2PbtCuLRaKPnrAzHWbatlHnr93DBsA70yHSjG1AV\n1Wr2KQ/FGz1ekqRfr093fsqW8uRYcs+Se+h/en/STelsW72yTsAQJCdwI4EqPvvvU+RuWEf/E09j\n0GkTsbtb/v4xVFnBdwvmEQlUMei0CYe0ilox1d5X2t0eKksilOQmJ302Ly/kD2cMpndqb7KcWZzR\n5QwAPGkZ9DnxdHaXBFk++lyGZ3hYfPkgdIcTr9NKeUjjg7U7aeO1MaxzKimOxktc+J0WLhvdhcjw\nBA6LqSZ4syGGYbB2wS7WLtwNQLAsyhlX9SNRVk7ks48pf2M2ljQ/6Vdd1eyfhyRJvxCGgaHV3p8Z\n8RgYBuHKSj5/6f9Y/+VCOvTtzylXXIfDWz3ZrGu1AUMAFbtBj9VruixSxkvrX2JlwUr+MuAv9Evr\nt98yNKW5u3ntluvQ4jGOmzSF82+/D29GJk5/KqSe3+RLamrAEEA8GmX5e3OAZHbN7Wu/5ejjT2x0\n/9iWLRjhMADRTZswYvWvW5IkqbkGtxmMTbURSUQY33E8ZrXxBTdWk0Jbn53c8jA2s0J2St2sPXoi\nQUrCyQsjn0W3KngcPhTR8PiY0OKU78kDIB6NECgradGgoYpoBc+tfY7XNrzGiLYjuH347Q0GMLUk\n3dApDZdiYOC3+WVQkST9QhiG8TDw8OHuh/TzkEFDkiRJkiQdsoLKCCu2l9I9001bnx2Htf4thqHr\nJEpKMADV68XrcTPt388SKCvBl5mF3d1wil+AqnnzKH70UQCiP/5Iu2efweRvfFWjJElSc1kdTsZP\nv4qv3ngZi83O0LPORTnEkjCqasKVkhyzqiJx1mwrYeWOMqZ0slBRWgqAEYkQLy3DftRRoKqkTr+U\nHZMmY8RiqGlpdHztVczROHa3h3BVJb7MLEyWxiesC6uiXPziCgDeXZ3HF9ePxWUz8dB5/Xh8wWaG\ndU6la8aRny1EkqSW1yOlR83rbindMCtm4tEoW5Z9U29ff3YOBdu2sO3b5Hiy7J036TtufKsEDa39\nbC5fvf4iAGX5eZz8l2ubnNXIMAz0QABhsaBYrfizcxhx3gVsW72C/iedjjvVjtmqEo8m8GbYsVos\nPPm7J7EoFlyW2izppcEYpzz2FbGETuriXD66YjjZKU7KgjGuev1bvtmSzJJ5/zlHc+6gdvvtk0lV\ncDVxsjwe02tea3EdVTEIvPg0FW++CYBj2LAmtSNJ0i+b6vGQdddd7LnzLoTdRvoVVyBMJqKhIOsX\nJcuK71j7LRVFBTVBQxVmK/rkN0mZfysU/wjj/llTNmxvWyu28tx3zwFw2fzL+OTsT0g3pTfalw1f\nL0KLJ4Nwvl84j96jf4fTt/8Mlw0x9OT41pQSi6rJTIe+/dm8/BsUVSW7e8/97m/t2RNTVhZafj6u\ncWMRLVRuXZIkCSDHlcOHEz8kFA/htXrxWr0YhsHuwG6+zv2a3mm9ae9uj8fqId1tY87lw1mfX0m3\nDFe9LJOlebt5/bYb0GIxJt50O95ejY+nZquNPmPH8/3CeWR27oo3vWVLLAbjQWatnwXAwl0LuSx4\nGX5b6z1jNQyDzeWbufKzK0kYCR4d9yg9/T0bDZqSJEmSDg8ZNCRJkiRJ0iEpDkQ5/9klbCsOogiY\nd+0oumbUn0iKbdnKjqlT0UMhch5/DMfgwXjSM/abbvwniWCw5rUeCoGu72dvSZKkQ+NK8XPCxZeD\nUA45YGhf+RURzntmCQBjp/bFedppBD/4ANuQIRRhJbNXL9q/9BJ6OFyzWjpRXIxWVETZzPuYdMdt\nBLUYvnYd6mThiATjlBeEiATiZHbyEIzWrlKPajqaruOymji5TxYju6ZjNyu4ZGkySfpN6pHSg1dP\neZXcQC6D2wzGZ/OhJxJ422TV21eLRXF4agO7haKgmlp+7DAMg1BFec12JFiFntCJJ+KUR8tRhYrf\n3vBkhqFpRDZspOjhh7D16YN/yhTsKSkMOmMi/cafgsXuABT+cNtQKgpDpGQ5cXqtOKmfYaMkECOW\nSN5nlgRjxElmCIrrOtuLa+9HN+ypqt8PXSdRVgaKgiml6VmShBAMHN+eYGmEcDDO2Mk9cfodWP96\nLb6JE1B9PlluR5J+Q8zZ2WQ/cD8oCqrDAYDJYsFssxOPhFFUFWd1edqCYAE3L76ZiBbh3smv0V5x\ngNUFDWTDsKm1ATVWtfEMQz/pNmQ4qz95n3g0So/hozDbao+pCMXJLQ8Tjmt0TnOR0kAJRgCtqIji\np59BWC2kTpuGKTV1v+e0u92ccOkVDJ1wHg6Pt24ZtgaYMzLo9MZs9GgUxeGQC4skSWpRZtVMhqPu\nM8vicDGLdy/GY/WwcNdCzup6Fh5r8l4502Mj02MjmohSGS3DnDDjtXoJRYMsf+9totXPNr+a/RJn\n3XBbo0H4dreHUZOnMPy8Saiq6YAlyQ/6uhQzPquP8mg5JsVEiq352T2boiJawe1f305eMJk96ZbF\nt/Dc+OdIte//d4IkSZL085JBQ5IkSZIkHRItYbCtehJFN2BzYbBe0FAiGKTgX/9CsVqx9+tH6csv\nY+vWDSW98ZWNe/OddRaRH35Ay8sn6447UA/wsFGSJOlQKWrrfFUqrIzUvH57c4DfXXA5/mmXs7k8\nxrtLCph5dl9cAweglZTgGDqU0NKl+M4/H62wkMjateRPPIe2jz+Os2//Ou3u3ljG3Ge/B6DnsVkM\nmtCJ8we348tNxUwZ0RFPdYCQzaxiM8tU4JL0W+a2uumb3pe+6X1r3lNUlQEnnsrquR+QiNcGHVYU\nFuBrk824i/7MjjWr6H/S6dicroaaPSRCCIaceQ7lBflEgwFOnH41Zqed74q+49rPryXVnsoTxz9B\nG2ebescmysrYedFF6JWVBL/6GvuAAbjHjMFktmAy105ku/023P79Z6HI9tkY1zODxZuKmTK8I67q\n7Jlem5kZE/pyxauryPDYmDqiY53jjESC6I+byL3+ehSnk7YPP4TlIMrpOr1Wxv2xF7puYHMmx2tT\nSspBBR9JkvTrobrqjrN2r5cL7n2YLSuX0aFvf+weL5qusbVgNb/PGce7eYu4a+kMHhzzIB5Lwxna\nctw53Dn8TpbmL+WivhftN6tEPBFHyfJy0sMzSLH4cOHAYqsttbNgYwHXzl6DEDB9VGeuPr47dkvd\n+8tEMMieGTOo+vgTAIx4nMwbb0SY9n+P7fB4cRwgWGhvpiY+U5AkSWoJAkGqPZW/ffE3AD7d8SnP\nn/h8TXB7RIvwTd43/GvFv+jk6cQdw+/gy91f0rZ7F6jOGJfdo/d+swYD+83GfqhS7am8furrfJP/\nDQMyBpBibd37TUUouC21z4ndFjeqkM8kJEmSjjQyaEiSJEmSpENityhcNrozT32xla4ZLga2r10B\no5WWoodCKA4H1uN/R+CaIfxvcwVHt3HiMttp6jpAU2oqWXfcgRGPo3q9CCFa52IkSZJaWa8sD6f2\nbcOqneUM7JBCdraXK1/7lnhC54lJA2uy/5hSU2n78EMYiQTCYsEIh/FPm4a1SxccAwfWa3fP5toM\nHYU7KjGjcPMpvYhqCZxWEw6L/OonSdL+OVP8TLr7QT77z5PkbdqIL6MNIyf9CZc/lX4nnEyf0b/D\n3IqlX1wpfk654m8Yuo7d7aEkXMIdS+6gJFJCSaSE2Rtmc/UxVzd47N5lb4Ta/EmIVJeVB8/rh5bQ\nsZpUPPbkmGw1qxzbJZWF141BEYI0d90sHYmyMnL/ei2xbdsBKJw5k+z77kOx2/c9RaMsdjlOS5LU\nMFU14c/OwZ+dU/OeEShkyPKXUEu2MGTcP/hIK9nvJKzX6mVCtwmc0eUMVGX/4+Se0B5+2L2WDtYc\ngrYKrCk2fhrNtISOVQ+z7IqeGPEI+TEL4XiiXtAQuo5eFajdrKrCMAzkN3lJklqTbujkBfJ4d/O7\ndPV1ZWjWUHz7lGysiFawunA12yu3c3Knk+tlE9ofu9lOSbikZjsvkEfCSNRsV8Yq+evnf0UzNHZX\n7ebdLe+ysmAl4zKO46Rbb8GhW2jTsStm64EzvrUWRSi0dbflHPc5P8v5PFYPdw6/k38t/xcJI8GN\nQ26s928iSZIkHX7yiYQkSZIkSYfEa7fw5zFdmTKiE6oiSHMlv/hqpaXk/eMWggsXYurUCecrbzLh\noUVEtWTJh0d+b+esAU1fqa46G14xKUmS1FwlgShRTcdqUkh1texDu4RuUBKI1pS5+XBNPsd2TSXb\na2fGxL5ENR23zYTdbOI/fxqEATXj50/qlFjwesm8/rpGz9d3bDs2ryokEtQYfnZXrA4TDpMCyBJk\nkiQ1jclsIaNjZ8664Vb0RAIQOPYK1lZsrb8ieO8sRhbVQkdPR7aUbwGgW0q3Bo9R/X7az3qBokcf\nw9ynL5UduhELxvA3Ui7nQFIcDR+330xtQiD2ysKhOF3QwuUtJUmS9ibWvYP6w/sA+OZcynlXLMdk\nPvB35pqAoXA5VOXD2jeT5cyOPg+cGWBzEwlUoS36kQ8WPIXV6WTyvQ+DPZn9x2TEGW/5HtN/poJh\nkN7rTMh5CKhbRlF1u2lzx+3k3/wPhMVC2jXXoJjlfakkSa2rJFzC5I8mUxopBeCO4XcwsdvEOvus\nLFjJ1QuTgejvb3mfZ094ttEyuABhLYyu6zgtTpxmJ8d3OJ652+eytWIrtwy7pU4WHYHArJrRNA0A\nh+rAJEzcufpe0u3pvHLKK9hdrZdF6EiV6czk7pF3g5EMvJIk6bdBCPG1YRjDD3c/pKaRQUOSJEmS\nJB0yr92M1173AaAeCBBcuDC5EQiwI7+sJmAI4Isfizi9XxaqnFCRJOkwKA5EufLVVXyztZQhnVJ4\ncvIx9YJ2DsXushBnPvEV5aE4l43ugm4YTHzya967YiSpLguZntpsHc0JWApENaLxBG6bCYtJxZNm\n47y/D8YArHYTqkmOrZIkNU9rlkM4GG6Lm38O+yejc0aTZk+rU05tb0JV0Tt1Yc2Uv/LppjLee2ol\nN57Uk+mju/xsfTWlppLz2KMU3HMPittDxl+vRTmMK8glSfoNsO01VlucmJT6j/nDVZWU5u3GZLbg\nycjE7qqe2I5UwqoX4duXIFAIkXJYdB+c9TQcdQbpljQ+/HIRANFgkNwN60nJzK451vTlfWAYACgb\n3iN24sPEK6IIReBw1wZeivR0nDffyPa1q1n85IOcfvUNuFNlOTFJklpPLBGrCRgCWFWwijO7nFkn\nw9qPZT/WvN5RuaNOpqB9FYeLeXDFg1REK7h56M3kuHPIcGTw8NiH0XQNt8WNzZT8bh/VopgUE/85\n8T88tuoxOrk6MNRxNAN79qVvWl+ObXssXmvTyy/+2thNMlhIkpqj400fTgJmAO2BncDN22ee+urh\n7dX+CSFMhmFoMmDol0U+SZYkSZIkqVUImw2lOjuQVlJCp0wPPkcysEgImDiwrQwYkiTpsAlGNb7Z\nmnyYuGxbGVURrc7nRiKBVlpGIhBo6PADWrChkPJQHIDXlu9kYIcUNN2gOBDlk+/3HFLfS4MxZn70\nA5P/bylfbiomHNcQQuDwWnF6rZj2LQ/RDJqu19kOVUQp3lVFsCJ6yG1LkiQ1lUdxMT5jLEdbumON\nNX7fGI3r/Hf5Ht5ZuwfdgC1FARL7jGOtzZKTQ/YDD5B15x2Y0uWkuCRJrazbCTD2ZjjqLPjTB+Co\nO+5osRirPnqX12+9gZf/fg1bViyt+SwYilLS8UwKz32L3Is+JNL3nGQQ0AfXQKQSq8VGt6HJOR6z\n1UbbHkfVNqxawNexZjM28lY2rAry4s1f8/6/V9e5V4wGA7z54D188dYr5G/8gY3ffNU6PwtJkqRq\nDrODkdkjAbCqVib1mlSvJONZXc+ig6cDJsXELcNuwWVuOAu6buj897v/8sHWD/gy90tu+vImyiJl\nAKTYUkh3pNcEDFVGK3lnyztMnz+dUCzEdTnTGbjBx/u3/JPNb33ElO4X0DetLw6zoxWvXpKkX5vq\ngKHngA6AqP77uer3D4kQ4h0hxEohxDohxKXV7wWEEPdXv/epEGKIEOJzIcRWIcQZ1fuo1fssF0Ks\nFUJMr35/jBDiSyHEe8D6n9rb63w3CiG+E0KsEULMrH7vkup21ggh3hZCyEHyMJKZhiRJkiRJahWm\nlBQ6vjGb8rfexj5wADaL4KOrjuPbnWV0zXCT7bMduBFJkqRmCJSVUrB1M6k57XClpGKy1C81Yzer\nZHlt5FdEyHBbcVprHyQaiQSRDRvZc9ttmDt0oM3Nf8eUmnpQfTi2cypmVRBPGIzunk5+eZgJA9oS\njGl0ST+0cosb8it5eelOAP788koW3zgOu7llvtoZhsH2khCPLdhEvxwvZ/Rri0UzmHP/SiqLI7hS\nrJxz0yCcXplBQ5KklhFPxKmKV2FVrTj3Ka1TmreLV/9xHXpCY9BpExh29h+wOuo/R/Tazdx1Zm/+\n/MpKnBYTV47rdliC038qp2sYBoGyKPlbyslo78GV0jIBnZIkSTUcqXDc9aDHwFT/u3U8FmXX+u9r\ntnes/ZZex40lUlXJ2zPvpGjHNrwZmYy84SoSwy+n/ab5EKmA8p3Y2w1h7J8u5dizJ2Gx2bB79sqM\nYffC6f+G+V4IFRHvfzGLb1mBYUDx7gA715XQa3gyK5FqMpHRsTPb16wCILNz19b9mUiS9JtVGi5l\nd2A3GfYM7hp5F8F4EJvJhs/qq7dvG2cbZp00C93QcZqddcplVcWqiCai6LpOwkhwepfTWZS7iB2V\nO/Z7/spYJXcvuRuAyz67jAWnfUKhcz29jhvL8HMnYbE3bR5c1xOEKsqpKi7Gk56B05dCYaiQF75/\ngXRHOmd2PRO/LVlKrSJawZbyLQTiAfqm9SXFltLUH5ckSb8cM4B9BxBH9fuHmm3oIsMwSoUQdmC5\nEOJtwAksMAzjeiHE/4C7gROAo4BZwHvANKDCMIzBQggr8JUQYl51mwOBPoZhbNv7REKIk4EzgaGG\nYYSEED/VhJxjGMZz1fvcXd32Y4d4XVIzyaAhSZIkSZJahTCbsXbpQuaNN9S8lw1k+2Q6WkmSWk+w\nvJw37riJsvw8VJOJqY88izc9o95+GR4b7/5lBLvLw+T47KTvVSJMKy0l96oriefmEfn+e5yDBpHy\nh/MPqh8dUh18cf1YKsJx0lwW4ppOn7ZeErpBzzbuQ7pGr6O2HKTbZkYRh9RcHcWBGJOfW0JeRYQ5\nq3LplOain89JZXEEgEBZlHgkAb/drOqSJLWgiBZh+Z7lPLLqEY5OO5qrBl5VZ8Jjy8pl6IlkJrgf\nl37FoNMnNBg0pCgCa2GUR8f1Qo/rFC4rJGNMNlZb/aDRn0OoMsZbM1cQqoyhqILJdw7DkyrvgSVJ\namGKAkrDi3GsdgfDz53EnHtvQzWbGXzmOaiqSjwapWhHch6norAAEUmwTdtGe2d6MmjIlrzJc3i8\nODyN3PC5M+H0R0DXEFEL7lQ7lcVhAHyZtWO03e3h5L/8ldyNP+BJT8ebkdWCFy9JkpRUFinjhkU3\nsHTPUkyKibdOf4suvv2XqU21118UVBmt5LUNr/H0mqc5KvUorht8Hbd/dTsPj3mYx1c/zo2Db2w0\nMEcVKgKBgcGpnU8lZNY46oxT8Vm8KGrTA8dDFRXMuu4KIoEqfJlZnHv7vfxtyd9YXbQagLge59Kj\nL8UwDOZun8tdS+4CktmTbhh8A27LoT1rkCTpiNP+IN8/GFcJISZUv24HdANiwCfV730HRA3DiAsh\nvgM6Vr8/HjhaCHFO9bZ3r2OX7RswVO13wPOGYYQADMP4qY5kn+pgIR/gAua2wHVJzSSDhiRJkiRJ\nkiRJ+tXQExpl+XkAJDSNyqKCBoOGIBk4lOGpP9EiFAXF7QGS7SgeN1pFBSZv0yNl7BYTdoupTqBk\ndkrLZNnNSXHw7IXH8M2WEi48tgOpzpbL+mMYBuF4omY7FNMw20y06eJlz5YK0tu7sdhltgxJklpG\nZaySqxZehaZr/Fj2I6NyRjG2/diaz3sMG8mK9+YQj0bod8IpmK0NB97oCZ1tq4v4cWkBAFldvXQY\n5m00aEiPRBAmE8LUOo/FEnGdUGWsum8GwfJoqwcNRQJxouE4JrOKzW1GVWUZYEn6pYlHo0QCVSQ0\nDavTid3V/MlfRVXJ7t6Lix//L0BNtiCzzUZm564UbN2Mr002wm6hl9oZKnZBek+wNzFTRXVmDocV\nJvxtAFu+LSItx4U/q27GOIfXR7chxzb7OiRJkg4koSdYtmcZAJqusbZo7QGDhhoS0kI8vvpxANYW\nr2VL+RYMYVAcLubekffut7SYx+Lh0XGPsrV8Kz39PSmLlLGzaif90/vTxtkGIZq20idYVkokUAVA\neUE+WjxGcbi45vO8QB4JPUHCSLA0v7bs5LeF3xJLxA76miVJOuLtJFmSrKH3m00IMYZkIM+x1Zl/\nPgdsQNwwDKN6Nx2IAhiGoQshfvryLIArDcOY20CbwYPsygvAWYZhrBFCTAHGHOy1SC2nVYOGhBA+\n4P+APoABXARsBGaTjEjbDpxnGEZZa/ZDkiRJkqTDRyspQY9EUKxWTGlph7s7kiT9ypmtVgaffjbL\n33+bzC7d8bdtd9BtmFJTaffkExQ/939YOnQAIdh18cW0e+qpOuOYVlZGaPkK0BM4hg3DiEaJ7dqF\npUMHzOnpLXlZdXjtZsb3bsP43m1avO0Up4UXLxrK/XM30CnNxZBOqTicFk6e3hctnsBkVnF4Dk/m\nDkmSfn0EAptqI2SEyHZm47F46nzua5PNRY88k5xAdziw2BsOvFFUhYEntWfPlgoGntsVc4aVsCGI\nJRJY9lrdbRgG8Z07KXzwQSydu+D/44WY/P4G2zwUZptK98GZbFpRwOkXdcZTuZ3wWgVz+w6YfC2f\nqi0airPsg2189/luzDaV824ejC+jZQJVJUn6+ezZsom37r4FPaEx7OzzGXTaBKyO+mVtS8IllERK\nSLGm4Lf5UZWGA7pNFgsuS90xzun1cdYNtxILB1EsJvTILvxv/wXaHgMTngVXw8H2++NKsdFv3MHf\nc0uSJLUEi2rh9z1+z+sbX8dv8zM0a2iz2lGFSqotlZJICQA5rhzC8TDtPe0bDBiKaBGsqhUhBE6L\nk9E5o+nl70VxuJhL519K37S+dPR0pDJWSZo9rcHsRvty+VPxt21Hae4u2vfuh9VqZ8bIGVy/6Hp8\nVh/Tj56OqqioqEztM5VFuxcRTUSZfvR0XGZXs65bkqQj2s3Ac9QtURaqfv9QeIGy6oChnsCwgzh2\nLnCZEGJBdRai7kDuAY6ZD9wqhHjlp/Jk1dmG3EC+EMIMTG5CO1IrErUBY63QuBCzgC8Nw/g/IYSF\n5H/UNwOlhmHMFELcBKQYhnHj/toZNGiQsWLFilbrpyRJ0q9MixQpkWPvL1OiqopEZSVCVVG9XpRG\nJgOsnK8AACAASURBVFZ+LlpJCbnXXkto2XKsPXvS/v+ek4FD0q+VHHuPIJFgAC0WQ1EUHF5fs9vR\nKirIv/EmAl98AYZBzrPP4B41CgBD0yh++mmKH38CgM4ffsCOyReQKC/HlJVFxzdmNzlwSA+FiBcU\nEt+9G9tRvTCl1n+YWB6KsXx7KRv3BDjnmLa08bbO+F4eipFbHkYRggy3lVRXy2UxOlKEKsopyd2F\nOzUdpy8Fs/XXd42/IXLs/SULlaIDO+OVGKEY0bxi0tu0w52ahsXW+BinJ3QiwThCEdhdtUGMVdEq\nyqri3D9/G++v2YPDovLR1cfRMbV2wl0rKmbHhRcS274dgKyZ9+I766xWubxwIAaaRvCNlyl66GEA\nMm/+OymTJyMOokxFUwQrorxy25Jk+Uhg9KTu9BmV06LnkKR9HPL4K8feurRYjI8ee4BNy74GwOp0\nMuXBp3Cl1A36KQmX8JfP/sK6knV4rV7mnDGHDMfBB/oAECyGeAiEAmYHOFo+iFKSpBYlx95GlEfK\nCcaDWFQLqfZUFHHwGRcNwyAvmMf87fPpm94XszCTYkshw5GB1VT7nTGiRVhXso6X1r/EuHbjGNNu\nDB6rp6YfW8q3cNXCq3jy+Ce5ZP4lhLUwx2Qew0NjHsJvO/A4GywvQ4vFMFutOLw+4ok45dFyFKHU\nCTyKJ+KURcvQDR23xY3TXD/IVJKkFtEizx2aq+NNH04CZpAsSbYTuHn7zFNfPZQ2hRBW4B2SCV42\nkiwPdjvwgWEYrup9bgcChmE8UL0dMAzDJYRQgLuB00n+bIqAs4ABwHWGYZy213kCe7V3E/BHkmXM\nPjIM42YhxGXADdVtLAXchmFMOZRrk5qv1TINCSG8wChgCoBhGDEgJoQ4k9r0UrOAz4H9Bg1JkiRJ\nknRgeixG1bx55P/jFjCZaP/f/+AcMqRZbWklpRjxGMJixeRvYnryhvoUDBJathyA6IYNaKWlDQYN\n6aEQiWAQoSgNTpZLkiQdDJvTBQd4XhbTEuRVRPg+t4JjOqTQxmOrnzJc04jt3AmGAaqKtX1tyXAj\nHifyw4bkhqqSqKggUV6ePCw/HyMSaXJ/Y7t2s23CBNB1vI8/QOnR7QkkgvRI6UGKLTkGr8ur5JIX\nVwLw0Xf5vDRtSIsH9MQ0ndeX72Lmx8nrmjmxL+cNaoeiHNbnIy0qXFXJh489wM7vViMUhT/+63HS\n2rVEKXhJkprMMKBkE7x3JYrJTsZpT/Phc8+xc90ahFC4YOYjZHTs3OChiYRO8c4q5j+/HofbwvhL\n+uDyJcdCt9VNIBLkk++TJcpCsQSrdpTVCRpCgJGoLcGIprXaZdpdFhKBGEUrV+IaOwZhsRJaswbv\nOeegOlo2C5BqVug2KIP1i/MxWRTa9mj+/bskSYeHajbTsf/AmqChnJ69UU3mevvF9TjrStYBUBGt\nYHfV7mYFDUW1KBGTGac9G5PSqsUIfjZlkTIMwyDFltLkUkCHer75O+YTjAc5o8sZTcoiIklS6/DZ\nfPhszV8wBCCEoK2rLVP6TNnvfhXRCi6ZdwlxPc5nOz9j9mmzyTKySLGl4LP5yHHnMDx7OOtL1xPW\nwgCsLFhJPBFvUj+cvrr3cWbVTLqj/oIks2om3Z5OSaSEcDyMVbX+asZzSZJqVQcIHVKQ0L4Mw4gC\nJzfwkWuvfW7f5xhX9d86yQQx+2Y7+rz6T71jql/PBGbu8/lTwFMH2X2plbTmb5BOJCPDnhdC9ANW\nAlcDmYZh5FfvswfIbOhgIcSlwKUA7dvLh7iSJEk/Bzn2/rLpoRDlb76V3NA0yt98C8fAgQjTwf26\n10pK2HX5X4isWYPr+ONpc9utAAhVPeiAHmG3Y8rORsvLQ01JweSr/wVeD4ep+uwz8m/5J5aOHWn3\n3LOYM5q5UlKSfoHk2Ns69EgEPRJBdbvrZ3RIaOiBItZtKmHGwgI03eCDK0eS4bHV2c2UmkrOSy8S\nLSzA4vVhSql9eKfY7WRcew2R777DMnwEIqsttgH9iXy7GueoUQhz/UmexkQ3bABdxzFsGKvSA/z9\n40kATO41masHXI3dbCe3PFyzf35FmITe8hljw7EECzcU1mx/tqGQM/tnY7f8eh486ppG7obkRJuh\n6xRu2yyDhn6j5Nh7GAUL4bXzoWQLAHp5LvmbNwJgGDqF27c2GjQUDcSZ95/1VBaHqSgM8+28HRx3\nXveazx1mM+cNascrS3fitZsZ3LHuam7V76fdU09ScO+9WDp1xjVu3AG7G4gFiCaieCwezGrTx3YA\nxeHAce+tvLflPcq1Ki44anKLBwwB2Bxmhp3VhQHjO2CyqNhdB9dPSfq5yLG3cUIIug8dQWpOB8JV\nlWR364Hd7a63n1W1MrbdWBbuWkiOK4f2nqb9HEOVFZTvycPu8aI4bby+9U2+zvuaaX2nMThzMHbz\n4c1SfKjyAnncsOgGookoM4+bSWdv51YNHDIMg9kbZ/PE6mTW0U3lm7hl6C0NljCSpMNNjr0ty8Ag\nYdQGoVdEK1hZsJILj7oQgExnJn8f8neCWhCPxUNlrJLj2h6HRW35Mt87Kncwff50ookoTxz/BL1S\nezUry5IkSZIkteZvDxMwEHjKMIwBQBC4ae8djGRttAafdhuG8axhGIMMwxiU3sS0/pIkSdKhkWPv\nL5vicOA544zqDQXvWWc2GDCUqKoiXliIVlLSYDtaSQmRNWsACHz2GVpxMZtHjWbnxZegFRdjJBLE\ncnOpeP8DYjt3occbXyljTk+n4+zX6fDqK3R69x3UBrIMJQIB9tx5F0Y0SnTjxmQZIEn6DZFjb8vT\nysoofvJJdl92OaHly9Gj0doPExrkfYvtxVM4df11vDm5E1FNJ5bQ67UTDQXZ/P1qPpo9i43r1xDT\nE3U+t3TuTPY777J9ytVMeW8rjhn30+n99/Cccgo7L76EeH5+vTYb4hg2FHP79pjaZLIisL7m/dWF\nq4kkkhmLxvXIYEyPdNr57Tw+aSBee9MnhEOVUYIVUeKxxH73c1lV/jy6C6oisKgKF4/s9KsKGAIw\nWa0ce/YfAPCkZ9Cu99GHuUfS4SLH3sPIMCBem43Nkr+CkedfCELgzWxDh779Gz1UKAK7u3b8+ynL\n0E+8DgvXje/BouvHMO/aUWT77Pscr2Dt2pW2//436ddfh8m//xIRZZEyZi6bySXzLmHZnmVEteh+\n99+XAby6/W0eXv8kz//4EjcvuY2KSMVBtdFUdpcFX4YDl8+KapKTRdKRSY69+2dzuWnboxddBw3F\n4fVhGAbB8jICZaVo8RgAKbYUbh9+O59M/ISXTnmJNHvj5b9LwiUs2LmATWWb2LhmGa/983r+e810\nKnbn8vH2j1lVuIqrFlxFZazy57rEVhGMB7ln6T2sKVrDhtIN3LDoBkojpa16zoSRIDeQW7OdH8gn\nrjcti4gk/dzk2NuyPBYPD45+kAEZA5h+9HTyAnnkVuWSnO5M8tv9ZDuz+d+Z/+PDCR9y98i7a7II\nt5SIFuGRVY+QF8yjJFLCjKUzqIz+ssdzSZIk6fBpzSfAu4HdhmEsrd5+i2TQUIEQIsswjHwhRBZQ\n2GgLkiRJkiQ1mWKx4D3tVFzHjUSYTCgeT719ElUByma/QdEDD2Dp1JH2s2bVy+qj+nwoHg96ZSWm\nrCz0yuQXzugPPxD8ZgmOEcPZNvFs9IoKhMNBl48/QslsMHEgkAwcMu/noYRQTVi7dSO8ahUAtu49\nmnH1kiRJtaKbNlHy7HMA7Lp0Ol0+nY/y01gXLoX/XQqlW6F0K6nrX+Qfp1yEy5r8amRoGno0iuJw\nEAkE+OTJhwHI/WEd7XsfnSx9Vk0oCkGTjUtf/oaoppNfmU75ReejB0MABL5YRMr5vz9gf82ZmXR8\n9RUMIfiTWsGCXQsJxoNcPfBq3JbkCvM0t5VHft+feELHazdjMdXNnqRVVEAsjrCYUb3emverSiL8\n76FVBCuijJ/Whw59UjGZG55MVlWFYZ1TWXzjWAQCn+PXl6nC6nDSb/wpHDVqHIqq1kv9LknSz8CR\nBufOgjf/CCYbpm6j6W7JpNuwkcn/L72Nl5awuy2cdGkfVs7dgSvFRs9js+rtk+K0kOJsfCV3NBQk\nd9MGNi35iv4nnUpaTgfUvbLDlQSibCkK0tZnY1PVGt7d8i4AVy+8mo8nfky6qemTbZqhsatqV832\nntAeNKP1SqJJkvTrUr4nnzfu+DuRUIAJN9xK2169UVUTfpsfbPs/tjRSytULr2ZN0RoEgudHP4sn\nPZPKogJ2r/+ObG82W8q3IPjll6EVCKxKbRCpRbW0enkyk2Li8n6Xs7V8K5FEhH8e+0+8Vu+BD5Qk\n6RfPYXYwOmc0PVJ68P6W9/lk2yfcc9w9teOOrkP5DtQVz5PRdiB0Hg0tHDAEyXGoo6djzXY7T7uD\nzorZFEWhInZW7aSdux2ptlRURT3wQZIkSdIvTqsFDRmGsUcIsUsI0cMwjI3A8cD66j9/Ilm37k/A\nu63VB0mSJEn6JdPKytArK5Mlvvz+JpUZUz0e1AaChX5iRMIUPfIIALFt2wmtWIH3lFPq7GPy++n8\n3rvEduzA0qEDu6+6uuYzc7scjHAYvSK5QtoIhUiUlWHKyGj2QzmTP4WcR/9NcMlSLB07YukgUyVL\nknRoFFvtLIqw7DNpoKjgykwGDQGWtI6c2jcbp9WEVl5OxdtzCC5dStplf0Ztl1OnXT2R4Ks3Xqbr\noGGk5rTDZLEiBPgcZgoqo+yoiNG//wBCX30FioLt6L5N7rOpOhNbByOFOWfOwTAMPBYPJqV27Pc5\nGp4E10pLKbjnHqrmzcc7cSLp11xdU0pt49J8qkqSGT2+emsTWZ09mLzWBtsBsFtU7JZfdnmKA7E5\nXXWCvyRJOjSheIi4Hsdj8TTtflA1QfYA9GkLCFaU894jz1Cal8sf7nqgSeUCVbPGkNPaYjKbMVsP\nvsxDuKqK/828HYANXy9i2r+fxeVPluAtD8W46e3vmP9DATk+G/+eUlua12v1HvT9rkW1cNXAq/ih\n9AeqYlXcOfxOvBY5qSxJ0oHpus7Sd94gUJbMELzghWc575/34NhPYOXeEnqCdSXVJVkx2BTchsuf\nSjwaoeeIMYwuV9F0jal9puKxNv4M4ZfAYXZw09Cb0NGJaBFuGXZLMrCqlWW5snj8+MfRDf1nOZ8k\nSUcOs2omx53D+b3OZ/JRk+sGDQaL4D8nJP8GuGAOdD2+xftgUkz8sfcfaetqS/j/2bvv8Kiq9IHj\n33Onz2Qy6YSWBELvHSwgqCiirqLiqljBsrq6uq7u6q7u2te1/VR27QUXdcVeQOxYUCxYAEV6E0JJ\nL9Nn7vn9MTEhkoQkJIbyfp7Hh5k75557LupJ5p73vG8syLHdj8Vj87TqNQqDhZz55pkU+AvwOXy8\n8ptXyHRLtiohhNgftXWu+cuAZ5RSdmAdcB6JkmjPK6VmABuBU9t4DEIIIcQ+J1ZezvZ/3k7F669j\nJCXR7dVXsHfpsvsTd8diwTVwAMFvv0ssaPfqtUsTZbViy87Glp2NjsXodNttlL74Ip7Ro3B0744Z\nDuOdNInKt97Cc+ihxKuqMAMBLJ6WfzG1ZmTgO+7YPbkzIYSoYc/NpePNN+P/4nPSL7gAy87lZ9zp\nMHUWfPkopORg9D0OT3WWoci69ey4804AAl9+Sfe33+Koi/7ADx++R+9DxrFh6bd8/tJzfPXai8y4\n/zG86Q4ykhw8f+FBPLlwHVa3g9S/X0/SqpUk9eiJ9ReZ3JrCUEajZSbqEy8ppWLemwCUzZlD+ozp\nUB00lJVXuwiUlePFaCDLkBBCNCbkryLsr8KwWHEmebE5EsGHJcES/u+b/+Onyp+4dtS19Ejpscvu\n41AsRHm4vCawKNmRDBYrQe3ihXtuoHRrorzLDx+9x2FnTm90HIHyMhbPf43MQ4byedGXHJIzllxf\nHg5rw8GQvxSL1JYYi0ejaF1bnjISM/lifWKBfnNZCDOcwT2H3cO3O77l9L6nk+5M36W/3enq7cqs\nSbPQWpPiSMFq2b/KPgoh2oZhGGT36MUPH74HQGbXvDpZ0WJmjJgZw2ltOOXQhQMv5IElD9DJ04mx\nOeNIvuIoDMPAnezj5KyTmdx9Mm6re7/IGpHlzuK2Q28jruM1mTp/Da1dbkgI0TSBaICt/q2sLlvN\n8Kzh7RLIopSqP2BQx2sDhgBK1pLIqdD60pxpTO09tU36BgjHwhT4CwAoD5dTEamQoCEhhNhPtemT\nCq31d8CIej5qm5+QQgghxP4iEqHizcQCsFlVRfCbb1slaMialkaXmf8mtHw5tq5dsXVofEFbWa04\neuSTfc1fao9Fo6SecTpp06YRXr+e0JKluIYM2eOxCSFEa7H4fKRMPYXkE0/AsNWTntubDUdcX/O2\nqCrM/GVbmayitW1ME6UU/cYdTo9RBxELh3nkknMBiMdiNYvOSilyMzxcPb4rnzw7i5fXruLEP1+P\no8OuJXPaiuFNQjkc6HAYw+NB7ZRpqUNeMlOvHYG/LEx2dx/O/bDkmBCibUXDYZZ//AELZj2CYbHy\n2xtvp1PPPgB8sOkDXl3zKgBXLLiC2ZNn7xL4uKZsDWfPP5uoGeWqEVdxau9TcVld2Bx2ug0dngga\nUoruQ+t7fFTXys8X0nHMMM7+5EKqolXM/P4B5p80nw7Whkvl/pInJY2DT53G2q+/ZORxJ+HYKfOY\n227lkgk9uH3+CjKS7GR70xiZNpGJeROb3H99mhsMKoQQAL3HHEpyeiahqkryBg/D4U5s1CkNlfLM\nj8+wpmwNlw+7nLzkvF0zoalEMPqsSbMIRAOsKl3FhJwJNR9bMX7V4Jpfg9vmbu8hCCF+Jdv82zjp\n9ZMwtUmON4f/HvNf0l3ND+5uE3YPHPEPWHALZPSGvse394hazG1zM77LeD7c/CGDMwaT4mhatjsh\nhBD7HtneJIQQQuyN7HZ8v/kN5S+/jOH14ho2tNW6tmakkzRu7G7bxUpL0eEwym7HulOWDsNmw9Gz\nJ+Eff8TepQuOvn0wmlA6TQghfm31Bgz9QjAS5863VjJn8U90mtKLfpf9gcjir8j8/SVYUlIwrFZc\nSV6CwKgTp7L8ow/oc+hhOJPqLrJ4UlIYO+1c0LrJZSN2pzwQ5bO1RXy5voSzD84jN82NYexaGseS\nkkK3lxNl1TyHHFxTmgzA4baRlWuD3FYZkhDiABQNBVn2wTsAmPEYP378QU3Q0M4LtC6rC8Wuc9S8\ndfOImomgzFfWvMJx3Y/DZXVhd7kZc9Jp9Bt3BDaXC9VACcadxcJh4sqkKlqVGJsZpSJSQQdP04OG\nXF4vI44/mSETJ2N3uetk7khyWjl9VA4nDO6ExVBkJDU9g5EQQrQ2lzeZ7sNG7nL8480f8/DShwH4\nofgH/jf5f2S46wYnem1e8lPy+dOHf6K7rzt3HHbHrzJmIYT4NawpW4NZnS1yU+UmYmasnUe0E6cP\nRp4PQ84AZYGkfTczT5ozjZsOuYlwPIzdsJPmklKMQogEpdR4IKK1/qz6/Sxgrtb6xTa41mPAPVrr\n5a3dt6glK3xCCCHEXsjq85F19VVk/O4ilNOJNf3X3S0TKymh4G/X4V+wANfIEXS++26IxcAwsPh8\nWFNTsR588K86JiGEaAsx02RbRQiAC15dxa3HHcXJZ07D5k1CGbWlvFxJXkafOJVhk47H6nDicO+6\nk9nTzGChWGkp4RUrwGrF0bMn1pS6568v9nPxM98A8PqSAt66YiyZ3l1LUBgOB4787jjyuzfr+kII\n0RQ2p4v+hx3BR7Mfx7BY6Du2NlPFQZ0O4srhV7K2bC0XD7m43h3ek7tN5rmVzxEzYxzf/fg6gUaG\ny8FStY6/vfc3kh3JzJo0iy7ehrNr9h07gTWrvuXMnmfw6obXmdB1/C5ZfIKVETYsKyYaidNjWBbu\n5F2DkWx2OzZ7/UFKPpcNn2vfzspWEizBxCTdmb5r9hEhxD4vFAvVvI7EI2g0xcFi1pWvo1NSJzKc\nGTitTg7tfCgvHP8CVsMqZbSEEPuVoVlDyUvOY0PFBs7ud3ajpRrbhTM58c9+QH5+CNHObvCdAdwG\n5ACbgL9yQ/mz7TsoAMYDVcBnbX0hrfX5bX0NIUFDQgghxF7LmpoKqe3zxcys8uNfsACA4FeLiRUV\nseGUqWAY5Dz5BJ6Rtbsd46ZJ3NTYrZZ2GasQQuwJr9PGjb/pz6X/+wa7xeCw/p2w+1z1trW73Nhd\ndYOF4vE45dsKWPn5QroNGU56lxxsjt0/sDTDYUpmP03xAw8AkHXNX0g7++w6gUrFVeGa1+XBKKZu\nyR0KIcSesTkcDBg/kR4jD8JitdbJtJbqTOW8AecRM2NYjfofMfVM7cn8k+YTNaMk25NxWWvn2IpI\nBW+tf4tHj3qUmI5RFCxqNGgoKTWNXn2Gk8Mgzh10Hi6bm2RH7YJMPGryzTub+O7dTQBsWVHK4Wf3\nwdFAacZANEB5uJyqaBUZroz9YlGkoKqAKxZcQSge4v/G/x/5KfntPSQhRCubmDeRZUXL2FCxgWtG\nXYPNsHHRuxexvGQ5NsPGqye8Sk5yDk6rE5u2EKysoKx8Kw63B5d3/1jEFkIc2DLdmcyaNIu4juOw\nOPA5fO09JCGEaH2JgKFHgZ8fRuYCj3KDjz0JHFJKeYDngS6ABbgZKALuIhE78hVwsdY6rJTaAIzQ\nWhcppUZUtzkX+B0QV0qdCVxW3fU4pdSVQDbw54ayDimlkoDXgFTABlyntX6tvnFprecopT4ErtJa\nL1ZKPQiMBFzAi1rrf7T070HUJUFDYp9mBoMoh6PO4ooQQog9p1xOrFlZxHbswJKSkig1YZpgmpTN\neR7X0KEYVislVWEeW7ien0oC/HlSH7qm7Zp5Qwgh2ko8FsNfVkrZtgLSOnclKbVlqbLzMjw8dd4o\nlFKkeXZfHmdnwfIynvnblUSCQRa9+D/On/lYk4KGdDhM8JtvavtZ/DX6tNNQTidVoRiBSIz+nZK5\n5LB85v+wjb9M6o3XKV/fhBDtw5mUhDMpqcHPGwoYAnBanWRbs+v9zGFxMGPQDGa8PYOqaBXHdT+O\nbr5ujS78uH0pNPQbZywap2hzZc374oIq4jGzwb7WlK3h7PlnE9dxpvWdxqVDLiXJ3vB97u1iZoz/\nfPsffiz5EYBbv7iVe8ffWyewSgix70tzpvHX0X8lYkZItidTFCxieUmiWkPUjLK6dDU5yTkAlG3f\nytN//SOxcJjhx03hoJNPw+H2tOfw61URriAQC2BRFjJcGZIlTQixW/VluBRCiP3MbbDL11939fE9\nyTY0CSjQWh8LoJTyAd8DR2itVyml/gtcDNxb38la6w1KqYeAKq31XdV9zAA6AocCfYDXgYZKlYWA\nKVrrCqVUBvC5Uur1Bsb1S3/TWpcopSzA+0qpQVrrpS35SxB1SaSF2CeZ0SjBZcvY8qerKJk9m1hZ\nWXsPSQgh9ivWjAzyXnyBnFlP0u3VVwhvWJ843qkTGZddSnTTJqI7CvlsTSEPfLiWN5Zu5YL/LqZo\np6wYQgjR1vxlpcy68mJeuPlv/O/6q/CXlba4r/QkB2keO+FAlEBFmHg03qTzzHicSDAIgDbNmte/\nVBaIsKMyRDAaA8BISiLzistRbjeG10vGJZdgVAcMvfLtZsb8831OfnARp4/O4YXfjeHwPh1w2yVo\nSAixf0l2JLOyZCVV0SoA3lz/JpF4pMX92V1WRh/fHavNQBmKg6bkY3c1PHcu3LKQuE7M9x/+9CGh\neKjBtvsCi7KQ68uted8lqQs2y75dak0IUcsf9bOoYBE3LbqJjRUb8Vg9GMrAYXFweu/TAeic1JlB\nGcPZVh6ixB9h7ddfEgsnvqcv/+h9ouEw0XAYf1kZ0dDeMedVRaqYs3IOE1+cyNQ3plJQVdDeQxJC\nCCGE2BvkNPN4Uy0DJiql/qWUGgvkAeu11quqP38KGNeCfl/VWpta6+VAh0baKeA2pdRS4D2gc3X7\nOuPSWpfXc+6pSqlvgG+B/kC/FoxT1EOeOot9Ury0lI3nnIsOBKj64ANcQ4ZgTUlp72EJIcR+QymF\nLSsLW1YWAEmHHUaPDxeA1vx00e8Ir1qFJTWVQ597HqfNIBQ1CUbjaC21c4QQv57SrVuIhhOLHRWF\nO4iGQ5hmnEB5OeGAH2eSF4+v6b8jBioiLHhmBSVb/Iw7rRede6VgtTdeetHu9nDYWTP4Zv7r5I8Y\ng8dXW9omHI1TVBXB1Jqb5y7nu5/K+MukPkwakI3HYcXZvz/5b72FUmCpLkcZiMS48Y3lmBq2lAV5\n9stN/GVSnxb87QghxL5heIfhuKwugrEgR+Qcgc2oG+QSi8coCZcQNaN4bd5Gs+YopcjMSeLMmw9C\no3G4bFhtDc/jk7pN4r/L/4s/6ufMvmfise592TeaQynF1F5TyXJnEYgGmNRtUp1ycEKIfVtpqJSL\n3r0IjeaNtW8w76R5ZLmz8Dl8/H7o7zlv4Hk4LS5+3BzjnCc/oEuKm2dOGYblhWeIR6P0GnMoSim+\nefM1ln/8Af3HH8mgIyY1mknu1xCMBXny+ycBKA4V88mWTzitz2ntOiYhhBBCiL3AJhIlyeo73mLV\n2YSGAZOBW4APGmkeozYJze5Sq++8o7yxtJHTgExguNY6Wl0CzfnLcSml3tda31TToVLdgKuAkVrr\nUqXUrCaMSTSRBA2JfVc8Xv9rIYQQrcYMBAguW0bZiy/hO/EEbJ07E16VCDiPl5aiVq/gjNE5fLux\njNtOGki6x9HOIxZCHEjSu+TgzciksqiQTr37YbU78JeVMfvPlxGsrKBjzz6ccPV1TQ4c2ryihA1L\nigB4+9HvmXbTmJqgoUAkxoaiAF+sL+bIvh3onOLCMBROj4dBE4+h76GHYbU7cbhrswZvKg1w8exv\n+N347ryzfDsAV7+4hEN7ZuBxWDFsNoyszDpjMJSia5qb9UV+AHp38O7x35MQQuwNtGlixuNYEIZq\nbgAAIABJREFUbHWDgjp6OjJ3ylz8UT8+h48UZ905e2PlRs6YdwaBWIA/DP0DZ/Q9A4+t4eAei9WC\nJ6XxgM+f5XhzeP3E14mbcZLsSbhs+36ATaozlRN7nNjewxBCtIFALIAmsVEnFA8RN2ufh/ocPnwO\nH5WhKA98+A3RuGZ9sZ+X14SZft+jxMJhXElewkE/C5/7LwCfPDuLXmMOafegIbvFzuhOo3lv43tY\nlZVhWcPadTxCCCGEEHuJvwKPUrdEWaD6eIsppToBJVrrp5VSZcClQJ5SqofWeg1wFvBRdfMNwHBg\nPnDyTt1UAi2tg+0DdlQHDE2gOjCqnnGd/4vzkgE/UK6U6gAcA3zYwjGIX5CgIbFPsqSkkPPE4xT9\n5wHco0Zh7969vYckhBD7pXhFBZumz4B4nIp58+jx/ntYs7OJbduGcjpx9enDHzM6EItrfC4bhtFY\nALkQQrSupNQ0pt16D5FggGBlBYtfe4m8ocMJVlYAsHX1CuKRppe58fhqAx/dPjtKJea0aNykqDLM\n8f9eSNzU/PuDNcy/fCxZyYnNLHaHE7tj140tn64pojQQITu5dhE60+ugsakyw+vg2QtG8/zizeRn\nejgkP6PJ4xdCiPYWjUfZHtjOD8U/MChzEB3cHTCUQbCygh8+ep/KokL6TTkeZbPgtrpJsidhs9jI\ncmc12Od7G98jEAsAMGflHKb0mNJo0FBDtNaUBiKYyk9JqAi3zU2qI7XRawshxN4ky5XFjAEz+Gjz\nR5zV7yy89l2Dy502C4f1zmThmkQgvNvlxJ2ShtWS2CAei4YxLBbMeBzDYiVuaMKxMDEdI27GG83m\n1lZ8Dh/Xj7me6f2nk+5KJ9WZuvuThBBCCCH2dzeUP8sNPoDbSJQk2wT8lRvKn93DngcCdyqlTCAK\nXEwikOcFpZQV+Ap4qLrtjcDjSqmbqRug8wbwolLqBOCyZl7/GeANpdQyYDGwopFx1dBaL1FKfVvd\n/ifg02ZeVzRCgobEPsmw23ENHUrn++5FOZ0YO+1U9JeX8d3b87DYrAw6/GjczShJIYQQ+zJ/1I/d\nsGOz2HbfuIl0LFabzc00QWvynp9DeM1a7Hm5WDMysNtb73pCCNFcbl8KX897ja9efxHDYqX/hCNx\n+1IIlJfRpe9ArHZ7k/tK75LEpIsGULipkv5jO+NOTpxbGYyyqSRA3Ezs7C72R4iZuy/HeFD3DG6Z\n+yOfrS3ioTOHsWZHFScM6Uymt/HMuR19Li4/omeTxy2EEHuLknAJJ71+EsFYkFRHKi/95iUy3Zls\nX7eGRS8+yzE33cC5709nS+UWrhl1DSfkn4DHXjcAKGbGKA2VorUmyZ7EuC7jeGjpQ8TMGBNzJ+K0\nNj/7uGlq1uyo4rP1W9jMK8xZ9SwKxWNHP8ao7FGtdftCCNGmUpwpXDjoQs7qdxZJtiQc1l0z/dos\nBlOHd2FMt3SUgi6prpqAIQBnUjIn//0Wflz4IV1Gj2Dmjw9x0bCLuf+b+9kW2MZ1Y66ju687SinC\nsTBV0SocFgdJ9rbNRpTmTCPNmdam1xBCCCGE2OckAoT2NEioDq3128Db9Xw0tJ62nwC96jm+Chi0\n06FPfvF5g788aq2LgIPq+WhDfePSWo/f6fW5DfUr9owEDYl9ljIMLN66O2qi4TCfPPMkP3z0PgDB\nigrGTTsPi1X+UxdC7L/iZpy15Wu59+t76ZPWh7P6nbXHO/NiRUVUvPU2rqFDyPrrtZS/9DLJvzke\nw+PB4vNhy5Id2UKIvYNSClW9EGLGYyx5/y3OvP1eYuEIDre7WQHkTo+N/KFZ5A+tnePKQmV8tu1T\neqYM4fhBHVm4poiLDsvH49j975c5aS4+uGo8G4r89O+UzKQBHZt/g0IIsQ8pDhYTjAUBKA2X1ryO\nRSNkdM3li6Iv2Vy5GYB7v7mXibkTdwka2lS5iaJAEcFYkG6+bnRK6sT8k+YTiAZIc6a1aOG6xB/h\nsv99ywXjM/h0/ccAaDQfbPpAgoaEEPsUt82N2+ZutE2K206Ku/7AeZvDQWFqhAW9trB6/YesKVvD\nmQPPZu76uQBcseAKnpz0JHbDzpvr3+R/K/5H3/S+/HnEn0lzSVCPEEIIIYQQ+yOJpBD7FTMew19W\nWvPeX1qCNs12HJEQQrS90lApF717EUXBIj7Z8gkDMgZweM7hLe4vXlHB1htvourddwHo8tij5Dzx\nOIbHg+Fs/s5uIYRoa8OO+Q3RYIBgZSWjT5iKN631Snq9v+l9blh0A26rmxtG/4u/HNyPpGQvPtfu\ns6y57FZy0qzkpDW+sCOEEO0hWFnB1tUrqSotIX/4KDwpe14OpoO7AwMzBrKsaBnju4yvCfDp1Ksv\n3YaOxJHRHYVCo+mf3p+SUAkWw1Inu0RxsJgHlzzI4u2LsRt2XvjNC3T3tawkudYapRQWQ5HssvLN\nxiBTup/OzCV34rK6mNJjyh7fsxBCtCZTmxQHi9nm30a2J5tMd2arX6O7rzteuxeF4q5xd7HVv7Xm\nM5thQ6EoCZVw6xe3ArCufB35vnwuGHRBq49FCCGEEELsn5RSA4HZvzgc1lqPbo/xiMZJ0JDYrzjc\nHo6YfjHz7r8Tw2Iwbtp5zSpJIYQQ+ypDGfW+bo54RQVmIJB4s1P6cv8HC/AeeugejU8IIdqSx5fC\nYWedD1pjsbVuycRNlZsACMQCPLZ8JnfHT8YzZgKJUt9CCLHvWvPV57zz8P0A/NhvIL+58lpc3uQW\n9xeJRwC4d8K9mNrEYXHUZL90J/sYftwUAlE/r5zwCuvL15PqTOXCdy9kVPYo/n7Q3/HaE5mEs9xZ\nLN6+ONGnGWFp4dJmBw0FogGWFy9n3rp5TMydyKDMQcw8fRj/WbCaAb7DmX/SEdgtNlIdex4oJYQQ\nrak4WMzUN6ZSHCqmk6cTT09+utUDh1Kdqfxx+B8JxUIk2ZOoilZxVt+z2OLfwlXDryLdlc6OwI46\n55SFy1p1DEIIIYQQYv+mtV4GDGnvcYimkaAhsd9Jye7IlGv+AUrh3oMHnkIIsa9Ic6XxyMRHuP/b\n++mX1o/BmYOb3Ue8qorS5+ZQeM89WLOyyJ39XyKrV6MMC2nnz2iDUQshRMsEqyKYcY3dacXmsNQc\nb6tytNP6TuPr7V9TGirlhn5XkvTFBpR778kcFKyMYJoap8eKxWrZ/QlCCAFo06Rg9Yqa90Ub1xOP\nxZp2cuU22PwlBMogfzx4MggrC59v/Zxbv7iVnik9uemQm3Ypl2uz2/HZ7fhI5b2N7/HgkgeJ6zjL\ni5fXBBwBeGweju9+PG+se4MURwojs0c2+/5KQiXMeGcGpjZ5cfWLvHrCq+Sn5HPjbwZgGKrZ/Qkh\nxK+lIlJBcagYgAJ/QU2Zx9a2c5mzNEsaVw6/kqiO4rK6AMj2ZHNEzhG8v+l9Onk6cWbfM9tkHEII\nIYQQQoj2J0FDYr/kTpad30KIA4ehDPJT8rl97O3YDBtWo+Ef77GiIrRpYjgcWHy1c6UZCFL88EOJ\nNjt2UPXZInKffhpME2t6epvfgxDiwFEUKCJqRnHb3PgczfudLVAZ4f2nfmT7unLGnNCdXqOzsTvb\n9itNljuLmYfPJBYOkRy3Yz1uQJ35sz35y8K89cgyqkrDHHluP7LzkyVwSAjRJMowGHHcFNZ8uYiQ\nv4qx087F7vpFQKRpgr8Q0OBOB4sNKgrg0QmJwCEAwwpnvkKw00Cu/vhqgrEgW/1b+XLblxzT7ZgG\nrz+522TmrJxDWbiMq0ZeVZNlCCDDlcHVI6/mkiGX4LA4SHc1/3fRomARpq4tVV5QVUB+Sr4EDAkh\n9nopjhR6pfZiVekqBmcOxmPztOn1KsIVrClbw8aKjYztPLYmaCjVmcoNB93AtaOuxWJYyHC1Xvlf\nIYQQQgghxN5FgoaEEEKI/cTPD/caEt2xg03nnEtk/XrSzjuP9N9dhLV64VvZbbhGjMT/0UdgGLiH\nDsGaKuUahBCta7t/O9PenMb2wHam95/OjEEzSLY3PTNkoMxPdjcHYb+bj55bRd7gzBYHDZWGSikK\nFpFkS8Ln8NXstK5PqjMVnC26TJta+fk2tq2rAOD9p37k5L8Mx+OToCEhRNOkduzEuXc/gGmaOFwu\n7M6dJjqtoXAFPDsVYmE4dTZ0HAyfzawNGAIwY/DGZXjOe5OOno6sK18HQEdPx0av3cXbheePfx6t\nNV67F7ulblnxVGfqLpmKmiPHm8OgjEEsLVpKr9Re9Evv1+K+GhIORrFYDaw2mXeFEK0n3ZXOIxMf\nIRQL4bQ6WxQ4CRAzY2g0NqPx0r0rS1cy/e3pAAzOHMzMw2fWzL8pzpRG+6yMVBKOh/HavDisjhaN\nUwghhBBCCNH+JGhICCGEOED4P/uMyPr1AJQ8+SRp088jVliI1mBJ8dHptluJrN+AtUOWZBcSQrSJ\nb3Z8w/bAdgCeWv4UZ/U/q8nnBsrL+ebNpykp2Mzok85m7bdODKP285A/SkVxiEggRnoXD64ke4N9\nVUYqeeC7B3hu5XNYlIXZk2czMGNgi++rIdFwnEgohmEoXN6Gx9NSvqzaYNGkNCeGRTJoCCGazjAs\neFIaCMwJlMDcyyG5E8Sj8OJ0OP892Prdrm1LN2DD4JGJjzB33Vz6pPWhu697o9dWSrVp1oo0Vxoz\nD59JOB7GbrG3eNG9PqapKdnq57MX15DWycPwSbltMscLIfZ+5eFyysPlWJQFi7LgdXhbJTNQU+as\naDyKP+rHYXXssoGoOFjMo0sfpTJSyeXDLyfLndVgP6tLV9e8Xle2jphZf6nKnfv8w7A/4LQ6+ecX\n/2Rp0VIuG3oZh3U5rNEgfCGEEEIIIcTeS4KGhBBCiAOEIz+/5rV7zGjihYVsPPscdDRKzuOP4Ro6\nFPeI4e04QiHE/q5fej/shp2IGWFU9igsqunZGVYu+phlH7wNwLx7b+LsOx/A7qqNGtqyspS3Hvke\ngAHjO3PwifnYGshCFI6FWfDTAgDiOs4nmz/Zo6CheEUFOhLB8PkwbImd19FwjHXfFfHh0ytIyXZz\n3KWD8fhadwd2516pHPO7AVQUheg5skOjgVJCCNEshgFH3w6bPgOHFzxZYHVC/pGw8bO6bTsOAYuN\nDp4MZgycASQWs4uCRVgNKymOlHou0PbSXGlt0m+wMsK8fy+hqjTMTz+WkJXrpdeo7Da5lhBi7xWI\nBpizcg4zv52J3bBz/+H3Y7fYGZk9co/6LQoWMXv5bDw2D6f0OoU0565zWSAaYFHBIh7//nFGZY/i\n3P7n1mQF0loze/lsnlnxDAAl4RLuGHdHnTKQOzsy90heWv0Smyo2cf1B15NkT9qljWmaPPH9EzV9\nbgts4+qRVzNv/TwArvnkGt495d0WBQ3FzTjFoWJ2BHaQ7cmWMmhCCCGEEHsRpdQNQJXW+q426HsD\nMEJrXdTafbcGpVQmMBewA3/QWn/yi88fA+7RWi9vj/G1NgkaEkIIIfYy8YoKzEAQZbFgzdz1gVms\nqAitNZaUlJrF6aaw5+WR+/Rsgsu+J/m4Y9l+622YVVUAFM6cSZeZM7EkN71MkBBCNFe2O5t5J82j\nMFBIZ2/nZpWe0Xrn15rK4h2s/OxDBkw4CpfXy+aVpTWfb1tbTjRqYmugpJjb5mZa32nc8/U9eGwe\nJuVNauEdQay4mK033kRk9So6XH897hEjMOx2IqE4Hz27kljUpOinKjb9UELfgxsv19NcziQb3Yc0\nvHNcCCFazLDB4sfgu2cT74/+J/Q+BoadBavmw+avEsc9GTDl4cSf1cKxMIu3L+aWz28hJzmHWw+9\ntU0XgasiVfxU+RNry9YyuuNoMt2ZbXatnymjNrObkixvQhyQArEAr655FYCIGeHjzR/TOakzgzMH\n71JysamqIlXc9sVtvLvxXQD8UT+XD70cY+f0mkBFpIIrP7oSU5ssK1rGmI5jGNNpDAAaTSQeqWkb\njUfRO/8i/QtZ7iwemfgIpjbx2Dz1lj03MfFH/TXvg7EgdqP2HpNsSShaNhcWh4qZ8toUKiIVdPd1\n54mjn2g001JpqDSRYcniIMOVgVIyBwshhBBi/zXwqYFnALcBOcAm4K/Lzln2bPuOqv0ppaxa6/pT\nZLaeI4BlWuvz67m+pb7j+zIJGhJCCCH2IvHKSkpmP03RzJlYO3Yk73/PYsuu3bkc2bKFn86/gHhF\nBV1mzsQ1aCDK2rQf5xavF/eIEbhHjEBrjXv0KCrfegsA14gRKEfrZsAQQohfclgdZFuzyfY0PyND\nn4PHUrhpPSVbfmL0lN/y5avPs+6br8gbMhyX18vgw7uy5usdREIxxpyQj8PV8Nzotrk5uefJHJ13\nNFbDSpqj5dko/IsWUfXOOwBsuewPdH9rPkZmJoahyMrzkt4jBZvXRmburru2m0trjen3o5xOjOq5\nvyhQxJqyNXRN7kqGMwOHVeZyIcQeChRDJAADp8LaBVC5FQpXJKI3k7Lg9OcgWJpo482uEzAEUBmt\n5I8f/pFgLMjmqs3MXTuXcwec2yZD1VpTFfDz8JKHef+n9+md2puHJz7cquXIfsmdbOf4y4bw+Wtr\nSe+cRJfeTQ+AFULsP9xWN9eMvAavw4tCYVEW/FF/iwOGIJEBszRUGwhfGCgkThwDo5GzqBM4YyiD\n6QOnUxwqpjJSyXVjriPZ0fjmoN3NmVbDyiVDLmGbfxtV0SpuOeQW0l3p3D72dr7a9hVn9juz3oxI\nTVEYKKQiUgHAuvJ1hOPhBtuWh8u59+t7eXnNy6Q703nuuOda9L1CCLH/CcfCVEYrcVqc9WZME0KI\nfVF1wNCjwM/pHHOBRwc+NZA9CRxSSnmA54EugAW4GfgX1Vl/lFIjgLu01uOrTxmslFoEZAB3aK0f\nbaDfjsAcIJlEDMrFWutPlFIPAiMBF/Ci1vofO512mVLqeMAGTNVar1BKjQLuA5xAEDhPa71SKXUu\ncBKQBFiUUscCrwGp1edfp7V+TSmVB8wHFgIHA1uAE7TWwQbGfQFwIYmMQmuAs4BewB2Aq/rv4yCg\nEHgYOBL4vVLqFuAqrfVipdQkEsFdFqBIa31EQ/dR/7+V9idBQ0IIIcReRIdCFD34IACxrVvxf/op\nKSefnPhMa4ofe4zI+vUAbLvhBnKefBJrevMfzimlSD7mGJz9+kEkgr1HDwwJGhJC7AX8UT+BaACL\nYamz+OD2pTDhnAsIVlYyf+ZdRKNhhp16KlZPYje0L9PFadePAsDhsmKxNr64kuxI3u0CSlNYM2sz\nWlizMjFNKC8MYndaOGRGP26Z9yOr11VxY25/fPE4NkvTS7LtzIxECH3/PUUPPIh7zGhSTzmFMkec\nGe/MYF35OmyGjddOeI2uyV33+J6EEAcOf9RPRbgCjSbZnkxSNARvXgU/vJIoO3bqU/DG5TDuKqI6\nTlmgGGUoUtO6YzEans+S7ckEY4nncc3JKtcc0XCMbWsrWPLBNs4YcAkjB4/mrmV3YGqzTa73M6UU\nqdluJp7XD8OqdskAIoTYf5WHywnFQhjKwB/1Uxgs5Pcf/B67Yeexox9jYGbLy90WBYuIm3GuH3M9\n135yLU6rkz8M+wM2Y9fswj67j3sn3MsTy55gVMdR9E7rXefzDFcG/zjoH5jabLXF8yx3FneMu4O4\njtfM68d2P5Zjuh2DoVo+D2Z7sslPyWdt2VomdJmA09pAqlAgEo/w8pqXgUSGou+LvpegISEE/qif\ndze+yyNLH2FMxzFcNvSyNvv9UwghfmW3URsw9DN39fE9yTY0CSjQWh8LoJTykQgaasggYAzgAb5V\nSs3TWhfU0+4M4G2t9a1KKctOY/+b1rqk+tj7SqlBWuul1Z8Vaa2HKaUuAa4CzgdWAGO11jGl1JHV\n93tydfthwKDq/qzAFK11hVIqA/hcKfV6dbuewOla6wuUUs9Xn/90A/f38s+BUNWBQDO01jOVUn8n\nEUh1afVnHuALrfWfqt9T/WcmieCucVrr9Uqpnx9oN3Yfex0JGhItEispIbxmLbbsDlgzMjDcza9Z\nLYQQoh4WC67Bgwl+/TUYBs4BA2o+Ukrh6F37MNDevTvKXn95Mh2PEy8pAaWwZtRfDsKakoI1JaV1\nxy+EOKBURioJxAJYlKVVSs8EogHmr5/PrV/cSndfdx468qE6ZWbsThdozUGnnUmZN8p/VjzMkg0l\nnOM5h1RnKh7frx/86OjTh8733Udo+XJ8p57Kuy8UsPH7YvocnE3FgGReW5L4Dn3B7MW8c8U4spJb\nFjQULytj0/QZ6FAI/8KFuEeMINKzA+vK1wEQNaM1GYeEEKIp4macRQWLuPLDK9Fo7hx3J0emD8b6\nwyuJBlu/S2QXOvsN4u40fihaxu/e+x1Oi5PHj36c/JT8evtNd6bzxNFP8NCSh+iZ2pPDuhyG1pqi\nYBHBWJAkWxJprtqg0IpwBYYymr2wHQ7EmPvvJZimZuP3MOmaQ7lujB237dd5PmG1t2w+F0Lsm8rD\n5Ty69FGeWv4Uucm53D/hfv634n9AojzZ8yuf5+ZDbm7w/FAsRHm4HFObJDuS8dg8NZ8VBYuY/tZ0\n1les59Tep3Lf4ffhtDhJcdb/fd1lczG281j6p/dHaUU0HsXUZp3gnbaYC+sLuN+TgCFIZDl6/KjH\nCcfDOK3ORjMWWQ0rYzuP5ZMtn+CyuuiT1mePri2E2D9URar4+6d/R6P5qfInTuhxwj4fNBSJR9gR\n2MHasrX0S+/3q5TfFULslXKaebyplgF3K6X+BcytzgbUWPvXqrP0BJVSC4BRwKv1tPsKeEIpZQNe\n1Vp/V338VKXUhSTiUjoC/YCfg4Zerv7zaxJZhAB8wFNKqZ6AJpFF6Gfvaq1Lql8r4Dal1DjABDoD\nHao/W7/T9b8G8hq5vwHVwUIpJLIYvd1AuzjwUj3HxwAfa63XA+w0vsbuY68jQUOi2WKlZRRccw3+\njz8Bw6DbKy/j7N179ycKIYTYLWtaGl3uv4/QipXYO3fCmpVV5/PkSZOwpqcTLy3FM3EiwVgUVVaK\nO9mHqt7lrE2T0I8r2HzJJRgeN10ffRR7ly7tcTtCiP2YP+rn5dUvc9fiu+jg7sDTk5/e452+gViA\n27+8nZgZY1XpKr7Y+gXH5R9Xp43d5cad15Gz3ziFklAJiwoWMThrMBO6Ttija7eU1ecj+eijSD76\nKEq2+dn4/QoAdmyoJHtkbamHFJeNxr6AB6uirF9SSPmOAAPHdyEptZ5d1judrwwLTouTyXmTeXPD\nm3TydKJ/Rv/WuzEhxH4vGAvywqoX0GgAXlj1AiMPGULswvex+otJf+fv4OsKSZlUhcu55+t78Ef9\n+KN+HlryEH8/6O947d5d+lVKkZOcw02H3ITVSDx22hHYwW/n/paiYBGjs0dzx2F3kOZM46fKn7jh\nsxvw2r1cN+a6egNQw/Ewa0rX8MqaVzg672j6p/evWQzXWte089lTmNR5Up2FeCGEaC2hWIinlj8F\nwMaKjWwPbOfgzgezsjRRYWBi7sSaOa8+y4uXc/475xMzY/xz7D+ZmDuxppRZQVUB6ysSGYWfX/k8\n5/U/jxTPrgFD4ViYsnAZcR3HYXEwZ+UcHln6CGnONJ6Z/AxdvPvm9/6mlpRMdaZyy6G3UBoqxWv3\n7lGJYSHE/sNQBkm2JCqjlUAi4+W+riRUwpTXphCKh+ic1JmnJz/dKhu1hBD7nE0kSpLVd7zFtNar\nlFLDgMnALUqp94EY1NTE/eVDSb2b9z/3+3F1AM+xwCyl1D3AJyQyCI3UWpcqpWb9ov+fa9PGqY1b\nuRlYoLWeUl1q7MOd2vt3ej0NyASGa62jSqkNO/W9c83bOInSaA2ZBZyotV5SXQJtfAPtQlrreCP9\n/FJj97HXkRzKotl0NJrIgAFgmgSXLWuVfuOBAGY02ip9CSHEvsyank7SIQdjz8vbJZObNSWF5IkT\n8Z1yMkVF25l15cXMvuZySrfWZoOMV1Sw/dZbiO3YQWT9Booeehht1i3TECsrI1ZYiBkOI4QQLRGI\nBnhwSaKc4vbAdhZuWbjHfRrKoGdqz5r3PVJ7NNjWomozPFjV3rEXwuGy4k1LfDdVSjGwk487TxnE\n2QflMnvGaDK9DWdC2vRDMQtmr+Cbtzfx5oPLCFZG6nxuSU0l96lZJE2YQIe/XostJ4dUZyrXjL6G\nt09+m2eOfYYsd1YDvQshxK5cVhfHdj+25v0x3Y7hs21fceS753Hu9/+m8JxXwZNYnHBYHPRPrw1M\n7JXai/c2vEdZqKzB/ndePN9QvoGiYBEAX2z7gnA8THm4nOs/vZ4vt33J+5ve5/Flj9dbWqwsXMY5\nb53DnJVzOP+d8ykPlyfG5LZxzMUD6dw7lbG/7UmSzykBQ0KINmM1rHT1JjI6KhRJtiT6pvbliaOf\nYO6UuYzKHtXguZF4hGd/fJaoGUWj+e/y/+KP1q53ZHuy8doSQZg53pwGS3StKVvD5Jcnc/RLR1MS\nKmHW97OAxOLyx5s/bqU73bulOdPIT8kny52F1bJ3fAcQQrSvNGcaT09+mnP6ncMjEx8h07XvZ+XZ\n7t9OKB4CYEvVFqJxWTcT4gD1VyDwi2OB6uMtppTqBAS01k8Dd5Io+bUBGF7d5JcltE5QSjmVUukk\nAmq+aqDfXGB7damvx6r7TSYR6FOulOoAHNOEIfqALdWvz91Nux3VAUMTqD/Aqim8wNbqDEnTWnD+\n58A4pVQ3gJ3KkzX1PvYK8pu1aDbD4ybj0kvZ8a87sHbsSNIhh+xRf9o0iazfwI677sSRn0/a9OlY\n02SniBBi/xGNxynxR4nGTbxOKz6XfY/7DJSXg6kZftwUPn/pORa9/ByTLvkjFosFZbfjyO+BTk6B\nE0/G0rVrTRaiaEEBpXPmYO+ag45FsXXtinvUKAxbyzMjhqNxQlGTJKcVi9FoGkshxH7EZtgYmjWU\nhVsWYiiDgRkD97jPNGcaMw+fydfbvibPl0fnpM71tkt3pfPoUY/yn+/+Q//0/q1y7dZlvxFSAAAg\nAElEQVTg8Tk4+S/DiQRjONxW3MkOpo7oytQRiQWm0lApcR0n1ZGKxahb1qayJFTzOlARxjTrbtox\nbDZcgwbR6e67MBwOlCVxfqozlVT2rtTr8VickD8GgNNjw2KVvSpCNFc4HsbUJi5rY5vh9ozFsDCh\n6wTmnzQfrTV2q50jXzgSgA0VG1havJwjco8AwGl1cuGgCxnRYQTheJiYjnHdwusYkT2iwfI5O8vz\n5ZHqSKU0XMqwrGE4DAeGMnBbawPkvTZvvWVu4maccDwR6G5qk2A8CIDNYSG3fzqdeqRgs1swZK4R\nQrShdFc6sybNYvG2xfRM7UmGK4OOSR1RqN1myrFb7ByZeyRvb0xUOhjfZXxifjfj4C8kLRbi1d+8\nREFgO128XRrMJvH62teJmInA8lWlqxiZPZJPCz7FUAZDs4a27g23Aq01W/1bWfDTAoZmDSUvOe9X\nKyEphDhwWAwL3VO6c9XIq9p7KK2mi7cLgzIGsbRoKaf2OrVNvxMIIfZey85Z9uzApwYC3EaiJNkm\n4K/Lzln27B52PRC4UyllAlHgYhKZeB5XSt3MrhlxlgILgAzgZq11AfUbD1ytlIoCVcDZWuv1Sqlv\ngRXAT8CnTRjfHSTKel0HzGuk3TPAG0qpZcDi6mu0xPXAF0Bh9Z+7plRuhNa6sLr82stKKQPYAUyk\n6fexV1A7p3LeW40YMUIvXry4vYchdhKvrMQMBFAWC9aMPUuLGC0sZOPpZxAvK6PDtdfgGjoUS0qK\nBA4J0XKtErUhc2/rWbmtkhP/8ynBaJxrj+nDWWNycTtaHrcbKC/n3Uf/zfpvv2LA4UeR0TUX0zQZ\nNun4mjahsnK+2x7kz6/9SNdUF/eeNpTUcCUbzzyLyIYNAHS6+27KXnmFzrf/s8Vzeak/wlOLNrBo\nbTFXHNmTYbmpOKyW3Z4nxH7ogJx7S0IlrCtbRwd3B9Jd6b/6IkA4FsZm2DCMli0Ua1MTqIwQCcaw\nuyx4fPXv6m4N2/3b+dNHf6I8XM5dh91Fz9SedRbH/eVh3nn8B6pKQhxxTj86dEveJ4NttNZs31DB\na//3LUopTvjjUDrk7fvp4cVea7+ce4uCRdz39X0EYgGuHnn1Hpd+bKqSYAkXvHsBq0pXYVVWXjnh\nFfJ8eXXaFAeLufDdC1lVugqX1cXcKXOblOXM1CbFwWL8UT9eu7dmgX1HYAcPL30Yn93Hmf3OJM25\n63OAykglc9fN5bkVz3FU7lFM6zeNFMfuA5Uau0+NJs2Z1mjZSCFEo/b4f569be5ta5WRSoqDxUTM\nCFnurMQ8Vr4ZHjoUgqWQczD8dnZNhrf6fLP9G6a/PZ24jvOn4X/iuPzj2FixkQ7uDqQ50/a6gJzC\nQCFT35hKcagYQxnMnTK3JltTWwhGg5RHEtnofHYfLpsssov9jsy9B5CSUAkxM4bD4sDn8LX3cIQ4\nkMmXRnFAkExDB4jycDkVkQrshh2fw9dgmtumsni9WLzNCrRrkA4ldlV3vOkmyl9/na1/uw7XiBF0\nue9erOlNq2kthBB7s3nLCghGE6VOn/5iIycN67xHQUP+shLWfLUIgPXffs2hx5yIYbEQKy9HRyIo\noMKexJUvL6agPMSmkgBzlxZwdv9UYoU7avqJFe7A2bs3yt7yzEfriqq4973VAJz75Fd8/OcJdEiW\noCEhDhRpzjTSslsn0DsaiRAJ+LE6HDhcTVvwcFgbLve1O6WhUixBBy/c+jWhqigdunk5dEY3kn3u\nRhdcSkOlfLT5I2JmjMNzDq93gbs+T/3wFEsKl9DB3YE31r3BBQMvqPPgz+NzMOnCAei4xpFkw2LZ\n9wKGAKLhOIvnbSAWSZQYWvzmBo6a0R+bQ342CNEUMTPGg989yKtrXwWgKlrFnYfdSbK97YPv0lxp\nPDzxYX4s/pHc5Fwy3buWdvDavdwx7g4WblnI2C5jSXU0LdOZoQwy3ZlkUrfPLHcWfxv1N5RSdQJ4\ngtE4kZiJ12HFa/cypccUjso9CpfVtUeL4lsqt/DHD/9IzIxx9/i76ebr1uK+hBCiObx2L177L56l\nbluWCBgC2PQZRION9tEnrQ9vnfwW4XiYFEcKPoevwaxEe4O4jlMcKgYSwaOFgcI2CxoytcnX27/m\n0g8uBeDfh/+bgzsfXG8GOyGE2Bc09VmDEEII0Rrkt+YDQDAaZM7KOUx+eTKTXp7EmrI17T2kOioX\nfEinf/4TW5fOVH34IQDBxYuJlZS078CEEKKVHNm3AzZLYhFk8sCOuGx7FrPr9Hqx2uzYnC5OufQq\nCi76HWsnHE7p089Q/trrrJ00CSoryPbV7qrrmupGuVx0uuf/sHXujOewcXgnTCB9+nlYklu+CGXf\naVHbaigJuxdCtEhVaQkfP/Mkz994LW8/cC+l2wowzXibXa8oUMQ/Pv0H6zdsIVQVBWD7+krKAxVU\nRCoaPC9mxpi9fDbXf3o9Ny66kYeWPEQ4Fm7SNXOScxicMYTbxzxOZMfRLNsUoTIUrdPGlWTH7XPs\nswFDAFabQedetRlAOvdKwWKTnw5CNEdc185/pjbhV0wQneHKYGyXseQk5zRYBiHNmcZpvU+ju687\nNkvLS9z+zDCMOgFDJf4Id7y1gotmL+aHggpicROn1bnHGe3CsTD3fH0PP5b8yOqy1dz6+a2NzvlC\nCNGWYmaMko4DqTzqJnD6oPMIsDW+ydNtc5PtySY3ObfNs06UhcrYEdhBSajlz2c9Ng9/Gv4nku3J\nTOg6oU0DNYOxIM+seIa4jhPXcZ5d8SzBWONBWEIIIYQQovmUUgOVUt/94p8v2ntcu6OU+k894z6v\nvce1t5BMQweAQCzA3HVzgcQX0rc2vMWAjAHtPKpajh75bL3xRjrfczfWzExihYUYXi8Wn6RcFELs\nH3pmJfHxnycQjMRJddtJcu7Zj1+XN5mz7/w3ZTu2ob/9jvDqRKafopkzyZ09m0J/gMjd/+L+a6/n\n9R+K6JaZxIi8VAyHHc+Y0eQ+9xzKbkMlefCXllD07WKycruRlNa87G5aa7qmufnnSQNZuLqIi8fn\nk+ppedYiIcSBKVBexqt33MT2dYnA9pKCzWz6YQnn3v0gSanN21mntSZUVYlhseBwexps92nBp3xS\n8AlX9L0al9dGsDJKh3wvOyLb8erces8JB/zElMmGig01xzZWbCRqRnGw+4xHk/ImMTLjCKY++B0l\n/giPfLyJd68ch9e55wvuexPDYtD34E5k5/tQSpHSwd3i8nFCHIishpXfD/k9VdEqAtEA14+5nmTH\n3lHirzJSybsb301sSuo2mRN7nNgmi9afrS3iyU83AHD2E1/w9hXjyEre8/KRFsNCx6SONe87eDpg\nU/vXHCyE2DdE41G+L/qeW764hW7Jefz10i9IwwKeXTO8tYfSUCl3Lb6L19e+zuDMwdw34b6aspLN\n4bV7mdp7Ksd2Pxa7xd6mgU5Oi5NJeZNYuGUhkPjd22lpu9LDQgghhBAHKq31MmBIe4+jubTWv2/v\nMezNJGjoAOC2uTmp50ncvfhu7Iadyd0mt/eQ6nANHESXmfdjhsPkPT+H8OrVOHr2lNJkQoj9hstu\nxWVvvR+5Vpud1I6dSMnuSFWwNkuFJSMDMxJBud2k/Pa3mBVFzBiUiiO9Nl254XBgZCYWt6tKipn1\np98TDQXxpmcy7bZ78KTsvsREZSjKl+tLeHf5ds45OI9Thnfm5GGdsVul9IwQovkioWBNwNDPwn4/\nW1Yup/eYQxNtggGi4TAOtxurvf4AHa01JQWbeeeh+3Anp3LkBZc0OKflJucSM2P87Zu/cOsfb8er\nUiiMb6Ug9hM+e+1iRmFliEAkTooO8P5j/8GTmsblv/0Da8vWEjNj/GXkX0iyJzXpPlOcKYTDIcoC\nkZpjJVURyGrS6fsUZ5KNjkkpu28ohKhXpjuTmw6+CVObTZ5jmiNmxoBEgFJzVEYq+cdn/wBgefFy\nJnSd0CYLwDtnsrRbDVQrJSuzGlamD5hOpiuTSDzy/+zdd5iU1fXA8e+d3md2Z3YX2AXpXUBBREFE\nFI0IhGKLxtiDJdZojA2NGk2MP40aO/YIJlaMErGXICBNRARBellge5s+c39/zLCwbGFgWer5PA8P\nM+/c9o56nZn3vOcwvst47OaGsykJIURLKo+Uc/0X11MaLmV52XKOzx/M+C7j9/eyatXEanhv5XsA\nLCpaxKbqTXsUNASpbENOc+PB/HuL0WDkpLYn8cG4D1AofDYfRoP8RiGEEEIIIUQmJGjoMGA32Rnf\neTwj2o3AZDDhsx5YP+Ab3S6M7u0/hJpbt26itRBCHJ7iiSRlwSga8NrMWM1G1pYEmR9xM/CRxzCv\nWEb22F8SLSqi3ZTXKH36Gao+/BBrjx60e+5ZTIFAvTGDlRXEwql03VUlRcRj0XptGlJcHeHSl+cB\n8J9Fm/jspmHk7YW7v4UQYkc6marHE6ysZM47r7N64XwG/vIsug46Hou9fnmaUGUl0x9/iK2rVwIQ\nOKI9g88+v8GxO/k68eIvXmR56XKcXis+ux1rrDVdTNtL7RRVhZnw1CxO7+Gn98/TWb0wte/ZXW4m\nj52MMij8tt27eOKymXjknH48/PFyBrbPpkve3g8GEEIcGppThqspJaESnvv+OYLxIL876nfkOlKR\ni1rrOiXCGmJURkwGE/FkHIMyYDa0TJaeY9pnc/NpXflhYyW/P7Urfueus7llKtuWzYW9Ltxr4wkh\nxJ4wKANeq7e29FeWddc37+xLVqMVv81PSbgEi8FCjuPAyIC0Kx6r54DJzieEEEIIIcTBRIKGDhPy\npUkIIQ5uyzZX8atnZ5PUmucuHEB7v4Ppiwt5cMZq+hZ46d9hODc5XcRsTizVFVR9+CEAkaVLia5b\n12DQkCsrm/zuvdi4bAm9hp6MxZrZndbBaKL2cSiWIKn13jlJIcRhyWKzk9u+I1vXrNp+zO6goHtP\nAIKV5fz0zdfUlJcx45lHOaJPvwaDhpTRgM25PQjH4Wn8s6/b4mZA3gAG5A2oPWa21r34XRWOs640\nSCzhx2jbvj+Gq6vItvgwmnf/YrnTauK0Xq04vlMAm9lwyJUmE0Ic2BLJBJMXT+a1Za8BqUwX9w+5\nn+pYNS/88AIBe4AJXSY0mk3CZ/Xxwmkv8Nbytzij4xl4rB4qI5VURCswKiNeq3evZJPIclq48sTO\nxJJJrJLJUghxCPLb/Tx9ytO8vORlumV346i8o/b3kuoI2AO8Pup1Fm5dSC9/L7JsB1ZQkxBCCCGE\nEGLvkqAhcUCLl5URXb0aoy8LU24ORpfcjS2EODjoWIx4WRk6HMbgdmPK2vMf2ULROI9+uoKqSKqU\nxLNfrmJQJz/De+Ty4IyfWLShghO65mA2GikqqwRtwpSbQ3xrEcpiaTSDm8PrY8zvbyMZj2M0m7G7\nMwsubeO187uTOvPF8q1cNawzXrnoLYRoBofXx7hb7mLWm1NZu3gh/rZHcOKvL8Xh9VEcKmZBbCnH\n3XotW2YuYPknn6EMhgbHsbvcnH71jXz73lt4/AG6HT804zVURCoIxoOYDWYC9lSQpdtmonOuize/\nK+S8i8/GZrejFAwce1ZtwFBZuIxgLIjFaCFgD+wySweAzWzEZm78Ini8uBi0xuDxYLDuvewaQgih\n0YTj4drn4USY6lg1d868k9mFswEwYOCyPpc12N9qsnJU7lH0DfTFYDBQHanmo7Uf8adZf0KheOSk\nRzi53cl7Za0Gg8IqZWWEEIewNq423HrsrUAq29vG6o38Z+V/ODJwJEcGjtyvN38qpWjlbMXpHU7f\nb2sQQgghhBBC7DsZBQ0ppXKAy4H2O/bRWl/SMssSAhKVlWx98G9UvPMOAO1efgnnscc23SepKamJ\nYEARcDd8kaWkOkI0kcRiNOB3yYUYIUTLiBUWsnrceJI1NfjOPpvc39+I0evdo7EsJgPHtM/i4x+3\nANAr30theQivzcw7Vx2PNRmnfaiY8qlT8Zw+ioUVml4v/hP10494evXEmJ3d6NgOT901VYRilAej\nWIwGvA4zDkv9jwpZTgtXn9SZS4a0x2U1YWniDvDqslJWLZyHP78Af0G7OllAhBBiG1e2n2EXXk40\nFMRksWB1OCkNlXLtZ9eyuHgxAK+c/CLHDB9db9/aeZyTLrw8o+CdbSoiFTy16CleW/oa+a58Xjn9\nFXIdueS4bUy9fBDBaBynxUTH36QuohvSQUtl4TLumXUPn6z7hBx7Dq+NfI3WrszL7EbDccq3BNmy\nupIjjgzgzrYS27CBdRdfQqKsjDZ//zvOYwdisFgyHlMIIZoSjAWZ2HciZZEyQvEQdx13F2iojFbW\nttlWKmdH8WScklAJqytX09HbsbakWVWsiumrpwOpgKT3Vr7H4DaDsZmkbK0QQuyoLFxGTawGq9Ha\nYKB5SbiE3/z3N2wNbgXg5V+8zNF5R++PpQohhBBCCHHQU0r5gPO01k/uQd81wACtdfFeWMc9wFda\n60+aO1ZLyzTT0DTga+ATILGLtuIgprVGJxIYTPs/CZWORKiZPbv2ec3/ZjYZNJRMapZvqeLyV+Zh\nNxt56ZKBeJNBls78kkBBO1p36U41Zi5/ZR4L15XTt62Xyb85hpxGgouEEKI5ar79lmRNDQAV771H\nzjW/2+OxjAYDZw1oS9+2PqrDcQxKke+zYTAo/C4reZEwq0afA7EY6qmnOO6zTwkpM+4Rp2A2Z76f\nh2MJ3pi3nvs+WIrRoHjtsmMZ1LHh8hR2ixG7pem7v4OVFUx76D42/7wcgHPveZD8bj0zP3EhxGHF\nbLVi3iGzTkInWFq6tPb5yuAajuo6AOJRqNgMFRsguz248uqMszsBQwCRRITXlqZK9Wys3siirYsY\n0X4EQPpzYsOfFYPxIJ+sS33fKwoVMXPTTM7sembG81aXRXjjL/NAg2P6Gn416RhKn3qa2IYNAGye\nNIl2U6ZibZ23i5GEEGLXqqJVvPrjq7yx/A3O7X4uYzqNoY2rDRXhCm4/9nYe+PYBvBYvF/a6sF7f\nsnAZ498bT2W0kjxHHlPPmEqOIwejwchp7U9j7ua5GJSBCZ3HE68OErEksDqaX6ZMCCEOBeXhcv4y\n5y9MXzMdv83P66Nep5WzVZ02SZ2sDRgCWF+1XoKGhBBCCCEES7v3OA+4H2gHrANu67Fs6ZT9tR6l\nlElrHd9f8+8GH3AVUC9oaF+eg9Z60r6YZ29oOLd/fQ6t9S1a639rrd/a9qdFVyb2uXhZGSXPPEvh\nbbcTTV+s2J8MLheBK69IPfZ48I4b22T7inCMO979gQ1lIVZsrWZTYRHv/u1evvrnC7z9l7sp3bSB\neWtKWbiuHIBF6yuYs7qkxc9DCHF4ch4zEIPTAYBn9ChUM0vMZDksHNvBz+BOfo5q58PrsDD2iZmM\nePhLyreWQiwGgI5GMVRUku337lbAEEBNJM7bCzYCqcxtb87fQDKp93jNyUSCssKNtc9LN21sorUQ\nQtRlN9m5/ujrAShwFXBC/gmpFyo3wj/6wwunwounQ/WWZs1jUiZ6ZqcCGk0GE12zumbUz2K01Gbb\nAOiR3WO35q0oCkF6iw1WRtFaYenUsfZ1c0EBNdXJ3RpTCCEaE4lHeHXpq5SES3jiuyf4dN2nAHht\nXtq72/PwiQ9z7+B7yXPWD1SsiFbUZiPaEtxCOJEqceY0O+nt783bY97mg9H/Ifz5Up6Z+BtWzv+W\nROJg+A1RCCFaXiwZY0CrAbx42otc0vsSlpYsrdfGYXJwyzG3YDFY6B3ozeD8wfthpUIIIYQQ4kCS\nDhh6DjgCUOm/n0sfbxal1K+VUt8qpb5TSj2jlDIqpap3eP1MpdRL6ccvKaWeVkrNAR5USmUrpd5V\nSn2vlJqtlOqTbne3UupVpdQspdQKpdTlO4x3s1JqbrrPn3axtt+k2y1SSr2aPpajlHorPcZcpdTg\nHeZ8QSn1hVJqlVLq2vQwfwE6pc/vb0qpYUqpr5VS7wE/pvu+q5Sar5RaopT67W68d/X6pd+/l5RS\nPyilFiulbtjhvTsz/XhSeu0/KKWeVbt752sLy/Rq4vtKqZFa6+ktuhqxX1V/9RVFf/87AJGffqLd\nC89j8jecYWJfMNjteEaOxDV0KMpobLK8DoDFaKBdtp35a8sA8NlNVBZtv0unsmgL3lY5dfr47FLu\nQQix94WqKom7HBTM+BBzKIzB5cLo8dRpk4xE0JEIBrd7t7Ji2CwmbBaYtbKYworUBZu1SRutTzmF\n6s8+w33qqRizfACU1kT5dnUJoViCoV1ydlmS0Wk1cfaAttz9nyWYDIqzB7TFYNjzzy1Wh5NTf3st\nHz37GNltCuh4VP89HksIcfhxWVyM7zKe0zucjlEZ8dvTn0s3LoBYKPW4ZCVEg7scqzpaTSQRwW1x\nYzFaiMeSRIIxDEZFtiubJ095kp/Lf6bAXYDfltnn320lyWZtmkW37G60c7fbrfPLa+8hp52bonVV\n9DulLcqg8IwZR9LmJlFUhPUXYwgrKfEjhNg7zEYzg9sM5qO1H2FSJo5pdUztax6bBw+eRvtmWbPo\nm9OXRUWLGFYwDKcplUXIaXbSw9+DcDjIx08+ys/fzgJg8Wcf0fHoYzBKWVohhECj+Xz959w7+17O\n6HgGI44YUa+Ny+JibJex/KLDLzAoA9m2pn8DFUIIIYQQh4X7AcdOxxzp43ucbUgp1QM4BxistY4p\npZ4Ezt9FtwLgeK11Qin1OLBQaz1WKTUceAXol27XBxgEOIGFSqkPgN5AF2AgqeCn95RSQ7XWXzWw\ntl7AHem5ipVS2z4YPwo8orX+n1KqHTAD2HYHZ3fgJMAN/KSUegr4I9Bba90vPe4w4Oj0sdXpfpdo\nrUuVUnZgrlLqLa11JtlG6vUD2gP5Wuve6fl8DfT7h9b6nvTrrwKjgP9kMN8+kWnQ0HXAbUqpCBAj\n9Q9Ua60b/1VJHHR0OLz9cSSCbkZ2ib3F6HJhdGX2Q6PTauL2M3rSp8CHw2IkN5DFyGtu4qNnHsPX\nqg1te/UhV1m4YVgHPlpewsmds+mZa2/hMxBCHG6ClRV8/tKzLJv5Ja27dueXN92B01v380G8tJTi\nZ54lunoV9gce4sPlpdjMRk7ukUe200KipobI8uUE587Fc/rpmAsK6gUWdQg48TnMlAdjPLGgmKfu\nvpvWd01Cmc0YfT601rw5fz33T18GwK8HteP2kT2bLClmMxsZf3Q+J/fIxWRUeO3mZr0XZquVDkcN\n4KL/ewqD0YjD423WeEKIw4/b4sZtcQOgk0mClRXY8/tjsLohUgW5PcFSvwROIpmgLFKGUaX2vP+b\n938sLl7Mjf1vZEDuMWxZWsNXry8nq5WDEZf0JNudTZ9AH2wm224FcrZytmJcl3F7dG4Oj4XR1/Ql\nmdQYzQZsDjM4s3GPGcvG5WVEEyby2u75BfdwMEY8msRgUDg8EigvxOHOa/Vyx6A7uPTIS/FZfWTZ\nsjLu67f7eeykx4gmo1iN1jp9DcqAw+6i97BT+HnubNCa3ieejNlWN+ixOFTMzI0z6eDtQAdPB9xW\n9147NyGEOJBVRCr4euPXALy/6n2u6ntVg+1cZhcuswRbCiGEEEKIWo3dobh7dy7WdzLQn1TAC4Ad\n2NpkD3hDa51IPx4CTADQWn+mlPIrpbbFjEzTWoeAkFLqc1KBQkOAU4GF6TYuUkFE9YKGgOHpuYrT\n45emj58C9Nzhd1uPUmrbh+cPtNYRIKKU2grUT6Gc8u0OAUMA1yqltv2w2za9pkyChhrq9xPQMR1Q\n9QHwUQP9TlJK/YFU4Fc2sISDLWhIay2/5hwG3CNGEF7yI9G1a2l1xx2Y/AffXS0Bl5WLB3eofe7s\n2Zvz7n8Eo9GI3e3BvH49v5zzFmO698Iw7yuc3X8F3o5NjCiEELsnFg6xbOaXABQuX0Z1SXG9oKHg\nt99S9vLLOC65jIc/XcnUBZsAuP6ULlw7vAuJoiLWnnc+aE3py6/Q8d13MOXUzZSW47Yx4/qhVIXj\n+OxmHO66WYTiSc2STZW1z1dsqSYaTzYZNATgsZvxNDNYaEdmqxVzM0uzCSEEQPmWzbx+1x9o1aEj\noyd+gzFagXLlgSu3TrtEMsFPZT9x85c30z27O2M7j2XaymkA3PDFDfx33IfMmLyEZFxTUx5hxbwt\nJHuX8MIPLzC642iOb3M8Lkv9CzbReIKKUAyL0YjXsXf2Sbu7fjCP3W2hc//GvttmJhyMsfCjdSz4\ncC3ZrZ388vp+OLyyFwtxuMuyZdULFgrGgpSES9hcs5lO3k5k2xv+HaCx49sU9DySy//xPDqpsblc\nGI3bf24qC5dx3WfX8X3x9wC8evqr9Mvt19hQQghxSPFavdiMNsKJcOqxSTJJCiGEEEKIjKwjVZKs\noePNoYCXtda31jmo1O93eLrzh9aaDMfeOSOJTs/3gNb6md1aZV0GYJDWOrzjwXQQUWSHQwkaj3+p\nPYd05qFTgOO01kGl1BfUP+d6GuuntS5TSvUFTgOuAM4GLtmhnw14EhigtV6vlLo7k/n2JUOmDZVS\nWUqpgUqpodv+tOTCxL5nys4m79Y/UvD4Y1g6d0IZMv7X44BlMltw+bKwu1MBjspiITztXcJ33U7o\njX9hcOyc1U0IIZrHaLbgzEpdVDFZrTh89e/iVpbURWLt9bGucvvnmdXFNSS0Jl5SAjr12SpRWopO\nJuvPY1DkeWx0znURcNe/EGw2GrhhRFfa+x208tiYNLonHnumCQaFEGL/KQ2XUhwspipaVef4/A/e\nJVhRzqrvFjD1rw8RcrSrFzAEUBGtYNLMSayrWsfCrQvrXJjxWX0oVCqrT5o3144z5uOaTr/HGffU\nmxcgEk8we3UpE56axY3//o7iqki9NgeSRDTJgg/XAlBaWMPWdfXPSQghADZUb2D0O6O5ZMYl3PL1\nLZSFy/ZoHKvdgSeQizc3D6ujbga4eDLO6ortN/OtqljVrDULIcTBJMuaxVtj3lnwrJUAACAASURB\nVOLPQ/7Mv0b9S0qPCSGEEEKITN0GBHc6Fkwfb45PgTOVUrkASqlspdQRwBalVA+llAFoKrX616TL\nmaWDaIq11tvuYP+lUsqmlPIDw4C5pEqJXbItM5BSKn/b3A34DDgr3Z8dypN9BFyzrZFSald3IlWR\nKlfWGC9Qlg786U6qpFomGuynlAoABq31W6TKqx29U79tP1AXp9+HMzOcb5/J6OqhUuoyUiXKCoDv\nSL0Bs0iliBKHEIPdDvZDt2SXMTubDm++QdVnn+E64QSMvoZKCgohxO5JBoMkampQJjNOXxbn//lh\nNq9cQW77jjjc9St52o86ipzf30iitIS7L+jBFVMXYjUZuenUbpiNBlSHDnhGjSI4dy6Bq6/C4Kxf\neicT7f1O3rjieDQan83M1qoIVeE4WQ4zfpdknBBCHHhKQiW12Sgm9pnIBT0vwGNN7aMFPXuz6OPp\nALTq0g2TueGSW2aDmTauNvxU9hNFoSLMBjOPD3+c+Vvmc1bXs7CaLIz9/VEsnLGOnHZu/Pku3nlo\nBVUlYdp089Lzovp7bkUwxu9eW0BlOM660iCf/7SVswa0bbk3opmUQeHPd1GysRqDUZGVJ4HyQoiG\n/VD8A4l0hvGFWxfWPm5Q9VbQSbD7YDcyZbgsLiYdN4m7Z93NEZ4jOCH/hOYuWwghDhpmo5l2nna0\n86SqSCSTSZLJJIZD4GZNIYQQQgjRcnosWzplafceAPeTKkm2Dritx7KlU5ozrtb6R6XUHcBH6QCh\nGHA18EfgfaAImEeqjFhD7gZeUEp9TyqI6cIdXvse+BwIAPdqrTcBm5RSPYBZ6cxA1cCvaaAkmtZ6\niVLqz8CXSqkEqZJmFwHXAk+k5zSRKm12RRPnWKKUmqmU+gH4L6mSYTv6ELhCKbWUVGmx2Y2NlWG/\nfODF9PsJUCeLk9a6XCn1HPADsJlUMNUBRWm9c5aoBhoptRg4Bpitte6Xjpy6X2s9vqUXCDBgwAA9\nb968fTGVEEIcCtSum+ya7L2ZSQSDVM2Ywda/Poi1V0/yH3wQk9+/y346mUTHYiiLhZLqKKhUicXa\ncSsrSUYiGF2uVEBnM20sC/GLv39FVSTOiV1zeOScvnhtZgorw3y/oYK+bX208tgwGvbKvz5CHI5k\n790L5hTO4bKPLqt9/ulZn5LrSN14Eq6upqxwI+GaavI6dsHhqR+UuU1JqIT3V71PwB5gcJvB+Gw+\namI1TPlxCv9Y9A9OPeJUJg26C02SqvVx3n3ou9q+v75vEN5A3SCb4qoI5z43m5+3VgPw2mXHMrhz\nYG+e+l4XrIxQvKEab64Dp8eCaRflKYU4SMne20ybazbz6+m/ZktwC9ccdQ3ndT+vwRKNlK2Bl8dA\nsBjOfhXaDwFT5kHooXiI6mg1RmXcZakzIcRBodn77+G49xaHinn2+2fJd+UzrvO42uD4fak8Uo5R\nGXFbmrrxWghxgJK9Vwgh9j25YJKhdMmtaq31Q/t7LWL3ZVqnJKy1DiulUEpZtdbLlFLdWnRlQggh\nxEEgWV1D4Z2TIB4nOPMbggsX4jnllF32UwYDypq60NJQeTGjx8PevLz7Y2EFVZE4AF8uLyKW0BTX\nRBn56NdUhuN47WY+umEoeZ4DqoyqEOIwk+/Kx2QwEU/Gaeduh1Ft3wltLhetu2T2FcRv93Nhrwvr\nHKuKVvHYd48B8OGaD5nYZyKfrP2EU3NHYnOZCVfHyGnnxmyp/xUp4Lby6iUDmTp3HT1be+jVZt9f\n4NldDo+Vdj0lq5wQoj6dTFJTUY7WSbLtHl4f9TqJZAK7yd5wwBDAN/+A8lTZQ6bfBBd/CO68jOe0\nm+zYTYduVmMhhNiVUDzEQ3Mfop2nHTmOHF5Y8gJndjmTfFc+6TuuW9y6ynXcOfNOnGYnfzr+T+Q4\ncvbJvEIIIYQQQogDW6ZBQxuUUj7gXeBjpVQZsLblliWEEEIcHJTJiGf0KELzFxBbtw5LQUG9NqFo\ngopwDAPgd1kbzeaTDIVIlJYRLynBXJCPKXvv3YXdO99LwGWhuDrK6L5tsJgMlAdjVIZTgUQVoRjh\nWBPlKIQQooUEY0GC8SA2o42APcC7Y95lRfkK+ub0xW/fnrmtLFxGYU0hHouHLGsWTktmpRvDNdUE\nK8pRsShPHf8Y187+PVprHGYHry59la82fM09N/4Ze8JFlteNw9Nw2bPWPjs3jpD7JoQQB7/yrZuZ\nesdNhKqrOHXitXQ/fihm+y6CDNv03f440BVMDe+VQgghGpbUSUwGE30Cfbjy0ysBmPbzNN4Y/QYB\ne8tnsCwPl3PHzDtYuHUhAE9+9yS3D7odkyHTywNCCCGEEEI0Tmt9d6ZtlVJ+4NMGXjpZa12y1xa1\nhw709bWEjL4VaK3HpR/erZT6HPCSqtkmhBBCHLaSyQRV0TAbjz2athecj8diw5xX947raDzB1yuK\nuPK1BbhtJt664ng65abv4K4phuqtYPeBPZvo+g2sHj8e4nFcJ59M6wfuJ5JMEI9GMVutOLy+PV5r\nntvGB9eeQCSWwGkzkeWwkExqRh3Zmg9+KGRM3za4bfJjoRBi36qMVPLWireYumwqJ7U9iSv6XsER\n3iM4wntEnXbV0Wqe/O5JXv/pdRSKl37xEkfnHd3gmOXhcmLJGDaTDTtWlv7vCz574WkA+o4YyZSR\nr2BxOrCZbJyQfwIfrP6Asz4Zx9RRU8l1elv8nIUQYn9b+vUXhKoqAZj91ut0PKo/Zusugoa6jwFn\nK6jaBN1Ggj1rH6xUCCEOHU6zk+uOuo5vCr+pPVYSKiGpk/tkfoMy1Mn45ra4MSjDPplbCCGEEEKI\nHaUDb/rt73U05kBfX0vI+OqgUupoYAiggZla62iLrUoIIYQ4CAQrKphy242Ea6oxGI1c+thkjG53\nnTZV4TgPf7ycRFJTHozx6uy13D2mF8nSQtTHt6CWTgOTFa6eR2jBAoinMv8EZ88iHIvy5gN3UbJ+\nLfk9ejP6hj/i3MPAIYNB1Ss95ndZuXdsbyaN6YnFaMDnkDvGhRDNVxOroTpajUEZyLZlYzQ0Xmyx\nOlbNw/MfBmDKsimc2fVMsmz1L0SHE2FmbpoJgEYzc9PMekFDwYpySsNl3LvoAb7dMpcLe13IBV3O\nZ/GnM2rb/PjVZwyacC4ubyqT2x8G/oGLel+Ey+xixpoZVEWrsBltRBIROvs647NltucWV0cIRhPY\nzUZyGig5KYQQ+0o8EWdLaAtLipfQO9CbXEduvSwS7Xr3YdZbU0Fr2vXui8nS+L4ViUfYHNzMstJl\n9MvvR55zREufghBCHLJynDkc3+Z4huYPZUnJEq47+jqc5syyZzaXx+rh3sH38sR3T+Axe7io10US\nNCSEEEIIIYQAMgwaUkpNAs4C3k4felEp9YbW+r4WW5kQQghxgEsmEoRrqus8NnmyKKqK8P2GcgZ2\n8OO2mhjU0c+yzVUAnNAlQLyqiuSWTVhWpC9kxyOw+kucJwzH6PeTKCkh+/LLCVVVUrI+VQ1049If\niIXD4IVEZSWJigoAjF4vRo9nj88hyymBQkKIvSccD/Px2o+ZNHMSboubf478Jx28HRptbzKYsJvs\nhOIhDMrQ6EUTe8LCA8fex1VfXcPRuUczvvN44sl47YXwRCzG3PffxjKwE98UzgLg+cXPc3aXs2nb\nqw9Fa1cD0KZ7T4ym7V+Bsm3ZJHWSCe9NoJe/F1ajlb/O/SsAF/W6iKv6XoXdbKcpJdURrpmygFmr\nSumU4+T13w4ix21rso8QQrSU0kgp46eNJxgP4jK7mDZ2GrmO3Dptctp35JJHniFUVYGvVRusjsYv\nWJeGSxk3bRyxZIxTjziVm4+5maRO4jQ78VolO5sQQuyuHEcO959wP9FEFKfZicPs2Gdz5zpyuXPQ\nnRgwYDBIwJAQQgghhBAiJdNMQ+cDfbXWYQCl1F+A7wAJGhJCCHHYstgdDP31Jcz/4F069BuA02Il\nseg79IJF9Bs2nFvfWsyDZ/Xh2pO7cEaf1njtZlp5bBCsJLRkGaYjz8Ow8AWw+aD9EMxZbejw7jsQ\nj2NwOgkl4ji8PoIV5fhatcFstaITCao+/ZTCW28DoPWDf8V7xhkoY+OZPIQQYl+pjlbzzPfPoNFU\nRiuZ9vM0ru9/faPts6xZ/HPkP5m+ajontj0Rn9UH0RqIpAItiUcoj5j59MVncHi8TLvwHaoSNVTF\nqli5cSVZtizynHn4DG7KNxfS23kcJoOJeDJOjj0Hi8nCoHHnUNCjF7FwmPZ9j8bu3inQUqf+auVs\nxQ/FP9Qenr9lPpFEZJdBQ8FoglmrSgFYWVTD1qqIBA0JIfabklAJwXgQSGVzKw+X1wsastodWO0O\nslq32eV4m2o2EUvGCNgDnN/jfCa8N4HKaCVX9r2S3/T8DS6Lq0XOQwghDmX7M+hy5+xzQgghhBBC\nCJHpt4RNgA0Ip59bgY0tsiIhdhIvL0cZDM3KpCGEEC3B5nTSd8TpdDtuCOt++J7o+g1s/s2FAJjf\neJ2r/vYUyaQm4LGS7cyu7actPqy9+xPc4MV2wQUY/XkodyuUUphzcmrbOZNJLvjrY9SUleLK9uP0\nZZGorqbyg+m1bao+mI775JMxOnc/pXkyFCJeWkq8qAhLu3aYsrN33UkIIZpgM9kY1HoQb1a9CcBx\nbY5rsr3ZaKZrVle69u+aOhAshZmPwcpPYMClhFwd+O+UD9j001J6jDiV6Ws/5G/z/obVaOWx4Y+h\nlOLKT65k8qmTOfHXl7Lg8+m8NvwlVgRXc2ybQfhtfpRd0WXg8Y2uIcuWxXOnPseby9/kVz1+xZcb\nviScCHN1v6szuhhuMxvonOvi563VBFwWclxSnkwIsf/kOnLpmtWV5WXL6ZbVDb/d36zx2nva0yfQ\nB4fZwbzN86iMVgLw2tLXOKvrWfX3yZoSSMbB4gCru4ERhRBCCCGEEEIIIcSBJNOgoQpgiVLqY1L3\n4o4AvlVKPQagtb62hdYnDnPRtWvZdOttGD1uWt17b52L6UIIcSCw2OxEg0Hmvf8OgUHDao/HNm2i\nQ7Ydq7V+BiBlNGLt0gVTIAAmE8rna3BsZTDgysrGlbU9mMdgt5N13nnUfPMNKIXvvPMw2FNZMLTW\nFFdHKAvGyHJYyHE3feE6un49q8dPgHgc59ChtHnwr5gaWYsQQmTCZXFx7VHXMrbzWLwWLwF7YPcG\nKFsNMx9JPf7gRpg4r7acWKBbZ55e/jQAkUSEL9Z/wbndzmV95fpUZqG8VgwaOQFQ9Mzvm/GURoOR\nrllduaH/DRiUgffGvodG47V4M7oTO8dtY+rlx1JcHcXvtBDYw6AhrTVKqT3qK4QQ2/jtfp4d8Syh\neAi7yd7soCG/3c/jJz+O1potwS08tegp4jrOCfknYDHuVOa2ugjevBg2zofhk+Co88EmN/8IIYQQ\nQgghhBAHE6XUGKCn1vovDbxWrbWud6elUuol4H2t9ZtKqS+Am7TW81p8sfXX0Q9oo7WevsvGzZvn\nNq31/enH7Umde+9mjpkDvA9YgGu11l/v9Ppk4GGt9Y/NmachmQYNvZP+s80Xe3shQuwsXl7Opttu\nJ7RgAQAlz00m79Y/ysUUIcQBx2Sx0qFff4zdumE/9lgiy5aR84ebsfs82K3mBvsoozEVNLSblNGI\nY9CxdP70E0Bh9HpQBgMARVURxvxjJpsrw3TOdTH18mObLJETWrgQ4nEAgrNno2Ox3V6PEELsLMuW\nRZYta886mx3bH5us2BMVnH7xRXw97X2cVhentT+Np79/GqMycnK7k1lSsoSbB96Mw5Tq5/DseakH\nuykVgJnj2P0g9Ry3bY9LkpXWRHln4QbWlgS5clgnWnubLocmhBC70txAoZ1l21IB7A6zg+njp1Me\nKSfPmVe/vM7mxbAm/XvWjD9Cr7ESNCSEEEIIIYQQQuyhJ6747DzgfqAdsA647eqnh09p6Xm11u8B\n77X0PC2kHzAAaJGgIZUKVFDAbaT+2exNJwOLtdaXNTCvsaHje0tGQUNa65d3WFAW0FZr/X1LLUoI\nSF0Y37EkmSk7WwKGhBAHpEQ8Rt8RIzGZTXj+9lcMyoDR6cTgcOy68x4wOhwYGxi7PBRjc2WqkujP\nW6sJxZJNjuMcMgSj30+ipITsSy7BYNuzC95CCLG7YokYZmMDQZXu1nDmi/DTdBg4EVC4/QFOu+Ja\nYsk4gVg3RnYcic1ow2qy0tHbEafZicPcMvvtvjBjSSH3vr8UgEXry3nhomPwS4kzIcQByG6yY3fZ\nae1q3XCDrHagDKCTkNUBDPUzbgohhBBCCCGEEGLX0gFDzwHbfvg8AnjuiSs+ozmBQ+msOB8Cs4Hj\ngbnAi8CfgFzgfKAnMEBr/TulVAdgCuACpu0wjgIeJ1Whaj0QbWS+U9NjW4GVwMVa6+pG2vYHHk7P\nVQxcpLUuVEpdDvyWVAaen4ELtNZBpdRZwF1AglTlrFOAewC7UmoI8IDW+l8NzHM3qUCsjum//661\nfiz92o3AJemmk7XWf0+/ZzOAOUB/4Nv0HN8BS4DbAaNS6rn0e7oR+KXWOtTIedY7H6Ar8GB63AHA\ncUAR8Ez6vK5WSt1HOoOTUuoXpIKWjECx1vpkpdRA4FHABoTS7/VPDa1hZxkFDaVTSI1Jt58PbFVK\nzdRa35hJfyH2hNHtpvU9f6Lk+SMwZvnwnXVWvTZbKsO8MW89nXJcDOrkJ8thaWAkIYRoOTVlpbx+\n1y2Ubymk04BBnDrxGqzNyHSRiMUwmhvOTrQrWQ4LXXJdrNhazcAOWTgsTV+oMbdpQ4d334FYDOV0\nYnS767VJRiIkKyvRSmHy+yV4UwixS0mdpChYxM/lP9PZ15kcRw4GlcqIFoqF+L74e95c/iajO42m\nf15/nGbn9s52H/QeDz1Gww5BRToZZ07ht1z3+XVYjVYmnzqZI3OO3NenttsSyQQJnagt4RMJxojH\nkpitRiy21FexoqpIbfvSYJSE1vtlrUII0Wyu1jDxa9j8PXQcBq7c/b0iIYQQQgghhBDiYHU/2wOG\ntnGkjzc321Bn4CxSwTFzgfOAIaTiQW4D3t2h7aPAU1rrV5RSV+9wfBzQjVSAUR7wI/DCjpMopQLA\nHcApWusapdQtwI2kAnvYqa2ZVBDSL7XWRUqpc4A/p9f4ttb6uXS7+4BL020nAadprTcqpXxa66hS\nahLpgKddvAfdgZMAN/CTUuopoA9wMXAsqWxCc5RSXwJlQBfgQq317PQ6ztJa90s/bp9+/Vda68uV\nUv8GJgD/bGTueuejtX5857UrpZzAHK3179PPt71XOaQCyoZqrVcrpbLT4y4DTtBax5VSp5D6d2XC\nLt4HIPPyZF6tdaVS6jLgFa31XUopyTQkWpwpJ4fcW/7Q4EXq4uoIl748lx82VgIw+TcDOKVn3r5e\nohDiMFe8YS3lWwoBWDlvNrGLfrtH44Rrqln93Tx+/nY2A0aNJad9J0w7BA/VlJcRj8UwW62Nlt/J\ncVuZcvmxhGNJ7BYjgV1kqlBKYc5pvAxPMhyhZtY3bPrjrRjdbto++yzWjh326PyEEIePklAJZ/3n\nLMoiZWTbsnlz9Ju1Jb8qohVM/HgiCZ1gxpoZfDjhw7pBQ9vslIWoOlrN5MWTSegEwXiQV358hfuH\n3N9wtqJmSuokSZ3EZMj0q1LDSsOlvLrkVTbWbOS6o68jmxxmvbWS1YuL6XNSAUcOK8DmNPOrge1Y\nsK6czRVhHjyzD34JghdCHKysTmjVO/VHCCGEEEIIIYQQzdFuN4/vjtVa68UASqklwKdaa62UWgy0\n36ntYLYHnrwK/DX9eCgwVWudADYppT5rYJ5BpIKKZqav9VuAWY2sqRvQG/g43dYIFKZf650OrvGR\nykI0I318JvBSOkjn7QzOe0cfaK0jQEQptZVU4NMQ4B2tdQ2AUupt4ARSpdrWbgsYasRqrfV36cfz\nqf8+7qix89lZAnirgeODgK+01qsBtNal6eNe4GWlVBdAAxn/eJ7pL+EmpVRr4GxS6ZWE2Gcay2qR\nTGo2lYdrn68rDe6rJQkhRK2s1vmYLFbi0Qi+Vm3qBPrsjmBFOdMfewiAVfO/5dLHnsOV7QdSAUP/\nvuc2Sjeup32//px+1Y04vI0FDmVeYiwYjVMRihFPaLx2Mx573bUnKivZeN316GiUZEUFm+++i4LH\nH8fYyNxCCAEQjAcpi5QBqcCZUHx7FtakTpLQCQA0uvZxZaSS5eXLWVm+kuFth9cGGW1jN9kZkj+E\n74pS37uGtR222wFD5eFyDMqAx+pptE1puJTXlr5GcaiYiX0mYjPZyLZlN9q+Kf9d/V8m/zAZgE3V\nm3ikz1MsnZX6nvvtf1bTbVArbE4zOW4bj57Tj1hSk+WwYDRIRjchhBBCCCGEEEIIIQ5z60iVJGvo\neHNFdnic3OF5kobjR/Y0NboCPtZa/yrDtku01sc18NpLwFit9SKl1EXAMACt9RVKqWOBM4D56fJm\nmdrxPUiw67iZmt0cz95E25do4HwaEE4HZWXqXuBzrfW4dPajLzLtmGnQ0D2kIpxmaq3nKqU6Aisy\n6aiUMgLzgI1a61HpunevA35SUVYXaK0brHEnRFO8DjOPnN2Xm9/8nnbZDkb1aZ1Rv3hJCbHCQkzZ\nfoxZPgz2pv6bFUKIpjm9WVz8yFOUby7EX9AOpy9rj8ZJxuPbHycT6B0+g5VvKaR043oA1nw3n1gk\nRCpguHl+2FjBr56bQyKp+dOYXpx7TFus5h1KmilQZjM6mvrftLJYQMqTCXFYiiVilEXKKAmVkOvI\nxW/3N9rWbXYzuM1gZm6ayZA2Q3CZXdtfs7i5b/B9vLn8TUZ1GoXXmtrLfi7/mYs/vBiAt1e8zdMD\nbiNrW+CQMmJ1Bjin+zkMLRiKxWghx14/S5rWmuJQMVXRKrxWb501rqlYwx0z78BpdnLf4PvqBSVt\n8+6Kd3n2+2cB2FC1gTM6nsHQgqEE7IHde8OAcHx7cHswFsTqMGEwKpIJjdVhwmgy1L7ulexCQggh\nhBBCCCGEEEKI7W4jVYJqxxJlwfTxfWkmcC6pUlvn73D8K2CiUuplIJdUqa+dy6bNBp5QSnXWWv+c\nLreVr7Ve3sA8PwE5SqnjtNaz0uXKumqtl5AqIVaYPnY+sBFAKdVJaz2HVBmx04G2QFW6/Z74mlTm\nor+QCmIaB1zQSNuYUsqstY7twTwNns9umA08qZTqsK08WTrbkHeHsS7anQEzChrSWr8BvLHD81Vk\nWP8MuA5YCmy7pfevwCNa69eVUk+Tqjn3VMYrFiLNajIyqKOf968dgsmgyHY2XYYHIF5aysYbf09w\nzhwwmWj/+lTsvSV1uhCivmgoSCwSwWyzYbE1HlxoNJvxBHLxBHL3eC6tNeasHMb84S4WvP8Ox4wZ\nj825/SK7J5CL2WYnFg7hycnFZNn1frcryaTmX3PXk0imgpP+PW89o/q0rhM0ZPT5aDt5MoV33onR\n46HVPfdg9DSeoUMIcejaEtzC+PfGE4qH6J/Xn4eHPdxoBp5sezYPnPAA0UQUi9FClm17MKXb4mZk\nx5EMKxiG3WzHYkwFy6ypXFPbpiJcgcfigbcvhzX/A08+TJiML38ArqwulIfLiSajJHUSg9oeeFMc\nKubs98+mOFRMz+yePHnKk/jtfsoj5Uz6ZhKLihYB8Pzi57ll4C0NZrOsjlXXPg7FQwRjQYKxYNP3\nhTRibOexrK5YTWFNIbcPuh27zcxZtx7Dhp9K6XBkALtbAoWEEEIIIYQQQgghhBD1Xf308ClPXPEZ\nwP2kSpKtA267+unhOwfmtLTrgClKqVuAaTscfwcYDvyYXlu9smNa66J0Jp2pSqltF7buAOoFDWmt\no0qpM4HHlFJeUnEsfweWAHcCc4Ci9N/bgoL+li7FpYBPgUXptfxRKfUd8IDW+l+ZnqjWeoFS6iXg\n2/ShyVrrhemsPTt7FvheKbWA3a/U1dj5ZLrOIqXUb4G3lVIGYCswAniQVHmyO4APdmdMpfWus0kp\npbqSCuzJ01r3Vkr1AcZore/bRb8C4GXgz8CNwGhSJ99Kax1XSh0H3K21Pq2pcQYMGKDnzZuX0QkJ\n0ZTYli38fOKw2uf+KyaSe/31+29BQrSMvZIK5nDee0NVlcx59w1WzPmGfqedwZHDT60TxLM3xRIJ\nlmyq5O+frOC4jn7OPKo1WU4rBuP24J1EIk51aQmlG9eTnd8Wm8OF1emsfT0cS1AejBJLaDx2M157\nZiV7Zq0s5tfPf0siqblzVA/OP/YIbDtmGgJ0IkGirAyMRvC4qYhWYDFacFv2NFBbiEPWIb33frL2\nE2744oba55+f/TkKRSwZw2ay4bP6SOokJaESEjqB0+yst08kkwkiNTUYjCasDked14qDxdzwxQ2s\nqVzDy0MfpsOsZ1GL/729gdWN/t08lkZLmfjxRMwGM5NPm0xHb8faJkuKl3DuB+fWPp8xYQZtXG2o\njlZz2/9u4/P1nwNw7VHXcnmfyxs8z+JQMQ/MeYCySBm3D7wDnXSSZbfid/j26H0LxoLEk/EmS6IJ\nIZrlkN57hRDiANbs/Vf2XiGE2G2y9wohxL4npRfEYSHT8mTPATcDzwBorb9XSk0BmgwaIhX99Qe2\nR0f5gXKt9bYaLBuA/N1asRDNoMxmHIMGEZw9G0wm3Kecsr+XJIQ4AIUqK5n//jsAfPXPF+g6aEiL\nBA3Fy8ooxcx5z80hGE3wxU9FDGifjd9T92J6Mp5g0Uf/ZdnML6kpL+XUidfR68Thta//tLmKs5+Z\nRSSe5A+ndePC49vjtO76f/F9Cnz87w8nEUtovA5zvYAhAGU0YgoEiCaiLCpayJ/n/JkOng7cOehO\nsu0NZxkRQhx6egd6E7AHKA4VM6rDKJI6yW8//i0ry1cyrvM4bhxwI9XRas774DzKImXccPQNnNP9\nHJzmVIBjIpGgaM0qPn3hKXy5rRh20W9xercH4gQcAR4b/hjxWJDssvWofhR22gAAIABJREFU9XPq\nLiBShY5U8X/z/4/ySDnZtmxmb5xFW1dbzMZUoGSeM48CdwEbqjZwTN4x2Ew2AFwWF5MGTaK9pz0+\nm4+xncc2ep4Be4DbB97NvHXFXPnSOjaUhXj/miH4HY12aZLDvIcdhRBCCCGEEEIIIYQQQoh9INOg\nIYfW+tudUvjHG2sMoJQaBWzVWs9XSg3b3YWlUyr9FqBdu3a7212IBpmys8l/+P+IFRZiys7G6Nuz\nu8aFOFQdrntvcaiY8kg5XouXgD2A2ZbK9JNMJDDb7BiN9YNpmiteWkrhpLvgsivrvZZIaoyG7f/P\njUcjrFuyiKqSIgDWfr+AHkOGYjCa0FozZc5aIvEkAK/OXsuZ/QsyChpyWk0ZtQOoiFRw3WfXURWr\nYmX5SobkD2FC10wrlQohmnIw7L15jjz+PerfRBIRXGYXK8pXsLJ8JQDv/PwOV/W7ii/Wf0FZpAyA\nl5a8xOhOo2uDhkKVFbz74D3UlJex+efl5HboxDFj6u4hWbYssGWBwQrth8B3a7e/aPOC1UX37O5s\nqNrAE8c+zJqPv2LRyv/Q88STcXhS+/crv3iFcCKMw+SoUz4t4Ahw44AbMzrXeMLMDVN+oiaaAOB/\nK4rpmNMy2eaEEPvPwbD3CiHEoUb2XiGE2Pdk7xVCCHGgUUq9A3TY6fAtWusZe3mei0mVV9vRTK31\n1XtznibmfwIYvNPhR7XWL+6L+XdHpkFDxUqpToAGSNeTK9xFn8HAGKXUSMAGeIBHAZ9SypTONlQA\nbGyos9b6WVK14BgwYMCua6iJA04yFsNgzqxEzr5kys7GlC3ZMYRoyOG49xaHirl0xqWsqlhFniOP\nqWdMxefy8Kt7H2LVgrl0O24Idq93r8+brKmh+pNPsCWT/PPKm3hyQTEDO2RTFY7xr7nrGHlka3wO\nCwAWh4PjzzqfaX+7D5PFwjFjJpBAURWM4bQaOP3I1vxr3gYAhnfPxW7Z+0FOSim8Ni9VsSogfXFf\nCLFXHAx7r1KKHEdO7fMCdwF2k51QPERHb0fMBjMDWg3AqIwkdILj2xyP1Wit099ottQ+N1mtNMoZ\ngJMnQfVWWPkJ+NrD+OcwOAJcduRlnNn2l8x5+nk2Ll0CgNlmo++IkQB11rinrEYjv+yXz5Rv12E3\nGxncJdDsMYUQB56DYe8VQohDjey9Qgix78neK4QQ4kCjtR63j+Z5EdhvATr7Kjhpb8g0aOhqUh8q\nuiulNgKrgfOb6qC1vhW4FSCdaegmrfX5Sqk3gDOB14ELgWl7tnRxoEpUVFD18SdUz5yJ/5KLsXbv\nfkAGDwkhBEA4HmZVxSoAtgS3UBmtJMeXQ6tOXWjVqUuLzWuw2TDl5hJftoyOKxfxyOiTePh/63ng\nv8vQGo5ql1UbNGQ0mmjb80gu/8fzoBTK5uQ/iwr519z1nNm/gJO65/LFTcOoCsfIz3Lgtu39PTdg\nD/DciOd44YcX6JHdg6Pzjt7rcwghDh4BW4BpY6exoWoDHbwd8Nv9OMwOpo+fTnmknNbO1nisntr2\nDq+PCbf9ia9fe4msNvl0O+6Epidwt4IJkyEeBqXAmQtKkWXMwmJX6KSm50mnoLUmEqzZq+fmdZi5\n6bSuXD60Iw6zkSynfI4VQgghhBBCCCGEEEIIcWhqMmhIKXWd1vpRoLXW+hSllBMwaK2rmjHnLcDr\nSqn7gIXA880YSxyAIqvXUHjHHQBUf/45nT6agSE3dz+vSgghGmY32Tk692gWbF1AZ19nvNa9n1Wo\nIcZAgPZvvYkOhdh8z73wwXQuvfk2pv9gZUtlhGSy7o0/ZqsVczozx4ayIDf+exEAc1aX8vUfTqJ9\nwNniay5wF3DnoDvZqVypEOIwZDaaae1sTWtn69pjdpMdu8tOG1ebeu2VUmS3KWDktTdhMJowmjK4\nd8HecBnZGlOUYTddz+QfJmMymLjsyBP3+Dwak+20ku1sIhuSEEIIIYQQQgghhBBCCHEI2NWv9ReT\nKin2OHC01nqPbuPVWn8BfJF+vAoYuCfjiINDsqqy9rGORCCR2I+rEUKIpvntfh4e9jCheAibyUbA\nXrcMTSKZwKAMexQoEw3FSSSS2Jzmev2VUhhdLjbdey81//sfAG7XY1w/4Sra5LjIdSeoqKzGarBi\nc9XNcqFQKAVapxJw7MsYHgkYEkI0h9lqa/YYi4sX8+GaD/lwzYcAxElw68BbMRkyTaIqhBBCCCGE\nEEIIIYQQQgjYddDQUqXUCqCNUur7HY4rQGut+7Tc0sTBytarF95x4wjOm0fgiokY3O79vSQhhGiS\n3+5v8PiWmi08tegpcuw5nNfjPLJsWRmPGayM8uWUZdRURBl+QXeyWjvrB9wYDBhc2/dIg9vF6H55\n/Fi1lJu/eZJe3t6c3fY88lQOth3K43jtJp4+v///s3ff8VXV5wPHP99z975ZJIFAAgTZoBC21I3i\nRmxVVESxWqt1VX9q1eKoe1urrXtUrHWhBXFPhkoA2XvP7Hlv7v7+/rjXAJIww9Ln/XrllXO/57vO\nTTgBzpPn4c3idfy2KA+fQ0rnCCEOPhUNFSR0ApfFhdPibLF5c1w5hOPhxtfBaJCETrTY/EIIIYQQ\nQgghhBBCCCHEr8UOg4a01ucppXKAj4HT98+WxKHOnJ5O9l9uQYfDGG43hn3vf6NcCCH2t5pwDbdO\nuZUfNv9Aob+QPHceZ3Q6Y5fHL5y6kZU/lgPwyQsLOP2aw3F6ty11Y9hsZFx3DbgcaAUN551MIlHD\nFZ9dQSQRYWbJTLr7epHlO3qbcW67hRO6ZXNkp0wcFhOGsePsP7GqKnQshmGzYfJ6t7THEkSCMcxW\nA6tdMnQIIVpOWbCMP3z2B1bVrOKvg/7KsPxhLRY41NaZw41FNxJNRDEbZq7rex1Wk7VF5hZCCCGE\nEEIIIYQQQgjRPKXUmcBSrfXCFpqvCBittb66Jebbg/VPB7ppre9XSmUBEwErcDVwCzBKa119IPa2\nv+z0CaHWejPQez/sRfyCmDwekAxDQohDWEIniMQjPH3kv3CWZ2CrsdNQH8Hh3rUH01tnBrI6LKhm\nAnvqXAavHGtQF63ji+l/5PWTX9/mvMmkUAbUhaI4LSZMJgMAw1C4bE3/GNexGBgGyjCIVVay8f9u\nIjB9OumjR5Nx+WWY/X6i4Thr5pczY9Jq8jqnUXRKwXbXprVmbWWQd2atZ0D7DHrl+fDYJauREGLn\nvt3wLUurlgJw7/f3MqTNkJYJGgrX4y1+Ce+yT3io97lQeBxuZ6u9n1cIIYQQQgghhBBCCCEOIo+c\nc+oo4F6gHbAW+Muf35w4/sDuCoAzSQbWtEjQkNa6GChuibn2cP0PgA9SL48D5mmtL029/vbA7Gr/\nMnZ0Uin139TneUqpuVt9zPtZuTIhhBDiFyXNnsYjv3kU5qcz/aX1fPX8cuZ+sY668nK+Gf8y6xbO\nI9wQbHZ8xyOyGHx2Ib85txMnXNKNeEwTjcS36+e2uunXuj+frfucXFcuXquXZ45/hr7Zfbm428X0\nzevLxEUlXP7aTD5bXEp9OLbDfUc3l7Bp3DhKH32MWEUl0U2bCEyZAvE4lS+9hA4m9xxuiPHJ8wuo\n3Bhg7pfrqSlp2G6usvowZz8znSc/X875z3/PxurQbr6LQohfq0J/YeNxB18HTMrUMhNH6mHGc7Du\ne9wTr8M989WWmVcIIYQQQgghhBBCCCEOEqmAoeeAfEClPj+Xat8rSqkLlFI/KKV+VEr9SyllUko9\no5QqVkotUErduVXf+5VSC1MxIg8rpQaTrFD1UGp8x2bW+L1SaoZSao5S6h2llDPV/lul1PxU+zep\ntqOVUhNTx/2VUtOVUrOVUtOUUp13cB1jlFLvK6W+UkotU0qN2+rcBKXUzNT1XLZV+0lKqVmp9T/f\nap6nlFKHAw8CZ6SuzaGUWq2Uykz1G516H+YopV7b86/AwWdnmYauSX0+dV9vRAghhDigEgkIloEG\nHD4w2/Fb/FSv39DYpWxtPfPCs5jx/tvM+OAdxj7+LDZH05kzHB4rRxzfjrK1dXzzn6XYXWY6D8gh\nt5O/MVsQgN1sZ0ibIUw+azIAGY4M0u3pPHnMk5jDcSJzFjPY7qayjYM//HsmU246FnczGYZi1dVs\nvPFGgjNmAKAMg/SLx6CsVnQkgrlVK5QlmSlIKbA6zISDySAkq3P7ObWGikB4y/XXhemcI1nkhBA7\n197XnvGnjGd1zWoGtR5Euj29ZSa2OOGwk2Hmi2CY4LCTWmZeIYQQQgghhBBCCCGEOHjcC/z8AZQz\n1b7H2YaUUl2Bc4AhWuuoUupp4HzgVq11pVLKBHyulOoFbABGAF201lop5ddaVyulPgAmaq3f3sFS\n72qtn0ut+TdgLPB34K/AiVrrDUopfxPjFgNDtdYxpdTxqesduYN1+gM9gCAwQyk1KZW56JLU9ThS\n7e+QTKjzHPAbrfUqpdQ2/2mttf5RKfVXoEhrfVVq7z+9b92B24DBWuvyn4891O0waEhrvSn1ec3+\n2Y4QQgjRvIqGChSKdMe2P4tjiRi14VqsJituq3vPJq9cCS8Ph3AdnPcfyB+CxWZh0JkdKV1dC8CA\nM9oz+e/PJ/trTai+DshtdspEPEGgOkzbbumUr6vDbDURC8UwubaUAQsFAtRXlFFXUUZ2+0JwgMkw\n4YooSu5/iJp33wPg5CefZmJrH4mEbv4a4gnidXVbXtZUYzidtP/gfULzF+Ds2wdzVhYADreFkTf2\nZf63G2jXLQOXb/uya26bmYd/25tHPllK3/w0urWWgCEhxK7xWD30zOxJz8yejW3RcJhIQxCzxYrN\n5dqzie1eOO426H8p2Lzg+EX920wIIYQQQgghhBBCCCEgWZJsd9p31XFAX5KBNAAOoBT4XSojj5nk\ng69uJMuPhYAXUpmAJu7GOj1SwUJ+wA18nGqfCrycqnj1bhPjfMArSqlOJH/N37KTdT7VWlcAKKXe\nBY4kWersaqXUiFSftkAnIAv4Rmu9CkBrXbkb13Ms8JbWunwPxh70dhg0pJSqI/nF2O4UoLXW3n2y\nK/GrE6+tJbRoEaEFC/EOPwlLbvMP4YUQv05ra9dy3VfXoVA8fszj5HnyAIjGo8wtm8t9P9xH57TO\n/Lnfn3FZXKysWcnkVZMZlj+MQn8hdrO9+ckTCZj6GNSXJl9/chtcOAFcmaTlujjntv4AmK0Jeg87\nhRnvv0V+ryPwtspunKIqVIVSCr9tS2C0YTIwWw2+/c9SAFbPLeecW/tjS50PxUKUBUpYPW8GP771\nNmm5bTjr5jtw+vzocJjIunV4zz4bQ0F80XyuGfZbfI7m/35kSk+jzUMPsfHmmzA8XjL/eCWGzYat\noABbQcE2fQ2TQVqui6G/O6zZ+Vw2M8N75nBkYSZ2iwnvDtYWQogdiTQ0sGzGdKa++Rp5XXtw9OhL\ncXp9ezaZMyP5IYQQQgghhBBCCCGEEL9Ma0mWJGuqfW8o4BWt9S2NDUq1Bz4F+mmtq5RSLwP2VLaf\n/iQDjc4GriIZPLMrXgbO1FrPUUqNAY4G0Fr/QSk1ADgFmKmU6vuzcXcDX2qtRyilCoCvdrLOz2NZ\ntFLqaOB4YJDWOqiU+grYwUNCsbNMQ5JS4BCQCIeJrFpF3Sef4hl2Atb27TFstp0PPIhE1qxh7UVj\nAKh64w0K3hiPOTPzwG5KCHHQCEQDPDjjQZZWJYNvHil+hPuG3ofdbKc6XM2fvvgTddE6llQtYWje\nUPrl9OOCSRcQSUR4bcFrfDTyox0HDRkG5A2A2f+GtPaEB9+IgQULYBgKl2/LPbXb0GMoLBqA2WrF\n5kxmylhXt45bvr0Fi2HhvqH3kePKaewfiyYajyOhOAk05fVhrOYoX6z/jKdmP0Wv9J5cfvNNTLzj\nTuKxZLkww+vF/PDfeeKbNbTLcHLWEW3oa91x4I5SCmthR9o+9xwYBmZ/U5kdd4/DYsZh2Vk1UyGE\n2LFIQ5CPn34crRMs+vZLeh47DGe3njsfKIQQQgghhBBCCCGEEL8+fyFZSmvrEmXBVPve+Bx4Xyn1\nmNa6NFVmqx0QAGqUUtnAcOArpZQbcGqtP1RKTQVWpuaoA3YWR+IBNimlLCTLn20AUEp11Fp/D3yv\nlBpOMgvQ1nw/9QXG7ML1nJC6hgbgTOASoA1QlQoY6gIMTPX9DnhaKdX+p/Jku5Ex6AvgPaXUo1rr\nit0ce9AzDvQGxN6LV1Wz+nfnUP7006w+51zi1dXb96mvJ1pWtk3ZmgMpEQ4n91ObLPkTWbeu8Vx0\n40b0jsrvCCF+dSyGhTx3XuPrPE8eZiMZyKKUwmfbkq3Cb/MTTUSJJCIAxHSMUDy04wViYeh0PPqS\nj6kbNZkpxRv55KXnCVRXNXZpiDYQT8Sx2Gxop4VaglQ1VNEQbeCZH59hTtkcikuKeXLWk0Tj0cZx\n2QVeug9tTWZbNydf0ZMPF5dwzr++ozJUx1+n/pWSYAmfrv+MDbqcrkOPIa5MlNeFqYporvjvfP47\ncz0Pf7KUyQs2U1obprYmxP2TF/Pl4lLqQtHtLkUphTk9vUUChoQQosUYBg7vliSlTp/co4QQQggh\nhBBCCCGEEKIpf35z4njg98Aaktl01gC/T7XvMa31QuA24BOl1FySGYbCwGxgMTCeZAkxSAb+TEz1\nmwJcn2r/D3CjUmq2UqpjM0vdDnyfmmvxVu0PKaXmKaXmA9OAOT8b9yBwn1JqNjtJgJPyA/AOMBd4\nR2tdDHwEmJVSi4D7SQYLobUuAy4D3lVKzQHe3IX5SY1dANwDfJ0a++iujj0USOqAXwAdCaMjyYfj\nOrzl+Cex6moqnn+emnfexTt8OJl/ugpzWtqB2CoAiVCIwLTplNx3H7auXcm9Yxyu/v1x9u9PaMkS\nsm++CcPtOmD7E0IcfGKJGBd1v4hhBcNYVbOKY9od0xg0lOnI5Llhz/HKglfomdmTrhldAbimzzW8\nu+xdhrcfjs+6kxI4Nevhv6MpO/9t5mz6kVD/bDrSmuKJ7zHw3PNZWLmQF+e/yNA2Qzm23bF8sPwD\nPl7zMbcPvJ355fM5+7CzMZTB+yveJ9ORiaG2xOQ6PFYGjywkHk2wpq6BD6Ztwm0zsb4qRIYjg/KG\ncgDaZXck/dz+nPPKPBJa8+KYfgQjscZ56sNxFm+opWxNA53bOLn45Rl8dv1ReOzJzENaa0qCJRRv\nLqZHZg9yXbnYzIdW1jkhxC+Xy+fnvLsfZtGUL2nbrSfuNCkvJoQQQgghhBBCCCGEEM1JBQjtVZBQ\nU7TWb7J9wMx3zXTv38T4qUC3nazxDPBME+1nNdH9q9QHWuvpwGFbnbttR+sA67XWZ/5sjTDJbElN\n7WsyMPlnbS+TLKe2zXHqdcFWx68Ar+xkP4ckCRr6BTC8XjKuuIKa99/HP+JMTFv9FjdAoq6Oyudf\nAKBq/HjSRl/YbNCQjsWIbtxIcMYMnP36YcnNRVmaL4Wzu3Q8Try6GsPlJPeuO9l4y18I/vAD3pNO\nos0Tj6NjMUxuN4bD0WJrCiEObXWROt5b/h4vznuRgbkDuan/TaTZt72H5XnyuHXgrdu0jeoyijML\nz8RpduK0OGlKMBokEA1giQbw9r+MCav+x99//DsA53U6lxFdjqYmUsOlH19KJBHhq3Vf0SurF8/P\ne55Hj3mUP33xJ8obyjEpE2+d9hZt3G0YedhITIZpm3WsdjNRFaeNw8Y1BbmYHGZCDWZeHPYSH6/+\niH65/fDZWvH7VxewpCSZEW7C7PX8Y1Qfbpswn9Z+B0cWZuDWiu8nrOHwXl0AqN0q01B5QzmjJo2i\nrKEMi2Fh0ohJpJGJ3d1y93AhhNhTSin82TkMGnnegd6KEEIIIYQQQgghhBBCCCFSJGjoIBGLRmmo\nqyVUX4fLl4bTt5OsGFsx+/1kXDqW9FHnoZxOTK5ts/QoqxXD5SQRCKJsth0G5MQqK1k14iwSgQCG\ny0mHyZOxtGq1x9e13fylpawacRbx6mpsXbqQe+edGKn9HsjsR0KIg1cgGuChGQ8BMGnVJEZ1HbVd\n0FBTnJbmg4V+mnfyqsk8Wvwo3TO68/CA21k0+7HG88tql9NqyGXE0Wi2lEyMxqN09HfEYlgaswTF\ndZzNgc2srVvL0sqltHJue98M1ISZ+vYyYpEEfU/K5+PnFtDvjPZMWD6BQKyeQn8hZly0z3Axc02y\nJJrNbCK8qJqHT+2O3WulvjxEw7pKTrq0HZF4De9ecjgFGVvu97FEjLKGsuQeE1E2lpdQPLGEYy/o\nissvGYeEEEIIIYQQQgghhBBCCCFEy1FK/QMY8rPmJ7TWL7XgGicCD/yseZXWegRbZQUSe06Chg4S\ndeVlvHrjVcSiETr27c+JV1yLw+Pd+cAUk8sFrqZLepnT0yl4+23qv/kG95AhmPz+ZufRoRCJQACA\nRCBIoqFh9y5kJxrmzydeXQ1AePFizLm5mLNbLihJCPHLY1ImfDYfNeEaDGXsUsDQrghGg9z93d0k\ndAKPzUO5jvLHw69gdulsooko1/W9DmU2YVMm/nnCP3l90euM7joal8XFXUPuIp6Ic9XhV/Hi/Bfp\nn9Mfq8nKlA1TuLbPtdusE48n+P6DlSybUQpAIq7pMiiH0g1VrPavagxAclrM3HJyF/oWpOG2muig\nLHz9z/loDWdcfzh5rd2sKV3AazfdD8DQUWPwtj+jcR2nxcnYHmN5deGrDMgZiDuSxtr5K5j75ToG\njShskfdMCCFamtbJwMytyzoKIYQQQgghhBBCCCGEOPhpra/cD2t8DHy8r9f5NZOgoYPE5hVLiUUj\nAKz6cSaJeLzF5lYWC7b27bG1b7/TvobHg2/kSGonTsRz4jAMq7XF9gFg79oV5XCgGxqwtG2LOc2P\neTeyKgkhfn3S7emMP3k8H63+iAG5A0i3p7fIvIYyyHPncUL+CeS4chg3fRwXdr2QN099E43ms7Wf\ncfmnl3Nah9O4pMOF3N7nLywrXcy/l/0Ps9XK2B5jQcFDRz1EOBamnacd757+LhmODAAqGirQWuMw\nO8lq52Hl7DLCwRhKgc1lpnPvfPJMV5PhyGjMiJThtnFe/3aE6iP8554f0KkER0orrA4Ty2dMb9z/\nypk/0PO4EzGnSkj6bD7G9hzLqM7nU7aynm//uQYAd5q9Rd4vIYRoaZWhSsYvGk99pJ6xPceS5cw6\n0FsSQgghhBBCCCGEEEIIIX5VJGjoINGmSzccXh8NtTX0On44JrPlgOzDsNtxHzkE78nDCS9eTMn9\nD5B77z3blTzbU+bsbDp+OInoxo1Y2+VjzspskXmFEL9cJsNEO287Lut12S6PaYg1YFZmLKbm76UZ\njgxePPFFAtEAZ75/JhrNnLI5TBoxCY3mgR+SmQ7fWPIGl3Ucw7wJ77N6zmxOOOF45meVEYwFeWr2\nU43zfXr2p2QpM9RupMRkcNlnV7C+bj3jBo/D2s7KsFt6surTevqclI/ZYuDwWPHRscm92VwWzry2\nDzM/Wk1OBz8ZbdwYJhN9Tj6D5TO+Ix6LUnT6WVgd25Zf81g9eKweXPleaofGcafZKSzaNptbfShK\nOJbA57BgNklmDyHEgZHQCV5d8CovzH8BgI2Bjdx75L24re4DvDMhhBBCCCGEEEIIIYQQ4tdDgoYO\nEp70TEY/+Hfi0ShWhwO7+wA9MDGZCHz3PdVvvgmAb+RIlHnbb5NgTTVaa0wWK/bdDCYyLBaM3Fws\nublNno+WlFD91luYs7LwnHAC5vSWySgihPj1WFe7jodnPkxbd1vG9hy7w3Jm2a5sqhqq6JfTjwUV\nC7iw64UYysBiWHCYHTTEGmjtak2osopZH34AwLSXX+KMBx/AarKSYc+gIlRBUXYRFhRMeRw2FPN5\n79NYWbMSgIdmPMS4QeP468xbefTMx/A4d575J56Ik/CG6HdOW9w2V2PZnqz89ox94lm01thcbkwm\nU5PjXT5bkyXJKurD3PvhYhZvrmXcad3o3spDzaYgkWCM7PZeHJ6WzS4nhBDN0VpTE65pfF0XqSOu\nWy7TphBCCCGEEEIIIYQQQgghdk6Chg4SyjBwpx34ABnDaiXr6j9h8vnQOkHGmDEos5nI6tXUfvop\nttNP471H7qF83RoGjjiHPiefjt3taZG1YxUVrPv9ZYSXLgUgunkz6WPGYNjsGHZbi6whhPhlq2io\n4NqvrmVpVfI+0tbblnM6n9Ns/8qGSj5c9SEndziZuwbfxT/m/IM/fvZH7hh8B2+c8gbfrviCga0G\nQGDLGMNkJtOVybebf+DxYx4nruO4zC7SNTDtCcg8jM6+Do39C/2FVIQqqGioIKF2/kA8oRMsqlrE\nHz79A1aTlRdOfIF8Vz6hQAylFO70jD1+f6YsL+edWesBGPtyMZOuGML/Hp4FQPehrRlydiEWm/zV\nQAix75kME1ccfgWbApsIxoLcOfhOfDYpWSuEEEIIIYQQQgghhBCHKqVUATBRa91jJ30Ga63Hp14X\nAaO11lfvhy2KJsiTQbEdc0YGra6/Dq01SimipaWsOudc7N26sdLjoGzNKgCmv/MGPY45AWVzsq4q\nyHcrKxnaKZM8vwPTnpS8SSQIr1rV+DK8cBE1700AwD/iTEw+eZAkhEiKxWPUx+pxmBzYzDsIKtTN\nnwpEAzxU/BATV06kractXquX/634HwBjPxnLpyM/ofuGNL7814MUnTqCYy++nHUL53P4iSfj8vgZ\nZu9POFxLbSKCy5WNischpzds+pHD1s5k/Emvsi6wifa+9tz3w33cP/R+0mzNZz36SX2knkeKH6E2\nUgvA56u+4GTnSCb/ax4Ot5XTru6NN8OxW+/XT3yOLeXaPHYz0YZY4+vSNXXEogksEqMphNhPWjlb\n8eBvHiShE/jt/gO9HSGEEEIIIYQQQgghhBD7XgEwChgPoLUuBooP5IZ+7fYgskP8WiilkgfxOIma\nGhKBAB7/lgc6Fpsdw2SiKhjllCencNuE+Zz21BTKA5HGPrHKKiKI8KGZAAAgAElEQVQbNxIrL9/5\nenYHWVdemTq24z/vXGonTaL0/vuJ19a27MUJIQ4JsXgsWbImsSVDTzAa5Ov1X3PV51fx2qLXKAmU\nsL52PaXBUuI6zqNHP8qxbY/lom4XcULBCTuce0P9BgAaYg3bZLhIs6WBUnQ/6nh6HXcS87/6lFAw\nyPGXXEpefi6WUBm2ZZ/h/dfR5E19Gn88TjDuIX7OmyR++xqeLqfS01fIyR1OJtedy6NHP0qX9C6Y\njKbLiW2zr0SM0d1GNwYYHZl5FN/8ZynhQIzqkiBzv1hPOBDdo/ezd56fe87swe+K2jL+soFkeW24\n/FYsNhNDRhZidUgssRBi//LavBIwJIQQQgghhBBCCCGEEPuBUqpAKbVYKfW6UmqRUuptpZRTKXWc\nUmq2UmqeUupFpZQt1X+1UurBVPsPSqnCVPvLSqmzt5q3vpm1vlVKzUp9DE6duh8YqpT6USl1nVLq\naKXUxNSYdKXUBKXUXKXUd0qpXqn2O1L7+koptVIpJVmJWpA8HRQ7ZbjdZN96KxXPP09OVg7HXHQZ\nm5Ytpuj0kTi8PjZXhgjHEgDUNsSIpI5jVVWU3H03tZMnY21fQP5rr2HOzGx2HZPHTdqo8/Cdfhoa\nKH3wIULz5oHJhDLLt6oQvza14Vo+XfMpH6/+mFFdR9E/pz9Oi5PaSC3Xf309CZ1gTtkcemb2ZEPd\nBr7b/B2TV01mYO5A7jvyPnw2HxaTpdn5vTYvtw+8nZu+uYmRBWdSaM3n3ye+xucbvuC3h/2WDHsG\nyqEYMPIcDj/xFOxGFNPUR2DGs2CYYegNMOhK+PoB9MA/8uZjiwkFonQd1IkeZ7RCJ0LYwhq/bdcf\nhq+pXcO4aePw2/y8fsrrrKtdRxtva9a2DlO5MVkjzdfKwaLvNtHrmDwMY/dif9NcVs4fmM95CY1h\nKLTW/O6WfmjA7jTvWZY4IYRoRkVDBRpNmi1tl4ImhRBCCCGEEEIIIYQQQuxznYGxWuupSqkXgeuB\ny4HjtNZLlVKvAlcAj6f612iteyqlRqfaTt3FdUqBE7TWIaVUJ+ANoAi4GbhBa30qgFLq6K3G3AnM\n1lqfqZQ6FngVODx1rgtwDOABliilntFa79lv2YttSCSG2CmTx0Ni+GlYTzyNTVFNfuee9DphOGZL\n8mF8usvK2X3z+GTBZs7r3w6PPfltpUMhaidPBiCyajXh1at3GDQEYPJ6MXm9JIJB0s47F2W14j9r\nBIbXu28vUghx0KkOV3PH9DsA+H7z93w88mOcFieGMrAaVkLxEAA2k40CXwHjpo8D4LtN37GiZgUD\ncgc0OW88FgOtMVksdPR35OWjnmPGe28x6Y17GTpqDFf3vAqz1ZrsHA5grt+MuXYj2Nzw/TPJ9kQc\nvrwHLv0Mvn0EbXGTlhsivTCN/D5ebpxyAzNLZjK622h+3+v322Qxak5VqIpbp9zKnLI5AOR787mu\n73UAHPnbTrTu5MfmtBAORqkta9jTtxUAw0hmklNK4fRJPTIhRMtbX7eeq7+4mmAsyKNHP0rntM57\nFjgUqoHKVVCzDtoOBHdWy29WCCGEEEIIIYQQQgghfj3Waa2npo7/DdwOrNJaL021vQJcyZagoTe2\n+vzYbqxjAZ5SSh0OxIHDdmHMkcBIAK31F0qpDKXUT4ECk7TWYSCslCoFsoH1u7Ef0QxJKXAAxOvr\nCc6cRdlT/yCyejU6Ht/5oAOoIRJnSVWU/3tvISf/fSrDHvuG8mCs8Xy6y8rtp3bls+uP4spjCvE7\nkw/blcWC7bDkn33D5cKal7fLaxpOJ64BA2h93724Bg7E5HK17EUJIQ56jSUSAWOrH1d+m5+XTnqJ\nUzucyiNHPcLUDVOpClfROa0zAA6zg3xvfpNzBqqr+PzFZ/jk2aeor6rEUAZV69bx40cTKV21ggkP\n3kUosFUGxapV8FQRTLoOShdvP2EiDqM/IGj14Du1nvfdL7JRr6W4pBiN5pWFrxCMBnfpek3KhMuy\n5V63daCRy2ej4xFZlKyqoWx1HUUnF+x2liEhhNhfIvEIT8x6gmXVy9hQv4Fx08ZRE67Zs8k2z4dn\nj4I3L4AJf4RgZbNdG+qjrFtUyfolVYTqI832E0IIIYQQQgghhBBCiF8x/bPX1bvR/6fjGKlYE6WU\nAVibGHcdUAL0JplhqKk+uyO81XEcSZDTYuSNPADitbWQSGDv2oV1V/2J/JdexJx1cP7WdDgWJxqP\nk+G28v2q5EOaikCE1RVBcnyOxn4+hxUc2441Z2bS7sUXiGzYgCUnB3N6+m6vr0y79hvpiYSmIhBG\nA36HBatZSmAIcajz2/w8MPQBPlr9Eed1Oa8xiMZqstIjswd3D7mbhE7QO6s3Gs0zxz/DpsAmsl3Z\npNu2v9/EYzGmvfU68z7/GIBYJMyJV1yDzels7GO1O7YJVmLjLNAJqFgBGR3BkQbRILHeFxNP74w1\noxDlyiQYKOH6adeS5cji+r7X8/BRD/PVuq+YsXnGLgf3eG1e/jbkbzw791kyHBmcWXjmNuedXhsD\nz+iIMsBskXucEOLgZSiDXFdu4+ssRxZmYw//2bFx9pbjkrkQbzoYKBZNMPfLdRRPWg3A4LM60vv4\nthJgKYQQQgghhBBCCCGEENtqp5QapLWeDowCioHLlVKFWuvlwIXA11v1Pwe4P/V5eqptNdAX+C9w\nOsmsQj/nA9ZrrRNKqYuAnx5u1ZEsMdaUb4HzgbtTZcvKtda12zy7Ey1Ogob2s1hFBRtvuJGGWbOw\n9+hB9s03tUimoepghPL6CHaLQZrTgsvW1J/L3VPTEOW9WeuZOHcTj51zOL85LJNvlpaT7bXRPnPH\nmX/iwSCJhgYMpxNn7957vZedWVUe4Jxnp9MQifPyxf3p086PySQPiYQ4lHmsHk5qfxLHtDsGh9mx\n3fmfHkBnu7Ib27KczQdgVoeriW91v02kjv3ZrTnlmv9j7fw5FJ0yAqd3q1JiHY8Fbxuo3QDlS+Hy\nb2kIKTZuNhMOJsiutpHmSAZVW0wWnj7+ae6cfifLqpdxY9ENXH34n7CoXb8fZzmzuGXALRiq6fuX\nxSbBQkKIg5/ZMDOm+xh8Nh+1kVou7HohXtselprtPgJmvgjV6+DE+6CZco/xaJzNy7dkM9q0ooYe\nR+VhSAVGIYQQQgghhBBCCCGE2NoS4Eql1IvAQuBq4DvgLaWUGZgB/HOr/mlKqbkkM/2cl2p7Dnhf\nKTUH+AgINLHO08A7SqnRP+szF4inxr4MbPWbo9wBvJhaLwhctHeXKnaFBA3tZ4n6AA2zZgEQmj8f\nc0YGxl6W3mqIxHll2moe+2wZhoJ/jx3A4MLMvd5rVTDCHf9bCMBpf/+Wydf+hkgsgctqQgPLS+vx\n2s1keWyNmTkSCU1VTQDKSrDX1xBdtQrXkCFYcnL2ej/NiSUSPP3VcspTZSjum7yIF8b0I825txnO\nhBAHmqGMJgOGdlddpI57Z9zH5adeTDQcRsdiHDPmMgDCwQBZ7QrI73k4DlMM5r4JSkHh8eDLg8u+\nhHgMrC5w+Kmv3IxylhIoWYUyDyAUsOFz+Hht+GssqljI9E3JIOu/ThvH28eNx+rfvSfWzQUM7W+J\nhEbHNSbLwbEfIcShJd2RztieY/d+Il8buPgj0BpsbrA2/TPBajcz4IwOlDzxI0pBv1PaS6ClEEII\nIYQQQgghhBBCbC+mtb7gZ22fA0c00/8hrfVNWzdorUuAgVs13ZRqXw30SB0vA3o10ScKHPuzNb5K\nnasEzvzZObTWd/zsdY9m9ir2gAQN7WeG04GlTRuiGzZgzs7GlJGBydNc9q1dE4zEmDx/MwAJDR/O\n37TDoKFQNE48oXHZdvzltxgKpZLPaOrDyYwcWR4b1cEol75SzMJNtbTy2Jj4pyNp5bWTSGiWlNRx\n8ztzyfXZ+WsfH7X33IslO5v8117FnLn3gUxNMRsGRQXpvDNrAwC98/zYpTyZEGIrJmXCYli4dMof\nGTHwDI7I7Isjzc/GRQt56+5bQWsGjjyXfl19WCf8ITnoyOvhmL+Ae0smo+pQNYHaKt77a3LMj1nv\nc+6dDxFtiGHfHKRddrvGvq1drbHandhMh16ai4a6CPO+Wk/V5iADz+yIL2vvA7eEEGKPuVvttIsy\nFFnt3Jx/V/LfqXb33mfdFEIIIYQQQgghhBBCCCF+6SRoaD8zZ2VR8J//EC0twdKqFabdDKTRCU1d\nZYh1iyrJLfTjzbDjtpkZM7iAm9+dh81scE5R22bHl9eFefiTJVQEItx2Sld8Dgv+ZjLy+BxWXhrT\nj/dmb+D8Ae1Ic1ooXl2F1WywcFMtAKV1Ycrrw7Ty2qkIRLhq/CxWlAWYu6GGC4ra0O6t91H19cSV\nsU+/2Yb3yKFjlotAOE7vtn4cVgkaEuLXKhwLUx2uBsBr8+IwO3BanNzQ7wZeXfAqFpOVXm2OwGyY\nWfb91GRkJLB8xncc3vVUGu+I5UsgHgXTlgfPGk1N2ebGMbVlpWid4OXrryAWjTDokot57vhnWVy5\nmBMLTiTDnoHVcugFDa2ZX8GMSasBqNwU4Ixrj8DplextQoiDm8lswuWTvwMKIYQQQgghhBBCCCFE\nU7bOBLSL/Qv22WbEQUOChg4Ac1Ym5qw9y7oTrIvw1n3FhAJRDLPiwrsH4U6zc0qvXIZ2ysJhMeF1\nNP9lfWnaKv4zYx0A1cEIVxxdSL+CNDz27X8b2203c3TnVhxZmInZZBAIx3hhymp+W5RH//bp/LCq\nkoIMJ1keOwCGonGeCwfms6A0wAWTl+B3WphwRR4Fe3TFu8bvtNK/fcY+XEEIcShI6ARzyuZw+WeX\ng4Ynj32Swa0HYzJMZDoyua7vdY3lFAF6Hnsi87/6jFg4TJ+Tz8DWpgtkFCbLk51wF1id28zvt/lR\nHbvTrtfhbF62lCHnXECkIUgsmiyPOP3Fl7js6ZcZ2HPQfr3ulhaPJX52rA/cZoQQQgghhBBCCCGE\nEEIIIYQQ+4QEDR0C4vX16FAIw+MhHksQCkQBSMQ0oUAUd5odj92CMxSg/utplM+bR/qFF2Bt02ab\neWLxGFs9K8dQirK6EA3ReJNBQz8xmwwA7BYTJ/fM4db35nH/yF7cdUZ30l1WsjzJLBoZbhvPXNCH\nf3y5nJF98rjstWIAqoNRJi/YzBVHF7bk2yKEENsJRoO8MP8FYokYAC/Mf4HeWb3x2rwA2wQMAWS0\nacvYx58lkUhgc7owOxxw8YeAAlfWdvMrpfClZXHCFdegYzFMhhnDZCKzbT7l69ZQ2G8QJkvz99OK\nhorkuo6DO8ix/eFZlK+vp6a0gSN/1wmHR7IMCSGEEEIIIYQQQgghhBBCCPFLI0FDB7lYZSWljz1O\nQ/EMMi67DMfRx3HEsHbM+2o9+T0ycPm2lL0JLVnCxj//GYD6L76gYPzrmLcqf1YTqeH4nhYqA22o\nDsa59oR8VpdF8RlhqKsBix3svmb3YjIUJ3bPoaggHYAMlxWvY9uH47k+B3ed3oP6cIyjDsviv8Xr\nMRmKIwubzqwUiydYUVbPq9PWcGzXVvQrSN9uTiGE2FV2s50hrYcwbeM0AAbmDsRmar48mMliwZ3+\nswAed/YO11BK4U/fNqDo7NvvIR6NYrFacXibvo+uqV3DtV9eC8ATxzxBO2+7JvvF4glqQ1FsZhMu\n2579mC6vD5PQmjSnBYtp90v1OD1WhowsJB5PYJN7shBCCCGEEEIIIYQQQgghhBC/SBI0dJALLVhA\nzVtvAbDpL7dS+MVA+p6UT+/j2mIyJzMA1ZY3YJgU2rzlwXi8qgqd2LacjNVk5b/LX8CR7cZvcrA5\nXMTR7Xth/eEZKH4BDhsOx48DZ/MZMLwOy06DegxD4XVYuHl4Vy4aXIDPYSHd2XSWiopAhJHPTKc+\nHOP1H9by2fW/kaAhIcQeMxtmTu94On2y+xDXcfI9+djMzQcNtRSXz7/D88FokIdmPMTy6uUAPFT8\nEA8MfQCnZdvyZ5FYnNlrq7l70kJ6tPbxfyd1Id21e1l+NlY3MPaVGZTXRXj6/D4c3s6PJZUxbneY\nrSbM7H7AkRBCCCGEEEIIIYQQQgghhBDi0CBBQwc5w+VqPFYWCxgGNqcFGxANx5n39Xqmv7sCk9ng\nrBuOIP2SSwhMmUL2bbdi8m+b7cJj9XBDvxv4YdMPZDoy6ZTWCWuwGr66L9lh1isw8A87DBraHeku\n604fdmutCUZija/rQrEd9BZCiJ3z2/347TsO4tnfzIaZtp62ja/betpiMbYPkKxuiHLJyzMIROLM\n31DLMV1acWL3nN1a69/frWHRpjoAbn53Hm9ePpBM974PnBJCCCGEEEIIIYQQQgghhBAHN6XUScAT\ngAl4Xmt9/wHekjjAJGjoIGft0IHs228nOH066ZdcjMm/5UF4NBxn0dRNAMRjCZbNLGPgn64iY+wl\nmLzeZJBRSlUgwrqqIGbDzJCc4/D8lM0nEgSbB8J1YJjB5m0cE4/HiAQbsNhtmC27l+lia6FAlHBD\nDJPZwO4yY7ZsyVzhsVt44twjeOqL5RzZKZP8DNcOZhJCiEOT1WTl971+TztvOxSKYQXDsJi2DxpS\nKDx2C4FIHACvffd/TB+W7Wk87pDl2qMsQ0IIIYQQQgghhBBCCCGEEOKXRSllAv4BnACsB2YopT7Q\nWi88sDsTB5IEDR3kzH4/aeedi3/kWRh2+zbnLDYThw3I5ocPVmGYFB37ZIHVhtnh2KZfQyTOS9NW\n8eTny3FZTdx7Vk9O6ZmL2WSAMxMu/QIWfQCFx4MjHYBIKMTa+T/yw4S36dC3H72PPxmHx8PuioRj\nzP9mA9+/vxKTxeDsm4rIzHM3nnfZzJzYPYdBHTNwWEy4bPItKYTYvwLRACWBEtbUrqFnVk8yHZn7\nZJ10ezrndTlvh30y3Vb+c9lA/vn1Cvrkp9E117vD/gAN9REa6qJYbCbsbgtHd87ihYuKKK0Lc0K3\nbHxS8lEIIYQQQgghhBBCCCGEEOKQU1RUZAYygfLi4uKWKNnTH1iutV4JoJT6D3AGIEFDv2ISoXEI\nUIaB+lnAECSDhnoelUdh32wCsTiv/LiOE82t6dHamwwISmmIxvh8USn989O4b3g3ajcECFSFcXos\nhINxtKkdtn7XYrGbUEoBEA7W88Ej96ITCTYtW0zHvgP2KGgoGoqzaOpGAOLRBCtmlmwTNARgNRtS\nOkcIccBsqNvA2f87G42mR2YP/nHcP0i3p7fI3JFQjLK1dayZX0GXQbn4WzkwdpD5RylFQaaLe0f0\nxDDUTucPB6N8N2EFC6dswjAUI2/qS6t8L8d1zW6R/QshhBBCCCGEEEIIIYQQQoj9r6ioaDAwCbAD\noaKiolOKi4un7eW0bYB1W71eDwzYyznFIU6Chg5xdpeF8bPXUV4fYchhrVhTEaBNmp0s95YgI7fN\nwsVDCuiZ4eHLJ+cSDsaY6TTzu1v7MX7c98RjCY65oAuJRIKc9j7Scl0oFCaLhVg4DIDZsmuZKrTW\nxCsqQGsMrzeZDal/NsUfrsEwKdofnrVP3gchhNhTS6qWoNEALK5YTDwRb7G5G+qiTHhsNmhY8O1G\nRo0bgMu/8yDJXQkYAohFE6yYVQZAIqFZNbecVvk7z04khBBCCCGEEEIIIYQQQgghDk6pDEOTAH+q\nyQ5MKioqyiwuLm65B1lCIEFDB0ysuhoSGnN62i71j8cTNNRFiccS2Oxm7O4tQTxFBel8srCES16e\nQZ98PwM7ZGwz1mo2OLF7DtGaCL2PzcadZmLtogCh+uR8APO/2cBhA7J59+FZjLpjAA6Pl3PuuJ9l\n30+j/RH9cPr87IrI2rWsvXA08dpa8p7+B85+/eh9XDu6DMzFZDGwu6RMjhDi4DIgdwAF3gLW1K7h\nmj7X4DA7dj5oF0UaYqTikYiEYiQSusXmBjBbDLoMymHO5+sxWQw6HiGBmUIIIYQQQgghhBBCCCGE\nEIe4TJKBQluzA1nA5r2YdwPQdqvXeak28SsmQUMHQHRzCRtv+j+0hjYPPoAlJ2enYwLVYeqrwpjM\nBuVr62jbNR2rI/nly3TbeOqL5QB8t7KSlWX1ZHu3vYd47BbqGwKUrPiAOSuWMOjs0dhdgAI0tOue\nQdWmILFInFg0QTRiIi2nNe2P6EfYZKcqDHYi+J3W7famYzGU2YxOJKh47nlipaUAlNxzL/mvvIw9\nM1OChYQQB61Wzla8fNLLxHUcp9mJ2+re+aBd5E630evYPNYuqOSIYe2wOVv2x67NaaHv8Pb0PCoP\nk9WE3SU/1oUQQgghhBBCCCGEEEIIIQ5x5UCIbQOHQkDZXs47A+iklGpPMljoXGDUXs4pDnHGgd7A\nr42OxSj7+5NEN5fgu+lGFhV/R8nK5UQags2OiUbiLPluM+89PIu3HygmEdfE44nG8xaTQV5aMjOG\nyVC09jedJaNszQqWTPuampLNfPzMwygjyui/Debc2/uT19lP6Zpajr6gC7UVDURDMeoqyqmNwt3f\nlDDowa948KPFVAUijfPFqmuoevO/bLzlL4RXrACtcfTq2Xje1rkzyrbzMjx7Q8fjREtLiaxdS6yy\ncp+uJYT45cpwZNDK2apFA4YAHG4rA07rwIg/9+GwftlY7S0f1ONwW/C1cuL22zBbTC0+vxBCCCGE\nEEIIIYQQQgghhNh/iouLY8ApQDXJYKFq4JS9LU2mtY4BVwEfA4uA/2qtF+zldsUhTlIS7G+GgTmr\nFf6b/48Jzz9F5cb1oBRjHv4HGXntGrs11NXSUFeHxWbDMDtY+WMqaFDDmvkV5PfcUoIsy2Pj7T8M\nZtqKcnq08ZHlaTpQx+XfUgrN6fVhGAYuv51AdZgNS6s4/Li2pLdxM/WdZZwwpjuRkAvSfMzZsJ47\nTutOjs9OQzTOT7NEli9j87hxAASmTqVgwnt4hg3DkpNDvKoa19AjMXk8Lfv+/Ux04yZWnX02iZoa\nXMccQ+t7/oY5PX2frimEELvD6jBjbbmKZ0IIIYQQQgghhBBCCCGEEOIXrri4eFpRUVEmyZJkZXsb\nMPQTrfWHwIctMZf4ZZCgof1MGQbpoy8kUFtD1aaNyUatqd68qTFoKNIQ5If336b4f+9imMyM+tsj\n9Dkxn0+eX4BhVnQb2nq7bBU5Pjtn9clrfF1XGWLx9E1ktvWQ29GH1WHGk5nFWTffwfrFC+h57DCc\nPj8ALr+NTkXZhBtilKyu5djRXZn75XpmfbyG4bf25dkLi3ji82XM31jDLcO7cmqvXELROJG2HXHc\nfBsNjzyADoeIhRM4W/lx/+Y3++fNBOqnTiFRUwNA4Msv0aHwfltbCCGEEEIIIYQQQgghhBBCCCGE\n2BdSgUKbD/Q+xC+bBA3tI/F4nFBdLSazBbt723I35vR07A47x429gq9fe4FWHTqS06lz4/loOMzS\n76YAkIjHWDHrB/qd9jtG3zMYZYDdZdnh2sHaMO8/Ppua0gYMk2LEXQN4fepKNteEuGl4D4YeUbTd\nGIfHisNjxd/KSUN9hPWLk6W+Vn61kUSfNKYsLwfgL+/NY2inTC59pZiFm2r5/eBeXPTAwzg9ftat\njdK57V69bbvNecQRYBiQSGBt3x5l3fF7I4QQQgghhBBCCCGEEEIIIYQQQgghwDjQG/glisdjbF6+\nhP/eeQuTn3qEQE3Vdn0sKDp178WYvz3CaVfegCuV9QfAYrfT6/jhyWObncMGDMZiM+HJsONOs2O2\nmna4vtZQX5nMuNO2Wzrvz9vI379Yzlsz13Pl67OpCkZ2ON5qN1N0SgGGodi8pIo835a6OnlpDsLR\nOAs31QLw3LS1JI4YyHfzrGR3ymhuym3Eysspf+45qt56m1hl5S6NaXavbdvSYdIk8p55hvxXX8Gc\nmblX8wkhhBBCCCGEEL9msUiEUH09OpE40FsRQgghhBBCCCGEEPuYZBraB0K1tUx64kHqKsqp3Lie\nZd9P4/Bhp2zTJ1ZSyppTToF4HGv7AvL//W/MGcmgG6vdQe/jT6LL4N9gMptxeH27tb7VbuK4MV35\n5o2lZOS5WBHb8h99oWicRELvcLzJbJDXOY0L7x1ENBRnxZJKxl/YjwWbazmlTxuUAqvJIBJP0DHL\njc1h4ajzu+L0Wne6t2BlNeXj7iDw+ecAJOrrybh4zG5d39YMpxNb+wJs7Qv2eA4hhBBCCCGEEEJA\nsLaGGR+8y+blSzjyvIvI6VCIySIZfYUQQgghhBBCCCF+qSRoaB9QhgmnP426imRJL0/69tlvImvX\nQDyePF61Gp06/ond7cHu9uzR+habmfa9MmndyY9hKDqhWVMRpLQuzD0jepDhtu3SHBabmdqKBuZO\nXI3VYebIk/LJsFvArPjsz0exorSe7m28tPLYd3lvpVUBdMmWsouRNWvQiQTKkKRXQohDWyyaIByI\nAmB3mzGZd5wVTgghhBBCiINNyYplFP/vHQDeued2LnniWdxp6Qd4V0IIIYQQQgghhBBiX5GgoX3A\n6fNx5g23Mfezj0jPa0vrzt2262Pv1g17j+6EFi4i88orMey7HnjTlHg8Qaj+p4fVFsxWU2MZMwfw\ntxE9iMU1Xsfu/YagJ93O7/7Sj0g4Tk1JkEBVCH+2k3bpyY/dNbdWU3Tz7cRvvQmT10v6ZZdJwJAQ\n4pCnE5rS1bV88MSPKAVnXHcEOR12L0ucEEIIIYQQB5ph3vLfRIbJBEodwN0IIYQQQgghhBBCiH1N\ngob2EXd6BoN/d36z582ZmbR99lmIx1E2Gyavd5fnbqirY+PSRdSVl9FpwGBc/jSqNgaY8NhsdEJz\nxnVHkNXOg9rqP/ec1qa/1IlQCB2PY3K5mjyvlCJYG+Gt+4oBsDrMjLpjAC5fMltRbUOUJSV1LNhY\nw0ndc8jxOXa490GFWbz8bS1D73mSTrk+zNlZu3zdQghxsIqEY8z4cBXxVDnImR+tYdjY7lhskm1I\nCCGEEEIcOloVdOCoCy5hw9JFDDr7PJyeXf+/CiGEEEIIIYyo424AACAASURBVIQQQhz8lFKrgTog\nDsS01kVKqXTgTaAAWA38TmtdpZIBB08AJwNBYIzWelZqnouA21LT/k1r/UqqvS/wMsncJh8C12it\n9f5YoyXfp18TSfFyAJnT0zFnZe1WwBDAugVzmPDgXXz+/+3deXzdVZ34/9fJzb42SfcFKFD23QgI\nOCwiqwIuIOgIMiiiCI46CvN1fiLujqDghqBgYRgVBxUKFpFFBFEqkcGRnbZQ6EqbNG2a/d57fn/k\nUlpIuqSf3Nw0r+fjkUfvPZ/zOefc9+fmTcG359xwDXf94Nt0ru1k3h0v0NOZprc7w7zbF9LXk9ns\nOOmVK1n2/32BJZ/6ND0vvMBgv0e9Xa+Nle7JwAbdFrV0cPqP/sIX5zzFB37yV1at61l/LZuNZLLZ\njcaaUFPGR4+exaw9dmTclImkUn4FJY1+xSUppu9Rv/799D3qSZWY3yRJkjS6VNTUctDJp3HyRf/G\nxB137t9tSJIkSZIkjYimpqbQ1NRU3tTUlPRWwEfHGA+IMTbl3l8K3BdjnAXcl3sPcCIwK/dzPnAN\nQK4A6DLgEOBg4LIQwqv/Q9k1wEc2uO+EPM6hIXCnoULW1wNtL8D8+2HXY4njdqSnp49Vi19a36Vt\nxTJCyDJ5lzpe/L9VAEzauY5U8ab/x+pMZyfLv/4N2ufOBeCl555jp//5JSUT3rjzT+P0KvY5ehrL\nnlvDIafMpLTitf9o+HJr1wavO8nmCo9Wrevh2j8uoCed5aJjdmVCzWvHr23tEWmSVOhSxUXsfcQ0\nps2qJwSom1hJUZFHOUiSJGn0KSoqoqi0bKSXIUmSJEnSmJUrEroAuBxoBFqampouA37U3Nw8HDvq\nnAoclXt9I/AAcEmu/abcLj6PhBDGhRCm5PreE2NsBQgh3AOcEEJ4AKiNMT6Sa78JOA24K09zaAgs\nGipkXS1w7ZGQ7ob7v0z6gke49crvcOy/fJyFf/sr7S2rOP6jF1NaUc5eh09l0o41xAjjZ1QPWDSU\n7u1l1cuLeOIP9/DmY08ks3r1+muZtjbSmSwDlvPEHg44ppGDjp1BKAoUbTD2wTMbOGLXRp5e1s5l\n79ybmrIS0tks379/PrP//CIAbZ29fOM9+w16RJokbQ/Kq0qYvHPdSC9DkiRJkiRJkiRJo9sFwBVA\nZe79hNx7yO3Esw0i8PsQQgSujTFeB0yKMS7LXV8OTMq9nga8vMG9i3Ntm2pfPEA7eZpDQ2AVRyHr\n6+wvGMq97mlbyYoF87nz6m9y6LvPZPIus6ifMo1UcTEV1TB9j4ZNDtfVvpZffOGzZNJpls1/lvd8\n7nMsPu88su3tVF/2JX71bBunjmugpvy10qHenm7mN8+jsm43Hrl9Pke9fwada/qorKulur6B8TVl\nfO+sg+jLZqkpL6aiJEVfJktHT3r9GB29mfU7EEmSJEmSJEmSJEmSpDfK7TJ0Oa8VDL2qEri8qalp\nW3cbOiLGuCSEMBG4J4TwzIYXY4wxV1A0bPIxh7acRUMFKtvXRygbR3jTh+CJX5Pd5wxWLO0/fmzN\nKyu4+0dXs2vToZx08WdJbXqo18bMZsik+4t5XnlhAesqaqj5/s1Ujy/j4ZU9zKyroas3s1HRUF93\nN309GZ74YwtHnD6N31/7ZVqXLKamcTzv/+q3qa5voL6qdKN5SlJF/Nvxu7Omu4/evixfPnUfqss8\nkkySJEmSJEmSJEmSpE0oo/9IsoE05q53D3XwGOOS3J+vhBB+AxwMrAghTIkxLssdDfZKrvsSYMYG\nt0/PtS3htaPGXm1/INc+fYD+5GkODcEbz7DSyOhYBQvuh1eeIdOyjOVfuIwV37+e7BH/Dp94lI43\nXcgdP/rRRrdM2mUWqeItr/sqr6zmmH/5GBN2nMlb3vtBlr/QxZ03vUR3WR1rsyku/vn/8plfPs6q\ndT3r7yktr6B+yiQmzqwgVZyhdUn/Tl/tLavo6ewYdK5JteV8+/T9+d77D2TquIqtDIYkSZIkSZIk\nSZIkSWNOD9AyyLWW3PUhCSFUhRBqXn0NHAc8AcwBzsl1Owe4Pfd6DnB26HcosCZ3xNjdwHEhhPoQ\nQn1unLtz19aGEA4NIQTg7NeNNdxzaAjcaagQdLXBHf8Kz9zR//70X9H197/Tu3AhIZVi4mc+TSq2\nM+uQw3nm4T8CMHHmLux7zHEUpbZ0nyEoq6pil8OOpm+HfZlUW0N3e5YzL5tOTwr+47Yn6c1keWh+\nC80vtnLCPlMAKCkrY8qusxg/I5Lp62bq7nuy9NmnaZyxI+VV1Zucr7rc3YUkSZIkSZIkSZIkSdoS\nzc3Nsamp6TLgCjY+oqwTuGwbjyabBPymv9aGYuBnMcbfhRAeBX4ZQjgPWASckes/FzgJmJ+b/1yA\nGGNrCOHLwKO5fl+KMbbmXn8cmA1UAHflfgC+kYc5NAQWDRWCdDcsefS198sfo2TyZHoXLiR29+8s\nVllbxzHnXsBbzzqHbDZDaXkFlXXjtnqq2ppKdt1hMt19GarqiqipLqOnvYcZDRUsWNm/c9D0+tdy\nT8xmKa+qorwKoJpTP/N5+nq6KS4to2pc/bZ8akmSJEmSJEmSJEmStLFXjyC6nP4jyVqAyzZoH5IY\n40Jg/wHaW4C3DdAegQsHGesG4IYB2puBfUZiDg3NsBUNhRBmADfRX60WgetijFeHEBqAW4CdgBeB\nM2KMq4drHYWse1076XQfRaGUyuO+Cr/+CNRMoeiAM0j99nvUnHQi4z92AaGo/xS5ipoaKmpqBhxr\n1boebvjTC6SKAuccthPjq8sGnbehqnSj9+NryvjvDx/C3U+uYO+ptezQ2F801LdsGauuu47SHXak\n7rRTKa6vH1KhkiRJkiRJkiRJkiRJ2rzcbkLXNDU1/QgoA3q2cYchaVDDudNQGvhMjPGx3Ll4fwsh\n3AN8CLgvxviNEMKlwKXAJcO4joLU1d7On2/9GYv+7zF22u8gDn3X6VR++mkIRYTqiUz+0uVQVESq\nsnKzY3X3ZfjmXc/wP39bDMDa7jT/74Td6Otohxgpr66muHTjIqJsZyeZtWshRiguZvKECZxz2E7r\nr6dbW1l80UV0P/EkAKnaGsa95z1b/TmzfX1k29qgqIjixsatvl+SJEmSJEmSJEmSpLEmVyjUPdLr\n0PZt2IqGYozLgGW51+0hhKeBacCpwFG5bjcCDzAGi4b6ursoqq1gjwvPYsHaF1hb1E1lzdT111PV\n1ZsdI93XR8+6dmJRMf+8fz2n79NIJltKZVmKtqUv84svfJaYyXDaJZexw977QYwUFfc/8r7Vq2n9\n8Y9pu/VXVB1xOFO/+tWNi3qyWTJr1r421+rXNoPKdnXR/cwzrLntdupOPYXyPfekqKLiDeuL6TTd\nf/87iz9xEan6ccz4yU8onTZtKOGSJEmSJEmSJEmSJElSgoryMUkIYSfgQGAeMClXUASwnP7jywa6\n5/wQQnMIoXnlypX5WGZeFZeWUnngznz04Yv4z398m4v++Elau1u3+P50Xx+Ln36Ce6+/htaXX2D5\n/bczvhue/a/nef5XL1BUVE0qVUwmneYvt/6MzqVLWXbppbTdPoeu1a30rltH2y9ugXSajgf+SN/S\nZRuNn6qvZ9rVV1G+917UHHcc4047bf21zJo1LPrg2bTdcguLzj6HzJo1A64xs2YNy7/0ZTJtbfS+\n8CKt/3Xz0IIlKW+299wrSYXI3CtJ+WfulaT8M/dKUv6ZeyVJ0uYMe9FQCKEa+BXwrzHGtRteizFG\nYMCz92KM18UYm2KMTRMmTBjuZeZdZd04ulJ9lKfKAVi0dhGZmNni+7vXtXPX969kx/0O4A83/pgd\n9j2EP/3PS3S09bDihbW8+I92pszaHYDpe+zD2pv/m7V3/pZll1xCpq+P3nQvRa/uZlRSQnFjw0bj\nh1SK8j32YMaPf8yUr36F4vHj11+L6TSk0/1v0un+9wMIpaWUztp1/fuKvfbc4s8naWRs77lXkgqR\nuVeS8s/cK0n5Z+6VpPwz90qSpM0ZtuPJAEIIJfQXDP13jPHXueYVIYQpMcZlIYQpwCvDuYZClO3s\npG/pUg54toM73noTn/y/L3LuPudSXbL5I8leVZRKUTdxEr1dXVTXN9DT0U51wzjaW/uPNKyfUs1O\n+/4LB592Oo2TprLo2Le/dnNvL/9o/gv7X/9juv7yCPVHHkmqoeENc4SiIooHaE/V1jLp//07bb/+\nDXWnnUaqpmbANaZqapj8+c9Tc+SRpBobKd977y3+fJIkSZIkSZIkSZIkSRo+w7bTUAghANcDT8cY\nv73BpTnAObnX5wC3D9caClXfihUsPOVUln3ms3R89NPMPvRqjppxFBXFFVs8RmVtHad85vOUVlby\ntnMvoKejhaP/eWfe8p5dOO78fZi6Wz0TdtiJGXvtS3l1DTO+/z0qDjqI8Rd+nPKaWg4+7Qy6Kiuo\nOuMMHi+up6Vvy9efqq1l3BnvY4cbrqf+zPfRXlLByvZuetJv3CmpuKGBulNOofrwwykeN27LJ5Ek\nSZIkSZIkSZIkSYkIIdwQQnglhPDEBm0NIYR7QgjP5/6sz7WHEMJ3QwjzQwj/F0I4aIN7zsn1fz6E\ncM4G7W8KIfwjd893czUjIzqHNm84jyc7HPggcEwI4fHcz0nAN4C3hxCeB47NvR9Tehctgmy2//WL\nL1IciygvLl9/PcbIutWttK1YTufaNYOOU13fwAFvP4nqikp2PupkPn/vQq56aTn/8df5tGezpFtb\nWXPXXXQ2P0r5Xnsx44c/oPEj51NcV0dl3Tiey9Tz5ivncdb1f+Nfb3mc1Z29W/wZisrLKG5ooDUd\n+NdbHufU7z/MA8+spKtv4KPKJEmSJEmSJEmSJEnS5jU1NR3S1NT0301NTY/m/jwkgWFnAye8ru1S\n4L4Y4yzgvtx7gBOBWbmf84FroL84B7gMOAQ4GLhsgwKda4CPbHDfCQUwhzZj2IqGYox/ijGGGON+\nMcYDcj9zY4wtMca3xRhnxRiPjTG2DtcaClXFPvtQvs/eUFTE+E9eTFF5+UbX17W28F+XXMz1F3+Y\n+396LV3tazc5XvG4cazqzjD3ieU8+Pwq/rpoNZlMlrb77iPdUE9Xxzo6580jNW4cReVl6+97avla\nejP9xUuLWjrpS2e3+rP84ZlXeODZlSxd081FP/9f2rssGpIkSZIkSZIkSZIkaSiampq+CNwPnAk0\n5f68P9c+ZDHGB4HX12ecCtyYe30jcNoG7TfFfo8A40IIU4DjgXtijK0xxtXAPcAJuWu1McZHYowR\nuOl1Y43UHNqM4dxpSIMoHj+eGdddx6w/PkDDP/8zqdraja4vX/g8nWvaAHj2zw+S6Xvt7LDV3atZ\n1rGMlq6Wje6ZXFvOBUfuzB6Ta7jy9P2pCX2srK/h5u9/i9/efTvZ3Xej//fmNe8+aDr7T69jQnUZ\n//me/RhXWbLVn2VS7WsFT43VpeR2/5IkSZIkSZIkSZIkSVsht6PQZ4FKXqvnKMq9/2xCOw5taFKM\ncVnu9XJgUu71NODlDfotzrVtqn3xAO0jPYc2o3ikFzBWFTc0DNje0tVC1e478E8Xfpw/X/cTpsza\nnaLi/sfU2t3Kl/7yJe576T72bNiTa469hsaKRgDqq0q56JhZfOStO1NdXkzf2jbu/9ls0r09tCx+\nieceb+bgmTtvNNfk2nJu+NCbyWQj4ypLKC1ObfXn2G96HVefeQCPv9zGuYfPZEJN2eZvkiRJkiRJ\nkiRJkiRJr3cxUD7ItfLc9Q8Mx8QxxhhCiJvv6RzbE4uGCkhLVwvn33M+z61+jnftchoXfPs71BZX\nU1lbB0BXXxf3vXQfAE+3Ps0rna+sLxoCqCorpqqs/5FmiosZN2Uqy+c/R3lVNVMPP5il65ZSliqj\nsaKR1R29dPZmKC0uYmLtYDln88ZVlnLqAdM49YBpm+8sSZIkSZIkSZIkSZIGsxuDnxhVBMxKeL4V\nIYQpMcZlueO/Xsm1LwFmbNBveq5tCXDU69ofyLVPH6D/SM+hzfB4sgKyaO0inlv9HAC/WXAb7Z1t\nZLPZ9dfLisuYUdP/O1NbWrtRwdDrVdbWceq//QfH/MsFvOs//5MvP/51jv/V8Zz3+/NYvradL97x\nJId/837OuPYvrGzvHt4PJkmSJEmSJEmSJEmSNuc5IDvItSzwfMLzzQHOyb0+B7h9g/azQ79DgTW5\n47/uBo4LIdSHEOqB44C7c9fWhhAODSEE4OzXjTVSc2gz3GmogEytnkpFcQVd6S5m1s0k9GVJlZSs\nvz6+Yjw3nXgTi9YuYnr1dBrKBz7i7FXV9Q0cePw7eLn9Zf687M8ALGhbQE86y+2PLwXghVUdvLCq\ngwk1Q99tSJIkSZIkSZIkSZIkbbPvAqcBlQNc685dH5IQws/p38FnfAhhMXAZ8A3glyGE84BFwBm5\n7nOBk4D5QCdwLkCMsTWE8GXg0Vy/L8UYW3OvPw7MBiqAu3I/jPAc2gyLhgpIY3kjt596O4vWLmJm\nzU7UxIr1R5O9anzFeMZXjN+qcctT5UyqnMSKzhVUFFdQmkqx99Ranly6lpqyYmY0DJRvJEmSJEmS\nJEmSJElSvjQ3N89ramr6FvBZoJz+06Oy9BcMfau5uXneUMeOMZ41yKW3DdA3AhcOMs4NwA0DtDcD\n+wzQ3jJSc2jzLBrKk3RLK7Gnm1BeTnHDwDsElaRKmFI9hSnVU4Y+z+rV9C5aRFF5OSVTppCqq2NC\n5QR+dvLPeG71c+xctzPjK8q48V8OZmlbFxNryhlfXTrk+SRJkiRJkiRJkiRJUjKam5u/2NTUdBdw\nMTCL/iPJvrstBUPSYCwayoN0SwuLL7qYrsceo/KQQ5j27SspbmxMfJ5sdzets2fTcu11AEy94grq\n3nEyABMrJzKxcuL6vuOrYXx1WeJrkCRJkiRJkiRJkiRJQ5crEPrASK9D27+ikV7AWJBpb6frsccA\n6Jw3j+y6jmGZJ9vdTccjrxUXdvzpIWImMyxzSZIkSZIkSZIkSZIkafSyaCgPiqqqKJ44AYDiyZMJ\nlRXDMk+qupoJF34cSkooqq6m4dxzCanUsMwlSZIkSZIkSZIkSZKk0cvjyfKgePx4Zt56K71LllA6\nfTrFEyYMyzyhuJjKgw9m1/vuBQLFDfVkMmm61q4lhEDVuPphmVeSJEmSJEmSJEmSJEmji0VDeRBC\noHjiRIonTtzqe9t72+lJ91BVUkVFyRt3KIp9faTb2iBCqn4cReXlFJWXA5DJpFk+/3nu+M7XKS2v\n4F2XXkb95Knb/Hm2RIyR9KpVkE5TVFVFqrY2L/NKkiRJkiRJkiRJkiRp8zyebAgy2Qx92b5hGbul\nq4UX1rzAys6VtHa3ctXfruIDcz/AbQtuo723nWzM0pvpXd+/+/nnWXjCiSw4/ng6//F/9KZ7XrvW\n3s5d37+CjtWtrF62hAdu/Am93V3Dsu7X61u6lBfe9W7mH30Mrf91M5n2dXmZV5IkSZIkSZIkSZKk\n0a6pqWlmU1PT4U1NTTOTGC+EcEMI4ZUQwhMbtH0xhLAkhPB47uekDa79ewhhfgjh2RDC8Ru0n5Br\nmx9CuHSD9pkhhHm59ltCCKW59rLc+/m56zvlcw5tmkVDW+nVQp7L/3w5KzpWbLJvjJEY4xaPvbp7\nNZ978HOcctspvH/u+1nRsYL7XrqPZR3L+Pq8r9PZ18lvF/6Wl9a+xGMrHmNVx0rabvkl2Y4OYlcX\nrT/4Iatbl64fL4Qiymte2+Gnsq6OoqLU1n/oIVj30ENkVq0CoPWG68nmqVhJkiRJkiRJkiRJkqTR\nqqnf34Angd8CTzY1Nf2tqampaRuHng2cMED7d2KMB+R+5gKEEPYCzgT2zt3zwxBCKoSQAn4AnAjs\nBZyV6wvwzdxYuwKrgfNy7ecBq3Pt38n1y8sc2jyLhrbSnPlz6Eh3EELgK/O+wtqetQP2W9W1iqse\nu4qrH7ualq6WQcdb1bmKecvmcfPTN9Od6WZpx1J2q9+Nbx7xTSZWTuTrb/06N514E8fMOIYnVj3B\nznU7c/ZdZ3PO787hw/d+hPDhs9aPFQ7Yh4dWziOdTQOQqSjiHZ+6lD0O+yf2f/tJHHHW2RSXlg7p\nc6/pWcNvF/6WKx69gqXrlm62f+WBB0Kqv0Cp8tBDCSUlQ5pXkiRJkiRJkiRJkqSxIFcY9ABwEFAB\n1OX+PAh4YFsKh2KMDwKtW9j9VOAXMcaeGOMLwHzg4NzP/BjjwhhjL/AL4NQQQgCOAW7N3X8jcNoG\nY92Ye30r8LZc/3zMoc0oHukFjDZvnf5WbnjiBqpKqjhz9zPJkt3oek+6hxAC333su/xm/m8AaO9t\n55KDL6E0tXHBTndfN/Pb5vORez4CwG+e/w1X/NMVpGOam5+6mX3H70tpqpTfPP8brjr6Kp5qeYoV\nnSto72sHYEHbAjJ1lUz72U2s6VzNwvo+aqtK6F6TJhb1cf3867lz4Z28/6gzee9up1NVUTfkz/10\ny9Nc+lD/rl8PLn6Qn57wUxorGgftX7rDDuzy+7tJr1pF6YwZFI8bN+S5JUmSJEmSJEmSJEkaA64F\nqga5VgX8CNjWHYde7xMhhLOBZuAzMcbVwDTgkQ36LM61Abz8uvZDgEagLcaYHqD/tFfviTGmQwhr\ncv3zMceqLYzBmOVOQ1uhvbedK5uvZM6COfz8mZ/zuxd/R2Wqks6+Ttb2rOWBlx/g0ocu5a/L/spe\njXutv29NzxqyMfuG8db1rWN+2/z1719a+xL15fV87J6P8bsXf8e3mr/FlKoprOxaSSCwQ+0O7FCz\nA7uO2xWAY3c4lkdf+Rv31Swmtf8+7Dhtb+oW7siN//5n7r3+afavOYgVnSv4zuNX89ya57fps7d0\nv7ZbUmtP64CfZ0NFFRWUTptG5f77U9zQsE1zS5IkSZIkSZIkSZK0PWtqapoJ7LmZbnvl+iXlGmAX\n4ABgGXBlgmNrFHCnoUH0pHto62kjHdPUltZSU1pDNmbpyfSs79OV7qK9r50rHr2Cc/c9l4vvv5hI\n5P6X72fuu+dy8KKDCQT+7c3/Rnlx+Ubjr+xcye9f/D2HTj2UAyceyMI1C7n04Evp7OukN9u7vl9Z\ncRnXH3c9kUh3xyvstvJFrj32GlZ1t/Js67N8bd7XmFk3kyOmHUF2RTnNv3wcgKXPtbFv5S4AlBaV\nMrV66jbF4y1T3sIJO53AgrYFfP6QzzOuzJ2DJEmSJEmSJEmSJElKyFSgl/7jyAbTm+v3QhITxhhX\nvPo6hPBj4M7c2yXAjA26Ts+1MUh7CzAuhFCc2wlow/6vjrU4hFBM/5FrLXmaQ5vhTkODeL7teU76\n9Umc8KsTuHPhnfSke6grq+Pywy7nsKmHcewOx/LOXd7JnPlzmFE7g66+LiIRgBgj63rX8cE9P8iX\nD/8yk6smv2H82xfczreav8Vzrc9x+WGXc8vJt7Bz7c7MfmI2Vx99NU2Tmvjwvh+mrbuN0+acxlMt\nTzG+bifKHr6aVNcalnUs40t/+RJd6S5O2/U0/vjyH8lUd1E1rv8ItOl71DOhupFrjr2G20+7fZNH\niW2JhooGLnvLZfzkuJ+w/4T9KUmVbNN4kiRJkiRJkiRJkiRpvaVA6Wb6lOb6JSKEMGWDt+8Cnsi9\nngOcGUIoCyHMBGYBfwUeBWaFEGaGEEqBM4E5McYI/AF4b+7+c4DbNxjrnNzr9wL35/rnYw5thjsN\nDeK2+bet3/Hn1udu5fidjqesuIzGikbO2O0Mnmx5kovvv5jG8kbO3ONMHln2CF849Avc9eJdnLLz\nKRSFIp5oeYLaslqqS6upKa0BoDfTS2mqlJ1qdyITM1zy0CUcOvlQjpxxJHs17sUn3/RJMjHDxQdd\nzMNLHubShy4lG7P8ZdlfmFY9jfp3/YjeTDcPvPwAN554I9mYZXz5eE6+7WRmjZvFVz7xDSaWTKa8\nspTKmlKOGHdEYjGpLq1ObKzBtPe2s6ZnDQB1ZXXr4yZJkiRJkiRJkiRJ0vaqubn5haampqeBgzbR\n7anm5uYh7TIUQvg5cBQwPoSwGLgMOCqEcAAQgReBjwLEGJ8MIfwSeApIAxfGGDO5cT4B3A2kgBti\njE/mprgE+EUI4SvA/wLX59qvB/4rhDAfaKW/CCgvc2jzLBoaxEkzT+LW524lEzOcsNMJVBT37wBW\nUVzBpKpJfO7Bz9Gb7eX8/c6nL9PH6p7VvG/39/H2Hd9Oe28777njPXSlu7jhiRuY++65FFHEY688\nxm3zb+Nds97F/hP25/vHfJ/F6xbzth3eBkB1STXVpdU0L2/m9gW3s0fDHmRihvJUOcfteByTKidR\nXl9LTVcLb5p4EF+b9zVOmHkCR08/mmzM8uzqZ7ng4Q9z6ym3Ulkx/AU+SctkMzy4+EEufehSAL56\n+Fc5aeeTKC7yaypJkiRJkiRJkiRJ2u59FHgAqBrgWgdwwVAHjjGeNUDz9QO0vdr/q8BXB2ifC8wd\noH0hcPAA7d3A6SM1hzbNaoxB7NGwB797z+/ozfRSV1a3vmgIYNa4Wcx991zSMU1taS0lRSWkQmr9\nkV1retbQle4CoC/bR0dfBzFGLrzvQiKRe1+6l1vecQv7T9ifI2cc+Ya5Z9bN5MU1LzKjegZ3nHYH\nZakySlOl1FfUA1BdNZGTdj6ZI2ccRWVxJT2ZHq488kqalzfzgb0+QGP5th1FNlK6M93cufDO9e/v\nXHgnx+xwTF52OJIkSZIkSZIkSZIkaSQ1Nzc3NzU1HQX8CNgL6KX/SLKngAuam5ubR3B52g5ZNDSI\nypJKKksqB7xWVlzGpOJJg95bV1bHmbufyZwFczh2x2NpKG/oLxyi/8i8bMzSk+7hrhfv4qw93ljM\n11jRyNXHXE0mm6G8uHzAI7pKU6WUpkrXr+e4nY7juJ2OG8pHLRjlqXJO3+10Hl7yMADv3e29GxVr\nSZIkSZIkSZIkSZK0PcsVBjU1NTXNBKYCS4d6JJm0kp6dWQAAFK9JREFUORYNDYNx5eO46KCLOH+/\n8ylNlVJXVkdxUTGXveUy5iyYw/E7Hc/DSx9mr8a9Bh2jobwhjysePjGbJRQVbVHfVFGKQ6Ycwt3v\nuRuA2rJaUkWp4VyeJEmSJEmSJEmSJEkFJ1coZLGQhpVFQ8OktrS2f5OwnJrSGk7d9VSOnH4k6fZO\nimKgorz/GMKVnSvpSndRVVJFY0UjdLbAi3+C3k6Y9XaoGj/oPNmYZWXnSha0LWCX+l2YUDGBorBl\nRTrDKdvdTfczz9B2yy+pPflkKg48gFTVQMcubqyqpIqqks33kyRJkiRJkiRJkiRJ0tBZNJRHJUUl\nVPak+MXXvkrb8qXsfdTbOejss3j/3PezonMFB0w4gKuPvpqGx38Gv/8PALJvOpf02y+ntLxuwDFb\nulo4484zaO1upaG8gVvfeSsTKicMaX0dPWnau/soCoHGqlJSqaEXH2XWrOGlD55N7OtjzW23scu9\n92xR0ZAkSZIkSZIkSZIkSZKG38hvSTPGrFr8Em3LlwKw4NG/sGzdMlZ0rgDg8ZWP053pIq54cn3/\nolXP0dm9etDxOtOdtHa3AtDa3UpXumtI6+pJZ7jnqRUc9o37Ofbbf2RhS8eQxlkvkyH29fW/jpHY\n27tt40mSJEmSJEmSJEmSJCkxFg3lWf2UqZSUlQNQO2kyU6omM7FyIgD7j9+fslQ52X/6LIzfDeqm\ns/rof+epjiWDjlddUs3hUw8H4PCphw/5aK+1XWm+d/98shHWdqf5+byXhjTOq4pqapj85S9Rtuee\nTPjUv5Kqr9+m8SRJkiRJkiRJkiRJkpQcjyfLk2w2Q8+6dZRWVHHuVdeyrmUVtRMnUVlVxy9O/gWd\n6U6qS6pprGiko7ic1e+5luUdy7ntpbl8sunTg47bWNHI1976NYhQliqjqnRoRUMVpSneOms8C1au\nA+Co3ScOaZxXpWpqqHvnO6k55hiKqqooKi/fpvEkSZIkSZIkSZIkSZKUHIuG8iCbyfDKiwu59/of\nUj9lGkef/WGmzNp9/fUJlRM26l9VUkW2cRalddP51LRDaKxo3OT4DdkIi/8Gz98Nb/oQjN8diku3\nao3VZcVc/LZZnHbgNGrLi5lQU7ZV9w+kqLzcYiFJkiRJkiRJkiRJkqQCZNFQHnStXcOcK79Ge8tK\nVix4nh323o99jzluk/fUFFdRE4Hiyk0P3tkKbS/Bz07vf//4z+Cix6B2ylavs6GqlIaqrSs2kiRJ\nkiRJkiRJkiRJ0uhTNNILGAtCURFlVa8dG1ZeXb3pG3o7YOH98D8fgsdvhq62wfu2LuwvGnpVXyek\nu7dtwZIkSZIkSZIkSZIkSdquudNQHlTWjeNdn/sCj97xK8bvsBPT99xn0zd0tcHPzoBsBubfCzse\nBhXjBu77ytNQMxn2fhcsehgOOhuKt/1oMUmSJEmSJEmSJEmSJG2/LBrKk9oJEznm3AsIISQ78C5H\nw3VHwaEfh71O699pqLRqs7dJkiRJkiRJkiRJkiRp7PJ4sjza4oKhinFw1i2wy9vgHVdB1YTB+1ZP\ngo/8AVKlZIuK6Zx8KMuXrKC7oyOZRUuSJEmSJEmSJEmSJGm7405Dhai0CnY5BmYcCiUVkNrEY0qV\nwLgZdO9/Lvf/9FqefuhHAJz15SuYtOssOtOdlKXKKE2V5mnxkiRJkiRJkiRJkiRJKnTuNFSoilJQ\nXjNowVBfpm+j9+neHhb+bd769129nTSvaOZTf/gUNz91M209bcO6XEmSJEmSJEmSJEmSJI0eFg2N\nEtlMhnWrW1n50ou0tCzj6/O+zr2L7qW9tx2AsspKjv3IhZSUVzBp512p2nEKH7v3Y8xbPo/vPPYd\nlrQvGeFPIEmSJEmSJEmSJEmSpELh8WSjREfbam787IX0dHQwedZuHPnBE/nEA59i7rvnUlNaQ0lZ\nObu86WDOu+paQqqIdaleUiFFH/07EhUX+aglSZIkSZIkSZIkSZLUz0qSUaJt+TJ6OjoAWP78cxxU\ndjYA6Wx6fZ+SsnJKysoBKM70cv3x13P9E9dzxLQjmFw1Of+LliRJkiRJkiRJkiRJUkGyaGiUqJ86\njdoJE1m78hV2PeQwWtKr+WzTZ2kobxiwf2mqlP0m7Mc33/pNSlOlFAVPopMkSZIkSZIkSZIkSVI/\ni4ZGier6Bt7/lStJ9/ZSXFZGXxkcXHI4panSTd5XXlyepxVKkiRJkiRJkiRJkiRptLBoaBSpGlc/\n0kuQJEmSJEmSJEmSJEnSdsAzqyRJkiRJkiRJkiRJkqQxxqIhSZIkSZIkSZIkSZIkaYyxaEiSJEmS\nJEmSJEmSJEkaYywakiRJkiRJkiRJkiRJksYYi4YkSZIkSZIkSZIkSZKkMcaiIUmSJEmSJEmSJEmS\nJGmMsWhIkiRJkiRJkiRJkiRJGmMsGpIkSZIkSZIkSZIkSZLGGIuGJEmSJEmSJEmSJEmSpDGmeKQX\noMLUuXYNmXSa4pISKmpqR3o5kiRJkiRJkiRJkiRJSpBFQ3qDjjVt3Pmdb7D46SfY44gjOeac86mo\nrRvpZUmSJEmSJEmSJEmSJCkhHk+mN+hc08bip58A4Jk//ZHe7u4RXpEkSZIkSZIkSZIkSZKSNCJF\nQyGEE0IIz4YQ5ocQLh2JNWhwFdU1lFZUAlDTOIHikpIRXpEkSZIkSZIkSZIkSZKSlPfjyUIIKeAH\nwNuBxcCjIYQ5Mcan8r0WDayibhznXPEDWpe8zPgZO1JV3zDSS5IkSZIkSZIkSZIkSVKC8l40BBwM\nzI8xLgQIIfwCOBWwaKhApFIpasdPoHb8hJFeiiRJkiRJkiRJkiRJkobBSBxPNg14eYP3i3NtGwkh\nnB9CaA4hNK9cuTJvi5OksczcK0n5Z+6VpPwz90pS/pl7JSn/zL2SJGlzRqJoaIvEGK+LMTbFGJsm\nTHDHG0nKB3OvJOWfuVeS8s/cK0n5Z+6VpPwz90qSpM0ZiaKhJcCMDd5Pz7VJkiRJkiRJkiRJkiRJ\nyoORKBp6FJgVQpgZQigFzgTmjMA6JEmSJEmSJEmSJEmSpDGpON8TxhjTIYRPAHcDKeCGGOOT+V6H\nJEmSJEmSJEmSJEmSNFblvWgIIMY4F5g7EnNLkiRJkiRJkiRJkiRJY91IHE8mSZIkSZIkSZIkSZIk\naQRZNCRJkiRJkiRJkiRJkiSNMRYNSZIkSZIkSZIkSZIkSWOMRUOSJEmSJEmSJEmSJEnSGBNijCO9\nhs0KIawEFm1B1zpgzRCn2dJ7N9dvU9cHu/b69oH6vb5tPLBqkyvddkON59bcN9R4bk375uJbyLHc\nmnuT/m4ay6FdL4Tf81UxxhOGcN9GRlnu3VSfsZIvzL1btq6k7x2J3Pv6tu0lllvSt5C/m9tj7t2S\nvoX8TLbG9povjOWWX9vav6vlI5aDrSPp+0bz73m+cy/4TJI0GvOFsRza9bHy3RxLv+fbnH/NvQO+\nL+Tv99bc678nJ3uv383k7hvtfy8YLbl3a+4d7c9kS43GWA7UXgi5d7B1JH2fuTe5e0f773ki/91B\nKngxxu3mB7huuO/dXL9NXR/s2uvbB+o3QJ/mQo3n1tw31HhuTfvm4lvIsdyae5P+bhrL5GK5JbEb\nqXhuL89ka2K/lc9g1HzHzb3JxXJr7h2J3Pv6tu0lltsSz9H23fSZFN4z2V7zhbHc8mtb+3e1fOUK\n/15QeD8+k5GP5dbca+4t3Fhuj/H099xnMhqeyWjMF0Np215iuS3xHCvfzXzEckvjViixHOlnsjX3\njpVnMhpjuSWxe31bvr7fhZwvxkru3Zp7x8rvuT/+jPaf7e14sjvycO/m+m3q+mDXXt8+UL9t+WxD\nNdQ5t+a+ocZza9q3JL7DbTR+N43l0K6Ptt/zJBTCM9lUn7GSL8y9m1/DcNw7Erl3S+ZNWj5iuSV9\nt5fvZhJ8JsnaXvOFsdzya4X6dzX/XlB4fCbJGY35wlgO7fpY+W76ez58fCbJGY35wn9PHtr1sfLd\nzEcsB7tWqLFMyvaaL0bT93tr7vXfk5O9z9yb3L1j5fdcGtVGxfFkeqMQQnOMsWmk17E9MJbJMZbJ\nMp6Fx2eSHGOZHGOZLONZeHwmyTGWyTGWyTKehcdnkhxjmSzjmRxjWXh8JskxlskynskxloXHZ5Ic\nY5ks45kcYylt3va209BYct1IL2A7YiyTYyyTZTwLj88kOcYyOcYyWcaz8PhMkmMsk2Msk2U8C4/P\nJDnGMlnGMznGsvD4TJJjLJNlPJNjLAuPzyQ5xjJZxjM5xlLaDHcakiRJkiRJkiRJkiRJksYYdxqS\nJEmSJEmSJEmSJEmSxhiLhiRJkiRJkiRJkiRJkqQxxqIhSZIkSZIkSZIkSZIkaYyxaGg7EELYM4Tw\noxDCrSGEj430eka7EEJVCKE5hPCOkV7LaBdCOCqE8FDu+3nUSK9nNAshFIUQvhpC+F4I4ZyRXo/M\nvcPB/JsMc29yzL2Fx9ybPHNvMsy9yTH3Fh5zb/LMvckw9ybL/Ft4zL/JMvcmw9ybLHNv4TH3Jsvc\nmxzzb3LMvdIbWTRUoEIIN4QQXgkhPPG69hNCCM+GEOaHEC4FiDE+HWO8ADgDOHwk1lvItiaWOZcA\nv8zvKkePrYxnBNYB5cDifK+10G1lLE8FpgN9GMthY+5Nlvk3Oebe5Jh7C4+5N1nm3uSYe5Nj7i08\n5t5kmXuTY+5Nlvm38Jh/k2PuTY65N1nm3sJj7k2OuTdZ5t/kmHulbWPRUOGaDZywYUMIIQX8ADgR\n2As4K4SwV+7aKcBvgbn5XeaoMJstjGUI4e3AU8Ar+V7kKDKbLf9uPhRjPJH+vxhenud1jgaz2fJY\n7g78Ocb4acD/h8PwmY25N0mzMf8mZTbm3qTMxtxbaGZj7k3SbMy9SZmNuTcpszH3FprZmHuTNBtz\nb1JmY+5N0mzMv4VmNubfpMzG3JuU2Zh7kzQbc2+hmY25NymzMfcmaTbm36TMxtwrDZlFQwUqxvgg\n0Pq65oOB+THGhTHGXuAX9FdDEmOck/uHxQfyu9LCt5WxPAo4FHg/8JEQgr8jr7M18YwxZnPXVwNl\neVzmqLCV383F9McRIJO/VY4t5t5kmX+TY+5Njrm38Jh7k2XuTY65Nznm3sJj7k2WuTc55t5kmX8L\nj/k3Oebe5Jh7k2XuLTzm3uSYe5Nl/k2OuVfaNsUjvQBtlWnAyxu8XwwcEvrPrnw3/f+QsPJ5ywwY\nyxjjJwBCCB8CVm3wD2Ft2mDfzXcDxwPjgO+PxMJGoQFjCVwNfC+E8FbgwZFY2Bhm7k2W+Tc55t7k\nmHsLj7k3Webe5Jh7k2PuLTzm3mSZe5Nj7k2W+bfwmH+TY+5Njrk3WebewmPuTY65N1nm3+SYe6Ut\nZNHQdiDG+ADwwAgvY7sSY5w90mvYHsQYfw38eqTXsT2IMXYC5430OvQac+/wMP9uO3Nvcsy9hcfc\nOzzMvdvO3Jscc2/hMfcOD3PvtjP3Jsv8W3jMv8kz9247c2+yzL2Fx9ybPHNvMsy/yTH3Sm/kVnCj\nyxJgxgbvp+fatPWMZbKMZ3KMZeHxmSTLeCbHWCbHWBYen0myjGdyjGVyjGXh8Zkky3gmx1gmy3gW\nHp9Jcoxlcoxlsoxn4fGZJMdYJst4JsdYSlvIoqHR5VFgVghhZgihFDgTmDPCaxqtjGWyjGdyjGXh\n8Zkky3gmx1gmx1gWHp9Jsoxncoxlcoxl4fGZJMt4JsdYJst4Fh6fSXKMZXKMZbKMZ+HxmSTHWCbL\neCbHWEpbyKKhAhVC+DnwF2D3EMLiEMJ5McY08AngbuBp4JcxxidHcp2jgbFMlvFMjrEsPD6TZBnP\n5BjL5BjLwuMzSZbxTI6xTI6xLDw+k2QZz+QYy2QZz8LjM0mOsUyOsUyW8Sw8PpPkGMtkGc/kGEtp\n24QY40ivQZIkSZIkSZIkSZIkSVIeudOQJEmSJEmSJEmSJEmSNMZYNCRJkiRJkiRJkiRJkiSNMRYN\nSZIkSZIkSZIkSZIkSWOMRUOSJEmSJEmSJEmSJEnSGGPRkCRJkiRJkiRJkiRJkjTGWDQkSZIkSZIk\nSZIkSZIkjTEWDWlMCiH8eaTXIEljjblXkkaG+VeS8s/cK0n5Z+6VpPwz90rS6BdijCO9BkmSJEmS\nJEmSJEmSJEl55E5DGpNCCOtyfx4VQngghHBrCOGZEMJ/hxBC7tqbQwh/DiH8PYTw1xBCTQihPITw\n0xDCP0II/xtCODrX90MhhNtCCPeEEF4MIXwihPDpXJ9HQggNuX67hBB+F0L4WwjhoRDCHiMXBUnK\nL3OvJI0M868k5Z+5V5Lyz9wrSfln7pWk0a94pBcgFYADgb2BpcDDwOEhhL8CtwDvizE+GkKoBbqA\nTwIxxrhv7i8gvw8h7JYbZ5/cWOXAfOCSGOOBIYTvAGcDVwHXARfEGJ8PIRwC/BA4Jm+fVJIKh7lX\nkkaG+VeS8s/cK0n5Z+6VpPwz90rSKGTRkAR/jTEuBgghPA7sBKwBlsUYHwWIMa7NXT8C+F6u7ZkQ\nwiLg1b/E/CHG2A60hxDWAHfk2v8B7BdCqAYOA/4nV1wNUDbMn02SCpW5V5JGhvlXkvLP3CtJ+Wfu\nlaT8M/dK0ihk0ZAEPRu8zjD034sNx8lu8D6bG7MIaIsxHjDE8SVpe2LulaSRYf6VpPwz90pS/pl7\nJSn/zL2SNAoVjfQCpAL1LDAlhPBmgNz5qsXAQ8AHcm27ATvk+m5Wrnr6hRDC6bn7Qwhh/+FYvCSN\nUuZeSRoZ5l9Jyj9zryTln7lXkvLP3CtJBc6iIWkAMcZe4H3A90IIfwfuof/s1B8CRSGEf9B/BuuH\nYow9g4/0Bh8AzsuN+SRwarIrl6TRy9wrSSPD/CtJ+WfulaT8M/dKUv6ZeyWp8IUY40ivQZIkSZIk\nSZIkSZIkSVIeudOQJEmSJEmSJEmSJEmSNMZYNCRJkiRJkiRJkiRJkiSNMRYNSZIkSZIkSZIkSZIk\nSWOMRUOSJEmSJEmSJEmSJEnSGGPRkCRJkiRJkiRJkiRJkjTGWDQkSZIkSZIkSZIkSZIkjTEWDUmS\nJEmSJEmSJEmSJEljjEVDkiRJkiRJkiRJkiRJ0hjz/wM1uqos6VfMwgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "utJ2CXsIszAZ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 2230 + }, + "outputId": "a3030bf7-faaa-42fc-ec0e-a5d0c07f2179" + }, + "cell_type": "code", + "source": [ + "for year in years:\n", + "\n", + " sns.relplot(x='income', y='lifespan', hue='region', size='population', \n", + " data=df1[df1.year==year])\n", + "\n", + " plt.xscale('log')\n", + " plt.xlim(150, 1500000)\n", + " plt.ylim(20, 90)\n", + " plt.title(year)\n", + " plt.axhline(y=50, color='cyan')\n", + " " + ], + "execution_count": 98, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8VNX9//HXJwtJSCDsCLgAigq4\nVUfEutS91lqX1rrXpVZqq9Vq+6vYWrVqrUtbq361rSvYuu9+XYso1a+tS9xAwB1wQ9aQsGaZfH5/\n3BMYwiRMlptl8n4+Hnlk5tx7zzmTWj5zzj33fMzdERERka4tp6M7ICIiIq2ngC4iIpIFFNBFRESy\ngAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKBLl2JmZ5lZmZlVmdmkBsd+ZGYfmdkKM3vGzIam\nHNvXzF4wswozm5um3p3M7KVw/HMz+238n0ZEpO0ooEtX8yVwOXB7aqGZ7QNcARwO9APmAPeknLIy\nXPP/Gqn3buDFcO03gJ+a2WFt2XERkTgpoEuX4u4Pu/ujwJIGhw4FHnD3me5eDVwG7G1mW4brXnP3\nfwCfNFL1cOAud0+6+8fA/wFjY/kQIiIxUECXbGJpXm+X4bV/AU4ys3wz2wbYHXiuLTsnIhInBXTJ\nFs8AR5vZDmZWBFwEONAzw+ufAI4CVgPvAbe5++ux9FREJAYK6JIV3P054GLgIWBu+FkOfL6xa82s\nH9EXgkuBQmAz4Jtm9tOYuisi0uYU0CVruPuN7j7K3QcTBfY84N0MLh0JJN39TnevdffPgXuBQ2Ls\nrohIm1JAly7FzPLMrBDIBXLNrLC+zMy2s8jmwM3Ade5eHq7LCdflR2+t0Mx6hGo/CGXHh/M2AY4B\nprf/JxQRaRkFdOlqLiS6zz0RODG8vpBoqvxuYAXwGvBfIPVZ8r3DuU8Bm4fX/wJw90rgu8C5QDnw\nNtHI/vLYP42ISBsxd+/oPoiIiEgraYQuIiKSBWIN6GZ2jpm9a2YzzeznoayfmU0xsw/D775x9kFE\nRKQ7iC2gm9l2wOnAOGBH4FAz24ro3udUdx8FTA3vRUREpBXiHKGPBl5191XuXgv8m2jh0eHA5HDO\nZOCIGPsgIiLSLcQZ0N8F9jKz/mbWk+iZ3s2Awe4+P5zzFTA4xj6IiIh0C3lxVezus83sKqJHg1YS\nPQqUbHCOm1naZfZmNgGYADBmzJhdZs6cGVdXRUQyYRs/RaTjxLoozt1vc/dd3H1voud7PwAWmNkQ\ngPB7YSPX3uzuCXdPFBUVxdlNERGRLi/uVe6Dwu/Nie6f3w08DpwcTjkZeCzOPoiIiHQHsU25Bw+Z\nWX+gBjjT3ZeZ2ZXA/WZ2GjAPODrmPoiIiGS9WAO6u++VpmwJsH+c7YqIiHQ32ilOREQkCyigi4iI\nZAEFdBERkSyggC4iIpIFFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0\nERGRLKCALiIikgUU0EVERLKAArqIiEgWUEAXERHJAgroIiIiWUABXUREJAsooIuIiGQBBXQREZEs\noIAuIiKSBRTQRUREsoACuoiISBZQQBcREckCCugiIiJZQAFdREQkCyigi4iIZAEFdBERkSyggC4i\nIpIFFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGRLBBrQDezc81s\nppm9a2b3mFmhmY0ws1fN7CMzu8/MesTZBxERke4gtoBuZsOAs4GEu28H5ALHAlcB17r7VkA5cFpc\nfRAREeku4p5yzwOKzCwP6AnMB/YDHgzHJwNHxNwHERGRrBdbQHf3L4A/Ap8SBfIK4A1gmbvXhtM+\nB4bF1QcREZHuIs4p977A4cAIYChQDBzcjOsnmFmZmZUtWrQopl6KiIhkhzin3A8A5rj7InevAR4G\n9gD6hCl4gE2BL9Jd7O43u3vC3RMDBw6MsZsiIiJdX5wB/VNgvJn1NDMD9gdmAS8AR4VzTgYei7EP\nIiIi3UKc99BfJVr89iYwI7R1M3A+cJ6ZfQT0B26Lqw8iIiLdhbl7R/dhoxKJhJeVlXV0N0Ske7OO\n7oBIU7RTnIiISBZQQBcREckCCugiIiJZQAFdREQkCyigi4iIZAEFdBERkSyggC4iIpIFFNBFRESy\ngAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGRLKCALiIikgUU0EVERLKAArqI\niEgWUEAXERHJAgroIiIiWUABXUREJAsooIuIiGQBBXQREZEsoIAuIiKSBRTQRUS6ITM7zMwmdnQ/\npO3kdXQHRESkdczMAHP3ukyvcffHgcfj65W0N43QRUS6IDMbbmbvm9mdwLvAD8zsv2b2ppk9YGYl\n4bxDzOw9M3vDzK43sydC+Slm9j8pdT1vZtPNbKqZbR7KJ4Vr/mNmn5jZUR31eWXjFNBFRLquUcBN\nwDeA04AD3H1noAw4z8wKgb8D33L3XYCBjdRzAzDZ3XcA7gKuTzk2BNgTOBS4MpZPIW1CAV1EpOua\n5+6vAOOBMcDLZvY2cDKwBbAt8Im7zwnn39NIPbsDd4fX/yAK4PUedfc6d58FDG7rDyBtR/fQRUS6\nrpXhtwFT3P241INmtlMbtFGVWmUb1Ccx0QhdRKTrewXYw8y2AjCzYjPbGngfGGlmw8N5xzRy/X+A\nY8PrE4CX4uuqxEUjdBGRLs7dF5nZKcA9ZlYQii909w/M7KfAM2a2Eni9kSp+BtxhZv8PWAScGnun\npc2Zu3d0HzYqkUh4WVlZR3dDRLq3LjndbGYl7r4iPNp2I/Chu1/b0f2StqcpdxGR7HZ6WCg3Eygl\nWvUuWUhT7iIiWSyMxjUi7wZiG6Gb2TZm9nbKT6WZ/dzM+pnZFDP7MPzuG1cfREREuovYArq7v+/u\nO7n7TsAuwCrgEWAiMNXdRwFTw3sRERFphfa6h74/8LG7zwMOByaH8snAEe3UBxERkazVXgH9WNbt\nUDTY3eeH11+hnYdERERaLfaAbmY9gMOABxoe8+iZubTPzZnZBDMrM7OyRYsWxdxLERFpyMz+09F9\nkMy1xwj9W8Cb7r4gvF9gZkMAwu+F6S5y95vdPeHuiYEDG8snICIibc3M8gDc/esd3RfJXHsE9ONY\nPyHA40SJAwi/H2uHPoiIdJjhE588fvjEJ+cOn/hkXfh9fGvrNLNHQ0rUmWY2IZStMLNrQtlzZjbO\nzKaF1KeHhXNywzmvh3SpPw7l+5jZS2b2ODCrvr6U9s43sxlm9o6ZXRnKTg/1vGNmD5lZz9Z+Lmm5\nWHeKM7Ni4FNgpLtXhLL+wP3A5sA84Gh3X9pUPdopTkQ6gRbtFBeC9y1AarBbBZw+98pv353+qgw6\nY9bP3ZeaWRHRlq7fABYDh7j702b2CFAMfJsoE9tkd98pBP9B7n552Cb2ZeD7RNnZngS2q8/OZmYr\n3L3EzL4F/JYoPeuqlLb7u/uScO7lwAJ3v6Gln0laJ9aNZdx9JdC/QdkSolXvIiLdwRWsH8wJ769g\nXcrSljjbzI4Mrzcjyo1eDTwTymYAVe5eY2YzgOGh/CBgBzM7KrwvTbn2tZRUq6kOAO5w91UAKYOw\n7UIg7wOUAM+24vNIK2mnOBGReG3ezPKNMrN9iILs7mHEPA0oBGp83bRrHSH1qbvX1d8XJ5pp+Jm7\nP5umzpU0zyTgCHd/JySH2ae5n0XajvZyFxGJ16fNLM9EKVAegvm2wPhmXPss8BMzywcws63D7dGm\nTAFOrb9Hbmb9QnkvYH6o64RmfQJpcwroIiLx+jXRPfNUq0J5Sz0D5JnZbOBKonzombqVaNHbm2b2\nLlGyliZna939GaIFzWUh0csvw6HfAq8S3Yd/r1mfQNqc0qeKiGSmxelTw8K4K4im2T8Fft2aBXEi\n6Sigi4hkpkvmQ5fuQ1PuIiIiWUABXUREJAsooIuIiGQBBXQREZEsoIAuIiKSBRTQRUREsoACuohI\nNxSyq3095f2klP3d27qtW81sTBx1yzray11EJG6XlG6wsQyXVHT0xjL7ACuA/8TdkLv/KO42RCN0\nEZF4RcH8FqL0pBZ+3xLKW8TMis3syZCH/F0zO8bM9jezt0LO8ttDalTMbK6ZDQivEyE/+nDgDOBc\nM3vbzPYKVe9tZv8J+dMbHa2bWYmZTTWzN0N7hzfWr1A+zcwS4fVfzaws5Gz/XUv/BrIhBXQRkXg1\nlT61pQ4GvnT3Hd19O6K93ScBx7j79kSzrz9p7GJ3nwv8DbjW3Xdy95fCoSHAnsChRHvEN2YNcKS7\n7wzsC/zJzKyRfjX0G3dPADsA3zCzHTL90NI0BXQRkXi1efpUolznB5rZVWF0PRyY4+4fhOOTgb1b\nUO+j7l7n7rOAwU2cZ8AVZjYdeA4YFs5fr1/uXpHm2qPN7E3gLWAsoHvrbUQBXUQkXm2ePjUE7p2J\nAujlwBFNnF7Lun/rCzdSdVXK66b2rj8BGAjs4u47AQuAwob9MrOLUi8ysxFEmdr2d/cdgCcz6JNk\nSAFdRCRebZ4+1cyGAqvc/Z/ANcDuwHAz2yqc8gPg3+H1XGCX8Pp7KdUsJ8pn3hKlwEJ3rzGzfYnW\nBaTr184NrusNrAQqzGww8K0Wti9paJW7iEicLqm4m0tKoW1XuW8PXGNmdUAN0f3yUuABM8sDXie6\nRw7wO+A2M7sMmJZSx/8CD4YFbT9rZvt3Af9rZjOAMtblQk/Xr7Xc/R0zeyuc/xlRHnVpI0qfKiKS\nGaVPlU5NU+4iIiJZQFPuIiKSlpltD/yjQXGVu+/WEf2Rpimgi4hIWu4+A9ipo/shmdGUu4iISBZQ\nQBcREckCCugiIiJZQAFdREQkCyigi4hkMTO7xMx+GVPdazO5dUZmNtDMXg1Z6PZKczyr8rRrlbuI\nSMy2n7z9BvnQZ5w8o6PzoXcoM8tz99qYm9kfmJEuH7uZ5WZbnnaN0EVEYhSC+Qb50EN5izSSD32D\nvOcpl+xoZv81sw/N7PQm6h1iZi+GHOnv1o9qN5LD/GcpedG3DeePC+29FfKrbxPKTzGzx83seWBq\nE3nVh5vZbDO7JbT5LzMraqLfp5vZ6+Hv8ZCZ9TSznYCrgcPD5ykysxVm9iczewfYvUGe9oNDP94x\ns6lNfY7OSgFdRCRe7ZUPvSk7APsRJXG5KCRRSed44NmQQW1H4O1Q3lQO88UhL/pfiTKpQbRX+17u\n/jXgItb/rDsDR7n7N2g8rzrAKOBGdx8LLGP9xDINPezuu7r7jsBs4DR3fzu0fV/I+b4aKAZeDX+3\n/6u/2MwGEn3p+l6o4/sZfI5OR1PuIiLxiisf+p/M7CrgCXd/aV0cTOuxENBWm9kLwDjg0TTnvQ7c\nbmb5RLnR6wP60WY2gShmDCHKYT49HHs4/H4D+G54XQpMNrNRgAP5KW1Mcfel4XV9XvW9gTrW5VWH\nKL97fftvEOV8b8x2ZnY50AcoAZ5t5Lwk8FCa8vHAi+4+ByClf019jk5HI3QRkXjFng895B1vKu95\nwyxcabNyufuLwN7AF8AkMzspgxzm9TnUk6wbJF4GvBBmD77T4PyVKa/T5lVvUG/DutOZBJzl7tsT\nZZdrLMf6GndPNlFPQ019jk5HAV1EJF7tkQ99ZxrPew7RfeRCM+sP7EM0Ek9X7xbAAne/Bbg11NuS\nHOalRF8KAE7ZyHkb5FVvgV7A/DCzcEILrn8F2Dt8ecHM+qX0L5PP0SnEGtDNrI+ZPWhm74UFDrub\nWT8zmxIWZ0wxs75x9kFEpCOF1eynA/OIRsbzgNNbucp9e+A1M3sbuBi4nGhkep2ZlRGNaFNNB14g\nClyXufuXjdS7D1Cfs/wY4Dp3fweoz2F+N5nlML8a+EOop6mR9V1AIuRVP4l1edWb67fAq6Fvza7D\n3RcBE4CHw4K5+8KhTD9HpxBrPnQzmwy85O63mlkPooUgvwaWuvuVZjYR6Ovu5zdVj/Khi0gnoHzo\n0qnFNkI3s1KiezG3Abh7tbsvAw4HJofTJgNHxNUHERGR7iLOKYQRwCLgDjPbkWiV4jnAYHefH875\ninUrGkVEpB101TznZnYjsEeD4uvc/Y6O6E9nE2dAzyNaUPEzd3/VzK4DJqae4O5uZmnn/MMjEhMA\nNt+8NU93iIhIqq6a59zdz+zoPnRmcS6K+xz43N1fDe8fJArwC8xsCES7EgEL013s7je7e8LdEwMH\nDoyxmyIiIl1fbAHd3b8CPkvZKm9/YBbwOHByKDsZeCyuPoiIiHQXcS/D/xlwV1jh/glwKtGXiPvN\n7DSixzeOjrkPIiIiWS/WgB627UukObR/nO2KiIh0NxkF9LBx/elEe+muvcbdfxhPt0REpDszsz7A\n8e5+UwuunQsk3H1xG/TjUqJ93p9rbV1xy3SE/hjwEvAcG+5AJCIiTZi97egN8qGPfm92h+RDt/bJ\nQ94W+gA/BTYI6O35Gdz9ovZopy1kuiiup7uf7+73u/tD9T+x9kxEJAuEYL5BPvRQ3mJmdqKZvRZy\nff/dzHLNbEXK8aPMbFJ4PcnM/mZmrwJXhy24HzWz6Wb2Sn06VDO7xMz+YWlyp5vZ/ws5x6fbhjnR\nG/btpHDeO2b2j1A2MOQqfz387JHS5u0hN/knZnZ2qOZKYMvw+a4xs33M7CUze5xogTXhM7xhUc70\nCc34221wXfj7TbIoD/wMMzs35W93VHh9Uej7u2Z2c0qq104h0xH6E2Z2iLs/FWtvRESyT1P50Fs0\nSjez0UR7re8REpvcxMaTkmwKfN3dk2Z2A/CWux9hZvsBd7LuufQdiNKJFgNvmdmTwHZE+cnHEX0p\nedzM9g7Z2Rr2bSxwYWhrcUqik+uAa939/8xsc6IUp6PDsW2J8qH3At43s78S7VuyXcjChpntQ/To\n83b1aU6BH7r7UjMrAl43s4fcfUkGf8INriO6pTwsZFarn/Jv6H/c/dJw/B/AocD/ZtBeu8g0oJ8D\n/NrMqoAaov9B3d17x9YzEZHsEEc+9P2JMqu9HgaJRTSyp0eKB1JSh+5JyMjm7s+bWX8zq//3PF3u\n9D2Bg4iStECUc3wUsEFAB/YLbS0O9dfnFj8AGJMyqO1tZiXh9ZPuXgVUmdlCGt9B9LWUYA5wtpkd\nGV5vFvqUSUBPd937wMjwZedJ4F9prtvXzH5F9IWsHzCTrhbQ3b1X3B0REclSn5I+LWiL86ETDaom\nu/sF6xWa/SLlbcPc3SvJTLrc6Qb8wd3/3qxeri8HGO/ua1ILQ4DPNPf52s8QRuwHALu7+yozm0YG\n+cobu87dy8M25d8EziB6pPqHKdcVEt3PT7j7Z2Z2SSbttaeMN5Yxs75mNs7M9q7/ibNjIiJZos3z\noQNTgaPMbBBE+bst5DI3s9FmlgMc2cT1LxGm6EOAW+zuleFYutzpzwI/rB9Rm9mw+rbTeB74frg+\nNbf4v4j2JiGUb2zr2eVEU/CNKQXKQ1Delug2QSbSXmdmA4CcsD7sQqLp/VT1wXtx+DsclWF77SbT\nx9Z+RDTtvinwNtEf4L9EUysiItKI0e/Nvnv2tqOhDVe5u/ssM7sQ+FcI3jXAmUT3nZ8gSoxVRjQ1\nns4lwO1mNp3oy8XJKcfqc6cPYF3u9C/Dffv/hhH1CuBE0kzzu/tMM/s98G8zSxJN058CnA3cGNrM\nI5quP6OJz7jEzF42s3eBp4mmwVM9A5xhZrOJpstfaayuDK8bRpRMrH6gu97sh7svM7NbgHeJEou9\nnmF77SajfOgWJZ/fFXjF3XcK32qucPfvxt1BUD50EekUOtWK5jiEaeQV7v7Hju6LNF+mi+LWuPsa\nM8PMCtz9PVu3R7tIs3gySXLpUrzOyelVQm7PhguARUSkuTIN6J+HJfyPAlPMrJxoH3aRZque9ynz\njj+eZGUlQ6+5ml77709OYadaWyLSLbn7JZmeG+6RT01zaP8MHx2LVWfvXxwyXeVev7jikvAYQynR\nfQiRZiu/+y6Sy5YBsOj6GyjebTcFdJEuJgTFTptTvbP3Lw7NWeW+c9jBZweiPOfV8XVLslnP3XZb\n+7popx2xgoIO7I2ISHbIdJX7RcD3gYdD0R1m9oC7Xx5bzyRrFY8bx/CHHiS5tJzCsWPI7aVtDkRE\nWivTe+gnADvWbwhgZlcSPb6mgC7NlltaSlFpaUd3Q0Qkq2Q65f4l6++IUwB80fbdke7K3alctJB3\npjzFwrmfUL1mzcYvEpEmmdlhZjaxkWMrGilPTUYyzcwScfaxMWa2k5kd0g7t/Drl9fDw3Htr6xxo\nZq+a2Vtmtlea47ea2ZjWttNQpiP0CmCmmU0h2gbwQOA1M7sewN3PbupikY1Zuaycuy/8BSuXlWOW\nw6nX/o0eQ4Z2dLdEujR3fxx4vKP70UI7AQkglqRgIVOaEe3Yd0UbV78/MMPdf5Sm3dx05W0h04D+\nSPipN63tuyLdWV1tLSuXlQPgXkfFogX0VUCXLHHjGc9vkA/9zL/t16p86GY2nOhpo1eArxPtXHYH\n8DtgENGt0jFEe4+fZWYjiLK7lQCPpdRjwA1EA7XPgLQLns3soFB3AfAxcKq7NzbK3wX4c2hrMXCK\nu8+3KB3rBKAH8BHwg7AF6/eBi4n2ca8g2mv9UqDIzPYk2kf+vjTtXEL0Nx0Zfv/F3a8Px85j3V7s\nt7r7X8Lf7FngVaLkNq+FNt4mSrTyGyA37Aj3daKZ6MNDspp0n3ODzwNsDVwd6k0AuxPt3Pf38LnO\nNLPLgV+6e5mZHUz030Yu0Ra8+5vZOKLsdIXA6vC3fj9dH1JlNOXu7pPrf4i+7b3VoEykVfKLitjl\n0CPBjCFbb8vALUZ0dJdE2kQI5hvkQw/lrbUV8Cei9KPbAscTZUb7JRvuFX8d8Fd33x6Yn1J+JLAN\nUfA/iSiQrSfsc34hcIC770y0rex56TpkZvlEXxCOcvddgNuB34fDD7v7ru6+IzAbOC2UXwR8M5Qf\nFp6iugi4z913ShfMU2xLlFBlHHCxmeWHLxSnArsRbVV+upl9LZw/CrjJ3ce6+6nA6tDGCSnHb3T3\nscAyQla6Rmzwedz97QZ9X02UivZVd9/R3f8v5W81kOi/je+FOr4fDr0H7OXuXwt1ZTSDkOkq92nA\nYeH8N4CFZvayu6f9H1SkuYpKejH+u8eQOPRIcnJz6dlbi+Yka7R5PvQUc9x9BoCZzQSmuruH7bqH\nNzh3D9YFp38AV4XXewP3hNSqX5rZ82naGU8U8F8Oe7n3IMrnkc42RPnTp4Rzc1n3BWK7MDrtQzR6\nfzaUvwxMMrP7Wfc0VabSpV7dE3jE3VcCmNnDwF5EA9J57t7Uvu9zQlCGKN4Nb+Lcxj5PQ0ngoTTl\n44EX61PCpqSaLQUmm9kootvc+U30Ya1Mp9xL3b0yJGm5090vDhvsi7SZwuKS6HusSHaJIx96vdS0\no3Up7+tI/+/7xpN3pGfAFHc/LsNzZ7r77mmOTQKOcPd3zOwUomxuuPsZZrYb8G3gjTDCzlSmqVfr\nbSyNbMP6ipo4dxJpPk8aa1Jy0WfiMuAFdz8y3CaYlslFma5yzzOzIUT5YZ9oRqdERLq7xvKetyYf\neku8DBwbXp+QUv4icIyZ5YZ/5/dNc+0rwB5mthWAmRWb2daNtPM+MNDMdg/n5pvZ2HCsFzA/TMuv\n7YOZbenur7r7RUT3mzdj4+lTm/IScISZ9TSzYqLbCi81cm5N6E9LpP08zfAKsHdY35CaaraUdU+S\nnZJpZZkG9EuJphI+dvfXzWwk8GGmjYiIdGNx5ENviXOIFmTNIEoVWu8Ron/PZwF3kmYq3d0XEQWW\ne8Ls7H+J7l1vINz/Pgq4yszeIdqzpP6+/G+JFqS9THSfuN41ZjYjPDL2H+AdohSuY8zsbTM7pjkf\n1N3fJBo9vxbau9Xd32rk9JuB6WZ2V3PaCBr7PJn2cxHRorqHw9+qfq3A1cAfzOwtMp9Jzyx9akdT\n+lQR6QRanD41jlXuIg1lmg99a+CvwGB3387MdiBaidguO8UpoItIJ5D1+dCla8t0yv0W4AKgBsDd\np7PuXoyIiHRDZvZImBJP/flmDO2cmqadG9u6nSbavzFN+6e2V/uZynRuvqe7vxYeQahXG0N/RESk\ni0hJrR13O3cQbZrTIdz9zI5quzkyHaEvNrMtCY88hH1+5zd9iYiIiLSXTEfoZxKtBNzWzL4A5tCy\nJfoiIiISgyYDupmd4+7XAUPc/YDwPF+Ouy9vn+6JiIhIJjY25V5/0/8GAHdfqWAuIiLS+WwsoM82\nsw+BbcxsesrPDG39mj3qqqupXbaMupqaju6KiLQTMzuiLXNym1miPqV2R7CU3O8N85Gb2VNm1qej\n+tZempxyd/fjzGwTol3iDmufLkl7SlZWUvHkU1Q+/jh9jj2WXvvvR25JSUd3S0TidwTRVt6z2qIy\ndy8jysLWIRrkfm+Yj7yxbV+zinaK6+aqP/uMjw88aO37rZ6fSv5Q5SEXSaPFG8v86ZhDN9gp7hf3\nPdHafOgnAmcTZT57Ffgp8D/ArkQJRR5094vDuVcSDcpqgX8RZTR7gij3eAVR+s6P07SRUf5yd9/b\nzPYhyvF9aHPyeYekJkcS7V8+DPinu/8uHHuUaF/3QuA6d785lKfLIX4KkABuJQrsRUT7oe9OlNo0\n4e6LzewkovSyDkx39x9k+jfv7Da2KO5+dz867P2bGvkNcHffIdbeSewsNxdycqCuDvLyotci0mZC\nML+FdSlUtwBu+dMxh9LSoG5mo4FjgD3cvcbMbiJ68ug37r7UzHKBqWFXzy+IAua2IbVqH3dfZmaP\nA0+4+4NNNPWwu98S2rycKH/5DazLX/5FI1PZ9fm8a83sAKLg21Re8XFEKVdXAa+b2ZNhxP/D8HmK\nQvlDRLeKbwH2dvc5KQlNAHD3t83sIqIAflboe/3fbSxRXvevh+C+3rVd3cYeWzsn/D60JZWb2Vyi\njDlJoNbdE+EPeB9Rjtm5wNHuXt6S+qX1ckpL2ezmv1Px6GP0Ofr75Ja2LA95cvly6iorITeX3NJS\ncoqayjgo0q3EkQ99f2AXoiAH0Wh0IXC0mU0g+rd9CFEO81nAGuA2M3uC5mXMbGn+8ubm857i7ktg\nbe7yPYmm7882s/rNazYDRgG3+GODAAAgAElEQVQDSZ9DPBP7AQ+4++IWXNvpbewe+vzwe14r2ti3\n/o8XTASmuvuVYQHDROD8VtQvrZBbXEzJnntSPH48lpdxUp/11FVVUfn003x10cWQn88Wd9xOz0Si\njXsq0mXFkQ/dgMnufsHagigF5xRgV3cvN7NJQGEYJY8j+hJwFHAWUWDLxCRalr+8ufm8G9779TCF\nfwCwe5jmn0Y09S6NaHJ+1cyWm1llmp/lZlbZwjYPByaH15OJFmZIB2tpMAeoW7mS8nvuxXr2ZNB5\n50JeHsmKijbsnUiXFkc+9KnAUWY2CNbm0d4cWAlUmNlg4FvhWAlQ6u5PAecCO4Y6Msk33pz85ama\nm8/7QDPrF6bWjyCaASgFykMw3xYYH85tLId4Jp4Hvm9m/Vtwbae3sRF6S5PLr60C+JeZOfD3sKBh\ncP3IH/gKGLyxSt4nfC2UDSTrkjhOXk7LA3Jrea9e1N5wPTnFxdQuXkKyYhl5y5aRX1zcqi8KIp3J\ntJZf+mvWv4cOrcyH7u6zzOxCon9fc4gSZ50JvEV0//ozoqAIUVB+zMwKiUb254Xye4FbzOxs4Kh0\ni+JYl+97UfhdHxOuCdPpRvTl4h3gGynXXU005X4h8GQGH+k14CFgU6JFcWVh7dYZZjabKAy8Ej77\nonBb4eHw2RcCB2bQBu4+08x+D/zbzJJEf69TMrm2K4h1lbuZDQuLJgYRTQX9DHjc3fuknFPu7n3T\nXDuBaHUlBTvssMv4d96JrZ9dVU2yhs+Wf0p1XQ3De29BYW4hWPtneExWVOBV1eT0LGLNrHVPwBTt\nsANWqBkyyQ7TOtkq92xRvzq9fgGbtFy7PbZmZpcAK4DTgX3cfb6ZDQGmufs2TV2rx9bSu3XGrVz3\n5nUAbN13a2458Bb6FbX/DFLVnDl8ctjhDL/7LuYeexwkk1hREVs+8zT5gzc6ASPSVSgfegwU0NtO\nbPOhqfu+h9cHAZcSPR94MnBl+P1YXH3Idr3y190RKc4vJsc65pGzvEGDGH7vPdQuLWeLu/7Jyhdf\npNfB3yK3X1bdnhLJWhblFt+jQfF1IW1pW7XxTeCqBsVzQgrWSW3VTncW2wjdzEYCj4S3ecDd7v77\nsBjhfqKpp3lEj601+eiARujpla8p58EPH2T+8vlM2HECmxRv0tFdEslmGqFLp6ad4rJAXV0dOdoQ\nRiRuCujSqSkKZAEFcxERUSQQERHJAgroEqvkypXULluG19V1dFdEpBnMbLiZvZvBOcenvO/QFKrd\nnQK6xKZ2yRLmX3wxn5/xE9a89x6eTHZ0l0SkbQ0H1gZ0dy9z97M7rjvdmwK6xGbZw4+w/IknWf32\n23x+xk+oXdr4wwzVtUkWLa+icnXNBsfKV1bz/lfLefWTJSxavibOLot0GWF0/J6Z3WVms83sQTPr\naWb7m9lbZjbDzG43s4Jw/lwzuzqUv2ZmW4XySWZ2VEq9Kxpp6yUzezP8fD0cuhLYy8zeNrNzzWyf\nkACGsJXro2Y23cxeCZnfMLNLQr+mmdknYac6aQPal1NiYz16NHidfpHw6ppa/vvREn7/1Gy22aQX\nV3x7FFStoq62Bnr1489TP+Gfr0bbXg/uXcDjZ+3J4N7agU4E2AY4zd1fNrPbibZ1/TGwv7t/YGZ3\nAj8B/hLOr3D37S3KCf4XMs+kuRA40N3XhC1f7yHKPT6RkAMdICRUqfc74C13P8LM9gPuBHYKx7YF\n9iXaSvZ9M/uru2/4bV6aRSP0LFe7aBE18+dT2wHJUkq/cyj9Tj2Fkn33ZbObbyZvQP+05y1fXcuP\n//kGHy9aydKV1cx/fya3nf0j7jjvJ1SuquKu19blsFhQWcXTM+anrUekG/rM3ev3bP8nUUa1Oe7+\nQSibDOydcv49Kb93b0Y7+UT7vs8AHiBKy7oxewL/AHD354H+ZtY7HHvS3atCJs6FZJDTQzZOI/Qs\nVvPVV8w95lhqFyyg/4QJ9P/RaeT27r3xC9tIXr9+DDzvPLymhtyeDdNBpzAo6pFLzepathrQk09e\nm7L2UG11VTv0VKTLariRyDIg/TfnDc+vf11LGNyFZCc9Gl5ElKVtAVGmthyi/Oqtkfp/7CSKRW1C\nI/Qstuq116ldsACAJXfcgVe1f3DMyc9vOpgD/Xv24P4f784h22/CTlv0Y8eDDiE3Lw/MyKut4oTd\n1qWNHty7gG9tPyTubot0FZubWf1I+3igDBhef38c+AHw75Tzj0n5/d/wei5Qn8/8MKLReEOlwHx3\nrwt15obyplKwvkRIuRqm4he7e0vTbksG9K0oixVuvx2Wn4/X1FC8227QSVOZ5ubmsO0mvbn26J3I\nz82hrraG0264Da+ro7C4mHP7DuDE7QewdPkattpsAANL0g0gRLql94Ezw/3zWcDZRGlGHzCzPOB1\n4G8p5/c1s+lEI+TjQtktROlV3wGeIcqp3tBNwEPh3nvqOdOBZLh2ElE60nqXALeH9lYR5e6QGGnr\n1yxWt2YNyfJyahctIn/YMPL6NzUT13mVP/AAC6+6mpziYjBjxAP3kzdwYEd3S7qfTrX1q5kNB55w\n9+0yPH8uUVazxTF2SzpQ5xyySZvIKSwkZ8gQ8od08SlqM+pWrKBuxQryhgzpkJzvIiKdnQK6dHq9\n9tuPqlM+pvrjjxl8/q+UllUEcPe5QEaj83D+8Ng6I52CArp0enn9+jHovHPx6mpyS0o6ujsiIp2S\nArp0CTk9ekAPLYYTEWmMHlsTERHJAgroIiIiWUABXUSkCzKzg83sfTP7yMwmdnR/pOMpoIuIdDFm\nlgvcCHyLaF/148wsk/3VJYspoIuIdD3jgI/c/RN3rwbuBQ7v4D5JB9MqdxGRdpBIJPKAAcDisrKy\n2lZWNwz4LOX958BuraxTujiN0EVEYpZIJL4OLALmAIvCe5E2pYAuIhKjMDJ/EugDFIbfTyYSidwm\nL2zaF8BmKe83DWXSjSmgi4jEawBRIE9VCLQmw9DrwCgzG2FmPYBjgcdbUZ9kAd1DFxGJ12JgDesH\n9TVEU/At4u61ZnYW8CxRbvLb3X1mq3opXZ5G6BIbr6mhZsECqubNo7a8vKO7I9IhwgK4bwPLiAL5\nMuDbZWVlydbU6+5PufvW7r6lu/++DboqXZwCusSmZv58PjnkED755sEs/OOfSFZUdHSXRDpEWVnZ\nf4im3kcAA8J7kTalKXeJzarXX6du5SoAKp98kkE/P6eDeyTSccKI/KuO7odkL43QJTY9d92VnOJi\nAEoPOwxTtjQRkdhohC6xyR86lJFPP4WvWUNOr17klpaud7xyTQ3JpNOnZz5m1kG9FBHJDgroEhvL\nyyN/0KC0xxZWruGCR2awbFUNV31ve7YcWKKgLiLSCppyl3aXrKvjuqkfMnX2Qt6YV85P73qTJSuq\nOrpbIiJdmgK6tDvDKMhb959efm6ORucizWBmm5nZC2Y2y8xmmtk5obyfmU0xsw/D776h3Mzs+pBq\ndbqZ7ZxS18nh/A/N7OSU8l3MbEa45noL/ydtjzakZRTQpd3l5Bg/2Wcrjk5syv6jB/HXE3amf0lB\nR3dLpCupBX7h7mOA8cCZIX3qRGCqu48Cpob3EKVZHRV+JgB/hSg4AxcTJXYZB1xcH6DDOaenXHdw\nKG+PNqQFYr+HHvL2lgFfuPuhZjaCKNVff+AN4Ach/Z90IwN7FXDp4duRrHOKC5r+zzC5fDlVH33E\n6rfeouQb+5C/6TByCvQFQLqWRCIxABgOzC0rK1vcmrrcfT4wP7xebmaziTKwHQ7sE06bDEwDzg/l\nd7q7A6+YWR8zGxLOneLuSwHMbApwsJlNA3q7+yuh/E7gCODpdmpDWqA9RujnALNT3l8FXOvuWwHl\nwGnt0AfphArzczcazAHWzJjBvOOOZ+HV1zDnyCOpXdTiHTNF2l0ikShMJBJ3EaU4fQ74PJFI3JVI\nJBru794iZjYc+BrwKjA4BHuInnkfHF6nS7c6bCPln6cpp53akBaINaCb2aZEWx7eGt4bsB/wYDhl\nMtE3MpFGLX9h2trXXl1N1QcfdlxnRJrvNuBIoAAoDb+PJPy72BpmVgI8BPzc3StTj4WRsre2jaa0\nRxuSubhH6H8BfgXUhff9gWXuXhve6xuZbFSvAw9Y+9qKiijYZusO7I1I5sI0+3eBogaHioDvheMt\nYmb5RMH8Lnd/OBQvCNPchN8LQ3lj6VabKt80TXl7tSEtEFtAN7NDgYXu/kYLr59gZmVmVrZIU6zd\nWuGYMYx45GE2uewyRj72KHmNPNsu0gkNBxp7JrMK2KIllYbZztuA2e7+55RDjwP1q8hPBh5LKT8p\nrEQfD1SEafNngYPMrG9YqHYQ8Gw4Vmlm40NbJzWoK+42pAXiXBS3B3CYmR1ClDawN3Ad0MfM8sIo\nvdFvZO5+M3AzQCKR0JRON5ZbUkLu6NEUjh7d0V0Raa65RFPs6RQA81pY7x7AD4AZZvZ2KPs1cCVw\nv5mdFuo+Ohx7CjgE+AhYBZwK4O5LzewyovzqAJfWL14DfgpMIppNeJp1i9Xaow1pAYtugcTciNk+\nwC/DKvcHgIfc/V4z+xsw3d1vaur6RCLhZWVlsfdTRKQJLXpGOiyIO5L1p91XAw+XlZWd2BYdE4GO\neQ79fOA8M/uI6J76bR3QB8lQctUqksuXd3Q3RLqy04CHiXKhV4TfDwM/6shOSfZplxF6a2mE3jFq\nFi5kwRV/oG7Fcgb/5jf0GD5cO7pJd9aq//jDArgtgHmtfQ5dJB0FdEkruXIl8ydOZPmU5wDIHzaU\n4ffdR96AFi/KFenq9G1WOjVt/Srp1daSrKhY+zZZUYnXdf4vfyIi3ZUCuqSV07s3g3/7W3IHDMCK\nihh69dXk9u7V0d0SEZFGKB+6pGVmFGy5JSMfeRh3yO3di5zCNtmpUkREYqARujTKcnLIGziQ/EED\nFcxFOiEzyzWzt8zsifB+hJm9GtKR3mdmPUJ5QXj/UTg+PKWOC0L5+2b2zZTyg0PZR2Y2MaU89jak\nZRTQRUTaSSKRaOt/czNNfnUaUB7Krw3nEVKuHguMJUpdelP4kpAL3EiUEnUMcFw4t73akBZQQBcR\niVEikeidSCSuTCQS5UAykUiUh/e9W1NvM5NfHR7eE47vH84/HLjX3avcfQ7RLm/jws9H7v5JSG99\nL3B4e7TRmr9Jd6eALiISkxC0Xwd+DvQJxX3C+9daGdSbk/xqbQrTcLwinN/clKft0Ya0kAK6iEh8\nfk20mUzD/dwLiBK3XNCSSlub/EqykwK6iEh8fkzTyVl+3MJ665NfzSWaqt6PlORX4ZzU5FdrU5iG\n46XAEpqf8nRJO7QhLaSALiISg0Qikcu6afbG9G3JQjl3v8DdN3X34UQLzp539xOAF4CjwmkNU5vW\npzw9KpzvofzYsEJ9BDAKeI3oNsGosKK9R2jj8XBNrG00928h6yigS5vwZJKahQupmjOX2iVLOro7\nIh2urKwsCSzbyGnlZWVldRs5pzkaS351G9A/lJ8HTARw95nA/cAs4BngTHdPhnvgZxHlMp8N3B/O\nba82pAW0l3sn58kkyfJyyM0lr2/fju5Oo2rmz2fOkd8luWwZRYkEm153HXn9+3V0t0TaUrP3ck8k\nElcSLYBLN+1eBVxbVlbWovvoIg1phN6JeTLJmlmzmHvCiXx+5lnULFjQ0V1q1Op33yW5LBqMrC4r\no27Nmg7ukUincAUwlyh4p6oK5X9o5/5IFlNA78SS5eV8OfECaubNY/Wbb1J+9z0bnFNXW4vXteWM\nXfPUt104egzWsycABaNHk1PQo8P6JNJZlJWVVRI9b30t0SYshN/XAuPCcZE2ob3cO7O8PPIGD6b6\n448ByN900/UO13z5JQuvu478IUPpd9IPyOvXflPcyYoKVr7yCitefJF+J55I/ogRbPn0U9QuXkz+\n4MFKsyoShKB9AXBBIpHIaeN75iJrKaB3Ynl9+jDsqispf/Ah8jcZTMk++6w9Vltezufnnsead96J\nzu3fn34/OLHRuuqqqsgpaOzpmearWbKEZffdz5pZs6h8+hm2fOZp8gcPJn/w4DZrQyTbKJhLnDTl\n3snlDRzIwJ+cQZ8jj1x/UVxdHV617rZc3erVaa9PVlZS8eSTfPmrX7HqjTfa5N52bXk5VbPfo2in\nndjsb3+jxxZbQG3txi8UEZHYaITejlYvr6S2uprcvDx6lm7s8dSm5fbrx7Br/8xXv7uUvE0G0+d7\n3017Xu2SpXz5i18CsOL5F9jyuSmtypxWV1PDsgceZNGf/wzAsgcfYPPb7yCnl3Kli4h0JI3Q28nq\n5ZX8+x+3c/NPT+GhP1zMyoqNPZ7aNDOjYMQINr3+Oja56CLy+vdPf2JtzdqXnkxCKxfQ+erVrHz5\n5XXVL1yE5eeTq4Au0q7MrI+ZPWhm75nZbDPb3cz6mdkUM/sw/O4bzjUzuz6kKZ1uZjun1HNyOP9D\nMzs5pXwXM5sRrrk+JFqhPdqQllFAbyc1a9Yw89/PAbBwzsdULPiqTerN7d2b3LC6PO3xgQMZ+Mtf\nULTzzgy79tpWj6Rzevak9LDD1r7vseWW5BQ33r6IRBKJxIhEIrFHIpEY0UZVXgc84+7bAjsSbc4y\nEZjq7qOAqeE9RClKR4WfCcBfIQrOwMXAbkSr8S+uD9DhnNNTrjs4lLdHG9ICmnJvJ7n5+ZQOGkzF\nwgXkFRTQq3/7rALPKSykcLvtoK6Oyn89S8FWW5JbUtLi+iwvj14HHkDB6G2pXbCAou2204p2kSYk\nEokE8HdgNFAN9EgkErOBH5e1cMcsMysF9gZOAQjpR6vN7HBgn3DaZGAa0c5uhwN3hq1YXwmj+yHh\n3CnuvjTUOwU42MymAb3d/ZVQfidRmtSnQ11xtyEtoIDeTor79OXYS69h8adz6Tt0GD17l7ZLu3XL\nlzP/gl9TO38+AHmlfdjkot+2qs7c3r0pGjMGxoxpiy6KZK0QzKcBxaGoKPzeGZiWSCT2aWFQHwEs\nAu4wsx2BN4BzgMHuPj+c8xVQ/9hJc1OYDguvG5bTTm1IC2jKvR2V9O3H8B13pnTgYHLz89ulTSso\noOfXvrb2ffHXd4+1vdolS6j+9FNqFixodOW9SDfyd9YF84aKgb+1sN48oi8Ff3X3rwErWTf1DUAY\nKce6t3d7tCGZU0DPcrm9ezP4wt+w2S03M/yhh+g5btzaY6uXV/LVxx/y4ev/ZUX50la3Vbt4MZ+d\nPoGPD/omHx9wIKvDM/Ii3VG4Vz56I6eNaeE99c+Bz9391fD+QaIAvyBMcxN+LwzHm5vC9IvwumE5\n7dSGtIACejeQ168fJXvtRdHYMeT27k3NggUsfewx3p36LHf9+lwe/+PvufvCX7ByWfnGK2tC1Qcf\nsGbWLAC8poYFV12tzGvSnQ0lumfelOpwXrO4+1fAZ2a2TSjanyibWWoK04apTU8KK9HHAxVh2vxZ\n4CAz6xsWqh0EPBuOVZrZ+LDy/CTSp0mNqw1pAd1D72Zqy8v54rxfUHT0UcyYNmVt+fLFi1hZWUFV\nfjErq2opyMthYK8CmvMUiTVYbZ/TsyerZ82iaPRoLZyT7uhLYGNJDXqE81riZ8BdIZf4J8CpRIO0\n+83sNGAecHQ49yngEOAjYFU4F3dfamaXEeUmB7i0fvEa8FNgEtF9/6dZt1jtynZoQ1pA6VO7mdrF\ni5l30skUHXQgb3kV773yEgA5uXmceOM/uHrqJzxQ9jkDexXw+Fl7MKS0aCM1ptS9dCkL//RnKh55\nhPwhmzDkyiv56pLfUTBqFEMuv6xVq+tFOoGWpE99g2gqvDFvlJWVJVreJZF1NELvZnL79mXoH69h\nweWXs+clF1MyYADlX33J+O8dS11OHg+URYtOFy2v4p3PKhhSWkRy+XKSS5ZQV11N3qBB5PVJv8td\nXr9+DJ54PgPP/hnVc+ey8Jo/Uv3xx1Fe9GSyPT+mSGfxY9Zf5Z5qJXBGu/ZGspruoXczlptL4Tbb\nMOz66ykaOIg9jzuZQ372SzYZOYr8vFz23nogAD175DJ2aG8AVr78Mh8f/C3mHHY45ffc0+R+8Lm9\nekVJWoYOhdpaCrbemk0u+R25pe3zmJ5IZxIeSduH6LGy1UBF+P0G0NJH1kTS0pR7N7R0ZTVPvzuf\novwcdh85gCF91k2rL1lRxeIV1fTpmU/f4nzykkm+PH8iy5+Obm0VbjeWzW6+hbx+fRurfq36BXG5\n/fo16168SCfVqv+Iw2r2ocCXZWVlc9qmSyLraMo9RslVq/CqKnJKSshpp+fOMzHriwpGDCjm7//+\nhHe/rOTHe2/J4N5Rwpb+JQX0L0lJs5qbS78TT2DFc8/htbX0O/lkckoae6x2fY3uLy/SDYUgrkAu\nsVFAj0lteTmLb7qJ1W+8yYCzzqJ49/HkFGW+wCxOA3oXcNJtr7FweRX//mARu2zel2/v0PiTM4Vj\nx7LllH+BOzm9epHTY2MLd0VEpL0poMek5ssvKRw7lpyexXxx3nls+ewznSaglxbmk5MyBZ6X2/RM\nYk5hITmbbBJbf2qSddS5U5CXG1sbIiLZTgE9Bsnly1n9xhssvfMfFI8fz9BrroZW3EOuTdZRk3SK\nerQu4JWvrOaDBcspKcxj8g/H8ad/vc+Yob3ZdXjHTY0vXlHF9VM/pHxlNRccMpqhfTrHlx4Rka4m\ntoBuZoXAi0BBaOdBd7/YzEYA9wL9iVZ6/iBkCsoadcuXs+CKPwCw7MEH6XPM0eT23fgisnSWrqzi\n1pfm8PGiFUw8eDTDB/Rs0QKzmto6/vnqPP70rw8AuPK723PtMTtRkJ9DXk76hx3qqqtJLovytucU\nFcWS83zyf+Zy53/nAbB4RTV/PXFn+vTUlL6ISHPF+dhaFbCfu+8I7ESULm88cBVwrbtvBZQDp8XY\nh46Rl0dOcVg4ZkZun74tXhQ3dfZCbpr2Mc/OXMAPJ7/O4hVVLaqnqjbJa3PW7df+zMyvcKCuzvmq\nYg0zvqjYoO7lS5ZRvXI15ffcQ/m991GzaFGL2m5KTbJu7evaujpleRARaaHYRughC8+K8DY//Diw\nH3B8KJ8MXEKU5D5r5PXty/D77mXZo4/S6xvfIDeDR7wak6xbF+Jq6+po6ZMzPXvk8fMDRvH63KUY\nxjn7j6K4Ry6fLV3FQX95kTU1dew2oi83nbgLfYp68NHCFVz5zDxG9S/k5HF7UPmjU0hWVjDonHOw\nvLb7z+ZHe45k8fIqlqys4bLDx9JXo3MRkRaJ9R66meUSTatvBdwIfAwsc/facEpW5r+1/HwKttqK\nwb/8ZbOvralKUr2mlrweuRQU5XHgmMHMnl/JJ4tX8ttDx9C/eMOAt6q6lmWraqhJ1lFalJ92yjon\nx9h+WCkv/r99AejTM58FlWt4bW45a2qiUfKrc8pJJp2lK6v4wW2vsnB5FS8Ao781kl0POoiaL77A\nk8k2DegDehVw2RHbk6yro6Sw8zzaJyLS1cQa0N09CexkZn2AR4BtM73WzCYAEwA233zzeDrYyVSt\nqmHWy/OZ/vxnDN9hAOO+M5L+JQX8+pDRVCfr6NVIwHvns2WceNtrJOuc8w7cmuPGbcbAXoUbnNcj\nL5dBvaOFdZVrarjw0Xc5a9+tGFpayJcVazhu3Ob0yMuhujZadQ5w8HabMHabYcw67qfsuNUm5BQU\nbFBva0WL/bTCXUSkNdpllbu7LzOzF4DdgT5mlhdG6Y3mv3X3m4GbIdoprj362dGqVtfyn4c+AuDd\nf3/B2L2GUlSST0F+LgX56QNeXZ3z4Jufr52a/993vmTMkN6MH5nb5Ig3x6BHbg7nPzSDq4/akb7F\n+QwpLaRPzx4kk3VMPnUcVz3zHuceMIpDb3iZ6mQdIwd8zv1n7M6AkrYP6iIi0jqxLYozs4FhZI6Z\nFQEHArOBF4CjwmmpuXS7vdzcHPILosBtBj2Kou9bXltLzcKFrJ4xg9rFi9e7xgy+t/NQcnOie+vf\n3XkYc5esoCbZ9HegkoJ8Ljl8LLuN7Mf/fbSIwb0L6VdcsLYfY4b25n+O35mlK6upDgvXPlm8cr1F\nbCIi0nnEOUIfAkwO99FzgPvd/QkzmwXca2aXA28Bt8XYh06vdulS1sycSU7PYnqMHMn3frUL773y\nFSN3HEBhSTTCrl2ylE++8x3qKisp2HoUm99++9r84uVV5UyvfIJHf3Yg1ck6qurKGd57G/r03Pj9\n6EG9CrnkO2OB6B57KjOjd1E+owb3Yvthpcz4ooIJe4+kZ/6G/8lU1yZZtroGAwaUNC+HuoiItI04\nV7lPB76WpvwTYFxc7XYltcuWMf/CC1nx/AsADPz5z+l3yins8b2t1juv5qv51FVWAlD1wYd49brH\n9vMsj3cWv86N068F4FeJ8xk/dCy2YkF0Qs/+kNvE1HtO08F3QEkBk07dlWSdU5CfQ2nR+nXVJut4\n69NlnDa5jF6Fedxz+niGD8hsr3cREWk7Sp/akWpqWPHiS2vfLn9uCnWrVq19v3p5NSuWrYHNtqRg\nbDSSLvnmQVjhugVvvQt6c+kel/LDsT/k/F3P59CRh5Dz5Rtw/U5wwy7w1XRoZUa9/iUFDOpdSGnR\nhqvnK1bXcMn/zmRFVS3zK9bwPy98GB6vExGR9qStXzuQ5edTsu++rJgyBYBe3zyYnOKeAKyqrOaZ\nm2cw/6MKRu06mD1vmUTemkpyCgvJ69dvvXoG9hzIuYlzozery2HqpVCzOnr/whXw/UlQ0Pa7vAH0\nyMth1KASZs9fDsDYoaWN7jwn/7+9O4+SqroTOP791au9q7p6w6ZZmm4IIKsioCBBiRpNYgSDcSUT\nnGAck6NjxjjqGGdixrhMJjETzWQcxxiTjGOMuJFlZPQEAcWIgBBEFtm3hgZ6r/1V3fmjSqDpjZZu\nqmh+n3P6UPXefe/d+nWd/nHfu4tSSvUeTeg5ZBUVUfG9+4nPuQGHvwBX5eDDw8IizQlqNjcC8NF7\n+5kyayj+Ae2viGaMOez49vYAABYaSURBVPLc2umFgRNhx9uZ9wMngdV2CFtPCXpdfPeKMVwwvB+F\nPheTqkq6PkgppVSP04SeY86SEpxTprTZ7itw4fZaJGIpAsUeLFfbVm9dOMGrq/eweX8L86ZXU1Va\ngMPlg2nfgsop4LBg0GRwZjvXJRKk7CRuX/fng49HbaLNCRKxFMESL77AkWfppQEPX540uJufXCml\nVE8Sc4LPV0+GSZMmmRUrVuS6GidVKpUm0pigfl+Y0gEBCorajv1+cskWHvrjBgCK/S4WfusCzihs\nvzUeaWpk+csvcGDXNi78yjzKKofgcBz/ZC671tex4LHVYGD8xYM474qhuL36/0F1WtHhGyqv6cPO\nPGVZDgqKPDgH+Hlx/V421DQRTdiH99upNOtrmhGBm6dW8cMrxmKlOj7frnV/YeUfX2Hn2jW89Mj9\nRBobu1Wf7WsP8vHKKbvW1WEntOObUkrlE21i5bGDLXG++Phb1IUTOB3Ckrs+g8+d+ZU5LQd/c+FQ\nJvQvZGgzbH5+KzK2kXMvr2bDOzWUV4coGVCA22vh8jixjlrtzXK6un3LfcynB7B+WQ3JeIoJl1bi\n9upUrUoplU80oecxO22oKvXzzzPHYKBVCx1gWL8A/Z0unr3vHQDWv1XD8InlrFq4k2Q8xczbz2b3\nxnrOvmQwA0eOZvoNN1K7fSvTrpmDP1TU6bVNMomdXQvdKioiVO5nzvemkE4ZPH4nTrcmdKWUyiea\n0PNEMp4iGU/h8liHp38t9Dq5f+YYvvnsKkTg6bmTWx3jshy4nA6CpV48fidNB6O4fU5S2dXTmg/F\n2Lb6AP2HhqgeX8bkK2aTTqVatdbbY1IpYuvXs/Nr88AYBv/8KXzjxlEQ0jnclVIqX+kz9F5iNzYS\nXbeOyMqV2PX1nZaNhZPsWHeI1W/s5MNle4mFk5kdIvz49Y/YXR9lV12UHyzc2KaV7vLC5d+sZPTU\nZq6+50wcFhQUeag+q4zCfj4aaqO4PRbJuE3Ktom2NBNuqKezzpCp5mb2P/ww6ZYW0uEw+x96mFR2\npjqllFL5SVvovaTljTeo+c59OMvLKbvtVkJf/CIOb/s90JPxFM0Ho8RaklSfVUYyZuMtcOG2MpO2\nLNpYC8DwMwI4rdb/B4u3NPHru28jlUziDxXxV488xpV3TMBOpvjgzT1M+/Kn8IfcxFriHNy5gbpw\nDG9FFcVpN8UBz+Fn8gCppibE5UJcLlxVVUTfXw2Au6oKcbedJU4ppVT+0ITeC9LJJOFly/BffDHe\nm+ex5aMNDD14gFD/Cixn25Af2NHEspe2ALDzwzquumsikJmF7ZYZQxlVEUREuGBEP1zHJPSW+jpS\nyUyLPtLYQMpO4vIFeO8P2wBIRGwO7mqhdKCwa8cOlsgwnvr9alyW8OI3zmf8oCJMOk1i61b2PfB9\n3IMH0++Ov6P8zjvxDPsUpNMUXTUbq6Dn52e3DxzAbmjACoVwlpYilj6XV0qpT0oTei9wuFyU3nQT\nMYfwywfuxU4mWLbgRb72b/9JoKQUADuZJB5uwel2E48cuY0eCyeRoxZMKSnw8KVzBnV4rdAZ5QwY\nOZq9Gz9kzIzP4vb58AXdTLlyGPGIzb6tjWz/8CAVnxrC0KkXce8zq/C5LCpL/CzeVMv4QUWk6urY\nfdvfkti2jci77+IZNYqSOTdQdtO8XotRsvYA26+9FrumBkcwSPX8+biHVPba9ZRSqq/ThN5LPMOH\nE63dh53MrIyWjMewsy3pZDzOrnVrWPzrpykfNpwL5syj6qwy6vaEueC6EXj9Hf9a4tEkdiKN5XTg\nLXDhDxUx687vZDq7OV34gpk52wtCHlxeiyH+UoaMLeXDt/fSHEnyjU8PZczgEGv3NHH+sFLiyRSW\nCOI50uHNuDwk4jZuT+99PWIb1mPX1ACQbm6maeFCym7+eq9dTyml+jpN6L1EnE68wULO/twVbHx7\nMWNnfBaPP7PwSjwSZsGjD5NKJqnbu5szp07nkrkTSNlpPD4nlqv9W8/RlgSrXtvB+mU1VI4p5cLr\nR2BcDvyFoXbLuz1O3B4nLfUxli/Yhghc/k+Tue6Z5dQ0xvA4HSy6cwbi9OP8r1/hW78WWf0+sWET\n8cZSvZrQ3YMGg8jhleC8o87stWsppdTpQBN6L/IFC5l2zVc478qrcXk8ePyZ59Aigr8wRPOhgwD4\ni4rw+DsfSgYQj9isfmMXAI6Ak7e21/HCqt1cPXEQ5w0tJdBBAnZYmaFtzYdixCKZZU4B4naamsYo\nX//VCurCSe6+dCRTzprJRwv3ccWI9heC6SnOM/pR+fTPaXjpZQIXTMc7fnyvXk8ppfo6TegnqLF2\nP6v++Cr9PzWS6rPPwRtovUypMxrFaQwO35FWd0FRMdfe/wh/eWMhA0acSVH/40ueTpcDcQgmbRgy\npZzLnnibtIGF6/bx9t0XdZjQ/YVuZt95Dns2NRAKupk7ZQi/encHU4eW4nVZ1GWHyb24eg+XX3sO\nI88+A1+w817t9qE60uEWxOvDWVaKdHPJVCsQoGDqVPyTJyPtdBRUSinVPfqX9ASEG+p54YF7aazd\nD8A1332YwaPHHd6f2LOHnV/9KnbtAQb86EcELph+eOha6Iz+TL9hbreu5/E7mfWts1m3dC9un5N0\ndii5MZDuYpGdQLGXytElPP/gci79zEDmfG0qgZCH2lhmWlk7bbjqnIH06+fH18UscHZdHXvv/QfC\ni5dgFRdT/dKLuCoquvVZPqbJXCmleob+NT0Bxhiizc2H30ePmXyl4YX5JPfsBWD/Qw/hn/DbDsei\nHw+Xx8nAEcX0HxYikkzx2HUT+M17O7lm0mBCvq5v2SNQNijI6pe34Slwct1951JUFGTp3Z8hYacJ\n+VxdJnOAZDRGePESAFL19UTXrv3ECV0ppVTP0IR+AryBIFf+/X0s+uV/0W9INYNGj2213zfuSGvd\nM3IkuHpmchbLchC0HHxhXH9mnNkPv8tqM+FMe3wBNxfNHUUiauNyW/gK3Tgcgt99/F+DuJ1iR1MS\n77hxxNauRXw+PKNGncjHUUop1QN0PfQTlEqliLc0Y7nch3uxf8xubCTx0WaS+/dRMGUKztLSHNWy\ntUhTgkTMxuWx8Be6u7Xymp1K8++LNnPpADcFTXUEKsrxn1GK1/fJ7zwodYrQ9dBVXtMW+gmyLKvD\nlcucoRDOSRO7fc50Oo0xBsuysBMpIk0Jmg7FKKkowF94Yq38SFOChU99wN5NDfgL3Vx972QCRUfG\noCdT6Taz0R3NaTn4ypQhzF+5m7Qp5OqSMrw+XbRFKaVyTRN6nok0NrD81fnEWlqYdv1fkUr4eO6f\n3yWdMvSrDHLFbWd12gM9bdukGxoQtwerMNhmv51MsXdTZlnUSFOCQ7tbCBR5SKXSfHSghf94cwvn\nDyvlsjH9KfK3f53SgIe/uXBYz3xgpZRSPUITeh4x6TQr//AKK//wCpAZPz500rWkU5nHIgd2Nh9+\n3R67oYGmBQuo++9ncVdVUfG9+9t0VnO6HJQODHBoTwtur0XJgMzY+EORBNc88Q5NMZtXV+/lzP6F\nHSZ0pZRS+UcTeq611IJJYzsDJO008Ujk8K6G/TWUVxcenhRm/EWDsFwd3w5PbN/O/oceBiC5cyd7\n7/kHBj72E5yhIzPJ+Qs9zLz9LMINCfyFbrzBbO94k5lo5mPRZAqA+nCCcMLG7XRwRlCfkyulVL7S\nhJ5LDbvg2augpRYz8z9Z+uY6xl7yBVrqDhKPRLjkplsJlvj48l0TSaUMLo+Ft6D94Wl2Ik5806ZW\n2+JbtkAi0aasv9CDv7D1c++Q38UvbpzMj17fxOSqYkaWB2mIJPjBwo08t3wnFSEvL39zGv1DmtSV\nUiofaULPpWWPw4GNALgW3smIc/+VBT98kPGXfB6ny0VDbQ3F/SvwhzrudGYnEuzbson3/3cBF3/p\nesTrxcQyU7sGZ88m4Sto9UtOJZPEwi2kbCfisPAFvThdDjxOi/OqS/j53El4XBY+l0VtU4znlu8E\noKYxxgd7GzWhK6VUntKEnktlww+/NIWDiYYjhBvqeWf+/wAQLO3HnIcepaCouMNTRFuamP/9+0jZ\nNulkkstefYWG/30dz6iRrPH3Z0gsTXXgSPmmA7XEo7Do2d1Uji5k5JQSAkUBvIECLMvR6rm50xKm\nDC3hz1vr8LksRpa37WSnlFIqP2hCz6Wxs0mKG9Owi+iwmSz+wQ9b7W4+dAA7Ee/yNB9PJbB51XtM\nnPUV1qQmM6aqir9+4i2W3jWwVdlDe3ZxYHeIkecVE218n5cf+T9GnHc+5155Nb5gYauyJQUefnrD\nOexvilFa4KE0cByz0SmllMoJTeg5ko5GwRlkuxnO2hXb2PPs90lEI63KiDhwdDHXubcgyJX3fJdV\nv3+ZyrGTOLQnzf7tTUz0Wvzp2zOwHEIylcJlZaZ07VdVjW1HCJZa/OYffw3Ait+/zLiLLmuT0AHK\nAh7KAjrOXCml8p0m9JMlHoboIYjUkfaXU/PAD5FAkPJbv8Hv/rIKk063OWTopHNxe/3tnOwIl8dD\naOgo/J8rYtCAUnZtbuLL90xiTzzBl366DIcIz319CmcNzkx+EyguZdDIAuxkFKfHgx2P47AsXCcw\nx7xSSqnc696al+qTO7QJHjsbnrwQ3vguvlHDaHz+eewVK/nCbXci0vpXUVRewcV/fUub6WTbE/J7\nGFNVzp9rmqgYXYzxWzzy2kZiyTSRRIqfLtpMNGEDYDmdBEoCBEuLmfPgo0y56jquf+Bf2yz7qpRS\n6tSiLfSTZetiSGfGdjt2LMYzYSYAiffXMPRbt3PT40+xYdkSmg7UUj1hEv2HDe+0M9zRLIdQWeKn\nsiST/JOpNFOHlrJ40wEAzh9WitvZehU1y+mkbPAQygYP6alPqJRSKod0cZaTpW4bPHURROowlz5I\n4+4Swu+vpfzb38ZZVtbjl6uPJNh2MIwlwpBSv876ptSJ08VZVF7rtYQuIoOBXwHlgAGeNMb8RERK\ngOeBKmA7cI0xpr6zc53KCT2dSmEn4rjcHiRyANI2eIKk0i7E4ehyffSmaJLVuxpYs7uB2ecMYmCR\n7xPVIxUOE1+/nuY/LSI0aybu6mocbk3ySnWDJnSV13ozoVcAFcaYVSISBFYCVwI3AnXGmEdE5B6g\n2Bhzd2fnOlUTerSlmU3vvMWWFe8yeeZsKoaPxOnuXo/x93fW86WfLQOgssTPS988/xP1Ok/s2s2W\nSy8FYxCvl2ELX8NVXt7t8yh1GtOErvJar3WKM8bUGGNWZV83A+uBgcAs4JfZYr8kk+T7pHB9HUue\n/QWeQIC1b75OrKWl2+fY1xg7/DqdNrgTYT548w12rF1DtKW5VdnEvn1EP1hH858WkaytbbUv1dR4\neMC6icUwR00JmwqHsevrMbbdbh3SySTJ/fuJbdiAfehQtz+DUkqp3ndSOsWJSBUwAXgXKDfG1GR3\n7SNzS75PEoeDL9z/T/y2ZgFOcTLZnSLQ9WEAJGJRkvE40wZ6eO2Wc0gknQwo9LDsN0+zbvEbAFx+\n+12cef4FANiNjSS2bWPX1+aBMXjHj2fwE/+Bs6QEAFdFBYWzZhFevJii667DCmZ6tdt1ddQ++mPi\nGzdS/p178Y4Zg8PVegIZu6aGrTNnYWIxCqZPZ8AP/gVn8fF12FNKKXVy9HqnOBEJAIuBB40xL4lI\ngzGm6Kj99caYNtlBRG4Gbs6+HQls7OJSIaCxm9U7nmM6K9PRvmO3t1fu6G3H7i8DDnZRr+7K5/i0\nt62z970Rn47q1RPHnM4xOt7y3Y1RLuJz0BjzuW4eo9TJY4zptR/ABSwE7jhq20Yyz9YBKoCNPXSt\nJ3vjmM7KdLTv2O3tlTt6WzvlV/TC7yJv43M8MTsmXj0eH41R78ToeMt3N0b5Gh/90Z9c/vTaM3QR\nEeDnwHpjzKNH7VoAzM2+ngu82kOX/F0vHdNZmY72Hbu9vXK/62J/T8vn+LS37Xhi2NM0Rl3r7jWO\nt3x3Y5Sv8VEqZ3qzl/ungaXAWuDjeU3vJfMc/bdAJbCDzLC1ul6pxClKRFYYYybluh75SuPTNY1R\n5zQ+qi/qtU5xxpi36HiYx8W9dd0+4slcVyDPaXy6pjHqnMZH9TmnxExxSimllOqcLs6ilFJK9QGa\n0JVSSqk+QBO6Ukop1QdoQs9zIjJKRJ4Qkfki8o1c1ydfiUiBiKwQkS/mui75SERmiMjS7HdpRq7r\nk29ExCEiD4rI4yIyt+sjlMo/mtBzQESeFpFaEfngmO2fE5GNIrI5u3ANxpj1xphbgGuAabmoby50\nJ0ZZd5MZDnna6GaMDNACeIHdJ7uuudDN+MwCBgFJTpP4qL5HE3puPAO0mkJSRCzg34HPA6OB60Vk\ndHbfTOAPwB9PbjVz6hmOM0Yi8lngQ6D22JP0cc9w/N+jpcaYz5P5j8/3TnI9c+UZjj8+I4Flxpg7\nAL0Tpk5JmtBzwBizBDh2Mp1zgc3GmK3GmATwGzKtBowxC7J/jOec3JrmTjdjNAOYAtwAfF1ETovv\ndXdiZIz5eHKneqD76++egrr5HdpNJjYAqZNXS6V6zklZbU0dl4HArqPe7wbOyz7vnE3mj/Dp1EJv\nT7sxMsbcCiAiN5JZQCPdzrGni46+R7OBy4Ai4Ke5qFieaDc+wE+Ax0VkOrAkFxVT6kRpQs9zxpg3\ngTdzXI1TgjHmmVzXIV8ZY14CXsp1PfKVMSYCzMt1PZQ6EafFrclTxB5g8FHvB2W3qSM0Rl3TGHVO\n46P6LE3o+eM9YLiIVIuIG7iOzMp06giNUdc0Rp3T+Kg+SxN6DojIc8A7wEgR2S0i84wxNnArmfXj\n1wO/Ncasy2U9c0lj1DWNUec0Pup0o4uzKKWUUn2AttCVUkqpPkATulJKKdUHaEJXSiml+gBN6Eop\npVQfoAldKaWU6gM0oSullFJ9gCZ0lfdEZFmu66CUUvlOx6ErpZRSfYC20FXeE5GW7L8zRORNEZkv\nIhtE5FkRkey+ySKyTETWiMhyEQmKiFdEfiEia0XkfRH5TLbsjSLyioi8LiLbReRWEbkjW+bPIlKS\nLTdMRF4TkZUislREzsxdFJRSqnO62po61UwAxgB7gbeBaSKyHHgeuNYY856IFAJR4HbAGGPGZZPx\n/4nIiOx5xmbP5QU2A3cbYyaIyI+BrwL/BjwJ3GKM+UhEzgN+Blx00j6pUkp1gyZ0dapZbozZDSAi\nq4EqoBGoMca8B2CMacru/zTweHbbBhHZAXyc0BcZY5qBZhFpBH6X3b4WGC8iAeB84IXsTQDIrEmv\nlFJ5SRO6OtXEj3qd4pN/h48+T/qo9+nsOR1AgzHm7E94fqWUOqn0GbrqCzYCFSIyGSD7/NwJLAXm\nZLeNACqzZbuUbeVvE5Grs8eLiJzVG5VXSqmeoAldnfKMMQngWuBxEVkDvE7m2fjPAIeIrCXzjP1G\nY0y84zO1MQeYlz3nOmBWz9ZcKaV6jg5bU0oppfoAbaErpZRSfYAmdKWUUqoP0ISulFJK9QGa0JVS\nSqk+QBO6Ukop1QdoQldKKaX6AE3oSimlVB+gCV0ppZTqA/4fw9L3xyhJLYYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8ldX9wPHP945sMggJIEOGKAoi\n1Yi497auOipWxYE/W2eno+5a62pta7V1UVCrdeGoOIuzDgRERYaKDBkBQhbZueP7++N5Qi7JTXIz\nLkluvu/XK6/c+4zznOeK+d5znnPOV1QVY4wxxvRunu6ugDHGGGM6zwK6McYYkwAsoBtjjDEJwAK6\nMcYYkwAsoBtjjDEJwAK6McYYkwAsoBtjjDEJwAK66VVE5DIRmS8idSIyo8m+i0RkuYhUisjrIrJD\nxL6fi8gKEdkiIutF5F4R8UXsnygiH4hIuYisFZEbtuNtGWNMp1lAN73NeuA2YHrkRhE5BLgdOAno\nD6wEnoo45GVgT1XNBMYDewBXROx/EnjfPfdg4GcicmJ8bsEYY7qeBXTTq6jqLFV9EShususE4FlV\nXayq9cDvgINEZLR73neqWuYeK0AY2Cni/BHAv1Q1pKrfAf8DxsXxVowxpktZQDeJRKK8Hr91g8gU\nEdkCbMZpoT8YcfyfgXNFxC8iuwD7Av+Nc32NMabLWEA3ieJ14AwRmSAiqcCNgAJpDQeo6pNul/vO\nwD+AjRHnvwKcBtQAy4BHVXXe9qq8McZ0lgV0kxBU9b/ATcDzwCr3pwJYG+XYb4HFwAMAItIf5wvB\nrUAKMAw4WkR+th2qbowxXcICukkYqnq/qo5R1YE4gd0HfNXC4T5gtPt6FBBS1cdUNaiqa4F/A8fF\nvdLGGNNFLKCbXkVEfCKSAngBr4ikNGwTkfHiGA48BPxFVUvd8y4SkXz39W7AtcAct9hvnM0yRUQ8\nIjIIOBP4cnvfnzHGdJQFdNPbXI/znPsa4Cfu6+txusqfBCqBT4GPgci55PsDi0SkCnjV/bkOQFW3\nAKcCPwdKgc9xWva3xf92jDGma4iqdncdjDHGGNNJ1kI3xhhjEkBcA7qIXCkiX4nIYhG5yt3WX0Te\nEpFv3d858ayDMcYY0xfELaCLyHhgGjAJZxGPE0RkJ5xnn3NUdQzOoKRr4lUHY4wxpq+IZwt9V2Cu\nqlarahB4D2fg0UnATPeYmcDJcayDMcYY0yfEM6B/BRwoIrkikoYzp3cYMFBVC91jNgAD41gHY4wx\npk/wtX1Ix6jqUhG5E3gTqMKZChRqcoyKSNRh9iJyMXAxwG677bbX4sWL41VVY4yJhbR9iDHdJ66D\n4lT1UVXdS1UPwpnf+w2wUUQGA7i/N7Vw7kOqWqCqBampqfGspjHGGNPrxXuUe8PKXMNxnp8/iZOX\n+jz3kPOAl+JZB2OMMaYviFuXu+t5EckFAsClqlomIncAz4jIhcBq4Iw418EYY4xJeHEN6Kp6YJRt\nxcDh8byuMcYY09fYSnHGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQA\nC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowx\nxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCA\nbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNM\nArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMAohrQBeRn4vIYhH5\nSkSeEpEUERkpInNFZLmIPC0iSfGsgzHGGNMXxC2gi8gQ4AqgQFXHA17gx8CdwL2quhNQClwYrzoY\nY4wxfUW8u9x9QKqI+IA0oBA4DHjO3T8TODnOdTDGGGMSXtwCuqquA+4BvscJ5OXAAqBMVYPuYWuB\nIfGqgzHGGNNXxLPLPQc4CRgJ7ACkA8e04/yLRWS+iMwvKiqKUy2NMcaYxBDPLvcjgJWqWqSqAWAW\nsD+Q7XbBAwwF1kU7WVUfUtUCVS3Iy8uLYzWNMcaY3i+eAf17YLKIpImIAIcDS4B3gNPcY84DXopj\nHYwxxpg+IZ7P0OfiDH77DFjkXush4GrgFyKyHMgFHo1XHYwxxpi+QlS1u+vQpoKCAp0/f353V8MY\n07dJd1fAmNbYSnHGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jG\nGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQA\nC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowx\nxiQAC+jGGGNMArCAbowxfZCInCgi13R3PUzX8XV3BYwxxnSOiAggqhqO9RxVfRl4OX61MtubtdCN\nMaYXEpERIvK1iDwGfAWcIyIfi8hnIvKsiGS4xx0nIstEZIGI/FVEXnG3TxWRv0WU9baIfCkic0Rk\nuLt9hnvORyKyQkRO6677NW2zgG6MMb3XGOAB4GDgQuAIVd0TmA/8QkRSgAeBY1V1LyCvhXLuA2aq\n6gTgX8BfI/YNBg4ATgDuiMtdmC5hAd0YY3qv1ar6CTAZ2A34UEQ+B84DdgTGAitUdaV7/FMtlLMv\n8KT7+nGcAN7gRVUNq+oSYGBX34DpOvYM3Rhjeq8q97cAb6nqWZE7RWRiF1yjLrLILijPxIm10I0x\npvf7BNhfRHYCEJF0EdkZ+BoYJSIj3OPObOH8j4Afu6/PBj6IX1VNvFgL3RhjejlVLRKRqcBTIpLs\nbr5eVb8RkZ8Br4tIFTCvhSIuB/4pIr8GioDz415p0+VEVbu7Dm0qKCjQ+fPnd3c1jDF9W6/sbhaR\nDFWtdKe23Q98q6r3dne9TNezLndjjEls09yBcouBLJxR7yYBWZe7McYkMLc1bi3yPiBuLXQR2UVE\nPo/42SIiV4lIfxF5S0S+dX/nxKsOxhhjTF8Rt4Cuql+r6kRVnQjsBVQDLwDXAHNUdQwwx31vjDHG\nmE7YXs/QDwe+U9XVwEnATHf7TODk7VQHY4wxJmFtr4D+YxpXKBqoqoXu6w3YykPGGGNMp8U9oItI\nEnAi8GzTferMmYs6b05ELhaR+SIyv6ioKM61NMYY05SIfNTddTCx2x4t9GOBz1R1o/t+o4gMBnB/\nb4p2kqo+pKoFqlqQl9dSPgFjjDFdTUR8AKq6X3fXxcRuewT0s9g2IcDLOIkDcH+/tB3qYIwx3WbE\nNbOnjLhm9qoR18wOu7+ndLZMEXnRTYm6WEQudrdVisjd7rb/isgkEXnXTX16onuM1z1mnpsu9f/c\n7YeIyAci8jKwpKG8iOtdLSKLROQLEbnD3TbNLecLEXleRNI6e1+m4+K6UpyIpAPfA6NUtdzdlgs8\nAwwHVgNnqGpJa+XYSnHGmB6gQyvFucH7YSAy2FUD01bdcfyT0c+KoTIi/VW1RERScZZ0PRjYDByn\nqq+JyAtAOnA8Tia2mao60Q3++ap6m7tM7IfA6TjZ2WYD4xuys4lIpapmiMixwA046VmrI66dq6rF\n7rG3ARtV9b6O3pPpnLguLKOqVUBuk23FOKPejTGmL7idbYM57vvbaUxZ2hFXiMgp7uthOLnR64HX\n3W2LgDpVDYjIImCEu/0oYIKInOa+z4o499OIVKuRjgD+qarVABGNsPFuIM8GMoA3OnE/ppNspThj\njImv4e3c3iYROQQnyO7rtpjfBVKAgDZ2u4ZxU5+qarjhuThOT8PlqvpGlDKraJ8ZwMmq+oWbHOaQ\n9t6L6Tq2lrsxxsTX9+3cHossoNQN5mOBye049w3gpyLiBxCRnd3Ho615Czi/4Rm5iPR3t/cDCt2y\nzm7XHZguZwHdGGPi6zqcZ+aRqt3tHfU64BORpcAdOPnQY/UIzqC3z0TkK5xkLa321qrq6zgDmue7\niV5+5e66AZiL8xx+WbvuwHQ5S59qeiQNhQiVlYHXhy87q7urYwx0In2qOzDudpxu9u+B6zozIM6Y\naCygmx5HQyFqly6j8Lpr8fbPZYe77sSfn9/d1TKmV+ZDN32HdbmbHidUUsK6q67Cl5/PgP+7mFBx\nCaG6uu6uljHG9GgW0E3P4/GQsvt4+p9/AWsvv4JVZ51F3aJFaCjU3TUzxpgeywK66XF8ubnkX3st\nZU89RbiyEq2tZdO9fyZcWdn2ycYY00dZQDc9kn/AAFL32nPr+9SJE5Hk5G6skTHG9Gy2sIzpkcTj\nIeuUU0jZbTe0vp7kceOorqmGmmpSM7Pwer3dXUVjjOlRLKCbHsuXnY1vn30Ih0Ks/3YZz99+I16v\njzNu+gP5I0Z1d/WMMaZHsS530+PVVVfx/hPTCdbVUVddxYdPP059bU13V8uYXs3NrrZfxPsZEeu7\nd/W1HhGR3eJRtmlkLXTTI6kqwaLNaE0NvrRUdthlNwq//RqA/JE74fX5u7mGxrTDzVnNFpbh5vLu\nXljmEKAS+CjeF1LVi+J9DWMB3XSxYGkp4vXizczsXDlFRaw67XSCmzaRNmlv9rvnHvJHjMLr9zNs\nt93x+uyfruklnGAemT51R+Bhbs6io0HdXXv9GWAo4AV+h5M69R6cv+vzgJ+qap2IrAIKVHWziBS4\nx0wFLgFCIvIT4HK36INE5BfAIOA3qvpcC9fPAF4CcgA/cL2qvhStXqr6tJs85leqOl9E/g7sDaQC\nz6nqTR35DExz1uVuukzdihWs/enPWH/11QSLijpX1vLlBDdtAqD603kQCLDbgYcyZuLe+OvqCW4u\n7ooqG7M9tJY+taOOAdar6h6qOh5nbfcZwJmqujtOUP9pSyer6irgH8C9qjpRVT9wdw0GDgBOwFkj\nviW1wCmquidwKPBHEZEW6tXUb1W1AJgAHCwiE2K9adM6C+imSwRLSll/9TXUfP45le+8S8ljj3Wq\nvORRo/BkZDivdx6DJzmZcG0tVR99yIpjjmX11KkENmzoiqobE29dnj4VJ9f5kSJyp4gciJPrfKWq\nfuPunwkc1IFyX1TVsKouAQa2cpwAt4vIl8B/gSHu8dvUS1XLo5x7hoh8BiwExgH2bL2LWL+l6RLi\n9eDNakyi4s3N7VR5vgEDGPXqbIJFRfgHDsQ3YACBoiI23HQz4aoqvDk5VFdV4i0tITktHb/NUTc9\n1/c43ezRtneIqn4jInsCxwG3AW+3cniQxsZbShtFR66x3Nra9WcDecBeqhpwu/VTmtZLROao6q1b\nCxQZiZOpbW9VLRWRGTHUycTIArrpEt6sLAb/4XZKHp2OLy+PrBNP7FR54vPhz8/fJimL+Hz4R+yI\npKaS9utf8MTtN1BfU8NJv/4tO+7+A3uubnqq69j2GTp0Mn2qiOwAlKjqEyJSBlwGjBCRnVR1OXAO\n8J57+CpgL+A14EcRxVQAHR3skgVscoP5obhfWKLUq+lguEygCigXkYHAscC7HayDacL+Apou48/L\nY+A1V8etfF9ODkPvvZfab5fz0cfvU1tZAcD/nnqMQaN2Ji3L0qyaHujm8ie5OQu6dpT77sDdIhIG\nAjjPy7OAZ0WkYVDcP9xjbwEeFZHfsW3w/A/wnIicROOguFj9C/iPiCwC5tOYCz1avbZS1S9EZKF7\n/BqcPOqmi1j6VNMrLf3wPV79690A7HHUcRw05XySUlObHafhMOHqajwpKYi14E3nWPpU06NZQDe9\nUm1lJWUb11NbVUX+iFGkZTZvnYdraqheuJCSf84g47DDyDzuWHzWijcdZwHd9GjWZDE9RlFFLaEw\npCV5yUxtfeGYlIwMBmXs3OoxofJy1lz8fxAMUvXBB6TttacFdGPaQUR2Bx5vsrlOVffpjvqY1llA\nNz3C+rIafvT3jygsr+Xyw3biogNHkRUR1ENbtlCzaBGVH/yPzKOPInnnnfGmp7deqKrz0yAcjlPt\njUlMqroImNjd9TCxsXnopkeY/WUhheW1ANz39nJqA6Ft9td+/TVrLryI0hkzWD3lbALr1rdZpicr\ni6H33UfapL3J/81v8A0aFJe6G2NMT2AtdNMjjB/SOHtmx9w0vJ5tH1dWL/gMREgeOxaCQeqWLSNl\n5zGtlulNSyPjoANJK9gLSUnBk5QUl7obY0xPYIPiTI9QXhNg2YYtfLOhgiN3G8igLGfEugaDhKuq\nCJaWsrkmxIJNtSR5Pew5bhj5ORndXGvTx9igONOjWQvd9AhZqX72GZnLPiMbV5gLlpZSNmsWlW+/\nQ8q9f+NHTy5gwxanW36nTzfx1LTJ5PWzFeKMMQbsGbrpwSrfe4+iu+9B62r5ePHarcEcYPmmSlZt\nrurG2hnTO4jIzSLyqziVvUpEBsSj7K4gInkiMldEFrpr3jfdn1B52q2FbnokDYWo/uQT93UYn6d5\nb6fPaz2gpnfYfebuzfKhLzpvUXfnQ+9WIuJT1WCcL3M4sChaPnYR8SZannZroZseSbxecqZMARHq\nli5lz1wfI3Ibl8LeY1gWw/o3zUhpTM/jBvOHcdY7F/f3w+72DhGRdBGZLSJfiMhXInJmZGtZRArc\nHOQN9hCRj0XkWxGZ1kq5g0XkfRH53C33QHf730VkvogsFpFbmpx2uYh8JiKLRGSse/wk93oLReQj\nEdnF3T5VRF4WkbeBOSKSISJzIs4/yT1uhIgsFZGH3Wu+KSLNl4JsrPc0EZnnfh7Pi0iaiEwE7gJO\ncu8nVUQqReSPIvIFsK+IvOvmiEdEjnHr8YWIzGntPnoqa6GbHitp9GhGvfIfqubNIz0rjWcvnszy\nzVX4vR5GDEhnQIY9Pze9Qmv50DvaSm/IO348gIhkAXe2cvwEYDKQDiwUkdmqGm3u5xTgDVX9vYh4\nI+r9W1UtcbfNEZEJqvqlu2+zqu4pIj/DyaR2Ec5a7QeqalBEjnDvtSExzJ7ABLc8H05e9S3ul5FP\nRORl97gxwFmqOk1EnnHPf6KF+5ulqg+7n8VtwIWqep+I3AgUqOpl7r50YK6q/tJ9j/s7D+dL10Gq\nulJE+rvltnYfPY4FdNNjedPT8Y4eTfLo0YCTqzEvq8Uv6cb0VPHKh/5HEbkTeEVVP2gITi14SVVr\ngBoReQeYBLwY5bh5wHQR8ePkRv/c3X6GiFyMEzMG4+Qwbwjos9zfC4BT3ddZwEwRGQMoELn041uq\nWuK+bsirfhAQpjGvOjj53RuuvwAn53tLxruBPBvIAN5o4bgQ8HyU7ZOB91V1JUBE/Vq7jx7HutyN\nMSa+Wsp73ql86Dgt3UU4ecdvpPW8503nJ0edr6yq7wMHAeuAGSJybkQO88NVdQIwu0n5DTnUQzQ2\nEn8HvKOq44EfNjk+cjRrZF71icDGiGMjc7NHlh3NDOAyVd0dJ7tcSznWa1U11MK+aFq7jx7HArox\nxsTXdTj5zyN1RT70alV9ArgbJ7ivwsl7Ds27hU8SkRQRyQUOwWmJRyt3R2Cj2339iFtutBzmbcnC\n+VIAMLWN45rlVe+AfkCh27NwdgfO/wQ4yP3yQkSXe6z30SPENaCLSLaIPCciy9wBDvuKSH8Recsd\nnPGWiOTEsw7GGNOd3NHs04DVOC3j1cC0To5y3x34VEQ+B24CbsNpmf5FRObjtGgjfQm8gxO4ftfC\n83Nwgn1DzvIzgb+o6hdAQw7zJ4kth/ldwB/cclprWf8LKBAnr/q5NOZVb68bgLlu3dpdhqoWARcD\ns9wBc0+7u2K9jx4hrivFichM4ANVfUREknAGWFwHlKjqHSJyDZCjqle3Vo6tFNe3BTdvRsNhPGlp\neDNsdTjTbWyepOnR4tZCd0ddHgQ8CqCq9apaBpwEzHQPmwmcHK86mK4RDgYJVVai3ZCtLLBhA6vO\nmsLygw+hfNYsQpWV270OxhjTG8Szy30kUAT8053D94g7ZWCgqha6x2ygcUSj6YGCZWWUPvY46666\niprPPiNcV9f2SV1oy2uvEVizBlTZeOddhGtqtuv1jUlEIrK7Ozc78mdud9erLSJyf5R6n9/d9eop\n4vlMwIczoOJyVZ0rIn8Brok8QFVVRKL2+btTJC4GGD68M7M7TGcEvl/DprvuAqD603mM/u9bePLz\nYz4/WFxMqLISb1oa3gEDts77jFXKLmO3vk4aORLxNP8OGty8GQ2F8KSm4c3s167yjemLemuec1W9\ntLvr0JPFM6CvBdaqasO3vudwAvpGERmsqoUiMhjYFO1kVX0IeAicZ+hxrKdpTWQAbmcwDhYXs/aK\nK6lZsABffh4jnnkG8fqQ9DS8abGt8pYyfhzDZ86k7rvl9Dv8cHy5udvsD2zc6OZHX8eAK6+g/09+\ngrefBXVjTN8Tty53Vd0ArIlYKu9wYAnwMnCeu+084KV41cF0nn/YMAZeey0ZBx/M8OmP4s3Ojvnc\ncF0dNQsWABDcVETt4iV8/9OfUjL9nwTLyghVVBAsKiJYUtJiGd7MTNL3mUT/KVPwD2z+dKZ63nwC\n65xZJZvvfwCtrW12jDHG9AXxHoZ/OfAvd4T7CuB8nC8Rz4jIhTjTN86Icx1MJ/iys8g5ewpZp/0I\nT1pasy7zYFkZdUuWoOEwKePG4ctpnIXoSU4mZeIe1H7+Bd7cXHz5edQtXUrdV1+RceghVH34IUV/\nvY/U3ccz9L778A1of9KmlF3Hgs8HwSCpP/gBeHv8zBJjjImLuP71c5ftK4iy6/B4Xtd0LfH58Pqa\n/1PRYJCyZ5+l6I9/AmDApT8j95JL8Pid1RF9ubkMu/9+Qlu2gCrrf3M1hJzpsVpTQ8mMmRAMUrPw\nc6oXLiTzyCPbXTf/Djsw+rVXCRQWkjx6NL7+tqyBMaZviimguwvXT8NZS3frOap6QXyqZeIpHAgQ\nKitDPJ5mz6TbVU59PTULP9/6vuaLL9C6OvA3Lnfsy83Fl5tLYNMmtL4egH5HHom/yUBH/8BBhAOB\nrV8GYuVJTSVp2DCShg3r8H0YY3oeEckGpqjqAx04dxVOUpbNXVCPW3HWef9vZ8uKt5gWlhGRj4AP\ncBbI37oCkapGW+S+y9nCMl1HAwGqF37OuquuclrQDz2If/DgDpdXu2wZq8+bCuEww/85nZRx41oc\nyR4sLkZDIcSfhKSmUL/8OyrefIOU8eMJFBaS9cMf4uvfP+q5xvQAHV5YZunYXZvlQ9912dJuyYcu\n2ycPeaeJyAicxDPjo+xr9R66MqD3JrEOiktT1atV9RlVfb7hJ641M3ERKi9nwy23ECopoe7bbyl9\n6t+dKi95zBhGv/IfRr06m5Rddml1WpovNxd/fj6+nGw8SUnULP6K2mVfs/lvf6N+1SokpUfnPTCm\nQ9xg3iwfuru9w0TkJyLyqTsX+0ER8YpIZcT+00Rkhvt6hoj8w51rfpe7BPeLIvKliHwiIhPc424W\nkcclSu50Efm1ODnHv5TmOdGb1u1c97gvRORxd1ueOLnK57k/+0dcc7o4uclXiMgVbjF3AKPd+7tb\nRA4RkQ/ESa+6xD33RRFZIE7O9Ivb8dk1O8/9/GaIkwd+kYj8POKzO819faNb969E5CFp7zzcOIv1\nGforInKcqr4a19qYuJOkJJJGjqT+u+8ASB67SxtntFGe14svL6/953k8ZB51NMk77ki4uprUiRNj\nnspmTC/T5fnQRWRXnLXW93cTmzxA20lJhgL7qWpIRO4DFqrqySJyGPAYjfPSm+VOB8bj5CefhPOl\n5GUROcjNzta0buOA691rbZbGRCd/Ae5V1f+JyHCcFKe7uvvGAofiJFn5WkT+jjPNebybhQ0ROQRn\nbZPxDWlOgQvcvOqpwDwReV5Vi2P4CJudh/NIeUhDj4Db5d/U31T1Vnf/48AJwH9iuN52EWtAvxK4\nTkTqgADOf1BV1cy41czEhTczk8G33EzlYYfhy88jZXyz3qy4iPZ83JeTjW/y5O1yfWO6UTzyoR+O\nk1ltnttITKWFNT0iPBuROvQA3Ixsqvq2iOSKSMPf82i50w8AjsJJ0gJOzvExQLOADhzmXmuzW37D\nvNQjgN0iGrWZItKQnGG2qtYBdSKyiZZXEP00IpgDXCEip7ivh7l1iiWgRzvva2CU+2VnNvBmlPMO\nFZHf4Hwh6w8sprcFdFW1lToSiC83l+xTT2n7wC4Qrq2l9quvKH3yKTKPO5a0yZMtwYrpa74nelrQ\nDudDx2lUzVTVa7fZKPLLiLdNn2FVEZtoudMF+IOqPtiuWm7LA0xW1W0Wi3ADfKy5z7feg9tiPwLY\nV1WrReRdYshX3tJ5qloqInsARwOX4EypviDivBTgAZxn82tE5OZYrrc9xbywjIjkiMgkETmo4See\nFTOJIVRWxurzL2DLq6+y9rLLCRYXU/bii9Sv/p5wINDd1TNme+jyfOjAHOA0EckHJ3+3uLnMRWRX\nEfEArX1r/wC3i94NcJtVdYu7L1ru9DeACxpa1CIypOHaUbwNnO6eH5lb/E2ctUlwt7e19GwFThd8\nS7KAUjcoj8V5TBCLqOeJyADA444Pux6nez9SQ/De7H4Op8V4ve0m1mlrF+F0uw8FPsf5AD7G6Vox\npmXhMAQbB6MGN21iww03gs/H6NdfwxNl9TdjEsmuy5Y+uXTsrtCFo9xVdYmIXA+86QbvAHApznPn\nV3ASY83H6RqP5mZguoh8ifPl4ryIfQ250wfQmDt9vfvc/mO3RV0J/IQo3fyqulhEfg+8JyIhnG76\nqcAVwP3uNX043fWXtHKPxSLyoYh8BbyG0w0e6XXgEhFZitNd/klLZcV43hCcZGINDd1tej9UtUxE\nHga+wkksNi/G6203sU5bWwTsDXyiqhPdbzW3q+qp8a4g2LS13ixUWUnF229T+sS/6HfkEXgz+rHh\nFmeA7KjZs0kePYqSqjoWfl9Gss/LuB0yyUlP6uZaGxNVjxrRHA9uN3Klqt7T3XUx7RfroLhaVa0V\nEUQkWVWXSeMa7ca0yJuRQeaxx5Jx0EFOCtTf/x6AzBNPxJc3gJr6IH9682uemLsGgF8euTOXHDwa\nvy+emX2NMSbxxNpCfwFnHfbQ/VqXAAAgAElEQVSrcLrZSwG/qh4X3+o5rIWeOEJlZYTDYbSmhvIX\nXsSbl0fhhH045Ykl1IfC7Dc6l3+csxeZKe1bMc6Y7SDhW+jt4T4jnxNl1+ExTh2Lq55ev3iIdZR7\nw+CKm91pDFk4zyGMaRdvdjbhoiJW/+QcgoWFAOSccw4X7n0cD3+6nv87eBTpSZZgxZiezg2KPTan\nek+vXzzE/JdTRPbEmYuowIeqWh+3WpmEE66vJ1RaSqi8HE9q6tZgDlC38DN+etE0zj1kF7LS/Hg9\n1hAyxpj2iulBpYjcCMwEcnFGPv7THWFpTEwCa9fy3VFHs/LEk6hfs4bUHzR+cc465VQycrIYnJ1K\nmrXOjTGmQ2L963k2sEfDggAicgfO9LXb4lUxk1iqPv3UycQGrP/1bxg563nqV67Em52Db/AgPEk2\nst0YYzoj1qHE69l2RZxkYF3XV8ckqvR9JiOpqQCkjNsN8SeRPnkyKWN3wZeV1c21MyYxiciJInJN\nC/sqW9gemYzkXREpiGcdWyIiE0Uk7gOvReS6iNcj3HnvnS0zT0TmishCETkwyv5HRGS3zl6nqVhb\n6OXAYhF5C+cZ+pHApyLyVwBVvaK1k03vo6psrtlMaV0p/VP6MyB1QMfKCQQIlpXh6ZfB6NdfI1xZ\n6bTK++d0cY2NMU2p6svAy91djw6aCBQAcUkK5mZKE5wV+27v4uIPBxap6kVRruuNtr0rxBrQX3B/\nGrzb9VUxPcnmms2cNfssNlZvZGTWSKYfPb3dQV3DYWqXLeP78y8AEYZPn07K+JbzpRuTqO6/5O1m\n+dAv/cdhncqHLk6+8NdxVjrbD2flsn8CtwD5OI9Kd8NZe/wyERmJk90tA3gpohwB7sNpqK0Bog54\nFpGj3LKTge+A81W1pVb+XsCf3GttBqaqaqE46VgvBpKA5cA57hKspwM34azjXo6z1vqtQKqIHICz\njvzTUa5zM85nOsr9/WdV/au77xc0rsX+iKr+2f3M3gDm4iS3+dS9xuc4iVZ+C3jdFeH2w+mJPslN\nVhPtPpvdD7AzcJdbbgGwL87KfQ+693WpiNwG/EpV54vIMTj/Nrw4S/AeLiKTcLLTpQA17mf9dbQ6\nRIqpy11VZzb84HzbW9hkm0kwW+q3sLF6IwAry1dSG6xt44zmwpWVbLrnHsKVlYQrKra+NqYvcYN5\ns3zo7vbO2gn4I0760bHAFJzZSL+i+VrxfwH+rqq7A4UR208BdsEJ/ufiBLJtuOucXw8coap74iwr\n+4toFRIRP84XhNNUdS9gOvB7d/csVd1bVfcAlgIXuttvBI52t5/ozqK6EXhaVSdGC+YRxuIkVJkE\n3CQifvcLxfnAPjhLlU8TkR+4x48BHlDVcap6PlDjXuPsiP33q+o4oAw3K10Lmt2Pqn7epO41OKlo\n56rqHqr6v4jPKg/n38aP3DJOd3ctAw5U1R+4ZcXUgxDrKPd3RSTTXWT/M+BhEflTLOea3ikrOYsx\n2WMA2Ct/L1J9qe06X8Nh8HpJP6Dx8VHy2LGI3wa/mT6ntXzonbVSVRepahinhTlHndXCFuHk9460\nP/CU+/rxiO0HAU+pashdt/3tKNeZjBPwP3Rbs+cRPYMcOF8OxgNvucdej5MHBGC8iHzgLid+NjDO\n3f4hMMNt8XpjuO9Is1W1zk3X2pB69QDgBVWtcnsRZgENf4xWq2pr676vdIMywAKaf46RWrqfpkLA\n81G2Twbeb0gJG5FqNgt41n2ef28r5W4j1i73LFXd4iZpeUxVb3IX2DcJakDqAB466iFqg7Wk+lLJ\nTc2N+dxgaSllzz1H7aJFDLj0UpJ3HUu4tJT0/ffHk5Icx1ob0yPFIx96g8i0o+GI92Gi/31ve2nQ\n6AR4S1XPivHYxaq6b5R9M4CTVfULEZmKk80NVb1ERPYBjgcWuC3sWMWaerVBW2lkm5bXWmtmBlHu\nJ4raiFz0sfgd8I6qnuI+Jng3lpNiHeXuE5HBOPlhX2lHpUwvNiB1AEP7DW1XMAeo/eJLiv74Jyre\nfIvvz5tK6i5jyfrhD/H179/2ycYknpbynncmH3pHfAj82H19dsT294EzRcTr/p0/NMq5nwD7i8hO\nACKSLiI7t3Cdr4E8EdnXPdYvIg0tzH5Aodstv7UOIjJaVeeq6o04z5uH0Xb61NZ8AJwsImkiko7z\nWOGDFo4NuPXpiKj30w6fAAe54xsiU81m0TiTbGqshcUa0G/FGUjwnarOE5FRwLexXsQkplB1NYGi\nIoKbN2+zPVzf+AVXAwG0w40CYxJCPPKhd8SVOAOyFuGkCm3wAs7f8yXAYzipsbehqkU4geUpt3f2\nY5xn1824z79PA+4UkS9w1ixpeC5/A86AtA9xnhM3uFtEFrldzB8BX+CkcN1NRD4XkTPbc6Oq+hlO\n6/lT93qPqOrCFg5/CPhSRP7Vnmu4WrqfWOtZhDOobpb7WTWMFbgL+IOILKQ9K7rGkpylu1lylp4n\nVFnJlldms/H22/ENGsTw6Y+SNNR5TBYsKWHzPx6kdvFi8n/1K1LGj8Pjt2Qrptfr8PSMeIxyN6ap\nWLOt7Qz8HRioquNFZALOSMTtslKcBfSeJ7BhA8sPPQzcfz+Zxx3H4D/cjifZeUYerq1F6+rwZGQg\n3vaOcTGmR7L5lqZHi7XL/WHgWiAAoKpf0vgsxvRFHg8SsVxr2v77ESotJVBYSKiqCk9KCt6sLAvm\nxiQwEXnB7RKP/Dk6Dtc5P8p17u/q67Ry/fujXP/87XX9WMXaN5+mqp82WRAkGIf6mF7Cm53N8Ecf\nZeOdd5J+4AH4Bw9m+RFHQjjMkD/fS7/DDkN8lmjFmEQWkVo73tf5J86iOd1CVS/trmu3R6wt9M0i\nMhp3yoO7zm9h66eYROZJSiL1BxMZ9tCD9J86lbKn/g3BIITDlD7xBOHqpmOAjDHGxFOsAf1SnGXr\nxorIOuAq4JK41crERbCsjC1vvknJU/8mWFy8zb5AURHVCz4jsHEjGoptuqR4vfhycvD260fmccdu\n3d7vmGO3JmIxxhizfbTaJyoiV6rqX4DBqnqEO5/Po6oV26d6pittefU1Nt56KwCV777DDnfdhS8r\ni0BREavOOJNgYSHe7GxGvvwS/vz8mMsVEdIPOIDRb72JhkL4cnJsVLsxxmxnbbXQGx763wfgLqNn\nwbwX0nCY2iVLtr6vX7ESrXdyMGh1NcFC5wlKqKyMYFFRu8v39utH0rBhJI8YgdfSoRpjzHbXVkBf\nKiLfAruIyJcRP4ts6dfeRTweBky7CN+gQUhKCoNuuH5r4PWkp5Oy++4AJI0ciX/gwO6sqjFmOxCR\nk7syJ7eIFDSk1O4OEpH7vWk+chF5VUSyu6tu20ub89BFZBDOKnEnNt2nqqvjVK9t2Dz0rqGqhIqL\nUVW8mZlb54wDBIuLCVdX40lNxTegeZrUcE0NobJyNBTEm5mJNzNze1bdmJ4goeahi8gM4BVVfa67\n69LVROTHOJnh4pJ3vKeyleLMNlSV6vIyANKysrfmLq+ev4DVU6dCMMjA668n+/TTtvlCYEwf0OGA\n/sczT2i2Utwvn36ls/nQfwJcgZOLey7wM+BvwN44CUWeU9Wb3GPvwGmUBYE3cbKPvYKTe7wcJ33n\nd1GuEVP+clU9SEQOwcnxfUJ78nm7SU1OwVm/fAjwhKre4u57EWdd9xTgL6r6kLs9Wg7xqUAB8AhO\nmu9UnPXQ98VJbVqgqptF5Fyc9LIKfKmq58T6mfd0bQ2Ke0ZVz3DX/o2M/AKoqk6Ia+3Mdle2YT0v\n3vU7VMOc9OsbyB0yDFWl7MUXnGlpQPmsWWQed6wFdGNi4Abzh2lMoboj8PAfzzyBjgZ1EdkVOBPY\nX1UDIvIATnKQ36pqiYh4gTnuqp7rcALmWFVVEclW1TIReZm2W+izVPVh95q34eQvv4/G/OXrWujK\nbsjnHRSRI3CCb2t5xSfhpFytBuaJyGxVnQ9c4N5Pqrv9eZxHxQ8DB6nqyoiEJgCo6uciciNOAL/M\nrXvD5zYOJ53rfm5wT6iMUW2t/HGl+/uEjhQuIqtwMuaEgKCqFrgf4NM4OWZXAWeoamlHyjddK1BX\ny/tP/JOS9WsBeO+xRzn+qt+QnJpG9sknU/7iSxAMknXqKXjS051zNm5C62qpWbqM1F12xj9smK0O\nZ8y2WsuH3tFW+uHAXjhBDpzW6CbgDBG5GOdv+2CcHOZLgFrgURF5hfZlzBzvBvJsIAPn8Ss05i9/\nBqe131QWMFNExuA0Btua9vKWqhYDiMgsnHzm84ErRKRh8ZphwBggj+g5xGNxGPCsmzu9vef2eK0O\nilPVQvf36mg/MV7jUFWdqKoF7vtrgDmqOgaY4743nVBaXc+Hyzfz9rKNlFTVd7icQG0t+552Fmfe\nfCeDRu9M9uAd8LqrvaWMG8ewd98n56N5BE84FUlKon7delafcw4rTjwJra5i86OPNpvfHquSqnqK\nKuoIh3v+IyBj2ike+dAFmOn+bZ2oqrsAM3G6kg93e09nAymqGsRpAT+H0zh7vR3XmQFcpqq7A7fg\ndH2jqpfgtHSH4eQvb5pjuSGf93jghw3ntaLp//jqduEfAeyrqnsAC2Mop09rq8u9guYfNDR2uXdk\nZNRJNCaBn4mTuP3qDpRjcJ55z/psHb97xZmSdsnBo/j5ETuT7G9fK7mmooL3npjOkvffJi0rmzNv\nvoOUjH74/M567UF/Mv/bUMalT35MTpqf5y7Zj/T//IfA905K56J772XgNddCjIvSRNpQXsPP/vUZ\n5TUB/jZlT3YZ2A+PJ6HGH5m+7XucbvZo2ztqDvCSiNyrqpvcns/hQBVQLiIDgWOBd0UkA2f57ldF\n5ENghVtGLPnGm+b7XgeN+cuBuSJyLE5gj9TefN5HuvdQA5wMXIDzPL3UfWY/FpjsHvsJ8ICIjGzo\ncm9HS/tt4AUR+ZOqFrfz3B6v1YCuqh1NLr+1COBNEVHgQXdAw8CGlj+wAWhzjtTXNH4DMNtSYPmY\nARRf7Pxb/1OKn9keob2d3qGUFNYfciQcciQi8Fh2Dslp6Vv3B4AlWanUXLQP64DDBIZMmULdnj8A\nwNOvH/6hQ/GkprZv5JAqqwJhNhzjpFY+IBRmrCr+xBpQbBLAux0/9Tq2fYYOncyHrqpLROR6nL+v\nHpz/RS/FacUuA9bgdIuDE5RfEpEUnMbYL9zt/wYeFpErgNOiDYqjMd93kfu7ISbc7XanC86Xiy+A\ngyPOuwuny/16nJ6CtnwKPA8MxRkUN98du3WJiCzFCQOfuPde5D5WmOXe+ybgyBiugaouFpHfA++J\nSAjn85oay7m9QVxHuYvIEHfQRD7wFnA58LKqZkccU6qqOVHOvRhndCXJEybsNfmLL+JWz96upj7I\nksIKVJVdB2WSnuwFaV9ADAeDlKxfS21lBXlDd8RbU0O4rg5ffj7higrIzGJ1eT1FlXUAjB3Uj6wk\nD+GKCrS+Hm9ODni9HXp+XlhWw+oSZ+33nDQ/o/My8HljXZXYmO3j3R42yj1RNIxObxjAZjpuu01b\nE5GbgUpgGnCIqhaKyGDgXff5T4ts2lrrwmFlc1UdKOSkJ+HvYDCsLi8jVF9PzVNPU/zAAwD48vMZ\n/Ic/sPbKKxnw5tss21xDbr8UhmSnkpnaNcu7llTV89pXhZRU1fPjvYeR188ek5keybqN4sACeteJ\nW37LyHXf3ddHAbfizA88D7jD/f1SvOrQV3g8Qn4XBMG0rGxCVVWULV68dVtw0yY8SUloZSW6aAHp\ntRWMOfRofEnbBvNwKER1eRm1lZWkZmWRnhX7okz905M4e59ojxiNMduDm1t8/yab/+KmLe2qaxwN\n3Nlk80o3BeuMrrpOXxbPhNUDcQYfNFznSVV9XUTmAc+IyIXAauCMONbBtJM3PZ3+F15A5UcfQSBA\nv6OPpm71KjKOOgrPDoNZ+dw7jJm0PxlJ207frCov5bFfXUZtVSWDx4zl5F9fT1obQb2ooo7KuiAZ\nyV5rlRvTjbZHvm9VfYPGaW8mDuIW0FV1BbBHlO3FOHMoTQ+0pSZAxfAxDH/tdbyBejxpKZSXlJC7\ndwHlL/+Hg3adSFIo3Oy8sg2F1FZVAlD47TJCwUCr1ymqqOWcRz9l2YYKdsxN47lL9rWgbowxnRDP\nFrrpBbbUBKipD+H1CgMyklm4pozzpn8KwMkTd+C2o0eSkppG4c8uo/47ZxCs7/e/J+lHp25TTs7g\nIWTm5bOlaBOjC/bB6053a0l1fYhlG5zEfauLq9lSEySvs3MqjDGmD7OA3odV1AZ47ONV3PPmN4zI\nTWPmBZNI9TUOqKuoC1K5pYZQyEv96sZ1hGoXfwVNAnpGTn+m/O4egoF6/CmppGW2nkI1LcnHuB0y\nWbx+C6Pz0rtsgJ0xxvRVNjeoD6sJhPjzf78FYFVxNe987eRBP3CnAfi9wqWH7IQUrmPhxhrSL7sC\nAG///uScd17U8tJz+pOVP6jNYA6Q1y+ZGedP4r1fH8K/L55MXj9bF96YnkRERojIVzEcMyXifbem\nUO3rrIXeS4Vra6n79lvKX3mFrOOOJ3mXnfGktO8ZtFeEPYZms+D7UrweYddB/VhVUsV9U35AfTBM\nlh/EP4SC6nqKDjiC4ccdS3JyEkl5zdOrdoQTxC2QG9OLjQCm4K5J7yZUsTnG3cTSp/ZSgQ0bWH7k\nURAIgN/PTm+9iX/QoHaXU1RRy1frtpCd5uej5Zs5w50HHiwuZvM/HqR+5UryrroS/9ChSHIy3tTU\nmMqtD4YoqQpQURugf3oSuRntD9yhYJCSdWtZ/N5/2WnSvuSPGEVSSmzXNyYOetQ8dBEZgbMu+wJg\nT2AxcC5OutB7cBps84CfqmqdmyzrGZwlYWuAKaq6vGledBGpVNUMt/xXVHW8+/pxoGH5yMtU9SMR\n+QTYFViJs5T3QhpTqPYHpgOjcFbGu1hVv3TXJBnubh8O/FlVrVXfBazLvZfSQMAJ5gCBAFrfsaQs\nef1SOGBMLkNzUpkyeUcyU/xU1AYofeopSh9/nKr//Y/vzzvPWQ0uxmAOsK6slkPueYcj732fa2ct\norQDSWNqtpTz5A2/ZMHsF3nm5muprahodxnGJLhdgAdUdVdgC86yrjOAM92EKj7gpxHHl7vb/wb8\nuR3X2QQcqap74qRtbQjA1wAfuAli7m1yzi3AQjdRzHXAYxH7xgJH4ySNucldK950kgX0XsqTmUne\nL35B0sgRDLjySrxZbT+3bonf68wD94rw9Pw1PPL+dwSKNm/dH66qhnDzqWqt+XRlMbUB55y3lm4k\nEGWqW1vC4TDBOmepWdUwgbradpdhTIJbo6oNa7Y/gTMleKWqfuNumwkcFHH8UxG/923Hdfw4674v\nAp7FScvalgNwWvWo6ttArog0JPSarap1bhrTTcSQ08O0zZ6h91K+rCz6n/MTsk89BU9aGp60pumW\n26+8JsCNLy0mv18yp591Lklz51K/bh0Df/MbPBkZ7Spr8qhcMpJ9VNYFOWHCDvh97f/umJyWxhEX\nXcpnr73MmL33bXOhGmP6oKbPTMuApqlMWzq+4XUQt3HnJjuJNuf058BGnLVFPDj51TujLuJ1CItF\nXcI+xF5IVakuLwNVUnNy8HQgIUo0Pq/g8wibKuq44LU1vDjzMZI8IGlpeNPTKamq46PviqmoDXLU\nbgNbfS4+JDuVOb88mJr6EJmpPnLSWp+XHk1yWjq7HXQYO03aF39ysj0/N6a54SKyr6p+jDM4bT7w\nfyKyk6ouB84B3os4/kycZbfPBD52t60C9sJ5vn4iTmu8qSxgraqGReQ82JrQsbUUrB/gpFz9nZvb\nfLOqbpF2Jo4ysbOA3guVFq5j1h03EwoEOPk3N5C/4yjE47SANRQisG4dW958E+/Rx1GVnoXH4yE7\n1U9aso9gSQnhikokNRXfgNyt5wFkpfp5ctpknpm/htP3GgrZWfiSG/+JvLBw/da86/NXlXLrSeNI\nT47+T8jn9TAws/Mrv/mTk/En20h4Y1rwNXCpiEwHlgBX4KQZfVZEGgbF/SPi+BwR+RKnhXyWu+1h\nnPSqX+AMsquKcp0HgOdF5Nwmx3wJhNxzZ+AMimtwMzDdvV41Tu4OE0c2yr2Xqa+t4dW/3s13C5zV\n3AbttDOnXnMzqf2cR1OBTZtYeeJJJE3ahwWnXcIvX/0Oj8D0qXtzQL6fwutvoHLOHLw5OYx8YVbU\nkfHhsOLxSLNt18z6kmfmrwVgz+HZPHre3uSkt7/lbUwv1aOalpGj0GM8fhVOVrPNbR1reicbFNfL\neL0+svIbg3DmgLxtu9yDQUJlZTBhIs8sLQUgrPDveWsI19dTOWcOAKHSUmqXLot6jabBvGHb5YeN\nYUx+BoOzUrj1pPFk2epuxhjTY1iXey/j9fvZ59QzyeifS7C+nglHHkNyWvrW/Z6MDPKuupLqFcs5\n5dj9mbuyBBE4bc+heJKSSD/wQKo++ABPVhYpY1tNQ9/MsP5pPHXxZMKq5KYlRQ38xpjtQ1VXATG1\nzt3jR8StMqZHsC73BBSqrERraqhKSmVLyIPHI2Sl+MlI8REsLiZUUYEnLQ1fbi7SiQF1VXVBPCKk\nJnXNoDxjejj7Bmt6NGuh9xLB4mIChYX48vLw9u+Px99yd7c3IwMyMsjCGZoayZebiy+3tVktsVlf\nVsNNLy+mX4qPa4/d1dZiN8aYbmYBvRcIlpSw9rLLqFn4OZKayqj/vEzS0KHdVp/y6np+9ewXfPRd\nMQDZqX5+fuTOLFpXzutfbeDHew9np/x0knzWcjfGmO3FBsX1AhoIULPwc+d1TQ11X3/TxhnxJngi\n5pL6vEJZdYCzH5nLYx+v5kd//4iSqkA31s8YY/oeC+i9gCQnk3nSiQD4Bg4kZfy4DpUTqqwkXFfX\n9oFtyErzc/fpEzh+98GcNWkYFx84mppAiIbhGDWBEOFeMDbDmN5MRI4Rka9FZLmIXNPd9THdzwbF\n9RKBigqoqwNV/Hl52+wrrqxjSeEWBmWmMCgrhX4p2z5fV1XqV65i4+234x86lLwrLsfXv3+n61RT\nH8LrgSSfl9KqeqZ/uJI3F2/kwgNHctz4QWSk2LQ2k1B6zKA4EfEC3wBHAmtxFpA5S1WXdGvFTLey\nZ+g9nIbDlBSuY+6LzzJ07G6MmbT/NusyllXXc92sRbyxZCMAz/90P/baMQeqi6Hse/CnEgpns/ay\ny6hfsQKA1N13x3/4oQTr6/Alp5DewTXSI0e356Qn8dNDRjN1vxFkpPhItufnxsTTJGC5qq4AEJF/\nAyfhrBZn+igL6D1c9ZZynr75Gmq2lLP0/bfJHTKcIWMbEx3VB8N8tqZs6/uF35fyg1yQD/+MfOxm\nOJz64TbT0zwFe/L87TdStHolA0ftxClX30R6dk6n65qW5CMtyf5JGRNNQUGBDxgAbJ4/f36wk8UN\nAdZEvF8L7NPJMk0vZ8/QezhV3ZpCFJylX8Nhpbiyji21ATJSfFx9zC54BAZnpXDs+EGESjch3721\n9Rzft88y9G/30e+II+g/bRr1AkWrVwKwccVy6muqt/t9GdOXFBQU7AcUASuBIve9MV3KmlM9XEpG\nP0697hY+eHIGg8fswsBRY/i+pJqH/7eCsqp6bjlxPMeMH8yBY/LwiJDXL5kt/1uGZ/x5eN++BrxJ\n6JijSdpxR3a4527w+aiu2EJaVjbV5WWk5/THn5JKaMsWqufPp3r+AnLOPBP/8GFYViRjOs9tmc8G\nGp5tpQCzCwoKBsyfPz/UwWLXAcMi3g91t5k+zAbF9QLhcIjayipCoSC+ugCbX3gJTUllc8EBfLkF\npu4/cpvj61asoOrt1+l3wN54snOQrIF4UhszHGo4TFV5GeUbN5A1cBDp2TnUfrWYVaefDoA3N5dR\nL72Ib8CA7XqfxvRwHfqGW1BQMAinZR6ZfrAWGDl//vwNHaqIk0ntG+BwnEA+D5iiqos7Up5JDNZC\n7wU8Hi/hYICv57zJwI8+pfK11wHIn3YxE049t9nxSTvuiOfE0yEcgsxMPKlp2+wXj4eMnP5k5DSO\ndA8WNyZgCpWVoeFwu+sZLClBQyG8/frhSel86lRjEsRmnADeNKAXdbRAVQ2KyGXAGzi5yadbMDf2\nDL2XqKuuwu/3E1wb0au2dg27DEhtdqx4vfjz8/APGoQ3La3Z/mhSJ0wg87jj8A8dypB77naWj22H\nwMaNrJk2jRXHHU/l++8Trq1t1/nGJCp3ANzxQBlOIC8Dju9EdzsAqvqqqu6sqqNV9fddUFXTy1mX\ney9RVVbKB0/OYNKekym+5jo8qSkMe/BBkoYP77JrhLZUEK6r3aaFXVxZx3vfFJGW5GXSyFz6t5D/\nvPiRR9l0zz0AeNLTGfXaa/jz86Iea0wv1alBJQUFBV4gDyjqbDA3Jhrrcu8l0rNzOPDs8wkHggx/\n6km8fn+XP+P2ZvbDS+Oz9uq6IH966xv+Nfd7AH57/K5MO3BU1HP9I3ZsfD1kCOK1zh9jIrlBvEPP\nzI2JhQX0XiQtM2u7jjyvD4X5ZmPF1vdLC7cQDIXxRQnWaQUFDPnrX6lbsYLsU07ukoxuxhhjYmcB\nvReorapkzeIvWfHZfPY48lgGDN8Rnz961/f/t3fn4VGVZ+PHv/fsM9k3QJawqyAFl4go1SKKuwX3\nrRWtb7VafbX0p9i+dXnb2lrrq3Wt1aqoVSjuuxRRFEWEICAi+6aBELJPMpPZn98fcyCBJARCNsL9\nua5cZJ55zjkPh5B7zrPdbSnd4+Suc4/gmucW4XM5uPmUoU0GcwBHZibpp01o9zYppZRqmo6hHwBK\nNq7jX7ffAoDd6eS/Hv4nqdkd8wQcjycoD0YQZL9ynsfKy0nUBhCPOzlGv5eT9ZTqQnRjBtWl6RP6\nAaC2omLn9/FolFh031KTBv3VrJ7/KXW1NYw69cxdtnmtq/GTiMfxpKRidzZOpmK32+iRtn9L0GJl\nZXz3s2sIr1kDDgd9/nwSRx8AACAASURBVPYgaePGIQ798VNKqbaiM5cOAL2GHEq/I0Ziszs46sxz\nce/j0+03H8/mo2f/wRcvv8Scp58gHAwAUFtZwdt/+wvT77yVolUriEUj7dF8Agu+TAZzgFiMkt//\ngXhlZbtcS6mDgYj0E5GPReRbEVkhIjdb5dkiMltE1lp/ZlnlIiIPW6lWvxaRoxuca7JVf62ITG5Q\nfoyILLeOeVisCTwdcQ3VOhrQDwApGZmce8tUrn38WU646Aq8ael7faxJJKgpr9+/IlBdQSKeXDGz\n5IO3+f6bZVSXbOPNv/6RUG1tq9tYXhvmsY/X8qd3V7Ldv/sa9N2HdUyjEqXUPokBvzbGDAfGAL8U\nkeHA7cAcY8xQYI71GuBMYKj1dS3wd0gGZ+AukoldRgN37QjQVp2fNzjuDKu8I66hWqHd+zytvL2F\nwBZjzDkiMhCYAeQAi4GfGmPa59GwG/GmZ7TqOLHZOG7SxZQXfUc4GOS06/575wcCT0r95jFOj6fV\nM+gTCcPTn23k8bnrAVhfVssDFx9JhjfZhZ8yZgzuoUMJr10LDgc9f3cHjqz9z+6m1IGkoKDATf06\n9HBL9ffEGFMMFFvf14jISpIZ2CYC46xqzwFzgalW+fMmOWlqgYhkisghVt3ZxpgKABGZDZwhInOB\ndGPMAqv8eWAS8H4HXUO1QkcMYt4MrAR2PFb+BXjQGDNDRJ4ArsH6JKfaR2p2Duf+6reYRHyXDwZH\njDuVQHUlVcVbOfHyq/C18kND3BhKGjyVl9WEiTfYOtaRm0v+tGdJ1NYiHg+21FQdP1cHjYKCAhvw\nB5K/CwUwBQUFDwF3FBYW7vsey7sRkQHAUcCXQE8r2ENyzXtP6/um0q32aaG8qIlyOugaqhXa9beq\niPQlueXhPcAUa3xkPHC5VeU54G4O4oBe56+meP1afGnpZPbqjWcft1xtSVltmEA4htflpEdG2i7v\n+dIz+OGlVxINh3B6vIitdSMwTruNX592GBtKA9SGY/z1olFk+XZdVufIyQFdm64OTjuCeUqDsput\nP/9nf04sIqnAq8Atxhh/w142Y4wRkXYd3eqIa6i9196PSX8DboOd24/lAFXGmJj1+qD+RBYOBvnk\nxWdZMfdDACb++n8YMvr4Njt/eW2Y6/+1mEWbKumb5eX1G04gr8GM9VgkzNY1q/jy9ZnkjxjJyFPP\n3NkdX1YT5q1lW0n1ODh1WA+yU/a8ZK13ppenryognoCcFNceu+/L68pJmAReh5dUV9t+gFGqK7G6\n2XcP5livby4oKPh9a7vfRcRJMpi/aIx5zSouEZFDjDHFVnf3dqu8uXSrW6jvPt9RPtcq79tE/Y66\nhmqFdpsUJyLnANuNMYtbefy1IlIoIoWlpa1OStSlxaMRtq1fu/N10epv2+zcibo6gqEoizYlZ5MX\nVdZR4t/190aotpbX/nwX332zjM9mvEDFlmTvV2UwwpSXl/L7d77ltle+5u9z1xOOtrz1dHaKm7w0\nNzZb88G8OFDM5e9ezikvn8Ira16hNtL6iXhKHQDyaH79uljv7zOrt/NpYKUx5oEGb70F7JhFPhl4\ns0H5ldZM9DFAtdVtPgs4TUSyrIlqpwGzrPf8IjLGutaVu52rva+hWqE9Z7mPBX4sIptIToIbDzwE\nZFq5fGEPn8iMMU8aYwqMMQV5ed0nyUc4Fqa8rpxANIDbl8KPfvIzHE4XqVk5HHnaWW1yjUQwiH/2\nbFizilF9k+PivdI99EhvYWMY69dONJZgVXH9lq/fbPUTju33UB8A7254l62BrRgMD371IHWxujY5\nr1JdVCmNl3nskKD1KVTHAj8FxovIUuvrLOBeYIKIrAVOtV4DvAdsANYBTwE3AFgT1f5AMp/6IuD3\nOyavWXX+aR2znvrJah1xDdUKHbJTnIiMA/6fNcv9ZeDVBpPivjbGPL6n47vLTnGBaIDZm2fz9PKn\n+WGfH3LtyGtJs/kIBQKICL6MzDbZqz1WWsq68adgz8zE838PE+ndj5Q0HzYBt9NOhjc5vh2LRNi6\ndhULX59JvxGjGHnK6XjT0glGYry1dCu/eX05TpuN568ZzbEDsrHv4cl7b80rmscNc24AYED6AKad\nMY0cr46tqwNCq/4DFBQU3EPjbvcA8FBhYeF+jaEr1VBnBPRBJJ/Ys4ElwE+MMXscQ+ouAX1bYBun\nvXLazlXYM8+ZybCcYW1+nVh5OZuvnExkfXIZWf6//81VX9SyaFMlN40fws9PHES6taTMJBJEQnU4\nXG6M2Kiui+Jy2BDAH4phEyHT58TjtLdJ26rD1Xxb/i3rq9Yzof8Eeqb0bPkgpbqG1gb03We5J4CH\naaNZ7krtoHu5d6Dtwe1MfGMitdFaBOHd89+lX1q/lg9shWhJCTVzPsJ75Ci2p+cx7rGFGAM2gQW/\nPaXRdq6RWJxl31dz99srGJyXwp3nHkFuauv3bleqG9rffOhttg5dqaboYuAOlO3J5sWzX+SNdW9w\nYp8TyXK33+Yqzp49ST/jdIKLFpFuvmfGxcO44uVVjOqX2WTXeVUwylXPLiQQibNiq5+j87O5auyA\ndmufUgcbK4gXtVhRqVbSgN6BHDYHgzIGMeWYKe1+rUQ0SsVzz1H+jycBGHD9L/jgxivJTPeR09QS\nNGt8PRBJzmb3udumi10ppVTH0L3cD2CxaIJQbYR4vPEwnAmHCa1ctfN1ZNUqBma6sROitKqcYE2E\nhsMtOSlupv98DKcO68EvTx7MqcN0bFsppQ4kOobeBVSGKvnk+08orSvlvKHnkevNbfGYUCDKt59v\nZePSUo48NZ9+R2Tjcu/a4RJas4bvr/kvEKHvP58i0DebO+ffSV2sjtt+8Bv6p/fHt1uO82AkhtNu\nw2nXz3pK7UYzgakuTX9rdwGzN8/mjvl38PCSh7l7/t34w/4Wjwn6I3zx2nq2bfAz66lviARijeqE\n+/Ug8cxf8T9xJ7NYwd1f3M28LfMoLCnk11/eQlWkcQpTn8uhwVypA4SI2EVkiYi8Y70eKCJfWulI\n/y0iLqvcbb1eZ70/oME5fmOVrxaR0xuUn2GVrROR2xuUt/s1VOvob+4uYEvNFuxiZ2zvsfRP708s\n0Tg4785ur39YsNltyenruwmbCBfO/y+uWnQLJXXbCcXqE6iEYiHsrn3/50+EQkSLi6lbsYJYRcXO\n8lAgSk1liKC/6cm7iYShNhwjnuj6PUJKHUB2JL/aYUfyqyFAJcnkV1h/VlrlD1r1sFKuXgocQTJ1\n6ePWhwQ78BjJlKjDgcusuh11DdUKOimuC7hi+BVM6HUmgVU2zDY77kNTwLvnYzypTs64bgTrvypl\n5Ml98aQ4G9Vx2V2cN+Q8Xl/3Ol8Uf8Fdx9/FzR/dTDAW5L4T7yPDk0kwEsPn2vsfg+iWLWycdB4m\nGiV1/Mkc8qc/EXOmsOi9jXw9p4iMPC/n/fpoUjLru/ID4RgLNpTzwoLN/HhUb04Z1nNnalWlujtr\nHfplwK9I7o5ZRDLgTd+fdej7mPxqovU9wCvAo1b9icAMay+QjSKyjmTOcoB1xpgN1rVmABOtNK3t\neg2g7fbAPshoQO8Cevh68P2nQQrf2ABA+Xe1nHhJf6q2bSa3X398GZmNjnH7nAw+qgcDRuZCApqa\nC5HpzuRXx/yK60Zeh8vuItebyzNnPIMxBgdp/OPTzXxdVMXPxg7kqH6Z+NyNfxzifj+hFd8SXLaM\njLPOJLx5MyYaBSDw2eeYaJQ4Cb6ek1yNU11ax/bNfgZm1m/XW10X5efPF5IwMHd1KZ/cOk4Dujoo\nWMH8VWAC9TvF9QT+AVxYUFBwwX4E9X1JfrUzhakxJiYi1Vb9PsCCBudseMzuKU+P66BrqFbSLvcu\nwCQMNRX13eGB6gjrCwt5+Q//w7sP30/Q3/yYejgQY97MNXw47dtdzrFDlieLPml9yPPlISLkenPJ\n8+Wx6fsKooEgS7+r4spnFlJVF236/GvX8t3VV1P2t7+x6eJL8B5+OHYrDWrWlT/F5vFgswt5+cnf\nKTaHkN171wxqxuy6mbX2uquDyGXsGsx3SLHKL23NSfc3+ZXqnvQJvTPUVUGwHGwO8GYhnnQKzhxA\n2fe1hIMxTrp0EB8982cAtqxeQSLRdKYzkzAsmb2ZWCRBeq6Xwvc2cvx5Q5rsfm8oWlJC3qP3conT\nyYW/uJnzZqyiJhSlqX7+0Nr6bHDxqipMIsHA11/DRKPYUlOxp6XhBc65cRSV2wKk5Xjxpe96/Qyf\ng0cuPYoXFmzm3FG9yU5xodRB4lc0DuY7pFjvv9SK8+5IfnUW4AHSaZD8ynqCbpj8akdq0yIrOVYG\nUE7zKU9ppry8A66hWkkD+l6IxCNAcky6IWPMvidTiYZg6XSYZU3ovPBZGD6J1CwPZ/9yJCZhiMdq\nqd6+DYDRky7G6Wo+AA46sgebvymjrKiWI0/NB6l//A36q9m4pJDqkmJGnHwaqTk5mFCYkj/eQ83s\n2QCkeTz8csJkcprZ5jVt3Dgq+jxFdMtWMiZNwpaSgiOr8Q53vnQXvvSm25nqdnL6iF6cODQPr8uO\ny6EdQ+qg0beF91u197Mx5jfAb2CXXBlXWMmvLiSZL2P31KaTgS+s9z8yxhgReQt4SUQeAHoDQ4GF\nJJfoDRWRgSSD7KXA5dYxH7fnNVpzP1SSBvQWbA9u54HCB/A4PNx01E07M4OVBEr45/J/0ie1DxOH\nTMQudqrCVUBy7Drdnd70CSMB+HpG/etl02HoaeBOxZuaDIjGuLjyvkeIx2K4PF7cvqY/4ItNiNTF\nWPz+ZgCK11Zx+f+OASAaDrP43TdZ9p93CQcDLJn1LpPvfwyv2wPO+n92u8vFJaPzSWtq9zjA2asX\nA2b8GxOLIl4vjszG4/l7w2m3keHTQK4OOkUkx8yb8/0e3muNqcAMEfkjyeRXT1vlTwMvWBPSKrC6\n+o0xK0RkJsmJaDHgl8aYOICI3Egyl7kdeMYYs6IDr6FaQQP6HgSiAe5ZcA8fff8RkNy69fbRt1MT\nqWHK3Cl8XfY1AKmuVHr5enH9nOsBuPv4u5k4ZCIOWxO315UCR14OxUuTr4+8Apy+XaqICCmZuz4F\nV4erqQhV4La7yXBlkOJqHOQbzourjvqhoA8nj72d4vmLWfb6G4QCtaRmZZPzuzux3TgFm8tJTkYK\nzhRPo3M15MhreaMbpVSTHiQ5Aa6pT+UB6/39YoyZC8y1vt9A/QzyhnVCwEXNHH8PyZnyu5e/RzLH\n+e7l7X4N1Toa0FuQoH4CaiKR/D5u4tREanaWV4QqKAmU7Hw9a/MsTh9wOqmuXSeHAeD0wMhLYOgE\nYnYfUePAGYvicDWf2SwUCzFz9UweXvIwgvDkhCcZ0zv5JN5jQBrHnNmfko1+jps4iLAdArVVPLjk\nAd7Z8A4Aj53wN/quGoEnJZV4wvBNdYLJ077B7bDx/M9Gk2+PkOHTcW2l2sF0kt3Pu0+MCwCzSXZb\nK9UmtA90D1KcKfzuuN9xav6pnDvoXG446gYcNgfZnmz++qO/MjxnOCf3O5nzh57PyLyR2MSGTWxc\ndthleB3NLCRPxCFWR1BS+XbxMl697x6W/uc9QrW1jaoGogGqwlWEY2FmbZoFgMHwwaYPdi5T86a6\nKDhrIKdfO4K6VDvnPvo5S4tKKSyp3yp3WfU3nDvlNzhT06kJRbn3g1UEI3Eqg1GemreRjaUB1m6p\n5i8frGK7v/FMeaVU61hL0i4ArgUKgRLrz2uB/VmyplQjupf7XqiL1iEieBz1XdMJk6A6XI3D5iDN\nlUYwGsQfSS4vS3el49utG32nyk1EP/w9laf+karKUmJ1IRZNe4FJt95BNM3Ousp15Kfn47a7ub/w\nfg7PPpxT8k8hnohz5/w7+absG6adOY0f5P5gl9NWBSP8/PlCFm2q5JLRvRh1+AbuXfQHMt2ZvHDm\nC5RXpvPUZxu47keDeGvpVp75fBMAU884jEOzU+kVMjyzoYTimhCPXXE0WdYTe3ldOQmTINWZitfZ\nwm43SnVvupe76tK0y30PdnSlZ3oyG+Uut4mNLE99mc/paz6IN7T2Q6qOv47/FM/hvkV/pWdKTx77\n7weJeOG/Zl3DhuoNuO1uZp4zE4c48Dg8nP362aS70nn2jGdxirPJCXcuh41Lj+nLBUccwrJtfno5\nRvP++e/jtDshlsbFT35MLGGYs3I786aezJhBOcQThhS3g942B1/P2sCoY7NYXlxNPJ78kLctsI2r\nZ13NtsA2/vzDPzOu37hdPtQopZTqOrTLvRmVoUru+vwuLn7nYs569Sy+q/luv84XT8QpDZZSdvjp\nxFNy+NtXD2EwbAtsY17FAmwOBxuqkzvFheNhvq/5nhP6nMC0FdNImARV4Spmrp7JI0seYV3Vukbn\nt0UTHOPx4VpYwfnpGQzKcDLpzUkYY4jGDXGrJyYSTxAIxxg3NJcje6Yha2r4+NGvyS/oQVFtiAcu\nPpIsa534Bxs/oKimiFgixn2L7qO6zt9kqlallFKdTwN6M+ImzmdbPgMgZmIsLF64X+dbX72ei96+\niIs/mEzc4eGwrMN2vjeixw9w2pxcdGhygujgzMEMzRpKjieHUXmj6uvljqA4UNxom9fayhCfvLSG\n9V9t5/hJQ1g26ztiwRgJkyCaiJLhdfLgxUdydH4Wd5w9jNCWIHOeXUm6y8lRY3tzyR0jGXqEm18e\n34thh6RjtxK9jMgdsfMaw7KGsXVFNds3+onHNKgrpVRXo2PozfCH/Tz01UPMXDOTVGcqM86ZQf/0\n/q06VyAa4NZPbmXelnkAnDf4PG46+ia+LP6S/PR8BmYMJM2VRlWoitK6Uopqinjoq4c4f8j5nD34\nbNZUriHNlcaq8lVsCWxh8vDJZHqS68FDwSiznvyGolXJVKjDTjgEu9NGv+NTmVsziwsOvYAMdwbR\neJyaYIzNi0qYPzP5hH/ocb0Ye0FfPn3haVZ8OofsPn25+M4/71wyVxOpoaimiO8rihjkOJy5j2zE\n4bJx0W+OJSWj+Vn5SnVTXWoMXUQygX8CI0jurvwzYDXwb2AAsAm42BhTaSVJeQg4CwgCVxljvrLO\nMxn4nXXaPxpjnrPKjwGmkdxC8j3gZmujmOz2vkYb3qaDio6hNyPdnc6NR93IVSOuwm13k+3JbvW5\nXDYXh2cfzoLiBdx45I2c1Pck7GLnnMHn4A/7qairoCbkx/hDLAssY3jucKaOnorP4aMmUsPy0uWM\n6jGKcfnjSHWm7jqObcwuT8yxaILBx/QgM9vNpX0u3Tmu77TbSXdD2ab65XZOp41YJMyKT+cAULGl\niMriLTsDeporjWE5w5C1mcx+fhWJhCEtO3Xfd8dTSlFQUDCQ5E5pWwsLCze2wSkfAj4wxlxo5ST3\nAb8F5hhj7rXyi99OciOYM0nu0DaUZAKUvwPHWcH5LqCA5IeCxSLyljGm0qrzc+BLksH2DOB965zt\nfQ3VChrQ9yDLk7XLxLfWctqd/HT4Tzl9wOm8tvY1zn/rfI7peQz/96P/4831b/LA4gewiY2nTnqC\n4/OO4/PvPuWz0i9I92ZyaPahPLL0EQDenPgmud7kJi+1kVrqYnW4HC4m/Gw4c55bid1u4/jzBuNN\ndeJw2Ru1w+GyM/aCIThddsQuHHv2QIwJktd/IKWbN+L0eMno0XhTq/4jcjhu0iD82+s45qwBzW7x\nqpRqrKCgoIDk5jLDgAjgKigoWAlcV9jKrkcRyQBOAq4CMMZEgIiITATGWdWeI7nhzFSSaUmft55+\nF4hIpogcYtWdbYypsM47GzhDROYC6caYBVb588AkksG2I66hWkEDegfJ8mQRioV4aVUyD0NhSSHV\n4Wre3fAuADZsHOLtyYpX3ySycT1Xnf1jPnN8S5/UPjvPURWugkgQf6SG6evfYNqKaRzX6zimFExh\n7LX5pNsycLeQltSX4eakyw5NXtNuA1xc8D9/oLpkG2k5ufia2NrVm+ri6NP6k0gYbDZ9Oldqb1nB\nfC71m8rsWPt5NDC3oKBgXCuD+kCgFHhWREYBi4GbgZ7GmGKrzjbqt53dmdrUsiOF6Z7Ki5oop4Ou\noVpBJ8W1gfK6cr7zf0dZXdke6zntTg5JOQQAt91NijOFH+efDcCovFGUr1jD8g8/oGT9WuY+8igX\n5U8ky53FoIxBnDfkPAak9oVP/0qgdiuPLn2U2mgtc76fw9qqtdw271YC1Ozp8jvZ7DYrmCelZGTS\n+9DDScvJxW5v/jPe7sG8rDbM/HVlbCoLEAzHCAejhGoje9UGpQ4SzW37ilX+RCvP6yD5oeDvxpij\nSO48d3vDCtaTcruOR3fENdTe0yf0/VRWV8YNH97AyoqVDMwYyDOnP7OzW3x3ud5cXj73ZdZVrqN3\nam+MSXC0OZRXxr9EijuNbYuW7qxrTAKXcbCxcj0/GfYTYokYGaWr4bMHcBw2gUx3JlXhKmxiI8+b\nx/Ky5cRMbI9tjSViVIYqCcaCpLnS9mteQHltmOv/tZhFmyqxCbx14w8pmbOV6u11nHLl4WT02Is1\n+Up1Y9aY+bAWqg0vKCgY2Iox9SKgyBjzpfX6FZIBvUREDjHGFFvd3dut95tLYbqF+u7zHeVzrfK+\nTdSng66hWkGf0PdTXbSOlRUrAdhYvXGXPd4bqgpV8eqaV5m+ajq5vlyueO8Kznj9TIp8Vax85S1e\nmfIreg0awuCC40jP68GPfnoNwapqDs8dTlldGePzx2OPJwN2zn/u5qWTHuS2Y37NE6c+watrX+WK\nw6/AY9/zpi/bg9uZ9OYkznn9HO76/C78dX7qaiNEQnv+INCUeMJQuDk5sz5hYOG6cvyldRSvq+Kj\nF1YRCkT3+ZxKdTO9SY6Z70nEqrdPjDHbgO9FZMf611NIZjPbkcIUGqc2vVKSxgDVVrf5LOA0EckS\nkSzgNGCW9Z5fRMZYs9evpHGa1Pa8hmoFfULfT16nlyGZQ1hXtY6+aX1Jc6Y1WW/BtgXc/cXdnJp/\nKv6In9K6UgAe+/YJ7jj2etYv+II3/voHRk+8iEOPG0vxujUcPvZH9MvK5ojcI5In6eWAI6/Atm42\n/Va+z0/H3kwFMQZlDMLj8DSfstWyvGz5zu1pneLC/32M+a8sIy8/jTETB+FN2/vJbm6nnatPGMAz\nn28iO8XFuEPz+Pit5Idrt8+hY+1KwVagpf9ULqtea9wEvGjNcN8AXE3yIW2miFwDbAYutuq+R3I5\n2TqSS8quBjDGVIjIH4BFVr3f75i8BtxA/ZKy96mfrHZvB1xDtYKuQ99LsXiMinAF4XiYNGfaznXg\nkOx2r43UkupMJdfXdHf7iytf5N6F9zIydySXHX4Zv/nsNwCcM+gcft7rct778x8JBwJ409I54bzz\nOGLMaBwOF7JuNmDg8LMhJRfqqiEWAqcXPHsO4LvbUruFC966gEA0wCunvMEn9xcRDcUBOOPaEQw+\nusc+na8qGKE2HMNlt5Fmt7Hiky2EAjGOOi1f16mr7mifP6UWFBQsJjnW3ZzFhYWFBa1vklL19Am9\nGTsSr6Q4k/NZttRu4eJ3LiYYC3LFsCs4a+BZ9PD1oDRYSs+UnvRN7YtjDxPKzhhwBguLF1JUW8QR\nuUcw4+wZVIQqGJE7gjRHKlf939+JRyOkOcLIJ39GnrsTMvvD2Jthw8eYkm/wHzmVTavqGHx0D1LT\n9i1g1kXrcNlcvD3pbWoiNeSYnri923YGdICgP7JPS9IyfS4yG6RdLThrIMYYXaeuVL3r2HWWe0MB\n4Bcd2hrVrekTehM2VW/i9wt+T64nl6mjp5LjzWH6yun8aeGfgGQ2tefPfJ7bPr2NNZVrSHGm8MbE\nN+iV0muP5/WH/SRMgjRXGnZb43Xi1JbAP06Cmm31ZSJw+cuw+FlW9/wtH/57O0OO6cExl/bG43Y1\nnXN9N9Xhal5d8yqvrXuNsweezeXDLifdlU7V9jqW/GczOX1ScThspGS6GTCy6R4GpVTrdoqzlq49\nAQzHWodOcrz7F61dh65UU3RS3G4qQhVM/XQqi7Yt4v1N7zN91XQAxvQeszPH+Sn5pwCwpnINkNza\ndZN/U4vn9hoX4eJyvnr3Taq2bSWRqH86JuSHjZ/tGswBjIEFfydx/E0UbYiRm59K/lkupnx2C7/9\n7LctLpWD5BauD371IJv9m3l82eNUh6uT6WB9DrxpLjZ/U868l9eS3bu51TVKqdYqTCoAjgDOBo4o\nLCws0GCu2pp2ue9GENyO+u7sHVun9k3tyzvnvUMwGmRL7RbWVK7hxD4nMm/LPHqn9GZwxuBG54qG\nQ4SDQURspGRmUlfj58Xf/gqTSLDwjZeZfP9jpGZlQ6AMlr4EoaqmG+Uvgox+9PlhnKF5dn79+a9Y\nVbEKgD6pfbjt2Nv22M3ttDlx2VxEEhEcNgdue/Lv501zMWp8X6q315Ga7cGXtudNaZRSrWctTWuL\nLV+VapIG9N1kebK476T7eOSrR+jh68GkIZOA5KYwPXzJSWOZ7kziiTgFPQsIx8O47W7yfHm7nCcW\nCbNxSSHvP/oAabl5XHTHPYSCtZhEct/1UG0Nibj1hO7fCl88AhMfb7pRh55J0O3j3g1TmJCYsDMg\nQ/IDR0tj1pnuTP511r94f9P7nNb/NDLcGfXHp7vxpesENqWUOtBpQG9Cr5Re3D32buzYsdkaj0o0\nnOHenHAgwEfTniQWjVBZvIXV8+cxYvxpDDvxZDYt+4qCc87D5bV2gfRmJp/Sq4vgyMuTT+uQnNWe\n1gvGXM/WujIWb19MijOFh8Y9xOvrX6eiroJLD7u0xba4HW6G5QxjWE5Le1wopZQ6UGlAb4bTtn/d\nzzFJkJs/gEBlcrllj4GD8aSkMP7q64hHIjg93gYBPQd+NgvW/AdOug3G3kJdIp2qaju+zBR8TjeZ\ndhu9Unpxx5g7+Pe300l3pXNZ/wvZVlZERp8MXHZNmKKUUgezdpvlLiIe4FPATfKDwyvGmLtEZCAw\nA8ghmVDgp1am+bLdigAADWxJREFUoGZ1hXXo+8If9nN/4f1ckn8+/nXf0bv3QHr1HYQ7ZbdJZ/EY\nNLHULRSIsvabrfgyHfi3Rug7OJfMPh7KQ+X8ZeFf+PC7DwG44YhfcMGASaRlZu+csKeUaje6HlN1\nae05yz0MjDfGjAKOJJkubwzwF+BBY8wQoBK4ph3b0CkiiQiLSxbzk7lXc3/Nc7wVmIvD5cJfVkrR\nym8IVFVC5WZ485ew8EkIVuxyfB215A6AjQveIVy7GIcnhNPuxGP3UBIs2VlvW7gEnydFg7lSSqn2\n63K3svDUWi+d1pcBxgOXW+XPAXeTTHLfbaS50rj12FuZMncKFaEKJg6ZSKC6kmenXE8sHCY3fwAX\n/uwCUr6eAV/PgOwhMGT8zuOj4To+f+opNi9PJmtxOlwM/+HJ2MJR7j7+bm799FZSnalcN/IXpKa2\nPJ7fWaKhOBXbailaVcmQo3uQluvVLWGVUqqdtOsYuojYSXarDwEeA9YDVcbsTAvWLfPfuu1uxhwy\nhlkXzEJEyPHk8P23y4mFwwCUfbeJhKt+pjnR2l2OtxuhrrY+yUuwuop5059j+ZwPOGL8BJ667B84\nXW6yPFkd8vdprbraCK/+ZTHGwJLZ33HZncfplrBKKdVO2nVjGWNM3BhzJMm0eKOBw/f2WBG5VkQK\nRaSwtLS03drYFrYHt/PehvdYXbGa2kgyOHscHvJ8eeR6c5NBvU8/cvrmAzDy1DNxpGZD/vEw+jrI\nP2GX83nTMphww830GnIog445lpHjT2f1/E8BWPHRbJyBeJcP5gB1tVF2TNEIB2Ik4l1/V0KllDpQ\ndcgsd2NMlYh8DBwPZIqIw3pKbzb/rTHmSeBJSE6K64h2tkZZXRmT359MUW0RAC+d/RI/yP1Bo3op\nmVlcdOefSMRiOFwuvCmpcOl0cLjBtWvucJ/Lh6PHIZxzy1RikQgGQyySnDfoSU3D6TkwxszTczwc\nelwvilZWcNRp+bi8uqhCKaXaS7v9hhWRPCBqBXMvMIHkhLiPgQtJznRvmEv3gBSNR3cGc4CvS79u\nMqADpGTsNt7ta/4p2+Xx4rICdywSZvL9j1GyYS19DhuOLyOj2eO6Em+aixMvGUo8msDpseNya0BX\nSqn20p6/YQ8BnrPG0W3ATGPMOyLyLTBDRP4ILAGebsc2tDuPw8OE/hOYvXk2We4sftT3R21+DYfL\nTXbvPmT3bn66QUWogtUVq+mV0ose3h6kuLrGvuwen24nq5RSHUGzrbWBylAlgWgAt91NjjcHm3Rs\nzpuqUBVT501l/tb5CMKLZ7/YZC9BVTBCNJ4gw+vE5Wgi21szKgMRwrEETruQk6qT2tRBS5doqC5N\ns621gSxPFn3T+pLny+vwYA4QTURZsn0JAAbD0u1LG9Upqwnz3zOWMOmx+Xy+rpxQNN6oTlPKa8Pc\n/trXjPnzHG548SvKasNt2nallFJtQwN6N+B1eLl25LUA5HhyGN9vfKM6H64q4dM1ZWypquOm6Uvw\nh6J7de7acIxZK5Kb2Xy5sYKKwB439VNKKdVJdJZSN5DqSuWSwy7hnEHn4LA5yPHkNKpzSEb9zPie\n6R5se9l76HXayUt1U1obJs3tIMOrY+JKKdUV6Rj6QaIqGGH++nJWFvu5bHQ+vTP3bumbMYZt/hAr\ni/0c1iudnmluHHbt2FEHJR1DV12aBvQOFE/EqQhV4I/4yXRnkuNt/CTdFYQCUaLhODa74EtzIbpd\nq1KgAV11cdrl3oFK60q54K0L8Ef8jModxcPjHybbm71f56yriRCLJrA7bfjS9j+FajgYZemH37H4\n/c14Up1cOPUYMvJ8LR+olFKqU2nfaQfaULUBf8QPwLKyZYTj+zdjPOiPMOupb3j+t/P54MnlBP37\nP2EtFkmw+P3NAIRqo3z7efF+n1MppVT704DegQZnDt45YW10r9G4Hfu3pjsairFlTRUAxWuriYRi\nLRzRMrEJmT3rn8h7Dkzf73MqpZRqf9rl3oHyfHm8fO7LBGNBUp2pZHv2r7vd4baTkukmUBXGl+HC\n6d77zWKa40t3MfFXR7Fx6XYye6aQl5+23+dUSinV/nRS3AEuUB2mpjxEWo4HX7oLEZ23o1Q70f9c\nqkvTJ/QDXEqGW3OMK6WU0jF0pZRSqjvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehK\nKaVUN6ABXSmllOoGNKArpZRS3YAG9AOISRjqaqNtsme7Ukqp7kV3ijtAJOIJyrbU8un0NWTkeRl7\n4VB86fufLlUppVT3oE/oB4i62ijvPvY1JRv9rFlYwvqvtnd2k5RSSnUhGtAPECLskk2tLTKrKaWU\n6j60y/0A4Ut3c+5No/jyzY1k9/bRf0ROZzdJKaVUF6IB/QCSkefjlKuGYbMJYtNMjkoppeppQD/A\n2B06SqKUUqoxjQ5KKaVUN6ABXSmllOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQMa0JVSSqluQAO6\nUkop1Q1oQFdKKaW6gXYL6CLST0Q+FpFvRWSFiNxslWeLyGwRWWv9mdVebVBKKaUOFu35hB4Dfm2M\nGQ6MAX4pIsOB24E5xpihwBzrtVJKKaX2Q7sFdGNMsTHmK+v7GmAl0AeYCDxnVXsOmNRebVBKKaUO\nFh0yhi4iA4CjgC+BnsaYYuutbUDPjmiDUkop1Z21e3IWEUkFXgVuMcb4ReqzhBljjIiYZo67FrjW\nelkrIqtbuFQGUL2PzdubY/ZUp7n3di9vql7Dst3fzwXKWmjXvurK96epsj29bo/701y72uKYg/ke\n7W39fb1HnXF/PjDGnLGPxyjVcYwx7fYFOIFZwJQGZauBQ6zvDwFWt9G1nmyPY/ZUp7n3di9vql7D\nsibqF7bDv0WXvT97c892u19tfn/0HrXPPdrb+vt6j7rq/dEv/erMr/ac5S7A08BKY8wDDd56C5hs\nfT8ZeLONLvl2Ox2zpzrNvbd7eVP13m7h/bbWle9PU2V7cw/bmt6jlu3rNfa2/r7eo656f5TqNGJM\nkz3e+39ikR8C84DlQMIq/i3JcfSZQD6wGbjYGFPRLo04QIlIoTGmoLPb0VXp/WmZ3qM90/ujuqN2\nG0M3xnwGSDNvn9Je1+0mnuzsBnRxen9apvdoz/T+qG6n3Z7QlVJKKdVxdOtXpZRSqhvQgK6UUkp1\nAxrQlVJKqW5AA3oXJyLDROQJEXlFRK7v7PZ0VSKSIiKFInJOZ7elKxKRcSIyz/pZGtfZ7elqRMQm\nIveIyCMiMrnlI5TqejSgdwIReUZEtovIN7uVnyEiq0VknYjcDmCMWWmM+QVwMTC2M9rbGfblHlmm\nklwOedDYx3tkgFrAAxR1dFs7wz7en4lAXyDKQXJ/VPejAb1zTAN22UJSROzAY8CZwHDgMis7HSLy\nY+Bd4L2ObWanmsZe3iMRmQB8C2zv6EZ2smns/c/RPGPMmSQ/+PxvB7ezs0xj7+/PYcB8Y8wUQHvC\n1AFJA3onMMZ8Cuy+mc5oYJ0xZoMxJgLMIPnUgDHmLeuX8RUd29LOs4/3aBzJFL2XAz8XkYPi53pf\n7pExZsfmTpWAuwOb2Wn28WeoiOS9AYh3XCuVajvtnpxF7bU+wPcNXhcBx1njneeT/CV8MD2hN6XJ\ne2SMuRFARK4CyhoEr4NRcz9H5wOnA5nAo53RsC6iyfsDPAQ8IiInAp92RsOU2l8a0Ls4Y8xcYG4n\nN+OAYIyZ1tlt6KqMMa8Br3V2O7oqY0wQuKaz26HU/jgouiYPEFuAfg1e97XKVD29Ry3Te7Rnen9U\nt6UBvetYBAwVkYEi4gIuJZmZTtXTe9QyvUd7pvdHdVsa0DuBiEwHvgAOE5EiEbnGGBMDbiSZP34l\nMNMYs6Iz29mZ9B61TO/Rnun9UQcbTc6ilFJKdQP6hK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0op\npboBDehKKaVUN6ABXSmllOoGNKCrLk9E5nd2G5RSqqvTdehKKaVUN6BP6KrLE5Fa689xIjJXRF4R\nkVUi8qKIiPXesSIyX0SWichCEUkTEY+IPCsiy0VkiYicbNW9SkTeEJHZIrJJRG4UkSlWnQUikm3V\nGywiH4jIYhGZJyKHd95dUEqpPdNsa+pAcxRwBLAV+BwYKyILgX8DlxhjFolIOlAH3AwYY8wPrGD8\nHxE51DrPCOtcHmAdMNUYc5SIPAhcCfwNeBL4hTFmrYgcBzwOjO+wv6lSSu0DDejqQLPQGFMEICJL\ngQFANVBsjFkEYIzxW+//EHjEKlslIpuBHQH9Y2NMDVAjItXA21b5cmCkiKQCJwAvW50AkMxJr5RS\nXZIGdHWgCTf4Pk7rf4YbnifR4HXCOqcNqDLGHNnK8yulVIfSMXTVHawGDhGRYwGs8XMHMA+4wio7\nFMi36rbIesrfKCIXWceLiIxqj8YrpVRb0ICuDnjGmAhwCfCIiCwDZpMcG38csInIcpJj7FcZY8LN\nn6mRK4BrrHOuACa2bcuVUqrt6LI1pZRSqhvQJ3SllFKqG9CArpRSSnUDGtCVUkqpbkADulJKKdUN\naEBXSimlugEN6EoppVQ3oAFdKaWU6gY0oCullFLdwP8HkOCw8CrGzdAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmba971KlCVIUOyrY\nFbtGY2+xYYnGGmOLMUqiP2NJbNGYqFFRo4ldogajRCPBBtIRUaT37buzbdr5/XHvLgtsmV12WBjO\n53n22Zlb37sse+a+933PEVXFGGOMMds3T3c3wBhjjDFbzgK6McYYkwQsoBtjjDFJwAK6McYYkwQs\noBtjjDFJwAK6McYYkwQsoBtjjDFJwAK62a6IyDUiMl1EGkTk+U3WXSYii0QkKCKTRKRPs3XjRSTs\nrmv82rnZ+iNFZIaIVInIYhG5YiteljHGbDEL6GZ7sxq4B3i2+UIRORy4FzgFyAeWAK9ssu8/VDWz\n2ddid18/8BbwFyAHOBt4SET2TOSFGGNMV7KAbrYrqvqmqr4NlG6y6iTgNVWdr6oh4G7gUBEZHMdh\n84Fs4EV1TAMWALt2ZduNMSaRLKCbZCItvB7ZbNmPRKRMROaLyFWNC1V1Hc7d/CUi4hWRMcAA4H8J\nb7ExxnQRC+gmWUwCzhKRPUQkDbgTUCDdXf8qMAIoAi4H7hSRc5vt/4q7TwMwBfiVqq7YWo03xpgt\nZQHdJAVV/Qi4C3gDWOp+VQMr3fXfqOpqVY2q6mfAo8AZACIyHPg7cCEQAHYDbhGRE7fyZRhjTKdZ\nQDdJQ1WfUNVdVLUnTmD3AfNa25yNu+W/U9UPVDWmqguB94DjE95oY4zpIhbQzXZFRHwikgp4Aa+I\npDYuE5GR4ugPPAU8qqrl7n6niEieu35/4DrgHfewM4Fd3Klr4g6kOwmYs/Wv0BhjOkesHrrZnojI\neJyu9eZ+AzwCfAoMxulqfw64Q1Wj7n6vAMcAKTjd8H9S1ceaHfcsnGfoA4BK4G/AL1U1lsjrMcaY\nrmIB3RhjjEkC1uVujDHGJIGEBnQRuV5E5rnzfm9wl+WLyIci8r37PS+RbTDGGGN2BAkL6CIyEme+\n7/7AnsBJIjIEuA2YrKq7AJPd98YYY4zZAom8Qx8BfKmqtaoaAf4LnIaTa3uCu80E4McJbIMxxhiz\nQ0hkQJ8HHCIiBSKSDpwA9AN6quoad5u1QM8EtsEYY4zZIfgSdWBVXSAi9wP/BmqAWUB0k21URFoc\nZu+Wr7wCYNddd913/vz5iWqqMcbEQ9rfxJjuk9BBcar6V1XdV1UPBcqB74B1ItIbwP2+vpV9n1LV\nUao6Ki0tLZHNNMYYY7Z7iR7l3sP93h/n+fnLwETgIneTi9iQrcsYY4wxnZSwLnfXGyJSAISBq1W1\nQkTuA14VkUuBZcBZCW6DMcYYk/QSGtBV9ZAWlpUCYxN5XmOMMWZHY5nijDHGmCRgAd0YY4xJAhbQ\njTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJ\nAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0Y\nY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRg\nAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHG\nmCRgAd0YY4xJAhbQjTHGmCSQ0IAuIj8XkfkiMk9EXhGRVBEZJCJfisgiEfmHiAQS2QZjjDFmR5Cw\ngC4ifYHrgFGqOhLwAucA9wMPq+oQoBy4NFFtMMYYY3YUie5y9wFpIuID0oE1wJHA6+76CcCPE9wG\nY4wxJuklLKCr6irg98BynEBeCXwNVKhqxN1sJdA3UW0wxhhjdhSJ7HLPA04BBgF9gAzguA7sf4WI\nTBeR6cXFxQlqpTHGGJMcEtnlfhSwRFWLVTUMvAkcBOS6XfAAOwGrWtpZVZ9S1VGqOqqoqCiBzTTG\nGGO2f4kM6MuB0SKSLiICjAW+AT4GznC3uQh4J4FtMMYYY3YIiXyG/iXO4LcZwFz3XE8BtwI3isgi\noAD4a6LaYIwxxuwoRFW7uw3tGjVqlE6fPr27m2GM2bFJdzfAmLZYpjhjjDEmCVhAN8YYY5KABXRj\njDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KA\nBXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YY\nY5KABXRjjDEmCVhAN8YYY5KAr7sbYExnaDRKpLQUDYfxZGbiy8np7iYZY0y3sjt0s10Kr1zJ4hNP\nYsmpp9GwcCHhtWuJBoNN66NVVdR89RWlzz5HeM2abmypMcZsHRbQzXap+pNPiNXUsNNjj1L69DMs\nPulHlL34ItHKSgDC69YRXrECT0Y6q++4g0hJSTe32BhjEssCutkuZYweg39Af8Jr11EzZQqxYJCS\nRx8jFqxBVdGGBkr/+iwVr71Gj+uuQ7u7wcZsY0TkZBG5rbvbYbqOBXSzXQoM6M+A558nZejQpmWe\njAzw+4iWl7P27nsILV5M/bz5lL3wAp60tG5srTGJJY4O/T1X1Ymqel+i2mS2PhsUZ7ZLntRU5ys9\nnX5PP0Vw6mfknXE6vrw8YvX1+AoLm7b19eyJJyWlG1trTNcTkYHAB8CXwL7AAyJyJZAC/ABcoqpB\nETkBeAioAaYCO6vqSSJyMTBKVa9xj/UsUAgUu/suF5HngSpgFNALuEVVX99a12g6xgK62a55s7LI\nPOQQMg85ZMMyv59ed/6asgED8GRkkHvWmYjPftVNUtoFuAhYBLwJHKWqNSJyK3CjiDwA/AU4VFWX\niMgrrRznj8AEVZ0gIuOAx4Afu+t6AwcDw4GJgAX0bZR1uZuko9EoVZMmEV6zhoZvv6VswgRi9fXd\n3SxjEmGZqn4BjAZ2BaaKyCycID8AJwgvVtUl7vatBfQxwMvu6xdxAnijt1U1pqrfAD27+gJM17Hb\nFpN0NBSi9qtpBCdPBiBt1Ci0oQFSU7u5ZcZ0uRr3uwAfquq5zVeKyF5dcI6G5ofsguOZBLE7dJN0\nPGlpFF17DZ7sbCQ9nR433ognM7O7m2VMIn0BHCQiQwBEJENEhgILgZ3dZ+QAZ7ey/2fAOe7r84Ep\niWuqSRS7QzdJp666ikhBAQMnvoPH48Gbl4d4vZ0+XrSyEg2F8GRl4bG7fLMNUtVid5DbKyLSOAL0\nDlX9TkR+BkwSkRpgWiuHuBZ4TkRuxh0Ul/BGmy4nqtv+DN1Ro0bp9OnTu7sZZjtQXxPkf6+8wOwP\n38fnD3DevQ+R37cf1cXrWTp7Bv1G7kFOj574/IG4jhcpLWXNXeNpWPANPW65hcxDD7UpcDuu7bK7\nWUQy3dHuAjwBfK+qD3d3u0zXszt0kzRUFYI1FOQXMOSAA+l/8LFURb2kVlbw4m3XE6qrxecPMO6x\np8nKL4jrmDVffUXwo48AWPWLmxjyn8kW0M325nIRuQgIADNxRr2bJGQB3WyXojU1aEMDnsxMPIEA\nGo3SsGgRa8f/hvzUVIb95jdcOmklPxQv5L1LdiVUVwtAJBwiVFsLcQZ0f1GPpte+/DzEY8NOzPbF\nvRu3O/IdQML+OonIMBGZ1eyrSkRuEJF8EflQRL53v+clqg0mOUXKylh3770sH3cpVe//i2h1NdHy\ncpZfdDF1M2dS+/nnrLvpJs4Zms366gbmrm9gr2NPwpeSwoiDjyAtOzvucwV2GULfRx8h/5JLGPDS\nS3gL4vsgYIwxW9tWeYYuIl5gFXAAcDVQpqr3uXmE81T11rb2t2foprnS555j/f0PNL0f/NGHSCDA\noiOOhGgUAH+/fiwd/wiX/XMJY4cX8fCpw/DEonj9ftIys7qr6Wb7tl0+Qzc7jq3VfzgW+EFVlwGn\nABPc5RPYkI3ImLg0VlRrFKurJ7xqNT1vuw1EEL+fnr/+NZW+NC4cM4DfnbYH2Tk5ZOblU6MBvl1b\nxeLiIGU1oW66AmOM6Xpb6xn6OWzIUNRTVRsLVK/FMg/tMCJlZaCKNz8fZ8Ctk9UtWlaGquLNyopr\nwFnumWdS/e8PCS1eTM4ppyABP8vOP5+Cyy5l8AeTkJQUvDm5nJYS4FQFj8c5V3F1Pec+/SWL1jt1\n04/brRf3nrY7+RnxjXg3xphtWcLv0EUkAJwMvLbpOnX6+1vs8xeRK0RkuohMLy4uTnArTaKFVq1m\nxU+vZPkl4wgtXrxh+dKl/HDSj1h0xJHUfP45kbIyaj7/nJrPvyBSXt7isSSQQtHPf07/F18gdeRu\nxKqqIBaj9KmnqZ0xE3/PnnhSUxCRpmAO8P7ctU3BHGDS/LWsqaxL3EUbs50Tkc+6uw0mflujy/14\nYIaqrnPfrxOR3gDu9/Ut7aSqT6nqKFUdVVRUtBWaaRIl1tDA+gcfpH7uXBq++441d/yaSHk5qkrZ\nCy8Sq6yEaJS62XMof/kVll8yjuWXXEL5K38nFg5vdjxvTjYpQ4YQWrqUzEMOoX7hd+D10vfhhwkM\nHEDws8+JlJZutt/K8s2Dt3W7G7M5EfEBqOqB3d0WE7+tEdDPZeOCABNxCgfgfn9nK7TBdCePB1/h\nhtHh3rw8xOdDRMgYM7ppeequu1I3c0bT+7oZXzs52HGmqTUGd08gQMqggeSdeSaBgQPJPuZohkye\nTP2Cb1h2zrmsGDeOFT+7erOgfs5+/fA2u2PPS/czrKcNkDOJN/C2984beNt7Swfe9l7M/X7elh5T\nRN4Wka9FZL6IXOEuC4rIg+6yj0RkfxH5REQWi8jJ7jZed5tpIjJHRH7qLj9cRKaIyETgm8bjNTvf\nrSIyV0Rmi8h97rLL3ePMFpE3RCR9S6/LdF5CR7mLSAawHKf+bqW7rAB4FegPLAPOUtWyto5jo9y3\nf5HSUuduvLaWgisux+/2ukQrKwmtXEWsqpKU3XYjtHgxyy8ZB0D/554jZbddCX37LSWPP4G/f38K\nr7oSX37+ZscPFxez5ORTiDbrph/84b8J9OvX9L42FGFFWS1/+XQxuWl+Lj14Z3rnpG7ULW9MGzr1\ni+IG76eB5sGuFrh86X0nvtzyXnE0RiRfVctEJA0npethQAlwgqr+S0TeAjKAE3EqsU1Q1b3c4N9D\nVe9x08ROBc7Eqc72HjCysTqbiARVNVNEjgd+jVOetbbZuQtUtdTd9h5gnar+sbPXZLZMQgfFqWoN\nULDJslKcUe8mCURKS6mbN59A3z74evXC21oRFI+H1JG7EVq+gtDSpXgzM/GkpeHNycGXmUVFbZiQ\nR8jZbTcGf/ABAN68XKJlZSy74EK0sfypR+hx002Iz0e0tNQZTJedjfh8BIYMpm6a88HPk52NpKRs\n1IT0gI9hvbK577Q98Aj4vJYkxmwV97JxMMd9fy8bSpZ2xnUicqr7uh9ObfQQMMldNhdoUNWwiMwF\nBrrLjwH2EJEz3Pc5zfb9qlmp1eaOAp5T1VqAZjdhI91AngtkAh9swfWYLWSZ4kynRcrLWXnd9dR9\n/TWIMPDvfydtzz1a3Lb2y69YdcMNzhufjyEffYgnLY1wNMacFRXc8OosemWn8sR5+9Cjh3P3rqpo\nOEzB5ZdR/tLfiJaXE16+HA2HiaxZw7ILLyJaUcFOjz1K+ujR9H3oIYofeYRoRSVFN1yPr5UkMAGf\nBXKzVfXv4PJ2icjhOEF2jHvH/AmQCoR1Q7drDLf0qarGGp+L4/Q0XKuqH7RwzBo65nngx6o62y0O\nc3hHr8V0HfvLZjovEqFu9mzntSq1s2ZutolGIsTCYaI1wY3203CYWDhMWVk1N7w6ixVldUxbWs6r\n01e4h1NCP/zA6ptupv6bBez05J/wFhaSf9FFqCqlf/0rkbVr0fp61t7zf8SqqvAXFdFr/Hj6/uH3\npO6yS6cqrEUqKgitWkWkuJjtoXCR2S4s7+DyeOQA5W4wHw6Mbm+HZj4ArhIRP4CIDHUfj7blQ+CS\nxmfkItL43CsLWOMe6/wOXYHpchbQTadJaiqFP70CAG9hIVlHHbXR+khpKevuv5+1d40n86CDyDjk\nEPD5yB83Dm9WFtGyMuqnfEqv7A0lSfvnOz2T0bIyVt34C+pmzSI4eTLBjz9hwAsTqPnyKyQaJXXk\nyKZ9UoYMQQLOXHKP39/pEqfRqipKHn+cH8YexeIfn0pkzdpOHceYTdyO88y8uVp3eWdNAnwisgC4\nD6ceeryewRn0NkNE5uEUa2mzt1ZVJ+EMaJ4uIrOAm9xVvwa+xHkO/22HrsB0OSufarZINBgkVluL\niOAtLNwoYUzphAmkDBiAJy2dhiVLyDr2GETVSfySnU3d/PmsvPoa0v78V95YFGRgnzwOHdaTvIyA\n051/9TXUzXBGvRfdcAOx+npyzzyDQN++RCsqqJ05k0hJCVlHHtlq93pHRIqL+f7wI5rSx/b5/e/J\nOenELT6uSRqdHj3pDoy7F6ebfTlw+5YMiDOmJfYM3XRasLyMVd9+Q0ZuLvl9+5Euzf7eqZJxwAGs\nvOZaoiUl9LjlZsTj2WiEur9XLwL9+1NzwTlccMMNZB/2I3yNWdtU6fPA/VTMmE2sdx+yhwzC6/Xg\ndQureHNzyTriiK69IL+fzMMOJfifj5HUVNJ2H9n+PsbEwQ3eFsBNQtkduumUmopy/varG6kucbL4\n7XP8yRx0zgUEUp3UrdGaGlbfdBPBjz9xdhBhyCcf4++5cabfSFkZGokggRR8uTnOspISlo8bR8ot\nv+KlinSmr6zmF8cMY+/+uaT4Ov5cvCMiZWVEiovx5ubizcvDE7C0sKaJzW802zR7hm5aFKx35mx/\nt66a8mbZ1DQWI7RqFVWrVjYFc4A5kz8g3Di1DIjV1OBJ3zBTR1JSQFr4e+jxoPUNaEN9U+KYWH09\nsZoaFgdyefJ/y5m2tJyLnv2KitrNs8Z1NV9+PqnDhjnpYy2YG2O2IxbQTYtmrajg0Ac/5piHP+XZ\nqUuoDUUAiJaWsvTsc0gRz0YBOr/vTojH+XWK1ddT/Mgj5F94IZmHHUbqbrvS/5mn8ebmUlcdYtHX\n61gyu5iGskpKn36GH445hh+OO57wcmfQryctjcDgIQSazRP3ez1Nt0eRykrCxcVENqm6ZowxOzIL\n6GYzqsp7c1fT+DTm3/PXURtyBorFQiGiJSXUvvU2p1z1c3ruPIRBe4/i5Bt/SXq202WO14snI5OV\n11xL2l57UXjddaSMHEkML9MnLeODp+fz/pNzqSuppvLNN51z1tU1dc/7Cgroc+//MaR/Ib89eVdO\n2L0X//jpaPIzAoSLi1l1w89ZdNjhrL7xRiJWuMcYYwAbFGeaiZSWouEwkp7O+QcM4K2Zq6gPxxh3\n8ECyUpxfFW9GBvkXXUjZiy+Rq3Dqjbfjy8ggJX3DNFaP30/hlVfi69kDYjHSRo7Em5pKQ22Y0hXV\nTduVloTJOvEEKl76GxIIkHHYoU3rfIWFFAAXFOZy9v79SfF5iYVCrPvLX6j9/HMAaqZ+Rukzz1D0\ni19Y97gxZodng+IM4A5Eu/wKGhYsIOf008m75VYq8RFVyE71kZXqb9o2WlXlFE3xelvMq96aWEMD\noZJyaiob+H5+kKEHDyQ7NUS0stJJA5ubi2eTdK3NRaurWXX9DdR8tqGiY8bBB9P3kYdbTzlrTNex\nQXFmm2Zd7gaA0IoVNCxYAEDlG2/gqw3SKyeNvrlpGwVzAG92Nr6iog4Fc41GqZ8zl6UnHMf6M09k\n1+xV5OZ58eXlkTJwoDMIrY1gDuDNyiJ/3CUbLSsYN86CuTGd4FZXO7DZ++eb5Xfv6nM9IyK7JuLY\nZgPrcjcA+Hv3RtLT0dpaAoMGIn5/u/tsKhqN4m0l3Wq0qop1Dz7YVA513X33kb7P3h3O6pa2554M\nmvgOtZ9/QfqY0fh79+5wO43Z6sbnbJZYhvGV3T0v/XAgCHzWznZbTFUvS/Q5jN2hG5e3oIDB771L\n/wnPM+CFF/AVFsa9b6i+nuXzZjPpiYdYMutrQvV1m20jgQD+/htKmQZ22gl8Hf886c3KInXoUPIv\nupDUoUPxZlk9c7ONc4L50zjlScX9/rS7vFNEJENE3nPrkM8TkbNFZKyIzHRrlj/rlkZFRJaKSKH7\nepRbH30gcCXwcxGZJSKHuIc+VEQ+c+unt3q3LiKZIjJZRGa45zultXa5yz8RkVHu6ydFZLpbs/03\nnf0ZmM3ZHboB3BzovXt3+I5XYzFCdbVMffUlVi9cwMLPpnDZ4880JZhp5M3IoNcvf0lgp52I1dVR\ncOml+PLyuvISjNlWJaJ86nHAalU9EUBEcoB5wFhV/U5EXgCuAh5paWdVXSoifwaCqvp79xiXAr2B\ng4HhOLnbX2/l/PXAqapa5X5Y+EJEJrbSrk39yq2l7gUmi8geqjqnMz8EszEL6KbT6oPVfD/tCxZP\n/5L9fnQ6Cwun8O3U/xKNRInFFI9n4zFEvoICetxwA6ralPPdmB1Al5dPxal1/gcRuR94F6gClqjq\nd+76CcDVtBLQ2/C2qsaAb0SkZxvbCXCviByKU6a1L9Bz03ap6pQW9j1LRK7AiT+9gV0BC+hdwAL6\nDiwWjSIeT6eDa7C8nH//+VEAlsz+mrPH30/PwUOZua6Bhd8u5pz9+pGXESBaVU20rAyNRfEWFODL\naelDuzFJazlON3tLyzvFvQvfBzgBuAf4TxubR9jweLW9QSsNzV639YfhfKAI2FdVwyKyFEjdtF0i\nMllVf9t0QJFBOJXa9lPVchF5Po42mThZQN9BVaxby+evv0J+n77sPvbYDUlhOsD5IO++jsVIz8ll\nUmQQz7wyH4ARvbM4bGgRwSmfUv2vSeDzkTFmDDmnn4bHfX4ei0WJhiP42xnh3lwkGmN9dQPfr6tm\neK9semSn2B2/2ZbdjvMMvXm3+xaVTxWRPkCZqr4kIhXANcBAERmiqouAC4D/upsvBfYF/gWc3uww\n1UB2J5uQA6x3g/kRuB9YWmjXpoPhsoEaoNLtATge+KSTbTCbsIC+A6qpKOfN391J+ZrVAKRmZrHn\n0cd3+DiZ+QUcfuFlLJ4xjVE/Oo1oSjpvzlnHTnlpXLhHIQNSFG1oIDBgIIHBg4nV1ZG2x+5ofT1k\nZlJXXc3Czz5l2dxZHHDqWRQNGIQ3joFyJTUhjnn4U4INEXpkpfDutQfTI9s+5Jtt1PjKlxmfA107\nyn134EERiQFhnOflOcBrIuIDpgF/drf9DfBXEbmbjYPnP4HX3QFt13bw/H8D/ikic4HpbKiF3lK7\nmqjqbBGZ6W6/AqeOuukiFtB3QKpKfTDY9L62qqJTx0nLzGKvY09i5BFH409NRVX4+xUHkBusoP6+\ne0CE6L3/R8Ubr1Pxyt9BhFiwmh633gpA5bo1TH72SQCWzZnJuEefIjOv5bnt9eEoXo/g93oorqon\n2ODkll9f3UBdONqp9huz1TjBu8umqanqB8AHLazau4VtpwBDW1j+HbBHs0VTNlnfaoIHVS0BxrSw\namlL7VLVw5u9vri145otY9PWdkBpmVmc/IvbyevdhwF77M0eY4/r9LG8Ph8p6Rl4PF68Xg87Z3ho\nePB31EyZQs2nnxKcMoXwipWI389Oj/+RjNFjqJ83j0hFBbHYxl32rVlZXsuNr85i/MT5lFQ30Ds3\njV17Oz2FBw8pIDPFPpcaY4z9JdwBef1+eg8dztnj78fj85GWueVzucPRKGU1YQKhMHg2fE4Mffc9\nPW65mcp/vkvNZ59R/jfnJqXoxhvJGXskB595PisWfsOY088ltYV2lAQbuPyF6SxY4+SAV5TfnDyS\nCeP2JxSJker3UJAZ//N3Y0z8RGR34MVNFjeo6gHd0R7TNgvoOyiv10dGbtfNA19WWsvJj08lO83H\nx7/+NfgD4BFiZ55Lfc8i8s8/j1U3/Lxp+7oZM4hVV9G3uJhhJ55I9i7D8DTLMqcxxakzoFTVRZqW\nl9eEiUSVoiwL4sYkmqrOBfbq7naY+FiXu+kSk+Y5JVbrwzGmVXv5x9iL+fvhF3HyywsJhmL4iooo\nvO46xO9H0tLIu+An1HzxJdVvv0PdR5M3mh9TVx1i2vtLmfzCtwQalL9csC99c9MY0TuLX50wgrRA\ny+lljTFmR2Z36KZLHDm8B49O/o7KujC9c1J5fV4Ja6vqGTUwj1S/F/F6Sd93HwZP/ghw6qqjSvro\n0RT+7Cqk2d35DzPWM+3dJQBUrK3hhKv34K2rD8QjQqF1rxtjTIssoJsusXNRBp/ecgR1oSiFGSlM\nvOYgakNRMlN8TUHYk5KCp0ePpn36PfUX8Hjw5eZudKxQw4ZR65FQDEHoYV3sxhjTJgvoZovUh6N4\nREj1e+mdsyF/ezbtV2trrfzq8NG9KVsVpLq8gcPOHUZaVscrvxljzI7GAnqSi8aUkmAD4WiMrBQ/\nOelbHhwr68JU1YXxiPDunNUsK63h+qOG0rOLkrukZwc47LxhRCNKaoYFc2O2hIiMp1kRli4+9lJg\nlDsvfZsjIkU4ue4DwHWb5pYXkWeAh1T1m+5oX1ezgJ7kVpY7o88r68L84pihXHLgIDJTO//PXhuK\n8PevlvO7f31Lis/D0xeO4h/TVpD26WJ+eujOXZaxzZ/iw2+97CZJ7D5h983qoc+9aG5310PvViLi\nU9VI+1tukbHA3JbqsYuIN9nqtNso9yT30YL1VNaFAXh+6lJqw1v2/6emIcorXzk1JRoiMT5euJ5h\nvbJQVd6ds5qGSMeztpXXhPj8h1K+XFxKRW1oi9rXlmik9eQ1xiSKG8w3q4fuLu+UVuqhb1b3vNku\ne4rI5yLyvYhc3sZxe4vIp26N9HmNddLbqWF+bbO66MPd7fd3zzfTra8+zF1+sYhMFJH/4JROba2u\n+kARWSAiT7vn/LeIpNEKEblcRKa5P483RCRdRPYCHgBOca8nTUSCIvIHEZkNjNmkTvtxbjtmi8jk\ntq5jW2UBPckdOLgAv9eZFHZVpzapAAAgAElEQVTkiB6k+jaMJo9UVBAuLiZSVh738dIDXn60Zx8A\nfB5h7PAe7FyUwQm796Y2FMXn6ViRlHAkxotfLOPcp7/g7Ke+4NXpK4i2kTUuXnWhKGU1IcLRKOFQ\nlFULy/nouW9YMqeEUF2ibwqM2Uhb9dA7q7Hu+J6qOhKY1M72ewBH4qRrvdMtotKS84APVHUvYE9g\nlrv8V6o6yj3OYSLSPGVsiaruAzyJU0kNnFzth6jq3sCdbHyt+wBnqOphbKirvg9wBE7p1cY/IrsA\nT6jqbkAFGxeW2dSbqrqfqu4JLAAuVdVZ7rn/oap7qWodkAF86f7c/te4s9s1/zRwunuMM+O4jm2O\ndblv56pLi1k+bw69hgwlp6gHvsDG/dQDC9L59OYjqKwP0yMrhew055l0pKyc9b9/kMo33yL9oIPo\n+8D9+AoK2j1fRoqPSw8exGn79CXV58Xv9ZDi97C2sp7zDhiA19Oxz4gNkSjTl5Y1vZ+2tJyfHDCA\n9JTOf9Ysrwnx1/8t5tPvS7j2yF0Y3SuHiY/OIhZTFs1YzwX3HEggzX71zVaT8HroqjqlnYqD77gB\nrU5EPgb2B95uYbtpwLMi4sepjd4Y0NuqYf6m+/1r4DT3dQ4wQUR2ARQ2GiX7oao2/qdvra46OPXd\nG8//NTCwjesbKSL3ALlAJi3nuQeIAm+0sHw08KmqLgFo1r62rmObY3/VtmPBinJevuMmgmWleLw+\nLn30KbKLemy0TVrAR1rAR2827q2K1QSpfPMtAGqnTiVSWhpXQAfITQ+Qmx5oel+4BVPKMlJ83HjM\nML5eVo5HhOvH7kL6FuZmX1lex+Mf/wDAlS99zdc3HkFM1VmpThY6Y7aihNdDd7uI26p7vukvfYv/\nCVT1Uze4ngg8LyIP4RRtaauGeWMN9SgbYsrdwMeqeqqIDGTjKm81zV63WFd9k+M2HrvVLnfgeeDH\nbjW3i4HDW9muXlU78lywrevY5liX+3YsFokQLCt1Xkcj1FTE33Uuqal4Cwud12lpeDeZC761iAi7\n9cni45sP5z83HcbwXlueVz4tsOHXOtXnQf3CMZfuRp9dcjnsvGGkZtjnWLNV3Y5T/7y5rqiHXquq\nLwEP4nRjL8Wpew6bd0+fIiKpIlKAE+ymtXLcAcA6VX0aeMY9bks1zNuTA6xyX1/cznab1VXvhCxg\njduzcH4n9v8COFREBgGISOOc2nivY5uQ0L9sIpKL80sxEucT4ThgIfAPnO6TpcBZqhp/JDJNAmlp\njD79HKZNfIN+u+1BTo9ece/rKyxk0GuvUTd7NqkjRkA0SqSiYrMkL1uD3+ulR1bXpXMtykrlLz/Z\nl8nfruOSgwaRmRkge+8i+o3Ix5/ixeuzz7Fm65l70dyXd5+wO3TtKPeW6o6n0XLdc3C6xz8GCoG7\nVXV1K8c9HLhZRMJAELhQVZd0oob5Azhd1XcA77WxXWt11Tvq18CXQLH7vUN3Bqpa7D5SeFNEPMB6\n4Gjiv45tgqgmrvtRRCYAU1T1GREJ4AwEuR0oU9X7ROQ2IE9Vb23rOKNGjdLp06cnrJ3bs4baGsKh\nEF6vl7Ss7A7vH1q+nKXnn0+0uIT8yy+n8KdX4M3MRGMxwmvWUPO/qaQfsD+ejAyiJSV4CwrxFeRv\nlKp1WxWLKZ4ODtIzpg32y2S2aQm7VRGRHOBQ4K8AqhpS1QrgFGCCu9kE4MeJasOOICU9g8zcvE4F\nc4CqSZOIFjs5ISrfegutqwMgUlLC0jPOZO1ddxFetpwV4y5lyamnseSUU4iUlsZ17EhlJZHiYqKV\nlZuti8aUdVX1LCutobSmoYW9O682FGF9VX3TdL3tVW1lBTXlZUTD2/d1GGO2jkT2PQ7C6f54zp3D\n94yIZAA9VXWNu81aNoxoNAkSjcUIR1ueCpZ52GFIwBngln3iCUiqMx5Fw2Gi5c6TEE96Og3ff+8c\nq7ycyPr17Z4zUlbGurvvYdGRYyl+4k9EgtU07w1aW1nPMQ9/ymEPfsI97y7osvnnNQ0R3p+7huMe\nncI1L8+gpLprPyxsLdWlJbz+f7/mhVuvY82ihUSjNtXOdB0R2d2dm93868vubld7ROSJFtp9SXe3\na1uRyIDuwxlQ8aQ7h68GuK35BtpY8LoFInKFm8hgenFxcQKbmdxKgw08+MFCbn59Nqsr6jZbHxg4\nkMEf/pudJ/2LwiuvwpvlPHryZmSQf9FF4PMRC4fIOOggZ/tBg/D3av9ZfbSykqp338WTlUXszOP5\n/fwneHzW45TVO7NBZq0ob7qDfmfWKkKtfODoqGBDhFten0NZTYipP5Tyv0XbZEbKds2ZPIniZUuo\nrazgw6cepz5Y3d1NMklEVee6c7Obfx3Q3e1qj6pe3UK7n+vudm0rEjkobiWwUlUbP/W9jhPQ14lI\nb1VdIyK9cQYfbEZVnwKeAucZegLbmdRmrqhg7qpKpi4qZVV5HU9dMIq8jA1TzjwpKXh6bt5J4s3N\npfDqn5Ezbhxzi+tJvfEOetwSIzsrDUlra/aIe9z0dDwZ6aSedwa/XzGBD1c4ZVOjsSjX7XMde+6U\nS1aKj+qGCCeM7I2/g/PXWz2vQGFmCuvdO/O+ee23dVtU2G/DYN+8Pn3xerfp6a/GmG1AwgK6qq4V\nkRUiMkxVF+Lk1P3G/boIuM/9/k6i2rAjiFZXE1q2jPDKlaTvt9/Gc8nLl3HE0ifZb7cRfLXX/jzx\nZRm6SYdIXXUVaxZ9RzQUou+I3UjPzmla583Oplj9fFNVS79MH/0rVrDm1gdI3XVXetz0i1arpYFT\nSW3Q229TVVNGcMUTTcurQlWoKr1yUvnoF4dR0xAhJ82/0YeMLVGYmcLrVx3I379azt79cxnaY8un\nwXWH/iP34rRfjqe6rIzB++5PamZmdzfJGLONS/Qo971wpq0FgMXAJTjd/K/iTN9YhjNtrazVg2Cj\n3NtSM20ayy+4EID00aPp+/BD+PLyILgenjkKKpYBUP3j5wkOOm6jEqeRUIgv3vw7X771KgDDDz6M\nseOuIjXDCR6qyp8++YEHP1jIez8ZgfeCM5oGzfV97FGyjzkmrjauql7FXZ/dRZovjTvH3ElRelGH\nrzMajVFbGaJ8TQ0FfTPJyLXKLWars1HuZpuW0Hnobtq+US2sGpvI8+5I6ufN3/B6wQI04g6eUoXg\nuqZ1mXVryGoWzDUaJRIOs+KbuU3LVn37zUYjqiMxZdH6IAChSIzMzEwibkD3NruTb0/frL48dPhD\neMRDZqD9O81oVRXa0AA+n/PhBKivDvPKb78kXB8lMy+FM24bRUaOBXVjjGkU14NLESkSkdtF5CkR\nebbxK9GNM+3LPu5Y/DvtBF4vPW+7FW9j12xqFpz2NGT2gP4HIrs7iaOi1dVUT57Mml/9itiiRRx2\n7sXg5oDe5/hTqFy/jrJVKwk11OP3evj5UUPZpUcmf55bTp/nnyfn9NPpdffdpAzvWNGh7JTsuIJ5\npKKC4sef4PsjjmTVTTc3TZGrC4YI1zsZG4PlDVY5zZgkJyK5IvKzTu7bVHmuC9rxWxE5qiuOlWhx\ndbmLyGc4+Xy/xsmpC4CqtpTkvstZl3vbIiUlaCyGJzMTb3qzok7heqivBK8P0p1n6w1LlrD4+BMA\nkECAnf/9AfU+D7FIlGVzZ/LRX59ERLj4D38iv89OACxdvprSVStZ9eXH5PXoyX4nn05qZmKeTYdW\nruSHo45uej/gby+Rvu++1FaFmPTUXNYsqmTY6F4cdMYQ0jK75rm7MXHqdJf7guEjNquHPuLbBd1S\nD122Th3yLebmTn/XrSa36bo2r8HNCT9KVbfPaS6dFG+Xe3p72dxM9/EVtvJB1J/qfLliMSUaDDa9\n11AIolGye/WiurSYj575k7NcldKVK5oCeo/cDFZ+thCNRhh5xNGkZCRugJYEAs5Ut+pq8HjwFTnP\n29OzAxz/092JRhWfX0jtokF0xiSaG8yfZkMJ1QHA0wuGj2BLgrqI/AS4DmeM0pfAz4BKVc10158B\nnKSqF7sFVeqBvYGpbmWyZ4GdcfLKX6Gqc0RkPDAYGIKTJvYBN687InIzcBaQArylqne10bYLcQq6\nKDBHVS9wS5T+mQ1V5m5Q1anuOfu7bekPPKKqj+EMnB4sIrOAD3FSr94NlAPDgaEi8jbQD6egy6Pu\n7Kh4fnab7SciXpxEaKPcdj+rqg+7P7t3VfV1EbkT+BFOmt3PgJ9qIgeidVC8Af1dETlBVd9PaGtM\nwlTUhnh3zhr2yc0h97zzqZ3yKfkXXIA328kw50tJZc+jT2D2h++T17sPvXfZ0KWenp3DgWeeRzQS\nwZ+S2OfWvoICBr72KtUffUTGAQfgbTZqPy3LgrjZLrVVD71TAV1ERgBnAwe5hU3+RPtFSXYCDlTV\nqIj8EZipqj8WkSOBF4C93O32wCknmgHMFJH3cOpx7IJTdlWAiSJyqKp+2kLbdgPucM9V0qzQyaPA\nw6r6PxHpj1PidIS7bjhOPfQsYKGIPIkzzXmkW5sdETkcJ7fJyMYyp8A4VS0TkTRgmoi8oarxpLLc\nbD+c+iJ9G3sE3Fokm3pcVX/rrn8ROAn4Zxzn2yriDejXA7eLSANOIQDByQvTuXyjZqtbUVbHHW/P\nI+D1cOPBJ3PB5ZeTlpuNx51TnpaZxUHnXMABp56Fx+slIzdvo/09Xi+eLsjfXhJs4JvVVeyUl0bP\n7FQyNimVKl4vKQMHknLZZVt8LmO2EYmohz4Wp7LaNLcOehqt5PRo5rVmpUMPxq3Ipqr/EZECEWn8\ne95S7fSDgWOAme42mTgBfrOADhzpnqvEPX7jLKajgF2b1W3PFpHG7r73VLUBaBCR9bSeQfSrZsEc\n4DoROdV93c9tUzwBvaX9FgI7ux923gP+3cJ+R4jILTgfyPKB+WxvAV1Vt8/JvKZJJOYMIgtFYzw8\ndRWnHjSUjLSNSyanZWZBFzwbj4XDaF0dnrQ0xL8hIUppsIErX/qa6UvL8Qi8c83B7N43/tHyxmyn\nurweOs5N1QRV/eVGC0V+0eztpjXRa4hPS7XTBfidqv6lQ63cmAcYrar1zRe6AX7T2uetxaama3Dv\n2I8CxqhqrYh8wubXvJnW9nNrve8JHAtcifN4YVyz/VKBP+E8m1/hPipo93xbU9zpuUQkT0T2F5FD\nG78S2TDTtQYWZnDrccM4ZJdCXrr0APLSE9N9Ha2qpmriRFZec41T+KXZM/toTJmxzMkPH1P4elmb\n6QeMSRZdXg8dmAycISI9wKnf3VjLXERGuCVAT21j/ym4XfRugCtR1Sp3XUu10z8AxjXeUYtI38Zz\nt+A/wJnu/s1ri/8buLZxIzdPSVuqabsMag5Q7gbl4TiPCeLR4n7uqHiPO9j7Dpzu/eYag3eJ+3M4\nI87zbTVx3aGLyGU43e47AbNwfgCf43StmO1AXnqASw/emZ+MHkBGwBd3WdHaygrmfvwhgbR0ho05\neKNMci2JVlaw5ld3OPt+NY3Bkyc3TaVL9Xv56aE78+R/F1OUmcJRI6wuj0l+I75d8PKC4SOgC0e5\nq+o3bo3uf7vBOwxcjfPc+V2cwljTcbrGWzIeeFZE5uB8uLio2bqWaqevdp/bf+7eUQeBn9BCN7+q\nzheR/wP+KyJRnG76i3EG8D3hntOH011/ZRvXWCoiU0VkHvAvNq9HPgm4UkQW4HSXf9HaseLcry9O\nMbHGG92Nej9UtUJEngbm4RQWmxbn+baaeKetzQX2A75Q1b3cTzX3quppiW4g2LS1RrFYlLoqJ3Vq\namYWPn9i83uH6uv56JknWDDlYwAOPOt8Rp92TmMXWcv7NJ92JsKQyR/h79OnaX1VXZjq+gh+r1CU\nldLmsYzZxiT9L6vbjRxU1d93d1tMx8Xb5V7f+NxDRFJU9VugY5lFzBZRVUpXLGfCTVfz7A0/ZfXC\nBUQjiZ1KGotGCJZtmMZZtX49Gms7oYs3J4e+Dz9M5uGHs9Pjj+PJyaEuFGHuqkoemPQt366tJjvN\nR4/sVAvmxhjTheK9Q38LJw/7DTjd7OWAX1VPSGzzHHaHDvXBIO/8/h5WLpgHQHZRT8675/ebjUaP\n71hhotEY/hQvgdS2n7qUrV7Je48+gC8lhROvu4Xswo3zsFfWhmmIRvF7PE0FVjQWI1Zfjyc1FfF4\nWFley+EPfkIk5vyuTbrhEIb3sgkSZrtjn0CbcZ+RT25h1dg4p44l1LbevkSId5R74+CK8e40hhyc\n5xBmK/H4vGTkbQjeGbl5iMdDTWU50bAzPzwtq/0gWVcdYvKEBaxdXMl+Jw1i+JhepKS13nWf17sv\np9/+W/B4SG92/NJgA9UNEZ793xJe+Wo5Rw7vwb2n7k5BZgri8WyUsW5NRX1TMAf4YX3QArox2zk3\nKLY3sK3bbOvtS4S4i7OIyD44cxEVmKqqoYS1ymwmkJrGERddQWpGFqGGeg4550JUlVfH/5Ky1SsZ\nOvpgxl56VbuD1opXVLNsnvPh9H+vfs/gvYuaAnp5TYiGSAy/VyjIdBLIiAjpORvnVygNNnDNyzO4\n4eihvPC5U83tg/nruG7sLk37NTewMIPBRZn8UBykd04q+w7oeK+CMcaYtsU7yv1O4EzgTXfRcyLy\nmqrek7CWmc1k5OZx5CU/JVRfRywWZe3331G2eiUA333xPw49/xJoJ6Bn5m2YNpmeHUDc0e5lNSHG\nT5zPxNmrOWBQPk+cvw+FLQRngJpQlM8Xl/ELEbLTfFTVOYPc8luZCleUlcLfrxhNTUOE9ICXHtnb\n1NRNY4xJCvHeoZ8P7NlsYNx9ONPXLKBvZfU1QT554Rl++PpLzrrzd3i8XmLRKJn5BXjjGPWekZvC\naTftw+pFFewyqifp2U4QrqoLM3H2agC+XFJGaTDUakBP8XnICHh58IOFPHvRfny9rJzDhxU1PUNv\nSVFWCkVZVu7UGGMSJd5R7qvZOCNOCrCq65tj2hOqrWXBlI8J1dYy/Z9vcsEDf+TE62/hvHv+QGZe\nfrv7p6T56D0kl32PG0h2YRoiQnF1A8XVDfTOcf6Js1J85Ka3/uEgPyPAq1eOIS3g5e1Zqzhr1E4M\n65VNqn/LU8MaY7qOiJwsIre1si7YyvLn3cIuiMgnIjIqkW1sjYjsJSIJH3gtIrc3ez3Qnfe+pccs\nEpEvRWSmiBzSwvpnRGTXLT3PpuK9Q68E5ovIhzjP0I8GvhKRxwBU9bqubphpmc8d/FZXXcXiGdM4\n7MLLGH7gliXti0oN+VkhXrvyAOavqmZor2wK2rjb9ns97NYnh8fP2wefRyyQG7ONUtWJwMTubkcn\n7YVT+SwhRcHEmTcrOBn77u3iw48F5qrqZkUpRMTb0vKuEG9Af8v9avRJ1zfFxCM9J4ef/O4R1i7+\nnp47D4lrZHtbKhoq+Ou8J/nHwn8wpucB3LPrzWQRwOfNaHffzJS4x1Qas0N74sr/bFYP/eo/H7lF\n9dDFqRc+CSfT2YE4mcueA34D9MB5VLorTu7xa0RkEE51t0zgnWbHEeCPODdqK4AWBzyLyDHusVOA\nH4BLVLW1u/x9gYfcc5UAF6vqGhG5HLgCp+TrIuACNwXrmcBdOHncK3Fyrf8WSBORg3HyyP+jhfOM\np+XSq4jIjWzIxf6Mqj7i/sw+wCk3uy/wlXuOWTiFVn4FeN2McAfi9ESf4haraek6N7seYCjwgHvc\nUcAYnMx9f3Gv62pxytfepKrTReQ4nN8NL04K3rEisj9OdbpUoM79WS9sqQ0btaejpVxFJA/op6pz\nOrTjFrB56ImzOriaY984tun9ywc8waByP5ljxnRjq4zZJnVqHrobzJvXQwcn3erlWxLU3eC0CKfG\n+XycgD4buBQ4GSd3yNtsCOgTgddV9QURuRq4X1UzReQ04CrgOJwqZ98Al7n1vz/BqWu+FGdQ9PGq\nWiMitwIpjaVEN2mXH/gvTiAsFpGzgWNVdZyIFDTOAXeD2jpV/aObjfQ4VV0lIrlumtWLG9vexs9g\nPE4VuKbSq0AvnBKwz+OkKRecAP4TnBwqi3FKu37hHiPYrIZ84890lKrOEpFXgYmq+lIr52/tejZq\nu4gocLaqvuq+b/y5LgNmAIeq6hIRyXfLumYDtaoaEZGjgKtU9fTWfg6N4h3l/gnOL4gP+BpYLyJT\nVfXGePY32y6/x0/P9J6sq11HqjeV/LQCvNH29zPGxK3L66E3s0RV5wKIyHxgsqqqGyAHbrLtQbgl\nU4EXgfvd14cCr7ilVVeLyH9aOM9onLv9qW6GxwBOPY+WDMOpn/6hu60XWOOuG+kGvlycu/cP3OVT\ngefdAPomHdNS6dWDgbdUtQZARN4EDsF5/LCsMZi3YomqznJff83mP8fmWrueTUWBN1pYPhr4tLEk\nbLNSsznABBHZBecxd1x5vuPtM81R1Sq3SMsLqnqXm2DfbOeK0ov42wl/Y866WQxNG0Dm2iCBnXfp\n7mYZk0wSUQ+9UfOyo7Fm72O0/Pe9Y12yGwjwoaqeG+e281W1pW6+54Efq+ps9y72cABVvVJEDgBO\nBL52u+zjFW/p1UbtlZHd9HhpbWz7PC1cTwvqm9Wij8fdwMeqeqrba/BJPDvFO8rdJyK9cerDvtuB\nRpktVFsVorqsntqqxOXx6ZnRk6N3PpYBvYeTs/covDndU6O8Lhiiujyx12pMN2it7vmW1EPvjKnA\nOe7r85st/xQ4W0S87t/5I1rY9wvgIBEZAiAiGSIytJXzLASKRGSMu61fRHZz12UBa9xu+aY2iMhg\nVf1SVe/Eed7cj/bLp7ZlCvBjEUkXkQycUrJTWtk27LanM1q8ng74AjjUHd/QvNRsDhtmkl0c78Hi\nDei/xelK+EFVp4nIzsD38Z7EQFVDFSW1JVQ2VMa9T21ViElPz+OF2z/jX3+Zm9SBri4YYso/vueF\nX37GPx+bldTXanY4iaiH3hnX4wzImotTKrTRWzh/z78BXqCFrnRVLcYJLK+4vbOfA8NbOombRfQM\n4H4RmY2Ts+RAd/WvcZ5nTwW+bbbbgyIy150y9hnOWICPgV1FZJb7HD5uqjoD5+75K/d8z6jqzFY2\nfwqYIyJ/68g5XK1dT7ztLMYZVPem+7NqHPj3APA7EZlJRzK6dnRQXHfY3gfFldeX89jMx3hn0Tsc\n3f9obj3gVvJT258zXrG+lr/dueFRz/m/HU1uj00fxbWtPlJPMBQk1ZdKZqC10sjdr6q0jhd/teHv\nyOk370Ovwblt7GHMVtfp4iyJGOVuzKbiHRQ3FHgS6KmqI0VkD+BkS/0an2A4yOvfvQ7A+0vf56q9\nrooroHu99Zx6484ofqa/vx5/ysbzvWMxxeNp/W9MMBTkg6Uf8My8ZxjTewzX7n0teanbZh51n89D\nVkEq1aX1+AIeMvMtPaxJHm7wtgBuEireW/mngZtx5tGhqnNE5GUs9WtcUrwpZAeyqQpVkeZLI93f\n/l12TUU5r99zO2WrV5KZV8C59/yhKU1rQ12Y1d9V8sOs9exx+E4U9M3A69s8uUswHOQ3n/8GRXmt\n+jVOGXJKlwX02qoQsWgMX8BLakZnHz9tkJ6Twum37EvpyiB5vTJIy9ryYxpjEkuc0tqDNll8q6q2\nNtq7s+e5BOeRQXNTVfXqrjxPG+d/AmeWQHOPqupzW+P88Yo3oKer6lfuFIRGkQS0JykVpBbw6o9e\nZca6GexVtBf5Ke3fnVeVFDcVXgmWl7Ju8fdkFxYCUFcd5v0nnUkGP0xfz0/uHkNG7uYB3SMe0v3p\n1ISdQZ3Zga4pWVpT2cDbD82kYl0tex3Vj32PH9glQT0jJ4WMHMv3bsz2ollp7USf5zmcpDndYmt9\ncNhS8Qb0EhEZjDvlwc3zu6btXUwjr8dL38y+9M3s2/7Grsy8fHz+AJFwCBEPOT16Urx8Kbk9ehEN\nx5q2i0ZitDYOIj81n5dOeInXv3udQ/oeQmFaYYfaraqEV6yg4q23ydhvFKm77443K4viZdVUrHPG\n+Mz6aAV7HdUVs2+MMcZsiXgD+tU4IwGHi8gqYAmdG6Jv4pSWncMF9z/K4plfU9h/ADMn/ZP5n0zm\n4oeeJCO3iP1PHsSyOaXsfUx/Aukt/zP6PD6G5A7htv1brM3QrmhJCUvPPY9oaSmlT8Kgd97GO2wY\neb0z8PiEWEQp7JeJeDs9VsgYY0wXaTOgi8j1qvoo0FtVj3Ln83lUtXrrNG/H5fP7ye/bD28ghVd/\n80uqitcBUL56Jfl9+rL3Uf0ZeWhfAqk+vL54Zx92jKoSLS9veh8pKYVhkJEb4Py7x1BVFyYr0096\nVuuFXNo9RySC+Jxfw7L6MiYtmYSiHD/o+LgGDhpjjHG0Fwkucb//EUBVayyYJ0Y0Fm2x69wXCJDu\nJnop7DeAnoN3cZd7ScsMJCyYA3gyM+l93+/w9+1D9oknkDJsGDWVDYQjMZYE67n+nbk8MPl7ymoa\n2j/YJjQSoX7hQlb/8nYq3nqbmmA5j339GL/76nfc99V9/GH6H5qe/RtjjGlfe13uC0Tke6DPJqle\nBVBV3SNxTdtxrK9dz59n/5mC1ALOHXHuRnemGTm5nHrrXQSlnpKGEupSoqTFong9iS9Z6k1PJ/uY\nY8k88P/bu/P4qKrz8eOfZ2Yyk8meQNhBUBBBpSgRLaKAFESl4lZFtEK1WlutFa1f11a76M8uLq1b\nK264ouIOKCpCxQU1uKCAKJtsYcm+z2Rmzu+Pe7ORPZnJJMPzfr3yytxzz7335JLw3HvuuecZR1Bc\nrHpvLxuz1zPpt6OY8/inFJRXsfqHAsYOyWDG6NaPDwAIFBTwwwUXEiotpfiNN+h13BI2FW2qWb+5\naDP+oJ/EuJazviml2k5EzgC+M8asC9P+soCLopVOW0ROB0YaY+4UkUysWU3dwFXAjcAsY0xhNNrW\nWZoN6MaY80WkD9Yscad3TpO6j33l+1ifv56DUw8mMyETj7PtI7SLfcXc8sEtfJxjTaridXm5+MiL\n69WpiAvw63d+w3cF32z4OkIAACAASURBVJHqSeXl01+mV0KvsPwMLXHEe3DEeyjOKWPNMmvUfUle\nJd44JwVUAZDgbvriIlAVIhgI4o53Ue8tCWMI+Wrv7L2FlVybdS2XvXMZANdlXRe2UflKqUadgRX0\nwhLQjTHZQNRmANsv9/v++cibmvY1prQ4KM4Ysxv4USe0pVvJrchl9luz2V6yHY/TwxtnvEHfpL5t\n3k/QBCkP1M4KWewvblDHH/TzXcF3ABT5ithTtqfTAno1d7wTh1MIBQ0b39vO05ccy73LvueI/ilk\nHdT4s+6KUj9fvrONfdtKOXbGwfQckFTziMCZksrAhx5k3333k3BMFu4+fTg8JYnFZy4GINWT2im9\nEEp1hrvOm95gprhrn1/U0XzoF2Ldfbqxph/9DXA/cAxWQpGFxphb7bp3Yt2UBYC3sTKanQ5MEJFb\ngLONMZsaOUar8pcbY04UkYlYOb6ntyWft53U5Eys+cv7A08bY/5kr3sVa173eKz3vh+2yxvLIT4H\nyAIeoWE+8vVY6UxzReQirNSlBlhjjPl5689619bSoLgXjDHn2nP/1n3Ae8B3uQdCAbaXbAfAF/SR\nU5bTroCeHp/OHePv4LaPbyPNk8aFIy9sUCfeFc9JA0/ive3vMSR1SLuO01HxiXH87IYstq3LZ8jo\nnqT08HLXuT/C5RD2m5+gxo4NBXy+1Mo/sXtzERf8+bia98wd8R4SjzuO+COOwOHx4PBaCY0yEzI7\n5wdSqpPYwbxuPvSDgHl3nTed9gZ1ERkBnAccb4ypEpEHsd48utnOp+0Eltmzeu7ECpiH2alVq/ON\nvw4sMsYsbOZQLxtj5tnH/CtWrvX7gD9i5TjfKSKNzdH8LXBCnXzed1CburUxY7FSrpYDn4nIYvuO\n/2L75/Ha5S9hjf2aR50c4nV3ZOcx/yP185FXn7fDgVuw8qHn7r9td9fSHXr1zDzT27NzEdmKlTEn\nCASMMVn2CXweK8fsVuBcY0xBU/voqrwuL+cPP5/nNjzHyB4jOSjloHbva1DKIO6deC9OcZLobvjM\nOD0+nVvH3cr1getxO91tfp88HFxuJz0HJtNzYG3yo5bun03INPq5mrhcuNJ0vnYV8yKRD30yMAYr\nyIF1R74XOFdELsP6v70vVg7zdUAl8KiILKJtGTPbm7+8rfm83zHG5EFN7vLxWN33V4lI9eQ1A4Fh\nQCaN5xBvjZOAF40xue3Ytstr6Rl6jv39hw4cY1L1ybPdACyzBy7cYC9f34H9R0WqJ5UrjrqCX476\nJS5xkeHt2IVeiqf558Vd+RWuvIo8giZIgiuhXgKYgYdlcMSE/uzbVsK4s4aGZTa5SCsr8uErD+BJ\ncOmsdSpcIpEPXYD5xpgbawqsFJzvAMcYYwpE5Akg3r5LHot1EXAOcCVWYGuNJ2hf/vK25vPe/4rf\n2F34PwF+bHfzr8DqeldNaKnLvYSGJxpqu9zbM2ppBrVJ4Odj/UN3u4AOVlDvDvwVAXwVAQTwJMY1\nSPLSEXvK9jDnrTnsKN3BjWNvZMYhM2p6GbzJbsadNZRgVRC314XDGblX7MKh7pS2yRnxnH39GA3q\nKhy2YXWzN1beXsuA10TkHmPMXrvncxBQBhSJSG/gFGCFiCRhTd+9REQ+BDbb+2hNvvH9833vhNr8\n5cAnInIK1t1zXW3N5z3F/hkqsAbrXYz1PL3ADuaHAcfZdVcBD4rIkOou9zbcab8HvCIidxtj8tq4\nbZfX0h16e5PL1+wCeFtEDPBfe0BD7+o7f2A30LulnWyg9gogphhDKBgEwOF0QhPPojt2CENFVZCC\n3AoESHc7cMfR5ICzYChI0FjT9LvEhaOFgWm54mDL8X8G4HJx8IAzrn7fmsdpfXUDAa+LPRcMr1l+\n2OtqfSJiFfNWtH/Tm6j/DB06mA/dGLPOHsz2tog4gCqsGT2/wHp+vR2rWxysoPyaiMRj3YxdY5cv\nAOaJyFXAOY0NiqM23/c++3t1TPiH3Z0uWBcXXwET6mz3d6wu91uAxa34kT4FXgIGYA2Ky7bHbl0u\nIuuxwsAq+2ffZz9WeNn+2fcCU1pxDIwxa0XkduB/IhLEOl9zWrNtdxDRfOgi0t8eNNELqyvot8Dr\nxpi0OnUKjDENUoDZ/2CXAXhGjRpz3FdfRayd0RAMBKgoLqKsMB8MJKSmkZCWhtMVvm7pQChAMBCi\nOKcSv8+6cIhPiCM+U0j0NHxWb4yhwFfA5kLr73po+jDS3KnNXmiUV5WzLm8tmd7epLrTSXR7iXN2\nzzAYCoTI21WGvzJAnNtJzwFJOCI4cY/qXlZ0IB96JEa5x4rq0enVA9hU+0U0oNc7kMhtQClwKTDR\nGJMjIn2BFcaY4c1tm5WVZbKzo/Z6Y9iVFRWy8K+3kLtta73ytN59mfnnv5GYFp7n5Ys2LeKbPev4\n8Z7T+GapNXXs0Wf3Z0u/zzl3xM9wOeoH3hJ/CVcvv5pPd38KwIQBE/j7iX9vNt1rWVUZBeWVLP26\ngMc/3MbEQzO5ZupwMhLbPx1sNJUX+6nyBYnzOGvS1Spl06QFEaABPXwidvshIokiklz9GZgKfIP1\n4v9su9ps4LVItaErMsaw8dOPGwRzgMI9OaxZtpRQsOOZaUMmxGd7PmPBxmfxj9zDT+Yewhk3jCK3\n/yay+o1pEMwB4p3xnDrk1Jrl0w4+jXhX82NQEuMScZgE/rJoAzsKKnj6k23kFFV0uP3RkpDiJjXT\nq8FcHVBE5AER+XK/r1+0vGWbjnFyI8d4xRjzhAbz8Ihk32hvrMEH1cd51hjzloh8BrwgIpcAPwDn\nRrANXU5laQnfrHinyfXrVy5n1ORpJKY1eApRT0VJMTu/XYu/ooLBo8eQkFJ/gJ5DHMweOZt3f3iX\n338yl7sm3MVRmUdxHMfUGzFfFQxRVVlJRUEue7duZtKoExl71hIEIdWTikNavuZzOoRkj4sSXwCH\nQEp81x/NrpSq1Rn5vo0xS6l97U1FQMQCujFmM43MMGe/azg5UsftFpp5ymGMdRdfnLsXEQfxSUnE\neRreJa9fuZzl8+cBMGryNCZe9Evi4uvXOyjlIF4941WMMSTFJTXoOs8r9fHw+5u5YGQiC2+8EhMK\nkdq7D+f/+Z8ktuH98B6Jbl654nhe/WInE4dndtvudqWU6s665+ilbiw+MYmREyaze9N3ja4f97NZ\nbF+7hiX334XD4eDsm/7MoCPqXxeFQiH2/rClZjlvxzYCgSri9ntF0+lwkulteua1lz7fyRtf7WJK\nWhImFAKgaM9uTCjYpp/J5XQwtFcSvz+52aEQSimlIkiH8HYycTg49Nhx9BjQcE6JlMzeDBhxBF+9\n+2bNK21rli0lGKiqV8/hcHDcWTPJ6DeApIweTPrFZcQntD0rWcgYdhdX4u7Vn/4jjsDpcnHCrDkN\n7vSVUkp1fZ02yr0jYm2UO0BZYQHrP1jB2hXvEgqFGDF+IkdMmgLeOPbl7WLzyg9Z88brzLj2Zg4+\n+pgm94ExeFNSrffY2yiv1Me9735Pia+KP0w+iHiX4HK78bTj4kCpA8ABNcrdnuFtkTHmiBbqjDPG\nPGsvRzWF6oFOA3oUhYJBKkpLwIA3OYniqlKeXPckb2x+g2kHnczsw35OsisZj7fp18Zaq9BXyPcF\n31PoK2RM7zE1A+N8VUECIUOip/7Tl8LKQlblrGJD/gbOGHYGA5IGtDr7mQkZECshQrC4mEB+Pqai\nAlefPrjSmx/sp1QXpgG9YZ2J2BnWOqlZqhna5R5FDqeTxNQ0EtPScDhdFPmLmPf1PHaX7eaJdfMp\nDpWFJZgDvLftPS5eejHXrLiGv3/6d0r9pQB44pwNgjnAe9vf47r3r+ORbx5h1uJZ5FXmteo4ZYU+\nVr7wHR+/uonKEh8ly1ewedopbDnzLPbdcy/B4obpYZVSbScig0XkWxF5RkTWi8hCEUkQkcki8oWI\nfC0ij4mIx66/VUT+bpd/KiJD7fInROScOvstbeJYK0Xkc/trnL3qTuAE+xW0uSIy0U4Ag4hkiMir\nIrJGRFaJlfkNEbnNbtcKEdlsz1SnwkADehficXpwinUX7BAHXqeVUpTSvVC0A8pym9m6acFQkNW7\nV9csr81biy/oa7b+53s+r1ku9hdTGahs8TiVpVW88/g6vl6xky+WbiNn7W6KX6udZqD4zTcJlLe8\nH6VUqw0HHjTGjACKsaZ1fQI4zxhzJNbA51/XqV9kl98P3NuG4+wFphhjjsZK2/pvu/wGYKUxZrQx\n5p79tvkT8IWdZvsm4Mk66w4DTsZKm3qrPVe86iAN6F1IqjuVR6Y+woxDZvDwlIet5C/FOfD4KXDP\n4bDw4nYFdafDycVHXkyKOwWXuJg7Zm69rGiN1Z952EziHNbf2Kieo0iMa/m5eihkKCusvVDYt7eK\npKlTa5a9J0ygsunrCKVU2203xlTP2f401ivBW4wx1a/RzAdOrFP/uTrff9yG48Rhzfv+NfAiVlrW\nlowHngIwxrwH9BCR6oRei40xPjsT515akdNDtUxfW+tCvHFesvpkcXTvo2sndPniGcjbaH3e8j8o\n2AKJbc+HPjhlMK/OeBWDIdmdjMfZfBaxYWnDePOsNympKiHdk04Pb48Wj+FJdDHpwsNY/OAaXHEO\nDh7ThwT3VPoMHUmwpBRfSl8qiad75KhTqlvYfxBUIdDcH6tp5HMA++bOTnbS2EQSc4E9WHOLOLDy\nq3dE3Uv7IBqLwkLv0LugerOzpfSrv7KFvOsh+31y67PBV15FoCpovZOekEmvhF54Xd4W2+Bxeeid\n2JuhaUNbFcwBnE4HvYckM+u2Yzn35mPI6JtIXHoqgT6D+WZXBsU+N6k9Wz62UqrVBolI9Z32LCAb\nGFz9fBz4OfC/OvXPq/P9Y/vzVqA6n/npQGPd36lAjjEmZO+zeoRscylYV2KlXK0ePJdrjNFBNBGk\nV0Vd3aAfw+TbYMsKOHo2JDY9UUxOaQ7z1sxjcOpgph/8U8q2Gla/uZXeQ1IYPWUQ3qTIz+DmdDlJ\nTK0zGt4hZA5I5oSZw3B28XzoSnVDG4ArROQxYB1wFVaa0RdFxAV8BvynTv10EVmDdYd8vl02Dyu9\n6lfAW1g51ff3IPCSiFy0X501QNDe9gmsdKTVbgMes49XTm0ODxUh+tpaFxXw+yjI2cUPX3/FiHHH\n442Pw+FJhv3eNy+oLGB7yXZ6xPfg6hVX823+twDcOf5OfK/0IWdjEQA/uXgEmaM8BEIB0jxpuJ3d\nY3rWyrIqcjYWsm97KSPG9SU5Qye9UVHTpV5ba81rZfvV34qV1ax9o2tVl6e3TF1URUkJT984l/89\n9QiPX3sl5b5Qg2Be4i/hruy7uGDJBXy+93PKqmovrIv9JTgctf//lJf5uG7FdZz68ql8k/sNIROq\nt69QyLC3pJJ9JZUEQ13nIi9vRylLHvqazxZt4Y1/f0l5sT/aTVJKqS5Ju9y7gEAwQFmgDK/LW3Pn\n7Csvq0mj6isvazD9K0BloJJVOasAWPjdQv7f+P/HP7L/wcDkgUw5aAo5Yyoo2F1OzwFJ9DkygavL\nfk95oIzFmxczLH0Yye7aR18b95Uy+7FPMQbmXzyW4X2aeizWuUoLK+t89tEdepSU6gzGmK1Aq+7O\n7fqDI9YY1SVoQI+ysqoyVu5YybPfPsu0wdOYfvB0UjwpJKSmccSkqWzKXsXok6c3OsFMUlwSvzzy\nl9z+ye1sLtpMZkIm90++nzhHHIlxiaQeF+Tg0ZngCLHt+zw+fHwPCcluLr3qN/VGuZf6qrhjyXpy\niqzgeceS9Tww6yiSukAa1IEjenDQkT3I31XGhPOH4/Hqr6xSSjVGn6FH2e6y3UxdOBVjv0Gy6MxF\nHJRyEACVZaUE/H7iPPF4EhqfMa7UX0ppVSlOcdLD2wOHOMivzGdt7lp6JfSiX2I/nJVuXvrHaopz\nrYD9o58MZPw5w2r24Q+E+OfSDTy8cjMAl54whOtOHo7b1fb54SOhsqyKUCCEJ8GFM65rtEkdkLrU\nM3Sl9qe3O1EmCE6Hk0AogCC4HLX/JPGJSdDCfC5J7qR6k8QU+Yq47cPbWL5jOQBPnfIUgz2HkNE/\nsSag9xmSUm8fbpeDyycezIh+yWBgwvBeXSaYA8QnRr+nQCmlujoN6FGW5knjkamP8PyG5zllyCmk\nujs27Yo/6GdN7pqa5WR3Mr/83y/4009vp/eRA+ndM4PMgSkNtstI9HDmUQM6dGyllFLRo6Pco8zj\n8jCm9xhuH387kwZOqne37Q/6KfM39kpo4wJVVXgqHfxr/N2kxKXQN7EvvqCPDQUbuHD5TP5RcAuu\nAX6941UqBojINBHZICIbReSGaLdHRZ/eoUdBMBQkvzIff8hPYlwiaZ60mnnTq+VX5vPo14+yuWgz\nv8/6PUNSh9SfQW4/FSXFfLl0MWvfX0b/4SN5c9br+D3Wc/m+iX3JKcshYALEOTWYK9XdiYgTeACY\nAuwAPhOR140x66LbMhVNGtCjIKcsh5mLZ1LkK2LWYbO4YvQVpHjqd4N/sPMDnlxnJSfaWryVp055\nip7e+nO4l/hLqAxUEu+KJ3/rZj568RkAivbsJrlHT8b9bBYOp4tnT32W0qpSktxJDfahlOqWxgIb\njTGbAURkATADa7Y4dYDSgB5m/qAfYwweV9PJT1buWEmRz5rB7fkNz3PpqEsb1KlOo1r9WeoMsA34\nfRRUFPLUd0/z6qbXmDp4KhcNOLfe9nk7thMMBHA4XfRM6Imz0smK7SsA+HE/a+rnpLikZrOuVSss\n9+NwCCld4DU2pbqrrKwsF9ATyM3Ozg50cHf9ge11lncAx3Zwn6qb02foYZRXkcftq27nlg9vYU/Z\nnibrjekzBpdY11Jj+4yt+VzXuH7juHzU5fxk0E944KQHyIivTcpSkpdLXuFuHl/3BAW+Ap7f8DyB\nRCfeJGsyGHE4OPaMnxHnqZ0mddm2ZTzw5QMMShnE2a+fzZSFU3ht42uUV5U3+zNtyy/n8qdXc9Vz\nX7CnWHOZK9UeWVlZ44B9wBZgn72sVFjpHXqYBEIBHvrqIV7e+DIA5YFy/nbC3xq9Ax6YPJBFZy1i\nX/k+BiUPIi0+rd56f0UFbh9cMnwOoTihIlBBaVVpzcxue7duxtU/A6/LS0WgwppIxp3ERf98gIKc\nnaRm9sabUr8LP6c0h5E9RvLetvco9lsJj+Z9PY+TB59MQlzj77gXlvu5fuEaVm3OB+Cutzdw+5lH\nEqdJVpRqNfvOfDFQ/YceDyzOysrqmZ2dHWznbncCA+ssD7DL1AFMA3oYBUPBep9Ng1TFFq/LS/+k\n/vRP6l9b6K8AXzEVviBfvLecte8v46RfX0ncwJ4U+grZVLCJ0b1HkxyXTP/hI3n/xad4ZNpDfJT7\nCRMHn0SaJw1Pooek9MbTq848bCb3f3k/R/c6uubZfFbvrGaTtDgdQoKntus/yePCoVNrKNVWPbGC\neF3xQCawu537/AwYJiJDsAL5TKz0qeoApgE9TFwOF1ccdQXlgXLKA+XcfOzN9eZKb1LAB3vXQ/Zj\nMPh4fGlH8/FLz5HRbwD+XvFcsOhcKgIV/OG4P7C9ZDtvb32b6465jgnnzSYUCjE8c0STs8jVlZmQ\nydwxc6kKVvHaGa+RV5HH0LShDQbj1ZUcH8cdZx7JPUnfkehx8euJh+B06N25Um2UC1RSP6hXYnXB\nt4sxJiAiVwJLsXKTP2aMWduhVqpuT6d+DbOKqgpChEiMa2GKt2rFu+DfR0HAej5d8pv1PHrNFQz/\n8Ql8MrqYlza+BMCh6Yfy53F/5vZPbudfk/5FZkLTedHDLRAM4RCpl71NqQNQu/8A7Gfmi7GCeiVw\nWnZ29kfhaphSoIPiws4b5219MAcIBWqCOYC3fDvn33Qz/Q4dwQn9x9eUH9vnWCoCFVx65KWkuJu+\nq44El9PRrmDeHS4WleoMdvDuCQwBemowV5Ggd+jRVlFodbd/+l8YMgGO+w0kZkJqf0r8Jewr30dZ\nVRl9k/pijCHFndLsK3FdQbk/wLpdxSxcvYMZo/sxakAaiR59uqO6Pe2iUl2aBvSuwFcK/lJwecHb\nsbncu4KcwgpO+PtyAiGDQ2Dl/02if3rLz/mV6uI0oKsuTW+bOklloJISfwkuh4v0+PT6Kz1J1lcd\nxb5ivsn9hjX71nD60NPpl9SvE1vbMb5AiEDIulAMGSjzt/fNHKWUUq2lz9DDKBgK8kPxDzz05UN8\nseeLmsQqFVUVLN++nDNfP5Orl19NbkVui/v6oeQHfvXur3jgqweY/dZs8iryIt38dvNVBCgr8uEr\nrwIgNSGO30w8hN4pHn5x/GAyk7r2IwKllIoFeoceRvmV+Vyw5AKKfEU89NVDLDpzEYnuREqrSrnl\ng1vwh/x8vvdzPtr5EacPPb3Zfe0uq309Nbc8l5AJRbr5rba7bDfz185ncOpgTuk7nW/ezWH9hzkc\nktWLY386hPQkN7+ZdAhzxg3G63aSrFPGKqVUxOkdehgFTbBmjnaDIb/SmmHNIQ76J9dOIjMg2co7\nXlZVxr7yfTX16jq619Gc2P9EMr2Z3D7+dpLiWp5zvTWqglXsLd/L9pLtFFYWtnn7/Ip8rlh2BU+v\nf5q/rvorFeV+vnh7G5VlVaz93058ZdZdepInjl4p8RrMlYoAERkoIstFZJ2IrBWR39nlt4nIThH5\n0v46tc42N9qpVjeIyMl1yhtNwyoiQ0TkE7v8eRFx2+Uee3mjvX5wuI+h2kcDehglxiVy49gbyfRm\nctqQ0zgo5SAAenh7MG/KPK4dcy3zpsxjaNpQyvxlLNmyhFNePoUrll1Bbvneevvq4e3BHSfcwQvT\nX+CkQSfhjfO2qg15FXnsKdtTc2Gxvx2lO5j+ynROfflU7v/yfrYVb6MqWNXqnzFkQvUvQBwh4uzZ\n5JxxDlxuZxNbKqXCKABca4wZCRwHXCEiI+119xhjRttfSwDsdTOBw4FpwIMi4qyThvUUYCRwfp39\n/M3e11CgALjELr8EKLDL77HrhfsYqh0i3uVu/2NmAzuNMdPtqQoXAD2A1cDPjTH+SLejowoqC9ha\nvJVkdzK9E3o3OgtcsjuZM4aewdSDpuJ2uuvNwtY7sTdzjphTs7yvYh93rLqDgAmwtWgrpnQf5G+H\nnC+h1wjoMZTUpF5NtievIo/cilzS49PJ8GTgcrrILc/lkrcvYXPRZmaPnM1loy5rNC1rRaACgMWb\nFzNhwATiXfH0Smj6WHWlelK5a8Jd/PGjP9IvsR/uJCfn3nQMP3yTx8ARGcQn6R25Uo3JysqKB3oB\ne7OzszuU6cgYkwPk2J9LRGQ9Vga2pswAFhhjfMAWEdmIlYIVGknDau/vJGqnk50P3AY8ZO/rNrt8\nIXC/iEiYj6HaoTOeof8OWA9UR5bqK7IFIvIfrCuyLv0PWOov5b4v7uPF714E4N5J9zJ50ORG6ybE\nJTSZ7KQuJ04Gpw5mY+FGHhl/Jz2X/hE2vVtbodcI+PlrkNy7wbb5lfn8/n+/J3tPNgmuBF6Z8Qr9\nkvqxPn89m4s2AzB/3XwuOvwiUqgf0Mf1G4fH6cEX9DFx4ES+K/iOoelDW3sqiHPGMarnKJ6Y9gQu\nh4s0TxokQFpvfS1NqcZkZWU5gb8CVwEGkKysrH8Bf+hAcpYadpf3UcAnwPHAlSJyEdaN1LXGmAKs\nYL+qzmY7qL0AaCwNaw+g0BgTaKR+TepWewraIrt+OI+h2iGiXe4iMgA4DXjEXhasK7KFdpX5wBmR\nbEM4VAYr+Tjn45rlFdtXdHiQWoY3g4enPMyDk+5jeEEOUjeYA+xdT2jVg3yz5wseXvMw+8prp30O\nhAJk77Heyy8PlPN9wfcADEkdQpzDukM+NP3QejnVqw1IHsCiMxfx3GnPcfawsxmYMpDkuFbMOV+H\ny+mip7enFcyVUi35K/BbIAFItL//DvhLR3csIknAS8DVxphirJujQ4DRWHfwd3X0GKr7iPQz9HuB\n/wOqo1+3vCJLikvi4iMuBqxMaXMOn8Pe8r2s3rO65hW03PJcPt71MbtKd+EP1n+CUFZUSFlBPv7K\ninrlmQmZnNDjSFzfLKQxjnWvUVi4hfu+uI+5K+ZSUFkAgNvh5rQhpwHQK6EXh2UcZu3Pm8nrZ7zO\nvCnz+O+U/9LD26PBPj1OD70TepPqGMLqDWlkmCxMSF8rUyoS7G72q7ACeV0JwFX2+nYRkTisYP6M\nMeZlAGPMHmNM0BgTAuZR2+XdVLrVpsrzgDQRce1XXm9f9vpUu344j6HaIWJd7iIyHdhrjFktIhPb\nsf1lwGUAgwYNCnPr2ibeFc+0wdMY3388TnFijGHGazMoqypjYPJAHj/5cS59+1K2FG8h3hnP62e+\nTt/EvgCU5OWy8PY/ULQnh0lzfsWI8RNwe+t0T7sTwdt4ylO8aZTaz7srAhU16VnT4tO4fuz1/Pao\n3+J2umsStXhcHgYkD6gZRd+U3FIfZz/0MXtLfAC8M/dEHY2uVGT0gibyKFszz2VSvzu6VezezkeB\n9caYu+uU97WfrwOcCXxjf34deFZE7gb6AcOAT+02NEjDaowxIrIcOAdrzNNs4LU6+5oNfGyvf8+u\nH85jqHaI5DP044HT7dcm4rGeof8L+4rMvktv8orMGPMw8DBYU79GsJ2tkuxOrhkI99W+ryirsiaN\n2V6yHX/Qz5biLYDVPb+rdFdNQF/z7pvk77T+Xt999EEOyRpbP6DHxcO4q2DN8w2OGTr+d6wp/575\nEx6hZ2UCziI/PinH400gPT694YxzrRQMURPMAXYVVjCsd9u63ZVSrbKXpqeMNbQ/herxwM+Br0Xk\nS7vsJqwR5KPtfW8FfgVgjFkrIi8A67BGyF9hjAkCNJOG9XpggYj8FfgC6wIC+/tT9qC3fKwAHe5j\nqHaIWEA3xtwI3Ahg36H/3hhzgYi8SDe/IhuQNIBD0g5hU+EmJg2YhMflYebwmSzYsIDDMg6reV0N\nILVXn5rPCSmpY15YnQAAEf9JREFUiDTylCP9IDj3KXjzOijZDfGpcOL/4RgykV8FJvDxM0+yfMW7\nIMJ5t97JgBGHd6j9iR4nt/10JHe/8x1HDUrniP7df/54pbqi7OzsSnsA3O+wutmrlQP/bu9od2PM\nBzR+obCkmW1uB25vpHxJY9vZo9LHNlJeCfwsksdQ7dMpyVnqBPTpInIwVjDPwLoiu9B+zaFJXTE5\nS15FHr6gj3hXPBnxGRT5ivAFfbjERUadLvSKkmK+/WAF+7Zt5ZjTzyGtT1+s3rL9BINQvg+CfnC6\nwZsOLg9lBfk8c/M1lORZz+qPO3smx597YYfbX+YLUOYLEOd0kJ6oczko1QrtSs5ij3L/C9azdMG6\ne/43YRrlrlQ1zbbWSUwohDjaPgaxqrKSte8v439PPoo7IYHzbruTjH7NPyNXSkVEh7Kt2QPgMoF9\nHX0PXanGaEDv4vIr88krzSUkIeJd8aR50kmN1y5ypaJA06eqLk2nfu3iviv4jre2L+WcRT9j+qs/\n5ZPdn0S7SUoppbogDehdXKIrkVW7aidfenfbu1SFWj/3ulJKqQODBvQIMMa0KeFJcwYkD+C8w85D\nENwON7MOm1UzG5xSSilVTQN6mBVWFvLkuie56YOb2Fy4ucNTxKbHpzN54GSWnr2UN89+kxEZI8LU\nUqVUdyYiW0XkaztNarZdliEi74jI9/b3dLtcROTfdprSNSJydJ39zLbrfy8is+uUj7H3v9HeVjrr\nGKp9NKCH2ZrcNfwz+5+8tfUtLl56caO5ztukdC+Jn86j77rF9DIOPC6dplUpVWOSnSY1y16+AVhm\njBkGLLOXwUpdOsz+ugw7IZaIZAC3YiVLGQvcWh2g7TqX1tluWiceQ7VDZ2RbO6CUV5XXfg6U06G3\nCCqLYcn/wbpXrOXiXXDSTeDQfzalugv7PfRZwDVYs2PuAO4Gno3Ae+gzgIn25/nACqzZ2GYATxrr\nP6RVIpImIn3tuu8YY/IBROQdYJqIrABSjDGr7PInsRJpvdlJx1DtoHfoYTa271jOHnY2h/c4nIcm\nP0SqpwOvmAX9ULi1djl/IwQDTVZXSnUtdjB/BetOdDTQ0/7+EPCKvb69DPC2iKy2c18A9K4zl/tu\noDr/ck3KU1t1Yqzmync0Ut5Zx1DtoLd6YZYRn8F1x1yHP+gnxZ2C09GBv1dvOpx2Fzw3E+ISYfKt\n1tzvSqnuYhZWyuj9s60l2uWzgKfaue/xxpidItILeEdEvq270k5+EtGJRjrjGKr19A49AhLjEkmP\nT+9YMAdwOKHPj+BXK+GSpZBxcHgaqJTqLNfQMJhXSwTmtnfHxpid9ve9WL0AY4E9djc39ve9dvW2\npjbdaX/ev5xOOoZqBw3onSAYCBDw+1uu2BinC5L7QFJv0AGgSnU3Lc3T3K55nEUkUUSSqz8DU7FS\npVanNoWGKU8vskeiHwcU2d3mS4GpIpJuD1SbCiy11xWLyHH2yPOLaJg+NZLHUO2gXe4RVl5UyKqX\nF1BeVMSJF15MSs/MaDdJKdV5dmA9N29ufXv0Bl6x3/JyAc8aY94Skc+AF0TkEuAH4Fy7/hLgVGAj\nVqa3XwAYY/JF5C/AZ3a9P1cPXgN+AzwBeLEGqlUPVruzE46h2kHnco+wj158ho8XPgfAwMOP5KfX\n3IQ3SXOPK9UNtbmLLCsr6+dYA+Aa63YvA36dnZ3d3mfoStWjXe4RFgqF6n/uBhdQSqmweRZ4Dyt4\n11WG9Q73s53eIhWztMs9wo6a9lPKCguoKC7ipDmX4U1OiXaTlFKdJDs7O5iVlXUm1mj2udS+h34P\nkXkPXR3AtMu9EwT8fkKhIO54b7SbopRqPx2Vqro0vUPvBC63O9pNUEopFeP0GbpSSikVAzSgK6WU\nUjFAA7pSSnUzIjLcTpta/VUsIleLyG0isrNO+al1trnRTlO6QUROrlM+zS7bKCI31CkfIiKf2OXP\ni4jbLvfYyxvt9YPDfQzVPhrQo6CgsoAiX1G0m6GU6kRZWVlDsrKyjs/KyhrS0X0ZYzbYaVNHA2Ow\nJnKx0zJyT/U6Y8wSABEZCcwEDsdKUfqgiDhFxAk8gJX6dCRwvl0X4G/2voYCBcAldvklQIFdfo9d\nL9zHUO2gAb2TbS/ezlXvXcU1K65hd9nuaDdHKRVhWZbVwFpgMbA2KytrdVZWVlYLm7bWZGCTMeaH\nZurMABYYY3zGmC1Ys7mNtb82GmM2G2P8wAJghj0V60nAQnv7+VipTav3Nd/+vBCYbNcP5zFUO2hA\n70TFvmL+9PGf+HLfl3y6+1PuXn03/mA753hXSnV5dtBeARyNNb1pqv39aGBFmIL6TOC5OstXisga\nEXnMnjsd2p7atAdQaIwJ7Fdeb1/2+iK7fjiPodpBA3oncoqTZHfttK+p7lREE64oFcv+S/PZ1v7T\nkZ3bz5xPB160ix4CDsHKuZ4D3NWR/avuRd9D70SJ7kRuPu5menh74HV6mXPEHOIccdFullIqAuxn\n5SNaqDYyKytrSHZ29pZ2HuYU4HNjzB6A6u8AIjIPWGQvNpXClCbK84A0EXHZd9B161fva4eIuLB6\nHfLCfAzVDnqH3sl6enty09ibmJs1lx7eHtFujlIqcvoBLT1T89v12ut86nS3V+cpt52JlVIVrNSm\nM+0R6kOAYcCnWBnQhtmjzd1Y3fevG2sK0eXAOfb2+6dJrU6feg7wnl0/nMdQ7aB36FHgcOh1lFIH\ngF1AS69hue16bWbnQZ8C/KpO8d9FZDRggK3V64wxa0XkBWAdEACuMMYE7f1ciZWz3Ak8ZoxZa+/r\nemCBiPwV+AJ41C5/FHhKRDYC+VgBOtzHUO2gc7krpVTrtCd96mqsAXBNWZ2dnR2u0e7qAKe3ikop\nFTm/omHq1GplwOWd2BYV4zSgR0BVqApfwBftZiiloizb6lqcCKwGKrBe8aqwlydma9ejCiN9hh5m\neRV5/Oer/5Bfmc/VY65mYPLAljeqK+CHinxAIKkX6GttSnVrdtDOske99wN2dWBUu1JN0oAeRoFQ\ngP+u+S8LNiwAYFPRJh6d+mjrR7MHg7AzG549D+JTYPYbkHFwk9WNMfoeu1LdhB3ENZCriNEu9zAK\nmRD5lfk1y4WVhYRMqPU7qCyEpTeDrxiKdsCH/4ZGBi1WllXx7cc5rHhmA4V7yjGhrj+wUSmlVGRp\nQA8jt9PN3DFzGZo2lJ7envxjwj9I86S1fgdx8dD3R7XLA8Y22uWet7OUZfPXs+6DXbz8z9VUlOj0\nsUopdaDTLvcw65/Un0emPkLIhEjzpBHnbMNMcO5EOOkWGPoT8KZBr8MbrVZZWlXz2VcRQO/PlVJK\nRSygi0g88D7gsY+z0Bhzqz2D0AKsiflXAz+3M/DEjA7NAJfYE0ZMb7ZKv2FpDBvbm9xtJYw7eyge\nr16XKaXUgS6SkcAHnGSMKRWROOADEXkTuAYr/+0CEfkPVv7bhyLYjpjjTXYz4fzhBKtCeLxOnHHO\naDdJKaVUlEXsGbqxlNqLcfaXQfPfhoXH6yIhxa3BXCmlFBDhQXEi4hSRL4G9wDvAJjT/rVJKKRV2\nEQ3oxpigMWY0Vlq8scBhrd1WRC4TkWwRyd63b1/E2qiUUkrFgk55bc0YU4iVJu/H2Plv7VVN5r81\nxjxsjMkyxmRlZmZ2RjOVUkqpbitiAV1EMkUkzf7sxUrztx7Nf6uUUkqFXSRHufcF5ouIE+vC4QVj\nzCIRWYfmv1VKKaXCKmIB3RizBjiqkfLNWM/TlVJKKRUmOvWrUkopFQM0oCullFIxQAO6UkopFQM0\noCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6Ukop\nFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6\nUkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIx\nQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCul\nlFIxIGIBXUQGishyEVknImtF5Hd2eYaIvCMi39vf0yPVBqWUUupAEck79ABwrTFmJHAccIWIjARu\nAJYZY4YBy+xlpZRSSnVAxAK6MSbHGPO5/bkEWA/0B2YA8+1q84EzItUGpZRS6kDRKc/QRWQwcBTw\nCdDbGJNjr9oN9O6MNiillFKxzBXpA4hIEvAScLUxplhEatYZY4yImCa2uwy4zF4sFZENLRwqFShq\nY/Nas01zdZpat395Y/Xqlu2/vieQ20K72qorn5/GyppbjsT5aapd4djmQD5Hra3f1nMUjfPzljFm\nWhu3UarzGGMi9gXEAUuBa+qUbQD62p/7AhvCdKyHI7FNc3WaWrd/eWP16pY1Uj87Av8WXfb8tOac\n7Xe+wn5+9BxF5hy1tn5bz1FXPT/6pV/R/IrkKHcBHgXWG2PurrPqdWC2/Xk28FqYDvlGhLZprk5T\n6/Yvb6zeGy2sD7eufH4aK2vNOQw3PUcta+sxWlu/reeoq54fpaJGjGm0x7vjOxYZD6wEvgZCdvFN\nWM/RXwAGAT8A5xpj8iPSiG5KRLKNMVnRbkdXpeenZXqOmqfnR8WiiD1DN8Z8AEgTqydH6rgx4uFo\nN6CL0/PTMj1HzdPzo2JOxO7QlVJKKdV5dOpXpZRSKgZoQFdKKaVigAZ0pZRSKgZoQO/iRGSEiPxH\nRBaKyK+j3Z6uSkQSRSRbRKZHuy1dkYhMFJGV9u/SxGi3p6sREYeI3C4i94nI7Ja3UKrr0YAeBSLy\nmIjsFZFv9iufJiIbRGSjiNwAYIxZb4y5HDgXOD4a7Y2Gtpwj2/VYr0MeMNp4jgxQCsQDOzq7rdHQ\nxvMzAxgAVHGAnB8VezSgR8cTQL0pJEXECTwAnAKMBM63s9MhIqcDi4ElndvMqHqCVp4jEZkCrAP2\ndnYjo+wJWv97tNIYcwrWhc+fOrmd0fIErT8/w4GPjDHXANoTprolDehRYIx5H9h/Mp2xwEZjzGZj\njB9YgHXXgDHmdfs/4ws6t6XR08ZzNBErRe8s4FIROSB+r9tyjowx1ZM7FQCeTmxm1LTxd2gH1rkB\nCHZeK5UKn4gnZ1Gt1h/YXmd5B3Cs/bzzLKz/hA+kO/TGNHqOjDFXAojIHCC3TvA6EDX1e3QWcDKQ\nBtwfjYZ1EY2eH+BfwH0icgLwfjQaplRHaUDv4owxK4AVUW5Gt2CMeSLabeiqjDEvAy9Hux1dlTGm\nHLgk2u1QqiMOiK7JbmInMLDO8gC7TNXSc9QyPUfN0/OjYpYG9K7jM2CYiAwRETcwEysznaql56hl\neo6ap+dHxSwN6FEgIs8BHwPDRWSHiFxijAkAV2Llj18PvGCMWRvNdkaTnqOW6Tlqnp4fdaDR5CxK\nKaVUDNA7dKWUUioGaEBXSimlYoAGdKWUUioGaEBXSimlYoAGdKWUUioGaEBXSimlYoAGdNXlichH\n0W6DUkp1dfoeulJKKRUD9A5ddXkiUmp/nygiK0RkoYh8KyLPiIjY644RkY9E5CsR+VREkkUkXkQe\nF5GvReQLEZlk150jIq+KyDsislVErhSRa+w6q0Qkw653iIi8JSKrRWSliBwWvbOglFLN02xrqrs5\nCjgc2AV8CBwvIp8CzwPnGWM+E5EUoAL4HWCMMUfawfhtETnU3s8R9r7igY3A9caYo0TkHuAi4F7g\nYeByY8z3InIs8CBwUqf9pEop1QYa0FV386kxZgeAiHwJDAaKgBxjzGcAxphie/144D677FsR+QGo\nDujLjTElQImIFAFv2OVfA6NEJAkYB7xodwKAlZNeKaW6JA3oqrvx1fkcpP2/w3X3E6qzHLL36QAK\njTGj27l/pZTqVPoMXcWCDUBfETkGwH5+7gJWAhfYZYcCg+y6LbLv8reIyM/s7UVEfhSJxiulVDho\nQFfdnjHGD5wH3CciXwHvYD0bfxBwiMjXWM/Y5xhjfE3vqYELgEvsfa4FZoS35UopFT762ppSSikV\nA/QOXSmllIoBGtCVUkqpGKABXSmllIoBGtCVUkqpGKABXSmllIoBGtCVUkqpGKABXSmllIoBGtCV\nUkqpGPD/AVpeh4x0Xu7DAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VeX9wPHP9+6R5GaShCVDhsiq\n4kAc4BatA/05W7UqVm3RLqu1zmotjmq1jrq1Wq1bceKuW4bgYo8wwshe9+bu5/fHuWSQEALkAobv\n+/Xildxzn3POcwLhe89zvs/zFWMMSimllPpxs+3oDiillFJq22lAV0oppboBDehKKaVUN6ABXSml\nlOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQMa0NWPioj8WkRmiUhERB7f6L0LRGSJiDSIyNsi0rPF\ne2+ltm/4ExWR71q8P1pEPhGRWhFZLSLXbMfLUkqpbaYBXf3YrAFuAh5tuVFExgM3AycAucBy4JkN\n7xtjjjHGZGz4A3wOPN/iEE8DH6f2PQS4RESOT+N1KKVUl9KArn5UjDEvGWNeASo3eus44HljzA/G\nmChwI3CwiAzc+Bgi0g84CPh3i839gP8YYxLGmKXAp8CeXX8FSimVHhrQVXci7Xw/vJ12ZwOfGGNK\nWmz7B3C2iDhFZAgwFngvLb1USqk00ICuuou3gVNFZKSIeIFrAQP42ml7NvD4RtteB04BGoEFwCPG\nmJnp665SSnUtDeiqWzDGvAdcB7wIlKT+1AOrW7YTkQOBIuCFFttysT4Q/AXwAH2Ao0Tkku3QdaWU\n6hIa0FW3YYy51xgzyBhTiBXYHcD3GzU7B3jJGNPQYtsAIGGM+bcxJm6MWQ38F5i4XTqulFJdQAO6\n+lEREYeIeAA7YBcRz4ZtIjJcLH2BB4G7jDHVLfb1AqfSdrh9kfW2nCkiNhEpAk4Dvt0uF6WUUl1A\nA7r6sbka6zn3lcDPUt9fjTVU/jTQAMwAvgA2nkt+IlADfNhyozGmDpgE/BaoBuZi3dnflK6LUEqp\nribGmB3dB6WUUkptI71DV0oppbqBtAZ0EblMRL4XkR9E5Depbbki8q6ILE59zUlnH5RSSqldQdoC\nuogMByYD+wKjgONEZHesZ5/vG2MGAe+nXiullFJqG6TzDn0P4CtjTMgYEwf+h5V4dALwRKrNE1iJ\nSkoppZTaBukM6N8DB4lInoj4sOb09gEKjTFrU23WAYVp7INSSim1S3Ck68DGmPkicgvwDhDEmgqU\n2KiNEZF20+xF5ELgQoBhw4bt/cMPP6Srq0op1Rmy+SZK7ThpTYozxjxijNnbGHMw1vzeRcB6ESkG\nSH0t28S+Dxpjxhhjxni93nR2UymllPrRS3eWe4/U175Yz8+fBqZhLb9J6uur6eyDUkoptStI25B7\nyosikgfEgF8ZY2pEZCrwnIicD6zAWopTKaWUUtsgrQHdGHNQO9sqgcPSeV6llFJqV6MrxSmllFLd\ngAZ0pZRSqhvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehKKaVUN6ABXSmllOoGNKAr\npZRS3YAGdKWUUqob0ICulFJKdQMa0JVSSqluQAO6Ukop1Q1oQFdKKaW6AQ3oSimlVDegAV0ppZTq\nBjSgK6WUUt2ABnSllFKqG9CArpRSSnUDGtCVUkqpbkADulJKKdUNaEBXSimlugEN6EoppVQ3oAFd\nKaWU6gY0oCullFLdgAZ0pZRSqhvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehKKaVU\nN6ABXSmllOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQNpDegi8lsR+UFEvheRZ0TEIyL9ReQrEVki\nIs+KiCudfVBKKaV2BWkL6CLSC7gUGGOMGQ7YgdOBW4A7jTG7A9XA+enqg1JKKbWrSPeQuwPwiogD\n8AFrgUOBF1LvPwGcmOY+KKWUUt1e2gK6MaYUuB1YiRXIa4HZQI0xJp5qthrola4+KKWUUruKdA65\n5wAnAP2BnoAfOHoL9r9QRGaJyKzy8vI09VIppZTqHtI55H44sNwYU26MiQEvAeOA7NQQPEBvoLS9\nnY0xDxpjxhhjxhQUFKSxm0oppdSPXzoD+kpgfxHxiYgAhwHzgA+BU1JtzgFeTWMflFJKqV1COp+h\nf4WV/PY18F3qXA8CVwC/E5ElQB7wSLr6oJRSSu0qxBizo/uwWWPGjDGzZs3a0d1QapMSDQ2YcBhb\nZiY2t3tHd0elh+zoDijVEV0pTqltFK+qYv1fb2bFz35Ow4cfkgyFdnSXlFK7IA3oSm2jyKJF1L78\nMtGSEkp//wcSDQ07uktKqV2QBnSltpE9N7f5+5wcxKa/Vkqp7c+x+SZKqY44i4vp88jDhGbOJHvS\nJOx5eTu6S0qpXZAGdKW2kT0zk4xx48gYN25Hd0UptQvTsUGllFKqG9CArpRSSnUDGtDVLskkEju6\nC0op1aX0GbrapRhjiK5YQeUDD+IZNoysnx6HIzu7Tbt4RQXJSASb14ujRRa7UkrtrDSgq11KoqKS\nleecS3z9empffhlnz55kHnZoqzbxigpW/uI8IosX4xs3jl633oJDM9eVUjs5HXJXuxSDIVFf3/S6\nvUVg4pWVRBYvBiD02WckGxu3W/+UUmpraUBXuxR7IECf++7Ftfvu5P/1JpJjfsKiLz+jvrKCRCIO\ngCM3t2kueeaxxyI2G/Gamh3ZbaWU2iwtzqJ2OSYWIxEMsm7tap694U9gDE6Pl3P/fh9Z+QWYZJJE\nZSWJ+npMJMKaP16BPTubnrffjrOwR9Nx4tXVNM6eDXY73tGjceTktDpPvKoKk0hgz8zE5vFs78tU\nXU+Ls6idmt6hq12OOJ3g8zHn7dcg9YE2Fm6k5JuvrfdtNhwFBdiyslhzxZVEFi8mNHMmlQ89yIYP\nwMlIhMqHH2b1r6ew+uJLqHnmv5h4vOkcsfXrWTV5Mst/ejzBL78kGYls/wtVSu1SNKCrXZLd4aDX\n0OGttvXoN6B1o3gce4u7bntOLiLWTZqJRgnPm9/0XuP332NisabXtdNeI/zDPBI1Naz989Uk6urS\ncBVKKdVMs9zVLklsNoaOO5h4NMLK7+Yy8vCjyS4sbt3G5aLHHy+n9sWXsOdkk3nkEYSjCTwuO7aM\nDHr8/vesuuACsNko+M1l2Lzepn3dA/o3fe/q0wex66+aUiq99Bm62uXE1q+n5rnncBQXk3HkESTs\nDjx+f7tto6Wl1H/4IRLIxr33GBpjCbwFefh9Hkw8TqK6GoOVSCd2e9N+iZoaQnPmEl2xgqyJE3H2\nKNhOV6fSSJ+hq52a3jaoXUq8spJVkycTWWRNSyuoqCTvwslt2iXq6zHhMPacHKrHH01OeSmrJh6D\n2O30eeop2GMo4nDgKGg/UNuzs8mcMD6dl6KUUq3oM3TVrcQSSToadTLJJNHlJU2vwwsWtEpmAys7\nff1tt7H8tNOpfOBBiu1xav9yAyYcJhkMUv34Y7p0rFJqp6MBXXULxhiWVwT5w/Pf8ODHy6htCFFf\nVUFdeRnRxkbiFZXEKyutZ9+X/wEAW0YG+RdfhM3lAqxpaNGVK0nWN5CsrSO+Zg2VDzyArboKz9gD\nms7lP2Bcq+F1pZTaGeiQu9ppJJOG1TWNvPPDOvYbkMfAfD8+d+f+iVY0RDjjwS9ZVxdm8foGjuoR\n4ZWbriLQo4hTL/4d63//BxCh9z33EDj5ZDKPPBJcLmocPurqwmQRo/Jvf6Nu2muIy0Xvu+8mtmoV\n4XnzQIQek88nMP5gbFlZBIv7MmN5FQ2ROMN7ZdEjU+eYK6V2PA3oaqdR0RDhpHs/ozIYxW4TPvrD\n+E4HdGMgGLGGzkf2ymL+B9NJxOMM2Wtfqu64s2kp17LbbqPnbbfiLCpiaVkDZ9z/KeFYgsfPHUP2\nmrXWsaJRal5+Cf+E8bj33x9bfj6OnBwc++5LVTDCb/87l08WVwBQHPDw6q/G0SNLg7pSasfSIXe1\n0zDG8LdJI/j7qaPok+OloqHzi7Fk+5w8cu4YhhVnURjwMPiAg0CEcGMIR+9eTe2cu/VFHA5iiSR3\nvb+YsvoIdeE4f31rIfbjTmxq59pjGBx2KL7T/69VtbX6cLwpmAOsrQ3zxdLKbbxypZTadnqHrnYK\n0XiCJeVBrnzpO4qyPNz/s70pzHJ3en+Xw85efXN48vx9cTlsuE2MC+5+iGQiid/hwtlvIDaHjcwj\njrCy041hVJ9spn2zBoBhhX4Ch0wgsM9rSDCEr6iImMeNMxLFVFVhUtPSbNJ25pLbqZ+L1Y+PiBwP\nDDPGTN3RfVFdQwO62inUNsb400vfURWMUhWMMv37dfzmiMFbdpDqarKSCWxeH/bMDFxeH431Uabd\n9y0O11AwhnFBJwV5ICJM+kkvBub7CDVGGdMni2m3XE35iuWMOvQoDjj5dOzryyk5/zxMPEHfp57E\nkZOD3+HmxNE9eWWu9UFgcGEGe++m9dLVjiXWEoZijEl2dh9jzDRgWvp6pbY3Dehqp+C02xhQ4Gdl\nVQiAIUWZW7R/rKyMleecQ7RkBYVXXknglJOx+/0kk4bylfUkE9ZUtsrSBgr6WsfO8bs4sIeT+k+/\noioYoHzFcgC++WA6+518GpV//zvxsnKyTzuVyMJFVH3+Oc5evbjmtLOYcuggwvEEhZke8jM7P5Kg\nVFcRkX7AdOArYG/gVhG5CHADS4FfGGMaRGQicAcQBD4DBhhjjhORc4Exxphfp471KJAPlKf2XSki\njwN1wBigCPijMeaF7XWNasvoWKHaJuX1EUqrG6ncgufd7cn2ubj9/0bxt0kjeOK8fRg7MG+L9g99\n+ZU1v9wYym6/nWTI+mDgdNsZd/LuiEBOkY8+e2x0N22z0zh7Nrm79cPudAKQ32c3bHYHroEDrb6d\nfDKJ3GzK9x7Jul49cKxdQf9cD3v2DLQK5om6OqKlpcTWl5Fssa67Umk0CLgPOAQ4HzjcGLMXMAv4\nnYh4gAeAY4wxewObWrLwn8ATxpiRwH+Au1u8VwwcCBwH6PD8Tkzv0NVWK6+PcO5jM/hhTR2HDC7g\njlNHkZex9Xer+Rluzti37xbvVx2M4B48GGw2SCbxDB+OOKx/2rbGenoFv+eMX/bHNIZwJRqwbmAs\njuwAPS67jFhjiF/cfh815evJ77MbjvoG/GPHWivB5eUy582Pmfve2wDsf8Ip7D9gIDiaf32SoRA1\nL7xA2a23IT4f/Z/9L+5Bg7b6Z6FUJ60wxnwpIscBw4DPUgWEXMAXwFBgmTFmear9M8CF7RxnLDAp\n9f2TwK0t3nslNZQ/T0QK03ANqotoQFdbrSoY4Yc1VhWx/y0qJxiKEEiEcQQCnT5GKBInmkiS5XFi\ns3W8VHZjfR3rliwCoGjgILxZAcrqwpz72EzG9fLx65dfhdJV+EeOaKpNbiIR6p54hHhVNfE1a3A/\n9ijOsWNbHdeRm4uDXLxAoMgq0FL22BNUPvww3lGjcB8wlprysubrXr8OY289uJUIhqj+z9PWOUMh\n6t56iwIN6Cr9gqmvArxrjDmj5ZsiMroLztFy+E3Xs9+J6ZC72mo5Phd5fmuVtf75fmRlCXVvvImJ\nxymtaeS26Qt4+/u11ISi7e5f2RDhpjfmc8ETs5i3to5EYtP5PLFolFmvvcxLU6/npanXM+uNV4hH\no3y6pIJ5a+t4aNY6jnqxhOW7j6ba3fr5e+CEEym+/jryLrkYV79+nbo2/9j9IZGg8euvCb7+Bof8\n7Hyyi3qS26s3B55xNg6nq1V7m9dD5lFHWS8cDjImTOjUeZTqIl8C40RkdwAR8YvIYGAhMCD1jBzg\ntE3s/zlweur7s4BP0tdVlS56h662Wn6GmzcvPZA1q8vpIVEaf/trTK9eJCaewM8ensHyCuvm4ZnJ\n+zF2YH6b/f+3qJynZ6wE4LzHZ/L6lAM3uUBLPBqhdOG8ptelC+cRj0YYXNgcvIsCXpaWB5uOEa+s\nZNUvLyKycCEAuz3zNI58qx/hhnrisRgOl7vdSmuePfdkwOuvEa+owD14MPacHE6/4RYA/Nk5bdrb\nMzLIu3Ay2aecbGXZZ3d+lEKpbWWMKU8luT0jIhueKV1tjFkkIpcAb4tIEJi5iUNMAR4TkctJJcWl\nvdOqy2lAV1vNZhN6ZHnICK1n5S/OA2Mo+vNVhGw2yurCTe3W1Ybb3d/nal4P3euyI+3M8d7AmTSM\nnXQaL9/6FwD2P/YkHEnDbnk+Xp9yIHNX1bBHcRavfbOGCUN7AFYhlsiSJU3HiCxejO8nPyFUV8sH\nj/2LZbNnMvqoY9nn+FPwZra+q7dnZmLPzMS9++5N29oL5C05srNxZGd32EaprmKMKQGGt3j9AbBP\nO00/NMYMTU1tuxcrYQ5jzOPA46nvVwCHtnOOczd6ndElnVdpofXQ1TZLhsMkamoAsAcCRB0uvlxW\nybWv/sDgwkymnjyC/HaS5aqCUV6cvYp5a+q5bEJ/+mQ4sLdzt5xoaKDykUeJrF2D/6wzcOQX0PDo\nYxRMnoyzhxW868IxTCSKze3CFwuTqK0Fu5366dMpu+VWXLvtRt8nHsdZWEj5yhL+ffmvm45/wd0P\nEygsStNPR3UjP8rnxyLyW+AcrES5OcBkY0xox/ZKpYPeoXdTodoakokEDpcLT8aWzeneUjaPB1tR\nc0D0AAcMzOPFi8fistsI+Fzt7pcVDXLCd29zdHkFkUc+I3zTjfj3269Nu2QoRM1//0uiupqGV14l\nf8qvkVi8KZM9EQphmzOXmueeI+fsnxPLyiJZU4tJxPHuuy/9X36JWFkZido6HPn5ePwZ2B0OEvE4\nnoxMJBol2diIzetNy89nc0J1UeqrwvgDbryZTuyOjlNbQnURFs8qIyPbTa/BOXgynNupp+rHyBhz\nJ3Dnju6HSr+0BXQRGQI822LTAOBa4N+p7f2AEuBUY0x1uvqxK2qoruL5G6+iqnQ1e008gbEnn572\noL4xl8NOQWbHJUZNPE71Y4+TbGgAIDR3brsB3ebxkHnkkdQ8+yzicpExYQLOomIcudYQeLK2llWT\nJ0MySd7kC1h33fU0fv01zt696f3Pu6l/510q7rsPz/A96fPgg3gzszjruqms+nYOu+0xnNpbbsN7\n3bU7JKCH6qO8fs83lK+sx+m2c8Z1+5GZu+lCL+FgjPefmI/YhP4j86kpD1GUsfXP6xsbogRrIri8\nDjx+Jy6PfsZX6scqbVnuxpiFxpjRxpjRWKsYhYCXgSuB940xg4D3U69VF1o97zuqSlcD8PWbrxIN\nt/8Me0ez+f0U/OY3ADgKCggce2y77exZWRT85jIGvPkGA995B/fAgU3BHCDZ2AjJVIa8MTR+/TUA\nsdWrSdQ3EFmxAgBnn76Iy4UtmSRDHAwu7ou7pp7sSSch7h2z2lsynqR8Zb3V30iC6rXBjtsnDDmF\nPobuX8Q3769izvQVhOrbn0WwOdFwnJmvl/DsTTN56uovqCxt2KrjKKV2Dtvr4/hhwFJjzAoROQEY\nn9r+BPARcMV26scuIbdXn6bvM/PysTu2z19zfTjGt6tr+WxJBf83pg+75fo6nFtu9/kInHgCmUcc\njtjt2PM2vTqcIyenaW55m+Pk5JB96qnUvvoqJpHAPXgwkUWLsOfl4erbh8wJ4/H9ZDRZxxwDySTV\nzzyDOJzWs/kHH8S71170Gt0V03W3nN1pZ/C+hSyasZ7MPA95vTvOOXL7HYyY0Idnb5phfQBYF2K3\nERUMG9dzi88dCcVZ8b1VKc4YWPl9JcUDNalPqR+r7ZIUJyKPAl8bY+4RkRpjTHZquwDVG15viibF\nbZlIY4jqNaWsX76E/qPHkJW/qdUeu9bSsgYOu+N/AOT4nEz/zcHbXCc8kUhSGYwiYk2T21QmfKK2\nlmQ0CiLE160jWVePze8HpxPvsD0AiFdVEa+sxITDgFDyf/8HgLhc9HnkYfz7tJcgnH6NDVFikQQO\nhw1fYPMjBcHaCC9MnUVDtbXex8RLRtB/5Jb9HYfqoiyetY5kAj5/cQkur4NTrtibnKK2SYmqyY8y\nKU7tOtJ+6yYiLuB44E8bv2eMMSLS7icKEbmQ1BKFfftu+XKguzK310fRwEEUDdy+K5VVt1hAprYx\nRrKDz4rVwSixRBKf206Gu/2krmTSMH9dPec8OgOXw8ZT5+9HTmaUhEmQ6crE42j+sGAPBEiWl2Ma\nGyk59TTEbsfEYuRNnox32B7Eq6tZc+WfCH78MeLzMeDVV3AUF+M46RSSx/yUEo+f4mCUXH/7CXxb\nIlQfxSQNTpcdl3fzv2LeDBfeLZgM5MtyceLvfsLX01dS0DeTogFb/gx99YIqPn1uCWMm9mPSH/Yi\nI9eDP7Dt1666FxH53BhzwI7uh+qc7bFS3DFYd+frU6/Xi0gxQOprWXs7GWMeNMaMMcaMKSjYPneY\nqvNMPE6srIzYunUkUoVQBhRkcOa+femf7+fO00aTuYkEq8qGCL99bi6H3PYRT325krrG9guZ1Efi\n/PWN+VQGo6ytDfP3dxfy+PdPceSLRzJz3Uxiieb94uXlrDj9DOrff5+siRMxsRjicpE18Rirv7EY\nwY8/tr4PhWj89lv6PftflhzyUw575FuOvfcL7vlgMQ3hbSuqEqyNMO0fc3nymi9Y8MVaIo3xbTpe\ne0SEQIGP8WcOYfjBvfBmbD4Qx2MxqtetYd4nH1JXXkZ2oZUAOOvNEj58agF2h2Cz68KRyiIiDgAN\n5j8u2+Ph6hlYBQE2mIY1J3Jq6uur26EPaisk6utJ1NVZz7cDAULiJBSL43c5sJcsY8WZZ5JsbKTn\nrbeQeeSR5PpdXDVxKOF4kgy3A4+z/Sz3peVBPlpYDsBd7y3m1DG9223nctgYUpjBF8us57zDijPI\ncmcRT8b555x/MixrMHlZVq2IZCRCrLSU8n/cRfFNN5J/0S+xZWZiTy30Ik4n/gkTCH74ITa/D+/I\nkUh+Pm988G3T+d6Zt56Lxg8kw7P108DKVtSx1+m7EzRJ/C4HiXiCdP2ayWbWvm8pXF/Hvy+fQjwa\nwZsV4OdT72bixSMoX9XAHgcU48vSErDp1O/KN84Ebgb6AiuBq0qmHvv0thxTRF4B+mDNFL3LGPOg\niDQA9wMTgbXAVViFVvoCvzHGTBMRO9b/v+OxKhXda4x5QETGAzcC1VhFXQaLSMOGxWRE5ArgZ0AS\neMsYc6WITMYaSXUBS4Cf6xz3HSetAV1E/MARwC9bbJ4KPCci5wMrgFPT2Qe1dZLRKPVvT2ftNdeA\nw0HB9Pd47PtqXp27htP26cMp3jqSQSsju/KBB/GPHYstL48Mj5PNjR4XBdzYbYLfZefxX+zLMzNW\n4nM5OGF0T3L9zYHF67Qz5ZD+7N0rEydJRpoakos9RIdcSEWsBkdFDaQCuvh8ZBx9NA1vv03lE0/S\n8957cPZoHtlx5OTQ8683kaitxeb348jJQWw2ztq/L298t4ZYwnDWfn3JcG3br4Snt58LH5/J4rIG\nCrPcTPvVgfi26YhdIxxsIB61nrk31tWSTMTpP6qQ/qN09CvdUsH8IWj6p7Ab8FC/K99gG4P6ecaY\nKhHxAjNF5EXAD3xgjLlcRF4GbsL6P3gYVhLyNKwyq7XGmH1Sy8R+JiLvpI65FzC8RXU2AETkGOAE\nYD9jTEhENtQhfskY81CqzU2pY/9zG65JbYO0BnRjTBDI22hbJVbWu9qJJYNBqp9NLSMQj1MbTXLv\nh0sB+Ps7izj+suaRuMyjjyZq9xGpiRAXQ8QG7g4WlLHWgD+I+nCMJ74o4dW5awBYVxfm8iOH4Ggx\n9JvtEibE1lB2y63ULlwIxnDG229QW7qM5JwfYMAQAGocPuafdhG7XziFtaEEb/1Qw696tA5Wjtxc\nHLmt66EP75nFx3+cQDxhyPI68bm37VciZgyLy6zpX+vrItQ0xigMbFtiYFfwZWWz+z5jWfb1TEYd\ncQwu787wMWOXcTO0+VznS23floB+qYiclPq+D1Zt9Cjwdmrbd0DEGBMTke+w1v4AOBIYKSKnpF4H\nWuw7Y+NgnnI48NiGu29jTFVq+/BUIM8GMoDp23A9ahvpKhKqXTafj6zjjiX8/ffWtLDcLEb1zuab\n1TV4nDbcXjdFb75JMhQk2Wsg0/75LZWlQYYf1puVhQ7mVQT541FDyPG7aIzFqQ3FEIQcvxOfy8GQ\nokzqQxHG9PKzYG0mC9fXs6IyRCJpoL4GsdmwZ2Vh9/lIlJcTWbCgqW9SVUPssWfpMfVvTdsM8Kf3\nVlIZtBLzLjuscwmBXpcD7zbelbfkdzvYf0AuXy6rYlCPjC5JsusKvkCAI385hWQigd3pxOPXJbm3\no01l9W51tm9qePxwYGzqjvkjrKH3mGmeupQkVfrUGJPc8FwcK1t/ijFmejvH7HghhLYeB040xnyT\nKg4zfkuvRXUdDejdTCKWoLE+RkNNhKx8L76srQsoNrebwEknkXnkkZS7s/jv12v47RGDsItQkOUm\nN8ONK7s/AMu/raCy1Pp/4Pv3VzPh8tFc8+Z8LjpkAFkeBzOXV3Pe4zNx2IUnfrEvg4sy8cQb+eat\naWSuWM69J5zBPV9ncPnRQ5G1pay+8k/YfF6Kb74ZZ48e+MeNwzduHI1ff032Kafg7N2bXrff1qoQ\nSl6Gm6cu2I+/vDaPvrk+fj52t23/YW6FvAw395y5F43RBB6nnYLMnefZtDcza0d3YVe1EmuYvb3t\nWyuANeU3JCJDgf23YN/pwMUi8kHq7n0wULqZfd4FrhWR/2wYck/dpWcCa0XEiVV2dXPHUWmkAb2b\nCdZGefqGr0jEkhQOyOLYi0fizdy6oO4IBCi3efjZA180lUJ95VfjGFrUOjDkFPoQsRYnycr3UB+N\nk+WxkuIaognu+2gJ8aQhnjT8+4sVHDeymL7VC/jqJWtIf+2SRdzwt7vIkCir/3x100pv5Xf/k+Lr\nr8ORl0evv98OsRjidmPPahuY7DZhaFEm//r53rjs0qV33VuqvUI0apd2Fa2foYO1cuZV23DMt4GL\nRGQ+Vs3zL7dg34exht+/Tq0FUg6c2NEOxpi3RWQ0MEtEosCbWP2/BvgqdYyvsAK82kE0oHczlWuC\nJGLWMqjrl9WR7GgyeCcYDGv3M/l5AAAgAElEQVRrG5ter61tZHSf1usA+bNdnH7NvpSvaqBw9wCf\nra7mtSkHku93kTAwYUgPvlxmPXLbb0Au89bW0dMWado/Ho1itwnY7dgymoeC7YEA2Kzn6Z0pSyoi\nBLytM9RjiQT14Tgepx1fKshH4wmqgjEECETqcQjYAgFsrp1jeFx1LyVTj32635VvQBdmuRtjIlhT\ngjeW0aLN9Rvtk5H6msQKxht/oPgo9afNPqnvp2IlNbd8/36srHq1E9Dyqd1MsCbCi7fNpr4yzJ6H\n9GL/4wfg8XcwDathPVSvgEBv8BeAvXXbxlicTxdXcP20eQwrzmLqySPI28I70JpQlFXVIUKRBHNW\n1mC3wRkj8/j0mcepXL2SCedMpnDAIOwOB7Hyciruvx97Ria555yNo4PlYDenMRbni6VV3PnuIsYO\nyOOi8QPJ9btYuK6ea175ln/sk0nj1VeSqK4m/7JLCRx3HPZMvcFQm6Qrxamdmgb0bihUGyGRsFYq\n67C0ZsN6eGwiVC4BdyZc8qUV2DcSiSeoDcVwOWxkbyJzfXOi8QQ1wRjRZJIsj5Msr5NouJF4NIrH\nn4HN3jxn3SSTILLJZV47a31dmHFTPyCeGqV4/qKx7NMvl7vfX8wof5Je111GLFW4BWDg++/h6tVr\nm86pujUN6GqnpkPu3VBn1gMHIBa2gjlApB4qFrcb0N0OOz2yrIDbUF3F4q8+J693H3r0G4gno3PZ\n0i6HnR6B1gvNuDxeXJ7WJUuDkTjhWIJMjwOXo+Pyq5sjgM9lpy5srdaWkZqSdvgehSQqKkhUVLRq\nnwzpehhKqR8vXetxV+byQd/UfPKsntBjjw6bh+pqefX2m/jgsX/x/I1/pnxle9NVt15VMMLUtxZw\n1sNf8cGCMkLRbVs2Nc/v4vmLDuDUMb2558yf0DPbmg8+oMBPn74F5P7qV01tPaNGtZmjrpRSPyZ6\nh74r8xfAqf+GaAM4vZBZ1GHzZCJB7fp1Ta+r166hz7ARm2wfqqslFg5jdzrJyNl8sJy/tp4nv7SG\nwH/19Bw+u+LQpkS2rWG32xhSlMnUSSNblXH1OO14sjNJnDyJwOGHkWxsxJGfv03P65VSakfTgL4L\nSCTiRBsbcXo8OBwbPVPPKAA2v/xnLBJBRDjqost458F/ktOzFwP33neT7UN1tUz/110smz2DjJw8\nzrjp9s2Wcc1ssUqb12lnc0uVV9RHmLu6hsJMN31z/QR87ecLbKomuz0QsDLplVKqG9CA3s1FG0Ms\nmzOLudPfYOiBhzD0gIO3eJWwSCjIwi8/oyAnj5zySk675Pe4e/bEn53T8XlnzwCgobqS5XNnMepw\na5ZNOBQjHklgs0uroiB983zcceooPl1SweSDBnS4ylpFfYSzH53BvLV1ANx2ykgm7dXbmv6mlFK7\nIA3o3Vw42MAbd98GxlC64Af6jfjJlgf0YJAlMz6nR04x6+/8BwDuIUPo++gjmxymdrhceDIyCTfU\nA9BjtwHWsUIxvnl/FbPeKCEzz2PV4s6xnm1n+1xM2qs3x4/uicPWcXpHJJ5sCuYAb3y7lmNGFDXV\nVjfGgDHIZo6j1K4qtdRr1Bjzeer148DrxpgX0nCuh4E7jDHzuvrYqpkG9G5OxIbNZiOZSIBIq+lh\nW8LpdpOsqmp6naiutqaXbYIvkM1ZN9/B4hlfULz7EHJ7Wdnz8ViS2W9Zz8nrK8OULq5hyL6tn91v\nCOaJ2lqw2dqdG+522hhcmMGi9VYhlPMO7E91MMbCdQ3slu2G5/5DbPVq8i++GGdRx7kBSqXd9YE2\n5VO5vnabyqd2gfFAA/B5uk9kjLkg3edQGtC7PU9GJqdc/Ve+ffdNhh44vtPTzFpy+zMYtM9YfAVF\nxObPJ7a+jJ5/u7nD1dtsNjvZhcXs89NJG20XigZksXZJLWITCvq0v5BLtLSUtVdfg83lougvN+As\nLCQYiROMxPG57eSn1m6fVVJNn1wvTpuNCbd/RDxpOHRwPtcF8gn9/Q7CCxbS5/77NINd7ThWMG9T\nPpXrA2xtUE+Vpn4O6A3YseqYVwC3Y/2/PhO42BgTEZESYIwxpkJExqTanAtcBCRE5GfAlNShDxaR\n3wFFwB83dbcuIhnAq0AO4ASuNsa82l6/jDHPporH/MEYM0tE7gf2AbzAC8aY67bmZ6Da0oDezTnd\nbvoMG07PwUOwb5wQ10lun4/d9z2AaGOI4jvuwIaVUCbOzh0vEgpRWbqSNQsXMGT/cRx94QiCtRF8\nWS5c3rb/BBN1day75lpCX3wBQPk//oH7quu45e2FvL+gjAlDevCniUPpkelh4ohiAJ6dubJpAZkv\nS6qRY/sBkKytJRGNY08aRJ+vqx0jHeVTjwbWGGOOBRCRAPA9cJgxZpGI/Bu4GPhHezsbY0pE5F9A\ngzHm9tQxzgeKgQOBoVi10zc1/B4GTjLG1IlIPvCliEzbRL829udUHXc78L6IjDTGfLs1PwTVmj5g\n3EVsbTDfwOFy4Qtk48rPx5Gfv9lgHolHCMasgi7B6kqeueZy/vfkwzx9zeWETIyP1tfw0MwVVIdj\nbXe22RBv84Iz7iFD+WBhOc/NXk1lMMoLX6/m3XnrW+1y0KACClMJdpeMH4ht+VJc/ftT8NepzPxf\nFetX1JGIb/oRgVJp1OXlU7FqnR8hIreIyEFYxVaWG2MWpd5/Ajh4K477ijEmmXrWXdhBOwFuFpFv\ngfeAXqn2rfpljKltZ99TReRrYA6wJzBsK/qp2qF36GqbxCJh7E4XthbJZ5WNldwz5x7KG8u5ct8r\nsYWCVoKa2DjynAt5f0E5V7z8AwAzlldx31l7tVpS1p6RQdF111KenY3N4yF70kmsndk6gK+tDbd6\n3TPby+tTDiKeSOJ3O/CF86kdvR8fvL6e0iWV/PDZOn5241j8nV1FT6mu0+XlU1N34XsBE4GbgA86\naB6n+ebNs5lDR1p839GQ1llY8133TpVgLQE8G/dLRN43xvyl6YAi/YE/APsYY6pTiXib65PqJA3o\nOwljDKHaGoK1NYQb6skuLMbl9W5xRvr2Eo9GWbdsMbNee4niQUMZcehReDIywRjeXPYmLyy2Rupq\nIjXcedAd7L7vARQUFpNTVcOquL/pOOvrwsQSbe+cnT16UHTD9QggDgen7O3k31+UUNEQJc/v4rR9\n+rTZp1XtcW8OSz+tpnSJlQmfiBt+DHULVLfU5eVTRaQnUGWMeUpEaoBfA/1EZHdjzBLg58D/Us1L\ngL2Bt4CTWxymHmhbi7hzAkBZKphPIPWBpZ1+bZwMlwUEgVoRKcSqGPfRVvZBbUQD+g5Q0VjB9JLp\nFPmK2Ltwb7JcmVSvKeWlqTdQV566ExVhz4MO5eCfn4cva+db/KSxoZ4XbvwziXickrmzGbz/YXzz\nwTIaqiMceeyxPJP5DKvqV2EXO06niyN/OQVbfQNrplzK6Tfdwqx1uZTVRbjz1NHkbqLgi83R/M+z\nKMvDm5cdREM4Tobb0WHN8XAwSiySZNiBPQnWR1n5XSUH/LQPsTkziY8ejiNn0/Pnlepy19c+zfUB\n6Nos9xHAbSKSBGJYz8sDwPMisiEp7l+ptjcAj4jIjbQOnq8BL4jICTQnxXXWf4DXROQ7YBawoIN+\nNTHGfCMic1LtVwGfbeF5VQe02tp2Vhup5Y8f/5HP11gzRW4/+HYOzhvLY7+7iMb6ulZtAz0KOe43\nV+LNzMLpduMLbL4m+JZIJhKIzbZVVc1qy9bx8BTrw/fAMfvRa88zmTHNmo5WNCCLfqc5eabkSX6/\n9+8pzrAS1xKhEHVvvEHty6/AiafgHTeO/KJ87PauS+UIB2PMeG053320Gl+Wi5Mv34v40sUEX3ia\nhtenUXT9deScfnqXnU/tUjSrUu3U9A59O4slY5Q2lDa9LqkrYXikT5tgbnc4mDjlct669w6qSldR\nPGgoJ15+dZcF9bqKMj5//mmyi3oy6rCj8G7hKIDb52fMTycx+/VXyC7qSTza/MEwFkkyNGcIf+39\nV9z25jvpmqSdLwYfQMFfxjMox02230UkkWTpunr+t6icI4cVslueb5uqrCXiSb77aDUAobooK+dX\nkfPGMzS8Ps16Pxjc6mMrpdTOTAP6dpbtzubGcTfyx4//SKGvkJMGncTSt9rms2QX9aSsZBlVpasA\nWLt4ATXr13VJQA/V1fLaHVNZt9RKiPVnBRhx2FFbdAxPRib7nXQqex97Yiohzkvt+kZCdVEm/Gwo\nvkx3qzv/usYYV7/yPW99bxV3ue+snzBxRE+qaxo58d7PiCcN93ywhA//MJ6iwNYHdJtNKOibSfnK\nekSgqH+AzF9dQnzdWhxFxWSfeOJWH1upXY2IjACe3GhzxBiz347oj+qYBvTtzGFzMCJvBM9MfAa7\nzU6OJ4eaXm0TvMLBBgI9mmeNiNjwd7CQy5YwxhCLNiezRsONndovXl2NCYcRlwtHXp6VsNec38ah\nZ+9BMpHEk9H2mXgknmR+i6Va56ysYeKInlQFo03zxxtjCRpjia28Kos308Vxvx5JxaoGsvK9+AMu\nnJ5Met99Nzid2H0bTwdWSm2KMeY7YPSO7ofqHJ2HvgM47A7yffnkeKzkrF5D9sCb2TrZNFhdxbol\nC5l46eUMO/hQTrn6RryZXZMc58sK8NPfXEmfPUcw7ODD2OPA8cSTccoby6lorCCRbBtU41VVrL3m\nWpZMOJSVF0wmXlHRpo3L62g3mAMEvA6uPW4YboeNngEPZ4/tB0BxwMOhQ3tgE5i0Vy8C3tbz2xN1\ndcTKy0nU12/B9bnpu2ce2YU+nB7rM6s9ENBgrpTq1jQpbidgkkmq1qzm5VtuoLbMynIXsTHskEMZ\nf/YFuLy+VvO8u0q4oQGbw47T7WFB1QIueOcCRIRHjnyEIblDWrWNrl7N0sOPaHrd78UX8O655xad\nrzEapz4cR0RaTTGz7tKTuOy2VvPR49XVlN1xBw3vf0DWUUeRf+kUzVBXO5Imxamdmg657wTEZiO3\nVx/OuPF2QnW1hBvqCfQowuX14fH7N3+ArbRhXfdgLMg/5/yTuqg1JH7P3Hu49eBb8TqaV2sTtxtn\n797EVq/GlpmJo2DzNdQ35nU58Lra/pPbVJnUaEkJtc9b89mrn3mGwMmTNKArpdQmaEDfSYgI/uyc\nDmuMp4vb7mZkwUg+Kf0EgFEFo3DZWgdZZ0EB/Z55mkhJCc7efZAuep7fEZvH0+FrpZRSzTSgKxw2\nB6cPOZ1RBaMQEYbmDMVua5tpnsjJZVGjnXveWcrBgxo5YXSvVkPkXc3ZsyeFV/2Jurenk/XT47Bv\nxaiAUrs6EbmeFkVYuvjYJaQquXX1sbuCiBQArwMu4FJjzCcbvd+t6rRrQFcAZHuyGdtzbIdtqoMx\nTn/wKyLxJO/PL2NMv9y0BnR7IED26aeTdfzx2Px+bJ2s7qbUzmbEEyPa1EP/7pzvdnQ99B1KRBzG\nmHiaT3MY8F179dhFxN7d6rRrlrtqZXNJki3f3h75lDaXC0d2tgZz9aOVCuYPYa13LqmvD6W2bxUR\n8YvIGyLyjYh8LyKniUhJqpQpIjImVYN8g1Ei8oWILBaRyR0ct1hEPhaRuanjHpTafr+IzBKRH0Tk\nho12myIiX4vIdyIyNNV+39T55ojI5yIyJLX9XBGZJiIfYJVOzRCR91vsf0KqXT8RmS8iD6XO+Y6I\neNkEEZksIjNTP48XRcQnIqOBW4ETUtfjFZEGEfm7iHwDjBWRj1I14hGRo1P9+EZE3u/oOnZWGtAV\nAI31dXz3wTu89/C91Kxf126bHJ+TJ87bh4MG5XP1sXvQO2eTv19KqWYd1UPfWhvqjo8yxgwH3t5M\n+5HAocBY4NpUEZX2nAlMN8aMBkYBc1Pb/2yMGZM6ziEiMrLFPhXGmL2A+7EqqYG1VvtBxpifANfS\n+lr3Ak4xxhxCc131vYAJwN+leUWqQcC9xpg9gRpaF5bZ2EvGmH2MMaOA+cD5xpi5qXM/a4wZbYxp\nxFo546vUz+3TDTunhuYfAk5OHeP/OnEdOx0dct8FRRNRHDYHNmn+PFe2fCnvPHA3ACu+ncMZN97e\nJkHP7bQzqkcmfzl4MJl+J57tPIunvirM0jll9OibRV4vP26f3rWrH4V01UP/u4jcArxujPlkMzUZ\nXk0FtEYR+RDYF3ilnXYzgUdFxIlVG31DQD9VRC7EihnFWDXMv02991Lq62xgUur7APCEiAwCDNDy\nl/VdY0xV6vsNddUPBpI011UHq777hvPPxqr5vinDReQmIBvIAKZvol0CeLGd7fsDHxtjlgO06F9H\n17HT0YC+C0maJCW1Jdz3zX0Myx3GpEGTyPZY2erhUPMa55Fg0Pqnu5FQfZTX7v6GilUNAEy6fC+K\nB6Y/2x0gWBvhpdtm01BtrXB38hV7U9R/56tCp1Q70l4PPTVE3FHd841/o9t9YGaM+TgVXI8FHheR\nO4BP6LiG+YZlJxM0x5QbgQ+NMSeJSD9aV3lrWVCh3brqGx13w7E7GhJ8HDgxVc3tXGD8JtqFjTFb\nshxlR9ex09Eh911IVbiKX0z/BdNLpnPn13cyY92Mpvf6DBvBiEOPomjgYE668jo8mZlt9jdJQ21Z\n8zKx5etqaYx3btnYbWWSpimYA1SvDW2X8yrVBa7Cqn/eUlfUQw8ZY54CbsMaxi7BqnsObYenTxAR\nj4jkYQW7mZs47m7AemPMQ8DDqeO2V8N8cwLAhipU526mXZu66lshE1ibGlk4ayv2/xI4WET6A4hI\nbov+deY6dgppDegiki0iL4jIglSCw1gRyRWRd1PJGe+KiK4Usp0YYwjGmj8cb1hIBqzlYMeffQGT\n/nQ9RQMHY3e0HbxxeR0ccvYgPBlOinfPwt0vTkO0oU27ZGMjidrazSbYbQmH286Yif0AyCny0XfP\n3I532AqRUIx1y2tZ8OVaQrWRze+gVCekstknAyuw7oxXAJO3Mct9BDBDROYC1wE3YdU9v0tEZmHd\n0bb0LfAhVuC60RizZhPHHQ9sqFl+GnCXMeYbYEMN86fpXA3zW4G/pY7T0Ujwf4AxYtVVP5vmuupb\n6hrgq1TftvgYxphy4ELgpVTC3LOptzp7HTuFtC79KiJPAJ8YYx4WERdWIshVQJUxZqqIXAnkGGOu\n6Og43X3p1+0lEo8wu2w2t8y4hd2zd+fP+/2ZXO+WBcbS6jVUNdTi9xZSHw1SnJlNjxZ38/GqKsrv\nvpvo0mUUXnUV7sGDEPvWV09r1f9QjHg0iTPWQLx0FY78fBy5udi6aI32tUtqeOn2rwEo3j3AMReN\nwLuJtenVLkmXflU7tbR94hCRAHAwqWEKY0wUiKamJYxPNXsC65lEhwFddQ23w80+hfvwxKGPYksY\nHDF7x0+l2pHtDxCM+Tjxnq+oC8f53RGD+MU4D5keK1ek4cOPqPmv9eF21S9/Sf8XX9iqZWLb7b/P\niT1aw9obrqfhvffAbqf/C8/j2WOPLjl+ZWnzaEPVmiDJxM5f50AppTZI55B7f6AceCw1h+9hEfED\nhcaYtak262jOaFTpkkhA/TqoXEayvobF//sfj06ZzLQ7biZUW9P+LvEEDTURylbUEaqLNm33u/z8\nb0EVdWFrPYh/f7GCxmjz6J60WJ5V3G7oOPN2i5lYjNCXXzZdV2j27C47dv9RBeT3zsDhsnHImUNw\neXf6ETaltoqIjEjNzW7556sd3a/NEZF72+n3L3Z0v3YW6fwfy4GVUDHFGPOViNwFXNmygTHGiEi7\nt0GpKRIXAvTtuy2zOxTVy+DhwyBcS+zcT/j4qUcBKJ3/A2Uly+g3aq82uzRUR/nvjV8RjybJ75PB\nT6eMxpdlDT+PG5SP0y7EEobD9yjE42weUvcfMJaCyy4jvGgRBZddij0vr0svxeb1kn/JxQS//Apx\nucgYP77Lju3PdvPTS0djjMHlseN0dc2jAqV2Nj/WOufGmF/t6D7szNIZ0FcDq40xGz71vYAV0NeL\nSLExZq2IFANl7e1sjHkQeBCsZ+hp7Gf3N+tRCNcCIMEysguLqVm/FhEbgR5F7e5SVlJHPJoEoGJV\nA4lYsum9Afl+Pv7jBOrDcfIz3GS1qGHuyMkh75cXYuJxbK6uf/5sz8ggceqxvLN3gjxvHuPz/XTl\nWTZ8aFFKqR+btAV0Y8w6EVklIkOMMQux1tSdl/pzDjA19fXVdPVBpRQ21y33f/RnTrv2NVbO/4Ee\n/Qbgz2k/Ka5wQBYur4NoY5zi3QPYnc1PZzxOO8UBL8WbmAYuNhuymWBeF6ljXuU8ltYs5Yh+R9DD\n16NTl1Idrub3H/+BueXWehOXhis5f8T5rRbJUUqpXVG6HxJOAf6TynBfBvwC67n9cyJyPtb0jVPT\n3Ac15Bg46m+wegbseyEZWRkMO2hCh7tkZLs587r9iIbjuH3OLbpzTSTihOvrsTudePwZ7bZZVLOI\nye9aS0pPWzqN+w+/v1MZ9/FknBV1K5peL6xaSDwZx2XXO2ul1K4trQE9tWzfmHbeOiyd51Ub8eXB\n/heTCJ9DOBojURfEkyG4PJtOcbfZbfiz3fhxb9Gp4rEYaxfN571H7iOvd18OP/8SfAFrNbmaUJTv\nSmtpjCWodzQvkrW6YTWJTi7elOHK4Ip9r+CqT68iw5nBRaMu0mCulFJ0MqCnFq6fjLWWbtM+xpjz\n0tMt1eVEWLV4ES/97TowcPzv/8SAvfbF1kVzxDcIN9Tz2p1Taayvo6p0NQP33o89D7E+v321vIpf\nPjkbj9PGS7/ejzGFY1heu5zrD7ieTFfblena43V4mdBnAu+e8i42sZHj1nWJlOqORCQbONMYc99W\n7FtCF9VpF5G/YK3z/t62HivdOnuH/irWer7v0XYFIrWdxRNxKsIVlDaUslvWbuR78ze7TywSYe70\n1zFJK7ltzvTX6T1sJB6/v932DdVVlPzwDf7+PfFlBeiRUchmij8AYLPZ8GXn0FhvrUKXkduc5T5/\nrbUtHEvy+/8u5bHzb8NuM2S5snA7Oj8S4HP68Dm7ZjEZpbaH+UP3aFMPfY8F83dIPXTZPnXIu0I2\ncAnQJqBvz2swxly7Pc7TFTqbSeQzxlxhjHnOGPPihj9p7ZkCIFhTzVevPMf3H75LqM7KVK8MV3LC\nKydw7tvncv7086lsrGy1T024hteWvsYD3zxAeagcAIfLxdBxhzS1GXrAwTg97QfRYE01Hz7xIOFe\nHs799EJ+Pv1sSmpLOtVfXyCbk/90A/tNOo3jfnMlhf0HNr136pg+DCzIwOu089vDB5PtzqHAV7BF\nwVypH5tUMG9TDz21fauJyM9EZEZqLvYDImIXkYYW75+SKqSCiDwuIv9KzTW/NbUE9ysi8q2IfLmh\nHKqIXC8iT0o7tdNF5HKxao5/K21rom/ct7NT7b4RkSdT2wrEqlU+M/VnXItzPipWbfJlInJp6jBT\ngYGp67tNRMaLyCciMg0ruZrUNcwWq2b6hVvws2uzX+rn97hYdeC/E5HftvjZnZL6/tpU378XkQel\nM3c521Fn79BfF5GJxpg309ob1Uo42MC7D97D0tnWzL/DzruY0UcdS2lDKaG4VethWe0yosloq/0+\nKf2Eqz616j7MWjeL2w+5nYAnQL9Re3P+3Q9jTBJvZhZ2e/t//fFohOzB/blr/n1Uha0qgvd+cy83\nH3hzp55XZ+blc+BpP2+zvWe2l2cv3J8khkyPo9X8daW6sY7qoW/VXbqI7IG11vq4VGGT+9h8UZLe\nwAHGmISI/BOYY4w5UUQOBf5N87z0kVjlRP3AHBF5AxiOVZ98X6wPJdNE5GBjzMft9G1P4OrUuSpa\nFDq5C7jTGPOpiPTFKnG6YZnHoVj10DOBhSJyP9Y05+Gp2uyIyHistU2GbyhzCpxnjKkSES8wU0Re\nNMa0vsNpX5v9sB4p90rVl98w5L+xe4wxf0m9/yRwHPBaJ863XXQ2oF8GXCUiESCG9RdqjDFZaeuZ\nIplIUF/V/Aiotmw9ALtl7cag7EEsrlnM8QOPx2tvndy2pqG57sL6xvXEUyNTHr9/k0PsLTlcLogm\nGJDXr2l62JCcIThs255DmZ+pd+Nql5OOeuiHYVVWm5m6SfSyiTU9Wni+RenQA0lVZDPGfCAieSKy\n4f/z9mqnHwgciVWkBaya44OANgEdODR1rorU8TfUFj+c/2/vzuPrKqv9j39WcjKnmdq0dIK2lBkK\nhTBPZS6CtKIyXK4yCaJw4adeEWeUSRGRQbhIFSmoIDILCFSQQaCUMBRoS6HQIp2bDumQOVm/P/ZO\nc5qcJCfJORlOvu/XK6+cs8cnu2nWeZ797LVg96hObYGZNT8G86S71wK1Zraa9jOIzokK5gCXmtkX\nwtdjwzbFE9Bj7bcQmBB+2HkSeDbGfkeZ2eUEH8hKgHkMtIDu7vHNWJKEyskfwtRv/D+evOVXZA8Z\nwn4nTQNgaM5QZhw/g/qmerLTs7fWNG926k6nMmflHNZUr+G6w66jKKtl/ZqqNfxp/p8Ynjucz034\nHMXZbSeV5RYWM+nQY9i+roy9SvYiP2cIB446aJtnvWurG2ioaySSmUZWVGIZEWkj4fXQCTpVM939\n+9ssNPtO1NvWNdG3EJ9YtdMNuM7df9elVm4rDTjI3WuiF4YBvnXt8/Zi09afIeyxHwsc7O5VZvYC\nbX/mNtrbL6z1vjdwAnARwSPV50Xtl01wP7/M3T8zsyvjOV9virvLZUGZ052I+gFiDbdI4lhaGsPG\n7sCXf3INaWnp5AxpGRAZmtN+StXS3FJuPPJGGryBoqwi0tOCoe31Neu5/KXLKV8VVK5r9Ea+usdX\n257XjMLSEeTXlzBmxIQ2pVSrN9cx+9FPWDx3DRP3G87+J49PuapkFdUVNHkTeRl55GV0Pqoh0oEf\nENxDjx5271E9dOA54DEz+427rw6HtYcQZOLcjaC3+QVgUzv7v0wwRH9VGOAq3H1jGFynmdl1BEPu\nUwiGvqvDbf/s7pvNbOS8FlcAACAASURBVDRQ7+6xRgWeBx4xsxvdfa2ZlYS99GcJcpP8CsDM9gkf\nbW7PpvBnak8hsD4MyrsS3CaIR8z9zGwYUOfuD5nZQuBPrfZrjn0V4cjClwgyoPYb8T629jWCYfcx\nwDsEF+A1gqEVSSJLSyOvsOuPZhVmt03j1uiNFGYWMuP4GWSkZVBVX9XhMdIzYve8N6yqYv6/g2H9\n915Yxq6HjIoZ0GsbatlQu4G6pjoKMgsozGontVw/s3LLSs7+x9ms2LKCHx30I06ecLJm1Uu37fbB\ngr8s2HU3SOAsd3efb2Y/Ap41szSCW6EXEwTfJwgKY5UTDI3HciVwl5m9S/Dh4uyodc2104fRUjt9\nefhB4bUw6G8G/psYw/zuPs/MrgFeNLNGgmH6c4BLgdvCc0YIhusv6uBnXGtmr5jZ+8A/CIbBoz0N\nXGRmCwg+wMxu71hx7jeaoJhY81DkNqMf7r7BzGYA7xMUFnsjzvP1mrjqoVtQfH5/YLa77xN+qrnW\n3U9NdgNB9dATpbGpkaWbl3LO0+dQUV3BhXtdyDl7nhP3M+DN1vxnEw9c2/K7fOZPDqBkVNu/GwvW\nLeCsJ8+ivqmeb+79Tc7e4+wBERjv/+B+rnn9GgAKMgt4dNqjlOYmpgSsDGj9akZzMoTDyJvd/Ya+\nbot0XbyPrdU03/cwsyx3/wDYJXnNkmRIT0vnteWvUVEdTLS7a95d1DTUdLJXW0OGZnPolyay3YQC\njjhjZ/IKY090m7VkFvVN9UCQ3rV5Zn5/t+ewPbHwb/ek0klkpGmOgIj0f/HeQ18aTuF/FJhlZusJ\n8rDLALPP8H1IszSavIn9hu/XrZnr2XkZ7DllDLsetB0Z2RHSI7E/Fx4/7nhmzptJXVMd0ydOJzfS\n/3vnAOMLxvPotEdZuWUluw7dtc2kQ5FU5e5XxrutmQ0luJff2jFxPjqWVP29fckQ15D7NjuYHUkw\nqeBpd6/rbPtE0JB74lTVV7G2ei0rt6xkx+IdKcnetiDK2uq1NHkThVmFPc6RPlDvoYu0I+WH3GVg\n68os930JnkV04JXeCuaSWM1pU8cWjG2zbsXmFVw460LW1azjxik3su/wfclI7/5wc1YkixGR9h4n\nFRGRRIrrHrqZ/QSYCQwlmPn4x3CGpfRjVZUb2Lx+HY319XFtf9/C+1iycQkb6zZyzevXsLFuY5Jb\nKCIiiRJvD/0sYO+oiXG/IHh87epkNUzit65mHX//+O9srN3ImbudybCcYWxaW8Gjv7qK0ftMYtep\nJ5CRmUVJdsnWZ9Jj2a1kt62vJxZO7PKQe31jIxtrtrC2bhVLKhez74h94yocIyIiPRdvQF9O8FB9\n85ToLGBZUlokXdLQ1MA98+7hD+//AYD5a+fzyyN+yXv/fJqCkdtRNWkon3v8ZPIz87n3xHsZXzh+\n2/0bG9hcv5mcSA6HjDyEGcfNYE31Gg4ddWiXHmfbVFPPq4vWUlS8hgv+eRaOs3Pxzsw4bgYlOSWd\nH0BEEs7MTgF2d/dfxFi32d3bPG9qQUGXJ9z9wTCL2v+6e69PYjKzfYBRya4hYmY/cPdrw9fjCH72\nPXt4zFKCfACZwKXu/nKr9b8HbnT3+T05T2vxPrZWCcwLq878keDB+g1mdouZ3ZLIBknXNHojSzct\n3fp+ZdVK6pvqKRkzlu0mT+LOD++i0RuprK3krwv/us2+VfVVvLL8FR766CHmrJiDmXHQqIP4/I6f\n73IQ3lhdz+0vLGJBxQd4mDnyo/Uf0eiqtivSV9z98VjBfIDYB/hcsg5ugTR6lrGvPccA77n75BjB\nPN3dv5boYA7x99AfCb+avZDohkj3ZKVncem+l7Jg3QK21G/hykOupCiriNxJk6lYv4p90yazuDKo\nZXDQyG0zI26q20R+Zj7LNi9j3tp5bF+4PQVZ3au3Y2Z8vGYzk0sPZOyQsXy26TMumXwJ2ZF+lepY\npE/cdtHzbeqhX3zH0T2qhx72Jp8myHR2CEHmsj8CPwOGE9wq3Z0g9/glZjaeoLpbPvBY1HEMuBU4\nDvgMiDnh2cyOD4+dBXwMnOvum9vZdj/gxvBcFcA57r7CgnKsFxL0XBcBXwlTsH4Z+ClBHvdKglzr\nPwdyzOwwgjzyf41xnisJrumE8PtN7n5LuO7btORi/7273xRes2eA1wmK28wJz/EOQaGVHwLpYUa4\nQwhGoqeFxWpi/Zxtfh5gZ+D68LhlwMEEmft+F/5cF5vZ1YQjH2Y2leB3I50gBe8xZnYAQXW6bIK0\nu+e6+8JYbdimPd14bK0YGOvu73Zpxx5IxcfW6mtrqfhsCQte/hcTDziEERMmkpXT/ee0K6orcHeK\ns4qJRJVFXV+zno/Wf0R+Zj4bazdSklPCDkN2ICuSxYaaDcx4bwb3zL8HCBKq3H7M7TELtnSmqraB\nN5as47kPVnH2YcPIy0ojLzO3y1noRPqxbj22FgbzWLncL+hJUA+D0yJgMkEwegOYC5wPnAKcS5A7\npDmgPw486O73mNnFwC/dPd/MTgW+AUwlqHI2H/ha9JA7sAR4GDjR3beY2feArOZSoq3alQG8SBAI\n15jZ6cAJ7n6emQ1tfgY8DGqr3P3WMBvpVHdfZmZFYZrVc5rb3sE1uJKgCtzW0qvAdgQlYO8mSFNu\nBAH8v4H1wCcEpV1nh8fYeush6pqWufs7ZvYA8Li7t87r3nz+9n6ebdpuZg6c7u4PhO+br+unwFvA\nEe6+uDnvvQWV76rcvcHMjgW+4e5fbO86NIs3l/sLBL8gEeBNYLWZveLu345nf2mrZtNG7v/J5TQ1\nNvL2M09y3m9+16OA3t7ks+LsYiYUTeCMJ85gVdUqMtMyeerUpxgRGUFuJHdrJjeAusY6mrwp7nOu\nqVrD+xXvMzJ/JKPyRnHkLsM5YMJQsiNpzRWURCQJ9dCjLHb39wDMbB7wnLt7GCDHtdr2UMKSqcC9\nwC/D10cA94WlVZeb2fMxznMQQW//lfD/diZBPY9YdiGonz4r3DYdWBGu2zMMfEUEvfdnwuWvAHeH\nAfThOH7uaLFKrx4GPOLuWwDM7GHgcOBx4NPmYN6OxVFFY96k7XWM1t7P01oj8FCM5QcBLzWXhI0q\nNVsIzDSznQgeFY/r+eF4h9wLw0o8XwPucfefhgn2pZtqq6poagzvL7uzZcM6ikeO6nin+hqo3Qjp\nGZAT9KJXbVnFexXvsWvJrgzPHR5zZnpVfRWrqoJa6nVNdWypDyoQZkYyuWCvC1i5ZSUbajdw5cFX\ntkk0056K6grOf/b8rcP5vzriV0wdP5WcjPZn0YsMUsmoh94suuxoU9T7JmL/fe/akGwLA2a5+5lx\nbjvP3Q+Ose5uYLq7zw17sVMA3P0iMzsQOAl4Mxyyj1e8pVebdVZGtvXxcjrY9m5i/Dwx1ETVoo/H\nVcC/3P0L4ajBC/HsFO+kuIiZjSSoD/tEFxol7cgtLGLi/sHv+9jd96Jk1JiOd9i4HJ6/Cu4+CR44\nG/7zGlWbVnLWU2fxrRe+xRce+wLra9bH3LUgs4DTdj6NnEgO03ecvs2QemluKdcedi23HH0LE4om\nxN2zrmmo2RrMAf6x+B9UN8S8zSQy2LVX97wn9dC74xXgjPD1WVHLXwJON7P08O/8UTH2nQ0camYT\nAcwsz8x2buc8C4FSMzs43DbDzPYI1w0BVoTD8lvbYGY7uvvr7v4TgvvNY+m8fGpHXgamm1mumeUR\nlJJ9uZ1t68P2dEfMn6cLZgNHhPMbsKAMLgQ99OYnyc6J92Dx9tB/TjCU8Iq7v2FmE4CP4j2JtJVb\nWMjxX/8fjjn/G6Slp5Nb0Cotan118JWZD9Xr4Q/HQ+VnwbqKD2Hxi2Sffi/jC8axqmoVNY01rK1Z\ny4i8tpnZirKLuGzfy7ho74vISs9qM/EtP7O9Covty45kM2bImK0z7I/e/miy0zUBTiSGZNRD747L\ngL+E978fi1r+CEEp7PkEHzLaDKWH98LPAe4zs+ZqTD8CPoyxbZ2ZfQm4xcwKCeLMTQT3+X9McD97\nTfi9OWD/KhxeNoL863PDtlwRTliLOSmuPe7+Vvj43Zxw0e/d/e2wt9vancC7ZvYWwaS4rmjv54m3\nnWvM7ELg4XDG/WqCyYnXEwy5/4i2ZWPb1eVJcX0hFSfFdahqLbz6W1jyEhz2HajZAI9+o+12xeP4\nz2l3cfKz53LAdgdw/RHX9+oz36urVjNnxRzGDBnD+MLxytUuqa7bE0OSMctdpLV466HvDPwfMMLd\n9zSzScAp7t4rmeIGXUCf+1d45MLg9aTTICMP3vxjzE0bvzWfdRmZRNIi3Zqd3p801DVSsyWYpJed\nl0EkU/fjpV/RTE/p1+K9hz4D+D5QDxA+snZGh3tI921aAXnDYPhuULkUtj8o9nZDJ5KenkFpbumA\nD+buzsrFG7n3R69x749eY8XHlXhT/x89EhnMzOwRM3un1dcJSTjPuTHOc1uiz9PB+W+Lcf5ze+v8\n8Yr3Hnquu89pNWGqIQntEYC9ToOxB8DqBTCmDPKGw9AdYe3HLduYwYnXQ/7wvmtnAtXXNvLOrP/Q\n1BgE8Xdm/YcR4wvIzO56vXYR6R3u/oVeOs8fCZLm9Al3v7ivzt0V8f61rDCzHQkfeQgnPKzoeBfp\ntrpNwWx2b4IRe8LZj8M5/4C37oEPn4Iho+DI70FJS172DTUbeGnZS3y4/kPO3PVMRuePTnizmmul\nD8kckvAMcJGMNMZNGsan768FYNykYUQy4x1AEhGReAP6xQQzAXc1s2XAYro3RV/iUfFhEMwBVs+H\nxnoYsh0c9i3Y/zxIz4KsbWemv7biNX7472CC5jNLnuH+k+5naM7QhDVp5ZaVXPDsBazYsoLrDr+O\nw0cfntCgnpaexk5lwxk1sQhwcguzSEtTQBcRiVeHfzHN7LLw5Uh3PxYoBXZ198Pc/dOkt26wcYdN\nK2G7veDUOyGSDcdfBRnh0y7pEcgd2iaYA3xa2fLPsbpqdZcyvsXjw3UfMTJ/JLWNtVz3+nVsqtuU\n0OMDZOVmUDIqj5JR+WTndfexUBGRwamzLlDzTf9bAdx9i7sn/i/5ILa+Zj1rqtZQXV8dPGf+u8Ph\n5r1h+Vy49B2Y/FXILqChqYGOnkiYvtN0xheOJ5IW4YcH/pDcjO6nkY3mTc6GVVU0vDiMCzL/l6vL\nrmPn4p3JSFfAFRHpTzp8bM3M7gPKgFEE1XW2rgLc3Sclt3mBVH1sraK6gu+++F0+XP8h393/uxyX\nVkzePae0bPCdhTBkO5ZtWsZt79zG+KLxfGmnL7U7o735HnduRi55GXkJaeOWylr+evUcqjcFj5Od\neNkeFI/PHPCz6kW6IaUeWzOz6cCHiSrjGVYW+6q7X5qI43Xj/Ftrv1ureuQET2n9l7tv6Iu29ZYO\n76G7+5lmth1BlrhTOtpWuu6VZa9Qvir4oPLTV3/KodOfIM8sGHofNRnSIqytXsslz1/Cog2LABie\nM5xpE6fFPF70PfPK2kpeXf4qH677kNN2OY2R+SNp8ibW1azD3SnKKorZy65vrKemsYacSA6RtODX\no7a65YGGpmpTMBdJDdMJgl5CArq7lwN91vNy98cJiq9ASz3yr4Xv20v7mlI6nRTn7iuBvXuhLYPO\nqPyWYiylOaU0pWew5tvzyKjZSFHOMMgbhldVbJMjfXPdZpq8iTTr+G7JexXvcflLlwPw3GfP8ccT\n/sjGuo2c+/S51DTWcMexd7DXsL1IT2tJ3rKxdiOzPp3FU4uf4vRdTufQ0YeSlZvNiRftxasPLmLY\n2HxG71SU4Ksgkvp+ffrJbTLFfeevT/S0Hvp/E/Q+MwnSjn4T+C2wP0FBkQfd/afhtr8g6JQ1AM8S\nVDQ7BTgyTC/6RXf/OMY54qpf7u5HmNkUghrfJ3elnneYUvYLBPnLRwN/cvefheseJcjrng3c7O53\nhstj1RA/h2BE+fe0rUe+gKCcaYWZfZWgdKkD77r7V+K/6v1bhwHdzB5w99PCUnzRY/O9OuSeqnYp\n3oVbj76VeRXzmDZxGvfMv5d759/LieNO5IoDr6CYoPzpTUfdxNWzr2Z0/mgmlU5i0fpFTCye2GFQ\nX7Vl1dbXa6rW0OiN3PnunaytCR4Lu6H8Bn57zG8pymoJ0JW1lVz52pUAvLHyDZ754jOMzM9j7C7F\nTP/2vqRnpJGVo+fCRboiDObRudx3AGb8+vST6W5QN7PdgNOBQ9293sxuJ3jy6IdhPe104Lkwq+cy\ngoC5a1hatbne+OPAE+7+YAenetjdZ4TnvJqg1vqtwE8IapwvM7NYn/I/AA6Pqud9LS2lW2M5gKDk\nahXwhpk9Gfb4zwt/npxw+UMEc79mEFVDPPpAYR3zn7BtPfLm67YHQQ76Q8Lg3nu5sntBZ5Pimme5\nnwx8Puqr+X2HzGyJmb0XZtUpD5eVmNksM/so/D5ox28LsgqYMnYKF0++mCZv4p759+A4Ty15auss\n8vS0dHYu3pmL97mYUfmjuHDWhXz3pe+2W1mt2ZSxUzhs9GGMyR/DDUfeQGFmIXuXtgy07DF0D7LS\ns7bZJzpxkJltfZ+ekU5uQaaCuUj3dFQPvbuOAfYjCHLvhO8nAKeFRUbeBvYgqGFeCdQAfzCzUwmC\nZrz2NLOXw07dWeExoaV++QUEveTWCoG/mdn7wG+i9mvPLHdf6+7VBKMHh4XLLzWzuQRVycYCO9F+\nDfF4HA38zd0rurFvv9fZPfQV4feePKJ2VPPFC10BPBdOXLgifP+9Hhw/qRqbGqmsqyQzLbNbVcni\nlR3JJieSQ3VDNUMytk3ckmZpfLbpM37/3u8B2Clrp06H3IfmDOUXh/+C+qZ6CjILyEzPZOr4qYwv\nHE91QzV7l+5NTmTbMr9FWUVcf8T1PPnJk5y2y2kUZBa0c3QR6YJk1EM3YKa7f3/rgqAE5yxgf3df\nH1Ybyw57yQcQBP0vAZcQBLZ43E336pd3tZ5369nZHg7hHwscHA7zv0Aw9C7t6GzIfRNtLzS0DLl3\n5y/+NFqKwM8k+IfulwG9samRD9Z9wM9n/5wx+WP4wYE/SGiylmjFWcU89PmHeGfNO0wePpmh2due\n57gdjqOmsYblm5Zz7p7nxjUxrXX1s6KsIg4ceWC72+dn5nPCuBM4csyR5ERy4q6N3lptQy1ZkazO\nNxQZHP5DMMwea3l3PQc8Zma/cffV4dDx9sAWoNLMRgAnAi+YWT5B+u6nzOwV4JPwGPHUG29d73sZ\ntNQvB143sxMJes/RulrP+7jwZ6gmmKx3HsH99PVhMN+VoGcOQW/9djMb3zzk3oWe9vPAI2Z2o7uv\n7eK+/V5nPfTuFpffegjgWTNz4HfhhIYRzT1/YCXQtoB3Kwtp+QTQm+q9kflNDdSV/S8ATzTWMTJZ\nJ0vPgIKxwVcs2cWw+1cBeDpZbQCwtJZENl3U5I1sqdvCqqrVlGSXUJhVQHqahuklNbzQ/V0TXg/d\n3eeHk9meDeto1xNk9Hyb4P71ZwTD4hAE5cfMLJugM/btcPn9wAwzuxT4UqxJcXStfvmRUft1tZ73\nHOAhYAzBpLjycJj/IjNbQBAGZoc/e3s1xDvl7vPM7BrgRTNrJLhe58Sz70CQ1HroZjY6nDQxnGAo\n6H+Ax929KGqb9e7eprsZ/oNdCJA1adJ+B82dm7R2tqe+sZ4P1n1ATWMNAOMKdqA0NzWKoTRraGyi\nsclJMyMj3YKiL91U11jHu2vexcNBnUnD9iIrwTnfRfrKCz14Dj0Zs9xTRfPs9OYJbNJ9SQ3o25zI\n7EpgM3ABMMXdV5jZSOAFd9+lo337MrHMZ5s+4+a3bmZcwTjO2u2sPnsGe0vdFmoaayjILEhYlrYN\nVXXc8MxC/vT6fxiWn8ljFx/G6OKczndsx4rNKzj+oeO3vn9k2iNMLJqYiKaK9AcplVimv1BAT5yk\njYeaWR6Q5u6bwtfHAz8nePD/bOAX4ffHktWGRBg7ZCzXHnYtEYv0WbGQ9TXrufmtm5m7Zi6X7XsZ\nB408KCGFUeoamvjznOA2XsXmOl5fvJZTi8d0+3hDModw9aFXc98H93HM9scwLGdYj9soIskX1hY/\ntNXim8OypYk6xwnAL1stXhyWYL07UecZzJLWQzezCcAj4dsI8Bd3v8bMhgIPEAw9fQqc1tmkhFRN\n/RqvV5e9ytf/+XUAImkRnv3is5Tmlvb4uOu21HLpfe/w70UVZEXS+MdlhzOhtGcz+esa69hSv4Xc\nSK4mxkmqUQ9d+rWk9dDd/RNiZJhz97UEj08MSnWNdVTWVpJu6ZTkxJfTIHq2ekFmQbdnn7dWkpfF\nzWfsw7IN1ZTmZ1GSl9njY2amZ5KZ3vPjiIhI12gKci+qb6znndXvcPlLl1OaW8pvj/4tI/I6neTP\n2CFjuXHKjZSvLOfMXc+kJDtxyY2G5mcxNF89aRGRga7XJsX1RKoMuVdUV/CVp77C0s1LAfj6pK/z\nld2/wktLX6K2sZajxh4V93PuzZXVhmQOScj9dBHplIbcpV/rm1leg1QkLcKYIS2TziYUTuCfn/6T\nH/z7B/zstZ9x69u3BnXRO7F883LOfeZcTnrkJF5d/iq1DbXJbLaIDEJmNi5M3drZNv8V9b7MzG5J\nfuskFgX0XlSUVcR1h1/HFftfwU1TbmL/7fbn1eWvbl2/uHIxdU11HR6jqr6Khz96mMWVi6luqOba\n169lY93GZDddRCSWccDWgO7u5X1VD10U0HtVZW0l9Y31nDThJI7e/mhyIjmcu+e5jMkfQ2lOKd/d\n/7sMyWxJztfQ1MDyzct5ZskzLN+8nIamBmoba9mhoCWL5ITCCQl7Ll1EBo6wd/yBmf3ZzBaY2YNm\nlmtmx5jZ22FhrLvMLCvcfomZXR8un2NmE8Pld5vZl6KOu7mdc71sZm+FX4eEq34BHB4W4PqWmU0x\nsyfCfUrM7FEze9fMZoeV3zCzK8N2vWBmn4SZ6iQBNCmul2ys3cid797JPfPvYVjOMP7yub8wMn8k\nY/PHMuP4GaRZGiXZJdsUXVlfs54v//3LbKzbSH5GPo9Nf4zcSC7Dcobx6yN/TUV1BceOPZbMujTQ\nvDaRwWgX4Hx3f8XM7iJI6/p14Bh3/9DM7gG+AdwUbl/p7ntZUBP8JoLKmfFYDRzn7jVhytf7CGqP\nX0FYAx0gLKjS7GfA2+4+3cyOBu4B9gnX7QocRZBKdqGZ/Z+713fnAkgL9dB7SW1jLffOvxcIJse9\nvvJ1AAqzCxkzZAyj8ke1mdxW3VC9dTh9c/1mquqryM/MZ/ehu7Pv8H05qfRY/nn9r3j0lz9j45pV\niMig85m7N+ds/xPBI8GL3f3DcNlM4Iio7e+L+n5wF86TQZD3/T3gbwRlWTtzGHAvgLs/Dww1s+aC\nXk+6e21YiXM1cdT0kM4poPeSSFqE/UYEFQYjFmGvYXt1uk9+Zj7HbB88sj9lzBQKsoL/C4VZhQyx\nXJ6bcTsrFi5gxUcLefFPd9FQp8lxIoNM68eUNnRh++bXDYSxICx2EiuRxLeAVQS5Rcra2aYrov9Y\nNaLR4oTQRewlxdnF/HrKr1lSuYQReSPalEeNpSS7hCsPvpIfHvhDImmRbfLIp6Wlk1fc8jx6fvFQ\nLC09KW0XkX5rezM72N1fI5icVg583cwmuvsi4CvAi1Hbn05w3/t04LVw2RJgP4IMnqcQ9MZbKwSW\nunuTmZ0NNP+x6agE68sEJVevCofiK9x9Y6ISY0lbCui9qCS7pMtJYYqyi2Iuz8jK4vAzv0pB6XDS\n0tPZ66jjSI+0/HNW1lZSVV9FRloGw3KVU10kRS0ELg7vn88HLiUoM/o3M4sAbwB3RG1fbGbvEvSQ\nzwyXzSAorzqXoDrzlhjnuR14KLz3Hr3Nu0BjuO/dBOVIm10J3BWer4qgdockkRLLpKDmCXgz589k\nRO4I/vy5P8eVkU5EOtSvupZmNg54wt33jHP7JQRVzSqS2CzpQ7qH3oeqG6p5e/XbXDX7KuaumUtN\nQ01CjlvbWMu9C4IJeKuqVvHOmncSclwREem/FND7UGVtJec9fR4PLHyAc54+hw21nc1niU8kLcL+\nI/YHIDMtk91KdkvIcUWk/3D3JfH2zsPtx6l3ntp0D70P1TfV0+ANQJBEpr4pMY9hFmcXc/0R17Ns\n8zJKc0spzirufCcRERnQFND7UEFmAZdOvpS/f/x3pk2cRmFmYduNqjfAhk+hdhOU7gZ58RVvKckp\nibs8q4iIDHyaFNfHquurqWqoIjeSS05GTtsN5t4Pj3w9eF12Hhz3c8hq7ykREUmifjUpTqQ19dD7\ngLtTu2UL6ZEIOdk5sQM5QGM9fPRsy/slL0N9tQK6iIi0oUlxvcybmqj47FMeu+Fqnp95J1UbK9vf\nOD0DDr4EMnLADA79loK5iABgZlPNbKGZLTKzK/q6PdL31EPvZVUbK3n8hmvYsGoFSxe8z3Y77sTe\nx57Y/g4j9oD/eQu8CbILg+AuIoOamaUDtwHHAUuBN8zscXef37ctk76kgN7bzIhktZRGy8zuJEBH\nsqBgVJIbJSIDzAHAInf/BMDM7gemEWSLk0FKAT0JGpsaWVezjrqmOvIiedukb80rLGL65T/m1Qf+\nwtAxYxk3ad92j7OuZh3V9dVkRbIYlqP0rSIDWVlZWQQYBlSUl5c39PBwo4HPot4vBQ7s4TFlgNM9\n9CT4bNNnTH9sOlMfmsrNb91MZe2298kLS0dwwkX/w/6nfJGcgoKYx1hXvY7vvfQ9pj48lfOePo91\nNet6o+kikgRlZWWHAGuAxcCa8L1IQimgJ8Gjix7dWsf8wY8ejJnSNS09QkdVh6oaqpi9YjaGcf5e\n5/PR+o+YvWI2G2oSk01ORHpH2DN/EigCssPvT5aVlfWkPOIyYGzU+zHhMhnEFNCTYJ/h+2x9PWbI\nGCJpXb+zkR3JZoeCHThuh+NYXbWarz37NS549gJmzptJbaPqnosMIMMIAnm0bKC0B8d8A9jJzMab\nWSZwBvB4D44ngepRbQAAD7xJREFUKUD30JNg8vDJ/OH4P/BJ5SccNfYohubEl90t2rCcYdw99W42\n1W3iprdu2rr87TVvU9tQS1Z6Vgd7i0g/UgHUsG1QryEYgu8Wd28ws0uAZwhqk9/l7vN61EoZ8JQp\nbgCYv3Y+5z59Lg1NDdxx3B3sO3xf0tPC0bqq9bB6HlSvh+0PhjxNnhNJkm5nigvvmT9JENRrgJPK\ny8tfTVTDREABfUBoaGxgfe16AAqzCslMz2xZ+e4D8PAFwet9/htO/CVk5fdBK0VSXo9Sv4b3zEuB\nNeXl5Y2JaZJICw25DwCR9Ailue3cblsa9UFn5VxoqFFAF+mHwiC+sq/bIalLk+IGuoO/CUXbBylh\np14HUc+8i4jI4KEe+kBXPA6+9lyQGjanGNL1TyoiMhjpr38qyB/e1y0QEZE+piF3ERGRFKCALiIy\nQJlZupm9bWZPhO/Hm9nrYUnVv4ZJZzCzrPD9onD9uKhjfD9cvtDMTohaHrM8a2+cQ7pHAV1EZOC6\nDFgQ9f6XwG/cfSKwHjg/XH4+sD5c/ptwO8xsd4Isc3sAU4Hbww8JzeVZTwR2B84Mt+2tc0g3JD2g\nx/sJUkQklZWVlRWUlZXtXlZWFrsiUxeZ2RjgJOD34XsDjgYeDDeZCUwPX08L3xOuPybcfhpwv7vX\nuvtiYBFBadat5VndvQ64H5jWG+dIxLUZrHqjhx7vJ0gRkZRTVlaWUVZWdjuwCpgNrCorK7u9rKws\no4eHvgm4HGgK3w8FNrh7c2nWpQRlViGq3Gq4vjLcPlYZ1tEdLO+Nc0g3JTWgd/ETpIhIKroZOJsg\n7euQ8PvZ4fJuMbOTgdXu/mZCWigpIdk99K58ghQRSSnh8Pq5QG6rVbnAuT0Yfj8UOMXMlhAMVR9N\n8AGhyMyaH0eOLqm6tdxquL4QWEv7ZVjbW762F84h3ZS0gN7TT5BmdqGZlZtZ+Zo13S5KJCLSl8YA\n9e2sq6ebHRp3/767j3H3cQQTzp5397OAfwFfCjc7G3gsfP14+J5w/fMeFPJ4HDgjnKE+HtgJmEM7\n5VnDfZJ6ju5cDwkkM7FM8yfIzxEMMRUQ9Qky7KW3+4nM3e8E7oSgOEsS2ykikixLgfbulWeQ+B7p\n94D7zexq4G3gD+HyPwD3mtkiYB1B8MTd55nZA8B8oAG42N0bATooz9ob55Bu6JVqa2Y2Bfhfdz/Z\nzP4GPOTu95vZHcC77n57R/sP9mprItIvdKvaWjgh7my2HXavAmaWl5d/MxENE4G+eQ79e8C3w09x\nQ2n5dCcikoouI5gAXANsCr/PDJeLJIzqoYuIxKen9dALCO6ZLysvL9+YmCaJtFBxFhGRXhAGcQVy\nSRqlfhUREUkBCugiIiIpQAFdREQkBSigi4gMQGb2LTObZ2bvm9l9Zpat8qmDmwK6iMgAY2ajgUuB\nMnffkyAxyxmofOqgplnuIiJJVFZWlg1cTBCARxBUXbsFuK28vLymB4eOADlmVk+QtGYFQU73/wrX\nzwSuBP6PoCzpleHyB4Hfti5tCiwO84McEG63yN0/ATCz5vKpC5J9DoKMctIN6qGLiCRJGMxfBH4O\nbA9khd+vAl4M13eZuy8DbgD+QxDIK4E3UfnUQU0BXUQkeS4G9qRttbUcYK9wfZeZWTFBb3Y8MArI\nIxjOlkFMAV1EJHkupW0wb5YTru+OY4HF7r7G3euBhwkKYql86iCmgC4ikjwjeri+Pf8BDjKz3PA+\n9TEE955VPnUQ06Q4EZHkWUVwz7yj9V3m7q+b2YPAWwQlSd8mKDf9JCqfOmipOIuISHy6XJylrKzs\nOwQT4HJirK4GflxeXv7rnjZMBDTkLiKSTLcB7xEE72jV4fLber1FkrIU0EVEkiR8zvxI4McE971r\nw+8/Bo7s4XPoItvQkLuISHx6VA9dJNnUQxcREUkBCugiIiIpQAFdREQkBSigi4gMQGZ2l5mtNrP3\no5b9ysw+MLN3zewRMyuKWtfvyqR25xzSPgV0EZFeUFZWNr6srOzQsrKy8Qk65N20zd8+C9jT3ScB\nHwLfh35dJrVL55COKaCLiCRRWeBNYB5BJrd5ZWVlb5aVlZX15Lju/hJBRrboZc9GVUKbTZAfHaJK\nmLr7YqC5hOkBhCVM3b0OaC6TagRlUh8M958JTI861szw9YPAMa3LpCbxHNIBBXQRkSQJg/YLwL4E\n2eIKw+/7Ai/0NKh34jzgH+Hr/lgmtTvnkA4ooIuIJM/vCEqbxpIH3JGMk5rZDwnypv85GceX/kkB\nXUQkCcJ75bt1stnuCbynDoCZnQOcDJzlLZnD+mOZ1O6cQzqggC4ikhyjgLpOtqkLt0sIM5sKXA6c\n4u5VUav6XZnUbp5DOqDyqSIiybEcyOxkm8xwuy4zs/uAKcAwM1sK/JRgVnsWMCucQzbb3S/qx2VS\nu3QO6ZhyuYuIxKc75VPfJJgA1543y8vLkzkxTgYRDbmLiCTP14Et7azbAlzUi22RFKeALiKSJOXB\n0OIU4E2CGuiV4fc3gSnlGnqUBNI9dBGRJAqDdlk4m30UsLy8vHxxHzdLUpACuohILwiDuAK5JI2G\n3EVERFKAArqIiEgKUEAXERFJAUkL6GaWbWZzzGyumc0zs5+Fy2PWvxUREZHuS2YPvRY42t33BvYB\npprZQbRf/1ZERES6KWkB3QObw7cZ4ZfTfv1bERER6aak3kM3s3QzewdYDcwCPqb9+rciIiLSTUkN\n6O7e6O77EJTFOwDYNd59zexCMys3s/I1a9YkrY0iIiKpoFdmubv7BoIyeQfTfv3b1vvc6e5l7l5W\nWlraG80UEREZsJI5y73UzIrC1znAccAC2q9/KyIiIt2UzNSvI4GZZpZO8MHhAXd/wszmE7v+rYiI\niHRT0gK6u78LTI6x/BOC++kiIiKSIMoUJyIikgIU0EVERFKAArqIiEgKUEAXERFJAQroIiIiKUAB\nXUREJAUooIuIiKQABXQREZEUoIAuIiKSAhTQRUREUoACuoiISApQQBcREUkBCugiIiIpQAFdREQk\nBSigi4iIpAAFdBERkRSggC4iIpICIn3dAGnRUFdHzeZNAGTn5xPJzOrjFomIyEChHno/4e6s/PhD\nfn/p15hxyfksW7iApqbGvm6WiIgMEAro/UR9TQ2vP/o3GuvraWps4PVHHqC+uqavmyUiIgOEAno/\nEcnMZNze+259v8OkyaRnZfZhi0REZCDRPfR+Ii09nd0PP5rRO+9GkzdRvN0oIpGMvm6WiIgMEAro\n/UjOkCHkDBnS180QEZEBSEPuIiIiKUABXUREJAUooIuIiKQABXQREZEUoIAuIiKSAhTQRUREUoAC\nuoiISApQQBcREUkBCugiIiIpQAFdREQkBSigi4iIpICkBXQzG2tm/zKz+WY2z8wuC5eXmNksM/so\n/F6crDaIiIgMFsnsoTcA33H33YGDgIvNbHfgCuA5d98JeC58LyIiIj2QtIDu7ivc/a3w9SZgATAa\nmAbMDDebCUxPVhtEREQGi165h25m44DJwOvACHdfEa5aCYzojTaIiIiksqTXQzezfOAh4P+5+0Yz\n27rO3d3MvJ39LgQuDN9uNrOFnZyqEKjsYvPi2aejbdpb13p5rO2il7VePwyo6KRdXdWfr0+sZR29\nT8b1aa9didhnMF+jeLfv6jXqi+vztLtP7eI+Ir3H3ZP2BWQAzwDfjlq2EBgZvh4JLEzQue5Mxj4d\nbdPeutbLY20XvSzG9uVJ+Lfot9cnnmvW6nol/ProGiXnGsW7fVevUX+9PvrSV19+JXOWuwF/ABa4\n+41Rqx4Hzg5fnw08lqBT/j1J+3S0TXvrWi+Ptd3fO1mfaP35+sRaFs81TDRdo8519Rzxbt/Va9Rf\nr49InzH3mCPePT+w2WHAy8B7QFO4+AcE99EfALYHPgVOc/d1SWnEAGVm5e5e1tft6K90fTqna9Qx\nXR9JRUm7h+7u/wasndXHJOu8KeLOvm5AP6fr0zldo47p+kjKSVoPXURERHqPUr+KiIikAAV0ERGR\nFKCALiIikgIU0Ps5M9vNzO4wswfN7Bt93Z7+yszyzKzczE7u67b0R2Y2xcxeDn+XpvR1e/obM0sz\ns2vM7FYzO7vzPUT6HwX0PmBmd5nZajN7v9XyqWa20MwWmdkVAO6+wN0vAk4DDu2L9vaFrlyj0PcI\nHoccNLp4jRzYDGQDS3u7rX2hi9dnGjAGqGeQXB9JPQrofeNuYJsUkmaWDtwGnAjsDpwZVqfDzE4B\nngSe6t1m9qm7ifMamdlxwHxgdW83so/dTfy/Ry+7+4kEH3x+1svt7Ct3E//12QV41d2/DWgkTAYk\nBfQ+4O4vAa2T6RwALHL3T9y9DrifoNeAuz8e/jE+q3db2ne6eI2mEJTo/S/gAjMbFL/XXblG7t6c\n3Gk9kNWLzewzXfwdWkpwbQAae6+VIomT9OIsErfRwGdR75cCB4b3O08l+CM8mHroscS8Ru5+CYCZ\nnQNURAWvwai936NTgROAIuC3fdGwfiLm9QFuBm41s8OBl/qiYSI9pYDez7n7C8ALfdyMAcHd7+7r\nNvRX7v4w8HBft6O/cvcq4Py+bodITwyKockBYhkwNur9mHCZtNA16pyuUcd0fSRlKaD3H28AO5nZ\neDPLBM4gqEwnLXSNOqdr1DFdH0lZCuh9wMzuA14DdjGzpWZ2vrs3AJcQ1I9fADzg7vP6sp19Sdeo\nc7pGHdP1kcFGxVlERERSgHroIiIiKUABXUREJAUooIuIiKQABXQREZEUoIAuIiKSAhTQRUREUoAC\nuvR7ZvZqX7dBRKS/03PoIiIiKUA9dOn3zGxz+H2Kmb1gZg+a2Qdm9mczs3Dd/mb2qpnNNbM5ZjbE\nzLLN7I9m9p6ZvW1mR4XbnmNmj5rZLDNbYmaXmNm3w21mm1lJuN2OZva0mb1pZi+b2a59dxVERDqm\namsy0EwG9gCWA68Ah5rZHOCvwOnu/oaZFQDVwGWAu/teYTB+1sx2Do+zZ3isbGAR8D13n2xmvwG+\nCtwE3Alc5O4fmdmBwO3A0b32k4qIdIECugw0c9x9KYCZvQOMAyqBFe7+BoC7bwzXHwbcGi77wMw+\nBZoD+r/cfROwycwqgb+Hy98DJplZPnAI8LdwEACCmvQiIv2SAroMNLVRrxvp/u9w9HGaot43hcdM\nAza4+z7dPL6ISK/SPXRJBQuBkWa2P0B4/zwCvAycFS7bGdg+3LZTYS9/sZl9OdzfzGzvZDReRCQR\nFNBlwHP3OuB04FYzmwvMIrg3fjuQZmbvEdxjP8fda9s/UhtnAeeHx5wHTEtsy0VEEkePrYmIiKQA\n9dBFRERSgAK6iIhIClBAFxERSQEK6CIiIilAAV1ERCQFKKCLiIikAAV0ERGRFKCALiIikgL+Py2h\nrpUAb8TzAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmT47ZfvCUpYFRJEi\nINgRUVQEVGI39h67MUX9qYlGjSVFY6LRWKIk9hZFsWFHLIgiHalLXWB7nT7v748ZtsAudQeW3fN5\nHp6dmfvee9/Ls3DmrUeMMSillFJq72bZ0xVQSiml1K7TgK6UUkp1ABrQlVJKqQ5AA7pSSinVAWhA\nV0oppToADehKKaVUB6ABXSmllOoANKCrvYqIXCsiM0UkJCLPbnbsMhFZKiK1IvK+iHRrcixDRCaJ\nyMbknzs3O3eoiEwTkSoRWSMiv9s9T6SUUm1DA7ra26wD7gH+3fRDERkN3AtMBLKAFcCLTYo8BKQB\nhcDBwPkicnGT4y8AXyTPPQq4WkROTskTKKVUCmhAV3sVY8wbxpg3gbLNDp0IvGqMmW+MCQN3A6NE\npG/y+EnAn4wx9caYIuBp4JIm5xcCzxtjYsaYZcCXwMAUPopSSrUpDeiqI5EWXg/ayvGmx/4GXCAi\ndhHZDzgM+CgltVRKqRTQgK46iveBM0XkABFxA78HDIlu9k3HbxERn4jsQ6J1ntbk/HeA04EAsAh4\n2hjz3W6rvVJK7SIN6KpDMMZ8BNwBvA4UJf/UAGuSRa4nEayXAG+RGF9fAyAiWSQC/l2AC+gJjBWR\nq3fbAyil1C7SgK46DGPMo8aYfsaYLiQCuw2YlzxWbow51xjT1RgzkMTv/ozkqX2AmDHmP8aYqDFm\nDfASMH4PPIZSSu0UDehqryIiNhFxAVbAKiKuTZ+JyCBJKACeAB42xlQkz+srItkiYhWRccAVJGbL\nAyxOFJFzRMQiIl2Bs4A5u/8JlVJq52hAV3ub20l0nd8CnJd8fTuJrvIXgFoSLe+vgaZryYcDc0l0\nw98HnGuMmQ9gjKkGTgVuBCqAH0m07O9BKaX2EmKM2dN1UEoppdQu0ha6Ukop1QGkNKCLyA0iMk9E\n5ovIL5OfZYnIVBFZkvyZmco6KKWUUp1BygK6iAwCLiexzeYQ4MTk+t9bgI+NMf2Aj5PvlVJKKbUL\nUtlC3x/4NrnVZhT4nMTEo4nApGSZScDPUlgHpZRSqlNIZUCfBxyZXCqURmJNb0+gizGmOFlmPdAl\nhXVQSimlOgVbqi5sjFkoIg8AHwJ1JJYCxTYrY0SkxWn2InIFibXCDBgwYPj8+fNTVVWllNoesu0i\nSu05KZ0UZ4x52hgz3BgzisT63sXABhHJB0j+3NjKuU8YY0YYY0a43e5UVlMppZTa66V6lnte8mcB\nifHzF4DJwIXJIheS2FdbKaWUUrsgZV3uSa+LSDYQAa4xxlSKyP3AKyJyKbASODPFdVBKKaU6vJQG\ndGPMkS18VgaMSeV9lVJKqc5Gd4pTSimlOgAN6EoppVQHoAFdKaWU6gA0oCullFIdgAZ0pZRSqgPQ\ngK6UUkp1ABrQlVJKqQ5AA7pSSinVAWhAV0oppToADehKKaVUB6ABXSmllOoANKArpZRSHYAGdKWU\nUqoD0ICulFJKdQAa0JVSSqkOQAO6Ukop1QFoQFdKKaU6AA3oSimlVAegAV0ppZTqADSgK6WUUh2A\nBnSllFKqA9CArpRSSnUAGtCVUkqpDkADulJKKdUBaEBXSimlOgAN6EoppVQHoAFdKaWU6gA0oCul\nlFIdgAZ0pZRSqgPQgK6UUkp1ABrQldoF8XB4T1dBKaUADehK7ZR4JEJg7lzW3XQzlW9NJlZdvaer\npJTq5Gx7ugJK7Y1iFRWsvOBCTCBAzfvv437nbax+/56ullKqE9MWulI7wxhMNAqAxeNB7I49XCGl\nVGenAV2pnWBNT6fn44/hHz+O/DffYM6cmcz+6D3qq6v2dNWUUp1USrvcReRG4DLAAHOBi4F84CUg\nG/geON8YozOL1F7F4nLhOfRQpP9+vHrv7ylbswqAotmzGPuL63B5fXu4hkqpziZlLXQR6Q5cD4ww\nxgwCrMDZwAPAQ8aYfYAK4NJU1UGpVBKrlVg83hDMAdbMn0M0EtmDtVJKdVap7nK3AW4RsQFpQDFw\nDPBa8vgk4GcproNSKVFfVUlVyQbyevdt+Kz3sIOwOXQ8XSm1+6Wsy90Ys1ZE/gKsAgLAhyS62CuN\nMdFksTVA91TVQalU+unracz5+AMmXPcbKtYX48vMJKNbD1we7zbPjQcCiNOJWHQai1KqbaSyyz0T\nmAj0BroBHuCEHTj/ChGZKSIzS0pKUlRLpXaeNyubky65CuuPc+hSVUvs8SeJzZlHvL6+1XM2rV9f\n+5vfUvHcc0QrK3djjZVSHVkqmwfHAiuMMSXGmAjwBnAEkJHsggfoAaxt6WRjzBPGmBHGmBG5ubkp\nrKZSO6egX39qH30cV2Eha6+/geop77LqssuIVW25yUw8HscY07B+vfbjj9lw732Ei4p2f8WVUh1S\nKme5rwIOFZE0El3uY4CZwKfA6SRmul8IvJXCOijVZqKlpZQ/9zwAWeedi83phEgEE4mAMYlCsRgm\nHMLEYojVCkBtRTnfvP4Sbn86Q8ecgFgsmE0X1Ql0Sqk2IsaYbZfa2YuL/AE4C4gCs0gsYetOIphn\nJT87zxgT2tp1RowYYWbOnJmyeiq1LbHaWop/9ztq3nsfAN+4E8i/5x5ilZWEli0j9NNiat5/D98J\n4xC7Df/48djz8gjW1TLl4T9RNPsHfDm5jL/2N6SnZ1D34stYHHayzj8fW0bGHn46tZ1kT1dAqa1J\n6Tp0Y8wdwB2bfbwcODiV91WqLRhjEEn8H24iESJrGkeHIqvXYEJhsFqJrl+Ps98+WBwTCS5cQNWb\nb+E5ajR2wMTjRIJBnB4PJ/7yZj6b9BS15aWMu+ZXdO3TD5vbjYnFiJWVEa2qwpaZhS0new89sVJq\nb6ZTbJVqQWTjRjbcey8ljzxKtLwcq99Pl9tuxeLxYPF46HL7bVjT/Ug8zsYHH8KWkUnpE09Q9eZb\nuEeMAG9iprvb5+eEq29kyHHjWPHDdxQvWURNWSnvP/Yw4VAQSHTlLz95IitOOpnVV19NtKxsTz66\nUmovpclZlNpMrKqK4ltvw9K9J66xP6OqMoZTaojmd6H7B+/htFix+nyI1YrF76fLrf9H6aRJ9Hzq\nSYzTTdzjxWa1EFq+HIvHgz8rm4MnnsmKWY3DRv68PCzJMfbwqlXEkrPdg3PmJFr+Sim1gzSgK7UZ\nE4th8fuRk8/nhYcWM+qsApb/7xWWzJhOWnoG5933N3x2OwBWrxf/2LF4jziCqM1O2OHGE6pj/R13\nUPPBh4jLRe83XsfZpw+9DhjKyb+6laqSDfQ/4ijcvkR2NkevXtjy84kWF+MZORJxObeoU7S0DGPi\nWDMysCTvrZRSTWlAV3uF4qoAHy/cyKDu6fTN9eBzpTCoWa3k/fpXrF4VwcQNmV2dLJkxHUjsDrex\naDm+7JyG4hanE4vTiSkvx122AWO1UvPhVABMMEjdV1/h7NMHt89Pv0MO3+J29rw8er/yMvFAEIsn\nDVtWVrPj4XXrWH35FcTKy+nxj7/jHjoUsek/XaVUczqGrtq9kpoQZz/xDbe/OY+fPTqdtRWBlN0r\nWl7Ohrvupuiss8lY+iWHndCVmvIwPQYOBsDhTiO3oBCAyIYNVLz4ErVffklk/XpCixax4e57CK1c\nife4YwEQlwvP4VsG8c3ZcnNxFPTElr3lhLiK554nvGwZsYoK1t91F7EqzeimlNqSfs1X7V7cGFaX\nN+6+tqq8nv75/pTcK7xqFdVTpgCw8Y9/ZOAnnxB2ZtCj/00Ea6txeby40zOIlpay6sKLGjaG6XrH\nHbiGDaP288+pnzmTXs/9l9wrr8SanY01K4t43BAzBrt1x79Du/bfv+G1Y59+iO4Vr5RqgQZ01e55\nHDbumjiI+95dyKDu6RzYKzNl97JlZ4PFAvF4Ihjbbfiy3YAbb2bjfSPRaLNd3gKzf0x0haelEa+r\no+K118m95mpsWVmU1IR4+bulLC2p5ZIjetMn14vXuf3/9DxHjqTn008RKy3FM3IkVp+mZlVKbUkD\numr3vC4bpwzrzvEDumCzWsjybLuFWl4XojoQxe2wkuVxbHfL2JqVReHLL1H/3Ux8xx+HNSenxXLi\ncuGfMJ7qKe8iDgf+CROweNIw9fXYcnPJvuB8rOnplFXUcs0rc5mxohyAt35cx/s3HMl+Xbe/h8GW\nkYH3iCO2u7xSqnNK6U5xbUV3ilOba7rpy+Yq68PcOXk+b/64Dq/TxtvXjaR3jmeX7xmrqSG4cCGB\nH2eTftKJiNNFrKoSsdkQtztRKBJBHA4sfj+hhQspcaUz6t/zml3nqqP6cvO4/rtcH7Xb6U5xql3T\nSXFqr1JWF+KRT5Zw1zsLWF8VbLFMOBrnzR/XAVAbijJt8c5n64uWlhJZv55YdTWRdetYdcGFlDz4\nIEXnngfxGM7evXH07AnRKMW33MK6W2/DhELEqqtZfeVVUFZKrq/5MrQhPXWrV6VU29OArvYqL81Y\nzV8+XMwz04u4+fU5lNRsGdRtVgvH9M8DwGmzcFjfndtKNbJhA0Vn/5ylo4+m7OmnMfF4w7Hohg0N\nCVnikQgVL7xA3ZfTqf/6a9bffQ/EDZa0NGKPP8ITJ/elV3YaDquFCw7txcG9d34OQDweJ96kHkop\ntYmOoau9Snld4y5q1YEIociWwS3L4+DPpx/AxpoQGWl2stJ2blZ4/bcziKxZA0DZv54g8+yf4z32\nWIJz55L329+Az0fFhvUs/PIz8o8+iszMTCoe+BMWnxeL10PB009R8s9/0nvVQl69bBTYbHgcNjw7\nMCGuWX2qw3z/fhGxSJwRE3phtUVxe3WCnFIqQQO62qtcOrI3y0pqqQ5EuHX8/rgd1mbHo+EYsWic\nLI+DbO+WO64BBGqqiUWjWKxW0vzprd7L2b9/w4x3Z//+iMNOtz/eQzwcxurzUVNXx8u//y11lRUA\nnHXnA+Rcew2ZZ5+N1e3G2qsX3f74xzbZBCYeizPz3RXM/SyRICZYF6FLr7X0PXAY/twuu3x9pdTe\nTwO62qtkuO3cNn5/1lUGyPY48Lkaf4Xra8LMeHsFVRvqGXlmP7LyPYil+Tym+uoqPn32CRZN/5wu\nfffllJt+hycjk2hVFYEffiC0ZAnpEydi79IFR4/u9HnnbcIrV+IePLhh05dNXyGi1dUNwRygsmQD\nA6++GrE0jmS11Y5uBoiEYg3vo5E4dZVVfPafpxl37a+xO5t/eQnVR7DaLNg2+8KjlOq4dAxd7VXS\nnDb6dfFx1H559M714rA1Bqyi2aXM/2Ita36q4N3H5lBfs2WSk2BtLYumfw7AhmWLWbfkJwBCCxaw\n5qqrKXnwIVZfeRXRsnIsaWk4+/TBd/TR2FpYvmaxOxlxxvlYrDa69O1HwaChzYJ5W7JaLRw6sS+9\nh+bQa1A2I07IZeG0D/BkZmFpsiTPxA3lxXW8/+Q8vnxtKYEW/g6UUh2TttBVh2G1NbbGLVYLsbgh\nEos3W4Nudzqx2mzEolEAjCeDyvoQpkmu82hxMSbe2BpuTUaGnwOOHccBo8cgFgv+zfZgb2ueDCfH\nXjSASDDI4m8/ZfCYsRxwzFistsZ97QM1Yd59bA5VGwOsWVhBbk8vA4/sntJ6KaXaBw3oao+orA+z\nrjKI32HFZ7XitFtweXdtS9OCgdkcdGJvKorrGDqhkHs/+YnD+uZwTP+8hmQubp+fM+58gLmfTCV3\nwFA+XhPlrNx6fKOOxHPE4YRWFNH1D3cSd2573bqIkJmRmi1oW+Nw2XC4vAwbe1IrlQKrrfELjM2u\nnXBKdRa6sYxqE+HVqyl//gXcQw7Ac/jh2NJbn2wWjsZ5ZvoKlq2v4dzCLsz63zIyuno4/pIBpPlb\nnsi2veJxQ1ltiAXrq1m2sY6Hpi5m6q9G0TXd3VCmvC7MM18u56vl5YzdJ4PTqxZQ+tDf6PaPRwi7\ns/hhegWRmIXR5+yH27d37ZserItQXxVi5rsryeiaxuDR3XHv4hcl1UA3llHtmrbQ1S6Llpay8oIL\niRYXUwEUPPdfbCNGtFo+EInxyaKN/Paofnzzz3lEw3HqKsMsn13KgCO6URmI4LAK3s1SpMbihtLa\nEPG4weuytZhCtTYU5X8/ruWRT5dyUGEWz116MDXBKI99Pp9DemdyRN8csjwOLjy8N2ceVEB2uJa1\nZz9KrKyMsN3Hiw8vbbjWsOMK2iSg19eEiUfj2NqgF2JrwsEo019dwrqllRQMzKZbv3QN5kp1Itof\np3aZMYZYZWXD+1hZecPreCBAeOVKar+cTrS0FACvw8pVo/tSF4rizXQ1lPVnuVhWUsvFz8zg1v/N\no7Q21Ow+q8rrGfu3Lzjs/k/4YnEJ4eiWa9DrwlHufXcR1YEoHy/cSIbHwemPf82kr4q4+vlZLFpf\nA0COz0nPrDScaS7SDjwQAImGcXkTXxJEIM3fBsG8Osy7/5zDpP/7is9fWkygNnWT1KKROKVra6ku\nDTLv87Us/X4je0MPnFKqbWhAV7vM6vPR4x9/x9G3L/4TJ5A2YnjDsUhxMcvGT2D1ZZclZo+Xl2O1\nWji4dxYD+mRw4vVDGDG+kBOuGIS/u4eLnvmO2WuqmDx7He/OLW52n3fmrKOyPsL1h3ZjWOkyyv/0\nAMElSzDJCW4AVouQm1x/vmnFWlUg0nB88YYaSmsavyhY/X663H4bPZ96irRMN6ffNJwjztiH028Z\ngdu3ZQ/AjqqtDLFhRTUAS2duJBSIbuOMnedMs3HkmfvicNvwZbsYdlyvVve7V0p1PNrlrnaZxeUi\n7ZBD6PWfSYjD0Sy9Z+inxRBLzBgPzp/f8Lo+FCMUjWN1WTnk5D4ArK8KNFtX7rBaCISjuB2Jz0bu\nk8Ojnyzl7H19VJ12LhhD1euv0+e9d7HnJbZ6zfU6+d81hzNlTjH9u/qYt7aKm8bux+NfLGNwt3QG\n5Pt5acYqrh3Tr+E+tqwsvCMT2cycwNAxBW32d+P22bG7rESCMXzZLgKxOKnayd1qtdClt49z7jwk\n2cOwa/MRlFJ7Fw3oqk1Y7HYs2Vvume4efiD2ggIiq1aRfdWViNNJaU2I8//9LQuLaxjeK5N/nTec\nHJ+TdLedB88cyqSviyjISqNvnpe6UJRIzOBxWOnlc/HBDUfi27CSqk37qNfXQ6yx611E6CphztjP\nz9+/Wsuk79ZywWGFvH3VYdhWLOPtn9bRLXf3JUeJ2oWxvx5GWXEdvi5u1oXC5KfwflabFU+6biaj\nVGekAV2llD0vj8IXnscYg8XlwurzsW5NJQuLE2PZ36+soLwmhKUmgi/LRVe/k6P65RCOGwQ46s+f\n8Yuj+nDx8AJev+s7opEYEy4sJPPii6mbNo3syy7F4m/sEYhs3MjaX95IpLiY6/9wFxddeSBepwV3\noILoxjUcs/+B5OTn7rbnz/Q6CUTjFJfG6eay09VhJRaNYbVp0FV7joicDAwwxty/p+ui2o6OoatW\nhSIxiqsCzFtbRdlmE9R2RNSVTlmtg5LSOMHaCHk+F2nJLUnT3Xas4Tgv3T2D8tIACIw/oBsmbjjv\n6W+pC8d49NNlBGoihANR4lHDlGeL8Jx/Ob0mPYv/hBOwehrXjJc/+yyYOD3+/jD2WJRuDrCXlbLx\n17+h+t336JPhJMuze2d+56e7OCjLx+T7ZvLCHd9QvKKa6nrdwU21DUnYof/LjTGTNZh3PNpCV61a\nWxlg3MPTCEXjHL1fLn89cwhZnh0bl41F48yfvpZv/rccgENP6cPgo3vwwS9HMWd1Jf3S0/jxtWUY\nAytXVPH+rCquH9MPm9VCMJlJLc/vxO2zk93dQ9naOjK6pGH1pmFrYYzYmp1Nl//7P1ZffgWxykps\nubn0/NfjBBcsgHicihdfIve6a3f9L2cHhINRvnlzOZFgYv7At28up+dJBQwozMTr0n+CaseJSCHw\nAfAtMBz4k4hcSWIayDLgYmNMrYiMBx4E6oDpQB9jzIkichEwwhhzbfJa/wZygJLkuatE5FmgGhgB\ndAVuMsa8trueUe04baF3YvFYnGik9S1OZ62qJJRcGvbFklKi8R1YAlVXBgsmE12/hNXzG5exrV5Q\ngYkaemalcdy+udQtqWL9siqyu3vx9/Tyzpx11IWiDCvI4J3rRvLbsfvx8hWH4ctwcfINQznv7sOY\n+MuhrU74yjjtNMJr1jQso4uWlBApXo81M5GD3Jq187nId5bNZiWnwNvwPj0/jW9XVVAfSd2Md9Up\n9AP+CRwFXAoca4w5EJgJ/EpEXMC/gHHGmOFAa2NN/wAmGWMOAJ4H/t7kWD4wEjgR0BZ9O6fNg04q\nUBNm1tRV1JQFOeyUvvhz3FuUObRPNtkeB2V1Yc4/pACnbTu//0WCMP1h+Oph7L2P4cBj/kHx0ioA\nDjy+AHuyVepw2xkwshu9h+cxZ20Vl770A5eO7MPzM1bxz0+XcduE/bno8MKG/OHbM2vblpGBe8gQ\nxOnEhEJYPB6c+/fHN3Ys9vx8/OPGbeffUNux2i0MO66ArO5equrDWPLTCBeVNgw7KLWTVhpjvhGR\nE4EBwPTkMkUH8DXQH1hujFmRLP8icEUL1zkMODX5+r/An5oce9MYEwcWiIjm6W3nNKB3UktmbmDW\nh6sAqNxYz0nXDyVts13R8tNdvHfDkYSicbwuG+nu7Rx7jgZh3Q8AWFZ8Qn6ftzn/ngtBLDg9dixN\nUpo63XZsThv72YRXrzyM2uo6nIFazr6wP5+tDVAXijYE9O1ly82lz5R3CC5YgHvQIGy5uXS9/baU\nZULbHm6vgz4H5lITjFITjHJJjz54nbu+zl11anXJnwJMNcb8vOlBERnaBvdoOnlGNzVo57TLvZOK\nRxu7z03cJBJuby4SJsdtpWdWGplpOzCRzOmHY34H9jSwp2HvdSDeDBfeTBf2FlqlVovQxe+iW4ab\n/LI1hC46B/9Pczlz/ww8oRrisdaHBSKhGOFQtNmOaBaHA0ePHviPPx57t26I3b5HgzkkdtOL1EWJ\nlYXIs9vI3M0T81SH9g1whIjsAyAiHhHZF/gJ6JMcIwc4q5XzvwLOTr4+F5iWuqqqVNIWeie176Fd\nqdhQR215iCPP2neLbU4j69ez8c9/xuLzk3vdtdhaWGPeKosFug2D62cl3ruzEp8B6yoDfLJoI0N6\nZtA7J61ZK9UYQ83rr9Hl9tuI5+Tww2dTWbPsJ4YefyIFg4fg8nib3aa+Okzt6o1YfpoFNRWkTxiP\nvYW85U3FamtBpNnM+N2hvjrMq/fNpK4yhC/bxWk3DceTrhu/qF1njClJTnJ7UUQ2/VLdboxZLCJX\nA++LSB3wXSuXuA54RkR+S3JSXMorrVJCA3onleZzcOSZ+xKLGZzu5r8Gsepqim+/nbovpwNgcTnJ\nu+mmHWvl2hzg69rso5KaIKc/9hXrqoKIwEc3HoU3rzGgiwj+8eOx+vys2biOrycnJtSuXjCPSx5+\nEhOLsCJSzOtLXmdsr7FkV/fA+/2XlNz7BwAC335Lt/vvw+pvOaVppLiY9X+4C3HY6XL77Q27y7Wm\nqj5MKBrH5bDibyERzI6IBKPUVSZ6L2vKgkRD2863rlRrjDFFwKAm7z8BDmqh6KfGmP6SGFx/lMSE\nOYwxzwLPJl+vBI5p4R4Xbfbeu3kZ1b5oQO/EbA5rwy9AtLQUY0xDy9U02X3NtNFs7Fgc1lUFE9c0\nsKainr55zf+PcA8ZQry+nuCqZY0fGkMkFCLkjHLBexcQioV4bfFrvH3iFGKrixqKRVavxkQitCRW\nU0Px7++gblqiN9HWvTv26y4lRhy3zY3P4WtWvrwuxB+nLOT9eev5+cEFXHPMPjs27LAZh9tGXi8f\nG1fWkN8vvWFioFIpdrmIXEhiotwsErPeVQelY+iKSHExReecy7JjxlD72eeI00n+H+/Be/Ro/Ced\nSM5VV7bJGLTHaeXW8fvjsls4vE8WA/McEKymKhCmqKyONRX11Fsd2HNz6XPoERQMPACb3cHg407E\nJlZiJkYolmjlxk2cMGE8Z/wc18AB2PLz6XrP3VgzWt/WVayJ8Xux2+H8U7jkw0sZ8+oYXlj4AjXh\nmmZlK+oivP7DWurCMZ76cgW1wV37UpPmdzLhmiGc/8fDOOGKwW2SyU2pbTHGPGSMGWqMGWCMOdcY\nU7+n66RSR1KVXlFE9gNebvJRH+D3wH+SnxcCRcCZxpiKrV1rxIgRZubMmSmpZ2dWX1VJOBhAgiEq\nbv89ge++w5aXS+Hrr2PPzSVWV5cYb05La/H8YG0tsWgEl8eLWG2EA1GsdkuLE982qa2uor60CFv5\nErI+uYnwZZ/z2pI4t/5vHgBPnD+c4wcmuuqryiswsSjRunosX36JbeJY5lcvZWHZUjwOF97oUHKs\nfvqmxagNhsnsnke6d8vld5tENmxgwwMPYO/Rk/mnDuaGz28EwCIWPjr9I3LTGpfprq8KMvovnxKM\nxPG7bUy98Si6+F2tXVp1DjrLW7VrKev3M8b8BAwFEBErsBb4H3AL8LEx5n4RuSX5/uZU1UO1rL6q\nknf+9gCrF8zF5fFy5s23Ern2Bpz9+iVasLDViWP1VZVMfepRSletZMwlV+LN7sO0l5eTU+BjxLhe\nuL0tt0C9Uo/3v6PBJLr0A6EIk2dvaDj+1o/rGL1fLg6blfSsTEwsRtzpRM48g6oILFiRx7fLbVw7\nug9L1pRz1uTEPJ9Th3Xnnt7dt/rM9i5d6HbvvSBCn2Ax1mSrv39mf6yW5l9Csjx2plx/JDNWlHN4\n32xydFa6Uqqd210DeWOAZcaYlSIyERid/HwS8Bka0He7UH0dqxfMBSBYV8ui2T8w/KEHcRQUYEt2\nW8djMQI1VcTjcSwWK26/H0sy8K2aP4elM74G4O2H7uPkX/+VdUsqWbekki69fOx7cNeWb+zww88e\ng4/uhO4j8KRncuHhbr5dUY5VhPMOLcDRJHGJWK0Nk9yWF1dw9zsLAZi+tJSPfjGcXx7Vi42BOL88\nbl/SHM1/nY0xxGtrEacTiyNX/y6qAAAgAElEQVQRkC2uRCu7i7ULk382mVU1q+if1Z8sV1bzatqs\n9M310jdX5wEppfYOuyugn01ilyKALsaY4uTr9YDuPrQH2J0ubA4n0XBiTDqvd1/Shg1rOB6ormbe\n5x8x8+03qK+qxJedwyGnns2+hxyB2+fDm9kYAL2Z2URCTSbRbWUUp9Y4MX0mkHbZaKwOFzZ3BqP6\nRZl+8zGIQEZa67PJ4/HGe8QNxKqquGJ4VyQzE7e9eQvbRKMEf/qJjX/5K+5Bg/BfdhnVFgdWEbK9\nTtw2NwX+Agr8bZf7XCml9qSUjaE33EDEAawDBhpjNohIpTEmo8nxCmPMFhtsi8gVJLcpLCgoGL5y\n5cqU1rOziUUilK9bw+yp79Jt3/3pPWwEbl+iJRysq2Pa888w5+P3tzjv0NPO5qCJpxOLRFi7aAEb\nVyxj0NHHUV9t58tXlpLT08shJ/fB7duyi7qiPswTny/j7TnFnHtIAecc0ot09/YvB6uoDfH81yv4\nbnU1143IpdfiWWSNP6HFMf5ISQkrTjqZWGUlrlFHsfG3f+CGV+fRxe/kiQtG6Hi42hmdbgxdRL4y\nxhy+p+uhts/uCOgTgWuMMccn3/8EjDbGFItIPvCZMWa/rV1DJ8WljjGG5P7PDapLN/LUdZcz/Kwz\nyD9gMOG6OmY8/SwVxeuw2u1c9ven8GY132gmFosTDsSw2QV7K1u1riit5ei/fN7wftpNR9MzK414\nLI7Fun2z6EM1ddRXVOKsrsDRvTu2zJaTrURLSlh+yqnESktx/fXvXLzARlFZYoLvjcftyw1j+m3X\n/ZRqotMEdBGxGWM0e9BeZncsW/s5jd3tAJOBC5OvLwTe2g11UK3YPJgDlK5aydBTT2F+9wpOm3Ye\ntyy9l6N+dQM2h5NYJEJtRdkW51itFtxee6vBHMBlt2K3Ju7ncVjxWyzMmrqKj/+ziLJ1tcSarH1v\njTUUIE3iOPLzt7pEzZqVRa9nn8F3/HG4u+dTkN3Yit8nd/fuEqc6t8JbppxTeMuUosJbpsSTP89p\ni+uKyJsi8r2IzE/2aCIitSLy5+RnH4nIwSLymYgsF5GTk2WsyTLficgcEflF8vPRIjJNRCYDCzZd\nr8n9bhaRuSIyW0TuT352efI6s0XkdRFpeUmM2i1S2kIXEQ+wikQO3qrkZ9nAK0ABsJLEsrXy1q+i\nLfTdbe1PC6i1BDnr60uImcSOZncNvZ3q56ZRuqqIi/76GNk9ejaUD9TWEA4EsNpseNIzWl2zHghH\nWVpSx9QF6zlzRE/Kfyxn2suLAXC4rJxz56F4MlrfDjVaVsbqX/yC4Lz52Lp2pferr2DLbS0jZEI8\nFELsdkrrIrw7t5juGW6GF2bu0iYxqtPa4RZ6Mng/CTQNdPXA5UX3T3hhlyojkmWMKRcRN4ltXY8C\nSoHxxpj3ROR/gAeYQCIb2yRjzNBk8M8zxtyT3Cp2OnAG0AuYAgzalKFNRGqNMV4RGQf8jkSK1vom\n9842xpQly94DbDDG/GNXnkvtvJROijPG1AHZm31WRmLWu2qnMrrks3HxLAZlD2J26WysYqVfZj++\nqJxMel4XXN7EzG9jDHWV5cx6/x1mvPkqbp+fc+99iPS8luc5uh02BndPZ3D3dACWrV/dcCwcjG2z\nhR4PBAjOmw9AdP16IiUl2wzoFmfiC0Kuz8mFhxdu1/Mr1YbupXkwJ/n+XmCXAjpwvYicknzdk0R+\n9DCwafLLXCBkjImIyFwSe38AHA8cICKnJ9+nNzl3RpN0q00dCzyzaWOaJo2wQclAngF4gQ928ZnU\nLtD9J9UWXD4fXTK784fcm1kRWE1Pf08Wv/MhsUiYk2+7m7T0DIwxlK1ZRV1lBT9+8A49BwymcN8B\nVG8objWgb27ImJ4s+2EjgZoIA0d1w7GN7VAtbjfuoUMJ/Pgj9u7dsW8jmCvVDrS2jGKXlleIyGgS\nQfawZIv5M8AFRExjt2ucZPpTY0xcRDb9AxPgOmPMBy1cs44d8yzwM2PM7GSCmNE7+iyq7WhAV1uw\nWm3kFfYmUF1N7dI1rPziU3oU7svRZ16EOz0DEaG+uor3//kQ/Y84ilFnnk93m4u6F1/CubGcaI9e\nrU5Wa8prC3LqRd2IG8HusOCwRIHWZ73bsrPp8cgjxOtqsaSlbbN1rlQ7sIpEV3ZLn++KdKAiGcz7\nA4fuwLkfAFeJyCfJ1vu+JDb+2pqpwO9F5PmmXe6ADygWETuJ1Kvbuo5KIQ3onZiJx1sd77bZHfiy\ncxhy3DjiY8ZiaaGcxWrjq1df4PK7/0rR+AkQjVL/9de49t8f//HHb1G+pCZEcVWArn4XOV4nNR9+\nyPo7E5nSxOWi79QPsbhb37oVwJaTDTk7kMpVqT3rVloeQ791F6/7PnCliCwkkff8mx049ykS3e8/\nJLOwlQA/29oJxpj3RWQoMFNEwsC7JJ7hd8C3yWt8SyLAqz1EA3onFKutJfDDD1S/+y4ZZ5+Nq3//\nhh3UWtJSME/zpzP+2l/z7iN/JVRbA9HGFS7xmpotym+sCXL6Y1+zqryebI+D9244Ek9hYcNxR8+e\nbZIARqn2pOj+CS8U3jIFEmPmBSRa5rfu6oQ4Y0wIGNfCIW+TMndudo43+TNOIhhv/qXis+SfLc5J\nvr4fuH+z448Bj+1g9VWKpHwdelvQWe5tK7x2LcuOPQ6MQex2+k6dir3rzm3YV19dhTUcoXby25Q9\n9RSuQQPpdt992LKbt6JXltVx1J8/a3g/5fqR9PdAYO5cQouX4J8wHnuXnatDrL4eU1cHViu2rKxt\nn6DUzuk069DV3klb6J2QCYUa9mc1kQgmHtvpa6X5EzPWbWefhf+kExG7vWEv+KY8Thsj98nmy6Vl\n9MnxkOdzYvW58I4ciXfkyJ2+f7SigrJ//YuKF17EuW8/evz9H9i75e/09ZRSam+lLfROKFpZSeVL\nL1Pz4YdknnsuvrHHY/WmLglJoKaGQE01oUA9roxs4k4P2d7W15vv0LXnz6fotNMb3vsnTiT/zju2\nORav1E7QFrpq17SF3gnZMjLIuuhCMs48A4vX25CJLBXCwQA/vPsW37zxEgB5hX049da7gLYJ6CYY\nbPY+XlODiW97xzmllOpodBZSJ2VxubBlZbVZMI/G4lTUhwlEmnffhwMBvpv8WsP7jUXLqSktaZN7\nAjgKC0k75BAArBkZ5P3qxq3mcVdKqY5KW+idVMNEMhFsOTm7dK1gJMbMonIenLqEg3tn8otRfcn0\nNH5RcLjTCNRUN7y3b2VG/Y6yZWfT/W8PEa+vR+wObFnbXv++Sby+nkhxMaHly0kbOlTXtSul9mra\nQu8E4sFgs27oeH09NVOnsvSYMRSdex6R4uKtnN2ypnMvqgIRLnl2Jj+squDxz5ezaH1j8Hb7/Ey4\n4SbcPj8Wq42DJ55Bmr/1pCo7w5aZiaN7d+x5uYht+7+jRjZsYPlJJ7P2uutZdellRMu2mlJAKaXa\nNW2hd2DxSITQwoWUPfEkaUccTvq4cVgzMojV1bH+jjsxkQiRlSupfPVVcq+/fruuaWIxwitXUj7p\nP6Qdegieww8HcWK3CuFkb7vDZm0ob7XZ6LH/IC748yOAweFy43DvekKmQE2YQG0Ep9uGy2vD2uSe\n2yu8fDkkv+iEliyBXZjtr9TeJrnVa9gY81Xy/bPAO8aY17Z23k7e6yngQWPMgra+tmqkAb0Di1VU\nsPLCizCBADUffYR78AG4MxLZ0BwFPQktXgKAY599tv+a5eWsPOdcYpWVVL78MoWvvEzWwEG8c/1I\nZqwox++y03ez9KRWmw1vZtutDw/Uhvno2QWsml+OzWHhrNsOJqPLjn9JcA8ZgmvAAIKLFpH3m18j\nOjNepcKd6eew2cYy3Fm1q4lZ2sJooBb4KtU3MsZclup7KO1y7/ia7OBmohEgMe7c84knyL3xRro/\n/HCilb2djDHEmuwEF6uspD4cY9aqSj5ZVEKO14nbseOt5R0Ri8ZZNT/RPR4Nx1nzU8VOXceWk0PP\nJ59gn88/I+OMM1O6dE91Uolg/iSJ/dwl+fPJ5Oc7TUQ8IjIlmYd8noicJSJjRGRWMmf5v5OpURGR\nIhHJSb4ekcyPXghcCdwoIj+KyJHJS48Ska+S+dNPb/Hmiet4ReRjEfkheb+JrdUr+flnIjIi+fox\nEZmZzNn+h135e1DNaQu9A7P6/fR88glK//lP0g49DEevwoZj9q5dyfnFFVu/QDwG5cvh2ydgn6Oh\n4HCsPh/d//YQJQ/9DffQIbgGDWJlTYhfvTIbgM9+2sjnvz2arumpC+pWq4Ue/TNZs6gCm91Cj/22\nfyLc5jbf0U6pNpaq9KknAOuMMRMARCQdmAeMMcYsFpH/AFcBf2vpZGNMkYg8DtQaY/6SvMalQD4w\nEugPTAZa634PAqcYY6qTXxa+EZHJrdRrc7clc6lbgY9F5ABjzJyd+UtQzWlA78AsLhdpBx1Ej0ce\nQZzOhtzg27JpIxi7w4br639h//5J+O4JuOorLF0G4h01irRhwxCXC6vXS2xDkxZ73ACp3azI7XNw\n3KUDCVSHcXpsuD2tZ2hTag9LSfpUErnO/yoiDwDvANXACmPM4uTxScA1tBLQt+LN5F7vC0Rka3sx\nC3CviIwikaa1O9Bl83oZY6a1cO6ZInIFifiTDwwANKC3AQ3oHZxYrVj9/u0uHw4G+P6d//Htm69g\nsVr5+S230HXl51C6GIJVAFg2+3KQ53Nyx0kD+GjhBq4Y1Yf0tNQH2DSfgzRf6jbEUaqNpCR9arIV\nfiAwHrgH+GQrxaM0Dq9ua81oqMnrre2Mdy6QCwxPpmAtAlyb10tEPjbG3NVwQZHewG+Ag4wxFcmJ\neG23jrWT04DeDsWqqgjMm0dkXTG+o0dvfZ14sApKfoLVM6DfcZBRAPadn9wVCQb56evEl+p4LMbS\neYvous8Y6DMacvZr8ZyMNAfnHdqL0w7sgcdpw2rZ9g6Z0XAIi83eYia3TeKBALHaWqQN1sortYek\nJH2qiHQDyo0xz4lIJXAtUCgi+xhjlgLnA58nixcBw4H3gNOaXKYG2P5v+82lAxuTwfxokl9aWqjX\n5pPh/EAdUJXsARjHZhne1M7TSXHtUN2MGay+9DLW/+53rL35ZqKVla0XXjcLnj4OPrwNHh8JNet3\n6d4OdxoHn3IGADank/2OGA2jfgtj7gBP6+PNdqsFv9u+zWAej8coXb2SKf/4CzMnv95sw5lm5YJB\naqd9ybLjjk+slV+3bqefSak9JjGb/XJgJYmxqJXA5W0wy30wMENEfgTuAG4HLgZeFZG5JLrBH0+W\n/QPwsIjMBJquzXwbOGWzSXHb63lgRPJeFwCLWqnXPU1PMsbMBmYly78ATN/B+6qt0OQs7VDJI49S\n+sgjANjy8+n9yssYn49gXS0mHsfp8eBMSy4Nm/LbxPj2Jmc8CwNPaXa9UDRETaQGl9WF19H6TO5A\ndTXrlv6EzW4nM787FosFt8+P1d52Xeh1FRVMuulaAtWJ7vvTbr2LwiEHblEuUlLCip+dQqysDIDs\nX1xB3o03tlk9lNoJmpxFtWvaQm+HMk4/Dcc++2DxeOh65x2I38/axQt58tpLePLaS1j8zXSi4XCi\n8P4TGk+0OiB/aLNr1Ufq+XT1p1zw3gXcP+N+KoItL/GKhEN8+9arvPnAH3jtnttZ/v0MvFnZbRrM\nARDTfNe6WMubuYjNhqNX49Cjc7+Wu/uVUkol6Bh6O2Tv2pVezz6LMXGsPh9RE2fWe5MbAuEP702m\n7/CDsTkc0G0YXDq1cQzd17XZtWojtdwy7RZiJsbqmtWc1PckDsk/ZIt7xsJhNixb0vB+7eKFDD72\nBKzWtl1+5vKlc/rtdzPtxf+Q37cf+f1aDtS2zEx6PPw3qt//AHv37rgPHNam9VBKbZuIDAb+u9nH\nIWPMlv+JqD1OA3o7ZctpHK+2xWP0HXEIy3/4DoDew0Zgc7qoClZRHa7GkdWLjPwhOG1bLkuziIUM\nZwZlwWTXtbvlcXBnmodR517E6/fegc3h4LBTz9qhYB6rqSEeDGKx27FmtL5Xu9VqJa+wLyf98has\ndju2rfQA2HJzyTr/vO2ug1KqbRlj5gJDt1lQtQs6hr6XCNbWUFNWSjQcJqNrPsZlY9L8Sfxz9j+x\nW+w8N/45BmQP2OI8Ywxratfw5tI3OajLQQzMGYjP4WvxHrFolGBtNSCk+dOR5Az00toQL3+3GqtF\nOGN4D7K9zb84xCorKX3qKSr++xyeUaPI/8Od2LLabqtXpdoJHUNX7Zq20PcSLq8Pl7cxEJcGSplf\nPp9hecNYULaAqUVTWwzoIkJPX0+uG3bdVq8fN3HKIxXE7DG8dm9DMA+EY/zp/UW8MnMNABuqg9w6\nbn/stsbpF/G6OsqfehqA2qlTiVx1pQZ0pZTazTSg76Uy4oY/dzmGcOVqqoZcT9C1s8tJE9bVruPW\nL2+lh7cHo3qMYlSPUaTZ04jG41QHokwYnI/VAjXBKNG4oVlHud2RyOJWWQl2O7bMnd+KVSml1M7R\ngL6Xsi18G9s7N+IG/H2PIX7qk7t0vYUlC7it9/Ws+Hw6+Q4noaw60tLT8Lns/OPkbpivH0NiYeTw\na7FtlnzFlpNN4WuvUjf9K9KGH4hVA7pSSu12umxtbxSPw9rvG97KxoVYtzeXd7AaqtZC0XQoWQR1\nJQAM9w/m/XvvY/4nU/nowb9CIJGZjbpS7K9egOObh7F/9xi2/54EtSXNLikWC44ePXBPGEc0J5uI\n5hVXqt0QkTtF5DcpunZDJrf2SERyReTbZBa6LTbPEZGnRGTLscq9lLbQ90YWCxxxIyx+HwIVcMJ9\nsFmXe6CmmnAggNVux5ORiYhAfTl8+RB8/QiY5FrwLoPg3FewYm9c2w6Nr+MxKP6x8cKVq8BixRiT\nuGZSXWUFb9x3ByUrixj58wsYcty4xs1vlOrEBk8avEU+9LkXzm0P+dD3KBGxGWOi2y65S8YAc1vK\nxy4i1o6Wp11b6HurrD5w1Vdw43zod3yz/duDtTV89erzPHXdpfz35uupKStNHFj3I5GMAqpPf5rg\niEtALLBhHrxxBW6HjQnX/Ya83n057LSf481MLm+zOWHgqYnXFiuB8z9j1pc1THt5CbUVwYZ7Fi9Z\nxMai5RgTZ9qLk4iEmuZ4UKpzSgbzLfKhJz/faa3kQ98i73mTU4aIyNciskRELt/KdfNF5IvkdrDz\nNrVqt5HD/LomedH7J8sfnLzfrGR+9f2Sn18kIpNF5BMSqVNby6teKCILReTJ5D0/FJFWk1SIyOUi\n8l3y7+N1EUkTkaHAn4CJyedxi0itiPxVRGYDh22Wp/2EZD1mi8jHW3uO9kpb6HsriwW8LWc3jEYi\nzP7wPQDqqypZt3ghnjQn5dYezF24lK5DulLR/0QGdT+Q9LeuhaIvcZh69jn4cAoGD8XudGHflE3N\nnQFj74UhZ4ErnZ8W+vnqjWUAbCyqZsI1B+D2Ocjs1gMRC8bEye5RsNWkK0p1IrszH/oDWyl/AHAo\n4AFmicgUY0xLCRLOAT4wxvwxma98U923lsO81BhzoIhcTSKT2mUk9mo/0hgTFZFjk8+7KTHMgcAB\nyevZaDmvOkA/4OfGmMtF5JXk+c+18nxvGGOeTP5d3ANcaoz5h4j8HhhhjLk2ecwDfGuM+XXyPcmf\nuSS+eI0yxqwQkU3LdLb2HO2OBvQOyGqz0WvIMIp+/B6bw0nXPv0IBEO8eOdtRIIBeO9tTv3TA2zM\nTSPd7oZIAGJhbHY7Nnv6lhf0ZEPfYwCo+7pxN7n6mjDxeGIfA192Lhf+9VHKVq+i2377k5be+uYy\nSnUiuyUfujFmWtMhsBa8ZYwJAAER+RQ4GHizhXLfAf8WETuJ3Oibxtu2lsP8jeTP74Fkdx7pwCQR\n6UciKU3ThTFTjTHlydet5VWHRH73Tff/HijcyvMNSgbyDMALfNBKuRjwegufHwp8YYxZAdCkflt7\njnZHA3oH5Pb5GXfNjdRWVOD2+XH7/NRXVSSCOYAxBOvrcPvtYAz4u4Fj+8a7hxxbwPoV1dRXhTnu\n4gG4vInfb4fLRXb3nmR375mqx1Jqb7Rb8qEnu4i3lvd88x3EWtxRzBjzRTK4TgCeFZEHgWlsPYf5\npvG1GI0x5W7gU2PMKSJSSPMUqXVNXreYV32z62669tbyQj8L/MwYM1tELgJGt1IuaIzZkVm7W3uO\ndkf7RTuoNH8Geb1648vKxma340zzctwV15HVvQcHjD8Rd7qPrJVfQzwCEx+FtO2bqOrNcDL+qsGc\n9tsDyS30YbXqr5BSW3ErifznTbVVPvR6Y8xzwJ9JdGMXkch7Dlt2C08UEZeIZJMIdt+1ct1ewIZk\n9/VTyeu2lMN8W9KBtcnXF22j3BZ51XeCDyhO9iycuxPnfwOMEpHeAE263Lf3OdqFlLbQRSSDxC/F\nIBLfCC8BfgJeJtF9UgScaYxpOQVYJxSNRKgtK6V42WK67dsfb1ZOmyRIcaalMeDI0fQZOgwTrcS9\n5F1sNcVwzXfgywfL9t/D7XXscn2U6gzmXjj3hcGTBkPbz3IfDPxZROJABLiKRAv2aRG5my1bknOA\nT4Ec4O5Wxs8hEex/KyIRoBa4IDmmvCmH+Wq2L4f5n0h0Vd8OTNlKueeBtyWRV30mjXnVd9TvgG+B\nkuTPlve3boUxpiQ5pPCGiFiAjcBxbP9ztAsp3ctdRCYB04wxT4mIg8QEi1uBcmPM/SJyC5BpjLl5\na9fpTHu5V5eW8Mwvf0E0EsbhdnPxg4/jzWqeUKUiWEFtpBan1UmWKwubZQe/lxmTGDe32hN/lFLb\nQ/dyV+1ayvpLk7MuRwFPAxhjwsaYSmAiMClZbBLws1TVYW9UuaGYaCSxBjwcCFBfXdXseFWoioe+\nf4jxb4znlLdOYUP9hh2/iQg40jSYK6VUB5LKAdDeJLo/nkmu4XsquWSgizGmOFlmPY0zGhWQ3a0H\n/tw8ALK698CT0Xwb1XAszNvL3gagOlzNrA2zdnsdO6q6SB1lgTKC0eC2Cyu1FxORwcm12U3/fLun\n67UtIvJoC/W+eE/Xq71I5Ri6jcSEiuuMMd+KyMPALU0LGGOMiLTY558cz7gCoKBgV1d47D08mVmc\nc/dfCIeCOFzuLQK6w+pgbOFYpqyYgsfuYUjekB26fjAaJBwL47F7sO7AuPmeVhmsJGZipDvSsVnb\n/te2MljJk3Of5Is1X3DRwIsYWzgWr8Pb5vdRqj3YW/OcG2Ou2dN1aM9SNoYuIl2Bb4wxhcn3R5II\n6PsAo40xxSKSD3xmjNnq7judaQx9e5QHy6kOV5NmSyPLmbXVABeLRQlUVRGNhLE4HTyz/DlmbZzF\nNUOv4YCcA3DanK2e215srN/IzV/cTGmglDsPu5MDcg/A3sbDBYvLF3Pa240Tgz88/UPyPflteg+1\n19MxdNWupazL3RizHljdZKu8McACYDJwYfKzC4G3UlWHjirLlUWhv5C8tLxWg3ltuJaS+hLKq0uY\ndNN1PH395Xz35mu4Yw6+3/A9V069kqpwVYvntiexeIzHZz/OzA0zKaou4rpPrqMyVNnm9/HYPUjy\n/2uP3YNV9p7eC6WUgtRvLHMd8Hxyhvty4GISXyJeEZFLgZXAmSmuw14tUFNNRfFabA4n/pxcXN5t\nr8aoDFXy7PxneWPxGxzT82hOueoXfPSnP7Poi0858IirgMYtD9s7QXDbGveTcFgdKal7hjODf4/9\nN5+v+ZyJfSeS5cza9klKKdWOpDSgJ7ftG9HCoTGpvG9HEQ4GmfHmq8x8538AnHDNrxg46phtnlcT\nruHpuU8D8PrSNzj1qJOw2mz0H3kUFrudQ7oewtVDrybD2f63Z7VYLFwy6BLKg+VsqN/ALQffQqaz\n7fOtexweRnQdwYiuLf26KqVU+7ddAT25cf3lJDaDaTjHGHNJaqqlAP6/vTuPj7I89z/+ubKHNYEg\nAtqiFkVxQQ0qohX3pf7cSl2r0npqPUr1p7Uutcft6Kn1/OpSl1qtFvRYLe6ouB0VRa1LqAIiooCg\n4MIW1pCQ5fr98dyBIZkkk2VmkuH7fr3mNTP3s9z3PJlXrnnu537uq6aqkoUzN6Uu/eLDMobufyDZ\nOc1fP87Pzqcgu4DK2kpyLIeSvgM5+493U9CtB9ndC7h1wG50z+tOlnWNWd76Fvbl6v2uptqr6Znb\ns8v0LohI24WJyU5397vbsO0CoqQsyzqgHdcTzfP+v+3dV7Ileob+DNF8vv9LNKeupEBet+7se+LJ\nPH/7f5Odm8vePzqhxWAOkG3Z3H3Y3byx6A1GDhhJbnYuxVv327Tf7K4301thbiGFzU7lLNI5zR66\nc6N86Dt/Ojtt+dAtNXnIO0IRcD7QKKCn8jO4+9WpqKcjJHqK1s3dL3f3ie7+RP0jqS0TcnJz2W7P\nUn5x1wOcc/u99Pv+dhuXra5azfL1y6murW60XUVNBVe/fTULVy/kpvdvYvWG1alstogEIZg3yoce\nytvFzH5qZu+He7H/YmbZZrY2ZvmYkEgFMxtvZveEe81vNrM+Zva0mc0ws3fNbPew3rVm9pDFyZ1u\nZr+xKOf4DGucE71h284K6003s4dCWT+LcpV/EB6jYup8wKLc5PPN7MKwm5uAHcLn+28zG21mUy1K\nr/pJ2PZpM5tmUc70c1tx7BptF47feIvywM80s4tjjt2Y8Prq0PaPzexe62TdhYmeoT9nZse4++Sk\ntkYaySsoJK9g8zPT5euXc8O7NzBv5Tyu3PdK9tpqr81uP+ue253BvQcz5asp7FGyR5e4Vi6SoZKS\nD93MdgZOAUaFxCZ303JSkm2A/d291szuAD509xPM7BDgQTbdl94odzpRPo4hRGlXDZhkZj909zfj\ntG0Y8LtQ17KYRCe3A7e6+1tm9j2iFKc7h2VDgYOJ5mCfY2Z/JrrNeVd3Hx72O5pobpNd69OcAj8P\nedULgQ/M7Al3X57AIfcuMFkAACAASURBVGy0HdEl5UHuvmuoL94/zjvd/fqw/CHgWODZBOpLiUQD\n+kXAb82siigRgBHNC9MraS2TJr3+1ev875fR5ZyLXr+IySdO3iyg9ynow40H3EhVbRX5Wfn0KdSI\nbZE0SVY+9EOJMqt9EE4SC4kSijTnsZjUoQcQMrK5+2tm1tfM6v+fx8udfgBwBFA/NWUPogDfKKAD\nh4S6loX91+cWPwzYJeaktpeZ1c/e9Ly7VwFVZraEpmcQfT8mmANcaGYnhtfbhjYlEtDjbTcH2D78\n2HkeeDnOdgeb2WVEP8r6ALPoagHd3VuVuUaSK3aUd8+8aJBYXV0dddRtTNTSp0BBXKQTSEo+dKKT\nqgnufuVmhWa/jnnbMCf6OhITL3e6Ab9397+0qpWbywL2c/fN5lYOAb5h7vOmYtPGzxDO2A8DRrp7\nhZlNofFnbqSp7UKu9z2AI4HziG6p/nnMdgVE1/NL3f0rM7s2kfpSKeFhzmZWbGb7mNkP6x/JbJg0\nbe/+e3PlPldy/A7H88CRD5BjOdz50Z1c8/Y1fLvu23Q3T0Q2SUo+dOBVYIyZbQVR/m4LuczNbGeL\nUoCe2Mz2Uwld9CHALXP3+sE28XKnvwT8vP6M2swG1dcdx2vAT8L2sbnFXyaam4RQ3tLUs2toPg1q\nb6A8BOWhRJcJEhF3OzMrAbLC+LDfEXXvx6oP3svCcRiTYH0pk+hta/9G1O2+DfAR0QH4J1HXiqRY\nUUERp+98OrV1tWRnZfPAxw9w38z7AFi4ZiF3HHIHxQXFVK5bR3Xleiwri+69i7CsrnGbmkim2PnT\n2X+fPXRn6OBR7u7+iUU5ul8OwbsauIDouvNzRImxyoi6xuO5FnjAzGYQ/cA4O2ZZvNzpX4fr9v8M\nZ9RrgZ8Sp5vf3WeZ2Y3AG2ZWS9RNPxa4ELgr1JlD1F1/XjOfcbmZvW1mHwMv0Dgf+YvAeWY2m6i7\n/N2m9pXgdoOIkonV/6PcrPfD3Vea2X3Ax0SJxT5IsL6USWgud4uSz48gmpt9ePhV81/uflKyGwia\ny70ld354J3+ZEfWE7VS8E/cefi89rJBZr7/Ca+PvpbBnL06/4Y8Uba25yUXaoVONaE6G0I281t3/\nX7rbIq2X6KC4SnevNDPMLN/dP7VNc7RLCq2vXs/a6rXkZuduHL1+6tBTWbBqAcsql3H1yKspLihm\n3cpy3n1qYrTNmtV8+s6b7HfSKelsOsvXL+fh2Q+TZVmcNvQ0+hb2TWt7REQySaIBfVEYwv808IqZ\nlRPNwy4ptK56HS8teInbpt3GsJJh3DjqRvoU9qGksITr9r+OmroasujG4pXrKajLYtthuzHnnalg\nxvd23Z0NVZVUr68gJ6+A/G4N76RJrqraKu748A6e+DyavmBl1UouG3FZl5zkRiRTufu1ia4brpG/\nGmfRoQneOpZUnb19yZDoKPf6wRXXhtsYehNdh5AUWle9juv+eR11Xsdbi99i5rKZHLTtQUA0F3ld\nnfPCx99wwd8/pHteNi+f/3OGH3ks3XsXkdetOx9OnsT0V15gyL77s99Jp1DYM3V3HdbV1VFeVb7x\nfXllOXVel7L6RaRjhaDYaXOqd/b2JUNrRrnvFWbw2R1Y5O4bktcsiSfLsuhXuGkK14b5utdX1/LY\ntEUArNtQy6WT5tHr+ztSPGAQNVVVvPXog6xZvpR/TX6GilWpTZ1amFvI5SMup7R/KSO2HsGlIy6l\nIKdT3fEhItKlJTrK/WrgJ8CToehvZvaYu9+QtJZJIyWFJTx49IO8vOBlduu3GwN6bB7QC3OzOXXE\ntrzx2VLc4eQR21CYF+X1zs7JIScvn5oNVVhWFjkF+fGqSKqBPQZy68G3Yhi983unvH4RkUyW6Cj3\nOcAe9RMChOnyPnL3lAyM0yj3xK2tqmZVRQ2O07swl54FUTKX2upqln39FR9PfZUBe+zG8h5VDB+0\nFzlZOeRn53eZzGsiaZTxo9yla0v0v/jXbD4jTj6wuOObI+3VIz+XQcWFbFPcbWMwB8jOzaWsdjaT\nBn3MlfN+z/lvjqO8spzL3ryMJz9/klVVqe2CF5HkMrPjzOyKJpatbaI8NhHJFDMrTWYbm2Jmw83s\nmBTU89uY14PDPe/t3Wc/M3vPzD40swPjLP+rme3S3nriSXSU+ypglpm9QjQN4OHA+2b2JwB3v7C5\njaVzKC4o5rUvXwOgb0FfFq9dzJSvpjDlqynsVrIbedl5LF+/nIWrFzKkeAglhSU6cxfpotx9EjAp\n3e1oo+FAKZCUhGAhS5oRzdj3Xx28+0OBme7+b3HqzY5X3lESDehPhUe9KR3fFEm2YX2HccvoW5i5\nbCY//sGP+e1bm2afNIy55XM584UzqfVa+hT04bH/8xhbdWtqdkcRScRd573WKB/6Bfcc0q6Z4sxs\nMNGdRu8C+xPNWvY34DpgK6JpXXchmnd8nJltR5TdrQfwTMx+DLiD6CTtKyDuYGczOyLsOx+YB/zM\n3Zs6y98buCXUtQwY6+7fWJSK9VwgD5gLnBmmX/0JcA3RHO6riOZZvx4oNLMDiOaQ/0eceq4lOqbb\nh+fb3P1PYdklbJqH/a/ufls4Zi8B7xEltnk/1PERUZKVq4DsMBvc/kS90MeHRDXxPmejzwPsCNwc\n9lsKjCSate8v4XNdYGY3AJe6e5mZHUX03cgmmn73UDPbhygzXQGwPhzrOfHa0FBCp1/uPqH+QfSL\n78MGZdLBlq1fxrTvpvHtum/j5jxvi975vTn8+4dzyd6X0K9bP84adha7luzKL3f/JYN6DOLpeU9T\nG5IxrahcwfyV8zukXpEtVQjmjfKhh/L2+gHwR6LUo0OB04myol1K47nibwf+7O67Ad/ElJ8I7EQU\n/M8iCmSbCXOc/w44zN33IppS9pJ4DTKzXKIfCGPcfW/gAeDGsPhJdx/h7nsAs4FzQvnVwJGh/Lhw\nB9XVwD/cfXi8YB5jKFEylX2Aa8wsN/yg+BmwL9E05b8wsz3D+kOAu919mLv/DFgf6jgjZvld7j4M\nWEnISNeERp/H3T9q0Pb1RGlo33P3Pdz9rZhj1Y/ou/HjsI+fhEWfAge6+55hXwn3ICQ6yn0KcFxY\nfxqwxMzedve4f1Rpn+Xrl/NvL/8b81bOozCnkKePf5qBPQZ2aB3dcrtxyLaHsM/W+1CYU0hBTgH7\n9N+HiXOi2eVyLIdte27boXWKbIGSkg89+MLdZwKY2SzgVXf3MFX34AbrjmJTcHoI+EN4/UPgkZBW\n9Wszey1OPfsRBfy3wzzueUS5POLZiSh3+ith3Ww2/YDYNZydFhGdvb8Uyt8GxpvZRDbdSZWoeGlX\nDwCecvd1AGb2JHAg0cnoQndvbs73L0JQhijWDW5m3aY+T0O1wBNxyvcD3qxPBxuTZrY3MMHMhhBd\n4s6Ns21ciXa593b31SFJy4Pufk2YYF+SYEPdBuatnAfA+pr1fLn6yw4P6AC52bkUZ29KxbrfgP34\n40F/ZNp30zhuh+OUR12k/ZKVDx02TzlaF/O+jvj/21u+pSk+A15x99MSXHeWu4+Ms2w8cIK7Tzez\nsUSZ3HD388xsX+BHwLRwhp2oRNOu1msphWzD/RU2s+544nyeOCpj8tAn4j+B1939xHCZYEqiGyY6\n4inHzAYQ5Yd9rhUNkzYoyC7gyMFHArBNz23YoWiHlNTbu6A3Rww+giv3vZJhJcMozGnuuywiCWgq\n73l786G31tvAqeH1GTHlbwKnmFl2+B9/cJxt3wVGmdkPAMysu5nt2EQ9c4B+ZjYyrJtrZsPCsp7A\nN6FbfmMbzGwHd3/P3a8mut68LS2nTm3OVOAEM+tmZt2JLitMbWLd6tCetoj7eVrhXeCHYXxDbJrZ\n3my6i2xsa3aYaEC/nqg7YZ67f2Bm2wOft6YiSVxxQTFX7XsVL/34JR46+iH6devX8kattGz9Mp7+\n/GmmfTeN1VWrW95ARNoiWfnQW+siogFZM4nShNZ7iuh/+SfAg8TpSnf3pUSB5ZHQM/tPomvXjYTr\n32OAP5jZdKJ02/XX5f+DaEDa20TXiev9t5nNDLeMvQNMJ0rfuouZfWRmrcoq5e7/Ijp7fj/U91d3\n/7CJ1e8FZpjZw62pI2jq8yTazqVEg+qeDMeqfqzAzcDvzexDEu9FBxKcWCbdNLFMxyqvLOfi1y9m\n2pJpANx7+L2MHBivh0xEYrRpYplkjHIXiSfRQXE7An8G+rv7rma2O9FoRE392snUeR0rKlfg7vTK\n60V+TuMpXmvqapi3at7G95+VfxY3oK+oXEFtXe3GmeRWVq2kuq6aPgV9NHWrSIJC8FYAl6RLtMv9\nPuBKoBrA3Wew6XqMBCsqV/DO4neYtWwW81fOZ82GNUmrq7q2mvLKctbXbH6L5MLVCznpmZM46omj\n+NeSf1FTW9No2555Pblq36vIz85nh6IdOGrwUY3WWb5+Ob969Vcc8tgh3DP9HhatXcTRTx7NcU8f\nx2OfPUZlTWXSPpuIdH5m9lToEo99HJmEen4Wp567OrqeZuq/K079P0tV/a2RaP98N3d/P9yGUK9x\npNiCra5azY3v3sjLC18G4JbRt1BZW8kufVs/w9/KypW8uehNvlr7FT/Z8SeNJndZV72ON756gwmf\nTGDkgJGMHTaWooIi6ryO8bPGb0xTetu/buPPh/2ZPtmbj1YvyCngoG0P4oWTXiDLsuhb2LdRG+aU\nz2HGsuhGhodmP8SPtv/RxmUvLXiJk4ac1KpsaauqVrG2ei25Wbn0KehDTlarLg2JSCcTk1Y72fX8\njWjSnLRw9wvSVXdrJXqGvszMdiDc9hDm+v2m+U22LFW1VUxfOn3j+1nLZvH12q/btK+pi6dy1dtX\ncc/0e7hkyiWUV5Zvtnx11WqumHoFnyz/hPs/vp/PV0bjE7MsixFbj9i43h799qAgO37QLcwppF+3\nfnGDOcCgHoM2Tvvat6AvPfN6bnx/4g9OpHtO94Q/z7rqdTz66aMc9cRRHPf0cSxasyjhbUVEJDGJ\nniZdQDQacKiZLQa+oG3D9DNWj7wejBs+jqvfuZq+hX05eNuD2zw6PfaHwJKKJRtnb2uKxYzVOXDQ\ngTx8zMOsrV7Lzn12pltuwzktEtOvsB8Tj53I9KXTOWDQARTnF/Pij1+ktq6WXvnxr803paK6gkfn\nPApEwf21L1/j57v9vNF6tXW1LFi9gIlzJnLAoAMYvtVweua19c4VEZEtS7Oj3M3sIne/3cxGufvb\n4Z6+LHdP3sXhOLrKKPfl65ezZsMa8rLzyM/Kp7iwuE3JTZZWLOXSNy7lu4rv+P0Bv2fXkl3Jzd50\nq+S66nW8tfgtHvrkIUYOGMkZO59BUUFRR36UDrV2w1punXYrEz+bSE5WDo/86BGG9ml818vSiqWc\n8MwJrN4Q3Ub3zAnPsH3v7VPdXJGmKH2qdGotBfSP3H24mf0rzOGbFp05oG+o3UB1XTUV1RVMnDOR\ne2bcQ47l8Lej/sbwrYa3en/lleUYhuPU1tVSlF9ETnbjjpSa2hrW1qylMKeQ/OzEz5bTpbyynBWV\nK+iR24Pe+b3jXn//bt13HPHEEdR5HQAPH/Mwu/fbPdVNFWmKArp0ai2dPs42s8+BncxsRsxjpqZ+\njUa131J2C7954zes2bCGyV9Emf5qvIZn5z/b6v19teYrxr06jl+99ivW16ynpFtJ3GAOkJOdQ1F+\nUZcI5hBNlrND0Q70796/ycF0PfN6cvMPb2ZI0RB+uvNP+V7PjpgdU0TiMbMTOjIvt5mV1qfUTgeL\nyf/eMCe5mU02s87bjdlBWpxYxsy2Jpol7riGy9x9YZLatZnOeob+0KyHuLnsZgD+fY9/p9ZruXfG\nveRYDvcfeT979W/cqVFbV8vX677mzUVvMqL/CLbttS2FOYWs2bCGS9+4lHe+fgeAQ793KL8/8PdN\nTr/q7ny77lve//Z9duu3GwO7D2zVqPPOqqq2inUb1lGQU9Dm6/8iSZJRZ+hmNh54zt0fT3dbOpqZ\nnUqUHS5pucc7oxYHxbn7t8AeKWhLl1Ndtymt6TNzn+FPh/yJUQNHsVW3rZocPb6icgWnPncqqzes\nJsdyeP6k5ynsUUi2ZVOUv+kHZHFBMdmW3Wj7ZeuXUVlTSU5WDqc9fxrLK5eTk5XD5BMnM6DHgI7/\nkCmWn51PfmHX6HUQScQfTzm20Uxxv/7Hc+2eaMbMfgpcSJT97D3gfOBOYARRUpHH3f2asO5NRCdl\nNcDLRFnNjgMOMrPfEaXwnBenjoRymLv7D81sNFGe72Nbk9M7JDY5kWgO80HA/7j7dWHZ00RzuxcA\nt7v7vaE8Xh7xsUAp8Fca5ySfTZQbfpmZnUWUYtaBGe5+ZuJHvXNrNqCb2UR3PznM/xt7Km+Au/sW\nfYHz+B8cz7xV81i8djFX7nMlxQXF0SO/eLNBbLE21G3YOOirxmtYUbmCgT0G0i23G5eNuIySwhKy\nLZuxw8aSl5232bbL1i/j7BfO5ss1X/L3Y/7O8srl0X7qalhSsSQjArpIJgnB/D42pVD9PnDfH085\nlvYEdTPbGTgFGOXu1WZ2N9GdR1e5+wozywZeDbN6LiYKmENDetUid19pZpNo+Qz9SXe/L9R5A1EO\n8zvYlMN8cRNd2fU5vWvM7DCi4NtcbvF9iNKuVgAfmNnz7l4G/Dx8nsJQ/gTRpeL7gB+6+xcxSU0A\ncPePzOxqogA+LrS9/rgNI8rtvn8I7hmVUrKlM/SLwvOxbdm5mS0gyppTC9S4e2k4gP8gyjO7ADjZ\n3cub2kdn1rewL1ftexXVddX0yuu18UvTnO653Tlrl7N45NNHGDVwFAO7b0qL2rewL5eWXgoQd19L\nK5by5ZooSdOc8jmMGTKGxz9/nL37790pcpevrFpJTV0NxfnFZGc17l0Q2QIlKx/6ocDeREEOojPy\nJcDJZnYu0f/2AUR5zD8BKoH7zew5Wpcxs605zFub0/sVd18OG/OXHwCUAReaWf0ENtsCQ4B+xM8j\nnohDgMfcfVkbtu30mg3o7v5NeG7PtfKD6w9ecAXwqrvfFAYwXAFc3o79p1Vrr/MW5Rfxyz1+ydhh\nY8nNyo1uN6tYAQvfgfIF2G5joOfWcbctKSyhpLCEZeuX8cRnT3D7Ibdz/vDzycnKobigOO42qbK0\nYilXTr2S7yq+478O+C926buLgrpI8vKhGzDB3a/cWBCl4XwFGOHu5eEaeUE4S96H6EfAGGAcUWBL\nxHjalsO8tTm9Gw7m8tCFfxgwMnTzTyHqepcmtNTlvobGBxo2dbn3akOdx7MpEfwEoj90lw3obdEr\nr1d0Rare3FfhyTB245On4LR/QPeSRtuVFJYw8diJrN6wmt75vSkpbLxOujw19yne+/Y9AK5860rG\nHzmekm4d177q2mpWVq0Eoh9FTV3SEOlkviTqZo9X3h6vAs+Y2a3uviT0fH4PWAesMrP+wNHAFDPr\nQTR992QzexuYH/aRSM7xhjm/F8OmHObAe2Z2NNHZc6zW5vQ+PHyG9cAJwM+JrqeXh2A+FNgvrPsu\ncLeZbVff5d6KM+3XgKfM7BZ3X97KbTu9ls7Q2ztNlwMvm5kDfwkDGvrXn/kD3wL9W9rJHDb9AshI\n246AsaEXLCsX8pv4nWQG3fpFj05m+ZCTmL/VngAszevJCQVFrUvk2xx31tZW8Vm43LBTbje6K6BL\nik1p22a/ZfNr6NAB+dDd/ZMwmO1lM8siSpx1AfAh0fXrr4i6xSEKys+YWQHRydglofxR4D4zuxAY\nE29QHJtyfi8Nz/Ux4b9Dd7oR/biYDhwUs93NRF3uvwOeT+AjvQ88AWxDNCiuLIzdOs/MZhOFgXfD\nZ18aLis8GT77EuDwBOrA3WeZ2Y3AG2ZWS3S8xiaybVeQ1HzoZjYoDJrYiqgr6FfAJHcvilmn3N0b\n9ReHP9i5APm77773ftOnN1wlc9RUwrcfQ20VlOwIhX2gi3VX19TVsKpqJVW1VfQr7EdugwF97VFb\nV8u8lXNZFQYTFucXsX3R9mTFuQtAJFmmtPG2tWSNcs8U9aPT6wewSdslNaBvVpHZtcBa4BfAaHf/\nxswGAFPcfafmtu2s96F3hOraalZtWEVObQ1FZENed8hLz/3X9bfEFeYUNnnbXTpU11Uz4eMJ3P7h\n7QBcNuIyTh96uq7RS6pl1H3onYUCesdJWg7L2Hnfw+sjgOuBScDZwE3h+ZlktaGzq66tZvrS6fzH\nO//BoO6DuOmHN1GSxmB+zkvnMH/VfPbotwe3H3x7pwnquVm5jNlxDHv335usrCy+3+v7CuYiHcii\n/OKjGhTfHlKXdlQdRwJ/aFD8RUjDOr6j6tmSJTMpdX+iwQf19fzd3V80sw+AiWZ2DrAQODmJbejU\nVlWt4vKpl7OkYgmL1ixi8vzJnDXsrLS0Zdn6ZcxfFY2Vmb50Ouuq13WagA5QVFDEngV7prsZIhkp\nFTm/3f0lNt32JkmQtIDu7vOJM8NcuNfw0GTV25VkZWXRr7AfSyqWADCwx8AWtkievgV9Kc4vpryq\nnIHdBzY55ayIiHROKbuG3h6ZfA19ScUSnvjsCQb3GszIQSM3m/41lWrrallRuYKv133NoB6DOtUt\ncSKdhK6hS6emgC4ikhgFdOnUWkqfKim2fP1yllYsZV31unQ3RUS2UGY22Mw+TmCd02PepzV9qiig\ndyrfrP2GMyafwWGPH8az855l3QYFdRHptAYDGwO6u5e5+4Xpa44ooKfY0oqlLFqziBWVjWcbfHb+\nsyxeu5g6r+MPH/yBipqKNLRQRDq7cHb8qZk9bGazzexxM+tmZoea2YdmNtPMHjCz/LD+AjO7OZS/\nb2Y/COXjzWxMzH7XNlHXVDP7V3jsHxbdBBxoZh+Z2cVmNjokf8HM+pjZ02Y2w8zeDVnfMLNrQ7um\nmNn8MEuddBAF9BRaWrGUMyafwdFPHs01b19DeeXmSeZ2LN5x4+vtem0XNx+6iEiwE3C3u+8MrCaa\n0nU8cIq770Z0F9O/x6y/KpTfCdzWinqWAIe7+15EKVvru9WvAKa6+3B3v7XBNtcBH4YU278FHoxZ\nNhQ4kihl6jVhnnjpAMm8D10a+GLVF3yzLprGfsqiKVTWVm62fM+t9uSew+7hi1VfcMTgI+hTmFGp\nekWkY33l7vXztf8P0bzrX7j7Z6FsAtH87vXB+5GY54YBuDm5wJ1mNpwoFfaOLawPUfrTHwO4+2tm\n1tfM6pNUPO/uVUCVmS0hmrNkUSvaI01QQE+h7XptxyM/eoQNtRtYUrGEvKzN5zvvnd+bUYNGMWpQ\nwwmbREQaaXiL0kqgudmgPM7rGkJPbUh0Ei8Jw8XAd0TzimQR5VZvj6qY17UoDnUYdbmn0IqqFYx9\ncSxnv3g2n674lPzs/HQ3SUS6ru+Z2cjw+nSgDBhcf30cOBN4I2b9U2Ke/xleLwDqc5kfR3Q23lBv\n4Bt3rwv7rL8W2Fz61alE6VYJec2XufvqhD6VtJkCegq9vPBlqmqjH6eT5k2isqa9P3RFZAs2B7gg\npBctJupG/xnwWEg9WgfcE7N+sZnNAC4iOuuGKLXrQWY2HRhJlE+9obuBs8M6Q2PWmQHUmtl0M7u4\nwTbXAnuH+urzdkiSaWKZFPpk+SecMfkMaupqOHPnMzl/+Pn0yOuR7maJSGI6zcQyZjYYeM7dd01w\n/QVEGc2WJbFZkma6dpFC2/fenhdOeoHKmkqKCooUzEVEpMMooKdQQU4BW+dsne5miEgX5+4LgITO\nzsP6g5PWGOk0dA1dREQkA+gMPU1WV62mqraKHrk9KMxVqlIREWkfnaGnwYrKFdzw7g2cOflMXvvq\nNdZuaDTbYoerrKlkzYY1Sa9HRETSQwE9DRasWsCitYu4+aCbqaiuoLyqnJramqTVt6JyBTe9fxO/\nnvJr5q+aT1e4s0FERFpHAT0N+hb25TcjfsO4V8dx/bvXM2bSGFZUNU7W0lGenfcsT3z+BP/85p9c\n+NqFLK9cnrS6RCQ1zOwoM5tjZnPN7Ip0t0fSTwE9DUoKSuiV14vyqig5S0VNBSurViatvtgkL1mW\nhXWe22lFpA3MLBu4Czga2AU4zcx2SW+rJN00KC4Nuud1p7iumNHbjGbKoinstdVe9C1obgrm9jlm\n+2NYvHYxi9Yu4tLSS+lbmLy6RCQl9gHmuvt8ADN7FDge+CStrZK0UkBPkz4Ffbh+1PVsqN1AbnYu\nfQqSl1mtT0EfLt77YmrqauiW2y1p9YhIfKWlpTlACbCsrKysIwbMDAK+inm/CNi3A/YrXZi63NOo\nuKCY/t37JzWY18vLzlMwF0mD0tLS/YGlwBfA0vBepMMpoIuIJEk4M38eKAIKwvPzpaWl2c1u2LLF\nwLYx77cJZbIFU0AXEUmeEqJAHqsA6NfO/X4ADDGz7cwsDzgVmNTOfUoXp2voIiLJswyoZPOgXknU\nBd9m7l5jZuOAl4jykz/g7rPas0/p+nSGLiKSJGEA3I+AlUSBfCXwo7Kystr27tvdJ7v7ju6+g7vf\n2N79SdengC4ikkRlZWXvEHW9bweUhPciHU5d7iIiSRbOyL9Ndzsks+kMXUREJAMooIuIiGQABXQR\nEZEMoIAuIiKSARTQRUS6IDNbYGYzzewjMysLZX3M7BUz+zw8F4dyM7M/hVSrM8xsr5j9nB3W/9zM\nzo4p3zvsf27Y1lJVh7SNArqISNd1sLsPd/fS8P4K4FV3HwK8Gt5DlGZ1SHicC/wZouAMXEOU2GUf\n4Jr6AB3W+UXMdkelsA5pg6QHdDPLNrMPzey58H47M3sv/CL7R5i2UEQkY5WWlhaUlpZ+v7S0tOE0\nsB3teGBCeD0BOCGm/EGPvAsUmdkA4EjgFXdf4e7lwCvAUWFZL3d/190deLDBvpJdh7RBKs7QLwJm\nx7z/A3Cru/8AKAfOSUEbRERSrrS0NLu0tPQmYDkwC1heWlp6UwckZwFw4GUzm2Zm54ay/u7+TXj9\nLdA/vI6XbnVQ2SfsMAAADapJREFUC+WL4pSnqg5pg6QGdDPbhmjaw7+G9wYcAjweVon9dScikmlu\nBMYB3YDu4XlcKG+vA9x9L6Ku7gvM7IexC8NZr3dAPU1KRR2SuGSfod8GXAbUhfd9gZXuXhPe6xeZ\niGSk0L3+K6JAHqs78Kv2dr+7++LwvAR4iuj69HehK5vwvCSs3lS61ebKt4lTTorqkDZIWkA3s2OB\nJe4+rY3bn2tmZWZWtnRpuxITiYikQ3+aPnt1NnVVt5qZdTeznvWvgSOAj4lSqNaPIj8beCa8ngSc\nFUai7wesCt3mLwFHmFlxGKh2BPBSWLbazPYLPatnNdhXsuuQNkjmXO6jgOPM7Bii1IG9gNuJBkrk\nhLP0Jn+Rufu9wL0ApaWl6tIRka7mO6C527C+a8e++wNPhbu8coC/u/uLZvYBMNHMzgEWAieH9ScD\nxwBzgQrgZwDuvsLM/pMovzrA9e6+Irw+HxgPFAIvhAfATSmoQ9rAoksgSa7EbDRwqbsfa2aPAU+4\n+6Nmdg8ww93vbm770tJSLysrS3o7RUSa0ep7pMOAuHFs3u1eAdxRVlZ2RfytRNomHfehXw5cYmZz\nia6p35+GNoiIpMJVwJ1EQXxdeNwRykU6VErO0NtLZ+gi0gm0eRazMACuP/BdWVlZZcc1SWQT5UMX\nEUmyEMQXprsdktk09auIiEgGUEAXERHJAAroIiIiGUABXUSkCzKzB8xsiZl9HFOWEelTm6pDmqeA\nLiLSNY2ncbrRTEmf2lQd0gyNchcRSZKQVe1M4GKivBWLgVuBh8rKymrbs293f9PMBjcoPh4YHV5P\nAKYQzf2xMbUp8K6Z1ac2HU1IbQpgZvWpTacQUpuG8vrUpi+kuQ5phs7QRUSSIATzSUQTy+xONJHW\n7uH9pA5KodpQpqRPbaoOaYYCuohIcpwJHET8bGsHAT9NZuWZkj5VKVoTp4AuIpIcF9M4mNfrDlyS\nhDozJX1qU3VIMxTQRUSSY1A7l7dFpqRPbaoOaYYGxYmIJMdiouvmzS1vMzN7hGjgWImZLSIaSZ6K\n1KbprEOaoeQsIiKJaVVyltLS0rFEA+DidbuvAy4oKyub0AHtEgHU5S4ikiwPAW8QBe9Y60L5/6S8\nRZLRFNBFRJIg3Gd+HHABMANYHp4vAI5r733oIg2py11EJDFtzocukgo6QxcREckACugiIiIZQAFd\nREQkAyigi4h0QU2kT73WzBab2UfhcUzMsitDmtI5ZnZkTPlRoWyumV0RU76dmb0Xyv9hZnmhPD+8\nnxuWD05lHdI0BXQRkSQrLS3drrS0dFRpael2Hbjb8TROnwpwq7sPD4/JAGa2C3AqMCxsc7eZZZtZ\nNnAXUerTXYDTwroAfwj7+gFQDpwTys8BykP5rWG9lNQhzVNAFxFJktLINGAW8Dwwq7S0dFppaWlp\ne/ft7m8CK1pcMXI88Ki7V7n7F0Szue0THnPdfb67bwAeBY4PU7EeAjwetp9AlNq0fl/1E+I8Dhwa\n1k9FHdIMBXQRkSQIQXsKsBfR1Ka9w/NewJSOCOpNGGdmM0KXfHEoa21q077ASnevaVC+2b7C8lVh\n/VTUIc1QQBcRSY6/0Hy2tXuSUOefgR2A4cA3wB+TUId0UgroIiIdLFwr37mF1Xbp4GvquPt37l7r\n7nXAfUTd3dD61KbLgSIzy2lQvtm+wvLeYf1U1CHNUEAXEel4A4ENLayzIazXYepziAcnAvUj4CcB\np4bR49sBQ4D3iTKgDQmjzfOIBrVN8mgK0deBMWH7hmlS61ObjgFeC+unog5phtKnioh0vK+BvBbW\nyQvrtUkT6VNHm9lwwIEFwC8B3H2WmU0EPgFqgAvcvTbsZxxRzvJs4AF3nxWquBx41MxuAD4E7g/l\n9wMPmdlcokF5p6aqDmme5nIXEUlMa9OnTiMaANeUaWVlZckaGCdbIHW5i4gkxy9pnDq13jrgvBS2\nRbYACugiIklQFnUrjgamAeuJbr1aH96PLlO3o3QwXUMXEUmSELRLw2j2gcDXZWVlX6S5WZKhFNBF\nRJIsBHEFckkqdbmLiIhkAAV0ERGRDKCALiIikgGSFtDNrMDM3jez6WY2y8yuC+Vx89+KiIhI2yXz\nDL0KOMTd9yBKFHCUme1H0/lvRUREpI2SFtA9sja8zQ0Pp+n8tyIiItJGSb2GbmbZZvYRsAR4BZhH\n0/lvRUREpI2SGtBDGr/hRGnx9gGGJrqtmZ1rZmVmVrZ06dKktVFERCQTpGSUu7uvJEqTN5Km8982\n3OZedy9199J+/fqlopkiIiJdVjJHufczs6LwuhA4HJhN0/lvRUREpI2SOfXrAGCCmWUT/XCY6O7P\nmdknxM9/KyIiIm2UtIDu7jOAPeOUzye6ni4iIiIdRDPFiYiIZAAFdBERkQyggC4iIpIBFNBFREQy\ngAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVERDKAArqI\niEgGUEAXERHJAAroIiIiGUABXUREJAMooIuIiGQABXQREZEMoIAuIiKSARTQRUREMoACuoiISAZQ\nQBcREckACugiIiIZQAFdREQkAyigi4iIZAAFdBERkQyggC4iIpIBFNBFREQygAK6iIhIBlBAFxER\nyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDJC0gG5m25rZ62b2iZnNMrOLQnkfM3vFzD4Pz8XJ\naoOIiMiWIpln6DXAr919F2A/4AIz2wW4AnjV3YcAr4b3IiIi0g5JC+ju/o27/yu8XgPMBgYBxwMT\nwmoTgBOS1QYREZEtRUquoZvZYGBP4D2gv7t/ExZ9C/RPRRtEREQyWU6yKzCzHsATwP9199VmtnGZ\nu7uZeRPbnQucG96uNbM5LVTVG1jVyuYlsk1z6zS1rGF5vPViyxouLwGWtdCu1urMxydeWXPvk3F8\nmmpXR2yTKd+hptrR3vW7ynfoRXc/qpXbiKSOuyftAeQCLwGXxJTNAQaE1wOAOR1U173J2Ka5dZpa\n1rA83nqxZXHWL0vC36LTHp9EjlmD49Xhx6ezH6PO8B1qyzHa0r5DeuiRzkcyR7kbcD8w291viVk0\nCTg7vD4beKaDqnw2Sds0t05TyxqWx1vv2RaWd7TOfHzilSVyDDtaZz5GneE71JZ6trTvkEjamHvc\nHu/279jsAGAqMBOoC8W/JbqOPhH4HrAQONndVySlEV2UmZW5e2m629FZ6fi0TMeoeTo+komSdg3d\n3d8CrInFhyar3gxxb7ob0Mnp+LRMx6h5Oj6ScZJ2hi4iIiKpo6lfRUREMoACuoiISAZQQBcREckA\nCuidnJntbGb3mNnjZvbv6W5PZ2Vm3c2szMyOTXdbOhszG21mU8P3aHS629MZmVmWmd1oZneY2dkt\nbyHS+Sigp4GZPWBmS8zs4wblR5nZHDOba2ZXALj7bHc/DzgZGJWO9qZDa45RcDnR7ZBbhFYeHwfW\nAgXAolS3NV1aeYyOB7YBqtmCjpFkFgX09BgPbDaFpJllA3cBRwO7AKeF7HSY2XHA88Dk1DYzrcaT\n4DEys8OBT4AlqW5kGo0n8e/QVHc/muhHz3Upbmc6jSfxY7QT8I67XwKoJ0y6JAX0NHD3N4GGk+ns\nA8x19/nuvgF4lOisAXefFP4hn5HalqZPK4/RaKIUvacDvzCzjP9et+b4uHv9xE7lQH4Km5lWrfwO\nLSI6PgC1qWulSMdJenIWSdgg4KuY94uAfcM1z5OI/hFvSWfo8cQ9Ru4+DsDMxgLLYgLYlqap79BJ\nwJFAEXBnOhrWicQ9RsDtwB1mdiDwZjoaJtJeCuidnLtPAaakuRldgruPT3cbOiN3fxJ4Mt3t6Mzc\nvQI4J93tEGmPjO+a7EIWA9vGvN8mlMkmOkbN0/FpmY6RZCwF9M7jA2CImW1nZnnAqUSZ6WQTHaPm\n6fi0TMdIMpYCehqY2SPAP4GdzGyRmZ3j7jXAOKL88bOBie4+K53tTCcdo+bp+LRMx0i2NErOIiIi\nkgF0hi4iIpIBFNBFREQygAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKBLp2dm76S7DSIinZ3u\nQxcREckAOkOXTs/M1obn0WY2xcweN7NPzexhM7OwbISZvWNm083sfTPraWYFZvY3M5tpZh+a2cFh\n3bFm9rSZvWJmC8xsnJldEtZ518z6hPV2MLMXzWyamU01s6HpOwoiIs1TtjXpavYEhgFfA28Do8zs\nfeAfwCnu/oGZ9QLWAxcB7u67hWD8spntGPaza9hXATAXuNzd9zSzW4GzgNuAe4Hz3P1zM9sXuBs4\nJGWfVESkFRTQpat5390XAZjZR8BgYBXwjbt/AODuq8PyA4A7QtmnZrYQqA/or7v7GmCNma0Cng3l\nM4HdzawHsD/wWOgEgCgnvYhIp6SALl1NVczrWtr+HY7dT13M+7qwzyxgpbsPb+P+RURSStfQJRPM\nAQaY2QiAcP08B5gKnBHKdgS+F9ZtUTjL/8LMfhK2NzPbIxmNFxHpCAro0uW5+wbgFOAOM5sOvEJ0\nbfxuIMvMZhJdYx/r7lVN76mRM4Bzwj5nAcd3bMtFRDqOblsTERHJADpDFxERyQAK6CIiIhlAAV1E\nRCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVERDKAArqIiEgG+P/TN6Scm1i3agAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4leX5wPHv8569shMIkBBA9kZE\nEUVF3IpWtNraKu5qW0db96hWrWitVqs/V91iFQfi3lhUBEVAEJBN2EnIPHs+vz/OIQMSkkCCJN6f\n6/LKOe943udEkjvPvJXWGiGEEEJ0bMZPXQEhhBBC7D0J6EIIIUQnIAFdCCGE6AQkoAshhBCdgAR0\nIYQQohOQgC6EEEJ0AhLQhRBCiE5AArroUJRSNqXUU0qpYqWUVym1SCl1Qr3zRyulflRKBZRSs5RS\nPeud+6VSak7q3OeNlD1BKbVAKVWjlFqrlLpkH30sIYTYaxLQRUdjBjYCRwDpwM3AdKVUkVIqB3gD\nuAXIAuYDr9S7twL4FzB150KVUhZgBvB4qtyzgPuVUsPb76MIIUTbUbJTnOjolFKLgduBbGCK1vrQ\n1HEXsB0YqbX+sd71FwG/0VofWe9YF2Ab4NJaB1LHvgXu11r/d199FiGE2FPSQhcdWioQ9wOWAoOB\n73ec01r7gTWp47ultS4B/gucr5QyKaXGAj2BL9uj3kII0dYkoIsOK9VNPg14LtUCdwPVO11WDXha\nWOR/gVuBMPAFcJPWemMbVVcIIdqVBHTRISmlDOAFIAL8IXXYB6TtdGka4G1BeQOAl4FzASvJVv21\nSqmT2qrOQgjRniSgiw5HKaWAp4AuwGStdTR1aikwvN51LqBP6nhzhgArtdYfaq0TWusVwLvACc3c\nJ4QQ+wUJ6KIjehQYCJyitQ7WOz4DGKKUmqyUspPsPl+8Y0JcamzcTnKmvKGUsqe67QEWAn1TS9eU\nUqoPcDKweF99KCGE2Bsyy110KKl15etJjnPH6p26VGs9TSk1EXiY5IS2eSRnva9P3TsFeGanIp/T\nWk9Jnf8lyT8CepIce58G3KC1TrTTxxFCiDYjAV0IIYToBKTLXQghhOgE2jWgK6WuVEr9oJRaqpS6\nKnUsSyn1sVJqVeprZnvWQQghhPg5aLeArpQaAlwMjCE58/hkpdQBwPXAp1rrvsCnqfdCCCGE2Avt\n2UIfCMzTWge01jHgf8DpwKnAc6lrngNOa8c6CCGEED8L7RnQfwAOV0plK6WcwIlAAdBFa701dc02\nkmuJhRBCCLEXzO1VsNZ6uVLqHuAjwA8sAuI7XaOVUo1Os0+lrrwEYNCgQQcuXdqSvUGEEKLdqJ+6\nAkLsTrtOitNaP6W1PlBrPR6oBFYCJUqpfIDU19Im7n1Caz1aaz3a4XC0ZzWFEEKIDq+9Z7nnpb4W\nkhw/fwl4Czgvdcl5wMz2rIMQQgjxc9BuXe4pryulsoEo8HutdZVSaiowXSl1IVAM/LKd6yCEEEJ0\neu0a0LXWhzdyrBw4uj2fK4QQQvzcyE5xQgghRCcgAV0IIYToBCSgCyGEEJ2ABHQhhBCiE5CALoQQ\nQnQCEtCFEEKITkACuhBCCNEJSEAXQgghOgEJ6EIIIUQnIAFdCCGE6AQkoAshhBCdgAR0IYQQohOQ\ngC6EEEJ0AhLQhRBCiE5AAroQQgjRCUhAF0IIIToBCehCCCFEJyABXQghhOgEzD91BYTojAI11fw4\nZzbB6mqGTTwOT3Zumz8jHouRiMex2GxtXrYQouORgC5EGwsHAsye9gxLP/8EgGVfzOLXd96HKyOz\nzZ4RqKnmm5mvUV2yjfG/OZ/Mrt3arGwhRMckAV2INhaLhNmyYlnt+5qyEuKxWJPX60SC6rJS1i74\nhh4Dh5CZ373ZVveKr7/gu3dmAFC1bQtn3HIXrvSMtvkAQogOScbQhWhjVoeTQeOPrn3fvf9gzBZL\nk9f7q6uYduPVzHr2CabdeDWB6qpmn5GIJ+peJxKg9d5VWgjR4UkLXYg2kIhGiZdXEN22FWuPHgw/\n9kR6DhtB2B8gr6gXzt20nuOxGCGfN1lOPI6/tARPRiaG1drkPQPHjadyyyaqS7dx1JRLcKZnEKip\nJlhTjdXpwuH2YN7N/UKIzkcCuhBtIFZaytpTJqEDASwFBRS9NI38A/rvcl08GiWRSDToUrfa7Iw5\n6Rcs+OQ9eg4ahjMaI+H37zagO9MzOOLci0jEYticTkI+L7NfeJqlsz/FZLHw26kPkt2jsF0+qxBi\n/yQBXYg2EFq6FEt+Pu7DDyPu9REPhzHCYdAaw24HwF9VyVfTX8RidzDmlNNxZWYB4EhLY8SYcQzq\nO5DounUkfliKMXBws8+0WK2QCvrxWJTV8+cmX0ejbFz+gwR0IX5mZAxdiDZgHzOGblPvJrppM4bL\niWGxsvVvf2PLddcT3bKFRDzOvDdeoXuPngwv6kt4/nwiZWW19zt79MBT2JPMQ8eRPmkShr11S9HM\nVhvDjjkhWReXm6JhI9v08wkh9n/SQhdiLwW9EaLlfrZdcinxykoADLsdHQji/fBDops30+Pxxygc\nOZquykxi2zbCa9aQ6FFI3G7H5PFgcrsxud21ZcYqKqieOZOEP0Dm2WdhzsnZbR1sThejTzyVYeMn\noKIx7JEYOhZDmeVHXIifC/lpF2IvrV1URl5GlHhNTe2x2PZyDIcDgHhlJZFQmPnRPE6ObmTzVVcD\nUPPOuxQ+8zQmj6dBeTqRoOL5Fyh/7DEAwmvXkn/H3zC5XLuth9nro/jY45Pd/G43vd97F0teXlt+\nVCHEfkwCuhB7KRZJsHKxl743307oy1k4f3kGjoEDiX7zLZHiYrLOO4/AmnVsD2cTqdpae19k06bG\nC0wkiJWU1L6Nl5XBbtax197m99cuX0v4/RCP790HE0J0KDKGLsRe6ntQF4JREzW9D8L4/e9487UX\nePv/7of+/ehy800Ef1iC7+GHyDOiGIccin34cAyXiy7XXkPw+8XonQKvMpvJveKPOEaOxDZgAF1v\nvw1Tenqz9TB36ULWlPOw9upF/h13YOzU8hdCdG5Kd4ANKUaPHq3nz5//U1dDdGCxeIJSb5hVpV4G\ndE2jS5q9xffGq6tJhMMokxnlsKMDAZTTicnprL0mGo4R9FXzyl+vpaYs2bo+dNJkilasx3XYYQTW\nruOrYRM4NN+Oa9VyDKsV76xZxKur6XbPVIyddoaL+3xEiouJlZZiysnB3rdv7Wz53dbV70cHgxhu\nT6sn1olmqZ+6AkLsjnS5i5+Fcn+EYx+YjS8cIz/dzszfjyOvBUE9VlVN+eOPU/HMM3T7531E1q6j\n+u23ST91EhlnnQXxOMpkwpKTQyxiwZOdUxvQ0zJz0Hodlu7dyBo2lKMXfY+qAUv3bmy64koMh4OC\nxx7dJZgDxCsqWD/5jOQbi4UDPv4Io2vXZutrcrmgmbF2IUTnJAFd/CyU+8L4wslx6K3VIcKxRDN3\nJOlQkIpnngGlsHTtypY//wWAhD9AzZszKb3vPszdulH00jRsubkcfeFlrJ43h/SsbPLTs3FefBEb\nL7oYz3HH4Rw1kuB3C6iaPp38O/6GtU8frPn5jT83Vq8bPhaTrV2FEM2SMXTxs5DnsTOyMLn96klD\n83FaTbu93h+OsbU6SEwZWHr0AK1RViukloG5xo6l7JFHAIht2YL340/QwSBlxevYtm415SXbWLZm\nOb7Vq4lu2EDo+0VYevSg/D//ITBnDhsvupjohg1NPt+UnUWXG27AceCBdP/XAxhpaXv1+YPeCNs3\nefFVholHZbKcEJ2RtNBFpxOoiRANx7HYTDjTkjup5Xhs/Ofc0UTiCWxmE1muprdVDcfifLyshD9N\nX8Sg/DSmP/880UULMTIy6Pn8c1S//TaWHt1xjBxBYM7XYBjY+vSh7P8epdell+DKyKSmrJSeB/Sn\n5NwpYDKR+dvfgsmEuWtXYtu2gcmEpYnWOYA5PZ2MX51N+mmnYjidqN0kd2lO0Bfls+eXs35JOSaL\nwdm3jCEjz9n8jUKIDqVdA7pS6mrgIkADS4DzgXzgZSAb+A74rdY60p71ED8PFf4I3mAUogmWvrOe\nQHmYEy8fVhvUs90tmyRWE4zx789WkdDww5Ya/vpVKXeffjxmkwEFBThHjQKg+733EliwAHNODtUz\n3iReVYXVYqHn0BEAxKqr6fnC88nNXcwWMBn0nPYiga+/xj5sWLObxRj1tnbdG4l4guKlFQDEowlK\n1tVIQBeiE2q3LnelVHfgCmC01noIYALOBu4BHtBaHwBUAhe2Vx3Ez0dVIMLf31vOEfd9zsmPzWHA\nKYW4MsxEQ82v396Zw2Iwuiiz9v3BvbOTwXwn5pwcHMOHU/7UU0Q3b6bLjTc0mPluTk/HWlCAJT8f\nS24OlqwsrN27k3HGGdj79cNwNh9Uw8Eo/qowgZo9/5vXZDEYMr5b8rN5LHQ7QPKmC9EZtduytVRA\nnwsMB2qAN4F/A9OArlrrmFJqLHCb1vq43ZUly9ZEc0pqQhz8909r3193VHfOHd4VHJm40lu/fKvC\nH+aHzTXkuG0UpVlw2C1NbqO6Y4c4016Oc+8sEoyx9MstzHljNRl5Tk67eiSujD1bihb0RYmGYpgs\nBk6PFWXICqw9IN80sV9rtxa61nozcB+wAdgKVJPsYq/SWu9oNm0CurdXHcTPh9lQDOue3HxFKTik\n0I3DyR4Fc4Asl43x/XI5IF5N5V9vpuSee4mVlzd6rSktrc2DOUA0EmfujDWgoaokwKYVlXtclsNt\nIS3HgSvdJsFciE6q3cbQlVKZwKlAL6AKeBU4vhX3XwJcAlBYKGkgxe5lu208fd4ofli/lYJ0C13i\nWzGsLdvHvNIfYX25H5vZRPcMO+lOK6XeEKGSMsIXn0dsa3K71oTfT9dbbq7dox0gVlVFcMFC4lVV\nuI8Yjzk7u9V1rwpECETimAxFusOC3ZKcgW8YipwCN6XFXlCQ08PdTElCiJ+z9pwUNxFYp7UuA1BK\nvQGMAzKUUuZUK70HsLmxm7XWTwBPQLLLvR3rKTqJnDQnR/bPg0gQ7EPB0vwYdTAS5z9fruWRWWsA\n+McZwzhuSFdufGMJfx6dA/VSnEY3bURHo1AvoPu+nouvsA+hrkUEtm6ni9W6S7KV3Sn3hbnxjSV8\nuKwEp9XE1NOHMXFQHk6rGYfHykmXD2PbuhoyujhxZ8rOb0KIprXnOvQNwCFKKadSSgFHA8uAWUBq\nCyzOA2a2Yx3EfkBrTSzRso1c9prNA568FgVzgGA0zhertte+n7WilEgsQYU/wvurq3Bd9ScAlMNB\n3l/+glEvxalOJPAPGcVpM9Yz8fllXPd1BZWx1nVnz11bwYfLkjvLBSJxrnnte2qCdRP5nOk2eo/I\nJSvfhdUuq0yFEE1rzzH0ecBrwAKSS9YMki3u64A/KaVWk1y69lR71UH89Cr8YR78dBU3vL6ELVXB\nffLMmmCUtWU+lm2pptK/+9nhHruJy4/sg6HAZja46PDeZLus3HvGcD7f4GfBwHH0+uwz+nz4AbaB\nA1FG3Y+MMgzWBTTbfclnfLGmgqja/YY1O1tb5mvwPhxLEI3voz9+hBCdSrv+ya+1/ivw150OrwXG\ntOdzxf7jzUVb+NcnqwBYU+bjP+cdtNtNXZoTicWpDkYxGUaj5cTiCT5aVsJfXv0egPPHFfGnY/rh\nsTe+MYvFZGJ831y+un4CBopMlwWlFH1yXTxz/kGYDIXd2XR9D+iaRrbLSrk/wqF9srFaWvc38inD\nu/HQZ6uIxpOjSkO7pze7i50QQjRG+vBEu/KGorWv/eE4ib1YJhmJxZlfXMk1ry6me6aDh381cpcE\nK8FonDcX1k3LeGfxVi47ok9tQA9UV1FdVoorPQNHWjoWmw2nzYzT1vBHQSm1y0Y08ZoaIhs3Ed28\nGeeokZhzcsjz2Hn/ysPxR+J47GayXXX3hANRlFJYHU3/mHVNt/PhVeN5/utiCrOcnDK8W4s3wBFC\niPokfapoV2XeMLe9vZSS6hB3nz6UA/LcJKdUtF5pTYgTHvyC8lQ3+nXH92fKgYWUb/bh9FhwWiMY\nUR9zauzY4gq72aC4JsjRQ7visVvwV1cxY+ptlKxdjWEy8as77qNrn74tfr7vq6/YeOFFANiHDKHg\niccxZ2U1em1NeZBZL/6IyWxw1DkD9nj9uNivyHo/sV+TFrpoV7keG/ecPpRoQpPhsOxxMIfkMq5c\nj602oB/ZK4fZr6xk9fxSACb9rjc9Sp/i8DGXM/3BYqq3hzjmgsE4UuPesXCYkrWrAUjE4/w4Z3aD\ngB6NJwhG49h0HMNbA0phzs6uHTf3f/117bWhpUvR4TBxvz+ZsrSecDDG7P+uZNPy5Lrxr99cw1G/\nGYDJXNcdH4smCAeSvRcOtwWjkZ3ohBCiNeS3iGh3bruFTKd1r4I5QI7bxtNTDuKCcUXcddoQunns\nbFlZVXt+0yofqnI96sv7yevpJh5N8PmLPxIOxoiGwxgmE5n53Wqv73Ng3VSOQDjGlqogd72znAc+\nW0vZljLWn3kmkXoZ0TJ+8QuMVPDOOPMMqt99F++HH5EINpzspxSYrXU/Wla7ifofPR5PsHV1FS/c\n/DX/vX0eFVv8Lf4exOMxwgE/ibhkTBNCNCQtdNGhdMtwcOspgwGIhuMceEIRX7yyEpvTzICRLnh7\nIQw4hURqJMmdZSMRi/K/F55nxLgjmXzVDZSsW0Nmrz548uo2nqkORfnrzKV8vjK57tw8roCzR46i\nctpLdL3pRgCsPXvS+/33iFdWEly0iPInniT7kkuIVVZisdRtDWu1mzn8rH7YXRZMVhMHHtcTw2QQ\nqImwY4jry+mriEcTxKMJ5s5cy7EXDW52WVrI72PVvDn8OOd/jDzuFAqHDsdqd+z2HiHEz4cEdNFh\nWWwm+h/chV7DsjGI41h4P7rXETDuKvLmh7G7bYyY0J23778Fu8dDdNbnbH/0MSw9ehAs6IHnjjso\njZmIxBMYShGolyfcG9VgseAcU9eKV2Yzlrw8ops2UXrfPyl88klK7/8n5U8/Tbd7puIYMqQ2qLvS\nbYz/VT9AYRiK6rIgbz24iGg4xi/+MoqMrk4qtiZb5pn5rgbd8fVprYmG45gtBiGvl48efwiAjT8s\n4aKHn5KALoSoJQFd7LfisQTKAMNoemTI5rRgc6aWpB3+JzBMKIuD4ROS4+Tfvv0GW1evoPeoMRCP\no6NRIuvWYbjdBKMJPlq9hZvfXs79vxzO3acP5eY3fyDdbubyw4tIG3g+1u7ddn1m3770mvkm1TNm\nEPjmWwC2XHMtPV96CUtuXUrUHfVOJBLMf28dNduTXfOzX17JxCmDyO+TjsVmoveI3EYDejwWp2yD\nj/nvradbvwx6D6+bWKcMxV6OYAghOhkJ6GK/5C0PMXfmGlyZdkZOLMDhabgWvMIfYVt1kDS7hUyX\nFZfNDLaGe50HfV6WfzELgA1LFjH+pjtI376deGkpxh//zG/eWM1DZ4/AYVnJn6Z/z3e3TOT/zhmF\nxVC47RbITW+0biaPB5PHg6VHj9pj5rw8lLnx9eOGYZDXM40fv94GQFq2A6vdxIiJu89REPLFmPnA\nQmLRBMU/lNNz8HBOvup6fvzqf4w49iTs7pZvMSuE6PwkoIv9TtAb4YMnl1C63guA3WVm1LE9a897\nQ1Hu/3gFL87dgKHg9csOZWRh5i7lKKXI6t6DvKLeeCsr+GbWh5hOu5DlmyqZ8e5G1pcHWFPqpyjH\niTcUI5HQZHtavrzMfcQR5E+9m+jGjWScdRbmzF3rsEPf0Xl4su1EgjEKBmZhsbXsR6/+otKQ36Df\nIePoc+BBmK2yDE4I0ZAEdLHf0RpikbrtT2PhhjO6Q9EEn69ITl5LaJi9sqzRgG6z2Tnm1LOomTED\n+3GnESsoZKXfxANfLQHAbjHol+vmmmP7M7BbGrke+y5l7I45I4OM005r9FxNMMr6cj/F5QEO6Z1N\nrsdG0dCcRq9tis1tYdIVI/jmnXV065tOdrfkGn4J5kKIxsjGMmK/o7WmsiLI+hWVhEoCDB2ThdNt\nxpSe7AIPRGK8/t0mbpm5lDSHmTcvH0fv3Ibd7VWBCIuKK1lVXMLxvTyEr7qctH8/hsrIYd32AD9s\nqeGQoiw8cSjo23TLeodEOIyvupKVX39JTlFvuh7QD7ur6XSm366v4MzHkuvWD+2TzSO/HkXmHmx5\nm0hooqEYJqsJcxMT58Q+I7MWxH5NWuhiv1MZiPLwnHUs21rD9Uf1ouK+u7BccnFtQHdazZw2sjtH\nD+yCyVDkNBIo562r4NIXvgPg5aVunrnuFiI+PyZ3Gl1iEC1PYM2IkDew6fzlsYoKMAzMGRkEaqqZ\nfufNVJckx8En33A7RSMObPLe5Vtqal//uM27xwlXDEPVTfoTQojdkD/5xX4jUBPhx6+38sWPpTz9\n1Xrmrq1gyn8Xo876TbIfvh6P3UK3DAdd0uyYGtllbfHGug1n1m33YerZkxKTE7PTTuGgHEYeV0gs\nkmDp7E34K4PoWKzB/eH169l46e/Y/McriG7bhk4kaoM5QGnxOuJ+P7HycnQjm7wcO7gr/bt4sJkN\n/jZpMJ7d7OcuhBBtQQK62C9EQjHmvLGaRZ9sRMXqgrfFZGDu3Qdzt+4tLiuR0PzywO7kpyfHxK8/\nvj+Gx0PPonxy0xwoQ7FmQRmfPrucr2esZdaLPxLYur02MMeqqth6w42Eliwh8O23lN77D6wWC+PO\nPAeAtNw8Bow9nK0338KGCy4kvHLlLkG9a7qdaRcfzBfXHsWEgXk4LBLQhRDtS37LiJ9E0OslEvRj\nmM043GnEY1BVEqB8i4/BFitXTziAZSU+zh9XxLebazh+SLfkP9aQFwwDrK4my05UVWJ55N9MP2ES\nuD2YMjPxxRV9681gryoN1L72VUUILFtBJE0Rsxg4NbVbvAIYbjcVDz1Mr74HMPjhpzFMJsIff4L3\n/fcB2Pznv9Dz+ecw5zSc9JYjWdOEEPuQtNDFPhfyeZnz6jT+88eLeOqPF7F19QqsdhOHndkXq83E\nvBd/5KxB3RhTlMkjs1bTOy+Nx2ev4d3vN1FZvAje+iP4SposX0ejVL/8Mr7zfo1v8im4Vi+jMMvZ\n4JqREwvJ6+nBk21n/CldiRe4uW/xQ0x4dQJTlz5El7vuIP3008k45xzST51EzTvvUHHHnbBkKa6s\nbAxz3d/CpsxMMEkOcyHET0tmuYt9zlu+nScun1L7vmDwUCb9+SYsNichfzID2bZwhBMf+pK/nTqE\nafOKWbypGoAnzjyAY7c9DlYPHP3XZGt9J7HKSrbedBO+z2Zhys6m1xuvY+nSZZfr/OU+YpVVJJYt\nxHfEME588+Tac++c9g4Fzm4kAgE2XnY5oQULwGKhz7vvYC0sJFZZSc0HHxDdtJmsc8/F0iVvl/JF\npyOz3MV+TbrcxT6nDANnegaB6uTEtaxuBZgtVkxmA1d6spu6IGbhf9ccRSye4L4PV9TeW+xV1DAe\ne58BWLRu9DesOTOT/DvuJHG9D2W379IVvoMr2w3ZbjigB7FAGVn2LCpCFbgsLhwWB4bFgpGeTsFD\nDxJasRKjby8qXQYJ31bS3Glk/epXbf69EUKIPSUtdLHP+SN+AtvL+faN6bizchhxwqmEzY5GN3aJ\nxOLMX1/JX179noIsJ/ePz8P3m19iuNz0euP1JoN1ayV0gtJAKYvLllDk6cfarSbG9Mojq96SuCXb\nl3D+B+cTiUe4+/C7OabnMVhNrV9bLjosaaGL/ZqMoYt9blnFMs79+lK+Gxlg/TDF6z9u4ZR/f8XG\nisAu11rNJkYXZfLm78fx8Ak9CVx6AQl/gFhpaaPLxZqjYzGipaVEt24lXlO3VtxQBk4jm/8t6srp\nD/3I7178nrcWba49n9AJpq+YTjgeRqN5cfmL+KMtz2MuhBDtTQK6aJ1EAnylyUlpidYHVIAlZUvY\n5NvE9NWv8vzyF8jxmNlWE2LGws2NXm81m8hLs5PptmMbPBgjPZ0uN92E4XQ2ev3uRDZsYO2JJ7H6\nqAlUvTGDeKDuj4hYIsGSTdX4wsk16VuqQ7XnDGVwXNFxqFQjbWLhRJzm1j9fCCHai4yhd2DhYICQ\n10ssEsaZnonD087Zt+JR2PQtvHkZ6ARMehgKDwFz65ZnndDrBKavnE5JoITLh13NrMVerCaDYwbm\n4Q/HkpnTGmHOyqLb3X9HR6MYLhemPQjo1W/OJOHzAVDx9NOknXRibTmZTiv3nTmcq19ZRJbLyoWH\n9Wpw78i8kbw/+X0i8QhuUx7LtgSo8FcxsjCzQde8EEL8FGQMvQMrXryI1/5+C2jN2DN/zUGnTMZi\na8e1z95t8OhYCFQk39vT4fffgKcrkExpGorGsZgMcpvJWlYeLCehEyhtZ/5aH0N6pDNtbjErS31c\nd/wADsh1YxhtP2QZ+PZbis89D7Qm/bTT6HLjDZjS0mrPa62p8EcwGYoMZ9NB+r0lW7l82gIAfjm6\nB7eePCiZclV0ZjKGLvZr0kLvwFbO+7J2S9TV33zNiGNObN+Ajoawr+5txF/7/Ep/hLveXcbrCzZz\nQJ6b/1588G6zl2U76vZQP36oh9fmb+TR/60FYPGmat674vBm/yjYE7aBA+nzwfvEKquwFhY0COaQ\nTLma3YINYb5dX1H7+vuN1YRiCZpO1SLE/kUpNQkYpLWe+lPXRbQdGUPvwIZNPD6ZSlMpDjzxVKyO\ndh7TtabBhJtBpRoq468FWzKMBaNxXl+QHANfXepjVYmvqVIaFamXvCQaT6DZfc9R0BuhZnsQf1WY\nRCsSn5jcbqw9e+IcMRxzVlar6ljflEOL6JJmw2Y2uOmkgaTLXu3iJ6KSWvW7XGv9lgTzzke63Duw\nWDRKyFtDIpHA5nJha++ADhCshogP0MnNXRzJDGhl3jBnPjaH9eUBbGaDz/58BN3SbMTKy0l4vZgy\nMojZbUSCQQyTCVd6BqrepjDlvjD3frCC1WU+bjpxIAMyzFhjEQyPB8PasOs76I3w+bQfWbtoO1aH\nmcnXHkhWftNbwdYX93pB611a5q2ltWa7L4zWkO6wYLPITnE/A/tNl7tSqgj4EJgHHAjcC/wOsAFr\ngPO11j6l1InA/YAf+ArorbWxQagHAAAgAElEQVQ+WSk1BRittf5DqqyngRygLHXvBqXUs0ANMBro\nClyrtX5tH31EsQekWdGBmS0W3FlNp/9sjZA/SqA6jMUK9rifWEkJlm7ddl3n7UivDeL15XpsTL90\nLMu31dAn102O20aspIS1p55Gwusl+9abKXbbmT3tGRyeNH591z/J6JJfe7/HbmbiwDyKcpxY/DVU\nvjiN8DffkDVlCp5jJmJy13VoR4Ix1i7ajmFSjD+rF2ZLBF9FCKvDsdteimhJCVtvuRUdjZJ/551Y\nu3fb4++XUmq3QwpC7AN9gfOA1cAbwESttV8pdR3wJ6XUvcDjwHit9Tql1H+bKOffwHNa6+eUUhcA\nDwGnpc7lA4cBA4C3AAno+zHpchfEogmWfbWFV+76lkRFBWtPPoX1vzyLDedfQGz79haXk5dm54h+\nefTIdGKzmAitWEnC6wVAdenC/HdmABD01rB6/rwG94aiCZ6es55Xvt2IZ8Maal54gfCKFWy94QYS\n9daLA5gsJkxWg5OuH8m8aIgHvtzI1uogy2bPIhzwE4rGKfOG8YWitfckwmFK/3Ef/tmzCXz9Ndv+\n+tdka31335eqKkLLlxNatYpYdXWLvw9C7CPFWuu5wCHAIOArpdQikkG+J8kgvFZrvS51fVMBfSzw\nUur1CyQD+A5vaq0TWutlwK77J4v9igR0QSwcY92iMuxuC5ENG2uDcHjVKhLhyB6Xax84AFN2sgdB\nxWIUDR+ZfG0YFAwa2uBat83Mdcf3x2k1Y9TPb64UO/d02t1mzrx+NN+Vern13ZU8M3cj175XTMjs\nIByK8OPWGmYu2swDn6ykwp+qv2GgnI7aMgyno9F94HdIhMJUvfwy635xOutOmYT3/Q/2aCMbIdrR\njp2NFPCx1npE6r9BWusL2+gZ4Xqv95shB9E46XL/uYrHwLsVti3G0m0MIyYW8tF/fsBU0BdLQQHR\njRtxHXEEhiPZrZwIh4lXVQMaU3o6hr357mZzly70enMGOhjCcLs4YuxYRp14Kg53Go6dxrANQzG4\nWxrPXnAQnrAf+yWX4P/6a7KmnIeR3vBas8VEdjc35avrMq5VBiK4svNY49Xc8tZSema5OHdsTzaU\n+8lyWTEsFvKuuAJlNqPDEXKvvBKTazcpWIMBvLM+r33v/fRT0k4+qUHXvxD7ibnAI0qpA7TWq5VS\nLqA7sALorZQq0lqvB85q4v45wNkkW+fnAF/sgzqLdiCT4jqocDCAYRhYbHs4jluzFf7vYAhVgy2N\nyOVLCMftGCaFNVyDjoQxnE7MWVlorQkuXMiGKeeD1hQ8+QTOMWMaTGpra4lQiEQwiOF2Y1gaX99d\nWh3k1rd+YGNliNuPLSLLqjnnlVVsTe3wdv0JA5g0vBvdMupa5joWQ0OD9KeNPj8axfvxx1Q+/wLO\nQw7Gc9xx2Pv3b9fPLPZ7+00LNTWR7R2t9ZDU+wnAPSQnxQHcrLV+Syl1CvAPkq35bwGP1vqcnSbF\n9QSeofFJce/smAinlPJpreUv2v2YtNA7oOrSbXz69GPYXG6O/O2FuDIyW19IsCIZzAHCNVhDm7F2\nGZw6mdvg0kQoRMUzz6Ijye7r8ieexD54MKZ23JnOsNub7QXIS3fw90kDCQSC2KJBEmlZpDsstQG9\nINO5y3IyZTa36LeyYbHgGjcOc04u5U88QaLGi+X3l2PObptJiELsjVSLe0i9958BBzVy6Syt9QCl\nlAIeAeanrn8WeDb1uhiY0Mgzpuz0XoL5fk4CegcTqKnmnQfvZdvqlQBY7XaOvuB3GKZW/q905ULX\nYbBtcfKrK3eXSypDlczbNo+qUBUTbr4aY948EjU1OA87DNWCLvcdIsEAsUgUm8uFqZmWcWtlpbvJ\nSq/7PfPUlIN4YvZaBnT1cGifbFy2Pd+9TQeDbLjwQohG8QM6Ek7uIe9wNHuvEPuJi5VS5wFWYCHJ\nWe+ik5KA3tFoTaLe5KxEPM4ejZq48+A3r0M0CBZH8v1OPir+iDvn3gnAdz2P46a3XyNqM1GZ8KGj\nVWSbszGa2c8iWFPDl9NfYOvKHzn811MoGDQkuRkOEKusREdjKIsZc2aylyFQU01Z8ToMk5mcgkIc\nntatF++e4eD2SYObvS7u85EIBjG5XE0meUn4/RCtmykfXrc+2UshAV10EFrrB4AHfup6iH2j3QYE\nlVL9lVKL6v1Xo5S6SimVpZT6WCm1KvV1D/qLf76c6RmcfOW19Bg0lD6jD2bcWb/d81avOw8yezYa\nzAHWVa2rfb3Bt5GQy8LvZv+R09+ezJlvn0l5sLzZR5SsX8Pij9+nrHgdM++7k0BNDRWbNxEpLWXL\ntdexevx4tt5yK7GKCoJeL58+9Siv3Xkz02+/nrlvvEI4uGtK1b0Vq6yk7P4HKD77bCqnv0q8pvHl\na6b0dOyDByXfGAbZF12IIZPihBD7qXYL6FrrFTuWUZDcySgAzACuBz7VWvcFPk29F62Qmd+dSX++\nkRN+/yfcmXu+fWlzpgyZwqDsQfRw9+CvY/8KClZWJrv6y0PllAZKmy3D7qoLgDani+qSbbx449V4\n16zG/0VyMq3vk0+IV1SQiMdY/e3c2utXzfuKaCi0S5l7K1ZaSuVLLxHdvIXSqVNJeGsavc6ck0PB\nE0/Qa8YbHPDxx8mJgCbZEU4IsX/aV13uRwNrtNbFSqlTgSNTx58DPgeu20f16DQc7vaZkKYTmoA3\nAhqyHbk8OvFREjpBpi2T6nA1o7uMZn7JfAo8BXRxNb/PREaXrpxy9fVsWv4DI449iQ8efZBYJJzs\nYjebIRZDWa3JLV5NJgoGD6V48UIACoeMaJdkM4bbnVyDnkhguJzJejTBnJ0tE+GEEB3CPlm2ppR6\nGligtX5YKVWltc5IHVdA5Y73TZFla/tOVWmAN/7xHSF/jInnD6T38FzM1rpWaXmwnEAsgMPkIMeZ\ns5uSduWvruL5a/5AoLqKYeMnMO6IY/H/7394jp6AtXsehiebQHUV679fgMlipWDwUJxpu24zu7fi\ngQDh5cvxzfqctFMnYSsqQjWxNE6IevabZWtCNKbdA7pSygpsAQZrrUvqB/TU+Uqt9S7j6EqpS4BL\nAAoLCw8sLi5u13qKpNkvr2TJ55sAcGXYOPOG0bjSG7aS49EoQZ8XpRTOtPQWr83WWuOrKGfbmlXk\nFBTgiZVhXjINiueAzQMTb4O8wWDfu8QpQrSTn11AV0rN0Vof+lPXQ7TMvtgl4wSSrfMd23qVKKXy\nAVJfGx2I1Vo/obUerbUenZu765Iq0T669q4Lptk93JjMDf+JJOJxtq5eyTNXX8rz1/6Riq2bW1y2\nUgpPdg59Rwwjc/V0zE8dCd88CSVLYcNcePp4WPs5yBarQvyklFJmAAnmHcu+COi/omFSgLdIJg8g\n9XXmPqiDaKHCwdmcevVIJp4/iKPPHYjd1bArOuT3Meu5J4gEgwSqq5gz/UVi0Vbu9x6qhll3NX7u\n/Wsg0PKEMELs74quf/fXRde/u77o+ncTqa+/botylVJvKqW+U0otTfVoopTyKaX+kTr2iVJqjFLq\nc6XUWqXUpNQ1ptQ13yqlFiulLk0dP1Ip9YVS6i1g2Y7y6j3vOqXUEqXU90qpqaljF6fK+V4p9bpS\nah/kcBZNadeAntpT+BiSqf12mAoco5RaBUxMvRf7CbvLQo/+mfQ/uCvONOsu500WCzkFPWvf5xX1\nQStYW72Wx79/nO/Lvscf9e9yXwPlqyERa/ycdxs0d/9OEok4vsoKvOXbCQfafpmbEHsqFbyfJJn9\nTKW+PtlGQf0CrfWBJPOVX6GUygZcwGda68GAF7iT5O/gXwB/S913IVCttT6I5O5yFyuleqXOjQKu\n1Fr3q/8gpdQJwKnAwVrr4STzrwO8obU+KHVseaps8RNp11nuWms/kL3TsXKSs95FB2RzODnitxfS\nY9BQrHY7BUOGUxmp4ux3ziYYC/LIokeYedpMeqX3aroQa9NJUQAwWjdBrapkG/+96c+E/D4mXvwH\nBh1+5J7vcS9E2/o7sHOr1Zk6/tKul7fKFUqpX6ReF5DMjx4BPkgdWwKEtdZRpdQSoCh1/FhgmFLq\njNT79Hr3flMv3Wp9E4FntNYBAK11Rer4EKXUnUAG4AY+3MvPJPaCZJroxLwRL3O3zOWhBQ+xoWYD\nCZ1ok3KdaekMPeoY+o89HKcnjWAsSDAWBECj2eLbsvsC0nqAq4kZ8j1GEzW1bie25bM/I+RP9gx+\n8+Z0IsFgq+4Xoh0VtvJ4iyiljiQZZMemWscLATsQ1XUznROk0p9qrRPUNeAU8Md66VZ7aa0/Sp1r\nXfdYcj/4P2ithwK3p+ogfiIS0DuoaDxKaaCUEn8JwWjjAWyrfysXf3wxTy55knPeO6dFO7vtCY/V\nw4TCZG6H/pn9GZA1ALQGbwms/xIq1kOobvOWuDWDwG8+JnLIlWCq1xp35VJzwv9xy0db2FTZ8q7z\nnsNGpfKmJ9eum627DhUEvBHKN/vwVYWJR2XSndhnNrTyeEulk1zyG1BKDQAOacW9HwKXKaUsAEqp\nfqnh0d35GDh/xxi5UmrHjlYeYGuqrHNa9QlEm5O93DuoVVWrmPLBFBSK6adMZ2PJRjw2D0VpRaTb\nkmu3twfrJpdVhavarIW+syx7FreNvY0bx9yI2TCT7chOjoU/fjj4SpPB9uyXod9xRCJh1i9awLw3\nXqZw6HDGnP8FjgX/hy48lKr8wzj/tWIWbaxmQ0WAR885kHRn893vuUW9uOBfjxPyeknvko/N2fB3\nU8Ab4cMnfmDLqirMFoNf3nQQmV2b+/0lRJu4keQYev1u90Dq+N74APidUmo5ybznc5u5vr7/kOx+\nX5DaC6QMOG13N2itP1BKjQDmK6UiwHskP8MtwLxUGfNIBnjxE5GA3gHFEjFeWPYCwViQC4ZcwFNL\nnmLG6hkA3Dv+Xk7odQIAA7IGMLFwIgtLF3Lp8EtxWdoviGXad9pKYN0XyWAOydb67Hugx0GEQ5p3\nHpiK1glK16+l75hxOCb9G7TmyQ9XsGhjMqWr1WzQTN6XWjaHE5vDCV0bPx+PJtiyqgqAWDTBhqUV\nEtDFPrF+6kkvFV3/LiTHzAtJtsxvXD/1pL0aP9dah0kuCd6Zu941t+10jzv1NUEyGO/8R8Xnqf92\nuSf1eio7TWLWWj8KPNrK6ot2IgG9AzIbZiYUTOCdte+Q58zjq81f1Z6bXzK/NqBn2bO47dDbiMQj\nuCwunJaWrygJxoKUBkoprilmYNZAcp2t3AsgvcdO73uC2YYyIpitVqLh5B7tllQaVqUUFx7Wi3As\nQXUwwjXHDSDN3ja7t5nMBnk9PZQWezFMiu4DMtji3YLZZCbLnoXZkB8D0X5SwXtvJ8AJ0ax9svXr\n3pKtX3fljXjZHtyOQrHZt5krPrsCj9XDs8c/S1F6UYvK8FWG2Lq6mpwCN+4sO5Z6W7yuqlzFmW+f\nSVzH6e7uzosnvIgj6iEWjmOxmxtd0tZAoBzmPQ7fPQO5A+G0RyG9O/FYjO0bi1nw3kx6jRxN0fBR\nDRK4xBMJEhosprad3hGoiVCzPYgz3coH297ljvm3k2ZNY/op0+nu7t6mzxKd1s9upzjRsUjTpIPy\nWD14rMnhqnxXPh9M/gClFFn2lmVf81eHee2e7/BXhVGG4qxbR2PKiJNhT+7Ku7B0IXGdnDy22beZ\nYDTI+/9YSc32EF37pHPCpUN3H9Sd2XDYn2D0hWCygjPZJW8ym+nSqw/HXXYVRiNbxpoMg/bIZ+ZM\nsxKxBqiKlPH375I53msiNSwqXSQBXQjRKcgs907AZraR68wlx5GD0cKB53g0gb8qDCQzrK1dv5mH\nFz5MRSi5vHRs/tjaMfchOUOwYKNme7KbfNuaamL1ZoqHYiFK/CVs8W2hJlwvFanFDp4utcG8vsaC\neXvyRXzcN/8+vtj8BUcVHAWA0+xkWO6wfVoPIYRoL9JC74SqQlUs3r6YqlAVh3Y/lBzHrmu+LTYT\nvUfmsnZhGWk5DjIL7Mz4bAYXDL0AgHx3Pm+d9hbeiJcMWwaOqBt3pg1fZZjcQg9mS107enn5ci78\n6EKiiSjXHXQdk/tOxmFp3Vry9haOh/mh/Ac+Lv6YO8bdwUVDLyLXmUuWrf3yyQshxL4kY+idTCgW\n4qkfnuKx7x8DoF9mP5445onkUrKdBH0RwqEI633ruHXhTSRI8Ozxzzb6BwAku+mjoThWR90YeiQe\n4cYvbuTD4uQGUfmufF466aXaMuKJONuD21lQuoCeaT3p7u5eu6xuX4rGo8zbOo8rZ11Jui2d545/\njoK0grrPFvETiAUwGaYWD1uInx0ZQxf7NWmhdzLBWJDZm2bXvl9ZuZJoItrotQ63FbND0cWRwy1j\nb6FXeq8mgzmQTKO6Uyy2mqyMLxhfG9APyT8Eu6lus6jyUDmnv3U6NZFkV/ytY2/l9ANOx2S0x0h5\n0ywmCwd1Pah2rkG2ve4PHH/Uz9tr3+beb++lX2Y/Hj764d1+H4QQYn8kAb2TcZqdHNfzOJaVLwNg\neM5wrEbTk9csJgv5rnzyXflNXhPyedn04zLKitcy5Mhj8GQ3DHZH9DiC6SdPxxvx0jezL25r3az1\nJWVLaoM5wH+X/5ejC44my9HyVnAsEiFQXYWvopyMrvlopwVf1IeBQbYju8XzBmxmG7nmXZffBaIB\n7vnmHmI6xtLypSwoWcCxRce2uH5CdESp7WMjWus5qffPAu9orV9rh2f9B7hfa72srcsWdSSg72O+\niI9gLIjFZCHDltHm5dvMNib3m8yoLqOoDlczJGdIi4NnVbgKb8SL1bCSYcvAZrYBUFa8jpn/uAOA\nlV9/yZm33IUzva7u6bb0JrvRC9MablndL7NfbbktVbO9lOf+8gcS8RiH/Pq3lA2yceucW0m3pTPt\nxGm7PKO1TMpE74zerKxciUK1eNmfEC1yW/qv2WljGW6r3h/WpR8J+IA57f0grfVF7f0MIbPc96ma\ncA0vLn+Rk2eczK1f3lo7o7ytpdvSGZE3giMKjmh07Lwx1eFqHl74MCe+cSInvnEiP1b+WHvOW163\nhayvopxEouVbyHZxduGew+9hUPYgTu1zKlcfeDVGK//ZlaxbQyKeTLdq65LJY4sfQ6OpClcxc83M\nVpXVmCxHFo9NfIyph0/l1VNepbtLlrGJNpIM5rukT00d32NKKZdS6t1UHvIflFJnKaWOVkotTOUs\nf1opZUtdu14plZN6PTqVH70I+B1wtVJqkVLq8FTR45VSc1L5089o9OHJctxKqU+VUgtSzzu1qXql\njn+ulBqdev2oUmp+Kmf77XvzfRANSUDfhwKxAI8seoRALMCsTbPYWLNxnz4/Eo9QFihje3A78UR8\nl3OvrHgl+ToRYdryabVj70XDR9H7wDFkdMnn5Kuuw+5271J2U9JsaRzf63j+deS/6JPRh3PeO4cP\niz8kEG158pUeAwfjyUl2lXtcGYzuMrr23MFdD25xObuT68zlpN4n0T+rP67m0rsK0XK7S5+6N44H\ntmith2uth5Dc2/1Z4KxU5jMzcFlTN2ut1wOPAQ+kMq59kTqVDxwGnMxO27zuJAT8Qms9CjgK+Gdq\nX/jG6rWzm7TWo4FhwBFKKVk72kaky30fMikT2fZsykPlmJRpn068iifiLClbwmWfXobNZOOZ457h\ngMwDGtRtQNYAfqxItszHdB2DJZWX3JmewQmX/4l4LIrd5cZkad2WrIYyeHfduzy44EEAbptzG+O6\njWvxVrSerBzOuet+4rEYVrudP5v78ou+vyDTnkmeI69VdRFiH2uX9Kkkc53/Uyl1D/AOUAOs01qv\nTJ1/Dvg98K9Wlvtmaq/3ZUqpLru5TgF/V0qNJ5mmtTvQZed61ftDob5fKqUuIRl/8oFBwOJW1lM0\nQgL6PpTtyGbaSdOYvXE2o7qM2jWhyW5UhirxRX3YTXZyHDko1fgKmqpAhEgsgdlkkOWqmwxXE6nh\nn9/9szZ3+aPfP8rdh9+N1ZS8JsuRxaNHP8rszbPJd+UzMHtgg3Jb0ypvTKGn7vdXrjO3xRPZdnBl\n1H2v7MCB9gP3qj5C7CMbSHazN3Z8j2mtVyqlRgEnAncCn+3m8hh1vbHN5SsP13u9u2V65wC5wIFa\n66hSaj1g37leSqlPtdZ/qy1QqV7AX4CDtNaVqYl4kkO9jUiX+z5kKIPu7u78auCv6J/Vv8Ut1KpQ\nFXfPu5sT3ziRM98+k5JASaPXVfoj3PXecsb8/VOufHkh5b66n02bycbArLogPTRn6C5JSXKcOfyi\nz2kMcw7AHEgQDYdpK2O6juGuw+7i3EHn8uzxz7Z4bF+IDu5GkulS69vr9KlKqW5AQGv9IvAPYCxQ\npJTa0e32W+B/qdfrgR1/AU+uV4yXPU93mg6UpoL5UaT+aGmkXqN2ui8N8APVqR6AxjLGiT0kLfQO\nIJKI8P7694Hkuu6l25fS1bVrrlBvOMar8zcB8MWq7WyrDpHtTs4od1qc/H7k7zk4/2DsZjvDcoY1\n2kqu3LaVl2+9hnAgwGnX3Ezh0BGYzHv/zyTDnsGkPpOgz14XJUTHcVv1S9yWDm0/y30o8A+lVAKI\nkhwvTwdeVUqZgW9JjpED3A48pZS6g4bpUd8GXktNaPtjK58/DXhbKbUEmA/smEXbWL1qaa2/V0ot\nTF2/EfgK0WYkoHcAFsPCIfmHMHfrXJxmJwOyBzR6nd1skOm0UBmIYjMbZLkbrj/Psmc1u7564fsz\nCXqT68a/fPl5JvfpizNt73Z2C0aDtWvR023p2M3SwyZ+RpLBu02XqWmtPwQ+bOTUyEau/QLo18jx\nlSQnpu3wxU7nmxxn01pvJ9krsLP1jdVLa31kvddTmipX7B0J6B1Apj2TqYdPpSJUQbotvcn9x7Pd\nNt7+w2HMXVfOqMJMspwNA3qgphqtNc609CbH4AuGDGfRR+8B0K3/IMzWZtKkNiOeiPPNtm+4ctaV\nKKV4fOLjjMkfs1dlNiUcC2MxLPs88YsQQuwPJKB3ENmO7F3GncsCZYRiIZwWJ9mObEyGokeWkzOy\ndh2br9lexrsP3kMkFOLkq64ju3vBLtcAFA4ezm+mPkjY7yO3sBdW+94lWQnEAjy/7PlkKlYNLyx/\ngaG5Q3GY2y55SyweY3X1ah7//nH6Z/XnrP5ntWrCoRCicUqpocALOx0Oa63bZr2oaFMS0DuoskAZ\nN315E4fkH0KaLY0JBROa3BEukUgw9/WX2bIyOcz1yZOPMOkvN+Fw7zofxu527/WM9gblme1MKJjA\nN9u+AeDowqOxmVq3U1xzKsIVTPlgCv6on082fEKOI4cz+jW5J4YQooW01kuAET91PUTLSEDvoLb5\nt3HZiMt4cMGDuCwuxnUb1+C8L+IjFA/hNDtRKDy5deu13dk5mEz75n+9xbBwcp+TOaTbIZhUMpNZ\na5esNSehE/ij/tr32/zb2rR8IYToCCSgd1A5jhyunX0ti8oWAfCU8yluPPhGDMOgMlTJvxf+my83\nf8nkvpMZ220sang3xjqmYIpohh55DFbHvstXvru93tuCy+LimoOu4V/f/Yte6b04s9+Z7fYsIYTY\nX0lA30cqQ5VEE1HMyrxL13g4FqY6Uo1CkWnLxNyC1rPD7Giwjt1j9dROdFtXvY5XV74KwMOLHmZM\n1zFc9tUVjO46mjOHn9kgsUpn4LF6mNx3MicUnYChDFnjLoT4WZLpwPtAZaiSW768haNfPZqLP76Y\nskBZ7blYIsaC0gUc//rxnDzjZFZUrmhRmRn2DO4YdweT+07mgiEX8NtBv60N6PWXhSkUdrOdmI4x\nd+tc0qxpbfvh9hMui4tcZ64EcyHEz5YE9H1gq38r/9uc3LRpZeVK5mypy1ZYE6nhX9/9i2giWpe8\nZTeJS+onVclz5nHzITdz5agrG7T6u7u7c8NBNzC221juHnMHaTi589A7eOGEFxiUPagdPqEQYn+l\nlLpNKfWXdiq7NpPb/kgplauUmpfKQnd4I+f/o5TqNL8Upct9H/BYG84mr5+UxW6yMzh7MMsqlgEw\nLHdY7f7q9XkjXr79//buPEzOqsz7+PeXztZJyEIIIWyCiBBA1hKIIMaAisgLQZFFZgBBeFEQXsEZ\nwHFYXGZYHBURREAMosNiQIjgSBgWySCBNBISkhDZh0AgCUkgO1nu94/ndFLpVFVXd7qquiu/z3XV\nVVXPdk49qfRd5zznOffbkxj/2nhO2PUEhm8+nF7de20wfStk16yP2vbzDJuxinfvfYax03/DCd+7\niqFbepo2s2r72K0f2yAf+tRTpnaGfOg1Jal7RKyqcDGHAlML5WOX1FBvedrdQq+CQb0G8eNP/ZgR\nW4/ggv0uYPfBu69d16dHH7657ze5+pCrufbT13L8LscXDNILli/gvEfP44FXH+C0B09j4YqFG2yz\nJtbwzpJ3mDh7IqtWreLVCU/w+uS/ZeVsVp9d7WadWQrmG+RDT8vbrUg+9A3ynuftspekJyW9KOmM\nEscdJunxlCP9+eZWbSs5zL+Zlxd917T9/qm8Z1N+9V3S8lMljZP0CPBwibzqO0iaIemmVOZ4SUVH\n8ko6Q9KkdD7ultRH0t7AVcDR6fM0Slos6T8kPQeMaJGn/fBUj+ckPVzqc3RWbqFXQb+e/Ri1/ShG\nbD2C3t17bxCwB/UexOE7Hl7yGMtXL1/7euWaldlELS28u+xdjrv/OOYvn8/ug3fnxkt+zvw3/pdB\nW29DYzsHwi1btYxudKNX9469d9xsE1EqH/rGtNKb845/AUDSAODKEtvvCRwI9AWelfRARLxVYLuv\nAA9GxA8lNeTV/V8iYn5a9rCkPSOiOeXpvIjYV9I3yDKpfY1srvZPRsQqSYelz9ucGGZfYM90vO5k\nedXfTz9GJkoal7bbGTgxIs6QdFfa/7dFPt89EXFTOhc/AE6PiGslXQLkIuKctK4v8FREXJDek56H\nkP3wOiQiXpXUfA2z1CwchTUAACAASURBVOfodBzQK2jh8oW8ufhNejT0YGifoW2+dWvpyqUsWbmE\nINisx2b84rBf8ONnfsyJu55YcHDb4pWLmb98PgDT3p3G3G7vsdNeLZMdFbd8yWKWLFzAyuXLGbDl\nUN7rtpSrJ11Nr4ZefGu/bzGkzxCWrlzKrMWzmDZvGgdufSBb9dmq6DSyZladfOgRMaGV/4f3RcQy\nYJmkR4H9gXsLbDcJuEVSD7Lc6JPT8lI5zO9Jz88AX0yvBwC3StoZCKBHXhkPRcT89LpYXnXI8rs3\nl/8MsEOJz7dHCuQDgX4UnuceYDVwd4HlBwKPR8SrAHn1K/U5Oh0H9ApZsWoFd8y8g+smXwfA5Z+4\nnNEfGV32pCrvr3ifsX8fyx0z72DE1iM4aOuDeHnhy/zysF/Sv2f/gi3m/j37s9vmuzF9/nQ+uc0n\n17tWX47/ff45/vjjfwfg40d/ibf3bGT86+PXrr9kxCXMWTqHL//xy6yJNQxpHMKdR97JkD5D2lSO\n2SakKvnQUxdxqbzn0cr75uM+noLrF4Axkn5MlrSlVA7z5jzLq1kXU74PPBoRx0jagfWzvC3Je10w\nr3qL4zYfu9TkGWOA0Smb26nAyCLbLY8o0L1ZXKnP0en4GnqFLFu9jP9583/Wvv/LrL/wweoPyt5/\n0cpF/ORvP2H2ktnc8+I9NHZv5Lbp2ZTKxbq/BzcO5vrDrmf8l8Zz/n7n8+ycZ3lr8VusWNV6XvM1\nq1fz0qSJa9+/NvlvDOmxbuT88tXLCYLX3n+NNbEGgLnL5rJyzcqyP5PZJqha+dD3pXjec8iuI/eW\nNJgs2E0qctwPAe+k7uub03Hbk8N8APBmen1qK9ttkFe9HTYDZqeehZPasf9E4BBJOwLkdbmX+zk6\nhYoGdEkDJY2V9EIa4DBC0uaSHkqDMx6SVJdZNPp178dpe5xGN3WjR7cenLzbyW1KG9pd3enZbd1o\n9/49+7PNZtvQoIaS+2VJWhp4/4P3efKtJ7nhuRtYsGJBq+V1a2hgvyOOonvPXiDx8aO/xO7D9mTf\nLfdlxLAR/PPH/5nG7o3sscUefHjAhwEYvdNo+nTfMBGMmWXSaPYzgNfJWsWvA2d0wCj3jwFPS5oM\nXAr8gCzv+TWSmshatPmmAI+SBa7vF7l+Dlmwb85ZfjxwTUQ8BzTnMP9PysthfhXw7+k4pXqCfwfk\nlOVVP5l1edXb6l+Bp1Ld2nyMiJgLnAnckwbM3ZlWlfs5OgVFFOx56ZiDS7cCEyLiZkk9yQZYfAeY\nHxFXSLoIGBQRF5Y6Ti6Xi6amporVs1KWrlzKog8WIYkBPQe0aWDZilUrmLlgJmP/PpZR24+iX49+\nfKj/h8rq3p6zZA43P38z414ex6UjLmXbftuyZZ8tGdJnSMku/9UrV7Js0ftErKFXn370bGxk4YqF\ndKMb/Xutu2b/7rJ3WbVmFb0aejGwd33NOmdWggeLWKdWsYCeRl1OBj4ceYVImgmMjIjZkoYBj0VE\nyVsBumpA7whrYk3RILxk5RLeXvI2by95m+GbD187ucx7K97jqklXsd/Q/Xjkfx/hL7P+wqBeg7jz\n/9zJsL7Dqll9s3rigG6dWiW7EHYE5gK/lrQX2SjF84ChETE7bfM260Y0WgGlWtR/X/B3Tv6vkwE4\neJuD+cFBP2Bw42AG9BrAN/f5JvOWzePSv14KwIIVC5gyZwrDdnRAN9vUqYvmOZd0HXBQi8XXRMSv\na1GfzqaSAb072YCKb0bEU5KuAS7K3yAiQlLBLoJ0i8SZANtvv7F3eNSnyXMmr309Ze4U3l3+Lr27\n96Zvj75s1XcrutGNPbfYkynzptC7oTe7bdFxMxzOWzaPiKBvj77rJYkxs86vq+Y5j4iza12HzqyS\ng+JmAbMi4qn0fixZgH8ndbWTnucU2jkiboyIXETkhgzxbVGFfHaHzzKkMTs3p+5+Knf//e718oJv\n2XdLfjbqZ9z+hdu5/5j7GdqnYzpD3lr8Fic9cBKfGfsZxr8+nmUrl3XIcc3MrP0qFtAj4m3gjbyp\n8g4FpgPjgFPSslOA+ypVh3q3dd+t+e0Rv2XM4WNYvno5418bv0EX/eDGweyxxR4M7Tu04Bzx7THu\npXG8teQtVsdqrnz6ShavXNwhxzUzs/ar9DD8bwK/SyPcXwG+SvYj4i5Jp5PdwnFchetQtyQxoNcA\n3l7yNr0aenHbEbcxuHde+tCVy2DVCujVH7p13G+34YOHr32908CdCs49b2Zm1VXR29Y6yqY8yr3d\nlsyDx6+Gd56HUf8KW+8DHTQf+3sr3mPm/Jm8segNPrXtp9iiz8ZnT1y9ZjVvLXmLp2Y/RW5ojm36\nbUOPhk49y6JtejzK3Tq1sgJ6mrj+DLK5dNc2xyLitIrVLI8Dejs8+zu47xvZ6x6NcO5k2Gyr2tap\nhDlL5zD63tEsWrmIxu6N3H/M/WzZZ8taV8ssnwN6FUkaCHwlIq5vx76vkSVlmdcB9fge2Tzv/72x\nx6q0cvtK7yObz/e/2XAGImthwfJsZrZBvWs4CV7+NLNrVkMn74lZsXoFi1YuArIMb0tXtpwt06xr\nmrHr8A3yoQ9/YUbN8qGrOnnIO8JA4BvABgG9mp8hIi6pRjkdodwLq30i4sKIuCsi7m5+VLRmXdSs\nRbM4++GzOfvhs5m1aFbtKjL8SNjrBNhqTzjxDmjs3DPs9uvRjxN3OZHG7o0ctdNRbc5MZ9YZpWC+\nQT70tHyjSPoHSU+nXN+/lNQgaXHe+mNTIhUkjZF0g6SngKvSFNz3SpoiaaKkPdN2l0m6TQVyp0v6\nJ2U5x6dow5zoLet2ctruOUm3pWVDlOUqn5QeB+WVeYuy3OSvSDo3HeYKYKf0+a6WNFLShJRedXra\n915JzyjLmX5mG87dBvul8zdGWR74qZK+lXfujk2vL0l1f17SjVLnSjVZbgv9fklHRMSfKlqbLm7x\nB4v5t6f+janzpgJwxdNXcOUhV9K3R9/qV6bvEDjiR9mguN4DoJNfjx7UexDn7HMOZ+x5Br0aeq03\n1axZF1aRfOiShpPNtX5QSmxyPa0nJdkW+ERErJZ0LfBsRIyWNAr4DevuS98gdzqwB1l+8v3JfpiM\nk3RIRDxeoG67A99NZc3LS3RyDfCTiPgfSduTpThtHmG7K/BpsiQrMyX9gmzekj0iYu903JFktz7v\n0ZzmFDgt5VVvBCZJujsi3i3jFG6wH9kl5W0iYo9UXqF5rX8eEd9L628DjgT+WEZ5VVFuQD8P+I6k\nFcBKsn/QiAj/1c3T0K1hvZbloF6DWk2mUlG9NsseXYSDuNWhSuVDP5Qss9qk1EhspMicHnl+n5c6\n9GBSRraIeETSYEnN/wEL5U4/GPgsWZIWyHKO7wxsENCBUamseen4zbnFDwN2y2vU9pfUL71+ICJW\nACskzaH4DKJP5wVzgHMlHZNeb5fqVE5AL7TfTODD6cfOA8D4Avt9WtI/k/0o2xyYRlcL6BHRdaJC\nDTV2b+TbuW+zee/sB+lpe5zWpgxrZlZ3KpIPnaxRdWtEXLzeQumCvLct//gsoTyFcqcL+PeI+GWb\narm+bsCBEbE8f2EK8C1znxeLTWs/Q2qxHwaMiIilkh5jw8+8gWL7pVzvewGfA84iu6X6tLz9epNd\nz89FxBuSLiunvGoq++ZkSYMk7S/pkOZHJSvWVQ1uHMwFuQu4IHcBgxsHt76DmdWziuRDBx4GjpW0\nJWT5u5VymUsaLqkbcEyJ/SeQuuhTgJsXEe+ndYVypz8InNbcopa0TXPZBTwCfDntn59bfDzZ3CSk\n5a1NPbuIrAu+mAHAghSUdyW7TFCOgvtJ2gLolsaHfZesez9fc/Cel87DsWWWVzVltdAlfY2s231b\nsgxqBwJPknWtWAulEqqY2aZj+Asz/nPGrsOhg0e5R8R0Sd8FxqfgvRI4m+y68/1kibGayLrGC7kM\nuEXSFLIfGKfkrWvOnb4F63Knv5Wu2z+ZWtSLgX+gQDd/REyT9EPgL5JWk3XTnwqcC1yXyuxO1l1/\nVonP+K6kJyQ9D/wXWTd4vj8DZ0maQdZdPrHYscrcbxuyZGLNf8DX6/2IiIWSbgKeJ0ssNqnM8qqm\n3PvQpwIfByZGxN7pV82/RcQXK11B8H3oZtYpdKoRzZWQupEXR8SPal0Xa7tym5LLm697SOoVES8A\nJXOYm5mZWfWUO8p9VhrCfy/wkKQFZPOwm5lZnYiIy8rdNl0jf7jAqkPLvHWsojp7/SqhzXO5S/oU\n2aCCP0fEB61t3xHc5W5mnUDdd7lb11Z2mixJ+5LdixjAE9UK5mZmZta6sq6hS7oEuBUYTDby8ddp\nhKWZmZl1AuW20E8C9sobGHcF2e1rP6hUxczMzKx85Y5yf4v1Z8TpBbzZ8dUxM7OOIOkoSRcVWbe4\nyPL8RCSPScpVso7FSNpb0hFVKOc7ea93SPe8b+wxh0h6StKzkj5ZYP3Nknbb2HIKKTegvwdMS//Y\nvya7sX6hpJ9J+lklKmZmZu0XEeMi4opa16Od9gYqFtCV6cbGz9hXyKHA1IjYJyImtCi3ISK+FhHT\nK1Bu2V3uf0iPZo91fFXMzOrPdWc9skE+9LNvGLVRM8VJ2oFsxrOJwCfIZi37NXA5sCXZZdLdyOYd\nP0fSjmTZ3foB9+UdR8C1wGeAN4CCg50lfTYduxfwMvDViCjWyt8P+HEqax5wakTMVpaK9UygJ/AS\n8I9p+tUvA5eSzeH+Htk8698DGiUdTDaH/J0FyrmM7Jx+OD3/NCJ+ltadz7p52G+OiJ+mc/Yg8BRZ\nYpunUxmTyZKs/AvQkGaD+wRZL/TRKVFNoc+5wecBPgpclY6bA0aQzdr3y/S5zpb0A+DbEdEk6XCy\n70YD2fS7h0ranywzXW9gWTrXMwvVYYM6teO2tUHAdhExpU07bgTftmZmnUCbb1tLwfwm1k+huhQ4\nY2OCegpOLwH7kAWjScBzwOnAUcBXyeYNaQ7o44CxEfEbSWcDV0ZEP0lfBL4OHE6W4Ww68LWIGJuS\nlnwbeA24B/h8RCyRdCHQqzmNaIt69QD+QhYI50o6HvhcRJwmaXDz/d8pqL0TEdemmUgPj4g3JQ1M\nU6ye2lz3EufgMrIMcGvTrgJbkaV/HUM2RbnIAvg/AAuAV8jSuk5Mx1gcEc3z0zef01xETJZ0FzAu\nIn5bpPxin2e9uksK4PiIuCu9bz6vrwN/Aw6JiFclbZ5SuvYHlkbEKkmHAV+PiC8VOw/5yp3L/TGy\nL0l34BlgjqQnIuL8cvY3M9tEVSQfevJqREwFkDQNeDgiIgXIHVpsexApXSpwG3Blen0IcHtKq/qW\npEcKlHMgWWv/iTSPe0+yXB6F7EKWO/2htG0DMDut2yMFvoFkrfcH0/IngDEpgN5TxufOVyjt6sHA\nHyJiCYCke4BPAuOA15uDeRGvRsTk9PoZNjyP+Yp9npZWA3cXWH4g8HhzOti8NLMDgFsl7Ux2m3iP\nEnVYT7ld7gMi4v2UpOU3EXFpmmDfzMyKq1Q+dFg/5eiavPdrKPy3vW3dsesIeCgiTixz22kRMaLA\nujHA6Ih4LrViRwJExFmSDgC+ADyTuuzLVW7a1WatpZBtebzGEtuOocDnKWB5Xh76cnwfeDQijkm9\nBo+Vu2O5g+K6SxpGlh/2/jZUzMxsU1Ys7/nG5kNvqyeAE9Lrk/KWPw4cL6kh/Y3/dIF9JwIHSfoI\ngKS+kj5apJyZwBBJI9K2PSTtntZtBsxO3fJr6yBpp4h4KiIuIbvevB2tp04tZQIwWlIfSX3J0shO\nKLLtylSf9ij4edpgInBIGt+Qn2Z2AOvuIju1LQcsN6B/j6w74eWImCTpw8CLbSnIzGwTVKl86G11\nHtmArKlkaUKb/YHsb/l04DcU6EqPiLlkgeX21DP7JLBroULSDKLHAldKeo5svpJPpNX/SnY9+wng\nhbzdrpY0Nd0y9leysQCPArtJmpyuw5ctIv5G1np+OpV3c0Q8W2TzG4Epkn7XljKSYp+n3HrOJRtU\nd086V80D/64C/l3Ss7RhNldox6C4WvCgODPrBNo1l3slRrmbFVJuPvSPAr8AhkbEHpL2BI6KiKrM\nFOeAbmadgJOzWKdWbpf7TcDFwEqAdMvaCSX3MDOzuiXpD6lLPP/xuQqU89UC5VzX0eWUKP+6AuV/\ntVrlt0W5/fN9IuLpdBtCs1UVqI+ZmXUBEXFMlcr5NdmkOTUREWfXquy2KreFPk/STqTbHpTN9Tu7\n9C5mZmZWLeW20M8mGw24q6Q3gVdp3zB9MzMzq4CSAV3SeRFxDTAsIg5L9/R1i4hF1ale1xYRLFix\ngO7qTv9e/WtdHTMzq2Otdbk3X/i/FiAiljiYl2dNrOHlhS/zjf/+BhdPuJh5y+bVukpmZlbHWgvo\nMyS9COwiaUreY6qnfi1twfIFXDjhQqa9O43H33yc22fcXusqlW31mtXMXz6fxR8UTKZkZnVA0mh1\nYF5uSTnVMJ228vK/q0VOckl/kjSwVnWrlpJd7hFxoqStyGaJO6o6VaoPDd0a6N9zXTf75o2bl9i6\n81i1ZhUvzH+B7z/5fbbbbDsuPuBiBjcOrnW1zKzjjSabyrtDcnNHRBNQswlDImIcWQIWWJeT/Gvp\nfbGpX+uKZ4qroDlL53Dz1JsZ1ncYoz8ymkG9B9W6Sq2au3QuX/nTV3h7ydsAfPeA73L8rm2aedGs\nXrVrYpn/OP7IDWaKu+DO+zd6pjhJ/wCcS5b97CngG8DPgY+TJRUZGxGXpm2vIGuUrQLGk2U1u58s\n//h7wJci4uUCZZSVwzwiDpE0kizP95FtyemdEpscQzaH+TbAbyPi8rTuXrK53XsD10TEjWl5oTzi\npwI54GaywN5INif6CGAGWUrTeZJOJktfGsCUiPjHcs95Z9faoLi7IuK4NP9vfuQXEBGxZ0Vr18Vt\n2WdLLt7/Ylrcv9+pdVM3BvQcsDagD+xd971UZhWTgnl+PvQPATf9x/FHsjFBXdJw4HjgoIhYKel6\nsjuP/iXl1G4AHk6zer5JFjB3TelVm3OOjwPuj4ixJYq6JyJuSmX+gCzf+rXAJWR5zt8s0pX9AvDJ\nvJze/8a69K2F7E+WdnUpMEnSA6nFf1r6PI1p+d1kl4pvIi+PeP6BUi7zS1g/J3nzedsd+C5ZTvR5\nLfft6lq7be289Hxkew4u6TWyrDmrgVURkUsn8E6yPLOvAcdFxIL2HL8r6ErBHGBw42CuHXUtY6aN\n4cMDP8wBWx1Q6yqZdWWVyod+KLAfWZCDrDU6BzhO0plkf9uHkeUxnw4sB34l6X7aljGzvTnM25rT\n+6GIeBfW5i8/mKz7/lxJzRPYbAfsDAyhcB7xcowCfh8R89qxb6fX2jX02en59Y0o49PNJy+5CHg4\nIq5IAxguAi7ciONbBxvWbxgXH3BxrathVg8qlQ9dwK0RsfY/akrD+RDw8YhYIGkM0Du1kvcn+xFw\nLHAOWWArxxjal8O8rTm9W177jdSFfxgwInXzP0bW9W5FlBzlLmmRpPcLPBZJer+dZR4N3Jpe30o2\nMMPMrB5VKh/6w8CxkraEtbm0tweWAO9JGgp8Pq3rBwyIiD8B3wL2SscoJ+d4W3KY52trTu/PSNo8\nda2PJusBGAAsSMF8V+DAtG2xPOLleAT4sqTB7di302uthd7eBPNrDwGMlxTAL9OAhqHNLX/gbWBo\naweZSfpZaGZWI4+1b7fvsP41dOiAfOgRMV3Sd8n+vnYjS5x1NvAs2fXrN8iCImRB+T5Jvcla9uen\n5XcAN0k6Fzi20KA41uX8npuem2PC1ak7XWQ/Lp4DPpW331VkXe7fBR4o4yM9DdwNbEs2KK4pjd06\nS9IMsjAwMX32uemywj3ps88BPlNGGUTENEk/BP4iaTXZ+Tq1nH27goqOcpe0TRo0sSVZV9A3gXER\nMTBvmwURscHw7/QPdiZArz333O/A556rWD3NzFrzWCcb5V4vmkenNw9gs/ar2m1rki4DFgNnACMj\nYrakYcBjEbFLqX276m1rZlZXutYI1y7CAb3jlJttrc0k9ZW0WfNr4LPA82T3B56SNjsFuK9SdTAz\ns9apCjm/JX2uQBl/iIgxDuYdo9xsa+0xFPhDuqWiO/CfEfFnSZOAuySdDrwOHFfBOpiZWSuqkfM7\nIh5k3W1vVgEVC+gR8QrrRlPmL3+X7PYJMzMz6yAV63I3MzOz6nFANzMzqwMO6GZmth5JO0h6voxt\nvpL3vqbpU80B3czM2mcHYG1Aj4imiDi3dtUxB3Qzsy4mtY5fkPQ7STMkjZXUR9Khkp6VNFXSLZJ6\npe1fk3RVWv60pI+k5WMkHZt33MVFypog6W/p8Ym06grgk+n2s29JGpmSv5Cmcb1X0hRJE5VlfUPS\nZalej0l6Jc1SZx3EAd3MrGvaBbg+IoYD75NN6ToGOD4iPkZ2F9PX87Z/Ly3/OfDTNpQzB/hMROxL\nlrK1uVv9ImBCROwdET9psc/lwLMpxfZ3gN/krdsV+BxZytRL0zzx1gEc0M3MuqY3IqJ5vvbfkt0O\n/GpE/D0tuxU4JG/72/OeR7ShnB5kc75PBX5PlpK1NQcDtwFExCPAYEn907oHImJFysI5hzLyeVh5\nKjmxjJmZVU7LebsXAoPL3L759SpSwy4lOulZYL9vAe+QzSvSjSy3+sZYkfd6NY5DHcYtdDOzrml7\nSc0t7a8ATcAOzdfHgX8E/pK3/fF5z0+m168BzbnMjyJrjbc0AJgdEWvSMRvS8lLpVyeQ0q2mvObz\nIqK9KbetTP5lZGbWNc0EzpZ0CzAdOJcsxejvJXUHJgE35G0/SNIUshbyiWnZTWSpVZ8D/kyWT72l\n64G7JZ3cYpspwOq07xiyVKTNLgNuSeUtZV3+DqugqmVb2xjOtmZmnUCnybYmaQfg/ojYo8ztXyPL\naDavgtWyGnOXu5mZWR1wl7uZWRcTEa8BZbXO0/Y7VKwy1mm4hW5mZlYHHNDNzMzqgAO6mZlZHXBA\nNzMzqwMO6GZmXZCkwyXNlPSSpItqXR+rPQd0M7MuRlIDcB3webK51U+UVM4c61bHHNDNzLqe/YGX\nIuKViPgAuAM4usZ1shrzfehmZhWWy+W6A1sA85qamlZ1wCG3Ad7Iez8LOKADjmtdmFvoZmYVlMvl\nPgHMBV4F5qb3Zh3OAd3MrEJSy/wBYCDQOz0/kMvlGkru2Lo3ge3y3m+bltkmzAHdzKxytiAL5Pl6\nA0M28riTgJ0l7SipJ3ACMG4jj2ldnK+hm5lVzjxgOesH9eVkXfDtFhGrJJ0DPEiWn/yWiJi2Mce0\nrs8tdDOzCkkD4L4ALCQL5AuBLzQ1Na3e2GNHxJ8i4qMRsVNE/HBjj2ddnwO6mVkFNTU1/ZWs631H\nYIv03qzDucvdzKzCUov87VrXw+qbW+hmZmZ1wAHdzMysDjigm5mZ1QEHdDMzszrggG5m1gVJek3S\nVEmTJTWlZZtLekjSi+l5UFouST9LqVanSNo37zinpO1flHRK3vL90vFfSvuqWmVY+zigm5l1XZ+O\niL0jIpfeXwQ8HBE7Aw+n95ClWd05Pc4EfgFZcAYuJUvssj9waXOATtuckbff4VUsw9qh4gFdUoOk\nZyXdn97vKOmp9IvszjRtoZlZ3crlcsrlcr1zuVylW6BHA7em17cCo/OW/yYyE4GBkoYBnwMeioj5\nEbEAeAg4PK3rHxETIyKA37Q4VqXLsHaoRgv9PGBG3vsrgZ9ExEeABcDpVaiDmVnVpUD+deAdYAnw\nTi6X+3oHBfYAxkt6RtKZadnQiJidXr8NDE2vC6Vb3aaV5bMKLK9WGdYOFQ3okrYlm/bw5vRewChg\nbNok/9edmVm9OQv4EVkylm7p+Udp+cY6OCL2JevqPlvSIfkrU6s3OqCcoqpRhpWv0i30nwL/DKxJ\n7wcDCyNiVXrvX2RmVpdSK/xyoE+LVX2Ayze2lR4Rb6bnOcAfyK5Pv5O6sknPc9LmxdKtllq+bYHl\nVKkMa4eKBXRJRwJzIuKZdu5/pqQmSU1z525UYiIzs1roRdaIKWRwWt8ukvpK2qz5NfBZ4HmyFKrN\no8hPAe5Lr8cBJ6eR6AcC76Vu8weBz0oalAaqfRZ4MK17X9KBqWf15BbHqnQZ1g6VnMv9IOAoSUeQ\npQ7sD1xDNlCie2qlF/1FFhE3AjcC5HI5d+mYWVezAniXwrnP303r22so8Id0l1d34D8j4s+SJgF3\nSTodeB04Lm3/J+AI4CVgKfBVgIiYL+n7ZPnVAb4XEfPT628AY4BG4L/SA+CKKpRh7aDsEkiFC5FG\nAt+OiCMl/R64OyLukHQDMCUiri+1fy6Xi6amporX08yshDZ3kacBcT9i/W73pcC3m5qaftFRFTOD\n2tyHfiFwvqSXyLqdflWDOpiZVcMNwLeBuWRjieam9zfUslJWn6rSQt9YbqGbWSfQ7kFsaQBcL2BF\nU1NT5/+ja12S86GbmVVYCuLLa10Pq2+e+tXMzKwOOKCbmZnVAQd0MzOzOuCAbmbWBUm6RdIcSc/n\nLauL9KnFyrDSHNDNzLqmMWyYbrRe0qcWK8NKcEA3M6ugXC53QC6X+10ul5uUng/oiONGxOPA/BaL\n6yV9arEyrAQHdDOzCsnlcpcBjwAnALn0/EhaXgn1kj61WBlWggO6mVkFpJb4P5FN+9r8t7Zbev9P\nHdVSL6Ze0qc6RWv5HNDNzCrjXLLEVIX0Tus7Wr2kTy1WhpXggG5mVhkfpfjf2G5kg8A6Wr2kTy1W\nhpXgqV/NzCrj78C+FA7qa4AXN+bgkm4HRgJbSJpFNpK8GqlNa1mGleDkLGZm5WlTcpZ0jfwR1k+d\n2mwpMKqpqempjqiYGbjL3cysIlKwvposeK9Ji9ek91c7mFtHc0A3M6uQpqamy4BRwB1kXc53kLXM\nL6thtaxO+Rq6mVkFpZb4SbWuh9U/t9DNzMzqgAO6mZlZHXBANzMzqwMO6GZmXVCR9KmXSXpT0uT0\nOCJv3cUpTelM0+hn/QAACfJJREFUSZ/LW354WvaSpIvylu8o6am0/E5JPdPyXun9S2n9DtUsw4pz\nQDczq7BcLrdjLpc7KJfL7diBhx3DhulTAX4SEXunx58AJO1Glhhm97TP9ZIaJDUA15GlPt0NODFt\nC3BlOtZHgAXA6Wn56cCCtPwnabuqlGGlOaCbmVVILvMMMA14AJiWy+WeyeVyuY09dpH0qcUcDdwR\nESsi4lWy2dz2T4+XIuKViPiA7La6o9NUrKOAsWn/lmlSm1ObjgUOTdtXowwrwQHdzKwCUtB+jGz6\n10ZgQHreF3isI4J6EedImpK65AelZW1NbToYWBgRq1osX+9Yaf17aftqlGElOKCbmVXGL4G+Rdb1\nBW6oQJm/AHYC9gZmA/9RgTKsk3JANzPrYOla+fBWNtutg6+pExHvRMTqiFgD3ETW3Q1tT236LjBQ\nUvcWy9c7Vlo/IG1fjTKsBAd0M7OOtzXwQSvbfJC26zDNOcSTY4DmEfDjgBPS6PEdyVK3Pk02He3O\nabR5T7JBbeMiy9r1KHBs2r9lmtTm1KbHAo+k7atRhpXgqV/NzDreW0DPVrbpmbZrlyLpU0dK2hsI\n4DXg/wJExDRJdwHTgVXA2RGxOh3nHLKc5Q3ALRExLRVxIXCHpB8AzwK/Sst/Bdwm6SWyQXknVKsM\nK83pU83MytPW9KnPkA2AK+aZpqamSg2Ms02Qu9zNzCrj/wJLiqxbApxVxbrYJsAB3cysApqybsWR\nwDPAMrJbr5al9yOb3O1oHczX0M3MKiQF7Vwazb418FZTU9OrNa6W1SkHdDOzCktB3IHcKspd7mZm\nZnXAAd3MzKwOOKCbmZnVgYoFdEm9JT0t6TlJ0yRdnpYXzH9rZmZm7VfJFvoKYFRE7EWWKOBwSQdS\nPP+tmZmZtVPFAnpkFqe3PdIjKJ7/1szMzNqpotfQJTVImgzMAR4CXqZ4/lszMzNrp4oG9JTGb2+y\ntHj7A7uWu6+kMyU1SWqaO3duxepoZmZWD6oyyj0iFpKlyRtB8fy3Lfe5MSJyEZEbMmRINappZmbW\nZVVylPsQSQPT60bgM8AMiue/NTMzs3aq5NSvw4BbJTWQ/XC4KyLulzSdwvlvzczMrJ0qFtAjYgqw\nT4Hlr5BdTzczM7MO4pnizMzM6oADupmZWR1wQDczM6sDDuhmZmZ1wAHdzMysDjigm5mZ1QEHdDMz\nszrggG5mZlYHHNDNzMzqgAO6mZlZHXBANzMzqwMO6GZmZnXAAd3MzKwOOKCbmZnVAQd0MzOzOuCA\nbmZmVgcc0M3MzOqAA7qZmVkdcEA3MzOrAw7oZmZmdcAB3czMrA44oJuZmdUBB3QzM7M64IBuZmZW\nBxzQzczM6oADupmZWR1wQDczM6sDDuhmZmZ1wAHdzMysDjigm5mZ1QEHdDMzszrggG5mZlYHHNDN\nzMzqgAO6mZlZHahYQJe0naRHJU2XNE3SeWn55pIekvRieh5UqTqYmZltKirZQl8FXBARuwEHAmdL\n2g24CHg4InYGHk7vzczMbCNULKBHxOyI+Ft6vQiYAWwDHA3cmja7FRhdqTqYmZltKqpyDV3SDsA+\nwFPA0IiYnVa9DQytRh3MzMzqWfdKFyCpH3A38P8i4n1Ja9dFREiKIvudCZyZ3i6WNLOVogYA77Wx\neuXsU2qbYutaLi+0Xf6yluu3AOa1Uq+26sznp9CyUu8rcX6K1asj9qmX71Cxemzs9l3lO/TniDi8\njfuYVU9EVOwB9AAeBM7PWzYTGJZeDwNmdlBZN1Zin1LbFFvXcnmh7fKXFdi+qQL/Fp32/JRzzlqc\nrw4/P539HHWG71B7ztGm9h3yw49aPio5yl3Ar4AZEfHjvFXjgFPS61OA+zqoyD9WaJ9S2xRb13J5\noe3+2Mr6jtaZz0+hZeWcw47Wmc9RZ/gOtaecTe07ZFYziijY473xB5YOBiYAU4E1afF3yK6j3wVs\nD7wOHBcR8ytSiS5KUlNE5Gpdj87K56d1Pkel+fxYParYNfSI+B9ARVYfWqly68SNta5AJ+fz0zqf\no9J8fqzuVKyFbmZmZtXjqV/NzMzqgAO6mZlZHXBANzMzqwMO6J2cpOGSbpA0VtLXa12fzkpSX0lN\nko6sdV06G0kjJU1I36ORta5PZySpm6QfSrpW0imt72HW+Tig14CkWyTNkfR8i+WHS5op6SVJFwFE\nxIyIOAs4DjioFvWthbaco+RCstshNwltPD8BLAZ6A7OqXddaaeM5OhrYFljJJnSOrL44oNfGGGC9\nKSQlNQDXAZ8HdgNOTNnpkHQU8ADwp+pWs6bGUOY5kvQZYDowp9qVrKExlP8dmhARnyf70XN5letZ\nS2Mo/xztAvw1Is4H3BNmXZIDeg1ExONAy8l09gdeiohXIuID4A6yVgMRMS79QT6pujWtnTaeo5Fk\nKXq/Apwhqe6/1205PxHRPLHTAqBXFatZU238Ds0iOz8Aq6tXS7OOU/HkLFa2bYA38t7PAg5I1zy/\nSPaHeFNqoRdS8BxFxDkAkk4F5uUFsE1Nse/QF4HPAQOBn9eiYp1IwXMEXANcK+mTwOO1qJjZxnJA\n7+Qi4jHgsRpXo0uIiDG1rkNnFBH3APfUuh6dWUQsBU6vdT3MNkbdd012IW8C2+W93zYts3V8jkrz\n+Wmdz5HVLQf0zmMSsLOkHSX1BE4gy0xn6/gclebz0zqfI6tbDug1IOl24ElgF0mzJJ0eEauAc8jy\nx88A7oqIabWsZy35HJXm89M6nyPb1Dg5i5mZWR1wC93MzKwOOKCbmZnVAQd0MzOzOuCAbmZmVgcc\n0M3MzOqAA7qZmVkdcEC3Tk/SX2tdBzOzzs73oZuZmdUBt9Ct05O0OD2PlPSYpLGSXpD0O0lK6z4u\n6a+SnpP0tKTNJPWW9GtJUyU9K+nTadtTJd0r6SFJr0k6R9L5aZuJkjZP2+0k6c+SnpE0QdKutTsL\nZmalOduadTX7ALsDbwFPAAdJehq4Ezg+IiZJ6g8sA84DIiI+loLxeEkfTcfZIx2rN/AScGFE7CPp\nJ8DJwE+BG4GzIuJFSQcA1wOjqvZJzczawAHdupqnI2IWgKTJwA7Ae8DsiJgEEBHvp/UHA9emZS9I\neh1oDuiPRsQiYJGk94A/puVTgT0l9QM+Afw+dQJAlpPezKxTckC3rmZF3uvVtP87nH+cNXnv16Rj\ndgMWRsTe7Ty+mVlV+Rq61YOZwDBJHwdI18+7AxOAk9KyjwLbp21blVr5r0r6ctpfkvaqROXNzDqC\nA7p1eRHxAXA8cK2k54CHyK6NXw90kzSV7Br7qRGxoviRNnAScHo65jTg6I6tuZlZx/Fta2ZmZnXA\nLXQzM7M64IBuZmZWBxzQzczM6oADupmZWR1wQDczM6sDDuhmZmZ1wAHdzMysDjigm5mZ1YH/D8Yr\nxdZO1eYhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "DPpz37L4tuWU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "outputId": "d17d8ac5-2e8d-451d-e0b4-b49e78c43d58" + }, + "cell_type": "code", + "source": [ + "df1[(df1.year==1918) & (df1.lifespan >= 50)]" + ], + "execution_count": 99, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
19171918761054.955066003Australiaeast_asia_pacific
103331918639356.243165276Denmarkeurope_central_asia
182111918257651.11115504Icelandeurope_central_asia
281131918447950.282576646Norwayeurope_central_asia
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "1917 1918 7610 54.95 5066003 Australia east_asia_pacific\n", + "10333 1918 6393 56.24 3165276 Denmark europe_central_asia\n", + "18211 1918 2576 51.11 115504 Iceland europe_central_asia\n", + "28113 1918 4479 50.28 2576646 Norway europe_central_asia" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 99 + } + ] + }, + { + "metadata": { + "id": "Nx8v756-uEuk", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## today, no countries are below 50 years lifespan" + ] + }, + { + "metadata": { + "id": "FWJuO2s6uPA4", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 47 + }, + "outputId": "0dcfa55e-234d-44a9-d308-4adcc9e66471" + }, + "cell_type": "code", + "source": [ + "df1[(df1.year==2018) & (df1.lifespan < 50)]" + ], + "execution_count": 102, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [year, income, lifespan, population, country, region]\n", + "Index: []" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 102 + } + ] + }, + { + "metadata": { + "id": "qplqX7D9uwFq", + "colab_type": "code", + "colab": { + "resources": { + "http://localhost:8080/nbextensions/google.colab/tabbar.css": { + "data": "Lmdvb2ctdGFie3Bvc2l0aW9uOnJlbGF0aXZlO3BhZGRpbmc6NHB4IDhweDtjb2xvcjojMDBjO3RleHQtZGVjb3JhdGlvbjp1bmRlcmxpbmU7Y3Vyc29yOmRlZmF1bHR9Lmdvb2ctdGFiLWJhci10b3AgLmdvb2ctdGFie21hcmdpbjoxcHggNHB4IDAgMDtib3JkZXItYm90dG9tOjA7ZmxvYXQ6bGVmdH0uZ29vZy10YWItYmFyLXRvcDphZnRlciwuZ29vZy10YWItYmFyLWJvdHRvbTphZnRlcntjb250ZW50OiIgIjtkaXNwbGF5OmJsb2NrO2hlaWdodDowO2NsZWFyOmJvdGg7dmlzaWJpbGl0eTpoaWRkZW59Lmdvb2ctdGFiLWJhci1ib3R0b20gLmdvb2ctdGFie21hcmdpbjowIDRweCAxcHggMDtib3JkZXItdG9wOjA7ZmxvYXQ6bGVmdH0uZ29vZy10YWItYmFyLXN0YXJ0IC5nb29nLXRhYnttYXJnaW46MCAwIDRweCAxcHg7Ym9yZGVyLXJpZ2h0OjB9Lmdvb2ctdGFiLWJhci1lbmQgLmdvb2ctdGFie21hcmdpbjowIDFweCA0cHggMDtib3JkZXItbGVmdDowfS5nb29nLXRhYi1ob3ZlcntiYWNrZ3JvdW5kOiNlZWV9Lmdvb2ctdGFiLWRpc2FibGVke2NvbG9yOiM2NjZ9Lmdvb2ctdGFiLXNlbGVjdGVke2NvbG9yOiMwMDA7YmFja2dyb3VuZDojZmZmO3RleHQtZGVjb3JhdGlvbjpub25lO2ZvbnQtd2VpZ2h0OmJvbGQ7Ym9yZGVyOjFweCBzb2xpZCAjNmI5MGRhfS5nb29nLXRhYi1iYXItdG9we3BhZGRpbmctdG9wOjVweCFpbXBvcnRhbnQ7cGFkZGluZy1sZWZ0OjVweCFpbXBvcnRhbnQ7Ym9yZGVyLWJvdHRvbToxcHggc29saWQgIzZiOTBkYSFpbXBvcnRhbnR9Lmdvb2ctdGFiLWJhci10b3AgLmdvb2ctdGFiLXNlbGVjdGVke3RvcDoxcHg7bWFyZ2luLXRvcDowO3BhZGRpbmctYm90dG9tOjVweH0uZ29vZy10YWItYmFyLWJvdHRvbSAuZ29vZy10YWItc2VsZWN0ZWR7dG9wOi0xcHg7bWFyZ2luLWJvdHRvbTowO3BhZGRpbmctdG9wOjVweH0uZ29vZy10YWItYmFyLXN0YXJ0IC5nb29nLXRhYi1zZWxlY3RlZHtsZWZ0OjFweDttYXJnaW4tbGVmdDowO3BhZGRpbmctcmlnaHQ6OXB4fS5nb29nLXRhYi1iYXItZW5kIC5nb29nLXRhYi1zZWxlY3RlZHtsZWZ0Oi0xcHg7bWFyZ2luLXJpZ2h0OjA7cGFkZGluZy1sZWZ0OjlweH0uZ29vZy10YWItYmFye21hcmdpbjowO2JvcmRlcjowO3BhZGRpbmc6MDtsaXN0LXN0eWxlOm5vbmU7Y3Vyc29yOmRlZmF1bHQ7b3V0bGluZTpub25lO2JhY2tncm91bmQ6I2ViZWZmOX0uZ29vZy10YWItYmFyLWNsZWFye2NsZWFyOmJvdGg7aGVpZ2h0OjA7b3ZlcmZsb3c6aGlkZGVufS5nb29nLXRhYi1iYXItc3RhcnR7ZmxvYXQ6bGVmdH0uZ29vZy10YWItYmFyLWVuZHtmbG9hdDpyaWdodH0qIGh0bWwgLmdvb2ctdGFiLWJhci1zdGFydHttYXJnaW4tcmlnaHQ6LTNweH0qIGh0bWwgLmdvb2ctdGFiLWJhci1lbmR7bWFyZ2luLWxlZnQ6LTNweH0=", + "ok": true, + "headers": [ + [ + "content-length", + "1394" + ], + [ + "content-type", + "text/css" + ] + ], + "status": 200, + "status_text": "" + }, + "http://localhost:8080/nbextensions/google.colab/tabbar_main.min.js": { + "data": "dmFyIGcsYWE9ImZ1bmN0aW9uIj09dHlwZW9mIE9iamVjdC5kZWZpbmVQcm9wZXJ0aWVzP09iamVjdC5kZWZpbmVQcm9wZXJ0eTpmdW5jdGlvbihhLGIsYyl7YSE9QXJyYXkucHJvdG90eXBlJiZhIT1PYmplY3QucHJvdG90eXBlJiYoYVtiXT1jLnZhbHVlKX0sYmE9InVuZGVmaW5lZCIhPXR5cGVvZiB3aW5kb3cmJndpbmRvdz09PXRoaXM/dGhpczoidW5kZWZpbmVkIiE9dHlwZW9mIGdsb2JhbCYmbnVsbCE9Z2xvYmFsP2dsb2JhbDp0aGlzLGNhPWZ1bmN0aW9uKCl7Y2E9ZnVuY3Rpb24oKXt9O2JhLlN5bWJvbHx8KGJhLlN5bWJvbD1kYSl9LGRhPWZ1bmN0aW9uKCl7dmFyIGE9MDtyZXR1cm4gZnVuY3Rpb24oYil7cmV0dXJuImpzY29tcF9zeW1ib2xfIisoYnx8IiIpK2ErK319KCksZmE9ZnVuY3Rpb24oKXtjYSgpO3ZhciBhPWJhLlN5bWJvbC5pdGVyYXRvcjthfHwoYT1iYS5TeW1ib2wuaXRlcmF0b3I9YmEuU3ltYm9sKCJpdGVyYXRvciIpKTsiZnVuY3Rpb24iIT10eXBlb2YgQXJyYXkucHJvdG90eXBlW2FdJiYKYWEoQXJyYXkucHJvdG90eXBlLGEse2NvbmZpZ3VyYWJsZTohMCx3cml0YWJsZTohMCx2YWx1ZTpmdW5jdGlvbigpe3JldHVybiBlYSh0aGlzKX19KTtmYT1mdW5jdGlvbigpe319LGVhPWZ1bmN0aW9uKGEpe3ZhciBiPTA7cmV0dXJuIGhhKGZ1bmN0aW9uKCl7cmV0dXJuIGI8YS5sZW5ndGg/e2RvbmU6ITEsdmFsdWU6YVtiKytdfTp7ZG9uZTohMH19KX0saGE9ZnVuY3Rpb24oYSl7ZmEoKTthPXtuZXh0OmF9O2FbYmEuU3ltYm9sLml0ZXJhdG9yXT1mdW5jdGlvbigpe3JldHVybiB0aGlzfTtyZXR1cm4gYX0saWE9ZnVuY3Rpb24oYSl7ZmEoKTt2YXIgYj1hW1N5bWJvbC5pdGVyYXRvcl07cmV0dXJuIGI/Yi5jYWxsKGEpOmVhKGEpfSxsPXRoaXMsbT1mdW5jdGlvbihhKXtyZXR1cm4ic3RyaW5nIj09dHlwZW9mIGF9LGphPWZ1bmN0aW9uKCl7fSxrYT1mdW5jdGlvbihhKXthLkNhPXZvaWQgMDthLlI9ZnVuY3Rpb24oKXtyZXR1cm4gYS5DYT9hLkNhOmEuQ2E9bmV3IGF9fSxsYT1mdW5jdGlvbihhKXt2YXIgYj0KdHlwZW9mIGE7aWYoIm9iamVjdCI9PWIpaWYoYSl7aWYoYSBpbnN0YW5jZW9mIEFycmF5KXJldHVybiJhcnJheSI7aWYoYSBpbnN0YW5jZW9mIE9iamVjdClyZXR1cm4gYjt2YXIgYz1PYmplY3QucHJvdG90eXBlLnRvU3RyaW5nLmNhbGwoYSk7aWYoIltvYmplY3QgV2luZG93XSI9PWMpcmV0dXJuIm9iamVjdCI7aWYoIltvYmplY3QgQXJyYXldIj09Y3x8Im51bWJlciI9PXR5cGVvZiBhLmxlbmd0aCYmInVuZGVmaW5lZCIhPXR5cGVvZiBhLnNwbGljZSYmInVuZGVmaW5lZCIhPXR5cGVvZiBhLnByb3BlcnR5SXNFbnVtZXJhYmxlJiYhYS5wcm9wZXJ0eUlzRW51bWVyYWJsZSgic3BsaWNlIikpcmV0dXJuImFycmF5IjtpZigiW29iamVjdCBGdW5jdGlvbl0iPT1jfHwidW5kZWZpbmVkIiE9dHlwZW9mIGEuY2FsbCYmInVuZGVmaW5lZCIhPXR5cGVvZiBhLnByb3BlcnR5SXNFbnVtZXJhYmxlJiYhYS5wcm9wZXJ0eUlzRW51bWVyYWJsZSgiY2FsbCIpKXJldHVybiJmdW5jdGlvbiJ9ZWxzZSByZXR1cm4ibnVsbCI7CmVsc2UgaWYoImZ1bmN0aW9uIj09YiYmInVuZGVmaW5lZCI9PXR5cGVvZiBhLmNhbGwpcmV0dXJuIm9iamVjdCI7cmV0dXJuIGJ9LG49ZnVuY3Rpb24oYSl7cmV0dXJuImFycmF5Ij09bGEoYSl9LG1hPWZ1bmN0aW9uKGEpe3ZhciBiPWxhKGEpO3JldHVybiJhcnJheSI9PWJ8fCJvYmplY3QiPT1iJiYibnVtYmVyIj09dHlwZW9mIGEubGVuZ3RofSxxPWZ1bmN0aW9uKGEpe3JldHVybiJmdW5jdGlvbiI9PWxhKGEpfSx0PWZ1bmN0aW9uKGEpe3ZhciBiPXR5cGVvZiBhO3JldHVybiJvYmplY3QiPT1iJiZudWxsIT1hfHwiZnVuY3Rpb24iPT1ifSxuYT0iY2xvc3VyZV91aWRfIisoMUU5Kk1hdGgucmFuZG9tKCk+Pj4wKSxwYT0wLHFhPWZ1bmN0aW9uKGEsYil7dmFyIGM9QXJyYXkucHJvdG90eXBlLnNsaWNlLmNhbGwoYXJndW1lbnRzLDEpO3JldHVybiBmdW5jdGlvbigpe3ZhciBiPWMuc2xpY2UoKTtiLnB1c2guYXBwbHkoYixhcmd1bWVudHMpO3JldHVybiBhLmFwcGx5KHRoaXMsYil9fSwKdT1mdW5jdGlvbihhLGIpe2Z1bmN0aW9uIGMoKXt9Yy5wcm90b3R5cGU9Yi5wcm90b3R5cGU7YS5pPWIucHJvdG90eXBlO2EucHJvdG90eXBlPW5ldyBjO2EucHJvdG90eXBlLmNvbnN0cnVjdG9yPWE7YS5ZYz1mdW5jdGlvbihhLGMsZil7Zm9yKHZhciBkPUFycmF5KGFyZ3VtZW50cy5sZW5ndGgtMiksZT0yO2U8YXJndW1lbnRzLmxlbmd0aDtlKyspZFtlLTJdPWFyZ3VtZW50c1tlXTtyZXR1cm4gYi5wcm90b3R5cGVbY10uYXBwbHkoYSxkKX19O3ZhciByYSxzYT17ZWI6ImFjdGl2ZWRlc2NlbmRhbnQiLGpiOiJhdG9taWMiLGtiOiJhdXRvY29tcGxldGUiLG1iOiJidXN5IixwYjoiY2hlY2tlZCIscWI6ImNvbGluZGV4Iix2YjoiY29udHJvbHMiLHhiOiJkZXNjcmliZWRieSIsQWI6ImRpc2FibGVkIixDYjoiZHJvcGVmZmVjdCIsRGI6ImV4cGFuZGVkIixFYjoiZmxvd3RvIixHYjoiZ3JhYmJlZCIsS2I6Imhhc3BvcHVwIixNYjoiaGlkZGVuIixPYjoiaW52YWxpZCIsUGI6ImxhYmVsIixRYjoibGFiZWxsZWRieSIsUmI6ImxldmVsIixXYjoibGl2ZSIsZmM6Im11bHRpbGluZSIsZ2M6Im11bHRpc2VsZWN0YWJsZSIsa2M6Im9yaWVudGF0aW9uIixsYzoib3ducyIsbWM6InBvc2luc2V0IixvYzoicHJlc3NlZCIsc2M6InJlYWRvbmx5Iix1YzoicmVsZXZhbnQiLHZjOiJyZXF1aXJlZCIsemM6InJvd2luZGV4IixDYzoic2VsZWN0ZWQiLEVjOiJzZXRzaXplIixHYzoic29ydCIsVWM6InZhbHVlbWF4IixWYzoidmFsdWVtaW4iLFdjOiJ2YWx1ZW5vdyIsClhjOiJ2YWx1ZXRleHQifTt2YXIgdGE9ZnVuY3Rpb24oYSxiLGMpe2Zvcih2YXIgZCBpbiBhKWIuY2FsbChjLGFbZF0sZCxhKX0sdWE9ZnVuY3Rpb24oYSxiKXtmb3IodmFyIGMgaW4gYSlpZihhW2NdPT1iKXJldHVybiEwO3JldHVybiExfSx2YT1mdW5jdGlvbihhLGIsYyl7aWYobnVsbCE9PWEmJmIgaW4gYSl0aHJvdyBFcnJvcignVGhlIG9iamVjdCBhbHJlYWR5IGNvbnRhaW5zIHRoZSBrZXkgIicrYisnIicpO2FbYl09Y30sd2E9ZnVuY3Rpb24oYSl7dmFyIGI9e30sYztmb3IoYyBpbiBhKWJbYVtjXV09YztyZXR1cm4gYn0seGE9ImNvbnN0cnVjdG9yIGhhc093blByb3BlcnR5IGlzUHJvdG90eXBlT2YgcHJvcGVydHlJc0VudW1lcmFibGUgdG9Mb2NhbGVTdHJpbmcgdG9TdHJpbmcgdmFsdWVPZiIuc3BsaXQoIiAiKSx5YT1mdW5jdGlvbihhLGIpe2Zvcih2YXIgYyxkLGU9MTtlPGFyZ3VtZW50cy5sZW5ndGg7ZSsrKXtkPWFyZ3VtZW50c1tlXTtmb3IoYyBpbiBkKWFbY109ZFtjXTtmb3IodmFyIGY9MDtmPHhhLmxlbmd0aDtmKyspYz0KeGFbZl0sT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKGQsYykmJihhW2NdPWRbY10pfX07dmFyIHphPXtmYjoiYWxlcnQiLGdiOiJhbGVydGRpYWxvZyIsaGI6ImFwcGxpY2F0aW9uIixpYjoiYXJ0aWNsZSIsbGI6ImJhbm5lciIsbmI6ImJ1dHRvbiIsb2I6ImNoZWNrYm94IixyYjoiY29sdW1uaGVhZGVyIixzYjoiY29tYm9ib3giLHRiOiJjb21wbGVtZW50YXJ5Iix1YjoiY29udGVudGluZm8iLHdiOiJkZWZpbml0aW9uIix5YjoiZGlhbG9nIix6YjoiZGlyZWN0b3J5IixCYjoiZG9jdW1lbnQiLEZiOiJmb3JtIixIYjoiZ3JpZCIsSWI6ImdyaWRjZWxsIixKYjoiZ3JvdXAiLExiOiJoZWFkaW5nIixOYjoiaW1nIixTYjoibGluayIsVGI6Imxpc3QiLFViOiJsaXN0Ym94IixWYjoibGlzdGl0ZW0iLFhiOiJsb2ciLFliOiJtYWluIixaYjoibWFycXVlZSIsJGI6Im1hdGgiLGFjOiJtZW51IixiYzoibWVudWJhciIsY2M6Im1lbnVpdGVtIixkYzoibWVudWl0ZW1jaGVja2JveCIsZWM6Im1lbnVpdGVtcmFkaW8iLGhjOiJuYXZpZ2F0aW9uIixpYzoibm90ZSIsamM6Im9wdGlvbiIsCm5jOiJwcmVzZW50YXRpb24iLHBjOiJwcm9ncmVzc2JhciIscWM6InJhZGlvIixyYzoicmFkaW9ncm91cCIsdGM6InJlZ2lvbiIsd2M6InJvdyIseGM6InJvd2dyb3VwIix5Yzoicm93aGVhZGVyIixBYzoic2Nyb2xsYmFyIixCYzoic2VhcmNoIixEYzoic2VwYXJhdG9yIixGYzoic2xpZGVyIixIYzoic3BpbmJ1dHRvbiIsSWM6InN0YXR1cyIsSmM6InRhYiIsS2M6InRhYmxpc3QiLExjOiJ0YWJwYW5lbCIsTWM6InRleHRib3giLE5jOiJ0ZXh0aW5mbyIsT2M6InRpbWVyIixQYzoidG9vbGJhciIsUWM6InRvb2x0aXAiLFJjOiJ0cmVlIixTYzoidHJlZWdyaWQiLFRjOiJ0cmVlaXRlbSJ9O3ZhciBBYT1mdW5jdGlvbihhKXtpZihFcnJvci5jYXB0dXJlU3RhY2tUcmFjZSlFcnJvci5jYXB0dXJlU3RhY2tUcmFjZSh0aGlzLEFhKTtlbHNle3ZhciBiPUVycm9yKCkuc3RhY2s7YiYmKHRoaXMuc3RhY2s9Yil9YSYmKHRoaXMubWVzc2FnZT1TdHJpbmcoYSkpfTt1KEFhLEVycm9yKTtBYS5wcm90b3R5cGUubmFtZT0iQ3VzdG9tRXJyb3IiO3ZhciBDYTt2YXIgRGE9ZnVuY3Rpb24oYSxiKXthPWEuc3BsaXQoIiVzIik7Zm9yKHZhciBjPSIiLGQ9YS5sZW5ndGgtMSxlPTA7ZTxkO2UrKyljKz1hW2VdKyhlPGIubGVuZ3RoP2JbZV06IiVzIik7QWEuY2FsbCh0aGlzLGMrYVtkXSl9O3UoRGEsQWEpO0RhLnByb3RvdHlwZS5uYW1lPSJBc3NlcnRpb25FcnJvciI7CnZhciBFYT1mdW5jdGlvbihhLGIsYyxkKXt2YXIgZT0iQXNzZXJ0aW9uIGZhaWxlZCI7aWYoYyl7ZSs9IjogIitjO3ZhciBmPWR9ZWxzZSBhJiYoZSs9IjogIithLGY9Yik7dGhyb3cgbmV3IERhKCIiK2UsZnx8W10pO30sdj1mdW5jdGlvbihhLGIsYyl7YXx8RWEoIiIsbnVsbCxiLEFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywyKSk7cmV0dXJuIGF9LEZhPWZ1bmN0aW9uKGEsYixjKXt0KGEpJiYxPT1hLm5vZGVUeXBlfHxFYSgiRXhwZWN0ZWQgRWxlbWVudCBidXQgZ290ICVzOiAlcy4iLFtsYShhKSxhXSxiLEFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywyKSl9LEhhPWZ1bmN0aW9uKGEsYixjLGQpe2EgaW5zdGFuY2VvZiBifHxFYSgiRXhwZWN0ZWQgaW5zdGFuY2VvZiAlcyBidXQgZ290ICVzLiIsW0dhKGIpLEdhKGEpXSxjLEFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywzKSl9LEdhPWZ1bmN0aW9uKGEpe3JldHVybiBhIGluc3RhbmNlb2YKRnVuY3Rpb24/YS5kaXNwbGF5TmFtZXx8YS5uYW1lfHwidW5rbm93biB0eXBlIG5hbWUiOmEgaW5zdGFuY2VvZiBPYmplY3Q/YS5jb25zdHJ1Y3Rvci5kaXNwbGF5TmFtZXx8YS5jb25zdHJ1Y3Rvci5uYW1lfHxPYmplY3QucHJvdG90eXBlLnRvU3RyaW5nLmNhbGwoYSk6bnVsbD09PWE/Im51bGwiOnR5cGVvZiBhfTt2YXIgSWE9QXJyYXkucHJvdG90eXBlLmluZGV4T2Y/ZnVuY3Rpb24oYSxiKXt2KG51bGwhPWEubGVuZ3RoKTtyZXR1cm4gQXJyYXkucHJvdG90eXBlLmluZGV4T2YuY2FsbChhLGIsdm9pZCAwKX06ZnVuY3Rpb24oYSxiKXtpZihtKGEpKXJldHVybiBtKGIpJiYxPT1iLmxlbmd0aD9hLmluZGV4T2YoYiwwKTotMTtmb3IodmFyIGM9MDtjPGEubGVuZ3RoO2MrKylpZihjIGluIGEmJmFbY109PT1iKXJldHVybiBjO3JldHVybi0xfSx3PUFycmF5LnByb3RvdHlwZS5mb3JFYWNoP2Z1bmN0aW9uKGEsYixjKXt2KG51bGwhPWEubGVuZ3RoKTtBcnJheS5wcm90b3R5cGUuZm9yRWFjaC5jYWxsKGEsYixjKX06ZnVuY3Rpb24oYSxiLGMpe2Zvcih2YXIgZD1hLmxlbmd0aCxlPW0oYSk/YS5zcGxpdCgiIik6YSxmPTA7ZjxkO2YrKylmIGluIGUmJmIuY2FsbChjLGVbZl0sZixhKX0sSmE9QXJyYXkucHJvdG90eXBlLmZpbHRlcj9mdW5jdGlvbihhLGIpe3YobnVsbCE9YS5sZW5ndGgpO3JldHVybiBBcnJheS5wcm90b3R5cGUuZmlsdGVyLmNhbGwoYSwKYix2b2lkIDApfTpmdW5jdGlvbihhLGIpe2Zvcih2YXIgYz1hLmxlbmd0aCxkPVtdLGU9MCxmPW0oYSk/YS5zcGxpdCgiIik6YSxoPTA7aDxjO2grKylpZihoIGluIGYpe3ZhciBrPWZbaF07Yi5jYWxsKHZvaWQgMCxrLGgsYSkmJihkW2UrK109ayl9cmV0dXJuIGR9LEthPUFycmF5LnByb3RvdHlwZS5ldmVyeT9mdW5jdGlvbihhLGIpe3YobnVsbCE9YS5sZW5ndGgpO3JldHVybiBBcnJheS5wcm90b3R5cGUuZXZlcnkuY2FsbChhLGIsdm9pZCAwKX06ZnVuY3Rpb24oYSxiKXtmb3IodmFyIGM9YS5sZW5ndGgsZD1tKGEpP2Euc3BsaXQoIiIpOmEsZT0wO2U8YztlKyspaWYoZSBpbiBkJiYhYi5jYWxsKHZvaWQgMCxkW2VdLGUsYSkpcmV0dXJuITE7cmV0dXJuITB9LExhPWZ1bmN0aW9uKGEsYil7cmV0dXJuIDA8PUlhKGEsYil9LE1hPWZ1bmN0aW9uKGEsYil7Yj1JYShhLGIpO3ZhciBjO2lmKGM9MDw9Yil2KG51bGwhPWEubGVuZ3RoKSxBcnJheS5wcm90b3R5cGUuc3BsaWNlLmNhbGwoYSwKYiwxKTtyZXR1cm4gY30sTmE9ZnVuY3Rpb24oYSl7cmV0dXJuIEFycmF5LnByb3RvdHlwZS5jb25jYXQuYXBwbHkoW10sYXJndW1lbnRzKX0sT2E9ZnVuY3Rpb24oYSl7dmFyIGI9YS5sZW5ndGg7aWYoMDxiKXtmb3IodmFyIGM9QXJyYXkoYiksZD0wO2Q8YjtkKyspY1tkXT1hW2RdO3JldHVybiBjfXJldHVybltdfSxRYT1mdW5jdGlvbihhLGIsYyxkKXt2KG51bGwhPWEubGVuZ3RoKTtBcnJheS5wcm90b3R5cGUuc3BsaWNlLmFwcGx5KGEsUGEoYXJndW1lbnRzLDEpKX0sUGE9ZnVuY3Rpb24oYSxiLGMpe3YobnVsbCE9YS5sZW5ndGgpO3JldHVybiAyPj1hcmd1bWVudHMubGVuZ3RoP0FycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGEsYik6QXJyYXkucHJvdG90eXBlLnNsaWNlLmNhbGwoYSxiLGMpfTt2YXIgUmE9U3RyaW5nLnByb3RvdHlwZS50cmltP2Z1bmN0aW9uKGEpe3JldHVybiBhLnRyaW0oKX06ZnVuY3Rpb24oYSl7cmV0dXJuL15bXHNceGEwXSooW1xzXFNdKj8pW1xzXHhhMF0qJC8uZXhlYyhhKVsxXX0sWmE9ZnVuY3Rpb24oYSl7aWYoIVNhLnRlc3QoYSkpcmV0dXJuIGE7LTEhPWEuaW5kZXhPZigiJiIpJiYoYT1hLnJlcGxhY2UoVGEsIiZhbXA7IikpOy0xIT1hLmluZGV4T2YoIjwiKSYmKGE9YS5yZXBsYWNlKFVhLCImbHQ7IikpOy0xIT1hLmluZGV4T2YoIj4iKSYmKGE9YS5yZXBsYWNlKFZhLCImZ3Q7IikpOy0xIT1hLmluZGV4T2YoJyInKSYmKGE9YS5yZXBsYWNlKFdhLCImcXVvdDsiKSk7LTEhPWEuaW5kZXhPZigiJyIpJiYoYT1hLnJlcGxhY2UoWGEsIiYjMzk7IikpOy0xIT1hLmluZGV4T2YoIlx4MDAiKSYmKGE9YS5yZXBsYWNlKFlhLCImIzA7IikpO3JldHVybiBhfSxUYT0vJi9nLFVhPS88L2csVmE9Lz4vZyxXYT0vIi9nLFhhPS8nL2csWWE9L1x4MDAvZyxTYT0KL1tceDAwJjw+IiddLyx4PWZ1bmN0aW9uKGEsYil7cmV0dXJuLTEhPWEuaW5kZXhPZihiKX0sJGE9ZnVuY3Rpb24oYSxiKXtyZXR1cm4gYTxiPy0xOmE+Yj8xOjB9O3ZhciB5O2E6e3ZhciBhYj1sLm5hdmlnYXRvcjtpZihhYil7dmFyIGJiPWFiLnVzZXJBZ2VudDtpZihiYil7eT1iYjticmVhayBhfX15PSIifTt2YXIgY2I9ZnVuY3Rpb24oYSl7Y2JbIiAiXShhKTtyZXR1cm4gYX07Y2JbIiAiXT1qYTt2YXIgZWI9ZnVuY3Rpb24oYSxiKXt2YXIgYz1kYjtyZXR1cm4gT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKGMsYSk/Y1thXTpjW2FdPWIoYSl9O3ZhciBmYj14KHksIk9wZXJhIiksej14KHksIlRyaWRlbnQiKXx8eCh5LCJNU0lFIiksQT14KHksIkVkZ2UiKSxnYj14KHksIkdlY2tvIikmJiEoeCh5LnRvTG93ZXJDYXNlKCksIndlYmtpdCIpJiYheCh5LCJFZGdlIikpJiYhKHgoeSwiVHJpZGVudCIpfHx4KHksIk1TSUUiKSkmJiF4KHksIkVkZ2UiKSxCPXgoeS50b0xvd2VyQ2FzZSgpLCJ3ZWJraXQiKSYmIXgoeSwiRWRnZSIpLEM9eCh5LCJNYWNpbnRvc2giKSxoYj1mdW5jdGlvbigpe3ZhciBhPWwuZG9jdW1lbnQ7cmV0dXJuIGE/YS5kb2N1bWVudE1vZGU6dm9pZCAwfSxpYjsKYTp7dmFyIGpiPSIiLGtiPWZ1bmN0aW9uKCl7dmFyIGE9eTtpZihnYilyZXR1cm4vcnY6KFteXCk7XSspKFwpfDspLy5leGVjKGEpO2lmKEEpcmV0dXJuL0VkZ2VcLyhbXGRcLl0rKS8uZXhlYyhhKTtpZih6KXJldHVybi9cYig/Ok1TSUV8cnYpWzogXShbXlwpO10rKShcKXw7KS8uZXhlYyhhKTtpZihCKXJldHVybi9XZWJLaXRcLyhcUyspLy5leGVjKGEpO2lmKGZiKXJldHVybi8oPzpWZXJzaW9uKVsgXC9dPyhcUyspLy5leGVjKGEpfSgpO2tiJiYoamI9a2I/a2JbMV06IiIpO2lmKHope3ZhciBsYj1oYigpO2lmKG51bGwhPWxiJiZsYj5wYXJzZUZsb2F0KGpiKSl7aWI9U3RyaW5nKGxiKTticmVhayBhfX1pYj1qYn0KdmFyIG1iPWliLGRiPXt9LEQ9ZnVuY3Rpb24oYSl7cmV0dXJuIGViKGEsZnVuY3Rpb24oKXtmb3IodmFyIGI9MCxjPVJhKFN0cmluZyhtYikpLnNwbGl0KCIuIiksZD1SYShTdHJpbmcoYSkpLnNwbGl0KCIuIiksZT1NYXRoLm1heChjLmxlbmd0aCxkLmxlbmd0aCksZj0wOzA9PWImJmY8ZTtmKyspe3ZhciBoPWNbZl18fCIiLGs9ZFtmXXx8IiI7ZG97aD0vKFxkKikoXEQqKSguKikvLmV4ZWMoaCl8fFsiIiwiIiwiIiwiIl07az0vKFxkKikoXEQqKSguKikvLmV4ZWMoayl8fFsiIiwiIiwiIiwiIl07aWYoMD09aFswXS5sZW5ndGgmJjA9PWtbMF0ubGVuZ3RoKWJyZWFrO2I9JGEoMD09aFsxXS5sZW5ndGg/MDpwYXJzZUludChoWzFdLDEwKSwwPT1rWzFdLmxlbmd0aD8wOnBhcnNlSW50KGtbMV0sMTApKXx8JGEoMD09aFsyXS5sZW5ndGgsMD09a1syXS5sZW5ndGgpfHwkYShoWzJdLGtbMl0pO2g9aFszXTtrPWtbM119d2hpbGUoMD09Yil9cmV0dXJuIDA8PWJ9KX0sbmI7dmFyIG9iPWwuZG9jdW1lbnQ7Cm5iPW9iJiZ6P2hiKCl8fCgiQ1NTMUNvbXBhdCI9PW9iLmNvbXBhdE1vZGU/cGFyc2VJbnQobWIsMTApOjUpOnZvaWQgMDt2YXIgcGI9IXp8fDk8PU51bWJlcihuYik7dmFyIHJiPWZ1bmN0aW9uKGEsYil7dGEoYixmdW5jdGlvbihiLGQpe2ImJmIuJGMmJihiPWIuWmMoKSk7InN0eWxlIj09ZD9hLnN0eWxlLmNzc1RleHQ9YjoiY2xhc3MiPT1kP2EuY2xhc3NOYW1lPWI6ImZvciI9PWQ/YS5odG1sRm9yPWI6cWIuaGFzT3duUHJvcGVydHkoZCk/YS5zZXRBdHRyaWJ1dGUocWJbZF0sYik6MD09ZC5sYXN0SW5kZXhPZigiYXJpYS0iLDApfHwwPT1kLmxhc3RJbmRleE9mKCJkYXRhLSIsMCk/YS5zZXRBdHRyaWJ1dGUoZCxiKTphW2RdPWJ9KX0scWI9e2NlbGxwYWRkaW5nOiJjZWxsUGFkZGluZyIsY2VsbHNwYWNpbmc6ImNlbGxTcGFjaW5nIixjb2xzcGFuOiJjb2xTcGFuIixmcmFtZWJvcmRlcjoiZnJhbWVCb3JkZXIiLGhlaWdodDoiaGVpZ2h0IixtYXhsZW5ndGg6Im1heExlbmd0aCIsbm9uY2U6Im5vbmNlIixyb2xlOiJyb2xlIixyb3dzcGFuOiJyb3dTcGFuIix0eXBlOiJ0eXBlIix1c2VtYXA6InVzZU1hcCIsdmFsaWduOiJ2QWxpZ24iLHdpZHRoOiJ3aWR0aCJ9LApzYj1mdW5jdGlvbihhLGIsYyl7ZnVuY3Rpb24gZChjKXtjJiZiLmFwcGVuZENoaWxkKG0oYyk/YS5jcmVhdGVUZXh0Tm9kZShjKTpjKX1mb3IodmFyIGU9MjtlPGMubGVuZ3RoO2UrKyl7dmFyIGY9Y1tlXTtpZighbWEoZil8fHQoZikmJjA8Zi5ub2RlVHlwZSlkKGYpO2Vsc2V7YTp7aWYoZiYmIm51bWJlciI9PXR5cGVvZiBmLmxlbmd0aCl7aWYodChmKSl7dmFyIGg9ImZ1bmN0aW9uIj09dHlwZW9mIGYuaXRlbXx8InN0cmluZyI9PXR5cGVvZiBmLml0ZW07YnJlYWsgYX1pZihxKGYpKXtoPSJmdW5jdGlvbiI9PXR5cGVvZiBmLml0ZW07YnJlYWsgYX19aD0hMX13KGg/T2EoZik6ZixkKX19fSx0Yj1mdW5jdGlvbihhKXthJiZhLnBhcmVudE5vZGUmJmEucGFyZW50Tm9kZS5yZW1vdmVDaGlsZChhKX0sdWI9ZnVuY3Rpb24oYSxiKXtpZighYXx8IWIpcmV0dXJuITE7aWYoYS5jb250YWlucyYmMT09Yi5ub2RlVHlwZSlyZXR1cm4gYT09Ynx8YS5jb250YWlucyhiKTtpZigidW5kZWZpbmVkIiE9CnR5cGVvZiBhLmNvbXBhcmVEb2N1bWVudFBvc2l0aW9uKXJldHVybiBhPT1ifHwhIShhLmNvbXBhcmVEb2N1bWVudFBvc2l0aW9uKGIpJjE2KTtmb3IoO2ImJmEhPWI7KWI9Yi5wYXJlbnROb2RlO3JldHVybiBiPT1hfSx2Yj1mdW5jdGlvbihhKXt2KGEsIk5vZGUgY2Fubm90IGJlIG51bGwgb3IgdW5kZWZpbmVkLiIpO3JldHVybiA5PT1hLm5vZGVUeXBlP2E6YS5vd25lckRvY3VtZW50fHxhLmRvY3VtZW50fSx3Yj1mdW5jdGlvbihhLGIpe2I/YS50YWJJbmRleD0wOihhLnRhYkluZGV4PS0xLGEucmVtb3ZlQXR0cmlidXRlKCJ0YWJJbmRleCIpKX0seGI9ZnVuY3Rpb24oYSl7cmV0dXJuIHomJiFEKCI5Iik/KGE9YS5nZXRBdHRyaWJ1dGVOb2RlKCJ0YWJpbmRleCIpLG51bGwhPWEmJmEuc3BlY2lmaWVkKTphLmhhc0F0dHJpYnV0ZSgidGFiaW5kZXgiKX0seWI9ZnVuY3Rpb24oYSl7YT1hLnRhYkluZGV4O3JldHVybiJudW1iZXIiPT10eXBlb2YgYSYmMDw9YSYmMzI3Njg+YX0semI9ZnVuY3Rpb24oYSl7dGhpcy5hPQphfHxsLmRvY3VtZW50fHxkb2N1bWVudH07emIucHJvdG90eXBlLmY9ZnVuY3Rpb24oYSl7cmV0dXJuIG0oYSk/dGhpcy5hLmdldEVsZW1lbnRCeUlkKGEpOmF9O3piLnByb3RvdHlwZS5iPWZ1bmN0aW9uKGEsYixjKXt2YXIgZD10aGlzLmEsZT1hcmd1bWVudHMsZj1TdHJpbmcoZVswXSksaD1lWzFdO2lmKCFwYiYmaCYmKGgubmFtZXx8aC50eXBlKSl7Zj1bIjwiLGZdO2gubmFtZSYmZi5wdXNoKCcgbmFtZT0iJyxaYShoLm5hbWUpLCciJyk7aWYoaC50eXBlKXtmLnB1c2goJyB0eXBlPSInLFphKGgudHlwZSksJyInKTt2YXIgaz17fTt5YShrLGgpO2RlbGV0ZSBrLnR5cGU7aD1rfWYucHVzaCgiPiIpO2Y9Zi5qb2luKCIiKX1mPWQuY3JlYXRlRWxlbWVudChmKTtoJiYobShoKT9mLmNsYXNzTmFtZT1oOm4oaCk/Zi5jbGFzc05hbWU9aC5qb2luKCIgIik6cmIoZixoKSk7MjxlLmxlbmd0aCYmc2IoZCxmLGUpO3JldHVybiBmfTt2YXIgQWI9ZnVuY3Rpb24oYSxiKXtiPyh2KHVhKHphLGIpLCJObyBzdWNoIEFSSUEgcm9sZSAiK2IpLGEuc2V0QXR0cmlidXRlKCJyb2xlIixiKSk6YS5yZW1vdmVBdHRyaWJ1dGUoInJvbGUiKX0sQ2I9ZnVuY3Rpb24oYSxiLGMpe24oYykmJihjPWMuam9pbigiICIpKTt2YXIgZD1CYihiKTsiIj09PWN8fHZvaWQgMD09Yz8ocmF8fChyYT17YXRvbWljOiExLGF1dG9jb21wbGV0ZToibm9uZSIsZHJvcGVmZmVjdDoibm9uZSIsaGFzcG9wdXA6ITEsbGl2ZToib2ZmIixtdWx0aWxpbmU6ITEsbXVsdGlzZWxlY3RhYmxlOiExLG9yaWVudGF0aW9uOiJ2ZXJ0aWNhbCIscmVhZG9ubHk6ITEscmVsZXZhbnQ6ImFkZGl0aW9ucyB0ZXh0IixyZXF1aXJlZDohMSxzb3J0OiJub25lIixidXN5OiExLGRpc2FibGVkOiExLGhpZGRlbjohMSxpbnZhbGlkOiJmYWxzZSJ9KSxjPXJhLGIgaW4gYz9hLnNldEF0dHJpYnV0ZShkLGNbYl0pOmEucmVtb3ZlQXR0cmlidXRlKGQpKTphLnNldEF0dHJpYnV0ZShkLApjKX0sQmI9ZnVuY3Rpb24oYSl7dihhLCJBUklBIGF0dHJpYnV0ZSBjYW5ub3QgYmUgZW1wdHkuIik7dih1YShzYSxhKSwiTm8gc3VjaCBBUklBIGF0dHJpYnV0ZSAiK2EpO3JldHVybiJhcmlhLSIrYX07dmFyIERiPU9iamVjdC5mcmVlemV8fGZ1bmN0aW9uKGEpe3JldHVybiBhfTt2YXIgRT1mdW5jdGlvbigpe3RoaXMuVz10aGlzLlc7dGhpcy5MPXRoaXMuTH07RS5wcm90b3R5cGUuVz0hMTtFLnByb3RvdHlwZS5OPWZ1bmN0aW9uKCl7dGhpcy5XfHwodGhpcy5XPSEwLHRoaXMudSgpKX07dmFyIEViPWZ1bmN0aW9uKGEsYil7YS5XP2IoKTooYS5MfHwoYS5MPVtdKSxhLkwucHVzaChiKSl9O0UucHJvdG90eXBlLnU9ZnVuY3Rpb24oKXtpZih0aGlzLkwpZm9yKDt0aGlzLkwubGVuZ3RoOyl0aGlzLkwuc2hpZnQoKSgpfTt2YXIgRmI9ZnVuY3Rpb24oYSl7YSYmImZ1bmN0aW9uIj09dHlwZW9mIGEuTiYmYS5OKCl9O3ZhciBGPWZ1bmN0aW9uKGEpe2lmKGEuY2xhc3NMaXN0KXJldHVybiBhLmNsYXNzTGlzdDthPWEuY2xhc3NOYW1lO3JldHVybiBtKGEpJiZhLm1hdGNoKC9cUysvZyl8fFtdfSxHYj1mdW5jdGlvbihhLGIpe3JldHVybiBhLmNsYXNzTGlzdD9hLmNsYXNzTGlzdC5jb250YWlucyhiKTpMYShGKGEpLGIpfSxIYj1mdW5jdGlvbihhLGIpe2EuY2xhc3NMaXN0P2EuY2xhc3NMaXN0LmFkZChiKTpHYihhLGIpfHwoYS5jbGFzc05hbWUrPTA8YS5jbGFzc05hbWUubGVuZ3RoPyIgIitiOmIpfSxJYj1mdW5jdGlvbihhLGIpe2lmKGEuY2xhc3NMaXN0KXcoYixmdW5jdGlvbihiKXtIYihhLGIpfSk7ZWxzZXt2YXIgYz17fTt3KEYoYSksZnVuY3Rpb24oYSl7Y1thXT0hMH0pO3coYixmdW5jdGlvbihhKXtjW2FdPSEwfSk7YS5jbGFzc05hbWU9IiI7Zm9yKHZhciBkIGluIGMpYS5jbGFzc05hbWUrPTA8YS5jbGFzc05hbWUubGVuZ3RoPyIgIitkOmR9fSxKYj1mdW5jdGlvbihhLGIpe2EuY2xhc3NMaXN0PwphLmNsYXNzTGlzdC5yZW1vdmUoYik6R2IoYSxiKSYmKGEuY2xhc3NOYW1lPUphKEYoYSksZnVuY3Rpb24oYSl7cmV0dXJuIGEhPWJ9KS5qb2luKCIgIikpfSxLYj1mdW5jdGlvbihhLGIpe2EuY2xhc3NMaXN0P3coYixmdW5jdGlvbihiKXtKYihhLGIpfSk6YS5jbGFzc05hbWU9SmEoRihhKSxmdW5jdGlvbihhKXtyZXR1cm4hTGEoYixhKX0pLmpvaW4oIiAiKX07dmFyIExiPSF6fHw5PD1OdW1iZXIobmIpLE1iPSF6fHw5PD1OdW1iZXIobmIpLE5iPXomJiFEKCI5IiksT2I9ZnVuY3Rpb24oKXtpZighbC5hZGRFdmVudExpc3RlbmVyfHwhT2JqZWN0LmRlZmluZVByb3BlcnR5KXJldHVybiExO3ZhciBhPSExLGI9T2JqZWN0LmRlZmluZVByb3BlcnR5KHt9LCJwYXNzaXZlIix7Z2V0OmZ1bmN0aW9uKCl7YT0hMH19KTtsLmFkZEV2ZW50TGlzdGVuZXIoInRlc3QiLGphLGIpO2wucmVtb3ZlRXZlbnRMaXN0ZW5lcigidGVzdCIsamEsYik7cmV0dXJuIGF9KCk7dmFyIEc9ZnVuY3Rpb24oYSxiKXt0aGlzLnR5cGU9YTt0aGlzLmE9dGhpcy50YXJnZXQ9Yjt0aGlzLmg9ITE7dGhpcy5LYT0hMH07Ry5wcm90b3R5cGUuaj1mdW5jdGlvbigpe3RoaXMuaD0hMH07Ry5wcm90b3R5cGUuZz1mdW5jdGlvbigpe3RoaXMuS2E9ITF9O3ZhciBIPWZ1bmN0aW9uKGEsYil7Ry5jYWxsKHRoaXMsYT9hLnR5cGU6IiIpO3RoaXMucmVsYXRlZFRhcmdldD10aGlzLmE9dGhpcy50YXJnZXQ9bnVsbDt0aGlzLmJ1dHRvbj10aGlzLnNjcmVlblk9dGhpcy5zY3JlZW5YPXRoaXMuY2xpZW50WT10aGlzLmNsaWVudFg9MDt0aGlzLmtleT0iIjt0aGlzLmM9MDt0aGlzLnc9dGhpcy5tZXRhS2V5PXRoaXMuc2hpZnRLZXk9dGhpcy5hbHRLZXk9dGhpcy5jdHJsS2V5PSExO3RoaXMucG9pbnRlcklkPTA7dGhpcy5wb2ludGVyVHlwZT0iIjt0aGlzLmI9bnVsbDtpZihhKXt2YXIgYz10aGlzLnR5cGU9YS50eXBlLGQ9YS5jaGFuZ2VkVG91Y2hlcz9hLmNoYW5nZWRUb3VjaGVzWzBdOm51bGw7dGhpcy50YXJnZXQ9YS50YXJnZXR8fGEuc3JjRWxlbWVudDt0aGlzLmE9YjtpZihiPWEucmVsYXRlZFRhcmdldCl7aWYoZ2Ipe2E6e3RyeXtjYihiLm5vZGVOYW1lKTt2YXIgZT0hMDticmVhayBhfWNhdGNoKGYpe31lPSExfWV8fChiPW51bGwpfX1lbHNlIm1vdXNlb3ZlciI9PQpjP2I9YS5mcm9tRWxlbWVudDoibW91c2VvdXQiPT1jJiYoYj1hLnRvRWxlbWVudCk7dGhpcy5yZWxhdGVkVGFyZ2V0PWI7bnVsbD09PWQ/KHRoaXMuY2xpZW50WD12b2lkIDAhPT1hLmNsaWVudFg/YS5jbGllbnRYOmEucGFnZVgsdGhpcy5jbGllbnRZPXZvaWQgMCE9PWEuY2xpZW50WT9hLmNsaWVudFk6YS5wYWdlWSx0aGlzLnNjcmVlblg9YS5zY3JlZW5YfHwwLHRoaXMuc2NyZWVuWT1hLnNjcmVlbll8fDApOih0aGlzLmNsaWVudFg9dm9pZCAwIT09ZC5jbGllbnRYP2QuY2xpZW50WDpkLnBhZ2VYLHRoaXMuY2xpZW50WT12b2lkIDAhPT1kLmNsaWVudFk/ZC5jbGllbnRZOmQucGFnZVksdGhpcy5zY3JlZW5YPWQuc2NyZWVuWHx8MCx0aGlzLnNjcmVlblk9ZC5zY3JlZW5ZfHwwKTt0aGlzLmJ1dHRvbj1hLmJ1dHRvbjt0aGlzLmM9YS5rZXlDb2RlfHwwO3RoaXMua2V5PWEua2V5fHwiIjt0aGlzLmN0cmxLZXk9YS5jdHJsS2V5O3RoaXMuYWx0S2V5PWEuYWx0S2V5O3RoaXMuc2hpZnRLZXk9CmEuc2hpZnRLZXk7dGhpcy5tZXRhS2V5PWEubWV0YUtleTt0aGlzLnc9Qz9hLm1ldGFLZXk6YS5jdHJsS2V5O3RoaXMucG9pbnRlcklkPWEucG9pbnRlcklkfHwwO3RoaXMucG9pbnRlclR5cGU9bShhLnBvaW50ZXJUeXBlKT9hLnBvaW50ZXJUeXBlOlBiW2EucG9pbnRlclR5cGVdfHwiIjt0aGlzLmI9YTthLmRlZmF1bHRQcmV2ZW50ZWQmJnRoaXMuZygpfX07dShILEcpO3ZhciBRYj1EYihbMSw0LDJdKSxQYj1EYih7MjoidG91Y2giLDM6InBlbiIsNDoibW91c2UifSksUmI9ZnVuY3Rpb24oYSl7cmV0dXJuIExiPzA9PWEuYi5idXR0b246ImNsaWNrIj09YS50eXBlPyEwOiEhKGEuYi5idXR0b24mUWJbMF0pfTtILnByb3RvdHlwZS5qPWZ1bmN0aW9uKCl7SC5pLmouY2FsbCh0aGlzKTt0aGlzLmIuc3RvcFByb3BhZ2F0aW9uP3RoaXMuYi5zdG9wUHJvcGFnYXRpb24oKTp0aGlzLmIuY2FuY2VsQnViYmxlPSEwfTsKSC5wcm90b3R5cGUuZz1mdW5jdGlvbigpe0guaS5nLmNhbGwodGhpcyk7dmFyIGE9dGhpcy5iO2lmKGEucHJldmVudERlZmF1bHQpYS5wcmV2ZW50RGVmYXVsdCgpO2Vsc2UgaWYoYS5yZXR1cm5WYWx1ZT0hMSxOYil0cnl7aWYoYS5jdHJsS2V5fHwxMTI8PWEua2V5Q29kZSYmMTIzPj1hLmtleUNvZGUpYS5rZXlDb2RlPS0xfWNhdGNoKGIpe319O3ZhciBTYj0iY2xvc3VyZV9saXN0ZW5hYmxlXyIrKDFFNipNYXRoLnJhbmRvbSgpfDApLFRiPWZ1bmN0aW9uKGEpe3JldHVybiEoIWF8fCFhW1NiXSl9LFViPTA7dmFyIFZiPWZ1bmN0aW9uKGEsYixjLGQsZSl7dGhpcy5saXN0ZW5lcj1hO3RoaXMuYT1udWxsO3RoaXMuc3JjPWI7dGhpcy50eXBlPWM7dGhpcy5jYXB0dXJlPSEhZDt0aGlzLm5hPWU7dGhpcy5rZXk9KytVYjt0aGlzLlY9dGhpcy5pYT0hMX0sV2I9ZnVuY3Rpb24oYSl7YS5WPSEwO2EubGlzdGVuZXI9bnVsbDthLmE9bnVsbDthLnNyYz1udWxsO2EubmE9bnVsbH07dmFyIFhiPWZ1bmN0aW9uKGEpe3RoaXMuc3JjPWE7dGhpcy5hPXt9O3RoaXMuYj0wfTtYYi5wcm90b3R5cGUuYWRkPWZ1bmN0aW9uKGEsYixjLGQsZSl7dmFyIGY9YS50b1N0cmluZygpO2E9dGhpcy5hW2ZdO2F8fChhPXRoaXMuYVtmXT1bXSx0aGlzLmIrKyk7dmFyIGg9WWIoYSxiLGQsZSk7LTE8aD8oYj1hW2hdLGN8fChiLmlhPSExKSk6KGI9bmV3IFZiKGIsdGhpcy5zcmMsZiwhIWQsZSksYi5pYT1jLGEucHVzaChiKSk7cmV0dXJuIGJ9Owp2YXIgWmI9ZnVuY3Rpb24oYSxiKXt2YXIgYz1iLnR5cGU7YyBpbiBhLmEmJk1hKGEuYVtjXSxiKSYmKFdiKGIpLDA9PWEuYVtjXS5sZW5ndGgmJihkZWxldGUgYS5hW2NdLGEuYi0tKSl9LCRiPWZ1bmN0aW9uKGEsYixjLGQsZSl7YT1hLmFbYi50b1N0cmluZygpXTtiPS0xO2EmJihiPVliKGEsYyxkLGUpKTtyZXR1cm4tMTxiP2FbYl06bnVsbH0sWWI9ZnVuY3Rpb24oYSxiLGMsZCl7Zm9yKHZhciBlPTA7ZTxhLmxlbmd0aDsrK2Upe3ZhciBmPWFbZV07aWYoIWYuViYmZi5saXN0ZW5lcj09YiYmZi5jYXB0dXJlPT0hIWMmJmYubmE9PWQpcmV0dXJuIGV9cmV0dXJuLTF9O3ZhciBhYz0iY2xvc3VyZV9sbV8iKygxRTYqTWF0aC5yYW5kb20oKXwwKSxiYz17fSxjYz0wLGVjPWZ1bmN0aW9uKGEsYixjLGQsZSl7aWYoZCYmZC5vbmNlKXJldHVybiBkYyhhLGIsYyxkLGUpO2lmKG4oYikpe2Zvcih2YXIgZj0wO2Y8Yi5sZW5ndGg7ZisrKWVjKGEsYltmXSxjLGQsZSk7cmV0dXJuIG51bGx9Yz1mYyhjKTtyZXR1cm4gVGIoYSk/YS5hKGIsYyx0KGQpPyEhZC5jYXB0dXJlOiEhZCxlKTpnYyhhLGIsYywhMSxkLGUpfSxnYz1mdW5jdGlvbihhLGIsYyxkLGUsZil7aWYoIWIpdGhyb3cgRXJyb3IoIkludmFsaWQgZXZlbnQgdHlwZSIpO3ZhciBoPXQoZSk/ISFlLmNhcHR1cmU6ISFlLGs9aGMoYSk7a3x8KGFbYWNdPWs9bmV3IFhiKGEpKTtjPWsuYWRkKGIsYyxkLGgsZik7aWYoYy5hKXJldHVybiBjO2Q9aWMoKTtjLmE9ZDtkLnNyYz1hO2QubGlzdGVuZXI9YztpZihhLmFkZEV2ZW50TGlzdGVuZXIpT2J8fChlPWgpLHZvaWQgMD09PWUmJihlPSExKSxhLmFkZEV2ZW50TGlzdGVuZXIoYi50b1N0cmluZygpLApkLGUpO2Vsc2UgaWYoYS5hdHRhY2hFdmVudClhLmF0dGFjaEV2ZW50KGpjKGIudG9TdHJpbmcoKSksZCk7ZWxzZSBpZihhLmFkZExpc3RlbmVyJiZhLnJlbW92ZUxpc3RlbmVyKXYoImNoYW5nZSI9PT1iLCJNZWRpYVF1ZXJ5TGlzdCBvbmx5IGhhcyBhIGNoYW5nZSBldmVudCIpLGEuYWRkTGlzdGVuZXIoZCk7ZWxzZSB0aHJvdyBFcnJvcigiYWRkRXZlbnRMaXN0ZW5lciBhbmQgYXR0YWNoRXZlbnQgYXJlIHVuYXZhaWxhYmxlLiIpO2NjKys7cmV0dXJuIGN9LGljPWZ1bmN0aW9uKCl7dmFyIGE9a2MsYj1NYj9mdW5jdGlvbihjKXtyZXR1cm4gYS5jYWxsKGIuc3JjLGIubGlzdGVuZXIsYyl9OmZ1bmN0aW9uKGMpe2M9YS5jYWxsKGIuc3JjLGIubGlzdGVuZXIsYyk7aWYoIWMpcmV0dXJuIGN9O3JldHVybiBifSxkYz1mdW5jdGlvbihhLGIsYyxkLGUpe2lmKG4oYikpe2Zvcih2YXIgZj0wO2Y8Yi5sZW5ndGg7ZisrKWRjKGEsYltmXSxjLGQsZSk7cmV0dXJuIG51bGx9Yz1mYyhjKTtyZXR1cm4gVGIoYSk/CmEuai5hZGQoU3RyaW5nKGIpLGMsITAsdChkKT8hIWQuY2FwdHVyZTohIWQsZSk6Z2MoYSxiLGMsITAsZCxlKX0sbGM9ZnVuY3Rpb24oYSxiLGMsZCxlKXtpZihuKGIpKWZvcih2YXIgZj0wO2Y8Yi5sZW5ndGg7ZisrKWxjKGEsYltmXSxjLGQsZSk7ZWxzZSBkPXQoZCk/ISFkLmNhcHR1cmU6ISFkLGM9ZmMoYyksVGIoYSk/YS53KGIsYyxkLGUpOmEmJihhPWhjKGEpKSYmKGI9JGIoYSxiLGMsZCxlKSkmJm1jKGIpfSxtYz1mdW5jdGlvbihhKXtpZigibnVtYmVyIiE9dHlwZW9mIGEmJmEmJiFhLlYpe3ZhciBiPWEuc3JjO2lmKFRiKGIpKVpiKGIuaixhKTtlbHNle3ZhciBjPWEudHlwZSxkPWEuYTtiLnJlbW92ZUV2ZW50TGlzdGVuZXI/Yi5yZW1vdmVFdmVudExpc3RlbmVyKGMsZCxhLmNhcHR1cmUpOmIuZGV0YWNoRXZlbnQ/Yi5kZXRhY2hFdmVudChqYyhjKSxkKTpiLmFkZExpc3RlbmVyJiZiLnJlbW92ZUxpc3RlbmVyJiZiLnJlbW92ZUxpc3RlbmVyKGQpO2NjLS07KGM9aGMoYikpPwooWmIoYyxhKSwwPT1jLmImJihjLnNyYz1udWxsLGJbYWNdPW51bGwpKTpXYihhKX19fSxqYz1mdW5jdGlvbihhKXtyZXR1cm4gYSBpbiBiYz9iY1thXTpiY1thXT0ib24iK2F9LG9jPWZ1bmN0aW9uKGEsYixjLGQpe3ZhciBlPSEwO2lmKGE9aGMoYSkpaWYoYj1hLmFbYi50b1N0cmluZygpXSlmb3IoYj1iLmNvbmNhdCgpLGE9MDthPGIubGVuZ3RoO2ErKyl7dmFyIGY9YlthXTtmJiZmLmNhcHR1cmU9PWMmJiFmLlYmJihmPW5jKGYsZCksZT1lJiYhMSE9PWYpfXJldHVybiBlfSxuYz1mdW5jdGlvbihhLGIpe3ZhciBjPWEubGlzdGVuZXIsZD1hLm5hfHxhLnNyYzthLmlhJiZtYyhhKTtyZXR1cm4gYy5jYWxsKGQsYil9LGtjPWZ1bmN0aW9uKGEsYil7aWYoYS5WKXJldHVybiEwO2lmKCFNYil7aWYoIWIpYTp7Yj1bIndpbmRvdyIsImV2ZW50Il07Zm9yKHZhciBjPWwsZD0wO2Q8Yi5sZW5ndGg7ZCsrKWlmKGM9Y1tiW2RdXSxudWxsPT1jKXtiPW51bGw7YnJlYWsgYX1iPWN9ZD1iO2I9bmV3IEgoZCwKdGhpcyk7Yz0hMDtpZighKDA+ZC5rZXlDb2RlfHx2b2lkIDAhPWQucmV0dXJuVmFsdWUpKXthOnt2YXIgZT0hMTtpZigwPT1kLmtleUNvZGUpdHJ5e2Qua2V5Q29kZT0tMTticmVhayBhfWNhdGNoKGgpe2U9ITB9aWYoZXx8dm9pZCAwPT1kLnJldHVyblZhbHVlKWQucmV0dXJuVmFsdWU9ITB9ZD1bXTtmb3IoZT1iLmE7ZTtlPWUucGFyZW50Tm9kZSlkLnB1c2goZSk7YT1hLnR5cGU7Zm9yKGU9ZC5sZW5ndGgtMTshYi5oJiYwPD1lO2UtLSl7Yi5hPWRbZV07dmFyIGY9b2MoZFtlXSxhLCEwLGIpO2M9YyYmZn1mb3IoZT0wOyFiLmgmJmU8ZC5sZW5ndGg7ZSsrKWIuYT1kW2VdLGY9b2MoZFtlXSxhLCExLGIpLGM9YyYmZn1yZXR1cm4gY31yZXR1cm4gbmMoYSxuZXcgSChiLHRoaXMpKX0saGM9ZnVuY3Rpb24oYSl7YT1hW2FjXTtyZXR1cm4gYSBpbnN0YW5jZW9mIFhiP2E6bnVsbH0scGM9Il9fY2xvc3VyZV9ldmVudHNfZm5fIisoMUU5Kk1hdGgucmFuZG9tKCk+Pj4wKSxmYz1mdW5jdGlvbihhKXt2KGEsCiJMaXN0ZW5lciBjYW4gbm90IGJlIG51bGwuIik7aWYocShhKSlyZXR1cm4gYTt2KGEuaGFuZGxlRXZlbnQsIkFuIG9iamVjdCBsaXN0ZW5lciBtdXN0IGhhdmUgaGFuZGxlRXZlbnQgbWV0aG9kLiIpO2FbcGNdfHwoYVtwY109ZnVuY3Rpb24oYil7cmV0dXJuIGEuaGFuZGxlRXZlbnQoYil9KTtyZXR1cm4gYVtwY119O3ZhciBJPWZ1bmN0aW9uKGEpe0UuY2FsbCh0aGlzKTt0aGlzLmM9YTt0aGlzLmI9e319O3UoSSxFKTt2YXIgcWM9W107SS5wcm90b3R5cGUuYT1mdW5jdGlvbihhLGIsYyxkKXtuKGIpfHwoYiYmKHFjWzBdPWIudG9TdHJpbmcoKSksYj1xYyk7Zm9yKHZhciBlPTA7ZTxiLmxlbmd0aDtlKyspe3ZhciBmPWVjKGEsYltlXSxjfHx0aGlzLmhhbmRsZUV2ZW50LGR8fCExLHRoaXMuY3x8dGhpcyk7aWYoIWYpYnJlYWs7dGhpcy5iW2Yua2V5XT1mfXJldHVybiB0aGlzfTsKSS5wcm90b3R5cGUudz1mdW5jdGlvbihhLGIsYyxkLGUpe2lmKG4oYikpZm9yKHZhciBmPTA7ZjxiLmxlbmd0aDtmKyspdGhpcy53KGEsYltmXSxjLGQsZSk7ZWxzZSBjPWN8fHRoaXMuaGFuZGxlRXZlbnQsZD10KGQpPyEhZC5jYXB0dXJlOiEhZCxlPWV8fHRoaXMuY3x8dGhpcyxjPWZjKGMpLGQ9ISFkLGI9VGIoYSk/JGIoYS5qLFN0cmluZyhiKSxjLGQsZSk6YT8oYT1oYyhhKSk/JGIoYSxiLGMsZCxlKTpudWxsOm51bGwsYiYmKG1jKGIpLGRlbGV0ZSB0aGlzLmJbYi5rZXldKTtyZXR1cm4gdGhpc307dmFyIHJjPWZ1bmN0aW9uKGEpe3RhKGEuYixmdW5jdGlvbihhLGMpe3RoaXMuYi5oYXNPd25Qcm9wZXJ0eShjKSYmbWMoYSl9LGEpO2EuYj17fX07SS5wcm90b3R5cGUudT1mdW5jdGlvbigpe0kuaS51LmNhbGwodGhpcyk7cmModGhpcyl9OwpJLnByb3RvdHlwZS5oYW5kbGVFdmVudD1mdW5jdGlvbigpe3Rocm93IEVycm9yKCJFdmVudEhhbmRsZXIuaGFuZGxlRXZlbnQgbm90IGltcGxlbWVudGVkIik7fTt2YXIgSj1mdW5jdGlvbigpe0UuY2FsbCh0aGlzKTt0aGlzLmo9bmV3IFhiKHRoaXMpO3RoaXMuTWE9dGhpczt0aGlzLmhhPW51bGx9O3UoSixFKTtKLnByb3RvdHlwZVtTYl09ITA7Si5wcm90b3R5cGUuc2E9ZnVuY3Rpb24oYSl7dGhpcy5oYT1hfTtKLnByb3RvdHlwZS5yZW1vdmVFdmVudExpc3RlbmVyPWZ1bmN0aW9uKGEsYixjLGQpe2xjKHRoaXMsYSxiLGMsZCl9Owp2YXIgdWM9ZnVuY3Rpb24oYSxiKXtzYyhhKTt2YXIgYz1hLmhhO2lmKGMpe3ZhciBkPVtdO2Zvcih2YXIgZT0xO2M7Yz1jLmhhKWQucHVzaChjKSx2KDFFMz4rK2UsImluZmluaXRlIGxvb3AiKX1hPWEuTWE7Yz1iLnR5cGV8fGI7bShiKT9iPW5ldyBHKGIsYSk6YiBpbnN0YW5jZW9mIEc/Yi50YXJnZXQ9Yi50YXJnZXR8fGE6KGU9YixiPW5ldyBHKGMsYSkseWEoYixlKSk7ZT0hMDtpZihkKWZvcih2YXIgZj1kLmxlbmd0aC0xOyFiLmgmJjA8PWY7Zi0tKXt2YXIgaD1iLmE9ZFtmXTtlPXRjKGgsYywhMCxiKSYmZX1iLmh8fChoPWIuYT1hLGU9dGMoaCxjLCEwLGIpJiZlLGIuaHx8KGU9dGMoaCxjLCExLGIpJiZlKSk7aWYoZClmb3IoZj0wOyFiLmgmJmY8ZC5sZW5ndGg7ZisrKWg9Yi5hPWRbZl0sZT10YyhoLGMsITEsYikmJmU7cmV0dXJuIGV9OwpKLnByb3RvdHlwZS51PWZ1bmN0aW9uKCl7Si5pLnUuY2FsbCh0aGlzKTtpZih0aGlzLmope3ZhciBhPXRoaXMuaixiPTAsYztmb3IoYyBpbiBhLmEpe2Zvcih2YXIgZD1hLmFbY10sZT0wO2U8ZC5sZW5ndGg7ZSsrKSsrYixXYihkW2VdKTtkZWxldGUgYS5hW2NdO2EuYi0tfX10aGlzLmhhPW51bGx9O0oucHJvdG90eXBlLmE9ZnVuY3Rpb24oYSxiLGMsZCl7c2ModGhpcyk7cmV0dXJuIHRoaXMuai5hZGQoU3RyaW5nKGEpLGIsITEsYyxkKX07Si5wcm90b3R5cGUudz1mdW5jdGlvbihhLGIsYyxkKXt2YXIgZT10aGlzLmo7YT1TdHJpbmcoYSkudG9TdHJpbmcoKTtpZihhIGluIGUuYSl7dmFyIGY9ZS5hW2FdO2I9WWIoZixiLGMsZCk7LTE8Yj8oV2IoZltiXSksdihudWxsIT1mLmxlbmd0aCksQXJyYXkucHJvdG90eXBlLnNwbGljZS5jYWxsKGYsYiwxKSwwPT1mLmxlbmd0aCYmKGRlbGV0ZSBlLmFbYV0sZS5iLS0pLGU9ITApOmU9ITF9ZWxzZSBlPSExO3JldHVybiBlfTsKdmFyIHRjPWZ1bmN0aW9uKGEsYixjLGQpe2I9YS5qLmFbU3RyaW5nKGIpXTtpZighYilyZXR1cm4hMDtiPWIuY29uY2F0KCk7Zm9yKHZhciBlPSEwLGY9MDtmPGIubGVuZ3RoOysrZil7dmFyIGg9YltmXTtpZihoJiYhaC5WJiZoLmNhcHR1cmU9PWMpe3ZhciBrPWgubGlzdGVuZXIscD1oLm5hfHxoLnNyYztoLmlhJiZaYihhLmosaCk7ZT0hMSE9PWsuY2FsbChwLGQpJiZlfX1yZXR1cm4gZSYmMCE9ZC5LYX0sc2M9ZnVuY3Rpb24oYSl7dihhLmosIkV2ZW50IHRhcmdldCBpcyBub3QgaW5pdGlhbGl6ZWQuIERpZCB5b3UgY2FsbCB0aGUgc3VwZXJjbGFzcyAoZ29vZy5ldmVudHMuRXZlbnRUYXJnZXQpIGNvbnN0cnVjdG9yPyIpfTt2YXIgeGM9ZnVuY3Rpb24oYSxiLGMsZCxlLGYpe2lmKCEoenx8QXx8QiYmRCgiNTI1IikpKXJldHVybiEwO2lmKEMmJmUpcmV0dXJuIHZjKGEpO2lmKGUmJiFkKXJldHVybiExOyJudW1iZXIiPT10eXBlb2YgYiYmKGI9d2MoYikpO2U9MTc9PWJ8fDE4PT1ifHxDJiY5MT09YjtpZigoIWN8fEMpJiZlfHxDJiYxNj09YiYmKGR8fGYpKXJldHVybiExO2lmKChCfHxBKSYmZCYmYylzd2l0Y2goYSl7Y2FzZSAyMjA6Y2FzZSAyMTk6Y2FzZSAyMjE6Y2FzZSAxOTI6Y2FzZSAxODY6Y2FzZSAxODk6Y2FzZSAxODc6Y2FzZSAxODg6Y2FzZSAxOTA6Y2FzZSAxOTE6Y2FzZSAxOTI6Y2FzZSAyMjI6cmV0dXJuITF9aWYoeiYmZCYmYj09YSlyZXR1cm4hMTtzd2l0Y2goYSl7Y2FzZSAxMzpyZXR1cm4hMDtjYXNlIDI3OnJldHVybiEoQnx8QSl9cmV0dXJuIHZjKGEpfSx2Yz1mdW5jdGlvbihhKXtpZig0ODw9YSYmNTc+PWF8fDk2PD1hJiYxMDY+PWF8fDY1PD1hJiY5MD49YXx8KEJ8fEEpJiYwPT1hKXJldHVybiEwOwpzd2l0Y2goYSl7Y2FzZSAzMjpjYXNlIDQzOmNhc2UgNjM6Y2FzZSA2NDpjYXNlIDEwNzpjYXNlIDEwOTpjYXNlIDExMDpjYXNlIDExMTpjYXNlIDE4NjpjYXNlIDU5OmNhc2UgMTg5OmNhc2UgMTg3OmNhc2UgNjE6Y2FzZSAxODg6Y2FzZSAxOTA6Y2FzZSAxOTE6Y2FzZSAxOTI6Y2FzZSAyMjI6Y2FzZSAyMTk6Y2FzZSAyMjA6Y2FzZSAyMjE6cmV0dXJuITA7ZGVmYXVsdDpyZXR1cm4hMX19LHdjPWZ1bmN0aW9uKGEpe2lmKGdiKWE9eWMoYSk7ZWxzZSBpZihDJiZCKXN3aXRjaChhKXtjYXNlIDkzOmE9OTF9cmV0dXJuIGF9LHljPWZ1bmN0aW9uKGEpe3N3aXRjaChhKXtjYXNlIDYxOnJldHVybiAxODc7Y2FzZSA1OTpyZXR1cm4gMTg2O2Nhc2UgMTczOnJldHVybiAxODk7Y2FzZSAyMjQ6cmV0dXJuIDkxO2Nhc2UgMDpyZXR1cm4gMjI0O2RlZmF1bHQ6cmV0dXJuIGF9fTt2YXIgSz1mdW5jdGlvbihhLGIpe0ouY2FsbCh0aGlzKTthJiZ6Yyh0aGlzLGEsYil9O3UoSyxKKTtnPUsucHJvdG90eXBlO2cuUz1udWxsO2cub2E9bnVsbDtnLkRhPW51bGw7Zy5wYT1udWxsO2cuQT0tMTtnLkg9LTE7Zy52YT0hMTsKdmFyIEFjPXszOjEzLDEyOjE0NCw2MzIzMjozOCw2MzIzMzo0MCw2MzIzNDozNyw2MzIzNTozOSw2MzIzNjoxMTIsNjMyMzc6MTEzLDYzMjM4OjExNCw2MzIzOToxMTUsNjMyNDA6MTE2LDYzMjQxOjExNyw2MzI0MjoxMTgsNjMyNDM6MTE5LDYzMjQ0OjEyMCw2MzI0NToxMjEsNjMyNDY6MTIyLDYzMjQ3OjEyMyw2MzI0ODo0NCw2MzI3Mjo0Niw2MzI3MzozNiw2MzI3NTozNSw2MzI3NjozMyw2MzI3NzozNCw2MzI4OToxNDQsNjMzMDI6NDV9LEJjPXtVcDozOCxEb3duOjQwLExlZnQ6MzcsUmlnaHQ6MzksRW50ZXI6MTMsRjE6MTEyLEYyOjExMyxGMzoxMTQsRjQ6MTE1LEY1OjExNixGNjoxMTcsRjc6MTE4LEY4OjExOSxGOToxMjAsRjEwOjEyMSxGMTE6MTIyLEYxMjoxMjMsIlUrMDA3RiI6NDYsSG9tZTozNixFbmQ6MzUsUGFnZVVwOjMzLFBhZ2VEb3duOjM0LEluc2VydDo0NX0sQ2M9enx8QXx8QiYmRCgiNTI1IiksRGM9QyYmZ2I7CksucHJvdG90eXBlLmI9ZnVuY3Rpb24oYSl7aWYoQnx8QSlpZigxNz09dGhpcy5BJiYhYS5jdHJsS2V5fHwxOD09dGhpcy5BJiYhYS5hbHRLZXl8fEMmJjkxPT10aGlzLkEmJiFhLm1ldGFLZXkpdGhpcy5IPXRoaXMuQT0tMTstMT09dGhpcy5BJiYoYS5jdHJsS2V5JiYxNyE9YS5jP3RoaXMuQT0xNzphLmFsdEtleSYmMTghPWEuYz90aGlzLkE9MTg6YS5tZXRhS2V5JiY5MSE9YS5jJiYodGhpcy5BPTkxKSk7Q2MmJiF4YyhhLmMsdGhpcy5BLGEuc2hpZnRLZXksYS5jdHJsS2V5LGEuYWx0S2V5LGEubWV0YUtleSk/dGhpcy5oYW5kbGVFdmVudChhKToodGhpcy5IPXdjKGEuYyksRGMmJih0aGlzLnZhPWEuYWx0S2V5KSl9O0sucHJvdG90eXBlLmM9ZnVuY3Rpb24oYSl7dGhpcy5IPXRoaXMuQT0tMTt0aGlzLnZhPWEuYWx0S2V5fTsKSy5wcm90b3R5cGUuaGFuZGxlRXZlbnQ9ZnVuY3Rpb24oYSl7dmFyIGI9YS5iLGM9Yi5hbHRLZXk7aWYoeiYmImtleXByZXNzIj09YS50eXBlKXt2YXIgZD10aGlzLkg7dmFyIGU9MTMhPWQmJjI3IT1kP2Iua2V5Q29kZTowfWVsc2UoQnx8QSkmJiJrZXlwcmVzcyI9PWEudHlwZT8oZD10aGlzLkgsZT0wPD1iLmNoYXJDb2RlJiY2MzIzMj5iLmNoYXJDb2RlJiZ2YyhkKT9iLmNoYXJDb2RlOjApOmZiJiYhQj8oZD10aGlzLkgsZT12YyhkKT9iLmtleUNvZGU6MCk6KGQ9Yi5rZXlDb2RlfHx0aGlzLkgsZT1iLmNoYXJDb2RlfHwwLERjJiYoYz10aGlzLnZhKSxDJiY2Mz09ZSYmMjI0PT1kJiYoZD0xOTEpKTt2YXIgZj1kPXdjKGQpO2Q/NjMyMzI8PWQmJmQgaW4gQWM/Zj1BY1tkXToyNT09ZCYmYS5zaGlmdEtleSYmKGY9OSk6Yi5rZXlJZGVudGlmaWVyJiZiLmtleUlkZW50aWZpZXIgaW4gQmMmJihmPUJjW2Iua2V5SWRlbnRpZmllcl0pO2E9Zj09dGhpcy5BO3RoaXMuQT1mO2I9bmV3IEVjKGYsCmUsYSxiKTtiLmFsdEtleT1jO3VjKHRoaXMsYil9O0sucHJvdG90eXBlLmY9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5TfTt2YXIgemM9ZnVuY3Rpb24oYSxiLGMpe2EucGEmJkZjKGEpO2EuUz1iO2Eub2E9ZWMoYS5TLCJrZXlwcmVzcyIsYSxjKTthLkRhPWVjKGEuUywia2V5ZG93biIsYS5iLGMsYSk7YS5wYT1lYyhhLlMsImtleXVwIixhLmMsYyxhKX0sRmM9ZnVuY3Rpb24oYSl7YS5vYSYmKG1jKGEub2EpLG1jKGEuRGEpLG1jKGEucGEpLGEub2E9bnVsbCxhLkRhPW51bGwsYS5wYT1udWxsKTthLlM9bnVsbDthLkE9LTE7YS5IPS0xfTtLLnByb3RvdHlwZS51PWZ1bmN0aW9uKCl7Sy5pLnUuY2FsbCh0aGlzKTtGYyh0aGlzKX07dmFyIEVjPWZ1bmN0aW9uKGEsYixjLGQpe0guY2FsbCh0aGlzLGQpO3RoaXMudHlwZT0ia2V5Ijt0aGlzLmM9YTt0aGlzLnJlcGVhdD1jfTt1KEVjLEgpO3ZhciBHYz1nYj8iTW96VXNlclNlbGVjdCI6Qnx8QT8iV2Via2l0VXNlclNlbGVjdCI6bnVsbCxIYz1mdW5jdGlvbihhLGIpe2I9Yj9udWxsOmEuZ2V0RWxlbWVudHNCeVRhZ05hbWUoIioiKTtpZihHYyl7dmFyIGM9Im5vbmUiO2Euc3R5bGUmJihhLnN0eWxlW0djXT1jKTtpZihiKXthPTA7Zm9yKHZhciBkO2Q9YlthXTthKyspZC5zdHlsZSYmKGQuc3R5bGVbR2NdPWMpfX1lbHNlIGlmKHp8fGZiKWlmKGM9Im9uIixhLnNldEF0dHJpYnV0ZSgidW5zZWxlY3RhYmxlIixjKSxiKWZvcihhPTA7ZD1iW2FdO2ErKylkLnNldEF0dHJpYnV0ZSgidW5zZWxlY3RhYmxlIixjKX07dmFyIEljPWZ1bmN0aW9uKCl7fTtrYShJYyk7SWMucHJvdG90eXBlLmE9MDt2YXIgTD1mdW5jdGlvbihhKXtKLmNhbGwodGhpcyk7dGhpcy5HPWF8fENhfHwoQ2E9bmV3IHpiKTt0aGlzLnJhPUpjO3RoaXMuYWE9bnVsbDt0aGlzLm09ITE7dGhpcy5iPW51bGw7dGhpcy5JPXZvaWQgMDt0aGlzLmg9dGhpcy5nPXRoaXMuYz1udWxsO3RoaXMuSGE9ITF9O3UoTCxKKTtMLnByb3RvdHlwZS5PYT1JYy5SKCk7CnZhciBKYz1udWxsLEtjPWZ1bmN0aW9uKGEsYil7c3dpdGNoKGEpe2Nhc2UgMTpyZXR1cm4gYj8iZGlzYWJsZSI6ImVuYWJsZSI7Y2FzZSAyOnJldHVybiBiPyJoaWdobGlnaHQiOiJ1bmhpZ2hsaWdodCI7Y2FzZSA0OnJldHVybiBiPyJhY3RpdmF0ZSI6ImRlYWN0aXZhdGUiO2Nhc2UgODpyZXR1cm4gYj8ic2VsZWN0IjoidW5zZWxlY3QiO2Nhc2UgMTY6cmV0dXJuIGI/ImNoZWNrIjoidW5jaGVjayI7Y2FzZSAzMjpyZXR1cm4gYj8iZm9jdXMiOiJibHVyIjtjYXNlIDY0OnJldHVybiBiPyJvcGVuIjoiY2xvc2UifXRocm93IEVycm9yKCJJbnZhbGlkIGNvbXBvbmVudCBzdGF0ZSIpO30sTGM9ZnVuY3Rpb24oYSl7cmV0dXJuIGEuYWF8fChhLmFhPSI6IisoYS5PYS5hKyspLnRvU3RyaW5nKDM2KSl9LE1jPWZ1bmN0aW9uKGEsYil7aWYoYS5jJiZhLmMuaCl7dmFyIGM9YS5jLmgsZD1hLmFhO2QgaW4gYyYmZGVsZXRlIGNbZF07dmEoYS5jLmgsYixhKX1hLmFhPWJ9OwpMLnByb3RvdHlwZS5mPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuYn07dmFyIE5jPWZ1bmN0aW9uKGEpe2E9YS5iO3YoYSwiQ2FuIG5vdCBjYWxsIGdldEVsZW1lbnRTdHJpY3QgYmVmb3JlIHJlbmRlcmluZy9kZWNvcmF0aW5nLiIpO3JldHVybiBhfSxPYz1mdW5jdGlvbihhKXthLkl8fChhLkk9bmV3IEkoYSkpO3JldHVybiB2KGEuSSl9O0wucHJvdG90eXBlLnNhPWZ1bmN0aW9uKGEpe2lmKHRoaXMuYyYmdGhpcy5jIT1hKXRocm93IEVycm9yKCJNZXRob2Qgbm90IHN1cHBvcnRlZCIpO0wuaS5zYS5jYWxsKHRoaXMsYSl9O0wucHJvdG90eXBlLmphPWZ1bmN0aW9uKCl7dGhpcy5iPXRoaXMuRy5hLmNyZWF0ZUVsZW1lbnQoIkRJViIpfTsKdmFyIFBjPWZ1bmN0aW9uKGEsYil7aWYoYS5tKXRocm93IEVycm9yKCJDb21wb25lbnQgYWxyZWFkeSByZW5kZXJlZCIpO2lmKGImJmEueWEoYikpe2EuSGE9ITA7dmFyIGM9dmIoYik7YS5HJiZhLkcuYT09Y3x8KGEuRz1iP25ldyB6Yih2YihiKSk6Q2F8fChDYT1uZXcgemIpKTthLndhKGIpO2EuRigpfWVsc2UgdGhyb3cgRXJyb3IoIkludmFsaWQgZWxlbWVudCB0byBkZWNvcmF0ZSIpO307Zz1MLnByb3RvdHlwZTtnLnlhPWZ1bmN0aW9uKCl7cmV0dXJuITB9O2cud2E9ZnVuY3Rpb24oYSl7dGhpcy5iPWF9O2cuRj1mdW5jdGlvbigpe3RoaXMubT0hMDtRYyh0aGlzLGZ1bmN0aW9uKGEpeyFhLm0mJmEuZigpJiZhLkYoKX0pfTtnLlA9ZnVuY3Rpb24oKXtRYyh0aGlzLGZ1bmN0aW9uKGEpe2EubSYmYS5QKCl9KTt0aGlzLkkmJnJjKHRoaXMuSSk7dGhpcy5tPSExfTsKZy51PWZ1bmN0aW9uKCl7dGhpcy5tJiZ0aGlzLlAoKTt0aGlzLkkmJih0aGlzLkkuTigpLGRlbGV0ZSB0aGlzLkkpO1FjKHRoaXMsZnVuY3Rpb24oYSl7YS5OKCl9KTshdGhpcy5IYSYmdGhpcy5iJiZ0Yih0aGlzLmIpO3RoaXMuYz10aGlzLmI9dGhpcy5oPXRoaXMuZz1udWxsO0wuaS51LmNhbGwodGhpcyl9O2cudGE9ZnVuY3Rpb24oYSxiKXt0aGlzLnVhKGEsUmModGhpcyksYil9OwpnLnVhPWZ1bmN0aW9uKGEsYixjKXt2KCEhYSwiUHJvdmlkZWQgZWxlbWVudCBtdXN0IG5vdCBiZSBudWxsLiIpO2lmKGEubSYmKGN8fCF0aGlzLm0pKXRocm93IEVycm9yKCJDb21wb25lbnQgYWxyZWFkeSByZW5kZXJlZCIpO2lmKDA+Ynx8Yj5SYyh0aGlzKSl0aHJvdyBFcnJvcigiQ2hpbGQgY29tcG9uZW50IGluZGV4IG91dCBvZiBib3VuZHMiKTt0aGlzLmgmJnRoaXMuZ3x8KHRoaXMuaD17fSx0aGlzLmc9W10pO2lmKGEuYz09dGhpcyl7dmFyIGQ9TGMoYSk7dGhpcy5oW2RdPWE7TWEodGhpcy5nLGEpfWVsc2UgdmEodGhpcy5oLExjKGEpLGEpO2lmKGE9PXRoaXMpdGhyb3cgRXJyb3IoIlVuYWJsZSB0byBzZXQgcGFyZW50IGNvbXBvbmVudCIpO2lmKGQ9dGhpcyYmYS5jJiZhLmFhKXt2YXIgZT1hLmM7ZD1hLmFhO2UuaCYmZD8oZT1lLmgsZD0obnVsbCE9PWUmJmQgaW4gZT9lW2RdOnZvaWQgMCl8fG51bGwpOmQ9bnVsbH1pZihkJiZhLmMhPXRoaXMpdGhyb3cgRXJyb3IoIlVuYWJsZSB0byBzZXQgcGFyZW50IGNvbXBvbmVudCIpOwphLmM9dGhpcztMLmkuc2EuY2FsbChhLHRoaXMpO1FhKHRoaXMuZyxiLDAsYSk7aWYoYS5tJiZ0aGlzLm0mJmEuYz09dGhpcyljPXRoaXMua2EoKSxiPWMuY2hpbGROb2Rlc1tiXXx8bnVsbCxiIT1hLmYoKSYmYy5pbnNlcnRCZWZvcmUoYS5mKCksYik7ZWxzZSBpZihjKXt0aGlzLmJ8fHRoaXMuamEoKTtjPU0odGhpcyxiKzEpO2I9dGhpcy5rYSgpO2M9Yz9jLmI6bnVsbDtpZihhLm0pdGhyb3cgRXJyb3IoIkNvbXBvbmVudCBhbHJlYWR5IHJlbmRlcmVkIik7YS5ifHxhLmphKCk7Yj9iLmluc2VydEJlZm9yZShhLmIsY3x8bnVsbCk6YS5HLmEuYm9keS5hcHBlbmRDaGlsZChhLmIpO2EuYyYmIWEuYy5tfHxhLkYoKX1lbHNlIHRoaXMubSYmIWEubSYmYS5iJiZhLmIucGFyZW50Tm9kZSYmMT09YS5iLnBhcmVudE5vZGUubm9kZVR5cGUmJmEuRigpfTtnLmthPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuYn07CnZhciBTYz1mdW5jdGlvbihhKXtpZihudWxsPT1hLnJhKXt2YXIgYj1hLm0/YS5iOmEuRy5hLmJvZHk7YTp7dmFyIGM9dmIoYik7aWYoYy5kZWZhdWx0VmlldyYmYy5kZWZhdWx0Vmlldy5nZXRDb21wdXRlZFN0eWxlJiYoYz1jLmRlZmF1bHRWaWV3LmdldENvbXB1dGVkU3R5bGUoYixudWxsKSkpe2M9Yy5kaXJlY3Rpb258fGMuZ2V0UHJvcGVydHlWYWx1ZSgiZGlyZWN0aW9uIil8fCIiO2JyZWFrIGF9Yz0iIn1hLnJhPSJydGwiPT0oY3x8KGIuY3VycmVudFN0eWxlP2IuY3VycmVudFN0eWxlLmRpcmVjdGlvbjpudWxsKXx8Yi5zdHlsZSYmYi5zdHlsZS5kaXJlY3Rpb24pfXJldHVybiBhLnJhfSxSYz1mdW5jdGlvbihhKXtyZXR1cm4gYS5nP2EuZy5sZW5ndGg6MH0sTT1mdW5jdGlvbihhLGIpe3JldHVybiBhLmc/YS5nW2JdfHxudWxsOm51bGx9LFFjPWZ1bmN0aW9uKGEsYixjKXthLmcmJncoYS5nLGIsYyl9LFRjPWZ1bmN0aW9uKGEsYil7cmV0dXJuIGEuZyYmYj9JYShhLmcsYik6LTF9O3ZhciBWYz1mdW5jdGlvbihhLGIpe2lmKCFhKXRocm93IEVycm9yKCJJbnZhbGlkIGNsYXNzIG5hbWUgIithKTtpZighcShiKSl0aHJvdyBFcnJvcigiSW52YWxpZCBkZWNvcmF0b3IgZnVuY3Rpb24gIitiKTtVY1thXT1ifSxXYz17fSxVYz17fTt2YXIgWGM9ZnVuY3Rpb24oYSl7dGhpcy5oPWF9O2thKFhjKTt2YXIgWWM9ZnVuY3Rpb24oYSxiKXthJiYoYS50YWJJbmRleD1iPzA6LTEpfSwkYz1mdW5jdGlvbihhLGIsYyl7Yy5pZCYmTWMoYixjLmlkKTt2YXIgZD1hLmIoKSxlPSExLGY9RihjKTtmJiZ3KGYsZnVuY3Rpb24oYSl7YT09ZD9lPSEwOmEmJnRoaXMuZyhiLGEsZCl9LGEpO2V8fEhiKGMsZCk7WmMoYixjKTtyZXR1cm4gY307WGMucHJvdG90eXBlLmc9ZnVuY3Rpb24oYSxiLGMpe2I9PWMrIi1kaXNhYmxlZCI/YS5YKCExKTpiPT1jKyItaG9yaXpvbnRhbCI/YWQoYSwiaG9yaXpvbnRhbCIpOmI9PWMrIi12ZXJ0aWNhbCImJmFkKGEsInZlcnRpY2FsIil9Owp2YXIgWmM9ZnVuY3Rpb24oYSxiKXtpZihiKWZvcih2YXIgYz1iLmZpcnN0Q2hpbGQsZDtjJiZjLnBhcmVudE5vZGU9PWI7KXtkPWMubmV4dFNpYmxpbmc7aWYoMT09Yy5ub2RlVHlwZSl7YTp7dmFyIGU9Yzt2KGUpO2U9RihlKTtmb3IodmFyIGY9MCxoPWUubGVuZ3RoO2Y8aDtmKyspe3ZhciBrPWVbZl07aWYoaz1rIGluIFVjP1VjW2tdKCk6bnVsbCl7ZT1rO2JyZWFrIGF9fWU9bnVsbH1lJiYoZS5iPWMsYS5pc0VuYWJsZWQoKXx8ZS5YKCExKSxhLnRhKGUpLFBjKGUsYykpfWVsc2UgYy5ub2RlVmFsdWUmJiIiIT1SYShjLm5vZGVWYWx1ZSl8fGIucmVtb3ZlQ2hpbGQoYyk7Yz1kfX0sYmQ9ZnVuY3Rpb24oYSxiKXtiPWIuZigpO3YoYiwiVGhlIGNvbnRhaW5lciBET00gZWxlbWVudCBjYW5ub3QgYmUgbnVsbC4iKTtIYyhiLGdiKTt6JiYoYi5oaWRlRm9jdXM9ITApOyhhPWEuaCkmJkFiKGIsYSl9O1hjLnByb3RvdHlwZS5iPWZ1bmN0aW9uKCl7cmV0dXJuImdvb2ctY29udGFpbmVyIn07ClhjLnByb3RvdHlwZS5jPWZ1bmN0aW9uKGEpe3ZhciBiPXRoaXMuYigpLGM9W2IsImhvcml6b250YWwiPT1hLko/YisiLWhvcml6b250YWwiOmIrIi12ZXJ0aWNhbCJdO2EuaXNFbmFibGVkKCl8fGMucHVzaChiKyItZGlzYWJsZWQiKTtyZXR1cm4gY307dmFyIE49ZnVuY3Rpb24oKXt9LGNkO2thKE4pO3ZhciBkZD17YnV0dG9uOiJwcmVzc2VkIixjaGVja2JveDoiY2hlY2tlZCIsbWVudWl0ZW06InNlbGVjdGVkIixtZW51aXRlbWNoZWNrYm94OiJjaGVja2VkIixtZW51aXRlbXJhZGlvOiJjaGVja2VkIixyYWRpbzoiY2hlY2tlZCIsdGFiOiJzZWxlY3RlZCIsdHJlZWl0ZW06InNlbGVjdGVkIn07Ti5wcm90b3R5cGUuaD1mdW5jdGlvbigpe307Ti5wcm90b3R5cGUuYz1mdW5jdGlvbihhKXtyZXR1cm4gYS5HLmIoIkRJViIsZWQodGhpcyxhKS5qb2luKCIgIiksYS5jYSl9O3ZhciBnZD1mdW5jdGlvbihhLGIsYyl7aWYoYT1hLmY/YS5mKCk6YSl7dmFyIGQ9W2JdO3omJiFEKCI3IikmJihkPWZkKEYoYSksYiksZC5wdXNoKGIpKTsoYz9JYjpLYikoYSxkKX19OwpOLnByb3RvdHlwZS5nPWZ1bmN0aW9uKGEsYil7Yi5pZCYmTWMoYSxiLmlkKTtiJiZiLmZpcnN0Q2hpbGQ/aGQoYSxiLmZpcnN0Q2hpbGQubmV4dFNpYmxpbmc/T2EoYi5jaGlsZE5vZGVzKTpiLmZpcnN0Q2hpbGQpOmEuY2E9bnVsbDt2YXIgYz0wLGQ9dGhpcy5hKCksZT10aGlzLmEoKSxmPSExLGg9ITEsaz0hMSxwPU9hKEYoYikpO3cocCxmdW5jdGlvbihhKXtmfHxhIT1kP2h8fGEhPWU/Y3w9aWQodGhpcyxhKTpoPSEwOihmPSEwLGU9PWQmJihoPSEwKSk7MT09aWQodGhpcyxhKSYmKEZhKGIpLHhiKGIpJiZ5YihiKSYmd2IoYiwhMSkpfSx0aGlzKTthLm89YztmfHwocC5wdXNoKGQpLGU9PWQmJihoPSEwKSk7aHx8cC5wdXNoKGUpOyhhPWEueGEpJiZwLnB1c2guYXBwbHkocCxhKTtpZih6JiYhRCgiNyIpKXt2YXIgcj1mZChwKTswPHIubGVuZ3RoJiYocC5wdXNoLmFwcGx5KHAsciksaz0hMCl9aWYoIWZ8fCFofHxhfHxrKWIuY2xhc3NOYW1lPXAuam9pbigiICIpO3JldHVybiBifTsKdmFyIGpkPWZ1bmN0aW9uKGEsYil7aWYoYT1hLmgoKSl7dihiLCJUaGUgZWxlbWVudCBwYXNzZWQgYXMgYSBmaXJzdCBwYXJhbWV0ZXIgY2Fubm90IGJlIG51bGwuIik7dmFyIGM9Yi5nZXRBdHRyaWJ1dGUoInJvbGUiKXx8bnVsbDthIT1jJiZBYihiLGEpfX0sa2Q9ZnVuY3Rpb24oYSxiKXt2YXIgYztpZihhLnYmMzImJihjPWEuZigpKSl7aWYoIWImJmEubyYzMil7dHJ5e2MuYmx1cigpfWNhdGNoKGQpe31hLm8mMzImJmEuR2EobnVsbCl9KHhiKGMpJiZ5YihjKSkhPWImJndiKGMsYil9fSxsZD1mdW5jdGlvbihhLGIsYyl7Y2R8fChjZD17MToiZGlzYWJsZWQiLDg6InNlbGVjdGVkIiwxNjoiY2hlY2tlZCIsNjQ6ImV4cGFuZGVkIn0pO3YoYSwiVGhlIGVsZW1lbnQgcGFzc2VkIGFzIGEgZmlyc3QgcGFyYW1ldGVyIGNhbm5vdCBiZSBudWxsLiIpO2I9Y2RbYl07dmFyIGQ9YS5nZXRBdHRyaWJ1dGUoInJvbGUiKXx8bnVsbDtkJiYoZD1kZFtkXXx8YixiPSJjaGVja2VkIj09Ynx8InNlbGVjdGVkIj09CmI/ZDpiKTtiJiZDYihhLGIsYyl9O04ucHJvdG90eXBlLmE9ZnVuY3Rpb24oKXtyZXR1cm4iZ29vZy1jb250cm9sIn07CnZhciBlZD1mdW5jdGlvbihhLGIpe3ZhciBjPWEuYSgpLGQ9W2NdLGU9YS5hKCk7ZSE9YyYmZC5wdXNoKGUpO2M9Yi5vO2ZvcihlPVtdO2M7KXt2YXIgZj1jJi1jO2UucHVzaChtZChhLGYpKTtjJj1+Zn1kLnB1c2guYXBwbHkoZCxlKTsoYT1iLnhhKSYmZC5wdXNoLmFwcGx5KGQsYSk7eiYmIUQoIjciKSYmZC5wdXNoLmFwcGx5KGQsZmQoZCkpO3JldHVybiBkfSxmZD1mdW5jdGlvbihhLGIpe3ZhciBjPVtdO2ImJihhPU5hKGEsW2JdKSk7dyhbXSxmdW5jdGlvbihkKXshS2EoZCxxYShMYSxhKSl8fGImJiFMYShkLGIpfHxjLnB1c2goZC5qb2luKCJfIikpfSk7cmV0dXJuIGN9LG1kPWZ1bmN0aW9uKGEsYil7YS5ifHxuZChhKTtyZXR1cm4gYS5iW2JdfSxpZD1mdW5jdGlvbihhLGIpe2Euanx8KGEuYnx8bmQoYSksYS5qPXdhKGEuYikpO2E9cGFyc2VJbnQoYS5qW2JdLDEwKTtyZXR1cm4gaXNOYU4oYSk/MDphfSxuZD1mdW5jdGlvbihhKXt2YXIgYj1hLmEoKSxjPSF4KGIucmVwbGFjZSgvXHhhMHxccy9nLAoiICIpLCIgIik7dihjLCJDb250cm9sUmVuZGVyZXIgaGFzIGFuIGludmFsaWQgY3NzIGNsYXNzOiAnIitiKyInIik7YS5iPXsxOmIrIi1kaXNhYmxlZCIsMjpiKyItaG92ZXIiLDQ6YisiLWFjdGl2ZSIsODpiKyItc2VsZWN0ZWQiLDE2OmIrIi1jaGVja2VkIiwzMjpiKyItZm9jdXNlZCIsNjQ6YisiLW9wZW4ifX07dmFyIE89ZnVuY3Rpb24oYSxiLGMpe0wuY2FsbCh0aGlzLGMpO2lmKCFiKXtiPXRoaXMuY29uc3RydWN0b3I7Zm9yKHZhciBkO2I7KXtkPWJbbmFdfHwoYltuYV09KytwYSk7aWYoZD1XY1tkXSlicmVhaztiPWIuaT9iLmkuY29uc3RydWN0b3I6bnVsbH1iPWQ/cShkLlIpP2QuUigpOm5ldyBkOm51bGx9dGhpcy5DPWI7dGhpcy5jYT12b2lkIDAhPT1hP2E6bnVsbH07dShPLEwpO2c9Ty5wcm90b3R5cGU7Zy5jYT1udWxsO2cubz0wO2cudj0zOTtnLk09MDtnLkI9ITA7Zy54YT1udWxsO2cuemE9ITA7Zy5qYT1mdW5jdGlvbigpe3ZhciBhPXRoaXMuQy5jKHRoaXMpO3RoaXMuYj1hO2pkKHRoaXMuQyxhKTtIYyhhLCF6JiYhZmIpO3RoaXMuQnx8KGEuc3R5bGUuZGlzcGxheT0ibm9uZSIsYSYmQ2IoYSwiaGlkZGVuIiwhMCkpfTtnLmthPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuZigpfTtnLnlhPWZ1bmN0aW9uKCl7cmV0dXJuITB9OwpnLndhPWZ1bmN0aW9uKGEpe3RoaXMuYj1hPXRoaXMuQy5nKHRoaXMsYSk7amQodGhpcy5DLGEpO0hjKGEsIXomJiFmYik7dGhpcy5CPSJub25lIiE9YS5zdHlsZS5kaXNwbGF5fTsKZy5GPWZ1bmN0aW9uKCl7Ty5pLkYuY2FsbCh0aGlzKTt2YXIgYT1OYyh0aGlzKTt2KHRoaXMpO3YoYSk7dGhpcy5CfHxDYihhLCJoaWRkZW4iLCF0aGlzLkIpO3RoaXMuaXNFbmFibGVkKCl8fGxkKGEsMSwhdGhpcy5pc0VuYWJsZWQoKSk7dGhpcy52JjgmJmxkKGEsOCwhISh0aGlzLm8mOCkpO3RoaXMudiYxNiYmbGQoYSwxNiwhISh0aGlzLm8mMTYpKTt0aGlzLnYmNjQmJmxkKGEsNjQsISEodGhpcy5vJjY0KSk7YT10aGlzLkM7U2ModGhpcykmJmdkKHRoaXMuZigpLGEuYSgpKyItcnRsIiwhMCk7dGhpcy5pc0VuYWJsZWQoKSYma2QodGhpcyx0aGlzLkIpO2lmKHRoaXMudiYtMiYmKHRoaXMuemEmJm9kKHRoaXMsITApLHRoaXMudiYzMiYmKGE9dGhpcy5mKCkpKSl7dmFyIGI9dGhpcy5afHwodGhpcy5aPW5ldyBLKTt6YyhiLGEpO09jKHRoaXMpLmEoYiwia2V5Iix0aGlzLmdhKS5hKGEsImZvY3VzIix0aGlzLk5hKS5hKGEsImJsdXIiLHRoaXMuR2EpfX07CnZhciBvZD1mdW5jdGlvbihhLGIpe3ZhciBjPU9jKGEpLGQ9YS5mKCk7Yj8oYy5hKGQsIm1vdXNlb3ZlciIsYS5CYSkuYShkLCJtb3VzZWRvd24iLGEubGEpLmEoZCwibW91c2V1cCIsYS5tYSkuYShkLCJtb3VzZW91dCIsYS5BYSksYS5mYSE9amEmJmMuYShkLCJjb250ZXh0bWVudSIsYS5mYSkseiYmKEQoOSl8fGMuYShkLCJkYmxjbGljayIsYS5KYSksYS5iYXx8KGEuYmE9bmV3IHBkKGEpLEViKGEscWEoRmIsYS5iYSkpKSkpOihjLncoZCwibW91c2VvdmVyIixhLkJhKS53KGQsIm1vdXNlZG93biIsYS5sYSkudyhkLCJtb3VzZXVwIixhLm1hKS53KGQsIm1vdXNlb3V0IixhLkFhKSxhLmZhIT1qYSYmYy53KGQsImNvbnRleHRtZW51IixhLmZhKSx6JiYoRCg5KXx8Yy53KGQsImRibGNsaWNrIixhLkphKSxGYihhLmJhKSxhLmJhPW51bGwpKX07Ck8ucHJvdG90eXBlLlA9ZnVuY3Rpb24oKXtPLmkuUC5jYWxsKHRoaXMpO3RoaXMuWiYmRmModGhpcy5aKTt0aGlzLkImJnRoaXMuaXNFbmFibGVkKCkmJmtkKHRoaXMsITEpfTtPLnByb3RvdHlwZS51PWZ1bmN0aW9uKCl7Ty5pLnUuY2FsbCh0aGlzKTt0aGlzLlomJih0aGlzLlouTigpLGRlbGV0ZSB0aGlzLlopO2RlbGV0ZSB0aGlzLkM7dGhpcy5iYT10aGlzLnhhPXRoaXMuY2E9bnVsbH07dmFyIGhkPWZ1bmN0aW9uKGEsYil7YS5jYT1ifTtPLnByb3RvdHlwZS5pc0VuYWJsZWQ9ZnVuY3Rpb24oKXtyZXR1cm4hKHRoaXMubyYxKX07Ty5wcm90b3R5cGUuWD1mdW5jdGlvbihhKXt2YXIgYj10aGlzLmM7YiYmImZ1bmN0aW9uIj09dHlwZW9mIGIuaXNFbmFibGVkJiYhYi5pc0VuYWJsZWQoKXx8IVAodGhpcywxLCFhKXx8KGF8fChxZCh0aGlzLCExKSxRKHRoaXMsITEpKSx0aGlzLkImJmtkKHRoaXMsYSksUih0aGlzLDEsIWEsITApKX07CnZhciBRPWZ1bmN0aW9uKGEsYil7UChhLDIsYikmJlIoYSwyLGIpfSxxZD1mdW5jdGlvbihhLGIpe1AoYSw0LGIpJiZSKGEsNCxiKX0scmQ9ZnVuY3Rpb24oYSxiKXtQKGEsOCxiKSYmUihhLDgsYil9LHNkPWZ1bmN0aW9uKGEsYil7UChhLDY0LGIpJiZSKGEsNjQsYil9LFI9ZnVuY3Rpb24oYSxiLGMsZCl7aWYoIWQmJjE9PWIpYS5YKCFjKTtlbHNlIGlmKGEudiZiJiZjIT0hIShhLm8mYikpe3ZhciBlPWEuQztpZihkPWEuZigpKShlPW1kKGUsYikpJiZnZChhLGUsYyksbGQoZCxiLGMpO2Eubz1jP2Eub3xiOmEubyZ+Yn19LHRkPWZ1bmN0aW9uKGEsYixjKXtpZihhLm0mJmEubyZiJiYhYyl0aHJvdyBFcnJvcigiQ29tcG9uZW50IGFscmVhZHkgcmVuZGVyZWQiKTshYyYmYS5vJmImJlIoYSxiLCExKTthLnY9Yz9hLnZ8YjphLnYmfmJ9LFQ9ZnVuY3Rpb24oYSxiKXtyZXR1cm4hISgyNTUmYikmJiEhKGEudiZiKX0sUD1mdW5jdGlvbihhLGIsYyl7cmV0dXJuISEoYS52JmIpJiYhIShhLm8mCmIpIT1jJiYoIShhLk0mYil8fHVjKGEsS2MoYixjKSkpJiYhYS5XfTtnPU8ucHJvdG90eXBlO2cuQmE9ZnVuY3Rpb24oYSl7KCFhLnJlbGF0ZWRUYXJnZXR8fCF1Yih0aGlzLmYoKSxhLnJlbGF0ZWRUYXJnZXQpKSYmdWModGhpcywiZW50ZXIiKSYmdGhpcy5pc0VuYWJsZWQoKSYmVCh0aGlzLDIpJiZRKHRoaXMsITApfTtnLkFhPWZ1bmN0aW9uKGEpe2EucmVsYXRlZFRhcmdldCYmdWIodGhpcy5mKCksYS5yZWxhdGVkVGFyZ2V0KXx8IXVjKHRoaXMsImxlYXZlIil8fChUKHRoaXMsNCkmJnFkKHRoaXMsITEpLFQodGhpcywyKSYmUSh0aGlzLCExKSl9O2cuZmE9amE7CmcubGE9ZnVuY3Rpb24oYSl7aWYodGhpcy5pc0VuYWJsZWQoKSYmKFQodGhpcywyKSYmUSh0aGlzLCEwKSxSYihhKSYmIShCJiZDJiZhLmN0cmxLZXkpKSl7VCh0aGlzLDQpJiZxZCh0aGlzLCEwKTt2YXIgYjtpZihiPXRoaXMuQyl7dmFyIGM7Yj10aGlzLnYmMzImJihjPXRoaXMuZigpKT94YihjKSYmeWIoYyk6ITF9YiYmdGhpcy5mKCkuZm9jdXMoKX0hUmIoYSl8fEImJkMmJmEuY3RybEtleXx8YS5nKCl9O2cubWE9ZnVuY3Rpb24oYSl7dGhpcy5pc0VuYWJsZWQoKSYmKFQodGhpcywyKSYmUSh0aGlzLCEwKSx0aGlzLm8mNCYmdWQodGhpcyxhKSYmVCh0aGlzLDQpJiZxZCh0aGlzLCExKSl9O2cuSmE9ZnVuY3Rpb24oYSl7dGhpcy5pc0VuYWJsZWQoKSYmdWQodGhpcyxhKX07CnZhciB1ZD1mdW5jdGlvbihhLGIpe2lmKFQoYSwxNikpe3ZhciBjPSEoYS5vJjE2KTtQKGEsMTYsYykmJlIoYSwxNixjKX1UKGEsOCkmJnJkKGEsITApO1QoYSw2NCkmJnNkKGEsIShhLm8mNjQpKTtjPW5ldyBHKCJhY3Rpb24iLGEpO2ImJihjLmFsdEtleT1iLmFsdEtleSxjLmN0cmxLZXk9Yi5jdHJsS2V5LGMubWV0YUtleT1iLm1ldGFLZXksYy5zaGlmdEtleT1iLnNoaWZ0S2V5LGMudz1iLncpO3JldHVybiB1YyhhLGMpfTtPLnByb3RvdHlwZS5OYT1mdW5jdGlvbigpe1QodGhpcywzMikmJlAodGhpcywzMiwhMCkmJlIodGhpcywzMiwhMCl9O08ucHJvdG90eXBlLkdhPWZ1bmN0aW9uKCl7VCh0aGlzLDQpJiZxZCh0aGlzLCExKTtUKHRoaXMsMzIpJiZQKHRoaXMsMzIsITEpJiZSKHRoaXMsMzIsITEpfTtPLnByb3RvdHlwZS5nYT1mdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5CJiZ0aGlzLmlzRW5hYmxlZCgpJiYxMz09YS5jJiZ1ZCh0aGlzLGEpPyhhLmcoKSxhLmooKSwhMCk6ITF9OwppZighcShPKSl0aHJvdyBFcnJvcigiSW52YWxpZCBjb21wb25lbnQgY2xhc3MgIitPKTtpZighcShOKSl0aHJvdyBFcnJvcigiSW52YWxpZCByZW5kZXJlciBjbGFzcyAiK04pO3ZhciB2ZD1PW25hXXx8KE9bbmFdPSsrcGEpO1djW3ZkXT1OO1ZjKCJnb29nLWNvbnRyb2wiLGZ1bmN0aW9uKCl7cmV0dXJuIG5ldyBPKG51bGwpfSk7dmFyIHBkPWZ1bmN0aW9uKGEpe0UuY2FsbCh0aGlzKTt0aGlzLmI9YTt0aGlzLmE9ITE7dGhpcy5jPW5ldyBJKHRoaXMpO0ViKHRoaXMscWEoRmIsdGhpcy5jKSk7YT1OYyh0aGlzLmIpO3RoaXMuYy5hKGEsIm1vdXNlZG93biIsdGhpcy5oKS5hKGEsIm1vdXNldXAiLHRoaXMuaikuYShhLCJjbGljayIsdGhpcy5nKX07dShwZCxFKTt2YXIgd2Q9IXp8fDk8PU51bWJlcihuYik7cGQucHJvdG90eXBlLmg9ZnVuY3Rpb24oKXt0aGlzLmE9ITF9O3BkLnByb3RvdHlwZS5qPWZ1bmN0aW9uKCl7dGhpcy5hPSEwfTsKdmFyIHhkPWZ1bmN0aW9uKGEsYil7aWYoIXdkKXJldHVybiBhLmJ1dHRvbj0wLGEudHlwZT1iLGE7dmFyIGM9ZG9jdW1lbnQuY3JlYXRlRXZlbnQoIk1vdXNlRXZlbnRzIik7Yy5pbml0TW91c2VFdmVudChiLGEuYnViYmxlcyxhLmNhbmNlbGFibGUsYS52aWV3fHxudWxsLGEuZGV0YWlsLGEuc2NyZWVuWCxhLnNjcmVlblksYS5jbGllbnRYLGEuY2xpZW50WSxhLmN0cmxLZXksYS5hbHRLZXksYS5zaGlmdEtleSxhLm1ldGFLZXksMCxhLnJlbGF0ZWRUYXJnZXR8fG51bGwpO3JldHVybiBjfTtwZC5wcm90b3R5cGUuZz1mdW5jdGlvbihhKXtpZih0aGlzLmEpdGhpcy5hPSExO2Vsc2V7dmFyIGI9YS5iLGM9Yi5idXR0b24sZD1iLnR5cGUsZT14ZChiLCJtb3VzZWRvd24iKTt0aGlzLmIubGEobmV3IEgoZSxhLmEpKTtlPXhkKGIsIm1vdXNldXAiKTt0aGlzLmIubWEobmV3IEgoZSxhLmEpKTt3ZHx8KGIuYnV0dG9uPWMsYi50eXBlPWQpfX07CnBkLnByb3RvdHlwZS51PWZ1bmN0aW9uKCl7dGhpcy5iPW51bGw7cGQuaS51LmNhbGwodGhpcyl9O3ZhciBVPWZ1bmN0aW9uKGEsYixjKXtMLmNhbGwodGhpcyxjKTt0aGlzLmVhPWJ8fFhjLlIoKTt0aGlzLko9YXx8InZlcnRpY2FsIn07dShVLEwpO2c9VS5wcm90b3R5cGU7Zy5FYT1udWxsO2cuZGE9bnVsbDtnLmVhPW51bGw7Zy5KPW51bGw7Zy5UPSEwO2cuTz0hMDtnLmw9LTE7Zy5zPW51bGw7Zy5VPSExO2cuSz1udWxsO3ZhciB5ZD1mdW5jdGlvbihhKXtyZXR1cm4gYS5FYXx8YS5mKCl9O2c9VS5wcm90b3R5cGU7Zy5qYT1mdW5jdGlvbigpe3RoaXMuYj10aGlzLkcuYigiRElWIix0aGlzLmVhLmModGhpcykuam9pbigiICIpKX07Zy5rYT1mdW5jdGlvbigpe3JldHVybiB0aGlzLmYoKX07Zy55YT1mdW5jdGlvbihhKXtyZXR1cm4iRElWIj09YS50YWdOYW1lfTtnLndhPWZ1bmN0aW9uKGEpe3RoaXMuYj0kYyh0aGlzLmVhLHRoaXMsYSk7Im5vbmUiPT1hLnN0eWxlLmRpc3BsYXkmJih0aGlzLlQ9ITEpfTsKZy5GPWZ1bmN0aW9uKCl7VS5pLkYuY2FsbCh0aGlzKTtRYyh0aGlzLGZ1bmN0aW9uKGEpe2EubSYmemQodGhpcyxhKX0sdGhpcyk7dmFyIGE9dGhpcy5mKCk7YmQodGhpcy5lYSx0aGlzKTtBZCh0aGlzLHRoaXMuVCk7T2ModGhpcykuYSh0aGlzLCJlbnRlciIsdGhpcy5XYSkuYSh0aGlzLCJoaWdobGlnaHQiLHRoaXMuWGEpLmEodGhpcywidW5oaWdobGlnaHQiLHRoaXMuY2IpLmEodGhpcywib3BlbiIsdGhpcy5ZYSkuYSh0aGlzLCJjbG9zZSIsdGhpcy5VYSkuYShhLCJtb3VzZWRvd24iLHRoaXMuU2EpLmEodmIoYSksIm1vdXNldXAiLHRoaXMuVmEpLmEoYSxbIm1vdXNlZG93biIsIm1vdXNldXAiLCJtb3VzZW92ZXIiLCJtb3VzZW91dCIsImNvbnRleHRtZW51Il0sdGhpcy5UYSk7QmQodGhpcyl9Owp2YXIgQmQ9ZnVuY3Rpb24oYSl7dmFyIGI9T2MoYSksYz15ZChhKTtiLmEoYywiZm9jdXMiLGEuSWEpLmEoYywiYmx1ciIsYS5RYSkuYShhLmRhfHwoYS5kYT1uZXcgSyh5ZChhKSkpLCJrZXkiLGEuUmEpfTtnPVUucHJvdG90eXBlO2cuUD1mdW5jdGlvbigpe0NkKHRoaXMsLTEpO3RoaXMucyYmc2QodGhpcy5zLCExKTt0aGlzLlU9ITE7VS5pLlAuY2FsbCh0aGlzKX07Zy51PWZ1bmN0aW9uKCl7VS5pLnUuY2FsbCh0aGlzKTt0aGlzLmRhJiYodGhpcy5kYS5OKCksdGhpcy5kYT1udWxsKTt0aGlzLmVhPXRoaXMucz10aGlzLks9dGhpcy5FYT1udWxsfTtnLldhPWZ1bmN0aW9uKCl7cmV0dXJuITB9OwpnLlhhPWZ1bmN0aW9uKGEpe3ZhciBiPVRjKHRoaXMsYS50YXJnZXQpO2lmKC0xPGImJmIhPXRoaXMubCl7dmFyIGM9TSh0aGlzLHRoaXMubCk7YyYmUShjLCExKTt0aGlzLmw9YjtjPU0odGhpcyx0aGlzLmwpO3RoaXMuVSYmcWQoYywhMCk7dGhpcy5zJiZjIT10aGlzLnMmJihjLnYmNjQ/c2QoYywhMCk6c2QodGhpcy5zLCExKSl9Yj10aGlzLmYoKTt2KGIsIlRoZSBET00gZWxlbWVudCBmb3IgdGhlIGNvbnRhaW5lciBjYW5ub3QgYmUgbnVsbC4iKTtudWxsIT1hLnRhcmdldC5mKCkmJkNiKGIsImFjdGl2ZWRlc2NlbmRhbnQiLGEudGFyZ2V0LmYoKS5pZCl9O2cuY2I9ZnVuY3Rpb24oYSl7YS50YXJnZXQ9PU0odGhpcyx0aGlzLmwpJiYodGhpcy5sPS0xKTthPXRoaXMuZigpO3YoYSwiVGhlIERPTSBlbGVtZW50IGZvciB0aGUgY29udGFpbmVyIGNhbm5vdCBiZSBudWxsLiIpO2EucmVtb3ZlQXR0cmlidXRlKEJiKCJhY3RpdmVkZXNjZW5kYW50IikpfTsKZy5ZYT1mdW5jdGlvbihhKXsoYT1hLnRhcmdldCkmJmEhPXRoaXMucyYmYS5jPT10aGlzJiYodGhpcy5zJiZzZCh0aGlzLnMsITEpLHRoaXMucz1hKX07Zy5VYT1mdW5jdGlvbihhKXthLnRhcmdldD09dGhpcy5zJiYodGhpcy5zPW51bGwpO3ZhciBiPXRoaXMuZigpLGM9YS50YXJnZXQuZigpO2ImJmEudGFyZ2V0Lm8mMiYmYyYmKGE9IiIsYyYmKGE9Yy5pZCx2KGEsIlRoZSBhY3RpdmUgZWxlbWVudCBzaG91bGQgaGF2ZSBhbiBpZC4iKSksQ2IoYiwiYWN0aXZlZGVzY2VuZGFudCIsYSkpfTtnLlNhPWZ1bmN0aW9uKGEpe3RoaXMuTyYmKHRoaXMuVT0hMCk7dmFyIGI9eWQodGhpcyk7YiYmeGIoYikmJnliKGIpP2IuZm9jdXMoKTphLmcoKX07Zy5WYT1mdW5jdGlvbigpe3RoaXMuVT0hMX07CmcuVGE9ZnVuY3Rpb24oYSl7YTp7dmFyIGI9YS50YXJnZXQ7aWYodGhpcy5LKWZvcih2YXIgYz10aGlzLmYoKTtiJiZiIT09Yzspe3ZhciBkPWIuaWQ7aWYoZCBpbiB0aGlzLkspe2I9dGhpcy5LW2RdO2JyZWFrIGF9Yj1iLnBhcmVudE5vZGV9Yj1udWxsfWlmKGIpc3dpdGNoKGEudHlwZSl7Y2FzZSAibW91c2Vkb3duIjpiLmxhKGEpO2JyZWFrO2Nhc2UgIm1vdXNldXAiOmIubWEoYSk7YnJlYWs7Y2FzZSAibW91c2VvdmVyIjpiLkJhKGEpO2JyZWFrO2Nhc2UgIm1vdXNlb3V0IjpiLkFhKGEpO2JyZWFrO2Nhc2UgImNvbnRleHRtZW51IjpiLmZhKGEpfX07Zy5JYT1mdW5jdGlvbigpe307Zy5RYT1mdW5jdGlvbigpe0NkKHRoaXMsLTEpO3RoaXMuVT0hMTt0aGlzLnMmJnNkKHRoaXMucywhMSl9O2cuUmE9ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMuaXNFbmFibGVkKCkmJnRoaXMuVCYmKDAhPVJjKHRoaXMpfHx0aGlzLkVhKSYmRGQodGhpcyxhKT8oYS5nKCksYS5qKCksITApOiExfTsKdmFyIERkPWZ1bmN0aW9uKGEsYil7dmFyIGM9TShhLGEubCk7aWYoYyYmImZ1bmN0aW9uIj09dHlwZW9mIGMuZ2EmJmMuZ2EoYil8fGEucyYmYS5zIT1jJiYiZnVuY3Rpb24iPT10eXBlb2YgYS5zLmdhJiZhLnMuZ2EoYikpcmV0dXJuITA7aWYoYi5zaGlmdEtleXx8Yi5jdHJsS2V5fHxiLm1ldGFLZXl8fGIuYWx0S2V5KXJldHVybiExO3N3aXRjaChiLmMpe2Nhc2UgMjc6eWQoYSkuYmx1cigpO2JyZWFrO2Nhc2UgMzY6RWQoYSk7YnJlYWs7Y2FzZSAzNTpGZChhKTticmVhaztjYXNlIDM4OmlmKCJ2ZXJ0aWNhbCI9PWEuSilHZChhKTtlbHNlIHJldHVybiExO2JyZWFrO2Nhc2UgMzc6aWYoImhvcml6b250YWwiPT1hLkopU2MoYSk/SGQoYSk6R2QoYSk7ZWxzZSByZXR1cm4hMTticmVhaztjYXNlIDQwOmlmKCJ2ZXJ0aWNhbCI9PWEuSilIZChhKTtlbHNlIHJldHVybiExO2JyZWFrO2Nhc2UgMzk6aWYoImhvcml6b250YWwiPT1hLkopU2MoYSk/R2QoYSk6SGQoYSk7ZWxzZSByZXR1cm4hMTsKYnJlYWs7ZGVmYXVsdDpyZXR1cm4hMX1yZXR1cm4hMH0semQ9ZnVuY3Rpb24oYSxiKXt2YXIgYz1iLmYoKTtjPWMuaWR8fChjLmlkPUxjKGIpKTthLkt8fChhLks9e30pO2EuS1tjXT1ifTtVLnByb3RvdHlwZS50YT1mdW5jdGlvbihhLGIpe0hhKGEsTywiVGhlIGNoaWxkIG9mIGEgY29udGFpbmVyIG11c3QgYmUgYSBjb250cm9sIik7VS5pLnRhLmNhbGwodGhpcyxhLGIpfTtVLnByb3RvdHlwZS51YT1mdW5jdGlvbihhLGIsYyl7SGEoYSxPKTthLk18PTI7YS5NfD02NDt0ZChhLDMyLCExKTthLm0mJjAhPWEuemEmJm9kKGEsITEpO2EuemE9ITE7dmFyIGQ9YS5jPT10aGlzP1RjKHRoaXMsYSk6LTE7VS5pLnVhLmNhbGwodGhpcyxhLGIsYyk7YS5tJiZ0aGlzLm0mJnpkKHRoaXMsYSk7YT1kOy0xPT1hJiYoYT1SYyh0aGlzKSk7YT09dGhpcy5sP3RoaXMubD1NYXRoLm1pbihSYyh0aGlzKS0xLGIpOmE+dGhpcy5sJiZiPD10aGlzLmw/dGhpcy5sKys6YTx0aGlzLmwmJmI+dGhpcy5sJiZ0aGlzLmwtLX07CnZhciBhZD1mdW5jdGlvbihhLGIpe2lmKGEuZigpKXRocm93IEVycm9yKCJDb21wb25lbnQgYWxyZWFkeSByZW5kZXJlZCIpO2EuSj1ifSxBZD1mdW5jdGlvbihhLGIpe2EuVD1iO3ZhciBjPWEuZigpO2MmJihjLnN0eWxlLmRpc3BsYXk9Yj8iIjoibm9uZSIsWWMoeWQoYSksYS5PJiZhLlQpKX07VS5wcm90b3R5cGUuaXNFbmFibGVkPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuT307VS5wcm90b3R5cGUuWD1mdW5jdGlvbihhKXt0aGlzLk8hPWEmJnVjKHRoaXMsYT8iZW5hYmxlIjoiZGlzYWJsZSIpJiYoYT8odGhpcy5PPSEwLFFjKHRoaXMsZnVuY3Rpb24oYSl7YS5MYT9kZWxldGUgYS5MYTphLlgoITApfSkpOihRYyh0aGlzLGZ1bmN0aW9uKGEpe2EuaXNFbmFibGVkKCk/YS5YKCExKTphLkxhPSEwfSksdGhpcy5VPXRoaXMuTz0hMSksWWMoeWQodGhpcyksYSYmdGhpcy5UKSl9Owp2YXIgQ2Q9ZnVuY3Rpb24oYSxiKXsoYj1NKGEsYikpP1EoYiwhMCk6LTE8YS5sJiZRKE0oYSxhLmwpLCExKX0sRWQ9ZnVuY3Rpb24oYSl7SWQoYSxmdW5jdGlvbihhLGMpe3JldHVybihhKzEpJWN9LFJjKGEpLTEpfSxGZD1mdW5jdGlvbihhKXtJZChhLGZ1bmN0aW9uKGEsYyl7YS0tO3JldHVybiAwPmE/Yy0xOmF9LDApfSxIZD1mdW5jdGlvbihhKXtJZChhLGZ1bmN0aW9uKGEsYyl7cmV0dXJuKGErMSklY30sYS5sKX0sR2Q9ZnVuY3Rpb24oYSl7SWQoYSxmdW5jdGlvbihhLGMpe2EtLTtyZXR1cm4gMD5hP2MtMTphfSxhLmwpfSxJZD1mdW5jdGlvbihhLGIsYyl7Yz0wPmM/VGMoYSxhLnMpOmM7dmFyIGQ9UmMoYSk7Yz1iLmNhbGwoYSxjLGQpO2Zvcih2YXIgZT0wO2U8PWQ7KXt2YXIgZj1NKGEsYyk7aWYoZiYmZi5CJiZmLmlzRW5hYmxlZCgpJiZmLnYmMil7YS5GYShjKTticmVha31lKys7Yz1iLmNhbGwoYSxjLGQpfX07ClUucHJvdG90eXBlLkZhPWZ1bmN0aW9uKGEpe0NkKHRoaXMsYSl9O3ZhciBWPWZ1bmN0aW9uKCl7fTt1KFYsTik7a2EoVik7Vi5wcm90b3R5cGUuYT1mdW5jdGlvbigpe3JldHVybiJnb29nLXRhYiJ9O1YucHJvdG90eXBlLmg9ZnVuY3Rpb24oKXtyZXR1cm4idGFiIn07Vi5wcm90b3R5cGUuYz1mdW5jdGlvbihhKXt2YXIgYj1WLmkuYy5jYWxsKHRoaXMsYSk7KGE9YS5QYSkmJmImJihiLnRpdGxlPWF8fCIiKTtyZXR1cm4gYn07Vi5wcm90b3R5cGUuZz1mdW5jdGlvbihhLGIpe2I9Vi5pLmcuY2FsbCh0aGlzLGEsYik7dmFyIGM9Yi50aXRsZXx8IiI7YyYmKGEuUGE9Yyk7YS5vJjgmJihjPWEuYykmJnEoYy5ZKSYmKFIoYSw4LCExKSxjLlkoYSkpO3JldHVybiBifTt2YXIgSmQ9ZnVuY3Rpb24oYSxiLGMpe08uY2FsbCh0aGlzLGEsYnx8Vi5SKCksYyk7dGQodGhpcyw4LCEwKTt0aGlzLk18PTl9O3UoSmQsTyk7VmMoImdvb2ctdGFiIixmdW5jdGlvbigpe3JldHVybiBuZXcgSmQobnVsbCl9KTt2YXIgVz1mdW5jdGlvbigpe3RoaXMuaD0idGFibGlzdCJ9O3UoVyxYYyk7a2EoVyk7Vy5wcm90b3R5cGUuYj1mdW5jdGlvbigpe3JldHVybiJnb29nLXRhYi1iYXIifTtXLnByb3RvdHlwZS5nPWZ1bmN0aW9uKGEsYixjKXt0aGlzLmp8fCh0aGlzLmF8fEtkKHRoaXMpLHRoaXMuaj13YSh0aGlzLmEpKTt2YXIgZD10aGlzLmpbYl07ZD8oYWQoYSxMZChkKSksYS5DPWQpOlcuaS5nLmNhbGwodGhpcyxhLGIsYyl9O1cucHJvdG90eXBlLmM9ZnVuY3Rpb24oYSl7dmFyIGI9Vy5pLmMuY2FsbCh0aGlzLGEpO3RoaXMuYXx8S2QodGhpcyk7Yi5wdXNoKHRoaXMuYVthLkNdKTtyZXR1cm4gYn07dmFyIEtkPWZ1bmN0aW9uKGEpe3ZhciBiPWEuYigpO2EuYT17dG9wOmIrIi10b3AiLGJvdHRvbTpiKyItYm90dG9tIixzdGFydDpiKyItc3RhcnQiLGVuZDpiKyItZW5kIn19O3ZhciBZPWZ1bmN0aW9uKGEsYixjKXthPWF8fCJ0b3AiO2FkKHRoaXMsTGQoYSkpO3RoaXMuQz1hO1UuY2FsbCh0aGlzLHRoaXMuSixifHxXLlIoKSxjKTtNZCh0aGlzKX07dShZLFUpO2c9WS5wcm90b3R5cGU7Zy5EPW51bGw7Zy5GPWZ1bmN0aW9uKCl7WS5pLkYuY2FsbCh0aGlzKTtNZCh0aGlzKX07Zy51PWZ1bmN0aW9uKCl7WS5pLnUuY2FsbCh0aGlzKTt0aGlzLkQ9bnVsbH07Zy5GYT1mdW5jdGlvbihhKXtZLmkuRmEuY2FsbCh0aGlzLGEpO3RoaXMucWEoYSl9O2cuWT1mdW5jdGlvbihhKXthP3JkKGEsITApOnRoaXMuRCYmcmQodGhpcy5ELCExKX07Zy5xYT1mdW5jdGlvbihhKXt0aGlzLlkoTSh0aGlzLGEpKX07CnZhciBOZD1mdW5jdGlvbihhLGIpe2lmKGImJmI9PWEuRCl7Zm9yKHZhciBjPVRjKGEsYiksZD1jLTE7Yj1NKGEsZCk7ZC0tKWlmKGIuQiYmYi5pc0VuYWJsZWQoKSl7YS5ZKGIpO3JldHVybn1mb3IoYys9MTtiPU0oYSxjKTtjKyspaWYoYi5CJiZiLmlzRW5hYmxlZCgpKXthLlkoYik7cmV0dXJufWEuWShudWxsKX19O2c9WS5wcm90b3R5cGU7Zy5hYj1mdW5jdGlvbihhKXt0aGlzLkQmJnRoaXMuRCE9YS50YXJnZXQmJnJkKHRoaXMuRCwhMSk7dGhpcy5EPWEudGFyZ2V0fTtnLmJiPWZ1bmN0aW9uKGEpe2EudGFyZ2V0PT10aGlzLkQmJih0aGlzLkQ9bnVsbCl9O2cuWmE9ZnVuY3Rpb24oYSl7TmQodGhpcyxhLnRhcmdldCl9O2cuJGE9ZnVuY3Rpb24oYSl7TmQodGhpcyxhLnRhcmdldCl9O2cuSWE9ZnVuY3Rpb24oKXtNKHRoaXMsdGhpcy5sKXx8Q2QodGhpcyxUYyh0aGlzLHRoaXMuRHx8TSh0aGlzLDApKSl9Owp2YXIgTWQ9ZnVuY3Rpb24oYSl7T2MoYSkuYShhLCJzZWxlY3QiLGEuYWIpLmEoYSwidW5zZWxlY3QiLGEuYmIpLmEoYSwiZGlzYWJsZSIsYS5aYSkuYShhLCJoaWRlIixhLiRhKX0sTGQ9ZnVuY3Rpb24oYSl7cmV0dXJuInN0YXJ0Ij09YXx8ImVuZCI9PWE/InZlcnRpY2FsIjoiaG9yaXpvbnRhbCJ9O1ZjKCJnb29nLXRhYi1iYXIiLGZ1bmN0aW9uKCl7cmV0dXJuIG5ldyBZfSk7ZnVuY3Rpb24gT2QoYSl7dmFyIGI9e3RvcDoiYm90dG9tIixib3R0b206InRvcCIsc3RhcnQ6InJpZ2h0IixlbmQ6ImxlZnQifVthLmxvY2F0aW9uXSxjPWEuZWxlbWVudElkLGQ9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgic3R5bGUiKTtkLnRleHRDb250ZW50PSJcbiAgICBmaWVsZHNldCB7XG4gICAgICBwYWRkaW5nOiAxMHB4O1xuICAgICAgYm9yZGVyOiAxcHggc29saWQgIzM2OTtcbiAgICB9XG5cbiAgICAjIitjKyIgLmdvb2ctdGFiLWNvbnRlbnQge1xuICAgICAgbWluLWhlaWdodDogM2VtO1xuICAgICAgbWFyZ2luOiAwO1xuICAgICAgYm9yZGVyOiAiK2EuYm9yZGVyKyIgc29saWQgIithLmJvcmRlckNvbG9yKyI7XG4gICAgICBib3JkZXItdG9wOiAwO1xuICAgICAgaGVpZ2h0OiAiK2EuY29udGVudEhlaWdodCsiO1xuICAgICAgcGFkZGluZzogNHB4IDhweDtcbiAgICAgIG1hcmdpbi1yaWdodDogNHB4O1xuICAgICAgYmFja2dyb3VuZDogI2ZmZjtcbiAgICAgIG92ZXJmbG93OiBhdXRvO1xuICAgIH1cblxuICAgICMiKwpjKyIgLmdvb2ctdGFiLWJhci0iK2EubG9jYXRpb24rIiAuZ29vZy10YWItc2VsZWN0ZWQge1xuICAgICAgYm9yZGVyOiAxcHggc29saWQgIithLmJvcmRlckNvbG9yKyI7XG4gICAgICBib3JkZXItIitiKyI6IDBweDtcbiAgICB9XG5cbiAgICAjIitjKyIgLmdvb2ctdGFiLWJhci0iK2EubG9jYXRpb24rIiB7XG4gICAgICBwYWRkaW5nLSIrYS5sb2NhdGlvbisiOiA1cHggIWltcG9ydGFudDtcbiAgICAgIGJvcmRlci0iK2IrIjogMXB4IHNvbGlkICIrYS5ib3JkZXJDb2xvcisiICFpbXBvcnRhbnQ7XG4gICAgICBiYWNrZ3JvdW5kOiB3aGl0ZTtcbiAgICB9XG5cbiAgICAjIitjKyIgLmdvb2ctdGFiLWJhciB7XG4gICAgICAgbWFyZ2luOiAwO1xuICAgICAgIGJvcmRlcjogMDtcbiAgICAgICBwYWRkaW5nOiAwO1xuICAgICAgIGxpc3Qtc3R5bGU6IG5vbmU7XG4gICAgICAgY3Vyc29yOiBkZWZhdWx0O1xuICAgICAgIG91dGxpbmU6IG5vbmU7XG4gICAgICAgYmFja2dyb3VuZDogd2hpdGU7XG4gICAgICAgbWFyZ2luLXJpZ2h0OiA0cHg7XG4gICAgICB9XG5cbiAgICAgIyIrCmMrIiAuZ29vZy10YWIge1xuICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTtcbiAgICAgICBwYWRkaW5nOiA0cHggOHB4O1xuICAgICAgIGNvbG9yOiBibGFjaztcbiAgICAgICB0ZXh0LWRlY29yYXRpb246IGluaXRpYWw7XG4gICAgICAgY3Vyc29yOiBkZWZhdWx0O1xuICAgICAgfSI7cmV0dXJuIGR9CnZhciBQZD1mdW5jdGlvbihhKXt2YXIgYj1hLmVsZW1lbnRJZCxjPWEudGFiTmFtZXMsZD1hLnNlbGVjdGVkSW5kZXg7ImNvbnRlbnRCb3JkZXIiaW4gYXx8KGEuY29udGVudEJvcmRlcj0iMHB4Iik7ImNvbnRlbnRIZWlnaHQiaW4gYXx8KGEuY29udGVudEhlaWdodD0iaW5pdGlhbCIpOyJib3JkZXJDb2xvciJpbiBhfHwoYS5ib3JkZXJDb2xvcj0iI2E3YTdhNyIpO2EubG9jYXRpb258fChhLmxvY2F0aW9uPSJ0b3AiKTt2YXIgZT1kb2N1bWVudC5xdWVyeVNlbGVjdG9yKCIjIitiKSxmPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImRpdiIpO2YuY2xhc3NMaXN0LmFkZCgiZ29vZy10YWItYmFyIik7dmFyIGg9YS5sb2NhdGlvbjtmLmNsYXNzTGlzdC5hZGQoImdvb2ctdGFiLWJhci0iK2gpO2Zvcih2YXIgaz1bXSxwPWlhKGMpLHI9cC5uZXh0KCk7IXIuZG9uZTtyPXAubmV4dCgpKXtyPXIudmFsdWU7dmFyIFM9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7Uy5jbGFzc0xpc3QuYWRkKCJnb29nLXRhYiIpOwpTLnRleHRDb250ZW50PXI7Zi5hcHBlbmRDaGlsZChTKTtrLnB1c2goUyl9ImJvdHRvbSIhPWgmJmUuYXBwZW5kQ2hpbGQoZik7cD1udWxsO2lmKCJ0b3AiPT1ofHwiYm90dG9tIj09aClwPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImRpdiIpLHAuY2xhc3NMaXN0LmFkZCgiZ29vZy10YWItYmFyLWNsZWFyIik7InRvcCI9PWgmJmUuYXBwZW5kQ2hpbGQocCk7Uz1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKTtTLmNsYXNzTGlzdC5hZGQoImdvb2ctdGFiLWNvbnRlbnQiKTt2YXIgb2E9W107Yz1pYShjKTtmb3Iocj1jLm5leHQoKTshci5kb25lO3I9Yy5uZXh0KCkpcj1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKSxyLmlkPWUuaWQrIl9jb250ZW50XyIrb2EubGVuZ3RoLHIuc3R5bGUuZGlzcGxheT0ibm9uZSIsUy5hcHBlbmRDaGlsZChyKSxvYS5wdXNoKHIpO2UuYXBwZW5kQ2hpbGQoUyk7ImJvdHRvbSI9PWgmJihlLmFwcGVuZENoaWxkKHApLGUuYXBwZW5kQ2hpbGQoZikpOwp2YXIgQmE9bmV3IFkoaCk7UGMoQmEsZik7dmFyIFg9LTE7QmEuYSgic2VsZWN0IixmdW5jdGlvbihhKXthPWsuaW5kZXhPZihhLnRhcmdldC5mKCkpO2EhPVgmJigwPD1YJiZYPG9hLmxlbmd0aCYmKG9hW1hdLnN0eWxlLmRpc3BsYXk9Im5vbmUiLFg9LTEpLDA8PWEmJmE8b2EubGVuZ3RoJiYoWD1hLG9hW1hdLnN0eWxlLmRpc3BsYXk9ImlubGluZSIsd2luZG93LmRpc3BhdGNoRXZlbnQobmV3IEV2ZW50KCJyZXNpemUiKSksZ29vZ2xlLmNvbGFiLm91dHB1dC5yZXNpemVJZnJhbWVUb0NvbnRlbnQoKSksQmEucWEoWCkpfSk7QmEucWEoZCk7d2luZG93W2JdPXtzZXRTZWxlY3RlZFRhYkluZGV4OmZ1bmN0aW9uKGEpe0JhLnFhKGEpfX07ZG9jdW1lbnQuaGVhZC5hcHBlbmRDaGlsZChPZChhKSl9LFFkPVsiY29sYWJfbGliIiwiY3JlYXRlVGFiQmFyIl0sWj1sO1FkWzBdaW4gWnx8IVouZXhlY1NjcmlwdHx8Wi5leGVjU2NyaXB0KCJ2YXIgIitRZFswXSk7CmZvcih2YXIgUmQ7UWQubGVuZ3RoJiYoUmQ9UWQuc2hpZnQoKSk7KVFkLmxlbmd0aHx8dm9pZCAwPT09UGQ/WltSZF0mJlpbUmRdIT09T2JqZWN0LnByb3RvdHlwZVtSZF0/Wj1aW1JkXTpaPVpbUmRdPXt9OlpbUmRdPVBkOwo=", + "ok": true, + "headers": [ + [ + "content-type", + "application/javascript" + ] + ], + "status": 200, + "status_text": "" + } + }, + "base_uri": "https://localhost:8080/", + "height": 414 + }, + "outputId": "e2fb601b-1707-4be9-dc84-67cabbf88914" + }, + "cell_type": "code", + "source": [ + "from google.colab import widgets\n", + "tb = widgets.TabBar([str(year) for year in years])\n", + "for tab, year in zip(tb, years):\n", + " sns.relplot(x='income', y='lifespan', hue='region', size='population', \n", + " data=df1[df1.year==year])\n", + "\n", + " plt.xscale('log')\n", + " plt.xlim(150, 1500000)\n", + " plt.ylim(20, 90)" + ], + "execution_count": 103, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b2ae1c8-e908-11e8-b3f9-0242ac1c0002\"] = colab_lib.createTabBar({\"location\": \"top\", \"elementId\": \"id1\", \"tabNames\": [\"1918\", \"1938\", \"1958\", \"1978\", \"1998\", \"2018\"], \"initialSelection\": 0, \"contentBorder\": [\"0px\"], \"contentHeight\": [\"initial\"], \"borderColor\": [\"#a7a7a7\"]});\n", + "//# sourceURL=js_e1d675b471" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b2b24da-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(0);\n", + "//# sourceURL=js_5bc9e8cf1b" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b2c4a04-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_bf945ee747" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_0", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b2c8992-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_0\");\n", + "//# sourceURL=js_6c8c607c49" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_0", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b2cd79e-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3b2c8992-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_294cee5689" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_0", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b2d102e-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(0);\n", + "//# sourceURL=js_ed5a1d33d9" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_0", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8XGW9x/HPL5nsadMt1LYsbaEs\nLZswQJFFZBMUWS4ICsgqFUVlcQG9CgiogAsXFEQQpHhB2ZcLCNSyirKkbKUtaxdZujdN2rTNMvO7\nf5wn7TSdpJNJJkkn3/fr1VdmnrM9E0p/c855zvM1d0dEREQ2bQW93QERERHpOhV0ERGRPKCCLiIi\nkgdU0EVERPKACrqIiEgeUEEXERHJAzkt6GZ2rpm9ZWYzzOy80DbEzKaY2Xvh5+Bc9kFERKQ/yFlB\nN7MdgbOAPYFdgCPMbBvgImCqu48Dpob3IiIi0gW5PEPfAXjJ3Ve5ewvwLPBfwFHA5LDOZODoHPZB\nRESkX8hlQX8L2M/MhppZOfAFYAtguLvPD+ssAIbnsA8iIiL9QixXO3b3WWZ2FfAk0AC8DiTarONm\nlnbuWTObBEwCGD9+/O4zZszIVVdFRDJhvd0BkY7kdFCcu9/i7ru7+/5ALfAusNDMRgCEn4va2fYm\nd4+7e7ysrCyX3RQREdnk5XqU+2bh55ZE98/vBB4GTg2rnAo8lMs+iIiI9Ac5u+Qe3GdmQ4Fm4Bx3\nX25mVwJ3m9mZwDzg+Bz3QUREJO/ltKC7+35p2pYCB+XyuCIiIv2NZooTERHJAyroIiIieUAFXURE\nJA+ooIuIiOQBFXQREZE8oIIuIiKSB1TQRURE8oAKuoiISB5QQRcREckDKugiIiJ5QAVdREQkD6ig\ni4iI5AEVdBERkTyggi4iIpIHVNBFRETygAq6iIhIHlBBFxERyQMq6CIiInlABV1ERCQPqKCLiIjk\nARV0ERGRPKCCLiIikgdU0EVERPKACrqIiEgeUEEXERHJAyroIiIieUAFXUREJA+ooIuIiOQBFXQR\nEZE8oIIuIiKSB1TQRURE8oAKuoiISB5QQRcREckDKugiIiJ5QAVdREQkD+S0oJvZ+WY2w8zeMrO/\nmlmpmY0xs5fM7H0zu8vMinPZBxERkf4gZwXdzEYB3wXi7r4jUAh8BbgKuMbdtwFqgTNz1QcREZH+\nIteX3GNAmZnFgHJgPnAgcG9YPhk4Osd9EBERyXs5K+ju/jHwa+A/RIW8DpgGLHf3lrDaR8CoXPVB\nRESkv8jlJffBwFHAGGAkUAEc1ontJ5lZjZnVLF68OEe9FBERyQ+5vOR+MDDH3Re7ezNwP7APMChc\nggfYHPg43cbufpO7x909Xl1dncNuioiIbPpyWdD/A0w0s3IzM+AgYCbwNHBcWOdU4KEc9kFERKRf\nyOU99JeIBr+9CkwPx7oJuBC4wMzeB4YCt+SqDyIiIv2FuXtv92Gj4vG419TU9HY3RKR/s97ugEhH\nNFOciIhIHlBBFxERyQMq6CIiInlABV1ERCQPqKCLiIjkARV0ERGRPKCCLiIikgdU0EVERPKACrqI\niEgeUEEXERHJAyroIiIieUAFXUREJA+ooIuIiOQBFXQREZE8oIIuIiKSB1TQRURE8oAKuoiISB5Q\nQRcREckDKugiIiJ5QAVdREQkD6igi4iI5AEVdBERkTyggi4iIpIHVNBFRETygAq6iIhIHlBBFxER\nyQMq6CIiInlABV1ERCQPqKCLiIjkARV0EZF+yMyONLOLersf0n1ivd0BERHpGjMzwNw9mek27v4w\n8HDueiU9TWfoIiKbIDMbbWbvmNntwFvA18zs32b2qpndY2aVYb0vmNnbZjbNzK4zs0dC+2lm9vuU\nfT1lZm+a2VQz2zK03xa2+ZeZzTaz43rr88rGqaCLiGy6xgE3AJ8FzgQOdvfdgBrgAjMrBf4IHO7u\nuwPV7eznd8Bkd98ZuAO4LmXZCGBf4Ajgypx8CukWKugiIpuuee7+IjARGA+8YGavA6cCWwHbA7Pd\nfU5Y/6/t7Gdv4M7w+i9EBbzVg+6edPeZwPDu/gDSfXJ2D93MtgPuSmkaC1wM3B7aRwNzgePdvTZX\n/RARyWMN4acBU9z9q6kLzWzXbjhGY+ouu2F/kiM5O0N393fcfVd33xXYHVgFPABcBEx193HA1PBe\nRESy9yKwj5ltA2BmFWa2LfAOMNbMRof1Tmhn+38BXwmvTwKez11XJVd66pL7QcAH7j4POAqYHNon\nA0f3UB9ERPKSuy8GTgP+amZvAv8Gtnf31cC3gMfNbBqwAqhLs4vvAKeHbb8GnNsjHZduZe6e+4OY\n3Qq86u6/N7Pl7j4otBtQ2/q+PfF43GtqanLeTxGRDmySl5vNrNLdV4Z/b68H3nP3a3q7X9L9cn6G\nbmbFwJHAPW2XefRtIu03CjObZGY1ZlazePHiHPdSRCRvnRUGys0AqohGvUseyvkZupkdBZzj7oeG\n9+8AB7j7fDMbATzj7tt1tA+doYtIH7BJnqFL/9ET99C/yvqPSjxM9EgF4edDPdAHERGRvJbTgm5m\nFcAhwP0pzVcCh5jZe8DBaKICERGRLsvpXO7u3gAMbdO2lGjUu4iIiHQTzRQnIiKSB1TQRUQkLTP7\nV2/3QTKngi4iIusxsxiAu3+mt/simVNBFxHJsdEXPXri6IsenTv6okeT4eeJXd2nmT0YIlFnmNmk\n0LbSzH4V2v5hZnua2TMh+vTIsE5hWOeVEJf6jdB+gJk9b2YPAzNb95dyvAvNbLqZvWFmV4a2s8J+\n3jCz+8ysvKufS7Kngi4ikkOheN9MlH5m4efN3VDUzwiRqHHgu2Y2FKgAnnL3CUTTvF5B9KTRMcBl\nYbszgTp33wPYg2jimTFh2W7Aue6+beqBzOxwomm793L3XYCrw6L73X2P0DYr7Ft6SU5HuYuICL8A\n2p65lof2OzdcPWPfNbNjwustiLLRm4DHQ9t0oNHdm81sOlHCJcChwM5mdlx4X5Wy7cspUaupDgb+\n7O6rANx9WWjf0cyuAAYBlcATXfg80kUq6CIiubVlJ9s3yswOICqye7v7KjN7BigFmn3d9J9JQvSp\nuydb74sTXSX4jrs/kWafDXTObcDR7v6GmZ0GHNDZzyLdR5fcRURy6z+dbM9EFVGw1Soz2x6Y2Ilt\nnwC+aWZFAGa2bZgErCNTiNLYysM2Q0L7AGB+2NdJnfoE0u1U0EVEcuvHwKo2batCe7YeB2JmNoto\nts0XO7Htn4gGvb1qZm8RhbV0eLXW3R8nmra7JgS9fD8s+inwEvAC8HanPoF0ux6JT+0qhbOISB+Q\ndThLGAD3C6LL7P8Bfjz3yi925f65yAZU0EVEMqO0NenTdMldREQkD6igi4iI5AEVdBERkTyggi4i\nIpIHVNBFRETygAq6iIhIHlBBFxHph0K62mdS3t+WMr97dx/rT2Y2Phf7lnU0l7uISK5dWrXBxDJc\nWtfbE8scAKwE/pXrA7n713N9DNEZuohIbkXFfIP41NCeFTOrMLNHQw75W2Z2gpkdZGavhczyW82s\nJKw718yGhdfxkI8+GjgbON/MXjez/cKu9zezf4X89HbP1s2s0symmtmr4XhHtdev0P6MmcXD6z+Y\nWU3IbP9Ztr8D2ZAKuohIbnUUn5qtw4BP3H0Xd9+RaG7324AT3H0noquv32xvY3efC9wIXOPuu7r7\n82HRCGBf4AiiOeLbswY4xt13Az4H/MbMrJ1+tfXf7h4HdgY+a2Y7Z/qhpWMq6CIiudXt8alEWeeH\nmNlV4ex6NDDH3d8NyycD+2ex3wfdPenuM4HhHaxnwC/M7E3gH8CosP56/XL3ujTbHm9mrwKvARMA\n3VvvJiroIiK51e3xqaFw70ZUQK8Aju5g9RbW/VtfupFdN6a87mju+pOAamB3d98VWAiUtu2XmV2c\nupGZjSFKajvI3XcGHs2gT5IhFXQRkdzq9vhUMxsJrHL3/wV+BewNjDazbcIqXwOeDa/nAruH18em\n7GYFUZ55NqqARe7ebGafIxoXkK5fu7XZbiDQANSZ2XDg8CyPL2lolLuISC5dWncnl1ZB945y3wn4\nlZklgWai++VVwD1mFgNeIbpHDvAz4BYzuxx4JmUf/wfcGwa0faeTx78D+D8zmw7UsC4LPV2/1nL3\nN8zstbD+h0Q56tJNFJ8qIpIZxadKn6ZL7iIiInlAl9xFRCQtM9sJ+Eub5kZ336s3+iMdU0EXEZG0\n3H06sGtv90Myo0vuIiIieUAFXUREJA+ooIuIiOQBFXQREZE8oIIuIpLHzOxSM/t+jva9NsmtLzKz\najN7KaTQ7ZdmeV7ltOd0lLuZDQL+BOwIOHAG8A5wF1GYwFzgeHevzWU/RER6006Td9ogD336qdN7\nOw+9V5lZzN1bcnyYg4Dp6fLYzaww33Lac32Gfi3wuLtvD+wCzAIuAqa6+zhgangvIpKXQjHfIA89\ntGelnTz0DXLPUzbZxcz+bWbvmdlZHex3hJk9FzLS32o9q91Ihvl3UnLRtw/r7xmO91rIV98utJ9m\nZg+b2VPA1A5y1Ueb2Swzuzkc80kzK+ug32eZ2Svh93GfmZWb2a7A1cBR4fOUmdlKM/uNmb0B7N0m\np/2w0I83zGxqR5+jr8pZQTezKqL4vlsA3L3J3ZcDRxFF+xF+dpQSJCKyqeupPPSO7AwcSBTicnEI\nUUnnROCJkKC2C/B6aO8ow3xJyEX/A1GSGkRzte/n7p8GLmb9z7obcJy7f5b2c9UBxgHXu/sEYDnr\nB8u0db+77+HurSeOZ7r76+HYd4XM99VABfBS+L39s3VjM6sm+tJ1bNjHlzP4HH1OLi+5jwEWA382\ns12AacC5wHB3nx/WWUDHmbsiIpu6XOWh/8bMrgIecffn19XBtB4KBW21mT0N7Ak8mGa9V4BbzayI\nKBu9taAfb2aTiGrGCKIM8zfDsvvDz2nAf4XXVcBkMxtHdLu1KOUYU9x9WXjdmqu+P5BkXa46RPnu\nrcefRnSbtj07mtkVwCCgEniinfUSwH1p2icCz7n7HICU/nX0OfqcXF5yjxF9E/tD+HbTQJvL6x4l\nw6RNhzGzSeEST83ixYtz2E0RkZzKeR56yB3vKPe87b+zaf/ddffniK6sfgzcZmanZJBh3pqhnmDd\nSeLlwNPh6sGX2qzfkPI6ba56m/223Xc6twHfdvediNLl2stYX+PuiQ7201ZHn6PPyWVB/wj4yN1f\nCu/vJfoLuNDMRkB0vwZYlG5jd7/J3ePuHq+urs5hN0VEcqon8tB3o/3cc4juI5ea2VDgAKIz8XT7\n3QpY6O43Ew1o3o3sMsyriL4UAJy2kfU2yFXPwgBgfriycFIW278I7B++vGBmQ1L6l8nn6BNyVtDd\nfQHwYcoggoOAmcDDwKmh7VTgoVz1QUSkt4XR7GcB84jOjOcBZ3VxlPtOwMtm9jpwCXAF0ZnptWZW\nQ3RGm+pN4GmiwnW5u3/Szn4PAFozy08ArnX3N4DWDPM7ySzD/Grgl2E/HZ1Z3wHEQ676KazLVe+s\nnwIvhb51eh/uvhiYBNwfBszdFRZl+jn6hJzmoYdRhn8CioHZwOlEXyLuJrp/NI/osbVl7e4E5aGL\nSJ+gPHTp03L6jSMMaIinWXRQLo8rIiLS32RU0MOQ/rOIRhmu3cbdz8hNt0REJFc21ZxzM7se2KdN\n87Xu/ufe6E9fk+kZ+kPA88A/2PDejIiIbEI21Zxzdz+nt/vQl2Va0Mvd/cKc9kRERESyluko90fM\n7As57YmIiIhkLdOCfi5RUV9tZvVmtsLM6nPZMREREclcRpfc3X1ArjsiIiIi2ct4YhkzGxySZ/Zv\n/ZPLjomISP9lZoPM7FtZbtttOe1mdpmZHdwd+8q1TB9b+zrRZffNidJ3JgL/JkrvERGRDszafocN\n8tB3eHtWr+ShW8/kkHeHQcC3gBvaLujJz+DuF/fEcbpDZ+6h7wHMc/fPAZ8mirMTEZEOhGK+QR56\naM+amZ1sZi+HrO8/mlmhma1MWX6cmd0WXt9mZjea2UvA1WY2xMweNLM3zezF1jhUM7vUzP5iabLT\nzewHIXP8TdswE71t304J671hZn8JbdUhq/yV8GeflGPeGrLJZ5vZd8NurgS2Dp/vV2Z2gJk9b2YP\nE00jTvgM0yzKTJ/Uid/dBtuF399tFuXATzez81N+d8eF1xeHvr9lZjelRL32CZk+trbG3deYGWZW\n4u5vWx8Pepe+yxMJEsuW4UmnYEAlheVto6JF8kpHeehZnaWb2Q5Ec63vE4JNbmDjoSSbA59x94SZ\n/Q54zd2PNrMDgdtZ91z6zkRXYSuA18zsUWBHonzyPYm+lDxsZvuHdLa2fZsA/CQca0lK0Mm1wDXu\n/k8z25Io4nSHsGx7ojz0AcA7ZvYHonTOHUMKG2Z2AFFYzI6tMafAGe6+zMzKgFfM7D53X5rBr3CD\n7YgmThsVktUws0Fptvu9u18Wlv8FOAL4vwyO1yMyLegfhQ/3IDDFzGqJ5mEX6bSmef9h3oknkqiv\nZ+SvrmbAQQdRUNqnUwlFuiIXeegHESWrvRJOEstoJ7kyxT0p0aH7EhLZ3P0pMxtqZgPDsnTZ6fsC\nhxKFtECUOT4O2KCgE92Kvcfdl4T9t2Z1HAyMTzmpHWhmleH1o+7eCDSa2SLWZaK39XJKMQf4rpkd\nE15vEfqUSUFPt907wNjwZedR4Mk0233OzH5I9IVsCDCDTa2gu3vrB780/AeuAh7PWa8kr9XeeQeJ\n5dEdm8XX/Y6KvfZSQZd89h/Sx4JmnYdOdJY82d1/tF6j2fdS3rb9n6qBzKTLTjfgl+7+x071cn0F\nwER3X5PaGAp8ptnnaz9DOGM/GNjb3VeZ2TNkkFfe3nbuXmtmuwCfB84GjgfOSNmulOh+ftzdPzSz\nSzM5Xk/qzCj33cK9jZ2Jcs6bctctyWfle62bLrps112wkpJe7I1IznV7HjowFTjOzDaDKL/bQpa5\nme1gZgXAMR1s/zzhEn0ocEvcvXVukXTZ6U8AZ7SeUZvZqNZjp/EU8OWwfWq2+JPAd1pXsiiNsyMr\niC7Bt6cKqA1FeXui2wSZSLudRaPiC9z9PqJbBru12a61eC8Jv4fjMjxej8l0lPvFwJeB+0PTn83s\nHne/Imc9k7xVseeejL7vXhLLaimdMJ7CAZrmQPLXDm/PunPW9jtAN45yd/eZZvYT4MlQvJuBc4ju\nOz8CLAZqiC6Np3MpcKuZvUn05eLUlGWt2enDWJed/km4b//vcEa9EjiZNJf53X2Gmf0ceNbMEkSX\n6U8DvgtcH44ZI7pcf3YHn3Gpmb1gZm8Bfye6DJ7qceBsM5tFdLn8xfb2leF2o4hqW+uJ7npXP9x9\nuZndDLwFLCD6otOnZJSHbmbvALu0XioJAwled/ceGRinPHQR6QP61IjmXAiXkVe6+697uy/SeZle\ncv+E9e8VlAAfd393pL9yd+oXL+KNKY+xaO5smtas2fhGIiKyVqaj3OuAGWY2hWiAxCHAy2Z2HYC7\nf7ejjUU2pmF5LXf+5Hs0LK/FrIDTr7mR4hEje7tbIv2Ku1+a6brhHvnUNIsOyvDRsZzq6/3LhUwL\n+gPhT6tnur8r0p8lW1poWF4LgHuSusULGayCLtJnhaLYZzPV+3r/ciHTx9Ymt742s8HAFu7+Zs56\nJf1OUVkZux9xDNMefZAR47ajeqsxvd0lEZFNSqaD4p4BjiT6AjCNaGTjC+5+QU57F2hQXP+wpmEl\nLU1NFBQWUj6wqre7I9JW3g+Kk01bppfcq9y93qKQltvd/ZLw6IFItymtqIwmmxQRkU7LdJR7zMxG\nEM2c80gO+yMiIt3EzI40s4vaWbaynfbUMJJnzCyeyz62x8x2NbMv9MBxfpzyenR47r2r+6w2s5fM\n7DUz2y/N8j+Z2fiuHqetTAv6ZUQzBX3g7q+Y2Vjgve7ujIiIdB93f9jdr+ztfmRpVyBnBd0iBXRt\nxr72HARMd/dPu/vzbY5b6O5fd/eZ3X3QjAq6u9/j7ju7+zfD+9nufmx3d0ZEJB9df/ZTJ15/9lNz\nrz/7qWT42aXoVFh7Nvl2OKN+18zuMLODw+xq75nZnmZ2mpn9Pqw/xqJY1OlmdkXKfszMfm9m75jZ\nP4C0U7qa2aFh+1fN7J6UYJV06+5uZs9aFFH6RLjCi5mdZVH86BsWRamWh/YvWxRJ+oaZPWdmxUQn\nkidYFJ96QjvHaS96FTO7IOzzLTM7L+V39o6Z3U4049stQFk4xh1h00Izu9miaNUnw0Rq7X3ODT5P\nmNL2aqIpdF83szIzW2lmvzGzN4C9U698mNlh4Xf6hplNDW17ht/1a2b2L8sw3TSjgm5m25rZ1NZL\nEWa2s0XTDoqISAdC8d4gD707ijqwDfAbovjR7YETiZLRvs+GZ57XAn9w952A+SntxwDbAeOBU4DP\ntD2IRfOc/wQ42N13I5pWNu2gaDMrAn4HHOfuuwO3Aj8Pi+939z3cfRdgFnBmaL8Y+HxoPzJkhVwM\n3OXuu7r7XR38DrYnClTZE7jEzIrMbHfgdGAvornazzKzT4f1xwE3uPsEdz8dWB2OcVLK8uvdfQKw\nnJBK144NPo+7v96m76uJRge95O67uPs/U35X1UR/N44N+/hyWPQ2sJ+7fzrs6xcd9GGtTC+530w0\nr20zQHhk7SsZbisi0p91lIfeVXPcfbq7J4miPKd69OjSdKJ871T7AH8Nr/+S0r4/8Fd3T4R5259K\nc5yJRAX/BTN7nWju93QJchB9OdiRKGr7daIvApuHZTua2fNmNp0oHGZCaH8BuM3MzgIKM/jcqR51\n98YQ19oavbov8IC7N7j7SqIcktZ72fPcvaN53+eEogzRU12jO1i3vc/TVgK4L037ROC51kjYlKjZ\nKuCecBJ9TQf7XU+mo9zL3f1ls/We2mjJcFsRkf4sF3norVJjR5Mp75Ok//d9488pp2fAFHf/aobr\nznD3vdMsuw042t3fMLPTiNLccPezzWwv4IvAtHCGnalMo1dbbSxGtu3+2r3kTjufJ401KVn0mbgc\neNrdjzGz0WQ4mVumZ+hLzGxrwl8Gi0ZAzu94ExERof3c867koWfjBdZdWT0ppf05onvVheFe9+fS\nbPsisI+ZbQNgZhVmtm07x3kHqDazvcO6RWbWeoY5AJgfLsuv7YOZbe3uL7n7xURJcVuw8fjUjjwP\nHB3uaVcQ3VZ4vp11m0N/spH283TCi8D+ZjYG1ouarWJdXsppme4s04J+DvBHYHsz+xg4jw5i70RE\nZK1c5KFn41zgnHB5eFRK+wNETy3NBG4H/t12Q3dfTFRY/mrRHCT/Jrp3vYFw//s44KowCOx11t2X\n/ynwEtGXi7dTNvtVGKz3FvAv4A2iCNfxHQ2Ka4+7v0p09vxyON6f3P21dla/CXgzZVBcZ7T3eTLt\n52JgEnB/+F21jhW4Gvilmb1G5lfSO54pzszOdfdrzWwfd38hfNMpcPcVne14V2imOBHpA7KeKS4M\ngFsvD/2cGw/MOg9dJJ2NFfTX3X1XM3s1jGzsFSroItIHaOpX6dM2dio/y8zeA0ba+lO9GuDuvnPu\nuiY9JdnURHLVKgoqKigoyvZWkoj0N2b2ANA2SelCd3+im49zOtEtg1QvuPs53XmcDo5/PdFTAqmu\ndfc/98TxM7XRcBYz+xTRLHFHtl3m7vNy1K/16Aw9dxL19dQ9+hj1Dz/MoK98hQEHHUhhZbvzRYj0\nZzpDlz5tozfb3X0BsEsP9EV6QaKujoU/+xkAq197jYqnpqqgi4hsgjos6GZ2t7sfH0ZFpp7K65J7\nnrDCQigogGQSYrHotYiIbHI2dobees/iiGx2bmZziZ4lTAAt7h4Pz9ndRTT7zlzgeHevzWb/0nUF\nVVVscdMfqXvwIQYd/2UKq7LLIU+sWEGyvh4KCymsqqKgrKO5GEREpLtt9B56l3YeFfR4mJKvte1q\nYJm7X2lRrN9gd7+wo/3oHnrueUsLFsv4ccf1JBsbqXvoIRZcfAkUFbHVn2+lPN4riYsiuaR76NKn\ndXh91cxWmFl9mj8rzKw+y2MeBUwOrycDR2e5H+lG2RZzgGRDA7V//RtWXs5mF5wPsRiJurpu7J2I\ndDczO9q6MZPbzOJmdl137S+L46/Nfrc2eeRm9piZDeqtvvWUDv8Vd/dsp91buwvgSTNz4I/ufhMw\n3N1bp41dQDSRvmSpobmBlmQLVSXZXSrvDu5O5ec+R9mOE6h76GGW/P73DDruOIZ+85vEBuX9/0Mi\nm6qjgUeIZojrMnevIUph6xXu/jDwcHjbmkf+9fC+vWlf80quR0DtGyakOZxoysH9UxeGVKC01/zN\nbJKZ1ZhZzeLFi3PczU3T0tVLuezfl3He0+cxu242ubx90pHGt9+maMQIYkOHsuKJJ0g2rGLZ5NtJ\nrujRCQVF+qzfnHDEib854Yi5vznhiGT42R156Ceb2cthatQ/hrnY/xD+3ZxhZj9LWfdKM5tpZm+a\n2a/N7DNEjyL/Kmy/dTvHyCi/PLQdYGaPhNcZ53lblNn+kEUZ4e+Z2SUpyx60KFN9hplNSmlPlyF+\nmkW57unyyOdaFAGLmZ0Sfg9vmNlf2vZnU5bTgu7uH4efi4jmC94TWGjrwu5HEMXdpdv2JnePu3u8\nuro6l93cZD3w/gM8NucxahbW8INnf0Dtmt4ZW1g0ciQLLrssGiFfGCUfWlkZVlzcK/0R6UtC8d4g\nD70rRd3MdgBOAPZx912JBh6fBPy3u8eBnYHPmtnOZjaUKJxkQngy6Qp3/xfR2ewPQmb3B+0cKqP8\n8jTbdTbPe0+i3PGdgS+bWesgnDNCpnoc+K6ZDbX2M8QBaCePvPX3NoEozvXAsG3byWo2adnfON2I\n1Hnfw+tDgcuI/hKdClwZfj6Uqz7kuwFF6+6IVBRVUGC988hZbLPNGP23v9KyrJat7vhfGp57jgGH\nHU7hkCEb31gk/3WUh57tfO4HAbsDr1gUa11GdHJ0fDiTjQEjiDLMZwJrgFvCGfQjnTjOjmZ2BTAI\nqCSaZAzW5ZffTZQ13lYVMNnMxhFdhd3YFJRT3H0pgJndT5RnXkNUxI8J62wBjAOqSZ8hnokDgXta\nB2p3cts+L2cFneje+APhL1ujIzaiAAAgAElEQVQMuNPdHzezV4C7zexMYB5wfA77kNcOHX0o9c31\nzF8xn0m7TGJQae/cry6sqKBswoS178t33bVX+iHSR+UiD92Aye7+o7UNUQTnFGAPd681s9uAUndv\nMbM9ib4EHAd8m6iwZeI2sssv72yed9v7hW5mBwAHA3u7+yozewYozbDf/VLOCrq7zybNDHPhW9hB\nuTpufzK4dDBn7XQWyWSSAk0II9JX/YfoMnu69mxNBR4ys2vcfVGY32NLoAGoM7PhRGOXnjGzSqDc\n3R8zsxeA2WEfmeSNt837/hjW5ZcDL5nZ4URnz6k6m+d9SPgMq4kG651BFPFaG4r59sDEsO6LwA1m\nNsbd55jZkE6caT9FdKL5W3df2slt+zxVgTygYi7Sp3V7Hrq7zyS6F/ykRcFZU4BG4DWi+9d3El0W\nh6goPxLW+ydwQWj/G/CDMHAt7aA4Opdfnqqzed4vA/cBbwL3hRHzjwMxM5tFdIv2xfDZ28sQ3yh3\nnwH8HHg2bPvbTLfdFOR0YpnuoollRKQPyHpimTAAbr089O/d9Yjy0IlGpxNNQPbt3u7Lpi6X99BF\nSDQ04M3NFA4ciOlKgvRToXirgEtOqaBLzrQsXcqCX/6Slo8+ZvjFP6V0u+2iMBgR6VOsB/K+zezz\nwFVtmue4+zFEg++ki1TQJWeW3/8AKx55FICPzv4mo++7l6J25hRoaklQt7qFklgBA8vWf8KltqGJ\nRSsaWb6qibHVFVQP0EBXke7k7uf0wDGeYN1jb5IDKuiSM6kTy0Sv09+CXN3cwr/fX8rPH5vFdp8a\nwC++OA4aV5FsaYYBQ/jt1Nn870vRgODhA0t4+Nv7MnygirqISCoV9DzXsnhxlKRWXk4sy2jUbFV9\n6QhaFsynae48NvvBD4gNG5p2vRWrW/jG/06jOeFUDyhh/jszeOy3Pwfg2Gtv546X1z3ds7C+kb9P\nn89p+4zpkc8gIrKpUEHPY80LFjD3hK/QsnAhQydNYujXz6Rw4MAeO35syBCqL7ggGhRX3nairBQG\nZcWFNK9uYZth5cx+ecraRS1NjT3QUxGRTZ+GHeexVS+/QsvChQAs/fOf8caeL44FRUUdF3NgaHkx\nd39jb76w06fYdash7HLoFyiMxcCMWEsjJ+21bkKt4QNLOHynEbnutki/Z2ajw3PmG1vnxJT3vRqh\n2t/pDD2Ple60I1ZUhDc3U7HXXtCFzPNcKiwsYPtPDeSa43elqLCAZEszZ/7uFjyZpLSigvMHD+Pk\nnYaxbMUattliGNWVCn0R6SNGAycSHsnr7QjV/q5v/gsv3aJoxAi2fvIJWhYvpmjUKGKDB/d2lzpU\nUhQ90lZQXMyAIevutxc8cg921dVUV1RQZ8aQe+4mpgQ+6efCHOmPA9OA3YAZwCnA3sCvif59fwX4\nprs3mtlc4G6iKWFXAye6+/thzvdH3P3esN+V7l6Z5lh/ASpC07dDYtuVwA5m9jowmWimuu+7+xFh\nKtdbgbFEM+NNcvc3zexSogl2xoaf/+PuOqvvBrrknscKSkspGjGCsp13JjY0/YC0TYIZyZUro9sH\nZtEfEQHYDrjB3XcA6ommdb0NOMHddyIq6t9MWb8utP8e+J9OHGcRcIi770YU29pagC8Cng8xpde0\n2eZnwGshsvXHwO0py7YHPk8Um3pJmCteukgFXfq8AQceyODTTqNiv/3Y8uabFMsqss6H7t46Z/v/\nEgVfzXH3d0PbZGD/lPX/mvJz704cpwi42cymA/cQxbJuzL5EZ/W4+1PAUDNrHZX7qLs3hhjTRUTp\nnNJFuuQufV5syBA2u+B8vKmJwsrKjW8g0n+0DeNYDnR0Oc7TvG4hnNyZWQGQbpDK+cBCogTNAqJ8\n9a5IHaGbQLWoW+gMXTYJBcXFKuYiG9rSzFrPtE8kGpA22sy2CW1fA55NWf+ElJ//Dq/nAq155kcS\nnY23VQXMd/dk2GfrHM4dRbA+TxS5Ssg2X+Lu9Rl9KsmKvhWJiGy63gHOMbNbgZnAd4liRu8xs9ZB\ncTemrD84xKg2Al8NbTcTZau/QTTIriHNcW4A7jOzU9qs8yaQCNveRjQortWlwK3heKuAU7v2UWVj\nFJ8qIpKZPjUaM4w8f8Tdd8xw/blEMaVLctgt6UW65C4iIpIHdMldRGQT5O5zgYzOzsP6o3PWGekT\ndIYuIiKSB1TQRURE8oAKuoiISB5QQRcREckDKugiIpsgMzvMzN4xs/fN7KLe7o/0PhV0EZFNjJkV\nAtcTJaeNB75qZpnMry55TAVdcsabm2leuJDGefNoqa3t7e6I5JM9gffdfba7NwF/A47q5T5JL9Nz\n6JIzzfPnM+eYY0g2rKLq2GMZ/sMfUFhV1dvdEukV8Xg8BgwDltTU1LR0cXejgA9T3n8E7NXFfcom\nTmfokjOrXnmFZMMqAOoffRRvaurlHon0jng8/hlgMTAHWBzei3QrFXTJmfI99qCgogKAqiOPxIrT\npTKK5LdwZv4oMAgoDT8fjcfjhR1u2LGPgS1S3m8e2qQf0yV3yZmikSMZ+/fH8DVrKBgwYIPL7fVr\nmkkknEHlRZj1qdwLke40jKiQpyoFqoEFWe7zFWCcmY0hKuRfIYpPlX5MBV1yxmIxijbbLO2yRfVr\n+NED01m+qpmrjt2JrasrVdQlXy0B1rB+UV9DdAk+K+7eYmbfBp4gyia/1d1ndKmXssnTJXfpcYlk\nkmunvsfUWYuYNq+Wb93xKktXNvZ2t0RyIgyA+yKwnKiQLwe+WFNTk+jKft39MXff1t23dvefd0NX\nZROngi49zjBKYuv+6hUVFujsXPJaTU3Nv4guvY8BhoX3It1Kl9ylxxUUGN88YBtWNrawtKGJS44Y\nz9DKkt7ulkhOhTPybO+Zi2xUzgt6mNGoBvjY3Y8Igzj+BgwFpgFfCxMjSD9SPaCEy47akUTSqSjp\n+K9hYsUKGt9/n9WvvUblZw+gaPNRFJToC4CISKqeuOR+LjAr5f1VwDXuvg1QC5zZA32QPqi0qHCj\nxRxgzfTpzPvqiSy6+lfMOeYYWhZnPZZIRCRv5bSgm9nmRINB/hTeG3AgcG9YZTJwdC77IJu+FU8/\ns/a1NzXR+O57vdcZEZE+Ktdn6P8D/BBIhvdDgeXu3jrt4UdEUxiKtGvAIQevfW1lZZRst20v9kZE\npG/KWUE3syOARe4+LcvtJ5lZjZnVLNYl1n6tdPx4xjxwP5+6/HLGPvQgsXaebRfpL8xsCzN72sxm\nmtkMMzs3tA8xsylm9l74OTi0m5ldF6JW3zSz3VL2dWpY/z0zOzWlfXczmx62uS5cYe2RY0h2cnmG\nvg9wpJnNJRoEdyBwLTDIzFpvnLY7XaG73+TucXePV1dX57Cb0tcVVlZSusMODP7ycRRvuSUFRUW9\n3SWR3tYCfM/dxwMTgXNCfOpFwFR3HwdMDe8hilkdF/5MAv4AUXEGLiEKdtkTuKS1QId1zkrZ7rDQ\n3hPHkCzkrKC7+4/cfXN3H000LeFT7n4S8DRwXFjtVOChXPVBRKSviMfjw+KRYV3dl7vPd/dXw+sV\nRAOPRxFFqE4Oq6WOUToKuN0jLxKdWI0APg9Mcfdl7l4LTAEOC8sGuvuL7u7A7W32letjSBZ6Y2KZ\nC4ELzOx9onvqt/RCHyRDiVWrSKxY0dvdENlkxePx0ng8fgfRmKF/AB/F4/E74vF42/nds2Jmo4FP\nAy8Bw919fli0ABgeXqeLWx21kfaP0rTTQ8eQLPTIxDLu/gzwTHg9m+iyi/RxzYsWsfAXvyS5cgXD\n//u/KR49WjO6iXTeLcAxQEn4Q3jvwMld2bGZVQL3Aee5e33q/5/u7mbmXdn/xvTEMSRzmvpV0ko0\nNLDw8stZ8fjjNPzzBT78+tdJLF3a290S2aSEy+v/BZS1WVQGHNuVy+9mVkRUzO9w9/tD88JwKZvw\nc1Foby9utaP2zdO099QxJAsq6JJeSwuJurq1bxN19XhSX8RFOmk00F7yUCOwVTY7DaPBbwFmuftv\nUxY9TDQ2CdYfo/QwcEoYiT4RqAuXzZ8ADjWzwWGg2qHAE2FZvZlNDMc6pc2+cn0MyYLmcpe0CgYO\nZPhPf8p/Tj+DZEMDI6++msKBA3q7WyKbmrmsu8zeVgkwL8v97gN8DZhuZq+Hth8DVwJ3m9mZYd/H\nh2WPAV8A3gdWAacDuPsyM7ucKF8d4DJ3XxZefwu4jehqwt/DH3roGJIFiwYX9m3xeNxramp6uxv9\njieTJJYuxR0KBw6goLRbxvCIbKqyGkASBsQdw/qX3VcD99fU1HTpHrpIKp2hS7usoICY5gAQ6aoz\niQbAHUt0mb0EuB/4em92SvKPztBFRDLTpUc8wgC4rYB5NTU1S7qnSyLr6AxdRKQHhCKuQi45o1Hu\nIiIieUAFXUREJA+ooIuIiOQBFXQRkU2UmRWa2Wtm9kh4P8bMXgpxpHeZWXFoLwnv3w/LR6fs40eh\n/R0z+3xK+2Gh7X0zuyilPefHkOyooEu38ESC5kWLaJwzlxZNESuSVjwe7+5/c88lSlprdRVwjbtv\nA9QSPTJH+Fkb2q8J6xEiV78CTCCKLr0hfEkoBK4nikQdD3w1rNtTx5AsqKD3cZ5I0LJkCS21tb3d\nlQ61LFrEnCOPYvbhh/PRuefRsnTZxjcS6Qfi8fjAeDx+ZTwerwUS8Xi8Nrwf2JX9mtnmwBeBP4X3\nBhwI3BtWaRtt2hp5ei9wUFj/KOBv7t7o7nOIZnnbM/x5391nu3sT8DfgqJ44Rld+J/2dCnof5okE\na2bOZO5JJ/PROd+meeHC3u5Su1a/9RaJ5cuj1zU1JNes6eUeifS+ULRfAc4DBoXmQeH9y10s6v8D\n/BBIhvdDgeXu3hLep8aRro0wDcvrwvqdjTztiWNIllTQ+7BEbS2fXPQjmufNY/Wrr1J75183WCfZ\n0oInk2m27hmtxy7dYTxWXg5AyQ47UFBS3Gt9EulDfkw0mUzb+dxLiIJbfpTNTs3sCGCRu0/rUu8k\nr2himb4sFiM2fDhNH3wAQNHmm6+3uPmTT1h07bUUjRjJkFO+RmzIkB7rWqKujoYXX2Tlc88x5OST\nKRozhq3//hgtS5ZQNHw4sWFZp0KK5JNv0HE4yzfIrqjvAxxpZl8ASoGBwLXAIDOLhTPk1DjS1gjT\nj8wsBlQBS2k/2pR22pf2wDEkSzpD78NigwYx6qorGXbuuYz45S8YcPBBa5e11Nby0fkXUP/Qwyy9\n8UbqH32sw30lG9tLcMxO89KlLL/rblZOfYq5J51Msr6eouHDKZswQcVcBIjH44Wsu8zensHZDJRz\n9x+5++buPppowNlT7n4S8DRwXFitbbRpa+TpcWF9D+1fCSPUxwDjgJeJbhOMCyPai8MxHg7b5PQY\nnf1dyDoq6H1crLqa6m+ezaBjjiE2ePC6BckknlKkk6tXp90+UV9P3aOP8skPf8iqadO65d52S20t\njbPepmzXXdnixhsp3moraGnZ+IYi/UhNTU0CWL6R1Wpramq6857ZhcAFZvY+0f3rW0L7LcDQ0H4B\ncBGAu88A7gZmAo8D57h7Ipx9f5soy3wWcHdYt6eOIVlQOEsPWr2inpamJgpjMcqrNvbFvWPuTtPc\nuSz42WXEPjWc4T/4AbGhQzdYr3HOXGYffjgAVlTE1v+YQtHw4VkfN9nczLI/38bi3/4WgNhm1Wx5\n65+JDd+MwgHKS5e81ulwlng8fiXRALh0l90bgWtqamqyuo8u0pbuofeQ1SvqefYvtzLj2X+w2Zit\n+a8f/YyKLhR1M6NkzBg2v+5aiMUoDAPSNtDSvPalJxLQxQF0vno1DS+8sG73ixZjRUUq5iLp/YLo\nsa7RrF/UG4G5wC97vkuSr3TJvYc0r1nDjGf/AcCiOR9Qt3BBt+y3cODA9os5UFhdTfX3v0fZbrsx\n6pprKOhi4S0oL6fqyCPXvi/eemsKKto/vkh/VlNTU0/0vPU1RJOwEH5eA+wZlot0C52h95DCoiKq\nNhtO3aKFxEpKGDC0ZwaOFZSWUrrjjpBMUv/kE5RsszWFlZVZ789iMQYccjAlO2xPy8KFlO24owbB\niXQgFO0fAT+Kx+MF3XzPXGQt3UPvQStrl7HkP3MZPHIUlYOGUFhUlPNjtixezJzjT6Bl/nwABp94\nIp+6+Kc5P65IHur0PXSRnqQz9B5UOXgIlYN77llxACspofzTn6Y+FPSKz+yd0+O1LF1KsqEBKymh\ncOBACsrKcno8ERGJqKDnucKBAxn+k/+m6pijKRwylOIt1k1Os3pFPXWLFrJi2RJGbLNdl79stCxZ\nwoeTvsGamTOxoiK2uPkmKiZO7OpHEBGRDGhQXD8QGzKEyv32o2zCeAoHDqR54UKWPfQQb019gjt+\nfD4P//rn3PmT79GwvGsBMI3vvsuamTMB8OZmFl51tZLXRHLEzAaZ2b1m9raZzTKzvc1siJlNMbP3\nws/BYV0zs+tCTOmbZrZbyn5ODeu/Z2anprTvbmbTwzbXhaAVeuIYkh0V9H6mpbaWjy/4Hs0405+Z\nsrZ9xZLFNNTXsayhiQ+XrWJR/Ro6O77C2oy2LygvZ/XMmbQsWdItfRfZlMXj8THxeHyfeDw+ppt2\neS3wuLtvD+xCNDnLRcBUdx8HTA3vIYooHRf+TAL+AFFxBi4B9iIajX9Ja4EO65yVst1hob0njiFZ\nUEHvbxIJErW1JObMZfhWW69tLiiMYQOG8su/z2K/q5/mi7/7JwvqOzerXPGWW1J17LFQUEDRqJFU\nn3cui668igVX/JzEypXd/UlENgnxyDRgBvAoMCMej0+Lx+PxbPdpZlXA/oRZ2ty9yd2Xs36Eadto\n09s98iLRfOwjgM8DU9x9mbvXAlOAw8Kyge7+Ypi+9XbSx6Tm6hiSBd1D72cKBw9m5K9/xcIrrmDf\nSy+hctgwahd8wsRjv0KyIMY9NR8BsHhFI298WMeIqjISK1aQWLqUZFMTsc02IzYo/YQ4sSFDGH7R\nhVR/9zs0zZ3Lol/9mqYPPiA2dAgkEj35MUX6hFC0nwEqQlPrKNHdgGfi8fgBNdk9wjMGWAz82cx2\nAaYB5wLD3X1+WGcB0DotZGcjTEeF123b6aFjSBZU0PsZKyykdLvtGHXddXhhIft+9VQSLc0Ul5ax\nrKGJ/bet5rl3F1NeXMiEkVFUc8MLL/DxeecDMOzc7zL09NMpKC1Nu//CAQMoHDAAb2qClhZKtt2W\nT136MwqrqnrsM4r0IX9kXTFvqwK4EcjmTD1G9KXgO+7+kpldy7pL3wC4u5tZTp9L7oljSOZU0Puh\n2jUJ/v5BA2VFBew9tpQRg6KThiEVxVxz/C4sWdnEoPIiBlcUkWxqov6JJ9duu3LqVAaf8JV2C3qr\n4i22YIubbwKgsAdjXUX6inCvfIeNrDY+Ho+PqampmdPJ3X8EfOTuL4X39xIV9IVmNsLd54dL2ovC\n8vYiTD8GDmjT/kxo3zzN+vTQMSQLuoeeQ4lVq2iprSXZ3LzxlXvQzI/rGDOsgoden8/N/5zNwpR7\n5UMrS9juUwMYPrCU4sJCCoqLGXLySVhREZgx5NRTKahs74RjfbGhQ4kNHYoGrko/NRJo2sg6TWG9\nTnH3BcCHZrZdaDqIKM0sNcK0bbTpKWEk+kSgLlw2fwI41MwGh4FqhwJPhGX1ZjYxjDw/hfQxqbk6\nhmRBZ+g50lJby5IbbmD1tFcZ9u1vU7H3xD4zycqwgSWccsvLLFrRyLPvLmb3LQfzxZ3b/zeldMIE\ntp7yJLhTMGAABcXFPdhbkU3WJ8DG/mcpDutl4zvAHSFLfDZwOtFJ2t1mdiYwDzg+rPsY8AXgfWBV\nWBd3X2ZmlxNlkwNc5u7LwutvAbcR3ff/e/gDcGUPHEOyoKlfc2T1jBk0vvceTXPmsmzyZLZ+4vEu\nxZZ2p/nLV3PMDf9aO4r9j1/bjc9PGNFr/WlOJEm6UxIr7LU+iGQgm/jUaUT3utszraamJuvR7iKp\ndMk9BxIrVrB62jSW/P56EkuXMvJXV0MXLju3JJKsbur6KPHahiZemr2UZauamHzGnhw6fjjnHTyO\nPUZvmKPeU5asbOTyR2by/bvf4JPlq3utHyI58g2goZ1lDcDZPdgXyXM5O0M3s1LgOaIM4Bhwr7tf\nYmZjgL8BQ4ketfiau3d4n2lTO0Nv/uQT3j/woLXvR99zNyXbb09BFmEsyxoa+dPzc/hg8UouOmwH\nRg8rz+qedHNLkhuf+4DfPPkuAFf+1058aZeRlBQVECtI/70u2dREYvlyAArKynKSef6bJ9/hd0+9\nD8DeY4fyh5N3Y1C5LulLn5TVt/Lw6NqNwHiie+bFRPe7z87ykTWRtHJ5D70RONDdV5pZEfBPM/s7\ncAFwjbv/zcxuBM4kzCiUN2IxCioqSDY0gBmFgwZnVcwBps5axA3PfADAuwtXcvc3JlI9oOMR5uk0\ntiR4ec6yte8fn7GAI3YZSTLpLFixhsUrGxlRVcqwypK166xYupzYmtU0PPwgBeUVVB19FEXV1Vl9\njvY0J9YlSbYkk/T9G0AinROKdjyMeh8JfJLFqHaRjcpZQQ8z/7ROD1YU/jhwIHBiaJ8MXEqeFfTY\n4MGMvutvLH/wQQZ89rMUDhm88Y3akUiuK3EtySTZJjiWF8c47+BxvDJ3GYZx7kHjqCgu5MNlqzj0\nf55jTXOSvcYM5oaTd2dQWTHvL1rJlY/PY9zQUk7dcx/qv34aifo6Njv3XCzWfX9tvr7vWJasaGRp\nQzOXHzWBwTo7lzwVirgKueRMTke5m1kh0WX1bYDrgQ+A5e7eElbJy5mBrKiIkm22Yfj3v9/pbZsb\nEzStaSFWXEhJWYxDxg9n1vx6Zi9p4KdHjGdoxYYFb1VTC8tXNdOcSFJVVpT2knVBgbHTqCqe+8Hn\nABhUXsTC+jW8PLeWNc3RWfJLc2pJJJxlDY187ZaXWLSikaeBHQ4fyx6HHkrzxx/jiUS3FvRhA0q4\n/OidSCSTVJbmPh9eRCRf5bSgu3sC2NXMBgEPANtnuq2ZTSKa4J8tt9wyNx3sYxpXNTPzhfm8+dSH\njN55GHt+aSxDK0v48Rd2oCmRZEA7Be+ND5dz8i0vk0g6FxyyLV/dc4u0l+WLY4VsNjAaSV6/ppmf\nPPgW3/7cNoysKuWTujV8dc8tKY4V0NQSjToHOGzHTzFhu1HM/Oq32GWbT1FQUrLBfruqrLgQ0Ah3\nEZGu6JHn0N19uZk9DexNNGF/LJyltzszkLvfBNwE0aC4nuhnb2tc3cK/7osGiL317MdM2G8kZZVF\nlBQVUlKUvuAlk869r3609tL8/73xCeNHDGTi2MIOz3gLDIoLC7jwvulcfdwuDK4oYkRVKYPKi0kk\nkkw+fU+uevxtzj94HEf87gWaEknGDvuIu8/ee7377CIi0jfk7LE1M6sOZ+aYWRlwCFG839PAcWG1\n1FmG+r3CwgKKSqLCbQbFZdH3LW9poXnRIlZPn75BFKkZHLvbSAoLonvr/7XbKOYuXUlzouPvQJUl\nRVx61AT2GjuEf76/mOEDSxlSUbK2H+NHDuT3J+7GsoYmmsLAtdlLGtYbxCYiIn1HLs/QRwCTw330\nAuBud3/EzGYCfzOzK4DXCPF//VXLsmWsmTGDgvIKiseO5dgf7s7bLy5g7C7DKK2MzrBbli5j9pe+\nRLK+npJtx7HlrbcSGzYMgNrGWt6sf4QHv3MITYkkjclaRg/cjkHlG78fvdmAUi790gQguseeyswY\nWFbEuOED2GlUFdM/rmPS/mMpL9rwr0xTS4Llq5sxYFhliaZ6FRHpBbkc5f4m8Ok07bOJQu77vZbl\ny5n/k5+w8qmnAag+7zyGnHYa+xy7zXrrNS+YT7K+HoDGd9+LksyCmMV4Y8krXP/mNQD8MH4hE0dO\nwFYujFYoHwqFHVx6L+i4+A6rLOG20/cgkXRKigqoKlt/Xy2JJK/9ZzlnTq5hQGmMv541kdHDMpvr\nXUREuo9miutNzc2sfO75tW9X/GMKyVWr1r5fvaKJlcvXwBZbUzIhOpOu/PyhWErS2cCSgVy2z2Wc\nMeEMLtzjQo4Y+wUKPpkG1+0Kv9sdFrwJXZw8aGhlCZsNLKWqbMPR83Wrm7n0/2awsrGF+XVr+P3T\n74XH60REpCcpnKUXWVERlZ/7HCunTAFgwOcPo6CiHIBV9U08ftN05r9fx7g9hrPvzbcRW1NPQWkp\nsTZxpNXl1Zwfj/LKWV0LUy+D5jCN6tO/gC/fBiXdP8sbQHGsgHGbVTJr/goAJoysanfmORERyR0V\n9F5UOGgQI352KY0nnUhBeQVFW26x9rGwVSuamP9+HQDvvbKQiUeNpXxk+kQ0d1933zpWCqN2h3kv\nRO9HxaGw8zPLZWpAaRGXfGkC+4+rZmBZEfHRyj4XEekNKui9LDZkCLGJEzdoL6soori0kKY1CSoH\nl1BYtOFZ77KGJh56/WPeX7iSM/cbw+ihFRQUlcE+58GWE6GgEDbfA2JhcF1TE4mWZorLOj8ffOPq\nFlavaKJpTYIBQ0opq1x3L31oZQnHxbfo5CcXEZHupPjUPiqRSLKqronaBQ0MHVlJxaANn/2+6bkP\n+MVjbwMwuLyIJ87bn80Gpj8bX1Vfx8sP3MPiD+fw2ZPPZNiWW1FQkPlkLh/OWsbD170ODjsftDl7\nfWksxaX6Pij9ih7fkD5NNzv7qMLCAioGlRAbWc59sz7h7fn1rG5qWbu8JZFk1vwVmMGkvUfz6y/t\nSGEHCasfzniTaY89yH+mv8H9V17Kqrq6TvVn7vQltCanfDhjGS1NGvgmItKX6BSrD1uyspEjfvdP\nljU0Efv/9u48PKryXuD49zf7TGYyIQmGsCZEiIBsAooiikvVagXFutIW61b10Wuv9aq13tbWulzb\n2lZta61atdfrhhvWVqpP2RQrymIRWWQnEAiQPZntzLz3jxmBQBYiCTMMv8/z5GHmvO85551f5smP\nc8672IR5t5+G15X8ld1UGJsAABSqSURBVDnsNr536kBG98plYAOseWkdcmwdx59XysoPKykqDZLf\nOweXx47T7cC+12pvdoez07fch53cmxULKolF4ow+qz8uj07VqpRSmUQTegazEoaSAh8/mzwMAy2u\n0AHKevrp5XDy/N0fArDi/UoGjSli8axNxCJxJt8yiopVNYw6sx99yocy8YorqdqwjgmXTMMXzGv3\n3CYWw0qthW7PyyNY5GPaT8eTiBvcPgcOlyZ0pZTKJJrQM0QsEicWieN023dP/5rrcXDP5GHc+Pxi\nRODp6eNa7OO023A6bAQKPLh9Dup3hnB5HcRTq6c17AqzfukOeg0MUjqikHHnTyURj7e4Wm+NiccJ\nr1jBpquuBmPo99STeIcPJyeoc7grpVSm0mfo3cSqqyO0fDnNixZh1dS0WzfcFGPj8l0sfW8Tny/Y\nSrgpliwQ4dfvfkFFTYjN1SEemrVqv6t0pwfOu7E/Q09s4OI7j8Fmh5w8N6UjC8nt6aW2KoTLbScW\nsYhbFqHGBppqa2ivM2S8oYHtDzxAorGRRFMT2+9/gHhqpjqllFKZSa/Qu0nje+9R+aO7cRQVUXjz\nTQS/8Q1sntZ7oMcicRp2hgg3xigdWUgsbOHJceKyJydtmb2qCoBBR/lx2Fv+HyzSWM9f7riZeCyG\nL5jHtx98hAtuHY0Vi/PZnC1M+ObR+IIuwo0Rdm5aSXVTGE9xCT0SLnr43bufyQPE6+sRpxNxOnGW\nlBBashQAV0kJ4tp/ljillFKZQxN6N0jEYjQtWIDvjDPwXHc1a79YycCdOwj2Ksbu2D/kOzbWs+C1\ntQBs+ryai24fAyRnYbt+0kCGFAcQEU4Z3BPnPgm9saaaeCx5Rd9cV0vciuH0+vn47fUARJstdm5u\npKCPsHnjRuZJGU/+dSlOu/DqDScxom8eJpEgum4d2+79Oa5+/eh5639SdNttuMuOhkSCvIumYs/p\n+vnZrR07sGprsQeDOAoKELs+l1dKqa9KE3o3sDmdFFxzDWGb8Oy9d2HFoiyY+SpX/eaP+PMLALBi\nMSJNjThcLiLNe26jh5tiyF4LpuTnuLnwuL5tnit4VBG9y4eyddXnDJv0NVxeL96Ai/EXlBFptti2\nro4Nn++k+OgBDDzxdO56ZjFep53++T7mrq5iRN884tXVVNz8H0TXr6f5o49wDxlC/rQrKLzm6m6L\nUaxqBxsuvRSrshJbIEDpjBm4BvTvtvMppVS204TeTdyDBhGq2oYVS66MFouEsVJX0rFIhM3LP2Xu\nX56mqGwQp0y7mpKRhVRvaeKUywbj8bX9a4mEYljRBHaHDU+OE18wjym3/SjZ2c3hxBtIztmeE3Tj\n9NgZ4CtgwLEFfP7BVhqaY9xw8kCG9QuybEs9J5UVEInFsYsg7j0d3ozTTTRi4XJ339cjvHIFVmUl\nAImGBupnzaLwumu77XxKKZXtNKF3E3E48ARyGXXO+az6YC7HTvoabl9y4ZVIcxMzH36AeCxG9dYK\njjlxImdOH03cSuD2OrA7W7/1HGqMsvidjaxYUEn/YQWcevlgjNOGLzfYan2X24HL7aCxJszCmesR\ngfN+PI7LnllIZV0Yt8PG7NsmIQ4fjj89h3fFMmTpEsJlY/CE492a0F19+4HI7pXgPEOO6bZzKaXU\nkUATejfyBnKZcMm3OOGCi3G63bh9yefQIoIvN0jDrp0A+PLycPvaH0oGEGm2WPreZgBsfgfvb6jm\nlcUVXDymLycMLMDfRgK22ZND2xp2hQk3J5c5BYhYCSrrQlz73CdUN8W446xyxo+czBeztnH+4NYX\ngukqjqN60v/pp6h97XX8p0zEM2JEt55PKaWynSb0g1RXtZ3Ff3uTXkeXUzrqODz+lsuUOkIhHMZg\n8+656s7J68Gl9zzIv9+bRe/Bx5DX68CSp8NpQ2yCSRgGjC/i7Mc/IGFg1vJtfHDH6W0mdF+ui6m3\nHceW1bUEAy6mjx/Acx9t5MSBBXicdqpTw+ReXbqF8y49jvJRR+ENtN+r3dpVTaKpEfF4cRQWIJ1c\nMtXu95Nz4on4xo1DWukoqJRSqnP0L+lBaKqt4ZV776KuajsAl/zkAfoNHb67PLplC5u+8x2sqh30\n/tWv8J8ycffQteBRvZh4xfROnc/tczDl+6NYPn8rLq+DRGoouTGQ6GCRHX8PD/2H5vPSfQs567Q+\nTLvqRPxBN1Xh5LSyVsJw0XF96NnTh7eDWeCs6mq23vVDmubOw96jB6WvvYqzuLhTn+VLmsyVUqpr\n6F/Tg2CMIdTQsPt9aJ/JV2pfmUFsy1YAtt9/P77RL7c5Fv1AON0O+gzuQa+yIM2xOI9cNpoXP97E\nJWP7EfR2fMsegcK+AZa+vh53joPL7j6evLwA8+84jaiVIOh1dpjMAWKhME1z5wEQr6khtGzZV07o\nSimluoYm9IPg8Qe44L/uZvazf6LngFL6Dj22Rbl3+J6rdXd5OTi7ZnIWu91GwG7j3OG9mHRMT3xO\n+34TzrTG63dx+vQhREMWTpcdb64Lm03wuQ78axCx4mysj+EZPpzwsmWI14t7yJCD+ThKKaW6gK6H\nfpDi8TiRxgbsTtfuXuxfsurqiH6xhtj2beSMH4+joCBNrWypuT5KNGzhdNvx5bo6tfKaFU/wu9lr\nOKu3i5z6avzFRfiOKsDj/ep3HpQ6TOh66Cqj6RX6QbLb7W2uXOYIBnGMHdPpYyYSCYwx2O12rGic\n5voo9bvC5Bfn4Ms9uKv85voos578jK2ra/Hlurj4rnH48/aMQY/FE/vNRrc3h93Gt8YPYMaiChIm\nl4vzC/F4ddEWpZRKN03oGaa5rpaFb84g3NjIhMu/TTzq5YWffUQibujZP8D5N49stwd6wrJI1NYi\nLjf23MB+5VYsztbVyWVRm+uj7KpoxJ/nJh5P8MWORv4wZy0nlRVw9rBe5PlaP0+B3833Ti3rmg+s\nlFKqS2hCzyAmkWDR22+w6O03gOT48YFjLyURTz4W2bGpYffr1li1tdTPnEn1/z6Pq6SE4p/es19n\nNYfTRkEfP7u2NOLy2MnvnRwbv6s5yiWPf0h92OLNpVs5pldumwldKaVU5tGEnm6NVWASWA4/MStB\npLl5d1Ht9kqKSnN3Twoz4vS+2J1t3w6PbtjA9vsfACC2aRNb7/whfR75LY7gnpnkfLluJt8ykqba\nKL5cF55Aqne8SU4086VQLA5ATVOUpqiFy2HjqIA+J1dKqUylCT2dajfD8xdBYxVm8h+ZP2c5x555\nLo3VO4k0N3PmNTcRyPfyzdvHEI8bnG47npzWh6dZ0QiR1atbbIusXQvR6H51fblufLktn3sHfU7+\nfOU4fvXuasaV9KC8KEBtc5SHZq3ihYWbKA56eP3GCfQKalJXSqlMpAk9nRY8CjtWAeCcdRuDj/8F\nM395HyPO/DoOp5Paqkp69CrGF2y705kVjbJt7WqW/H0mZ1x4OeLxYMLJqV0DU6cS9ea0+CXHYzHC\nTY3ELQdis+MNeHA4bbgddk4ozeep6WNxO+14nXaq6sO8sHATAJV1YT7bWqcJXSmlMpQm9HQqHLT7\npcntR6ipmabaGj6c8X8ABAp6Mu3+h8nJ69HmIUKN9cz4+d3ELYtELMbZb75B7d/fxT2knE99vRgQ\nTlDq31O/fkcVkRDMfr6C/kNzKR+fjz/Pj8efg91ua/Hc3GEXxg/M51/rqvE67ZQX7d/JTimlVGbQ\nhJ5Ox04lJi5M7WZCZZOZ+9AvWxQ37NqBFY10eJgvpxJYs/hjxkz5Fp/GxzGspITvPv4+82/v06Lu\nri2b2VERpPyEHoTqlvD6g/9g8AkncfwFF+MN5Laom5/j5rErjmN7fZiCHDcF/gOYjU4ppVRaaEJP\nk0QoBI4AG8wgln2yni3P/5xoqLlFHREbtg7mOvfkBLjgzp+w+K+v0//YsezakmD7hnrGeOz88weT\nsNuEWDyO056c0rVnSSmW1UygwM6L//0XAD756+sMP/3s/RI6QKHfTaFfx5krpVSm04R+qESaILQL\nmqtJ+IqovPeXiD9A0U038Na/F2MSif12GTj2eFweXysH28PpdhMcOATfOXn07V3A5jX1fPPOsWyJ\nRLnwsQXYRHjh2vGM7Jec/Mbfo4C+5TlYsRAOtxsrEsFmt+M8iDnmlVJKpV/n1rxUX92u1fDIKHji\nVHjvJ3iHlFH30ktYnyzi3JtvQ6TlryKvqJgzvnv9ftPJtiboczOspIh/VdZTPLQHxmfnwXdWEY4l\naI7GeWz2GkJRCwC7w4E/30+goAfT7nuY8RddxuX3/mK/ZV+VUkodXvQK/VBZNxcSybHdto1zcY+e\nDEB0yacM/P4tXPPok6xcMI/6HVWUjh5Lr7JB7XaG25vdJvTP99E/P5n8Y/EEJw4sYO7qHQCcVFaA\ny9FyFTW7w0FhvwEU9hvQVZ9QKaVUGuniLIdK9Xp48nRorsacdR91Ffk0LVlG0Q9+gKOwsMtPV9Mc\nZf3OJuwiDCjw6axvSh08XZxFZbRuS+gi0g94DigCDPCEMea3IpIPvASUABuAS4wxNe0d63BO6Il4\nHCsawelyI807IGGBO0A84URstg7XR68PxVi6uZZPK2qZelxf+uR5v1I74k1NRFasoOGfswlOmYyr\ntBSbS5O8Up2gCV1ltO5M6MVAsTFmsYgEgEXABcCVQLUx5kERuRPoYYy5o71jHa4JPdTYwOoP32ft\nJx8xbvJUigeV43B1rsf4kk01XPj7BQD0z/fx2o0nfaVe59HNFaw96ywwBvF4KJv1Ds6iok4fR6kj\nmCZ0ldG6rVOcMabSGLM49boBWAH0AaYAz6aqPUsyyWelpppq5j3/Z9x+P8vmvEu4sbHTx9hWF979\nOpEwuKJNfDbnPTYu+5RQY0OLutFt2wh9tpyGf84mVlXVoixeX7d7wLoJhzF7TQkbb2rCqqnBWFar\nbUjEYsS2bye8ciXWrl2d/gxKKaW63yHpFCciJcBo4COgyBhTmSraRvKWfFYSm41z7/kxL1fOxCEO\nxrni+DveDYBoOEQsEmFCHzfvXH8c0ZiD3rluFrz4NMvnvgfAebfczjEnnQKAVVdHdP16Nl91NRiD\nZ8QI+j3+Bxz5+QA4i4vJnTKFprlzybvsMuyBZK92q7qaqod/TWTVKop+dBeeYcOwOVtOIGNVVrJu\n8hRMOEzOxIn0fuh/cPQ4sA57SimlDo1u7xQnIn5gLnCfMeY1Eak1xuTtVV5jjNkvO4jIdcB1qbfl\nwKoOThUE6jrZvAPZp706bZXtu721entv27e8ENjZQbs6K5Pj09q29t53R3zaaldX7HMkx+hA63c2\nRumIz05jzDmd3EepQ8cY020/gBOYBdy617ZVJJ+tAxQDq7roXE90xz7t1WmrbN/trdXbe1sr9T/p\nht9FxsbnQGK2T7y6PD4ao+6J0YHW72yMMjU++qM/6fzptmfoIiLAU8AKY8zDexXNBKanXk8H3uyi\nU77VTfu0V6etsn23t1bvrQ7Ku1omx6e1bQcSw66mMepYZ89xoPU7G6NMjY9SadOdvdxPBuYDy4Av\n5zW9i+Rz9JeB/sBGksPWqrulEYcpEfnEGDM23e3IVBqfjmmM2qfxUdmo2zrFGWPep+1hHmd013mz\nxBPpbkCG0/h0TGPUPo2PyjqHxUxxSimllGqfLs6ilFJKZQFN6EoppVQW0ISulFJKZQFN6BlORIaI\nyOMiMkNEbkh3ezKViOSIyCci8o10tyUTicgkEZmf+i5NSnd7Mo2I2ETkPhF5VESmd7yHUplHE3oa\niMjTIlIlIp/ts/0cEVklImtSC9dgjFlhjLkeuASYkI72pkNnYpRyB8nhkEeMTsbIAI2AB6g41G1N\nh07GZwrQF4hxhMRHZR9N6OnxDNBiCkkRsQO/A74ODAUuF5GhqbLJwNvA3w5tM9PqGQ4wRiLyNeBz\noGrfg2S5Zzjw79F8Y8zXSf7H56eHuJ3p8gwHHp9yYIEx5lZA74Spw5Im9DQwxswD9p1M53hgjTFm\nnTEmCrxI8qoBY8zM1B/jaYe2penTyRhNAsYDVwDXisgR8b3uTIyMMV9O7lQDdH793cNQJ79DFSRj\nAxA/dK1UquscktXW1AHpA2ze630FcELqeedUkn+Ej6Qr9Na0GiNjzE0AInIlyQU0Eq3se6Ro63s0\nFTgbyAMeS0fDMkSr8QF+CzwqIhOBeelomFIHSxN6hjPGzAHmpLkZhwVjzDPpbkOmMsa8BryW7nZk\nKmNMM3B1utuh1ME4Im5NHia2AP32et83tU3toTHqmMaofRoflbU0oWeOj4FBIlIqIi7gMpIr06k9\nNEYd0xi1T+OjspYm9DQQkReAD4FyEakQkauNMRZwE8n141cALxtjlqeznemkMeqYxqh9Gh91pNHF\nWZRSSqksoFfoSimlVBbQhK6UUkplAU3oSimlVBbQhK6UUkplAU3oSimlVBbQhK6UUkplAU3oKuOJ\nyIJ0t0EppTKdjkNXSimlsoBeoauMJyKNqX8nicgcEZkhIitF5HkRkVTZOBFZICKfishCEQmIiEdE\n/iwiy0RkiYiclqp7pYi8ISLvisgGEblJRG5N1fmXiOSn6pWJyDsiskhE5ovIMemLglJKtU9XW1OH\nm9HAMGAr8AEwQUQWAi8BlxpjPhaRXCAE3AIYY8zwVDL+h4gMTh3n2NSxPMAa4A5jzGgR+TXwHeA3\nwBPA9caYL0TkBOD3wOmH7JMqpVQnaEJXh5uFxpgKABFZCpQAdUClMeZjAGNMfar8ZODR1LaVIrIR\n+DKhzzbGNAANIlIHvJXavgwYISJ+4CTgldRNAEiuSa+UUhlJE7o63ET2eh3nq3+H9z5OYq/3idQx\nbUCtMWbUVzy+UkodUvoMXWWDVUCxiIwDSD0/dwDzgWmpbYOB/qm6HUpd5a8XkYtT+4uIjOyOxiul\nVFfQhK4Oe8aYKHAp8KiIfAq8S/LZ+O8Bm4gsI/mM/UpjTKTtI+1nGnB16pjLgSld23KllOo6OmxN\nKaWUygJ6ha6UUkplAU3oSimlVBbQhK6UUkplAU3oSimlVBbQhK6UUkplAU3oSimlVBbQhK6UUkpl\nAU3oSimlVBb4fymipbYlqAm6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_0", + "outputarea_id1", + "user_output" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b859334-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3b2c4a04-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_9ecf7507ee" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_0", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b877780-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_3363c7ceba" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_1", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b87bf06-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_1\");\n", + "//# sourceURL=js_0152ea26cd" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_1", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b88034e-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3b87bf06-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_ce5c926845" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_1", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3b884a70-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(1);\n", + "//# sourceURL=js_17616b0b66" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_1", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmbK9wbIUKQKKoiCi\nrIoFNRF7bLFFjRE1+NMYa4rGGMUUY4vGWJJYQY0lllij0WDsiqwgAgIWet/ed3bK+f1x78Ls7uwy\nW4bdHc7neXh25pb3vrMiZ973vvccUVWMMcYY07d5eroDxhhjjOk6C+jGGGNMErCAbowxxiQBC+jG\nGGNMErCAbowxxiQBC+jGGGNMEkhoQBeRK0RkkYgsFpEr3W39ReQtEfna/dkvkX0wxhhjdgQJC+gi\nMh6YDuwP7A18T0R2Ba4FZqvqGGC2+94YY4wxXZDIEfoewBxVrVPVEPAu8H3gJGCWe8ws4OQE9sEY\nY4zZISQyoC8CpohIvohkAMcBw4FBqrrBPWYjMCiBfTDGGGN2CL5ENayqS0TkVuBNoBb4HAi3OEZF\nJGbuWRG5CLgIYM8995y0ePHiRHXVGGPiIT3dAWPak9BFcar6sKpOUtVDgXLgK2CTiAwBcH9ubuPc\nB1S1UFUL09PTE9lNY4wxps9L9Cr3ge7PETj3z58EXgbOcw85D3gpkX0wxhhjdgQJm3J3PS8i+UAQ\nuFRVK0TkFuCfInIhsAo4I8F9MMYYY5JeQgO6qk6Jsa0UOCKR1zXGGGN2NJYpzhhjjEkCFtCNMcaY\nJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCN\nMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkC\nFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3Rhj\njEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB\n3RhjjEkCFtCNMcaYJGAB3RhjjEkCCQ3oInKViCwWkUUi8pSIpInIKBGZIyLfiMgzIpKSyD4YY4wx\nO4KEBXQRGQpcDhSq6njAC/wAuBW4S1V3BcqBCxPVB2OMMWZHkegpdx+QLiI+IAPYAHwXeM7dPws4\nOcF9MMYYY5JewgK6qq4D7gBW4wTySuAzoEJVQ+5ha4GhieqDMcYYs6NI5JR7P+AkYBSwE5AJHNOB\n8y8SkSIRKSouLk5QL40xxpjkkMgp96nAClUtVtUg8AJwMJDnTsEDDAPWxTpZVR9Q1UJVLSwoKEhg\nN40xxpi+L5EBfTUwWUQyRESAI4Avgf8Bp7nHnAe8lMA+GGOMMTuERN5Dn4Oz+G0esNC91gPANcDV\nIvINkA88nKg+GGOMMTsKUdWe7sM2FRYWalFRUU93wxizY5Oe7oAx7bFMccYYY0wSsIBujDHGJAEL\n6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHG\nJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBu\njDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wS\nsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDE7IBE5UUSu7el+mO7j6+kOGGOM6RoR\nEUBUNRLvOar6MvBy4npltjcboRtjTB8kIiNFZJmIPAYsAs4VkY9FZJ6IPCsiWe5xx4nIUhH5TET+\nIiKvutunici9UW29LSJfiMhsERnhbp/pnvORiCwXkdN66vOabbOAbowxfdcY4H7gMOBCYKqq7gsU\nAVeLSBrwd+BYVZ0EFLTRzj3ALFWdAPwD+EvUviHAIcD3gFsS8ilMt7CAbowxfdcqVf0EmAzsCXwo\nIp8D5wE7A2OB5aq6wj3+qTbaORB40n39OE4Ab/KiqkZU9UtgUHd/ANN9EnYPXUR2B56J2jQauAF4\nzN0+ElgJnKGq5YnqhzHGJLFa96cAb6nqWdE7RWRiN1wjEN1kN7RnEiRhI3RVXaaqE1V1IjAJqAP+\nBVwLzFbVMcBs970xxpjO+wQ4WER2BRCRTBHZDVgGjBaRke5xZ7Zx/kfAD9zX5wDvJ66rJlG215T7\nEcC3qroKOAmY5W6fBZy8nfpgjDFJSVWLgWnAUyLyBfAxMFZV64GfAG+IyGdANVAZo4nLgPPdc88F\nrtguHTfdSlQ18RcReQSYp6r3ikiFqua52wUob3rflsLCQi0qKkp4P40xph19crpZRLJUtcb99/Y+\n4GtVvaun+2W6X8JH6CKSApwIPNtynzrfJmJ+oxCRi0SkSESKiouLE9xLY4xJWtPdhXKLgVycVe8m\nCSV8hC4iJwGXqupR7vtlwOGqukFEhgDvqOru7bVhI3RjTC/QJ0foZsexPe6hn0XzRyVexnmkAvfn\nS9uhD8YYY0xSS2hAF5FM4EjghajNtwBHisjXwFQsUYExxhjTZQnN5a6qtUB+i22lOKvejTHGGNNN\nLFOcMcYYkwQsoBtjjIlJRD7q6T6Y+FlAN8YY04yI+ABU9aCe7ouJnwV00ytpOEyotJRQRaykVsb0\nLSOvfe3skde+tnLkta9F3J9nd7VNEXnRLYm6WEQucrfViMjt7rb/isj+IvKOW/r0RPcYr3vMXLdc\n6v+52w8XkfdF5GXgy6b2oq53jYgsFJEFInKLu226284CEXleRDK6+rlM51lAN72OhsM0LFnK6vPP\nZ92VVxLcvLmnu2RMp7nB+0Gc6mfi/nywG4L6BW5J1ELgchHJBzKBt1V1HE6a19/jPGl0CvBb97wL\ngUpV3Q/YDyfxzCh3377AFaq6W/SFRORYnLTdB6jq3sBt7q4XVHU/d9sSt23TQxK6yt2YzgiXlbHu\nyitJGbkz+RdeSLi0DE9uLt7U1J7umjGdcTPQcuSa4W5/svXhcbtcRE5xXw/HqY3eCLzhblsIBFQ1\nKCILcSpcAhwFTBCR09z3uVHnfhpVajXaVOBRVa0DUNUyd/t4Efk9kAdkAf/pwucxXWQB3fQ+Hg9p\ne40n77TTWXvZ5WgoxIiHHiR9n30Qr7ene2dMR43o4PZtEpHDcYLsgapaJyLvAGlAULem/4zglj5V\n1UjTfXGcWYLLVPU/MdqspWNmAier6gIRmQYc3tHPYrqPTbmbXseXn8/AX/2KiqeeIlJTgzY0sPmu\nPxOpqdn2ycb0Pqs7uD0euTiFrepEZCwwuQPn/ge4RET8ACKym5sErD1v4VRjy3DP6e9uzwY2uG2d\n06FPYLqdBXTTK/kHDCB90r5b3qdPnIjYlLvpm64D6lpsq3O3d9YbgE9EluBk2/ykA+c+hLPobZ6I\nLMIp1tLubK2qvoGTtrvILfTyc3fXb4A5wIfA0g59AtPttkv51K6y4iw7plBFBYFly9DGRlLHjSPg\nlsZIz8nFa1PvZvvrdHEWdwHczTjT7KuB61becnxX7p8b04oFdNPrRcJh1n+9lOdvvgGv18cZN/6R\ngSNH93S3zI7Hqq2ZXs2m3E2vF6ir5b0nHiEUCBCoq+XDZx6nsaG+p7tljDG9igV00yupKsHNxTSu\nWo2vIcBOu++5Zd/AUbvi9fl7sHfGGNP72GNrpluFyssRrxdvTk7X2ikuZuVppxPavJmM/ffjoDvu\nYODI0Xj9fobvuRden/3VNcaYaDZCN90msHw5ay/5CeuvuYZQcXHX2vrmG0Juhri6T+dCMMieU77D\nmIn74Q80Eiop7Y4uG2NM0rCAbrpFqKyc9ddcS/3nn1Pzv3coe+yxLrWXOno0nqws5/VuY/CkphJp\naKD2ow9ZfsyxrJo2jeDGjd3RdWOMSQo2b2m6hXg9eHNzt7z35ud3qT3fgAGM/vdrhIqL8Q8ahG/A\nAILFxWy8cQaR2lq8/fpRV1uDt7yM1IxM/PaMujFmB2cB3XQLb24uQ/54M2UPP4KvoIDcE0/sUnvi\n8+EfOBD/wIHNt43cGUlPJ+MXV/PEzb+hsb6ek37xa3beax+7r25MB7ipXhtV9SP3/UzgVVV9LgHX\negi4U1W/7O62zVb2L6DpNv6CAgZde03C2vf168ewu+6i4etv+Ojj92ioqQbgg6ceY/Do3ciImiEw\npleZkdsqsQwzKns6sczhQA3wUaIvpKo/TvQ1jN1DN32Mb8AAsg6czPDxe2/ZttPue+BLSYl5vEYi\nhGtq0FBoe3XRmOacYN6qfKq7vVNEJFNEXnPrkC8SkTNF5AgRme/WLH9ERFLdY1eKyAD3daFbH30k\ncDFwlYh8LiJT3KYPFZGP3Prpp8W8uNNOlojMFpF57vVOaqtf7vZ3RKTQff1XESlya7bf1NnfgWnN\nRuimTxq19yTOuflOGmprGThyNCnp6a2OidTXUzd/PmWPziTru98l57hj8dko3mx/iSifegywXlWP\nBxCRXGARcISqfiUijwGXAH+OdbKqrhSRvwE1qnqH28aFwBDgEGAsTu72tqbfG4BTVLXK/bLwiYi8\n3Ea/Wvq1qpaJiBeYLSITVPWLzvwSTHMW0E2vUVzdQDgCGSlectLbTxyTlpXF4Kzd2j0mXFnJmov+\nD0Ihat9/n4xJ+1pANz2h28un4tQ6/5OI3Aq8ClQBK1T1K3f/LOBS2gjo7XhRVSPAlyIyqJ3jBLhZ\nRA7FKdM6FBjUsl+q+n6Mc88QkYtw4s8QYE/AAno3sCl30yusr6jnxHs/ZPIfZ/Pg+8uprA822x+u\nqqLmww/ZeMut1M2fT7g2jrLNqs6fJpFIN/famLh0e/lUN3DvixNAfw+c3M7hIbb+W5+2jaYDUa/b\ny11/DlAATFLVicAmIK1lv0TkhuiTRGQUTqW2I1R1AvBaHH0ycbKAbnqF177YwIbKBgDuefsbGoLh\nZvsbli1jzYU/pnzmTFadfQ7Bdeu32aYnN5dh99xDxv77MfCXv8Q3eHBC+m7MNnR7+VQR2QmoU9Un\ngNuBA4GRIrKre8i5wLvu65XAJPf1qVHNVOPUM++MXGCzqgZF5Ds46wJi9WvfFuflALVApTsDcGwn\nr29isCl30yuMH7o1VezO+Rl4Pc0HB3WfzQMRUseOhVCIwNKlpO02pt02vRkZZB06hYzCSUhaGp42\nFs4Zk1AzKp9kRi507yr3vYDbRSQCBHHul+cCz4qID5gL/M099ibgYRH5HfBOVBuvAM+5C9ou6+D1\n/wG8IiILgSK21kKP1a8tVHWBiMx3j1+DU0fddBMrn2p6hcr6IEs3VvHVxmqO3HMQg3OdRW4aChGp\nrSVUXk5JfZjPNjeQ4vWw77jhDOyX1cO9NjsYK59qejUboZteITfdzwGj8jlg1NYMc6HycipeeIGa\nt/9H2l33cuqTn7GxypmW3/XTzTw1fTIF2ZYhzhhjwO6hm16s5t13Kb79DjTQwMeL124J5gDfbK5h\nZUkcC+OMMZ0mInu5z6lH/5nT0/0ysdkI3fRKGg5T98kn7usIPk/r2U6f12ZAjUkkVV0ITOzpfpj4\n2Ajd9Eri9dLv7LNBhMCSJeyb72Nk/tbcHHsPz2V4/5a5OowxZsdlI3TTa6XssgujX32F2rlzyczN\n4NmLJvNNSS1+r4eRAzIZkGX3z40xpokFdNNreTMz8e6yC6m77AI4WSwKcluneDXGGGNT7sYYY0xS\nsIBujDFJTERmiMjPE9T2lkpuvZGIFIjIHLcK3ZQY+x8SkT17om+JkNApdxHJAx4CxgMKXAAsA54B\nRuKkJDxDVcsT2Q9jjOlJe83aq1U99IXnLezpeug9SkR8qprousZHAAtj1WMXEW+y1WlP9Aj9buAN\nVR0L7A0sAa4FZqvqGGC2+96YNoVKSghu3ky4pqanu2JMh7nBvFU9dHd7p7RRD71V3fOoU/YWkY9F\n5GsRmd5Ou0NE5D33efNFTaPabdQwvyyqLvpY9/j93evNd+ur7+5unyYiL4vI2zilU9uqqz5SRJaI\nyIPuNd8UkTYX0IjIdBGZ6/4+nheRDBGZCNwGnOR+nnQRqRGRP4nIAuDAFnXaj3H7sUBEZrf3OXqr\nhAV0tw7uocDDAKraqKoVwEk4pf1wf7ZXJcj0ApFQiHBNDdoD1cqCGzey8qyz+eaww6l84QUL6qYv\naq8eemc11R3fW1XHA29s4/gJwHdxirjc4BZRieVs4D9uBbW9gc/d7b9W1UK3ncNEZELUOSWqui/w\nV5xKauDkap+iqvsAN9D8s+4LnKaqh7G1rvq+wHdwSq82JZgYA9ynquOACpoXlmnpBVXdT1WbBo4X\nqurn7rWfUdWJqloPZAJz3N/bB00ni0gBzpeuU902To/jc/Q6iRyhjwKKgUfdbzcPiUgmMEhVN7jH\nbMSpoWt6qVBFBeWPPc66K6+kft48IoHAtk/qRlWvv05wzRpQZdOttxGpr9+u1zemGySqHvqRInKr\niExR1cptHP+SqtaragnwP2D/No6bC5wvIjOAvVS12t1+hojMA+YD43BqmDd5wf35Gc6tVNhaKGYR\ncJd7TpO3VLXMfd1UV/0L4L9srasOTn33pi8U0W3HMl5E3neLxZzT4nrRwsDzMbZPBt5T1RUAUf1r\n73P0OokM6D6cb2J/db/d1NJiel2dyjAxq8OIyEXuFE9RcXFxArtp2hNcvYbNt91G7QcfsvqCCwlX\nbuvfjeZCpaUEVq0iVFxMZwoBpe0+dsvrlFGjEE/rv7KhkhKCmzYRrqputc+YXiDh9dDduuPt1T1v\n+T9fzP8ZVfU9nJnVdcBMEflRHDXMm77lh9m6Lut3wP/c2YMTWhwfnbM5Zl31Fu22bDuWmcBPVXUv\nnOpybdVYb1DVcBv7Ymnvc/Q6iQzoa4G1qtqU9/c5nL+Am0RkCDj3a4DNsU5W1QdUtVBVCwsKChLY\nTdMukdiv4xAqLWXt5Vew/OhjWHHqqYQ2bSJUXEK4rmVp6LaljR/HiFmzGHTDbxjx8EP48vOb7Q9u\n2sTKM3/AN4cdTtk/niBcbUHd9Drbox76vrRd9xyc+8hpIpIPHI4zEo/V7s7AJlV9EGdB8750roZ5\nLs6XAoBp2ziuVV31TsgGNoiIH+dLQkd9AhzqfnlBRPpH9S+ez9ErJCygq+pGYE3UIoIjgC+Bl4Hz\n3G3nAS8lqg+m6/zDhzPoV78i67DDGPHIw3jz8uI+NxIIUP/ZZwCENhfTsPhLVl9yCWWPPEqoooJw\ndTWh4mJCZWVttuHNySHzgP3pf/bZ+Ae1vjtTN7eI4Drn/7eS++5HGxpaHWNMT3JXs08HVuGMjFcB\n07u4yn0v4FMR+Ry4Efg9zsj0bhEpwhnRRvsCZ6r9E+B3qrq+jXYPB5pqlp8J3K2qC3Cm2pcCTxJf\nDfPbgD+67bQ3sv4HUOhOlf+IrXXVO+o3wBy3bx1uQ1WLgYuAF9wFc8+4u+L9HL1CQuuhu6sMHwJS\ngOXA+ThfIv6Jc/9oFc5ja23/i47VQ+9pGgoRCQTwZGQgLUbpoYoKAl9+iUYipI0bh69fv637SktZ\nc+mlNHy+AG9+PsP/9ldW/uAsCIcZ+fxz1H74IcV/uYf0vcYz7J578A3o+OOsgW+/ZflJJ0MoRPp+\n+zHs7rvx9e+37RON6TirBmR6tYR+43AXNBTG2HVEIq9rupf4fHh9rf+qaChExbPPUvynOwEYcOlP\nyL/4Yjx+PwC+/HyG33cf4aoqUGX9L6+BsDNw0Pp6ymbOglCI+vmfUzd/PjlHHtnhvvl32oldXv83\nwQ0bSN1lFwvmxpgdVlwB3V3SPx1nleGWc1T1gsR0yyRSJBgkXFGBeDyt7kl3qJ3GRurnf77lff2C\nBWggAG5AByeo+/LzCW7ejDY2ApB95JH4RzRf4OsfNJhIMLjly0C8POnppAwfTsrw4Z3+HMbsaERk\nL+DxFpsDqnpAT/QnXiJyH3Bwi813q+qjPdGf3iauKXcR+Qh4H+fRgS33ZlQ11vL/bmdT7t1Hg0Hq\n5n/OuiuvdEbQD/wd/5AhnW6vYelSVp03DSIRRjz6CGnjxrWalm8SKi1Fw2HEn4Kkp9H4zbdUv/kf\n0saPJ7hhA7knnICvf/+Y5xrTC9iUu+nV4p1yz1DVaxLaE7NdhCsr2XjTTYTLygiXlVH+1NMMvPqq\nTreXOmYMu7z6Cgr48vLaDOZAs9kAjUSoX7yIhqXLqHnnHdInTULSevUTIcYY06vFG9BfFZHjVPXf\nCe2NSThJSSFl1Cgav/0WgNSxXctkKF4vvk48VigeDzlHHU3qzjsTqasjfeJEvBktk2kZY4yJV7xT\n7tU4KfMCQBBn6klVNSex3XPYlHv3CpWWUvPue/gGFpA2fjy+DjyK1lmduT9uTC9jU+6mV4trhK6q\n2YnuiNl+fPn55H3/lO1yrUhDAw2LFlH+5FPkHHcsGZMn483K2i7XNsaYHUnciWVEpJ9beebQpj+J\n7JhJDuGKCladfwFV//43a396GaHSUipefJHGVauJBIM93T1jTC8lInki8pNOntttddpF5LciMrU7\n2kq0eB9b+zFwBTAMp/rOZOBjnOo9xrQtEoHQ1pLHoc2b2fibG8DnY5c3XscTI/ubMclmydg9WtVD\n32Ppkh6phy7bpw55d8gDfgLc33LH9vwMqnrD9rhOd4h3hH4FsB+wSlW/A+yDU87OmHZ5cnIYcust\npE2YQMHPrqbxm2/RYBCtrydS49RoKKsNMHvJJj74uoTy2sYe7rEx3csN5q3qobvbO01Efigin7q1\nvv8uIl4RqYnaf5qIzHRfzxSRv4nIHOA2EekvIi+KyBci8klTOVQRmSEij0uM2uki8gu35vgX0rom\nesu+/cg9boGIPO5uK3Brlc91/xwcdc1H3Nrky0XkcreZW4Bd3M93u4gc7lZUexknjTjuZ/hMnJrp\nF3Xgd9fqPPf3N1OcOvALReSqqN/dae7rG9y+LxKRB6JKvfYK8a5yb1DVBhFBRFJVdan08kLvpnfw\nZmWRc+yxZB16qFMC9Q9/ACDnxBPxFQygvjHEnW8u44k5awD42ZG7cfFhu+D3JbJukDHbVXv10Ds1\nSheRPXByrR/sFja5n20XJRkGHKSqYRG5B5ivqieLyHeBx4CJ7nETcGZhM4H5IvIaMB6nPvn+OF9K\nXhaRQ93qbC37Ng643r1WSVShk7uBu1T1AxEZAfwH2MPdNxanHno2sExE/opTnXO8W4UNETkcp1jM\n+KYyp8AFqlomIunAXBF5XlVL4/gVtjoPJ3HaULeyGiISa7Xwvar6W3f/48D3gFfiuN52EW9AX+t+\nuBeBt0SkHCcPuzHb5PH78bgr6Qdffz0Dr7vOSf362ON4Cwo4a8IB/LNoHY3hCB8vL+W8g0daQDfJ\nJBH10I/Aqaw21x0kptNG5cooz0aVDj0EtyKbqr4tIvki0vTU0kuqWg/Ui0hT7fRDgKNwirQAZOEE\n+FYBHedW7LNu7fXo2uJTgT2jBrU5ItK0QvY1VQ0AARHZzNaa6C19GhXMAS4XkaYVvsPdPsUT0GOd\ntwwY7X7ZeQ14M8Z53xGRX+J8IesPLKavBXRVbfrgM9z/wLnAGwnrlUla3rw8IsXFrPrhuYQ2bACg\n37nncuF+x/Hgp+v5v8NGk5nS64saGdMRq4ldFrTT9dBxRsmzVPVXzTaK/CzqbctMTbXEJ1btdAH+\nqKp/71Avm/MAk1W1WUlEN8DHW/t8y2dwR+xTgQNVtU5E3iGOeuVtnaeq5SKyN3A0cDFwBnBB1Hlp\nOPfzC1V1jYjMiOd621NHVrnv697bmIBT59xudpq4RRobCW7aRMNXX6ENDVuCOUBg/jwuOXAo7//y\nO+w3sj9eT6+6LWVMV3V7PXRgNnCaiAwEp363uLXMRWQPEfEA7T2b+j7uFL0b4EpUtcrdF6t2+n+A\nC5pG1CIytOnaMbwNnO6eH11b/E3gsqaDxKnG2Z5qnCn4tuQC5W5QHotzmyAeMc8TZ1W8x01pfj3O\n9H60puBd4v4eTovzettNXAFdRG4AZgH5wADgURG5PpEdM8kluHYt3x51NCtOPInGNWtI32fr/8u5\np3yfrH65DMlLJ8NG5ybJuKvZW9VD78oqd1X9EifovCkiXwBvAUNw7ju/CnwEbGi7BWYAk9xzbwHO\ni9rXqna6qr6Jc7//Y3Fqlz9HG8FWVRcDfwDeFae2+J3urstxap9/ISJf4oyC2/uMpcCH7gK022Mc\n8gbgE5El7mf4pL324jhvKPCOODXmnwCazX6oagXO4sZFOF9w5sZ5ve0m3kxxy4C9m6ZK3IUEn6vq\ndlkYZ5ni+r6yp59m0wxnYaw3P59RLzxP44oVePP64RsyGF9ubg/30JhtSvqpI3cauUZV7+jpvpiO\ni3c4tB5nuqHp3kcqsC4hPTJJKfOAyUh6OlpfT9q4PRF/CpmT450hM8YYsy3xjtBfxHkO/S2cKaMj\ngU+BtQCqennbZ3edjdC3P1WlpL6E8kA5/dP6MyC9c0mXNBgkVFEBIhAOE6mpcUbl+VYm1fQ5ST9C\n7wj3HvnsGLuOiPPRsYTq7f1LhHhH6P9y/zR5p/u7YnqTkvoSznrtLDbVbWJU7igeOfqRDgd1jURo\nWLqU1edfACKMeOQR0sa3XS/dGNN3uEFxWwvbekxv718ixPvY2qym1yLSDxiuql8krFemx1U1VrGp\nbhMAKypX0BBq2MYZrUVqath8xx1EapzkVZvvuINh996DN9tq/RhjTHeLd5X7OyKS4z5+MA94UETu\n3NZ5pu/KTc1lTN4YACYNnES6L71D52skAl4vmYdM2bItdexYxJ/Srf00xhjjiHfKPVdVq8Qp0vKY\nqt7oPu5gktSA9AE8cNQDNIQaSPelk5+eH/e5ofJyKp57joaFCxlw6aWk7jGWSHk5mQcfjCctNYG9\nNsaYHVe8iWV8IjIEJ3POqwnsj+lFBqQPYFj2sA4Fc4CGBV9Q/Kc7qX7zLVafN4303ceSe8IJ+Prb\nQjhjticROVFErm1jX00b26OjqzRJAAAgAElEQVSLkbwjIoWJ7GNbRGSiiBy3Ha5zXdTrkSKyqBva\nLBCROSIyX0SmxNj/kIjs2dXrtBRvQP8tzoP036rqXBEZDXzd3Z0xfUu4ro5gcTGhkpJm2yONW7M4\najCItsokaYzZHlT1ZVW9paf70UkTgYQFdHF46FrGvrYcASxU1X1U9f0W1/Wq6o/d5EDdKq6ArqrP\nquoEVb3Efb9cVU/t7s6YviNcU0PVy6/w7RFTWXn2OTSuXbtlX0ZhIf1+9CPSJ01i+EMP4c2LVbTI\nmB3HfRe/ffZ9F7+98r6L3464P7tUOhW2jCaXuiPqr0TkHyIyVUQ+FKf06f4iMk1E7nWPHyVOWdSF\nIvL7qHZERO4VkWUi8l8gZkpXETnKPX+eiDwbVVgl1rGTRORdcUqU/sed4UVEpotTfnSBOKVUM9zt\np7sZ4RaIyHsikoIzkDxTnPKpZ7ZxnbZKryIiV7ttLhKRK6N+Z8tE5DGcjG8PA+nuNf7hnuoVkQfF\nKa36pptIra3P2erzuCltb8NJofu5iKSLSI2I/MnNnHdg9MyHiBzj/k4XiMhsd9v+7u96voh8JHFW\nN413UdxuIjK7aSpCRCaIpX7doUVqath4001oYyPB1aspvvMuIgFnZO7r35+BV1/F8PvvI33CXnj8\n/h7urTE9xw3ereqhd0dQB3YF/oRTfnQscDZOZbSf03rkeTfwV1Xdi+ZpYU8Bdgf2BH4EHNTyIuLk\nOb8emKqq+wJFwNWxOiQifuAe4DRVnQQ8gpMKFuAFVd1PVfcGlgAXuttvAI52t5/o1gq5AXhGVSeq\n6jPt/A7G4hRU2R+4UUT8IjIJOB84ACdX+3QR2cc9fgxwv6qOU9XzgXr3GudE7b9PVccBFbhV6drQ\n6vOo6uct+l6PU4p2jqruraofRP2uCnD+bpzqtnG6u2spMEVV93HburmdPmwR75T7gzh5bYMA7iNr\nP4jzXJOMPB4kZeuK9YyDDyJcXk5wwwbCtbV40tLw5uYiXm8PdtKYXqG9euhdtUJVF6pqBKeU52x1\nsoUtxKnvHe1g4Cn39eNR2w8FnlLVsKquxymu0tJknID/oTi5zs8jdgU5cL4cjMcptf05zheBYe6+\n8SLyvjj54M8BxrnbPwRmish0oKP/aLymqgG3XGtT6dVDgH+paq2q1gAvAE33slepant531e4QRng\nM1r/HqO19XlaCgPPx9g+GXivqSRsVKnZXOBZdxB9VzvtNhPvKvcMVf1UmicECcV5rklC3rw8Rjz8\nMJtuvZXMKYfgHzKEb6YeCZEIQ/98F9nf/S7is0IrxpCYeuhNosuORqLeR4j973tnF7QI8JaqnhXn\nsYtV9cAY+2YCJ6vqAhGZhlPNDVW9WEQOAI4HPnNH2PGKt/Rqk22VkW3ZXnvP7M4kxueJoSGqFn08\nfgf8T1VPEZGRxJnMLd4ReomI7IL7l0GcFZDtVfIxSc6TkkL6PhMZ/sDf6T9tGhVPPQ2hEEQilD/x\nBJG6ltUijdlhtVX3vCv10DvjQ7bOrJ4Ttf09nHvVXvde93dinPsJcLCI7AogIpkislsb11kGFIjI\nge6xfhFpGmFmAxvcafktfRCRXVR1jqreABQDw9l2+dT2vA+c7N7TzsS5rfB+G8cG3f50RszP0wGf\nAIeKyChoVmo2l631UqbF21i8Af1S4O/AWBFZB1zJNkrfmd4nVFFB1ZtvUvbU04RKm6cyDhYXU/fZ\nPIKbNqHh+L5IiteLr18/vNnZ5Bx37Jbt2ccci6R3LBGNMUksEfXQO+MK4FJ3enho1PZ/4Ty19CXw\nGPBxyxNVtRgnsDwlTg6Sj3HuXbfi3v8+DbjVXQT2OVvvy/8GmIPz5WJp1Gm3u4v1FuGUfl2AU8J1\nz/YWxbVFVefhjJ4/da/3kKrOb+PwB4AvohbFdURbnyfefhYDFwEvuL+rprUCtwF/FJH5xD+T3n5x\nFhG5QlXvFpGDVfVD95uOR1WrO9rxrrDiLN2j7Mmn2PTb3wKQedih7HTbbfhycwkWF7PyjDMJbdiA\nNy+PUS+/hH9gzIWubQpXVxOuqEDDYSfIWzlUk3w6XYTAXQB3M840+2rgukv/9t1O10M3JpZtRf7z\ncVZG3gPsq6rbuvdgeimNRGj4cutjj43LV6CNjc6+ujpCG5w7KOGKCkLFxR0O6N7sbMvRbkwb3OBt\nAdwk1LYC+hIR+RrYSZqnehVAVXVC4rpmupN4PAyY/mNqP/iAcEUFg39z/ZZRtCczk7S99qJh4UJS\nRo3CP2hQD/fWGNMXiMi/gFEtNl+jqv/p5uucj3PLINqHqnppd16nnevfh/OUQLS7VfXR7XH9eG2z\nHrqIDMbJEndiy32quipB/WrGpty7h6oSLi1FVfHm5OBJ3ZpXPVRaSqSuDk96Or4BrcukRurrCVdU\nouEQ3pwcvDk527PrxvQGVvfX9GrbvNmuqhuBvbdDX0yCiUjMYA3gy8+H/HxUldqKcgAycvO21C5v\nWPwlq6ZNg1CIQddfT97ppzX7QmCMMaZntbvKXUT+6f5cKCJfRP1ZKFZtLSlVbFzPP2/6Fc/MuIay\n9U46V1Wl4sV/OY+lAZUvvECk1pZTGGNMb7KtEXrTPYvvdaZxEVmJ8yxhGAipaqH7nN0zONl3VgJn\nqGp5Z9o33SsYaOC9Jx7dEsjffexhjr/yl6SmZ5B38slUvvgShELkfv8UPJmZzjmbNqOBBuqXLCV9\n993wDx9u2eGMMaYHbPMeepcadwJ6oZuSr2nbbUCZqt4iTlm/fqp6TXvt2D309pXXNfLl+ioCoTAT\nh/ejf2bKtk+Koa6ygpqyUhobGnj38YcZsttYDj1nGj5/CpH6eupqG6jx+PF4PBTkphNcv4HV559P\naPNmBt94A3Xz5lFw2WUdXiEPUFbbSDii5Gem4PHYrUrTK9lfTNOrtTtCF5FqYqcKbFrl3pmVUSex\nNT3eLJyUdu0GdNM2VeWFeev43avOI2kXHzaaq6buRqq/Y6Pk+upq3n3iEb58720ycvM4c8YtpGVl\n4/M7Xw5C/lQ+2FjBpU9+TL8MP89dfBCZr7xCcLWT7Kr4rrsYdO2vIM6kNNE2Vtbzk3/Mo7I+yL1n\n78vug7ItqBuTYCJyMvBVd5XxdKuH/UhVL9/mwQkgIicCe7qDxQLgVSAFuBynFsnZqlrRE33bXtq9\nh66q2aqaE+NPdpzBXIE3xSmhd5G7bZCqNqWN3YiTSN90UjCsfL566x2LBWsrCYQiHW4nHAry5XtO\nTYb6qirqq6vJyNmaHKaqPshtbywjHFFKahp5eu5qMiZtTbecMnIk3kEDt0zFx0tVuf+db5m3uoJv\ni2v5xXMLKK9r7HD/jTEddjJOwZVuoapFPRXM3etH135vVo9cVY9L9mAOHUgp10mHqOo6ERmIU3mn\nWWo8VVURiTnn734BuAhgxIjuqGGQnFJ8Hi6fOoZPlpcRCIf51TFjyUrt+H9Wj8/H6H33Y+WCeZx+\n5a9IL5rHphdfJu8HP6CuqAjv5IOZtHM/lpc4i+Emj84ndadhDLv/foLr15F95JF4srPxZrQsKtU+\nEWF4/63nDM5Jw+eNNyOxMX3Dn878XqtMcT975tUuJZoRkR/ijD5TcNKP/gS4F9gPp6DIc6p6o3vs\nLTiPHoeAN3Gqj50IHOaWwj5VVb+NcY3pOP8OpwDfAOeqap2InA7ciLM+qlJVDxWRw4Gfq+r3RGR/\nnKRkaUA9cL6qLmvjc0zDybWei5OS9glVvcnd9yJOXvc0nOe+H3C3H4Pz+/QCJap6hNtOIfAQTurU\ndHfW4ECc0qaFqloiIj/CKS+rwBeqem78v/XeLaH30JtdSGQGUANMBw5X1Q1uIYB3VLXd4u12D719\nkYhSUhsAhX6ZKfg7GRDrKisINzZS/9QzlN5/PwC+gQMZ8sc/svaKKxjw5tssLaknPzuNoXnp5KR3\nT53zstpGXl+0gbLaRn6w33AKstO6pV1julmn7gO5wfxBmpdQrQOmdzaoi8geOEHr+6oaFJH7cQp9\nvKqqZSLiBWbjBPx1OPnRx7qDqDxVrRCRme7xz7VznXxVLXVf/x7YpKr3uPngj3EHbE3tHc7WgJ4D\n1KlqSESmApeoasy64m4g/iNOydU6YC4wTVWLRKS/+3nS3e2H4cwszwMOVdUVUcdMwwnaP41+7V5j\nJU6wH4STu/4gN7j3jypZ2uclbIQenffdfX0U8FvgZZxaure4P19KVB92FB6PMLAbgmBGbh7h2loq\nFi/esi20eTOelBS0pgZd+BmZDdWM+c7R+FKaB/NIOExdZQUNNTWk5+aSmZsX93X7Z6ZwzgFtlVY2\nps9rrx56Z0fpRwCTgLluroh0nFrgZ7izmz5gCM6U+pdAA/CwiLyKc285XuPdQJ4HZOEkGYOt9cv/\niTPabykXmCUiY3BGwtv69v9W1BeHF3DqmRcBl4vIKe4xw4ExQAGxa4jH47vAs00LtZMpmEP81dY6\nYxDwgVtB5lOcIvRv4ATyI92UslPd96aX8GZm0v/CC8Dv/P+XffTRBFatJOuoo/DsNIQV84poqK1p\ndV5tZTmzfn4ps35xKS/d/nvqKrd9u6q4OsCKklqKqxu6/XMY04skoh66ALNUdaL7Z3ecRcY/B45w\n03K/BqSpagjYH3gO5xHkNzpwnZnAT1V1L+AmnKlvVPVi4HqcIPuZiOS3OK+pnvd44ISm89rRcqpY\n3RH/VOBAVd0bmB9HOzu0hI3QVXU5MTLMud/CjkjUdU3XVNUHqR4xhhGvv4E32IgnI43KsjLy9yuk\n8uVXOHSPiaSEWy+6q9i4YUug3/D1UsKhYLvXKa5u4NyHP2Xpxmp2zs/guYsPtKl2k6xWA7GmoLpS\nD3028JKI3KWqm938HiOAWqBSRAYBxwLviEgWkKGq/xaRD4Hlbhvx1BtvWe97HWytXw7MEZFjcQJ7\ntI7W8z7S/Qz1OIv1LsC5n17u3rMfC0x2j/0EuF9ERkVPucdxDYC3gX+JyJ2qWppsU+62+mgHV1Uf\nZFNlAyU1AQDmr6ng4D9/xLh753PtnHIaU9JIS89gw09+SsV991N87XXUvfteq3b6DRlKToHz/Pku\nhQfg9bf/LHxdY5ilG50qvKtK66iqD3XzJzOm1+j2eujuo2bX4zxF9AXwFhDAGcUuxZnK/9A9PBt4\n1T3uA+Bqd/vTwC9EZL6I7NLGpTpSvzxaR+t5fwo8D3wBPK+qRTgzCT4RWYIzk/uJ+9nbqiG+Taq6\nGPgD8K577p3xntsXbLdFcV1hi+ISo7ohyKyPVnLHm18xMj+DWRfsz6bKBs544BMAjthjIH84fBjh\nUIiqk47bkvq139lnMfiGG1q1V1teRijYiD8tvdkjb7EUVweY9uinLF5fxS4FmTx90YEUZFtueNOr\ndTo5QiJWuSeLlgvYTOcl+rE104vVB8P8+b9fA7CytI7/LStmz8HZTNl1AJ+sKOXSw3dFNnzL/EgO\nE356ObV/vhNv//70O++8mO1l9usf97ULslOZef7+1DWGyEjxWjA3Sc0N3hbATUJZQO+jIg0NBL7+\nmspXXyX3uONJ3X03PGkduwftFWHvYXl8trocr0fYY3A2K8tquefsfWgMRcj1g/iHUljXSPEhUxlx\n3LGkpqaQUhC7YltHOUHcArkxPW171PsWkaOBW1tsXqGqp+AsvjNdZFPufVRw40a+OfIoCAbB72fX\nt97EP3hwh9sprm5g0boq8jL8fPRNCWe4z4GHSksp+dvfaVyxgoIrr8A/bBiSmoo3PT2udhtDYcpq\ng1Q3BOmfmUJ+VscDdzgUomzdWha/+1923f9ABo4cTUpafNc3JgEsH7Hp1WyE3kdpMOgEc4BgEG3s\nXLrUguw0Dhnjp6IuyNmTdybD76W6IUjDU09R/vjjANTPn8fo11/Hlxf/s+XrKho49u73aAhGOGrP\nQdx66gT6dbBoTH1VJU/+5meEAgHm/ftlfnzPQxbQjTGmDbbKvY/y5ORQcPXVpIwayYArrsCb2/4i\ntPb4vV4KstPwivBM0Roeeu9bgsVbCuQRqa2DSMfyw3+6opSGoHPOW0s2EYzxqNu2RCIRQgFn9b1q\nhGDAnlc3xpi22Ai9j/Ll5tL/3B+S9/1T8GRk4OlgDvVYKuuD3PDSYgZmp3L6WT8iZc4cGtetY9Av\nf4knK6tDbU0enU9Wqo+aQIjvTdgJv6/j3x1TMzKY+uNLmff6y4zZ70AyOpB9zhhjdjR2D70PUlUn\nE5sq6Tm5eLwdK5Xalg2V9Uy59X+EIspug7J48ew9SfGAZGTgzcykrDbAR9+WUt0Q4qg9B7V7XzwU\njlBa20h9Y5icdB/9Mzu3+C0YCNDYUI8/NdWm201P26HuoYvISJxc7+O3ccxBqvqk+75HS6ju6GyE\n3geVb1jHC7fMIBwMcvIvf8PAnUcjHmcErOEwwXXrqHrzTbxHH0dtZi4ej4e8dD8ZqT5CZWVEqmuQ\n9HR8A/K3nAeQm+7nyemT+WfRGk6fNAzycvFFVW771/z1W+quF60s57cnjSOzjcpuPq+HQTldz/zm\nT03Fn2or4Y3ppUYCZ+M+kucmhLHRVw+xe+h9TGNDPe898QiVmzZSU1bKfx+6v1lu9VBpKSvPOJOa\nLxbx9ooqDrntHQ659W0+XVlGqLycDb+5gW+PPpoVJ51EaPPmZm1npPjYf1R/bjt1AgeMzicjKlhH\nIsqyjVVb3q8oqaGxE3XXjTHdQ0RGishSEfmHiCwRkedEJENEjnCzvy0UkUdEJNU9fqWI3OZu/1RE\ndnW3zxSR06LabVWswb3W+yIyz/1zkLvrFmCKiHwuIleJyOFuARhEpL+IvCgiX4jIJyIywd0+w+3X\nOyKyXERsNN9NLKD3MV6vj9yBWx9PyxlQ0HzKPRQiXFEBEybyzyXlAEQUnp67hkhjIzWzZwMQLi+n\nYUmz8vRbeDytZxY9HuGy745hzMAshuSm8duTxpPbTeVTjTGdtjtwv6ruAVThpHWdCZzpFlTxAZdE\nHV/pbr8X+HMHrrMZOFJV9wXOBP7ibr8WeN8tEHNXi3NuAua7hWKuAx6L2jcWOBqnaMyNbq5400U2\n5d7HeP1+Dvj+mWT1zyfU2MiEI48hNSNzy35PVhYFV15B3fJvOOXYg5mzogwROG3fYXhSUsicMoXa\n99/Hk5tL2th2y9C3Mrx/Bk9dNJmIKvkZKTEDvzFmu1qjqk0525/Ayb2+QlW/crfNAi5la/B+Kupn\nywDcHj9wr4hMBMLAbnGccwhwKoCqvi0i+W6ddHCqbwaAgIhsxqnOubYD/TExWEDvgzJyctnvxFNj\n7vPm5NDvhz8kr76eY1PSOXjcUDweITfNjy/Nx063/JFwdTWejAx8+S0rHm7bgKiFcLWBEB4R0lO6\nZ1GeMabDWq5qrgDa+x9bY7wO4c7WiogHiJUw4ipgE04FTQ9OffWuCES9DmOxqFvYlHsfESotpX7R\nIoKbNhEJtl+a1JuVha+ggNzcLIb3z2BoXjpZac7/L778fFJHjsQ/cCDShdXx6yvqufKZz/n1iwsp\nrg5s+wRjTCKMEJED3ddn4yxIG9l0fxw4F3g36vgzo35+7L5eCUxyX5+IMxpvKRfYoKoRt82mfzza\nK8H6Pk7JVdza5iWqWtXGsaYb2LeiPiBUVsban/6U+vmfI+npjH7lZVKGDeux/lTWNfLzZxfw0bel\nAOSl+7nqyN1YuK6SNxZt5Af7jWDXgZmk+GzkbkyCLQMuFZFHgC+By3HKjD4rIj5gLvC3qOP7uWVU\nA8BZ7rYHcWqrL8ApWVob4zr3A8+LyI9aHPMFEHbPnYlTvrXJDOAR93p1QOyqTqbbWEDvAzQYpH7+\n587r+noCy77q0YAOgke23j/3eYWKuiDnPDQHVXi2aC3/+/nhDM61gG5MgoVU9Yctts0G9mnj+NtV\n9ZroDaq6CZgctekad/tKYLz7+mtgQoxjgsB3W1zjHXdfGXByyw6o6owW79t8zt10jE259wGSmkrO\nSScC4Bs0iLTx4zrVTrimhkig69PjuRl+bj99AsfvNYSz9h/ORVN2oT4YpilHUX0wTKQPJCwyxphk\nYpni+ohgdTUEAqCKv6Cg2b7SmgBfbqhicE4ag3PTyE5rfgtMVWlcsZJNN9+Mf9gwCi6/DF//+GuX\nt6W+MYzXAyk+L+W1jTzy4QreXLyJC6eM4rjxg8lKsydRTFKxxzpMr2ZT7r2cRiKUbVjHnBefZdjY\nPRmz/8HNVqxU1DVy3QsL+c+XmwB4/pKDmLRzP6grhYrV4E8nHMlj7U9/SuPy5QCk77UX/iO+Q6gx\ngC81jcxO5kiPXt3eLzOFSw7fhWkHjSQrzUeq3T83xpjtygJ6L1dXVckzM66lvqqSJe+9Tf7QEQwd\nu+eW/Y2hCPPWVGx5P391Ofvkg3z4Z+RjN/fDtA+brWj3FO7L8zffQPGqFQwavSunXHMjmXn9utzX\njBQfGSn2V8oYY3qC3UPv5VR1SwlRcFK/RiJKaU2AqoYgWWk+rjlmdzwCQ3LTOHb8YMLlm5Fv39py\nju/rZxl27z1kT51K/+nTaRQoXrUCgE3Lv6Gxvm67fy5jjDHdy4ZTvVxaVjbfv+4m3n9yJkPG7M6g\n0WNYXVbHgx8sp6K2kZtOHM8x44cwZUwBHhEKslOp+mApnvHn4X37WvCmoGOOJmXnndnpjtvB56Ou\nuoqM3DzqKivI7Ncff1o64aoq6oqKqCv6jH5nnol/xHBE7JahMcb0FbYorg+IRMI01NQSDofwBYKU\n/OslNC2dksJD+KIKph08qtnxgeXLqX37DbIP2Q9PXj8kdxCe9K25HzQSobaygspNG8kdNJjMvH40\nLFrMytNPB8Cbn8/ol17EN2DAdv2cxvRyveobrogcA9yNk+TlIVW9pYe7ZHqYjdD7AI/HSyQUZNns\nNxn00afUvP4GAAOnX8SE7/+o1fEpO++M58TTIRKGnBw86RnN9ovHQ1a//mT127rSPVRasuV1uKIC\njXS8klqorAwNh/FmZ+NJ63rpVGNMbCLiBe4DjsTJgT5XRF5W1S97tmemJ9k99D4iUFeL3+8ntHbd\n1o1r17D7gPRWx4rXi39gAf7Bg/FmZLTaH0v6hAnkHHcc/mHDGHrH7XizsjrUv+CmTayZPp3lxx1P\nzXvvEWnoaqpnY0w79ge+UdXlqtoIPA2c1MN9Mj3MRuh9RFpWNhvWr2H4z64idO11eNLTGHjVlaRk\nxxewt8XXvz+DZ8wgEmhoNsIurQnw7lfFZKR42X9UPv0zY9VtgKpXXqVhsTM42PCr6xj9+us2Sjcm\nSmFhoQ8YAJQUFRWFutjcUGBN1Pu1wAFdbNP0cRbQ+4jMvH5MOed8IsEQI556Eq/f3+33uL052Xij\n6izUBULc+dZX/GPOagB+ffweTJ8yOua5/pE7b309dCjitckfY5oUFhYeBLwGpAENhYWFxxcVFX3U\nw90yScYCeh+SkZO7XVeeN4YjfLWpesv7JRuqCIUj+GIE64zCQob+5S8Eli8n75STO1Wa1Zhk5I7M\nXwOaMjilAa8VFhYOKCoqCney2XXA8Kj3w9xtZgdmAb0PaKitYc3iL1g+r4i9jzyWASN2xuePPfXd\nnXLS/Nx4wjgunDWXjBQfVxwxJmYwB/Dl5ZFz1JEJ75MxfdAAnCAeLQ0oADZ2ss25wBgRGYUTyH+A\nUz7V7MAsoPcBlZs38vKfbgZgyQf/48d/eYis/okfAXs8wh6Ds3nlskMQnGfcOytUWkqkphZJS3Xu\n0ce5WM+YJFACNNA8qDcAxZ1tUFVDIvJT4D84j609oqqLu9RL0+dZQO8DasrKtrwOB4OEgsEOnV9X\nVcmyj96jvqaavace2yzNa311FZFwmLTMLLz+1sVUvF4PA7O7trgtVFLC6gsuJPDVV+DzMfTPd5F9\n+OGIz/76meRXVFQUKiwsPJ6oe+jA8V2YbgdAVf8N/LsbumiShK1c6gMG77obw8dNwOP1sc+xJ5Da\nwdHtov+9xduP/p2Pn32S2Q//jUBdLQA15WW88udbeeqGX7B26WJCwcZEdJ/aT+Y4wRwgFGLTb39H\nuLw8IdcypjdyF8ANAEYBA2xBnEkEGyL1AZm5eZxw5TVEIhG8fj9pmfE/I66RCNWlW2f2aivLiISd\ngcH8N15hzaIFALx0+++54O4HmiWb6YjSmgBPz11NZV2IH08ZxcCc6FF9y2yE2mqLMcnOHZF39p65\nMduU8IDuZjQqAtap6vfcRRxPA/nAZ8C5bmIE0470nNxOnSceDwecfAala1cTqKvjqP+7nPTsHIBm\nXwz8aWmdXkEfiSgPf7CC+9/5FoBvS2q484yJ5KY7U/iZkyeTOmYMga+/Bp+PQdf/Bl+/rld3M8YY\ns9X2GKFfASwBctz3twJ3qerTIvI34ELgr9uhHzusrP75nHDVdWgk3OyLwbjDp1JbWU7FhvVMOXsa\nGZ380hBWZVPV1sxwJdUBwlGpY30DBjBi5qNEamqQtDQ8WVl2/9wYY7pZQouziMgwYBbwB+Bq4ASc\nlZ2D3VWaBwIzVPXo9tpJ5uIs9VWVbPj2azKyc8gbvBNpHUy5ui0lNQFqAyHSU7wxF7eFgo0EAw34\n09Lx+VoviovX+op6Lv3HPGoCIe47Z1/GDMyyam0m2dhfaNOrJXqY9Gfgl7Al/Vg+UKGqTWkP1+Kk\nMNwhBerqePcfj7L4nf8CcNLPfs2u+x/Ybe2X1gS45InPmLuynGH90vnXTw6iICqohxoDrP9qKXP+\n9U9GjJ/AhKnHbpmOL6kO8PKC9WSl+Zi6x0D6Z7b/yNpOeek8PK2QcATyM/+/vTsPj7I6Gz/+vWef\nTPaFNUT2TWSRiOCKWNxQwQ0XWpf61rZqq6W/irZv1VerbbV1t6/V2qp9FcSt7lBErSgiBhWQfZew\nBrJMMpPZMuf3xzwkAbKQkI1wf64rV2bOc57F45B7nnPOc25Xg8F8b+Ve4iaO1+El2dWyX2CUUupo\n1Wqz3EXkfGC3MWZJM98zjGIAACAASURBVPe/QUQKRKSgqKjZj2t2aFXRCDs3rKt+X7im5RIlxSsr\nCYaifLk5MZu8sKSSXf7wfnVCFRW8/vu7+O7bpXw6658UbysEoCQYYfor33DPOyu57dVl/O/HGwhH\nG3/CJtPnJifFjc1WfzDfEdjBVe9exZmvnMmra1+lIlJxGP+VSh2dRKSXiHwkIitFZIWI3GKVZ4rI\nPBFZZ/3OsMpFRB4TkfUiskxEjq91rGus+utE5Jpa5aNFZLm1z2NifUtvi3Oo5mnNx9ZOBi4Ukc0k\nJsFNIJG7N11E9vUM1LtcoTHmaWNMvjEmPycnpxUvs22FY2H2Vu4lEA3gTvJx+vd/iMPpIjkji5Fn\nndci54gHg/jnzYO1qxmRmxgX75bqoUtqIwvDWP+UorE4q3fULPn67XY/4VjT06nW5d2N77I9sB2D\n4eGvHqYyVtkix1XqKBMDfmmMGQqMBW4SkaHA7cB8Y8wAYL71HuBcYID1cwPWvCURyQTuIpHYZQxw\n174AbdX5Ua39zrHK2+IcqhlarcvdGHMHcAeAiIwH/p8xZpqIvAJcSiLIXwO82VrX0NEEogHmbZnH\ns8uf5ZSep3DD8BvoNXQY1z/+N0SEpLT0xg9yCOKBADt/89/Y09N54s+PEZkyBF9KEhhDWWWENG9i\n2VhPcgoX//oeFr8xm17DRpDZIxeAZI+D6RMHcscby3HabNxy5gB87pb5qAzKGFT9Oi8lD5voUgjq\n6JCfn+8msdxrUUFBQbix+g0xxuwAdlivy0VkFYnhy8nAeKva88DHwAyr/AWTmDS1SETSRaS7VXee\nMaYYQETmAeeIyMdAqjFmkVX+AjAFeL+NzqGaoT2mGs8AZonI74CvgWfb4RraRXmknDs/uxODYbN/\nMxf2u5CMrCEku5q/pGqdbDaceXlENmyg4uoryXv5Za59p4IvN5fwswn9+dGpfUn1OnG4XPQaMoyu\nffrhcLkxYmNvRRiXw8b5w7tz2sAcbCKkJzmxN9CN3hTDc4bz9MSn2VC6gYnHTCTLq0lcVOeWn59v\nA+4l8cSPACY/P/9R4LcFBQWH3fUlIr2BUcAXQFcr2EPimfeu1uu60q32bKS8sI5y2ugcqhnaJKAb\nYz4m8S0OY8xGEt0uRx2b2PA5fVREKxCk1SaEObKyyPv7s5TP/xDvyBHsTs2hYMtiAJ78aD0/GHcM\nqSRmtIvNhjvJRyRWxdLvSrn77RX0y/Fx5wXH0iPd2+LXluZOY1yPcYzr0XKT/5Tq4PYFc1+tslus\n3785nAOLSDLwGnCrMcZfewjaGGNEpFXXcGqLc6hDp/2dbSjTk8mLk17kumHX8ezZz5Lhbr3FVZxd\nu5J6ztlEt24l9duvmDV1CA6bMCovo8677dJglGv/sZgV2/28tXQH7yzdUcdRlVJNYXWzHxjMsd7f\nYm1vFhFxkgjmLxpjXreKd1nd3Fi/d1vl9aVbbag8t47ytjqHagYN6G3IYXPQN60v00dP54RuJ7Tq\nI1vxaJTi559n2y23svPWW+n9ydvMuXkcf/3BaLLqegRNwO20V79NctsPrqOUaqoc6n9+XaztTWbN\nBn8WWGWMeajWprdIzE2C/ecovQVcbc1EHwuUWd3mc4GzRCTDmqh2FjDX2uYXkbHWua4+4FitfQ7V\nDLpc1xEsFo0TC8dweh3YD8hTbsJhQqtWV7+PrF5Nn3Q3/niIotIKfPYUvMnO6ufFs3xuZv5oLA/O\nXc2gbil8b0hXlFKHrYiDkxnsE6f5KVRPBn4ALBeRb6yyXwN/AGaLyPXAFmCqte094DxgPRAErgMw\nxhSLyL0k8qsD3LNv8hpwI/Ac4CUxUW3fZLW2OIdqhlZdKa6ldOaV4gBKQiX8Z+t/KKos4qIBF5Ht\nzW50n1AgysrPtrPpmyJGfi+PXsdm4jpgJnpo7Vq2Xv9fIELu354hkJvJnQvvpDJWyW3H3cExqceQ\ndECO82AkhtNuw2nXzhulDtCsmaH5+fn3cXC3ewB4tKCg4LDG0JWqTe/QO4B5W+Zx76J7AVhatJT7\nT7mfVHdqg/sE/RE+fz2RDGXuM99y9X0nHRTQw726EP/7g1REK5jLCj74fD4Lti0A4JfBW/nb6X8n\niW777ZPk0o+EUi3st9bvfbPc48BjtcqVahH617sD2Fa+DbvYGdt9LMekHkMsHmt0H7u95mbBZrdB\nHRPdwibCpQv/C4CbR95MKFaTQCUUC2F3Nf0uPB4KUVVSQqy4GGf37jgyE+lWQ4Eo0UgVdruQVMcC\nNvG4IRitwuu0t9gjcEodCaxH036Tn59/Dy30HLpSddGA3gFMGzqNid3OJbDahtlpxz3QlxhRaoAn\n2ck5Px7Ghq+KGH5GLh7fwYlVXHYXF/W/iDfWv8HnOz7nrnF3ccuHtxCMBXng1AdI86QTjMSadFce\n3baNTVMuwkSjJE84g+7330/M6ePL9zaxbH4haTleLvrl8fjSa4J6IBxj0ca9/HPRFi4c0YMzh3St\nTq2q1NHCCuKFjVZUqpl0DL2DWDJnM4v+tRGA3sdlcerlx1C6cwvZvY5pcAW5qqo4xMEYg8N18Mz0\nklAJwWgQl91FtjebvaG9ibqk8MLnW1lWWMoPT+7DqF7pJNWxGlyV309oxUqCS5eSdt65hNavZ9uN\nNwEgLhf95n9AxJnKc7d/Vr3PeT89jj4jaibvbi+t5JQ/fkjc+qj951fjOSbrwKd4lOrwtGtJdWg6\n86kDMHFDeXFNd3igLMKGggJeufc3vPvYnwj6/fXuGw7EWDB7LR88t3K/Y+yT4cmgZ0pPcpJyEBGy\nvdnkJOWweWsx0UCQb74r5eq/L6a0Mlr38det47vrrmPPI4+weerleAcPxp6VWN0t4+ofYPN4sNmF\nnLxEQj2bQ8jssf/jeMbsP8033vG/Qyql1BFHu9zbQ2UpBPeCzQHeDMSTSv65vdmztYJwMMZpV/Tl\nw7//HoBta1YQj9ed6czEDV/P20IsEic120vBe5sYd1H/Orvfa4vu2kXOE3/gcqeTS39yCxfNWk15\nKEpd/fyhdTXZ4KpKSzHxOH3eeB0TjWJLTsaekoIXOP/mEZTsDJCS5SUpdf/zpyU5ePyKUfxz0RYu\nGNGDTJ+rae2llFKqUXqHfggiVREiVZGDyps1XBENwTcz4fHj4dHhsP4DiMdJzvAw6abhXPTLUfjS\noWz3TgDGTJmK01V/AOw7sgvJmW6KdwQYcEI3qLUKY9Bfxor/zGfh7P/DX7SbeLyKqmCQXb+7j/J5\n86h47z0cz/2Vm07tTVZy3QtWpYwfj7NnDwDSpkzB5vPh7NIFV8+eONLSquslpbroOTCD1CwPDuf+\nXf/JbidnD+vG0z/IZ2p+Lx0/V6qFiIhdRL4WkXes931E5AsrHenLIuKyyt3W+/XW9t61jnGHVb5G\nRM6uVX6OVbZeRG6vVd7q51DNo3fojdgd3M1DBQ/hcXj42aifVScT2RXYxd+W/42eyT2Z3H8ydrFT\nGi4FIN2dXv9jZ5EALJtV837pTBhwFriT8SYnArcxLq5+4HGqYjFcHi/upLrHm8UmRCpjLHl/CwA7\n1pVy1f+MBSAaDrPk3TdZ+u93CQcDfD33Xa7505N43R5w1vxvt7tcXD4mj5S6Vo8DnN260XvWy5hY\nFPF6caQ3LyOc024jLUm/PyrVwm4BVgH7/uD8EXjYGDNLRJ4CrieRovR6oMQY019ErrDqXW6lXL0C\nOBboAXwgIgOtYz0JTCQxke9LEXnLGLOyjc6hmkEDegMC0QD3LbqPD7d+CCSWbr19zO2UR8qZ/vF0\nlu1ZBkCyK5luSd346fyfAnD3uLuZ3H8yDlsdzevywcirYIe1uNPIaeBM2q+KiOBL33+d97JwGcWh\nYtx2N2muNHyug4N87Q6Dsqgf8ntyxsm3s2PhEpa+8S9CgQqSMzLJ+u87sd08HZvLSVaaD6fP02A7\nOHIaX+hGKVU3K9valcAvSKxXXgg8DMw8nGxrIpILTALuA6Zby6dOAK6yqjwP3E0i2E62XgO8Cjxh\n1Z8MzDLGhIFNIrKemuRZ661kWojILGCylaa1Vc8BaEBvJg3ojYhT8+8tHk+8rjJVlEfKq8uLQ8Xs\nCuyqfj93y1zO7n123Wu1Oz0w/HIYMJGYPYmoceCMRXE0kEI1FAsxe81sHvv6MQTh6YlPM7ZH4k68\nS+8URp97DLs2+Tlxcl/CdghUlPLw1w/xzsZ3AHjypEfIXT0Mjy+Zqrjh27I41zz3LW6HjRd+OIY8\ne4S0JB3XVqqlWcH8NRJ3ofu+hXcF/gpcmp+ff8lhBPVHgNuAFOt9FlBqjNm3kEXtdKTVKUyNMTER\nKbPq9wQW1Tpm7X0OTHl6YhudQzWT9oE2wOf08d8n/jffy/seF/S9gBtH3YjD5iDTk8mDpz/I0Kyh\nnNHrDC4ecDHDc4ZjExs2sXHloCvxOup5kDxeBbFKgpLMyiVLee2B+/jm3+8Rqqg4qGogGqA0XEo4\nFmbu5rkAGAxzNs+pHr/3JrvIP68PZ98wjMpkOxc88RnfFBZRsKvmMb+lZd9ywfQ7cCanUh6K8oc5\nqwlGqigJRnlmwSY2FQVYt62MP85ZzW7/wTPllVLNdiX7B/N9fFb5Fc05qIicD+w2xiw5vMtTnYkG\n9EZ09XXl/lPu585xd1avsW4TGwMyBvDU957ivlPuI9ubzeiuo5l7yVzmXjKXE7ufiN1WT7aysq1E\n5/yGCmJ4enfj+GlXsOI/8wkHA+yp3MOi7YvYXrGdvZV7+d2i3/Hm+jcpj5bz59P/zPFdjsdlc3HJ\nwEuqk6oAOJw2Qhhue20Z20ormb/Sz3VDb0AQMtwZXDhgCquL49z68lI27w0wIrdmMtuQ7insLQsT\n2RZkd2mIW1/+hpJgzQTAvZV7KQoWURmtbJ0GVqpz+wUHB/N9fNb25jgZuFBENgOzSHSDPwqki8i+\nntfa6UirU5ha29OAvTQ95eneNjiHaibtcm/Avq70dE/6QbnLbWIjw1NTluRMIumAsfA6rfuA0nE/\n5t875vPAlw/S1deVJ3/+MBEv/Nfc69lYthG33c3s82fjEAceh4dJb0wi1ZXKP875B05x1jnhzuWw\nccXoXC45tjtLd/rp5hjD+xe/j9PuhFgKU5/+iFjcMH/VbhbMOIOxfbOoiht8bgc9bA6Wzd3IiBMy\nWL6jjKqqxN3/zsBOrpt7HTsDO/n9Kb9nfK/xeBwNj7crpfaT28j2Xo1sr5Mx5g7gDgARGQ/8P2PM\nNBF5BbiURJA/MLXpNcDn1vYPjTFGRN4CXhKRh0hMWBsALCaxiM4AEelDIsheAVxl7fNRa56jOe2h\nEvQOvR4loRLu+uwupr4zlfNeO4/vyr87rONVxasoChaxZ/DZVPmyeOSrRzEYdgZ2sqB4ETaHg41l\niZXiwlVhtpZv5aSeJ/HciueImzil4VJmr5nN418/zvrS9Qcd3xaNM9qThGtxMRenptE3zcmUN6dg\njCFaZaiyuugjVXEC4RjjB2QzsmsKsracj55YRl5+FworQjw0dSQZ1nPiczbNobC8kFg8xgNfPkBZ\npT+xMp1S6lA1ttTr1ka2N9UMEhPk1pMYv37WKn8WyLLKpwO3AxhjVgCzSUxEmwPcZIypssbIbyaR\ny3wVMNuq21bnUM2gd+j1qDJVfLrtUwBiJsbiHYsZmDGwkb3qt6FsAzf8+wZsYuOf577AoIxB1bPk\nh3U5DqfNyWUDL+OVta/QL70fAzIGUFheyIicERSWJ/4mDMsexsurXz7o+feKkhCfvboeh8vGuCn9\neffJpYwf2Ju4iRONR0n3Onl46khe+HwLk47rRmhbkPmvb+K0ywcy6uQejBiXgamKMsDuIzkjtTp5\nyrDsYdXnGJIxhO0ryohnu+jSOxW7Q78LKnUIHiYxAa6ubveAtf2wGGM+Bj62Xm+kZgZ57Toh4LJ6\n9r+PxEz5A8vfI5Hj/MDyVj+Hah4N6PVw2VxcPOBiZq+dTbIzmVNzT232sQLRAI8seYS9ob0A/HXp\n0zxyxiN8seML8lLz6JPWhxRXCj8f9XOuHHwlheWF3PjBjVzc/2J+lf8rJvebTIorhdV7VzOm+5j9\nvliEglHmP7+KwtUlQOKRtwEndMUmdm4aeRMprhSS3U4mDe/Gaf2z2fLlLj566lsAHC47J1+Sy6cv\nPceKT+aT2TOXqXf+vvqRuUGZg5h9/my2FhfS1zGYjx/fhMO1i8vuOAFfWv2z8pVS1WaS6H4+cGJc\nAJhHottaqRahAb0eqe5Ubh51M9cOuxa33U2mJ7PZx3LZXAzOHMyiHYu4eeTNnJZ7Gnaxc36/8/GH\n/RRXFlMe8mP8IZYGljI0eygzxswgyZFEeaSc5UXLGdFlBOPzxpPsTN5/HNsYqmI13eCxaJx+o7uQ\nnunmip5XVI/rO+12Ut2wZ3PN43ZOp41YJMyKT+YDULytkJId26oDeoorhSFZQ5B16cx7YTXxuCEl\nM3m/CXlKqfoVFBTE8/PzLyExPvwLEmPmW0ncmc86nOfQlTqQZltrIyWhEnYHd/P6uteZuXomo7uO\n5s+n/5k3N7zJQ0sewiY2njntKXqm5vLZd5/wadHnpHrTGZg5kAe/fBCANye/Sd/0vgBURCqojFXi\nsruwBVzMf34VdruN8d8fjDfZWWfmNYBgWZjFb29C7MIJk/pgTJDX7vstRVs24fR4ue6hv5CSlbPf\nPpUVEVYt3IF/dyWjz+tNSqZOjFNHJf0mqzo0vUNvIxmeDEKxEC+tfgmAgl0FlIXLeHfjuwDYsNHd\n25UVr71JZNMGrp10IZ86VtIzuWf1MUrDpRAJ4o+UM3PDv3huxXOc2O1EpudP5+Qb8ki1peFuZJ30\npDQ3p12Z6LK32W2Ai0t+cy9lu3aSkpVNUh1Lu3qTXRx/1jHE4wabTf+mKaVUR6Qzm1rA3sq9fOf/\njj2Vexqs57Q76e7rDoDb7sbn9HFh3iQARuSMYO+KtSz/YA67Nqzj48ef4LK8yWS4M+ib1peL+l9E\n7+Rc+ORBAhXbeeKbJ6iIVjB/63zWla7jtgW/IkB5Q6evZrPbrGCe4EtLp8fAwaRkZWO31/8d78Bg\nvqcizML1e9i8J0AwHCMcjBKqODiJjVJKqdand+iHaU/lHm784EZWFa+iT1of/n7236sXoDlQtjeb\nVy54hfUl6+mR3ANj4hxvBvLqhJfwuVPY+eU31XWNieMyDjaVbOD7Q75PLB4jrWgNfPoQjkETSXen\nUxouxSY2crw5LN+znFj1aox1i8VjlIRKCMaCpLhSDmtewN6KMD/9vyV8ubkEm8BbN5/CrvnbKdtd\nyZlXDyatyyE8k6+UUqrF6B36YaqMVrKqeBUAm8o27bfGe22loVJeW/saM1fPJDspm2nvTeOcN86l\nMKmUVa++xavTf0G3vv3pl38iqTldOP0H1xMsLWNw9lD2VO5hQt4E7FWJgJ3177t56bSHuW30L3nq\ne0/x2rrXmDZ4Gh57w2Pbu4O7mfLmFM5/43zu+uwu/JV+KisiREINfxGoS1XcULAlMbM+bmDx+r34\niyrZsb6UD/+5mlAg2uRjKqUOnYiki8irIrJaRFaJyDgRyRSReSKyzvqdYdUVEXnMSlO6TESOr3Wc\na6z660Tkmlrlo0VkubXPY1aiFdriHKp5NKAfJq/TS//0/gDkpuSS4kyps96inYu4+/O7WVO8hpfX\nvExRZRGxeIwnVz5FjxNGURWN8q8H76XHwCGcPPX7lO3eRUb3HhybfSw/HflTuvq6QrfhMHIatpJN\n9Fr1Pj/ofzGDMgdx44gb+eFxP6w/Zatl+Z7l+CN+AJziwr81xtuPLeWzV9dTWd60rnK30851J/UG\nINPnYvzAHIq3BxLbkhw61q7UAfLz8/vk5+efnJ+f36eFDvkoMMcYMxgYQWJxltuB+caYAcB86z3A\nuSRWaBsA3EAiOxoikgncRSIpyhjgrn0B2qrzo1r7nWOVt8U5VDNol/shilXFKA4XE64Kk+JMId2T\nmDyW7c3mmbOeoSJSQbIzmeykurvb91YmnkHfHdzNmXlnVpcPyx5GdtdeuH0+woEABW+/zkkXXcRp\nk8/FYQvDkhcAA4MngS8bzv49nHkXOL3gSaUpnebDsofhc/oIRAP8eOCNvPen5URDVRR9V07e0Ez6\nHd/lkI+V5nXy8zMH8MNT+uCy20ix2xhxZi6hQIxRZ+Xh8upHSymA/Pz8fBKLywwBIoArPz9/FfDj\ngmY+viMiacBpwLUAxpgIEBGRycB4q9rzJBacmUEiLekLJvFY0yLr7r67VXeeMabYOu484BwR+RhI\nNcYssspfAKYA71vHau1zqGbQv7r1KAuX4bA58DkTa0Fsq9jG1HemEowFmTZkGuf1OY8uSV0oChbR\n1deV3ORcHA1MKDun9zks3rGYwopCjs0+llmTZlEcKmZY9jBSHMlc++f/pSoaIcURRv7ze+T5OyH9\nGDj5Ftj4EWbXt/hHzmDz6kr6Hd+F5JSmLexSGa3EZXPx9pS3KY+Uk2W64vbuJBqqqq4T9EdISj30\nNKrpSS7Sa6VdzT+vD8YYfU5dKYsVzD+mZlGZfWkYjwc+zs/PH9/MoN4HKAL+ISIjgCXALUBXY8wO\nq85OEqlaoVZqU8u+FKYNlRfWUU4bnUM1gwb0Omwu28w9i+4h25PNjDEzyPJmsXD7QoKxIABvb3ib\nywZexk3zb2JtyVp8Th//mvwvuvm61XvMLG8W9558L3ETJ8WVclA2tuSMTKjYBX89C8p3Jgr922Hr\nIrjqFWTJP9i5Ziefzt7Nzg1ljL6iBx63q+6c6wcoC5fx2trXeH3960zqM4mrhlxFqiuJC28dxdf/\n3kJWz2RCFVF2b/bTe3jdPQyHSoO5Uvupb9lXrPKngPxmHNdB4kvBz4wxX4jIo9R0fQNgJUZp1YVG\n2uIc6tDpGPoBikPFzPhkBl/u/JL3N7/PzNUzARjbY2x1jvN9XeZrS9YCiaVdN/s3N3psr3ER3rGX\nr959k9Kd24nHa+6OCflh06c1wXwfY2DR/xIf9zMKN8bIzksm7zwX0z+9lV9/+utGH5UDKI+U8/BX\nD7PFv4W/LP0LZeEyRARPkgNviost3+5lwSvryOxR398dpVRTWWPlQxqpNrSZY+qFQKEx5gvr/ask\nAvwuq5sb6/dua3tTU5huY/9McbVTm7bFOVQz6B36AQTB7ajpzt63dGpuci7vXPQOwWiQbRXbWFuy\nllN7nsqCbQvo4etBv7R+Bx0rGg4RDgYRseFLT6ey3M+Lv/4FJh5n8b9e4Zo/PZm4Mw/sgW9eglBp\n3RflL4S0XvQ8pYoBOXZ++dkvWF28GoCeyT257YTbGrwzdtqcuGwuIvEIDpsDtz3x3+dNcTFiQi5l\nuytJzvSQlNLwojRKqSbpQWLM3NtAnYhVb1NTDmyM2SkiW0VkkDFmDXAmiWxmK0mkMP0DB6c2vVlE\nZpGYnFZmjNkhInOB+2tNUjsLuMMYUywifhEZC3wBXA08XutYrX0O1Qwa0A+Q4cnggdMe4PGvHqdL\nUhem9J8CJBaF6ZKUmDSW7k6nKl5Fftd8wlVh3HY3OUn7L5cai4TZ9HUB7z/xECnZOVz22/sIBSsw\n8cTSzaGKcuJV1h26fzt8/jhM/kvdFzXwXILuJP6wcToT4xOrAzIkvnA01s2d7k7n/877P97f/D5n\nHXMWae60mv1T3SSlaqIVpVrBdqCxSSkuq15z/Ax4UURcwEbgOhK9rrNF5HpgCzDVqvsecB6wHgha\ndbGC6r3Al1a9e/ZNXgNuBJ4j8YXkfWomq/2hDc6hmkHXcq9HNB7Fjh2brXmjEoGSYv55x60EShKf\n29O/fz3DJpzFh/94is1LvyL//IsY/r1z8PiSofQ7eHQETHoIChcn7tYhMas9pRtMe421UT+XvH0J\np/U8jXtOuoc3NrxBcWUx1w277qAvE0qpVtHkCSL5+flLSHSF12dJQUFBc8bQlTqI3qHXw2k7vO7n\nmMTJzutdHdC79OmHx+djwnU/pioSwenx4vJaPXHeLPjhXFj7bzjtNjj5VirjqZSW2UlK95HkdJNu\nt9HN143fjv0tL6+cSaorlSuPuZSdewpJ65mGy37os9OVUm3mx+w/y722APCTNr0a1am12h26iHiA\nTwA3iS8Orxpj7hKRPiRyAGeReNTiB9YzlPU60rKt+cN+/lTwJy7Puxj/+u/o0aMP3XL74vYd8G+6\nKgZ1POoWCkRZ9+12ktId+LdHyO2XTXpPD3tDe/nj4j/ywXcfAHDjsT/hkt5TSEnPrJ6wp5RqNc16\nhMN6dO0pYCjWc+gkxrp/0tzn0JWqS2veoYeBCcaYChFxAp+KyPvAdOBhY8wsEXkKuB5rRaHOIhKP\nsGTXEt7e+DZ90/oyPjCeG12D8e8pwl+0i4zuPfEZP3x0P+SOhmGXQlLNEjGVVJDdG1bMeYfkzCwc\nntNx2lPw2D3sCu6qrrczvIskj0+DuVIdmBW0863Z7D2A7QUFBU2aBKfUoWi1gG6tFlRhvXVaPwaY\nAFxllT8P3E0nC+gprhR+dcKvmP7xdIpDxUzuP5lAWQn/mP5TYuEw2Xm9ufSHl+BbNguWzYLM/tB/\nQvX+0XAlnz3zDFuWJ5K1OB0uhp5yBrZwlLvH3c2vPvkVyc5kfjz8JyQnH5zutKOIhqoo3llB4eoS\n+h/fhZRsry4Jq45aVhDXQK5aTauOoYuInUS3en/gSWADUGpMdVqwTrkykNvuZmz3scy9ZC4iQpYn\ni60rlxMLhwHY891m4q6ameZEK/bb326EyoqaJC/BslIWzHye5fPncOyEiTxz5V9xutxkeDLoyCor\nIrz2xyUYA1/P+44r7zwRX5rOqFdKqdbQqgvLGGOqjDEjSSwYMAYYfKj7isgNIlIgIgVFRUWtdo0t\nYXdwN+9tfI81xWuoiCSCs8fhIScph2xvdiKo9+xFVm4eAMO/dy6O5EzIGwdjfgx5J+13PG9KGhNv\nvIVu/QfSd/QJBJ0yrwAACy5JREFUDJ9wNmsWfgLAig/n4QxUdfhgDlBZEWXfFI1wIEa8quM/UaGU\nUkeqNpnlbowpFZGPgHFAuog4rLv0elcGMsY8DTwNiUlxbXGdzbGncg/XvH8NhRWJJYlfmvQSx2Uf\nd1A9X3oGl915P/FYDIfLhdeXDFfMBIcbXPvnDk9yJeHo0p3zb51BLBLBYIhFEvMGPckpOD1Hxph5\napaHgSd2o3BVsSZsUUqpVtZqf2FFJAeIWsHcC0wE/gh8BFxKYqZ77VWGjkjRqmh1MAdYVrSszoAO\n4Es7YLw7qf67bJfHi8sK3LFImGv+9CS7Nq6j56ChJKWl1btfR+JNcXHq5QOoisZxeuy43BrQlVKq\ntbTmX9juwPPWOLoNmG2MeUdEVgKzROR3wNfAs614Da3O4/Aw8ZiJzNsyjwx3Bqfnnt7i53C43GT2\n6Elmj/qnGxSHillTvIZuvm508XbB5+oY67J7knQ5WaWUagu6UlwLKAmVEIgGcNvdZHmzsEnb5rwp\nDZUyY8EMFm5fiCC8OOnFOnsJSoMRolVx0rxOXA57HUeqW0kgQjgWx2kXspJ1Ups6aukjGqpD02xr\nLSDDk0FuSi45STltHswhsUzt17u/BsBg+Gb3NwfV2VMe5uezvmbKkwv5bP1eQtGqg+rUZW9FmNtf\nX8bY38/nxhe/Yk9FuEWvXSmlVMvQgN4JeB1ebhh+AwBZniwm9JpwUJ0PVu/ik7V72FZayc9mfo0/\nFD2kY1eEY8xdkVjM5otNxRQHGlzUTymlVDvRWUqdQLIrmcsHXc75fc/HYXOQ5ck6qE73tJqZ8V1T\nPdgOsffQ67STk+ymqCJMittBmlfHxJVSqiPSMfSjRGkwwsINe1m1w8+VY/LokX5oj74ZY9jpD7Fq\nh59B3VLpmuLGYdeOHXVU0jF01aFpQG9DVfEqikPF+CN+0t3pZHkPvpPuCEKBKNFwFTa7kJTiQnS5\nVqVAA7rq4LTLvQ0VVRZxyVuX4I/4GZE9gscmPEamN7PxHRtQWR4hFo1jd9pISjn8FKrhYJRvPviO\nJe9vwZPs5NIZo0nLSWp8R6WUUu1K+07b0MbSjfgjfgCW7llKuOrwZowH/RHmPvMtL/x6IXOeXk7Q\nf/gT1mKROEve3wJAqCLKys92HPYxlVJKtT4N6G2oX3q/6glrY7qNwe04vGe6o6EY29aWArBjXRmR\nUKyRPRonNiG9a80dedc+qYd9TKWUUq1Pu9zbUE5SDq9c8ArBWJBkZzKZnsPrbne47fjS3QRKwySl\nuXC6D32xmPokpbqY/ItRbPpmN+ldfeTkpRz2MZVSSrU+nRR3hAuUhSnfGyIly0NSqgsRnbejVCvR\nf1yqQ9M79COcL82tOcaVUkrpGLpSSinVGWhAV0oppToBDehKKaVUJ6ABXSmllOoENKArpZRSnYAG\ndKWUUqoT0ICulFJKdQIa0JVSSqlOQAP6EcTEDZUV0RZZs10ppVTnoivFHSHiVXH2bKvgk5lrScvx\ncvKlA0hKPfx0qUoppToHvUM/QlRWRHn3yWXs2uRn7eJdbPhqd3tfklJKqQ5EA/oRQoT9sqm1RGY1\npZRSnYd2uR8hklLdXPCzEXzx5iYyeyRxzLCs9r4kpZRSHYgG9CNIWk4SZ147BJtNEJtmclRKKVVD\nA/oRxu7QURKllFIH0+iglFJKdQIa0JVSSqlOQAO6Ukop1QloQFdKKaU6AQ3oSimlVCegAV0ppZTq\nBDSgK6WUUp2ABnSllFKqE2i1gC4ivUTkIxFZKSIrROQWqzxTROaJyDrrd0ZrXYNSSil1tGjNO/QY\n8EtjzFBgLHCTiAwFbgfmG2MGAPOt90oppZQ6DK0W0I0xO4wxX1mvy4FVQE9gMvC8Ve15YEprXYNS\nSil1tGiTMXQR6Q2MAr4AuhpjdlibdgJd2+IalFJKqc6s1ZOziEgy8BpwqzHGL1KTJcwYY0TE1LPf\nDcAN1tsKEVnTyKnSgLImXt6h7NNQnfq2HVheV73aZQduzwb2NHJdTdWR26eusobet0b71HddLbHP\n0dxGh1q/qW3UHu0zxxhzThP3UartGGNa7QdwAnOB6bXK1gDdrdfdgTUtdK6nW2OfhurUt+3A8rrq\n1S6ro35BK/y/6LDtcyhtdkB7tXj7aBu1Thsdav2mtlFHbR/90Z/2/GnNWe4CPAusMsY8VGvTW8A1\n1utrgDdb6JRvt9I+DdWpb9uB5XXVe7uR7S2tI7dPXWWH0oYtTduocU09x6HWb2obddT2UardiDF1\n9ngf/oFFTgEWAMuBuFX8axLj6LOBPGALMNUYU9wqF3GEEpECY0x+e19HR6Xt0zhto4Zp+6jOqNXG\n0I0xnwJSz+YzW+u8ncTT7X0BHZy2T+O0jRqm7aM6nVa7Q1dKKaVU29GlX5VSSqlOQAO6Ukop1Qlo\nQFdKKaU6AQ3oHZyIDBGRp0TkVRH5aXtfT0clIj4RKRCR89v7WjoiERkvIgusz9L49r6ejkZEbCJy\nn4g8LiLXNL6HUh2PBvR2ICJ/F5HdIvLtAeXniMgaEVkvIrcDGGNWGWN+AkwFTm6P620PTWkjywwS\nj0MeNZrYRgaoADxAYVtfa3toYvtMBnKBKEdJ+6jORwN6+3gO2G8JSRGxA08C5wJDgSut7HSIyIXA\nu8B7bXuZ7eo5DrGNRGQisBLY3dYX2c6e49A/RwuMMeeS+OLzP218ne3lOQ69fQYBC40x0wHtCVNH\nJA3o7cAY8wlw4GI6Y4D1xpiNxpgIMIvEXQPGmLesP8bT2vZK208T22g8iRS9VwE/EpGj4nPdlDYy\nxuxb3KkEcLfhZbabJn6GCkm0DUBV212lUi2n1ZOzqEPWE9ha630hcKI13nkxiT/CR9Mdel3qbCNj\nzM0AInItsKdW8Doa1fc5uhg4G0gHnmiPC+sg6mwf4FHgcRE5FfikPS5MqcOlAb2DM8Z8DHzczpdx\nRDDGPNfe19BRGWNeB15v7+voqIwxQeD69r4OpQ7HUdE1eYTYBvSq9T7XKlM1tI0ap23UMG0f1Wlp\nQO84vgQGiEgfEXEBV5DITKdqaBs1TtuoYdo+qtPSgN4ORGQm8DkwSEQKReR6Y0wMuJlE/vhVwGxj\nzIr2vM72pG3UOG2jhmn7qKONJmdRSimlOgG9Q1dKKaU6AQ3oSimlVCegAV0ppZTqBDSgK6WUUp2A\nBnSllFKqE9CArpRSSnUCGtBVhyciC9v7GpRSqqPT59CVUkqpTkDv0FWHJyIV1u/xIvKxiLwqIqtF\n5EUREWvbCSKyUESWishiEUkREY+I/ENElovI1yJyhlX3WhH5l4jME5HNInKziEy36iwSkUyrXj8R\nmSMiS0RkgYgMbr9WUEqphmm2NXWkGQUcC2wHPgNOFpHFwMvA5caYL0UkFagEbgGMMeY4Kxj/W0QG\nWscZZh3LA6wHZhhjRonIw8DVwCPA08BPjDHrRORE4C/AhDb7L1VKqSbQgK6ONIuNMYUAIvIN0Bso\nA3YYY74EMMb4re2nAI9bZatFZAuwL6B/ZIwpB8pFpAx42ypfDgwXkWTgJOAVqxMAEjnplVKqQ9KA\nro404Vqvq2j+Z7j2ceK13setY9qAUmPMyGYeXyml2pSOoavOYA3QXUROALDGzx3AAmCaVTYQyLPq\nNsq6y98kIpdZ+4uIjGiNi1dKqZagAV0d8YwxEeBy4HERWQrMIzE2/hfAJiLLSYyxX2uMCdd/pINM\nA663jrkCmNyyV66UUi1HH1tTSimlOgG9Q1dKKaU6AQ3oSimlVCegAV0ppZTqBDSgK6WUUp2ABnSl\nlFKqE9CArpRSSnUCGtCVUkqpTkADulJKKdUJ/H+KK4o+uldmfwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_1", + "outputarea_id1", + "user_output" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3bdeaf32-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3b877780-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_34cb5fea76" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_1", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3be06426-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_febe5dbc20" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_2", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3be0a904-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_2\");\n", + "//# sourceURL=js_1f61ea7849" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_2", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3be0d83e-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3be0a904-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_aa87e0cd57" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_2", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3be12168-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(2);\n", + "//# sourceURL=js_76cccca8bd" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_2", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VGX2wPHvmZmUSa8UAQFFmqio\nqNgVu66961rQ1dXVtbu6rrru6s+17Fp2de2u2HvXxYK6NkQQEUREEOktPZkkk2nn98e9CQmkTEKG\nwHA+z5MnM3dueW8IOfe+933PEVXFGGOMMZs2T083wBhjjDHrzwK6McYYkwQsoBtjjDFJwAK6McYY\nkwQsoBtjjDFJwAK6McYYkwQSGtBF5FIR+V5EZovIZe6yAhH5QETmud/zE9kGY4wxZnOQsIAuIqOA\n84BdgR2AX4nIEOBaYJKqbgNMct8bY4wxZj0k8g59BDBFVetUNQL8DzgOOBqY4K4zATgmgW0wxhhj\nNguJDOjfA3uLSKGIZACHAwOA3qq6wl1nJdA7gW0wxhhjNgu+RO1YVeeIyO3A+0AtMAOIrrWOikir\nuWdF5HzgfICRI0fuPHv27EQ11Rhj4iE93QBj2pPQQXGq+piq7qyq+wAVwE/AKhHpC+B+X93Gtg+r\n6hhVHeP3+xPZTGOMMWaTl+hR7r3c71viPD9/FngTOMtd5SzgjUS2wRhjjNkcJKzL3fWKiBQCYeAi\nVa0UkduAF0XkXGARcFKC22CMMcYkvYQGdFXdu5VlZcABiTyuMcYYs7mxTHHGGGNMErCAbowxxiQB\nC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowx\nxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCA\nbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNM\nErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jG\nGGNMErCAbowxxiQBC+jGGGNMEkhoQBeRy0Vktoh8LyLPiUi6iAwWkSkiMl9EXhCR1ES2wRhjjNkc\nJCygi0g/4BJgjKqOArzAKcDtwN2qOgSoAM5NVBuMMcaYzUWiu9x9gF9EfEAGsAIYB7zsfj4BOCbB\nbTDGGGOSXsICuqouA/4OLMYJ5FXAN0Clqkbc1ZYC/RLVBmOMMWZzkcgu93zgaGAwsAWQCRzaie3P\nF5FpIjKtpKQkQa00xhhjkkMiu9wPBH5R1RJVDQOvAnsCeW4XPEB/YFlrG6vqw6o6RlXHFBcXJ7CZ\nxhhjzKYvkQF9MTBWRDJERIADgB+Aj4ET3HXOAt5IYBuMMcaYzUIin6FPwRn8Nh2Y5R7rYeAa4AoR\nmQ8UAo8lqg3GGGPM5kJUtafb0KExY8botGnTeroZxpjNm/R0A4xpj2WKM8YYY5KABXRjjDEmCVhA\nN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEm\nCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRj\njDEmCVhAN8YYY5KABXRjjDEmCfh6ugHGdIVGo0TKytBwGE9WFr7c3J5ukjHG9Ci7QzebpPDSpSw4\n4lf8cuxxNMydS3jlSqKBQNPn0epqar/+mrLH/0N4xYoebKkxxmwYFtDNJqnmk0+I1dbS/5/3UvbI\noyz41ZGUP/UU0aoqAMKrVhFesgRPZgbLr7+eSGlpD7fYGGMSywK62SRljt2dlIFbEl65itrPPiMW\nCFB67z+JBWpRVbShgbLHHqfypZfodcklaE832BhjEswCutkkpQ7ckoFPPEHa0KFNyzyZmZDiI1pR\nwcqbbyG0YAHB72dT/uSTePz+HmytMcYkng2KM5skT3q685WRwYBHHibwxZfkn3A8vvx8YsEgvqKi\npnV9vXvjSUvrwdYaY0ziierG3xk5ZswYnTZtWk83w2xCwqtWUT7hSTyZmeSddCIpxcU93SSz6ZOe\nboAx7bEud5N0NBqleuJEwitW0PDjj5RPmEAsGOzpZhljTEJZl7tJOhoKUff1VAKTJgHgHzMGbWiA\n9PQebpkxxiSO3aGbpOPx+yn+/cV4cnKQjAx6XXEFnqysnm6WMRsVETlKRK7t6XaY7mPP0E3Sqa+p\nJhJsIDUaxePx4M3Px5OS0uX9Rauq0FAIT3Y2HrvL35xttM/QRURw/p7HerotpufYHbpJKsHaAF+8\n8DQPXzyeB6/6HZXBOtTjoXLlCma89w5ly5YQCYfi3l+krIzlf7qehaecQuB//yNWX5/A1hsTPxEZ\nJCJzReRJ4HvgDBGZLCLTReQlEcly1ztcRH4UkW9E5J8i8ra7/GwRua/Zvj4SkZkiMklEtnSXP+Fu\n86WILBCRE3rqfE3HLKCbpKGqEKilsKCQIbvtwT6X/InqqJe6qkqeuvZSJj3+AE9fcyn1NTVx77P2\n668JfPgh4WXLWXblVUQ7sa0xG8A2wL+BfYFzgQNVdSdgGnCFiKQDDwGHqerOQFvTPf4FTFDV7YFn\ngH82+6wvsBfwK+C2hJyF6RYW0M0mKVpbS6S8nFjIudvWaJSGn35i5WWXU/DWexx0whncMSPEqc/O\nJRhsIFRfB0AkHCJUVxf3cVKKezW99hXkIx77L2M2KotU9StgLDAS+EJEZgBnAQOB4cACVf3FXf+5\nNvazO/Cs+/opnADe6HVVjanqD0Dv7j4B030S9tdJRIaJyIxmX9UicpmIFIjIByIyz/2en6g2mOQU\nKS9n1a23svicc6l+979Ea2qIVlSw+Kyzqf/2W+omT2bVVVdxytAcVtc0MGt1A6MP+RW+tDRG7LU/\n/pycuI+Vus0Q+t17DwXjxzPw6afxFhYm8MyM6bRa97sAH6jqaPdrpKqe203HaGj2eqMdR2ASOG1N\nVecCowFExAssA14DrgUmqept7gjLa4FrEtUOk3yq3niDqldeBWDFtdeS8eEHSGpqi+7waEUFmSnO\n355nZpRw9/GnstuxJ+FNScGflR33sXy5ueQccgg5hxzSvSdhTPf6CrhfRIao6nwRyQT6AXOBrURk\nkKouBE5uY/svgVNw7s5PBz7bAG023WxD9R8eAPysqouAo4EJ7vIJwDEbqA0mSTRWVGsUqw8SXrac\n3tdeCyJISgq9b7iBKp+fM3cfyN+O256c3Fyy8guo1VR+XFnNgpIA5bXxD44zZmOmqiXA2cBzIjIT\nmAwMV9V64HfARBH5BqgBqlrZxe+B8e62ZwCXbpCGm261QaaticjjwHRVvU9EKlU1z10uQEXj+7bY\ntLXkECkvB1W8BQU4//TOs+9oeTmqijc7O64iKqFly1hy3vmEFiwg9+ijKfzdhSw47HAKf3MueSec\ngKSl4c3NQ9JSUQWPxzlWSU2QUx+ZwvzVTt30Q7ftw63HbUdBZmriTtokk02yu1lEslQ14P69vR+Y\np6p393S7TPdL+B26iKQCRwEvrf2ZOlcTrV5RiMj5IjJNRKaVlJQkuJUm0ULLlrPktxewePw5hBYs\nWLN84UJ+/tWRzN9/HLWTJxMpL6d28mRqJ39FpKKi1X1JahrFl1/Olk89SfqobYlVV0MsRtnDj1A3\n/VtSevfGk56GiDQFc4B3Z61sCuYAE2evZEWVTUMzSe88d6DcbCAXZ9S7SUIbosv9MJy781Xu+1Ui\n0hfA/b66tY1U9WFVHaOqY4qtsMYmLdbQwOo77yQ4axYNP/3EiutvIFJRgapS/uRTxKqqIBql/ruZ\nVDz7HIvHn8Pi8eOpeO55YuHwOvvz5uaQNmQIoYULydp7b4JzfwKvl353303qoIEEvpxMpKxsne2W\nVqwbvK3b3SQ7Vb272UC501U1/mkeZpOyIQL6qbScKvEmzpQK3O9vbIA2mJ7k8eArWjM63Jufj/h8\niAiZu49tWp4+ciT1305vel8//RsnBzvONLXG4O5JTSVt8CDyTzyR1EGDyDn4IIZMmkRwzg8sOuVU\nlpxzDkt+d9E6Qf2UXQbgbXbHnp+RwrDe8Q+QM8aYjVlCn6G7Iy0XA1upapW7rBB4EdgSWAScpKrl\n7e3HnqFv+iJlZc7deF0dheef11TONFpVRWjpMmLVVaRtuy2hBQtYPP4cALb8z39I23YkoR9/pPS+\n+0nZckuKLrwAX0HBOvsPl5Twy1FHE23WTb/1B++TOmBA0/u6UIQl5XU89OkC8vwpnLvXVvTNTW/R\nLW9MO+wXxWzUElptTVVrgcK1lpXhjHo3SSBSVkb997NJ7bcFvj598LZVBMXjIX3UtoQWLyG0cCHe\nrCw8fj/e3Fx8WdlU1oUJeYTcbbdl6/feA8Cbn0e0vJxFZ5yJNpY/9Qi9rroK8fmIlpU5g+lychCf\nj9QhW1M/1bnw8+TkIGlpLZqQkepjWJ8cbjtuezwCPq8liTHGJA8rn2q6LFJRwdJLLqX+m29AhEHP\nP49/h+1bXbduytcsu+wy543Px5APP8Dj9xOOxpi5pJLLXpxBn5x07j9tJ3r1cu7eVRUNhyk87zdU\nPP0M0YoKwosXo+EwkRUrWHTmWUQrK+n/z3vJGDuWfnfdRck99xCtrKL4skvxtZEEJtVngdwYk3zs\nL5vpukiE+u++c16rUjfj23VW0UiEWDhMtDbQYjsNh4mFw5SX13DZizNYUl7P1IUVvDhtibs7JfTz\nzyy/6mqCP8yh/wP/xltURMFZZ6GqlD32GJGVK9FgkJW3/B+x6mpSiovpc9NN9PvH30nfZhvE6+38\nKVVWElq2jEhJCZtCJUJjEklEvuzpNpj4WUA3XSbp6RT99nwAvEVFZB94YIvPI2VlrLr9dlb++Say\n9tyTzL33Bp+PgnPOwZudTbS8nOBnn9InZ01J0i0LMgCIlpez7IorqZ8xg8CkSQQ+/oSBT06gdsrX\nSDRK+qhRTdukDRmCpDpzyT0pKV0ucRqtrqb0vvv4+YADWXDMsURWrOzSfozZ1ImID0BV9+jptpj4\nWZe76TJvdjYF48eTd/LJiAjeoqKmzzQapfKNN8gcOxaPP4OaSR/R92+3IqpO4pecHEKzZxP6513c\n/eBjvDI/i0Fb5LP3Nu4URY8HT7Pn8R6/n6o33yLvxBPw5uSQc9BB+IqKiJSWkj1uHN5O5GdvizY0\nUPHc8wBEy8qomz6d3C2OWO/9GjPo2ndOA27FGQy8GLhu4W1HPNv+Vu0TkdeBAUA6cK+qPiwiAeAB\n4HBgBXAdcId73MtU9U03FfdtwH5AGnC/qj4kIvsBNwMVOEVdhopIQFUby7BeA/waiAH/VdVrReQ8\n4HwgFZgPnGHT4nrOBskUt75slPvGKVBRzrIffyAzL4+CfgPIyMlt+kwjEYJz57L04t8TLS2l1x+u\nJueII1qMUI+UlbHs8isIzplD8WWXkXPUkfiynWlkkfJyYnV1VE7/jljfLSgYMhiv19MtgbstkcpK\nVlx3HYGPPkbS09nqjddJHTgwYcczm5wujXJ3g/kjQEazxXXAeesT1EWkQFXLRcQPTMUpoVoKHK6q\n/xWR14BM4AicSmwTVHW0iJwP9FLVW0QkDfgCOBGnOts7wKjG6myNAV1EDgNuwCnPWtfs2IXuQGdE\n5BZglar+q6vnZNaP3aGbLqmtrODZ66+kptTJ4rfTYUex5ylnkJrupG6NNTRQet99RFasAGDVrX8j\n++CDW+zDV1hIv3vuRiMRJDVtTTAvLWXxOeeQ9oc/8bRnS6Z9U8OVhVF23DKbzj8Vj58vL4++t9xC\npKQEb14e3nwrBGi6xa20DOa4729lTcnSrrhERI51Xw/AqY0eAia6y2YBDaoaFpFZwCB3+cHA9iJy\ngvs+t9m2XzcrtdrcgcB/Gu++m001HuUG8jwgC3hvPc7HrCd7hm5aFQg6c7Z/WlVDRbNsahqLEVq2\njOplS5uCOcDMSe8RbpxaBsRqa/FkrPkbJmlpIK3c4Hg8aLABbQg2JY6JBYPEamtZkJrHA58vZurC\nCs56/Gsq69bNGtfdfAUFpA8b5qSPTbUc76ZbbNnJ5R1yu8cPBHZX1R2Ab3G63sO6pts1hlv6VFVj\nrLmBE+D3zUqtDlbV993PGsuxxusJ4GJV3Q74i9sG00MsoJtWzVhSyT53fszBd3/K41/8Ql0oAjjP\nlheefApp4mkRoAv69Uc8zq9TLBik5J57KDjzTLL23Zf0bUey5aOP4M3Lo74mxPxvVvHLdyU0lFdR\n9sij/Hzwwfx86GGEFy8GnOflqVsPIbXZPPEUr6epvzNSVUW4pIRIVWtFo4zZ6Czu5PJ45OIUtqoT\nkeHA2I42aOY94EIRSQEQkaFuErD2fIBTjS3D3abx2Vk2sMLd1+mdOgPT7Sygm3WoKu/MWk7jdf77\ns1dRF4oCEAuFiJaWUvfa6xx94eX03moIg3ccw1FX/HHNM3SvF09mFksv/j3+0aMpuuQS0kaNIoaX\naRMX8d4js3n3gVnUl9ZQ9apT11zr6wl8/AngdMVvcev/MWTLIv561EgO364PL/x2LAWZqYRLSlh2\n2eXM33c/ll9xBREr3GM2ftfhPDNvrs5d3lUTAZ+IzMEZ4PZVJ7Z9FPgBmC4i3+MUa2n38auqTsRJ\n2z3NLfRylfvRDcAUnOfwP3bqDEy3s0FxpkmkrAwNh5GMDH6sUU548EuC4Ri3H78dx4zuR1qKl2hl\nJaUPPED5U0+Td9pp5Pz2PHyZmaRlZK61r3IqX3sVYjHyjj8eX2EhDXVh/vvgLJb9VAnAoWcOJuOj\nZ6h8+hkkNZVBr7xM+jbbtNiPqhKKxkjzeYmFQqy64w4qn36m6fOCs86k+MorrXvcbAhdTv2aiFHu\nxqzNAroB3IFo551Pw5w55B5/PPl/uIYqfEQVctJ9ZKenNK0bra52iqZ4va3mVW9LrKGBUGkFtVUN\nzJsdYOheg8hJDxGtqnLSwObl4VkrXWtz0Zoall16GbVfrsl1kbnXXvS75+62U84a030sl7vZqFmX\nuwEgtGQJDXPmAFD1yiv46gL0yfXTL8/fIpgDeHNy8BUXdyqYazRKcOYsFh5+KKtPPIKROcvIy/fi\ny88nbdAgZxBaO8Ec3Hnv54xvsazwnHMsmBtjDDZtzbhS+vZFMjLQujpSBw9CUlI63GZt0WgUbxvp\nVqPV1ay6886mcqirbruNjJ127HRWN/8OOzD4zTeom/wVGbuPJaVv30630xhjkpEFdAOAt7CQrd95\nm9DixaRttRW+ZlnfOhIKBlk5fy6zPnqfkfuMo9/wkU3z0RtJaiopWw4gOHMmAKn9+4Ov879+3uxs\nvNnZpA8d2ultjTEmmVlAN4CbA71v307f8WosRqi+ji9efJrlc+cw98vP+M19j64T0L2ZmfT54x9J\n7d+fWH09heeei88StxhjTLexgG66LBioYd7Ur1gwbQq7HHk8c4s+48cv/kc0EiUWUzyelmOIfIWF\n9LrsMlQVaS3JjDHGmC6zgL4Zi0WjiMfT5eAaqKjg/QfvBeCX777h5Jtup/fWQ/l2VQNzf1zAKbsM\nID8zlWh1DdHycjQWxVtYiC83t4M9G2OM6SwL6JupylUrmfzycxRs0Y/tDjikRWGVeDnZJN3XsRgZ\nuXlMjAzm0edmAzCibzb7Di0m8Nmn1Px3Ivh8ZO6+O7nHH4fHfX4ei0WJhiOkdDDCvblINMbqmgbm\nrapheJ8ceuWk2R2/MZ3kpo8NqeqX7vsngLdV9eUEHOtR4C5V/aG7923WsIC+GaqtrODVv91IxYrl\nAKRnZbPDQYd1ej9ZBYXsd+ZvWDB9KmOOPI5oWgavzlxF/3w/Z25fxMA0RRsaSB04iNSttyZWX49/\n++3QYBCysqivqWHul5+yaNYMdjv2JIoHDsYbx0C50toQB9/9KYGGCL2y03j793vRK8dSSJuN2E25\n6ySW4aaqnk4ssx8QAL7sYL31pqq/SfQxjM1D3yypKsFAoOl9XXVll/bjz8pm9CG/4qgrr2Pg9qPJ\nzczg+fN349UThnDoq/fhvfVGooEAla+8TNlDD1Hx1FOUP/UUGnXSyFatWsGkxx9g/tTJvPiXP1Jf\nU93msYLhKOGo0yNQUh0k0ODkll9d00B9ONql9huzQTjB/BGc8qTifn/EXd4lIpIpIu+IyHci8r2I\nnCwiB4jItyIyS0Qed0ujIiILRaTIfT1GRD4RkUHABcDlIjJDRPZ2d72PiHwpIguaVWNr7fhZIjJJ\nRKa7xzu6rXa5yz8RkTHu6wdEZJqIzBaRv3T1Z2DWZQF9M+TPyuaoK68jv+8WDNx+R7Y/4NAu78vr\n85GWkYnH48Xr9bBVpoeGO/9G7WefUfvppwQ++4zwkqVISgr97/sXmWN3J/j990QqK4nFWnbZt2Vp\nRR1XvDiDm96cTWlNA33z/Izs69RF32tIIVlp1tFkNmrtlU/tqkOB5aq6g6qOwsnt/gRwslv5zAdc\n2NbGqroQeBC426249pn7UV9gL+BXODni2xIEjlXVnYD9gX+I89yrtXat7U+qOgbYHthXRLaP96RN\n++wv4WbIm5JC36HDOfmm2/H4fPizstd7n+FolPLaMKmhMHjWXCeGfppHrz9cTdVbb1P75ZdUPOP0\nMhZfcQW5B4xjrxNPZ8ncH9j9+FNJb6UdpYEGzntyGnNW1ACgKH85ahQTztmVUCRGeoqHwqz4n78b\n0wO6vXwqTq3zf4jI7cDbQDXwi6r+5H4+AbgIuKeT+33dLbX6g4j0bmc9AW4VkX1wyrT2A3qv3a5m\nFwrNnSQi5+PEn77ASGBmJ9tpWmEBfTPl9frIzOu+eeCLyuo46r4vyPH7+PiGGyAlFTxC7MRTCfYu\npuD001h22eVN69dPn06sppp+JSUMO+IIcrYZhqdZljmNKU6dAaW6PtK0vKI2TCSqFGdbEDebjMU4\n3eytLe8SVf1JRHYCDgduAT5qZ/UIa3pjOxps0tDsdXsjTU8HioGdVTUsIguB9LXbJSKTVPWvTTsU\nGYxTqW0XVa1wB+LZAJhuYl3upltM/N4psRoMx5ha4+WFA87m+f3O4qhn5xIIxfAVF1N0ySVISgri\n95N/xq+p/WoKNa+/Qf2Hk1r85aivCTH13YVMevJHUhuUh87YmX55fkb0zeZPh4/An9p6elljNlLd\nXj5VRLYA6lT1aeBOYHdgkIgMcVc5A/if+3ohsLP7+vhmu6nBqWfeFbnAajeY7497wdJKu3Zaa7sc\noBaocnsAOj8a17TJ7tBNtxg3vBf3TvqJqvowfXPTefn7UlZWBxkzKJ/0FC/i9ZKx805sPelDwKmr\njioZY8dS9LsLkWZ35z9PX83Ut38BoHJlLYdftD2vXbQHHhGKrHvdbGpuqnqWm3Khe0e5bwfcKSIx\nIIzzvDwXeElEfMBUnGfkAH8BHhORm4FPmu3jLeBld0Db7zt5/GeAt0RkFjCNNbXQW2tXE1X9TkS+\ndddfglNH3XQTK59qukUwHKWiLkR9KEpRZhrBSJS6UJSsNB9FbXSPR8rLwePBl5fXYvn09xcx+dWf\nASjom8nRl+9IRo7VOzc9zpIdmI2a3aGb9RIMR/GIkJ7ipW/umvztOXRcra2t8qvDx/alfFmAmooG\n9j11GP7szld+M8aYzY0F9CQXjSmlgQbC0RjZaSnkZqx/cKyqD1NdH8Yjwtszl7OorJZLDxxK725K\n7pKRk8q+pw0jGlHSMy2YG9NTRGQ74Km1Fjeo6m490R7TPgvoSW5phTP6vKo+zJUHD2X8HoPJSu/6\nP3tdKMLzXy/mb//9kTSfh0fOHMMLU5fg/3QBv91nq27L2JaS5iPFHpcb06NUdRYwuqfbYeJjo9yT\n3IdzVlNVHwbgiS8WUheOdLBF+2obojz3tTPbpiES4+O5qxnWJxtV5e2Zy2mIdD5rW0VtiMk/lzFl\nQRmVdaH1al97opG2k9cYY8ymzgJ6kttj60JSvM5YnnEjepHuWzOaPFJZSbikhEh5Rdz7y0j1cuQO\nWwDg8wgHDO/FVsWZHL5dX+pCUXyezo0bCkdiPPXVIk595CtOfvgrXpy2hGg7WePiVR+KUl4bIhyN\nEg5FWTa3gg//8wO/zCwlVL9+FzXGGLMxsi73TVxNWQmLv59JnyFDyS3uhS+1ZT/1oMIMPr16f6qC\nYXplp5Hjd55JR8orWP33O6l69TUy9tyTfnfcjq+wsMPjZab5OHevwRy3Uz/SfV5SvB7SUjysrApy\n2m4D8Xo6d43YEIkybWF50/upCyv49W4DyUjr+rVmRW2Ixz5fwKfzSvn9uG0Y2yeXN++dQSymzJ++\nmjNu2YNUv/3qG2OSi/1V24QFKit49vqrCJSX4fH6OPfeh8kp7tViHX+qD3+qj774WyyP1QaoevU1\nAOq++IJIWVlcAR0gLyOVvIw108jampYWj8w0H1ccPIxvFlXgEeHSA7YhYz1zsy+tqOe+j51pbxc8\n/Q3fXLE/scbpmepkoTPGmGRjXe6bsFgkQqC8zHkdjVBbGX/XuaSn4y0qcl77/XjXmgu+oYgI226R\nzcdX78dHV+3L8D7rn1fen7rm1zrd50FThIPP3ZYttslj39OGkZ5p17Fm8yEiN4nIVQnad1Mlt42R\niBSLyBS3Ct3erXz+qIiM7Im2JUJC/7KJSB7wKDAKUOAcYC7wAjAIJyXhSaoafyQyTVL9fsYefwpT\n33yFAdtuT26vPnFv6ysqYvBLL1H/3XekjxgB0SiRysp1krxsCCleL72yuy+da3F2Og/9emcm/biK\n8XsOJisrlZwdixkwooCUNC9en13Hmg1ruwnbrVMPfdZZs3q6HnqPEhGfqiZ6QMsBwKzW6rGLiDfZ\n6rQnNFOciEwAPlPVR0UkFadk4HVAuareJiLXAvmqek17+7FMcW1rqKslHArh9XrxZ+d0evvQ4sUs\nPP10oiWlFJx3HkW/PR9vVhYaixFesYLaz78gY7dd8WRmEi0txVtYhK+woEWq1o1VLKZ4OjlIz5h2\ndOmXyQ3mj9CyhGodcF5Xg7p9kHcpAAAgAElEQVSIZAIvAv0BL3AzcDswRlVL3drjf1fV/UTkJmBr\nYAhQBNyhqo+0sd++ODdcObglWFX1MxF5ANgF8AMvq+qf3fUX4lR2OxJIAU5U1R9FZFfgXpzCK/XA\neFWdKyJnA8cBWW67jwDeAPLd7a9X1Tfceu3/BT4H9gCWAUeran0b7T4POB9IBebj5LIfCrzptnkZ\nTr77EuAh4ECcanS3AFep6jQRORTnossLlKrqAW2dR9v/Mj0rYbcqIpIL7AM8BqCqIVWtBI7G+QXA\n/X5MotqwOUjLyCQrL79LwRygeuJEoiWlAFS99hpa7/x/iZSWsvCEE1n55z8TXrSYJeecyy/HHscv\nRx9NpKwsrn1HqqqIlJQQrapa57NoTFlVHWRRWS1ltQ2tbN11daEIq6uDTdP1NlV1VZXUVpQTDW/a\n52E2WD309mwPjMMJaje6RVRacxrwnqqOBnYAZrjL26thXurWRX8Ap5IaOLna91bVHYEbaXmuOwEn\nqOq+tF1XHWAb4H5V3RaopGVhmbW9qqq7qOoOwBzgXFWd4R77Bbfmez2QCUxxf26fN24sIsU4F13H\nu/s4MY7z2Ogksu9xMM7V0H/c5xePuleVvVV1hbvOSpwauiaBorEY4WjrU8Gy9t0XSXUGuOUccTiS\n7iSG0XCYaIXzJMSTkUHDvHnOvioqiKxe3eExI+XlrLr5FuaPO4CS+/9NJFBD896glVVBDr77U/a9\n8xNueXtOt80/r22I8O6sFRx672dc/Ox0Smu692JhQ6kpK+Xl/7uBJ6+5hBXz5xKN2lS7TVii6qEf\nJCK3i8jeqrruVXNLb6hqvaqWAh8Du7ax3lRgvHtXv52q1rjLTxKR6cC3wLY4Ncwbvep+/wbnUSqs\nKRTzPXC3u02jD1S1cWpLY131mcCHrKmrDk5998YLiub7bs0oEfnMLRZz+lrHay4KvNLK8rHAp6r6\nC0Cz9rV3HhudRAZ0H86V2APu1U0tcG3zFbSx4HUrROR8EZkmItNKSkoS2MzkVhZo4M735nL1y9+x\nvHLd3qrUQYPY+oP32Wrifym64EK82c6gNG9mJgVnnQU+H7FwiMw993TWHzyYlD4dP6uPVlVR/fbb\neLKziZ14GH+ffT/3zbiP8qDz/2TGkoqmO+g3Ziwj1MYFR2cFGiL84eWZlNeG+OLnMj6fX9ot+93Q\nZk6aSMmiX6irquSDh+8jGKjpeCOzsWqr7vl61UPH+fs6C6fu+I20X/d87b+zrf7dVdVPcXpWlwFP\niMiZzWqYH6Cq2wPvrLX/xqvmKGvGZd0MfOz2Hhy51vq1zV43r6s+GljVbN3mV+PN992aJ4CLVXU7\nnOpybaWsDKpqZ7JftXceG51EBvSlwFJVneK+fxnnF3CV+5ym8XlNq7d7qvqwqo5R1THFxcUJbGZy\n+3ZJJbOWVfH6t8u59PlvqahteSfsSUsjpXdv0gYNwpe/ZkCcNy+Poot+x+BJk5iT05+qK66n4I13\n2OKxxxC/f+3DrMOTkYEnM4P0007g70sm8MyPz/DwzId5cvaTxDTGDv3zyHanpx0+qi8pnZy/3uZx\nhRYlVvvld9zWjVHRgIFNr/O36IfXazntN2Eboh76TrRd9xzgaBFJF5FCYD+cO/HW9jsQWOU+Y3/U\n3W9Xapjn4lwUAJzdwXrr1FXvgmxghYik4FwkdNZXwD7uxQsi0lg5Kt7z2CgkbJS7qq4UkSUiMswd\nRHAA8IP7dRZwm/v9jUS1YXMQrakhtGgR4aVLydhll5ZzySsWsf/CB9hl2xF8PXpX7p9Sjq51YV5f\nU82K+T8RDYXoN2JbMnJymz7z5uRQoin8UF3HgCwfW1YuYcU1d5A+ciS9rrqyzWpp4FRSG/z661TX\nlhNYcn/T8upQNapKn9x0PrxyX2obIuT6U8jP7J7yqEVZabx84R48//Vidtwyj6G91n8aXE/YctRo\njvvjTdSUl7P1zruSnpXV000yXTTrrFnPbjdhO+jeUe6t1R3303rdc4CZOF3tRcDNqrq8jf3uB1wt\nImEgAJypqr90oYb5HcAEEbke546+LW3VVe+sG4ApOI95p+AE+LipaomInA+8KiIenBvNg4j/PDYK\niR7lPhrnKi8VWACMx+kVeBHnF3sRzrS18jZ3go1yb0/t1KksPuNMADLGjqXf3Xfhy8+HwGp49ECo\nXARAzTFPEBh8aIsSp5FQiK9efZ4pr70IwPC99uWAcy4kPdMJHqrKvz/5mTvfm8s7vx6B94wTmgbN\n9fvnveQcfHBcbVxWs4w/f/ln/D4/N+5+I8UZne9xiUZj1FWFqFhRS2G/LDLzrHKL2eBsyoTZqCV0\nHro7oGFMKx8dkMjjbk6C389e83rOHDTiDp5ShcCqps+y6leQ3SyYazRKJBxmyQ+zmpYt+/GHFiOq\nIzFl/uoAAKFIjKysLCJuQPc2u5PvSL/sfty13114xENWasd3mtHqarShAXw+5+IECNaEee6vUwgH\no2Tlp3HCtWPIzLWgbowxjeJ6cOlm27lORB4WkccbvxLdONOxnEMPIaV/f/B66X3tNXgbu2bTs+G4\nRyCrF2y5B7Kd80gtWlNDzaRJrPjTn4jNn8++p54N7iyRnQ47mqrVqyhftpRQQ5AUr4fLDxzKNr2y\neHBWBVs88QS5xx9Pn5tvJm34sM61My0nrmAeqayk5L77mbf/OJZddXXTFLn6QIhw0BnLEqhosMpp\nxqwHEdlORGas9TWl4y17lojc30q7x/d0uzYWcXW5i8iXwGc4UweaRgiqamvD/7uddbm3L1JaisZi\neLKy8GY0m+4aDkKwCrw+yHCerTf88gsLDjscAElNZav33yPo8xCLRFk061s+fOwBRISz//FvCrbo\nD8DCxcspW7aUZVM+Jr9Xb3Y56njSsxLzbDq0dCk/H3hQ0/uBzzxNxs47U1cdYuLDs1gxv4phY/uw\n5wlD8Gd1z3N3Y+JkXe5moxZvl3tGR9ncTM/xFbWRSjkl3flyxWJKNBBoeq+hEESj5PTpQ01ZCR8+\n+m9nuSplS5c0BfReeZks/XIuGo0wav+DSMtM3AAtSU11prrV1IDHg8+d4ZCRk8phv92OaFTxpQjp\n3TSIzhhjkkW8Af1tETlcVd9NaGtMwlTWhXh75gp2yssl77TTqfvsUwrOOANvjpNhzpeWzg4HHc53\nH7xLft8t6LvNmi71jJxc9jjxNKKRCClpiX1u7SssZNBLL1Lz4Ydk7rYb3maj9v3ZFsSNMaYt8Xa5\n1+CkzGvAmSIhOHlhupZvtJOsy339zVpaxZH3fU6q18MVe/XjjNG98efl4Gk2p7w+UEOkoQGP10tm\nXn5C2lEaaOCH5dX0z/fTOyedzPUslWrMBmRd7majFtdfU1XdNCfzmiaRmDOILBSNcfcXyzh2z6Fk\n+lsmPfJnZUM3PBuPhcNofT0evx9JWZMQpSzQwAVPf8O0hRV4BN64eC+26xf/aHljjDFtizs9l4jk\ni8iuIrJP41ciG2a616CiTK45dBh7b1PE0+fuRn5GYrqvo9U1VL/5Jksvvtgp/NLsmX00pkxf5OSH\njyl8s6jd9APGmM2YiOSJyO+6uG231WkXkb+KyIHdsa9Ei7fL/TfApTil+mbgJLKfrKrjEts8h3W5\nd49QJEZDJEpmqi/usqJ1VZXM+vgDUv0ZDNt9rxaZ5Fo9xpIl/HzQmoQzW0+aRGo/p7BTdX2YBz6Z\nzwP/W0BxVhqvXbQH/fPXLkJlzEary13uc4aPWKce+ogf5/RIPfQNVId8vbklVN9286iv/Vm75+CW\ndR3jFqPZbMR7h34pTi3cRaq6P7AjTjk7swHFYlFqKysIVJQT6UJJzVSfh+z0lLiDeSgY5JOnHuPz\n5ybw0eMP8N0H79LhBaBIi9fN3+b4U7hwvyF8cc043rlkL/rlbZp51o3pDDeYP4KTp1zc74+4y7tM\nRH4tIl+7c7EfEhGviASafX6CiDzhvn5CRB5055rfISIFIvK6iMwUka8ay6GKyE0i8pSITBaReW6d\n8cb9XS0iU91t/tJB28501/tORJ5ylxWLyCvuPqaKyJ7Njvm4iHwiIgtE5BJ3N7cBW7vnd6eI7OdW\nVHsTJ4U47jl8IyKz3dSt8f7s1tnO/fk9ISLfi8gsEbm82c/uBPf1jW7bv3fzsmxU4yriHZEUVNWg\niCAiaW4B+85lFjHrRVUpW7KYl27+E5FwmGOuvoF+w0fi9SVuUFksGiFQvuYCt3r1ajQWQ7zeNrfx\n5ubS7+67qXrjDfJOPBFPbi71oQjzS2r576wV7DesFyP6ZpOdbsVGzGajvXroXbpLF5ERwMnAnm5h\nk3/TcVGS/sAeqhoVkX8B36rqMSIyDngSGO2utz1OL2wm8K2IvAOMwqlPvivORcmbIrKPW51t7bZt\nC1zvHqu0WaGTe4G7VfVzEdkSeA8Y4X42HKceejYwV0QewKnOOcqtwoaI7IdTLGZUY5lT4BxVLRcR\nPzBVRF5R1bI4foTrbIdTnrVfY4+AiOS1st19qvpX9/OngF8Bb8VxvA0i3miw1D2514EPRKQCJw+7\n2UAaamv56D8PUV9TDcB7D97Labf8vUuj0YOBMNFojJQ0L6npbf8KpGdmceBvLuKde+/Al5bG7iee\nhmetYF5VF6YhGiXF4yE/MxVvdjbZhxxM5r774ElPRzweyirqOPb+L4jEnNzwEy/bm+F9LKCbzUYi\n6qEfgFNZbap7k+injcqVzbzUrHToXrgV2VT1IxEpFJHGWUtvqGo9UC8ijbXT9wIOxqmHDpCFE+DX\nCejAOPdYpe7+GwfLHAiMbHZTmyMijUkt3lHVBqBBRFazpib62r5uFswBLhGRY93XA9w2xRPQW9tu\nLrCVe7HzDvB+K9vtLyJ/wLkgKwBms6kFdFVtPPGb3H/gXGBiwlpl1uHxecnMXxO8M/PyEY+H2qoK\nomFnfrg/u+NZhPU1ISZNmMPKBVXs8qvBDN+9D2n+toNrft9+HH/dX8HjIaPZ/ssCDdQ0RHj88194\n7uvFjBvei1uP3Y7CrDTE42mRsW5FZZBIbE1X/c+rAwzvs0FmPBqzMVhM62VBu1wPHecueYKq/rHF\nQpErm71du3Z3LfFprXa6AH9T1Yc61cqWPMBYVQ02X+gG+Hhrnzedg3vHfiCwu6rWicgnxFGvvK3t\nVLVCRHYADgEuAE4Czmm2XTrwb5xn80tE5KZ4jrchdWaU+07us43tceqchzraxnSf1HQ/+591Pjsc\ndDgj9hnHkZdfi6ry4k1/5JGLxvPho/+mrrqqw/2ULKlh0fdlNNRF+PzFeU350QEqakOsrApSFljz\nf0tEyMjNWyeYX/zsdFZVB3ly8iLCUeW92atYWd3i/2mTQUWZbF3sXIj3zU1n54GJmeNuzEaq2+uh\nA5OAE0SkFzj1u8WtZS4iI8QpAXpsO9t/httF7wa4UlWtdj9rrXb6e8A5jXfUItKv8dit+Ag40d2+\neW3x94HfN64kTjXO9tTQfhnUXKDCDcrDcR4TxKPV7cQZFe9xU5pfj9O931xj8C51fw4nxHm8DSau\nO3QRuRE4EXjVXfQfEXlJVW9JWMvMOjLz8hk3/reEgvXEYlFWzvuJ8uVLAfjpq8/Z5/Tx0MEo9Kz8\nNReUGTmpiDtArrw2xE1vzubN75az2+AC7j99J4qyWs8KVxuKMnlBOVeKkOP3UV0fIcUrFLQxFa44\nO43nzx9LbUOEjFQvvXI2qotaYxJqxI9znp0zfAR04yh3Vf1BnBrd77vBOwxchPPc+W2cuuDTcLrG\nW3MT8LiIzMS5uDir2Wet1U5f7j63n+zeUQeAX9NKN7+qzhaR/wP+JyJRnG76s4FLgPvdY/pwuusv\naOccy0TkCxH5Hvgv69YjnwhcICJzcLrLv2prX3Fu1w8ntjXe6Lbo/VDVShF5BPgeWIlzobNRiXfa\n2lxgh8auEncgwQxV3SAD42za2hp11VV88uSj/PzNFE668W88+6criEWjZBUUcvqtd5OVX9Du9g31\nEcqXBVg+v5JtxvQmuzAdEWFhaS37/f2TpvXeu2wfhvVp/eJ4VXWQcX//hFH9crn6kGF8s6iC/YYV\nM7Awk/SUtgfMGbOJ26hGNCeC240cUNW/93RbTOfFOyhuOU53Q2OfahqwLCEtMu0K1dUx57OPAZj2\n1quccce/KF28kH7DRnYYzAHS/D76Dsmj75A1AzhLahooqWmgb246K6qCZKf5yMto+7l6QWYqL16w\nO3e+N5fXZyzjyoOGkp9ptcmNMaYnxXuH/jrOPPQPcAZIHAR8DSwFUNVL2t56/dkd+hqBinKevPpi\n6muqSfVnMP6eh8haz7zrKwPl1AZDpHmzmL2shqF9chiQ78fnbX+IRaAhgs8jdlduNhdJf4feGe4z\n8kmtfHRAnFPHEmpjb18ixBvQz2rvc1Wd0G0taoUF9DVisSiBsjJWLphH762GkFVQhLedeeEdqWyo\n5P5v7+eFuS+we+/duGXk1WRnFJJeVNjxxsZsXiygm41avNPWmgK2iOQDA1R1ZsJaZdrk8XjJKe5F\nTnFbA0w7py5cx/Nznwfgy1VfsXLQSvzLyqBo927ZvzHGmA0jrmlrbkq+HHf6wXTgERG5K7FNMxtC\niieF3hlODod0bzoF/sKmGunGGGM2HfEOistV1WpxirQ8qap/dqcemE1ccUYxzxz+DDNXzWCofyBZ\nKwOkbrVNTzfLGGNMJ8WbWMYnIn1xMue8ncD2mLXUVYeoKQ9SV524PD69M3tz0FaHMLDvcHJ3HIM3\nt2dqlNcHQtRUJPZcjdmciMhRInJtG58F2ljevBjJJyIyJpFtbIuIjBaRwzfAca5r9nqQO+99ffdZ\nLCJTRORbEdm7lc8fFZGR63uctcV7h/5XnExBX6jqVBHZCpjX3Y1JZtUN1YSiIVK8KeSmxRcw66pD\nTHzke1bMq6TP1rkc9tvtyMhJTB3znlYfCPHZC/OYN3UVRf2zOPKS0Ul7rsZsKKr6JvBmT7eji0YD\nY4B3E7Fzt1Ka4GTsu7Wbd38AMEtVf9PKcb2tLe8Ocd2hq+pLqrq9ql7ovl+gqscnokHJqCJYwd3T\n7+bgVw7m1q9upTxY3vFGQCgYYcU8p0rtyp+rCAU7X8I4GAlSWldKINTqxfhGI9wQZd7UVQCULg1Q\nXbJ2pkxjNl33X/DRafdf8NHC+y/4KOZ+X6/SqdB0N/mje0f9k4g8IyIHutnV5onIriJytojc564/\nWJyyqLNE5JZm+xERuU9E5orIh0CrI25F5GB3++ki8lKzwiqtrbuziPxPnBKl77k9vIjIeeKUH/1O\nnFKqGe7yE8UpSfqdiHwqIqk4N5Ini1M+9eQ2jtNW6VVE5Ap3n9+LyGXNfmZzReRJnIxvjwF+9xjP\nuJt6ReQRcUqrvu8mUmvrPNc5H3FS2t6Bk0J3hoj4RSQgIv8Qke+A3Zv3fIjIoe7P9DsRmeQu29X9\nWX8rIl9KnNVN4x0UN1REJjV2RYjI9uKkHTRxCIQDvPzTy4RjYd5d+C7VDdUdbwR4vUGOvWIrjrli\nGP2H55OS1nJ6WizW/pTDQCjAOwve4YyJZ3DXN3dREazo8jkkms/nIbvQSQnrS/WQVWDpYU1ycIP3\nOvXQuyOoA0OAf+CUHx0OnIZTGe0q1s0Vfy/wgKpuB6xotvxYYBgwEjgT2GPtg4iT5/x64EBV3Qkn\nrewVrTVIRFKAfwEnqOrOwOPA/7kfv6qqu6jqDsAc4Fx3+Y3AIe7yo9xaITcCL6jqaFV9oZ2fwXCc\ngiq7An8WkRQR2RkYD+yGk6v9PBHZ0V1/G+Dfqrqtqo4H6t1jnN7s8/tVdVugErcqXRvWOR9VnbFW\n2+txStFOUdUdVPXzZj+rYpzfjePdfZzofvQjsLeq7ujuK64ehHi73B8BrgYeAlDVmSLyLGC53OOQ\n5k0jJzWH6lA1fp+fjJS1SyOvq7aygpdvuY7y5UvJyi/k1Fv+0dQF3VAfZvlPVfw8YzXb79efwn6Z\neH3rzkUPhAP8ZfJfUJSXal7i6CFHk5/ePYVR6qpDxKIxfKle0jPXvxRqRm4ax/9hZ8qWBsjvk4k/\n28qrmqTR7fXQm/lFVWcBiMhsYJKqqojMwqnv3dyerAlOTwG3u6/3AZ5zS6suF5GPWjnOWJyA/4XT\nU00qMLmNNg3DqZ/+gbuulzUXEKPc3oE8nDzz77nLvwCeEJEXWVMzJF6tlV7dC3hNVWsBRORVYG+c\nxw+LVLW9vO+/uEEZ4BvW/Tk219b5rC0KvNLK8rHAp40lYZuVms0FJojINjjJ3OL6gxhvQM9Q1a9F\nWuRV6Hz/72aqML2QF498kemrpjO6eDQFaR2naK0uLWkqvBKoKGPVgnnkFBUBUF8T5t0HnEkGP09b\nza9v3p3MvHUDukc8ZKRkUBt2Kg7mpHbPdLTaqgZev+tbKlfVMfrAAex82KBuCeqZuWlk5loKWZN0\nElEPvVHzsqOxZu9jtP73veNMYq0T4ANVPTXOdWeramvJLJ4AjlHV70TkbJxqbqjqBSKyG3AE8I17\nhx2veEuvNuqojOza+2uzy502zqcVwWa16ONxM/Cxqh4rIoOAT+LZKN5R7qUisjXuL4M4IyBXtL+J\naeT1eOmX1Y8jtz6SATkD8Hk7vo7Kyi/Al+LckYt4yO3Vm5LFCwkHg0TDsab1opEYbWX7K0gv4OnD\nn+b0Eafz4IEPUuQv6lS7VZXQ4sWsvvef1H75JdGaGgBKFtVQucp5xj3jwyUt2mOMWUdbdc/Xpx56\nV3wBnOK+Pr3Z8k9xnlV73Wfd+7ey7VfAniIyBEBEMkVkaBvHmQsUi8ju7ropIrKt+1k2sMLtlm9q\ng4hsrapTVPVGnEpxA+i4fGp7PgOOcZ9pZ+I8VvisjXXDbnu6otXz6YSvgH1EZDC0KDWby5p6KWfH\nu7N479AvAh4GhovIMuAXutZ4Eyd/Ti5n3H4vC779hqItB/LtxLeY/ckkzr7rATLzitn1qMEsmlnG\njgdvSWpG6/+MPo+PIXlDuHbXVmetdChaWsrCU08jWlZG2QMw+I3X8Q4bRn7fTDw+IRZRigZkIV7L\niGlMO67DeWzZvNt9feuhd8WlwLMicg3wRrPlrwHjgB9wLjLW6UpX1RL3DvQ5EWnsRrse+KmVdUPu\nTd8/RSQXJ87cA8wGbgCm4ATtKawJ2He63cuCk3/9O7ct14rIDOBvHTxHX7sN00XkCZyaIwCPquq3\n7t3u2h4GZorIdOBP8R7D1db5xNvOEhE5H3hVnLKtq3FqpdyB0+V+PeuWjW1Tu7ncReRSVb1XRPZU\n1S/cKx2PqtZ0ptHra3PO5V5VspoX//JHqkucEeDHXH0DW4/ZjUgoSjgUJTXdh9cXb0dL54RXr2b+\nfvtDzLkDH/DYY2TtuQeRcJS6QJjq+jDZWSnkrkd9c41EEJ9zQVIeLGfiLxNRlMMGH0ZBesePJozZ\ngLp85eoOgGtRD/2iB8et7/NzY1ro6A59PM7IyH8BOzUOMDDdLxqL4hEPa41TwJeaSkZuLtUlqyga\nMJDeW2/jLvfiS01slTNPVhZ9b/sbpffei3/0aNKGDaO2qgFPqodfAkH++vYPDO+TzZUHD6Wgk+VT\nNRKh4eefKXv0MTL32IOUg/bln9/9k1fmO+NGfij7get2u47MlMxEnJoxG5QbvC2Am4TqKKDPEZF5\nwBbSMtWrAKqq2yeuaZuP1XWrefC7BylML+TUEae2uDPNzM3j2Gv+TECClDaUUp8WxR+L4vUkvmSp\nNyODnIMPIWuPPYiKj68+Ws38aXPY//fbc/Z/vqaiLsw3iyrYdXABR4/u16l9RyoqWHT6r4kFAlS/\n9Ra9xr7Lz1U/N32+oGoBoWjIAroxGzEReQ0YvNbia1S1rdHeXT3OeJxHBs19oaoXdedx2jn+/Tiz\nBJq7V1X/syGOH692A7qqnioifXCG4h+1YZq06SipK2FO+Ry2yt2K4oxi0rydH6Fd3VDN9Z9fz+QV\nzmMrv8/POdud02Kd+pQIF37wO36q+InctFxePepVemV0T7W1jnjS0/Ckp1G9opaZk5xR9zVlQfwp\nXioIA5DRTk9BJBwjGnEeDbTofVAl1rBmMKm/MsiVY67k/A/OB+DqMVd326h8Y0xiqOqxG+g4/wF6\nLHhuqAuH9dXhoDhVXQnssAHaskkprS/lrIlnsaRmCWneNN465i36ZvXt9H6iGqUusiYrWnVo3aQz\noWiInyqcsSdVDVWsql21wQJ6o9R0Lx6vEIsq8z9awtPn7sY9k+Yxql8OYwa2/qy7PhBixgeLKVkc\nYLejt6Kof1bT835vTi4DHvg3Jf+6j4xdxpDapw/b5mTxzrHO+I/ctNwN0gthjDHJot2ALiIvqupJ\nbpKC5qPnNvsu90gswpKaJQA0RBtYUbuiSwE9Pz2fW/e6lZsm30ReWh6/HvnrddZJ96UzbsA4Plry\nEYNzB3fpOOsrPTOFE68dw+Ifyhk8uoicQj//OGkHfB5Z57l/o6VzK5j+njMzZ+WCKk7/69imeeae\n9DQyx44lfdQoPGlpePzOVM/ijOINc0LGGJNkOrpDb3xm8auu7FxEFuLMJYwCEVUd486zewEn+85C\n4CRV3XhzkrbB7/Nz6rBTeW7uc/x/e3ceH1V5PX78c2YmM9kTCCGyCu7gUtQRFamiFMWl4lIVtSrV\nulVr1dparf1pW22r369brUvdqf264o77hsXdIIoCohRQlrBlXyeZmfP7496ECWTPTCYM5/165ZWZ\ne59775NLyJn73OeeM7ZgLNvnbt/jfY3MHcltk27DK16y/FveMx6QPoBrJ1zLleEr8Xv93X6ePB58\nfi+DRuQwaMSmpzI6u37WmNS02kaaWvH58OXnx6uLxhizTevwsbVe79wJ6EFV3Riz7CagTFX/Jk5Z\nvwGqemVH++mvj61VhioJRUL4xMfAjG33EavS+lIiGiHTl0m2f1O9hvrqRj6ZvZwN31cz4YSdKBqd\nm7BH7OKltjJEqC5MIFiO+CUAACAASURBVNNnWevM5izhgunXOhtyr6btVIHNQ+49mbU0jU3p8Wbi\npLTrMKD3V10tg5psjfVhQvVhBAhkpW1R5KU31tWuY8arM1hVs4qrxl/FtB2ntYwyZOT4mXDCTkSa\nIvgzfHi8/T+YN6e0zRmYzolX7mtB3aQsETkO+EZVF8Vpf0HgTFW9pNPGCSAixwJj3YvFQmA2Ts75\nS4CrgNNUtSIZfesrnc1y72navZZdAK+LiAL/VNV7gSJVbU4buxYnkf42SaNR6muqQZX07Bw83vhP\nAouEoyz7YgNvPbwYETj8grEU7ZZNTqDtyoe1TbUt1eDyAnmdFpJ5f837rKpxZr/f/tntTNl+Sqvb\nBmkBb1w/QCRSuDHaktK2uqyBxvqwBXSTyo7DCXpxCeiqWoxThS0pNqv9vnk98vbSvqaUrqZ+7amJ\nqrpaRAbjVN75OnalWxWozTF/Nx3eeQAjR8ajhkH/UltZwTcfvcdX77yBRqOMmTiJsQcfRlZ+fKqh\ngXNLoKaqngVvOwFXFRbNWUv9oDT2HLb7Fu3D0TDvrX6P37z7G0SEvx/2dw4ednC7k94AxhaMxYOH\nE3c6lYOHHo5Et96yp2kBL0Wjc1m3vIqBQ7MItJNS15juuvmUY7bIFPfrJ2b3KtGMiPwU5+rTj5N2\n9BfAP4D9cAqKzFLVa922f8N59DgMvI5T0exY4BA3veiJqvrfNo5xLs7fYT+wFDhDVetE5CTgWpz5\nUZWqerCITAKuUNVjRGQ8TlKydKAe+JmqLmnn55iBk2s9DxgG/FtV/+iuew4nr3s6znPf97rLp+Kc\nTy+wUVUnu/sJAvfjpE7NcEcNDsQpbRpU1Y0iciZOeVkFFqjqGV0/6/1bQu+htzqQyHVADXAuMElV\nS9xCAHNUtcPi7f31HnpP1VZWMOv6a9j4/YpWy/OLhjD9TzeSlR+f+/Gz/zubr9Yt4sB1R/PVa07q\n2H1OHMbyoZ9x8piT8HlaB6zqxmoufedSPlnrpD8+ZPgh3HTwTR1epdc21VJe18BrX5bz0PvfM2mX\nQi4/fFcGZvnj8jP0tbqqRppCEdIC3pZytca4enQP3Q3mbeVyP7enQV1ExuAErRNUtUlE7sIp9DFb\nVctExIuTE/0SnCIfHwC7uRdR+apa4eY6n62qszo4ToGqlrqvrwfWqeod7pNPU90Ltub9TWJTQM8F\n6lQ1LCI/Ai5U1TbriruB+K84JVfrgE+BGapaLCID3Z8nw11+CE5Rsc+Ag1V1eUybGThB++LY1+4x\nVuAE+yKc3PUT3OA+MKZk6VYvYTc13Wo8Oc2vgcOBr3CGRM5ym51F6yIBKU9VWfrJh1sEc4CKdSUs\neOs1opHeV6aNapRP133K40sfpXHsOn502Y4c97u92DjsvwSH7rtFMAdI96Zz1OijWt4fvcPRpPs6\nvuLOSsvCo5n8efYSVpXX8++Pv6eksr7X/U+WzFw/eYUZFsxNPHVUD72nJgP7Ap+6xUsmAzsAJ7tF\nRuYDu+PUMK8EGoAHROQEnKDZVXuIyFw3gJ/u7hM21S8/l7YfeMkDnhKRr4BbY7ZrzxuqWqqq9Tij\nBxPd5ZeIyBc4H1ZGADvTfg3xrjgMeKp5onYqBXNI7JB7EfCsO1zrAx5V1VdF5FPgSRE5B/gOODmB\nfeh3Gmqq+WrOG+2uXzz3HfaaPLXToff66ipWf72Qxvp6Ro3bl8zc1hP0POLhrLFn8eZ3b3LFx5dx\n8yE3s3fh3hzAfq1SyzZFojQ1NFBfvpH1K5Zx6F4HM/6ElxGEvEAeHun8M5/XI+QEfFSHwngEctN7\nXxvdmBSSiHroAsxU1ataFjglON8A9lPVcvcKPN29Sh6PE/R/AlyME9i64mF6Vr+8u/W8Nx8qVveK\n/0fAge4w/xycoXfTjoQFdFVdRhsZ5tzhm8mJOu5WoYO7HKrOVXzVxvWIeEjPziYtsOXv8OK57/DO\nzPsA2GvyVCad+XPS0lu32z53e5477jlUley07C2GzktrQtz7n2WcPjaLWVddjEaj5BVtx6l/+l+y\nuvF8eEGWn2cvOojn5q9m0q6FW+1wuzEJ8j3QVqKK3tRDfwt4XkRuVdX1bn6PkUAtUCkiRcCRwBwR\nyQYyVfVlEXkfWObuoyv1xjev970aNtUvBz4WkSNxrp5jdbee9xT3Z6jHmax3Ns799HI3mO+Gc2UO\nztX6XSIyOnbIvQvHAHgb50LzFlUttSF30yvpWdmMPaT9zzMTTjqNlQsXcN/F53D/L8+h5Nst55FE\no1HWf7e85X3pqu8Jh5u2aOf1eCnMKGRw5uA274M//dlqXvxiDevXlKBuidTKdWvRaKRbP5PP62Gn\nwdlcccSuBEcNJCtgk8mMiXE1Ww5z96oeuvuo2TU4TxEtwLkyD+EMtX+NU9ntfbd5DjDbbfcecLm7\n/HHgNyIyX0R2bOdQzfW+33f32+x/RORLd0j9A5z65bFuAv4qIvPp2oXjJ8DTwALgaXfG/KuAT0QW\nA3/DCeSo6gaciXrPuMPx3amTvhC4AXjX3faWrm67NeizSXG9kXKT4irKeerPv6d0VesP6LmFRUz/\n4428dMf/sHrxQgB2nXAwR150GV5f62HsinVrefZv19HYUM9xv/0Dg7ffAfF07/PZPe/+l5te/Zrn\nzvkBi/79D9Z++zUTTv4pP5hyJIFMq3JmzGZ6nFgmEbPcU8XmE9hMz1lAT5LainIWvzeHhXPeJOo+\ntrbHoVMgI40NpWtYNvd9Frz4AtN+/Xt22Ge/dveBKhm5eT16hr20JsRtb35LdaiJP0zennSf4PP7\nLZgb0zbLFJcAFtDjxwJ6EkUjETexDGTkZFPVVMO/Fv2LF5e9yNTtj+Cs3c4gx5dDIKPj5C5dURGq\n4Nvyb6kIVbBv0b4tE+NCTRHCUd1imLyioYKPSj5iSdkSjtv5OIZnD+9y9TONKgiICJGqKsJlZWh9\nPb7ttsM3IH7P2RvTx1I2oPdFvW8ROQK4cbPFy/uqBOu2wAJ6P/Jd1Xcc8+ymOjjPH/c8O+TtEJd9\nP/PtM1z7wbUAHD36aK454JpWedc7ap/rz+XZac92qWRrbUWIea+uwBfwss+PRtDw9muUXOlk9s0/\n+WQGX/FrvLlW59xslVI2oJvUYLOX+pGAN4BXvEQ0gkc8ZHidkqLUrIdII/jSIav7ldYi0Qjz1s5r\neb+wdCGhSIhs2g7okWiEz9Z91vK+qrGKhnBDp8dpqGnijYcWsXqJUzxvyJA0vM9vSjNQ9corDPzF\nRRbQjTEmAWyWez+S58/j/sPvZ9qO07h3yr1O8ZeqEnjoSLh1d5h1NtRu7HxHm/F6vJy959nk+nPx\niY/L9r2sw6tzr8fL9N2mk+ZxJuLtNWgvstI6v68ejSq1FaGW9xvWN5F9+OEt7zN+eAgNoba2NMYY\n01s25N4PRTW6KaHLJ/fBy1dsWvnzN2F425PkOhKJRihrKENRcvw5ZPgyOmwfCoeoCFVQ3VTNgMAA\nCjIKOj9GJMq6ZVW8dNcCfGkefvyrcWT7m6j/bhWR6hpCuUPwDRpI0fZ2hW62Sjbkbvo1G3Lvh1pl\nZ8sd2nplJ3XXo9EoHvfxtWhUaWoI403z4EvzUphZ2OU+BHwBinxFFHWjGJ7X66FodA6nXbe/09Uc\nPxpVqkM+Fi5ZQ1HAz+hBHX+QMMb0D26Gt9mqukcnbSao6qPu+6SWUN3WWUDv70YeCJOvg+VzYJ+z\nIKv9oFxSU8J9C+5jVN4ojtnhx9SuUOa9soKi0bmMmzKSjOzEZ3Dz+rxk5cXMhvcIhcNz+OH0nfH2\n83roxphuGwWchpPIJuklVLd1FtD7qXBjiPKSNXz35ReMmfBTMvb9GZ5ADmz2vHl5Qzkrq1dSkF7A\npXMu5esyJ5lTQXoBoZe2o2RpJau/qWDgsCwK9woQjobJD+Tj9/ZtetaeBvOG2iZKllawYWUNYyYM\nIWegpXI2Blqujl8F5gH7AAuBM3HKhf4vzt/3T3EqnYXcimNP4qSErQdOU9Wlm1ddE5EaVc1u41iP\nAM2TaS5W1Q9wMriNcQvEzMTJVNdccW0g8CBO0Zg64DxVXeBW3hzpLh8J3Kaqf4/nudlW2SVTP1Vf\nXc2/r7qMdx+5n4d+fTF1oegWwby6sZqbi2/m9JdP57P1n1HbVNuyrqqxGo9n0y2/utoQv5nzG456\n5ii+2vgVUY222lc0qqyvbmBDdQORaP+ZV1G6qoaX7/6ST2cv58W/f05dVWOyu2RMf7IrcJeqjgGq\ncNK6Pgycoqp74gT1C2PaV7rL/wHc1o3jrAemqOo+wClAcwD+HTBXVcep6q2bbfNHYL6q7oWT5vZf\nMet2A44AxgPXurniTS9ZQO8HwpEwlaFKGiObglWorraljGqorpZIG7naG8INfFTyEQCzvpnFXyf+\nlR8U/oBjdjiGKdtPYcd9B5OZ62fk2IFst2cml465gjsPvIeXlr3UKvgDLN1Qw7R/vM+P73ifpetr\nEvjTdk9NRUPM6xBbwyROY/rQSlVtztn+b5zCV8tV9Rt32Uzg4Jj2j8V8P7Abx0kD7nPLqD6FU5a1\nMxNxrupR1beBArdOOsBLqhpyy5iuh25M1jHtsiH3JKttqmXuqrk8+vWjTB01lWN2OIbcQC6Zefns\ncejh/Lf4I8YdcUyb2eKy07L5+Z4/54aPb2BZ5TIKMwv5x+R/kOZJIysti7wDIuwwrhA8Ub7/tpT3\nH1pHZo6fcy/5BQFvoGU/NaEm/vLyYkoqneD5l5cXc+dpe5PdD8qgjhhTwPZ7FlC2ppZDTt2VQIb9\nyhoTY/NPuBVAR4+kaBuvw7gXdyLiAdq6H3cZsA6ngqYHp756b8Q+wBrBYlFc2ElMsurGan77n9+i\nKPPXz+egYQc5AT03j0POOJuDTvkpaYF0AplbBvSMtAyO2eEYJo2YhFe8FGQU4BEPZQ1lfLbuMwZn\nDmZo1lC8DX6Kn/meSFOU6rIGlr5XxsSfbPo/7/d62WVwDnOWbABgl6Js/L7+MXiTmevnRzPGEg1H\nCWT68KZ1P2e9MSlspIgcqKof4kxOKwbOF5GdVHUpcAbwbkz7U3Due58CfOguWwHsi3N//Vicq/HN\n5QGrVDUqImcBzf8ROyrBOhen5Oqf3drmG1W1SsSe/ksUC+hJJghej5dwNIwg+Dyb/knSs7I3TUFp\nR7Y/u1WSmMpQJde9fx3vrHoHgEeOfIRRgR0ZOCyLqo3Oh+rtRrd+Dtzv83DBpB0YMzQHFA7ZdTB+\nX/8JnOlZyR8pMKafWgJcJCIPAouAS3DKjD4lIs2T4u6JaT/ALaMaAk51l92HU1v9C5xJdq3vxznu\nAp4WkTM3a7MAiLjbPowzKa7ZdcCD7vHqgLN696OazlhimSQLhUN8VfoVTyx5giNHH8l+Rft1mMWt\nMxvqNnDSiydR2lAKwHPTnuPK/1zJH/e5gfoVHooGDaRwRK4FSWO6r19dWnblOfHN2q/AqWrW/XST\nZqtgV+hJFvAF2LdoX/Yq3Ksl1WqzxkgjTZEmsvxdK2cabmoi0ODh9om38It3f0mWP4tQJMSS8iX8\n9J3p7JK/C7eNu82CuTHGpCAL6EnQnIa1MdpIVloW+YH8LYJ5WUMZD3z5AMsql3FF8ApG541unUFu\nM/XVVXz+2kss/M9bDNt1LK+c9gKNAWf0ZUjWEEpqSwhrmDSvBXNjUoGqrgC6dHXuth+VsM6YfsEC\nehKU1JYw/aXpVIYqOW2307ho3EXkBlrf135v9Xv8a5Hz2OaKqhU8cuQjDMpoXWmturGahnAD6b50\nylYs44On/g+AynVrySkYxISTTsPj9fHoUY9S01RDtj97i30YY4xJDf1jKnMKaYw0Egp3XFJs7qq5\nVIYqAXhiyRM0RrdMluIVb6vXEnP7LtwYYkPlOu774l5OfOFEbv/sdmRA61nwpatWEgk7z7EPyhxE\nXiCPuavm8uy3z7K2di1ra9dS09i1580r6hqpatjyOXhjjDH9hwX0OCqtL+WGj27gmvevYV3tunbb\n7bvdvvjEGRwZv934ltexJgydwAV7XcCPRv6IOw+7k4Hpm4qyVJdupLRiLQ8tepjyUDlPLHmCcJaX\njGzn6RHxeNj/uJNIC2xKk/rW929x5+d3MjJ3JCe+cCJTZk3h+aXPU9dU1+HP9H1ZHRf8ex6XPDaf\ndVW9ffTUGGNMotiQe5yEo2Hu/uJunln6DAB14Tpu/OGNbc5YH5EzgtknzGZD3QZG5owkPz2/1frG\n+nr8IThn1xlE04T6cD01TTXk+J2AvX7FMnzDBpLhy6A+XO8kkvFnc+b/3kl5yWryCovIyG09hF9S\nU8LYgrG8/f3bVDVWAXDfl/dxxKgjyEzb8hl3cK7Mr5y1gI+WlQFw8+tLuOH4PUmzIivGGNPv2F/m\nOIpEI61e6xZJnBwZvgyGZQ9j3OBxDGwuh9pYD9XrqN+4huIXn+HRa37N6uVL2Fi/kdU1q3lzxZss\nr1zOxrqNDNt1LN+88gb3T7ybi/a4kEePepT8QD7ZAwYyYuye5BYObnV1DjB9t+kMSB/APoP3aVkW\nLAp2WKTF6xEyA5uG/rMDPjz96sEdY7ZdIjJVRJaIyFIR+V2y+2OSz55Dj6ON9Rv5n0//h7pwHb/f\n//dsl7Vd5xuFQ7B+MRQ/CKMOoiJ/Hx74zWUMHDqcA66+hJ+9cTb14Xr+cMAfGJw5mNdXvM5v9vsN\nvvoo0WgUf3pGm1nk2lIRqqAp0kR1UzWl9aXslL8TA9IHdLjNuqoGbn3jG7ICPi6ctCODsgMdtjcm\nhfWbj7Mi4gW+AaYAq3ASyJyqqouS2jGTVDbkHkeDMgZx3YHXESVKVlrXnh2nrhQePALCDfDZTLy/\nWIw3LY3tdtqFJ755sqWIymNfP8afJvyJZZXLaIw0kpfffl309uQHnKH9QgrZIW+HLm1TlJvO9cft\ngUekVfU2Y0xSjQeWquoyABF5HJiGky3ObKMsoMdZRlpG9zaIhp1g3rx93UpOvfr3rF29gR8OS+Pp\npU8DsP92+1MfrufcPc8l15/b3t4SwtfDe+aqiuVtNsYRDAZ9wCBgY3FxcbiXuxsGrIx5vwrYv5f7\nNFs5C+jJFsiFydfCJ/+E0Yfg8wcoGlBI0dgg1Y3VPD/teWqbahmSPQRVJdefS8DXv4e96xrDLFpT\nxax5q5g2bih7Dc8nK2C/ambbFQwGJwAvAelAQzAYPLq4uPiDJHfLpBi7h94fhGqgsQZ8GZCRl+ze\n9FpJRT0/vOkdwlHFIzD3t4cybEDX7vMb04/1aLjJvTLfAMQ+zlIBDCouLo60vVUnHRE5ELhOVY9w\n318FoKp/7cn+TGqwWe59pCHcwIa6DZQ3lG+5MpANOdu1CuZVoSo+WP0B93x+D2tq1vRhT3svFI4S\njjofFKMKtY09+ptlTKoYhHNlHisd6P5EmE0+BXYWkdEi4gemAy/0Yn8mBVhAj6NINMJ3Vd9x9+d3\nM3/dfGobnQlt9U31vLPyHY5/4XgufedSNtZ3Xuzou+rvOP/N87nzizs569WzKK0vTXT3eyxUH6a2\nMkSozskml5eZxi8m7UhRboCfHTSKQpsZb7ZtG4HNszI14Fy194iqhoGLgdeAxcCTqrqwxz00KcFu\nbMZRWUMZp798OpWhSu7+4m5mHz+bLH8WNU01XPPeNTRGG/ls/Wd8sPoDjt3p2A73tbZ2bcvrjXUb\niWo00d3vsrW1a5m5cCaj8kZx5JBj+OrNEha/X8KOwcHs/+PRDMj284tDd2TGhFFk+L3kpFtBGLPt\nKi4uDgeDwaOJuYcOHN3T4fZmqvoy8HIcumhShF2hx1FEIy052hWlrMHJsOYRD8NyhrW0G54zHIDa\nplo21G1oaRdrn8H7cPCwgynMKOSGiTeQndbzGumxmiJNrK9bz8rqlVQ0VHR7+7L6Mi566yL+vfjf\nXP/R9dTXNTL/9e9pqG1i4burCdU6V+nZgTQG56ZbMDcGcCfADQJG49w7twlxJu7sCj2OstKyuGr8\nVdz/5f2M32482+duD0BBRgH3TbmPV5a/wm4Dd2On/J2obazl5RUvc+MnN7LzgJ2549DbGZQ5uGVf\nBRkF/OWHf6Ep0kS2P5t03+a34NpWWl9KOBom3ZdOXmDLCXaralZxyuxTqA/Xc8qup3Dm2DMZkjWk\ny2VVoxpt/QHEEyUt4KUpFMGb5sHn97a/sTHbMPeKfG2nDY3poYQHdDejUTGwWlWPEZHRwONAATAP\nOENVtyw31s+UN5SzomoFOf4cijKLWvKqx8rx53DcTsdx+PaH4/f6W5VELcoqYsYeM1reb6jfwF8+\n+gthDbOicgVaswHKVkLJ5zB4DBTsRF724C2O0ay0vpSN9RsZkD6AgYGB+Lw+NtZt5JzXz2FZ5TLO\nGnsW5+11XptlWevD9QC8tOwlDhl+COm+dAZntn+sWHmBPG4+5Gb+3wf/j6FZQ/Fnezn56v347qtS\nRowZSHq2XZEbY0wy9MUV+q9wJm00R5YbgVtV9XERuQc4B7i7D/rRYzWNNdwx/w6e+uYpAG479DYm\nj5zcZtvMtMx2i53E8uJlVN4ollYs5f6Jf2PQa/8P/vvmpgaDx8AZz0NO0RbbljWUccW7V1C8rphM\nXybPTnuWodlDWVy2mGWVywCYuWgmZ+5+Jrm0DugThk4g4A0QioSYNGIS35R/w04DdurqqSDNm8Ze\ng/bi4akP4/P4nOxzmZBfZI+lGWNMMiX0HrqIDAeOBu533wtwGDDLbTITOC6RfYiHhkgDH5Z82PJ+\nzso5vZ6kNjBjIPdOuZe7Dr2DXctLkNhgDrB+MdGP7uKrdfO5d8G9bKjbNCE2HA1TvM55Lr8uXMe3\n5d8CMDpvNGke5wp5lwG7tKqp3mx4znBmHz+bx45+jBN3PpERuSPISdtytKEjPq+PQRmDWlLJGmOM\nSb5ET4q7Dfgt0Bz9CoAK95ELcNIVDmtrw/4kOy2bs/c4G3Aqpc3YfQbr69Yzb928lkfQNtZt5MM1\nH7KmZg2NkdZ3EGorK6gtL6Oxob7V8sLMQn5YsCe+r2bRFs+i56moWM4d8+/gsjmXtTzD7vf4OXr0\n0QAMzhzMbgN3c/aXUcgLx73AfVPu459T/klBRsEW+wx4AxRlFpHnGc28JfkM1CAatcfKjDFma5ew\nIXcROQZYr6rzRGRSD7Y/DzgPYOTIkXHuXfek+9KZOmoqE4dNxCteVJVpz0+jtqmWETkjeOiIhzj3\n9XNZXrWcdG86Lxz/AkOyhgBQXbqRWTf8gcp1JRw643zGTDwEf0bM8LQ/C5pLqG4uI58a9353fbi+\npTxrfno+V46/kl/u/Uv8Xj+FmU5+ioAvwPCc4S2z6NuzsSbEiXd/yPrqEABvXHawzUY3ZisiIiOA\nfwFFgAL3qurtInIdcC6bnnG/2n28rTmb3DlABLhEVV9zl08Fbge8wP2q+jd3eZvznUQk4B57X6AU\nOEVVV8TzGHE/YduIRF6hHwQcKyIrcP7BDsP5B80XkeYPEsOB1W1trKr3qmpQVYOFhb1JqBQfOf4c\nhmQNYXDmYNbWrW2pgrayeiWNkUaWVy0HnOH52MxuC958hbLVK4mEw7z5wF1bXKWTlg4TLmnzmNGD\nfsWCutXMPOR+bt3lOryVjYTq6wAYkD6AYTnDWoJ5d0SitARzgDUV9R20Nsb0Q2Hg16o6FjgAuEhE\nxrrrblXVce5XczAfi5NNbndgKnCXiHjdSct3AkcCY4FTY/bTPN9pJ6AcJ1Djfi93l9/qtov3MUwP\nJCygq+pVqjpcVUfh/CO/raqnA+8AP3GbnQU8n6g+JMrw7OHsmL8jAIcOP5SAL8D0XacDsNvA3Voe\nVwPIG7ypJnpmbh4ibZzyAdvDyY846V8B0vPg8BvwjJ7E+bv+nPWvfMhT117Fg5edz4YVy3vd/6yA\nl+t+PJbcdB+H7FLIHsO2/vzxxvR3wWAwPRgMjgwGg117BrUDqlqiqp+5r6txJh53dPtyGvC4qoZU\ndTmwFKcEa0sZVvfK+HFgWifznaa573HXT3bbx/MYpgeS8Rz6lcDjInI9MB94IAl96JWCjAIeOPwB\nQpEQ6b50BqYP5OK9L+bcvc7FJz4Gxgyh7xjcn8NmnMeG71ew37E/ITOvjYlkgRzY9WgYMR4ijeD1\nQ8YA8AXwlZfx/ZefO+1U+e7L+Qwfs3uv+p+TnsZJwREctecQ0rweBmT5e7U/Y0z7gsGgF7geuARn\neFyCweDtwB96my0OQERGAXsDH+OMjF4sImfiPC78a1Utxwn2H8VsFjt/qa0yrB3Nd2op3aqqYRGp\ndNvH8ximB/okoKvqHGCO+3oZzie2rdrmE87aSuICkJGTy95HHotGo4ingwERr3fTFXoMf0Ym4487\niXf/9QD+zEzGTJzUm263yAr4rKSpMX3jeuCXQOyznb9yv1/dmx2LSDbwNHCpqlaJyN3An3E+OPwZ\nuBk4uzfHMFsP+4veRzoM5h2opo6sfXZm6r5/Id2XjjfQvUfMjDHJ4w6vX0LrYI77/pJgMPin4uLi\nzQu3dImIpOEE8/9T1WcAVHVdzPr7gNnu29XAiJjNY+cvtbW8FHe+k3sFHdu+eV+r3PlQeW77eB7D\n9IDlcu/nvin/hldXvsZPZp/EMc/9mI/XfpzsLhljum4wztVyW4QellB17z8/ACxW1Vtilg+JaXY8\n8JX7+gVguogE3JnlOwOf0E4ZVlVV2p/v9IL7Hnf92277eB7D9IBdofdzWb4sPlqz6bbUm9+/yaEj\nD21JIGOM6dfW4wTutig9L6F6EHAG8KWIuJNsuBpnBvk4d98rgPMBVHWhiDwJLMKZIX+RqkYARKS5\nDKsXeDCmDGt7850eAB4RkaVAGU6AjvcxTA+I8yGpfwsGg1pcXJzsbnSZqhKOhrtc8KQj5Q3lzF09\nl2veu4Y0TxoPHPEA4waPi0MvjTHd1F5g7lAwGPwLzj3z2GH3OuD24uLiXt1DNyaWXaHHWUVDBc//\n93m+2vgVF/7gZIWmWgAAEFpJREFUQkbljcLT1qNqXTQgfQCTR0xmvxP3w+vxkue3R8yM2cr8wf1+\nCc6HAgX+HrPcmLiwK/Q4+8+q/3DRWxcBUJBewKxjZzEoY1DPd1izHj5/FPzZsPtxkNWLfRljeqNH\nV+jN3AlyhcCGnk6EM6YjdoUeZ3VNdZteh+vo1Qemhip4+bew6FnnfdUaOOxq8Ng/mzFbGzeIr+y0\noTE9ZLPc42z8kPGcuPOJ7F6wO3dPvrvd59O7JNIIFSs2vS9bCpFwu82NMcZsu2zIPQFqm2ppjDSS\n68/F69myhGmXRSNQ8jk8Nh3SsuCnT0PBjvHrqDGmO3o15G5MotnYbQJkpWWRlZbV+x15vLDdD+D8\nuSACWYN7v09jjDEpyYbc+0AkHCbc2MOKgF6fkxI2u8gJ6sYYA4jIChH5UkQ+F5Fid9lAEXlDRL51\nvw9wl4uI/F1ElorIAhHZJ2Y/Z7ntvxWRs2KW7+vuf6m7rfTVMUzPWEBPsLrKCt595H5evetWqjb2\nNIeEMca06VC3TGrQff874C1V3Rl4y30PTunSnd2v84C7wQnOwLU4xVLGA9c2B2i3zbkx203tw2OY\nHrAh9wT7/PWXmP+qk065rqqCH19+NRnZlo/dmG2FW23tNOBynHzlq4BbgEfjUW1tM9OASe7rmThF\nsa50l//LTbf6kYjku2liJwFvqGoZgIi8AUwVkTlArqp+5C7/F05p01f66BimB+wKPcGi0Wjr11vB\nJERjTHy4wfxZnCvRccAg9/vdwLPu+p5S4HURmSci57nLilS1xH29FihyX7eUPHU1lyrtaPmqNpb3\n1TFMD9gVeoLtPfXH1FaUU19VyWEzziMjJzfZXTLG9J3TgMOAzWfJZrnLTwMe6eG+J6rqahEZDLwh\nIl/HrlRVFZGEXkH0xTFM11lAT7CsvHwm/+wCotEI/vSMZHfHGNO3LmfLYN4sC7iMHgZ0VV3tfl8v\nIs/i3J9eJyJDVLXEHe5e7zZvr7TpajYNnzcvn+MuH95Ge/roGKYHbMi9D/j8fgvmxmybhvdyfZtE\nJEtEcppfA4fjlEqNLW26ecnTM92Z6AcAle6w+WvA4SIywJ2odjjwmruuSkQOcGeen0nb5VMTdQzT\nA3aFbowxibMK5755R+t7ogh41n3Kywc8qqqvisinwJMicg7wHXCy2/5l4ChgKU6lt58BqGqZiPwZ\np2Y5wJ+aJ68BvwAeBjJwJqo1T1b7Wx8cw/SAZYozxpiu6fYz0sFg8AycCXBtDbvXAhcWFxf39B66\nMa3YkLsxxiTOo8DbOME7Vi3OM9yP9nmPTMqygJ4E5Q3lVIYqk90NY0yCuc+ZHw9cCMwHNrjfLwRO\nSMBz6GYbZkPufWxl1Uqufu9q/F4/N0y8ge2ytkt2l4wxXWNpSU2/ZlfofagqVMUfP/wjn2/4nE/W\nfsIt826hMdLDHO/GGGNMDAvofcgrXnL8m9K+5vnzsFoExhhj4sEeW+tDWf4sfn/A7ynIKCDDm8GM\nPWaQ5klLdreMMcakALtC72ODMgZx9firuSx4GQUZBcnujjFmKyQiu7plU5u/qkTkUhG5TkRWxyw/\nKmabq9wypUtE5IiY5VPdZUtF5Hcxy0eLyMfu8idExO8uD7jvl7rrR8X7GKZnLKAngcfjwSN26o3Z\nlgSDwdHBYPCgYDA4urf7UtUlbtnUccC+OIlcnnVX39q8TlVfBhCRscB0YHecEqV3iYhXRLzAnTil\nT8cCp7ptAW5097UTUA6c4y4/Byh3l9/qtov3MUwPWFQxxpgECjrmAQuBl4CFwWBwXjAYDHayaVdN\nBv6rqt910GYa8LiqhlR1OU42t/Hu11JVXaaqjcDjwDQ3FethwCx3+5k4pU2b9zXTfT0LmOy2j+cx\nTA9YQDfGmARxg/YcYB+c9KZ57vd9gDlxCurTgcdi3l8sIgtE5EE3dzp0v7RpAVChquHNlrfal7u+\n0m0fz2OYHrCAngBN0SZC4VCyu2GMSb5/0nG1tXt6s3P3nvOxwFPuoruBHXFqrpcAN/dm/2brYgE9\nzkrrS7npk5u4+r2rWVm9svMNNhduhOq1UL0OtoKkP8aYtrn3ysd00mxsL++pHwl8pqrrAFR1napG\nVDUK3Icz3A0dlzZta3kpkC8ivs2Wt9qXuz7PbR/PY5gesIAeR+FomH8u+CePL3mc1797nV++/UtK\n60u7voNIBFYXwz/2g/sPg/LlHTbfGrL8GbMNGwp0ljmq0W3XU6cSM9zu1idvdjxOSVVwSptOd2eo\njwZ2Bj7BqYC2szvb3I8zfP+COn9c3gF+4m6/eZnU5vKpPwHedtvH8ximByygx1FUo5Q1lLW8r2io\nIKrRru+goQJe+z2EqqByFbz/9zav0htqm/j6wxLm/N8SKtbVoVEL7Mb0Q2uAzh7D8rvtus2tgz4F\neCZm8U0i8qWILAAOBS4DUNWFwJPAIuBV4CL3Sj4MXIxTs3wx8KTbFuBK4HIRWYpzv/sBd/kDQIG7\n/HLgdwk4hukBy+UeZ6trVnPxWxdTEargpoNvYlzhONK8XUwe01jrBPR5Dznvp90Ne5+25TG+Kee5\nW+YDkJGTxvRrxpOZF4jXj2CMaVtPyqfOw5kA1555xcXF8ZrtbrZxlikuzoZlD+P+w+8nqlHyA/ld\nD+YA/iw47BrY6UeQkQ+Dd2+zWUNNU8vrUH2Y/v+RzJht1vk4s9zbq4d+QZ/2xqS0hA25i0i6iHwi\nIl+IyEIR+aO7POUzAxVkFFCYWdi9YN4saxCMOQZGTYTMAW02GbpzPjuPL2LAdpkcef6eBDLsc5kx\n/VGxM7Q4CZgH1OM84lXvvp9UvLUMPZqtQsKG3N2kAVmqWiMiacB7wK9w7rk8o6qPi8g9wBeqendH\n+9qahtz7Sqg+TKQpSiDDizfNm+zuGLMt6FUlJXc2+1BgTXFxccczXo3pgYRd2rkzGGvct2nul+Jk\nBmq+MTwTuA7n2UnTDYEMn5OewhizVXCDuAVykzAJneXu5vH9HFgPvAH8F8sMZIwxxsRdQgO6+8jC\nOJyEAeOB3bq6rYicJyLFIlK8YcOGhPXRGGOMSQV98hy6qlbgJBA4kC5mBlLVe1U1qKrBwsLCvuim\nMcYYs9VK5Cz3QhHJd19n4CRAWIxlBjLGGGPiLpHPOw0BZrq1cD042YFmi8gi4HERuR6Yj2UGMsYY\nY3otkbPcFwB7t7F8GZsKBhhjjDEmDiyXuzHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHG\nGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcAC\nujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wx\nKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAb\nY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKSBhAV1ERojI\nOyKySEQWisiv3OUDReQNEfnW/T4gUX0wxhhjthWJvEIPA79W1bHAAcBFIjIW+B3wlqruDLzlvjfG\nGGNMLyQsoKtqiap+5r6uBhYDw4BpwEy32UzguET1wRhjjNlW9Mk9dBEZBewNfAwUqWqJu2otUNQX\nfTDGGGNSmS/RBxCRbOBp4FJVrRKRlnWqqiKi7Wx3HnCe+7ZGRJZ0cqg8oLKb3evKNh21aW/d5svb\nahe7bPP1g4CNnfSru/rz+WlrWUfvE3F+2utXPLbZls9RV9t39xwl4/y8qqpTu7mNMX1HVRP2BaQB\nrwGXxyxbAgxxXw8BlsTpWPcmYpuO2rS3bvPlbbWLXdZG++IE/Fv02/PTlXO22fmK+/mxc5SYc9TV\n9t09R/31/NiXfSXzK5Gz3AV4AFisqrfErHoBOMt9fRbwfJwO+WKCtumoTXvrNl/eVrsXO1kfb/35\n/LS1rCvnMN7sHHWuu8foavvunqP+en6MSRpRbXPEu/c7FpkIzAW+BKLu4qtx7qM/CYwEvgNOVtWy\nhHRiKyUixaoaTHY/+is7P52zc9QxOz8mFSXsHrqqvgdIO6snJ+q4KeLeZHegn7Pz0zk7Rx2z82NS\nTsKu0I0xxhjTdyz1qzHGGJMCLKAbY4wxKcACujHGGJMCLKD3cyIyRkTuEZFZInJhsvvTX4lIlogU\ni8gxye5LfyQik0Rkrvu7NCnZ/elvRMQjIjeIyB0iclbnWxjT/1hATwIReVBE1ovIV5stnyoiS0Rk\nqYj8DkBVF6vqBcDJwEHJ6G8ydOccua7EeRxym9HNc6RADZAOrOrrviZDN8/PNGA40MQ2cn5M6rGA\nnhwPA61SSIqIF7gTOBIYC5zqVqdDRI4FXgJe7ttuJtXDdPEcicgUYBGwvq87mWQP0/Xfo7mqeiTO\nB58/9nE/k+Vhun5+dgU+UNXLARsJM1slC+hJoKr/ATZPpjMeWKqqy1S1EXgc56oBVX3B/WN8et/2\nNHm6eY4m4ZToPQ04V0S2id/r7pwjVW1O7lQOBPqwm0nTzd+hVTjnBiDSd700Jn4SXpzFdNkwYGXM\n+1XA/u79zhNw/ghvS1fobWnzHKnqxQAiMgPYGBO8tkXt/R6dABwB5AP/SEbH+ok2zw9wO3CHiPwQ\n+E8yOmZMb1lA7+dUdQ4wJ8nd2Cqo6sPJ7kN/parPAM8kux/9larWAeckux/G9MY2MTS5lVgNjIh5\nP9xdZjaxc9Q5O0cds/NjUpYF9P7jU2BnERktIn5gOk5lOrOJnaPO2TnqmJ0fk7IsoCeBiDwGfAjs\nKiKrROQcVQ0DF+PUj18MPKmqC5PZz2Syc9Q5O0cds/NjtjVWnMUYY4xJAXaFbowxxqQAC+jGGGNM\nCrCAbowxxqQAC+jGGGNMCrCAbowxxqQAC+jGGGNMCrCAbvo9Efkg2X0wxpj+zp5DN8YYY1KAXaGb\nfk9Eatzvk0RkjojMEpGvReT/RETcdfuJyAci8oWIfCIiOSKSLiIPiciXIjJfRA51284QkedE5A0R\nWSEiF4vI5W6bj0RkoNtuRxF5VUTmichcEdkteWfBGGM6ZtXWzNZmb2B3YA3wPnCQiHwCPAGcoqqf\nikguUA/8ClBV3dMNxq+LyC7ufvZw95UOLAWuVNW9ReRW4EzgNuBe4AJV/VZE9gfuAg7rs5/UGGO6\nwQK62dp8oqqrAETkc2AUUAmUqOqnAKpa5a6fCNzhLvtaRL4DmgP6O6paDVSLSCXworv8S2AvEckG\nJgBPuYMA4NSkN8aYfskCutnahGJeR+j573DsfqIx76PuPj1AhaqO6+H+jTGmT9k9dJMKlgBDRGQ/\nAPf+uQ+YC5zuLtsFGOm27ZR7lb9cRE5ytxcR+UEiOm+MMfFgAd1s9VS1ETgFuENEvgDewLk3fhfg\nEZEvce6xz1DVUPt72sLpwDnuPhcC0+Lbc2OMiR97bM0YY4xJAXaFbowxxqQAC+jGGGNMCrCAbowx\nxqQAC+jGGGNMCrCAbowxxqQAC+jGGGNMCrCAbowxxqQAC+jGGGNMCvj/sI1peKp8xNgAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_2", + "outputarea_id1", + "user_output" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3c58ebb2-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3be06426-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_7a0e5ae1fa" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_2", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3c59f516-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_b99be0441d" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_3", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3c5ad8c8-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_3\");\n", + "//# sourceURL=js_66b1ac991b" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_3", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3c5b17c0-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3c5ad8c8-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_7e187540f3" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_3", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3c5b4bbe-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(3);\n", + "//# sourceURL=js_0009773b0c" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_3", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVdXV+PHvur3MzJ1eaFKkiLQI\nYkEFLKioscYSEzUqRmMseRNjiUaNRjEafTVq3thJ/Gk0ahQrKvYOigXpHQaYXm8v+/fHuQwzMAwD\nzAUc1ud5fLjllH1GhnX2PnuvJcYYlFJKKfXDZtvVDVBKKaXUjtOArpRSSnUDGtCVUkqpbkADulJK\nKdUNaEBXSimlugEN6EoppVQ3kNGALiJXiMhcEfleRK5Mf5YvIm+JyOL0n3mZbINSSim1J8hYQBeR\nYcAUYCwwEjheRPYGrgFmGmMGAjPT75VSSim1AzLZQ98H+NwYEzLGJID3gVOAE4Fp6W2mASdlsA1K\nKaXUHiGTAX0ucKiIFIiID5gM9AZKjDHr0tusB0oy2AallFJqj+DI1IGNMfNF5A7gTSAIfA0kN9nG\niEi7uWdF5CLgIoChQ4eO/v777zPVVKWU6gzZ1Q1QqiMZnRRnjHnUGDPaGHMYUAcsAipEpAwg/Wfl\nFvZ9yBgzxhgzxuv1ZrKZSiml1A9epme5F6f/7IP1/PwpYDpwbnqTc4GXMtkGpZRSak+QsSH3tOdF\npACIA5caY+pFZCrwrIhcAKwETs9wG5RSSqluL6MB3RhzaDuf1QBHZPK8Siml1J5GM8UppZRS3YAG\ndKWUUqob0ICulFJKdQMa0JVSSqluQAO6Ukop1Q1oQFdKKaW6AQ3oSimlVDegAV0ppZTqBjSgK6WU\nUt2ABnSllFKqG9CArpRSSnUDGtCVUkqpbkADulJKKdUNaEBXSimlugEN6EoppVQ3oAFdKaWU6gY0\noCullFLdgAZ0pZRSqhvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehKKaVUN6ABXSml\nlOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQMa0JVSSqluQAO6Ukop1Q1oQFdKKaW6AQ3oSimlVDeg\nAV0ppZTqBjSgK6WUUt2ABnSllFKqG9CArpRSSnUDGQ3oIvIbEfleROaKyNMi4hGRfiLyuYgsEZFn\nRMSVyTYopZRSe4KMBXQR6QlcDowxxgwD7MCZwB3APcaYvYE64IJMtUEppZTaU2R6yN0BeEXEAfiA\ndcDhwHPp76cBJ2W4DUoppVS3l7GAbowpB+4CVmEF8gbgS6DeGJNIb7YG6JmpNiillFJ7ikwOuecB\nJwL9gB6AHzhmG/a/SERmi8jsqqqqDLVSKaWU6h4yOeR+JLDcGFNljIkDLwDjgNz0EDxAL6C8vZ2N\nMQ8ZY8YYY8YUFRVlsJlKKaXUD18mA/oq4EAR8YmIAEcA84B3gdPS25wLvJTBNiillFJ7hEw+Q/8c\na/LbV8B36XM9BFwN/I+ILAEKgEcz1QallFJqTyHGmF3dhq0aM2aMmT179q5uhlJblGxuxkQi2LKz\nsbndu7o5KjNkVzdAqY5opjildlCitpaKP9/Gyp/9nOZ33yUVCu3qJiml9kAa0JXaQdFFi2j473+J\nrVhB+W9/R7K5eVc3SSm1B9KArtQOsufnb3ydl4fY9NdKKbXzOba+iVKqI86yMno/+gihWbPIPeUU\n7AUFu7pJSqk9kAZ0pXaQPTubrHHjyBo3blc3RSm1B9OxQaWUUqob0ICulFJKdQMa0NUeySSTu7oJ\nSinVpfQZutqjGGOIrVxJzT8ewjN0KDknHI8jN3ez7RLV1aSiUWxeL45Ws9iVUmp3pQFd7VGS1TWs\nOvc8EhUVNPz3vzh79CD7iMPbbJOormbVL84nungxvnHj6PmXO3DozHWl1G5Oh9zVHsVgSDY1tbxv\nLwlMoqaG6OLFAIQ+/phUOLzT2qeUUttLA7rao9gDAXo/+ACuvfem8M+3khrzIxZ99jFNNdUkkwkA\nHPn5LWvJs487DrHZSNTX78pmK6XUVmlxFrXHMfE4yWCQ9evW8MzN14IxOD1ezvvrg+QUFmFSKZI1\nNSSbmjDRKGt/fzX23Fx63HUXzpLiluMk6uoIf/kl2O14R43CkZfX5jyJ2lpMMok9Oxubx7OzL1N1\nPS3OonZr2kNXexxxOsHnY84bL0P6hjYeCbPim6+s7202HEVF2HJyWHv1NUQXLyY0axY1Dz/Ehhvg\nVDRKzSOPsObXl7Hmkl9R//S/MYlEyzniFRWsnjKF5Sf8mOBnn5GKRnf+hSql9iga0NUeye5w0HPI\nsDafFfft33ajRAJ7q163PS8fEauTZmIxIvPmt3wXnjsXE4+3vG+Y/jKR7+eRrK9n3R+uJ9nYmIGr\nUEqpjXSWu9ojic3GkHGHkYhFWfXd14w48hhyS8rabuNyUfz7q2h4/gXseblkTzqKSCyJx2XHlpVF\n8W9/y+oLLwSbjaIrr8Dm9bbs6+7fr+W1q3dvxK6/akqpzNJn6GqPE6+ooP7ZZ3GUlZE16SiSdgce\nv7/dbWPl5TS9+y4SyMU9egzheBJvUQF+nweTSJCsq8NgTaQTu71lv2R9PaE5XxNbuZKcyZNxFhft\npKtTGaTP0NVuTbsNao+SqKlh9ZQpRBdZy9KKqmsouGjKZtslm5owkQj2vDzqJhxDXlU5qycfi9jt\n9H7ySdhnCOJw4ChqP1Dbc3PJnjghk5eilFJt6DN01a3Ekyk6GnUyqRSx5Sta3kcWLGgzmQ2s2ekV\nd97J8jPOpOYfD1FmT9Dwp5sxkQipYJC6Jx7X1LFKqd2OBnTVLRhjWF4d5Hf/+YaHPlhGQ3OIptpq\nGqsqiYXDJKprSNTUWM++r/odALasLAovuRibywVYy9Biq1aRamom1dBIYu1aav7xD2x1tXgOOrjl\nXP6Dx7UZXldKqd2BDrmr3UYqZVhTH+bN79dzQP8CBhT68bk791e0ujnKWQ99xvrGCIsrmjm6OMqL\nt15HoLiU0y/5Hyp++zsQodf99xM49VSyJ00Cl4t6h4/Gxgg5xKm5/XYap7+MuFz0uu8+4qtXE5k3\nD0QonnIBgQmHYcvJIVjWhy+W19IcTTCsZw7F2brGXCm162lAV7uN6uYoJz/wMTXBGHab8N7vJnQ6\noBsDwag1dD6iZw7z35lBMpFg8H5jqb37npZUrpV33kmPO/+Cs7SUpZXNnPX3j4jEkzxx3hhy166z\njhWLUf/fF/BPnID7wAOxFRbiyMvDMXYstcEov/n313y4uBqAsoCHly4dR3GOBnWl1K6lQ+5qt2GM\n4fZThvPX00fSO89LdXPnk7Hk+pw8et4YhpblUBLwMOjgQ0GESDiEo1fPlu2ce/VBHA7iyRT3zlxM\nZVOUxkiCP7++EPvxJ7Vs59pnKBxxOL4zf9Km2lpTJNESzAHWNUT4dGnNDl65UkrtOO2hq91CLJFk\nSVWQa174jtIcD3//2WhKctyd3t/lsLNfnzz+dcFYXA4bbhPnwvseJpVM4Xe4cPYdgM1hI/uoo6zZ\n6cYwsncu079ZC8DQEj+B8RMJ7P8yEgzhKy0l7nHjjMYwtbWY9LI0m2y+csnt1PtipdSupwFd7RYa\nwnGufeE7aoMxaoMxZsxdz5VHDdq2g9TVkZNKYvP6sGdn4fL6CDfFmP7gtzhcQ8AYxgWdFBWAiHDK\nj3oyoNBHKBxjTO8cpt9xPVUrlzPy8KM5+NQzsVdUseKC8zGJJH2e/BeOvDz8DjcnjerBi19bNwKD\nSrIYvZfWS1dK7Xoa0NVuwWm30b/Iz6raEACDS7O3af94ZSWrzj2X2IqVlFxzDYHTTsXu95NKGapW\nNZFKWkvZasqbKepjHTvP7+KQYidNH31ObTBA1crlAHzzzgwOOPUMav76VxKVVeSecTrRhYuo/eQT\nnD17csMZZ3PZ4QOJJJKUZHsozO78SIJSSmWKjhWqHVLVFKW8LkzNNjzvbk+uz8VdPxnJ7acMZ9r5\n+3PQgIJt2j/02efW+nJjqLzrLlIh68bA6bYz7tS9EYG8Uh+999mkN22zE/7yS/L36ovd6QSgsPde\n2OwOXAMGWG079VSS+blUjR7B+p7FONatpF++h317BNoE82RjI7HycuIVlaRa5XVXSqmdQXvoartV\nNUU57/Ev+H5tI+MHFXH36SMpyNr+3mphlpuzxvbZ5v3qglHcgwaBzQapFJ5hwxCH9VfbFm6iZ3Au\nZ/2yHyYcwpVsBja20ZEboPiKK4iHQ/zirgepr6qgsPdeOJqa8R90kJUJriCfOa99wNdvvwHAgSee\nxoH9B4Bj469PKhSi/rnnqPzLnYjPR79n/o174MDt/lkopdS20oCutlttMMr3a60qYu8vqiIYihJI\nRnAEAp0+RiiaIJZMkeNxYrN1nCo73NTI+iWLACgdMBBvToDKxgjnPT6LcT19/Pq/L0H5avwjhrfU\nJjfRKI3THiVRW0di7Vrcjz+G86CD2hzXkZ+Pg3y8QKDUKtBS+fg0ah55BO/IkbgPPoj6qsqN112x\nHmNvO7iVDIao+39PWecMhWh8/XWKNKArpXYiHXJX2y3P56LAb2VZ61foR1atoPHV1zCJBOX1Ye6c\nsYA35q6jPhRrd/+a5ii3vjqfC6fNZt66RpLJ1BbPFY/FmP3yf3lh6k28MPUmZr/6IolYjI+WVDNv\nXSMPz17P0c+vYPneo6hzt33+HjjxJMpuupGCX12Cq2/fTl2b/6ADIZkk/NVXBF95lfE/u4Dc0h7k\n9+zFIWedg8PparO9zesh++ijrTcOB1kTJ3bqPErtKiLyYxG5Zle3Q3Ud7aGr7VaY5ea1yw9h7Zoq\niiVG+De/xvTsSXLyifzskS9YXh0E4OkpB3DQgMLN9n9/URVPfbEKgPOfmMUrlx2yxQQtiViU8oXz\nWt6XL5xHIhZlUMnG4F0a8LK0KthyjERNDat/eTHRhQsB2Ovpp3AUWu2INDeRiMdxuNztVlrz7Lsv\n/V95mUR1Ne5Bg7Dn5XHmzXcA4M/N22x7e1YWBRdNIfe0U61Z9rmdH6VQakeJiGBVz9zyXfEmjDHT\ngemZa5Xa2bSHrrabzSYU53gYFKqg8fSTia9ZQ/5552JsNiobIy3brW+ItLu/z7UxH7rXZUfaWeO9\ngTNlOOiUM7A7HNgdDg487mQcKcNeBT5euewQbj1pGDccP5TvyhvwOK3jmlSK6JIlLceILl6MOJ2E\nGht4+9EHeeyKi/jixWcJNzVtdj57djbuvffGf+CBVmlUEfy5ee0G8w0cubm4+/fHWVbapja6Upkg\nIn1FZKGI/BOYC/xcRD4Vka9E5D8ikpXebrKILBCRL0XkPhF5Jf35eSJyf6tjvSMi34rITBHpk/78\nifQ+n4jIMhE5bVddr9o6Dehqh4gI3uHD2fvtt9h75tv49t+fHK+TB87ejz75Po7cp4RDB7VfYnRs\nvwL+MHkIJ4/qybRz9iPflmh3u2RzM7WPP4Ht6Wc555qbOf+uB3G9ORMTiZDtcTKsZ4Afj+rB3rku\nfjtpEIFUlNiaNZhEwirEIoKrb1+yxo8HIFhfx8JPPiQejTBr+vPEQsGM/XyUyrCBwIPAeOAC4Ehj\nzH7AbOB/RMQD/AM41hgzGmj/lxH+BkwzxowA/h9wX6vvyoBDgOOBqRm5CtUldMi9mwo11JNKJnG4\nXHiytm1N97ayeTzYSktb3nuAgwcU8PwlB+Gy2wj4XO3ulxMLcuJ3b3BMVTXRRz8mcust+A84YLPt\nUqEQ9f/+N8m6OppffInCy36NxBMtM9mToRC2OV9T/+yz5J3zc+I5OaTqGzDJBN6xY+n33xeIV1aS\nbGjEUViIx5+F3eEgmUjgycpGYjFS4fAu61WHGmM01UbwB9x4s53YHR3fZ4caoyyeXUlWrpueg/Lw\nZDl3UkvVbmilMeYzETkeGAp8nB7pcgGfAkOAZcaY5entnwYuauc4BwGnpF//C/hLq+9eTA/lzxOR\nkgxcg+oiGQvoIjIYeKbVR/2BPwL/TH/eF1gBnG6MqctUO/ZEzXW1/OeW66gtX8N+k0/koFPPzHhQ\n35TLYacou+MSoyaRoO7xJ0g1NwMQ+vrrdgO6zeMhe9Ik6p95BnG5yJo4EWdpGY58a/g71dDA6ilT\nIJWiYMqFrL/xJsJffYWzVy96/e0+mt58i+oHH8QzbF96P/QQ3uwczr5xKqu/ncNe+wyj4Y478d74\nx10S0ENNMV65/xuqVjXhdNs568YDyM7fcqGXSDDOzGnzEZvQb0Qh9VUhSrO2/3l9uDlGsD6Ky+vA\n43fi8ug9/g/MhuElAd4yxpzV+ksRGdUF52idZKLjpShql8rYkLsxZqExZpQxZhQwGggB/wWuAWYa\nYwYCM9PvVRdaM+87asvXAPDVay8Ri7T/DHtXs/n9FF15JQCOoiICxx3X7nb2nByKrryC/q+9yoA3\n38Q9YEBLMAdIhcOQSs8FMobwV18BEF+zhmRTM9GVKwFw9u6DuFzYUimyxMGgsj6465vIPeVkxL1r\nsr2lEimqVlnP8OPRJHXrOh7+TyUNeSU+hhxYyjczVzNnxkpCTe2vItiaWCTBrFdW8Myts3jy+k+p\nKW/eruOo3cJnwDgR2RtARPwiMghYCPQXkb7p7c7Ywv6fAGemX58NfJi5pqpM2Vm340cAS40xK0Xk\nRGBC+vNpwHvA1TupHXuE/J69W15nFxRid+yc/81NkTjfrmng4yXV/GRMb/bK93W4ttzu8xE46USy\njzoSsduxF2w5O5wjL69lbflmx8nLI/f002l46SVMMol70CCiixZhLyjA1ac32RMn4PvRKHKOPRZS\nKeqefhpxOEk2N1Pz0EN499uPnqO6oiOz7exOO4PGlrDoiwqyCzwU9MrqcHu338Hwib155tYvrBuA\n9SH2Gl7N0HE9tvnc0VCClXOtSnHGwKq5NZQNyN2u61C7ljGmSkTOA54WkQ13p9cbYxaJyK+AN0Qk\nCMzawiEuAx4XkauAKuAXGW+06nJijMn8SUQeA74yxtwvIvXGmNz05wLUbXi/JWPGjDGzZ8/OeDu7\ni2g4RN3aciqWL6HfqDHkFG5pHkzXWlrZzBF3vw9Ans/JjCsP2+E64clkippgDBFrmdyWZsInGxpI\nxWIgQmL9elKNTdj8fnA68Q7dB4BEbS2JmhpMJAIIK37yEwDE5aL3o4/g33//HWrr9go3x4hHkzgc\nNnyBrY8UBBuiPDd1Ns111kjo5F8Np9+Ibft/HGqMsXj2elJJ+OT5Jbi8Dk67ejR5pZsv4VMtfpDD\nzSKSZYxpTv97+wCw2Bhzz65ul+p6Ge+6iYgL+DFw7abfGWOMiLR7RyEiF5GevNGnz7anA92Tub0+\nSgcMpHTAzs1UVtcqgUxDOE6qg3vFumCMeDKFz20ny93+pK5UyjB/fRPnPvYFLoeNJy84gLzsGEmT\nJNuVjcex8WbBHgiQqqrChMOsOP0MxG7HxOMUTJmCd+g+JOrqWHvNtQQ/+ADx+ej/0os4yspwnHwa\nqWNPYIXHT1kwRr6//Ql82yLUFMOkDE6XHZd3679i3iwX3o475m34clyc9D8/4qsZqyjqk01p/21/\nhr5mQS0fPbuEMZP7csrv9iMr34M/sOPXrnZLU0TkXKyJcnOwZr2rbmhnLFs7Fqt3XpF+XyEiZQDp\nPyvb28kY85AxZowxZkxR0c7pYarOM4kE8cpK4uvXk0wXQulflMVPx/ahX6Gfe84YRfYWJljVNEf5\nzbNfM/7O93jys1U0htsvZNIUTfDnV+dTE4yxriHCX99ayBNzn2TS85OYtX4W8eTG/RJVVaw88yya\nZs4kZ/JkTDyOuFzkTD7Wam88TvCDD6zXoRDhb7+l7zP/Zsn4Ezji0W857oFPuf+dxTRHdqyoSrAh\nyvT//Zp/3fApCz5dRzTc/lK8HSEiBIp8TPjpYIYd1hNv1tYDcSIep279WuZ9+C6NVZXkllgTAGe/\ntoJ3n1yA3SHY7LqKtTsyxtyTns801BhztjEmtKvbpDJjZzxcPQtrqcQG04FzsdYzngu8tBPaoLZD\nsqmJZGOj9Xw7ECAkTkLxBH6XA/uKZaz86U9JhcP0+MsdZE+aRL7fxXWThxBJpMhyO1oSvGxqaVWQ\n9xZWAXDv24s5fUyvdrdzOWwMLsni02XWc96hZVnkuHNIpBL8bc7fGJoziIIcaxVNKholXl5O1f/e\nS9mtt1B48S+xZWdjz7We5ojTiX/iRILvvovN78M7YgRSWMir73zbcr4351Vw8YQBZHm2fxlY5cpG\n9jtzb4Imhd/lIJlIkqlfM9lK7vvWIk2N/POqy0jEonhzAvx86n1MvmQ4Vaub2efgMnw5WgJWqR+6\njAZ0EfEDRwG/bPXxVOBZEbkAWAmcnsk2qO2TisVoemMG6264ARwOima8zeNz63jp67WcsX9vTvM2\nkgpaM7Jr/vEQ/oMOwlZQQJbHydZGj0sDbuw2we+y88QvxvL0F6vwuRycOKoH+f6NgcXrtHPZ+H6M\n7pmNkxQjTD2pxR5igy+iOl6Po7oe0gFdfD6yjjmG5jfeoGbav+jxwP04izeO7Djy8ujx51tJNjRg\n8/tx5OUhNhtnH9iHV79bSzxpOPuAPmS5duxXwtPLz0VPzGJxZTMlOW6mX3oIvh06YteIBJtJxKxn\n7uHGBlLJBP1GltBvpI5+KdVdZDSgG2OCQMEmn9VgzXpXu7FUMEjdM+k0AokEDbEUD7y7FIC/vrmI\nH19xcMu22cccQ8zuI1ofJSGGqA3cHSSUsXLAH0pTJM60T1fw0tdrAVjfGOGqSYNxtBr6zXUJE+Nr\nqbzjLzQsXAjGcNYbr9JQvozUnO+h/2AA6h0+5p9xMXtfdBnrQkle/76eS4vbBitHfj6O/Lb10If1\nyOGD308kkTTkeJ343Dv2KxE3hsWV1vKvisYo9eE4JYEdmxjYFXw5uey9/0Es+2oWI486Fpd3d7jN\nUEp1Jc0iodpl8/nIOf44InPnWsvC8nMY2SuXb9bU43HacHvdlL72GqlQkFTPAUz/27fUlAcZdkQv\nVpU4mFcd5PdHDybP7yIcT9AQiiMIeX4nPpeDwaXZNIWijOnpZ8G6bBZWNLGyJkQyZaCpHrHZsOfk\nYPf5SFZVEV2woKVtUltP/PFnKJ56e8tnBrj27VXUBK2JeVcc0bkJgV6XA+8O9spb87sdHNg/n8+W\n1TKwOKtLJtl1BV8gwKRfXkYqmcTudOLxb8MsPKXUD8JOWba2o3TZWucl40nCTXGa66PkFHrx5Wx/\nQEk0NJAKBqly5/Dit+vYt0cAuwhFOW76F/pxOaxn5Mu/rea1Bzc+i5541SgmP/wp7181gV65Xj5e\nWsP5T8zCYRem/WIsg0qz8STCfPn6dKpXLmfYiWdx/1dNXHXMEIqaqll7zbXYfF7KbrsNZ3ExiZoa\nyn9/NeGvviL3tNMomHIh4nLhyN242jGZMiyqaOJPL8+jT76Pq44ZTGHWrnkuXN0cJRxL4nHaKcrW\nZ9PdyA9y2dqOEJFPjDEHb31LtTvQHno3E2yI8dTNn5OMpyjpn8Nxl4zAm719Qd0RCFBl8/Czf3za\nUgr1xUvHMaQ0p812eSU+RKzkJDmFHppiCXI81qS45liSB99bQiJlSKQM//x0JcePKKNP3QI+f8Ea\n0l+3ZBE3334vWRJjzR+ub8n0VnXf3yi76UYcBQX0/OtdEI8jbjf2nLbnB7DbhCGl2fzfz0fjskuX\n9rq31a66kVCqq4iIwxiT0GD+w6IBvZupWRskGbfSoFYsayTV0WLwTjAY1jWEW96vawgzqnfbPED+\nXBdn3jCWqtXNlOwd4OM1dbx82SEU+l0kDUwcXMxny2oBOKB/PvPWNdLDtjE9dCIWw24TsNuxZW0c\nCrYHAmCznqe37o1viYgQ8LadoR5PJmmKJPA47fjSQT6WSFIbjCNAINqEQ8AWCGBz7R7D46r76XvN\nqz8FbgP6AKuA61ZMPe6pHTmmiLwI9Maqh3SvMeYhEWkG/g5MBtYB12EVWukDXGmMmS4idqzJyRMA\nN/CAMeYfIjIBuAWowyrqMkhEmo0xG8qwXg38DEgBrxtjrhGRKVj5QlzAEuDnuixu19Eh924mWB/l\n+Tu/pKkmwr7je3Lgj/vj8XewDKu5AupWQqAX+IvA3nbbcDzBR4uruWn6PIaW5TD11OEUbGMPtD4U\nY3VdiFA0yZxV9dhtcNaIAj56+glq1qxi4rlTKOk/ELvDQbyqiuq//x17Vjb5556Do4N0sFsTjif4\ndGkt97y1iIP6F3DxhAHk+10sXN/EDS9+y//un034+mtI1tVReMXlBI4/Hnv2zi1io35QtmvIPR3M\nH4Y2Cx5CwJQdCeoikm+MqRURL1ZK1/FANTDZGPO6iPwX8APHYVVim2aMGZVO2lVsjLk1nSb2Y+An\nwF7Aq8CwDdXZNgR0ETkWuAGrPGuo1bkL0hOdEZFbgQpjzN+295rUjtGA3g2FGqIkk1amsg5LazZX\nwOOToWYJuLPhV59ZgX0T0USShlAcl8NG7hZmrm9NLJGkPhgnlkqR43GS43USi4RJxGJ4/FnY7BvX\nrJtUCkS2mOa1syoaI4yb+g6J9CjFfy4+iP375nPfzMWM9KfoeeMVxNOFWwAGzHwbV8+eO3RO1a1t\nb0BfgRUsN7VyxdTj+m53Y0RuAk7ecBrgaOB9wJPOwvknIGqM+bOI2IBaY0yuiDwHjMC6qQAIYC0t\njgE3GmMmtjrHhoD+V2CBMebhTdowHrgVyAWygBnGmIu395rUjtEh926oM/nAAYhHrGAOEG2C6sXt\nBnS3w05xjhVwm+tqWfz5JxT06k1x3wF4sjo3W9rlsFMcaJtoxuXx4vK0LVkajCaIxJNkexwtk+62\nlwA+l53GiJWtLSu9JO3IfUpIVleTrK5us30qpCOFKiO2lLt6u3Nap4fHjwQOSveY38Maeo+bjb20\nFOnSp8aYlIhs+PdegMuMMTPaOWbH5f429wRwkjHmm3RxmAnbei2q62iuxz2Zywd90nNecnpA8T4d\nbh5qbOClu27lncf/j//c8geqVi3v0ubUBqNMfX0BZz/yOe8sqCQU27G0qQV+F/+5+GBOH9OL+3/6\nI3rkWuvB+xf56d2niPxLL21NWjMhAAAgAElEQVTZ1jNy5GZr1JXqIqu28fPOCGAVtgqJyBDgwG3Y\ndwZwiYg4AURkUDoJWEfeAn4hIr70Pht+WbKBdeljnb1NV6C6nPbQ92T+Ijj9nxBrBqcXsks73DyV\nTNJQsb7lfd26tfQeOnyL24caG4hHItidTrLyth4s569r4l+fWUPglz41h4+vPrxlItv2sNttDC7N\nZuopI9qUcfU47Xhys0meegqBI48gFQ7jKCzcoef1SnXgOtp/hn7dDhzzDeBiEZmPVfP8s23Y9xGs\nIfqv0hXYqoCTOtrBGPOGiIwCZotIDHgNq/03AJ+nj/E5VoBXu4g+Q98DJJMJYuEwTo8Hh2P78pTH\no1Fi4RDrlyzizYf+Rl6Pnpxw5TX4c9uvUR5qbGDG/93Lsi+/ICuvgLNuvWurZVy/XV3Pjx/4GLCG\nx9/57fgOy69WN0X5ek09Jdlu+uT7Cfi2Pwe7Up2w3ZM6MjHLXalNaUDv5mLhEMvmzObrGa8y5JDx\nDDn4sG3OEhYNBVn42ccU5RXgXl8BZWW4e/TAX1yyxX3qK9bx6OVTWt4fOeVSRh5pVT6LhOIkokls\ndmlTFKQ+FOOdBZV8tKSaKYf2Z2BxVps0sK1VN0U557EvmLeuEYA7TxvBKfv1spa/KZUZ+pdL7dZ0\nyL2biwSbefW+O8EYyhd8T9/hP9r2gB4MsuSLTyjOK6Pinv8FwD14MH0ee3SLw9QOlwtPVjaR5iYA\nivfqbx0rFOebmauZ/eoKsgs8Vi3uPKsXnutzccp+vfjxqB44bB1P74gmUi3BHODVb9dx7PDSltrq\nxhgwBtnKcZRSqrvQgN7Nidiw2WykkkkQabM8bFs43W5StbUt75N1ddbysi3wBXI5+7a7WfzFp5Tt\nPZj8ntbs+UQ8xZevW8/Jm2oilC+uZ/DYts/uNwTzZEMD2Gztrg13O20MKsliUYVVCOX8Q/pRF4yz\ncH0ze+W64dn/R3zNGgovuQRnacdzA5RSqjvQgN7NebKyOe36P/PtW68x5JAJnV5m1prbn8XA/Q/C\nV1RKfP584hWV9Lj9tg6zt9lsdnJLytj/hFM2+Vwo7Z/DuiUNiE0o6t3+HJpYeTnrrr8Bm8tF6Z9u\nxllSQjCaIBhN4HPbKcxy8+SFBzB7RR298704bTYm3vUeiZTh8EGF3BgoJPTXu4ksWEjvvz+oM9iV\nUt2ePkPfQyQTcezbOSEOrPSssXAIRzyBDSstqzg7d7xoKERN+SrWLlzA4APHYXcFCDZE8eW4cHkd\nOF1tRw2SjY2UX/kbgp98AkDg5JNwX3cjd7yxkJkLKpk4uJhrJw9pk7HumVmruPr57wBr7fkbx5UQ\nPPenuPr2pdcT03AVFyH6fF3tGP0LpHZr+oBxD7EjwRysZ+K+QC6uwkIchYVbDebRRJRg3MpREayr\n4ekbruL9fz3CUzdcRcjEea+inodnraQuEt98Z5sN8W5MOOMePIR3Flbx7JdrqAnGeO6rNbw1r6LN\nLocOLKIkPcHuVxMGYFu+FFe/fhT9eSqz3q+lYmUjycSWHxEopdQPnQ65qx0Sj0awO13YWk0+qwnX\ncP+c+6kKV3HN2GuwhYLWBDWxMenci5i5oIqr//s9AF8sr+XBs/drk1LWnpVF6Y1/pCo3F5vHQ+4p\nJ7NuVtsAvq4h0uZ9j1wvr1x2KIlkCr/bgS9SSMOoA3jnlQrKl9Tw/cfr+dktB+HvbBY9pZT6gdGA\nvpswxhBqqCfYUE+kuYnckjJcXu82z0jfWRKxGOuXLWb2yy9QNnAIww8/Gk9WNhjDa8te47nFzwFQ\nH63nnkPvZu+xB1NUUkZebT2rExuTUlU0RognN+85O4uLKb35JgQQh4PTRjv556crqG6OUeB3ccb+\nvTfbp03tcW8eSz+qo3yJNRM+mTD8EB4vKbWzpFO9xowxn6TfPwG8Yox5LgPnegS42xgzr6uPrTbS\ngL4LVIermbFiBqW+UkaXjCbHlU3d2nJemHozjVXpnqgI+x56OIf9/Hx8OYFd2+B2hJubeO6WP5BM\nJFjx9ZcMOvAIvnlnGc11USYddxxPZz/N6qbV2MWO0+li0i8vw9bUzNrLLufMW+9g9vp8Khuj3HP6\nKPK3UPDF5tj417M0x8NrVxxKcyRBltvRYc3xSDBGPJpi6CE9CDbFWPVdDQef0Jv4nFkkRg3Dkdd+\nMhylMuamwGaJZbipYVcnlpkANAOfZPpExpgLM30Opc/Qd7qGaAN/+OgPTP1iKle+dyWfr/ucaHOQ\nZ266ZmMwBzCGNQvm0lhVSUNlBaGG+i5vSyqZ3O5eayoRJ5mwcq33HTWaJV/V8dUbK1n0+Xo+emIZ\nt4y+naP7Hs3UQ6eS68nFm5WNIxAg94zTSfzpBqbmrufps4ayb48c7FtIHtOazSYUZ3voX5RFcY6n\nTSrX1iLBOF+8vIJ/XvcJ/7l9NqOP6sMJJ2bheeEB1l9yEU0zZrS7n1IZYwXzh7Eqrkn6z4fTn28X\nEfGLyKsi8o2IzBWRM0TkCBGZIyLfichj6dKoiMgKESlMvx4jIu+JSF/gYuA3IvK1iByaPvRhIvKJ\niCwTkdM6OH+WiMwUka/S5ztxS+1Kf/6eiIxJv/67iMwWke9F5Obt/RmozWkPfSeLp+KUN5e3vF/R\nuIJh0d6EmxrbbGd3OJh82VW8/sDd1JavpmzgEE666np8gS0vFdsWjdWVfPKfp8gt7cHII47Gu42j\nAG6fnzEnnMKXr7xIbmkPErGNNwbxaIoheYP5c68/47a3ygSXsvPpoIMp+tMEBua5yfW7iCZTLF3f\nxPuLqpg0tIS9Cnw7VGUtmUjx3XtrAAg1xlg1v5a8V5+m+ZXp1vfBbS0mpdQOu422edxJv78N2N5e\n+jHAWmPMcQAiEgDmAkcYYxaJyD+BS4D/bW9nY8wKEfk/oNkYc1f6GBcAZcAhwBBgOrCl4fcIcLIx\npjF9s/CZiEzfQrs29Yd0LXU7MFNERhhjvt2eH4JqSwP6TpbrzuWWcbfw+w9+T4mvhJMHnszS19/Z\nfLvSHlSuWEZt+WoA1i1eQH3F+i4J6KHGBl6+eyrrly4CwJ8TYPgRR2/TMTxZ2Rxw8umMPu6k9IQ4\nLw0VYUKNMSb+bAi+bHebeuaN4TjXvziX1+daxV0ePPtHTB7eg7r6MCc98DGJlOH+d5bw7u8mUBrY\n/oBuswlFfbKpWtWECJT2C5B96a9IrF+Ho7SM3JM6rEGhVCZ0eflU4DvgryJyB/AK0AgsN8YsSn8/\nDbiULQT0DrxojEkB80Rky7mdrZGG20TkMKwyrT2Bkk3bZYz5sJ19TxeRi7DiTxkwFNCA3gU0oO9k\nDpuD4QXDeXry09htdvI8edT33HyCVyTYTKBVrnQRG/4OErlsC2MM8Vi05X0sEu7Ufom6Okwkgrhc\nOAoKrAl7rYouHn7OPqSSKTxZmz8TjyZSzG+VqnXOqnomD+9BbTBGImX17sPxJOF4cjuvyuLNdnH8\nr0dQvbqZnEIv/oALpyebXvfdB04ndt+mHSWlMm4V1jB7e59vl3QvfD9gMnArsHmvYKMEGx+vbrna\nkSXa6nVH6+7PBoqA0caYuIisADybtktEZhpj/tRyQJF+wO+A/Y0xdemJeFtrk+okfYa+CzjsDgp9\nheR5rMlZPQfvgzc7p802wbpa1i9ZyOTLr2LoYYdz2vW34M3umslxvpwAJ1x5Db33Hc7Qw45gn0Mm\nkEglqApXUR2uJpnaPKgmamtZd8MfWTLxcFZdOIVEdfVm27i8jnaDOUDA6+CPxw/F7bDRI+DhnIP6\nAlAW8HD4kGJsAqfs15OAt+369mRjI/GqKpJNTdtwfW767FtAbokPp8e6Z7UHAhrM1a5yHVa51NZ2\nqHyqiPQAQsaYJ4E7gYOAviKyd3qTnwPvp1+vAEanX5/a6jBNbH+50wBQmQ7mE0nfsLTTrv022S8H\nCAIN6RGAY7fz/KodmiluN2BSKWrXruG/d9xMQ6U1MU7ExtDxhzPhnAtxeX1t1nl3lUhzMzaHHafb\nw4LaBVz45oWICI9OepTB+YPbbBtbs4alRx7V8r7v88/h3XffbTpfOJagKZJARNosMbN66Slcdlub\n9eiJujoq776b5pnvkHP00RRefpnOUFe70vZniuviWe4icjRWwEwBcazn5QHgLqyR11nAJcaYaHrC\n26NYw/LvAWOMMRNEZBDWM/IUcBlwAa2WrYlIszGm3XWz6efmLwNZwGzgQKzgPHjTdhljZovIe8Dv\n0q+fAA4GVgMNwHRjzBPb+7NQG2lA301sWIceamwg0txEoLgUl9eHx+/f+s47KBgPctX7V/FhufW4\na0LvCfzlsL/gdWzM1havqmLlWT8lvmYNtuxs+r/6Cs7i4oy2KzRnDivP2jgRuO9z/8E7bFhGz6lU\nBzT1q9qt6TP03YSI4M/Nw5+783ugbrubEUUjWgL6yKKRuGxth86dRUX0ffopoitW4OzVG+mi5/kd\nsXk8Hb5XSim1kQZ0hcPm4MzBZzKyaCQiwpC8Idhtm880T+blsyhs5/43l3LYwDAnjurZZoi8qzl7\n9KDkumtpfGMGOSccj72oKGPnUkptTkSGA//a5OOoMeaAXdEe1TEdcledtr4hwvg73yWaLnLy6uWH\nsG+PzGaxS8VipEIhbH4/tk5Wd1MqQ3TIXe3WtIeu2jDGtFk/vvn37b/OFJvLhc2VuVEApZTqLjSg\nKwDCTY0smfUZ65cuYv8fn0ZuSelm2+T5nEw7f38efG8p4wcV0SvP286RlFJK7Qoa0PdAsWQMh82B\nTTYuhatcvpQ3/3EfACu/ncNZt9y12QQ9t9POyOJs/nTYILL9Tjw7eQSyqTbC0jmVFPfJoaCnH7dP\nh+CVUmoDDeh7kJRJsaJhBQ9+8yBD84dyysBTyPVYs9UjoY05zqPBILQznB5qivHyfd9QvboZgFOu\n2o+yAZmf7Q4QbIjywp1f0lxnJbI69erRlPbb/arQKaXUrqKZ4vYgtZFafjHjF8xYMYN7vrqHL9Z/\n0fJd76HDGX740ZQOGMTJ19yIJ3vzBFImZWio3Jgmtmp9A+FE59LG7iiTMi3BHKBu3aaJt5RS7RGR\nm0Tkdxk6dkslt92RiBSJyOfpKnSHtvP9IyIydFe0LRMy2kMXkVzgEWAYVp/vfGAh8AzQFysl4enG\nmLpMtkNZjDEE4xt74o2xjbnVfTkBJpxzIclEHLfPj82++bI1l9fB+HMG8tHTS8kr9eLum6A51twm\nAQ1AKhzGxGLYcnI6nGC3LRxuO2Mm92X2ayvIK/XRZ9/8Ljlua9FQnLqKEPUVIfrsk48vsOWa60pt\ni+HThm+WKe67c7/b1fXQdykRcRhjEhk+zRHAd+3VYxcRe3er057pHvq9wBvGmCHASGA+cA0w0xgz\nEJiZfq92ghxXDvcdfh/9A/2ZtNckDu99eJvvXV4v3uycdoM5gNNlJ6s/jL2ikFHn9SciLkyybbKX\nRG0tFXfcwZpfX0Z0wUJMcseKrWzg8TkZdWRvzps6jtMuHYgsn09szRpSoa7rqdeuDfL8HV8y84n5\nvPHwXMLNsS47ttpzpYP5ZvXQ059vly3UQ9+s7nmrXUaKyKcislhEpnRw3DIR+SBdI33uhl7tVmqY\nX9aqLvqQ9PZj0+ebk66vPjj9+XkiMl1E3sEqnbqluup9RWS+iDycPuebIrLFWbgiMkVEZqV/Hs+L\niE9ERgF/AU5MX49XRJpF5K8i8g1w0CZ12o9Jt+MbEZnZ0XXsrjIW0NN1cA/DyiGMMSZmjKkHTsQq\n7Uf6T61nuZO4HW72L9mfaYc/xo0jr8UT3/Yypbn+AG53GSfdP4sT7/uWf3+xjqZIvOX75nffo/7f\nzxCaNYvVv/wlydrarmu/z4mbMBU338TKM89i6dHHEFu5ssuOX1Pe3PK6dm2QVHL3z9GgfhA6qoe+\nvTbUHR9pjBkGvLGV7UcAh2MVcfljuohKe34KzDDGjMLqhH2d/vwPxpgx6eOMF5ERrfapNsbsB/wd\nq5IawALgUGPMj4A/0vZa9wNOM8aMZ2Nd9f2AiVilVzcM6w0EHjDG7AvU07awzKZeMMbsb4zZ0HG8\nwBjzdfrczxhjRhljwlj1IT9P/9w+2rCziBRh3XSdmj7GTzpxHbudTPbQ+wFVwOPpu5tHRMQPlBhj\n1qW3WY9VQ1dlUjIJTeuhZhmppnoWv/8+j102hel330aoob79XRJJmuujVK5sJNS4safqd/l5f0Et\njRFrpOyfn64kHNvYC5dW6VnF7YYuGnLfwMTjhD77rOW6Ql9+2WXH7jeyiMJeWThcNsb/dDAur84Z\nVV0iU/XQjxKRO0TkUGNMw1a2f8kYEzbGVAPvAmO3sN0s4BcichMw3Bizoczh6SLyFTAH2BerhvkG\nL6T//BLrUSpYhWL+IyJzgXvS+2zwljFmw53+hrrq3wJvs7GuOlj13TfcULQ+dnuGiciHIvIdVmnX\nLVWOSgLPt/P5gcAHxpjlAK3a19F17HYy+S+WA+tO7DJjzOcici+bDK8bY4yItNsNEpGLgIsA+vTZ\nkb/3irpl8MgREGkgft6HfPDkYwCUz/+eyhXL6Dty0wqH0FwX49+3fE4ilqKwdxYnXDYKX46V4GXc\nwEKcdiGeNBy5Twke58aevv/ggyi64goiixZRdMXl2AsKuvRSbF4vhb+6hOBnnyMuF1kTJnTZsf25\nbk64fBTGGFweO07Xto9gKNWOjNdDTw8Rd1T3fNN/Z9v9d9cY84GIHAYcBzwhIncDH9JxDfMNs1WT\nbIwptwDvGmNOFpG+WFXeNgi2et1uXfVNjrvh2B0lvngCOMkY842InAdM2MJ2EWPMtjwH7Og6djuZ\nDOhrgDXGmM/T75/DCugVIlJmjFknImVAZXs7G2MeAh4CK/VrBtvZ/c1+DCLWDbwEK8ktKaO+Yh0i\nNgLFmyeQAahc0UgiZqV4rV7dTDKeavmuf6GfD34/kaZIgsIsNzmtapg78vIo+OVFmEQiIxne7FlZ\nJE8/jjdHJynwFjCh0E9XnmXDTYtSXeg6rOHc1sPuXVEPvdYY86SI1AMXsrHu+etsPjx9oojcjjXk\nPIEtzF0Skb2w/t1+WETcWJ2yb9i8hvl7W2liAChPvz5vK9ttVld9O2QD60TEiXWTUL6V7Tf1GfCg\niPQzxiwXkfx0L72z17FbyFhAN8asF5HVIjLYGLMQa7bhvPR/5wJT03++lKk2qLSSjaNE/vf+wBl/\nfJlV87+nuG9//HntzxYv6Z+Dy+sgFk5QtncAu3Pj0xmP005ZwEvZFpaBi82GbCWYN0YbmVczj6X1\nSzmq71EU+zpXirUuUsdvP/gdX1dZI3GXR2q4YPgFbZLkKLU7+e7c754aPm04dO0s9+HAnSLSuh66\nF3hURG5h84D7LdZQeyFwizFm7RaOOwG4SkTiQDNwTjrAzcF6nrwa+LgT7fsLME1Ergde7WC7/we8\nnB4qn50+x/a4Afgc6zHv51gBvtOMMVXpUeEXRMSG1dE8is5fx24ho8VZ0rMMHwFcwDLgF1hDQs9i\n/cVeibVsrcOZU1qcZQeFauCbZ2DNFzD2IigbBa5N5+i0lUqmCDfFiUUSuH3Obeq5JpMJIk1N2J1O\nPP6sdreZXTGbX7zxCwCG5g/l70f+nXzv1peiVYWqOHX6qdRFrZWOR+91NLcdehsuu/asVcZpcRa1\nW8vorJ/0hIYx7Xx1RCbPqzbhK4ADLyEZOZdILE6yMYgnS3B5tvxIyma34c9142fb1mIn4nHWLZrP\n248+SEGvPhx5wa/wBaxscvWhGN+VNxCOJ2lybHx8uKZ5DclOPtbKcmVx9dirue6j68hyZnHxyIs1\nmCulFJ0M6Okp/VOwZhm27GOMOT8zzVJdToTVixfxwu03goEf//Za+u83dotrzrdXpLmJl++ZSrip\nkdryNQwYfQD7jrfu3z5fXssv//UlHqeNF359AGNKxrC8YTk3HXwT2a7OjZB5HV4m9p7IW6e9hU1s\n5Lnztr6TUqoN+YHWOReRB4Bxm3x8rzHm8V3Rnt1NZ3voL2HNdHwba7ah2oUSyQTVkWrKm8vZK2cv\nCr1bz7wYj0b5esYrmJQ1uW3OjFfoNXQEHr+/3e2b62pZ8f03+Pv1wJcToDirpFNZ32w2G77cPMJN\nVha6rPyNs9znr7M+i8RT/PbfS3n8gjux2ww5rhzcjs6PBPicPnzOjh8ZKKW2zBjzHTBqV7djWxlj\nLt3VbdiddTag+4wxV2e0Japdwfo65r73Fv5AHv1Hj8WXE6AmUsOJL55IKBGif6A/jx39GAXejYGz\nPlLPh+UfsrZ5LacMPIUiXxEOl4sh48azdLa16GDIwYfh9LQfRIP1dbw77SHKThzPpR9dhNvu5h9H\n/oN+uf222l5fIJdTr72Zb95+naI+/SjpN6Dlu9PH9Oblb9axtj7Mb44cRK47r82SN6WUUtuvswH9\nFRGZbIx5LaOtUW1Egs289dD9LP3SCsJHnH8Jo44+jvLmckIJK+XpsoZlxFJtU5R+WP4h131krYiZ\nvX42d42/i4AnQN+Ro7ngvkcwJoU3Owe7vf3//YlYlNxB/bh3/oPURqz5ig988wC3HdK5yWfZBYUc\ncsbPN/u8R66XZy46kBSGbI9Dg7lSSnWhzq71uQIrqIdFpFFEmkSkcat7qR2SSiZpqq1ued9QWQHA\nXjl7MTB3IAA/HvBjvPa2k9vWNm9ckVIRriCRrn/g8fvJLSklr7THFmefAzhcLogl6Z/dt+WzwXmD\ncdh2fA5lYbab4mwPXqdmYVNKqa6U0WVrXWVPXbZmUimqV6/k1fvuxJOdzfGX/77lmXRNuIZ4Ko7H\n7mmpab5BVaiKaz68hqpwFbcfcjtD8odgt9lbvnty3pMU+4qZ3H8yeZ7NJ5UZY2isrqQ+1sCs+q/J\n8mZzQI8D22wbDSdIxJI4XDbcrRLLKNWN6bI1tVvrdEAXkTysZPktKf+MMR9kqF1t7KkBHaygHmpq\nwGaz483O6fR+DZEGEiZBrju3JZjXRer4n/f+h9kV1s/yqjFXcc6+52zxGMl4HESwO9r2psPNMT57\ncRnLv6li79HF7H98P7xZ3WvpWHW4mpRJ4Xf68Tvbnzio9jga0Hciscpv/9QY8+B27LsCGJPOXb+j\n7fgTVp73t3f0WJnW2WVrF2INu/fCqr5zIPApVvUelUFis+EPbPvSrIBn8zRuSZMk4Arw8KSHcdqc\nhOIdlx61O9vveddXhJj3kTWs/9175Qw5uEe7AT2aiFIfrSeWipHjyiHg3kJqud3M+uB6zn39XNYF\n13H9gddzfP/jdVa92iHzh+yzWT30fRbM3yX10GXn1CHvCrnAr4DNAvrOvAZjzB93xnm6wrY8Q98f\nWGmMmQj8CKucnfoByXPn8Zsxv+HaD6/lvDfO4+vKr2mKNW19x004NpnM5nC033FZ1riMY184lskv\nTOap+U9t9QZid/He6vdYG1yLwXDvV/cSjAe3vpNSW5AO5pvVQ09/vt1E5Gci8kW61vc/RMQuIs2t\nvj8tXUgFEXlCRP5PRD4H/iIi+SLyooh8KyKfbSiHKiI3ici/pJ3a6SJyVbrm+LeyeU30Tdt2Tnq7\nb0TkX+nPitK1ymel/xvX6pyPpWuTLxORy9OHmQoMSF/fnSIyIV1RbTpWCnHS1/ClWDXTL9qGn91m\n+6V/fk+IVQf+OxH5Tauf3Wnp139Mt32uiDwknVnLuxN1NqBHjDERABFxG2MWALt1oXe1ObvNzqdr\nP6U6bI1CPfb9Y0QSkW0+TnaBh3Gn7U1p/xwOO3MQ/kD7y9/eWvEW8ZRVK3360uktM/N3d8MKhyHp\n0dURRSNw2nSOgNohXV4PXUT2Ac4AxqVrlyexipJ0pBdwsDHmf4CbgTnGmBFYRWL+2Wq7zWqni8gk\nrEeuY7HWr49OV2Vrr237AtcDh6dri1+R/upe4B5jzP5YxWMeabXbEODo9PFvTBdZuQZYmq5lflV6\nu/2AK4wxg9LvzzfGjMbKSHq5iHS2vGN7+40CehpjhhljhgPtJau5P113fRhW7vzjO3m+naKzU43X\npJ9nvAi8JSJ1WHnY1Q/MqOJR2MRGyqQYXTx6u2aue/xOhk3oxZADS3F6HNgd7d8XTuo7iWnfTyOW\ninHS3ifhc/wwhq375fTjxRNfZH1wPUMKhmw26VCpbZSJeuhHYFVWm5XuJHrZQuXKVv7TqnToIaQr\nshlj3hGRAhHZMEnnJWNMGAiLyIba6YcAk7DqoQNkYQX49uZRHZ4+V3X6+BtqdRwJDG3Vqc0RkQ3L\nbV41xkSBqIhUsrEm+qa+2FCzPO1yETk5/br3/2/vzuOjLM/9j3+uZLIHwpKAbAq4L6B4RlpFLW5V\nqz/FHo9LbetWlxaPVnuqtj1t6W7VtrZWj5XagrZ1qUu1YhW0Ra2KGBVFQBQFBWQLSwJkT67fH88T\nGMIkmSyTSSbf9+uVV2ae9Z6HvLjmue/7ua6wTRtbvQot77cUGGtmtxMUYpkdZ7/jzOx6gi9kg4BF\nwN8TOF+3SOh/c3dv+uDTwn/gIuDppLVKkmbPfnvy5JQnWbt9LXsP3Hu3We4bqzbS6I0U5RS1+sx5\nJJJBpI2JcGP6j+Gpzz+1Ywy9t4xDF2QXMDZ7LGMHjE11UyQ9dHk9dIKu+5nu/q1dFpp9I+Zt85ro\niY4dxaudbsDP3P137WrlrjKATzf19jYJA3zz2uctxaYdn8HMJhN8STjS3SvNbC67f+bdtLRfWOv9\nUIKegiuBc4BLYvbLJRjPj7r7SjOblsj5ulPCNSfN7PBwbGM8Qb3c2rb2kZ4nPyufUf1HccSwIxiU\nu2t1szXb1nDR0xcx5fEpvLn+Teoa6jp1rpxIDkMLhjKq36heMyFOJAm+TVD/PFan6qEDzwFnm9kQ\ngHBMfC9gnZkdGJYAPauV/V8k7KIPA1yZuzflFjnTzHLDbujJwGvAM8AlTXfUZjai6dxx/BP4r6bu\nbzNr+o9mNvDfTRtZUMeTux0AACAASURBVI2zNVtpvQxqEbA5DMoHEEzWTkTc/cysGMhw90cIhgwO\nb7ZfU/AuC6/D2Qmer9skFNDN7HvATGAwQT3dP1pQH1Z6sMryLWzbvCl4/CwB9y+9nxUVK6ioreAn\nr/6EilrlDhLprHA2+2UEw5Qe/r6sM7Pc3X0xQdCZbWZvA3OAYQTjzk8CLwNrWjnENIJx8LcJJp9d\nGLOuqXb6PMLa6e4+G/gL8IoFtcsfpoVg6+6LgJ8Az5vZW8Avw1VXA9Fwstxigrvg1j7jRuClcALa\nLXE2eRqImNmS8DPMa+14Cew3AphrZguAPwG79H64+xaCyY3vEHzBeS3B83WbhJ5DN7OlwKExE+Py\ngAXu3i0T4/ryc+iJ2FS9ib9/8Hcqaio4/8DzKc4rZuvGMv52y48Ycdh4DjjlZLKycxiUO2jHM+nx\n/GP5P7j+hesBOGnPk/jBpB8kXAUNoK6hgYrq7WysXceK8uUcPvTwhArHiPQSPWpGczKE3cjb3P3W\nVLdF2i/RGVGfEHQ3NI195ACrk9IiaZf6xnruXXQv97xzDwCLNy7m58f+nIXPPk3/YXtQOX4wn3vi\ndAqzC7nv1PsYU7RrgZX6hnq21W0jL5LHUcOOYvpJ09lQtYFJwye1K5hvra7j5WUbGTBwA5c9ewGO\ns9/A/Zh+0nQG5Q1q+wAiItIpiQb0cmCRmc0h6DI6CZhvZr8BcPerW9tZkqfBG1i1ddWO92sr11LX\nWMegkaOIDBvIT977HQ3eQHlNOQ8ufZAbJ964Y9vKukpeW/say7YsY78B+3HokEP59PBEh6F2VVFV\nx51zl3HWMWvwcE7N+5vfp8FVbVekt3D3aYluG46RPxdn1Qlhd3lK9fT2JUOiAf2x8KfJ3K5vinRE\nTmYOVx9+NUs2LWF73XamHTWNATkDyB8/gbLN6zg8YwLLy4OnPD49bNdgvbV2K4XZhazetppFGxex\nZ9Ge9M9JPL1sLDPjgw3bmFDyKUb1G8XKrSu5asJV5EZ61CRQEekiYVDssTXVe3r7kqHdxVksyOk+\nyt3fTk6TdpeOY+h1NTWUrVzBkhf/xT4Tj2Lo2H3Iyev4Y11lVWW4OwNzBhKJKYu6uXoz729+n8Ls\nQipqKhiUN4i9+u1FTiSHLdVbmL5wOvcuDnJKHFJ8CHeecGfcgi1tqayp57UVm3ju3XVceHQxBTkZ\nFGTnt6vbXqSHS/sxdOndEs3lPhc4I9z+dWC9mb0UZhySDqjeWsED37uexoYG3nxmFpf86nedCugt\nTT4bmDuQsQPGct6T57Guch3ZGdk89fmnGBoZSn4kf0cmN4DahloavTHhc26o3MA7Ze8wrHAYwwuG\n85n9hzBx7GByIxlNz5aKiEg3SbTLvcjdKywo0nKvu38/fNxBOqimspLGhnB82Z3tWzYxcNjw1neq\nq4aaCsjMgrzgLnrd9nUsLFvIAYMOYEj+kLjJYCrrKllXGdRSr22s3ZGbPDuSzWXjLmPt9rVsqdnC\ntCOn7fZsekvKqsq4dPalO7rzbzn2Fk4Zcwp5WS3PohcRkeRJNLFMxMyGEWTOeTKJ7ekz8osGsM8R\nRwIw6qBxDBo+svUdKj6Bf/4IZpwGD10IH79C5da1XPDUBVw791rOevwsNldvjrtr/+z+nLPfOeRF\n8piy95RdutRL8kv46dE/5TfH/4axA8YmfGddXV+9I5hD8MhbVX1VQvuKSPcwszPM7MYW1m1rYXls\nMZK5ZhZNZhtbYmaHmdnnuuE83455PdrM3umCY5aY2atm9qaZHRNn/e/N7KDOnqe5RO/Qf0jwIP1L\n7v6amY0F3u/qxvQl+UVFfPaK/+aES79KRmYm+f2bZVKrqwp+sguhajPc81koXxmsK3sPlj9P7rn3\nMab/aNZVrqO6oZqN1RsZWrB7CuQBuQO45vBruPLQK8nJzNlt4lthduFu+7QlN5LLyH4jd8ywP37P\n48nN1AQ4kZ7E3Z8Ankh1OzroMILiKU8l4+BhpTQjyNjX4UI5LTgBWOjuX4lz3sx4y7tCornc/wr8\nNeb9h4SJ/aXj8vq1MKO8ciO8/FtY8QIc/Q2o3rIzmMfImP1dvnvOHzh97Xwm7jGRPfL3aPFcHZ29\n3pLivGJmnjKT+WvmM7LfSMYUjdG4uUgL7rjyn7vVQ5961/GdqoduZqMJsp7NA44iyFz2R4JKakMI\nUrseRJB7/CozG0OQ7a0QeDzmOAbcTvA48kogblrvsOLaDwjykHwAXOzuLd3l/wdBhrhCoAy4yN3X\nWFCO9XIgG1gGfClMwfpfwPcJ8riXE+Ra/yGQZ2ZHE+SRfzDOeaYRXNOx4e/b3P034brr2JmL/ffu\nflt4zZ4BXiUobjM/PMcCgkIr3wEyzWx6eE1XA2eGxWrifc7dPg+wH3BzeNwoQdW6DcDvws811cx+\nDPyPu5ea2SkEfxuZBCl4TzCziQTV6XKBqvBaL43Xhl3ak2CmuP2A/wOGuvshFtTOPcPdf9zmzl0g\nHWe5t+qtB+GxsLTv+HMgqwBej1fJDxquXcymrGwiGZEOzU7vSeprG6jeHkzSyy3IIpKt8XjpUTr0\njTUM5tPZtYRqJXBZZ4J6GJyWARMIgtFrwFvApQSTmC8mqJDZFNCfAB5293vNbCrwc3cvNLPPA18F\nTiGocrYY+Iq7PxxOiP4fYAXwKHCqu283sxuAHHf/YZx2ZQHPEwTCDWZ2LnCyu19iZoObngEPg9o6\nd789TCd7iruvNrMB7r7FzC5qansr12AaQRW44whS0S4F9iCoOTKDIE+7EQTwLwKbgQ8JysjOC4+x\nzd2bctQ3XdOouy8ws4eAJ9z9Ty2cv6XPs0vbzcyBc939ofB903X9CHgDONbdl5vZIHffZEHlu0p3\nrzezE4GvunubN9GJjqFPJ8hrWwcQPrJ2XoL7SnttXQMFxTDkQChfBXu2kOxl8D5kZmZRkl/S64O5\nu7N2eQX3/e8r3Pe/r7Dmg3K8sX2PVIr0UF1eDz3Gcndf6O6NBEH9OQ/u0hYCo5ttOwm4P3x9X8zy\nY4H73b3B3T8hKK7S3KcJ7vZfCu9mLyR+BTmA/YFDCEptLyDIOd80SegQM3sxDOAXAAeHy18CZoR3\nvO39Jj/L3WvCcq1NpVePBh5z9+1hL8KjQNNY9kdNwbwFy919Qfj6dXa/jrFa+jzNNQCPxFn+aeCF\nppKwMaVmi4C/huP5v2rluLtIdAw9393nN+tSrU9wX2mvcefAqImwfgmMjELBEBi8N2z8YOc2ZnDq\nzVDYUsGj3qWupoEFcz6msSEI4gvmfMzQMf3Jzm1/vXaRHiYZ9dCbxJYdbYx530j8/987+i3ZgDnu\nfn6C2y5y9yPjrJsBTHH3t8K72MkA7n6lmX0KOA14PeyyT1SipVebtFVGtvnx8lrZdgZxPk8c1TG1\n6BPxI+Bf7n5W2GswN5GdEr1DLzOzvQn/GMIZkK1V8pHOqN0azGafdR387WsQyYaL/gHH/S+MOBwO\nOB0ufyEI+qEt1Vt44oMnuLX0VlZvS06a/Y1VG9lQuYHq+uq2N26nSFYGo8fvfJZ+9PhiItkJV/cV\n6claqnvemXroHfESO3tWL4hZ/gJwrpllhk8zHRdn33nAJDPbB8DMCsKh2HiWAiVmdmS4bZaZNd1h\n9gPWhN3yO9pgZnu7+6vu/j2C8eZRtF0+tTUvAlPMLN/MCghKyb7YwrZ1YXs6Iu7naYd5wLHh/IbY\nUrNF7KyXclGiB0v09mcqcDdwgJmtBpbTscZLIsreg6YEL+sXQ0Md9NsDjr4WjrgEMnMgZ9eZ6a+s\neYXv/Ps7ADyz4hkeOO0BBucN7rImrd2+lstmX8aa7Wv42TE/45gRx3RpWteMzAz2jQ5h+D4DACe/\nKIeMDAV0SQvfJv4YemfqoXfENcBfwvHvx2OWPwYcTzB2/jHwSvMdw7Hwi4D7zSwnXPy/wHtxtq0N\nb/p+Y2ZFBHHmNoIhge8SjGdvCH83BexbzGxfgrv75wjmAnwM3Bh228edFNcSd3/DzGYQTHqDYFLc\nm+HdbnN3A2+b2RsEk+Lao6XPk2g7N5jZ5cCjFtSwX08wOfFmYKYFZcpnJXq8VifFmdk17v5rM5vk\n7i+F33Qy3H1rexrdWX1mUpw7bFsH9dWw8lV44mo44bsw4cuQ2/os9bsW3MUdb90BQIZl8OzZz1KS\nX9JlTXth5Yv86d37eOWTVyjJK+HB0x/s0uOL9AIdfowjGbPcRZprK6AvcPfDzOwNdz+8G9u1i3QO\n6JurN1PfWE9hViF52zfA70+Abevh01PhqP+G7ALI7U99Yz2Zltnio2Frt6/l8jmXs3LrSr418Vuc\nNvY0CrIKOt0+b3TKN1TxxpyP6Dcqk0+K3+MfnzzJTcfexICcAZ0+vkgvoucypUdrK6DfT/Bg/3CC\n5w53rALc3ccnt3mBdA3oZVVlfPP5b/Le5vf45hHf5KSMgRTce8bODb6xFPrtweqtq7ljwR2MGTCG\ns/c9u8UZ7RurNtLojeRn5XdJMAfYXl7Dgz+eT9XW4HGyU685mIFjsnv9rHqRDlBAb8bMHgPGNFt8\ng7s/08XnuZhgyCDWS+4+tSvP08r57yB4SiDWr909/vPEKdLqGLq7n29mexA8iH9Ga9tK+720+iVK\n1wVfVL7/8veZNOVJCsyCrvfhEyAjwsaqjVz1z6tYtmUZAEPyhnDmPmfGPV7smHl5TTkvf/Iy7216\nj3P2P4dhhcNo9EY2VW/C3RmQM4CszN3ngdQ11FHdUE1eJI9IRvDnUVO184GGxipTMBcRANz9rG46\nzx8JkuakRHd9ceisNifFufta4NBuaEufM7xwZzGWkrwSGjOz2HDdIrKqKxiQVwwFxXhl2S450rfV\nbqPRG8mw1ieMLSxbyPUvXA/Acyuf448n/5GK2goufvpiqhuquevEuxhXPI7MjJ2PfFbUVDDnozk8\ntfwpzt3/XCaNmEROfi6nXjmOlx9eRvGoQkbsq252EZGeqNWoEGbJwcwWmtnbMT8LTdXWOm3/gftz\n+/G3c+X4K5lxygzuXXwfJzx6Kj9bPIPNkeC71sDcgdx23G0cWnIonxvzOcaXjGfZ5mVtljldt33d\njtcbKjfQ4A3c/fbdbKzeyPa67dxaeitb63ad21heU860V6Yxf+18/uf5/6GipoJIViaj9h/IlOsO\n5zNfOIC8frtXcxMRkdRr67mgpjGL04H/F/PT9L5VZrYiDP4LzKw0XDbIzOaY2fvh7z7bf9s/pz+T\nR01m6oSpNHoj9y6+F8d5asVTbK0Ngm1mRib7DdyPqYdNZXjhcC6fcznffOGbLVZWazJ51GSOHnE0\nIwtHcutnbqUou4hDS3Z2tBw8+GByMnN22Sd2wp2Z7XifmZVJfv9scvKU5EVEpKdqawx9Tfj7o06c\n47gwJV+TGwnSE95kQVm/G4EbOnH8pGpobKC8tpzsjOwOVSVLVG4kl7xIHlX1VfTL6rfLM94ZlsHK\nrSv5/cLfA7Bvzr5tdrkPzhvMTcfcRF1jHf2z+5Odmc0pY05hTNEYquqrOLTkUPIiuyZAGpAzgJuP\nvZlZH87inP3PoX921xZ0ERGR5GlrlvtW4qcKbJrl3ur/+Ga2giBBfVnMsqXA5LDyzjBgrrvv39px\nUjXLvaGxgXc3vcsP5/2QkYUj+fanvt2lyVpi1TXUsXb7WhZsWMCEIRMYVjBsl/HtzdWb+fuHf+eT\nrZ9w8SEXxy2T2hUavZHq+mBSXEuPyLWlpr6GnEhO2xuK9C5pNcvdzKYA77n74i46XhT4srtf3RXH\n68D5zwAOCm8WS4AnCaqgXU1Qi+QL7r4lFW3rLglVW+vwwc2WE1S3ceB37n63mW1x9wHhegM2N71v\nSaoC+obKDZw/63zWVQbj0V8//OtcOu7Sbm9Hb1FVX8XCDQu5/937OXn0yUwaMYl+2R3N3CjS46Rb\nQJ8BPOnuD6e6LV3NzM4DTkxW3fGeKtmDokeH5fCGEFTeeTd2pbt7WFZuN2E6vMsB9tyzK2oYtF+G\nZezSLZ2OwWnz9lq21dSTE8mgpF9Op2qaV9RUcMWcK6j3ep79+FlmnTUrLa+ZSHv94tzTd8sU940H\nn+xsPfQvEtx9ZhOkHf0a8FvgCIKCIg+7+/fDbW8iePS4HphNUH3sDOAzYXrR/3T3D+KcI6H65e5+\nrJlNJqjxfbq1o553mFL2LIL85SOAP7n7D8J1fyPI655L8Nz33eHyeDXELyLIm/J7dq9HvoSwt9jM\nvkxQutSBt939S4lf9Z4tqQHd3VeHv9eHCQgmAuvMbFhMl/v6Fva9myDHLtFoNCV1NAfnDebOE+/k\n12/8mtH9R3PSXielohkAbK/dTnVDNf2z+8d9frwjtlTW8ovZS/nTqx9TXJjN41OPZsTA1goLta7R\nG6n3nc+s1zbWdkUzRXq1MJjH5nLfC5j+i3NPp6NB3cwOBM4FJrl7nZndSVBf4zthPe1M4DkzG09Q\n5OMs4IDwJqqp3vgTtH2H/qi7Tw/P+WOCWuu3A98jqHG+2szi9bC+CxwTU8/7p0Br9bwnEpRcrQRe\nM7NZ7l4KXBJ+nrxw+SMEk7mnE1NDPPZAYR3z77FrPfKm63YwQQ76o8Lgvsu+vV3Sql+E1Xj6Nb0m\nKEL/DvAEQS1dwt+Pxz9CzzCq3yh+evRP+dqhX0tZQpXN1Zu5pfQWvjL7K7z0yUtdVu2str6RP88P\nCj6Vbavl1eUbO3W8ftn9+PGkH3Pw4IO5esLVFOcVt72TSPpLRj30E4D/IAhyC8L3Y4FzwiIjbxLU\n0D4IKAeqgXvM7PMEQTNRHa1f3t563nPcfaO7VxH0HhwdLr/azN4iqEo2CtiXlmuIJ+J44K9N87ra\nuW+Pl8w79KHAY+E3owjwF3d/2sxeAx4ys0uBj4BzktiGLpGdmdpnr5dsXMIj7z8CwLVzr2X2f87u\nkkpnkUxj0t7F/HtZGTmRDA4b1bmkMYXZhZw65lSOHXks+ZF8TYwTCSSjHroBM939WzsWBCU45wBH\nuPvmcIw8N7xLnkgQ9M8GriIIbImYQcfql7e3nnfzXlgPu/BPBI4Mu/nnEnS9SwuSFtDd/UPiZJhz\n940Ef1h9Um1DLeU15WRaJoPyEuvtKcop2vG6f3b/To1zxxpUkMOvzzuM1VuqKCnMYVBB57+4ZGdm\np/wLkEgP8zFBN3u85R31HPC4mf0qHNIcRPAFYTtQbmZDgVOBuWZWCOS7+1Nm9hLwYXiMROqNN6/3\nvRp21i8HXjWzUwnunmO1t573SeFnqAKmAJcQjKdvDoP5AQR35hDcrd9pZmOautzbcaf9T4IbzV+6\n+8Z27tvjKVNIN6prqGPB+gVc/8L1lOSX8Nvjf5vQ42ej+o3il5N/SenaUs4/4HwG5XbdsM/gwhwG\nF+pOWiSJurweursvDiezzQ7raNcBUwm62t8FVhJ0i0MQlB83s1yCO/vrwuUPANPN7Grg7HiT4mhf\n/fLPxOzX3nre84FHgJEEk+JKw27+K81sCbCUIJC3VkO8Te6+yMx+AjxvZg0E1+uiRPbtDZL62FpX\nSZdqa2VVZXzpqS+xatsqAK4YfwVfOuhLvLDqBWoaajhu1HEJP+feVFmtX3a/Lul+F5E2dbhrLBmz\n3NNF0+z0pgls0nG6Q+9GkYwII/uN3BHQxxaN5dmPnmXaK9MAeKfsHW444gbyslqfaf7Jtk+48tkr\nWbt9LTcdcxOThk/SeLVIDxYGbwVwSSoF9G40IGcAPzvmZzyz/Bn2KNiD8SXjuWn+TTvWLy9fTm1j\nLXm0HNAr6yp59P1HWV6+HICfvvpT7j/tfkoiJUlvv4ikp+6o921mJwM/b7Z4eViCdUZXnacvU0Dv\nRuU15dQ11HHa2NMoyilie912Lj7kYhZvXExNQw3fPOKbuyRiqW+sZ33lehaWLWRc8TiG5A+hpqGG\nvfrvnF8ztmhslz2XLiJ9U3fU+3b3Z4Bnkn2evkxj6N2koqaC3739O+5dfC/FecX85XN/YVjhMMqr\ny9lat5UMy2BQ7qBdxsM3VG5gyuNTqKitoDCrkMenPE5+JJ+FZQvZWruVsqoyThx1IoWeS34/FVIR\nSbK0Sv0q6Ud36N2kpqGG+xbfBwST415d+ypT9plCUW4RRblFcfepqq+iorYCgG1126isq2RI/hAO\nGnwQdQ11ZFU2MuvmW6CxkdOvuZ7+Jckp2CIiIj1f0jLFya4iGRH+Y2iQeyFiEcYVj2tzn8LsQk7Y\nM3hkf/LIyfTPCe7Ci3KK6Gf5PDf9TtYsXcKa95fy/J/+QH1tTfI+gIiI9Gi6Q+8mA3MH8ovJv2BF\n+QqGFgxlcG7bj6cNyh3EtCOn8Z1PfYdIRmSX1LMZGZkUDNz5PHrhwMFYRrwMjCIi7RdmeHvS3Q9p\nY5uj3P0v4fuUllDt6xTQu9Gg3EHtTgozIDd+OtasnByOOf/L9C8ZQkZmJuOOO4nMyM5/zvKacirr\nKsnKyKI4XznVRSQpRgNfIHwkLyyo0rsnPPVi6nLvxfKLBnDkf57Hp6b8F/lFOwN/RU0F09+ezmcf\n+SznzTqPddvXpbCVIpIMZjbazN41sz+b2RIze9jM8s3sBDN708wWmtkfzCwn3H6Fmd0cLp9vZvuE\ny2eY2dkxx93WwrleNLM3wp+jwlU3AceY2QIzu9bMJpvZk+E+g8zsb2b2tpnNCyu/YWbTwnbNNbMP\nw0x10gUU0FOoqr6KN9e/yY/m/Yi3NrzVZVXUahpquG9JMAFvXeU6FmxY0CXHFZEeZ3/gTnc/EKgg\nSOs6AzjX3ccR9MJ+NWb78nD5b4Hb2nGe9cBJ7n44QdnW34TLbwRedPfD3P1Xzfb5AfCmu48nSHN7\nb8y6A4CTCcqmfj/MFS+dpICeQuU15Vzy9CU8tPQhLnr6IrbUbOmS40YyIhwx9AgAsjOyOXDQgV1y\nXBHpcVa6e1PO9j8RFL5a7u7vhctmAsfGbH9/zO8j23GeLIK87wuBvxKUZW3L0cB9AO7+T2CwmTU9\nXzvL3WvCMqbrCapzSidpDD2F6hrrqPd6IEgiU9dY1yXHHZg7kJuPvZnV21ZTkl/CwJzU1HEXkaRr\nnkhkC9DajFuP87qe8OYuLHYSr1zitcA6ggqaGQT11Tsj9pGcBhSLuoTu0FOof3Z/rp5wNWP6j+Hr\nh3+douw4z6NXbYE1b8GKf8P2jQkfe1DeIMaVjGOPgj2U510kfe1pZk132l8gmJA2uml8HPgS8HzM\n9ufG/H4lfL0CaKpnfgbB3XhzRcAad28Mj9n0SE1rJVhfJCi5SljbvMzdKxL6VNIh+laUQkU5RXzx\nwC/y+X0/T34kP35RlveehseuCF5HL4GTfgg5bZUwFpE+Yikw1cz+ACwGriYoM/pXM4sArwF3xWw/\n0MzeJrhDPj9cNp2gvOpbwNMENdWbuxN4xMy+3Gybt4GGcN8ZBOVIm0wD/hCerxK4sHMfVdqi1K8p\n4O7UbN9OZiRCVm4rpU8b6oJg/s4jwfvifeGip6BwSPc0VERi9ajUr4k8J95s+xUEZUrLktgsSSF1\nuXczb2ykbOVHPH7rj/nnzLuprChveePMLDjyKsjKAzOYdK3uzkVEJC51uXezyopynrj1J2xZt4ZV\nS95hj7335dATT215h6EHw3+/Ad4IuUVBcBeRPs/dVwAJ3Z2H249OWmOkR1BA725mRHJ2TlLLzm0j\nQEdyoP/wJDdKRER6OwX0JGhobGBT9SZqG2spiBTskr61oGgAU67/Li8/9BcGjxzF6PGHt3icTdWb\nqKqrIieSQ3Ge0reKiEjLNCkuCVaUr+CCpy6goraCs/c9m6//x9cpytn1kbTGhnosIxOz+PNsNlVt\n4oYXb2DemnmM6T+GGafOaHceeBHpUj1qUpxIc5oUlwR/W/a3HXXMH37/4bgpXTMyIy0Gc4DK+krm\nrZmHYVw67lLe3/w+89bMY0t112STExGR9KKAngSHDTlsx+uR/UYSyWj/yEZuJJe9+u/FSXudxPrK\n9Xxl9le4bPZlzFw0k5oG1T0X6evM7BQzW2pmy8zsxlS3R1JPY+hJMGHIBO757D18WP4hx406jsF5\nbdc+b644r5gZp8xga+1WbntjZw2FNze8SU19DTmZyv4m0leZWSZwB3ASsAp4zcyecPfFqW2ZpJIC\nehIU5RQxcdhEJg6b2KnjFOcVU5xXzBXjr2DeJ/Oob6xn6mFTKcgq2LlR5WZYvwiqNsOeR0KBJs+J\n9AETgWXu/iGAmT0AnEmQLU76KAX0XmC/Afvx5FlPAsGXhcyMzJ0rl82BRy8LXh/2RTj155BTmIJW\nikhrotFoBCgGykpLS+s7ebgRwMqY96uAT3XymNLLaQy9F4hkRijJL6Ekv4TszGaFkFbFzP5f+xZ0\nUU11Eek60Wj0KGADsBzYEL4X6VIK6L3dkV+DAXsGKWFP+RnEPPMuIqkX3pnPAgYAueHvWdFoNLPV\nHVu3GhgV835kuEz6MHW593YDR8NXngtSw+YNhEz9k4r0MMUEgTxWLlACrO3gMV8D9jWzMQSB/DyC\n8qnSh+l//3Sg6msiPVkZUM2uQb2aoAu+Q9y93syuAp4hqE3+B3df1KlWSq+nLncRkSQKJ8CdBmwh\nCORbgNNKS0sbOnNcd3/K3fdz973d/Sdd0FTp5RTQRUSSrLS09GWCrvcxQHH4XqRLqctdRKQbhHfk\nHR0zF2lT0u/QzSzTzN40syfD92PM7NUwXeGDZpbd1jFERESkdd3R5X4NsCTm/c+BX7n7PsBm4NJu\naIOIiEhaS2pAN7ORBJNBfh++N+B44OFwk5nAlGS2QUREpC9I9h36bcD1QGP4fjCwxd2b0h6uIkhh\nKCIiIp2QtIBuZqcD69399Q7uf7mZlZpZ6YYNHX5cU0QkbSU6R8nMcsL3y8L1o2OO8a1w+VIzOzlm\nedzyrN1xDumYZN6hTwLOMLMVwAMEXe2/BgaYWdPs+hbTFbr73e4edfdoSUlJEpspItJrJTpH6VJg\nc7j8V+F2mNlBB6L6uQAADaBJREFUBFnmDgZOAe4MvyQ0lWc9FTgIOD/ctrvOIR2QtIDu7t9y95Hu\nPprgH/Of7n4B8C/g7HCzC4HHk9UGEZGeIhqN9o9GowdFo9H+XXG8ds5ROjN8T7j+hHD7M4EH3L3G\n3ZcDywhKs+4oz+rutQQ3ZWd2xzm64tr0ValILHMDcJ2ZLSMYU78nBW0QEekW0Wg0KxqN3gmsA+YB\n66LR6J3RaDSrk4duzxylHeVWw/Xl4fbxyrCOaGV5d5xDOqhbEsu4+1xgbvj6Q4JvZiIifcGvCXoj\nc9mZz/3C8PfXOnLA2DlKZja50y2UtKDUryIiSRJ2r18M5DdblQ9c3Inu9/bOUdpRbjVcXwRspOUy\nrC0t39gN55AOUkAXEUmekUBdC+vq6GAXcwfmKD3Bzl6Bs8PtPVx+XjhDfQywLzCfmPKs4Sz284An\nwn2Seo6OXA8JKJe7iEjyrAJaGivPouvvSG8AHjCzHwNvsnOO0j3AfeHcpU0EwRN3X2RmDwGLgXpg\nqrs3ALRSnrU7ziEdYMEXqJ4tGo16aWlpqpshIn2bdWSncELcheza7V4JzCwtLe3QGLpIPLpDFxFJ\nrmvC3xcTdLNnETzedU2Le4h0gO7QRUQS06E79CbhBLgRwOrS0tKKrmmSyE66QxcR6QZhEFcgl6TR\nLHcREZE0oIAuIiKSBhTQRURE0oACuohIL2Rm15rZIjN7x8zuN7NclU/t2xTQRUR6GTMbAVwNRN39\nEILELOeh8ql9mma5i4gkUTQazQWmEgTgoQRV134D3FFaWlrdiUNHgDwzqyNIWrOGIKf7F8L1M4Fp\nwP8RlCWdFi5/GPht89KmwPIwy1tT8axlYTEtzKypfOqSZJ+DIKOcdIDu0EVEkiQM5s8DPwT2BHLC\n3z8Cng/Xt5u7rwZuBT4mCOTlwOuofGqfpoAuIpI8U4FD2L3aWh4wLlzfbmY2kOBudgwwHCgg6M6W\nPkwBXUQkea5m92DeJC9c3xEnAsvdfYO71wGPEpRUVfnUPkwBXUQkeYZ2cn1LPgY+bWb54Tj1CQRj\nzyqf2odpUpyISPKsIxgzb219u7n7q2b2MPAGQUnSN4G7gVmofGqfpeIsIiKJaXdxlmg0+g2CCXB5\ncVZXAd8tLS39RWcbJgLqchcRSaY7gIUEwTtWVbj8jm5vkaQtBXQRkSQJnzP/DPBdgnHvmvD3d4HP\ndPI5dJFdqMtdRCQxnaqHLpJsukMXERFJAwroIiIiaUABXUREJA0ooIuI9EJm9gczW29m78Qsu8XM\n3jWzt83sMTMbELOux5VJ7cg5pGUK6CIi3SAajY6JRqOTotHomC465Ax2z98+BzjE3ccD7wHfgh5d\nJrVd55DWKaCLiCRRNPA6sIggk9uiaDT6ejQajXbmuO7+AkFGtthls2Mqoc0jyI8OMSVM3X050FTC\ndCJhCVN3rwWayqQaQZnUh8P9ZwJTYo41M3z9MHBC8zKpSTyHtEIBXUQkScKgPRc4nCBbXFH4+3Bg\nbmeDehsuAf4Rvu6JZVI7cg5phQK6iEjy/I6gtGk8BcBdyTipmX2HIG/6n5NxfOmZFNBFRJIgHCs/\nsI3NDurCMXUAzOwi4HTgAt+ZOawnlkntyDmkFQroIiLJMRyobWOb2nC7LmFmpwDXA2e4e2XMqh5X\nJrWD55BWqHyqiEhyfAJkt7FNdrhdu5nZ/cBkoNjMVgHfJ5jVngPMCeeQzXP3K3twmdR2nUNap1zu\nIiKJ6Uj51NcJJsC15PXS0tJkToyTPkRd7iIiyXMFsL2FdduBK7uxLZLmkhbQzSzXzOab2VtmtsjM\nfhAuj5sZSEQk3ZQGXYuTgdcJaqCXh79fByaXqutRulDSutzDJAAF7r7NzLKAfwPXANcBj7r7A2Z2\nF/CWu/9fa8dSl7uI9ACdSmwSzmYfDnxSWlq6vGuaJLJT0ibFhTMSt4Vvs8IfJ8gM9IVw+UxgGtBq\nQBcR6e3CIK5ALkmT1DH0MI/vAmA9QY7hD2g5M5CIiIh0UFIDurs3uPthBAkDJgIHJLqvmV1uZqVm\nVrphw4aktVFERCQddMssd3ffQpBA4EhazgzUfJ+73T3q7tGSkpLuaKaIiEivlcxZ7iVNtXjNLA84\nCVhCy5mBREREpIOSmSluGDAzrIWbATzk7k+a2WLiZwYSERGRDkrmLPe3gQlxln9IMJ4uIiIiXUSZ\n4kRERNKAArqIiEgaUEAXERFJAwroIiIiaUABXUREJA0ooIuIiKQBBXQREZE0oIAuIiKSBhTQRURE\n0oACuoiISBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iIpAEFdBERkTSggC4iIpIGFNBFRETSQCTV\nDZCd6mtrqd62FYDcwkIi2TkpbpGIiPQWukPvIdydtR+8x++v/grTr7qU1UuX0NjYkOpmiYhIL6GA\n3kPUVVfz6t/+SkNdHY0N9bz62EPUVVWnulkiItJLKKD3EJHsbEYfeviO93uNn0BmTnYKWyQiIr2J\nxtB7iIzMTA465nhG7Hcgjd7IwD2GE4lkpbpZIiLSSyig9yB5/fqR169fqpshIiK9kLrcRURE0oAC\nuoiISBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iIpAEFdBERkTSggC4iIpIGFNBFRETSgAK6iIhI\nGlBAFxERSQNJC+hmNsrM/mVmi81skZldEy4fZGZzzOz98PfAZLVBRESkr0jmHXo98A13Pwj4NDDV\nzA4CbgSec/d9gefC9yIiItIJSQvo7r7G3d8IX28FlgAjgDOBmeFmM4EpyWqDiIhIX9EtY+hmNhqY\nALwKDHX3NeGqtcDQ7miDiIhIOkt6PXQzKwQeAb7u7hVmtmOdu7uZeQv7XQ5cHr7dZmZL2zhVEVDe\nzuYlsk9r27S0rvnyeNvFLmu+vhgoa6Nd7dWTr0+8Za29T8b1aaldXbFPX75GiW7f3muUiuvztLuf\n0s59RLqPuyftB8gCngGui1m2FBgWvh4GLO2ic92djH1a26aldc2Xx9sudlmc7UuT8G/RY69PItes\n2fXq8uuja5Sca5To9u29Rj31+uhHP6n8SeYsdwPuAZa4+y9jVj0BXBi+vhB4vItO+fck7dPaNi2t\na7483nZ/b2N9V+vJ1yfeskSuYVfTNWpbe8+R6PbtvUY99fqIpIy5x+3x7vyBzY4GXgQWAo3h4m8T\njKM/BOwJfASc4+6bktKIXsrMSt09mup29FS6Pm3TNWqdro+ko6SNobv7vwFrYfUJyTpvmrg71Q3o\n4XR92qZr1DpdH0k7SbtDFxERke6j1K8iIiJpQAFdREQkDSigi4iIpAEF9B7OzA40s7vM7GEz+2qq\n29NTmVmBmZWa2empbktPZGaTzezF8G9pcqrb09OYWYaZ/cTMbjezC9veQ6TnUUBPATP7g5mtN7N3\nmi0/xcyWmtkyM7sRwN2XuPuVwDnApFS0NxXac41CNxA8DtlntPMaObANyAVWdXdbU6Gd1+dMYCRQ\nRx+5PpJ+FNBTYwawSwpJM8sE7gBOBQ4Czg+r02FmZwCzgKe6t5kpNYMEr5GZnQQsBtZ3dyNTbAaJ\n/x296O6nEnzx+UE3tzNVZpD49dkfeNndrwPUEya9kgJ6Crj7C0DzZDoTgWXu/qG71wIPENw14O5P\nhP8ZX9C9LU2ddl6jyQQler8AXGZmfeLvuj3XyN2bkjttBnK6sZkp086/oVUE1wagoftaKdJ1kl6c\nRRI2AlgZ834V8KlwvPPzBP8J96U79HjiXiN3vwrAzC4CymKCV1/U0t/R54GTgQHAb1PRsB4i7vUB\nfg3cbmbHAC+komEinaWA3sO5+1xgboqb0Su4+4xUt6GncvdHgUdT3Y6eyt0rgUtT3Q6RzugTXZO9\nxGpgVMz7keEy2UnXqG26Rq3T9ZG0pYDec7wG7GtmY8wsGziPoDKd7KRr1DZdo9bp+kjaUkBPATO7\nH3gF2N/MVpnZpe5eD1xFUD9+CfCQuy9KZTtTSdeobbpGrdP1kb5GxVlERETSgO7QRURE0oACuoiI\nSBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iIpAEFdOnxzOzlVLdBRKSn03PoIiIiaUB36NLjmdm2\n8PdkM5trZg+b2btm9mczs3DdEWb2spm9ZWbzzayfmeWa2R/NbKGZvWlmx4XbXmRmfzOzOWa2wsyu\nMrPrwm3mmdmgcLu9zexpM3vdzF40swNSdxVERFqnamvS20wADgY+AV4CJpnZfOBB4Fx3f83M+gNV\nwDWAu/u4MBjPNrP9wuMcEh4rF1gG3ODuE8zsV8CXgduAu4Er3f19M/sUcCdwfLd9UhGRdlBAl95m\nvruvAjCzBcBooBxY4+6vAbh7Rbj+aOD2cNm7ZvYR0BTQ/+XuW4GtZlYO/D1cvhAYb2aFwFHAX8NO\nAAhq0ouI9EgK6NLb1MS8bqDjf8Oxx2mMed8YHjMD2OLuh3Xw+CIi3Upj6JIOlgLDzOwIgHD8PAK8\nCFwQLtsP2DPctk3hXf5yM/uvcH8zs0OT0XgRka6ggC69nrvXAucCt5vZW8AcgrHxO4EMM1tIMMZ+\nkbvXtHyk3VwAXBoecxFwZte2XESk6+ixNRERkTSgO3QREZE0oIAuIiKSBhTQRURE0oACuoiISBpQ\nQBcREUkDCugiIiJpQAFdREQkDSigi4iIpIH/DyzBJG0AmHMpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_3", + "outputarea_id1", + "user_output" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3cb82618-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3c59f516-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_78c48573f5" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_3", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3cbb25f2-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_0d5020cb75" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_4", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3cbb860a-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_4\");\n", + "//# sourceURL=js_e33ee3272e" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_4", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3cbbedb6-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3cbb860a-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_13e889ced8" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_4", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3cbc3ca8-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(4);\n", + "//# sourceURL=js_08b10358f0" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_4", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3WeAVNXZwPH/mTu9bW+UZWmKCAKC\nHRFFRcDeY++xYWISja+aWGOJUWMSNRGNYuy9N2yIoCJKB+lLXbaX2d3pc94PM2xhd2GBHWB3n9+X\nnblz77lnVtzn3nPPeR6ltUYIIYQQnZtpT3dACCGEELtOAroQQgjRBUhAF0IIIboACehCCCFEFyAB\nXQghhOgCJKALIYQQXUBSA7pS6jdKqUVKqcVKqd8mtqUrpaYppVYkfqYlsw9CCCFEd5C0gK6UGgJc\nCRwMDANOVEoNAG4BvtBaDwS+SLwXQgghxC5I5h36fsAPWut6rXUEmA6cDpwCTE3sMxU4NYl9EEII\nIbqFZAb0RcCRSqkMpZQTmAj0BnK01kWJfTYDOUnsgxBCCNEtmJPVsNZ6qVLqQeAzoA6YB0S32kcr\npVrNPauUugq4CmDw4MEjFy9enKyuCiFEe6g93QEhtiWpk+K01s9orUdqrccAlcByoFgplQeQ+FnS\nxrFPaa1Haa1HORyOZHZTCCGE6PSSPcs9O/Ezn/jz85eA94CLE7tcDLybzD4IIYQQ3UHShtwT3lRK\nZQBh4DqtdZVS6gHgNaXU5cBa4Owk90EIIYTo8pIa0LXWR7ayrRwYl8zzCiGEEN2NZIoTQgghugAJ\n6EIIIUQXIAFdCCGE6AIkoAshhBBdgAR0IYQQoguQgC6EEEJ0ARLQhRBCiC5AAroQQgjRBUhAF0II\nIboACehCCCFEFyABXQghhOgCJKALIYQQXYAEdCGEEKILkIAuhBBCdAES0IUQQoguQAK6EEII0QVI\nQBdCCCG6AAnoQgghRBcgAV0IIYToAiSgCyGEEF2ABHQhhBCiC5CALoQQQnQBEtCFEEKILkACuhBC\nCNEFSEAXQgghugAJ6EIIIUQXIAFdCCGE6AIkoAshhBBdgAR0IYQQoguQgC6EEEJ0ARLQhdgFsVBo\nT3dBCCEACehC7JRYOIx/4UI23fxHqt59j2hNzZ7ukhCimzPv6Q4I0RlFKytZe9HFaL8f3yef4Pjg\nfQyvd093SwjRjckduhA7Q2t0JAKAyeVCWax7uENCiO5OAroQO8FISaH3v5/EO3ECee+8xYIFc5j/\n+cfU11Tv6a4JIbqppA65K6VuBK4ANLAQuBTIA14BMoCfgAu11jKzSHQqJrsd16GHogbty+v3/Zny\nDesAKJw/l/G/nozd7dnDPRRCdDdJu0NXSvUEbgBGaa2HAAZwLvAg8KjWegBQCVyerD4IkUzKMIjG\nYg3BHGDD4gVEwuE92CshRHeV7CF3M+BQSpkBJ1AEHAO8kfh8KnBqkvsgRFLUV1dRXVpMdt/+Ddv6\njjgIs1Wepwshdr+kDblrrTcqpf4GrAP8wGfEh9irtNaRxG4bgJ7J6oMQybTsuxks+OJTJk3+A5Wb\ni/CkpZHaoxd2l3u7x8b8fpTNhjLJNBYhRMdI5pB7GnAK0BfoAbiAE3bg+KuUUnOUUnNKS0uT1Esh\ndp47PYOTLrsGY94Ccqprif57CtEFi4jV17d5zJb16xv/cBOVL7xApKpqN/ZYCNGVJfP24Fhgjda6\nVGsdBt4CjgBSE0PwAL2Aja0drLV+Sms9Sms9KisrK4ndFGLn5A8cRO3j/8ZeUMDGG35DzYcfse6K\nK4hWt0wyE4vF0Fo3rF+v/eILiu+7n1Bh4e7vuBCiS0rmLPd1wKFKKSfxIfdxwBzgK+BM4jPdLwbe\nTWIfhOgwkbIyKl54EYD0C87HbLNBOIwOh0Hr+E7RKDoUREejKMMAoLaygu/ffAWHN4Xh405AmUzo\nLY3KBDohRAdRWuvt77WzjSt1F3AOEAHmEl/C1pN4ME9PbLtAax3cVjujRo3Sc+bMSVo/hdieaG0t\nRX/6E76PPwHAM+EE8u69l2hVFcFVqwguW47vk4/xnDABZTHjnTgRS3Y2gbpaPnzsrxTO/xlPZhYT\nr/8DKSmp1L38KiarhfQLL8ScmrqHv51oJ7WnOyDEtiR1HbrW+g7gjq02rwYOTuZ5hegIWmuUiv8N\n1+Ew4Q2NT4fC6zeggyEwDCKbN2MbOACT9RQCS5dQ/c67uI4aiwXQsRjhQACby8WJv/0jX099mtqK\nMiZc9zty+w3E7HCgo1Gi5eVEqqsxp6VjzszYQ99YCNGZyRRbIVoRLimh+L77KP3X40QqKjC8XnJu\nuxWTy4XJ5SLn9tswUryoWIySRx7FnJpG2VNPUf3OuzhGjQJ3fKa7w+PlhGtvZNhxE1jz848UrfgF\nX3kZnzz5GKFgAIgP5a8++RTWnHQy66+9lkh5+Z786kKITkqKswixlWh1NUW33oapZ2/s40+luiqK\nTfmI5OXQ89OPsZkMDI8HZRiYvF5ybv0/yqZOpffTU9A2BzGXG7NhIrh6NSaXC296BgefcjZr5jY+\nNvJmZ2NKPGMPrVtHNDHbPbBgQfzOXwghdpAEdCG2oqNRTF4v6uQLeenR5Yw5J5/Vb7/Gitkzcaak\ncsH9f8djsQBguN14x4/HfcQRRMwWQlYHrmAdm++4A9+nn6Hsdvq+9Sa2fv3oc8BwTv7drVSXFjPo\niKNweOLV2ax9+mDOyyNSVIRr9GiU3daiT5GycrSOYaSmYkqcWwghmpKALjqFomo/XywtYUjPFPpn\nufDYkxjUDIPs3/+O9evC6JgmLdfGitkzgXh2uJLC1XgyMht2N9lsmGw2dEUFjvJitGHg+2waADoQ\noG7WLGz9+uHweBl4yOEtTmfJzqbva68S8wcwuZyY09ObfR7atIn1V15FtKKCXv/8B47hw1Fm+V9X\nCNGcPEMXe71SX5Bzn/qe299ZxKmPz2RjpT9p54pUVFB89z0UnnMuqSu/5bATcvFVhOi1/1AArA4n\nWfkFAISLi6l8+RVqv/2W8ObNBH/5heJ77iW4di3u444FQNntuA5vGcS3Zs7KwprfG3NGywlxlS+8\nSGjVKqKVlWy++26i1VLRTQjRklzmi71eTGvWVzRmX1tXUc+gPG9SzhVat46aDz8EoOQvf2H/L78k\nZEul16CbCdTWYHe5caSkEikrY93FlzQkhsm94w7sI0ZQO3069XPm0OeF/5F19dUYGRkY6enEYpqo\n1liMHb+Gtu+3X8Nr64CBKMkVL4RohQR0sddzWc3cfcoQ7v9oKUN6pnBgn7SkncuckQEmE8Ri8WBs\nMePJcAAO3GmN5w1HIs2yvPnnz4sPhTudxOrqqHzjTbKuuxZzejqlviCv/riSlaW1XHZEX/pluXHb\n2v+/nuvI0fR+5mmiZWW4Ro/G8EhpViFESxLQxV7PbTdz2oieHD84B7NhIt21/TvUirogNf4IDqtB\nusva7jtjIz2dgldfof7HOXiOPw4jM7PV/ZTdjnfSRGo+/AhlteKdNAmTy4mur8eclUXGRRdipKRQ\nXlnLda8tZPaaCgDenbeJT35zJPvmtn+EwZyaivuII9q9vxCie0pqpriOIpnixNaaJn3ZWlV9iDvf\nW8w78zbhtpl5f/Jo+ma6dvmcUZ+PwNKl+OfNJ+WkE1E2O9HqKpTZjHI44juFwyirFZPXS3DpUkrt\nKYz576Jm7VxzVH/+OGHQLvdH7HaSKU7s1WRSnOhUyuuC/OvLFdz9wRI2Vwda3ScUifHOvE0A1AYj\nzFi+89X6ImVlhDdvJlpTQ3jTJtZddDGljzxC4fkXQCyKrW9frL17QyRC0S23sOnW29DBINGaGtZf\nfQ2Ul5Hlab4MbVhvSfUqhOh4EtBFp/LK7PX87bPlPDuzkD++uYBSX8ugbjZMHDMoGwCb2cRh/Xcu\nlWq4uJjCc3/FyrFHU/7MM+hYrOGzSHFxQ0GWWDhM5UsvUfftTOq/+47N99wLMY3J6ST673/x1Mn9\n6ZPhxGqYuOjQPhzcd+fnAMRiMWJN+iGEEFvIM3TRqVTUNWZRq/GHCYZbBrd0l5WHzjyAEl+QVKeF\ndOfOzQqv/2E24Q0bACj/z1Oknfsr3MceS2DhQrJv+gN4PFQWb2bpt1+Td/RRpKWlUfngXzF53Jjc\nLvKfeZrSJ56g77qlvH7FGDCbcVnNuHZgQlyz/tSE+OmTQqLhGKMm9cEwR3C4ZYKcECJOArroVC4f\n3ZdVpbXU+MPcOnE/HFaj2eeRUJRoJEa6y0qGu2XGNQC/r4ZoJILJMHB6U9o8l23QoIYZ77ZBg1BW\nCz3+ci+xUAjD48FXV8erf76JuqpKAM6580Eyr7+OtHPPxXA4MPr0ocdf/tIhSWBi0RhzPlrDwq/j\nBWICdWFy+myk/4Ej8Gbl7HL7QojOTwK66FRSHRZum7gfm6r8ZLiseOyN/4TrfSFmv7+G6uJ6Rp89\nkPQ8F8rUfB5TfU01Xz33FL/MnE5O/3047eY/4UpNI1Jdjf/nnwmuWEHKKadgycnB2qsn/T54n9Da\ntTiGDm1I+rLlEiJSU9MQzAGqSovZ/9prUabGJ1kdldFNA+FgtOF9JByjrqqar59/hgnX/x6LrfnF\nS7A+jGE2Yd7qgkcI0XXJM3TRqThtZgbmeDhq32z6ZrmxmhsDVuH8MhZ/s5ENyyr56MkF1PtaFjkJ\n1Nbyy8zpABSvWs6mFcsACC5ZwoZrrqX0kUdZf/U1RMorMDmd2Pr1w3P00ZhbWb5mstgYddaFmAwz\nOf0Hkj9keLNg3pEMw8Shp/Sn7/BM+gzJYNQJWSyd8SmutHRMTZbk6ZimoqiOT6Ys4ts3VuJv5Xcg\nhOia5A5ddBmGufFu3GSYiMY04Wis2Rp0i82GYTYTjUQA0K5UquqD6Ca1ziNFRehY491wW1JTvRxw\n7AQOGDsOZTLh3SoHe0dzpdo49pLBhAMBlv/wFUPHjeeAY8ZjmBvz2vt9IT56cgHVJX42LK0kq7eb\n/Y/smdR+CSH2DhLQxR5RVR9iU1UAr9XAYxjYLCbs7l1LaZq/fwYHndiXyqI6hk8q4L4vl3FY/0yO\nGZTdUMzF4fFy1p0PsvDLaWQNHs4XGyKck1WPZ8yRuI44nOCaQnLvupOYbfvr1pVSpKUmJwVtW6x2\nM1a7mxHjT2qjU2CYGy9gzBYZhBOiu5DEMqJDhNavp+LFl3AMOwDX4YdjTml7slkoEuPZmWtYtdnH\n+QU5zH17Fam5Lo6/bDBOb+sT2dorFtOU1wZZsrmGVSV1PDptOdN+N4bcFEfDPhV1IZ79djWzVlcw\nfkAqZ1YvoezRv9Pjn/8i5Ejn55mVhKMmxp63Lw5P58qbHqgLU18dZM5Ha0nNdTJ0bE8cu3ihJBpI\nYhmxV5M7dLHLImVlrL3oYiJFRVQC+S/8D/OoUW3u7w9H+fKXEm46aiDfP7GISChGXVWI1fPLGHxE\nD6r8YayGwr1VidRoTFNWGyQW07jt5lZLqNYGI7w9byP/+molBxWk88LlB+MLRHhy+mIO6ZvGEf0z\nSXdZufjwvpx9UD4ZoVo2nvs40fJyQhYPLz+2sqGtEcfld0hAr/eFiEVimDtgFGJbQoEIM19fwaaV\nVeTvn0GPgSkSzIXoRmQ8TuwyrTXRqqqG99HyiobXMb+f0Nq11H47k0hZGQBuq8E1Y/tTF4zgTrM3\n7OtNt7OqtJZLn53NrW8voqw22Ow86yrqGf/3bzjsgS/5ZnkpoUjLNeh1oQj3ffQLNf4IXywtIdVl\n5cx/f8fUWYVc++JcftnsAyDTY6N3uhOb047zwAMBUJEQdnf8IkEpcHo7IJjXhPjoiQVM/b9ZTH9l\nOf7a5E1Si4RjlG2spaYswKLpG1n5UwmdYQROCNExJKCLXWZ4PPT65z+w9u+P98RJOEeNbPgsXFTE\nqomTWH/FFfHZ4xUVGIaJg/umM7hfKifeMIxREws44aoheHu6uOTZH5m/oZr35m/io4VFzc7zwYJN\nVNWHueHQHowoW0XFXx8ksGIFOjHBDcAwKbIS68+3rFir9ocbPl9e7KPM13ihYHi95Nx+G72ffhpn\nmoMzbx7JEWcN4MxbRuHwtBwB2FG1VUGK19QAsHJOCUF/ZDtH7Dyb08yRZ++D1WHGk2FnxHF92sx3\nL4ToemTIXewyk92O85BD6PP8VJTV2qy8Z3DZcojGZ4wHFi9ueF0fjBKMxDDsBoec3A+AzdX+ZuvK\nrYYJfyiCwxrfNnpAJo9/uZJz9/FQfcb5oDXVb75Jv48/wpIdT/Wa5bbx9nWH8+GCIgbleli0sZqb\nx+/Lv79ZxdAeKQzO8/LK7HVcP25gw3nM6em4R8ermdmA4ePyO+x34/BYsNgNwoEongw7/miMZGVy\nNwwTOX09nHfnIYkRhl2bjyCE6FwkoIsOYbJYMGW0zJnuGHkglvx8wuvWkXHN1SibjTJfkAv/+wNL\ni3yM7JPGfy4YSabHRorDwiNnD2fqd4Xkpzvpn+2mLhghHNW4rAZ9PHY+/c2ReIrXUr0lj3p9PUQb\nh96VUuSqEGft6+UfszYy9ceNXHRYAe9fcxjmNat4f9kmemTtvuIoEYti/O9HUF5UhyfHwaZgiLwk\nns8wG7hSJJmMEN2RBHSRVJbsbApeehGtNSa7HcPjYdOGKpYWxZ9l/7S2kgpfEJMvjCfdTq7XxlED\nMwnFNAo46qGv+fVR/bh0ZD5v3v0jkXCUSRcXkHbppdTNmEHGFZdj8jaOCIRLStj42xsJFxVxw113\nc8nVB+K2mXD4K4mUbOCY/Q4kMy9rt33/NLcNfyRGUVmMHnYLuVaDaCSKYZagK4ToWPIMXbQpGI5S\nVO1n0cZqyreaoLYjIvYUymutlJbFCNSGyfbYcSZSkqY4LBihGK/cM5uKMj8omHhAD3RMc8EzP1AX\nivL4V6vw+8KE/BFiEc2HzxXiuvBK+kx9Du8JJ2C4GteMVzz3HOgYvf7xGJZohB5WsJSXUfL7P1Dz\n0cf0S7WR7tq9M7/zUuwclO7hvfvn8NId31O0poaaesngJoToWHKHLtq0scrPhMdmEIzEOHrfLB4+\nexjprh17LhuNxFg8cyPfv70agENP68fQo3vx6W/HsGB9FQNTnMx7YxVaw9o11Xwyt5obxg3EbJgI\nJCqpZXttODwWMnq6KN9YR2qOE8PtxNzKM2IjI4Oc//s/1l95FdGqKsxZWfT+z78JLFkCsRiVL79C\n1uTrd/2XswNCgQjfv7OacCA+f+CHd1bT+6R8Bhek4bbL/4JCiI4hf026sVg0RiymMVtaH/6du66K\nYGJp2DcryojEdmAJVF05rJ1JxLsv6xfXNWxev6SSIUf2pHe6kxyHhcXfbmLzqmoyerrx9nbzwTdL\nuXx0X0bkp/LB5NFMX17KaSN64km1c/JvhhMOxrDYTG1O+Eo94wzqZs1qWEYXKS0lXLQZIy2NaHk5\nRvrO1yLfWWazQWa+m/VL48v5UvKc/LCukoKeHgnoQogOI39Nuim/L8TcaevwlQc47LT+eDMdLfY5\ntF8GGS4r5XUhLjwkH5u5nU9owgGY+RjMegxL32M48Jh/UrSyGoADj8/HkghiVoeFwaN70HdkNgs2\nVnP5Kz9z+eh+vDh7HU98tYrbJu3HJYcXNNQPb8+sbXNqKo5hw1A2GzoYxORyYdtvEJ7x47Hk5eGd\nMKGdv6GOY1hMjDgun/SebqrrQ5jynIQKyxoeOwghREeQ1K/d1IKv1jPj1RUAZPZ2c9INw3FulRUt\nlsjMFozEcNvNpDnb+ezZXwWvXgCFMwAIj3uA4P4XgzJhc1mwbBXItmSAi8Y0tTV12Py1qFiUrzcG\nOOHg/mR77a2dpU2xUIhISQmBJUtwDBmCOSsLDCNpldDaKxSJ4gtE8AUipDgspO3mZ/lil8mifrFX\nk0lx3VQs0nghp2M6XnB7a+EQmQ6D3unO9gdzAJsXjvkTWJxgcWLpcyDuVDvuNHuLYA7xZDA5Xjs9\nUh3klW8geMl5eJct5Oz9UnEFfcSibVc+CwejhIKRZhnRTFYr1l698B5/PJYePVAWyx4P5lprwnUR\nouVBsi1mCeZij1JKnayUumVP90N0LLlD76bqfSF+eHcVtRVBjjxnH1JznM0+D2/eTMlDD2HyeMma\nfD3mVtaYb1MkBP5EClhHOpjjAWxTlZ8vfylhWO9U+mY6cdsas7FprSn6059wHXYYscxMlq5cyoZV\nyxh+/InkDx2G3eVu/h1qQtSuL8G0bC74KkmZNBFLK3XLm4rW1oJSzWbG7w511UFev38OdVVBPBl2\nzrh5JK4USfzSyeyVd+gqng5Qaa1b5kIW3Yo8Q++mnB4rR569D9GoxuZo/s8gWlND0e23U/ftTABM\ndhvZN9+8Y3e5Zit4cpttKvUFOPPJWWyqDqAUfH7jUbizGwO6UgrvxIkYHi8bSjbx3XtvALB+ySIu\ne2wKOhpmTbiIN1e8yfg+48mo6YX7p28pve8uAPw//ECPB+7H8LZe0jRcVMTmu+5GWS3k3H57Q3a5\ntlTXhwhGYtitBt5WCsHsiHAgQl1VfOmfrzxAJLj9eutCtEUpVQB8CvwAjAT+qpS6mniyw1XApVrr\nWqXUROARoA6YCfTTWp+olLoEGKW1vj7R1n+BTKA0cew6pdRzQA0wCsgFbtZav7G7vqPYcTLk3o2Z\nrUZDMI+UlREuLY1nXgN0k+xrOtwx+cejMdhUHYi3qWFDZX2LfRzDhmHOzSEQ8Ddu1JpwMEh1rI6L\nPr6I15a9xpXTrsSSFSO6vrBht/D69ehwuEWbAFGfj6I/30Ht11/j+2wa5c8+S3l9GSX1JfhCvhb7\nV9QFufuDJRz9t6/5x+crqNzFdeNWh5nsPvEEOHkDUxomBgqxCwYCTwBHAZcDx2qtDwTmAL9TStmB\n/wATtNYjgbYyKv0TmKq1PgB4EfhHk8/ygNHAicADSfkWosNIQBeEi4ooPO98Vh0zjtqvp6NsNvL+\nci/uo8fiPelEMq+5ukOeQbtsBrdO3A+7xcTh/dLZP9sKgRqq/SEKy+vYUFlPvWHFkpVFv0OPIH//\nAzBbrAw97kTMyiCqowSj8bvcmI4RIoTrrF9h338w5rw8cu+9ByO17bSuyog/v1cWC1x4Gpd9djnj\nXh/HS0tfahHUK+vCvPnzRupCUZ7+dg21gV27qHF6bUy6bhgX/uUwTrhqaIdUchPd3lqt9ffAocBg\nYKZSah5wMdAHGASs1lqvSez/chvtHAa8lHj9P+IBfIt3tNYxrfUSIKejv4DoWEm7TVBK7Qu82mRT\nP+DPwPOJ7QVAIXC21royWf0QbauvriIU8KNCQcw5OYTXraP4gftxHDQKa48e9Pjb3+LPm53OVo8P\n1NYSjYSxu9wow0zIH8GwmFqd+AbgsVs4b3gGp/bqgbliBelTzid0xXQ+XFHJrW8vAuCpC0dy/P65\nuDIyOf76m9DRCJG6epg+Hc8p43nq2CksLV+Jy2pn2aYY5Yab/o/8i9pAiHDPbJxG6+c2PB5y77qT\n4gcfxNKrN4tD61hdHU9288T8Jzh94Ol4rI0pZF02M3ZLPLmN12HG2t4le9sgQVx0sC0JHhQwTWv9\nq6YfKqWGd8A5mqaI3CvnEIhGSQvoWutlwHAApZQBbATeBm4BvtBaP5CYZXkL8Mdk9UO0rr66ig/+\n/iDrlyzE7nJz9h9vJXz9b7ANHBi/g4VtThyrr65i2tOPU7ZuLeMuuxp3Rj9mvLqazHwPoyb0weFu\nPXi5VT3u/42FxPwdfzDMe/OLGz5/d94mxu6bhdVskJKeho5GidlsqLPPojoMS9Zk88NqM9eP7ceK\nDRWc896PAJw+oif39u25ze9sycmhx333gVL0CxRhJO76B6UNwjA1vxBId1n48IYjmb2mgsP7Z5Ap\ns9LF3ut74HGl1ACt9UqllAvoCSwD+imlCrTWhcA5bRw/CziX+N35+cCM3dBnkQS760HeOGCV1nqt\nUuoUYGxi+1TgaySg73bB+jrWL1kIQKCull/m/8zIRx/Bmp+POTFsHYtG8fuqicVimEwGDq8XUyLw\nrVu8gJWzvwPg/Ufv5+TfP8ymFVVsWlFFTh8P+xyc2/qJrV449Un4/E7oOQpXShoXH+7ghzUVGEpx\nwaH5WJsULlGG0TDJbXVRJfd8sBSAmSvL+PzXI/ntUX0o8cf47XH74LQ2/+estSZWW4uy2TBZ4wHZ\nZI+vac8xcnjv1PdY51vHoPRBpNvTm3fTbNA/y03/rOYz64XY22itSxOT3F5WSm1ZOnG71nq5Uupa\n4BOlVB3wYxtNTAaeVUrdRGJSXNI7LZJidwX0c2l8fpOjtS5KvN6MPJfZIyw2O2arjUgoPqKW3bc/\nzhEjGj7319SwaPrnzHn/Leqrq/BkZHLI6eeyzyFH4PB4cKc1BkB3WgbhYJNJdNtYCVmrbeh+k3Be\nMRbDasfsSGXMwAgz/3gMSkGqs+3Z5LFY4zliGqLV1Vw1MheVloZjq/S1OhIhsGwZJX97GMeQIXiv\nuIIakxVDKTLcNhxmB/nefPK9HVf7XIjdJXHHPaTJ+y+Bg1rZ9Sut9aDE0rbHiU+YQ2v9HPBc4vVa\n4JhWznHJVu/l6nYvl/R16EopK7AJ2F9rXayUqtJapzb5vFJr3SLBtlLqKuAqgPz8/JFr165Naj+7\nm2g4TMWmDcyf9hE99tmPviNG4fDE74QDdXXMePFZFnzxSYvjDj3jXA465Uyi4TAbf1lCyZpVDDn6\nOOprLHz72koye7s55OR+ODwth6gr60M8NX0V7y8o4vxD8jnvkD6kONq/HKyyNsiL363hx/U1TB6V\nRZ/lc0mfeEKrz/jDpaWsOelkolVV2MccRclNd/Gb1xeR47Xx1EWjyNnB7HNC0AmfISulbiQ+Sc4K\nzAWu1Fq3XF4iuoTdEdBPAa7TWh+feL8MGKu1LlJK5QFfa6333VYbklgmebTWxC/eG9WUlfD05CsZ\nec5Z5B0wlFBdHbOfeY7Kok0YFgtX/ONp3OnNE81EozFC/ihmi8Jia33gZ01ZLUf/bXrD+xk3H03v\ndCexaAyT0b5JZ0FfHfWVVdhqKrH27Ik5rfViK5HSUlafdjrRsjLsD/+DS5eYKSyP/x278bh9+M24\nge06nxBNdLqALrqX3bFs7Vc5IhhMAAAgAElEQVQ0Xy7xHvErRhI/390NfRBt2DqYA5StW8vw009j\ncc9KzphxAbesvI+jfvcbzFYb0XCY2sryFscYhgmH29JmMAewWwwsRvx8LquB12Ri7rR1fPH8L5Rv\nqiUa3X6iKyPox6liWPPytrlEzUhPp89zz+I5/jgcPfPIz2i8ix+QtXuzxAkhxO6Q1Dv0xGzLdcSz\nE1UntmUArwH5wFriy9YqttWO3KHvXhuXLaHWFOCc7y4jquMZze4efjs1L8ygbF0hlzz8JBm9ejfs\n76/1EfL7McxmXCmpba5Z94cirCytY9qSzZw9qjcV8yqY8epyAKx2g/PuPBRXatvpUCPl5az/9a8J\nLFqMOTeXvq+/Fi+8sg2xYBBlsVBWF+ajhUX0THUwsiBtx3LTCxEnd+hir5bUSXFa6zogY6tt5cRn\nvYu9VGpOHiXL5zIkYwjzy+ZjKIOBaQP5puo9UrJzsLvjc2O01tRVVTD3kw+Y/c7rODxezr/vUVKy\nW5/n6LCaGdozhaE9UwBYtXl9w2ehQHS7d+gxv5/AosUARDZvJlxaut2AbrLFLxCyPDYuPrygXd9f\nCCE6I8k/KVqwezzkpPXkrqw/ssa/nt7e3iz/4DOi4RAn33YPzpRUtNaUb1hHXVUl8z79gN6Dh1Kw\nz2BqiovaDOhbGzauN6t+LsHvC7P/mB5Yt5MO1eRw4Bg+HP+8eVh69sSynWAuhBDdiVRbE62KhEP4\na2pY/fOPFK9aQVZBXwYefDiOlFQMw6C+ppq37r+DQUcchcVk0NNsp+7lV3AMH0b6RRe1OVmt2Tkq\nKqgtqiSmFRarCVfvHEwOx7aPKSsnVleLyenc7t25EB2s2w25K6Vmaa0P39P9EO0jd+jdmI7F2nze\nbbZY8WRkMuy4CcTGjcfUyn4mw8ys11/iynsepnDiJIhEqP/uO+z77Yf3+ONb7F/qC1JU7SfXayfT\nbcP32WdsvjNeKU3Z7fSf9tl2A7o5MwMyd7CUqxBihyilzFrriATzzkWKs3RD0dpaar/5hqJbb6V+\n3jxigcA2928tmDu9KUy8/vdk9u5DsNYHkcbiJTFfy+plJb4AZzw5i5P/NZMJj82grDaItaCg4XNr\n794dUgBGiL1NwS0fnldwy4eFBbd8GEv8PK8j2lVKvaOU+kkptTiRtwOlVK1S6qHEts+VUgcrpb5W\nSq1WSp2c2MdI7POjUmqBUurXie1jlVIzlFLvAUu2tNfkfH9USi1USs1XSj2Q2HZlop35Sqk3lVKt\nF34Qu4UMuXdDoY0bWXXscaA1ymKh/7RpWHJ3LmFffU01RihM7XvvU/7009iH7E+P++/HnNH8Lnpt\neR1HPfR1w/sPbxjNIBf4Fy4kuHwF3kkTseTsXB+i9fXoujowDMzp6ds/QIids8ND7ongPQVoGujq\ngSsLH5j0UutHtbMzSqVrrSuUUg7iaV2PAsqAiVrrj5VSbwMuYBLxamxTtdbDE8E/W2t9byJV7Ezg\nLOIV2j4Ehmyp0KaUqtVau5VSE4A/ES/RWt/k3BmJic4ope4FirXW/9yV7yV2ngy5d0M6GGzIz6rD\nYXQsutNtOb3xGevmc8/Be9KJKIulIRd8Uy6bmdEDMvh2ZTn9Ml1ke2wYHjvu0aNxjx7dYv/2ilRW\nUv6f/1D50svY9hlIr3/8E0uPvJ1uT4gOdh/NgzmJ9/fRWLJ0Z92glDot8bo38froIWBLiseFQFBr\nHVZKLSRe4RLgeOAApdSZifcpTY6d3aTcalPHAs9uyTLXZKnxkEQgTwXcwKe7+J3ELpCA3g0Z6elk\n/fa3+D77jLTzz28ofrJLbTqdbZZZ9ft8mHw1PHR0BvbT9iFmc5Hhbnu9+Y4Ib9pExXNTAQgsWkzJ\nY4+Rd+cd230WL8Ru0laxgF0qIqCUGks8yB6WuGP+GrADYd047BojUf5Uax1TSm35e6+AyVrrT1tp\ns44d8xxwqtZ6fqJAzNgd/S6i40hA74bMqamkX3IxqWefhcntbqhElgyhgJ+fP3qX7996BYDsgn6c\nfuvdQMcEdL3V8/+Yz4eObT/jnBC7yTriQ9mtbd8VKUBlIpgPAg7dgWM/Ba5RSn2ZuHvfh3h5622Z\nBvxZKfVi0yF3wAMUKaUsxEuvbq8dkUQyC6mbMtntmNPTOyyYR6IxKutD+MPNh+9Dfj8/vvdGw/uS\nwtX4yko75JwA1oICnIccAoCRmkr2727cZh13IXazW4k/M2+qPrF9V3wCmJVSS4EHiNdEb6+niU96\n+1kptQj4D9u5udNaf0I8bfccpdQ84A+Jj/4E/ED8OfwvO/QNRIeTSXHdVMNEMqUwZ2buUluBcJQ5\nhRU8Mm0FB/dN49dj+pPmil8o1FZW8PxN1+P31TTsf8kjT5LRs3dbze2wSGUlsfp6lMWKOT0NZW7f\nwFOsvp5wURHB1atxDh8u69rF9uzUOvTExLj7iA+zrwNu3dUJcUK0RgJ6NxALBFBWa8OysFh9PTXT\nprH59j9h7tGDPs89iyVvxyaSNa3SVlwT4MgHvyKUSN368pWHcFj/+EVCNBJhw9JFfPjYXwnW1zPq\nxNMYddLpODyeDvyGOye4Zg2rJ50IsRi2ffYh/9lnMWfILHnRpm6XWEZ0LvIMvQuLhcMEly6l/Kkp\nOI84nJQJEzBSU4nW1bH5jjvR4TDhtWupev11sm64oV1t6miU0Nq1VEx9Huehh+A6/HBQNiyGIpQY\nbbeajYb9DbOZXvsN4aKH/gVorHYHVseuL1X1+0L4a8PYHGbsbjNGk3O2V2j1akg8bw+uWAG7MNtf\nCCH2NAnoXVi0spK1F1+C9vvxff45jqEH4EiNV0Oz5vcmuHwFANYBA9rfZkUFa887n2hVFVWvvkrB\na6+Svv8QPrhhNLPXVOC1W+i/VXlSw2zGndZxd77+2hCfP7eEdYsrMFtNnHPbwaTm7PhFgmPYMOyD\nBxP45Rey//B7lMyMF0J0YhLQu7omGdx0JAyAOSOD3k89RfW77yUmlR3c7ua01kSbZIKLVlURCkWZ\nu66KL38p5YrRfXFYd/xueUdEIzHWLY4vg42EYmxYVrlTAd2cmUnvKU+hYzFMdgdGooqcEEJ0RhLQ\nuzDD66X3lKcoe+IJnIcehrVPQcNnltxcMn991bYbiEWhYjX88BQMOBryD8fweOj590cpffTvOIYP\nwz5kCGt9QX732nwAvl5WwvSbjiY3JXlB3TBM9BqUxoZfKjFbTPTad/uFYNqydUY7IYTorGRSXBen\no1FidXUom62hNvj2+H0+/L4aLFYz9u8ewvLTlPgH18yCnP2JBYPEfD6U3Y7hdrO82Mfxj34DgNmk\n+PaPR5Obktzh63pfCH9NCJvLjMNlwbAkd1RACGRSnNjLyR16F6cMY4cywYUCfn764G1+eOc1TIbB\nr265hdy106FsOQSqATBtdXGQ7bFxx0mD+XxpMVeN6UeK09Lh32NrTo8Vpyd5CXGEEKKzkYC+F4pW\nV+NftIjwpiI8R4/d9jrxQDWULoP1s2HgcZCaD5advzsOBwIs+24GALFolJWLfiF3wDjoNxYy9231\nmFSnlQsO7cMZB/bCZTNjmLZ/IxMJBTGZLa1Wctsi5vcTra1FdcBaeSFEc4lUryGt9azE++eAD7TW\nb2zruJ0819PAI1rrJR3dtmgkAX0vVDd7Nhsnx5eR1RxxOD0ffrjVgicAbJoLz58Sf/3FXXDdbEjv\nu9PntjqcHHzaWXz2739gttnY94ixkHUyGDawtT1pzGKYsDi2n3gwFotSsXEDM197gbz++zB03Hgc\nnpYjCLFAgNoZ37Lp5psx5+TQ59n/YunRY6e/lxB7zJ0pLRLLcGf13pBYZixQC8xK9om01lck+xxC\nUr/ulYLLlje8Dq1eA+Ew4UAAX3kZNaUlBOub1E9Y+mHj62gIiua1bC8SpMxfRm2otsVnTflrali3\neAHezGyufPxZLv/7U6T36AXOjG0G8x3hr67htbtvZeXs75jx8lSKV69sdb+oz8fmu+5CBwKE166l\n8tVXO+T8QuxW8WA+hXg+d5X4OSWxfacppVxKqQ8TdcgXKaXOUUqNU0rNTdQs/2+iNCpKqUKlVGbi\n9ahEffQC4GrgRqXUPKXUkYmmxyilZiXqp5/Z6snj7biVUl8opX5OnO+UtvqV2P61UmpU4vWTSqk5\niZrtd+3K70E0JwF9L5R65hlYBwzA5HKRe+cdKK+XjcuXMuX6y5hy/WUs/34mkVAovvN+kxoPNKyQ\nN7xZW/Xher5a/xUXfXwRD8x+gMpAZavnDIeC/PDu67zz4F28ce/trP5pNu70DAxLBz8PV7pZ8ZRY\ntPVkLspsxtqnsaaFbd/Wh/uF2Mttq3zqrjgB2KS1Hqa1HkI8t/tzwDla66HER1+vaetgrXUh8G/g\nUa31cK31jMRHecBo4ETiOeLbEgBO01ofCBwNPKziqSNb69fWbtNajwIOAI5SSh3Q3i8ttk2G3PdC\nltxc+jz3HFrHMDweIjrG3I/fawiEP3/8Hv1HHozZaoUeI+DyaY3P0D25zdqqDddyy4xbiOoo633r\nOan/SRySd0iLc0ZDIYpXrWh4v3H5UoYeewKG0bGzx+2eFM68/R5mvPw8ef0Hkjew9UBtTkuj12N/\np+aTT7H07InjwBEd2g8hdpOklE8lXuv8YaXUg8AHQA2wRmu9ZXhvKnAd8PcdbPcdrXUMWKKUytnG\nfgq4Tyk1hniZ1p5Aztb9anKh0NTZSqmriMefPGAwsGAH+ylaIQF9L2XObFwfbY5F6T/qEFb//CMA\nfUeMwmyzUx2opiZUgzW9D6l5w7CZWy5LMykTqbZUygPlAGQ4Wl93bXO6GHP+Jbx53x2YrVYOO/2c\nHQrmUZ+PWCCAyWLBaOt5P2AYBtkF/Tnpt7dgWCyYtzECYM7KIv3CC9rdByH2Qkkpn6q1Xq6UOhCY\nCNwLfLmN3SM0jsbat9N0sMnrbc1uPR/IAkYmSrAWAvat+6WU+kJrfXdDg0r1JV6p7SCtdWViIt72\n+iTaSQJ6J2AyGexzyBHkDdiXSChEam4eESPGS4tf4on5T2AxWXhh4gsMzhjc4tgMewb/m/g/3ln5\nDgflHESOs/WLbmUykd13AJc++iSgcHpTGj4rqw3y6o/rMUyKs0b2IsPd/MIhWlVF2dNPU/m/F3CN\nGUPeXXdiTm871atSCptz1/O5C9EJ3Er8GXrTf/C7XD5VKdUDqNBav6CUqgKuBwqUUgO01iuBC4Hp\nid0LgZHAx8AZTZrxAe1f09pcClCSCOZHk7hoaaVfW0+G8wJ1QHViBGAC8PVO9kFsRQJ6J2F3e7C7\nGyuUlfnLWFyxmBHZI1hSvoRphdNaDehKKXp7ejN5xORtth/TMSrClUQtUdwWd0NlNn8oyl8/+YXX\n5mwA4pXVbp2wHxZz4/SLWF0dFU8/A0DttGmEr7l6mwFdiG7jzuqXuDMFOn6W+1DgIaVUDAgTf16e\nAryulDIDPxJ/Rg5wF/CMUuoemgfP94E3EhPatv0HoqUXgfeVUguBOTTWQm+tXw201vOVUnMT+68n\nXkdddBDJFNdJRepKCRfOIFS1nuq+RxCwe9knfZ+dbm+DbwO3fnsrvdy9GNNrDGN6jcFpceILhLnp\n9QUYJoVhildSu+eUIc3ytYdLSllz8slEq6rAYmHAZ5/ucDlWIToByRQn9mpyh95JmZe+j/mDG3EA\n3v7HEDt9yi61t7R0Cbf1vYE102eSZ7URTK/DmeLEY7fwz5N7oL97EhUNoQ6/HvNWxVfMmRkUvPE6\ndTNn4Rx5IEbazudWF0IIsXMkoHdGsRhs/KnhrSpZitHeWt6BGgj6oLIQXBnxNeauLEZ6h/K/311P\nJBhk8ZfTuOyxp+IDeHVlWF6/CDbMjh+/6lO47DNwZzWe32TC2qsXsUkTiEQiEIvSvqzxQoi9mVJq\nKPC/rTYHtdYtl8qIPU4CemdkMsERN8LyT8BfCSfcD/bmc1v8vhpCfj+GxYIrNQ2lFNRXwLePwnf/\nAp1YC54zBM5/DQNL49p2aHwdizZPVlO1DkwGWut4mwl1VZW8df8dlK4tZPSvLmLYcROwOZvXRRdC\ndC5a64XA8O3uKPYKklims0rvF69+duNiGHh8s/ztgVofs15/kacnX87//ngDvvKy+Aeb5hFOzafm\nzGcIjLoMlAmKF8FbV+Gwmpk0+Q9k9+3PYWf8CndaYnmb2Qb7nx5/bTLwX/g1c7/1MePVFdRWBhrO\nWbTiF0oKV6N1jBkvTyUcbLr6RQghRLLJHXpnZTKBu/UlaJFwmPmffQxAfXUVm5YvxeW0UWH0YuHS\nleQOy6Vy0IkM6XkgKe9eD4XfYtX1DDj4cPKHDsdis2PZUk3NkQrj74Nh54A9hWVLvcx6axUAJYU1\nTLruABweK2k9eqGUCa1jZPTK32bRFSGEEB1PAnoXZJjN9Bk2gsJ5P2G22sjtNxB/IMjLd95GOOCH\nj9/n9L8+SEmWkxSLA8J+iIYwWyyYLSktG3RlQP9jAKj7rjGbXL0vRCwWXyXhycji4ocfp3z9Onrs\nux/OlLaTywghhOh4EtC7IIfHy4TrbqS2shKHx4vD46W+ujIezAG0JlBfh8NrAa3B2wOs7XvePezY\nfDavqaG+OsRxlw7G7o5nerPa7WT07E1Gz97J+lpCCCG2QQJ6F+X0puL0Nt4l25xujrtqMj99+Da9\nhg3HkeIhvXAaxMJwyuPgbF+9cXeqjYnXDEVHNTa3BcOQoXUh9mZKqTuBWq3135LQdiEwSmtd1tFt\ndwSlVBbxXPdW4Iatc8t3tTrtSQ3oSqlU4GlgCKCBy4BlwKtAAfGUhGdrrVsvAdYNRcJhasvLKFq1\nnB77DMKdntkhBVJsTieDjxxLv+Ej0JEqHCs+wuwrgut+BE8emNp/Dofbusv9EaK7GDp1aIt66Asv\nXrg31EPfo5RSZq11JMmnGQcsbK0eu1LK6Gp12pN9e/UY8InWehAwDFgK3AJ8obUeCHyReC8S6qur\nmPqH6/joHw/x/E3X46+uarFPZaCS9b71lNSXEIm1//8Hs9WGOyMbT/ZAzAdfBcffCxn9wSp51YVI\nhkQwb1EPPbF9p7VRD71F3fMmhwxTSn2nlFqhlLpyG+3mKaW+SdRIX7SlTvp2aphPblIXfVBi/4MT\n55ubqK++b2L7JUqp95RSXwJfbKOueoFSaqlSakrinJ8ppRy0QSl1pVLqx8Tv402llFMpNRz4K3BK\n4vs4lFK1SqmHlVLzgcO2qtN+QqIf85VSX2zre+ytkhbQlVIpwBjgGQCtdUhrXQWcQry0H4mfpyar\nD51RVXERkXB8DXjI76e+prrZ59XBah796VEmvjWR0949jeL64h0/iVLxIG50cK1zIcTWdmc99G05\nADgGOAz4c6KISmvOAz7VWg8nfhO2JQnFtmqYlyXqoj9JvJIaxHO1H6m1HgH8mebf90DgTK31UbRd\nVx1gIPC41np/oIrmhWW29pbW+iCt9ZYbx8u11vMS5341UfPdD7iAHxK/t2+3HJwYmp8CnJFo46x2\nfI+9TjLv0PsCpcCziaubp5VSLiBHa12U2Gcz8Rq6IiGjRy+8WdkApPfshSu1eRrVUDTE+6veB6Am\nVMPc4rm7vY9dVV24jnJ/OYFIYPs7C9E+yayHfpxS6kGl1JFa6+rt7P+u1tqfeNb9FXBwG/v9CFya\neO4+VGvtS2w/Wyn1MzAX2J94DfMt3kr8/In4o1RoLBSzCHg0ccwW07TWFYnXW+qqLwA+p7GuOsTr\nu2+5oGjadmuGKKVmJIrFnL/V+ZqKAm+2sv1Q4But9RqAJv3b1vfY6yTzGbqZ+JXYZK31D0qpx9hq\neF1rrZVSrVaHUUpdBVwFkJ+/q//2Ow9XWjrn3fM3QsEAVrujRUC3GlbGF4znwzUf4rK4GJY9bIfa\nD0QChKIhXBYXxg48N9/TqgJVRHWUFGsKZqPj/9lWBaqYsnAK32z4hkv2v4TxBeNxW90dfh7R7eyW\neuiJIeJt1T3f+u9sq393tdbfKKXGAJOA55RSjwAz2HYN8y1ZpKI0xpR7gK+01qcppQpoXuWtrsnr\nVuuqb9XulrbbHHIHngNOTVRzuwQY28Z+Aa11O/NkA9v+HnudZN6hbwA2aK1/SLx/g3iAL1ZK5UH8\neQ1Q0trBWuuntNajtNajsrKyWtuly3KlpZOW26NFMAdIsaVw88E38/5p7/Peqe+R59x2VbNoNEJt\nRTlVxUXUVJXznwX/4YavbuDnkp8JRjpHNreS+hJu/PpGLvnkEuaXziccDSflHM8veZ7CmkLu/O5O\nfGHf9g8SYvtuJV7/vKmOqoder7V+AXiI+N/WQuJ1z6Hl8PQpSim7UiqDeLD7sY12+wDFWuspxCc0\nH0jrNcy3JwXYmHh9yXb2a1FXfSd4gCKllIX4RcKO+h4Yo5TqC6CU2lL/ub3fY6+QtICutd4MrG8y\niWAcsAR4D7g4se1i4N1k9aGrSrenU+AtINuZ3ebdam2oltL6UipqSpl682SeueFKfnznDRxRKz8V\n/8TV066mOrS9Ubo9LxqL8u/5/2ZO8RwKawqZ/OVkqoItJwruKpfFhUpUx3RZXBiq84xeiL1XYjb7\nlcBa4nfFa4ErO2CW+1BgtlJqHnAHcC/xuuePKaXmEL+jbWoB8aH274F7tNab2mh3LLClZvk5wGNa\n6/nEh9p/AV6ifTXM/wrcn2hnW0NqLwKjEkPlF9FYV31H/Qn4IdG3HW5Da11KfET4rcSEuVcTH7X3\ne+wVkloPPTHL8GniawBXA5cSv4h4jfgzpLXEl61VtNkI3bseut9XQ2XRRsxWG97MLOxuz3aPqQpW\n8dzi53hr+Vsc0/toTrMfw+d/fQi7y82B/3cNV826Hpth46PTPyLbmb0bvsXOi8ViPPzTwzy/5HkA\nMuwZvHHyG2Q62rduvr3qQnUsrVjK9A3TOaX/KRR4C5IytC86NamHLvZqSf2LlZjQMKqVj8Yl87xd\nRSgQYPY7rzPng7cBOOG637H/mGO2e5wv5OOZhc8A8ObKtzj9qJMwzGYGjT4Kk8XCIbmHcO3wa0m1\n7f3pWU0mE5cNuYyKQAXF9cXccvAtpNk6vt66y+piVO4oRuW29s9VCCH2fu0K6Ikp/VcSn2XYcIzW\n+rLkdEsARIIB1i5sLF26Zu4cBh1+JIZ528vNbIYNu2EnEA1gVmYyM3pw8cNPYHe6MVx2Hs0bisvq\nwqQ6R5a3DEcGfz70z4R1GI/F06xsqxBix3XWOudKqceBI7ba/JjW+tk90Z+9TXvv0N8lPtPxc1o+\nmxFJYnW6OOS0s/nwsYcwLBZGTjp1u8EcwFAGTxz7BNM3TOewvMOwGBbSchsnFlqNzpfpzWFx4Njm\nJFchRHt11jrnWuvr9nQf9mbteoaulJqXSDSwR3TnZ+ihgJ9gXR1KKeweL2ZLPKDXBGsIx8J4rV4s\nWyWIWe9bz1WfXcWAtAEUVhfy96P/Tv/U/nui+0J0JTI0JPZq7R1z/UApNTGpPRGtstodeDIycadn\nNATzcn85d8y6g0s/uZQ5xXNaLD9zWVwUpBTw9fqvSbGmdIpn5UIIIXZNe+/QfcRT5gWBMPErVa21\n9ia3e3Hd+Q69NW8sf4O7vounU3aYHXx02kdkblUtrSJQQTAaxGayke5Ib60ZIcSOkTt0sVdr1zN0\nrfX210qJ3abpLG+PNT5JLBaLESOG2RT/T5pulyAuhBDdSbuXrSml0ogny29I+ae1/iYZnRLbNjJn\nJP938P+xpHwJVx5wJWZl5l/z/kVxXTGTD5xMrit3T3dRCCF2iYqX3z5Pa/3EThxbSAfVaVdK3U08\nz/vnu9pWsrV32doVwG+AXsSr7xwKfEe8eo/YzVLtqZy333lEY1EMk8F/F/2XKQunALDWt5Z/HvNP\n0uxpBOrqCAf8KJMJV0oqytQ5lqkJ0ZUsHbRfi3ro+/2ydI/VQ1e7pw55R0gFrgVaBPTd+R201n/e\nHefpCO39C/8b4CBgrdb6aGAE8XJ2Yg/aUlylPtyYKjoQCaC1JhTws/SbL3jq2kt4/qbrqS7ZiTKr\nQohdkgjmLeqhJ7bvEqXUBUqp2Yla3/9RShlKqdomn5+ZKKSCUur/27vzOKmqM//jn6e76YW9BURA\nFBeMigtqgQtGEaOSjIPLEDVxXBJnjDMS84thIo4zRvOLE3UmcRsTJaNBnUSDSxR3+WmIqDHaqKCo\nKKuCCN3QLE3T+/P7456Goru6u3qpqu7i+369+tVV5y7n1LXxqXPuueeZZWb3mNlfgVvNbA8ze9LM\nFpnZm43pUM3sBjN7yBLkTjezfwk5xxdZ85zoTdt2cdhvoZk9FMqGhFzlb4efCXF13h9yky83s6vC\naW4GDgif7z/NbGLIqDaHaBlxwmdYYFHO9Mvbce2aHReu3yyL8sC/b2Y/jLt2U8Pr60PbPzCzmXGp\nXruFZIfcq9y9yswwswJ3/9i6eaL3bLW9djsVtRX0yu21Y/b6BQdfwMrNKymrKuP646+nuLCYbZvK\nefOPs6Njtm7h4zde5bhzz89k09mwfQO/++h35FgO3zr4WwwqGpTR9oikQWv50DvcSzezQ4jWWp8Q\nEpv8iraTkuwNnODu9WZ2F/Cuu59tZpOAB9n5XPoRRKOwfYB3zexZ4DCiW67jib6YzDGzkxLddjWz\nMcC/hbrK4hKd3AHc5u6vmdk+wIvAIWHbwUT50PsBS8zs10TZOQ9rfGTazCYSJYs5rDHNKfBdd99o\nZkXA22b2uLtvSOISNjuOaOG0ESG/fOOQf1P/7e4/DdsfAs4Enk6ivrRINqCvDh/uSWCumZUTrcMu\nabStdhsvrnyR2xfczpjBY7hpwk3sUbQHg4sGc+MJN1LXUEcOvVmzaTuFDTmMHHM4S96YD2bsc9gR\n1FRXUbu9krz8Qgp6N/1/TGpV11dz17t38finUSriTdWb+PG4H/fIRW5E2iFV+dBPJcqs9nboJBbR\nQubKOI/GpQ49kZCRzY2iqY0AACAASURBVN1fMbNBZtb41NJT7r4d2G5mjbnTTwROJ0rSAtCXKMAn\nmkc1KdRVFs7fmKvja8ChcZ3a/mbWmKP4WXevBqrNbD07c6I39VZcMAe4yszOCa9HhjYlE9ATHbcE\n2D982XkWeCnBcaeY2Y+JvpTtASympwV0d2/84DeE/8ADgBdS1ipJaFvtNm78y400eAOvrXmN98ve\n5+SRJwPRWuQNDc7zH6zlyt+/S5/8XF765+8y9owz6TNgIPm9+/Duc3NYOPd5Rh97Asedez5F/dLy\n1CEQJVkpry7f8b68qpwGb0hb/SIZkpJ86ES95Afc/dpdCs1+FPe2aU70bSQnUe50A37u7ve2q5W7\nygGOc/eq+MIQ4JvmPm8pNu34DKHH/jXgeHevNLN5NP/MzbR0XMj1fiRwBnAFcB7w3bjjConu58fc\n/XMzuyGZ+tIp6VlSZnZ0uLdxBFGe85rUNUsSybEchhTtXMJ1WJ9dc6Fvr63n0QWrAdhWU8/0Ocvo\nv+9BFA8bQV11Na898iBbN5TyznNPUbk5valTi3oVcc24a4gNjTFur3FMHzedwrxu9W9BJBVSkg8d\neBmYamZ7QpS/20IuczM7xMxygHNaOX4+YYg+BLgyd98StiXKnf4i8N3GHrWZjWisO4FXgG+G4+Nz\ni78EfL9xJ4uycbZmK9EQfEsGAOUhKB9MdJsgGQmPM7PBQI67P050y+DoJsc1/g+rLFyHqUnWlzbJ\nznK/Hvgm8EQo+q2ZPeruP0tZy6SZwUWDefDrD/LSypc4fMjhDOu7a0Av6pXLBeNG8udPSnGH88bt\nTVF+NHEuNy+PvPwC6mqqsZwc8goL0t7+4X2Hc9spt2EYAwoGpL1+kXQ75OOPfv/RwYdAF89yd/cP\nzezfgJdC8K4FriS67/wMUAqUEA2NJ3IDcL+ZLSL6gnFJ3LbG3OmD2Zk7/Ytw3/4voUddAfw9CYb5\n3X2xmd0E/NnM6omG6S8FrgLuDnXmEQ3XX9HKZ9xgZq+b2QfA80TD4PFeAK4ws4+IhsvfbOlcSR43\ngii2NXZ0dxn9cPdNZvYb4APgS6IvOt1KsivFLQGObBwqCRMJ3nP3tEyM00pxyauormVzZR2OM6Co\nF/0Ko+Vi62trKfvicz6Y/zLDjjycDX2rGTviaPJy8ijILegxmddEMqhbzWhOhTCMXOHu/5Xptkj7\nJTsp7gui4YbGex8FwJqUtEg6pW9BL/oWNM/IlturFyX1H/HSiA9YuewZlm9ezrPnPMt/lvwnJ+99\nMqfte5p6zSIiPViyAX0zsNjM5hJNkDgNeMvM7gRw96taO1i6h+LCYl757BUABhUOYk3FGuZ9Po95\nn8/j8MGHk5+bz4btG1i1ZRWji0czuGiweu4iuxF3vyHZfcM98pcTbDo1yUfHUqq7ty8Vkg3ofww/\njeZ1fVMk1cYMGsMvJ/6S98ve5+8O/Dv+9bWd83IMY2n5Ui56/iLqvZ49Cvfg0b99lD17tzTvRUR2\nZyEodtuc6t29famQ7GNrDzS+tmhN95HuvihlrRLKtpexassqRvQdwaDCQc1ynnfEgIIBnLbvaZy2\n72lU1lZy8ZiLmbV4FhOGT2BE3xH88p1fUh8eU91YtZHlm5YroIuI9BDJznKfB0wJ+y8A1pvZ6+5+\ndQrbttvasH0D//DSP7Bs0zKK8op48qwnGd53eJfW0btXbyaNnMT4vcZTlFdEYV4h44eOZ/aSaHW5\nPMtjZL+RXVqniIikTrJD7gPcfYtFSVoedPefhEcPJAVqGmpYtmkZANvrtvPZls+6PKAD9MrtRXHu\nzlSsxw07jl+c/AsWrFvAlAOmKI+6iEgPkuyMpzwzG0a0cs4zKWyPAIW5hZwx6gwA9u63NwcMPCAt\n9Q4oHMDpo07n2mOvZczgMRTlFaWlXhHpemY2xcxmtLCtooXy+EQk88wslso2tsTMxprZN9JQz7/G\nvR4Vnnnv7DmHmNlfzexdM/tqgu3/Y2aHdraeRJLtof+UaKWg1939bTPbH/g0FQ2SaDb6dcdex9XH\nXE1+bj6DiwZ3eR1l28t4bfVrjOw/ktEDR9O/IH3LwIpI6rn7HGBOptvRQWOBGPBcKk4esqQZ0Yp9\n/9HFpz8VeN/d/yFBvbmJyrtKspPiHgUejXu/nLCwv6RGcWExxRS3vWMHlFeVM33edBasXwDAzNNm\ncvzw41NSl8ju7u4rXmmWD/3KeyZ1aqU4MxtFtOLZm8AJRKuW/Ra4EdiTaFnXQ4nWHZ9mZvsRZXfr\nCzwVdx4D7iJ6FPlzIOGS3mZ2ejh3AbAM+I67t9TLPwb4ZairDLjU3ddalIr1ciAfWApcFJZf/Sbw\nE6I13DcTrbP+U6DIzE4kWkP+DwnquYHomu4fft/u7neGbVezcx32/3H328M1exH4K1Fim7dCHe8R\nJVm5DsgNq8GdQLTWylkhUU2iz9ns8wAHAbeG88aA44lW7bs3fK4rzexnwHR3LzGzyUR/G7lEy++e\nambjiTLTFQLbw7VekqgNTSU15G5mB5nZy43DEWZ2RFh2ULqZBm+gbHsZpZWlVNdVJ9ynrqGOZZuX\n7Xj/SfknCffbWLWR0spStlRvoaKmgtVbV7Ni8wo2V6d3HXiRnioE82b50EN5Zx0I/IIo9ejBwLeJ\nsqJNp/la8XcAv3b3w4G1ceXnAF8hCv4XEwWyXYQ1zv8N+Jq7H020pGzCCdFm1ovoC8JUdz8GuB+4\nKWx+wt3HufuRwEfAZaH8euCMUD4l5Am5HviDu49NFMzjHEyUTGU88BMz6xW+UHwHOJZonfZ/NLOj\nwv6jgV+5+xh3/w6wPdRxYdz2u919DLCJ1juuzT6Pu7/XpO3bidLQ/tXdj3T31+Ku1RCiv42/C+f4\nZtj0MfBVdz8qnCvpEYRk76H/hmhd21qA8MjaBclWsrvYWLWRN9a8weKyxSzftJytNVtTVldtfS3l\nVeVsr9v1y+OqLas496lzmfz4ZN5Z/w519XXNju2X34/rjr2OgtwCDhh4AJNHTW62z4btG/j+y99n\n0qOTuGfhPayuWM3Xn/g6U56cwqOfPEpVXVWzY0SkmdbyoXfWCnd/390biHqYL3u0lvf7RLm9400A\nHg6vH4orPwl42N3rw5rtrySo5ziigP966M1eQuIMchB9OTiMKM32e0RfBPYO2w4zs/lm9j7RCMKY\nUP46MCv0eHOT+NzxnnX36pCqtTHt6onAH919WxhFeAJovJe9yt1bW/N9RQjKED3RNaqVfVv6PE3V\nA48nKD8OeLUxHWxcmtkBwKOhA31bK+dtJtmA3tvd32pS1jxS7Ma2VG/hpjdv4nv/73tc8OwFLNu8\njM+3ft6hc22q2sScpXO4+727WV/ZPMXxttptzF01lyv+3xXcu/BeNlVtAqLe+azFsyivLqemoYbb\n37mdLbVbmh1fmFfIySNP5vlzn+e+0+9jaJ/mqYeXlC9hUVn0IMNDHz1EfUP9jm0vrnyRyrqmCaRa\nt7l6M2sq1rC+cj11DfrTkd1GqvKhw64pRxvi3jeQ+HZq24k7EjNgbuhxjnX3Q939slb2XRy37+Hu\nfnrYNguYFkYJbiRkL3P3K4gC/0hgQWOWtiQlm3a1UVspZNtzvlkk+DwJVMXloU/G/wX+5O6HAX/b\nynmbSTagl5nZAYQ/iDALcm3rh+xequurWVi6cMf7xWWL+aLiiw6da/6a+Vz3+nXcs/Aerp53NeVV\n5bts31K9hRnzZ/Dhhg+574P7+HRTND8xx3IYt9e4HfsdOeRICnMT/y0U5RUxpPcQBhUl/rczou+I\nHcu+DiocRL/8fjven3PgOfTJ65P059lWu41HPn6EyY9PZsqTU1i9dXXSx4r0cC3lPe9sPvT2ep2d\no6oXxpW/CpxvZrnhSaZTEhz7JjDBzA4EMLM+ZnZQC/UsAYaY2fFh315m1tjD7AesDcPyO9pgZge4\n+1/d/Xqi+80jaTt1amvmA2ebWW8z60N0W2F+C/vWhvZ0RMLP0w5vAieF+Q3xaWYHsDNXyqXtOWGy\ns9yvBGYCB5vZGmAFHfsAWatvfl+mjZ3G9W9cz6CiQZwy8hSG9B7S9oEJxH8RWF+5fsfqbS2xuCRQ\nXx3xVX73jd9RUVvBIXscQu9eTUf7kjOkaAizz5zNwtKFnDjiRIoLinnh716gvqGe/gX9KchLPv1q\nZW0ljyx5BIiC+yufvcJ3D/9us/3qG+pZuWUls5fM5sQRJzJ2z7H0y+/ov2mRbuFfiW5Zxv9D7Ip8\n6O31A+D3ZnYNcZPiiJb0ngR8SPQl4y9ND3T3UjO7FHjYzBr/4f8b0GzyjbvXhA7fnWY2gCjG3E50\nS+DfiSaklYbfjf+4/9PMRhP17l8GFoa2zAjD9gknxbXE3d8xs1lEk94gmhT3bpgU19RMYJGZvUM0\nKa49Wvo8ybaz1MwuB54IKVvXE01OvBV4IMxTa5oytlWtpk81sx+4+x1mNsHdXw/fdnLcPXU3hxPo\nKelTN2zfwNaareTn5lOQU0BxUXGHkpuUVpYy/c/TWVe5jp+f+HMOG3zYLku/bqvdxmtrXuOhDx/i\n+GHHc+EhFzKwcGBXfpQuVVFTwW0LbmP2J7PJy8nj4b95mIP3OLjZfqWVpZz91NlsqYluEzx19lPs\nP2D/dDdXpCUdSp+ailnuIom0FdDfc/exZvZOmN2YEd05oNfU11DbUEtlbSWzl8zmnkX3kGd5/Hby\nbxm7Z/vzApRXlWMYjlPfUM/AgoHk5TYfSKmrr6OiroKivCIKcpPvLWdKeVU5G6s20rdXXwYUDKAw\nr/mtgHXb1nH646fT4A0A/O4bv+OIIUeku6kiLcn6fOjSs7U15P6RmX0KDG+y1KsB7u679f9tN1Zt\nZObCmXy29TOmx6bz3IpoDYQ6r+Pp5U+3O6B/vvVzZrw6gxzL4ZaTbml1ude83DwG5nbfXnlTxYXF\nFBe2/lx9v/x+3HrSrdy78F6OHXYs+/TrinlDIpIKZvZHYL8mxde4+4tdXM93iG4ZxHvd3a/synpa\nqf9uoqcE4t3h7r9NR/3t0WoPHcDM9iJ6GH9K023uvipF7dpFd+2hP7T4IW4tuRWAfzryn6j3emYu\nmkme5XHfGfdx9NDmgxr1DfV8se0LXl39KuOGjmNk/5EU5RWxtWYr0/88nTe+eAOAU/c5lZ9/9ect\nLr/q7ny57Uve+vItDh9yOMP7DE/Y6+1pquur2VazjcK8wg7f/xdJEfXQpVtrc1Kcu38JHJmGtvQ4\ntQ21O14/tfQp7px0JxOGT2DP3nu2OHt8Y9VGLnjmArbUbCHP8nj23Gcp6ltEruUysGBnj7u4sJhc\na/5IZtn2MqrqqsjLyeNbz36LDVUbyMvJ47lznmNY32Fd/yHTrCC3gIKi7n8LQUSku2k1oJvZbHc/\nLzw4H9+V15A7cNaBZ7Fs8zLWVKzh2vHX7hhWLi4objF/eU1DzY5JX3Vex8aqjQzvO5zevXrz43E/\nZnDRYHItl0vHXEp+bv4ux5ZtL+OS5y/hs62f8ftv/J4NVRui8zTUsb5yfVYEdBER6Zi2euiN9y3O\n7MjJzWwl0fOE9UCdu8fCs3Z/IFqBZyVwnruXt3SO7mxQ0SCuO/Y6ahtq6Z/fn2hZ5Nb16dWHiw+9\nmIc/fpgJwycwvM/O++SDigYxPTYdIOG5SitL+Wxr9PjqkvIlTB09lcc+fYxjhh7TLXKXb6reRF1D\nHcUFxeTmtHfBJxER6Yw276F36uRRQI+FZfkay24FNrr7zSG1X7G7X9PaebrrPfSO2lKzheq6anrl\n9IoeN6vcCKvegPKVcPhU6LdXwuNKK0s575nzKNtexmGDDuOOSXdgGHk5eW1OOEu10spSrp1/Lesq\n1/EfJ/4Hhw46VEFdso3uoUu31tZja1tJvFxg45B7qzk3WwjoS4CJIfvOMGCeu3+ltfNkW0BvZtGj\n8ETIqLd3DL71B+jTPGWqu1O2vYwtNVsYUDAgJWlVO2rmopnc9e5dAOzbf19mnTGLwb27rn219bVs\nqo6WuB1YMLDFWxoiKZRVAd3MzgY+cfcPu+h8MeBid7+qK87XgfqnAIeGzuIQ4BmiTGhXEeUi+ba7\nb8pE29Kl1SF3d+/sMl0OvGRmDtzr7jOBoe7euGzsl0SL6e/e1sf9e9qwDBoSrwxnZgzpPaTDK9Cl\n0rA+O+/fDykaQl5OsosQts3dWbxhMZfPvRzDuP+M+xkzOOl8BSKS2NlEQa9LArq7lxBlYsuIJvnf\nm+Ykb2np16yS6iH3Ee6+xsz2BOYC3wfmuPvAuH3K3b3ZeHFYEu9ygH322eeYVavS8oRcZmz6HB6c\nAlvWwDn3wkGToVfix9W6q01Vm3h19ausqVjD1IOmdumXjoqaCn705x/teKTvlJGncMtJt7T4SJ9I\ninSoh/6L889stlLcj/7wTKdXijOzvyfqfeYTLT36z8B/A+OAIuAxd/9J2PdmokeP64CXiDKQPUOU\nf3wzUQrPZQnqSCqHubufZGYTifJ8n9menN5hWdlziNYwHwH8r7vfGLY9SbS2eyHRs98zQ3miPOKX\nAjHgf4gCexHRmujHE6U3jbl7mZldTJRi1oFF7n5Rste8u+u6blQC7r4m/F4fFiEYD6wzs2FxQ+7N\n04lFx8wkWmeXWCyWum8dGVZbX8vmgiLyvvs8A8mF/D4ZC+aNj8QV5RW1+NhdSwYWDmTKgc2WKugS\nBXkFjBs6bkdAH7fXOPJz8ts4SiTzQjCPX8t9X+A3vzj/TDoT1M3sEOB8YIK715rZr4jya1zn7hvN\nLBd42cyOIApq5wAHu7ub2UB332Rmc4Bn3P2xVqp6wt1/E+r8GVEO87vYmcN8jZklWuGqMad3nZl9\njSj4tpZbfDxR2tVK4G0zezb0+L8bPk9RKH+cKKnYb4CT3H1FXFITANz9PTO7niiATwttb7xuY4jW\noT8hBPddju3pUhbQ49d9D69PB35K9M3pEuDm8Pupls+S3Wrra1lYupB/f+PfGdFnBDefdDOD8zOz\nmErZ9jIue/Eylm9ezpFDjuSOU+5od1BPlV45vZh60FSOGXoMOTk57Nt/X024k56itXzonemlnwoc\nQxTkIOqNrgfOC6ObecAwojzmHwJVwH1m9gxRzzxZh4VAPhDoS7TIGOzMYT6bqLff1ACiBCOjiXrC\nbU16mevuGwDM7AminOYlwFVmdk7YZyQwGhhC4jziyZgEPNo4r6udx3Z7qeyhDwX+GP7Y8oDfu/sL\nZvY2MNvMLgNWAeelsA3d2ubqzVwz/xrWV65n9dbVPLf8OS4ec3FG2lK2vYzlm5cDsLB0Idtqt3Wb\ngA7RCMBRhUdluhki7ZWqfOgGPODu1+4oiNJwzgXGuXt5yDhWGHrJ44m+BEwFphEFtmTMAs5294Vh\nSHsiRDnMzexY4G+Icpgf0+S4xpze54QsZ/PaqKfpKKyHIfyvAceHYf55tCM3+O6o/anAkuTuy939\nyPAzxt1vCuUb3P1Udx/t7l/Ltm9I7ZGTk8OQop33mltbuz3VBhUOorggmsowvM9w3Z8W6Rqpyof+\nMjA1zE9qzKW9D7AN2GxmQ4Gvh219gQHu/hzwQ3au/JlMzvH25DCP196c3qeZ2R5haP1sohGAAUB5\nCOYHA8eFfVvKI56MV4BvmtmgDhzb7aX0Hrq0bo/CPbhz0p08/snjjOo/ithesYy25fEpj/PFti8Y\n0XdEt3okTqQHS0k+dHf/MOTLfink0q4FrgTeJbp//TlRUIQoKD9lZoVEPfurQ/kjwG/M7CpgaqJJ\ncbQvh/nJcce1N6f3W8DjwN5Ek+JKwgqlV5jZR8ASokDeWh7xNrn7YjO7CfizmdUTXa9Lkzm2J0jp\nLPeukvXPoYtIT9CtZrlni8bZ6Y0T2KTj1EPvZjZs30CDN9C7V2/69OqT6eaISCeF4K0ALimngN6N\nrK1Yy3de/A5rt63l2vHX8rf7/y198hXURSS10pHz28zOAG5pUrzC3c8hmnwnnaSAnmallaVU11fT\nu1dv9ijcdT7G08ufZk1FNI/klrdv4dR9TlVAF5GUc/cr01DHi+x87E1SQAE9jUorS7nwuQtZu20t\nE/eeyE8n/HSXpCoHFR+04/V+/fdLmA9dREQkEQX0NFqxeQVrt0XL2M9bPY+q+qpdth+151Hc87V7\nWLF5BaePOp09irLqiQoREUkhzXJPo9Jtpazbvo6a+hrWV65n3F7jutXiLSLSqqzKtibZJ2ULy0hz\nG6s3cukLl3LJC5fw8caPKcgtyHSTRESaMbNRZvZBEvt8O+59zMzuTH3rpCUK6Gn00qqXqK6vBmDO\nsjlU1VW1cYSISLc1CtgR0N29JFO50CWigJ5Gp+5z6o484ZNHTaYwT8sSi0j7hd7xx2b2OzP7yMwe\nM7PeZnaqmb1rZu+b2f1mVhD2X2lmt4byt8zswFA+y8ymxp23ooW65pvZO+HnhLDpZuCrZvaemf3Q\nzCaG5C+EZVyfNLNFZvZmyPqGmd0Q2jXPzJaHVeqki2hSXBrtP2B/nj/3earqqhhYOJC++X0z3SQR\n6bm+Alzm7q+b2f1ES7p+DzjV3T8xsweBfwJuD/tvdvfDQz7w24Ezk6xnPXCau1eF5V4fJso7PoOQ\n/xwgJFNpdCPwrrufbWaTgAeBsWHbwcApRMvILjGzX7t7bUcugOxKPfQ0KswrZK8+ezFqwCgGFiRK\nISwikrTP3b1xvfb/JcqmtsLdPwllDwAnxe3/cNzv49tRTy+iNd/fBx4lSsnalhOBhwDc/RVgkJn1\nD9uedffqkMJ0PVFmTukC6qGLiPRMTR9R2gS09tiMJ3hdR+jYhUQn+QmO+yGwjihLWw5RbvXOqI57\nXY/iUJdRDz1DtlRvobSylO212zPdFBHpmfYxs8ae9reBEmBU4/1x4CLgz3H7nx/3+y/h9UqgMZf5\nFKLeeFMDgLXu3hDO2bjiVWvpV+cT0q2Gofgyd9+S1KeSDlNAz4CNVRv52Zs/46LnLuKVz1+hoqbZ\nPJQuV1VXxdaarSmvR0TSZglwZUgvWgzcBnwHeDQMjzcA98TtX2xmi4AfEPW6IUrterKZLSQaht+W\noJ5fAZeEfQ6O22cRUG9mC83sh02OuQE4JtR3M3BJpz6pJEULy2TAO+ve4b9K/osZ42ewZOMSjht+\nHMN6DyMvNzUjTxurNnLnO3fyRcUXzDh2Bvv13w8zrZEh0k7d5h+NmY0CnnH3w5LcfyVRitKyFDZL\nMkz3LjJgUNEg/mXcvzDt5WmUV5fTO683T5/zNHv23jMl9T297Gke//RxAK565SpmTZ7F4KLBKalL\nREQyQ0PuGTC4cDD98/tTXl0OQGVdJZuqN6WsvvgkLzmWg3WfjoaIdIC7r0y2dx72H6XeefZTDz0D\n+uT3obihmIl7T2Te6nkcvefRDCpM3Zru39j/G6ypWMPqitVMj03X+vEiIllI99AzqLyqnJr6Gnrl\n9mqWG72r1dTXUNdQR+9evVNaj0gW09CWdGvqoWdQfC70VMvPzSc/N9EjpiIikg10D11ERCQLKKCL\niPRAZjbZzJaY2VIzm5Hp9kjmKaCLiPQwZpYL3A18nWht9W+ZWTJrrEsWU0AXEel5xgNL3X25u9cA\njwBnZbhNkmGaFCcikmKxWCwPGAyUlZSU1HXBKUcAn8e9Xw0c2wXnlR5MPXQRkRSKxWInAKXACqA0\nvBfpcgroIiIpEnrmzwIDgcLw+9lYLJbb6oFtWwOMjHu/dyiT3ZgCuohI6gwmCuTxCoEhnTzv28Bo\nM9vPzPKBC4A5nTyn9HC6hy4ikjplQBW7BvUqoiH4DnP3OjObBrxIlJ/8fndf3JlzSs+nHrqISIqE\nCXB/A2wiCuSbgL8pKSmp7+y53f05dz/I3Q9w95s6ez7p+RTQRURSqKSk5A2ioff9gMHhvUiX05C7\niEiKhR75l5luh2S3lPfQzSzXzN41s2fC+/3M7K9hucI/hAkdIiIi0gnpGHL/AfBR3PtbgNvc/UCg\nHLgsDW0QERHJaikN6Ga2N9GEkP8J7w2YBDwWdnkAODuVbRAREdkdpLqHfjvwY6AhvB8EbHL3xqUP\nVxMtYSgiIiKdkLKAbmZnAuvdfUEHj7/czErMrKS0tFOPbIqIZB0zW2lm75vZe2ZWEsr2MLO5ZvZp\n+F0cys3M7gxzlxaZ2dFx57kk7P+pmV0SV35MOP/ScKylqw7pmFT20CcAU8xsJVEmoEnAHcBAM2uc\nXd/icoXuPtPdY+4eGzKks4sqiYhkpVPcfay7x8L7GcDL7j4aeDm8hyjN6ujwcznwa4iCM/ATosQu\n44GfNAbosM8/xh03OY11SAekLKC7+7Xuvre7jyJalvAVd78Q+BMwNex2CfBUqtogItIdxGKxwlgs\ntm8sFmu6DGxXO4tobhLsOkfpLOBBj7xJ1LEaBpwBzHX3je5eDswFJodt/d39TXd34MEm50p1HdIB\nmVhY5hrgajNbSnRP/b4MtEFEJOVisVhuLBa7GdgALAY2xGKxm7sgOQuAAy+Z2QIzuzyUDXX3teH1\nl8DQ8DpRutURbZSvTlCerjqkA9KysIy7zwPmhdfLiYZdRESy3U3ANKB3XNm08HtG893b5UR3X2Nm\newJzzezj+I3u7mbmnayjVemoQ5KnpV9FRFIgDK9/H+jTZFMf4PudHX539zXh93rgj0QdpXVhKJvw\ne33YvaV0q62V752gnDTVIR2ggC4ikhpDiYbFE3F2DlW3m5n1MbN+ja+B04EPiFKoNs4ij5+jNAe4\nOMxEPw7YHIbNXwRON7PiMFHtdODFsG2LmR0XZp5f3ORcqa5DOkBruYuIpMY6oLXHsNZ14txDgT+G\np7zygN+7+wtm9jYw28wuA1YB54X9nwO+ASwFKoHvALj7RjP7v0T51QF+6u4bw+t/BmYBRcDz4Qfg\n5jTUIR1g0eTC7i0Wi3lJSUmmmyEiu7d2PyMdJsRNY9dh90rgrpKSks7eQxfZhXroIiKpc134/X12\nDr//d1y5SJdRcmUdfAAAC8xJREFUD11EJDkdXsUsTIAbCqwrKSmp6romieykHrqISIqFIL4q0+2Q\n7KZZ7iIiIllAAV1ERCQLKKCLiIhkAQV0EZEeyMzuN7P1ZvZBXFlWpE9tqQ5pnQK6iEjPNIvm6Uaz\nJX1qS3VIKzTLXUQkRUJWtYuAHxJlElsD3AY8VFJSUt+Zc7v7q2Y2qknxWcDE8PoBoqRY1xCX2hR4\n08waU5tOJKQ2BTCzxtSm8wipTUN5Y2rT5zNch7RCPXQRkRQIwXwO0UIyRxCliz4ivJ/TRSlUm8qW\n9Kkt1SGtUEAXEUmNi4CTSZxt7WTg71NZeegppzx9ajbUkS0U0EVEUuOHNA/mjfoAV6egzmxJn9pS\nHdIKBXQRkdQY0cntHZEt6VNbqkNaoUlxIiKpsYbovnlr2zvMzB4mmjg22MxWE80kT0dq00zWIa1Q\nchYRkeS0KzlLLBa7lGgCXKJh923AlSUlJQ90QbtEAA25i4ikykPAn4mCd7xtofx/094iyWoK6CIi\nKRCeM58CXAksAjaE31cCUzr7HLpIUxpyFxFJTofzoYukg3roIiIiWUABXUREJAsooIuIiGQBBXQR\nkR6ohfSpN5jZGjN7L/x8I27btSFN6RIzOyOufHIoW2pmM+LK9zOzv4byP5hZfigvCO+Xhu2j0lmH\ntEwBXUQkxWKx2H6xWGxCLBbbrwtPO4vm6VMBbnP3seHnOQAzOxS4ABgTjvmVmeWaWS5wN1Hq00OB\nb4V9AW4J5zoQKAcuC+WXAeWh/LawX1rqkNYpoIuIpEgssgBYDDwLLI7FYgtisViss+d291eBjW3u\nGDkLeMTdq919BdFqbuPDz1J3X+7uNcAjwFlhKdZJwGPh+AeIUps2nqtxQZzHgFPD/umoQ1qhgC4i\nkgIhaM8DjiZa2nRA+H00MK8rgnoLppnZojAkXxzK2pvadBCwyd3rmpTvcq6wfXPYPx11SCsU0EVE\nUuNeWs+2dk8K6vw1cAAwFlgL/CIFdUg3pYAuItLFwr3yQ9rY7dAuvqeOu69z93p3bwB+QzTcDe1P\nbboBGGhmeU3KdzlX2D4g7J+OOqQVCugiIl1vOFDTxj41Yb8u05hDPDgHaJwBPwe4IMwe3w8YDbxF\nlAFtdJhtnk80qW2OR0uI/gmYGo5vmia1MbXpVOCVsH866pBWKH2qiEjX+wLIb2Of/LBfh7SQPnWi\nmY0FHFgJfA/A3Reb2WzgQ6AOuNLd68N5phHlLM8F7nf3xaGKa4BHzOxnwLvAfaH8PuAhM1tKNCnv\ngnTVIa3TWu4iIslpb/rUBUQT4FqyoKSkJFUT42Q3pCF3EZHU+B7NU6c22gZckca2yG4gZQHdzArN\n7C0zW2hmi83sxlCecGUgEZFsUhINK04EFgDbiR692h7eTyzRsKN0sZQNuYdFAPq4e4WZ9QJeA34A\nXA084e6PmNk9wEJ3/3Vr59KQu4h0Ax1e2CTMZh8OfFFSUrKi65okslPKJsWFGYkV4W2v8ONEKwN9\nO5Q/ANxA9OykiEhWCkFcgVxSKqX30MM6vu8B64G5wDJaXhlIREREOiilAT0scDCWaMGA8cDByR5r\nZpebWYmZlZSWlqasjSIiItkgLbPc3X0T0QICx9PyykBNj5np7jF3jw0ZMiQdzRQREemxUjnLfYiZ\nDQyvi4DTgI9oeWUgERER6aBUrhQ3DHgg5MLNAWa7+zNm9iGJVwYSERGRDkrlLPdFwFEJypezM2GA\niIiIdAGtFCciIpIFFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGR\nLKCALiIikgUU0EVERLKAArqIiEgWUEAXERHJAgroIiIiWUABXUREJAsooIuIiGQBBXQREZEsoIAu\nIiKSBRTQRUREsoACuoiISBZQQBcREckCCugiIiJZQAFdREQkCyigi4iIZAEFdBERkSyggC4iIpIF\nFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGRLKCALiIikgUU0EVE\nRLJAygK6mY00sz+Z2YdmttjMfhDK9zCzuWb2afhdnKo2iIiI7C5S2UOvA37k7ocCxwFXmtmhwAzg\nZXcfDbwc3ouIiEgnpCygu/tad38nvN4KfASMAM4CHgi7PQCcnao2iIiI7C7Scg/dzEYBRwF/BYa6\n+9qw6UtgaDraICIiks3yUl2BmfUFHgf+j7tvMbMd29zdzcxbOO5y4PLwtsLMlrRR1QBgczubl8wx\nre3T0ram5Yn2iy9run0wUNZGu9qrO1+fRGWtvU/F9WmpXV1xTLb8DbXUjs7u31P+hl5w98ntPEYk\nfdw9ZT9AL+BF4Oq4siXAsPB6GLCki+qamYpjWtunpW1NyxPtF1+WYP+SFPy36LbXJ5lr1uR6dfn1\n6e7XqDv8DXXkGu1uf0P60U8mf1I5y92A+4CP3P2XcZvmAJeE15cAT3VRlU+n6JjW9mlpW9PyRPs9\n3cb2rtadr0+ismSuYVfrzteoO/wNdaSe3e1vSCRjzD3hiHfnT2x2IjAfeB9oCMX/SnQffTawD7AK\nOM/dN6akET2UmZW4eyzT7eiudH3apmvUOl0fyUYpu4fu7q8B1sLmU1NVb5aYmekGdHO6Pm3TNWqd\nro9knZT10EVERCR9tPSriIhIFlBAFxERyQIK6CIiIllAAb2bM7NDzOweM3vMzP4p0+3prsysj5mV\nmNmZmW5Ld2NmE81sfvg7mpjp9nRHZpZjZjeZ2V1mdknbR4h0PwroGWBm95vZejP7oEn5ZDNbYmZL\nzWwGgLt/5O5XAOcBEzLR3kxozzUKriF6HHK30M7r40AFUAisTndbM6Wd1+gsYG+glt3oGkl2UUDP\njFnALktImlkucDfwdeBQ4FshOx1mNgV4Fnguvc3MqFkkeY3M7DTgQ2B9uhuZQbNI/m9ovrt/nehL\nz41pbmcmzSL5a/QV4A13vxrQSJj0SAroGeDurwJNF9MZDyx19+XuXgM8QtRrwN3nhP8hX5jelmZO\nO6/RRKIUvd8G/tHMsv7vuj3Xx90bF3YqBwrS2MyMauff0Gqi6wNQn75WinSdlCdnkaSNAD6Pe78a\nODbc8zyX6H/Eu1MPPZGE18jdpwGY2aVAWVwA29209Dd0LnAGMBD470w0rBtJeI2AO4C7zOyrwKuZ\naJhIZymgd3PuPg+Yl+Fm9AjuPivTbeiO3P0J4IlMt6M7c/dK4LJMt0OkM7J+aLIHWQOMjHu/dyiT\nnXSNWqfr0zZdI8laCujdx9vAaDPbz8zygQuIMtPJTrpGrdP1aZuukWQtBfQMMLOHgb8AXzGz1WZ2\nmbvXAdOI8sd/BMx298WZbGcm6Rq1TtenbbpGsrtRchYREZEsoB66iIhIFlBAFxERyQIK6CIiIllA\nAV1ERCQLKKCLiIhkAQV0ERGRLKCALt2emb2R6TaIiHR3eg5dREQkC6iHLt2emVWE3xPNbJ6ZPWZm\nH5vZ78zMwrZxZvaGmS00s7fMrJ+ZFZrZb83sfTN718xOCfteamZPmtlcM1tpZtPM7Oqwz5tmtkfY\n7wAze8HMFpjZfDM7OHNXQUSkdcq2Jj3NUcAY4AvgdWCCmb0F/AE4393fNrP+wHbgB4C7++EhGL9k\nZgeF8xwWzlUILAWucfejzOw24GLgdmAmcIW7f2pmxwK/Aial7ZOKiLSDArr0NG+5+2oAM3sPGAVs\nBta6+9sA7r4lbD8RuCuUfWxmq4DGgP4nd98KbDWzzcDTofx94Agz6wucADwaBgEgykkvItItKaBL\nT1Md97qejv8Nx5+nIe59QzhnDrDJ3cd28PwiImmle+iSDZYAw8xsHEC4f54HzAcuDGUHAfuEfdsU\nevkrzOyb4XgzsyNT0XgRka6ggC49nrvXAOcDd5nZQmAu0b3xXwE5ZvY+0T32S929uuUzNXMhcFk4\n52LgrK5tuYhI19FjayIiIllAPXQREZEsoIAuIiKSBRTQRUREsoACuoiISBZQQBcREckCCugiIiJZ\nQAFdREQkCyigi4iIZIH/D4Y/kJDrHZypAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_4", + "outputarea_id1", + "user_output" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3d24eabe-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3cbb25f2-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_015eea8d9b" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_4", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3d28ab18-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_1a6d7cbebd" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_5", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3d29158a-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_5\");\n", + "//# sourceURL=js_56a91c6232" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_5", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3d2985d8-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3d29158a-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_dbdf6d9758" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_5", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3d29e014-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(5);\n", + "//# sourceURL=js_2854f96898" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_5", + "outputarea_id1" + ] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3WdgVFXawPH/udNbJj0kkBB674gi\ngg0VG7K6tnVdsa/6Wncta3fVtayrq6ur4qprwVUsiF1RUVSKIKA06QktjZTpfc77YYYUSEICGYR4\nfl+YO/fec89Ek2dOfYSUEkVRFEVRDm7aL10BRVEURVH2nQroiqIoitIJqICuKIqiKJ2ACuiKoiiK\n0gmogK4oiqIonYAK6IqiKIrSCaQ0oAshrhVCrBBCrBRCXJd8L1MIMVsIsS75b0Yq66AoiqIovwYp\nC+hCiMHApcAYYBhwihCiN3AL8IWUsg/wRfJYURRFUZR9kMoW+gBgoZTSL6WMAl8DpwOnAS8lr3kJ\nmJLCOiiKoijKr0IqA/oKYLwQIksIYQVOAgqBPCllWfKaciAvhXVQFEVRlF8FfaoKllKuFkI8BHwG\n+IBlQGyXa6QQotm9Z4UQlwGXAQwcOHDUypUrU1VVRVGUthC/dAUUpTUpnRQnpXxeSjlKSjkBqAXW\nAhVCiHyA5L+VLdw7TUo5Wko52mKxpLKaiqIoinLQS/Us99zkv0Ukxs9fA94DLkhecgEwK5V1UBRF\nUZRfg5R1uSe9LYTIAiLAVVLKOiHEg8AMIcTFQClwVorroCiKoiidXkoDupRyfDPvVQPHpvK5iqIo\nivJro3aKUxRFUZROQAV0RVEURekEVEBXFEVRlE5ABXRFURRF6QRUQFcURVGUTkAFdEVRFEXpBFRA\nVxRFUZROQAV0RVEURekEVEBXFEVRlE5ABXRFURRF6QRUQFcURVGUTkAFdEVRFEXpBFRAVxRFUZRO\nQAV0RVEURekEVEBXFEVRlE5ABXRFURRF6QRUQFcURVGUTkAFdEVRFEXpBPS/dAUUpTPyu138PG8u\nAZeLoRNPwJGV0+HPiEWjxGMxDCZTh5etKMrBRwV0RelgIb+fudNfZOVXnwOw6ps5/O6+R7ClZ3TY\nM/xuF9/PegtXRTkTfn8hGV0KOqxsRVEOTiqgK0oHi4ZDbF+zqv7YXVVBLBpt8XoZj+OqqmTjku/p\nNmAwGfld99jqXjP/G374YCYAdeXb+e0d92NzpnfMB1AU5aCkxtAVpYMZLVYGTji2/rhrv0HoDYYW\nr/e56ph+6/XM+e80pt96PX5X3R6fEY/FG17H4yDlvlVaUZSDnmqhK0oHiEcixKpriJSXYezWjWHH\nn0T3ocMJ+fzkFvfA2krrORaNEvR6EuXEYvgqK3CkZ6AZjS3eM2DcBGq3b8VVWc7RUy/D6kzH73YR\ncLswWm1Y7A70rdyvKErnowK6onSAaGUlG0+djPT7MRQWUvzadPJ799vtulgkQjweb9KlbjSZGXPy\nb1jy+Ud0HzgUayRK3OdrNaBbnekc+YdLiEejmKxWgl4Pc195gZVzv0BnMHD+g4+T1a0oJZ9VUZQD\nkwroitIBgitXYsjPxz7+CGIeL7FQCC0UAinRzGYAfHW1fDfjVQxmC2NOPR1bRiYAlrQ0ho8Zx8A+\nA4hs2kR8xUq0AYP2+EyD0QjJoB+LRli/eEHidSTCltUrVEBXlF8ZNYauKB3APGYMBQ8+QGTrNjSb\nFc1gpOyvf2X7zbcQ2b6deCzGwnfeoGu37gwr7kNo8WLCVVX191u7dcNR1J2Mw8fhnDwZzdy+pWh6\no4mhx52YqIvNTvHQER36+RRFOfCpFrqi7KOAJ0yk2kf5ZZcTq60FQDObkf4Ank8/JbJtG92efYai\nEaPpIvTEy8sJbdhAvFsRMbMZncOBzm5HZ7fXlxmtqcE1axZxn5+Mc85Gn53dah1MVhujTzqNoROO\nQUSimMNRZDSK0KtfcUX5tVC/7YqyjzYuqyI3PULM7a5/L7qjGs1iASBWW0s4GGJxJJdTIlvYdt31\nALg/+JCiF19A53A0KU/G49S8/ArVzzwDQGjjRvLv/Ss6m63Veug9XkqPn5To5rfb6fnRhxhyczvy\noyqKcgBTAV1R9lE0HGftTx763H4PwW/nYD3rt1gGDCDy/SLCpaVkXnAB/g2b2BHKIlxXVn9feOvW\n5guMx4lWVNQfxqqqoJV17PW3+Xz1y9fiPh/EYvv2wRRFOaioMXRF2Ud9DskjENHh7nkI2lV/5N23\nXuH9fz8K/fqSd/ttBFYsx/vkE+RqEbTDDsc8bBiazUbeTTcS+PEn5C6BV+j15FxzNZYRIzD170+X\ne+5G53TusR76vDwyp16AsUcP8u+9F22Xlr+iKJ2bkAfBhhSjR4+Wixcv/qWroRzEorE4lZ4Q6yo9\n9O+SRl6auc33xlwu4qEQQqdHWMxIvx9htaKzWuuviYSiBLwu3rjrJtxVidb14ZPPoHhNCbYjjsC/\ncRPfDT2Gw/PN2NatRjMa8cyZQ8zlouChB9F22Rku5vUSLi0lWlmJLjsbc58+9bPlW62rz4cMBNDs\njnZPrFP2SPzSFVCU1qgud+VXodoX5vjH5uINRcl3mpl11Thy2xDUo3Uuqp99lpoXX6TgH48Q3rgJ\n1/vv4zxtMulnnw2xGEKnw5CdTTRswJGVXR/Q0zKykXIThq4FZA4dwrHLfkS4wdC1gK3XXItmsVD4\nzNO7BXOAWE0NJWf8NnFgMNB79mdoXbrssb46mw32MNauKErnpAK68qtQ7Q3hDSXGoctcQULR+B7u\nSJDBADUvvghCYOjShe1/+jMAcZ8f97uzqHzkEfQFBRS/Nh1TTg7HXnwF6xfOw5mZRb4zC+ull7Dl\nkktxnHAC1pEjCPywhLoZM8i/968Ye/XCmJ/f/HOjjbrho1G1tauiKHukxtCVX4Vch5kRRYntV08e\nko/VqGv1el8oSpkrQFRoGLp1AykRRiMkl4HZxo6l6qmnAIhu345n9ufIQICq0k2Ub1pPdUU5qzas\nxrt+PZHNmwn+uAxDt25U/+c/+OfNY8sllxLZvLnF5+uyMsn7y1+wjBpF138+hpaWtk+fP+AJs2Or\nB29tiFhETZZTlM5ItdCVTsfvDhMJxTCYdFjTEjupZTtM/OcPownH4pj0OjJtLW+rGorGmL2qghtm\nLGNgfhozXn6ZyLKlaOnpdH/5JVzvv4+hW1csI4bjnzcfNA1Tr15U/ftpelx+Gbb0DNxVlXTv3Y+K\nP0wFnY6M888HnQ59ly5Ey8tBp8PQQuscQO90kn7uOTinnIZmtSJaSe6yJwFvhC9fXk3J8mp0Bo1z\n7hhDeq51zzcqinJQSWlAF0JcD1wCSGA5cCGQD7wOZAE/AOdLKcOprIfy61DjC+MJRCASZ+UHJfir\nQ5x05dD6oJ5lb9skMXcgyr++XEdcwortbu76rpIHTp+EXqdBYSHWkSMB6Prww/iXLEGfnY1r5rvE\n6uowGgx0HzIcgKjLRfdXXk5s7qI3gE6j+/RX8c+fj3no0D1uFqM12tp1X8RjcUpX1gAQi8Sp2ORW\nAV1ROqGUdbkLIboC1wCjpZSDAR1wDvAQ8JiUsjdQC1ycqjoovx51/jB/+2g1Rz7yFac8M4/+pxZh\nS9cTCe55/fauLAaN0cUZ9ceH9sxKBPNd6LOzsQwbRvXzzxPZto28W//SZOa73unEWFiIIT8fQ042\nhsxMjF27kv7b32Lu2xfNuuegGgpE8NWF8Lv3/juvzqAxeEJB4rM5DBT0VnnTFaUzStmytWRAXwAM\nA9zAu8C/gOlAFyllVAgxFrhbSnlCa2WpZWvKnlS4gxz6ty/qj28+uit/GNYFLBnYnO1fvlXjC7Fi\nm5tsu4niNAMWs6HFbVR37hCn28dx7l2FA1FWfrudee+sJz3XypTrR2BL37ulaAFvhEgwis6gYXUY\nEZpagbUX1A9NOaClrIUupdwGPAJsBsoAF4ku9jop5c5m01aga6rqoPx66DXB0K6JzVeEgMOK7Fis\n7FUwB8i0mZjQN4feMRe1d91OxUMPE62ubvZaXVpahwdzgEg4xoKZG0BCXYWfrWtq97osi91AWrYF\nm9OkgrmidFIpG0MXQmQApwE9gDrgTWBSO+6/DLgMoKhIpYFUWpdlN/HCBSNZUVJGodNAXqwMzdi2\nfcxrfWFKqn2Y9Dq6pptxWo1UeoIEK6oIXXoB0bLEdq1xn48ud9xev0c7QLSujsCSpcTq6rAfOQF9\nVla7617nD+MPx9BpAqfFgNmQmIGvaYLsQjuVpR4QkN3NvoeSFEX5NUvlpLiJwCYpZRWAEOIdYByQ\nLoTQJ1vp3YBtzd0spZwGTINEl3sK66l0EtlpVo7qlwvhAJiHgGHPY9SBcIz/fLuRp+ZsAODvvx3K\nCYO7cOs7y/nT6GxolOI0snULMhKBRgHdO38B3qJeBLsU4y/bQZ7RuFuyldZUe0Pc+s5yPl1VgdWo\n48HThzJxYC5Wox6Lw8jJVw6lfJOb9Dwr9gy185uiKC1L5Tr0zcBhQgirEEIAxwKrgDlAcgssLgBm\npbAOygFASkk03raNXPaZyQGO3DYFc4BAJMY363bUH89ZU0k4GqfGF+bj9XXYrrsBAGGxkPvnP6M1\nSnEq43F8g0cyZWYJE19exc3za6iNtq87e8HGGj5dldhZzh+OceNbP+IONEzkszpN9ByeQ2a+DaNZ\nrTJVFKVlqRxDXwi8BSwhsWRNI9Hivhm4QQixnsTStedTVQfll1fjC/H4F+v4y9vL2V4X2C/PdAci\nbKzysmq7i1pf67PDHWYdVx7VC02ASa9xyfieZNmMPPzbYXy12ceSAePo8eWX9Pr0E0wDBiC0hl8Z\noWls8kt2eBPP+GZDDRHR+oY1u9pY5W1yHIrGicT205cfRVE6lZR+5ZdS3gXctcvbG4ExqXyucuB4\nd9l2/vn5OgA2VHn5zwWHtLqpy56EozFcgQg6TWu2nGgszmerKvjzmz8CcOG4Ym44ri8Oc/Mbsxh0\nOib0yeG7W45BQ5BhMyCEoFeOjRcvPASdJjBbW65v7y5pZNmMVPvCHN4rC6Ohfd+RTx1WwBNfriMS\nS4wqDenq3OMudoqiKM1RfXhKSnmCkfrXvlCM+D4skwxHYywureXGN3+ia4aFJ88dsVuClUAkxrtL\nG6ZlfPBTGVcc2as+oPtddbiqKrE507GkOTGYTFhNeqympr8KQojdNqKJud2Et2wlsm0b1pEj0Gdn\nk+sw8/G14/GFYzjMerJsDfeE/BGEEBgtLf+adXGa+fS6Cbw8v5SiTCunDito8wY4iqIojan0qUpK\nVXlC3P3+SipcQR44fQi9c+0kplS0X6U7yImPf0N1shv95kn9mDqqiOptXqwOA1ZjGC3iZZ7bjCkm\nMOs1St0Bjh3SBYfZgM9Vx8wH76Zi43o0nY5z732ELr36tPn53u++Y8vFlwBgHjyYwmnPos/MbPZa\nd3WAOa/+jE6vcfR5/fd6/bhyQFHr/ZQDmmqhKymV4zDx0OlDiMQl6RbDXgdzSCzjynGY6gP6UT2y\nmfvGWtYvrgRg8h970q3yecaPuZIZj5fi2hHkuIsGYUmOe0dDISo2rgcgHovx87y5TQJ6JBYnEIlh\nkjE0jxuEQJ+VVT9u7ps/v/7a4MqVyFCImM+XSFnaSCgQZe7/1rJ1dWLd+Px3N3D07/uj0zd0x0cj\ncUL+RO+FxW5Aa2YnOkVRlPZQf0WUlLObDWRYjfsUzAGy7SZemHoIF40r5v4pgylwmNm+tq7+/NZ1\nXkRtCeLbR8ntbicWifPVqz8TCkSJhEJoOh0Z+QX11/ca1TCVwx+Ksr0uwP0frOaxLzdStb2KkjPP\nJNwoI1r6b36Dlgze6Wf+FteHH+L59DPigaaT/YQAvbHhV8to1tH4o8diccrW1/HK7fP53z0Lqdnu\na/PPIBaLEvL7iMdUxjRFUZpSLXTloFKQbuHOUwcBEAnFGHViMd+8sRaTVU//ETZ4fyn0P5V4ciTJ\nnmkiHo3w9SsvM3zcUZxx3V+o2LSBjB69cOQ2bDzjCka4a9ZKvlqbWHeuH1fIOSNGUjv9NbrcdisA\nxu7d6fnxR8RqawksW0b1tOfIuuwyorW1GAwNW8MazXrGn90Xs82Azqhj1And0XQafneYnUNc385Y\nRywSJxaJs2DWRo6/ZNAel6UFfV7WLZzHz/O+ZsQJp1I0ZBhGs6XVexRF+fVQAV05aBlMOvodmkeP\noVloxLAsfRTZ40gYdx25i0OY7SaGH9OV9x+9A7PDQWTOV+x4+hkM3boRKOyG4957qYzqCMfiaELg\nb5Qn3BORYDBgHdPQihd6PYbcXCJbt1L5yD8oeu45Kh/9B9UvvEDBQw9iGTy4PqjbnCYmnNsXEGia\nwFUV4L3HlxEJRfnNn0eS3sVKTVmiZZ6Rb2vSHd+YlJJIKIbeoBH0ePjs2ScA2LJiOZc8+bwK6Iqi\n1FMBXTlgxaJxhAaa1vLIkMlqwGRNLkkbfwNoOoTBwrBjEuPki95/h7L1a+g5cgzEYshIhPCmTWh2\nO4FInM/Wb+f291fz6FnDeOD0Idz+7gqcZj1Xji8mbcCFGLsW7P7MPn3oMetdXDNn4v9+EQDbb7yJ\n7q+9hiGnISXqznrH43EWf7QJ945E1/zc19cycepA8ns5MZh09Bye02xAj0VjVG32svijEgr6ptNz\nWMPEOqEJ9nEEQ1GUTkYFdOWA5KkOsmDWBmwZZkZMLMTiaLoWvMYXptwVIM1sIMNmxGbSg6npXucB\nr4fV38wBYPPyZUy47V6cO3YQq6xEu/pP/P6d9TxxznAshrXcMONHfrhjIv8+byQGTWA3GyDH2Wzd\ndA4HOocDQ7du9e/pc3MR+ubXj2uaRm73NH6eXw5AWpYFo1nH8Imt5ygIeqPMemwp0Uic0hXVdB80\njFOuu4Wfv/ua4cefjNne9i1mFUXp/FRAVw44AU+YT55bTmWJBwCzTc/I47vXn/cEIzw6ew2vLtiM\nJuDtKw5nRFHGbuUIIcjs2o3c4p54amv4fs6n6KZczOqttcz8cAsl1X42VPoozrbiCUaJxyVZjrYv\nL7MfeST5Dz5AZMsW0s8+G33G7nXYqc/oXBxZZsKBKIUDMjGY2var13hRadCn0fewcfQadQh6o1oG\npyhKUyqgKwccKSEabtj+NBpqOqM7GInz1ZrE5LW4hLlrq5oN6CaTmeNOOxv3zJmYT5hCtLCItT4d\nj323HACzQaNvjp0bj+/HgII0chzm3cpojT49nfQpU5o95w5EKKn2UVrt57CeWeQ4TBQPyW722paY\n7AYmXzOc7z/YREEfJ1kFiTX8KpgritIctbGMcsCRUlJbE6BkTS3BCj9DxmRitevRORNd4P5wlLd/\n2Mods1aSZtHz7pXj6JnTtLu9zh9mWWkt60ormNTDQei6K0n71zOI9Gw27fCzYrubw4ozccSgsE/L\nLeud4qEQXlcta+d/S3ZxT7r07ovZ1nI600UlNZz5TGLd+uG9snjqdyPJ2Istb+NxSSQYRWfUoW9h\n4pyy36hZC8oBTbXQlQNOrT/Ck/M2sarMzS1H96DmkfsxXHZpfUC3GvVMGdGVYwfkodME2c0EyoWb\narj8lR8AeH2lnRdvvoOw14fOnkZeFCLVcYzpYXIHtJy/PFpTA5qGPj0dv9vFjPtux1WRGAc/4y/3\nUDx8VIv3rt7urn/9c7lnrxOuaJpomPSnKIrSCvWVXzlg+N1hfp5fxjc/V/LCdyUs2FjD1P/9hDj7\n94l++EYcZgMF6Rby0szomtll7actDRvObNrhRde9OxU6K3qrmaKB2Yw4oYhoOM7KuVvx1QaQ0WiT\n+0MlJWy5/I9su/oaIuXlyHi8PpgDVJZuIubzEa2uRjazycvxg7rQL8+BSa/x18mDcLSyn7uiKEpH\nUAFdOSCEg1HmvbOeZZ9vQUQbgrdBp6Hv2Qt9Qdc2lxWPS84a1ZV8Z2JM/JZJ/dAcDroX55OTZkFo\ngg1Lqvjiv6uZP3Mjc179GX/ZjvrAHK2ro+wvtxJcvhz/okVUPvx3jAYD4848D4C0nFz6jx1P2e13\nsPmiiwmtXbtbUO/iNDP90kP55qajOWZALhaDCuiKoqSW+iuj/CICHg/hgA9Nr8diTyMWhboKP9Xb\nvQwyGLn+mN6sqvBy4bhiFm1zM2lwQeJ/1qAHNA2MthbLjtfVYnjqX8w4cTLYHegyMvDGBH0azWCv\nq/TXv/bWhfGvWkM4TRA1aFgl9Vu8Amh2OzVPPEmPPr0Z9OQLaDododmf4/n4YwC2/enPdH/5JfTZ\nTSe9ZausaYqi7Eeqha7sd0Gvh3lvTuc/V1/C81dfQtn6NRjNOo44sw9Gk46Fr/7M2QMLGFOcwVNz\n1tMzN41n527gwx+3Ulu6DN67GrwVLZYvIxFcr7+O94Lf4T3jVGzrV1GUaW1yzYiJReR2d+DIMjPh\n1C7ECu088tMTHPPmMTy48gny7r8X5+mnk37eeThPm4z7gw+oufc+WL4SW2YWmr7hu7AuIwN0Koe5\noii/LDXLXdnvPNU7mHbl1PrjwkFDmPyn2zCYrAR9iQxk5aEwJz3xLX89bTDTF5by01YXANPO7M3x\n5c+C0QHH3pVore8iWltL2W234f1yDrqsLHq88zaGvLzdrvNVe4nW1hFftRTvkUM56d1T6s99MOUD\nCq0FxP1+tlxxJcElS8BgoNeHH2AsKiJaW4v7k0+IbN1G5h/+gCEvd7fylU5HzXJXDmiqy13Z74Sm\nYXWm43clJq5lFhSiNxjR6TVszkQ3dWHUwNc3Hk00FueRT9fU31vqEbiZgLlXfwxSNvsXVp+RQf69\n9xG/xYswm3frCt/JlmWHLDv07kbUX0WmOZOaYA02gw2LwYJmMKA5nRQ+8TjBNWvR+vSg1qYR95aR\nZk8j89xzO/xnoyiKsrdUC13Z73xhH/4d1Sx6Zwb2zGyGn3gaIb2l2Y1dwtEYi0tq+fObP1KYaeXR\nCbl4f38Wms1Oj3febjFYt1dcxqn0V/JT1XKKHX3ZWKZjTI9cMhstiVu+YzkXfnIh4ViYB8Y/wHHd\nj8Ooa//acuWgpVroygFNjaEr+92qmlX8Yf7l/DDCT8lQwds/b+fUf33Hlhr/btca9TpGF2fw7lXj\nePLE7vgvv4i4z0+0srLZ5WJ7IqNRIpWVRMrKiLkb1oprQsOqZfH1si6c/sTP/PHVH3lv2bb683EZ\nZ8aaGYRiISSSV1e/ii/S9jzmiqIoqaYCutI+8Th4KxOT0uLtD6gAy6uWs9W7lRnr3+Tl1a+Q7dBT\n7g4yc+m2Zq836nXkppnJsJsxDRqE5nSSd9ttaFZrs9e3Jrx5MxtPOpn1Rx9D3TszifkbvkRE43GW\nb3XhDSXWpG93BevPaULjhOITEMlG2sSiiVj17X++oihKqqgx9INYKOAn6PEQDYewOjOwOFKcfSsW\nga2L4N0rQMZh8pNQdBjo27c868QeJzJj7Qwq/BVcOfR65vzkwajTOG5ALr5QNJE5rRn6zEwKHvgb\nMhJBs9nQ7UVAd707i7jXC0DNCy+QdvJJ9eVkWI08cuYwrn9jGZk2Ixcf0aPJvSNyR/DxGR8TjoWx\n63JZtd1Pja+OEUUZTbrmFUVRfglqDP0gVvrTMt762x0gJWPP/B2HnHoGBlMK1z57yuHpseCvSRyb\nnXDV9+DoAiRSmgYjMQw6jZw9ZC2rDlQTl3GENLN4o5fB3ZxMX1DK2kovN0/qT+8cO5rW8UOW/kWL\nKP3DBSAlzilTyLv1L+jS0urPSymp8YXRaYJ0a8tB+qPlZVw5fQkAZ43uxp2nDEykXFU6MzWGrhzQ\nVAv9ILZ24bf1W6Ku/34+w487KbUBHQkhb8Nh2Ff//FpfmPs/XMXbS7bRO9fO/y49tNXsZVmWhj3U\nJw1x8NbiLTz99UYAftrq4qNrxu/xS8HeMA0YQK9PPiZaW4exqLBJMIdEytWsNmwIs6ikpv71j1tc\nBKNxWk7VoiiKknpqDP0gNnTipEQqTSEYddJpGC0pHtM1psExt4NINlQm3ASmRBgLRGK8vSQxBr6+\n0su6Cm9LpTQr3Ch5SSQWR9J6z1HAE8a9I4CvLkS8HYlPdHY7xu7dsQ4fhj4zs111bGzq4cXkpZkw\n6TVuO3kATrVXu6IovzDV5X4Qi0YiBD1u4vE4JpsNU6oDOkDABWEvIBObu1gSGdCqPCHOfGYeJdV+\nTHqNL/90JAVpJqLV1cQ9HnTp6UTNJsKBAJpOh82Zjmi0KUy1N8TDn6xhfZWX204aQP90PcZoGM3h\nQDM27foOeMJ8Nf1nNi7bgdGi54ybRpGZ3/JWsI3FPB6QcreWeXtJKdnhDSElOC0GTAa1U9yvgOpy\nVw5oqllxENMbDNgzW07/2R5BXwS/K4TBCOaYj2hFBYaCgt3XeVuc9UG8sRyHiRmXj2V1uZteOXay\n7SaiFRVsPG0KcY+HrDtvp9RuZu70F7E40vjd/f8gPS+//n6HWc/EAbkUZ1sx+NzUvjqd0Pffkzl1\nKo7jJqKzN3RohwNRNi7bgaYTTDi7B3pDGG9NEKPF0movRaSigrI77kRGIuTfdx/GrgV7/fMSQrQ6\npKAoirK/qS53hWgkzqrvtvPG/YuI19Sw8ZRTKTnrbDZfeBHRHTvaXE5umpkj++bSLcOKyaAjuGYt\ncY8HAJGXx+IPZgIQ8LhZv3hhk3uDkTgvzCvhjUVbcGzegPuVVwitWUPZX/5CvNF6cQCdQYfOqHHy\nLSNYGAny2LdbKHMFWDV3DiG/j2AkRpUnhDcYqb8nHgpR+fdH8M2di3/+fMrvuivRWm/t51JXR3D1\naoLr1hF1udr8c1AURfklqICuEA1F2bSsCrPdQHjzlvogHFq3jngovNflmgf0R5eV6EEQ0SjFw0Yk\nXmsahQOHNLnWbtJz86R+WI16tMb5zYVg155Os13PmbeM5odKD3d+uJYXF2zhpo9KCeothIJhfi5z\nM2vZNh77fC01vmT9NQ1htdSXoVktze4Dv1M8GKLu9dfZ9JvT2XTqZDwff7JXG9koiqLsL6rL/dcq\nFgVPGZT/hKFgDMMnFvHZf1agK+yDobCQyJYt2I48Es2S6FaOh0LE6lyAROd0opn33N2sz8ujx7sz\nkYEgmt3GkWPHMvKk07DY07B1LtPsAAAgAElEQVTsMoataYJBBWn896JDcIR8mC+7DN/8+WROvQDN\n2fRavUFHVoGd6vUNGddq/WFsWbls8EjueG8l3TNt/GFsdzZX+8i0GdEMBnKvuQah1yNDYXKuvRad\nrZUUrAE/njlf1R97vviCtFNObtL1rygHKyHEZGCglPLBX7ouSsdRk+IOUqGAH03TMJj2chzXXQb/\nPhSCLjClEb5yOaGYGU0nMIbcyHAIzWpFn5mJlJLA0qVsnnohSEnhc9OwjhnTZFJbR4sHg8QDATS7\nHc3Q/PruSleAO99bwZbaIPccX0ymUXLeG+soS+7wdsuJ/Zk8rICC9IaWuYxGkdAk/Wmzz49E8Mye\nTe3Lr2A97FAcJ5yAuV+/lH5m5YB3QE6KEyLRjSWlbPtyD6VTUi30g5CrspwvXngGk83OUedfjC09\no/2FBGoSwRwg5MYY3IYxb1DyZE6TS+PBIDUv/hcZTnRfV097DvOgQehSuDOdZjbvsRcg12nhb5MH\n4PcHMEUCxNMycVoM9QG9MMO623Iyode36a+yZjBgGzcOfXYO1dOmEXd7MFx1JfqsjpmEqCj7QghR\nDHwKLARGAQ8LIf4ImIANwIVSSq8Q4iTgUcAHfAf0lFKeIoSYCoyWUv5fsqwXgGygKnnvZiHEfwE3\nMBroAtwkpXxrf31Gpf1UQD/I+N0uPnj8YcrXrwXAaDZz7EV/RNO18z+lLQe6DIXynxL/2nJ2u6Q2\nWMvC8oXUBes45vbr0RYuJO52Yz3iCEQbutx3Cgf8RMMRTDYbuj20jNsr02kn09nQDf781EOYNncj\n/bs4OLxXFjbT3u/eJgMBNl98MUQi+AAZDiX2kLdY9nivouwHfYALgPXAO8BEKaVPCHEzcIMQ4mHg\nWWCClHKTEOJ/LZTzL+AlKeVLQoiLgCeAKclz+cARQH/gPUAF9AOYCugHGymJN5qcFY/F2KtRE3su\n/P5tiATAYEkc7+Kz0s+4b8F9APzQ/QRue/8tIiYdtXEvMlJHlj4LTbTeBR1wu/l2xiuUrf2Z8b+b\nSuHAwYnNcIBobS0yEkUY9OgzEr0MfreLqtJNaDo92YVFWBztWy/eNd3CPZMH7fG6mNdLPBBAZ7O1\nmOQl7vNBpGGmfGhTSaKXQgV05cBQKqVcIIQ4BRgIfJfofccIzCcRhDdKKTclr/8fcFkz5YwFTk++\nfgV4uNG5d5Nd+auEEHkp+AxKB0pZQBdC9APeaPRWT+BO4OXk+8VACXCWlLI2VfXobKzOdE659iY+\nm/YkJquVcWefv/et3maCeGOb6jbVv97s3ULQZuCqL69ibe1assxZvHnqm+RYd2/ZN1ZRsoGfZn8M\nwKxH7uOif04jGgphNxgpv+12fN98g33iRPL/eg8Rg4Evnn+atQu+BWDkSadx+FnndfiGOdHaWnb8\n60m8X39Fxvl/IP3009Gl7T58oHM6MQ8aSHDlKtA0si65GE1NilMOHDvz9wpgtpTy3MYnhRDDO+AZ\nocZFdkB5SgqlbIaPlHKNlHK4lHI4iTEePzATuAX4QkrZB/gieay0Q0Z+Vyb/6VZOvOoG7Bl7v33p\nnkwdPJWBWQPpZu/GXWPvAgFraxNd/dXBair9lXssw2xrCIAmqw1XRTmv3no9ng3r8X3zDQDezz8n\nVlNDPBZl/aIF9devW/gdkWBwtzL3VbSyktrXXiOybTuVDz5I3ONu9jp9djaF06bRY+Y79J49OzER\nUKd2hFMOOAuAcUKI3gBCCJsQoi+wBuiZHCMHOLuF++cB5yRfnwd8k7qqKqm0v7rcjwU2SClLhRCn\nAUcl338J+Aq4eT/Vo9Ow2FMzIU3GJX5PGCRkWXJ4euLTxGWcDFMGrpCL0XmjWVyxmEJHIXm2PffA\nped14dTrb2Hr6hUMP/5kPnn6caLhUKKLXa+HaBRhNCa2eNXpKBw0hNKflgJQNHh4SpLNaHZ7Yg16\nPI5msybq0QJ9VpaaCKcc0KSUVclJbv8TQuz8hbldSrlWCHEl8IkQwgcsaqGIq4EXhRA3kpwUl/JK\nKymxX5atCSFeAJZIKZ8UQtRJKdOT7wugdudxS9Sytf2nrtLPO3//gaAvysQLB9BzWA56Y0OrtDpQ\njT/qx6KzkG3NbqWk3flcdbx84//hd9UxdMIxjDvyeHxff43j2GMwds1Fc2Thd9VR8uMSdAYjhYOG\nYE3bfZvZfRXz+wmtXo13zleknTYZU3ExooWlcYrSyEHX5SyEsCdnuwvgKWCdlPKxX7peSmqkPKAL\nIYzAdmCQlLKicUBPnq+VUu627koIcRnJCRxFRUWjSktLU1pPJWHu62tZ/tVWAGzpJs78y2hszqat\n5FgkQsDrQQiBNc3Z5rXZUkq8NdWUb1hHdmEhjmgV+uXToXQemBww8W7IHQTmfUucoigpcjAG9OtJ\nzIQ3AkuBS6WU/l+2Vkqq7I9dMk4k0Trfua1XhRAiHyD5b7MDsVLKaVLK0VLK0Tk5rU+8UjpOl54N\nwTSrmx2dvun/IvFYjLL1a3nx+st5+aarqSnb1uayhRA4srLpM3woGetnoH/+KPj+OahYCZsXwAuT\nYONXoLZYVZQOIaV8LDmXaaCU8jwVzDu3/RHQzyWxXGKn90h8YyT576z9UAeljYoGZXHa9SOYeOFA\njv3DAMy2pl3RQZ+XOS9NIxwI4HfVMW/Gq0Qj7dzvPeiCOfc3f+7jG8Hf9oQwiqIoSkJKJ8UJIWzA\nccDljd5+EJghhLgYKAXOSmUdlPYx2wx069fyznM6g4Hswu5UbtoAQG5xL6SAja6NzC6ZzWEFh9E7\nvTc2Qyv5yavXQzza/DlPOUR8zZ9rQTwew+9yIeNxjBYrphbWlSuKonRmKQ3oUkofkLXLe9UkZr0r\nByGTxcqR519Mt4FDMJrNFA4eRm24jnM+OIdANMBTy55i1pRZ9HD2aLkQYyvBHkBr3wS1uopy/nfb\nnwj6vEy89P8YOP6ovd/jXlEU5SClMk10Yp6whwXbF/DEkifY7N5MvINyN1jTnAw5+jj6jR2P1ZFG\nIBogEA0AIJFs925vvYC0bmBrYYZ8t9FEdO3biW313C8J+rwAfP/uDMKBQLvuVxRF6QxUQD9IRWIR\nKv2VVPgqCESaD2BlvjIunX0pzy1/jvM+Oo/qQHVK6uIwOjim6BgA+mX0o39mf5ASPBVQ8i3UlECw\nYfOWmDEd/+9nEz7sWtA1ao3bcnCf+G/u+Gw7W2vbPnen+9CRybzpibXreqNxt2v8njDV27x460LE\nImrSnaK0hRBi3i9dB6XtVPrUg9Sq6lVM/WQqAsGMU2ewxb0Fh8lBcVoxTlNi7fa87fO4fHbD9IXP\nf/t5mzaD2Ru1wVrCsTB6TU+WJSsxFv7sePBWJoLtOa9D3xMIh0OULFvCwndep2jIMMYcdTiWJf9G\nFh1OXf4RXPhWKcu2uDi8VxZPnzcKp3XP3e+hgB+/q46gx4MzLx/rLrnW/Z4wn05bwfZ1degNGmfd\ndggZXfbQ7a8ouzvolq3tLSGEXkrZwkQX5UClkrMchKLxKK+seoVANMBFgy/i+eXPM3P9TAAenvAw\nJ/Y4EYD+mf2ZWDSRpZVLuXzY5a1PVNtHGeZdJtJt+iYRzCHRWp/7EHQ7hFBQ8sFjDyJlnMqSjfQZ\nMw7L5H+BlDz36RqWbUmkdDXqNfaQ96WeyWJN7PfepfnzsUic7evqAIhG4mxeWaMCurLfFN/y4e+A\nvwFFwGbg1pIHT35tX8sVQrwLFAJm4HEp5TQhhBd4GjgJKANuJZFspQi4Tkr5nhBCR2Jy8lEk0q0+\nJaV8VghxFHAvUEsisUtfIYRXSmlPPu9m4PdAHPhYSnmLEOJSEvuFGElkfTtfLY375aiAfhDSa3qO\nKTyGDzZ+QK41l++2fVd/bnHF4vqAnmnO5O7D7yYcC2Mz2LAa2j77OxANUOmvpNRdyoDMAXtMwrIb\nZ7ddjruD3oTQwuiNRiKhxB7thmQaViEEFx/Rg1A0jisQ5sYT+pNm7pjd23R6jdzuDipLPWg6Qdf+\n6Wz3bEev05NpzkSvqV8DJTWSwfw5YOcvX3fgueJbPqQDgvpFUsoaIYQFWCSEeBuwAV9KKW8UQswE\n7iOx0mggia223wMuBlxSykOSW8V+J4T4LFnmSGBwowxtAAghTgROAw6VUvqFEDuTSLwjpXwuec19\nybL/tY+fS9lL6i/ZQeqwgsN4b8p7CATFacVc8+U1OIwOzh9wfpPrdna/N8dbG6RsvYvsQjv2TDOG\nRlu8bvVs5cz3zyQmY3S1d+XVE1/FEnEQDcUwmPVY03Yfp24ipy8ceTP88CLkDIAT7geTHYsuytn3\nPMSSj2bRY8RoHFkNk+Oy7CZuPak/cQkGXcdN77CmGTn5qmG4dwSwOo18Uv4h935+D2nGNGacOoOu\n9q4d9ixF2cXfaAjmO1mT7+9rQL9GCPGb5OtCEvnRw8AnyfeWAyEpZUQIsZxEhkuA44GhQojfJo+d\nje79ftdgnjQReHFn61tKWZN8f3AykKcDduDTffxMyj5QAf0g5TA6cBgTCVrybfl8csYnCCHINLct\n+5rPFeKth37AVxdCaIKz7xyNLj1GujmxK+/SyqXEZGLy2DbvNgKRAB//fS3uHUG69HJy4uVDWg/q\n1iw44gYYfTHojGBNdMnr9HryevTihCuuQ2tmy1idppGKfGbWNCNho5+6cBV/+yGR490ddrOscpkK\n6EoqFbXz/TZJdo9PBMYmW8xfkeh6j8iGiVFxkulPpZRxIcTOv/cCuFpK+WkzZbZvEwj4LzBFSvlj\nMkHMUe39LErHUbPcOwGT3kSONYdsSzZaGweeY5E4vrpEqmMZl2ws2caTS5+kJpj44j02f2z9mPvg\n7MEYMOHekegmL9/gItpopngwGqTCV8F273bcoUapSA1mcOTVB/PGmgvmqeQNe3lk8SN8s+0bji48\nGgCr3srQnKH7tR7Kr87mdr7fVk4Sia38Qoj+wGHtuPdT4AohhAFACNE3uQlYa2YDFwohrMl7drYc\nHEBZsqzz2vUJlA6nWuidUF2wjp92/ERdsI7Dux5OtmX3Nd8Gk46eI3LYuLSKtGwLGYVmZn45k4uG\nXARAvj2f96a8hyfsId2UjiVix55hwlsbIqfIgd7Q0I5eXb2aiz+7mEg8ws2H3MwZfc7AYmjfWvJU\nC8VCrKhewezS2dw77l4uGXIJOdYcMk2pyyevKCQmpTUeQwfwJ9/fF58AfxRCrCaR93xBO+79D4nu\n9yXJLGxVwJTWbpBSfiKEGA4sFkKEgY9IfIY7gIXJMhaSCPDKL0QtW+tkgtEgz694nmd+fAaAvhl9\nmXbctMRSsl0EvGFCwTAl3k3cufQ24sT576T/NvsFABLd9JFgDKOlYQw9HAtz6ze38mlpovcu35bP\naye/Vl9GLB5jR2AHSyqX0D2tO13tXVsd10+VSCzCwrKFXDvnWpwmJy9NeonCtMKGzxb24Y/60Wm6\nNg9bKL86e7VsLVWz3BVlV6qF3skEogHmbp1bf7y2di2ReKTZay12I3qLIM+SzR1j76CHs0eLwRxI\npFHdJRYbdUYmFE6oD+iH5R+GWdew7Wp1sJrT3zsddzjRFX/n2Ds5vffp6LRUjJS3zKAzcEiXQ+rn\nGmSZG77g+CI+3t/4Pg8vepi+GX158tgnW/05KEp7JIO3CuBKyqmA3slY9VZO6H4Cq6pXATAsexhG\nreXJawadgXxbPvm2/BavCXo9bP15FVWlGxl81HFNZqYDHNntSGacMgNP2EOfjD7Yjfb6c8urltcH\nc4D/rf4fxxYeS6al7a3gaDiM31WHt6aa9C75SKsBb8SLhkaWJavN8wZMehM5+t2X3/kjfh76/iGi\nMsrK6pUsqVjC8cXHt7l+iqIoBwIV0Pczb9hLIBrAoDOQbkrv8PJNehNn9D2DkXkjcYVcDM4e3Obg\nWReqwxP2YNSMpJvSMelNAFSVbmLW3+8FYO38bznzjvuxOhvq7jQ5W+xGL0prOpm3b0bf+nLbyr2j\nkpf+/H/EY1EO+935VA00cee8O3GanEw/afpuz2gvndDRM70na2vXJpYBOov3qTxFUZRfggro+5E7\n5Oa1n1/jxRUvcmiXQ7l73N0pGa91mpwMzx3erntcIRdPLn2SN9a8gVEz8sKkFxiWMwwAT3VDfnJv\nTTXxeNuTvORZ83ho/EO8tOol+qT34eoRV6O1c3FFxaYNxGOJXShNeRk889OjSCR1oTpmbZjF1SOu\nbld5u8q0ZPLMxGf4vvx7eqf3pqtNLWNTFOXgo5at7Uf+qJ+nlj2FP+pnztY5bHFv2a/PD8fCVPmr\n2BHYQSwe2+3cG2veSLyOh5m+enr92HvxsJH0HDWG9Lx8TrnuZsx2+25ltyTNlMakHpP451H/pFd6\nL8776Dw+Lf0Uf6Ttu0N2GzAIR3aiq9xhS2d03uj6c4d2ObTN5bQmx5rDyT1Ppl9mP2x7Su+qKIpy\nAFIt9P1IJ3RkmbOoDlajE7r9OvEqFo+xvGo5V3xxBSadiRdPeJHeGb2b1K1/Zn9+rvkZgDFdxmBI\n5iW3OtM58cobiEUjmG12dIb2bcmqCY0PN33I40seB+DueXczrmBcm7eidWRmc979jxKLRjGazfxJ\n34ff9PkNGeYMci257aqLoihKZ6UC+n6UZcli+snTmbtlLiPzRu6e0KQVtcFavBEvZp2ZbEs2QjS/\ngqbOHyYcjaPXaWTaGibDucNu/vHDP+pzlz/949M8MP4BjLrENZmWTJ4+9mnmbptLvi2fAVkDmpTb\nnlZ5c4ocDePcOdacNk9k28mW3vCzMgOjzKP2qT6KoiidjQro+5EmNLrau3LugHPbdV9dsI4HFj7A\nxyUfk2XO4vVTXqeLbffUYrW+MH/7eDVvLt7K+D7Z/PPs4WTZExPQTDoTAzIHsHzHcgCGZA/ZLSlJ\ntjWb3/Sagt/tQvrjRAhhMLVvAltLxnQZw/1H3M+amjX8bsDvml0XryjK/pPc6jUspZyXPP4v8IGU\n8q0UPOs/wKNSylUdXbbSQAX0g0A4Hubjko+BxLrulTtWNhvQPaEoby7eCsA363ZQ7grWB3SrwcpV\nI67i0PxDMevNDM0e2mwruba8jNfvvJGQ38+UG2+naMhwdPp9/98k3ZzO5F6Todc+F6UoB5e7nbtt\nLMPdrgNhXfpRgBeYl+oHSSkvSfUzFDUp7qBg0Awclp/Yqtmqt9I/q3+z15n1GhnWxPi2Sa+RaW+6\n/jzTnMnxxcczoduE+iQsu1r68SwCHjfxWJRvX3+ZkL+9uRp2F4gEqPBVUOGrIBgN7nN5inLQSATz\n50ikTRXJf59Lvr/XhBA2IcSHQogfhRArhBBnCyGOFUIsFUIsF0K8kEyNihCiRAiRnXw9WgjxlRCi\nGPgjcL0QYpkQYnyy6AlCiHlCiI2NsrE193y7EOILIcSS5PNOa6leyfe/EkKMTr5+WgixWAixUghx\nz778HJSmVAv9IJBhzuDB8Q9SE6zBaXK2uP94lt3E+/93BAs2VTOyKINMa9OA7ne7kFJiTXO2OAZf\nOHgYyz77CICCfgPRG/eQJnUPYvEY35d/z7VzrkUIwbMTn2VM/ph9KrMloWgIg2bY74lfFKUVqUqf\nOgnYLqU8GUAI4QRWAMdKKdcKIV4GrgD+2dzNUsoSIcQzgFdK+UiyjIuBfOAIoD+J3Oktdb8Hgd9I\nKd3JLwsLhBDvtVCvXd2WzOOuA74QQgyVUv60Nz8EpSkV0A8SWZas3cadq/xVBKNBrAYrWZYsdJqg\nW6aV32buPnvcvaOKDx9/iHAwyCnX3UxW18LdrgEoGjSM3z/4OCGfl5yiHhjN+5ZkxR/18/KqlxOp\nWCW8svoVhuQMwaLvuOQt0ViU9a71PPvjs/TL7MfZ/c5u14RDRUmhlKRPJZHr/B9CiIeADwA3sElK\nuTZ5/iXgKloI6K14V0oZB1YJIfJauU4AfxNCTCCRprUrkLdrvaSU3zRz71lCiMtIxJ98YCCgAnoH\nUE2Zg1SVv4rbvr2N2aWzmbNlDjWBmhavjcfjLHj7dbav/Zkdm0v4/LmnCHg9zV5rttvJ69GLosHD\nsKSl7XM9zXozxxQeU398bNGxmHQdM9Fup5pQDVM/mcrnmz/nqWVP8cXmLzq0fEXZBylJn5oM3CNJ\nBND7aD1bWpSGv/XmVq6DZP70pNaS0ZwH5ACjpJTDgQrAvGu9hBB3Nr5JCNED+DOJnoShwIdtqJPS\nRqqFfpAq95VzxfAreHzJ49gMNsYVjGty3hv2EowFseqtCASOnIb12vasbHS6/fOf3qAZOKXXKRxW\ncBg6kchk1t4la3sSl3F8kYax/nJfeYeWryj7ICXpU4UQBUCNlPJVIUQd8H9AsRCit5RyPXA+8HXy\n8hJgFPAxcEajYjzA3n5rdwKVUsqIEOJoEnMDmqvXrpPh0gAf4Er2AJwIfLWXdVB2oQL6QSrbks1N\nc29iWdUyAJ63Ps+th96KpmnUBmv519J/8e22bzmjzxmMLRiLGFbAWMtUdGHJkKOOw2jZf/nKW9vr\nvSPYDDZuPORG/vnDP+nh7MGZfc9M2bMUpV3udr3G3U7o+FnuQ4C/CyHiQITEeLkTeFMIoQcWAc8k\nr70HeF4IcS9Ng+f7wFvJCW3t3T95OvC+EGI5sBj4uZV61ZNS/iiEWJq8fgvwXTufq7RC5UPfT2qD\ntUTiEfRCv1uylFA0hCvsQiDIMGWgb0PruS5Yx83f3My87YkVJ5cMvoRrRl6DEIIlFUu44JML6q99\nedLLXPTpRYzuMpoz+57ZKTOJ+SI+/BE/mtDUGnclVfYqH7qi7C9qDH0/qA3Wcse3d3Dsm8dy6exL\nqfJX1Z+LxqMsqVzCpLcnccrMU1hTu6ZNZaab07l33L2c0ecMLhp8EecPPL9+5rpZ3zAkJRCY9Wai\nMsqCsgWkGfd9XPxAZDPYyLHmqGCuKMqvlmqh7werqldx9gdn1x/fN+4+Tut9GgA1wRqumH0Fq2oS\nGyiN7zqeR458pMV9zmPxGDpNV38cjUfRhNZkXNoVcvHhhg/5attXnNbtZIbnDmdxzVK6O4vp6exJ\nmqlzBnVFSbFfXQtdCDEEeGWXt0NSyo7JiqR0KDWGvh84jI4mx42Tsph1ZgZlDaoP6ENzhtbvr96Y\nJ+xhUfkiPiv5jHP6n8OAzAGY9Kbdtm+FxJj15G4nkr86SvW7P/DWqpc5568Pk5ertmlTFKXtpJTL\ngfblYlZ+MSqg7wcZpgwePfJR3lz3JofnH86grEH156wGK1ePvJox+WMw68wMyx3WbJCuDdZy7Zxr\nAfis9DM+Pv1j8vRNl4nGZZwqfxWb3Jvob+rFpm++o7ZsG3qjCatDtcoVRVE6MxXQ9wO70c4xRccw\ntmAsZr15t4CdYc5gUo9JrZYRjDVsmRqJRxIbteyiOlDNWR+cRU2whkFZg5h255PUbNlMRkFXLM7m\nt3rdk0A0gIaGSd+xa8cVRVGUjqUCegrVBevY5t2GQWcgz5rX7qVb/ogfX8SHROIwOHh64tM8+sOj\nnNv/3GYnt3kjXmqCiQ1mVlavpEpz0WvYyDY/L+jz4qurJRIM4szNw6X5+fuiv2PSmbh+1PXkWHPw\nR/xs9W5l5Y6VHFZwGF2sXVrcRlZRFEXZf1RAT5FQNMTra17nqWVPAXDP4fcwpfeUNm+q4g65eWvt\nW7y+5nXGFoxlXME4NtRt4NmJz5JmTGu2xZxmTGNg5kBW1axifNfxTcbq22Lzih95/9EHADjktDMo\nH2rhs9LP6s/fOfZOKv2VnPn+mcRlnBxLDm+c8gY51px2PUdRFEXpeGrZWooEYgG+3fZt/fHXW78m\nHAu3+X5PxMNjSx6jzFfGO+vewaK38MqqxGTTlrq/syxZ/Hviv/nsjM+4YdQNLK1cynbvdkLRULPX\nNxaPxVi/aEH9ccmyJeQYGtbLB2NBJJISdwlxGQegKlBFJB5p82dSFGX/E//f3p2HyVXV+R9/f7KH\nBAKEgAgiiChLWC02QcSwiMiwKILADCAIg4IwIrL4cwQUZwBHHUQQATFxY0dAcIAMa2RNIyGsAWQZ\n9iQQIAQIWb6/P84pUulUVVcvt6u78nk9Tz9dde5yTt30k2+dc889X+kUSccVdO4PMrn1RZLGSLo3\nZ6H7TJXtF0pavxltK0KhAV3S8pKukPS4pMckbS1pRUkTJT2Zf7dkFo2Rg0ZyyNhDGKABDB4wmAPX\nP3Cx58M7MkiDGDJg0Wz35YYsx2rLrsZADaxzFDlJy0Deev8t7n7pbs578DxmzZ3VYX0DBg7kU7vu\nzqAhQ0Fi8z2+zAarbsRmK2/G1qtuzfGbH8/wQcMZu9JYPjbqYwDsufaeLDOo+uN1ZpZsOGHD/Tec\nsOGzG07YcGH+3a3Uqa0ir2hXtB2AhyJi0/aJYiQNjIivR8SjvdCOXlHoc+iSJgCTIuJCSUNI6xl/\nj7TW7+mSTgRWiIgT6p2nvz6H/s68d5j9/mwkMWrIqE5NLJs7fy7TZk3jiieuYNwa4xg5eCQfXe6j\nDQ1vT58znQsfvpBr/3EtJ299MquPXJ2Vl1mZMcuMqTvkv2DePN6d/RYRCxm6zEiGDB/OG3PfYAAD\nFnt2/bV3X2P+wvkMHTi0Zl51sxbU6ckiOXhXW8v9sIcOeqjLy79KGgFcBqwODAR+BJwBlCJiZs49\n/l8Rsb2kU4C1gY8DKwFnRsQFNc67KnApac31QcA3ImKSpF8BmwPDgSsi4uS8/7OkzG7/BAwGvhIR\nj0vaAjiLlHjlXeBrETFN0sHAl4CRud1fBK4BVsjHfz8irsn52v8H+BvwaeBFYI+IeLdGuw8DDgeG\nAOW17D9BSgE7PB+/NTAD+DWwIykb3WnAcRHRJmkX0hK9A4GZEbFDrc9R+1+muQr7hpTz4G4HHAwQ\nEe8D7+d1g7fPu00grS1cN6D3V8sMXqbmAjEdGTpoKBuN2YixK42tGYTnzJvDK3Ne4ZU5r7Deiut9\nsKTs0EFDmTNvDsdvfpIGsUkAACAASURBVDzXP309t79wOysMXYFL/+lSVh2xas06Bw4ezMgVF19p\nbfmhSwZsr8Zm1rDezId+Rp39NwK2AkYAD0i6PiJeqrLf/sCNEfHjnK+83PZ6OcxnRsRmkr5JyqT2\nddJa7Z+JiPmSdsyft5wYZjNgo3y+QVTPqw6wDrBfRBwm6bJ8/B9qfL6ryl9SJJ0GHBoRZ+dsb6WI\nOCpvGwHcGxHfye/Jv8eQvnhtFxHPSCrfb6z3OfqcIoc81iJ9G/qtpI2B+4FjgFUi4uW8zyukHLpW\nQ70e9ROznuDA/zkQgG1X25bTtjmN0cNHM2roKL616beY+e5MTr7rZABmzZ3F1OlTWXWt2gHdzHpc\nr+RDz73oevtfk3u370q6FdgCuLrKfpOBiyQNJuVGn5LL6+Uwvyr/vp/U+4aUKGaCpHWAIPW+yyZG\nRDnfc6286pDyu5frvx9Ys87nG5sD+fKk3v+NNfZbAFxZpXwr4I6IeAagon31PkefU+Q99EGkb2K/\niohNSSnzTqzcIdJ4f9Uxf0mHS2qT1DZjxoxquyz1pkyf8sHrqTOm8tp7r32QRvRDIz7EysNXZqOV\nNgLSinTrr9Rzcz9mvjuTGe/M4J157/TYOc1aUK/kQ8890Xp5z9v/P1v1/92IuIM0svoiMF7SgQ3k\nMC/Pul3Aok7ij4BbI2IsaTi+cv85Fa+r5lVvd972565mPHBURGxIyi5Xa8LSexFVFvGord7n6HOK\nDOgvAC9ExL35/RWkP8BX832a8v2a6dUOjojzI6IUEaUxY/xYVDU7r7kzY4ana3PwBgdz5RNXLpYX\nfOURK/OLcb/g4i9ezHV7Xccqy/TMYMhLb7/EAdcfwE5X7MRNz93Eu/Oq3tYyszRnqP233p7Kh/5O\nRPwB+Anp/9ZnSXnPYclh4T0kDZM0mnTLc3KN834UeDUPX1+Yz1sth3lHRpG+FEC+7VpnvyXyqnfB\nssDLeWThgC4cfw+wXf7yQsWQe6Ofo08oLKBHxCvA85I+mYt2AB4lTVIo5/Y8iDQhwrrgwyM+zB92\n/QPjdxnPewve46Znb1piiH708NGMXWksq4xYpeoa8V1x7VPX8tKcl1gQCzjjvjN4e97bPXJes1aT\nJ74dBjxH6hU/RzcnxGUbAvdJmgKcTJrcdSpwlqQ2Uo+20lTgVlLg+lGN++eQgn05Z/m+wFkR8SBQ\nzmH+JxrLYX4m8J/5PPV61n8ESjmv+oEsyqveWf8O3Jvb1ulzRMQM0qS6qyQ9SJoYCI1/jj6h6Fnu\nm5C+5Q0Bnga+RvoScRnpHtJzwD4V9yuq6q+z3HvDnHlzmPb6NNpebWPXtXZltZGrLVq5bd67MH8u\nDF0OBvTcd7fbn7+do245CoCNx2zM2ePOZoVhLfn0oVklL4lofZrTp7aqOTPhjp/Aqw/DuH+HD28K\nPbQe+5tz32Ta69N4fvbzfHb1z7LSMt1fV2LBwgW8NOcl7n35XkqrlFht5GoMHtin55/Y0scB3fq0\nhgJ6ntJ/GGmW4QfDDhFxSGEtq+CA3gUP/BGu+WZ6PXg4HD0Flv1Qc9tUx/R3prPn1Xsye95shg8a\nznV7XcfKy6zc7GaZVWqZgN5f85xLOgfYpl3xWRHx22a0p69p9J7ANcAk4H9Z8t6MtTPrvbQyW1OH\noSuXmV24APr4SMzcBXOZPW82kDK8efa8WXH6a57ziDiy2W3oyxoN6Mt0tJqbJS/MfoHj7zgegDO3\nO5PVl129OQ1Zbzd4/h549VHY8RQY3rfvcY8cPJL9PrkfV//janb66E6dzkxnZra0a3TI/TTgroj4\na/FNWlJ/GXJ/+/23Of6O45n0Yloy+LOrf5YztjuDEYNHNKdBc2enSXHDRkE/uB/91ty3mLtgLkMH\nDl1sqVmzPqJlhtytNTXaQz8G+J6kucA80h92RIT/160wcMDAxXqWKwxdocNkKoUaumz66SccxM3M\nuq6hgB4R/ScqNNHwQcM5rnQcKw5LaxIcMvaQTmVYMzMz66qGH1vLaU7XoWLpu7xMYOH6y5B7WTlf\neL112M2s3/GQey+StDywf0Sc24VjnyVnnuuBdvyQtM77/3b3XEVrqIcu6eukYffVgSmkhezvBsYV\n17T+y4HczMoeW3e9/UlZutYgreH+vfUef6y7K8V1maRBETG/WfV3wvLAN4ElAnpvfoaI+EFv1NMT\nGo08x5By4T4XEZ8DNgXeKKxVZmYtIAfzC0hrlCv/viCXd4ukf5Z0n6Qpkn4taaCktyu27y1pfH49\nXtJ5ku4FzpS0oqSrJU2VdI+kjfJ+p0j6vaS7JT2Z84yXz/ddSZPzMad20LYD834PSvp9Lhsj6cp8\njsmStqmo8yJJt0l6WtLR+TSnA2vnz/cTSdtLmpTTqz6aj71a0v2SHsnZ4Bq9dkscl6/feEkPS3pI\n0rcrrt3e+fUPctsflnS+Okhx19sanRT3XkS8JwlJQ3MC+092fJiZ2VKtkHzoktYjrbW+TU5sci4d\nJyVZHfh0RCyQdDbwQETsKWkc8DsWPZe+RO50YCzplusWpC8m10rartptV0kbAN/Pdc2sSHRyFvDz\niPibpDVIKU7Xy9vWBT5HSrIyTdKvSNk5x+YsbEjanpQsZmw5zSlwSM6rPhyYLOnKiHitgUu4xHGk\nhdNWy5nVykP+7f0yIn6Yt/8e2A34SwP19YpGA/oL+cNdDUyUNIu0DruZmdVWVD70HUiZ1SbnTuJw\namSurHB5RerQbckZ2SLiFkmjJZUfM6mWO31bYGdSkhZIOcfXAarNoxqX65qZz1/O1bEjsH5Fp3Y5\nSSPz6+sjYi4wV9J0FuVEb+++imAOcLSkvfLrj+Q2NRLQqx03DfhY/rJzPXBTleM+J+l40peyFYFH\n6G8BPSLKH/yU/A88CrihsFaZmbWG/6N6StBu5UMn9ZInRMRJixVK36l42/4Rmzk0plrudAH/GRG/\n7lQrFzcA2Coi3qsszAG+0dznH3yG3GPfEdg6It6RdBsN5CuvdVxEzJK0MfB54AhgH+CQiuOGke7n\nlyLieUmnNFJfb2p49pakzfK9jY1Iec7f7+gYM7OlXCH50IGbgb0lrQwpf7dyLnNJ60kaAOxV5/hJ\n5CH6HOBmRsRbeVu13Ok3AoeUe9SSVivXXcUtwFfy8ZW5xW8CvlXeSSkbZz2zSUPwtYwCZuWgvC7p\nNkEjqh4naSVgQERcSbplsFm748rBe2a+Dns3WF+vaSigS/oBMAEYDawE/FbS94tsmJlZf5dnsy+R\nD727s9wj4lFS0LlJ0lRgIrAq6b7zdcBdwMt1TnEK8Kl87OnAQRXblsidHhE3ke75362Uu/wKagTb\niHgE+DFwu1Ju8Z/lTUeTcp9PlfQoqRdc7zO+BtyZJ6D9pMouNwCDJD2WP8M99c7XwHGrAbcp5Zj/\nA7DY6EdEvEGa4Pgw6QvO5Abr6zWNLv06Ddi4PFSSJxJMiYhemRjX355DN7OW1KdmNBchDyO/HRH/\n1ey2WOc1OuT+EovfKxgKvNjzzTEzM7OuaHSW+5vAI5ImkoaNdgLuk/QLgIg4ut7BZmbW90XEKY3u\nm++R31xl0w4NPjpWqL7eviI0GtD/nH/Kbuv5ppiZWX+Rg2Kfzane19tXhEYfW5tQfq20pvtHImJq\nYa0yMzOzTml0lvttkpbLjx/8HbhA0s86Os7MzMx6R6OT4kblZxS/BPwuIrYkPZhvZmZmfUCjAX2Q\npFVJK+dcV2B7zMysB0jaXdKJNba9XaO8MhHJbZJKRbaxFkmbSNq1F+r5XsXrNSU93APnHCPpXkkP\nSPpMle0XSlq/u/VU02hA/yHpQfp/RMRkSR8DniyiQWZm1n0RcW1EnN7sdnTRJkBhAV3JALq/Yl81\nOwAPRcSmETGpXb0DI+LreWGgHtdQQI+IyyNio4j4Rn7/dER8uYgGmZm1knOOuGX/c4645dlzjrhl\nYf7dE6lT15T0eO5RPyHpj5J2lHSnUtrTLSQdLOmXef+1lFKiPiTptIrzSNIvJU2T9L9A1eVcJe2c\nj/+7pMsrkqpU2/dTkm5XSk96Yx7dRdJhSqlHH1RKo7pMLv9KXg3uQUl3SBpC6kTuq5Q6dd8a9dRK\nu4qkY/M5H5b0bxXXbJqk35FWe/sNMDzX8cd86EBJFyilVb0pL6JW63Mu8XnycrZnkpbPnSJpuKS3\nJf00r5q3deXIh6Rd8jV9UNLNuWyLfK0fkHSXOpHZtNFJcZ+QdHN5OELSRvLSr2ZmdeXgvUQ+9J4I\n6sDHgZ+SUo+uC+xPyop2HEv2PM8CfhURG7L4krB7AZ8E1gcOBD7dvhKlNc6/D+wYEZsBbcCx1Rok\naTBwNrB3RHwKuIi0DCzAVRGxeURsDDwGHJrLfwB8PpfvnvOE/AC4NCI2iYhL61yDdUnJVLYATpY0\nWNKngK8BW5LWaT9M0qZ5/3WAcyNig4j4GvBuruOAiu3nRMQGwBvkjHQ1LPF5ImJKu7a/S0pDe29E\nbBwRf6u4VmNIfxtfzuf4St70OPCZiNg0n+s/6rRhMY0OuV9AWtd2HkB+ZO2rjVZiZraUqpcPvbue\niYiHImIhKY3nzZHW8n6IlNu70jbAxfn17yvKtwMujogFEfESKbFKe1uRAv6dSuucH0T1DHKQvhyM\nJaXZnkL6IrB63jZW0iSlteAPADbI5XcC4yUdBgxs4HNXuj4i5uZUreW0q9sCf46IORHxNnAVUL6X\n/VxE1Fvz/ZkclAHuZ8nrWKnW52lvAXBllfKtgDvK6WAr0syOAi7PHeif1znvEhpdWGaZiLhPWmwp\n4/mNVmJmtpQqKh86LJ5ydGHF+4VU/7+948Qd1QmYGBH7NbjvIxGxdZVt44E9I+JBSQeTMrkREUdI\n2hL4InB/7mE3qtG0q2UdpZBtf76aQ+7U+DxVvFeRh74RPwJujYi9JK1JJxZya7SHPlPS2uQ/CKVZ\nkPUy+ZiZWe28593Nh95Zd7JoVPWAivI7SPeqB+Z73Z+rcuw9wDaSPg4gaYSkT9SoZxowRtLWed/B\nkso9zGWBl/Ow/AdtkLR2RNwbET8AZgAfoePUqfVMAvbM97RHkG4rTKqx77zcnq6o+nk64R5gO0lr\nwWJpZkexKFfKwZ05YaMB/Ujg18C6kl4E/o0OUt+ZmVlh+dA76xjgyDw8vFpF+Z9JTyw9CvwOuLv9\ngRExgxRYLlZKt3o36d71EvL9772BM/IksCksui//78C9pC8Xj1cc9pM8We9hUtrXB0npW9evNymu\nloj4O6n3fF+u78KIeKDG7ucDUysmxXVGrc/TaDtnAIcDV+VrVZ4rcCbwn5IeoPFRdKCD9KmSjomI\nsyRtExF35m87AyJidmcb3x39NX1qRDBr7iwGaRDLDV2u2c0xs+7pUvrUPAHuP0jD7P8HfO/I88Z1\nKx+6WTUdBfQpEbGJpL/n2Y1N0R8D+sJYyNNvPM337/w+o4eN5tRtTmWl4Ss1u1lm1nUtnw/d+reO\nuvOPSXoS+HAeaikTEBGxUXFN699mvTeLEyadwBOzngDg4scu5lubfavJrWrMgoULePP9NxkyYAgj\nh9R83NTMlmKS/gys1a74hIi4sYfr+RrplkGlOyPiyJ6sp07955CeEqh0VkT8tjfq74y6AT0i9pP0\nIdIqcbv3TpNaw8ABA1luyKJh9hWHr1hn775j/sL5PP764/zo7h/xkWU/wklbnsTo4aOb3Swz62Mi\nYq9eque3QNOCZ299cegJHd5wj4hXgI17oS0tZfmhy3PGdmdw4UMXsuqIVdl1rcKXJe4Rs96bxbdv\n+zavzHmFR19/lM0/tDn7rtupOSlmZtYEdQO6pMsiYp88M7LyZruH3Buw8jIrc9IWJ9Hu+f0+bYAG\nMGrIKF6Z8woAyw9bvsktMjOzRnTUQy/ft9itKyeX9CzpecIFwPyIKOVn7S4lrcDzLLBPRMzqyvn7\ng/4UzAFGDx/N2ePOZvwj4/nY8h9jyw9t2ewmmZlZA+rOcu/2yVNAL+Vl+cplZwKvR8TpSqn9VoiI\nE+qdpz/OcjezltO/vp3bUqfuwjKSZkt6q8rPbElvdbHOPYAJ+fUEYM8unsfMzLpI0p7qwbzckkqS\nftFT5+tC/R/kf1e7nOSS/iqp5e8fdjTLvatL731wCuAmSQH8OiLOB1aJiPKysa+QFtM3M7PetSdw\nHWmVuG6LiDZSJramiIhrgWvz23JO8q/n97WWfm0pnVpWrgu2jYgXJa1Myr6z2PJ4ERE52C9B0uGk\nZfFYY42eyGNgZtb7frrvbkusFPedS6/r9kpxkv4ZOBoYQlqC9JvAL4HNSUlFroiIk/O+p5MePZ4P\n3ETKQLY78NmcCvvLEfGPKnUcRvp/eAjwFPAvEfGOpK8AJ5PmR70ZEdtJ2h44LiJ2k7QFKWXrMOBd\n4GsRMa3G5ziYtN76KNKytH+IiFPztqtJa7sPIz37fX4u34V0TQcCMyNih3yeEnAhafnU4Tnv+Nak\n9KaliJgp6UBSitkApkbEvzR+1fu2QgN6RLyYf0/PixBsAbwqadWIeDknA5he49jzSevsUiqVirvR\nb2ZWkBzML2BRCtWPAhf8dN/d6E5Ql7QesC+wTUTMk3QuKUHI/4uI1yUNBG6WtBEp0cdewLq5E7V8\nRLwh6Vrguoi4ok5VV0XEBbnO00g5zM9mUQ7zF2sMZZdzes+XtCMp+NbLLb4FKe3qO8BkSdfnHv8h\n+fMMz+VXkm4VXwBsFxHPVCQ1ASAipkj6ASmAH5XbXr5uG5BSun46B/f+sUBIgxpNztJpOSPPsuXX\nwM7Aw6QhkYPybgcB1xTVBjOzJisqH/oOwKdIQW5Kfv8xYB9JfwceIOXRXh94E3gP+I2kL7Fksph6\nuprDvLM5vSdGxGsR8S5p9GDbXH50TlxyD6mnvg6184g3YhxweXmidieP7fOK7KGvAvw5fzMaBPwp\nIm6QNBm4TNKhwHPAPgW2wcysmYrKhy5gQkSc9EFBSsM5Edg8ImZJGg8My73kLUhBf2/gKFJga8R4\nupbDvLM5vduPwkYewt8R2DoP899GGnq3GgrroUfE0xGxcf7ZICJ+nMtfi4gdImKdiNix1b4hmZlV\nKCof+s3A3nl+UjmX9hrAHOBNSasAX8jbRgKjIuKvwLdZtPJnIznHO5PDvFJnc3rvJGnFPLS+J2kE\nYBQwKwfzdUk9c6idR7wRtwBfkTS6C8f2eYUFdDMzKyYfekQ8SroXfFNOnDURmEsaan8c+BMpKEIK\nytfl/f4GHJvLLwG+mx/tWrtGVZ3JYV6pszm97wOuBKYCV+b75zcAgyQ9BpxOCuT18oh3KCIeAX4M\n3J6P/Vmjx/YHhS4s01O8sIyZ9QFdWlimqFnuraI8O708gc26rujH1szMlmo5eDuAW+Ec0M3MlnK9\nkfNb0ueBM9oVP5PTsI7vqXqWZg7oZmZLud7I+R0RNwI3Fl3P0syT4szMzFqAA7qZmVkLcEA3MzNr\nAQ7oZma2GElr5mfMO9pn/4r3TU2fag7oZmbWNWsCHwT0iGiLiKOb1xxzQDcz62dy7/hxSX+U9Jik\nKyQtI2mHvPLbQ5IukjQ07/+spDNz+X2SPp7Lx0vau+K8b9eoa5Kkv+efT+dNpwOfkTRF0rclbS/p\nunzMipKuljRV0j056xuSTsntuk3S05L8BaAHOaCbmfVPnwTOjYj1gLdIS7qOB/aNiA1JjyV/o2L/\nN3P5L4H/7kQ904GdImIzUsrW8rD6icCkiNgkIn7e7phTgQciYiPSMre/q9i2LvB5UsrUk/M68dYD\nHNDNzPqn5yOivF77H0jZ1J6JiCdy2QRgu4r9L674vXUn6hkMXJBTqF5OSsnakW2B3wNExC3AaEnL\n5W3XR8TcnMJ0Oikzp/UALyxjZtY/tU/E8QYwusH9y6/nkzt2kgYAQ6oc923gVVKWtgGk3OrdMbfi\n9QIch3qMe+hmZv3TGpLKPe39gTZgzfL9ceBfgNsr9t+34vfd+fWzQDmX+e6k3nh7o4CXI2JhPufA\nXF4v/eokcrrVnNd8ZkS81dCnsi7zNyMzs/5pGnCkpIuAR4GjSSlGL5c0CJgMnFex/wo5hepcYL9c\ndgFwTU4legMpn3p75wJXSjqw3T5TgQX52PGk1K1lpwAX5freAQ7q3ke1Rjh9qplZY7qUPrUIktYE\nrouIsQ3u/ywpRenMAptlTeYhdzMzsxbgIXczs34mIp4FGuqd5/3XLKwx1me4h25mZtYCHNDNzMxa\ngAO6mZlZC3BANzMzawEO6GZm/ZCkXSRNk/SUpBOb3R5rPgd0M7N+RtJA4BzgC6S11feT1Mga69bC\nHNDNzPqfLYCnIuLpiHgfuATYo8ltsibzc+hmZgUrlUqDgJWAmW1tbfN74JSrAc9XvH8B2LIHzmv9\nmHvoZmYFKpVKnwZmAM8AM/J7sx7ngG5mVpDcM78eWB4Yln9fXyqVBtY9sGMvAh+peL96LrOlmAO6\nmVlxViIF8krDgDHdPO9kYB1Ja0kaAnwVuLab57R+zvfQzcyKMxN4j8WD+nukIfgui4j5ko4CbiTl\nJ78oIh7pzjmt/3MP3cysIHkC3BeBN0iB/A3gi21tbQu6e+6I+GtEfCIi1o6IH3f3fNb/OaCbmRWo\nra3tLtLQ+1rASvm9WY/zkLuZWcFyj/yVZrfDWlvhPXRJAyU9IOm6/H4tSffm5QovzRM6zMzMrBt6\nY8j9GOCxivdnAD+PiI8Ds4BDe6ENZmZmLa3QgC5pddKEkAvzewHjgCvyLhOAPYtsg5mZ2dKg6B76\nfwPHAwvz+9HAGxFRXvrwBdIShmZmZtYNhQV0SbsB0yPi/i4ef7ikNkltM2Z065FNM7OWI+lZSQ9J\nmiKpLZetKGmipCfz7xVyuST9Is9dmipps4rzHJT3f1LSQRXln8rnfyofq96qw7qmyB76NsDukp4l\nZQIaB5wFLC+pPLu+5nKFEXF+RJQiojRmTHcXVTIza0mfi4hNIqKU358I3BwR6wA35/eQ0qyuk38O\nB34FKTgDJ5MSu2wBnFwO0HmfwyqO26UX67AuKCygR8RJEbF6RKxJWpbwlog4ALgV2DvvdhBwTVFt\nMDPrC0qlkkql0rBSqVR0D3QP0twkWHyO0h7A7yK5h9SxWhX4PDAxIl6PiFnARGCXvG25iLgnIgL4\nXbtzFV2HdUEzFpY5AThW0lOke+q/aUIbzMwKlwP5N4BXgTnAq6VS6Rs9FNgDuEnS/ZIOz2WrRMTL\n+fUrwCr5dbV0q6t1UP5ClfLeqsO6oFcWlomI24Db8uunScMuZmat7gjgv4Bl8vsx+T3kIelu2DYi\nXpS0MjBR0uOVGyMiJEU366irN+qwxnnpVzOzAuRe+KksCuZlywCndreXHhEv5t/TgT+TOkqv5qFs\n8u/pefda6Vbrla9epZxeqsO6wAHdzKwYQ0m3FasZnbd3iaQRkpYtvwZ2Bh4mpVAtzyKvnKN0LXBg\nnom+FfBmHja/EdhZ0gp5otrOwI1521uStsozzw9sd66i67Au8FruZmbFmAu8RvXc56/l7V21CvDn\n/JTXIOBPEXGDpMnAZZIOBZ4D9sn7/xXYFXgKeAf4GkBEvC7pR6T86gA/jIjX8+tvAuOB4cD/5B+A\n03uhDusCpcmFfVupVIq2trZmN8PMlm6dHiLPE+Iq76FDCnbHtbW1dfceutliPORuZlac84DjgBmk\nFTNn5PfnNbNR1prcQzcza0yXJ7HlCXBDgbltbW19/z9d65d8D93MrGA5iL/X7HZYa/OQu5mZWQtw\nQDczM2sBDuhmZmYtwAHdzKwfknSRpOmSHq4oa4n0qbXqsPoc0M3M+qfxLJlutFXSp9aqw+pwQDcz\nK1CpVNqyVCr9sVQqTc6/t+yJ80bEHcDr7YpbJX1qrTqsDgd0M7OClEqlU4BbgK8Cpfz7llxehFZJ\nn1qrDqvDAd3MrAC5J/5d0rKv5f9rB+T33+2pnnotuddbePrUVqijVTigm5kV42hgWI1tw/L2ntYq\n6VNr1WF1OKCbmRXjE9T+P3YAaRJYT2uV9Km16rA6vPSrmVkxngA2o3pQXwg82Z2TS7oY2B5YSdIL\npJnkvZHatJl1WB1OzmJm1phOJWfJ98hvYfHUqWXvAOPa2tru7YmGmYGH3M3MCpGD9U9IwXthLl6Y\n3//Ewdx6mgO6mVlB2traTgHGAZeQhpwvIfXMT2lis6xF+R66mVmBck/8gGa3w1qfe+hmZmYtwAHd\nzMysBTigm5mZtQAHdDOzfqhG+tRTJL0oaUr+2bVi20k5Tek0SZ+vKN8llz0l6cSK8rUk3ZvLL5U0\nJJcPze+fytvX7M06rDYHdDOzgpVKpbVKpdI2pVJprR487XiWTJ8K8POI2CT//BVA0vqkxDAb5GPO\nlTRQ0kDgHFLq0/WB/fK+AGfkc30cmAUcmssPBWbl8p/n/XqlDqvPAd3MrCCl5H7gEeB64JFSqXR/\nqVQqdffcNdKn1rIHcElEzI2IZ0iruW2Rf56KiKcj4n3SY3V75KVYxwFX5OPbp0ktpza9Atgh798b\ndVgdDuhmZgXIQfs20vKvw4FR+fdmwG09EdRrOErS1Dwkv0Iu62xq09HAGxExv135YufK29/M+/dG\nHVaHA7qZWTF+DYyosW0EcF4Bdf4KWBvYBHgZ+GkBdVgf5YBuZtbD8r3y9TrYbf0evqdORLwaEQsi\nYiFwAWm4Gzqf2vQ1YHlJg9qVL3auvH1U3r836rA6HNDNzHreh4H3O9jn/bxfjynnEM/2Asoz4K8F\nvppnj69FSt16H2k52nXybPMhpElt10bK2nUrsHc+vn2a1HJq072BW/L+vVGH1eGlX83Met5LwJAO\n9hmS9+uSGulTt5e0CRDAs8C/AkTEI5IuAx4F5gNHRsSCfJ6jSDnLBwIXRcQjuYoTgEsknQY8APwm\nl/8G+L2kp0iT8r7aW3VYfU6fambWmM6mT72fNAGulvvb2tqKmhhnSyEPuZuZFeNfgTk1ts0BjujF\ntthSoLCALmmYtaFh3AAAB8VJREFUpPskPSjpEUmn5vKqKwOZmbWStjSsuD1wP/Au6dGrd/P77ds8\n7Gg9rLAh97wIwIiIeFvSYOBvwDHAscBVEXGJpPOAByPiV/XO5SF3M+sDurywSZ7N/mHgpba2tmd6\nrklmixQ2KS7PSHw7vx2cf4K0MtD+uXwCcArp2Ukzs5aUg7gDuRWq0HvoeR3fKcB0YCLwD2qvDGRm\nZmZdVGhAzwscbEJaMGALYN1Gj5V0uKQ2SW0zZsworI1mZmatoFdmuUfEG6QFBLam9spA7Y85PyJK\nEVEaM2ZMbzTTzMys3ypylvsYScvn18OBnYDHqL0ykJmZmXVRkSvFrQpMyLlwBwCXRcR1kh6l+spA\nZmZm1kVFznKfCmxapfxpFiUMMDMzsx7gleLMzMxagAO6mZlZC3BANzMzawEO6GZmZi3AAd3MzKwF\nOKCbmZm1AAd0MzOzFuCAbmZm1gIc0M3MzFqAA7qZmVkLcEA3MzNrAQ7oZmZmLcAB3czMrAU4oJuZ\nmbUAB3QzM7MW4IBuZmbWAhzQzczMWoADupmZWQtwQDczM2sBDuhmZmYtwAHdzMysBTigm5mZtQAH\ndDMzsxbggG5mZtYCHNDNzMxagAO6mZlZC3BANzMzawEO6GZmZi3AAd3MzKwFOKCbmZm1AAd0MzOz\nFuCAbmZm1gIc0M3MzFqAA7qZmVkLKCygS/qIpFslPSrpEUnH5PIVJU2U9GT+vUJRbTAzM1taFNlD\nnw98JyLWB7YCjpS0PnAicHNErAPcnN+bmZlZNxQW0CPi5Yj4e349G3gMWA3YA5iQd5sA7FlUG8zM\nzJYWvXIPXdKawKbAvcAqEfFy3vQKsEpvtMHMzKyVDSq6AkkjgSuBf4uItyR9sC0iQlLUOO5w4PD8\n9m1J0zqoahTwZieb18gx9fapta19ebX9Ksvab18JmNlBuzqrL1+famX13hdxfWq1qyeOaZW/oVrt\n6O7+/eVv6IaI2KWTx5j1nogo7AcYDNwIHFtRNg1YNb9eFZjWQ3WdX8Qx9fapta19ebX9Ksuq7N9W\nwL9Fn70+jVyzdterx69PX79GfeFvqCvXaGn7G/KPf5r5U+QsdwG/AR6LiJ9VbLoWOCi/Pgi4poeq\n/EtBx9Tbp9a29uXV9vtLB9t7Wl++PtXKGrmGPa0vX6O+8DfUlXqWtr8hs6ZRRNUR7+6fWNoWmAQ8\nBCzMxd8j3Ue/DFgDeA7YJyJeL6QR/ZSktogoNbsdfZWvT8d8jerz9bFWVNg99Ij4G6Aam3coqt4W\ncX6zG9DH+fp0zNeoPl8fazmF9dDNzMys93jpVzMzsxbggG5mZtYCHNDNzMxagAN6HydpPUnnSbpC\n0jea3Z6+StIISW2Sdmt2W/oaSdtLmpT/jrZvdnv6IkkDJP1Y0tmSDur4CLO+xwG9CSRdJGm6pIfb\nle8iaZqkpySdCBARj0XEEcA+wDbNaG8zdOYaZSeQHodcKnTy+gTwNjAMeKG329osnbxGewCrA/NY\niq6RtRYH9OYYDyy2hKSkgcA5wBeA9YH9cnY6JO0OXA/8tXeb2VTjafAaSdoJeBSY3tuNbKLxNP43\nNCkivkD60nNqL7ezmcbT+DX6JHBXRBwLeCTM+iUH9CaIiDuA9ovpbAE8FRFPR8T7wCWkXgMRcW3+\nD/mA3m1p83TyGm1PStG7P3CYpJb/u+7M9YmI8sJOs4ChvdjMpurk39ALpOsDsKD3WmnWcwpPzmIN\nWw14vuL9C8CW+Z7nl0j/ES9NPfRqql6jiDgKQNLBwMyKALa0qfU39CXg88DywC+b0bA+pOo1As4C\nzpb0GeCOZjTMrLsc0Pu4iLgNuK3JzegXImJ8s9vQF0XEVcBVzW5HXxYR7wCHNrsdZt3R8kOT/ciL\nwEcq3q+ey2wRX6P6fH065mtkLcsBve+YDKwjaS1JQ4CvkjLT2SK+RvX5+nTM18halgN6E0i6GLgb\n+KSkFyQdGhHzgaNI+eMfAy6LiEea2c5m8jWqz9enY75GtrRxchYzM7MW4B66mZlZC3BANzMzawEO\n6GZmZi3AAd3MzKwFOKCbmZm1AAd0MzOzFuCAbn2epLua3QYzs77Oz6GbmZm1APfQrc+T9Hb+vb2k\n2yRdIelxSX+UpLxtc0l3SXpQ0n2SlpU0TNJvJT0k6QFJn8v7HizpakkTJT0r6ShJx+Z97pG0Yt5v\nbUk3SLpf0iRJ6zbvKpiZ1edsa9bfbApsALwE3AlsI+k+4FJg34iYLGk54F3gGCAiYsMcjG+S9Il8\nnrH5XMOAp4ATImJTST8HDgT+GzgfOCIinpS0JXAuMK7XPqmZWSc4oFt/c19EvAAgaQqwJvAm8HJE\nTAaIiLfy9m2Bs3PZ45KeA8oB/daImA3MlvQm8Jdc/hCwkaSRwKeBy/MgAKSc9GZmfZIDuvU3cyte\nL6Drf8OV51lY8X5hPucA4I2I2KSL5zcz61W+h26tYBqwqqTNAfL980HAJOCAXPYJYI28b4dyL/8Z\nSV/Jx0vSxkU03sysJzigW78XEe8D+wJnS3oQmEi6N34uMEDSQ6R77AdHxNzaZ1rCAcCh+ZyPAHv0\nbMvNzHqOH1szMzNrAe6hm5mZtQAHdDMzsxbggG5mZtYCHNDNzMxagAO6mZlZC3BANzMzawEO6GZm\nZi3AAd3MzKwF/H9QoQy+LeLvHAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_5", + "outputarea_id1", + "user_output" + ] + } + }, + { + "output_type": "display_data", + "data": { + "application/javascript": [ + "window[\"3d921986-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3d28ab18-e908-11e8-b3f9-0242ac1c0002\"]);\n", + "//# sourceURL=js_340edfc2ec" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [ + "id1_content_5", + "outputarea_id1" + ] + } + } + ] + }, + { + "metadata": { + "id": "krnqBnTLsN1T", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "" + ] + } + ] +} \ No newline at end of file From 281fcd477a774bea103ec5a814a828364cf9e482 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Thu, 15 Nov 2018 19:12:10 -0500 Subject: [PATCH 06/12] Created using Colaboratory --- .../LS_DS_124_Sequence_your_narrative.ipynb | 29909 +++++++++++++++- 1 file changed, 29534 insertions(+), 375 deletions(-) diff --git a/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb b/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb index ef7dd56..36665f6 100644 --- a/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb +++ b/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb @@ -65,38 +65,31 @@ "metadata": { "id": "xOCwT0RNXE24", "colab_type": "code", + "outputId": "5703301f-3545-4b6a-9866-8b3854d659ed", "colab": { "base_uri": "https://localhost:8080/", - "height": 322 - }, - "outputId": "3e29c6e7-6256-4b63-80a3-8b4f98548023" + "height": 185 + } }, "cell_type": "code", "source": [ - "!pip install --upgrade seaborn" + "!pip install --upgrade seaborn #restart runtime after running this command" ], - "execution_count": 1, + "execution_count": 32, "outputs": [ { "output_type": "stream", "text": [ - "Collecting seaborn\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/a8/76/220ba4420459d9c4c9c9587c6ce607bf56c25b3d3d2de62056efe482dadc/seaborn-0.9.0-py3-none-any.whl (208kB)\n", - "\u001b[K 100% |████████████████████████████████| 215kB 24.7MB/s \n", - "\u001b[?25hRequirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", - "Requirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", + "Requirement already up-to-date: seaborn in /usr/local/lib/python3.6/dist-packages (0.9.0)\n", "Requirement already satisfied, skipping upgrade: matplotlib>=1.4.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (2.1.2)\n", + "Requirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", + "Requirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", "Requirement already satisfied, skipping upgrade: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.1.0)\n", - "Requirement already satisfied, skipping upgrade: pytz>=2011k in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2018.7)\n", - "Requirement already satisfied, skipping upgrade: python-dateutil>=2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2.5.3)\n", + "Requirement already satisfied, skipping upgrade: pytz in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2018.7)\n", "Requirement already satisfied, skipping upgrade: six>=1.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (1.11.0)\n", - "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n", "Requirement already satisfied, skipping upgrade: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.3.0)\n", - "Installing collected packages: seaborn\n", - " Found existing installation: seaborn 0.7.1\n", - " Uninstalling seaborn-0.7.1:\n", - " Successfully uninstalled seaborn-0.7.1\n", - "Successfully installed seaborn-0.9.0\n" + "Requirement already satisfied, skipping upgrade: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.5.3)\n", + "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n" ], "name": "stdout" } @@ -139,17 +132,17 @@ "metadata": { "id": "RhU2Y1s7Y4vN", "colab_type": "code", + "outputId": "835809de-0619-4655-9f16-6ff795ae266f", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "08abff9c-340e-440a-a409-6409e5cccb3e" + } }, "cell_type": "code", "source": [ "incomes.shape, life_exp.shape, population.shape, entities.shape, concepts.shape" ], - "execution_count": 4, + "execution_count": 5, "outputs": [ { "output_type": "execute_result", @@ -161,7 +154,7 @@ "metadata": { "tags": [] }, - "execution_count": 4 + "execution_count": 5 } ] }, @@ -169,18 +162,18 @@ "metadata": { "id": "Qs-LXzp-ZtNr", "colab_type": "code", + "outputId": "e68ca8fa-5706-4de5-965a-60de951eef43", "colab": { "base_uri": "https://localhost:8080/", "height": 266 - }, - "outputId": "c472d6c7-1e8f-4940-b4a7-b0294210f1e7" + } }, "cell_type": "code", "source": [ "pd.options.display.max_columns = None\n", "entities.head()" ], - "execution_count": 5, + "execution_count": 6, "outputs": [ { "output_type": "execute_result", @@ -471,7 +464,7 @@ "metadata": { "tags": [] }, - "execution_count": 5 + "execution_count": 6 } ] }, @@ -479,17 +472,17 @@ "metadata": { "id": "3G13FulWaqIO", "colab_type": "code", + "outputId": "4f6551de-cfc9-47a3-9ca0-72cd231739c2", "colab": { "base_uri": "https://localhost:8080/", "height": 195 - }, - "outputId": "9ec6bca5-1d7a-42d2-eba9-ece3017eca4c" + } }, "cell_type": "code", "source": [ "incomes.head()" ], - "execution_count": 8, + "execution_count": 7, "outputs": [ { "output_type": "execute_result", @@ -565,7 +558,7 @@ "metadata": { "tags": [] }, - "execution_count": 8 + "execution_count": 7 } ] }, @@ -573,17 +566,17 @@ "metadata": { "id": "IaB-22CXaAao", "colab_type": "code", + "outputId": "f4d2b580-376c-481d-8f1b-ea528b652993", "colab": { "base_uri": "https://localhost:8080/", "height": 551 - }, - "outputId": "ec9ba90d-198d-4110-cd5d-517311dbc06b" + } }, "cell_type": "code", "source": [ "concepts.head() # data dictionary" ], - "execution_count": 6, + "execution_count": 8, "outputs": [ { "output_type": "execute_result", @@ -779,7 +772,7 @@ "metadata": { "tags": [] }, - "execution_count": 6 + "execution_count": 8 } ] }, @@ -800,17 +793,17 @@ "metadata": { "id": "_PUnmOElbc9L", "colab_type": "code", + "outputId": "4c92f900-dc83-4dca-9b4a-730205494abf", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "79097abf-8a46-4f50-9813-ba9a9e9161f8" + } }, "cell_type": "code", "source": [ "incomes.shape, life_exp.shape, df1.shape" ], - "execution_count": 12, + "execution_count": 10, "outputs": [ { "output_type": "execute_result", @@ -822,7 +815,7 @@ "metadata": { "tags": [] }, - "execution_count": 12 + "execution_count": 10 } ] }, @@ -830,17 +823,17 @@ "metadata": { "id": "huCO-0cLbjIp", "colab_type": "code", + "outputId": "940fbebe-f6f3-49ea-eec3-318bb045fa3e", "colab": { "base_uri": "https://localhost:8080/", - "height": 215 - }, - "outputId": "9e066052-28a0-484d-c0a3-bada93cacee9" + "height": 195 + } }, "cell_type": "code", "source": [ "df1.head()" ], - "execution_count": 13, + "execution_count": 11, "outputs": [ { "output_type": "execute_result", @@ -929,7 +922,7 @@ "metadata": { "tags": [] }, - "execution_count": 13 + "execution_count": 11 } ] }, @@ -937,17 +930,17 @@ "metadata": { "id": "qeWegGZNboI2", "colab_type": "code", + "outputId": "aaf3ff6a-6334-42a2-fa15-a4bc1a0d6452", "colab": { "base_uri": "https://localhost:8080/", "height": 266 - }, - "outputId": "908c87cf-1a61-4ff6-bfcb-0ed34b580dd8" + } }, "cell_type": "code", "source": [ "entities.head() # want real name and geographic region" ], - "execution_count": 14, + "execution_count": 12, "outputs": [ { "output_type": "execute_result", @@ -1238,7 +1231,7 @@ "metadata": { "tags": [] }, - "execution_count": 14 + "execution_count": 12 } ] }, @@ -1246,17 +1239,17 @@ "metadata": { "id": "MVbiK6kJcdq0", "colab_type": "code", + "outputId": "f3b6b059-e152-4b29-ba1a-d633a620b392", "colab": { "base_uri": "https://localhost:8080/", "height": 101 - }, - "outputId": "b9792081-3db9-4db4-9d70-ec2366d5e024" + } }, "cell_type": "code", "source": [ "entities.world_4region.value_counts()" ], - "execution_count": 17, + "execution_count": 13, "outputs": [ { "output_type": "execute_result", @@ -1272,7 +1265,7 @@ "metadata": { "tags": [] }, - "execution_count": 17 + "execution_count": 13 } ] }, @@ -1280,25 +1273,25 @@ "metadata": { "id": "PP7Db1NqcWLl", "colab_type": "code", + "outputId": "a96f1cb6-8084-4862-d6b6-53ff11f6e923", "colab": { "base_uri": "https://localhost:8080/", "height": 134 - }, - "outputId": "f8d687b3-f5ec-472b-fad6-a0483e25d35f" + } }, "cell_type": "code", "source": [ "entities.world_6region.value_counts()" ], - "execution_count": 18, + "execution_count": 14, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "europe_central_asia 77\n", - "sub_saharan_africa 53\n", "america 53\n", + "sub_saharan_africa 53\n", "east_asia_pacific 46\n", "middle_east_north_africa 23\n", "south_asia 8\n", @@ -1308,7 +1301,7 @@ "metadata": { "tags": [] }, - "execution_count": 18 + "execution_count": 14 } ] }, @@ -1316,18 +1309,18 @@ "metadata": { "id": "DHH06jFqcvNK", "colab_type": "code", + "outputId": "3497a69a-a263-4cc6-a29b-2f7dc334b9c5", "colab": { "base_uri": "https://localhost:8080/", "height": 195 - }, - "outputId": "82b3d909-82ce-40a6-d676-e1c7840207bd" + } }, "cell_type": "code", "source": [ "variables = ['country', 'name', 'world_6region']\n", "entities[variables].head() # show variables, very cool filter process" ], - "execution_count": 19, + "execution_count": 15, "outputs": [ { "output_type": "execute_result", @@ -1403,7 +1396,7 @@ "metadata": { "tags": [] }, - "execution_count": 19 + "execution_count": 15 } ] }, @@ -1411,11 +1404,11 @@ "metadata": { "id": "EcN86p-ldBKV", "colab_type": "code", + "outputId": "cabf62c8-e030-4258-a74b-7df488d8653b", "colab": { "base_uri": "https://localhost:8080/", - "height": 215 - }, - "outputId": "028782f5-0699-4ee1-eb1e-4fea058600a9" + "height": 195 + } }, "cell_type": "code", "source": [ @@ -1423,7 +1416,7 @@ "pd.merge(df1, entities[variables], how='inner', left_on='geo', \n", " right_on='country').head()" ], - "execution_count": 22, + "execution_count": 16, "outputs": [ { "output_type": "execute_result", @@ -1451,7 +1444,6 @@ " time\n", " income_per_person_gdppercapita_ppp_inflation_adjusted\n", " life_expectancy_years\n", - " population_total\n", " country\n", " name\n", " world_6region\n", @@ -1464,7 +1456,6 @@ " 1800\n", " 833\n", " 34.42\n", - " 19286\n", " abw\n", " Aruba\n", " america\n", @@ -1475,7 +1466,6 @@ " 1801\n", " 833\n", " 34.42\n", - " 19286\n", " abw\n", " Aruba\n", " america\n", @@ -1486,7 +1476,6 @@ " 1802\n", " 833\n", " 34.42\n", - " 19286\n", " abw\n", " Aruba\n", " america\n", @@ -1497,7 +1486,6 @@ " 1803\n", " 833\n", " 34.42\n", - " 19286\n", " abw\n", " Aruba\n", " america\n", @@ -1508,7 +1496,6 @@ " 1804\n", " 833\n", " 34.42\n", - " 19286\n", " abw\n", " Aruba\n", " america\n", @@ -1525,18 +1512,18 @@ "3 abw 1803 833 \n", "4 abw 1804 833 \n", "\n", - " life_expectancy_years population_total country name world_6region \n", - "0 34.42 19286 abw Aruba america \n", - "1 34.42 19286 abw Aruba america \n", - "2 34.42 19286 abw Aruba america \n", - "3 34.42 19286 abw Aruba america \n", - "4 34.42 19286 abw Aruba america " + " life_expectancy_years country name world_6region \n", + "0 34.42 abw Aruba america \n", + "1 34.42 abw Aruba america \n", + "2 34.42 abw Aruba america \n", + "3 34.42 abw Aruba america \n", + "4 34.42 abw Aruba america " ] }, "metadata": { "tags": [] }, - "execution_count": 22 + "execution_count": 16 } ] }, @@ -1557,11 +1544,11 @@ "metadata": { "id": "IUF3eAIRdkth", "colab_type": "code", + "outputId": "e6baac1e-ac96-48f4-a0f3-533a607ad5e3", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "079aec53-0192-4968-abed-3c011d4155ba" + } }, "cell_type": "code", "source": [ @@ -1582,7 +1569,7 @@ "\n", "df1.shape" ], - "execution_count": 24, + "execution_count": 18, "outputs": [ { "output_type": "execute_result", @@ -1594,7 +1581,7 @@ "metadata": { "tags": [] }, - "execution_count": 24 + "execution_count": 18 } ] }, @@ -1602,17 +1589,17 @@ "metadata": { "id": "4c5yn5agelG9", "colab_type": "code", + "outputId": "d788aff4-e3d8-4e4c-9f07-ae1e8defc3dd", "colab": { "base_uri": "https://localhost:8080/", "height": 195 - }, - "outputId": "6384ca6b-7243-4062-9abe-faa51ce4667e" + } }, "cell_type": "code", "source": [ "df1.head()" ], - "execution_count": 25, + "execution_count": 19, "outputs": [ { "output_type": "execute_result", @@ -1706,7 +1693,7 @@ "metadata": { "tags": [] }, - "execution_count": 25 + "execution_count": 19 } ] }, @@ -1714,17 +1701,17 @@ "metadata": { "id": "dbLg4S9xeoy3", "colab_type": "code", + "outputId": "405cfe5c-a36d-45ae-9efa-1d105b7532ff", "colab": { "base_uri": "https://localhost:8080/", "height": 166 - }, - "outputId": "875a5523-857d-43d6-e4b2-6a26b101a05c" + } }, "cell_type": "code", "source": [ "df1.describe(exclude=[np.number])" ], - "execution_count": 27, + "execution_count": 20, "outputs": [ { "output_type": "execute_result", @@ -1765,7 +1752,7 @@ " \n", " \n", " top\n", - " Italy\n", + " Sweden\n", " europe_central_asia\n", " \n", " \n", @@ -1781,14 +1768,14 @@ " country region\n", "count 41790 41790\n", "unique 194 6\n", - "top Italy europe_central_asia\n", + "top Sweden europe_central_asia\n", "freq 219 10991" ] }, "metadata": { "tags": [] }, - "execution_count": 27 + "execution_count": 20 } ] }, @@ -1796,17 +1783,17 @@ "metadata": { "id": "qF650OSWe7uc", "colab_type": "code", + "outputId": "acd86d88-4140-4411-a009-bb481e2617bf", "colab": { "base_uri": "https://localhost:8080/", "height": 689 - }, - "outputId": "746d5e3b-459e-4338-f3de-0581a3b84240" + } }, "cell_type": "code", "source": [ "df1.country.unique()" ], - "execution_count": 29, + "execution_count": 21, "outputs": [ { "output_type": "execute_result", @@ -1857,7 +1844,7 @@ "metadata": { "tags": [] }, - "execution_count": 29 + "execution_count": 21 } ] }, @@ -1865,17 +1852,17 @@ "metadata": { "id": "P9A0mufcfkWd", "colab_type": "code", + "outputId": "9b598dfc-cc2d-40cc-fe42-7abedd2a7d41", "colab": { "base_uri": "https://localhost:8080/", "height": 1058 - }, - "outputId": "73e8b390-829e-4e48-acdb-a4c667a159ab" + } }, "cell_type": "code", "source": [ "df1.country == 'United States'" ], - "execution_count": 31, + "execution_count": 22, "outputs": [ { "output_type": "execute_result", @@ -1948,7 +1935,7 @@ "metadata": { "tags": [] }, - "execution_count": 31 + "execution_count": 22 } ] }, @@ -1956,17 +1943,17 @@ "metadata": { "id": "7Yuat41ufr0r", "colab_type": "code", + "outputId": "bd202f0b-1068-4e15-a9c4-6a792b85cd93", "colab": { "base_uri": "https://localhost:8080/", "height": 1882 - }, - "outputId": "4e7849d2-7d04-404d-e27c-98039d7c8ee8" + } }, "cell_type": "code", "source": [ "df1[df1.country == 'United States'] # boolean indexing, aka return true" ], - "execution_count": 32, + "execution_count": 23, "outputs": [ { "output_type": "execute_result", @@ -2623,7 +2610,7 @@ "metadata": { "tags": [] }, - "execution_count": 32 + "execution_count": 23 } ] }, @@ -2631,18 +2618,18 @@ "metadata": { "id": "gspJjSV2fx0H", "colab_type": "code", + "outputId": "72a9d077-c51c-4f60-e4cd-caa04df8e473", "colab": { "base_uri": "https://localhost:8080/", "height": 136 - }, - "outputId": "74f8fa04-e9a9-4972-fcf6-42441feeda55" + } }, "cell_type": "code", "source": [ "usa = df1[df1.country=='United States']\n", "usa[usa.year.isin([1818, 1918, 2018])]" ], - "execution_count": 34, + "execution_count": 24, "outputs": [ { "output_type": "execute_result", @@ -2716,7 +2703,7 @@ "metadata": { "tags": [] }, - "execution_count": 34 + "execution_count": 24 } ] }, @@ -2724,18 +2711,18 @@ "metadata": { "id": "SDmbtDpBf77p", "colab_type": "code", + "outputId": "fa3ac579-68df-42af-9075-f64c89fb28bb", "colab": { "base_uri": "https://localhost:8080/", "height": 136 - }, - "outputId": "29c32379-e761-42cb-8d10-cf9bdfa6e2dd" + } }, "cell_type": "code", "source": [ "china = df1[df1.country=='China']\n", "china[china.year.isin([1818,1918,2018])]" ], - "execution_count": 36, + "execution_count": 25, "outputs": [ { "output_type": "execute_result", @@ -2809,7 +2796,7 @@ "metadata": { "tags": [] }, - "execution_count": 36 + "execution_count": 25 } ] }, @@ -2830,18 +2817,18 @@ "metadata": { "id": "7_pJr5BcgVwU", "colab_type": "code", + "outputId": "12a3a27d-4861-4945-d624-6b8239a7c050", "colab": { "base_uri": "https://localhost:8080/", - "height": 360 - }, - "outputId": "caeb7a2e-5063-4bce-ee7a-2da670814d96" + "height": 377 + } }, "cell_type": "code", "source": [ "print(this_year.shape)\n", "this_year.sample(10)" ], - "execution_count": 39, + "execution_count": 27, "outputs": [ { "output_type": "stream", @@ -2882,117 +2869,129 @@ " \n", " \n", " \n", - " 37192\n", + " 27556\n", " 2018\n", - " 17856\n", - " 70.48\n", - " 5851466\n", - " Turkmenistan\n", - " europe_central_asia\n", + " 5569\n", + " 66.14\n", + " 195875237\n", + " Nigeria\n", + " sub_saharan_africa\n", " \n", " \n", - " 2455\n", + " 13061\n", " 2018\n", - " 16552\n", - " 72.30\n", - " 9923914\n", - " Azerbaijan\n", - " europe_central_asia\n", + " 3409\n", + " 65.80\n", + " 106227\n", + " Micronesia, Fed. Sts.\n", + " east_asia_pacific\n", " \n", " \n", - " 38287\n", + " 2674\n", " 2018\n", - " 24881\n", - " 79.61\n", - " 81916871\n", - " Turkey\n", - " europe_central_asia\n", + " 691\n", + " 61.14\n", + " 11216450\n", + " Burundi\n", + " sub_saharan_africa\n", " \n", " \n", - " 23786\n", + " 24928\n", " 2018\n", - " 5330\n", - " 72.41\n", - " 4041065\n", - " Moldova\n", - " europe_central_asia\n", + " 2021\n", + " 62.91\n", + " 19107706\n", + " Mali\n", + " sub_saharan_africa\n", " \n", " \n", - " 218\n", + " 3769\n", " 2018\n", - " 39219\n", - " 76.14\n", - " 105670\n", - " Aruba\n", - " america\n", + " 18853\n", + " 75.32\n", + " 7036848\n", + " Bulgaria\n", + " europe_central_asia\n", " \n", " \n", - " 13280\n", + " 27337\n", " 2018\n", - " 17463\n", - " 67.33\n", - " 2067561\n", - " Gabon\n", + " 949\n", + " 62.45\n", + " 22311375\n", + " Niger\n", " sub_saharan_africa\n", " \n", " \n", - " 8634\n", + " 18092\n", " 2018\n", - " 1439\n", - " 68.00\n", - " 832347\n", - " Comoros\n", - " sub_saharan_africa\n", + " 15867\n", + " 68.02\n", + " 39339753\n", + " Iraq\n", + " middle_east_north_africa\n", " \n", " \n", - " 32812\n", + " 6882\n", " 2018\n", - " 2573\n", - " 66.85\n", - " 16294270\n", - " Senegal\n", - " sub_saharan_africa\n", + " 57133\n", + " 83.45\n", + " 8544034\n", + " Switzerland\n", + " europe_central_asia\n", " \n", " \n", - " 16997\n", + " 14156\n", " 2018\n", - " 26936\n", - " 75.90\n", - " 9688847\n", - " Hungary\n", - " europe_central_asia\n", + " 1282\n", + " 61.90\n", + " 13052608\n", + " Guinea\n", + " sub_saharan_africa\n", " \n", " \n", - " 34783\n", + " 2893\n", " 2018\n", - " 13150\n", - " 71.62\n", - " 568301\n", - " Suriname\n", - " america\n", + " 42760\n", + " 81.23\n", + " 11498519\n", + " Belgium\n", + " europe_central_asia\n", " \n", " \n", "\n", "" ], "text/plain": [ - " year income lifespan population country region\n", - "37192 2018 17856 70.48 5851466 Turkmenistan europe_central_asia\n", - "2455 2018 16552 72.30 9923914 Azerbaijan europe_central_asia\n", - "38287 2018 24881 79.61 81916871 Turkey europe_central_asia\n", - "23786 2018 5330 72.41 4041065 Moldova europe_central_asia\n", - "218 2018 39219 76.14 105670 Aruba america\n", - "13280 2018 17463 67.33 2067561 Gabon sub_saharan_africa\n", - "8634 2018 1439 68.00 832347 Comoros sub_saharan_africa\n", - "32812 2018 2573 66.85 16294270 Senegal sub_saharan_africa\n", - "16997 2018 26936 75.90 9688847 Hungary europe_central_asia\n", - "34783 2018 13150 71.62 568301 Suriname america" + " year income lifespan population country \\\n", + "27556 2018 5569 66.14 195875237 Nigeria \n", + "13061 2018 3409 65.80 106227 Micronesia, Fed. Sts. \n", + "2674 2018 691 61.14 11216450 Burundi \n", + "24928 2018 2021 62.91 19107706 Mali \n", + "3769 2018 18853 75.32 7036848 Bulgaria \n", + "27337 2018 949 62.45 22311375 Niger \n", + "18092 2018 15867 68.02 39339753 Iraq \n", + "6882 2018 57133 83.45 8544034 Switzerland \n", + "14156 2018 1282 61.90 13052608 Guinea \n", + "2893 2018 42760 81.23 11498519 Belgium \n", + "\n", + " region \n", + "27556 sub_saharan_africa \n", + "13061 east_asia_pacific \n", + "2674 sub_saharan_africa \n", + "24928 sub_saharan_africa \n", + "3769 europe_central_asia \n", + "27337 sub_saharan_africa \n", + "18092 middle_east_north_africa \n", + "6882 europe_central_asia \n", + "14156 sub_saharan_africa \n", + "2893 europe_central_asia " ] }, "metadata": { "tags": [] }, - "execution_count": 39 + "execution_count": 27 } ] }, @@ -3013,25 +3012,25 @@ "metadata": { "id": "dbn1x_95g4zh", "colab_type": "code", + "outputId": "78d8a051-4da4-4de7-8a6b-cc10109c3d7a", "colab": { "base_uri": "https://localhost:8080/", "height": 369 - }, - "outputId": "a0bc78fc-134e-48ca-ce93-daf6d71973ba" + } }, "cell_type": "code", "source": [ "sns.relplot(x='income', y='lifespan', hue='region', size='population', \n", " sizes=(5, 200), data=this_year);" ], - "execution_count": 46, + "execution_count": 29, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFgCAYAAABNIYvfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4HNXVwOHf2SrtqsvCDdwwxhgb\nDBjTCR0SeichoeNAIHwhhHQIJBAIJYQQIPSSECD0FnoP1QZXMCUYG3erd2nb+f6Yka2yklfSriRL\n530eHuQpd+4sRmfvnTvniKpijDHGmE2bp787YIwxxpjes4BujDHGDAIW0I0xxphBwAK6McYYMwhY\nQDfGGGMGAQvoxhhjzCBgAd0YY4wZBCygG2OMMYOABXRjjDFmEPD1dwdSccghh+gLL7zQ390wxgxt\n0t8dMKYrm8QIvaysrL+7YIwxxgxom0RAN8YYY0zXLKAbY4wxg0BGA7qIXCgin4jIIhF5UESyRORe\nEflaROa5/0zPZB+MMcaYoSBji+JEZDRwATBFVRtF5N/ASe7ui1X10Uxd2xhjjBlqMj3l7gOyRcQH\nhIBVGb6eMcYYMyRlLKCr6krgOuAbYDVQraovubuvFJEFInKDiASTnS8is0RkjojMKS0tzVQ3jTHG\nmEEhYwFdRAqBI4HxwCggLCLfB34FTAZ2BoqAXyQ7X1VvV9UZqjqjpKQkU900xhhjBoVMTrkfAHyt\nqqWqGgUeB3ZX1dXqaAbuAWZmsA/GGGPMkJDJgP4NsKuIhEREgP2BxSIyEsDddhSwKIN9MMYYY4aE\njK1yV9UPRORR4GMgBswFbgeeF5ESnDSK84BzMtUH03uaSFBfXUWkoYFAKEROYVF/d8kYY0wSoqr9\n3YeNmjFjhs6ZM6e/uzEkVa9bywO/vpDG2hpyh5XwvT9cR05RcX93y5j+YLnczYBmmeJMl7788D0a\na2sAqC0rZfX/vujnHg1diXic+soKYpHm/u6KMWYAsoBuulS8+RZt/lwwfEQ/9cQ0VFfxr0t+RtXa\nNf3dFWPMALRJlE81/WfExEkc9MMLWDJ3NlP22pfcYfYKYX8Rj4eRW00mkJXd310xxgxA9gzdbJSq\nEo9G8AWS5gDqF7FolJWLF9FQU82EnWYSzA71d5f6RCwSwRcI9Hc3hip7hm4GNBuhm40SkQEVzAHi\n0SgLXnmB6tK1jJ22AwyRQasFc2NMZyygm01SMBRi/zPPRVXxx2LEysrwDRvW390yxph+Y4vihrhE\nczOJaLS/u9EjofwCgvEEy888i1W//BXxmpr+7pIxxvQbG6EPYbHyctZdfz3+zTen8LvfxVdY2N9d\n6jbJymLYuefgyc1FggPrscBg0FhbQ6SxkWA4TFY4p7+7Y4zpgo3Qh7DGRZ9Q/fgTlP31JhJ1df3d\nnR7xhsPkHXwwObvvjscCeto1VFdz54/PJNLY2N9dMcZshI3Qh7CsyZPJ2m47/KNG4gkNjVXipntC\n+fmcddNdBLKHyKpDYzZh9traEBerqEC8Xrz5+elvOxKhfOVymurqGD5hS5uyNZs6e23NDGg25T7E\n+YqKwO8n0dx5OtFEQwOxqqput91cX8e/L/8Vj17xGyKNDb3ppjHGmI2wKfchLrpuHWuv/CP+0aMp\nPvusDgvjYpWVlN9xJ40LFjDyD38gOH5cym37gkH2P/NcakrX4Q9kofE48cpKvPn5iN+f3hsxxpgh\nzkboQ1z1U09T++KLVNx9N7HS0g7749XVVNx9N41z5lB6/fUkmppSbjsYCjNlr33Z5egTyM7LI1ZW\nxrJTTyNWXp7OWzDGGIMF9CEnHk9QuaaeilX1xKNxwrvvhgQC+DbbLOlra55wGN/IkQDkHHBAj0bW\nIu6jx0CA0Tf8mYH2KFJjMaJr1xIrK+vvrgx4zme1jlhFRX93xRjTjgX0ISbSGOPV+xbz4p2LaG6M\nE9xyS7Z8+SXGP/Yo3iSZ1vwlJYz798NMfO1VcvffD/F6u2w/Gk90uk/icZbP+iFr/3Q18fr6Xt9L\nusQqK1l6/PGU3vhXNB7v7+4MaPHKSr4+9ljqXn+jv7tijGnHVrkPMapKQ3UEVQjlB/B40jdaXlvT\nxNXPf8bxMzZnpzGFBP1tg3+8upqqJ58kOHEioZkz8QyQ5+iJhgYiS5fhLcjHP2pUf3dnQEs0NBBd\nswZvfj6+4uL+7k5fG1hTS8a0YwHdpEzjcSJLl6HNTQS23LJDIpd73vmay5/5lPHDwvz7h7tRktsx\n0YuqbpiCN2bTYn9xzYBmq9xNyhKNjay79lpiZaVscdvtHQL6IVNH8MHXFZwwYwtyA8mf5ogIGosR\nWbGCeHk5wUmT8Obm9kX3jTFmULMRulmvuaGBWKSZYCiMLxAgXl+PeL14srLWHxMrK3MqnJWUJG2j\nMRLD21BP2XXXMuzcHxEY3XEKO1ZezvKzZ9H06adMfPMN/MOHZ+yejEkjG6GbAc0WxZn1qtet4c4f\nn0VjbQ3x2lrKbv07ta+/3uYY37BhnQZzgOyAD2mop/qpp4muWJH0GG9eHiOvvorNb/s7Hkspaowx\naWFT7ma9UH4BM488Dq/PByL4NyvBV1DQ7Xa8RUVMfPWVNiP71sTvJ2vSJLImTeptl9MuEY0OmMV6\nxhjTHTblnkFVDRGaogkKQ/4OK74HquaGeqLNzQSys/H7/CCy0VfVBotYWRnrrruOkgsvtMcAJhmb\ncjcDmk25Z9DH31Sx9zWvU9kQSUt7sYoKKv/9b6Jr167fpokE0XXrkmZ5667Gmmqe/9v13H7uaXyz\ncB7i87UJ5onmZmLl5SQaNp6XPVZaSuXDD9O4YCHxTaQ0q8bjNMyendL9GWPMQGMBPYO2HZXHlUdP\nxe9Lz8ecqKtnzaW/o+7V19Zvi5WXs/TEk1j1q18Tr6npVfvxeJyl8z9GNcGXH75HvFWSlURTE/Xv\nvsuyH5xC5YMPtblWdO061l1//fpMa/GqKlZedBFrfncZS088kVjpppGBzVdczNiHHrJ30Y0xmyQL\n6Bk0PC+L42dsQXG44/vYPeEtyGfLl14k95CD12/zZGWx2U8vpHjW2Ui7Z9ax8nLK77sv5ZSmwVCY\nY371e7Y/8NvsedIpeFuPzmtrWfOHK4gsWcK6a68l0di4fl/zl19QfsedRNetA5z0oLEyN1+7KsRj\nNM6fT3TVqp7eep8Qnw9/SUmH1/GMMWZTYAF9E+LNyyMwZoxT8rRlW24u+YcfTnjmTDyBQJvjNRaj\n/Na/E6+tTal9fzDImKnbsf+ZPyK3uG0aWMnOJu+ggwAI7bprm5zuWVOnsuWrrxAYPdrpU1ERm9/4\nF8J77sGw887Dk5PD8h+eQ9kdd6KJzlPDGmOM6TlbFDeIJaJR4lVVeMNhJBgk0diINyenx+3FKqvQ\nxkYkGNho2k9VJVFfjwQCiAixigrE68M3bMilCzWDhy2KMwOajdAHsIr6CJX1PV9Q5/H7nSnkUIjI\nsm9YdfHPe1VRzFdYgH/UyJRyeIsI3pwcPIEA4vfjHz7cgrkZEOqrm2moSc9CVWMGEgvoA1R5XTPn\n/+tjfvPkIip6EdRbiM+LJy8XLI+6GcKaGqK8cu+nvPng50SaYv3dHWPSyhLLpEFTfZREXMnO9aet\n8IgCq6ubaIzEScdjEf8WWzDy8ss7TfZizFDgD3rZ+8RJeDyCPzA08iuYocMCehp8/v5q5r2ynON/\ntTOhvMDGT0jBsJwgj/xwNxAozun9qmsR6bAK3pihxuv1UDgi3N/dMCYjMhrQReRC4CycAedC4HRg\nJPAQUAx8BPxAVTfJB1oV9RFWVjUyfMcStgc8aX6AMSxJ+VFjjDEmmYw9QxeR0cAFwAxVnQp4gZOA\nPwE3qOpEoBI4M1N9yLS3vijl8Jv+yy+fXMj43UeSlZOe0bkxxhjTXZleFOcDskXEB4SA1cB+wKPu\n/vuAozLch4zZarMc8rJ97LJFDoG4pQsdrBIJpaGmmXjM3qE3xgxcGQvoqroSuA74BieQV+NMsVep\nasvy0hXA6Ez1IdMmbpbDKz/ehZPH15LttV/2g1VjTYSnbphHXWVTf3fFGGM6lckp90LgSGA8MAoI\nA4d04/xZIjJHROaUpqHwSCYE/V42Kyogb8JMyC7M6LUSTU3Eq6st01o/EIHi0Tl405ST3xhjMiGT\nv6EOAL5W1VJVjQKPA3sABe4UPMDmwMpkJ6vq7ao6Q1VnlJSUZLCbaZDhd7tjlZWU3XwLy887n6bP\nPkNbFU0xmRfKD7LfqZPJKbS3BIwxA1cmA/o3wK4iEhLn5ez9gU+B14Hj3GNOBZ7KYB8GhejKlZTf\ncQeNc+aw8icXEquo7O8uDTm+TaSevTFm6MrYa2uq+oGIPAp8DMSAucDtwHPAQyJyhbvtrkz1YaBL\nJJTqpij5WX48no6j/HU1TSBQkF/gvBOXSOAfORLxdT+4JBoaiNfX48nKwpubm47u96lEQimrb+ab\n8gZiCWXCsDCFYT9+rwVaY4wBK87Sr1ZUNnDhw/O4/oTpjCkKtdlXWR/hh//8iJDfyy3HbYNn9Wqa\nv/iC8G674hs2rJMWO9f89dcsOfwIxv3zn2RP3z5dt9BnlpTWceJt71Na1wxATtDHA2ftwtTR+XiT\nfBkyJgPsL5oZ0CxTXD9qaI6zeHUtDc0dc0rnZvm45rjt8IiQlZONZ+tJZG09qcfX8oTDFBx3HL5R\nI3vT5X5RURfhJw/PWx/MAeqaY5zzz494+vw9KMm1Z9vGGGMBvR9tUZTNaxd9i5ysjv8ZfF4P44rT\nl6LSv9lm1J1zIV9WNbNTfoxwcNP5T98ci7NgRXWH7aurm2iI2AJBY4wBq7bWr7IDPjbLyyIUyHxw\njSUSPDRnBX964TMao5tWEPR4hFCSQhoegYDX/gobYwxYQB8yfB4PP9p3S+49fSbD0lDspS/lZ/s5\nc8/xHbYfsf2oTWqmwRhjMmlI/zasrI/w4qdr2G1CMWN7Mb1d0xilpilKwOuhJDeYthKq6VYc3rQC\neYssv5cz9hhPSU6Qe95dSjSe4IQZW3DyLmPIy/b3d/eMMWZAGNIBPRpPcMWzi7nooEmcvkfHEWCq\n5i2v4pS7P2R4XpBnzt+TzfJskVa6FYYDnLzrWL4zbSSKUhAK4LfpdmOMWW9IB/TCcIBXL/pWrwPD\n6upGAKoaoiQG/luAmyyvR6ykrDHGdGJIB3S/18PwFEfT62qaiCWUonCArHZZww6cMoJhOUHGFoco\nDNkUsDHGmL5nc5YpqKyP8KMHPmafa9+guiHaYX9ROMD+2wxn4ma5BNsF+4aaaj575y1W/+9zmhvS\nX2I1smIFlQ89RKysLO1tG2OM2XQM6RF6qrIDXmbtPYGFK6vxd6PiViIeZ/bTjzHnmccBOOMvtxMM\nhTZyVupilZWsuvhiGufOI7pqNZv99MK0td1aY20EgOzcQEbaN8YY03sW0FOQ5fdy4JTh7L/NZng9\nHhpqIsQjMXxNNVC2luC2U4jGBI9X8Ld5X1qJNm2ooR2PdcwI1xue7GzyDj+c6Oo15Oy/X1rbbtHc\nGOPNBz8HhX1/MJmgPVIwxpgByQJ6ikQErwixSJy3H/6CJXNL+cHvZxDavICmxgSv3f8Zw7bIZfr+\nm5OV44xkPV4fux//PQpGjKRw1GhyiorS2idPVhb5Rx5J7oEH4s3PT2vbLbxeYZs9RoFi9cCNMWYA\ns4DeTV6/h50PG8+E7YvxffEknvm3wlGPsGxROcsWlTN171Ftjg/lFzDjsKO7fR1NJBDPxgOoNxzG\nG05fitj2fAEvY7ctzlj7APF4gub6GIEsL74kGeGMMcZsnA25uklEKBoZZqupWQSXvwiTD8cfzmbr\nXUaw5wlb4Qt4qa+uomLlCpZ/spCVn31KTek6mupqu2x3XU0Tq6qc198iy5ez9qqriJWXd7t/0VWr\nKP3bzcQqKnp0f/2hYlU9T/1lLssXVxCPJ/q7O8YYs0myEXpPhQqRI28G8eEPhtnn5HxikSaWfPxf\nPnj8YSpWrWhz+Jhp27PnSadSNGo0wVDbEXVFfTOfr63lyucWc/8ZM8kpLaXurbcpPvvsbncrVl5O\n3euvUXjSib26vb709bxSKlbVs/jd1Ww+uRCvJYwxxphus3roadJQU82Lt97Iko8/XL/N4/Vy8A/O\nIq9oGC88cBfVa9ew3xnnMmWvfdoE9eZonFXVjdz136/5yQGTKJQY2tiIt7i422lkE42NJBoa8BVn\ndpo8nRpqIixfXM7oSYXkFA7uLHuNdbXEI1GycnPw+e2tgU3MwMzpbIzLhkJp0NxQz38fur9NMAcY\nv8MMir5ZRfT6v7DXYccA8Nrdt7Lqi8/aHBf0exk/LIfLDt+WYTlBvOEwvmHDepQT3pOdvUkFc4BQ\nXoCtdxk56IM5QNXqVdx5wZk01Xb9CMYYY7rLAnoaNDc0sOi1lztsL1+xnOCee5D3o3NY/tWX67e/\ncf+d1FdXdTjel4Gp5lh5OVWPPd5nz9QjzTG+mL2GNUs61i83kD98BCdcehW+gI3OjTHpZQG9lxLx\nGJ+8+QqqHRdzVa1ZxcN//RMvvfY85evWUDhyNAAVK5dTXV5OZX0k4/2LlZez+je/IVFXl/FrASRi\nytIFZaxZUo1aYvsOQnn5jJo0mayc3P7uijFmkLFFcb3U3NDA13M/6nR/0ZjxTD1pFm99VcWUEWF0\nyTzmPHgXn8+di26bw36Th2e0f77hI5j4xut4MvhqW2tZYT97nzgJ8QjiGRyPHBtqIkSaYmTnBghm\n2/8yxpiByX479ZKqEos0J93n8XrZ8fvncORdC6iPxAG46ZhpjJ68LYnmJkpyMl85zJefB/l5Gb9O\nay2JdQaLBa8t56MXlnHKH3e3gG6MGbDst1MnGmojRBpjhHIDBLr4Je71+QjlJc/Slp2XzzflDeuD\nOcAbX9dx4MjRlIzYjC1LctLeb5N+U781mlFbFeAPWtIbY8zAZc/QO7Hw9RU8cOn7NDduyL9eUd/M\n0/NWUVa7YUQeDIWZfvBhSdtorKlmbHGYnOCGLwQHTymhatVKxm23A+GgfZ/aFOQUZjFm22KywpbH\n3hgzcFlE6cS2e41i+Pi8NsVWonHl8mc+4cFZuzIsd8N0+YiJkwiGwzTX17dpIxGPU/HJRzw5ay/e\n+ryMycNzGRkUlk2alNaqa8YY0x0icgQwRVWv7u++mPSxxDLdEIsnqGiIEA742oyu49EoSxfM5clr\nfu9sEAH3c93p0OOIM5PqtY3UV0eYuvcwttq5iJzCTetdcWPMwEwsI07CCtFkr9qYIcUCepo0NzSw\n4rNPyAsEyc4Os2LNal6+46/4s7I46uKrWPB6Jdm5XqYfOIZwQRYez6b1PLa8rplQ0Eu23yZ1zJA1\nYAK6iIwDXgQ+AHYCrgHOAYLAV8DpqlonIt8B/gzUA+8AE1T1MBE5DZihque7bd0NDANK3XO/EZF7\ngRpgBjAC+LmqPtpHt2h6wJ6hp0kwFGLstOkknn+J5UccScHIsex+9oU01dbwziO3s/3+Ocz4zhbk\nFoU3uWBeWtvMaffM5ou1ffMuuzEmJVsBtwDfAs4EDlDVHYE5wE9FJAu4Dfi2qu4ElHTSzk3Afaq6\nHfAA8NdW+0YCewKHATY9P8DZcKsTsapqGt57l+zp0/GPHLnR46sbI3xT3kjuqT9k2EHf5r8r6th9\nu+0462934/F6O10J31OaSNBQVUnZim8oGTch7e235vUIx+w4uk9eszPGpGyZqr4vIocBU4B33HTR\nAeA9YDKwRFW/do9/EJiVpJ3dgGPcn/+BM9pv8aQ7lf+piGQ2aYbpNQvonYgiVL//IZpIkH/ooV0e\n29Aco7wuwuF/+y9Zfg8v/WRvdhvnYXh+NpCZhC6xmhre+fc/Wfj6y8w8+gT2OumUjFwHoCgc4PQ9\nxmesfWNMj7SswhXgZVX9buudIjI9DddonWRjwDxyMMnZlHsSNU1R7pm7jtlHnEFgr29t9PjqpigV\n9RGmjs5jr61K+OibKl7+dC2JDKY+FfEwYdoO5BaXMH77HTN2HWPMgPc+sIeITAQQkbCITAI+Bya4\nz8gBOqup/C5wkvvzycDbmeuqySQboScRiyeYv6KKyqIQ35628en25RUN/OyRBZy/30TqmmL87qlF\n7Di2kGN23LxX75rHysoA8A0b1mGfLz+PMdN35OQpUwmGLUGNMUOVqpa6i9weFJGW52K/VdUvRORH\nwAsiUg/M7qSJHwP3iMjFuIviMt5pkxG2yr2d+qpmPnpxGRP3GUV22E9hCs+NV1U1suefXqP1gPzS\nw6Zw6u7j8LbKZ97cEKO6tIFwQZBwftftxsrLWT5rFvGaWsY9+K+kQd0Y06c2uSlnEclxV7sLcDPw\npare0N/9MplhU+7tfDV3HQtfX8HrtywimEjt/9/8bD83n7wjReEAXo9w9A6jOHL6qDbBHCAWifPY\nnz5i0ZsriVVvpLyox4Nv+Ah8JSXOe+3dFK+tJVZWhibs1VRjhrCzRWQe8AmQj7Pq3QxSGRuhi8jW\nwMOtNk0ALgUKgLNxpnYAfq2q/+mqrb4coddVNvHfR75km91Hkjc2lzw3SG9MtDlCc00djVlhsvwe\ncrM6pgmNNsdorI1CZSnlv/05W9z8ty5H3rHKSlDFV1TU/ft45x1W/fwXTHjyCedLgTGmtza5EboZ\nWjI2QlfVz1V1uqpOx0l80AA84e6+oWXfxoJ5X8spzGL/U6cQ3DzMMbe9R1ld8kpq7SVWLKf84oso\nbKpNGswB/EEfuQV+/JFaSn58PrKR9K++wsI2wTxWVUXtK68SLS3t4ixHcMIEhp13HvhsmYQxxgwF\nffXbfn/gK1VdJj2YPs60pvo66israKqvp3DkKEJ5+UizsPdWw1IanQOIP4Bv+HDYyPHi85G97bY9\n6qdGo6z61a8YfcOf8W9k1O0fOZKi7323y2OMMcYMHn2yKE5E7gY+VtW/ichlwGk4KQXnABepamWS\nc2bhJkEYM2bMTsuWLctY/7766MP1edinH3Qoe37vVILZIVQVEYF4DBrKIasA/MkXs6kqGongCXY/\n+UpdpI5Pyz9lTN4YRoRHdHqcxmLEKivxBAJ48zOXSMYYk9TAG40Y00rGF8WJSAA4AnjE3XQrsCUw\nHVgNXJ/sPFW9XVVnqOqMkgw/A/567obn898smk8s4kyzxxPKe1+V8dBHK6md9yQ0lHXahoj0KJgD\nNMWbuPTdS3lv1XtdHic+H/6SEgvmxhhjOuiLVe7fxhmdrwVQ1bWqGnfTCd4BzOyDPnRp+kGHEsjO\nBhF2OfoEgtlOdrdoXHlq3iruf+8bIhMOAF8gI9cvzirmn9/5J/tusW9G2jfGmJ4QkXf7uw8mdRmf\ncheRh4AXVfUe988jVXW1+/OFwC6qelJXbWR6lXs8HqexphpNJAiGwk5wd5XXNZNQKMm1PObGDHE9\nnnIf98vnvgf8ERgDfAP8eunVh/4rXR1LNxHxqWqsv/thuiejI3QRCQMHAo+32nyNiCwUkQXAvsCF\nmexDKrxeLzmFReQWD2sTzAGKc4KU5AbtfW5jTI+4wfwOYCzOl4KxwB3u9h4TkSdF5CMR+cRdc4SI\n1InIte62V0Rkpoi8ISJLROQI9xive8xsEVkgIj90t+8jIm+LyNPApy3ttbreL9zf3fNF5Gp329lu\nO/NF5DER6frVHZNRGV3lrqr1QHG7bT/I5DUzIVZVRdXDDxPeYw+yp07t7+60UROpIZ6IU5hV2N9d\nMcYk90egfaALudt7M0o/Q1UrRCQbmC0ij+FUg3pNVS8WkSeAK3AGVVOA+4CncUqtVqvqzm6q2HdE\n5CW3zR2Bqa0qtAEgIt8GjsSZUW0QkZb3aR9X1TvcY65w276pF/dkesEyxaUiHqf2tddp+vzzjF+q\nqiFCYzT1ma7nlzzP79/7PdXNG8k8Z4zpL2O6uT1VF4jIfJziLFvg1EePAC+4+xcCb6pq1P15nLv9\nIOAUN4PcBziDrq3cfR+2D+auA4B7VLUBQFUr3O1T3VH9QpzCLj17J9ekhWUdwXltbF7pPMbkjiXf\nN5z8UNvFb77iYra45RYkkDxhTLqU1zfzmycWcfIuY9hrq9RW9u88YmdG5Ywi4MnMgj1jTK99gzPN\nnmx7j4jIPjhBdjd3xPwGkAVEdcPCqARu+VNVTYhIy+97AX6sqi8mabOe7rkXOEpV57sFYvbp7r2Y\n9LEROhBJRLht/m28s+ID7nl3KRX1kQ7H+IqL8ObmZrQfXhF2HFPI8LyslM+ZUDCBvTbfi2x/9sYP\nNsb0h1/jZMpsrcHd3lP5QKUbzCcDu3bj3BeBc0XEDyAik9z1Tl15GTi95Rl5qyn3XGC129bJ3boD\nk3YW0IGirCKu/9YNjPDvzNLy+rRnj4hVVhJdu5ZEQ/v/p9sqCAWYtfcEJg3P7BcHY0zfcVeznw0s\nA9T999m9XOX+AuATkcXA1TjT7qm6E2fR28cisginYEuXs7Wq+gLO8/c57lT9z9xdl+BM278DfNat\nOzBpZ+VTW6lpjKIK+aH0Tq1XP/ccqy7+ORNffQX/yI3XVzfGDEiWKc4MaEPnGXoiAbWrYe4/ISsX\nph4LOcPbHJKXnZln5NnTp1M862wkYM+5jTHGZMbQGaHXroFbd3dysgOMmAbffwJyBmdp0Wg8QSSW\nIBwcOt/ZjMkwG6GbAW3QPkNPxOOsW/oVa776gngsBlXfbAjmAGsWQrS7Czo3HZ+srObyZz5JusDP\nGGPM4DNoA3o8FmPeS8/z0XNPEYtGIHcEtC7dmlUIvo7pXJeU1nHfu0spT7EO+kAlIm7p14E/A2OM\nMab3BvWUe0ONk2wllJcPzbXw1evwyu9o2uZYyne8gGAgwLDcDa+INcfiXPTv+Ty7YDVvXbwPY4o3\n9ibHwBWLJ4jEE4QCNuVuTJrYlLsZ0AZ1QO8gEYeGctbFw+xxzZscOm0U1xy3HQHfhomKtTVNrKhs\nZMuSMAUhW8RmjFnPAroZ0IbW8M3jhZzNyGqMcv8Zu7B5YXabYA4wPC+rW4ldjDHGmIFgaAV0V162\nn922LN74ge001kaIxxJ4fB5CuTZ6N8ak6LL8DuVTuay6X8unuqleI6r6rvvne4FnVfXRDFzrTuDP\nqvpputs2GwzJgN4TjbURXr1mnCZXAAAgAElEQVRvMcsWlTNyYj6HzJpGKM+CujFmI5xgfgcbKq6N\nBe7gsnz6OajvA9QB72b6Qqp6VqavYQbxKvdUqCrx2to226LxBOtqm6hujLbZ3twYY9ki57W31f+r\npqFm014Fb4zpM12VT+0REQmLyHNuHfJFInKiiOwvInPdmuV3u6VREZGlIjLM/XmGWx99HHAOcKGI\nzBORvdym9xaRd9366cd1cf0cEXlVRD52r3dkZ/1yt78hIjPcn28VkTluzfbLe/oZmI6GdECPrVlD\n+TPPsHzRAmrLSwGorI9wzdML8FeUEV2zhkRTEwD+gJdgyIfHK2y5YwnhwtRG57GqKmKVlRm7B2PM\ngJeJ8qmHAKtUdXtVnYqT2/1e4ERVnYYz+3puZyer6lLg78ANqjpdVd92d40E9gQOw8kR35km4GhV\n3RHYF7heRKSTfrX3G1WdAWwHfEtEtkv1pk3XhkRAV1Wa15UTXVfadnsigXfcWF679zaWf7IQgIDP\nw+Xf2pxvvn0I/zvwIOJuMM7O9XPSpTP57qVTKdrsc96492aWLZxHY21Np9eN19Sw7trrWH3JJcQq\nqzJ3g8aYgayzMqk9Lp+KU9/8QBH5kzu6Hgd8rapfuPvvA/buQbtPqmrCfdY9vIvjBPijiCwAXgFG\nu8e36ZeqVic59wQR+RiYi1M/fUoP+mmSGBLP0Jtrm6i87z7qX/gP4x5+CN+wYQD4R4wgPzeX47a9\nAo/X+SgKQgGi1YImEqDq/AN4vB7QBh75/S8oGDGSsuXL+PSt19j1mJPY+ajjCASTrIz3ePCPGIEn\nJ4x47I0XY4aoX9P2GTr0snyqqn4hIjsC3wGuAF7r4vAYGwZvG3uFp/WzxK5+aZ0MlAA7qWpURJYC\nWe37JSKvqurv1zcoMh6nUtvOqlrpLsSz14rSZEgEdDwesqfvAM2N4PWu3yxeL768vA4fgrewkIkv\nvQiqeAsL129fOv9jpp9wGp9qCQeNzeXZ3/0fs595jO0O/HbSgO7NyaHojNOddnJyetT1eH09iZoa\nJBDAV9z9lfnGmH52WfW/uCwf0rjKXURGARWq+k8RqQLOB8aJyERV/R/wA+BN9/ClwE7A88CxrZqp\nBfJ62IV8YJ0bzPfFWeiXrF/tF8PlAfVAtYgMB74NvNHDPph2hkRAz8oJ4t9nT/L23h1PsGO61/Y8\nWVl4Ro3qsL2uopz8bXbkvudWMnVkDsHsEPVVlcRjcdZWN1EQ8hP0e9uc4w33Lttcoqqa/x1wAPnH\nHsuIS36bUv+NMQOME7zTuaJ9GnCtiCSAKM7z8nzgERHxAbNxnpEDXA7cJSJ/oG3wfAZ41F3Q9uNu\nXv8B4BkRWQjMYUMt9GT9Wk9V54vIXPf45Th11E2aDImADuD197406qRd9uDZv17DdUf/gFVvPE19\nVSUjJk6iUT3sc+3rvPXzfRneLqD3lgQD5OzzLfIOPADxDZn/XMaYLqjqi8CLSXbtkOTYt4FJSbZ/\ngbMwrcXb7fZ3Oq2oqmXAbkl2LU3WL1Xdp9XPp3XWrumdoZX6tZeaGxpYtnAur91zG/WVFYyZtj37\nn3cxzRKkKRanKBwkPwM11eN1dUgwiCcNX0qMMT1mC2HMgDb4h3xNNfDNu1C3Dt36UBJxP968nj02\nCoZCTJyxK6O3noJqAp8/SGXMy57XvM4L/7dXRoI50OPn78YY0xsiMg34R7vNzaq6S3/0x3Rt8Af0\naAM8eJKzWv283Vn5q6sZddVV+EpKetScx+slXLBhoVxWfYRHz9mNohzLGmeMGVxUdSEwvb/7YVIz\n+AO6LwsO/QvUriIhQWKlZaTzMUNhOEBhOPPBPFZZCYmErXQ3xhiT1KAN6E31ddSWlZKVm0vuTqeC\nKhKPM+buu/AWFfV391KmiQTNX33FmksuJdHYyPDf/Jrs7bbDk2WvbhpjjNlg0GaKa6qr5f6f/5gn\nrr6c+ppq8Hjw+P34iotxMhRuGuIVFaw451wa582j+fPPWT7rh8SrO89OZ4wxZmgatAHdH8xi/A4z\n2O6AQ/C77243RBuIJWL93LPu0YQSW7duw5+bmtBYtIszjDFmAxG5TER+lqG21xd+GYhEpEREPnCL\n1uyVZP+dIjJoUs8O2in3cEEhh15wMV6fD18gSEVTBdfPuZ5TppzC1kVb93f3UubJCVN0+umU3347\nAOF998UTal+4yRgzkE27b1qHeugLT13Yr/XQ+5uI+FQ10yOs/YGFycq3ioh3sJV1HbQjdIBgKIwv\n4IzOBSHkC+GVDYlfIk1NrF3yJXUV5eu3xSLN1JaXUbl6JQ01/T+17Q2FKDrjdCb85znGP/Uko668\nAl+rdLTGmIHNDeZ34KRHFfffd7jbe6ST8qkdyqS2OmV7EXlPRL4UkbO7aHekiLzlllRd1DKq3UjJ\n0x+3KqM62T1+pnu9uW451q3d7aeJyNMi8hrwahdlWMeJyGIRucO95ksikt1Fv88Wkdnu5/GYiIRE\nZDpwDXCkez/ZIlInIteLyHxgt3ZlXQ9x+zFfRF7t6j4GqkEd0FsrzCrkgh0vwCte1jU4U9jRpkae\nv/kGlsz7iFhFBZGVK2lcu5a7LjiLu3/yQ9564G6a6mo30nLqNJHo0Qp7X0EBwQkTyNp6a3yb0II+\nYwyQgXropFamtLXtgP1wsrtd6uZcT+Z7wIuqOh3YHpjnbu+q5GmZW0b1VpzCK+Ckdt1LVXcALqXt\nve4IHKeq36LzMqwAWwE3q+q2QBVt89C397iq7qyq2wOLgTNVdZ577YfdErGNQBj4wP3c/ttysoiU\n4HzpOtZt4/gU7mPAGTIBHaA53sz3n/8+Dy5+EHCm5Y+/5Eom7TiTsttu56v9D6D5w9mMnLQNAJ+8\n+SqxaHqeV8draqi4/37q33kXjcfT0qYxZpOQiXroqZQpbe0pVW10U7a+Dszs5LjZwOkichkwTVVb\nRjRdlTx93P33RzhlXGFDXvlFwA3uOS1eVtUK9+fOyrCCUw625QtF67aTmSoib7u55U9ud73W4sBj\nSbbvCrylql8DtOpfV/cx4AzaZ+jJ5AfyeeLIJ9pMu4vHw9J5H5Hvfin0ZWWhmgBgiynT8KYpf7rG\nYtS+9DLxikpCM3dGvOnN+W6MGbC+wa1GlmR7jyQrU0rXZVLbTw0mnSpU1bdEZG/gUOBeEfkzTo73\nrkqetpRcjbMhpvwBeF1VjxaRcbQtClPf6uekZVjbtdvSdqdT7sC9wFFu8ZfTgH06Oa5JVbszourq\nPgacjAV091nDw602TcCZsrjf3T4OJ5H/Capamal+tOb3+tkstFmbbc319bxw21/5zhk/YswJx+Ev\nKODA7adRV1lOyZgJZOf2tLpgW76iIja/6a/g9eIJWFY5Y4aQtNdD76RM6VKSl0kF5znyVThTzvsA\nv+yk3bHAClW9Q0SCONPj8+l+ydN8YKX782kbOa5DGdYeyAVWi4gf50vCyo0c3977wC0iMl5VvxaR\nIneUnup9DAgZm3JX1c/d5xbTcf6SNQBP4PxFelVVtwJepZO/WH0lEAoxctI2vPnEw0RC2QSKiine\nfAxjp+1AKD8/rdfyFRfjKyhIa5vGmIHNXc1+NrAMZ2S8DDi7l6vcpwEfisg84HfAFThlUm8UkTk4\nI9rWFuBMtb8P/EFVV3XS7j5AS4nTE4EbVXU+zlT7ZzglYFMpeXoNcJXbTlcDxweAGe5U+SlsKMPa\nXZcAH7h963YbqloKzAIedxfMtQxGU72PAaFPqq2JyEHA71R1DxH5HNhHVVeLyEjgDVXtcuVgpqut\nNdTUoIk4obx8xDOklhUYY1K36WSkMkNSX33jOAl40P15uKqudn9ew4YFEG2IyCycb0yMGdObtSOg\nqjRUR4hFE4TyA/gDbZ9fh/LyoKkWGspBBAJh8Hf1uMYYY4wZWDI+QheRALAK2FZV14pIlaoWtNpf\nqapdvljd2xF6Q22EZ/46j4qV9fzgj7uRU+CuuVCF+nVQ/hW8cyNULQOPDzbfGXb9EYSKIGTFUIwx\nwCAaoW+qZVFF5GZgj3abb1TVe/qjPwNNX4zQvw18rKpr3T+vFZGRrabc13Vxblr4g152PnQ85Svr\n8PrcKfV41AnkDxwL1SvanrBmIcy5GybsA8fcDjlJJxGMMWaTtKmWRVXV8/q7DwNZSgHdfen+bJyV\n6evPUdUzUjj9u2yYbgd4GjgVuNr991Mp9rXH/AEvE6aXMH67YYjH/ZJd8TXcuT9E6jo/cckb8I9j\n4AdPQk7P6qcbY4wxfSHVEfpTOO8ivkLH1ZOdEpEwcCDww1abrwb+LSJn4qz2PCHV9npLPEJteRnN\n9bXkLn2BYFfBvMXaRfDxfbDHT8A74Bc5GmOMGaJSjVAhVf1FdxtX1XqguN22cpyE+X2usa6W/9x0\nHSs++4RZV/6eYKonfnAr7PADyLWpd2OMMQNTqgH9WRH5jqr+J6O9ybBAdjb7nHIW675ajG/d/NRP\nrC+DmlUW0I0xxgxYqb50/X84Qb1RRGpEpFZE+r8UWTd5vT6GjxnLtMBisl/6SfdOri/NTKeMMcZ0\nICIFIvKjHp6btjrtIvJ7ETkgHW1lWkojdFXNzXRH+ozHS8yXRd2Bvyfnq9fxffVaaufZe+nGmB5a\nPHmbDvXQt/lscb/UQ5e+qUOeDgXAj4Bb2u/oy3tQ1Uv74jrpkHJaNBEpdGvD7t3yTyY7lilxlPnj\nZ3J+1Ycs3Ot84uP22vhJHi8UT+iwOZFIZKCHxpjBxA3mHeqhu9t7TES+LyIfurW+bxMRr4jUtdp/\nnFtIBRG5V0T+LiIfANeISJGIPCkiC0Tk/ZZyqCJymYj8Q5LUTheRi92a4wukY0309n07xT1uvoj8\nw91W4tYqn+3+s0era97t1iZfIiIXuM1cDWzp3t+1IrKPW1HtaeBT99wnReQjcWqmz+rGZ9fhPPfz\nu1ecOvALReTCVp/dce7Pl7p9XyQit4vIgMpNkOpra2fhTLtvjlMfd1fgPZz6upuUxlgjt31yN/NL\n53P7/x7lujG7EF76dtcnbX0YBNpOUlSsWsHCV19k5yOPI5SX3pzvxphBpat66D0apYvINji51vdw\nC5vcglOUpCubA7uralxEbgLmqupRIrIfTtGslvfSt8P5HR8G5orIc8BUnPrkM3G+lDwtInur6ltJ\n+rYt8Fv3WmUiUuTuuhG4QVX/KyJjgBeBbdx9k3HqoecCn4vIrTh1Pqa69UAQkX1wisVMbSlzCpyh\nqhUikg3MFpHH3IXXG9PhPJzXske79eURkWSFN/6mqr939/8DOAx4JoXr9YnuPEPfGVimqvsCO+AU\nnN/khP1hfrbTRRw49kAu2uZUQv/byJS7Lwv2vwSy2lZdq6usYPmnC1EbpRtjupaJeuj74xS9mu0W\naNkfp6JlVx5pVTp0T9xMcar6GlAsIi2/5JLVTj/I/Wcu8DFOAN6qk+vs516rzG2/pbb4AcDf3P4+\nDeSJSI677zlVbXbPWUcnKcGBD1sFc4AL3GIq7wNbdNGn9pKdtwSYICI3icghQLJ1YvuKyAduMZn9\nGGD10VNd5d6kqk0igogEVfUzccqjDniN0UYAst1n4CLCpKKtuXrX3xH45HFY9XHnJ/uz4ftPQEHH\nin4jtpzEMb+8jFC+VU8zxnQp7fXQcUbJ96nqr9psFLmo1R/b10SvJzXJaqcLcJWq3tatXrblAXZV\n1abWG91Z6/a1zzuLTevvwR2xHwDspqoNIvIGHe+5g87Oc2u9bw8cDJyDkyPljFbnZeE8z5+hqstF\n5LJUrteXUh2hr3CnH54EXhaRp3CSwgxoNc013LHwDu5adBc1kbZftgJZ+TDlaJj1Bmz9HZBWH0Uw\nF3b7MZz3IYzeCXwd65cHsrIsmBtjUvFrnPLRrfWqHjpO6enjRGQzAPeZ+Fic1NrbiIgHOLqL89/G\nnaJ3A1yZqrb8kjxSRLJEpBinnOpsnOnxM1pG1CIyuuXaSbwGHO+eT6sp95eAH7ccJCIbSz1bizMF\n35l8oNINypNxHhOkIul54qyK96jqYziPDHZsd15L8C5zP4fjUrxen0l1lXvLX4zLROR1nA/khYz1\nKk3iGmf2mtl4xMPJ27R7vNRUDZF6CObBoX+Gw/8CzXUoQtyXRbMvn3A43D8dN8YMGtt8tvhfiydv\nA2lc5a6qn4rIb4GX3OAdBc7Dee78LFAKzAFyOmniMuBuEVmA8+Xi1Fb7WmqnD2ND7fRV7nP799wR\ndR3wfZLU4lDVT0TkSuBNEYnjTNOfBlwA3Oxe0we8hTMS7uwey0XkHRFZBDwPPNfukBeAc0RkMfA5\nzvR5Kjo7bzRwj/t5ArSZ/VDVKhG5A1iEUyl0dorX6zMpV1sTkR1xnrso8I6qdjFXnV49rbZW21xL\nY7wRr3gpzm6VsK6pGt6/Fd682qm4NmwSnPoM5I6gtLaJfa97k+tP2I6Dtx3Z4z7XVzWzZH4p46YN\nI7doQM3KGGN6ZkCtaM4Edxq5TlWv6+++mO5LacpdRC4F7sNJ4zoM51vMbzPZsd6qjdRy36f3sbBs\nIYXBdtVZm2s3BHOAsi9IzL6L5vpasvxeHv7hruw0tqhjoymKxxK8+/j/eOvBL3jzX58TadwUXvk0\nxhizKUt1UdzJwPYtixlE5Gqc19euyFTHessvfg4ZdwiLKxZTF60jL9hqlXq0cUMwd0nF19SVl1I8\nZgLbjurda2gerzBxxnCWL65g4ozN8PlTft3fGGP6japeluqx7jPyV5Ps2j/FV8cyaqD3LxNSDeir\ncBYEtKxODAIrM9KjNMnyZ/FpxafcufBOdh+1e7ud+VA0ASqWrN+kM2cRKkxPiVQRYfOtCzjxtzPx\nZ3nx+CygG2MGFzcoDtia6gO9f5mQ0jN0EXkS5z30l3GeoR8IfAisAFDVCzo/u/d6+gy9urmaaCLK\nsOwkKX1rVsOHt0PVMtj1R1CytbO63Rhjkhv0z9DNpi3VEfoT7j8t3kh/V9IvP7hh6rwuUkdjrJGA\nN+BszxsJ+/0G4nHwp1xI1RhjjBmQUn1t7b6Wn0WkENhCVRdkrFdpFolHeGnZS1z+3uWcPPlkzp1+\nLrmBXPD4nH/6QGlDKYpSkl3SkkjBGGOMSZtUV7m/ISJ5boKAj4E7ROTPme1a+jTXxZka2p7JhZN5\n+ZuXaYo1bfykNGqINnDlB1fy67d/3SHBjTHGGJMOqa7WynezCB0D3K+qu+CkzhvwGmsjPH/zIt65\ncTXXz7yRa/e8jpB2lmshM0L+EL/d5bdctddVbR4DGGNMpojIESLyy0721XWyvXVlsTdEZEYm+9gZ\nEZkuIt/pg+v8utXP49wkNr1ts8TN9z5XRDqU8xSRO0VkSm+vk0yq880+ERmJk9v2N5noSKaoKk11\nUSKNMfL9Bbz79+VMmIVTR6gPVDdX4/f4GRZKsjDPGDMk3HzOax3qoZ/39/0yWg9dVZ/GKYKyKZoO\nzAD+k4nG3bKngpN+949pbn5/YKGqnpXkut5k29Ml1RH673Fy+X6lqrNFZALwZaY6lU6hvCBHXTyd\nY383nVigme+cO41gqG+em1c2VfKH9//A68tf75PrGWMGHjeYd6iH7m7vEXc0+Zk7ov5CRB4QkQPc\nVKlfishMETlNRP7mHj9enBrnC0XkilbtiIj8TUQ+F5FXgKT52UXkIPf8j0XkkVZV0pIdu5OIvClO\nvfEX3cEgInK2OLXE54tTFz3kbj9enPri80XkLREJ4MScE8WphX5iJ9fprI46IvJTt81FIvKTVp/Z\n5yJyP0761ruAbPcaD7inekXkDnHqpL8kTnnVzu6zw/24+emvwcmHP09EskWkTkSuF6e6226tZz5E\n5BD3M50vIq+622a6n/VcEXlXulEILaWArqqPqOp2qnqu++clqnpsqhfpbw8vf4B9n9uLpQ1LyCnM\nIpDtIxKPZPy6XvGydeHWjAqPyvi1jDEDVlf10HtjInA9TinTycD3cNJz/4yOhV9uBG5V1WnA6lbb\njwa2BqYApwDtknasL1ryW+AAVd0RJ0f8T5N1SET8wE3Acaq6E3A3cKW7+3FV3VlVtwcWA2e62y8F\nDna3H6GqEXfbw6o6XVUf7uIzmIxTHW0m8DsR8YvITsDpwC44hVfOFpEd3OO3Am5R1W1V9XSg0b3G\nya3236yq2+KUCO8qznW4H1Wd167vjTjzwR+o6vaq+t9Wn1UJzhe9Y902jnd3fQbspao7uG2l/Pck\npaGqiEwCbgWGq+pUEdkO54MfsJniwJlub4g1cNTEoxiTN4ZxeeOIJ+IsKFvAvxb/i4t3vpjNQp0V\nDOq9vGAep089Ha94M3YNY8yAl4l66ABfq+pCABH5BHhVVVWcWt3j2h27BxuC0z+AP7k/7w086NZJ\nXyUiryW5zq44Af8d9w2dAPBeJ33aGpiKU5UTwMuGLxBT3dmBApyiMS+6298B7hWRfwOPp3DfrT2n\nqs1As4i01FHfE3hCVesBRORxYC+cxw/LVLWrIi5fu0EZ4CM6fo6tdXY/7cWBx5Js3xV4q6W+e6u6\n8fnAfSKyFU7eF38XfWgj1Sn3O3Aqz0TdCy8ATkr1Iv0hEo+wsGwhP3vzZzz2xWPsNnI3CrMKaYg1\ncMu8W3hh6QvMXpP5Yjk+j89eUzNmaOus7nlv6qFD2xriiVZ/TpB8sJZaJa6OBHjZHXFOV9Upqnpm\nF8d+0urYaap6kLvvXuB8d5bgctxypKp6Ds4MwBbAR+KWXU1RqnXUW2ysJnx32ruXJPeTRJP7hSlV\nfwBeV9WpwOFdtNtBqgE9pKoftts2oCuOVDVXceaLZ/Lflf/l5vk38+aKNwHI8edwya6X8Iudf8Fu\nI3ejtLGUsoYyooloP/fYGDNIZaIeene9w4ZBWOta0m/hPKv2us+6901y7vvAHiIyEUBEwu6sbTKf\nAyUispt7rF9EtnX35QKr3Wn59X0QkS1V9QNVvRSn7OsWbLwWelfeBo5yn2mHcR4rvN3JsVG3Pz2R\n9H664X1gbxEZD23qxuezIbX6ad1pMNWAXiYiW+J+wxPntYbVXZ/SvxKaoDm+4ctWy/vfIsKYvDEc\nvuXhPPv1sxzxxBEc9fRRPLfkOWojtf3VXWPMIOWuZj8bWIbzO3QZcHamV7m383/Aee50/OhW25/A\nWeD8KXA/SabSVbUUJ7A8KE4t8/dwnl134D7/Pg74k7sIbB4bnstfAnyA8+Xis1anXesu1lsEvAvM\nx6nHPqWrRXGdcUt734uTnvwD4E5VndvJ4bcDC1otiuuOzu4n1X6WArOAx93PqmWtwDXAVSIyl9Tf\nRANSz+U+AefGdwcqga+Bk1V1WXcu1lM9yeVeH63n5WUvc9Pcm5hYMJE/7vnHNjXRP6v4jOOfOb7N\nOc8e/Sxj88ampc+pqo3UUhupJeQLUZBV0KfXNsZ0iz07MwNal9FfRP5PVW8ERqrqAe70hUdVB/xQ\nNuwPc/C4g9lz1J74vD4Kgm2D5aKyjvkDvqr6qs8Den20noMfO5iHDn3IAroxxpge29hw/nSc1x1u\nAnZsWTW4qcj2ZZPtS/4a4YzhMxAEddeJeMXL5KKks0gZFfKF+M8x/yHH37fZ64wxpjdE5AlgfLvN\nv1DVzlZ79/Q6p+M8MmjtHVU9L53X6eL6N+O8JdDajap6T19cvzu6nHIXkQdxsvWMAr5qvQtQVd0u\ns91z9LR8ant1FeVUrFrB8AkTifnh47Ufc9Pcm/B6vFy000VMKZ5CyN/2ddHmhnqizc1khXPwBQK9\n7oMxZpNlU+5mQOtyhK6q3xWRETjv1x3RN13KnNVffsZb/7qPky7/E+FQIXttvhfbDtsWQSjMKkx6\nTm1FOQ/88if84JbbmL3qY8bkjmGb4m36uOfGGGNM11JaFNffejtCr26uprypnGxvNuFEkLy8oo2f\n5GqormbNV1+Qt9U4fvnur9h15K6cMe0MPJLqCwLGmEHCRuhmQNvYlPu/VfUE91WH1gcO6Cn3yqZK\n5pXOY/uS7SnKKuLlpS/z0zd/StAb5Lmjn2N4eHiP+lHRWIHX47WKacYMTRbQzYC2sUVxLQsRDst0\nR9KpJlLDBa9dwBNHPEFRVhFr6tcA0BxvJpJom8NdVamL1hHyhfB6uk7RWpSd+sjeGGOM6Usbe4a+\n2v13j943F5EC4E6c3L4KnIGTSP9snIxAAL9W1bSWyCsMFvLSsS8R9js1Ug/d8lACvgBb5G7R4fW1\nb2q/4coPruS87c9ju5LtLE2rMWZIEJGjgC9U9dM0tTcDOEVVL9jowRkgIkcAU1T1arfwybM4eecv\nwEld/j1VreqPvvWVjb2HXkvy/L8tU+55G2n/RuAFVT3OLYkXwgnoN6jqdT3pcCrygnnkBZ2uqSp+\nj58TJp2QNFi/tPQl3lv1Hnn+PK7c80qCvmCmumWMGaKuP/GwDvXQL3r42b7MFJfMUThBLy0BXVXn\n4FRi6xft6r+3r0neWerXQaXLlV2qmquqeUn+yd1YMBeRfJxKPne5bUX649vR6vrVXPTmRayqX5V0\n/zFbHcMlu17Cz3b+mQVzY0zaucG8Qz10d3uPicj3ReRDNz3qbW4+9ltFZI5bz/vyVsdeLSKfisgC\nEblORHbHeXPpWvf8LTu5Rko1zN1t+4jIs+7PKdf0Fqdu+1NunfAvReR3rfY9KU5d9U9EZFar7cnq\niJ8mTm33ZDXJl7plYBGRU9zPYb6I/KPn/wUGnm7lie2m8TjT6veIyPY4pehansmfLyKn4Hybu0hV\nK9uf7P7HmwUwZkzPqwzWReuYvWY2NZEaRrdJYewozi7mhK1P6HH7xhizEV3VQ+/RKF1EtgFOBPZQ\n1aiI3IJTIOQ3qlohIl7gVbfU9UqcAiWT3fKqBapaJSJPA8+q6qNdXOpxVb3DveYVODXMb2JDDfOV\n7qPV9lpqesdE5AD3XruqLT4T59FsAzBbRJ5zR/xnuPeT7W5/DGcgegewt6p+3aqoCQCqOk9ELgVm\nqOr5bt9bPrdtcSq77RN4R38AABzmSURBVK6qZe3P3dRl8t0rH7AjcKtbqL0e+CVOXfUtgek4BV6u\nT3ayqt6uqjNUdUZJSUmPO7F5zua8dOxLjMntbelhY4zpkUzUQ98f2AknyM1z/zwBOEFEPgbmAtvi\n1DGvBpqAu0TkGDpWfuvKVBF5233T6WS3TdhQw/xsnJrn7eUDj7gFV25odV5nXlbVclVtxKmJvqe7\n/QK3cMn7OFXYtqLzOuKp2A94RFXLenDugJfJgL4CWKGqH7h/fhQnfexaVY2ragLnW9bMTFy85v/b\nu/soqaoz3+Pfp9+gaRpoXiT4NpCEaNAJaCpGR5dLY1R0uTQmmojGlxkT72gyNzfO3KuOWTFjbiaj\nN1GTMWp8iy/XdzJGJRHlKkmMRqVYKIiCoKCAKC1gA93QTVc/94+zW8umq+mqrlNVffr3WatWVe3a\n5+zdp1+ePvvss5/2LWxo3UhLmzOqduyHE+REREosjnzoBtyZlXd8P+BO4F+AY8Itxb8Hhrt7J9Hf\n2dlEdyzNzaOdOygsh3m+Ob17ztVyMzsK+DJwmLtPJ/onpd+5wYei2AK6u78LrMm6dnIM8KpFOXe7\nnQrsmiWlCDbv2MzazW2cduMLvL0pn39IRUSKKo586E8Bp5nZHvBhLu19iUZCW8xsInBC+GwkMDrc\nTfR9YHrYR39yjueTwzxbvjm9jzWzsWFo/StEIwCjgc3u3mZm+xOdmUPuPOL98TRwevc/IBpyz88/\nAfdYlEN3BtF1lKstyn27GDia6Aes6KKZ7o00Dq+husrY0bqNti0tcTQlIpJTmM2+Sz70gcxyD7ea\n/QB4MvwtnQe0E53FLiO6Nv9sqN4IzAn1/gJcHMrvB/5nmLjW66Q48sthni3fnN4vAr8FFgO/DdfP\n5wI1ZvYa8B9EgbyvPOK75e5LgZ8AfwrbXtPfbQeDRC/9msl0sbltJ2NG1LL4yTmsW/YaX/72RdSP\n3N0/pSIiu9AiFTEws/PImsAmhYtzlnvZVVdXMb4xuhVt3wOm0/SJPampqS1zr0RERIov0QE92/h9\n/4bx+/5NubshIlJxrAQ5v83seOCqHsWr3P1Uosl3MkBDJqDnsqFtA51dnewxYg9qqob84RCRIcjd\nv1OCNp4gSsUtMRnSOUBbd7by4+d/zEVPXcQH7Yle4ldERBIu8aekmUwnHW1t1DfuulJtQ20DPzz0\nh3R6J03DmvLbb1eGze2bqauq+3DdeBERkXJJ9Bn6js4dbGnewCM//wmtH+yyuiwAE0ZMYFLDpN2m\nTu3pjQ/e4JzHz+GnL/6UTTsStdiQiIgMQokN6Jt3bOb6RdfTYZ1M2HdKUdOidnkXd792N2u2rmHO\nm3PYvnN70fYtIlJuZjY53GO+uzpnZr1Pmdkv4++d5JLYIfeOTAd3vXoXf1n3F+4+6y5GFHFYvMqq\nOPuzZ7PwvYXMmDCD+tr6ou1bRGSQmAycSUgwU+70qZLghWVaO1rZuGMjVVbFhPoJRU+NqmvoIkNO\nxSwsY2aTiVZSW0iUBGspcA5wGPAzopO1BcCF7t5uZquBB4mWg90OnOnuK83sDrIyrpnZNncfGfY/\nx90PDK/vBroTYnzX3Z8zs+eBzwKriNaRXwT8i7ufFJZUvZ0oYUwbcIG7LzazHxEtUfvJ8Hydu+us\nvkgSO+Se8Qy3LrmV2a/PpiPTUfT9V1dVM75+vIK5iJTLfsAN7v5ZYAvRkq53AN8IyVRqgAuz6reE\n8uuB6/JoZwNwrLsfTJSytTsAXwo8E5LDXNtjm38DFoUkMf8K3JX12f7A8UQJY64I68RLESQ2oFdZ\nFWfufybTxk2jeXszH+zQbWkikihr3L17vfb/S5QAa5W7vx7K7gSOzKp/X9bzYXm0UwvcElKoPkSU\nknV3jiA6q8fdnwbGmVn32c/v3b09pDDdAEzMoy/Sh8QG9JF1I1m6cSn//Kd/5pt/+CbbOzVxTUQS\npef10t2dtXgvrzsJccDMqoC6Xrb7PvAeUZa2VI46+WjPep0hwXO5Si2xAR1g8ujJVFkV+4zaJ+/b\n0kREKty+ZtZ9pn0m0YS0yWb26VB2NvCnrPrfyHr+a3i9Gvh8eH0y0dl4T6OB9e7eFfbZ/ce0r/Sr\nzxDSrYa85u+7+5Z+fVVSsET+Z7Rp+yY6vZPJoybz5NeepKaqhnH148rdLRGRYloOfMfMbgdeBf47\nUYrRh8yse1LcTVn1m0IK1XZgVii7BXgkpBKdS5RPvacbgN+a2Tk96iwGMmHbO4gmxXX7EXB7aK8N\nOHdgX6r0R+JmuW/cvpFVLat48PUHmT5+OjOnzFQwF5FiqLRZ7nPc/cB+1l9NlKL0/Ri7JWWWuCH3\nbTu3UVtdy9xVc/ndG7+js6uz3F0SERGJXeKG3BtqG5i7ai53n3A3TcOb2Lb8LTKNm9lz6v7l7pqI\nSFG4+2qgX2fnof7k2DojFSNxZ+jj68fztc98jfH14xnNSFYvSrNp7Zpyd0tERCRWiTtDhyiob+/c\nTmtHK4ecfgbDtDSriIgkXOLO0Lu91/oex84+liXbllFXr4AuIiLJltiAXl9Tz0ETD2LiCC1CJCIi\nyZfYgD6xYSL/fvi/89d3/sq7re+WuzsiIkVlZjPNbLmZrTSzS8vdHym/xAZ0gOfffZ6rFlzFn9f+\nudxdEREpGjOrBn5FlD1tGjDLzPqzxrokWCInxXU7cq8jufW4W5naNLXcXRERKaZDgJXu/iaAmd0P\nnEK0YpwMUYkN6JmuDGPrx/LF+i8CsK1jG4s2LGLfxn0ZVTeKpvqmMvdQRIaSVCpVBUwANqTT6YEu\n0bkXkH0/7lrgiwPcpwxyiRxyX7FpBeu2rWN1y2pa2ltob2tlxR//xJh3nd+/MYfHVz/O+9u1AqKI\nlEYI5k8TBd754b1IUSXyh6qjq4Pn3nmOHzz7A1raW+js6OClxx/jrWef54R9jufF9S8yGNawF5HE\nmAAcTjQqenh4PxDrgH2y3u8dymQIS+SQ+54Ne3LfsvtYunEp1VXVNIxq4utX/BTM6KhzLj/0csbX\njy93N0Vk6NgAPEsUzJ8N7wdiATDVzKYQBfIziFKoyhCWuGxr3Zrbmsl0ZcCgtqpWGddEZKAGlG2t\nyNfQMbMTgeuI8pPf7u4/Geg+ZXBLbECHaLW4y/9yOalPpPjW336LmqpEDkiISGlUTPpUkd4kOsKZ\nGTOnzGTauGmYfhdFRCTBEjkprpu7c+Vfr+S6hdfR1tlW7u6IiIjEJtFn6A21DTz+1ccZXjOcxrrG\ncndHREQkNrGeoZvZGDObbWbLzOw1MzvMzMaa2TwzWxGeY1vhxXHmr5nPA8sfoKW9Ja5mREREyi7u\nIfdfAHPdfX9gOvAacCnwlLtPBZ4K72PRurOVB5Y/wL3L7mVn1864mhERESm72IbczWw0cCRwHoC7\ndwAdZnYKcFSodifwR+CSYre/pX0Lty25jauPvJqm4U00DdNSryIiklxxnqFPAZqB35jZIjO71cwa\ngInuvj7UeRfoNWG5mV1gZmkzSzc3N+fd+LDqYRy1z1Gs3baWUXWjqK6qLvTrEBEZkFQqZalUanoq\nlTohPA/4thszW21mS8zsJTNLh7JeL2la5Jch1epiMzs4az/nhvorzOzcrPLPh/2vDNtaqdqQwsQZ\n0GuAg4Eb3f0goJUew+se3QTf643w7n6zu6fcPTVhQv6rJA6rGcaB4w8kNTHF8Jrh+fdeRKQIUqnU\n0cDrRCvE3ReeXw/lA3W0u89w91R4n+uS5gnA1PC4ALgRouAMXEGU2OUQ4IqseU03At/O2m5mCduQ\nAsQZ0NcCa939hfB+NlGAf8/MJgGE54EugZjTnUvv5OzHz2bTjk1xNSEiklMI2nOATwMNwOjw/Glg\nTpGCerZTiC5lEp6/klV+l0eeB8aEv7/HA/PcfZO7bwbmATPDZ6Pc/flw4nVXj33F3YYUILaA7u7v\nAmvMbL9QdAxRrt5Hge4hl3OBR+Lqw6z9Z3H9l66nsTa6ZS3TlWHJ+0u4ftH1CvIiEqswrH4zMCJH\nlRHAzQMYfnfgSTNbaGYXhLJclzR7S7e6127K1/ZSXqo2pABx34f+T8A9ZlYHvAn8PdE/EQ+a2fnA\nW8DX42p8wogJTMhKarQjs4NbFt/C/DXz+erUr8bVrIgIwOeASbupMynUe7mA/R/h7uvMbA9gnpkt\ny/7Q3d3MYl3buxRtSP/FGtDd/SUg1ctHx8TZbi4NtQ388NAf8r2Dv6eFZkQkbnsCnbup0xnq5R3Q\n3X1deN5gZg8TXZ9+z8wmufv6Hpc0c6VbXcdHdx11l/8xlO/dS31K1IYUINFLv/Zm/IjxfGrMpxTQ\nRSRu77D7k6aaUC8vZtZgZo3dr4HjgFfIfUnzUeCcMBP9UKAlDJs/ARxnZk1hotpxwBPhsy1mdmiY\neX5Oj33F3YYUINFLv4qIlNFiYD3RBLhc3gn18jUReDjc5VUD3Ovuc81sAb1f0vwDcCKwEmgjuvyJ\nu28ysx8T5VcHuNLduycYXQTcAdQDj4cHwH+UoA0pQKLTp4qIFFHek9eyZrn3NjGuDTgpnU7PH2jH\nRCDpQ+5tm+DVR2H9y7Bze7l7IyJDTAjWJxGdtbYCLeF5BQrmUmTJDugfvA0Png23HgM7+pecpbmt\nmasXXM3G7Rtj7pyIDAUhaH8GOByYFZ73UzCXYkv2NfTGT8AnPgd7fBaqa/u1SXumnRfWv8B5B5wX\nb99EZMhIp9NONJO9kNvTRPol+dfQW5uhqhbqx/Sr+s7MTrZ0bGHs8LFoWWERyaI/CFLRkn2GDtCQ\n3zrwtdW1jKsfF1NnRERE4pHIgN6Z6SRDhmHVw8rdFREZ4lKp1AzgYuBkotnubUT3bF+TTqdfKmff\nJFkSNymuvbOdeW/P4+cLfq712kWkbFKpVE0qlbqNKLvamUSJWWrD85nAs6lU6rZUKlXQiZWZ3W5m\nG8zslayyRKRPzdWG9C1xAb2jq4PH3niMR954hExXptzdEZGh69fAGURn5dU9PqsO5WcANxW4/zvY\nNd1oUtKn5mpD+pC4gN5Y18iVh1/JY6c+RtMw/VMnIqUXhtm7g3lfRgCzUqnU9HzbcPc/Az2HIZOS\nPjVXG9KHxAV0gPH149ljxB7UVCdyioCIVL6Lgf5O4qkL9YshKelTc7UhfUhkQBcRKbOT2XWYPZca\nojPSogpnvbGnT01CG0mhgC4iUny7G2ofaP1c3gtD2eSR2jRXeZ/pU8vUhvRBAV1EpPjaYq6fS1LS\np+ZqQ/qgi8wiIsX3KNGtaf0Zdu+kgIBlZvcBRwHjzWwt0UzyUqQ2LWcb0ofkL/0qIlIc/V76Ncxy\nf5b+DaW3AX+XTqe1zrsMiIbcRUSKLKwAdz+7H0pvA+5TMJdi0JC7iEg8/hvR7OxZRLemZf+97QQ6\ngPuAfyx91ySJNOQuItI/BWVbC8Pv3ye6Na17LfdHgGu1lrsUk87QRURiFIL2uWHN9gZgWzqd1rrU\nUnQK6CIiMUmlUsOA04FLgAOAnUBtKpVaClwFPJROp9vL2EVJEE2KExGJQSqVOgR4B7gBOJBoyL4u\nPB8Yyt9JpVJfKFsnJVEU0EVEiiwE6aeBsUBjjmqN4fP5hQT1HOlTf2Rm68zspfA4Meuzy0Ka0uVm\ndnxW+cxQttLMLs0qn2JmL4TyB8ysLpQPC+9Xhs8nl7INyU0BXUSkiMIw+1yi6+X90QDMDdvl4w52\nTZ8KcK27zwiPPwCY2TSi7G8HhG1uMLNqM6sGfkWU+nQaMCvUheiSwLXu/mlgM3B+KD8f2BzKrw31\nStKG9E0BXUSkuE4HavPcpg44LZ8NcqRPzeUU4H53b3f3VUSruR0SHivd/U137yC6d/6UsBTrl4DZ\nYfueaVK7U5vOBo4J9UvRhvRBAV1EpLguIfcwey4jgUt3W6t/vmtmi8OQfFMoyze16TjgA3fv7FH+\nsX2Fz1tC/VK0IX1QQBcRKZJUKlVNNORciAPC9gNxI/ApYAawHvj5APcng4gCuohI8YwkujWtEJ1h\n+4K5+3vunnH3LuAWouFuyD+16UZgjJnV9Cj/2L7C56ND/VK0IX1QQBcRKZ5t5H/9vFtN2L5g3TnE\ng1OB7hnwjwJnhNnjU4CpwItEGdCmhtnmdUST2h71aAnR+Xx0Xb9nmtTu1KanAU+H+qVoQ/qghWVE\nRIoknU5nwqIxBxaw+dJ8VpDLkT71KDObQbSG/Gqi9eRx96Vm9iDwKtFIwHfcPRP2812inOXVwO3u\nvjQ0cQlwv5n9b2ARcFsovw2428xWEk3KO6NUbUjfYl3L3cxWA1uBDNDp7ikz+xHwbaA5VPvX7lsr\nctFa7iJSAfo1yzqVSn2TaNGYfCbGbQUuTKfT9xTSMREozRn60e7+fo+ya939ZyVoW0Sk1B4CfpHn\nNjv56PYtkYLoGrqISBGFtdlnAq393KQVmKk13WWg4g7oDjxpZgvN7IKs8t7ukxQRSYR0Or0AOJro\n+u/WHNW2hs+PDvVFBiTugH6Eux9MtOTfd8zsSPp5n6SZXWBmaTNLNzc391ZFRKRihSC9J3Ah0Wxz\nJxpad2BJKN9TwVyKJdZJcR9rKJoMty372nlYcH+Ou/c5I1ST4kSkAgxo6dGwaMxIlA9dYhLbpDgz\nawCq3H1reH0ccKWZTXL39aFa9n2SIiKJFYJ4S7n7IckV5yz3icDDYT39GuBed59rZnf3dp+kiIiI\nFC62gO7ubwLTeyk/O642RUREhirdtiYiIpIACugiIiIJoIAuIiKSAAroIiIiCaCALiIikgAK6CIi\nIgmggC4iIpIACugiIiIJoIAuIiKSAAroIiIiCaCALiIikgAK6CIiIgmggC4iIpIACugiIiIJoIAu\nIiKSAAroIiIiCaCALiIikgAK6CIiIgmggC4iIpIACugiIiIJoIAuIiKSAIkN6JmuTLm7ICIiUjKJ\nDOhvfPAG1yy8hk07NpW7KyIiIiWRyIC+dutanln7jM7SRURkyDB3L3cfdiuVSnk6ne53/W0d22jP\ntDOuflyMvRKRIcbK3QGRvtSUuwNxGFk3kpGM/FjZzsxO2jPtjKwbmWMrERGRwSuRQ+69eW3Ta1zx\n3BVs2q7r6iIikjxDJqBXWzX1NfWYadRMRESSJ5HX0HvT2dVJR6aDEbUjitQrERlidDYgFS2R19B7\nU1NVQ03VkPlyRURkiBkyQ+4iIiJJpoAuIiKSAAroIiIiCRDrRWUzWw1sBTJAp7unzGws8AAwGVgN\nfN3dN8fZDxERkaQrxRn60e4+w91T4f2lwFPuPhV4KrwXERGRASjHkPspwJ3h9Z3AV8rQBxERkUSJ\nO6A78KSZLTSzC0LZRHdfH16/C0zsbUMzu8DM0maWbm5ujrmbIiIig1vcN2Yf4e7rzGwPYJ6ZLcv+\n0N3dzHpd2cbdbwZuhmhhmZj7KSIiMqjFeobu7uvC8wbgYeAQ4D0zmwQQnjfE2QcREZGhILaAbmYN\nZtbY/Ro4DngFeBQ4N1Q7F3gkrj6IiIgMFXEOuU8EHg7JUGqAe919rpktAB40s/OBt4Cvx9gHERGR\nIWFQJGcxs2ai4N9f44H3Y+pOHAZTfwdTX0H9jdtQ6u/77j6zmJ0RKaZBEdDzZWbprPveK95g6u9g\n6iuov3FTf0Uqh5Z+FRERSQAFdBERkQRIakC/udwdyNNg6u9g6iuov3FTf0UqRCKvoYuIiAw1ST1D\nFxERGVIU0EVERBIgUQHdzGaa2XIzW2lmJU3Lamb7mNl8M3vVzJaa2fdC+Vgzm2dmK8JzUyg3M/tl\n6OtiMzs4a1/nhvorzOzcrPLPm9mSsM0vLazaM4A+V5vZIjObE95PMbMXwv4fMLO6UD4svF8ZPp+c\ntY/LQvlyMzs+q7yo3wszG2Nms81smZm9ZmaHVfix/X74OXjFzO4zs+GVdHzN7HYz22Bmr2SVxX48\nc7VRYH//T/h5WGxmD5vZmEKPWyHfG5GK4+6JeADVwBvAJ4E64GVgWgnbnwQcHF43Aq8D04CrgUtD\n+aXAVeH1icDjgAGHAi+E8rHAm+G5KbxuCp+9GOpa2PaEAfb5YuBeYE54/yBwRnh9E3BheH0RcFN4\nfQbwQHg9LRznYcCUcPyr4/heEKXa/VZ4XQeMqdRjC+wFrALqs47reZV0fIEjgYOBV7LKYj+eudoo\nsL/HATXh9VVZ/c37uOX7vdFDj0p8lL0DRftC4DDgiaz3lwGXlbE/jwDHAsuBSaFsErA8vP41MCur\n/vLw+Szg11nlvw5lk4BlWeUfq1dA//YGngK+BMwJf3jfz/oD+eHxBJ4ADguva0I963mMu+sV+3sB\njCYKkNajvFKP7V7AGqJAVxOO7/GVdnyByXw8QMZ+PHO1UUh/e3x2KnBPb8djd8etkJ/9Qn829NAj\nzkeShty7/4h2WxvKSi4Myx0EvEDu/O+5+ttX+dpeygt1HfC/gK7wfhzwgbt39rL/D/sUPm8J9fP9\nGgo1BWgGfmPRJYJbLUr4U5HH1qMsgz8D3gbWEx2vhVTu8e1WiuOZq42B+geikYBC+lvIz75IxUlS\nQK8IZjYS+C3wP9x9S/Zn7u5A2e8TNLOTgA3uvrDcfemnGqLh1hvd/SCglWi49kOVcmwBwnXhU4j+\nEdkTaAAG1RrgpTiexWrDzC4HOoF7BtwpkUEsSQF9HbBP1vu9Q1nJmFktUTC/x93/KxTnyv+eq799\nle/dS3khDgdONrPVwP1Ew+6/AMaYWXcGvuz9f9in8PloYGMBX0Oh1gJr3f2F8H42UYCvxGML8GVg\nlbs3u/tO4L+IjnmlHt9upTieudooiJmdB5wEnBX+QSikvxvJ/3sjUnGSFNAXAFPDbNU6ogksj5aq\n8TCL9zbgNXe/JuujXPnfHwXOCTOIDwVawlDkE8BxZtYUzvSOI7qetx7YYmaHhrbOocBc8u5+mbvv\n7e6TiY7T0+5+FjAfOC1HX7u/htNCfQ/lZ4SZwFOAqUSToYr6vXD3d4E1ZrZfKDoGeJUKPLbB28Ch\nZjYi7K+7vxV5fLOU4njmaiNvZjaT6LLRye7e1uPr6PdxC8c63++NSOUp90X8Yj6IZuO+TjST9fIS\nt30E0fDhYuCl8DiR6HrbU8AK4P8BY0N9A34V+roESGXt6x+AleHx91nlKeCVsM31FGFyDnAUH81y\n/yTRH76VwEPAsFA+PLxfGT7/ZNb2l4f+LCdrZnixvxfADCAdju/viGZVV+yxBf4NWBb2eTfRjOuK\nOb7AfUTX93cSjYCcX4rjmauNAvu7kuj6dvfv202FHrdCvjd66FFpDy39KiIikgBJGnIXEREZshTQ\nRUREEkABXUREJAEU0EVERBJAAV1ERCQBFNCl4pnZc+Xug4hIpdNtayIiIgmgM3SpeGa2LTwfZWZ/\ntI/yot+TlWf7C2b2nJm9bGYvmlmjRTnIf2NRXu5FZnZ0qHuemf3Oonzcq83su2Z2cajzvJmNDfU+\nZWZzzWyhmT1jZvuX7yiIiPStZvdVRCrKQcABwDvAs8DhZvYi8ADwDXdfYGajgO3A94hygPxtCMZP\nmtlnwn4ODPsaTrQK2CXufpCZXUu0VOl1wM3AP7r7CjP7InAD0br3IiIVRwFdBpsX3X0tgJm9RJQj\nuwVY7+4LADxkuTOzI4D/DGXLzOwtoDugz3f3rcBWM2sBHgvlS4DPhax5fwc8FAYBIFq+VUSkIimg\ny2DTnvU6Q+E/w9n76cp63xX2WUWUI3tGgfsXESkpXUOXJFgOTDKzLwCE6+c1wDPAWaHsM8C+oe5u\nhbP8VWZ2etjezGx6HJ0XESkGBXQZ9Ny9A/gG8J9m9jIwj+ja+A1AlZktIbrGfp67t+fe0y7OAs4P\n+1wKnFLcnouIFI9uWxMREUkAnaGLiIgkgAK6iIhIAiigi4iIJIACuoiISAIooIuIiCSAArqIiEgC\nKKCLiIgkwP8H/tBCpRdd1xEAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3044,17 +3043,17 @@ "metadata": { "id": "XAww6V5DmWsU", "colab_type": "code", + "outputId": "373e5dee-2139-4168-d944-b86a3bba9c7f", "colab": { "base_uri": "https://localhost:8080/", "height": 166 - }, - "outputId": "8b651dcb-456d-4dfe-b1bf-069d714fa037" + } }, "cell_type": "code", "source": [ "this_year[this_year.income > 80000]" ], - "execution_count": 49, + "execution_count": 30, "outputs": [ { "output_type": "execute_result", @@ -3144,7 +3143,7 @@ "metadata": { "tags": [] }, - "execution_count": 49 + "execution_count": 30 } ] }, @@ -3152,17 +3151,17 @@ "metadata": { "id": "2QTzH_9tm904", "colab_type": "code", + "outputId": "80b4f12e-aed0-49cf-86fd-4291f1dd0463", "colab": { "base_uri": "https://localhost:8080/", "height": 1024 - }, - "outputId": "7236f6bd-625e-47b6-b023-179842d0abf6" + } }, "cell_type": "code", "source": [ "entities[entities.name=='Macao, China'].T" ], - "execution_count": 58, + "execution_count": 31, "outputs": [ { "output_type": "execute_result", @@ -3366,7 +3365,7 @@ "metadata": { "tags": [] }, - "execution_count": 58 + "execution_count": 31 } ] }, @@ -3387,17 +3386,17 @@ "metadata": { "id": "adPr6szPn1tY", "colab_type": "code", + "outputId": "624f5b5e-5a7c-464c-d16d-d7b20ef3c25d", "colab": { "base_uri": "https://localhost:8080/", "height": 50 - }, - "outputId": "f28aba33-37af-4c7a-acb0-d1e3ecbfcd58" + } }, "cell_type": "code", "source": [ "qatar.income" ], - "execution_count": 65, + "execution_count": 33, "outputs": [ { "output_type": "execute_result", @@ -3410,7 +3409,7 @@ "metadata": { "tags": [] }, - "execution_count": 65 + "execution_count": 33 } ] }, @@ -3418,17 +3417,17 @@ "metadata": { "id": "vyamBGBUn_hd", "colab_type": "code", + "outputId": "ce21b8eb-178e-4332-8364-6f7df243c651", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "d192e5ce-36d9-4922-cb9e-065c1b6948d7" + } }, "cell_type": "code", "source": [ "qatar.income.values" ], - "execution_count": 66, + "execution_count": 34, "outputs": [ { "output_type": "execute_result", @@ -3440,7 +3439,7 @@ "metadata": { "tags": [] }, - "execution_count": 66 + "execution_count": 34 } ] }, @@ -3448,17 +3447,17 @@ "metadata": { "id": "rRWGyuqzoBRK", "colab_type": "code", + "outputId": "589e257d-3358-4771-d152-938bc9081d54", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "5b7fe402-1984-4102-86b2-0906fc8b1193" + } }, "cell_type": "code", "source": [ "type(qatar.income.values)" ], - "execution_count": 69, + "execution_count": 35, "outputs": [ { "output_type": "execute_result", @@ -3470,7 +3469,7 @@ "metadata": { "tags": [] }, - "execution_count": 69 + "execution_count": 35 } ] }, @@ -3478,17 +3477,17 @@ "metadata": { "id": "yG88fJ-CoIQ8", "colab_type": "code", + "outputId": "33b9f02f-d4de-4182-d60e-970e26950808", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "0075c006-9fe2-4324-fa39-cf7279c63a5d" + } }, "cell_type": "code", "source": [ "type(qatar.income.values[0])" ], - "execution_count": 70, + "execution_count": 36, "outputs": [ { "output_type": "execute_result", @@ -3500,7 +3499,7 @@ "metadata": { "tags": [] }, - "execution_count": 70 + "execution_count": 36 } ] }, @@ -3522,11 +3521,11 @@ "metadata": { "id": "wv39rkyRoQ3c", "colab_type": "code", + "outputId": "255655fc-a6d2-4ab0-f7ff-b90a761b5c05", "colab": { "base_uri": "https://localhost:8080/", "height": 382 - }, - "outputId": "a32f391e-0343-44f2-ce4c-c4f3d6e054f0" + } }, "cell_type": "code", "source": [ @@ -3537,14 +3536,14 @@ "\n", "plt.title('Qatar has the highest incomes in 2018');" ], - "execution_count": 82, + "execution_count": 38, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFtCAYAAADxv5gBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVNX5wPHve6fszM5s32XpLB0E\nERC7IgjWGEti7w2TGJLYe+EXeyUxiTVRsEZFNNiClQiiKFVAUdrSWbbPlulzfn/cu8uy7C7bhm3n\n8zz7MHPLuefOLvPec+655xWlFJqmaZqmdWxGW1dA0zRN07SW0wFd0zRN0zoBHdA1TdM0rRPQAV3T\nNE3TOgEd0DVN0zStE9ABXdM0TdM6AR3QOxARyRWRyW1w3HkiclUrlVXvOYjIMSLyUyPLmSAiW1uj\nTk3RlDp2JCLSV0TKRcTW1nXRNK15dECvh4hcJiIrRaRSRHaKyFMiktKE/ZWIDIpnHeNBRKaJyCtt\ncWyl1Hyl1NC2OHaVfV00tYc6xoNSarNSyquUijZ1XxE5XEQ+EZEiEckXkbdEpEeN9SIiD4tIofXz\nsIhIjfXPichPIhITkctqlS0icp+IbBORUuvickSLTlbTOikd0OsgIjcADwM3ASnA4UAO8LGIOPbD\n8UVE9O9G6yjSgOcw/4/0A8qAF2usvxo4AzgIGAX8EvhNjfUrgGuApXWUfTZwBXAMkA58DbzcqrXX\ntM5CKaV/avwAyUA5cE6t5V4gH7jUen8o5pdLCbAD+DvgtNZ9CSigwirrXMwvvfetMoqt171rlD8P\nuB/4CvADg+qoWy5wI/A9UAq8Abisdfsq/zJgA+aX7UbgwjrKPwkIAWGr3itq1O1eq25lwMdAZo39\nDgcWWp/FCmBCA59vQ+cwAdhaY9uxwDLrmG9Z295Xc1vgBmCX9Tu4vMa+CcBjwGYgD3gGcFvrMq3P\npwQoAuZjXty+DMSsz78cuLmO+teuY73nY60/HVgO+ID1wEnW8p7AHOv464ApNfaZZp3vK9a5rwSG\nALdZ57oFOKHG9inAv6zPYBtwH2Cz1g0C/mfVrQB4o57fSw7m36y9Mb/zffwfGguU1Xi/ELi6xvsr\ngW/q2G8BcFmtZbcAb9Z4PwIItPX3hP7RP+3xp80r0N5+MINapOqLrda6mcCr1uuDMQOZ3foy/BG4\ntsa2ihpBGcgAfg0kAknWF/a7NdbPs4LPCKtMRx3HzwW+tYJBunXM3+6rfMBjBZSh1vsewIh6zn8a\n8EqtZfOsYDQEcFvvH7LW9QIKgVMwg+Lx1vusespv6BwmYAVLwAlsAv4EOIBfYV5s1AzoEeDP1vpT\ngEogzVo/HTNgplufx3vAg9a6BzEDvMP6OQaQGvWb3MDfR3UdG3E+h2IG0uOtz6YXMMxa9yXwFOAC\nRmNeiB1X43cQAE60/hZewrwIu8Oq7xRgY406vAM8a/2eu1n1+Y217nVrP8M61tH1nFcOewf0On/n\njfg/dC01Arb1GRxW4/04agT8GsvrCuj9gCVWPRzAI9T4f6N/9I/+2f2ju3X3lgkUKKUidazbAWQB\nKKWWKKW+UUpFlFK5mF+ox9ZXqFKqUCn1tlKqUilVhtkar739DKXUaqvMcD1FPamU2q6UKsIMUqMb\nWX4MGCkibqXUDqXU6n19ELW8qJT6WSnlB96sOi5wEfChUupDpVRMKfUJsBgzwNanznOopepi6Uml\nVFgpNRszUNUUBv5srf8Qs1U91Lo/ezVwnVKqyPo8HgDOq7FfD6Cfte98pVRLkhrUdz5XAi8opT6x\nPpttSqk1ItIHOAq4RSkVUEotB/4JXFKjzPlKqbnW3+FbmH93D1l/F/8GckQkVUSyMT/ra5VSFUqp\nXZgXMzXPtR/Q0zrWgiacV32/83qJyCjgbszbVVW8mEG9SingrXkfvQE7MAP9T5g9J2cD1zWu+prW\nteiAvrcCIFNE7HWs62GtR0SGiMj71oA5H2bAyKyvUBFJFJFnRWSTtf2XQGqtUcVbGlG/nTVeV2J+\nWTZYvlKqArPb/7fADhH5QESGNeJY+zwuZrA4W0RKqn6AozE/q6aWVVNPYFutQFv78ymsdeFVVVYW\nZk/Fkhp1+q+1HOBRzG7uj0Vkg4jc2kBdG6O+8+mD2cqtrSdQdaFRZRNmC75KXo3XfsyLzGiN91jH\n6YfZct1R41yfxWypA9wMCPCtiKwWkSta4bzqZA0C/Qj4k1Jqfo1V5Zi3sqokA+WNvIi6GzgE87N0\nAf8HfC4iiY3YV9O6FB3Q9/Y1EMTs4q0mIl7gZMyuR4CngTXAYKVUMnA75hdnfW4AhmJ2PSYD46uK\nrrFNS1qJDZZvtfaOxwy0a4Dn6ymnqXXYAryslEqt8eNRSj3U9FPYww6gV61WXJ9G7luAGfRG1KhT\nilLKC6CUKlNK3aCUGgCcBlwvIpOsfVsz/eAWYGAdy7cD6SKSVGNZX8z73805RhDz/nbVuSYrpUYA\nKKV2KqWmKKV6Yg5EeyoeT1+ISD/gU+BepVTtQWurMQfEVTnIWtYYozHv+2+1eq5mYI4XOaCFVda0\nTkcH9FqUUqWYrYC/ichJIuIQkRzMLscC4FVr0yTM+9LlVmv3d7WKygMG1HifhBlkSkQkHbinlate\nb/kiki0ip4uIB/PLvxyzC74ueZjduY3923gF+KWInCgiNhFxWc+I927+qQDmhVUUmCoidhE5HfOe\n9D4ppWKYFyzTRaQbgIj0EpETrdenisgg62Kh1DpO1edR+/fWEv8CLheRSSJiWHUYppTagjlQ7EHr\n8xqF2T3f5McFlVI7MAesPS4iydZxBorIsQAicnaN30Ux5gVLfb/7ZhGRXsDnwN+VUs/UsclLmBdN\nvUSkJ+bF54wa+ztFxIV58emwPpOqv7/vMHuAsq1zuxizR2Jda56DpnUGOqDXQSn1CGaL+zF2jwpP\nxBwsVWFtdiNwgbX+eczRzTVNA2Za3aDnAH/BHFxUAHyD2QXcmhoq3wCux2wZFmHeW699AVLlLevf\nQhGp6zGiPVjB6XTMzysfs8V4Ey3821JKhTB7Sa7EHI1+EebI9GAji7gF80v/G+sWxKeYPRgAg633\n5ZgXDk8ppb6w1j0I3Gn93m5s4Tl8C1yOeU+7FHO0eT9r9fmYA9G2Yw5qu0cp9WkzD3UJ5iDCHzCD\n9ix23/I4BFgkIuWYgwT/pJTa0Mzj1OcqzIugaWJOTlNuHa/Ks5hjC1YCq4APrGVVPsa8GD0S8/E3\nP7t7mB7GfHJiOebfwXXAr5VSJa18DprW4VWN7NUaICKXY46mPkoptbmt69NVicgi4Bml1Iv73FjT\nNK2LqWvgl1aLUupFEYlgtiB0QN9PrG7jnzB7HS7EnJSktXs2NE3TOgUd0BupjoE+WvwNxRy74MGc\nFOcs656xpmmaVovuctc0TdO0TkAPitM0TdO0TkAHdE3TNE3rBDrEPfSTTjpJ/fe/eiyUpmltqjFT\n1Wpam+kQLfSCgoK2roKmaZqmtWsdIqBrmqZpmtawuAZ0EbnOSgixSkRet6Z0nCEiG0VkufWzzwxO\nmqZpmqY1LG730K35nf8IHKCU8ovIm+xO6XiTUmpWvI6taZqmaV1NvLvc7YDbSkWaiDlvtaZpmqZp\nrSxuAV0ptQ0zuclmzFSYpUqpj63V94vI9yIyXUQS4lUHTdM0Tesq4hbQRSQNMwtXf6An4BGRi4Db\ngGGYWaDSMbNi1bX/1SKyWEQW5+fnx6uamqZpmtYpxLPLfTKwUSmVr5QKA7OBI5VSO5QpCLxIPTmu\nlVLPKaXGKaXGZWVlxbGamqZpmtbxxTOgbwYOF5FEERFgEvCjiPQAsJadgZkfWdM0TdO0FojbKHel\n1CIRmQUsBSLAMuA54CMRycKcdWk58Nt41UHTNE3TuooOkW1t3LhxavHixW1djS4pFotSWVpKsKKc\nBI8Xb1p6W1dJ09qKnvpVa9c6xFzuWtvx5e/i1duuI1BRjjc9gwvuf4Kk9Iy2rlaXFAmFCPkrsSck\n4HS527o6mqa1M3rqV61BP3+zgEBFOQDlRYVs/+mHNq5R1xSsrODHBfN48947+Gb2G/jLfG1dJU3T\n2hndQtcalNGr7x7vU7J7tFFNurZgZSUfP/skAIVbNjH8qAm4k5LbuFaaprUnOqBrDeo5dDiTrvwd\nucuXMOzoCaRmd2/rKgHgL/OxefX3hAMBBowZR2JKaltXKa4Mw8DuTCASCoIIDperraukaVo7owfF\nafukYjEioRD2hATMpw3bvj7fznmbBa/PBGDkcScw8dIpnfq+ciQcpnDrJlZ88hGDDz2SnkOGk5CY\n2NbV6mra/o9f0xqgW+jaPolhtKsWYSwWpWDTxur3RVs3Eykrw+FMQIzOOSzE7nCQ3X8Qx0+Z2i4u\nqjRNa38657ef1qnZ7A6OPOcikrOySUxJZfwZ51Jw9zRCGza0ddXiTgdzTdPqo1voXVikpISYz4c4\nHBgpKdg6UBduavcenD/tIUK5ufiefhb/gq/Idzro+cgjGAk6309rqSgpJuSvxJmYiCclra2ro2la\nA3RA76Ki5eUUvTiDwmefBcOgzzNP4znmmA7TAhQREj1eyj6ai3/BVwC4DhiBOBxtXLPOo6K4mNfu\nuhFffh7ZAwZx5q336KCuae2YDuhdVMzvp+TNN603MYpffx33uHEdqpVuuN1k/f4aEscdjJHgwj1m\ndKe9h94WKn0l+PLzAMjbsI5IMNTGNdI0rSH626+LMpxOPEceUf3eO3EiRisPfAsHg5QVFlCan0ew\nsqJVy65iT08n5eSTSTpuIvY03XpsTYkpqaR0ywag+8Ah2J3ONq6RpmkN0Y+tdWGRoiKCa9ZgJCfj\n7NMHW0pKq5a/5YeVzLrvTmLRKJOu/B0jjp2MQ9/f7lAqSooJBfw43Yl4Ovmz/o3QMe5HaV2WbqF3\nYfb0dFwjR2JLSyMWCBALBPbaRoXDhPN2EdqyhUhxcaPLjoRCLP1oDrFoFIClH71HpKKcSEEB0Yr4\ntNa11udJTSOte08dzDWtA9ABvQuLlpdT/NrrrJ80mfWTjyewahW1e2yCGzay/uSTWX/8Cex6+BEi\nxSWNKtvmcDBo3OHV70+46AoqZs0m9/wLKHzuOSIljStH0zRNaxw9KK6LCVSGCZSFUUrhkUoKnn0W\nMFvihc//k57Dh2PzeMxlSlH86quoykoASt99l6xr/9So44gIA8cdxiWP/p1wIECG20P+9y+Tfcft\nqEDALDO1fbT6omVlxMrLwWbDnp6O2PV/i/pEfT7zs3I4sGdmdpinIjStK9At9C4kFlPkrijg1Xu+\n4bVpiygvjeAaNqx6veugUXs8wy0iuMeOqX5v79mzScHO5fGS1TeHnkOGYbhcpJxxOttvuZVdT0xH\nRSKtc1ItFAsE8H3wIesmHseGk08hlJvb1lVqt6Ll5RS9+irrjpvExjPOJLx9e1tXqU5bt27l9NNP\nZ/DgwQwYMICpU6cSDAbr3T43N5fXXnttP9ZQ0+JDB/QuJBqOsm7prur3i74opNdf/0r2HXfQ84nH\nSTv//L0CtnfCBHr/4+9k3XgDOa++gj0zs97yC8qD/LSzjJ2+AGHr3nlN+X99klhpKeHNmyn8179Q\nsVjrnVwzxcrKKPzXv8zXFRWUvD27jWvUfsX8fopeeBGAaGEhFfMXtHGN9qaU4le/+hVnnHEGa9eu\nZe3atfj9fm6++eZ692lOQBcR3Y2jtTs6oHchdqeNURN7I4YgAkMOzcbIyCD94otIOeWUOh/7sqem\nkjRpEplXXYXh8eBfvZrK5cv3GiBXUB7kNy8v4cS/fMnER+exrXjPAXZGQgLOAf2r3ycMG94unhkX\ntxvPMcdYbwTvhGPbtkLtmDiceI480nxjt+/Re9NefP7557hcLi6//HIAbDYb06dP56WXXmLVqlUc\nc8wxjB07lrFjx7Jw4UIAbr31VubPn8/o0aOZPn06ubm5dW4nIhNEZL6IzAF+aKtz1LT66MfWuphw\nMEKwMoJSkJBox+lqXENDKUXJrFnsvOtuADJ/fw0ZU67GcJld9NuK/Rz18OfV2z/4qwM5/9A9c6lH\nCgsp++xzbGmpuEeNQgWD2JKTsbXxvfRIcTHh7duxJSVhS0/H5vW2aX3as0hREeEdO7CnpWNLT2v1\nuQta6sknn2Tjxo1Mnz59j+VjxozhH//4B2PHjsXlcrF27VrOP/98Fi9ezLx583jsscd4//33Aais\nrMQwjL22E5GJwAfASKXUxr2PrmltS3cbdTGOBDuOhLp/7f7yMqLhMI6EBBISPUR9PrDbsSUmokIh\nKqwpVgEqvv6G9EsuASugJzgMRvZKZtU2Hwl2g0Oy3fh/+AFnv37Vg+zsGRmknXM2/jVrWDdpMkQi\nZP5hKumXXVa9TVuwp6XpSWkayZ6ejj09va2r0SzhcJgpU6awfPlybDYbP//8c73bTZ06tb7tvtXB\nXGuvdEDXAKj0lfLFjOfYuGwxY07+JaOPnUzhHXdiS00j+9ZbsGdmknHVVZR/+SUqEiHzmmswarRk\nM70JzLjsULYWVZAR9RN+4gFyP/mYgR/P3SNYK6UofuUVsAbFlc5+h9Rzzm3TgK51HgcccACzZs3a\nY5nP52Pnzp18+OGHZGdns2LFCmKxGK56ehemT5/e0HZ6EgWt3Wr7m5hau1BeWMCar/5HsLKCb97+\nN4GiIioWfIXv/fcpmvkSAAnDhjJw7n8Z9OknJI47GLHZ9igjMymBEY4g5b88keDc/0IsRrTWvXYR\nIeXUU8G6f5504okY7vbVbat1XJMmTaKyspKXXjL/ZqPRKDfccANTp04lFArRo0cPDMPg5ZdfJmoN\n3ExKSqKsrKy6jNLS0jq307T2Tgf0OCosD7LLF8DnD7d1VfbJlZSMYQVol8eLrcaANcNK2GI4HDi6\ndcORnV3vvVPD6yHrD1OxpaaSfOqpOHr12vtYBx7IoE8/YcAH75MxZUq7uGcdCwbxr17Nzj//mYpF\ni/Rsdh2UiPDOO+8wa9YsBg8eTEZGBoZhcMcdd3DNNdcwc+ZMDjroINasWYPH6hUaNWoUNpuNgw46\niOnTp9e7naa1d3pQXJwUlAW5cuZ3fL+tlKkTB3HVMf1JcbcsuUWkoIDg2rU4+vXDnpmJ4XQSCwaJ\n+nwIYEtP36vV3FjhYJDiHVvZvHIF/UaNIdntofCvf8WWnkHGZZdiz8hodFnRigpigQCiFIbX2+4G\nTtUlnJfH+hNORAWDYBgM+vQTHD17tnW1tBZauHAh559/Pu+88w5jx45taXF6Fh2tXdP30OPkx50+\nVmwtBeBvn6/jwsP6keJufnmRggI2XXwJoY0bkYQEBnz4AY5u3fAvXcqW3/4Ow+2m36uvkDBwYLPK\ndyQkEI1E2bBsMd+9NxuXN4nzpz1Mgtdb/XhZpKCAaHk5RqIHe2YGYhjEwmEi23fgX7EC98FjcXTv\njthshNavp+Dvf8c5cBBZf5ja7gdSqWjUDOYAsRgxv79tK6S1iiOPPJJNmza1dTU0bb/QAT1O+qYn\nYjOEaExVv24JFQoT2mgOrlXBIKHcTRhuN7sefQwVDBINBil49jl6PnA/YrejolHC27ZR/sU8Eg8/\nDGe/fvtsKe9c9xNbVn8PQGVpCcGAH1dyMmAG881XXEHw57XY0tPp//YsHD16EC0qYsMZZ6D8foyU\nFAa8NweUYsuVV6HCYfzfryTt3HMIbd6MPTUVW2Zmu+hir83m9ZJ9110Uv/oqSccf36QeCU3TtPZA\nB/Q46ZaUwMfXjufHnT7G5aSTldSytKHidpF86qn43n8fR79+uIYMRhISSDjgAAI/mHNcuMeMqZ7p\nLVJYyMazzyFWWgoOB4M+/hijR/cGjzFw3OF8+59ZlBcVMuyoY3G6dncpRIqKCf68FoBoURGVi5eQ\n8stTiZaWoqzWbKy0FBUIgM2GCpvjBjKmTKHwxRn4/vMfEKHvzBl4Dj20RZ9FPNiSk0n99a9IPulE\nxO3GZo0b0DRN6yh0QI8Tt9POwG5eBnZrndaoPS2N7Dtup9v11yFOZ/UUrN2uvw7v+PEYSV5cw4fv\n3iEcNoO59TrqK8XwejA8nnpnaEvOzOLCB/9CLBzG4XLhTkquXmdLTcHwJBKrqAQREoYNNeuVkUHi\nkUdSuXAhyaecjOFNQmwGmb+/hoKnnyFh8CBKqh4jUoqKhQvbZUAHMFyuDnG/X9M0rS56UFw7ForE\nEAGHrekPI0RKSyl+6WWKX30Vz7HjSb/0UnY9+hhZf5iKa+RIDGfTBuipcJjwjh2UL/iKxDGjcfTt\nW/3seKSoGBUJmxca1qxv0bIy8z60YVD+6WfsnDYNIzmZnDf+TUL//g0dStPiJhKOEawwe49cXjs2\ne5MGkepBcVq7pgN6O5XnC/Dwf9eQYDO4/oQhZCU1veUYLS8n5vcT9fnIPetslN+PuFwM/Hgujm7d\n4lDrBupRMz1pM0fia1pLqJhi+9oS5vxtOYYIZ1w/huz+KU0pQgd0rV3TXe6twF8eIhZVuBLt2Bwt\nD1ZlgTC3zV7J52vMzGhRpbj39JEkNLFsm9eLzeslvH179X1usRmwn3NYV9VD09pSKBBh8Ye5xCKK\nGIolczdxwhUjsDv1BabWOeiJZVqoojTIR8+s4q0HF7NtbSmRcMtnlYrFFP4a5ZQHI7Qk0aizXw7Z\nd91J0gnH0/fll6u7xTWtK7E7bfQ+YPec/X2Hp2Oz669ArfPQXe4tUBYIU1QUYNeGUr5/dyMicO6d\nh+JJadmIdoDNRZXc+NYKHDbhsbMPokdLHmIHVCyGCocxElpeN03rqALlYUoL/BiGkJThwuVxNGV3\n3eWutWtx7XIXkeuAqwAFrAQuB3oA/wYygCXAxUqpUDzrEQ+llSFmfp3L0/M2MLZvKvf9cRRLXl+L\n0cLnzav0TU/k2YsPxhBaPMMcgBgGooO51sW5vA5c3iYFcU3rMOLW3yQivYA/AuOUUiMBG3Ae8DAw\nXSk1CCgGroxXHeKpPBjhiU/W4g9H+Wp9IWuKfZz6+5G4k1oefKukJTpbJZhrLROJxPCXhQiHdJIO\nTdPar3jfQLIDbhGxA4nADuA4oCq/4UzgjDjXIS7sNgNPjcE0PVwhXJQ1sIfWEQX9YX5etJM5Ty7n\n+8+2EKho/4l2NE3rmuLW5a6U2iYijwGbAT/wMWYXe4lSKmJtthXYOx1XB5DucTL7N+N4ZdFWju6T\nQP+ypcCEtq6W1spClRG+eHkNAAVbyhkwJqup9101TdP2i3h2uacBpwP9gZ6ABzipCftfLSKLRWRx\nfn5+nGrZfA6bwdB0O/eOLuHE8KekDDoMvFlxO16koIBw3i6iPl/cjqHtTQzBsFvjIgRsDj0qWtO0\n9imeg+ImAxuVUvkAIjIbOApIFRG71UrvDWyra2el1HPAc2COco9jPZvPnQoDJkD/Y+P6bHdo+3Y2\nXXQxke3bSb/0EjJ/9zts+tGz/cLlcXDm9WNZPX8bgw/J1q1zTdParXg2NzYDh4tIoogIMAn4AfgC\nOMva5lLgP3Gsw/7RgmAejdX9hHllKMKOUj/FlSGKXpxBZPt2AIpmvkS0vLzpx6msJJKf36x9uzK7\n00b3ASlMvHg4fQ/IwOnSczFpmtY+xS2gK6UWYQ5+W4r5yJqB2eK+BbheRNZhPrr2r3jVoT2rCEZY\nuK6AG978ngXrCqgIRqrXRWOKbzcWcfTDX3Dr299j9OhRvU6cTsTRtFZipLSUohkz2Xj2OeT/5a9E\niotb7Ty6itZ6HFHTNC1e4trcUErdA9xTa/EGoH2m29qPSv1hLn7hW6IxxZwV21hwy3F4EsxfR0Uw\nwvPzNxCNKT77cRc3X3486UWFBH/6mczf/bbJ3e0xXxkFTz6Js38OlUuWECkowJ6Wts/92ps8X4C3\nl2zFH45y3iF96Z6cgK0ZiWs0TdM6I91/2EbC0RjRmDk0IKYgFN3d9e522jh+eDZfrSskElMsK1Wc\n8cc/IeEQRmIi0sQufnE68Dz4CLm9h1JUGSY5qycdLUloflmAM//xFdtLAwDMXJjLJ9cfS3ZyRzsT\nTdO0+NABvY2kuh3cfspwZi3Zwq/G9ibVvbsb3WEzOGNML44clIkhkOV1YXc6wNm8AVm2tDSW9DmI\n62atBOCMHSHuPWMkSa6OM8ArzxesDuYAvkCEZVtKOGlE9zaslaZpWvuhA3obSUl0cvERffnV2F54\nnHbctTI+pSY6SU1snVniDKeT5dt3T3rzww4fwUiMpFYpff9Ice998dEzRbfONU3TqnTpG5D5ZQHe\nXbaNlVtLKAu0bAYwfyhCONq0nGhuh51Mb8JewTwerjy6P73T3HicNqadNqLOANmeJbsd3HjCEBw2\nwRC46LC+9E5LbOtqaZqmtRtdNttaYXmQy2d8x/dbSwF495qjGN236c92R2OK9fnlPDr3J3IyPPz2\n2AFkeNtnEpT8siAKRarbibMDpo2sCEYoC0RQKDxOO8kd7KJE6/D0ow5au9Zlu9yjSvHTzt3d0Gt2\n+poV0Asrgpz77NcUV5ot/DSPg2smDGq1eramrKT2eaHRWJ4Ee/WTAJqmadqeOl4zrZV4nHamnTYC\nuyEM7uZl4rBu9W4biynyy4Lk+QL4a2fcUmbmtSoFZcF4VVnTNE3T6tVlmzueBDu/PKgnk4Z1wzCE\nzAa6yXMLKzjrma8p9Yd58vwxTBrWDZfDvO/tddn52/ljuOOdVfRKc3P1+IF77BuLRQmUl2Oz2Unw\neFr9PCIFBahwGHG5OuSz5ZqmaVrr6LIBHcCbYMe7jy5cpRT/nL+BoooQAA9++COH5qRXB/REp50J\nQ7vx0bXHYBPZ4/55NBIhb8NaPnvhGbzpGRw/ZSretPRWq38kP59Nl15GaMMGkk48ge733IM9vfXK\nB/P8K33muScmO5v8DLymaZq2f3TZLvfGEhHG5ewOkmeO7okroigrqKBi8w7KvpyPvayUbkmuvQbD\nBcp8zLrvLnZtXM+GJd+y8M1XiUajtQ/RbP4V3xPasAGAsrkfEyuvaLWyq5TkVfLOY0uZ/ehSSvIq\nW718TdM0rXV06RZ6Yx03rBuvTzmMimCUsele3rj3W4KVEY7+9QCGjh5CMBCjYH0JLq8Td7KTBLf5\nsSrMLvcqkXAIVAxoncfUnP0HOqT2AAAgAElEQVRzzMQwSmGkpCCu1h30Fg5GWPj2Okrz/QB89fY6\nTrhyhE5Qomma1g7pb+ZGSE10csTATAC++c96gpXmILglH29hUG8n9uR0Pn4hn7LCAL/4/ShyDjS3\ndXm8nH7jnXzy3N/xpKVxzPmXYrO33qNW9u7dyXnrTfzLluE99ljsGRmtVjaAYTNI7e6BlYUApGYn\nYnTAx900TdO6gi77HHpzbfu5mHefWAbAwNFpTBixFGf+d3xZ+QdWL8hjyGHdmXTpMAzDDHyRcJhg\nRRli2EhMTqmzzIpghPJghEg0RoZdEV78LRXffkvaeefh7NMHMRoXRKM+H5WLF1O5eAlp552Lo0+f\nFt/z9peFyLUCes6BGbiTWmf2uiqxaIyyoiBbfiikx6BUkrPcOPbDRDua1gx6AInWrukWehNl9Uni\n/LsPoTK/gAx3Ia637yFyxHUECmKIIQw/snt1MAewOxzYU+sfqBYIR9lZGuDZLzewYksJN0wexJAv\nF+B//TV8/5lD//+8iyMrq1F1C23ewtZrfg+A7/336D97NvbMzBadrzvJyfAje+x7w2byl4V584Hv\nCPkjGIZwwZ8PJyXTHbfjaZqmdVY6oDeR020n3Z1EekoAlsyGE+5HhpzCoUMTOeqswbgS9+xSjxQU\noJTClpSE4dp77vHKYJg1O328uXgLANe8vpwvzjsHXn+NaGkpNKEHJVpUtPt1cQkq1rSpaNtCOBQl\n5DdvYcRiirLCQKcO6BWlJcQiEezOBNxJHWk2fU3T2jsd0JvLkwXjbwDMIW7pdXw3h7ZvZ/NllxMp\nKKD3X/9C4uGHYzj2DPgJdhuZNWZw87rs2NxunP1zyLr2OmxN+NJ3jRxByhmn4/9+Jd1uuhFbcnJz\nzmy/SnDbyTkwg9yVhWT08pLeo/Wf1W8vKkqKmXXfnRRs2cRBx5/CUederIO6pmmtRt9DjwN/mY9Q\nIID/5Vcofu55AJw5OfR75eU6u8B3+QJ8m1vE1+sLuezIHHI8BhLwYyQlYSQ0beR6tKwMFQxiJCcj\nhkE4L4/Ajz/iHjECe3Z2o+/HN1elL8jqBdtxe50MHJPVqHvu/vIQkVAMm90gMbl179G3J1tWr+TN\nP99W/f7qp2aQlNGyWyLaftVp7qGLyGnAAUqph9q6Llrr0S30VlbpK+XjZ56k0lfC5EPGVy93Dh1K\nzAqmxZUhwpEYSS47bqedbskuTh3Vk1NH9dxdkLd5LVVbUhJYrb7wrl1sPP0MYuXl2FJT6T9nDo5u\njbsf3xxBf4R5r/7ExhUFAERCUUZP7rvP/dzezhvEa0rJ7o7dmUAkFCSjd18Mu/7vp7WcmCNfRSnV\n6HtsSqk5wJz41UprC/obpRXFolFW/+8z1i9ZBMD2cYfT+5mniBYU4hg5gopQAF95gD/9eznrdpVz\n+ynDOX54NolxSjgSKy8nVl4OQLSkBBXwx+U41ceLxqgsDVW/LysMoJTq0LPLqZiisixENBzD4bK1\n6OLDk5LK5dOfpiRvJxm9+uBJaXoyIE0DEJEcYC6wCDgYeEREfgskAOuBy5VS5SJyCvAEUAF8BQxQ\nSp0qIpcB45RSU62yXgAygXxr380iMgPwAeOA7sDNSqlZ++sctabTDxW3In+Zj6Uf/qf6/Wevz2TR\n6uWUH3YMs7ZE+bFEke8L8NW6QvJ8Qa57Yzm+QKSBElvGlpKK5+ijAUg64XgMrzduxwJweRxMvHgY\n6T099BiUypgT+3boYA5QVhzg3/d+y8t3fs2iORsJVISbXZbN4SA5sxt9R4zCk6rn3ddabDDwFHAs\ncCUwWSk1FlgMXC8iLuBZ4GSl1MFAfd1zfwNmKqVGAa8CT9ZY1wM4GjgV0N3z7ZxuodehJa2yipLi\n6teGzcbQU8/ltOeXURGKApt45qKxHJKTxne5xbgdNow4xjt7Rjo9H3kEFQkjDkfck7eICOk9PJx+\n7WjEkE7Rlb51TTGBcjOIr56/jUN+kdO2FdK03TYppb4RkVOBA4CvrAtoJ/A1MAzYoJTaaG3/OnB1\nHeUcAfzKev0y8EiNde9aXfk/iEh2HM5Ba0U6oNehvDjIWw99h78szAFH9+SIMweSkGhnR2mA+Wvz\nGdM3jT5pbtzOPT8+w2ajx6AhbP95DQDu5BQ2F1Zawdz0yQ95XHFUf5JcDq6bPIQ0T3yDnj19/7YE\nxRASkzt23vWaegxMwbALsYiiz/B0DFvH7nHQOpWq5A0CfKKUOr/mShEZ3QrHqJkPWv/xt3M6oNdh\n29pi/GVmq+yHBds59Jf9yS8PcuZTX5HnC2I3hHk3TaB3rYDuTkpm/IVX8O97bgagsrSEAdnJeBPs\n1TnTTx7ZgwlDsxg/JAtPnO6da60nKcPFxfceQaUvRFK6q1P0OmidzjfAP0RkkFJqnYh4gF7AT8AA\nEclRSuUC59az/0LgPMzW+YXA/P1QZy0OdESpQ3ZOcnWrrNeQVAybEI3GyPOZF6uRmGJXWZDeaYl7\n7ZvVL4czb7mHz154Gl/+Lmxl5bx9+WF8taGQYdlJeHwRYqEYHrf+6DsCu8OGN82GN23vSYE0rT1Q\nSuVbg9xeF5Gq7rE7lVI/i8g1wH9FpAL4rp4i/gC8KCI3YQ2Ki3ultbjQz6HXIRKO4i8L4/eF8Ga4\nSExy4vOHeenrXJ6at54jBmTwyFmj9kqXqqJRIoWFqHAYlZBAQEUxDC+zH19OUpqLitIQ3vQETv7N\ngbg8rZekJd5CkRil/hAJdhvJ7o5Tb01rZR2uy1lEvNZodwH+AaxVSk1v63pp8aEDehOUBcL4Q1Ec\nNqPOe9+hzZvJPedcoiUlJE+5Gu+ll+FJTmbrT8V88q/VON12fvnH0R1qNjR/OMKCtQXc98GPjOqV\nwrTTRux1IaNpXURHDOjXAZdiDpRbBkxRSlW2ba20eNEBvR6R/HwqFi7EOWAAzpycfU7BGghHKd5Z\nQGTHDiJPPk7oxx+QV94mq29Pkhw2gtZ85YnJzlZ5lCsWDuMvLUGJYHM6cSfFZ5rXXb4ARz/8BaGo\nOWfFPy8dx+TherCr1iV1uICudS36OfQ6RIqKKXrtNcq+mMemCy8ilJvb4PahSJSv1xcy4dmlnDE3\nn8Ad9+E9/Qw2loSIxhR2pw1PSgKelITWCeahEJUF+fz3mb/y7DWX8ek//0Glr7TF5dZFRMiqMdd8\ndpJunWuaprVHOqDXochI4Nl+E3lz8hUkz3iV4IYNDW5f6g9z95xVBCMxCitCPLmkAHXVNQwY0IOM\nOIyKjvp8lGzZTO7K5QD8/M1X+Mt8rX4cgKykBN74zeH8adJgZl5xKH0zOs7tAk3TtK5ED7WupTwQ\n5q73fmDu6jwAQkf15caJE/e5X06Ghy1F5tSqg7p5cSV56OVtWYs8WlqKUgp76p5ThIoInvR0xDBQ\nsRg2hwOne+8R962ld1oi1x0/JG7la5qmaS2nA3otgUCUUv/u6T2LgjHw7HvK1OsmD2F0n1SS3Q5y\nMjysz68gM2nPR538ZSEqfCFciXZcHgd2p63e8sI7drL99ttR4TA9H3wAZ58+1evsGRm4o1HOu+Ne\ncletYPDhR+P26jScmqZpXZkO6DVUloVY9s567j5+GHd+9ANup43rjx+K3dbwnQmn3eC5+evxh2KE\nIjGWbynm8xsn7LFNoCLMl2/8zLrFuzDswjm3jiMty1lnetSY30/eQw9S+fXXAOy48y56P/lXbCkp\n1du4unWjZ7du9Bx5UJ11ihSXoCJhbF4vhtvdxE9C0zQNRGShUurItq6H1jg6oNcQDcX4eVEeBVvK\nuemoPnTvn0yaZ98fUYrbySOnDWfd5gIW5QX4v9NGkJ64573zaCRGrpVWNBZRbF22hcQBCtfQoUjt\nNJqGgZG4+161kegGW/2t+doihYVsu+kmAqt/IPvmm0g66SRsHn3vW9O0xhERu1IqooN5xxK3QXEi\nMlREltf48YnItSIyTUS21Vh+Srzq0FQ2h0FmHy9F2ytY8c4GFPDeih2UBRrOsBUpLiYw8wXSH7yD\niz3FDEp1kODYMwDbHQYjxvcCICHRTu+BXnY9/gTRsrK9yjMSEuh2w/WknHUWyaedRvdp/4fN6yWS\nn4/vw48IrF1LtKJir/2q+JevoHLh18RKS9lx192oSv3Yqaa1pZxbP7gg59YPcnNu/SBm/XtBS8sU\nkXdFZImIrBaRq61l5SLyqLXsUxE5VETmicgGETnN2sZmbfOdiHwvIr+xlk8QkfkiMgf4oaq8Gse7\nRURWisgKEXnIWjbFKmeFiLwtIvEbzKPt0355Dl1EbMA24DDMaQXLlVKPNXb//fkceqUvRHF+JSGH\n8Mi8tXz0Qx5f3XIcvdLq77auXLqUTRdcCIA4nQz89BMc3brttV2gIkygyIcqKabk0ftwDR5Etxuu\nx5ZY9/+BWDgMSmE4nUQKC9l06WWE1q0Dw2DAe3NIGDiwzv0CP/3ExtPPAMDRpw85/34de0ZGUz8K\nTdP21KwRrlbwfh6o+R+9EpiS+9AvXmt2ZUTSlVJFIuLGnNb1WKAAOEUp9ZGIvAN4gF9gZmObqZQa\nbQX/bkqp+6ypYr8Czgb6AR8AI6sytIlIuVLKKyInA3dhpmitrHHsDKVUobXtfUCeUupvzT0nrWX2\nV5f7JGC9UmpTe8yPXekrZf2SRfh9Pg44ZiK2zEROeOQLIjHFEQMzcDsEynaCIxFce0/gIs7d98HF\n4aC+//cujwN72EZwZzGZV1yO+6BR2BITKfQXsmzXMnp5e9E7qTdJTnOAm+HYPc2qikYJrV9vvonF\nCOVuqjegO3r2ot/rrxNYvZqkyZN0MNe0tvUAewZzrPcPAM0O6MAfReRM63UfzPzoIeC/1rKVQFAp\nFRaRlUCOtfwEYJSInGW9T6mx77c10q3WNBl4sWqWOaVUkbV8pBXIUwEvMLcF56O10P4K6Odh5uKt\nMlVELgEWAzcopYpr72BdRV4N0Ldv37hVLBwMsmj2Gyz9aA4AP3z5Ob++835eufIwHDZhc5Gf95dv\n4ZQ+YTJ/egqO/hMk7hkgnX160+O+eyn/aiGZU67CnpZa16EAsKemYj/kkOr3JYESbltwG19vNwfA\nvXTyS4zpNmav/YzERLrddBO7Hn8c1/BhuA8aVe8xbEleEseMJnFMa2RP1DSther7Amv2F5uITMAM\nskdYLeZ5gAsIq93drjGs9KdKqZiIVH3fC/AHpdTcOsqs/15e3WYAZyilVlgJYiY09Vy01hP3iWVE\nxAmcBrxlLXoaGAiMBnYAj9e1n1LqOaXUOKXUuKysrLjVLxIMVOcvByjcuhlBcdiADJZvLeXaN5Zz\n9/s/M21+OWWOdPDvde2BLSWF1LPOoucjD+M64ACrld444ViYNYW7j/9j4Y91bmfzekk952wGzfuC\nPs89hz0zswlnqWlaG9rcxOWNkQIUW8F8GHB4E/adC/xORBwAIjLESrnakE+Ay6vukYtIurU8Cdhh\nlXVhk85Aa3X7Y6a4k4GlSqk8AKVUnlIqqpSKYd5XOnQ/1KFeTncio088tfr9sKOOxWa3E4spft65\ne8DaxqIgocRscNT/d280IZBX8Tq93HzozdgNOznJOUzqO6nebW1eL46sLOzp6fVuo2lau3M75j3z\nmiqt5c31X8AuIj8CD2HmRG+sf2IOelsqIquAZ9lHb61S6r/AHGCxiCwHbrRW3QUswrwPv6ae3bX9\nJO6D4kTk38BcpdSL1vseSqkd1uvrgMOUUuc1VEa8B8UFKyvwl/kIB4N4UtNITDaf995aVMnlM77D\nFwjz3AWjGJkWw+ZJA3vrzmfuD/spj5RjYJDh1ve7Na2davYAIGtg3AOY3eybgdtbMiBO0+oS14Bu\ndeNsBgYopUqtZS9jdrcrIBf4TVWAr09bpk8tKAsSDYWwf/ExNkPwTjyuwXvk+1tRoIiYipGWkIbN\naPyz6pqmNVn7G9GraTXEdVCcUqoCyKi17OJ4HrO1pYYr2PLb3xJYuRKAXk88QfIpJ8flWNGYoqQy\nhNNukOTad/d9XkUe1867lpJACY8e+yjD04froK5pmtZF6WxrQKG/kNlrZ7Nw29cUVtYa9BaNEiks\nrH4b3pUXlzpEozFWby/lshe/4/bZKykoD+5zn1d+fIVVBavYWr6VaQunURqKTwpVTdM0rf3r8gG9\nJFjCnV/dyT0L7+E3n17N19sWk18WqF5vS0uj1xOP4xw4EM+x40k59dQGSmu+wsoQv3tlKSu3lfLe\n9zuYu3rnPvfpn9K/+nWfpD44jKYPytM0TdM6hy4/l3skFiG3NLf6/dqSdazZ0Ierxw8k2e1A7Hbc\nI0fSb+YMxOHYI0FKo49RVISKRjFcLmxJdWdFM0RITXSwrcRMwVp7Lvi6HNfnOLzHeinwF3BizonV\nE9JomqZpXU+Xb6GnOFO454h7SHelMzx9OBN7ncLGggpqTmgndjv2zMzmBfPCQrb+4Y+smzCRwhde\nJFpad7d4pjeB5y8Zx+VH5vDAmSM5fMC+R7unulI5IecELhh+gR4dr2ma1sXtl7ncWyreo9xD0RAF\nlcVsLPDz8ffl/G7CQLqntE7K0fKFX7Pliiuq3w/64nMcPXq0Stmapu1XepS71q51rS738nzYtdqc\nkz19AHjM2dacNic9k7LJcEcZ2xvcjtYbKe7s1RMMA2Ix7NnZe6dKjZNwJEYoGsOT0LV+xZqmNY41\n1WtIKbXQej8DeF8pNSsOx/on8IRS6ofWLlvbrdN+21eW+dj242pULEbvA0aSaAvDGxfBFmtCpUOu\ngsnTIGH3fecEe+s/8mXPyqL/O7Pxr1yJ96ijsMdxGtsqRRUhnp+/gZ92lnHbycMYmOXFMHTjQtPa\nzLSUvSaWYVppW08sMwEoBxbG+0BKqavifQytk95Dj8VifP/xh8x5/H7em/4gi9+bTSQa3R3MAZbO\nhNCeszH6QxG2FleyZFNxox4bawwjMRHX0KGknXXWfutq/2pdAU/PW8/na3Zx+YzvKKxonXPRNK0Z\nzGD+PGZ6UrH+fd5a3iwi4hGRD6w85KtE5FwRmSQiy6yc5S9YqVERkVwRybRej7Pyo+cAvwWuE5Hl\nInKMVfR4EVlo5U8/q86Dm+V4ReQzEVlqHe/0+uplLZ8nIuOs10+LyGIrZ/v/Nfcz0PbWKVvosUiY\nvNz11e93bdpINGZgT0wHfwm+4x6mLOcE7FEvGdEYdpt5XbO5yM8vnpxPJKY4rH86T190MOmefY82\n1zRNa0A80qeeBGxXSv0CQERSgFXAJKXUzyLyEvA74C917ayUyhWRZ4BypdRjVhlXAj2Ao4FhmHO3\n19f9HgDOVEr5rIuFb0RkTj31qu0OK5e6DfhMREYppb5vzoeg7alTttDtzgSOPu8SkjIy8aSlc+yF\nl+P0psEVc6n4xdO8Gjqao/6xmknTF5BbuDtb4He5RURi5iDBRRuLiERjbXUKLXLUoEymThzE5OHd\nmHH5oWR6W3fueU3TmqTV06di5jo/XkQetlrXOcBGpdTP1vqZwPhmlPuuUipm3evObmA7AR4Qke+B\nT4Fe1vZ71Ktqyu9azhGRpcAyYARwQDPqqdWhU7bQAdJ79OLCB6ajlCIxJQUxbJA5hApHb174m3nL\nqDwY4T/Lt3PDCUMBGD8ki9REByWVYc47pA9Oe8e83kn3OPnT5MGEIzES9aA4TWtrmzG72eta3ixW\nK3wscApwH/B5A5tH2N14c+2j6Jr35xoaeHMhkAUcrJQKi0gu4KpdLxH5TCn15+oCRfpjZmo7RClV\nbA3E21edtEbqtN/2Yhh4UtP2Wu5yOhg/JJO3l27DEDh2yO5Bar1S3cy9djzBSIykBDupjZjcpb1y\n2Awcto55QaJpncztmPfQa3a7tyh9qoj0BIqUUq+ISAkwFcgRkUFKqXXAxcD/rM1zgYOBj4Bf1yim\nDEhuZhVSgF1WMJ+IdcFSR71qD4ZLBiqAUhHJxkyvPa+ZddBq6bQBvT7Jbgd3/GI4lx6ZQ1qik7TE\n3dOl2gwhO7n+i8WK0iAhfwSn205ishMRPXJc07R9mFb6GtNSoHVHuR8IPCoiMSCMeb88BXhLROzA\nd8Az1rb/B/xLRO5lz+D5HjDLGtD2hyYe/1XgPRFZCSxmdy70uupVTSm1QkSWWdtvwcyjrrWSLj2x\njIrFiAUCGG53dXAu9YcJhKPYDSGjxr3nipIgbz+yhLKiAO4kB2ffdghJ6bqnSNO6EH0Fr7VrXbZP\nNurzUfbJJ5Rv3cJPX37OjrVr8JX6+Of8Dfz66YX8b9lGygt3Z17L31JGWZGZtMVfFmbbT8X1Fb3X\ncaI+X1zOQdM0TdOqdIku90gkRqS4GEPFcKSnIXY70ZISKgsLWPDdfDatXA7Ar++6nxVbA/z79P7E\nHnuAIhXD+ec/4+zVi5Qst3l9bnVopPfw7PO44bw8dtx5FyoSocd995mzxmmapnUQInIg8HKtxUGl\n1GFtUR+tYZ0+oIeDESL5Bey64xYiu3bR48EHcY8ciYrFMLKyKPhybvW2BbkbuergMcQe+TMVC82R\n8Dtuu41eTz6JJ9XLmdePJX+rj/6jkrEZUQLlZbi8dWc4iwWD7HrkUSrmzwdg57Rp9Hri8XqzrWma\nprU3SqmVwOi2rofWOJ2+yz0aUZS89RaVi74ltDGX7TfeRLS4BHt6OgkeDxPPvQS7M4GM3n0ZesTR\njO2djIpGqvdX1rPoTpednoNTSTswjZeXbGXZ1lJWffstlaUldR/YMBDP7kGthtttzune1PpXVhLJ\nzydSVNTkfTVN07Suo9O30JVS2LK6Vb+3Z2aCzcCWnEzyoYfhqqjgytFjzcfcUlIBcN5/P9tvvgVU\njJ4PPoA91VyeV1LB2c8tIs8XRATmXHkQW9esJmvkIfjDUdxOG2nWo26Gw0G3P/4Rw+4gFgqR9ac/\nYvPsu5u+pmhFBb4PPiDvwYdIGDiQPk8/tV/mgtc0TdM6nk4f0F0eB8YJkxFiRLdvJf2Si7GnpwNm\nnvOElBRqz6Pm7N2b3v/4OwD2tN3PsseAXWXmvAtKwc5SPxnFRcyYu4bXvt3CeYf04ZaTh1UHdXtm\nJtm334YCjGZkWYtVVLBz2v9BLEZg1SrK5s0j7eyzm1yOpmma1vl1+oAuIiR0yyDrovObtF/NQF7F\n47Rz/y+HM/2LDYztnUw/DyTnHMuZvgjjh3Tjnjmr+NPkwXse325v9rMuYhg4evQgvG0bAM5+dU02\npWmapmldIKATLIdACUTDKHcqykjESGje3ObJiQmcemA24welESkvxZOWyd0f/MRHq3YyslcyT194\ncKvOzmbPzKTfKy9T+t57uA44ANfQoa1WtqZpXYOITKNGEpZWLjsXGKeUKmjtsluDiGQB7wNO4I9K\nqfm11neqPO2dO6ArBbkL4N/ng4qhJt6DL687zgFDcI08EMPV9MCenOQhOckD3dLYWlzJR6t2ArBq\nmw+n3Wj1RCiOHj3IvPrqVi1T07T968CZB+6VD33lpSvbOh96mxIRu1Iqsu8tW2QSsLKufOwiYuts\nedo79yj3cCUseRGUOVLd+P5VbC4bmy+/gmh9o9ObIMFuIyfDHMme7LaTlaSzmmmaticrmO+VD91a\n3iz15EPfK+95jV0OEpGvRWStiExpoNweIvKllSN9VVWe9H3kMP9Djbzow6ztD7WOt8zKrz7UWn6Z\niMwRkc8xU6fWl1c9R0R+FJHnrWN+LCLuBuo9RUS+sz6Pt0UkUURGA48Ap1vn4xaRchF5XERWAEfU\nytN+klWPFSLyWUPn0V512hZ6yF9JyB9AJj5Iom8nsnM5sZzJBH7eiIpGzdZ7C2UlJfDmb49gU0El\nfdLdZMQxd3rU54NYDCMlRc8hr2kdy/7Kh/5wA9uPAg4HPMAyEflAKbW9ju0uAOYqpe638pVX1buh\nHOYFSqmxInINZia1qzDnaj9GKRURkcnWuVYlhhkLjLLKs1N3XnWAwcD5SqkpIvKmtf8r9ZzfbKXU\n89ZncR9wpVLqbyJyN+YtganWOg+wSCl1g/Ue698szIuu8UqpjSKSbpXb0Hm0O50yoIcCfn5c8D8+\n/ddTeFLTOH/aayRTQsQXpeKtx+n1179gJDc3ydCeuiW56JYU3zndQ9u2sfOee4gFgnS/8w4SBg9G\nbLa4HlPTtFYTr3zoj4vIw8D7Sqn5+7jQ/49Syg/4ReQL4FDg3Tq2+w54QUQcmLnRl1vLzxGRqzFj\nRg/MHOZVAX229e8S4FfW6xRgpogMxpxfc3cWLPhEKVU1sUZVXvXxmA8SVeVVBzO/e9Xxl2DmfK/P\nSCuQpwJeYG4920WBt+tYfjjwpVJqI0CN+jV0Hu1Op+xyD/n9/O/lf4FSVBQX8f0Xn0L2AQT75ND9\nqb+RNGECtsTaF8ztU6SwkK3X/J6KBV/hX7yYTRdfoieZ0bSOpb685y3Kh47Z0l2JmXf8bhrOe167\nS7LOLkql1JfAeGAbMENELqmRw3ySUmoU8EGt8qtyqEfZ3Ui8F/hCKTUS+GWt7StqvK6ZV300kFdj\n25q52WuWXZcZwFSl1IH8f3t3Hh5VdT5w/Ptmsu8riygQV0BFhRG1LnWXqnWvS90tUq1WrdXWpb+q\nra222lK17nsrti4VpWpRXFCrFQ2CLAICArJDWJIQsuf9/XFOYAhZJpOZJAzv53nmmbnnLufMDeTN\nPffc87rscq1dZVWrakMbx2mure/R48RlQE8IBCjYZcsfvwP2O4Cv13/NDf+9kUfmPsWGho3d2LqO\n0cZG6let2rzcWFEBDR3592iM6Wa34PKfh4pGPvRNqvoccA8uuC/C5T2HbbuFTxWRVBEpAI7EXYm3\ndNwBwCrfff2EP25LOczbk4P7owDgkna22yavegSygBW+Z+H8CPb/FDjC//FCSJd7uN+jR4jLLvf0\n7BxOu/FXLCj5jJxefUjt35uL3jiHtdVr+WT5J+xbtC/H9D+GTWVlrPpmHpn5hWQXFZGS3rGZ3LpC\nICODwmuuYdVvfgNA7snQAUMAACAASURBVHnnIWmtjg0xxvQwMy6e8fy+z+4L0R3l3lLe8TRaznsO\nrnv8faAQ+G0r98/BBfsbRaQO2Ahc5O8pdzSH+R9xXdW/wl3Rt6a1vOod9X/AZGCNf+9Q0gxVXeNv\nKbwiIgnAauA4wv8ePcIOkQ+9dFMp57xxDqs3rQbg/qPu58DcA3j38QeZ/9n/kIQELrnrPrJzcmlI\nDFCxYT2VG9ZT2H/g5ulgu1NDRYUbFFdfT0JOzuapaI0xXcpGo5oeLS6v0JvLT8vn0eMe5cGpD7Jb\n7m7UNNRQWV3ByvlfA3DK6Guoe/U1lvz3Y3LOO5d51RV8Mv5lehXvxhk33xGVoF5fWsr6F14gMb+A\nrBNOIDF/25noWhPIyrIsbcYYY9oUl/fQm0uQBPJT8inOKWZJxRJ++dEvmV05j+9ecBkZefnkJaWw\n7pFHqZ45k1W3/opB+7nbUKsXLqC+tqado7evobyc5bf+itIH/srKO+6gbPxrnT6mMcZESkT29c9m\nh74md3e72iMiD7bQ7ku7u109Rcyu0P0D+C+EFO0K/Br4my8fiBvEcbaqro9VO5qkJKaQnZzN4wsf\nJzs5m+KC3ejbtxd9dt+LxGUht5NE3AvILupNYlLnny3XujrqV6/evNw0N7sxxnSH7TXPuape1d1t\n6Mm65B66n4xgGXAQcBWwTlXvFpGbgDxV/WVb+3f2HnqTitoKNtZtJFESyU/Np7Gunjfvv4dBBxxI\n9uyvqfl0Mnnn/5DaPXZjyfy57DHiO2QVFHa6Xm1spObrr1l2/c8J5OTQ7y9jSOrdu/0djTE9id1D\nNz1aVwX044HbVPVQEZkLHKmqK0SkLzBJVducTi9aAb05VWXm+xN5+7EH2Pfwoynee1/6Dx9BSlZ0\nJp3Zqq6GBhrWr4dAoMVMbsaYHs8CuunRumpQ3LnAP/zn3qq6wn9eyZZZgWKmoaGR6o11qEJyWoDk\nFPe1RYQ9RhxC0YCBVJWX03vXPWISzAEkECCxsPNX+8YYY0xLYh7QRSQZOAW4ufk6VVURabGLwD8T\nOBqgf//OzJAIG1Zu4pV7plBX08Cxlw5h1/2LSEx2U6emZmbRJ9NGkBtjjNm+dcUo9+8BX6hq03Rn\nq3xXO/59dUs7qepjqhpU1WBRUVHElTc2KtPe+Zba6gZUYfL4hdRWxzpjnzHGmM4QkVyf8CWSfTdn\nnotCO37jE7P0eF0R0M9jS3c7wHjgYv/5YiCmz3AlJAj99tpyz7rPrtkEkiyxiTGm68weNPiHswcN\nXjR70OBG/x5x6tTO8hnOtge5QIsBvSu/g6r+WlXf6ar6OiOsQXE+tdzluEfNNp9IVb2snf0ycNMc\n7qqqZb6sAHgRNwXiYtxja21mG+nsoLjqyjrWr9xE9cZaeg3IoKG+kuS0NFIzMrdsVFkK9TUgCZCS\nCSnWDW+M2UpEg+J88H6crVOobgIuHzxndsTTv4rIBcA1QDJuutOfAGWqmunXnwWcrKqXiMgzQDVw\nAG7q1juBp3CPE28CRqvqdBG5HdgN2B03TewfQ9KS3gicDaQA41T1tjbadhEuoYsC01X1Qh9HHmFL\nlrnrVPVjX2d/35b+wF9U9X4R+SdwKjAXmIibevW3wHpgkKruKSKvArvgkqbcp6qP+foX4dKmlrbS\nvm32809jPQkEfbufUtUx/ty9rqov+yQ438dNs/sJ8GPtQdOthvtXzmvAR8A7uKw3YVHVSqCgWdla\n4JhwjxENqRlJ9N0th/XLl/HUtVdRW72JI86/lP2OP5HkBGD1LHjj57BiGiQEYK+TYORdkLNzVzbT\nGBOfop4PXUQGA+cAh/rEJg/RflKSnYHvqGqDiDwATFXV00TkaNz8IE3PpW+TOx3YB5effATuD5vx\nInKEz87WvG17A7/ydZWGJDq5Dxijqv8Vkf64FKeD/bpBwFG4OdjnisjDwE3APj4LGyJyJC5ZzD5N\naU6By3xe9TTgcxH5l48x7dlmP9wFaz+fWQ0RaWmK0L+q6m/8+r8DJwP/DqO+LhFuQE9v71nx7cG0\niW9SW+2SHk158zWGHH4UyXWr4KkToNHfV29sgNnjYflUGPUuZNnz4saYTolFPvRjcJnVPvd50NNo\nZTxSiJdCUocehs/IpqrviUiBiDQ94tNS7vTDgOOBqX6bTFyA3yagA0f7ukr98Zt6YI8FhoTkbc8W\nkaZu0jdUtQaoEZHVtP7002chwRzgGhE53X/exbcpnIDe0n5zgV39HztvAG+3sN9RIvIL3B9k+cAs\nelBAD/ce+usicmJMW9IFdh124ObPA/bdn0AAePc3W4J5qLIlsOijrmucMSZeRT0fOu4q+VlV3d+/\n9lLV29k6z3nz3N2VhKel3OkC3BVS3+6q+mQH25wAHBxyjH6q2pTLOtzc55u/g79iPxY4RFX3w/2x\n0W6+8tb28zOW7ofLVHcFLn1s6H6pwEPAWT7v+uPh1NeVwg3o1+KCepWIlItIhYiUx7JhsdBntz24\ndMyjnPebezjyolGkSh0saWP64nlvuyt2Y4yJXNTzoQPvAmeJSC9w+bubcpmLyGCfAvT0Nvb/CN9F\n7wNcqao2/U5vKXf6W8BlTVfUItKvqe4WvAf8wO8fmlv8beCnTRuJSHtTz1bQdhrUHGC9qm4SkUG4\n2wThaHE/Pyo+QVX/hbtlMKzZfk3Bu9Sfh7PCrK/LhNXlrqpxMUIsJT2DxNRU6nISmV4+m+Ks/hTs\ndjSBGS+1vEPuAHdP3RhjIjR4zuznZw8aDM3yoXdmQJyqfuVzdL/tg3cdblrtm4DXcXnBS3Bd4y25\nHXhKRKbj/ri4OGRdS7nTl/v79v/zXeYbgQtooZtfVWeJyO+AD0SkAXcFfAluAN+Dvs5EXHf9FW18\nx7Ui8rGIzAT+w7b5yCcAV4jIbFx3+aetHSvM/foBT/vzCc3mTlHVDSLyODATNyna52HW12XCnvpV\nRPJw9xk2dzG0NCAiFqI59euaTWs47bXTKK8tJyclh3HfG0vRmKHbbigJcM1UyBu4zarqjRUsnDqF\nFfPnMOzEU8np1YeQ+0LGmPgU9//J/Yjzjap6b3e3xXRcWF3uIjIK99fUW8Ad/v322DUrdlZWrqS8\n1vUsldWUUVq3EQ68fOuNAslw1tOQ0fKENmu+Xcybf72XqRNe58U7bmFT2YZYN9sYY4xpU7ij3K8F\nDgQ+VdWj/H2H38euWbHTN7MvfTP6sqJyBf0y+1GU3huOvhUOuQoW/dc9g77LwZCWA0nNnzRxqiu2\nDB+o3lhBD3oM0RhjIuYH1oXF3yN/t4VVx4T56FhM9fT2xUK4Ab1aVatFBBFJUdU5Pt95j7a2ai1j\nZ48F4PzB51OQVkBhWiHPn/Q85bXlZCdlU5juZwdMy4P84rCO22/w3gw54mhWL/rGDa7LbO02lTHG\nxCcfFHtsTvWe3r5YCDegL/UP2b8KTBSR9bhZ3nqs6vpq7ptyH+MWjAOgtKqUWw+6lZTEFArTCilM\na3ma37KqWjbVNpCYIBRltfxEQnp2Dkdf+mMa6upIycwkENheZlI0xhgTr8Id5d70+MPtfqKBHNxI\nwR6robGB0uots/6trV5LvdaTQsqWjSrXumfQ0/MhkER5VR1PfLSQB96bz855abx8xSH0yUlr8fgp\n6Rlt1l9VUUt9fSOJiQmkZSVH5TsZY4wxrQn70lJEhuFmC1LgY1WtjVmromB9zXquPuBq1lavRRBu\nHnEzGUkhQXjtAhg3GsqXo4ffQHXxCZCQxodz3VMYS9dX8fmi9Xx/v5YDels2VdTy9hMzWTZ3A72L\nsznxyqGkZ1tQN8YYEzvhjnL/NfAsbl72Qtyzer+KZcM6Y0P1BqaunsraqrX8IvgL/njEH9kpc6ct\nG1SWwr9GwdISKF+OvHE9DRtW8MKvb+T+0/cAICkgDOmb3UoNbauqqGXZXDfyfdXCcspLqzr9nYwx\nxpi2hDtT3PnAgap6m8+wczBwYeya1TnJgWTSEtP4ybs/4ZK3LuHW/95KWU3Zlg0aG6B86Vb7SPV6\n6mpqSKou55Urv8P7NxxJv7yOX50DpKQnEkhypzYhQcjIsatzY0zXEpFTROSmVtZtbKX8GZ+lDRGZ\nJCLBWLaxNSKyf1dMNy4it4R8HugnsensMYtEZLKITBWRw1tY/4SIDOlsPS0Jt8t9OW5CmWq/nAIs\ni0WDoiE9KZ3Vm7ZMYLSkYgn1ofO1p+XCYdfDBP9vvWB3qgJ5JKWkklNYxE65eXRGWkYSZ99yIItn\nrmWXwfl2D92YHdyDV7z3Q5rNFHfVI0dHPFNcOFR1PDA+lnXE0P64NKZvxuLg4mYCE9z0u9F+BPsY\nYIaqjmqh3kBL5dES7hV6GTDL//X2NG7quw0icr+I3B+rxnXGcQOOY2jhUPJS8rjj0DvITg7pPk9M\ngf3Og6s/h8veouGi10kuHMAP77yXjE4Gc4BAUoD8vhkccFx/CnfOJDHZpo81Zkflg/njwABcEBkA\nPO7LI+KvJuf438lfi8hYETnWT5U6T0RGiMglIvJXv32xiPxPRGaIyJ0hxxER+auIzBWRd4AW52cX\nkeP9/l+IyEshWdJa2na4iHwgIlNE5C0R6evLLxeRz0XkSxH5l4ik+/IfiMhMX/6hiCQDvwHOEZFp\nInJOK/XcLiJP+Z6Eb0TkmpB11/tjzhSR60LO2VwR+Rsuhj0JpPk6xvpdAyLyuIjMEpG3xaVXbe17\nbvN9xM1P/0fcfPjTRCRNRDaKyJ9E5EvgkNCeDxEZ6c/plyLyri8b4c/1VBH5pCOPiIc19auIXNzW\nelV9NtwKIxHp1K/rqtfR0NhAZmImq6pW8cHSDziwz4EMzB5IeiuTxsRCZV0lZTVlKEp2cjZZyXEx\nNb4xO5qIpn598Ir3FuGCeHOLr3rk6IERNURkIDAfOACXwvNz4EvgR8ApwKW4x4yDqnq1iIwHXlbV\nv4nIVcAfVDVTRM4ArgRG4lKWfgWMUtWXRWQScAOwCHgF+J6qVorIL4GUprzgzdqVBHwAnKqqa3ww\nPkFVLxORgqYJXfwfFatU9QERmQGMVNVlIpLr50y/pKntbZyD23EpXTfnUQf64PK5P4O7NSzAZNy8\n8+uBb3B52j/1x9ioqk0JZ5rOaVBVp4nIi8B4VX2ulfpb+z5btV1EFDhHVV/0y03ndTHwBXCEqi4U\nkXyfoz0b2KSq9SJyLHClqp7Z2nkIFe5ja5sDtrg53XdR1enh7Nud8lNdkp+yTWWM//rfvL743/x5\nyp959dRXKc4JbxKZzlJVJq+YzHXvX4ei/O7Q33Fi8Ykk2rPrxuwoYpEPHWChqs4AEJFZwLuqqj5A\nDmy27aH4/OfA34E/+M9HAP/wedKXi8h7LdRzMDAE+Nj1VJMM/K+VNu0F7IObrwQgAKzw6/bxgS8X\nlzTmLV/+MfCMD6CvhPG9Q7WUR/0wYJyqVgKIyCvA4bjbD4ubgnkrFqrqNP95Ctuex1CtfZ/mGoB/\ntVB+MPBhU373kLzxOcCzIrIH7qmypDbasJVwR7lPEpFscWnwvgAeF5E/h1tJd9pUXssX41aw17Sj\neOTgJ9glaxcWbVjUZdO11jTU8NqC11CfYnj8gvFUNdiod2N2ILHIhw5b5xBvDFlupOWLtUh/6Qkw\nMSSP+RBV/VEb284K2XZfVT3er3sGuNrnEr8Dn+hLVa/ApSvdBZgiPu1qmMLNo96kvZzwHTneM7Tw\nfVpQ7f9gCtdvgfdVdR/g+20cdxvh3kPP8blyzwD+pqoH4RLE92iNDY2UvLmQrz5azvwpq/li7Gp+\nOuhnDEzcnU3lsX+MXlWpb6znzD3OJEESEISz9jyLtMTIRs8bY7ZLsciH3lEfA+f6z+eHlH+Iu1cd\n8Pe6j2ph30+BQ0VkdwARyRCRPVupZy5QJCKH+G2TRGRvvy4LWOG75Te3QUR2U9XJqvprXNrXXWg/\nF3pbPgJO8/e0M3B54T9qZds6355ItPh9OuBT4AgRKYat8sbnsGXQ+SUdOWC4AT3R/7DPxuXa3S6o\nQm31lj+M6moaGJY3nI8fXUpddX0be3ZeozayYMMCrnjnClZVruLNM95kwpkTOKzfYSQmWHe7MTsK\nP5r9ctw9U/Xvl8d6lHsz1wJX+e74fiHl44B5uHvnf6OFrnRVXYMLLP8Ql8v8f8CglirxE46dBfzB\nDwKbBnzHr/4/3P3sj4E5IbvdI26w3kzgE9xYgPeBIW0NimuNqn6Bu3r+zNf3hKpObWXzx4DpIYPi\nOqK17xNuO9cAo4FX/Ll6wa/6I3CXiEylA5O/QfiD4n6Aa/zHqnqliOwK3BPujfrO6kw+9PJ1m3j3\nmTnUVtUz4oc7oyhfvrKKkaP3ienjZGur1jLq7VHM3zAfgGsOuIbLh17ezl7GmB4s7vOhm+1bWFfo\nqvqSqg5V1Sv98jddFcw7a2HDPGqOWUDKKau4ddYNJOU3MmJ0b6ZvnEppVWn7B4hQgiSQmbTlyY7c\nlNyY1WWMMcaEdTnv75c8DPRW1X1EZChwiqre2c6u3aqmvobe6b25ds61rK1ey5CCIQQCAU4edzJ1\njXUUZxfz1MinWs281hl5qXnc+917eXzG4/TL7MexA3r8kANjjAmbiIwDmj8u9EtVbW20d6T1XIq7\nZRDqY1W9Kpr1tFH/g7inBELdp6pPd0X9HRFul/sHwI3Ao6p6gC+b6UfhxVwkXe4bazcyackk3vv2\nPUbvN5rkhGRyUnKYvmY617y/ef4B3jrzra3neY+yRm0kQcIdqmCM6cGsy930aOFGmnRV/axZWWxH\nlXVSeW05t/z3FiZ+O5Ef/PsHvDLvFfJT8xmUP2jz8+kjB44kPTGd2obYjXi3YG6MMaYrhDuCrlRE\ndsM/xyhu8v4Vbe/Sveob6zc/+w1QUVdBozbSO6M3L3//Zeob66lrrONPU/5EckIyo/YdRd/Mvl3e\nzrVVa6msqyQtMY2i9KIur98YY0x8CDegX4Ub3j9IRJYBC4nsubsuk52czQWDL2Ds7LH0y+zHj4f+\nmECCm1O9KL2INZvWcP6b57Omag0Ak1dO5tmRz1KQ1pE5DTpnXdU6fj7p50xZPYW+GX0Ze+JYC+rG\nGGMi0mZ/sIg0DUToq6rHAkXAIFU9TFUXx7x1nZCbmsuV+13Juz94l+dOfG6b++Q1DTWbgznA4vLF\n1DbGfrKZUNUN1UxZPQWAFZUrWFm5skvrN8bsuETkNIliGk8RCUo3JuuSkHSx0iyFqYi8KSJx/6hR\nezd4L/XvDwCoaqWqVsS2SdGTnZJNUXoRBWkF1GyqZNU385nzyYdUblhPWmLaVvO5Dy0cSkogZZtj\nbCovY+P6dVRtjP7XTgmkMLRwKAC90nvRN6Pru/yNMTus03BztEeFqpao6jXtbxkbqjpeVe/2i00p\nTA9Q1Y9U9URV3dBdbesqbY5yF5F/4HLS7gQsCF0FqKoOjW3znM5MLNNk+bw5/ONXNwDQb/A+nHrD\nr9iYUMVbi94iKSGJYwYcs83ja5VlG3h9zB8oXbKIU353Jx+s+x+FaYUc3PdgclOj88fe2qq1bKzd\nSEZSBgVpBfiEBsaYnifi/5x/OufkbfKh//yF1zs1U5yIXABcg0uWMhn4CfBX4EAgDZdd7Ta/7d24\nLGz1wNu4JCiv41JjlwFnquqCFuq4HDebWTIuE9mFqrrJTzZ2G26+8zJVPUJEjgRuUNWTRWQEcB9u\nHvIq4FJVndvK97gENz1rDm4Wu+dU9Q6/7lXcVLCpuEfFHvPlI3HnMwCUquoxTVnOgCdwiVjScFOo\nHgLMxmVAKxWRi3DZzhSYrqoXhnvOe7o276Gr6nki0geXReaUrmlSbNRoHUO/dxJzJr1P6bcLaair\npSiviAuGXNDqPhWla1g6ewYHXnA+98z6C+8vnQTAbYfcxll7nhWVdhWkFXTpfXtjTNfywfxxoCln\n8wDg8T+dczKRBnURGQycAxyqqnUi8hBuXNOtPgVnAHjXzxmyDBcwB/lsbE0pSscDr6vqy21U9Yqq\nPu7rvBOXnvUB4Ne4tKjLWunKngMcHpIC9PdsyfbWkhG4LG2bgM9F5A1VLQEu898nzZf/C9ez/Dgh\naUdDD+RTn/6arVOYNp23vXGJYL7jg/tW+27v2h0Up6orgf26oC1RoaqsqVrDwrKFDMwZSGFqIUsq\nlnDvkkco3L2AC4/4PxpWbSAlvf186Bm5eSQmp5CUmcGyiuWbyxeVLYrhNzDGxJnfsyWYN0n35ZFe\npR8DDMcFOXBXo6uBs0VkNO53e19cl/pXQDXwpIi8TsfycUSa8rSjKUAnhuQWfwWXArUEuEZETvfb\n7ALsgRvL1VLa0XAcDbykqqUR7NvjtRnQReRFVT3bT+gf2jffpV3uHVFaVco5r59DaVUpeSl5vHDy\nC4x6exSrNq0CIDkxhZ8Pu56klPYz0qVl53DxvQ9Svm41t+99Gzd8eCN5qXltXtUbY0wzsciHLsCz\nqnrz5gKXtWsicKCqrheRZ4BUf5U8AvdHwFnA1bjAFo5ngNNU9UvfpX0kuJSnInIQcBIu5enwZvs1\npQA9XUQGApPaqaf5vV/1XfjHAof4bv5JdCCV6I6ovSv0plHuJ0dycN8V8wSuK0WBy4ATcJmHmoaY\n36Kqb0Zy/JZU1VdtnqN9fc16GrWR8tryzevXV69HEt1YwEZtZPWm1cwqncVe+XvRK70XyYEtCVsS\nk5LI7d2H3N59qG+s57kTnyOQENg8MY0xxoThW1w3e0vlkXoXeE1Exqjqat913B+X77tMRHoD3wMm\niUgmbnKwN0XkY+Abf4xwUpQ2TxG6DLakPAUmi8j3cFfPoTqaAvQ4/x2qcIP1LsPdT1/vg/kg4GC/\n7afAQyJS3NTl3oEr7feAcSLyZ1Vd28F9e7w2R7mr6gr/vrilVxjHvw+YoKqDcN32s335GFXd37+i\nFswBMpMyOaTvIQAM7zWc1MRU7vnuPeSk5FCcXcx1w6/bPJp9bdVazn39XK6bdB2nvXZam8laEhMS\nKUovsmBujOmoqOdDV9WvcPeC3/YpTScCNcBU3P3r53Hd4uCC8ut+u/8C1/vyfwI3+ke7dmulqo6k\nPA3V0RSgnwH/AqYD//L3zyfgUnfPBu7GBfK20o62S1VnAb8DPvD7/jncfbcH7Y1yr2DbrhDY0uWe\n3ca+ObhcuLtqSCUicjuwUVXvDbeRHR3lvq56HbUNtQQkwMrKlcxZN4cRfUaQlpRGr/Rem7f7tvxb\nThp30ublp054igP7HBh2PcaYHUqPGuUeL5pGpzcNYDORa2+Ue3vdMW0pxnWrPy0i+wFT2NKFf7V/\ndKAE+Lmqru9EPdtouopeWbmSi/5zEfVaT0ACTDhzwlbbZSRlMLzXcKasnkL/rP4UZzdPHGSMMZ3n\ng7cFcBNT4U79GumxhwE/VdXJInIfcBPuOcnf4q78fwv8CXe/ZCt+pOZogP79Ixs7UtdQR726HDIN\n2kBNQ81W6wvSCvjTkX+iur6alMSUmKRRNcaYnq4rUoSKyAnAH5oVL1TV03GD70wnhZU+NaIDu+fX\nP1XVgX75cOAmVT0pZJuBuOcg20zDGsnEMuuq11HfoGysrmP8wpdITgxw/uDzyUnJ6eA3McYYwNKn\nmh4uZlfoqrpSRJaIyF5+hqBjgK9EpG/TYDvcZAczo133uqp1TFr8KRUbduX1aes4/YBTOGFwL3JS\n0qJdlTHGGNMjxLLLHeCnwFgRScY9KnEpcL+I7I/rcl8E/DjalW6s28iu2ftw2jMzAFhdUcPxu2ZS\nWVdNWlY2CYFAtKs0xhhjulVMA7qqTsPNrRsq5vPmpiWmEZAaRKAgI5knztydCWPupHpjBd//2U0U\nDSgmIcGCujHGmPjRXra17VJBWgFFmZk8eP7+XH74rnz74X9YtWAeZatW8vajD1C9cWN3N9EYY3os\nERnonzFvb5sfhix3a/pUE/su926RIAn0ycpl5JAcahsamVu78+Z1ub37EEhsb1phY4wx7RgI/BD/\nOJ6fDKZzaTFNp8RlQG+SkCCkJgTY8+DDSMnIpKq8jD0POXxzYpbKukrKa8qp13pyknPITml1nhxj\njOkx/BNCE3DzewwDZgEX4VKF3ov73f45cKWq1ojIIuBF3HSwVcAPVXW+n+99c8Y1Edmoqpkt1PV3\nIMMXXa2qn+BmbxssItOAZ3Gz1DWlT80HngJ2xc2KN1pVp/uJxfr78v7AX1TVruqjJC673JtLy8pm\n0HeO4ICR3ycjZ0umv2mrpzHylZGc+MqJvLHwDWrqa9o4ijHG9Ch7AQ+p6mCgHDel6zPAOaq6Ly6o\nXxmyfZkv/yvwlw7Usxo4TlWH4VK2NgXgm4CP/BTeY5rtcwcw1SfwugX4W8i6QbicHiOA2/w88SYK\n4j6g19XUsKm8jIb6+q3K6xvreW3BazRqIwDjF4xnU33z6ZaNMabHWqKqTfO1P4d7NHihqn7ty54F\njgjZ/h8h74d0oJ4k4HGfdfMlXErW9hyGu6pHVd8DCkSkqQv0DVWt8SlMVwO9O9AW04a4DuhVFeVM\nHvcCr9x1Gwunfk5tdfXmdYkJiZy5x5kExI12P2OPM8hIymjtUNtYV7WOL1Z9wZKKJWyqsz8EjDFd\nrvmsYBs6sH3T53p8HBCRBCC5+U7Az4BVuARbwVa26YjQrtAG4vzWb1eK24C+oXoDpSuXMHnci6z6\nZj7j/3wXNZu2Ht0+tHAoE86cwIQzJzBy4MitUqe2ZV31Oq59/1ounnAxJ487mdnrZre/kzHGRFd/\nEWm60v4hbkDaQBHZ3ZddCHwQsv05Ie//858XAU25zE/BXY03lwOsUNVGf8ymZ37bSr/6ES7dKj6v\neamqlreyrYmSuAzolXWVPDb9MaoTtnSzJyan4P4A3SItKY0+GX3ol9mPrOTw89DUNdQxbc00wOVU\nn7BwQjt7GGNM1M0FrvLpRfOAMbjJu17y3eONwCMh2+f5FKrX4q66AR4HvutTiR6Cy6fe3EPAxX6b\nQSHbTAcaRORLlhE2eAAAGSdJREFUEflZs31uB4b7+u4GLu7UNzVhidlc7tEUSfrU//v4/7hwrwso\nashm6UeTGXzYkRTs0p9AoPO9O+uq13Hde9cxdc1UEiSBp054iuG9h7e/ozFme9Zj5nIPNw9GyPaL\ncClKS2PYLNPN4vLeRVZSFr848Bfc+emdqCq3n3o7RZn9EInO/8f81Hz+ctRf+LbiWwrTCslLzYvK\ncY0xxphIxWVAr2+sZ8yUMQzIHsB3d/4ui8sXk5mUSW5qbvs7hyk/LZ/8tPyoHc8YY8KlqouAsK7O\n/fYDY9YY02PE5T10EeGY/sfQP6s/N3xwA/d/cT9ltWWU1ZR1d9OMMcaYmIjLgJ6amEqwd5B7S+5l\nU/0mvlr3Fa/Oe3XbhzyMMcaYOBGXAR3cc+ahU7n2zexLUsAmJDLGGBOf4u4eek19DRtqNjCjdAZP\nHP8Ez8x8hj3z9+SoXY4iPSm9u5tnjDHGxETcBfQ1VWu47ZPb+GzlZwzIHsBvv/NbDuh9QHc3yxhj\nokpERgL34SZ6eUJV7+7mJpluFndd7uW15SzYsACAxeWLefObN/jmi8/ZVG4D4owx8UFEAsCDuOxp\nQ4DzRCScOdZNHIu7gJ6VlMWV+19JQAIUphVy5s6n8M4TDzFr0jvd3TRjzA4sGAwmBoPBPsFgMBo9\noyOA+ar6jarWAv8ETo3Ccc12LO4CemF6IYftdBj/Of1NHgveR8nDT1Oxdg2VG9Z3d9OMMTuoYDD4\nHWANsBBY45c7ox+wJGR5qS8zO7C4C+hpiWlkJWfxxeqpBCQBEWHg/sMJfv+M7m6aMWYH5K/I3wBy\ngVT//kYwGAy0uaMxHRR3g+IANtZt5Kb/3sSg/EH84KzTOLT/d8nMs1ndjDHdohAXyEOlAkXAygiP\nuQzYJWR5Z19mdmBxd4UOEEgIkBJIYc66Odw5/Q/UJDVQ31jf/o7GGBN9pUB1s7JqXBd8pD4H9hCR\nYhFJBs4FxnfieCYOxGVAz03J5ZmRz3DGHmdw9xF3M37+eNZVr+vuZhljdkAlJSX1wEnABlwg3wCc\nVFJS0hDpMVW1HrgaeAuYDbyoqrOi0FyzHYvLgJ4SSCE3JZe6hjrGfjWWx2Y8RnlteXc3yxizgyop\nKfkE1/VeDBT65U5R1TdVdU9V3U1Vf9fpRprtXlzeQwc3OG5h+UJmls7k4D4Hk5+Sz8qNK5EEITs5\nm7TEtO5uojFmB+KvyCO9Z25Mu+IuoFfUVjBv3Tzy0vJ4+JiHqW2oJbU2ga8+mERCajLVO6VRWNCX\norQiitKLuru5xhhjTFTEXZf7gg0LyE/L55Pln3D/1PtpqKnlg789ycdPP8VHDz9CwpzVLK1YynOz\nn2Nj7cbubq4xxhgTFXF3hV7bUMucdXO4+zM3rfHw7KFsWL7laY6KZSvZ6/ARTFw8kUYau6uZxhhj\nTFTF3RX6Xvl7sbZ6LQAXDrmQ/r1245hf3kif3fckr+9OjDj9bD5c9hHXDruW7OTsdo5mjDHGbB/i\n7go9JyWHY/sfCwoN2sC1711LYXoh9998H1kNaTSmBTgt9zRyU3O7u6nGGGNM1MTdFTpA74zeHDfg\nOIpzirn1kFu55aBbWFi+iIycXLKSsyyYG2O2eyKySERmiMg0ESnxZfkiMlFE5vn3PF8uInK/iMwX\nkekiMizkOBf77eeJyMUh5cP98ef7faWr6jCRicuADoDA+AXjue7967joPxch2L8TY0z3CQaDEgwG\nU4PBYDR/GR2lqvuratAv3wS8q6p7AO/6ZXBpVvfwr9HAw+CCM3AbcBAug9ttTQHab3N5yH4ju7AO\nE4G4DeiCULKqhH0L92Vo0VA+XfFpdzfJGLMD8oH8SmAVUAmsCgaDV0Y5sDc5FXjWf34WOC2k/G/q\nfArkikhf4ARgoqquU9X1wERgpF+XraqfqqoCf2t2rFjXYSIQ03voIpILPAHsAyhwGTAXeAEYCCwC\nzvY/5KhKT0rn4WMfZurqqdQ11HHcgOOiXYUxxoTjCuBeIN0vF/ll8FexEVLgbRFR4FFVfQzoraor\n/PqVQG//ubV0q22VL22hnC6qw0Qg1lfo9wETVHUQsB9uzuHWumuiKjkhmYmLJ/L7yb/nnpJ7eGz6\nY2yq2xSLqowxpkX+KvwOtgTzJunAHZ28Sj9MVYfhurqvEpEjQlf6q17txPHb1RV1mPDFLKCLSA5w\nBPAkgKrWquoGWu+uiarVVav5ev3Xm5fnbZhHbWNtLKoyxpjWpAAFrawr8OsjoqrL/PtqYBzu/vQq\n35WNf1/tN28t3Wpb5Tu3UE4X1WEiEMsr9GJcesCnRWSqiDwhIhm03l0TNdX11Tz31XNcMPgC8lLy\nyEzK5IbgDWQlZUW7KmOMaUsNsLaVdWv9+g4TkQwRyWr6DBwPzMSlUG0aRX4x8Jr/PB64yI9EPxgo\n87+H3wKOF5E8P1DteOAtv65cRA72I88vanasWNdhIhDLe+iJwDDgp6o6WUTuo1n3uqqqv/+zDREZ\njRspSf/+/TtWcUIi2SnZPDr9UX532O/IT82nOKeYQEIgoi9ijDGRKCkp0WAweBtb30MH2ATcVlJS\nEml3dW9gnH/KKxF4XlUniMjnwIsi8iNgMXC23/5N4ERgvq/7UgBVXSciv8XlVwf4jao25Zr+CfAM\nkAb8x78A7u6COkwExN0CicGBRfoAn6rqQL98OC6g7w4cqaorfHfNJFXdq61jBYNBLSkp6VD9Kzau\n4ONlH1PbWMtBfQ+iX2Y/UhNTI/ouxhgDkT376u+TX4G7l16AuzK/DXikEwHdmG3ELKADiMhHwChV\nnSsitwMZftVaVb1bRG4C8lX1F20dJ5KAft+U+/hk+SckJCRQXlvOsyOfJTWQysrKlSyvXM7eBXtT\nkNbarS1jjNlGpx4z84E9BaixQG5iIdZTv/4UGCsiycA3uC6YBFruromqw3c+nCdnPominLfXeaQF\n0vh6w9dc9J+LABjeazhjjhpDXmpeO0cyxpjO80G8urvbYeJXTAO6qk4Dgi2sOiaW9YJL0vLmGW9S\nUVtBn4w+ZCRnMG31tM3rp5dOp76xPtbNMMYYY7pE3M4Ul5GUwc5ZOzO4YPDmq/DjBhxHQarrZh89\ndDRpiWnd2URjjDEmauIu21pb+mX246Xvv0SDNpCemE5mcmZ3N8kYY4yJih0qoIsIRelF3d0MY4wx\nJuritssdgJoKKF8OFSuhoaG7W2OMMVEjIk+JyGoRmRlSFhfpU1urw7QtfgN6bSXMeBnGDIEHR0Dp\n3HZ3qayt5LOVn3HX5LuYu24udQ11XdBQY0y8CwaDBwWDwbHBYPBz/35QFA77DNumG42X9KldkvMj\n3sRvQK+pgHfvAFWoLoOP74N2RrVvqN3AqLdG8fyc57nwPxeyvibqSeCMMTuYYDB4O/AecC7uqZ9z\ngfd8ecRU9UNgXbPieEmf2iU5P+JN/Ab0QBL02nvL8i4jIKHtIQNV9VWoTxxUVV9FQ6N10xtjIuev\nxG/ETfva9Ps2wS/fGKUr9VDxkj415jk/4lH8DopLL4AfPA1z3oCsPrBL+/9vCtMKGbXvKN5f8j4X\nDr6QrGRL5mKM6ZRrgNbmnE7168+PRcVt5cqwOuJT/AZ0gMxeELw07M1zU3IZve9oLhh8AZlJmaQk\nRpzZ0BhjAPak9Z7QBNx942haJSJ9Q3JlhJPa9Mhm5ZMII31qN9Vh2hB3Xe4bqjfw1qK3+PtXf6e0\nqrTD+6clpVGQVmDB3BgTDV8Dja2sawTmRbm+eEmf2lodpg1xd4X+zrfvcMf/7gDgo6Ufcc937yEn\nJaebW2WM2UHdjxvQld7Cumq/PiIi8g/clW+hiCzFjSTvitSm3VmHaUNMs61FS0eyrd01+S6en/M8\n4GaGe+7E5yhMK4xl84wxO4ZI06fejhsYl4rrFW3EBfN7SkpKbo9W44yJuy73i/e+mOLsYrKTs7nt\nkNvISbarc2NM9/FB+2jgn7ir1H8CR1swN9EWd1foAGur1tKojeSk5JAcSI5hy4wxO5BO5UM3Jtbi\n7h46QEFaQXc3wRhjjOlScdflbowxxuyILKAbY4wxccACujHGGBMHLKAbY0wXCAaDxcFg8NBgMFgc\njeO1kj71dhFZJiLT/OvEkHU3+zSlc0XkhJDykb5svojcFFJeLCKTffkLIpLsy1P88ny/fmBX1mFa\nZwHdGGNiKOhMAWYBbwCzgsHglGAwGOzkoZ9h2/SpAGNUdX//ehNARIbgsrzt7fd5SEQCIhIAHsSl\nPh0CnOe3BfiDP9buwHrgR778R8B6Xz7Gb9cldZi2WUA3xpgY8UF7EjAMNxtajn8fBkzqTFBvJX1q\na04F/qmqNaq6EDeb2wj/mq+q36hqLe4Z+VP9VKxHAy/7/ZunSW1KbfoycIzfvivqMG2wgG6MMbHz\nKJDRyroM4JEY1Hm1iEz3XfJ5vqyjqU0LgA2qWt+sfKtj+fVlfvuuqMO0wQK6McbEgL9XPridzYZE\n65669zCwG7A/sAL4UxSPbXo4C+jGGBMbOwG17WxT67eLClVdpaoNqtoIPI7r7oa2U5u2VL4WyBWR\nxGblWx3Lr8/x23dFHaYNFtCNMSY2lgPtzT2d7LeLCp87vMnpQNMI+PHAuX70eDEuD/tnuLnl9/Cj\nzZNxg9rGq5sT/H3gLL9/8zSpTalNzwLe89t3RR2mDXE59asxxnS3kpKShcFgcDZuAFxrviopKVkY\nyfFbSZ96pIjsDyiwCPgxgKrOEpEXga+AeuAqVW3wx7kal7M8ADylqrN8Fb8E/ikidwJTgSd9+ZPA\n30VkPm5Q3rldVYdpW1wmZzHGmBjo8CjrkFHuLQ2MqwSOLLFfbiZKrMvdGGNixAfrI4EpQBVutHaV\nX7ZgbqLKutyNMSaGfNAO+tHsOwHLI+1mN6YtFtCNMaYL+CBugdzEjHW5G2OMMXHAAroxxhgTByyg\nG2OMMXEgpgFdRBaJyAyfxq/El7Wa3s8YY4wxkemKQXFHqWpps7IxqnpvF9RtjDHG7BCsy90YY4yJ\nA7EO6Aq8LSJTRGR0SHlL6f2MMcYYE6FYB/TDVHUY8D3gKhE5gjDT+4nIaBEpEZGSNWvWxLiZxhhj\nzPYtpgFdVZf599XAOGBEG+n9mu/7mKoGVTVYVFQUy2YaY4wx272YBXQRyRCRrKbPwPHAzDbS+xlj\njDEmQrEc5d4bGCciTfU8r6oTROTvLaX3M8YYY0zkYhbQVfUbYL8Wyi+MVZ3GGGPMjsoeWzPGGGPi\ngAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfG\nGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5Y\nQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPiQNwF9LKaMiYsnMC9n9/L0oql3d0c\nY4wxpkskdncDou3r9V9z44c3AjBx8UTGnjSWwrTCbm6VMcYYE1txd4W+rmrd5s/ra9ajqt3YGmOM\nMaZrxF1AP7DPgYwcOJLi7GLGHDmG7ORsAGobatlYu9ECvDHGmLgk20OACwaDWlJSEvb2FbUV1DbU\nkp2cTVIgifXV63l61tPMXTeX64dfz+65uxNICMSwxcaYOCTd3QBj2hJ399ABspKztlouWVnC0zOf\nBtw99pe+/5LdVzfGGBNX4q7LvSUJCVu+ZkDsytwYY0z8icsr9OaG9RrGVftfxex1s7nmgGvIT83v\n7iYZY4wxUbVDBPS81DxG7TuK+sZ6UhNTu7s5xhhjTNTtEAEdIDEhkcSEHebrGmOM2cHsEPfQjTHG\nmHhnAd0YY4yJAzHtgxaRRUAF0ADUq2pQRPKBF4CBwCLgbFVdH8t2GGOMMfGuK67Qj1LV/VU16Jdv\nAt5V1T2Ad/2yMcYYYzqhO7rcTwWe9Z+fBU7rhjYYY4wxcSXWAV2Bt0VkioiM9mW9VXWF/7wS6N3S\njiIyWkRKRKRkzZo1MW6mMcYYs32L9XNch6nqMhHpBUwUkTmhK1VVRaTFyeRV9THgMXBzuce4ncYY\nY8x2LaZX6Kq6zL+vBsYBI4BVItIXwL+vjmUbjDHGmB1BzAK6iGSISFbTZ+B4YCYwHrjYb3Yx8Fqs\n2mCMMcbsKGLZ5d4bGCciTfU8r6oTRORz4EUR+RGwGDg7hm0wxhhjdgjbRT50EVmDC/7hKgRKY9Sc\nWNie2rs9tRWsvbG2I7W3VFVHRrMxxkTTdhHQO0pESkKee+/xtqf2bk9tBWtvrFl7jek5bOpXY4wx\nJg5YQDfGGGPiQLwG9Me6uwEdtD21d3tqK1h7Y83aa0wPEZf30I0xxpgdTbxeoRtjjDE7lLgK6CIy\nUkTmish8EenSLG4isouIvC8iX4nILBG51pfni8hEEZnn3/N8uYjI/b6t00VkWMixLvbbzxORi0PK\nh4vIDL/P/eIf8u9EmwMiMlVEXvfLxSIy2R//BRFJ9uUpfnm+Xz8w5Bg3+/K5InJCSHlUfxYikisi\nL4vIHBGZLSKH9PBz+zP/72CmiPxDRFJ70vkVkadEZLWIzAwpi/n5bK2OCNt7j//3MF1ExolIbqTn\nLZKfjTE9jqrGxQsIAAuAXYFk4EtgSBfW3xcY5j9nAV8DQ4A/Ajf58puAP/jPJwL/AQQ4GJjsy/OB\nb/x7nv+c59d95rcVv+/3Otnm64Hngdf98ovAuf7zI8CV/vNPgEf853OBF/znIf48pwDF/vwHYvGz\nwGXmG+U/JwO5PfXcAv2AhUBayHm9pCedX+AIYBgwM6Qs5ueztToibO/xQKL//IeQ9nb4vHX0Z2Mv\ne/XEV7c3IGpfBA4B3gpZvhm4uRvb8xpwHDAX6OvL+gJz/edHgfNCtp/r158HPBpS/qgv6wvMCSnf\narsI2rczLh/90cDr/hdvacgvyM3nE3gLOMR/TvTbSfNz3LRdtH8WQA4uQEqz8p56bvsBS3CBLtGf\n3xN62vkFBrJ1gIz5+Wytjkja22zd6cDYls5He+ctkn/7kf7bsJe9YvmKpy73pl+iTZb6si7nu+UO\nACbTerrY1trbVvnSFsoj9RfgF0CjXy4ANqhqfQvH39wmv77Mb9/R7xCpYmAN8LS4WwRPiMsP0CPP\nrbqkRPcC3wIrcOdrCj33/DbpivMZVvrkCFyG6wmIpL2R/Ns3pseJp4DeI4hIJvAv4DpVLQ9dp6qK\nyxHfrUTkZGC1qk7p7raEKRHX3fqwqh4AVOK6azfrKecWwN8XPhX3h8hOQAawXU0Z2hXnM1p1iMit\nQD0wttONMmY7Fk8BfRmwS8jyzr6sy4hIEi6Yj1XVV3xxa+liW2tvW+U7t1AeiUOBU0RkEfBPXLf7\nfUCuiDQl7Ak9/uY2+fU5wNoIvkOklgJLVXWyX34ZF+B74rkFOBZYqKprVLUOeAV3znvq+W3SFecz\nqumTReQS4GTgfP8HQiTtXUvHfzbG9DjxFNA/B/bwo1WTcQNYxndV5X4U75PAbFX9c8iq1tLFjgcu\n8iOIDwbKfFfkW8DxIpLnr/SOx93PWwGUi8jBvq6LiDD1rKrerKo7q+pA3Hl6T1XPB94HzmqlrU3f\n4Sy/vfryc/1I4GJgD9xgqKj+LFR1JbBERPbyRccAX9EDz633LXCwiKT74zW1t0ee3xBdcT6jlj5Z\nREbibhudoqqbmn2PsM+bP9cd/dkY0/N09038aL5wo3G/xo1kvbWL6z4M1304HZjmXyfi7re9C8wD\n3gHy/fYCPOjbOgMIhhzrMmC+f10aUh7E5ZRfAPyVKAzOAY5kyyj3XXG/+OYDLwEpvjzVL8/363cN\n2f9W3565hIwMj/bPAtgfKPHn91XcqOoee26BO4A5/ph/x4247jHnF/gH7v5+Ha4H5EddcT5bqyPC\n9s7H3d9u+v/2SKTnLZKfjb3s1dNeNlOcMcYYEwfiqcvdGGOM2WFZQDfGGGPigAV0Y4wxJg5YQDfG\nGGPigAV0Y4wxJg5YQDc9noh80t1tMMaYns4eWzPGGGPigF2hmx5PRDb69yNFZJJsyYs+NiTP9oEi\n8omIfCkin4lIlrgc5E+Ly8s9VUSO8tteIiKvisvHvUhErhaR6/02n4pIvt9uNxGZICJTROQjERnU\nfWfBGGPaltj+Jsb0KAcAewPLgY+BQ0XkM+AF4BxV/VxEsoEq4FpcDpB9fTB+W0T29MfZxx8rFTcL\n2C9V9QARGYObqvQvwGPAFao6T0QOAh7CzXtvjDE9jgV0s735TFWXAojINFyO7DJghap+DqA+y52I\nHAY84MvmiMhioCmgv6+qFUCFiJQB//blM4ChPmved4CXfCcAuOlbjTGmR7KAbrY3NSGfG4j833Do\ncRpDlhv9MRNwObL3j/D4xhjTpeweuokHc4G+InIggL9/ngh8BJzvy/YE+vtt2+Wv8heKyA/8/iIi\n+8Wi8cYYEw0W0M12T1VrgXOAB0TkS2Ai7t74Q0CCiMzA3WO/RFVrWj/SNs4HfuSPOQs4NbotN8aY\n6LHH1owxxpg4YFfoxhhjTBywgG6MMcbEAQvoxhhjTBywgG6MMcbEAQvoxhhjTBywgG6MMcbEAQvo\nxhhjTBywgG6MMcbEgf8HfNGCjdsVDBEAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3582,17 +3581,17 @@ "metadata": { "id": "NBfTFlJcpgdh", "colab_type": "code", + "outputId": "b2def792-fc8a-4b03-beaa-d65eb98f528c", "colab": { "base_uri": "https://localhost:8080/", - "height": 195 - }, - "outputId": "5ce3848e-a620-400e-985e-1301679fec96" + "height": 212 + } }, "cell_type": "code", "source": [ "centuries.sample(5)" ], - "execution_count": 85, + "execution_count": 40, "outputs": [ { "output_type": "execute_result", @@ -3626,67 +3625,74 @@ " \n", " \n", " \n", - " 9410\n", + " 8972\n", " 1918\n", - " 2688\n", - " 25.77\n", - " 300440\n", - " Cyprus\n", - " europe_central_asia\n", + " 2323\n", + " 31.51\n", + " 406982\n", + " Costa Rica\n", + " america\n", " \n", " \n", - " 26480\n", - " 1818\n", - " 351\n", - " 30.30\n", - " 737000\n", - " Malawi\n", - " sub_saharan_africa\n", + " 13061\n", + " 2018\n", + " 3409\n", + " 65.80\n", + " 106227\n", + " Micronesia, Fed. Sts.\n", + " east_asia_pacific\n", " \n", " \n", - " 18868\n", - " 1918\n", - " 1185\n", - " 26.50\n", - " 848676\n", - " Jamaica\n", + " 218\n", + " 2018\n", + " 39219\n", + " 76.14\n", + " 105670\n", + " Aruba\n", " america\n", " \n", " \n", - " 24609\n", - " 1918\n", - " 1669\n", - " 19.97\n", - " 939985\n", - " Macedonia, FYR\n", - " europe_central_asia\n", + " 1817\n", + " 1818\n", + " 849\n", + " 34.05\n", + " 335495\n", + " Australia\n", + " east_asia_pacific\n", " \n", " \n", - " 34583\n", - " 1818\n", - " 1641\n", - " 32.90\n", - " 81786\n", - " Suriname\n", - " america\n", + " 26461\n", + " 2018\n", + " 21003\n", + " 74.89\n", + " 1268315\n", + " Mauritius\n", + " sub_saharan_africa\n", " \n", " \n", "\n", "" ], "text/plain": [ - " year income lifespan population country region\n", - "9410 1918 2688 25.77 300440 Cyprus europe_central_asia\n", - "26480 1818 351 30.30 737000 Malawi sub_saharan_africa\n", - "18868 1918 1185 26.50 848676 Jamaica america\n", - "24609 1918 1669 19.97 939985 Macedonia, FYR europe_central_asia\n", - "34583 1818 1641 32.90 81786 Suriname america" + " year income lifespan population country \\\n", + "8972 1918 2323 31.51 406982 Costa Rica \n", + "13061 2018 3409 65.80 106227 Micronesia, Fed. Sts. \n", + "218 2018 39219 76.14 105670 Aruba \n", + "1817 1818 849 34.05 335495 Australia \n", + "26461 2018 21003 74.89 1268315 Mauritius \n", + "\n", + " region \n", + "8972 america \n", + "13061 east_asia_pacific \n", + "218 america \n", + "1817 east_asia_pacific \n", + "26461 sub_saharan_africa " ] }, "metadata": { "tags": [] }, - "execution_count": 85 + "execution_count": 40 } ] }, @@ -3694,11 +3700,11 @@ "metadata": { "id": "4QPRRQjfplIW", "colab_type": "code", + "outputId": "fdfbd344-37fe-42e0-a6cd-64620b1828e4", "colab": { "base_uri": "https://localhost:8080/", "height": 393 - }, - "outputId": "38d67e60-6323-4d24-fb88-e60554692eee" + } }, "cell_type": "code", "source": [ @@ -3707,14 +3713,14 @@ "\n", "plt.xscale('log');" ], - "execution_count": 91, + "execution_count": 41, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAAFkCAYAAAAOk60fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVNX9x/H3mV52Z2f70pYFFBBQ\naaKIvZvYYtdY0CRG/UUTk9hiitHYC4ldE429xp4odqyIYkcRUJBetpfp5fz+mHVhZZddYBGQz+t5\nfJ6Ze88599xV7zPzne/5HmOtRURERERERERERDrn2NgTEBERERERERER2dQpiCYiIiIiIiIiItIF\nBdFERERERERERES6oCCaiIiIiIiIiIhIFxREExERERERERER6YKCaCIiIiIiIiIiIl1QEE2khxhj\nJhtjGowx//3O8b2NMR8aYz42xrxljNmq9fhurcfTxpgjv9PnamPM58aYmcaYG4wx5vu8FxGRTc0a\nnrF7tT5LZxhj7jHGuFqPDzXGTDXGJIwxv/9On3Nan7EzjDEPGWN83+e9iIhsSowxI1ufl58bYz41\nxhyzyrkBxphpxpivjDGPGGM8rcf1OVZEtkgKoom0MsY413OIa4ATOzh+K/BTa+1I4EHgj63HFwAT\nW4+tOo+dgQnAdsAIYAdg9/Wcm4jIRrUhnrHGGAdwD3CstXYEMB84ufV0HXA2cO13+vRpPT62tY8T\nOHY95yYislGt5zM2CpxkrR0OHAD83RgTbj13FTDJWrsVUA/8rPW4PseKyBZJQTTZ7BhjLjHG/GaV\n95cZY37d+vpcY8z7rb+i/XWVNk8ZYz5o/VXstFWOtxhjrjPGfAKMX595WWtfAZo7OgWEWl8XAEta\n239jrf0UyHbQ3gd4AC/gBpavz9xERLprM3vGFgNJa+3s1vcvAUe0tl9hrX0fSHUwnAvwt2atBWh9\nLouIbGib4jPWWjvbWjun9fUSYAVQ2ppBthfwn9am9wCHtbbT51gR2SK5NvYERNbBXcAT5H4lc5DL\nIBhnjNkP2BoYBxjgGWPMbtbaN4BTrbV1xhg/8L4x5nFrbS0QBKZZa3/33YsYY84FftrB9d+w1p69\nFvP9OfCcMSYGNAE7ramxtXaqMeY1YGnrfdxkrZ25FtcTEVkfm9MztgZwGWPGWmunA0cC/dbUwVq7\n2BhzLbksihjworX2xW5eT0RkfW3Sz1hjzDhyAbCvyf1Q0WCtTbeeXgT0WdPN6XOsiPzQKYgmmx1r\n7TfGmFpjzCigHPjIWlvb+uFjP+Cj1qZ55D6MvAGcbYz5Sevxfq3Ha4EM8Hgn17mG3PKh9XUO8CNr\n7bTWDzTXkwusdcjkaqZtA/RtPfSSMWZXa+2bPTAXEZE12pyesdZaa4w5FphkjPECL7Zes1PGmELg\nUGAA0AA8Zow5wVp7//rMRUSkOzblZ6wxphdwH3CytTa7LqXM9DlWRH7oFESTzdW/yNVhqCD3ix7k\nfu26wlp7+6oNjTF7APsA4621UWPMFHJp5gBxa22HX7h6IkvCGFMKbG+tndZ66BFgchfdfgK8a61t\naR3jeXIp+vrwISLfl83iGQu5rAdg19Yx9wMGd9FlH2Cetba6tc8TwM6Agmgi8n3Z5J6xxpgQ8D/g\nImvtu62Ha4GwMcbVmo3WF1jcxb3pc6yI/KCpJppsrp4kV/h0B+CF1mMvAKcaY/IgVzzaGFNGrg5Z\nfesHj6F0sZzyW9baa6y1Izv4Z22WctYDBcaYb7/U7Qt0ldK+ANjdGOMyxrjJFWNVGryIfJ82l2cs\nrXOgNRPtfOC2LrosAHYyxgRa6/3sjZ6xIvL92qSesSa34+aTwL3W2v+sMoYFXiO3VB5yG7c83cWl\n9TlWRH7QlIkmmyVrbbK13kLDt7/AWWtfNMZsA0xtTT9vAU4gl/l1ujFmJjALeLeTYdeLMeZNYCiQ\nZ4xZBPzMWvuCMeYXwOPGmCy5oNqpre13IPeBpRA42Bjz19Zdkf5DrojrZ+SKs0621j67IeYsItKR\nzekZC5xrjDmI3A+Dt1prX21tXwFMJ7exS7a1kPew1qX1/wE+BNLklk7dsSHmLCLSkU3wGXs0sBtQ\nbIyZ2HpsorX2Y3I/TjxsjPkbueflnaDPsSKy5TK5HxhENi+thVg/BI76djchERHpGXrGiohsOHrG\niohsvrScUzY7xphhwFfAK/rgISLSs/SMFRHZcPSMFRHZvCkTTUREREREREREpAvKRBMRERERERER\nEemCgmgiIiIiIiIiIiJdUBBNRERERERERESkC66NPYHuOOCAA+zkyZM39jRERDY1picG0TNWRKRD\n6/2M1fNVRKRDPfIZVmRj2Cwy0Wpqajb2FEREfrD0jBUR2TD0fBUREflh2SyCaCIiIiIiIiIiIhuT\ngmgiIiIiIiIiIiJdUBBNRERERERERESkCwqiiYiIiIiIiIiIdEFBNBERERERERERkS4oiCYiIiIi\nIiIiItIFBdFERERERERERES6oCCaiIiIiIiIiIhIFxREExERERERERER6YKCaCIiIiIiIiIiIl1w\nbewJiIiIiIiIiGzukrEoNQvnM+e9qQwYOZbygYPwBoIbe1ptIo0NGCBQEN7YUxHZbCmIJiIiIiIi\nIrKeGqtX8NCfzwNrmf7sExx36bX0Hjx0ncZKJ5MkIi1gDMFw4XrPrX7pYp6ddCUOp5ODf3shBaXl\n6z2myJZIyzlFRERERERE1tOKeV+DtW3vl8z5cp3GSadSLPziM+789Wk89Kff07h86XrNKxGN8Mpd\nt1E9fx7L537FG/ffRTqZXK8xRbZUCqKJiIiIiIiIdJPNZEgtXUrT5BdILlhANpEAoO82w3F7fQA4\n3W4GjhyzTuMnIi28etdtpBJxGlcs58P/PU2mqWmd5+twusgvKml7n19SinGsDAWkk0kaq1ew8IvP\niDY2rPN1RLYEWs4pIiIiIiIi0k3p2jrm/eRwXBUVuAoLqfjbpXj69CGvqISJ199KzcJvKO5b2eEy\nzJaGOlKxGB5/oNNlmk6Xm+J+lTS0ZqCV9epDctEi/MOGrdN83V4vux5/MuFevXG6XAzbdS+crpWh\ngJa6Wu7+3Rlk0mnKBw3m8PP/rLppIp1QEE1ERERERESkG2zWksoYel11FZn6etJLlkAmkzsZj+Ne\nspTCOfPwFZbhDJt2fSMN9Tz0x3MZtO1IdjzgEBItEZz5+bgKCtq18+Xlse/PzmTQ0BEEQwUEq+tw\nhkLt59F6TeN0dmvegYIwOx52VIfnahctIJNOA7D869lks9lujSmyJVIQTURERERERKQL6VSW5fMa\nWfB5A4Mztaz44x8AaHj6aaoefIB0dTXfHH0MAI5ggIHPP4+7rAyAmpYEyYyToXsdwOjh25GaPp2m\nTz8jfMThmIEDcebltbtWsKiYbXbejfgXX+AeMwZXycrlmOmaGmpuux2speSM09udWxflg7YmXNGb\nhmVLGHPAwZhoDBvKdDtAJ7IlURBNREREREREpAvxSJJnb/iErceWEZ/zIQCu3r0J7LIL1uEg09xM\n/v770fLGm2QjUdLLlmMcDqrdQY7/5zQW18e495TdMU2LWHrRHwFoev55Bj791GpBNABXcTF5u+7a\n7lg2kWDF9ZNofOIJADKRCL3+ejEOr3ed7yuvsIijL7iY5PLlpD75lEVHHc2gp5/CVVq6zmOK/FBp\nYwERERERERGRLhgMFsuyeU0EfnI03m22ofimG/go5GHqc0+RKSrEXVVF5R134B83jkxzE8uvuZbZ\n86uZVxMhmcly3UtfkY1E28bMtrSQrq4mXVPbvUlks2QjLW1vbSTStrRzfTgXLWHFscdTf8WV2JYW\n7Cq7jIrISspEExERERERkU1OQzTJu3Nr+XRRI8fvWEnfwkCPjZ1paCC1fAUYcJWX4yooIF1TQzYS\nxRHwd5iF5Q24OOSskXwweT51tpjy22/l6X9cxbKvZgPgc7np9eUsGhsa6H31VcQ/+QTjclLic+J3\nO7nhRwMYVuDEWxKi4LBDiX74EcUTJ9L43/9RdOIJQHGX83b4/ZRfcAHZSASA0l+fjU2l1vvv4dlq\nEMWn/YLo+9Mp/fXZOL9Tp01EchREExERERERkU3OrGXNnH5/btnkfz9dyuNn7Exp/rovW/xWNpWi\n4amnWXHllQCU//nPhPbdhwWn/ZLEzJm4+/en6oH7cZWUkFy4kLp/341v2xHk7bknvbcOU1KZj9vt\nIB5pIrNKACuTToPDQaa+nvoHHiTy+hT63nILruo6njtxGM47bsTdpzexEdtS8qtfEf3wQyJvvkX8\ns88o+cXPu38DLheBMWMAw8Jfnk7fm25cbXOCteUqLKTkzDPJxuM48/NVD02kEwqiiYiIiIiIyCZn\nWWO87XV1c2K9lhjWtCSIJNL4PU6KbZKW115rO9fy6qsEd96ZxMyZAKTmzyddVwfAglNOJbVoEQB9\nb74Z4/fhGz4ch7+AQEGYA3/1O6bc+0/yCosZNnYnGl97i5LTT2fROeeQXrKE2jvvJNsSoeKkE1n4\n1lsU/30SCyaegn/MGMov+gOefpV4+vVdu80BrKXmttuxiQQAxutb57/Lqhw+Hw7fmseyWUu0OUmk\nPkFeoZdAwfoHNUU2Jxu0Jpox5hxjzOfGmBnGmIeMMT5jzABjzDRjzFfGmEeMMZ4NOQcRERERERHZ\nNDTFUjTFUkQbE8x4YzFLv24gEe14OeKErUvYd1g5lUUBbvnpaAr87nW6Zk1LgjMf+IDdr5nC4be8\nQ5NxU3TKRHA6weWiaOJEHMEAnqoqAFxlZbgKC7HWkmlsbBsntWwZ1ddeR+LLL9uOBQvCVG0/hsLe\nfVm+ZBFll13Gkj//ifSSJQA4w4XYRJxscwvuyn6kq6sBiH3wAd8ceRTuPr3XendNZzhM//vuI3TQ\nQfSZNAlXSdfLQHtKtDnJw5e+x2NXTueJ6z4k0pj43q4tsinYYJloxpg+wNnAMGttzBjzKHAs8CNg\nkrX2YWPMbcDPgFs31DxERERERERk41tUH+XCJz7D5XBw2aFDcRPhiWtmceQFYymvWj1AVpLn5doj\ntyOZyVLgd+NxrdsSw2gyw3vz6lvnEGN2dZQdxo1jq1deBsBZUIDD76f//feRrqvHVRjGWVKCTafp\nd8stLLvsMrxbDcI7aCDx2bNJL1veNnagIMw2u+xBKhHH4/PjCebR+2+XUT1pEp4BAyg87jiiH3xA\nJhGnz7XXko1GyT9gf2IffUzp2WfjCAbX+n4cHg/+7bal15VXkMkY4vE0zkgKX3DdgoxrI9acJN6S\nC3o2roiRSWU3+DVFNiUbejmnC/AbY1JAAFgK7AUc33r+HuBiFEQTERERERH5wWqIJjn3sU+ZOje3\nC+Vf/mu4doKDgdsX0bA8SnlVqMN+BYH1X7jkdzsYUBJkXk2EkM/F0AInmUgE43K3y+JylZS0ywoz\nbjf+USPp9887yNTVsfi888nbfTeCu0xoN35eYVG7974Rw+lzwz8wbjcOr5eCAw9od77XX/+KTSZx\n5Od3uXxyTdIpmP3+Mt57di4VAwrY88Sh+PM37EKvQMhDcZ8gtYsj9NumEJdXtdNky7LBgmjW2sXG\nmGuBBUAMeBH4AGiw1qZbmy0C+myoOYiIiIiIiMimwdK+ppmz8Wv6Dx1Jv6GF6z12SzxFNJXB5XBQ\nFGwfSCrN9/HQL3YkmsxQYlKk/vcMX193Pe5+/aj81z9xV1R0Oq5xuXCXlmL8fipvuxWMwRkOr3Eu\nxhiceXmdnu9q58uWeIpoMoPb6aAw2HlQLJnI8PpDs8DCvE9r2HZhM/2GbdilnYGQl0N+PYp0KoPb\n49zgQTuRTc0Gq4lmjCkEDgUGAL2BIHDAGju173+aMWa6MWZ6deu6cRER6Rl6xoqIbBh6vop0LBzw\ncO2R27PLViXsMbiUS/YsIljUl0Hj+q93cfrmeIoH31vIble/xpkPfEBNS/s6XbWRBH98agZ7Xfc6\nTbUNrLj8CmwiQfKrr6i59VZsds1LErOpFInPP2fZ0loW10WprWlcY/v1UdOSm+se107hF/dOZ2Fd\ntNO2DpPLDPtWsLBnNhjoSiDkIVTsVwBNtkgbcmOBfYB51tpqa20KeAKYAISNMd9mwPUFFnfU2Vp7\nh7V2rLV2bGlp6QacpojIlkfPWBGRDUPPV9kY6qNJqpvjNMaSG3sqa9S3KMDNx23LDUcMplc4iO29\nPXGHIZ7KrNe4LYk0lz83k3gqy7tz6/h0UUO78/FklpdnrgAgZQ3GvbJ2mCMUAmPWOH62qYn60j4c\n/cJy9rh3Jn9/cwEN0Z7/W6cyWe6d+g1PfbyEaDLD9Pn1nP3QR9RFOr6WP+ThiPPGMP7wQRx+7miC\nYe2UKbKhbcgg2gJgJ2NMwBhjgL2BL4DXgCNb25wMPL0B5yAiIiIiIvKDVRdJcNETn7Hzla9yzeRZ\n1HcScNmQ4qkMqUz3CswXBAOECsIk/CVMXxzjl/dN5+rJX1IXWfddHl0OQ3loZQCpb2Gg3Xmv28HQ\ninwA7plRR5/bb8e37baEDjmE4okTMV0E0YzPx6fVcZY2xgG4f/pikumeL6gfTWZ4v3UDhG/NWNJI\nupNMOWMMoWI/o/frT69BYbz+DV3yXEQ2ZE20acaY/wAfAmngI+AO4H/Aw8aYv7Ueu3NDzUFERERE\nROSHrLo5yXMzlgFw/7QFnLbbwDXW0eppi+qjXP7cTEryvJy999aU5HWeDZWJRnPF9t1u6iMpTrzz\nPXxuJx/Ob2BIRT7H7FDZYb90MkmsuZFIQwP5JaUEC9rXJCvN9/H4GTvzwufLGV0ZpldB+2WNJXle\n7vvZjixrilOW78Xvc9DvjtsxHg/O1t0xM42NpJYsJRtpwTNoEK7ClXXanMEgwwdV4HXNIZHOMrZ/\nIU5Hx4G3eCRFNp3FG3DhdK9d0f18r4uDt+/VtvkCwF5Dy/Ct466kItLzNmio2lr7F+Av3zk8Fxi3\nIa8rIiIiIiKyJSjwu/G6HCTSWUJ+F961DNysj9pIgrMe/IiPFuaWT+Z5XZy7/xCMMSSiKZbMaWDJ\nVw0MH19OkFpcrgyZeJpsQS/Aw/0njsWfhGC+h6XxzjPo6pcu5oE/nEMmnaa0/wCO+MMlBMPtNyPo\nWxjgZ7sM6HSM0nwvpfmrBPg8KwONNpul+ZVXWPqHiwAoOOIIyi84H2d+flubigI/U36/B8ub4/Qt\nDFDcQbAw2pTktfu/pG5JC7seO5i+gwtxebr/78PhMBw4oheZLDz18WJGV4Y5bbdBhPzurjuLyPdC\n+Z4iIiIiIiKbqcKAm+d+vSvvzatjwlYlFH+PWWjWQmKVZY2xVAZrcyXG6pdHee7WzwCY9e4yjvm/\nMtx3jMNVWEX2uKfI8/Vm2UuLWTCjDgwc+ptR7caONTURa2kiFYvx1QfTyKTTAFTPn0cq0fnSz2gi\nTUM0xZKmGKV5XgpNmvg9d+Hw+ggfewyuoqLV7yORoPmVV9veR958k9QJP6X6iScpOvkkPH374nU7\n6RX20yvs7/Tai76s45tPawB44Y4ZnHDp+C6DaNGmJJ+9vohsxrL9Xn0pDHk5fsdKDt6+FwGPC49r\n3SswZTMZHE5lsYn0JAXRRERERERENlNet5NBpXkMKs373q9dHPRw4/GjuODxTykKejhjj0E4Wpc5\nRhtXZpbFW1KQbd08oP4bqJ2No09vFnxelztm4euPVtB3SC67rKW+jv/+4yoWz/ycfU78BZXbjOBd\nY8BaQqVluL2dLxmtaUlw/UtzeOrjxTgMPHbS9oRfepnk3LlkWpop+93vMN8JLDn8fgqPO46WKVMg\nkyF81FE0PvU09ffdR/Sjj+h3803gcODweHAWFHR67VUL+wcLvO32K0jG0yTjGYyBQL4H4zCkEhmm\nPvkVX07NLcdtXBFlzxO3wet3EQ6sezA0k05Ts3A+H/z3SQaN3Yn+243EF/z+//sQ+SFSEE1ERERE\nRETWmjGGQaV53HHSWFwOQ75v5bLDikEFDNy+hOXzmxl/aBXubx7NnXD7MRXb4HAYBo4qZe6H1RiH\nYfAOFQDEW1p44fYbWDzzc1weL5X9+hP532ROuPAS6pYsou/YHUl7cnXM6iIJXp9VTSZr2XNoGcV5\nXqLJDO98ncsGy1p4e149P+nXj+TcuaRrarHZ7GpBNAD/qJFs9fJL2FSKTCTCN0fk9sIrP+9cFv/+\nXGLvv0/4+OMpPfssXOHwav0BivvkceDp27JifhPDd+lDoHWzg3Qyw9yPa3j1ni/wBt0cce4YwuUB\nspkszXUrs+qa6+Jku7lBw7eiTUlSiQxur6PterHmJh75y/mkEnFmvjWFidffqiCaSA9REE1ERERE\nRETaSSUzRBsS1C6JUF4Vapdl9V2FrVlTqUyGukiKTNaS73Ox50nbkElncdkUbo7GVo6EkkGYvAp8\nLg97HDeEcT8egMfvwhfMfTVNxmN889F0ABxOJ9lIhOa778H5zLN4SoqpuWoEFz05l38cN4qbXpnD\nPe/OB+DIMX25+OBhFAU9nDS+P9e+OJsCv5sfj67EPusgMG4Hyn57Dg53x/XFnMFg2yYD6bo6Qgcd\nRGrRIozTSez99wFoePBBin92KnQSRPMF3QwcWcrAkaXtjifjad7/7zyszWXlffnuUnY6dBAev4td\nj96aZ2/8BJu17HH8EHyB7tc/izYlmXzHZyz9qpGCMj+H/240gQIv1mbJpFNt7dLJ73/HVpEfKgXR\nREREREREpJ1YU5IHL5lGNm0Jlfg44twxBAo6D6QBfL0iwuG3vkMsleHqI7bjkO17Ewy6AS+QB+E+\n7dr78z3481cuW8zG47hicX5yzoXMmzWTWW++Sn0qQfjUU4hNfRfPSadw/8wG3plby4zFjcTSmba+\nMxY3kkhnKQv5OHpsPw4d2QeX01CW78Nedhk4TKcZZN/lKiqi4s9/wiYS2GQS4/Fgk0lcZWUYz5qX\nWWaylpZ4Gp/b0bbJg9PtpPfgME01MYC2ZavGGAp7BTnqwrG5v0eeG9PJrp8dSSUyLP2qEYDGFTFa\nGhIECrz4gnkc8ruLmPbko1SNHEOopLSLkUSkuxREExERERERkXYiTQn6DS2iZlELTTVx0sk01now\npvMgzyPvLySazAW2/vnmXPYcWtat3UJrWxLEkmlczY3EzjsXV/8qBv7yV/TfdT9eueZP7HTwEXgP\nOZZJ7y3j2S+WAOCx8ItdBvDEh4uxwG/3HUy+L/f1tizka3+BokLWJBOJEItFyWYzuP0B/PkhnHl5\nkJdHNpFgwDNPk/hiJv7Ro3CVlHQ6TiKV4ZNFDVz34mzGDSjilAkDKAp68Ppd7PyTQWyzcy/8eW6C\nqwQjHQ7T7v3acHsdhMsDNCyP4stzt2ULur0+qkaOpvfgobi8PtxdBP5EpPsURBMREREREREyqSzG\naYinMix3WeYM8rLvgf2Iz64nMfVN/DuNxl1W1mn//YZXcPfUb7AW9tmmnEA3Amg1zQnOfvgj3vm6\nluG9Q/zzootpPPonBPY/iNsb8tlv9/147cF/c+wN95G0KyjL9/Lj4RVUhf2UFQd454I9yVgI+z14\nXJ1fLxuPk21pwXi9OPPzV95zJEJLXS2PXvVXmqqXM3yPfdj9hFPx54cAcHi9eKuq8FZVdXkvjbEU\nJ975Hol0lmnz6thlqxJ2HFgMrJ511xMCIS8/+e0oIo1JAgUeAquM73S62u5BRHqOgmgiIiIiIiJb\nMGstjdUxpj09l8KKAL12ruDwW98ha+Hf0+bzwpk7UXvA0QTv/Ncag2jb9i3gzXP3JJLMUJbvJeDt\n+utmQyzJO1/XAvD5kiYWpcoJh8O4igqJLE+Ay0kmlWL+6y/wl333o74+QUmxj4UfVjOrNs4OB1Ti\nc8RxOTqvJZaJRGh57TWqb7wJ/8jtKT//fFxFRbl7z2ZZ8NF0mqqX5+Yw5WV2PvJ4/PkhMk1NZFta\nwOXCVVzc4YYE7Rjwuhwk0rnNAbwuR5f3v74CBd4ul9mKSM9REE1EREREROQHLt7SQiadxNFBhlKs\nKcnTkz6ipT6B2+fENTxM1ubONcXTNKSh4JY78PTtu8Zr5Hld5HUjcPatbCpFnhPyvS6aE2k8Tge9\nK4pw/e1ypsc9nL9/f9xNBYzefXc8/gC+YJCSQh9fvruMac/MA6BucYTdhqygYPRwvP37AxBNRUlm\nk4Q8IRzGQba5mSXnnQ/ZLKn58wkdeCD+kSNpfv55MA7Kxo4CY8Ba8otLcLjdZCIR6h9+mOrrJ+EM\nh6l69BE8lZVrvJ/igIdHfzmeW6Z8zfhBxVSVBLv9txCRzYOCaCIiIiIiIj9g0aZG3njgbmZNfYPK\n4dux/xm/IRAqaDtvgUQ0DUAqnqHY5eSI0X14fXY1x46r5PU5NVSGKxgfKOCz2dVEEml2rApT1DgD\nPn0MtjsGyoeD29fxBDqRqa8n9qc/89Q5FzJtYSM7DK/k8/oY48bvzG4OByG/G4rz2vXx+B0kYum2\n98lEGpwuWqZMwXvyydTF6vj7h39nXuM8LtzxQoYUDgGHA4ffTzYSAcAZKqDh8SeovuYaAEqvvpIT\nLr2WFfPn0n/7MeSFC0mtqKburn/n5tnQQPMrr1J8ysQ13o/T6WBorxDXHb09bueGz0ITke+f/s8W\nERERERH5AatfupjPp7xEOpFg7ofvM//Tj9qd9wbc7H/aCPIKvfQaVEBJgY/zDhjCFYdvSyyZ4erJ\nX1JW4OeZTxZz0l3vccYDH3LtS3OIzJtOumQHUjU1ZKONaz8xa4m/8w6Ziccy/l+XU1a3hDGVRRQG\nvbkAWieG79KHQaNLKR8QYp8j+hB59H6CO+0EwBuL3+DJr57k4+qPOfvVs6mL1+EqLKT/A/cTOvQQ\nel1xOZ4BVSRmftE2XvSpZyjp3Zche+5NoDi3zNPh8xLcdddcA6eTwI7jun1bCqCJ/HApE01ERERE\nROQHzHwnqONwuamLJHA6DAV+Dy63g76Dwxx5wVgcToM/z4Mva6ksSvPgtIWcsfsgti7P4/53F7SN\n8fmSJuLjD2P5L08nvWIFfSZdj39sEQ5358Gv73IWhOl3++3U3n4bwQkTyOvbG2d+1/W9AiEPe544\nlEw0jqO5lsJrr8YZDgOQ517ydFVZAAAgAElEQVSZuRZwB4gls9RmspQMHUrvyy7DuHJfgUvPOYfk\nN99gk0nK/3ox1TQz6e1JlPpLOXXbUykKFVF+4QUUTZyIKxzG2cUOnyKyZVAQTURERERE5AeqNlbL\nfFPNdgcfzDfvvkfliO0JDRjCYTe/zbBeBVz2kxEU53lxup0EC1YWznc6DEMq8rnp+FF4nA7cLgdn\n7bUVb39VQzSZ5qIfb4N98xUSs2cDsPQvF1P14AM4Skq6PTeHz0twx3H4RwzH+Hw4PJ3vXpmJRMg2\nNWGzWZyhEN78fPC7oTi/Xbsx5WM4b4fzmF0/hyMHTuS0u2fh9zj550ljKclbGaDz9OlDvzvuAGtp\nCTq5cMo5TF8+HYCwN8zPt/s5rqKitg0IRERAQTQREREREdlMZbMZYs3NOJxO/Hn5XXfYVERqYMUX\nkIpD75GQ1/mOl+t9qVSEM94+i5O3PoERow9n+16j2WPSdKLJDAvqYhw2qjcHjOjVaf/gKhsFDCgJ\n8tyvd8VaSzjgJj5z5d/cM6AKXGv/9dI4nThDoTW2sdYSff99Fp35f5DN0uuKKwgd9OMOs94KfYWc\nOOxEvq5u5KQ7P2BxQwyAVOuOmatqC5DFG0hnV9ZZS2VTAEQTaVoSaVxOQ1FQO2CKiIJoIiIiIiKy\nGcpmM1TP/4bnb76evMIiDvy/cwiGN4OsoXgjvHgRfPJw7n3leDjmfgh2nMHVFEsRT2dwORwUBTvP\n1OpMwB2gV14v7pp9D72Cvbi3/wMEPE6iyUzu8sVBFtfHmDavlpH9wvQJ+/G6nR2O5XAYSldZbunY\neTz97rid1LJl5O+9N67WJZU9zcbjNDz6GGRzgbCGxx4jf889YA3Xy/d6MSb3ev/h5XjdndcpC/vC\nXLHrFVzx3hUU+4o5esjRRJNpXvxiOX96agaDK/K57YQx7e5dRLZMCqKJiIiIiMhmJ9bcxHM3Xkvd\n4oXULpzPp6+8wPgjjtvY0+paKgafPrry/YKpuWMdaIwmufPtedw65WvG9i/kxuNHt1uS2B0l/hLu\nO/A+amO1FPuLKfYV85/Td+a+d+cztn8hhQE3P77hLeoiSTxOB1PO3YPeYX+3xnaFw+Tttlu7Y9Za\nzLfRqx5ifD4KDjuUlldfBSB0yMGYQGCNfcpCPp48c2fiqSwBr7PLTLK++X25erercRonPpePFU1x\nzn/8UxLpLB/Mr+ftr2o4bFSfHrsnEdk8KYgmIiIiIiKbHYfDSTAcpm7xQgBCJaUbeUbd5HBBxXaw\n9OPc+/wKcHZcjD+SzHDDK18BMHVuHXOWN68WREvX1UE2i7OgANO6vDGTyZCMtODyeHH7fJT4Syjx\nr8x0qyoJ8qeDhgGwoDZCXSQJQDKTZWljrNtBtO9qaUjw8UsLcHkcbLdnPwKhtc+c64gxhuD4nRn0\nysuQyeIMF6yxftq3SvN9a3WdoDvY9trhMAwsDTJzaTMAA0uDnXUTkS2IgmgiIiIiIrLZ8eeH+NFZ\n5/LpS88RKi1n4Khx39u1E7E0iWgKYwzegAtnIkKmqQnjduMMh3H41hC8CZbAcQ/CG9dBMgJ7nA/B\njmuiuZyGsnwvK5oTOAz0Kmgf3EotX86is39Npqaa3tddh3/ECDLZLEtmz+SNB++m99ZDGX/EsfhD\nBZ1OJ8/n4uDte/PsJ0sY1S8MGOobIviXLqD+4UfI23UXAuPGdVm3LNqc5H83fULNohaMgXBFgF5D\n8yARxel24w+FcDrX/utnuqGByDvvkJg9h8Jjjsbd5/vJBivJ83L3KeN49csVDKnIp6pEQTQRAWOt\n3dhz6NLYsWPt9OnTN/Y0REQ2NT2yVkLPWBGRDq33M1bP1x+mTCbLV9NX8PK/v8AYOPq8beHFJ6ie\n9Hdwu+l/370ERo7seqB0EmwW3J0H3Ky1LGmMM2XWCkb1K6SqOEBglUL/K/5xA7W33grkCvv3v+9+\n4k7DnWf9nHQql112xEWXUrXdqDVOZVljjAV1MZY3xbnk2S94+eRhLD34x9h4HICqxx7Fv+22axwj\n0pjg3oveIZu27HH6cN5saObjRY2csWM5c/7zL/Y44RRK+vVvax9LpmmMprAGwgE3fnfHAbbmV1/N\nbSgAeLfemsq7/42ruHiNc+lMprmZxOzZxGd8Tv5+++Lu1fmGCrJB9ex6X5HvUefVFUVERERERLZ0\nLdXQuCi3oyaQTmT44q0lAFgLyboWGp54Mtc2laLx6ac7HMZmMqRra0k3NOYOuDxrDKBBbhljn7Cf\nn+7Yn2G9Q+0CaACeysq21+7efcDlwhiD278yY83bRe0wAI/LwTUvfMlZD31ETSSBO5NuC6ABpJYs\n7XIMl8fBqH0qCZcHWOrIcuXkWUyesYyfP/IlQw48ktfvv4tENArAiqY4b8ypYWlTnEue/ZyP5jd0\nOm5q6cprp5Yvx2ZX32Wzu5Lz5jH/pyew/IormH/CCaRratZ5LBHZMmk5p4iIiIiIbDbikRYyqRQe\nfwC3dwPvlthSDQ8eBUs+ggG7wxF34vYVM2SnCpbMaQADnnAeroN+TO3Nt4DTScFBB602jM1kSMye\nzZLzz8dZXELvq67CXbb+Ndzy9tiDPtdfR2rpMgoOPQRXuABnNsuxf72K6c8+Sd9hIwhX9O5ynKKg\nl1t/OoZPFjVQWRzA4UxReMJPqX/wIXzbbUtgzJgux/D63Yzct5Lhu/XmvWWNbcfT2SwYg81kwFqq\nmxMce8e7zK2J4HU5ePSX47njja8ZVVmI37P6rqCh/fen+aWXSc6fT69LL+lyWemaJObOxXi9lJx+\nOt7BW2PT6XUeS0S2TFrOKSKy+dJyThGRDUfLOTdB0cZGXrv7dpbMmcX4I49j8I474/F3nWm1zhZN\nh3/tvfL9r6ZDydYkoikS0XRbTTRHooVMQwMOnw9nKIQjEKAuXkcmmyHfk4+roYUFp5xKYs4cAIpP\nO42y356z4eYN2GwW41j3hUeZxkZsMglOJ66iorXqWxdJcuebX/Pp4ibOntCbBU/fzS5HH0/5gEEs\nbYwx/opX29redNwo3E4H+w0v73RXz0xDAzaVwlHQvQ0FOpOuribx9dc0PPEkLa+/jn/UKHpf9rd1\nXh4q60zLOWWzpUw0ERERERHZLCyZ8yVfvvMGAC/c9g/6bztywwbR8nuBywvpBHhD4MkDwBtw4w2s\nsqOmP4wrHG57uyK6gv975f9Y2LyQyyZcxvjC0TiLCgFwVVTAEQeyIroCr9NLgbfzov/d1VJfx/xP\nP6KkX3/CvXrj9Qc6DKBlolFsJILx+XDm569+PpMh1thAKpnA6w8QKF23bLmioIez9tqaSDQGkUa2\n+cWZ+Fqv53c7+dkuA7jzrXmM6BNiTFUhQa+r0wAagHOVvy1ApqUFrO3wHtbEVVpK7LPPaHrmGQAi\nU6bQ+NTTFP/s1LW8QxHZUimIJiIiIiIimwVfcOUOiW6Pd42Blx4RKIHT34GF06BqAgS7F1R6Zf4r\nfFn3JQCXvnspjx38GL2vuYa6e+/DnHQ4Z757LrPqZ3HckOM4c9SZhL3hLkbsXLSxgSeu+AvV8+cB\ncOJVN1BWNZBYcxPNtTUYY8grKsGTzVL/yKPUP/ggwQkTKPv973AVFrYbq2HZEh686HckY1F6bT2U\nQ8/9I8GCdZubz+PC58mHcPtAVzjg4ay9tuK03QbichiK89ZuSW5qxQqWXXIpNpGg118vxt276+Wq\nq8quUusNIBuNrFV/EdmyaWMBERERERHZLBT3689+vzyLoRN255i/XoU/tP5ZXGvk9kLJVjDqp1BY\nBc6OcxCstaQSGb4tlbNV4VZt5wYWDMTlcOEuK6P897/jm0w1s+pnAfDQrIeIp+Mdjtld2WyWusUL\n297XL11MKhHng/89xX3nn829553FZ6++QKapierrrye9bBmNjz9Ocu7c1cb6ePKzJGO54v9L53xJ\nrKlxtTY9IRzwUB7yrXUALZtKUT3p77S8/DKRN99k6V8uJtPcvFZjBMeNw7f99gB4qqoIH3XUWvUX\nkS2bMtFERERERGSz4M/LZ9u99mfY7vvgdK5ehH5jSMbSLJxZx6xpyxg6vhd9hxQytGgo9x14Hwub\nFzK+93gKfSszvvrm98XtcJPKpqjMr8TlWL+vZB6/n71//n+8+u/bKK2sou82I0jG4sx+9+22NrOm\nvsnIHXYGlwtai+k7fG5oWgyefPDlivWX9B/Q1sfhdOENBNmUGGMw/pU7mjp8XljLum+ukhL63XIz\nNpnEuN24Skp6epoi8gOmIJqIiIiIiGxWNpUAGkA8kmLyHTMAmPdpDSf+bTyh4nxGlo1kZNnI1doX\n+4p55rBnmNs4l6HhIXhaskQS9QTDhau17Q6Pz8+Q8bswYOQYHE4ngVAByXicITvvyruPPwzA0Am7\nY4IBKu+4hfpH/kPehB1wr5gC//kL7Pp7GH8m+AsZPG4CqXicpXNmMfrAQ/DlrV3NsQ3NuFyUnnkm\nBsjGE5T+5tc4g2sf6NNGAiKyrhREExERERERWUfZrF35xoLNrrm91+Wlb35fimw+T1x2McvnzqGw\nVx+OufjK9QqkeXz+Vd77GP2jQxm844TWmmjFuOPLcc+8BP++o3E0PAmvv5xr/MbVULkTbLU3/lCI\nMT8+jGw6jdPt7uRqG5erpITyP/wBay2OTXSOIvLDpSCaiIiIiIjIOvLnuZlw5FZtyzm9we59xUpE\nWlg+dw6Qq2MWbWxoF0Srj9fzZd2XeJweBoUHrfXmA/68fPzfZpJlUvDGHbDwPRwL31u98ZvXQe/R\nECjEGNPjAbRoYwOZdBqX290jdeyMy8UG3lJCRKRDCqKJiIiIiMgWw1pLbbwWLBT6CnE61m9pqDfg\nZsTufRiyYwVunxOXu3vjefwBQqVlNFWvIBgubBdciqQi3PLxLTw8K7cc86xRZzFx+EQ8Ts+6TTKT\ngob5nZ9vXgrZ1LqN3YVoYwNPX3cZS2bNZOsdJ7DPz88ksKE3hBAR2UAURBMRERERkc1OY6KRdDZN\ngbdgrYrzz2+azxkvn0Eqm+LmvW9mcOFgjFm/vCaXu/vBs28Fw4Uc/7fraKmrJVhY1C4LLZ6OM23Z\ntLb3U5dM5Zghx7QPoiUjEG/MrR/15IG/80y1jHHhHHUCzJ7ccYO+OxDDx+yFDfjcTioKvBT41zFg\n9x2RxgaWzJoJwJxpb7P7CadAN4Jo2awl1pwEwOt34fJsOnXwRGTLtXZbmYiIiIiIiGxkNbEaLnjz\nAiZOnsiMmhmkM2lqY7VMWzqNRc2LiKfjHfaLpWNM+mASi1oWsTy6nCvfu5KmZNP3PPuVguFCygdu\nRV5hUbtAXp47jxO3OREAh3FwwrATCLpXKaCfTsDMZ+Ef28Gk4fDKJRCtW238dCrFsq9n8/wtf2dm\nTZD4ftesPgmnB7v7+dwzvZpDb36b/f/+Bq/Pqumxe/Tn57ft8plfXILL4+1Wv4ZlUR6+9D3uu2gq\ni2bXk05lemxOIiLrSploIiIiIiKyWZk8bzJvLX4LgPPeOI/7DryP373+Oz6p/gSXcfHEoU8woGDA\nav3cDjdVoaq29/3z++Nx9EzG1beyNktdPBfQKvYVr1OWm9fl5cABBzKhT25jgJAn1D7bLlYPz/0+\nt0wTYPqdMOHXEChqN068uYlHLr6QdDLBrHfe4OSrb8C39f4w54Vcg4rt4OB/EPGW8+IXn7b1e23W\nCn60XQUux/rnXPhDYU665ibqliyipG9ltzZPSCUyvPv018Rbcvf3xoOzOeL8MbgKnERSERzGgd/l\n72IUEZGepyCaiIiIiIhsVnoFe7W9LvWXAvBZzWcApG2aWfWzOgyiuRwuJo6YSGWokmQmyf5V++N3\nrzkYE2tOkoylcXmcBEIejKPzoJi1lrmNc/nNa7/BYPj7nn9nYMHAtkBaPJIik87idDrw5a25eH+e\nJ488T17nDcx3ljd2EKyz1pJJr6x1lk6n4fA7cktByYLLD8ESfJksZ++9FT+/Zzpel4Of7zqgRwJo\nAE6nk1BJKaGS0u73cRkKKwLM+yT3PlTqw+E0LI0s5fJpl5Pvzue3Y39Lib+kR+YoItJdCqKJiIiI\niMhmZUzFGK7e9Wq+afqGIwYfgd/l57TtTuO2T26jb35fRpeN7rRvoa+QIwYf0a3rxJqTvHzPTBbM\nqMWX5+bIC0ZT764mz5PXYQCnIdHAn97+E/ObckX8//z2n7lp75so9BUSa07y1n++YvZ7yxg4spTd\njx9CIH8ds+D8RXDIjfDkLyEdh51/DZ781Zp58/I4+JwLee+px6jafhQFZRXgD61WP83ldLDjwCLe\nOn8vjIGiYM9m560th9PByH0qCRR4iUeSbD2hlCXphVz13lVMXToVgLA3zO93+D0OowpFIvL9URBN\nREREREQ2K2FvmAMHHtju2InbnMiRWx+Jy+Gi2F/c7lxdrI5UNoXb4abI337J45qkU1kWzKgFIN6S\nYtYXi7iu8c/EMjHu2v+u1QJpDuMg6FpZuyzoDuJszRhLxtPMnrYMgLkfVTP+sIGdBtEaEg28t/Q9\n5jfN55BBh1AeLG/fwOWBrfeFsz8Ea3MbC/hCq43j8foYOHoH+m4zHJfXi3sN9cj8bhf+gk3n66E/\n38Ow3St4/pvnOWfylZw0/KR2AbO12UxCZGMxxhwCDLPWXrmx5yI9Q08eERERERHZ7IW8IULe1QNJ\ntbFafvXKr5hRO4NtS7blxr1uXC3I1hmny0FR7yB1SyI4nIbiygDLpi2jLl5HJBVZLYhW4C3gsl0u\n44r3rsBguGDcBW1zcrmdeIMuEpE0Hp8Tt7fzr2JvL36bC968AIDn5z3PP/f75+pzdvtz/wCRZIS6\n5oUsbl7MwPBAin3FOB3O1ntw4c9f/e+yOYhn4jz91dM0p5p5fM7j3LzXzYS9YfI9+Zw8/OTVstAy\n2Qz1iXocONYqWCrSHSa3LttYa7Pd7WOtfQZ4ZsPNSr5vCqKJiIiIiMgP1vRl05lROwPI1U37YPkH\n7Fe1X7f6BkIeDv3NSOqWRskr9nDLrBupi9cxIDSg/W6ZqygPlnPFLleAoa34fTqZwBLlmD+MZMX8\nGKWVIXz5nddE+6r+q7bXC5oXYLFrnOdnNZ9x2kunYbEUeAt4/ODHV89e60GpRByH04nTtea6busr\n6A5yzphzOO3F00hmkrgdbi6ZcAkO41gtEy2TzfBl3Zf8ZspvCHlC3LTXTfTK69XJyCLdY4ypAl4A\npgFjgKuNMacDXuBr4BRrbYsx5kfA9UAEeBsYaK09yBgzERhrrf1V61h3ASVAdWvfBcaYu4EmYCxQ\nAZxnrf3P93WPsna0gFxERERERNZLLB0jk81s7Gl06LvZaQXegrXqHwh56TukkHBJkNNG/ZynD3ua\nuw7ILeVsTDRSHa0mkoq06+N3+9sCaMlYjFnvvs3Dfz6Xdx67m95b+QiV+HE6O/8qdtSQo+iT1weX\ncXHRjhcRcAU6bduUaOKOz+5oC7Q1Jhp5e8nba3WPa6Nh+TKeu/E63njgbqJNjQCkMinmNs7lzs/u\nZHbdbBLpRI9cy2EcDC0cyjM/eYbHD3mcylAlHqenw6WcjclGLnn3EpZFljG7fjZ3zbirR+YgAmwN\n3ALsDvwM2MdaOxqYDvzWGOMDbgcOtNaOATrbReNG4B5r7XbAA8ANq5zrBewCHARo6ecmTJloIiIi\nIiKyTtKZNLMbZnPrJ7cypmwMh219GGFvuOuO36NtirbhjO3P4LWFr7F3v70ZUjRknccqCZRQQm4J\nZ12sjovfuZhPaz7lpGEnceTgIztcTpqMRZl8yySwlsblyxix5770Ca05kNc7rzf3/+h+rLUE3UEC\n7s6DaF6nl6r8Kt5f9n7bsT55faiP11PoK1zHO+1YtLGBZyddwYp5XwNQUFbO6AMPoT5Rz7H/PZZY\nOsbNH9/M84c/T7mrZzLhXE5Xt3bh9Dg89M/vzxe1XwCwVeFWPXJ9EWC+tfZdY8xBwDDg7dYddz3A\nVGAoMNdaO6+1/UPAaR2MMx44vPX1fcDVq5x7qnWZ6BfGmA2XRirrTUE0ERERERFZJ/WJek594VQi\nqQhTFk5hRMkIxlaM3djTaifsC3PqiFM5duixBFwBfC5fh+3q4nXURGsIeUOEveFO233r7SVv89qi\n1wCY9OEk9qvar8MgmnE48OflE2tuAuh2fbLuBI4AvC4vZ4w8g7pEHV/UfsEhgw6hOlrNJVMv4V/7\n/WuDLmm0Npf9lswkiaVjAKSyKaLp6Aa7ZmfyPHlcMO4CxlaMJewNM65i3Pc+B/nB+jbV1AAvWWuP\nW/WkMWZkD1xj1fRN0wPjyQaiIJqIiIiIiKyz7Co1tjO2Z5d01sXqyNgMIW8Ir7PznSU7Ux9NYoBw\nwLfGoFhjopHLp13OC9+8gMvh4pGDHmFw4eA1jr1qdpjDONoK+a/WLlTAcZdeyxdvvkrl8O0Jhns2\nOwygNFDK3yb8jaZkE3d9dhd/+uxPpG2ah2Y9xG/H/LbHrhMoCHPwORfy+r3/Ir+0jG122QOAfE8+\np213Go/Pfpz9+u9Hobfn77E7ivxFHD3k6I1ybdkivAvcbIzZylr7lTEmCPQBZgEDjTFV1tpvgGM6\n6f8OcCy5LLSfAm9+D3OWHqYgmoiIiIiIrJOwN8w/9/0nN318EyPLRnYZeFobK6IrOOvVs1geWc7l\nu17O2PKxeJyebvdfWBflt49+jMvh4Lqjt6d32N9p21Q2xZSFUwBIZ9NMXTK1y3sZXTaaX2z7C+Y1\nzuO84b8hEHUSyzThD7XPNDMOB4W9ejPh6BO6Pfd1kefJI5FJMH3FdNI2DcDAgoE9fp1weQU/Ouv3\nuY0F3LmNBQq8BZwy/BSOHXIsPpePfE9+j19XZGOz1la3bhTwkDHm26j+H621s40xZwKTjTER4P1O\nhjgL+Lcx5lxaNxbY4JOWHme+TcHdlI0dO9ZOnz59Y09DRGRT0yOp3nrGioh0aL2fsVvK8zVrs0RS\nEbxO71oFubryr8/+xT8+/AcA5YFyHvrxQ5QGOqvX3V5TLMVZD33E67OrAfjRthVcd/RI/O6Os8Wa\nEk3c9NFNPDTrIYLuIA//+GGqCqq6vE7y/9m77/goy2yB478zM5n0nlClLahIk9VYWBdE7L1hZy1r\nuXrtut7dxbK6Kquy6lpQEQuui13EunYRxYrSRFCUXpOQnkkmU879Y15CCCmTkDAhnO/nk0/eed6n\nnHfUMTl5SqgGf1k5M+66jfwVyxiw/+84/OLLSWpmz7P2UhWsoipQxYs/vUivtF78vsfvyUjoWHvU\nGUMnXK4oIinOKZ0CTAKWqur9sY7LtD2biWaMMcYYY4xpNZe42mXmUb+0frXXvVJ7EeeKi7qt2yWk\nxG9JmKUnxuFu4tf2JInn8oGXcOHgCxG3kBWfFdU4XreXkpIS8lcsA+CXb75g9LkXAjs2iaaqrChb\nwf3f3U//jP6cO+jcNj9UYHupKoFwoE0TrcZ0IBeLyHlEDhuYS+S0TtMJWRLNGGOMMcYY0+Hkdc1j\n0phJrKlYwxF9j9hmRlVRdREFvgLS49O3OQggOd7DrScMJjslnji3i8sO7o/X0/AstKryMua9/zYr\n5n/PASefQa9BQ/G4o/81KSkjk4TkFKorK8js3gNP3I5PEm2q3sRlH17G2oq1fLL6E/qn9+e4/sft\n8DgaU1Jdwn+X/5dvN37LuYPOZa+svYj3tHyPO2M6KmfWmc082wVYEs0YY4wxxhjT4aQnpDOq16gG\n7xVXF/Pgdw9y/IDjKa4upk9aH7oldyOykioiNzWBvx0/CEFwuRqehhYMBykt2MgXL00D4PWJt3Px\nw08RFx99gicpLZ3z/jmJ0oKNZHTt3i4HB0SjPQ942F4/bPqBCd9MAGDm6pn895T/0tXTNcZRGWNM\ny1kSzRhjjDHGGLNTCYaDHNnvSG774jaWly1vdM80t8sFQKGvkGcXP0ucK46zBp5FdmI2xdXFvPbL\na4xJOmBLfU8cSMu2a3K53aRkZZOSlb39D9ZKWQlZPHLYI0z8diL9M/ozcreRMYulIfm+/NrrQDhA\nIByIYTTGGNN6lkQzxhhjjDHGRC0YDlJUXURhVSFdkrqQnZC91Qyw+vxBPyX+EioDlWQmZLbJXl1x\nrjhSvaksL1sOwEbfRkr8JQ0ePFDmL+PWL2/l0zWfArCuch03HXATCwsXcv939+MZei2jLr2M/B8W\nk3fsSSSmpm3TR0fnEhcDMgZw78H34nV7O9y+Y6N6jmJIzhAWb1rMuL3G2emdxpidliXRjDHGGGOM\nMVHb6NvI2DfGUhGoiOrUzJVlKznz7TMJhAMc0/cYxh84nvT47dt4PyMhA3/Iz6CsQfxY9CN90vo0\nmpwLapD1letrX68tX0tRwQZqgjUATFx4PyN7juQfF91JemLH2oy/pVK8KbEOoUE5STlMOnQSIQ0R\n744nzbvzJSqNMQbAFesAjDHGGGOMMTuPORvmUBGoACIJtTUVa5qs/8nqT2qX772/8v0WLeXzBXws\n3rSY5xc/z7qKdahq7b2uyV2ZdNgk3j75baYeNZWcxJwG+0jzpnHjATeSHJdMmjeNqwZeyqxHHmFQ\n0u6cNfAshuUM47zB55EQlxR1XKblshKyyE3MtQSaMQ0QkS9iHYOJjs1EM8YYY4wxxkRtUPYgXOIi\nrGES3Al0T+7eZP1Deh3C5AWTCYQDHNHnCOJccVGPVVBVwJlvn0lYw0xeMJmXj395q1lvOYk5kNhw\n20JfIa//+jpZCVmM7jWaN054nZKNG5j//CusX7qEXz78lGtPvxZ/0E+qNxW3q+HTO40xO4e+f3n7\nbGAC0BtYBYxfcdexz8U2qqaJiEdVg6r6u1jHYqJjSTRjjDHGGGNMkwqrCgmFQyTFJdEzpScvHfcS\nc/PncmD3A8lKyGqybZ+0Pvz3lP9SEaggMyGz0aWcNaEaAqEACZ4Eiv3FuMVNcXVx7amTm6o3EQwH\no4q31F/KjbNv5It1kUIuLcIAACAASURBVMkd1+97Pefu9QdCWkrx2jV0/c0AfnvkMSR6Ekn0NJKF\ni4Lf56OmugqXy0VSekbt3nAl1SWsqViDW9z0SOnR4DMXVRXhC/qI98STm9j4clhjTPOcBNoUYPOU\n0j7AlL5/eZvtTaSJyAygF5AAPKCqj4tIBfAocAywHhgP3EMkgXeNqr4hIm7gLmA0EA9MUtXJIjIa\nuB0oBgYCe4hIhaqmOOP9GRgHhIH/qupfRORi4BLAC/wC/EFVfdvzXKZ1LIlmjDHGGGOMadSGyg2M\ne2ccG30buWafazhjzzPYM2tP9szaM6r28Z54unq60pWujdYpqi5i8vzJrCpfxTX7XMOUBVNYX7me\niQdP5PA+h/PJqk84f8j5JEW55DIQDrC2Yu1Wz1Ad9pPauwfnTLgfAZLSM6LqqzE11VUsnj2Tj558\nlOSMTM76+0TSu3SlOljN80ue55H5jwDw5/3+zJkDz8Tj2vKrV1F1ETd+fiOfr/ucbsndmHbMNLok\nddmueIzZxU1gSwJtsySnfHtno/1RVYtEJBH4VkReBZKBj1X1BhF5DbgDOBwYBDwDvAFcCJSq6n4i\nEg/MFpH3nT73AYao6vK6A4nI0cCJwAGq6hORzX+lmK6qU5w6dzh9P7Sdz2VawfZEM8YYY4wxxjTq\nk1WfsNG3EYBJ8yZRHaxu8zHeWfYOzy15js/Xfs4VH1/BEX2PYEHhAh6b/xi3jbiND077gD8O+WPU\nBxJkeDP424i/kR6fzl5Ze3H+kPN589c3WVW+ilK3D3dy62efbVZTVcXsF54FVSqLi/jpy88AqA5W\n89naz2rrzVw9k6pA1VZtqwJVfL7ucyCS4Fu8afF2x2PMLq53C8tb4ioRmQ98RWRG2u5ADfCuc38h\n8KmqBpzrvk75EcC5IjIP+BrIdtoCfFM/geY4DHh68ywzVS1yyoeIyGcishA4BxjcBs9lWqFdk2gi\nkiEir4jIEhFZLCIjRCRLRD4QkaXO9537CBxjjDHGGGM6sSG5QxAiyxSHZA9pl73DQhqqvQ5ruHZZ\nZFZCFsneZHISc0j1pkbdn8ftYXjucF474TWmHDGFD1d+SHp8Oue8cw5j3xzLmoo15PvyKa4ubnXM\nbo+H7rtvmY3XY4+BACTHJTNur3EIgktcjBs0bpsZdPGeeHql9gLA6/LSP6N/q+MwxgCRPdBaUh4V\nZ+nlYcAIVd0bmEtkWWdAt5x0Egb8AKoaZsuKPwGuVNXhzlc/Vd08E62yhaFMBa5Q1aHAbU4MJgba\neznnA8C7qjpWRLxEplOOBz5S1btE5C/AX4A/t3McxhhjjDHGmFbol9aP6SdMZ03FGobmDCUzoe3/\nBn58/+P5teRXVpev5v/2+z8+W/MZFwy+gHMHn4tLGv+7f0l1CT9u+pGQhhiSM2Sr2OLcceQm5RIK\nh+iR0oNnf3yWYDjIjQfcyGPzH+PdFe9yYPcDuXvk3WQlNr2vW0MSU9M46rJr2LBsKanZuaTl5NaO\ne3Cvg3nv1PcQEdK8adskHnMSc3jmqGf4peQXeqf1bvRkUWNM1Maz9Z5oAD6nfHukA8XO0sqBwIEt\naPsecJmIfKyqARHZA1jbTJsPgFtEZNrm5ZzObLRUYL2IxBGZidZcP6adtFsSTUTSgVHA+QCqWgPU\niMiJRDbWg8ha4ZlYEs0YY4wxxpgOKcWbwgDvAAZkDmi3MbISsvjr/n+lJlxDmjeNAZkDcOPG5Wo8\ngRYMB3np55d4aG5kW6CLhlzEGQPPIMWbQkpcSm09t8vN8C7DWVi4kDkb59AtuRvvroiswvpq/Vds\n9G1sVRINIvuq/ea3+21TnhyXTHJccpNtc5NyyU3KxR/01870M8a0zoq7jn2u71/ehrY/nfNd4FIR\nWQz8RGRJZ7SeILK083uJTK8tAE5qqoGqvisiw4E5IlIDvEMkEXgzkSWhBc736KfmmjYlW2YgtnHH\nkX/wjwM/AnsD3wFXA2tVNcOpI0Syutvs6ikilxA5fYLevXvvu3LlynaJ0xhjdmKt/onbPmONMaZZ\nrfqMtc/XHccX8HHDrBuYtWYWAAd2P5DhXYZzQLcDyOuWt039oqoilpctp2tSV8546wzKasqIc8Xx\nzinv0C25244OH4CNlRu577v78Lq8XL3v1TYjzewqLGtsdlrtuZzTQ+TEiStV9WsReYDI0s1aqqoi\n0mAWT1UfJ5KEIy8vr30yfcYYs4uyz1hjjGkf9vm64yTFJXH58MuZu3EuIQ1x7qBzmbxgMmENN5hE\ny0rMIisxi1A4xAvHvcDX679mn677kBkfmy2ay2vKue3L27Y6hODmETfjdXtjEo8xxpjmtWcSbQ2w\nRlW/dl6/QiSJtlFEuqvqehHpDuS3YwzGGGOMMcaYTmqPzD2YcdIMymvK+df3/2JF2QruPOjOhisH\nqqGyAHf5enpl9qPXHmN3bLD1hDVMTaim9rU/5Ces4ZjEEggFKPYXoyjp3nQSPLZnuTHGNKTdkmiq\nukFEVovInqr6E3AokaWdPwLnAXc5319vrxiMMcYYY4wxnZfH5aFLUheS45K56YCbcImLrIRG9jcr\nWQGP/R5CAei+N5zzKqTk7tB460qPT+e2g27jltm34HV7uT7v+pglr34q/okL3r2AoAZ5eMzDHNj9\nwHY5hdUYY3Z27X0655XANOdkzmXABYALeElELgRWAqe3cwzGGGOMMcaYKG2q2oQv4CMxLnGn2aMr\nmo38WTE7kkADWD8fQv72D6wZPVN6cv/o+xERUr2x2Se8JlTD1B+mUh2qBuCJhU8wJGcI6fHpMYnH\nGGM6snZNoqnqPGDbDQkis9KMMcYYY4wxHUhhVSH/88H/8HPxzwzIGMCUI6bsNIm0Zv1mNHiToaYS\n+o6EDrJkMS0+Labje91eRvUaxXsr3wPgoJ4HkehJjGlMxhjTUbX3TDRjjDHGGGPMTqKipoKfi38G\n4JeSXyj1l3aeJFpGL7jiO/CXQWIWJHeS52oDo3cbzWsnvEYgHKBHSg873MAYYxphSTRjjDHGGGMM\nEFkW2TWpKxt9G8lNzCXNG9tZUm3K7YW07kD3WEfS4aTFp8V8RpwxnZWIjAZqVPUL5/VU4C1VfaUd\nxnoCuE9Vf2zrvk2EJdGMMcYYY4wxAOQk5vD8sc+zoXID3ZK7dZ5ZaMaYzu/W9LOBCUBvYBUwnltL\nn4ttUACMBiqAL9p7IFW9qL3H2NW5Yh2AMcYYY4wxpmMQEXKTchmaO5TcpFxEJNYhGWNM8yIJtClA\nH0Cc71Oc8lYTkWQReVtE5ovIDyJyhogcKiJzRWShiDwlIvFO3RUikuNc54nITBHpC1wKXCsi80Rk\npNP1KBH5QkSWicjYJsZPEZGPROR7Z7wTG4vLKZ8pInnO9aMiMkdEFonIbdvzPpgtLIlmjDHGmJjS\ncJiatWspefVV/MuWEfbH/sQ8Y4wxxuxUJgBJ9cqSnPLtcRSwTlX3VtUhwLvAVOAMVR1KZHXfZY01\nVtUVwGPA/ao6XFU/c251B34PHAfc1cT41cDJqroPcAhwr0T+utFQXPXdqKp5wDDgYBEZFu1Dm8ZZ\nEs0YY4wxMRUsLGTFqWNZf+NNLD/pZELFxbEOyRhjjDE7l94tLI/WQuBwEbnbmUXWF1iuqj87958B\nRrWi3xmqGnb2LuvaRD0BJojIAuBDoKdTf6u4VLW0gbani8j3wFxgMDCoFXGaeiyJZowxxpiY0kCA\nUElJ5LqmhlBpQz8HGmOMMcY0alULy6PiJMv2IZK0ugM4qYnqQbbkWBKa6brutPum1s2fA+QC+6rq\ncGAjkFA/LhG5pW4jEekH/Ak4VFWHAW9HEZOJgiXRjDHGGBNTruRkss4/H/F6STnicDy5ubEOyRhj\njDE7l/GAr16ZzylvNRHpAfhU9T/ARGAE0FdEBjhV/gB86lyvAPZ1rk+t0005kNrKENKBfFUNiMgh\nRPZ6ayiufeq1SwMqgVIR6Qoc3crxTT12OqcxxhhjYsqTkUHO/15G1oV/xBUXhzsjY5s6wZoaKkuL\nKdmwnpxefUjOyIxBpMYYY4zpkG4tfY5b06HtT+ccCkwUkTAQILL/WTrwsoh4gG+J7HkGcBvwpIjc\nDsys08ebwCvOoQBXtnD8acCbIrIQmAMsaSKuWqo6X0TmOvVXA7NbOK5phKhqrGNoVl5ens6ZMyfW\nYRhjTEfTJkem2Wes2RmU5m/g6esuIxQIkN2rD6fffCdJ6dsm24xpQ9v9GWufr8YY0yA79tfstGw5\npzHGGGM6vKJ1awkFAgBsWr2SUCgU44iMMcYYY8yuxpZzGmOMMabDy+3Tj6weu1G0bg17H34Mnjhv\nrEMyxhhjjGkTIjIUeLZesV9VD4hFPKZxlkQzxhhjTIeXkpnF6X+7i3AoiCc+nsSU1u7Pa4wxxhjT\nsajqQmB4rOMwzbMkmjHGGGN2CskNHDhgjDHGGGPMjmJ7ohljjDHGGGOMMcYY0wxLohljjDHGGGOM\nMcYY0wxLohljjDHGGGOMMcYY0wxLohljjDHGGGOMMcZsBxG5VUT+1E59rxCRnPbouy2ISK6IfC0i\nc0VkZAP3nxCRQbGIra3ZwQLGGGOMMcaYJqkqqorLZX+DN8Z0TEOfGXo2MAHoDawCxi88b+FzsY0q\n9kTEo6rBdh7mUGChql7UwPjuhsp3VvZ/QWOMMcYYY0yjiqqLmDRvEnd+cyf5vvxYh2OMMdtwEmhT\ngD6AON+nOOWtJiLJIvK2iMwXkR9E5Iy6s8JEJE9EZtZpsreIfCkiS0Xk4ib67S4is0RkntPvSKf8\nURGZIyKLROS2es2uFJHvRWShiAx06u/vjDdXRL4QkT2d8vNF5A0R+Rj4SERSROSjOu1PdOr1FZHF\nIjLFGfN9EUlsIu6LReRb5/14VUSSRGQ4cA9wovM8iSJSISL3ish8YISIzBSRPKePo5w45ovIR009\nR0dkSTRjjDGmEwmVlhJYt45Afj4aCsU6HGNMJ/DiTy8yecFkXvrpJW6afRNl/rJYh9QhbaraxOry\n1RRWFcY6FGN2RROApHplSU759jgKWKeqe6vqEODdZuoPA8YAI4BbRKRHI/XOBt5T1eHA3sA8p/xG\nVc1z+jlYRIbVaVOoqvsAjwKbl40uAUaq6m+BW9j6efcBxqrqwUA1cLLT/hDgXhERp97uwCRVHQyU\nAKc28XzTVXU/Vd0bWAxcqKrznLFfVNXhqloFJANfO+/b55sbi0gukWTnqU4fp0XxHB2KLec0xhhj\nOolQRQVF/5lG4UMP4c7IoO9LL+Lt3TvWYRljdmKqSrm/vPa1L+AjpJagr29T1SYu/+hyFm1axO4Z\nu/P4EY+Tk9hhty8ypjNq7Aee7f1BaCGRhNPdwFuq+tmW3FODXneSSFUi8gmwPzCjgXrfAk+JSBww\nw0lEAZwuIpcQydV0BwYBC5x7053v3wGnONfpwDMisjugQFydMT5Q1SLnWoAJIjIKCAM9ga7OveV1\nxv8O6NvE8w0RkTuADCAFeK+ReiHg1QbKDwRmqepygDrxNfUcHYrNRDPGGGM6iXBVFcXPPgtAqKSE\nilmzYhyRMWZnJyJcMOQCRu82mt92+S13/v5OMhMyYx1Wh+ML+Fi0aREAS0uWUlFTEeOIjNnlrGph\neVRU9WciM7oWAneIyC1AkC25lIT6TZp5vbnfWcAoYC0wVUTOFZF+RGaYHaqqw4C36/Xvd76H2DIh\n6nbgE2eW3PH16lfWuT4HyAX2dWa/baxT11+nXt2+GzIVuEJVhwK3se3zb1at2qK/uDT1HB2KJdGM\nMcaYTsLl9ZJ88MGRF3FxJO2/f7uOp6rUrF1H0TP/pmrhQkKVlc03MsbsdHKTcvnHyH/w4JgH6ZPW\nJ9bhdEiJcYn0TesLQI/kHiTHJcc2IGN2PeMBX70yn1Peas5yTJ+q/geYSCShtgLY16lSf+njiSKS\nICLZwGgiM84a6rcPsFFVpwBPOP2mEUl8lYpIV+DoKEJMJ5KIAzi/mXr5qhoQkUOI7BnXGqnAemcG\n3TmtaP8VMMpJGCIiWXXii+Y5Ys6WcxpjjDGdhDs9na5//jPZf7wAd3o67oyMdh0vWFjIyrPOIpif\nj6dnT/o8MxWtrsadlUUzSx2MMTuZFG9KrEPo0HISc3j6qKcp9ZeSHp9uSzmN2cEWnrfwuaHPDIW2\nP51zKDBRRMJAALgMSASeFJHbgZn16i8APgFygNtVdV0j/Y4GbhCRAFABnKuqy0VkLpH9wVYDs6OI\n7x4iyyBvIjJzrTHTgDdFZCEwxxmjNW4GvgYKnO+pLWmsqgXOctXpIuIC8oHDif45Yk5UG5xd2KHk\n5eXpnDlzYh2GMcZ0NG2SpbDP2Palqmyq3oSqkuZNI94TH+uQ2kTY7yewfgPLjjoKd3Y2vR6ZRP4/\n7yVUXk7Pf07E27+/JdLMzm67/wW2z1djjGmQ/YBgdlq2nNMYY4xpR6vLV3Pam6dx9PSj+T7/e4Kh\nYKxDahOhsjLK3n6b3GuvIfWIIyiZ/hq+b7/Fv2QJ68bfSKikJNYhGmOMMcYY06YsiWaMMca0o2d/\nfJbCqkL8IT/3fXcfZYGyWIfUJkRclL3zDsHCQjJOPglPt2619zzZ2YjbHcPojDHGGGNiT0SGisi8\nel9fxzqu5ojIpAbiviDWcXUEtieaMcYY04727bovL/z0AgBDc4YS7+4cyzk9Odn0fmIKJa+8SqCg\ngIyxp+JKTCBUVEzWH8bhTkuLdYjGGGOMMTGlqguB4bGOo6VU9fJYx9BRWRLNGGOMaUcjeoxg2jHT\nKPOXMThncKc6sS2ue3dyr7yi9nX2+efHLhhjjDHGGGPamSXRjDHGmHaUHp/OsNxhsQ7DGGOMMcYY\ns50siWaMMcaYdhP2+yOHDITDuNLScCd3npl4xhhjjDFm12IHCxhjjDGm3VQvXsyvhx/BL2MOpeKT\nTwjX1LSqn6qaEP5AKKq6gVCIgnI/Jb7WjWWMMcYYY0xDokqiiUiuiIwXkcdF5KnNX+0dnDHGGGN2\nXuFgkOL//AetqQFViqZOJVxR2eJ+1pVUce1L87j1zUUUVvgBCPj9lBXks/6Xn/GVldbW9QdCfLWs\niDMf/5JL//Md60ur2ux5jDHGGGM6ExHJEJH/bWXbFSKS00Zx/F1EDmuLvtpbtMs5Xwc+Az4Eovsz\nsOlwwlVVhEpKCPt8uLOy8GRmxjokY4wxDQiWlFD9ww+EKipI3n9/PFlZsQ6pVVweD6lHHknZW28D\nkHLIIbiSElvUR7GvhutemsdXy4oifcR7GH/MXpTmb+DZP19FOBSif94BHHnp1SSmplHsC3Dh1DnU\nhML8WlDJLa8v4v4z9iYlPq7Nn88YY4wxHcfigXudDUwAegOrgPF7LVn8XCxiERGPqgZjMXYLZQD/\nCzxS/8aOfAZVvWVHjNMWol3OmaSqf1bVl1T11c1f7RqZaXP+Zcv45fAjWHbscRQ+8iihioo27T9Y\nWEhgwwZCpaXNVzbGGNOo8vffZ/VFF7Pummsp+NcDhHy+WIfUaskHHkj/d9+l3xuvk3nOObgSElrc\nR1i3XIfCiiqs/3kJ4VDk73qrFs4nFIz8jKcoNaFwbX1fTZBwGGOMMcZ0Yk4CbQrQBxDn+xSnvNVE\nZJyIfCMi80Rksoi4RaSizv2xIjLVuZ4qIo+JyNfAPSKSJSIzRGSBiHwlIsOcereKyLMi8qWILBWR\ni+v0d4OIfOu0ua2Z2M516s0XkWedslwRedXp41sROajOmE+JyEwRWSYiVznd3AX0d55vooiMFpHP\nROQN4Een7QwR+U5EFonIJS1477Zp57x/U0XkBxFZKCLX1nnvxjrXtzix/+CshpRox9wRok2ivSUi\nx7RrJKbdVXz6KTi/ZJR/+CFa1XZLXAIbNrB87Gn8MvoQip55hlB5eZv1bYwxuxINh6la+EPt6+ol\nSyLLIXdS7tRUvH37kLDHHngyMlrcPjPJy32n782YgV04+bc9uWz0AFwuoc+w35KcEZlRnXf8KcTF\nxwORmWq3HT8Ij0vITY3n1uMGkZZos9CMMcaYTm4CkFSvLMkpbxUR2Qs4AzhIVYcTWZV3TjPNdgN+\np6rXAbcBc1V1GDAe+HedesOAMcAI4BYR6SEiRwC7A/sDw4F9RWRUI7ENBm4Cxqjq3sDVzq0HgPtV\ndT/gVOCJOs0GAkc6/f9NROKAvwC/qupwVb3BqbcPcLWq7uG8/qOq7gvkAVeJSHYz78FmDbUbDvRU\n1SGqOhR4uoF2D6vqfqo6BEgEjotyvB0i2uWcVwPjRcQPBIhkdlVV09otMtPm0o48iqInnyRc6SPz\nnLORNjwhzffNtwQ3bACgcMoTZJ51FqSmtln/xhizqxCXi5xLLsb35ZeEKyroOn487l3883S3zCQe\nPHM4bpeLRK8bgNScXP5w1wOEQiG8iYnEJ0X+n5ZYVcGhv37JmNOHo9XVpHz5CZx8YizDN8YYY0z7\n693C8mgcCuwLfOtMhkoE8ptp87Kqbt4C6/dEElmo6sciki0im3Mor6tqFVAlIp8QSWz9HjgCmOvU\nSSGSVJvVwDhjnLEKnf6LnPLDgEF1Jm+liUiKc/22qvoBv4jkA10beYZvVHV5nddXicjJznUvJ6ZN\nTb4Ljbf7CfiNiDwEvA2830C7Q0Tk/4gkQbOARcCbUYy3Q0SVRFPVXfun907C27sXv/nvf9FAAHdq\nKu6k+on61ksYPBg8HggGSdovL3JtjDGmVby9etH3hedRVTwZGYjbHeuQYi4lYevZZCJCcmbDe8UF\n3nqd6gm3A5B0zdUN1jHGGGNMp7KKyBLOhspbS4BnVPWvWxWKXF/nZf19KqI9QUkbeC3AP1R1coui\n3JoLOFBVq+sWOkk1f52iEI3ng2qfQURGE0nMjVBVn4jMZNtn3kZj7VS1WET2JjIj7lLgdOCPddol\nENmfLU9VV4vIrdGMtyNFu5wTEckUkf1FZNTmr/YMzLQ9iYsjrksXvD174k5r20mEcT170P+9d+nz\n3DR6TvynHVpgjDHbyZOTQ1xuLhJnSxFbwpOZSc/77iVlzBgyzjqTjNNOi3VIxhhjjGl/44H6m8j6\nnPLW+ggYKyJdAJw9zvoAG0VkLxFxASc30f4znOWfTlKpUFXLnHsnikiCs8RxNPAt8B7wx80zx0Sk\n5+axG/AxcNrmpZUisvkvi+8DV26uJCLDm3nGcqCpSVPpQLGTCBsIHNhMf022c07zdDl77N9EZOlo\nXZsTZoXO+zA2yvF2mKimC4nIRUSWdO4GzCPyBnxJZAqhMbgSEvD27Im3Z89Yh2KMMWYX591tN3r8\ncyLiduNy9kozxhhjTOe115LFzy0euBe04emcqvqjiNwEvO8kzALA5UT2EXsLKADmEFl22ZBbgadE\nZAGRhN55de4tAD4BcoDbVXUdsM7Zh+1LZ+ZYBTCOBpaQquoiEbkT+FREQkSWgJ4PXAVMcsb0EFkK\nemkTz7hJRGaLyA/Af4kssazrXeBSEVlMZCnmV431FWW7nsDTzvsJsNUsP1UtEZEpwA/ABiLJxQ5F\nVOvPImygkshCYD/gK1Ud7mQSJ6jqKe0dIEBeXp7OmTNnRwxljDE7kzY5qcY+Y40xpkHb/Rlrn6/G\nGNOgDnXa4o7mLFGsUNV/xjoW03LRLues3rymVkTiVXUJsGf7hWWMMcYYY4wxxhhjTMcR7e7va0Qk\nA5gBfCAixcDK9gvLGGOMMcYYY4wxpnNR1VujrevsefZRA7cOVdVoTshsVx09vvYQ7emcmzfLu9U5\nfjWdyBpXs4OE/X7C5eVIfDzuVDss1RhjjDHGGGOM6cycRFRzhwPETEePrz205HTOfUTkKmAYsEZV\na9ovLFNXuKqKipmfsuKccWy8806CRUWxDskYY4wxxhhjjDFmlxJVEk1EbgGeAbKJnB7xtHNKhdkB\nQuXlrL3+egIrV1I643X8S36KdUjGGGOMMcYYY4wxu5Ro90Q7B9i7zuECdwHzgDvaKzCzhYgLT2Ym\nwYICANzZ2TGOyBhjjGkZVcU5rt0YY4wxxpidUrRJtHVAAlDtvI4H1rZLRGYb7pxs+jw3jZLpr5GU\nty9xPbrHOiRjjDEmKsHiYkrfeIPAylVkX3Ixcd26xTokY4wxxhhjWiXaPdFKgUUiMlVEngZ+AEpE\n5EERebD9wjMAIoK3Vy+6XH0VKQcdZAcLGGOM2WlUzPyU/H/cRfFzz7H2mmsJFhfHOiRjjDHGmDYj\nIieIyF8auVfRSPlUERnrXM8Ukbz2jLExIjJcRI7ZAeOMr3PdV0R+aIM+c0XkaxGZKyIjG7j/hIgM\n2t5x6ot2JtprztdmM9s6EGOMMcZ0PqGSki3XZWUQCsUwGmOMMcZ0VpMu/fhsYALQG1gFjL/8sTHP\ntfe4qvoG8EZ7j9NOhgN5wDvt0blE9vIQYDyRfzZt6VBgoape1MC47obK20JUM9FU9ZnNX0T+5Zhb\nr8zsIGG/n1BFg8lsY4wxpsNJP+F4Uo85hoS996bnv+7HnZXVaN2yqgBLN5bz7fIiiirtEHBjjDHG\nRMdJoE0B+hBJ2vQBpjjlrebMmlrizBz7WUSmichhIjJbRJaKyP4icr6IPOzU7yciX4rIQhG5o04/\nIiIPi8hPIvIh0KWR8Y5w2n8vIi+LSEoTse0rIp+KyHci8p6IdHfKLxaRb0Vkvoi8KiJJTvlpIvKD\nUz5LRLzA34EzRGSeiJzRyDi3ishTzoy5ZSJyVZ171zl9/iAi19R5z34SkX8TWcX4JJDojDHNaeoW\nkSkiskhE3heRxCaec5vnEZHhwD3AiU6/iSJSISL3ish8YETdGX4icpTzns4XkY+csv2d93quiHwh\nIns2FkNd0Z7OOVNE0kQkC/gemCIi90XT1rSdYFER+f/6F2uvuRb/0l/QcDjWIRljjDFN8mRn0/3v\nt9HrsUeJ3313xNX4jx5zVhZx+P2zOG3yl9zz7hLKqwM7MFJjjDHG7MQmAEn1ypJom9lPA4B7gYHO\n19nA74E/EZlhlTnPYwAAIABJREFUVdcDwKOqOhRYX6f8ZGBPYBBwLvC7+oOISA5wE3CYqu4DzAGu\nayggEYkDHgLGquq+wFPAnc7t6aq6n6ruDSwGLnTKbwGOdMpPUNUap+xFVR2uqi828R4MBI4E9gf+\nJiJxIrIvcAFwAHAgcLGI/NapvzvwiKoOVtULgCpnjHPq3J+kqoOBEuDUJsbe5nlUdV692KuAZOBr\nVd1bVT+v817lEkmwnur0cZpzawkwUlV/6/QV1b8r0S7nTFfVMhG5CPi3qv5NRBZE2da0kcrZsyl+\neioAq5cvo88LLxCXmxvboIwxxphmuFMa/SPqVmb+VFB7/eWyTVQHwqQmtFdUxhhjjOlEerewvCWW\nq+pCABFZBHykqioiC4G+9eoexJaE0LPA3c71KOB5VQ0B60Tk4wbGOZBIkm22c6K5F/iykZj2BIYA\nHzh13WxJ2g1xZsFlACnAe075bGCqiLwETI/iuet6W1X9gF9E8oGuRBKJr6lqJYCITAdGElm9uFJV\nv2qiv+VOIgzgO7Z9H+tq7HnqCwGvNlB+IDBLVZcDqGqRU54OPCMiuwMKxDURQ61ok2geZ2rg6cCN\nUbYxbc3t3nLticP5j8UYY4zpFMYd2IcZc9dS7g9y5ZgBpMS7m2/UAA0EIgcYBIO4UlJwp6W1caTG\nGGOM6WBWEVnC2VD59vLXuQ7XeR2m4ZyKtnIcAT5Q1bOirLtIVUc0cG8qcJKqzheR84HRAKp6qYgc\nABwLfOfMJItW3fcgRPO5pMoW9tfock4aeZ4GVDtJymjdDnyiqieLSF+i3Ps/2tM5/04k2/erqn4r\nIr8BlkbTUETczhrTt5zX/SRygsIvIvKisw7XRCF5xAhyrryS1COPpNfkx3BnZ7dJv6HKSoKFhYR9\nvjbpryHBkhJqVqwksGED4aqqdhvHGGPMzqt/TjIfXncwX/xlDEcN6U6iN9q/9W3Nv2wZy44+ml/G\nHErx888TKre9RI0xxphObjxQ/xdaH9sut2xvs4Eznetz6pTPIrL3mNuZoHRIA22/Ag4SkQEAIpIs\nIns0Ms5PQK6IjHDqxonIYOdeKrDeWfJZG4OI9FfVr1X1FqAA6AWUO/Vb4zPgJGePsmQiS1Y/a6Ru\nwImnNRp8nhb4ChglIv0AnG3KIDITba1zfX60nUV7sMDLqjpMVS9zXi9T1abWrNZ1NZF1q5vdDdyv\nqgOAYraszzXN8GRmknPp/9DjnruJ79u3TWaiBUtKKHrySVacfQ5F06YRLC1tg0i3FvL5KJr6DL8e\ndRS/HHY4/p9/blF7DQQIrF9P5ddfEywo2OZ+qLSUqh9/pGrRIoJ1ToEzxhizc3G7XXRJS6B7eiIp\n8a1LoGkoRNHTTxOujPwcXfjIo4Sr7Y83xhhjTGfmnMJ5MbCSyEywlcDFO+J0znquBi53lnr2rFP+\nGpGJSD8C/6aBZZqqWkAkmfO8s33Wl0T2ItuGs5/ZWOBuZyP9eWzZZ+1m4GsiCb0ldZpNlMiBBz8A\nXwDzgU+AQU0dLNAYVf2eyCyxb5zxnlDVuY1UfxxYUOdggZZo7HmijbMAuASY7rxXm/d+uwf4h4jM\nJfpVmohq8zMNnezno0BXVR0iIsOIbER3RzPtdgOeIbLB3XXA8UQynt1UNehkTW9V1SOb6icvL0/n\nzJkT1QOZlqlZuZJfjzyq9nX/Dz7A22u3Num7xFdDTTBMQrCG/LPPILBiBQBZF/6RrjfcEHU/gQ0b\nWHbssYQrfcTttht9n38Oj7MXnIZCFD//PBvviOyh2OUvfyZr3DjE07pfvozZybTJmm77jDWdTcnL\nr7D+5psBSBi+N70eeQRPE6eCGtOI7f6Mtc9XY4xpkO1LZHZa0S7nnAL8FQgAqOoCtkxRbMq/gP8j\nslYYIBsoUdWg83oNW2dna4nIJSIyR0TmFDQw+8i0DYmPByfhJF4v4m3tDMutbar0c9NrP3DY/Z/y\n9PcbSL1rYu0Yacce26K+AmvX1s4oCKxZQ9i/Zfl02O+n8vPZta8rP59NuLq6DZ7AmM7NPmNNZ5Zy\n+GH0mvI43W6/nV4PP2wJNLND2eerMcYY03lFm0RLUtVv6pUFG6zpEJHjgHxV/a41ganq46qap6p5\nuXYCZbtxp6fTe9o0Ui+4gNx//4eqxOhOUGvOqk0+3lq4nrKqIPd/uJRAr370/+AD+n/wPvH9+7eo\nL2+fPnj79gUg+aCDcCVuObnYlZhI9iUXI/HxiNdL9v9cgis5uU2ewZjOzD5jTWfmycggZeRIMk8b\niycnJ9bhmF2Mfb4aY4xpSyLymrPcsu5Xk6v5WjnOBQ2MM6mtx2li/EkNjH/Bjho/WtGueSsUkf44\np0yIyFi2HJ/amIOAE0TkGCABSAMeADJExOPMRtuNLRu5mTqCJSVoIIB4PHgyM9ttnOKwi/uWCbLn\n0Xz50SbOLE/m4pG/abJNqKSEUHk54vXizszE5d32bIiclHhcAmGFtEQPcXHuVi8T9eTk0Oc/zxL2\n+3ElJm41o0BESBg8mP4fvA9EkoJ2aqkxxjQvVFlJzfLlVM1fQMrog4nr0cM+P40xxhhjOhhVPXkH\njfM08PSOGKuR8S+P1dgtEW0S7XIiG8ENFJG1wHKaORVBVf9KZAkoIjIa+JOqniMiLxPZAO8F4Dzg\n9daF3nkFi4vJv/seSmfMIHnkSHrc9Q88bXQSZ30J1T6u7BmguqSMEw/rzYKypn+BCpaUUPTEk2x6\n4gkkPp4+0/5D4pAh29TLSvYy/X8PYvYvhRwztBs5ydt3CGtTMwlc8fG4unTZrv6NMWZXE1y/nhWn\nnQ6qFD7yCP1mvEaczZoxxhhjjDGmUU0m0UTkalV9AOiuqoc5x5a6VLV8O8b8M/CCiNwBzAWe3I6+\nOqVwZSWlM2YAUPnZZ4SKi9stiRb8YjbFzib/3c84k72uubbJ+urzUfz885Frv5+SV15pMImWHO9h\neK8MhvfKaLyvcJjAhg1UfT+XxGHD8HTvhiuubfZkM8YY07SaVavAOVwotGkTWhOIcUTGGGOMMcZ0\nbM3tibZ5/elDAKpa2ZoEmqrOVNXjnOtlqrq/qg5Q1dNU1d9c+12NxMfXnj7pSk7GlZbWLuNoOEzl\n11/Vvq5ZMJ8EbXKrOxAhab/9al8m/35kq8cPFhay4pRTWfenP7HspJMIFRW1ui9jjDEtkzhsGPF7\n7glAxtln40pOaqaFMcYYY4wxu7bmlnMuFpGlQA8RWVCnXABV1WHtF9quy5OTQ9+XX6J60SLiBw5s\nsz3RQmVlALidpJy4XGRfcAHlH3xI2Ocj9+qrcaWmNtmHKyWFLjfcQNoJJxDXoztxPRs8XDUq6vcT\nKimJXPt8hCsqoGvXVvdnjDEmep6cHHo/9SQaCkX+eJOeHuuQjDHGGGOM6dCaTKKp6lki0g14Dzhh\nx4RkakI1lKQKVXn9SY9PIrMNljgGNmxg/U03g4bpfscdxHXvDoC3b19+8/rraDiEOyWl2eWU7tRU\nxOPBnZmBxMXhbibp1hRXSgrpp59G6avTSRkzBnc7HqBgjDFmW+21VYAxxhhjjAEROQn4WVV/bKP+\n8oBzVfWqtuivFeOfAAxS1btEJBd4C/ACVxHZE/9sVS2JRWw7SrMHC6jqBmDvHRDLLivs8xGurARx\n4cnJZmX5Ss5860wC4QBnDzybK357BaneppNVYb+fUGUlAludXrn5Xv49E6n8/HMANk74B93vvguC\nQcKVldSsXMXGiRPJGDuW9OOPw52S0uRYrsREXImJ2/XMAJ7MTLpcfz25V16JeOLwZDa+f5oxxhhj\njDHGGNOYe8847mxgAtAbWAWMv/7Ft56LbVScRCTR1CZJNFWdA8xpi75aOf4bwBvOy0OBhap6kfP6\ns9hEtWM1uSeaiLzkfF8oIgvqfC2st7zT1BPy+QgHmt+kOVxVRfnHH/PLmENZcfbZBNavZ86GOQTC\nkbbvr3yf6mB1k334SktYtXAev875morVqwgWFGxdweWq3VfNlZJCXN++aE0N5R9/zK9HH8PGu+5i\ntwcfoOSVVwj7fK174FbypKcTl5trCTRjjDHGGGOMMa3iJNCmAH2IbD/VB5jilLeaiIwTkW9EZJ6I\nTBYRt4g8KiJzRGSRiNxWp+5dIvKjkzP5p4j8jsiKvolO+/6NjHGxiHwrIvNF5FURSXLKTxORH5zy\nWU7ZaBF5y7neX0S+FJG5IvKFiOzZxHOcLyKvi8hMEVkqIn+rc2+GiHznPM8ldcqPEpHvnfE/qtPP\nwyIyHLgHONF5tkQRWSEiOU69c533Yb6IPNv6fwIdT3Mz0a52vh/X3oF0JjUrV7Lxnol4+/Qh+6IL\na2eGBYuKqF68BE9ODnE9uuNOTSVUUcHGO+5EAwECq1ZR8vobjPnDiTw490EqA5WM3WMsSXGNb/Yc\nDoVYNPNDZj03FYBBvxvF70YdRrpzMAFE9hvLvvgisi+6EA2HCZWUEPb5IuNWV+NfsoTy996j++1/\nR1zNnTVhjDHGGGOMMcZ0KBOA+r84JznlrZqNJiJ7AWcAB6lqQEQeAc4BblTVIhFxAx+JyDBgLXAy\nMFBVVUQyVLVERN4A3lLVV5oYarqqTnHGvAO4kMjhjrcAR6rqWhFpaNbJEmCkqgZF5DDnWU9tYpz9\ngSGAD/hWRN52Zrb90XmeRKf8VSITrqYAo1R1uYhstdxNVeeJyC1Anqpe4cS++X0bDNwE/E5VC+u3\n3dk1tyfaeuf7yh0Tzs4vWFjI6suvoOaXXwDw9u1D5umnEyorY+OEf1D21lsA9H76KZJHjEA8Hry7\nD6Dq28iMzISBe+KtieONE2ZQo0FSvakkxyU3Pl6ghjVLtswM3bBiGXJiZG+xsuoAFb4aKPeR8M0X\nUO2n7J13SD38cJJH/p743Xenau7cSJz9+uFOz8CTk7NV/xoMEiovR7xe3MmNx2GMMWbXFPb7CW7a\nRGD1auL799/m/yPGGGOMMTtA7xaWR+NQYF8iiSWARCAfON2ZseUBugODiCzXrAaedGaKvdWCcYY4\nybMMIIXInvQAs4GpzgrB6Q20SweeEZHdAQWa20z9A1XdBCAi04HfE1kaepWInOzU6QXsDuQCs1R1\nOYCqFrXgecYAL6tqYSvadnhNJtFEpJzIP4xtbhE5nTOtXaLa2aludR12ElFV8+bVFvu++57kESPw\nZGay2/33UzFrFnE9elD981LWXHoZmVdfQ/JpZ5Ca3PRbHBefwFHjLqTqqBMo3FRAOM5DQlYWPn+Q\nV75bw9/f/JH0xDi+Ov8AVhx5JK7kJHKvuRr/Tz/T8/77KP/4Y7y77UagoIDExISt+g4HAlQvWsTG\nOycQv8fudLn++m32WzPGmF2NBoMECwqo/ulnEvYaiKdLl9q/vO2KgoWFLDvmWNTvJ3733en99NN4\ncuzAAmOMMcbsUKuILOFsqLy1BHhGVf9aWyDSD/gA2E9Vi0VkKpDgzAbbn0jibSxwBZFkUjSmAiep\n6nwROR8YDaCql4rIAcCxwHcism+9drcDn6jqySLSF5jZzDj1czsqIqOBw4ARquoTkZlAQv2GZosm\n1+6paqqqpjXwlWoJtIa5s7PZbdLDpBwymszzziP18MMJrFlDuLqa3GuuAbcbT5dc0k86sbaNJyeH\njFNOoWblKvInTACg7JmpLF9dSGGFH7+vksriImr82+6NFszPZ81ZZ7HxjLNIfu9DfjNoGN60dCr8\nQabM+pWrRvTgsWP6oG43kpBA5rhxlLz8Muv+9CdWjhtH0ogRuHffE1/e7yiL33qmWbikhDWXXkb1\nwoWUvjqdyi++2Pp+TQ2h8nJUG8qzGmNM5xQsKmLZCSey5tJLWTH2NIKFhU3W11CIUGkpYb9/B0XY\nfsJ+/zbPUfPrMtQp8y9digab3w/UGGOMMaaNjSeyTLEun1PeWh8BY0WkC4CzLLE3UAmUikhX4Gjn\nXgqQrqrvANey5XDGcqDpUwIj99eLSByR5aI4ffZX1a9V9RaggMgssbrSiSwjBTg/iuc5XESynGWb\nJxGZ6ZYOFDsJtIHAgU7dr4BRTtKQFi7J/Bg4TUSyW9G2w7MNsNqYiBDfty897r2XLtdfhycri3B5\nOSvGnkbVd9/R75WX6fviS8T17LlN24RBe4GzJ5n3wBH8WFhNTTDEp/95mmk3XsfCj97DX1kJQFlh\nAfkrllE5fz7B/MhBAmWvv4GEQpG+4tz869j+jF0xm+xrL6Jk8mT6vTad+L32omZFZHVuYM1aNj09\nlZtmreOgR7/nXx8upaomVPdhcNU5qdOVuuW//WBRMYUPPsTaq6+hevFiNFSnnTHGdGLh8nLC5eUA\nBAsK0OrGD38JV1dT+dVXrLniSoqenkqoZOc98TuQn8/68Tey/uabtzrAJmGvgcT1ifzhN/2UU5B4\n++OlMcYYY3Ys5xTOi4GVRGZcrQQu3p7TOVX1RyJ7e73vHKz4AeAH5hLZj+w5IokoiCTC3nLqfQ5c\n55S/ANzgbP7f4MECwM3A105fS+qUT3QOdfwB+AKYX6/dPcA/RGQuze93D/AN8CqwAHjV2Q/tXcAj\nIouBu4gkz1DVAuASYLqIzAdejKJ/nLaLgDuBT52290XbdmcgO8Msory8PJ0zJ2anuG63TU89Rf49\nEwFwZ2TQb8ZrxHXrtk29UGUlweJiStblsz4xi1n5NZw+NJtpV55XW+eSR6ai4TAzJt5Ojb+ac667\niVWnnEq4spKkgw6i2z33EJ8dSfRWr17D8sMPr23b7/UZxPXqRc3Spay+/ArcqSlkPPQox738K+tL\nq9mvbyZTzs0jI8lb26Zm1WoKJ08mYfAg0o4+pvYUzfIPP2TNFVdueabXpuPp2tUOJjBmx2qTNYQ7\n+2fsjhbctIm1N9yA74svSTv6aLrefFOjS90DGzfyy2GHg3Nac99XXyFx8ODoxyopIZhfgCsxAXdG\nJu7UlOYbtTENBglu2kSwcBPl77/HpsmPk3bC8XS//XZc8fGROAsL0ZoAkpSIJ8NOWzadxnZ/xtrn\nqzHGNGjX3QcjRpxlorWHAJjWiyZbaeoJ+/2RWVpeb/OVgcQjjyS7a1dCy5bh8vtxNbJBvzs5maKQ\nmzlFLn6TncTxOWESqEHEhWqY+ORkPPHxfPv6KxSsXA7AZ++8xqg3X6e0sIx1xBPvSSQnFKagwk+a\n240kJaE+H7hcuFNScSclkTBoEP1em46IsNGdhNu1jOxkLzcfN4i0hK33IvT27tXwqZ11X7tc+Jct\nI1xdTXy/ftG/kcYY085UFV9JMaFgEG9iIgkpzc2mb54nO5ue//wnGgwiXm/TSSMRxONBnSSaxDW3\n3+sW4aoqiqdNo/ChhwHoNfkxUg4+eLtibw3/smWsPPscwhUVdPnTn8g86yxCZWVb7f9phwkYY4wx\nxphdwS6bRFNVgoWFBAsKiMvNxZObG1W7wMaNFDw8Cddpx0Hf3Yj3JpKZkNlo/aryMuZ8+gFLv5rN\nkMOOpv9BhxBISMLdSP0Fa0sZkKrMf+JuKktLOWn83zjrgYfY9POv9Oi/B/GJSeT02rJfYlVlJcXi\n4ejXVlFSFeSz/+vGpsoajrx/1v+zd9/xUVXp48c/t03vmVQ6hA7SAlJEERVRVESssCr2Al/bWtfu\nb9e6u+rqrrtiw7rYUBQV14IFEQkivRMgoaRnJtPb/f0xQ2gJhKYC572vfeXOveeecyfBZO5zz3ke\nBrZ28tBLryLP+gL7sBNQMrPIJE1Dy7zfAl1n2vVD0HUdj9WALO/+UKCx2WXmPn3wTppIZOkyPJde\nQtVzz6FmZ5P/yCPI+3CTKAiCcCgFaqp58+4/Eqitpt+o0QwcexEm64HP5mpukRXF7abNa69S89LL\nWI8fipab2+wxUuEwga++anjt//xzrEOH/qozflOJBNXPP08qEACgavJkWj77LIY2rZFNYtmmIAiC\nIAhCc0mS9E9gyC67n9Z1/eWDOMapwGO77C7RdX0M6QIGwgE6aoNoiaoq1o89l0RFBVrr1rR6/VWM\nOXu+uUkGg5T/+c9w0dk8sPl55iyYy5CCITx83MN4zI3fUIXr/cz78F0Avn/jJVzd+hGSjLT2WACo\nqI9QH07gMGtk2410L3Cw5KO3KV26mKHXXct7Gz5kdsUcruhxBR1yspAVhXZ9ihhzx/0Eaqtp33cA\nn5cEaeG2cMPJLXGYNMrqQvgjCT5fVc3yqhDTrr8Ws83Y6PVJkkSWTaM6XE1lOIFVs+Iw7r1mhOp2\nk3XFFdR/8y3ljzxKdOVKcu66UwTQBEH4Xdm0YhmB2moAfv70I/qfde6vOr6saZh79CD/0UeaPXu5\n4VybDc9ll7H5ttuRjEZcY8eSCoVQbL/ekk5ZVTH37o3/4xkAmDp3wtCuLZqYeSYIgiAIgrBPdF2f\n+CuMMROYeajHOZodtUG0VH09iYoKAOIbNxIK1KJ5s5H38oRfT+nEcpzMWT0XgNmbZxOIB3YLoiV8\nPojFUDUDsqKQSiZRjUZ0SSEcjhPyx4ihM37yXNw2A51ybNx2amc8FgPZ+Xm4C1pgKWzJ01+mq+n+\nUvELn439DLNqxmx30L5v/4axRihWhrfLxmzTMGoK8ZSJni2cLN7ko1dLF7K05yXnW4JbGDdjHDWR\nGq7vNZHzO44jy7r3QJpsNmMdMABJlpDNZkw9eu71HEEQhF9TbvtCFE0jGY/TukcvJKWpecCH1r4G\n0LadY+nfnzZvvA66Ts1LL5N9040ohYWH4Aqb5jjjDLT8fBKVldhPPlks3RQEQRAEQRCOWkdtEE2y\n23CMu5DEoN4oBiN1SgxLKo5RbnzGFqRzluXddy91eogpp0wjmVSJpuqwqJad2iVqa6n429/xvf8+\n2Q8+wIUPPsaa4rkU9B3MloiCfaOfabOW076Pl9cu6k38q08xR0CqyKYiaqBt0VC8fYYSlrY29ClL\nMlIjwTB/VZjPX1yKJEuMuLwbxiwzXpuRly/rTzyZQpUlQrEEkXgSl1nDYtz9R/5d2XfURGoAeHXZ\nFE7IPwOTYiEQSxCOJbGbVDRFxheOoyoSTrOGxZDuR/W4cYwYsV8/A0EQhEPN7vVyxdOTCfpqcXhz\nsNj3/oDgd0WHDRdfApkKyN7rr2uyaTKRIBIMoKjqQVmyuo3qcmE/6aS9X2oiQaKigvCSJZi6dkXN\nyWkoPCAIgiAIgiAIR4KjNogmezxUX3s2d35/F16zl8eyHsOo7v3Dvpabi+4PM+mfP+C0aIzqmU+P\n7O03ZbWRWqS6SnzvvovsdOI8pgPawifItznw5Q5DlWIkPJBXZeXnzzbSsaeT2sceJhCP47xoDRVF\nF1Bj8XLuv3/kplNb8eCgh5m9eRYXdx2HS9p5qWQskuC7t1dTXuIH4If313LSpV1RDQpem5FYIsW0\nBWXc8d5iFFni9SsGMKjD7jMI+ub2RZVUEnqCAbkDWVwWwGmIceazs6kJxrj79K6YNYV7PlyCKku8\nedVABrRrXj4gQRCE35KqGbBnebFnHZ6zpxSng5bPPEP15OexHn88WkFBw7FEXR2xkhJI6Sgd2rNl\nwzpmvfoCztw8Rlz9f1hdTefrPBQSNTWsG302qfp6JKOR9jM+RmvRAj2ZRFaP2o8bgiAIgiAIwhHk\n18tO/Dvji/m494f7KK0vZUHFAj5Y88Ee21eFq1hWvYzKUCU1oRiDCx3cdbaVGtNUqiIbqQhVUBep\nY9rqaVSn/CgeD9b+/VHWvg9L3iVq9fB+6Rec8cEZnPO/s1B615HbzoGqAokEAIlNpbTp5uCjX0rp\nXuAgGFQJVPXgTz1vpTDZgkBFgkh9hHC9n/rqKhKxCBbn9iVCVpdxp8IAwWiCqfNKAUimdKbOKyOR\nSu323lrbWzP97Bk8c8IUxrS+gbqAxsqt9dQEYwBIEkwtTveTSOm8M7+UVErfrR9BEATh4JLNZmxD\nj6Plc8+RdfnlKJlKoHoigW/aB2y4aBwbxo8nUlfLB48/RHXZRtbN/4kFn328Uz+1wRhLNvlYU1GP\nLxw/JNea2LqVVH19+vqiUaIrV1I79W223HkXsY0bD8mYgiAIgiAIhzNJktpKkrSkGW3G7fC6SJKk\nfxz6qxMac9Q+GlZllXxrPut86wBo5WjVcCyejJPQE5hVM5AOoE34bAIb/BvIMmXx3zOmctPIAs76\n4EzuH3Q/ryx7hRnrZjC89XCu63Udc0vnMPytF1A2lSOZSsHsprrXpXw25zYAUnqKryq+4MZLb8VI\nDGPHQvRkCu/tt5EwJhnfJ4+r+hYQri5HMyVQU0amPPQLAANHt8PWzYZJSbFk6gsMveBK7B4TsizR\ncWAexaW1FLjSSzpNisTYPi35eWMdiixxXlFL1EZyvplUE15TDprbTSCapFeBgUgiiduiURuKo+tw\nbr+WLN7kQ5Elzu3bstEqnoIgCMLBJ2kaaiZ4tk0qFiP009yG13o4jCRt//0uK9u3I/EkU+as56kv\nVgPwr/F9Ob1n/m7jJP1+UtEossGA4nTu83Vq+fmoubkkystRXC4MHTqw6Y+3okciRJYsoc3rr4l8\naoIgCIIgCPuuLTAOeBNA1/VioPi3vKCj2VEbRHManfz5uD/z8dqPybPmMbBgINFklPpYPS8sfoGt\nwa3cVnQbLewtiCQibPBvAKA6Uo0vWgdAjiWHzu7O3DP7HgA+3/A5V3W+DNsXpcTOG4ChVxckqSe4\n27FwU4oz2pzLsuqH0GSN0R1G83HV+4wuHE3wr7dTHa7inhX38MjgP5NNLj/PnM5PH7wFwMlXTqRd\nrwJKFlZTsqiaE/pkU7rBz3EXXM2MfzxAzwm3YDBbufuTpUxfuAWDIvP5zcfjlRXa+XVmXjsERZLI\ncjS9XNVsUDEbtv9zSKV0Prvp+J1yog3vkoMqp3OiCYIgCL8dxWLBe911BOf+BLqOQTNwzp8e5JvX\nXsSdV0CvEaMa2oZjSb5ZWdnw+n/Lyjm1ey7KDg9VErW1VDz5JP4Pp+MYdTo5t96G6tm35aCK10u7\nd98hXlET5TU7AAAgAElEQVSJmu0lvGgReiQCQCoUAl3MYBYEQRAE4fAiSVJb4DNgPtAXWApcAgwC\n/ko6pjIPuE7X9agkSeuBt4HTgDAwTtf1NZIkvQJ8rOv6u5l+A7qu2xoZ6zXAmtk1Sdf1H4BHga6S\nJP0CTAEWALfqun6GJEke4CWgPRACrtZ1fZEkSQ8ArTP7WwNP6bouZq8dBEdtEA3Aa/YyoccEIJ3L\n7JN1n1ARquCN5W8AUBGq4J8n/ROLZmFQwSDmbJ5DZ3dn7AY7szfN5oVTJpOKxnEYHPhjfsyqGUNS\nYfXcH6ivqmLMnfeDwwntjsOyqpLK0s5MOeVDzJrGluBG5myZw6ntTuWGX+6lKlxFZ3dnltSu4Hhn\nFptWLGq4zvWLfsbbth2SBL1OasW8aesoWVjF+kInx5x0NiRizF4bJs9pwmXRqAvFWVVeT1a+iwXT\n1jX0c/GfBzX7eyPLErkO0077HCJ4JgiC8PvRsTP5H31CwGBiiy7jMqmcc9eDKKqG0bK94I3NpDLx\nxEKueX0+RlXmiuPa7RRAA0j56/G9/Q4AvvenkXX1NfscRJMkCTU7GzU7O/26b1+cY8YQW19C7r33\nonhELk1BEARBEA5LnYErdF2fLUnSS8AtwDXASbqur5Ik6VXgOuCpTHufrus9JUm6JLPvjGaOUwGc\nout6RJKkjsBbQBFwJ5mgGYAkScN2OOdBYIGu62dLkjQceBXonTnWBTgRsAMrJUl6Ttf1Q5PX4yhy\nVAfRdrQpsAmX0YXb5G5Isq9n/ucxeXh06KNEEhEkSeLKmVeysX4jbqOb14a+yMvH/YeFdUsoajGA\n4slTANDZ+Yl7pzyNBDaWlIYZ1MFMOFnH/YPux2lwcs0x12A32IklYyT1JJLZQP+zzmPL6pXIikK/\nM8fgzG9Fj2FtiIUitOluxubOZfmcKgaNbseWlMao1m42rqzh/IsH8MR3a+jb2o2iSJxyVXeWfL2J\nTsfmYrSIH7cgCEeebVUhI8tXYOreDTUnB6mRpetHmtpoipKwwuPTFrOwzMep3XJ5eGxPsiw7zzrW\nFJkhhV5m33EikiThse7+QEQym5CtVlLBIJLFgmwxH/D1qR4Puffegx6LoTgcR8XPRBAEQRCEI1Kp\nruuzM9uvA/cCJbqur8rsmwJMZHsQ7a0dvj65D+NowLOSJPUGkkCnZpxzHDAWQNf1ryRJypIkaVvl\nwxm6rkeBqCRJFUAuULYP1yM04qiOqtSEa0iRwqgYWVy5mLdWvMWJrU5k8ojJvLbsNW7seyOqlP4W\neUzpJ+gra1aysT6dILk2WksoHuTLhx6h69DhZLd04crOxVA0kN4XnEfMoLNtLsCP5V/zn8X/wabZ\neG7tJj4Y/QG51lwARncYzbQ103jkp0do72xPkaUHthwvF/39aWqiNfyzZAp/8FxCgdKSDQu/YfGX\nn1F47BDOv+tUDCYTloTGm/f9SCqlY7ZrPPGn/sR8MZYsqiK3qwfT8FymldVxXdLL3uuPCoIgHF4S\nVVXESksJzp3Llnvvpd0H09Bycn7ryzpkthV2kSWJlK6zsMwHwMxl5dxzRjeyrLufYzYomA1NB8ZU\nj4d2094nOHculgEDUNwHp7KnYrHADrPi9pU/EicaT+EwqRg15aBckyAIgiAIwj7aNSdFHZDVzPbb\nthNkCjtK6US2hl1PAm4GyoFembaR/bnYHUR32E5ylMd/Dpaj4rFwMB6kMlRJXSaXGcCW4BbeWfUO\nC8oX4Iv6ePinhynxl/DS0pcwqSbaOdsx6atJzN0yd6e+si3ZDGs5DEVSOK/jeWhxKCwaSJ8zzmJq\n2TTajx5BalRXriu+GX/M33Ber+xelIfKWVm7kv65/TEq28NZRsXIytqVANze/SY+e/RRStYuYuJP\nt3DBrEv4ZONnxIJBUiE/Lbt2o3WPXvw0bSqhuipKl/5CoCbScFMVro+jJ3XeebSYedNLmPnUL3Rw\nW3hzXikpdJLJFKH6GOW+CD+uq2aLL0wiuXvFTkEQhMNBorKS0uuuZ+OVV6Hl5+EYNaohD9ehFI4n\n2OoLs8UXJhRLHPLxtqkKRHnssxX8vxnLUGVo57U25Kls5TFj1Pbtz7qeSpEMBAAwtG6N+7zzMLZp\ng6z99sv3qwNR7v9gKef/Zw7frKokHP/1vs+CIAiCIAg7aC1J0rbcSONIJ/VvK0lSYWbfxcA3O7S/\nYIevczLb64F+me2zSM8625UT2KLreirT57YniPWkl2Q25jtgPDQs86zSdd3fRFvhIDjiI5GBWIDp\na6fzz1/+Sd+cvjw4+EFcJhdLKpegyRp/m/83nj7xacyqmXAijCzJyJLMy0tfJqWnKK0v3ak/j8nD\nQ0MeIpwIs6Z2DSFNpv+lF3PujPOpDFfy/KLnee7k55AlGYu2/el7vrWAT8Z8Qm20ljxrHi5TutJa\nMpliQ3WIizpdxoLyBTgNTuprqrBY7AxzDmNV7SrGF15I8KdVvPLuQ0iSzBk33cHWdatRNI1Pnvkr\nVzzzJu16edm0qo5eJ7VEAlKJdFAtHk2iIPHsuD7YjSpVpQF88QSXv/8LZbVhHCaV/91ywm75zwRB\nEA4HwR/nEl2+HIDKvz9J69dfQ7bZ9nLWgdF1nQUb6rj05Z/QdXhpQn+OK/Qe8qrF8WSKf3y5mlfn\npAvd1IbiPHx2d2beNJSNNSHaZlnJsZuoDkSJxFMYNRmvrfH5x6mUTjwaI7F6JVIyCaSraypZWb+L\nABrA4k0+pv2yCYCJb/7M93cMx6wd8R9bBEEQBEH4/VkJTMzkQ1sG3AD8CLwjSdK2wgL/3qG9W5Kk\nRaRngl2U2TcZ+FCSpIWkCxUEGxnnX8B7mVxqO7ZZBCQz575CurDANg8AL2XGCwGXHthbFfbmiP80\nGowHeeSnRwCYVTaLFTUr6OTpRAdXB2755hYAnv3lWV4Z+QofrvmQIQVDkJDIs+SRZ81jVPtRu/WZ\nTCXZEtyCLMk8Nv8x7hl4D5XhdOWzUCJEtiWbV0a+gtfsBaAmGOXl2RvY6gtzyymd8Zi2L6mpDsW4\n7s35TD6/D3/t9Qx2k5HTJv2RoB6hvbM9r4x8hQLJy8z3HwdA11OsX/gzJ185kV9mfozV5SYRDdGx\nKJdB5xSiajKKJnPMSS1ZO7+SbkML8LpNtLLaSUWSfPPmSnpe0IGy2jAA/kiCaDxJKhJBNh36QFqi\npgY9kUAyGFBdrkM+niAIRzZjYYft2506ouXloR7iBPbheJIXZ5cQT6YfVrzw3Tr6tnZhMx3a4JOu\nQ31k+2ys+kicFJDnNJPnNFMdiLLVF+aPby9k9tpq+rR2MfniIrz2nQNptcEY/51XytLNPm4+vg3m\nF57B99+pSGYz7ad/iKFVq0P6Ppory7p9lYPHakCWDm2QUhAEQRAEoQkJXdf/sMu+L4E+TbR/Qtf1\nO3bcoet6OTBwh113ZPavB3pktlcDxzTSJg4M32WMWZljNcDZu16ArusP7PK6RxPXKuyjIz6IpsgK\nuZZcykPlyJKMWTMz4bMJTD5lMnbNTn28nm/LvuX2/rdTG63l34v+zYODHuSOAXdQGapk7pa5nNT6\nJKyGdJKZaCLKT1t/4k/f/4kscxZ/P+HvWFQLE7pPYFbpLC7udjFuoxubYftMiPd/3sQzX60BoFsL\nMyOPcaLKClnmLNBhfJ9WLJi6lrKVtQCcenUXOhQaWVI6g7u/v5ux7cZw+smnMuvl51FUlR7DTiYR\nj2FxujjzljsxO0y4dIn3HismmUhx1g29GTCqHX1HtEEzKhhM6R9zLKHjzrMQqYpyWrc8Pl22lb+d\n3gFn8Ww2f/wxzjFno3iyULO9aLm5SOrB/eeRqK6m9NrriCxejPP888i55RYRSBME4YBorVrRbtr7\nRNeuw3rsgIbKkAdDyB/FVxHGnmXC7DCgKOmlkkZVYWT3PL5cXgHAqd3zMDUzX1dtKMbXKypYttnP\npYPbYjEqeCwGpGYEiAyqzB0ju1AbjJFI6fy/0T2wGdOBu6r6KNe8Pp87RnZm9tpqABZsrMMfie8W\nRPtpfTWPfbaioc1/TxmF5Zh+yG3a4g9E8Dbv23PItcmy8tKE/hSvr+HC/q3w2hpLHSIIgiAIgiAI\nv54jPojmNXt59bRXmVU6i9aO1ny09iM2+DcgIfHGqDeYsW4GQ1oMIaWn+KzkMzp7OjO/Yj5/mfsX\nADRZo39ef74u/ZpeOb0wKSae+vkpknqSQlchlaFKCl2FXNvrWiZ0n4BVs2JS0zO6ookkwWiClu70\nzLNz+uVicS/n1Pfuw2l08vrpr5NnacmwjtnM+6m24ZqrNoYp7FvA2YVnM7z1cDRZw6abKex3LLKs\nEPLV8eVLzzHo3HFIskIyEWfZd1VEQ+kZCj9OX8fp1/bE6tz5xslgVjn+wk6Urqjl7lM6ce+Z3fD4\nKigZeSMA9V98Qdup/6Xk7DG0n/HxQU/MHV29msjixQD43n4H79VXgwiiCYJwABSbDaVrV0xdux7U\nfkP+GB88uYDaLSE0k8K4+4/F5k7/bldkiRHdc+nX5gR0HXLsRlSlebnIft5Qyy1vLwTgu9VV3HBS\nIX1auylwNa8aZp7TxD8u6oOug9Oyfebb8q1+5m+oJZmClm4zZbVhsu1GbMbd/8xHYtvzYEYTSdTO\nnbljWYIf55dx/bD2XNY2htP82wesHGaN4V1yGN7lyC0SIQiCIAjC79uOM8Wa2b7tIbsY4XfhiA+i\nARTYChjVfhQPz32YT0o+4bgWx2FQDOTZ8pjUZxIAwViQd858h7L6MlrYWiAhoaPT0d2RXyp/4a7v\n78KiWph+9nR6eHswofAPdKh2UT1jIaEzC/G0aIXVvL0kWm0wzMeLtvJ28SbG9m3B8xf3Q9EC/G3J\nfejo1EXr+HDNh1zV8RrsK+czclw3ard6oMCEbklQHa4my5yFw+ho6DNkVIkkIiiGfIbdeC9r/vcR\n8z6cird1W8685X6WfJvOHVPQwYmyS3LpVDxOvLSM4I8/0nrIYDSvG0nTiFTsULBD19GjMVKhEMn6\n+oMeRNMKCkBRIJlE8XiQjKJWqCAIvw/JUAhJ0xrygSUTKWq3hACIR5LU10QagmgATrMBp9lAoqaG\n0Lc/ELDbMHXrtsfZtbquU14fbnhdHYxiUGV+WFvFuf2av4TSYd592WgrjwVFlrj3wyU8N74v8aRO\nC7eZbPvuv2eHdvRyyaA2rNxazwNndWNzfZxv19YA8NSXazi/f2uczYvpCYIgCIIgCMJR5agIogE4\njU7uHHAnt/S7BYNiwG1y73TcarDS2dOZzp7OBGNB3j3rXUp8JfTK7sUfPkkvfw4lQkQSEe4deC+h\nzRX895E/ArCu+Ccm/P05bO50Hp5kKkldOMa9Hy4D0smRv7ltGDazmf6V/RuKFfS29+N/Ly/n1HM7\nU37PXSRqarD/+R5u/vlvRFNxnjv5uYa8anXROl5b+honFJzBM59XYTWqXDt0JJ2rK1j5/dfEI/Wc\ne3s/4vEUWS1sqLssLUrW1FByzjnokQiVVivtP/0ELScHNTcHz2WXUf/5TOwjRxItKcHcvz/SIUjM\nrWZn027a+4QXLsQ6eDBq1p6qAguCIBx6ejJJdM0aKp98CmOnTngmXIrq8aAaZDoW5bK6uBxPvhWn\nd/eoUjIUovLpf1A3dSoAeQ89hPv885ocqzZSS8/WOiO6ZVNSFebeMzuypCzAKd1y0w0SUYiFwGgD\nZd/yq+XYjcy8aSgrttaT4zDtsViMx2bkrtO6EkuksJtUtvjCaIpEPKmT7zShKc3LPVYTjFG8voZY\nMsXgDll4rOLBiCAIgiAIgnBkO2qCaMBugbOmWA1WOhk60cndidpILYPyB/HRuo8Y0WYEdqMdt8lN\nKL6loX0iFgX0hteBqJ9wMoIqS2iKzL/O7YwlVI1RsnJLn5sZXTgaq25n69womlGn9s23CP7wAwDS\nfQ9zwd3n8KcljxJNREmkUqiyTFW4iuLyYtTAMI5vY6OLXkHZV9MZeM4FBGuqsLpc2NzOJt9TKhxG\nj0TS28EgejQ9A011ufBOvB7XJRcT9PtIRqPYjukO9oMfRJPNZkydOmHq1Omg9y0IgrA/kjU1bLx0\nAsm6OgKzZmFo0xrX2LGYbQaGXtiRQed0QFFlLA4Duq4T8sfQdR2DUUWORomsWNHQV3jRIlznjkWS\nG1/aqcoqLy9/hn49e3OSwUtEXcn5RYOwGlUI1cKCV2HFDBg0CToMTwfTmsliUCnMsVOY01T1852Z\nDQpmQ/phS5bNyKc3DmVRmY9B7bPItu+9yEwqpfPmTxv468xVAFw+pC13jOyCsZm54QRBEARBEATh\ncHRUBdH2h9vk5tb+t3JjvxtRZRWXMb1Ux1PQkgFnn0fZssUMOm88JmvmZqd+C6YNP1BitPHcJV0w\nxGUCs97j1e+/RtUMjH/sKYqrijFJZooKh7KxvB5Dfl7DeHKWh2AqzAktTiAedXL7p4volu9gZG8z\n0WSU1lkWWkXq+d/jTwBQMm82Fz7wGBZn0wE0AMXpxHX++fg//RTnmDHI9u03WorNhmKzkbRaSCWT\naEYjRot1D70JgiAcOVLR7cvaU+Htyy3NuySyr6+O8N7j8wnVxzhxfBc6FmWTe9edlF5zLYrNivfq\nq5oMoAE4jA7uOvYuXl/+OnZZpX/+INzbqiLXlcP/7ktvl82DmxbvUxDtQJg0ZZ8CcADxVIqlm/wN\nr1dsrSeaTIkgmiAIgiAIgnBEE0G0ZnAadw9Qme0OBo69kMQZ52CwWFAUJb0M57O7MK74mMGXf8p6\npYY2agteL/4RgEQ8xqrF8/g29S0LKxdy77FGzhx3NlqsJZKqEC+vwHnheQw0RjieCxg/uZiSqiDv\ns4midkXc3v92DBKwOtBwHSGfD0lRkOU937iobjc5t/4R7/9NQjaZUOy73yxZHHsOxAmCIBxpZIeD\nVv/5N+V/eRhDhw44TjutybZr5lcQ8scA+OnjdbTpmYW5e3faf/wRkiShehuvaxlPJqkJxgnHkjjN\nTm7ud/PujXZcvimrIDUejEulUkiS1KxqnvtD13XC/hgpXcdgUhuqO+/KqCrcOqIzv5TWEU+muPv0\nrtgbKWIgCIIgCIJwuJMkaSTwNKAAL+i6/uhvfEnCb0h84j0AmsGIZmgkB0wyjvuFU3APvpHowD9y\nzEmnMn/GB5isNgq6dWPDD08B4Iv5MjMdDLgvuKDh9LZARX2EcCzZsK+kMs6YPn0BCJm8dBlyAhUl\naxl26VXbZ8HtheJwIOYICIIgbCcbjVj69qX1Sy8iGY0oe8gHmV/oAgnQM9uyhKxpyNnZexxjQ3WI\nM5+ZTTie5Jy+LbjvjG64LLtUv7R64dyXYfl0GHANmD279eOvqmDOO2/hysun50kjsTgcu7U5UIGa\nKO89UUzQF+OECzvR+dh8NFPjfznaea1Mn3Qcuq6TZTUcssCeIAiCIAjCb0WSJAX4J3AKUAbMkyRp\nuq7ry37bKxN+KyKItg8SPh8pvx9J01BcLmTTLnljDBYY+ShICsgKDLweo91B39Fj6DFiJLKqEtCi\ntLa3pn9ef87peE6TY2VZDLw0oYgHPlpGp1wbx3fcfpNmcTg5+crrScRimKw2FG3fElBDOiF0KJbA\nqMrNyn8jCIJwpJJUtVmFTrJaWBn/wEDq66JEzDL3fbqM20d22WMSf4CZS8sJx5MUtXYzcWA7YlVR\nQi6wONKBtHB9jFTKhNLuTExdRoG6+8OZkN/H9L8/Qvna1QBYXW56nHjKfrzbPVv3SyXBum2z7Upo\n1zu7ySCaLEuNVv8UBEEQBEH4rRQVFamAF6gqLi5OHIQuBwBrdF1fByBJ0n+B0YAIoh2lRBCtmVLh\nMLVTp1L19ydB02j92qvUO+w4c3Iw29JLI6sDUWTZg/vs59InqekbpC8rvuW+H9K5bu4ecDdPD38a\nk2LCZmh6xoOiyHTJczD54n4YVBmzYecfldFi3e+8ZXWhGI98upx3isvId5qYdv0Q8pwikCYIgrAn\nBpOKpMk8W7yeTbVhhnbMZvaaKk7tnpcuDtCE4ztl89QXq3j8jO589fRCosEE3lY2zvy/3gB88u9F\nlK/zc8xJLel9UmvWLy6joNCFM9uMmkn+r6d04pniMADRcOiA3ksqEiFZH0A2GXda3p/XwbF9tl0H\nJ4radI43QRAEQRCE35OioqLBwAzABESKiopGFRcX/3CA3bYASnd4XQYce4B9Cocx8em4mVLBIP5p\nH6RfxOPUzviIuJZi04p0ALqkKsj1b8xno6+Cl1e8yWsrp1ITqSGeivPjlh8b+plRMgNN1vYYQNtG\nliWcFsNuAbTmSFRXk6iqQtf13Y5F4yneKS4DYIsvwqKyun3uXxAE4fckFYvtVCBgf4X8MQJ1USKh\neJNtOufaGN4lhxe/L2H2mirC8WSTbQE6eK18c9swDLEUnQd46Tsyn3g0STKRwlcZonxdOkH/oi/L\nCNRE+PatVbz98DzC9bGGPixOJ2fdchetuh9D0Zlj6XrcsP1+j8lAAN/06Wy48ELKH3ucRG1twzF3\nbnq23eib+3DC+C6YrPs+01kQBEEQBOHXlpmBNgNwkQ6iuYAZRUVFIqORcFCJIFozyVYr9jGj0y80\nDemU40lIKapLNxLw+zAEqvjHme3Y5P+Fv8//G48XP86Li19EQuLyHpdj02xossakPpOwaTsH0CLB\nAOt+nse3b7yMr7KcqkCUkqogFf5Io0GwnSR3n6Ea37qVYFWA2oowoergbsdVVaJP63SVUaMq0yX/\n4OfVEQRB+LUkqqrY+sADbLnnXuIVFfvdT6AuSn11mPrqMOsXVjYaSNMUmSGF2dz1/mLWVgZ47+dN\nrNxav8d+LUaVApcFVxYEqz9ny/KpnHJZSzSjgs1tapjt5fCaiUXSAblUUifoi+GvTlcLlSQJT4tW\njLrhNlp374k/HGNrXZBwfN9XKaTqA2y9737imzbhe/ddYuvWNRwzmFVcuRZadnZjsRv20IsgCIIg\nCMLvipd08GxHJmDPyWv3bhPQaofXLTP7hKOUWM7ZTLLZjPXcMejDB5GQYUFoFQUbY/QYdjILZ37M\nnHffQpJkTrvjTrpndWdp9VK2BLeQSCXo4OrA9DHTQQeHwYGySyVNX0U50x57EAB3t748MGct8zfW\nkuswMvWaQXitGgYNDMr2/Dmq7kdd8ylSyTcw+AZwtQazi1Q0SiiY4sMpm6ivieDOtzD6hl5Y3eaG\n8bKsRiZfUkRZbYh8pwn3rgmuBUEQDhOpeJyKp57G9/40LKeOIBAMEFpRiTu/BRanq9n9JBIpSpdW\n89XrK1BUmdOu6Ukq0fhDDE2RcFk0qgLpmWJua/N+hy7+aiZLv/kCgHC9nzF33o/ZbuOi+4+lZnOA\nrBY21i6oxGhRadnFjdGi8s0bKxlxZXeMFo1oMMhXL/+HtieM5F+zNjJnvY9JJxZyxjH52Ey7zxhL\nVFfjnzkT2WrDdvxQVLc7fUCRka1WUsH0QxbF+fuqzJwMBkkFAiDLqB4PkiIeIAuCIAiCsFdVQISd\nA2kRoPIA+50HdJQkqR3p4NmFwLgD7FM4jIkg2h6E4iGC8SCSJOE1ezG6PIRNMpKeYlAyD7NuIBGL\nsXpuepm1rqconTefoUXHAfDHfn/EpKb/G842Nx0AD/t9DduqzcX8jemlluX+KOW+MN9sfY8lVYuZ\n2HsiTimPKn+UNrHVSNMnpU9aNRMu/gCsXiRHS+Ko1Nekc+fUbgmRiO9+I5hl0TDFUtSWriFW0AKD\ne/dKcIIgCIcFXUd2OLBefRVT7rmFZCJBQedujL71biyO3QNEeipF0FdHKpnAYDJjstmJhxMs+roM\ndEjGU6yZX05u+8Zn6WZZjbx77WDe+mkjA9tn0cJlbrTdruQdgkGSLIMkoWoKzmwzzmwzgbookgQn\nX9YNk03j55kbMZhVJFkiEowTCUkMHHs568Jx3lnwC6f3zCMUSxKMJXYLoiWDQcqfeAL/Bx8CkH3b\nrbgnXIaiyKhuN23eepPa//4X2/HHo+bmNvc7fcilwmHqP/+cLXffg2y30/aN1zEWFv7WlyUIgiAI\nwu9ccXFxoqioaBQ75EQDRhUXF+8578Ze6LqekCRpEjATUICXdF1fesAXLBy2jpogWiqZJFBbQ+X6\ndeS064DN7UnfxDQhkojw1cavuGf2PXjNXl4Z+QpfbPiCeeXzuLHvjXRwdkCRFQK1NXQdeiLfvfkK\niqbR44STObZNARd1G4fH1HRgqjZSy+ra1RhVIy07tKL7sJPZsnoFdpuFge09/LiuhhYuM7kulSu/\newKAQCzAxe0e4k/TlvDuySG82zqLByEZgfeuQBo3FbPHjqfASs3mILntHWim3X/MQV8dr97+f4Tr\n/dg8WYx/+ElsIpAmCMJhRtY0cm66EcXtomrrZpKJ9PLGzauWk0o2/pnJX1XJG3ffQtjvY9B54+h3\n+mhUg4m2x3ipKgsA0L53DiZL4/nAZFmirdfKXad33Wl/IpYkUBulqqyevA5ObK6dVxT0PHEEIV8d\ngZpqTvjD5VjsOwfpbC4jnY7NIxlPsXWtD6NFZdDZ7ZEkiaXflvHjh+swmBROuqsvVxzXjg7ZVt6Y\nu5G6cIzLBrdrmBFXE4wSj+lQ0LKh79i6EqKBKBanGUnTMHXqRP599+3Dd/rXkQwEqHjscUilSPl8\nVP3nefIfeRhZPWo+rgiCIAiCsJ+Ki4t/KCoq8pJewll5oAG0bXRd/wT45GD0JRz+jppPpSFfHa/e\nPoloMIjZ4eSSx5/ZY9AoEAvw5M9PktSTlIfKmbFuBgsqFjB782yWVi3l3bPexWv2IkkSLbv2YNxf\n/o5mNGJxurCY9rw0JpKIMGXpFF5c8iIA9w+6n9GXXUssEsZotfHMRX2oC8WJJVKs9v3ScJ7H5GHO\numo21ITYZOmCs/elaJvnweBJsOgdqNsIyQRWt5nRN/UmHk2hGRUsjt2XGsXCYcL16WTWgZpqErED\nT/pLPU0AACAASURBVMgtCIJwsMUiYSRJRjMam2yjZmeTPWkSlmAAZ04uvopy+p9xDqqh8WWWJQvn\nN8wA/nnGhxxz0khsbiu9hreiQ78cNIOMybbvy9xD/hhvPTSXVFLH7jEx9o5+RFWJr1dU4I/EObNX\nAcePvww9lWry2rblIbN7TBQW5SBJEiF/jJVzt2a+H0nCZUEuHtiGE/82C12HpZv9nN4zH7fVQIU/\nwvVv/MyGmhBPnHMuHQJBEsU/YfnDFZRvDNKuZ/Nmzf1WJFXFUFhIuLgYAFOP7iKAJgiCIAhCs2UC\nZ1t/6+sQjlxHzSfTWCRCNJP/Jez37TVopCkaPbN68mXoSwCOyT6Gmetn7tZu1dzZpBIJslu1JRKo\nx2AyE4uEMZiavlGJJqMsqFjQ8Hre1nmcXXg2VlM6X022puEx6Piqt5JrL2B85wtY5VvHhB4TUJP5\nvDG3lAteX8W0K+6kU98ylDn/gOUfwcjHwJzuw+Jo+oYTwGS10rJrT8qWL6Z93/4YzJY9thcEQfi1\n+Ssr+Orlf2O02jh+/GVYXe4m28omE+ZIhAvu/jO6JKGZTJisjVdBbtmlO7KikkomaNurL4qWnnFm\nsmmYbPtfjdJXGSaVTC+fr6+JIMsS7/1cxl9mLAdgYWkdfxnTE6uxeQE6SZIA0IwKXQbnM+f9tciq\nRJbHTDiSxKQqDZVBLVp6qehnS7dSvCFdbfPW9xbzwRXXkhh4Nl9+VM2IK/P3+70lamoIzZ+PmuXF\n2KH9IcujprrdtHzqSXyffIKWnY1l4MBDMo4gCIIgCIIg7I+jJohmstpo328A6+b/RKeBx+01aOQ0\nOrlv8H2MrRpLriUXt8nNKW1OId+Wz419bsBtTN/MdejcneCH0zEYrGyIh5k1ZTKdBg6h7+mjMdsb\nz6dj02zc0OcGrv3iWgyKgSt7Xokq7/yjUIxmPLktIeLnpj43EAPsBjvJQJDvrzqGuGZCtVlR4hoM\nvQ1OfgAsXlCbd3Nmcbo48+Y7SCYSKJrWaN4gQRCE30okEGDmf55m4+KFAJgdTk74w+UNgaVdJf1+\nyh95FP+HH4Kq0vbtqdBEYQFXbh5X/GMykUA9Nk8WZpv9oFxzVgsbWS1sVG8K0O24AmRVpqQy0HC8\ntDZMLJnCuo/9akaFbkMKKOybg6xIrF9SzbrFVbz2hyLeXbyZU3vkNSzlbOfd3ntrjwWjxYi9Z2tG\n9pP3u9pmsLqWmoceIjAz/SCpxbPP4Dj55P3qqzlUr5esSy45ZP0LgiAIgiAIwv46aoJoFqeTkdfd\nlA4aqWqTAa4deUwehrYc2vD6isLx1KdWEP/XO0RHjcLUowfJ4vnUPfdvct6Zytd//hMAP74/la5D\nT2xyDEVW6Jndk0/O+QQJCbepidkVigbWLEykMyMm6uqonvwC/o8/xjX2HGyXXgrObLDtX9Xefalc\nJwiC8GuSJAl5h0rGyl6W9KWiUYLffpt+kUgQ+nEu5m7dGm2rGow4vNk4vAda8XxnFoeBs27qTSqZ\nQtUUjGaVScM7snSzn0A0wcNjeuAy799MN5NVw2RNn+vJt/LtW6sIVIa5ZkwHWnXwoGZmovVs4WTK\n5QNYVxlgVM98sh27VnrfN75wnHVlNdiXL2/YF16w4JAG0QRBEARBEATh9+qoCaIBzQqc7UmqdBMV\n4y4FoO6ddymc9TV6JF0FU0ZCNRhJxKJIsoxm2PNySoNiINvS/Bu4cCBGMq6QlDQSFRVU/es5nGPG\nHLIlNYIgCL8lo9XKiGtv4Ls3p2Cy2eh7+ugmZ6EByBYLnksvpfKpp5CdTuwnDT/k1xgJxEgmdUw2\nDUVJF6rZdbZXgcvMSxP6k9Ihy2rY43toruxWNi7+8yASsSSRYJzqTUHceRYMJhWXxcAJnbI5odPB\nCRDGEik+XhfgshtvIXHnbSgeD+4LLzwofQuCIAiCIAjC4eaoCqIdMF3faVuPx3GcdhqR5SuIfvkl\nFz34GMt/+JaOAwZhOkjLgwBC9TG+eGkpW9f5KTrpVPL/z4Jv8nNITSSmFgRBOBLYPV5OveYGJFlC\nVvb850qxWnGPuwjnWWeCqqJmZR3w+MlkgmBNDVWlG8hu2w67p6EmMkFflM9fWEp9TYSTJ3Qjt50D\nRW284nOWbc8PVQD0VGqPFaN3pBlVYpEkHzy5gJAvBhKMf2AghkYqMYdiCSr8UTZUB+lW4CTbvvdr\n2ZHLojK8ZwteWZTionc+It9lxpCXs099CIIgCIIgCMKRQgTR9oFaUEDuXXcR+P57vNdcjeJyIRsM\n5N79J0gkUBwOctoXHvRxq8sClC5PJ4qe88lm/nDXaDwjTkTxNF1dVBAE4UiwLel/s9o6HCiOA5tx\nvKOwz8crt04kHgljc2cx/pEnG6o6r5y7lc2r6wD44pVljL2jH9a9FHRpTNLnI/jjjwS+/RbXeedh\n6twZ2bz3Cpp6Sk8H0AD0dFDPlbt7rs8tdRFGPPUtyZTOMS2dvDyhf7OCettoikJRGzcdc2zIkoRl\nH4NwgiAIgiAIhztJktYD9UASSOi6XiRJkgeYCrQF1gPn67peK6WXHTwNnA6EgAm6rv+c6edS4J5M\nt3/WdX1KZn8/4BXADHwC3Kjruv5rjHEwv09Hi+Y99hYAUF0u3OPH0eLJv2Pu1w85MxNMsVgO6o3b\nruweE9tWANncRjS3E2NhIfI+3FwKgiAIu9B18G+GlZ+BrwySCQAS8TghXx0hv494JAxAoLaaZDze\ncKrTuz3QZXObUOT9W6YZXbOGTTfehO+999nwh4tJ1tU16zzNpDJ4bCFGi0rbnll48hsvV7CqvJ5k\nKv35aMkmH8ldPiv5w3F+WFPFs1+tYVNtqNE+jJpCjsOEVwTQBEEQBEH4nSsqKpKKiopMRUVFB55D\nY2cn6rreW9f1oszrO4EvdV3vCHyZeQ1wGtAx8/+rgecAMgGx+4FjgQHA/ZIkbUuO/hxw1Q7njfwV\nxxD2kZiJto8kVUWx2X7VMa1OI+f9qT8V6/206Z6FZT9mOwiCIAi7CJTDf46HYCWYnDBxLsGUmfkf\nTaPkl2JGXn8zLbp0Z9OKpXQZcgKaaXuS/hadXYy8uge+yjCdB+Zhsu19eX0iFqWufCtly5bQtnc/\nTDYP0ZKSHRokCFXXgtOL07LnhySynKBDHwuFfXuDpCErjX9O7NfGTYdsK2srg9x8SidMqrLT8Y01\nIca9MBeA/87byAcTh+Ddh5lqgiAIgiAIvweZoNm1wINAFlBdVFR0P/Dv4uLiQzHjajQwLLM9BZgF\n3JHZ/2pmltePkiS5JEnKz7T9n67rNQCSJP0PGClJ0izAoev6j5n9rwJnA5/+SmMI+0gE0Q4Dmkkh\nu5Wd7FYHL8+aIAjCUS8eTgfQACI+9HAdX7/1Git/SFf5fO/h+zj12hs5/f9uRTMadypOY7Ia6NB3\n33KDhf1+XrvjRlLJBGa7g3Pu+ivGHv3RWrYkXlaGsaiI9bqZaHk9A9o1vVxfT6XYtGIZQV+Yio1O\nShbWcspl7bFnKagGA1aXu6GAQY7DxNSrB5HUdcyagmOX6qDl/shO26mUmNUvCIIgCMJh6Vrgr8C2\n/BbZmdeQmal1AHTgc0mSdOA/uq4/D+Tqur4lc3wrkJvZbgGU7nBuWWbfnvaXNbKfX2kMYR+J5ZyC\nIAjC0clohy5npLfbHkfK6GLVnO8bDofr/XzwxP9D11MHXN0ZIBIMkMosGQ3X+0kmEnz63y3Ynnie\nNjM/Z/ON93H312UYVZnaUKzJfmLRCPNnfIArtw3Lvq+gz4g8lnz9Li/ecCWv33kjgZrqndp77UZy\nHabdAmgAvVu5OK1HHi1cZp6+sA92k0gTIAiCIAjC4SUzC+1BtgfQtrEADx6EpZ3H6brel/QyyomS\nJB2/48HMjLBD+iTy1xhDaB4RRBMEQRCOXIEKKF8K9VshmSBRXU3Viy9SPWUKiZgCZ/4DblkO500h\nghmry73T6apmQNlLZdDmsro9dD1uGEarlWPHXkRlaZTarSG+mLaVerOHJ4srePzcXjz22QqufW0+\nZTWN5yhTDUY6HjsEWdk2U9nMsm//B0Cwrpata1c1+5qybEYeHduTaRMHM7xLDmaDsveTBEEQBEEQ\nfl+MpJdwNiYrc3y/6bq+KfO1AphGOt9YeWYJJZmvFZnmm4BWO5zeMrNvT/tbNrKfX2kMYR+JIJog\nCIJwZApWwlsXwXOD4V8D0QPlVD77Tyqf+CsVjzxK9eTJ6EYnOArA6sVst3PK1ZOQ5O1/Go//w+UY\nLY0n7d9XFoeTEyZcw5kPPo2//WBs7bycfFV3xvyxL26PiRcuKeL5b9fyw9pq5pbUcP9HSwlEE7v1\noygKnQYOweI0ct4d/dCMGm179QVAM5rIadt+n67LaTaQYzdh0kQATRAEQRCEw1IUqG7iWHXm+H6R\nJMkqSZJ92zYwAlgCTAcuzTS7FPgwsz0duERKGwj4MksyZwIjJElyZ5L9jwBmZo75JUkamKm6ecku\nfR3qMYR9JHKiCYIgCEemRAw2Fae3w7VQu55koL7hcHzTZvRkEklN/ymUZYVW3Xpy1bMvUrNlM67s\nXEx2+04FBQ6U1W4nqZo4xhpHVSWcreyYDZnxJQmPdXuBArfFgCI1vvrAZLVhsm4rcmPjtIm3EPLV\nYbLZMTucB+16BUEQBEEQfu+Ki4v1TBGBHXOiAYSA+w+wsEAuMC2Tb1YF3tR1/TNJkuYBb0uSdAWw\nATg/0/4T4HRgTWb8ywB0Xa+RJOn/AfMy7R7aVgAAuB54BTCTTva/LeH/o7/CGMI+OmRBNEmSWgGv\nkv5HpwPP67r+dKbs6lSgLbAeOF/X9dpDdR2CIAjC0SPk96GnkpjsDhTNBF3OghXTwdUGKauQnEmT\niK9dB7JMzu23IRt3nt2vmUxoJhP2rOw9jlMbijGvpIZyf5TTeuThtTd/lYDDrDWan0xVZCaeWIjD\nrBFPprhscLudllcm6uoIzf2JREU5jtNOQ/V6G45ZnC4sTlezr0EQBEEQBOEI8+/M14bqnMD9O+zf\nL7qurwN6NbK/Gjipkf06MLGJvl4CXmpkfzHQ47cYQ9h3Uvr7fwg6Tq/Zzdd1/efM9Mf5pMuoTgBq\ndF1/VJKkOwG3rut37KmvoqIivbi4+JBcpyAIwmHsQJOkAkfO79hATTUfPfkIiXicU66eRHab9iiR\nWogFQTOBLV3QKFFdDZKE6mm6AubeTPu5jJvfXgjAKd1y+et5vXCaNeLRKNFQEFmW9xrUSkUiJP31\n6PEYstWK6tpz+7r332fLn+4GwDrsBFo89hiK8+DNOtNTKZK1taCoqC4xm00QOAi/Y4+U36+CIAgH\n2UH5DNuYTBEBIxA9wBlogtCoQzYTLbPudktmu16SpOWky6iOBoZlmk0BZgF7DKIJgiAIwt4s/upz\nWg8ZiLFTC9Yky9DCLrJs2WD17tROzWoq72zTkskk0WAA1ZAuNNDKojPxuFYoskZHrw09mSIejVKy\nYB6fPfc0rtw8zrnzAWyexsfS43GilZWEf5hDzfP/wdy3H7l33bnHwF50zdqG7fiGjejx+G5tUpEI\nsQ0bCP04F9uwYWgtWyApe891pqdSRFetYvPtd6B4vRQ89iha9p5n4wmCIAiCIPzeZAJnkd/6OoQj\n169SWECSpLZAH2AukJsJsAFsJb3cUxAEQRAOSIsu3SlvkeKy767muh9u4OXlrxBOhA+430Qsxqbl\nS3j/kftZM28ua3+ex/Ipf+P/t3fn8XFV9f/HX5/ZJ/vWpjvUblCgbBEqBa2staJlE1EE/KIofgVR\nkUVRQf2i8MMdBGSzbNKWVZayVAqCINAgS2mhtHSha5qm2ZOZzCTn98cMaUqbZmkmk0zfz8djHpl7\n7rn3nplP53Qenzn3nLP2K+aQaqP5n5uoX9tINBJlwS03EIs0U7lmFe++9C8AYhUVVN50M3VPPUW8\npgaApvo6WpoaqbjqKmLrN1D32GNE33tvl+0oOutrBPfZB9+QIQz/v//b6Si01upqVp32JSp+8xtW\nnX56YtRdN7RWV7PhssuJvv8+TS+/TPW99/bwXRIRERERyXwpT6KZWQ7wIPB951xdx33Je3l3OsTS\nzL5lZuVmVl5ZWZnqZoqI7FEysY8dOm48b9W9075dXvE6kfju/xAZaWzg4Wt+QcXKFeQPGcLjf7yG\nWHMT1RsiLHlxA5Uf1vPEjW/j2vwUjhjZflzJ6L2I19ay7nsXseVPf2L9939A8+v/TZyzqYloJIIn\ne9vKn94ubi/1Dx/OmNtvY+xDDxKacgDm33Fetdb6ekiOUGurrW1/3hXz+babY80/bHi3jhORHWVi\n/yoiIiIJKV2d08z8JBJo9zrnHkoWV5jZcOfcxuS8aZt3dqxz7hbgFkjMJ5HKdoqI7GkyqY918Tjx\nqira1q3n8vHf4d2t77G8ZjkXHnwhuf7c3T6/meEPh4nHWnAOvF4f8ViMQHjbf6GBkBevx8Osi69g\n+Wv/oXD4SIZ+YhyuOUK8oqK9XmzDegCCWVn88547+Mxfb6L50cfJOXIa/hEjumxLV7ei+kpKyD/l\nFBqee47Cs87Ck5Ozy/of8ebnM+Ka37B1zhz8pcPIPe7Ybh0nIjvKpP5VREREtpfKhQWMxJxnW51z\n3+9Qfh1Q1WFhgSLn3KW7OpcmZRUR2SktLEDidsmVnz+RtoYGAmPHMuLOO6jP8ZAfyCfo6/6qmZ1x\nbW1Ub9rAosceYp+pR+L1eHn9qcf45Elfo3qzn00f1HHwcWMoLM3CPNuHpC0WI/LW22y44goCo0Yy\n4tpr8ZWU0BqPU19VyZa1HzJ8wiRWN0BhdpDSvBBez+6FtbWujrZIBE9WFt6cHJqicaLxNvJCPrze\nfpnFQSRTaGEBEZHUSNnCAiKplspv09OAs4CjzezN5GMmcA1wnJktB45NbouIiPRKbONG2hoaAGhZ\ntQpvvI2hWUM7TaA11dVSX7WFptrabp3fPB6KRozi+PMuYNT4SZT4Anz6a9/i1ncbuPa9dTwVbqGS\n1vYEWrymhubFi2lesgTX2Ej4wCnsfc/djPjd79pvmfT6fBSUDqdwn4M44ab/8vnrX2Lmn19kS0N0\nt98Pb14e/qFD8ebksLUhytXz3+V/Zi/i9Q+raYm37vb5RURERPYUZnaHmW02s3c6lBWZ2QIzW578\nW5gsNzP7s5mtMLO3zeyQDseck6y/3MzO6VB+qJktTh7z5+RgpLReQ3YtZUk059y/nXPmnJvinDso\n+ZjvnKtyzh3jnJvgnDvWObc1VW0QEZHMFxg1isC4cQDkHH8cnnC407pNtTU8+Zffc8v/fp3H/3gN\njbU13b6OeTx4s7MJ7bsvsZw8/v7aWl5YvoX7X1/H8spEEq+tpYWGl16ibvUqat96k7rnngOPB9+Q\nIfgKCnY4Z10kzrqaxOIHNU0xmlv6Nsn10gdV3Pvqh7y5toZz7lhETVP35kgTERERGWzKysoOLysr\nu7esrGxR8u/hfXDa2cCMj5VdDjzrnJsAPJvcBvgcMCH5+BZwEySSVcCVwOHAYcCVHRJWNwHndThu\nxgC4huyC7usQEZFBzVdSwl53zmb8wmcZftVV+Ao7/xEt2tzE6jdfB2Dt0sVEkyPYPq6quYrKpkqa\nYk073Z8T8HHdaQdSlB3giHHFTB2bmKusNRqlfthQHl/wGP96fzGeKQfQFu18dFleyMcJ+yUWqT5h\nv1JyQ307VWnIv+2/+YDPo5snREREJCOVlZVdBSwEzgDKkn8XJst7zTn3AvDxgT+zSExdRfLvSR3K\n73IJrwAFyXngTwAWOOe2OueqgQXAjOS+POfcK8lFF+/62LnSdQ3ZhZQuLCAiItIfOq4suTPReJS6\nljpclocRk/Zlw7J3CeXkEsjK2qFuRWMF5y04j7X1a/nlEb/k2L2OJezbfnRbVtDHcfsNZeonivB7\nPRRmB5LXifHkHTdSv6WSmoqNvLPoP0w746xO21WcE+Q3pxzAL2ftT6DDefrKoXsVcckJE3l7XS3f\nP3YixVl9e34RERGRdEuOOLsE6PjFzpPcvqSsrOzJ8vLyV/vwkqXOuY3J55uA0uTzkcDaDvXWJct2\nVb5uJ+XpvobsgpJoIiKS0aLxKC9vfJnLXriMYdnDuOniG4l8sJEhY/YmKz9/h/oLP1zIqtpVAFzz\n2jVMHT51hyQaQNjvI+zf/r9Rj9dLVn4B9VsqAcgdWkp9Sz3N8Wa85qU4vG11zaqGKK1tjqDfS1G2\nvy9fcrui7ADnf2YcLa2OsN+bkmuIiIiIpNn3gFAn+0LJ/Wem4sLOOWdmKV2JOVOukSl0O6eIiGS0\n+lg9v3711zTHm1lVu4p/LHuY1W+W4/F68Xh2TCztU7xP+/NJhZPwebr/e1NWXj6zLr6CQ088iWPO\n/Q6jDzuUe5bewzH3H8O5T59LZVMiubalPsrX/7aIw3/zLLe9uJLaFM5V5vV4lEATERGRTDaRznMb\nHhLzgPWliuRtkiT/bk6WrwdGd6g3Klm2q/JROylP9zVkF5REExGRjOb3+JlQsO2704TccXh9AXz+\nnY/+Gl8wnrknzuW3n/kt133mOgpDPVuoKLe4hOlnfZODTvg8MU8rN751IwAra1fyysZXAHivoo7F\n62txDq5fuILmmFbNFBEREeml94G2Tva1Acv7+HqPAh+tfnkO8I8O5WcnV9CcCtQmb5d8GjjezAqT\nk/0fDzyd3FdnZlOTK2ae/bFzpesasgu6nVNERDJafjCfX037Fa9seIXh2cModYUUnjSNUE7uTuvn\nBnKZXDyZycWTd/vaXvMyKmcU6xoSU1GMK0isIjqmKBu/14i1OsYNycbn1Yz/IiIiIr30ZxKT4u84\n2S1Ekvt7xczuA6YDJWa2jsQKmNcA88zsG8Aa4PRk9fnATGAF0AT8D4BzbquZ/QpYlKz3S+fcR4sV\n/C+JFUDDwJPJB2m+huyCJRZoGNjKyspceXl5upshIjLQ9EnmZTD1sa61ldatie8Dnvx8PIH0T5Qf\nr66hdWsVnqwsvPn5eD62WEFFYwUvrn+RSUWTGJs3lpxADpFYKxV1Ed6vqOfAUQUMzetsGg8RSaPd\n7mMHU/8qItKP+vzXw+QqnJeQmAPNQ2IEWgS4rry8/Kq+vp7suXQ7p4iIDBotq1ax8ouzWHHCDCKL\n38G1pvc2yNaGBqpuvYWVnz+RFcceR3TFih3qlGaXctrE0zig5AByAjkAhPxe9irO5rjJw5RAExER\nEdlNyUTZ0cAcEqOx5gBHK4EmfU23c4qIyKDQFo+z5ea/0lpdDcDm3/2O0TfdiHcnK2z2W5siEeqf\nWZDYaG2l/rnnCU+Zkrb2iIiIiOypysvLXyVFq3CKfEQj0UREZFDw+HxklZW1b4cPPggLBtPYIvBm\nZVH4tcR3NcvKIm/m59LaHhERERERSR2NRBMRkUEjd8YJBCeMp625mdB+++EJpfdWSE9WFgWnnELu\nccdhfj/ewm0reUabm4hHowTCWfjTnOwTEREREZHdpySaiIgMGr6CAnyHHtpn54vEIzTHm8nx5+D3\n+rusH6+pwcVieMJhvDmJ+c28eXl48/K2q9dUV8tL8+5h7Ttvc8jMWew77TMEs7P7rN19KV5Ti2tp\nwXxefEVF6W6OiIiIiMiApds5RUQk48Xb4mxu2sz6hvXURmsBqInUcPfSu/nOP7/Dsx8+S2Oscdfn\n2LqVjVdeyQcnzKDq9ttp2rq507oVK5fz9oInqd64nmdvv5FIY0Ofvp6+Eq+pofIPf2DFpz/N+u//\ngHhVVbqbJCIiIiIyYCmJJiIiKdUYa2TRpkVc+9q1LNu6jFhrrN/bsK5+HbMemcWMB2dw33v30Rhr\npCpSxfVvXM+SqiVc+sKl1LfUA7CxYSN3vXMXa+rWsLJmJVuatwAQ27SJhqefwTU1UXXTzVRv3UBl\nU+VOr+ftOKrNDPMMzP9u2xobqZk7F4Cm114jtmlTmlskIiIi0ntlZWVjy8rKppWVlY3ti/OZ2R1m\nttnM3ulQdpWZrTezN5OPmR32/djMVpjZMjM7oUP5jGTZCjO7vEP5WDN7NVk+18wCyfJgcntFcv/e\n/XkN6dzA/FYvIiIZoyZaw+2Lb6eyqZLvLfwe1dHqbh1XG61lweoF3Pb2bZ0mq3amqaWJtfVreWrV\nU2xo2EBrWyvPrX2OhlgDo3JGYRjNsWa85mXuiXM5e/LZBLwBDKOquYrvPvtdDhl2CGfNP4tZ/5jF\nJf+6hE2Nm/AVFoI/kRzzFhXRSAtLqpbscP2GlgbyR49k6qlfYeSkyXzh+5el7FbOrZGtPLDsAZ5Z\n/Qw1kZoeH2+BAL7S0sTzUAhfSUlfN1FEREQk5coSXgeWAE8AS8rKyl4vK+uwKlXvzAZm7KT8D865\ng5KP+QBmNhk4A9gvecyNZuY1My/wF+BzwGTgK8m6ANcmzzUeqAa+kSz/BlCdLP9Dsl6/XEN2TUk0\nERFJKcOYOmIqxeFirvvMdeC6d1z5pnJ++K8f8qc3/sQPnv8B1ZGuk2+x1hhV0Sq+9NiXuOSFSzj9\n8dPZ0ryFw4YdxhEjjuDqI6+mNlrLO1Xv8ODyB/ny41/moKEHcf+J91MYKqTVtQKwtn5te7KvvKKc\nWGuMxiwvez/0IDk/u5Tsu/7CL5f9mbF5Y2mojdKwNUJLJE5dtI47l97J8U98ng8nw4wfXsq4T04l\nGM7q9fvXmYaWBq597Vp+8covuPhfF/PMmmd6fA7/kCHsPXcuI6//M5947NHtFkYQERERGQySibLn\ngUOAMJCf/HsI8PzuJNKccy8AW7tZfRYwxzkXdc6tAlYAhyUfK5xzK51zLcAcYJaZGXA08EDy+DuB\nkzqc687k8weAY5L1++MasgtKoomISEq9sfkNflf+O/7+3t/59au/ps21te+Lt8UBqIvW8czqZ7j6\nlatZU7cG5xzrG9e316toqmiv25loPEpVpIqq5qr2+c1qo7XUtSQSWz+b+jMuePYC7n73bi5cSObh\nMAAAFzpJREFUeCHHjDmGoDfIs2ueZUzeGNpcG5saN/GjsovZO29vSrMSI7SmjZjGG5VvcNJTp1M/\nMp+8005hdbiRq4+6mlAkj3t++h/uvOJl1rxTRSwe4+a3bqYp3sSvX7+GD2Mb8HpTs4ZPrC3Gmro1\n7dvLq5f36jz+YaXkHXccgdGj8QQCfdU8ERERkf7yV6CzYf/ZwM0puOYFZvZ28nbPj36FHAms7VBn\nXbKss/JioMY5F/9Y+XbnSu6vTdbvj2vILiiJJiIiuyXempi0v6KxgqZY0w77P5pTDKA6Uk20LUp1\npJrl1cv52Us/45lVz7C6bjUX/+ti5iybwzlPnkNVpIoZe8/gsGGHMTJnJL858jcUBAs6bUNDSwNP\nrHqCh1c8jN/j56iRRwFwwl4nUN9Sz5OrnqSiqYKG2LYJ/p1z3Hr8rXz34O+2J9vOefIcxgeKGbZl\nFffMuIvHTnqMUyecyjWvXkNVpIrXK14nP5jPoaWHMiQ8hMVPbaQ11gYO3vrnWjwxP0PCQwDwmY+S\ncOpuj8wL5PHzT/2c4dnDmVQ4iXP3Pzdl1xIREREZiJJzn+3bRbXJfTVHWtJNwDjgIGAj8Ls+PLcM\ncKn5eVxERPYYH9R+wNlPnk2kNcK1R13L0WOOJuDdNqLpxE+cyGsbX2ND4wYuPvRirlt0HRcefCFX\n/PsKllUv463Kt7j0k5e2169rqSMaj/Kn//6Jb0/5NqNzR1MSLsHfcbL+j2mINXDly1fiNS9j88Zy\n6Scv5SeH/4SGWAMNLQ0EvUFeWv8SVx95Nbctvo0jRhxB3MU596lzKQgWcOMxNxLyhRidN5q2ljoK\n7/sKkaMu5r/7HMODyx+kPlZP0Btkv+L9qI5Uc8MbN+D3+Dn94HNZ9p/EZPxjDy4hJyuLe2bew6sb\nX+WAIQdQFCpK2fvu9XiZVDiJe2fei8c8FIf1w6GIiIjscUYALSRu3+xMS7Leqr64oHOu4qPnZnYr\n8Hhycz0wukPVUckyOimvAgrMzJccCdax/kfnWmdmPhK3qFb10zVkF5REExGRXnPOMee9OTTFEyPQ\nbn/ndg4ffvh2SbTicDE/nfpTyivKuWPJHSzatIhJhZMYkzeGZdXLWFe/jvEF4zl1wqks3rKYiw65\niIUfLuTMyWfyduXbFAQLukwQecxD2BemOd7MpS9cyn0n3sd5T5/HqRNP5VtTvsWTpzyJmYFLzNG2\nf8n+nPzoyUBi4YNl1cvI8mdxw9E3sLZqGSVH/5SY18f97z/A1/b9GmdNPovS7FJKwiXMXzWfee/P\nA2D4lJGc+atTcHEI5wXwB3yMCIzg5Aknp+gd357X42VI1pB+uVZ31ERqaIg1EPAGKA4V4/V4090k\nERERyWwbgK7mowgk6/UJMxvunNuY3DwZ+GjlzkeBv5vZ70kk7SYArwEGTDCzsSQSV2cAX3XOOTN7\nDjiNxBxm5wD/6HCuc4D/JPcvTNZP+TX66n3KVEqiiYhIr5kZnx3zWR5YnpirdNrIaYR8oR3q5QZy\nWV69nEWbFuEzH9NHT+codxSbmzZTVlpGjj+HSz55CdF4FICiUBHn//N8aqO1hLwhHj/l8fY5yppi\nTSytWsozq59h1vhZjMgeQX4gn7s/dzcPr3iYo0cfTWGwkL/N+BulWaXkBnLJDeQCsL5hPT/+94+5\n6lNXccTwI3hh/QvkBfLYp2gfCoOFjMwdycickXhHfIrceISL4vVc/K8fke3L5ppPX0OWP2u7BOGD\na+7nxH1mahQYiXntbnjzBuYum0teII+5J85lVO6odDdLREREMlh5efmqsrKyd0ksItCZpeXl5b0a\nhWZm9wHTgRIzWwdcCUw3s4NILJe1Gvg2gHNuiZnNA5YCceC7ziVWrTKzC4CnAS9wh3PuoyXeLwPm\nmNn/AW8AtyfLbwfuNrMVJBY2OKO/riG7ZoMh0VhWVubKy8vT3QwRkYGmT1bP2d0+tr6lnqrmKprj\nzQzPHk5BaOdzl9VEaqiJ1hDyhcgP5uP3+GmINRDyhnZIvK2uXc0XHvlC+/YDX3iASUWTANjYsJEZ\nD82gzbUR9Aa563N30dLawn7F++3ylk9IzMl29StX8/KGl/n99N8zNGsoYV8Yv8dPUbgIj+04VWhV\ncxVm1n5rZnWkmjnL5vBBzQdcdMhFjM4dvcMxe6LKpkqOf/D49gUgrvrUVZw68dQ0t0pkt+x2H6vv\nsCIiO9WnK0B2WJ1zZ4sLNALTy9UZSx/RSDQREdktHUd67UpBqGCHBFtniwXkBfOYufdM5q+ez+HD\nDm+frB8g0hppX+Ez2holEo9w4cILeWTWI13e2lgYKuSKqVcQbY0S8Aa6NWfZx0eZFYYK+fYB3ybu\n4tuNStvT+T1+po+azj8//CdBb5BDSnf1g7CIiIhI3ygvLy8vKyubTmIVzskk5kALkBitdb4SaNKX\nNBJNRGTwGhAj0VKlJlJDS1sLfo+fwlBhe3lttJa7l97NgjUL+MK4L9Dm2rj//fu57/P3pXQ1TOna\n1shWqpqryAvkURAqIOgNprtJIrtDI9FERFKjT0eidZRchXMEsKG3t3CK7IpGoomIyIDU2W2h+cF8\nzt3/XE6beBpbm6oIx3ycPnIW2b689jo1kRoa440EPIHtR6c118DWlVC/EUYfBtk9m5S/vqWemkgN\n0bYoJaGSTts4mMS3bqX28cehtY38L34RX3HvVxQtChWldEVSERERkV1JJs6UPJOUURJNREQGnSx/\nFln+LDxbmph75eW0tbZy6hW/ZOTEfamL1fP713/PwysepjSrlHtn3ktpdmJRAtYtgntPA6Bt8knE\nZl5HMGdot6+7aNMiLnruIgC+d/D3OHvy2QR9fT/aqrY5RjTWitdjFOekbjRXWyzGlr/eQvWddwLQ\n8uEaSi+/HE9QI8hERERERD5uxxmURUREBoHWWIxXH5pHS3MT8ZYoL8+7l5bmZqKtUR5e8TAAFU0V\nLK1a2n6MW7fttirPxrfYWLuaSDzSrevF2+IsWLOgffu5tc/RHG/uo1ezTW1TjBufW8Fhv36Wb9y5\niC310T6/Rrt4nPj69e2bsfUbcLFY6q4nIiIiIjKIKYkmIiKDksfnY8z+B7Zvj9p3f7yBAD6Pj7LS\nMgDCvjATiyZuO+jgM6FgL/AFqfvsj3liw0vdTqL5PD6+us9XCXqDeMzD2ZPPJtu/s0Wgdk9TLM5f\nX1gJwJtra1lR2dDn1/iIJxxm6GWXEtxnH4ITJzLsJz/Bm5OTsuuJiIiIiAxmup1TREQGldbWOPFo\nFF8wxMRPHcnQsZ+gNRaneNRofH4/Rf4ifvuZ37K5aTPF4WIKg9sWJbCCMTSe8yibGjYwZ818pu11\nLDn+7ieNJhZNZP4p8/HgISeQg9/r7/PX5/N42Ks4izVVTQS8HkYVhvv8Gh0FRo9mzO23gXP4SrQw\ng4iIiIhIZ5REExGRQSPa2MjyRf9h6QsLOfC4mYw96BCGj5+0Q73icDHF4eKdnsOfN4LcYBbfLLqQ\nvEAePm/3/ysMeoMMbTPYvCQxv9oBpyVGtlnfLTI1JDfIvG9/irfW1jBpWC4lKZwT7SO+4p2/VyIi\nIiIiso2SaCIiMmhEGut5+qY/ArB26WLOu+F2AuGsHp0j4A0wNFgE5gFPD2c1aKyEynfhri8mtl+9\nGc7/N+QO69l5ulCaF+L4/fr2nCIiIiIisnuURBMRkUHDzJMY9eUcZpbY7qm69bDwasgdDlO/A9nd\nvIUx1gzlsyGraFtZYyW0xXveBhERERERGXSURBMRkUEjlJPDrB9dwdIXnmPKsTMIZvdwEvymrfDg\nN2HNy4ntYA4c+YPuHRtrhg+ehWOvhNGHwYY3E8d6U3+7pYiIiIiIpJ+SaCIiMmgEwlmML5vK3lMO\nwRcI9PwErjWRDPtIpL77x4YK4OCvwbxz4Jifw/SfQLgAcob0vB0iIiIiIjLo9OI+GBERkfTqVQIN\nIHsInHIb7HUETJ4FU7/d/WM9Hpg0E07+K2x8G+cL0hwYwsr/LqKxtqZ37RERERERkUFDI9FERGTP\nUjIezvg7eHwQzO3ZsVlFMO6zMO6zVK5eyd3fPR+AvQ88hJkX/ohwbh4AkXiEoDeI9eGqnSIiIiIi\nkl4aiSYiInuecGHPE2gfs2HZu+3PK1auoDUeJxqP8sbmN7jsxct4ZMUj1EXrdrelIiIiIiIyQGgk\nmoiISFJjTTUtzU34Q2EqPbXc8+49TB81nYOGHkRuYPuk27iywyl/4mHqNm/m02eeSzCcRXVLLd98\n+pu0tLWw8MOFTBkyhbxgXppejYiIiIiI9CUl0dIg0hijNdaGx2uEc3s5r4+IiPSpxppqHvz1z6lc\ns4qC0uEc8aMLmLdsHvOWzeOxkx7bIYmWW1zCV355Hc45AuEw/lAI11hLm2trrxNvi/f3yxARERER\nkRRREq2fRRpjvPbYKhY/v44hY3I58YIDycpTIk1EJN1i0QiVa1YBUFOxEW+Lw2Me2lwbjfHGnR6T\nXVC43XZeMI8bjrmBv73zN44adRTDsoelvN0iIiIiItI/lETrZ/GWVhY/vw6Ayg/rqd3cpCSaiMgA\n4A+FGTp2HJtXfUDh8BEU5JcwvmA800ZMY2T2yG6dI+wLM3X4VKYMmULIF8Lv8ae41SIiIiIi0l+U\nROtnHq+RPzRM7eZmvH4POUWhdDdJRESA7PwCTrn8KloizQRCYfy52dx6/K2EvCGy/FndPo/X493h\n1k8RERERERn8lETrZ1l5QU6++BC2rG2gcFgW4VyNUhARGSiyCwrJZtstmkXeojS2RkREREREBhIl\n0dIgOz9Idn4w3c0QEREREREREZFu8qS7ASIiIiIiIiIiIgOdkmgiIiIiIiIiIiJdUBJNRERERERE\nRESkC0qiiYiIiIiIiIiIdEFJNBERERERERERkS4oiSYiIiIiIiIiItIFJdFERERERERERES6oCSa\niIiIiIiIiIhIF3zpboCIiIjsWmNNNc45AuEwgVA43c0REREREdkjaSSaiIjIAFZftYX7fn4Jt373\nf/hg0SvEotF0N0lEREREZI+kJJqIiMgA9v6rL1FbsYm21laev/t2Wpoa090kEREREZE9UlqSaGY2\nw8yWmdkKM7s8HW0QEREZDIaNm9D+vPQT4/H4/GlsjYiIiIjInqvf50QzMy/wF+A4YB2wyMwedc4t\n7e+2iIiIDHQlo/fi7P93PbWVmxkxYRLh3Nx0N0lEREREZI+UjoUFDgNWOOdWApjZHGAWoCSaiIjI\nxwSzshmy11iG7DU23U0REREREdmjpeN2zpHA2g7b65Jl2zGzb5lZuZmVV1ZW9lvjRET2BOpjRURS\nQ/2riIhI5hqwCws4525xzpU558qGDBmS7uaIiGQU9bEiIqmh/lVERCRzpSOJth4Y3WF7VLJMRERE\nRERERERkQEpHEm0RMMHMxppZADgDeDQN7RAREREREREREemWfl9YwDkXN7MLgKcBL3CHc25Jf7dD\nRERERERERESku9KxOifOufnA/HRcW0REREREREREpKcG7MICIiIiIiIiIiIiA4WSaCIiIiIiIiIi\nIl1QEk1ERERERERERKQLSqKJiIiIiIiIiIh0QUk0ERERERERERGRLphzLt1t6JKZVQJrulE1H6jt\nxSV6clx36+6qXm/27ay8BNjSjbb0h96+96k4p+K5+xTPnu1LVzy3OOdm7O5JutnH7s6/ib6OYVd1\nBlMMu6uvP5OKZ3opnj3bN2j72H74DtvTY/e0GHaXPpM926d4pubYPSmeffIdViQtnHMZ8wBuSfVx\n3a27q3q92bezcqA83e/57r73iqfiqXgOjsfu/Jvo6xh2VScTY9jXn0nFU/FUPAfWQzEcvO+/4ql4\nKp566LFnPTLtds7H+uG47tbdVb3e7Ovta+svqWif4pk+imfP9g30ePaF3XmNfR3DrupkYgz7un2K\nZ3opnj3bN9Dj2RcUw/TSZ7Jn+xTP1ByreIoMAoPidk7ZOTMrd86Vpbsd0jcUz8yieA5+imFmUTwz\ni+I5+CmGmUXxzCyKp0jnMm0k2p7mlnQ3QPqU4plZFM/BTzHMLIpnZlE8Bz/FMLMonplF8RTphEai\niYiIiIiIiIiIdEEj0URERERERERERLqgJJqIiIiIiIiIiEgXlEQTERERERERERHpgpJoGcTM9jWz\nm83sATP7TrrbI7vPzLLNrNzMTkx3W2T3mNl0M3sx+Rmdnu72SM+pj8086mMzh/rYwU39a+ZR/5pZ\n1MeKbKMk2gBnZneY2WYze+dj5TPMbJmZrTCzywGcc+86584HTgempaO9sms9iWfSZcC8/m2ldFcP\n4+mABiAErOvvtsrOqY/NLOpjM4v62MFN/WtmUf+aedTHivSOkmgD32xgRscCM/MCfwE+B0wGvmJm\nk5P7vgg8Aczv32ZKN82mm/E0s+OApcDm/m6kdNtsuv/5fNE59zkSXyp/0c/tlM7NRn1sJpmN+thM\nMhv1sYPZbNS/ZpLZqH/NNLNRHyvSY0qiDXDOuReArR8rPgxY4Zxb6ZxrAeYAs5L1H012cGf2b0ul\nO3oYz+nAVOCrwHlmps/rANOTeDrn2pL7q4FgPzZTdkF9bGZRH5tZ1McObupfM4v618yjPlakd3zp\nboD0ykhgbYftdcDhyfvTTyHRselXvMFjp/F0zl0AYGZfB7Z0+M9LBrbOPp+nACcABcAN6WiYdJv6\n2MyiPjazqI8d3NS/Zhb1r5lHfaxIF5REyyDOueeB59PcDOljzrnZ6W6D7D7n3EPAQ+luh/Se+tjM\npD42M6iPHdzUv2Ym9a+ZQ32syDYaWjs4rQdGd9gelSyTwUnxzCyK5+CnGGYWxTOzKJ6Dm+KXWRTP\nzKOYinRBSbTBaREwwczGmlkAOAN4NM1tkt5TPDOL4jn4KYaZRfHMLIrn4Kb4ZRbFM/MopiJdUBJt\ngDOz+4D/AJPMbJ2ZfcM5FwcuAJ4G3gXmOeeWpLOd0j2KZ2ZRPAc/xTCzKJ6ZRfEc3BS/zKJ4Zh7F\nVKR3zDmX7jaIiIiIiIiIiIgMaBqJJiIiIiIiIiIi0gUl0URERERERERERLqgJJqIiIiIiIiIiEgX\nlEQTERERERERERHpgpJoIiIiIiIiIiIiXVASTUREREREREREpAtKoskew8xeTncbREQylfpYEZHU\nUR8rIjIwmHMu3W0QEREREREREREZ0DQSTfYYZtaQ/DvdzJ43swfM7D0zu9fMLLnvk2b2spm9ZWav\nmVmumYXM7G9mttjM3jCzzybrft3MHjGzBWa22swuMLMfJuu8YmZFyXrjzOwpM3vdzF40s33S9y6I\niKSG+lgRkdRRHysiMjD40t0AkTQ5GNgP2AC8BEwzs9eAucCXnXOLzCwPaAYuApxz7oDkF4dnzGxi\n8jz7J88VAlYAlznnDjazPwBnA38EbgHOd84tN7PDgRuBo/vtlYqI9D/1sSIiqaM+VkQkTZREkz3V\na865dQBm9iawN1ALbHTOLQJwztUl9x8JXJ8se8/M1gAfffl4zjlXD9SbWS3wWLJ8MTDFzHKAI4D7\nkz8SAgRT/NpERNJNfayISOqojxURSRMl0WRPFe3wvJXefxY6nqetw3Zb8pweoMY5d1Avzy8iMhip\njxURSR31sSIiaaI50US2WQYMN7NPAiTnkfABLwJnJssmAmOSdbuU/BVwlZl9KXm8mdmBqWi8iMgA\npz5WRCR11MeKiPQDJdFEkpxzLcCXgevN7C1gAYk5Im4EPGa2mMRcE193zkU7P9MOzgS+kTznEmBW\n37ZcRGTgUx8rIpI66mNFRPqHOefS3QYREREREREREZEBTSPRREREREREREREuqAkmoiIiIiIiIiI\nSBeURBMREREREREREemCkmgiIiIiIiIiIiJdUBJNRERERERERESkC0qiiYiIiIiIiIiIdEFJNBER\nERERERERkS4oiSYiIiIiIiIiItKF/w+tFVXXduBccQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3737,17 +3743,17 @@ "metadata": { "id": "b9-orbM-rWpG", "colab_type": "code", + "outputId": "77e2226e-1401-45b9-b589-940d20acb36f", "colab": { "base_uri": "https://localhost:8080/", "height": 101 - }, - "outputId": "d330b562-85f5-4bdc-e63f-b503d65b78de" + } }, "cell_type": "code", "source": [ "centuries.groupby('year').country.count()" ], - "execution_count": 92, + "execution_count": 42, "outputs": [ { "output_type": "execute_result", @@ -3763,7 +3769,7 @@ "metadata": { "tags": [] }, - "execution_count": 92 + "execution_count": 42 } ] }, @@ -3771,18 +3777,18 @@ "metadata": { "id": "NRJlh_TErjpT", "colab_type": "code", + "outputId": "132e40b1-f40c-4dc6-f98b-36ccf8e8eca5", "colab": { "base_uri": "https://localhost:8080/", "height": 84 - }, - "outputId": "0c5a0bb5-5855-49a1-8a3b-6cd2076f84b6" + } }, "cell_type": "code", "source": [ "years_per_country = centuries.groupby('country').year.count()\n", "years_per_country[years_per_country < 3]" ], - "execution_count": 94, + "execution_count": 43, "outputs": [ { "output_type": "execute_result", @@ -3797,7 +3803,7 @@ "metadata": { "tags": [] }, - "execution_count": 94 + "execution_count": 43 } ] }, @@ -3805,11 +3811,11 @@ "metadata": { "id": "T4YRATMhsEeQ", "colab_type": "code", + "outputId": "2ed4fb11-a2ab-4588-a8d5-9d710dd2bf8f", "colab": { "base_uri": "https://localhost:8080/", "height": 393 - }, - "outputId": "e7cd65d2-c725-4b6a-8cbf-2a70aa97d0af" + } }, "cell_type": "code", "source": [ @@ -3823,14 +3829,14 @@ "plt.xscale('log')\n", "plt.xlim(150, 1500000);" ], - "execution_count": 97, + "execution_count": 44, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACQ0AAAFkCAYAAACAKo/fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVNX9x/H3mV52dne277L0Ik0Q\nUAG7YhQTu0aJBbsmaixJTNOYGEv8WWJLjBpNTNRYYo3RYI8FjVIEkd5hYWHZPjM7fe7vjxlXVkBA\n2sJ+Xs/D48y955x77jyP370757vfYyzLQkREREREREREREREREREREREug7brp6AiIiIiIiIiIiI\niIiIiIiIiIjsXEoaEhERERERERERERERERERERHpYpQ0JCIiIiIiIiIiIiIiIiIiIiLSxShpSERE\nRERERERERERERERERESki1HSkIiIiIiIiIiIiIiIiIiIiIhIF6OkIRERERERERERERERERERERGR\nLkZJQyI7gDFmkjGm2Rjz768cP8IYM90Y87kx5m/GGEfu+EBjzEfGmLgx5idf6XO1MWZ2rs+TxhjP\nzrwXEZHdyTeIvycYYz4zxswwxkw1xhy0Xp/bcvF3rjHmXmOM2dn3IyKyO/gGsfcwY0xLLvbOMMZc\nv14fPfuKiGyBbxB7r1kv7n5ujEkbY4py5xR7RUS2wDeIvUFjzAu57x0+McYMXa+PYq+IyGYYY/bJ\nrZ3NzsXS09c719sY87ExZpEx5mljjCt3/JBcTE4ZY079ynj6vldEZCOUNCSyEcYY+zYOcTtw9lfG\ntAF/AyZYljUUWA6ckzvdCFwB3PGVPt1yx/fN9bEDE7ZxbiIindYuiL9vAcMty9oHOB94ONfnAOBA\nYBgwFNgPOHQb5yYi0intgtgL8L5lWfvk/v0210fPviLSZezs2GtZ1u1fxF3gF8C7lmU1KvaKSFey\nC557fwnMsCxrGDARuCfXR7FXRLqMbYy9bcBEy7KGAOOBu40xhblz/wfcZVlWP6AJuCB3fAVwLvCP\nr8xD3/eKiGyCkoZkt2aM+a0x5qr13t9sjLky9/oaY8yUXPbxDeu1edEYMy2XTXzxesfDxpg7jTEz\ngbHbMi/Lst4CQl85XAwkLMtakHv/BnBKrn2dZVlTgORGhnMA3txfqPiA1dsyNxGR7WEPir9hy7Ks\n3HE/8MVrC/AALsANOIG12zI3EZFttafE3s3Qs6+IdCp7aOz9HvDkeu8Ve0WkU9mDYu9g4O1c33lA\nL2NMee6cYq+IdCqdMfZalrXAsqyFudergTqgNFch6Ajg2VzTvwEn5totsyzrMyDz1eHQ970iIhul\npCHZ3f2F7F9pfPFXHROAx40xRwH9gf2BfYBRxphDcn3OtyxrFLAvcIUxpjh33A98bFnWcMuyPlj/\nIqZjGe/1/927FXOtBxzGmH1z708Fun9dB8uyVpGtPrQCqAVaLMt6fSuuKSKyo+wx8dcYc5IxZh7w\nCtlqQ1iW9RHwDtnYWwu8ZlnW3K24pojIjrDHxF5grDFmpjHmP8aYIaBnXxHptPak2Isxxkf2r7Sf\nA8VeEem09pTYOxM4OXet/YGeQLVir4h0Up069ubiqAtYTDZhs9myrFTudA3Q7ev66/teEZFNc+zq\nCYhsC8uylhljGowxI4By4FPLshpyDzFHAZ/mmuaRfah5j+yDy0m5491zxxuANLkvzTZyndvJlp/d\nlrlaxpgJwF3GGDfweu6am2SMCQInAL2BZuCfxpizLMt6fFvmIiKyrfak+GtZ1gvAC7lfdm8EjjTG\n9AMGAdW5Zm8YYw62LOv9bZmLiMi22INi73Sgp2VZYWPMt4EXgf569hWRzmgPir1fOA6YbFlWI+h7\nBxHpnPag2HsrcI8xZgYwKzfvtGKviHRGnTn2GmMqgceAcyzLymQLDW0dfd8rIrJpShqSPcHDZPcn\nrSCbCQ1ggN9ZlvXg+g2NMYcBRwJjLctqM8b8l2w5QoCYZVkbTeIxxlwDnLmRU+9ZlnXFlk40l8l8\ncG7Mo4ABm+lyJLDUsqx1uT7PAwcA+gVSRDqDPSr+Wpb1njGmjzGmBDgJ+J9lWeFcn/+QLaWrXyJF\nZFfb7WOvZVmt67V51Rhzfy72Ho6efUWkc9rtY+96JtBxazJ97yAindVuH3tzz73n5Y4bYCmwBDga\nxV4R6Zw6Xew1xuSTrRB/rWVZ/8sdbgAKjTGOXLWhamDVZu5N3/eKiGyCtieTPcELZEtr7we8ljv2\nGnC+MSYPwBjTzRhTBhQATbkHmIHAmC25gGVZt1uWtc9G/m3xL4+5eZTl/usGfgY8sJkuK4Axxhhf\n7hfLcYDKJYpIZ7Hbx19jTL9cfMUYM5LsftYNZOPvocYYhzHGCRyK4q+IdA57QuytWC/27k/299Iv\nYq+efUWkM9rtY2/uWAHZ59qX1uui2CsindVuH3uNMYXGGFeu2YVkF8RbUewVkc6rU8XeXAx9Afi7\nZVnPrjeGRXarsVNzh86h4zPuxuj7XhGRTVClIdntWZaVMMa8Q3b/0nTu2OvGmEHAR7n1iDBwFjAJ\n+L4xZi4wH/jfJobdJsaY94GBQJ4xpga4wLKs14BrjDHHkl0Y+ZNlWW/n2lcAU4F8IGOMuQoYbFnW\nx8aYZ8lu4ZAiW/7xoR0xZxGRrbUnxF/gFGCiMSYJRIHTc6XFnwWOIFs+3AImWZb18o6Ys4jI1thD\nYu+pwA+MMSmysXdC7gs/PfuKSKe0h8ReyP519euWZUXWuzfFXhHplPaQ2DsI+JsxxgJmAxfk7kOx\nV0Q6pU4Ye08DDgGKjTHn5o6da1nWDLJJmk8ZY24iG0cfATDG7Ec20SgIHGeMucGyrCGAvu8VEdkE\nk/1uVmT3ZYyxkf0F67uWZS3c1fMREekqFH9FRHY+xV4RkZ1PsVdEZOdT7BUR2fkUe0VEuiZtTya7\nNWPMYGAR8JYeYEREdh7FXxGRnU+xV0Rk51PsFRHZ+RR7RUR2PsVeEZGuS5WGRERERERERERERERE\nRERERES6GFUaEhERERERERERERERERERERHpYpQ0JCIiIiIiIiIiIiIiIiIiIiLSxShpSERERERE\nRERERERERERERESki3Hs6glsifHjx1uTJk3a1dMQEdldmO0xiGKviMhWUewVEdn5FHtFRHaNbY6/\nir0iIltNsVdEZOfbLt87iHR2u0Wlofr6+l09BRGRLkexV0Rk51PsFRHZ+RR7RUR2PsVeEZGdT7FX\nRERENma3SBoSEREREREREREREREREREREZHtR0lDIiIiIiIiIiIiIiIiIiIiIiJdjJKGRERERERE\nRERERERERERERES6GCUNiYiIiIiIiIiIiIiIiIiIiIh0MUoaEhERERERERERERERERERERHpYpQ0\nJCIiIiIiIiIiIiIiIiIiIiLSxShpSERERERERERERERERERERESki1HSkIiIiIiIiIiIiIiIiIiI\niIhIF6OkIRERERERERERERERERERERGRLkZJQyIiIiIiIiIiIiIiIiIiIiIiXYxjV09ARERERERE\nRERERERERERkV0glEsQjYbDZ8BcU7urpiIjsVEoaEhERERERERERERERERGRLicRj7Hs06m88+if\n8RUUcPyPf0lBWcUOvWakuYlENIrL58VfENyh1xIR2RxtTyYiIiIiIiIiIiIiIiIiIl1OPBzm3/fc\nRripgbplS3jtgXuJhcOb7RcNh6hfuZz6FcuIhUNbfL1IcxNPXf9T/nLVxTx38/VEmpu2ZfoiIttM\nlYZERERERERERERERERERKRLsJJJMtEoxuvFsjJYmUz7uVQigWVlvqY3ZNJp5n/4Hm898icADj/3\nYoaPG4/d5drstaOhVprX1gKwbvlSkvFYh2vbHA5sNtX9EJGdRxFHRERERERERERERERERET2eOlQ\niNZJk6i5/HKan3wSp93BQd87B4zB48/jWxddhicv8LVjJBNxFk/9uP39kulTSLS2btH1vYEA+aVl\nABR374nT7cHKZGioWcmrf7iTKf96jmhoy8YSEdkeVGlIRERERERERERERERERET2eOmWFuofeJDC\n734XLDCNTQwfN57BBx2KMTZ8wSDGGFLJBI2ralg+awb99x2Dv7gEZ66SkMvtYdS3T2TF5zMBGHHw\nEZhIBEpKNnt9f2ERZ9x0B/G2Ntw+P/7CIJHmJv5507VEmhpZ+PFkSnv2os+I/Xbo5yAi8gVVGhIR\nERERERERERERERERkT2albFI+oJ0u+8+Qq9NouXVVzEWpOfMpW7ieTT9+gYyjU0AREMh3nn0IQYO\n2htnzSqS8+aRamkBwNhsVPbsxbk33M45v7gR/+x5OPx+AFL19STXrSMTj29yHv7CIoqqqvEXBrPz\nwiKTTrefzyRTO+ojEBHZgJKGRERERERERERERERERERkj9baEGXFtBrWXHcd0U9nEJs5k9U//znx\nRYtILFlC+M03aXrqaSLxFMsihu9ccjVmdS2rf/xj1lx3Hemmpvax3MEiAsUlBEpKKTntNBwlJSRW\nrWLZhO+x+OjxtE2ZQiaZ3KJ5+QIFnPqLG+g5bAT7jj+O0rx8UutdS0RkR1LSkIiIiIiIiIiIiIiI\niIiI7NHmfLCadDIDgLt/f0ofeoCi227FfdCBVNzwG+wlJVjxOJmmRi55/FPaIjHqbr+DVN064gsW\n0vjoo6Sj0fbxHEVFOCsrcRQXA9D0xD9I1tRgtbWx9qabyeQqE22OzW6nwOXhgIIy+i2vZfXp3yMT\nDm//D0BEZCMcu3oCIiIiIiIiIiIiIiIiIiLSddWH41gWlOS5MMZ8ozEyySQ2p3OT56v6B5n83EK+\n86sbyThSPHfv/xFqaODocy+mqLGJHg//mUw0StODD3DIkONZFslQWV1NfOFCAJyVlaQbG7F367bR\n8T17D21/7erfH+NybfHcbS4XrX95FKutDVtBAcbt3uK+IiLbQklDIiIiIiIiIiIiIiIiO1i6pYXE\n6tVkwmHc/frhCAZ39ZRERDqF5Q0RLv77NNKWxUNnj6JPad5W9U+1tBB+620iH06m5NJLMXY7ra+9\nhn///XH174+VTGIlk1RWu/nWeUNI2WHRJ/+hpW4tAO899ySnnHo2sXnz8ew9FP9BB/H9flW4PptK\n6a+vp3noEOyFhTiKiojPX4BrE0lDvn33pdt995FaU4tn2DCsLdyeDMAeDNLnxReIfjoD76iR7dWL\nRER2NG1PJiIiIiIiIiIiIiIisoOFJ09m2Ukns+LsiTQ8+CCZ9ba4ERHpqqLJNLe8Oo/5a0Msqgtz\nw8tzCMe2PNkGILliBbW//CWt/36FdEMDy06fwLrf38WyM84kEwpRe+21LDn2OEIvvkChL0FxtwDl\nffu39y/r0Zv02jocJcWs/MGluEpL8L3yHMHu3Yh88gmOykpCr71O4xP/wDt82CbnYcXjrPv9nbS8\n+CLLzzqbVF3dFt+DzenE1aMHBSccj6u6GmO3b9Amk7G26nMREdkSqjQkIiIiIiIiIiIiIiKyA1mW\nReSj/wFg8/uw77cfodYW7LEovvwCbBtZHBYR2dPEoyky6Qwev7N9CzKHzdCzyNfepkeRD4d983Uv\nmtsSTF/RTEM4xvhU5MsTxka6uTk7dkkx8SVLCL/1NgB1t96Kb9RIDBZFld04+Rc3kIiEqajuiW1d\nPfFZs0itWEHolVdx9etL6K03aXjkLxRfdCEll1+Oq0ePr60AZHO7sdIZYrPnYCsowL6dqgVZlkXL\nuijTJy2nvHc+fUeW4fFvehs2EZGtsUOThowxVwMXAhYwCzgPqASeAoqBacDZlmUlduQ8RERERERE\nREREREREdhVjDMXnnEPo9dcpvum3fDTzExY8dBduv58JN9xGSfeeu3qKIiI7RDpj0RCOk0pniNZF\nmfmvZRxyxl4UV/oxNoPTbuP7h/Whe5GXdMbiuOFVeJybT6T8cHEDlz4xHYCBE4dSOnEibVOmYHxe\nSn/0IxoefhjvfvvjrKwCmw0yGRxlZaRbW4l+OgPfKScRaqhn6YyptPRbx159BlB32+0A+EaPBqcD\nKxaDTIaGBx+ibeo0qv9w39fOyVFaSq8nHidRU4OzW7fttsVYtDXBS3d9SrgpztwPa8kv8dJ9UNF2\nGVtEZIclDRljugFXAIMty4oaY54BJgDfBu6yLOspY8wDwAXAn3bUPERERERERERERERERHY1V+9e\ndH/l30RjbSx4+F4A4pEIHzz1d75zxTU43Z5dO0ERkR1gaX2Ek/80mdZoil8c1YcTz+jBG4/M5oSr\n9sGX7wagyO/m7LG9tmrcubWt7a/Pf2EBb116GSXfT2ELBHD17EnhSSeCy4VxOOj19NNEPvwQ3+j9\nWfvbGym57FI8/jwGHXgofUftj8Plwh5po9t99+Lq3gN7QT5Y4OnXD5vPR2LVaoITTscRDG52Xo7S\nUtJ5QWJtKTKNCTx+B27ftlUFsoBENNX+fv3XIiLbakdvT+YAvMaYJOADaoEjgDNy5/8G/AYlDYmI\niIiIiIiIiIiIyB4sEY/x2Xtv0Wv4SDCGwrIKAiWlFJRXYLNpezIR2TP9/aNltOaSXO5+ZzknDvTR\na1hx+/Zk39SE/XowbXkT/Yq9/HRMObZVK7DKyzEOBzanE/z+9rbevYfirO5G6M03KfnhD/GO2AcA\np8eD05NL2PT5yT/yyA2uU3jKKVs9t9ULm3j1T7PAgkO/N4BBB1Zhd2x+y7VN8fgdHHv5cD7450JK\nuweo6l/4jccSEfmqHZY0ZFnWKmPMHcAKIAq8TnY7smbLsr5If6wBum2svzHmYuBigB49euyoaYqI\nyHoUe0VEdj7FXhGRnU+xV0Rk51PsFYFkPM6KWTMZNHJ/zrj2JjyRNhKfzaLwsKOxOTa/XJNubqZt\n+nTii5dQcPxxOMvLd8KsZXem2Cudwf69gvz9o+UADK0K4Ig2ss+4wXgDri3qb1kW60Jx1oXjlAbc\nlAWyST55bgdXH9mfvWxRVp14ApnW1uz2YM89i7OsbKNjufv3xxYIwDYmLDW3JWiNpUikMgR9Torz\n3O3nUsk08/+3JlseCFjwyVr67Vu+TUlDdoed8t75HHv5cBwuG073jq4LIiJdyTePTpthjAkCJwC9\ngSrAD4zf0v6WZT1kWda+lmXtW1pauoNmKSIi61PsFRHZ+RR7RUR2PsVeEZGdT7FXuqJMPE5q3TpS\n69ZhpdPYHQ6OPO0s6s6/kEJjZ815F9D4+7tY/r0zSNXVbdA/lUgQbmok0tyElckQ/ewzai69jHV3\n3knNpZeSamzcBXcluxPFXukMDupfytMX7sfvj+/N/SdUU1TeDW/AvfmOOetCcU7442S+c+8HnPTH\nD6lrjQEwa1ULv3ppNg2fTCXTmt2qLLVuHYllyzYYI93WxrpZc5hLgEkrozRG09/4fprbEtzx2nwO\nue0djvz9u5z71ynUh+Lt5x1OO0MO7oaxZROTBh9chdO97dXkbHYb3oBLCUMist3tyKhyJLDUsqx1\nAMaY54EDgUJjjCNXbagaWLUD5yAiIiIiIiIiIiIiIrJTZZJJ2qZOpeayy7F5PPT426N499oLe34B\nDakUiRUrwMqWoUg3NJBubsa43TgKs1vOpNMpaubN5qXbbsTl83HGLXdBYSF5Rx9F+LXXSa5ajZX+\n5oveItL11IfirG6JUp7vodjvwmHfYbUlOij0uRjdrwyq3SRSFusyHmiNUbSFcwjFUtS2ZBOFVjVH\nCcdTlAFza1tZ2xrDPW4QMbsd0mmM242re/cNxrASCRYHKjnrqbkAHLQgxL1njKAoz7PV9xOOp3j8\n4xXt72etamFGTTNHDvqy+ltFnwIm3jwWKwMun2ObqgyJiOxoOzJCrQDGGGN8Jrsp5ThgDvAOcGqu\nzTnASztwDiIiIiIiIiIiIvI1rFSK5BeVMDKZXT0dEZHdUrq1lVRTU/v7TEsLa357I1YsRrq5mbo7\n7iQdDmPPz6fo/PNwduuG/5BDsPl9FF9yCeF33yXV3NLePx6J8P4/HiWVTDDsyPEsnzGNSc//g+bx\nR1L0859R+X+3Ys/PByDV0EBs/nySdXVKJBKRjaoPxZn4l084/g+TOfLOd1kXjm++01aOv7Y1RiSe\n2mSbNpufF+a2Mvp3bzHuzndZWBfeaDsrl1D5hXyvkwHleQAMqgwQ8DgBOG54JSV5bh6YG6Lbs89T\nfsNv6P3Si9iLirAyGTLxL+/R5vczt/nLuc1dGybV8TJbLJXZsGMk1vG+nW47eUEPgWIPbq8qA4lI\n57bDopRlWR8bY54FpgMp4FPgIeAV4CljzE25Y4/sqDmIiIiIiIiIiIjIplmWRWzefFZeeCHG5aTH\nXx/F3bfPrp6WiMhuJVlXR+0vf4l7vzH4TzgFT1E+GZeLgkt/QORf/yI6+UNcvXthXC5sLhfeESPI\nhMKU/fhHpNaspW3KFNbdex+BY48jHYlgJRI43G4q++1F3dLF9B6xL09e9xMAauZ+zoX3/hl/YRE2\nt5tUQwMrL72M2MyZ2AIB+rz8L5wVFbv2AxGRTieRzjCnNruFVyieYnlDG5UF3u0y9urmKKc9+BG1\nLTFuOWkoxw2rwu2wEQsnMVYGZyaKsdsJWQ7uf2cRJ+/TjWTG4v7/Lub2U4fhcWa37oq3tVG7aD7z\nP3yfgQceQkW/Abi9PkoDbp64cAxtiRQ+l53S3NZmFQVenrxoDBksnB4H+YMGAJBqaqLl+ReIzpxB\n8SWX4B4wAJvTybEjqnly2mpqmqL85vjBBDxfLpNHQwkS0RQOtx1fvotsPYyNy/c4GN27iI+XZreI\nLAu4Gdu3eLt8liIiu8IOTW20LOvXwK+/cngJsP+OvK6IiIiIiIiIiIhsXiYcpu6OO0g3NwOw7r77\nqLrt/7C5XLt4ZiIiuwcrlWLdfX/AdfA4VheNYMHDCzlkQg9WzfsfS2Z+zKiLzqfynInkDd27PbY6\nKypYdsXplF55Bam6OmILFlD+hz9iczpZe8stxOfPp+xnP+PA755Bv/3G4AsUYIwNy8qAMRi7A5s7\nu2huJZPEZs4EIBMKkVi6dKNJQ5lolEwkgvH5sPt8O+8DEpFOweO0861B5bwxdy3VQS99SvzbbewX\nPl1FTVMUgBtensO3BpbRsjLGm4/OwV/g5uhz++Fd9iolvQ/l8TP3Y+F/V2F32eh3cBVOezY5J5PJ\nEG5q4LmbfwXA5/99g/PvfhC3NxuvsolCblKZDG2JFB6HjUxjI4WAvbi4Q5JPdNo06m6/HYDwB5Pp\n+8q/sfx5VBYGeOb7Y8lYFgG3E28uWSkaSvDmo3NYMbsRX76L0365H/5C9wb3mUpliEeSeO2GP545\nknm1rbTGUuzbM9ieyCQisjtSPTQREREREREREZEuyrhceIYOoe1//wPAO3wYxuncxbMSEdk6q5ra\nmDR7LSN7FNK/LECeZ+ctfaSamik68wzS3gAv3LYAu8NGMh7i3ccezs5t3hwuvO8RHEVFAKTb2jAu\nF72ff450OIwJBAicfDLG6SL8ztu0PPc8ACsvvoR+r79Gr+EjScSinPjT65j1zhsMPexI3P4vF/uN\ny03ekUcSfvNNHJWVuPr23WCO6dZWWl54kaanniL/mPEEJ07EUVi4Ez4dEeksivwubj11b66PD8bj\ntG/XJJchVfntrweUB7AlLd746xxCDTFa62N8/t5KRidfxvr0r9j3+xNz318NQCaeofTUPkTCzSz4\n+EMKy9ZLeLQswo0NBCuq2g+FoklWt0R55IOl7F2VzxHJWqI330D3P/2pQ6XML5LhAaxolGRtLc3P\nPU/ZNT+hZCOxL5XKsGJ2tmpQW2uCxjWRDZKGUok0qxY08/bf55JX5OaY7w/joP6lW/U5RUOtZFIp\nnF4vLs/2qfIkIrI9KGlIRERERERERESki7K53RSffwG+UaOyCURDhnztdgwiIp3NulCMU/70EWta\nYxgDb1x9CP08gZ1y7WTdOpafdRbJFSsInnsuB377BD6atAabzdbexhgDubiaamyk7s47iS9YSMll\nl+IZMoTQpNeou/12/AcdRMGx32nvZ3O72/u5PF76jNyfHkOH43B1XMh2FAWp/O0NZH72U4zHg7N0\nw0XsdCjE2t/9DoD6+/9E/vHHK2lIpAsq9rsp3n4FhtqN6F7IUxePYXlDhMMHluHGhi/fRaghBkCg\n0A6rIpi6Obg9X/aLNMcJNTTy2M9+QO+9R7DXxP0p692XuqWLqeg3gKKqahKpDKFYEp/LQWNbgosf\nm8byhjaeAcqO70t/r5e1t95Kt7t+jz0vD4C8ww/Hf+ghxOfOo/iCCwi9+x6BIw4nsWQpmZJi7EVF\n7W0BHA4blf0LqF3YgtvvIFjuI5VM09aSoGlNhJLu2Z8prz38OclYmrbWBDPfXsmBJ/fb4s+oraWZ\nV+67g9qF8zl4wtkMPvRI3Kr6JiKdhJKGREREREREREREujBHUZDA4Yfv6mmIiHwjmQysac0uTFsW\n1LbE6Fe2c5KGYp9/TnLFCgCaHn2UAW+dQ119Bm9+IUf/4CoWT/2YUd85AW9edj4tL/2rvZLQqh9e\nQc+nnoR0CisaJfzmmxSdM5GSK64gPm8uJVdcQYsnwPQ5a5hXG+LY4VVUFng2uqjjKCqCXCWjjTEO\nB8bjwYrFwOHAtv6qvYjIFspkMqQSGZxue4ck8wKfizF9ihnTp7j92PhL9ubzd1YSKHHTu3gpfPAe\n1nfuxJlXgNvvwOmyc8DJfXnjoZtIJ5MM2XcM9VddzTGXXIwpLsLu9pBwenl/3lrue3sR4waWceqo\nakKxVPs1WmMpjNuNq3evDpUyHcXFVN12G5lwhIa//AVHUZDQ62/Q8tJLYAw9//43fPvt197eG3Ax\n/qK9ibclcXkdeAMuIs1x/vGbj0mnMhSUeTnhqhF481wkY9lt2PIKvn4r32g4Qc3cJozdUD2gkLpl\nS1gxawYAbz/6EP1HH6ikIRHpNJQ0JCIiIiIiIiIi0smlmpqwUilsPh92/w74E3ERkd2U323nxhOG\ncOcbCxjVI8jgyvzNdwLSGYu6UIz5a0LsVRGgLODBbtu6Smvu/v0wLhdWIoFn+HAcXhdHnD0Im81Q\nVHkEe409GFsqhdXaSqagACvinyD2AAAgAElEQVSRaO9rpdNYiST2snJseXlkwmFCr79O0QUXYHO5\niGLnnrcW8vePlgNw79sLef3qQ+ldsvU/A+zBIL2efJKWl18m/6hvYS8s2OoxRKRri0WSzP94DStm\nNzDy6J6U98rH4bJ3aJPOWNS2RJmyrJF9ewbZ9/je2I2BiAuunoNx5eF3+Pne9aMBiLfVUzP3cwDa\nImEKfH7WXXo5AP7b7+LGT8JcOW4As1e3Mnt1K6fuW839Z47kd6/OZUB5HocOLMd52ncJHHFEtjrb\nehwFBVh5eRRPPJt0cws1V12VPWFZhCdP7pA0BODLd+HL/zIRKNQQJZ3KANBSF8XuMJxw1T5MeWUp\nBWU+BoyuYFNSyTTT/rOcmW+tBGD0CX3oM7wcY2xYVoaCsnKMzb7J/iIiO5uShkRERERERERERDqx\nVEMDq35yDbHPPqP06qsoOOFE7IG8DdqlW1pomzKFtumfEvzeBJzV1dpqTET2eHkeJ6eMrOboIRW4\nnTbiqQxL6yPkue2UBjZdUac+HOeYe96nuS1Joc/Ja1cdQnn+1lXgcZSV0XfSf0jW1uLq1QtbIECm\nuQnL48Hu82HCEWpvvJHYnDmUX3ctBSefRNv0aSQWLab4kkuwFxdhXE6q77+fdCSMd/AQjN1GzaWX\n4rjmWp6esrL9Wsm0xYufruLqbw3Y6s/I5nLhGTQQz6CBW91XRASgtSHKB88sBKBmfhMTbzpgg6Sh\n+nCc4+77gKa2JD6Xnbd/fBgVBR4IlLe3sQP+gmyCj4nauPi3d2LPC7C6uZni34zC/t/3yZRXMc1b\nwRuTl3L1uAHkexy0xlLUNscY1SPIn8/ZF5/LQZ7bAaeeusk5G7sdV8+eZMqiFF90IWt/eyO2QICC\n44/foG00maI1msIAQb+LwnI/pT0CrFsRYtjh1djsNvJL3Bx+9sAOW1BuTDqZoaEm3P5+7ZIWhhzc\nj7NuvZu1SxfTa9gI/NoiUkQ6ESUNiYiIiIiIiIiIdGLRmTNp++gjANbedDP5x3x7o+0Sy5ZRc/kP\nAWh95RV6P/csjpKSnTZPEZFdxed24HM7WBeKcfL9H1LTFGWf7oU8cNZIKgq8G+0TjqVobksC0NyW\nJBxLUb5lRYra2dxubFVVOKuqyESjRD78kPp778U7chQll/6Atk+nE5o0CchuR9b3rTfpdtttZDIZ\nMjYbsfffZ/VPrgGg/Fe/wnHIIcQXLSL66Qx8dWvpXuRjUd2XC897VWz7tmtWxiIeTeFw2jZY8BcR\n2RTjsrHfmQOINcWZ/04NVioFdKzuk0hlaMrF1bZEmnA8tZGRoCWaZEV9mNW1EfZ2Z2i74nzy/vAA\nbd48pu59GA++v4S5tUvxuewUuB0c2K+E3iV+BpQHcDpslH1NQmgmkaAt1ErtgnkUVlaRX1aB2+ej\n4Ljjstvx2u04ios79EmlM0xZ2sQFf5uC22HnmUvGMrgqn2N/OBwrbWF32vD4s9ufbS5hCMDldXDA\nKf341z0zMDYYc2JfvHl+vHl9KOvVZ7P9RUR2NiUNiYiIiIiIiIiIdGLObtXtr4tv+i3Lly5g1Wvz\nGHTQYQQrq3A4s1sppJqa2tv5Ro/GSiRIrFqFPZCPPX/DheZUS0t2a5yCfGwu1wbnRUR2N2tb49Q0\nRQGYsbKZlmhyk0lDBT4no3oGmba8iVE9gxR4ndt07XQoRM1ll0MqRWz2HAKHH4arW7f2847SUgwQ\nsWDeB/+ldsEc9j/uVHyHH0bbO/8l/O67FJx4AvZgMLtd2UP3c+8td/PDVxazvKGNk0d2Y3Tvom2b\nYzpD/cowk59dRGmPPEZ8qxor04bHn4fTs3VVlkRkz2dZFtHWBElgZmOEW6csZnhVAT/5+UhCj/8V\nz9nf65CAk+d2cNaYHjw9ZSVHD64g6Nt4XP1kaSMX/X0qAAf2CXLL9y8nOmMGSwcMZ2zPUiKR7ixq\njHDaqO4EHHZuO2koDqcD71cSHa10mlRDA1YigS0vD0dhIW3NTbzw+1uoW7oYgNN/fSvVg4diDwSw\nBzaeeBmKp7jnrYUk0xbJdIqH3lvCHd8dhi/wzZ6PjTEUd/Mz4fr9AfB+w3FERHYWJQ2JiIiIiIiI\niIh0Ys6qKnr+4wmStbXUlRTyr9tvAmD6qy9xwT1/JlCcrSbkHTaMghNPJN3WRvB7E1h89HisZJLy\n666l8NRTsa23IJxqaKD2ul8RX7CA8uuvxz96/w7nrVSKRE0N4XffxT92LK4ePTqcFxHpjEryXFQV\neFjdEmNot3wy1oZtIs1xGlaHCVb4efjsUbQlM3icNorzOlbMiEXC1MydzYpZn7L3uPEUVVVjd2SX\nVFItLWRaWzFOF/bCgvb4aHO7yaSylTWMz4ezWzeqH3iA2GczKTjlFKzCIlbNmMb7jz8CwPLPZjDx\nupuJfjCZ4gsvwObzYXO76fPyv4gvWoy7zM/TF48lg4XPaSfPs22JTbFwkpfvm0E8kqJ2UTPBchvT\nX72XQ844l57DRmx0S0srY4FB212KdEHNa9t46e4ZHHDhYH7wxDSSaYtFdWGOGVJK/5nTsc48vUP7\noN/FNUfvxRXj+uOy2yj0bZgsk8lYvL9gXfv7aStbsI3qicPrpdjpZN6k5/nOUSfhdFbx7lPz+WB+\nM4d8tzc9+/qwSoOY9Sr9JGpqWHbqd8mEQgTPPJPiS3+AZVntCUMANXM/p6KqmsiHH+IZMABnVRU2\nn6/DnLxOOwf1K2Ha8mwC/uEDS3HYN19R6OvY7Lb2bdhERDo7JQ2JiIiIiIiIiIh0YvZAHr6RIwGY\n/uhD7cfTySShhvr2pCFHURHl112LZbNRd8stWMns9hBNTz5F4KijOiT9RD6YTPiddwBY/aOr6Ttp\nUsekosZGlp1yKplIBON00veN17FVVOzwexUR2RalAQ///P5Y1obi2I2hPL/jgm2kJc5zt08j1BDD\n6bZzxg1j6BbceCWixlU1vHT7jQB8/s6bnHPXAxQUl5Bua6P5yadYd/fdGKeTnk89iXfIEBzBID0f\nf4yGhx/GN3o07l69sOfnEzjsUAKHHQpAWzxJWyTafo10MoEtGKTvW29iz8/PJuY4HDgrK3FWVgKw\nvTeZdDhtxL947bKRTiaZ8dq/6bbX4A2qDbW1xJn++gocThvDxnX/xlU3RKRzS8SixEIhkvEY3vwC\nfPkFpBJp/vfiEiLNcdLJNAGPk8ZIAgC700n+7++mzenEnUzjSTZDOgXeIAXer48TmdZWJgwt5rnp\nNUQSaS46sBfeHhW0JqG7z06/Y4/Hl5/H3Mm1LJ1RD8B/n1rMdyeWYHdAi88ilUkRcAaIvfkmmVAI\ngKannqLw1FOIzpnN8HHjmfnWJDz+PAaMOZCayy8nOnUa2Gz0eeXfuHv37jAnj9POuQf24oiBZXic\nNirylSgvIl2LkoZEREREREREREQ6uVRjI5YFgw46jBmvv0ImnSYvWExBaXmHdva8PNKxGHmHHkrL\nc8+DZZF36KGkjY10MoXHmf060FHxZT9HWRl8pYKEFY+TiUSyr5NJ0qEQTiUNichO0NyWIJm2CPqc\nW13pwW4zVBV68bkduOw2/O6OSyDpVIZQQwyAZDxNqClGs5Umz+3YoCJGS92a9tfJeIx1zRGS7gAF\n0QjNzz8PZONj66uv4h0yBON04hk0iMpbb8Xm3HhFIK/LQa8hQ9nrkCNpWLqQsaedjTcQwOneOQvU\nvoCLE64awZRXllHa3YeVXkPjqpWMPWUCjq9sU5mMp/jgnwtZOLUOgFQqwwEn98Vm27bqGyLSuWTS\naVZ8/hkv3XETWBYDRh/IkRddhtuXR0FZNqly9r+X8cTE/Xh82goGVxUQjqdYHkrzf6/NYWB5gB8O\nh6IXz4Tj7oEeY8Cx6Qo7mVAr3ttvYdKVPyaFDU9hPhm3lz6lHeNgYfmX1YAKSn1kGhto2quEc/9z\nPitDK7l02KWcM/pgsNshncY3ZjTRWZ/TeNNN7H39r9j37gexO124jY21U6flLp4hsXzFBklDAEGf\ni+BGKiOJiHQFShoSERERERERERHpxFINDdRcdTXRKVMoue5azr/rQVrr1xGs6oavsLBD20w0ipVK\n4e7bl17PPE2mLYq9pJjWZ57BM2pfXPsMw+bx4B44kOo//oHYnDkUnnoqjpKOtSxsgQBF559P8zPP\nkDduHI7i4p15yyKym0uHQqSbmshEIjgqKnAEg1vUb10ozk+fnckpe1cxwOaipTbCoLGV5BVteVKN\nMWaTC79Ot50Bo8tZPquBESf3Ieqzcd2znzGqZ5BLDunTYfuvHkOGU9qzN+uWL2XgYUcxuz7Okflh\nYnPmkP/tY2h44EFwOvEecRTNayMEij3YHfZNJgx9Mbf8YCEHnnkBVjpJXl4eTvfOW6Q2NkOwws+4\ncweRSsSJtni48L6H8eQFOmz5A9mkqkQs3f4+HknCRrZ7E5HdWyIWZfqrL4KV/R98wceTOeyci/AG\nbIz4Vg+8ARexcILuhV7KCzz8+7NaLjy4Nxf8bSoNkQQfLW5geNUQvn3MYxjAEW3FBEo3eT3jdpOY\n8Smxk4/D+HxUvfoqzrwNk4yKu/k58ap9qF9ST8/eLjKffsScJouVoZUA3P/Z/Zxx4in0fW0Sqbo6\nnFVVLDnxJKxEguhzz2M76iCSDnBYDkp/9CPW3XMPnsGD8Q4dskM+RxGR3ZmShkRERERERERERHay\nVDpDY1sCuzEUb2ShZH3xxUuITpkCQP1NN9Pn4IMpGLL3hmM2NVH/hz8Smz2bsl/8HHt5OSaVpuHu\nu2j99yvgdNIvt82Yo6CAwLhxBMaN2+g1HYWFlPzg+xSddy42lwt7QcG237SIdBnRWbNYef4FABSd\nfz4ll1+G3efr0CYTi2GcTozd3n7spRmrWNUcpbtl542HPgdg4ZS1nPijkdh9dlqiSQxQkufObuW1\n/ngZi/pwnEgiTcDjoGQjsdWb5+Kg7w5g+MlpfvPvOSyZuoSfHzOQ2uYooViKP7yziNKAm5NGdKMo\nGOSEn/+WNc0RPl7Ryop1SQ4LfcrqK66k4lfX0fs//yGWMEx5r4lFf5vCmb8dS16hfYNrfpXTbiNY\nGNhsO8uyaGtNkIqncXod23VrMLvdht3rxe3d+NZsqWSaFbMb2ffbvUgnM9idNsac0BfbVlZ+EpHd\ngN1GeZ/+rJw9C4D80jJSlqE+HKck4GbEt3q0Nz19vx70Lw8woDyAw/5lDHYkk6z6xW9ILF9B7xef\nx/U1Ic5RXEzv554lOn063n32wVFchM1mNmjn9jnpNrCI8m5OiMcxx36HPqYVt91NPB1ncPFgVsVS\nVATLKKquJh0OU33P3bRNm0bijGOZ+OZ5NEQbuOuwu9j3zNMpOOlEjN2Oo6ho+312IiJ7CCUNiYiI\niIiIdCGZRIJMJILN58Pm/vpFahER2bjGSJxEysLlsFHk3/pF3FQ6w6xVLVz51AxK8tw8dPYonLEW\n5n3wXyoHDKS8ohtWfQNg4ayowFme2z7MsrCXlkJBAalMBofNRrq5mcjUqcTnzScw/miiMz4lNnsO\ny888iz5vvEE41JZNGAJIpbAcDtaF4lhYFHpduBybXgC2BwLYA5tf2BYR+arwm299+frddym+4HzI\nJQ1ZySSxhQtpuP9PePffj4Ljj8eRq5pWnu8h4HESaYp/2b8pTiaTYdqSFi56bCoFXidPXTyG3iV5\nHa5ZF4pz7H3vUx9OcPP4fpyyVz52ux17MNih+o83z8lLn9Ty6qxaAK7552c8dfEYrnx6Bp8sbQQg\nEk9x3gG9KSgKknD6OCJYRMDjgLeXQSbD2t/dStET/+Kff1zcPm4mndmun2GkJcE/b5lCW2uCnkOL\nOXziQPz5O+f5PRlL89k7NSRiKQaOraSgzIs3X9v2iHQqsVZwesG+6epmW6IlHcJ7wF6MKTqHWFML\n+xx5LKc/9jn5XicPnDWqQwJmeb6HY4ZWkslYPH7BaO54fT6DKgKMSNbTOmcuWBaxefNxVXff5PWM\n3Y6ruhpXdfVGz6caGwm/+y5kMuQdfng2ySf3PFqW9vCvE19mfv1K/LZyzn14Dj88oh9nj+2FPS8P\n/+jR+EeP5t7p91ITqgHg1k9u5dHxj1JcuunqRyIiXZ2ShkRERERERLqIdGsrrZMm0fzscxSddx6+\nkSMwDscGW86kGhtJrlqFvagIRzCI7St/FS4i0pU1hOP88MlP+XBxA98eWsGNJw7dbKWgr2pqS/Lj\nZ2ayorGNFY1ttDQ18tatvyDUUM+A/cdyYEVv1t54IwDl115Lwckn0/OJJ4h88jGZ087ihreXYLcZ\nrhw3ANe0aay6/IcAND/zNJW/u5WVF1wA6TTGyuArK6H05z8j/NrrBK+8kllhG1c+MplQLMVPj96L\n44ZXke/dtsUmEZGvKjz9NFpeepFMW5TiCy/Alvdlgk+quZkVZ08kE4kQevNNvEP3xjFyBACjexcR\nS6bp2S1I3exGmta0cdgZe5GyG25+dS6xZIZYMs4j7y/lumMH43F+WdlnWUOE+nCCYwaWcGjrYpaO\nuwbjdtPz8cfwDum4Hc36cbvQ5ySaTLO2NdZ+bGVjlBdnrOL44VWUBr5smxo7lsIJE4jPm4e/JI9h\n46pZNrOevQ+rxu3dvsstDavCtLUmAFj+eQOJRAb/dr3Cpjk9dgaOreT9pxfwyctLOeGqfTZaCUSk\nK4o0N5FKxHG6PfgKCjffYXuLtcKqqfDhH6DbSBh9Cfi/eUJMY6yRiz+4jP0q9sNX6aMoNY4Fa8N4\nnDbS6Qyt0SQBj6NDdTebzdC/PMDdE0Zgj0VZ95s/Z5Pbg8EN4u3WyCQSNDzyFxofeQSA4MSzKfvx\nj9v/4Mlld+GmiD+/sZwPF2er0dW2xDYYZ++SLytyjiofRSrpZVEo3F6Fzq54JiLSgZKGRERERERE\nuoh0a4g11/8aV+/eOMvLWHnRRQBU33cfrp49s21CIRIrVkIqSdsnU3AP3AvvoEG7ctoiIp1KNJnm\nyiP7c+lh/bjuxVlE4qmtThpy2A3l+R6W1EcA8DlshJuy1S2CpeVEPni/vW34vfcoOPmkbKLn0L35\n+fOzeGnGagBSaYtrihz4Dz6YdFMjsc9nYy/Ix9m9O8FLLsaWF8CXH8BzxhkUnngijcbNxfd+QEMk\nuwh97Yufc+iAUiUNich25+7Thz7/+Q+k09gCgY4VLi0LK53+8m0qCUBTJMGdr8+npjnK6uYo55w3\nGHsGvHkOoukMgyrzmbcmBMCgqnya2hIYDEV+Jw5j6Bn0URZwc2i1j+SDd0ImgxWN0vT4E3huvglj\n+7Ky2qiqPG47eShz14Q5ZVQ1r31eyw3HD+Gnz35G0Ofi4oN7c9XTMzl6SEWH+3IUFVH202uwEgns\ngQCjjytg1FE9cXocON2b35psawQr/Xj8TmKRJIMOqiRubd9KRl/H4bSz1+hyeu1djM1mcPu1lCQC\n2YSh5265nnXLl1I5YCAn/OQ6/Ds7cShSB4+dlH29+C3IpOGwX4AjWw0skUrTGEnS1JagLODe7HNq\nua+cg7sdzOTVkzlz0JnMq43jtBseO380f/zvYpbWR7juO4PoVxbYINnG67SDM4/ya6+l9MorMB4P\njpKSb3xrVjJJYtGi9veJxYuxkklY72dIkd/Fr48bzFVPz6DY7+LcA3ptMM7I8pE8dsxjrIuuY+/g\nAVz2jxlMXdZE0OfkP1ceQkWB5xvPUURkT6QnPRERERERkS7COOzgcBA46ls0PPgQ8QULAVhz8y10\n+/2d2PPyyLS1UfuLn5NYuoy8ceNw9e2zi2ctItJ5NITj/OSfM/nfkkZ6Ffu46/R9OlS52FJBn4sH\nTxvKwpoGmm0ufHl+xv/gKt574q8Eu/cmOHAfIpM/BKD4oovaK75lLIglv1xojybTOIYPY1XtUkoq\nu1Fud5H0eal86AFsbVEi77+Pf8wYHMVF2FwurJYYTW2JDnMJxVPb8ImISFfy5daGTlyOr499xunE\nWVa20XP2wkJ6PPpXoi0xnL16Y/KzVYjC8RRPT81uJzN5UQODS/JIf9LAqG/3wlXk4idHDWBMnyIK\nfS5K8lzc8dp8XplVy6tXHEy508mHj8zhiQmj8HssHIceSmzWLAAC48Z1SBhKNzcTu+12DnY4OO60\n72JMG2V7eUnFGnnpwlHYkglc6SgnjqjC795wCcXu87Vvteayg8uzY5ZZjM/Ot68ZgcMYWlZHWDOr\nEd8IO3avHb9nxyd7un1O3D4llYqsLx6JsG75UgBqF8wjGYvCzk4aalza8f2qqZBsa08aWtUcY/zd\n7xFPZThsQCm/P32fr91Ot8hbxI0H3kgyk8RldxOLuxh7dTXvLajn7x8tB+Ccv0zh5R8e1KHy2voc\nRUEoCgIQiyRJp5I43fatjo92v5+ya37C/7N331FSlfcfx9+3TK87s73DAguCSBUQBRERUYMNGwRL\nbNhFjTVqNLG3WBITS1TsvYGKLWJXUJr0srvAsr1NL3fu/f0xuLiwCwti+/m8zuE45dY5x7vP3Ocz\n329szRrQdbKvuALF2bEVpSRJ9M528eTpI1BlCa99+3PzWDwMyh4EQE1blAWVLUC62mdlU1iEhgRB\nELYhQkOCIAiCIAiCIAi/E4rHQ/Fjj5HctJFUa1v766b8PCRTekIgUVVFoqISgNAHH5Bz5RW/xKEK\ngiD8KkWTKb5cn64IVNkUQZWlLidPdkRraSH68CP4lyyh32WXYrVl0nvEaIr3HgTY+Pq1NQx89g0k\nIGRx4NjSDsJhUfnr5P4kUwaKLHHFhF68fd9NbFqRbs9w/LU3U9SzjNbXX6fmiitBkih+7DGiS6Ok\nYnEsw0dy4vBinvl6AwB9cpy7dfyCIPz+bGyOMP3Rr2iOJHh4+jCGlGRgUuSdr7gtw0A2maDnXnw5\nawWVzy6j55AsDjypHIsq43OYaQ4nkCXId9v4fEULTdVhco4sprzUw0F9c0imdJ6bv4GXv60G4LO1\njUzulUPt2jZq71iIJMHJVx+He8LByBYLyjatePV4nPDnn1Pwj3uonnkJWm0tmddcjbOsJ9VHpat3\n+M48k2lnno29k9DQz8VlNYEXNi9t4v1HlwOwdn4dvY/tQXG+i4xOJsoFQfhpWRx2XP4sgk0NZOTl\nY7L8AuGT3L3BkQnhxvTzkeeCbWtw6duqFuJaujLZvDUNaKn0Y625GT0USlcD8vuJRcIk43EUVcXr\nzWhf37NlaPjx6sb21wwMlFQSrSEAioLq83V6aJFggnnPrKJmbSt998tj6KGlu9S6UY/HUfx+Sp95\nGklRtrt+f0+WJTK7WenToiqM75vNByvryfNY6ZH5czV6FARB+O0QoSFBEARBEARBEITfCdlmwzF8\nGMbQITjHjMFUUAAYeI89tr1lhLmoCNlhRw9HMJeVIVnEZLIgCL89sWSK+mCcjc0RynNd3Z5U2BmL\nqtAvz8WKmiBZLgs5biuSJO18xW2P77vvaP7vfwHYePoZ9HznbUxZWZgsFiJtcapWBFjxVXqi5siL\nB3VYN89j456j+xH+aB7OZAF1Feva3ws0NaDH4kQXLQbAOXYsiXiMVpPM8iVL2MttZ+a4wZy0bxGh\nuEav7I6fjdbYSHTpd5h7lGLKyUG22Xb53ARB+G2JhZNoSR1ZkbC7ug6hPPJpBZVNEQCue30ZT585\nYtevraEG+PJBSGnE9r6Myu+aAFj/bQOjjiwjM8vG6+eNZt7qBgbmudn0SS2JqIYny0YooXH/h2u5\n/NC+rKsPMaFfLi9/U01jKM6oskzMNoW+o3JZ+UUtWSUuZI8Xa1HnlY4kVcVz1FG0Pv88yY0bAWi4\n8W+UvvhC+zKRLz7Hf9ppwC87ueyymmiuDrc/b62PEIpptEWSIjQkCL8Ah9fHtJvvIhIIYHd7cPwg\nbPNjxEIJNq9tJRbW6NXHTPjDD5GdDhz77Yeasc0+HNkw4zPYvBB8PcHVsY3iiJ4+vHYTrZEkxw4p\nxKzKaC0t1NxwA6G576J4vRS+8TpfzH6ZRXPn4M3J44QbbsOZ0TEIdPjAPFbVBalsCnPdxN5I3y2h\n4tq/oGZlUXjfvZhyO+4XoHJxI+sXNlC6j5+S/XOobW4h2bCRvNIeO/2s9GiU8BdfUH/7HVj22ovc\nv1zToUrcDteNxdAjUWSnA9nc8droc5i5fcpAwnENq1kh2yWqDAmCIGxLhIYEQRAEQRAEQRB+ZyRZ\nRvX7yTzrzO3fVBSKn3iC5KZNqDk5sBuT4YIgCL+02rYYE+6ZRzJlMKjQwyNT98FnNyFbd2+SQEvp\nqIpMlsvCrD+NoDWSwGMzdVmlJxGLEg+HQJKwOd2oWyYvmkJxPl7dwBh56y25bcOZZj3CUTN6s+jz\nJvw+FV/W9q1hPB4ntkEDaPv4Yw4//1I+eOzf+AuLKR00lNjyZXiOOJzQBx+g5OQgFRfy6tUzMXSd\nVZ9/whn3PczehTnbn2NTExvOOJP4ypWgKPScMxtLaelufV6CIPw2xMJJ5r9VwZIPNuEvcDD5wkHY\nPZ1f1wbku9sf98lxYlF3scqQFoePboYF6cCkeeC5qCYZLaljsiiYLAqyLFHks/PHkSXEwgkSPhvK\nqFxKx+Zz9suLOP+gXlSsq8aS1Hh3dZxnzhyBWZXx2c1YTAqjp/Rm5FFlSPKOA1Cq34/vtFNpfuyx\n9tcUtxvZ5UKy2zHicfwzZiC7nF1u4+fU/4AC1i6oJ9QaY/BRPXltZR3nFbl3vqIgCD8Jh9eHw9t5\npZ3dtW5RIx89tZJ9J+RQ/+rjBGfPBiDr0kvxn3F6x5C6LKeDQuWTOt1WnsfG3IvHEE+mcFpNeO1m\nkqFWQnPfBdItGrVkgkVz5wDQWldDQ1XFdqEht83E3oUeMp0WjECA+pkXoweDaDU1ND74ILnXXYek\ndGxVaRgGLr+Vfsf04LhHviYU1/jnlL6seuoxDpz+JxS7k6ZQgtV1IfrluTu0CUsFg2y66GJIJklU\nVuKeeAjuiRN3+tlprX80RPIAACAASURBVK20PPkUoXkf4TvlFJzjxm3X0szvtODfQz8iEARB+P9I\nhIYEQRAEQRAEQRCEdkY8TuVJU1HcblLNzZS9O/eXPiRBEIRdtrouSDJlALC4uo1Y9WbCzbU49tsP\nXVbY1BLlo9X1jC7LpNhnx2JSOt1OMJbkq/XNvLlkMyePKqF/vocsl2WHLb1SySSVi75h9j9uR1YV\npvzl7xT27U9CS3H/h2t5/PNKHvxDLwZffQ2pJYvwz5jR3uLBMAz0SAQWfM6ooXsTeH8u5O0P/sHb\n7cdcUkKGx4NHlph20z3IqoLN5abuvfeJzJ9P3o03omT6SVhtGLq+Zft6++NtGakU8VWrtpxEisT6\nChEaEoT/57REiiUfbAKgqTpM0+Zwp6EhPRplfFkGj506jOZwkgPLs9Kts3aFnoJQfftT29KHOOGa\nS6heG6Cw3IvVqRJJaFjVdHjI6jAzdFIJoWiSr6ua+fuRAxjkTFE38884Ru/P3kcfiaYFkWUzFlO6\nKprVsf0x6SmdaDiJoicxmWUUux0A1ePBN306RiJJctNGMi+4AN3joedbc5CQUNyudBu1XwG338pR\nlw5G0w0W17YxtVepqDIkCL910VZo25i+LhbuS1N1CACbTSJZVdW+WHzNGkilQE1P5yYbGjDicWS7\nvcsWYYoskePuGJSXTCYcY8cSnjcP2eVCMZvJ7dWH2rWrUc0WfAWF223HpMj0zXXz1zeWMfqoXmS4\nXOjBYHof3ox0eGkbPfbJIplI8dCnlWxuiwFw50cbuaxHX8Ia/G9RDR+tque4YUXc9+EaLjm4D5lb\nxtWSLKN4PKQa09U2u2pNti1t82Ya//lPADZffgW9Pnh/u9CQIAiCsGMiNCQIgiAIgiAIgiAAEA0G\niCXi+M89h+Abb+I79RRkt5tYOEQqmUBRzVh38+ab1tBAKhBA8XhQMzP38JELgiB0NKjIS89MB+sb\nw5w7shDti89omP0atgEDaDI5+MP9nxKMa1hUmXl/PpBcT+dtuFoiSc6YtQCAt5fW8vHl48j1dB4w\n+l48Euar117EMHRSSZ1v3nyVnB69SKKwsSXd2ufc2Wu5fOJIegwcy/DcbKxbfqWdamyk6qST0Oob\nkGw2Sp99FjXTv2W7EaKBNhKxKC5/JjaXG9XrBeCHU8feKcfS+tJLbDznHHJv+Cu2iROZOONClv7v\nPfqPGY/F5er0uGWbjayLLqThH/di6dMb28C9u/15C4Lw2yQrEhm5dlpqI8iqhCdr+2thKhCg7Y03\naX7ySQaecDye445D3Z1qDWY7TLwJAtWgxVGGnIg304k310kkrvHx2iae+qqKowYVtIeSJEnCZTcz\nvl+6BU7Tc8+j5uRiHjCAuqoK5j75CDaXm8mXXoPTZkd1uwknw4STYWRJxmfx07w5hBJtI/LIAxix\nKDlXX93eUkf1+8m+ZCaGpm2tROfxAOl2jVpTE7LN9ouPXaOhBB89tZKWmgj+IicFx/XuMuwqCMJP\nIx6JEI+EkCQZq8OJaTerV7ar+gyem5p+PGgag8ffSfXKFqoqEhx4zTVUn38+st1O1vnnIW0JDGkN\nDVRNnUZy40Yc48aRf9PfuwwObUvNyCD/5ptIBQLIDgeqz89Rl19HW11telzp9nS63l55Lub9eRyK\nBM5HH6Hhzrsw5eXhO3l6py167W4ze43OZ9ASg+fmp9s/9su2kwpvojkhccXLSwD436p6nvjTvqR0\no31dxe+n9OmnaH5iFrYhQ7D27t29z9JkwnnQQWSefRZGMgnSLlbCEwRBEERoSBAEQRAEQRAEQQA9\nmaR2zSrmPHAX46afQd4h/8Se6ScpwWfPzmLZxx9QPmoMY6adir2LG4pdSTY0UHn8CWg1NZjLyih5\n4vFffPJFEIT/37LdVl44exSJUJjE23OI3ns33mOPQbJYSCR0gnENgLimE4qnutxOUttalSep6+ip\nrpcFSEUi6Js3U9y3P/UV6wAoLu+HFIvh8Hj4y+F7sak5Sv98N5P65/D8N5sY0TsHrbkZI5nEiMfR\n6hsAMKJRjGSi/XpZs2YlL998HQDD/nAMo6achNm6/QS/ubSUnnNmQ0pHdjpRXE76HXAQZcNGYbbZ\nUNTObwcqLhcZU6fiOeYYJEVB7eavuwVB+O2yuy0cOXMwjRtDZOTasbnNaC2tkNJQMjKQFAU9FKLu\n738HoP72O3Dsvz9qF+HDncoohWkvgWGAY+tYsDWa5PQn5qMb8MGKej65fFynlYysPXpALEbK5WDO\nP+8kFg4Ram5i3lOPMvaQyZhKCnin9n/c8MUNZNmzmDVxFjVL4+R/OYvAG28AYMQT5N91Z3sVCklV\n2yfkv6c1Nra3a7T07Uvxo48QcZpIpBI4zA5saudB043NEZ7+qorBxRmM7OHHY98zlYr0lMHG5c0Y\nBgSbY/QZnoM7s/NjEARhz9OSCdbO/4J3/nUPkixzzJV/pWTvQUidVNrpFsOA1T+o6LvqLVwTbuDI\nmYMwDLBaJXq8+gqSJJHw2GkIVaMbOo5EkuTGdBAn8uWX6InELu1W9ftR/X7ikTCpVAqHx4vD493h\nOmZVIce9JaTo6kHBnXeAqu6wEpvZqjKhXzb5pwymuTVEP4+BEiol/oNilyndIMNuxmbZGoCUJAlz\nSQm51127a+eVm4v/zDOoOvU0jGgUS79+FD/8kLjnIAiCsAtE3FIQBEEQBEEQBOF3IhUIkGxoINXW\n1uH1ZG0ttdf/Fevsdzjlr7fztVTIH2dvYtaiBqKRMIvfewstHmfZR+8RD4d2fb+trWg1NQAk1q1D\nj0T3yPkIgvDrZ+g6oZZmWutqiATadr7CHpTpspBjV8gZPoiif/+brItnojidOK0qZx3QE7dVZcrQ\nQnyOrlu8+J1mrprYhyHFXu45rAxz1Vr0eLzL5fVAgI0nnET//FKmXHgF0/52J/mxFGyZ1OmR6eDF\nkwfy1/wwprtu5ryMAM5QC4kNG9BqatEjUdxHHA6AbdAg1Ozs9m2vW/Bl++PKRd+QaGnp9BgkRcGU\nnY0pLxfFlZ4UV1QVm8vVZWDoe4rbjSk7e7cDQ+HWOBuWNxFsjpFKdd4GbVuplE5LbZhv3qmkcWMQ\nLbHjYNauMn7wC3ZBELbn8FgoGeBPh1DaWth0/vlUTZ9ObOVKjFQKFBXJtiWgIsvIDseP3GEmOLPg\nBxUqjC3/vqdrCYim/2Y0BuMsqGympi2K0q8fjlEjke32DlU+TFYbycYmwkaM+xfej4FBfaSed6ve\nw+WzdtgX8vaVMbaVCgaJr1wJQHzVKtpMSf76xV85fvbxvFPxDuFkeLt1GoJxTnr4S/49bz1nP/kN\n6xp2fczcFcUks/e4dOsgu8dMXtmuBfgFQfhxEpEI38x5DUiPbb996w2SOxgP7pQkwfAzwJRul8jI\nc0G1YndbcHgsKBYzpqws1MxMvqr5ikkvT+KwVw7j/eB8HFOOxnraNCxvPMFyNtMca+72bg3DoKl6\nI2/+4zY+mvVI+9jcMNJX4FQgSKK6mmRtLXos1r5eNBhg3Tdfsejdt4hEI91q3eh32RjdO5tD+udQ\nmJ9Nj6HDKMiwcdWkvowq8/PfU4aT47Lg3kGrS625mWRdHVoXY97vyWYzzY89hhFN32eIr1hBYsOG\nnR6jIAiCsJWoNCQIgiAIgiAIgvA7oLW0UH/X3QTffgvn+PHkXHkVqi8DrbmZ6otnEl20CAA9EqFx\n1IksrwmwvCbA8f1HYLbZSESjqBYLJsuul2FXvRmYe5SSqKjEOqA/st2+h89OEIRfq2BzE09fPZNI\nWyu99t2PQ848r8v2Bz8FxePBtnfHNlsZdjPnH9SLMw7ogcUk47F1HRpym2WOql/EIc4k0ksvEtiw\nAe+jjyBbdtCaR9dpuPAi1Owssv75TyJtga0T7oA1EmLdWWeCYSDZbFiKi6i/7XYA8m76O1mX/ZmM\nE04kWV9HwwP/JPcv1yBbLAwcfyjL5n1IZkkpY6dMI7lwMbo/E9nc9fH/nMJtcV68dQHh1jhmm8rU\n60fg8O68hVEsmGTuQ98xZmo5oZY4VocJu1dG7sbE/o7EI0k2rmim6rsm9jm4mIxcO4oifj8pCNuK\nBgOs/3Y+TdUbGDByDHo8TqKikpqrrqb4sf+i+DIoffYZWl99Fdf48SjezqtSJKIRIoEAiUgYV2YW\nitlOPKyR0nSsDhNWR9cTwx6riQdOHMRTX29kcl8nGaueh7IRNGr9mPbIV6yqC+IwK7x/6VjyystR\nAwGOueJ6PnziIawuN/sdP53IfffjGDaAew54BBNOrIqBpESxxF04pp+BoSUhFiX78svbqwx1RXE6\nUXNz0WprsQ4YwNpgJe9VvQfA9Z9fz+iC0ThMHcNTBgaNoa0hgh8+/rGsdhPDD+vBPuOLUVQJu/vX\ncd0XhN8L1WqldJ8hNFRVANBjyDDUHzv+yuoLF3wLehIsbrBsX8EtkUowZ/0cjC2xyrcr32HCn2+j\nMrKRU96dhoHB4T0O5+oRV+O2uHe6y0hbK2/cdTPN1RupAjKLSynqP4AFb77GoHETUL/8mvpbbgWT\nieL/Popj+HBSmsbSD9/lk2ceB2DB7Fc46cY7cHgzdro/RVU7VCn22uG00T04ad9iHBYVZQdjPa2p\niU0XX0x0/gKcEw8h7/rru2zFJqkqpoLCDq91t22bIAiCkCZCQ4IgCIIgCIIgCL8DWn09bS+9BEDg\njTfxTfsjhp7CiETQGhral0vV1+PeMqcjSRA32Zh+631sWLaE0oGDiaoOosEYTqsJm0npbFfbUbMy\nKZn1JHo0gmy3o2aKljeC8HtRs2YlkbZWANZ+/TkHnXrWL3YsTaE4axtCZDktZLutZLt3HoKUVRV7\nVibN554LQOZFFyLbum4Jo3i9FD/8EC1PP4Pr0EMxZWeTceIJHSao9WAw3ZYCMBfkE3z33fb3Qp98\nin3ffamaPh2AjKkngSyjtbZiXl/F6bf8A2PDRtqefAb1sMMwkkn4lYSGtIROuDU9SZ6IasQiyW6F\nhlIpnVHH9OKjp1bSUhvB4lA56druBY66koxrBJvjzH14GQDrFjYw7YaRODy7v01B+P9q5Wfz+PCx\n/wCw7KMPOOHKy6n748moOTlIW1rQWPv2xXvhBYRbm6lbvQJ/QSEWuwOrc+skd31lBc/fcCUYBoMn\n/YG9x0/hxZsXYxgw7LASBh9Sgtna+XSE06oysczGAS0LsNV8i2n5y5D5NAl7OavqggCEEyk2NUfJ\n89hQ3W4y3W4OOf8KACxNDTgvvohWycn1r6xkyaY2yrKcPD1tb15bWoXZYqP3iTMo9Nkw5Ww/DjVS\nKfRwGMlqRTabUTIz6fHiCyTr6jDl5mKYAkhIGBhk2bOQpe0DiG6rif9MH8aNby5n7wI3Q0t3PqG+\nK6xOE1bnnml3JgjCrjFbrAyffCy9ho9CMZnwZGUjK937Ltwl1QzuvE7fikeTaAkdWZaYttc0Ptjw\nASkjxYl9T8Tl8vF15avtQaKvar8inupmSFGSOlSdVFSVD//7bzZ8t4SyPv0wnpiVfiOZpGXWk9gG\nDkTTNCoXf9u+TltdLVoyuXvnDJhVGbO68xC31tREdP4CAEJz30W/7DLoKjSkKPjPOJ1UWxvx1avx\nnTwdRbTZFQRB2CUiNCQIgiAIgiAIgvArozU2YiSSSDYrasbWCQcjlUJrakIPhlC8HlS/H8Mw0AMB\nJLN5hxPZss2WTgFtmaiWHXY2nX8+qjeDnKuvZvOVVyLbrGRfdSWDFB8TmzSOHVKAw2LG6cnDm5vH\nuoYQMx75iurWKOccWMb0kSV47d2brFazMn/chyIIwm9Sdo8yVJMZLZkgp2evnbbH+qm0RRNc/8Yy\nZi+pQZLglXP2Y3Bx9yZ07cOHU/b+exjxOIrf3+W1tiEYJ5JI4dh7CPl3DkayWJCk7X9Brebm4Dn6\nKILvvY+anUPGSScRXbQYVBXvMUcjO134zjwDSVHImDqV6JIlGNEoRqANubGJyjPORFIUdLsDedAg\nHD+2VdAeYrYq9BycxfqFDeSWebA5u/f3wWxTcXjNtNRGAIiHNYLNsd0ODcUjSdYsqMOZsTUUlkro\n7a03BEHYSk+lqFm7uv15pK0VOTuLrIsvxnvsMSiedIWI1roaXrrpWtrqatuX7Tt6LONOPau9isT6\nhfPbx5mVi76h59DDvn/Kyi9qGTC2sMvQEEDUUHFmFiJ/+0/ocygUj8AmKUwZWshL32yid7aT0syO\n1zuvb0vVoy3/jTSFWbIp3W5nXUOI1qY2junt5qgX1jB5UD5n9cza/jOIxYku/JbGBx/Esd9o3FOn\n0oKJpOrA2bMPNruZ7ISVWZNmsbB+IRNLJ5Jp235cazUpjOrp47mzRmI1ybh20HJHEITfHpvLjc21\n82o+P1YskmTp/zax4K1Kcnq4mXhWf94+9m0Mw8BtcaPKKpN6TOKpFU/RGm/lzL3P3K7yWVccHi9H\nXnYNnzw7i4y8Akr3GcJ7Dz8AQHN9HQUjRhB49VUAnPsNR2pageopYa8x49i4bAmwZWz/MwTWFa8X\n2eFAD4dRs7KQrDsO+6t+Pzl/uQYjHkd2OrvVQk0QBEHYSoSGBEEQBEEQBEEQfkW0hgaqTj6FREUF\n7iMnk3Plle3BIa2ujvVHHoUeDGIfPZqCu+9Cq6mh7qabMZeWkjXz4q5Ldlut5N92G8EPP8Q55gD0\nZJJUYxOxRYtRCwvp8fprSJKE7PMxwmJhnyIv1h9UEmqNJLjipSWsqQ8BcNe7qzl877xuh4YEQfh9\ncvmz+NO9/yHU3Iw7Owe7p/O2NnuSkUqRamtDMpvbK/zENZ2vKprT7xuwoLJlh6GhUDzJhuYoq2oD\njC7LJLuwsMtlARqCMU586EvWNYTZp9DDf6YPYmHN/wgnwxxUfBA+69Zrs+rzkX355fjPPhutvp5U\nayslzzwNkkTba69j6deP7EsuwdA0mh79L43/+AcAmeefh7W8HCQJ1yOPM2uzTOWcdVw5qR+lfnun\nAaXdkYylaG2IUFcRoGSAH5eve20pbS4zB04r54Dje6OoMjZX9/4+WO0mUkmdwr4ZbFrZgifbhtvf\n/VaYhq4TCbRh6Dpmu514FOY9s5oJp/dnn/FF1K5rY9jhpVjsYvJIELYlKwrDjjiaNV9/jhaP03f0\nWMwZPrwzzm5fJtzayiu3XE9OeTnlhx5C85r1rP38U1Z+No/MohKGTz4GWVHpP3Y8S957m3g0wvDJ\nU7D+INBYNjgLk6Xrqhx1gRjHPriA0SX5nHX0bAozvVgcfjKAaw7rxyUT+mBWZDJdOw4T2swK5Tku\nVtUFKcyw4TSSeO02Xjt/NG6rqcPY9nupQBsbzzobI5kkvr6C0NEnMvnf8whENS4a35szD+iB0+pk\nUPYgBmUP2uH+zapClutHVh8RBOF3LRlL8fWb6TZoNWvbqK8M0WNgbodlCl2FvDL5FbRUklhdEy3r\nK1EKS7B0I0juyc5l0rkzkRSFWChI+X4HsPLTeaxdtohBF83Ee/AoZKcLU2IV0kNjUXodTK8j/k3O\n7fcTbmslq6QHjp9hPK/6fPR88w1iq1Zj3asfaubOf4Sk2O0gWqELgiDsFhEaEgRBEARBEARB+BWJ\nr11LoiJ9kzDw+htkX3xx+3uxlavSbW2AyGefoYfDbDznXLSaGiLz52PbZyDeKVMA0BMJjEQC2eFA\nkiQUjwdzrzKsTU0YKT1dpSiRwFRQgPeoI9k0YwZaUzN5N/0dx8hRWK0dJ2U03SAQ61iGPJZM/ZQf\nhSAI/w+oJhMufxYu//bVHXaX1tSEHo0iW22omX7CcY1wXMNiknGbZGLLl1N7442YSnuQe9WVqH4/\nLouJSyb04epXl5LptHDogNwd7qO6Jcrh932CYUC/XBfPnTUSi0npdMIZoDWSZF1DGIDFm9qIxDWe\nXv4UixuX8F3DUv48aCYOx9YJFiOZpGLykZjLysg8ZwZVU6eBYeA69FAksxlJktCjUSJffN6+TnTJ\nUmzDhlP4wP28ErLyny/XA7CqNsiLM/YjayeT6d0VDsSpbYogF9ioD8RQzBJ2Z/e23d3qQttyeCxM\n+FN/kokUJpOMfRfaiLXV1/HMtZcRCwaZdP5Migbsi2KS+eCx5ew1Jp9DzuyPw2tBUXbeCkMQfo/8\nhcWc/o+H0JJJLDb7dpU0ooE2+kw4mIqCCM9vfoMjxx3O0KJ8vnn+Bb5563UGjJuAw5tBRm4+p979\nIHoqhcXhQMLM9JtGkYylsHssO6wytLS6jU0tUZ5vifL8oga+veZg4o1R1i9uIKvIRWahs1vBvyyX\nlSdPG0ogEMGeiOIJNqFmFJO9kwoVqCokk1jKynh/VQOBqAbArC8qmTaiGKeoGiQIws9EViRsLhPR\nYPq7d2dBalmSsSdNvHjj9TRt2gDAiTfcRkHf/gAk9SSGYWBWOh+XKVuq8NjdHg469WzG/vF05Egj\n5qfHY5ZV0GIQ3tLCfO37WOsWYC2fxJ4bze+cpKqY8vMx5ef/jHsVBEH4/RKhIUEQBEEQBEEQhJ+Y\nHo+jh0LIdvsOW4gBmEpKkKxWjFgMc8+eSD8oq23dqx+K34/icuEcf1C6MtAPwj3Slm1rzc00PfwI\n8dWryLroIiz9+iFbLFjLyzEXFCBZrEgWM6Uvv4ShadTfcgvx1WsAqL7wIso+eB/Z2vGWoN9h5prD\n+nHGrAUkUwYjevjIdne/EoQgCMKeoDU1sen8C4guXIilvBzfY7N4aVkjD360jgN6Z3LtoX1oPv98\ntPoGYt8twzlyBN4pU7CZFSYPymNceRaKLJG5kxBMRWMYw0h3dbxgfG+e+moDS6vbuGRCH8qynChy\nx6o+HruJfI+VzW0xemc7sdTVckfhBVwt/Zuq4AZiTfUdQkMYgKIQX7GCyIJv6DlnNqlAAHNxMeqW\ndkCyw0HmeeexceEikGUyzz4bc88eyE4nyS82tG8qoe3Z1lthQ+eeb6v4cHUDfoeZN8/fn5/jN9t2\n9+4FjpbN+4BoIN2O6LMXnubE/vsw5fKhrPq6jrLBWdicJhEYEoQdUFQVp8/f5fuRYBtZA/txzodT\nAVjcsJiXxz3DN8+/QDTQ1n79kRUFZ0a6qlo0FKS1Zh2GoZORV4DNuePQTXmOC6tJJpbUGV6agaoZ\nvHjrAmKh9KT5kRcPorBv59U0fygViSA9OwtbRSWmkhJMk/+AvJPAkJKRQcmTs2h6+BFch05kdK8s\nTMpqkimD8f1ysKiicpAgCD8fu9vMlCuGsfbbevLKPDi7qPho6DrNmze1P2/YWEVB3/40RZv41+J/\nEUwEmTlkJnnOvB3uz+ZyQ7QFXr0QgjWdLzT/YSjZH6yuXT6fVDJJuK2VtrpafAWFOLzdaw8sCIIg\n/LxEaEgQBEEQBEEQBOEnlAoGCbz9Ni1PP4Pr0IlknDQV1evpcnnZbqfHSy8SW7kSc2kpxg/azajZ\n2WS++TarmqJ8F0wwxuOn6D//oeG++7D06o1jv/0wdJ346tW0vf46qeZmIt8upGzuO8jZ2RjxOIkN\nGwh99jnuQydiLirC0LT2sBGk25h11uBGkiSG9/DxyeUHkdBSOK0qPseeqWohCILQXXo4THThQgCS\nNTUkZYWHPl5PUzjBa4s2c9p+Jbjz8tDq07+OVnr3pb4qwLpv6+k5JJuVoSjN8SQHlmfjc2wNqbRG\nEiRTOh6bCbOqMLTEx6AiL/3yXOS4Lfx99nI2t8WYX9HMOxcfQJbLip5MIikKkiyT7bLy2owRtDYH\nsQdbiF58HgAXPHANNrMD6evFUNynfX8RuxPvgw+RfPJxkvlFLA3LDBywN+oPJqclRcG2zz6Uvf9e\n+ly8XmRz+piPGlLIitogVU0R/nbUAPzdrATUHbJF4cPV6c+vKZxgTX2Q/IwdB15/SUUDBvLlK88B\nUNhvACaLBWeGg8yiXZ/YEgRhe96cPBLxBmRJRjd0VElFltJBvLzefVHUrVMMkUAbDVUVNFRV8PmL\nz1A2ZDh9R4+ldNDQDsttK8dt4aPLxlEfjJHvtWFE9fbAEEDt+kC3QkNGOEzr8y+g1da2v5Z13rk7\nXEc2mbANGED+7bchmc1YNJ2PLx9HIKqR5TLjEa0NBUHYDcFEkEA8gCzJuM1uHOadtw6D9Pdud6aN\nIYeU7HA5s9XKuJPP4H+zHiEjL59eQ0cQT8W579v7eGXtKwBUB6u5f/z9HdrkdsowQE92/X5KwzD0\nTu8T7Ey4rZXHZs5AS8TxFxZz3LU3ieCQIAjCr5AIDQmCIAiCIAiCIPyE9GCQ2uuuByC+ahXuiRM7\nDQ1pzc0gyxiJBBXHTkHxetEaG8m97joyTjgewzBItbby1YYw5zy3BIBD++dy+3EDybvlFiRFIdXS\nQv2dd5JqC1D04L/YdMGFaI2NGMl0iwWtpYXKE04EXaf50UfpOWc2puxssi+9DD0UTu/v2mtRMjq/\niWc3q9jNO/4aaSSTaM0tGIkEisuJ4vXucHlBEP7/SsQ0YqEk8YiG02fZ7dZVPyTbbJiKipC9XpRb\n7uL9VU3cf9Jgnvyyire/q8XvspJ99900PfIIlvJypMIyXr7uS/SUweIPNjHhz4M59ckFXDWpL2eP\nLQOgMRjnspcWs74hzN+O7E+fHBc+h5knpg2gduVSNv3vJR6fMoHL51azriGMLEskqqtpuPc+zEWF\nZEybhurz4bfIJB+6l8DrrwNgKiykj5pP8z0P4Lzyyg7nocsq92024z3kTNa3JcitCDNor+2nYmSL\nBTk7e7vXM50WbjxyAImUjtdmQpJ2ZxqncxaTzLjyLP63qgGfw0x57q87fJPTo4xT736QaKANf0Ex\nFnv3JuUEQegei91OZE0t94y4nffqP+Kw3Amsevs9JElm3KlntrczS0QjfPbck5hsNsItzZz052tJ\nvjkH5swlVVSKkpPT5T7MqkKuRyHXk66oEUnFKCj3Ur2qFbNNpdeQzG4dq2Sz4Z54CM1PzAKTCeeB\nY7t9nrIlHb60aaHtLAAAIABJREFUmhTyPDbyus74C4LwO2UYBo3RRhKpBA6TA6/Vi6ZrqHLH78iJ\nVIJ3Kt7hxi9vRELi/oPuZ2xR969H3WG22el/4MH0Hrk/kizj8HiJJCO0xlvblwkkAuiGnn4Sqofq\nb0C1QW5/cGytLKzJdmIT/4lcuxD7J3+DQHWHfcX7n8iT85uYNNBMgXfXguStdTVoiTgATZs2oKc6\nb3GeiKe/NySiGg6PBZvrx39vEARBELpPhIYEQRAEQRAEQRB+SrIMJhMkkyBJSObtb34lKqtomjUL\n2W7H98dpmHv2JL5iBQCWsp4AaA0NNPzjXpaOOL59vVV1QeJJHbfVgqHrND3+BM3/fQyAVGMjvtNO\nRbbZMOKx9GutraCnbxrqwWD6mABTdhb5t92KoWkobjeSvPttXBLV1VQeOwU9HMZ/1ln4zzwTxeXc\n7e0JgvDb1VQd5tU7v8EwoP+YAkYd3ROL7cdVbFCzsih95mkaJQtH/PsrGkMJzIrM2xcfwIyxZfjs\nZswZBeRedx2SJNFaF0FPpVvnpDSdlJa+Bq5rCJHSdRRZ5sNV9Xy0Kl1ZZ+YLi7n1mL0ZWOghVVvN\n7HtuBWD15x9z0+W3Ejc5cEVDVF9wIbHly9uPKePEE1HsdrIvvQQ90EaqtZXcG25E8fnI/+tfUTM7\nTnhnOMxcOL4Pd7+3iiK/g7PHlqF2o4VWMJbEpMhYTQoOi8pPEY/xOSzcedw+BGIaDrOy01ZuvzSL\n3ZEOChUU/dKHIgi/OalQCD0cRpJlFL+/0zGgxe6g94Bh2FYs49Dqvmx6920kRWbqTXfh/8H/d1oi\nQc3aVUiyzOFnX0TkXw8SfHM2AMn16ym479729os/1BpJ8OX6JpZWt3HSvsUUZtgxJYIcMDSJMaEn\nqqxjbtkIuf12ej6K04l/xjl4TzwR2WYT4XVBEPao2nAtJ805iaZYEzfudyNFriJeXvMyf+j5B/bJ\n3geHKT0yiyQjvLr2VQAMDF5Z+woj8kZgVfdse2+zzY7ZtrWJrN1k57Lhl7ExuJFwMszNB9xMhiUD\nwg3w9HFQsyi9YL/JMPl+sHnREnEqlizkvYfux5ubx5FnPIvjmUmQCKeXzd2bKt9I/v7SCl5fvJnH\nTxu+SxUu/QVF+AuLadq0gQHjDkHt5H4IQENVkNfvWYhhQJ/hORxwYh+sDlHpTRAE4eciQkOCIAiC\nIOxxWmMjoY/mYSouwlpejtLJjUFBEITfi4TFTP7ct9Hr6jDHE9tNXqTa2tBamjHl5mLEYqQCAYr+\n+yhtL7+MrX9/LH3S7WyMWIzQvHmccOpZvLOmhfpgnBuP7I/Hlv5al4pE0CMRbIMHIQ0dgcksYxsy\nlODcubgOPhgAU14e7iMnE/74E3ynnIzs3BrmUZx7JtgTnvcxejh9g7H1xRfJmP5HERoShN+pjcub\nMNJ5HTYsa2L44aVYdvbj5FQSIo3pgKPVDZbtq9yoWVmkWqM0hhIAJFI6sUSKAQVbx5zfV96xOkwM\nmlDMmvl19BmZy7rWCOU5Li4c3xtly+R4vmfrBE6ex0owplHbFsPW2tz+ejQYoDDDijPDi9HchB6L\ntb+nR6Ltj03Z2eTffns6hOn17rACUK7Hys1H740sSchyermElqK6Ncb8ymZG9vBT4LWiKDKGYbC+\nIcxt76zk+jH5WD/9ECMcwXPUkZh2UL1jd/mdlj3a8kwQhF8fPRol+M471Fx7HUpGBqXPPYu5uLjT\nZW0uN72GjSC/T1+MQyejKCo2V8frs9luZ+jhR/POv+6mqWo95tq69ve0ujrYUvlyW8trAsx46lsA\nXl+0mVfPHY3XMGi46ByMaPr6WvLcs90+LzXDi5qxfVgoFYmkA1KqitpFVU1BEIQdWdSwiKZYEwBl\n3jJOefsUNEPjrYq3eOeYd9pDQzbVxhE9j2Bp41IkJCaXTd6twFBci9MabyWpJ3GZXXgsO7+/WuQq\n4uFDHsYwDDKsGSiyAvHQ1sAQwIo3YNJtYPMSC4eZ++A/iEfCRIMB1ixfx6D+R0PNEhj8R9p6/oGT\nH07/oCkYS6Ibu3YODm8Gx113E7qmoZot7dXpfsgwDFZ9Wdv+vWHdwgZGHtuTYKQVRVZ23l5NEARB\n+NFEaEgQBEEQhD1Ka2lh08yZKHYH/hlnozU1gSShuLf/UigIgvBbZxhGlxPCqVCIWDLBK7fdQH3F\nOnJ7l3PUn6/dLpxjGAaBOXNoeeppAGIrlpN3661knnFGh+VkpxPbsGEoTz3K8388FT0rB6/LillV\n0FpbaXzw3zin/pGqqMIj39RycHkWhxT58P/ptPYKF6rPR+4116BfFke221Ece75GhWP0fkgWC0Y8\njuvQie2tHgRB+P3pPTyHxR9uIhHVGDyhGLO1G7ehGlfDo4dAMgyTH4D+x4J5+6SRw6xwwUG9ePTT\nCsb0ySTPYyURjWLoOpYfXNusThPDDy9l0MFFKGaFgKbxdHlmh+o5Awo8/Gf6UJZuamN8v2zumLuS\nf5w4GKdnAL2Gj6KuYi1jp/0Jm9OJIksYfj+F991L7Q03ohbk4zlycodjU1zdb+e1bXWhlnCSw+79\nhGgyhduq8t4lY8lxW2kMJTjryW84ZaCP5F23EXjvXQDaXnuNkidnbVfJSBAEYWf0UIiG+x8AwyDV\n3EzbG2+Sdf55XS4vyTIOb9dhG9VkptfwEZz5wKMgKZiuymfjn07HSCbIvfEGFE/n9wScUorJA3N4\nZ1kDDcE4hmGgZGRQ8sTjNP7nIRwjR2AuLf1R56q1tdH6wou0PDkLc2kp+XfeiamT1o+CIAg7MiBz\nAFbFSiwVQ5VVNCMdhtQNHU3fGoy0qBaO6HkE+xfsjyIreMzbh33iUY22+ggNG0OU9PfhzNg+VLS6\nZTWnvnMqCT3ByXudzNn7nI05YSUSSGCyKFgcpk7H136bv+MLqhVMdkhG0s/dBSApAMiyjCcnl/qK\ndQBkFPaAXn8DQwebj2QkyYiePjY2R7jp6L3xOXa9bZjDs+OgpiRJ9BmRy8ovajAM6DE4k7WB1Zzy\nv+kMyBzA/Qfdv/05CYIgCHuUCA0JgiAIgrBHGckkRiSK77zz2HD6GRiRCNlXXE7GCScg2+0734Ag\nCMJvQDiusbS6jdcWVnPC8CL65bmxmpT29xObN9P00MMExoxqv/lWu2YV9RXr6DFoaPtyqVCI+Jo1\nJCoq2l+Lr69obxsWCydJaTqyImHbEvgJvDUHaf4XZEyahKqmJ8aNaJSWJ54gedRxnPLcCuKazvsr\n6hkycwy+nI4TyYrbjcJPx1RURNm7c9EjERSvV4RGBeF3zJNlY+r1I9B1A7NNxWTZydXHMODLByER\nSj//5C7ofUinoSGv3cxZY3oyfWQJFlVGTYSZ+/BDxMNBDj7rfLzZue3Lmq1q+4SKtZNbYV67mYn9\ncxnV008wluTeE4eQ5bIAVibOuIiUlsRit6Oa00GjaCJFKLsA5+13Y7VbUD3dDwntTDihEU2mAAjE\nNOJbHksSmBSJ3l4ziYXfti+fqKjA2PI3QxAEYVdIFgv2YUMJzHkLAPu++/7obba3CwSMjAx6vvkG\nBqB4PEimjm1mYuEQ1SuXsWbuHI4pK+fM0w6kJi7jsqnIJhXbwIEU3HkHktmMpPy40WuqsZGGu+4C\nQKtvoOHue8i98QbkLtrkCIIgdCbXnsucY+bQFm/Da/Fy43438uLqFzm8x+HbVQFyW9y4LV1/F26r\nj/DiLQsAcPmtjLuwB4rDIN+ZD4Cmazy14ikSerqy5tMrnuaUvU7lu3frWfjuBiQJjr50CHm9OlZW\ni2txwskwdpN9a3Ujmw9OeQPmXgMmG0y6HRxZANg9Xo6+/DpWffEJ/sJisnv2AvvWsW2m08JNRw8g\nqRl4bKb26ph7Wnapi2l/G0koFMXqUZj01iEYGCxtXMra1rUiNCQIvyKSJE0G9jIM49Zf+liEPUeE\nhgRBEARB2KMUt5ucv1xDcO5cjEj6FywtTz2N+4g/iNCQIAj/b7RFk0x9+Et0A175tpqPLz+QXE96\nUjsVCFD7l2uJV1Rgm3hwh/Xs27RrNKJR6u+6m6zzzyO6aBF6IknOVVciu91EQwm+fG0dyz+roXgv\nH4ec3IvmBx6g9YUXgPSER9aFFyApCpLJhKmoCHQD3dhaL/z7x3o0SmLDBkIff4xjxEjMPXvssXZk\n25ItFuSfoFWOIAi/PbIi4/DuQrUxSUqHhBY+mX5eMjr9y+guuKwmXFYThmEw7+VXWP3lJwDMffBe\nJl9y9Xatc7YVDQZIaRqyomB3e3DbTLhtHSe1rZ1cK1fWBTnu31+Q0g3+NLqUmRP64LKatltud3jt\nJo4eXMDb39UwZWhh+3YznRYePnkYK9Zupujggwk+91z6+AbtgyQqugmCsBsUt5uca67Be/wJqJl+\n1Ow9O36TFIWoy4tugMe8/TWyrb6W127/GwCVi79lWDLBmClTsZq2TlnItp31tOwePRrt8DwVDEIq\ntUe2LQjC74dJMZFtzybbnq5UdnjPwxlXNA6basOiWohrcVriLWwKbqLEXYLf5keW5E631bgp1P44\n2BQjHA9z3sdn8/wRz5Npy0SVVUbmjeStinSwc4B/ALIhU7G4EUhn7dcvbuwQGgokAsxeN5tX1rzC\nhJIJnFB+Al6rF0wWKBwOJz0Hkgw2Lyk91f5jIqfPz9DDj+ryvJ0WE/zEw02zRaUp2cAxc4/i9jG3\nk2XLYkNwA6qsUugs/Gl3Lgi/Y1K6fLpkGIbe3XUMw3gDeOOnOyrhlyBCQ4IgCIIg7FGy1Yq1Xz8A\nmp98ClIpXAcfTEqGUO1mzFbbDkuaC4Ig/BrpsRip1tZ09ZyMDBIpM/qWbE4ipaPpW4M6SBIoClpN\nDe6qjRw0/XTWLfqG8v3G4MnK7bhhRQEMWp56msJ//QtTYSGq349sNqOForTWR3F4zGxY1kwykiC5\nubp91eSmjRipFJKioGZmUvL0U4TrGnns5KH859NKDuqbTa47Pdmu1dVTcewU0DQagNKXXsI2oP9P\n+6EJgiB0IpXSiAYCANhcbhR1m1tTPcbAjE8h2gLZe4F1x9XKosEABmC2bg0XmcwWZLnzCZrvRQJt\nfPTEw6z49KP29pEOj3eH63zv3WW1pLZc9+cuq+OcA8t2GhoKRJOsqguyYnOA8f1yyPdaO21v6XNY\nuP4Pe3HVYX2xKAoe+9btFvns5AzpgdzrQrwHj0cPR7APHYLq83XruAVBELYlu1yYS0sw4nEMbc9W\nLasLxPjLa0uJJFLcdsxACn0df0RUvXJ5h+cbly9h38QxYN3zM9Om/HwcBxxA+JNPkD0esmdevMuB\nJD2RILlhI6FPPsY5Zgym4mJk054JjAqC8NtkVsyYla0VyzaFNnH8m8eT0BP4rX5e/MOLZNmzOl23\nuL8Pd6aVQGOM8jFZLG1bQn2knpS+NdB4UNFBFE4spD5Sz4i8EXgULwMPKuTjZ1djsij0Hdnx/kJb\nvI1bvr4FgFUtqxhXPC4dGvqe3UdLrIW5K59jedNypu81nSJX0daKRL8CUS3KHQvu4OYDbqYuXEd5\nRnmHKkMNkQaiWhSnyYnPJsbAgrA7JEkqBeYCXwFDgdslSZpBOh64DjjNMIyQJEmHAXcDYeAzoKdh\nGEdIknQqMMwwjPO3bOu/QCbQsGXdDZIkPQ4EgGFALnC5YRgv/VznKOw6ERoSBEEQBGGPk61WrOXl\n9Hr/PfRwGDweXrj9Ruor1+MrKOT4624RwSFBEH5TElVVVE45DiOZJGPqVDwXX8pVk/ryxuLNTN23\nuENlCsXlIu/vf6P+9jtILV/OgEtmstdBh6BarCjbtFZQfT6KHvgn0aVLUbOyULxeZKsVPZHA1FLD\nKNdSrAeNYP7XMWSHk5xr/kL1RRchmU1kzZzZoaWCKTsbb3Y2++kG+5T4sJoUTEp60jy2ciVoWvuy\n0W+/EaEhQRB+EY0bKnnhhqswdIPjrr2J3F59OoZnbN70v26IBgN89MTD7LPfWPoPGIwWjRKLRtlv\nyklYHI4drhuPhFnx6UdAun1kQ1UFjoGDAUildAINUdYvbKB4gJ+MHDuqeev1+8hBBTz+eSWxpM60\nEcXYzTu/vba0uo1pj3wFwP0frmXOhfuT7e58gsZr77pdjllVwJeBc//9d7pPQRAE+EH4PRZD8XpR\nvVuvscmqKiqmHIcRi+E5/jhyLr0UZZvKmDtj6DpaYyNGLIbsdKL6fCRTOne9u4r3ltcDcMUrS/jX\ntKF4fjBm7jFoKB/JMoae/mH7XgeMw+LYs5Uwo6EEesrA7HCTf9ut6NEoksmE6t/1NjeplhYqpkzB\niMVouO9+yt55W1TXFAShgw+qPmhvJ9YUa6IqUNVlaMjptXLs5UNJainmN37J3Qvu4NKhl2I3bQ1Y\neqwehucOb38eaWulqK+Jk28ahKI6sDg6BhcVqeP9BpPc8f24FufhJQ/z5Ip0Vc83173J7GNmU+As\n2O1zjgTaMHQd1WLBYrP/H3v3HV5FlT5w/Htmbu+5aSSE3gWkSBOQ5oq9gGVd0F0QldW17trWde0i\nrnXt5ber2LGwdgUUFFHpAgqC9JKE9Hb7nTvz++PGhJAEQkgE9Xyeh4c7986cORP0ZO6c97wvES1S\nE9RjVg8usNJj9fDwmId5a9Nb5AfyOS7nOJzm2nv6olARf/jwDxSECjg2+1hmHjcTv00GDklSM3UD\n/gRsBuYAvzMMIyiEuBH4qxDiX8AzwCjDMLYJIV5rpJ3HgFmGYcwSQlwEPAr8lLosCxgJ9CSZmUgG\nDR3BZNCQJEmSJEmtQg+FMHQd1e8nEItSuH0rAKW5u4mGgjJoSJKkX5Tg4sUY8eTq66r580m97M/8\naXgHzjkmB5fVhNW8z8O5zEyyZtwDQtQJ7NETCeKRCCartSa7hiktFffYMXWOT5SVsf3sszEiEYTF\nwuhP5qI6VFRPR9o//18QotHMEooi6mW8sB/dF8XpQA+GEGYzzhEjDvVHIkmSdNDi0QjfvPUaseoy\nMV+/9SqnX3MTlmaWn4mFw2xf+y2DevUjf+rFdD7hBITVijV24GwZZosVs9VGPBoBIfCk1U7ohKvi\nvDlzBfFIgmUfbOPCu4/FtVfQUJd0J59fN5Z4QsdjN2OLBNECGqrPh9gnOPQnK7aX1rwuCkTRdIM9\nFRGCUQ2fw4S7ooTg4q9wHDMQc04Oiu3IWfEtSdIvW3TzZrb/YRLE4/inTSPtsj/XlKmtnDcPIxIB\noGLO/8i48sqDbl8rLGTbxLNJlJbiOuEEsu68A+H10i3DxXXje1AajJJfEUbZJ7may5/Gn+5/nB8W\nf052j15kde2B0sgY2hyhiihz/7OO0twgI87pSucB6VgOITObEY3W/KyMcBgjGm2prkqS1AoMw6Ak\nUoJhGPisvoMOYGmOYzKPqXltUSwHDMZxeJKZ1Y5xDOD9du9jUSyE4iEqo5W4LW481tqMm8GKct69\n/y7yN22kTZfunHXDP1FNdZ+teiwe7h91P3M2zeHEjieSaqsbIBmIB/hi9xc125qhsbF0Y7ODhoLl\nZbz7wD0UbtvMqAsuouOoEby+aTaLdi9iWp9pjGg7ok4Q1IE4zU7GtBvDsOxh2FQbqlL3d8LOqp0U\nhAoA+CbvG2KJWLP6LUkSADsMw1gihDgNOAr4qnoxjwX4hmSgz1bDMLZV7/8acGkD7RwLTKx+/RLw\nr70+e6e67Nl6IYSMtD7C7T9XsyRJkiRJv2p6JEJ8zx7ie/agV0/etAStuJgdF/6RLcf/jry/34xd\nKKRkZQOQ2bkLds/BrVyUJEk63FzjxqFUZ63w/f48FIcDm9lEqstaL2DoJ4rVWidgKBYJs231Ct59\n8B6+WzCXSCDQ6Pn0qqraSYlYDL2yHNWUPI8pNfWgS9GY0tPp/P775DzxBJ0//ghz2+avJJQkSWou\n1Wwhp1ffmu2cnr1RD6G0i2o2o5rNmNPTMWIxqj74gMDcudWlH/fP7vEyecZDHHvOJM6/4z7sHg+B\nslLCgSr0hE48kiwNoScMYpFEnWMtJpU2Xhvt/A6cgXJy/3YdO6deRGTjRoxEAl03KKiMsKMkSHFV\nclL59H7ZuKzJYNETj8okqiUY9+DnHP/QF9z23nr2LFnJnttuY+uEiSTKypr9M5EkSdpX1aefQnXw\ne+XHH2Ps9d3fddxxNWOm87jjwHSAMTlcDlUFEKoNhIx8v45EaXI7MH8+RiwGBgzplMqiTUVENZ3b\nz+hTL6jdbLWSmtOekef/kc4DBmN3778c5cHa/n0JeT+WEwnGWfDiD8SjiQMftB+K241/6lTU1FT8\n06aheFq2v5IktaxdVbuY9OEkJrw3gfWl6+uU/Wot3f3def7E57mi/xXMPm12k7PgpNhSSLWlsqFs\nAyfNOYmT5pzEyz+8TCBW+8wgFg6Rv2kjAHu2/EgsHKrXjsvi4oQOJ/DgmAc5s+uZdYKOfvp8XPtx\nNdsmxUQ3Xzcqo5XNuVzyN/9I/qYNJDSNr2a/QmGkkKfWPMW6knVct+g6KmMH366qqDjNznoBQwDt\n3O1qAqEGZgzEojSenVOSpAMKVv8tgPmGYfSv/nOUYRjTWugce0dY16/NLR1RZKYhSZIkSfoNC69Z\nw86LLwFdp93TT+EcMQKhHHpMcWz3bmLbkkHowS++QGgav7/9PuLRKPa4RvDtOTBwIJbOnVEPUDpC\nkiTpSGDJyaHzxx9hxGIobvdBjV3RcIhwZSXRUIB4NEruhvXsWreW9n36YXM1XIJB9ftxjBhB6Kuv\ncAwdiik945D6L8xmzNnZmLOzD6kdSZKkQ6EoCr1HH09Wt+4YukFqTruarGvN4fT6OO/We6nctYN2\ns14gtGQJ3tNOa1LZGdVkIjWnPcPPnUQ8GuHHbxbz5WuzyOrWg+MvvpbfXdYHNcWKYhLgbDwIqez1\n2QQXLwYg77rr6fDyS+QaVs564ivKQnF6Z3uYddEQ2vsdfPa30YRjCXwOMws2FBKKJSev5q0r4Maz\nOycbjMeJ7imgXHPiTrFjc7X+qnhJkn7dPCefTOnzL2BEo/jOnojY6z7W2qULXebNJVFairltW0wp\n9ctD1pSeETrWr++HFf+BHqfAqQ+CMw1rr54oTid6MIhjyBCE2UxpMMbFs1ZQFIiybFspx3ZJ5bSj\nf977UFdKbcY2u9tyyDNVppQU0v5yOakXTUXY7TXZmiRJOvJousYza54hP5gPwH3L7uPJ45/EZ2ta\nCdzmclvcDGoziEFtBtX7rCxSxvwd8wnGg5zR5QxS7XXvV0NaiBe+fwFNT5YVf2HdC5zb/VxcluRY\nY7HZ8aRnUllUgCc9A4u94Qw+qqLitrgb/MyqWpnaZyodPR1ZX7KekzudzKPfPkq/9H6c2/1crCbr\nQV1vSlY2CAGGgTczA6taO+5aFAuKaNm8FWn2NN48/U2C8SBuixu/XZYmk6QWsAR4QgjR1TCMzUII\nJ9AW2Ah0FkJ0NAxjO/D7Ro7/GjifZJahycCXP0OfpVYgg4YkSZIk6TdKD4cpnfVizYrD0lmzsA8Y\n0CIPvsxZWSgeD3plJZbOnVGsVpy+FOJFRWz/w3loRUVYe/Ui/ZmnMMIhLHY7Nqd84CZJ0pEjEqhC\nCAVr9aSKMJsxZzQvcKdg62bevOsfYBj0H38qA085gxXvzyGWgEc/+5Hzh7Qnw518uKaHwyTKy0kE\ng2TPuKfm3AebWUiSJOlIZXe7advjqBZpSygKvsw2+DLbAOAaMqTms1g4TDwaxWK3Y7bWnQApCBbw\nwroXaOdux8mdTsYcNpj79KMYhs6ezZswxYLkmXWmPbUY3YAHzu3Hmf2zMDeQwciUXlvWTE1JQVgs\nvPblTspCyXvsdXmV7CgOktbRT6andiJlSCc/PoeZ8lCc8wbloAYqQQjsQ4YSVP28dc8KhpzeiQEn\ntMdkablyPZIkHfn0aBQUBaWpmdgMAyKVoJrBUn8S2dKxI13mzcWIxVA9HlRH7T6Kw4HF4YBGslAG\nK8p578EZ7Nn8IyPOm8zRLh+2RAzWvwNjbgJnGuaMDDp//BGJigpMfj8mvx9RFcVqrp0sdjSSmbM1\nZXRwM/7i3hRsr6Tv6BzsnkPPSKG6XCCDhSTpiGdSTByVdhTvbX0PgG4p3bCoBzcGaAmN0mgpUS2K\n2+I+YMBRWTBGOJ7AYlJIc9W999QNndc3vM6Ta54EYH3Jem479raagCBIBvQMyBjAl7lfogqVkdkj\nMSm1U7hOXwqT7n6AYHkZTl8KTl/d0mRN5bf5ObnTyZRGSrlh0Q0UhYvYUbmDUzufetBBQ25/Gn/8\n12MU79hGuz79MOxmHhnzCJ/t/IzJvSaTYm1eHxujCIV0RzrppB94Z0mSmsQwjCIhxBTgNSHET4PA\nLYZh/CiEuBz4RAgRBJY30sSVwPNCiOuBImBqq3daahUyaEiSJEmSfqOE1Yr7pBMJLFgAgPuE8Sg2\n2wGOahpTaiqd338frWAP5uxsTGlpyQ90Ha2oCMXpxHfPnbx62w0ESksYNvF8jjltAjaZdUiSpCNA\necEe5j79b8wWK+OnX4nLf+CMFfuzZeWy5GQOsHPdGkZNmoovpyPvbqjgmS93URKM8bcTeuCxm4nn\n5RHbsQPF5SKyYQPuUaNQ9yp9EKooR4vFMFmtOA6y1GMiobOlOMjLS3Ywuns6gzv58dhkBgtJ+i0q\nDZeio+Myu7CZau//ghXl5G5Yx9ZVy0nv0Jkew0bg9KW0SCbKn1O4qpIlc15n+5pV9B9/Kr1GjUPX\nzCQ0HUNNcPOSm1m2ZxkATrOT8ZnjcPlTqSop4pQpl1L24ce8Ye6Dnhy6eWPFLk7olYHXUX/S233i\neAwtTjw3F/+UKaguF53TayeAhIA0d/0JmCyvnXnXjCKi6bitJtyxEGmff05xXpgPZu0AYPvaYnoP\nTUP1O39x/waSJDVPvKCAwgceRHE6Sb/iCkxpB7gPTcShYD18eis4UuHEGeBuU2cXxWpFycxsVn+K\ntm8lb+OSKaEvAAAgAElEQVR6AL58bRZH3XsnLL4XzHaonkD/Kbh+7wD7NJeFl6YN5dHPNtGnrZcB\n7Zs2cRwJBIhFwiiqmvz9IxrPD6TH4yRKSojn5mLp0KH2uUM1m9NMt0GZdBvUvGuXJOmX7dROp5Lj\nyiEYDzIsexgOc8OZeRqTF8zjvA/OIxgPcm73c7lm4DX1yn39pDQY45/vfM+H3+XTK8vNixcNJX2v\n+7+EkWBH5Y6a7dxALnE9XqcNk2Li3O7n0ju1N10t7QnmF6IGNBImrSYz56EEC+3Noljw2/wUhYsA\nOKnjSdhN9oNvx24nvX1H0tt3rHnv+A7HM6bdmAbLi0mSdGSozhzUZ6/tBcDgBnZdaBhGT5G8IXsC\nWFG9/wvAC9WvdwDj9j3QMIwp+2zLqOsjnAwakiRJkqTfKKEouMeMxTH3k2Sqcb8fcQjlIeq0bTJh\nzszAnFk3K4ficJB589+pWrCQ3O1bCZSWALD8vbfof+KpQONBQ4ZhQCLRYn2UJElqSDhQxdyn/83u\n9d8B8NXsl/ndpVegNpBdoqn6jj2B7xfMJRaJMOj0s8np1Yd31pXwybIdzJ3cA/3777AUetCzswAo\nmHkf8d27yfzHP9A1jZ/OHCwvY87M2ynctoVOAwZx0mXX4PDuf7WjrhsoSnKypSQY45ynvqYyovHi\nNzuYd+0oGTQkSb9BBcECpn86ndyqXGYcN4NRbUdhNVkJVpQzZ8atFG7fWrPvkrdf44J7H8Fit5PQ\nNMxWK1bHkR/kXbxzB6s+Sq4sX/D8M3QbcjwfPPEtJblBug7O4I+jptYEDZVGSrG73Zx/5338uORr\n0tq2p/yTT/n96SOZu24PugHnHpODw9rw7wFTSgr+Cy6o897vemXyt/HdWbG9jAuGtSfVWX9lu6oI\nMqozD4WqYnwzr5BQVYwhp3XC6swjEozTa6CXskcfxDRtKpYOHVryRyRJ0hEoUVXFnltvI/DFF0Dy\ne3Xm329CqCrhqioSWhxVVbHvHTgeLIYXToFYILkdC8KEZ8FeP7g8okWIJqK4zK4DTuZq8RiRqiq8\nGW0YfeE0vnj5v/gysxDetnDWM9BuMDgaz4QphKBTmpP7zzkak9q0oMdoKMi3c9/n6zdeweH1Mfme\nh/Dsp0SvVljI1tNOxwiHsXbrRvvn/1svcEiSpN8un83H6Hajm338kvwlBONBAN7f8j6X97u80X1D\nMY0Pv0uWQvshv4qdJcE6QUNmxcwVA65gY9lGQvEQtw67Fa+1/jjts/no5+zF67fdSPmePMxWG1Mf\nfhp3asuObeFEmJFtR/LJxE+I6TH8Nn+dhQSHSgYMSdKvxiVCiD8BFuBb4JnD3B+pFclZN0mSJEn6\nDVM9blRPw3WuW+V8bjfes8/GfcopuMIhFNWEntDI6X00yn4m5LXSUspen018927Sr/gL5uzsn63P\nkiT9tiiKUqeMjdlu3+8K56ZIyW7L1IefwdATWBxOrHYH43ubOS5VELjwfBKlpWy32ei6cAFVCz8n\nvnMn7hNOwNazJ8HFi3EOHoyank6oopzCbVsA2PbtCuLRaKPnrAzHWbatlHnr93DBsA70yHSjG1AV\n1Wr2KQ/FGz1ekqRfr093fsqW8uRYcs+Se+h/en/STelsW72yTsAQJCdwI4EqPvvvU+RuWEf/E09j\n0GkTsbtb/v4xVFnBdwvmEQlUMei0CYe0ilox1d5X2t0eKksilOQmJ302Ly/kD2cMpndqb7KcWZzR\n5QwAPGkZ9DnxdHaXBFk++lyGZ3hYfPkgdIcTr9NKeUjjg7U7aeO1MaxzKimOxktc+J0WLhvdhcjw\nBA6LqSZ4syGGYbB2wS7WLtwNQLAsyhlX9SNRVk7ks48pf2M2ljQ/6Vdd1eyfhyRJvxCGgaHV3p8Z\n8RgYBuHKSj5/6f9Y/+VCOvTtzylXXIfDWz3ZrGu1AUMAFbtBj9VruixSxkvrX2JlwUr+MuAv9Evr\nt98yNKW5u3ntluvQ4jGOmzSF82+/D29GJk5/KqSe3+RLamrAEEA8GmX5e3OAZHbN7Wu/5ejjT2x0\n/9iWLRjhMADRTZswYvWvW5IkqbkGtxmMTbURSUQY33E8ZrXxBTdWk0Jbn53c8jA2s0J2St2sPXoi\nQUrCyQsjn0W3KngcPhTR8PiY0OKU78kDIB6NECgradGgoYpoBc+tfY7XNrzGiLYjuH347Q0GMLUk\n3dApDZdiYOC3+WVQkST9QhiG8TDw8OHuh/TzkEFDkiRJkiQdsoLKCCu2l9I9001bnx2Htf4thqHr\nJEpKMADV68XrcTPt388SKCvBl5mF3d1wil+AqnnzKH70UQCiP/5Iu2efweRvfFWjJElSc1kdTsZP\nv4qv3ngZi83O0LPORTnEkjCqasKVkhyzqiJx1mwrYeWOMqZ0slBRWgqAEYkQLy3DftRRoKqkTr+U\nHZMmY8RiqGlpdHztVczROHa3h3BVJb7MLEyWxiesC6uiXPziCgDeXZ3HF9ePxWUz8dB5/Xh8wWaG\ndU6la8aRny1EkqSW1yOlR83rbindMCtm4tEoW5Z9U29ff3YOBdu2sO3b5Hiy7J036TtufKsEDa39\nbC5fvf4iAGX5eZz8l2ubnNXIMAz0QABhsaBYrfizcxhx3gVsW72C/iedjjvVjtmqEo8m8GbYsVos\nPPm7J7EoFlyW2izppcEYpzz2FbGETuriXD66YjjZKU7KgjGuev1bvtmSzJJ5/zlHc+6gdvvtk0lV\ncDVxsjwe02tea3EdVTEIvPg0FW++CYBj2LAmtSNJ0i+b6vGQdddd7LnzLoTdRvoVVyBMJqKhIOsX\nJcuK71j7LRVFBTVBQxVmK/rkN0mZfysU/wjj/llTNmxvWyu28tx3zwFw2fzL+OTsT0g3pTfalw1f\nL0KLJ4Nwvl84j96jf4fTt/8Mlw0x9OT41pQSi6rJTIe+/dm8/BsUVSW7e8/97m/t2RNTVhZafj6u\ncWMRLVRuXZIkCSDHlcOHEz8kFA/htXrxWr0YhsHuwG6+zv2a3mm9ae9uj8fqId1tY87lw1mfX0m3\nDFe9LJOlebt5/bYb0GIxJt50O95ejY+nZquNPmPH8/3CeWR27oo3vWVLLAbjQWatnwXAwl0LuSx4\nGX5b6z1jNQyDzeWbufKzK0kYCR4d9yg9/T0bDZqSJEmSDg8ZNCRJkiRJ0iEpDkQ5/9klbCsOogiY\nd+0oumbUn0iKbdnKjqlT0UMhch5/DMfgwXjSM/abbvwniWCw5rUeCoGu72dvSZKkQ+NK8XPCxZeD\nUA45YGhf+RURzntmCQBjp/bFedppBD/4ANuQIRRhJbNXL9q/9BJ6OFyzWjpRXIxWVETZzPuYdMdt\nBLUYvnYd6mThiATjlBeEiATiZHbyEIzWrlKPajqaruOymji5TxYju6ZjNyu4ZGkySfpN6pHSg1dP\neZXcQC6D2wzGZ/OhJxJ422TV21eLRXF4agO7haKgmlp+7DAMg1BFec12JFiFntCJJ+KUR8tRhYrf\n3vBkhqFpRDZspOjhh7D16YN/yhTsKSkMOmMi/cafgsXuABT+cNtQKgpDpGQ5cXqtOKmfYaMkECOW\nSN5nlgRjxElmCIrrOtuLa+9HN+ypqt8PXSdRVgaKgiml6VmShBAMHN+eYGmEcDDO2Mk9cfodWP96\nLb6JE1B9PlluR5J+Q8zZ2WQ/cD8oCqrDAYDJYsFssxOPhFFUFWd1edqCYAE3L76ZiBbh3smv0V5x\ngNUFDWTDsKm1ATVWtfEMQz/pNmQ4qz95n3g0So/hozDbao+pCMXJLQ8Tjmt0TnOR0kAJRgCtqIji\np59BWC2kTpuGKTV1v+e0u92ccOkVDJ1wHg6Pt24ZtgaYMzLo9MZs9GgUxeGQC4skSWpRZtVMhqPu\nM8vicDGLdy/GY/WwcNdCzup6Fh5r8l4502Mj02MjmohSGS3DnDDjtXoJRYMsf+9totXPNr+a/RJn\n3XBbo0H4dreHUZOnMPy8Saiq6YAlyQ/6uhQzPquP8mg5JsVEiq352T2boiJawe1f305eMJk96ZbF\nt/Dc+OdIte//d4IkSZL085JBQ5IkSZIkHRItYbCtehJFN2BzYbBe0FAiGKTgX/9CsVqx9+tH6csv\nY+vWDSW98ZWNe/OddRaRH35Ay8sn6447UA/wsFGSJOlQKWrrfFUqrIzUvH57c4DfXXA5/mmXs7k8\nxrtLCph5dl9cAweglZTgGDqU0NKl+M4/H62wkMjateRPPIe2jz+Os2//Ou3u3ljG3Ge/B6DnsVkM\nmtCJ8we348tNxUwZ0RFPdYCQzaxiM8tU4JL0W+a2uumb3pe+6X1r3lNUlQEnnsrquR+QiNcGHVYU\nFuBrk824i/7MjjWr6H/S6dicroaaPSRCCIaceQ7lBflEgwFOnH41Zqed74q+49rPryXVnsoTxz9B\nG2ebescmysrYedFF6JWVBL/6GvuAAbjHjMFktmAy105ku/023P79Z6HI9tkY1zODxZuKmTK8I67q\n7Jlem5kZE/pyxauryPDYmDqiY53jjESC6I+byL3+ehSnk7YPP4TlIMrpOr1Wxv2xF7puYHMmx2tT\nSspBBR9JkvTrobrqjrN2r5cL7n2YLSuX0aFvf+weL5qusbVgNb/PGce7eYu4a+kMHhzzIB5Lwxna\nctw53Dn8TpbmL+WivhftN6tEPBFHyfJy0sMzSLH4cOHAYqsttbNgYwHXzl6DEDB9VGeuPr47dkvd\n+8tEMMieGTOo+vgTAIx4nMwbb0SY9n+P7fB4cRwgWGhvpiY+U5AkSWoJAkGqPZW/ffE3AD7d8SnP\nn/h8TXB7RIvwTd43/GvFv+jk6cQdw+/gy91f0rZ7F6jOGJfdo/d+swYD+83GfqhS7am8furrfJP/\nDQMyBpBibd37TUUouC21z4ndFjeqkM8kJEmSjjQyaEiSJEmSpENityhcNrozT32xla4ZLga2r10B\no5WWoodCKA4H1uN/R+CaIfxvcwVHt3HiMttp6jpAU2oqWXfcgRGPo3q9CCFa52IkSZJaWa8sD6f2\nbcOqneUM7JBCdraXK1/7lnhC54lJA2uy/5hSU2n78EMYiQTCYsEIh/FPm4a1SxccAwfWa3fP5toM\nHYU7KjGjcPMpvYhqCZxWEw6L/OonSdL+OVP8TLr7QT77z5PkbdqIL6MNIyf9CZc/lX4nnEyf0b/D\n3IqlX1wpfk654m8Yuo7d7aEkXMIdS+6gJFJCSaSE2Rtmc/UxVzd47N5lb4Ta/EmIVJeVB8/rh5bQ\nsZpUPPbkmGw1qxzbJZWF141BEYI0d90sHYmyMnL/ei2xbdsBKJw5k+z77kOx2/c9RaMsdjlOS5LU\nMFU14c/OwZ+dU/OeEShkyPKXUEu2MGTcP/hIK9nvJKzX6mVCtwmc0eUMVGX/4+Se0B5+2L2WDtYc\ngrYKrCk2fhrNtISOVQ+z7IqeGPEI+TEL4XiiXtAQuo5eFajdrKrCMAzkN3lJklqTbujkBfJ4d/O7\ndPV1ZWjWUHz7lGysiFawunA12yu3c3Knk+tlE9ofu9lOSbikZjsvkEfCSNRsV8Yq+evnf0UzNHZX\n7ebdLe+ysmAl4zKO46Rbb8GhW2jTsStm64EzvrUWRSi0dbflHPc5P8v5PFYPdw6/k38t/xcJI8GN\nQ26s928iSZIkHX7yiYQkSZIkSYfEa7fw5zFdmTKiE6oiSHMlv/hqpaXk/eMWggsXYurUCecrbzLh\noUVEtWTJh0d+b+esAU1fqa46G14xKUmS1FwlgShRTcdqUkh1texDu4RuUBKI1pS5+XBNPsd2TSXb\na2fGxL5ENR23zYTdbOI/fxqEATXj50/qlFjwesm8/rpGz9d3bDs2ryokEtQYfnZXrA4TDpMCyBJk\nkiQ1jclsIaNjZ8664Vb0RAIQOPYK1lZsrb8ieO8sRhbVQkdPR7aUbwGgW0q3Bo9R/X7az3qBokcf\nw9ynL5UduhELxvA3Ui7nQFIcDR+330xtQiD2ysKhOF3QwuUtJUmS9ibWvYP6w/sA+OZcynlXLMdk\nPvB35pqAoXA5VOXD2jeT5cyOPg+cGWBzEwlUoS36kQ8WPIXV6WTyvQ+DPZn9x2TEGW/5HtN/poJh\nkN7rTMh5CKhbRlF1u2lzx+3k3/wPhMVC2jXXoJjlfakkSa2rJFzC5I8mUxopBeCO4XcwsdvEOvus\nLFjJ1QuTgejvb3mfZ094ttEyuABhLYyu6zgtTpxmJ8d3OJ652+eytWIrtwy7pU4WHYHArJrRNA0A\nh+rAJEzcufpe0u3pvHLKK9hdrZdF6EiV6czk7pF3g5EMvJIk6bdBCPG1YRjDD3c/pKaRQUOSJEmS\nJB0yr92M1173AaAeCBBcuDC5EQiwI7+sJmAI4Isfizi9XxaqnFCRJOkwKA5EufLVVXyztZQhnVJ4\ncvIx9YJ2DsXushBnPvEV5aE4l43ugm4YTHzya967YiSpLguZntpsHc0JWApENaLxBG6bCYtJxZNm\n47y/D8YArHYTqkmOrZIkNU9rlkM4GG6Lm38O+yejc0aTZk+rU05tb0JV0Tt1Yc2Uv/LppjLee2ol\nN57Uk+mju/xsfTWlppLz2KMU3HMPittDxl+vRTmMK8glSfoNsO01VlucmJT6j/nDVZWU5u3GZLbg\nycjE7qqe2I5UwqoX4duXIFAIkXJYdB+c9TQcdQbpljQ+/HIRANFgkNwN60nJzK451vTlfWAYACgb\n3iN24sPEK6IIReBw1wZeivR0nDffyPa1q1n85IOcfvUNuFNlOTFJklpPLBGrCRgCWFWwijO7nFkn\nw9qPZT/WvN5RuaNOpqB9FYeLeXDFg1REK7h56M3kuHPIcGTw8NiH0XQNt8WNzZT8bh/VopgUE/85\n8T88tuoxOrk6MNRxNAN79qVvWl+ObXssXmvTyy/+2thNMlhIkpqj400fTgJmAO2BncDN22ee+urh\n7dX+CSFMhmFoMmDol0U+SZYkSZIkqVUImw2lOjuQVlJCp0wPPkcysEgImDiwrQwYkiTpsAlGNb7Z\nmnyYuGxbGVURrc7nRiKBVlpGIhBo6PADWrChkPJQHIDXlu9kYIcUNN2gOBDlk+/3HFLfS4MxZn70\nA5P/bylfbiomHNcQQuDwWnF6rZj2LQ/RDJqu19kOVUQp3lVFsCJ6yG1LkiQ1lUdxMT5jLEdbumON\nNX7fGI3r/Hf5Ht5ZuwfdgC1FARL7jGOtzZKTQ/YDD5B15x2Y0uWkuCRJrazbCTD2ZjjqLPjTB+Co\nO+5osRirPnqX12+9gZf/fg1bViyt+SwYilLS8UwKz32L3Is+JNL3nGQQ0AfXQKQSq8VGt6HJOR6z\n1UbbHkfVNqxawNexZjM28lY2rAry4s1f8/6/V9e5V4wGA7z54D188dYr5G/8gY3ffNU6PwtJkqRq\nDrODkdkjAbCqVib1mlSvJONZXc+ig6cDJsXELcNuwWVuOAu6buj897v/8sHWD/gy90tu+vImyiJl\nAKTYUkh3pNcEDFVGK3lnyztMnz+dUCzEdTnTGbjBx/u3/JPNb33ElO4X0DetLw6zoxWvXpKkX5vq\ngKHngA6AqP77uer3D4kQ4h0hxEohxDohxKXV7wWEEPdXv/epEGKIEOJzIcRWIcQZ1fuo1fssF0Ks\nFUJMr35/jBDiSyHEe8D6n9rb63w3CiG+E0KsEULMrH7vkup21ggh3hZCyEHyMJKZhiRJkiRJahWm\nlBQ6vjGb8rfexj5wADaL4KOrjuPbnWV0zXCT7bMduBFJkqRmCJSVUrB1M6k57XClpGKy1C81Yzer\nZHlt5FdEyHBbcVprHyQaiQSRDRvZc9ttmDt0oM3Nf8eUmnpQfTi2cypmVRBPGIzunk5+eZgJA9oS\njGl0ST+0cosb8it5eelOAP788koW3zgOu7llvtoZhsH2khCPLdhEvxwvZ/Rri0UzmHP/SiqLI7hS\nrJxz0yCcXplBQ5KklhFPxKmKV2FVrTj3Ka1TmreLV/9xHXpCY9BpExh29h+wOuo/R/Tazdx1Zm/+\n/MpKnBYTV47rdliC038qp2sYBoGyKPlbyslo78GV0jIBnZIkSTUcqXDc9aDHwFT/u3U8FmXX+u9r\ntnes/ZZex40lUlXJ2zPvpGjHNrwZmYy84SoSwy+n/ab5EKmA8p3Y2w1h7J8u5dizJ2Gx2bB79sqM\nYffC6f+G+V4IFRHvfzGLb1mBYUDx7gA715XQa3gyK5FqMpHRsTPb16wCILNz19b9mUiS9JtVGi5l\nd2A3GfYM7hp5F8F4EJvJhs/qq7dvG2cbZp00C93QcZqddcplVcWqiCai6LpOwkhwepfTWZS7iB2V\nO/Z7/spYJXcvuRuAyz67jAWnfUKhcz29jhvL8HMnYbE3bR5c1xOEKsqpKi7Gk56B05dCYaiQF75/\ngXRHOmd2PRO/LVlKrSJawZbyLQTiAfqm9SXFltLUH5ckSb8cM4B9BxBH9fuHmm3oIsMwSoUQdmC5\nEOJtwAksMAzjeiHE/4C7gROAo4BZwHvANKDCMIzBQggr8JUQYl51mwOBPoZhbNv7REKIk4EzgaGG\nYYSEED/VhJxjGMZz1fvcXd32Y4d4XVIzyaAhSZIkSZJahTCbsXbpQuaNN9S8lw1k+2Q6WkmSWk+w\nvJw37riJsvw8VJOJqY88izc9o95+GR4b7/5lBLvLw+T47KTvVSJMKy0l96oriefmEfn+e5yDBpHy\nh/MPqh8dUh18cf1YKsJx0lwW4ppOn7ZeErpBzzbuQ7pGr6O2HKTbZkYRh9RcHcWBGJOfW0JeRYQ5\nq3LplOain89JZXEEgEBZlHgkAb/drOqSJLWgiBZh+Z7lPLLqEY5OO5qrBl5VZ8Jjy8pl6IlkJrgf\nl37FoNMnNBg0pCgCa2GUR8f1Qo/rFC4rJGNMNlZb/aDRn0OoMsZbM1cQqoyhqILJdw7DkyrvgSVJ\namGKAkrDi3GsdgfDz53EnHtvQzWbGXzmOaiqSjwapWhHch6norAAEUmwTdtGe2d6MmjIlrzJc3i8\nODyN3PC5M+H0R0DXEFEL7lQ7lcVhAHyZtWO03e3h5L/8ldyNP+BJT8ebkdWCFy9JkpRUFinjhkU3\nsHTPUkyKibdOf4suvv2XqU21118UVBmt5LUNr/H0mqc5KvUorht8Hbd/dTsPj3mYx1c/zo2Db2w0\nMEcVKgKBgcGpnU8lZNY46oxT8Vm8KGrTA8dDFRXMuu4KIoEqfJlZnHv7vfxtyd9YXbQagLge59Kj\nL8UwDOZun8tdS+4CktmTbhh8A27LoT1rkCTpiNP+IN8/GFcJISZUv24HdANiwCfV730HRA3DiAsh\nvgM6Vr8/HjhaCHFO9bZ3r2OX7RswVO13wPOGYYQADMP4qY5kn+pgIR/gAua2wHVJzSSDhiRJkiRJ\nkiRJ+tXQExpl+XkAJDSNyqKCBoOGIBk4lOGpP9EiFAXF7QGS7SgeN1pFBSZv0yNl7BYTdoupTqBk\ndkrLZNnNSXHw7IXH8M2WEi48tgOpzpbL+mMYBuF4omY7FNMw20y06eJlz5YK0tu7sdhltgxJklpG\nZaySqxZehaZr/Fj2I6NyRjG2/diaz3sMG8mK9+YQj0bod8IpmK0NB97oCZ1tq4v4cWkBAFldvXQY\n5m00aEiPRBAmE8LUOo/FEnGdUGWsum8GwfJoqwcNRQJxouE4JrOKzW1GVWUZYEn6pYlHo0QCVSQ0\nDavTid3V/MlfRVXJ7t6Lix//L0BNtiCzzUZm564UbN2Mr002wm6hl9oZKnZBek+wNzFTRXVmDocV\nJvxtAFu+LSItx4U/q27GOIfXR7chxzb7OiRJkg4koSdYtmcZAJqusbZo7QGDhhoS0kI8vvpxANYW\nr2VL+RYMYVAcLubekffut7SYx+Lh0XGPsrV8Kz39PSmLlLGzaif90/vTxtkGIZq20idYVkokUAVA\neUE+WjxGcbi45vO8QB4JPUHCSLA0v7bs5LeF3xJLxA76miVJOuLtJFmSrKH3m00IMYZkIM+x1Zl/\nPgdsQNwwDKN6Nx2IAhiGoQshfvryLIArDcOY20CbwYPsygvAWYZhrBFCTAHGHOy1SC2nVYOGhBA+\n4P+APoABXARsBGaTjEjbDpxnGEZZa/ZDkiRJkqTDRyspQY9EUKxWTGlph7s7kiT9ypmtVgaffjbL\n33+bzC7d8bdtd9BtmFJTaffkExQ/939YOnQAIdh18cW0e+qpOuOYVlZGaPkK0BM4hg3DiEaJ7dqF\npUMHzOnpLXlZdXjtZsb3bsP43m1avO0Up4UXLxrK/XM30CnNxZBOqTicFk6e3hctnsBkVnF4Dk/m\nDkmSfn0EAptqI2SEyHZm47F46nzua5PNRY88k5xAdziw2BsOvFFUhYEntWfPlgoGntsVc4aVsCGI\nJRJY9lrdbRgG8Z07KXzwQSydu+D/44WY/P4G2zwUZptK98GZbFpRwOkXdcZTuZ3wWgVz+w6YfC2f\nqi0airPsg2189/luzDaV824ejC+jZQJVJUn6+ezZsom37r4FPaEx7OzzGXTaBKyO+mVtS8IllERK\nSLGm4Lf5UZWGA7pNFgsuS90xzun1cdYNtxILB1EsJvTILvxv/wXaHgMTngVXw8H2++NKsdFv3MHf\nc0uSJLUEi2rh9z1+z+sbX8dv8zM0a2iz2lGFSqotlZJICQA5rhzC8TDtPe0bDBiKaBGsqhUhBE6L\nk9E5o+nl70VxuJhL519K37S+dPR0pDJWSZo9rcHsRvty+VPxt21Hae4u2vfuh9VqZ8bIGVy/6Hp8\nVh/Tj56OqqioqEztM5VFuxcRTUSZfvR0XGZXs65bkqQj2s3Ac9QtURaqfv9QeIGy6oChnsCwgzh2\nLnCZEGJBdRai7kDuAY6ZD9wqhHjlp/Jk1dmG3EC+EMIMTG5CO1IrErUBY63QuBCzgC8Nw/g/IYSF\n5H/UNwOlhmHMFELcBKQYhnHj/toZNGiQsWLFilbrpyRJ0q9MixQpkWPvL1OiqopEZSVCVVG9XpRG\nJgOsnK8AACAASURBVFZ+LlpJCbnXXkto2XKsPXvS/v+ek4FD0q+VHHuPIJFgAC0WQ1EUHF5fs9vR\nKirIv/EmAl98AYZBzrPP4B41CgBD0yh++mmKH38CgM4ffsCOyReQKC/HlJVFxzdmNzlwSA+FiBcU\nEt+9G9tRvTCl1n+YWB6KsXx7KRv3BDjnmLa08bbO+F4eipFbHkYRggy3lVRXy2UxOlKEKsopyd2F\nOzUdpy8Fs/XXd42/IXLs/SULlaIDO+OVGKEY0bxi0tu0w52ahsXW+BinJ3QiwThCEdhdtUGMVdEq\nyqri3D9/G++v2YPDovLR1cfRMbV2wl0rKmbHhRcS274dgKyZ9+I766xWubxwIAaaRvCNlyl66GEA\nMm/+OymTJyMOokxFUwQrorxy25Jk+Uhg9KTu9BmV06LnkKR9HPL4K8feurRYjI8ee4BNy74GwOp0\nMuXBp3Cl1A36KQmX8JfP/sK6knV4rV7mnDGHDMfBB/oAECyGeAiEAmYHOFo+iFKSpBYlx95GlEfK\nCcaDWFQLqfZUFHHwGRcNwyAvmMf87fPpm94XszCTYkshw5GB1VT7nTGiRVhXso6X1r/EuHbjGNNu\nDB6rp6YfW8q3cNXCq3jy+Ce5ZP4lhLUwx2Qew0NjHsJvO/A4GywvQ4vFMFutOLw+4ok45dFyFKHU\nCTyKJ+KURcvQDR23xY3TXD/IVJKkFtEizx2aq+NNH04CZpAsSbYTuHn7zFNfPZQ2hRBW4B2SCV42\nkiwPdjvwgWEYrup9bgcChmE8UL0dMAzDJYRQgLuB00n+bIqAs4ABwHWGYZy213kCe7V3E/BHkmXM\nPjIM42YhxGXADdVtLAXchmFMOZRrk5qv1TINCSG8wChgCoBhGDEgJoQ4k9r0UrOAz4H9Bg1JkiRJ\nknRgeixG1bx55P/jFjCZaP/f/+AcMqRZbWklpRjxGMJixeRvYnryhvoUDBJathyA6IYNaKWlDQYN\n6aEQiWAQoSgNTpZLkiQdDJvTBQd4XhbTEuRVRPg+t4JjOqTQxmOrnzJc04jt3AmGAaqKtX1tyXAj\nHifyw4bkhqqSqKggUV6ePCw/HyMSaXJ/Y7t2s23CBNB1vI8/QOnR7QkkgvRI6UGKLTkGr8ur5JIX\nVwLw0Xf5vDRtSIsH9MQ0ndeX72Lmx8nrmjmxL+cNaoeiHNbnIy0qXFXJh489wM7vViMUhT/+63HS\n2rVEKXhJkprMMKBkE7x3JYrJTsZpT/Phc8+xc90ahFC4YOYjZHTs3OChiYRO8c4q5j+/HofbwvhL\n+uDyJcdCt9VNIBLkk++TJcpCsQSrdpTVCRpCgJGoLcGIprXaZdpdFhKBGEUrV+IaOwZhsRJaswbv\nOeegOlo2C5BqVug2KIP1i/MxWRTa9mj+/bskSYeHajbTsf/AmqChnJ69UU3mevvF9TjrStYBUBGt\nYHfV7mYFDUW1KBGTGac9G5PSqsUIfjZlkTIMwyDFltLkUkCHer75O+YTjAc5o8sZTcoiIklS6/DZ\nfPhszV8wBCCEoK2rLVP6TNnvfhXRCi6ZdwlxPc5nOz9j9mmzyTKySLGl4LP5yHHnMDx7OOtL1xPW\nwgCsLFhJPBFvUj+cvrr3cWbVTLqj/oIks2om3Z5OSaSEcDyMVbX+asZzSZJqVQcIHVKQ0L4Mw4gC\nJzfwkWuvfW7f5xhX9d86yQQx+2Y7+rz6T71jql/PBGbu8/lTwFMH2X2plbTmb5BOJCPDnhdC9ANW\nAlcDmYZh5FfvswfIbOhgIcSlwKUA7dvLh7iSJEk/Bzn2/rLpoRDlb76V3NA0yt98C8fAgQjTwf26\n10pK2HX5X4isWYPr+ONpc9utAAhVPeiAHmG3Y8rORsvLQ01JweSr/wVeD4ep+uwz8m/5J5aOHWn3\n3LOYM5q5UlKSfoHk2Ns69EgEPRJBdbvrZ3RIaOiBItZtKmHGwgI03eCDK0eS4bHV2c2UmkrOSy8S\nLSzA4vVhSql9eKfY7WRcew2R777DMnwEIqsttgH9iXy7GueoUQhz/UmexkQ3bABdxzFsGKvSA/z9\n40kATO41masHXI3dbCe3PFyzf35FmITe8hljw7EECzcU1mx/tqGQM/tnY7f8eh486ppG7obkRJuh\n6xRu2yyDhn6j5Nh7GAUL4bXzoWQLAHp5LvmbNwJgGDqF27c2GjQUDcSZ95/1VBaHqSgM8+28HRx3\nXveazx1mM+cNascrS3fitZsZ3LHuam7V76fdU09ScO+9WDp1xjVu3AG7G4gFiCaieCwezGrTx3YA\nxeHAce+tvLflPcq1Ki44anKLBwwB2Bxmhp3VhQHjO2CyqNhdB9dPSfq5yLG3cUIIug8dQWpOB8JV\nlWR364Hd7a63n1W1MrbdWBbuWkiOK4f2nqb9HEOVFZTvycPu8aI4bby+9U2+zvuaaX2nMThzMHbz\n4c1SfKjyAnncsOgGookoM4+bSWdv51YNHDIMg9kbZ/PE6mTW0U3lm7hl6C0NljCSpMNNjr0ty8Ag\nYdQGoVdEK1hZsJILj7oQgExnJn8f8neCWhCPxUNlrJLj2h6HRW35Mt87Kncwff50ookoTxz/BL1S\nezUry5IkSZIkteZvDxMwEHjKMIwBQBC4ae8djGRttAafdhuG8axhGIMMwxiU3sS0/pIkSdKhkWPv\nL5vicOA544zqDQXvWWc2GDCUqKoiXliIVlLSYDtaSQmRNWsACHz2GVpxMZtHjWbnxZegFRdjJBLE\ncnOpeP8DYjt3occbXyljTk+n4+zX6fDqK3R69x3UBrIMJQIB9tx5F0Y0SnTjxmQZIEn6DZFjb8vT\nysoofvJJdl92OaHly9Gj0doPExrkfYvtxVM4df11vDm5E1FNJ5bQ67UTDQXZ/P1qPpo9i43r1xDT\nE3U+t3TuTPY777J9ytVMeW8rjhn30+n99/Cccgo7L76EeH5+vTYb4hg2FHP79pjaZLIisL7m/dWF\nq4kkkhmLxvXIYEyPdNr57Tw+aSBee9MnhEOVUYIVUeKxxH73c1lV/jy6C6oisKgKF4/s9KsKGAIw\nWa0ce/YfAPCkZ9Cu99GHuUfS4SLH3sPIMCBem43Nkr+CkedfCELgzWxDh779Gz1UKAK7u3b8+ynL\n0E+8DgvXje/BouvHMO/aUWT77Pscr2Dt2pW2//436ddfh8m//xIRZZEyZi6bySXzLmHZnmVEteh+\n99+XAby6/W0eXv8kz//4EjcvuY2KSMVBtdFUdpcFX4YDl8+KapKTRdKRSY69+2dzuWnboxddBw3F\n4fVhGAbB8jICZaVo8RgAKbYUbh9+O59M/ISXTnmJNHvj5b9LwiUs2LmATWWb2LhmGa/983r+e810\nKnbn8vH2j1lVuIqrFlxFZazy57rEVhGMB7ln6T2sKVrDhtIN3LDoBkojpa16zoSRIDeQW7OdH8gn\nrjcti4gk/dzk2NuyPBYPD45+kAEZA5h+9HTyAnnkVuWSnO5M8tv9ZDuz+d+Z/+PDCR9y98i7a7II\nt5SIFuGRVY+QF8yjJFLCjKUzqIz+ssdzSZIk6fBpzSfAu4HdhmEsrd5+i2TQUIEQIsswjHwhRBZQ\n2GgLkiRJkiQ1mWKx4D3tVFzHjUSYTCgeT719ElUByma/QdEDD2Dp1JH2s2bVy+qj+nwoHg96ZSWm\nrCz0yuQXzugPPxD8ZgmOEcPZNvFs9IoKhMNBl48/QslsMHEgkAwcMu/noYRQTVi7dSO8ahUAtu49\nmnH1kiRJtaKbNlHy7HMA7Lp0Ol0+nY/y01gXLoX/XQqlW6F0K6nrX+Qfp1yEy5r8amRoGno0iuJw\nEAkE+OTJhwHI/WEd7XsfnSx9Vk0oCkGTjUtf/oaoppNfmU75ReejB0MABL5YRMr5vz9gf82ZmXR8\n9RUMIfiTWsGCXQsJxoNcPfBq3JbkCvM0t5VHft+feELHazdjMdXNnqRVVEAsjrCYUb3emverSiL8\n76FVBCuijJ/Whw59UjGZG55MVlWFYZ1TWXzjWAQCn+PXl6nC6nDSb/wpHDVqHIqq1kv9LknSz8CR\nBufOgjf/CCYbpm6j6W7JpNuwkcn/L72Nl5awuy2cdGkfVs7dgSvFRs9js+rtk+K0kOJsfCV3NBQk\nd9MGNi35iv4nnUpaTgfUvbLDlQSibCkK0tZnY1PVGt7d8i4AVy+8mo8nfky6qemTbZqhsatqV832\nntAeNKP1SqJJkvTrUr4nnzfu+DuRUIAJN9xK2169UVUTfpsfbPs/tjRSytULr2ZN0RoEgudHP4sn\nPZPKogJ2r/+ObG82W8q3IPjll6EVCKxKbRCpRbW0enkyk2Li8n6Xs7V8K5FEhH8e+0+8Vu+BD5Qk\n6RfPYXYwOmc0PVJ68P6W9/lk2yfcc9w9teOOrkP5DtQVz5PRdiB0Hg0tHDAEyXGoo6djzXY7T7uD\nzorZFEWhInZW7aSdux2ptlRURT3wQZIkSdIvTqsFDRmGsUcIsUsI0cMwjI3A8cD66j9/Ilm37k/A\nu63VB0mSJEn6JdPKytArK5Mlvvz+JpUZUz0e1AaChX5iRMIUPfIIALFt2wmtWIH3lFPq7GPy++n8\n3rvEduzA0qEDu6+6uuYzc7scjHAYvSK5QtoIhUiUlWHKyGj2QzmTP4WcR/9NcMlSLB07YukgUyVL\nknRoFFvtLIqw7DNpoKjgykwGDQGWtI6c2jcbp9WEVl5OxdtzCC5dStplf0Ztl1OnXT2R4Ks3Xqbr\noGGk5rTDZLEiBPgcZgoqo+yoiNG//wBCX30FioLt6L5N7rOpOhNbByOFOWfOwTAMPBYPJqV27Pc5\nGp4E10pLKbjnHqrmzcc7cSLp11xdU0pt49J8qkqSGT2+emsTWZ09mLzWBtsBsFtU7JZfdnmKA7E5\nXXWCvyRJOjSheIi4Hsdj8TTtflA1QfYA9GkLCFaU894jz1Cal8sf7nqgSeUCVbPGkNPaYjKbMVsP\nvsxDuKqK/828HYANXy9i2r+fxeVPluAtD8W46e3vmP9DATk+G/+eUlua12v1HvT9rkW1cNXAq/ih\n9AeqYlXcOfxOvBY5qSxJ0oHpus7Sd94gUJbMELzghWc575/34NhPYOXeEnqCdSXVJVkx2BTchsuf\nSjwaoeeIMYwuV9F0jal9puKxNv4M4ZfAYXZw09Cb0NGJaBFuGXZLMrCqlWW5snj8+MfRDf1nOZ8k\nSUcOs2omx53D+b3OZ/JRk+sGDQaL4D8nJP8GuGAOdD2+xftgUkz8sfcfaetqS/j/2bvv8Kiq9IHj\n33Onz2Qy6YSWBELvHSwgqCiirqLiqljBsrq6uq7u6q7u2te1/VR27QUXdcVeQOxYUCxYAEV6E0JJ\nL9Nn7vn9MTEhkoQkJIbyfp7Hh5k75557LupJ5p73vG8syLHdj8Vj87TqNQqDhZz55pkU+AvwOXy8\n8ptXyHRLtiohhNgftXWu+cuAZ5RSdmAdcB6JkmjPK6VmABuBU9t4DEIIIcQ+J1ZezvZ/3k7F669j\nJCXR7dVXsHfpsvsTd8diwTVwAMFvv0ssaPfqtUsTZbViy87Glp2NjsXodNttlL74Ip7Ro3B0744Z\nDuOdNInKt97Cc+ihxKuqMAMBLJ6WfzG1ZmTgO+7YPbkzIYSoYc/NpePNN+P/4nPSL7gAy87lZ9zp\nMHUWfPkopORg9D0OT3WWoci69ey4804AAl9+Sfe33+Koi/7ADx++R+9DxrFh6bd8/tJzfPXai8y4\n/zG86Q4ykhw8f+FBPLlwHVa3g9S/X0/SqpUk9eiJ9ReZ3JrCUEajZSbqEy8ppWLemwCUzZlD+ozp\nUB00lJVXuwiUlePFaCDLkBBCNCbkryLsr8KwWHEmebE5EsGHJcES/u+b/+Onyp+4dtS19Ejpscvu\n41AsRHm4vCawKNmRDBYrQe3ihXtuoHRrorzLDx+9x2FnTm90HIHyMhbPf43MQ4byedGXHJIzllxf\nHg5rw8GQvxSL1JYYi0ejaF1bnjISM/lifWKBfnNZCDOcwT2H3cO3O77l9L6nk+5M36W/3enq7cqs\nSbPQWpPiSMFq2b/KPgoh2oZhGGT36MUPH74HQGbXvDpZ0WJmjJgZw2ltOOXQhQMv5IElD9DJ04mx\nOeNIvuIoDMPAnezj5KyTmdx9Mm6re7/IGpHlzuK2Q28jruM1mTp/Da1dbkgI0TSBaICt/q2sLlvN\n8Kzh7RLIopSqP2BQx2sDhgBK1pLIqdD60pxpTO09tU36BgjHwhT4CwAoD5dTEamQoCEhhNhPtemT\nCq31d8CIej5qm5+QQgghxP4iEqHizcQCsFlVRfCbb1slaMialkaXmf8mtHw5tq5dsXVofEFbWa04\neuSTfc1fao9Fo6SecTpp06YRXr+e0JKluIYM2eOxCSFEa7H4fKRMPYXkE0/AsNWTntubDUdcX/O2\nqCrM/GVbmayitW1ME6UU/cYdTo9RBxELh3nkknMBiMdiNYvOSilyMzxcPb4rnzw7i5fXruLEP1+P\no8OuJXPaiuFNQjkc6HAYw+NB7ZRpqUNeMlOvHYG/LEx2dx/O/bDkmBCibUXDYZZ//AELZj2CYbHy\n2xtvp1PPPgB8sOkDXl3zKgBXLLiC2ZNn7xL4uKZsDWfPP5uoGeWqEVdxau9TcVld2Bx2ug0dngga\nUoruQ+t7fFTXys8X0nHMMM7+5EKqolXM/P4B5p80nw7Whkvl/pInJY2DT53G2q+/ZORxJ+HYKfOY\n227lkgk9uH3+CjKS7GR70xiZNpGJeROb3H99mhsMKoQQAL3HHEpyeiahqkryBg/D4U5s1CkNlfLM\nj8+wpmwNlw+7nLzkvF0zoalEMPqsSbMIRAOsKl3FhJwJNR9bMX7V4Jpfg9vmbu8hCCF+Jdv82zjp\n9ZMwtUmON4f/HvNf0l3ND+5uE3YPHPEPWHALZPSGvse394hazG1zM77LeD7c/CGDMwaT4mhatjsh\nhBD7HtneJIQQQuyN7HZ8v/kN5S+/jOH14ho2tNW6tmakkzRu7G7bxUpL0eEwym7HulOWDsNmw9Gz\nJ+Eff8TepQuOvn0wmlA6TQghfm31Bgz9QjAS5863VjJn8U90mtKLfpf9gcjir8j8/SVYUlIwrFZc\nSV6CwKgTp7L8ow/oc+hhOJPqLrJ4UlIYO+1c0LrJZSN2pzwQ5bO1RXy5voSzD84jN82NYexaGseS\nkkK3lxNl1TyHHFxTmgzA4baRlWuD3FYZkhDiABQNBVn2wTsAmPEYP378QU3Q0M4LtC6rC8Wuc9S8\ndfOImomgzFfWvMJx3Y/DZXVhd7kZc9Jp9Bt3BDaXC9VACcadxcJh4sqkKlqVGJsZpSJSQQdP04OG\nXF4vI44/mSETJ2N3uetk7khyWjl9VA4nDO6ExVBkJDU9g5EQQrQ2lzeZ7sNG7nL8480f8/DShwH4\nofgH/jf5f2S46wYnem1e8lPy+dOHf6K7rzt3HHbHrzJmIYT4NawpW4NZnS1yU+UmYmasnUe0E6cP\nRp4PQ84AZYGkfTczT5ozjZsOuYlwPIzdsJPmklKMQogEpdR4IKK1/qz6/Sxgrtb6xTa41mPAPVrr\n5a3dt6glK3xCCCHEXsjq85F19VVk/O4ilNOJNf3X3S0TKymh4G/X4V+wANfIEXS++26IxcAwsPh8\nWFNTsR588K86JiGEaAsx02RbRQiAC15dxa3HHcXJZ07D5k1CGbWlvFxJXkafOJVhk47H6nDicO+6\nk9nTzGChWGkp4RUrwGrF0bMn1pS6568v9nPxM98A8PqSAt66YiyZ3l1LUBgOB4787jjyuzfr+kII\n0RQ2p4v+hx3BR7Mfx7BY6Du2NlPFQZ0O4srhV7K2bC0XD7m43h3ek7tN5rmVzxEzYxzf/fg6gUaG\ny8FStY6/vfc3kh3JzJo0iy7ehrNr9h07gTWrvuXMnmfw6obXmdB1/C5ZfIKVETYsKyYaidNjWBbu\n5F2DkWx2OzZ7/UFKPpcNn2vfzspWEizBxCTdmb5r9hEhxD4vFAvVvI7EI2g0xcFi1pWvo1NSJzKc\nGTitTg7tfCgvHP8CVsMqZbSEEPuVoVlDyUvOY0PFBs7ud3ajpRrbhTM58c9+QH5+CNHObvCdAdwG\n5ACbgL9yQ/mz7TsoAMYDVcBnbX0hrfX5bX0NIUFDQgghxF7LmpoKqe3zxcys8uNfsACA4FeLiRUV\nseGUqWAY5Dz5BJ6Rtbsd46ZJ3NTYrZZ2GasQQuwJr9PGjb/pz6X/+wa7xeCw/p2w+1z1trW73Nhd\ndYOF4vE45dsKWPn5QroNGU56lxxsjt0/sDTDYUpmP03xAw8AkHXNX0g7++w6gUrFVeGa1+XBKKZu\nyR0KIcSesTkcDBg/kR4jD8JitdbJtJbqTOW8AecRM2NYjfofMfVM7cn8k+YTNaMk25NxWWvn2IpI\nBW+tf4tHj3qUmI5RFCxqNGgoKTWNXn2Gk8Mgzh10Hi6bm2RH7YJMPGryzTub+O7dTQBsWVHK4Wf3\nwdFAacZANEB5uJyqaBUZroz9YlGkoKqAKxZcQSge4v/G/x/5KfntPSQhRCubmDeRZUXL2FCxgWtG\nXYPNsHHRuxexvGQ5NsPGqye8Sk5yDk6rE5u2EKysoKx8Kw63B5d3/1jEFkIc2DLdmcyaNIu4juOw\nOPA5fO09JCGEaH2JgKFHgZ8fRuYCj3KDjz0JHFJKeYDngS6ABbgZKALuIhE78hVwsdY6rJTaAIzQ\nWhcppUZUtzkX+B0QV0qdCVxW3fU4pdSVQDbw54ayDimlkoDXgFTABlyntX6tvnFprecopT4ErtJa\nL1ZKPQiMBFzAi1rrf7T070HUJUFDYp9mBoMoh6PO4ooQQog9p1xOrFlZxHbswJKSkig1YZpgmpTN\neR7X0KEYVislVWEeW7ien0oC/HlSH7qm7Zp5Qwgh2ko8FsNfVkrZtgLSOnclKbVlqbLzMjw8dd4o\nlFKkeXZfHmdnwfIynvnblUSCQRa9+D/On/lYk4KGdDhM8JtvavtZ/DX6tNNQTidVoRiBSIz+nZK5\n5LB85v+wjb9M6o3XKV/fhBDtw5mUhDMpqcHPGwoYAnBanWRbs+v9zGFxMGPQDGa8PYOqaBXHdT+O\nbr5ujS78uH0pNPQbZywap2hzZc374oIq4jGzwb7WlK3h7PlnE9dxpvWdxqVDLiXJ3vB97u1iZoz/\nfPsffiz5EYBbv7iVe8ffWyewSgix70tzpvHX0X8lYkZItidTFCxieUmiWkPUjLK6dDU5yTkAlG3f\nytN//SOxcJjhx03hoJNPw+H2tOfw61URriAQC2BRFjJcGZIlTQixW/VluBRCiP3MbbDL11939fE9\nyTY0CSjQWh8LoJTyAd8DR2itVyml/gtcDNxb38la6w1KqYeAKq31XdV9zAA6AocCfYDXgYZKlYWA\nKVrrCqVUBvC5Uur1Bsb1S3/TWpcopSzA+0qpQVrrpS35SxB1SaSF2CeZ0SjBZcvY8qerKJk9m1hZ\nWXsPSQgh9ivWjAzyXnyBnFlP0u3VVwhvWJ843qkTGZddSnTTJqI7CvlsTSEPfLiWN5Zu5YL/LqZo\np6wYQgjR1vxlpcy68mJeuPlv/O/6q/CXlba4r/QkB2keO+FAlEBFmHg03qTzzHicSDAIgDbNmte/\nVBaIsKMyRDAaA8BISiLzistRbjeG10vGJZdgVAcMvfLtZsb8831OfnARp4/O4YXfjeHwPh1w2yVo\nSAixf0l2JLOyZCVV0SoA3lz/JpF4pMX92V1WRh/fHavNQBmKg6bkY3c1PHcu3LKQuE7M9x/+9CGh\neKjBtvsCi7KQ68uted8lqQs2y75dak0IUcsf9bOoYBE3LbqJjRUb8Vg9GMrAYXFweu/TAeic1JlB\nGcPZVh6ixB9h7ddfEgsnvqcv/+h9ouEw0XAYf1kZ0dDeMedVRaqYs3IOE1+cyNQ3plJQVdDeQxJC\nCCGE2BvkNPN4Uy0DJiql/qWUGgvkAeu11quqP38KGNeCfl/VWpta6+VAh0baKeA2pdRS4D2gc3X7\nOuPSWpfXc+6pSqlvgG+B/kC/FoxT1EOeOot9Ury0lI3nnIsOBKj64ANcQ4ZgTUlp72EJIcR+QymF\nLSsLW1YWAEmHHUaPDxeA1vx00e8Ir1qFJTWVQ597HqfNIBQ1CUbjaC21c4QQv57SrVuIhhOLHRWF\nO4iGQ5hmnEB5OeGAH2eSF4+v6b8jBioiLHhmBSVb/Iw7rRede6VgtTdeetHu9nDYWTP4Zv7r5I8Y\ng8dXW9omHI1TVBXB1Jqb5y7nu5/K+MukPkwakI3HYcXZvz/5b72FUmCpLkcZiMS48Y3lmBq2lAV5\n9stN/GVSnxb87QghxL5heIfhuKwugrEgR+Qcgc2oG+QSi8coCZcQNaN4bd5Gs+YopcjMSeLMmw9C\no3G4bFhtDc/jk7pN4r/L/4s/6ufMvmfise592TeaQynF1F5TyXJnEYgGmNRtUp1ycEKIfVtpqJSL\n3r0IjeaNtW8w76R5ZLmz8Dl8/H7o7zlv4Hk4LS5+3BzjnCc/oEuKm2dOGYblhWeIR6P0GnMoSim+\nefM1ln/8Af3HH8mgIyY1mknu1xCMBXny+ycBKA4V88mWTzitz2ntOiYhhBBCiL3AJhIlyeo73mLV\n2YSGAZOBW4APGmkeozYJze5Sq++8o7yxtJHTgExguNY6Wl0CzfnLcSml3tda31TToVLdgKuAkVrr\nUqXUrCaMSTSRBA2JfVc8Xv9rIYQQrcYMBAguW0bZiy/hO/EEbJ07E16VCDiPl5aiVq/gjNE5fLux\njNtOGki6x9HOIxZCHEjSu+TgzciksqiQTr37YbU78JeVMfvPlxGsrKBjzz6ccPV1TQ4c2ryihA1L\nigB4+9HvmXbTmJqgoUAkxoaiAF+sL+bIvh3onOLCMBROj4dBE4+h76GHYbU7cbhrswZvKg1w8exv\n+N347ryzfDsAV7+4hEN7ZuBxWDFsNoyszDpjMJSia5qb9UV+AHp38O7x35MQQuwNtGlixuNYEIZq\nbgAAIABJREFUbHWDgjp6OjJ3ylz8UT8+h48UZ905e2PlRs6YdwaBWIA/DP0DZ/Q9A4+t4eAei9WC\nJ6XxgM+f5XhzeP3E14mbcZLsSbhs+36ATaozlRN7nNjewxBCtIFALIAmsVEnFA8RN2ufh/ocPnwO\nH5WhKA98+A3RuGZ9sZ+X14SZft+jxMJhXElewkE/C5/7LwCfPDuLXmMOafegIbvFzuhOo3lv43tY\nlZVhWcPadTxCCCGEEHuJvwKPUrdEWaD6eIsppToBJVrrp5VSZcClQJ5SqofWeg1wFvBRdfMNwHBg\nPnDyTt1UAi2tg+0DdlQHDE2gOjCqnnGd/4vzkgE/UK6U6gAcA3zYwjGIX5CgIbFPsqSkkPPE4xT9\n5wHco0Zh7969vYckhBD7pXhFBZumz4B4nIp58+jx/ntYs7OJbduGcjpx9enDHzM6EItrfC4bhtFY\nALkQQrSupNQ0pt16D5FggGBlBYtfe4m8ocMJVlYAsHX1CuKRppe58fhqAx/dPjtKJea0aNykqDLM\n8f9eSNzU/PuDNcy/fCxZyYnNLHaHE7tj140tn64pojQQITu5dhE60+ugsakyw+vg2QtG8/zizeRn\nejgkP6PJ4xdCiPYWjUfZHtjOD8U/MChzEB3cHTCUQbCygh8+ep/KokL6TTkeZbPgtrpJsidhs9jI\ncmc12Od7G98jEAsAMGflHKb0mNJo0FBDtNaUBiKYyk9JqAi3zU2qI7XRawshxN4ky5XFjAEz+Gjz\nR5zV7yy89l2Dy502C4f1zmThmkQgvNvlxJ2ShtWS2CAei4YxLBbMeBzDYiVuaMKxMDEdI27GG83m\n1lZ8Dh/Xj7me6f2nk+5KJ9WZuvuThBBCCCH2dzeUP8sNPoDbSJQk2wT8lRvKn93DngcCdyqlTCAK\nXEwikOcFpZQV+Ap4qLrtjcDjSqmbqRug8wbwolLqBOCyZl7/GeANpdQyYDGwopFx1dBaL1FKfVvd\n/ifg02ZeVzRCgobEPsmw23ENHUrn++5FOZ0YO+1U9JeX8d3b87DYrAw6/GjczShJIYQQ+zJ/1I/d\nsGOz2HbfuIl0LFabzc00QWvynp9DeM1a7Hm5WDMysNtb73pCCNFcbl8KX897ja9efxHDYqX/hCNx\n+1IIlJfRpe9ArHZ7k/tK75LEpIsGULipkv5jO+NOTpxbGYyyqSRA3Ezs7C72R4iZuy/HeFD3DG6Z\n+yOfrS3ioTOHsWZHFScM6Uymt/HMuR19Li4/omeTxy2EEHuLknAJJ71+EsFYkFRHKi/95iUy3Zls\nX7eGRS8+yzE33cC5709nS+UWrhl1DSfkn4DHXjcAKGbGKA2VorUmyZ7EuC7jeGjpQ8TMGBNzJ+K0\nNj/7uGlq1uyo4rP1W9jMK8xZ9SwKxWNHP8ao7FGtdftCCNGmUpwpXDjoQs7qdxZJtiQc1l0z/dos\nBlOHd2FMt3SUgi6prpqAIQBnUjIn//0Wflz4IV1Gj2Dmjw9x0bCLuf+b+9kW2MZ1Y66ju687SinC\nsTBV0SocFgdJ9rbNRpTmTCPNmdam1xBCCCGE2OckAoT2NEioDq3128Db9Xw0tJ62nwC96jm+Chi0\n06FPfvF5g788aq2LgIPq+WhDfePSWo/f6fW5DfUr9owEDYl9ljIMLN66O2qi4TCfPPMkP3z0PgDB\nigrGTTsPi1X+UxdC7L/iZpy15Wu59+t76ZPWh7P6nbXHO/NiRUVUvPU2rqFDyPrrtZS/9DLJvzke\nw+PB4vNhy5Id2UKIvYNSClW9EGLGYyx5/y3OvP1eYuEIDre7WQHkTo+N/KFZ5A+tnePKQmV8tu1T\neqYM4fhBHVm4poiLDsvH49j975c5aS4+uGo8G4r89O+UzKQBHZt/g0IIsQ8pDhYTjAUBKA2X1ryO\nRSNkdM3li6Iv2Vy5GYB7v7mXibkTdwka2lS5iaJAEcFYkG6+bnRK6sT8k+YTiAZIc6a1aOG6xB/h\nsv99ywXjM/h0/ccAaDQfbPpAgoaEEPsUt82N2+ZutE2K206Ku/7AeZvDQWFqhAW9trB6/YesKVvD\nmQPPZu76uQBcseAKnpz0JHbDzpvr3+R/K/5H3/S+/HnEn0lzSVCPEEIIIYQQ+yOJpBD7FTMew19W\nWvPeX1qCNs12HJEQQrS90lApF717EUXBIj7Z8gkDMgZweM7hLe4vXlHB1htvourddwHo8tij5Dzx\nOIbHg+Fs/s5uIYRoa8OO+Q3RYIBgZSWjT5iKN631Snq9v+l9blh0A26rmxtG/4u/HNyPpGQvPtfu\ns6y57FZy0qzkpDW+sCOEEO0hWFnB1tUrqSotIX/4KDwpe14OpoO7AwMzBrKsaBnju4yvCfDp1Ksv\n3YaOxJHRHYVCo+mf3p+SUAkWw1Inu0RxsJgHlzzI4u2LsRt2XvjNC3T3tawkudYapRQWQ5HssvLN\nxiBTup/OzCV34rK6mNJjyh7fsxBCtCZTmxQHi9nm30a2J5tMd2arX6O7rzteuxeF4q5xd7HVv7Xm\nM5thQ6EoCZVw6xe3ArCufB35vnwuGHRBq49FCCGEEELsn5RSA4HZvzgc1lqPbo/xiMZJ0JDYrzjc\nHo6YfjHz7r8Tw2Iwbtp5zSpJIYQQ+ypDGfW+bo54RQVmIJB4s1P6cv8HC/AeeugejU8IIdqSx5fC\nYWedD1pjsbVuycRNlZsACMQCPLZ8JnfHT8YzZgKJUt9CCLHvWvPV57zz8P0A/NhvIL+58lpc3uQW\n9xeJRwC4d8K9mNrEYXHUZL90J/sYftwUAlE/r5zwCuvL15PqTOXCdy9kVPYo/n7Q3/HaE5mEs9xZ\nLN6+ONGnGWFp4dJmBw0FogGWFy9n3rp5TMydyKDMQcw8fRj/WbCaAb7DmX/SEdgtNlIdex4oJYQQ\nrak4WMzUN6ZSHCqmk6cTT09+utUDh1Kdqfxx+B8JxUIk2ZOoilZxVt+z2OLfwlXDryLdlc6OwI46\n55SFy1p1DEIIIYQQYv+mtV4GDGnvcYimkaAhsd9Jye7IlGv+AUrh3oMHnkIIsa9Ic6XxyMRHuP/b\n++mX1o/BmYOb3Ue8qorS5+ZQeM89WLOyyJ39XyKrV6MMC2nnz2iDUQshRMsEqyKYcY3dacXmsNQc\nb6tytNP6TuPr7V9TGirlhn5XkvTFBpR778kcFKyMYJoap8eKxWrZ/QlCCAFo06Rg9Yqa90Ub1xOP\nxZp2cuU22PwlBMogfzx4MggrC59v/Zxbv7iVnik9uemQm3Ypl2uz2/HZ7fhI5b2N7/HgkgeJ6zjL\ni5fXBBwBeGweju9+PG+se4MURwojs0c2+/5KQiXMeGcGpjZ5cfWLvHrCq+Sn5HPjbwZgGKrZ/Qkh\nxK+lIlJBcagYgAJ/QU2Zx9a2c5mzNEsaVw6/kqiO4rK6AMj2ZHNEzhG8v+l9Onk6cWbfM9tkHEII\nIYQQQoj2J0FDYr/kTpad30KIA4ehDPJT8rl97O3YDBtWo+Ef77GiIrRpYjgcWHy1c6UZCFL88EOJ\nNjt2UPXZInKffhpME2t6epvfgxDiwFEUKCJqRnHb3PgczfudLVAZ4f2nfmT7unLGnNCdXqOzsTvb\n9itNljuLmYfPJBYOkRy3Yz1uQJ35sz35y8K89cgyqkrDHHluP7LzkyVwSAjRJMowGHHcFNZ8uYiQ\nv4qx087F7vpFQKRpgr8Q0OBOB4sNKgrg0QmJwCEAwwpnvkKw00Cu/vhqgrEgW/1b+XLblxzT7ZgG\nrz+522TmrJxDWbiMq0ZeVZNlCCDDlcHVI6/mkiGX4LA4SHc1/3fRomARpq4tVV5QVUB+Sr4EDAkh\n9nopjhR6pfZiVekqBmcOxmPztOn1KsIVrClbw8aKjYztPLYmaCjVmcoNB93AtaOuxWJYyHC1Xvlf\nIYQQQgghxN5FgoaEEEKI/cTPD/caEt2xg03nnEtk/XrSzjuP9N9dhLV64VvZbbhGjMT/0UdgGLiH\nDsGaKuUahBCta7t/O9PenMb2wHam95/OjEEzSLY3PTNkoMxPdjcHYb+bj55bRd7gzBYHDZWGSikK\nFpFkS8Ln8NXstK5PqjMVnC26TJta+fk2tq2rAOD9p37k5L8Mx+OToCEhRNOkduzEuXc/gGmaOFwu\n7M6dJjqtoXAFPDsVYmE4dTZ0HAyfzawNGAIwY/DGZXjOe5OOno6sK18HQEdPx0av3cXbheePfx6t\nNV67F7ulblnxVGfqLpmKmiPHm8OgjEEsLVpKr9Re9Evv1+K+GhIORrFYDaw2mXeFEK0n3ZXOIxMf\nIRQL4bQ6WxQ4CRAzY2g0NqPx0r0rS1cy/e3pAAzOHMzMw2fWzL8pzpRG+6yMVBKOh/HavDisjhaN\nUwghhBBCCNH+JGhICCGEOED4P/uMyPr1AJQ8+SRp088jVliI1mBJ8dHptluJrN+AtUOWZBcSQrSJ\nb3Z8w/bAdgCeWv4UZ/U/q8nnBsrL+ebNpykp2Mzok85m7bdODKP285A/SkVxiEggRnoXD64ke4N9\nVUYqeeC7B3hu5XNYlIXZk2czMGNgi++rIdFwnEgohmEoXN6Gx9NSvqzaYNGkNCeGRTJoCCGazjAs\neFIaCMwJlMDcyyG5E8Sj8OJ0OP892Prdrm1LN2DD4JGJjzB33Vz6pPWhu697o9dWSrVp1oo0Vxoz\nD59JOB7GbrG3eNG9PqapKdnq57MX15DWycPwSbltMscLIfZ+5eFyysPlWJQFi7LgdXhbJTNQU+as\naDyKP+rHYXXssoGoOFjMo0sfpTJSyeXDLyfLndVgP6tLV9e8Xle2jphZf6nKnfv8w7A/4LQ6+ecX\n/2Rp0VIuG3oZh3U5rNEgfCGEEEIIIcTeS4KGhBBCiAOEIz+/5rV7zGjihYVsPPscdDRKzuOP4Ro6\nFPeI4e04QiHE/q5fej/shp2IGWFU9igsqunZGVYu+phlH7wNwLx7b+LsOx/A7qqNGtqyspS3Hvke\ngAHjO3PwifnYGshCFI6FWfDTAgDiOs4nmz/Zo6CheEUFOhLB8PkwbImd19FwjHXfFfHh0ytIyXZz\n3KWD8fhadwd2516pHPO7AVQUheg5skOjgVJCCNEshgFH3w6bPgOHFzxZYHVC/pGw8bO6bTsOAYuN\nDp4MZgycASQWs4uCRVgNKymOlHou0PbSXGlt0m+wMsK8fy+hqjTMTz+WkJXrpdeo7Da5lhBi7xWI\nBpizcg4zv52J3bBz/+H3Y7fYGZk9co/6LQoWMXv5bDw2D6f0OoU0565zWSAaYFHBIh7//nFGZY/i\n3P7n1mQF0loze/lsnlnxDAAl4RLuGHdHnTKQOzsy90heWv0Smyo2cf1B15NkT9qljWmaPPH9EzV9\nbgts4+qRVzNv/TwArvnkGt495d0WBQ3FzTjFoWJ2BHaQ7cmWMmhCCCGEEHsRpdQNQJXW+q426HsD\nMEJrXdTafbcGpVQmMBewA3/QWn/yi88fA+7RWi9vj/G1NgkaEkIIIfYy8YoKzEAQZbFgzdz1gVms\nqAitNZaUlJrF6aaw5+WR+/Rsgsu+J/m4Y9l+622YVVUAFM6cSZeZM7EkN71MkBBCNFe2O5t5J82j\nMFBIZ2/nZpWe0Xrn15rK4h2s/OxDBkw4CpfXy+aVpTWfb1tbTjRqYmugpJjb5mZa32nc8/U9eGwe\nJuVNauEdQay4mK033kRk9So6XH897hEjMOx2IqE4Hz27kljUpOinKjb9UELfgxsv19NcziQb3Yc0\nvHNcCCFazLDB4sfgu2cT74/+J/Q+BoadBavmw+avEsc9GTDl4cSf1cKxMIu3L+aWz28hJzmHWw+9\ntU0XgasiVfxU+RNry9YyuuNoMt2ZbXatnymjNrObkixvQhyQArEAr655FYCIGeHjzR/TOakzgzMH\n71JysamqIlXc9sVtvLvxXQD8UT+XD70cY+f0mkBFpIIrP7oSU5ssK1rGmI5jGNNpDAAaTSQeqWkb\njUfRO/8i/QtZ7iwemfgIpjbx2Dz1lj03MfFH/TXvg7EgdqP2HpNsSShaNhcWh4qZ8toUKiIVdPd1\n54mjn2g001JpqDSRYcniIMOVgVIyBwshhBBi/zXwqYFnALcBOcAm4K/Lzln2bPuOqv0ppaxa6/pT\nZLaeI4BlWuvz67m+pb7j+zIJGhJCCCH2IvHKSkpmP03RzJlYO3Yk73/PYsuu3bkc2bKFn86/gHhF\nBV1mzsQ1aCDK2rQf5xavF/eIEbhHjEBrjXv0KCrfegsA14gRKEfrZsAQQohfclgdZFuzyfY0PyND\nn4PHUrhpPSVbfmL0lN/y5avPs+6br8gbMhyX18vgw7uy5usdREIxxpyQj8PV8Nzotrk5uefJHJ13\nNFbDSpqj5dko/IsWUfXOOwBsuewPdH9rPkZmJoahyMrzkt4jBZvXRmburru2m0trjen3o5xOjOq5\nvyhQxJqyNXRN7kqGMwOHVeZyIcQeChRDJAADp8LaBVC5FQpXJKI3k7Lg9OcgWJpo482uEzAEUBmt\n5I8f/pFgLMjmqs3MXTuXcwec2yZD1VpTFfDz8JKHef+n9+md2puHJz7cquXIfsmdbOf4y4bw+Wtr\nSe+cRJfeTQ+AFULsP9xWN9eMvAavw4tCYVEW/FF/iwOGIJEBszRUGwhfGCgkThwDo5GzqBM4YyiD\n6QOnUxwqpjJSyXVjriPZ0fjmoN3NmVbDyiVDLmGbfxtV0SpuOeQW0l3p3D72dr7a9hVn9juz3oxI\nTVEYKKQiUgHAuvJ1hOPhBtuWh8u59+t7eXnNy6Q703nuuOda9L1CCLH/CcfCVEYrcVqc9WZME0KI\nfVF1wNCjwM/pHHOBRwc+NZA9CRxSSnmA54EugAW4GfgX1Vl/lFIjgLu01uOrTxmslFoEZAB3aK0f\nbaDfjsAcIJlEDMrFWutPlFIPAiMBF/Ci1vofO512mVLqeMAGTNVar1BKjQLuA5xAEDhPa71SKXUu\ncBKQBFiUUscCrwGp1edfp7V+TSmVB8wHFgIHA1uAE7TWwQbGfQFwIYmMQmuAs4BewB2Aq/rv4yCg\nEHgYOBL4vVLqFuAqrfVipdQkEsFdFqBIa31EQ/dR/7+V9idBQ0IIIcReRIdCFD34IACxrVvxf/op\nKSefnPhMa4ofe4zI+vUAbLvhBnKefBJrevMfzimlSD7mGJz9+kEkgr1HDwwJGhJC7AX8UT+BaACL\nYamz+OD2pTDhnAsIVlYyf+ZdRKNhhp16KlZPYje0L9PFadePAsDhsmKxNr64kuxI3u0CSlNYM2sz\nWlizMjFNKC8MYndaOGRGP26Z9yOr11VxY25/fPE4NkvTS7LtzIxECH3/PUUPPIh7zGhSTzmFMkec\nGe/MYF35OmyGjddOeI2uyV33+J6EEAcOf9RPRbgCjSbZnkxSNARvXgU/vJIoO3bqU/DG5TDuKqI6\nTlmgGGUoUtO6YzEans+S7ckEY4nncc3JKtcc0XCMbWsrWPLBNs4YcAkjB4/mrmV3YGqzTa73M6UU\nqdluJp7XD8OqdskAIoTYf5WHywnFQhjKwB/1Uxgs5Pcf/B67Yeexox9jYGbLy90WBYuIm3GuH3M9\n135yLU6rkz8M+wM2Y9fswj67j3sn3MsTy55gVMdR9E7rXefzDFcG/zjoH5jabLXF8yx3FneMu4O4\njtfM68d2P5Zjuh2DoVo+D2Z7sslPyWdt2VomdJmA09pAqlAgEo/w8pqXgUSGou+LvpegISEE/qif\ndze+yyNLH2FMxzFcNvSyNvv9UwghfmW3URsw9DN39fE9yTY0CSjQWh8LoJTykQgaasggYAzgAb5V\nSs3TWhfU0+4M4G2t9a1KKctOY/+b1rqk+tj7SqlBWuul1Z8Vaa2HKaUuAa4CzgdWAGO11jGl1JHV\n93tydfthwKDq/qzAFK11hVIqA/hcKfV6dbuewOla6wuUUs9Xn/90A/f38s+BUNWBQDO01jOVUn8n\nEUh1afVnHuALrfWfqt9T/WcmieCucVrr9Uqpnx9oN3Yfex0JGhItEispIbxmLbbsDlgzMjDcza9Z\nLYQQoh4WC67Bgwl+/TUYBs4BA2o+Ukrh6F37MNDevTvKXn95Mh2PEy8pAaWwZtRfDsKakoI1JaV1\nxy+EOKBURioJxAJYlKVVSs8EogHmr5/PrV/cSndfdx468qE6ZWbsThdozUGnnUmZN8p/VjzMkg0l\nnOM5h1RnKh7frx/86OjTh8733Udo+XJ8p57Kuy8UsPH7YvocnE3FgGReW5L4Dn3B7MW8c8U4spJb\nFjQULytj0/QZ6FAI/8KFuEeMINKzA+vK1wEQNaM1GYeEEKIp4macRQWLuPLDK9Fo7hx3J0emD8b6\nwyuJBlu/S2QXOvsN4u40fihaxu/e+x1Oi5PHj36c/JT8evtNd6bzxNFP8NCSh+iZ2pPDuhyG1pqi\nYBHBWJAkWxJprtqg0IpwBYYymr2wHQ7EmPvvJZimZuP3MOmaQ7lujB237dd5PmG1t2w+F0Lsm8rD\n5Ty69FGeWv4Uucm53D/hfv634n9AojzZ8yuf5+ZDbm7w/FAsRHm4HFObJDuS8dg8NZ8VBYuY/tZ0\n1les59Tep3Lf4ffhtDhJcdb/fd1lczG281j6p/dHaUU0HsXUZp3gnbaYC+sLuN+TgCFIZDl6/KjH\nCcfDOK3ORjMWWQ0rYzuP5ZMtn+CyuuiT1mePri2E2D9URar4+6d/R6P5qfInTuhxwj4fNBSJR9gR\n2MHasrX0S+/3q5TfFULslXKaebyplgF3K6X+BcytzgbUWPvXqrP0BJVSC4BRwKv1tPsKeEIpZQNe\n1Vp/V338VKXUhSTiUjoC/YCfg4Zerv7zaxJZhAB8wFNKqZ6AJpFF6Gfvaq1Lql8r4Dal1DjABDoD\nHao/W7/T9b8G8hq5vwHVwUIpJLIYvd1AuzjwUj3HxwAfa63XA+w0vsbuY68jQUOi2WKlZRRccw3+\njz8Bw6DbKy/j7N179ycKIYTYLWtaGl3uv4/QipXYO3fCmpVV5/PkSZOwpqcTLy3FM3EiwVgUVVaK\nO9mHqt7lrE2T0I8r2HzJJRgeN10ffRR7ly7tcTtCiP2YP+rn5dUvc9fiu+jg7sDTk5/e452+gViA\n27+8nZgZY1XpKr7Y+gXH5R9Xp43d5cad15Gz3ziFklAJiwoWMThrMBO6Ttija7eU1ecj+eijSD76\nKEq2+dn4/QoAdmyoJHtkbamHFJeNxr6AB6uirF9SSPmOAAPHdyEptZ5d1judrwwLTouTyXmTeXPD\nm3TydKJ/Rv/WuzEhxH4vGAvywqoX0GgAXlj1AiMPGULswvex+otJf+fv4OsKSZlUhcu55+t78Ef9\n+KN+HlryEH8/6O947d5d+lVKkZOcw02H3ITVSDx22hHYwW/n/paiYBGjs0dzx2F3kOZM46fKn7jh\nsxvw2r1cN+a6egNQw/Ewa0rX8MqaVzg672j6p/evWQzXWte089lTmNR5Up2FeCGEaC2hWIinlj8F\nwMaKjWwPbOfgzgezsjRRYWBi7sSaOa8+y4uXc/475xMzY/xz7D+ZmDuxppRZQVUB6ysSGYWfX/k8\n5/U/jxTPrgFD4ViYsnAZcR3HYXEwZ+UcHln6CGnONJ6Z/AxdvPvm9/6mlpRMdaZyy6G3UBoqxWv3\n7lGJYSHE/sNQBkm2JCqjlUAi4+W+riRUwpTXphCKh+ic1JmnJz/dKhu1hBD7nE0kSpLVd7zFtNar\nlFLDgMnALUqp94EY1NTE/eVDSb2b9z/3+3F1AM+xwCyl1D3AJyQyCI3UWpcqpWb9ov+fa9PGqY1b\nuRlYoLWeUl1q7MOd2vt3ej0NyASGa62jSqkNO/W9c83bOInSaA2ZBZyotV5SXQJtfAPtQlrreCP9\n/FJj97HXkRzKotl0NJrIgAFgmgSXLWuVfuOBAGY02ip9CSHEvsyank7SIQdjz8vbJZObNSWF5IkT\n8Z1yMkVF25l15cXMvuZySrfWZoOMV1Sw/dZbiO3YQWT9Booeehht1i3TECsrI1ZYiBkOI4QQLRGI\nBnhwSaKc4vbAdhZuWbjHfRrKoGdqz5r3PVJ7NNjWomozPFjV3rEXwuGy4k1LfDdVSjGwk487TxnE\n2QflMnvGaDK9DWdC2vRDMQtmr+Cbtzfx5oPLCFZG6nxuSU0l96lZJE2YQIe/XostJ4dUZyrXjL6G\nt09+m2eOfYYsd1YDvQshxK5cVhfHdj+25v0x3Y7hs21fceS753Hu9/+m8JxXwZNYnHBYHPRPrw1M\n7JXai/c2vEdZqKzB/ndePN9QvoGiYBEAX2z7gnA8THm4nOs/vZ4vt33J+5ve5/Flj9dbWqwsXMY5\nb53DnJVzOP+d8ykPlyfG5LZxzMUD6dw7lbG/7UmSzykBQ0KINmM1rHT1JjI6KhRJtiT6pvbliaOf\nYO6UuYzKHtXguZF4hGd/fJaoGUWj+e/y/+KP1q53ZHuy8doSQZg53pwGS3StKVvD5Jcnc/RLR1MS\nKmHW97OAxOLyx5s/bqU73bulOdPIT8kny52F1bJ3fAcQQrSvNGcaT09+mnP6ncMjEx8h07XvZ+XZ\n7t9OKB4CYEvVFqJxWTcT4gD1VyDwi2OB6uMtppTqBAS01k8Dd5Io+bUBGF7d5JcltE5QSjmVUukk\nAmq+aqDfXGB7damvx6r7TSYR6FOulOoAHNOEIfqALdWvz91Nux3VAUMTqD/Aqim8wNbqDEnTWnD+\n58A4pVQ3gJ3KkzX1PvYK8pu1aDbD4ybj0kvZ8a87sHbsSNIhh+xRf9o0iazfwI677sSRn0/a9OlY\n02SniBBi/xGNxynxR4nGTbxOKz6XfY/7DJSXg6kZftwUPn/pORa9/ByTLvkjFosFZbfjyO+BTk6B\nE0/G0rVrTRaiaEEBpXPmYO+ag45FsXXtinvUKAxbyzMjhqNxQlGTJKcVi9FoGkshxH7EZtgYmjWU\nhVsWYiiDgRkD97jPNGcaMw+fydfbvibPl0fnpM71tkt3pfPoUY/yn+/+Q//0/q1y7dZlvxFSAAAg\nAElEQVTg8Tk4+S/DiQRjONxW3MkOpo7oytQRiQWm0lApcR0n1ZGKxahb1qayJFTzOlARxjTrbtox\nbDZcgwbR6e67MBwOlCVxfqozlVT2rtTr8VickD8GgNNjw2KVvSpCNFc4HsbUJi5rY5vh9ozFsDCh\n6wTmnzQfrTV2q50jXzgSgA0VG1havJwjco8AwGl1cuGgCxnRYQTheJiYjnHdwusYkT2iwfI5O8vz\n5ZHqSKU0XMqwrGE4DAeGMnBbawPkvTZvvWVu4maccDwR6G5qk2A8CIDNYSG3fzqdeqRgs1swZK4R\nQrShdFc6sybNYvG2xfRM7UmGK4OOSR1RqN1myrFb7ByZeyRvb0xUOhjfZXxifjfj4C8kLRbi1d+8\nREFgO128XRrMJvH62teJmInA8lWlqxiZPZJPCz7FUAZDs4a27g23Aq01W/1bWfDTAoZmDSUvOe9X\nKyEphDhwWAwL3VO6c9XIq9p7KK2mi7cLgzIGsbRoKaf2OrVNvxMIIfZey85Z9uzApwYC3EaiJNkm\n4K/Lzln27B52PRC4UyllAlHgYhKZeB5XSt3MrhlxlgILgAzgZq11AfUbD1ytlIoCVcDZWuv1Sqlv\ngRXAT8CnTRjfHSTKel0HzGuk3TPAG0qpZcDi6mu0xPXAF0Bh9Z+7plRuhNa6sLr82stKKQPYAUyk\n6fexV1A7p3LeW40YMUIvXry4vYchdhKvrMQMBFAWC9aMPUuLGC0sZOPpZxAvK6PDtdfgGjoUS0qK\nBA4J0XKtErUhc2/rWbmtkhP/8ynBaJxrj+nDWWNycTtaHrcbKC/n3Uf/zfpvv2LA4UeR0TUX0zQZ\nNun4mjahsnK+2x7kz6/9SNdUF/eeNpTUcCUbzzyLyIYNAHS6+27KXnmFzrf/s8Vzeak/wlOLNrBo\nbTFXHNmTYbmpOKyW3Z4nxH7ogJx7S0IlrCtbRwd3B9Jd6b/6IkA4FsZm2DCMli0Ua1MTqIwQCcaw\nuyx4fPXv6m4N2/3b+dNHf6I8XM5dh91Fz9SedRbH/eVh3nn8B6pKQhxxTj86dEveJ4NttNZs31DB\na//3LUopTvjjUDrk7fvp4cVea7+ce4uCRdz39X0EYgGuHnn1Hpd+bKqSYAkXvHsBq0pXYVVWXjnh\nFfJ8eXXaFAeLufDdC1lVugqX1cXcKXOblOXM1CbFwWL8UT9eu7dmgX1HYAcPL30Yn93Hmf3OJM25\n63OAykglc9fN5bkVz3FU7lFM6zeNFMfuA5Uau0+NJs2Z1mjZSCFEo/b4f569be5ta5WRSoqDxUTM\nCFnurMQ8Vr4ZHjoUgqWQczD8dnZNhrf6fLP9G6a/PZ24jvOn4X/iuPzj2FixkQ7uDqQ50/a6gJzC\nQCFT35hKcagYQxnMnTK3JltTWwhGg5RHEtnofHYfLpsssov9jsy9B5CSUAkxM4bD4sDn8LX3cIQ4\nkMmXRnFAkExDB4jycDkVkQrshh2fw9dgmtumsni9WLzNCrRrkA4ldlV3vOkmyl9/na1/uw7XiBF0\nue9erOlNq2kthBB7s3nLCghGE6VOn/5iIycN67xHQUP+shLWfLUIgPXffs2hx5yIYbEQKy9HRyIo\noMKexJUvL6agPMSmkgBzlxZwdv9UYoU7avqJFe7A2bs3yt7yzEfriqq4973VAJz75Fd8/OcJdEiW\noCEhDhRpzjTSslsn0DsaiRAJ+LE6HDhcTVvwcFgbLve1O6WhUixBBy/c+jWhqigdunk5dEY3kn3u\nRhdcSkOlfLT5I2JmjMNzDq93gbs+T/3wFEsKl9DB3YE31r3BBQMvqPPgz+NzMOnCAei4xpFkw2LZ\n9wKGAKLhOIvnbSAWSZQYWvzmBo6a0R+bQ342CNEUMTPGg989yKtrXwWgKlrFnYfdSbK97YPv0lxp\nPDzxYX4s/pHc5Fwy3buWdvDavdwx7g4WblnI2C5jSXU0LdOZoQwy3ZlkUrfPLHcWfxv1N5RSdQJ4\ngtE4kZiJ12HFa/cypccUjso9CpfVtUeL4lsqt/DHD/9IzIxx9/i76ebr1uK+hBCiObx2L177L56l\nbluWCBgC2PQZRION9tEnrQ9vnfwW4XiYFEcKPoevwaxEe4O4jlMcKgYSwaOFgcI2CxoytcnX27/m\n0g8uBeDfh/+bgzsfXG8GOyGE2Bc09VmDEEII0Rrkt+YDQDAaZM7KOUx+eTKTXp7EmrI17T2kOioX\nfEinf/4TW5fOVH34IQDBxYuJlZS078CEEKKVHNm3AzZLYhFk8sCOuGx7FrPr9Hqx2uzYnC5OufQq\nCi76HWsnHE7p089Q/trrrJ00CSoryPbV7qrrmupGuVx0uuf/sHXujOewcXgnTCB9+nlYklu+CGXf\naVHbaigJuxdCtEhVaQkfP/Mkz994LW8/cC+l2wowzXibXa8oUMQ/Pv0H6zdsIVQVBWD7+krKAxVU\nRCoaPC9mxpi9fDbXf3o9Ny66kYeWPEQ4Fm7SNXOScxicMYTbxzxOZMfRLNsUoTIUrdPGlWTH7XPs\nswFDAFabQedetRlAOvdKwWKTnw5CNEdc185/pjbhV0wQneHKYGyXseQk5zRYBiHNmcZpvU+ju687\nNkvLS9z+zDCMOgFDJf4Id7y1gotmL+aHggpicROn1bnHGe3CsTD3fH0PP5b8yOqy1dz6+a2NzvlC\nCNGWYmaMko4DqTzqJnD6oPMIsDW+ydNtc5PtySY3ObfNs06UhcrYEdhBSajlz2c9Ng9/Gv4nku3J\nTOg6oU0DNYOxIM+seIa4jhPXcZ5d8SzBWONBWEIIIYQQovmUUgOVUt/94p8v2ntcu6OU+k894z6v\nvce1t5BMQweAQCzA3HVzgcQX0rc2vMWAjAHtPKpajh75bL3xRjrfczfWzExihYUYXi8Wn6RcFELs\nH3pmJfHxnycQjMRJddtJcu7Zj1+XN5mz7/w3ZTu2ob/9jvDqRKafopkzyZ09m0J/gMjd/+L+a6/n\n9R+K6JaZxIi8VAyHHc+Y0eQ+9xzKbkMlefCXllD07WKycruRlNa87G5aa7qmufnnSQNZuLqIi8fn\nk+ppedYiIcSBKVBexqt33MT2dYnA9pKCzWz6YQnn3v0gSanN21mntSZUVYlhseBwexps92nBp3xS\n8AlX9L0al9dGsDJKh3wvOyLb8erces8JB/zElMmGig01xzZWbCRqRnGw+4xHk/ImMTLjCKY++B0l\n/giPfLyJd68ch9e55wvuexPDYtD34E5k5/tQSpHSwd3i8nFCHIishpXfD/k9VdEqAtEA14+5nmTH\n3lHirzJSybsb301sSuo2mRN7nNgmi9afrS3iyU83AHD2E1/w9hXjyEre8/KRFsNCx6SONe87eDpg\nU/vXHCyE2DdE41G+L/qeW764hW7Jefz10i9IwwKeXTO8tYfSUCl3Lb6L19e+zuDMwdw34b6aspLN\n4bV7mdp7Ksd2Pxa7xd6mgU5Oi5NJeZNYuGUhkPjd22lpu9LDQgghhBAHKq31MmBIe4+jubTWv2/v\nMezNJGjoAOC2uTmp50ncvfhu7Iadyd0mt/eQ6nANHESXmfdjhsPkPT+H8OrVOHr2lNJkQoj9hstu\nxWVvvR+5Vpud1I6dSMnuSFWwNkuFJSMDMxJBud2k/Pa3mBVFzBiUiiO9Nl254XBgZCYWt6tKipn1\np98TDQXxpmcy7bZ78KTsvsREZSjKl+tLeHf5ds45OI9Thnfm5GGdsVul9IwQovkioWBNwNDPwn4/\nW1Yup/eYQxNtggGi4TAOtxurvf4AHa01JQWbeeeh+3Anp3LkBZc0OKflJucSM2P87Zu/cOsfb8er\nUiiMb6Ug9hM+e+1iRmFliEAkTooO8P5j/8GTmsblv/0Da8vWEjNj/GXkX0iyJzXpPlOcKYTDIcoC\nkZpjJVURyGrS6fsUZ5KNjkkpu28ohKhXpjuTmw6+CVObTZ5jmiNmxoBEgFJzVEYq+cdn/wBgefFy\nJnSd0CYLwDtnsrRbDVQrJSuzGlamD5hOpiuTSDzy/+zdd5iU1fXA8e+d3md2Z3YX2AXpXUBBREFE\nFI0IhGKLxtiDJdZojA2NGk2MP40aO/YIJlaMErGXICBNRARBellge5s+c39/zLCwbGFgWer5PA8P\nM+/c9o56nZn3vOcwvst47OaGsykJIURLKo+Uc/0X11MaLmV52XKOzx/M+C7j9/eyatXEanhv5XsA\nLCpaxKbqTXsUNASpbENOc+PB/HuL0WDkpLYn8cG4D1AofDYfRoP8RiGEEEIIIUQmJGjoMGA32Rnf\neTwj2o3AZDDhsx5YP+Ab3S6M7u0/hJpbt26itRBCHJ7iiSRlwSga8NrMWM1G1pYEmR9xM/CRxzCv\nWEb22F8SLSqi3ZTXKH36Gao+/BBrjx60e+5ZTIFAvTGDlRXEwql03VUlRcRj0XptGlJcHeHSl+cB\n8J9Fm/jspmHk7YW7v4UQYkc6marHE6ysZM47r7N64XwG/vIsug46Hou9fnmaUGUl0x9/iK2rVwIQ\nOKI9g88+v8GxO/k68eIvXmR56XKcXis+ux1rrDVdTNtL7RRVhZnw1CxO7+Gn98/TWb0wte/ZXW4m\nj52MMij8tt27eOKymXjknH48/PFyBrbPpkve3g8GEEIcGppThqspJaESnvv+OYLxIL876nfkOlKR\ni1rrOiXCGmJURkwGE/FkHIMyYDa0TJaeY9pnc/NpXflhYyW/P7Urfueus7llKtuWzYW9Ltxr4wkh\nxJ4wKANeq7e29FeWddc37+xLVqMVv81PSbgEi8FCjuPAyIC0Kx6r54DJzieEEEIIIcTBRIKGDhPy\npUkIIQ5uyzZX8atnZ5PUmucuHEB7v4Ppiwt5cMZq+hZ46d9hODc5XcRsTizVFVR9+CEAkaVLia5b\n12DQkCsrm/zuvdi4bAm9hp6MxZrZndbBaKL2cSiWIKn13jlJIcRhyWKzk9u+I1vXrNp+zO6goHtP\nAIKV5fz0zdfUlJcx45lHOaJPvwaDhpTRgM25PQjH4Wn8s6/b4mZA3gAG5A2oPWa21r34XRWOs640\nSCzhx2jbvj+Gq6vItvgwmnf/YrnTauK0Xq04vlMAm9lwyJUmE0Ic2BLJBJMXT+a1Za8BqUwX9w+5\nn+pYNS/88AIBe4AJXSY0mk3CZ/Xxwmkv8Nbytzij4xl4rB4qI5VURCswKiNeq3evZJPIclq48sTO\nxJJJrJLJUghxCPLb/Tx9ytO8vORlumV346i8o/b3kuoI2AO8Pup1Fm5dSC9/L7JsB1ZQkxBCCCGE\nEGLvkqAhcUCLl5URXb0aoy8LU24ORpfcjS2EODjoWIx4WRk6HMbgdmPK2vMf2ULROI9+uoKqSKqU\nxLNfrmJQJz/De+Ty4IyfWLShghO65mA2GikqqwRtwpSbQ3xrEcpiaTSDm8PrY8zvbyMZj2M0m7G7\nMwsubeO187uTOvPF8q1cNawzXrnoLYRoBofXx7hb7mLWm1NZu3gh/rZHcOKvL8Xh9VEcKmZBbCnH\n3XotW2YuYPknn6EMhgbHsbvcnH71jXz73lt4/AG6HT804zVURCoIxoOYDWYC9lSQpdtmonOuize/\nK+S8i8/GZrejFAwce1ZtwFBZuIxgLIjFaCFgD+wySweAzWzEZm78Ini8uBi0xuDxYLDuvewaQgih\n0YTj4drn4USY6lg1d868k9mFswEwYOCyPpc12N9qsnJU7lH0DfTFYDBQHanmo7Uf8adZf0KheOSk\nRzi53cl7Za0Gg8IqZWWEEIewNq423HrsrUAq29vG6o38Z+V/ODJwJEcGjtyvN38qpWjlbMXpHU7f\nb2sQQgghhBBC7DsZBQ0ppXKAy4H2O/bRWl/SMssSAhKVlWx98G9UvPMOAO1efgnnscc23SepKamJ\nYEARcDd8kaWkOkI0kcRiNOB3yYUYIUTLiBUWsnrceJI1NfjOPpvc39+I0evdo7EsJgPHtM/i4x+3\nANAr30theQivzcw7Vx2PNRmnfaiY8qlT8Zw+ioUVml4v/hP10494evXEmJ3d6NgOT901VYRilAej\nWIwGvA4zDkv9jwpZTgtXn9SZS4a0x2U1YWniDvDqslJWLZyHP78Af0G7OllAhBBiG1e2n2EXXk40\nFMRksWB1OCkNlXLtZ9eyuHgxAK+c/CLHDB9db9/aeZyTLrw8o+CdbSoiFTy16CleW/oa+a58Xjn9\nFXIdueS4bUy9fBDBaBynxUTH36QuohvSQUtl4TLumXUPn6z7hBx7Dq+NfI3WrszL7EbDccq3BNmy\nupIjjgzgzrYS27CBdRdfQqKsjDZ//zvOYwdisFgyHlMIIZoSjAWZ2HciZZEyQvEQdx13F2iojFbW\nttlWKmdH8WScklAJqytX09HbsbakWVWsiumrpwOpgKT3Vr7H4DaDsZmkbK0QQuyoLFxGTawGq9Ha\nYKB5SbiE3/z3N2wNbgXg5V+8zNF5R++PpQohhBBCCHHQU0r5gPO01k/uQd81wACtdfFeWMc9wFda\n60+aO1ZLyzTT0DTga+ATILGLtuIgprVGJxIYTPs/CZWORKiZPbv2ec3/ZjYZNJRMapZvqeLyV+Zh\nNxt56ZKBeJNBls78kkBBO1p36U41Zi5/ZR4L15XTt62Xyb85hpxGgouEEKI5ar79lmRNDQAV771H\nzjW/2+OxjAYDZw1oS9+2PqrDcQxKke+zYTAo/C4reZEwq0afA7EY6qmnOO6zTwkpM+4Rp2A2Z76f\nh2MJ3pi3nvs+WIrRoHjtsmMZ1LHh8hR2ixG7pem7v4OVFUx76D42/7wcgHPveZD8bj0zP3EhxGHF\nbLVi3iGzTkInWFq6tPb5yuAajuo6AOJRqNgMFRsguz248uqMszsBQwCRRITXlqZK9Wys3siirYsY\n0X4EQPpzYsOfFYPxIJ+sS33fKwoVMXPTTM7sembG81aXRXjjL/NAg2P6Gn416RhKn3qa2IYNAGye\nNIl2U6ZibZ23i5GEEGLXqqJVvPrjq7yx/A3O7X4uYzqNoY2rDRXhCm4/9nYe+PYBvBYvF/a6sF7f\nsnAZ498bT2W0kjxHHlPPmEqOIwejwchp7U9j7ua5GJSBCZ3HE68OErEksDqaX6ZMCCEOBeXhcv4y\n5y9MXzMdv83P66Nep5WzVZ02SZ2sDRgCWF+1XoKGhBBCCCEES7v3OA+4H2gHrANu67Fs6ZT9tR6l\nlElrHd9f8+8GH3AVUC9oaF+eg9Z60r6YZ29oOLd/fQ6t9S1a639rrd/a9qdFVyb2uXhZGSXPPEvh\nbbcTTV+s2J8MLheBK69IPfZ48I4b22T7inCMO979gQ1lIVZsrWZTYRHv/u1evvrnC7z9l7sp3bSB\neWtKWbiuHIBF6yuYs7qkxc9DCHF4ch4zEIPTAYBn9ChUM0vMZDksHNvBz+BOfo5q58PrsDD2iZmM\nePhLyreWQiwGgI5GMVRUku337lbAEEBNJM7bCzYCqcxtb87fQDKp93jNyUSCssKNtc9LN21sorUQ\nQtRlN9m5/ujrAShwFXBC/gmpFyo3wj/6wwunwounQ/WWZs1jUiZ6ZqcCGk0GE12zumbUz2K01Gbb\nAOiR3WO35q0oCkF6iw1WRtFaYenUsfZ1c0EBNdXJ3RpTCCEaE4lHeHXpq5SES3jiuyf4dN2nAHht\nXtq72/PwiQ9z7+B7yXPWD1SsiFbUZiPaEtxCOJEqceY0O+nt783bY97mg9H/Ifz5Up6Z+BtWzv+W\nROJg+A1RCCFaXiwZY0CrAbx42otc0vsSlpYsrdfGYXJwyzG3YDFY6B3ozeD8wfthpUIIIYQQ4kCS\nDhh6DjgCUOm/n0sfbxal1K+VUt8qpb5TSj2jlDIqpap3eP1MpdRL6ccvKaWeVkrNAR5USmUrpd5V\nSn2vlJqtlOqTbne3UupVpdQspdQKpdTlO4x3s1JqbrrPn3axtt+k2y1SSr2aPpajlHorPcZcpdTg\nHeZ8QSn1hVJqlVLq2vQwfwE6pc/vb0qpYUqpr5VS7wE/pvu+q5Sar5RaopT67W68d/X6pd+/l5RS\nPyilFiulbtjhvTsz/XhSeu0/KKWeVbt752sLy/Rq4vtKqZFa6+ktuhqxX1V/9RVFf/87AJGffqLd\nC89j8jecYWJfMNjteEaOxDV0KMpobLK8DoDFaKBdtp35a8sA8NlNVBZtv0unsmgL3lY5dfr47FLu\nQQix94WqKom7HBTM+BBzKIzB5cLo8dRpk4xE0JEIBrd7t7Ji2CwmbBaYtbKYworUBZu1SRutTzmF\n6s8+w33qqRizfACU1kT5dnUJoViCoV1ydlmS0Wk1cfaAttz9nyWYDIqzB7TFYNjzzy1Wh5NTf3st\nHz37GNltCuh4VP89HksIcfhxWVyM7zKe0zucjlEZ8dvTn0s3LoBYKPW4ZCVEg7scqzpaTSQRwW1x\nYzFaiMeSRIIxDEZFtiubJ095kp/Lf6bAXYDfltnn320lyWZtmkW37G60c7fbrfPLa+8hp52bonVV\n9DulLcqg8IwZR9LmJlFUhPUXYwgrKfEjhNg7zEYzg9sM5qO1H2FSJo5pdUztax6bBw+eRvtmWbPo\nm9OXRUWLGFYwDKcplUXIaXbSw9+DcDjIx08+ys/fzgJg8Wcf0fHoYzBKWVohhECj+Xz959w7+17O\n6HgGI44YUa+Ny+JibJex/KLDLzAoA9m2pn8DFUIIIYQQh4X7AcdOxxzp43ucbUgp1QM4BxistY4p\npZ4Ezt9FtwLgeK11Qin1OLBQaz1WKTUceAXol27XBxgEOIGFSqkPgN5AF2AgqeCn95RSQ7XWXzWw\ntl7AHem5ipVS2z4YPwo8orX+n1KqHTAD2HYHZ3fgJMAN/KSUegr4I9Bba90vPe4w4Oj0sdXpfpdo\nrUuVUnZgrlLqLa11JtlG6vUD2gP5Wuve6fl8DfT7h9b6nvTrrwKjgP9kMN8+kWnQ0HXAbUqpCBAj\n9Q9Ua60b/1VJHHR0OLz9cSSCbkZ2ib3F6HJhdGX2Q6PTauL2M3rSp8CHw2IkN5DFyGtu4qNnHsPX\nqg1te/UhV1m4YVgHPlpewsmds+mZa2/hMxBCHG6ClRV8/tKzLJv5Ja27dueXN92B01v380G8tJTi\nZ54lunoV9gce4sPlpdjMRk7ukUe200KipobI8uUE587Fc/rpmAsK6gUWdQg48TnMlAdjPLGgmKfu\nvpvWd01Cmc0YfT601rw5fz33T18GwK8HteP2kT2bLClmMxsZf3Q+J/fIxWRUeO3mZr0XZquVDkcN\n4KL/ewqD0YjD423WeEKIw4/b4sZtcQOgk0mClRXY8/tjsLohUgW5PcFSvwROIpmgLFKGUaX2vP+b\n938sLl7Mjf1vZEDuMWxZWsNXry8nq5WDEZf0JNudTZ9AH2wm224FcrZytmJcl3F7dG4Oj4XR1/Ql\nmdQYzQZsDjM4s3GPGcvG5WVEEyby2u75BfdwMEY8msRgUDg8EigvxOHOa/Vyx6A7uPTIS/FZfWTZ\nsjLu67f7eeykx4gmo1iN1jp9DcqAw+6i97BT+HnubNCa3ieejNlWN+ixOFTMzI0z6eDtQAdPB9xW\n9147NyGEOJBVRCr4euPXALy/6n2u6ntVg+1cZhcuswRbCiGEEEKIWo3dobh7dy7WdzLQn1TAC4Ad\n2NpkD3hDa51IPx4CTADQWn+mlPIrpbbFjEzTWoeAkFLqc1KBQkOAU4GF6TYuUkFE9YKGgOHpuYrT\n45emj58C9Nzhd1uPUmrbh+cPtNYRIKKU2grUT6Gc8u0OAUMA1yqltv2w2za9pkyChhrq9xPQMR1Q\n9QHwUQP9TlJK/YFU4Fc2sISDLWhIay2/5hwG3CNGEF7yI9G1a2l1xx2Y/AffXS0Bl5WLB3eofe7s\n2Zvz7n8Eo9GI3e3BvH49v5zzFmO698Iw7yuc3X8F3o5NjCiEELsnFg6xbOaXABQuX0Z1SXG9oKHg\nt99S9vLLOC65jIc/XcnUBZsAuP6ULlw7vAuJoiLWnnc+aE3py6/Q8d13MOXUzZSW47Yx4/qhVIXj\n+OxmHO66WYTiSc2STZW1z1dsqSYaTzYZNATgsZvxNDNYaEdmqxVzM0uzCSEEQPmWzbx+1x9o1aEj\noyd+gzFagXLlgSu3TrtEMsFPZT9x85c30z27O2M7j2XaymkA3PDFDfx33IfMmLyEZFxTUx5hxbwt\nJHuX8MIPLzC642iOb3M8Lkv9CzbReIKKUAyL0YjXsXf2Sbu7fjCP3W2hc//GvttmJhyMsfCjdSz4\ncC3ZrZ388vp+OLyyFwtxuMuyZdULFgrGgpSES9hcs5lO3k5k2xv+HaCx49sU9DySy//xPDqpsblc\nGI3bf24qC5dx3WfX8X3x9wC8evqr9Mvt19hQQghxSPFavdiMNsKJcOqxSTJJCiGEEEKIjKwjVZKs\noePNoYCXtda31jmo1O93eLrzh9aaDMfeOSOJTs/3gNb6md1aZV0GYJDWOrzjwXQQUWSHQwkaj3+p\nPYd05qFTgOO01kGl1BfUP+d6GuuntS5TSvUFTgOuAM4GLtmhnw14EhigtV6vlLo7k/n2JUOmDZVS\nWUqpgUqpodv+tOTCxL5nys4m79Y/UvD4Y1g6d0IZMv7X44BlMltw+bKwu1MBjspiITztXcJ33U7o\njX9hcOyc1U0IIZrHaLbgzEpdVDFZrTh89e/iVpbURWLt9bGucvvnmdXFNSS0Jl5SAjr12SpRWopO\nJuvPY1DkeWx0znURcNe/EGw2GrhhRFfa+x208tiYNLonHnumCQaFEGL/KQ2XUhwspipaVef4/A/e\nJVhRzqrvFjD1rw8RcrSrFzAEUBGtYNLMSayrWsfCrQvrXJjxWX0oVCqrT5o3144z5uOaTr/HGffU\nmxcgEk8we3UpE56axY3//o7iqki9NgeSRDTJgg/XAlBaWMPWdfXPSQghADZUb2D0O6O5ZMYl3PL1\nLZSFy/ZoHKvdgSeQizc3D6ujbga4eDLO6ortN/OtqljVrDULIcTBJMuaxVtj3lnwrJUAACAASURB\nVOLPQ/7Mv0b9S0qPCSGEEEKITN0GBHc6Fkwfb45PgTOVUrkASqlspdQRwBalVA+llAFoKrX616TL\nmaWDaIq11tvuYP+lUsqmlPIDw4C5pEqJXbItM5BSKn/b3A34DDgr3Z8dypN9BFyzrZFSald3IlWR\nKlfWGC9Qlg786U6qpFomGuynlAoABq31W6TKqx29U79tP1AXp9+HMzOcb5/J6OqhUuoyUiXKCoDv\nSL0Bs0iliBKHEIPdDvZDt2SXMTubDm++QdVnn+E64QSMvoZKCgohxO5JBoMkampQJjNOXxbn//lh\nNq9cQW77jjjc9St52o86ipzf30iitIS7L+jBFVMXYjUZuenUbpiNBlSHDnhGjSI4dy6Bq6/C4Kxf\neicT7f1O3rjieDQan83M1qoIVeE4WQ4zfpdknBBCHHhKQiW12Sgm9pnIBT0vwGNN7aMFPXuz6OPp\nALTq0g2TueGSW2aDmTauNvxU9hNFoSLMBjOPD3+c+Vvmc1bXs7CaLIz9/VEsnLGOnHZu/Pku3nlo\nBVUlYdp089Lzovp7bkUwxu9eW0BlOM660iCf/7SVswa0bbk3opmUQeHPd1GysRqDUZGVJ4HyQoiG\n/VD8A4l0hvGFWxfWPm5Q9VbQSbD7YDcyZbgsLiYdN4m7Z93NEZ4jOCH/hOYuWwghDhpmo5l2nna0\n86SqSCSTSZLJJIZD4GZNIYQQQgjRcnosWzplafceAPeTKkm2Dritx7KlU5ozrtb6R6XUHcBH6QCh\nGHA18EfgfaAImEeqjFhD7gZeUEp9TyqI6cIdXvse+BwIAPdqrTcBm5RSPYBZ6cxA1cCvaaAkmtZ6\niVLqz8CXSqkEqZJmFwHXAk+k5zSRKm12RRPnWKKUmqmU+gH4L6mSYTv6ELhCKbWUVGmx2Y2NlWG/\nfODF9PsJUCeLk9a6XCn1HPADsJlUMNUBRWm9c5aoBhoptRg4Bpitte6Xjpy6X2s9vqUXCDBgwAA9\nb968fTGVEEIcCtSum+ya7L2ZSQSDVM2Ywda/Poi1V0/yH3wQk9+/y346mUTHYiiLhZLqKKhUicXa\ncSsrSUYiGF2uVEBnM20sC/GLv39FVSTOiV1zeOScvnhtZgorw3y/oYK+bX208tgwGvbKvz5CHI5k\n790L5hTO4bKPLqt9/ulZn5LrSN14Eq6upqxwI+GaavI6dsHhqR+UuU1JqIT3V71PwB5gcJvB+Gw+\namI1TPlxCv9Y9A9OPeJUJg26C02SqvVx3n3ou9q+v75vEN5A3SCb4qoI5z43m5+3VgPw2mXHMrhz\nYG+e+l4XrIxQvKEab64Dp8eCaRflKYU4SMne20ybazbz6+m/ZktwC9ccdQ3ndT+vwRKNlK2Bl8dA\nsBjOfhXaDwFT5kHooXiI6mg1RmXcZakzIcRBodn77+G49xaHinn2+2fJd+UzrvO42uD4fak8Uo5R\nGXFbmrrxWghxgJK9Vwgh9j25YJKhdMmtaq31Q/t7LWL3ZVqnJKy1DiulUEpZtdbLlFLdWnRlQggh\nxEEgWV1D4Z2TIB4nOPMbggsX4jnllF32UwYDypq60NJQeTGjx8PevLz7Y2EFVZE4AF8uLyKW0BTX\nRBn56NdUhuN47WY+umEoeZ4DqoyqEOIwk+/Kx2QwEU/Gaeduh1Ft3wltLhetu2T2FcRv93Nhrwvr\nHKuKVvHYd48B8OGaD5nYZyKfrP2EU3NHYnOZCVfHyGnnxmyp/xUp4Lby6iUDmTp3HT1be+jVZt9f\n4NldDo+Vdj0lq5wQoj6dTFJTUY7WSbLtHl4f9TqJZAK7yd5wwBDAN/+A8lTZQ6bfBBd/CO68jOe0\nm+zYTYduVmMhhNiVUDzEQ3Mfop2nHTmOHF5Y8gJndjmTfFc+6TuuW9y6ynXcOfNOnGYnfzr+T+Q4\ncvbJvEIIIYQQQogDW6ZBQxuUUj7gXeBjpVQZsLblliWEEEIcHJTJiGf0KELzFxBbtw5LQUG9NqFo\ngopwDAPgd1kbzeaTDIVIlJYRLynBXJCPKXvv3YXdO99LwGWhuDrK6L5tsJgMlAdjVIZTgUQVoRjh\nWBPlKIQQooUEY0GC8SA2o42APcC7Y95lRfkK+ub0xW/fnrmtLFxGYU0hHouHLGsWTktmpRvDNdUE\nK8pRsShPHf8Y187+PVprHGYHry59la82fM09N/4Ze8JFlteNw9Nw2bPWPjs3jpD7JoQQB7/yrZuZ\nesdNhKqrOHXitXQ/fihm+y6CDNv03f440BVMDe+VQgghGpbUSUwGE30Cfbjy0ysBmPbzNN4Y/QYB\ne8tnsCwPl3PHzDtYuHUhAE9+9yS3D7odkyHTywNCCCGEEEI0Tmt9d6ZtlVJ+4NMGXjpZa12y1xa1\nhw709bWEjL4VaK3HpR/erZT6HPCSqtkmhBBCHLaSyQRV0TAbjz2athecj8diw5xX947raDzB1yuK\nuPK1BbhtJt664ng65abv4K4phuqtYPeBPZvo+g2sHj8e4nFcJ59M6wfuJ5JMEI9GMVutOLy+PV5r\nntvGB9eeQCSWwGkzkeWwkExqRh3Zmg9+KGRM3za4bfJjoRBi36qMVPLWireYumwqJ7U9iSv6XsER\n3iM4wntEnXbV0Wqe/O5JXv/pdRSKl37xEkfnHd3gmOXhcmLJGDaTDTtWlv7vCz574WkA+o4YyZSR\nr2BxOrCZbJyQfwIfrP6Asz4Zx9RRU8l1elv8nIUQYn9b+vUXhKoqAZj91ut0PKo/Zusugoa6jwFn\nK6jaBN1Ggj1rH6xUCCEOHU6zk+uOuo5vCr+pPVYSKiGpk/tkfoMy1Mn45ra4MSjDPplbCCGEEEKI\nHaUDb/rt73U05kBfX0vI+OqgUupoYAiggZla62iLrUoIIYQ4CAQrKphy242Ea6oxGI1c+thkjG53\nnTZV4TgPf7ycRFJTHozx6uy13D2mF8nSQtTHt6CWTgOTFa6eR2jBAoinMv8EZ88iHIvy5gN3UbJ+\nLfk9ejP6hj/i3MPAIYNB1Ss95ndZuXdsbyaN6YnFaMDnkDvGhRDNVxOroTpajUEZyLZlYzQ0Xmyx\nOlbNw/MfBmDKsimc2fVMsmz1L0SHE2FmbpoJgEYzc9PMekFDwYpySsNl3LvoAb7dMpcLe13IBV3O\nZ/GnM2rb/PjVZwyacC4ubyqT2x8G/oGLel+Ey+xixpoZVEWrsBltRBIROvs647NltucWV0cIRhPY\nzUZyGig5KYQQ+0o8EWdLaAtLipfQO9CbXEduvSwS7Xr3YdZbU0Fr2vXui8nS+L4ViUfYHNzMstJl\n9MvvR55zREufghBCHLJynDkc3+Z4huYPZUnJEq47+jqc5syyZzaXx+rh3sH38sR3T+Axe7io10US\nNCSEEEIIIYQAMgwaUkpNAs4C3k4felEp9YbW+r4WW5kQQghxgEsmEoRrqus8NnmyKKqK8P2GcgZ2\n8OO2mhjU0c+yzVUAnNAlQLyqiuSWTVhWpC9kxyOw+kucJwzH6PeTKCkh+/LLCVVVUrI+VQ1049If\niIXD4IVEZSWJigoAjF4vRo9nj88hyymBQkKIvSccD/Px2o+ZNHMSboubf478Jx28HRptbzKYsJvs\nhOIhDMrQ6EUTe8LCA8fex1VfXcPRuUczvvN44sl47YXwRCzG3PffxjKwE98UzgLg+cXPc3aXs2nb\nqw9Fa1cD0KZ7T4ym7V+Bsm3ZJHWSCe9NoJe/F1ajlb/O/SsAF/W6iKv6XoXdbKcpJdURrpmygFmr\nSumU4+T13w4ix21rso8QQrSU0kgp46eNJxgP4jK7mDZ2GrmO3Dptctp35JJHniFUVYGvVRusjsYv\nWJeGSxk3bRyxZIxTjziVm4+5maRO4jQ78VolO5sQQuyuHEcO959wP9FEFKfZicPs2Gdz5zpyuXPQ\nnRgwYDBIwJAQQgghhBAiJdNMQ+cDfbXWYQCl1F+A7wAJGhJCCHHYstgdDP31Jcz/4F069BuA02Il\nseg79IJF9Bs2nFvfWsyDZ/Xh2pO7cEaf1njtZlp5bBCsJLRkGaYjz8Ow8AWw+aD9EMxZbejw7jsQ\nj2NwOgkl4ji8PoIV5fhatcFstaITCao+/ZTCW28DoPWDf8V7xhkoY+OZPIQQYl+pjlbzzPfPoNFU\nRiuZ9vM0ru9/faPts6xZ/HPkP5m+ajontj0Rn9UH0RqIpAItiUcoj5j59MVncHi8TLvwHaoSNVTF\nqli5cSVZtizynHn4DG7KNxfS23kcJoOJeDJOjj0Hi8nCoHHnUNCjF7FwmPZ9j8bu3inQUqf+auVs\nxQ/FP9Qenr9lPpFEZJdBQ8FoglmrSgFYWVTD1qqIBA0JIfabklAJwXgQSGVzKw+X1wsastodWO0O\nslq32eV4m2o2EUvGCNgDnN/jfCa8N4HKaCVX9r2S3/T8DS6Lq0XOQwghDmX7M+hy5+xzQgghhBBC\nCJHpt4RNgA0Ip59bgY0tsiIhdhIvL0cZDM3KpCGEEC3B5nTSd8TpdDtuCOt++J7o+g1s/s2FAJjf\neJ2r/vYUyaQm4LGS7cyu7actPqy9+xPc4MV2wQUY/XkodyuUUphzcmrbOZNJLvjrY9SUleLK9uP0\nZZGorqbyg+m1bao+mI775JMxOnc/pXkyFCJeWkq8qAhLu3aYsrN33UkIIZpgM9kY1HoQb1a9CcBx\nbY5rsr3ZaKZrVle69u+aOhAshZmPwcpPYMClhFwd+O+UD9j001J6jDiV6Ws/5G/z/obVaOWx4Y+h\nlOLKT65k8qmTOfHXl7Lg8+m8NvwlVgRXc2ybQfhtfpRd0WXg8Y2uIcuWxXOnPseby9/kVz1+xZcb\nviScCHN1v6szuhhuMxvonOvi563VBFwWclxSnkwIsf/kOnLpmtWV5WXL6ZbVDb/d36zx2nva0yfQ\nB4fZwbzN86iMVgLw2tLXOKvrWfX3yZoSSMbB4gCru4ERhRBCCCGEEEIIIcSBJNOgoQpgiVLqY1L3\n4o4AvlVKPQagtb62hdYnDnPRtWvZdOttGD1uWt17b52L6UIIcSCw2OxEg0Hmvf8OgUHDao/HNm2i\nQ7Ydq7V+BiBlNGLt0gVTIAAmE8rna3BsZTDgysrGlbU9mMdgt5N13nnUfPMNKIXvvPMw2FNZMLTW\nFFdHKAvGyHJYyHE3feE6un49q8dPgHgc59ChtHnwr5gaWYsQQmTCZXFx7VHXMrbzWLwWLwF7YPcG\nKFsNMx9JPf7gRpg4r7acWKBbZ55e/jQAkUSEL9Z/wbndzmV95fpUZqG8VgwaOQFQ9Mzvm/GURoOR\nrllduaH/DRiUgffGvodG47V4M7oTO8dtY+rlx1JcHcXvtBDYw6AhrTVKqT3qK4QQ2/jtfp4d8Syh\neAi7yd7soCG/3c/jJz+O1potwS08tegp4jrOCfknYDHuVOa2ugjevBg2zofhk+Co88EmN/8IIYQQ\nQgghhBAHE6XUGKCn1vovDbxWrbWud6elUuol4H2t9ZtKqS+Am7TW81p8sfXX0Q9oo7WevsvGzZvn\nNq31/enH7Umde+9mjpkDvA9YgGu11l/v9Ppk4GGt9Y/NmachmQYNvZP+s80Xe3shQuwsXl7Opttu\nJ7RgAQAlz00m79Y/ysUUIcQBx2Sx0qFff4zdumE/9lgiy5aR84ebsfs82K3mBvsoozEVNLSblNGI\nY9CxdP70E0Bh9HpQBgMARVURxvxjJpsrw3TOdTH18mObLJETWrgQ4nEAgrNno2Ox3V6PEELsLMuW\nRZYta886mx3bH5us2BMVnH7xRXw97X2cVhentT+Np79/GqMycnK7k1lSsoSbB96Mw5Tq5/DseakH\nuykVgJnj2P0g9Ry3bY9LkpXWRHln4QbWlgS5clgnWnubLocmhBC70txAoZ1l21IB7A6zg+njp1Me\nKSfPmVe/vM7mxbAm/XvWjD9Cr7ESNCSEEEIIIYQQQuyhJ6747DzgfqAdsA647eqnh09p6Xm11u8B\n77X0PC2kHzAAaJGgIZUKVFDAbaT+2exNJwOLtdaXNTCvsaHje0tGQUNa65d3WFAW0FZr/X1LLUoI\nSF0Y37EkmSk7WwKGhBAHpEQ8Rt8RIzGZTXj+9lcMyoDR6cTgcOy68x4wOhwYGxi7PBRjc2WqkujP\nW6sJxZJNjuMcMgSj30+ipITsSy7BYNuzC95CCLG7YokYZmMDQZXu1nDmi/DTdBg4EVC4/QFOu+Ja\nYsk4gVg3RnYcic1ow2qy0tHbEafZicPcMvvtvjBjSSH3vr8UgEXry3nhomPwS4kzIcQByG6yY3fZ\nae1q3XCDrHagDKCTkNUBDPUzbgohhBBCCCGEEGLX0gFDzwHbfvg8AnjuiSs+ozmBQ+msOB8Cs4Hj\ngbnAi8CfgFzgfKAnMEBr/TulVAdgCuACpu0wjgIeJ1Whaj0QbWS+U9NjW4GVwMVa6+pG2vYHHk7P\nVQxcpLUuVEpdDvyWVAaen4ELtNZBpdRZwF1AglTlrFOAewC7UmoI8IDW+l8NzHM3qUCsjum//661\nfiz92o3AJemmk7XWf0+/ZzOAOUB/4Nv0HN8BS4DbAaNS6rn0e7oR+KXWOtTIedY7H6Ar8GB63AHA\ncUAR8Ez6vK5WSt1HOoOTUuoXpIKWjECx1vpkpdRA4FHABoTS7/VPDa1hZxkFDaVTSI1Jt58PbFVK\nzdRa35hJfyH2hNHtpvU9f6Lk+SMwZvnwnXVWvTZbKsO8MW89nXJcDOrkJ8thaWAkIYRoOTVlpbx+\n1y2Ubymk04BBnDrxGqzNyHSRiMUwmhvOTrQrWQ4LXXJdrNhazcAOWTgsTV+oMbdpQ4d334FYDOV0\nYnS767VJRiIkKyvRSmHy+yV4UwixS0mdpChYxM/lP9PZ15kcRw4GlcqIFoqF+L74e95c/iajO42m\nf15/nGbn9s52H/QeDz1Gww5BRToZZ07ht1z3+XVYjVYmnzqZI3OO3NenttsSyQQJnagt4RMJxojH\nkpitRiy21FexoqpIbfvSYJSE1vtlrUII0Wyu1jDxa9j8PXQcBq7c/b0iIYQQQgghhBDiYHU/2wOG\ntnGkjzc321Bn4CxSwTFzgfOAIaTiQW4D3t2h7aPAU1rrV5RSV+9wfBzQjVSAUR7wI/DCjpMopQLA\nHcApWusapdQtwI2kAnvYqa2ZVBDSL7XWRUqpc4A/p9f4ttb6uXS7+4BL020nAadprTcqpXxa66hS\nahLpgKddvAfdgZMAN/CTUuopoA9wMXAsqWxCc5RSXwJlQBfgQq317PQ6ztJa90s/bp9+/Vda68uV\nUv8GJgD/bGTueuejtX5857UrpZzAHK3179PPt71XOaQCyoZqrVcrpbLT4y4DTtBax5VSp5D6d2XC\nLt4HIPPyZF6tdaVS6jLgFa31XUopyTQkWpwpJ4fcW/7Q4EXq4uoIl748lx82VgIw+TcDOKVn3r5e\nohDiMFe8YS3lWwoBWDlvNrGLfrtH44Rrqln93Tx+/nY2A0aNJad9J0w7BA/VlJcRj8UwW62Nlt/J\ncVuZcvmxhGNJ7BYjgV1kqlBKYc5pvAxPMhyhZtY3bPrjrRjdbto++yzWjh326PyEEIePklAJZ/3n\nLMoiZWTbsnlz9Ju1Jb8qohVM/HgiCZ1gxpoZfDjhw7pBQ9vslIWoOlrN5MWTSegEwXiQV358hfuH\n3N9wtqJmSuokSZ3EZMj0q1LDSsOlvLrkVTbWbOS6o68jmxxmvbWS1YuL6XNSAUcOK8DmNPOrge1Y\nsK6czRVhHjyzD34JghdCHKysTmjVO/VHCCGEEEIIIYQQzdFuN4/vjtVa68UASqklwKdaa62UWgy0\n36ntYLYHnrwK/DX9eCgwVWudADYppT5rYJ5BpIKKZqav9VuAWY2sqRvQG/g43dYIFKZf650OrvGR\nykI0I318JvBSOkjn7QzOe0cfaK0jQEQptZVU4NMQ4B2tdQ2AUupt4ARSpdrWbgsYasRqrfV36cfz\nqf8+7qix89lZAnirgeODgK+01qsBtNal6eNe4GWlVBdAAxn/eJ7pL+EmpVRr4GxS6ZWE2Gcay2qR\nTGo2lYdrn68rDe6rJQkhRK2s1vmYLFbi0Qi+Vm3qBPrsjmBFOdMfewiAVfO/5dLHnsOV7QdSAUP/\nvuc2Sjeup32//px+1Y04vI0FDmVeYiwYjVMRihFPaLx2Mx573bUnKivZeN316GiUZEUFm+++i4LH\nH8fYyNxCCAEQjAcpi5QBqcCZUHx7FtakTpLQCQA0uvZxZaSS5eXLWVm+kuFth9cGGW1jN9kZkj+E\n74pS37uGtR222wFD5eFyDMqAx+pptE1puJTXlr5GcaiYiX0mYjPZyLZlN9q+Kf9d/V8m/zAZgE3V\nm3ikz1MsnZX6nvvtf1bTbVArbE4zOW4bj57Tj1hSk+WwYDRIRjchhBBCCCGEEEIIIQ5z60iVJGvo\neHNFdnic3OF5kobjR/Y0NboCPtZa/yrDtku01sc18NpLwFit9SKl1EXAMACt9RVKqWOBM4D56fJm\nmdrxPUiw67iZmt0cz95E25do4HwaEE4HZWXqXuBzrfW4dPajLzLtmGnQ0D2kIpxmaq3nKqU6Aisy\n6aiUMgLzgI1a61HpunevA35SUVYXaK0brHEnRFO8DjOPnN2Xm9/8nnbZDkb1aZ1Rv3hJCbHCQkzZ\nfoxZPgz2pv6bFUKIpjm9WVz8yFOUby7EX9AOpy9rj8ZJxuPbHycT6B0+g5VvKaR043oA1nw3n1gk\nRCpguHl+2FjBr56bQyKp+dOYXpx7TFus5h1KmilQZjM6mvrftLJYQMqTCXFYiiVilEXKKAmVkOvI\nxW/3N9rWbXYzuM1gZm6ayZA2Q3CZXdtfs7i5b/B9vLn8TUZ1GoXXmtrLfi7/mYs/vBiAt1e8zdMD\nbiNrW+CQMmJ1Bjin+zkMLRiKxWghx14/S5rWmuJQMVXRKrxWb501rqlYwx0z78BpdnLf4PvqBSVt\n8+6Kd3n2+2cB2FC1gTM6nsHQgqEE7IHde8OAcHx7cHswFsTqMGEwKpIJjdVhwmgy1L7ulexCQggh\nhBBCCCGEEEKI7W4jVYJqxxJlwfTxfWkmcC6pUlvn73D8K2CiUuplIJdUqa+dy6bNBp5QSnXWWv+c\nLreVr7Ve3sA8PwE5SqnjtNaz0uXKumqtl5AqIVaYPnY+sBFAKdVJaz2HVBmx04G2QFW6/Z74mlTm\nor+QCmIaB1zQSNuYUsqstY7twTwNns9umA08qZTqsK08WTrbkHeHsS7anQEzChrSWr8BvLHD81Vk\nWP8MuA5YCmy7pfevwCNa69eVUk+Tqjn3VMYrFiLNajIyqKOf968dgsmgyHY2XYYHIF5aysYbf09w\nzhwwmWj/+lTsvSV1uhCivmgoSCwSwWyzYbE1HlxoNJvxBHLxBHL3eC6tNeasHMb84S4WvP8Ox4wZ\nj825/SK7J5CL2WYnFg7hycnFZNn1frcryaTmX3PXk0imgpP+PW89o/q0rhM0ZPT5aDt5MoV33onR\n46HVPfdg9DSeoUMIcejaEtzC+PfGE4qH6J/Xn4eHPdxoBp5sezYPnPAA0UQUi9FClm17MKXb4mZk\nx5EMKxiG3WzHYkwFy6ypXFPbpiJcgcfigbcvhzX/A08+TJiML38ArqwulIfLiSajJHUSg9oeeFMc\nKubs98+mOFRMz+yePHnKk/jtfsoj5Uz6ZhKLihYB8Pzi57ll4C0NZrOsjlXXPg7FQwRjQYKxYNP3\nhTRibOexrK5YTWFNIbcPuh27zcxZtx7Dhp9K6XBkALtbAoWEEEIIIYQQQgghhBD1Xf308ClPXPEZ\nwP2kSpKtA267+unhOwfmtLTrgClKqVuAaTscfwcYDvyYXlu9smNa66J0Jp2pSqltF7buAOoFDWmt\no0qpM4HHlFJeUnEsfweWAHcCc4Ci9N/bgoL+li7FpYBPgUXptfxRKfUd8IDW+l+ZnqjWeoFS6iXg\n2/ShyVrrhemsPTt7FvheKbWA3a/U1dj5ZLrOIqXUb4G3lVIGYCswAniQVHmyO4APdmdMpfWus0kp\npbqSCuzJ01r3Vkr1AcZore/bRb8C4GXgz8CNwGhSJ99Kax1XSh0H3K21Pq2pcQYMGKDnzZuX0QkJ\n0ZTYli38fOKw2uf+KyaSe/31+29BQrSMvZIK5nDee0NVlcx59w1WzPmGfqedwZHDT60TxLM3xRIJ\nlmyq5O+frOC4jn7OPKo1WU4rBuP24J1EIk51aQmlG9eTnd8Wm8OF1emsfT0cS1AejBJLaDx2M157\nZiV7Zq0s5tfPf0siqblzVA/OP/YIbDtmGgJ0IkGirAyMRvC4qYhWYDFacFv2NFBbiEPWIb33frL2\nE2744oba55+f/TkKRSwZw2ay4bP6SOokJaESEjqB0+yst08kkwkiNTUYjCasDked14qDxdzwxQ2s\nqVzDy0MfpsOsZ1GL/729gdWN/t08lkZLmfjxRMwGM5NPm0xHb8faJkuKl3DuB+fWPp8xYQZtXG2o\njlZz2/9u4/P1nwNw7VHXcnmfyxs8z+JQMQ/MeYCySBm3D7wDnXSSZbfid/j26H0LxoLEk/EmS6IJ\nIZrlkN57hRDiANbs/Vf2XiGE2G2y9wohxL4npRfEYSHT8mTPATcDzwBorb9XSk0BmgwaIhX99Qe2\nR0f5gXKt9bYaLBuA/N1asRDNoMxmHIMGEZw9G0wm3Kecsr+XJIQ4AIUqK5n//jsAfPXPF+g6aEiL\nBA3Fy8ooxcx5z80hGE3wxU9FDGifjd9T92J6Mp5g0Uf/ZdnML6kpL+XUidfR68Thta//tLmKs5+Z\nRSSe5A+ndePC49vjtO76f/F9Cnz87w8nEUtovA5zvYAhAGU0YgoEiCaiLCpayJ/n/JkOng7cOehO\nsu0NZxkRQhx6egd6E7AHKA4VM6rDKJI6yW8//i0ry1cyrvM4bhxwI9XRas774DzKImXccPQNnNP9\nHJzmVIBjIpGgaM0qPn3hKXy5rRh20W9xercH4gQcAR4b/hjxWJDssvWofhR22gAAIABJREFU9XPq\nLiBShY5U8X/z/4/ySDnZtmxmb5xFW1dbzMZUoGSeM48CdwEbqjZwTN4x2Ew2AFwWF5MGTaK9pz0+\nm4+xncc2ep4Be4DbB97NvHXFXPnSOjaUhXj/miH4HY12aZLDvIcdhRBCCCGEEEIIIYQQQoh9INOg\nIYfW+tudUvjHG2sMoJQaBWzVWs9XSg3b3YWlUyr9FqBdu3a7212IBpmys8l/+P+IFRZiys7G6Nuz\nu8aFOFQdrntvcaiY8kg5XouXgD2A2ZbK9JNMJDDb7BiN9YNpmiteWkrhpLvgsivrvZZIaoyG7f/P\njUcjrFuyiKqSIgDWfr+AHkOGYjCa0FozZc5aIvEkAK/OXsuZ/QsyChpyWk0ZtQOoiFRw3WfXURWr\nYmX5SobkD2FC10wrlQohmnIw7L15jjz+PerfRBIRXGYXK8pXsLJ8JQDv/PwOV/W7ii/Wf0FZpAyA\nl5a8xOhOo2uDhkKVFbz74D3UlJex+efl5HboxDFj6u4hWbYssGWBwQrth8B3a7e/aPOC1UX37O5s\nqNrAE8c+zJqPv2LRyv/Q88STcXhS+/crv3iFcCKMw+SoUz4t4Ahw44AbMzrXeMLMDVN+oiaaAOB/\nK4rpmNMy2eaEEPvPwbD3CiHEoUb2XiGE2Pdk7xVCCHGgUUq9A3TY6fAtWusZe3mei0mVV9vRTK31\n1XtznibmfwIYvNPhR7XWL+6L+XdHpkFDxUqpToAGSNeTK9xFn8HAGKXUSMAGeIBHAZ9SypTONlQA\nbGyos9b6WVK14BgwYMCua6iJA04yFsNgzqxEzr5kys7GlC3ZMYRoyOG49xaHirl0xqWsqlhFniOP\nqWdMxefy8Kt7H2LVgrl0O24Idq93r8+brKmh+pNPsCWT/PPKm3hyQTEDO2RTFY7xr7nrGHlka3wO\nCwAWh4PjzzqfaX+7D5PFwjFjJpBAURWM4bQaOP3I1vxr3gYAhnfPxW7Z+0FOSim8Ni9VsSogfXFf\nCLFXHAx7r1KKHEdO7fMCdwF2k51QPERHb0fMBjMDWg3AqIwkdILj2xyP1Wit099ottQ+N1mtNMoZ\ngJMnQfVWWPkJ+NrD+OcwOAJcduRlnNn2l8x5+nk2Ll0CgNlmo++IkQB11rinrEYjv+yXz5Rv12E3\nGxncJdDsMYUQB56DYe8VQohDjey9Qgix78neK4QQ4kCjtR63j+Z5EdhvATr7Kjhpb8g0aOhqUh8q\nuiulNgKrgfOb6qC1vhW4FSCdaegmrfX5Sqk3gDOB14ELgWl7tnRxoEpUVFD18SdUz5yJ/5KLsXbv\nfkAGDwkhBEA4HmZVxSoAtgS3UBmtJMeXQ6tOXWjVqUuLzWuw2TDl5hJftoyOKxfxyOiTePh/63ng\nv8vQGo5ql1UbNGQ0mmjb80gu/8fzoBTK5uQ/iwr519z1nNm/gJO65/LFTcOoCsfIz3Lgtu39PTdg\nD/DciOd44YcX6JHdg6Pzjt7rcwghDh4BW4BpY6exoWoDHbwd8Nv9OMwOpo+fTnmknNbO1nisntr2\nDq+PCbf9ia9fe4msNvl0O+6Epidwt4IJkyEeBqXAmQtKkWXMwmJX6KSm50mnoLUmEqzZq+fmdZi5\n6bSuXD60Iw6zkSynfI4VQgghhBBCCCGEEEIIcWhqMmhIKXWd1vpRoLXW+hSllBMwaK2rmjHnLcDr\nSqn7gIXA880YSxyAIqvXUHjHHQBUf/45nT6agSE3dz+vSgghGmY32Tk692gWbF1AZ19nvNa9n1Wo\nIcZAgPZvvYkOhdh8z73wwXQuvfk2pv9gZUtlhGSy7o0/ZqsVczozx4ayIDf+exEAc1aX8vUfTqJ9\nwNniay5wF3DnoDvZqVypEOIwZDaaae1sTWtn69pjdpMdu8tOG1ebeu2VUmS3KWDktTdhMJowmjK4\nd8HecBnZGlOUYTddz+QfJmMymLjsyBP3+Dwak+20ku1sIhuSEEIIIYQQQgghhBBCCHEI2NWv9ReT\nKin2OHC01nqPbuPVWn8BfJF+vAoYuCfjiINDsqqy9rGORCCR2I+rEUKIpvntfh4e9jCheAibyUbA\nXrcMTSKZwKAMexQoEw3FSSSS2Jzmev2VUhhdLjbdey81//sfAG7XY1w/4Sra5LjIdSeoqKzGarBi\nc9XNcqFQKAVapxJw7MsYHgkYEkI0h9lqa/YYi4sX8+GaD/lwzYcAxElw68BbMRkyTaIqhBBCCCGE\nEEIIIYQQQgjYddDQUqXUCqCNUur7HY4rQGut+7Tc0sTBytarF95x4wjOm0fgiokY3O79vSQhhGiS\n3+5v8PiWmi08tegpcuw5nNfjPLJsWRmPGayM8uWUZdRURBl+QXeyWjvrB9wYDBhc2/dIg9vF6H55\n/Fi1lJu/eZJe3t6c3fY88lQOth3K43jtJp4+v///s3ff8VXV5wPHP99z975ZJIFAAgTZoBC21I3i\nRmxVVESxWqt1VX9q1eKoe1urrXtUrHWhBXFPhkoA2XvP7Hlv7v7+/rjXAJIww9Ln/XrllXO/57vO\nTTgBzpPn4c3idfy2KA+fQ0rnCCEOPhUNFSR0ApfFhdPibLF5c1w5hOPhxtfBaJCETrTY/EIIIYQQ\nQgghhBBCCCHEr8UOg4a01ucppXKAj4HT98+WxKHOnJ5O9l9uQYfDGG43hn3vf6NcCCH2t5pwDbdO\nuZUfNv9Aob+QPHceZ3Q6Y5fHL5y6kZU/lgPwyQsLOP2aw3F6ty11Y9hsZFx3DbgcaAUN551MIlHD\nFZ9dQSQRYWbJTLr7epHlO3qbcW67hRO6ZXNkp0wcFhOGsePsP7GqKnQshmGzYfJ6t7THEkSCMcxW\nA6tdMnQIIVpOWbCMP3z2B1bVrOKvg/7KsPxhLRY41NaZw41FNxJNRDEbZq7rex1Wk7VF5hZCCCGE\nEEIIIYQQQgjRPKXUmcBSrfXCFpqvCBittb66Jebbg/VPB7ppre9XSmUBEwErcDVwCzBKa119IPa2\nv+z0CaHWejPQez/sRfyCmDwekAxDQohDWEIniMQjPH3kv3CWZ2CrsdNQH8Hh3rUH01tnBrI6LKhm\nAnvqXAavHGtQF63ji+l/5PWTX9/mvMmkUAbUhaI4LSZMJgMAw1C4bE3/GNexGBgGyjCIVVay8f9u\nIjB9OumjR5Nx+WWY/X6i4Thr5pczY9Jq8jqnUXRKwXbXprVmbWWQd2atZ0D7DHrl+fDYJauREGLn\nvt3wLUurlgJw7/f3MqTNkJYJGgrX4y1+Ce+yT3io97lQeBxuZ6u9n1cIIYQQQgghhBBCCCEOIo+c\nc+oo4F6gHbAW+Muf35w4/sDuCoAzSQbWtEjQkNa6GChuibn2cP0PgA9SL48D5mmtL029/vbA7Gr/\nMnZ0Uin139TneUqpuVt9zPtZuTIhhBDiFyXNnsYjv3kU5qcz/aX1fPX8cuZ+sY668nK+Gf8y6xbO\nI9wQbHZ8xyOyGHx2Ib85txMnXNKNeEwTjcS36+e2uunXuj+frfucXFcuXquXZ45/hr7Zfbm428X0\nzevLxEUlXP7aTD5bXEp9OLbDfUc3l7Bp3DhKH32MWEUl0U2bCEyZAvE4lS+9hA4m9xxuiPHJ8wuo\n3Bhg7pfrqSlp2G6usvowZz8znSc/X875z3/PxurQbr6LQohfq0J/YeNxB18HTMrUMhNH6mHGc7Du\ne9wTr8M989WWmVcIIYQQQgghhBBCCCEOEqmAoeeAfEClPj+Xat8rSqkLlFI/KKV+VEr9SyllUko9\no5QqVkotUErduVXf+5VSC1MxIg8rpQaTrFD1UGp8x2bW+L1SaoZSao5S6h2llDPV/lul1PxU+zep\ntqOVUhNTx/2VUtOVUrOVUtOUUp13cB1jlFLvK6W+UkotU0qN2+rcBKXUzNT1XLZV+0lKqVmp9T/f\nap6nlFKHAw8CZ6SuzaGUWq2Uykz1G516H+YopV7b86/AwWdnmYauSX0+dV9vRAghhDigEgkIloEG\nHD4w2/Fb/FSv39DYpWxtPfPCs5jx/tvM+OAdxj7+LDZH05kzHB4rRxzfjrK1dXzzn6XYXWY6D8gh\nt5O/MVsQgN1sZ0ibIUw+azIAGY4M0u3pPHnMk5jDcSJzFjPY7qayjYM//HsmU246FnczGYZi1dVs\nvPFGgjNmAKAMg/SLx6CsVnQkgrlVK5QlmSlIKbA6zISDySAkq3P7ObWGikB4y/XXhemcI1nkhBA7\n197XnvGnjGd1zWoGtR5Euj29ZSa2OOGwk2Hmi2CY4LCTWmZeIYQQQgghhBBCCCGEOHjcC/z8AZQz\n1b7H2YaUUl2Bc4AhWuuoUupp4HzgVq11pVLKBHyulOoFbABGAF201lop5ddaVyulPgAmaq3f3sFS\n72qtn0ut+TdgLPB34K/AiVrrDUopfxPjFgNDtdYxpdTxqesduYN1+gM9gCAwQyk1KZW56JLU9ThS\n7e+QTKjzHPAbrfUqpdQ2/2mttf5RKfVXoEhrfVVq7z+9b92B24DBWuvyn4891O0waEhrvSn1ec3+\n2Y4QQgjRvIqGChSKdMe2P4tjiRi14VqsJituq3vPJq9cCS8Ph3AdnPcfyB+CxWZh0JkdKV1dC8CA\nM9oz+e/PJ/trTai+DshtdspEPEGgOkzbbumUr6vDbDURC8UwubaUAQsFAtRXlFFXUUZ2+0JwgMkw\n4YooSu5/iJp33wPg5CefZmJrH4mEbv4a4gnidXVbXtZUYzidtP/gfULzF+Ds2wdzVhYADreFkTf2\nZf63G2jXLQOXb/uya26bmYd/25tHPllK3/w0urWWgCEhxK7xWD30zOxJz8yejW3RcJhIQxCzxYrN\n5dqzie1eOO426H8p2Lzg+EX920wIIYQQQgghhBBCCCEgWZJsd9p31XFAX5KBNAAOoBT4XSojj5nk\ng69uJMuPhYAXUpmAJu7GOj1SwUJ+wA18nGqfCrycqnj1bhPjfMArSqlOJH/N37KTdT7VWlcAKKXe\nBY4kWersaqXUiFSftkAnIAv4Rmu9CkBrXbkb13Ms8JbWunwPxh70dhg0pJSqI/nF2O4UoLXW3n2y\nK/GrE6+tJbRoEaEFC/EOPwlLbvMP4YUQv05ra9dy3VfXoVA8fszj5HnyAIjGo8wtm8t9P9xH57TO\n/Lnfn3FZXKysWcnkVZMZlj+MQn8hdrO9+ckTCZj6GNSXJl9/chtcOAFcmaTlujjntv4AmK0Jeg87\nhRnvv0V+ryPwtspunKIqVIVSCr9tS2C0YTIwWw2+/c9SAFbPLeecW/tjS50PxUKUBUpYPW8GP771\nNmm5bTjr5jtw+vzocJjIunV4zz4bQ0F80XyuGfZbfI7m/35kSk+jzUMPsfHmmzA8XjL/eCWGzYat\noABbQcE2fQ2TQVqui6G/O6zZ+Vw2M8N75nBkYSZ2iwnvDtYWQogdiTQ0sGzGdKa++Rp5XXtw9OhL\ncXp9ezaZMyP5IYQQQgghhBBCCCGEEL9Ma0mWJGuqfW8o4BWt9S2NDUq1Bz4F+mmtq5RSLwP2VLaf\n/iQDjc4GriIZPLMrXgbO1FrPUUqNAY4G0Fr/QSk1ADgFmKmU6vuzcXcDX2qtRyilCoCvdrLOz2NZ\ntFLqaOB4YJDWOqiU+grYwUNCsbNMQ5JS4BCQCIeJrFpF3Sef4hl2Atb27TFstp0PPIhE1qxh7UVj\nAKh64w0K3hiPOTPzwG5KCHHQCEQDPDjjQZZWJYNvHil+hPuG3ofdbKc6XM2fvvgTddE6llQtYWje\nUPrl9OOCSRcQSUR4bcFrfDTyox0HDRkG5A2A2f+GtPaEB9+IgQULYBgKl2/LPbXb0GMoLBqA2WrF\n5kxmylhXt45bvr0Fi2HhvqH3kePKaewfiyYajyOhOAk05fVhrOYoX6z/jKdmP0Wv9J5cfvNNTLzj\nTuKxZLkww+vF/PDfeeKbNbTLcHLWEW3oa91x4I5SCmthR9o+9xwYBmZ/U5kdd4/DYsZh2Vk1UyGE\n2LFIQ5CPn34crRMs+vZLeh47DGe3njsfKIQQQgghhBBCCCGEEL8+fyFZSmvrEmXBVPve+Bx4Xyn1\nmNa6NFVmqx0QAGqUUtnAcOArpZQbcGqtP1RKTQVWpuaoA3YWR+IBNimlLCTLn20AUEp11Fp/D3yv\nlBpOMgvQ1nw/9QXG7ML1nJC6hgbgTOASoA1QlQoY6gIMTPX9DnhaKdX+p/Jku5Ex6AvgPaXUo1rr\nit0ce9AzDvQGxN6LV1Wz+nfnUP7006w+51zi1dXb96mvJ1pWtk3ZmgMpEQ4n91ObLPkTWbeu8Vx0\n40b0jsrvCCF+dSyGhTx3XuPrPE8eZiMZyKKUwmfbkq3Cb/MTTUSJJCIAxHSMUDy04wViYeh0PPqS\nj6kbNZkpxRv55KXnCVRXNXZpiDYQT8Sx2Gxop4VaglQ1VNEQbeCZH59hTtkcikuKeXLWk0Tj0cZx\n2QVeug9tTWZbNydf0ZMPF5dwzr++ozJUx1+n/pWSYAmfrv+MDbqcrkOPIa5MlNeFqYporvjvfP47\ncz0Pf7KUyQs2U1obprYmxP2TF/Pl4lLqQtHtLkUphTk9vUUChoQQosUYBg7vliSlTp/co4QQQggh\nhBBCCCGEEKIpf35z4njg98Aaktl01gC/T7XvMa31QuA24BOl1FySGYbCwGxgMTCeZAkxSAb+TEz1\nmwJcn2r/D3CjUmq2UqpjM0vdDnyfmmvxVu0PKaXmKaXmA9OAOT8b9yBwn1JqNjtJgJPyA/AOMBd4\nR2tdDHwEmJVSi4D7SQYLobUuAy4D3lVKzQHe3IX5SY1dANwDfJ0a++iujj0USOqAXwAdCaMjyYfj\nOrzl+Cex6moqnn+emnfexTt8OJl/ugpzWtqB2CoAiVCIwLTplNx3H7auXcm9Yxyu/v1x9u9PaMkS\nsm++CcPtOmD7E0IcfGKJGBd1v4hhBcNYVbOKY9od0xg0lOnI5Llhz/HKglfomdmTrhldAbimzzW8\nu+xdhrcfjs+6kxI4Nevhv6MpO/9t5mz6kVD/bDrSmuKJ7zHw3PNZWLmQF+e/yNA2Qzm23bF8sPwD\nPl7zMbcPvJ355fM5+7CzMZTB+yveJ9ORiaG2xOQ6PFYGjywkHk2wpq6BD6Ztwm0zsb4qRIYjg/KG\ncgDaZXck/dz+nPPKPBJa8+KYfgQjscZ56sNxFm+opWxNA53bOLn45Rl8dv1ReOzJzENaa0qCJRRv\nLqZHZg9yXbnYzIdW1jkhxC+Xy+fnvLsfZtGUL2nbrSfuNCkvJoQQQgghhBBCCCGEEM1JBQjtVZBQ\nU7TWb7J9wMx3zXTv38T4qUC3nazxDPBME+1nNdH9q9QHWuvpwGFbnbttR+sA67XWZ/5sjTDJbElN\n7WsyMPlnbS+TLKe2zXHqdcFWx68Ar+xkP4ckCRr6BTC8XjKuuIKa99/HP+JMTFv9FjdAoq6Oyudf\nAKBq/HjSRl/YbNCQjsWIbtxIcMYMnP36YcnNRVmaL4Wzu3Q8Try6GsPlJPeuO9l4y18I/vAD3pNO\nos0Tj6NjMUxuN4bD0WJrCiEObXWROt5b/h4vznuRgbkDuan/TaTZt72H5XnyuHXgrdu0jeoyijML\nz8RpduK0OGlKMBokEA1giQbw9r+MCav+x99//DsA53U6lxFdjqYmUsOlH19KJBHhq3Vf0SurF8/P\ne55Hj3mUP33xJ8obyjEpE2+d9hZt3G0YedhITIZpm3WsdjNRFaeNw8Y1BbmYHGZCDWZeHPYSH6/+\niH65/fDZWvH7VxewpCSZEW7C7PX8Y1Qfbpswn9Z+B0cWZuDWiu8nrOHwXl0AqN0q01B5QzmjJo2i\nrKEMi2Fh0ohJpJGJ3d1y93AhhNhTSin82TkMGnnegd6KEEIIIYQQQgghhBBCCCFSJGjoIBGLRmmo\nqyVUX4fLl4bTt5OsGFsx+/1kXDqW9FHnoZxOTK5ts/QoqxXD5SQRCKJsth0G5MQqK1k14iwSgQCG\ny0mHyZOxtGq1x9e13fylpawacRbx6mpsXbqQe+edGKn9HsjsR0KIg1cgGuChGQ8BMGnVJEZ1HbVd\n0FBTnJbmg4V+mnfyqsk8Wvwo3TO68/CA21k0+7HG88tql9NqyGXE0Wi2lEyMxqN09HfEYlgaswTF\ndZzNgc2srVvL0sqltHJue98M1ISZ+vYyYpEEfU/K5+PnFtDvjPZMWD6BQKyeQn8hZly0z3Axc02y\nJJrNbCK8qJqHT+2O3WulvjxEw7pKTrq0HZF4De9ecjgFGVvu97FEjLKGsuQeE1E2lpdQPLGEYy/o\nissvGYeEEEIIIYQQQgghhBBCCCFEy1FK/QMY8rPmJ7TWL7XgGicCD/yseZXWegRbZQUSe06Chg4S\ndeVlvHrjVcSiETr27c+JV1yLw+Pd+cAUk8sFrqZLepnT0yl4+23qv/kG95AhmPz+ZufRoRCJQACA\nRCBIoqFh9y5kJxrmzydeXQ1AePFizLm5mLNbLihJCPHLY1ImfDYfNeEaDGXsUsDQrghGg9z93d0k\ndAKPzUO5jvLHw69gdulsooko1/W9DmU2YVMm/nnCP3l90euM7joal8XFXUPuIp6Ic9XhV/Hi/Bfp\nn9Mfq8nKlA1TuLbPtdusE48n+P6DlSybUQpAIq7pMiiH0g1VrPavagxAclrM3HJyF/oWpOG2muig\nLHz9z/loDWdcfzh5rd2sKV3AazfdD8DQUWPwtj+jcR2nxcnYHmN5deGrDMgZiDuSxtr5K5j75ToG\njShskfdMCCFamtbJwMytyzoKIYQQQgghhBBCCCGEOPhpra/cD2t8DHy8r9f5NZOgoYPE5hVLiUUj\nAKz6cSaJeLzF5lYWC7b27bG1b7/TvobHg2/kSGonTsRz4jAMq7XF9gFg79oV5XCgGxqwtG2LOc2P\neTeyKgkhfn3S7emMP3k8H63+iAG5A0i3p7fIvIYyyHPncUL+CeS4chg3fRwXdr2QN099E43ms7Wf\ncfmnl3Nah9O4pMOF3N7nLywrXcy/l/0Ps9XK2B5jQcFDRz1EOBamnacd757+LhmODAAqGirQWuMw\nO8lq52Hl7DLCwRhKgc1lpnPvfPJMV5PhyGjMiJThtnFe/3aE6iP8554f0KkER0orrA4Ty2dMb9z/\nypk/0PO4EzGnSkj6bD7G9hzLqM7nU7aynm//uQYAd5q9Rd4vIYRoaZWhSsYvGk99pJ6xPceS5cw6\n0FsSQgghhBBCCCGEEEIIIX5VJGjoINGmSzccXh8NtTX0On44JrPlgOzDsNtxHzkE78nDCS9eTMn9\nD5B77z3blTzbU+bsbDp+OInoxo1Y2+VjzspskXmFEL9cJsNEO287Lut12S6PaYg1YFZmLKbm76UZ\njgxePPFFAtEAZ75/JhrNnLI5TBoxCY3mgR+SmQ7fWPIGl3Ucw7wJ77N6zmxOOOF45meVEYwFeWr2\nU43zfXr2p2QpM9RupMRkcNlnV7C+bj3jBo/D2s7KsFt6surTevqclI/ZYuDwWPHRscm92VwWzry2\nDzM/Wk1OBz8ZbdwYJhN9Tj6D5TO+Ix6LUnT6WVgd25Zf81g9eKweXPleaofGcafZKSzaNptbfShK\nOJbA57BgNklmDyHEgZHQCV5d8CovzH8BgI2Bjdx75L24re4DvDMhhBBCCCGEEEIIIYQQ4tdDgoYO\nEp70TEY/+Hfi0ShWhwO7+wA9MDGZCHz3PdVvvgmAb+RIlHnbb5NgTTVaa0wWK/bdDCYyLBaM3Fws\nublNno+WlFD91luYs7LwnHAC5vSWySgihPj1WFe7jodnPkxbd1vG9hy7w3Jm2a5sqhqq6JfTjwUV\nC7iw64UYysBiWHCYHTTEGmjtak2osopZH34AwLSXX+KMBx/AarKSYc+gIlRBUXYRFhRMeRw2FPN5\n79NYWbMSgIdmPMS4QeP468xbefTMx/A4d575J56Ik/CG6HdOW9w2V2PZnqz89ox94lm01thcbkwm\nU5PjXT5bkyXJKurD3PvhYhZvrmXcad3o3spDzaYgkWCM7PZeHJ6WzS4nhBDN0VpTE65pfF0XqSOu\nWy7TphBCCCGEEEIIIYQQQgghdk6Chg4SyjBwpx34ABnDaiXr6j9h8vnQOkHGmDEos5nI6tXUfvop\nttNP471H7qF83RoGjjiHPiefjt3taZG1YxUVrPv9ZYSXLgUgunkz6WPGYNjsGHZbi6whhPhlq2io\n4NqvrmVpVfI+0tbblnM6n9Ns/8qGSj5c9SEndziZuwbfxT/m/IM/fvZH7hh8B2+c8gbfrviCga0G\nQGDLGMNkJtOVybebf+DxYx4nruO4zC7SNTDtCcg8jM6+Do39C/2FVIQqqGioIKF2/kA8oRMsqlrE\nHz79A1aTlRdOfIF8Vz6hQAylFO70jD1+f6YsL+edWesBGPtyMZOuGML/Hp4FQPehrRlydiEWm/zV\nQAix75kME1ccfgWbApsIxoLcOfhOfDYpWSuEEEIIIYQQQgghhBCHKqVUATBRa91jJ30Ga63Hp14X\nAaO11lfvhy2KJsiTQbEdc0YGra6/Dq01SimipaWsOudc7N26sdLjoGzNKgCmv/MGPY45AWVzsq4q\nyHcrKxnaKZM8vwPTnpS8SSQIr1rV+DK8cBE1700AwD/iTEw+eZAkhEiKxWPUx+pxmBzYzDsIKtTN\nnwpEAzxU/BATV06kractXquX/634HwBjPxnLpyM/ofuGNL7814MUnTqCYy++nHUL53P4iSfj8vgZ\nZu9POFxLbSKCy5WNischpzds+pHD1s5k/Emvsi6wifa+9tz3w33cP/R+0mzNZz36SX2knkeKH6E2\nUgvA56u+4GTnSCb/ax4Ot5XTru6NN8OxW+/XT3yOLeXaPHYz0YZY4+vSNXXEogksEqMphNhPWjlb\n8eBvHiShE/jt/gO9HSGEEEIIIYQQQgghhBD7XgEwChgPoLUuBooP5IZ+7fYgskP8WiilkgfxOIma\nGhKBAB7/lgc6Fpsdw2SiKhjllCencNuE+Zz21BTKA5HGPrHKKiKI8KGZAAAgAElEQVQbNxIrL9/5\nenYHWVdemTq24z/vXGonTaL0/vuJ19a27MUJIQ4JsXgsWbImsSVDTzAa5Ov1X3PV51fx2qLXKAmU\nsL52PaXBUuI6zqNHP8qxbY/lom4XcULBCTuce0P9BgAaYg3bZLhIs6WBUnQ/6nh6HXcS87/6lFAw\nyPGXXEpefi6WUBm2ZZ/h/dfR5E19Gn88TjDuIX7OmyR++xqeLqfS01fIyR1OJtedy6NHP0qX9C6Y\njKbLiW2zr0SM0d1GNwYYHZl5FN/8ZynhQIzqkiBzv1hPOBDdo/ezd56fe87swe+K2jL+soFkeW24\n/FYsNhNDRhZidUgssRBi//LavBIwJIQQQgghhBBCCCGEEPuBUqpAKbVYKfW6UmqRUuptpZRTKXWc\nUmq2UmqeUupFpZQt1X+1UurBVPsPSqnCVPvLSqmzt5q3vpm1vlVKzUp9DE6duh8YqpT6USl1nVLq\naKXUxNSYdKXUBKXUXKXUd0qpXqn2O1L7+koptVIpJVmJWpA8HRQ7ZbjdZN96KxXPP09OVg7HXHQZ\nm5Ytpuj0kTi8PjZXhgjHEgDUNsSIpI5jVVWU3H03tZMnY21fQP5rr2HOzGx2HZPHTdqo8/Cdfhoa\nKH3wIULz5oHJhDLLt6oQvza14Vo+XfMpH6/+mFFdR9E/pz9Oi5PaSC3Xf309CZ1gTtkcemb2ZEPd\nBr7b/B2TV01mYO5A7jvyPnw2HxaTpdn5vTYvtw+8nZu+uYmRBWdSaM3n3ye+xucbvuC3h/2WDHsG\nyqEYMPIcDj/xFOxGFNPUR2DGs2CYYegNMOhK+PoB9MA/8uZjiwkFonQd1IkeZ7RCJ0LYwhq/bdcf\nhq+pXcO4aePw2/y8fsrrrKtdRxtva9a2DlO5MVkjzdfKwaLvNtHrmDwMY/dif9NcVs4fmM95CY1h\nKLTW/O6WfmjA7jTvWZY4IYRoRkVDBRpNmi1tl4ImhRBCCCGEEEIIIYQQQuxznYGxWuupSqkXgeuB\ny4HjtNZLlVKvAlcAj6f612iteyqlRqfaTt3FdUqBE7TWIaVUJ+ANoAi4GbhBa30qgFLq6K3G3AnM\n1lqfqZQ6FngVODx1rgtwDOABliilntFa79lv2YttSCSG2CmTx0Ni+GlYTzyNTVFNfuee9DphOGZL\n8mF8usvK2X3z+GTBZs7r3w6PPfltpUMhaidPBiCyajXh1at3GDQEYPJ6MXm9JIJB0s47F2W14j9r\nBIbXu28vUghx0KkOV3PH9DsA+H7z93w88mOcFieGMrAaVkLxEAA2k40CXwHjpo8D4LtN37GiZgUD\ncgc0OW88FgOtMVksdPR35OWjnmPGe28x6Y17GTpqDFf3vAqz1ZrsHA5grt+MuXYj2Nzw/TPJ9kQc\nvrwHLv0Mvn0EbXGTlhsivTCN/D5ebpxyAzNLZjK622h+3+v322Qxak5VqIpbp9zKnLI5AOR787mu\n73UAHPnbTrTu5MfmtBAORqkta9jTtxUAw0hmklNK4fRJPTIhRMtbX7eeq7+4mmAsyKNHP0rntM57\nFjgUqoHKVVCzDtoOBHdWy29WCCGEEEIIIYQQQgghfj3Waa2npo7/DdwOrNJaL021vQJcyZagoTe2\n+vzYbqxjAZ5SSh0OxIHDdmHMkcBIAK31F0qpDKXUT4ECk7TWYSCslCoFsoH1u7Ef0QxJKXAAxOvr\nCc6cRdlT/yCyejU6Ht/5oAOoIRJnSVWU/3tvISf/fSrDHvuG8mCs8Xy6y8rtp3bls+uP4spjCvE7\nkw/blcWC7bDkn33D5cKal7fLaxpOJ64BA2h93724Bg7E5HK17EUJIQ56jSUSAWOrH1d+m5+XTnqJ\nUzucyiNHPcLUDVOpClfROa0zAA6zg3xvfpNzBqqr+PzFZ/jk2aeor6rEUAZV69bx40cTKV21ggkP\n3kUosFUGxapV8FQRTLoOShdvP2EiDqM/IGj14Du1nvfdL7JRr6W4pBiN5pWFrxCMBnfpek3KhMuy\n5V63daCRy2ej4xFZlKyqoWx1HUUnF+x2liEhhNhfIvEIT8x6gmXVy9hQv4Fx08ZRE67Zs8k2z4dn\nj4I3L4AJf4RgZbNdG+qjrFtUyfolVYTqI832E0IIIYQQQgghhBBCiF8x/bPX1bvR/6fjGKlYE6WU\nAVibGHcdUAL0JplhqKk+uyO81XEcSZDTYuSNPADitbWQSGDv2oV1V/2J/JdexJx1cP7WdDgWJxqP\nk+G28v2q5EOaikCE1RVBcnyOxn4+hxUc2441Z2bS7sUXiGzYgCUnB3N6+m6vr0y79hvpiYSmIhBG\nA36HBatZSmAIcajz2/w8MPQBPlr9Eed1Oa8xiMZqstIjswd3D7mbhE7QO6s3Gs0zxz/DpsAmsl3Z\npNu2v9/EYzGmvfU68z7/GIBYJMyJV1yDzels7GO1O7YJVmLjLNAJqFgBGR3BkQbRILHeFxNP74w1\noxDlyiQYKOH6adeS5cji+r7X8/BRD/PVuq+YsXnGLgf3eG1e/jbkbzw791kyHBmcWXjmNuedXhsD\nz+iIMsBskXucEOLgZSiDXFdu4+ssRxZmYw//2bFx9pbjkrkQbzoYKBZNMPfLdRRPWg3A4LM60vv4\nthJgKYQQQgghhBBCCCGEENtqp5QapLWeDowCioHLlVKFWuvlwIXA11v1Pwe4P/V5eqptNdAX+C9w\nOsmsQj/nA9ZrrRNKqYuAnx5u1ZEsMdaUb4HzgbtTZcvKtda12zy7Ey1Ogob2s1hFBRtvuJGGWbOw\n9+hB9s03tUimoepghPL6CHaLQZrTgsvW1J/L3VPTEOW9WeuZOHcTj51zOL85LJNvlpaT7bXRPnPH\nmX/iwSCJhgYMpxNn7957vZedWVUe4Jxnp9MQifPyxf3p086PySQPiYQ4lHmsHk5qfxLHtDsGh9mx\n3fmfHkBnu7Ib27KczQdgVoeriW91v02kjv3ZrTnlmv9j7fw5FJ0yAqd3q1JiHY8Fbxuo3QDlS+Hy\nb2kIKTZuNhMOJsiutpHmSAZVW0wWnj7+ae6cfifLqpdxY9ENXH34n7CoXb8fZzmzuGXALRiq6fuX\nxSbBQkKIg5/ZMDOm+xh8Nh+1kVou7HohXtselprtPgJmvgjV6+DE+6CZco/xaJzNy7dkM9q0ooYe\nR+VhSAVGIYQQQgghhBBCCCGE2NoS4Eql1IvAQuBq4DvgLaWUGZgB/HOr/mlKqbkkM/2cl2p7Dnhf\nKTUH+AgINLHO08A7SqnRP+szF4inxr4MbPWbo9wBvJhaLwhctHeXKnaFBA3tZ4n6AA2zZgEQmj8f\nc0YGxl6W3mqIxHll2moe+2wZhoJ/jx3A4MLMvd5rVTDCHf9bCMBpf/+Wydf+hkgsgctqQgPLS+vx\n2s1keWyNmTkSCU1VTQDKSrDX1xBdtQrXkCFYcnL2ej/NiSUSPP3VcspTZSjum7yIF8b0I825txnO\nhBAHmqGMJgOGdlddpI57Z9zH5adeTDQcRsdiHDPmMgDCwQBZ7QrI73k4DlMM5r4JSkHh8eDLg8u+\nhHgMrC5w+Kmv3IxylhIoWYUyDyAUsOFz+Hht+GssqljI9E3JIOu/ThvH28eNx+rfvSfWzQUM7W+J\nhEbHNSbLwbEfIcShJd2RztieY/d+Il8buPgj0BpsbrA2/TPBajcz4IwOlDzxI0pBv1PaS6ClEEII\nIYQQQgghhBBCbC+mtb7gZ22fA0c00/8hrfVNWzdorUuAgVs13ZRqXw30SB0vA3o10ScKHPuzNb5K\nnasEzvzZObTWd/zsdY9m9ir2gAQN7WeG04GlTRuiGzZgzs7GlJGBydNc9q1dE4zEmDx/MwAJDR/O\n37TDoKFQNE48oXHZdvzltxgKpZLPaOrDyYwcWR4b1cEol75SzMJNtbTy2Jj4pyNp5bWTSGiWlNRx\n8ztzyfXZ+WsfH7X33IslO5v8117FnLn3gUxNMRsGRQXpvDNrAwC98/zYpTyZEGIrJmXCYli4dMof\nGTHwDI7I7Isjzc/GRQt56+5bQWsGjjyXfl19WCf8ITnoyOvhmL+Ae0smo+pQNYHaKt77a3LMj1nv\nc+6dDxFtiGHfHKRddrvGvq1drbHandhMh16ai4a6CPO+Wk/V5iADz+yIL2vvA7eEEGKPuVvttIsy\nFFnt3Jx/V/LfqXb33mfdFEIIIYQQQgghhBBCCCF+6SRoaD8zZ2VR8J//EC0twdKqFabdDKTRCU1d\nZYh1iyrJLfTjzbDjtpkZM7iAm9+dh81scE5R22bHl9eFefiTJVQEItx2Sld8Dgv+ZjLy+BxWXhrT\nj/dmb+D8Ae1Ic1ooXl2F1WywcFMtAKV1Ycrrw7Ty2qkIRLhq/CxWlAWYu6GGC4ra0O6t91H19cSV\nsU+/2Yb3yKFjlotAOE7vtn4cVgkaEuLXKhwLUx2uBsBr8+IwO3BanNzQ7wZeXfAqFpOVXm2OwGyY\nWfb91GRkJLB8xncc3vVUGu+I5UsgHgXTlgfPGk1N2ebGMbVlpWid4OXrryAWjTDokot57vhnWVy5\nmBMLTiTDnoHVcugFDa2ZX8GMSasBqNwU4Ixrj8DplextQoiDm8lswuWTvwMKIYQQQgghhBBCCCFE\nU7bOBLSL/Qv22WbEQUOChg4Ac1Ym5qw9y7oTrIvw1n3FhAJRDLPiwrsH4U6zc0qvXIZ2ysJhMeF1\nNP9lfWnaKv4zYx0A1cEIVxxdSL+CNDz27X8b2203c3TnVhxZmInZZBAIx3hhymp+W5RH//bp/LCq\nkoIMJ1keOwCGonGeCwfms6A0wAWTl+B3WphwRR4Fe3TFu8bvtNK/fcY+XEEIcShI6ARzyuZw+WeX\ng4Ynj32Swa0HYzJMZDoyua7vdY3lFAF6Hnsi87/6jFg4TJ+Tz8DWpgtkFCbLk51wF1id28zvt/lR\nHbvTrtfhbF62lCHnXECkIUgsmiyPOP3Fl7js6ZcZ2HPQfr3ulhaPJX52rA/cZoQQQgghhBBCCCGE\nEEIIIYQQ+4QEDR0C4vX16FAIw+MhHksQCkQBSMQ0oUAUd5odj92CMxSg/utplM+bR/qFF2Bt02ab\neWLxGFs9K8dQirK6EA3ReJNBQz8xmwwA7BYTJ/fM4db35nH/yF7cdUZ30l1WsjzJLBoZbhvPXNCH\nf3y5nJF98rjstWIAqoNRJi/YzBVHF7bk2yKEENsJRoO8MP8FYokYAC/Mf4HeWb3x2rwA2wQMAWS0\nacvYx58lkUhgc7owOxxw8YeAAlfWdvMrpfClZXHCFdegYzFMhhnDZCKzbT7l69ZQ2G8QJkvz99OK\nhorkuo6DO8ix/eFZlK+vp6a0gSN/1wmHR7IMCSGEEEIIIYQQQgghhBBCCPFLI0FDB7lYZSWljz1O\nQ/EMMi67DMfRx3HEsHbM+2o9+T0ycPm2lL0JLVnCxj//GYD6L76gYPzrmLcqf1YTqeH4nhYqA22o\nDsa59oR8VpdF8RlhqKsBix3svmb3YjIUJ3bPoaggHYAMlxWvY9uH47k+B3ed3oP6cIyjDsviv8Xr\nMRmKIwubzqwUiydYUVbPq9PWcGzXVvQrSN9uTiGE2FV2s50hrYcwbeM0AAbmDsRmar48mMliwZ3+\nswAed/YO11BK4U/fNqDo7NvvIR6NYrFacXibvo+uqV3DtV9eC8ATxzxBO2+7JvvF4glqQ1FsZhMu\n2579mC6vD5PQmjSnBYtp90v1OD1WhowsJB5PYJN7shBCCCGEEEIIIYQQQgghhBC/SBI0dJALLVhA\nzVtvAbDpL7dS+MVA+p6UT+/j2mIyJzMA1ZY3YJgU2rzlwXi8qgqd2LacjNVk5b/LX8CR7cZvcrA5\nXMTR7Xth/eEZKH4BDhsOx48DZ/MZMLwOy06DegxD4XVYuHl4Vy4aXIDPYSHd2XSWiopAhJHPTKc+\nHOP1H9by2fW/kaAhIcQeMxtmTu94On2y+xDXcfI9+djMzQcNtRSXz7/D88FokIdmPMTy6uUAPFT8\nEA8MfQCnZdvyZ5FYnNlrq7l70kJ6tPbxfyd1Id21e1l+NlY3MPaVGZTXRXj6/D4c3s6PJZUxbneY\nrSbM7H7AkRBCCCGEEEIIIYQQQgghhBDi0CBBQwc5w+VqPFYWCxgGNqcFGxANx5n39Xqmv7sCk9ng\nrBuOIP2SSwhMmUL2bbdi8m+b7cJj9XBDvxv4YdMPZDoy6ZTWCWuwGr66L9lh1isw8A87DBraHeku\n604fdmutCUZija/rQrEd9BZCiJ3z2/347TsO4tnfzIaZtp62ja/betpiMbYPkKxuiHLJyzMIROLM\n31DLMV1acWL3nN1a69/frWHRpjoAbn53Hm9ePpBM974PnBJCCCGEEEIIIYQQQgghhBAHN6XUScAT\ngAl4Xmt9/wHekjjAJGjoIGft0IHs228nOH066ZdcjMm/5UF4NBxn0dRNAMRjCZbNLGPgn64iY+wl\nmLzeZJBRSlUgwrqqIGbDzJCc4/D8lM0nEgSbB8J1YJjB5m0cE4/HiAQbsNhtmC27l+lia6FAlHBD\nDJPZwO4yY7ZsyVzhsVt44twjeOqL5RzZKZP8DNcOZhJCiEOT1WTl971+TztvOxSKYQXDsJi2DxpS\nKDx2C4FIHACvffd/TB+W7Wk87pDl2qMsQ0IIIYQQQgghhBBCCCGEEOKXRSllAv4BnACsB2YopT7Q\nWi88sDsTB5IEDR3kzH4/aeedi3/kWRh2+zbnLDYThw3I5ocPVmGYFB37ZIHVhtnh2KZfQyTOS9NW\n8eTny3FZTdx7Vk9O6ZmL2WSAMxMu/QIWfQCFx4MjHYBIKMTa+T/yw4S36dC3H72PPxmHx8PuioRj\nzP9mA9+/vxKTxeDsm4rIzHM3nnfZzJzYPYdBHTNwWEy4bPItKYTYvwLRACWBEtbUrqFnVk8yHZn7\nZJ10ezrndTlvh30y3Vb+c9lA/vn1Cvrkp9E117vD/gAN9REa6qJYbCbsbgtHd87ihYuKKK0Lc0K3\nbHxS8lEIIYQQQgghhBBCCCGEEOKQU1RUZAYygfLi4uKWKNnTH1iutV4JoJT6D3AGIEFDv2ISoXEI\nUIaB+lnAECSDhnoelUdh32wCsTiv/LiOE82t6dHamwwISmmIxvh8USn989O4b3g3ajcECFSFcXos\nhINxtKkdtn7XYrGbUEoBEA7W88Ej96ITCTYtW0zHvgP2KGgoGoqzaOpGAOLRBCtmlmwTNARgNRtS\nOkcIccBsqNvA2f87G42mR2YP/nHcP0i3p7fI3JFQjLK1dayZX0GXQbn4WzkwdpD5RylFQaaLe0f0\nxDDUTucPB6N8N2EFC6dswjAUI2/qS6t8L8d1zW6R/QshhBBCCCGEEEIIIYQQQoj9r6ioaDAwCbAD\noaKiolOKi4un7eW0bYB1W71eDwzYyznFIU6Chg5xdpeF8bPXUV4fYchhrVhTEaBNmp0s95YgI7fN\nwsVDCuiZ4eHLJ+cSDsaY6TTzu1v7MX7c98RjCY65oAuJRIKc9j7Scl0oFCaLhVg4DIDZsmuZKrTW\nxCsqQGsMrzeZDal/NsUfrsEwKdofnrVP3gchhNhTS6qWoNEALK5YTDwRb7G5G+qiTHhsNmhY8O1G\nRo0bgMu/8yDJXQkYAohFE6yYVQZAIqFZNbecVvk7z04khBBCCCGEEEIIIYQQQgghDk6pDEOTAH+q\nyQ5MKioqyiwuLm65B1lCIEFDB0ysuhoSGnN62i71j8cTNNRFiccS2Oxm7O4tQTxFBel8srCES16e\nQZ98PwM7ZGwz1mo2OLF7DtGaCL2PzcadZmLtogCh+uR8APO/2cBhA7J59+FZjLpjAA6Pl3PuuJ9l\n30+j/RH9cPr87IrI2rWsvXA08dpa8p7+B85+/eh9XDu6DMzFZDGwu6RMjhDi4DIgdwAF3gLW1K7h\nmj7X4DA7dj5oF0UaYqTikYiEYiQSusXmBjBbDLoMymHO5+sxWQw6HiGBmUIIIYQQQgghhBBCCCGE\nEIe4TJKBQluzA1nA5r2YdwPQdqvXeak28SsmQUMHQHRzCRtv+j+0hjYPPoAlJ2enYwLVYeqrwpjM\nBuVr62jbNR2rI/nly3TbeOqL5QB8t7KSlWX1ZHu3vYd47BbqGwKUrPiAOSuWMOjs0dhdgAI0tOue\nQdWmILFInFg0QTRiIi2nNe2P6EfYZKcqDHYi+J3W7famYzGU2YxOJKh47nlipaUAlNxzL/mvvIw9\nM1OChYQQB61Wzla8fNLLxHUcp9mJ2+re+aBd5E630evYPNYuqOSIYe2wOVv2x67NaaHv8Pb0PCoP\nk9WE3SU/1oUQQgghhBBCCCGEEEIIIQ5x5UCIbQOHQkDZXs47A+iklGpPMljoXGDUXs4pDnHGgd7A\nr42OxSj7+5NEN5fgu+lGFhV/R8nK5UQags2OiUbiLPluM+89PIu3HygmEdfE44nG8xaTQV5aMjOG\nyVC09jedJaNszQqWTPuampLNfPzMwygjyui/Debc2/uT19lP6Zpajr6gC7UVDURDMeoqyqmNwt3f\nlDDowa948KPFVAUijfPFqmuoevO/bLzlL4RXrACtcfTq2Xje1rkzyrbzMjx7Q8fjREtLiaxdS6yy\ncp+uJYT45cpwZNDK2apFA4YAHG4rA07rwIg/9+GwftlY7S0f1ONwW/C1cuL22zBbTC0+vxBCCCGE\nEEIIIYQQQgghhNh/iouLY8ApQDXJYKFq4JS9LU2mtY4BVwEfA4uA/2qtF+zldsUhTlIS7G+GgTmr\nFf6b/48Jzz9F5cb1oBRjHv4HGXntGrs11NXSUFeHxWbDMDtY+WMqaFDDmvkV5PfcUoIsy2Pj7T8M\nZtqKcnq08ZHlaTpQx+XfUgrN6fVhGAYuv51AdZgNS6s4/Li2pLdxM/WdZZwwpjuRkAvSfMzZsJ47\nTutOjs9OQzTOT7NEli9j87hxAASmTqVgwnt4hg3DkpNDvKoa19AjMXk8Lfv+/Ux04yZWnX02iZoa\nXMccQ+t7/oY5PX2frimEELvD6jBjbbmKZ0IIIYQQQgghhBBCCCGEEOIXrri4eFpRUVEmyZJkZXsb\nMPQTrfWHwIctMZf4ZZCgof1MGQbpoy8kUFtD1aaNyUatqd68qTFoKNIQ5If336b4f+9imMyM+tsj\n9Dkxn0+eX4BhVnQb2nq7bBU5Pjtn9clrfF1XGWLx9E1ktvWQ29GH1WHGk5nFWTffwfrFC+h57DCc\nPj8ALr+NTkXZhBtilKyu5djRXZn75XpmfbyG4bf25dkLi3ji82XM31jDLcO7cmqvXELROJG2HXHc\nfBsNjzyADoeIhRM4W/lx/+Y3++fNBOqnTiFRUwNA4Msv0aHwfltbCCGEEEIIIYQQQgghhBBCCCGE\n2BdSgUKbD/Q+xC+bBA3tI/F4nFBdLSazBbt723I35vR07A47x429gq9fe4FWHTqS06lz4/loOMzS\n76YAkIjHWDHrB/qd9jtG3zMYZYDdZdnh2sHaMO8/Ppua0gYMk2LEXQN4fepKNteEuGl4D4YeUbTd\nGIfHisNjxd/KSUN9hPWLk6W+Vn61kUSfNKYsLwfgL+/NY2inTC59pZiFm2r5/eBeXPTAwzg9ftat\njdK57V69bbvNecQRYBiQSGBt3x5l3fF7I4QQQgghhBBCCCGEEEIIIYQQQgghwDjQG/glisdjbF6+\nhP/eeQuTn3qEQE3Vdn0sKDp178WYvz3CaVfegCuV9QfAYrfT6/jhyWObncMGDMZiM+HJsONOs2O2\nmna4vtZQX5nMuNO2Wzrvz9vI379Yzlsz13Pl67OpCkZ2ON5qN1N0SgGGodi8pIo835a6OnlpDsLR\nOAs31QLw3LS1JI4YyHfzrGR3ymhuym3Eysspf+45qt56m1hl5S6NaXavbdvSYdIk8p55hvxXX8Gc\nmblX8wkhhBBCCCGEEL9msUiEUH09OpE40FsRQgghhBBCCCGEEPuYZBraB0K1tUx64kHqKsqp3Lie\nZd9P4/Bhp2zTJ1ZSyppTToF4HGv7AvL//W/MGcmgG6vdQe/jT6LL4N9gMptxeH27tb7VbuK4MV35\n5o2lZOS5WBHb8h99oWicRELvcLzJbJDXOY0L7x1ENBRnxZJKxl/YjwWbazmlTxuUAqvJIBJP0DHL\njc1h4ajzu+L0Wne6t2BlNeXj7iDw+ecAJOrrybh4zG5d39YMpxNb+wJs7Qv2eA4hhBBCCCGEEEJA\nsLaGGR+8y+blSzjyvIvI6VCIySIZfYUQQgghhBBCCCF+qSRoaB9QhgmnP426imRJL0/69tlvImvX\nQDyePF61Gp06/ond7cHu9uzR+habmfa9MmndyY9hKDqhWVMRpLQuzD0jepDhtu3SHBabmdqKBuZO\nXI3VYebIk/LJsFvArPjsz0exorSe7m28tPLYd3lvpVUBdMmWsouRNWvQiQTKkKRXQohDWyyaIByI\nAmB3mzGZd5wVTgghhBBCiINNyYplFP/vHQDeued2LnniWdxp6Qd4V0IIIYQQQgghhBBiX5GgoX3A\n6fNx5g23Mfezj0jPa0vrzt2262Pv1g17j+6EFi4i88orMey7HnjTlHg8Qaj+p4fVFsxWU2MZMwfw\ntxE9iMU1Xsfu/YagJ93O7/7Sj0g4Tk1JkEBVCH+2k3bpyY/dNbdWU3Tz7cRvvQmT10v6ZZdJwJAQ\n4pCnE5rS1bV88MSPKAVnXHcEOR12L0ucEEIIIYQQB5ph3vLfRIbJBEodwN0IIYQQQgghhBBCiH1N\ngob2EXd6BoN/d36z582ZmbR99lmIx1E2Gyavd5fnbqirY+PSRdSVl9FpwGBc/jSqNgaY8NhsdEJz\nxnVHkNXOg9rqP/ec1qa/1IlQCB2PY3K5mjyvlCJYG+Gt+4oBsDrMjLpjAC5fMltRbUOUJSV1LNhY\nw0ndc8jxOXa490GFWbz8bS1D73mSTrk+zNlZu3zdQghxsIqEY8z4cBXxVDnImR+tYdjY7lhskm1I\nCCGEEEIcOloVdOCoCy5hw9JFDDr7PJyeXf+/CiGEEEIIIYyo424AACAASURBVIQQQhz8lFKrgTog\nDsS01kVKqXTgTaAAWA38TmtdpZIBB08AJwNBYIzWelZqnouA21LT/k1r/UqqvS/wMsncJh8C12it\n9f5YoyXfp18TSfFyAJnT0zFnZe1WwBDAugVzmPDgXXz+/+3deXzdVZ34/9fJzb42SfcFKFD23QgI\nOCwiqwIuIOgIMiiiCI46CvN1fiLujqDghqBgYRgVBxUKFpFFBFEqkcGRnbZQ6EqbNG2a/d57fn/k\nUlpIuqSf3Nw0r+fjkUfvPZ/zOefc9+fmTcG359xwDXf94Nt0ru1k3h0v0NOZprc7w7zbF9LXk9ns\nOOmVK1n2/32BJZ/6ND0vvMBgv0e9Xa+Nle7JwAbdFrV0cPqP/sIX5zzFB37yV1at61l/LZuNZLLZ\njcaaUFPGR4+exaw9dmTclImkUn4FJY1+xSUppu9Rv/799D3qSZWY3yRJkjS6VNTUctDJp3HyRf/G\nxB137t9tSJIkSZIkjYimpqbQ1NRU3tTUlPRWwEfHGA+IMTbl3l8K3BdjnAXcl3sPcCIwK/dzPnAN\nQK4A6DLgEOBg4LIQwqv/Q9k1wEc2uO+EPM6hIXCnoULW1wNtL8D8+2HXY4njdqSnp49Vi19a36Vt\nxTJCyDJ5lzpe/L9VAEzauY5U8ab/x+pMZyfLv/4N2ufOBeCl555jp//5JSUT3rjzT+P0KvY5ehrL\nnlvDIafMpLTitf9o+HJr1wavO8nmCo9Wrevh2j8uoCed5aJjdmVCzWvHr23tEWmSVOhSxUXsfcQ0\nps2qJwSom1hJUZFHOUiSJGn0KSoqoqi0bKSXIUmSJEnSmJUrEroAuBxoBFqampouA37U3Nw8HDvq\nnAoclXt9I/AAcEmu/abcLj6PhBDGhRCm5PreE2NsBQgh3AOcEEJ4AKiNMT6Sa78JOA24K09zaAgs\nGipkXS1w7ZGQ7ob7v0z6gke49crvcOy/fJyFf/sr7S2rOP6jF1NaUc5eh09l0o41xAjjZ1QPWDSU\n7u1l1cuLeOIP9/DmY08ks3r1+muZtjbSmSwDlvPEHg44ppGDjp1BKAoUbTD2wTMbOGLXRp5e1s5l\n79ybmrIS0tks379/PrP//CIAbZ29fOM9+w16RJokbQ/Kq0qYvHPdSC9DkiRJkiRJkiRJo9sFwBVA\nZe79hNx7yO3Esw0i8PsQQgSujTFeB0yKMS7LXV8OTMq9nga8vMG9i3Ntm2pfPEA7eZpDQ2AVRyHr\n6+wvGMq97mlbyYoF87nz6m9y6LvPZPIus6ifMo1UcTEV1TB9j4ZNDtfVvpZffOGzZNJpls1/lvd8\n7nMsPu88su3tVF/2JX71bBunjmugpvy10qHenm7mN8+jsm43Hrl9Pke9fwada/qorKulur6B8TVl\nfO+sg+jLZqkpL6aiJEVfJktHT3r9GB29mfU7EEmSJEmSJEmSJEmSpDfK7TJ0Oa8VDL2qEri8qalp\nW3cbOiLGuCSEMBG4J4TwzIYXY4wxV1A0bPIxh7acRUMFKtvXRygbR3jTh+CJX5Pd5wxWLO0/fmzN\nKyu4+0dXs2vToZx08WdJbXqo18bMZsik+4t5XnlhAesqaqj5/s1Ujy/j4ZU9zKyroas3s1HRUF93\nN309GZ74YwtHnD6N31/7ZVqXLKamcTzv/+q3qa5voL6qdKN5SlJF/Nvxu7Omu4/evixfPnUfqss8\nkkySJEmSJEmSJEmSpE0oo/9IsoE05q53D3XwGOOS3J+vhBB+AxwMrAghTIkxLssdDfZKrvsSYMYG\nt0/PtS3htaPGXm1/INc+fYD+5GkODcEbz7DSyOhYBQvuh1eeIdOyjOVfuIwV37+e7BH/Dp94lI43\nXcgdP/rRRrdM2mUWqeItr/sqr6zmmH/5GBN2nMlb3vtBlr/QxZ03vUR3WR1rsyku/vn/8plfPs6q\ndT3r7yktr6B+yiQmzqwgVZyhdUn/Tl/tLavo6ewYdK5JteV8+/T9+d77D2TquIqtDIYkSZIkSZIk\nSZIkSWNOD9AyyLWW3PUhCSFUhRBqXn0NHAc8AcwBzsl1Owe4Pfd6DnB26HcosCZ3xNjdwHEhhPoQ\nQn1unLtz19aGEA4NIQTg7NeNNdxzaAjcaagQdLXBHf8Kz9zR//70X9H197/Tu3AhIZVi4mc+TSq2\nM+uQw3nm4T8CMHHmLux7zHEUpbZ0nyEoq6pil8OOpm+HfZlUW0N3e5YzL5tOTwr+47Yn6c1keWh+\nC80vtnLCPlMAKCkrY8qusxg/I5Lp62bq7nuy9NmnaZyxI+VV1Zucr7rc3YUkSZIkSZIkSZIkSdoS\nzc3Nsamp6TLgCjY+oqwTuGwbjyabBPymv9aGYuBnMcbfhRAeBX4ZQjgPWASckes/FzgJmJ+b/1yA\nGGNrCOHLwKO5fl+KMbbmXn8cmA1UAHflfgC+kYc5NAQWDRWCdDcsefS198sfo2TyZHoXLiR29+8s\nVllbxzHnXsBbzzqHbDZDaXkFlXXjtnqq2ppKdt1hMt19GarqiqipLqOnvYcZDRUsWNm/c9D0+tdy\nT8xmKa+qorwKoJpTP/N5+nq6KS4to2pc/bZ8akmSJEmSJEmSJEmStLFXjyC6nP4jyVqAyzZoH5IY\n40Jg/wHaW4C3DdAegQsHGesG4IYB2puBfUZiDg3NsBUNhRBmADfRX60WgetijFeHEBqAW4CdgBeB\nM2KMq4drHYWse1076XQfRaGUyuO+Cr/+CNRMoeiAM0j99nvUnHQi4z92AaGo/xS5ipoaKmpqBhxr\n1boebvjTC6SKAuccthPjq8sGnbehqnSj9+NryvjvDx/C3U+uYO+ptezQ2F801LdsGauuu47SHXak\n7rRTKa6vH1KhkiRJkiRJkiRJkiRJ2rzcbkLXNDU1/QgoA3q2cYchaVDDudNQGvhMjPGx3Ll4fwsh\n3AN8CLgvxviNEMKlwKXAJcO4joLU1d7On2/9GYv+7zF22u8gDn3X6VR++mkIRYTqiUz+0uVQVESq\nsnKzY3X3ZfjmXc/wP39bDMDa7jT/74Td6Otohxgpr66muHTjIqJsZyeZtWshRiguZvKECZxz2E7r\nr6dbW1l80UV0P/EkAKnaGsa95z1b/TmzfX1k29qgqIjixsatvl+SJEmSJEmSJEmSpLEmVyjUPdLr\n0PZt2IqGYozLgGW51+0hhKeBacCpwFG5bjcCDzAGi4b6ursoqq1gjwvPYsHaF1hb1E1lzdT111PV\n1ZsdI93XR8+6dmJRMf+8fz2n79NIJltKZVmKtqUv84svfJaYyXDaJZexw977QYwUFfc/8r7Vq2n9\n8Y9pu/VXVB1xOFO/+tWNi3qyWTJr1r421+rXNoPKdnXR/cwzrLntdupOPYXyPfekqKLiDeuL6TTd\nf/87iz9xEan6ccz4yU8onTZtKOGSJEmSJEmSJEmSJElSgoryMUkIYSfgQGAeMClXUASwnP7jywa6\n5/wQQnMIoXnlypX5WGZeFZeWUnngznz04Yv4z398m4v++Elau1u3+P50Xx+Ln36Ce6+/htaXX2D5\n/bczvhue/a/nef5XL1BUVE0qVUwmneYvt/6MzqVLWXbppbTdPoeu1a30rltH2y9ugXSajgf+SN/S\nZRuNn6qvZ9rVV1G+917UHHcc4047bf21zJo1LPrg2bTdcguLzj6HzJo1A64xs2YNy7/0ZTJtbfS+\n8CKt/3Xz0IIlKW+299wrSYXI3CtJ+WfulaT8M/dKUv6ZeyVJ0uYMe9FQCKEa+BXwrzHGtRteizFG\nYMCz92KM18UYm2KMTRMmTBjuZeZdZd04ulJ9lKfKAVi0dhGZmNni+7vXtXPX969kx/0O4A83/pgd\n9j2EP/3PS3S09bDihbW8+I92pszaHYDpe+zD2pv/m7V3/pZll1xCpq+P3nQvRa/uZlRSQnFjw0bj\nh1SK8j32YMaPf8yUr36F4vHj11+L6TSk0/1v0un+9wMIpaWUztp1/fuKvfbc4s8naWRs77lXkgqR\nuVeS8s/cK0n5Z+6VpPwz90qSpM0ZtuPJAEIIJfQXDP13jPHXueYVIYQpMcZlIYQpwCvDuYZClO3s\npG/pUg54toM73noTn/y/L3LuPudSXbL5I8leVZRKUTdxEr1dXVTXN9DT0U51wzjaW/uPNKyfUs1O\n+/4LB592Oo2TprLo2Le/dnNvL/9o/gv7X/9juv7yCPVHHkmqoeENc4SiIooHaE/V1jLp//07bb/+\nDXWnnUaqpmbANaZqapj8+c9Tc+SRpBobKd977y3+fJIkSZIkSZIkSZIkSRo+w7bTUAghANcDT8cY\nv73BpTnAObnX5wC3D9caClXfihUsPOVUln3ms3R89NPMPvRqjppxFBXFFVs8RmVtHad85vOUVlby\ntnMvoKejhaP/eWfe8p5dOO78fZi6Wz0TdtiJGXvtS3l1DTO+/z0qDjqI8Rd+nPKaWg4+7Qy6Kiuo\nOuMMHi+up6Vvy9efqq1l3BnvY4cbrqf+zPfRXlLByvZuetJv3CmpuKGBulNOofrwwykeN27LJ5Ek\nSZIkSZIkSZIkSYkIIdwQQnglhPDEBm0NIYR7QgjP5/6sz7WHEMJ3QwjzQwj/F0I4aIN7zsn1fz6E\ncM4G7W8KIfwjd893czUjIzqHNm84jyc7HPggcEwI4fHcz0nAN4C3hxCeB47NvR9Tehctgmy2//WL\nL1IciygvLl9/PcbIutWttK1YTufaNYOOU13fwAFvP4nqikp2PupkPn/vQq56aTn/8df5tGezpFtb\nWXPXXXQ2P0r5Xnsx44c/oPEj51NcV0dl3Tiey9Tz5ivncdb1f+Nfb3mc1Z29W/wZisrLKG5ooDUd\n+NdbHufU7z/MA8+spKtv4KPKJEmSJEmSJEmSJEnS5jU1NR3S1NT0301NTY/m/jwkgWFnAye8ru1S\n4L4Y4yzgvtx7gBOBWbmf84FroL84B7gMOAQ4GLhsgwKda4CPbHDfCQUwhzZj2IqGYox/ijGGGON+\nMcYDcj9zY4wtMca3xRhnxRiPjTG2DtcaClXFPvtQvs/eUFTE+E9eTFF5+UbX17W28F+XXMz1F3+Y\n+396LV3tazc5XvG4cazqzjD3ieU8+Pwq/rpoNZlMlrb77iPdUE9Xxzo6580jNW4cReVl6+97avla\nejP9xUuLWjrpS2e3+rP84ZlXeODZlSxd081FP/9f2rssGpIkSZIkSZIkSZIkaSiampq+CNwPnAk0\n5f68P9c+ZDHGB4HX12ecCtyYe30jcNoG7TfFfo8A40IIU4DjgXtijK0xxtXAPcAJuWu1McZHYowR\nuOl1Y43UHNqM4dxpSIMoHj+eGdddx6w/PkDDP/8zqdraja4vX/g8nWvaAHj2zw+S6Xvt7LDV3atZ\n1rGMlq6Wje6ZXFvOBUfuzB6Ta7jy9P2pCX2srK/h5u9/i9/efTvZ3Xej//fmNe8+aDr7T69jQnUZ\n//me/RhXWbLVn2VS7WsFT43VpeR2/5IkSZIkSZIkSZIkSVsht6PQZ4FKXqvnKMq9/2xCOw5taFKM\ncVnu9XJgUu71NODlDfotzrVtqn3xAO0jPYc2o3ikFzBWFTc0DNje0tVC1e478E8Xfpw/X/cTpsza\nnaLi/sfU2t3Kl/7yJe576T72bNiTa469hsaKRgDqq0q56JhZfOStO1NdXkzf2jbu/9ls0r09tCx+\nieceb+bgmTtvNNfk2nJu+NCbyWQj4ypLKC1ObfXn2G96HVefeQCPv9zGuYfPZEJN2eZvkiRJkiRJ\nkiRJkiRJr3cxUD7ItfLc9Q8Mx8QxxhhCiJvv6RzbE4uGCkhLVwvn33M+z61+jnftchoXfPs71BZX\nU1lbB0BXXxf3vXQfAE+3Ps0rna+sLxoCqCorpqqs/5FmiosZN2Uqy+c/R3lVNVMPP5il65ZSliqj\nsaKR1R29dPZmKC0uYmLtYDln88ZVlnLqAdM49YBpm+8sSZIkSZIkSZIkSZIGsxuDnxhVBMxKeL4V\nIYQpMcZlueO/Xsm1LwFmbNBveq5tCXDU69ofyLVPH6D/SM+hzfB4sgKyaO0inlv9HAC/WXAb7Z1t\nZLPZ9dfLisuYUdP/O1NbWrtRwdDrVdbWceq//QfH/MsFvOs//5MvP/51jv/V8Zz3+/NYvradL97x\nJId/837OuPYvrGzvHt4PJkmSJEmSJEmSJEmSNuc5IDvItSzwfMLzzQHOyb0+B7h9g/azQ79DgTW5\n47/uBo4LIdSHEOqB44C7c9fWhhAODSEE4OzXjTVSc2gz3GmogEytnkpFcQVd6S5m1s0k9GVJlZSs\nvz6+Yjw3nXgTi9YuYnr1dBrKBz7i7FXV9Q0cePw7eLn9Zf687M8ALGhbQE86y+2PLwXghVUdvLCq\ngwk1Q99tSJIkSZIkSZIkSZIkbbPvAqcBlQNc685dH5IQws/p38FnfAhhMXAZ8A3glyGE84BFwBm5\n7nOBk4D5QCdwLkCMsTWE8GXg0Vy/L8UYW3OvPw7MBiqAu3I/jPAc2gyLhgpIY3kjt596O4vWLmJm\nzU7UxIr1R5O9anzFeMZXjN+qcctT5UyqnMSKzhVUFFdQmkqx99Ranly6lpqyYmY0DJRvJEmSJEmS\nJEmSJElSvjQ3N89ramr6FvBZoJz+06Oy9BcMfau5uXneUMeOMZ41yKW3DdA3AhcOMs4NwA0DtDcD\n+wzQ3jJSc2jzLBrKk3RLK7Gnm1BeTnHDwDsElaRKmFI9hSnVU4Y+z+rV9C5aRFF5OSVTppCqq2NC\n5QR+dvLPeG71c+xctzPjK8q48V8OZmlbFxNryhlfXTrk+SRJkiRJkiRJkiRJUjKam5u/2NTUdBdw\nMTCL/iPJvrstBUPSYCwayoN0SwuLL7qYrsceo/KQQ5j27SspbmxMfJ5sdzets2fTcu11AEy94grq\n3nEyABMrJzKxcuL6vuOrYXx1WeJrkCRJkiRJkiRJkiRJQ5crEPrASK9D27+ikV7AWJBpb6frsccA\n6Jw3j+y6jmGZJ9vdTccjrxUXdvzpIWImMyxzSZIkSZIkSZIkSZIkafSyaCgPiqqqKJ44AYDiyZMJ\nlRXDMk+qupoJF34cSkooqq6m4dxzCanUsMwlSZIkSZIkSZIkSZKk0cvjyfKgePx4Zt56K71LllA6\nfTrFEyYMyzyhuJjKgw9m1/vuBQLFDfVkMmm61q4lhEDVuPphmVeSJEmSJEmSJEmSJEmji0VDeRBC\noHjiRIonTtzqe9t72+lJ91BVUkVFyRt3KIp9faTb2iBCqn4cReXlFJWXA5DJpFk+/3nu+M7XKS2v\n4F2XXkb95Knb/Hm2RIyR9KpVkE5TVFVFqrY2L/NKkiRJkiRJkiRJkiRp8zyebAgy2Qx92b5hGbul\nq4UX1rzAys6VtHa3ctXfruIDcz/AbQtuo723nWzM0pvpXd+/+/nnWXjCiSw4/ng6//F/9KZ7XrvW\n3s5d37+CjtWtrF62hAdu/Am93V3Dsu7X61u6lBfe9W7mH30Mrf91M5n2dXmZV5IkSZIkSZIkSZKk\n0a6pqWlmU1PT4U1NTTOTGC+EcEMI4ZUQwhMbtH0xhLAkhPB47uekDa79ewhhfgjh2RDC8Ru0n5Br\nmx9CuHSD9pkhhHm59ltCCKW59rLc+/m56zvlcw5tmkVDW+nVQp7L/3w5KzpWbLJvjJEY4xaPvbp7\nNZ978HOcctspvH/u+1nRsYL7XrqPZR3L+Pq8r9PZ18lvF/6Wl9a+xGMrHmNVx0rabvkl2Y4OYlcX\nrT/4Iatbl64fL4Qiymte2+Gnsq6OoqLU1n/oIVj30ENkVq0CoPWG68nmqVhJkiRJkiRJkiRJkqTR\nqqnf34Angd8CTzY1Nf2tqampaRuHng2cMED7d2KMB+R+5gKEEPYCzgT2zt3zwxBCKoSQAn4AnAjs\nBZyV6wvwzdxYuwKrgfNy7ecBq3Pt38n1y8sc2jyLhrbSnPlz6Eh3EELgK/O+wtqetQP2W9W1iqse\nu4qrH7ualq6WQcdb1bmKecvmcfPTN9Od6WZpx1J2q9+Nbx7xTSZWTuTrb/06N514E8fMOIYnVj3B\nznU7c/ZdZ3PO787hw/d+hPDhs9aPFQ7Yh4dWziOdTQOQqSjiHZ+6lD0O+yf2f/tJHHHW2RSXlg7p\nc6/pWcNvF/6WKx69gqXrlm62f+WBB0Kqv0Cp8tBDCSUlQ5pXkiRJkiRJkiRJkqSxIFcY9ABwEFAB\n1OX+PAh4YFsKh2KMDwKtW9j9VOAXMcaeGOMLwHzg4NzP/BjjwhhjL/AL4NQQQgCOAW7N3X8jcNoG\nY92Ye30r8LZc/3zMoc0oHukFjDZvnf5WbnjiBqpKqjhz9zPJkt3oek+6hxAC333su/xm/m8AaO9t\n55KDL6E0tXHBTndfN/Pb5vORez4CwG+e/w1X/NMVpGOam5+6mX3H70tpqpTfPP8brjr6Kp5qeYoV\nnSto72sHYEHbAjJ1lUz72U2s6VzNwvo+aqtK6F6TJhb1cf3867lz4Z28/6gzee9up1NVUTfkz/10\ny9Nc+lD/rl8PLn6Qn57wUxorGgftX7rDDuzy+7tJr1pF6YwZFI8bN+S5JUmSJEmSJEmSJEkaA64F\nqga5VgX8CNjWHYde7xMhhLOBZuAzMcbVwDTgkQ36LM61Abz8uvZDgEagLcaYHqD/tFfviTGmQwhr\ncv3zMceqLYzBmOVOQ1uhvbedK5uvZM6COfz8mZ/zuxd/R2Wqks6+Ttb2rOWBlx/g0ocu5a/L/spe\njXutv29NzxqyMfuG8db1rWN+2/z1719a+xL15fV87J6P8bsXf8e3mr/FlKoprOxaSSCwQ+0O7FCz\nA7uO2xWAY3c4lkdf+Rv31Swmtf8+7Dhtb+oW7siN//5n7r3+afavOYgVnSv4zuNX89ya57fps7d0\nv7ZbUmtP64CfZ0NFFRWUTptG5f77U9zQsE1zS5IkSZIkSZIkSZK0PWtqapoJ7LmZbnvl+iXlGmAX\n4ABgGXBlgmNrFHCnoUH0pHto62kjHdPUltZSU1pDNmbpyfSs79OV7qK9r50rHr2Cc/c9l4vvv5hI\n5P6X72fuu+dy8KKDCQT+7c3/Rnlx+Ubjr+xcye9f/D2HTj2UAyceyMI1C7n04Evp7OukN9u7vl9Z\ncRnXH3c9kUh3xyvstvJFrj32GlZ1t/Js67N8bd7XmFk3kyOmHUF2RTnNv3wcgKXPtbFv5S4AlBaV\nMrV66jbF4y1T3sIJO53AgrYFfP6QzzOuzJ2DJEmSJEmSJEmSJElKyFSgl/7jyAbTm+v3QhITxhhX\nvPo6hPBj4M7c2yXAjA26Ts+1MUh7CzAuhFCc2wlow/6vjrU4hFBM/5FrLXmaQ5vhTkODeL7teU76\n9Umc8KsTuHPhnfSke6grq+Pywy7nsKmHcewOx/LOXd7JnPlzmFE7g66+LiIRgBgj63rX8cE9P8iX\nD/8yk6smv2H82xfczreav8Vzrc9x+WGXc8vJt7Bz7c7MfmI2Vx99NU2Tmvjwvh+mrbuN0+acxlMt\nTzG+bifKHr6aVNcalnUs40t/+RJd6S5O2/U0/vjyH8lUd1E1rv8ItOl71DOhupFrjr2G20+7fZNH\niW2JhooGLnvLZfzkuJ+w/4T9KUmVbNN4kiRJkiRJkiRJkiRpvaVA6Wb6lOb6JSKEMGWDt+8Cnsi9\nngOcGUIoCyHMBGYBfwUeBWaFEGaGEEqBM4E5McYI/AF4b+7+c4DbNxjrnNzr9wL35/rnYw5thjsN\nDeK2+bet3/Hn1udu5fidjqesuIzGikbO2O0Mnmx5kovvv5jG8kbO3ONMHln2CF849Avc9eJdnLLz\nKRSFIp5oeYLaslqqS6upKa0BoDfTS2mqlJ1qdyITM1zy0CUcOvlQjpxxJHs17sUn3/RJMjHDxQdd\nzMNLHubShy4lG7P8ZdlfmFY9jfp3/YjeTDcPvPwAN554I9mYZXz5eE6+7WRmjZvFVz7xDSaWTKa8\nspTKmlKOGHdEYjGpLq1ObKzBtPe2s6ZnDQB1ZXXr4yZJkiRJkiRJkiRJ0vaqubn5haampqeBgzbR\n7anm5uYh7TIUQvg5cBQwPoSwGLgMOCqEcAAQgReBjwLEGJ8MIfwSeApIAxfGGDO5cT4B3A2kgBti\njE/mprgE+EUI4SvA/wLX59qvB/4rhDAfaKW/CCgvc2jzLBoaxEkzT+LW524lEzOcsNMJVBT37wBW\nUVzBpKpJfO7Bz9Gb7eX8/c6nL9PH6p7VvG/39/H2Hd9Oe28777njPXSlu7jhiRuY++65FFHEY688\nxm3zb+Nds97F/hP25/vHfJ/F6xbzth3eBkB1STXVpdU0L2/m9gW3s0fDHmRihvJUOcfteByTKidR\nXl9LTVcLb5p4EF+b9zVOmHkCR08/mmzM8uzqZ7ng4Q9z6ym3Ulkx/AU+SctkMzy4+EEufehSAL56\n+Fc5aeeTKC7yaypJkiRJkiRJkiRJ2u59FHgAqBrgWgdwwVAHjjGeNUDz9QO0vdr/q8BXB2ifC8wd\noH0hcPAA7d3A6SM1hzbNaoxB7NGwB797z+/ozfRSV1a3vmgIYNa4Wcx991zSMU1taS0lRSWkQmr9\nkV1retbQle4CoC/bR0dfBzFGLrzvQiKRe1+6l1vecQv7T9ifI2cc+Ya5Z9bN5MU1LzKjegZ3nHYH\nZakySlOl1FfUA1BdNZGTdj6ZI2ccRWVxJT2ZHq488kqalzfzgb0+QGP5th1FNlK6M93cufDO9e/v\nXHgnx+xwTF52OJIkSZIkSZIkSZIkaSQ1Nzc3NzU1HQX8CNgL6KX/SLKngAuam5ubR3B52g5ZNDSI\nypJKKksqB7xWVlzGpOJJg95bV1bHmbufyZwFczh2x2NpKG/oLxyi/8i8bMzSk+7hrhfv4qw93ljM\n11jRyNXHXE0mm6G8uHzAI7pKU6WUpkrXr+e4nY7juJ2OG8pHLRjlqXJO3+10Hl7yMADv3e29GxVr\nSZIkSZIkSZIkSZK0PcsVBjU1NTXNBKYCS4d6JJm0kp6dWQAAFK9JREFUORYNDYNx5eO46KCLOH+/\n8ylNlVJXVkdxUTGXveUy5iyYw/E7Hc/DSx9mr8a9Bh2jobwhjysePjGbJRQVbVHfVFGKQ6Ycwt3v\nuRuA2rJaUkWp4VyeJEmSJEmSJEmSJEkFJ1coZLGQhpVFQ8OktrS2f5OwnJrSGk7d9VSOnH4k6fZO\nimKgorz/GMKVnSvpSndRVVJFY0UjdLbAi3+C3k6Y9XaoGj/oPNmYZWXnSha0LWCX+l2YUDGBorBl\nRTrDKdvdTfczz9B2yy+pPflkKg48gFTVQMcubqyqpIqqks33kyRJkiRJkiRJkiRJ0tBZNJRHJUUl\nVPak+MXXvkrb8qXsfdTbOejss3j/3PezonMFB0w4gKuPvpqGx38Gv/8PALJvOpf02y+ntLxuwDFb\nulo4484zaO1upaG8gVvfeSsTKicMaX0dPWnau/soCoHGqlJSqaEXH2XWrOGlD55N7OtjzW23scu9\n92xR0ZAkSZIkSZIkSZIkSZKG38hvSTPGrFr8Em3LlwKw4NG/sGzdMlZ0rgDg8ZWP053pIq54cn3/\nolXP0dm9etDxOtOdtHa3AtDa3UpXumtI6+pJZ7jnqRUc9o37Ofbbf2RhS8eQxlkvkyH29fW/jpHY\n27tt40mSJEmSJEmSJEmSJCkxFg3lWf2UqZSUlQNQO2kyU6omM7FyIgD7j9+fslQ52X/6LIzfDeqm\ns/rof+epjiWDjlddUs3hUw8H4PCphw/5aK+1XWm+d/98shHWdqf5+byXhjTOq4pqapj85S9Rtuee\nTPjUv5Kqr9+m8SRJkiRJkiRJkiRJkpQcjyfLk2w2Q8+6dZRWVHHuVdeyrmUVtRMnUVlVxy9O/gWd\n6U6qS6pprGiko7ic1e+5luUdy7ntpbl8sunTg47bWNHI1976NYhQliqjqnRoRUMVpSneOms8C1au\nA+Co3ScOaZxXpWpqqHvnO6k55hiKqqooKi/fpvEkSZIkSZIkSZIkSZKUHIuG8iCbyfDKiwu59/of\nUj9lGkef/WGmzNp9/fUJlRM26l9VUkW2cRalddP51LRDaKxo3OT4DdkIi/8Gz98Nb/oQjN8diku3\nao3VZcVc/LZZnHbgNGrLi5lQU7ZV9w+kqLzcYiFJkiRJkiRJkiRJkqQCZNFQHnStXcOcK79Ge8tK\nVix4nh323o99jzluk/fUFFdRE4Hiyk0P3tkKbS/Bz07vf//4z+Cix6B2ylavs6GqlIaqrSs2kiRJ\nkiRJkiRJkiRJ0uhTNNILGAtCURFlVa8dG1ZeXb3pG3o7YOH98D8fgsdvhq62wfu2LuwvGnpVXyek\nu7dtwZIkSZIkSZIkSZIkSdquudNQHlTWjeNdn/sCj97xK8bvsBPT99xn0zd0tcHPzoBsBubfCzse\nBhXjBu77ytNQMxn2fhcsehgOOhuKt/1oMUmSJEmSJEmSJEmSJG2/LBrKk9oJEznm3AsIISQ78C5H\nw3VHwaEfh71O699pqLRqs7dJkiRJkiRJkiRJkiRp7PJ4sjza4oKhinFw1i2wy9vgHVdB1YTB+1ZP\ngo/8AVKlZIuK6Zx8KMuXrKC7oyOZRUuSJEmSJEmSJEmSJGm7405Dhai0CnY5BmYcCiUVkNrEY0qV\nwLgZdO9/Lvf/9FqefuhHAJz15SuYtOssOtOdlKXKKE2V5mnxkiRJkiRJkiRJkiRJKnTuNFSoilJQ\nXjNowVBfpm+j9+neHhb+bd769129nTSvaOZTf/gUNz91M209bcO6XEmSJEmSJEmSJEmSJI0eFg2N\nEtlMhnWrW1n50ou0tCzj6/O+zr2L7qW9tx2AsspKjv3IhZSUVzBp512p2nEKH7v3Y8xbPo/vPPYd\nlrQvGeFPIEmSJEmSJEmSJEmSpELh8WSjREfbam787IX0dHQwedZuHPnBE/nEA59i7rvnUlNaQ0lZ\nObu86WDOu+paQqqIdaleUiFFH/07EhUX+aglSZIkSZIkSZIkSZLUz0qSUaJt+TJ6OjoAWP78cxxU\ndjYA6Wx6fZ+SsnJKysoBKM70cv3x13P9E9dzxLQjmFw1Of+LliRJkiRJkiRJkiRJUkGyaGiUqJ86\njdoJE1m78hV2PeQwWtKr+WzTZ2kobxiwf2mqlP0m7Mc33/pNSlOlFAVPopMkSZIkSZIkSZIkSVI/\ni4ZGier6Bt7/lStJ9/ZSXFZGXxkcXHI4panSTd5XXlyepxVKkiRJkiRJkiRJkiRptLBoaBSpGlc/\n0kuQJEmSJEmSJEmSJEnSdsAzqyRJkiRJkiRJkiRJkqQxxqIhSZIkSZIkSZIkSZIkaYyxaEiSJEmS\nJEmSJEmSJEkaYywakiRJkiRJkiRJkiRJksYYi4YkSZIkSZIkSZIkSZKkMcaiIUmSJEmSJEmSJEmS\nJGmMsWhIkiRJkiRJkiRJkiRJGmMsGpIkSZIkSZIkSZIkSZLGGIuGJEmSJEmSJEmSJEmSpDGmeKQX\noMLUuXYNmXSa4pISKmpqR3o5kiRJkiRJkiRJkiRJSpBFQ3qDjjVt3Pmdb7D46SfY44gjOeac86mo\nrRvpZUmSJEmSJEmSJEmSJCkhHk+mN+hc08bip58A4Jk//ZHe7u4RXpEkSZIkSZIkSZIkSZKSNCJF\nQyGEE0IIz4YQ5ocQLh2JNWhwFdU1lFZUAlDTOIHikpIRXpEkSZIkSZIkSZIkSZKSlPfjyUIIKeAH\nwNuBxcCjIYQ5Mcan8r0WDayibhznXPEDWpe8zPgZO1JV3zDSS5IkSZIkSZIkSZIkSVKC8l40BBwM\nzI8xLgQIIfwCOBWwaKhApFIpasdPoHb8hJFeiiRJkiRJkiRJkiRJkobBSBxPNg14eYP3i3NtGwkh\nnB9CaA4hNK9cuTJvi5OksczcK0n5Z+6VpPwz90pS/pl7JSn/zL2SJGlzRqJoaIvEGK+LMTbFGJsm\nTHDHG0nKB3OvJOWfuVeS8s/cK0n5Z+6VpPwz90qSpM0ZiaKhJcCMDd5Pz7VJkiRJkiRJkiRJkiRJ\nyoORKBp6FJgVQpgZQigFzgTmjMA6JEmSJEmSJEmSJEmSpDGpON8TxhjTIYRPAHcDKeCGGOOT+V6H\nJEmSJEmSJEmSJEmSNFblvWgIIMY4F5g7EnNLkiRJkiRJkiRJkiRJY91IHE8mSZIkSZIkSZIkSZIk\naQRZNCRJkiRJkiRJkiRJkiSNMRYNSZIkSZIkSZIkSZIkSWOMRUOSJEmSJEmSJEmSJEnSGBNijCO9\nhs0KIawEFm1B1zpgzRCn2dJ7N9dvU9cHu/b69oH6vb5tPLBqkyvddkON59bcN9R4bk375uJbyLHc\nmnuT/m4ay6FdL4Tf81UxxhOGcN9GRlnu3VSfsZIvzL1btq6k7x2J3Pv6tu0lllvSt5C/m9tj7t2S\nvoX8TLbG9povjOWWX9vav6vlI5aDrSPp+0bz73m+cy/4TJI0GvOFsRza9bHy3RxLv+fbnH/NvQO+\nL+Tv99bc678nJ3uv383k7hvtfy8YLbl3a+4d7c9kS43GWA7UXgi5d7B1JH2fuTe5e0f773ki/91B\nKngxxu3mB7huuO/dXL9NXR/s2uvbB+o3QJ/mQo3n1tw31HhuTfvm4lvIsdyae5P+bhrL5GK5JbEb\nqXhuL89ka2K/lc9g1HzHzb3JxXJr7h2J3Pv6tu0lltsSz9H23fSZFN4z2V7zhbHc8mtb+3e1fOUK\n/15QeD8+k5GP5dbca+4t3Fhuj/H099xnMhqeyWjMF0Np215iuS3xHCvfzXzEckvjViixHOlnsjX3\njpVnMhpjuSWxe31bvr7fhZwvxkru3Zp7x8rvuT/+jPaf7e14sjvycO/m+m3q+mDXXt8+UL9t+WxD\nNdQ5t+a+ocZza9q3JL7DbTR+N43l0K6Ptt/zJBTCM9lUn7GSL8y9m1/DcNw7Erl3S+ZNWj5iuSV9\nt5fvZhJ8JsnaXvOFsdzya4X6dzX/XlB4fCbJGY35wlgO7fpY+W76ez58fCbJGY35wn9PHtr1sfLd\nzEcsB7tWqLFMyvaaL0bT93tr7vXfk5O9z9yb3L1j5fdcGtVGxfFkeqMQQnOMsWmk17E9MJbJMZbJ\nMp6Fx2eSHGOZHGOZLONZeHwmyTGWyTGWyTKehcdnkhxjmSzjmRxjWXh8JskxlskynskxloXHZ5Ic\nY5ks45kcYylt3va209BYct1IL2A7YiyTYyyTZTwLj88kOcYyOcYyWcaz8PhMkmMsk2Msk2U8C4/P\nJDnGMlnGMznGsvD4TJJjLJNlPJNjLAuPzyQ5xjJZxjM5xlLaDHcakiRJkiRJkiRJkiRJksYYdxqS\nJEmSJEmSJEmSJEmSxhiLhiRJkiRJkiRJkiRJkqQxxqIhSZIkSZIkSZIkSZIkaYyxaGg7EELYM4Tw\noxDCrSGEj430eka7EEJVCKE5hPCOkV7LaBdCOCqE8FDu+3nUSK9nNAshFIUQvhpC+F4I4ZyRXo/M\nvcPB/JsMc29yzL2Fx9ybPHNvMsy9yTH3Fh5zb/LMvckw9ybL/Ft4zL/JMvcmw9ybLHNv4TH3Jsvc\nmxzzb3LMvdIbWTRUoEIIN4QQXgkhPPG69hNCCM+GEOaHEC4FiDE+HWO8ADgDOHwk1lvItiaWOZcA\nv8zvKkePrYxnBNYB5cDifK+10G1lLE8FpgN9GMthY+5Nlvk3Oebe5Jh7C4+5N1nm3uSYe5Nj7i08\n5t5kmXuTY+5Nlvm38Jh/k2PuTY65N1nm3sJj7k2OuTdZ5t/kmHulbWPRUOGaDZywYUMIIQX8ADgR\n2As4K4SwV+7aKcBvgbn5XeaoMJstjGUI4e3AU8Ar+V7kKDKbLf9uPhRjPJH+vxhenud1jgaz2fJY\n7g78Ocb4acD/h8PwmY25N0mzMf8mZTbm3qTMxtxbaGZj7k3SbMy9SZmNuTcpszH3FprZmHuTNBtz\nb1JmY+5N0mzMv4VmNubfpMzG3JuU2Zh7kzQbc2+hmY25NymzMfcmaTbm36TMxtwrDZlFQwUqxvgg\n0Pq65oOB+THGhTHGXuAX9FdDEmOck/uHxQfyu9LCt5WxPAo4FHg/8JEQgr8jr7M18YwxZnPXVwNl\neVzmqLCV383F9McRIJO/VY4t5t5kmX+TY+5Njrm38Jh7k2XuTY65Nznm3sJj7k2WuTc55t5kmX8L\nj/k3Oebe5Jh7k2XuLTzm3uSYe5Nl/k2OuVfaNsUjvQBtlWnAyxu8XwwcEvrPrnw3/f+QsPJ5ywwY\nyxjjJwBCCB8CVm3wD2Ft2mDfzXcDxwPjgO+PxMJGoQFjCVwNfC+E8FbgwZFY2Bhm7k2W+Tc55t7k\nmHsLj7k3Webe5Jh7k2PuLTzm3mSZe5Nj7k2W+bfwmH+TY+5Njrk3WebewmPuTY65N1nm3+SYe6Ut\nZNHQdiDG+ADwwAgvY7sSY5w90mvYHsQYfw38eqTXsT2IMXYC5430OvQac+/wMP9uO3Nvcsy9hcfc\nOzzMvdvO3Jscc2/hMfcOD3PvtjP3Jsv8W3jMv8kz9247c2+yzL2Fx9ybPHNvMsy/yTH3Sm/kVnCj\nyxJgxgbvp+fatPWMZbKMZ3KMZeHxmSTLeCbHWCbHWBYen0myjGdyjGVyjGXh8Zkky3gmx1gmy3gW\nHp9Jcoxlcoxlsoxn4fGZJMdYJst4JsdYSlvIoqHR5VFgVghhZgihFDgTmDPCaxqtjGWyjGdyjGXh\n8Zkky3gmx1gmx1gWHp9Jsoxncoxlcoxl4fGZJMt4JsdYJst4Fh6fSXKMZXKMZbKMZ+HxmSTHWCbL\neCbHWEpbyKKhAhVC+DnwF2D3EMLiEMJ5McY08AngbuBp4JcxxidHcp2jgbFMlvFMjrEsPD6TZBnP\n5BjL5BjLwuMzSZbxTI6xTI6xLDw+k2QZz+QYy2QZz8LjM0mOsUyOsUyW8Sw8PpPkGMtkGc/kGEtp\n24QY40ivQZIkSZIkSZIkSZIkSVIeudOQJEmSJEmSJEmSJEmSNMZYNCRJkiRJkiRJkiRJkiSNMRYN\nSZIkSZIkSZIkSZIkSWOMRUOSJEmSJEmSJEmSJEnSGGPRkCRJkiRJkiRJkiRJkjTGWDQkSZIkSZIk\nSZIkSZIkjTEWDWlMCiH8eaTXIEljjblXkkaG+VeS8s/cK0n5Z+6VpPwz90rS6BdijCO9BkmSJEmS\nJEmSJEmSJEl55E5DGpNCCOtyfx4VQngghHBrCOGZEMJ/hxBC7tqbQwh/DiH8PYTw1xBCTQihPITw\n0xDCP0II/xtCODrX90MhhNtCCPeEEF4MIXwihPDpXJ9HQggNuX67hBB+F0L4WwjhoRDCHiMXBUnK\nL3OvJI0M868k5Z+5V5Lyz9wrSfln7pWk0a94pBcgFYADgb2BpcDDwOEhhL8CtwDvizE+GkKoBbqA\nTwIxxrhv7i8gvw8h7JYbZ5/cWOXAfOCSGOOBIYTvAGcDVwHXARfEGJ8PIRwC/BA4Jm+fVJIKh7lX\nkkaG+VeS8s/cK0n5Z+6VpPwz90rSKGTRkAR/jTEuBgghPA7sBKwBlsUYHwWIMa7NXT8C+F6u7ZkQ\nwiLg1b/E/CHG2A60hxDWAHfk2v8B7BdCqAYOA/4nV1wNUDbMn02SCpW5V5JGhvlXkvLP3CtJ+Wfu\nlaT8M/dK0ihk0ZAEPRu8zjD034sNx8lu8D6bG7MIaIsxHjDE8SVpe2LulaSRYf6VpPwz90pS/pl7\nJSn/zL2SNAoVjfQCpAL1LDAlhPBmgNz5qsXAQ8AHcm27ATvk+m5Wrnr6hRDC6bn7Qwhh/+FYvCSN\nUuZeSRoZ5l9Jyj9zryTln7lXkvLP3CtJBc6iIWkAMcZe4H3A90IIfwfuof/s1B8CRSGEf9B/BuuH\nYow9g4/0Bh8AzsuN+SRwarIrl6TRy9wrSSPD/CtJ+WfulaT8M/dKUv6ZeyWp8IUY40ivQZIkSZIk\nSZIkSZIkSVIeudOQJEmSJEmSJEmSJEmSNMZYNCRJkiRJkiRJkiRJkiSNMRYNSZIkSZIkSZIkSZIk\nSWOMRUOSJEmSJEmSJEmSJEnSGGPRkCRJkiRJkiRJkiRJkjTGWDQkSZIkSZIkSZIkSZIkjTEWDUmS\nJEmSJEmSJEmSJEljjEVDkiRJkiRJkiRJkiRJ0hjz/wM1uqos6VfMwgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3843,11 +3849,11 @@ "metadata": { "id": "utJ2CXsIszAZ", "colab_type": "code", + "outputId": "d15fa110-1588-4802-db6c-4ae6690dd661", "colab": { "base_uri": "https://localhost:8080/", "height": 2230 - }, - "outputId": "a3030bf7-faaa-42fc-ec0e-a5d0c07f2179" + } }, "cell_type": "code", "source": [ @@ -3863,14 +3869,14 @@ " plt.axhline(y=50, color='cyan')\n", " " ], - "execution_count": 98, + "execution_count": 45, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8VNX9//HXJwtJSCDsCLgAigq4\nVUfEutS91lqX1rrXpVZqq9Vq+6vYWrVqrUtbq361rSvYuu9+XYso1a+tS9xAwB1wQ9aQsGaZfH5/\n3BMYwiRMlptl8n4+Hnlk5tx7zzmTWj5zzj33fMzdERERka4tp6M7ICIiIq2ngC4iIpIFFNBFRESy\ngAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKBLl2JmZ5lZmZlVmdmkBsd+ZGYfmdkKM3vGzIam\nHNvXzF4wswozm5um3p3M7KVw/HMz+238n0ZEpO0ooEtX8yVwOXB7aqGZ7QNcARwO9APmAPeknLIy\nXPP/Gqn3buDFcO03gJ+a2WFt2XERkTgpoEuX4u4Pu/ujwJIGhw4FHnD3me5eDVwG7G1mW4brXnP3\nfwCfNFL1cOAud0+6+8fA/wFjY/kQIiIxUECXbGJpXm+X4bV/AU4ys3wz2wbYHXiuLTsnIhInBXTJ\nFs8AR5vZDmZWBFwEONAzw+ufAI4CVgPvAbe5++ux9FREJAYK6JIV3P054GLgIWBu+FkOfL6xa82s\nH9EXgkuBQmAz4Jtm9tOYuisi0uYU0CVruPuN7j7K3QcTBfY84N0MLh0JJN39TnevdffPgXuBQ2Ls\nrohIm1JAly7FzPLMrBDIBXLNrLC+zMy2s8jmwM3Ade5eHq7LCdflR2+t0Mx6hGo/CGXHh/M2AY4B\nprf/JxQRaRkFdOlqLiS6zz0RODG8vpBoqvxuYAXwGvBfIPVZ8r3DuU8Bm4fX/wJw90rgu8C5QDnw\nNtHI/vLYP42ISBsxd+/oPoiIiEgraYQuIiKSBWIN6GZ2jpm9a2YzzeznoayfmU0xsw/D775x9kFE\nRKQ7iC2gm9l2wOnAOGBH4FAz24ro3udUdx8FTA3vRUREpBXiHKGPBl5191XuXgv8m2jh0eHA5HDO\nZOCIGPsgIiLSLcQZ0N8F9jKz/mbWk+iZ3s2Awe4+P5zzFTA4xj6IiIh0C3lxVezus83sKqJHg1YS\nPQqUbHCOm1naZfZmNgGYADBmzJhdZs6cGVdXRUQyYRs/RaTjxLoozt1vc/dd3H1voud7PwAWmNkQ\ngPB7YSPX3uzuCXdPFBUVxdlNERGRLi/uVe6Dwu/Nie6f3w08DpwcTjkZeCzOPoiIiHQHsU25Bw+Z\nWX+gBjjT3ZeZ2ZXA/WZ2GjAPODrmPoiIiGS9WAO6u++VpmwJsH+c7YqIiHQ32ilOREQkCyigi4iI\nZAEFdBERkSyggC4iIpIFFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0\nERGRLKCALiIikgUU0EVERLKAArqIiEgWUEAXERHJAgroIiIiWUABXUREJAsooIuIiGQBBXQREZEs\noIAuIiKSBRTQRUREsoACuoiISBZQQBcREckCCugiIiJZQAFdREQkCyigi4iIZAEFdBERkSyggC4i\nIpIFFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGRLBBrQDezc81s\nppm9a2b3mFmhmY0ws1fN7CMzu8/MesTZBxERke4gtoBuZsOAs4GEu28H5ALHAlcB17r7VkA5cFpc\nfRAREeku4p5yzwOKzCwP6AnMB/YDHgzHJwNHxNwHERGRrBdbQHf3L4A/Ap8SBfIK4A1gmbvXhtM+\nB4bF1QcREZHuIs4p977A4cAIYChQDBzcjOsnmFmZmZUtWrQopl6KiIhkhzin3A8A5rj7InevAR4G\n9gD6hCl4gE2BL9Jd7O43u3vC3RMDBw6MsZsiIiJdX5wB/VNgvJn1NDMD9gdmAS8AR4VzTgYei7EP\nIiIi3UKc99BfJVr89iYwI7R1M3A+cJ6ZfQT0B26Lqw8iIiLdhbl7R/dhoxKJhJeVlXV0N0Ske7OO\n7oBIU7RTnIiISBZQQBcREckCCugiIiJZQAFdREQkCyigi4iIZAEFdBERkSyggC4iIpIFFNBFRESy\ngAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGRLKCALiIikgUU0EVERLKAArqI\niEgWUEAXERHJAgroIiIiWUABXUREJAsooIuIiGQBBXQREZEsoIAuIiKSBRTQRUS6ITM7zMwmdnQ/\npO3kdXQHRESkdczMAHP3ukyvcffHgcfj65W0N43QRUS6IDMbbmbvm9mdwLvAD8zsv2b2ppk9YGYl\n4bxDzOw9M3vDzK43sydC+Slm9j8pdT1vZtPNbKqZbR7KJ4Vr/mNmn5jZUR31eWXjFNBFRLquUcBN\nwDeA04AD3H1noAw4z8wKgb8D33L3XYCBjdRzAzDZ3XcA7gKuTzk2BNgTOBS4MpZPIW1CAV1EpOua\n5+6vAOOBMcDLZvY2cDKwBbAt8Im7zwnn39NIPbsDd4fX/yAK4PUedfc6d58FDG7rDyBtR/fQRUS6\nrpXhtwFT3P241INmtlMbtFGVWmUb1Ccx0QhdRKTrewXYw8y2AjCzYjPbGngfGGlmw8N5xzRy/X+A\nY8PrE4CX4uuqxEUjdBGRLs7dF5nZKcA9ZlYQii909w/M7KfAM2a2Eni9kSp+BtxhZv8PWAScGnun\npc2Zu3d0HzYqkUh4WVlZR3dDRLq3LjndbGYl7r4iPNp2I/Chu1/b0f2StqcpdxGR7HZ6WCg3Eygl\nWvUuWUhT7iIiWSyMxjUi7wZiG6Gb2TZm9nbKT6WZ/dzM+pnZFDP7MPzuG1cfREREuovYArq7v+/u\nO7n7TsAuwCrgEWAiMNXdRwFTw3sRERFphfa6h74/8LG7zwMOByaH8snAEe3UBxERkazVXgH9WNbt\nUDTY3eeH11+hnYdERERaLfaAbmY9gMOABxoe8+iZubTPzZnZBDMrM7OyRYsWxdxLERFpyMz+09F9\nkMy1xwj9W8Cb7r4gvF9gZkMAwu+F6S5y95vdPeHuiYEDG8snICIibc3M8gDc/esd3RfJXHsE9ONY\nPyHA40SJAwi/H2uHPoiIdJjhE588fvjEJ+cOn/hkXfh9fGvrNLNHQ0rUmWY2IZStMLNrQtlzZjbO\nzKaF1KeHhXNywzmvh3SpPw7l+5jZS2b2ODCrvr6U9s43sxlm9o6ZXRnKTg/1vGNmD5lZz9Z+Lmm5\nWHeKM7Ni4FNgpLtXhLL+wP3A5sA84Gh3X9pUPdopTkQ6gRbtFBeC9y1AarBbBZw+98pv353+qgw6\nY9bP3ZeaWRHRlq7fABYDh7j702b2CFAMfJsoE9tkd98pBP9B7n552Cb2ZeD7RNnZngS2q8/OZmYr\n3L3EzL4F/JYoPeuqlLb7u/uScO7lwAJ3v6Gln0laJ9aNZdx9JdC/QdkSolXvIiLdwRWsH8wJ769g\nXcrSljjbzI4Mrzcjyo1eDTwTymYAVe5eY2YzgOGh/CBgBzM7KrwvTbn2tZRUq6kOAO5w91UAKYOw\n7UIg7wOUAM+24vNIK2mnOBGReG3ezPKNMrN9iILs7mHEPA0oBGp83bRrHSH1qbvX1d8XJ5pp+Jm7\nP5umzpU0zyTgCHd/JySH2ae5n0XajvZyFxGJ16fNLM9EKVAegvm2wPhmXPss8BMzywcws63D7dGm\nTAFOrb9Hbmb9QnkvYH6o64RmfQJpcwroIiLx+jXRPfNUq0J5Sz0D5JnZbOBKonzombqVaNHbm2b2\nLlGyliZna939GaIFzWUh0csvw6HfAq8S3Yd/r1mfQNqc0qeKiGSmxelTw8K4K4im2T8Fft2aBXEi\n6Sigi4hkpkvmQ5fuQ1PuIiIiWUABXUREJAsooIuIiGQBBXQREZEsoIAuIiKSBRTQRUREsoACuohI\nNxSyq3095f2klP3d27qtW81sTBx1yzray11EJG6XlG6wsQyXVHT0xjL7ACuA/8TdkLv/KO42RCN0\nEZF4RcH8FqL0pBZ+3xLKW8TMis3syZCH/F0zO8bM9jezt0LO8ttDalTMbK6ZDQivEyE/+nDgDOBc\nM3vbzPYKVe9tZv8J+dMbHa2bWYmZTTWzN0N7hzfWr1A+zcwS4fVfzaws5Gz/XUv/BrIhBXQRkXg1\nlT61pQ4GvnT3Hd19O6K93ScBx7j79kSzrz9p7GJ3nwv8DbjW3Xdy95fCoSHAnsChRHvEN2YNcKS7\n7wzsC/zJzKyRfjX0G3dPADsA3zCzHTL90NI0BXQRkXi1efpUolznB5rZVWF0PRyY4+4fhOOTgb1b\nUO+j7l7n7rOAwU2cZ8AVZjYdeA4YFs5fr1/uXpHm2qPN7E3gLWAsoHvrbUQBXUQkXm2ePjUE7p2J\nAujlwBFNnF7Lun/rCzdSdVXK66b2rj8BGAjs4u47AQuAwob9MrOLUi8ysxFEmdr2d/cdgCcz6JNk\nSAFdRCRebZ4+1cyGAqvc/Z/ANcDuwHAz2yqc8gPg3+H1XGCX8Pp7KdUsJ8pn3hKlwEJ3rzGzfYnW\nBaTr184NrusNrAQqzGww8K0Wti9paJW7iEicLqm4m0tKoW1XuW8PXGNmdUAN0f3yUuABM8sDXie6\nRw7wO+A2M7sMmJZSx/8CD4YFbT9rZvt3Af9rZjOAMtblQk/Xr7Xc/R0zeyuc/xlRHnVpI0qfKiKS\nGaVPlU5NU+4iIiJZQFPuIiKSlpltD/yjQXGVu+/WEf2Rpimgi4hIWu4+A9ipo/shmdGUu4iISBZQ\nQBcREckCCugiIiJZQAFdREQkCyigi4hkMTO7xMx+GVPdazO5dUZmNtDMXg1Z6PZKczyr8rRrlbuI\nSMy2n7z9BvnQZ5w8o6PzoXcoM8tz99qYm9kfmJEuH7uZ5WZbnnaN0EVEYhSC+Qb50EN5izSSD32D\nvOcpl+xoZv81sw/N7PQm6h1iZi+GHOnv1o9qN5LD/GcpedG3DeePC+29FfKrbxPKTzGzx83seWBq\nE3nVh5vZbDO7JbT5LzMraqLfp5vZ6+Hv8ZCZ9TSznYCrgcPD5ykysxVm9iczewfYvUGe9oNDP94x\ns6lNfY7OSgFdRCRe7ZUPvSk7APsRJXG5KCRRSed44NmQQW1H4O1Q3lQO88UhL/pfiTKpQbRX+17u\n/jXgItb/rDsDR7n7N2g8rzrAKOBGdx8LLGP9xDINPezuu7r7jsBs4DR3fzu0fV/I+b4aKAZeDX+3\n/6u/2MwGEn3p+l6o4/sZfI5OR1PuIiLxiisf+p/M7CrgCXd/aV0cTOuxENBWm9kLwDjg0TTnvQ7c\nbmb5RLnR6wP60WY2gShmDCHKYT49HHs4/H4D+G54XQpMNrNRgAP5KW1Mcfel4XV9XvW9gTrW5VWH\nKL97fftvEOV8b8x2ZnY50AcoAZ5t5Lwk8FCa8vHAi+4+ByClf019jk5HI3QRkXjFng895B1vKu95\nwyxcabNyufuLwN7AF8AkMzspgxzm9TnUk6wbJF4GvBBmD77T4PyVKa/T5lVvUG/DutOZBJzl7tsT\nZZdrLMf6GndPNlFPQ019jk5HAV1EJF7tkQ99ZxrPew7RfeRCM+sP7EM0Ek9X7xbAAne/Bbg11NuS\nHOalRF8KAE7ZyHkb5FVvgV7A/DCzcEILrn8F2Dt8ecHM+qX0L5PP0SnEGtDNrI+ZPWhm74UFDrub\nWT8zmxIWZ0wxs75x9kFEpCOF1eynA/OIRsbzgNNbucp9e+A1M3sbuBi4nGhkep2ZlRGNaFNNB14g\nClyXufuXjdS7D1Cfs/wY4Dp3fweoz2F+N5nlML8a+EOop6mR9V1AIuRVP4l1edWb67fAq6Fvza7D\n3RcBE4CHw4K5+8KhTD9HpxBrPnQzmwy85O63mlkPooUgvwaWuvuVZjYR6Ovu5zdVj/Khi0gnoHzo\n0qnFNkI3s1KiezG3Abh7tbsvAw4HJofTJgNHxNUHERGR7iLOKYQRwCLgDjPbkWiV4jnAYHefH875\ninUrGkVEpB101TznZnYjsEeD4uvc/Y6O6E9nE2dAzyNaUPEzd3/VzK4DJqae4O5uZmnn/MMjEhMA\nNt+8NU93iIhIqq6a59zdz+zoPnRmcS6K+xz43N1fDe8fJArwC8xsCES7EgEL013s7je7e8LdEwMH\nDoyxmyIiIl1fbAHd3b8CPkvZKm9/YBbwOHByKDsZeCyuPoiIiHQXcS/D/xlwV1jh/glwKtGXiPvN\n7DSixzeOjrkPIiIiWS/WgB627UukObR/nO2KiIh0NxkF9LBx/elEe+muvcbdfxhPt0REpDszsz7A\n8e5+UwuunQsk3H1xG/TjUqJ93p9rbV1xy3SE/hjwEvAcG+5AJCIiTZi97egN8qGPfm92h+RDt/bJ\nQ94W+gA/BTYI6O35Gdz9ovZopy1kuiiup7uf7+73u/tD9T+x9kxEJAuEYL5BPvRQ3mJmdqKZvRZy\nff/dzHLNbEXK8aPMbFJ4PcnM/mZmrwJXhy24HzWz6Wb2Sn06VDO7xMz+YWlyp5vZ/ws5x6fbhjnR\nG/btpHDeO2b2j1A2MOQqfz387JHS5u0hN/knZnZ2qOZKYMvw+a4xs33M7CUze5xogTXhM7xhUc70\nCc34221wXfj7TbIoD/wMMzs35W93VHh9Uej7u2Z2c0qq104h0xH6E2Z2iLs/FWtvRESyT1P50Fs0\nSjez0UR7re8REpvcxMaTkmwKfN3dk2Z2A/CWux9hZvsBd7LuufQdiNKJFgNvmdmTwHZE+cnHEX0p\nedzM9g7Z2Rr2bSxwYWhrcUqik+uAa939/8xsc6IUp6PDsW2J8qH3At43s78S7VuyXcjChpntQ/To\n83b1aU6BH7r7UjMrAl43s4fcfUkGf8INriO6pTwsZFarn/Jv6H/c/dJw/B/AocD/ZtBeu8g0oJ8D\n/NrMqoAaov9B3d17x9YzEZHsEEc+9P2JMqu9HgaJRTSyp0eKB1JSh+5JyMjm7s+bWX8zq//3PF3u\n9D2Bg4iStECUc3wUsEFAB/YLbS0O9dfnFj8AGJMyqO1tZiXh9ZPuXgVUmdlCGt9B9LWUYA5wtpkd\nGV5vFvqUSUBPd937wMjwZedJ4F9prtvXzH5F9IWsHzCTrhbQ3b1X3B0REclSn5I+LWiL86ETDaom\nu/sF6xWa/SLlbcPc3SvJTLrc6Qb8wd3/3qxeri8HGO/ua1ILQ4DPNPf52s8QRuwHALu7+yozm0YG\n+cobu87dy8M25d8EziB6pPqHKdcVEt3PT7j7Z2Z2SSbttaeMN5Yxs75mNs7M9q7/ibNjIiJZos3z\noQNTgaPMbBBE+bst5DI3s9FmlgMc2cT1LxGm6EOAW+zuleFYutzpzwI/rB9Rm9mw+rbTeB74frg+\nNbf4v4j2JiGUb2zr2eVEU/CNKQXKQ1Delug2QSbSXmdmA4CcsD7sQqLp/VT1wXtx+DsclWF77SbT\nx9Z+RDTtvinwNtEf4L9EUysiItKI0e/Nvnv2tqOhDVe5u/ssM7sQ+FcI3jXAmUT3nZ8gSoxVRjQ1\nns4lwO1mNp3oy8XJKcfqc6cPYF3u9C/Dffv/hhH1CuBE0kzzu/tMM/s98G8zSxJN058CnA3cGNrM\nI5quP6OJz7jEzF42s3eBp4mmwVM9A5xhZrOJpstfaayuDK8bRpRMrH6gu97sh7svM7NbgHeJEou9\nnmF77SajfOgWJZ/fFXjF3XcK32qucPfvxt1BUD50EekUOtWK5jiEaeQV7v7Hju6LNF+mi+LWuPsa\nM8PMCtz9PVu3R7tIs3gySXLpUrzOyelVQm7PhguARUSkuTIN6J+HJfyPAlPMrJxoH3aRZque9ynz\njj+eZGUlQ6+5ml77709OYadaWyLSLbn7JZmeG+6RT01zaP8MHx2LVWfvXxwyXeVev7jikvAYQynR\nfQiRZiu/+y6Sy5YBsOj6GyjebTcFdJEuJgTFTptTvbP3Lw7NWeW+c9jBZweiPOfV8XVLslnP3XZb\n+7popx2xgoIO7I2ISHbIdJX7RcD3gYdD0R1m9oC7Xx5bzyRrFY8bx/CHHiS5tJzCsWPI7aVtDkRE\nWivTe+gnADvWbwhgZlcSPb6mgC7NlltaSlFpaUd3Q0Qkq2Q65f4l6++IUwB80fbdke7K3alctJB3\npjzFwrmfUL1mzcYvEpEmmdlhZjaxkWMrGilPTUYyzcwScfaxMWa2k5kd0g7t/Drl9fDw3Htr6xxo\nZq+a2Vtmtlea47ea2ZjWttNQpiP0CmCmmU0h2gbwQOA1M7sewN3PbupikY1Zuaycuy/8BSuXlWOW\nw6nX/o0eQ4Z2dLdEujR3fxx4vKP70UI7AQkglqRgIVOaEe3Yd0UbV78/MMPdf5Sm3dx05W0h04D+\nSPipN63tuyLdWV1tLSuXlQPgXkfFogX0VUCXLHHjGc9vkA/9zL/t16p86GY2nOhpo1eArxPtXHYH\n8DtgENGt0jFEe4+fZWYjiLK7lQCPpdRjwA1EA7XPgLQLns3soFB3AfAxcKq7NzbK3wX4c2hrMXCK\nu8+3KB3rBKAH8BHwg7AF6/eBi4n2ca8g2mv9UqDIzPYk2kf+vjTtXEL0Nx0Zfv/F3a8Px85j3V7s\nt7r7X8Lf7FngVaLkNq+FNt4mSrTyGyA37Aj3daKZ6MNDspp0n3ODzwNsDVwd6k0AuxPt3Pf38LnO\nNLPLgV+6e5mZHUz030Yu0Ra8+5vZOKLsdIXA6vC3fj9dH1JlNOXu7pPrf4i+7b3VoEykVfKLitjl\n0CPBjCFbb8vALUZ0dJdE2kQI5hvkQw/lrbUV8Cei9KPbAscTZUb7JRvuFX8d8Fd33x6Yn1J+JLAN\nUfA/iSiQrSfsc34hcIC770y0rex56TpkZvlEXxCOcvddgNuB34fDD7v7ru6+IzAbOC2UXwR8M5Qf\nFp6iugi4z913ShfMU2xLlFBlHHCxmeWHLxSnArsRbVV+upl9LZw/CrjJ3ce6+6nA6tDGCSnHb3T3\nscAyQla6Rmzwedz97QZ9X02UivZVd9/R3f8v5W81kOi/je+FOr4fDr0H7OXuXwt1ZTSDkOkq92nA\nYeH8N4CFZvayu6f9H1SkuYpKejH+u8eQOPRIcnJz6dlbi+Yka7R5PvQUc9x9BoCZzQSmuruH7bqH\nNzh3D9YFp38AV4XXewP3hNSqX5rZ82naGU8U8F8Oe7n3IMrnkc42RPnTp4Rzc1n3BWK7MDrtQzR6\nfzaUvwxMMrP7Wfc0VabSpV7dE3jE3VcCmNnDwF5EA9J57t7Uvu9zQlCGKN4Nb+Lcxj5PQ0ngoTTl\n44EX61PCpqSaLQUmm9kootvc+U30Ya1Mp9xL3b0yJGm5090vDhvsi7SZwuKS6HusSHaJIx96vdS0\no3Up7+tI/+/7xpN3pGfAFHc/LsNzZ7r77mmOTQKOcPd3zOwUomxuuPsZZrYb8G3gjTDCzlSmqVfr\nbSyNbMP6ipo4dxJpPk8aa1Jy0WfiMuAFdz8y3CaYlslFma5yzzOzIUT5YZ9oRqdERLq7xvKetyYf\neku8DBwbXp+QUv4icIyZ5YZ/5/dNc+0rwB5mthWAmRWb2daNtPM+MNDMdg/n5pvZ2HCsFzA/TMuv\n7YOZbenur7r7RUT3mzdj4+lTm/IScISZ9TSzYqLbCi81cm5N6E9LpP08zfAKsHdY35CaaraUdU+S\nnZJpZZkG9EuJphI+dvfXzWwk8GGmjYiIdGNx5ENviXOIFmTNIEoVWu8Ron/PZwF3kmYq3d0XEQWW\ne8Ls7H+J7l1vINz/Pgq4yszeIdqzpP6+/G+JFqS9THSfuN41ZjYjPDL2H+AdohSuY8zsbTM7pjkf\n1N3fJBo9vxbau9Xd32rk9JuB6WZ2V3PaCBr7PJn2cxHRorqHw9+qfq3A1cAfzOwtMp9Jzyx9akdT\n+lQR6QRanD41jlXuIg1lmg99a+CvwGB3387MdiBaidguO8UpoItIJ5D1+dCla8t0yv0W4AKgBsDd\np7PuXoyIiHRDZvZImBJP/flmDO2cmqadG9u6nSbavzFN+6e2V/uZynRuvqe7vxYeQahXG0N/RESk\ni0hJrR13O3cQbZrTIdz9zI5quzkyHaEvNrMtCY88hH1+5zd9iYiIiLSXTEfoZxKtBNzWzL4A5tCy\nJfoiIiISgyYDupmd4+7XAUPc/YDwPF+Ouy9vn+6JiIhIJjY25V5/0/8GAHdfqWAuIiLS+WwsoM82\nsw+BbcxsesrPDG39mj3qqqupXbaMupqaju6KiLQTMzuiLXNym1miPqV2R7CU3O8N85Gb2VNm1qej\n+tZempxyd/fjzGwTol3iDmufLkl7SlZWUvHkU1Q+/jh9jj2WXvvvR25JSUd3S0TidwTRVt6z2qIy\ndy8jysLWIRrkfm+Yj7yxbV+zinaK6+aqP/uMjw88aO37rZ6fSv5Q5SEXSaPFG8v86ZhDN9gp7hf3\nPdHafOgnAmcTZT57Ffgp8D/ArkQJRR5094vDuVcSDcpqgX8RZTR7gij3eAVR+s6P07SRUf5yd9/b\nzPYhyvF9aHPyeYekJkcS7V8+DPinu/8uHHuUaF/3QuA6d785lKfLIX4KkABuJQrsRUT7oe9OlNo0\n4e6LzewkovSyDkx39x9k+jfv7Da2KO5+dz867P2bGvkNcHffIdbeSewsNxdycqCuDvLyotci0mZC\nML+FdSlUtwBu+dMxh9LSoG5mo4FjgD3cvcbMbiJ68ug37r7UzHKBqWFXzy+IAua2IbVqH3dfZmaP\nA0+4+4NNNPWwu98S2rycKH/5DazLX/5FI1PZ9fm8a83sAKLg21Re8XFEKVdXAa+b2ZNhxP/D8HmK\nQvlDRLeKbwH2dvc5KQlNAHD3t83sIqIAflboe/3fbSxRXvevh+C+3rVd3cYeWzsn/D60JZWb2Vyi\njDlJoNbdE+EPeB9Rjtm5wNHuXt6S+qX1ckpL2ezmv1Px6GP0Ofr75Ja2LA95cvly6iorITeX3NJS\ncoqayjgo0q3EkQ99f2AXoiAH0Wh0IXC0mU0g+rd9CFEO81nAGuA2M3uC5mXMbGn+8ubm857i7ktg\nbe7yPYmm7882s/rNazYDRgG3+GODAAAgAElEQVQDSZ9DPBP7AQ+4++IWXNvpbewe+vzwe14r2ti3\n/o8XTASmuvuVYQHDROD8VtQvrZBbXEzJnntSPH48lpdxUp/11FVVUfn003x10cWQn88Wd9xOz0Si\njXsq0mXFkQ/dgMnufsHagigF5xRgV3cvN7NJQGEYJY8j+hJwFHAWUWDLxCRalr+8ufm8G9779TCF\nfwCwe5jmn0Y09S6NaHJ+1cyWm1llmp/lZlbZwjYPByaH15OJFmZIB2tpMAeoW7mS8nvuxXr2ZNB5\n50JeHsmKijbsnUiXFkc+9KnAUWY2CNbm0d4cWAlUmNlg4FvhWAlQ6u5PAecCO4Y6Msk33pz85ama\nm8/7QDPrF6bWjyCaASgFykMw3xYYH85tLId4Jp4Hvm9m/Vtwbae3sRF6S5PLr60C+JeZOfD3sKBh\ncP3IH/gKGLyxSt4nfC2UDSTrkjhOXk7LA3Jrea9e1N5wPTnFxdQuXkKyYhl5y5aRX1zcqi8KIp3J\ntJZf+mvWv4cOrcyH7u6zzOxCon9fc4gSZ50JvEV0//ozoqAIUVB+zMwKiUb254Xye4FbzOxs4Kh0\ni+JYl+97UfhdHxOuCdPpRvTl4h3gGynXXU005X4h8GQGH+k14CFgU6JFcWVh7dYZZjabKAy8Ej77\nonBb4eHw2RcCB2bQBu4+08x+D/zbzJJEf69TMrm2K4h1lbuZDQuLJgYRTQX9DHjc3fuknFPu7n3T\nXDuBaHUlBTvssMv4d96JrZ9dVU2yhs+Wf0p1XQ3De29BYW4hWPtneExWVOBV1eT0LGLNrHVPwBTt\nsANWqBkyyQ7TOtkq92xRvzq9fgGbtFy7PbZmZpcAK4DTgX3cfb6ZDQGmufs2TV2rx9bSu3XGrVz3\n5nUAbN13a2458Bb6FbX/DFLVnDl8ctjhDL/7LuYeexwkk1hREVs+8zT5gzc6ASPSVSgfegwU0NtO\nbPOhqfu+h9cHAZcSPR94MnBl+P1YXH3Idr3y190RKc4vJsc65pGzvEGDGH7vPdQuLWeLu/7Jyhdf\npNfB3yK3X1bdnhLJWhblFt+jQfF1IW1pW7XxTeCqBsVzQgrWSW3VTncW2wjdzEYCj4S3ecDd7v77\nsBjhfqKpp3lEj601+eiARujpla8p58EPH2T+8vlM2HECmxRv0tFdEslmGqFLp6ad4rJAXV0dOdoQ\nRiRuCujSqSkKZAEFcxERUSQQERHJAgroEqvkypXULluG19V1dFdEpBnMbLiZvZvBOcenvO/QFKrd\nnQK6xKZ2yRLmX3wxn5/xE9a89x6eTHZ0l0SkbQ0H1gZ0dy9z97M7rjvdmwK6xGbZw4+w/IknWf32\n23x+xk+oXdr4wwzVtUkWLa+icnXNBsfKV1bz/lfLefWTJSxavibOLot0GWF0/J6Z3WVms83sQTPr\naWb7m9lbZjbDzG43s4Jw/lwzuzqUv2ZmW4XySWZ2VEq9Kxpp6yUzezP8fD0cuhLYy8zeNrNzzWyf\nkACGsJXro2Y23cxeCZnfMLNLQr+mmdknYac6aQPal1NiYz16NHidfpHw6ppa/vvREn7/1Gy22aQX\nV3x7FFStoq62Bnr1489TP+Gfr0bbXg/uXcDjZ+3J4N7agU4E2AY4zd1fNrPbibZ1/TGwv7t/YGZ3\nAj8B/hLOr3D37S3KCf4XMs+kuRA40N3XhC1f7yHKPT6RkAMdICRUqfc74C13P8LM9gPuBHYKx7YF\n9iXaSvZ9M/uru2/4bV6aRSP0LFe7aBE18+dT2wHJUkq/cyj9Tj2Fkn33ZbObbyZvQP+05y1fXcuP\n//kGHy9aydKV1cx/fya3nf0j7jjvJ1SuquKu19blsFhQWcXTM+anrUekG/rM3ev3bP8nUUa1Oe7+\nQSibDOydcv49Kb93b0Y7+UT7vs8AHiBKy7oxewL/AHD354H+ZtY7HHvS3atCJs6FZJDTQzZOI/Qs\nVvPVV8w95lhqFyyg/4QJ9P/RaeT27r3xC9tIXr9+DDzvPLymhtyeDdNBpzAo6pFLzepathrQk09e\nm7L2UG11VTv0VKTLariRyDIg/TfnDc+vf11LGNyFZCc9Gl5ElKVtAVGmthyi/Oqtkfp/7CSKRW1C\nI/Qstuq116ldsACAJXfcgVe1f3DMyc9vOpgD/Xv24P4f784h22/CTlv0Y8eDDiE3Lw/MyKut4oTd\n1qWNHty7gG9tPyTubot0FZubWf1I+3igDBhef38c+AHw75Tzj0n5/d/wei5Qn8/8MKLReEOlwHx3\nrwt15obyplKwvkRIuRqm4he7e0vTbksG9K0oixVuvx2Wn4/X1FC8227QSVOZ5ubmsO0mvbn26J3I\nz82hrraG0264Da+ro7C4mHP7DuDE7QewdPkattpsAANL0g0gRLql94Ezw/3zWcDZRGlGHzCzPOB1\n4G8p5/c1s+lEI+TjQtktROlV3wGeIcqp3tBNwEPh3nvqOdOBZLh2ElE60nqXALeH9lYR5e6QGGnr\n1yxWt2YNyfJyahctIn/YMPL6NzUT13mVP/AAC6+6mpziYjBjxAP3kzdwYEd3S7qfTrX1q5kNB55w\n9+0yPH8uUVazxTF2SzpQ5xyySZvIKSwkZ8gQ8od08SlqM+pWrKBuxQryhgzpkJzvIiKdnQK6dHq9\n9tuPqlM+pvrjjxl8/q+UllUEcPe5QEaj83D+8Ng6I52CArp0enn9+jHovHPx6mpyS0o6ujsiIp2S\nArp0CTk9ekAPLYYTEWmMHlsTERHJAgroIiIiWUABXUSkCzKzg83sfTP7yMwmdnR/pOMpoIuIdDFm\nlgvcCHyLaF/148wsk/3VJYspoIuIdD3jgI/c/RN3rwbuBQ7v4D5JB9MqdxGRdpBIJPKAAcDisrKy\n2lZWNwz4LOX958BuraxTujiN0EVEYpZIJL4OLALmAIvCe5E2pYAuIhKjMDJ/EugDFIbfTyYSidwm\nL2zaF8BmKe83DWXSjSmgi4jEawBRIE9VCLQmw9DrwCgzG2FmPYBjgcdbUZ9kAd1DFxGJ12JgDesH\n9TVEU/At4u61ZnYW8CxRbvLb3X1mq3opXZ5G6BIbr6mhZsECqubNo7a8vKO7I9IhwgK4bwPLiAL5\nMuDbZWVlydbU6+5PufvW7r6lu/++DboqXZwCusSmZv58PjnkED755sEs/OOfSFZUdHSXRDpEWVnZ\nf4im3kcAA8J7kTalKXeJzarXX6du5SoAKp98kkE/P6eDeyTSccKI/KuO7odkL43QJTY9d92VnOJi\nAEoPOwxTtjQRkdhohC6xyR86lJFPP4WvWUNOr17klpaud7xyTQ3JpNOnZz5m1kG9FBHJDgroEhvL\nyyN/0KC0xxZWruGCR2awbFUNV31ve7YcWKKgLiLSCppyl3aXrKvjuqkfMnX2Qt6YV85P73qTJSuq\nOrpbIiJdmgK6tDvDKMhb959efm6ORucizWBmm5nZC2Y2y8xmmtk5obyfmU0xsw/D776h3Mzs+pBq\ndbqZ7ZxS18nh/A/N7OSU8l3MbEa45noL/ydtjzakZRTQpd3l5Bg/2Wcrjk5syv6jB/HXE3amf0lB\nR3dLpCupBX7h7mOA8cCZIX3qRGCqu48Cpob3EKVZHRV+JgB/hSg4AxcTJXYZB1xcH6DDOaenXHdw\nKG+PNqQFYr+HHvL2lgFfuPuhZjaCKNVff+AN4Ach/Z90IwN7FXDp4duRrHOKC5r+zzC5fDlVH33E\n6rfeouQb+5C/6TByCvQFQLqWRCIxABgOzC0rK1vcmrrcfT4wP7xebmaziTKwHQ7sE06bDEwDzg/l\nd7q7A6+YWR8zGxLOneLuSwHMbApwsJlNA3q7+yuh/E7gCODpdmpDWqA9RujnALNT3l8FXOvuWwHl\nwGnt0AfphArzczcazAHWzJjBvOOOZ+HV1zDnyCOpXdTiHTNF2l0ikShMJBJ3EaU4fQ74PJFI3JVI\nJBru794iZjYc+BrwKjA4BHuInnkfHF6nS7c6bCPln6cpp53akBaINaCb2aZEWx7eGt4bsB/wYDhl\nMtE3MpFGLX9h2trXXl1N1QcfdlxnRJrvNuBIoAAoDb+PJPy72BpmVgI8BPzc3StTj4WRsre2jaa0\nRxuSubhH6H8BfgXUhff9gWXuXhve6xuZbFSvAw9Y+9qKiijYZusO7I1I5sI0+3eBogaHioDvheMt\nYmb5RMH8Lnd/OBQvCNPchN8LQ3lj6VabKt80TXl7tSEtEFtAN7NDgYXu/kYLr59gZmVmVrZIU6zd\nWuGYMYx45GE2uewyRj72KHmNPNsu0gkNBxp7JrMK2KIllYbZztuA2e7+55RDjwP1q8hPBh5LKT8p\nrEQfD1SEafNngYPMrG9YqHYQ8Gw4Vmlm40NbJzWoK+42pAXiXBS3B3CYmR1ClDawN3Ad0MfM8sIo\nvdFvZO5+M3AzQCKR0JRON5ZbUkLu6NEUjh7d0V0Raa65RFPs6RQA81pY7x7AD4AZZvZ2KPs1cCVw\nv5mdFuo+Ohx7CjgE+AhYBZwK4O5LzewyovzqAJfWL14DfgpMIppNeJp1i9Xaow1pAYtugcTciNk+\nwC/DKvcHgIfc/V4z+xsw3d1vaur6RCLhZWVlsfdTRKQJLXpGOiyIO5L1p91XAw+XlZWd2BYdE4GO\neQ79fOA8M/uI6J76bR3QB8lQctUqksuXd3Q3RLqy04CHiXKhV4TfDwM/6shOSfZplxF6a2mE3jFq\nFi5kwRV/oG7Fcgb/5jf0GD5cO7pJd9aq//jDArgtgHmtfQ5dJB0FdEkruXIl8ydOZPmU5wDIHzaU\n4ffdR96AFi/KFenq9G1WOjVt/Srp1daSrKhY+zZZUYnXdf4vfyIi3ZUCuqSV07s3g3/7W3IHDMCK\nihh69dXk9u7V0d0SEZFGKB+6pGVmFGy5JSMfeRh3yO3di5zCNtmpUkREYqARujTKcnLIGziQ/EED\nFcxFOiEzyzWzt8zsifB+hJm9GtKR3mdmPUJ5QXj/UTg+PKWOC0L5+2b2zZTyg0PZR2Y2MaU89jak\nZRTQRUTaSSKRaOt/czNNfnUaUB7Krw3nEVKuHguMJUpdelP4kpAL3EiUEnUMcFw4t73akBZQQBcR\niVEikeidSCSuTCQS5UAykUiUh/e9W1NvM5NfHR7eE47vH84/HLjX3avcfQ7RLm/jws9H7v5JSG99\nL3B4e7TRmr9Jd6eALiISkxC0Xwd+DvQJxX3C+9daGdSbk/xqbQrTcLwinN/clKft0Ya0kAK6iEh8\nfk20mUzD/dwLiBK3XNCSSlub/EqykwK6iEh8fkzTyVl+3MJ665NfzSWaqt6PlORX4ZzU5FdrU5iG\n46XAEpqf8nRJO7QhLaSALiISg0Qikcu6afbG9G3JQjl3v8DdN3X34UQLzp539xOAF4CjwmkNU5vW\npzw9KpzvofzYsEJ9BDAKeI3oNsGosKK9R2jj8XBNrG00928h6yigS5vwZJKahQupmjOX2iVLOro7\nIh2urKwsCSzbyGnlZWVldRs5pzkaS351G9A/lJ8HTARw95nA/cAs4BngTHdPhnvgZxHlMp8N3B/O\nba82pAW0l3sn58kkyfJyyM0lr2/fju5Oo2rmz2fOkd8luWwZRYkEm153HXn9+3V0t0TaUrP3ck8k\nElcSLYBLN+1eBVxbVlbWovvoIg1phN6JeTLJmlmzmHvCiXx+5lnULFjQ0V1q1Op33yW5LBqMrC4r\no27Nmg7ukUincAUwlyh4p6oK5X9o5/5IFlNA78SS5eV8OfECaubNY/Wbb1J+9z0bnFNXW4vXteWM\nXfPUt104egzWsycABaNHk1PQo8P6JNJZlJWVVRI9b30t0SYshN/XAuPCcZE2ob3cO7O8PPIGD6b6\n448ByN900/UO13z5JQuvu478IUPpd9IPyOvXflPcyYoKVr7yCitefJF+J55I/ogRbPn0U9QuXkz+\n4MFKsyoShKB9AXBBIpHIaeN75iJrKaB3Ynl9+jDsqispf/Ah8jcZTMk++6w9Vltezufnnsead96J\nzu3fn34/OLHRuuqqqsgpaOzpmearWbKEZffdz5pZs6h8+hm2fOZp8gcPJn/w4DZrQyTbKJhLnDTl\n3snlDRzIwJ+cQZ8jj1x/UVxdHV617rZc3erVaa9PVlZS8eSTfPmrX7HqjTfa5N52bXk5VbPfo2in\nndjsb3+jxxZbQG3txi8UEZHYaITejlYvr6S2uprcvDx6lm7s8dSm5fbrx7Br/8xXv7uUvE0G0+d7\n3017Xu2SpXz5i18CsOL5F9jyuSmtypxWV1PDsgceZNGf/wzAsgcfYPPb7yCnl3Kli4h0JI3Q28nq\n5ZX8+x+3c/NPT+GhP1zMyoqNPZ7aNDOjYMQINr3+Oja56CLy+vdPf2JtzdqXnkxCKxfQ+erVrHz5\n5XXVL1yE5eeTq4Au0q7MrI+ZPWhm75nZbDPb3cz6mdkUM/sw/O4bzjUzuz6kKZ1uZjun1HNyOP9D\nMzs5pXwXM5sRrrk+JFqhPdqQllFAbyc1a9Yw89/PAbBwzsdULPiqTerN7d2b3LC6PO3xgQMZ+Mtf\nULTzzgy79tpWj6Rzevak9LDD1r7vseWW5BQ33r6IRBKJxIhEIrFHIpEY0UZVXgc84+7bAjsSbc4y\nEZjq7qOAqeE9RClKR4WfCcBfIQrOwMXAbkSr8S+uD9DhnNNTrjs4lLdHG9ICmnJvJ7n5+ZQOGkzF\nwgXkFRTQq3/7rALPKSykcLvtoK6Oyn89S8FWW5JbUtLi+iwvj14HHkDB6G2pXbCAou2204p2kSYk\nEokE8HdgNFAN9EgkErOBH5e1cMcsMysF9gZOAQjpR6vN7HBgn3DaZGAa0c5uhwN3hq1YXwmj+yHh\n3CnuvjTUOwU42MymAb3d/ZVQfidRmtSnQ11xtyEtoIDeTor79OXYS69h8adz6Tt0GD17l7ZLu3XL\nlzP/gl9TO38+AHmlfdjkot+2qs7c3r0pGjMGxoxpiy6KZK0QzKcBxaGoKPzeGZiWSCT2aWFQHwEs\nAu4wsx2BN4BzgMHuPj+c8xVQ/9hJc1OYDguvG5bTTm1IC2jKvR2V9O3H8B13pnTgYHLz89ulTSso\noOfXvrb2ffHXd4+1vdolS6j+9FNqFixodOW9SDfyd9YF84aKgb+1sN48oi8Ff3X3rwErWTf1DUAY\nKce6t3d7tCGZU0DPcrm9ezP4wt+w2S03M/yhh+g5btzaY6uXV/LVxx/y4ev/ZUX50la3Vbt4MZ+d\nPoGPD/omHx9wIKvDM/Ii3VG4Vz56I6eNaeE99c+Bz9391fD+QaIAvyBMcxN+LwzHm5vC9IvwumE5\n7dSGtIACejeQ168fJXvtRdHYMeT27k3NggUsfewx3p36LHf9+lwe/+PvufvCX7ByWfnGK2tC1Qcf\nsGbWLAC8poYFV12tzGvSnQ0lumfelOpwXrO4+1fAZ2a2TSjanyibWWoK04apTU8KK9HHAxVh2vxZ\n4CAz6xsWqh0EPBuOVZrZ+LDy/CTSp0mNqw1pAd1D72Zqy8v54rxfUHT0UcyYNmVt+fLFi1hZWUFV\nfjErq2opyMthYK8CmvMUiTVYbZ/TsyerZ82iaPRoLZyT7uhLYGNJDXqE81riZ8BdIZf4J8CpRIO0\n+83sNGAecHQ49yngEOAjYFU4F3dfamaXEeUmB7i0fvEa8FNgEtF9/6dZt1jtynZoQ1pA6VO7mdrF\ni5l30skUHXQgb3kV773yEgA5uXmceOM/uHrqJzxQ9jkDexXw+Fl7MKS0aCM1ptS9dCkL//RnKh55\nhPwhmzDkyiv56pLfUTBqFEMuv6xVq+tFOoGWpE99g2gqvDFvlJWVJVreJZF1NELvZnL79mXoH69h\nweWXs+clF1MyYADlX33J+O8dS11OHg+URYtOFy2v4p3PKhhSWkRy+XKSS5ZQV11N3qBB5PVJv8td\nXr9+DJ54PgPP/hnVc+ey8Jo/Uv3xx1Fe9GSyPT+mSGfxY9Zf5Z5qJXBGu/ZGspruoXczlptL4Tbb\nMOz66ykaOIg9jzuZQ372SzYZOYr8vFz23nogAD175DJ2aG8AVr78Mh8f/C3mHHY45ffc0+R+8Lm9\nekVJWoYOhdpaCrbemk0u+R25pe3zmJ5IZxIeSduH6LGy1UBF+P0G0NJH1kTS0pR7N7R0ZTVPvzuf\novwcdh85gCF91k2rL1lRxeIV1fTpmU/f4nzykkm+PH8iy5+Obm0VbjeWzW6+hbx+fRurfq36BXG5\n/fo16168SCfVqv+Iw2r2ocCXZWVlc9qmSyLraMo9RslVq/CqKnJKSshpp+fOMzHriwpGDCjm7//+\nhHe/rOTHe2/J4N5Rwpb+JQX0L0lJs5qbS78TT2DFc8/htbX0O/lkckoae6x2fY3uLy/SDYUgrkAu\nsVFAj0lteTmLb7qJ1W+8yYCzzqJ49/HkFGW+wCxOA3oXcNJtr7FweRX//mARu2zel2/v0PiTM4Vj\nx7LllH+BOzm9epHTY2MLd0VEpL0poMek5ssvKRw7lpyexXxx3nls+ewznSaglxbmk5MyBZ6X2/RM\nYk5hITmbbBJbf2qSddS5U5CXG1sbIiLZTgE9Bsnly1n9xhssvfMfFI8fz9BrroZW3EOuTdZRk3SK\nerQu4JWvrOaDBcspKcxj8g/H8ad/vc+Yob3ZdXjHTY0vXlHF9VM/pHxlNRccMpqhfTrHlx4Rka4m\ntoBuZoXAi0BBaOdBd7/YzEYA9wL9iVZ6/iBkCsoadcuXs+CKPwCw7MEH6XPM0eT23fgisnSWrqzi\n1pfm8PGiFUw8eDTDB/Rs0QKzmto6/vnqPP70rw8AuPK723PtMTtRkJ9DXk76hx3qqqtJLovytucU\nFcWS83zyf+Zy53/nAbB4RTV/PXFn+vTUlL6ISHPF+dhaFbCfu+8I7ESULm88cBVwrbtvBZQDp8XY\nh46Rl0dOcVg4ZkZun74tXhQ3dfZCbpr2Mc/OXMAPJ7/O4hVVLaqnqjbJa3PW7df+zMyvcKCuzvmq\nYg0zvqjYoO7lS5ZRvXI15ffcQ/m991GzaFGL2m5KTbJu7evaujpleRARaaHYRughC8+K8DY//Diw\nH3B8KJ8MXEKU5D5r5PXty/D77mXZo4/S6xvfIDeDR7wak6xbF+Jq6+po6ZMzPXvk8fMDRvH63KUY\nxjn7j6K4Ry6fLV3FQX95kTU1dew2oi83nbgLfYp68NHCFVz5zDxG9S/k5HF7UPmjU0hWVjDonHOw\nvLb7z+ZHe45k8fIqlqys4bLDx9JXo3MRkRaJ9R66meUSTatvBdwIfAwsc/facEpW5r+1/HwKttqK\nwb/8ZbOvralKUr2mlrweuRQU5XHgmMHMnl/JJ4tX8ttDx9C/eMOAt6q6lmWraqhJ1lFalJ92yjon\nx9h+WCkv/r99AejTM58FlWt4bW45a2qiUfKrc8pJJp2lK6v4wW2vsnB5FS8Ao781kl0POoiaL77A\nk8k2DegDehVw2RHbk6yro6Sw8zzaJyLS1cQa0N09CexkZn2AR4BtM73WzCYAEwA233zzeDrYyVSt\nqmHWy/OZ/vxnDN9hAOO+M5L+JQX8+pDRVCfr6NVIwHvns2WceNtrJOuc8w7cmuPGbcbAXoUbnNcj\nL5dBvaOFdZVrarjw0Xc5a9+tGFpayJcVazhu3Ob0yMuhujZadQ5w8HabMHabYcw67qfsuNUm5BQU\nbFBva0WL/bTCXUSkNdpllbu7LzOzF4DdgT5mlhdG6Y3mv3X3m4GbIdoprj362dGqVtfyn4c+AuDd\nf3/B2L2GUlSST0F+LgX56QNeXZ3z4Jufr52a/993vmTMkN6MH5nb5Ig3x6BHbg7nPzSDq4/akb7F\n+QwpLaRPzx4kk3VMPnUcVz3zHuceMIpDb3iZ6mQdIwd8zv1n7M6AkrYP6iIi0jqxLYozs4FhZI6Z\nFQEHArOBF4CjwmmpuXS7vdzcHPILosBtBj2Kou9bXltLzcKFrJ4xg9rFi9e7xgy+t/NQcnOie+vf\n3XkYc5esoCbZ9HegkoJ8Ljl8LLuN7Mf/fbSIwb0L6VdcsLYfY4b25n+O35mlK6upDgvXPlm8cr1F\nbCIi0nnEOUIfAkwO99FzgPvd/QkzmwXca2aXA28Bt8XYh06vdulS1sycSU7PYnqMHMn3frUL773y\nFSN3HEBhSTTCrl2ylE++8x3qKisp2HoUm99++9r84uVV5UyvfIJHf3Yg1ck6qurKGd57G/r03Pj9\n6EG9CrnkO2OB6B57KjOjd1E+owb3Yvthpcz4ooIJe4+kZ/6G/8lU1yZZtroGAwaUNC+HuoiItI04\nV7lPB76WpvwTYFxc7XYltcuWMf/CC1nx/AsADPz5z+l3yins8b2t1juv5qv51FVWAlD1wYd49brH\n9vMsj3cWv86N068F4FeJ8xk/dCy2YkF0Qs/+kNvE1HtO08F3QEkBk07dlWSdU5CfQ2nR+nXVJut4\n69NlnDa5jF6Fedxz+niGD8hsr3cREWk7Sp/akWpqWPHiS2vfLn9uCnWrVq19v3p5NSuWrYHNtqRg\nbDSSLvnmQVjhugVvvQt6c+kel/LDsT/k/F3P59CRh5Dz5Rtw/U5wwy7w1XRoZUa9/iUFDOpdSGnR\nhqvnK1bXcMn/zmRFVS3zK9bwPy98GB6vExGR9qStXzuQ5edTsu++rJgyBYBe3zyYnOKeAKyqrOaZ\nm2cw/6MKRu06mD1vmUTemkpyCgvJ69dvvXoG9hzIuYlzozery2HqpVCzOnr/whXw/UlQ0Pa7vAH0\nyMth1KASZs9fDsDYoaWN7jwn/7+9O4+SqroTOP791au9q7p6w6ZZmm4IIKsioCBBiRpNYgSDcSUT\nnGAck6NjxjjqGGdixrhMJjETzWQcxxiTjGOMuJFlZPQEAcWIgBBEFtm3hgZ6r/1V3fmjSqDpjZZu\nqmh+n3P6UPXefe/d+nWd/nHfu4tSSvUeTeg5ZBUVUfG9+4nPuQGHvwBX5eDDw8IizQlqNjcC8NF7\n+5kyayj+Ae2viGaMOez49vYAABYaSURBVPLc2umFgRNhx9uZ9wMngdV2CFtPCXpdfPeKMVwwvB+F\nPheTqkq6PkgppVSP04SeY86SEpxTprTZ7itw4fZaJGIpAsUeLFfbVm9dOMGrq/eweX8L86ZXU1Va\ngMPlg2nfgsop4LBg0GRwZjvXJRKk7CRuX/fng49HbaLNCRKxFMESL77AkWfppQEPX540uJufXCml\nVE8Sc4LPV0+GSZMmmRUrVuS6GidVKpUm0pigfl+Y0gEBCorajv1+cskWHvrjBgCK/S4WfusCzihs\nvzUeaWpk+csvcGDXNi78yjzKKofgcBz/ZC671tex4LHVYGD8xYM474qhuL36/0F1WtHhGyqv6cPO\nPGVZDgqKPDgH+Hlx/V421DQRTdiH99upNOtrmhGBm6dW8cMrxmKlOj7frnV/YeUfX2Hn2jW89Mj9\nRBobu1Wf7WsP8vHKKbvW1WEntOObUkrlE21i5bGDLXG++Phb1IUTOB3Ckrs+g8+d+ZU5LQd/c+FQ\nJvQvZGgzbH5+KzK2kXMvr2bDOzWUV4coGVCA22vh8jixjlrtzXK6un3LfcynB7B+WQ3JeIoJl1bi\n9upUrUoplU80oecxO22oKvXzzzPHYKBVCx1gWL8A/Z0unr3vHQDWv1XD8InlrFq4k2Q8xczbz2b3\nxnrOvmQwA0eOZvoNN1K7fSvTrpmDP1TU6bVNMomdXQvdKioiVO5nzvemkE4ZPH4nTrcmdKWUyiea\n0PNEMp4iGU/h8liHp38t9Dq5f+YYvvnsKkTg6bmTWx3jshy4nA6CpV48fidNB6O4fU5S2dXTmg/F\n2Lb6AP2HhqgeX8bkK2aTTqVatdbbY1IpYuvXs/Nr88AYBv/8KXzjxlEQ0jnclVIqX+kz9F5iNzYS\nXbeOyMqV2PX1nZaNhZPsWHeI1W/s5MNle4mFk5kdIvz49Y/YXR9lV12UHyzc2KaV7vLC5d+sZPTU\nZq6+50wcFhQUeag+q4zCfj4aaqO4PRbJuE3Ktom2NBNuqKezzpCp5mb2P/ww6ZYW0uEw+x96mFR2\npjqllFL5SVvovaTljTeo+c59OMvLKbvtVkJf/CIOb/s90JPxFM0Ho8RaklSfVUYyZuMtcOG2MpO2\nLNpYC8DwMwI4rdb/B4u3NPHru28jlUziDxXxV488xpV3TMBOpvjgzT1M+/Kn8IfcxFriHNy5gbpw\nDG9FFcVpN8UBz+Fn8gCppibE5UJcLlxVVUTfXw2Au6oKcbedJU4ppVT+0ITeC9LJJOFly/BffDHe\nm+ex5aMNDD14gFD/Cixn25Af2NHEspe2ALDzwzquumsikJmF7ZYZQxlVEUREuGBEP1zHJPSW+jpS\nyUyLPtLYQMpO4vIFeO8P2wBIRGwO7mqhdKCwa8cOlsgwnvr9alyW8OI3zmf8oCJMOk1i61b2PfB9\n3IMH0++Ov6P8zjvxDPsUpNMUXTUbq6Dn52e3DxzAbmjACoVwlpYilj6XV0qpT0oTei9wuFyU3nQT\nMYfwywfuxU4mWLbgRb72b/9JoKQUADuZJB5uwel2E48cuY0eCyeRoxZMKSnw8KVzBnV4rdAZ5QwY\nOZq9Gz9kzIzP4vb58AXdTLlyGPGIzb6tjWz/8CAVnxrC0KkXce8zq/C5LCpL/CzeVMv4QUWk6urY\nfdvfkti2jci77+IZNYqSOTdQdtO8XotRsvYA26+9FrumBkcwSPX8+biHVPba9ZRSqq/ThN5LPMOH\nE63dh53MrIyWjMewsy3pZDzOrnVrWPzrpykfNpwL5syj6qwy6vaEueC6EXj9Hf9a4tEkdiKN5XTg\nLXDhDxUx687vZDq7OV34gpk52wtCHlxeiyH+UoaMLeXDt/fSHEnyjU8PZczgEGv3NHH+sFLiyRSW\nCOI50uHNuDwk4jZuT+99PWIb1mPX1ACQbm6maeFCym7+eq9dTyml+jpN6L1EnE68wULO/twVbHx7\nMWNnfBaPP7PwSjwSZsGjD5NKJqnbu5szp07nkrkTSNlpPD4nlqv9W8/RlgSrXtvB+mU1VI4p5cLr\nR2BcDvyFoXbLuz1O3B4nLfUxli/Yhghc/k+Tue6Z5dQ0xvA4HSy6cwbi9OP8r1/hW78WWf0+sWET\n8cZSvZrQ3YMGg8jhleC8o87stWsppdTpQBN6L/IFC5l2zVc478qrcXk8ePyZ59Aigr8wRPOhgwD4\ni4rw+DsfSgYQj9isfmMXAI6Ak7e21/HCqt1cPXEQ5w0tJdBBAnZYmaFtzYdixCKZZU4B4naamsYo\nX//VCurCSe6+dCRTzprJRwv3ccWI9heC6SnOM/pR+fTPaXjpZQIXTMc7fnyvXk8ppfo6TegnqLF2\nP6v++Cr9PzWS6rPPwRtovUypMxrFaQwO35FWd0FRMdfe/wh/eWMhA0acSVH/40ueTpcDcQgmbRgy\npZzLnnibtIGF6/bx9t0XdZjQ/YVuZt95Dns2NRAKupk7ZQi/encHU4eW4nVZ1GWHyb24eg+XX3sO\nI88+A1+w817t9qE60uEWxOvDWVaKdHPJVCsQoGDqVPyTJyPtdBRUSinVPfqX9ASEG+p54YF7aazd\nD8A1332YwaPHHd6f2LOHnV/9KnbtAQb86EcELph+eOha6Iz+TL9hbreu5/E7mfWts1m3dC9un5N0\ndii5MZDuYpGdQLGXytElPP/gci79zEDmfG0qgZCH2lhmWlk7bbjqnIH06+fH18UscHZdHXvv/QfC\ni5dgFRdT/dKLuCoquvVZPqbJXCmleob+NT0Bxhiizc2H30ePmXyl4YX5JPfsBWD/Qw/hn/DbDsei\nHw+Xx8nAEcX0HxYikkzx2HUT+M17O7lm0mBCvq5v2SNQNijI6pe34Slwct1951JUFGTp3Z8hYacJ\n+VxdJnOAZDRGePESAFL19UTXrv3ECV0ppVTP0IR+AryBIFf+/X0s+uV/0W9INYNGj2213zfuSGvd\nM3IkuHpmchbLchC0HHxhXH9mnNkPv8tqM+FMe3wBNxfNHUUiauNyW/gK3Tgcgt99/F+DuJ1iR1MS\n77hxxNauRXw+PKNGncjHUUop1QN0PfQTlEqliLc0Y7nch3uxf8xubCTx0WaS+/dRMGUKztLSHNWy\ntUhTgkTMxuWx8Be6u7Xymp1K8++LNnPpADcFTXUEKsrxn1GK1/fJ7zwodYrQ9dBVXtMW+gmyLKvD\nlcucoRDOSRO7fc50Oo0xBsuysBMpIk0Jmg7FKKkowF94Yq38SFOChU99wN5NDfgL3Vx972QCRUfG\noCdT6Taz0R3NaTn4ypQhzF+5m7Qp5OqSMrw+XbRFKaVyTRN6nok0NrD81fnEWlqYdv1fkUr4eO6f\n3yWdMvSrDHLFbWd12gM9bdukGxoQtwerMNhmv51MsXdTZlnUSFOCQ7tbCBR5SKXSfHSghf94cwvn\nDyvlsjH9KfK3f53SgIe/uXBYz3xgpZRSPUITeh4x6TQr//AKK//wCpAZPz500rWkU5nHIgd2Nh9+\n3R67oYGmBQuo++9ncVdVUfG9+9t0VnO6HJQODHBoTwtur0XJgMzY+EORBNc88Q5NMZtXV+/lzP6F\nHSZ0pZRS+UcTeq611IJJYzsDJO008Ujk8K6G/TWUVxcenhRm/EWDsFwd3w5PbN/O/oceBiC5cyd7\n7/kHBj72E5yhIzPJ+Qs9zLz9LMINCfyFbrzBbO94k5lo5mPRZAqA+nCCcMLG7XRwRlCfkyulVL7S\nhJ5LDbvg2augpRYz8z9Z+uY6xl7yBVrqDhKPRLjkplsJlvj48l0TSaUMLo+Ft6D94Wl2Ik5806ZW\n2+JbtkAi0aasv9CDv7D1c++Q38UvbpzMj17fxOSqYkaWB2mIJPjBwo08t3wnFSEvL39zGv1DmtSV\nUiofaULPpWWPw4GNALgW3smIc/+VBT98kPGXfB6ny0VDbQ3F/SvwhzrudGYnEuzbson3/3cBF3/p\nesTrxcQyU7sGZ88m4Sto9UtOJZPEwi2kbCfisPAFvThdDjxOi/OqS/j53El4XBY+l0VtU4znlu8E\noKYxxgd7GzWhK6VUntKEnktlww+/NIWDiYYjhBvqeWf+/wAQLO3HnIcepaCouMNTRFuamP/9+0jZ\nNulkkstefYWG/30dz6iRrPH3Z0gsTXXgSPmmA7XEo7Do2d1Uji5k5JQSAkUBvIECLMvR6rm50xKm\nDC3hz1vr8LksRpa37WSnlFIqP2hCz6Wxs0mKG9Owi+iwmSz+wQ9b7W4+dAA7Ee/yNB9PJbB51XtM\nnPUV1qQmM6aqir9+4i2W3jWwVdlDe3ZxYHeIkecVE218n5cf+T9GnHc+5155Nb5gYauyJQUefnrD\nOexvilFa4KE0cByz0SmllMoJTeg5ko5GwRlkuxnO2hXb2PPs90lEI63KiDhwdDHXubcgyJX3fJdV\nv3+ZyrGTOLQnzf7tTUz0Wvzp2zOwHEIylcJlZaZ07VdVjW1HCJZa/OYffw3Ait+/zLiLLmuT0AHK\nAh7KAjrOXCml8p0m9JMlHoboIYjUkfaXU/PAD5FAkPJbv8Hv/rIKk063OWTopHNxe/3tnOwIl8dD\naOgo/J8rYtCAUnZtbuLL90xiTzzBl366DIcIz319CmcNzkx+EyguZdDIAuxkFKfHgx2P47AsXCcw\nx7xSSqnc696al+qTO7QJHjsbnrwQ3vguvlHDaHz+eewVK/nCbXci0vpXUVRewcV/fUub6WTbE/J7\nGFNVzp9rmqgYXYzxWzzy2kZiyTSRRIqfLtpMNGEDYDmdBEoCBEuLmfPgo0y56jquf+Bf2yz7qpRS\n6tSiLfSTZetiSGfGdjt2LMYzYSYAiffXMPRbt3PT40+xYdkSmg7UUj1hEv2HDe+0M9zRLIdQWeKn\nsiST/JOpNFOHlrJ40wEAzh9WitvZehU1y+mkbPAQygYP6alPqJRSKod0cZaTpW4bPHURROowlz5I\n4+4Swu+vpfzb38ZZVtbjl6uPJNh2MIwlwpBSv876ptSJ08VZVF7rtYQuIoOBXwHlgAGeNMb8RERK\ngOeBKmA7cI0xpr6zc53KCT2dSmEn4rjcHiRyANI2eIKk0i7E4ehyffSmaJLVuxpYs7uB2ecMYmCR\n7xPVIxUOE1+/nuY/LSI0aybu6mocbk3ySnWDJnSV13ozoVcAFcaYVSISBFYCVwI3AnXGmEdE5B6g\n2Bhzd2fnOlUTerSlmU3vvMWWFe8yeeZsKoaPxOnuXo/x93fW86WfLQOgssTPS988/xP1Ok/s2s2W\nSy8FYxCvl2ELX8NVXt7t8yh1GtOErvJar3WKM8bUGGNWZV83A+uBgcAs4JfZYr8kk+T7pHB9HUue\n/QWeQIC1b75OrKWl2+fY1xg7/DqdNrgTYT548w12rF1DtKW5VdnEvn1EP1hH858WkaytbbUv1dR4\neMC6icUwR00JmwqHsevrMbbdbh3SySTJ/fuJbdiAfehQtz+DUkqp3ndSOsWJSBUwAXgXKDfG1GR3\n7SNzS75PEoeDL9z/T/y2ZgFOcTLZnSLQ9WEAJGJRkvE40wZ6eO2Wc0gknQwo9LDsN0+zbvEbAFx+\n+12cef4FANiNjSS2bWPX1+aBMXjHj2fwE/+Bs6QEAFdFBYWzZhFevJii667DCmZ6tdt1ddQ++mPi\nGzdS/p178Y4Zg8PVegIZu6aGrTNnYWIxCqZPZ8AP/gVn8fF12FNKKXVy9HqnOBEJAIuBB40xL4lI\ngzGm6Kj99caYNtlBRG4Gbs6+HQls7OJSIaCxm9U7nmM6K9PRvmO3t1fu6G3H7i8DDnZRr+7K5/i0\nt62z970Rn47q1RPHnM4xOt7y3Y1RLuJz0BjzuW4eo9TJY4zptR/ABSwE7jhq20Yyz9YBKoCNPXSt\nJ3vjmM7KdLTv2O3tlTt6WzvlV/TC7yJv43M8MTsmXj0eH41R78ToeMt3N0b5Gh/90Z9c/vTaM3QR\nEeDnwHpjzKNH7VoAzM2+ngu82kOX/F0vHdNZmY72Hbu9vXK/62J/T8vn+LS37Xhi2NM0Rl3r7jWO\nt3x3Y5Sv8VEqZ3qzl/ungaXAWuDjeU3vJfMc/bdAJbCDzLC1ul6pxClKRFYYYybluh75SuPTNY1R\n5zQ+qi/qtU5xxpi36HiYx8W9dd0+4slcVyDPaXy6pjHqnMZH9TmnxExxSimllOqcLs6ilFJK9QGa\n0JVSSqk+QBO6Ukop1QdoQs9zIjJKRJ4Qkfki8o1c1ydfiUiBiKwQkS/mui75SERmiMjS7HdpRq7r\nk29ExCEiD4rI4yIyt+sjlMo/mtBzQESeFpFaEfngmO2fE5GNIrI5u3ANxpj1xphbgGuAabmoby50\nJ0ZZd5MZDnna6GaMDNACeIHdJ7uuudDN+MwCBgFJTpP4qL5HE3puPAO0mkJSRCzg34HPA6OB60Vk\ndHbfTOAPwB9PbjVz6hmOM0Yi8lngQ6D22JP0cc9w/N+jpcaYz5P5j8/3TnI9c+UZjj8+I4Flxpg7\nAL0Tpk5JmtBzwBizBDh2Mp1zgc3GmK3GmATwGzKtBowxC7J/jOec3JrmTjdjNAOYAtwAfF1ETovv\ndXdiZIz5eHKneqD76++egrr5HdpNJjYAqZNXS6V6zklZbU0dl4HArqPe7wbOyz7vnE3mj/Dp1EJv\nT7sxMsbcCiAiN5JZQCPdzrGni46+R7OBy4Ai4Ke5qFieaDc+wE+Ax0VkOrAkFxVT6kRpQs9zxpg3\ngTdzXI1TgjHmmVzXIV8ZY14CXsp1PfKVMSYCzMt1PZQ6EafFrclTxB5g8FHvB2W3qSM0Rl3TGHVO\n46P6LE3o+eM9YLiIVIuIG7iOzMp06giNUdc0Rp3T+Kg+SxN6DojIc8A7wEgR2S0i84wxNnArmfXj\n1wO/Ncasy2U9c0lj1DWNUec0Pup0o4uzKKWUUn2AttCVUkqpPkATulJKKdUHaEJXSiml+gBN6Eop\npVQfoAldKaWU6gM0oSullFJ9gCZ0lfdEZFmu66CUUvlOx6ErpZRSfYC20FXeE5GW7L8zRORNEZkv\nIhtE5FkRkey+ySKyTETWiMhyEQmKiFdEfiEia0XkfRH5TLbsjSLyioi8LiLbReRWEbkjW+bPIlKS\nLTdMRF4TkZUislREzsxdFJRSqnO62po61UwAxgB7gbeBaSKyHHgeuNYY856IFAJR4HbAGGPGZZPx\n/4nIiOx5xmbP5QU2A3cbYyaIyI+BrwL/BjwJ3GKM+UhEzgN+Blx00j6pUkp1gyZ0dapZbozZDSAi\nq4EqoBGoMca8B2CMacru/zTweHbbBhHZAXyc0BcZY5qBZhFpBH6X3b4WGC8iAeB84IXsTQDIrEmv\nlFJ5SRO6OtXEj3qd4pN/h48+T/qo9+nsOR1AgzHm7E94fqWUOqn0GbrqCzYCFSIyGSD7/NwJLAXm\nZLeNACqzZbuUbeVvE5Grs8eLiJzVG5VXSqmeoAldnfKMMQngWuBxEVkDvE7m2fjPAIeIrCXzjP1G\nY0y84zO1MQeYlz3nOmBWz9ZcKaV6jg5bU0oppfoAbaErpZRSfYAmdKWUUqoP0ISulFJK9QGa0JVS\nSqk+QBO6Ukop1QdoQldKKaX6AE3oSimlVB+gCV0ppZTqA/4fw9L3xyhJLYYAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3882,7 +3888,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8ldX9wPHP945sMggJIEOGKAoi\n1Yi497auOipWxYE/W2eno+5a62pta7V1UVCrdeGoOIuzDgRERYaKDBkBQhbZueP7++N5Qi7JTXIz\nLkluvu/XK6/c+4zznOeK+d5znnPOV1QVY4wxxvRunu6ugDHGGGM6zwK6McYYkwAsoBtjjDEJwAK6\nMcYYkwAsoBtjjDEJwAK6McYYkwAsoBtjjDEJwAK66VVE5DIRmS8idSIyo8m+i0RkuYhUisjrIrJD\nxL6fi8gKEdkiIutF5F4R8UXsnygiH4hIuYisFZEbtuNtGWNMp1lAN73NeuA2YHrkRhE5BLgdOAno\nD6wEnoo45GVgT1XNBMYDewBXROx/EnjfPfdg4GcicmJ8bsEYY7qeBXTTq6jqLFV9EShususE4FlV\nXayq9cDvgINEZLR73neqWuYeK0AY2Cni/BHAv1Q1pKrfAf8DxsXxVowxpktZQDeJRKK8Hr91g8gU\nEdkCbMZpoT8YcfyfgXNFxC8iuwD7Av+Nc32NMabLWEA3ieJ14AwRmSAiqcCNgAJpDQeo6pNul/vO\nwD+AjRHnvwKcBtQAy4BHVXXe9qq8McZ0lgV0kxBU9b/ATcDzwCr3pwJYG+XYb4HFwAMAItIf5wvB\nrUAKMAw4WkR+th2qbowxXcICukkYqnq/qo5R1YE4gd0HfNXC4T5gtPt6FBBS1cdUNaiqa4F/A8fF\nvdLGGNNFLKCbXkVEfCKSAngBr4ikNGwTkfHiGA48BPxFVUvd8y4SkXz39W7AtcAct9hvnM0yRUQ8\nIjIIOBP4cnvfnzHGdJQFdNPbXI/znPsa4Cfu6+txusqfBCqBT4GPgci55PsDi0SkCnjV/bkOQFW3\nAKcCPwdKgc9xWva3xf92jDGma4iqdncdjDHGGNNJ1kI3xhhjEkBcA7qIXCkiX4nIYhG5yt3WX0Te\nEpFv3d858ayDMcYY0xfELaCLyHhgGjAJZxGPE0RkJ5xnn3NUdQzOoKRr4lUHY4wxpq+IZwt9V2Cu\nqlarahB4D2fg0UnATPeYmcDJcayDMcYY0yfEM6B/BRwoIrkikoYzp3cYMFBVC91jNgAD41gHY4wx\npk/wtX1Ix6jqUhG5E3gTqMKZChRqcoyKSNRh9iJyMXAxwG677bbX4sWL41VVY4yJhbR9iDHdJ66D\n4lT1UVXdS1UPwpnf+w2wUUQGA7i/N7Vw7kOqWqCqBampqfGspjHGGNPrxXuUe8PKXMNxnp8/iZOX\n+jz3kPOAl+JZB2OMMaYviFuXu+t5EckFAsClqlomIncAz4jIhcBq4Iw418EYY4xJeHEN6Kp6YJRt\nxcDh8byuMcYY09fYSnHGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQA\nC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowx\nxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCA\nbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNM\nArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMAohrQBeRn4vIYhH5\nSkSeEpEUERkpInNFZLmIPC0iSfGsgzHGGNMXxC2gi8gQ4AqgQFXHA17gx8CdwL2quhNQClwYrzoY\nY4wxfUW8u9x9QKqI+IA0oBA4DHjO3T8TODnOdTDGGGMSXtwCuqquA+4BvscJ5OXAAqBMVYPuYWuB\nIfGqgzHGGNNXxLPLPQc4CRgJ7ACkA8e04/yLRWS+iMwvKiqKUy2NMcaYxBDPLvcjgJWqWqSqAWAW\nsD+Q7XbBAwwF1kU7WVUfUtUCVS3Iy8uLYzWNMcaY3i+eAf17YLKIpImIAIcDS4B3gNPcY84DXopj\nHYwxxpg+IZ7P0OfiDH77DFjkXush4GrgFyKyHMgFHo1XHYwxxpi+QlS1u+vQpoKCAp0/f353V8MY\n07dJd1fAmNbYSnHGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jG\nGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQA\nC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowx\nxiQAC+jGGGNMArCAbowxfZCInCgi13R3PUzX8XV3BYwxxnSOiAggqhqO9RxVfRl4OX61MtubtdCN\nMaYXEpERIvK1iDwGfAWcIyIfi8hnIvKsiGS4xx0nIstEZIGI/FVEXnG3TxWRv0WU9baIfCkic0Rk\nuLt9hnvORyKyQkRO6677NW2zgG6MMb3XGOAB4GDgQuAIVd0TmA/8QkRSgAeBY1V1LyCvhXLuA2aq\n6gTgX8BfI/YNBg4ATgDuiMtdmC5hAd0YY3qv1ar6CTAZ2A34UEQ+B84DdgTGAitUdaV7/FMtlLMv\n8KT7+nGcAN7gRVUNq+oSYGBX34DpOvYM3Rhjeq8q97cAb6nqWZE7RWRiF1yjLrLILijPxIm10I0x\npvf7BNhfRHYCEJF0EdkZ+BoYJSIj3OPObOH8j4Afu6/PBj6IX1VNvFgL3RhjejlVLRKRqcBTIpLs\nbr5eVb8RkZ8Br4tIFTCvhSIuB/4pIr8GioDz415p0+VEVbu7Dm0qKCjQ+fPnd3c1jDF9W6/sbhaR\nDFWtdKe23Q98q6r3dne9TNezLndjjEls09yBcouBLJxR7yYBWZe7McYkMLc1bi3yPiBuLXQR2UVE\nPo/42SIiV4lIfxF5S0S+dX/nxKsOxhhjTF8Rt4Cuql+r6kRVnQjsBVQDLwDXAHNUdQwwx31vjDHG\nmE7YXs/QDwe+U9XVwEnATHf7TODk7VQHY4wxJmFtr4D+YxpXKBqoqoXu6w3YykPGGGNMp8U9oItI\nEnAi8GzTferMmYs6b05ELhaR+SIyv6ioKM61NMYY05SIfNTddTCx2x4t9GOBz1R1o/t+o4gMBnB/\nb4p2kqo+pKoFqlqQl9dSPgFjjDFdTUR8AKq6X3fXxcRuewT0s9g2IcDLOIkDcH+/tB3qYIwx3WbE\nNbOnjLhm9qoR18wOu7+ndLZMEXnRTYm6WEQudrdVisjd7rb/isgkEXnXTX16onuM1z1mnpsu9f/c\n7YeIyAci8jKwpKG8iOtdLSKLROQLEbnD3TbNLecLEXleRNI6e1+m4+K6UpyIpAPfA6NUtdzdlgs8\nAwwHVgNnqGpJa+XYSnHGmB6gQyvFucH7YSAy2FUD01bdcfyT0c+KoTIi/VW1RERScZZ0PRjYDByn\nqq+JyAtAOnA8Tia2mao60Q3++ap6m7tM7IfA6TjZ2WYD4xuys4lIpapmiMixwA046VmrI66dq6rF\n7rG3ARtV9b6O3pPpnLguLKOqVUBuk23FOKPejTGmL7idbYM57vvbaUxZ2hFXiMgp7uthOLnR64HX\n3W2LgDpVDYjIImCEu/0oYIKInOa+z4o499OIVKuRjgD+qarVABGNsPFuIM8GMoA3OnE/ppNspThj\njImv4e3c3iYROQQnyO7rtpjfBVKAgDZ2u4ZxU5+qarjhuThOT8PlqvpGlDKraJ8ZwMmq+oWbHOaQ\n9t6L6Tq2lrsxxsTX9+3cHossoNQN5mOBye049w3gpyLiBxCRnd3Ho615Czi/4Rm5iPR3t/cDCt2y\nzm7XHZguZwHdGGPi6zqcZ+aRqt3tHfU64BORpcAdOPnQY/UIzqC3z0TkK5xkLa321qrq6zgDmue7\niV5+5e66AZiL8xx+WbvuwHQ5S59qeiQNhQiVlYHXhy87q7urYwx0In2qOzDudpxu9u+B6zozIM6Y\naCygmx5HQyFqly6j8Lpr8fbPZYe77sSfn9/d1TKmV+ZDN32HdbmbHidUUsK6q67Cl5/PgP+7mFBx\nCaG6uu6uljHG9GgW0E3P4/GQsvt4+p9/AWsvv4JVZ51F3aJFaCjU3TUzxpgeywK66XF8ubnkX3st\nZU89RbiyEq2tZdO9fyZcWdn2ycYY00dZQDc9kn/AAFL32nPr+9SJE5Hk5G6skTHG9Gy2sIzpkcTj\nIeuUU0jZbTe0vp7kceOorqmGmmpSM7Pwer3dXUVjjOlRLKCbHsuXnY1vn30Ih0Ks/3YZz99+I16v\njzNu+gP5I0Z1d/WMMaZHsS530+PVVVfx/hPTCdbVUVddxYdPP059bU13V8uYXs3NrrZfxPsZEeu7\nd/W1HhGR3eJRtmlkLXTTI6kqwaLNaE0NvrRUdthlNwq//RqA/JE74fX5u7mGxrTDzVnNFpbh5vLu\nXljmEKAS+CjeF1LVi+J9DWMB3XSxYGkp4vXizczsXDlFRaw67XSCmzaRNmlv9rvnHvJHjMLr9zNs\nt93x+uyfruklnGAemT51R+Bhbs6io0HdXXv9GWAo4AV+h5M69R6cv+vzgJ+qap2IrAIKVHWziBS4\nx0wFLgFCIvIT4HK36INE5BfAIOA3qvpcC9fPAF4CcgA/cL2qvhStXqr6tJs85leqOl9E/g7sDaQC\nz6nqTR35DExz1uVuukzdihWs/enPWH/11QSLijpX1vLlBDdtAqD603kQCLDbgYcyZuLe+OvqCW4u\n7ooqG7M9tJY+taOOAdar6h6qOh5nbfcZwJmqujtOUP9pSyer6irgH8C9qjpRVT9wdw0GDgBOwFkj\nviW1wCmquidwKPBHEZEW6tXUb1W1AJgAHCwiE2K9adM6C+imSwRLSll/9TXUfP45le+8S8ljj3Wq\nvORRo/BkZDivdx6DJzmZcG0tVR99yIpjjmX11KkENmzoiqobE29dnj4VJ9f5kSJyp4gciJPrfKWq\nfuPunwkc1IFyX1TVsKouAQa2cpwAt4vIl8B/gSHu8dvUS1XLo5x7hoh8BiwExgH2bL2LWL+l6RLi\n9eDNakyi4s3N7VR5vgEDGPXqbIJFRfgHDsQ3YACBoiI23HQz4aoqvDk5VFdV4i0tITktHb/NUTc9\n1/c43ezRtneIqn4jInsCxwG3AW+3cniQxsZbShtFR66x3Nra9WcDecBeqhpwu/VTmtZLROao6q1b\nCxQZiZOpbW9VLRWRGTHUycTIArrpEt6sLAb/4XZKHp2OLy+PrBNP7FR54vPhz8/fJimL+Hz4R+yI\npKaS9utf8MTtN1BfU8NJv/4tO+7+A3uubnqq69j2GTp0Mn2qiOwAlKjqEyJSBlwGjBCRnVR1OXAO\n8J57+CpgL+A14EcRxVQAHR3skgVscoP5obhfWKLUq+lguEygCigXkYHAscC7HayDacL+Apou48/L\nY+A1V8etfF9ODkPvvZfab5fz0cfvU1tZAcD/nnqMQaN2Ji3L0qyaHujm8ie5OQu6dpT77sDdIhIG\nAjjPy7OAZ0WkYVDcP9xjbwEeFZHfsW3w/A/wnIicROOguFj9C/iPiCwC5tOYCz1avbZS1S9EZKF7\n/BqcPOqmi1j6VNMrLf3wPV79690A7HHUcRw05XySUlObHafhMOHqajwpKYi14E3nWPpU06NZQDe9\nUm1lJWUb11NbVUX+iFGkZTZvnYdraqheuJCSf84g47DDyDzuWHzWijcdZwHd9GjWZDE9RlFFLaEw\npCV5yUxtfeGYlIwMBmXs3OoxofJy1lz8fxAMUvXBB6TttacFdGPaQUR2Bx5vsrlOVffpjvqY1llA\nNz3C+rIafvT3jygsr+Xyw3biogNHkRUR1ENbtlCzaBGVH/yPzKOPInnnnfGmp7deqKrz0yAcjlPt\njUlMqroImNjd9TCxsXnopkeY/WUhheW1ANz39nJqA6Ft9td+/TVrLryI0hkzWD3lbALr1rdZpicr\ni6H33UfapL3J/81v8A0aFJe6G2NMT2AtdNMjjB/SOHtmx9w0vJ5tH1dWL/gMREgeOxaCQeqWLSNl\n5zGtlulNSyPjoANJK9gLSUnBk5QUl7obY0xPYIPiTI9QXhNg2YYtfLOhgiN3G8igLGfEugaDhKuq\nCJaWsrkmxIJNtSR5Pew5bhj5ORndXGvTx9igONOjWQvd9AhZqX72GZnLPiMbV5gLlpZSNmsWlW+/\nQ8q9f+NHTy5gwxanW36nTzfx1LTJ5PWzFeKMMQbsGbrpwSrfe4+iu+9B62r5ePHarcEcYPmmSlZt\nrurG2hnTO4jIzSLyqziVvUpEBsSj7K4gInkiMldEFrpr3jfdn1B52q2FbnokDYWo/uQT93UYn6d5\nb6fPaz2gpnfYfebuzfKhLzpvUXfnQ+9WIuJT1WCcL3M4sChaPnYR8SZannZroZseSbxecqZMARHq\nli5lz1wfI3Ibl8LeY1gWw/o3zUhpTM/jBvOHcdY7F/f3w+72DhGRdBGZLSJfiMhXInJmZGtZRArc\nHOQN9hCRj0XkWxGZ1kq5g0XkfRH53C33QHf730VkvogsFpFbmpx2uYh8JiKLRGSse/wk93oLReQj\nEdnF3T5VRF4WkbeBOSKSISJzIs4/yT1uhIgsFZGH3Wu+KSLNl4JsrPc0EZnnfh7Pi0iaiEwE7gJO\ncu8nVUQqReSPIvIFsK+IvOvmiEdEjnHr8YWIzGntPnoqa6GbHitp9GhGvfIfqubNIz0rjWcvnszy\nzVX4vR5GDEhnQIY9Pze9Qmv50DvaSm/IO348gIhkAXe2cvwEYDKQDiwUkdmqGm3u5xTgDVX9vYh4\nI+r9W1UtcbfNEZEJqvqlu2+zqu4pIj/DyaR2Ec5a7QeqalBEjnDvtSExzJ7ABLc8H05e9S3ul5FP\nRORl97gxwFmqOk1EnnHPf6KF+5ulqg+7n8VtwIWqep+I3AgUqOpl7r50YK6q/tJ9j/s7D+dL10Gq\nulJE+rvltnYfPY4FdNNjedPT8Y4eTfLo0YCTqzEvq8Uv6cb0VPHKh/5HEbkTeEVVP2gITi14SVVr\ngBoReQeYBLwY5bh5wHQR8ePkRv/c3X6GiFyMEzMG4+Qwbwjos9zfC4BT3ddZwEwRGQMoELn041uq\nWuK+bsirfhAQpjGvOjj53RuuvwAn53tLxruBPBvIAN5o4bgQ8HyU7ZOB91V1JUBE/Vq7jx7HutyN\nMSa+Wsp73ql86Dgt3UU4ecdvpPW8503nJ0edr6yq7wMHAeuAGSJybkQO88NVdQIwu0n5DTnUQzQ2\nEn8HvKOq44EfNjk+cjRrZF71icDGiGMjc7NHlh3NDOAyVd0dJ7tcSznWa1U11MK+aFq7jx7HArox\nxsTXdTj5zyN1RT70alV9ArgbJ7ivwsl7Ds27hU8SkRQRyQUOwWmJRyt3R2Cj2339iFtutBzmbcnC\n+VIAMLWN45rlVe+AfkCh27NwdgfO/wQ4yP3yQkSXe6z30SPENaCLSLaIPCciy9wBDvuKSH8Recsd\nnPGWiOTEsw7GGNOd3NHs04DVOC3j1cC0To5y3x34VEQ+B24CbsNpmf5FRObjtGgjfQm8gxO4ftfC\n83Nwgn1DzvIzgb+o6hdAQw7zJ4kth/ldwB/cclprWf8LKBAnr/q5NOZVb68bgLlu3dpdhqoWARcD\ns9wBc0+7u2K9jx4hrivFichM4ANVfUREknAGWFwHlKjqHSJyDZCjqle3Vo6tFNe3BTdvRsNhPGlp\neDNsdTjTbWyepOnR4tZCd0ddHgQ8CqCq9apaBpwEzHQPmwmcHK86mK4RDgYJVVai3ZCtLLBhA6vO\nmsLygw+hfNYsQpWV270OxhjTG8Szy30kUAT8053D94g7ZWCgqha6x2ygcUSj6YGCZWWUPvY46666\niprPPiNcV9f2SV1oy2uvEVizBlTZeOddhGtqtuv1jUlEIrK7Ozc78mdud9erLSJyf5R6n9/d9eop\n4vlMwIczoOJyVZ0rIn8Brok8QFVVRKL2+btTJC4GGD68M7M7TGcEvl/DprvuAqD603mM/u9bePLz\nYz4/WFxMqLISb1oa3gEDts77jFXKLmO3vk4aORLxNP8OGty8GQ2F8KSm4c3s167yjemLemuec1W9\ntLvr0JPFM6CvBdaqasO3vudwAvpGERmsqoUiMhjYFO1kVX0IeAicZ+hxrKdpTWQAbmcwDhYXs/aK\nK6lZsABffh4jnnkG8fqQ9DS8abGt8pYyfhzDZ86k7rvl9Dv8cHy5udvsD2zc6OZHX8eAK6+g/09+\ngrefBXVjTN8Tty53Vd0ArIlYKu9wYAnwMnCeu+084KV41cF0nn/YMAZeey0ZBx/M8OmP4s3Ojvnc\ncF0dNQsWABDcVETt4iV8/9OfUjL9nwTLyghVVBAsKiJYUtJiGd7MTNL3mUT/KVPwD2z+dKZ63nwC\n65xZJZvvfwCtrW12jDHG9AXxHoZ/OfAvd4T7CuB8nC8Rz4jIhTjTN86Icx1MJ/iys8g5ewpZp/0I\nT1pasy7zYFkZdUuWoOEwKePG4ctpnIXoSU4mZeIe1H7+Bd7cXHz5edQtXUrdV1+RceghVH34IUV/\nvY/U3ccz9L778A1of9KmlF3Hgs8HwSCpP/gBeHv8zBJjjImLuP71c5ftK4iy6/B4Xtd0LfH58Pqa\n/1PRYJCyZ5+l6I9/AmDApT8j95JL8Pid1RF9ubkMu/9+Qlu2gCrrf3M1hJzpsVpTQ8mMmRAMUrPw\nc6oXLiTzyCPbXTf/Djsw+rVXCRQWkjx6NL7+tqyBMaZviimguwvXT8NZS3frOap6QXyqZeIpHAgQ\nKitDPJ5mz6TbVU59PTULP9/6vuaLL9C6OvA3Lnfsy83Fl5tLYNMmtL4egH5HHom/yUBH/8BBhAOB\nrV8GYuVJTSVp2DCShg3r8H0YY3oeEckGpqjqAx04dxVOUpbNXVCPW3HWef9vZ8uKt5gWlhGRj4AP\ncBbI37oCkapGW+S+y9nCMl1HAwGqF37OuquuclrQDz2If/DgDpdXu2wZq8+bCuEww/85nZRx41oc\nyR4sLkZDIcSfhKSmUL/8OyrefIOU8eMJFBaS9cMf4uvfP+q5xvQAHV5YZunYXZvlQ9912dJuyYcu\n2ycPeaeJyAicxDPjo+xr9R66MqD3JrEOiktT1atV9RlVfb7hJ641M3ERKi9nwy23ECopoe7bbyl9\n6t+dKi95zBhGv/IfRr06m5Rddml1WpovNxd/fj6+nGw8SUnULP6K2mVfs/lvf6N+1SokpUfnPTCm\nQ9xg3iwfuru9w0TkJyLyqTsX+0ER8YpIZcT+00Rkhvt6hoj8w51rfpe7BPeLIvKliHwiIhPc424W\nkcclSu50Efm1ODnHv5TmOdGb1u1c97gvRORxd1ueOLnK57k/+0dcc7o4uclXiMgVbjF3AKPd+7tb\nRA4RkQ/ESa+6xD33RRFZIE7O9Ivb8dk1O8/9/GaIkwd+kYj8POKzO819faNb969E5CFp7zzcOIv1\nGforInKcqr4a19qYuJOkJJJGjqT+u+8ASB67SxtntFGe14svL6/953k8ZB51NMk77ki4uprUiRNj\nnspmTC/T5fnQRWRXnLXW93cTmzxA20lJhgL7qWpIRO4DFqrqySJyGPAYjfPSm+VOB8bj5CefhPOl\n5GUROcjNzta0buOA691rbZbGRCd/Ae5V1f+JyHCcFKe7uvvGAofiJFn5WkT+jjPNebybhQ0ROQRn\nbZPxDWlOgQvcvOqpwDwReV5Vi2P4CJudh/NIeUhDj4Db5d/U31T1Vnf/48AJwH9iuN52EWtAvxK4\nTkTqgADOf1BV1cy41czEhTczk8G33EzlYYfhy88jZXyz3qy4iPZ83JeTjW/y5O1yfWO6UTzyoR+O\nk1ltnttITKWFNT0iPBuROvQA3Ixsqvq2iOSKSMPf82i50w8AjsJJ0gJOzvExQLOADhzmXmuzW37D\nvNQjgN0iGrWZItKQnGG2qtYBdSKyiZZXEP00IpgDXCEip7ivh7l1iiWgRzvva2CU+2VnNvBmlPMO\nFZHf4Hwh6w8sprcFdFW1lToSiC83l+xTT2n7wC4Qrq2l9quvKH3yKTKPO5a0yZMtwYrpa74nelrQ\nDudDx2lUzVTVa7fZKPLLiLdNn2FVEZtoudMF+IOqPtiuWm7LA0xW1W0Wi3ADfKy5z7feg9tiPwLY\nV1WrReRdYshX3tJ5qloqInsARwOX4EypviDivBTgAZxn82tE5OZYrrc9xbywjIjkiMgkETmo4See\nFTOJIVRWxurzL2DLq6+y9rLLCRYXU/bii9Sv/p5wINDd1TNme+jyfOjAHOA0EckHJ3+3uLnMRWRX\nEfEArX1r/wC3i94NcJtVdYu7L1ru9DeACxpa1CIypOHaUbwNnO6eH5lb/E2ctUlwt7e19GwFThd8\nS7KAUjcoj8V5TBCLqOeJyADA444Pux6nez9SQ/De7H4Op8V4ve0m1mlrF+F0uw8FPsf5AD7G6Vox\npmXhMAQbB6MGN21iww03gs/H6NdfwxNl9TdjEsmuy5Y+uXTsrtCFo9xVdYmIXA+86QbvAHApznPn\nV3ASY83H6RqP5mZguoh8ifPl4ryIfQ250wfQmDt9vfvc/mO3RV0J/IQo3fyqulhEfg+8JyIhnG76\nqcAVwP3uNX043fWXtHKPxSLyoYh8BbyG0w0e6XXgEhFZitNd/klLZcV43hCcZGINDd1tej9UtUxE\nHga+wkksNi/G6203sU5bWwTsDXyiqhPdbzW3q+qp8a4g2LS13ixUWUnF229T+sS/6HfkEXgz+rHh\nFmeA7KjZs0kePYqSqjoWfl9Gss/LuB0yyUlP6uZaGxNVjxrRHA9uN3Klqt7T3XUx7RfroLhaVa0V\nEUQkWVWXSeMa7ca0yJuRQeaxx5Jx0EFOCtTf/x6AzBNPxJc3gJr6IH9682uemLsGgF8euTOXHDwa\nvy+emX2NMSbxxNpCfwFnHfbQ/VqXAAAgAElEQVSrcLrZSwG/qh4X3+o5rIWeOEJlZYTDYbSmhvIX\nXsSbl0fhhH045Ykl1IfC7Dc6l3+csxeZKe1bMc6Y7SDhW+jt4T4jnxNl1+ExTh2Lq55ev3iIdZR7\nw+CKm91pDFk4zyGMaRdvdjbhoiJW/+QcgoWFAOSccw4X7n0cD3+6nv87eBTpSZZgxZiezg2KPTan\nek+vXzzE/JdTRPbEmYuowIeqWh+3WpmEE66vJ1RaSqi8HE9q6tZgDlC38DN+etE0zj1kF7LS/Hg9\n1hAyxpj2iulBpYjcCMwEcnFGPv7THWFpTEwCa9fy3VFHs/LEk6hfs4bUHzR+cc465VQycrIYnJ1K\nmrXOjTGmQ2L963k2sEfDggAicgfO9LXb4lUxk1iqPv3UycQGrP/1bxg563nqV67Em52Db/AgPEk2\nst0YYzoj1qHE69l2RZxkYF3XV8ckqvR9JiOpqQCkjNsN8SeRPnkyKWN3wZeV1c21MyYxiciJInJN\nC/sqW9gemYzkXREpiGcdWyIiE0Uk7gOvReS6iNcj3HnvnS0zT0TmishCETkwyv5HRGS3zl6nqVhb\n6OXAYhF5C+cZ+pHApyLyVwBVvaK1k03vo6psrtlMaV0p/VP6MyB1QMfKCQQIlpXh6ZfB6NdfI1xZ\n6bTK++d0cY2NMU2p6svAy91djw6aCBQAcUkK5mZKE5wV+27v4uIPBxap6kVRruuNtr0rxBrQX3B/\nGrzb9VUxPcnmms2cNfssNlZvZGTWSKYfPb3dQV3DYWqXLeP78y8AEYZPn07K+JbzpRuTqO6/5O1m\n+dAv/cdhncqHLk6+8NdxVjrbD2flsn8CtwD5OI9Kd8NZe/wyERmJk90tA3gpohwB7sNpqK0Bog54\nFpGj3LKTge+A81W1pVb+XsCf3GttBqaqaqE46VgvBpKA5cA57hKspwM34azjXo6z1vqtQKqIHICz\njvzTUa5zM85nOsr9/WdV/au77xc0rsX+iKr+2f3M3gDm4iS3+dS9xuc4iVZ+C3jdFeH2w+mJPslN\nVhPtPpvdD7AzcJdbbgGwL87KfQ+693WpiNwG/EpV54vIMTj/Nrw4S/AeLiKTcLLTpQA17mf9dbQ6\nRIqpy11VZzb84HzbW9hkm0kwW+q3sLF6IwAry1dSG6xt44zmwpWVbLrnHsKVlYQrKra+NqYvcYN5\ns3zo7vbO2gn4I0760bHAFJzZSL+i+VrxfwH+rqq7A4UR208BdsEJ/ufiBLJtuOucXw8coap74iwr\n+4toFRIRP84XhNNUdS9gOvB7d/csVd1bVfcAlgIXuttvBI52t5/ozqK6EXhaVSdGC+YRxuIkVJkE\n3CQifvcLxfnAPjhLlU8TkR+4x48BHlDVcap6PlDjXuPsiP33q+o4oAw3K10Lmt2Pqn7epO41OKlo\n56rqHqr6v4jPKg/n38aP3DJOd3ctAw5U1R+4ZcXUgxDrKPd3RSTTXWT/M+BhEflTLOea3ikrOYsx\n2WMA2Ct/L1J9qe06X8Nh8HpJP6Dx8VHy2LGI3wa/mT6ntXzonbVSVRepahinhTlHndXCFuHk9460\nP/CU+/rxiO0HAU+pashdt/3tKNeZjBPwP3Rbs+cRPYMcOF8OxgNvucdej5MHBGC8iHzgLid+NjDO\n3f4hMMNt8XpjuO9Is1W1zk3X2pB69QDgBVWtcnsRZgENf4xWq2pr676vdIMywAKaf46RWrqfpkLA\n81G2Twbeb0gJG5FqNgt41n2ef28r5W4j1i73LFXd4iZpeUxVb3IX2DcJakDqAB466iFqg7Wk+lLJ\nTc2N+dxgaSllzz1H7aJFDLj0UpJ3HUu4tJT0/ffHk5Icx1ob0yPFIx96g8i0o+GI92Gi/31ve2nQ\n6AR4S1XPivHYxaq6b5R9M4CTVfULEZmKk80NVb1ERPYBjgcWuC3sWMWaerVBW2lkm5bXWmtmBlHu\nJ4raiFz0sfgd8I6qnuI+Jng3lpNiHeXuE5HBOPlhX2lHpUwvNiB1AEP7DW1XMAeo/eJLiv74Jyre\nfIvvz5tK6i5jyfrhD/H179/2ycYknpbynncmH3pHfAj82H19dsT294EzRcTr/p0/NMq5nwD7i8hO\nACKSLiI7t3Cdr4E8EdnXPdYvIg0tzH5Aodstv7UOIjJaVeeq6o04z5uH0Xb61NZ8AJwsImkiko7z\nWOGDFo4NuPXpiKj30w6fAAe54xsiU81m0TiTbGqshcUa0G/FGUjwnarOE5FRwLexXsQkplB1NYGi\nIoKbN2+zPVzf+AVXAwG0w40CYxJCPPKhd8SVOAOyFuGkCm3wAs7f8yXAYzipsbehqkU4geUpt3f2\nY5xn1824z79PA+4UkS9w1ixpeC5/A86AtA9xnhM3uFtEFrldzB8BX+CkcN1NRD4XkTPbc6Oq+hlO\n6/lT93qPqOrCFg5/CPhSRP7Vnmu4WrqfWOtZhDOobpb7WTWMFbgL+IOILKQ9K7rGkpylu1lylp4n\nVFnJlldms/H22/ENGsTw6Y+SNNR5TBYsKWHzPx6kdvFi8n/1K1LGj8Pjt2Qrptfr8PSMeIxyN6ap\nWLOt7Qz8HRioquNFZALOSMTtslKcBfSeJ7BhA8sPPQzcfz+Zxx3H4D/cjifZeUYerq1F6+rwZGQg\n3vaOcTGmR7L5lqZHi7XL/WHgWiAAoKpf0vgsxvRFHg8SsVxr2v77ESotJVBYSKiqCk9KCt6sLAvm\nxiQwEXnB7RKP/Dk6Dtc5P8p17u/q67Ry/fujXP/87XX9WMXaN5+mqp82WRAkGIf6mF7Cm53N8Ecf\nZeOdd5J+4AH4Bw9m+RFHQjjMkD/fS7/DDkN8lmjFmEQWkVo73tf5J86iOd1CVS/trmu3R6wt9M0i\nMhp3yoO7zm9h66eYROZJSiL1BxMZ9tCD9J86lbKn/g3BIITDlD7xBOHqpmOAjDHGxFOsAf1SnGXr\nxorIOuAq4JK41crERbCsjC1vvknJU/8mWFy8zb5AURHVCz4jsHEjGoptuqR4vfhycvD260fmccdu\n3d7vmGO3JmIxxhizfbTaJyoiV6rqX4DBqnqEO5/Po6oV26d6pittefU1Nt56KwCV777DDnfdhS8r\ni0BREavOOJNgYSHe7GxGvvwS/vz8mMsVEdIPOIDRb72JhkL4cnJsVLsxxmxnbbXQGx763wfgLqNn\nwbwX0nCY2iVLtr6vX7ESrXdyMGh1NcFC5wlKqKyMYFFRu8v39utH0rBhJI8YgdfSoRpjzHbXVkBf\nKiLfAruIyJcRP4ts6dfeRTweBky7CN+gQUhKCoNuuH5r4PWkp5Oy++4AJI0ciX/gwO6sqjFmOxCR\nk7syJ7eIFDSk1O4OEpH7vWk+chF5VUSyu6tu20ub89BFZBDOKnEnNt2nqqvjVK9t2Dz0rqGqhIqL\nUVW8mZlb54wDBIuLCVdX40lNxTegeZrUcE0NobJyNBTEm5mJNzNze1bdmJ4goeahi8gM4BVVfa67\n69LVROTHOJnh4pJ3vKeyleLMNlSV6vIyANKysrfmLq+ev4DVU6dCMMjA668n+/TTtvlCYEwf0OGA\n/sczT2i2Utwvn36ls/nQfwJcgZOLey7wM+BvwN44CUWeU9Wb3GPvwGmUBYE3cbKPvYKTe7wcJ33n\nd1GuEVP+clU9SEQOwcnxfUJ78nm7SU1OwVm/fAjwhKre4u57EWdd9xTgL6r6kLs9Wg7xqUAB8AhO\nmu9UnPXQ98VJbVqgqptF5Fyc9LIKfKmq58T6mfd0bQ2Ke0ZVz3DX/o2M/AKoqk6Ia+3Mdle2YT0v\n3vU7VMOc9OsbyB0yDFWl7MUXnGlpQPmsWWQed6wFdGNi4Abzh2lMoboj8PAfzzyBjgZ1EdkVOBPY\nX1UDIvIATnKQ36pqiYh4gTnuqp7rcALmWFVVEclW1TIReZm2W+izVPVh95q34eQvv4/G/OXrWujK\nbsjnHRSRI3CCb2t5xSfhpFytBuaJyGxVnQ9c4N5Pqrv9eZxHxQ8DB6nqyoiEJgCo6uciciNOAL/M\nrXvD5zYOJ53rfm5wT6iMUW2t/HGl+/uEjhQuIqtwMuaEgKCqFrgf4NM4OWZXAWeoamlHyjddK1BX\ny/tP/JOS9WsBeO+xRzn+qt+QnJpG9sknU/7iSxAMknXqKXjS051zNm5C62qpWbqM1F12xj9smK0O\nZ8y2WsuH3tFW+uHAXjhBDpzW6CbgDBG5GOdv+2CcHOZLgFrgURF5hfZlzBzvBvJsIAPn8Ss05i9/\nBqe131QWMFNExuA0Btua9vKWqhYDiMgsnHzm84ErRKRh8ZphwBggj+g5xGNxGPCsmzu9vef2eK0O\nilPVQvf36mg/MV7jUFWdqKoF7vtrgDmqOgaY4743nVBaXc+Hyzfz9rKNlFTVd7icQG0t+552Fmfe\nfCeDRu9M9uAd8LqrvaWMG8ewd98n56N5BE84FUlKon7delafcw4rTjwJra5i86OPNpvfHquSqnqK\nKuoIh3v+IyBj2ike+dAFmOn+bZ2oqrsAM3G6kg93e09nAymqGsRpAT+H0zh7vR3XmQFcpqq7A7fg\ndH2jqpfgtHSH4eQvb5pjuSGf93jghw3ntaLp//jqduEfAeyrqnsAC2Mop09rq8u9guYfNDR2uXdk\nZNRJNCaBn4mTuP3qDpRjcJ55z/psHb97xZmSdsnBo/j5ETuT7G9fK7mmooL3npjOkvffJi0rmzNv\nvoOUjH74/M567UF/Mv/bUMalT35MTpqf5y7Zj/T//IfA905K56J772XgNddCjIvSRNpQXsPP/vUZ\n5TUB/jZlT3YZ2A+PJ6HGH5m+7XucbvZo2ztqDvCSiNyrqpvcns/hQBVQLiIDgWOBd0UkA2f57ldF\n5ENghVtGLPnGm+b7XgeN+cuBuSJyLE5gj9TefN5HuvdQA5wMXIDzPL3UfWY/FpjsHvsJ8ICIjGzo\ncm9HS/tt4AUR+ZOqFrfz3B6v1YCuqh1NLr+1COBNEVHgQXdAw8CGlj+wAWhzjtTXNH4DMNtSYPmY\nARRf7Pxb/1OKn9keob2d3qGUFNYfciQcciQi8Fh2Dslp6Vv3B4AlWanUXLQP64DDBIZMmULdnj8A\nwNOvH/6hQ/GkprZv5JAqqwJhNhzjpFY+IBRmrCr+xBpQbBLAux0/9Tq2fYYOncyHrqpLROR6nL+v\nHpz/RS/FacUuA9bgdIuDE5RfEpEUnMbYL9zt/wYeFpErgNOiDYqjMd93kfu7ISbc7XanC86Xiy+A\ngyPOuwuny/16nJ6CtnwKPA8MxRkUN98du3WJiCzFCQOfuPde5D5WmOXe+ybgyBiugaouFpHfA++J\nSAjn85oay7m9QVxHuYvIEHfQRD7wFnA58LKqZkccU6qqOVHOvRhndCXJEybsNfmLL+JWz96upj7I\nksIKVJVdB2WSnuwFaV9ADAeDlKxfS21lBXlDd8RbU0O4rg5ffj7higrIzGJ1eT1FlXUAjB3Uj6wk\nD+GKCrS+Hm9ODni9HXp+XlhWw+oSZ+33nDQ/o/My8HljXZXYmO3j3R42yj1RNIxObxjAZjpuu01b\nE5GbgUpgGnCIqhaKyGDgXff5T4ts2lrrwmFlc1UdKOSkJ+HvYDCsLi8jVF9PzVNPU/zAAwD48vMZ\n/Ic/sPbKKxnw5tss21xDbr8UhmSnkpnaNcu7llTV89pXhZRU1fPjvYeR188ek5keybqN4sACeteJ\nW37LyHXf3ddHAbfizA88D7jD/f1SvOrQV3g8Qn4XBMG0rGxCVVWULV68dVtw0yY8SUloZSW6aAHp\ntRWMOfRofEnbBvNwKER1eRm1lZWkZmWRnhX7okz905M4e59ojxiNMduDm1t8/yab/+KmLe2qaxwN\n3Nlk80o3BeuMrrpOXxbPhNUDcQYfNFznSVV9XUTmAc+IyIXAauCMONbBtJM3PZ3+F15A5UcfQSBA\nv6OPpm71KjKOOgrPDoNZ+dw7jJm0PxlJ207frCov5bFfXUZtVSWDx4zl5F9fT1obQb2ooo7KuiAZ\nyV5rlRvTjbZHvm9VfYPGaW8mDuIW0FV1BbBHlO3FOHMoTQ+0pSZAxfAxDH/tdbyBejxpKZSXlJC7\ndwHlL/+Hg3adSFIo3Oy8sg2F1FZVAlD47TJCwUCr1ymqqOWcRz9l2YYKdsxN47lL9rWgbowxnRDP\nFrrpBbbUBKipD+H1CgMyklm4pozzpn8KwMkTd+C2o0eSkppG4c8uo/47ZxCs7/e/J+lHp25TTs7g\nIWTm5bOlaBOjC/bB6053a0l1fYhlG5zEfauLq9lSEySvs3MqjDGmD7OA3odV1AZ47ONV3PPmN4zI\nTWPmBZNI9TUOqKuoC1K5pYZQyEv96sZ1hGoXfwVNAnpGTn+m/O4egoF6/CmppGW2nkI1LcnHuB0y\nWbx+C6Pz0rtsgJ0xxvRVNjeoD6sJhPjzf78FYFVxNe987eRBP3CnAfi9wqWH7IQUrmPhxhrSL7sC\nAG///uScd17U8tJz+pOVP6jNYA6Q1y+ZGedP4r1fH8K/L55MXj9bF96YnkRERojIVzEcMyXifbem\nUO3rrIXeS4Vra6n79lvKX3mFrOOOJ3mXnfGktO8ZtFeEPYZms+D7UrweYddB/VhVUsV9U35AfTBM\nlh/EP4SC6nqKDjiC4ccdS3JyEkl5zdOrdoQTxC2QG9OLjQCm4K5J7yZUsTnG3cTSp/ZSgQ0bWH7k\nURAIgN/PTm+9iX/QoHaXU1RRy1frtpCd5uej5Zs5w50HHiwuZvM/HqR+5UryrroS/9ChSHIy3tTU\nmMqtD4YoqQpQURugf3oSuRntD9yhYJCSdWtZ/N5/2WnSvuSPGEVSSmzXNyYOetQ8dBEZgbMu+wJg\nT2AxcC5OutB7cBps84CfqmqdmyzrGZwlYWuAKaq6vGledBGpVNUMt/xXVHW8+/pxoGH5yMtU9SMR\n+QTYFViJs5T3QhpTqPYHpgOjcFbGu1hVv3TXJBnubh8O/FlVrVXfBazLvZfSQMAJ5gCBAFrfsaQs\nef1SOGBMLkNzUpkyeUcyU/xU1AYofeopSh9/nKr//Y/vzzvPWQ0uxmAOsK6slkPueYcj732fa2ct\norQDSWNqtpTz5A2/ZMHsF3nm5muprahodxnGJLhdgAdUdVdgC86yrjOAM92EKj7gpxHHl7vb/wb8\nuR3X2QQcqap74qRtbQjA1wAfuAli7m1yzi3AQjdRzHXAYxH7xgJH4ySNucldK950kgX0XsqTmUne\nL35B0sgRDLjySrxZbT+3bonf68wD94rw9Pw1PPL+dwSKNm/dH66qhnDzqWqt+XRlMbUB55y3lm4k\nEGWqW1vC4TDBOmepWdUwgbradpdhTIJbo6oNa7Y/gTMleKWqfuNumwkcFHH8UxG/923Hdfw4674v\nAp7FScvalgNwWvWo6ttArog0JPSarap1bhrTTcSQ08O0zZ6h91K+rCz6n/MTsk89BU9aGp60pumW\n26+8JsCNLy0mv18yp591Lklz51K/bh0Df/MbPBkZ7Spr8qhcMpJ9VNYFOWHCDvh97f/umJyWxhEX\nXcpnr73MmL33bXOhGmP6oKbPTMuApqlMWzq+4XUQt3HnJjuJNuf058BGnLVFPDj51TujLuJ1CItF\nXcI+xF5IVakuLwNVUnNy8HQgIUo0Pq/g8wibKuq44LU1vDjzMZI8IGlpeNPTKamq46PviqmoDXLU\nbgNbfS4+JDuVOb88mJr6EJmpPnLSWp+XHk1yWjq7HXQYO03aF39ysj0/N6a54SKyr6p+jDM4bT7w\nfyKyk6ouB84B3os4/kycZbfPBD52t60C9sJ5vn4iTmu8qSxgraqGReQ82JrQsbUUrB/gpFz9nZvb\nfLOqbpF2Jo4ysbOA3guVFq5j1h03EwoEOPk3N5C/4yjE47SANRQisG4dW958E+/Rx1GVnoXH4yE7\n1U9aso9gSQnhikokNRXfgNyt5wFkpfp5ctpknpm/htP3GgrZWfiSG/+JvLBw/da86/NXlXLrSeNI\nT47+T8jn9TAws/Mrv/mTk/En20h4Y1rwNXCpiEwHlgBX4KQZfVZEGgbF/SPi+BwR+RKnhXyWu+1h\nnPSqX+AMsquKcp0HgOdF5Nwmx3wJhNxzZ+AMimtwMzDdvV41Tu4OE0c2yr2Xqa+t4dW/3s13C5zV\n3AbttDOnXnMzqf2cR1OBTZtYeeJJJE3ahwWnXcIvX/0Oj8D0qXtzQL6fwutvoHLOHLw5OYx8YVbU\nkfHhsOLxSLNt18z6kmfmrwVgz+HZPHre3uSkt7/lbUwv1aOalpGj0GM8fhVOVrPNbR1reicbFNfL\neL0+svIbg3DmgLxtu9yDQUJlZTBhIs8sLQUgrPDveWsI19dTOWcOAKHSUmqXLot6jabBvGHb5YeN\nYUx+BoOzUrj1pPFk2epuxhjTY1iXey/j9fvZ59QzyeifS7C+nglHHkNyWvrW/Z6MDPKuupLqFcs5\n5dj9mbuyBBE4bc+heJKSSD/wQKo++ABPVhYpY1tNQ9/MsP5pPHXxZMKq5KYlRQ38xpjtQ1VXATG1\nzt3jR8StMqZHsC73BBSqrERraqhKSmVLyIPHI2Sl+MlI8REsLiZUUYEnLQ1fbi7SiQF1VXVBPCKk\nJnXNoDxjejj7Bmt6NGuh9xLB4mIChYX48vLw9u+Px99yd7c3IwMyMsjCGZoayZebiy+3tVktsVlf\nVsNNLy+mX4qPa4/d1dZiN8aYbmYBvRcIlpSw9rLLqFn4OZKayqj/vEzS0KHdVp/y6np+9ewXfPRd\nMQDZqX5+fuTOLFpXzutfbeDHew9np/x0knzWcjfGmO3FBsX1AhoIULPwc+d1TQ11X3/TxhnxJngi\n5pL6vEJZdYCzH5nLYx+v5kd//4iSqkA31s8YY/oeC+i9gCQnk3nSiQD4Bg4kZfy4DpUTqqwkXFfX\n9oFtyErzc/fpEzh+98GcNWkYFx84mppAiIbhGDWBEOFeMDbDmN5MRI4Rka9FZLmIXNPd9THdzwbF\n9RKBigqoqwNV/Hl52+wrrqxjSeEWBmWmMCgrhX4p2z5fV1XqV65i4+234x86lLwrLsfXv3+n61RT\nH8LrgSSfl9KqeqZ/uJI3F2/kwgNHctz4QWSk2LQ2k1B6zKA4EfEC3wBHAmtxFpA5S1WXdGvFTLey\nZ+g9nIbDlBSuY+6LzzJ07G6MmbT/NusyllXXc92sRbyxZCMAz/90P/baMQeqi6Hse/CnEgpns/ay\ny6hfsQKA1N13x3/4oQTr6/Alp5DewTXSI0e356Qn8dNDRjN1vxFkpPhItufnxsTTJGC5qq4AEJF/\nAyfhrBZn+igL6D1c9ZZynr75Gmq2lLP0/bfJHTKcIWMbEx3VB8N8tqZs6/uF35fyg1yQD/+MfOxm\nOJz64TbT0zwFe/L87TdStHolA0ftxClX30R6dk6n65qW5CMtyf5JGRNNQUGBDxgAbJ4/f36wk8UN\nAdZEvF8L7NPJMk0vZ8/QezhV3ZpCFJylX8Nhpbiyji21ATJSfFx9zC54BAZnpXDs+EGESjch3721\n9Rzft88y9G/30e+II+g/bRr1AkWrVwKwccVy6muqt/t9GdOXFBQU7AcUASuBIve9MV3KmlM9XEpG\nP0697hY+eHIGg8fswsBRY/i+pJqH/7eCsqp6bjlxPMeMH8yBY/LwiJDXL5kt/1uGZ/x5eN++BrxJ\n6JijSdpxR3a4527w+aiu2EJaVjbV5WWk5/THn5JKaMsWqufPp3r+AnLOPBP/8GFYViRjOs9tmc8G\nGp5tpQCzCwoKBsyfPz/UwWLXAcMi3g91t5k+zAbF9QLhcIjayipCoSC+ugCbX3gJTUllc8EBfLkF\npu4/cpvj61asoOrt1+l3wN54snOQrIF4UhszHGo4TFV5GeUbN5A1cBDp2TnUfrWYVaefDoA3N5dR\nL72Ib8CA7XqfxvRwHfqGW1BQMAinZR6ZfrAWGDl//vwNHaqIk0ntG+BwnEA+D5iiqos7Up5JDNZC\n7wU8Hi/hYICv57zJwI8+pfK11wHIn3YxE049t9nxSTvuiOfE0yEcgsxMPKlp2+wXj4eMnP5k5DSO\ndA8WNyZgCpWVoeFwu+sZLClBQyG8/frhSel86lRjEsRmnADeNKAXdbRAVQ2KyGXAGzi5yadbMDf2\nDL2XqKuuwu/3E1wb0au2dg27DEhtdqx4vfjz8/APGoQ3La3Z/mhSJ0wg87jj8A8dypB77naWj22H\nwMaNrJk2jRXHHU/l++8Trq1t1/nGJCp3ANzxQBlOIC8Dju9EdzsAqvqqqu6sqqNV9fddUFXTy1mX\ney9RVVbKB0/OYNKekym+5jo8qSkMe/BBkoYP77JrhLZUEK6r3aaFXVxZx3vfFJGW5GXSyFz6t5D/\nvPiRR9l0zz0AeNLTGfXaa/jz86Iea0wv1alBJQUFBV4gDyjqbDA3Jhrrcu8l0rNzOPDs8wkHggx/\n6km8fn+XP+P2ZvbDS+Oz9uq6IH966xv+Nfd7AH57/K5MO3BU1HP9I3ZsfD1kCOK1zh9jIrlBvEPP\nzI2JhQX0XiQtM2u7jjyvD4X5ZmPF1vdLC7cQDIXxRQnWaQUFDPnrX6lbsYLsU07ukoxuxhhjYmcB\nvReorapkzeIvWfHZfPY48lgGDN8Rnz961/f/t3fn4VGVZ+PHv/fsM9k3QJawqyAFl4go1SKKuwX3\nrRWtb7VafbX0p9i+dXnb2lrrq3Wt1aqoVSjuuxRRFEWEICAi+6aBELJPMpPZn98fcyCBJARCNsL9\nua5cZJ55zjkPh5B7zrPdbSnd4+Suc4/gmucW4XM5uPmUoU0GcwBHZibpp01o9zYppZRqmo6hHwBK\nNq7jX7ffAoDd6eS/Hv4nqdkd8wQcjycoD0YQZL9ynsfKy0nUBhCPOzlGv5eT9ZTqQnRjBtWl6RP6\nAaC2omLn9/FolFh031KTBv3VrJ7/KXW1NYw69cxdtnmtq/GTiMfxpKRidzZOpmK32+iRtn9L0GJl\nZXz3s2sIr1kDDgd9/nwSRx8AACAASURBVPYgaePGIQ798VNKqbaiM5cOAL2GHEq/I0Ziszs46sxz\nce/j0+03H8/mo2f/wRcvv8Scp58gHAwAUFtZwdt/+wvT77yVolUriEUj7dF8Agu+TAZzgFiMkt//\ngXhlZbtcS6mDgYj0E5GPReRbEVkhIjdb5dkiMltE1lp/ZlnlIiIPW6lWvxaRoxuca7JVf62ITG5Q\nfoyILLeOeVisCTwdcQ3VOhrQDwApGZmce8tUrn38WU646Aq8ael7faxJJKgpr9+/IlBdQSKeXDGz\n5IO3+f6bZVSXbOPNv/6RUG1tq9tYXhvmsY/X8qd3V7Ldv/sa9N2HdUyjEqXUPokBvzbGDAfGAL8U\nkeHA7cAcY8xQYI71GuBMYKj1dS3wd0gGZ+AukoldRgN37QjQVp2fNzjuDKu8I66hWqHd+zytvL2F\nwBZjzDkiMhCYAeQAi4GfGmPa59GwG/GmZ7TqOLHZOG7SxZQXfUc4GOS06/575wcCT0r95jFOj6fV\nM+gTCcPTn23k8bnrAVhfVssDFx9JhjfZhZ8yZgzuoUMJr10LDgc9f3cHjqz9z+6m1IGkoKDATf06\n9HBL9ffEGFMMFFvf14jISpIZ2CYC46xqzwFzgalW+fMmOWlqgYhkisghVt3ZxpgKABGZDZwhInOB\ndGPMAqv8eWAS8H4HXUO1QkcMYt4MrAR2PFb+BXjQGDNDRJ4ArsH6JKfaR2p2Duf+6reYRHyXDwZH\njDuVQHUlVcVbOfHyq/C18kND3BhKGjyVl9WEiTfYOtaRm0v+tGdJ1NYiHg+21FQdP1cHjYKCAhvw\nB5K/CwUwBQUFDwF3FBYW7vsey7sRkQHAUcCXQE8r2ENyzXtP6/um0q32aaG8qIlyOugaqhXa9beq\niPQlueXhPcAUa3xkPHC5VeU54G4O4oBe56+meP1afGnpZPbqjWcft1xtSVltmEA4htflpEdG2i7v\n+dIz+OGlVxINh3B6vIitdSMwTruNX592GBtKA9SGY/z1olFk+XZdVufIyQFdm64OTjuCeUqDsput\nP/9nf04sIqnAq8Atxhh/w142Y4wRkXYd3eqIa6i9196PSX8DboOd24/lAFXGmJj1+qD+RBYOBvnk\nxWdZMfdDACb++n8YMvr4Njt/eW2Y6/+1mEWbKumb5eX1G04gr8GM9VgkzNY1q/jy9ZnkjxjJyFPP\n3NkdX1YT5q1lW0n1ODh1WA+yU/a8ZK13ppenryognoCcFNceu+/L68pJmAReh5dUV9t+gFGqK7G6\n2XcP5livby4oKPh9a7vfRcRJMpi/aIx5zSouEZFDjDHFVnf3dqu8uXSrW6jvPt9RPtcq79tE/Y66\nhmqFdpsUJyLnANuNMYtbefy1IlIoIoWlpa1OStSlxaMRtq1fu/N10epv2+zcibo6gqEoizYlZ5MX\nVdZR4t/190aotpbX/nwX332zjM9mvEDFlmTvV2UwwpSXl/L7d77ltle+5u9z1xOOtrz1dHaKm7w0\nNzZb88G8OFDM5e9ezikvn8Ira16hNtL6iXhKHQDyaH79uljv7zOrt/NpYKUx5oEGb70F7JhFPhl4\ns0H5ldZM9DFAtdVtPgs4TUSyrIlqpwGzrPf8IjLGutaVu52rva+hWqE9Z7mPBX4sIptIToIbDzwE\nZFq5fGEPn8iMMU8aYwqMMQV5ed0nyUc4Fqa8rpxANIDbl8KPfvIzHE4XqVk5HHnaWW1yjUQwiH/2\nbFizilF9k+PivdI99EhvYWMY69dONJZgVXH9lq/fbPUTju33UB8A7254l62BrRgMD371IHWxujY5\nr1JdVCmNl3nskKD1KVTHAj8FxovIUuvrLOBeYIKIrAVOtV4DvAdsANYBTwE3AFgT1f5AMp/6IuD3\nOyavWXX+aR2znvrJah1xDdUKHbJTnIiMA/6fNcv9ZeDVBpPivjbGPL6n47vLTnGBaIDZm2fz9PKn\n+WGfH3LtyGtJs/kIBQKICL6MzDbZqz1WWsq68adgz8zE838PE+ndj5Q0HzYBt9NOhjc5vh2LRNi6\ndhULX59JvxGjGHnK6XjT0glGYry1dCu/eX05TpuN568ZzbEDsrHv4cl7b80rmscNc24AYED6AKad\nMY0cr46tqwNCq/4DFBQU3EPjbvcA8FBhYeF+jaEr1VBnBPRBJJ/Ys4ElwE+MMXscQ+ouAX1bYBun\nvXLazlXYM8+ZybCcYW1+nVh5OZuvnExkfXIZWf6//81VX9SyaFMlN40fws9PHES6taTMJBJEQnU4\nXG6M2Kiui+Jy2BDAH4phEyHT58TjtLdJ26rD1Xxb/i3rq9Yzof8Eeqb0bPkgpbqG1gb03We5J4CH\naaNZ7krtoHu5d6Dtwe1MfGMitdFaBOHd89+lX1q/lg9shWhJCTVzPsJ75Ci2p+cx7rGFGAM2gQW/\nPaXRdq6RWJxl31dz99srGJyXwp3nHkFuauv3bleqG9rffOhttg5dqaboYuAOlO3J5sWzX+SNdW9w\nYp8TyXK33+Yqzp49ST/jdIKLFpFuvmfGxcO44uVVjOqX2WTXeVUwylXPLiQQibNiq5+j87O5auyA\ndmufUgcbK4gXtVhRqVbSgN6BHDYHgzIGMeWYKe1+rUQ0SsVzz1H+jycBGHD9L/jgxivJTPeR09QS\nNGt8PRBJzmb3udumi10ppVTH0L3cD2CxaIJQbYR4vPEwnAmHCa1ctfN1ZNUqBma6sROitKqcYE2E\nhsMtOSlupv98DKcO68EvTx7MqcN0bFsppQ4kOobeBVSGKvnk+08orSvlvKHnkevNbfGYUCDKt59v\nZePSUo48NZ9+R2Tjcu/a4RJas4bvr/kvEKHvP58i0DebO+ffSV2sjtt+8Bv6p/fHt1uO82AkhtNu\nw2nXz3pK7UYzgakuTX9rdwGzN8/mjvl38PCSh7l7/t34w/4Wjwn6I3zx2nq2bfAz66lviARijeqE\n+/Ug8cxf8T9xJ7NYwd1f3M28LfMoLCnk11/eQlWkcQpTn8uhwVypA4SI2EVkiYi8Y70eKCJfWulI\n/y0iLqvcbb1eZ70/oME5fmOVrxaR0xuUn2GVrROR2xuUt/s1VOvob+4uYEvNFuxiZ2zvsfRP708s\n0Tg4785ur39YsNltyenruwmbCBfO/y+uWnQLJXXbCcXqE6iEYiHsrn3/50+EQkSLi6lbsYJYRcXO\n8lAgSk1liKC/6cm7iYShNhwjnuj6PUJKHUB2JL/aYUfyqyFAJcnkV1h/VlrlD1r1sFKuXgocQTJ1\n6ePWhwQ78BjJlKjDgcusuh11DdUKOimuC7hi+BVM6HUmgVU2zDY77kNTwLvnYzypTs64bgTrvypl\n5Ml98aQ4G9Vx2V2cN+Q8Xl/3Ol8Uf8Fdx9/FzR/dTDAW5L4T7yPDk0kwEsPn2vsfg+iWLWycdB4m\nGiV1/Mkc8qc/EXOmsOi9jXw9p4iMPC/n/fpoUjLru/ID4RgLNpTzwoLN/HhUb04Z1nNnalWlujtr\nHfplwK9I7o5ZRDLgTd+fdej7mPxqovU9wCvAo1b9icAMay+QjSKyjmTOcoB1xpgN1rVmABOtNK3t\neg2g7fbAPshoQO8Cevh68P2nQQrf2ABA+Xe1nHhJf6q2bSa3X398GZmNjnH7nAw+qgcDRuZCApqa\nC5HpzuRXx/yK60Zeh8vuItebyzNnPIMxBgdp/OPTzXxdVMXPxg7kqH6Z+NyNfxzifj+hFd8SXLaM\njLPOJLx5MyYaBSDw2eeYaJQ4Cb6ek1yNU11ax/bNfgZm1m/XW10X5efPF5IwMHd1KZ/cOk4Dujoo\nWMH8VWAC9TvF9QT+AVxYUFBwwX4E9X1JfrUzhakxJiYi1Vb9PsCCBudseMzuKU+P66BrqFbSLvcu\nwCQMNRX13eGB6gjrCwt5+Q//w7sP30/Q3/yYejgQY97MNXw47dtdzrFDlieLPml9yPPlISLkenPJ\n8+Wx6fsKooEgS7+r4spnFlJVF236/GvX8t3VV1P2t7+x6eJL8B5+OHYrDWrWlT/F5vFgswt5+cnf\nKTaHkN171wxqxuy6mbX2uquDyGXsGsx3SLHKL23NSfc3+ZXqnvQJvTPUVUGwHGwO8GYhnnQKzhxA\n2fe1hIMxTrp0EB8982cAtqxeQSLRdKYzkzAsmb2ZWCRBeq6Xwvc2cvx5Q5rsfm8oWlJC3qP3conT\nyYW/uJnzZqyiJhSlqX7+0Nr6bHDxqipMIsHA11/DRKPYUlOxp6XhBc65cRSV2wKk5Xjxpe96/Qyf\ng0cuPYoXFmzm3FG9yU5xodRB4lc0DuY7pFjvv9SK8+5IfnUW4AHSaZD8ynqCbpj8akdq0yIrOVYG\nUE7zKU9ppry8A66hWkkD+l6IxCNAcky6IWPMvidTiYZg6XSYZU3ovPBZGD6J1CwPZ/9yJCZhiMdq\nqd6+DYDRky7G6Wo+AA46sgebvymjrKiWI0/NB6l//A36q9m4pJDqkmJGnHwaqTk5mFCYkj/eQ83s\n2QCkeTz8csJkcprZ5jVt3Dgq+jxFdMtWMiZNwpaSgiOr8Q53vnQXvvSm25nqdnL6iF6cODQPr8uO\ny6EdQ+qg0beF91u197Mx5jfAb2CXXBlXWMmvLiSZL2P31KaTgS+s9z8yxhgReQt4SUQeAHoDQ4GF\nJJfoDRWRgSSD7KXA5dYxH7fnNVpzP1SSBvQWbA9u54HCB/A4PNx01E07M4OVBEr45/J/0ie1DxOH\nTMQudqrCVUBy7Drdnd70CSMB+HpG/etl02HoaeBOxZuaDIjGuLjyvkeIx2K4PF7cvqY/4ItNiNTF\nWPz+ZgCK11Zx+f+OASAaDrP43TdZ9p93CQcDLJn1LpPvfwyv2wPO+n92u8vFJaPzSWtq9zjA2asX\nA2b8GxOLIl4vjszG4/l7w2m3keHTQK4OOkUkx8yb8/0e3muNqcAMEfkjyeRXT1vlTwMvWBPSKrC6\n+o0xK0RkJsmJaDHgl8aYOICI3Egyl7kdeMYYs6IDr6FaQQP6HgSiAe5ZcA8fff8RkNy69fbRt1MT\nqWHK3Cl8XfY1AKmuVHr5enH9nOsBuPv4u5k4ZCIOWxO315UCR14OxUuTr4+8Apy+XaqICCmZuz4F\nV4erqQhV4La7yXBlkOJqHOQbzourjvqhoA8nj72d4vmLWfb6G4QCtaRmZZPzuzux3TgFm8tJTkYK\nzhRPo3M15MhreaMbpVSTHiQ5Aa6pT+UB6/39YoyZC8y1vt9A/QzyhnVCwEXNHH8PyZnyu5e/RzLH\n+e7l7X4N1Toa0FuQoH4CaiKR/D5u4tREanaWV4QqKAmU7Hw9a/MsTh9wOqmuXSeHAeD0wMhLYOgE\nYnYfUePAGYvicDWf2SwUCzFz9UweXvIwgvDkhCcZ0zv5JN5jQBrHnNmfko1+jps4iLAdArVVPLjk\nAd7Z8A4Aj53wN/quGoEnJZV4wvBNdYLJ077B7bDx/M9Gk2+PkOHTcW2l2sF0kt3Pu0+MCwCzSXZb\nK9UmtA90D1KcKfzuuN9xav6pnDvoXG446gYcNgfZnmz++qO/MjxnOCf3O5nzh57PyLyR2MSGTWxc\ndthleB3NLCRPxCFWR1BS+XbxMl697x6W/uc9QrW1jaoGogGqwlWEY2FmbZoFgMHwwaYPdi5T86a6\nKDhrIKdfO4K6VDvnPvo5S4tKKSyp3yp3WfU3nDvlNzhT06kJRbn3g1UEI3Eqg1GemreRjaUB1m6p\n5i8frGK7v/FMeaVU61hL0i4ArgUKgRLrz2uB/VmyplQjupf7XqiL1iEieBz1XdMJk6A6XI3D5iDN\nlUYwGsQfSS4vS3el49utG32nyk1EP/w9laf+karKUmJ1IRZNe4FJt95BNM3Ousp15Kfn47a7ub/w\nfg7PPpxT8k8hnohz5/w7+absG6adOY0f5P5gl9NWBSP8/PlCFm2q5JLRvRh1+AbuXfQHMt2ZvHDm\nC5RXpvPUZxu47keDeGvpVp75fBMAU884jEOzU+kVMjyzoYTimhCPXXE0WdYTe3ldOQmTINWZitfZ\nwm43SnVvupe76tK0y30PdnSlZ3oyG+Uut4mNLE99mc/paz6IN7T2Q6qOv47/FM/hvkV/pWdKTx77\n7weJeOG/Zl3DhuoNuO1uZp4zE4c48Dg8nP362aS70nn2jGdxirPJCXcuh41Lj+nLBUccwrJtfno5\nRvP++e/jtDshlsbFT35MLGGYs3I786aezJhBOcQThhS3g942B1/P2sCoY7NYXlxNPJ78kLctsI2r\nZ13NtsA2/vzDPzOu37hdPtQopZTqOrTLvRmVoUru+vwuLn7nYs569Sy+q/luv84XT8QpDZZSdvjp\nxFNy+NtXD2EwbAtsY17FAmwOBxuqkzvFheNhvq/5nhP6nMC0FdNImARV4Spmrp7JI0seYV3Vukbn\nt0UTHOPx4VpYwfnpGQzKcDLpzUkYY4jGDXGrJyYSTxAIxxg3NJcje6Yha2r4+NGvyS/oQVFtiAcu\nPpIsa534Bxs/oKimiFgixn2L7qO6zt9kqlallFKdTwN6M+ImzmdbPgMgZmIsLF64X+dbX72ei96+\niIs/mEzc4eGwrMN2vjeixw9w2pxcdGhygujgzMEMzRpKjieHUXmj6uvljqA4UNxom9fayhCfvLSG\n9V9t5/hJQ1g26ztiwRgJkyCaiJLhdfLgxUdydH4Wd5w9jNCWIHOeXUm6y8lRY3tzyR0jGXqEm18e\n34thh6RjtxK9jMgdsfMaw7KGsXVFNds3+onHNKgrpVRXo2PozfCH/Tz01UPMXDOTVGcqM86ZQf/0\n/q06VyAa4NZPbmXelnkAnDf4PG46+ia+LP6S/PR8BmYMJM2VRlWoitK6Uopqinjoq4c4f8j5nD34\nbNZUriHNlcaq8lVsCWxh8vDJZHqS68FDwSiznvyGolXJVKjDTjgEu9NGv+NTmVsziwsOvYAMdwbR\neJyaYIzNi0qYPzP5hH/ocb0Ye0FfPn3haVZ8OofsPn25+M4/71wyVxOpoaimiO8rihjkOJy5j2zE\n4bJx0W+OJSWj+Vn5SnVTXWoMXUQygX8CI0jurvwzYDXwb2AAsAm42BhTaSVJeQg4CwgCVxljvrLO\nMxn4nXXaPxpjnrPKjwGmkdxC8j3gZmujmOz2vkYb3qaDio6hNyPdnc6NR93IVSOuwm13k+3JbvW5\nXDYXh2cfzoLiBdx45I2c1Pck7GLnnMHn4A/7qairoCbkx/hDLAssY3jucKaOnorP4aMmUsPy0uWM\n6jGKcfnjSHWm7jqObcwuT8yxaILBx/QgM9vNpX0u3Tmu77TbSXdD2ab65XZOp41YJMyKT+cAULGl\niMriLTsDeporjWE5w5C1mcx+fhWJhCEtO3Xfd8dTSlFQUDCQ5E5pWwsLCze2wSkfAj4wxlxo5ST3\nAb8F5hhj7rXyi99OciOYM0nu0DaUZAKUvwPHWcH5LqCA5IeCxSLyljGm0qrzc+BLksH2DOB965zt\nfQ3VChrQ9yDLk7XLxLfWctqd/HT4Tzl9wOm8tvY1zn/rfI7peQz/96P/4831b/LA4gewiY2nTnqC\n4/OO4/PvPuWz0i9I92ZyaPahPLL0EQDenPgmud7kJi+1kVrqYnW4HC4m/Gw4c55bid1u4/jzBuNN\ndeJw2Ru1w+GyM/aCIThddsQuHHv2QIwJktd/IKWbN+L0eMno0XhTq/4jcjhu0iD82+s45qwBzW7x\nqpRqrKCgoIDk5jLDgAjgKigoWAlcV9jKrkcRyQBOAq4CMMZEgIiITATGWdWeI7nhzFSSaUmft55+\nF4hIpogcYtWdbYypsM47GzhDROYC6caYBVb588AkksG2I66hWkEDegfJ8mQRioV4aVUyD0NhSSHV\n4Wre3fAuADZsHOLtyYpX3ySycT1Xnf1jPnN8S5/UPjvPURWugkgQf6SG6evfYNqKaRzX6zimFExh\n7LX5pNsycLeQltSX4eakyw5NXtNuA1xc8D9/oLpkG2k5ufia2NrVm+ri6NP6k0gYbDZ9Oldqb1nB\nfC71m8rsWPt5NDC3oKBgXCuD+kCgFHhWREYBi4GbgZ7GmGKrzjbqt53dmdrUsiOF6Z7Ki5oop4Ou\noVpBJ8W1gfK6cr7zf0dZXdke6zntTg5JOQQAt91NijOFH+efDcCovFGUr1jD8g8/oGT9WuY+8igX\n5U8ky53FoIxBnDfkPAak9oVP/0qgdiuPLn2U2mgtc76fw9qqtdw271YC1Ozp8jvZ7DYrmCelZGTS\n+9DDScvJxW5v/jPe7sG8rDbM/HVlbCoLEAzHCAejhGoje9UGpQ4SzW37ilX+RCvP6yD5oeDvxpij\nSO48d3vDCtaTcruOR3fENdTe0yf0/VRWV8YNH97AyoqVDMwYyDOnP7OzW3x3ud5cXj73ZdZVrqN3\nam+MSXC0OZRXxr9EijuNbYuW7qxrTAKXcbCxcj0/GfYTYokYGaWr4bMHcBw2gUx3JlXhKmxiI8+b\nx/Ky5cRMbI9tjSViVIYqCcaCpLnS9mteQHltmOv/tZhFmyqxCbx14w8pmbOV6u11nHLl4WT02Is1\n+Up1Y9aY+bAWqg0vKCgY2Iox9SKgyBjzpfX6FZIBvUREDjHGFFvd3dut95tLYbqF+u7zHeVzrfK+\nTdSng66hWkGf0PdTXbSOlRUrAdhYvXGXPd4bqgpV8eqaV5m+ajq5vlyueO8Kznj9TIp8Vax85S1e\nmfIreg0awuCC40jP68GPfnoNwapqDs8dTlldGePzx2OPJwN2zn/u5qWTHuS2Y37NE6c+watrX+WK\nw6/AY9/zpi/bg9uZ9OYkznn9HO76/C78dX7qaiNEQnv+INCUeMJQuDk5sz5hYOG6cvyldRSvq+Kj\nF1YRCkT3+ZxKdTO9SY6Z70nEqrdPjDHbgO9FZMf611NIZjPbkcIUGqc2vVKSxgDVVrf5LOA0EckS\nkSzgNGCW9Z5fRMZYs9evpHGa1Pa8hmoFfULfT16nlyGZQ1hXtY6+aX1Jc6Y1WW/BtgXc/cXdnJp/\nKv6In9K6UgAe+/YJ7jj2etYv+II3/voHRk+8iEOPG0vxujUcPvZH9MvK5ojcI5In6eWAI6/Atm42\n/Va+z0/H3kwFMQZlDMLj8DSfstWyvGz5zu1pneLC/32M+a8sIy8/jTETB+FN2/vJbm6nnatPGMAz\nn28iO8XFuEPz+Pit5Idrt8+hY+1KwVagpf9ULqtea9wEvGjNcN8AXE3yIW2miFwDbAYutuq+R3I5\n2TqSS8quBjDGVIjIH4BFVr3f75i8BtxA/ZKy96mfrHZvB1xDtYKuQ99LsXiMinAF4XiYNGfaznXg\nkOx2r43UkupMJdfXdHf7iytf5N6F9zIydySXHX4Zv/nsNwCcM+gcft7rct778x8JBwJ409I54bzz\nOGLMaBwOF7JuNmDg8LMhJRfqqiEWAqcXPHsO4LvbUruFC966gEA0wCunvMEn9xcRDcUBOOPaEQw+\nusc+na8qGKE2HMNlt5Fmt7Hiky2EAjGOOi1f16mr7mifP6UWFBQsJjnW3ZzFhYWFBa1vklL19Am9\nGTsSr6Q4k/NZttRu4eJ3LiYYC3LFsCs4a+BZ9PD1oDRYSs+UnvRN7YtjDxPKzhhwBguLF1JUW8QR\nuUcw4+wZVIQqGJE7gjRHKlf939+JRyOkOcLIJ39GnrsTMvvD2Jthw8eYkm/wHzmVTavqGHx0D1LT\n9i1g1kXrcNlcvD3pbWoiNeSYnri923YGdICgP7JPS9IyfS4yG6RdLThrIMYYXaeuVL3r2HWWe0MB\n4Bcd2hrVrekTehM2VW/i9wt+T64nl6mjp5LjzWH6yun8aeGfgGQ2tefPfJ7bPr2NNZVrSHGm8MbE\nN+iV0muP5/WH/SRMgjRXGnZb43Xi1JbAP06Cmm31ZSJw+cuw+FlW9/wtH/57O0OO6cExl/bG43Y1\nnXN9N9Xhal5d8yqvrXuNsweezeXDLifdlU7V9jqW/GczOX1ScThspGS6GTCy6R4GpVTrdoqzlq49\nAQzHWodOcrz7F61dh65UU3RS3G4qQhVM/XQqi7Yt4v1N7zN91XQAxvQeszPH+Sn5pwCwpnINkNza\ndZN/U4vn9hoX4eJyvnr3Taq2bSWRqH86JuSHjZ/tGswBjIEFfydx/E0UbYiRm59K/lkupnx2C7/9\n7LctLpWD5BauD371IJv9m3l82eNUh6uT6WB9DrxpLjZ/U868l9eS3bu51TVKqdYqTCoAjgDOBo4o\nLCws0GCu2pp2ue9GENyO+u7sHVun9k3tyzvnvUMwGmRL7RbWVK7hxD4nMm/LPHqn9GZwxuBG54qG\nQ4SDQURspGRmUlfj58Xf/gqTSLDwjZeZfP9jpGZlQ6AMlr4EoaqmG+Uvgox+9PlhnKF5dn79+a9Y\nVbEKgD6pfbjt2Nv22M3ttDlx2VxEEhEcNgdue/Lv501zMWp8X6q315Ga7cGXtudNaZRSrWctTWuL\nLV+VapIG9N1kebK476T7eOSrR+jh68GkIZOA5KYwPXzJSWOZ7kziiTgFPQsIx8O47W7yfHm7nCcW\nCbNxSSHvP/oAabl5XHTHPYSCtZhEct/1UG0Nibj1hO7fCl88AhMfb7pRh55J0O3j3g1TmJCYsDMg\nQ/IDR0tj1pnuTP511r94f9P7nNb/NDLcGfXHp7vxpesENqWUOtBpQG9Cr5Re3D32buzYsdkaj0o0\nnOHenHAgwEfTniQWjVBZvIXV8+cxYvxpDDvxZDYt+4qCc87D5bV2gfRmJp/Sq4vgyMuTT+uQnNWe\n1gvGXM/WujIWb19MijOFh8Y9xOvrX6eiroJLD7u0xba4HW6G5QxjWE5Le1wopZQ6UGlAb4bTtn/d\nzzFJkJs/gEBlcrllj4GD8aSkMP7q64hHIjg93gYBPQd+NgvW/AdOug3G3kJdIp2qaju+zBR8TjeZ\ndhu9Unpxx5g7+Pe300l3pXNZ/wvZVlZERp8MXHZNmKKUUgezdpvlLiIe4FPATfKDwyvGmLtEZCAw\nA8ghmVDgp1am+bLdigAADWxJREFUoGZ1hXXo+8If9nN/4f1ckn8+/nXf0bv3QHr1HYQ7ZbdJZ/EY\nNLHULRSIsvabrfgyHfi3Rug7OJfMPh7KQ+X8ZeFf+PC7DwG44YhfcMGASaRlZu+csKeUaje6HlN1\nae05yz0MjDfGjAKOJJkubwzwF+BBY8wQoBK4ph3b0CkiiQiLSxbzk7lXc3/Nc7wVmIvD5cJfVkrR\nym8IVFVC5WZ485ew8EkIVuxyfB215A6AjQveIVy7GIcnhNPuxGP3UBIs2VlvW7gEnydFg7lSSqn2\n63K3svDUWi+d1pcBxgOXW+XPAXeTTHLfbaS50rj12FuZMncKFaEKJg6ZSKC6kmenXE8sHCY3fwAX\n/uwCUr6eAV/PgOwhMGT8zuOj4To+f+opNi9PJmtxOlwM/+HJ2MJR7j7+bm799FZSnalcN/IXpKa2\nPJ7fWaKhOBXbailaVcmQo3uQluvVLWGVUqqdtOsYuojYSXarDwEeA9YDVcbsTAvWLfPfuu1uxhwy\nhlkXzEJEyPHk8P23y4mFwwCUfbeJhKt+pjnR2l2OtxuhrrY+yUuwuop5059j+ZwPOGL8BJ667B84\nXW6yPFkd8vdprbraCK/+ZTHGwJLZ33HZncfplrBKKdVO2nVjGWNM3BhzJMm0eKOBw/f2WBG5VkQK\nRaSwtLS03drYFrYHt/PehvdYXbGa2kgyOHscHvJ8eeR6c5NBvU8/cvrmAzDy1DNxpGZD/vEw+jrI\nP2GX83nTMphww830GnIog445lpHjT2f1/E8BWPHRbJyBeJcP5gB1tVF2TNEIB2Ik4l1/V0KllDpQ\ndcgsd2NMlYh8DBwPZIqIw3pKbzb/rTHmSeBJSE6K64h2tkZZXRmT359MUW0RAC+d/RI/yP1Bo3op\nmVlcdOefSMRiOFwuvCmpcOl0cLjBtWvucJ/Lh6PHIZxzy1RikQgGQyySnDfoSU3D6TkwxszTczwc\nelwvilZWcNRp+bi8uqhCKaXaS7v9hhWRPCBqBXMvMIHkhLiPgQtJznRvmEv3gBSNR3cGc4CvS79u\nMqADpGTsNt7ta/4p2+Xx4rICdywSZvL9j1GyYS19DhuOLyOj2eO6Em+aixMvGUo8msDpseNya0BX\nSqn20p6/YQ8BnrPG0W3ATGPMOyLyLTBDRP4ILAGebsc2tDuPw8OE/hOYvXk2We4sftT3R21+DYfL\nTXbvPmT3bn66QUWogtUVq+mV0ose3h6kuLrGvuwen24nq5RSHUGzrbWBylAlgWgAt91NjjcHm3Rs\nzpuqUBVT501l/tb5CMKLZ7/YZC9BVTBCNJ4gw+vE5Wgi21szKgMRwrEETruQk6qT2tRBS5doqC5N\ns621gSxPFn3T+pLny+vwYA4QTURZsn0JAAbD0u1LG9Upqwnz3zOWMOmx+Xy+rpxQNN6oTlPKa8Pc\n/trXjPnzHG548SvKasNt2nallFJtQwN6N+B1eLl25LUA5HhyGN9vfKM6H64q4dM1ZWypquOm6Uvw\nh6J7de7acIxZK5Kb2Xy5sYKKwB439VNKKdVJdJZSN5DqSuWSwy7hnEHn4LA5yPHkNKpzSEb9zPie\n6R5se9l76HXayUt1U1obJs3tIMOrY+JKKdUV6Rj6QaIqGGH++nJWFvu5bHQ+vTP3bumbMYZt/hAr\ni/0c1iudnmluHHbt2FEHJR1DV12aBvQOFE/EqQhV4I/4yXRnkuNt/CTdFYQCUaLhODa74EtzIbpd\nq1KgAV11cdrl3oFK60q54K0L8Ef8jModxcPjHybbm71f56yriRCLJrA7bfjS9j+FajgYZemH37H4\n/c14Up1cOPUYMvJ8LR+olFKqU2nfaQfaULUBf8QPwLKyZYTj+zdjPOiPMOupb3j+t/P54MnlBP37\nP2EtFkmw+P3NAIRqo3z7efF+n1MppVT704DegQZnDt45YW10r9G4Hfu3pjsairFlTRUAxWuriYRi\nLRzRMrEJmT3rn8h7Dkzf73MqpZRqf9rl3oHyfHm8fO7LBGNBUp2pZHv2r7vd4baTkukmUBXGl+HC\n6d77zWKa40t3MfFXR7Fx6XYye6aQl5+23+dUSinV/nRS3AEuUB2mpjxEWo4HX7oLEZ23o1Q70f9c\nqkvTJ/QDXEqGW3OMK6WU0jF0pZRSqjvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehK\nKaVUN6ABXSmllOoGNKArpZRS3YAG9AOISRjqaqNtsme7Ukqp7kV3ijtAJOIJyrbU8un0NWTkeRl7\n4VB86fufLlUppVT3oE/oB4i62ijvPvY1JRv9rFlYwvqvtnd2k5RSSnUhGtAPECLskk2tLTKrKaWU\n6j60y/0A4Ut3c+5No/jyzY1k9/bRf0ROZzdJKaVUF6IB/QCSkefjlKuGYbMJYtNMjkoppeppQD/A\n2B06SqKUUqoxjQ5KKaVUN6ABXSmllOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQMa0JVSSqluQAO6\nUkop1Q1oQFdKKaW6gXYL6CLST0Q+FpFvRWSFiNxslWeLyGwRWWv9mdVebVBKKaUOFu35hB4Dfm2M\nGQ6MAX4pIsOB24E5xpihwBzrtVJKKaX2Q7sFdGNMsTHmK+v7GmAl0AeYCDxnVXsOmNRebVBKKaUO\nFh0yhi4iA4CjgC+BnsaYYuutbUDPjmiDUkop1Z21e3IWEUkFXgVuMcb4ReqzhBljjIiYZo67FrjW\nelkrIqtbuFQGUL2PzdubY/ZUp7n3di9vql7Dst3fzwXKWmjXvurK96epsj29bo/701y72uKYg/ke\n7W39fb1HnXF/PjDGnLGPxyjVcYwx7fYFOIFZwJQGZauBQ6zvDwFWt9G1nmyPY/ZUp7n3di9vql7D\nsibqF7bDv0WXvT97c892u19tfn/0HrXPPdrb+vt6j7rq/dEv/erMr/ac5S7A08BKY8wDDd56C5hs\nfT8ZeLONLvl2Ox2zpzrNvbd7eVP13m7h/bbWle9PU2V7cw/bmt6jlu3rNfa2/r7eo656f5TqNGJM\nkz3e+39ikR8C84DlQMIq/i3JcfSZQD6wGbjYGFPRLo04QIlIoTGmoLPb0VXp/WmZ3qM90/ujuqN2\nG0M3xnwGSDNvn9Je1+0mnuzsBnRxen9apvdoz/T+qG6n3Z7QlVJKKdVxdOtXpZRSqhvQgK6UUkp1\nAxrQlVJKqW5AA3oXJyLDROQJEXlFRK7v7PZ0VSKSIiKFInJOZ7elKxKRcSIyz/pZGtfZ7elqRMQm\nIveIyCMiMrnlI5TqejSgdwIReUZEtovIN7uVnyEiq0VknYjcDmCMWWmM+QVwMTC2M9rbGfblHlmm\nklwOedDYx3tkgFrAAxR1dFs7wz7en4lAXyDKQXJ/VPejAb1zTAN22UJSROzAY8CZwHDgMis7HSLy\nY+Bd4L2ObWanmsZe3iMRmQB8C2zv6EZ2smns/c/RPGPMmSQ/+PxvB7ezs0xj7+/PYcB8Y8wUQHvC\n1AFJA3onMMZ8Cuy+mc5oYJ0xZoMxJgLMIPnUgDHmLeuX8RUd29LOs4/3aBzJFL2XAz8XkYPi53pf\n7pExZsfmTpWAuwOb2Wn28WeoiOS9AYh3XCuVajvtnpxF7bU+wPcNXhcBx1njneeT/CV8MD2hN6XJ\ne2SMuRFARK4CyhoEr4NRcz9H5wOnA5nAo53RsC6iyfsDPAQ8IiInAp92RsOU2l8a0Ls4Y8xcYG4n\nN+OAYIyZ1tlt6KqMMa8Br3V2O7oqY0wQuKaz26HU/jgouiYPEFuAfg1e97XKVD29Ry3Te7Rnen9U\nt6UBvetYBAwVkYEi4gIuJZmZTtXTe9QyvUd7pvdHdVsa0DuBiEwHvgAOE5EiEbnGGBMDbiSZP34l\nMNMYs6Iz29mZ9B61TO/Rnun9UQcbTc6ilFJKdQP6hK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0op\npboBDehKKaVUN6ABXSmllOoGNKCrLk9E5nd2G5RSqqvTdehKKaVUN6BP6KrLE5Fa689xIjJXRF4R\nkVUi8qKIiPXesSIyX0SWichCEUkTEY+IPCsiy0VkiYicbNW9SkTeEJHZIrJJRG4UkSlWnQUikm3V\nGywiH4jIYhGZJyKHd95dUEqpPdNsa+pAcxRwBLAV+BwYKyILgX8DlxhjFolIOlAH3AwYY8wPrGD8\nHxE51DrPCOtcHmAdMNUYc5SIPAhcCfwNeBL4hTFmrYgcBzwOjO+wv6lSSu0DDejqQLPQGFMEICJL\ngQFANVBsjFkEYIzxW+//EHjEKlslIpuBHQH9Y2NMDVAjItXA21b5cmCkiKQCJwAvW50AkMxJr5RS\nXZIGdHWgCTf4Pk7rf4YbnifR4HXCOqcNqDLGHNnK8yulVIfSMXTVHawGDhGRYwGs8XMHMA+4wio7\nFMi36rbIesrfKCIXWceLiIxqj8YrpVRb0ICuDnjGmAhwCfCIiCwDZpMcG38csInIcpJj7FcZY8LN\nn6mRK4BrrHOuACa2bcuVUqrt6LI1pZRSqhvQJ3SllFKqG9CArpRSSnUDGtCVUkqpbkADulJKKdUN\naEBXSimlugEN6EoppVQ3oAFdKaWU6gY0oCullFLdwP8HkOCw8CrGzdAAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3894,7 +3900,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmba971KlCVIUOyrY\nFbtGY2+xYYnGGmOLMUqiP2NJbNGYqFFRo4ldogajRCPBBtIRUaT37buzbdr5/XHvLgtsmV12WBjO\n53n22Zlb37sse+a+933PEVXFGGOMMds3T3c3wBhjjDFbzgK6McYYkwQsoBtjjDFJwAK6McYYkwQs\noBtjjDFJwAK6McYYkwQsoBtjjDFJwAK62a6IyDUiMl1EGkTk+U3WXSYii0QkKCKTRKRPs3XjRSTs\nrmv82rnZ+iNFZIaIVInIYhG5YiteljHGbDEL6GZ7sxq4B3i2+UIRORy4FzgFyAeWAK9ssu8/VDWz\n2ddid18/8BbwFyAHOBt4SET2TOSFGGNMV7KAbrYrqvqmqr4NlG6y6iTgNVWdr6oh4G7gUBEZHMdh\n84Fs4EV1TAMWALt2ZduNMSaRLKCbZCItvB7ZbNmPRKRMROaLyFWNC1V1Hc7d/CUi4hWRMcAA4H8J\nb7ExxnQRC+gmWUwCzhKRPUQkDbgTUCDdXf8qMAIoAi4H7hSRc5vt/4q7TwMwBfiVqq7YWo03xpgt\nZQHdJAVV/Qi4C3gDWOp+VQMr3fXfqOpqVY2q6mfAo8AZACIyHPg7cCEQAHYDbhGRE7fyZRhjTKdZ\nQDdJQ1WfUNVdVLUnTmD3AfNa25yNu+W/U9UPVDWmqguB94DjE95oY4zpIhbQzXZFRHwikgp4Aa+I\npDYuE5GR4ugPPAU8qqrl7n6niEieu35/4DrgHfewM4Fd3Klr4g6kOwmYs/Wv0BhjOkesHrrZnojI\neJyu9eZ+AzwCfAoMxulqfw64Q1Wj7n6vAMcAKTjd8H9S1ceaHfcsnGfoA4BK4G/AL1U1lsjrMcaY\nrmIB3RhjjEkC1uVujDHGJIGEBnQRuV5E5rnzfm9wl+WLyIci8r37PS+RbTDGGGN2BAkL6CIyEme+\n7/7AnsBJIjIEuA2YrKq7AJPd98YYY4zZAom8Qx8BfKmqtaoaAf4LnIaTa3uCu80E4McJbIMxxhiz\nQ0hkQJ8HHCIiBSKSDpwA9AN6quoad5u1QM8EtsEYY4zZIfgSdWBVXSAi9wP/BmqAWUB0k21URFoc\nZu+Wr7wCYNddd913/vz5iWqqMcbEQ9rfxJjuk9BBcar6V1XdV1UPBcqB74B1ItIbwP2+vpV9n1LV\nUao6Ki0tLZHNNMYYY7Z7iR7l3sP93h/n+fnLwETgIneTi9iQrcsYY4wxnZSwLnfXGyJSAISBq1W1\nQkTuA14VkUuBZcBZCW6DMcYYk/QSGtBV9ZAWlpUCYxN5XmOMMWZHY5nijDHGmCRgAd0YY4xJAhbQ\njTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJ\nAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0Y\nY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRg\nAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHG\nmCRgAd0YY4xJAhbQjTHGmCSQ0IAuIj8XkfkiMk9EXhGRVBEZJCJfisgiEfmHiAQS2QZjjDFmR5Cw\ngC4ifYHrgFGqOhLwAucA9wMPq+oQoBy4NFFtMMYYY3YUie5y9wFpIuID0oE1wJHA6+76CcCPE9wG\nY4wxJuklLKCr6irg98BynEBeCXwNVKhqxN1sJdA3UW0wxhhjdhSJ7HLPA04BBgF9gAzguA7sf4WI\nTBeR6cXFxQlqpTHGGJMcEtnlfhSwRFWLVTUMvAkcBOS6XfAAOwGrWtpZVZ9S1VGqOqqoqCiBzTTG\nGGO2f4kM6MuB0SKSLiICjAW+AT4GznC3uQh4J4FtMMYYY3YIiXyG/iXO4LcZwFz3XE8BtwI3isgi\noAD4a6LaYIwxxuwoRFW7uw3tGjVqlE6fPr27m2GM2bFJdzfAmLZYpjhjjDEmCVhAN8YYY5KABXRj\njDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KA\nBXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YY\nY5KABXRjjDEmCVhAN8YYY5KAr7sbYExnaDRKpLQUDYfxZGbiy8np7iYZY0y3sjt0s10Kr1zJ4hNP\nYsmpp9GwcCHhtWuJBoNN66NVVdR89RWlzz5HeM2abmypMcZsHRbQzXap+pNPiNXUsNNjj1L69DMs\nPulHlL34ItHKSgDC69YRXrECT0Y6q++4g0hJSTe32BhjEssCutkuZYweg39Af8Jr11EzZQqxYJCS\nRx8jFqxBVdGGBkr/+iwVr71Gj+uuQ7u7wcZsY0TkZBG5rbvbYbqOBXSzXQoM6M+A558nZejQpmWe\njAzw+4iWl7P27nsILV5M/bz5lL3wAp60tG5srTGJJY4O/T1X1Ymqel+i2mS2PhsUZ7ZLntRU5ys9\nnX5PP0Vw6mfknXE6vrw8YvX1+AoLm7b19eyJJyWlG1trTNcTkYHAB8CXwL7AAyJyJZAC/ABcoqpB\nETkBeAioAaYCO6vqSSJyMTBKVa9xj/UsUAgUu/suF5HngSpgFNALuEVVX99a12g6xgK62a55s7LI\nPOQQMg85ZMMyv59ed/6asgED8GRkkHvWmYjPftVNUtoFuAhYBLwJHKWqNSJyK3CjiDwA/AU4VFWX\niMgrrRznj8AEVZ0gIuOAx4Afu+t6AwcDw4GJgAX0bZR1uZuko9EoVZMmEV6zhoZvv6VswgRi9fXd\n3SxjEmGZqn4BjAZ2BaaKyCycID8AJwgvVtUl7vatBfQxwMvu6xdxAnijt1U1pqrfAD27+gJM17Hb\nFpN0NBSi9qtpBCdPBiBt1Ci0oQFSU7u5ZcZ0uRr3uwAfquq5zVeKyF5dcI6G5ofsguOZBLE7dJN0\nPGlpFF17DZ7sbCQ9nR433ognM7O7m2VMIn0BHCQiQwBEJENEhgILgZ3dZ+QAZ7ey/2fAOe7r84Ep\niWuqSRS7QzdJp666ikhBAQMnvoPH48Gbl4d4vZ0+XrSyEg2F8GRl4bG7fLMNUtVid5DbKyLSOAL0\nDlX9TkR+BkwSkRpgWiuHuBZ4TkRuxh0Ul/BGmy4nqtv+DN1Ro0bp9OnTu7sZZjtQXxPkf6+8wOwP\n38fnD3DevQ+R37cf1cXrWTp7Bv1G7kFOj574/IG4jhcpLWXNXeNpWPANPW65hcxDD7UpcDuu7bK7\nWUQy3dHuAjwBfK+qD3d3u0zXszt0kzRUFYI1FOQXMOSAA+l/8LFURb2kVlbw4m3XE6qrxecPMO6x\np8nKL4jrmDVffUXwo48AWPWLmxjyn8kW0M325nIRuQgIADNxRr2bJGQB3WyXojU1aEMDnsxMPIEA\nGo3SsGgRa8f/hvzUVIb95jdcOmklPxQv5L1LdiVUVwtAJBwiVFsLcQZ0f1GPpte+/DzEY8NOzPbF\nvRu3O/IdQML+OonIMBGZ1eyrSkRuEJF8EflQRL53v+clqg0mOUXKylh3770sH3cpVe//i2h1NdHy\ncpZfdDF1M2dS+/nnrLvpJs4Zms366gbmrm9gr2NPwpeSwoiDjyAtOzvucwV2GULfRx8h/5JLGPDS\nS3gL4vsgYIwxW9tWeYYuIl5gFXAAcDVQpqr3uXmE81T11rb2t2foprnS555j/f0PNL0f/NGHSCDA\noiOOhGgUAH+/fiwd/wiX/XMJY4cX8fCpw/DEonj9ftIys7qr6Wb7tl0+Qzc7jq3VfzgW+EFVlwGn\nABPc5RPYkI3ImLg0VlRrFKurJ7xqNT1vuw1EEL+fnr/+NZW+NC4cM4DfnbYH2Tk5ZOblU6MBvl1b\nxeLiIGU1oW66AmOM6Xpb6xn6OWzIUNRTVRsLVK/FMg/tMCJlZaCKNz8fZ8Ctk9UtWlaGquLNyopr\nwFnumWdS/e8PCS1eTM4ppyABP8vOP5+Cyy5l8AeTkJQUvDm5nJYS4FQFj8c5V3F1Pec+/SWL1jt1\n04/brRf3nrY7+RnxjXg3xphtWcLv0EUkAJwMvLbpOnX6+1vs8xeRK0RkuohMLy4uTnArTaKFVq1m\nxU+vZPkl4wgtXrxh+dKl/HDSj1h0xJHUfP45kbIyaj7/nJrPvyBSXt7isSSQQtHPf07/F18gdeRu\nxKqqIBaj9KmnqZ0xE3/PnnhSUxCRpmAO8P7ctU3BHGDS/LWsqaxL3EUbs50Tkc+6uw0mflujy/14\nYIaqrnPfrxOR3gDu9/Ut7aSqT6nqKFUdVVRUtBWaaRIl1tDA+gcfpH7uXBq++441d/yaSHk5qkrZ\nCy8Sq6yEaJS62XMof/kVll8yjuWXXEL5K38nFg5vdjxvTjYpQ4YQWrqUzEMOoX7hd+D10vfhhwkM\nHEDws8+JlJZutt/K8s2Dt3W7G7M5EfEBqOqB3d0WE7+tEdDPZeOCABNxCgfgfn9nK7TBdCePB1/h\nhtHh3rw8xOdDRMgYM7ppeequu1I3c0bT+7oZXzs52HGmqTUGd08gQMqggeSdeSaBgQPJPuZohkye\nTP2Cb1h2zrmsGDeOFT+7erOgfs5+/fA2u2PPS/czrKcNkDOJN/C2984beNt7Swfe9l7M/X7elh5T\nRN4Wka9FZL6IXOEuC4rIg+6yj0RkfxH5REQWi8jJ7jZed5tpIjJHRH7qLj9cRKaIyETgm8bjNTvf\nrSIyV0Rmi8h97rLL3ePMFpE3RCR9S6/LdF5CR7mLSAawHKf+bqW7rAB4FegPLAPOUtWyto5jo9y3\nf5HSUuduvLaWgisux+/2ukQrKwmtXEWsqpKU3XYjtHgxyy8ZB0D/554jZbddCX37LSWPP4G/f38K\nr7oSX37+ZscPFxez5ORTiDbrph/84b8J9OvX9L42FGFFWS1/+XQxuWl+Lj14Z3rnpG7ULW9MGzr1\ni+IG76eB5sGuFrh86X0nvtzyXnE0RiRfVctEJA0npethQAlwgqr+S0TeAjKAE3EqsU1Q1b3c4N9D\nVe9x08ROBc7Eqc72HjCysTqbiARVNVNEjgd+jVOetbbZuQtUtdTd9h5gnar+sbPXZLZMQgfFqWoN\nULDJslKcUe8mCURKS6mbN59A3z74evXC21oRFI+H1JG7EVq+gtDSpXgzM/GkpeHNycGXmUVFbZiQ\nR8jZbTcGf/ABAN68XKJlZSy74EK0sfypR+hx002Iz0e0tNQZTJedjfh8BIYMpm6a88HPk52NpKRs\n1IT0gI9hvbK577Q98Aj4vJYkxmwV97JxMMd9fy8bSpZ2xnUicqr7uh9ObfQQMMldNhdoUNWwiMwF\nBrrLjwH2EJEz3Pc5zfb9qlmp1eaOAp5T1VqAZjdhI91AngtkAh9swfWYLWSZ4kynRcrLWXnd9dR9\n/TWIMPDvfydtzz1a3Lb2y69YdcMNzhufjyEffYgnLY1wNMacFRXc8OosemWn8sR5+9Cjh3P3rqpo\nOEzB5ZdR/tLfiJaXE16+HA2HiaxZw7ILLyJaUcFOjz1K+ujR9H3oIYofeYRoRSVFN1yPr5UkMAGf\nBXKzVfXv4PJ2icjhOEF2jHvH/AmQCoR1Q7drDLf0qarGGp+L4/Q0XKuqH7RwzBo65nngx6o62y0O\nc3hHr8V0HfvLZjovEqFu9mzntSq1s2ZutolGIsTCYaI1wY3203CYWDhMWVk1N7w6ixVldUxbWs6r\n01e4h1NCP/zA6ptupv6bBez05J/wFhaSf9FFqCqlf/0rkbVr0fp61t7zf8SqqvAXFdFr/Hj6/uH3\npO6yS6cqrEUqKgitWkWkuJjtoXCR2S4s7+DyeOQA5W4wHw6Mbm+HZj4ArhIRP4CIDHUfj7blQ+CS\nxmfkItL43CsLWOMe6/wOXYHpchbQTadJaiqFP70CAG9hIVlHHbXR+khpKevuv5+1d40n86CDyDjk\nEPD5yB83Dm9WFtGyMuqnfEqv7A0lSfvnOz2T0bIyVt34C+pmzSI4eTLBjz9hwAsTqPnyKyQaJXXk\nyKZ9UoYMQQLOXHKP39/pEqfRqipKHn+cH8YexeIfn0pkzdpOHceYTdyO88y8uVp3eWdNAnwisgC4\nD6ceeryewRn0NkNE5uEUa2mzt1ZVJ+EMaJ4uIrOAm9xVvwa+xHkO/22HrsB0OSufarZINBgkVluL\niOAtLNwoYUzphAmkDBiAJy2dhiVLyDr2GETVSfySnU3d/PmsvPoa0v78V95YFGRgnzwOHdaTvIyA\n051/9TXUzXBGvRfdcAOx+npyzzyDQN++RCsqqJ05k0hJCVlHHtlq93pHRIqL+f7wI5rSx/b5/e/J\nOenELT6uSRqdHj3pDoy7F6ebfTlw+5YMiDOmJfYM3XRasLyMVd9+Q0ZuLvl9+5Euzf7eqZJxwAGs\nvOZaoiUl9LjlZsTj2WiEur9XLwL9+1NzwTlccMMNZB/2I3yNWdtU6fPA/VTMmE2sdx+yhwzC6/Xg\ndQureHNzyTriiK69IL+fzMMOJfifj5HUVNJ2H9n+PsbEwQ3eFsBNQtkduumUmopy/varG6kucbL4\n7XP8yRx0zgUEUp3UrdGaGlbfdBPBjz9xdhBhyCcf4++5cabfSFkZGokggRR8uTnOspISlo8bR8ot\nv+KlinSmr6zmF8cMY+/+uaT4Ov5cvCMiZWVEiovx5ubizcvDE7C0sKaJzW802zR7hm5aFKx35mx/\nt66a8mbZ1DQWI7RqFVWrVjYFc4A5kz8g3Di1DIjV1OBJ3zBTR1JSQFr4e+jxoPUNaEN9U+KYWH09\nsZoaFgdyefJ/y5m2tJyLnv2KitrNs8Z1NV9+PqnDhjnpYy2YG2O2IxbQTYtmrajg0Ac/5piHP+XZ\nqUuoDUUAiJaWsvTsc0gRz0YBOr/vTojH+XWK1ddT/Mgj5F94IZmHHUbqbrvS/5mn8ebmUlcdYtHX\n61gyu5iGskpKn36GH445hh+OO57wcmfQryctjcDgIQSazRP3ez1Nt0eRykrCxcVENqm6ZowxOzIL\n6GYzqsp7c1fT+DTm3/PXURtyBorFQiGiJSXUvvU2p1z1c3ruPIRBe4/i5Bt/SXq202WO14snI5OV\n11xL2l57UXjddaSMHEkML9MnLeODp+fz/pNzqSuppvLNN51z1tU1dc/7Cgroc+//MaR/Ib89eVdO\n2L0X//jpaPIzAoSLi1l1w89ZdNjhrL7xRiJWuMcYYwAbFGeaiZSWouEwkp7O+QcM4K2Zq6gPxxh3\n8ECyUpxfFW9GBvkXXUjZiy+Rq3Dqjbfjy8ggJX3DNFaP30/hlVfi69kDYjHSRo7Em5pKQ22Y0hXV\nTduVloTJOvEEKl76GxIIkHHYoU3rfIWFFAAXFOZy9v79SfF5iYVCrPvLX6j9/HMAaqZ+Rukzz1D0\ni19Y97gxZodng+IM4A5Eu/wKGhYsIOf008m75VYq8RFVyE71kZXqb9o2WlXlFE3xelvMq96aWEMD\noZJyaiob+H5+kKEHDyQ7NUS0stJJA5ubi2eTdK3NRaurWXX9DdR8tqGiY8bBB9P3kYdbTzlrTNex\nQXFmm2Zd7gaA0IoVNCxYAEDlG2/gqw3SKyeNvrlpGwVzAG92Nr6iog4Fc41GqZ8zl6UnHMf6M09k\n1+xV5OZ58eXlkTJwoDMIrY1gDuDNyiJ/3CUbLSsYN86CuTGd4FZXO7DZ++eb5Xfv6nM9IyK7JuLY\nZgPrcjcA+Hv3RtLT0dpaAoMGIn5/u/tsKhqN4m0l3Wq0qop1Dz7YVA513X33kb7P3h3O6pa2554M\nmvgOtZ9/QfqY0fh79+5wO43Z6sbnbJZYhvGV3T0v/XAgCHzWznZbTFUvS/Q5jN2hG5e3oIDB771L\n/wnPM+CFF/AVFsa9b6i+nuXzZjPpiYdYMutrQvV1m20jgQD+/htKmQZ22gl8Hf886c3KInXoUPIv\nupDUoUPxZlk9c7ONc4L50zjlScX9/rS7vFNEJENE3nPrkM8TkbNFZKyIzHRrlj/rlkZFRJaKSKH7\nepRbH30gcCXwcxGZJSKHuIc+VEQ+c+unt3q3LiKZIjJZRGa45zultXa5yz8RkVHu6ydFZLpbs/03\nnf0ZmM3ZHboB3BzovXt3+I5XYzFCdbVMffUlVi9cwMLPpnDZ4880JZhp5M3IoNcvf0lgp52I1dVR\ncOml+PLyuvISjNlWJaJ86nHAalU9EUBEcoB5wFhV/U5EXgCuAh5paWdVXSoifwaCqvp79xiXAr2B\ng4HhOLnbX2/l/PXAqapa5X5Y+EJEJrbSrk39yq2l7gUmi8geqjqnMz8EszEL6KbT6oPVfD/tCxZP\n/5L9fnQ6Cwun8O3U/xKNRInFFI9n4zFEvoICetxwA6ralPPdmB1Al5dPxal1/gcRuR94F6gClqjq\nd+76CcDVtBLQ2/C2qsaAb0SkZxvbCXCviByKU6a1L9Bz03ap6pQW9j1LRK7AiT+9gV0BC+hdwAL6\nDiwWjSIeT6eDa7C8nH//+VEAlsz+mrPH30/PwUOZua6Bhd8u5pz9+pGXESBaVU20rAyNRfEWFODL\naelDuzFJazlON3tLyzvFvQvfBzgBuAf4TxubR9jweLW9QSsNzV639YfhfKAI2FdVwyKyFEjdtF0i\nMllVf9t0QJFBOJXa9lPVchF5Po42mThZQN9BVaxby+evv0J+n77sPvbYDUlhOsD5IO++jsVIz8ll\nUmQQz7wyH4ARvbM4bGgRwSmfUv2vSeDzkTFmDDmnn4bHfX4ei0WJhiP42xnh3lwkGmN9dQPfr6tm\neK9semSn2B2/2ZbdjvMMvXm3+xaVTxWRPkCZqr4kIhXANcBAERmiqouAC4D/upsvBfYF/gWc3uww\n1UB2J5uQA6x3g/kRuB9YWmjXpoPhsoEaoNLtATge+KSTbTCbsIC+A6qpKOfN391J+ZrVAKRmZrHn\n0cd3+DiZ+QUcfuFlLJ4xjVE/Oo1oSjpvzlnHTnlpXLhHIQNSFG1oIDBgIIHBg4nV1ZG2x+5ofT1k\nZlJXXc3Czz5l2dxZHHDqWRQNGIQ3joFyJTUhjnn4U4INEXpkpfDutQfTI9s+5Jtt1PjKlxmfA107\nyn134EERiQFhnOflOcBrIuIDpgF/drf9DfBXEbmbjYPnP4HX3QFt13bw/H8D/ikic4HpbKiF3lK7\nmqjqbBGZ6W6/AqeOuukiFtB3QKpKfTDY9L62qqJTx0nLzGKvY09i5BFH409NRVX4+xUHkBusoP6+\ne0CE6L3/R8Ubr1Pxyt9BhFiwmh633gpA5bo1TH72SQCWzZnJuEefIjOv5bnt9eEoXo/g93oorqon\n2ODkll9f3UBdONqp9huz1TjBu8umqanqB8AHLazau4VtpwBDW1j+HbBHs0VTNlnfaoIHVS0BxrSw\namlL7VLVw5u9vri145otY9PWdkBpmVmc/IvbyevdhwF77M0eY4/r9LG8Ph8p6Rl4PF68Xg87Z3ho\nePB31EyZQs2nnxKcMoXwipWI389Oj/+RjNFjqJ83j0hFBbHYxl32rVlZXsuNr85i/MT5lFQ30Ds3\njV17Oz2FBw8pIDPFPpcaY4z9JdwBef1+eg8dztnj78fj85GWueVzucPRKGU1YQKhMHg2fE4Mffc9\nPW65mcp/vkvNZ59R/jfnJqXoxhvJGXskB595PisWfsOY088ltYV2lAQbuPyF6SxY4+SAV5TfnDyS\nCeP2JxSJker3UJAZ//N3Y0z8RGR34MVNFjeo6gHd0R7TNgvoOyiv10dGbtfNA19WWsvJj08lO83H\nx7/+NfgD4BFiZ55Lfc8i8s8/j1U3/Lxp+7oZM4hVV9G3uJhhJ55I9i7D8DTLMqcxxakzoFTVRZqW\nl9eEiUSVoiwL4sYkmqrOBfbq7naY+FiXu+kSk+Y5JVbrwzGmVXv5x9iL+fvhF3HyywsJhmL4iooo\nvO46xO9H0tLIu+An1HzxJdVvv0PdR5M3mh9TVx1i2vtLmfzCtwQalL9csC99c9MY0TuLX50wgrRA\ny+lljTFmR2Z36KZLHDm8B49O/o7KujC9c1J5fV4Ja6vqGTUwj1S/F/F6Sd93HwZP/ghw6qqjSvro\n0RT+7Cqk2d35DzPWM+3dJQBUrK3hhKv34K2rD8QjQqF1rxtjTIssoJsusXNRBp/ecgR1oSiFGSlM\nvOYgakNRMlN8TUHYk5KCp0ePpn36PfUX8Hjw5eZudKxQw4ZR65FQDEHoYV3sxhjTJgvoZovUh6N4\nREj1e+mdsyF/ezbtV2trrfzq8NG9KVsVpLq8gcPOHUZaVscrvxljzI7GAnqSi8aUkmAD4WiMrBQ/\nOelbHhwr68JU1YXxiPDunNUsK63h+qOG0rOLkrukZwc47LxhRCNKaoYFc2O2hIiMp1kRli4+9lJg\nlDsvfZsjIkU4ue4DwHWb5pYXkWeAh1T1m+5oX1ezgJ7kVpY7o88r68L84pihXHLgIDJTO//PXhuK\n8PevlvO7f31Lis/D0xeO4h/TVpD26WJ+eujOXZaxzZ/iw2+97CZJ7D5h983qoc+9aG5310PvViLi\nU9VI+1tukbHA3JbqsYuIN9nqtNso9yT30YL1VNaFAXh+6lJqw1v2/6emIcorXzk1JRoiMT5euJ5h\nvbJQVd6ds5qGSMeztpXXhPj8h1K+XFxKRW1oi9rXlmik9eQ1xiSKG8w3q4fuLu+UVuqhb1b3vNku\ne4rI5yLyvYhc3sZxe4vIp26N9HmNddLbqWF+bbO66MPd7fd3zzfTra8+zF1+sYhMFJH/4JROba2u\n+kARWSAiT7vn/LeIpNEKEblcRKa5P483RCRdRPYCHgBOca8nTUSCIvIHEZkNjNmkTvtxbjtmi8jk\ntq5jW2UBPckdOLgAv9eZFHZVpzapAAAgAElEQVTkiB6k+jaMJo9UVBAuLiZSVh738dIDXn60Zx8A\nfB5h7PAe7FyUwQm796Y2FMXn6ViRlHAkxotfLOPcp7/g7Ke+4NXpK4i2kTUuXnWhKGU1IcLRKOFQ\nlFULy/nouW9YMqeEUF2ibwqM2Uhb9dA7q7Hu+J6qOhKY1M72ewBH4qRrvdMtotKS84APVHUvYE9g\nlrv8V6o6yj3OYSLSPGVsiaruAzyJU0kNnFzth6jq3sCdbHyt+wBnqOphbKirvg9wBE7p1cY/IrsA\nT6jqbkAFGxeW2dSbqrqfqu4JLAAuVdVZ7rn/oap7qWodkAF86f7c/te4s9s1/zRwunuMM+O4jm2O\ndblv56pLi1k+bw69hgwlp6gHvsDG/dQDC9L59OYjqKwP0yMrhew055l0pKyc9b9/kMo33yL9oIPo\n+8D9+AoK2j1fRoqPSw8exGn79CXV58Xv9ZDi97C2sp7zDhiA19Oxz4gNkSjTl5Y1vZ+2tJyfHDCA\n9JTOf9Ysrwnx1/8t5tPvS7j2yF0Y3SuHiY/OIhZTFs1YzwX3HEggzX71zVaT8HroqjqlnYqD77gB\nrU5EPgb2B95uYbtpwLMi4sepjd4Y0NuqYf6m+/1r4DT3dQ4wQUR2ARQ2GiX7oao2/qdvra46OPXd\nG8//NTCwjesbKSL3ALlAJi3nuQeIAm+0sHw08KmqLgFo1r62rmObY3/VtmPBinJevuMmgmWleLw+\nLn30KbKLemy0TVrAR1rAR2827q2K1QSpfPMtAGqnTiVSWhpXQAfITQ+Qmx5oel+4BVPKMlJ83HjM\nML5eVo5HhOvH7kL6FuZmX1lex+Mf/wDAlS99zdc3HkFM1VmpThY6Y7aihNdDd7uI26p7vukvfYv/\nCVT1Uze4ngg8LyIP4RRtaauGeWMN9SgbYsrdwMeqeqqIDGTjKm81zV63WFd9k+M2HrvVLnfgeeDH\nbjW3i4HDW9muXlU78lywrevY5liX+3YsFokQLCt1Xkcj1FTE33Uuqal4Cwud12lpeDeZC761iAi7\n9cni45sP5z83HcbwXlueVz4tsOHXOtXnQf3CMZfuRp9dcjnsvGGkZtjnWLNV3Y5T/7y5rqiHXquq\nLwEP4nRjL8Wpew6bd0+fIiKpIlKAE+ymtXLcAcA6VX0aeMY9bks1zNuTA6xyX1/cznab1VXvhCxg\njduzcH4n9v8COFREBgGISOOc2nivY5uQ0L9sIpKL80sxEucT4ThgIfAPnO6TpcBZqhp/JDJNAmlp\njD79HKZNfIN+u+1BTo9ece/rKyxk0GuvUTd7NqkjRkA0SqSiYrMkL1uD3+ulR1bXpXMtykrlLz/Z\nl8nfruOSgwaRmRkge+8i+o3Ix5/ixeuzz7Fm65l70dyXd5+wO3TtKPeW6o6n0XLdc3C6xz8GCoG7\nVXV1K8c9HLhZRMJAELhQVZd0oob5Azhd1XcA77WxXWt11Tvq18CXQLH7vUN3Bqpa7D5SeFNEPMB6\n4Gjiv45tgqgmrvtRRCYAU1T1GREJ4AwEuR0oU9X7ROQ2IE9Vb23rOKNGjdLp06cnrJ3bs4baGsKh\nEF6vl7Ss7A7vH1q+nKXnn0+0uIT8yy+n8KdX4M3MRGMxwmvWUPO/qaQfsD+ejAyiJSV4CwrxFeRv\nlKp1WxWLKZ4ODtIzpg32y2S2aQm7VRGRHOBQ4K8AqhpS1QrgFGCCu9kE4MeJasOOICU9g8zcvE4F\nc4CqSZOIFjs5ISrfegutqwMgUlLC0jPOZO1ddxFetpwV4y5lyamnseSUU4iUlsZ17EhlJZHiYqKV\nlZuti8aUdVX1LCutobSmoYW9O682FGF9VX3TdL3tVW1lBTXlZUTD2/d1GGO2jkT2PQ7C6f54zp3D\n94yIZAA9VXWNu81aNoxoNAkSjcUIR1ueCpZ52GFIwBngln3iCUiqMx5Fw2Gi5c6TEE96Og3ff+8c\nq7ycyPr17Z4zUlbGurvvYdGRYyl+4k9EgtU07w1aW1nPMQ9/ymEPfsI97y7osvnnNQ0R3p+7huMe\nncI1L8+gpLprPyxsLdWlJbz+f7/mhVuvY82ihUSjNtXOdB0R2d2dm93868vubld7ROSJFtp9SXe3\na1uRyIDuwxlQ8aQ7h68GuK35BtpY8LoFInKFm8hgenFxcQKbmdxKgw08+MFCbn59Nqsr6jZbHxg4\nkMEf/pudJ/2LwiuvwpvlPHryZmSQf9FF4PMRC4fIOOggZ/tBg/D3av9ZfbSykqp338WTlUXszOP5\n/fwneHzW45TVO7NBZq0ob7qDfmfWKkKtfODoqGBDhFten0NZTYipP5Tyv0XbZEbKds2ZPIniZUuo\nrazgw6cepz5Y3d1NMklEVee6c7Obfx3Q3e1qj6pe3UK7n+vudm0rEjkobiWwUlUbP/W9jhPQ14lI\nb1VdIyK9cQYfbEZVnwKeAucZegLbmdRmrqhg7qpKpi4qZVV5HU9dMIq8jA1TzjwpKXh6bt5J4s3N\npfDqn5Ezbhxzi+tJvfEOetwSIzsrDUlra/aIe9z0dDwZ6aSedwa/XzGBD1c4ZVOjsSjX7XMde+6U\nS1aKj+qGCCeM7I2/g/PXWz2vQGFmCuvdO/O+ee23dVtU2G/DYN+8Pn3xerfp6a/GmG1AwgK6qq4V\nkRUiMkxVF+Lk1P3G/boIuM/9/k6i2rAjiFZXE1q2jPDKlaTvt9/Gc8nLl3HE0ifZb7cRfLXX/jzx\nZRm6SYdIXXUVaxZ9RzQUou+I3UjPzmla583Oplj9fFNVS79MH/0rVrDm1gdI3XVXetz0i1arpYFT\nSW3Q229TVVNGcMUTTcurQlWoKr1yUvnoF4dR0xAhJ82/0YeMLVGYmcLrVx3I379azt79cxnaY8un\nwXWH/iP34rRfjqe6rIzB++5PamZmdzfJGLONS/Qo971wpq0FgMXAJTjd/K/iTN9YhjNtrazVg2Cj\n3NtSM20ayy+4EID00aPp+/BD+PLyILgenjkKKpYBUP3j5wkOOm6jEqeRUIgv3vw7X771KgDDDz6M\nseOuIjXDCR6qyp8++YEHP1jIez8ZgfeCM5oGzfV97FGyjzkmrjauql7FXZ/dRZovjTvH3ElRelGH\nrzMajVFbGaJ8TQ0FfTPJyLXKLWars1HuZpuW0Hnobtq+US2sGpvI8+5I6ufN3/B6wQI04g6eUoXg\nuqZ1mXVryGoWzDUaJRIOs+KbuU3LVn37zUYjqiMxZdH6IAChSIzMzEwibkD3NruTb0/frL48dPhD\neMRDZqD9O81oVRXa0AA+n/PhBKivDvPKb78kXB8lMy+FM24bRUaOBXVjjGkU14NLESkSkdtF5CkR\nebbxK9GNM+3LPu5Y/DvtBF4vPW+7FW9j12xqFpz2NGT2gP4HIrs7iaOi1dVUT57Mml/9itiiRRx2\n7sXg5oDe5/hTqFy/jrJVKwk11OP3evj5UUPZpUcmf55bTp/nnyfn9NPpdffdpAzvWNGh7JTsuIJ5\npKKC4sef4PsjjmTVTTc3TZGrC4YI1zsZG4PlDVY5zZgkJyK5IvKzTu7bVHmuC9rxWxE5qiuOlWhx\ndbmLyGc4+Xy/xsmpC4CqtpTkvstZl3vbIiUlaCyGJzMTb3qzok7heqivBK8P0p1n6w1LlrD4+BMA\nkECAnf/9AfU+D7FIlGVzZ/LRX59ERLj4D38iv89OACxdvprSVStZ9eXH5PXoyX4nn05qZmKeTYdW\nruSHo45uej/gby+Rvu++1FaFmPTUXNYsqmTY6F4cdMYQ0jK75rm7MXHqdJf7guEjNquHPuLbBd1S\nD122Th3yLebmTn/XrSa36bo2r8HNCT9KVbfPaS6dFG+Xe3p72dxM9/EVtvJB1J/qfLliMSUaDDa9\n11AIolGye/WiurSYj575k7NcldKVK5oCeo/cDFZ+thCNRhh5xNGkZCRugJYEAs5Ut+pq8HjwFTnP\n29OzAxz/092JRhWfX0jtokF0xiSaG8yfZkMJ1QHA0wuGj2BLgrqI/AS4DmeM0pfAz4BKVc10158B\nnKSqF7sFVeqBvYGpbmWyZ4GdcfLKX6Gqc0RkPDAYGIKTJvYBN687InIzcBaQArylqne10bYLcQq6\nKDBHVS9wS5T+mQ1V5m5Q1anuOfu7bekPPKKqj+EMnB4sIrOAD3FSr94NlAPDgaEi8jbQD6egy6Pu\n7Kh4fnab7SciXpxEaKPcdj+rqg+7P7t3VfV1EbkT+BFOmt3PgJ9qIgeidVC8Af1dETlBVd9PaGtM\nwlTUhnh3zhr2yc0h97zzqZ3yKfkXXIA328kw50tJZc+jT2D2h++T17sPvXfZ0KWenp3DgWeeRzQS\nwZ+S2OfWvoICBr72KtUffUTGAQfgbTZqPy3LgrjZLrVVD71TAV1ERgBnAwe5hU3+RPtFSXYCDlTV\nqIj8EZipqj8WkSOBF4C93O32wCknmgHMFJH3cOpx7IJTdlWAiSJyqKp+2kLbdgPucM9V0qzQyaPA\nw6r6PxHpj1PidIS7bjhOPfQsYKGIPIkzzXmkW5sdETkcJ7fJyMYyp8A4VS0TkTRgmoi8oarxpLLc\nbD+c+iJ9G3sE3Fokm3pcVX/rrn8ROAn4Zxzn2yriDejXA7eLSANOIQDByQvTuXyjZqtbUVbHHW/P\nI+D1cOPBJ3PB5ZeTlpuNx51TnpaZxUHnXMABp56Fx+slIzdvo/09Xi+eLsjfXhJs4JvVVeyUl0bP\n7FQyNimVKl4vKQMHknLZZVt8LmO2EYmohz4Wp7LaNLcOehqt5PRo5rVmpUMPxq3Ipqr/EZECEWn8\ne95S7fSDgWOAme42mTgBfrOADhzpnqvEPX7jLKajgF2b1W3PFpHG7r73VLUBaBCR9bSeQfSrZsEc\n4DoROdV93c9tUzwBvaX9FgI7ux923gP+3cJ+R4jILTgfyPKB+WxvAV1Vt8/JvKZJJOYMIgtFYzw8\ndRWnHjSUjLSNSyanZWZBFzwbj4XDaF0dnrQ0xL8hIUppsIErX/qa6UvL8Qi8c83B7N43/tHyxmyn\nurweOs5N1QRV/eVGC0V+0eztpjXRa4hPS7XTBfidqv6lQ63cmAcYrar1zRe6AX7T2uetxaama3Dv\n2I8CxqhqrYh8wubXvJnW9nNrve8JHAtcifN4YVyz/VKBP+E8m1/hPipo93xbU9zpuUQkT0T2F5FD\nG78S2TDTtQYWZnDrccM4ZJdCXrr0APLSE9N9Ha2qpmriRFZec41T+KXZM/toTJmxzMkPH1P4elmb\n6QeMSRZdXg8dmAycISI9wKnf3VjLXERGuCVAT21j/ym4XfRugCtR1Sp3XUu10z8AxjXeUYtI38Zz\nt+A/wJnu/s1ri/8buLZxIzdPSVuqabsMag5Q7gbl4TiPCeLR4n7uqHiPO9j7Dpzu/eYag3eJ+3M4\nI87zbTVx3aGLyGU43e47AbNwfgCf43StmO1AXnqASw/emZ+MHkBGwBd3WdHaygrmfvwhgbR0ho05\neKNMci2JVlaw5ld3OPt+NY3Bkyc3TaVL9Xv56aE78+R/F1OUmcJRI6wuj0l+I75d8PKC4SOgC0e5\nq+o3bo3uf7vBOwxcjfPc+V2cwljTcbrGWzIeeFZE5uB8uLio2bqWaqevdp/bf+7eUQeBn9BCN7+q\nzheR/wP+KyJRnG76i3EG8D3hntOH011/ZRvXWCoiU0VkHvAvNq9HPgm4UkQW4HSXf9HaseLcry9O\nMbHGG92Nej9UtUJEngbm4RQWmxbn+baaeKetzQX2A75Q1b3cTzX3quppiW4g2LS1RrFYlLoqJ3Vq\namYWPn9i83uH6uv56JknWDDlYwAOPOt8Rp92TmMXWcv7NJ92JsKQyR/h79OnaX1VXZjq+gh+r1CU\nldLmsYzZxiT9L6vbjRxU1d93d1tMx8Xb5V7f+NxDRFJU9VugY5lFzBZRVUpXLGfCTVfz7A0/ZfXC\nBUQjiZ1KGotGCJZtmMZZtX49Gms7oYs3J4e+Dz9M5uGHs9Pjj+PJyaEuFGHuqkoemPQt366tJjvN\nR4/sVAvmxhjTheK9Q38LJw/7DTjd7OWAX1VPSGzzHHaHDvXBIO/8/h5WLpgHQHZRT8675/ebjUaP\n71hhotEY/hQvgdS2n7qUrV7Je48+gC8lhROvu4Xswo3zsFfWhmmIRvF7PE0FVjQWI1Zfjyc1FfF4\nWFley+EPfkIk5vyuTbrhEIb3sgkSZrtjn0CbcZ+RT25h1dg4p44l1LbevkSId5R74+CK8e40hhyc\n5xBmK/H4vGTkbQjeGbl5iMdDTWU50bAzPzwtq/0gWVcdYvKEBaxdXMl+Jw1i+JhepKS13nWf17sv\np9/+W/B4SG92/NJgA9UNEZ793xJe+Wo5Rw7vwb2n7k5BZgri8WyUsW5NRX1TMAf4YX3QArox2zk3\nKLY3sK3bbOvtS4S4i7OIyD44cxEVmKqqoYS1ymwmkJrGERddQWpGFqGGeg4550JUlVfH/5Ky1SsZ\nOvpgxl56VbuD1opXVLNsnvPh9H+vfs/gvYuaAnp5TYiGSAy/VyjIdBLIiAjpORvnVygNNnDNyzO4\n4eihvPC5U83tg/nruG7sLk37NTewMIPBRZn8UBykd04q+w7oeK+CMcaYtsU7yv1O4EzgTXfRcyLy\nmqrek7CWmc1k5OZx5CU/JVRfRywWZe3331G2eiUA333xPw49/xJoJ6Bn5m2YNpmeHUDc0e5lNSHG\nT5zPxNmrOWBQPk+cvw+FLQRngJpQlM8Xl/ELEbLTfFTVOYPc8luZCleUlcLfrxhNTUOE9ICXHtnb\n1NRNY4xJCvHeoZ8P7NlsYNx9ONPXLKBvZfU1QT554Rl++PpLzrrzd3i8XmLRKJn5BXjjGPWekZvC\naTftw+pFFewyqifp2U4QrqoLM3H2agC+XFJGaTDUakBP8XnICHh58IOFPHvRfny9rJzDhxU1PUNv\nSVFWCkVZVu7UGGMSJd5R7qvZOCNOCrCq65tj2hOqrWXBlI8J1dYy/Z9vcsEDf+TE62/hvHv+QGZe\nfrv7p6T56D0kl32PG0h2YRoiQnF1A8XVDfTOcf6Js1J85Ka3/uEgPyPAq1eOIS3g5e1Zqzhr1E4M\n65VNqn/LU8MaY7qOiJwsIre1si7YyvLn3cIuiMgnIjIqkW1sjYjsJSIJH3gtIrc3ez3Qnfe+pccs\nEpEvRWSmiBzSwvpnRGTXLT3PpuK9Q68E5ovIhzjP0I8GvhKRxwBU9bqubphpmc8d/FZXXcXiGdM4\n7MLLGH7gliXti0oN+VkhXrvyAOavqmZor2wK2rjb9ns97NYnh8fP2wefRyyQG7ONUtWJwMTubkcn\n7YVT+SwhRcHEmTcrOBn77u3iw48F5qrqZkUpRMTb0vKuEG9Af8v9avRJ1zfFxCM9J4ef/O4R1i7+\nnp47D4lrZHtbKhoq+Ou8J/nHwn8wpucB3LPrzWQRwOfNaHffzJS4x1Qas0N74sr/bFYP/eo/H7lF\n9dDFqRc+CSfT2YE4mcueA34D9MB5VLorTu7xa0RkEE51t0zgnWbHEeCPODdqK4AWBzyLyDHusVOA\nH4BLVLW1u/x9gYfcc5UAF6vqGhG5HLgCp+TrIuACNwXrmcBdOHncK3Fyrf8WSBORg3HyyP+jhfOM\np+XSq4jIjWzIxf6Mqj7i/sw+wCk3uy/wlXuOWTiFVn4FeN2McAfi9ESf4haraek6N7seYCjwgHvc\nUcAYnMx9f3Gv62pxytfepKrTReQ4nN8NL04K3rEisj9OdbpUoM79WS9sqQ0btaejpVxFJA/op6pz\nOrTjFrB56ImzOriaY984tun9ywc8waByP5ljxnRjq4zZJnVqHrobzJvXQwcn3erlWxLU3eC0CKfG\n+XycgD4buBQ4GSd3yNtsCOgTgddV9QURuRq4X1UzReQ04CrgOJwqZ98Al7n1vz/BqWu+FGdQ9PGq\nWiMitwIpjaVEN2mXH/gvTiAsFpGzgWNVdZyIFDTOAXeD2jpV/aObjfQ4VV0lIrlumtWLG9vexs9g\nPE4VuKbSq0AvnBKwz+OkKRecAP4TnBwqi3FKu37hHiPYrIZ84890lKrOEpFXgYmq+lIr52/tejZq\nu4gocLaqvuq+b/y5LgNmAIeq6hIRyXfLumYDtaoaEZGjgKtU9fTWfg6N4h3l/gnOL4gP+BpYLyJT\nVfXGePY32y6/x0/P9J6sq11HqjeV/LQCvNH29zPGxK3L66E3s0RV5wKIyHxgsqqqGyAHbrLtQbgl\nU4EXgfvd14cCr7ilVVeLyH9aOM9onLv9qW6GxwBOPY+WDMOpn/6hu60XWOOuG+kGvlycu/cP3OVT\ngefdAPomHdNS6dWDgbdUtQZARN4EDsF5/LCsMZi3YomqznJff83mP8fmWrueTUWBN1pYPhr4tLEk\nbLNSsznABBHZBecxd1x5vuPtM81R1Sq3SMsLqnqXm2DfbOeK0ov42wl/Y866WQxNG0Dm2iCBnXfp\n7mYZk0wSUQ+9UfOyo7Fm72O0/Pe9Y12yGwjwoaqeG+e281W1pW6+54Efq+ps9y72cABVvVJEDgBO\nBL52u+zjFW/p1UbtlZHd9HhpbWz7PC1cTwvqm9Wij8fdwMeqeqrba/BJPDvFO8rdJyK9cerDvtuB\nRpktVFsVorqsntqqxOXx6ZnRk6N3PpYBvYeTs/covDndU6O8Lhiiujyx12pMN2it7vmW1EPvjKnA\nOe7r85st/xQ4W0S87t/5I1rY9wvgIBEZAiAiGSIytJXzLASKRGSMu61fRHZz12UBa9xu+aY2iMhg\nVf1SVe/Eed7cj/bLp7ZlCvBjEUkXkQycUrJTWtk27LanM1q8ng74AjjUHd/QvNRsDhtmkl0c78Hi\nDei/xelK+EFVp4nIzsD38Z7EQFVDFSW1JVQ2VMa9T21ViElPz+OF2z/jX3+Zm9SBri4YYso/vueF\nX37GPx+bldTXanY4iaiH3hnX4wzImotTKrTRWzh/z78BXqCFrnRVLcYJLK+4vbOfA8NbOombRfQM\n4H4RmY2Ts+RAd/WvcZ5nTwW+bbbbgyIy150y9hnOWICPgV1FZJb7HD5uqjoD5+75K/d8z6jqzFY2\nfwqYIyJ/68g5XK1dT7ztLMYZVPem+7NqHPj3APA7EZlJRzK6dnRQXHfY3gfFldeX89jMx3hn0Tsc\n3f9obj3gVvJT258zXrG+lr/dueFRz/m/HU1uj00fxbWtPlJPMBQk1ZdKZqC10sjdr6q0jhd/teHv\nyOk370Ovwblt7GHMVtfp4iyJGOVuzKbiHRQ3FHgS6KmqI0VkD+BkS/0an2A4yOvfvQ7A+0vf56q9\nrooroHu99Zx6484ofqa/vx5/ysbzvWMxxeNp/W9MMBTkg6Uf8My8ZxjTewzX7n0teanbZh51n89D\nVkEq1aX1+AIeMvMtPaxJHm7wtgBuEireW/mngZtx5tGhqnNE5GUs9WtcUrwpZAeyqQpVkeZLI93f\n/l12TUU5r99zO2WrV5KZV8C59/yhKU1rQ12Y1d9V8sOs9exx+E4U9M3A69s8uUswHOQ3n/8GRXmt\n+jVOGXJKlwX02qoQsWgMX8BLakZnHz9tkJ6Twum37EvpyiB5vTJIy9ryYxpjEkuc0tqDNll8q6q2\nNtq7s+e5BOeRQXNTVfXqrjxPG+d/AmeWQHOPqupzW+P88Yo3oKer6lfuFIRGkQS0JykVpBbw6o9e\nZca6GexVtBf5Ke3fnVeVFDcVXgmWl7Ju8fdkFxYCUFcd5v0nnUkGP0xfz0/uHkNG7uYB3SMe0v3p\n1ISdQZ3Zga4pWVpT2cDbD82kYl0tex3Vj32PH9glQT0jJ4WMHMv3bsz2ollp7USf5zmcpDndYmt9\ncNhS8Qb0EhEZjDvlwc3zu6btXUwjr8dL38y+9M3s2/7Grsy8fHz+AJFwCBEPOT16Urx8Kbk9ehEN\nx5q2i0ZitDYOIj81n5dOeInXv3udQ/oeQmFaYYfaraqEV6yg4q23ydhvFKm77443K4viZdVUrHPG\n+Mz6aAV7HdUVs2+MMcZsiXgD+tU4IwGHi8gqYAmdG6Jv4pSWncMF9z/K4plfU9h/ADMn/ZP5n0zm\n4oeeJCO3iP1PHsSyOaXsfUx/Aukt/zP6PD6G5A7htv1brM3QrmhJCUvPPY9oaSmlT8Kgd97GO2wY\neb0z8PiEWEQp7JeJeDs9VsgYY0wXaTOgi8j1qvoo0FtVj3Ln83lUtXrrNG/H5fP7ye/bD28ghVd/\n80uqitcBUL56Jfl9+rL3Uf0ZeWhfAqk+vL54Zx92jKoSLS9veh8pKYVhkJEb4Py7x1BVFyYr0096\nVuuFXNo9RySC+Jxfw7L6MiYtmYSiHD/o+LgGDhpjjHG0Fwkucb//EUBVayyYJ0Y0Fm2x69wXCJDu\nJnop7DeAnoN3cZd7ScsMJCyYA3gyM+l93+/w9+1D9oknkDJsGDWVDYQjMZYE67n+nbk8MPl7ymoa\n2j/YJjQSoX7hQlb/8nYq3nqbmmA5j339GL/76nfc99V9/GH6H5qe/RtjjGlfe13uC0Tke6DPJqle\nBVBV3SNxTdtxrK9dz59n/5mC1ALOHXHuRnemGTm5nHrrXQSlnpKGEupSoqTFong9iS9Z6k1PJ/uY\nY8k88P/bu/P4qKrz8eOfZ2Yyk8meQNhBUBBBpSgRLaKAFESl4lZFtEK1WlutFa1f11a76M8uLq1b\nK264ouIOKCpCxQU1uKCAKJtsYcm+z2Rmzu+Pe7ORPZnJJMPzfr3yytxzz7335JLw3HvuuecZR1Bc\nrHpvLxuz1zPpt6OY8/inFJRXsfqHAsYOyWDG6NaPDwAIFBTwwwUXEiotpfiNN+h13BI2FW2qWb+5\naDP+oJ/EuJazviml2k5EzgC+M8asC9P+soCLopVOW0ROB0YaY+4UkUysWU3dwFXAjcAsY0xhNNrW\nWZoN6MaY80WkD9Yscad3TpO6j33l+1ifv56DUw8mMyETj7PtI7SLfcXc8sEtfJxjTaridXm5+MiL\n69WpiAvw63d+w3cF32z4OkIAACAASURBVJHqSeXl01+mV0KvsPwMLXHEe3DEeyjOKWPNMmvUfUle\nJd44JwVUAZDgbvriIlAVIhgI4o53Ue8tCWMI+Wrv7L2FlVybdS2XvXMZANdlXRe2UflKqUadgRX0\nwhLQjTHZQNRmANsv9/v++cibmvY1prQ4KM4Ysxv4USe0pVvJrchl9luz2V6yHY/TwxtnvEHfpL5t\n3k/QBCkP1M4KWewvblDHH/TzXcF3ABT5ithTtqfTAno1d7wTh1MIBQ0b39vO05ccy73LvueI/ilk\nHdT4s+6KUj9fvrONfdtKOXbGwfQckFTziMCZksrAhx5k3333k3BMFu4+fTg8JYnFZy4GINWT2im9\nEEp1hrvOm95gprhrn1/U0XzoF2Ldfbqxph/9DXA/cAxWQpGFxphb7bp3Yt2UBYC3sTKanQ5MEJFb\ngLONMZsaOUar8pcbY04UkYlYOb6ntyWft53U5Eys+cv7A08bY/5kr3sVa173eKz3vh+2yxvLIT4H\nyAIeoWE+8vVY6UxzReQirNSlBlhjjPl5689619bSoLgXjDHn2nP/1n3Ae8B3uQdCAbaXbAfAF/SR\nU5bTroCeHp/OHePv4LaPbyPNk8aFIy9sUCfeFc9JA0/ive3vMSR1SLuO01HxiXH87IYstq3LZ8jo\nnqT08HLXuT/C5RD2m5+gxo4NBXy+1Mo/sXtzERf8+bia98wd8R4SjzuO+COOwOHx4PBaCY0yEzI7\n5wdSqpPYwbxuPvSDgHl3nTed9gZ1ERkBnAccb4ypEpEHsd48utnOp+0Eltmzeu7ECpiH2alVq/ON\nvw4sMsYsbOZQLxtj5tnH/CtWrvX7gD9i5TjfKSKNzdH8LXBCnXzed1CburUxY7FSrpYDn4nIYvuO\n/2L75/Ha5S9hjf2aR50c4nV3ZOcx/yP185FXn7fDgVuw8qHn7r9td9fSHXr1zDzT27NzEdmKlTEn\nCASMMVn2CXweK8fsVuBcY0xBU/voqrwuL+cPP5/nNjzHyB4jOSjloHbva1DKIO6deC9OcZLobvjM\nOD0+nVvH3cr1getxO91tfp88HFxuJz0HJtNzYG3yo5bun03INPq5mrhcuNJ0vnYV8yKRD30yMAYr\nyIF1R74XOFdELsP6v70vVg7zdUAl8KiILKJtGTPbm7+8rfm83zHG5EFN7vLxWN33V4lI9eQ1A4Fh\nQCaN5xBvjZOAF40xue3Ytstr6Rl6jv39hw4cY1L1ybPdACyzBy7cYC9f34H9R0WqJ5UrjrqCX476\nJS5xkeHt2IVeiqf558Vd+RWuvIo8giZIgiuhXgKYgYdlcMSE/uzbVsK4s4aGZTa5SCsr8uErD+BJ\ncOmsdSpcIpEPXYD5xpgbawqsFJzvAMcYYwpE5Akg3r5LHot1EXAOcCVWYGuNJ2hf/vK25vPe/4rf\n2F34PwF+bHfzr8DqeldNaKnLvYSGJxpqu9zbM2ppBrVJ4Odj/UN3u4AOVlDvDvwVAXwVAQTwJMY1\nSPLSEXvK9jDnrTnsKN3BjWNvZMYhM2p6GbzJbsadNZRgVRC314XDGblX7MKh7pS2yRnxnH39GA3q\nKhy2YXWzN1beXsuA10TkHmPMXrvncxBQBhSJSG/gFGCFiCRhTd+9REQ+BDbb+2hNvvH9833vhNr8\n5cAnInIK1t1zXW3N5z3F/hkqsAbrXYz1PL3ADuaHAcfZdVcBD4rIkOou9zbcab8HvCIidxtj8tq4\nbZfX0h16e5PL1+wCeFtEDPBfe0BD7+o7f2A30LulnWyg9gogphhDKBgEwOF0QhPPojt2CENFVZCC\n3AoESHc7cMfR5ICzYChI0FjT9LvEhaOFgWm54mDL8X8G4HJx8IAzrn7fmsdpfXUDAa+LPRcMr1l+\n2OtqfSJiFfNWtH/Tm6j/DB06mA/dGLPOHsz2tog4gCqsGT2/wHp+vR2rWxysoPyaiMRj3YxdY5cv\nAOaJyFXAOY0NiqM23/c++3t1TPiH3Z0uWBcXXwET6mz3d6wu91uAxa34kT4FXgIGYA2Ky7bHbl0u\nIuuxwsAq+2ffZz9WeNn+2fcCU1pxDIwxa0XkduB/IhLEOl9zWrNtdxDRfOgi0t8eNNELqyvot8Dr\nxpi0OnUKjDENUoDZ/2CXAXhGjRpz3FdfRayd0RAMBKgoLqKsMB8MJKSmkZCWhtMVvm7pQChAMBCi\nOKcSv8+6cIhPiCM+U0j0NHxWb4yhwFfA5kLr73po+jDS3KnNXmiUV5WzLm8tmd7epLrTSXR7iXN2\nzzAYCoTI21WGvzJAnNtJzwFJOCI4cY/qXlZ0IB96JEa5x4rq0enVA9hU+0U0oNc7kMhtQClwKTDR\nGJMjIn2BFcaY4c1tm5WVZbKzo/Z6Y9iVFRWy8K+3kLtta73ytN59mfnnv5GYFp7n5Ys2LeKbPev4\n8Z7T+GapNXXs0Wf3Z0u/zzl3xM9wOeoH3hJ/CVcvv5pPd38KwIQBE/j7iX9vNt1rWVUZBeWVLP26\ngMc/3MbEQzO5ZupwMhLbPx1sNJUX+6nyBYnzOGvS1Spl06QFEaABPXwidvshIokiklz9GZgKfIP1\n4v9su9ps4LVItaErMsaw8dOPGwRzgMI9OaxZtpRQsOOZaUMmxGd7PmPBxmfxj9zDT+Yewhk3jCK3\n/yay+o1pEMwB4p3xnDrk1Jrl0w4+jXhX82NQEuMScZgE/rJoAzsKKnj6k23kFFV0uP3RkpDiJjXT\nq8FcHVBE5AER+XK/r1+0vGWbjnFyI8d4xRjzhAbz8Ihk32hvrMEH1cd51hjzloh8BrwgIpcAPwDn\nRrANXU5laQnfrHinyfXrVy5n1ORpJKY1eApRT0VJMTu/XYu/ooLBo8eQkFJ/gJ5DHMweOZt3f3iX\n338yl7sm3MVRmUdxHMfUGzFfFQxRVVlJRUEue7duZtKoExl71hIEIdWTikNavuZzOoRkj4sSXwCH\nQEp81x/NrpSq1Rn5vo0xS6l97U1FQMQCujFmM43MMGe/azg5UsftFpp5ymGMdRdfnLsXEQfxSUnE\neRreJa9fuZzl8+cBMGryNCZe9Evi4uvXOyjlIF4941WMMSTFJTXoOs8r9fHw+5u5YGQiC2+8EhMK\nkdq7D+f/+Z8ktuH98B6Jbl654nhe/WInE4dndtvudqWU6s665+ilbiw+MYmREyaze9N3ja4f97NZ\nbF+7hiX334XD4eDsm/7MoCPqXxeFQiH2/rClZjlvxzYCgSri9ntF0+lwkulteua1lz7fyRtf7WJK\nWhImFAKgaM9uTCjYpp/J5XQwtFcSvz+52aEQSimlIkiH8HYycTg49Nhx9BjQcE6JlMzeDBhxBF+9\n+2bNK21rli0lGKiqV8/hcHDcWTPJ6DeApIweTPrFZcQntD0rWcgYdhdX4u7Vn/4jjsDpcnHCrDkN\n7vSVUkp1fZ02yr0jYm2UO0BZYQHrP1jB2hXvEgqFGDF+IkdMmgLeOPbl7WLzyg9Z88brzLj2Zg4+\n+pgm94ExeFNSrffY2yiv1Me9735Pia+KP0w+iHiX4HK78bTj4kCpA8ABNcrdnuFtkTHmiBbqjDPG\nPGsvRzWF6oFOA3oUhYJBKkpLwIA3OYniqlKeXPckb2x+g2kHnczsw35OsisZj7fp18Zaq9BXyPcF\n31PoK2RM7zE1A+N8VUECIUOip/7Tl8LKQlblrGJD/gbOGHYGA5IGtDr7mQkZECshQrC4mEB+Pqai\nAlefPrjSmx/sp1QXpgG9YZ2J2BnWOqlZqhna5R5FDqeTxNQ0EtPScDhdFPmLmPf1PHaX7eaJdfMp\nDpWFJZgDvLftPS5eejHXrLiGv3/6d0r9pQB44pwNgjnAe9vf47r3r+ORbx5h1uJZ5FXmteo4ZYU+\nVr7wHR+/uonKEh8ly1ewedopbDnzLPbdcy/B4obpYZVSbScig0XkWxF5RkTWi8hCEUkQkcki8oWI\nfC0ij4mIx66/VUT+bpd/KiJD7fInROScOvstbeJYK0Xkc/trnL3qTuAE+xW0uSIy0U4Ag4hkiMir\nIrJGRFaJlfkNEbnNbtcKEdlsz1SnwkADehficXpwinUX7BAHXqeVUpTSvVC0A8pym9m6acFQkNW7\nV9csr81biy/oa7b+53s+r1ku9hdTGahs8TiVpVW88/g6vl6xky+WbiNn7W6KX6udZqD4zTcJlLe8\nH6VUqw0HHjTGjACKsaZ1fQI4zxhzJNbA51/XqV9kl98P3NuG4+wFphhjjsZK2/pvu/wGYKUxZrQx\n5p79tvkT8IWdZvsm4Mk66w4DTsZKm3qrPVe86iAN6F1IqjuVR6Y+woxDZvDwlIet5C/FOfD4KXDP\n4bDw4nYFdafDycVHXkyKOwWXuJg7Zm69rGiN1Z952EziHNbf2Kieo0iMa/m5eihkKCusvVDYt7eK\npKlTa5a9J0ygsunrCKVU2203xlTP2f401ivBW4wx1a/RzAdOrFP/uTrff9yG48Rhzfv+NfAiVlrW\nlowHngIwxrwH9BCR6oRei40xPjsT515akdNDtUxfW+tCvHFesvpkcXTvo2sndPniGcjbaH3e8j8o\n2AKJbc+HPjhlMK/OeBWDIdmdjMfZfBaxYWnDePOsNympKiHdk04Pb48Wj+FJdDHpwsNY/OAaXHEO\nDh7ThwT3VPoMHUmwpBRfSl8qiad75KhTqlvYfxBUIdDcH6tp5HMA++bOTnbS2EQSc4E9WHOLOLDy\nq3dE3Uv7IBqLwkLv0LugerOzpfSrv7KFvOsh+31y67PBV15FoCpovZOekEmvhF54Xd4W2+Bxeeid\n2JuhaUNbFcwBnE4HvYckM+u2Yzn35mPI6JtIXHoqgT6D+WZXBsU+N6k9Wz62UqrVBolI9Z32LCAb\nGFz9fBz4OfC/OvXPq/P9Y/vzVqA6n/npQGPd36lAjjEmZO+zeoRscylYV2KlXK0ePJdrjNFBNBGk\nV0Vd3aAfw+TbYMsKOHo2JDY9UUxOaQ7z1sxjcOpgph/8U8q2Gla/uZXeQ1IYPWUQ3qTIz+DmdDlJ\nTK0zGt4hZA5I5oSZw3B28XzoSnVDG4ArROQxYB1wFVaa0RdFxAV8BvynTv10EVmDdYd8vl02Dyu9\n6lfAW1g51ff3IPCSiFy0X501QNDe9gmsdKTVbgMes49XTm0ODxUh+tpaFxXw+yjI2cUPX3/FiHHH\n442Pw+FJhv3eNy+oLGB7yXZ6xPfg6hVX823+twDcOf5OfK/0IWdjEQA/uXgEmaM8BEIB0jxpuJ3d\nY3rWyrIqcjYWsm97KSPG9SU5Qye9UVHTpV5ba81rZfvV34qV1ax9o2tVl6e3TF1URUkJT984l/89\n9QiPX3sl5b5Qg2Be4i/hruy7uGDJBXy+93PKqmovrIv9JTgctf//lJf5uG7FdZz68ql8k/sNIROq\nt69QyLC3pJJ9JZUEQ13nIi9vRylLHvqazxZt4Y1/f0l5sT/aTVJKqS5Ju9y7gEAwQFmgDK/LW3Pn\n7Csvq0mj6isvazD9K0BloJJVOasAWPjdQv7f+P/HP7L/wcDkgUw5aAo5Yyoo2F1OzwFJ9DkygavL\nfk95oIzFmxczLH0Yye7aR18b95Uy+7FPMQbmXzyW4X2aeizWuUoLK+t89tEdepSU6gzGmK1Aq+7O\n7fqDI9YY1SVoQI+ysqoyVu5YybPfPsu0wdOYfvB0UjwpJKSmccSkqWzKXsXok6c3OsFMUlwSvzzy\nl9z+ye1sLtpMZkIm90++nzhHHIlxiaQeF+Tg0ZngCLHt+zw+fHwPCcluLr3qN/VGuZf6qrhjyXpy\niqzgeceS9Tww6yiSukAa1IEjenDQkT3I31XGhPOH4/Hqr6xSSjVGn6FH2e6y3UxdOBVjv0Gy6MxF\nHJRyEACVZaUE/H7iPPF4EhqfMa7UX0ppVSlOcdLD2wOHOMivzGdt7lp6JfSiX2I/nJVuXvrHaopz\nrYD9o58MZPw5w2r24Q+E+OfSDTy8cjMAl54whOtOHo7b1fb54SOhsqyKUCCEJ8GFM65rtEkdkLrU\nM3Sl9qe3O1EmCE6Hk0AogCC4HLX/JPGJSdDCfC5J7qR6k8QU+Yq47cPbWL5jOQBPnfIUgz2HkNE/\nsSag9xmSUm8fbpeDyycezIh+yWBgwvBeXSaYA8QnRr+nQCmlujoN6FGW5knjkamP8PyG5zllyCmk\nujs27Yo/6GdN7pqa5WR3Mr/83y/4009vp/eRA+ndM4PMgSkNtstI9HDmUQM6dGyllFLRo6Pco8zj\n8jCm9xhuH387kwZOqne37Q/6KfM39kpo4wJVVXgqHfxr/N2kxKXQN7EvvqCPDQUbuHD5TP5RcAuu\nAX6941UqBojINBHZICIbReSGaLdHRZ/eoUdBMBQkvzIff8hPYlwiaZ60mnnTq+VX5vPo14+yuWgz\nv8/6PUNSh9SfQW4/FSXFfLl0MWvfX0b/4SN5c9br+D3Wc/m+iX3JKcshYALEOTWYK9XdiYgTeACY\nAuwAPhOR140x66LbMhVNGtCjIKcsh5mLZ1LkK2LWYbO4YvQVpHjqd4N/sPMDnlxnJSfaWryVp055\nip7e+nO4l/hLqAxUEu+KJ3/rZj568RkAivbsJrlHT8b9bBYOp4tnT32W0qpSktxJDfahlOqWxgIb\njTGbAURkATADa7Y4dYDSgB5m/qAfYwweV9PJT1buWEmRz5rB7fkNz3PpqEsb1KlOo1r9WeoMsA34\nfRRUFPLUd0/z6qbXmDp4KhcNOLfe9nk7thMMBHA4XfRM6Imz0smK7SsA+HE/a+rnpLikZrOuVSss\n9+NwCCld4DU2pbqrrKwsF9ATyM3Ozg50cHf9ge11lncAx3Zwn6qb02foYZRXkcftq27nlg9vYU/Z\nnibrjekzBpdY11Jj+4yt+VzXuH7juHzU5fxk0E944KQHyIivTcpSkpdLXuFuHl/3BAW+Ap7f8DyB\nRCfeJGsyGHE4OPaMnxHnqZ0mddm2ZTzw5QMMShnE2a+fzZSFU3ht42uUV5U3+zNtyy/n8qdXc9Vz\nX7CnWHOZK9UeWVlZ44B9wBZgn72sVFjpHXqYBEIBHvrqIV7e+DIA5YFy/nbC3xq9Ax6YPJBFZy1i\nX/k+BiUPIi0+rd56f0UFbh9cMnwOoTihIlBBaVVpzcxue7duxtU/A6/LS0WgwppIxp3ERf98gIKc\nnaRm9sabUr8LP6c0h5E9RvLetvco9lsJj+Z9PY+TB59MQlzj77gXlvu5fuEaVm3OB+Cutzdw+5lH\nEqdJVpRqNfvOfDFQ/YceDyzOysrqmZ2dHWznbncCA+ssD7DL1AFMA3oYBUPBep9Ng1TFFq/LS/+k\n/vRP6l9b6K8AXzEVviBfvLecte8v46RfX0ncwJ4U+grZVLCJ0b1HkxyXTP/hI3n/xad4ZNpDfJT7\nCRMHn0SaJw1Pooek9MbTq848bCb3f3k/R/c6uubZfFbvrGaTtDgdQoKntus/yePCoVNrKNVWPbGC\neF3xQCawu537/AwYJiJDsAL5TKz0qeoApgE9TFwOF1ccdQXlgXLKA+XcfOzN9eZKb1LAB3vXQ/Zj\nMPh4fGlH8/FLz5HRbwD+XvFcsOhcKgIV/OG4P7C9ZDtvb32b6465jgnnzSYUCjE8c0STs8jVlZmQ\nydwxc6kKVvHaGa+RV5HH0LShDQbj1ZUcH8cdZx7JPUnfkehx8euJh+B06N25Um2UC1RSP6hXYnXB\nt4sxJiAiVwJLsXKTP2aMWduhVqpuT6d+DbOKqgpChEiMa2GKt2rFu+DfR0HAej5d8pv1PHrNFQz/\n8Ql8MrqYlza+BMCh6Yfy53F/5vZPbudfk/5FZkLTedHDLRAM4RCpl71NqQNQu/8A7Gfmi7GCeiVw\nWnZ29kfhaphSoIPiws4b5219MAcIBWqCOYC3fDvn33Qz/Q4dwQn9x9eUH9vnWCoCFVx65KWkuJu+\nq44El9PRrmDeHS4WleoMdvDuCQwBemowV5Ggd+jRVlFodbd/+l8YMgGO+w0kZkJqf0r8Jewr30dZ\nVRl9k/pijCHFndLsK3FdQbk/wLpdxSxcvYMZo/sxakAaiR59uqO6Pe2iUl2aBvSuwFcK/lJwecHb\nsbncu4KcwgpO+PtyAiGDQ2Dl/02if3rLz/mV6uI0oKsuTW+bOklloJISfwkuh4v0+PT6Kz1J1lcd\nxb5ivsn9hjX71nD60NPpl9SvE1vbMb5AiEDIulAMGSjzt/fNHKWUUq2lz9DDKBgK8kPxDzz05UN8\nseeLmsQqFVUVLN++nDNfP5Orl19NbkVui/v6oeQHfvXur3jgqweY/dZs8iryIt38dvNVBCgr8uEr\nrwIgNSGO30w8hN4pHn5x/GAyk7r2IwKllIoFeoceRvmV+Vyw5AKKfEU89NVDLDpzEYnuREqrSrnl\ng1vwh/x8vvdzPtr5EacPPb3Zfe0uq309Nbc8l5AJRbr5rba7bDfz185ncOpgTuk7nW/ezWH9hzkc\nktWLY386hPQkN7+ZdAhzxg3G63aSrFPGKqVUxOkdehgFTbBmjnaDIb/SmmHNIQ76J9dOIjMg2co7\nXlZVxr7yfTX16jq619Gc2P9EMr2Z3D7+dpLiWp5zvTWqglXsLd/L9pLtFFYWtnn7/Ip8rlh2BU+v\nf5q/rvorFeV+vnh7G5VlVaz93058ZdZdepInjl4p8RrMlYoAERkoIstFZJ2IrBWR39nlt4nIThH5\n0v46tc42N9qpVjeIyMl1yhtNwyoiQ0TkE7v8eRFx2+Uee3mjvX5wuI+h2kcDehglxiVy49gbyfRm\nctqQ0zgo5SAAenh7MG/KPK4dcy3zpsxjaNpQyvxlLNmyhFNePoUrll1Bbvneevvq4e3BHSfcwQvT\nX+CkQSfhjfO2qg15FXnsKdtTc2Gxvx2lO5j+ynROfflU7v/yfrYVb6MqWNXqnzFkQvUvQBwh4uzZ\n5JxxDlxuZxNbKqXCKABca4wZCRwHXCEiI+119xhjRttfSwDsdTOBw4FpwIMi4qyThvUUYCRwfp39\n/M3e11CgALjELr8EKLDL77HrhfsYqh0i3uVu/2NmAzuNMdPtqQoXAD2A1cDPjTH+SLejowoqC9ha\nvJVkdzK9E3o3OgtcsjuZM4aewdSDpuJ2uuvNwtY7sTdzjphTs7yvYh93rLqDgAmwtWgrpnQf5G+H\nnC+h1wjoMZTUpF5NtievIo/cilzS49PJ8GTgcrrILc/lkrcvYXPRZmaPnM1loy5rNC1rRaACgMWb\nFzNhwATiXfH0Smj6WHWlelK5a8Jd/PGjP9IvsR/uJCfn3nQMP3yTx8ARGcQn6R25Uo3JysqKB3oB\ne7OzszuU6cgYkwPk2J9LRGQ9Vga2pswAFhhjfMAWEdmIlYIVGknDau/vJGqnk50P3AY8ZO/rNrt8\nIXC/iEiYj6HaoTOeof8OWA9UR5bqK7IFIvIfrCuyLv0PWOov5b4v7uPF714E4N5J9zJ50ORG6ybE\nJTSZ7KQuJ04Gpw5mY+FGHhl/Jz2X/hE2vVtbodcI+PlrkNy7wbb5lfn8/n+/J3tPNgmuBF6Z8Qr9\nkvqxPn89m4s2AzB/3XwuOvwiUqgf0Mf1G4fH6cEX9DFx4ES+K/iOoelDW3sqiHPGMarnKJ6Y9gQu\nh4s0TxokQFpvfS1NqcZkZWU5gb8CVwEGkKysrH8Bf+hAcpYadpf3UcAnwPHAlSJyEdaN1LXGmAKs\nYL+qzmY7qL0AaCwNaw+g0BgTaKR+TepWewraIrt+OI+h2iGiXe4iMgA4DXjEXhasK7KFdpX5wBmR\nbEM4VAYr+Tjn45rlFdtXdHiQWoY3g4enPMyDk+5jeEEOUjeYA+xdT2jVg3yz5wseXvMw+8prp30O\nhAJk77Heyy8PlPN9wfcADEkdQpzDukM+NP3QejnVqw1IHsCiMxfx3GnPcfawsxmYMpDkuFbMOV+H\ny+mip7enFcyVUi35K/BbIAFItL//DvhLR3csIknAS8DVxphirJujQ4DRWHfwd3X0GKr7iPQz9HuB\n/wOqo1+3vCJLikvi4iMuBqxMaXMOn8Pe8r2s3rO65hW03PJcPt71MbtKd+EP1n+CUFZUSFlBPv7K\ninrlmQmZnNDjSFzfLKQxjnWvUVi4hfu+uI+5K+ZSUFkAgNvh5rQhpwHQK6EXh2UcZu3Pm8nrZ7zO\nvCnz+O+U/9LD26PBPj1OD70TepPqGMLqDWlkmCxMSF8rUyoS7G72q7ACeV0JwFX2+nYRkTisYP6M\nMeZlAGPMHmNM0BgTAuZR2+XdVLrVpsrzgDQRce1XXm9f9vpUu344j6HaIWJd7iIyHdhrjFktIhPb\nsf1lwGUAgwYNCnPr2ibeFc+0wdMY3388TnFijGHGazMoqypjYPJAHj/5cS59+1K2FG8h3hnP62e+\nTt/EvgCU5OWy8PY/ULQnh0lzfsWI8RNwe+t0T7sTwdt4ylO8aZTaz7srAhU16VnT4tO4fuz1/Pao\n3+J2umsStXhcHgYkD6gZRd+U3FIfZz/0MXtLfAC8M/dEHY2uVGT0gibyKFszz2VSvzu6VezezkeB\n9caYu+uU97WfrwOcCXxjf34deFZE7gb6AcOAT+02NEjDaowxIrIcOAdrzNNs4LU6+5oNfGyvf8+u\nH85jqHaI5DP044HT7dcm4rGeof8L+4rMvktv8orMGPMw8DBYU79GsJ2tkuxOrhkI99W+ryirsiaN\n2V6yHX/Qz5biLYDVPb+rdFdNQF/z7pvk77T+Xt999EEOyRpbP6DHxcO4q2DN8w2OGTr+d6wp/575\nEx6hZ2UCziI/PinH400gPT694YxzrRQMURPMAXYVVjCsd9u63ZVSrbKXpqeMNbQ/herxwM+Br0Xk\nS7vsJqwR5KPtfW8FfgVgjFkrIi8A67BGyF9hjAkCNJOG9XpggYj8FfgC6wIC+/tT9qC3fKwAHe5j\nqHaIWEA3xtwI3Ahg36H/3hhzgYi8SDe/IhuQNIBD0g5hU+EmJg2YhMflYebwmSzYsIDDMg6reV0N\nILVXn5rPCSmpY15YnQAAEf9JREFUiDTylCP9IDj3KXjzOijZDfGpcOL/4RgykV8FJvDxM0+yfMW7\nIMJ5t97JgBGHd6j9iR4nt/10JHe/8x1HDUrniP7df/54pbqi7OzsSnsA3O+wutmrlQP/bu9od2PM\nBzR+obCkmW1uB25vpHxJY9vZo9LHNlJeCfwsksdQ7dMpyVnqBPTpInIwVjDPwLoiu9B+zaFJXTE5\nS15FHr6gj3hXPBnxGRT5ivAFfbjERUadLvSKkmK+/WAF+7Zt5ZjTzyGtT1+s3rL9BINQvg+CfnC6\nwZsOLg9lBfk8c/M1lORZz+qPO3smx597YYfbX+YLUOYLEOd0kJ6oczko1QrtSs5ij3L/C9azdMG6\ne/43YRrlrlQ1zbbWSUwohDjaPgaxqrKSte8v439PPoo7IYHzbruTjH7NPyNXSkVEh7Kt2QPgMoF9\nHX0PXanGaEDv4vIr88krzSUkIeJd8aR50kmN1y5ypaJA06eqLk2nfu3iviv4jre2L+WcRT9j+qs/\n5ZPdn0S7SUoppbogDehdXKIrkVW7aidfenfbu1SFWj/3ulJKqQODBvQIMMa0KeFJcwYkD+C8w85D\nENwON7MOm1UzG5xSSilVTQN6mBVWFvLkuie56YOb2Fy4ucNTxKbHpzN54GSWnr2UN89+kxEZI8LU\nUqVUdyYiW0XkaztNarZdliEi74jI9/b3dLtcROTfdprSNSJydJ39zLbrfy8is+uUj7H3v9HeVjrr\nGKp9NKCH2ZrcNfwz+5+8tfUtLl56caO5ztukdC+Jn86j77rF9DIOPC6dplUpVWOSnSY1y16+AVhm\njBkGLLOXwUpdOsz+ugw7IZaIZAC3YiVLGQvcWh2g7TqX1tluWiceQ7VDZ2RbO6CUV5XXfg6U06G3\nCCqLYcn/wbpXrOXiXXDSTeDQfzalugv7PfRZwDVYs2PuAO4Gno3Ae+gzgIn25/nACqzZ2GYATxrr\nP6RVIpImIn3tuu8YY/IBROQdYJqIrABSjDGr7PInsRJpvdlJx1DtoHfoYTa271jOHnY2h/c4nIcm\nP0SqpwOvmAX9ULi1djl/IwQDTVZXSnUtdjB/BetOdDTQ0/7+EPCKvb69DPC2iKy2c18A9K4zl/tu\noDr/ck3KU1t1Yqzmync0Ut5Zx1DtoLd6YZYRn8F1x1yHP+gnxZ2C09GBv1dvOpx2Fzw3E+ISYfKt\n1tzvSqnuYhZWyuj9s60l2uWzgKfaue/xxpidItILeEdEvq270k5+EtGJRjrjGKr19A49AhLjEkmP\nT+9YMAdwOKHPj+BXK+GSpZBxcHgaqJTqLNfQMJhXSwTmtnfHxpid9ve9WL0AY4E9djc39ve9dvW2\npjbdaX/ev5xOOoZqBw3onSAYCBDw+1uu2BinC5L7QFJv0AGgSnU3Lc3T3K55nEUkUUSSqz8DU7FS\npVanNoWGKU8vskeiHwcU2d3mS4GpIpJuD1SbCiy11xWLyHH2yPOLaJg+NZLHUO2gXe4RVl5UyKqX\nF1BeVMSJF15MSs/MaDdJKdV5dmA9N29ufXv0Bl6x3/JyAc8aY94Skc+AF0TkEuAH4Fy7/hLgVGAj\nVqa3XwAYY/JF5C/AZ3a9P1cPXgN+AzwBeLEGqlUPVruzE46h2kHnco+wj158ho8XPgfAwMOP5KfX\n3IQ3SXOPK9UNtbmLLCsr6+dYA+Aa63YvA36dnZ3d3mfoStWjXe4RFgqF6n/uBhdQSqmweRZ4Dyt4\n11WG9Q73s53eIhWztMs9wo6a9lPKCguoKC7ipDmX4U1OiXaTlFKdJDs7O5iVlXUm1mj2udS+h34P\nkXkPXR3AtMu9EwT8fkKhIO54b7SbopRqPx2Vqro0vUPvBC63O9pNUEopFeP0GbpSSikVAzSgK6WU\nUjFAA7pSSnUzIjLcTpta/VUsIleLyG0isrNO+al1trnRTlO6QUROrlM+zS7bKCI31CkfIiKf2OXP\ni4jbLvfYyxvt9YPDfQzVPhrQo6CgsoAiX1G0m6GU6kRZWVlDsrKyjs/KyhrS0X0ZYzbYaVNHA2Ow\nJnKx0zJyT/U6Y8wSABEZCcwEDsdKUfqgiDhFxAk8gJX6dCRwvl0X4G/2voYCBcAldvklQIFdfo9d\nL9zHUO2gAb2TbS/ezlXvXcU1K65hd9nuaDdHKRVhWZbVwFpgMbA2KytrdVZWVlYLm7bWZGCTMeaH\nZurMABYYY3zGmC1Ys7mNtb82GmM2G2P8wAJghj0V60nAQnv7+VipTav3Nd/+vBCYbNcP5zFUO2hA\n70TFvmL+9PGf+HLfl3y6+1PuXn03/mA753hXSnV5dtBeARyNNb1pqv39aGBFmIL6TOC5OstXisga\nEXnMnjsd2p7atAdQaIwJ7Fdeb1/2+iK7fjiPodpBA3oncoqTZHfttK+p7lREE64oFcv+S/PZ1v7T\nkZ3bz5xPB160ix4CDsHKuZ4D3NWR/avuRd9D70SJ7kRuPu5menh74HV6mXPEHOIccdFullIqAuxn\n5SNaqDYyKytrSHZ29pZ2HuYU4HNjzB6A6u8AIjIPWGQvNpXClCbK84A0EXHZd9B161fva4eIuLB6\nHfLCfAzVDnqH3sl6enty09ibmJs1lx7eHtFujlIqcvoBLT1T89v12ut86nS3V+cpt52JlVIVrNSm\nM+0R6kOAYcCnWBnQhtmjzd1Y3fevG2sK0eXAOfb2+6dJrU6feg7wnl0/nMdQ7aB36FHgcOh1lFIH\ngF1AS69hue16bWbnQZ8C/KpO8d9FZDRggK3V64wxa0XkBWAdEACuMMYE7f1ciZWz3Ak8ZoxZa+/r\nemCBiPwV+AJ41C5/FHhKRDYC+VgBOtzHUO2gc7krpVTrtCd96mqsAXBNWZ2dnR2u0e7qAKe3ikop\nFTm/omHq1GplwOWd2BYV4zSgR0BVqApfwBftZiiloizb6lqcCKwGKrBe8aqwlydma9ejCiN9hh5m\neRV5/Oer/5Bfmc/VY65mYPLAljeqK+CHinxAIKkX6GttSnVrdtDOske99wN2dWBUu1JN0oAeRoFQ\ngP+u+S8LNiwAYFPRJh6d+mjrR7MHg7AzG549D+JTYPYbkHFwk9WNMfoeu1LdhB3ENZCriNEu9zAK\nmRD5lfk1y4WVhYRMqPU7qCyEpTeDrxiKdsCH/4ZGBi1WllXx7cc5rHhmA4V7yjGhrj+wUSmlVGRp\nQA8jt9PN3DFzGZo2lJ7envxjwj9I86S1fgdx8dD3R7XLA8Y22uWet7OUZfPXs+6DXbz8z9VUlOj0\nsUopdaDTLvcw65/Un0emPkLIhEjzpBHnbMNMcO5EOOkWGPoT8KZBr8MbrVZZWlXz2VcRQO/PlVJK\nRSygi0g88D7gsY+z0Bhzqz2D0AKsiflXAz+3M/DEjA7NAJfYE0ZMb7ZKv2FpDBvbm9xtJYw7eyge\nr16XKaXUgS6SkcAHnGSMKRWROOADEXkTuAYr/+0CEfkPVv7bhyLYjpjjTXYz4fzhBKtCeLxOnHHO\naDdJKaVUlEXsGbqxlNqLcfaXQfPfhoXH6yIhxa3BXCmlFBDhQXEi4hSRL4G9wDvAJjT/rVJKKRV2\nEQ3oxpigMWY0Vlq8scBhrd1WRC4TkWwRyd63b1/E2qiUUkrFgk55bc0YU4iVJu/H2Plv7VVN5r81\nxjxsjMkyxmRlZmZ2RjOVUkqpbitiAV1EMkUkzf7sxUrztx7Nf6uUUkqFXSRHufcF5ouIE+vC4QVj\nzCIRWYfmv1VKKaXCKmIB3RizBjiqkfLNWM/TlVJKKRUmOvWrUkopFQM0oCullFIxQAO6UkopFQM0\noCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6Ukop\nFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6\nUkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIx\nQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCul\nlFIxIGIBXUQGishyEVknImtF5Hd2eYaIvCMi39vf0yPVBqWUUupAEck79ABwrTFmJHAccIWIjARu\nAJYZY4YBy+xlpZRSSnVAxAK6MSbHGPO5/bkEWA/0B2YA8+1q84EzItUGpZRS6kDRKc/QRWQwcBTw\nCdDbGJNjr9oN9O6MNiillFKxzBXpA4hIEvAScLUxplhEatYZY4yImCa2uwy4zF4sFZENLRwqFShq\nY/Nas01zdZpat395Y/Xqlu2/vieQ20K72qorn5/GyppbjsT5aapd4djmQD5Hra3f1nMUjfPzljFm\nWhu3UarzGGMi9gXEAUuBa+qUbQD62p/7AhvCdKyHI7FNc3WaWrd/eWP16pY1Uj87Av8WXfb8tOac\n7Xe+wn5+9BxF5hy1tn5bz1FXPT/6pV/R/IrkKHcBHgXWG2PurrPqdWC2/Xk28FqYDvlGhLZprk5T\n6/Yvb6zeGy2sD7eufH4aK2vNOQw3PUcta+sxWlu/reeoq54fpaJGjGm0x7vjOxYZD6wEvgZCdvFN\nWM/RXwAGAT8A5xpj8iPSiG5KRLKNMVnRbkdXpeenZXqOmqfnR8WiiD1DN8Z8AEgTqydH6rgx4uFo\nN6CL0/PTMj1HzdPzo2JOxO7QlVJKKdV5dOpXpZRSKgZoQFdKKaVigAZ0pZRSKgZoQO/iRGSEiPxH\nRBaKyK+j3Z6uSkQSRSRbRKZHuy1dkYhMFJGV9u/SxGi3p6sREYeI3C4i94nI7Ja3UKrr0YAeBSLy\nmIjsFZFv9iufJiIbRGSjiNwAYIxZb4y5HDgXOD4a7Y2Gtpwj2/VYr0MeMNp4jgxQCsQDOzq7rdHQ\nxvMzAxgAVHGAnB8VezSgR8cTQL0pJEXECTwAnAKMBM63s9MhIqcDi4ElndvMqHqCVp4jEZkCrAP2\ndnYjo+wJWv97tNIYcwrWhc+fOrmd0fIErT8/w4GPjDHXANoTprolDehRYIx5H9h/Mp2xwEZjzGZj\njB9YgHXXgDHmdfs/4ws6t6XR08ZzNBErRe8s4FIROSB+r9tyjowx1ZM7FQCeTmxm1LTxd2gH1rkB\nCHZeK5UKn4gnZ1Gt1h/YXmd5B3Cs/bzzLKz/hA+kO/TGNHqOjDFXAojIHCC3TvA6EDX1e3QWcDKQ\nBtwfjYZ1EY2eH+BfwH0icgLwfjQaplRHaUDv4owxK4AVUW5Gt2CMeSLabeiqjDEvAy9Hux1dlTGm\nHLgk2u1QqiMOiK7JbmInMLDO8gC7TNXSc9QyPUfN0/OjYpYG9K7jM2CYiAwRETcwEysznaql56hl\neo6ap+dHxSwN6FEgIs8BHwPDRWSHiFxijAkAV2Llj18PvGCMWRvNdkaTnqOW6Tlqnp4fdaDR5CxK\nKaVUDNA7dKWUUioGaEBXSimlYoAGdKWUUioGaEBXSimlYoAGdKWUUioGaEBXSimlYoAGdNXlichH\n0W6DUkp1dfoeulJKKRUD9A5ddXkiUmp/nygiK0RkoYh8KyLPiIjY644RkY9E5CsR+VREkkUkXkQe\nF5GvReQLEZlk150jIq+KyDsislVErhSRa+w6q0Qkw653iIi8JSKrRWSliBwWvbOglFLN02xrqrs5\nCjgc2AV8CBwvIp8CzwPnGWM+E5EUoAL4HWCMMUfawfhtETnU3s8R9r7igY3A9caYo0TkHuAi4F7g\nYeByY8z3InIs8CBwUqf9pEop1QYa0FV386kxZgeAiHwJDAaKgBxjzGcAxphie/144D677FsR+QGo\nDujLjTElQImIFAFv2OVfA6NEJAkYB7xodwKAlZNeKaW6JA3oqrvx1fkcpP2/w3X3E6qzHLL36QAK\njTGj27l/pZTqVPoMXcWCDUBfETkGwH5+7gJWAhfYZYcCg+y6LbLv8reIyM/s7UVEfhSJxiulVDho\nQFfdnjHGD5wH3CciXwHvYD0bfxBwiMjXWM/Y5xhjfE3vqYELgEvsfa4FZoS35UopFT762ppSSikV\nA/QOXSmllIoBGtCVUkqpGKABXSmllIoBGtCVUkqpGKABXSmllIoBGtCVUkqpGKABXSmllIoBGtCV\nUkqpGPD/AVpeh4x0Xu7DAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3906,7 +3912,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VeX9wPHP9+6R5GaShCVDhsiq\n4kAc4BatA/05W7UqVm3RLqu1zmotjmq1jrq1Wq1bceKuW4bgYo8wwshe9+bu5/fHuWSQEALkAobv\n+/Xildxzn3POcwLhe89zvs/zFWMMSimllPpxs+3oDiillFJq22lAV0oppboBDehKKaVUN6ABXSml\nlOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQMa0NWPioj8WkRmiUhERB7f6L0LRGSJiDSIyNsi0rPF\ne2+ltm/4ExWR71q8P1pEPhGRWhFZLSLXbMfLUkqpbaYBXf3YrAFuAh5tuVFExgM3AycAucBy4JkN\n7xtjjjHGZGz4A3wOPN/iEE8DH6f2PQS4RESOT+N1KKVUl9KArn5UjDEvGWNeASo3eus44HljzA/G\nmChwI3CwiAzc+Bgi0g84CPh3i839gP8YYxLGmKXAp8CeXX8FSimVHhrQVXci7Xw/vJ12ZwOfGGNK\nWmz7B3C2iDhFZAgwFngvLb1USqk00ICuuou3gVNFZKSIeIFrAQP42ml7NvD4RtteB04BGoEFwCPG\nmJnp665SSnUtDeiqWzDGvAdcB7wIlKT+1AOrW7YTkQOBIuCFFttysT4Q/AXwAH2Ao0Tkku3QdaWU\n6hIa0FW3YYy51xgzyBhTiBXYHcD3GzU7B3jJGNPQYtsAIGGM+bcxJm6MWQ38F5i4XTqulFJdQAO6\n+lEREYeIeAA7YBcRz4ZtIjJcLH2BB4G7jDHVLfb1AqfSdrh9kfW2nCkiNhEpAk4Dvt0uF6WUUl1A\nA7r6sbka6zn3lcDPUt9fjTVU/jTQAMwAvgA2nkt+IlADfNhyozGmDpgE/BaoBuZi3dnflK6LUEqp\nribGmB3dB6WUUkptI71DV0oppbqBtAZ0EblMRL4XkR9E5Depbbki8q6ILE59zUlnH5RSSqldQdoC\nuogMByYD+wKjgONEZHesZ5/vG2MGAe+nXiullFJqG6TzDn0P4CtjTMgYEwf+h5V4dALwRKrNE1iJ\nSkoppZTaBukM6N8DB4lInoj4sOb09gEKjTFrU23WAYVp7INSSim1S3Ck68DGmPkicgvwDhDEmgqU\n2KiNEZF20+xF5ELgQoBhw4bt/cMPP6Srq0op1Rmy+SZK7ThpTYozxjxijNnbGHMw1vzeRcB6ESkG\nSH0t28S+Dxpjxhhjxni93nR2UymllPrRS3eWe4/U175Yz8+fBqZhLb9J6uur6eyDUkoptStI25B7\nyosikgfEgF8ZY2pEZCrwnIicD6zAWopTKaWUUtsgrQHdGHNQO9sqgcPSeV6llFJqV6MrxSmllFLd\ngAZ0pZRSqhvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehKKaVUN6ABXSmllOoGNKAr\npZRS3YAGdKWUUqob0ICulFJKdQMa0JVSSqluQAO6Ukop1Q1oQFdKKaW6AQ3oSimlVDegAV0ppZTq\nBjSgK6WUUt2ABnSllFKqG9CArpRSSnUDGtCVUkqpbkADulJKKdUNaEBXSimlugEN6EoppVQ3oAFd\nKaWU6gY0oCullFLdgAZ0pZRSqhvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehKKaVU\nN6ABXSmllOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQNpDegi8lsR+UFEvheRZ0TEIyL9ReQrEVki\nIs+KiCudfVBKKaV2BWkL6CLSC7gUGGOMGQ7YgdOBW4A7jTG7A9XA+enqg1JKKbWrSPeQuwPwiogD\n8AFrgUOBF1LvPwGcmOY+KKWUUt1e2gK6MaYUuB1YiRXIa4HZQI0xJp5qthrola4+KKWUUruKdA65\n5wAnAP2BnoAfOHoL9r9QRGaJyKzy8vI09VIppZTqHtI55H44sNwYU26MiQEvAeOA7NQQPEBvoLS9\nnY0xDxpjxhhjxhQUFKSxm0oppdSPXzoD+kpgfxHxiYgAhwHzgA+BU1JtzgFeTWMflFJKqV1COp+h\nf4WV/PY18F3qXA8CVwC/E5ElQB7wSLr6oJRSSu0qxBizo/uwWWPGjDGzZs3a0d1QapMSDQ2YcBhb\nZiY2t3tHd0elh+zoDijVEV0pTqltFK+qYv1fb2bFz35Ow4cfkgyFdnSXlFK7IA3oSm2jyKJF1L78\nMtGSEkp//wcSDQ07uktKqV2QBnSltpE9N7f5+5wcxKa/Vkqp7c+x+SZKqY44i4vp88jDhGbOJHvS\nJOx5eTu6S0qpXZAGdKW2kT0zk4xx48gYN25Hd0UptQvTsUGllFKqG9CArpRSSnUDGtDVLskkEju6\nC0op1aX0GbrapRhjiK5YQeUDD+IZNoysnx6HIzu7Tbt4RQXJSASb14ujRRa7UkrtrDSgq11KoqKS\nleecS3z9empffhlnz55kHnZoqzbxigpW/uI8IosX4xs3jl633oJDM9eVUjs5HXJXuxSDIVFf3/S6\nvUVg4pWVRBYvBiD02WckGxu3W/+UUmpraUBXuxR7IECf++7Ftfvu5P/1JpJjfsKiLz+jvrKCRCIO\ngCM3t2kueeaxxyI2G/Gamh3ZbaWU2iwtzqJ2OSYWIxEMsm7tap694U9gDE6Pl3P/fh9Z+QWYZJJE\nZSWJ+npMJMKaP16BPTubnrffjrOwR9Nx4tXVNM6eDXY73tGjceTktDpPvKoKk0hgz8zE5vFs78tU\nXU+Ls6idmt6hq12OOJ3g8zHn7dcg9YE2Fm6k5JuvrfdtNhwFBdiyslhzxZVEFi8mNHMmlQ89yIYP\nwMlIhMqHH2b1r6ew+uJLqHnmv5h4vOkcsfXrWTV5Mst/ejzBL78kGYls/wtVSu1SNKCrXZLd4aDX\n0OGttvXoN6B1o3gce4u7bntOLiLWTZqJRgnPm9/0XuP332NisabXtdNeI/zDPBI1Naz989Uk6urS\ncBVKKdVMs9zVLklsNoaOO5h4NMLK7+Yy8vCjyS4sbt3G5aLHHy+n9sWXsOdkk3nkEYSjCTwuO7aM\nDHr8/vesuuACsNko+M1l2Lzepn3dA/o3fe/q0wex66+aUiq99Bm62uXE1q+n5rnncBQXk3HkESTs\nDjx+f7tto6Wl1H/4IRLIxr33GBpjCbwFefh9Hkw8TqK6GoOVSCd2e9N+iZoaQnPmEl2xgqyJE3H2\nKNhOV6fSSJ+hq52a3jaoXUq8spJVkycTWWRNSyuoqCTvwslt2iXq6zHhMPacHKrHH01OeSmrJh6D\n2O30eeop2GMo4nDgKGg/UNuzs8mcMD6dl6KUUq3oM3TVrcQSSToadTLJJNHlJU2vwwsWtEpmAys7\nff1tt7H8tNOpfOBBiu1xav9yAyYcJhkMUv34Y7p0rFJqp6MBXXULxhiWVwT5w/Pf8ODHy6htCFFf\nVUFdeRnRxkbiFZXEKyutZ9+X/wEAW0YG+RdfhM3lAqxpaNGVK0nWN5CsrSO+Zg2VDzyArboKz9gD\nms7lP2Bcq+F1pZTaGeiQu9ppJJOG1TWNvPPDOvYbkMfAfD8+d+f+iVY0RDjjwS9ZVxdm8foGjuoR\n4ZWbriLQo4hTL/4d63//BxCh9z33EDj5ZDKPPBJcLmocPurqwmQRo/Jvf6Nu2muIy0Xvu+8mtmoV\n4XnzQIQek88nMP5gbFlZBIv7MmN5FQ2ROMN7ZdEjU+eYK6V2PA3oaqdR0RDhpHs/ozIYxW4TPvrD\n+E4HdGMgGLGGzkf2ymL+B9NJxOMM2Wtfqu64s2kp17LbbqPnbbfiLCpiaVkDZ9z/KeFYgsfPHUP2\nmrXWsaJRal5+Cf+E8bj33x9bfj6OnBwc++5LVTDCb/87l08WVwBQHPDw6q/G0SNLg7pSasfSIXe1\n0zDG8LdJI/j7qaPok+OloqHzi7Fk+5w8cu4YhhVnURjwMPiAg0CEcGMIR+9eTe2cu/VFHA5iiSR3\nvb+YsvoIdeE4f31rIfbjTmxq59pjGBx2KL7T/69VtbX6cLwpmAOsrQ3zxdLKbbxypZTadnqHrnYK\n0XiCJeVBrnzpO4qyPNz/s70pzHJ3en+Xw85efXN48vx9cTlsuE2MC+5+iGQiid/hwtlvIDaHjcwj\njrCy041hVJ9spn2zBoBhhX4Ch0wgsM9rSDCEr6iImMeNMxLFVFVhUtPSbNJ25pLbqZ+L1Y+PiBwP\nDDPGTN3RfVFdQwO62inUNsb400vfURWMUhWMMv37dfzmiMFbdpDqarKSCWxeH/bMDFxeH431Uabd\n9y0O11AwhnFBJwV5ICJM+kkvBub7CDVGGdMni2m3XE35iuWMOvQoDjj5dOzryyk5/zxMPEHfp57E\nkZOD3+HmxNE9eWWu9UFgcGEGe++m9dLVjiXWEoZijEl2dh9jzDRgWvp6pbY3Dehqp+C02xhQ4Gdl\nVQiAIUWZW7R/rKyMleecQ7RkBYVXXknglJOx+/0kk4bylfUkE9ZUtsrSBgr6WsfO8bs4sIeT+k+/\noioYoHzFcgC++WA6+518GpV//zvxsnKyTzuVyMJFVH3+Oc5evbjmtLOYcuggwvEEhZke8jM7P5Kg\nVFcRkX7AdOArYG/gVhG5CHADS4FfGGMaRGQicAcQBD4DBhhjjhORc4Exxphfp471KJAPlKf2XSki\njwN1wBigCPijMeaF7XWNasvoWKHaJuX1EUqrG6ncgufd7cn2ubj9/0bxt0kjeOK8fRg7MG+L9g99\n+ZU1v9wYym6/nWTI+mDgdNsZd/LuiEBOkY8+e2x0N22z0zh7Nrm79cPudAKQ32c3bHYHroEDrb6d\nfDKJ3GzK9x7Jul49cKxdQf9cD3v2DLQK5om6OqKlpcTWl5Fssa67Umk0CLgPOAQ4HzjcGLMXMAv4\nnYh4gAeAY4wxewObWrLwn8ATxpiRwH+Au1u8VwwcCBwH6PD8Tkzv0NVWK6+PcO5jM/hhTR2HDC7g\njlNHkZex9Xer+Rluzti37xbvVx2M4B48GGw2SCbxDB+OOKx/2rbGenoFv+eMX/bHNIZwJRqwbmAs\njuwAPS67jFhjiF/cfh815evJ77MbjvoG/GPHWivB5eUy582Pmfve2wDsf8Ip7D9gIDiaf32SoRA1\nL7xA2a23IT4f/Z/9L+5Bg7b6Z6FUJ60wxnwpIscBw4DPUgWEXMAXwFBgmTFmear9M8CF7RxnLDAp\n9f2TwK0t3nslNZQ/T0QK03ANqotoQFdbrSoY4Yc1VhWx/y0qJxiKEEiEcQQCnT5GKBInmkiS5XFi\ns3W8VHZjfR3rliwCoGjgILxZAcrqwpz72EzG9fLx65dfhdJV+EeOaKpNbiIR6p54hHhVNfE1a3A/\n9ijOsWNbHdeRm4uDXLxAoMgq0FL22BNUPvww3lGjcB8wlprysubrXr8OY289uJUIhqj+z9PWOUMh\n6t56iwIN6Cr9gqmvArxrjDmj5ZsiMroLztFy+E3Xs9+J6ZC72mo5Phd5fmuVtf75fmRlCXVvvImJ\nxymtaeS26Qt4+/u11ISi7e5f2RDhpjfmc8ETs5i3to5EYtP5PLFolFmvvcxLU6/npanXM+uNV4hH\no3y6pIJ5a+t4aNY6jnqxhOW7j6ba3fr5e+CEEym+/jryLrkYV79+nbo2/9j9IZGg8euvCb7+Bof8\n7Hyyi3qS26s3B55xNg6nq1V7m9dD5lFHWS8cDjImTOjUeZTqIl8C40RkdwAR8YvIYGAhMCD1jBzg\ntE3s/zlweur7s4BP0tdVlS56h662Wn6GmzcvPZA1q8vpIVEaf/trTK9eJCaewM8ensHyCuvm4ZnJ\n+zF2YH6b/f+3qJynZ6wE4LzHZ/L6lAM3uUBLPBqhdOG8ptelC+cRj0YYXNgcvIsCXpaWB5uOEa+s\nZNUvLyKycCEAuz3zNI58qx/hhnrisRgOl7vdSmuePfdkwOuvEa+owD14MPacHE6/4RYA/Nk5bdrb\nMzLIu3Ay2aecbGXZZ3d+lEKpbWWMKU8luT0jIhueKV1tjFkkIpcAb4tIEJi5iUNMAR4TkctJJcWl\nvdOqy2lAV1vNZhN6ZHnICK1n5S/OA2Mo+vNVhGw2yurCTe3W1Ybb3d/nal4P3euyI+3M8d7AmTSM\nnXQaL9/6FwD2P/YkHEnDbnk+Xp9yIHNX1bBHcRavfbOGCUN7AFYhlsiSJU3HiCxejO8nPyFUV8sH\nj/2LZbNnMvqoY9nn+FPwZra+q7dnZmLPzMS9++5N29oL5C05srNxZGd32EaprmKMKQGGt3j9AbBP\nO00/NMYMTU1tuxcrYQ5jzOPA46nvVwCHtnOOczd6ndElnVdpofXQ1TZLhsMkamoAsAcCRB0uvlxW\nybWv/sDgwkymnjyC/HaS5aqCUV6cvYp5a+q5bEJ/+mQ4sLdzt5xoaKDykUeJrF2D/6wzcOQX0PDo\nYxRMnoyzhxW868IxTCSKze3CFwuTqK0Fu5366dMpu+VWXLvtRt8nHsdZWEj5yhL+ffmvm45/wd0P\nEygsStNPR3UjP8rnxyLyW+AcrES5OcBkY0xox/ZKpYPeoXdTodoakokEDpcLT8aWzeneUjaPB1tR\nc0D0AAcMzOPFi8fistsI+Fzt7pcVDXLCd29zdHkFkUc+I3zTjfj3269Nu2QoRM1//0uiupqGV14l\nf8qvkVi8KZM9EQphmzOXmueeI+fsnxPLyiJZU4tJxPHuuy/9X36JWFkZido6HPn5ePwZ2B0OEvE4\nnoxMJBol2diIzetNy89nc0J1UeqrwvgDbryZTuyOjlNbQnURFs8qIyPbTa/BOXgynNupp+rHyBhz\nJ3Dnju6HSr+0BXQRGQI822LTAOBa4N+p7f2AEuBUY0x1uvqxK2qoruL5G6+iqnQ1e008gbEnn572\noL4xl8NOQWbHJUZNPE71Y4+TbGgAIDR3brsB3ebxkHnkkdQ8+yzicpExYQLOomIcudYQeLK2llWT\nJ0MySd7kC1h33fU0fv01zt696f3Pu6l/510q7rsPz/A96fPgg3gzszjruqms+nYOu+0xnNpbbsN7\n3bU7JKCH6qO8fs83lK+sx+m2c8Z1+5GZu+lCL+FgjPefmI/YhP4j86kpD1GUsfXP6xsbogRrIri8\nDjx+Jy6PfsZX6scqbVnuxpiFxpjRxpjRWKsYhYCXgSuB940xg4D3U69VF1o97zuqSlcD8PWbrxIN\nt/8Me0ez+f0U/OY3ADgKCggce2y77exZWRT85jIGvPkGA995B/fAgU3BHCDZ2AjJVIa8MTR+/TUA\nsdWrSdQ3EFmxAgBnn76Iy4UtmSRDHAwu7ou7pp7sSSch7h2z2lsynqR8Zb3V30iC6rXBjtsnDDmF\nPobuX8Q3769izvQVhOrbn0WwOdFwnJmvl/DsTTN56uovqCxt2KrjKKV2Dtvr4/hhwFJjzAoROQEY\nn9r+BPARcMV26scuIbdXn6bvM/PysTu2z19zfTjGt6tr+WxJBf83pg+75fo6nFtu9/kInHgCmUcc\njtjt2PM2vTqcIyenaW55m+Pk5JB96qnUvvoqJpHAPXgwkUWLsOfl4erbh8wJ4/H9ZDRZxxwDySTV\nzzyDOJzWs/kHH8S71170Gt0V03W3nN1pZ/C+hSyasZ7MPA95vTvOOXL7HYyY0Idnb5phfQBYF2K3\nERUMG9dzi88dCcVZ8b1VKc4YWPl9JcUDNalPqR+r7ZIUJyKPAl8bY+4RkRpjTHZquwDVG15viibF\nbZlIY4jqNaWsX76E/qPHkJW/qdUeu9bSsgYOu+N/AOT4nEz/zcHbXCc8kUhSGYwiYk2T21QmfKK2\nlmQ0CiLE160jWVePze8HpxPvsD0AiFdVEa+sxITDgFDyf/8HgLhc9HnkYfz7tJcgnH6NDVFikQQO\nhw1fYPMjBcHaCC9MnUVDtbXex8RLRtB/5Jb9HYfqoiyetY5kAj5/cQkur4NTrtibnKK2SYmqyY8y\nKU7tOtJ+6yYiLuB44E8bv2eMMSLS7icKEbmQ1BKFfftu+XKguzK310fRwEEUDdy+K5VVt1hAprYx\nRrKDz4rVwSixRBKf206Gu/2krmTSMH9dPec8OgOXw8ZT5+9HTmaUhEmQ6crE42j+sGAPBEiWl2Ma\nGyk59TTEbsfEYuRNnox32B7Eq6tZc+WfCH78MeLzMeDVV3AUF+M46RSSx/yUEo+f4mCUXH/7CXxb\nIlQfxSQNTpcdl3fzv2LeDBfeLZgM5MtyceLvfsLX01dS0DeTogFb/gx99YIqPn1uCWMm9mPSH/Yi\nI9eDP7Dt1666FxH53BhzwI7uh+qc7bFS3DFYd+frU6/Xi0gxQOprWXs7GWMeNMaMMcaMKSjYPneY\nqvNMPE6srIzYunUkUoVQBhRkcOa+femf7+fO00aTuYkEq8qGCL99bi6H3PYRT325krrG9guZ1Efi\n/PWN+VQGo6ytDfP3dxfy+PdPceSLRzJz3Uxiieb94uXlrDj9DOrff5+siRMxsRjicpE18Rirv7EY\nwY8/tr4PhWj89lv6PftflhzyUw575FuOvfcL7vlgMQ3hbSuqEqyNMO0fc3nymi9Y8MVaIo3xbTpe\ne0SEQIGP8WcOYfjBvfBmbD4Qx2MxqtetYd4nH1JXXkZ2oZUAOOvNEj58agF2h2Cz68KRyiIiDgAN\n5j8u2+Ph6hlYBQE2mIY1J3Jq6uur26EPaisk6utJ1NVZz7cDAULiJBSL43c5sJcsY8WZZ5JsbKTn\nrbeQeeSR5PpdXDVxKOF4kgy3A4+z/Sz3peVBPlpYDsBd7y3m1DG9223nctgYUpjBF8us57zDijPI\ncmcRT8b555x/MixrMHlZVq2IZCRCrLSU8n/cRfFNN5J/0S+xZWZiTy30Ik4n/gkTCH74ITa/D+/I\nkUh+Pm988G3T+d6Zt56Lxg8kw7P108DKVtSx1+m7EzRJ/C4HiXiCdP2ayWbWvm8pXF/Hvy+fQjwa\nwZsV4OdT72bixSMoX9XAHgcU48vSErDp1O/KN84Ebgb6AiuBq0qmHvv0thxTRF4B+mDNFL3LGPOg\niDQA9wMTgbXAVViFVvoCvzHGTBMRO9b/v+OxKhXda4x5QETGAzcC1VhFXQaLSMOGxWRE5ArgZ0AS\neMsYc6WITMYaSXUBS4Cf6xz3HSetAV1E/MARwC9bbJ4KPCci5wMrgFPT2Qe1dZLRKPVvT2ftNdeA\nw0HB9Pd47PtqXp27htP26cMp3jqSQSsju/KBB/GPHYstL48Mj5PNjR4XBdzYbYLfZefxX+zLMzNW\n4nM5OGF0T3L9zYHF67Qz5ZD+7N0rEydJRpoakos9RIdcSEWsBkdFDaQCuvh8ZBx9NA1vv03lE0/S\n8957cPZoHtlx5OTQ8683kaitxeb348jJQWw2ztq/L298t4ZYwnDWfn3JcG3br4Snt58LH5/J4rIG\nCrPcTPvVgfi26YhdIxxsIB61nrk31tWSTMTpP6qQ/qN09CvdUsH8IWj6p7Ab8FC/K99gG4P6ecaY\nKhHxAjNF5EXAD3xgjLlcRF4GbsL6P3gYVhLyNKwyq7XGmH1Sy8R+JiLvpI65FzC8RXU2AETkGOAE\nYD9jTEhENtQhfskY81CqzU2pY/9zG65JbYO0BnRjTBDI22hbJVbWu9qJJYNBqp9NLSMQj1MbTXLv\nh0sB+Ps7izj+suaRuMyjjyZq9xGpiRAXQ8QG7g4WlLHWgD+I+nCMJ74o4dW5awBYVxfm8iOH4Ggx\n9JvtEibE1lB2y63ULlwIxnDG229QW7qM5JwfYMAQAGocPuafdhG7XziFtaEEb/1Qw696tA5Wjtxc\nHLmt66EP75nFx3+cQDxhyPI68bm37VciZgyLy6zpX+vrItQ0xigMbFtiYFfwZWWz+z5jWfb1TEYd\ncQwu787wMWOXcTO0+VznS23floB+qYiclPq+D1Zt9Cjwdmrbd0DEGBMTke+w1v4AOBIYKSKnpF4H\nWuw7Y+NgnnI48NiGu29jTFVq+/BUIM8GMoDp23A9ahvpKhKqXTafj6zjjiX8/ffWtLDcLEb1zuab\n1TV4nDbcXjdFb75JMhQk2Wsg0/75LZWlQYYf1puVhQ7mVQT541FDyPG7aIzFqQ3FEIQcvxOfy8GQ\nokzqQxHG9PKzYG0mC9fXs6IyRCJpoL4GsdmwZ2Vh9/lIlJcTWbCgqW9SVUPssWfpMfVvTdsM8Kf3\nVlIZtBLzLjuscwmBXpcD7zbelbfkdzvYf0AuXy6rYlCPjC5JsusKvkCAI385hWQigd3pxOPXJbm3\no01l9W51tm9qePxwYGzqjvkjrKH3mGmeupQkVfrUGJPc8FwcK1t/ijFmejvH7HghhLYeB040xnyT\nKg4zfkuvRXUdDejdTCKWoLE+RkNNhKx8L76srQsoNrebwEknkXnkkZS7s/jv12v47RGDsItQkOUm\nN8ONK7s/AMu/raCy1Pp/4Pv3VzPh8tFc8+Z8LjpkAFkeBzOXV3Pe4zNx2IUnfrEvg4sy8cQb+eat\naWSuWM69J5zBPV9ncPnRQ5G1pay+8k/YfF6Kb74ZZ48e+MeNwzduHI1ff032Kafg7N2bXrff1qoQ\nSl6Gm6cu2I+/vDaPvrk+fj52t23/YW6FvAw395y5F43RBB6nnYLMnefZtDcza0d3YVe1EmuYvb3t\nWyuANeU3JCJDgf23YN/pwMUi8kHq7n0wULqZfd4FrhWR/2wYck/dpWcCa0XEiVV2dXPHUWmkAb2b\nCdZGefqGr0jEkhQOyOLYi0fizdy6oO4IBCi3efjZA180lUJ95VfjGFrUOjDkFPoQsRYnycr3UB+N\nk+WxkuIaognu+2gJ8aQhnjT8+4sVHDeymL7VC/jqJWtIf+2SRdzwt7vIkCir/3x100pv5Xf/k+Lr\nr8ORl0evv98OsRjidmPPahuY7DZhaFEm//r53rjs0qV33VuqvUI0apd2Fa2foYO1cuZV23DMt4GL\nRGQ+Vs3zL7dg34exht+/Tq0FUg6c2NEOxpi3RWQ0MEtEosCbWP2/BvgqdYyvsAK82kE0oHczlWuC\nJGLWMqjrl9WR7GgyeCcYDGv3M/l5AAAgAElEQVRrG5ter61tZHSf1usA+bNdnH7NvpSvaqBw9wCf\nra7mtSkHku93kTAwYUgPvlxmPXLbb0Au89bW0dMWado/Ho1itwnY7dgymoeC7YEA2Kzn6Z0pSyoi\nBLytM9RjiQT14Tgepx1fKshH4wmqgjEECETqcQjYAgFsrp1jeFx1LyVTj32635VvQBdmuRtjIlhT\ngjeW0aLN9Rvtk5H6msQKxht/oPgo9afNPqnvp2IlNbd8/36srHq1E9Dyqd1MsCbCi7fNpr4yzJ6H\n9GL/4wfg8XcwDathPVSvgEBv8BeAvXXbxlicTxdXcP20eQwrzmLqySPI28I70JpQlFXVIUKRBHNW\n1mC3wRkj8/j0mcepXL2SCedMpnDAIOwOB7Hyciruvx97Ria555yNo4PlYDenMRbni6VV3PnuIsYO\nyOOi8QPJ9btYuK6ea175ln/sk0nj1VeSqK4m/7JLCRx3HPZMvcFQm6Qrxamdmgb0bihUGyGRsFYq\n67C0ZsN6eGwiVC4BdyZc8qUV2DcSiSeoDcVwOWxkbyJzfXOi8QQ1wRjRZJIsj5Msr5NouJF4NIrH\nn4HN3jxn3SSTILLJZV47a31dmHFTPyCeGqV4/qKx7NMvl7vfX8wof5Je111GLFW4BWDg++/h6tVr\nm86pujUN6GqnpkPu3VBn1gMHIBa2gjlApB4qFrcb0N0OOz2yrIDbUF3F4q8+J693H3r0G4gno3PZ\n0i6HnR6B1gvNuDxeXJ7WJUuDkTjhWIJMjwOXo+Pyq5sjgM9lpy5srdaWkZqSdvgehSQqKkhUVLRq\nnwzpehhKqR8vXetxV+byQd/UfPKsntBjjw6bh+pqefX2m/jgsX/x/I1/pnxle9NVt15VMMLUtxZw\n1sNf8cGCMkLRbVs2Nc/v4vmLDuDUMb2558yf0DPbmg8+oMBPn74F5P7qV01tPaNGtZmjrpRSPyZ6\nh74r8xfAqf+GaAM4vZBZ1GHzZCJB7fp1Ta+r166hz7ARm2wfqqslFg5jdzrJyNl8sJy/tp4nv7SG\nwH/19Bw+u+LQpkS2rWG32xhSlMnUSSNblXH1OO14sjNJnDyJwOGHkWxsxJGfv03P65VSakfTgL4L\nSCTiRBsbcXo8OBwbPVPPKAA2v/xnLBJBRDjqost458F/ktOzFwP33neT7UN1tUz/110smz2DjJw8\nzrjp9s2Wcc1ssUqb12lnc0uVV9RHmLu6hsJMN31z/QR87ecLbKomuz0QsDLplVKqG9CA3s1FG0Ms\nmzOLudPfYOiBhzD0gIO3eJWwSCjIwi8/oyAnj5zySk675Pe4e/bEn53T8XlnzwCgobqS5XNnMepw\na5ZNOBQjHklgs0uroiB983zcceooPl1SweSDBnS4ylpFfYSzH53BvLV1ANx2ykgm7dXbmv6mlFK7\nIA3o3Vw42MAbd98GxlC64Af6jfjJlgf0YJAlMz6nR04x6+/8BwDuIUPo++gjmxymdrhceDIyCTfU\nA9BjtwHWsUIxvnl/FbPeKCEzz2PV4s6xnm1n+1xM2qs3x4/uicPWcXpHJJ5sCuYAb3y7lmNGFDXV\nVjfGgDHIZo6j1K4qtdRr1Bjzeer148DrxpgX0nCuh4E7jDHzuvrYqpkG9G5OxIbNZiOZSIBIq+lh\nW8LpdpOsqmp6naiutqaXbYIvkM1ZN9/B4hlfULz7EHJ7Wdnz8ViS2W9Zz8nrK8OULq5hyL6tn91v\nCOaJ2lqw2dqdG+522hhcmMGi9VYhlPMO7E91MMbCdQ3slu2G5/5DbPVq8i++GGdRx7kBSqXd9YE2\n5VO5vnabyqd2gfFAA/B5uk9kjLkg3edQGtC7PU9GJqdc/Ve+ffdNhh44vtPTzFpy+zMYtM9YfAVF\nxObPJ7a+jJ5/u7nD1dtsNjvZhcXs89NJG20XigZksXZJLWITCvq0v5BLtLSUtVdfg83lougvN+As\nLCQYiROMxPG57eSn1m6fVVJNn1wvTpuNCbd/RDxpOHRwPtcF8gn9/Q7CCxbS5/77NINd7ThWMG9T\nPpXrA2xtUE+Vpn4O6A3YseqYVwC3Y/2/PhO42BgTEZESYIwxpkJExqTanAtcBCRE5GfAlNShDxaR\n3wFFwB83dbcuIhnAq0AO4ASuNsa82l6/jDHPporH/MEYM0tE7gf2AbzAC8aY67bmZ6Da0oDezTnd\nbvoMG07PwUOwb5wQ10lun4/d9z2AaGOI4jvuwIaVUCbOzh0vEgpRWbqSNQsXMGT/cRx94QiCtRF8\nWS5c3rb/BBN1day75lpCX3wBQPk//oH7quu45e2FvL+gjAlDevCniUPpkelh4ohiAJ6dubJpAZkv\nS6qRY/sBkKytJRGNY08aRJ+vqx0jHeVTjwbWGGOOBRCRAPA9cJgxZpGI/Bu4GPhHezsbY0pE5F9A\ngzHm9tQxzgeKgQOBoVi10zc1/B4GTjLG1IlIPvCliEzbRL829udUHXc78L6IjDTGfLs1PwTVmj5g\n3EVsbTDfwOFy4Qtk48rPx5Gfv9lgHolHCMasgi7B6kqeueZy/vfkwzx9zeWETIyP1tfw0MwVVIdj\nbXe22RBv84Iz7iFD+WBhOc/NXk1lMMoLX6/m3XnrW+1y0KACClMJdpeMH4ht+VJc/ftT8NepzPxf\nFetX1JGIb/oRgVJp1OXlU7FqnR8hIreIyEFYxVaWG2MWpd5/Ajh4K477ijEmmXrWXdhBOwFuFpFv\ngfeAXqn2rfpljKltZ99TReRrYA6wJzBsK/qp2qF36GqbxCJh7E4XthbJZ5WNldwz5x7KG8u5ct8r\nsYWCVoKa2DjynAt5f0E5V7z8AwAzlldx31l7tVpS1p6RQdF111KenY3N4yF70kmsndk6gK+tDbd6\n3TPby+tTDiKeSOJ3O/CF86kdvR8fvL6e0iWV/PDZOn5241j8nV1FT6mu0+XlU1N34XsBE4GbgA86\naB6n+ebNs5lDR1p839GQ1llY8133TpVgLQE8G/dLRN43xvyl6YAi/YE/APsYY6pTiXib65PqJA3o\nOwljDKHaGoK1NYQb6skuLMbl9W5xRvr2Eo9GWbdsMbNee4niQUMZcehReDIywRjeXPYmLyy2Rupq\nIjXcedAd7L7vARQUFpNTVcOquL/pOOvrwsQSbe+cnT16UHTD9QggDgen7O3k31+UUNEQJc/v4rR9\n+rTZp1XtcW8OSz+tpnSJlQmfiBt+DHULVLfU5eVTRaQnUGWMeUpEaoBfA/1EZHdjzBLg58D/Us1L\ngL2Bt4CTWxymHmhbi7hzAkBZKphPIPWBpZ1+bZwMlwUEgVoRKcSqGPfRVvZBbUQD+g5Q0VjB9JLp\nFPmK2Ltwb7JcmVSvKeWlqTdQV566ExVhz4MO5eCfn4cva+db/KSxoZ4XbvwziXickrmzGbz/YXzz\nwTIaqiMceeyxPJP5DKvqV2EXO06niyN/OQVbfQNrplzK6Tfdwqx1uZTVRbjz1NHkbqLgi83R/M+z\nKMvDm5cdREM4Tobb0WHN8XAwSiySZNiBPQnWR1n5XSUH/LQPsTkziY8ejiNn0/Pnlepy19c+zfUB\n6Nos9xHAbSKSBGJYz8sDwPMisiEp7l+ptjcAj4jIjbQOnq8BL4jICTQnxXXWf4DXROQ7YBawoIN+\nNTHGfCMic1LtVwGfbeF5VQe02tp2Vhup5Y8f/5HP11gzRW4/+HYOzhvLY7+7iMb6ulZtAz0KOe43\nV+LNzMLpduMLbL4m+JZIJhKIzbZVVc1qy9bx8BTrw/fAMfvRa88zmTHNmo5WNCCLfqc5eabkSX6/\n9+8pzrAS1xKhEHVvvEHty6/AiafgHTeO/KJ87PauS+UIB2PMeG053320Gl+Wi5Mv34v40sUEX3ia\nhtenUXT9deScfnqXnU/tUjSrUu3U9A59O4slY5Q2lDa9LqkrYXikT5tgbnc4mDjlct669w6qSldR\nPGgoJ15+dZcF9bqKMj5//mmyi3oy6rCj8G7hKIDb52fMTycx+/VXyC7qSTza/MEwFkkyNGcIf+39\nV9z25jvpmqSdLwYfQMFfxjMox02230UkkWTpunr+t6icI4cVslueb5uqrCXiSb77aDUAobooK+dX\nkfPGMzS8Ps16Pxjc6mMrpdTOTAP6dpbtzubGcTfyx4//SKGvkJMGncTSt9rms2QX9aSsZBlVpasA\nWLt4ATXr13VJQA/V1fLaHVNZt9RKiPVnBRhx2FFbdAxPRib7nXQqex97Yiohzkvt+kZCdVEm/Gwo\nvkx3qzv/usYYV7/yPW99bxV3ue+snzBxRE+qaxo58d7PiCcN93ywhA//MJ6iwNYHdJtNKOibSfnK\nekSgqH+AzF9dQnzdWhxFxWSfeOJWH1upXY2IjACe3GhzxBiz347oj+qYBvTtzGFzMCJvBM9MfAa7\nzU6OJ4eaXm0TvMLBBgI9mmeNiNjwd7CQy5YwxhCLNiezRsONndovXl2NCYcRlwtHXp6VsNec38ah\nZ+9BMpHEk9H2mXgknmR+i6Va56ysYeKInlQFo03zxxtjCRpjia28Kos308Vxvx5JxaoGsvK9+AMu\nnJ5Met99Nzid2H0bTwdWSm2KMeY7YPSO7ofqHJ2HvgM47A7yffnkeKzkrF5D9sCb2TrZNFhdxbol\nC5l46eUMO/hQTrn6RryZXZMc58sK8NPfXEmfPUcw7ODD2OPA8cSTccoby6lorCCRbBtU41VVrL3m\nWpZMOJSVF0wmXlHRpo3L62g3mAMEvA6uPW4YboeNngEPZ4/tB0BxwMOhQ3tgE5i0Vy8C3tbz2xN1\ndcTKy0nU12/B9bnpu2ce2YU+nB7rM6s9ENBgrpTq1jQpbidgkkmq1qzm5VtuoLbMynIXsTHskEMZ\nf/YFuLy+VvO8u0q4oQGbw47T7WFB1QIueOcCRIRHjnyEIblDWrWNrl7N0sOPaHrd78UX8O655xad\nrzEapz4cR0RaTTGz7tKTuOy2VvPR49XVlN1xBw3vf0DWUUeRf+kUzVBXO5Imxamdmg657wTEZiO3\nVx/OuPF2QnW1hBvqCfQowuX14fH7N3+ArbRhXfdgLMg/5/yTuqg1JH7P3Hu49eBb8TqaV2sTtxtn\n797EVq/GlpmJo2DzNdQ35nU58Lra/pPbVJnUaEkJtc9b89mrn3mGwMmTNKArpdQmaEDfSYgI/uyc\nDmuMp4vb7mZkwUg+Kf0EgFEFo3DZWgdZZ0EB/Z55mkhJCc7efZAuep7fEZvH0+FrpZRSzTSgKxw2\nB6cPOZ1RBaMQEYbmDMVua5tpnsjJZVGjnXveWcrBgxo5YXSvVkPkXc3ZsyeFV/2Jurenk/XT47Bv\nxaiAUrs6EbmeFkVYuvjYJaQquXX1sbuCiBQArwMu4FJjzCcbvd+t6rRrQFcAZHuyGdtzbIdtqoMx\nTn/wKyLxJO/PL2NMv9y0BnR7IED26aeTdfzx2Px+bJ2s7qbUzmbEEyPa1EP/7pzvdnQ99B1KRBzG\nmHiaT3MY8F179dhFxN7d6rRrlrtqZXNJki3f3h75lDaXC0d2tgZz9aOVCuYPYa13LqmvD6W2bxUR\n8YvIGyLyjYh8LyKniUhJqpQpIjImVYN8g1Ei8oWILBaRyR0ct1hEPhaRuanjHpTafr+IzBKRH0Tk\nho12myIiX4vIdyIyNNV+39T55ojI5yIyJLX9XBGZJiIfYJVOzRCR91vsf0KqXT8RmS8iD6XO+Y6I\neNkEEZksIjNTP48XRcQnIqOBW4ETUtfjFZEGEfm7iHwDjBWRj1I14hGRo1P9+EZE3u/oOnZWGtAV\nAI31dXz3wTu89/C91Kxf126bHJ+TJ87bh4MG5XP1sXvQO2eTv19KqWYd1UPfWhvqjo8yxgwH3t5M\n+5HAocBY4NpUEZX2nAlMN8aMBkYBc1Pb/2yMGZM6ziEiMrLFPhXGmL2A+7EqqYG1VvtBxpifANfS\n+lr3Ak4xxhxCc131vYAJwN+leUWqQcC9xpg9gRpaF5bZ2EvGmH2MMaOA+cD5xpi5qXM/a4wZbYxp\nxFo546vUz+3TDTunhuYfAk5OHeP/OnEdOx0dct8FRRNRHDYHNmn+PFe2fCnvPHA3ACu+ncMZN97e\nJkHP7bQzqkcmfzl4MJl+J57tPIunvirM0jll9OibRV4vP26f3rWrH4V01UP/u4jcArxujPlkMzUZ\nXk0FtEYR+RDYF3ilnXYzgUdFxIlVG31DQD9VRC7EihnFWDXMv02991Lq62xgUur7APCEiAwCDNDy\nl/VdY0xV6vsNddUPBpI011UHq777hvPPxqr5vinDReQmIBvIAKZvol0CeLGd7fsDHxtjlgO06F9H\n17HT0YC+C0maJCW1Jdz3zX0Myx3GpEGTyPZY2erhUPMa55Fg0Pqnu5FQfZTX7v6GilUNAEy6fC+K\nB6Y/2x0gWBvhpdtm01BtrXB38hV7U9R/56tCp1Q70l4PPTVE3FHd841/o9t9YGaM+TgVXI8FHheR\nO4BP6LiG+YZlJxM0x5QbgQ+NMSeJSD9aV3lrWVCh3brqGx13w7E7GhJ8HDgxVc3tXGD8JtqFjTFb\nshxlR9ex09Eh911IVbiKX0z/BdNLpnPn13cyY92Mpvf6DBvBiEOPomjgYE668jo8mZlt9jdJQ21Z\n8zKx5etqaYx3btnYbWWSpimYA1SvDW2X8yrVBa7Cqn/eUlfUQw8ZY54CbsMaxi7BqnsObYenTxAR\nj4jkYQW7mZs47m7AemPMQ8DDqeO2V8N8cwLAhipU526mXZu66lshE1ibGlk4ayv2/xI4WET6A4hI\nbov+deY6dgppDegiki0iL4jIglSCw1gRyRWRd1PJGe+KiK4Usp0YYwjGmj8cb1hIBqzlYMeffQGT\n/nQ9RQMHY3e0HbxxeR0ccvYgPBlOinfPwt0vTkO0oU27ZGMjidrazSbYbQmH286Yif0AyCny0XfP\n3I532AqRUIx1y2tZ8OVaQrWRze+gVCekstknAyuw7oxXAJO3Mct9BDBDROYC1wE3YdU9v0tEZmHd\n0bb0LfAhVuC60RizZhPHHQ9sqFl+GnCXMeYbYEMN86fpXA3zW4G/pY7T0Ujwf4AxYtVVP5vmuupb\n6hrgq1TftvgYxphy4ELgpVTC3LOptzp7HTuFtC79KiJPAJ8YYx4WERdWIshVQJUxZqqIXAnkGGOu\n6Og43X3p1+0lEo8wu2w2t8y4hd2zd+fP+/2ZXO+WBcbS6jVUNdTi9xZSHw1SnJlNjxZ38/GqKsrv\nvpvo0mUUXnUV7sGDEPvWV09r1f9QjHg0iTPWQLx0FY78fBy5udi6aI32tUtqeOn2rwEo3j3AMReN\nwLuJtenVLkmXflU7tbR94hCRAHAwqWEKY0wUiKamJYxPNXsC65lEhwFddQ23w80+hfvwxKGPYksY\nHDF7x0+l2pHtDxCM+Tjxnq+oC8f53RGD+MU4D5keK1ek4cOPqPmv9eF21S9/Sf8XX9iqZWLb7b/P\niT1aw9obrqfhvffAbqf/C8/j2WOPLjl+ZWnzaEPVmiDJxM5f50AppTZI55B7f6AceCw1h+9hEfED\nhcaYtak262jOaFTpkkhA/TqoXEayvobF//sfj06ZzLQ7biZUW9P+LvEEDTURylbUEaqLNm33u/z8\nb0EVdWFrPYh/f7GCxmjz6J60WJ5V3G7oOPN2i5lYjNCXXzZdV2j27C47dv9RBeT3zsDhsnHImUNw\neXf6ETaltoqIjEjNzW7556sd3a/NEZF72+n3L3Z0v3YW6fwfy4GVUDHFGPOViNwFXNmygTHGiEi7\nt0GpKRIXAvTtuy2zOxTVy+DhwyBcS+zcT/j4qUcBKJ3/A2Uly+g3aq82uzRUR/nvjV8RjybJ75PB\nT6eMxpdlDT+PG5SP0y7EEobD9yjE42weUvcfMJaCyy4jvGgRBZddij0vr0svxeb1kn/JxQS//Apx\nucgYP77Lju3PdvPTS0djjMHlseN0dc2jAqV2Nj/WOufGmF/t6D7szNIZ0FcDq40xGz71vYAV0NeL\nSLExZq2IFANl7e1sjHkQeBCsZ+hp7Gf3N+tRCNcCIMEysguLqVm/FhEbgR5F7e5SVlJHPJoEoGJV\nA4lYsum9Afl+Pv7jBOrDcfIz3GS1qGHuyMkh75cXYuJxbK6uf/5sz8ggceqxvLN3gjxvHuPz/XTl\nWTZ8aFFKqR+btAV0Y8w6EVklIkOMMQux1tSdl/pzDjA19fXVdPVBpRQ21y33f/RnTrv2NVbO/4Ee\n/Qbgz2k/Ka5wQBYur4NoY5zi3QPYnc1PZzxOO8UBL8WbmAYuNhuymWBeF6ljXuU8ltYs5Yh+R9DD\n16NTl1Idrub3H/+BueXWehOXhis5f8T5rRbJUUqpXVG6HxJOAf6TynBfBvwC67n9cyJyPtb0jVPT\n3Ac15Bg46m+wegbseyEZWRkMO2hCh7tkZLs587r9iIbjuH3OLbpzTSTihOvrsTudePwZ7bZZVLOI\nye9aS0pPWzqN+w+/v1MZ9/FknBV1K5peL6xaSDwZx2XXO2ul1K4trQE9tWzfmHbeOiyd51Ub8eXB\n/heTCJ9DOBojURfEkyG4PJtOcbfZbfiz3fhxb9Gp4rEYaxfN571H7iOvd18OP/8SfAFrNbmaUJTv\nSmtpjCWodzQvkrW6YTWJTi7elOHK4Ip9r+CqT68iw5nBRaMu0mCulFJ0MqCnFq6fjLWWbtM+xpjz\n0tMt1eVEWLV4ES/97TowcPzv/8SAvfbF1kVzxDcIN9Tz2p1Taayvo6p0NQP33o89D7E+v321vIpf\nPjkbj9PGS7/ejzGFY1heu5zrD7ieTFfblena43V4mdBnAu+e8i42sZHj1nWJlOqORCQbONMYc99W\n7FtCF9VpF5G/YK3z/t62HivdOnuH/irWer7v0XYFIrWdxRNxKsIVlDaUslvWbuR78ze7TywSYe70\n1zFJK7ltzvTX6T1sJB6/v932DdVVlPzwDf7+PfFlBeiRUchmij8AYLPZ8GXn0FhvrUKXkduc5T5/\nrbUtHEvy+/8u5bHzb8NuM2S5snA7Oj8S4HP68Dm7ZjEZpbaH+UP3aFMPfY8F83dIPXTZPnXIu0I2\ncAnQJqBvz2swxly7Pc7TFTqbSeQzxlxhjHnOGPPihj9p7ZkCIFhTzVevPMf3H75LqM7KVK8MV3LC\nKydw7tvncv7086lsrGy1T024hteWvsYD3zxAeagcAIfLxdBxhzS1GXrAwTg97QfRYE01Hz7xIOFe\nHs799EJ+Pv1sSmpLOtVfXyCbk/90A/tNOo3jfnMlhf0HNr136pg+DCzIwOu089vDB5PtzqHAV7BF\nwVypH5tUMG9TDz21fauJyM9EZEZqLvYDImIXkYYW75+SKqSCiDwuIv9KzTW/NbUE9ysi8q2IfLmh\nHKqIXC8iT0o7tdNF5HKxao5/K21rom/ct7NT7b4RkSdT2wrEqlU+M/VnXItzPipWbfJlInJp6jBT\ngYGp67tNRMaLyCciMg0ruZrUNcwWq2b6hVvws2uzX+rn97hYdeC/E5HftvjZnZL6/tpU378XkQel\nM3c521Fn79BfF5GJxpg309ob1Uo42MC7D97D0tnWzL/DzruY0UcdS2lDKaG4VethWe0yosloq/0+\nKf2Eqz616j7MWjeL2w+5nYAnQL9Re3P+3Q9jTBJvZhZ2e/t//fFohOzB/blr/n1Uha0qgvd+cy83\nH3hzp55XZ+blc+BpP2+zvWe2l2cv3J8khkyPo9X8daW6sY7qoW/VXbqI7IG11vq4VGGT+9h8UZLe\nwAHGmISI/BOYY4w5UUQOBf5N87z0kVjlRP3AHBF5AxiOVZ98X6wPJdNE5GBjzMft9G1P4OrUuSpa\nFDq5C7jTGPOpiPTFKnG6YZnHoVj10DOBhSJyP9Y05+Gp2uyIyHistU2GbyhzCpxnjKkSES8wU0Re\nNMa0vsNpX5v9sB4p90rVl98w5L+xe4wxf0m9/yRwHPBaJ863XXQ2oF8GXCUiESCG9RdqjDFZaeuZ\nIplIUF/V/Aiotmw9ALtl7cag7EEsrlnM8QOPx2tvndy2pqG57sL6xvXEUyNTHr9/k0PsLTlcLogm\nGJDXr2l62JCcIThs255DmZ+pd+Nql5OOeuiHYVVWm5m6SfSyiTU9Wni+RenQA0lVZDPGfCAieSKy\n4f/z9mqnHwgciVWkBaya44OANgEdODR1rorU8TfUFj+c/2/vzuPrKqv9j39WcjKnmdq0dIK2lBkK\nhTBPZS6CtKIyXK4yCaJw4adeEWeUSRGRQbhIFSmoIDILCFSQQaCUMBRoS6HQIp2bDumQOVm/P/ZO\nc5qcJCfJORlOvu/XK6+cs8cnu2nWeZ797LVg96hObYGZNT8G86S71wK1Zraa9jOIzokK5gCXmtkX\nwtdjwzbFE9Bj7bcQmBB+2HkSeDbGfkeZ2eUEH8hKgHkMtIDu7vHNWJKEyskfwtRv/D+evOVXZA8Z\nwn4nTQNgaM5QZhw/g/qmerLTs7fWNG926k6nMmflHNZUr+G6w66jKKtl/ZqqNfxp/p8Ynjucz034\nHMXZbSeV5RYWM+nQY9i+roy9SvYiP2cIB446aJtnvWurG2ioaySSmUZWVGIZEWkj4fXQCTpVM939\n+9ssNPtO1NvWNdG3EJ9YtdMNuM7df9elVm4rDTjI3WuiF4YBvnXt8/Zi09afIeyxHwsc7O5VZvYC\nbX/mNtrbL6z1vjdwAnARwSPV50Xtl01wP7/M3T8zsyvjOV9virvLZUGZ052I+gFiDbdI4lhaGsPG\n7sCXf3INaWnp5AxpGRAZmtN+StXS3FJuPPJGGryBoqwi0tOCoe31Neu5/KXLKV8VVK5r9Ea+usdX\n257XjMLSEeTXlzBmxIQ2pVSrN9cx+9FPWDx3DRP3G87+J49PuapkFdUVNHkTeRl55GV0Pqoh0oEf\nENxDjx5271E9dOA54DEz+427rw6HtYcQZOLcjaC3+QVgUzv7v0wwRH9VGOAq3H1jGFynmdl1BEPu\nUwiGvqvDbf/s7pvNbOS8FlcAACAASURBVDRQ7+6xRgWeBx4xsxvdfa2ZlYS99GcJcpP8CsDM9gkf\nbW7PpvBnak8hsD4MyrsS3CaIR8z9zGwYUOfuD5nZQuBPrfZrjn0V4cjClwgyoPYb8T629jWCYfcx\nwDsEF+A1gqEVSSJLSyOvsOuPZhVmt03j1uiNFGYWMuP4GWSkZVBVX9XhMdIzYve8N6yqYv6/g2H9\n915Yxq6HjIoZ0GsbatlQu4G6pjoKMgsozGontVw/s3LLSs7+x9ms2LKCHx30I06ecLJm1Uu37fbB\ngr8s2HU3SOAsd3efb2Y/Ap41szSCW6EXEwTfJwgKY5UTDI3HciVwl5m9S/Dh4uyodc2104fRUjt9\nefhB4bUw6G8G/psYw/zuPs/MrgFeNLNGgmH6c4BLgdvCc0YIhusv6uBnXGtmr5jZ+8A/CIbBoz0N\nXGRmCwg+wMxu71hx7jeaoJhY81DkNqMf7r7BzGYA7xMUFnsjzvP1mrjqoVtQfH5/YLa77xN+qrnW\n3U9NdgNB9dATpbGpkaWbl3LO0+dQUV3BhXtdyDl7nhP3M+DN1vxnEw9c2/K7fOZPDqBkVNu/GwvW\nLeCsJ8+ivqmeb+79Tc7e4+wBERjv/+B+rnn9GgAKMgt4dNqjlOYmpgSsDGj9akZzMoTDyJvd/Ya+\nbot0XbyPrdU03/cwsyx3/wDYJXnNkmRIT0vnteWvUVEdTLS7a95d1DTUdLJXW0OGZnPolyay3YQC\njjhjZ/IKY090m7VkFvVN9UCQ3rV5Zn5/t+ewPbHwb/ek0klkpGmOgIj0f/HeQ18aTuF/FJhlZusJ\n8rDLALPP8H1IszSavIn9hu/XrZnr2XkZ7DllDLsetB0Z2RHSI7E/Fx4/7nhmzptJXVMd0ydOJzfS\n/3vnAOMLxvPotEdZuWUluw7dtc2kQ5FU5e5XxrutmQ0luJff2jFxPjqWVP29fckQ15D7NjuYHUkw\nqeBpd6/rbPtE0JB74lTVV7G2ei0rt6xkx+IdKcnetiDK2uq1NHkThVmFPc6RPlDvoYu0I+WH3GVg\n68os930JnkV04JXeCuaSWM1pU8cWjG2zbsXmFVw460LW1azjxik3su/wfclI7/5wc1YkixGR9h4n\nFRGRRIrrHrqZ/QSYCQwlmPn4x3CGpfRjVZUb2Lx+HY319XFtf9/C+1iycQkb6zZyzevXsLFuY5Jb\nKCIiiRJvD/0sYO+oiXG/IHh87epkNUzit65mHX//+O9srN3ImbudybCcYWxaW8Gjv7qK0ftMYtep\nJ5CRmUVJdsnWZ9Jj2a1kt62vJxZO7PKQe31jIxtrtrC2bhVLKhez74h94yocIyIiPRdvQF9O8FB9\n85ToLGBZUlokXdLQ1MA98+7hD+//AYD5a+fzyyN+yXv/fJqCkdtRNWkon3v8ZPIz87n3xHsZXzh+\n2/0bG9hcv5mcSA6HjDyEGcfNYE31Gg4ddWiXHmfbVFPPq4vWUlS8hgv+eRaOs3Pxzsw4bgYlOSWd\nH0BEEs7MTgF2d/dfxFi32d3bPG9qQUGXJ9z9wTCL2v+6e69PYjKzfYBRya4hYmY/cPdrw9fjCH72\nPXt4zFKCfACZwKXu/nKr9b8HbnT3+T05T2vxPrZWCcwLq878keDB+g1mdouZ3ZLIBknXNHojSzct\n3fp+ZdVK6pvqKRkzlu0mT+LOD++i0RuprK3krwv/us2+VfVVvLL8FR766CHmrJiDmXHQqIP4/I6f\n73IQ3lhdz+0vLGJBxQd4mDnyo/Uf0eiqtivSV9z98VjBfIDYB/hcsg5ugTR6lrGvPccA77n75BjB\nPN3dv5boYA7x99AfCb+avZDohkj3ZKVncem+l7Jg3QK21G/hykOupCiriNxJk6lYv4p90yazuDKo\nZXDQyG0zI26q20R+Zj7LNi9j3tp5bF+4PQVZ3au3Y2Z8vGYzk0sPZOyQsXy26TMumXwJ2ZF+lepY\npE/cdtHzbeqhX3zH0T2qhx72Jp8myHR2CEHmsj8CPwOGE9wq3Z0g9/glZjaeoLpbPvBY1HEMuBU4\nDvgMiDnh2cyOD4+dBXwMnOvum9vZdj/gxvBcFcA57r7CgnKsFxL0XBcBXwlTsH4Z+ClBHvdKglzr\nPwdyzOwwgjzyf41xnisJrumE8PtN7n5LuO7btORi/7273xRes2eA1wmK28wJz/EOQaGVHwLpYUa4\nQwhGoqeFxWpi/Zxtfh5gZ+D68LhlwMEEmft+F/5cF5vZ1YQjH2Y2leB3I50gBe8xZnYAQXW6bIK0\nu+e6+8JYbdimPd14bK0YGOvu73Zpxx5IxcfW6mtrqfhsCQte/hcTDziEERMmkpXT/ee0K6orcHeK\ns4qJRJVFXV+zno/Wf0R+Zj4bazdSklPCDkN2ICuSxYaaDcx4bwb3zL8HCBKq3H7M7TELtnSmqraB\nN5as47kPVnH2YcPIy0ojLzO3y1noRPqxbj22FgbzWLncL+hJUA+D0yJgMkEwegOYC5wPnAKcS5A7\npDmgPw486O73mNnFwC/dPd/MTgW+AUwlqHI2H/ha9JA7sAR4GDjR3beY2feArOZSoq3alQG8SBAI\n15jZ6cAJ7n6emQ1tfgY8DGqr3P3WMBvpVHdfZmZFYZrVc5rb3sE1uJKgCtzW0qvAdgQlYO8mSFNu\nBAH8v4H1wCcEpV1nh8fYeush6pqWufs7ZvYA8Li7t87r3nz+9n6ebdpuZg6c7u4PhO+br+unwFvA\nEe6+uDnvvQWV76rcvcHMjgW+4e5fbO86NIs3l/sLBL8gEeBNYLWZveLu345nf2mrZtNG7v/J5TQ1\nNvL2M09y3m9+16OA3t7ks+LsYiYUTeCMJ85gVdUqMtMyeerUpxgRGUFuJHdrJjeAusY6mrwp7nOu\nqVrD+xXvMzJ/JKPyRnHkLsM5YMJQsiNpzRWURCQJ9dCjLHb39wDMbB7wnLt7GCDHtdr2UMKSqcC9\nwC/D10cA94WlVZeb2fMxznMQQW//lfD/diZBPY9YdiGonz4r3DYdWBGu2zMMfEUEvfdnwuWvAHeH\nAfThOH7uaLFKrx4GPOLuWwDM7GHgcOBx4NPmYN6OxVFFY96k7XWM1t7P01oj8FCM5QcBLzWXhI0q\nNVsIzDSznQgeFY/r+eF4h9wLw0o8XwPucfefhgn2pZtqq6poagzvL7uzZcM6ikeO6nin+hqo3Qjp\nGZAT9KJXbVnFexXvsWvJrgzPHR5zZnpVfRWrqoJa6nVNdWypDyoQZkYyuWCvC1i5ZSUbajdw5cFX\ntkk0056K6grOf/b8rcP5vzriV0wdP5WcjPZn0YsMUsmoh94suuxoU9T7JmL/fe/akGwLA2a5+5lx\nbjvP3Q+Ose5uYLq7zw17sVMA3P0iMzsQOAl4Mxyyj1e8pVebdVZGtvXxcjrY9m5i/Dwx1ETVoo/H\nVcC/3P0L4ajBC/HsFO+kuIiZjSSoD/tEFxol7cgtLGLi/sHv+9jd96Jk1JiOd9i4HJ6/Cu4+CR44\nG/7zGlWbVnLWU2fxrRe+xRce+wLra9bH3LUgs4DTdj6NnEgO03ecvs2QemluKdcedi23HH0LE4om\nxN2zrmmo2RrMAf6x+B9UN8S8zSQy2LVX97wn9dC74xXgjPD1WVHLXwJON7P08O/8UTH2nQ0camYT\nAcwsz8x2buc8C4FSMzs43DbDzPYI1w0BVoTD8lvbYGY7uvvr7v4TgvvNY+m8fGpHXgamm1mumeUR\nlJJ9uZ1t68P2dEfMn6cLZgNHhPMbsKAMLgQ99OYnyc6J92Dx9tB/TjCU8Iq7v2FmE4CP4j2JtJVb\nWMjxX/8fjjn/G6Slp5Nb0Cotan118JWZD9Xr4Q/HQ+VnwbqKD2Hxi2Sffi/jC8axqmoVNY01rK1Z\ny4i8tpnZirKLuGzfy7ho74vISs9qM/EtP7O9Covty45kM2bImK0z7I/e/miy0zUBTiSGZNRD747L\ngL+E978fi1r+CEEp7PkEHzLaDKWH98LPAe4zs+ZqTD8CPoyxbZ2ZfQm4xcwKCeLMTQT3+X9McD97\nTfi9OWD/KhxeNoL863PDtlwRTliLOSmuPe7+Vvj43Zxw0e/d/e2wt9vancC7ZvYWwaS4rmjv54m3\nnWvM7ELg4XDG/WqCyYnXEwy5/4i2ZWPb1eVJcX0hFSfFdahqLbz6W1jyEhz2HajZAI9+o+12xeP4\nz2l3cfKz53LAdgdw/RHX9+oz36urVjNnxRzGDBnD+MLxytUuqa7bE0OSMctdpLV466HvDPwfMMLd\n9zSzScAp7t4rmeIGXUCf+1d45MLg9aTTICMP3vxjzE0bvzWfdRmZRNIi3Zqd3p801DVSsyWYpJed\nl0EkU/fjpV/RTE/p1+K9hz4D+D5QDxA+snZGh3tI921aAXnDYPhuULkUtj8o9nZDJ5KenkFpbumA\nD+buzsrFG7n3R69x749eY8XHlXhT/x89EhnMzOwRM3un1dcJSTjPuTHOc1uiz9PB+W+Lcf5ze+v8\n8Yr3Hnquu89pNWGqIQntEYC9ToOxB8DqBTCmDPKGw9AdYe3HLduYwYnXQ/7wvmtnAtXXNvLOrP/Q\n1BgE8Xdm/YcR4wvIzO56vXYR6R3u/oVeOs8fCZLm9Al3v7ivzt0V8f61rDCzHQkfeQgnPKzoeBfp\ntrpNwWx2b4IRe8LZj8M5/4C37oEPn4Iho+DI70FJS172DTUbeGnZS3y4/kPO3PVMRuePTnizmmul\nD8kckvAMcJGMNMZNGsan768FYNykYUQy4x1AEhGReAP6xQQzAXc1s2XAYro3RV/iUfFhEMwBVs+H\nxnoYsh0c9i3Y/zxIz4KsbWemv7biNX7472CC5jNLnuH+k+5naM7QhDVp5ZaVXPDsBazYsoLrDr+O\nw0cfntCgnpaexk5lwxk1sQhwcguzSEtTQBcRiVeHfzHN7LLw5Uh3PxYoBXZ198Pc/dOkt26wcYdN\nK2G7veDUOyGSDcdfBRnh0y7pEcgd2iaYA3xa2fLPsbpqdZcyvsXjw3UfMTJ/JLWNtVz3+nVsqtuU\n0OMDZOVmUDIqj5JR+WTndfexUBGRwamzLlDzTf9bAdx9i7sn/i/5ILa+Zj1rqtZQXV8dPGf+u8Ph\n5r1h+Vy49B2Y/FXILqChqYGOnkiYvtN0xheOJ5IW4YcH/pDcjO6nkY3mTc6GVVU0vDiMCzL/l6vL\nrmPn4p3JSFfAFRHpTzp8bM3M7gPKgFEE1XW2rgLc3Sclt3mBVH1sraK6gu+++F0+XP8h393/uxyX\nVkzePae0bPCdhTBkO5ZtWsZt79zG+KLxfGmnL7U7o735HnduRi55GXkJaeOWylr+evUcqjcFj5Od\neNkeFI/PHPCz6kW6IaUeWzOz6cCHiSrjGVYW+6q7X5qI43Xj/Ftrv1ureuQET2n9l7tv6Iu29ZYO\n76G7+5lmth1BlrhTOtpWuu6VZa9Qvir4oPLTV3/KodOfIM8sGHofNRnSIqytXsslz1/Cog2LABie\nM5xpE6fFPF70PfPK2kpeXf4qH677kNN2OY2R+SNp8ibW1azD3SnKKorZy65vrKemsYacSA6RtODX\no7a65YGGpmpTMBdJDdMJgl5CArq7lwN91vNy98cJiq9ASz3yr4Xv20v7mlI6nRTn7iuBvXuhLYPO\nqPyWYiylOaU0pWew5tvzyKjZSFHOMMgbhldVbJMjfXPdZpq8iTTr+G7JexXvcflLlwPw3GfP8ccT\n/sjGuo2c+/S51DTWcMexd7DXsL1IT2tJ3rKxdiOzPp3FU4uf4vRdTufQ0YeSlZvNiRftxasPLmLY\n2HxG71SU4Ksgkvp+ffrJbTLFfeevT/S0Hvp/E/Q+MwnSjn4T+C2wP0FBkQfd/afhtr8g6JQ1AM8S\nVDQ7BTgyTC/6RXf/OMY54qpf7u5HmNkUghrfJ3elnneYUvYLBPnLRwN/cvefheseJcjrng3c7O53\nhstj1RA/h2BE+fe0rUe+gKCcaYWZfZWgdKkD77r7V+K/6v1bhwHdzB5w99PCUnzRY/O9OuSeqnYp\n3oVbj76VeRXzmDZxGvfMv5d759/LieNO5IoDr6CYoPzpTUfdxNWzr2Z0/mgmlU5i0fpFTCye2GFQ\nX7Vl1dbXa6rW0OiN3PnunaytCR4Lu6H8Bn57zG8pymoJ0JW1lVz52pUAvLHyDZ754jOMzM9j7C7F\nTP/2vqRnpJGVo+fCRboiDObRudx3AGb8+vST6W5QN7PdgNOBQ9293sxuJ3jy6IdhPe104Lkwq+cy\ngoC5a1hatbne+OPAE+7+YAenetjdZ4TnvJqg1vqtwE8IapwvM7NYn/I/AA6Pqud9LS2lW2M5gKDk\nahXwhpk9Gfb4zwt/npxw+UMEc79mEFVDPPpAYR3zn7BtPfLm67YHQQ76Q8Lg3nu5sntBZ5Pimme5\nnwx8Puqr+X2HzGyJmb0XZtUpD5eVmNksM/so/D5ox28LsgqYMnYKF0++mCZv4p759+A4Ty15auss\n8vS0dHYu3pmL97mYUfmjuHDWhXz3pe+2W1mt2ZSxUzhs9GGMyR/DDUfeQGFmIXuXtgy07DF0D7LS\ns7bZJzpxkJltfZ+ekU5uQaaCuUj3dFQPvbuOAfYjCHLvhO8nAKeFRUbeBvYgqGFeCdQAfzCzUwmC\nZrz2NLOXw07dWeExoaV++QUEveTWCoG/mdn7wG+i9mvPLHdf6+7VBKMHh4XLLzWzuQRVycYCO9F+\nDfF4HA38zd0rurFvv9fZPfQV4feePKJ2VPPFC10BPBdOXLgifP+9Hhw/qRqbGqmsqyQzLbNbVcni\nlR3JJieSQ3VDNUMytk3ckmZpfLbpM37/3u8B2Clrp06H3IfmDOUXh/+C+qZ6CjILyEzPZOr4qYwv\nHE91QzV7l+5NTmTbMr9FWUVcf8T1PPnJk5y2y2kUZBa0c3QR6YJk1EM3YKa7f3/rgqAE5yxgf3df\nH1Ybyw57yQcQBP0vAZcQBLZ43E336pd3tZ5369nZHg7hHwscHA7zv0Aw9C7t6GzIfRNtLzS0DLl3\n5y/+NFqKwM8k+IfulwG9samRD9Z9wM9n/5wx+WP4wYE/SGiylmjFWcU89PmHeGfNO0wePpmh2due\n57gdjqOmsYblm5Zz7p7nxjUxrXX1s6KsIg4ceWC72+dn5nPCuBM4csyR5ERy4q6N3lptQy1ZkazO\nNxQZHP5DMMwea3l3PQc8Zma/cffV4dDx9sAWoNLMRgAnAi+YWT5B+u6nzOwV4JPwGPHUG29d73sZ\ntNQvB143sxMJes/RulrP+7jwZ6gmmKx3HsH99PVhMN+VoGcOQW/9djMb3zzk3oWe9vPAI2Z2o7uv\n7eK+/V5nPfTuFpffegjgWTNz4HfhhIYRzT1/YCXQtoB3Kwtp+QTQm+q9kflNDdSV/S8ATzTWMTJZ\nJ0vPgIKxwVcs2cWw+1cBeDpZbQCwtJZENl3U5I1sqdvCqqrVlGSXUJhVQHqahuklNbzQ/V0TXg/d\n3eeHk9meDeto1xNk9Hyb4P71ZwTD4hAE5cfMLJugM/btcPn9wAwzuxT4UqxJcXStfvmRUft1tZ73\nHOAhYAzBpLjycJj/IjNbQBAGZoc/e3s1xDvl7vPM7BrgRTNrJLhe58Sz70CQ1HroZjY6nDQxnGAo\n6H+Ax929KGqb9e7eprsZ/oNdCJA1adJ+B82dm7R2tqe+sZ4P1n1ATWMNAOMKdqA0NzWKoTRraGyi\nsclJMyMj3YKiL91U11jHu2vexcNBnUnD9iIrwTnfRfrKCz14Dj0Zs9xTRfPs9OYJbNJ9SQ3o25zI\n7EpgM3ABMMXdV5jZSOAFd9+lo337MrHMZ5s+4+a3bmZcwTjO2u2sPnsGe0vdFmoaayjILEhYlrYN\nVXXc8MxC/vT6fxiWn8ljFx/G6OKczndsx4rNKzj+oeO3vn9k2iNMLJqYiKaK9AcplVimv1BAT5yk\njYeaWR6Q5u6bwtfHAz8nePD/bOAX4ffHktWGRBg7ZCzXHnYtEYv0WbGQ9TXrufmtm5m7Zi6X7XsZ\nB408KCGFUeoamvjznOA2XsXmOl5fvJZTi8d0+3hDModw9aFXc98H93HM9scwLGdYj9soIskX1hY/\ntNXim8OypYk6xwnAL1stXhyWYL07UecZzJLWQzezCcAj4dsI8Bd3v8bMhgIPEAw9fQqc1tmkhFRN\n/RqvV5e9ytf/+XUAImkRnv3is5Tmlvb4uOu21HLpfe/w70UVZEXS+MdlhzOhtGcz+esa69hSv4Xc\nSK4mxkmqUQ9d+rWk9dDd/RNiZJhz97UEj08MSnWNdVTWVpJu6ZTkxJfTIHq2ekFmQbdnn7dWkpfF\nzWfsw7IN1ZTmZ1GSl9njY2amZ5KZ3vPjiIhI12gKci+qb6znndXvcPlLl1OaW8pvj/4tI/I6neTP\n2CFjuXHKjZSvLOfMXc+kJDtxyY2G5mcxNF89aRGRga7XJsX1RKoMuVdUV/CVp77C0s1LAfj6pK/z\nld2/wktLX6K2sZajxh4V93PuzZXVhmQOScj9dBHplIbcpV/rm1leg1QkLcKYIS2TziYUTuCfn/6T\nH/z7B/zstZ9x69u3BnXRO7F883LOfeZcTnrkJF5d/iq1DbXJbLaIDEJmNi5M3drZNv8V9b7MzG5J\nfuskFgX0XlSUVcR1h1/HFftfwU1TbmL/7fbn1eWvbl2/uHIxdU11HR6jqr6Khz96mMWVi6luqOba\n169lY93GZDddRCSWccDWgO7u5X1VD10U0HtVZW0l9Y31nDThJI7e/mhyIjmcu+e5jMkfQ2lOKd/d\n/7sMyWxJztfQ1MDyzct5ZskzLN+8nIamBmoba9mhoCWL5ITCCQl7Ll1EBo6wd/yBmf3ZzBaY2YNm\nlmtmx5jZ22FhrLvMLCvcfomZXR8un2NmE8Pld5vZl6KOu7mdc71sZm+FX4eEq34BHB4W4PqWmU0x\nsyfCfUrM7FEze9fMZoeV3zCzK8N2vWBmn4SZ6iQBNCmul2ys3cid797JPfPvYVjOMP7yub8wMn8k\nY/PHMuP4GaRZGiXZJdsUXVlfs54v//3LbKzbSH5GPo9Nf4zcSC7Dcobx6yN/TUV1BceOPZbMujTQ\nvDaRwWgX4Hx3f8XM7iJI6/p14Bh3/9DM7gG+AdwUbl/p7ntZUBP8JoLKmfFYDRzn7jVhytf7CGqP\nX0FYAx0gLKjS7GfA2+4+3cyOBu4B9gnX7QocRZBKdqGZ/Z+713fnAkgL9dB7SW1jLffOvxcIJse9\nvvJ1AAqzCxkzZAyj8ke1mdxW3VC9dTh9c/1mquqryM/MZ/ehu7Pv8H05qfRY/nn9r3j0lz9j45pV\niMig85m7N+ds/xPBI8GL3f3DcNlM4Iio7e+L+n5wF86TQZD3/T3gbwRlWTtzGHAvgLs/Dww1s+aC\nXk+6e21YiXM1cdT0kM4poPeSSFqE/UYEFQYjFmGvYXt1uk9+Zj7HbB88sj9lzBQKsoL/C4VZhQyx\nXJ6bcTsrFi5gxUcLefFPd9FQp8lxIoNM68eUNnRh++bXDYSxICx2EiuRxLeAVQS5Rcra2aYrov9Y\nNaLR4oTQRewlxdnF/HrKr1lSuYQReSPalEeNpSS7hCsPvpIfHvhDImmRbfLIp6Wlk1fc8jx6fvFQ\nLC09KW0XkX5rezM72N1fI5icVg583cwmuvsi4CvAi1Hbn05w3/t04LVw2RJgP4IMnqcQ9MZbKwSW\nunuTmZ0NNP+x6agE68sEJVevCofiK9x9Y6ISY0lbCui9qCS7pMtJYYqyi2Iuz8jK4vAzv0pB6XDS\n0tPZ66jjSI+0/HNW1lZSVV9FRloGw3KVU10kRS0ELg7vn88HLiUoM/o3M4sAbwB3RG1fbGbvEvSQ\nzwyXzSAorzqXoDrzlhjnuR14KLz3Hr3Nu0BjuO/dBOVIm10J3BWer4qgdockkRLLpKDmCXgz589k\nRO4I/vy5P8eVkU5EOtSvupZmNg54wt33jHP7JQRVzSqS2CzpQ7qH3oeqG6p5e/XbXDX7KuaumUtN\nQ01CjlvbWMu9C4IJeKuqVvHOmncSclwREem/FND7UGVtJec9fR4PLHyAc54+hw21nc1niU8kLcL+\nI/YHIDMtk91KdkvIcUWk/3D3JfH2zsPtx6l3ntp0D70P1TfV0+ANQJBEpr4pMY9hFmcXc/0R17Ns\n8zJKc0spzirufCcRERnQFND7UEFmAZdOvpS/f/x3pk2cRmFmYduNqjfAhk+hdhOU7gZ58RVvKckp\nibs8q4iIDHyaFNfHquurqWqoIjeSS05GTtsN5t4Pj3w9eF12Hhz3c8hq7ykREUmifjUpTqQ19dD7\ngLtTu2UL6ZEIOdk5sQM5QGM9fPRsy/slL0N9tQK6iIi0oUlxvcybmqj47FMeu+Fqnp95J1UbK9vf\nOD0DDr4EMnLADA79loK5iABgZlPNbKGZLTKzK/q6PdL31EPvZVUbK3n8hmvYsGoFSxe8z3Y77sTe\nx57Y/g4j9oD/eQu8CbILg+AuIoOamaUDtwHHAUuBN8zscXef37ctk76kgN7bzIhktZRGy8zuJEBH\nsqBgVJIbJSIDzAHAInf/BMDM7gemEWSLk0FKAT0JGpsaWVezjrqmOvIiedukb80rLGL65T/m1Qf+\nwtAxYxk3ad92j7OuZh3V9dVkRbIYlqP0rSIDWVlZWQQYBlSUl5c39PBwo4HPot4vBQ7s4TFlgNM9\n9CT4bNNnTH9sOlMfmsrNb91MZe2298kLS0dwwkX/w/6nfJGcgoKYx1hXvY7vvfQ9pj48lfOePo91\nNet6o+kikgRlZWWHAGuAxcCa8L1IQimgJ8Gjix7dWsf8wY8ejJnSNS09QkdVh6oaqpi9YjaGcf5e\n5/PR+o+YvWI2G2oSk01ORHpH2DN/EigCssPvT5aVlfWkPOIyYGzU+zHhMhnEFNCTYJ/h+2x9PWbI\nGCJpXb+zkR3JZoeCHThuh+NYXbWarz37NS549gJmzptJbaPqnosMIMMIAnm0bKC0B8d8A9jJzMab\nWSZwBvB4D44ngepRbQAAD7xJREFUKUD30JNg8vDJ/OH4P/BJ5SccNfYohubEl90t2rCcYdw99W42\n1W3iprdu2rr87TVvU9tQS1Z6Vgd7i0g/UgHUsG1QryEYgu8Wd28ws0uAZwhqk9/l7vN61EoZ8JQp\nbgCYv3Y+5z59Lg1NDdxx3B3sO3xf0tPC0bqq9bB6HlSvh+0PhjxNnhNJkm5nigvvmT9JENRrgJPK\ny8tfTVTDREABfUBoaGxgfe16AAqzCslMz2xZ+e4D8PAFwet9/htO/CVk5fdBK0VSXo9Sv4b3zEuB\nNeXl5Y2JaZJICw25DwCR9Ailue3cblsa9UFn5VxoqFFAF+mHwiC+sq/bIalLk+IGuoO/CUXbBylh\np14HUc+8i4jI4KEe+kBXPA6+9lyQGjanGNL1TyoiMhjpr38qyB/e1y0QEZE+piF3ERGRFKCALiIy\nQJlZupm9bWZPhO/Hm9nrYUnVv4ZJZzCzrPD9onD9uKhjfD9cvtDMTohaHrM8a2+cQ7pHAV1EZOC6\nDFgQ9f6XwG/cfSKwHjg/XH4+sD5c/ptwO8xsd4Isc3sAU4Hbww8JzeVZTwR2B84Mt+2tc0g3JD2g\nx/sJUkQklZWVlRWUlZXtXlZWFrsiUxeZ2RjgJOD34XsDjgYeDDeZCUwPX08L3xOuPybcfhpwv7vX\nuvtiYBFBadat5VndvQ64H5jWG+dIxLUZrHqjhx7vJ0gRkZRTVlaWUVZWdjuwCpgNrCorK7u9rKws\no4eHvgm4HGgK3w8FNrh7c2nWpQRlViGq3Gq4vjLcPlYZ1tEdLO+Nc0g3JTWgd/ETpIhIKroZOJsg\n7euQ8PvZ4fJuMbOTgdXu/mZCWigpIdk99K58ghQRSSnh8Pq5QG6rVbnAuT0Yfj8UOMXMlhAMVR9N\n8AGhyMyaH0eOLqm6tdxquL4QWEv7ZVjbW762F84h3ZS0gN7TT5BmdqGZlZtZ+Zo13S5KJCLSl8YA\n9e2sq6ebHRp3/767j3H3cQQTzp5397OAfwFfCjc7G3gsfP14+J5w/fMeFPJ4HDgjnKE+HtgJmEM7\n5VnDfZJ6ju5cDwkkM7FM8yfIzxEMMRUQ9Qky7KW3+4nM3e8E7oSgOEsS2ykikixLgfbulWeQ+B7p\n94D7zexq4G3gD+HyPwD3mtkiYB1B8MTd55nZA8B8oAG42N0bATooz9ob55Bu6JVqa2Y2Bfhfdz/Z\nzP4GPOTu95vZHcC77n57R/sP9mprItIvdKvaWjgh7my2HXavAmaWl5d/MxENE4G+eQ79e8C3w09x\nQ2n5dCcikoouI5gAXANsCr/PDJeLJIzqoYuIxKen9dALCO6ZLysvL9+YmCaJtFBxFhGRXhAGcQVy\nSRqlfhUREUkBCugiIiIpQAFdREQkBSigi4gMQGb2LTObZ2bvm9l9Zpat8qmDmwK6iMgAY2ajgUuB\nMnffkyAxyxmofOqgplnuIiJJVFZWlg1cTBCARxBUXbsFuK28vLymB4eOADlmVk+QtGYFQU73/wrX\nzwSuBP6PoCzpleHyB4Hfti5tCiwO84McEG63yN0/ATCz5vKpC5J9DoKMctIN6qGLiCRJGMxfBH4O\nbA9khd+vAl4M13eZuy8DbgD+QxDIK4E3UfnUQU0BXUQkeS4G9qRttbUcYK9wfZeZWTFBb3Y8MArI\nIxjOlkFMAV1EJHkupW0wb5YTru+OY4HF7r7G3euBhwkKYql86iCmgC4ikjwjeri+Pf8BDjKz3PA+\n9TEE955VPnUQ06Q4EZHkWUVwz7yj9V3m7q+b2YPAWwQlSd8mKDf9JCqfOmipOIuISHy6XJylrKzs\nOwQT4HJirK4GflxeXv7rnjZMBDTkLiKSTLcB7xEE72jV4fLber1FkrIU0EVEkiR8zvxI4McE971r\nw+8/Bo7s4XPoItvQkLuISHx6VA9dJNnUQxcREUkBCugiIiIpQAFdREQkBSigi4gMQGZ2l5mtNrP3\no5b9ysw+MLN3zewRMyuKWtfvyqR25xzSPgV0EZFeUFZWNr6srOzQsrKy8Qk65N20zd8+C9jT3ScB\nHwLfh35dJrVL55COKaCLiCRRWeBNYB5BJrd5ZWVlb5aVlZX15Lju/hJBRrboZc9GVUKbTZAfHaJK\nmLr7YqC5hOkBhCVM3b0OaC6TagRlUh8M958JTI861szw9YPAMa3LpCbxHNIBBXQRkSQJg/YLwL4E\n2eIKw+/7Ai/0NKh34jzgH+Hr/lgmtTvnkA4ooIuIJM/vCEqbxpIH3JGMk5rZDwnypv85GceX/kkB\nXUQkCcJ75bt1stnuCbynDoCZnQOcDJzlLZnD+mOZ1O6cQzqggC4ikhyjgLpOtqkLt0sIM5sKXA6c\n4u5VUav6XZnUbp5DOqDyqSIiybEcyOxkm8xwuy4zs/uAKcAwM1sK/JRgVnsWMCucQzbb3S/qx2VS\nu3QO6ZhyuYuIxKc75VPfJJgA1543y8vLkzkxTgYRDbmLiCTP14Et7azbAlzUi22RFKeALiKSJOXB\n0OIU4E2CGuiV4fc3gSnlGnqUBNI9dBGRJAqDdlk4m30UsLy8vHxxHzdLUpACuohILwiDuAK5JI2G\n3EVERFKAArqIiEgKUEAXERFJAUkL6GaWbWZzzGyumc0zs5+Fy2PWvxUREZHuS2YPvRY42t33BvYB\npprZQbRf/1ZERES6KWkB3QObw7cZ4ZfTfv1bERER6aak3kM3s3QzewdYDcwCPqb9+rciIiLSTUkN\n6O7e6O77EJTFOwDYNd59zexCMys3s/I1a9YkrY0iIiKpoFdmubv7BoIyeQfTfv3b1vvc6e5l7l5W\nWlraG80UEREZsJI5y73UzIrC1znAccAC2q9/KyIiIt2UzNSvI4GZZpZO8MHhAXd/wszmE7v+rYiI\niHRT0gK6u78LTI6x/BOC++kiIiKSIMoUJyIikgIU0EVERFKAArqIiEgKUEAXERFJAQroIiIiKUAB\nXUREJAUooIuIiKQABXQREZEUoIAuIiKSAhTQRUREUoACuoiISApQQBcREUkBCugiIiIpQAFdREQk\nBSigi4iIpAAFdBERkRSggC4iIpICIn3dAGnRUFdHzeZNAGTn5xPJzOrjFomIyEChHno/4e6s/PhD\nfn/p15hxyfksW7iApqbGvm6WiIgMEAro/UR9TQ2vP/o3GuvraWps4PVHHqC+uqavmyUiIgOEAno/\nEcnMZNze+259v8OkyaRnZfZhi0REZCDRPfR+Ii09nd0PP5rRO+9GkzdRvN0oIpGMvm6WiIgMEAro\n/UjOkCHkDBnS180QEZEBSEPuIiIiKUABXUREJAUooIuIiKQABXQREZEUoIAuIiKSAhTQRUREUoAC\nuoiISApQQBcREUkBCugiIiIpQAFdREQkBSigi4iIpICkBXQzG2tm/zKz+WY2z8wuC5eXmNksM/so\n/F6crDaIiIgMFsnsoTcA33H33YGDgIvNbHfgCuA5d98JeC58LyIiIj2QtIDu7ivc/a3w9SZgATAa\nmAbMDDebCUxPVhtEREQGi165h25m44DJwOvACHdfEa5aCYzojTaIiIiksqTXQzezfOAh4P+5+0Yz\n27rO3d3MvJ39LgQuDN9uNrOFnZyqEKjsYvPi2aejbdpb13p5rO2il7VePwyo6KRdXdWfr0+sZR29\nT8b1aa9didhnMF+jeLfv6jXqi+vztLtP7eI+Ir3H3ZP2BWQAzwDfjlq2EBgZvh4JLEzQue5Mxj4d\nbdPeutbLY20XvSzG9uVJ+Lfot9cnnmvW6nol/ProGiXnGsW7fVevUX+9PvrSV19+JXOWuwF/ABa4\n+41Rqx4Hzg5fnw08lqBT/j1J+3S0TXvrWi+Ptd3fO1mfaP35+sRaFs81TDRdo8519Rzxbt/Va9Rf\nr49InzH3mCPePT+w2WHAy8B7QFO4+AcE99EfALYHPgVOc/d1SWnEAGVm5e5e1tft6K90fTqna9Qx\nXR9JRUm7h+7u/wasndXHJOu8KeLOvm5AP6fr0zldo47p+kjKSVoPXURERHqPUr+KiIikAAV0ERGR\nFKCALiIikgIU0Ps5M9vNzO4wswfN7Bt93Z7+yszyzKzczE7u67b0R2Y2xcxeDn+XpvR1e/obM0sz\ns2vM7FYzO7vzPUT6HwX0PmBmd5nZajN7v9XyqWa20MwWmdkVAO6+wN0vAk4DDu2L9vaFrlyj0PcI\nHoccNLp4jRzYDGQDS3u7rX2hi9dnGjAGqGeQXB9JPQrofeNuYJsUkmaWDtwGnAjsDpwZVqfDzE4B\nngSe6t1m9qm7ifMamdlxwHxgdW83so/dTfy/Ry+7+4kEH3x+1svt7Ct3E//12QV41d2/DWgkTAYk\nBfQ+4O4vAa2T6RwALHL3T9y9DrifoNeAuz8e/jE+q3db2ne6eI2mEJTo/S/gAjMbFL/XXblG7t6c\n3Gk9kNWLzewzXfwdWkpwbQAae6+VIomT9OIsErfRwGdR75cCB4b3O08l+CM8mHroscS8Ru5+CYCZ\nnQNURAWvwai936NTgROAIuC3fdGwfiLm9QFuBm41s8OBl/qiYSI9pYDez7n7C8ALfdyMAcHd7+7r\nNvRX7v4w8HBft6O/cvcq4Py+bodITwyKockBYhkwNur9mHCZtNA16pyuUcd0fSRlKaD3H28AO5nZ\neDPLBM4gqEwnLXSNOqdr1DFdH0lZCuh9wMzuA14DdjGzpWZ2vrs3AJcQ1I9fADzg7vP6sp19Sdeo\nc7pGHdP1kcFGxVlERERSgHroIiIiKUABXUREJAUooIuIiKQABXQREZEUoIAuIiKSAhTQRUREUoAC\nuvR7ZvZqX7dBRKS/03PoIiIiKUA9dOn3zGxz+H2Kmb1gZg+a2Qdm9mczs3Dd/mb2qpnNNbM5ZjbE\nzLLN7I9m9p6ZvW1mR4XbnmNmj5rZLDNbYmaXmNm3w21mm1lJuN2OZva0mb1pZi+b2a59dxVERDqm\namsy0EwG9gCWA68Ah5rZHOCvwOnu/oaZFQDVwGWAu/teYTB+1sx2Do+zZ3isbGAR8D13n2xmvwG+\nCtwE3Alc5O4fmdmBwO3A0b32k4qIdIECugw0c9x9KYCZvQOMAyqBFe7+BoC7bwzXHwbcGi77wMw+\nBZoD+r/cfROwycwqgb+Hy98DJplZPnAI8LdwEACCmvQiIv2SAroMNLVRrxvp/u9w9HGaot43hcdM\nAza4+z7dPL6ISK/SPXRJBQuBkWa2P0B4/zwCvAycFS7bGdg+3LZTYS9/sZl9OdzfzGzvZDReRCQR\nFNBlwHP3OuB04FYzmwvMIrg3fjuQZmbvEdxjP8fda9s/UhtnAeeHx5wHTEtsy0VEEkePrYmIiKQA\n9dBFRERSgAK6iIhIClBAFxERSQEK6CIiIilAAV1ERCQFKKCLiIikAAV0ERGRFKCALiIikgL+Py2h\nrpUAb8TzAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3918,7 +3924,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmT47ZfvCUpYFRJEi\nINgRUVQEVGI39h67MUX9qYlGjSVFY6LRWKIk9hZFsWFHLIgiHalLXWB7nT7v748ZtsAudQeW3fN5\nHp6dmfvee9/Ls3DmrUeMMSillFJq72bZ0xVQSiml1K7TgK6UUkp1ABrQlVJKqQ5AA7pSSinVAWhA\nV0oppToADehKKaVUB6ABXSmllOoANKCrvYqIXCsiM0UkJCLPbnbsMhFZKiK1IvK+iHRrcixDRCaJ\nyMbknzs3O3eoiEwTkSoRWSMiv9s9T6SUUm1DA7ra26wD7gH+3fRDERkN3AtMBLKAFcCLTYo8BKQB\nhcDBwPkicnGT4y8AXyTPPQq4WkROTskTKKVUCmhAV3sVY8wbxpg3gbLNDp0IvGqMmW+MCQN3A6NE\npG/y+EnAn4wx9caYIuBp4JIm5xcCzxtjYsaYZcCXwMAUPopSSrUpDeiqI5EWXg/ayvGmx/4GXCAi\ndhHZDzgM+CgltVRKqRTQgK46iveBM0XkABFxA78HDIlu9k3HbxERn4jsQ6J1ntbk/HeA04EAsAh4\n2hjz3W6rvVJK7SIN6KpDMMZ8BNwBvA4UJf/UAGuSRa4nEayXAG+RGF9fAyAiWSQC/l2AC+gJjBWR\nq3fbAyil1C7SgK46DGPMo8aYfsaYLiQCuw2YlzxWbow51xjT1RgzkMTv/ozkqX2AmDHmP8aYqDFm\nDfASMH4PPIZSSu0UDehqryIiNhFxAVbAKiKuTZ+JyCBJKACeAB42xlQkz+srItkiYhWRccAVJGbL\nAyxOFJFzRMQiIl2Bs4A5u/8JlVJq52hAV3ub20l0nd8CnJd8fTuJrvIXgFoSLe+vgaZryYcDc0l0\nw98HnGuMmQ9gjKkGTgVuBCqAH0m07O9BKaX2EmKM2dN1UEoppdQu0ha6Ukop1QGkNKCLyA0iMk9E\n5ovIL5OfZYnIVBFZkvyZmco6KKWUUp1BygK6iAwCLiexzeYQ4MTk+t9bgI+NMf2Aj5PvlVJKKbUL\nUtlC3x/4NrnVZhT4nMTEo4nApGSZScDPUlgHpZRSqlNIZUCfBxyZXCqURmJNb0+gizGmOFlmPdAl\nhXVQSimlOgVbqi5sjFkoIg8AHwJ1JJYCxTYrY0SkxWn2InIFibXCDBgwYPj8+fNTVVWllNoesu0i\nSu05KZ0UZ4x52hgz3BgzisT63sXABhHJB0j+3NjKuU8YY0YYY0a43e5UVlMppZTa66V6lnte8mcB\nifHzF4DJwIXJIheS2FdbKaWUUrsgZV3uSa+LSDYQAa4xxlSKyP3AKyJyKbASODPFdVBKKaU6vJQG\ndGPMkS18VgaMSeV9lVJKqc5Gd4pTSimlOgAN6EoppVQHoAFdKaWU6gA0oCullFIdgAZ0pZRSqgPQ\ngK6UUkp1ABrQlVJKqQ5AA7pSSinVAWhAV0oppToADehKKaVUB6ABXSmllOoANKArpZRSHYAGdKWU\nUqoD0ICulFJKdQAa0JVSSqkOQAO6Ukop1QFoQFdKKaU6AA3oSimlVAegAV0ppZTqADSgK6WUUh2A\nBnSllFKqA9CArpRSSnUAGtCVUkqpDkADulJKKdUBaEBXSimlOgAN6EoppVQHoAFdKaWU6gA0oCul\nlFIdgAZ0pZRSqgPQgK6UUkp1ABrQldoF8XB4T1dBKaUADehK7ZR4JEJg7lzW3XQzlW9NJlZdvaer\npJTq5Gx7ugJK7Y1iFRWsvOBCTCBAzfvv437nbax+/56ullKqE9MWulI7wxhMNAqAxeNB7I49XCGl\nVGenAV2pnWBNT6fn44/hHz+O/DffYM6cmcz+6D3qq6v2dNWUUp1USrvcReRG4DLAAHOBi4F84CUg\nG/geON8YozOL1F7F4nLhOfRQpP9+vHrv7ylbswqAotmzGPuL63B5fXu4hkqpziZlLXQR6Q5cD4ww\nxgwCrMDZwAPAQ8aYfYAK4NJU1UGpVBKrlVg83hDMAdbMn0M0EtmDtVJKdVap7nK3AW4RsQFpQDFw\nDPBa8vgk4GcproNSKVFfVUlVyQbyevdt+Kz3sIOwOXQ8XSm1+6Wsy90Ys1ZE/gKsAgLAhyS62CuN\nMdFksTVA91TVQalU+unracz5+AMmXPcbKtYX48vMJKNbD1we7zbPjQcCiNOJWHQai1KqbaSyyz0T\nmAj0BroBHuCEHTj/ChGZKSIzS0pKUlRLpXaeNyubky65CuuPc+hSVUvs8SeJzZlHvL6+1XM2rV9f\n+5vfUvHcc0QrK3djjZVSHVkqmwfHAiuMMSXGmAjwBnAEkJHsggfoAaxt6WRjzBPGmBHGmBG5ubkp\nrKZSO6egX39qH30cV2Eha6+/geop77LqssuIVW25yUw8HscY07B+vfbjj9lw732Ei4p2f8WVUh1S\nKme5rwIOFZE0El3uY4CZwKfA6SRmul8IvJXCOijVZqKlpZQ/9zwAWeedi83phEgEE4mAMYlCsRgm\nHMLEYojVCkBtRTnfvP4Sbn86Q8ecgFgsmE0X1Ql0Sqk2IsaYbZfa2YuL/AE4C4gCs0gsYetOIphn\nJT87zxgT2tp1RowYYWbOnJmyeiq1LbHaWop/9ztq3nsfAN+4E8i/5x5ilZWEli0j9NNiat5/D98J\n4xC7Df/48djz8gjW1TLl4T9RNPsHfDm5jL/2N6SnZ1D34stYHHayzj8fW0bGHn46tZ1kT1dAqa1J\n6Tp0Y8wdwB2bfbwcODiV91WqLRhjEEn8H24iESJrGkeHIqvXYEJhsFqJrl+Ps98+WBwTCS5cQNWb\nb+E5ajR2wMTjRIJBnB4PJ/7yZj6b9BS15aWMu+ZXdO3TD5vbjYnFiJWVEa2qwpaZhS0new89sVJq\nb6ZTbJVqQWTjRjbcey8ljzxKtLwcq99Pl9tuxeLxYPF46HL7bVjT/Ug8zsYHH8KWkUnpE09Q9eZb\nuEeMAG9iprvb5+eEq29kyHHjWPHDdxQvWURNWSnvP/Yw4VAQSHTlLz95IitOOpnVV19NtKxsTz66\nUmovpclZlNpMrKqK4ltvw9K9J66xP6OqMoZTaojmd6H7B+/htFix+nyI1YrF76fLrf9H6aRJ9Hzq\nSYzTTdzjxWa1EFq+HIvHgz8rm4MnnsmKWY3DRv68PCzJMfbwqlXEkrPdg3PmJFr+Sim1gzSgK7UZ\nE4th8fuRk8/nhYcWM+qsApb/7xWWzJhOWnoG5933N3x2OwBWrxf/2LF4jziCqM1O2OHGE6pj/R13\nUPPBh4jLRe83XsfZpw+9DhjKyb+6laqSDfQ/4ijcvkR2NkevXtjy84kWF+MZORJxObeoU7S0DGPi\nWDMysCTvrZRSTWlAV3uF4qoAHy/cyKDu6fTN9eBzpTCoWa3k/fpXrF4VwcQNmV2dLJkxHUjsDrex\naDm+7JyG4hanE4vTiSkvx122AWO1UvPhVABMMEjdV1/h7NMHt89Pv0MO3+J29rw8er/yMvFAEIsn\nDVtWVrPj4XXrWH35FcTKy+nxj7/jHjoUsek/XaVUczqGrtq9kpoQZz/xDbe/OY+fPTqdtRWBlN0r\nWl7Ohrvupuiss8lY+iWHndCVmvIwPQYOBsDhTiO3oBCAyIYNVLz4ErVffklk/XpCixax4e57CK1c\nife4YwEQlwvP4VsG8c3ZcnNxFPTElr3lhLiK554nvGwZsYoK1t91F7EqzeimlNqSfs1X7V7cGFaX\nN+6+tqq8nv75/pTcK7xqFdVTpgCw8Y9/ZOAnnxB2ZtCj/00Ea6txeby40zOIlpay6sKLGjaG6XrH\nHbiGDaP288+pnzmTXs/9l9wrr8SanY01K4t43BAzBrt1x79Du/bfv+G1Y59+iO4Vr5RqgQZ01e55\nHDbumjiI+95dyKDu6RzYKzNl97JlZ4PFAvF4Ihjbbfiy3YAbb2bjfSPRaLNd3gKzf0x0haelEa+r\no+K118m95mpsWVmU1IR4+bulLC2p5ZIjetMn14vXuf3/9DxHjqTn008RKy3FM3IkVp+mZlVKbUkD\numr3vC4bpwzrzvEDumCzWsjybLuFWl4XojoQxe2wkuVxbHfL2JqVReHLL1H/3Ux8xx+HNSenxXLi\ncuGfMJ7qKe8iDgf+CROweNIw9fXYcnPJvuB8rOnplFXUcs0rc5mxohyAt35cx/s3HMl+Xbe/h8GW\nkYH3iCO2u7xSqnNK6U5xbUV3ilOba7rpy+Yq68PcOXk+b/64Dq/TxtvXjaR3jmeX7xmrqSG4cCGB\nH2eTftKJiNNFrKoSsdkQtztRKBJBHA4sfj+hhQspcaUz6t/zml3nqqP6cvO4/rtcH7Xb6U5xql3T\nSXFqr1JWF+KRT5Zw1zsLWF8VbLFMOBrnzR/XAVAbijJt8c5n64uWlhJZv55YdTWRdetYdcGFlDz4\nIEXnngfxGM7evXH07AnRKMW33MK6W2/DhELEqqtZfeVVUFZKrq/5MrQhPXWrV6VU29OArvYqL81Y\nzV8+XMwz04u4+fU5lNRsGdRtVgvH9M8DwGmzcFjfndtKNbJhA0Vn/5ylo4+m7OmnMfF4w7Hohg0N\nCVnikQgVL7xA3ZfTqf/6a9bffQ/EDZa0NGKPP8ITJ/elV3YaDquFCw7txcG9d34OQDweJ96kHkop\ntYmOoau9Snld4y5q1YEIociWwS3L4+DPpx/AxpoQGWl2stJ2blZ4/bcziKxZA0DZv54g8+yf4z32\nWIJz55L329+Az0fFhvUs/PIz8o8+iszMTCoe+BMWnxeL10PB009R8s9/0nvVQl69bBTYbHgcNjw7\nMCGuWX2qw3z/fhGxSJwRE3phtUVxe3WCnFIqQQO62qtcOrI3y0pqqQ5EuHX8/rgd1mbHo+EYsWic\nLI+DbO+WO64BBGqqiUWjWKxW0vzprd7L2b9/w4x3Z//+iMNOtz/eQzwcxurzUVNXx8u//y11lRUA\nnHXnA+Rcew2ZZ5+N1e3G2qsX3f74xzbZBCYeizPz3RXM/SyRICZYF6FLr7X0PXAY/twuu3x9pdTe\nTwO62qtkuO3cNn5/1lUGyPY48Lkaf4Xra8LMeHsFVRvqGXlmP7LyPYil+Tym+uoqPn32CRZN/5wu\nfffllJt+hycjk2hVFYEffiC0ZAnpEydi79IFR4/u9HnnbcIrV+IePLhh05dNXyGi1dUNwRygsmQD\nA6++GrE0jmS11Y5uBoiEYg3vo5E4dZVVfPafpxl37a+xO5t/eQnVR7DaLNg2+8KjlOq4dAxd7VXS\nnDb6dfFx1H559M714rA1Bqyi2aXM/2Ita36q4N3H5lBfs2WSk2BtLYumfw7AhmWLWbfkJwBCCxaw\n5qqrKXnwIVZfeRXRsnIsaWk4+/TBd/TR2FpYvmaxOxlxxvlYrDa69O1HwaChzYJ5W7JaLRw6sS+9\nh+bQa1A2I07IZeG0D/BkZmFpsiTPxA3lxXW8/+Q8vnxtKYEW/g6UUh2TttBVh2G1NbbGLVYLsbgh\nEos3W4Nudzqx2mzEolEAjCeDyvoQpkmu82hxMSbe2BpuTUaGnwOOHccBo8cgFgv+zfZgb2ueDCfH\nXjSASDDI4m8/ZfCYsRxwzFistsZ97QM1Yd59bA5VGwOsWVhBbk8vA4/sntJ6KaXaBw3oao+orA+z\nrjKI32HFZ7XitFtweXdtS9OCgdkcdGJvKorrGDqhkHs/+YnD+uZwTP+8hmQubp+fM+58gLmfTCV3\nwFA+XhPlrNx6fKOOxHPE4YRWFNH1D3cSd2573bqIkJmRmi1oW+Nw2XC4vAwbe1IrlQKrrfELjM2u\nnXBKdRa6sYxqE+HVqyl//gXcQw7Ac/jh2NJbn2wWjsZ5ZvoKlq2v4dzCLsz63zIyuno4/pIBpPlb\nnsi2veJxQ1ltiAXrq1m2sY6Hpi5m6q9G0TXd3VCmvC7MM18u56vl5YzdJ4PTqxZQ+tDf6PaPRwi7\ns/hhegWRmIXR5+yH27d37ZserItQXxVi5rsryeiaxuDR3XHv4hcl1UA3llHtmrbQ1S6Llpay8oIL\niRYXUwEUPPdfbCNGtFo+EInxyaKN/Paofnzzz3lEw3HqKsMsn13KgCO6URmI4LAK3s1SpMbihtLa\nEPG4weuytZhCtTYU5X8/ruWRT5dyUGEWz116MDXBKI99Pp9DemdyRN8csjwOLjy8N2ceVEB2uJa1\nZz9KrKyMsN3Hiw8vbbjWsOMK2iSg19eEiUfj2NqgF2JrwsEo019dwrqllRQMzKZbv3QN5kp1Itof\np3aZMYZYZWXD+1hZecPreCBAeOVKar+cTrS0FACvw8pVo/tSF4rizXQ1lPVnuVhWUsvFz8zg1v/N\no7Q21Ow+q8rrGfu3Lzjs/k/4YnEJ4eiWa9DrwlHufXcR1YEoHy/cSIbHwemPf82kr4q4+vlZLFpf\nA0COz0nPrDScaS7SDjwQAImGcXkTXxJEIM3fBsG8Osy7/5zDpP/7is9fWkygNnWT1KKROKVra6ku\nDTLv87Us/X4je0MPnFKqbWhAV7vM6vPR4x9/x9G3L/4TJ5A2YnjDsUhxMcvGT2D1ZZclZo+Xl2O1\nWji4dxYD+mRw4vVDGDG+kBOuGIS/u4eLnvmO2WuqmDx7He/OLW52n3fmrKOyPsL1h3ZjWOkyyv/0\nAMElSzDJCW4AVouQm1x/vmnFWlUg0nB88YYaSmsavyhY/X663H4bPZ96irRMN6ffNJwjztiH028Z\ngdu3ZQ/AjqqtDLFhRTUAS2duJBSIbuOMnedMs3HkmfvicNvwZbsYdlyvVve7V0p1PNrlrnaZxeUi\n7ZBD6PWfSYjD0Sy9Z+inxRBLzBgPzp/f8Lo+FCMUjWN1WTnk5D4ArK8KNFtX7rBaCISjuB2Jz0bu\nk8Ojnyzl7H19VJ12LhhD1euv0+e9d7HnJbZ6zfU6+d81hzNlTjH9u/qYt7aKm8bux+NfLGNwt3QG\n5Pt5acYqrh3Tr+E+tqwsvCMT2cycwNAxBW32d+P22bG7rESCMXzZLgKxOKnayd1qtdClt49z7jwk\n2cOwa/MRlFJ7Fw3oqk1Y7HYs2Vvume4efiD2ggIiq1aRfdWViNNJaU2I8//9LQuLaxjeK5N/nTec\nHJ+TdLedB88cyqSviyjISqNvnpe6UJRIzOBxWOnlc/HBDUfi27CSqk37qNfXQ6yx611E6CphztjP\nz9+/Wsuk79ZywWGFvH3VYdhWLOPtn9bRLXf3JUeJ2oWxvx5GWXEdvi5u1oXC5KfwflabFU+6biaj\nVGekAV2llD0vj8IXnscYg8XlwurzsW5NJQuLE2PZ36+soLwmhKUmgi/LRVe/k6P65RCOGwQ46s+f\n8Yuj+nDx8AJev+s7opEYEy4sJPPii6mbNo3syy7F4m/sEYhs3MjaX95IpLiY6/9wFxddeSBepwV3\noILoxjUcs/+B5OTn7rbnz/Q6CUTjFJfG6eay09VhJRaNYbVp0FV7joicDAwwxty/p+ui2o6OoatW\nhSIxiqsCzFtbRdlmE9R2RNSVTlmtg5LSOMHaCHk+F2nJLUnT3Xas4Tgv3T2D8tIACIw/oBsmbjjv\n6W+pC8d49NNlBGoihANR4lHDlGeL8Jx/Ob0mPYv/hBOwehrXjJc/+yyYOD3+/jD2WJRuDrCXlbLx\n17+h+t336JPhJMuze2d+56e7OCjLx+T7ZvLCHd9QvKKa6nrdwU21DUnYof/LjTGTNZh3PNpCV61a\nWxlg3MPTCEXjHL1fLn89cwhZnh0bl41F48yfvpZv/rccgENP6cPgo3vwwS9HMWd1Jf3S0/jxtWUY\nAytXVPH+rCquH9MPm9VCMJlJLc/vxO2zk93dQ9naOjK6pGH1pmFrYYzYmp1Nl//7P1ZffgWxykps\nubn0/NfjBBcsgHicihdfIve6a3f9L2cHhINRvnlzOZFgYv7At28up+dJBQwozMTr0n+CaseJSCHw\nAfAtMBz4k4hcSWIayDLgYmNMrYiMBx4E6oDpQB9jzIkichEwwhhzbfJa/wZygJLkuatE5FmgGhgB\ndAVuMsa8trueUe04baF3YvFYnGik9S1OZ62qJJRcGvbFklKi8R1YAlVXBgsmE12/hNXzG5exrV5Q\ngYkaemalcdy+udQtqWL9siqyu3vx9/Tyzpx11IWiDCvI4J3rRvLbsfvx8hWH4ctwcfINQznv7sOY\n+MuhrU74yjjtNMJr1jQso4uWlBApXo81M5GD3Jq187nId5bNZiWnwNvwPj0/jW9XVVAfSd2Md9Up\n9AP+CRwFXAoca4w5EJgJ/EpEXMC/gHHGmOFAa2NN/wAmGWMOAJ4H/t7kWD4wEjgR0BZ9O6fNg04q\nUBNm1tRV1JQFOeyUvvhz3FuUObRPNtkeB2V1Yc4/pACnbTu//0WCMP1h+Oph7L2P4cBj/kHx0ioA\nDjy+AHuyVepw2xkwshu9h+cxZ20Vl770A5eO7MPzM1bxz0+XcduE/bno8MKG/OHbM2vblpGBe8gQ\nxOnEhEJYPB6c+/fHN3Ys9vx8/OPGbeffUNux2i0MO66ArO5equrDWPLTCBeVNgw7KLWTVhpjvhGR\nE4EBwPTkMkUH8DXQH1hujFmRLP8icEUL1zkMODX5+r/An5oce9MYEwcWiIjm6W3nNKB3UktmbmDW\nh6sAqNxYz0nXDyVts13R8tNdvHfDkYSicbwuG+nu7Rx7jgZh3Q8AWFZ8Qn6ftzn/ngtBLDg9dixN\nUpo63XZsThv72YRXrzyM2uo6nIFazr6wP5+tDVAXijYE9O1ly82lz5R3CC5YgHvQIGy5uXS9/baU\nZULbHm6vgz4H5lITjFITjHJJjz54nbu+zl11anXJnwJMNcb8vOlBERnaBvdoOnlGNzVo57TLvZOK\nRxu7z03cJBJuby4SJsdtpWdWGplpOzCRzOmHY34H9jSwp2HvdSDeDBfeTBf2FlqlVovQxe+iW4ab\n/LI1hC46B/9Pczlz/ww8oRrisdaHBSKhGOFQtNmOaBaHA0ePHviPPx57t26I3b5HgzkkdtOL1EWJ\nlYXIs9vI3M0T81SH9g1whIjsAyAiHhHZF/gJ6JMcIwc4q5XzvwLOTr4+F5iWuqqqVNIWeie176Fd\nqdhQR215iCPP2neLbU4j69ez8c9/xuLzk3vdtdhaWGPeKosFug2D62cl3ruzEp8B6yoDfLJoI0N6\nZtA7J61ZK9UYQ83rr9Hl9tuI5+Tww2dTWbPsJ4YefyIFg4fg8nib3aa+Okzt6o1YfpoFNRWkTxiP\nvYW85U3FamtBpNnM+N2hvjrMq/fNpK4yhC/bxWk3DceTrhu/qF1njClJTnJ7UUQ2/VLdboxZLCJX\nA++LSB3wXSuXuA54RkR+S3JSXMorrVJCA3onleZzcOSZ+xKLGZzu5r8Gsepqim+/nbovpwNgcTnJ\nu+mmHWvl2hzg69rso5KaIKc/9hXrqoKIwEc3HoU3rzGgiwj+8eOx+vys2biOrycnJtSuXjCPSx5+\nEhOLsCJSzOtLXmdsr7FkV/fA+/2XlNz7BwAC335Lt/vvw+pvOaVppLiY9X+4C3HY6XL77Q27y7Wm\nqj5MKBrH5bDibyERzI6IBKPUVSZ6L2vKgkRD2863rlRrjDFFwKAm7z8BDmqh6KfGmP6SGFx/lMSE\nOYwxzwLPJl+vBI5p4R4Xbfbeu3kZ1b5oQO/EbA5rwy9AtLQUY0xDy9U02X3NtNFs7Fgc1lUFE9c0\nsKainr55zf+PcA8ZQry+nuCqZY0fGkMkFCLkjHLBexcQioV4bfFrvH3iFGKrixqKRVavxkQitCRW\nU0Px7++gblqiN9HWvTv26y4lRhy3zY3P4WtWvrwuxB+nLOT9eev5+cEFXHPMPjs27LAZh9tGXi8f\nG1fWkN8vvWFioFIpdrmIXEhiotwsErPeVQelY+iKSHExReecy7JjxlD72eeI00n+H+/Be/Ro/Ced\nSM5VV7bJGLTHaeXW8fvjsls4vE8WA/McEKymKhCmqKyONRX11Fsd2HNz6XPoERQMPACb3cHg407E\nJlZiJkYolmjlxk2cMGE8Z/wc18AB2PLz6XrP3VgzWt/WVayJ8Xux2+H8U7jkw0sZ8+oYXlj4AjXh\nmmZlK+oivP7DWurCMZ76cgW1wV37UpPmdzLhmiGc/8fDOOGKwW2SyU2pbTHGPGSMGWqMGWCMOdcY\nU7+n66RSR1KVXlFE9gNebvJRH+D3wH+SnxcCRcCZxpiKrV1rxIgRZubMmSmpZ2dWX1VJOBhAgiEq\nbv89ge++w5aXS+Hrr2PPzSVWV5cYb05La/H8YG0tsWgEl8eLWG2EA1GsdkuLE982qa2uor60CFv5\nErI+uYnwZZ/z2pI4t/5vHgBPnD+c4wcmuuqryiswsSjRunosX36JbeJY5lcvZWHZUjwOF97oUHKs\nfvqmxagNhsnsnke6d8vld5tENmxgwwMPYO/Rk/mnDuaGz28EwCIWPjr9I3LTGpfprq8KMvovnxKM\nxPG7bUy98Si6+F2tXVp1DjrLW7VrKev3M8b8BAwFEBErsBb4H3AL8LEx5n4RuSX5/uZU1UO1rL6q\nknf+9gCrF8zF5fFy5s23Ern2Bpz9+iVasLDViWP1VZVMfepRSletZMwlV+LN7sO0l5eTU+BjxLhe\nuL0tt0C9Uo/3v6PBJLr0A6EIk2dvaDj+1o/rGL1fLg6blfSsTEwsRtzpRM48g6oILFiRx7fLbVw7\nug9L1pRz1uTEPJ9Th3Xnnt7dt/rM9i5d6HbvvSBCn2Ax1mSrv39mf6yW5l9Csjx2plx/JDNWlHN4\n32xydFa6Uqqd210DeWOAZcaYlSIyERid/HwS8Bka0He7UH0dqxfMBSBYV8ui2T8w/KEHcRQUYEt2\nW8djMQI1VcTjcSwWK26/H0sy8K2aP4elM74G4O2H7uPkX/+VdUsqWbekki69fOx7cNeWb+zww88e\ng4/uhO4j8KRncuHhbr5dUY5VhPMOLcDRJHGJWK0Nk9yWF1dw9zsLAZi+tJSPfjGcXx7Vi42BOL88\nbl/SHM1/nY0xxGtrEacTiyNX/y6qAAAgAElEQVQRkC2uRCu7i7ULk382mVU1q+if1Z8sV1bzatqs\n9M310jdX5wEppfYOuyugn01ilyKALsaY4uTr9YDuPrQH2J0ubA4n0XBiTDqvd1/Shg1rOB6ormbe\n5x8x8+03qK+qxJedwyGnns2+hxyB2+fDm9kYAL2Z2URCTSbRbWUUp9Y4MX0mkHbZaKwOFzZ3BqP6\nRZl+8zGIQEZa67PJ4/HGe8QNxKqquGJ4VyQzE7e9eQvbRKMEf/qJjX/5K+5Bg/BfdhnVFgdWEbK9\nTtw2NwX+Agr8bZf7XCml9qSUjaE33EDEAawDBhpjNohIpTEmo8nxCmPMFhtsi8gVJLcpLCgoGL5y\n5cqU1rOziUUilK9bw+yp79Jt3/3pPWwEbl+iJRysq2Pa888w5+P3tzjv0NPO5qCJpxOLRFi7aAEb\nVyxj0NHHUV9t58tXlpLT08shJ/fB7duyi7qiPswTny/j7TnFnHtIAecc0ot09/YvB6uoDfH81yv4\nbnU1143IpdfiWWSNP6HFMf5ISQkrTjqZWGUlrlFHsfG3f+CGV+fRxe/kiQtG6Hi42hmdbgxdRL4y\nxhy+p+uhts/uCOgTgWuMMccn3/8EjDbGFItIPvCZMWa/rV1DJ8WljjGG5P7PDapLN/LUdZcz/Kwz\nyD9gMOG6OmY8/SwVxeuw2u1c9ven8GY132gmFosTDsSw2QV7K1u1riit5ei/fN7wftpNR9MzK414\nLI7Fun2z6EM1ddRXVOKsrsDRvTu2zJaTrURLSlh+yqnESktx/fXvXLzARlFZYoLvjcftyw1j+m3X\n/ZRqotMEdBGxGWM0e9BeZncsW/s5jd3tAJOBC5OvLwTe2g11UK3YPJgDlK5aydBTT2F+9wpOm3Ye\ntyy9l6N+dQM2h5NYJEJtRdkW51itFtxee6vBHMBlt2K3Ju7ncVjxWyzMmrqKj/+ziLJ1tcSarH1v\njTUUIE3iOPLzt7pEzZqVRa9nn8F3/HG4u+dTkN3Yit8nd/fuEqc6t8JbppxTeMuUosJbpsSTP89p\ni+uKyJsi8r2IzE/2aCIitSLy5+RnH4nIwSLymYgsF5GTk2WsyTLficgcEflF8vPRIjJNRCYDCzZd\nr8n9bhaRuSIyW0TuT352efI6s0XkdRFpeUmM2i1S2kIXEQ+wikQO3qrkZ9nAK0ABsJLEsrXy1q+i\nLfTdbe1PC6i1BDnr60uImcSOZncNvZ3q56ZRuqqIi/76GNk9ejaUD9TWEA4EsNpseNIzWl2zHghH\nWVpSx9QF6zlzRE/Kfyxn2suLAXC4rJxz56F4MlrfDjVaVsbqX/yC4Lz52Lp2pferr2DLbS0jZEI8\nFELsdkrrIrw7t5juGW6GF2bu0iYxqtPa4RZ6Mng/CTQNdPXA5UX3T3hhlyojkmWMKRcRN4ltXY8C\nSoHxxpj3ROR/gAeYQCIb2yRjzNBk8M8zxtyT3Cp2OnAG0AuYAgzalKFNRGqNMV4RGQf8jkSK1vom\n9842xpQly94DbDDG/GNXnkvtvJROijPG1AHZm31WRmLWu2qnMrrks3HxLAZlD2J26WysYqVfZj++\nqJxMel4XXN7EzG9jDHWV5cx6/x1mvPkqbp+fc+99iPS8luc5uh02BndPZ3D3dACWrV/dcCwcjG2z\nhR4PBAjOmw9AdP16IiUl2wzoFmfiC0Kuz8mFhxdu1/Mr1YbupXkwJ/n+XmCXAjpwvYicknzdk0R+\n9DCwafLLXCBkjImIyFwSe38AHA8cICKnJ9+nNzl3RpN0q00dCzyzaWOaJo2wQclAngF4gQ928ZnU\nLtD9J9UWXD4fXTK784fcm1kRWE1Pf08Wv/MhsUiYk2+7m7T0DIwxlK1ZRV1lBT9+8A49BwymcN8B\nVG8objWgb27ImJ4s+2EjgZoIA0d1w7GN7VAtbjfuoUMJ/Pgj9u7dsW8jmCvVDrS2jGKXlleIyGgS\nQfawZIv5M8AFRExjt2ucZPpTY0xcRDb9AxPgOmPMBy1cs44d8yzwM2PM7GSCmNE7+iyq7WhAV1uw\nWm3kFfYmUF1N7dI1rPziU3oU7svRZ16EOz0DEaG+uor3//kQ/Y84ilFnnk93m4u6F1/CubGcaI9e\nrU5Wa8prC3LqRd2IG8HusOCwRIHWZ73bsrPp8cgjxOtqsaSlbbN1rlQ7sIpEV3ZLn++KdKAiGcz7\nA4fuwLkfAFeJyCfJ1vu+JDb+2pqpwO9F5PmmXe6ADygWETuJ1Kvbuo5KIQ3onZiJx1sd77bZHfiy\ncxhy3DjiY8ZiaaGcxWrjq1df4PK7/0rR+AkQjVL/9de49t8f//HHb1G+pCZEcVWArn4XOV4nNR9+\nyPo7E5nSxOWi79QPsbhb37oVwJaTDTk7kMpVqT3rVloeQ791F6/7PnCliCwkkff8mx049ykS3e8/\nJLOwlQA/29oJxpj3RWQoMFNEwsC7JJ7hd8C3yWt8SyLAqz1EA3onFKutJfDDD1S/+y4ZZ5+Nq3//\nhh3UWtJSME/zpzP+2l/z7iN/JVRbA9HGFS7xmpotym+sCXL6Y1+zqryebI+D9244Ek9hYcNxR8+e\nbZIARqn2pOj+CS8U3jIFEmPmBSRa5rfu6oQ4Y0wIGNfCIW+TMndudo43+TNOIhhv/qXis+SfLc5J\nvr4fuH+z448Bj+1g9VWKpHwdelvQWe5tK7x2LcuOPQ6MQex2+k6dir3rzm3YV19dhTUcoXby25Q9\n9RSuQQPpdt992LKbt6JXltVx1J8/a3g/5fqR9PdAYO5cQouX4J8wHnuXnatDrL4eU1cHViu2rKxt\nn6DUzuk069DV3klb6J2QCYUa9mc1kQgmHtvpa6X5EzPWbWefhf+kExG7vWEv+KY8Thsj98nmy6Vl\n9MnxkOdzYvW58I4ciXfkyJ2+f7SigrJ//YuKF17EuW8/evz9H9i75e/09ZRSam+lLfROKFpZSeVL\nL1Pz4YdknnsuvrHHY/WmLglJoKaGQE01oUA9roxs4k4P2d7W15vv0LXnz6fotNMb3vsnTiT/zju2\nORav1E7QFrpq17SF3gnZMjLIuuhCMs48A4vX25CJLBXCwQA/vPsW37zxEgB5hX049da7gLYJ6CYY\nbPY+XlODiW97xzmllOpodBZSJ2VxubBlZbVZMI/G4lTUhwlEmnffhwMBvpv8WsP7jUXLqSktaZN7\nAjgKC0k75BAArBkZ5P3qxq3mcVdKqY5KW+idVMNEMhFsOTm7dK1gJMbMonIenLqEg3tn8otRfcn0\nNH5RcLjTCNRUN7y3b2VG/Y6yZWfT/W8PEa+vR+wObFnbXv++Sby+nkhxMaHly0kbOlTXtSul9mra\nQu8E4sFgs27oeH09NVOnsvSYMRSdex6R4uKtnN2ypnMvqgIRLnl2Jj+squDxz5ezaH1j8Hb7/Ey4\n4SbcPj8Wq42DJ55Bmr/1pCo7w5aZiaN7d+x5uYht+7+jRjZsYPlJJ7P2uutZdellRMu2mlJAKaXa\nNW2hd2DxSITQwoWUPfEkaUccTvq4cVgzMojV1bH+jjsxkQiRlSupfPVVcq+/fruuaWIxwitXUj7p\nP6Qdegieww8HcWK3CuFkb7vDZm0ob7XZ6LH/IC748yOAweFy43DvekKmQE2YQG0Ep9uGy2vD2uSe\n2yu8fDkkv+iEliyBXZjtr9TeJrnVa9gY81Xy/bPAO8aY17Z23k7e6yngQWPMgra+tmqkAb0Di1VU\nsPLCizCBADUffYR78AG4MxLZ0BwFPQktXgKAY599tv+a5eWsPOdcYpWVVL78MoWvvEzWwEG8c/1I\nZqwox++y03ez9KRWmw1vZtutDw/Uhvno2QWsml+OzWHhrNsOJqPLjn9JcA8ZgmvAAIKLFpH3m18j\nOjNepcKd6eew2cYy3Fm1q4lZ2sJooBb4KtU3MsZclup7KO1y7/ia7OBmohEgMe7c84knyL3xRro/\n/HCilb2djDHEmuwEF6uspD4cY9aqSj5ZVEKO14nbseOt5R0Ri8ZZNT/RPR4Nx1nzU8VOXceWk0PP\nJ59gn88/I+OMM1O6dE91Uolg/iSJ/dwl+fPJ5Oc7TUQ8IjIlmYd8noicJSJjRGRWMmf5v5OpURGR\nIhHJSb4ekcyPXghcCdwoIj+KyJHJS48Ska+S+dNPb/Hmiet4ReRjEfkheb+JrdUr+flnIjIi+fox\nEZmZzNn+h135e1DNaQu9A7P6/fR88glK//lP0g49DEevwoZj9q5dyfnFFVu/QDwG5cvh2ydgn6Oh\n4HCsPh/d//YQJQ/9DffQIbgGDWJlTYhfvTIbgM9+2sjnvz2arumpC+pWq4Ue/TNZs6gCm91Cj/22\nfyLc5jbf0U6pNpaq9KknAOuMMRMARCQdmAeMMcYsFpH/AFcBf2vpZGNMkYg8DtQaY/6SvMalQD4w\nEugPTAZa634PAqcYY6qTXxa+EZHJrdRrc7clc6lbgY9F5ABjzJyd+UtQzWlA78AsLhdpBx1Ej0ce\nQZzOhtzg27JpIxi7w4br639h//5J+O4JuOorLF0G4h01irRhwxCXC6vXS2xDkxZ73ACp3azI7XNw\n3KUDCVSHcXpsuD2tZ2hTag9LSfpUErnO/yoiDwDvANXACmPM4uTxScA1tBLQt+LN5F7vC0Rka3sx\nC3CviIwikaa1O9Bl83oZY6a1cO6ZInIFifiTDwwANKC3AQ3oHZxYrVj9/u0uHw4G+P6d//Htm69g\nsVr5+S230HXl51C6GIJVAFg2+3KQ53Nyx0kD+GjhBq4Y1Yf0tNQH2DSfgzRf6jbEUaqNpCR9arIV\nfiAwHrgH+GQrxaM0Dq9ua81oqMnrre2Mdy6QCwxPpmAtAlyb10tEPjbG3NVwQZHewG+Ag4wxFcmJ\neG23jrWT04DeDsWqqgjMm0dkXTG+o0dvfZ14sApKfoLVM6DfcZBRAPadn9wVCQb56evEl+p4LMbS\neYvous8Y6DMacvZr8ZyMNAfnHdqL0w7sgcdpw2rZ9g6Z0XAIi83eYia3TeKBALHaWqQN1sortYek\nJH2qiHQDyo0xz4lIJXAtUCgi+xhjlgLnA58nixcBw4H3gNOaXKYG2P5v+82lAxuTwfxokl9aWqjX\n5pPh/EAdUJXsARjHZhne1M7TSXHtUN2MGay+9DLW/+53rL35ZqKVla0XXjcLnj4OPrwNHh8JNet3\n6d4OdxoHn3IGADank/2OGA2jfgtj7gBP6+PNdqsFv9u+zWAej8coXb2SKf/4CzMnv95sw5lm5YJB\naqd9ybLjjk+slV+3bqefSak9JjGb/XJgJYmxqJXA5W0wy30wMENEfgTuAG4HLgZeFZG5JLrBH0+W\n/QPwsIjMBJquzXwbOGWzSXHb63lgRPJeFwCLWqnXPU1PMsbMBmYly78ATN/B+6qt0OQs7VDJI49S\n+sgjANjy8+n9yssYn49gXS0mHsfp8eBMSy4Nm/LbxPj2Jmc8CwNPaXa9UDRETaQGl9WF19H6TO5A\ndTXrlv6EzW4nM787FosFt8+P1d52Xeh1FRVMuulaAtWJ7vvTbr2LwiEHblEuUlLCip+dQqysDIDs\nX1xB3o03tlk9lNoJmpxFtWvaQm+HMk4/Dcc++2DxeOh65x2I38/axQt58tpLePLaS1j8zXSi4XCi\n8P4TGk+0OiB/aLNr1Ufq+XT1p1zw3gXcP+N+KoItL/GKhEN8+9arvPnAH3jtnttZ/v0MvFnZbRrM\nARDTfNe6WMubuYjNhqNX49Cjc7+Wu/uVUkol6Bh6O2Tv2pVezz6LMXGsPh9RE2fWe5MbAuEP702m\n7/CDsTkc0G0YXDq1cQzd17XZtWojtdwy7RZiJsbqmtWc1PckDsk/ZIt7xsJhNixb0vB+7eKFDD72\nBKzWtl1+5vKlc/rtdzPtxf+Q37cf+f1aDtS2zEx6PPw3qt//AHv37rgPHNam9VBKbZuIDAb+u9nH\nIWPMlv+JqD1OA3o7ZctpHK+2xWP0HXEIy3/4DoDew0Zgc7qoClZRHa7GkdWLjPwhOG1bLkuziIUM\nZwZlwWTXtbvlcXBnmodR517E6/fegc3h4LBTz9qhYB6rqSEeDGKx27FmtL5Xu9VqJa+wLyf98has\ndju2rfQA2HJzyTr/vO2ug1KqbRlj5gJDt1lQtQs6hr6XCNbWUFNWSjQcJqNrPsZlY9L8Sfxz9j+x\nW+w8N/45BmQP2OI8Ywxratfw5tI3OajLQQzMGYjP4WvxHrFolGBtNSCk+dOR5Az00toQL3+3GqtF\nOGN4D7K9zb84xCorKX3qKSr++xyeUaPI/8Od2LLabqtXpdoJHUNX7Zq20PcSLq8Pl7cxEJcGSplf\nPp9hecNYULaAqUVTWwzoIkJPX0+uG3bdVq8fN3HKIxXE7DG8dm9DMA+EY/zp/UW8MnMNABuqg9w6\nbn/stsbpF/G6OsqfehqA2qlTiVx1pQZ0pZTazTSg76Uy4oY/dzmGcOVqqoZcT9C1s8tJE9bVruPW\nL2+lh7cHo3qMYlSPUaTZ04jG41QHokwYnI/VAjXBKNG4oVlHud2RyOJWWQl2O7bMnd+KVSml1M7R\ngL6Xsi18G9s7N+IG/H2PIX7qk7t0vYUlC7it9/Ws+Hw6+Q4noaw60tLT8Lns/OPkbpivH0NiYeTw\na7FtlnzFlpNN4WuvUjf9K9KGH4hVA7pSSu12umxtbxSPw9rvG97KxoVYtzeXd7AaqtZC0XQoWQR1\nJQAM9w/m/XvvY/4nU/nowb9CIJGZjbpS7K9egOObh7F/9xi2/54EtSXNLikWC44ePXBPGEc0J5uI\n5hVXqt0QkTtF5DcpunZDJrf2SERyReTbZBa6LTbPEZGnRGTLscq9lLbQ90YWCxxxIyx+HwIVcMJ9\nsFmXe6CmmnAggNVux5ORiYhAfTl8+RB8/QiY5FrwLoPg3FewYm9c2w6Nr+MxKP6x8cKVq8BixRiT\nuGZSXWUFb9x3ByUrixj58wsYcty4xs1vlOrEBk8avEU+9LkXzm0P+dD3KBGxGWOi2y65S8YAc1vK\nxy4i1o6Wp11b6HurrD5w1Vdw43zod3yz/duDtTV89erzPHXdpfz35uupKStNHFj3I5GMAqpPf5rg\niEtALLBhHrxxBW6HjQnX/Ya83n057LSf481MLm+zOWHgqYnXFiuB8z9j1pc1THt5CbUVwYZ7Fi9Z\nxMai5RgTZ9qLk4iEmuZ4UKpzSgbzLfKhJz/faa3kQ98i73mTU4aIyNciskRELt/KdfNF5IvkdrDz\nNrVqt5HD/LomedH7J8sfnLzfrGR+9f2Sn18kIpNF5BMSqVNby6teKCILReTJ5D0/FJFWk1SIyOUi\n8l3y7+N1EUkTkaHAn4CJyedxi0itiPxVRGYDh22Wp/2EZD1mi8jHW3uO9kpb6HsriwW8LWc3jEYi\nzP7wPQDqqypZt3ghnjQn5dYezF24lK5DulLR/0QGdT+Q9LeuhaIvcZh69jn4cAoGD8XudGHflE3N\nnQFj74UhZ4ErnZ8W+vnqjWUAbCyqZsI1B+D2Ocjs1gMRC8bEye5RsNWkK0p1IrszH/oDWyl/AHAo\n4AFmicgUY0xLCRLOAT4wxvwxma98U923lsO81BhzoIhcTSKT2mUk9mo/0hgTFZFjk8+7KTHMgcAB\nyevZaDmvOkA/4OfGmMtF5JXk+c+18nxvGGOeTP5d3ANcaoz5h4j8HhhhjLk2ecwDfGuM+XXyPcmf\nuSS+eI0yxqwQkU3LdLb2HO2OBvQOyGqz0WvIMIp+/B6bw0nXPv0IBEO8eOdtRIIBeO9tTv3TA2zM\nTSPd7oZIAGJhbHY7Nnv6lhf0ZEPfYwCo+7pxN7n6mjDxeGIfA192Lhf+9VHKVq+i2377k5be+uYy\nSnUiuyUfujFmWtMhsBa8ZYwJAAER+RQ4GHizhXLfAf8WETuJ3Oibxtu2lsP8jeTP74Fkdx7pwCQR\n6UciKU3ThTFTjTHlydet5VWHRH73Tff/HijcyvMNSgbyDMALfNBKuRjwegufHwp8YYxZAdCkflt7\njnZHA3oH5Pb5GXfNjdRWVOD2+XH7/NRXVSSCOYAxBOvrcPvtYAz4u4Fj+8a7hxxbwPoV1dRXhTnu\n4gG4vInfb4fLRXb3nmR375mqx1Jqb7Rb8qEnu4i3lvd88x3EWtxRzBjzRTK4TgCeFZEHgWlsPYf5\npvG1GI0x5W7gU2PMKSJSSPMUqXVNXreYV32z62669tbyQj8L/MwYM1tELgJGt1IuaIzZkVm7W3uO\ndkf7RTuoNH8Geb1648vKxma340zzctwV15HVvQcHjD8Rd7qPrJVfQzwCEx+FtO2bqOrNcDL+qsGc\n9tsDyS30YbXqr5BSW3ErifznTbVVPvR6Y8xzwJ9JdGMXkch7Dlt2C08UEZeIZJMIdt+1ct1ewIZk\n9/VTyeu2lMN8W9KBtcnXF22j3BZ51XeCDyhO9iycuxPnfwOMEpHeAE263Lf3OdqFlLbQRSSDxC/F\nIBLfCC8BfgJeJtF9UgScaYxpOQVYJxSNRKgtK6V42WK67dsfb1ZOmyRIcaalMeDI0fQZOgwTrcS9\n5F1sNcVwzXfgywfL9t/D7XXscn2U6gzmXjj3hcGTBkPbz3IfDPxZROJABLiKRAv2aRG5my1bknOA\nT4Ec4O5Wxs8hEex/KyIRoBa4IDmmvCmH+Wq2L4f5n0h0Vd8OTNlKueeBtyWRV30mjXnVd9TvgG+B\nkuTPlve3boUxpiQ5pPCGiFiAjcBxbP9ztAsp3ctdRCYB04wxT4mIg8QEi1uBcmPM/SJyC5BpjLl5\na9fpTHu5V5eW8Mwvf0E0EsbhdnPxg4/jzWqeUKUiWEFtpBan1UmWKwubZQe/lxmTGDe32hN/lFLb\nQ/dyV+1ayvpLk7MuRwFPAxhjwsaYSmAiMClZbBLws1TVYW9UuaGYaCSxBjwcCFBfXdXseFWoioe+\nf4jxb4znlLdOYUP9hh2/iQg40jSYK6VUB5LKAdDeJLo/nkmu4XsquWSgizGmOFlmPY0zGhWQ3a0H\n/tw8ALK698CT0Xwb1XAszNvL3gagOlzNrA2zdnsdO6q6SB1lgTKC0eC2Cyu1FxORwcm12U3/fLun\n67UtIvJoC/W+eE/Xq71I5Ri6jcSEiuuMMd+KyMPALU0LGGOMiLTY558cz7gCoKBgV1d47D08mVmc\nc/dfCIeCOFzuLQK6w+pgbOFYpqyYgsfuYUjekB26fjAaJBwL47F7sO7AuPmeVhmsJGZipDvSsVnb\n/te2MljJk3Of5Is1X3DRwIsYWzgWr8Pb5vdRqj3YW/OcG2Ou2dN1aM9SNoYuIl2Bb4wxhcn3R5II\n6PsAo40xxSKSD3xmjNnq7judaQx9e5QHy6kOV5NmSyPLmbXVABeLRQlUVRGNhLE4HTyz/DlmbZzF\nNUOv4YCcA3DanK2e215srN/IzV/cTGmglDsPu5MDcg/A3sbDBYvLF3Pa240Tgz88/UPyPflteg+1\n19MxdNWupazL3RizHljdZKu8McACYDJwYfKzC4G3UlWHjirLlUWhv5C8tLxWg3ltuJaS+hLKq0uY\ndNN1PH395Xz35mu4Yw6+3/A9V069kqpwVYvntiexeIzHZz/OzA0zKaou4rpPrqMyVNnm9/HYPUjy\n/2uP3YNV9p7eC6WUgtRvLHMd8Hxyhvty4GISXyJeEZFLgZXAmSmuw14tUFNNRfFabA4n/pxcXN5t\nr8aoDFXy7PxneWPxGxzT82hOueoXfPSnP7Poi0858IirgMYtD9s7QXDbGveTcFgdKal7hjODf4/9\nN5+v+ZyJfSeS5cza9klKKdWOpDSgJ7ftG9HCoTGpvG9HEQ4GmfHmq8x8538AnHDNrxg46phtnlcT\nruHpuU8D8PrSNzj1qJOw2mz0H3kUFrudQ7oewtVDrybD2f63Z7VYLFwy6BLKg+VsqN/ALQffQqaz\n7fOtexweRnQdwYiuLf26KqVU+7ddAT25cf3lJDaDaTjHGHNJaqqlAP6/vTuPj7I89z/+ubKHNYEg\nAtqiFkVxQQ0qohX3pf7cSl2r0npqPUr1p7Uutcft6Kn1/OpSl1qtFvRYLe6ouB0VRa1LqAIiooCg\n4MIW1pCQ5fr98dyBIZkkk2VmkuH7fr3mNTP3s9z3PJlXrnnu537uq6aqkoUzN6Uu/eLDMobufyDZ\nOc1fP87Pzqcgu4DK2kpyLIeSvgM5+493U9CtB9ndC7h1wG50z+tOlnWNWd76Fvbl6v2uptqr6Znb\ns8v0LohI24WJyU5397vbsO0CoqQsyzqgHdcTzfP+v+3dV7Ileob+DNF8vv9LNKeupEBet+7se+LJ\nPH/7f5Odm8vePzqhxWAOkG3Z3H3Y3byx6A1GDhhJbnYuxVv327Tf7K4301thbiGFzU7lLNI5zR66\nc6N86Dt/Ojtt+dAtNXnIO0IRcD7QKKCn8jO4+9WpqKcjJHqK1s3dL3f3ie7+RP0jqS0TcnJz2W7P\nUn5x1wOcc/u99Pv+dhuXra5azfL1y6murW60XUVNBVe/fTULVy/kpvdvYvWG1alstogEIZg3yoce\nytvFzH5qZu+He7H/YmbZZrY2ZvmYkEgFMxtvZveEe81vNrM+Zva0mc0ws3fNbPew3rVm9pDFyZ1u\nZr+xKOf4DGucE71h284K6003s4dCWT+LcpV/EB6jYup8wKLc5PPN7MKwm5uAHcLn+28zG21mUy1K\nr/pJ2PZpM5tmUc70c1tx7BptF47feIvywM80s4tjjt2Y8Prq0PaPzexe62TdhYmeoT9nZse4++Sk\ntkYaySsoJK9g8zPT5euXc8O7NzBv5Tyu3PdK9tpqr81uP+ue253BvQcz5asp7FGyR5e4Vi6SoZKS\nD93MdgZOAUaFxCZ303JSkm2A/d291szuAD509xPM7BDgQTbdl94odzpRPo4hRGlXDZhkZj909zfj\ntG0Y8LtQ17KYRCe3A7e6+1tm9j2iFKc7h2VDgYOJ5mCfY2Z/JrrNeVd3Hx72O5pobpNd69OcAj8P\nedULgQ/M7Al3X57AIfcuMFkAACAASURBVGy0HdEl5UHuvmuoL94/zjvd/fqw/CHgWODZBOpLiUQD\n+kXAb82siigRgBHNC9MraS2TJr3+1ev875fR5ZyLXr+IySdO3iyg9ynow40H3EhVbRX5Wfn0KdSI\nbZE0SVY+9EOJMqt9EE4SC4kSijTnsZjUoQcQMrK5+2tm1tfM6v+fx8udfgBwBFA/NWUPogDfKKAD\nh4S6loX91+cWPwzYJeaktpeZ1c/e9Ly7VwFVZraEpmcQfT8mmANcaGYnhtfbhjYlEtDjbTcH2D78\n2HkeeDnOdgeb2WVEP8r6ALPoagHd3VuVuUaSK3aUd8+8aJBYXV0dddRtTNTSp0BBXKQTSEo+dKKT\nqgnufuVmhWa/jnnbMCf6OhITL3e6Ab9397+0qpWbywL2c/fN5lYOAb5h7vOmYtPGzxDO2A8DRrp7\nhZlNofFnbqSp7UKu9z2AI4HziG6p/nnMdgVE1/NL3f0rM7s2kfpSKeFhzmZWbGb7mNkP6x/JbJg0\nbe/+e3PlPldy/A7H88CRD5BjOdz50Z1c8/Y1fLvu23Q3T0Q2SUo+dOBVYIyZbQVR/m4LuczNbGeL\nUoCe2Mz2Uwld9CHALXP3+sE28XKnvwT8vP6M2swG1dcdx2vAT8L2sbnFXyaam4RQ3tLUs2toPg1q\nb6A8BOWhRJcJEhF3OzMrAbLC+LDfEXXvx6oP3svCcRiTYH0pk+hta/9G1O2+DfAR0QH4J1HXiqRY\nUUERp+98OrV1tWRnZfPAxw9w38z7AFi4ZiF3HHIHxQXFVK5bR3Xleiwri+69i7CsrnGbmkim2PnT\n2X+fPXRn6OBR7u7+iUU5ul8OwbsauIDouvNzRImxyoi6xuO5FnjAzGYQ/cA4O2ZZvNzpX4fr9v8M\nZ9RrgZ8Sp5vf3WeZ2Y3AG2ZWS9RNPxa4ELgr1JlD1F1/XjOfcbmZvW1mHwMv0Dgf+YvAeWY2m6i7\n/N2m9pXgdoOIkonV/6PcrPfD3Vea2X3Ax0SJxT5IsL6USWgud4uSz48gmpt9ePhV81/uflKyGwia\ny70ld354J3+ZEfWE7VS8E/cefi89rJBZr7/Ca+PvpbBnL06/4Y8Uba25yUXaoVONaE6G0I281t3/\nX7rbIq2X6KC4SnevNDPMLN/dP7VNc7RLCq2vXs/a6rXkZuduHL1+6tBTWbBqAcsql3H1yKspLihm\n3cpy3n1qYrTNmtV8+s6b7HfSKelsOsvXL+fh2Q+TZVmcNvQ0+hb2TWt7REQySaIBfVEYwv808IqZ\nlRPNwy4ptK56HS8teInbpt3GsJJh3DjqRvoU9qGksITr9r+OmroasujG4pXrKajLYtthuzHnnalg\nxvd23Z0NVZVUr68gJ6+A/G4N76RJrqraKu748A6e+DyavmBl1UouG3FZl5zkRiRTufu1ia4brpG/\nGmfRoQneOpZUnb19yZDoKPf6wRXXhtsYehNdh5AUWle9juv+eR11Xsdbi99i5rKZHLTtQUA0F3ld\nnfPCx99wwd8/pHteNi+f/3OGH3ks3XsXkdetOx9OnsT0V15gyL77s99Jp1DYM3V3HdbV1VFeVb7x\nfXllOXVel7L6RaRjhaDYaXOqd/b2JUNrRrnvFWbw2R1Y5O4bktcsiSfLsuhXuGkK14b5utdX1/LY\ntEUArNtQy6WT5tHr+ztSPGAQNVVVvPXog6xZvpR/TX6GilWpTZ1amFvI5SMup7R/KSO2HsGlIy6l\nIKdT3fEhItKlJTrK/WrgJ8CToehvZvaYu9+QtJZJIyWFJTx49IO8vOBlduu3GwN6bB7QC3OzOXXE\ntrzx2VLc4eQR21CYF+X1zs7JIScvn5oNVVhWFjkF+fGqSKqBPQZy68G3Yhi983unvH4RkUyW6Cj3\nOcAe9RMChOnyPnL3lAyM0yj3xK2tqmZVRQ2O07swl54FUTKX2upqln39FR9PfZUBe+zG8h5VDB+0\nFzlZOeRn53eZzGsiaZTxo9yla0v0v/jXbD4jTj6wuOObI+3VIz+XQcWFbFPcbWMwB8jOzaWsdjaT\nBn3MlfN+z/lvjqO8spzL3ryMJz9/klVVqe2CF5HkMrPjzOyKJpatbaI8NhHJFDMrTWYbm2Jmw83s\nmBTU89uY14PDPe/t3Wc/M3vPzD40swPjLP+rme3S3nriSXSU+ypglpm9QjQN4OHA+2b2JwB3v7C5\njaVzKC4o5rUvXwOgb0FfFq9dzJSvpjDlqynsVrIbedl5LF+/nIWrFzKkeAglhSU6cxfpotx9EjAp\n3e1oo+FAKZCUhGAhS5oRzdj3Xx28+0OBme7+b3HqzY5X3lESDehPhUe9KR3fFEm2YX2HccvoW5i5\nbCY//sGP+e1bm2afNIy55XM584UzqfVa+hT04bH/8xhbdWtqdkcRScRd573WKB/6Bfcc0q6Z4sxs\nMNGdRu8C+xPNWvY34DpgK6JpXXchmnd8nJltR5TdrQfwTMx+DLiD6CTtKyDuYGczOyLsOx+YB/zM\n3Zs6y98buCXUtQwY6+7fWJSK9VwgD5gLnBmmX/0JcA3RHO6riOZZvx4oNLMDiOaQ/0eceq4lOqbb\nh+fb3P1PYdklbJqH/a/ufls4Zi8B7xEltnk/1PERUZKVq4DsMBvc/kS90MeHRDXxPmejzwPsCNwc\n9lsKjCSate8v4XNdYGY3AJe6e5mZHUX03cgmmn73UDPbhygzXQGwPhzrOfHa0FBCp1/uPqH+QfSL\n78MGZdLBlq1fxrTvpvHtum/j5jxvi975vTn8+4dzyd6X0K9bP84adha7luzKL3f/JYN6DOLpeU9T\nG5IxrahcwfyV8zukXpEtVQjmjfKhh/L2+gHwR6LUo0OB04myol1K47nibwf+7O67Ad/ElJ8I7EQU\n/M8iCmSbCXOc/w44zN33IppS9pJ4DTKzXKIfCGPcfW/gAeDGsPhJdx/h7nsAs4FzQvnVwJGh/Lhw\nB9XVwD/cfXi8YB5jKFEylX2Aa8wsN/yg+BmwL9E05b8wsz3D+kOAu919mLv/DFgf6jgjZvld7j4M\nWEnISNeERp/H3T9q0Pb1RGlo33P3Pdz9rZhj1Y/ou/HjsI+fhEWfAge6+55hXwn3ICQ6yn0KcFxY\nfxqwxMzedve4f1Rpn+Xrl/NvL/8b81bOozCnkKePf5qBPQZ2aB3dcrtxyLaHsM/W+1CYU0hBTgH7\n9N+HiXOi2eVyLIdte27boXWKbIGSkg89+MLdZwKY2SzgVXf3MFX34AbrjmJTcHoI+EN4/UPgkZBW\n9Wszey1OPfsRBfy3wzzueUS5POLZiSh3+ith3Ww2/YDYNZydFhGdvb8Uyt8GxpvZRDbdSZWoeGlX\nDwCecvd1AGb2JHAg0cnoQndvbs73L0JQhijWDW5m3aY+T0O1wBNxyvcD3qxPBxuTZrY3MMHMhhBd\n4s6Ns21ciXa593b31SFJy4Pufk2YYF+SYEPdBuatnAfA+pr1fLn6yw4P6AC52bkUZ29KxbrfgP34\n40F/ZNp30zhuh+OUR12k/ZKVDx02TzlaF/O+jvj/21u+pSk+A15x99MSXHeWu4+Ms2w8cIK7Tzez\nsUSZ3HD388xsX+BHwLRwhp2oRNOu1msphWzD/RU2s+544nyeOCpj8tAn4j+B1939xHCZYEqiGyY6\n4inHzAYQ5Yd9rhUNkzYoyC7gyMFHArBNz23YoWiHlNTbu6A3Rww+giv3vZJhJcMozGnuuywiCWgq\n73l786G31tvAqeH1GTHlbwKnmFl2+B9/cJxt3wVGmdkPAMysu5nt2EQ9c4B+ZjYyrJtrZsPCsp7A\nN6FbfmMbzGwHd3/P3a8mut68LS2nTm3OVOAEM+tmZt2JLitMbWLd6tCetoj7eVrhXeCHYXxDbJrZ\n3my6i2xsa3aYaEC/nqg7YZ67f2Bm2wOft6YiSVxxQTFX7XsVL/34JR46+iH6devX8kattGz9Mp7+\n/GmmfTeN1VWrW95ARNoiWfnQW+siogFZM4nShNZ7iuh/+SfAg8TpSnf3pUSB5ZHQM/tPomvXjYTr\n32OAP5jZdKJ02/XX5f+DaEDa20TXiev9t5nNDLeMvQNMJ0rfuouZfWRmrcoq5e7/Ijp7fj/U91d3\n/7CJ1e8FZpjZw62pI2jq8yTazqVEg+qeDMeqfqzAzcDvzexDEu9FBxKcWCbdNLFMxyqvLOfi1y9m\n2pJpANx7+L2MHBivh0xEYrRpYplkjHIXiSfRQXE7An8G+rv7rma2O9FoRE392snUeR0rKlfg7vTK\n60V+TuMpXmvqapi3at7G95+VfxY3oK+oXEFtXe3GmeRWVq2kuq6aPgV9NHWrSIJC8FYAl6RLtMv9\nPuBKoBrA3Wew6XqMBCsqV/DO4neYtWwW81fOZ82GNUmrq7q2mvLKctbXbH6L5MLVCznpmZM46omj\n+NeSf1FTW9No2555Pblq36vIz85nh6IdOGrwUY3WWb5+Ob969Vcc8tgh3DP9HhatXcTRTx7NcU8f\nx2OfPUZlTWXSPpuIdH5m9lToEo99HJmEen4Wp567OrqeZuq/K079P0tV/a2RaP98N3d/P9yGUK9x\npNiCra5azY3v3sjLC18G4JbRt1BZW8kufVs/w9/KypW8uehNvlr7FT/Z8SeNJndZV72ON756gwmf\nTGDkgJGMHTaWooIi6ryO8bPGb0xTetu/buPPh/2ZPtmbj1YvyCngoG0P4oWTXiDLsuhb2LdRG+aU\nz2HGsuhGhodmP8SPtv/RxmUvLXiJk4ac1KpsaauqVrG2ei25Wbn0KehDTlarLg2JSCcTk1Y72fX8\njWjSnLRw9wvSVXdrJXqGvszMdiDc9hDm+v2m+U22LFW1VUxfOn3j+1nLZvH12q/btK+pi6dy1dtX\ncc/0e7hkyiWUV5Zvtnx11WqumHoFnyz/hPs/vp/PV0bjE7MsixFbj9i43h799qAgO37QLcwppF+3\nfnGDOcCgHoM2Tvvat6AvPfN6bnx/4g9OpHtO94Q/z7rqdTz66aMc9cRRHPf0cSxasyjhbUVEJDGJ\nniZdQDQacKiZLQa+oG3D9DNWj7wejBs+jqvfuZq+hX05eNuD2zw6PfaHwJKKJRtnb2uKxYzVOXDQ\ngTx8zMOsrV7Lzn12pltuwzktEtOvsB8Tj53I9KXTOWDQARTnF/Pij1+ktq6WXvnxr803paK6gkfn\nPApEwf21L1/j57v9vNF6tXW1LFi9gIlzJnLAoAMYvtVweua19c4VEZEtS7Oj3M3sIne/3cxGufvb\n4Z6+LHdP3sXhOLrKKPfl65ezZsMa8rLzyM/Kp7iwuE3JTZZWLOXSNy7lu4rv+P0Bv2fXkl3Jzd50\nq+S66nW8tfgtHvrkIUYOGMkZO59BUUFRR36UDrV2w1punXYrEz+bSE5WDo/86BGG9ml818vSiqWc\n8MwJrN4Q3Ub3zAnPsH3v7VPdXJGmKH2qdGotBfSP3H24mf0rzOGbFp05oG+o3UB1XTUV1RVMnDOR\ne2bcQ47l8Lej/sbwrYa3en/lleUYhuPU1tVSlF9ETnbjjpSa2hrW1qylMKeQ/OzEz5bTpbyynBWV\nK+iR24Pe+b3jXn//bt13HPHEEdR5HQAPH/Mwu/fbPdVNFWmKArp0ai2dPs42s8+BncxsRsxjpqZ+\njUa131J2C7954zes2bCGyV9Emf5qvIZn5z/b6v19teYrxr06jl+99ivW16ynpFtJ3GAOkJOdQ1F+\nUZcI5hBNlrND0Q70796/ycF0PfN6cvMPb2ZI0RB+uvNP+V7PjpgdU0TiMbMTOjIvt5mV1qfUTgeL\nyf/eMCe5mU02s87bjdlBWpxYxsy2Jpol7riGy9x9YZLatZnOeob+0KyHuLnsZgD+fY9/p9ZruXfG\nveRYDvcfeT979W/cqVFbV8vX677mzUVvMqL/CLbttS2FOYWs2bCGS9+4lHe+fgeAQ793KL8/8PdN\nTr/q7ny77lve//Z9duu3GwO7D2zVqPPOqqq2inUb1lGQU9Dm6/8iSZJRZ+hmNh54zt0fT3dbOpqZ\nnUqUHS5pucc7oxYHxbn7t8AeKWhLl1Ndtymt6TNzn+FPh/yJUQNHsVW3rZocPb6icgWnPncqqzes\nJsdyeP6k5ynsUUi2ZVOUv+kHZHFBMdmW3Wj7ZeuXUVlTSU5WDqc9fxrLK5eTk5XD5BMnM6DHgI7/\nkCmWn51PfmHX6HUQScQfTzm20Uxxv/7Hc+2eaMbMfgpcSJT97D3gfOBOYARRUpHH3f2asO5NRCdl\nNcDLRFnNjgMOMrPfEaXwnBenjoRymLv7D81sNFGe72Nbk9M7JDY5kWgO80HA/7j7dWHZ00RzuxcA\nt7v7vaE8Xh7xsUAp8Fca5ySfTZQbfpmZnUWUYtaBGe5+ZuJHvXNrNqCb2UR3PznM/xt7Km+Au/sW\nfYHz+B8cz7xV81i8djFX7nMlxQXF0SO/eLNBbLE21G3YOOirxmtYUbmCgT0G0i23G5eNuIySwhKy\nLZuxw8aSl5232bbL1i/j7BfO5ss1X/L3Y/7O8srl0X7qalhSsSQjArpIJgnB/D42pVD9PnDfH085\nlvYEdTPbGTgFGOXu1WZ2N9GdR1e5+wozywZeDbN6LiYKmENDetUid19pZpNo+Qz9SXe/L9R5A1EO\n8zvYlMN8cRNd2fU5vWvM7DCi4NtcbvF9iNKuVgAfmNnz7l4G/Dx8nsJQ/gTRpeL7gB+6+xcxSU0A\ncPePzOxqogA+LrS9/rgNI8rtvn8I7hmVUrKlM/SLwvOxbdm5mS0gyppTC9S4e2k4gP8gyjO7ADjZ\n3cub2kdn1rewL1ftexXVddX0yuu18UvTnO653Tlrl7N45NNHGDVwFAO7b0qL2rewL5eWXgoQd19L\nK5by5ZooSdOc8jmMGTKGxz9/nL37790pcpevrFpJTV0NxfnFZGc17l0Q2QIlKx/6ocDeREEOojPy\nJcDJZnYu0f/2AUR5zD8BKoH7zew5Wpcxs605zFub0/sVd18OG/OXHwCUAReaWf0ENtsCQ4B+xM8j\nnohDgMfcfVkbtu30mg3o7v5NeG7PtfKD6w9ecAXwqrvfFAYwXAFc3o79p1Vrr/MW5Rfxyz1+ydhh\nY8nNyo1uN6tYAQvfgfIF2G5joOfWcbctKSyhpLCEZeuX8cRnT3D7Ibdz/vDzycnKobigOO42qbK0\nYilXTr2S7yq+478O+C926buLgrpI8vKhGzDB3a/cWBCl4XwFGOHu5eEaeUE4S96H6EfAGGAcUWBL\nxHjalsO8tTm9Gw7m8tCFfxgwMnTzTyHqepcmtNTlvobGBxo2dbn3akOdx7MpEfwEoj90lw3obdEr\nr1d0Rare3FfhyTB245On4LR/QPeSRtuVFJYw8diJrN6wmt75vSkpbLxOujw19yne+/Y9AK5860rG\nHzmekm4d177q2mpWVq0Eoh9FTV3SEOlkviTqZo9X3h6vAs+Y2a3uviT0fH4PWAesMrP+wNHAFDPr\nQTR992QzexuYH/aRSM7xhjm/F8OmHObAe2Z2NNHZc6zW5vQ+PHyG9cAJwM+JrqeXh2A+FNgvrPsu\ncLeZbVff5d6KM+3XgKfM7BZ3X97KbTu9ls7Q2ztNlwMvm5kDfwkDGvrXn/kD3wL9W9rJHDb9AshI\n246AsaEXLCsX8pv4nWQG3fpFj05m+ZCTmL/VngAszevJCQVFrUvk2xx31tZW8Vm43LBTbje6K6BL\nik1p22a/ZfNr6NAB+dDd/ZMwmO1lM8siSpx1AfAh0fXrr4i6xSEKys+YWQHRydglofxR4D4zuxAY\nE29QHJtyfi8Nz/Ux4b9Dd7oR/biYDhwUs93NRF3uvwOeT+AjvQ88AWxDNCiuLIzdOs/MZhOFgXfD\nZ18aLis8GT77EuDwBOrA3WeZ2Y3AG2ZWS3S8xiaybVeQ1HzoZjYoDJrYiqgr6FfAJHcvilmn3N0b\n9ReHP9i5APm77773ftOnN1wlc9RUwrcfQ20VlOwIhX2gi3VX19TVsKpqJVW1VfQr7EdugwF97VFb\nV8u8lXNZFQYTFucXsX3R9mTFuQtAJFmmtPG2tWSNcs8U9aPT6wewSdslNaBvVpHZtcBa4BfAaHf/\nxswGAFPcfafmtu2s96F3hOraalZtWEVObQ1FZENed8hLz/3X9bfEFeYUNnnbXTpU11Uz4eMJ3P7h\n7QBcNuIyTh96uq7RS6pl1H3onYUCesdJWg7L2Hnfw+sjgOuBScDZwE3h+ZlktaGzq66tZvrS6fzH\nO//BoO6DuOmHN1GSxmB+zkvnMH/VfPbotwe3H3x7pwnquVm5jNlxDHv335usrCy+3+v7CuYiHcii\n/OKjGhTfHlKXdlQdRwJ/aFD8RUjDOr6j6tmSJTMpdX+iwQf19fzd3V80sw+AiWZ2DrAQODmJbejU\nVlWt4vKpl7OkYgmL1ixi8vzJnDXsrLS0Zdn6ZcxfFY2Vmb50Ouuq13WagA5QVFDEngV7prsZIhkp\nFTm/3f0lNt32JkmQtIDu7vOJM8NcuNfw0GTV25VkZWXRr7AfSyqWADCwx8AWtkievgV9Kc4vpryq\nnIHdBzY55ayIiHROKbuG3h6ZfA19ScUSnvjsCQb3GszIQSM3m/41lWrrallRuYKv133NoB6DOtUt\ncSKdhK6hS6emgC4ikhgFdOnUWkqfKim2fP1yllYsZV31unQ3RUS2UGY22Mw+TmCd02PepzV9qiig\ndyrfrP2GMyafwWGPH8az855l3QYFdRHptAYDGwO6u5e5+4Xpa44ooKfY0oqlLFqziBWVjWcbfHb+\nsyxeu5g6r+MPH/yBipqKNLRQRDq7cHb8qZk9bGazzexxM+tmZoea2YdmNtPMHjCz/LD+AjO7OZS/\nb2Y/COXjzWxMzH7XNlHXVDP7V3jsHxbdBBxoZh+Z2cVmNjokf8HM+pjZ02Y2w8zeDVnfMLNrQ7um\nmNn8MEuddBAF9BRaWrGUMyafwdFPHs01b19DeeXmSeZ2LN5x4+vtem0XNx+6iEiwE3C3u+8MrCaa\n0nU8cIq770Z0F9O/x6y/KpTfCdzWinqWAIe7+15EKVvru9WvAKa6+3B3v7XBNtcBH4YU278FHoxZ\nNhQ4kihl6jVhnnjpAMm8D10a+GLVF3yzLprGfsqiKVTWVm62fM+t9uSew+7hi1VfcMTgI+hTmFGp\nekWkY33l7vXztf8P0bzrX7j7Z6FsAtH87vXB+5GY54YBuDm5wJ1mNpwoFfaOLawPUfrTHwO4+2tm\n1tfM6pNUPO/uVUCVmS0hmrNkUSvaI01QQE+h7XptxyM/eoQNtRtYUrGEvKzN5zvvnd+bUYNGMWpQ\nwwmbREQaaXiL0kqgudmgPM7rGkJPbUh0Ei8Jw8XAd0TzimQR5VZvj6qY17UoDnUYdbmn0IqqFYx9\ncSxnv3g2n674lPzs/HQ3SUS6ru+Z2cjw+nSgDBhcf30cOBN4I2b9U2Ke/xleLwDqc5kfR3Q23lBv\n4Bt3rwv7rL8W2Fz61alE6VYJec2XufvqhD6VtJkCegq9vPBlqmqjH6eT5k2isqa9P3RFZAs2B7gg\npBctJupG/xnwWEg9WgfcE7N+sZnNAC4iOuuGKLXrQWY2HRhJlE+9obuBs8M6Q2PWmQHUmtl0M7u4\nwTbXAnuH+urzdkiSaWKZFPpk+SecMfkMaupqOHPnMzl/+Pn0yOuR7maJSGI6zcQyZjYYeM7dd01w\n/QVEGc2WJbFZkma6dpFC2/fenhdOeoHKmkqKCooUzEVEpMMooKdQQU4BW+dsne5miEgX5+4LgITO\nzsP6g5PWGOk0dA1dREQkA+gMPU1WV62mqraKHrk9KMxVqlIREWkfnaGnwYrKFdzw7g2cOflMXvvq\nNdZuaDTbYoerrKlkzYY1Sa9HRETSQwE9DRasWsCitYu4+aCbqaiuoLyqnJramqTVt6JyBTe9fxO/\nnvJr5q+aT1e4s0FERFpHAT0N+hb25TcjfsO4V8dx/bvXM2bSGFZUNU7W0lGenfcsT3z+BP/85p9c\n+NqFLK9cnrS6RCQ1zOwoM5tjZnPN7Ip0t0fSTwE9DUoKSuiV14vyqig5S0VNBSurViatvtgkL1mW\nhXWe22lFpA3MLBu4Czga2AU4zcx2SW+rJN00KC4Nuud1p7iumNHbjGbKoinstdVe9C1obgrm9jlm\n+2NYvHYxi9Yu4tLSS+lbmLy6RCQl9gHmuvt8ADN7FDge+CStrZK0UkBPkz4Ffbh+1PVsqN1AbnYu\nfQqSl1mtT0EfLt77YmrqauiW2y1p9YhIfKWlpTlACbCsrKysIwbMDAK+inm/CNi3A/YrXZi63NOo\nuKCY/t37JzWY18vLzlMwF0mD0tLS/YGlwBfA0vBepMMpoIuIJEk4M38eKAIKwvPzpaWl2c1u2LLF\nwLYx77cJZbIFU0AXEUmeEqJAHqsA6NfO/X4ADDGz7cwsDzgVmNTOfUoXp2voIiLJswyoZPOgXknU\nBd9m7l5jZuOAl4jykz/g7rPas0/p+nSGLiKSJGEA3I+AlUSBfCXwo7Kystr27tvdJ7v7ju6+g7vf\n2N79SdengC4ikkRlZWXvEHW9bweUhPciHU5d7iIiSRbOyL9Ndzsks+kMXUREJAMooIuIiGQABXQR\nEZEMoIAuIiKSARTQRUS6IDNbYGYzzewjMysLZX3M7BUz+zw8F4dyM7M/hVSrM8xsr5j9nB3W/9zM\nzo4p3zvsf27Y1lJVh7SNArqISNd1sLsPd/fS8P4K4FV3HwK8Gt5DlGZ1SHicC/wZouAMXEOU2GUf\n4Jr6AB3W+UXMdkelsA5pg6QHdDPLNrMPzey58H47M3sv/CL7R5i2UEQkY5WWlhaUlpZ+v7S0tOE0\nsB3teGBCeD0BOCGm/EGPvAsUmdkA4EjgFXdf4e7lwCvAUWFZL3d/190deLDBvpJdh7RBKs7QLwJm\nx7z/A3Cru/8AKAfOSUEbRERSrrS0NLu0tPQmYDkwC1heWlp6UwckZwFw4GUzm2Zm54ay/u7+TXj9\nLdA/vI6XbnVQ2SfsMAAADapJREFUC+WL4pSnqg5pg6QGdDPbhmjaw7+G9wYcAjweVon9dScikmlu\nBMYB3YDu4XlcKG+vA9x9L6Ku7gvM7IexC8NZr3dAPU1KRR2SuGSfod8GXAbUhfd9gZXuXhPe6xeZ\niGSk0L3+K6JAHqs78Kv2dr+7++LwvAR4iuj69HehK5vwvCSs3lS61ebKt4lTTorqkDZIWkA3s2OB\nJe4+rY3bn2tmZWZWtnRpuxITiYikQ3+aPnt1NnVVt5qZdTeznvWvgSOAj4lSqNaPIj8beCa8ngSc\nFUai7wesCt3mLwFHmFlxGKh2BPBSWLbazPYLPatnNdhXsuuQNkjmXO6jgOPM7Bii1IG9gNuJBkrk\nhLP0Jn+Rufu9wL0ApaWl6tIRka7mO6C527C+a8e++wNPhbu8coC/u/uLZvYBMNHMzgEWAieH9ScD\nxwBzgQrgZwDuvsLM/pMovzrA9e6+Irw+HxgPFAIvhAfATSmoQ9rAoksgSa7EbDRwqbsfa2aPAU+4\n+6Nmdg8ww93vbm770tJSLysrS3o7RUSa0ep7pMOAuHFs3u1eAdxRVlZ2RfytRNomHfehXw5cYmZz\nia6p35+GNoiIpMJVwJ1EQXxdeNwRykU6VErO0NtLZ+gi0gm0eRazMACuP/BdWVlZZcc1SWQT5UMX\nEUmyEMQXprsdktk09auIiEgGUEAXERHJAAroIiIiGUABXUSkCzKzB8xsiZl9HFOWEelTm6pDmqeA\nLiLSNY2ncbrRTEmf2lQd0gyNchcRSZKQVe1M4GKivBWLgVuBh8rKymrbs293f9PMBjcoPh4YHV5P\nAKYQzf2xMbUp8K6Z1ac2HU1IbQpgZvWpTacQUpuG8vrUpi+kuQ5phs7QRUSSIATzSUQTy+xONJHW\n7uH9pA5KodpQpqRPbaoOaYYCuohIcpwJHET8bGsHAT9NZuWZkj5VKVoTp4AuIpIcF9M4mNfrDlyS\nhDozJX1qU3VIMxTQRUSSY1A7l7dFpqRPbaoOaYYGxYmIJMdiouvmzS1vMzN7hGjgWImZLSIaSZ6K\n1KbprEOaoeQsIiKJaVVyltLS0rFEA+DidbuvAy4oKyub0AHtEgHU5S4ikiwPAW8QBe9Y60L5/6S8\nRZLRFNBFRJIg3Gd+HHABMANYHp4vAI5r733oIg2py11EJDFtzocukgo6QxcREckACugiIiIZQAFd\nREQkAyigi4h0QU2kT73WzBab2UfhcUzMsitDmtI5ZnZkTPlRoWyumV0RU76dmb0Xyv9hZnmhPD+8\nnxuWD05lHdI0BXQRkSQrLS3drrS0dFRpael2Hbjb8TROnwpwq7sPD4/JAGa2C3AqMCxsc7eZZZtZ\nNnAXUerTXYDTwroAfwj7+gFQDpwTys8BykP5rWG9lNQhzVNAFxFJktLINGAW8Dwwq7S0dFppaWlp\ne/ft7m8CK1pcMXI88Ki7V7n7F0Szue0THnPdfb67bwAeBY4PU7EeAjwetp9AlNq0fl/1E+I8Dhwa\n1k9FHdIMBXQRkSQIQXsKsBfR1Ka9w/NewJSOCOpNGGdmM0KXfHEoa21q077ASnevaVC+2b7C8lVh\n/VTUIc1QQBcRSY6/0Hy2tXuSUOefgR2A4cA3wB+TUId0UgroIiIdLFwr37mF1Xbp4GvquPt37l7r\n7nXAfUTd3dD61KbLgSIzy2lQvtm+wvLeYf1U1CHNUEAXEel4A4ENLayzIazXYepziAcnAvUj4CcB\np4bR49sBQ4D3iTKgDQmjzfOIBrVN8mgK0deBMWH7hmlS61ObjgFeC+unog5phtKnioh0vK+BvBbW\nyQvrtUkT6VNHm9lwwIEFwC8B3H2WmU0EPgFqgAvcvTbsZxxRzvJs4AF3nxWquBx41MxuAD4E7g/l\n9wMPmdlcokF5p6aqDmme5nIXEUlMa9OnTiMaANeUaWVlZckaGCdbIHW5i4gkxy9pnDq13jrgvBS2\nRbYACugiIklQFnUrjgamAeuJbr1aH96PLlO3o3QwXUMXEUmSELRLw2j2gcDXZWVlX6S5WZKhFNBF\nRJIsBHEFckkqdbmLiIhkAAV0ERGRDKCALiIikgGSFtDNrMDM3jez6WY2y8yuC+Vx89+KiIhI2yXz\nDL0KOMTd9yBKFHCUme1H0/lvRUREpI2SFtA9sja8zQ0Pp+n8tyIiItJGSb2GbmbZZvYRsAR4BZhH\n0/lvRUREpI2SGtBDGr/hRGnx9gGGJrqtmZ1rZmVmVrZ06dKktVFERCQTpGSUu7uvJEqTN5Km8982\n3OZedy9199J+/fqlopkiIiJdVjJHufczs6LwuhA4HJhN0/lvRUREpI2SOfXrAGCCmWUT/XCY6O7P\nmdknxM9/KyIiIm2UtIDu7jOAPeOUzye6ni4iIiIdRDPFiYiIZAAFdBERkQyggC4iIpIBFNBFREQy\ngAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVERDKAArqI\niEgGUEAXERHJAAroIiIiGUABXUREJAMooIuIiGQABXQREZEMoIAuIiKSARTQRUREMoACuoiISAZQ\nQBcREckACugiIiIZQAFdREQkAyigi4iIZAAFdBERkQyggC4iIpIBFNBFREQygAK6iIhIBlBAFxER\nyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDJC0gG5m25rZ62b2iZnNMrOLQnkfM3vFzD4Pz8XJ\naoOIiMiWIpln6DXAr919F2A/4AIz2wW4AnjV3YcAr4b3IiIi0g5JC+ju/o27/yu8XgPMBgYBxwMT\nwmoTgBOS1QYREZEtRUquoZvZYGBP4D2gv7t/ExZ9C/RPRRtEREQyWU6yKzCzHsATwP9199VmtnGZ\nu7uZeRPbnQucG96uNbM5LVTVG1jVyuYlsk1z6zS1rGF5vPViyxouLwGWtdCu1urMxydeWXPvk3F8\nmmpXR2yTKd+hptrR3vW7ynfoRXc/qpXbiKSOuyftAeQCLwGXxJTNAQaE1wOAOR1U173J2Ka5dZpa\n1rA83nqxZXHWL0vC36LTHp9EjlmD49Xhx6ezH6PO8B1qyzHa0r5DeuiRzkcyR7kbcD8w291viVk0\nCTg7vD4beKaDqnw2Sds0t05TyxqWx1vv2RaWd7TOfHzilSVyDDtaZz5GneE71JZ6trTvkEjamHvc\nHu/279jsAGAqMBOoC8W/JbqOPhH4HrAQONndVySlEV2UmZW5e2m629FZ6fi0TMeoeTo+komSdg3d\n3d8CrInFhyar3gxxb7ob0Mnp+LRMx6h5Oj6ScZJ2hi4iIiKpo6lfRUREMoACuoiISAZQQBcREckA\nCuidnJntbGb3mNnjZvbv6W5PZ2Vm3c2szMyOTXdbOhszG21mU8P3aHS629MZmVmWmd1oZneY2dkt\nbyHS+Sigp4GZPWBmS8zs4wblR5nZHDOba2ZXALj7bHc/DzgZGJWO9qZDa45RcDnR7ZBbhFYeHwfW\nAgXAolS3NV1aeYyOB7YBqtmCjpFkFgX09BgPbDaFpJllA3cBRwO7AKeF7HSY2XHA88Dk1DYzrcaT\n4DEys8OBT4AlqW5kGo0n8e/QVHc/muhHz3Upbmc6jSfxY7QT8I67XwKoJ0y6JAX0NHD3N4GGk+ns\nA8x19/nuvgF4lOisAXefFP4hn5HalqZPK4/RaKIUvacDvzCzjP9et+b4uHv9xE7lQH4Km5lWrfwO\nLSI6PgC1qWulSMdJenIWSdgg4KuY94uAfcM1z5OI/hFvSWfo8cQ9Ru4+DsDMxgLLYgLYlqap79BJ\nwJFAEXBnOhrWicQ9RsDtwB1mdiDwZjoaJtJeCuidnLtPAaakuRldgruPT3cbOiN3fxJ4Mt3t6Mzc\nvQI4J93tEGmPjO+a7EIWA9vGvN8mlMkmOkbN0/FpmY6RZCwF9M7jA2CImW1nZnnAqUSZ6WQTHaPm\n6fi0TMdIMpYCehqY2SPAP4GdzGyRmZ3j7jXAOKL88bOBie4+K53tTCcdo+bp+LRMx0i2NErOIiIi\nkgF0hi4iIpIBFNBFREQygAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKBLp2dm76S7DSIinZ3u\nQxcREckAOkOXTs/M1obn0WY2xcweN7NPzexhM7OwbISZvWNm083sfTPraWYFZvY3M5tpZh+a2cFh\n3bFm9rSZvWJmC8xsnJldEtZ518z6hPV2MLMXzWyamU01s6HpOwoiIs1TtjXpavYEhgFfA28Do8zs\nfeAfwCnu/oGZ9QLWAxcB7u67hWD8spntGPaza9hXATAXuNzd9zSzW4GzgNuAe4Hz3P1zM9sXuBs4\nJGWfVESkFRTQpat5390XAZjZR8BgYBXwjbt/AODuq8PyA4A7QtmnZrYQqA/or7v7GmCNma0Cng3l\nM4HdzawHsD/wWOgEgCgnvYhIp6SALl1NVczrWtr+HY7dT13M+7qwzyxgpbsPb+P+RURSStfQJRPM\nAQaY2QiAcP08B5gKnBHKdgS+F9ZtUTjL/8LMfhK2NzPbIxmNFxHpCAro0uW5+wbgFOAOM5sOvEJ0\nbfxuIMvMZhJdYx/r7lVN76mRM4Bzwj5nAcd3bMtFRDqOblsTERHJADpDFxERyQAK6CIiIhlAAV1E\nRCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVERDKAArqIiEgG+P/TN6Scm1i3agAAAABJRU5ErkJg\ngg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3930,7 +3936,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4leX5wPHv8569shMIkBBA9kZE\nEUVF3IpWtNraKu5qW0db96hWrWitVqs/V91iFQfi3lhUBEVAEJBN2EnIPHs+vz/OIQMSkkCCJN6f\n6/LKOe943udEkjvPvJXWGiGEEEJ0bMZPXQEhhBBC7D0J6EIIIUQnIAFdCCGE6AQkoAshhBCdgAR0\nIYQQohOQgC6EEEJ0AhLQhRBCiE5AArroUJRSNqXUU0qpYqWUVym1SCl1Qr3zRyulflRKBZRSs5RS\nPeud+6VSak7q3OeNlD1BKbVAKVWjlFqrlLpkH30sIYTYaxLQRUdjBjYCRwDpwM3AdKVUkVIqB3gD\nuAXIAuYDr9S7twL4FzB150KVUhZgBvB4qtyzgPuVUsPb76MIIUTbUbJTnOjolFKLgduBbGCK1vrQ\n1HEXsB0YqbX+sd71FwG/0VofWe9YF2Ab4NJaB1LHvgXu11r/d199FiGE2FPSQhcdWioQ9wOWAoOB\n73ec01r7gTWp47ultS4B/gucr5QyKaXGAj2BL9uj3kII0dYkoIsOK9VNPg14LtUCdwPVO11WDXha\nWOR/gVuBMPAFcJPWemMbVVcIIdqVBHTRISmlDOAFIAL8IXXYB6TtdGka4G1BeQOAl4FzASvJVv21\nSqmT2qrOQgjRniSgiw5HKaWAp4AuwGStdTR1aikwvN51LqBP6nhzhgArtdYfaq0TWusVwLvACc3c\nJ4QQ+wUJ6KIjehQYCJyitQ7WOz4DGKKUmqyUspPsPl+8Y0JcamzcTnKmvKGUsqe67QEWAn1TS9eU\nUqoPcDKweF99KCGE2Bsyy110KKl15etJjnPH6p26VGs9TSk1EXiY5IS2eSRnva9P3TsFeGanIp/T\nWk9Jnf8lyT8CepIce58G3KC1TrTTxxFCiDYjAV0IIYToBKTLXQghhOgE2jWgK6WuVEr9oJRaqpS6\nKnUsSyn1sVJqVeprZnvWQQghhPg5aLeArpQaAlwMjCE58/hkpdQBwPXAp1rrvsCnqfdCCCGE2Avt\n2UIfCMzTWge01jHgf8DpwKnAc6lrngNOa8c6CCGEED8L7RnQfwAOV0plK6WcwIlAAdBFa701dc02\nkmuJhRBCCLEXzO1VsNZ6uVLqHuAjwA8sAuI7XaOVUo1Os0+lrrwEYNCgQQcuXdqSvUGEEKLdqJ+6\nAkLsTrtOitNaP6W1PlBrPR6oBFYCJUqpfIDU19Im7n1Caz1aaz3a4XC0ZzWFEEKIDq+9Z7nnpb4W\nkhw/fwl4Czgvdcl5wMz2rIMQQgjxc9BuXe4pryulsoEo8HutdZVSaiowXSl1IVAM/LKd6yCEEEJ0\neu0a0LXWhzdyrBw4uj2fK4QQQvzcyE5xQgghRCcgAV0IIYToBCSgCyGEEJ2ABHQhhBCiE5CALoQQ\nQnQCEtCFEEKITkACuhBCCNEJSEAXQgghOgEJ6EIIIUQnIAFdCCGE6AQkoAshhBCdgAR0IYQQohOQ\ngC6EEEJ0AhLQhRBCiE5AAroQQgjRCUhAF0IIIToBCehCCCFEJyABXQghhOgEzD91BYTojAI11fw4\nZzbB6mqGTTwOT3Zumz8jHouRiMex2GxtXrYQouORgC5EGwsHAsye9gxLP/8EgGVfzOLXd96HKyOz\nzZ4RqKnmm5mvUV2yjfG/OZ/Mrt3arGwhRMckAV2INhaLhNmyYlnt+5qyEuKxWJPX60SC6rJS1i74\nhh4Dh5CZ373ZVveKr7/gu3dmAFC1bQtn3HIXrvSMtvkAQogOScbQhWhjVoeTQeOPrn3fvf9gzBZL\nk9f7q6uYduPVzHr2CabdeDWB6qpmn5GIJ+peJxKg9d5VWgjR4UkLXYg2kIhGiZdXEN22FWuPHgw/\n9kR6DhtB2B8gr6gXzt20nuOxGCGfN1lOPI6/tARPRiaG1drkPQPHjadyyyaqS7dx1JRLcKZnEKip\nJlhTjdXpwuH2YN7N/UKIzkcCuhBtIFZaytpTJqEDASwFBRS9NI38A/rvcl08GiWRSDToUrfa7Iw5\n6Rcs+OQ9eg4ahjMaI+H37zagO9MzOOLci0jEYticTkI+L7NfeJqlsz/FZLHw26kPkt2jsF0+qxBi\n/yQBXYg2EFq6FEt+Pu7DDyPu9REPhzHCYdAaw24HwF9VyVfTX8RidzDmlNNxZWYB4EhLY8SYcQzq\nO5DounUkfliKMXBws8+0WK2QCvrxWJTV8+cmX0ejbFz+gwR0IX5mZAxdiDZgHzOGblPvJrppM4bL\niWGxsvVvf2PLddcT3bKFRDzOvDdeoXuPngwv6kt4/nwiZWW19zt79MBT2JPMQ8eRPmkShr11S9HM\nVhvDjjkhWReXm6JhI9v08wkh9n/SQhdiLwW9EaLlfrZdcinxykoADLsdHQji/fBDops30+Pxxygc\nOZquykxi2zbCa9aQ6FFI3G7H5PFgcrsxud21ZcYqKqieOZOEP0Dm2WdhzsnZbR1sThejTzyVYeMn\noKIx7JEYOhZDmeVHXIifC/lpF2IvrV1URl5GlHhNTe2x2PZyDIcDgHhlJZFQmPnRPE6ObmTzVVcD\nUPPOuxQ+8zQmj6dBeTqRoOL5Fyh/7DEAwmvXkn/H3zC5XLuth9nro/jY45Pd/G43vd97F0teXlt+\nVCHEfkwCuhB7KRZJsHKxl743307oy1k4f3kGjoEDiX7zLZHiYrLOO4/AmnVsD2cTqdpae19k06bG\nC0wkiJWU1L6Nl5XBbtax197m99cuX0v4/RCP790HE0J0KDKGLsRe6ntQF4JREzW9D8L4/e9487UX\nePv/7of+/ehy800Ef1iC7+GHyDOiGIccin34cAyXiy7XXkPw+8XonQKvMpvJveKPOEaOxDZgAF1v\nvw1Tenqz9TB36ULWlPOw9upF/h13YOzU8hdCdG5Kd4ANKUaPHq3nz5//U1dDdGCxeIJSb5hVpV4G\ndE2jS5q9xffGq6tJhMMokxnlsKMDAZTTicnprL0mGo4R9FXzyl+vpaYs2bo+dNJkilasx3XYYQTW\nruOrYRM4NN+Oa9VyDKsV76xZxKur6XbPVIyddoaL+3xEiouJlZZiysnB3rdv7Wz53dbV70cHgxhu\nT6sn1olmqZ+6AkLsjnS5i5+Fcn+EYx+YjS8cIz/dzszfjyOvBUE9VlVN+eOPU/HMM3T7531E1q6j\n+u23ST91EhlnnQXxOMpkwpKTQyxiwZOdUxvQ0zJz0Hodlu7dyBo2lKMXfY+qAUv3bmy64koMh4OC\nxx7dJZgDxCsqWD/5jOQbi4UDPv4Io2vXZutrcrmgmbF2IUTnJAFd/CyU+8L4wslx6K3VIcKxRDN3\nJOlQkIpnngGlsHTtypY//wWAhD9AzZszKb3vPszdulH00jRsubkcfeFlrJ43h/SsbPLTs3FefBEb\nL7oYz3HH4Rw1kuB3C6iaPp38O/6GtU8frPn5jT83Vq8bPhaTrV2FEM2SMXTxs5DnsTOyMLn96klD\n83FaTbu93h+OsbU6SEwZWHr0AK1RViukloG5xo6l7JFHAIht2YL340/QwSBlxevYtm415SXbWLZm\nOb7Vq4lu2EDo+0VYevSg/D//ITBnDhsvupjohg1NPt+UnUWXG27AceCBdP/XAxhpaXv1+YPeCNs3\nefFVholHZbKcEJ2RtNBFpxOoiRANx7HYTDjTkjup5Xhs/Ofc0UTiCWxmE1muprdVDcfifLyshD9N\nX8Sg/DSmP/880UULMTIy6Pn8c1S//TaWHt1xjBxBYM7XYBjY+vSh7P8epdell+DKyKSmrJSeB/Sn\n5NwpYDKR+dvfgsmEuWtXYtu2gcmEpYnWOYA5PZ2MX51N+mmnYjidqN0kd2lO0Bfls+eXs35JOSaL\nwdm3jCEjz9n8jUKIDqVdA7pS6mrgIkADS4DzgXzgZSAb+A74rdY60p71ED8PFf4I3mAUogmWvrOe\nQHmYEy8fVhvUs90tmyRWE4zx789WkdDww5Ya/vpVKXeffjxmkwEFBThHjQKg+733EliwAHNODtUz\n3iReVYXVYqHn0BEAxKqr6fnC88nNXcwWMBn0nPYiga+/xj5sWLObxRj1tnbdG4l4guKlFQDEowlK\n1tVIQBeiE2q3LnelVHfgCmC01noIYALOBu4BHtBaHwBUAhe2Vx3Ez0dVIMLf31vOEfd9zsmPzWHA\nKYW4MsxEQ82v396Zw2Iwuiiz9v3BvbOTwXwn5pwcHMOHU/7UU0Q3b6bLjTc0mPluTk/HWlCAJT8f\nS24OlqwsrN27k3HGGdj79cNwNh9Uw8Eo/qowgZo9/5vXZDEYMr5b8rN5LHQ7QPKmC9EZtduytVRA\nnwsMB2qAN4F/A9OArlrrmFJqLHCb1vq43ZUly9ZEc0pqQhz8909r3193VHfOHd4VHJm40lu/fKvC\nH+aHzTXkuG0UpVlw2C1NbqO6Y4c4016Oc+8sEoyx9MstzHljNRl5Tk67eiSujD1bihb0RYmGYpgs\nBk6PFWXICqw9IN80sV9rtxa61nozcB+wAdgKVJPsYq/SWu9oNm0CurdXHcTPh9lQDOue3HxFKTik\n0I3DyR4Fc4Asl43x/XI5IF5N5V9vpuSee4mVlzd6rSktrc2DOUA0EmfujDWgoaokwKYVlXtclsNt\nIS3HgSvdJsFciE6q3cbQlVKZwKlAL6AKeBU4vhX3XwJcAlBYKGkgxe5lu208fd4ofli/lYJ0C13i\nWzGsLdvHvNIfYX25H5vZRPcMO+lOK6XeEKGSMsIXn0dsa3K71oTfT9dbbq7dox0gVlVFcMFC4lVV\nuI8Yjzk7u9V1rwpECETimAxFusOC3ZKcgW8YipwCN6XFXlCQ08PdTElCiJ+z9pwUNxFYp7UuA1BK\nvQGMAzKUUuZUK70HsLmxm7XWTwBPQLLLvR3rKTqJnDQnR/bPg0gQ7EPB0vwYdTAS5z9fruWRWWsA\n+McZwzhuSFdufGMJfx6dA/VSnEY3bURHo1AvoPu+nouvsA+hrkUEtm6ni9W6S7KV3Sn3hbnxjSV8\nuKwEp9XE1NOHMXFQHk6rGYfHykmXD2PbuhoyujhxZ8rOb0KIprXnOvQNwCFKKadSSgFHA8uAWUBq\nCyzOA2a2Yx3EfkBrTSzRso1c9prNA568FgVzgGA0zhertte+n7WilEgsQYU/wvurq3Bd9ScAlMNB\n3l/+glEvxalOJPAPGcVpM9Yz8fllXPd1BZWx1nVnz11bwYfLkjvLBSJxrnnte2qCdRP5nOk2eo/I\nJSvfhdUuq0yFEE1rzzH0ecBrwAKSS9YMki3u64A/KaVWk1y69lR71UH89Cr8YR78dBU3vL6ELVXB\nffLMmmCUtWU+lm2pptK/+9nhHruJy4/sg6HAZja46PDeZLus3HvGcD7f4GfBwHH0+uwz+nz4AbaB\nA1FG3Y+MMgzWBTTbfclnfLGmgqja/YY1O1tb5mvwPhxLEI3voz9+hBCdSrv+ya+1/ivw150OrwXG\ntOdzxf7jzUVb+NcnqwBYU+bjP+cdtNtNXZoTicWpDkYxGUaj5cTiCT5aVsJfXv0egPPHFfGnY/rh\nsTe+MYvFZGJ831y+un4CBopMlwWlFH1yXTxz/kGYDIXd2XR9D+iaRrbLSrk/wqF9srFaWvc38inD\nu/HQZ6uIxpOjSkO7pze7i50QQjRG+vBEu/KGorWv/eE4ib1YJhmJxZlfXMk1ry6me6aDh381cpcE\nK8FonDcX1k3LeGfxVi47ok9tQA9UV1FdVoorPQNHWjoWmw2nzYzT1vBHQSm1y0Y08ZoaIhs3Ed28\nGeeokZhzcsjz2Hn/ysPxR+J47GayXXX3hANRlFJYHU3/mHVNt/PhVeN5/utiCrOcnDK8W4s3wBFC\niPokfapoV2XeMLe9vZSS6hB3nz6UA/LcJKdUtF5pTYgTHvyC8lQ3+nXH92fKgYWUb/bh9FhwWiMY\nUR9zauzY4gq72aC4JsjRQ7visVvwV1cxY+ptlKxdjWEy8as77qNrn74tfr7vq6/YeOFFANiHDKHg\niccxZ2U1em1NeZBZL/6IyWxw1DkD9nj9uNivyHo/sV+TFrpoV7keG/ecPpRoQpPhsOxxMIfkMq5c\nj602oB/ZK4fZr6xk9fxSACb9rjc9Sp/i8DGXM/3BYqq3hzjmgsE4UuPesXCYkrWrAUjE4/w4Z3aD\ngB6NJwhG49h0HMNbA0phzs6uHTf3f/117bWhpUvR4TBxvz+ZsrSecDDG7P+uZNPy5Lrxr99cw1G/\nGYDJXNcdH4smCAeSvRcOtwWjkZ3ohBCiNeS3iGh3bruFTKd1r4I5QI7bxtNTDuKCcUXcddoQunns\nbFlZVXt+0yofqnI96sv7yevpJh5N8PmLPxIOxoiGwxgmE5n53Wqv73Ng3VSOQDjGlqogd72znAc+\nW0vZljLWn3kmkXoZ0TJ+8QuMVPDOOPMMqt99F++HH5EINpzspxSYrXU/Wla7ifofPR5PsHV1FS/c\n/DX/vX0eFVv8Lf4exOMxwgE/ibhkTBNCNCQtdNGhdMtwcOspgwGIhuMceEIRX7yyEpvTzICRLnh7\nIQw4hURqJMmdZSMRi/K/F55nxLgjmXzVDZSsW0Nmrz548uo2nqkORfnrzKV8vjK57tw8roCzR46i\nctpLdL3pRgCsPXvS+/33iFdWEly0iPInniT7kkuIVVZisdRtDWu1mzn8rH7YXRZMVhMHHtcTw2QQ\nqImwY4jry+mriEcTxKMJ5s5cy7EXDW52WVrI72PVvDn8OOd/jDzuFAqHDsdqd+z2HiHEz4cEdNFh\nWWwm+h/chV7DsjGI41h4P7rXETDuKvLmh7G7bYyY0J23778Fu8dDdNbnbH/0MSw9ehAs6IHnjjso\njZmIxBMYShGolyfcG9VgseAcU9eKV2Yzlrw8ops2UXrfPyl88klK7/8n5U8/Tbd7puIYMqQ2qLvS\nbYz/VT9AYRiK6rIgbz24iGg4xi/+MoqMrk4qtiZb5pn5rgbd8fVprYmG45gtBiGvl48efwiAjT8s\n4aKHn5KALoSoJQFd7LfisQTKAMNoemTI5rRgc6aWpB3+JzBMKIuD4ROS4+Tfvv0GW1evoPeoMRCP\no6NRIuvWYbjdBKMJPlq9hZvfXs79vxzO3acP5eY3fyDdbubyw4tIG3g+1u7ddn1m3770mvkm1TNm\nEPjmWwC2XHMtPV96CUtuXUrUHfVOJBLMf28dNduTXfOzX17JxCmDyO+TjsVmoveI3EYDejwWp2yD\nj/nvradbvwx6D6+bWKcMxV6OYAghOhkJ6GK/5C0PMXfmGlyZdkZOLMDhabgWvMIfYVt1kDS7hUyX\nFZfNDLaGe50HfV6WfzELgA1LFjH+pjtI376deGkpxh//zG/eWM1DZ4/AYVnJn6Z/z3e3TOT/zhmF\nxVC47RbITW+0biaPB5PHg6VHj9pj5rw8lLnx9eOGYZDXM40fv94GQFq2A6vdxIiJu89REPLFmPnA\nQmLRBMU/lNNz8HBOvup6fvzqf4w49iTs7pZvMSuE6PwkoIv9TtAb4YMnl1C63guA3WVm1LE9a897\nQ1Hu/3gFL87dgKHg9csOZWRh5i7lKKXI6t6DvKLeeCsr+GbWh5hOu5DlmyqZ8e5G1pcHWFPqpyjH\niTcUI5HQZHtavrzMfcQR5E+9m+jGjWScdRbmzF3rsEPf0Xl4su1EgjEKBmZhsbXsR6/+otKQ36Df\nIePoc+BBmK2yDE4I0ZAEdLHf0RpikbrtT2PhhjO6Q9EEn69ITl5LaJi9sqzRgG6z2Tnm1LOomTED\n+3GnESsoZKXfxANfLQHAbjHol+vmmmP7M7BbGrke+y5l7I45I4OM005r9FxNMMr6cj/F5QEO6Z1N\nrsdG0dCcRq9tis1tYdIVI/jmnXV065tOdrfkGn4J5kKIxsjGMmK/o7WmsiLI+hWVhEoCDB2ThdNt\nxpSe7AIPRGK8/t0mbpm5lDSHmTcvH0fv3Ibd7VWBCIuKK1lVXMLxvTyEr7qctH8/hsrIYd32AD9s\nqeGQoiw8cSjo23TLeodEOIyvupKVX39JTlFvuh7QD7ur6XSm366v4MzHkuvWD+2TzSO/HkXmHmx5\nm0hooqEYJqsJcxMT58Q+I7MWxH5NWuhiv1MZiPLwnHUs21rD9Uf1ouK+u7BccnFtQHdazZw2sjtH\nD+yCyVDkNBIo562r4NIXvgPg5aVunrnuFiI+PyZ3Gl1iEC1PYM2IkDew6fzlsYoKMAzMGRkEaqqZ\nfufNVJckx8En33A7RSMObPLe5Vtqal//uM27xwlXDEPVTfoTQojdkD/5xX4jUBPhx6+38sWPpTz9\n1Xrmrq1gyn8Xo876TbIfvh6P3UK3DAdd0uyYGtllbfHGug1n1m33YerZkxKTE7PTTuGgHEYeV0gs\nkmDp7E34K4PoWKzB/eH169l46e/Y/McriG7bhk4kaoM5QGnxOuJ+P7HycnQjm7wcO7gr/bt4sJkN\n/jZpMJ7d7OcuhBBtQQK62C9EQjHmvLGaRZ9sRMXqgrfFZGDu3Qdzt+4tLiuR0PzywO7kpyfHxK8/\nvj+Gx0PPonxy0xwoQ7FmQRmfPrucr2esZdaLPxLYur02MMeqqth6w42Eliwh8O23lN77D6wWC+PO\nPAeAtNw8Bow9nK0338KGCy4kvHLlLkG9a7qdaRcfzBfXHsWEgXk4LBLQhRDtS37LiJ9E0OslEvRj\nmM043GnEY1BVEqB8i4/BFitXTziAZSU+zh9XxLebazh+SLfkP9aQFwwDrK4my05UVWJ55N9MP2ES\nuD2YMjPxxRV9681gryoN1L72VUUILFtBJE0Rsxg4NbVbvAIYbjcVDz1Mr74HMPjhpzFMJsIff4L3\n/fcB2Pznv9Dz+ecw5zSc9JYjWdOEEPuQtNDFPhfyeZnz6jT+88eLeOqPF7F19QqsdhOHndkXq83E\nvBd/5KxB3RhTlMkjs1bTOy+Nx2ev4d3vN1FZvAje+iP4SposX0ejVL/8Mr7zfo1v8im4Vi+jMMvZ\n4JqREwvJ6+nBk21n/CldiRe4uW/xQ0x4dQJTlz5El7vuIP3008k45xzST51EzTvvUHHHnbBkKa6s\nbAxz3d/CpsxMMEkOcyHET0tmuYt9zlu+nScun1L7vmDwUCb9+SYsNichfzID2bZwhBMf+pK/nTqE\nafOKWbypGoAnzjyAY7c9DlYPHP3XZGt9J7HKSrbedBO+z2Zhys6m1xuvY+nSZZfr/OU+YpVVJJYt\nxHfEME588+Tac++c9g4Fzm4kAgE2XnY5oQULwGKhz7vvYC0sJFZZSc0HHxDdtJmsc8/F0iVvl/JF\npyOz3MV+TbrcxT6nDANnegaB6uTEtaxuBZgtVkxmA1d6spu6IGbhf9ccRSye4L4PV9TeW+xV1DAe\ne58BWLRu9DesOTOT/DvuJHG9D2W379IVvoMr2w3ZbjigB7FAGVn2LCpCFbgsLhwWB4bFgpGeTsFD\nDxJasRKjby8qXQYJ31bS3Glk/epXbf69EUKIPSUtdLHP+SN+AtvL+faN6bizchhxwqmEzY5GN3aJ\nxOLMX1/JX179noIsJ/ePz8P3m19iuNz0euP1JoN1ayV0gtJAKYvLllDk6cfarSbG9Mojq96SuCXb\nl3D+B+cTiUe4+/C7OabnMVhNrV9bLjosaaGL/ZqMoYt9blnFMs79+lK+Gxlg/TDF6z9u4ZR/f8XG\nisAu11rNJkYXZfLm78fx8Ak9CVx6AQl/gFhpaaPLxZqjYzGipaVEt24lXlO3VtxQBk4jm/8t6srp\nD/3I7178nrcWba49n9AJpq+YTjgeRqN5cfmL+KMtz2MuhBDtTQK6aJ1EAnylyUlpidYHVIAlZUvY\n5NvE9NWv8vzyF8jxmNlWE2LGws2NXm81m8hLs5PptmMbPBgjPZ0uN92E4XQ2ev3uRDZsYO2JJ7H6\nqAlUvTGDeKDuj4hYIsGSTdX4wsk16VuqQ7XnDGVwXNFxqFQjbWLhRJzm1j9fCCHai4yhd2DhYICQ\n10ssEsaZnonD087Zt+JR2PQtvHkZ6ARMehgKDwFz65ZnndDrBKavnE5JoITLh13NrMVerCaDYwbm\n4Q/HkpnTGmHOyqLb3X9HR6MYLhemPQjo1W/OJOHzAVDx9NOknXRibTmZTiv3nTmcq19ZRJbLyoWH\n9Wpw78i8kbw/+X0i8QhuUx7LtgSo8FcxsjCzQde8EEL8FGQMvQMrXryI1/5+C2jN2DN/zUGnTMZi\na8e1z95t8OhYCFQk39vT4fffgKcrkExpGorGsZgMcpvJWlYeLCehEyhtZ/5aH0N6pDNtbjErS31c\nd/wADsh1YxhtP2QZ+PZbis89D7Qm/bTT6HLjDZjS0mrPa62p8EcwGYoMZ9NB+r0lW7l82gIAfjm6\nB7eePCiZclV0ZjKGLvZr0kLvwFbO+7J2S9TV33zNiGNObN+Ajoawr+5txF/7/Ep/hLveXcbrCzZz\nQJ6b/1588G6zl2U76vZQP36oh9fmb+TR/60FYPGmat674vBm/yjYE7aBA+nzwfvEKquwFhY0COaQ\nTLma3YINYb5dX1H7+vuN1YRiCZpO1SLE/kUpNQkYpLWe+lPXRbQdGUPvwIZNPD6ZSlMpDjzxVKyO\ndh7TtabBhJtBpRoq468FWzKMBaNxXl+QHANfXepjVYmvqVIaFamXvCQaT6DZfc9R0BuhZnsQf1WY\nRCsSn5jcbqw9e+IcMRxzVlar6ljflEOL6JJmw2Y2uOmkgaTLXu3iJ6KSWvW7XGv9lgTzzke63Duw\nWDRKyFtDIpHA5nJha++ADhCshogP0MnNXRzJDGhl3jBnPjaH9eUBbGaDz/58BN3SbMTKy0l4vZgy\nMojZbUSCQQyTCVd6BqrepjDlvjD3frCC1WU+bjpxIAMyzFhjEQyPB8PasOs76I3w+bQfWbtoO1aH\nmcnXHkhWftNbwdYX93pB611a5q2ltWa7L4zWkO6wYLPITnE/A/tNl7tSqgj4EJgHHAjcC/wOsAFr\ngPO11j6l1InA/YAf+ArorbWxQagHAAAgAElEQVQ+WSk1BRittf5DqqyngRygLHXvBqXUs0ANMBro\nClyrtX5tH31EsQekWdGBmS0W3FlNp/9sjZA/SqA6jMUK9rifWEkJlm7ddl3n7UivDeL15XpsTL90\nLMu31dAn102O20aspIS1p55Gwusl+9abKXbbmT3tGRyeNH591z/J6JJfe7/HbmbiwDyKcpxY/DVU\nvjiN8DffkDVlCp5jJmJy13VoR4Ix1i7ajmFSjD+rF2ZLBF9FCKvDsdteimhJCVtvuRUdjZJ/551Y\nu3fb4++XUmq3QwpC7AN9gfOA1cAbwESttV8pdR3wJ6XUvcDjwHit9Tql1H+bKOffwHNa6+eUUhcA\nDwGnpc7lA4cBA4C3AAno+zHpchfEogmWfbWFV+76lkRFBWtPPoX1vzyLDedfQGz79haXk5dm54h+\nefTIdGKzmAitWEnC6wVAdenC/HdmABD01rB6/rwG94aiCZ6es55Xvt2IZ8Maal54gfCKFWy94QYS\n9daLA5gsJkxWg5OuH8m8aIgHvtzI1uogy2bPIhzwE4rGKfOG8YWitfckwmFK/3Ef/tmzCXz9Ndv+\n+tdka31335eqKkLLlxNatYpYdXWLvw9C7CPFWuu5wCHAIOArpdQikkG+J8kgvFZrvS51fVMBfSzw\nUur1CyQD+A5vaq0TWutlwK77J4v9igR0QSwcY92iMuxuC5ENG2uDcHjVKhLhyB6Xax84AFN2sgdB\nxWIUDR+ZfG0YFAwa2uBat83Mdcf3x2k1Y9TPb64UO/d02t1mzrx+NN+Vern13ZU8M3cj175XTMjs\nIByK8OPWGmYu2swDn6ykwp+qv2GgnI7aMgyno9F94HdIhMJUvfwy635xOutOmYT3/Q/2aCMbIdrR\njp2NFPCx1npE6r9BWusL2+gZ4Xqv95shB9E46XL/uYrHwLsVti3G0m0MIyYW8tF/fsBU0BdLQQHR\njRtxHXEEhiPZrZwIh4lXVQMaU3o6hr357mZzly70enMGOhjCcLs4YuxYRp14Kg53Go6dxrANQzG4\nWxrPXnAQnrAf+yWX4P/6a7KmnIeR3vBas8VEdjc35avrMq5VBiK4svNY49Xc8tZSema5OHdsTzaU\n+8lyWTEsFvKuuAJlNqPDEXKvvBKTazcpWIMBvLM+r33v/fRT0k4+qUHXvxD7ibnAI0qpA7TWq5VS\nLqA7sALorZQq0lqvB85q4v45wNkkW+fnAF/sgzqLdiCT4jqocDCAYRhYbHs4jluzFf7vYAhVgy2N\nyOVLCMftGCaFNVyDjoQxnE7MWVlorQkuXMiGKeeD1hQ8+QTOMWMaTGpra4lQiEQwiOF2Y1gaX99d\nWh3k1rd+YGNliNuPLSLLqjnnlVVsTe3wdv0JA5g0vBvdMupa5joWQ0OD9KeNPj8axfvxx1Q+/wLO\nQw7Gc9xx2Pv3b9fPLPZ7+00LNTWR7R2t9ZDU+wnAPSQnxQHcrLV+Syl1CvAPkq35bwGP1vqcnSbF\n9QSeofFJce/smAinlPJpreUv2v2YtNA7oOrSbXz69GPYXG6O/O2FuDIyW19IsCIZzAHCNVhDm7F2\nGZw6mdvg0kQoRMUzz6Ijye7r8ieexD54MKZ23JnOsNub7QXIS3fw90kDCQSC2KJBEmlZpDsstQG9\nINO5y3IyZTa36LeyYbHgGjcOc04u5U88QaLGi+X3l2PObptJiELsjVSLe0i9958BBzVy6Syt9QCl\nlAIeAeanrn8WeDb1uhiY0Mgzpuz0XoL5fk4CegcTqKnmnQfvZdvqlQBY7XaOvuB3GKZW/q905ULX\nYbBtcfKrK3eXSypDlczbNo+qUBUTbr4aY948EjU1OA87DNWCLvcdIsEAsUgUm8uFqZmWcWtlpbvJ\nSq/7PfPUlIN4YvZaBnT1cGifbFy2Pd+9TQeDbLjwQohG8QM6Ek7uIe9wNHuvEPuJi5VS5wFWYCHJ\nWe+ik5KA3tFoTaLe5KxEPM4ejZq48+A3r0M0CBZH8v1OPir+iDvn3gnAdz2P46a3XyNqM1GZ8KGj\nVWSbszGa2c8iWFPDl9NfYOvKHzn811MoGDQkuRkOEKusREdjKIsZc2aylyFQU01Z8ToMk5mcgkIc\nntatF++e4eD2SYObvS7u85EIBjG5XE0meUn4/RCtmykfXrc+2UshAV10EFrrB4AHfup6iH2j3QYE\nlVL9lVKL6v1Xo5S6SimVpZT6WCm1KvV1D/qLf76c6RmcfOW19Bg0lD6jD2bcWb/d81avOw8yezYa\nzAHWVa2rfb3Bt5GQy8LvZv+R09+ezJlvn0l5sLzZR5SsX8Pij9+nrHgdM++7k0BNDRWbNxEpLWXL\ntdexevx4tt5yK7GKCoJeL58+9Siv3Xkz02+/nrlvvEI4uGtK1b0Vq6yk7P4HKD77bCqnv0q8pvHl\na6b0dOyDByXfGAbZF12IIZPihBD7qXYL6FrrFTuWUZDcySgAzACuBz7VWvcFPk29F62Qmd+dSX++\nkRN+/yfcmXu+fWlzpgyZwqDsQfRw9+CvY/8KClZWJrv6y0PllAZKmy3D7qoLgDani+qSbbx449V4\n16zG/0VyMq3vk0+IV1SQiMdY/e3c2utXzfuKaCi0S5l7K1ZaSuVLLxHdvIXSqVNJeGsavc6ck0PB\nE0/Qa8YbHPDxx8mJgCbZEU4IsX/aV13uRwNrtNbFSqlTgSNTx58DPgeu20f16DQc7vaZkKYTmoA3\nAhqyHbk8OvFREjpBpi2T6nA1o7uMZn7JfAo8BXRxNb/PREaXrpxy9fVsWv4DI449iQ8efZBYJJzs\nYjebIRZDWa3JLV5NJgoGD6V48UIACoeMaJdkM4bbnVyDnkhguJzJejTBnJ0tE+GEEB3CPlm2ppR6\nGligtX5YKVWltc5IHVdA5Y73TZFla/tOVWmAN/7xHSF/jInnD6T38FzM1rpWaXmwnEAsgMPkIMeZ\ns5uSduWvruL5a/5AoLqKYeMnMO6IY/H/7394jp6AtXsehiebQHUV679fgMlipWDwUJxpu24zu7fi\ngQDh5cvxzfqctFMnYSsqQjWxNE6IevabZWtCNKbdA7pSygpsAQZrrUvqB/TU+Uqt9S7j6EqpS4BL\nAAoLCw8sLi5u13qKpNkvr2TJ55sAcGXYOPOG0bjSG7aS49EoQZ8XpRTOtPQWr83WWuOrKGfbmlXk\nFBTgiZVhXjINiueAzQMTb4O8wWDfu8QpQrSTn11AV0rN0Vof+lPXQ7TMvtgl4wSSrfMd23qVKKXy\nAVJfGx2I1Vo/obUerbUenZu765Iq0T669q4Lptk93JjMDf+JJOJxtq5eyTNXX8rz1/6Riq2bW1y2\nUgpPdg59Rwwjc/V0zE8dCd88CSVLYcNcePp4WPs5yBarQvyklFJmAAnmHcu+COi/omFSgLdIJg8g\n9XXmPqiDaKHCwdmcevVIJp4/iKPPHYjd1bArOuT3Meu5J4gEgwSqq5gz/UVi0Vbu9x6qhll3NX7u\n/Wsg0PKEMELs74quf/fXRde/u77o+ncTqa+/botylVJvKqW+U0otTfVoopTyKaX+kTr2iVJqjFLq\nc6XUWqXUpNQ1ptQ13yqlFiulLk0dP1Ip9YVS6i1g2Y7y6j3vOqXUEqXU90qpqaljF6fK+V4p9bpS\nah/kcBZNadeAntpT+BiSqf12mAoco5RaBUxMvRf7CbvLQo/+mfQ/uCvONOsu500WCzkFPWvf5xX1\nQStYW72Wx79/nO/Lvscf9e9yXwPlqyERa/ycdxs0d/9OEok4vsoKvOXbCQfafpmbEHsqFbyfJJn9\nTKW+PtlGQf0CrfWBJPOVX6GUygZcwGda68GAF7iT5O/gXwB/S913IVCttT6I5O5yFyuleqXOjQKu\n1Fr3q/8gpdQJwKnAwVrr4STzrwO8obU+KHVseaps8RNp11nuWms/kL3TsXKSs95FB2RzODnitxfS\nY9BQrHY7BUOGUxmp4ux3ziYYC/LIokeYedpMeqX3aroQa9NJUQAwWjdBrapkG/+96c+E/D4mXvwH\nBh1+5J7vcS9E2/o7sHOr1Zk6/tKul7fKFUqpX6ReF5DMjx4BPkgdWwKEtdZRpdQSoCh1/FhgmFLq\njNT79Hr3flMv3Wp9E4FntNYBAK11Rer4EKXUnUAG4AY+3MvPJPaCZJroxLwRL3O3zOWhBQ+xoWYD\nCZ1ok3KdaekMPeoY+o89HKcnjWAsSDAWBECj2eLbsvsC0nqAq4kZ8j1GEzW1bie25bM/I+RP9gx+\n8+Z0IsFgq+4Xoh0VtvJ4iyiljiQZZMemWscLATsQ1XUznROk0p9qrRPUNeAU8Md66VZ7aa0/Sp1r\nXfdYcj/4P2ithwK3p+ogfiIS0DuoaDxKaaCUEn8JwWjjAWyrfysXf3wxTy55knPeO6dFO7vtCY/V\nw4TCZG6H/pn9GZA1ALQGbwms/xIq1kOobvOWuDWDwG8+JnLIlWCq1xp35VJzwv9xy0db2FTZ8q7z\nnsNGpfKmJ9eum627DhUEvBHKN/vwVYWJR2XSndhnNrTyeEulk1zyG1BKDQAOacW9HwKXKaUsAEqp\nfqnh0d35GDh/xxi5UmrHjlYeYGuqrHNa9QlEm5O93DuoVVWrmPLBFBSK6adMZ2PJRjw2D0VpRaTb\nkmu3twfrJpdVhavarIW+syx7FreNvY0bx9yI2TCT7chOjoU/fjj4SpPB9uyXod9xRCJh1i9awLw3\nXqZw6HDGnP8FjgX/hy48lKr8wzj/tWIWbaxmQ0WAR885kHRn893vuUW9uOBfjxPyeknvko/N2fB3\nU8Ab4cMnfmDLqirMFoNf3nQQmV2b+/0lRJu4keQYev1u90Dq+N74APidUmo5ybznc5u5vr7/kOx+\nX5DaC6QMOG13N2itP1BKjQDmK6UiwHskP8MtwLxUGfNIBnjxE5GA3gHFEjFeWPYCwViQC4ZcwFNL\nnmLG6hkA3Dv+Xk7odQIAA7IGMLFwIgtLF3Lp8EtxWdoviGXad9pKYN0XyWAOydb67Hugx0GEQ5p3\nHpiK1glK16+l75hxOCb9G7TmyQ9XsGhjMqWr1WzQTN6XWjaHE5vDCV0bPx+PJtiyqgqAWDTBhqUV\nEtDFPrF+6kkvFV3/LiTHzAtJtsxvXD/1pL0aP9dah0kuCd6Zu941t+10jzv1NUEyGO/8R8Xnqf92\nuSf1eio7TWLWWj8KPNrK6ot2IgG9AzIbZiYUTOCdte+Q58zjq81f1Z6bXzK/NqBn2bO47dDbiMQj\nuCwunJaWrygJxoKUBkoprilmYNZAcp2t3AsgvcdO73uC2YYyIpitVqLh5B7tllQaVqUUFx7Wi3As\nQXUwwjXHDSDN3ja7t5nMBnk9PZQWezFMiu4DMtji3YLZZCbLnoXZkB8D0X5SwXtvJ8AJ0ax9svXr\n3pKtX3fljXjZHtyOQrHZt5krPrsCj9XDs8c/S1F6UYvK8FWG2Lq6mpwCN+4sO5Z6W7yuqlzFmW+f\nSVzH6e7uzosnvIgj6iEWjmOxmxtd0tZAoBzmPQ7fPQO5A+G0RyG9O/FYjO0bi1nw3kx6jRxN0fBR\nDRK4xBMJEhosprad3hGoiVCzPYgz3coH297ljvm3k2ZNY/op0+nu7t6mzxKd1s9upzjRsUjTpIPy\nWD14rMnhqnxXPh9M/gClFFn2lmVf81eHee2e7/BXhVGG4qxbR2PKiJNhT+7Ku7B0IXGdnDy22beZ\nYDTI+/9YSc32EF37pHPCpUN3H9Sd2XDYn2D0hWCygjPZJW8ym+nSqw/HXXYVRiNbxpoMg/bIZ+ZM\nsxKxBqiKlPH375I53msiNSwqXSQBXQjRKcgs907AZraR68wlx5GD0cKB53g0gb8qDCQzrK1dv5mH\nFz5MRSi5vHRs/tjaMfchOUOwYKNme7KbfNuaamL1ZoqHYiFK/CVs8W2hJlwvFanFDp4utcG8vsaC\neXvyRXzcN/8+vtj8BUcVHAWA0+xkWO6wfVoPIYRoL9JC74SqQlUs3r6YqlAVh3Y/lBzHrmu+LTYT\nvUfmsnZhGWk5DjIL7Mz4bAYXDL0AgHx3Pm+d9hbeiJcMWwaOqBt3pg1fZZjcQg9mS107enn5ci78\n6EKiiSjXHXQdk/tOxmFp3Vry9haOh/mh/Ac+Lv6YO8bdwUVDLyLXmUuWrf3yyQshxL4kY+idTCgW\n4qkfnuKx7x8DoF9mP5445onkUrKdBH0RwqEI633ruHXhTSRI8Ozxzzb6BwAku+mjoThWR90YeiQe\n4cYvbuTD4uQGUfmufF466aXaMuKJONuD21lQuoCeaT3p7u5eu6xuX4rGo8zbOo8rZ11Jui2d545/\njoK0grrPFvETiAUwGaYWD1uInx0ZQxf7NWmhdzLBWJDZm2bXvl9ZuZJoItrotQ63FbND0cWRwy1j\nb6FXeq8mgzmQTKO6Uyy2mqyMLxhfG9APyT8Eu6lus6jyUDmnv3U6NZFkV/ytY2/l9ANOx2S0x0h5\n0ywmCwd1Pah2rkG2ve4PHH/Uz9tr3+beb++lX2Y/Hj764d1+H4QQYn8kAb2TcZqdHNfzOJaVLwNg\neM5wrEbTk9csJgv5rnzyXflNXhPyedn04zLKitcy5Mhj8GQ3DHZH9DiC6SdPxxvx0jezL25r3az1\nJWVLaoM5wH+X/5ejC44my9HyVnAsEiFQXYWvopyMrvlopwVf1IeBQbYju8XzBmxmG7nmXZffBaIB\n7vnmHmI6xtLypSwoWcCxRce2uH5CdESp7WMjWus5qffPAu9orV9rh2f9B7hfa72srcsWdSSg72O+\niI9gLIjFZCHDltHm5dvMNib3m8yoLqOoDlczJGdIi4NnVbgKb8SL1bCSYcvAZrYBUFa8jpn/uAOA\nlV9/yZm33IUzva7u6bb0JrvRC9MablndL7NfbbktVbO9lOf+8gcS8RiH/Pq3lA2yceucW0m3pTPt\nxGm7PKO1TMpE74zerKxciUK1eNmfEC1yW/qv2WljGW6r3h/WpR8J+IA57f0grfVF7f0MIbPc96ma\ncA0vLn+Rk2eczK1f3lo7o7ytpdvSGZE3giMKjmh07Lwx1eFqHl74MCe+cSInvnEiP1b+WHvOW163\nhayvopxEouVbyHZxduGew+9hUPYgTu1zKlcfeDVGK//ZlaxbQyKeTLdq65LJY4sfQ6OpClcxc83M\nVpXVmCxHFo9NfIyph0/l1VNepbtLlrGJNpIM5rukT00d32NKKZdS6t1UHvIflFJnKaWOVkotTOUs\nf1opZUtdu14plZN6PTqVH70I+B1wtVJqkVLq8FTR45VSc1L5089o9OHJctxKqU+VUgtSzzu1qXql\njn+ulBqdev2oUmp+Kmf77XvzfRANSUDfhwKxAI8seoRALMCsTbPYWLNxnz4/Eo9QFihje3A78UR8\nl3OvrHgl+ToRYdryabVj70XDR9H7wDFkdMnn5Kuuw+5271J2U9JsaRzf63j+deS/6JPRh3PeO4cP\niz8kEG158pUeAwfjyUl2lXtcGYzuMrr23MFdD25xObuT68zlpN4n0T+rP67m0rsK0XK7S5+6N44H\ntmith2uth5Dc2/1Z4KxU5jMzcFlTN2ut1wOPAQ+kMq59kTqVDxwGnMxO27zuJAT8Qms9CjgK+Gdq\nX/jG6rWzm7TWo4FhwBFKKVk72kaky30fMikT2fZsykPlmJRpn068iifiLClbwmWfXobNZOOZ457h\ngMwDGtRtQNYAfqxItszHdB2DJZWX3JmewQmX/4l4LIrd5cZkad2WrIYyeHfduzy44EEAbptzG+O6\njWvxVrSerBzOuet+4rEYVrudP5v78ou+vyDTnkmeI69VdRFiH2uX9Kkkc53/Uyl1D/AOUAOs01qv\nTJ1/Dvg98K9Wlvtmaq/3ZUqpLru5TgF/V0qNJ5mmtTvQZed61ftDob5fKqUuIRl/8oFBwOJW1lM0\nQgL6PpTtyGbaSdOYvXE2o7qM2jWhyW5UhirxRX3YTXZyHDko1fgKmqpAhEgsgdlkkOWqmwxXE6nh\nn9/9szZ3+aPfP8rdh9+N1ZS8JsuRxaNHP8rszbPJd+UzMHtgg3Jb0ypvTKGn7vdXrjO3xRPZdnBl\n1H2v7MCB9gP3qj5C7CMbSHazN3Z8j2mtVyqlRgEnAncCn+3m8hh1vbHN5SsP13u9u2V65wC5wIFa\n66hSaj1g37leSqlPtdZ/qy1QqV7AX4CDtNaVqYl4kkO9jUiX+z5kKIPu7u78auCv6J/Vv8Ut1KpQ\nFXfPu5sT3ziRM98+k5JASaPXVfoj3PXecsb8/VOufHkh5b66n02bycbArLogPTRn6C5JSXKcOfyi\nz2kMcw7AHEgQDYdpK2O6juGuw+7i3EHn8uzxz7Z4bF+IDu5GkulS69vr9KlKqW5AQGv9IvAPYCxQ\npJTa0e32W+B/qdfrgR1/AU+uV4yXPU93mg6UpoL5UaT+aGmkXqN2ui8N8APVqR6AxjLGiT0kLfQO\nIJKI8P7694Hkuu6l25fS1bVrrlBvOMar8zcB8MWq7WyrDpHtTs4od1qc/H7k7zk4/2DsZjvDcoY1\n2kqu3LaVl2+9hnAgwGnX3Ezh0BGYzHv/zyTDnsGkPpOgz14XJUTHcVv1S9yWDm0/y30o8A+lVAKI\nkhwvTwdeVUqZgW9JjpED3A48pZS6g4bpUd8GXktNaPtjK58/DXhbKbUEmA/smEXbWL1qaa2/V0ot\nTF2/EfgK0WYkoHcAFsPCIfmHMHfrXJxmJwOyBzR6nd1skOm0UBmIYjMbZLkbrj/Psmc1u7564fsz\nCXqT68a/fPl5JvfpizNt73Z2C0aDtWvR023p2M3SwyZ+RpLBu02XqWmtPwQ+bOTUyEau/QLo18jx\nlSQnpu3wxU7nmxxn01pvJ9krsLP1jdVLa31kvddTmipX7B0J6B1Apj2TqYdPpSJUQbotvcn9x7Pd\nNt7+w2HMXVfOqMJMspwNA3qgphqtNc609CbH4AuGDGfRR+8B0K3/IMzWZtKkNiOeiPPNtm+4ctaV\nKKV4fOLjjMkfs1dlNiUcC2MxLPs88YsQQuwPJKB3ENmO7F3GncsCZYRiIZwWJ9mObEyGokeWkzOy\ndh2br9lexrsP3kMkFOLkq64ju3vBLtcAFA4ezm+mPkjY7yO3sBdW+94lWQnEAjy/7PlkKlYNLyx/\ngaG5Q3GY2y55SyweY3X1ah7//nH6Z/XnrP5ntWrCoRCicUqpocALOx0Oa63bZr2oaFMS0DuoskAZ\nN315E4fkH0KaLY0JBROa3BEukUgw9/WX2bIyOcz1yZOPMOkvN+Fw7zofxu527/WM9gblme1MKJjA\nN9u+AeDowqOxmVq3U1xzKsIVTPlgCv6on082fEKOI4cz+jW5J4YQooW01kuAET91PUTLSEDvoLb5\nt3HZiMt4cMGDuCwuxnUb1+C8L+IjFA/hNDtRKDy5deu13dk5mEz75n+9xbBwcp+TOaTbIZhUMpNZ\na5esNSehE/ij/tr32/zb2rR8IYToCCSgd1A5jhyunX0ti8oWAfCU8yluPPhGDMOgMlTJvxf+my83\nf8nkvpMZ220sang3xjqmYIpohh55DFbHvstXvru93tuCy+LimoOu4V/f/Yte6b04s9+Z7fYsIYTY\nX0lA30cqQ5VEE1HMyrxL13g4FqY6Uo1CkWnLxNyC1rPD7Giwjt1j9dROdFtXvY5XV74KwMOLHmZM\n1zFc9tUVjO46mjOHn9kgsUpn4LF6mNx3MicUnYChDFnjLoT4WZLpwPtAZaiSW768haNfPZqLP76Y\nskBZ7blYIsaC0gUc//rxnDzjZFZUrmhRmRn2DO4YdweT+07mgiEX8NtBv60N6PWXhSkUdrOdmI4x\nd+tc0qxpbfvh9hMui4tcZ64EcyHEz5YE9H1gq38r/9uc3LRpZeVK5mypy1ZYE6nhX9/9i2giWpe8\nZTeJS+onVclz5nHzITdz5agrG7T6u7u7c8NBNzC221juHnMHaTi589A7eOGEFxiUPagdPqEQYn+l\nlLpNKfWXdiq7NpPb/kgplauUmpfKQnd4I+f/o5TqNL8Upct9H/BYG84mr5+UxW6yMzh7MMsqlgEw\nLHdY7f7q9XkjXr79//buPEzOqsz7+PeXztZJyEIIIWyCiBBA1hKIIMaAisgLQZFFZgBBeFEQXsEZ\nwHFYXGZYHBURREAMosNiQIjgSBgWySCBNBISkhDZh0AgCUkgO1nu94/ndFLpVFVXd7qquiu/z3XV\nVVXPdk49qfRd5zznOffbkxj/2nhO2PUEhm8+nF7de20wfStk16yP2vbzDJuxinfvfYax03/DCd+7\niqFbepo2s2r72K0f2yAf+tRTpnaGfOg1Jal7RKyqcDGHAlML5WOX1FBvedrdQq+CQb0G8eNP/ZgR\nW4/ggv0uYPfBu69d16dHH7657ze5+pCrufbT13L8LscXDNILli/gvEfP44FXH+C0B09j4YqFG2yz\nJtbwzpJ3mDh7IqtWreLVCU/w+uS/ZeVsVp9d7WadWQrmG+RDT8vbrUg+9A3ynuftspekJyW9KOmM\nEscdJunxlCP9+eZWbSs5zL+Zlxd917T9/qm8Z1N+9V3S8lMljZP0CPBwibzqO0iaIemmVOZ4SUVH\n8ko6Q9KkdD7ultRH0t7AVcDR6fM0Slos6T8kPQeMaJGn/fBUj+ckPVzqc3RWbqFXQb+e/Ri1/ShG\nbD2C3t17bxCwB/UexOE7Hl7yGMtXL1/7euWaldlELS28u+xdjrv/OOYvn8/ug3fnxkt+zvw3/pdB\nW29DYzsHwi1btYxudKNX9469d9xsE1EqH/rGtNKb845/AUDSAODKEtvvCRwI9AWelfRARLxVYLuv\nAA9GxA8lNeTV/V8iYn5a9rCkPSOiOeXpvIjYV9I3yDKpfY1srvZPRsQqSYelz9ucGGZfYM90vO5k\nedXfTz9GJkoal7bbGTgxIs6QdFfa/7dFPt89EXFTOhc/AE6PiGslXQLkIuKctK4v8FREXJDek56H\nkP3wOiQiXpXUfA2z1CwchTUAACAASURBVOfodBzQK2jh8oW8ufhNejT0YGifoW2+dWvpyqUsWbmE\nINisx2b84rBf8ONnfsyJu55YcHDb4pWLmb98PgDT3p3G3G7vsdNeLZMdFbd8yWKWLFzAyuXLGbDl\nUN7rtpSrJ11Nr4ZefGu/bzGkzxCWrlzKrMWzmDZvGgdufSBb9dmq6DSyZladfOgRMaGV/4f3RcQy\nYJmkR4H9gXsLbDcJuEVSD7Lc6JPT8lI5zO9Jz88AX0yvBwC3StoZCKBHXhkPRcT89LpYXnXI8rs3\nl/8MsEOJz7dHCuQDgX4UnuceYDVwd4HlBwKPR8SrAHn1K/U5Oh0H9ApZsWoFd8y8g+smXwfA5Z+4\nnNEfGV32pCrvr3ifsX8fyx0z72DE1iM4aOuDeHnhy/zysF/Sv2f/gi3m/j37s9vmuzF9/nQ+uc0n\n17tWX47/ff45/vjjfwfg40d/ibf3bGT86+PXrr9kxCXMWTqHL//xy6yJNQxpHMKdR97JkD5D2lSO\n2SakKvnQUxdxqbzn0cr75uM+noLrF4Axkn5MlrSlVA7z5jzLq1kXU74PPBoRx0jagfWzvC3Je10w\nr3qL4zYfu9TkGWOA0Smb26nAyCLbLY8o0L1ZXKnP0en4GnqFLFu9jP9583/Wvv/LrL/wweoPyt5/\n0cpF/ORvP2H2ktnc8+I9NHZv5Lbp2ZTKxbq/BzcO5vrDrmf8l8Zz/n7n8+ycZ3lr8VusWNV6XvM1\nq1fz0qSJa9+/NvlvDOmxbuT88tXLCYLX3n+NNbEGgLnL5rJyzcqyP5PZJqha+dD3pXjec8iuI/eW\nNJgs2E0qctwPAe+k7uub03Hbk8N8APBmen1qK9ttkFe9HTYDZqeehZPasf9E4BBJOwLkdbmX+zk6\nhYoGdEkDJY2V9EIa4DBC0uaSHkqDMx6SVJdZNPp178dpe5xGN3WjR7cenLzbyW1KG9pd3enZbd1o\n9/49+7PNZtvQoIaS+2VJWhp4/4P3efKtJ7nhuRtYsGJBq+V1a2hgvyOOonvPXiDx8aO/xO7D9mTf\nLfdlxLAR/PPH/5nG7o3sscUefHjAhwEYvdNo+nTfMBGMmWXSaPYzgNfJWsWvA2d0wCj3jwFPS5oM\nXAr8gCzv+TWSmshatPmmAI+SBa7vF7l+Dlmwb85ZfjxwTUQ8BzTnMP9PysthfhXw7+k4pXqCfwfk\nlOVVP5l1edXb6l+Bp1Ld2nyMiJgLnAnckwbM3ZlWlfs5OgVFFOx56ZiDS7cCEyLiZkk9yQZYfAeY\nHxFXSLoIGBQRF5Y6Ti6Xi6amporVs1KWrlzKog8WIYkBPQe0aWDZilUrmLlgJmP/PpZR24+iX49+\nfKj/h8rq3p6zZA43P38z414ex6UjLmXbftuyZZ8tGdJnSMku/9UrV7Js0ftErKFXn370bGxk4YqF\ndKMb/Xutu2b/7rJ3WbVmFb0aejGwd33NOmdWggeLWKdWsYCeRl1OBj4ceYVImgmMjIjZkoYBj0VE\nyVsBumpA7whrYk3RILxk5RLeXvI2by95m+GbD187ucx7K97jqklXsd/Q/Xjkfx/hL7P+wqBeg7jz\n/9zJsL7Dqll9s3rigG6dWiW7EHYE5gK/lrQX2SjF84ChETE7bfM260Y0WgGlWtR/X/B3Tv6vkwE4\neJuD+cFBP2Bw42AG9BrAN/f5JvOWzePSv14KwIIVC5gyZwrDdnRAN9vUqYvmOZd0HXBQi8XXRMSv\na1GfzqaSAb072YCKb0bEU5KuAS7K3yAiQlLBLoJ0i8SZANtvv7F3eNSnyXMmr309Ze4U3l3+Lr27\n96Zvj75s1XcrutGNPbfYkynzptC7oTe7bdFxMxzOWzaPiKBvj77rJYkxs86vq+Y5j4iza12HzqyS\ng+JmAbMi4qn0fixZgH8ndbWTnucU2jkiboyIXETkhgzxbVGFfHaHzzKkMTs3p+5+Knf//e718oJv\n2XdLfjbqZ9z+hdu5/5j7GdqnYzpD3lr8Fic9cBKfGfsZxr8+nmUrl3XIcc3MrP0qFtAj4m3gjbyp\n8g4FpgPjgFPSslOA+ypVh3q3dd+t+e0Rv2XM4WNYvno5418bv0EX/eDGweyxxR4M7Tu04Bzx7THu\npXG8teQtVsdqrnz6ShavXNwhxzUzs/ar9DD8bwK/SyPcXwG+SvYj4i5Jp5PdwnFchetQtyQxoNcA\n3l7yNr0aenHbEbcxuHde+tCVy2DVCujVH7p13G+34YOHr32908CdCs49b2Zm1VXR29Y6yqY8yr3d\nlsyDx6+Gd56HUf8KW+8DHTQf+3sr3mPm/Jm8segNPrXtp9iiz8ZnT1y9ZjVvLXmLp2Y/RW5ojm36\nbUOPhk49y6JtejzK3Tq1sgJ6mrj+DLK5dNc2xyLitIrVLI8Dejs8+zu47xvZ6x6NcO5k2Gyr2tap\nhDlL5zD63tEsWrmIxu6N3H/M/WzZZ8taV8ssnwN6FUkaCHwlIq5vx76vkSVlmdcB9fge2Tzv/72x\nx6q0cvtK7yObz/e/2XAGImthwfJsZrZBvWs4CV7+NLNrVkMn74lZsXoFi1YuArIMb0tXtpwt06xr\nmrHr8A3yoQ9/YUbN8qGrOnnIO8JA4BvABgG9mp8hIi6pRjkdodwLq30i4sKIuCsi7m5+VLRmXdSs\nRbM4++GzOfvhs5m1aFbtKjL8SNjrBNhqTzjxDmjs3DPs9uvRjxN3OZHG7o0ctdNRbc5MZ9YZpWC+\nQT70tHyjSPoHSU+nXN+/lNQgaXHe+mNTIhUkjZF0g6SngKvSFNz3SpoiaaKkPdN2l0m6TQVyp0v6\nJ2U5x6dow5zoLet2ctruOUm3pWVDlOUqn5QeB+WVeYuy3OSvSDo3HeYKYKf0+a6WNFLShJRedXra\n915JzyjLmX5mG87dBvul8zdGWR74qZK+lXfujk2vL0l1f17SjVLnSjVZbgv9fklHRMSfKlqbLm7x\nB4v5t6f+janzpgJwxdNXcOUhV9K3R9/qV6bvEDjiR9mguN4DoJNfjx7UexDn7HMOZ+x5Br0aeq03\n1axZF1aRfOiShpPNtX5QSmxyPa0nJdkW+ERErJZ0LfBsRIyWNAr4DevuS98gdzqwB1l+8v3JfpiM\nk3RIRDxeoG67A99NZc3LS3RyDfCTiPgfSduTpThtHmG7K/BpsiQrMyX9gmzekj0iYu903JFktz7v\n0ZzmFDgt5VVvBCZJujsi3i3jFG6wH9kl5W0iYo9UXqF5rX8eEd9L628DjgT+WEZ5VVFuQD8P+I6k\nFcBKsn/QiAj/1c3T0K1hvZbloF6DWk2mUlG9NsseXYSDuNWhSuVDP5Qss9qk1EhspMicHnl+n5c6\n9GBSRraIeETSYEnN/wEL5U4/GPgsWZIWyHKO7wxsENCBUamseen4zbnFDwN2y2vU9pfUL71+ICJW\nACskzaH4DKJP5wVzgHMlHZNeb5fqVE5AL7TfTODD6cfOA8D4Avt9WtI/k/0o2xyYRlcL6BHRdaJC\nDTV2b+TbuW+zee/sB+lpe5zWpgxrZlZ3KpIPnaxRdWtEXLzeQumCvLct//gsoTyFcqcL+PeI+GWb\narm+bsCBEbE8f2EK8C1znxeLTWs/Q2qxHwaMiIilkh5jw8+8gWL7pVzvewGfA84iu6X6tLz9epNd\nz89FxBuSLiunvGoq++ZkSYMk7S/pkOZHJSvWVQ1uHMwFuQu4IHcBgxsHt76DmdWziuRDBx4GjpW0\nJWT5u5VymUsaLqkbcEyJ/SeQuuhTgJsXEe+ndYVypz8InNbcopa0TXPZBTwCfDntn59bfDzZ3CSk\n5a1NPbuIrAu+mAHAghSUdyW7TFCOgvtJ2gLolsaHfZesez9fc/Cel87DsWWWVzVltdAlfY2s231b\nsgxqBwJPknWtWAulEqqY2aZj+Asz/nPGrsOhg0e5R8R0Sd8FxqfgvRI4m+y68/1kibGayLrGC7kM\nuEXSFLIfGKfkrWvOnb4F63Knv5Wu2z+ZWtSLgX+gQDd/REyT9EPgL5JWk3XTnwqcC1yXyuxO1l1/\nVonP+K6kJyQ9D/wXWTd4vj8DZ0maQdZdPrHYscrcbxuyZGLNf8DX6/2IiIWSbgKeJ0ssNqnM8qqm\n3PvQpwIfByZGxN7pV82/RcQXK11B8H3oZtYpdKoRzZWQupEXR8SPal0Xa7tym5LLm697SOoVES8A\nJXOYm5mZWfWUO8p9VhrCfy/wkKQFZPOwm5lZnYiIy8rdNl0jf7jAqkPLvHWsojp7/SqhzXO5S/oU\n2aCCP0fEB61t3xHc5W5mnUDdd7lb11Z2mixJ+5LdixjAE9UK5mZmZta6sq6hS7oEuBUYTDby8ddp\nhKWZmZl1AuW20E8C9sobGHcF2e1rP6hUxczMzKx85Y5yf4v1Z8TpBbzZ8dUxM7OOIOkoSRcVWbe4\nyPL8RCSPScpVso7FSNpb0hFVKOc7ea93SPe8b+wxh0h6StKzkj5ZYP3Nknbb2HIKKTegvwdMS//Y\nvya7sX6hpJ9J+lklKmZmZu0XEeMi4opa16Od9gYqFtCV6cbGz9hXyKHA1IjYJyImtCi3ISK+FhHT\nK1Bu2V3uf0iPZo91fFXMzOrPdWc9skE+9LNvGLVRM8VJ2oFsxrOJwCfIZi37NXA5sCXZZdLdyOYd\nP0fSjmTZ3foB9+UdR8C1wGeAN4CCg50lfTYduxfwMvDViCjWyt8P+HEqax5wakTMVpaK9UygJ/AS\n8I9p+tUvA5eSzeH+Htk8698DGiUdTDaH/J0FyrmM7Jx+OD3/NCJ+ltadz7p52G+OiJ+mc/Yg8BRZ\nYpunUxmTyZKs/AvQkGaD+wRZL/TRKVFNoc+5wecBPgpclY6bA0aQzdr3y/S5zpb0A+DbEdEk6XCy\n70YD2fS7h0ranywzXW9gWTrXMwvVYYM6teO2tUHAdhExpU07bgTftmZmnUCbb1tLwfwm1k+huhQ4\nY2OCegpOLwH7kAWjScBzwOnAUcBXyeYNaQ7o44CxEfEbSWcDV0ZEP0lfBL4OHE6W4Ww68LWIGJuS\nlnwbeA24B/h8RCyRdCHQqzmNaIt69QD+QhYI50o6HvhcRJwmaXDz/d8pqL0TEdemmUgPj4g3JQ1M\nU6ye2lz3EufgMrIMcGvTrgJbkaV/HUM2RbnIAvg/AAuAV8jSuk5Mx1gcEc3z0zef01xETJZ0FzAu\nIn5bpPxin2e9uksK4PiIuCu9bz6vrwN/Aw6JiFclbZ5SuvYHlkbEKkmHAV+PiC8VOw/5yp3L/TGy\nL0l34BlgjqQnIuL8cvY3M9tEVSQfevJqREwFkDQNeDgiIgXIHVpsexApXSpwG3Blen0IcHtKq/qW\npEcKlHMgWWv/iTSPe0+yXB6F7EKWO/2htG0DMDut2yMFvoFkrfcH0/IngDEpgN5TxufOVyjt6sHA\nHyJiCYCke4BPAuOA15uDeRGvRsTk9PoZNjyP+Yp9npZWA3cXWH4g8HhzOti8NLMDgFsl7Ux2m3iP\nEnVYT7ld7gMi4v2UpOU3EXFpmmDfzMyKq1Q+dFg/5eiavPdrKPy3vW3dsesIeCgiTixz22kRMaLA\nujHA6Ih4LrViRwJExFmSDgC+ADyTuuzLVW7a1WatpZBtebzGEtuOocDnKWB5Xh76cnwfeDQijkm9\nBo+Vu2O5g+K6SxpGlh/2/jZUzMxsU1Ys7/nG5kNvqyeAE9Lrk/KWPw4cL6kh/Y3/dIF9JwIHSfoI\ngKS+kj5apJyZwBBJI9K2PSTtntZtBsxO3fJr6yBpp4h4KiIuIbvevB2tp04tZQIwWlIfSX3J0shO\nKLLtylSf9ij4edpgInBIGt+Qn2Z2AOvuIju1LQcsN6B/j6w74eWImCTpw8CLbSnIzGwTVKl86G11\nHtmArKlkaUKb/YHsb/l04DcU6EqPiLlkgeX21DP7JLBroULSDKLHAldKeo5svpJPpNX/SnY9+wng\nhbzdrpY0Nd0y9leysQCPArtJmpyuw5ctIv5G1np+OpV3c0Q8W2TzG4Epkn7XljKSYp+n3HrOJRtU\nd086V80D/64C/l3Ss7RhNldox6C4WvCgODPrBNo1l3slRrmbFVJuPvSPAr8AhkbEHpL2BI6KiKrM\nFOeAbmadgJOzWKdWbpf7TcDFwEqAdMvaCSX3MDOzuiXpD6lLPP/xuQqU89UC5VzX0eWUKP+6AuV/\ntVrlt0W5/fN9IuLpdBtCs1UVqI+ZmXUBEXFMlcr5NdmkOTUREWfXquy2KreFPk/STqTbHpTN9Tu7\n9C5mZmZWLeW20M8mGw24q6Q3gVdp3zB9MzMzq4CSAV3SeRFxDTAsIg5L9/R1i4hF1ale1xYRLFix\ngO7qTv9e/WtdHTMzq2Otdbk3X/i/FiAiljiYl2dNrOHlhS/zjf/+BhdPuJh5y+bVukpmZlbHWgvo\nMyS9COwiaUreY6qnfi1twfIFXDjhQqa9O43H33yc22fcXusqlW31mtXMXz6fxR8UTKZkZnVA0mh1\nYF5uSTnVMJ228vK/q0VOckl/kjSwVnWrlpJd7hFxoqStyGaJO6o6VaoPDd0a6N9zXTf75o2bl9i6\n81i1ZhUvzH+B7z/5fbbbbDsuPuBiBjcOrnW1zKzjjSabyrtDcnNHRBNQswlDImIcWQIWWJeT/Gvp\nfbGpX+uKZ4qroDlL53Dz1JsZ1ncYoz8ymkG9B9W6Sq2au3QuX/nTV3h7ydsAfPeA73L8rm2aedGs\nXrVrYpn/OP7IDWaKu+DO+zd6pjhJ/wCcS5b97CngG8DPgY+TJRUZGxGXpm2vIGuUrQLGk2U1u58s\n//h7wJci4uUCZZSVwzwiDpE0kizP95FtyemdEpscQzaH+TbAbyPi8rTuXrK53XsD10TEjWl5oTzi\npwI54GaywN5INif6CGAGWUrTeZJOJktfGsCUiPjHcs95Z9faoLi7IuK4NP9vfuQXEBGxZ0Vr18Vt\n2WdLLt7/Ylrcv9+pdVM3BvQcsDagD+xd971UZhWTgnl+PvQPATf9x/FHsjFBXdJw4HjgoIhYKel6\nsjuP/iXl1G4AHk6zer5JFjB3TelVm3OOjwPuj4ixJYq6JyJuSmX+gCzf+rXAJWR5zt8s0pX9AvDJ\nvJze/8a69K2F7E+WdnUpMEnSA6nFf1r6PI1p+d1kl4pvIi+PeP6BUi7zS1g/J3nzedsd+C5ZTvR5\nLfft6lq7be289Hxkew4u6TWyrDmrgVURkUsn8E6yPLOvAcdFxIL2HL8r6ErBHGBw42CuHXUtY6aN\n4cMDP8wBWx1Q6yqZdWWVyod+KLAfWZCDrDU6BzhO0plkf9uHkeUxnw4sB34l6X7aljGzvTnM25rT\n+6GIeBfW5i8/mKz7/lxJzRPYbAfsDAyhcB7xcowCfh8R89qxb6fX2jX02en59Y0o49PNJy+5CHg4\nIq5IAxguAi7ciONbBxvWbxgXH3BxrathVg8qlQ9dwK0RsfY/akrD+RDw8YhYIGkM0Du1kvcn+xFw\nLHAOWWArxxjal8O8rTm9W177jdSFfxgwInXzP0bW9W5FlBzlLmmRpPcLPBZJer+dZR4N3Jpe30o2\nMMPMrB5VKh/6w8CxkraEtbm0tweWAO9JGgp8Pq3rBwyIiD8B3wL2SscoJ+d4W3KY52trTu/PSNo8\nda2PJusBGAAsSMF8V+DAtG2xPOLleAT4sqTB7di302uthd7eBPNrDwGMlxTAL9OAhqHNLX/gbWBo\naweZSfpZaGZWI4+1b7fvsP41dOiAfOgRMV3Sd8n+vnYjS5x1NvAs2fXrN8iCImRB+T5Jvcla9uen\n5XcAN0k6Fzi20KA41uX8npuem2PC1ak7XWQ/Lp4DPpW331VkXe7fBR4o4yM9DdwNbEs2KK4pjd06\nS9IMsjAwMX32uemywj3ps88BPlNGGUTENEk/BP4iaTXZ+Tq1nH27goqOcpe0TRo0sSVZV9A3gXER\nMTBvmwURscHw7/QPdiZArz333O/A556rWD3NzFrzWCcb5V4vmkenNw9gs/ar2m1rki4DFgNnACMj\nYrakYcBjEbFLqX276m1rZlZXutYI1y7CAb3jlJttrc0k9ZW0WfNr4LPA82T3B56SNjsFuK9SdTAz\ns9apCjm/JX2uQBl/iIgxDuYdo9xsa+0xFPhDuqWiO/CfEfFnSZOAuySdDrwOHFfBOpiZWSuqkfM7\nIh5k3W1vVgEVC+gR8QrrRlPmL3+X7PYJMzMz6yAV63I3MzOz6nFANzMzqwMO6GZmth5JO0h6voxt\nvpL3vqbpU80B3czM2mcHYG1Aj4imiDi3dtUxB3Qzsy4mtY5fkPQ7STMkjZXUR9Khkp6VNFXSLZJ6\npe1fk3RVWv60pI+k5WMkHZt33MVFypog6W/p8Ym06grgk+n2s29JGpmSv5Cmcb1X0hRJE5VlfUPS\nZalej0l6Jc1SZx3EAd3MrGvaBbg+IoYD75NN6ToGOD4iPkZ2F9PX87Z/Ly3/OfDTNpQzB/hMROxL\nlrK1uVv9ImBCROwdET9psc/lwLMpxfZ3gN/krdsV+BxZytRL0zzx1gEc0M3MuqY3IqJ5vvbfkt0O\n/GpE/D0tuxU4JG/72/OeR7ShnB5kc75PBX5PlpK1NQcDtwFExCPAYEn907oHImJFysI5hzLyeVh5\nKjmxjJmZVU7LebsXAoPL3L759SpSwy4lOulZYL9vAe+QzSvSjSy3+sZYkfd6NY5DHcYtdDOzrml7\nSc0t7a8ATcAOzdfHgX8E/pK3/fF5z0+m168BzbnMjyJrjbc0AJgdEWvSMRvS8lLpVyeQ0q2mvObz\nIqK9KbetTP5lZGbWNc0EzpZ0CzAdOJcsxejvJXUHJgE35G0/SNIUshbyiWnZTWSpVZ8D/kyWT72l\n64G7JZ3cYpspwOq07xiyVKTNLgNuSeUtZV3+DqugqmVb2xjOtmZmnUCnybYmaQfg/ojYo8ztXyPL\naDavgtWyGnOXu5mZWR1wl7uZWRcTEa8BZbXO0/Y7VKwy1mm4hW5mZlYHHNDNzMzqgAO6mZlZHXBA\nNzMzqwMO6GZmXZCkwyXNlPSSpItqXR+rPQd0M7MuRlIDcB3webK51U+UVM4c61bHHNDNzLqe/YGX\nIuKViPgAuAM4usZ1shrzfehmZhWWy+W6A1sA85qamlZ1wCG3Ad7Iez8LOKADjmtdmFvoZmYVlMvl\nPgHMBV4F5qb3Zh3OAd3MrEJSy/wBYCDQOz0/kMvlGkru2Lo3ge3y3m+bltkmzAHdzKxytiAL5Pl6\nA0M28riTgJ0l7SipJ3ACMG4jj2ldnK+hm5lVzjxgOesH9eVkXfDtFhGrJJ0DPEiWn/yWiJi2Mce0\nrs8tdDOzCkkD4L4ALCQL5AuBLzQ1Na3e2GNHxJ8i4qMRsVNE/HBjj2ddnwO6mVkFNTU1/ZWs631H\nYIv03qzDucvdzKzCUov87VrXw+qbW+hmZmZ1wAHdzMysDjigm5mZ1QEHdDMzszrggG5m1gVJek3S\nVEmTJTWlZZtLekjSi+l5UFouST9LqVanSNo37zinpO1flHRK3vL90vFfSvuqWmVY+zigm5l1XZ+O\niL0jIpfeXwQ8HBE7Aw+n95ClWd05Pc4EfgFZcAYuJUvssj9waXOATtuckbff4VUsw9qh4gFdUoOk\nZyXdn97vKOmp9IvszjRtoZlZ3crlcsrlcr1zuVylW6BHA7em17cCo/OW/yYyE4GBkoYBnwMeioj5\nEbEAeAg4PK3rHxETIyKA37Q4VqXLsHaoRgv9PGBG3vsrgZ9ExEeABcDpVaiDmVnVpUD+deAdYAnw\nTi6X+3oHBfYAxkt6RtKZadnQiJidXr8NDE2vC6Vb3aaV5bMKLK9WGdYOFQ3okrYlm/bw5vRewChg\nbNok/9edmVm9OQv4EVkylm7p+Udp+cY6OCL2JevqPlvSIfkrU6s3OqCcoqpRhpWv0i30nwL/DKxJ\n7wcDCyNiVXrvX2RmVpdSK/xyoE+LVX2Ayze2lR4Rb6bnOcAfyK5Pv5O6sknPc9LmxdKtllq+bYHl\nVKkMa4eKBXRJRwJzIuKZdu5/pqQmSU1z525UYiIzs1roRdaIKWRwWt8ukvpK2qz5NfBZ4HmyFKrN\no8hPAe5Lr8cBJ6eR6AcC76Vu8weBz0oalAaqfRZ4MK17X9KBqWf15BbHqnQZ1g6VnMv9IOAoSUeQ\npQ7sD1xDNlCie2qlF/1FFhE3AjcC5HI5d+mYWVezAniXwrnP303r22so8Id0l1d34D8j4s+SJgF3\nSTodeB04Lm3/J+AI4CVgKfBVgIiYL+n7ZPnVAb4XEfPT628AY4BG4L/SA+CKKpRh7aDsEkiFC5FG\nAt+OiCMl/R64OyLukHQDMCUiri+1fy6Xi6amporX08yshDZ3kacBcT9i/W73pcC3m5qaftFRFTOD\n2tyHfiFwvqSXyLqdflWDOpiZVcMNwLeBuWRjieam9zfUslJWn6rSQt9YbqGbWSfQ7kFsaQBcL2BF\nU1NT5/+ja12S86GbmVVYCuLLa10Pq2+e+tXMzKwOOKCbmZnVAQd0MzOzOuCAbmbWBUm6RdIcSc/n\nLauL9KnFyrDSHNDNzLqmMWyYbrRe0qcWK8NKcEA3M6ugXC53QC6X+10ul5uUng/oiONGxOPA/BaL\n6yV9arEyrAQHdDOzCsnlcpcBjwAnALn0/EhaXgn1kj61WBlWggO6mVkFpJb4P5FN+9r8t7Zbev9P\nHdVSL6Ze0qc6RWv5HNDNzCrjXLLEVIX0Tus7Wr2kTy1WhpXggG5mVhkfpfjf2G5kg8A6Wr2kTy1W\nhpXgqV/NzCrj78C+FA7qa4AXN+bgkm4HRgJbSJpFNpK8GqlNa1mGleDkLGZm5WlTcpZ0jfwR1k+d\n2mwpMKqpqempjqiYGbjL3cysIlKwvposeK9Ji9ek91c7mFtHc0A3M6uQpqamy4BRwB1kXc53kLXM\nL6thtaxO+Rq6mVkFpZb4SbWuh9U/t9DNzMzqgAO6mZlZHXBANzMzqwMO6GZmXVCR9KmXSXpT0uT0\nOCJv3cUpTelM0+hn/QAACfJJREFUSZ/LW354WvaSpIvylu8o6am0/E5JPdPyXun9S2n9DtUsw4pz\nQDczq7BcLrdjLpc7KJfL7diBhx3DhulTAX4SEXunx58AJO1Glhhm97TP9ZIaJDUA15GlPt0NODFt\nC3BlOtZHgAXA6Wn56cCCtPwnabuqlGGlOaCbmVVILvMMMA14AJiWy+WeyeVyuY09dpH0qcUcDdwR\nESsi4lWy2dz2T4+XIuKViPiA7La6o9NUrKOAsWn/lmlSm1ObjgUOTdtXowwrwQHdzKwCUtB+jGz6\n10ZgQHreF3isI4J6EedImpK65AelZW1NbToYWBgRq1osX+9Yaf17aftqlGElOKCbmVXGL4G+Rdb1\nBW6oQJm/AHYC9gZmA/9RgTKsk3JANzPrYOla+fBWNtutg6+pExHvRMTqiFgD3ETW3Q1tT236LjBQ\nUvcWy9c7Vlo/IG1fjTKsBAd0M7OOtzXwQSvbfJC26zDNOcSTY4DmEfDjgBPS6PEdyVK3Pk02He3O\nabR5T7JBbeMiy9r1KHBs2r9lmtTm1KbHAo+k7atRhpXgqV/NzDreW0DPVrbpmbZrlyLpU0dK2hsI\n4DXg/wJExDRJdwHTgVXA2RGxOh3nHLKc5Q3ALRExLRVxIXCHpB8AzwK/Sst/Bdwm6SWyQXknVKsM\nK83pU83MytPW9KnPkA2AK+aZpqamSg2Ms02Qu9zNzCrj/wJLiqxbApxVxbrYJsAB3cysApqybsWR\nwDPAMrJbr5al9yOb3O1oHczX0M3MKiQF7Vwazb418FZTU9OrNa6W1SkHdDOzCktB3IHcKspd7mZm\nZnXAAd3MzKwOOKCbmZnVgYoFdEm9JT0t6TlJ0yRdnpYXzH9rZmZm7VfJFvoKYFRE7EWWKOBwSQdS\nPP+tmZmZtVPFAnpkFqe3PdIjKJ7/1szMzNqpotfQJTVImgzMAR4CXqZ4/lszMzNrp4oG9JTGb2+y\ntHj7A7uWu6+kMyU1SWqaO3duxepoZmZWD6oyyj0iFpKlyRtB8fy3Lfe5MSJyEZEbMmRINappZmbW\nZVVylPsQSQPT60bgM8AMiue/NTMzs3aq5NSvw4BbJTWQ/XC4KyLulzSdwvlvzczMrJ0qFtAjYgqw\nT4Hlr5BdTzczM7MO4pnizMzM6oADupmZWR1wQDczM6sDDuhmZmZ1wAHdzMysDjigm5mZ1QEHdDMz\nszrggG5mZlYHHNDNzMzqgAO6mZlZHXBANzMzqwMO6GZmZnXAAd3MzKwOOKCbmZnVAQd0MzOzOuCA\nbmZmVgcc0M3MzOqAA7qZmVkdcEA3MzOrAw7oZmZmdcAB3czMrA44oJuZmdUBB3QzM7M64IBuZmZW\nBxzQzczM6oADupmZWR1wQDczM6sDDuhmZmZ1wAHdzMysDjigm5mZ1QEHdDMzszrggG5mZlYHHNDN\nzMzqgAO6mZlZHahYQJe0naRHJU2XNE3SeWn55pIekvRieh5UqTqYmZltKirZQl8FXBARuwEHAmdL\n2g24CHg4InYGHk7vzczMbCNULKBHxOyI+Ft6vQiYAWwDHA3cmja7FRhdqTqYmZltKqpyDV3SDsA+\nwFPA0IiYnVa9DQytRh3MzMzqWfdKFyCpH3A38P8i4n1Ja9dFREiKIvudCZyZ3i6WNLOVogYA77Wx\neuXsU2qbYutaLi+0Xf6yluu3AOa1Uq+26sznp9CyUu8rcX6K1asj9qmX71Cxemzs9l3lO/TniDi8\njfuYVU9EVOwB9AAeBM7PWzYTGJZeDwNmdlBZN1Zin1LbFFvXcnmh7fKXFdi+qQL/Fp32/JRzzlqc\nrw4/P539HHWG71B7ztGm9h3yw49aPio5yl3Ar4AZEfHjvFXjgFPS61OA+zqoyD9WaJ9S2xRb13J5\noe3+2Mr6jtaZz0+hZeWcw47Wmc9RZ/gOtaecTe07ZFYziijY473xB5YOBiYAU4E1afF3yK6j3wVs\nD7wOHBcR8ytSiS5KUlNE5Gpdj87K56d1Pkel+fxYParYNfSI+B9ARVYfWqly68SNta5AJ+fz0zqf\no9J8fqzuVKyFbmZmZtXjqV/NzMzqgAO6mZlZHXBANzMzqwMO6J2cpOGSbpA0VtLXa12fzkpSX0lN\nko6sdV06G0kjJU1I36ORta5PZySpm6QfSrpW0imt72HW+Tig14CkWyTNkfR8i+WHS5op6SVJFwFE\nxIyIOAs4DjioFvWthbaco+RCstshNwltPD8BLAZ6A7OqXddaaeM5OhrYFljJJnSOrL44oNfGGGC9\nKSQlNQDXAZ8HdgNOTNnpkHQU8ADwp+pWs6bGUOY5kvQZYDowp9qVrKExlP8dmhARnyf70XN5letZ\nS2Mo/xztAvw1Is4H3BNmXZIDeg1ExONAy8l09gdeiohXIuID4A6yVgMRMS79QT6pujWtnTaeo5Fk\nKXq/Apwhqe6/1205PxHRPLHTAqBXFatZU238Ds0iOz8Aq6tXS7OOU/HkLFa2bYA38t7PAg5I1zy/\nSPaHeFNqoRdS8BxFxDkAkk4F5uUFsE1Nse/QF4HPAQOBn9eiYp1IwXMEXANcK+mTwOO1qJjZxnJA\n7+Qi4jHgsRpXo0uIiDG1rkNnFBH3APfUuh6dWUQsBU6vdT3MNkbdd012IW8C2+W93zYts3V8jkrz\n+Wmdz5HVLQf0zmMSsLOkHSX1BE4gy0xn6/gclebz0zqfI6tbDug1IOl24ElgF0mzJJ0eEauAc8jy\nx88A7oqIabWsZy35HJXm89M6nyPb1Dg5i5mZWR1wC93MzKwOOKCbmZnVAQd0MzOzOuCAbmZmVgcc\n0M3MzOqAA7qZmVkdcEC3Tk/SX2tdBzOzzs73oZuZmdUBt9Ct05O0OD2PlPSYpLGSXpD0O0lK6z4u\n6a+SnpP0tKTNJPWW9GtJUyU9K+nTadtTJd0r6SFJr0k6R9L5aZuJkjZP2+0k6c+SnpE0QdKutTsL\nZmalOduadTX7ALsDbwFPAAdJehq4Ezg+IiZJ6g8sA84DIiI+loLxeEkfTcfZIx2rN/AScGFE7CPp\nJ8DJwE+BG4GzIuJFSQcA1wOjqvZJzczawAHdupqnI2IWgKTJwA7Ae8DsiJgEEBHvp/UHA9emZS9I\neh1oDuiPRsQiYJGk94A/puVTgT0l9QM+Afw+dQJAlpPezKxTckC3rmZF3uvVtP87nH+cNXnv16Rj\ndgMWRsTe7Ty+mVlV+Rq61YOZwDBJHwdI18+7AxOAk9KyjwLbp21blVr5r0r6ctpfkvaqROXNzDqC\nA7p1eRHxAXA8cK2k54CHyK6NXw90kzSV7Br7qRGxoviRNnAScHo65jTg6I6tuZlZx/Fta2ZmZnXA\nLXQzM7M64IBuZmZWBxzQzczM6oADupmZWR1wQDczM6sDDuhmZmZ1wAHdzMysDjigm5mZ1YH/D8Yr\nxdZO1eYhAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3943,17 +3949,17 @@ "metadata": { "id": "DPpz37L4tuWU", "colab_type": "code", + "outputId": "2457b70b-4ebf-44ea-ce2c-98b0ce11e5ac", "colab": { "base_uri": "https://localhost:8080/", "height": 166 - }, - "outputId": "d17d8ac5-2e8d-451d-e0b4-b49e78c43d58" + } }, "cell_type": "code", "source": [ "df1[(df1.year==1918) & (df1.lifespan >= 50)]" ], - "execution_count": 99, + "execution_count": 48, "outputs": [ { "output_type": "execute_result", @@ -4037,7 +4043,7 @@ "metadata": { "tags": [] }, - "execution_count": 99 + "execution_count": 48 } ] }, @@ -4055,17 +4061,17 @@ "metadata": { "id": "FWJuO2s6uPA4", "colab_type": "code", + "outputId": "3b6e590c-ad33-462e-ae09-4fceb44a9290", "colab": { "base_uri": "https://localhost:8080/", "height": 47 - }, - "outputId": "0dcfa55e-234d-44a9-d308-4adcc9e66471" + } }, "cell_type": "code", "source": [ "df1[(df1.year==2018) & (df1.lifespan < 50)]" ], - "execution_count": 102, + "execution_count": 49, "outputs": [ { "output_type": "execute_result", @@ -4111,7 +4117,7 @@ "metadata": { "tags": [] }, - "execution_count": 102 + "execution_count": 49 } ] }, @@ -4119,6 +4125,7 @@ "metadata": { "id": "qplqX7D9uwFq", "colab_type": "code", + "outputId": "e9561038-1f4d-4e5d-9b02-bbda65c13a2b", "colab": { "resources": { "http://localhost:8080/nbextensions/google.colab/tabbar.css": { @@ -4152,22 +4159,22 @@ }, "base_uri": "https://localhost:8080/", "height": 414 - }, - "outputId": "e2fb601b-1707-4be9-dc84-67cabbf88914" + } }, "cell_type": "code", "source": [ "from google.colab import widgets\n", "tb = widgets.TabBar([str(year) for year in years])\n", "for tab, year in zip(tb, years):\n", - " sns.relplot(x='income', y='lifespan', hue='region', size='population', \n", + " sns.relplot(x='income', y='lifespan', hue='region', size='population',\n", + " sizes=(10, 200), \n", " data=df1[df1.year==year])\n", "\n", " plt.xscale('log')\n", " plt.xlim(150, 1500000)\n", " plt.ylim(20, 90)" ], - "execution_count": 103, + "execution_count": 51, "outputs": [ { "output_type": "display_data", @@ -4221,8 +4228,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b2ae1c8-e908-11e8-b3f9-0242ac1c0002\"] = colab_lib.createTabBar({\"location\": \"top\", \"elementId\": \"id1\", \"tabNames\": [\"1918\", \"1938\", \"1958\", \"1978\", \"1998\", \"2018\"], \"initialSelection\": 0, \"contentBorder\": [\"0px\"], \"contentHeight\": [\"initial\"], \"borderColor\": [\"#a7a7a7\"]});\n", - "//# sourceURL=js_e1d675b471" + "window[\"0711ef3e-e91d-11e8-9ca7-0242ac1c0002\"] = colab_lib.createTabBar({\"location\": \"top\", \"elementId\": \"id1\", \"tabNames\": [\"1918\", \"1938\", \"1958\", \"1978\", \"1998\", \"2018\"], \"initialSelection\": 0, \"contentBorder\": [\"0px\"], \"contentHeight\": [\"initial\"], \"borderColor\": [\"#a7a7a7\"]});\n", + "//# sourceURL=js_3100555ff3" ], "text/plain": [ "" @@ -4238,8 +4245,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b2b24da-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(0);\n", - "//# sourceURL=js_5bc9e8cf1b" + "window[\"07127206-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(0);\n", + "//# sourceURL=js_4eb88374f1" ], "text/plain": [ "" @@ -4255,8 +4262,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b2c4a04-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_bf945ee747" + "window[\"07143910-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_f01b318fb2" ], "text/plain": [ "" @@ -4273,8 +4280,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b2c8992-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_0\");\n", - "//# sourceURL=js_6c8c607c49" + "window[\"07147aa6-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_0\");\n", + "//# sourceURL=js_0361afdbd1" ], "text/plain": [ "" @@ -4291,8 +4298,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b2cd79e-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3b2c8992-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_294cee5689" + "window[\"0714e612-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07147aa6-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_f143386a7c" ], "text/plain": [ "" @@ -4309,8 +4316,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b2d102e-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(0);\n", - "//# sourceURL=js_ed5a1d33d9" + "window[\"071580cc-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(0);\n", + "//# sourceURL=js_1f70aca4d5" ], "text/plain": [ "" @@ -4326,9 +4333,9 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8XGW9x/HPL5nsadMt1LYsbaEs\nLZswQJFFZBMUWS4ICsgqFUVlcQG9CgiogAsXFEQQpHhB2ZcLCNSyirKkbKUtaxdZujdN2rTNMvO7\nf5wn7TSdpJNJJkkn3/fr1VdmnrM9E0p/c855zvM1d0dEREQ2bQW93QERERHpOhV0ERGRPKCCLiIi\nkgdU0EVERPKACrqIiEgeUEEXERHJAzkt6GZ2rpm9ZWYzzOy80DbEzKaY2Xvh5+Bc9kFERKQ/yFlB\nN7MdgbOAPYFdgCPMbBvgImCqu48Dpob3IiIi0gW5PEPfAXjJ3Ve5ewvwLPBfwFHA5LDOZODoHPZB\nRESkX8hlQX8L2M/MhppZOfAFYAtguLvPD+ssAIbnsA8iIiL9QixXO3b3WWZ2FfAk0AC8DiTarONm\nlnbuWTObBEwCGD9+/O4zZszIVVdFRDJhvd0BkY7kdFCcu9/i7ru7+/5ALfAusNDMRgCEn4va2fYm\nd4+7e7ysrCyX3RQREdnk5XqU+2bh55ZE98/vBB4GTg2rnAo8lMs+iIiI9Ac5u+Qe3GdmQ4Fm4Bx3\nX25mVwJ3m9mZwDzg+Bz3QUREJO/ltKC7+35p2pYCB+XyuCIiIv2NZooTERHJAyroIiIieUAFXURE\nJA+ooIuIiOQBFXQREZE8oIIuIiKSB1TQRURE8oAKuoiISB5QQRcREckDKugiIiJ5QAVdREQkD6ig\ni4iI5AEVdBERkTyggi4iIpIHVNBFRETygAq6iIhIHlBBFxERyQMq6CIiInlABV1ERCQPqKCLiIjk\nARV0ERGRPKCCLiIikgdU0EVERPKACrqIiEgeUEEXERHJAyroIiIieUAFXUREJA+ooIuIiOQBFXQR\nEZE8oIIuIiKSB1TQRURE8oAKuoiISB5QQRcREckDKugiIiJ5QAVdREQkD+S0oJvZ+WY2w8zeMrO/\nmlmpmY0xs5fM7H0zu8vMinPZBxERkf4gZwXdzEYB3wXi7r4jUAh8BbgKuMbdtwFqgTNz1QcREZH+\nIteX3GNAmZnFgHJgPnAgcG9YPhk4Osd9EBERyXs5K+ju/jHwa+A/RIW8DpgGLHf3lrDaR8CoXPVB\nRESkv8jlJffBwFHAGGAkUAEc1ontJ5lZjZnVLF68OEe9FBERyQ+5vOR+MDDH3Re7ezNwP7APMChc\nggfYHPg43cbufpO7x909Xl1dncNuioiIbPpyWdD/A0w0s3IzM+AgYCbwNHBcWOdU4KEc9kFERKRf\nyOU99JeIBr+9CkwPx7oJuBC4wMzeB4YCt+SqDyIiIv2FuXtv92Gj4vG419TU9HY3RKR/s97ugEhH\nNFOciIhIHlBBFxERyQMq6CIiInlABV1ERCQPqKCLiIjkARV0ERGRPKCCLiIikgdU0EVERPKACrqI\niEgeUEEXERHJAyroIiIieUAFXUREJA+ooIuIiOQBFXQREZE8oIIuIiKSB1TQRURE8oAKuoiISB5Q\nQRcREckDKugiIiJ5QAVdREQkD6igi4iI5AEVdBERkTyggi4iIpIHVNBFRETygAq6iIhIHlBBFxER\nyQMq6CIiInlABV1ERCQPqKCLiIjkARV0EZF+yMyONLOLersf0n1ivd0BERHpGjMzwNw9mek27v4w\n8HDueiU9TWfoIiKbIDMbbWbvmNntwFvA18zs32b2qpndY2aVYb0vmNnbZjbNzK4zs0dC+2lm9vuU\nfT1lZm+a2VQz2zK03xa2+ZeZzTaz43rr88rGqaCLiGy6xgE3AJ8FzgQOdvfdgBrgAjMrBf4IHO7u\nuwPV7eznd8Bkd98ZuAO4LmXZCGBf4Ajgypx8CukWKugiIpuuee7+IjARGA+8YGavA6cCWwHbA7Pd\nfU5Y/6/t7Gdv4M7w+i9EBbzVg+6edPeZwPDu/gDSfXJ2D93MtgPuSmkaC1wM3B7aRwNzgePdvTZX\n/RARyWMN4acBU9z9q6kLzWzXbjhGY+ouu2F/kiM5O0N393fcfVd33xXYHVgFPABcBEx193HA1PBe\nRESy9yKwj5ltA2BmFWa2LfAOMNbMRof1Tmhn+38BXwmvTwKez11XJVd66pL7QcAH7j4POAqYHNon\nA0f3UB9ERPKSuy8GTgP+amZvAv8Gtnf31cC3gMfNbBqwAqhLs4vvAKeHbb8GnNsjHZduZe6e+4OY\n3Qq86u6/N7Pl7j4otBtQ2/q+PfF43GtqanLeTxGRDmySl5vNrNLdV4Z/b68H3nP3a3q7X9L9cn6G\nbmbFwJHAPW2XefRtIu03CjObZGY1ZlazePHiHPdSRCRvnRUGys0AqohGvUseyvkZupkdBZzj7oeG\n9+8AB7j7fDMbATzj7tt1tA+doYtIH7BJnqFL/9ET99C/yvqPSjxM9EgF4edDPdAHERGRvJbTgm5m\nFcAhwP0pzVcCh5jZe8DBaKICERGRLsvpXO7u3gAMbdO2lGjUu4iIiHQTzRQnIiKSB1TQRUQkLTP7\nV2/3QTKngi4iIusxsxiAu3+mt/simVNBFxHJsdEXPXri6IsenTv6okeT4eeJXd2nmT0YIlFnmNmk\n0LbSzH4V2v5hZnua2TMh+vTIsE5hWOeVEJf6jdB+gJk9b2YPAzNb95dyvAvNbLqZvWFmV4a2s8J+\n3jCz+8ysvKufS7Kngi4ikkOheN9MlH5m4efN3VDUzwiRqHHgu2Y2FKgAnnL3CUTTvF5B9KTRMcBl\nYbszgTp33wPYg2jimTFh2W7Aue6+beqBzOxwomm793L3XYCrw6L73X2P0DYr7Ft6SU5HuYuICL8A\n2p65lof2OzdcPWPfNbNjwustiLLRm4DHQ9t0oNHdm81sOlHCJcChwM5mdlx4X5Wy7cspUaupDgb+\n7O6rANx9WWjf0cyuAAYBlcATXfg80kUq6CIiubVlJ9s3yswOICqye7v7KjN7BigFmn3d9J9JQvSp\nuydb74sTXSX4jrs/kWafDXTObcDR7v6GmZ0GHNDZzyLdR5fcRURy6z+dbM9EFVGw1Soz2x6Y2Ilt\nnwC+aWZFAGa2bZgErCNTiNLYysM2Q0L7AGB+2NdJnfoE0u1U0EVEcuvHwKo2batCe7YeB2JmNoto\nts0XO7Htn4gGvb1qZm8RhbV0eLXW3R8nmra7JgS9fD8s+inwEvAC8HanPoF0ux6JT+0qhbOISB+Q\ndThLGAD3C6LL7P8Bfjz3yi925f65yAZU0EVEMqO0NenTdMldREQkD6igi4iI5AEVdBERkTyggi4i\nIpIHVNBFRETygAq6iIhIHlBBFxHph0K62mdS3t+WMr97dx/rT2Y2Phf7lnU0l7uISK5dWrXBxDJc\nWtfbE8scAKwE/pXrA7n713N9DNEZuohIbkXFfIP41NCeFTOrMLNHQw75W2Z2gpkdZGavhczyW82s\nJKw718yGhdfxkI8+GjgbON/MXjez/cKu9zezf4X89HbP1s2s0symmtmr4XhHtdev0P6MmcXD6z+Y\nWU3IbP9Ztr8D2ZAKuohIbnUUn5qtw4BP3H0Xd9+RaG7324AT3H0noquv32xvY3efC9wIXOPuu7r7\n82HRCGBf4AiiOeLbswY4xt13Az4H/MbMrJ1+tfXf7h4HdgY+a2Y7Z/qhpWMq6CIiudXt8alEWeeH\nmNlV4ex6NDDH3d8NyycD+2ex3wfdPenuM4HhHaxnwC/M7E3gH8CosP56/XL3ujTbHm9mrwKvARMA\n3VvvJiroIiK51e3xqaFw70ZUQK8Aju5g9RbW/VtfupFdN6a87mju+pOAamB3d98VWAiUtu2XmV2c\nupGZjSFKajvI3XcGHs2gT5IhFXQRkdzq9vhUMxsJrHL3/wV+BewNjDazbcIqXwOeDa/nAruH18em\n7GYFUZ55NqqARe7ebGafIxoXkK5fu7XZbiDQANSZ2XDg8CyPL2lolLuISC5dWncnl1ZB945y3wn4\nlZklgWai++VVwD1mFgNeIbpHDvAz4BYzuxx4JmUf/wfcGwa0faeTx78D+D8zmw7UsC4LPV2/1nL3\nN8zstbD+h0Q56tJNFJ8qIpIZxadKn6ZL7iIiInlAl9xFRCQtM9sJ+Eub5kZ336s3+iMdU0EXEZG0\n3H06sGtv90Myo0vuIiIieUAFXUREJA+ooIuIiOQBFXQREZE8oIIuIpLHzOxSM/t+jva9NsmtLzKz\najN7KaTQ7ZdmeV7ltOd0lLuZDQL+BOwIOHAG8A5wF1GYwFzgeHevzWU/RER6006Td9ogD336qdN7\nOw+9V5lZzN1bcnyYg4Dp6fLYzaww33Lac32Gfi3wuLtvD+wCzAIuAqa6+zhgangvIpKXQjHfIA89\ntGelnTz0DXLPUzbZxcz+bWbvmdlZHex3hJk9FzLS32o9q91Ihvl3UnLRtw/r7xmO91rIV98utJ9m\nZg+b2VPA1A5y1Ueb2Swzuzkc80kzK+ug32eZ2Svh93GfmZWb2a7A1cBR4fOUmdlKM/uNmb0B7N0m\np/2w0I83zGxqR5+jr8pZQTezKqL4vlsA3L3J3ZcDRxFF+xF+dpQSJCKyqeupPPSO7AwcSBTicnEI\nUUnnROCJkKC2C/B6aO8ow3xJyEX/A1GSGkRzte/n7p8GLmb9z7obcJy7f5b2c9UBxgHXu/sEYDnr\nB8u0db+77+HurSeOZ7r76+HYd4XM99VABfBS+L39s3VjM6sm+tJ1bNjHlzP4HH1OLi+5jwEWA382\ns12AacC5wHB3nx/WWUDHmbsiIpu6XOWh/8bMrgIecffn19XBtB4KBW21mT0N7Ak8mGa9V4BbzayI\nKBu9taAfb2aTiGrGCKIM8zfDsvvDz2nAf4XXVcBkMxtHdLu1KOUYU9x9WXjdmqu+P5BkXa46RPnu\nrcefRnSbtj07mtkVwCCgEniinfUSwH1p2icCz7n7HICU/nX0OfqcXF5yjxF9E/tD+HbTQJvL6x4l\nw6RNhzGzSeEST83ixYtz2E0RkZzKeR56yB3vKPe87b+zaf/ddffniK6sfgzcZmanZJBh3pqhnmDd\nSeLlwNPh6sGX2qzfkPI6ba56m/223Xc6twHfdvediNLl2stYX+PuiQ7201ZHn6PPyWVB/wj4yN1f\nCu/vJfoLuNDMRkB0vwZYlG5jd7/J3ePuHq+urs5hN0VEcqon8tB3o/3cc4juI5ea2VDgAKIz8XT7\n3QpY6O43Ew1o3o3sMsyriL4UAJy2kfU2yFXPwgBgfriycFIW278I7B++vGBmQ1L6l8nn6BNyVtDd\nfQHwYcoggoOAmcDDwKmh7VTgoVz1QUSkt4XR7GcB84jOjOcBZ3VxlPtOwMtm9jpwCXAF0ZnptWZW\nQ3RGm+pN4GmiwnW5u3/Szn4PAFozy08ArnX3N4DWDPM7ySzD/Grgl2E/HZ1Z3wHEQ676KazLVe+s\nnwIvhb51eh/uvhiYBNwfBszdFRZl+jn6hJzmoYdRhn8CioHZwOlEXyLuJrp/NI/osbVl7e4E5aGL\nSJ+gPHTp03L6jSMMaIinWXRQLo8rIiLS32RU0MOQ/rOIRhmu3cbdz8hNt0REJFc21ZxzM7se2KdN\n87Xu/ufe6E9fk+kZ+kPA88A/2PDejIiIbEI21Zxzdz+nt/vQl2Va0Mvd/cKc9kRERESyluko90fM\n7As57YmIiIhkLdOCfi5RUV9tZvVmtsLM6nPZMREREclcRpfc3X1ArjsiIiIi2ct4YhkzGxySZ/Zv\n/ZPLjomISP9lZoPM7FtZbtttOe1mdpmZHdwd+8q1TB9b+zrRZffNidJ3JgL/JkrvERGRDszafocN\n8tB3eHtWr+ShW8/kkHeHQcC3gBvaLujJz+DuF/fEcbpDZ+6h7wHMc/fPAZ8mirMTEZEOhGK+QR56\naM+amZ1sZi+HrO8/mlmhma1MWX6cmd0WXt9mZjea2UvA1WY2xMweNLM3zezF1jhUM7vUzP5iabLT\nzewHIXP8TdswE71t304J671hZn8JbdUhq/yV8GeflGPeGrLJZ5vZd8NurgS2Dp/vV2Z2gJk9b2YP\nE00jTvgM0yzKTJ/Uid/dBtuF399tFuXATzez81N+d8eF1xeHvr9lZjelRL32CZk+trbG3deYGWZW\n4u5vWx8Pepe+yxMJEsuW4UmnYEAlheVto6JF8kpHeehZnaWb2Q5Ec63vE4JNbmDjoSSbA59x94SZ\n/Q54zd2PNrMDgdtZ91z6zkRXYSuA18zsUWBHonzyPYm+lDxsZvuHdLa2fZsA/CQca0lK0Mm1wDXu\n/k8z25Io4nSHsGx7ojz0AcA7ZvYHonTOHUMKG2Z2AFFYzI6tMafAGe6+zMzKgFfM7D53X5rBr3CD\n7YgmThsVktUws0Fptvu9u18Wlv8FOAL4vwyO1yMyLegfhQ/3IDDFzGqJ5mEX6bSmef9h3oknkqiv\nZ+SvrmbAQQdRUNqnUwlFuiIXeegHESWrvRJOEstoJ7kyxT0p0aH7EhLZ3P0pMxtqZgPDsnTZ6fsC\nhxKFtECUOT4O2KCgE92Kvcfdl4T9t2Z1HAyMTzmpHWhmleH1o+7eCDSa2SLWZaK39XJKMQf4rpkd\nE15vEfqUSUFPt907wNjwZedR4Mk0233OzH5I9IVsCDCDTa2gu3vrB780/AeuAh7PWa8kr9XeeQeJ\n5dEdm8XX/Y6KvfZSQZd89h/Sx4JmnYdOdJY82d1/tF6j2fdS3rb9n6qBzKTLTjfgl+7+x071cn0F\nwER3X5PaGAp8ptnnaz9DOGM/GNjb3VeZ2TNkkFfe3nbuXmtmuwCfB84GjgfOSNmulOh+ftzdPzSz\nSzM5Xk/qzCj33cK9jZ2Jcs6bctctyWfle62bLrps112wkpJe7I1IznV7HjowFTjOzDaDKL/bQpa5\nme1gZgXAMR1s/zzhEn0ocEvcvXVukXTZ6U8AZ7SeUZvZqNZjp/EU8OWwfWq2+JPAd1pXsiiNsyMr\niC7Bt6cKqA1FeXui2wSZSLudRaPiC9z9PqJbBru12a61eC8Jv4fjMjxej8l0lPvFwJeB+0PTn83s\nHne/Imc9k7xVseeejL7vXhLLaimdMJ7CAZrmQPLXDm/PunPW9jtAN45yd/eZZvYT4MlQvJuBc4ju\nOz8CLAZqiC6Np3MpcKuZvUn05eLUlGWt2enDWJed/km4b//vcEa9EjiZNJf53X2Gmf0ceNbMEkSX\n6U8DvgtcH44ZI7pcf3YHn3Gpmb1gZm8Bfye6DJ7qceBsM5tFdLn8xfb2leF2o4hqW+uJ7npXP9x9\nuZndDLwFLCD6otOnZJSHbmbvALu0XioJAwled/ceGRinPHQR6QP61IjmXAiXkVe6+697uy/SeZle\ncv+E9e8VlAAfd393pL9yd+oXL+KNKY+xaO5smtas2fhGIiKyVqaj3OuAGWY2hWiAxCHAy2Z2HYC7\nf7ejjUU2pmF5LXf+5Hs0LK/FrIDTr7mR4hEje7tbIv2Ku1+a6brhHvnUNIsOyvDRsZzq6/3LhUwL\n+gPhT6tnur8r0p8lW1poWF4LgHuSusULGayCLtJnhaLYZzPV+3r/ciHTx9Ymt742s8HAFu7+Zs56\nJf1OUVkZux9xDNMefZAR47ajeqsxvd0lEZFNSqaD4p4BjiT6AjCNaGTjC+5+QU57F2hQXP+wpmEl\nLU1NFBQWUj6wqre7I9JW3g+Kk01bppfcq9y93qKQltvd/ZLw6IFItymtqIwmmxQRkU7LdJR7zMxG\nEM2c80gO+yMiIt3EzI40s4vaWbaynfbUMJJnzCyeyz62x8x2NbMv9MBxfpzyenR47r2r+6w2s5fM\n7DUz2y/N8j+Z2fiuHqetTAv6ZUQzBX3g7q+Y2Vjgve7ujIiIdB93f9jdr+ztfmRpVyBnBd0iBXRt\nxr72HARMd/dPu/vzbY5b6O5fd/eZ3X3QjAq6u9/j7ju7+zfD+9nufmx3d0ZEJB9df/ZTJ15/9lNz\nrz/7qWT42aXoVFh7Nvl2OKN+18zuMLODw+xq75nZnmZ2mpn9Pqw/xqJY1OlmdkXKfszMfm9m75jZ\nP4C0U7qa2aFh+1fN7J6UYJV06+5uZs9aFFH6RLjCi5mdZVH86BsWRamWh/YvWxRJ+oaZPWdmxUQn\nkidYFJ96QjvHaS96FTO7IOzzLTM7L+V39o6Z3U4049stQFk4xh1h00Izu9miaNUnw0Rq7X3ODT5P\nmNL2aqIpdF83szIzW2lmvzGzN4C9U698mNlh4Xf6hplNDW17ht/1a2b2L8sw3TSjgm5m25rZ1NZL\nEWa2s0XTDoqISAdC8d4gD707ijqwDfAbovjR7YETiZLRvs+GZ57XAn9w952A+SntxwDbAeOBU4DP\ntD2IRfOc/wQ42N13I5pWNu2gaDMrAn4HHOfuuwO3Aj8Pi+939z3cfRdgFnBmaL8Y+HxoPzJkhVwM\n3OXuu7r7XR38DrYnClTZE7jEzIrMbHfgdGAvornazzKzT4f1xwE3uPsEdz8dWB2OcVLK8uvdfQKw\nnJBK144NPo+7v96m76uJRge95O67uPs/U35X1UR/N44N+/hyWPQ2sJ+7fzrs6xcd9GGtTC+530w0\nr20zQHhk7SsZbisi0p91lIfeVXPcfbq7J4miPKd69OjSdKJ871T7AH8Nr/+S0r4/8Fd3T4R5259K\nc5yJRAX/BTN7nWju93QJchB9OdiRKGr7daIvApuHZTua2fNmNp0oHGZCaH8BuM3MzgIKM/jcqR51\n98YQ19oavbov8IC7N7j7SqIcktZ72fPcvaN53+eEogzRU12jO1i3vc/TVgK4L037ROC51kjYlKjZ\nKuCecBJ9TQf7XU+mo9zL3f1ls/We2mjJcFsRkf4sF3norVJjR5Mp75Ok//d9488pp2fAFHf/aobr\nznD3vdMsuw042t3fMLPTiNLccPezzWwv4IvAtHCGnalMo1dbbSxGtu3+2r3kTjufJ401KVn0mbgc\neNrdjzGz0WQ4mVumZ+hLzGxrwl8Gi0ZAzu94ExERof3c867koWfjBdZdWT0ppf05onvVheFe9+fS\nbPsisI+ZbQNgZhVmtm07x3kHqDazvcO6RWbWeoY5AJgfLsuv7YOZbe3uL7n7xURJcVuw8fjUjjwP\nHB3uaVcQ3VZ4vp11m0N/spH283TCi8D+ZjYG1ouarWJdXsppme4s04J+DvBHYHsz+xg4jw5i70RE\nZK1c5KFn41zgnHB5eFRK+wNETy3NBG4H/t12Q3dfTFRY/mrRHCT/Jrp3vYFw//s44KowCOx11t2X\n/ynwEtGXi7dTNvtVGKz3FvAv4A2iCNfxHQ2Ka4+7v0p09vxyON6f3P21dla/CXgzZVBcZ7T3eTLt\n52JgEnB/+F21jhW4Gvilmb1G5lfSO54pzszOdfdrzWwfd38hfNMpcPcVne14V2imOBHpA7KeKS4M\ngFsvD/2cGw/MOg9dJJ2NFfTX3X1XM3s1jGzsFSroItIHaOpX6dM2dio/y8zeA0ba+lO9GuDuvnPu\nuiY9JdnURHLVKgoqKigoyvZWkoj0N2b2ANA2SelCd3+im49zOtEtg1QvuPs53XmcDo5/PdFTAqmu\ndfc/98TxM7XRcBYz+xTRLHFHtl3m7vNy1K/16Aw9dxL19dQ9+hj1Dz/MoK98hQEHHUhhZbvzRYj0\nZzpDlz5tozfb3X0BsEsP9EV6QaKujoU/+xkAq197jYqnpqqgi4hsgjos6GZ2t7sfH0ZFpp7K65J7\nnrDCQigogGQSYrHotYiIbHI2dobees/iiGx2bmZziZ4lTAAt7h4Pz9ndRTT7zlzgeHevzWb/0nUF\nVVVscdMfqXvwIQYd/2UKq7LLIU+sWEGyvh4KCymsqqKgrKO5GEREpLtt9B56l3YeFfR4mJKvte1q\nYJm7X2lRrN9gd7+wo/3oHnrueUsLFsv4ccf1JBsbqXvoIRZcfAkUFbHVn2+lPN4riYsiuaR76NKn\ndXh91cxWmFl9mj8rzKw+y2MeBUwOrycDR2e5H+lG2RZzgGRDA7V//RtWXs5mF5wPsRiJurpu7J2I\ndDczO9q6MZPbzOJmdl137S+L46/Nfrc2eeRm9piZDeqtvvWUDv8Vd/dsp91buwvgSTNz4I/ufhMw\n3N1bp41dQDSRvmSpobmBlmQLVSXZXSrvDu5O5ec+R9mOE6h76GGW/P73DDruOIZ+85vEBuX9/0Mi\nm6qjgUeIZojrMnevIUph6xXu/jDwcHjbmkf+9fC+vWlf80quR0DtGyakOZxoysH9UxeGVKC01/zN\nbJKZ1ZhZzeLFi3PczU3T0tVLuezfl3He0+cxu242ubx90pHGt9+maMQIYkOHsuKJJ0g2rGLZ5NtJ\nrujRCQVF+qzfnHDEib854Yi5vznhiGT42R156Ceb2cthatQ/hrnY/xD+3ZxhZj9LWfdKM5tpZm+a\n2a/N7DNEjyL/Kmy/dTvHyCi/PLQdYGaPhNcZ53lblNn+kEUZ4e+Z2SUpyx60KFN9hplNSmlPlyF+\nmkW57unyyOdaFAGLmZ0Sfg9vmNlf2vZnU5bTgu7uH4efi4jmC94TWGjrwu5HEMXdpdv2JnePu3u8\nuro6l93cZD3w/gM8NucxahbW8INnf0Dtmt4ZW1g0ciQLLrssGiFfGCUfWlkZVlzcK/0R6UtC8d4g\nD70rRd3MdgBOAPZx912JBh6fBPy3u8eBnYHPmtnOZjaUKJxkQngy6Qp3/xfR2ewPQmb3B+0cKqP8\n8jTbdTbPe0+i3PGdgS+bWesgnDNCpnoc+K6ZDbX2M8QBaCePvPX3NoEozvXAsG3byWo2adnfON2I\n1Hnfw+tDgcuI/hKdClwZfj6Uqz7kuwFF6+6IVBRVUGC988hZbLPNGP23v9KyrJat7vhfGp57jgGH\nHU7hkCEb31gk/3WUh57tfO4HAbsDr1gUa11GdHJ0fDiTjQEjiDLMZwJrgFvCGfQjnTjOjmZ2BTAI\nqCSaZAzW5ZffTZQ13lYVMNnMxhFdhd3YFJRT3H0pgJndT5RnXkNUxI8J62wBjAOqSZ8hnokDgXta\nB2p3cts+L2cFneje+APhL1ujIzaiAAAgAElEQVQMuNPdHzezV4C7zexMYB5wfA77kNcOHX0o9c31\nzF8xn0m7TGJQae/cry6sqKBswoS178t33bVX+iHSR+UiD92Aye7+o7UNUQTnFGAPd681s9uAUndv\nMbM9ib4EHAd8m6iwZeI2sssv72yed9v7hW5mBwAHA3u7+yozewYozbDf/VLOCrq7zybNDHPhW9hB\nuTpufzK4dDBn7XQWyWSSAk0II9JX/YfoMnu69mxNBR4ys2vcfVGY32NLoAGoM7PhRGOXnjGzSqDc\n3R8zsxeA2WEfmeSNt837/hjW5ZcDL5nZ4URnz6k6m+d9SPgMq4kG651BFPFaG4r59sDEsO6LwA1m\nNsbd55jZkE6caT9FdKL5W3df2slt+zxVgTygYi7Sp3V7Hrq7zyS6F/ykRcFZU4BG4DWi+9d3El0W\nh6goPxLW+ydwQWj/G/CDMHAt7aA4Opdfnqqzed4vA/cBbwL3hRHzjwMxM5tFdIv2xfDZ28sQ3yh3\nnwH8HHg2bPvbTLfdFOR0YpnuoollRKQPyHpimTAAbr089O/d9Yjy0IlGpxNNQPbt3u7Lpi6X99BF\nSDQ04M3NFA4ciOlKgvRToXirgEtOqaBLzrQsXcqCX/6Slo8+ZvjFP6V0u+2iMBgR6VOsB/K+zezz\nwFVtmue4+zFEg++ki1TQJWeW3/8AKx55FICPzv4mo++7l6J25hRoaklQt7qFklgBA8vWf8KltqGJ\nRSsaWb6qibHVFVQP0EBXke7k7uf0wDGeYN1jb5IDKuiSM6kTy0Sv09+CXN3cwr/fX8rPH5vFdp8a\nwC++OA4aV5FsaYYBQ/jt1Nn870vRgODhA0t4+Nv7MnygirqISCoV9DzXsnhxlKRWXk4sy2jUbFV9\n6QhaFsynae48NvvBD4gNG5p2vRWrW/jG/06jOeFUDyhh/jszeOy3Pwfg2Gtv546X1z3ds7C+kb9P\nn89p+4zpkc8gIrKpUEHPY80LFjD3hK/QsnAhQydNYujXz6Rw4MAeO35syBCqL7ggGhRX3nairBQG\nZcWFNK9uYZth5cx+ecraRS1NjT3QUxGRTZ+GHeexVS+/QsvChQAs/fOf8caeL44FRUUdF3NgaHkx\nd39jb76w06fYdash7HLoFyiMxcCMWEsjJ+21bkKt4QNLOHynEbnutki/Z2ajw3PmG1vnxJT3vRqh\n2t/pDD2Ple60I1ZUhDc3U7HXXtCFzPNcKiwsYPtPDeSa43elqLCAZEszZ/7uFjyZpLSigvMHD+Pk\nnYaxbMUattliGNWVCn0R6SNGAycSHsnr7QjV/q5v/gsv3aJoxAi2fvIJWhYvpmjUKGKDB/d2lzpU\nUhQ90lZQXMyAIevutxc8cg921dVUV1RQZ8aQe+4mpgQ+6efCHOmPA9OA3YAZwCnA3sCvif59fwX4\nprs3mtlc4G6iKWFXAye6+/thzvdH3P3esN+V7l6Z5lh/ASpC07dDYtuVwA5m9jowmWimuu+7+xFh\nKtdbgbFEM+NNcvc3zexSogl2xoaf/+PuOqvvBrrknscKSkspGjGCsp13JjY0/YC0TYIZyZUro9sH\nZtEfEQHYDrjB3XcA6ommdb0NOMHddyIq6t9MWb8utP8e+J9OHGcRcIi770YU29pagC8Cng8xpde0\n2eZnwGshsvXHwO0py7YHPk8Um3pJmCteukgFXfq8AQceyODTTqNiv/3Y8uabFMsqss6H7t46Z/v/\nEgVfzXH3d0PbZGD/lPX/mvJz704cpwi42cymA/cQxbJuzL5EZ/W4+1PAUDNrHZX7qLs3hhjTRUTp\nnNJFuuQufV5syBA2u+B8vKmJwsrKjW8g0n+0DeNYDnR0Oc7TvG4hnNyZWQGQbpDK+cBCogTNAqJ8\n9a5IHaGbQLWoW+gMXTYJBcXFKuYiG9rSzFrPtE8kGpA22sy2CW1fA55NWf+ElJ//Dq/nAq155kcS\nnY23VQXMd/dk2GfrHM4dRbA+TxS5Ssg2X+Lu9Rl9KsmKvhWJiGy63gHOMbNbgZnAd4liRu8xs9ZB\ncTemrD84xKg2Al8NbTcTZau/QTTIriHNcW4A7jOzU9qs8yaQCNveRjQortWlwK3heKuAU7v2UWVj\nFJ8qIpKZPjUaM4w8f8Tdd8xw/blEMaVLctgt6UW65C4iIpIHdMldRGQT5O5zgYzOzsP6o3PWGekT\ndIYuIiKSB1TQRURE8oAKuoiISB5QQRcREckDKugiIpsgMzvMzN4xs/fN7KLe7o/0PhV0EZFNjJkV\nAtcTJaeNB75qZpnMry55TAVdcsabm2leuJDGefNoqa3t7e6I5JM9gffdfba7NwF/A47q5T5JL9Nz\n6JIzzfPnM+eYY0g2rKLq2GMZ/sMfUFhV1dvdEukV8Xg8BgwDltTU1LR0cXejgA9T3n8E7NXFfcom\nTmfokjOrXnmFZMMqAOoffRRvaurlHon0jng8/hlgMTAHWBzei3QrFXTJmfI99qCgogKAqiOPxIrT\npTKK5LdwZv4oMAgoDT8fjcfjhR1u2LGPgS1S3m8e2qQf0yV3yZmikSMZ+/fH8DVrKBgwYIPL7fVr\nmkkknEHlRZj1qdwLke40jKiQpyoFqoEFWe7zFWCcmY0hKuRfIYpPlX5MBV1yxmIxijbbLO2yRfVr\n+NED01m+qpmrjt2JrasrVdQlXy0B1rB+UV9DdAk+K+7eYmbfBp4gyia/1d1ndKmXssnTJXfpcYlk\nkmunvsfUWYuYNq+Wb93xKktXNvZ2t0RyIgyA+yKwnKiQLwe+WFNTk+jKft39MXff1t23dvefd0NX\nZROngi49zjBKYuv+6hUVFujsXPJaTU3Nv4guvY8BhoX3It1Kl9ylxxUUGN88YBtWNrawtKGJS44Y\nz9DKkt7ulkhOhTPybO+Zi2xUzgt6mNGoBvjY3Y8Igzj+BgwFpgFfCxMjSD9SPaCEy47akUTSqSjp\n+K9hYsUKGt9/n9WvvUblZw+gaPNRFJToC4CISKqeuOR+LjAr5f1VwDXuvg1QC5zZA32QPqi0qHCj\nxRxgzfTpzPvqiSy6+lfMOeYYWhZnPZZIRCRv5bSgm9nmRINB/hTeG3AgcG9YZTJwdC77IJu+FU8/\ns/a1NzXR+O57vdcZEZE+Ktdn6P8D/BBIhvdDgeXu3jrt4UdEUxiKtGvAIQevfW1lZZRst20v9kZE\npG/KWUE3syOARe4+LcvtJ5lZjZnVLNYl1n6tdPx4xjxwP5+6/HLGPvQgsXaebRfpL8xsCzN72sxm\nmtkMMzs3tA8xsylm9l74OTi0m5ldF6JW3zSz3VL2dWpY/z0zOzWlfXczmx62uS5cYe2RY0h2cnmG\nvg9wpJnNJRoEdyBwLTDIzFpvnLY7XaG73+TucXePV1dX57Cb0tcVVlZSusMODP7ycRRvuSUFRUW9\n3SWR3tYCfM/dxwMTgXNCfOpFwFR3HwdMDe8hilkdF/5MAv4AUXEGLiEKdtkTuKS1QId1zkrZ7rDQ\n3hPHkCzkrKC7+4/cfXN3H000LeFT7n4S8DRwXFjtVOChXPVBRKSviMfjw+KRYV3dl7vPd/dXw+sV\nRAOPRxFFqE4Oq6WOUToKuN0jLxKdWI0APg9Mcfdl7l4LTAEOC8sGuvuL7u7A7W32letjSBZ6Y2KZ\nC4ELzOx9onvqt/RCHyRDiVWrSKxY0dvdENlkxePx0ng8fgfRmKF/AB/F4/E74vF42/nds2Jmo4FP\nAy8Bw919fli0ABgeXqeLWx21kfaP0rTTQ8eQLPTIxDLu/gzwTHg9m+iyi/RxzYsWsfAXvyS5cgXD\n//u/KR49WjO6iXTeLcAxQEn4Q3jvwMld2bGZVQL3Aee5e33q/5/u7mbmXdn/xvTEMSRzmvpV0ko0\nNLDw8stZ8fjjNPzzBT78+tdJLF3a290S2aSEy+v/BZS1WVQGHNuVy+9mVkRUzO9w9/tD88JwKZvw\nc1Foby9utaP2zdO099QxJAsq6JJeSwuJurq1bxN19XhSX8RFOmk00F7yUCOwVTY7DaPBbwFmuftv\nUxY9TDQ2CdYfo/QwcEoYiT4RqAuXzZ8ADjWzwWGg2qHAE2FZvZlNDMc6pc2+cn0MyYLmcpe0CgYO\nZPhPf8p/Tj+DZEMDI6++msKBA3q7WyKbmrmsu8zeVgkwL8v97gN8DZhuZq+Hth8DVwJ3m9mZYd/H\nh2WPAV8A3gdWAacDuPsyM7ucKF8d4DJ3XxZefwu4jehqwt/DH3roGJIFiwYX9m3xeNxramp6uxv9\njieTJJYuxR0KBw6goLRbxvCIbKqyGkASBsQdw/qX3VcD99fU1HTpHrpIKp2hS7usoICY5gAQ6aoz\niQbAHUt0mb0EuB/4em92SvKPztBFRDLTpUc8wgC4rYB5NTU1S7qnSyLr6AxdRKQHhCKuQi45o1Hu\nIiIieUAFXUREJA+ooIuIiOQBFXQRkU2UmRWa2Wtm9kh4P8bMXgpxpHeZWXFoLwnv3w/LR6fs40eh\n/R0z+3xK+2Gh7X0zuyilPefHkOyooEu38ESC5kWLaJwzlxZNESuSVjwe7+5/c88lSlprdRVwjbtv\nA9QSPTJH+Fkb2q8J6xEiV78CTCCKLr0hfEkoBK4nikQdD3w1rNtTx5AsqKD3cZ5I0LJkCS21tb3d\nlQ61LFrEnCOPYvbhh/PRuefRsnTZxjcS6Qfi8fjAeDx+ZTwerwUS8Xi8Nrwf2JX9mtnmwBeBP4X3\nBhwI3BtWaRtt2hp5ei9wUFj/KOBv7t7o7nOIZnnbM/x5391nu3sT8DfgqJ44Rld+J/2dCnof5okE\na2bOZO5JJ/PROd+meeHC3u5Su1a/9RaJ5cuj1zU1JNes6eUeifS+ULRfAc4DBoXmQeH9y10s6v8D\n/BBIhvdDgeXu3hLep8aRro0wDcvrwvqdjTztiWNIllTQ+7BEbS2fXPQjmufNY/Wrr1J75183WCfZ\n0oInk2m27hmtxy7dYTxWXg5AyQ47UFBS3Gt9EulDfkw0mUzb+dxLiIJbfpTNTs3sCGCRu0/rUu8k\nr2himb4sFiM2fDhNH3wAQNHmm6+3uPmTT1h07bUUjRjJkFO+RmzIkB7rWqKujoYXX2Tlc88x5OST\nKRozhq3//hgtS5ZQNHw4sWFZp0KK5JNv0HE4yzfIrqjvAxxpZl8ASoGBwLXAIDOLhTPk1DjS1gjT\nj8wsBlQBS2k/2pR22pf2wDEkSzpD78NigwYx6qorGXbuuYz45S8YcPBBa5e11Nby0fkXUP/Qwyy9\n8UbqH32sw30lG9tLcMxO89KlLL/rblZOfYq5J51Msr6eouHDKZswQcVcBIjH44Wsu8zensHZDJRz\n9x+5++buPppowNlT7n4S8DRwXFitbbRpa+TpcWF9D+1fCSPUxwDjgJeJbhOMCyPai8MxHg7b5PQY\nnf1dyDoq6H1crLqa6m+ezaBjjiE2ePC6BckknlKkk6tXp90+UV9P3aOP8skPf8iqadO65d52S20t\njbPepmzXXdnixhsp3moraGnZ+IYi/UhNTU0CWL6R1Wpramq6857ZhcAFZvY+0f3rW0L7LcDQ0H4B\ncBGAu88A7gZmAo8D57h7Ipx9f5soy3wWcHdYt6eOIVlQOEsPWr2inpamJgpjMcqrNvbFvWPuTtPc\nuSz42WXEPjWc4T/4AbGhQzdYr3HOXGYffjgAVlTE1v+YQtHw4VkfN9nczLI/38bi3/4WgNhm1Wx5\n65+JDd+MwgHKS5e81ulwlng8fiXRALh0l90bgWtqamqyuo8u0pbuofeQ1SvqefYvtzLj2X+w2Zit\n+a8f/YyKLhR1M6NkzBg2v+5aiMUoDAPSNtDSvPalJxLQxQF0vno1DS+8sG73ixZjRUUq5iLp/YLo\nsa7RrF/UG4G5wC97vkuSr3TJvYc0r1nDjGf/AcCiOR9Qt3BBt+y3cODA9os5UFhdTfX3v0fZbrsx\n6pprKOhi4S0oL6fqyCPXvi/eemsKKto/vkh/VlNTU0/0vPU1RJOwEH5eA+wZlot0C52h95DCoiKq\nNhtO3aKFxEpKGDC0ZwaOFZSWUrrjjpBMUv/kE5RsszWFlZVZ789iMQYccjAlO2xPy8KFlO24owbB\niXQgFO0fAT+Kx+MF3XzPXGQt3UPvQStrl7HkP3MZPHIUlYOGUFhUlPNjtixezJzjT6Bl/nwABp94\nIp+6+Kc5P65IHur0PXSRnqQz9B5UOXgIlYN77llxACspofzTn6Y+FPSKz+yd0+O1LF1KsqEBKymh\ncOBACsrKcno8ERGJqKDnucKBAxn+k/+m6pijKRwylOIt1k1Os3pFPXWLFrJi2RJGbLNdl79stCxZ\nwoeTvsGamTOxoiK2uPkmKiZO7OpHEBGRDGhQXD8QGzKEyv32o2zCeAoHDqR54UKWPfQQb019gjt+\nfD4P//rn3PmT79GwvGsBMI3vvsuamTMB8OZmFl51tZLXRHLEzAaZ2b1m9raZzTKzvc1siJlNMbP3\nws/BYV0zs+tCTOmbZrZbyn5ODeu/Z2anprTvbmbTwzbXhaAVeuIYkh0V9H6mpbaWjy/4Hs0405+Z\nsrZ9xZLFNNTXsayhiQ+XrWJR/Ro6O77C2oy2LygvZ/XMmbQsWdItfRfZlMXj8THxeHyfeDw+ppt2\neS3wuLtvD+xCNDnLRcBUdx8HTA3vIYooHRf+TAL+AFFxBi4B9iIajX9Ja4EO65yVst1hob0njiFZ\nUEHvbxIJErW1JObMZfhWW69tLiiMYQOG8su/z2K/q5/mi7/7JwvqOzerXPGWW1J17LFQUEDRqJFU\nn3cui668igVX/JzEypXd/UlENgnxyDRgBvAoMCMej0+Lx+PxbPdpZlXA/oRZ2ty9yd2Xs36Eadto\n09s98iLRfOwjgM8DU9x9mbvXAlOAw8Kyge7+Ypi+9XbSx6Tm6hiSBd1D72cKBw9m5K9/xcIrrmDf\nSy+hctgwahd8wsRjv0KyIMY9NR8BsHhFI298WMeIqjISK1aQWLqUZFMTsc02IzYo/YQ4sSFDGH7R\nhVR/9zs0zZ3Lol/9mqYPPiA2dAgkEj35MUX6hFC0nwEqQlPrKNHdgGfi8fgBNdk9wjMGWAz82cx2\nAaYB5wLD3X1+WGcB0DotZGcjTEeF123b6aFjSBZU0PsZKyykdLvtGHXddXhhIft+9VQSLc0Ul5ax\nrKGJ/bet5rl3F1NeXMiEkVFUc8MLL/DxeecDMOzc7zL09NMpKC1Nu//CAQMoHDAAb2qClhZKtt2W\nT136MwqrqnrsM4r0IX9kXTFvqwK4EcjmTD1G9KXgO+7+kpldy7pL3wC4u5tZTp9L7oljSOZU0Puh\n2jUJ/v5BA2VFBew9tpQRg6KThiEVxVxz/C4sWdnEoPIiBlcUkWxqov6JJ9duu3LqVAaf8JV2C3qr\n4i22YIubbwKgsAdjXUX6inCvfIeNrDY+Ho+PqampmdPJ3X8EfOTuL4X39xIV9IVmNsLd54dL2ovC\n8vYiTD8GDmjT/kxo3zzN+vTQMSQLuoeeQ4lVq2iprSXZ3LzxlXvQzI/rGDOsgoden8/N/5zNwpR7\n5UMrS9juUwMYPrCU4sJCCoqLGXLySVhREZgx5NRTKahs74RjfbGhQ4kNHYoGrko/NRJo2sg6TWG9\nTnH3BcCHZrZdaDqIKM0sNcK0bbTpKWEk+kSgLlw2fwI41MwGh4FqhwJPhGX1ZjYxjDw/hfQxqbk6\nhmRBZ+g50lJby5IbbmD1tFcZ9u1vU7H3xD4zycqwgSWccsvLLFrRyLPvLmb3LQfzxZ3b/zeldMIE\ntp7yJLhTMGAABcXFPdhbkU3WJ8DG/mcpDutl4zvAHSFLfDZwOtFJ2t1mdiYwDzg+rPsY8AXgfWBV\nWBd3X2ZmlxNlkwNc5u7LwutvAbcR3ff/e/gDcGUPHEOyoKlfc2T1jBk0vvceTXPmsmzyZLZ+4vEu\nxZZ2p/nLV3PMDf9aO4r9j1/bjc9PGNFr/WlOJEm6UxIr7LU+iGQgm/jUaUT3utszraamJuvR7iKp\ndMk9BxIrVrB62jSW/P56EkuXMvJXV0MXLju3JJKsbur6KPHahiZemr2UZauamHzGnhw6fjjnHTyO\nPUZvmKPeU5asbOTyR2by/bvf4JPlq3utHyI58g2goZ1lDcDZPdgXyXM5O0M3s1LgOaIM4Bhwr7tf\nYmZjgL8BQ4ketfiau3d4n2lTO0Nv/uQT3j/woLXvR99zNyXbb09BFmEsyxoa+dPzc/hg8UouOmwH\nRg8rz+qedHNLkhuf+4DfPPkuAFf+1058aZeRlBQVECtI/70u2dREYvlyAArKynKSef6bJ9/hd0+9\nD8DeY4fyh5N3Y1C5LulLn5TVt/Lw6NqNwHiie+bFRPe7z87ykTWRtHJ5D70RONDdV5pZEfBPM/s7\ncAFwjbv/zcxuBM4kzCiUN2IxCioqSDY0gBmFgwZnVcwBps5axA3PfADAuwtXcvc3JlI9oOMR5uk0\ntiR4ec6yte8fn7GAI3YZSTLpLFixhsUrGxlRVcqwypK166xYupzYmtU0PPwgBeUVVB19FEXV1Vl9\njvY0J9YlSbYkk/T9G0AinROKdjyMeh8JfJLFqHaRjcpZQQ8z/7ROD1YU/jhwIHBiaJ8MXEqeFfTY\n4MGMvutvLH/wQQZ89rMUDhm88Y3akUiuK3EtySTZJjiWF8c47+BxvDJ3GYZx7kHjqCgu5MNlqzj0\nf55jTXOSvcYM5oaTd2dQWTHvL1rJlY/PY9zQUk7dcx/qv34aifo6Njv3XCzWfX9tvr7vWJasaGRp\nQzOXHzWBwTo7lzwVirgKueRMTke5m1kh0WX1bYDrgQ+A5e7eElbJy5mBrKiIkm22Yfj3v9/pbZsb\nEzStaSFWXEhJWYxDxg9n1vx6Zi9p4KdHjGdoxYYFb1VTC8tXNdOcSFJVVpT2knVBgbHTqCqe+8Hn\nABhUXsTC+jW8PLeWNc3RWfJLc2pJJJxlDY187ZaXWLSikaeBHQ4fyx6HHkrzxx/jiUS3FvRhA0q4\n/OidSCSTVJbmPh9eRCRf5bSgu3sC2NXMBgEPANtnuq2ZTSKa4J8tt9wyNx3sYxpXNTPzhfm8+dSH\njN55GHt+aSxDK0v48Rd2oCmRZEA7Be+ND5dz8i0vk0g6FxyyLV/dc4u0l+WLY4VsNjAaSV6/ppmf\nPPgW3/7cNoysKuWTujV8dc8tKY4V0NQSjToHOGzHTzFhu1HM/Oq32GWbT1FQUrLBfruqrLgQ0Ah3\nEZGu6JHn0N19uZk9DexNNGF/LJyltzszkLvfBNwE0aC4nuhnb2tc3cK/7osGiL317MdM2G8kZZVF\nlBQVUlKUvuAlk869r3609tL8/73xCeNHDGTi2MIOz3gLDIoLC7jwvulcfdwuDK4oYkRVKYPKi0kk\nkkw+fU+uevxtzj94HEf87gWaEknGDvuIu8/ee7377CIi0jfk7LE1M6sOZ+aYWRlwCFG839PAcWG1\n1FmG+r3CwgKKSqLCbQbFZdH3LW9poXnRIlZPn75BFKkZHLvbSAoLonvr/7XbKOYuXUlzouPvQJUl\nRVx61AT2GjuEf76/mOEDSxlSUbK2H+NHDuT3J+7GsoYmmsLAtdlLGtYbxCYiIn1HLs/QRwCTw330\nAuBud3/EzGYCfzOzK4DXCPF//VXLsmWsmTGDgvIKiseO5dgf7s7bLy5g7C7DKK2MzrBbli5j9pe+\nRLK+npJtx7HlrbcSGzYMgNrGWt6sf4QHv3MITYkkjclaRg/cjkHlG78fvdmAUi790gQguseeyswY\nWFbEuOED2GlUFdM/rmPS/mMpL9rwr0xTS4Llq5sxYFhliaZ6FRHpBbkc5f4m8Ok07bOJQu77vZbl\ny5n/k5+w8qmnAag+7zyGnHYa+xy7zXrrNS+YT7K+HoDGd9+LksyCmMV4Y8krXP/mNQD8MH4hE0dO\nwFYujFYoHwqFHVx6L+i4+A6rLOG20/cgkXRKigqoKlt/Xy2JJK/9ZzlnTq5hQGmMv541kdHDMpvr\nXUREuo9miutNzc2sfO75tW9X/GMKyVWr1r5fvaKJlcvXwBZbUzIhOpOu/PyhWErS2cCSgVy2z2Wc\nMeEMLtzjQo4Y+wUKPpkG1+0Kv9sdFrwJXZw8aGhlCZsNLKWqbMPR83Wrm7n0/2awsrGF+XVr+P3T\n74XH60REpCcpnKUXWVERlZ/7HCunTAFgwOcPo6CiHIBV9U08ftN05r9fx7g9hrPvzbcRW1NPQWkp\nsTZxpNXl1Zwfj/LKWV0LUy+D5jCN6tO/gC/fBiXdP8sbQHGsgHGbVTJr/goAJoysanfmORERyR0V\n9F5UOGgQI352KY0nnUhBeQVFW26x9rGwVSuamP9+HQDvvbKQiUeNpXxk+kQ0d1933zpWCqN2h3kv\nRO9HxaGw8zPLZWpAaRGXfGkC+4+rZmBZEfHRyj4XEekNKui9LDZkCLGJEzdoL6soori0kKY1CSoH\nl1BYtOFZ77KGJh56/WPeX7iSM/cbw+ihFRQUlcE+58GWE6GgEDbfA2JhcF1TE4mWZorLOj8ffOPq\nFlavaKJpTYIBQ0opq1x3L31oZQnHxbfo5CcXEZHupPjUPiqRSLKqronaBQ0MHVlJxaANn/2+6bkP\n+MVjbwMwuLyIJ87bn80Gpj8bX1Vfx8sP3MPiD+fw2ZPPZNiWW1FQkPlkLh/OWsbD170ODjsftDl7\nfWksxaX6Pij9ih7fkD5NNzv7qMLCAioGlRAbWc59sz7h7fn1rG5qWbu8JZFk1vwVmMGkvUfz6y/t\nSGEHCasfzniTaY89yH+mv8H9V17Kqrq6TvVn7vQltCanfDhjGS1NGvgmItKX6BSrD1uyspEjfvdP\nljU0Efv/9u48PKryXuD49zf7TGYyIQmGsCZEiIBsAooiikvVagXFutIW61b10Wuv9aq13tbWulzb\n2lZta61atdfrhhvWVqpP2RQrymIRWWQnEAiQPZntzLz3jxmBQBYiCTMMv8/z5GHmvO85551f5smP\nc8672IR5t5+G15X8ld1UGJsAABSqSURBVDnsNr536kBG98plYAOseWkdcmwdx59XysoPKykqDZLf\nOweXx47T7cC+12pvdoez07fch53cmxULKolF4ow+qz8uj07VqpRSmUQTegazEoaSAh8/mzwMAy2u\n0AHKevrp5XDy/N0fArDi/UoGjSli8axNxCJxJt8yiopVNYw6sx99yocy8YorqdqwjgmXTMMXzGv3\n3CYWw0qthW7PyyNY5GPaT8eTiBvcPgcOlyZ0pZTKJJrQM0QsEicWieN023dP/5rrcXDP5GHc+Pxi\nRODp6eNa7OO023A6bAQKPLh9Dup3hnB5HcRTq6c17AqzfukOeg0MUjqikHHnTyURj7e4Wm+NiccJ\nr1jBpquuBmPo99STeIcPJyeoc7grpVSm0mfo3cSqqyO0fDnNixZh1dS0WzfcFGPj8l0sfW8Tny/Y\nSrgpliwQ4dfvfkFFTYjN1SEemrVqv6t0pwfOu7E/Q09s4OI7j8Fmh5w8N6UjC8nt6aW2KoTLbScW\nsYhbFqHGBppqa2ivM2S8oYHtDzxAorGRRFMT2+9/gHhqpjqllFKZSa/Qu0nje+9R+aO7cRQVUXjz\nTQS/8Q1sntZ7oMcicRp2hgg3xigdWUgsbOHJceKyJydtmb2qCoBBR/lx2Fv+HyzSWM9f7riZeCyG\nL5jHtx98hAtuHY0Vi/PZnC1M+ObR+IIuwo0Rdm5aSXVTGE9xCT0SLnr43bufyQPE6+sRpxNxOnGW\nlBBashQAV0kJ4tp/ljillFKZQxN6N0jEYjQtWIDvjDPwXHc1a79YycCdOwj2Ksbu2D/kOzbWs+C1\ntQBs+ryai24fAyRnYbt+0kCGFAcQEU4Z3BPnPgm9saaaeCx5Rd9cV0vciuH0+vn47fUARJstdm5u\npKCPsHnjRuZJGU/+dSlOu/DqDScxom8eJpEgum4d2+79Oa5+/eh5639SdNttuMuOhkSCvIumYs/p\n+vnZrR07sGprsQeDOAoKELs+l1dKqa9KE3o3sDmdFFxzDWGb8Oy9d2HFoiyY+SpX/eaP+PMLALBi\nMSJNjThcLiLNe26jh5tiyF4LpuTnuLnwuL5tnit4VBG9y4eyddXnDJv0NVxeL96Ai/EXlBFptti2\nro4Nn++k+OgBDDzxdO56ZjFep53++T7mrq5iRN884tXVVNz8H0TXr6f5o49wDxlC/rQrKLzm6m6L\nUaxqBxsuvRSrshJbIEDpjBm4BvTvtvMppVS204TeTdyDBhGq2oYVS66MFouEsVJX0rFIhM3LP2Xu\nX56mqGwQp0y7mpKRhVRvaeKUywbj8bX9a4mEYljRBHaHDU+OE18wjym3/SjZ2c3hxBtIztmeE3Tj\n9NgZ4CtgwLEFfP7BVhqaY9xw8kCG9QuybEs9J5UVEInFsYsg7j0d3ozTTTRi4XJ339cjvHIFVmUl\nAImGBupnzaLwumu77XxKKZXtNKF3E3E48ARyGXXO+az6YC7HTvoabl9y4ZVIcxMzH36AeCxG9dYK\njjlxImdOH03cSuD2OrA7W7/1HGqMsvidjaxYUEn/YQWcevlgjNOGLzfYan2X24HL7aCxJszCmesR\ngfN+PI7LnllIZV0Yt8PG7NsmIQ4fjj89h3fFMmTpEsJlY/CE492a0F19+4HI7pXgPEOO6bZzKaXU\nkUATejfyBnKZcMm3OOGCi3G63bh9yefQIoIvN0jDrp0A+PLycPvaH0oGEGm2WPreZgBsfgfvb6jm\nlcUVXDymLycMLMDfRgK22ZND2xp2hQk3J5c5BYhYCSrrQlz73CdUN8W446xyxo+czBeztnH+4NYX\ngukqjqN60v/pp6h97XX8p0zEM2JEt55PKaWynSb0g1RXtZ3Ff3uTXkeXUzrqODz+lsuUOkIhHMZg\n8+656s7J68Gl9zzIv9+bRe/Bx5DX68CSp8NpQ2yCSRgGjC/i7Mc/IGFg1vJtfHDH6W0mdF+ui6m3\nHceW1bUEAy6mjx/Acx9t5MSBBXicdqpTw+ReXbqF8y49jvJRR+ENtN+r3dpVTaKpEfF4cRQWIJ1c\nMtXu95Nz4on4xo1DWukoqJRSqnP0L+lBaKqt4ZV776KuajsAl/zkAfoNHb67PLplC5u+8x2sqh30\n/tWv8J8ycffQteBRvZh4xfROnc/tczDl+6NYPn8rLq+DRGoouTGQ6GCRHX8PD/2H5vPSfQs567Q+\nTLvqRPxBN1Xh5LSyVsJw0XF96NnTh7eDWeCs6mq23vVDmubOw96jB6WvvYqzuLhTn+VLmsyVUqpr\n6F/Tg2CMIdTQsPt9aJ/JV2pfmUFsy1YAtt9/P77RL7c5Fv1AON0O+gzuQa+yIM2xOI9cNpoXP97E\nJWP7EfR2fMsegcK+AZa+vh53joPL7j6evLwA8+84jaiVIOh1dpjMAWKhME1z5wEQr6khtGzZV07o\nSimluoYm9IPg8Qe44L/uZvazf6LngFL6Dj22Rbl3+J6rdXd5OTi7ZnIWu91GwG7j3OG9mHRMT3xO\n+34TzrTG63dx+vQhREMWTpcdb64Lm03wuQ78axCx4mysj+EZPpzwsmWI14t7yJCD+ThKKaW6gK6H\nfpDi8TiRxgbsTtfuXuxfsurqiH6xhtj2beSMH4+joCBNrWypuT5KNGzhdNvx5bo6tfKaFU/wu9lr\nOKu3i5z6avzFRfiOKsDj/ep3HpQ6TOh66Cqj6RX6QbLb7W2uXOYIBnGMHdPpYyYSCYwx2O12rGic\n5voo9bvC5Bfn4Ms9uKv85voos578jK2ra/Hlurj4rnH48/aMQY/FE/vNRrc3h93Gt8YPYMaiChIm\nl4vzC/F4ddEWpZRKN03oGaa5rpaFb84g3NjIhMu/TTzq5YWffUQibujZP8D5N49stwd6wrJI1NYi\nLjf23MB+5VYsztbVyWVRm+uj7KpoxJ/nJh5P8MWORv4wZy0nlRVw9rBe5PlaP0+B3833Ti3rmg+s\nlFKqS2hCzyAmkWDR22+w6O03gOT48YFjLyURTz4W2bGpYffr1li1tdTPnEn1/z6Pq6SE4p/es19n\nNYfTRkEfP7u2NOLy2MnvnRwbv6s5yiWPf0h92OLNpVs5pldumwldKaVU5tGEnm6NVWASWA4/MStB\npLl5d1Ht9kqKSnN3Twoz4vS+2J1t3w6PbtjA9vsfACC2aRNb7/whfR75LY7gnpnkfLluJt8ykqba\nKL5cF55Aqne8SU4086VQLA5ATVOUpqiFy2HjqIA+J1dKqUylCT2dajfD8xdBYxVm8h+ZP2c5x555\nLo3VO4k0N3PmNTcRyPfyzdvHEI8bnG47npzWh6dZ0QiR1atbbIusXQvR6H51fblufLktn3sHfU7+\nfOU4fvXuasaV9KC8KEBtc5SHZq3ihYWbKA56eP3GCfQKalJXSqlMpAk9nRY8CjtWAeCcdRuDj/8F\nM395HyPO/DoOp5Paqkp69CrGF2y705kVjbJt7WqW/H0mZ1x4OeLxYMLJqV0DU6cS9ea0+CXHYzHC\nTY3ELQdis+MNeHA4bbgddk4ozeep6WNxO+14nXaq6sO8sHATAJV1YT7bWqcJXSmlMpQm9HQqHLT7\npcntR6ipmabaGj6c8X8ABAp6Mu3+h8nJ69HmIUKN9cz4+d3ELYtELMbZb75B7d/fxT2knE99vRgQ\nTlDq31O/fkcVkRDMfr6C/kNzKR+fjz/Pj8efg91ua/Hc3GEXxg/M51/rqvE67ZQX7d/JTimlVGbQ\nhJ5Ox04lJi5M7WZCZZOZ+9AvWxQ37NqBFY10eJgvpxJYs/hjxkz5Fp/GxzGspITvPv4+82/v06Lu\nri2b2VERpPyEHoTqlvD6g/9g8AkncfwFF+MN5Laom5/j5rErjmN7fZiCHDcF/gOYjU4ppVRaaEJP\nk0QoBI4AG8wgln2yni3P/5xoqLlFHREbtg7mOvfkBLjgzp+w+K+v0//YsezakmD7hnrGeOz88weT\nsNuEWDyO056c0rVnSSmW1UygwM6L//0XAD756+sMP/3s/RI6QKHfTaFfx5krpVSm04R+qESaILQL\nmqtJ+IqovPeXiD9A0U038Na/F2MSif12GTj2eFweXysH28PpdhMcOATfOXn07V3A5jX1fPPOsWyJ\nRLnwsQXYRHjh2vGM7Jec/Mbfo4C+5TlYsRAOtxsrEsFmt+M8iDnmlVJKpV/n1rxUX92u1fDIKHji\nVHjvJ3iHlFH30ktYnyzi3JtvQ6TlryKvqJgzvnv9ftPJtiboczOspIh/VdZTPLQHxmfnwXdWEY4l\naI7GeWz2GkJRCwC7w4E/30+goAfT7nuY8RddxuX3/mK/ZV+VUkodXvQK/VBZNxcSybHdto1zcY+e\nDEB0yacM/P4tXPPok6xcMI/6HVWUjh5Lr7JB7XaG25vdJvTP99E/P5n8Y/EEJw4sYO7qHQCcVFaA\ny9FyFTW7w0FhvwEU9hvQVZ9QKaVUGuniLIdK9Xp48nRorsacdR91Ffk0LVlG0Q9+gKOwsMtPV9Mc\nZf3OJuwiDCjw6axvSh08XZxFZbRuS+gi0g94DigCDPCEMea3IpIPvASUABuAS4wxNe0d63BO6Il4\nHCsawelyI807IGGBO0A84URstg7XR68PxVi6uZZPK2qZelxf+uR5v1I74k1NRFasoOGfswlOmYyr\ntBSbS5O8Up2gCV1ltO5M6MVAsTFmsYgEgEXABcCVQLUx5kERuRPoYYy5o71jHa4JPdTYwOoP32ft\nJx8xbvJUigeV43B1rsf4kk01XPj7BQD0z/fx2o0nfaVe59HNFaw96ywwBvF4KJv1Ds6iok4fR6kj\nmCZ0ldG6rVOcMabSGLM49boBWAH0AaYAz6aqPUsyyWelpppq5j3/Z9x+P8vmvEu4sbHTx9hWF979\nOpEwuKJNfDbnPTYu+5RQY0OLutFt2wh9tpyGf84mVlXVoixeX7d7wLoJhzF7TQkbb2rCqqnBWFar\nbUjEYsS2bye8ciXWrl2d/gxKKaW63yHpFCciJcBo4COgyBhTmSraRvKWfFYSm41z7/kxL1fOxCEO\nxrni+DveDYBoOEQsEmFCHzfvXH8c0ZiD3rluFrz4NMvnvgfAebfczjEnnQKAVVdHdP16Nl91NRiD\nZ8QI+j3+Bxz5+QA4i4vJnTKFprlzybvsMuyBZK92q7qaqod/TWTVKop+dBeeYcOwOVtOIGNVVrJu\n8hRMOEzOxIn0fuh/cPQ4sA57SimlDo1u7xQnIn5gLnCfMeY1Eak1xuTtVV5jjNkvO4jIdcB1qbfl\nwKoOThUE6jrZvAPZp706bZXtu721entv27e8ENjZQbs6K5Pj09q29t53R3zaaldX7HMkx+hA63c2\nRumIz05jzDmd3EepQ8cY020/gBOYBdy617ZVJJ+tAxQDq7roXE90xz7t1WmrbN/trdXbe1sr9T/p\nht9FxsbnQGK2T7y6PD4ao+6J0YHW72yMMjU++qM/6fzptmfoIiLAU8AKY8zDexXNBKanXk8H3uyi\nU77VTfu0V6etsn23t1bvrQ7Ku1omx6e1bQcSw66mMepYZ89xoPU7G6NMjY9SadOdvdxPBuYDy4Av\n5zW9i+Rz9JeB/sBGksPWqrulEYcpEfnEGDM23e3IVBqfjmmM2qfxUdmo2zrFGWPep+1hHmd013mz\nxBPpbkCG0/h0TGPUPo2PyjqHxUxxSimllGqfLs6ilFJKZQFN6EoppVQW0ISulFJKZQFN6BlORIaI\nyOMiMkNEbkh3ezKViOSIyCci8o10tyUTicgkEZmf+i5NSnd7Mo2I2ETkPhF5VESmd7yHUplHE3oa\niMjTIlIlIp/ts/0cEVklImtSC9dgjFlhjLkeuASYkI72pkNnYpRyB8nhkEeMTsbIAI2AB6g41G1N\nh07GZwrQF4hxhMRHZR9N6OnxDNBiCkkRsQO/A74ODAUuF5GhqbLJwNvA3w5tM9PqGQ4wRiLyNeBz\noGrfg2S5Zzjw79F8Y8zXSf7H56eHuJ3p8gwHHp9yYIEx5lZA74Spw5Im9DQwxswD9p1M53hgjTFm\nnTEmCrxI8qoBY8zM1B/jaYe2penTyRhNAsYDVwDXisgR8b3uTIyMMV9O7lQDdH793cNQJ79DFSRj\nAxA/dK1UquscktXW1AHpA2ze630FcELqeedUkn+Ej6Qr9Na0GiNjzE0AInIlyQU0Eq3se6Ro63s0\nFTgbyAMeS0fDMkSr8QF+CzwqIhOBeelomFIHSxN6hjPGzAHmpLkZhwVjzDPpbkOmMsa8BryW7nZk\nKmNMM3B1utuh1ME4Im5NHia2AP32et83tU3toTHqmMaofRoflbU0oWeOj4FBIlIqIi7gMpIr06k9\nNEYd0xi1T+OjspYm9DQQkReAD4FyEakQkauNMRZwE8n141cALxtjlqeznemkMeqYxqh9Gh91pNHF\nWZRSSqksoFfoSimlVBbQhK6UUkplAU3oSimlVBbQhK6UUkplAU3oSimlVBbQhK6UUkplAU3oKuOJ\nyIJ0t0EppTKdjkNXSimlsoBeoauMJyKNqX8nicgcEZkhIitF5HkRkVTZOBFZICKfishCEQmIiEdE\n/iwiy0RkiYiclqp7pYi8ISLvisgGEblJRG5N1fmXiOSn6pWJyDsiskhE5ovIMemLglJKtU9XW1OH\nm9HAMGAr8AEwQUQWAi8BlxpjPhaRXCAE3AIYY8zwVDL+h4gMTh3n2NSxPMAa4A5jzGgR+TXwHeA3\nwBPA9caYL0TkBOD3wOmH7JMqpVQnaEJXh5uFxpgKABFZCpQAdUClMeZjAGNMfar8ZODR1LaVIrIR\n+DKhzzbGNAANIlIHvJXavgwYISJ+4CTgldRNAEiuSa+UUhlJE7o63ET2eh3nq3+H9z5OYq/3idQx\nbUCtMWbUVzy+UkodUvoMXWWDVUCxiIwDSD0/dwDzgWmpbYOB/qm6HUpd5a8XkYtT+4uIjOyOxiul\nVFfQhK4Oe8aYKHAp8KiIfAq8S/LZ+O8Bm4gsI/mM/UpjTKTtI+1nGnB16pjLgSld23KllOo6OmxN\nKaWUygJ6ha6UUkplAU3oSimlVBbQhK6UUkplAU3oSimlVBbQhK6UUkplAU3oSimlVBbQhK6UUkpl\nAU3oSimlVBb4fymipbYlqAm6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd83WX5//HXldWsNmnTCQVaZtkr\nLEEEyhYZyhK+MoUvgoDiAMEfoqKCiogCfkXEFmSPApZZCigySsPoYEmljJZC07Rpm6YZJ+f6/fG5\n056mSXoyPhkn7+fj0UfOuT/rPmkfvc59f+7PdZm7IyIiIv1bVm93QERERLpOAV1ERCQDKKCLiIhk\nAAV0ERGRDKCALiIikgEU0EVERDJArAHdzC42s7lm9paZfSe0DTOzaWb2fvg5NM4+iIiIDASxBXQz\n2wE4B9gT2Bk4ysy2BC4Dprv7VsD08F5ERES6IM4R+rbADHevdfcE8E/gq8AxwOSwz2Tg2Bj7ICIi\nMiDEGdDnAl80szIzKwSOBDYBRrn7orDPZ8CoGPsgIiIyIOTEdWJ3f8fMrgWeBlYBbwJNLfZxM2s1\n96yZnQucC7Dddtvt/tZbb8XVVRGRdFhvd0CkPbEuinP3v7r77u6+P7AM+A/wuZmNAQg/F7dx7C3u\nXu7u5QUFBXF2U0REpN+Le5X7yPBzU6L753cBjwKnh11OBx6Jsw8iIiIDQWxT7sGDZlYGNAIXuHu1\nmV0D3GdmZwMfASfG3AcREZGMF2tAd/cvttJWBUyM87oiIiIDjTLFiYiIZAAFdBERkQyggC4iIpIB\nFNBFREQygAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVE\nRDKAArqIiEgGUEAXERHJAAroIiIiGUABXUREJAMooIuIiGQABXQREZEMoIAuIiKSARTQRUREMoAC\nuoiISAZQQBcREckACugiIiIZQAFdREQkAyigi4iIZAAFdBERkQyggC4iIpIBFNBFREQygAK6iIhI\nBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDKCALiIikgFiDehm9l0ze8vM5prZ3WaW\nb2bjzWyGmc0zs3vNLC/OPoiIiAwEsQV0M9sYuAgod/cdgGzgZOBa4Hp33xJYBpwdVx9EREQGirin\n3HOAAjPLAQqBRcBBwANh+2Tg2Jj7ICIikvFiC+juvhD4LfAxUSBfDrwGVLt7Iuy2ANg4rj6IiIgM\nFHFOuQ8FjgHGAxsBRcDhHTj+XDOrMLOKysrKmHopIiKSGeKccj8YmO/ule7eCDwE7AuUhil4gLHA\nwtYOdvdb3L3c3ctHjBgRYzdFRET6vzgD+sfA3mZWaGYGTATeBp4Djg/7nA48EmMfREREBoQ476HP\nIFr89jowJ1zrFuBS4BIzmweUAX+Nqw8iIiIDhbl7b/dhg8rLy72ioqK3uyEiA5v1dgdE2qNMcSIi\nIhlAAV1ERCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVERDKAArqIiEgGUEAXERHJAAroIiIiGUAB\nXUREJAMooIuIiGQABXQREZEMoIAuIiKSARTQRUREMoACuoiISAZQQBcREckACugiIiIZQAFdREQk\nAyigi4iIZAAFdBERkQyggC4iIpIBFNBFREQygAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCL\niIhkAAV0ERGRDKCALiIikgEU0EVEBiAzO9rMLuvtfkj3yentDoiISNeYmQHm7sl0j3H3R4FH4+uV\n9DSN0EVE+iEzG2dm75nZ7cBc4Btm9rKZvW5m95tZcdjvSDN718xeM7M/mNnU0H6Gmd2Ycq5nzWy2\nmU03s01D+6RwzEtm9oGZHd9bn1c2TAFdRKT/2gq4GfgScDZwsLvvBlQAl5hZPvBn4Ah33x0Y0cZ5\n/ghMdvedgDuBP6RsGwPsBxwFXBPLp5BuoYAuItJ/feTurwB7A9sBL5rZm8DpwGbABOADd58f9r+7\njfPsA9wVXt9BFMCbPezuSXd/GxjV3R9Auk9s99DNbBvg3pSmzYErgdtD+zjgQ+BEd18WVz9ERDLY\nqvDTgGnu/vXUjWa2Szdcoz71lN1wPolJbCN0d3/P3Xdx912A3YFaYApwGTDd3bcCpof3IiLSea8A\n+5rZlgBmVmRmWwPvAZub2biw30ltHP8ScHJ4fSrwQnxdlbj01JT7ROC/7v4RcAwwObRPBo7toT6I\niGQkd68EzgDuNrPZwMvABHdfDZwPPGlmrwErgeWtnOJC4Mxw7DeAi3uk49KtzN3jv4jZbcDr7n6j\nmVW7e2loN2BZ8/u2lJeXe0VFRez9FBFpR7+cbjazYnevCf/f3gS87+7X93a/pPvFPkI3szzgaOD+\nlts8+jbR6jcKMzvXzCrMrKKysjLmXoqIZKxzwkK5t4ASolXvkoFiH6Gb2THABe5+aHj/HnCAuy8y\nszHA8+6+TXvn0AhdRPqAfjlCl4GjJ+6hf511H5V4lOiRCsLPR3qgDyIiIhkt1oBuZkXAIcBDKc3X\nAIeY2fvAwShRgYiISJfFmsvd3VcBZS3aqohWvYuIiEg3UaY4ERGRDKCALiIirTKzl3q7D5I+BXQR\nEVmHmeUAuPsXersvkj4FdBGRmI277LFTxl322IfjLnssGX6e0tVzmtnDoSTqW2Z2bmirMbPfhLZn\nzGxPM3s+lD49OuyTHfaZGcql/m9oP8DMXjCzR4G3m8+Xcr1LzWyOmc0ys2tC2znhPLPM7EEzK+zq\n55LOU0AXEYlRCN5/Iap+ZuHnX7ohqJ8VSqKWAxeZWRlQBDzr7tsTpXm9muhJo+OAn4XjzgaWu/se\nwB5EiWfGh227ARe7+9apFzKzI4jSdu/l7jsDvw6bHnL3PULbO+Hc0ktiXeUuIiL8Emg5ci0M7Xet\nv3vaLjKz48LrTYhqozcAT4a2OUC9uzea2RyiCpcAhwI7mdnx4X1JyrGvppRaTXUw8Dd3rwVw96Wh\nfQczuxooBYqBp7rweaSLFNBFROK1aQfbN8jMDiAKsvu4e62ZPQ/kA42+Nv1nklD61N2TzffFiWYJ\nLnT3p1o55yo6ZhJwrLvPMrMzgAM6+lmk+2jKXUQkXh93sD0dJUSFrWrNbAKwdweOfQr4lpnlApjZ\n1iEJWHumEVVjKwzHDAvtg4FF4VyndugTSLdTQBcRidflQG2LttrQ3llPAjlm9g5Rts1XOnDsrUSL\n3l43s7lExVrana119yeJ0nZXhEIv3w+b/h8wA3gReLdDn0C6XY+UT+0qFWcRkT6g08VZwgK4XxJN\ns38MXP7hNV/uyv1zkfUooIuIpEfV1qRP05S7iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCLiIhk\nAAV0ERGRDKCALiIyAIXqal9IeT8pJb97d1/rVjPbLo5zy1rK5S4iErerStZLLMNVy3s7scwBQA3w\nUtwXcvdvxn0N0QhdRCReUTBfr3xqaO8UMysys8dCHfK5ZnaSmU00szdCzfLbzGxQ2PdDMxseXpeH\n+ujjgPOA75rZm2b2xXDq/c3spVA/vc3RupkVm9l0M3s9XO+YtvoV2p83s/Lw+k9mVhFqtv+0s78D\nWZ8CuohIvNorn9pZhwOfuvvO7r4DUW73ScBJ7r4j0ezrt9o62N0/BP4PuN7dd3H3F8KmMcB+wFFE\nOeLbUgcc5+67AQcC15mZtdGvlq5w93JgJ+BLZrZTuh9a2qeALiISr24vn0pU6/wQM7s2jK7HAfPd\n/T9h+2Rg/06c92F3T7r728CodvYz4JdmNht4Btg47L9Ov9x9eSvHnmhmrwNvANsDurfeTRTQRUTi\n1e3lU0Pg3o0ogF4NHNvO7gnW/l+fv4FT16e8bi93/anACGB3d98F+BzIb9kvM7sy9SAzG09UqW2i\nu+8EPJZGnyRNCugiIvHq9vKpZrYRUOvufwd+A+wDjDOzLcMu3wD+GV5/COweXn8t5TQrieqZd0YJ\nsNjdG83sQKJ1Aa31a7cWxw0BVgHLzWwUcEQnry+t0Cp3EZE4XbX8Lq4qge5d5b4j8BszSwKNRPfL\nS4D7zSwHmEl0jxzgp8BfzeznwPMp5/gH8EBY0HZhB69/J/APM5sDVLC2Fnpr/VrD3WeZ2Rth/0+I\n6qhLN1H5VBGR9Kh8qvRpmnIXERHJAJpyFxGRVpnZjsAdLZrr3X2v3uiPtE8BXUREWuXuc4Bdersf\nkh5NuYuIiGQABXQREZEMoIAuIiKSARTQRUREMoACuohIBjOzq8zs+zGde00lt77IzEaY2YxQhe6L\nrWzPqDrtsa5yN7NS4FZgB8CBs4D3gHuJigl8CJzo7svi7IeISG/acfKO69VDn3P6nN6uh96rzCzH\n3RMxX2YiMKe1euxmlp1pddrjHqHfADzp7hOAnYF3gMuA6e6+FTA9vBcRyUghmK9XDz20d0ob9dDX\nq3uecsjOZvaymb1vZue0c94xZvavUCN9bvOodgM1zC9MqYs+Iey/Z7jeG6G++jah/Qwze9TMngWm\nt1NXfZyZvWNmfwnXfNrMCtrp9zlmNjP8Ph40s0Iz2wX4NXBM+DwFZlZjZteZ2SxgnxZ12g8P/Zhl\nZtPb+xx9VWwB3cxKiMr3/RXA3RvcvRo4hqi0H+Fne1WCRET6u56qh96enYCDiIq4XBmKqLTmFOCp\nUEFtZ+DN0N5eDfMloS76n4gqqUGUq/2L7r4rcCXrftbdgOPd/Uu0XVcdYCvgJnffHqhm3cIyLT3k\n7nu4e/PA8Wx3fzNc+95Q8301UATMCL+3fzcfbGYjiL50fS2c44Q0PkefE+eU+3igEvibme0MvAZc\nDIxy90Vhn89ov+auiEh/F1c99OvM7Fpgqru/sDYOtuqRENBWm9lzwJ7Aw63sNxO4zcxyiWqjNwf0\nE83sXKKYMYaohvnssO2h8PM14KvhdQkw2cy2IrrdmptyjWnuvjS8bq6rvj+QZG1ddYjquzdf/zWi\n27Rt2cHMrgZKgWLgqTb2awIebKV9b+Bf7j4fIKV/7X2OPifOKfccom9ifwrfblbRYnrdo8owrVaH\nMbNzwxRPRWVlZYzdFBGJVez10EPd8fbqnrf8f7bV/3fd/V9EM6sLgUlmdloaNcyba6g3sXaQ+HPg\nuTB78JUW+69Ked1qXfUW52157tZMAr7t7jsSVZdrq8Z6nbs3tXOeltr7HH1OnAF9AbDA3WeE9w8Q\n/QP83MzGQHS/Bljc2sHufou7l7t7+YgRI2LspohIrHqiHvputF33HKL7yPlmVgYcQDQSb+28mwGf\nu/tfiBY070bnapiXEH0pADhjA/utV1e9EwYDi8LMwqmdOP4VYP/w5QUzG5bSv3Q+R58QW0B398+A\nT1IWEUwE3gYeBU4PbacDj8TVBxGR3hZWs58DfEQ0Mv4IOKeLq9x3BF41szeBnwBXE41MbzCzCqIR\nbarZwHNEgevn7v5pG+c9AGiuWX4ScIO7zwKaa5jfRXo1zH8N/Cqcp72R9Z1Aeairfhpr66p31P8D\nZoS+dfgc7l4JnAs8FBbM3Rs2pfs5+oRY66GHVYa3AnnAB8CZRF8i7iO6f/QR0WNrS9s8CaqHLiJ9\nguqhS58W6zeOsKChvJVNE+O8roiIyECTVkAPS/rPIVpluOYYdz8rnm6JiEhc+mudczO7Cdi3RfMN\n7v633uhPX5PuCP0R4AXgGda/NyMiIv1If61z7u4X9HYf+rJ0A3qhu18aa09ERESk09Jd5T7VzI6M\ntSciIiLSaekG9IuJgvpqM1thZivNbEWcHRMREZH0pTXl7u6D4+6IiIiIdF7aiWXMbGioPLN/8584\nOyYiIgOXmZWa2fmdPLbb6rSb2c/M7ODuOFfc0n1s7ZtE0+5jiarv7A28TFS9R0RE2vHOhG3Xq4e+\n7bvv9Eo9dOuZOuTdoRQ4H7i55Yae/AzufmVPXKc7dOQe+h7AR+5+ILArUTk7ERFpRwjm69VDD+2d\nZmb/Y2avhlrffzazbDOrSdl+vJlNCq8nmdn/mdkM4NdmNszMHjaz2Wb2SnM5VDO7yszusFZqp5vZ\nD0LN8dm2fk30ln07Lew3y8zuCG0jQq3ymeHPvinXvC3UJv/AzC4Kp7kG2CJ8vt+Y2QFm9oKZPUqU\nRpzwGV6zqGb6uR343a13XPj9TbKoDvwcM/tuyu/u+PD6ytD3uWZ2S0qp1z4h3cfW6ty9zswws0Hu\n/q718ULvIiJ9RHv10Ds1SjezbYlyre8bCpvczIaLkowFvuDuTWb2R+ANdz/WzA4Cbmftc+k7Ec3C\nFgFvmNljwA5E9cn3JPpS8qiZ7R+qs7Xs2/bAj8O1lqQUOrkBuN7d/21mmxKVON02bJtAVA99MPCe\nmf2JqDrnDqEKG2Z2AFGxmB2ay5wCZ7n7UjMrAGaa2YPuXpXGr3C944gSp20cKqthZqWtHHeju/8s\nbL8DOAr4RxrX6xHpBvQF4cM9DEwzs2VEedhFOqxpxQpq/vlP6v/7AcNO+wY5w4Zt+CCR/iuOeugT\niSqrzQyDxALaqFyZ4v6U0qH7ESqyufuzZlZmZkPCttZqp+8HHEpUpAWimuNbAesFdKJbsfe7+5Jw\n/uZaHQcD26UMaoeYWXF4/Zi71wP1ZraYtTXRW3o1JZgDXGRmx4XXm4Q+pRPQWzvuPWDz8GXnMeDp\nVo470Mx+SPSFbBjwFv0toLt78we/KvwFlwBPxtYryWjJmho+/cEPASjYaUcGH6SlGJLRPqb1sqCd\nrodONEqe7O4/WqfR7Hspb1vW7l5FelqrnW7Ar9z9zx3q5bqygL3dvS61MQT4dGufr/kMYcR+MLCP\nu9ea2fOkUa+8rePcfZmZ7QwcBpwHnAiclXJcPtH9/HJ3/8TMrkrnej2pI6vcdwv3NnYiqnPeEF+3\nJJPZoEEU7rUXuRtvxKBtJvR2d0Ti1u310IHpwPFmNhKi+t0Wapmb2bZmlgUc187xLxCm6EOAW+Lu\nzblFWqud/hRwVvOI2sw2br52K54FTgjHp9YWfxq4sHkni6pxtmcl0RR8W0qAZSEoTyC6TZCOVo+z\naFV8lrs/SHTLYLcWxzUH7yXh93B8mtfrMemucr8SOAF4KDT9zczud/erY+uZZKycsjI2/v310NRE\ndllZb3dHJFbbvvvOXe9M2Ba6cZW7u79tZj8Gng7BuxG4gOi+81SgEqggmhpvzVXAbWY2m+jLxekp\n25prpw9nbe30T8N9+5fDiLoG+B9ameZ397fM7BfAP82siWia/gzgIuCmcM0coun689r5jFVm9qKZ\nzQWeIJoGT/UkcJ6ZvUM0Xf5KW+dK87iNiWJb80B3ndkPd682s78Ac4HPiL7o9Clp1UM3s/eAnZun\nSsJCgjfdvUcWxqkeuoj0AX1qRXMcwjRyjbv/trf7Ih2X7qK4T4mmG5rvfQwCFsbSIxmw6latIlFf\nR1ZODoVDSnq7OyIi/Uq6AX058JaZTSNaIHEI8KqZ/QHA3S9q72CRDWlqauL9V1/i6f+7ga322pdD\nzrmAgsFDNnygiHQbd78q3X3DPfLprWyamOajY7Hq6/2LQ7oBfUr40+z57u+KDGTJRIL5r0e3pD6Z\nO4tkoj8kshIZuEJQ7LM11ft6/+KQ7mNrk5tfm9lQYBN3nx1br2TAyR00iANOP4fBZcOZsN+XGFSs\nekAiIh2R7qK454Gjib4AvEa0svFFd78k1t4FWhQnIn1Axi+Kk/4t3efQS8Izil8Fbnf3vYgezBcR\nEZE+IN2AnmNmY4gy50yNsT8iItJNzOxoM7usjW01bbSnFiN53szK4+xjW8xsFzM7sgeuc3nK63Hh\nufeunnOEmc0wszfM7IutbL/VzLbr6nVaSjeg/4woU9B/3X2mmW0OvN/dnRERke7j7o+6+zW93Y9O\n2gWILaBbJIuuZexry0Rgjrvv6u4vtLhutrt/093f7u6LphXQ3f1+d9/J3b8V3n/g7l/r7s6IiGSi\nm8579pSbznv2w5vOezYZfnapdCqsGU2+G0bU/zGzO83s4JBd7X0z29PMzjCzG8P+4y0qizrHzK5O\nOY+Z2Y1m9p6ZPQO0mtLVzA4Nx79uZvenFFZpbd/dzeyfFpUofSrM8GJm51hUfnSWRaVUC0P7CRaV\nJJ1lZv8yszyigeRJFpVPPamN67RVehUzuyScc66ZfSfld/aemd1OlPHtr0BBuMad4dBsM/uLRaVV\nnw6J1Nr6nOt9npDS9tdEKXTfNLMCM6sxs+vMbBawT+rMh5kdHn6ns8xsemjbM/yu3zCzlyzN6qZp\nBXQz29rMpjdPRZjZThalHRQRkXaE4L1ePfTuCOrAlsB1ROVHJwCnEFVG+z7rjzxvAP7k7jsCi1La\njwO2AbYDTgO+0PIiFuU5/zFwsLvvRpRWttVF0WaWC/wRON7ddwduA34RNj/k7nu4+87AO8DZof1K\n4LDQfnSoFXIlcK+77+Lu97bzO5hAVFBlT+AnZpZrZrsDZwJ7EeVqP8fMdg37bwXc7O7bu/uZwOpw\njVNTtt/k7tsD1YSqdG1Y7/O4+5st+r6aqBTtDHff2d3/nfK7GkH0b+Nr4RwnhE3vAl90913DuX7Z\nTh/WSHfK/S9EeW0bAcIjayeneayIyEDWXj30rprv7nPcPUlUynO6R48uzSGq751qX+Du8PqOlPb9\ngbvdvSnkbX+2levsTRTwXzSzN4lyv7dWQQ6iLwc7EJXafpPoi8DYsG0HM3vBzOYQFYfZPrS/CEwy\ns3OA7DQ+d6rH3L0+lGttLr26HzDF3Ve5ew1RHZLme9kfuXt7ed/nh6AM0VNd49rZt63P01IT8GAr\n7XsD/2ouCZtSarYEuD8Moq9v57zrSDexTKG7v2q2zlMbyvwhIrJhcdRDb5ZadjSZ8j5J6/+/b/g5\n5dYZMM3dv57mvm+5+z6tbJsEHOvus8zsDKJqbrj7eWa2F/Bl4LUwwk5XuqVXm22ojGzL87U55U4b\nn6cVdSm16NPxc+A5dz/OzMaRZjK3dEfoS8xsC8I/BotWQC5q/xAREaHtuuddqYfeGS+ydmb11JT2\nfxHdq84O97oPbOXYV4B9zWxLADMrMrOt27jOe8AIM9sn7JtrZs0jzMHAojAtv6YPZraFu89w9yuJ\nKsVtwobLp7bnBeDYcE+7iOi2wgtt7NsY+tMZrX6eDngF2N/MxsM6pWZLWFsv5Yx0T5ZuQL8A+DMw\nwcwWAt+hnbJ3IiKyRhz10DvjYuCCMD28cUr7FKKnlt4Gbgdebnmgu1cSBZa7LSp/+jLRvev1hPvf\nxwPXhkVgb7L2vvz/A2YQfbl4N+Ww34TFenOBl4BZRCVct2tvUVxb3P11otHzq+F6t7r7G23sfgsw\nO2VRXEe09XnS7WclcC7wUPhdNa8V+DXwKzN7g/Rn0tvPFGdmF7v7DWa2r7u/GL7pZLn7yo52vCuU\nKU5E+oBOZ4oLC+DWqYd+wf8d1Ol66CKt2VBAf9PddzGz18PKxl6hgC4ifYBSv0qftqGh/Dtm9j6w\nUZhmaWaAu/tO8XVNRET6MjObAoxv0Xypuz/Vzdc5k+iWQaoX3f2C7rxOO9e/iegpgVQ3uPvfeuL6\n6dpgcRYzG02UJe7oltvc/aOY+rUOjdDjlVi6lKbly8kuKSFn2LANHyAyMGmELn3aBhfFuftn4WH4\nj1r+6YkOSryS9fVU/vFGPjjiSJZOmow3deTJChER6SvanXI3s/vc/cSwKjJ1KK8p90yRlUVOWRkA\n2WVlYBqEiIj0RxtaFDfG3ReZWasZgTY0SjezD4meJWwCEu5eHp6zu5co+86HwInuvqy982jKPV6J\nZcvw1avJKiwku7S00+dJ1tVBVhZZeXnd2DuRPkPfdqVPa3eE7u6Lws+uTK8fGFLyNbuMKD3hNRaV\n9bsMuLQL55cuyhk6FIYO7dI5ElVVLL7uOnJGjGTYGadH5xQRkR7T7j10M1tpZita+bPSzFZ08prH\nAJPD68nAsZ08j/QhDR9+yPKHprDiscfwhLICi/R1ZnasdWNNbjMrN7M/dNf5OnH9NbXfrUU9cjN7\n3Mw6P/3YT2xwlXuXTm42H1hGdP/9z+5+i5lVu3tp2G7Asub3bdGUe9/mTU0kFi+m6vY7KDnyCFY+\n+xylx3+NvI033vDBIv1HRk25m9kkYKq7P9DbfeluZnYyUWW4b/Z2X3pS2inlOmk/d19oZiOJKu+s\nkxrP3d3MWv1GYWbnEqXEY9NNu6OGQeZJepKq1VU0JBsoySuhOK/N8sSxSixdxicXXsToH1/Bwku+\nR+Mnn1A7cyZjb/wjOV24Jy+SKa476aj1MsV9796pXcoUZ2b/A1wE5BGlHz0fuBHYg6igyAPu/pOw\n7zVEjx4ngKeJqo8dDXwplML+mrv/t5VrnEP0/3AeMA/4hrvXmtkJwE+I1kctd/f9zewA4PvufpSZ\n7UlUrjUfWA2c6e7vtfE5ziDKtV5ClJL27+7+07DtYaK87vlEz33fEtoPJ/p9ZgNL3H1iOE85cCtR\n6tSCUHN8H6LSpuXuvsTMTiMqL+vAbHf/Rvq/9b4t3VzuneLuC8PPxUT5gvcEPre1xe7HEJW7a+3Y\nW9y93N3LR4wYEWc3+62ldUs54R8ncMSDR1C5urLX+pGVl0v+Vlux+s03GTRhGwAKdtgB0+I4keZg\nvl499NDeKWa2LXASsK+770IUWE8FrnD3cmAnomC9k5mVEQXM7cOTSVe7+0vAo8APQs3u9YJ5kFb9\n8laO62g97z2J6o7vBJwQAjHAWaGmejlwkZmVtVNDHIA26pE3/962JyrnelA4tmWymn4tthF6at73\n8PpQ4GdE/4hOB64JPx+Jqw+ZzjCGDBpCTWMNedm9FzyzS0oY+cMf4IkEQ778ZfzSS8kqKiK7sGUJ\naJEBqb166J0dpU8EdgdmhrLWBUSDoxPD7GYOMIaohvnbQB3wVzObCkztwHV2MLOrgVKgmCjJGKyt\nX34f0Wi/pRJgspltRTQS3lA1s2nuXgVgZg8R1TOvIArix4V9NgG2AkbQeg3xdBwE3N+8ULuDx/Z5\ncU65jwKmhH9sOcBd7v6kmc0E7jOzs4GPgBNj7ENGKyso47bDbiPpSUoGlfRqX7SqXaRNcdRDN2Cy\nu/9oTUNUgnMasIe7Lwv3yPO83LhRAAAgAElEQVTdPRGmwCcSVUH7NlFgS8ckOle/vKP1vFveevUw\nhX8wsE+Y5n+eaOpd2hBbQHf3D4CdW2mvIvqHJd1geMHw3u6CiLTvY6Jp9tbaO2s68IiZXe/ui0N+\nj02BVcByMxsFHAE8b2bFQKG7P25mLwIfhHOkU2+8Zb3vhbC2fjkww8yOIBo9p+poPe9DwmdYTfTk\n01lE99OXhWA+Adg77PsKcLOZjXf3+WY2rAMj7WeJBpq/c/eqDh7b58V6D11ERLq/Hrq7v010L/jp\nUDhrGlAPvEF0//ouomlxiILy1LDfv4FLQvs9wA/Co11btHGpjtQvT9XRet6vAg8Cs4EH3b0CeBLI\nMbN3iG7RvhI+e1s1xDfI3d8CfgH8Mxz7u3SP7Q9ifWytu+ixNRHpAzr92Focq9wzRfPqdHf/dm/3\npb+L+7E1EZEBLwRvBXCJlQK6xCa5ejWNCxfSsGABBTvtTM6wzi2cq6qpZ1V9grpEktLCXEoLcsnL\nye7m3ooMXD1R79vMDgOubdE8392PI1p8J12kgC6xaVq+nA+OPQ4SCUZdfjnDTut4/obPV9Txv3e8\nxpufVAMwpCCHm0/ZjfJxw8jPVVAX6Q7ufkEPXOMp1j72JjHQojiJjxmWE31ntIKCdnetXFnP316c\nz5ufVFPbkKChbjXLVtby44fnrAnmACtWJzhrUgXVtQ2xdl1EpL/RCF1ikz10KJs/NpWmpUvJHdvy\nqZa16hub+PWT73L/awvIyTIqvrcPL025m80PPY7p76yfSLChKcmr85dx9C7tf0kQERlINELPYMmG\nBmpnzWLxDX8gUVXV49fPyssjb+ONKdhxR3KGtp3TPcuMsuIo011BbjbJRD2zpj1OY31dT3VVRKTf\n0wg9gzUtX87CCy8isXgxg8ZtRskxx/R2l1qVm5PFuftvzqHbjWZ0ST752Y0cePq5eG0NE7cdybS3\n1x2l52Vnsed4ZaYTiVPI8DbV3XfYwD5fcPe7wvty4DR3v6gHuigtKKBnsKzCQsrO+19WPvEkhXvs\n0dvdadewokEMKxoU3hWw6xFfwd25enwDlSvXXxRXWqjCLyJ9wDjgFMIjeSEhjJKG9BIllslwybo6\nknV1/bqM6ZKlK1mxpJq6hgTDyoYwbESpHluT3tCn6qGH0fGTwGvAbsBbwGlE5UJ/SzRgmwl8y93r\nzexD4D6ilLCrgVPcfV7LuuhmVuPuxakj9PD6DqAoXP7b7v6Smb0CbAvMByYTZaprLqE6DLgN2Jwo\nM9657j7bzK4iSrCzefj5e3f/Qwy/ogFH99AzXFZ+fr8O5gAlidUkTj8J+/oxFM59Q8FcZK1tgJvd\nfVtgBVFa10nASe6+I1FQ/1bK/stD+43A7ztwncXAIe6+G1HZ1uYAfBnwQihTen2LY34KvBFKtl4O\n3J6ybQJwGFHZ1J+EXPHSRZpylz4vp6yM8Q9PIVlTQ05ZWW93R6Qv+cTdm3O2/50o9/p8d/9PaJsM\nXMDa4H13ys+WAbg9ucCNZtZce33rNI7Zj6jGOe7+bKhlPiRse8zd64F6M1tMVJ1zQQf6I61QQJc+\nz7KzyR01CkaN6u2uiPQ1Le+ZVgPtfev1Vl4nCLO1ZpYFtLZA5bvA50QVNLOI6qt3RX3K6yYUi7qF\nptxFRPqvTc1sn/D6FKIFaePMbMvQ9g3gnyn7n5Ty8+Xw+kOguZ750USj8ZZKgEXungznbL7v1V4J\n1heISq4SapsvcfcVaX0q6RR9KxIR6b/eAy4ws9uAt4GLiMqM3m9mzYvi/i9l/6GhjGo98PXQ9hei\n2uqziBbZrWrlOjcDD5rZaS32mQ00hWMnES2Ka3YVcFu4Xi1wetc+qmyIVrmLiKSnL65yb/c58Rb7\nf0hUpnRJjN2SXqQpdxERkQygKXcRkX7I3T8E0hqdh/3HxdYZ6RM0QhcREckACugiIiIZQAFdREQk\nAyigi4iIZAAFdBGRfsjMDjez98xsnpld1tv9kd6ngC4i0s+YWTZwE1HltO2Ar5vZdr3bK+ltCugS\nK29qIllfv+EdRaQj9gTmufsH7t4A3AMc08t9kl6mgC6xaaqtZeXTT7Po8itIVFb2dndEMsnGwCcp\n7xeENhnAlFhGYpNctYrPfvozmqqrKZ54ECVHHtnbXRLpNeXl5UcDhwDTKioqHu3t/kjm0QhdYpNd\nVMTon/+MkmOPoWiPPXu7OyK9JgTzu4FvA3eH912xENgk5f3Y0CYDmEboEpuswkIGH3wwxQccQFZu\naxUZRQaMQ4DC8LowvO/KKH0msJWZjScK5CcTlU+VAUwjdImVmbUazFesbuTV+Ut5bPYilq5q6IWe\nifSoaUQlRAk/p3XlZO6eIBrtPwW8A9zn7m91qYfS76l8qvSK/y6uYeLv/gnAL47bgVP32qyXeySy\nQV0qn6p76BI3TblLr8jJNszAHQpys3u7OyKxC0FcgVxio4AuvaKsOI8nL96fZbUNbDN68Ab3TzY0\n4LW1ZA0ejGXrC4CISEuxB/SQ0agCWOjuR4VFHPcAZcBrwDdCYgQZQIoH5bLN6PQWyiWqqlh6++3U\nzqyg5JijGXzoYeQMLY25hyIi/UtPLIq7mGjRRrNrgevdfUtgGXB2D/RB+qlkXR2Vf/oTVX++hdWv\nv85nP7mK2hkzertbIiJ9TqwB3czGAl8Gbg3vDTgIeCDsMhk4Ns4+SP+WrKmh9sWX1mlb+cw0PJHo\npR6JiPRNcY/Qfw/8EEiG92VAdXjkApSuUDYga/Bgig84YJ22IUceieVo+YeISKrYArqZHQUsdvfX\nOnn8uWZWYWYVlcoDPmBlDRpE2TnfZMT3LqFov/3Y6LrfUrDb7r3dLZFeZWabmNlzZva2mb1lZheH\n9mFmNs3M3g8/h4Z2M7M/hFKrs81st5RznR72f9/MTk9p393M5oRj/hBmWHvkGtI5sT2Hbma/Ar4B\nJIB8YAgwBTgMGO3uCTPbB7jK3Q9r71x6Dl08kSC5uo7swcW93RUZuDoVbMrLy/OArwLfAkYDnwF/\nAh6qqKjo1IJgMxsDjHH3181sMNEC42OBM4Cl7n5NqJE+1N0vNbMjgQuBI4G9gBvcfS8zG0a0aLkc\n8HCe3d19mZm9ClwEzAAeB/7g7k+Y2a/jvkZnficS4wjd3X/k7mPdfRxRWsJn3f1U4Dng+LDb6cAj\ncfVBMofl5CiYS79TXl6+KfAf4BZgf2Dr8PMW4D9he4e5+yJ3fz28Xkm08HhjohKqk8NuqWuUjgFu\n98grQGn4UnAYMM3dl7r7MqIMdoeHbUPc/RWPRn23tzhX3NeQTuiN1K+XApeY2Tyie+p/7YU+SJqS\n9fUkV6/u7W6I9DthZP4vosIpLZMtDA7t/wr7dZqZjQN2JRrljnL3RWHTZ8Co8LqtcqvttS9opZ0e\nuoZ0Qo+sLHL354Hnw+sPAJXe6gcSS5aw+PrrSa5YychLf0je2LG93SWR/uSrRIOWtjIhZYftxwH3\nduYCZlYMPAh8x91XpN6Cdnc3s1hze/fENSR9Ks4irUrW1fH5b69j+YMPsXLaNBZ863wSVVW93S2R\n/uRbwIbuExWH/TrMzHKJgvmd7v5QaP48TGU332dfHNrbKrfaXvvYVtp76hrSCQro0ipvaiK5bNma\n903Lq/Fksp0jRKSF0d283xphNfhfgXfc/Xcpmx4lWpsE665RehQ4LaxE3xtYHqbNnwIONbOhYbX6\nocBTYdsKM9s7XOu0FueK+xrSCXqYV1qVXVTEyB9dRv38+SRXrmSj3/6W7FKlWxXpgM+IFsGls19H\n7Uv0FNEcM3sztF0OXAPcZ2ZnAx8BJ4ZtjxOtPp9HVL71TAB3X2pmPyeqrw7wM3dfGl6fD0wCCoAn\nwh966BrSCSqfKm1yd5qqqnB3sktLW61rLjKAdOixtfLy8pOJVrO3V31oJXBORUVFp+6hi6TSlLu0\nyczIGT6c3BEjFMxFOu4hYCnQ1Mb2prB9So/1SDKaArqISAxC0pj9iR7HqmmxuSa079/Z5DIiLSmg\ni4jEpKKi4mOi++jfBP4JvBd+fhPYOmwX6Ra6hy4ikh7lGZc+TSN0ERGRDKDH1kREYlReXp4FTAQO\nJ8oMVwU8CUyvqKhQcgfpNhqhi4jEpLy8/EyiPOYPAd8lSsTy3fD+k/Ly8jO6cn4zyzazN8xsang/\n3sxmhHKk95pZXmgfFN7PC9vHpZzjR6H9PTM7LKX98NA2L1RVo6euIZ2jgC7dpqmmhsYlS0g2aNGu\nSHl5+a+BG4GNiFK8Nt+Dt/B+I+Cm8vLya7twmYuJKq01uxa43t23BJYBZ4f2s4Flof36sB9mth1R\nNcztiWYQbg5fErKBm4AjgO2Ar4d9e+oa0gkK6NItEsuXU3XLLXx08tdZ/frreCLR210S6TVhZH4B\nULiBXQuBb3dmpG5mY4EvA7eG9wYcBDwQdmlZ2rS55OkDwMSw/zHAPe5e7+7zibK87Rn+zHP3D9y9\nAbgHOKYnrtHR34OspYDexyWqq6l9/XUaPvyIZH19b3enTV5XR9Utf6FxwQIq/3gjyVWrertLIr0i\n3DO/mg0H82aFwC/CcR3xe+CHQPN9+DKg2t2bv02nliNdU8I0bF8e9u9oydOeuIZ0kgJ6H9f48cd8\ndMqpfHDMMTRVL+/t7rTJ8vIoOf54sgYPpuysM7HCdP8vE8k4E2k/3WtrBhONfNNiZkcBi939tQ5e\nRzKYVrn3cdlDh2KFheRutBGWve73r2RdHU3V1Vh2NjkjRvR43xKVlSSqq8kpKyNn2DBG/eD7jLj4\nIrIHD1aqWBnIDmfDZVNbKia6l/xMmvvvCxxtZkcC+cAQ4Aag1Mxywgg5tRxpcwnTBWaWA5QQrbZv\nq7QpbbRX9cA1pJM0Qu/jckaPZosnn2CzSX8jZ/jwdbYlPvuMeQcfwocnn0xiyZIe7Vdi2TKWTZnC\nwu98l8o/3khTbS3ZJSVR3vf8/B7ti0gfU0bHk9AYMCzdnd39R+4+1t3HES04e9bdTwWeA44Pu7Us\nbdpc8vT4sL+H9pPDCvXxwFbAq0SV0bYKK9rzwjUeDcfEeo10fweyPo3Q+7is3FyyRo5sdVuysRES\nCZKraqGdjH+JqiqStbVkFReTM3Rol/uUqKyk6m+TaPjoI0b98IfUvf8f0CI4kWZVgNOxoO5EhVq6\n6lLgHjO7GniDqGY64ecdZjYvXOdkAHd/y8zuA94GEsAF7t4EYGbfJqplng3c5u5v9eA1pBOU+rUf\na6qpiabc8/LIGT4cy1p/wqVp5UoW/eQqVj7+OCO//z2GnXVWq/ulfc0VK/n0ssuoefbZqCE7my2e\nfIK8TTZp/0CR/i+tAF1eXn4I0XPmHZl2Xwl8taKiIt0pd5H1aMq9B9UsreLf995B1cJP8GTXE0Rl\nFxeTN3YsuSNHth2kk0mSK1cCUTDuqmR9HbWpX66ammj4SPUlRFJMB1Z08JiVwLMx9EUGEAX0HjRj\nyn3MeOheHv/jb1ld0/Xgmo7skhI2uuZXjH/4YYadcXqXRucAWYWFDD7k4DXvraCAQVtu0dVuimSM\nkM71CqA2zUNqgSuUBla6SgG9B223/0GUjhrDzgcfQe6gHlw45s7Se+5h+SOPkqiu7tKpsouKGPm9\n7zHmF1cz7Oyz2fyRh8kuK+umjopkhoqKiklEWeI2FNRrgRvD/iJdonvoPaipsZG6VTXk5ueTl1/Q\nY9etfuBBFv34xwBsMe3p2O93N9XUYHl5ZOXlxXodkR7W4fKpIQPcL4ieM29O/+pADdE0+xUK5tJd\ntMq9B2Xn5lJU2vVV5h1VsPvuZJeWkjt2LFkF636RqF9dS1NjIwWDhxBlaey8RHU1tS+/TPWDD5E3\nfhxlZ51NzuhRXT6vSH9VUVExqby8/HaipDFHAiOBxcDjwLOaZpfupBH6AOBNTTQtXQZZRk6YHvdk\nkurFn/Gvv/+NlUuXsOvhR7H5bntSUNzRBFfhGokES++8k8W/umZNW87IEYx/8CFyRgxv50iRfqMz\nI/RBwAlEj3ptDzQCucBbRMVL7q+oqOi7OZ2lX9E99AEgyiQ3fE0wT65ezaqqJdxz5Q+ZN/NlPv/v\n+zx50/Usev/dTl+jqbqaZbffvk5bYnElDR9/1KW+i/RX5eXlewKfAjcDOxB9IcgLP3cI7Z+Wl5fv\n0Znzm1mpmT1gZu+a2Ttmto+ZDTOzaWb2fvg5NOxrZvaHUKZ0tpntlnKe08P+75vZ6Sntu5vZnHDM\nH0KhFXriGtI5CugDUMMnn1C76FNql6+7QO6t558h0dhAU2ceqTPDCtbP3265eTSpUIsMMCFIP0uU\n/a2taa/BYftznQzqNwBPuvsEYGeiMqqXAdPdfSuix+eaa4wfQZShbSvgXOBPEAVn4CfAXkTVz37S\nHKDDPuekHHd4aO+Ja0gnKKAPQE1Ll5KTlU1WdvY67WO325Gq1UmumDKXl/9bRX2iKe1zZg8bxsjv\nXbJOW/7225FYUknjQqVnloEjTLM/CRSleUgR8GQ4Li1mVgLsT8jS5u4N7l7NuiVMW5Y2vd0jrxDl\nYx8DHAZMc/el7r4MmAYcHrYNcfdXQvrW22m9TGpc15BOUEAfgAZNmEDeoHyOOP+75IVFcuN3KWfb\nfQ/g8TmLuGfmJ3z//lmsWN245pim5ctJLFvW5jnNjMI99mDzqf9g+Le/zUa/+Q0jf/ADPvvJVTQt\n7Y6MliL9xglE98k7Io+1+dHTMR6oBP5mZm+Y2a1mVgSMcvdFYZ/PgFHhdUdLmG4cXrdsp4euIZ2g\nVe4DUE5pKcWlpWy52WaM3X5HPOnk5A0iv7iYQ7fL4tl3F/O13cZSNCj655GoqmLRT66iqbqasdf/\nrs3KbtnFxWRvuSUjvr0lTStXUvvqq4y64nIGTZjQkx9PpLddSsfLpxYTTV3fmeb+OcBuwIXuPsPM\nbmDt1DcA7u5mFuuq5564hqRPAX2AqlxZR2OTU1JYQvGgtf8MNh5ayE2n7kZ+TjZ5OdEETnLVKmqe\niVJMN3z8cVqlWrMHD2bwxInxdF6kjyovL88mWs3eGduXl5dnV1RUpHOvawGwwN1nhPcPEAX0z81s\njLsvClPai8P2tkqYLgQOaNH+fGgf28r+9NA1pBM05T4ALamp5/E5n/H5ijqW1Tast31Ifu6aYA6Q\nNXgww88/n9KTTyZv/Pie7KpIf1NM9GhaZyRIs6CLu38GfGJm24SmiUTVzFJLmLYsbXpaWIm+N7A8\nTJs/BRxqZkPDQrVDgafCthVmtndYeX4arZdJjesa0gkaocfEm5poXLSIunffpXDXXdc8MtYXZJsx\npiSf425+ia1HFXPXN/dm+OC21+PkDB1K2fnfgmRS2d9E2ldDx++fN8sJx6frQuDOUEv8A+BMokHa\nfWZ2NvARcGLY93GixDbziNLNngng7kvN7OdEtckBfubuzYtezgcmAQXAE+EPwDU9cA3pBCWWiUmi\nspJP/vc86ufNo+S44xh1xeV9KhjOnL+UE/78MtuNGcIdZ+9JWXHaC2xFBqp0y6fOIXrOvKPmVlRU\n7NiJ40QAjdBj4+4MO/MM8jbdlFUzZ0IXq5x1l6qaKCnVhDGDefHSA8nLyerVYN6UdJbU1JN0p7Qg\nl4I8/ZOUfu9aoqQxHVkYt5Jo5CvSabFFGTPLN7NXzWyWmb1lZj8N7ePNbEbIDHRvmC7KKN7URNWt\nf+XTH/yQxdddR8lXvkJWTucD1eIVdSxYVsvKus7emotUrqzjjL/N5MxJM6lrTLLx0EJGDG676pu7\n07i4ksZFi0gsX96la7elqqaew3//L7547XNUrlQGTMkI99Px++iNRAvbRDotzmFjPXCQu+8M7EKU\nSGBvom+v17v7lsAy4OwY+9ArLDub/G2jR7XyttqarKJ080usr3JlPcfd/BL7Xfsc73/ekdtr61tZ\nl2DOwuXMXrCcmvrEmvb6RBPVrSyOa1y0iKV//zuJykqalizpcunV1jjRKD3pTrLv3/0R2aCQm/1w\nIN0UiauAw5XTXboqtvnNkPmnOQLlhj9OVHXolNA+GbiKkCIwkwyeOJGi55/DBg0iuzithattamiK\nUrE2diYla4qhhXn88rgdycqC0oJo3U5tQ4In5izivooF/PaEndlkWJS+dVltA5815lL6jbP49KLz\naXxrLps/NhVKS7vUh5bKivKYdsmXSDQ5pYWdXUsk0rdUVFTMLC8vP5AoY1wurU+/ryQamR9eUVEx\ns5XtIh0S6w1LM8sGXgO2BG4C/gtUu3vz8DBjMwNlDxlC9pAhXT7P8OI8HrtwP1Y3NlFa2PbdidqG\nBE1JZ3B+20FxaFEep+y16Zr3qxsSVNU0cMP0eXy8tJZn3vmcM/eNHkt77t3FXHLfLEoLc5l62Y9p\nOOmrJKqqur2Wek52FqOGtD3tL9JfhaC+EVEGuMuInk9PEP2/O5dotvIBjcylu8Qa0N29CdjFzEqB\nKUDaKcPM7FyiBP9suummG9g7c9SuaGDRvGpGjR9C8dB8zIyRGwh4S1fVc/20//BpdR2/OG5HhuTn\nUDhow3+1y2ob+ek/3uKnR2/Pv+ct4cs7jVmzrTHMCiSTTs7o0ZRMmUrOxiO79uFEBpgQrO8E7gxJ\nZ4qBmjSTx4h0SI8sKXb3ajN7DtiHKGF/Thilt5kZyN1vAW6B6LG1nuhnb2tqTPLylHm8+/JnjN58\nCEeevxMFxRteM1hT38Qdr3wMwJHzlrDrpqVsPmLD0/xZWcYrHyylLpHkpq/vSknKDMCh241mwugh\njB6Sz/R3P+ev/17AzaeOYJuuTzqIDEghiMezulSEeFe5jwgjc8ysADiEqLzfc6wtQpCaZWjAs2wY\nvkl0q61so2Kystf+9SQbG2lavpzW8gbk58Lp+2zKIduOZMKYwSyqrkvresOL8pj+vS/xuxN2ZkjB\nulP1Q4vy2HmTUnKyjbtf/YT/Vtbw7LuVXfh0IiISpzhH6GOAyeE+ehZwn7tPNbO3gXvM7GrgDUL5\nv4EqsXQpdXPnklVYSN4WW7LNXqPZfJcR5ORmMagg+utJNjZS+9LLVN16K6N/ehWDNt98nXOsTlZS\nNHo65ZsOZXDhpmxUMrS1S60nnfvXw4ry+OMpu/Kv/1Ry5I5j2t1XRER6T5yr3GcDu7bS/gFRkfsB\nL1FdzaeXX8Gq558HYPhFF1F21pnkD1s3yCZXrWLJn//M6tdfZ/nDjzDyku+us31QziAenHc3owpH\n8bUJX2ZoQR64g6WV2KpdZsa4siLG7dP2o3dLVzXw5NxFjBicz57jh1FSoNXqIiI9TWm5epE3NrLq\nhRfWvK955hmGnnwSWfnrBvTsIUMY8/OfUT1lCkNPPXW98wzPH87U46ZiZgwvGA6rlkDFXyErF3Y/\nHQrjzSP/7qIVXD5lLgD/vvRABXQRkV6ggN6LLDeX4gMOoGb6dAAGH3YYWYWFa7avWLKaea8tZpu9\nRlO0xRaM+v73Wz1PTnYOIwpTSpoueR+e+2X0eouDYg/omwwrZEh+DqWFeeRl940UtyIiA40Cei/K\nKS1lzM9/Rv2pp2JFheRtttma0Xl9bSPP3/ken7yzlBVLVvOlU7bB0p1CL90kCuJZOVA8KsZPEBlT\nks8zl3wJM2NEO1XbREQkPgrovSxn2DByvrDP+u152Wy//0bUVNcxYZ8xrQbzpasaeGz2p7y/uIaz\n9h3PpsMKycoyGLwRfOvlqDZUUfc9O95QlyDZ5OQXrTulnpOdtcFn5UVEJF4K6H1Udk4Wm21fxpgt\nShjURkrUKW8s5OdT3wZg6uxFPHnxF6PAmpUFg9cfma+qXkqioZFBRcXkdzC//OqaBmZOnc+yRbUc\ncvZ2FA7RSFxEpC/RDc8+LCcvGyvIpqq2gRWr1y3e1JRM8s6iKEdFXnYWw4ryaGqnuknt8moe+MWV\n3Hrh2Sxd+EmH+9LUmGTO8wtZ8N4ylleu7vDxIiISLwX0Pu6Nj6s56Lp/cv9rC6hrXJstMjsri3P3\n34KNS/OZcvbe/O4LW1OUNBINTaxaXs/qmhbV08zIHZSPWRbZuR1fhZ6bn81h52zPnl8ZT+nIwg0f\nICIiPUpT7n3cKx9UUVqYyzufLqehKUl+bvaabZsPL+KxC/fjjSnzefvfnzJvixIOPG1b7vn5DLYu\nH0X5UePJzcuicMggCoeUcMz3ryDZlGBQYXrV35pqa8Gd7KIiBhXksuXu8S+wExGRzlFA7+P+Z6/N\n2G/L4eRmZ603nZKTnUVJYR6jxg/h7X9/yvDNBlO/qpFkwln80Uo+fb+a2c9+wlcu2oXCwXkUlaaX\nQQ4gsWQJn/3yl+DO6CuuIGf48O79YCIi0q0U0GOUWL4ckklyhm44kK5e2cDyytWUjCigYPDaIikN\nTUlO/PMrALx46YEUtyiPamZstkMRp/1iZ7JyBpGVncexl+xK8dBBPPnnuRSV5uEp99abEgksK4us\nrPbvtiyfOpWVjz8BQMH221P2zW+m/blFRKTn6R56TBJVVSy6/HIWfPtCEkuWtLtvUyJJ7YoG3OGz\n+ctJNKy9V56XncW4skI2H15EbitJW+pX1/LG449w64Vns+Ct1xlUkM2wjYv4YFYlXzx5a3Y5ZDOW\nLqqhsb6JVdXLeOGuycybO5ealava7VP+NtuseT1oQtpVb0VEpJcooMckWV9PzfRnyd11F1Y3JWio\na3tleN2qRqbeOIuHfvMatSsaycpe+8z5yCH5PHDeF7jvvH1afdY7UV/P+6++RLIpwbsvv0BTIkF+\nYS7jdxrBh7OXkJObxbsvfYZ7ktnPPMXYL0zkd7MamDxzIdW1axfONa2soWHhQhoro4pq+TvswOZP\nPMHmTzxOwU47deNvJpKsr6dh4UKW/2Mq9fPn01RT0+3XEBEZSDTlHpPs4mI2vfsu5i9dzAM/uIDD\nv/Udtt57v1YTxLjD6pXRY2mrltWtUzYVYHg72dcKBg/hqO/+//buPDzq+k7g+Psz85uZTCY34Uok\nHBLCJcql4gkKLh4g9Rl5sHEAABDGSURBVMC2VsVjK/q428ruCu52H9enLVrX1rZWa/EodnW3VeqF\nsorrBWqVUwzIjQLhEnJOJslMZua7f8wACeSYQCYzGT6v55mHzPf4zTcffk8+87u+33ls+Og9xkyd\nhsMVaZvTK52xl/fn4K5aJlwzGGeagwFnjaG0OsjbGw7w9oYDXDe26Mh2Gvfu4eurZ2D16cPARS9j\n5edjz8zsjFC0KLh/PzumTccEAiBC/xf+i/SxY+P2eUopleo0oceJPSsL14gR7F7wAUG/n52lX1B8\n9gTEHgl5vbeGmkMH8eTkkpaRw/X3j+Pgbi9FI9qfdz0YCGE5I3e72+x2ehYNYOJNtx/XzuV2cFpJ\n5Pp9nTeAtzKLs4Zk88BVdsYOyMVhHf1yIZYDLAubx0O4jefZO0v14sWRZA5gDBULnydtxIjjFqZR\nSikVG03ocWQ5nVz0g1sZev5F9Bo0GJv9aLh3b/iSxY89TK+Bp3Pt/Q/SozCHHoVtP04WCoY5tNvL\nmqW7GH5+AQXFOThc9jb7HLbls/188tdtjLiwgDMv6M1dL6zhHy4ZzHdGFyIiNPbsQ8GrS2jwhdi5\nK0xx580Y26K0kSObvx91BnICz8crpZSK0GvocebJyWXg6HF4snOalWf36o3NbpF/WlGzRN+WBl8j\nb/x2HTvWHmTJU6VU1Qcoq6yjwhdot2/h0Fwycl0MOCOfpRv2s6eqnlfX7qG6vpFnP97Bg+9spTYr\nl/de30/Povidaj/MfeaZ9LrvX3ANG0bebbeRc+21iD22LydKKaWOJ8bE//TqyRo3bpxZtWpVoofR\noka/H7+vFpvdTvoxSbvdfnU+bHaL9KysmPrU1QR4/bG1VOzzMeLiAkp72/nl0i38eHIx90wajNXG\n0qWhYJgGXyPGGCrqGlm+s5yLSnrhsmycPT+yfOuiOycwPD8Dt8eB2Npe2c2Ew4Sqq7G53Sd8mtwE\ng5FtZGRgc+nc8CrpxbjcoVKJoUfoJ6ly3x6evud23vnDb6n31jSrC/l8+FasoOLFFwlWVDSrc7hc\nZOTmxZzMAdKznEz/0Vlccfcoxl05kPro4211gRDtfS+zWzY82S62fH6At3+xhvz1tfRw2HFYNu6d\nMoQZowsZ0NNDeqaz3WQO4N+6ld2z76Lq5ZcJeb0x/w5NiWVh9eihyVwppTqBXkM/Sb6qSsKhINXf\nHiAcDjerC3u97Jp1K4TDOHr3IXPypSf9eZ4cFwNzIgnwjgsHMXNcPzLdFg4rtu9mxeN7c+DrGkrO\n7YPTZZHutDP74kGEwwa3M7bdob62jvInnqBh3ToavvySrKlTIY53xCullGqfJvST1GfwEG559AnS\nMjKPu04uDgfuMWMIbNuGq7i40z87z+Mkz+Nsv2ETmXlpTL51OHaHLbJ2OuCyOnbtujZswzbz+1jr\nN5A5dSo4OzYGpZRSnU+vocdZsKICQiHseXlJc9NXOBTGXxfE4bIfefytIw7UNPCfb61nxqAMRp3e\nm6z82OeIV6ob02voKqnpEXqcWXl5MbUL1NfT2FCPAcRmIz0zC4nOtx6oDxJsDJHmcRw36UxHmbDh\n4O5aPvrvzQw7ry8l5/TB6e7YbpCf4eK+K0diAHcHzxAopZSKD03oCVZXU42vqpKVry9i91el9B5U\nzITrvoffV4sjzY3l8LB+2T62rDjA1DtH0qOg9WfVQ14vwfJyfMuX4+zfn7ThI7Dym09U0+gP8fkb\nOzi4y0v53loGje55JKHX1DdS6w/itGzkZ7R+o5rdJi1OQ6uUUipxNKEnkK+qkjd//QhlG0uPlE2b\ncz8vPTiPxgY/Mx+YT1pGL0o/LKPe28iOtQdbTejhQADv+++zb+68I2WukhKKnn2m2dKnlsvO6ClF\nVO7zMXRCXyzH0SP+1TsruXXhSiYP682j148iJ12PvpVSqrvQx9YSpK66ilceeoBwOMigMeOxR2dJ\nE7ERDDRiTJhgIMDqJS8z5bahnDGxkOEXFLS6vVBVFQfmP9SszL95M3Vr1jQrs9mEvoNzuG7eOEZP\nKcKVfnR2tqr6yAQ1Fb4A4W5wb4VSSqmj9Ag9AcKhEOs/eo+R553D0EI79upvqJ7+b7z4s5+x5q3X\nuOE/HqbR38DezV+x/v3/5dCu7Vwz70HcbSzSQjBEuLr6uGL/1q1w2WXNyiyHDSv7+G1NHNKL9+Zc\nTJbbQZ4nUn/Q62fBsu1cNaqA4QWZOJLkxj6llFLNaUJPgHpvDavffJWb7/9n3M9fDEDmJRn0KS5h\n06fL2L56BTbLjt8XWbN8/7YtrP9gKWOvnIGthYRa7/UiAq4hQ/Bv2dKsLnPSJce1D4VChIPBIyuz\nHZbrcZJ7zE1u72zYz9PLv+b/Nn7LS3dOoGemJnSllEpGeso9AWoryqmrriKEDTz5IDbC+UOpr4kc\nYTf6G44k88PWvbvkuJnoDtu++nP+/OhP6fmLh3AOGgSApKWRPeefkL59m7X119Wxe0Mp5Xtq+Kb0\nIA2+xjbHOqmkJxcMzufeycVkpGkyV0qpZKVH6Angq64CYPEzC7li1iIsu401Hy6jYk9Z630qK2lt\nzoBwKER52S7Wrl7ByMeeQhoDWNluVpQ3ckFG8xncgv4G7FYGS36/ictuG8SBHRvJ79cPT07Lz5IX\n5qbz5I1jSHPYccY4G51SSqmupwk9AQ7fALd/2xae+8m/x9bH2frSosVnT6Bg6Bk0eA1//f02Bo3p\nxehphYzPt+NyND+qttLScHnSGXtFEZs/e5Mv3l5MyYQLuWz2P+JMc7e4/Sy3LmuqlFLJThN6VwrU\nQShAbq8+IEK7K6o0UTBkGJaz5Zvi3JlZrDngxxY2TJ87lswMJwE7fLr9EJbNxvgBeWRH72Z3udPJ\n7+ciq2cIhzWEL4DepxfHvISrUkqp5KR/xbtKfRWsfAZ2foLzyqfof8ZZ7Pxybczdz732u6R5PK3W\nj+mfi7c+iMdlke6yOFRRx+wXIo+sfTx30pGEDmCz2UlLt3P62LO586k/YTmcWA49CldKqe5ME3pX\nCfph2SMQ9OOq2sr5V36HXaXrMCbcbtf8ogHk9OrTZhu3w8LtOPrfme60M6mkJ5bdRpqj5ZvZXOke\nXOmtf0lQSinVfejiLF0l4IOyVbD7c8yYWTTUG3Zu2cSS3/2yzaSe3bsPNzzwMJk98ltt05qqugAC\nZOuMb0p1Bl2cRSW1uCV0EekH/AnoDRhggTHmNyKSB/wFGAB8A8w0xlS2ta2USOgtCDTUU7m3jI9e\neI7dG0qb1bnSPYyaPJUxV1xNwJlBMBQmy+1o9Wg7FsHycsK+OmwZnpgXjVFKHaEJXSW1eCb0vkBf\nY8waEckEVgMzgFlAhTHmYRGZB+QaY+a2ta3unNDrqqsINNTjSvfgzsxqsU19rZdAnY9Du3fR6G/A\nk5NHbt8C0jIyqW00/OS19SzdcIBX7j6PkYXZJzSOYGUVe++7D9/y5eTedBM97/0x9vT0k/nVlDrV\naEJXSS1u19CNMfuAfdGfvSKyESgErgYmRps9D3wItJnQuyt/nY/3//gHNv9tOZfecTdnTbmixXbu\njEzcGZlkt3CdvLHBz5dl1QRCYbZ9W0txroW/zofNbuHJzjmyxCpAqKGBcGUlpjGIPTsLe/bR5G+C\nQfzbt0fGtXkTJhCADiT0sN+PaWhotk2llFLJo0tuihORAcBo4HOgdzTZA+wncko+ZeX268f0GQ/h\nzswkGA5i2ToW8lyX8OodoznkFwpy09m5biWLfzUfd1Y2Nz/yOBm5R0+dhyoq+Ob6mYTKy+k5Zw55\nN/0AmzvybLmVl0vRM09T8+675EybhpWTc6Rf8OBBQl4v9h49sFpI2CGfj5o336JmyVv0nT8fZ2Hh\nCUZDKaVUvMT9pjgRyQA+An5ujHlFRKqMMTlN6iuNMcdNUyYiPwR+GH1bAmxu56OygeNXJzn5Pm21\naa3u2PKW2jUtO7Y+HzjUzrg6Kpnj01JZW+/jEZ/WxtUZfU7lGMXavqMxSkR8Dhljpnawj1JdxxgT\ntxfgAN4B5jQp20zk2jpAX2BzJ33Wgnj0aatNa3XHlrfUrmlZC+1XxeH/ImnjE0vMjolXp8dHYxSf\nGMXavqMxStb46EtfiXzFbXJuERHgWWCjMeZXTareAG6J/nwL8HonfeTiOPVpq01rdceWt9RucTv1\nnS2Z49NSWSwx7Gwao/Z19DNibd/RGCVrfJRKmHje5X4BsBwoBQ4/aP2vRK6jvwQUATuJPLZWEZdB\ndFMissoYMy7R40hWGp/2aYzapvFRqSied7l/TOuPeVwar89NEQsSPYAkp/Fpn8aobRoflXK6xUxx\nSimllGqbLnCtlFJKpQBN6EoppVQK0ISulFJKpQBN6ElORIaJyFMiskhE7kr0eJKViHhEZJWIXJXo\nsSQjEZkoIsuj+9LERI8n2YiITUR+LiKPi8gt7fdQKvloQk8AEXlORL4VkfXHlE8Vkc0isi26cA3G\nmI3GmNnATOD8RIw3EToSo6i5RB6HPGV0MEYGqAXSgLKuHmsidDA+VwOnAY2cIvFRqUcTemIsBJpN\nISkiduAJ4HJgOPA9ERkerZsOvAUs6dphJtRCYoyRiEwBvgK+7epBJthCYt+PlhtjLifyxefBLh5n\noiwk9viUAJ8aY+YAeiZMdUua0BPAGLMMOHYynbOBbcaYHcaYAPBnIkcNGGPeiP4xvrFrR5o4HYzR\nROBc4PvA34vIKbFfdyRGxpjDkztVAq4uHGbCdHAfKiMSG4BQ141Sqc7TJautqZgUArubvC8Dzole\n77yGyB/hU+kIvSUtxsgYcw+AiMwisoBGuIW+p4rW9qNrgL8DcoDfJWJgSaLF+AC/AR4XkQuBZYkY\nmFInSxN6kjPGfEhkzXjVDmPMwkSPIVkZY14BXkn0OJKVMaYOuD3R41DqZJwSpya7iT1AvybvT4uW\nqaM0Ru3TGLVN46NSlib05LESKBaRgSLiBL5LZGU6dZTGqH0ao7ZpfFTK0oSeACLyP8DfgBIRKROR\n240xQeAeIuvHbwReMsZsSOQ4E0lj1D6NUds0PupUo4uzKKWUUilAj9CVUkqpFKAJXSmllEoBmtCV\nUkqpFKAJXSmllEoBmtCVUkqpFKAJXSmllEoBmtBV0hORTxM9BqWUSnb6HLpSSimVAvQIXSU9EamN\n/jtRRD4UkUUisklEXhQRidaNF5FPRWSdiKwQkUwRSRORP4pIqYisFZFJ0bazROQ1EXlXRL4RkXtE\nZE60zWcikhdtd7qIvC0iq0VkuYgMTVwUlFKqbbramupuRgMjgL3AJ8D5IrIC+AtwgzFmpYhkAfXA\njwBjjDkjmoyXisiQ6HZGRreVBmwD5hpjRovIY8DNwK+BBcBsY8xWETkHeBK4pMt+U6WU6gBN6Kq7\nWWGMKQMQkS+AAUA1sM8YsxLAGFMTrb8AeDxatklEdgKHE/oHxhgv4BWRamBxtLwUGCUiGcB5wMvR\nkwAQWZNeKaWSkiZ01d34m/wc4sT34abbCTd5H45u0wZUGWPOOsHtK6VUl9Jr6CoVbAb6ish4gOj1\ncwtYDtwYLRsCFEXbtit6lP+1iFwf7S8icmY8Bq+UUp1BE7rq9owxAeAG4HERWQe8S+Ta+JOATURK\niVxjn2WM8be+pePcCNwe3eYG4OrOHblSSnUefWxNKaWUSgF6hK6UUkqlAE3oSimlVArQhK6UUkql\nAE3oSimlVArQhK6UUkqlAE3oSimlVArQhK6UUkqlAE3oSimlVAr4f2qkU3LHDg3zAAAAAElFTkSu\nQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -4343,8 +4350,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b859334-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3b2c4a04-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_9ecf7507ee" + "window[\"077f50ba-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07143910-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_bd74355cf0" ], "text/plain": [ "" @@ -4361,8 +4368,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b877780-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_3363c7ceba" + "window[\"07810856-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_c5320037f7" ], "text/plain": [ "" @@ -4379,8 +4386,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b87bf06-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_1\");\n", - "//# sourceURL=js_0152ea26cd" + "window[\"07828082-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_1\");\n", + "//# sourceURL=js_3a51e71f6a" ], "text/plain": [ "" @@ -4397,8 +4404,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b88034e-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3b87bf06-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_ce5c926845" + "window[\"0783440e-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07828082-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_47886df5cd" ], "text/plain": [ "" @@ -4415,8 +4422,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3b884a70-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(1);\n", - "//# sourceURL=js_17616b0b66" + "window[\"0783974c-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(1);\n", + "//# sourceURL=js_21346da144" ], "text/plain": [ "" @@ -4432,9 +4439,9 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmbK9wbIUKQKKoiCi\nrIoFNRF7bLFFjRE1+NMYa4rGGMUUY4vGWJJYQY0lllij0WDsiqwgAgIWet/ed3bK+f1x78Ls7uwy\nW4bdHc7neXh25pb3vrMiZ973vvccUVWMMcYY07d5eroDxhhjjOk6C+jGGGNMErCAbowxxiQBC+jG\nGGNMErCAbowxxiQBC+jGGGNMEkhoQBeRK0RkkYgsFpEr3W39ReQtEfna/dkvkX0wxhhjdgQJC+gi\nMh6YDuwP7A18T0R2Ba4FZqvqGGC2+94YY4wxXZDIEfoewBxVrVPVEPAu8H3gJGCWe8ws4OQE9sEY\nY4zZISQyoC8CpohIvohkAMcBw4FBqrrBPWYjMCiBfTDGGGN2CL5ENayqS0TkVuBNoBb4HAi3OEZF\nJGbuWRG5CLgIYM8995y0ePHiRHXVGGPiIT3dAWPak9BFcar6sKpOUtVDgXLgK2CTiAwBcH9ubuPc\nB1S1UFUL09PTE9lNY4wxps9L9Cr3ge7PETj3z58EXgbOcw85D3gpkX0wxhhjdgQJm3J3PS8i+UAQ\nuFRVK0TkFuCfInIhsAo4I8F9MMYYY5JeQgO6qk6Jsa0UOCKR1zXGGGN2NJYpzhhjjEkCFtCNMcaY\nJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCN\nMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkC\nFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3Rhj\njEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB3RhjjEkCFtCNMcaYJGAB\n3RhjjEkCFtCNMcaYJGAB3RhjjEkCCQ3oInKViCwWkUUi8pSIpInIKBGZIyLfiMgzIpKSyD4YY4wx\nO4KEBXQRGQpcDhSq6njAC/wAuBW4S1V3BcqBCxPVB2OMMWZHkegpdx+QLiI+IAPYAHwXeM7dPws4\nOcF9MMYYY5JewgK6qq4D7gBW4wTySuAzoEJVQ+5ha4GhieqDMcYYs6NI5JR7P+AkYBSwE5AJHNOB\n8y8SkSIRKSouLk5QL40xxpjkkMgp96nAClUtVtUg8AJwMJDnTsEDDAPWxTpZVR9Q1UJVLSwoKEhg\nN40xxpi+L5EBfTUwWUQyRESAI4Avgf8Bp7nHnAe8lMA+GGOMMTuERN5Dn4Oz+G0esNC91gPANcDV\nIvINkA88nKg+GGOMMTsKUdWe7sM2FRYWalFRUU93wxizY5Oe7oAx7bFMccYYY0wSsIBujDHGJAEL\n6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHG\nJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBu\njDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wS\nsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDE7IBE5UUSu7el+mO7j6+kOGGOM6RoR\nEUBUNRLvOar6MvBy4npltjcboRtjTB8kIiNFZJmIPAYsAs4VkY9FZJ6IPCsiWe5xx4nIUhH5TET+\nIiKvutunici9UW29LSJfiMhsERnhbp/pnvORiCwXkdN66vOabbOAbowxfdcY4H7gMOBCYKqq7gsU\nAVeLSBrwd+BYVZ0EFLTRzj3ALFWdAPwD+EvUviHAIcD3gFsS8ilMt7CAbowxfdcqVf0EmAzsCXwo\nIp8D5wE7A2OB5aq6wj3+qTbaORB40n39OE4Ab/KiqkZU9UtgUHd/ANN9EnYPXUR2B56J2jQauAF4\nzN0+ElgJnKGq5YnqhzHGJLFa96cAb6nqWdE7RWRiN1wjEN1kN7RnEiRhI3RVXaaqE1V1IjAJqAP+\nBVwLzFbVMcBs970xxpjO+wQ4WER2BRCRTBHZDVgGjBaRke5xZ7Zx/kfAD9zX5wDvJ66rJlG215T7\nEcC3qroKOAmY5W6fBZy8nfpgjDFJSVWLgWnAUyLyBfAxMFZV64GfAG+IyGdANVAZo4nLgPPdc88F\nrtguHTfdSlQ18RcReQSYp6r3ikiFqua52wUob3rflsLCQi0qKkp4P40xph19crpZRLJUtcb99/Y+\n4GtVvaun+2W6X8JH6CKSApwIPNtynzrfJmJ+oxCRi0SkSESKiouLE9xLY4xJWtPdhXKLgVycVe8m\nCSV8hC4iJwGXqupR7vtlwOGqukFEhgDvqOru7bVhI3RjTC/QJ0foZsexPe6hn0XzRyVexnmkAvfn\nS9uhD8YYY0xSS2hAF5FM4EjghajNtwBHisjXwFQsUYExxhjTZQnN5a6qtUB+i22lOKvejTHGGNNN\nLFOcMcYYkwQsoBtjjIlJRD7q6T6Y+FlAN8YY04yI+ABU9aCe7ouJnwV00ytpOEyotJRQRaykVsb0\nLSOvfe3skde+tnLkta9F3J9nd7VNEXnRLYm6WEQucrfViMjt7rb/isj+IvKOW/r0RPcYr3vMXLdc\n6v+52w8XkfdF5GXgy6b2oq53jYgsFJEFInKLu226284CEXleRDK6+rlM51lAN72OhsM0LFnK6vPP\nZ92VVxLcvLmnu2RMp7nB+0Gc6mfi/nywG4L6BW5J1ELgchHJBzKBt1V1HE6a19/jPGl0CvBb97wL\ngUpV3Q/YDyfxzCh3377AFaq6W/SFRORYnLTdB6jq3sBt7q4XVHU/d9sSt23TQxK6yt2YzgiXlbHu\nyitJGbkz+RdeSLi0DE9uLt7U1J7umjGdcTPQcuSa4W5/svXhcbtcRE5xXw/HqY3eCLzhblsIBFQ1\nKCILcSpcAhwFTBCR09z3uVHnfhpVajXaVOBRVa0DUNUyd/t4Efk9kAdkAf/pwucxXWQB3fQ+Hg9p\ne40n77TTWXvZ5WgoxIiHHiR9n30Qr7ene2dMR43o4PZtEpHDcYLsgapaJyLvAGlAULem/4zglj5V\n1UjTfXGcWYLLVPU/MdqspWNmAier6gIRmQYc3tHPYrqPTbmbXseXn8/AX/2KiqeeIlJTgzY0sPmu\nPxOpqdn2ycb0Pqs7uD0euTiFrepEZCwwuQPn/ge4RET8ACKym5sErD1v4VRjy3DP6e9uzwY2uG2d\n06FPYLqdBXTTK/kHDCB90r5b3qdPnIjYlLvpm64D6lpsq3O3d9YbgE9EluBk2/ykA+c+hLPobZ6I\nLMIp1tLubK2qvoGTtrvILfTyc3fXb4A5wIfA0g59AtPttkv51K6y4iw7plBFBYFly9DGRlLHjSPg\nlsZIz8nFa1PvZvvrdHEWdwHczTjT7KuB61becnxX7p8b04oFdNPrRcJh1n+9lOdvvgGv18cZN/6R\ngSNH93S3zI7Hqq2ZXs2m3E2vF6ir5b0nHiEUCBCoq+XDZx6nsaG+p7tljDG9igV00yupKsHNxTSu\nWo2vIcBOu++5Zd/AUbvi9fl7sHfGGNP72GNrpluFyssRrxdvTk7X2ikuZuVppxPavJmM/ffjoDvu\nYODI0Xj9fobvuRden/3VNcaYaDZCN90msHw5ay/5CeuvuYZQcXHX2vrmG0Juhri6T+dCMMieU77D\nmIn74Q80Eiop7Y4uG2NM0rCAbrpFqKyc9ddcS/3nn1Pzv3coe+yxLrWXOno0nqws5/VuY/CkphJp\naKD2ow9ZfsyxrJo2jeDGjd3RdWOMSQo2b2m6hXg9eHNzt7z35ud3qT3fgAGM/vdrhIqL8Q8ahG/A\nAILFxWy8cQaR2lq8/fpRV1uDt7yM1IxM/PaMujFmB2cB3XQLb24uQ/54M2UPP4KvoIDcE0/sUnvi\n8+EfOBD/wIHNt43cGUlPJ+MXV/PEzb+hsb6ek37xa3beax+7r25MB7ipXhtV9SP3/UzgVVV9LgHX\negi4U1W/7O62zVb2L6DpNv6CAgZde03C2vf168ewu+6i4etv+Ojj92ioqQbgg6ceY/Do3ciImiEw\npleZkdsqsQwzKns6sczhQA3wUaIvpKo/TvQ1jN1DN32Mb8AAsg6czPDxe2/ZttPue+BLSYl5vEYi\nhGtq0FBoe3XRmOacYN6qfKq7vVNEJFNEXnPrkC8SkTNF5AgRme/WLH9ERFLdY1eKyAD3daFbH30k\ncDFwlYh8LiJT3KYPFZGP3Prpp8W8uNNOlojMFpF57vVOaqtf7vZ3RKTQff1XESlya7bf1NnfgWnN\nRuimTxq19yTOuflOGmprGThyNCnp6a2OidTXUzd/PmWPziTru98l57hj8dko3mx/iSifegywXlWP\nBxCRXGARcISqfiUijwGXAH+OdbKqrhSRvwE1qnqH28aFwBDgEGAsTu72tqbfG4BTVLXK/bLwiYi8\n3Ea/Wvq1qpaJiBeYLSITVPWLzvwSTHMW0E2vUVzdQDgCGSlectLbTxyTlpXF4Kzd2j0mXFnJmov+\nD0Ihat9/n4xJ+1pANz2h28un4tQ6/5OI3Aq8ClQBK1T1K3f/LOBS2gjo7XhRVSPAlyIyqJ3jBLhZ\nRA7FKdM6FBjUsl+q+n6Mc88QkYtw4s8QYE/AAno3sCl30yusr6jnxHs/ZPIfZ/Pg+8uprA822x+u\nqqLmww/ZeMut1M2fT7g2jrLNqs6fJpFIN/famLh0e/lUN3DvixNAfw+c3M7hIbb+W5+2jaYDUa/b\ny11/DlAATFLVicAmIK1lv0TkhuiTRGQUTqW2I1R1AvBaHH0ycbKAbnqF177YwIbKBgDuefsbGoLh\nZvsbli1jzYU/pnzmTFadfQ7Bdeu32aYnN5dh99xDxv77MfCXv8Q3eHBC+m7MNnR7+VQR2QmoU9Un\ngNuBA4GRIrKre8i5wLvu65XAJPf1qVHNVOPUM++MXGCzqgZF5Ds46wJi9WvfFuflALVApTsDcGwn\nr29isCl30yuMH7o1VezO+Rl4Pc0HB3WfzQMRUseOhVCIwNKlpO02pt02vRkZZB06hYzCSUhaGp42\nFs4Zk1AzKp9kRi507yr3vYDbRSQCBHHul+cCz4qID5gL/M099ibgYRH5HfBOVBuvAM+5C9ou6+D1\n/wG8IiILgSK21kKP1a8tVHWBiMx3j1+DU0fddBMrn2p6hcr6IEs3VvHVxmqO3HMQg3OdRW4aChGp\nrSVUXk5JfZjPNjeQ4vWw77jhDOyX1cO9NjsYK59qejUboZteITfdzwGj8jlg1NYMc6HycipeeIGa\nt/9H2l33cuqTn7GxypmW3/XTzTw1fTIF2ZYhzhhjwO6hm16s5t13Kb79DjTQwMeL124J5gDfbK5h\nZUkcC+OMMZ0mInu5z6lH/5nT0/0ysdkI3fRKGg5T98kn7usIPk/r2U6f12ZAjUkkVV0ITOzpfpj4\n2Ajd9Eri9dLv7LNBhMCSJeyb72Nk/tbcHHsPz2V4/5a5OowxZsdlI3TTa6XssgujX32F2rlzyczN\n4NmLJvNNSS1+r4eRAzIZkGX3z40xpokFdNNreTMz8e6yC6m77AI4WSwKcluneDXGGGNT7sYYY0xS\nsIBujDFJTERmiMjPE9T2lkpuvZGIFIjIHLcK3ZQY+x8SkT17om+JkNApdxHJAx4CxgMKXAAsA54B\nRuKkJDxDVcsT2Q9jjOlJe83aq1U99IXnLezpeug9SkR8qprousZHAAtj1WMXEW+y1WlP9Aj9buAN\nVR0L7A0sAa4FZqvqGGC2+96YNoVKSghu3ky4pqanu2JMh7nBvFU9dHd7p7RRD71V3fOoU/YWkY9F\n5GsRmd5Ou0NE5D33efNFTaPabdQwvyyqLvpY9/j93evNd+ur7+5unyYiL4vI2zilU9uqqz5SRJaI\nyIPuNd8UkTYX0IjIdBGZ6/4+nheRDBGZCNwGnOR+nnQRqRGRP4nIAuDAFnXaj3H7sUBEZrf3OXqr\nhAV0tw7uocDDAKraqKoVwEk4pf1wf7ZXJcj0ApFQiHBNDdoD1cqCGzey8qyz+eaww6l84QUL6qYv\naq8eemc11R3fW1XHA29s4/gJwHdxirjc4BZRieVs4D9uBbW9gc/d7b9W1UK3ncNEZELUOSWqui/w\nV5xKauDkap+iqvsAN9D8s+4LnKaqh7G1rvq+wHdwSq82JZgYA9ynquOACpoXlmnpBVXdT1WbBo4X\nqurn7rWfUdWJqloPZAJz3N/bB00ni0gBzpeuU902To/jc/Q6iRyhjwKKgUfdbzcPiUgmMEhVN7jH\nbMSpoWt6qVBFBeWPPc66K6+kft48IoHAtk/qRlWvv05wzRpQZdOttxGpr9+u1zemGySqHvqRInKr\niExR1cptHP+SqtaragnwP2D/No6bC5wvIjOAvVS12t1+hojMA+YD43BqmDd5wf35Gc6tVNhaKGYR\ncJd7TpO3VLXMfd1UV/0L4L9srasOTn33pi8U0W3HMl5E3neLxZzT4nrRwsDzMbZPBt5T1RUAUf1r\n73P0OokM6D6cb2J/db/d1NJiel2dyjAxq8OIyEXuFE9RcXFxArtp2hNcvYbNt91G7QcfsvqCCwlX\nbuvfjeZCpaUEVq0iVFxMZwoBpe0+dsvrlFGjEE/rv7KhkhKCmzYRrqputc+YXiDh9dDduuPt1T1v\n+T9fzP8ZVfU9nJnVdcBMEflRHDXMm77lh9m6Lut3wP/c2YMTWhwfnbM5Zl31Fu22bDuWmcBPVXUv\nnOpybdVYb1DVcBv7Ymnvc/Q6iQzoa4G1qtqU9/c5nL+Am0RkCDj3a4DNsU5W1QdUtVBVCwsKChLY\nTdMukdiv4xAqLWXt5Vew/OhjWHHqqYQ2bSJUXEK4rmVp6LaljR/HiFmzGHTDbxjx8EP48vOb7Q9u\n2sTKM3/AN4cdTtk/niBcbUHd9Drbox76vrRd9xyc+8hpIpIPHI4zEo/V7s7AJlV9EGdB8750roZ5\nLs6XAoBp2ziuVV31TsgGNoiIH+dLQkd9AhzqfnlBRPpH9S+ez9ErJCygq+pGYE3UIoIjgC+Bl4Hz\n3G3nAS8lqg+m6/zDhzPoV78i67DDGPHIw3jz8uI+NxIIUP/ZZwCENhfTsPhLVl9yCWWPPEqoooJw\ndTWh4mJCZWVttuHNySHzgP3pf/bZ+Ae1vjtTN7eI4Drn/7eS++5HGxpaHWNMT3JXs08HVuGMjFcB\n07u4yn0v4FMR+Ry4Efg9zsj0bhEpwhnRRvsCZ6r9E+B3qrq+jXYPB5pqlp8J3K2qC3Cm2pcCTxJf\nDfPbgD+67bQ3sv4HUOhOlf+IrXXVO+o3wBy3bx1uQ1WLgYuAF9wFc8+4u+L9HL1CQuuhu6sMHwJS\ngOXA+ThfIv6Jc/9oFc5ja23/i47VQ+9pGgoRCQTwZGQgLUbpoYoKAl9+iUYipI0bh69fv637SktZ\nc+mlNHy+AG9+PsP/9ldW/uAsCIcZ+fxz1H74IcV/uYf0vcYz7J578A3o+OOsgW+/ZflJJ0MoRPp+\n+zHs7rvx9e+37RON6TirBmR6tYR+43AXNBTG2HVEIq9rupf4fHh9rf+qaChExbPPUvynOwEYcOlP\nyL/4Yjx+PwC+/HyG33cf4aoqUGX9L6+BsDNw0Pp6ymbOglCI+vmfUzd/PjlHHtnhvvl32oldXv83\nwQ0bSN1lFwvmxpgdVlwB3V3SPx1nleGWc1T1gsR0yyRSJBgkXFGBeDyt7kl3qJ3GRurnf77lff2C\nBWggAG5AByeo+/LzCW7ejDY2ApB95JH4RzRf4OsfNJhIMLjly0C8POnppAwfTsrw4Z3+HMbsaERk\nL+DxFpsDqnpAT/QnXiJyH3Bwi813q+qjPdGf3iauKXcR+Qh4H+fRgS33ZlQ11vL/bmdT7t1Hg0Hq\n5n/OuiuvdEbQD/wd/5AhnW6vYelSVp03DSIRRjz6CGnjxrWalm8SKi1Fw2HEn4Kkp9H4zbdUv/kf\n0saPJ7hhA7knnICvf/+Y5xrTC9iUu+nV4p1yz1DVaxLaE7NdhCsr2XjTTYTLygiXlVH+1NMMvPqq\nTreXOmYMu7z6Cgr48vLaDOZAs9kAjUSoX7yIhqXLqHnnHdInTULSevUTIcYY06vFG9BfFZHjVPXf\nCe2NSThJSSFl1Cgav/0WgNSxXctkKF4vvk48VigeDzlHHU3qzjsTqasjfeJEvBktk2kZY4yJV7xT\n7tU4KfMCQBBn6klVNSex3XPYlHv3CpWWUvPue/gGFpA2fjy+DjyK1lmduT9uTC9jU+6mV4trhK6q\n2YnuiNl+fPn55H3/lO1yrUhDAw2LFlH+5FPkHHcsGZMn483K2i7XNsaYHUnciWVEpJ9beebQpj+J\n7JhJDuGKCladfwFV//43a396GaHSUipefJHGVauJBIM93T1jTC8lInki8pNOntttddpF5LciMrU7\n2kq0eB9b+zFwBTAMp/rOZOBjnOo9xrQtEoHQ1pLHoc2b2fibG8DnY5c3XscTI/ubMclmydg9WtVD\n32Ppkh6phy7bpw55d8gDfgLc33LH9vwMqnrD9rhOd4h3hH4FsB+wSlW/A+yDU87OmHZ5cnIYcust\npE2YQMHPrqbxm2/RYBCtrydS49RoKKsNMHvJJj74uoTy2sYe7rEx3csN5q3qobvbO01Efigin7q1\nvv8uIl4RqYnaf5qIzHRfzxSRv4nIHOA2EekvIi+KyBci8klTOVQRmSEij0uM2uki8gu35vgX0rom\nesu+/cg9boGIPO5uK3Brlc91/xwcdc1H3Nrky0XkcreZW4Bd3M93u4gc7lZUexknjTjuZ/hMnJrp\nF3Xgd9fqPPf3N1OcOvALReSqqN/dae7rG9y+LxKRB6JKvfYK8a5yb1DVBhFBRFJVdan08kLvpnfw\nZmWRc+yxZB16qFMC9Q9/ACDnxBPxFQygvjHEnW8u44k5awD42ZG7cfFhu+D3JbJukDHbVXv10Ds1\nSheRPXByrR/sFja5n20XJRkGHKSqYRG5B5ivqieLyHeBx4CJ7nETcGZhM4H5IvIaMB6nPvn+OF9K\nXhaRQ93qbC37Ng643r1WSVShk7uBu1T1AxEZAfwH2MPdNxanHno2sExE/opTnXO8W4UNETkcp1jM\n+KYyp8AFqlomIunAXBF5XlVL4/gVtjoPJ3HaULeyGiISa7Xwvar6W3f/48D3gFfiuN52EW9AX+t+\nuBeBt0SkHCcPuzHb5PH78bgr6Qdffz0Dr7vOSf362ON4Cwo4a8IB/LNoHY3hCB8vL+W8g0daQDfJ\nJBH10I/Aqaw21x0kptNG5cooz0aVDj0EtyKbqr4tIvki0vTU0kuqWg/Ui0hT7fRDgKNwirQAZOEE\n+FYBHedW7LNu7fXo2uJTgT2jBrU5ItK0QvY1VQ0AARHZzNaa6C19GhXMAS4XkaYVvsPdPsUT0GOd\ntwwY7X7ZeQ14M8Z53xGRX+J8IesPLKavBXRVbfrgM9z/wLnAGwnrlUla3rw8IsXFrPrhuYQ2bACg\n37nncuF+x/Hgp+v5v8NGk5nS64saGdMRq4ldFrTT9dBxRsmzVPVXzTaK/CzqbctMTbXEJ1btdAH+\nqKp/71Avm/MAk1W1WUlEN8DHW/t8y2dwR+xTgQNVtU5E3iGOeuVtnaeq5SKyN3A0cDFwBnBB1Hlp\nOPfzC1V1jYjMiOd621NHVrnv697bmIBT59xudpq4RRobCW7aRMNXX6ENDVuCOUBg/jwuOXAo7//y\nO+w3sj9eT6+6LWVMV3V7PXRgNnCaiAwEp363uLXMRWQPEfEA7T2b+j7uFL0b4EpUtcrdF6t2+n+A\nC5pG1CIytOnaMbwNnO6eH11b/E3gsqaDxKnG2Z5qnCn4tuQC5W5QHotzmyAeMc8TZ1W8x01pfj3O\n9H60puBd4v4eTovzettNXAFdRG4AZgH5wADgURG5PpEdM8kluHYt3x51NCtOPInGNWtI32fr/8u5\np3yfrH65DMlLJ8NG5ybJuKvZW9VD78oqd1X9EifovCkiXwBvAUNw7ju/CnwEbGi7BWYAk9xzbwHO\ni9rXqna6qr6Jc7//Y3Fqlz9HG8FWVRcDfwDeFae2+J3urstxap9/ISJf4oyC2/uMpcCH7gK022Mc\n8gbgE5El7mf4pL324jhvKPCOODXmnwCazX6oagXO4sZFOF9w5sZ5ve0m3kxxy4C9m6ZK3IUEn6vq\ndlkYZ5ni+r6yp59m0wxnYaw3P59RLzxP44oVePP64RsyGF9ubg/30JhtSvqpI3cauUZV7+jpvpiO\ni3c4tB5nuqHp3kcqsC4hPTJJKfOAyUh6OlpfT9q4PRF/CpmT450hM8YYsy3xjtBfxHkO/S2cKaMj\ngU+BtQCqennbZ3edjdC3P1WlpL6E8kA5/dP6MyC9c0mXNBgkVFEBIhAOE6mpcUbl+VYm1fQ5ST9C\n7wj3HvnsGLuOiPPRsYTq7f1LhHhH6P9y/zR5p/u7YnqTkvoSznrtLDbVbWJU7igeOfqRDgd1jURo\nWLqU1edfACKMeOQR0sa3XS/dGNN3uEFxWwvbekxv718ixPvY2qym1yLSDxiuql8krFemx1U1VrGp\nbhMAKypX0BBq2MYZrUVqath8xx1EapzkVZvvuINh996DN9tq/RhjTHeLd5X7OyKS4z5+MA94UETu\n3NZ5pu/KTc1lTN4YACYNnES6L71D52skAl4vmYdM2bItdexYxJ/Srf00xhjjiHfKPVdVq8Qp0vKY\nqt7oPu5gktSA9AE8cNQDNIQaSPelk5+eH/e5ofJyKp57joaFCxlw6aWk7jGWSHk5mQcfjCctNYG9\nNsaYHVe8iWV8IjIEJ3POqwnsj+lFBqQPYFj2sA4Fc4CGBV9Q/Kc7qX7zLVafN4303ceSe8IJ+Prb\nQjhjticROVFErm1jX00b26OjqzRJAAAgAElEQVSLkbwjIoWJ7GNbRGSiiBy3Ha5zXdTrkSKyqBva\nLBCROSIyX0SmxNj/kIjs2dXrtBRvQP8tzoP036rqXBEZDXzd3Z0xfUu4ro5gcTGhkpJm2yONW7M4\najCItsokaYzZHlT1ZVW9paf70UkTgYQFdHF46FrGvrYcASxU1X1U9f0W1/Wq6o/d5EDdKq6ArqrP\nquoEVb3Efb9cVU/t7s6YviNcU0PVy6/w7RFTWXn2OTSuXbtlX0ZhIf1+9CPSJ01i+EMP4c2LVbTI\nmB3HfRe/ffZ9F7+98r6L3464P7tUOhW2jCaXuiPqr0TkHyIyVUQ+FKf06f4iMk1E7nWPHyVOWdSF\nIvL7qHZERO4VkWUi8l8gZkpXETnKPX+eiDwbVVgl1rGTRORdcUqU/sed4UVEpotTfnSBOKVUM9zt\np7sZ4RaIyHsikoIzkDxTnPKpZ7ZxnbZKryIiV7ttLhKRK6N+Z8tE5DGcjG8PA+nuNf7hnuoVkQfF\nKa36pptIra3P2erzuCltb8NJofu5iKSLSI2I/MnNnHdg9MyHiBzj/k4XiMhsd9v+7u96voh8JHFW\nN413UdxuIjK7aSpCRCaIpX7doUVqath4001oYyPB1aspvvMuIgFnZO7r35+BV1/F8PvvI33CXnj8\n/h7urTE9xw3ereqhd0dQB3YF/oRTfnQscDZOZbSf03rkeTfwV1Xdi+ZpYU8Bdgf2BH4EHNTyIuLk\nOb8emKqq+wJFwNWxOiQifuAe4DRVnQQ8gpMKFuAFVd1PVfcGlgAXuttvAI52t5/o1gq5AXhGVSeq\n6jPt/A7G4hRU2R+4UUT8IjIJOB84ACdX+3QR2cc9fgxwv6qOU9XzgXr3GudE7b9PVccBFbhV6drQ\n6vOo6uct+l6PU4p2jqruraofRP2uCnD+bpzqtnG6u2spMEVV93HburmdPmwR75T7gzh5bYMA7iNr\nP4jzXJOMPB4kZeuK9YyDDyJcXk5wwwbCtbV40tLw5uYiXm8PdtKYXqG9euhdtUJVF6pqBKeU52x1\nsoUtxKnvHe1g4Cn39eNR2w8FnlLVsKquxymu0tJknID/oTi5zs8jdgU5cL4cjMcptf05zheBYe6+\n8SLyvjj54M8BxrnbPwRmish0oKP/aLymqgG3XGtT6dVDgH+paq2q1gAvAE33slepant531e4QRng\nM1r/HqO19XlaCgPPx9g+GXivqSRsVKnZXOBZdxB9VzvtNhPvKvcMVf1UmicECcV5rklC3rw8Rjz8\nMJtuvZXMKYfgHzKEb6YeCZEIQ/98F9nf/S7is0IrxpCYeuhNosuORqLeR4j973tnF7QI8JaqnhXn\nsYtV9cAY+2YCJ6vqAhGZhlPNDVW9WEQOAI4HPnNH2PGKt/Rqk22VkW3ZXnvP7M4kxueJoSGqFn08\nfgf8T1VPEZGRxJnMLd4ReomI7IL7l0GcFZDtVfIxSc6TkkL6PhMZ/sDf6T9tGhVPPQ2hEEQilD/x\nBJG6ltUijdlhtVX3vCv10DvjQ7bOrJ4Ttf09nHvVXvde93dinPsJcLCI7AogIpkislsb11kGFIjI\nge6xfhFpGmFmAxvcafktfRCRXVR1jqreABQDw9l2+dT2vA+c7N7TzsS5rfB+G8cG3f50RszP0wGf\nAIeKyChoVmo2l631UqbF21i8Af1S4O/AWBFZB1zJNkrfmd4nVFFB1ZtvUvbU04RKm6cyDhYXU/fZ\nPIKbNqHh+L5IiteLr18/vNnZ5Bx37Jbt2ccci6R3LBGNMUksEfXQO+MK4FJ3enho1PZ/4Ty19CXw\nGPBxyxNVtRgnsDwlTg6Sj3HuXbfi3v8+DbjVXQT2OVvvy/8GmIPz5WJp1Gm3u4v1FuGUfl2AU8J1\nz/YWxbVFVefhjJ4/da/3kKrOb+PwB4AvohbFdURbnyfefhYDFwEvuL+rprUCtwF/FJH5xD+T3n5x\nFhG5QlXvFpGDVfVD95uOR1WrO9rxrrDiLN2j7Mmn2PTb3wKQedih7HTbbfhycwkWF7PyjDMJbdiA\nNy+PUS+/hH9gzIWubQpXVxOuqEDDYSfIWzlUk3w6XYTAXQB3M840+2rgukv/9t1O10M3JpZtRf7z\ncVZG3gPsq6rbuvdgeimNRGj4cutjj43LV6CNjc6+ujpCG5w7KOGKCkLFxR0O6N7sbMvRbkwb3OBt\nAdwk1LYC+hIR+RrYSZqnehVAVXVC4rpmupN4PAyY/mNqP/iAcEUFg39z/ZZRtCczk7S99qJh4UJS\nRo3CP2hQD/fWGNMXiMi/gFEtNl+jqv/p5uucj3PLINqHqnppd16nnevfh/OUQLS7VfXR7XH9eG2z\nHrqIDMbJEndiy32quipB/WrGpty7h6oSLi1FVfHm5OBJ3ZpXPVRaSqSuDk96Or4BrcukRurrCVdU\nouEQ3pwcvDk527PrxvQGVvfX9GrbvNmuqhuBvbdDX0yCiUjMYA3gy8+H/HxUldqKcgAycvO21C5v\nWPwlq6ZNg1CIQddfT97ppzX7QmCMMaZntbvKXUT+6f5cKCJfRP1ZKFZtLSlVbFzPP2/6Fc/MuIay\n9U46V1Wl4sV/OY+lAZUvvECk1pZTGGNMb7KtEXrTPYvvdaZxEVmJ8yxhGAipaqH7nN0zONl3VgJn\nqGp5Z9o33SsYaOC9Jx7dEsjffexhjr/yl6SmZ5B38slUvvgShELkfv8UPJmZzjmbNqOBBuqXLCV9\n993wDx9u2eGMMaYHbPMeepcadwJ6oZuSr2nbbUCZqt4iTlm/fqp6TXvt2D309pXXNfLl+ioCoTAT\nh/ejf2bKtk+Koa6ygpqyUhobGnj38YcZsttYDj1nGj5/CpH6eupqG6jx+PF4PBTkphNcv4HV559P\naPNmBt94A3Xz5lFw2WUdXiEPUFbbSDii5Gem4PHYrUrTK9lfTNOrtTtCF5FqYqcKbFrl3pmVUSex\nNT3eLJyUdu0GdNM2VeWFeev43avOI2kXHzaaq6buRqq/Y6Pk+upq3n3iEb58720ycvM4c8YtpGVl\n4/M7Xw5C/lQ+2FjBpU9+TL8MP89dfBCZr7xCcLWT7Kr4rrsYdO2vIM6kNNE2Vtbzk3/Mo7I+yL1n\n78vug7ItqBuTYCJyMvBVd5XxdKuH/UhVL9/mwQkgIicCe7qDxQLgVSAFuBynFsnZqlrRE33bXtq9\nh66q2aqaE+NPdpzBXIE3xSmhd5G7bZCqNqWN3YiTSN90UjCsfL566x2LBWsrCYQiHW4nHAry5XtO\nTYb6qirqq6vJyNmaHKaqPshtbywjHFFKahp5eu5qMiZtTbecMnIk3kEDt0zFx0tVuf+db5m3uoJv\ni2v5xXMLKK9r7HD/jTEddjJOwZVuoapFPRXM3etH135vVo9cVY9L9mAOHUgp10mHqOo6ERmIU3mn\nWWo8VVURiTnn734BuAhgxIjuqGGQnFJ8Hi6fOoZPlpcRCIf51TFjyUrt+H9Wj8/H6H33Y+WCeZx+\n5a9IL5rHphdfJu8HP6CuqAjv5IOZtHM/lpc4i+Emj84ndadhDLv/foLr15F95JF4srPxZrQsKtU+\nEWF4/63nDM5Jw+eNNyOxMX3Dn878XqtMcT975tUuJZoRkR/ijD5TcNKP/gS4F9gPp6DIc6p6o3vs\nLTiPHoeAN3Gqj50IHOaWwj5VVb+NcY3pOP8OpwDfAOeqap2InA7ciLM+qlJVDxWRw4Gfq+r3RGR/\nnKRkaUA9cL6qLmvjc0zDybWei5OS9glVvcnd9yJOXvc0nOe+H3C3H4Pz+/QCJap6hNtOIfAQTurU\ndHfW4ECc0qaFqloiIj/CKS+rwBeqem78v/XeLaH30JtdSGQGUANMBw5X1Q1uIYB3VLXd4u12D719\nkYhSUhsAhX6ZKfg7GRDrKisINzZS/9QzlN5/PwC+gQMZ8sc/svaKKxjw5tssLaknPzuNoXnp5KR3\nT53zstpGXl+0gbLaRn6w33AKstO6pV1julmn7gO5wfxBmpdQrQOmdzaoi8geOEHr+6oaFJH7cQp9\nvKqqZSLiBWbjBPx1OPnRx7qDqDxVrRCRme7xz7VznXxVLXVf/x7YpKr3uPngj3EHbE3tHc7WgJ4D\n1KlqSESmApeoasy64m4g/iNOydU6YC4wTVWLRKS/+3nS3e2H4cwszwMOVdUVUcdMwwnaP41+7V5j\nJU6wH4STu/4gN7j3jypZ2uclbIQenffdfX0U8FvgZZxaure4P19KVB92FB6PMLAbgmBGbh7h2loq\nFi/esi20eTOelBS0pgZd+BmZDdWM+c7R+FKaB/NIOExdZQUNNTWk5+aSmZsX93X7Z6ZwzgFtlVY2\nps9rrx56Z0fpRwCTgLluroh0nFrgZ7izmz5gCM6U+pdAA/CwiLyKc285XuPdQJ4HZOEkGYOt9cv/\niTPabykXmCUiY3BGwtv69v9W1BeHF3DqmRcBl4vIKe4xw4ExQAGxa4jH47vAs00LtZMpmEP81dY6\nYxDwgVtB5lOcIvRv4ATyI92UslPd96aX8GZm0v/CC8Dv/P+XffTRBFatJOuoo/DsNIQV84poqK1p\ndV5tZTmzfn4ps35xKS/d/nvqKrd9u6q4OsCKklqKqxu6/XMY04skoh66ALNUdaL7Z3ecRcY/B45w\n03K/BqSpagjYH3gO5xHkNzpwnZnAT1V1L+AmnKlvVPVi4HqcIPuZiOS3OK+pnvd44ISm89rRcqpY\n3RH/VOBAVd0bmB9HOzu0hI3QVXU5MTLMud/CjkjUdU3XVNUHqR4xhhGvv4E32IgnI43KsjLy9yuk\n8uVXOHSPiaSEWy+6q9i4YUug3/D1UsKhYLvXKa5u4NyHP2Xpxmp2zs/guYsPtKl2k6xWA7GmoLpS\nD3028JKI3KWqm938HiOAWqBSRAYBxwLviEgWkKGq/xaRD4Hlbhvx1BtvWe97HWytXw7MEZFjcQJ7\ntI7W8z7S/Qz1OIv1LsC5n17u3rMfC0x2j/0EuF9ERkVPucdxDYC3gX+JyJ2qWppsU+62+mgHV1Uf\nZFNlAyU1AQDmr6ng4D9/xLh753PtnHIaU9JIS89gw09+SsV991N87XXUvfteq3b6DRlKToHz/Pku\nhQfg9bf/LHxdY5ilG50qvKtK66iqD3XzJzOm1+j2eujuo2bX4zxF9AXwFhDAGcUuxZnK/9A9PBt4\n1T3uA+Bqd/vTwC9EZL6I7NLGpTpSvzxaR+t5fwo8D3wBPK+qRTgzCT4RWYIzk/uJ+9nbqiG+Taq6\nGPgD8K577p3xntsXbLdFcV1hi+ISo7ohyKyPVnLHm18xMj+DWRfsz6bKBs544BMAjthjIH84fBjh\nUIiqk47bkvq139lnMfiGG1q1V1teRijYiD8tvdkjb7EUVweY9uinLF5fxS4FmTx90YEUZFtueNOr\ndTo5QiJWuSeLlgvYTOcl+rE104vVB8P8+b9fA7CytI7/LStmz8HZTNl1AJ+sKOXSw3dFNnzL/EgO\nE356ObV/vhNv//70O++8mO1l9usf97ULslOZef7+1DWGyEjxWjA3Sc0N3hbATUJZQO+jIg0NBL7+\nmspXXyX3uONJ3X03PGkduwftFWHvYXl8trocr0fYY3A2K8tquefsfWgMRcj1g/iHUljXSPEhUxlx\n3LGkpqaQUhC7YltHOUHcArkxPW171PsWkaOBW1tsXqGqp+AsvjNdZFPufVRw40a+OfIoCAbB72fX\nt97EP3hwh9sprm5g0boq8jL8fPRNCWe4z4GHSksp+dvfaVyxgoIrr8A/bBiSmoo3PT2udhtDYcpq\ng1Q3BOmfmUJ+VscDdzgUomzdWha/+1923f9ABo4cTUpafNc3JgEsH7Hp1WyE3kdpMOgEc4BgEG3s\nXLrUguw0Dhnjp6IuyNmTdybD76W6IUjDU09R/vjjANTPn8fo11/Hlxf/s+XrKho49u73aAhGOGrP\nQdx66gT6dbBoTH1VJU/+5meEAgHm/ftlfnzPQxbQjTGmDbbKvY/y5ORQcPXVpIwayYArrsCb2/4i\ntPb4vV4KstPwivBM0Roeeu9bgsVbCuQRqa2DSMfyw3+6opSGoHPOW0s2EYzxqNu2RCIRQgFn9b1q\nhGDAnlc3xpi22Ai9j/Ll5tL/3B+S9/1T8GRk4OlgDvVYKuuD3PDSYgZmp3L6WT8iZc4cGtetY9Av\nf4knK6tDbU0enU9Wqo+aQIjvTdgJv6/j3x1TMzKY+uNLmff6y4zZ70AyOpB9zhhjdjR2D70PUlUn\nE5sq6Tm5eLwdK5Xalg2V9Uy59X+EIspug7J48ew9SfGAZGTgzcykrDbAR9+WUt0Q4qg9B7V7XzwU\njlBa20h9Y5icdB/9Mzu3+C0YCNDYUI8/NdWm201P26HuoYvISJxc7+O3ccxBqvqk+75HS6ju6GyE\n3geVb1jHC7fMIBwMcvIvf8PAnUcjHmcErOEwwXXrqHrzTbxHH0dtZi4ej4e8dD8ZqT5CZWVEqmuQ\n9HR8A/K3nAeQm+7nyemT+WfRGk6fNAzycvFFVW771/z1W+quF60s57cnjSOzjcpuPq+HQTldz/zm\nT03Fn2or4Y3ppUYCZ+M+kucmhLHRVw+xe+h9TGNDPe898QiVmzZSU1bKfx+6v1lu9VBpKSvPOJOa\nLxbx9ooqDrntHQ659W0+XVlGqLycDb+5gW+PPpoVJ51EaPPmZm1npPjYf1R/bjt1AgeMzicjKlhH\nIsqyjVVb3q8oqaGxE3XXjTHdQ0RGishSEfmHiCwRkedEJENEjnCzvy0UkUdEJNU9fqWI3OZu/1RE\ndnW3zxSR06LabVWswb3W+yIyz/1zkLvrFmCKiHwuIleJyOFuARhEpL+IvCgiX4jIJyIywd0+w+3X\nOyKyXERsNN9NLKD3MV6vj9yBWx9PyxlQ0HzKPRQiXFEBEybyzyXlAEQUnp67hkhjIzWzZwMQLi+n\nYUmz8vRbeDytZxY9HuGy745hzMAshuSm8duTxpPbTeVTjTGdtjtwv6ruAVThpHWdCZzpFlTxAZdE\nHV/pbr8X+HMHrrMZOFJV9wXOBP7ibr8WeN8tEHNXi3NuAua7hWKuAx6L2jcWOBqnaMyNbq5400U2\n5d7HeP1+Dvj+mWT1zyfU2MiEI48hNSNzy35PVhYFV15B3fJvOOXYg5mzogwROG3fYXhSUsicMoXa\n99/Hk5tL2th2y9C3Mrx/Bk9dNJmIKvkZKTEDvzFmu1qjqk0525/Ayb2+QlW/crfNAi5la/B+Kupn\nywDcHj9wr4hMBMLAbnGccwhwKoCqvi0i+W6ddHCqbwaAgIhsxqnOubYD/TExWEDvgzJyctnvxFNj\n7vPm5NDvhz8kr76eY1PSOXjcUDweITfNjy/Nx063/JFwdTWejAx8+S0rHm7bgKiFcLWBEB4R0lO6\nZ1GeMabDWq5qrgDa+x9bY7wO4c7WiogHiJUw4ipgE04FTQ9OffWuCES9DmOxqFvYlHsfESotpX7R\nIoKbNhEJtl+a1JuVha+ggNzcLIb3z2BoXjpZac7/L778fFJHjsQ/cCDShdXx6yvqufKZz/n1iwsp\nrg5s+wRjTCKMEJED3ddn4yxIG9l0fxw4F3g36vgzo35+7L5eCUxyX5+IMxpvKRfYoKoRt82mfzza\nK8H6Pk7JVdza5iWqWtXGsaYb2LeiPiBUVsban/6U+vmfI+npjH7lZVKGDeux/lTWNfLzZxfw0bel\nAOSl+7nqyN1YuK6SNxZt5Af7jWDXgZmk+GzkbkyCLQMuFZFHgC+By3HKjD4rIj5gLvC3qOP7uWVU\nA8BZ7rYHcWqrL8ApWVob4zr3A8+LyI9aHPMFEHbPnYlTvrXJDOAR93p1QOyqTqbbWEDvAzQYpH7+\n587r+noCy77q0YAOgke23j/3eYWKuiDnPDQHVXi2aC3/+/nhDM61gG5MgoVU9Yctts0G9mnj+NtV\n9ZroDaq6CZgctekad/tKYLz7+mtgQoxjgsB3W1zjHXdfGXByyw6o6owW79t8zt10jE259wGSmkrO\nSScC4Bs0iLTx4zrVTrimhkig69PjuRl+bj99AsfvNYSz9h/ORVN2oT4YpilHUX0wTKQPJCwyxphk\nYpni+ohgdTUEAqCKv6Cg2b7SmgBfbqhicE4ag3PTyE5rfgtMVWlcsZJNN9+Mf9gwCi6/DF//+GuX\nt6W+MYzXAyk+L+W1jTzy4QreXLyJC6eM4rjxg8lKsydRTFKxxzpMr2ZT7r2cRiKUbVjHnBefZdjY\nPRmz/8HNVqxU1DVy3QsL+c+XmwB4/pKDmLRzP6grhYrV4E8nHMlj7U9/SuPy5QCk77UX/iO+Q6gx\ngC81jcxO5kiPXt3eLzOFSw7fhWkHjSQrzUeq3T83xpjtygJ6L1dXVckzM66lvqqSJe+9Tf7QEQwd\nu+eW/Y2hCPPWVGx5P391Ofvkg3z4Z+RjN/fDtA+brWj3FO7L8zffQPGqFQwavSunXHMjmXn9utzX\njBQfGSn2V8oYY3qC3UPv5VR1SwlRcFK/RiJKaU2AqoYgWWk+rjlmdzwCQ3LTOHb8YMLlm5Fv39py\nju/rZxl27z1kT51K/+nTaRQoXrUCgE3Lv6Gxvm67fy5jjDHdy4ZTvVxaVjbfv+4m3n9yJkPG7M6g\n0WNYXVbHgx8sp6K2kZtOHM8x44cwZUwBHhEKslOp+mApnvHn4X37WvCmoGOOJmXnndnpjtvB56Ou\nuoqM3DzqKivI7Ncff1o64aoq6oqKqCv6jH5nnol/xHBE7JahMcb0FbYorg+IRMI01NQSDofwBYKU\n/OslNC2dksJD+KIKph08qtnxgeXLqX37DbIP2Q9PXj8kdxCe9K25HzQSobaygspNG8kdNJjMvH40\nLFrMytNPB8Cbn8/ol17EN2DAdv2cxvRyveobrogcA9yNk+TlIVW9pYe7ZHqYjdD7AI/HSyQUZNns\nNxn00afUvP4GAAOnX8SE7/+o1fEpO++M58TTIRKGnBw86RnN9ovHQ1a//mT127rSPVRasuV1uKIC\njXS8klqorAwNh/FmZ+NJ63rpVGNMbCLiBe4DjsTJgT5XRF5W1S97tmemJ9k99D4iUFeL3+8ntHbd\n1o1r17D7gPRWx4rXi39gAf7Bg/FmZLTaH0v6hAnkHHcc/mHDGHrH7XizsjrUv+CmTayZPp3lxx1P\nzXvvEWnoaqpnY0w79ge+UdXlqtoIPA2c1MN9Mj3MRuh9RFpWNhvWr2H4z64idO11eNLTGHjVlaRk\nxxewt8XXvz+DZ8wgEmhoNsIurQnw7lfFZKR42X9UPv0zY9VtgKpXXqVhsTM42PCr6xj9+us2Sjcm\nSmFhoQ8YAJQUFRWFutjcUGBN1Pu1wAFdbNP0cRbQ+4jMvH5MOed8IsEQI556Eq/f3+33uL052Xij\n6izUBULc+dZX/GPOagB+ffweTJ8yOua5/pE7b309dCjitckfY5oUFhYeBLwGpAENhYWFxxcVFX3U\nw90yScYCeh+SkZO7XVeeN4YjfLWpesv7JRuqCIUj+GIE64zCQob+5S8Eli8n75STO1Wa1Zhk5I7M\nXwOaMjilAa8VFhYOKCoqCney2XXA8Kj3w9xtZgdmAb0PaKitYc3iL1g+r4i9jzyWASN2xuePPfXd\nnXLS/Nx4wjgunDWXjBQfVxwxJmYwB/Dl5ZFz1JEJ75MxfdAAnCAeLQ0oADZ2ss25wBgRGYUTyH+A\nUz7V7MAsoPcBlZs38vKfbgZgyQf/48d/eYis/okfAXs8wh6Ds3nlskMQnGfcOytUWkqkphZJS3Xu\n0ce5WM+YJFACNNA8qDcAxZ1tUFVDIvJT4D84j609oqqLu9RL0+dZQO8DasrKtrwOB4OEgsEOnV9X\nVcmyj96jvqaavace2yzNa311FZFwmLTMLLz+1sVUvF4PA7O7trgtVFLC6gsuJPDVV+DzMfTPd5F9\n+OGIz/76meRXVFQUKiwsPJ6oe+jA8V2YbgdAVf8N/LsbumiShK1c6gMG77obw8dNwOP1sc+xJ5Da\nwdHtov+9xduP/p2Pn32S2Q//jUBdLQA15WW88udbeeqGX7B26WJCwcZEdJ/aT+Y4wRwgFGLTb39H\nuLw8IdcypjdyF8ANAEYBA2xBnEkEGyL1AZm5eZxw5TVEIhG8fj9pmfE/I66RCNWlW2f2aivLiISd\ngcH8N15hzaIFALx0+++54O4HmiWb6YjSmgBPz11NZV2IH08ZxcCc6FF9y2yE2mqLMcnOHZF39p65\nMduU8IDuZjQqAtap6vfcRRxPA/nAZ8C5bmIE0470nNxOnSceDwecfAala1cTqKvjqP+7nPTsHIBm\nXwz8aWmdXkEfiSgPf7CC+9/5FoBvS2q484yJ5KY7U/iZkyeTOmYMga+/Bp+PQdf/Bl+/rld3M8YY\ns9X2GKFfASwBctz3twJ3qerTIvI34ELgr9uhHzusrP75nHDVdWgk3OyLwbjDp1JbWU7FhvVMOXsa\nGZ380hBWZVPV1sxwJdUBwlGpY30DBjBi5qNEamqQtDQ8WVl2/9wYY7pZQouziMgwYBbwB+Bq4ASc\nlZ2D3VWaBwIzVPXo9tpJ5uIs9VWVbPj2azKyc8gbvBNpHUy5ui0lNQFqAyHSU7wxF7eFgo0EAw34\n09Lx+VoviovX+op6Lv3HPGoCIe47Z1/GDMyyam0m2dhfaNOrJXqY9Gfgl7Al/Vg+UKGqTWkP1+Kk\nMNwhBerqePcfj7L4nf8CcNLPfs2u+x/Ybe2X1gS45InPmLuynGH90vnXTw6iICqohxoDrP9qKXP+\n9U9GjJ/AhKnHbpmOL6kO8PKC9WSl+Zi6x0D6Z7b/yNpOeek8PK2QcATyM/+/vTsPj7I6Gz/+vWef\nTPaFNUT2TWSRiOCKWNxQwQ0XWpf61rZqq6W/irZv1VerbbV1t6/V2qp9FcSt7lBErSgiBhWQfZew\nBrJMMpPZMuf3xzwkAbKQkI1wf64rV2bOc57F45B7nnPOc25Xg8F8b+Ve4iaO1+El2dWyX2CUUupo\n1Wqz3EXkfGC3MWZJM98zjGIAACAASURBVPe/QUQKRKSgqKjZj2t2aFXRCDs3rKt+X7im5RIlxSsr\nCYaifLk5MZu8sKSSXf7wfnVCFRW8/vu7+O7bpXw6658UbysEoCQYYfor33DPOyu57dVl/O/HGwhH\nG3/CJtPnJifFjc1WfzDfEdjBVe9exZmvnMmra1+lIlJxGP+VSh2dRKSXiHwkIitFZIWI3GKVZ4rI\nPBFZZ/3OsMpFRB4TkfUiskxEjq91rGus+utE5Jpa5aNFZLm1z2NifUtvi3Oo5mnNx9ZOBi4Ukc0k\nJsFNIJG7N11E9vUM1LtcoTHmaWNMvjEmPycnpxUvs22FY2H2Vu4lEA3gTvJx+vd/iMPpIjkji5Fn\nndci54gHg/jnzYO1qxmRmxgX75bqoUtqIwvDWP+UorE4q3fULPn67XY/4VjT06nW5d2N77I9sB2D\n4eGvHqYyVtkix1XqKBMDfmmMGQqMBW4SkaHA7cB8Y8wAYL71HuBcYID1cwPWvCURyQTuIpHYZQxw\n174AbdX5Ua39zrHK2+IcqhlarcvdGHMHcAeAiIwH/p8xZpqIvAJcSiLIXwO82VrX0NEEogHmbZnH\ns8uf5ZSep3DD8BvoNXQY1z/+N0SEpLT0xg9yCOKBADt/89/Y09N54s+PEZkyBF9KEhhDWWWENG9i\n2VhPcgoX//oeFr8xm17DRpDZIxeAZI+D6RMHcscby3HabNxy5gB87pb5qAzKGFT9Oi8lD5voUgjq\n6JCfn+8msdxrUUFBQbix+g0xxuwAdlivy0VkFYnhy8nAeKva88DHwAyr/AWTmDS1SETSRaS7VXee\nMaYYQETmAeeIyMdAqjFmkVX+AjAFeL+NzqGaoT2mGs8AZonI74CvgWfb4RraRXmknDs/uxODYbN/\nMxf2u5CMrCEku5q/pGqdbDaceXlENmyg4uoryXv5Za59p4IvN5fwswn9+dGpfUn1OnG4XPQaMoyu\nffrhcLkxYmNvRRiXw8b5w7tz2sAcbCKkJzmxN9CN3hTDc4bz9MSn2VC6gYnHTCTLq0lcVOeWn59v\nA+4l8cSPACY/P/9R4LcFBQWH3fUlIr2BUcAXQFcr2EPimfeu1uu60q32bKS8sI5y2ugcqhnaJKAb\nYz4m8S0OY8xGEt0uRx2b2PA5fVREKxCk1SaEObKyyPv7s5TP/xDvyBHsTs2hYMtiAJ78aD0/GHcM\nqSRmtIvNhjvJRyRWxdLvSrn77RX0y/Fx5wXH0iPd2+LXluZOY1yPcYzr0XKT/5Tq4PYFc1+tslus\n3785nAOLSDLwGnCrMcZfewjaGGNEpFXXcGqLc6hDp/2dbSjTk8mLk17kumHX8ezZz5Lhbr3FVZxd\nu5J6ztlEt24l9duvmDV1CA6bMCovo8677dJglGv/sZgV2/28tXQH7yzdUcdRlVJNYXWzHxjMsd7f\nYm1vFhFxkgjmLxpjXreKd1nd3Fi/d1vl9aVbbag8t47ytjqHagYN6G3IYXPQN60v00dP54RuJ7Tq\nI1vxaJTi559n2y23svPWW+n9ydvMuXkcf/3BaLLqegRNwO20V79NctsPrqOUaqoc6n9+XaztTWbN\nBn8WWGWMeajWprdIzE2C/ecovQVcbc1EHwuUWd3mc4GzRCTDmqh2FjDX2uYXkbHWua4+4FitfQ7V\nDLpc1xEsFo0TC8dweh3YD8hTbsJhQqtWV7+PrF5Nn3Q3/niIotIKfPYUvMnO6ufFs3xuZv5oLA/O\nXc2gbil8b0hXlFKHrYiDkxnsE6f5KVRPBn4ALBeRb6yyXwN/AGaLyPXAFmCqte094DxgPRAErgMw\nxhSLyL0k8qsD3LNv8hpwI/Ac4CUxUW3fZLW2OIdqhlZdKa6ldOaV4gBKQiX8Z+t/KKos4qIBF5Ht\nzW50n1AgysrPtrPpmyJGfi+PXsdm4jpgJnpo7Vq2Xv9fIELu354hkJvJnQvvpDJWyW3H3cExqceQ\ndECO82AkhtNuw2nXzhulDtCsmaH5+fn3cXC3ewB4tKCg4LDG0JWqTe/QO4B5W+Zx76J7AVhatJT7\nT7mfVHdqg/sE/RE+fz2RDGXuM99y9X0nHRTQw726EP/7g1REK5jLCj74fD4Lti0A4JfBW/nb6X8n\niW777ZPk0o+EUi3st9bvfbPc48BjtcqVahH617sD2Fa+DbvYGdt9LMekHkMsHmt0H7u95mbBZrdB\nHRPdwibCpQv/C4CbR95MKFaTQCUUC2F3Nf0uPB4KUVVSQqy4GGf37jgyE+lWQ4Eo0UgVdruQVMcC\nNvG4IRitwuu0t9gjcEodCaxH036Tn59/Dy30HLpSddGA3gFMGzqNid3OJbDahtlpxz3QlxhRaoAn\n2ck5Px7Ghq+KGH5GLh7fwYlVXHYXF/W/iDfWv8HnOz7nrnF3ccuHtxCMBXng1AdI86QTjMSadFce\n3baNTVMuwkSjJE84g+7330/M6ePL9zaxbH4haTleLvrl8fjSa4J6IBxj0ca9/HPRFi4c0YMzh3St\nTq2q1NHCCuKFjVZUqpl0DL2DWDJnM4v+tRGA3sdlcerlx1C6cwvZvY5pcAW5qqo4xMEYg8N18Mz0\nklAJwWgQl91FtjebvaG9ibqk8MLnW1lWWMoPT+7DqF7pJNWxGlyV309oxUqCS5eSdt65hNavZ9uN\nNwEgLhf95n9AxJnKc7d/Vr3PeT89jj4jaibvbi+t5JQ/fkjc+qj951fjOSbrwKd4lOrwtGtJdWg6\n86kDMHFDeXFNd3igLMKGggJeufc3vPvYnwj6/fXuGw7EWDB7LR88t3K/Y+yT4cmgZ0pPcpJyEBGy\nvdnkJOWweWsx0UCQb74r5eq/L6a0Mlr38det47vrrmPPI4+weerleAcPxp6VWN0t4+ofYPN4sNmF\nnLxEQj2bQ8jssf/jeMbsP8033vG/Qyql1BFHu9zbQ2UpBPeCzQHeDMSTSv65vdmztYJwMMZpV/Tl\nw7//HoBta1YQj9ed6czEDV/P20IsEic120vBe5sYd1H/Orvfa4vu2kXOE3/gcqeTS39yCxfNWk15\nKEpd/fyhdTXZ4KpKSzHxOH3eeB0TjWJLTsaekoIXOP/mEZTsDJCS5SUpdf/zpyU5ePyKUfxz0RYu\nGNGDTJ+rae2llFKqUXqHfggiVREiVZGDyps1XBENwTcz4fHj4dHhsP4DiMdJzvAw6abhXPTLUfjS\noWz3TgDGTJmK01V/AOw7sgvJmW6KdwQYcEI3qLUKY9Bfxor/zGfh7P/DX7SbeLyKqmCQXb+7j/J5\n86h47z0cz/2Vm07tTVZy3QtWpYwfj7NnDwDSpkzB5vPh7NIFV8+eONLSquslpbroOTCD1CwPDuf+\nXf/JbidnD+vG0z/IZ2p+Lx0/V6qFiIhdRL4WkXes931E5AsrHenLIuKyyt3W+/XW9t61jnGHVb5G\nRM6uVX6OVbZeRG6vVd7q51DNo3fojdgd3M1DBQ/hcXj42aifVScT2RXYxd+W/42eyT2Z3H8ydrFT\nGi4FIN2dXv9jZ5EALJtV837pTBhwFriT8SYnArcxLq5+4HGqYjFcHi/upLrHm8UmRCpjLHl/CwA7\n1pVy1f+MBSAaDrPk3TdZ+u93CQcDfD33Xa7505N43R5w1vxvt7tcXD4mj5S6Vo8DnN260XvWy5hY\nFPF6caQ3LyOc024jLUm/PyrVwm4BVgH7/uD8EXjYGDNLRJ4CrieRovR6oMQY019ErrDqXW6lXL0C\nOBboAXwgIgOtYz0JTCQxke9LEXnLGLOyjc6hmkEDegMC0QD3LbqPD7d+CCSWbr19zO2UR8qZ/vF0\nlu1ZBkCyK5luSd346fyfAnD3uLuZ3H8yDlsdzevywcirYIe1uNPIaeBM2q+KiOBL33+d97JwGcWh\nYtx2N2muNHyug4N87Q6Dsqgf8ntyxsm3s2PhEpa+8S9CgQqSMzLJ+u87sd08HZvLSVaaD6fP02A7\nOHIaX+hGKVU3K9valcAvSKxXXgg8DMw8nGxrIpILTALuA6Zby6dOAK6yqjwP3E0i2E62XgO8Cjxh\n1Z8MzDLGhIFNIrKemuRZ661kWojILGCylaa1Vc8BaEBvJg3ojYhT8+8tHk+8rjJVlEfKq8uLQ8Xs\nCuyqfj93y1zO7n123Wu1Oz0w/HIYMJGYPYmoceCMRXE0kEI1FAsxe81sHvv6MQTh6YlPM7ZH4k68\nS+8URp97DLs2+Tlxcl/CdghUlPLw1w/xzsZ3AHjypEfIXT0Mjy+Zqrjh27I41zz3LW6HjRd+OIY8\ne4S0JB3XVqqlWcH8NRJ3ofu+hXcF/gpcmp+ff8lhBPVHgNuAFOt9FlBqjNm3kEXtdKTVKUyNMTER\nKbPq9wQW1Tpm7X0OTHl6YhudQzWT9oE2wOf08d8n/jffy/seF/S9gBtH3YjD5iDTk8mDpz/I0Kyh\nnNHrDC4ecDHDc4ZjExs2sXHloCvxOup5kDxeBbFKgpLMyiVLee2B+/jm3+8Rqqg4qGogGqA0XEo4\nFmbu5rkAGAxzNs+pHr/3JrvIP68PZ98wjMpkOxc88RnfFBZRsKvmMb+lZd9ywfQ7cCanUh6K8oc5\nqwlGqigJRnlmwSY2FQVYt62MP85ZzW7/wTPllVLNdiX7B/N9fFb5Fc05qIicD+w2xiw5vMtTnYkG\n9EZ09XXl/lPu585xd1avsW4TGwMyBvDU957ivlPuI9ubzeiuo5l7yVzmXjKXE7ufiN1WT7aysq1E\n5/yGCmJ4enfj+GlXsOI/8wkHA+yp3MOi7YvYXrGdvZV7+d2i3/Hm+jcpj5bz59P/zPFdjsdlc3HJ\nwEuqk6oAOJw2Qhhue20Z20ormb/Sz3VDb0AQMtwZXDhgCquL49z68lI27w0wIrdmMtuQ7insLQsT\n2RZkd2mIW1/+hpJgzQTAvZV7KQoWURmtbJ0GVqpz+wUHB/N9fNb25jgZuFBENgOzSHSDPwqki8i+\nntfa6UirU5ha29OAvTQ95eneNjiHaibtcm/Avq70dE/6QbnLbWIjw1NTluRMIumAsfA6rfuA0nE/\n5t875vPAlw/S1deVJ3/+MBEv/Nfc69lYthG33c3s82fjEAceh4dJb0wi1ZXKP875B05x1jnhzuWw\nccXoXC45tjtLd/rp5hjD+xe/j9PuhFgKU5/+iFjcMH/VbhbMOIOxfbOoiht8bgc9bA6Wzd3IiBMy\nWL6jjKqqxN3/zsBOrpt7HTsDO/n9Kb9nfK/xeBwNj7crpfaT28j2Xo1sr5Mx5g7gDgARGQ/8P2PM\nNBF5BbiURJA/MLXpNcDn1vYPjTFGRN4CXhKRh0hMWBsALCaxiM4AEelDIsheAVxl7fNRa56jOe2h\nEvQOvR4loRLu+uwupr4zlfNeO4/vyr87rONVxasoChaxZ/DZVPmyeOSrRzEYdgZ2sqB4ETaHg41l\niZXiwlVhtpZv5aSeJ/HciueImzil4VJmr5nN418/zvrS9Qcd3xaNM9qThGtxMRenptE3zcmUN6dg\njCFaZaiyuugjVXEC4RjjB2QzsmsKsracj55YRl5+FworQjw0dSQZ1nPiczbNobC8kFg8xgNfPkBZ\npT+xMp1S6lA1ttTr1ka2N9UMEhPk1pMYv37WKn8WyLLKpwO3AxhjVgCzSUxEmwPcZIypssbIbyaR\ny3wVMNuq21bnUM2gd+j1qDJVfLrtUwBiJsbiHYsZmDGwkb3qt6FsAzf8+wZsYuOf577AoIxB1bPk\nh3U5DqfNyWUDL+OVta/QL70fAzIGUFheyIicERSWJ/4mDMsexsurXz7o+feKkhCfvboeh8vGuCn9\neffJpYwf2Ju4iRONR0n3Onl46khe+HwLk47rRmhbkPmvb+K0ywcy6uQejBiXgamKMsDuIzkjtTp5\nyrDsYdXnGJIxhO0ryohnu+jSOxW7Q78LKnUIHiYxAa6ubveAtf2wGGM+Bj62Xm+kZgZ57Toh4LJ6\n9r+PxEz5A8vfI5Hj/MDyVj+Hah4N6PVw2VxcPOBiZq+dTbIzmVNzT232sQLRAI8seYS9ob0A/HXp\n0zxyxiN8seML8lLz6JPWhxRXCj8f9XOuHHwlheWF3PjBjVzc/2J+lf8rJvebTIorhdV7VzOm+5j9\nvliEglHmP7+KwtUlQOKRtwEndMUmdm4aeRMprhSS3U4mDe/Gaf2z2fLlLj566lsAHC47J1+Sy6cv\nPceKT+aT2TOXqXf+vvqRuUGZg5h9/my2FhfS1zGYjx/fhMO1i8vuOAFfWv2z8pVS1WaS6H4+cGJc\nAJhHottaqRahAb0eqe5Ubh51M9cOuxa33U2mJ7PZx3LZXAzOHMyiHYu4eeTNnJZ7Gnaxc36/8/GH\n/RRXFlMe8mP8IZYGljI0eygzxswgyZFEeaSc5UXLGdFlBOPzxpPsTN5/HNsYqmI13eCxaJx+o7uQ\nnunmip5XVI/rO+12Ut2wZ3PN43ZOp41YJMyKT+YDULytkJId26oDeoorhSFZQ5B16cx7YTXxuCEl\nM3m/CXlKqfoVFBTE8/PzLyExPvwLEmPmW0ncmc86nOfQlTqQZltrIyWhEnYHd/P6uteZuXomo7uO\n5s+n/5k3N7zJQ0sewiY2njntKXqm5vLZd5/wadHnpHrTGZg5kAe/fBCANye/Sd/0vgBURCqojFXi\nsruwBVzMf34VdruN8d8fjDfZWWfmNYBgWZjFb29C7MIJk/pgTJDX7vstRVs24fR4ue6hv5CSlbPf\nPpUVEVYt3IF/dyWjz+tNSqZOjFNHJf0mqzo0vUNvIxmeDEKxEC+tfgmAgl0FlIXLeHfjuwDYsNHd\n25UVr71JZNMGrp10IZ86VtIzuWf1MUrDpRAJ4o+UM3PDv3huxXOc2O1EpudP5+Qb8ki1peFuZJ30\npDQ3p12Z6LK32W2Ai0t+cy9lu3aSkpVNUh1Lu3qTXRx/1jHE4wabTf+mKaVUR6Qzm1rA3sq9fOf/\njj2Vexqs57Q76e7rDoDb7sbn9HFh3iQARuSMYO+KtSz/YA67Nqzj48ef4LK8yWS4M+ib1peL+l9E\n7+Rc+ORBAhXbeeKbJ6iIVjB/63zWla7jtgW/IkB5Q6evZrPbrGCe4EtLp8fAwaRkZWO31/8d78Bg\nvqcizML1e9i8J0AwHCMcjBKqODiJjVJKqdand+iHaU/lHm784EZWFa+iT1of/n7236sXoDlQtjeb\nVy54hfUl6+mR3ANj4hxvBvLqhJfwuVPY+eU31XWNieMyDjaVbOD7Q75PLB4jrWgNfPoQjkETSXen\nUxouxSY2crw5LN+znFj1aox1i8VjlIRKCMaCpLhSDmtewN6KMD/9vyV8ubkEm8BbN5/CrvnbKdtd\nyZlXDyatyyE8k6+UUqrF6B36YaqMVrKqeBUAm8o27bfGe22loVJeW/saM1fPJDspm2nvTeOcN86l\nMKmUVa++xavTf0G3vv3pl38iqTldOP0H1xMsLWNw9lD2VO5hQt4E7FWJgJ3177t56bSHuW30L3nq\ne0/x2rrXmDZ4Gh57w2Pbu4O7mfLmFM5/43zu+uwu/JV+KisiREINfxGoS1XcULAlMbM+bmDx+r34\niyrZsb6UD/+5mlAg2uRjKqUOnYiki8irIrJaRFaJyDgRyRSReSKyzvqdYdUVEXnMSlO6TESOr3Wc\na6z660Tkmlrlo0VkubXPY1aiFdriHKp5NKAfJq/TS//0/gDkpuSS4kyps96inYu4+/O7WVO8hpfX\nvExRZRGxeIwnVz5FjxNGURWN8q8H76XHwCGcPPX7lO3eRUb3HhybfSw/HflTuvq6QrfhMHIatpJN\n9Fr1Pj/ofzGDMgdx44gb+eFxP6w/Zatl+Z7l+CN+AJziwr81xtuPLeWzV9dTWd60rnK30851J/UG\nINPnYvzAHIq3BxLbkhw61q7UAfLz8/vk5+efnJ+f36eFDvkoMMcYMxgYQWJxltuB+caYAcB86z3A\nuSRWaBsA3EAiOxoikgncRSIpyhjgrn0B2qrzo1r7nWOVt8U5VDNol/shilXFKA4XE64Kk+JMId2T\nmDyW7c3mmbOeoSJSQbIzmeykurvb91YmnkHfHdzNmXlnVpcPyx5GdtdeuH0+woEABW+/zkkXXcRp\nk8/FYQvDkhcAA4MngS8bzv49nHkXOL3gSaUpnebDsofhc/oIRAP8eOCNvPen5URDVRR9V07e0Ez6\nHd/lkI+V5nXy8zMH8MNT+uCy20ix2xhxZi6hQIxRZ+Xh8upHSymA/Pz8fBKLywwBIoArPz9/FfDj\ngmY+viMiacBpwLUAxpgIEBGRycB4q9rzJBacmUEiLekLJvFY0yLr7r67VXeeMabYOu484BwR+RhI\nNcYssspfAKYA71vHau1zqGbQv7r1KAuX4bA58DkTa0Fsq9jG1HemEowFmTZkGuf1OY8uSV0oChbR\n1deV3ORcHA1MKDun9zks3rGYwopCjs0+llmTZlEcKmZY9jBSHMlc++f/pSoaIcURRv7ze+T5OyH9\nGDj5Ftj4EWbXt/hHzmDz6kr6Hd+F5JSmLexSGa3EZXPx9pS3KY+Uk2W64vbuJBqqqq4T9EdISj30\nNKrpSS7Sa6VdzT+vD8YYfU5dKYsVzD+mZlGZfWkYjwc+zs/PH9/MoN4HKAL+ISIjgCXALUBXY8wO\nq85OEqlaoVZqU8u+FKYNlRfWUU4bnUM1gwb0Omwu28w9i+4h25PNjDEzyPJmsXD7QoKxIABvb3ib\nywZexk3zb2JtyVp8Th//mvwvuvm61XvMLG8W9558L3ETJ8WVclA2tuSMTKjYBX89C8p3Jgr922Hr\nIrjqFWTJP9i5Ziefzt7Nzg1ljL6iBx63q+6c6wcoC5fx2trXeH3960zqM4mrhlxFqiuJC28dxdf/\n3kJWz2RCFVF2b/bTe3jdPQyHSoO5Uvupb9lXrPKngPxmHNdB4kvBz4wxX4jIo9R0fQNgJUZp1YVG\n2uIc6tDpGPoBikPFzPhkBl/u/JL3N7/PzNUzARjbY2x1jvN9XeZrS9YCiaVdN/s3N3psr3ER3rGX\nr959k9Kd24nHa+6OCflh06c1wXwfY2DR/xIf9zMKN8bIzksm7zwX0z+9lV9/+utGH5UDKI+U8/BX\nD7PFv4W/LP0LZeEyRARPkgNviost3+5lwSvryOxR398dpVRTWWPlQxqpNrSZY+qFQKEx5gvr/ask\nAvwuq5sb6/dua3tTU5huY/9McbVTm7bFOVQz6B36AQTB7ajpzt63dGpuci7vXPQOwWiQbRXbWFuy\nllN7nsqCbQvo4etBv7R+Bx0rGg4RDgYRseFLT6ey3M+Lv/4FJh5n8b9e4Zo/PZm4Mw/sgW9eglBp\n3RflL4S0XvQ8pYoBOXZ++dkvWF28GoCeyT257YTbGrwzdtqcuGwuIvEIDpsDtz3x3+dNcTFiQi5l\nuytJzvSQlNLwojRKqSbpQWLM3NtAnYhVb1NTDmyM2SkiW0VkkDFmDXAmiWxmK0mkMP0DB6c2vVlE\nZpGYnFZmjNkhInOB+2tNUjsLuMMYUywifhEZC3wBXA08XutYrX0O1Qwa0A+Q4cnggdMe4PGvHqdL\nUhem9J8CJBaF6ZKUmDSW7k6nKl5Fftd8wlVh3HY3OUn7L5cai4TZ9HUB7z/xECnZOVz22/sIBSsw\n8cTSzaGKcuJV1h26fzt8/jhM/kvdFzXwXILuJP6wcToT4xOrAzIkvnA01s2d7k7n/877P97f/D5n\nHXMWae60mv1T3SSlaqIVpVrBdqCxSSkuq15z/Ax4UURcwEbgOhK9rrNF5HpgCzDVqvsecB6wHgha\ndbGC6r3Al1a9e/ZNXgNuBJ4j8YXkfWomq/2hDc6hmkHXcq9HNB7Fjh2brXmjEoGSYv55x60EShKf\n29O/fz3DJpzFh/94is1LvyL//IsY/r1z8PiSofQ7eHQETHoIChcn7tYhMas9pRtMe421UT+XvH0J\np/U8jXtOuoc3NrxBcWUx1w277qAvE0qpVtHkCSL5+flLSHSF12dJQUFBc8bQlTqI3qHXw2k7vO7n\nmMTJzutdHdC79OmHx+djwnU/pioSwenx4vJaPXHeLPjhXFj7bzjtNjj5VirjqZSW2UlK95HkdJNu\nt9HN143fjv0tL6+cSaorlSuPuZSdewpJ65mGy37os9OVUm3mx+w/y722APCTNr0a1am12h26iHiA\nTwA3iS8Orxpj7hKRPiRyAGeReNTiB9YzlPU60rKt+cN+/lTwJy7Puxj/+u/o0aMP3XL74vYd8G+6\nKgZ1POoWCkRZ9+12ktId+LdHyO2XTXpPD3tDe/nj4j/ywXcfAHDjsT/hkt5TSEnPrJ6wp5RqNc16\nhMN6dO0pYCjWc+gkxrp/0tzn0JWqS2veoYeBCcaYChFxAp+KyPvAdOBhY8wsEXkKuB5rRaHOIhKP\nsGTXEt7e+DZ90/oyPjCeG12D8e8pwl+0i4zuPfEZP3x0P+SOhmGXQlLNEjGVVJDdG1bMeYfkzCwc\nntNx2lPw2D3sCu6qrrczvIskj0+DuVIdmBW0863Z7D2A7QUFBU2aBKfUoWi1gG6tFlRhvXVaPwaY\nAFxllT8P3E0nC+gprhR+dcKvmP7xdIpDxUzuP5lAWQn/mP5TYuEw2Xm9ufSHl+BbNguWzYLM/tB/\nQvX+0XAlnz3zDFuWJ5K1OB0uhp5yBrZwlLvH3c2vPvkVyc5kfjz8JyQnH5zutKOIhqoo3llB4eoS\n+h/fhZRsry4Jq45aVhDXQK5aTauOoYuInUS3en/gSWADUGpMdVqwTrkykNvuZmz3scy9ZC4iQpYn\ni60rlxMLhwHY891m4q6ameZEK/bb326EyoqaJC/BslIWzHye5fPncOyEiTxz5V9xutxkeDLoyCor\nIrz2xyUYA1/P+44r7zwRX5rOqFdKqdbQqgvLGGOqjDEjSSwYMAYYfKj7isgNIlIgIgVFRUWtdo0t\nYXdwN+9tfI81xWuoiCSCs8fhIScph2xvdiKo9+xFVm4eAMO/dy6O5EzIGwdjfgx5J+13PG9KGhNv\nvIVu/QfSd/QJBJ0yrwAACy5JREFUDJ9wNmsWfgLAig/n4QxUdfhgDlBZEWXfFI1wIEa8quM/UaGU\nUkeqNpnlbowpFZGPgHFAuog4rLv0elcGMsY8DTwNiUlxbXGdzbGncg/XvH8NhRWJJYlfmvQSx2Uf\nd1A9X3oGl915P/FYDIfLhdeXDFfMBIcbXPvnDk9yJeHo0p3zb51BLBLBYIhFEvMGPckpOD1Hxph5\napaHgSd2o3BVsSZsUUqpVtZqf2FFJAeIWsHcC0wE/gh8BFxKYqZ77VWGjkjRqmh1MAdYVrSszoAO\n4Es7YLw7qf67bJfHi8sK3LFImGv+9CS7Nq6j56ChJKWl1btfR+JNcXHq5QOoisZxeuy43BrQlVKq\ntbTmX9juwPPWOLoNmG2MeUdEVgKzROR3wNfAs614Da3O4/Aw8ZiJzNsyjwx3Bqfnnt7i53C43GT2\n6Elmj/qnGxSHillTvIZuvm508XbB5+oY67J7knQ5WaWUagu6UlwLKAmVEIgGcNvdZHmzsEnb5rwp\nDZUyY8EMFm5fiCC8OOnFOnsJSoMRolVx0rxOXA57HUeqW0kgQjgWx2kXspJ1Ups6aukjGqpD02xr\nLSDDk0FuSi45STltHswhsUzt17u/BsBg+Gb3NwfV2VMe5uezvmbKkwv5bP1eQtGqg+rUZW9FmNtf\nX8bY38/nxhe/Yk9FuEWvXSmlVMvQgN4JeB1ebhh+AwBZniwm9JpwUJ0PVu/ik7V72FZayc9mfo0/\nFD2kY1eEY8xdkVjM5otNxRQHGlzUTymlVDvRWUqdQLIrmcsHXc75fc/HYXOQ5ck6qE73tJqZ8V1T\nPdgOsffQ67STk+ymqCJMittBmlfHxJVSqiPSMfSjRGkwwsINe1m1w8+VY/LokX5oj74ZY9jpD7Fq\nh59B3VLpmuLGYdeOHXVU0jF01aFpQG9DVfEqikPF+CN+0t3pZHkPvpPuCEKBKNFwFTa7kJTiQnS5\nVqVAA7rq4LTLvQ0VVRZxyVuX4I/4GZE9gscmPEamN7PxHRtQWR4hFo1jd9pISjn8FKrhYJRvPviO\nJe9vwZPs5NIZo0nLSWp8R6WUUu1K+07b0MbSjfgjfgCW7llKuOrwZowH/RHmPvMtL/x6IXOeXk7Q\nf/gT1mKROEve3wJAqCLKys92HPYxlVJKtT4N6G2oX3q/6glrY7qNwe04vGe6o6EY29aWArBjXRmR\nUKyRPRonNiG9a80dedc+qYd9TKWUUq1Pu9zbUE5SDq9c8ArBWJBkZzKZnsPrbne47fjS3QRKwySl\nuXC6D32xmPokpbqY/ItRbPpmN+ldfeTkpRz2MZVSSrU+nRR3hAuUhSnfGyIly0NSqgsRnbejVCvR\nf1yqQ9M79COcL82tOcaVUkrpGLpSSinVGWhAV0oppToBDehKKaVUJ6ABXSmllOoENKArpZRSnYAG\ndKWUUqoT0ICulFJKdQIa0JVSSqlOQAP6EcTEDZUV0RZZs10ppVTnoivFHSHiVXH2bKvgk5lrScvx\ncvKlA0hKPfx0qUoppToHvUM/QlRWRHn3yWXs2uRn7eJdbPhqd3tfklJKqQ5EA/oRQoT9sqm1RGY1\npZRSnYd2uR8hklLdXPCzEXzx5iYyeyRxzLCs9r4kpZRSHYgG9CNIWk4SZ147BJtNEJtmclRKKVVD\nA/oRxu7QURKllFIH0+iglFJKdQIa0JVSSqlOQAO6Ukop1QloQFdKKaU6AQ3oSimlVCegAV0ppZTq\nBDSgK6WUUp2ABnSllFKqE2i1gC4ivUTkIxFZKSIrROQWqzxTROaJyDrrd0ZrXYNSSil1tGjNO/QY\n8EtjzFBgLHCTiAwFbgfmG2MGAPOt90oppZQ6DK0W0I0xO4wxX1mvy4FVQE9gMvC8Ve15YEprXYNS\nSil1tGiTMXQR6Q2MAr4AuhpjdlibdgJd2+IalFJKqc6s1ZOziEgy8BpwqzHGL1KTJcwYY0TE1LPf\nDcAN1tsKEVnTyKnSgLImXt6h7NNQnfq2HVheV73aZQduzwb2NHJdTdWR26eusobet0b71HddLbHP\n0dxGh1q/qW3UHu0zxxhzThP3UartGGNa7QdwAnOB6bXK1gDdrdfdgTUtdK6nW2OfhurUt+3A8rrq\n1S6ro35BK/y/6LDtcyhtdkB7tXj7aBu1Thsdav2mtlFHbR/90Z/2/GnNWe4CPAusMsY8VGvTW8A1\n1utrgDdb6JRvt9I+DdWpb9uB5XXVe7uR7S2tI7dPXWWH0oYtTduocU09x6HWb2obddT2UardiDF1\n9ngf/oFFTgEWAMuBuFX8axLj6LOBPGALMNUYU9wqF3GEEpECY0x+e19HR6Xt0zhto4Zp+6jOqNXG\n0I0xnwJSz+YzW+u8ncTT7X0BHZy2T+O0jRqm7aM6nVa7Q1dKKaVU29GlX5VSSqlOQAO6Ukop1Qlo\nQFdKKaU6AQ3oHZyIDBGRp0TkVRH5aXtfT0clIj4RKRCR89v7WjoiERkvIgusz9L49r6ejkZEbCJy\nn4g8LiLXNL6HUh2PBvR2ICJ/F5HdIvLtAeXniMgaEVkvIrcDGGNWGWN+AkwFTm6P620PTWkjywwS\nj0MeNZrYRgaoADxAYVtfa3toYvtMBnKBKEdJ+6jORwN6+3gO2G8JSRGxA08C5wJDgSut7HSIyIXA\nu8B7bXuZ7eo5DrGNRGQisBLY3dYX2c6e49A/RwuMMeeS+OLzP218ne3lOQ69fQYBC40x0wHtCVNH\nJA3o7cAY8wlw4GI6Y4D1xpiNxpgIMIvEXQPGmLesP8bT2vZK208T22g8iRS9VwE/EpGj4nPdlDYy\nxuxb3KkEcLfhZbabJn6GCkm0DUBV212lUi2n1ZOzqEPWE9ha630hcKI13nkxiT/CR9Mdel3qbCNj\nzM0AInItsKdW8Doa1fc5uhg4G0gHnmiPC+sg6mwf4FHgcRE5FfikPS5MqcOlAb2DM8Z8DHzczpdx\nRDDGPNfe19BRGWNeB15v7+voqIwxQeD69r4OpQ7HUdE1eYTYBvSq9T7XKlM1tI0ap23UMG0f1Wlp\nQO84vgQGiEgfEXEBV5DITKdqaBs1TtuoYdo+qtPSgN4ORGQm8DkwSEQKReR6Y0wMuJlE/vhVwGxj\nzIr2vM72pG3UOG2jhmn7qKONJmdRSimlOgG9Q1dKKaU6AQ3oSimlVCegAV0ppZTqBDSgK6WUUp2A\nBnSllFKqE9CArpRSSnUCGtBVhyciC9v7GpRSqqPT59CVUkqpTkDv0FWHJyIV1u/xIvKxiLwqIqtF\n5EUREWvbCSKyUESWishiEUkREY+I/ENElovI1yJyhlX3WhH5l4jME5HNInKziEy36iwSkUyrXj8R\nmSMiS0RkgYgMbr9WUEqphmm2NXWkGQUcC2wHPgNOFpHFwMvA5caYL0UkFagEbgGMMeY4Kxj/W0QG\nWscZZh3LA6wHZhhjRonIw8DVwCPA08BPjDHrRORE4C/AhDb7L1VKqSbQgK6ONIuNMYUAIvIN0Bso\nA3YYY74EMMb4re2nAI9bZatFZAuwL6B/ZIwpB8pFpAx42ypfDgwXkWTgJOAVqxMAEjnplVKqQ9KA\nro404Vqvq2j+Z7j2ceK13setY9qAUmPMyGYeXyml2pSOoavOYA3QXUROALDGzx3AAmCaVTYQyLPq\nNsq6y98kIpdZ+4uIjGiNi1dKqZagAV0d8YwxEeBy4HERWQrMIzE2/hfAJiLLSYyxX2uMCdd/pINM\nA663jrkCmNyyV66UUi1HH1tTSimlOgG9Q1dKKaU6AQ3oSimlVCegAV0ppZTqBDSgK6WUUp2ABnSl\nlFKqE9CArpRSSnUCGtCVUkqpTkADulJKKdUJ/H+KK4o+uldmfwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYlNX1wPHvmZntlV2WakEFBbuw\ndrChRhOjJrFEjYIajYlRo9Fo1J8tzRJ7i733EkVNVESNBUWwgYgIAiJ9ey9Tzu+P9y4sy+wyO7uz\nZTif5+GZmbfed133zL3vfc8RVcUYY4wx/ZuvtxtgjDHGmK6zgG6MMcYkAQvoxhhjTBKwgG6MMcYk\nAQvoxhhjTBKwgG6MMcYkgYQGdBE5T0S+EpG5IvIHt6xARKaKyAL3OiCRbTDGGGM2BQkL6CKyI3AG\nsAewC3CEiIwELgGmqeooYJr7bIwxxpguSGQPfQwwQ1XrVTUE/A/4OXAU8Ijb5hHg6AS2wRhjjNkk\nJDKgfwVMEJFCEckEfgxsDgxW1ZVum1XA4AS2wRhjjNkkBBJ1YFWdJyLXAW8CdcAXQLjNNioiUXPP\nisiZwJkA22+//bi5c+cmqqnGGBML6e0GGNORhE6KU9UHVHWcqu4HVADfAqtFZCiAe13Tzr73qmqx\nqhZnZGQkspnGGGNMv5foWe6D3OsWePfPnwSmAJPcJpOAlxPZBmOMMWZTkLAhd+cFESkEgsDZqlop\nItcCz4rI6cD3wHEJboMxxhiT9BIa0FV1QpRlZcDERJ7XGGOM2dRYpjhjjDEmCVhAN8YYY5KABXRj\njDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KA\nBXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YY\nY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhA\nN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEm\nCVhAN8YYY5KABXRjjDEmCSQ0oIvI+SIyV0S+EpGnRCRdRLYSkRkislBEnhGR1ES2wRhjjNkUJCyg\ni8hw4FygWFV3BPzAL4HrgJtVdSRQAZyeqDYYY4wxm4pED7kHgAwRCQCZwErgIOB5t/4R4OgEt8EY\nY4xJegkL6Kq6HPgnsBQvkFcBnwKVqhpymy0DhieqDcYYY8ymIpFD7gOAo4CtgGFAFnBYJ/Y/U0Rm\niciskpKSBLXSGGOMSQ6JHHI/GFisqiWqGgReBPYF8t0QPMBmwPJoO6vqvaparKrFRUVFCWymMcYY\n0/8lMqAvBfYSkUwREWAi8DXwDnCM22YS8HIC22CMMcZsEhJ5D30G3uS3z4A57lz3AhcDF4jIQqAQ\neCBRbTDGGGM2FaKqvd2GjSouLtZZs2b1djOMMZs26e0GGNMRyxRnjDHGJAEL6MYYY0wSsIBujDHG\nJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBu\njDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wS\nsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYY\nY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYswkSkSNF5JLebofpPoHeboAxxpiuEREBRFUj\nse6jqlOAKYlrlelp1kM3xph+SERGiMh8EXkU+Ao4WUQ+EpHPROQ5Ecl22/1YRL4RkU9F5DYRedUt\nnywid7Q61tsiMltEponIFm75w26f6SKySESO6a3rNRtnAd0YY/qvUcBdwP7A6cDBqjoWmAVcICLp\nwD3A4ao6Dihq5zi3A4+o6s7AE8BtrdYNBcYDRwDXJuQqTLewgG6MMf3X96r6MbAXsD3woYh8AUwC\ntgRGA4tUdbHb/ql2jrM38KR7/xheAG/xkqpGVPVrYHB3X4DpPgm7hy4i2wHPtFq0NXAF8KhbPgJY\nAhynqhWJaocxxiSxOvcqwFRVPaH1ShHZtRvO0dT6kN1wPJMgCeuhq+p8Vd1VVXcFxgH1wL+BS4Bp\nqjoKmOY+G2OMid/HwL4iMhJARLJEZFtgPrC1iIxw2x3fzv7TgV+69ycB7yeuqSZRemrIfSLwnap+\nDxwFPOKWPwIc3UNtMMaYpKSqJcBk4CkRmQ18BIxW1Qbgd8DrIvIpUANURTnEOcCpbt+TgfN6pOGm\nW4mqJv4kIg8Cn6nqHSJSqar5brkAFS2f21NcXKyzZs1KeDuNMaYD/XK4WUSyVbXW/b29E1igqjf3\ndrtM90t4D11EUoEjgefarlPv20TUbxQicqaIzBKRWSUlJQlupTHGJK0z3ES5uUAe3qx3k4QS3kMX\nkaOAs1X1UPd5PnCAqq4UkaHAu6q6XUfHsB66MaYP6Jc9dLPp6Il76Cew/qMSU/AeqcC9vtwDbTDG\nGGOSWkIDuohkAYcAL7ZafC1wiIgsAA7GEhUYY4wxXZbQXO6qWgcUtllWhjfr3RhjjDHdxDLFGWOM\nMUnAAroxxpioRGR6b7fBxM4CujHGmPWISABAVffp7baY2FlAN8aYBBtxyWsnjrjktSUjLnkt4l5P\n7OoxReQlVxJ1roic6ZbVisgNbtlbIrKHiLzrSp8e6bbxu21munKpv3HLDxCR90VkCvB1y/Fane9i\nEZkjIl+KyLVu2RnuOF+KyAsiktnV6zLxs4Bu+qRQeTmVL75I3YwZhGtqers5xsTNBe/78KqfiXu9\nrxuC+mmuJGoxcK6IFAJZwNuqugNemte/4j1p9DPgGrff6UCVqu4O7I6XeGYrt24scJ6qbtv6RCJy\nOF7a7j1VdRfgerfqRVXd3S2b545teokFdNMnVb/2GisvvYzSu+4m0tDQ280xpiv+DrTtuWa65V1x\nroh8iVeYZXO82ujNwOtu/Rzgf6oadO9HuOWHAqe47HEz8J5EGuXWfdKq1GprBwMPqWo9gKqWu+U7\nul79HLyiLjt08ZpMFyT0sTVj4uUvKGDw5ZcBUPPWW+QefjiBAQN6uVXGxGWLTi7fKBE5AC/I7q2q\n9SLyLpAOBHVd+s8IrvSpqkZa7ovjjRKco6pvRDlmHZ3zMHC0qn4pIpOBAzp7Lab7WEA3fVL2+PGE\nystZdPiPAcgcO84CuumvluINs0dbHq88vMJW9SIyGtirE/u+AfxWRN5W1aArs7p8I/tMBa4QkSfc\nOQtcLz0HWCkiKXg99I0dxySQBXTTJ/nz8tDmIGljxqCNDQQKC3q7ScbE61K8e+ith93r3fJ4vQ6c\nJSLz8Gqef9yJfe/HG37/zFVgK2EjZaxV9XUR2RWYJSLNwH/w2v9/eMP2Je41p5PXYbpRj5RP7Sor\nzrLpCpWVgSqBgQPRSARE8P4GGdPj4v7FcxPg/o43zL4UuHTJtT95srsaZgxYQDf9RH11FZ/+52VS\n09LZeeJhZOTm9naTzKbHvkmaPs2G3E2/sOq7BXzy72cB2HKnXS2gG2NMGxbQTZ8VaWoiUl+PPzeX\ngqHDSUlLx5+SQtYAu59ujDFtWUA3fVK4ro6a//6XimefY8j/XU72mNGcdss9IEJmXl5vN88YY/oc\nSyxjuk24tpbmH34guHo1Ggp16VhaX8+qv/2dxtmzKbnlFqSxieyCQrIHFODz+bupxcYYkzwsoJtu\nEy4r47tDDmXRT44gXFHRpWNJWhqFp59OYPBgCk47DV9GBuClhK145hnqP/uMSH19dzTbGGOSgg25\nm24jaWn4sjIJFA2ELj5a5s/NpWDSJPKPPw5/bi7i93rlddOns+rKq8DvZ9R77+HLtFoQxhgDFtBN\nNwoUFrL1f/+L+HwEBg7s8vH8Odn4c7LXW5a27bZIWhoDLrqQpUsWUvNZGdvutS8ZOTbr3ZjOcKle\nm1V1uvv8MPCqqj6fgHPdD9ykql9397HNOhbQTbeRlBRSBg1K6DlSt9ySbaa+SQPK4+d4hZ0Gbz3S\nArrp267K2yCxDFdV9XZimQOAWmB6ok+kqr9O9DmM3UM3/YwvLY2UQYPwp6Wx9W67U7TlVmQXFPZ2\ns4xpnxfMNyif6pbHRUSyROQ1V4f8KxE5XkQmisjnrmb5gyKS5rZdIiID3ftiVx99BHAWcL6IfCEi\nE9yh9xOR6a5++jEdnD9bRKaJyGfufEe11y63/F0RKXbv7xaRWa5m+9Xx/gzMhqyHbvqlrLx8Djv7\nfCKRCFl5+e1uFyovJ1RaRqCggMBAC/ymV3RUPjXeXvphwApV/QmAiOQBXwETVfVbEXkU+C1wS7Sd\nVXWJiPwLqFXVf7pjnA4MBcYDo4EpQHvD743Az1S12n1Z+FhEprTTrrYuU9VyEfED00RkZ1WdHc8P\nwazPeuimz2gMhqmqD7a7PtLYRKisjEjQ2yYjJ7fDYB5pbqbsvvtYfOSRLDvvPEJdnHlvTJy6vXwq\nXn3zQ0TkOte7HgEsVtVv3fpHgP3iOO5Lqhpx97oHd7CdAH8XkdnAW8Bwt/167VLVqij7HicinwGf\n49VP3z6OdpooLKCbPqGirpl//e87znriU74rqd1gfaisjJKbbmLpqadSevfdhMrLYzquBt3z8OEw\n9IO6BSYptVcmNe7yqS5wj8ULoH+l42ppIdb9rU/fyKGbWr3v6FGVk4AiYJyq7gqsBtLbtktErmi9\nk4hsBVyIN5KwM/BaDG0yMbKAbvqE6sYgt7y1gI++K+OqKXOpaVzXU48Eg5Q/8igVTz+NLyuLug8+\npPr1N7zqax3wpaYy8He/ZcRzz7LZHbcTKLCUsaZXXIpXLrW1LpVPFZFhQL2qPg7cAOwNjBCRkW6T\nk4H/ufdLgHHu/S9aHaaG+Mud5gFrXD31A3H13qO0a2yb/XKBOqBKRAYDh8d5fhOF3UM3fUJGip/B\nuWmsrm5iwqiBpAXWZYOL1NXRPHgYGc9PYfrSavwi7DNyIOkNTWRmZXR43EBBgQVy07uuqnqSq/Kg\ne2e57wTcICIRIIh3vzwPeE5EAsBM4F9u26uBB0TkL8C7rY7xCvC8m9B2TifP/wTwiojMAWYB33TQ\nrrVU9UsR+dxt/wPwYSfPazpg5VNNn6CqlNQ00RiKkJseID8zlUhjI+Hqauolhdfml3PZa9+sHTUP\n+IR//Woc40cNJD3FUsGaHmHlU02fZkPupk8QEQblprNFQaYXzINB6mfOZNFPj6Sioma9YA4Qiihn\nP/kZVQ3tT6IzxphNiQ25mz4pXFHBiov+RNrIkby/pCrqfLamUIRvVlYzONfm1BiTCCKyE/BYm8VN\nqrpnb7THdMwCuumTNBgkXFkJkQi+DgY6fR2tNMZ0iarOAXbt7XaY2NiQu+mTfOnppI0aReNXXzFh\ny9yoQT0z1c92g+OdpGuMMcnFArrpkwKFhWx2911kjN2NyIvPcttR25HqX/frmpHi58HJu5OfmdKL\nrTTGmL7DZrmbPi1UWQXBZppSM6iVAHOWVZHiF0YPzSU/I4U0m+Fueo7d3zF9mt1DN31aIN9LBR0A\nsoDB29sEOGOMicaG3I0xJomJyFUicmGCjr22kltfJCJFIjLDVaGbEGX9/SKSNLnkE9pDF5F84H5g\nR0CB04D5wDN4xQSWAMepqlXNMMYkrZ0e2WmDeuhzJs3p7XrovUpEAqoaSvBpJgJzotVjFxF/stVp\nT3QP/VbgdVUdDewCzAMuAaap6ihgmvtsTLtUdW2FNWP6GxfMN6iH7pbHpZ166BvUPW+1yy4i8pGI\nLBCRMzo47lARec/VSP+qpVe7kRrm57Sqiz7abb+HO9/nrr76dm75ZBGZIiJv45VOba+u+ggRmSci\n97lzviki7eZ5FpEzRGSm+3m8ICKZIrIrcD1wlLueDBGpFZEbReRLYO82ddoPc+34UkSmdXQdfVXC\nArqrg7sf8ACAqjaraiVwFF5pP9xrR1WCzCYuXF1N1Yv/ZuVllxNctaq3m2NMPDqqhx6vlrrju6jq\njsDrG9l+Z+AgvCIuV7giKtGcCLzhKqjtAnzhll+mqsXuOPuLyM6t9ilV1bHA3XiV1MDL1T5BVXcD\nrmD9ax0LHKOq+7OurvpY4EDgRhFpmXw4CrhTVXcAKlm/sExbL6rq7qra0nE8XVW/cOd+RlV3VdUG\nvKk4M9zP7YOWnUWkCO9L1y/cMY6N4Tr6nEQOuW8FlAAPicguwKfAecBgVV3ptllFxzV3TR8QKi0l\nUleHLzeXwIABPXrucE0NKy+7DAAJBBh6zdVIwOZymn4lUfXQbxSR64BXVfX9dXEwqpddQGsQkXeA\nPYCXomw3E3hQRFLwaqO3BPTjRORMvJgxFK+G+Wy37kX3+inwc/c+D3hEREbh3W5t/XzpVFVtqX/c\nUld9PyDCurrq4NV3bzn/p3i3aduzo4j8FcgHsoE32tkuDLwQZflewHuquhigVfs6uo4+J5FD7gG8\nb2J3u283dbQZXlfvmbmoz82JyJluiGdWSUlJAptpOhKqqGD5RX/iux8dRvUb7f0/0j5VJVxTg8Y5\nZO5LTSVlC+/vXvb4fS2Ym/4o4fXQXd3xjuqet/07G/Xvrqq+hzeyuhx4WEROiaGGeUsN9TDrOol/\nAd5xowc/bbN9Xav3Ueuqtzlu22NH8zDwe1XdCa+6XHuPwzSqariD47TV0XX0OYkM6MuAZao6w31+\nHu8XcLWIDAXvfg2wJtrOqnqvqharanFRUVECm2k6JOL9A8TX+V+X5kWLWX7eH6j94ANCpWUEV6/2\nUrrGKFBUxIgnHmfk22+TNWGDSapEgkEav/6asgceJFRW1un2GdMDeqIe+ljar3sO3n3kdBEpBA7A\n64lHO+6WwGpVvQ9vQvNY4qthnof3pQBg8ka226CuehxygJVuZOGkOPb/GNjPfXlBRFpqLsd6HX1C\nwro7qrpKRH4Qke1UdT7ebMOv3b9JwLXu9eVEtcF0XSA/n+HXX0ekvh5fbm6n9tVQiNJ77qFu+nSa\nly1j0AXns/wP55M1YQLDrv0HgcJCNBLZ6BeFQAdf6MKVlfzwu7MJrVpFYOBA8o46slNtNCbR5kya\n8+ROj+wE3TvLPVrd8Qyi1z0Hb3j8HWAg8BdVXdHOcQ8ALhKRIFALnKKqi+OoYX493lD15Xg9+va0\nV1e9s/4PmIF3m3cGXoCPmaqWuFsKL4qID6+jeQixX0efkNBMcW6W4f1AKrAIOBVvVOBZvF/s7/Ee\nWytv9yBYpri+LlTu/ecLFBRssK5pwQJWXfMX8o89hrrp06l6yfv+Nuz668jce29KbrmF3B//mMyx\nY/FltDuJtV3h2loqn3uO6tf+w/BbbiZ1s826djHGtM8yxZk+zVK/mi4JlZay7Jxz0FCYze++i8DA\n9XNMaCRCqKKCqn+/RMk//7l2+ZArrqB5+XLKH3gA/H5Gvv02KYMHxdWGSH09kcbGqF8ojOlGFtBN\nnxbTkLub0n8G3izDtfuo6mmJaZbpLyKNTTR87k1EjTQ0bLBefD5SCgvJOfAAyu65h0hNDSlbbEH2\nwROpfMGbHJu2zda0M0cnJr7MTHyZbZ8KMsa0R/ppnXMRuRPYt83iW1X1od5oT18TUw9dRKYD7+M9\nOrB2hqCqRpv+3+2sh969wpWVNH7zDYGiIlI22wxfWlr8x6qupmH2bDQUInO33fDn5UXdTkMhQuXl\naGMjvsxMAgMH0rx0KaE1a4g0NaORCDkTxsfdDmN6gPXQTZ8W66S4TFW9OKEtMT0muHIlSyefiqSm\nss1bU/ENim+oG8Cfm0v2+I0HYgkESGlzHknPYPkFfyTS0MBWL/bId0NjjElasQb0V0Xkx6r6n4S2\nxvQIf0EBgWHDSNt66159rjtlUBFbvfgCqmr3v40xpotiHXKvwUuZ14T3iITg5YXp3HNMcbIh9+6l\nqoTLysDv7/HMb8b0Yzbkbvq0mLpnqtqpZ/pM3yYiG8xGT6RQRQWR2lp8WVnWEzfGmASJOfWXiAxw\nlWf2a/mXyIaZ5KChEBVPP8N3hxzKmhtuIFReTrCkhHB1dW83zRjTh4lIvoj8Ls59u61Ou4hcIyIH\nd8exEi2mgC4ivwbew0t4f7V7vSpxzTLJQlUJu8Qz4YoKmhYvZuEBB1L53PNEGht7uXXG9Ix5o8ec\nOG/0mCXzRo+JuNe4S6d2lYj0l4II+UDUgN6T16CqV6jqWz11vq6ItYd+HrA78L2qHgjshlfOzpgO\n+VJSGPjbsxjx/HMMueYvVDz2OITD1Lz11tqAXt8cYkVlA6uqGmkKdqZugjF9nwveG9RD72pQF5Ff\nicgnrtb3PSLiF5HaVuuPEZGH3fuHReRfIjIDuF5ECkTkJRGZLSIft5RDFZGrROQxiVI7XUQucjXH\nZ8uGNdHbtu0Ut92XIvKYW1bkapXPdP/2bXXOB11t8kUicq47zLXANu76bhCRA0TkfRGZgpdCHHcN\nn4pXM/3MTvzsNtjP/fweFq8O/BwROb/Vz+4Y9/4K1/avRORe2UiJu54W67ecRlVtFBFEJE1Vv5E+\nXujd9B2BgoK1984HXfhH0rbaivzjjkUCASKNjXyzuoFj7/mIgE+Y8vvxbDfEpmyYpNJRPfS48rmL\nyBjgeGBfV9jkLjZelGQzYB9VDYvI7cDnqnq0iBwEPArs6rbbGa+caBbwuYi8BuyIV598D7wvJVNE\nZD9Xna1t23YALnfnKm1V6ORW4GZV/UBEtsAb6R3j1o3Gq4eeA8wXkbvxqnPu6KqwISIH4BWL2bGl\nzClwmqqWi0gGMFNEXlDVWKo0bbAfXuK04a6yGiKSH2W/O1T1Grf+MeAI4JUYztcjYg3oy9zFvQRM\nFZEKvDzsxnRK6mabUfibM2n6dgElV1xJYPAgRvz6LIbmpbOsooGZS8otoJtkk4h66BPxKqvNdJ3E\nDNqpXNnKc61Kh47HVWRT1bdFpFBEWp5ailY7fTxwKPC52yYbL8BvENCBg9y5St3xW2p1HAxs36pT\nmysi2e79a6raBDSJyBrW1URv65NWwRzgXBH5mXu/uWtTLAE92n7zga3dl53XgDej7HegiPwJ7wtZ\nATCX/hbQVbXlwq9y/4HzgNcT1iqT1MKVlSw56SRwNdKbF37HXy64hls+Wc3BY+JPcmNMH7WU6GVB\n466HjtdLfkRV/7zeQpE/tvrYtnZ3HbGJVjtdgH+o6j2dauX6fMBeqrre5BkX4GOtfb72GlyP/WBg\nb1WtF5F3iaFeeXv7qWqFiOwC/Ag4CzgOOK3VfunAXUCxqv4gIlfFcr6e1JlZ7mPdvY2d8eqcNyeu\nWSYZhaqqCJaUEly1am0wB2iYPZt9tszjwcm7MySv8xXXjOnjur0eOjANOEZEBoFXv1tcLXMRGSNe\nCdCfdbD/+7ghehfgSlW15dGTaLXT3wBOa+lRi8jwlnNH8TZwrNu/dW3xN4FzWjYSrxpnR2rouAxq\nHlDhgvJovNsEsYi6n3iz4n0upfnleMP7rbUE71L3czgmxvP1mFhnuV8BPAIU4tXTfUi8+rDGxCRU\nXs6qq69h8VFHESgsxJ+/7vZUzo9+RCAzg8Ls+HPKG9NXjflm3pN4xa2+x+vtfg+c4ZbHRVW/xgs6\nb4rIbGAqMBTvvvOrwHRgZQeHuAoY5/a9FpjUal1L7fSPcbXTVfVNvPv9H4lXu/x52gm2qjoX+Bvw\nPxH5ErjJrToXKHaT5b7G6wV3dI1lwIduAtoNUTZ5HQiIyDx3DR93dLwY9hsOvCsiXwCPA+uNfqhq\nJd7kxq/wvuDMjPF8PSbWTHHzgV1ahkrcRIIvVLVHJsZZprj+r3n5cr6b6D3KOeC00yj41UlUv/IK\ngcFDyJ4wnkBhYS+30JiN6lMzmhPBDSPXquo/N7at6XtinRS3Am+4oeXeRxqwPCEtMknJl5FB3tFH\nUffRx+QePJGUoUMZ+Jvf9HazjDEmacTaQ38J7zn0qXhDRocAnwDLAFT13Pb37jrrofeOcCRMQ6iB\nrJSslokrXTtedTWRpib8+fn4UlK6oYXG9Kik76F3hrtHPi3KqokxPjqWUH29fYkQaw/93+5fi3e7\nvymmL4lohK9Kv+LOL+/kT7v/iZH5I+M6Tqi8gopnngFgwC+PJ6WoqDubaYzpJS4obmxiW6/p6+1L\nhFgfW3uk5b2IDAA2V9XZCWuV6XUNoQbumX0PH634iMe+fowr974Sn8T8UMRaTQu+pfTWWwHIHDeW\nwB57dHdTjTHGEGNAd8/pHem2/xRYIyIfquoFCWyb6UWZgUwu2v0ihmYN5fSdTo8rmAOkbLYZvqxM\nQEgZPrx7G2mMMWatWO+hf66qu4lXpGVzVb1SRGar6s6Jb6LdQ++PQiUlRBob8WVno+6Z80BBARLo\nL3UhjNmA3UM3fVqs3a6AiAzFy5zzagLbY5JAqKyM7085he8OOZT6GTNIGTSIlEGDLJgb08NE5EgR\nuaSddbXtLG9djORdESlOZBvbIyK7isiPe+A8l7Z6P0JEvuqGYxaJyAwR+VxEJkRZf7+IbN/V87QV\na0C/Bu9B+u9UdaaIbA0s6O7GmP4lXFdHqKSEUGnp+itUiTR4TzhG6mLNNmmM6W6qOkVVr+3tdsRp\nVyBhAV08PrqWsa89E4E5qrqbqr7f5rx+Vf21Sw7UrWKdFPcc8Fyrz4twif3NpilcW0vVSy+x+rrr\nSRk0iC0efojUzTcHwF9YyIhnnyFcVkZgyNBebqkxve/Os94+Ea+62hZ4OdwvPftfB8WdKQ683iRe\n1rOPgX3wMpc9BFwNDMJL7bo9Xu7x34vIVnjZ3rKBl1sdR4Db8R5H/gGImtZbRA51x04DvgNOVdX2\nevnj8DLEZQOlwGRVXSleOdYzgVRgIXCyS8F6LHAlXh73Krxc69cAGSIyHi+P/DNRznMV3s90a/d6\ni6re5tZdwLpc7Per6i3uZ/YGMAOvuM0n7hxf4BVauQzwi8h97me6HDjKFauJdp0bXA+wLXC9O24x\nsDdQAtzjrutsEfkrcKGqzhKkuhpOAAAgAElEQVSRw/B+N/x4KXgnisgeeNXp0oEG97OeH60NrcWa\n+nVbEZnWMhQhIjtb6tdNW6S2ltV//RsEgwSXL2fNP28k0uTVVxARUgYNIn3MGAIDolUgNGbT4YL5\nBvXQ3fKuGgnciFd+dDRwIl5ltAvZsOd5K3C3qu7E+mlhfwZshxf8T8ELZOtxec4vBw5W1bHALCDq\npGgRScH7gnCMqo4DHsRLBQvwoqrurqq7APOA093yK4AfueVHulohVwDPqOqu0YJ5K6PxCqrsAVwp\nIinuC8WpwJ54udrPEJHd3PajgLtUdQdVPRVocOc4qdX6O1V1B6CSjjuvG1yPqn7Rpu0NeKVoZ6jq\nLqr6QaufVRHe78Yv3DGOdau+ASao6m7uWH/voA1rxTrkfh9eXtsggHtk7Zcx7muSkQiSmrr2oy8v\nD0TQcLiDnYzZJHVUD72rFqvqHFWN4PUwp6k303kOXn3v1vYFnnLvH2u1fD/gKVUNq+oKvOIqbe2F\nF/A/dL3ZSUSvIAfel4Md8Uptf4H3RWAzt25HEXnf5YM/CdjBLf8QeNj1eP0xXHdrr6lqkyvX2lJ6\ndTzwb1Wtc6MILwIt97K/V9WO8r4vdkEZvKe6RnSwbXvX01YYeCHK8r2A91pKwrYqNZsHPOc60Td3\ncNz1xDpLKVNVP2mTLSwU474mCfnz89n8/vtYc/31pAwdRtHZv6P84YeJ1NdTcMopBAoKNn4QYzYN\niaiH3qJ12dFIq88Rov993/hjTdEJMFVVT4hx27mquneUdQ8DR6vqlyIyGa+aG6p6lojsCfwE+NT1\nsGMVa+nVFhub2NP2eB2VgHyYKNcTRWOrWvSx+Avwjqr+zN0meDeWnWLtoZeKyDa4XwY3A7KjSj4m\nyfnS0sgcN47N772PoX//G9rcTMlNN1P2r3sIV1X1dvOM6Uvaq3velXro8fiQdSOrJ7Va/h5wvIj4\n3dNMB0bZ92NgXxEZCSAiWSKybTvnmQ8UicjebtsUEWnpYeYAK92w/No2iMg2qjpDVa/Au9+8ORsv\nn9qR94GjRSRTRLLwbiu83862QdeeeES9nk74GNjPzW9oXWo2j3X1UibHerBYA/rZeDf0R4vIcuAP\nbKT0nel7VJVQSQnB1auJNDauty5cX0+wpIRwTdQ5LlGJ30+gYAD+nBx8WVnkH3ssuT89An9ubnc3\n3Zj+LBH10ONxHt6ErDl4pUJb/BvvqaWvgUeBj9ruqKoleIHlKVdy9SO8e9cbcPe/jwGuc+VTv2Dd\nffn/w5uQ9iHefeIWN4jIHDfEPB34Eq+E6/Yi8oWIHN+ZC1XVz/B6z5+4892vqp+3s/m9wGwReaIz\n53Dau55Y21mCN6nuRfezapkrcD3wDxH5nNhH0jtOLCMi56nqrSKyr6p+6L7p+FS1prMN7wpLLNM9\ngiUlLPn5LwhVVjLi6afJ2MF7DDLS1ET1f//Lmmuvo+D00xlw4gn4s7I6ffxwfT2oxrWvMf1A3Ill\nEjHL3Zi2Nhb5T8WbGXk7MFZV7aHifkzr6wmVlADQOHfuuoBeX0/Fo48Rrqyk4vHHyTv6qLiCsj+z\n7bwfYwyAC94WwE1CbSygzxORBcAwN8zSQgDtqdSvpnv48/IY+pe/0LR0KTkTD1q3PDubwZdeypob\nb6Tw16fjz4n3tpUxZlMiIv8Gtmqz+GJVfaObz3Mq3i2D1j5U1bO78zwdnP9OvKcEWrtVVR/qifPH\naqO53EVkCN6D+Ee2Xaeq3yeoXeuxIffE01CIcG0tvqysdmuVayiEqlotc7Opslzupk/b6M12VV0F\n7NIDbTG9SAIBAvntJ4EJVVZS9eKLBJevYODZv7PH0owxpo/pMKCLyLOqepybFdm6K29D7kmqqb6e\nipXLUY1QMGwz0jK9e+na0MCa628AIP/44yygG2NMH7OxHnrLPYsj4jm4iCzBe5YwDIRUtdg9Z/cM\nXvadJcBxqloRz/FN92uqq+WJS88H4Nd3PLA2oEtGBoMuupDg8hUEBg5cb59wTQ2R+np8mZl2/90Y\nY3pJhwFdVVe6167cKz/QpeRrcQleesJrXVm/S4CLu3B8A1TUNaMoBVlpXTpOSnoGI/fch1Xfzscf\nWHevPJCfT8GkSevdQw9XV1P30cc0zvuarH32IbhyJXlHHkmbjILGGGN6wMaG3GuIniqwZcg9ngwi\nR7EuPd4jeCntLKB3QWlNE+c98zl1TWHuO2UcRTnpcR2ntqKc6c8+wW6H/oTC039LVt6A9dZXNkV4\na95qRhRmsf2wXFJralh+njeI48vIQFJSIRyGTtY9b2gOsbyykeqGIFsXZZGfmbrxnYwxXSIiRwPf\ndlcZT1dZ7BRVPbc7jhfH+Y8EtnedxSLgVbwqaOfi1SI5UVUre6NtPWVjPfSujp8q8KaIKHCPqt4L\nDG7p+QOr8BLpmy5oDkeY/l0ZqtAQjMR9nIWzPmbO22+wbN4cTvzbTWgkgvjWJRP8vryOi56fjd8n\nTL/kIApTU0kZPpzg6tVkjhtH6jbbIJ0M5gBVDUEOv/U9gmHlP+dOsIBuTM84Gi/odUtAV9VZeFXY\neoWqTgGmuI8t9ch/7T63l/Y1qXT+r2/njFfV5SIyCK/yznqp8VRVXbDfgIiciZcSjy226I4aBskr\nJz3AC2ftQ0MwTF56/I+UbTN2D5bu+QUTjzuZmsefoPyHZRSediqSmYmKMCQ3h103z2fU4GxS/EKg\nqIgtn34KIhH8ubn4MjqqYdA+n08YmpdBWW0TeRmJ/pU0pufdePwRG2SK++Mzr3a1Hvqv8HqfqXjp\nR38H3AHsjldQ5HlVvdJtey3eo8ch4E286mNHAvu7Uti/UNXvopwjpvrlqrqfiByAV+P7iM7U83ZF\nTX6Gl798OPC4ql7t1r2El9c9He+573vd8mg1xCcDxcD9bFiPfB5eXfhSETkFr7ysArNV9eTYf+p9\n20afQ++2E3mF6GuBM4ADXLH7ocC7qrpdR/vac+g9J1hbS9ltt1Px6KOAV1Vt+O23UXrPveivJ+Pf\nYiQ5ubnkZ8cXvNtTUtNERJWCrFRS/LGWGDCmR8U1OcQF8/tYv4RqPXBGvEFdRMbgBa2fq2pQRO7C\nK/TxqqqWi4gfmIYX8Jfj5Ucf7TpR+apaKSIPu+2f7+A8hapa5t7/FVitqre7J58Ocx22luMdwLqA\nngvUq2pIRA4GfquqUeuKu0D8D7ySq/XATGCyqs4SkQJ3PRlu+f54NUg+A/ZT1cWttpmMF7R/3/q9\nO8cSvGA/GC93/T4uuBe0Klna7yXsL6erxpPT8h44FPgKb0hkkttsEvByotpgOs8XidD0zby1n8OV\nlQhC09y5+BWe++MZ+Bqjp/IPh0M01ceXHbgoJ43BuekWzE0ySkQ99InAOGCmqzk+EdgaOE5EPgM+\nx6uhvT1QBTQCD4jIz9mwUExH4q1f3tl63lNVtUxVG/BGD8a75ee6oiUf4/XUR9F+DfFYHAQ81zJR\nO5mCOSQwoON9E/rA/cf4BK8I/evAtcAhLqXswe6z6SN8WVkUnHYauHvnWfvui6IMvOmffDn9f4gI\nq75bsMF+oeZmlnzxGa/c9A8qVq2I+XyNwc6UCDamX0pEPXQBHlHVXd2/7fAmGV8ITHQ5Ql4D0lU1\nBOwBPI/3CPLrnTjPw8DvVXUn4Gq8oW9U9Szgcrwg+6mIFLbZr6We947AT1v260DboWJ1Pf6Dgb1V\ndRe8LynxzfjdRCQsoKvqIlXdxf3bQVX/5paXqepEVR2lqgcn2zek/k78fvy7jWPrqVPZasrLZF14\nAdNnz6TO72PvfQ/ktCuuZdDwDf8ONTfU8+Ezj/H9nC+Y++5bMZ3ru5Jaznv6C75eUU1P3foxphck\noh76NOAYNz+ppY72FkAdUCUig4HD3bpsIE9V/wOcz7rMn7HUG+9M/fLWOlvP+xARKXBD60fjjQDk\nARXunv1ovJ45tF9DPBZvA8e2fAHp5L59no1vmvWU1zVz9VuLOebFRdQM3QJ/wQAy09LxT3uXNZNP\nY8Wxx5MR3nAmfVp2Noec8Xt2OOBgdjnkxxs9TzgS4Y63F/LG3FXcOHU+DdZTN8mr2+uhu0fNLsd7\nimg2MBVowuvFfoNX2e1Dt3kO8Krb7gPgArf8aeAiEflcRLZp51SdqV/eWmfreX8CvADMBl5wM+Zf\nBwIiMg9vJPdjd+3t1RDfKFWdC/wN+J/b96ZY9+0PemxSXFfYpLjEKattYsqXK9hzqwKG5mUQCkfY\n57q3CYaVl87ehx3z/DTV11N60Z+onzkTgM0feIDsffeJerxIJILPF9v3xMWlddz05nx+f9BIth2c\nYwlpTF8X9y9oIma5J4u2E9hM/Cygb+Je/GwZFzz7JZsNyODvP9uJMUNzWFnVyOLSOvYbVUR2XSXl\njREoL6XuystJ3Worhlzxf92Wyz0YjthEONNf2DfOBLCA3n0soPdjoaoqtKEBSU/vsFJaR5aW1/Pb\nxz/lkO0HIwgn7rn52kxzqkqkoYHmZcuoy8onww/pmen4c+NJEGhMv5e0Ab0n6n2LyI+A69osXqyq\nP+uuc2zqLKD3U5FQiIpHH2PN9ddTdMEFFJw6Oa465arKqqpG6ppCZKQFGJKbjt8nhMrLqXz+BZoW\nLGDg735L6pZbrpc1LhZ1TSEag2EKslLjHk5vqq8j2NiIPzWVjGwr/GJ6VdIGdJMcbKyzvwqHaVro\nPT7WtHAhhEJxHUZEGJqfwcjBOQzPz8Dv8/5m1bz9DiU33UT1K6/w/cmnEC7v3MMIlfXN3Pf+IiY/\nNJPFpfE9mw6w5MvPuOe3k/jyzdcIBZvjPo4xxiQ7y7PZT/nS0hj0xz+S9/Ofk7bVVnGnXW2rrLaJ\n+uYwaWvWrF0WrqpCI53LEd8cinDLW94Xjmdn/cAlh4+Jqz2lP3hP9pQu/Z5IOAzxZ7Y1xpikZgG9\nHwsUFhIobJvPIX7NoQi3TFvAy58vZ9rkI8l4/32af/iBIVf8X6frnKel+LnsJ2N46+vVnLhH/Pkz\ndjvsCLYZtwe5A4tITe/edLPGGJNMLKCbtXwCw/LSqW4M8eqKZn51xx1IJIwvJwdfujdRrqy2iYjC\nwOyO74vnZaRw8l5bcOy4zbpUPS0zN4/M3Ly49zfGxEdERuDlet9xI9vso6pPus+9WkJ1U2cBvR9q\nqKlm/kcfEGxsYIcDDt4g4IVra4nU1SOpKURy8hAgJbBuukSksRFJTd1gklvA7+OXu2/BUbsOJyPV\nT0qbQFxS08QpD86grLaZV84Zz+DcjrMwpqcE6ELxN2NM3zcCOBEvkU2vl1Dd1NmkuH6ofMUypj1w\nF+898RA/zJ2z3jpVpfadd1i4//6UrinnH/+Zx21vL6C8zptQFly5khUXX0zdBx8SaWzc4NgDslIZ\nlp/BgCi96lAkwrera1lT00RNY3yT8Iwx3UNERojINyLyhIjME5HnRSRTRCa67G9zRORBEUlz2y8R\nkevd8k9EZKRb/rCIHNPquLXtnOt9EfnM/WvJLHUtMEFEvhCR80XkABF51e1TICIvichsEflYRHZ2\ny69y7XpXRBaJiPXmu4kF9H4oK38APn8AER/5g4esvzIcpu6TmeDzUU0qD01fwu1vL6S2MQhA5ctT\nqHnjTVZdfTXhmg3+v+1QXnoKr5wznmfO3Iui7PiH0Y0x3WY74C5VHQNU46V1fRg43hVUCQC/bbV9\nlVt+B3BLJ86zBjhEVccCxwO3ueWXAO+7AjE3t9nnauBzVyjmUuDRVutGAz/CKxpzpcsVb7rIhtz7\noewBhfz69vtRVdKzs9dbJ4EAg847l4yddyZclM+Je25BVqqf7HTvP3XekT+l8csvyD/mGPw52dEO\n367MtADbD7WkMsb0IT+oakvO9sfxcq8vVtVv3bJHgLNZF7yfavXaNgB3JAW4Q0R2BcLAtjHsMx74\nBYCqvi0iha5OOnjVN5uAJhFZg1edc1kn2mOisIDeDwVSU8kpHNj++oEDGXCsN4J2xRHbI3izzgFS\nhw1j2D//iS8tDQnYf35j+rm2mcEqgY4efdEo70O40VoR8QHRht/OB1bjVWrz4dVX74qmVu/DWCzq\nFjbk3k9oJEKovJxIQ0On9ktP8a8N5i38WVldDub1TSGWVzawqqqRYJTqa8aYHrGFiOzt3p+INyFt\nRMv9ceBk4H+ttj++1etH7v0SYJx7fyTRsz3kAStVNeKO2fJHpaMSrO/jSq662ualqlod01WZuFhA\n7yealyzhhzPPpPKFFwjXdu7edyKU1jYx4bq3mXjju5TXehPuKuqbWVXVSHVDsJdbZ8wmYz5wtisx\nOgBvGP1U4DkRmQNEgH+12n6AK6N6Hl6vG+A+YH9XTnRvvJrqbd0FTHLbjG61zWwgLCJfisj5bfa5\nChjnznctMKlLV2o2yoY5+omql6fQ+NVcgqtWk/ujH0F25+5/dzcRQUTwiYBAQzDM/e8v4s53vuP2\nE3bjp7sM69X2GbOJCKnqr9osmwbs1s72N6jqxa0XqOpqYK9Wiy52y5cAO7r3C4Cdo2wTBA5qc453\n3bpy4Oi2DVDVq9p8bvc5d9M5FtD7iQEn/JLgihXkHX0Uvk5mbUuEgdmpfPCnA/H5hMKsVBpDYZa4\nnO2LS3t/BMEYYzY1Vm2tH4kEg+1WVCurbSIt4CO7nUwu4ZoawpWVSFo6gYGFna6cFovS2ibWVDcy\nJC+Dgix7rM0kHau2Zvo0u4feDzQ31FNTVkpjffSqZauqGjj14Znc+tYCKutbVSSrXQN1pd4xFi3i\nu0MOZfHRRxMuKyMSCdNYV0ckEu62dg7MTmP7YXkWzI0xphdYQO8HSpYu4d6zT+WNe26jobZmg/Xf\nldQxe1kVT3yylGY341wrlsJDh8FTx3tB3edNSpWAn7DPx/JvvuaVm//OygXfEg5b1jdjjOnv7B56\nP9BUVweqNFRXRy1jOmZoDtcfszNjhuSQl5FCqKoKWfA+/rLvvA3qy0jdagTbTHsLX0oKTX4fb91/\nF+XLf6CxtpZfXHqNFUAxxph+zgJ6PzBs29Gcduu9pKZnkJmbR3VDkNLaJrLSAhRlp1GQlcZxxZuv\n3T7Y2EgkZzS+0UdCdhGSWYg/Kxu/mxmvTY2M/fFRTH/2ccYefuTasqShsjI0GMSXld3pLHLGGGN6\nlw259wPp2TkMGDIMRKgtWUOgvBQtK+WKF2dTVte0wfa+rCyayxpo2PosIhMug6z1s8qlpKUzZvz+\nnHLdbYzac18CqamEKipYccmfWXjgQdR/9mlPXZoxJk4icpiIzBeRhSJySW+3x/Q+C+j9RH11FVP/\ndRuhlStZevhhhE45nmv2H+Y9B96GPzub7PHjydxjX/x50bNApqZnkDWggFRX51xDYZoXLQJVmhYu\nTOi1GGO6RkT8wJ3A4cD2wAkisn3vtsr0Nhty7yci4TAlP3xPcMVKtLkZbW4mV4NkZKd1y/EDAwvZ\n8rFHaVq4kPQdO5/nIVxfT+NXX9EwZw75Rx9NoLCjdNLGmC7aA1ioqosARORp4Cjg615tlelVFtD7\niZS0NHY++DBqszMouuZqUgsLSS0s6Lbjiwgpw4aRMmzDDG8lNU34BAo7+PIQqa5m6eRTIRKBcISB\nZ57RbW0zxmxgOPBDq8/LgD17qS2mj7CA3k+kZWax249+QnNjI6nj9iA1I6NHzrumupFj/vUReRkp\nPDi5mKKc9Kjbid9PyvDhBJctI33HHXqkbcb0J8XFxUcChwBTZ82aNaW322OSjwX0fiQ1I5PUjMwe\nPWdDMMzS8np8AqFw+1kFA0VFjHjyCTQU6hOpaY3pS1wwfwrIBE4rLi4+oYtBfTmweavPm7llZhNm\nAb0fiITD1JaXUfrD9wzeeiRZ+QN67NwDMlN59jd7k5XmJzcjelrZFoGionbXRRobidTUgN9PoKD7\nbhUY008cghfMca+HAF0J6DOBUSKyFV4g/yVe+VSzCbOA3g/UV1fx6J/Ooam+jkFbbcMv/nw1mXn5\nPXLu3IwU9tiqawE4VFpKyR13UvPWW6QMGcygP11M+o474M/s2dEGY3rRVOA0vGBe7z7HTVVDIvJ7\n4A282uQPqurcLrfS9Gv22Fo/EA4FaXJ53KtWryISJVvcxtRVVlBbUR41d3siC/SEKitZ/scLqXz6\nacKlpTR+NZelkycTWrEiYec0pq9xw+snAHcAXR1uB0BV/6Oq26rqNqr6ty430vR71kPvB9Iyszj4\njN8zf/p77HPsiaRnd+4edV1lBc9e/Wfqq6uYdMMdZBd4j5Q11NSwcOZ01ixexJ4/O27t8u6k9fXU\nz5ix/sJIhPLHn2DI/12O+P3dfk5j+iIXxG0ynEkYC+j9QHpWNjsecDCj955ASkY6Pl/ngqBGIlSX\nlhBqbiIUDK5dXl26hjfvuR2A2opyDv/9BWvTwHZWKByhrK6ZiCr5GSlkpG7kV6sflO01xpj+JOEB\n3WU0mgUsV9Uj3CSOp4FC4FPgZFVt7ugYBvyBAP5AfP+50nNyOfWmuwkFm8nIzV27PCVt3SNoGTk5\n+LpQI72srpmDb/wfDcEwr/9hP0YO8nLBS0YGmXvsQf0nn6zbWISCX51kvXNjjOlGPdFDPw+YB7RE\nkuuAm1X1aRH5F3A6cHcPtGOTFUhJIbdo0AbLswYM4KS/30zlyhVssdMuBFLjzzoXDEeoafLKsJbX\nrft+FhgwgOE3/pOS22+nZupbBIYMYfAlFxOIksDGGGNM/CSRE6JEZDPgEeBvwAXAT4ESYIibpbk3\ncJWq/qij4xQXF+usWbMS1s7eVl9Vic8fID07MRXOguEIKf7Ezn+saQyycE0tVQ1Bdtk8nwGZqeut\njzQ0EK6tRXx+At2Y4c6YHrRh4QRj+pBE99BvAf4EtMziKgQqVTXkPi/DS2G4yaqtKOel66+hYNhw\nDph0ZrfXJf+hvJ5/vjmfMyZszZihufh96/9Nqq+uomr1KnIGFpE9YF2grahrZsGaWrLS/Gw2IIO8\njNS2h15PTnoKu23R/vPxvowMfC67XTASpDncTFZKVheuzBhjTGsJ67aJyBHAGlWNqxaniJwpIrNE\nZFZJSUk3t67vaKiuYvWihcz/6AMiodDGd+ikBz9YzMtfrOCvr31NbdP6x4+EQ8yc8gJPXv5Hnr36\nEuoqKwFoCoV56MPFHHfPR/zktg+YvrCs29pT1VTF418/ziXvX8KymmXddlxjNiUisrmIvCMiX4vI\nXBE5zy0vEJGpIrLAvQ5wy0VEbnOlVmeLyNhWx5rktl8gIpNaLR8nInPcPreJeKUde+IcJj6J7KHv\nCxwpIj8G0vHuod8K5ItIwPXS201XqKr3AveCN+SewHb2quyCQn56wZ/JHVhEWlb39VhD5eXUz5nD\npL12Y0VVA7/ZfxuyUzechLbu/x9ZO6DYFIww8/uKtdt8sricw3ca2i3tqm6q5qZPbwIgIAH+MeEf\npAei54c3JlkUFxdvCfwKL13rD8Djs2bN+r4LhwwBf1TVz0QkB/hURKYCk4Fpqnqtq5F+CXAxXpnV\nUe7fnnjzlvYUkQLgSqAYUHecKapa4bY5A5gB/Ac4DPivO2aiz2HikLCArqp/Bv4MICIHABeq6kki\n8hxwDN5M90nAy4lqQ19U0VjB8trlDM0aSmFGIRk5uWy7577dfp7ad95h5WWXk7l7MTfddieZ+Tm0\n/fLr8wco/unP2XavfckuGEiWyz6XnRbgz4eN5pSHPiE7LcCp+47otnalB9IZmDGQ0oZS9hq6Fym+\njtPJGtOfFRcXB/A6JifgjYimAs3A5cXFxU8BZ86aNavTQ3OquhJY6d7XiMg8vNuXRwEHuM0eAd7F\nC7ZHAY+qN2nqYxHJF5GhbtupqloO4L4UHCYi7wK5qvqxW/4ocDResO2Jc5g49MZz6BcDT4vIX4HP\ngQd6oQ295t8L/83Nn97MhOETuHa/a8lNzd34TnFI3357JCMD/6BBpBBm9rIq3pm/hpP23JKinHWz\n2TNz8za4b+/zCWOG5fLmH/ZDhHYrrMVjYMZAnj3iWZrCTeSm5uLv5DP1xvQz9wLH441StmiZkHK8\nez2tKycQkRHAbni93MEu2AOsAga799HKrQ7fyPJlUZbTQ+cwceiRgK6q7+J9i0NVFwF79MR5+6KR\n+SMRhFEDRpEiieudpm69NSPffAMCASr8Gfz60Q8oqWmiMCuNk/feMuo+ZbVNvDO/hNFDcti6KItB\nud0/FC4iFGW2X8TFmGRRXFw8Aq9n3t7/SJnACcXFxVfHO/wuItnAC8AfVLW69SicqqqIJPR2ZU+c\nw8TOcrn3sLGDxzLt2GmcusOpZKQkrqa5Ly3Nq34WiZDbVMt5E0cyekgO40cNjLp9OBLhrne/48Ln\nvuToOz+kqiEYdTtjTMxOYuN/YwXv3nqniUgKXjB/QlVfdItXu2Fu3Osat7y9cqsdLd8syvKeOoeJ\ngwX0Hpadkk1RZhH56YmvlhYqKeH7k09h2eTJHLd1Jo+fvidbFkSvcCYIOenegE3AL4g9cmtMV23O\nuuH19qSxflCLiZsN/gAwT1VvarVqCt7cJFh/jtIU4BQ3E30voMoNm78BHCoiA9xs9UOBN9y6ahHZ\ny53rlDbHSvQ5TBwsl3sSizQ10bxokfchGGTgoDSaw82EmsJkpKQjrZ5J9/mEU/Yewd5bFzIsP4OC\nLJusZkwX/YA3Aa6joN7E+veRY7UvcDIwR0S+cMsuBa4FnhWR04HvgePcuv8APwYW4pVvPRVAVctF\n5C949dUBrmmZvAb8DngYyMCbqNYyWa0nzmHikNBMcd0l2TPFAZQ1lBHRCAXpBTFPFKuvbqapPkh6\ndgoZ2Rv+zQhXV9P49TxUlMB2o6hNU27//HZqm2s5f9cLGJo9FH/ABmmMiVGnhq3co2rf0P49dIBG\nYHQXH2EzBrAh9z6hrKGM30z9DUe/fDSlDaUx7dPcEOK9Z77lyatmMPf96LXF/bm5lI4Zwp9qHuXD\nqi/+v737jpOquhs//lPVqPsAACAASURBVPlO3ZmdrfTeBCxREQfBWGOiwRDF3lA0UUk0+hj1F1ti\nIfEx0SeJGh9LTGL0SWJUwI6oqGBBRVfE0ESWKkVg+8zs9Dm/P+4FFtjO1uH7fr32tTvnnnvv4bCv\n/d5z77nny8OfP8zzq57nzfVvcuuHt1AZrax3P6XUvrOD9L+xRqv1qQX+rcFctRW95d4FZEyGDaEN\nRFNRIslIs/YRB/js2+K+QMO3x2d8NYP3N73P0PyhRFK7jl2bqoVWvjGWicXIxGK4Ctt/HoBS3dw0\n+3vd99DjWAusPFtnu1L7TG+5dwHJdJKKWAWeuB+XuPAHPDjdTUfbaChBKpHGneMip4Fn3lvCW7jv\n0/s444AzGFU0ils/uJVIMsLvjvsdfX1DqE2kKfK7cTUzeUs6FKJq1izCb79D/3vvxd3fWkGutjrO\nf+ZvYviYXvQYkLvXrfzycJyKSIKiXA89A63P6qZUJ2r1TNE6K8UNxHpmvq8rxSm1Fw3oXUSkOs6M\n35YQjyS58M7xeHJSpJNJfPkFOPYxb3gsFcPtcON0OKmKVZEhAyk/019dwdJNNUw9egiTx/Sn0L/3\nc3iTTJIqLye5eTOeIUMwxrDm1B+QCYXo99t7KDzzTAA+n7uBD2eVktcjh7NvOpLcgl1BO5pI85vZ\ny3l64Qa+d1Bv/nDeGAp8OulOdTv66ofq0vQZehdhMobamgSpZIbaUJwFz/2Tf/3yRiq3NP5aZjqd\nIVwVJ1QRIxlL11snx5Wzc6JdYU4huc4CHni7lJcWb2b19jB3vryMjZXRevdNVVayZtIk1l80hU2/\n+AUAAx58gKJLLiZw3HE76w07rCc9BwY4/KRBuL27X4AYY0imMoCVypVucBGplFLdjY7QO0tku/Ug\n3N8DgGQ8RU1ZjFgkSUEvN3++6kIwhuOn/Ihxp5/d4GHCVXGevutjUok0F94xnqK+uyd4iVRXYTIZ\ncgIBXG5rBB4J1xLZVk48neG2eZt4f00lf77kSL5/SN+9jh9buZK1k88AwJGfz/DZr+Lu1QtjzG5r\nw5uMIRpJ4vY49wroYN1y31QVpX+hT2+5q+5qX265e7CWZ80HaoDPS0pKEm3VMKVAR+ido2Yz/PMc\neGYKhK1FltxeFz0GBBgwqghPjoMfXncT3/rOKRx03HcaPZQ4hNOuHcMZN4zd7bl1Kplk81dfMuM3\nv+T/fnENC194jmioBgBPJETFmadRe8HZ/PqE/vTJ93LEoPonuLl69SL/9NNx9e1Lv7t/gzPPSm2/\nZ6IXcQj+PE+9wRygR8DLYQMLNZir/UowGOwTDAZ/i7Wa2pvADPv7tmAw+NtgMNin0QM0QUScIvK5\niLxqfx4mIgvtdKTPiojHLvfan0vt7UPrHONWu3yliHy/TvlEu6zUzqpGR51DtY4G9CYk0gm2Rray\nrXYbqcyupEjRVJStka1sr92Vqz2UCBFKhJo+6NcLYcti2PARVKzZa7PH52f00cdx8pU/I1BU3Pix\njGHeP1fwwu8XsaW0emdxLBxi5t2/ovzr9URDNXw86xk2Ll+6c7u4XIjbTe+8HF699tgG1213FRfT\n91e/ZNiM5wgcfzyOHE11qlRzBIPBg4GlwPVAAdbovO7364Gldr3Wug5YUefzvcD9xpgDgErgcrv8\ncqDSLr/froeIHAxcAByClbr0EfsiwQk8jJUS9WDgQrtuR51DtYIG9CZUxiqZ9MIkznzpTCpiFTvL\nt4S3MHHWRKbOmUpZtIzyaDl3LLiDOxbcQXm0vPGDDhoPA8bC0OOgeHiD1facDBdJRoilYruViQiZ\ntPXYJJPZ9fgklYgz/orLGHfRRbi81qi4tORjTCaDq7iYEXPfZPhrs/H36dVkNjVnfj6uXr00mCvV\nTPbI+12gB9byrvXx2tvfbc1IXUQGApOAv9qfBTgJmGlXeQorHSlYqU2fsn+eCXzXrj8ZeMYYEzfG\nrMVa5e0o+6vUGLPGGJPASnc9uSPO0dJ+ULtoQG+CwZAxGdJm9wlnNYkaUiZFRawCYww1iRre2vAW\nb214i+p4dQNHs+X3h4tmwHn/B4HezWpHRbSCuz68i0e/eJSqWNXOcn++hzNvHMuFd45n6GG7Eq9E\n/fDH6n/wZtEyvj3tCgAOOOpoxOGgKmGYvSHKe9uSbItoEhal2sHPgTyafu4udr3rWnGOB4CbgIz9\nuQdQZYzZcSuxbjrSnSlM7e3Vdv2WpjztiHOoVtKFZZpQ5C1izllzEBGKvbtufw8rGMaM02aQ78mn\nyFuEy+Fi6sFTMZjmJV7J7UltTTWhtavJK+6Bv6DxfbbWbuX1da8DcOGBF+5+qAIvuQVeqmsTfLGm\nnCK/h22p1SyvWM6KihVcesIFfPvcKQw88BAAysJxrnvGWv75pZ8dg1OsiedpYyjye/A24x14pVT9\n7AlwV9HwyHxPXuDqYDB4V3MnyonID4FtxpjPROTE1rVUZRsN6E3wurz0ce19N6zAW0CBt2Dn5yJn\nEdeNtS6yPc5GcjEka2HDQsKFQ1m3fC0r35+PNzeXU6b9Fw6vm+p4NT6XD5/LR1m0jHg6To+cHgwI\nDOBHh/yIAYEB+Fz1p10tjyS44PGPcTmFBbeN55ojruGgooPoWdCPPhMPYFs8QyAcp8DnZmTvAHk5\nbiKJFKHKOFXxFBc89QlzrjuO4b0C+9ZpSu3fjqDlM+LF3m9hM+sfA5wuIj/AWis+H3gQKBQRlz1C\nrpuOdEcK040i4sJ6hl9Ow6lNaaC8vAPOoVpJb7k3Ip1JUxYta95EN6xA3mgwB4jVwLv3EfJ4mOV8\nH8fkwxh+/LGI00lpZSmXvX4ZL5a+SHm0nCmzp7C+Zj1PLX+Khd8s5LQRp3HCoBPIdeXWe+gCn5up\nRw/huJG9SKe8XHzgxRw/6HgC/mIeX7CBE/5nPr997UtyvU7+cflRPHD+4QzI8fDp01/hN0IqYyiP\n7BogxNNxvqz4ktlrZlMZ03XflWqmfKylXVvC2Ps1r7IxtxpjBhpjhmJNOHvHGDMFmAecY1fbM7Xp\njpSn59j1jV1+gT1DfRgwEvgEKzPaSHtGu8c+x8v2Pu16jub2gdqbBvRGrKtZx6VzLuX3n/6+7QKa\nJxdOuImZq2Yxc9VM7iiZTuGIoSSiEV5b+xrratbxzJfPkEwnGFU8iopYBQ8vfpgb5t9AKBFi8ouT\nqYhX7HXYVDJDqizGSWEX95wwkqeW/S//+vJfJNIJDIbqmPWsvDqWIG2gb4GP3l4P5csq6TeikN69\nfPz7yvGM7L1rdB6Kh5g6Zyq3vH8LX1V+1Tb/fqWyXw2tG6HXtMG5bwZuEJFSrOfXf7PL/wb0sMtv\nAG4BMMYsA54DlgOvAz8zxqTt0fc1WLnMVwDP2XU76hyqFfSWeyNeWf0KG0Ib2BDawFVjrtqnY4US\nIUqrSnHgYOTAIMcGCnhi2d8ZVTiKSFk5L97zCybf8StMOsPE4RMhkeaOo24nJWmGFQxjcN5gyqJl\nmHou/OO1ScKVcXbM23v5j4s586Zz+Pvav5DOpPG5PVz/vZGcHxxE3/wcHLE04VgaX8DDmO8Nggw4\nXA6OKtr9Vr7L4WLSsEl8vv1zBvoHsWLBZoYe1hNfXhN3IZTav31Oy0foGXu/FjPGzAfm2z+vwZo9\nvmedGHBuA/v/N/Df9ZS/hpXjfM/ydj+Hah1dKa4Rm8KbuOvDuziq71GcN/q83Z6Zt9Tm8Ga+P8ta\nT+HNs98klxzKq7cS2r6djx77K+HKcnx5+Zw+/dfcvfz3LClbwj+O/xvu6iQ5Q/qQJsPCLQs5tNeh\nDAoMwu3ctRb6ltVVPP8/ixCBs35xJK/+7xeccdvhSG6KHr4eu7UjXBnjn3d8jMMhXDR9AoFCL5HK\nChbPfY3R3z6e4v4DcNTJx14TryEajzP/obWUfR3mmHMOYMz3Bre6H5Tqxpo96rYXk7me5k2MiwN/\nLCkpua21DVMKdITeqAGBAfzhhD/gdXrxuvZthTOP08PBxQfjd/sJ4KNk1gwWvfYSvrx8DjrlFFKx\nOMvefJ1oopbBeYMZ22csRmDFog85dMAPyfH6mXxA/a9ophLWWyvGWO+ln37dGAoLcnHVM1tdRHC6\nHIhj11+nJfPm8vGsZ1i7+DPOuuUu/Pm7Llzyvfk4o3Gqt1trvef3rH9CnlJqNw8AV2ClS23sQsAA\nIawJbUrtEx2hd6DKaCVJk2T+hnmMyT2Ej/70GMdcNY1H1z9JL29PTnEcRWFxb7bkVPPWpnf48ahL\nWVexlms++jnnjjqX68deT65n7wlxsUiSsq9DuLxOCvv4yfE3nMksnc4QC1nP0335HhwOoWLzJt54\n7AHG/mAyI8Yehcvj2WufaChJKpHGF3DjbeT4SmWxFj0Xt1eAexfrPfP6RgRxrGB+QklJyfJ9b57a\n3+kIvQMV+Yp4aNFDPL7kcYJ9gkw7+XS2psp5c8NcAH488RI2fr6YihVLueDUSWyu2UhVqpqMybC6\najVJk4RUHBK1lJPmg80LOLLPkeS6cukzMm+32/ANcTod5Bbu/relqF9/zvjF7bhzcnYmcNlzn0Ch\nrsGuVEuUlJQsDwaD38JaNOZqrAsCU+f7I8CDJSUlWzuvlSqb6Ai9jSTSiaZfWQOWbl/KTe/fxKUH\nXEzugs2MPvlkntryHMMCQznZM54Zv7Yeo3l8fi6+70E2blxFrMDJgKLB9PflwaKnyKTi/NaT4Jmv\nnuXA4gOZcuAURhaN5JCeh7T3P3M3iVSaqtokbpeDonpyqSuVZfY121oQ6IWVqOUzzbam2pq+ttYG\n1lWv47YPbmNV5SqaukAa4h3APUNuov9qQ2jLVt6853ecuG4ww5c7d2ZDA8ik04TLynjz3vv4+DcP\nsnXREqhaD3PvwLH+Q8YXH4QgHNbrMDaENjB3/dxmtTWeilMTb4u3Y2DZ5hq+d/+73DTjP5SF44Qr\n49SUR0nGUk3vrNR+IBgMeoPB4MXAZ8AHWK9vLQA+CwaDFweDQb31pdqMBvR9lMwkeeSLR3hj3Rvc\n/9n9RFPRBuuWR8updcRxJA3uwwbjOnssx141jS9efYVFLz8PxjDu9HMYdMihnHnz7XgdaQ494Tuk\nU0nyCoohba+7vmYeE9Yv4u2z5nDRgRcRToS56KCLmmxrOBHmpdUvcd2869hQs2Gf/+3PL9pITTTF\n3BVbiSfSPH3Xx/zzVx8R1fXhlSIYDB4FbMa6tf4trBH+jkly37LLNweDwXGtOb6IFIrITBH5UkRW\niMjRIlIsInNFZJX9vciuKyLyJztN6X9EZGyd41xq118lIpfWKT9SRJbY+/zJTrRCR5xDtY4G9H3k\ndriZdtg0Thx0ItcecW2Dy7JWRCu46q2r+MELk+hxyCh+uuBafr34HqJFTnx5+RT07kPPYj/jxg3j\n9FNGM3Dx3fR+7SJOHFrBFXffxYCRB1iZ2Y6+BoqHE/Dk08vlZ0ThCG4dfyu9/U0neYmmotz7yb2U\nbC3hH8v/QSySpGJLhEh1vFX/9p+cMILvjO7NnacdjNfpICfgxuV14nDqr5Xav9lB+h2gGGtSXH3y\n7O3zWhnUHwReN8YcCByOtTjLLcDbxpiRwNv2Z7BSlI60v6YBj4IVnIE7gfFY75bfuSNA23WurLPf\nRLu8I86hWkGfobeAMYaUSeF27D35LJqMkuPKoaELzLJoGWe8dAbV8WpeOeMVHv38EdaE1nLvmOm8\n9bv/4YL/dz35s38MZav23tntw1z8PDIgCOkEJCPgCVirzrVAKBHipdKXmLN2Dvcdfx/JdV5mP/wf\nivvncvrPx5Cb3/K7f+FYEo/Licfl2HlhkBNw49SgrrJPs0aP9m30zVjBurkqgP4lJSXNuroWkQJg\nMTDc1PkjLiIrgRONMVtEpB8w3xgzWkT+bP/877r1dnwZY35il/8Za5Ga+cA8+2IBEblwR72OOEcL\n+k3VobPcm6k2WcsHmz7gg00fcO0R1wLgc/mIp+P4XD78bn+j+xd5i5h52kyq49UUuPP56eCplG36\nmnfv/xMnnXcO+e/cWH8wB0hGkX+ehfnZp9RKb3ICvVoVMPM8eZwz6hwmDZ9EobeQbYEaRCC30Eu0\nJonH68TtbdmvRCBn18VNboE+DlQKa7W0lr7b6cFa//xfzaw/DNgO/F1EDsd6Rn8d0McYs8Wu8w2w\nI7NUS1OYDrB/3rOcDjqHagUdRtUjlAixoWYDWyNbSWWsCV6RZIQ7PryDF0pf4NNvPuX3Jb9nZcVK\nLnv9Mp5f9TyRZKTRYzodTvrm9mV08WiK/MX06z0ER02c2qoq+vbvAV9/0nijklHMF8+y8MVV1JTF\nWvxvqohWsHjbYiLJCEU5RYgIRX39nHvbOA45rj+zH/2CRCzd9IGUUk25mYZvszckwK5b183hAsYC\njxpjjgAie+5vj9zb9RZsR5xDNZ8G9HpsCW9h0guTmPzS5J1JWfwuP7dPuJ1JwyYxtGAoxd5inv3q\nWdbVrOOJpU8QTTY8Ga6uWDhMpKoSh8vFt75zMpf+4VFy1r/drH0dS55h2EgHtYRZvG0xa6rWNDoJ\nb4dUJsWjXzzKJXMu4f7P7ieesu7qeXxu0skMC2aUcuD4frjc+uug1L4IBoNOoLXvjx5i798cG4GN\nxpgd6VZnYgX4rfZtcOzv2+ztDaUwbax8YD3ldNA5VCvoX/B6uJ1unOLcbYJbrieXiUMnMv2Y6RR6\nCzm89+FcffjVnDjoRKZ/ezp5nqYvyJPxOIvfeJXHr/4Rm1Ysw+vPJVBUhDMVbl7DEhEGHNST9alS\nLplzCWe9fBbV8eomdxOE0cWjARhdPBpnnbXaew0OcPbNRzLm5MG6ApxS+y4AtPY1j5S9f5OMMd8A\nX4vIaLvou1jZzOqmMN0ztelUeyb6BKDavm3+BnCKiBTZE9VOAd6wt9WIyAR75vlU6k+T2l7nUK2g\nz9Dr0Te3L6+f/TpOcdLT13NnudPhxImT/oH+9A/0B+De4+7F6/TuFiR3iNbUsGHZFxQPGERRvwGk\nk0m+Xr6ETDrFxhXLGHZEEADpc2jzGlY8gtW1a3deaLgdbqQZ83ScDienDD2F4wceT44zB5dj13+7\n0+Ukt6C5gwKlVBPCtPz5+Q4ue//muhb4l51LfA3wI6xB2nMicjmwHjjPrvsa8AOgFKi162KMqRCR\n32DlJgf4tTFmR37mq4EnAR8wx/4C+F0HnEO1gs5yb0frlyxm5t2/wu3N4fI//YXcwiLCFeVsXbua\nfgeMxl9gJ0Gp3gQPjYVU48/Gq8//Py796u/ceOSNDMkfgtvhpthXjNepk9GU6gDNneW+BOs985Za\nWlJS0syre6X2prfc20k6k6agb18K+/Zn5IRjcDitUXCguAcjjjxqVzAH8BXCd2/f/QDFw4l9948k\nx/0XOJyYQeNJ9BzFhL4TGJl/AJnaOKlItM1WfVNKtZl7sZKutEQIa+SrVKu12y13EckB3sPKMuQC\nZhpj7hSRYcAzQA+sVy0uMcZk3ZrGmyObmb5oOldcO5UDex6ELy+/4cqeXBgzBRxueHs6mAzhM2bx\n3uwwvfofzWGTv413xJH4PH4uOfgSJr98BvnefP567CP1vhOvlOpUM2h5OtQk1sQ2pVqtPUfoceAk\nY8zhwBhgoj1R4l7gfmPMAUAlcHk7tqHTrKpcxcJvFnLlgp9R67LmyKQScWprqjGZDMTD1q328HZr\nB18RjL0Url0EF80gVpDPuLN6MGJCD9JDT4RAbwKeAJFkhNpULdtrt+P2+chx5XTeP1IptRd7cZiJ\nWK+SNUcEmNjcRWWUakiHPEMXET9WYoKrgNlAX2NMSkSOBu4yxny/sf274zP0ilgFz696niH5Qxjf\nbzx+vKz65CMWvfYyp15zA8XOGnjsGBh6HJzzd8jtsXPfUCJETdl2Zt16M3k9enLOr+7G5fGQTiZJ\negzrI1+T68plQKA//hauFtfRYpEk6VQGd44TTwsXrVGqi2lpPvRxwOtYk+Tqew0mhDUyn1hSUvJp\nPduVapF2fYYuIk4RWYz1nuJcYDVQZYzZkY4ra1cGKs4p5opDr+DkISeT78knEYtR8uoLfLP6K0o/\n/RhMxvqKVljf63CKE5NKk4xFiVRWYDJp3n3qrzxx3TS+mvsOBwZGMbJ4ZJcP5slYisVzN/DUrR+y\nZVVVZzdHqQ5lB+n+WAOZpVgLsCTt70vs8v4azFVb6agReiHwAnA78KR9ux0RGQTMMcbsNSNURKZh\nLfDP4MGDj1y/fn27t7O1KmOVhBIhfC4fPX09613P3WQyVGzZxKqFH3LoSaeQ63VYwdzjh0CfvY9Z\ntZ10bQyHw4nT4eSv11pPJkQc/OTRJ8ktasky0Z0jGk4y57ElbCmt4shThzBh8ojObpJS+2KfMoHZ\ni8YEgHBJSYkuy6jaXIfcAzXGVInIPOBooFBEXPYovcGVgYwxjwOPg3XLvSPa2RrhRJjHvniMp798\nmp6+njz3w+fo5e+1Vz1xOOgxYBA9zjp/V6GvYK96OxQV9iLmCpNOJTFAUb8BVG7ZxOBDD8fh7B63\nrn0BN6dccQhlX4foM7SRSYFK7QfsIN70SlBKtVJ7znLvBSTtYO4DTsaaEDcPKwnBM+y+ylC3FEvH\neG/je4CVUa0mUVNvQG+NnMCuRaPOv+t3JKJRvH4/vvzuExwDhV4ChfqevFJKtbf2fIbeD5gnIv/B\nWiForjHmVazEBTeISCnWq2t/a8c2tLs8dx43Bm+k0FvISYNOoshb1PROrZBbWERRv/74Cwrr3Z7O\npCmLljVrKVillFLZR1eKawOxVIxwIozb6abA2/Bt9Pa0pnoN096cxhG9j+C28bdRlNM+FxZK7cf2\n6Rm6Uu1NV4prAzmuHHr6e3ZaMAdYsGkBW2u38sa6N0hm9s4NkUpnWFcW4Z0VW6mItGwdn42Vtdwz\newVrtofpDheASim1P+oes6tUk04ddiprq9cyod8E/C7/XtsrahOc9tAHhOIp/nDu4Zx95MB6jrK3\naCLNb15dwRvLvuHzryv5y9QghX5PWzdfKaXUPtKAniV6+nryy/G/rDfrG4BThOG9clm6uYbhvZr/\n/rrH5eD8cYNY/HUlF4wbhN+jvzJKKdUV6TP0/UhZKE4qY8jPceFvwapt0USKUDxFwNOy/ZTKMvoM\nXXVp+te5g8VTcSKpCAWeggZH0+2lZ17zXh/LpDPEIimcLsHrd+PzuPDpyFwppbo0nRTXgSLJCLPX\nzubqt66mtKq0s5tTr0zGULYxzIv3L2L+0yuJhrIuEZ5SSmUlDegdqDZZy4OLHmRZ+TKeWPoEqUyq\n6Z2aUFMe5aMXV1NTHm2DFkKiNsn7z35F5ZZaSku2Ub29bY6rlFKqfWlA70ABd4Cbxt1EsE+QKw+7\nEpdj325jp1MZPnphNYteX8+Hs0pJJfZ9eWinx8nA0dY77G6vk0CRrvKmlFLdgU6K62CJdIJYKkae\nJ6/eJC4t9c2aaj6YsYpjzjmAvsML2uSY0XCCWDiJJ8dFTp4bp1Ov+5RCJ8WpLk4DejeXTmdIRFN4\nfC4NvEq1Lw3oqkvTqcvdnNPpwBfQhV6UUmp/p0M6pZRSKgtoQFdKKaWygAZ0pZRSKgtoQFdKKaWy\ngAZ0pZRSKgtoQFdKKaWygAZ0pZRSKgtoQFdKKaWygAZ0pZRSKgtoQO9GYuEk36ypJlQeI53OdHZz\nlFJKdSG69Gs3snFlJW/8ZSnuHCdTpk8gt0AzoSmllLLoCL0b8ficgJXWVCmllKpLR+jdSJ+h+Vxy\n99E43Q78+ZqQRSml1C4a0LsRr9+N1+/u7GYopZTqgvSWu1JKKZUFNKArpZRSWUADulJKKZUFNKAr\npZRSWUADulJKKZUFNKArpZRSWUADulJKKZUFNKArpZRSWUADulJKKZUF2i2gi8ggEZknIstFZJmI\nXGeXF4vIXBFZZX8vaq82KKWUUvuL9hyhp4AbjTEHAxOAn4nIwcAtwNvGmJHA2/ZnpZRSSu2Ddgvo\nxpgtxphF9s8hYAUwAJgMPGVXewo4o73aoJRSSu0vOuQZuogMBY4AFgJ9jDFb7E3fAH06og1KKaVU\nNmv3bGsiEgBmAT83xtSIyM5txhgjIqaB/aYB0+yPYRFZ2cSpCoDqFjavOfs0VqehbXuW11evbtme\n23sCZU20q6W6cv/UV9bY5/bon4ba1Rb77M991Nz6Le2jzuif140xE1u4j1IdxxjTbl+AG3gDuKFO\n2Uqgn/1zP2BlG53r8fbYp7E6DW3bs7y+enXL6qlf0g7/F122f5rTZ3v0V5v3j/ZR+/RRc+u3tI+6\nav/ol3515ld7znIX4G/ACmPMH+tsehm41P75UuClNjrlK+20T2N1Gtq2Z3l99V5pYntb68r9U19Z\nc/qwrWkfNa2l52hu/Zb2UVftH6U6jRhT7x3vfT+wyLHA+8ASIGMX34b1HP05YDCwHjjPGFPRLo3o\npkSkxBgT7Ox2dFXaP03TPmqc9o/KRu32DN0Y8wEgDWz+bnudN0s83tkN6OK0f5qmfdQ47R+Vddpt\nhK6UUkqpjqNLvyqllFJZQAO6UkoplQU0oCullFJZQAN6FyciB4nIYyIyU0Su6uz2dFUikisiJSLy\nw85uS1ckIieKyPv279KJnd2erkZEHCLy3yLykIhc2vQeSnU9GtA7gYg8ISLbRGTpHuUTRWSliJSK\nyC0AxpgVxpifAucBx3RGeztDS/rIdjPW65D7jRb2kQHCQA6wsaPb2hla2D+TgYFAkv2kf1T20YDe\nOZ4EdltCUkScwMPAqcDBwIV2djpE5HRgNvBaxzazUz1JM/tIRE4GlgPbOrqRnexJmv979L4x5lSs\nC5/pHdzOzvIkze+f0cCHxpgbAL0TprolDeidwBjzHrDnYjpHAaXGmDXGmATwDNaoAWPMy/Yf4ykd\n29LO08I+OhErRe9FwJUisl/8Xrekj4wxOxZ3qgS8HdjMTtPC36GNWH0DkO64VirVdto9OYtqtgHA\n13U+bwTG28874JbKBQAAAtlJREFUz8L6I7w/jdDrU28fGWOuARCRy4CyOsFrf9TQ79FZwPeBQuB/\nO6NhXUS9/QM8CDwkIscB73VGw5TaVxrQuzhjzHxgfic3o1swxjzZ2W3oqowxzwPPd3Y7uipjTC1w\neWe3Q6l9sV/cmuwmNgGD6nweaJepXbSPmqZ91DjtH5W1NKB3HZ8CI0VkmIh4gAuwMtOpXbSPmqZ9\n1DjtH5W1NKB3AhH5N/ARMFpENorI5caYFHANVv74FcBzxphlndnOzqR91DTto8Zp/6j9jSZnUUop\npbKAjtCVUkqpLKABXSmllMoCGtCVUkqpLKABXSmllMoCGtCVUkqpLKABXSmllMoCGtBVlyciH3Z2\nG5RSqqvT99CVUkqpLKAjdNXliUjY/n6iiMwXkZki8qWI/EtExN42TkQ+FJEvROQTEckTkRwR+buI\nLBGRz0XkO3bdy0TkRRGZKyLrROQaEbnBrvOxiBTb9UaIyOsi8pmIvC8iB3ZeLyilVOM025rqbo4A\nDgE2AwuAY0TkE+BZ4HxjzKcikg9EgesAY4w51A7Gb4rIKPs437KPlQOUAjcbY44QkfuBqcADwOPA\nT40xq0RkPPAIcFKH/UuVUqoFNKCr7uYTY8xGABFZDAwFqoEtxphPAYwxNfb2Y4GH7LIvRWQ9sCOg\nzzPGhICQiFQDr9jlS4DDRCQAfBuYYd8EACsnvVJKdUka0FV3E6/zc5rW/w7XPU6mzueMfUwHUGWM\nGdPK4yulVIfSZ+gqG6wE+onIOAD7+bkLeB+YYpeNAgbbdZtkj/LXisi59v4iIoe3R+OVUqotaEBX\n3Z4xJgGcDzwkIl8Ac7GejT8COERkCdYz9suMMfGGj7SXKcDl9jGXAZPbtuVKKdV29LU1pZRSKgvo\nCF0ppZTKAhrQlVJKqSygAV0ppZTKAhrQlVJKqSygAV0ppZTKAhrQlVJKqSygAV0ppZTKAhrQlVJK\nqSzw/wHvAuyC7mflLAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -4449,8 +4456,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3bdeaf32-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3b877780-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_34cb5fea76" + "window[\"07fbac1e-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07810856-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_3391f00fe5" ], "text/plain": [ "" @@ -4467,8 +4474,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3be06426-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_febe5dbc20" + "window[\"07fcfa4c-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_55d8297db4" ], "text/plain": [ "" @@ -4485,8 +4492,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3be0a904-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_2\");\n", - "//# sourceURL=js_1f61ea7849" + "window[\"07fd3aac-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_2\");\n", + "//# sourceURL=js_02b9c68757" ], "text/plain": [ "" @@ -4503,8 +4510,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3be0d83e-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3be0a904-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_aa87e0cd57" + "window[\"07fd7ae4-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07fd3aac-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_9974939b34" ], "text/plain": [ "" @@ -4521,8 +4528,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3be12168-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(2);\n", - "//# sourceURL=js_76cccca8bd" + "window[\"07fdb6ee-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(2);\n", + "//# sourceURL=js_3aba3fe65e" ], "text/plain": [ "" @@ -4538,9 +4545,9 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VGX2wPHvmZmUSa8UAQFFmqio\nqNgVu66961rQ1dXVtbu6rrru6s+17Fp2de2u2HvXxYK6NkQQEUREEOktPZkkk2nn98e9CQmkTEKG\nwHA+z5MnM3dueW8IOfe+933PEVXFGGOMMZs2T083wBhjjDHrzwK6McYYkwQsoBtjjDFJwAK6McYY\nkwQsoBtjjDFJwAK6McYYkwQSGtBF5FIR+V5EZovIZe6yAhH5QETmud/zE9kGY4wxZnOQsIAuIqOA\n84BdgR2AX4nIEOBaYJKqbgNMct8bY4wxZj0k8g59BDBFVetUNQL8DzgOOBqY4K4zATgmgW0wxhhj\nNguJDOjfA3uLSKGIZACHAwOA3qq6wl1nJdA7gW0wxhhjNgu+RO1YVeeIyO3A+0AtMAOIrrWOikir\nuWdF5HzgfICRI0fuPHv27EQ11Rhj4iE93QBj2pPQQXGq+piq7qyq+wAVwE/AKhHpC+B+X93Gtg+r\n6hhVHeP3+xPZTGOMMWaTl+hR7r3c71viPD9/FngTOMtd5SzgjUS2wRhjjNkcJKzL3fWKiBQCYeAi\nVa0UkduAF0XkXGARcFKC22CMMcYkvYQGdFXdu5VlZcABiTyuMcYYs7mxTHHGGGNMErCAbowxxiQB\nC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowx\nxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCA\nbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNM\nErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jGGGNMErCAbowxxiQBC+jG\nGGNMErCAbowxxiQBC+jGGGNMEkhoQBeRy0Vktoh8LyLPiUi6iAwWkSkiMl9EXhCR1ES2wRhjjNkc\nJCygi0g/4BJgjKqOArzAKcDtwN2qOgSoAM5NVBuMMcaYzUWiu9x9gF9EfEAGsAIYB7zsfj4BOCbB\nbTDGGGOSXsICuqouA/4OLMYJ5FXAN0Clqkbc1ZYC/RLVBmOMMWZzkcgu93zgaGAwsAWQCRzaie3P\nF5FpIjKtpKQkQa00xhhjkkMiu9wPBH5R1RJVDQOvAnsCeW4XPEB/YFlrG6vqw6o6RlXHFBcXJ7CZ\nxhhjzKYvkQF9MTBWRDJERIADgB+Aj4ET3HXOAt5IYBuMMcaYzUIin6FPwRn8Nh2Y5R7rYeAa4AoR\nmQ8UAo8lqg3GGGPM5kJUtafb0KExY8botGnTeroZxpjNm/R0A4xpj2WKM8YYY5KABXRjjDEmCVhA\nN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEm\nCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRj\njDEmCVhAN8YYY5KABXRjjDEmCfh6ugHGdIVGo0TKytBwGE9WFr7c3J5ukjHG9Ci7QzebpPDSpSw4\n4lf8cuxxNMydS3jlSqKBQNPn0epqar/+mrLH/0N4xYoebKkxxmwYFtDNJqnmk0+I1dbS/5/3UvbI\noyz41ZGUP/UU0aoqAMKrVhFesgRPZgbLr7+eSGlpD7fYGGMSywK62SRljt2dlIFbEl65itrPPiMW\nCFB67z+JBWpRVbShgbLHHqfypZfodcklaE832BhjEswCutkkpQ7ckoFPPEHa0KFNyzyZmZDiI1pR\nwcqbbyG0YAHB72dT/uSTePz+HmytMcYkng2KM5skT3q685WRwYBHHibwxZfkn3A8vvx8YsEgvqKi\npnV9vXvjSUvrwdYaY0ziierG3xk5ZswYnTZtWk83w2xCwqtWUT7hSTyZmeSddCIpxcU93SSz6ZOe\nboAx7bEud5N0NBqleuJEwitW0PDjj5RPmEAsGOzpZhljTEJZl7tJOhoKUff1VAKTJgHgHzMGbWiA\n9PQebpkxxiSO3aGbpOPx+yn+/cV4cnKQjAx6XXEFnqysnm6WMRsVETlKRK7t6XaY7mPP0E3Sqa+p\nJhJsIDUaxePx4M3Px5OS0uX9Rauq0FAIT3Y2HrvL35xttM/QRURw/p7HerotpufYHbpJKsHaAF+8\n8DQPXzyeB6/6HZXBOtTjoXLlCma89w5ly5YQCYfi3l+krIzlf7qehaecQuB//yNWX5/A1hsTPxEZ\nJCJzReRJ4HvgDBGZLCLTReQlEcly1ztcRH4UkW9E5J8i8ra7/GwRua/Zvj4SkZkiMklEtnSXP+Fu\n86WILBCRE3rqfE3HLKCbpKGqEKilsKCQIbvtwT6X/InqqJe6qkqeuvZSJj3+AE9fcyn1NTVx77P2\n668JfPgh4WXLWXblVUQ7sa0xG8A2wL+BfYFzgQNVdSdgGnCFiKQDDwGHqerOQFvTPf4FTFDV7YFn\ngH82+6wvsBfwK+C2hJyF6RYW0M0mKVpbS6S8nFjIudvWaJSGn35i5WWXU/DWexx0whncMSPEqc/O\nJRhsIFRfB0AkHCJUVxf3cVKKezW99hXkIx77L2M2KotU9StgLDAS+EJEZgBnAQOB4cACVf3FXf+5\nNvazO/Cs+/opnADe6HVVjanqD0Dv7j4B030S9tdJRIaJyIxmX9UicpmIFIjIByIyz/2en6g2mOQU\nKS9n1a23svicc6l+979Ea2qIVlSw+Kyzqf/2W+omT2bVVVdxytAcVtc0MGt1A6MP+RW+tDRG7LU/\n/pycuI+Vus0Q+t17DwXjxzPw6afxFhYm8MyM6bRa97sAH6jqaPdrpKqe203HaGj2eqMdR2ASOG1N\nVecCowFExAssA14DrgUmqept7gjLa4FrEtUOk3yq3niDqldeBWDFtdeS8eEHSGpqi+7waEUFmSnO\n355nZpRw9/GnstuxJ+FNScGflR33sXy5ueQccgg5hxzSvSdhTPf6CrhfRIao6nwRyQT6AXOBrURk\nkKouBE5uY/svgVNw7s5PBz7bAG023WxD9R8eAPysqouAo4EJ7vIJwDEbqA0mSTRWVGsUqw8SXrac\n3tdeCyJISgq9b7iBKp+fM3cfyN+O256c3Fyy8guo1VR+XFnNgpIA5bXxD44zZmOmqiXA2cBzIjIT\nmAwMV9V64HfARBH5BqgBqlrZxe+B8e62ZwCXbpCGm261QaaticjjwHRVvU9EKlU1z10uQEXj+7bY\ntLXkECkvB1W8BQU4//TOs+9oeTmqijc7O64iKqFly1hy3vmEFiwg9+ijKfzdhSw47HAKf3MueSec\ngKSl4c3NQ9JSUQWPxzlWSU2QUx+ZwvzVTt30Q7ftw63HbUdBZmriTtokk02yu1lEslQ14P69vR+Y\np6p393S7TPdL+B26iKQCRwEvrf2ZOlcTrV5RiMj5IjJNRKaVlJQkuJUm0ULLlrPktxewePw5hBYs\nWLN84UJ+/tWRzN9/HLWTJxMpL6d28mRqJ39FpKKi1X1JahrFl1/Olk89SfqobYlVV0MsRtnDj1A3\n/VtSevfGk56GiDQFc4B3Z61sCuYAE2evZEWVTUMzSe88d6DcbCAXZ9S7SUIbosv9MJy781Xu+1Ui\n0hfA/b66tY1U9WFVHaOqY4qtsMYmLdbQwOo77yQ4axYNP/3EiutvIFJRgapS/uRTxKqqIBql/ruZ\nVDz7HIvHn8Pi8eOpeO55YuHwOvvz5uaQNmQIoYULydp7b4JzfwKvl353303qoIEEvpxMpKxsne2W\nVqwbvK3b3SQ7Vb272UC501U1/mkeZpOyIQL6qbScKvEmzpQK3O9vbIA2mJ7k8eArWjM63Jufj/h8\niAiZu49tWp4+ciT1305vel8//RsnBzvONLXG4O5JTSVt8CDyTzyR1EGDyDn4IIZMmkRwzg8sOuVU\nlpxzDkt+d9E6Qf2UXQbgbXbHnp+RwrDe8Q+QM8aYjVlCn6G7Iy0XA1upapW7rBB4EdgSWAScpKrl\n7e3HnqFv+iJlZc7deF0dheef11TONFpVRWjpMmLVVaRtuy2hBQtYPP4cALb8z39I23YkoR9/pPS+\n+0nZckuKLrwAX0HBOvsPl5Twy1FHE23WTb/1B++TOmBA0/u6UIQl5XU89OkC8vwpnLvXVvTNTW/R\nLW9MO+wXxWzUElptTVVrgcK1lpXhjHo3SSBSVkb997NJ7bcFvj598LZVBMXjIX3UtoQWLyG0cCHe\nrCw8fj/e3Fx8WdlU1oUJeYTcbbdl6/feA8Cbn0e0vJxFZ5yJNpY/9Qi9rroK8fmIlpU5g+lychCf\nj9QhW1M/1bnw8+TkIGlpLZqQkepjWJ8cbjtuezwCPq8liTHGJA8rn2q6LFJRwdJLLqX+m29AhEHP\nP49/h+1bXbduytcsu+wy543Px5APP8Dj9xOOxpi5pJLLXpxBn5x07j9tJ3r1cu7eVRUNhyk87zdU\nPP0M0YoKwosXo+EwkRUrWHTmWUQrK+n/z3vJGDuWfnfdRck99xCtrKL4skvxtZEEJtVngdwYk3zs\nL5vpukiE+u++c16rUjfj23VW0UiEWDhMtDbQYjsNh4mFw5SX13DZizNYUl7P1IUVvDhtibs7JfTz\nzyy/6mqCP8yh/wP/xltURMFZZ6GqlD32GJGVK9FgkJW3/B+x6mpSiovpc9NN9PvH30nfZhvE6+38\nKVVWElq2jEhJCZtCJUJjEklEvuzpNpj4WUA3XSbp6RT99nwAvEVFZB94YIvPI2VlrLr9dlb++Say\n9tyTzL33Bp+PgnPOwZudTbS8nOBnn9InZ01J0i0LMgCIlpez7IorqZ8xg8CkSQQ+/oSBT06gdsrX\nSDRK+qhRTdukDRmCpDpzyT0pKV0ucRqtrqb0vvv4+YADWXDMsURWrOzSfozZ1ImID0BV9+jptpj4\nWZe76TJvdjYF48eTd/LJiAjeoqKmzzQapfKNN8gcOxaPP4OaSR/R92+3IqpO4pecHEKzZxP6513c\n/eBjvDI/i0Fb5LP3Nu4URY8HT7Pn8R6/n6o33yLvxBPw5uSQc9BB+IqKiJSWkj1uHN5O5GdvizY0\nUPHc8wBEy8qomz6d3C2OWO/9GjPo2ndOA27FGQy8GLhu4W1HPNv+Vu0TkdeBAUA6cK+qPiwiAeAB\n4HBgBXAdcId73MtU9U03FfdtwH5AGnC/qj4kIvsBNwMVOEVdhopIQFUby7BeA/waiAH/VdVrReQ8\n4HwgFZgPnGHT4nrOBskUt75slPvGKVBRzrIffyAzL4+CfgPIyMlt+kwjEYJz57L04t8TLS2l1x+u\nJueII1qMUI+UlbHs8isIzplD8WWXkXPUkfiynWlkkfJyYnV1VE7/jljfLSgYMhiv19MtgbstkcpK\nVlx3HYGPPkbS09nqjddJHTgwYcczm5wujXJ3g/kjQEazxXXAeesT1EWkQFXLRcQPTMUpoVoKHK6q\n/xWR14BM4AicSmwTVHW0iJwP9FLVW0QkDfgCOBGnOts7wKjG6myNAV1EDgNuwCnPWtfs2IXuQGdE\n5BZglar+q6vnZNaP3aGbLqmtrODZ66+kptTJ4rfTYUex5ylnkJrupG6NNTRQet99RFasAGDVrX8j\n++CDW+zDV1hIv3vuRiMRJDVtTTAvLWXxOeeQ9oc/8bRnS6Z9U8OVhVF23DKbzj8Vj58vL4++t9xC\npKQEb14e3nwrBGi6xa20DOa4729lTcnSrrhERI51Xw/AqY0eAia6y2YBDaoaFpFZwCB3+cHA9iJy\ngvs+t9m2XzcrtdrcgcB/Gu++m001HuUG8jwgC3hvPc7HrCd7hm5aFQg6c7Z/WlVDRbNsahqLEVq2\njOplS5uCOcDMSe8RbpxaBsRqa/FkrPkbJmlpIK3c4Hg8aLABbQg2JY6JBYPEamtZkJrHA58vZurC\nCs56/Gsq69bNGtfdfAUFpA8b5qSPTbUc76ZbbNnJ5R1yu8cPBHZX1R2Ab3G63sO6pts1hlv6VFVj\nrLmBE+D3zUqtDlbV993PGsuxxusJ4GJV3Q74i9sG00MsoJtWzVhSyT53fszBd3/K41/8Ql0oAjjP\nlheefApp4mkRoAv69Uc8zq9TLBik5J57KDjzTLL23Zf0bUey5aOP4M3Lo74mxPxvVvHLdyU0lFdR\n9sij/Hzwwfx86GGEFy8GnOflqVsPIbXZPPEUr6epvzNSVUW4pIRIVWtFo4zZ6Czu5PJ45OIUtqoT\nkeHA2I42aOY94EIRSQEQkaFuErD2fIBTjS3D3abx2Vk2sMLd1+mdOgPT7Sygm3WoKu/MWk7jdf77\ns1dRF4oCEAuFiJaWUvfa6xx94eX03moIg3ccw1FX/HHNM3SvF09mFksv/j3+0aMpuuQS0kaNIoaX\naRMX8d4js3n3gVnUl9ZQ9apT11zr6wl8/AngdMVvcev/MWTLIv561EgO364PL/x2LAWZqYRLSlh2\n2eXM33c/ll9xBREr3GM2ftfhPDNvrs5d3lUTAZ+IzMEZ4PZVJ7Z9FPgBmC4i3+MUa2n38auqTsRJ\n2z3NLfRylfvRDcAUnOfwP3bqDEy3s0FxpkmkrAwNh5GMDH6sUU548EuC4Ri3H78dx4zuR1qKl2hl\nJaUPPED5U0+Td9pp5Pz2PHyZmaRlZK61r3IqX3sVYjHyjj8eX2EhDXVh/vvgLJb9VAnAoWcOJuOj\nZ6h8+hkkNZVBr7xM+jbbtNiPqhKKxkjzeYmFQqy64w4qn36m6fOCs86k+MorrXvcbAhdTv2aiFHu\nxqzNAroB3IFo551Pw5w55B5/PPl/uIYqfEQVctJ9ZKenNK0bra52iqZ4va3mVW9LrKGBUGkFtVUN\nzJsdYOheg8hJDxGtqnLSwObl4VkrXWtz0Zoall16GbVfrsl1kbnXXvS75+62U84a030sl7vZqFmX\nuwEgtGQJDXPmAFD1yiv46gL0yfXTL8/fIpgDeHNy8BUXdyqYazRKcOYsFh5+KKtPPIKROcvIy/fi\ny88nbdAgZxBaO8Ec3Hnv54xvsazwnHMsmBtjDDZtzbhS+vZFMjLQujpSBw9CUlI63GZt0WgUbxvp\nVqPV1ay6886mcqirbruNjJ127HRWN/8OOzD4zTeom/wVGbuPJaVv30630xhjkpEFdAOAt7CQrd95\nm9DixaRttRW+ZlnfOhIKBlk5fy6zPnqfkfuMo9/wkU3z0RtJaiopWw4gOHMmAKn9+4Ov879+3uxs\nvNnZpA8d2ultjTEmmVlAN4CbA71v307f8WosRqi+ji9efJrlc+cw98vP+M19j64T0L2ZmfT54x9J\n7d+fWH09heeei88StxhjTLexgG66LBioYd7Ur1gwbQq7HHk8c4s+48cv/kc0EiUWUzyelmOIfIWF\n9LrsMlQVaS3JjDHGmC6zgL4Zi0WjiMfT5eAaqKjg/QfvBeCX777h5Jtup/fWQ/l2VQNzf1zAKbsM\nID8zlWh1DdHycjQWxVtYiC83t4M9G2OM6SwL6JupylUrmfzycxRs0Y/tDjikRWGVeDnZJN3XsRgZ\nuXlMjAzm0edmAzCibzb7Di0m8Nmn1Px3Ivh8ZO6+O7nHH4fHfX4ei0WJhiOkdDDCvblINMbqmgbm\nrapheJ8ceuWk2R2/MZ3kpo8NqeqX7vsngLdV9eUEHOtR4C5V/aG7923WsIC+GaqtrODVv91IxYrl\nAKRnZbPDQYd1ej9ZBYXsd+ZvWDB9KmOOPI5oWgavzlxF/3w/Z25fxMA0RRsaSB04iNSttyZWX49/\n++3QYBCysqivqWHul5+yaNYMdjv2JIoHDsYbx0C50toQB9/9KYGGCL2y03j793vRK8dSSJuN2E25\n6ySW4aaqnk4ssx8QAL7sYL31pqq/SfQxjM1D3yypKsFAoOl9XXVll/bjz8pm9CG/4qgrr2Pg9qPJ\nzczg+fN349UThnDoq/fhvfVGooEAla+8TNlDD1Hx1FOUP/UUGnXSyFatWsGkxx9g/tTJvPiXP1Jf\nU93msYLhKOGo0yNQUh0k0ODkll9d00B9ONql9huzQTjB/BGc8qTifn/EXd4lIpIpIu+IyHci8r2I\nnCwiB4jItyIyS0Qed0ujIiILRaTIfT1GRD4RkUHABcDlIjJDRPZ2d72PiHwpIguaVWNr7fhZIjJJ\nRKa7xzu6rXa5yz8RkTHu6wdEZJqIzBaRv3T1Z2DWZQF9M+TPyuaoK68jv+8WDNx+R7Y/4NAu78vr\n85GWkYnH48Xr9bBVpoeGO/9G7WefUfvppwQ++4zwkqVISgr97/sXmWN3J/j990QqK4nFWnbZt2Vp\nRR1XvDiDm96cTWlNA33z/Izs69RF32tIIVlp1tFkNmrtlU/tqkOB5aq6g6qOwsnt/gRwslv5zAdc\n2NbGqroQeBC426249pn7UV9gL+BXODni2xIEjlXVnYD9gX+I89yrtXat7U+qOgbYHthXRLaP96RN\n++wv4WbIm5JC36HDOfmm2/H4fPizstd7n+FolPLaMKmhMHjWXCeGfppHrz9cTdVbb1P75ZdUPOP0\nMhZfcQW5B4xjrxNPZ8ncH9j9+FNJb6UdpYEGzntyGnNW1ACgKH85ahQTztmVUCRGeoqHwqz4n78b\n0wO6vXwqTq3zf4jI7cDbQDXwi6r+5H4+AbgIuKeT+33dLbX6g4j0bmc9AW4VkX1wyrT2A3qv3a5m\nFwrNnSQi5+PEn77ASGBmJ9tpWmEBfTPl9frIzOu+eeCLyuo46r4vyPH7+PiGGyAlFTxC7MRTCfYu\npuD001h22eVN69dPn06sppp+JSUMO+IIcrYZhqdZljmNKU6dAaW6PtK0vKI2TCSqFGdbEDebjMU4\n3eytLe8SVf1JRHYCDgduAT5qZ/UIa3pjOxps0tDsdXsjTU8HioGdVTUsIguB9LXbJSKTVPWvTTsU\nGYxTqW0XVa1wB+LZAJhuYl3upltM/N4psRoMx5ha4+WFA87m+f3O4qhn5xIIxfAVF1N0ySVISgri\n95N/xq+p/WoKNa+/Qf2Hk1r85aivCTH13YVMevJHUhuUh87YmX55fkb0zeZPh4/An9p6elljNlLd\nXj5VRLYA6lT1aeBOYHdgkIgMcVc5A/if+3ohsLP7+vhmu6nBqWfeFbnAajeY7497wdJKu3Zaa7sc\noBaocnsAOj8a17TJ7tBNtxg3vBf3TvqJqvowfXPTefn7UlZWBxkzKJ/0FC/i9ZKx805sPelDwKmr\njioZY8dS9LsLkWZ35z9PX83Ut38BoHJlLYdftD2vXbQHHhGKrHvdbGpuqnqWm3Khe0e5bwfcKSIx\nIIzzvDwXeElEfMBUnGfkAH8BHhORm4FPmu3jLeBld0Db7zt5/GeAt0RkFjCNNbXQW2tXE1X9TkS+\ndddfglNH3XQTK59qukUwHKWiLkR9KEpRZhrBSJS6UJSsNB9FbXSPR8rLwePBl5fXYvn09xcx+dWf\nASjom8nRl+9IRo7VOzc9zpIdmI2a3aGb9RIMR/GIkJ7ipW/umvztOXRcra2t8qvDx/alfFmAmooG\n9j11GP7szld+M8aYzY0F9CQXjSmlgQbC0RjZaSnkZqx/cKyqD1NdH8Yjwtszl7OorJZLDxxK725K\n7pKRk8q+pw0jGlHSMy2YG9NTRGQ74Km1Fjeo6m490R7TPgvoSW5phTP6vKo+zJUHD2X8HoPJSu/6\nP3tdKMLzXy/mb//9kTSfh0fOHMMLU5fg/3QBv91nq27L2JaS5iPFHpcb06NUdRYwuqfbYeJjo9yT\n3IdzVlNVHwbgiS8WUheOdLBF+2obojz3tTPbpiES4+O5qxnWJxtV5e2Zy2mIdD5rW0VtiMk/lzFl\nQRmVdaH1al97opG2k9cYY8ymzgJ6kttj60JSvM5YnnEjepHuWzOaPFJZSbikhEh5Rdz7y0j1cuQO\nWwDg8wgHDO/FVsWZHL5dX+pCUXyezo0bCkdiPPXVIk595CtOfvgrXpy2hGg7WePiVR+KUl4bIhyN\nEg5FWTa3gg//8wO/zCwlVL9+FzXGGLMxsi73TVxNWQmLv59JnyFDyS3uhS+1ZT/1oMIMPr16f6qC\nYXplp5Hjd55JR8orWP33O6l69TUy9tyTfnfcjq+wsMPjZab5OHevwRy3Uz/SfV5SvB7SUjysrApy\n2m4D8Xo6d43YEIkybWF50/upCyv49W4DyUjr+rVmRW2Ixz5fwKfzSvn9uG0Y2yeXN++dQSymzJ++\nmjNu2YNUv/3qG2OSi/1V24QFKit49vqrCJSX4fH6OPfeh8kp7tViHX+qD3+qj774WyyP1QaoevU1\nAOq++IJIWVlcAR0gLyOVvIw108jampYWj8w0H1ccPIxvFlXgEeHSA7YhYz1zsy+tqOe+j51pbxc8\n/Q3fXLE/scbpmepkoTPGmGRjXe6bsFgkQqC8zHkdjVBbGX/XuaSn4y0qcl77/XjXmgu+oYgI226R\nzcdX78dHV+3L8D7rn1fen7rm1zrd50FThIPP3ZYttslj39OGkZ5p17Fm8yEiN4nIVQnad1Mlt42R\niBSLyBS3Ct3erXz+qIiM7Im2JUJC/7KJSB7wKDAKUOAcYC7wAjAIJyXhSaoafyQyTVL9fsYefwpT\n33yFAdtuT26vPnFv6ysqYvBLL1H/3XekjxgB0SiRysp1krxsCCleL72yuy+da3F2Og/9emcm/biK\n8XsOJisrlZwdixkwooCUNC9en13Hmg1ruwnbrVMPfdZZs3q6HnqPEhGfqiZ6QMsBwKzW6rGLiDfZ\n6rQnNFOciEwAPlPVR0UkFadk4HVAuareJiLXAvmqek17+7FMcW1rqKslHArh9XrxZ+d0evvQ4sUs\nPP10oiWlFJx3HkW/PR9vVhYaixFesYLaz78gY7dd8WRmEi0txVtYhK+woEWq1o1VLKZ4OjlIz5h2\ndOmXyQ3mj9CyhGodcF5Xg7p9kHcpAAAgAElEQVSIZAIvAv0BL3AzcDswRlVL3drjf1fV/UTkJmBr\nYAhQBNyhqo+0sd++ODdcObglWFX1MxF5ANgF8AMvq+qf3fUX4lR2OxJIAU5U1R9FZFfgXpzCK/XA\neFWdKyJnA8cBWW67jwDeAPLd7a9X1Tfceu3/BT4H9gCWAUeran0b7T4POB9IBebj5LIfCrzptnkZ\nTr77EuAh4ECcanS3AFep6jQRORTnossLlKrqAW2dR9v/Mj0rYbcqIpIL7AM8BqCqIVWtBI7G+QXA\n/X5MotqwOUjLyCQrL79LwRygeuJEoiWlAFS99hpa7/x/iZSWsvCEE1n55z8TXrSYJeecyy/HHscv\nRx9NpKwsrn1HqqqIlJQQrapa57NoTFlVHWRRWS1ltQ2tbN11daEIq6uDTdP1NlV1VZXUVpQTDW/a\n52E2WD309mwPjMMJaje6RVRacxrwnqqOBnYAZrjL26thXurWRX8Ap5IaOLna91bVHYEbaXmuOwEn\nqOq+tF1XHWAb4H5V3RaopGVhmbW9qqq7qOoOwBzgXFWd4R77Bbfmez2QCUxxf26fN24sIsU4F13H\nu/s4MY7z2Ogksu9xMM7V0H/c5xePuleVvVV1hbvOSpwauiaBorEY4WjrU8Gy9t0XSXUGuOUccTiS\n7iSG0XCYaIXzJMSTkUHDvHnOvioqiKxe3eExI+XlrLr5FuaPO4CS+/9NJFBD896glVVBDr77U/a9\n8xNueXtOt80/r22I8O6sFRx672dc/Ox0Smu692JhQ6kpK+Xl/7uBJ6+5hBXz5xKN2lS7TVii6qEf\nJCK3i8jeqrruVXNLb6hqvaqWAh8Du7ax3lRgvHtXv52q1rjLTxKR6cC3wLY4Ncwbvep+/wbnUSqs\nKRTzPXC3u02jD1S1cWpLY131mcCHrKmrDk5998YLiub7bs0oEfnMLRZz+lrHay4KvNLK8rHAp6r6\nC0Cz9rV3HhudRAZ0H86V2APu1U0tcG3zFbSx4HUrROR8EZkmItNKSkoS2MzkVhZo4M735nL1y9+x\nvHLd3qrUQYPY+oP32Wrifym64EK82c6gNG9mJgVnnQU+H7FwiMw993TWHzyYlD4dP6uPVlVR/fbb\neLKziZ14GH+ffT/3zbiP8qDz/2TGkoqmO+g3Ziwj1MYFR2cFGiL84eWZlNeG+OLnMj6fX9ot+93Q\nZk6aSMmiX6irquSDh+8jGKjpeCOzsWqr7vl61UPH+fs6C6fu+I20X/d87b+zrf7dVdVPcXpWlwFP\niMiZzWqYH6Cq2wPvrLX/xqvmKGvGZd0MfOz2Hhy51vq1zV43r6s+GljVbN3mV+PN992aJ4CLVXU7\nnOpybaWsDKpqZ7JftXceG51EBvSlwFJVneK+fxnnF3CV+5ym8XlNq7d7qvqwqo5R1THFxcUJbGZy\n+3ZJJbOWVfH6t8u59PlvqahteSfsSUsjpXdv0gYNwpe/ZkCcNy+Poot+x+BJk5iT05+qK66n4I13\n2OKxxxC/f+3DrMOTkYEnM4P0007g70sm8MyPz/DwzId5cvaTxDTGDv3zyHanpx0+qi8pnZy/3uZx\nhRYlVvvld9zWjVHRgIFNr/O36IfXazntN2Eboh76TrRd9xzgaBFJF5FCYD+cO/HW9jsQWOU+Y3/U\n3W9Xapjn4lwUAJzdwXrr1FXvgmxghYik4FwkdNZXwD7uxQsi0lg5Kt7z2CgkbJS7qq4UkSUiMswd\nRHAA8IP7dRZwm/v9jUS1YXMQrakhtGgR4aVLydhll5ZzySsWsf/CB9hl2xF8PXpX7p9Sjq51YV5f\nU82K+T8RDYXoN2JbMnJymz7z5uRQoin8UF3HgCwfW1YuYcU1d5A+ciS9rrqyzWpp4FRSG/z661TX\nlhNYcn/T8upQNapKn9x0PrxyX2obIuT6U8jP7J7yqEVZabx84R48//Vidtwyj6G91n8aXE/YctRo\njvvjTdSUl7P1zruSnpXV000yXTTrrFnPbjdhO+jeUe6t1R3303rdc4CZOF3tRcDNqrq8jf3uB1wt\nImEgAJypqr90oYb5HcAEEbke546+LW3VVe+sG4ApOI95p+AE+LipaomInA+8KiIenBvNg4j/PDYK\niR7lPhrnKi8VWACMx+kVeBHnF3sRzrS18jZ3go1yb0/t1KksPuNMADLGjqXf3Xfhy8+HwGp49ECo\nXARAzTFPEBh8aIsSp5FQiK9efZ4pr70IwPC99uWAcy4kPdMJHqrKvz/5mTvfm8s7vx6B94wTmgbN\n9fvnveQcfHBcbVxWs4w/f/ln/D4/N+5+I8UZne9xiUZj1FWFqFhRS2G/LDLzrHKL2eBsyoTZqCV0\nHro7oGFMKx8dkMjjbk6C389e83rOHDTiDp5ShcCqps+y6leQ3SyYazRKJBxmyQ+zmpYt+/GHFiOq\nIzFl/uoAAKFIjKysLCJuQPc2u5PvSL/sfty13114xENWasd3mtHqarShAXw+5+IECNaEee6vUwgH\no2Tlp3HCtWPIzLWgbowxjeJ6cOlm27lORB4WkccbvxLdONOxnEMPIaV/f/B66X3tNXgbu2bTs+G4\nRyCrF2y5B7Kd80gtWlNDzaRJrPjTn4jNn8++p54N7iyRnQ47mqrVqyhftpRQQ5AUr4fLDxzKNr2y\neHBWBVs88QS5xx9Pn5tvJm34sM61My0nrmAeqayk5L77mbf/OJZddXXTFLn6QIhw0BnLEqhosMpp\nxqwHEdlORGas9TWl4y17lojc30q7x/d0uzYWcXW5i8iXwGc4UweaRgiqamvD/7uddbm3L1JaisZi\neLKy8GY0m+4aDkKwCrw+yHCerTf88gsLDjscAElNZav33yPo8xCLRFk061s+fOwBRISz//FvCrbo\nD8DCxcspW7aUZVM+Jr9Xb3Y56njSsxLzbDq0dCk/H3hQ0/uBzzxNxs47U1cdYuLDs1gxv4phY/uw\n5wlD8Gd1z3N3Y+JkXe5moxZvl3tGR9ncTM/xFbWRSjkl3flyxWJKNBBoeq+hEESj5PTpQ01ZCR8+\n+m9nuSplS5c0BfReeZks/XIuGo0wav+DSMtM3AAtSU11prrV1IDHg8+d4ZCRk8phv92OaFTxpQjp\n3TSIzhhjkkW8Af1tETlcVd9NaGtMwlTWhXh75gp2yssl77TTqfvsUwrOOANvjpNhzpeWzg4HHc53\nH7xLft8t6LvNmi71jJxc9jjxNKKRCClpiX1u7SssZNBLL1Lz4Ydk7rYb3maj9v3ZFsSNMaYt8Xa5\n1+CkzGvAmSIhOHlhupZvtJOsy339zVpaxZH3fU6q18MVe/XjjNG98efl4Gk2p7w+UEOkoQGP10tm\nXn5C2lEaaOCH5dX0z/fTOyedzPUslWrMBmRd7majFtdfU1XdNCfzmiaRmDOILBSNcfcXyzh2z6Fk\n+lsmPfJnZUM3PBuPhcNofT0evx9JWZMQpSzQwAVPf8O0hRV4BN64eC+26xf/aHljjDFtizs9l4jk\ni8iuIrJP41ciG2a616CiTK45dBh7b1PE0+fuRn5GYrqvo9U1VL/5Jksvvtgp/NLsmX00pkxf5OSH\njyl8s6jd9APGmM2YiOSJyO+6uG231WkXkb+KyIHdsa9Ei7fL/TfApTil+mbgJLKfrKrjEts8h3W5\nd49QJEZDJEpmqi/usqJ1VZXM+vgDUv0ZDNt9rxaZ5Fo9xpIl/HzQmoQzW0+aRGo/p7BTdX2YBz6Z\nzwP/W0BxVhqvXbQH/fPXLkJlzEary13uc4aPWKce+ogf5/RIPfQNVId8vbklVN9286iv/Vm75+CW\ndR3jFqPZbMR7h34pTi3cRaq6P7AjTjk7swHFYlFqKysIVJQT6UJJzVSfh+z0lLiDeSgY5JOnHuPz\n5ybw0eMP8N0H79LhBaBIi9fN3+b4U7hwvyF8cc043rlkL/rlbZp51o3pDDeYP4KTp1zc74+4y7tM\nRH4tIl+7c7EfEhGviASafX6CiDzhvn5CRB5055rfISIFIvK6iMwUka8ay6GKyE0i8pSITBaReW6d\n8cb9XS0iU91t/tJB28501/tORJ5ylxWLyCvuPqaKyJ7Njvm4iHwiIgtE5BJ3N7cBW7vnd6eI7OdW\nVHsTJ4U47jl8IyKz3dSt8f7s1tnO/fk9ISLfi8gsEbm82c/uBPf1jW7bv3fzsmxU4yriHZEUVNWg\niCAiaW4B+85lFjHrRVUpW7KYl27+E5FwmGOuvoF+w0fi9SVuUFksGiFQvuYCt3r1ajQWQ7zeNrfx\n5ubS7+67qXrjDfJOPBFPbi71oQjzS2r576wV7DesFyP6ZpOdbsVGzGajvXroXbpLF5ERwMnAnm5h\nk3/TcVGS/sAeqhoVkX8B36rqMSIyDngSGO2utz1OL2wm8K2IvAOMwqlPvivORcmbIrKPW51t7bZt\nC1zvHqu0WaGTe4G7VfVzEdkSeA8Y4X42HKceejYwV0QewKnOOcqtwoaI7IdTLGZUY5lT4BxVLRcR\nPzBVRF5R1bI4foTrbIdTnrVfY4+AiOS1st19qvpX9/OngF8Bb8VxvA0i3miw1D2514EPRKQCJw+7\n2UAaamv56D8PUV9TDcB7D97Labf8vUuj0YOBMNFojJQ0L6npbf8KpGdmceBvLuKde+/Al5bG7iee\nhmetYF5VF6YhGiXF4yE/MxVvdjbZhxxM5r774ElPRzweyirqOPb+L4jEnNzwEy/bm+F9LKCbzUYi\n6qEfgFNZbap7k+injcqVzbzUrHToXrgV2VT1IxEpFJHGWUtvqGo9UC8ijbXT9wIOxqmHDpCFE+DX\nCejAOPdYpe7+GwfLHAiMbHZTmyMijUkt3lHVBqBBRFazpib62r5uFswBLhGRY93XA9w2xRPQW9tu\nLrCVe7HzDvB+K9vtLyJ/wLkgKwBms6kFdFVtPPGb3H/gXGBiwlpl1uHxecnMXxO8M/PyEY+H2qoK\nomFnfrg/u+NZhPU1ISZNmMPKBVXs8qvBDN+9D2n+toNrft9+HH/dX8HjIaPZ/ssCDdQ0RHj88194\n7uvFjBvei1uP3Y7CrDTE42mRsW5FZZBIbE1X/c+rAwzvs0FmPBqzMVhM62VBu1wPHecueYKq/rHF\nQpErm71du3Z3LfFprXa6AH9T1Yc61cqWPMBYVQ02X+gG+Hhrnzedg3vHfiCwu6rWicgnxFGvvK3t\nVLVCRHYADgEuAE4Czmm2XTrwb5xn80tE5KZ4jrchdWaU+07us43tceqchzraxnSf1HQ/+591Pjsc\ndDgj9hnHkZdfi6ry4k1/5JGLxvPho/+mrrqqw/2ULKlh0fdlNNRF+PzFeU350QEqakOsrApSFljz\nf0tEyMjNWyeYX/zsdFZVB3ly8iLCUeW92atYWd3i/2mTQUWZbF3sXIj3zU1n54GJmeNuzEaq2+uh\nA5OAE0SkFzj1u8WtZS4iI8QpAXpsO9t/httF7wa4UlWtdj9rrXb6e8A5jXfUItKv8dit+Ag40d2+\neW3x94HfN64kTjXO9tTQfhnUXKDCDcrDcR4TxKPV7cQZFe9xU5pfj9O931xj8C51fw4nxHm8DSau\nO3QRuRE4EXjVXfQfEXlJVW9JWMvMOjLz8hk3/reEgvXEYlFWzvuJ8uVLAfjpq8/Z5/Tx0MEo9Kz8\nNReUGTmpiDtArrw2xE1vzubN75az2+AC7j99J4qyWs8KVxuKMnlBOVeKkOP3UV0fIcUrFLQxFa44\nO43nzx9LbUOEjFQvvXI2qotaYxJqxI9znp0zfAR04yh3Vf1BnBrd77vBOwxchPPc+W2cuuDTcLrG\nW3MT8LiIzMS5uDir2Wet1U5f7j63n+zeUQeAX9NKN7+qzhaR/wP+JyJRnG76s4FLgPvdY/pwuusv\naOccy0TkCxH5Hvgv69YjnwhcICJzcLrLv2prX3Fu1w8ntjXe6Lbo/VDVShF5BPgeWIlzobNRiXfa\n2lxgh8auEncgwQxV3SAD42za2hp11VV88uSj/PzNFE668W88+6criEWjZBUUcvqtd5OVX9Du9g31\nEcqXBVg+v5JtxvQmuzAdEWFhaS37/f2TpvXeu2wfhvVp/eJ4VXWQcX//hFH9crn6kGF8s6iC/YYV\nM7Awk/SUtgfMGbOJ26hGNCeC240cUNW/93RbTOfFOyhuOU53Q2OfahqwLCEtMu0K1dUx57OPAZj2\n1quccce/KF28kH7DRnYYzAHS/D76Dsmj75A1AzhLahooqWmgb246K6qCZKf5yMto+7l6QWYqL16w\nO3e+N5fXZyzjyoOGkp9ptcmNMaYnxXuH/jrOPPQPcAZIHAR8DSwFUNVL2t56/dkd+hqBinKevPpi\n6muqSfVnMP6eh8haz7zrKwPl1AZDpHmzmL2shqF9chiQ78fnbX+IRaAhgs8jdlduNhdJf4feGe4z\n8kmtfHRAnFPHEmpjb18ixBvQz2rvc1Wd0G0taoUF9DVisSiBsjJWLphH762GkFVQhLedeeEdqWyo\n5P5v7+eFuS+we+/duGXk1WRnFJJeVNjxxsZsXiygm41avNPWmgK2iOQDA1R1ZsJaZdrk8XjJKe5F\nTnFbA0w7py5cx/Nznwfgy1VfsXLQSvzLyqBo927ZvzHGmA0jrmlrbkq+HHf6wXTgERG5K7FNMxtC\niieF3hlODod0bzoF/sKmGunGGGM2HfEOistV1WpxirQ8qap/dqcemE1ccUYxzxz+DDNXzWCofyBZ\nKwOkbrVNTzfLGGNMJ8WbWMYnIn1xMue8ncD2mLXUVYeoKQ9SV524PD69M3tz0FaHMLDvcHJ3HIM3\nt2dqlNcHQtRUJPZcjdmciMhRInJtG58F2ljevBjJJyIyJpFtbIuIjBaRwzfAca5r9nqQO+99ffdZ\nLCJTRORbEdm7lc8fFZGR63uctcV7h/5XnExBX6jqVBHZCpjX3Y1JZtUN1YSiIVK8KeSmxRcw66pD\nTHzke1bMq6TP1rkc9tvtyMhJTB3znlYfCPHZC/OYN3UVRf2zOPKS0Ul7rsZsKKr6JvBmT7eji0YD\nY4B3E7Fzt1Ka4GTsu7Wbd38AMEtVf9PKcb2tLe8Ocd2hq+pLqrq9ql7ovl+gqscnokHJqCJYwd3T\n7+bgVw7m1q9upTxY3vFGQCgYYcU8p0rtyp+rCAU7X8I4GAlSWldKINTqxfhGI9wQZd7UVQCULg1Q\nXbJ2pkxjNl33X/DRafdf8NHC+y/4KOZ+X6/SqdB0N/mje0f9k4g8IyIHutnV5onIriJytojc564/\nWJyyqLNE5JZm+xERuU9E5orIh0CrI25F5GB3++ki8lKzwiqtrbuziPxPnBKl77k9vIjIeeKUH/1O\nnFKqGe7yE8UpSfqdiHwqIqk4N5Ini1M+9eQ2jtNW6VVE5Ap3n9+LyGXNfmZzReRJnIxvjwF+9xjP\nuJt6ReQRcUqrvu8mUmvrPNc5H3FS2t6Bk0J3hoj4RSQgIv8Qke+A3Zv3fIjIoe7P9DsRmeQu29X9\nWX8rIl9KnNVN4x0UN1REJjV2RYjI9uKkHTRxCIQDvPzTy4RjYd5d+C7VDdUdbwR4vUGOvWIrjrli\nGP2H55OS1nJ6WizW/pTDQCjAOwve4YyJZ3DXN3dREazo8jkkms/nIbvQSQnrS/WQVWDpYU1ycIP3\nOvXQuyOoA0OAf+CUHx0OnIZTGe0q1s0Vfy/wgKpuB6xotvxYYBgwEjgT2GPtg4iT5/x64EBV3Qkn\nrewVrTVIRFKAfwEnqOrOwOPA/7kfv6qqu6jqDsAc4Fx3+Y3AIe7yo9xaITcCL6jqaFV9oZ2fwXCc\ngiq7An8WkRQR2RkYD+yGk6v9PBHZ0V1/G+Dfqrqtqo4H6t1jnN7s8/tVdVugErcqXRvWOR9VnbFW\n2+txStFOUdUdVPXzZj+rYpzfjePdfZzofvQjsLeq7ujuK64ehHi73B8BrgYeAlDVmSLyLGC53OOQ\n5k0jJzWH6lA1fp+fjJS1SyOvq7aygpdvuY7y5UvJyi/k1Fv+0dQF3VAfZvlPVfw8YzXb79efwn6Z\neH3rzkUPhAP8ZfJfUJSXal7i6CFHk5/ePYVR6qpDxKIxfKle0jPXvxRqRm4ax/9hZ8qWBsjvk4k/\n28qrmqTR7fXQm/lFVWcBiMhsYJKqqojMwqnv3dyerAlOTwG3u6/3AZ5zS6suF5GPWjnOWJyA/4XT\nU00qMLmNNg3DqZ/+gbuulzUXEKPc3oE8nDzz77nLvwCeEJEXWVMzJF6tlV7dC3hNVWsBRORVYG+c\nxw+LVLW9vO+/uEEZ4BvW/Tk219b5rC0KvNLK8rHAp40lYZuVms0FJojINjjJ3OL6gxhvQM9Q1a9F\nWuRV6Hz/72aqML2QF498kemrpjO6eDQFaR2naK0uLWkqvBKoKGPVgnnkFBUBUF8T5t0HnEkGP09b\nza9v3p3MvHUDukc8ZKRkUBt2Kg7mpHbPdLTaqgZev+tbKlfVMfrAAex82KBuCeqZuWlk5loKWZN0\nElEPvVHzsqOxZu9jtP73veNMYq0T4ANVPTXOdWeramvJLJ4AjlHV70TkbJxqbqjqBSKyG3AE8I17\nhx2veEuvNuqojOza+2uzy502zqcVwWa16ONxM/Cxqh4rIoOAT+LZKN5R7qUisjXuL4M4IyBXtL+J\naeT1eOmX1Y8jtz6SATkD8Hk7vo7Kyi/Al+LckYt4yO3Vm5LFCwkHg0TDsab1opEYbWX7K0gv4OnD\nn+b0Eafz4IEPUuQv6lS7VZXQ4sWsvvef1H75JdGaGgBKFtVQucp5xj3jwyUt2mOMWUdbdc/Xpx56\nV3wBnOK+Pr3Z8k9xnlV73Wfd+7ey7VfAniIyBEBEMkVkaBvHmQsUi8ju7ropIrKt+1k2sMLtlm9q\ng4hsrapTVPVGnEpxA+i4fGp7PgOOcZ9pZ+I8VvisjXXDbnu6otXz6YSvgH1EZDC0KDWby5p6KWfH\nu7N479AvAh4GhovIMuAXutZ4Eyd/Ti5n3H4vC779hqItB/LtxLeY/ckkzr7rATLzitn1qMEsmlnG\njgdvSWpG6/+MPo+PIXlDuHbXVmetdChaWsrCU08jWlZG2QMw+I3X8Q4bRn7fTDw+IRZRigZkIV7L\niGlMO67DeWzZvNt9feuhd8WlwLMicg3wRrPlrwHjgB9wLjLW6UpX1RL3DvQ5EWnsRrse+KmVdUPu\nTd8/RSQXJ87cA8wGbgCm4ATtKawJ2He63cuCk3/9O7ct14rIDOBvHTxHX7sN00XkCZyaIwCPquq3\n7t3u2h4GZorIdOBP8R7D1db5xNvOEhE5H3hVnLKtq3FqpdyB0+V+PeuWjW1Tu7ncReRSVb1XRPZU\n1S/cKx2PqtZ0ptHra3PO5V5VspoX//JHqkucEeDHXH0DW4/ZjUgoSjgUJTXdh9cXb0dL54RXr2b+\nfvtDzLkDH/DYY2TtuQeRcJS6QJjq+jDZWSnkrkd9c41EEJ9zQVIeLGfiLxNRlMMGH0ZBesePJozZ\ngLp85eoOgGtRD/2iB8et7/NzY1ro6A59PM7IyH8BOzUOMDDdLxqL4hEPa41TwJeaSkZuLtUlqyga\nMJDeW2/jLvfiS01slTNPVhZ9b/sbpffei3/0aNKGDaO2qgFPqodfAkH++vYPDO+TzZUHD6Wgk+VT\nNRKh4eefKXv0MTL32IOUg/bln9/9k1fmO+NGfij7get2u47MlMxEnJoxG5QbvC2Am4TqKKDPEZF5\nwBbSMtWrAKqq2yeuaZuP1XWrefC7BylML+TUEae2uDPNzM3j2Gv+TECClDaUUp8WxR+L4vUkvmSp\nNyODnIMPIWuPPYiKj68+Ws38aXPY//fbc/Z/vqaiLsw3iyrYdXABR4/u16l9RyoqWHT6r4kFAlS/\n9Ra9xr7Lz1U/N32+oGoBoWjIAroxGzEReQ0YvNbia1S1rdHeXT3OeJxHBs19oaoXdedx2jn+/Tiz\nBJq7V1X/syGOH692A7qqnioifXCG4h+1YZq06SipK2FO+Ry2yt2K4oxi0rydH6Fd3VDN9Z9fz+QV\nzmMrv8/POdud02Kd+pQIF37wO36q+InctFxePepVemV0T7W1jnjS0/Ckp1G9opaZk5xR9zVlQfwp\nXioIA5DRTk9BJBwjGnEeDbTofVAl1rBmMKm/MsiVY67k/A/OB+DqMVd326h8Y0xiqOqxG+g4/wF6\nLHhuqAuH9dXhoDhVXQnssAHaskkprS/lrIlnsaRmCWneNN465i36ZvXt9H6iGqUusiYrWnVo3aQz\noWiInyqcsSdVDVWsql21wQJ6o9R0Lx6vEIsq8z9awtPn7sY9k+Yxql8OYwa2/qy7PhBixgeLKVkc\nYLejt6Kof1bT835vTi4DHvg3Jf+6j4xdxpDapw/b5mTxzrHO+I/ctNwN0gthjDHJot2ALiIvqupJ\nbpKC5qPnNvsu90gswpKaJQA0RBtYUbuiSwE9Pz2fW/e6lZsm30ReWh6/HvnrddZJ96UzbsA4Plry\nEYNzB3fpOOsrPTOFE68dw+Ifyhk8uoicQj//OGkHfB5Z57l/o6VzK5j+njMzZ+WCKk7/69imeeae\n9DQyx44lfdQoPGlpePzOVM/ijOINc0LGGJNkOrpDb3xm8auu7FxEFuLMJYwCEVUd486zewEn+85C\n4CRV3XhzkrbB7/Nz6rBTeW7uc/x/e3ceH1V5PX78c2YmM9kTCCGyCu7gUtQRFamiFMWl4lIVtSrV\nulVr1dparf1pW22r369brUvdqf264o77hsXdIIoCohRQlrBlXyeZmfP7496ECWTPTCYM5/165ZWZ\ne59775NLyJn73OeeM7ZgLNvnbt/jfY3MHcltk27DK16y/FveMx6QPoBrJ1zLleEr8Xv93X6ePB58\nfi+DRuQwaMSmpzI6u37WmNS02kaaWvH58OXnx6uLxhizTevwsbVe79wJ6EFV3Riz7CagTFX/Jk5Z\nvwGqemVH++mvj61VhioJRUL4xMfAjG33EavS+lIiGiHTl0m2f1O9hvrqRj6ZvZwN31cz4YSdKBqd\nm7BH7OKltjJEqC5MIFiO+CUAACAASURBVNNnWevM5izhgunXOhtyr6btVIHNQ+49mbU0jU3p8Wbi\npLTrMKD3V10tg5psjfVhQvVhBAhkpW1R5KU31tWuY8arM1hVs4qrxl/FtB2ntYwyZOT4mXDCTkSa\nIvgzfHi8/T+YN6e0zRmYzolX7mtB3aQsETkO+EZVF8Vpf0HgTFW9pNPGCSAixwJj3YvFQmA2Ts75\nS4CrgNNUtSIZfesrnc1y72navZZdAK+LiAL/VNV7gSJVbU4buxYnkf42SaNR6muqQZX07Bw83vhP\nAouEoyz7YgNvPbwYETj8grEU7ZZNTqDtyoe1TbUt1eDyAnmdFpJ5f837rKpxZr/f/tntTNl+Sqvb\nBmkBb1w/QCRSuDHaktK2uqyBxvqwBXSTyo7DCXpxCeiqWoxThS0pNqv9vnk98vbSvqaUrqZ+7amJ\nqrpaRAbjVN75OnalWxWozTF/Nx3eeQAjR8ajhkH/UltZwTcfvcdX77yBRqOMmTiJsQcfRlZ+fKqh\ngXNLoKaqngVvOwFXFRbNWUv9oDT2HLb7Fu3D0TDvrX6P37z7G0SEvx/2dw4ednC7k94AxhaMxYOH\nE3c6lYOHHo5Et96yp2kBL0Wjc1m3vIqBQ7MItJNS15juuvmUY7bIFPfrJ2b3KtGMiPwU5+rTj5N2\n9BfAP4D9cAqKzFLVa922f8N59DgMvI5T0exY4BA3veiJqvrfNo5xLs7fYT+wFDhDVetE5CTgWpz5\nUZWqerCITAKuUNVjRGQ8TlKydKAe+JmqLmnn55iBk2s9DxgG/FtV/+iuew4nr3s6znPf97rLp+Kc\nTy+wUVUnu/sJAvfjpE7NcEcNDsQpbRpU1Y0iciZOeVkFFqjqGV0/6/1bQu+htzqQyHVADXAuMElV\nS9xCAHNUtcPi7f31HnpP1VZWMOv6a9j4/YpWy/OLhjD9TzeSlR+f+/Gz/zubr9Yt4sB1R/PVa07q\n2H1OHMbyoZ9x8piT8HlaB6zqxmoufedSPlnrpD8+ZPgh3HTwTR1epdc21VJe18BrX5bz0PvfM2mX\nQi4/fFcGZvnj8jP0tbqqRppCEdIC3pZytca4enQP3Q3mbeVyP7enQV1ExuAErRNUtUlE7sIp9DFb\nVctExIuTE/0SnCIfHwC7uRdR+apa4eY6n62qszo4ToGqlrqvrwfWqeod7pNPU90Ltub9TWJTQM8F\n6lQ1LCI/Ai5U1TbriruB+K84JVfrgE+BGapaLCID3Z8nw11+CE5Rsc+Ag1V1eUybGThB++LY1+4x\nVuAE+yKc3PUT3OA+MKZk6VYvYTc13Wo8Oc2vgcOBr3CGRM5ym51F6yIBKU9VWfrJh1sEc4CKdSUs\neOs1opHeV6aNapRP133K40sfpXHsOn502Y4c97u92DjsvwSH7rtFMAdI96Zz1OijWt4fvcPRpPs6\nvuLOSsvCo5n8efYSVpXX8++Pv6eksr7X/U+WzFw/eYUZFsxNPHVUD72nJgP7Ap+6xUsmAzsAJ7tF\nRuYDu+PUMK8EGoAHROQEnKDZVXuIyFw3gJ/u7hM21S8/l7YfeMkDnhKRr4BbY7ZrzxuqWqqq9Tij\nBxPd5ZeIyBc4H1ZGADvTfg3xrjgMeKp5onYqBXNI7JB7EfCsO1zrAx5V1VdF5FPgSRE5B/gOODmB\nfeh3Gmqq+WrOG+2uXzz3HfaaPLXToff66ipWf72Qxvp6Ro3bl8zc1hP0POLhrLFn8eZ3b3LFx5dx\n8yE3s3fh3hzAfq1SyzZFojQ1NFBfvpH1K5Zx6F4HM/6ElxGEvEAeHun8M5/XI+QEfFSHwngEctN7\nXxvdmBSSiHroAsxU1ataFjglON8A9lPVcvcKPN29Sh6PE/R/AlyME9i64mF6Vr+8u/W8Nx8qVveK\n/0fAge4w/xycoXfTjoQFdFVdRhsZ5tzhm8mJOu5WoYO7HKrOVXzVxvWIeEjPziYtsOXv8OK57/DO\nzPsA2GvyVCad+XPS0lu32z53e5477jlUley07C2GzktrQtz7n2WcPjaLWVddjEaj5BVtx6l/+l+y\nuvF8eEGWn2cvOojn5q9m0q6FW+1wuzEJ8j3QVqKK3tRDfwt4XkRuVdX1bn6PkUAtUCkiRcCRwBwR\nyQYyVfVlEXkfWObuoyv1xjev970aNtUvBz4WkSNxrp5jdbee9xT3Z6jHmax3Ns799HI3mO+Gc2UO\nztX6XSIyOnbIvQvHAHgb50LzFlUttSF30yvpWdmMPaT9zzMTTjqNlQsXcN/F53D/L8+h5Nst55FE\no1HWf7e85X3pqu8Jh5u2aOf1eCnMKGRw5uA274M//dlqXvxiDevXlKBuidTKdWvRaKRbP5PP62Gn\nwdlcccSuBEcNJCtgk8mMiXE1Ww5z96oeuvuo2TU4TxEtwLkyD+EMtX+NU9ntfbd5DjDbbfcecLm7\n/HHgNyIyX0R2bOdQzfW+33f32+x/RORLd0j9A5z65bFuAv4qIvPp2oXjJ8DTwALgaXfG/KuAT0QW\nA3/DCeSo6gaciXrPuMPx3amTvhC4AXjX3faWrm67NeizSXG9kXKT4irKeerPv6d0VesP6LmFRUz/\n4428dMf/sHrxQgB2nXAwR150GV5f62HsinVrefZv19HYUM9xv/0Dg7ffAfF07/PZPe/+l5te/Zrn\nzvkBi/79D9Z++zUTTv4pP5hyJIFMq3JmzGZ6nFgmEbPcU8XmE9hMz1lAT5LainIWvzeHhXPeJOo+\ntrbHoVMgI40NpWtYNvd9Frz4AtN+/Xt22Ge/dveBKhm5eT16hr20JsRtb35LdaiJP0zennSf4PP7\nLZgb0zbLFJcAFtDjxwJ6EkUjETexDGTkZFPVVMO/Fv2LF5e9yNTtj+Cs3c4gx5dDIKPj5C5dURGq\n4Nvyb6kIVbBv0b4tE+NCTRHCUd1imLyioYKPSj5iSdkSjtv5OIZnD+9y9TONKgiICJGqKsJlZWh9\nPb7ttsM3IH7P2RvTx1I2oPdFvW8ROQK4cbPFy/uqBOu2wAJ6P/Jd1Xcc8+ymOjjPH/c8O+TtEJd9\nP/PtM1z7wbUAHD36aK454JpWedc7ap/rz+XZac92qWRrbUWIea+uwBfwss+PRtDw9muUXOlk9s0/\n+WQGX/FrvLlW59xslVI2oJvUYLOX+pGAN4BXvEQ0gkc8ZHidkqLUrIdII/jSIav7ldYi0Qjz1s5r\neb+wdCGhSIhs2g7okWiEz9Z91vK+qrGKhnBDp8dpqGnijYcWsXqJUzxvyJA0vM9vSjNQ9corDPzF\nRRbQjTEmAWyWez+S58/j/sPvZ9qO07h3yr1O8ZeqEnjoSLh1d5h1NtRu7HxHm/F6vJy959nk+nPx\niY/L9r2sw6tzr8fL9N2mk+ZxJuLtNWgvstI6v68ejSq1FaGW9xvWN5F9+OEt7zN+eAgNoba2NMYY\n01s25N4PRTW6KaHLJ/fBy1dsWvnzN2F425PkOhKJRihrKENRcvw5ZPgyOmwfCoeoCFVQ3VTNgMAA\nCjIKOj9GJMq6ZVW8dNcCfGkefvyrcWT7m6j/bhWR6hpCuUPwDRpI0fZ2hW62Sjbkbvo1G3Lvh1pl\nZ8sd2nplJ3XXo9EoHvfxtWhUaWoI403z4EvzUphZ2OU+BHwBinxFFHWjGJ7X66FodA6nXbe/09Uc\nPxpVqkM+Fi5ZQ1HAz+hBHX+QMMb0D26Gt9mqukcnbSao6qPu+6SWUN3WWUDv70YeCJOvg+VzYJ+z\nIKv9oFxSU8J9C+5jVN4ojtnhx9SuUOa9soKi0bmMmzKSjOzEZ3Dz+rxk5cXMhvcIhcNz+OH0nfH2\n83roxphuGwWchpPIJuklVLd1FtD7qXBjiPKSNXz35ReMmfBTMvb9GZ5ADmz2vHl5Qzkrq1dSkF7A\npXMu5esyJ5lTQXoBoZe2o2RpJau/qWDgsCwK9woQjobJD+Tj9/ZtetaeBvOG2iZKllawYWUNYyYM\nIWegpXI2Blqujl8F5gH7AAuBM3HKhf4vzt/3T3EqnYXcimNP4qSErQdOU9Wlm1ddE5EaVc1u41iP\nAM2TaS5W1Q9wMriNcQvEzMTJVNdccW0g8CBO0Zg64DxVXeBW3hzpLh8J3Kaqf4/nudlW2SVTP1Vf\nXc2/r7qMdx+5n4d+fTF1oegWwby6sZqbi2/m9JdP57P1n1HbVNuyrqqxGo9n0y2/utoQv5nzG456\n5ii+2vgVUY222lc0qqyvbmBDdQORaP+ZV1G6qoaX7/6ST2cv58W/f05dVWOyu2RMf7IrcJeqjgGq\ncNK6Pgycoqp74gT1C2PaV7rL/wHc1o3jrAemqOo+wClAcwD+HTBXVcep6q2bbfNHYL6q7oWT5vZf\nMet2A44AxgPXurniTS9ZQO8HwpEwlaFKGiObglWorraljGqorpZIG7naG8INfFTyEQCzvpnFXyf+\nlR8U/oBjdjiGKdtPYcd9B5OZ62fk2IFst2cml465gjsPvIeXlr3UKvgDLN1Qw7R/vM+P73ifpetr\nEvjTdk9NRUPM6xBbwyROY/rQSlVtztn+b5zCV8tV9Rt32Uzg4Jj2j8V8P7Abx0kD7nPLqD6FU5a1\nMxNxrupR1beBArdOOsBLqhpyy5iuh25M1jHtsiH3JKttqmXuqrk8+vWjTB01lWN2OIbcQC6Zefns\ncejh/Lf4I8YdcUyb2eKy07L5+Z4/54aPb2BZ5TIKMwv5x+R/kOZJIysti7wDIuwwrhA8Ub7/tpT3\nH1pHZo6fcy/5BQFvoGU/NaEm/vLyYkoqneD5l5cXc+dpe5PdD8qgjhhTwPZ7FlC2ppZDTt2VQIb9\nyhoTY/NPuBVAR4+kaBuvw7gXdyLiAdq6H3cZsA6ngqYHp756b8Q+wBrBYlFc2ElMsurGan77n9+i\nKPPXz+egYQc5AT03j0POOJuDTvkpaYF0AplbBvSMtAyO2eEYJo2YhFe8FGQU4BEPZQ1lfLbuMwZn\nDmZo1lC8DX6Kn/meSFOU6rIGlr5XxsSfbPo/7/d62WVwDnOWbABgl6Js/L7+MXiTmevnRzPGEg1H\nCWT68KZ1P2e9MSlspIgcqKof4kxOKwbOF5GdVHUpcAbwbkz7U3Due58CfOguWwHsi3N//Vicq/HN\n5QGrVDUqImcBzf8ROyrBOhen5Oqf3drmG1W1SsSe/ksUC+hJJghej5dwNIwg+Dyb/knSs7I3TUFp\nR7Y/u1WSmMpQJde9fx3vrHoHgEeOfIRRgR0ZOCyLqo3Oh+rtRrd+Dtzv83DBpB0YMzQHFA7ZdTB+\nX/8JnOlZyR8pMKafWgJcJCIPAouAS3DKjD4lIs2T4u6JaT/ALaMaAk51l92HU1v9C5xJdq3vxznu\nAp4WkTM3a7MAiLjbPowzKa7ZdcCD7vHqgLN696OazlhimSQLhUN8VfoVTyx5giNHH8l+Rft1mMWt\nMxvqNnDSiydR2lAKwHPTnuPK/1zJH/e5gfoVHooGDaRwRK4FSWO6r19dWnblOfHN2q/AqWrW/XST\nZqtgV+hJFvAF2LdoX/Yq3Ksl1WqzxkgjTZEmsvxdK2cabmoi0ODh9om38It3f0mWP4tQJMSS8iX8\n9J3p7JK/C7eNu82CuTHGpCAL6EnQnIa1MdpIVloW+YH8LYJ5WUMZD3z5AMsql3FF8ApG541unUFu\nM/XVVXz+2kss/M9bDNt1LK+c9gKNAWf0ZUjWEEpqSwhrmDSvBXNjUoGqrgC6dHXuth+VsM6YfsEC\nehKU1JYw/aXpVIYqOW2307ho3EXkBlrf135v9Xv8a5Hz2OaKqhU8cuQjDMpoXWmturGahnAD6b50\nylYs44On/g+AynVrySkYxISTTsPj9fHoUY9S01RDtj97i30YY4xJDf1jKnMKaYw0Egp3XFJs7qq5\nVIYqAXhiyRM0RrdMluIVb6vXEnP7LtwYYkPlOu774l5OfOFEbv/sdmRA61nwpatWEgk7z7EPyhxE\nXiCPuavm8uy3z7K2di1ra9dS09i1580r6hqpatjyOXhjjDH9hwX0OCqtL+WGj27gmvevYV3tunbb\n7bvdvvjEGRwZv934ltexJgydwAV7XcCPRv6IOw+7k4Hpm4qyVJdupLRiLQ8tepjyUDlPLHmCcJaX\njGzn6RHxeNj/uJNIC2xKk/rW929x5+d3MjJ3JCe+cCJTZk3h+aXPU9dU1+HP9H1ZHRf8ex6XPDaf\ndVW9ffTUGGNMotiQe5yEo2Hu/uJunln6DAB14Tpu/OGNbc5YH5EzgtknzGZD3QZG5owkPz2/1frG\n+nr8IThn1xlE04T6cD01TTXk+J2AvX7FMnzDBpLhy6A+XO8kkvFnc+b/3kl5yWryCovIyG09hF9S\nU8LYgrG8/f3bVDVWAXDfl/dxxKgjyEzb8hl3cK7Mr5y1gI+WlQFw8+tLuOH4PUmzIivGGNPv2F/m\nOIpEI61e6xZJnBwZvgyGZQ9j3OBxDGwuh9pYD9XrqN+4huIXn+HRa37N6uVL2Fi/kdU1q3lzxZss\nr1zOxrqNDNt1LN+88gb3T7ybi/a4kEePepT8QD7ZAwYyYuye5BYObnV1DjB9t+kMSB/APoP3aVkW\nLAp2WKTF6xEyA5uG/rMDPjz96sEdY7ZdIjJVRJaIyFIR+V2y+2OSz55Dj6ON9Rv5n0//h7pwHb/f\n//dsl7Vd5xuFQ7B+MRQ/CKMOoiJ/Hx74zWUMHDqcA66+hJ+9cTb14Xr+cMAfGJw5mNdXvM5v9vsN\nvvoo0WgUf3pGm1nk2lIRqqAp0kR1UzWl9aXslL8TA9IHdLjNuqoGbn3jG7ICPi6ctCODsgMdtjcm\nhfWbj7Mi4gW+AaYAq3ASyJyqqouS2jGTVDbkHkeDMgZx3YHXESVKVlrXnh2nrhQePALCDfDZTLy/\nWIw3LY3tdtqFJ755sqWIymNfP8afJvyJZZXLaIw0kpfffl309uQHnKH9QgrZIW+HLm1TlJvO9cft\ngUekVfU2Y0xSjQeWquoyABF5HJiGky3ObKMsoMdZRlpG9zaIhp1g3rx93UpOvfr3rF29gR8OS+Pp\npU8DsP92+1MfrufcPc8l15/b3t4SwtfDe+aqiuVtNsYRDAZ9wCBgY3FxcbiXuxsGrIx5vwrYv5f7\nNFs5C+jJFsiFydfCJ/+E0Yfg8wcoGlBI0dgg1Y3VPD/teWqbahmSPQRVJdefS8DXv4e96xrDLFpT\nxax5q5g2bih7Dc8nK2C/ambbFQwGJwAvAelAQzAYPLq4uPiDJHfLpBi7h94fhGqgsQZ8GZCRl+ze\n9FpJRT0/vOkdwlHFIzD3t4cybEDX7vMb04/1aLjJvTLfAMQ+zlIBDCouLo60vVUnHRE5ELhOVY9w\n318FoKp/7cn+TGqwWe59pCHcwIa6DZQ3lG+5MpANOdu1CuZVoSo+WP0B93x+D2tq1vRhT3svFI4S\njjofFKMKtY09+ptlTKoYhHNlHisd6P5EmE0+BXYWkdEi4gemAy/0Yn8mBVhAj6NINMJ3Vd9x9+d3\nM3/dfGobnQlt9U31vLPyHY5/4XgufedSNtZ3Xuzou+rvOP/N87nzizs569WzKK0vTXT3eyxUH6a2\nMkSozskml5eZxi8m7UhRboCfHTSKQpsZb7ZtG4HNszI14Fy194iqhoGLgdeAxcCTqrqwxz00KcFu\nbMZRWUMZp798OpWhSu7+4m5mHz+bLH8WNU01XPPeNTRGG/ls/Wd8sPoDjt3p2A73tbZ2bcvrjXUb\niWo00d3vsrW1a5m5cCaj8kZx5JBj+OrNEha/X8KOwcHs/+PRDMj284tDd2TGhFFk+L3kpFtBGLPt\nKi4uDgeDwaOJuYcOHN3T4fZmqvoy8HIcumhShF2hx1FEIy052hWlrMHJsOYRD8NyhrW0G54zHIDa\nplo21G1oaRdrn8H7cPCwgynMKOSGiTeQndbzGumxmiJNrK9bz8rqlVQ0VHR7+7L6Mi566yL+vfjf\nXP/R9dTXNTL/9e9pqG1i4burCdU6V+nZgTQG56ZbMDcGcCfADQJG49w7twlxJu7sCj2OstKyuGr8\nVdz/5f2M32482+duD0BBRgH3TbmPV5a/wm4Dd2On/J2obazl5RUvc+MnN7LzgJ2549DbGZQ5uGVf\nBRkF/OWHf6Ep0kS2P5t03+a34NpWWl9KOBom3ZdOXmDLCXaralZxyuxTqA/Xc8qup3Dm2DMZkjWk\ny2VVoxpt/QHEEyUt4KUpFMGb5sHn97a/sTHbMPeKfG2nDY3poYQHdDejUTGwWlWPEZHRwONAATAP\nOENVtyw31s+UN5SzomoFOf4cijKLWvKqx8rx53DcTsdx+PaH4/f6W5VELcoqYsYeM1reb6jfwF8+\n+gthDbOicgVaswHKVkLJ5zB4DBTsRF724C2O0ay0vpSN9RsZkD6AgYGB+Lw+NtZt5JzXz2FZ5TLO\nGnsW5+11XptlWevD9QC8tOwlDhl+COm+dAZntn+sWHmBPG4+5Gb+3wf/j6FZQ/Fnezn56v347qtS\nRowZSHq2XZEbY0wy9MUV+q9wJm00R5YbgVtV9XERuQc4B7i7D/rRYzWNNdwx/w6e+uYpAG479DYm\nj5zcZtvMtMx2i53E8uJlVN4ollYs5f6Jf2PQa/8P/vvmpgaDx8AZz0NO0RbbljWUccW7V1C8rphM\nXybPTnuWodlDWVy2mGWVywCYuWgmZ+5+Jrm0DugThk4g4A0QioSYNGIS35R/w04DdurqqSDNm8Ze\ng/bi4akP4/P4nOxzmZBfZI+lGWNMMiX0HrqIDAeOBu533wtwGDDLbTITOC6RfYiHhkgDH5Z82PJ+\nzso5vZ6kNjBjIPdOuZe7Dr2DXctLkNhgDrB+MdGP7uKrdfO5d8G9bKjbNCE2HA1TvM55Lr8uXMe3\n5d8CMDpvNGke5wp5lwG7tKqp3mx4znBmHz+bx45+jBN3PpERuSPISdtytKEjPq+PQRmDWlLJGmOM\nSb5ET4q7Dfgt0Bz9CoAK95ELcNIVDmtrw/4kOy2bs/c4G3Aqpc3YfQbr69Yzb928lkfQNtZt5MM1\nH7KmZg2NkdZ3EGorK6gtL6Oxob7V8sLMQn5YsCe+r2bRFs+i56moWM4d8+/gsjmXtTzD7vf4OXr0\n0QAMzhzMbgN3c/aXUcgLx73AfVPu459T/klBRsEW+wx4AxRlFpHnGc28JfkM1CAatcfKjDFma5ew\nIXcROQZYr6rzRGRSD7Y/DzgPYOTIkXHuXfek+9KZOmoqE4dNxCteVJVpz0+jtqmWETkjeOiIhzj3\n9XNZXrWcdG86Lxz/AkOyhgBQXbqRWTf8gcp1JRw643zGTDwEf0bM8LQ/C5pLqG4uI58a9353fbi+\npTxrfno+V46/kl/u/Uv8Xj+FmU5+ioAvwPCc4S2z6NuzsSbEiXd/yPrqEABvXHawzUY3ZisiIiOA\nfwFFgAL3qurtInIdcC6bnnG/2n28rTmb3DlABLhEVV9zl08Fbge8wP2q+jd3eZvznUQk4B57X6AU\nOEVVV8TzGHE/YduIRF6hHwQcKyIrcP7BDsP5B80XkeYPEsOB1W1trKr3qmpQVYOFhb1JqBQfOf4c\nhmQNYXDmYNbWrW2pgrayeiWNkUaWVy0HnOH52MxuC958hbLVK4mEw7z5wF1bXKWTlg4TLmnzmNGD\nfsWCutXMPOR+bt3lOryVjYTq6wAYkD6AYTnDWoJ5d0SitARzgDUV9R20Nsb0Q2Hg16o6FjgAuEhE\nxrrrblXVce5XczAfi5NNbndgKnCXiHjdSct3AkcCY4FTY/bTPN9pJ6AcJ1Djfi93l9/qtov3MUwP\nJCygq+pVqjpcVUfh/CO/raqnA+8AP3GbnQU8n6g+JMrw7OHsmL8jAIcOP5SAL8D0XacDsNvA3Voe\nVwPIG7ypJnpmbh4ibZzyAdvDyY846V8B0vPg8BvwjJ7E+bv+nPWvfMhT117Fg5edz4YVy3vd/6yA\nl+t+PJbcdB+H7FLIHsO2/vzxxvR3wWAwPRgMjgwGg117BrUDqlqiqp+5r6txJh53dPtyGvC4qoZU\ndTmwFKcEa0sZVvfK+HFgWifznaa573HXT3bbx/MYpgeS8Rz6lcDjInI9MB94IAl96JWCjAIeOPwB\nQpEQ6b50BqYP5OK9L+bcvc7FJz4Gxgyh7xjcn8NmnMeG71ew37E/ITOvjYlkgRzY9WgYMR4ijeD1\nQ8YA8AXwlZfx/ZefO+1U+e7L+Qwfs3uv+p+TnsZJwREctecQ0rweBmT5e7U/Y0z7gsGgF7geuARn\neFyCweDtwB96my0OQERGAXsDH+OMjF4sImfiPC78a1Utxwn2H8VsFjt/qa0yrB3Nd2op3aqqYRGp\ndNvH8ximB/okoKvqHGCO+3oZzie2rdrmE87aSuICkJGTy95HHotGo4ingwERr3fTFXoMf0Ym4487\niXf/9QD+zEzGTJzUm263yAr4rKSpMX3jeuCXQOyznb9yv1/dmx2LSDbwNHCpqlaJyN3An3E+OPwZ\nuBk4uzfHMFsP+4veRzoM5h2opo6sfXZm6r5/Id2XjjfQvUfMjDHJ4w6vX0LrYI77/pJgMPin4uLi\nzQu3dImIpOEE8/9T1WcAVHVdzPr7gNnu29XAiJjNY+cvtbW8FHe+k3sFHdu+eV+r3PlQeW77eB7D\n9IDlcu/nvin/hldXvsZPZp/EMc/9mI/XfpzsLhljum4wztVyW4QellB17z8/ACxW1Vtilg+JaXY8\n8JX7+gVguogE3JnlOwOf0E4ZVlVV2p/v9IL7Hnf92277eB7D9IBdofdzWb4sPlqz6bbUm9+/yaEj\nD21JIGOM6dfW4wTutig9L6F6EHAG8KWIuJNsuBpnBvk4d98rgPMBVHWhiDwJLMKZIX+RqkYARKS5\nDKsXeDCmDGt7850eAB4RkaVAGU6AjvcxTA+I8yGpfwsGg1pcXJzsbnSZqhKOhrtc8KQj5Q3lzF09\nl2veu4Y0TxoPHPEA4waPi0MvjTHd1F5g7lAwGPwLzj3z2GH3OuD24uLiXt1DNyaWXaHHWUVDBc//\n93m+2vgVF/7gZIWmWgAAEFpJREFUQkbljcLT1qNqXTQgfQCTR0xmvxP3w+vxkue3R8yM2cr8wf1+\nCc6HAgX+HrPcmLiwK/Q4+8+q/3DRWxcBUJBewKxjZzEoY1DPd1izHj5/FPzZsPtxkNWLfRljeqNH\nV+jN3AlyhcCGnk6EM6YjdoUeZ3VNdZteh+vo1Qemhip4+bew6FnnfdUaOOxq8Ng/mzFbGzeIr+y0\noTE9ZLPc42z8kPGcuPOJ7F6wO3dPvrvd59O7JNIIFSs2vS9bCpFwu82NMcZsu2zIPQFqm2ppjDSS\n68/F69myhGmXRSNQ8jk8Nh3SsuCnT0PBjvHrqDGmO3o15G5MotnYbQJkpWWRlZbV+x15vLDdD+D8\nuSACWYN7v09jjDEpyYbc+0AkHCbc2MOKgF6fkxI2u8gJ6sYYA4jIChH5UkQ+F5Fid9lAEXlDRL51\nvw9wl4uI/F1ElorIAhHZJ2Y/Z7ntvxWRs2KW7+vuf6m7rfTVMUzPWEBPsLrKCt595H5evetWqjb2\nNIeEMca06VC3TGrQff874C1V3Rl4y30PTunSnd2v84C7wQnOwLU4xVLGA9c2B2i3zbkx203tw2OY\nHrAh9wT7/PWXmP+qk065rqqCH19+NRnZlo/dmG2FW23tNOBynHzlq4BbgEfjUW1tM9OASe7rmThF\nsa50l//LTbf6kYjku2liJwFvqGoZgIi8AUwVkTlArqp+5C7/F05p01f66BimB+wKPcGi0Wjr11vB\nJERjTHy4wfxZnCvRccAg9/vdwLPu+p5S4HURmSci57nLilS1xH29FihyX7eUPHU1lyrtaPmqNpb3\n1TFMD9gVeoLtPfXH1FaUU19VyWEzziMjJzfZXTLG9J3TgMOAzWfJZrnLTwMe6eG+J6rqahEZDLwh\nIl/HrlRVFZGEXkH0xTFM11lAT7CsvHwm/+wCotEI/vSMZHfHGNO3LmfLYN4sC7iMHgZ0VV3tfl8v\nIs/i3J9eJyJDVLXEHe5e7zZvr7TpajYNnzcvn+MuH95Ge/roGKYHbMi9D/j8fgvmxmybhvdyfZtE\nJEtEcppfA4fjlEqNLW26ecnTM92Z6AcAle6w+WvA4SIywJ2odjjwmruuSkQOcGeen0nb5VMTdQzT\nA3aFbowxibMK5755R+t7ogh41n3Kywc8qqqvisinwJMicg7wHXCy2/5l4ChgKU6lt58BqGqZiPwZ\np2Y5wJ+aJ68BvwAeBjJwJqo1T1b7Wx8cw/SAZYozxpiu6fYz0sFg8AycCXBtDbvXAhcWFxf39B66\nMa3YkLsxxiTOo8DbOME7Vi3OM9yP9nmPTMqygJ4E5Q3lVIYqk90NY0yCuc+ZHw9cCMwHNrjfLwRO\nSMBz6GYbZkPufWxl1Uqufu9q/F4/N0y8ge2ytkt2l4wxXWNpSU2/ZlfofagqVMUfP/wjn2/4nE/W\nfsIt826hMdLDHO/GGGNMDAvofcgrXnL8m9K+5vnzsFoExhhj4sEeW+tDWf4sfn/A7ynIKCDDm8GM\nPWaQ5klLdreMMcakALtC72ODMgZx9firuSx4GQUZBcnujjFmKyQiu7plU5u/qkTkUhG5TkRWxyw/\nKmabq9wypUtE5IiY5VPdZUtF5Hcxy0eLyMfu8idExO8uD7jvl7rrR8X7GKZnLKAngcfjwSN26o3Z\nlgSDwdHBYPCgYDA4urf7UtUlbtnUccC+OIlcnnVX39q8TlVfBhCRscB0YHecEqV3iYhXRLzAnTil\nT8cCp7ptAW5097UTUA6c4y4/Byh3l9/qtov3MUwPWFQxxpgECjrmAQuBl4CFwWBwXjAYDHayaVdN\nBv6rqt910GYa8LiqhlR1OU42t/Hu11JVXaaqjcDjwDQ3FethwCx3+5k4pU2b9zXTfT0LmOy2j+cx\nTA9YQDfGmARxg/YcYB+c9KZ57vd9gDlxCurTgcdi3l8sIgtE5EE3dzp0v7RpAVChquHNlrfal7u+\n0m0fz2OYHrCAngBN0SZC4VCyu2GMSb5/0nG1tXt6s3P3nvOxwFPuoruBHXFqrpcAN/dm/2brYgE9\nzkrrS7npk5u4+r2rWVm9svMNNhduhOq1UL0OtoKkP8aYtrn3ysd00mxsL++pHwl8pqrrAFR1napG\nVDUK3Icz3A0dlzZta3kpkC8ivs2Wt9qXuz7PbR/PY5gesIAeR+FomH8u+CePL3mc1797nV++/UtK\n60u7voNIBFYXwz/2g/sPg/LlHTbfGrL8GbMNGwp0ljmq0W3XU6cSM9zu1idvdjxOSVVwSptOd2eo\njwZ2Bj7BqYC2szvb3I8zfP+COn9c3gF+4m6/eZnU5vKpPwHedtvH8ximByygx1FUo5Q1lLW8r2io\nIKrRru+goQJe+z2EqqByFbz/9zav0htqm/j6wxLm/N8SKtbVoVEL7Mb0Q2uAzh7D8rvtus2tgz4F\neCZm8U0i8qWILAAOBS4DUNWFwJPAIuBV4CL3Sj4MXIxTs3wx8KTbFuBK4HIRWYpzv/sBd/kDQIG7\n/HLgdwk4hukBy+UeZ6trVnPxWxdTEargpoNvYlzhONK8XUwe01jrBPR5Dznvp90Ne5+25TG+Kee5\nW+YDkJGTxvRrxpOZF4jXj2CMaVtPyqfOw5kA1555xcXF8ZrtbrZxlikuzoZlD+P+w+8nqlHyA/ld\nD+YA/iw47BrY6UeQkQ+Dd2+zWUNNU8vrUH2Y/v+RzJht1vk4s9zbq4d+QZ/2xqS0hA25i0i6iHwi\nIl+IyEIR+aO7POUzAxVkFFCYWdi9YN4saxCMOQZGTYTMAW02GbpzPjuPL2LAdpkcef6eBDLsc5kx\n/VGxM7Q4CZgH1OM84lXvvp9UvLUMPZqtQsKG3N2kAVmqWiMiacB7wK9w7rk8o6qPi8g9wBeqendH\n+9qahtz7Sqg+TKQpSiDDizfNm+zuGLMt6FUlJXc2+1BgTXFxccczXo3pgYRd2rkzGGvct2nul+Jk\nBmq+MTwTuA7n2UnTDYEMn5OewhizVXCDuAVykzAJneXu5vH9HFgPvAH8F8sMZIwxxsRdQgO6+8jC\nOJyEAeOB3bq6rYicJyLFIlK8YcOGhPXRGGOMSQV98hy6qlbgJBA4kC5mBlLVe1U1qKrBwsLCvuim\nMcYYs9VK5Cz3QhHJd19n4CRAWIxlBjLGGGPiLpHPOw0BZrq1cD042YFmi8gi4HERuR6Yj2UGMsYY\nY3otkbPcFwB7t7F8GZsKBhhjjDEmDiyXuzHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHG\nGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcAC\nujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wx\nKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAb\nY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKcACujHGGJMCLKAbY4wxKSBhAV1ERojI\nOyKySEQWisiv3OUDReQNEfnW/T4gUX0wxhhjthWJvEIPA79W1bHAAcBFIjIW+B3wlqruDLzlvjfG\nGGNMLyQsoKtqiap+5r6uBhYDw4BpwEy32UzguET1wRhjjNlW9Mk9dBEZBewNfAwUqWqJu2otUNQX\nfTDGGGNSmS/RBxCRbOBp4FJVrRKRlnWqqiKi7Wx3HnCe+7ZGRJZ0cqg8oLKb3evKNh21aW/d5svb\nahe7bPP1g4CNnfSru/rz+WlrWUfvE3F+2utXPLbZls9RV9t39xwl4/y8qqpTu7mNMX1HVRP2BaQB\nrwGXxyxbAgxxXw8BlsTpWPcmYpuO2rS3bvPlbbWLXdZG++IE/Fv02/PTlXO22fmK+/mxc5SYc9TV\n9t09R/31/NiXfSXzK5Gz3AV4AFisqrfErHoBOMt9fRbwfJwO+WKCtumoTXvrNl/eVrsXO1kfb/35\n/LS1rCvnMN7sHHWuu8foavvunqP+en6MSRpRbXPEu/c7FpkIzAW+BKLu4qtx7qM/CYwEvgNOVtWy\nhHRiKyUixaoaTHY/+is7P52zc9QxOz8mFSXsHrqqvgdIO6snJ+q4KeLeZHegn7Pz0zk7Rx2z82NS\nTsKu0I0xxhjTdyz1qzHGGJMCLKAbY4wxKcACujHGGJMCLKD3cyIyRkTuEZFZInJhsvvTX4lIlogU\ni8gxye5LfyQik0Rkrvu7NCnZ/elvRMQjIjeIyB0iclbnWxjT/1hATwIReVBE1ovIV5stnyoiS0Rk\nqYj8DkBVF6vqBcDJwEHJ6G8ydOccua7EeRxym9HNc6RADZAOrOrrviZDN8/PNGA40MQ2cn5M6rGA\nnhwPA61SSIqIF7gTOBIYC5zqVqdDRI4FXgJe7ttuJtXDdPEcicgUYBGwvq87mWQP0/Xfo7mqeiTO\nB58/9nE/k+Vhun5+dgU+UNXLARsJM1slC+hJoKr/ATZPpjMeWKqqy1S1EXgc56oBVX3B/WN8et/2\nNHm6eY4m4ZToPQ04V0S2id/r7pwjVW1O7lQOBPqwm0nTzd+hVTjnBiDSd700Jn4SXpzFdNkwYGXM\n+1XA/u79zhNw/ghvS1fobWnzHKnqxQAiMgPYGBO8tkXt/R6dABwB5AP/SEbH+ok2zw9wO3CHiPwQ\n+E8yOmZMb1lA7+dUdQ4wJ8nd2Cqo6sPJ7kN/parPAM8kux/9larWAeckux/G9MY2MTS5lVgNjIh5\nP9xdZjaxc9Q5O0cds/NjUpYF9P7jU2BnERktIn5gOk5lOrOJnaPO2TnqmJ0fk7IsoCeBiDwGfAjs\nKiKrROQcVQ0DF+PUj18MPKmqC5PZz2Syc9Q5O0cds/NjtjVWnMUYY4xJAXaFbowxxqQAC+jGGGNM\nCrCAbowxxqQAC+jGGGNMCrCAbowxxqQAC+jGGGNMCrCAbvo9Efkg2X0wxpj+zp5DN8YYY1KAXaGb\nfk9Eatzvk0RkjojMEpGvReT/RETcdfuJyAci8oWIfCIiOSKSLiIPiciXIjJfRA51284QkedE5A0R\nWSEiF4vI5W6bj0RkoNtuRxF5VUTmichcEdkteWfBGGM6ZtXWzNZmb2B3YA3wPnCQiHwCPAGcoqqf\nikguUA/8ClBV3dMNxq+LyC7ufvZw95UOLAWuVNW9ReRW4EzgNuBe4AJV/VZE9gfuAg7rs5/UGGO6\nwQK62dp8oqqrAETkc2AUUAmUqOqnAKpa5a6fCNzhLvtaRL4DmgP6O6paDVSLSCXworv8S2AvEckG\nJgBPuYMA4NSkN8aYfskCutnahGJeR+j573DsfqIx76PuPj1AhaqO6+H+jTGmT9k9dJMKlgBDRGQ/\nAPf+uQ+YC5zuLtsFGOm27ZR7lb9cRE5ytxcR+UEiOm+MMfFgAd1s9VS1ETgFuENEvgDewLk3fhfg\nEZEvce6xz1DVUPt72sLpwDnuPhcC0+Lbc2OMiR97bM0YY4xJAXaFbowxxqQAC+jGGGNMCrCAbowx\nxqQAC+jGGGNMCrCAbowxxqQAC+jGGGNMCrCAbowxxqQAC+jGGGNMCvj/sI1peKp8xNgAAAAASUVO\nRK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VfX9x/HX596bm9zshARkirgY\nCg7EjSKKe9WtVdy1dXZYq62jddRRa21r3QO1/tyrWhWKCxeIqAwHKgRkJ2SvOz+/P85JCOQm3Iwb\nyOXzfDx8JPfcM74nxHzu+Z7v+b5FVTHGGGNM7+bZ1A0wxhhjTNdZQTfGGGNSgBV0Y4wxJgVYQTfG\nGGNSgBV0Y4wxJgVYQTfGGGNSQFILuohcLiLzRWSBiFzhLisUkWki8p37tSCZbTDGGGO2BEkr6CKy\nE3ABMA4YAxwlItsBvwOmq+r2wHT3tTHGGGO6IJlX6COAmapar6oR4D3gJ8CxwBR3nSnAcUlsgzHG\nGLNFSGZBnw/sLyJ9RCQTOAIYDPRT1ZXuOquAfklsgzHGGLNF8CVrx6r6tYjcBkwF6oAvgOgG66iI\nxJ17VkQuBC4EGDly5O4LFixIVlONMSYRsqkbYEx7kjooTlUfVtXdVXU8UAEsBFaLSH8A9+uaNrZ9\nQFXHqurYQCCQzGYaY4wxvV6yR7n3db8Owbl//hTwKjDZXWUy8Eoy22CMMcZsCZLW5e56QUT6AGHg\nYlWtFJFbgWdF5DxgCXBykttgjDHGpLykFnRV3T/OsrXAxGQe1xhjjNnS2ExxxhhjTAqwgm6MMcak\nACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6M\nMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqw\ngm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhj\nTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvo\nxhhjTAqwgm6MMcakACvoxhhjTApIakEXkV+KyAIRmS8i/yciGSKyjYjMFJHvReQZEfEnsw3GGGPM\nliBpBV1EBgKXAWNVdSfAC5wK3AbcparbARXAeclqgzHGGLOlSHaXuw8IiIgPyARWAgcBz7vvTwGO\nS3IbjDHGmJSXtIKuqsuBvwBLcQp5FfAZUKmqEXe1ZcDAZLXBGGOM2VIks8u9ADgW2AYYAGQBh3Vg\n+wtFZLaIzC4tLU1SK40xxpjUkMwu94OBxapaqqph4EVgXyDf7YIHGAQsj7exqj6gqmNVdWxxcXES\nm2mMMcb0fsks6EuBvUQkU0QEmAh8BbwDnOiuMxl4JYltMMYYY7YIybyHPhNn8NscYJ57rAeAq4Bf\nicj3QB/g4WS1wRhjjNlSiKpu6jZs1NixY3X27NmbuhnGmC2bbOoGGNMemynOGGOMSQFW0I0xxpgU\nYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0x\nxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW\n0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXd9GqquqmbYIwxmwUr6KZXitbVUfPee6y5/Q4ilZVx14mU\nlxNes4ZYfX0Pt84YY3qeFXTTK8Xq61l++RVEStcQXLiQVTfdRGjZsub3IxUVlN53Pz9ecCGNX321\nCVtqjDE9w7epG2BMZ3gyMuh75ZUExoxmyWmno+EwwW8XMvAff8eXn4+Gw2TssD1Zu+yCRiKburnG\nGJN0VtBNr+TNySH/pBOJVlaSNmgQocWL8e+wA+L3AxBatIhVf7gWgGFv/HdTNtUYY3qEFXTTa3n8\nfjx9+7L141OI1tXhzc3Fm5kJgLdPH/B6Eb8fj7vMGGNSmRV00+v5iovxFRevt8w/aBDbTp2KeARv\nYeEmapkxxvQcGxRnUlK0tpYfzzuPktPPIFpRsambY4wxSWdX6CYlaX09oZISAKJlZaT17btpG2SM\nMUlmBd2kJE9eHv3/fAuxxkZ8/ftv6uYYs9kRkWOAkap666Zui+keVtBNylFVQgKZhx+OPyNjUzfH\nmKQTEQFEVWOJbqOqrwKvJq9VpqfZPXSTcipXreD5m6/lncceoL66CoBgQz11lRU01tV2aF8aiRAs\nKaHqjTeIlJcno7nGdIqIDBWRb0XkcWA+cKaIfCwic0TkORHJdtc7QkS+EZHPROTvIvKau/xsEfln\ni329LSJzRWS6iAxxlz/mbvORiCwSkRM31fmajbOCblJGLBwmUlpKdG05WQUFqHgIx5RYNMoPs2fy\nwC/OYcF704mEQwnvM1pRQclJJ7Pil7+i4umnk9h6Yzple+BfwAHAecDBqrobMBv4lYhkAPcDh6vq\n7kBxG/v5BzBFVUcD/wb+3uK9/sB+wFGAdc9vxqygm14pUllJuLSUqDtPe7S+npqpU1l0zLFUXHYF\nkw46kvJRh3PL/5ZQ0xBk8eeziUUjLP7iM6LhcOIH8nrxbz0EgIztt0/GqRjTFUtU9RNgL2Ak8KGI\nfAFMBrYGhgOLVHWxu/7/tbGfvYGn3O+fwCngTV5W1ZiqfgX06+4TMN0naffQRWRH4JkWi4YB1wGP\nu8uHAiXAyapqzxWZhEXKyljxu6sJLlxI/mmnUnj66cQaGllx1e8gEoGKClZe8UtG3vc417y2jG37\nZnH6mecxZOddGDp6V9IzsxI+lq+wkMH33YeGQniys5N4VsZ0Sp37VYBpqnpayzdFZJduOEaw5S67\nYX8mSZJ2ha6q36rqLqq6C7A7UA+8BPwOmK6q2wPT3dfGJERjMcruf4C6Dz4gsmYNZXf/nfCqVWg0\n4hRzV7S2lsw0LwBF2RlkFxSyzd4TqPVmMXXBKt5fWMrq6kZCkehGj+krKiJtwAC8ublJOy9juugT\nYF8R2Q5ARLJEZAfgW2CYiAx11zulje0/Ak51vz8DmJG8pppk6alR7hOBH1R1iYgcCxzoLp8CvAtc\n1UPtML2cxmJEq6vXWxarq8Obn0/OoZOoeWsqAH0uuIBYYR4v/mIfhhVlUd0Q5tnZP/LnN74hGnMy\n1LP8Xh6cPJbdhxSQ7hZ/Y3ojVS0VkbOB/xORdHfxH1R1oYj8AnhTROqAT9vYxaXAoyJyJVAKnJP0\nRptuJ6qa/IOIPALMUdV/ikilqua7ywWoaHrdlrFjx+rs2bOT3k7TOwRLSlh65llESkvJ3Htv+t98\nE4uPOZYBt9+Gf+hQJM2PJzcHX15e8zbzl1dx1D8+aLWvdJ+H9387gX659nib2ahe2d0sItmqWuv+\nvb0H+E5V79rU7TLdL+lX6CLiB44Brt7wPVVVEYn7iUJELgQuBBgyZEhS22iSL1pdTeOCBcTq6sgc\nOxZvfn7z8rqPPya8fDl5xx+Pr6CAyNq1APj69Im7L29REYPuvRdtaACBxnnziNXWsur6Gxj6wvN4\nMjPxtrjfHYpEeezDxXH3FYzE+GTRWo7dZWA3n7Exm40LRGQy4Ac+xxn1blJQT3S5H45zdb7afb1a\nRPqr6koR6Q+sibeRqj4APADOFXoPtNMkUaS0lKXnnAvAkMceJWuvvQCI1day/PIrAAiMHg1bD2XJ\nOecgIgx55OFWoSsAvuxsGDgAbWxEMjLwDRhA4UU/I+/II1lz+x1Eq6oo+vlFpO+4I96sLCIxpaKh\n7ZHtFfWJP8ZmTG/jXo3bFfkWoCcK+mms/6jEqziPVNzqfn2lB9pgNjFPIBNJS0OjUbwF69LPxJ9O\n1vjxRFauJG3wYKLVVYS+/x6AaHUNvuJiNBolWlmJ+P14c3IA8BUUrNt5QQGFp53O4mOPJVpZCUDd\nBx8w7D//wbvdtmT6fRw9uj/Tv4772ZH9tmvr0VxjjOk9klrQRSQLOAT4WYvFtwLPish5wBLg5GS2\nwWwevH0K2XbaVIjF8LS4t+0r6sOA226FWAxfnz5E/On0u/46EMFbWEC0poba99+n7F/3kjZoIP3/\n+EfSttqq1f6ja9c2F3MAVKn+3zSKt9sWgP22L2Zk/1y+Wrn+gLoTdx9EUbY/OSdtjDE9qEcGxXWV\nDYrbfMWCQWLV1eD14msndzxSVUXdBx9Q99FHFJ41mfRthyG+jX+eDP24jB8OOaT5ddaBBzDwjjua\nr9SbhFes5PuJE6HF7/PgBx8ge//9m1+X1QR5Y/5KXvp8BRlpHs7ddxt227qAwiwr6CYhvXJQnNly\nWDiL6ZLGb75h6dnnEBgzhoF3/qXNgWyhxYtZ8evfAFDz5lsMe+O/zZGmFXUhvllVw1Z5GQzMz8Dv\nW/cIWbS2BvH70ZBznzuyfAUaChGtqqL2gw8IL1lK/qmn4MnNof9NN7L6lj8Ta2wk/8QTyBg1ar02\nFOWkc8aeW3PUmAF4RMgLpCXjR2KMMZuEFXTTJTVvvok2NFD/ySfNRTeeaPm6yQBj9fUQc0Khog0N\nfLOihtMe/pSMNA/vXTmBfrlOQY9WVyMeD0Of/j/W3PU36mbMoM9FP8NbUEB4xYrmDwhpQwaTd9RR\n5B51FFn77w+qzkj3Da7iATweoSDTrsiNSYSIfKSq+2zqdpjEWEE3XVI4eTLhFSvJ2ntvPFnrT6mq\nkYiTUKZKxpjR5Bx6KA1ffEHRxb/Ak51NLBikZuo0ikbuRkaah2FF2XhlXa9maOlSSk48CcnMZNhL\nLxIpL8dXVIR4PEh6OmkDBxApW0vG8OEAeNLT8bhX/Z0VKSuj7IEHyDn4EAJjRuNJT9/4RsakGBHx\nqWrEinnvYgXddFo4FCSU7qfg+msJ5OTiSVu/CztSWUnohx/A58M/eDD9//RHYqEQ3uxsPIEAkcpK\nKp97Dl/BdKb/+ir8fQopyllXQD2ZmeDz4c3JQdLS8OblNz+/nlZczNBnnkFjseZl3aF2xgwqHn+C\nmjffcp5pj/PYnDEdNfR3r58O3AIMAZYC15TceuRT7W/VPhF5GRgMZAB3q+oDIlIL3AscAawErgFu\nd497haq+KiJenMHJBwLpwD2qer+IHAjcCFTghLrsICK1qtoUw3oV8FMgBryhqr8TkQtw5gvxA98D\nZ6pqfVfOy3SeDYoznVJfXcXMF59h/rvTyMjOZcLZFzB41GjSA5kAqCrBhQtZOvlsolVVFP/qlxSc\nemqrbvDQjz9S8/bb5B1xxHrPnMcaG4nW1EA4DD4fvuJiRJI/Jim8ahUrr72O3COOIOfQSXgzM5N+\nTNNrdOoX0C3mDwItf5nqgQu6UtRFpFBVy0UkgDOl6wFAGXCEqr4hIi8BWcCROElsU1R1F3fSrr6q\nepM7TeyHwEk46WyvAzs1pbM1FXQRORy4Fieetb7Fsfuo6lp33ZuA1ar6j86ek+kai081HRaLRpg7\n/U3mvPEqoYYGqktX88pfbqa+ssV98upqVt98s/MomSqld/6VWG1tq335Bw+mz+TJ6xfzcJi6Dz9k\n2cWXsDbmY3E0g8r6DkSedkHaVlsx8K93knvkEVbMTXe5hfWLOe7rW7q438tE5EucYJbBONnoIeBN\n9/15wHuqGna/H+ounwSc5caszgT6uNsCzGoRtdrSwcCjTVffqlruLt9JRGaIyDycUJdRcbY1PcQK\numlTXTBCdZwZ1hoqKvj2ow3CmFQp+XJOi5eKp2VMaVoaeOL/usWCQbRFUlqsro61Dz6E56zzOP+l\nb5l09wzemL9y3b5jMaL19ag7sK67eXNy8Pht4JzpNm3NXd3pOa3d7vGDgb1VdQzOlK4ZQFjXdbvG\ncKNPVTXGulusAlzalIapqtuo6lT3vaY41kQ9BlyiqjsDf3TbYDYRK+gmrvK6EHe89S1XPPMFZTXr\n4pBjoRDhxSUU9G09uUvhwMHN32soRNHPf05g7Fj82wxl8L/uwetOKFNfHaS+2n0MrayMlX+4lsqX\nX3G62AFvVhZFl16Cx+cly++MeM9O9zWvXz7lcVb8+teUP/EkkbKypJy/Md1oaQeXJyIPJ9iqXkSG\nA3t1YNu3gJ+LSBqAiOzgTgLWnmnAOSKS6W7TNOlEDrDS3dcZHToD0+1sUJyJqzEc5bGPSgD4saK+\nebCahkLUP/8C+5x5Bsu+/YqGGmfmtSE7jaF4yND19rHqlpvJP/54svYfj69vMZ60NOqqgrx05xx8\naV6OuWIXIl98QfV//kP1a6+Rc8B4cAfAZY4dS0ZtLf/cO5PGqJIbSCNSVsaSs89pnhq29p13qXrh\neYY8+mibz78bsxm4hvj30K/pwj7fBC4Ska9xMs8/6cC2D+F0v89xE9hKgePa20BV3xSRXYDZIhIC\n/ovT/mtxuu1L3a+tnxU1PcYGxZm4KutDvD53JSVr67jogG3pk71u9Hlo+XKq33qL9CMOp6piLelZ\n2WTlF5CZu25KV1Vtvnr2FRU1D2irXFPPv69z/vacefM+ZMZqWHXjjWSOG0feMcfgzc1ts011M2ey\ndPLZrZZv/eQTZI4d2x2nbUx7Oj0qMxmj3I3ZkBV0AzgFOFRSQs3UqeT/5CdOKIoqMVW8bdz77vAx\nYjHCpWWEg1EayCSnKJP0zDSi9fWIz7fR+9aVL7/Myt+1SuFlwB13kHf0Ud3SRmPaYVO/ms2adbkb\nAKKVlay8+hoavviCWGOQvpdfhoisN9FLV4VKSlh6zrloMMjgBx/AP3AkQMKjyTPHjgWR9eZrR4TA\nbrt2WxuNMaa3skFxBnAmcSk486ekjxhB7uGHdfv+Y42NlN71NyKrVxOtrGT1zbc0D4JLlLeggP63\n3Yony/kA4MnKYsAdd3TrxDLGGNNb2RW6AZxpU3MmHkzWXnt1qkDWV1cRamjAHwisdy+9ifh8pG+/\nPTXTpgHgHzYM6eCjYd6sLHIPPZSsvfZCGxqQQABvbi6eDHtSxhhjrKCbZp6MdDwZHZ+7PBIO8dlr\nLzHrlefZ9bCj2f/0s0nbYA508fko+OlPSdt6a7SxkZxDDu7UxC3dMV+7McakIivopkvqqyoJNTQw\naOTOzHr1BeqqKtuc8MVXWED+scf0cAuNMWbLYAXddFqwvo63H72fbz+ewcRzf845f70Pf2Yma0Pg\nizRSnLOuKzxaXw+qeLM2Nn+FMcaYzrBBcVuohtoa1i77kdrytUSjkY1vEIcqRNwM9Eg4TOGAgXxX\nDfvc+jYXPzWH8jr3vfJySv92N2vu+AuRtWu7pf3VDWHW1DRSF+xc243Z0onIgSKyT4vXj4nIiUk6\n1kMiMjIZ+zbr2BX6FmrR7Jm8ee/fSMsIcO5d95Fd2PGZ1jKyspj0s0sJ1p9LRrYzQVQ4qqhClt8H\nOI+XxRobyTloArHGRmLB4Hr7qK+qJBwKkZ6ZSUZWdkLHrQ2GmfJxCfe9+wN/OnYUR48ZiN9nn03N\nZuyGvFYTy3BD1aaeWOZAoBb4KNkHUtXzk30MY1foW6yatc4sbuFgI7EuhJxk5uVT0H8ggRxnhrfh\nW+Xw5a/25p+7ZxBY/B3RujrCy5ax9OxzWHbRz6mb8UHzto11tUx78B4euuRcln+9IOFj1oeiPPPp\nj9SFojz96Y/Uh+wq3WzGnGL+IE48qbhfH3SXd4qIZInI6yLypYjMF5FTRGSiiHwuIvNE5BE3GhUR\nKRGRIvf7sSLyrogMBS4CfikiX4jI/u6ux4vIRyKyqL2rdRHJFpHpIjLHPd6xbbXLXf6uiIx1v79X\nRGaLyAIR+WNnfwamNbtC30KNPvgwMvPy6TN4CBndeF87N5BGw6KVlJx8CgDD3nqT0JIlAAR22YWM\nUaMIl5WRVlQEqkQjTppbNNJ2UV5bG+T970opzPIzZlA++YE07jxpDA99sJhfHbIDuRlp3dZ+Y5Kg\nvfjUzl6lHwasUNUjAUQkD5gPTFTVhSLyOPBz4G/xNlbVEhG5D6hV1b+4+zgP6A/sBwwHXgWeb+P4\njcDxqlrtflj4RERebaNdG/q9m6XuBaaLyGhVnduZH4JZnxX0LVRmXj6jD07CBDIxRbze5tcaDpNz\n0EE0zJ1H4Rmns/Tc8xC/n6HPPoMXmHT+JUSikTY/VESiMe57bxEPzlgEwJRz9+CAHfoybptCRg/K\nI+C3X2Gz2ev2+FScfPM7ReQ24DWgGlisqgvd96cAF9NGQW/Hy27U6lci0q+d9QS4RUTG48S0DgT6\nbdguVZ0RZ9uTReRCnPrTHxgJWEHvBvbX0HSLmsYw7y0s5bOSCn6970AGv/wKDdEYdbmF9OlTyFa/\nv4b6zz4jWl4OQGT1apaefwEiwjavvkJadvyQppgqpbWNza/Lap2BdiJixdz0FktxutnjLe8U9yp8\nN+AI4Cbg7XZWj7Du9urGZmFqOcilvXmfzwCKgd1VNSwiJUDGhu0Skemq+qfmHYpsA/wG2ENVK0Tk\nsQTaZBJkfxFNt2gIR7n86S+IxpRT9xjMde+v5esV1Rw1OsQtPynEk5FBxogRFJ5zDp5ABt7CQmJV\nVeDzQZx7+HVVQTSmpGf6uPrwEQAUZ2dw4A7FPX1qxnRVt8enisgAoFxVnxSRSuASYKiIbKeq3wNn\nAu+5q5cAuwNvACe02E0N0Ha8YfvygDVuMZ+A+4ElTrs2HAyXC9QBVW4PwOHAu51sg9mAFXTTLTLS\nvFx/1Eg+LSmnKCedXx28Aw99sJgLx2/bvI6vsJC+v/4VeDzEamoY+vxzeDKz8Oatf5utvirIC7d/\nRm1FkFOvHUe//lnc9pPReDxCmtfGcZpe5oaqp7ghD7p3lPvOwB0iEgPCOPfL84DnRMQHfArc5677\nR+BhEbmR9Yvnf4Dn3QFtl3bw+P8G/iMi84DZwDfttKuZqn4pIp+76/8IfNjB45p2WHyq6TbhaIxI\nNEbA7yMWUxojUTI70S1eVxXk6T/NorEuzEnX7EHfIfG7443pYRafajZrdoVuuk2a19N8Be3xSKeK\nOUAgx8+p144jHIoSyLYR7MYYkwgr6KZTmq7GKxvCeEQoyk7H6+meCxiPR8jK73hIjDGme4nIzsAT\nGywOquqem6I9pn1W0FNcfTDC7CUVfLxoLefvtw19srteKNfWBrnrfwsZsVUuVQ1hHpixiNcu3Y+C\nTD9Z6fYrZUyqUNV5wC6buh0mMTbCKMXVhiL87InPuPfdH5i3vKpb9vlDaS1PfrKU3788n7FDC1CF\nlZWNVDWEO73P8rpg89zvxhhjOs4KeorL8Hm56rAdmTiiLyP7d/YJlfUNK87m6NH9+e1hOzKoIJMn\nz9+Tpz9dSpq3c13upTVBLnpyDhc/NYeymuDGN+iExtow1WsbaKi1Dw3GmNRko9x7uUg4TGNtDf6M\nDPyBDWeXdAQjUcKRGNkbTJEaXrOG6tdfJ+eQQ/APGtSh49aHIvg8Hvw+j1OEBYo62Z3/Y3k9+9/+\nDgAfXDWBQQXxz6MjymqCVDaE6ZPlJz8zjblv/8gHz33Pbodtzbgjt8GbZp9lTYfZKHezWbO/ar1c\n6ZJFPHn1FSx4723CwfhXt+k+b6tiHotEKP3rX1lz2+2s/P3viVZ1rDs+0+9rTjgryknvdDEHyMnw\n8dDksTx69h7kdMO87NUNYX77wlwO/ut7vDF/JSgE65254kP1EXrDh1hjjOkoK+i9XMmXn1NXUc7C\nmR82Z5MnwuPzkXvU0fiKi8k95hgkY9PNvpif6efgEf2YMLwveYGuF3SPB7bKdc6nb04G4hF2njCI\nM/60F+OO3gaf37uRPRiTOkTkBhH5TZL23ZzktjkSkWIRmemm0O0f5/2UymlPape7iOQDDwE74YRj\nnwt8CzwDDMWZkvBkVa1obz/W5d62+qpKli6Yy4AdRpBb1LFpUWONjURravAEAkhaGp701HlUrLwu\nSDASIzvd1y1X/cbQhS73nafs3CoPfd7keT2Shy4iN9AiVa2b910CjFXVsk5s61PVpGYfi8ipwMHx\n8thFxKuq0WQev6cl+wr9buBNVR0OjAG+Bn4HTFfV7YHp7mvTSZl5+QzfZ3yHizmAJyMDT0YG1W+8\nwcrrridStv7/k9HaWiKlpUSqqtBYjEhlJbFw50ey96TCrHT65wWsmJtNzi3mrfLQ3eWd0kYeeqvc\n8xabjBGRj0XkOxG5oJ399heR992M9PlNV7UbyTC/tEUu+nB3/XHu8T5389V3dJefLSKvisjbONGp\nbeWqDxWRr0XkQfeYU0Uk0E67LxCRT92fxwsikikiuwC3A8e65xMQkVoRuVNEvgT23iCn/TC3HV+K\nyPT2zmNzlbSC7ubgjgceBlDVkKpWAsfiRPvhfj0uWW0wGxdrbGTVtddR/corNMxdl2CosRi177/P\ndwccSNXLrxBc+B3LfnEx9R993G1FXVUJR1sHsxiTYtrLQ++sptzxMaq6E/DmRtYfDRwE7A1c54ao\nxHM68Jaq7oJzEfaFu/z3qjrW3c8BIjK6xTZlqrobcC9Okho4c7Xvr6q7Atex/rnuBpyoqgewLld9\nN2ACTvRqU0/I9sA9qjoKqGT9YJkNvaiqe6hq04Xjear6hXvsZ1R1F1VtALKAme7P7YOmjUWkGOdD\n1wnuPk5K4Dw2O8m8Qt8GKAUedT/dPCQiWUA/VV3prrMKJ0PXbCKe9HT6XnMNOZMmEdh53f+jGolQ\n+/Y7EIsRraig/MknaZgzh9J//YtYbW1C+w6vKaXqP6+1uvIHaAxHeW9hKb97YS6rqxvjbN15pTVB\nHpyxiHnLqwhGemePWiQcpnzFcpZ9PZ+G2ppN3RzTNcnKQz9ERG4Tkf1VdWOjWl9R1Qa3a/wdYFwb\n630KnON20++sqk2/fCeLyBzgc2AUToZ5kxfdr5/h3EqFdUEx84G73G2aTFPVcvf7plz1ucD/WJer\nDk6+e9MHipb7jmcnEZnhhsWcscHxWooCL8RZvhfwvqouBmjRvvbOY7OTzGm9fDifxC5V1Zkicjcb\ndK+rqopI3Jv4InIhcCHAkCFd+b03a2oaicUgPzONjLT1B4R5c3MpOPUU8k88AW/muosIj99P3yt/\nQ8bIEWRPmkQ0phCJUHDWmXhB9GGUAAAgAElEQVRzN/48e6yxkdW33ELNm2/S58pfw6nHICIUBYoQ\nEWoaw1zz4jxWVDWyx9BCTh3XPf/GsZjyz7e/Y8rHS0j3eXj/txPol9v7BsE11tbwxFWXEQkFOfO2\nvxNoIy/e9ApJz0N3u4jbyz3f8O9s3L+7qvq+iIwHjgQeE5G/AjNoP8O86fGaKOtqyo3AO6p6vIgM\nZf2Ut7oW38fNVd9gv037brPLHXgMOM5NczsbOLCN9Ro7eN+8vfPY7CTzCn0ZsExVZ7qvn8cp8KtF\npD8492uANfE2VtUHVHWsqo4tLrYM7M4qrWnkJ//6iPG3v0NZbfzH2jx+/3rFvElav35k/vQsbv6s\nkkOf/o779jyN+iHbIt6NF0hJSyP38MPw9S1GTziM4145jtNeP42yBudqPTvDxw3HjOLInfszYXjf\nrp1ky3PxCDsNdOJYhxRmdtv88j3N4/EyaMRO5PQpJpDTPRMCmU3mGpz885a6Iw+9XlWfBO7A+dta\ngpN7Dq27p48VkQwR6YNT7D5tY79bA6tV9UGcAc27ET/DfGPygOXu92dvZL1WueqdkAOsFJE0nA8J\nHfUJMF5EtgEQkcIW7UvkPDYLSbtCV9VVIvKjiOyoqt8CE4Gv3P8mA7e6X19JVhu2FJHKSgiH8RYW\nrl9sGyooDFXy7BnD+NlLS4nFWn8oD9bX0VBTTSwSJZCX1+pKMBSNcciIfuy/fTF5oXrSv/+GcP+t\n8PXty7pbXa2J10v2+PEEdtuNMl+E+kg9EY2g7oVBIM3HxBH9GL9Dcateg66aNKofe287gXSft0vP\nx29KmXl5HH7Jr9BYjMy8/E3dHNMF8ybPe2rnKTtD945yj5c7HiB+7jnAXJyu9iLgRlVd0cZ+DwSu\nFJEwUAucpaqLpeMZ5rcDU0TkD8Dr7azXVq56R10LzMS5zTsTp8AnTFVL3V7hF0XEg3OheQiJn8dm\nIdmPre2C8ynPDywCzsHpFXgW5xd7Cc5ja+Vt7gR7bK09kfJyVl53PQ2ff87WTz5J+jZD1735+ZPw\nysWQ3Y/IBe8Ryigmc4PwlEVzPuWl25xBqwedexFjDj4Mj3fdOqU1jZz1yCyGFWVzY2AJq6+5Bt+A\nAWzz7DP4ihJ7/LQh0kBlsBKPeChMLyTN27mR55FQlFBjlPQsH16vTaFgelzv7O4xW4ykRmO5AxrG\nxnlrYjKPuyXRSITad9+FSITG+fPXFXRVWP2V831dKT5i+DYo5qrK97M/aX696LNZjBx/EOmBdetF\nosrC1bV4RPDt5nSN+4qLndlbEhTwBQj42rv9tXHRSIwlC9Yy6z+LmTh5BH23tm5oY4xpKaGC7g7p\nvwBnlGHzNqp6bnKaZRLlzclh68cfp2HeXLL23WfdGyKw3xWQVQyDx0HGum7bSFkZ0dpavLm57HbE\nsSz8+AOi4TDjjjuZaChEfSRCpnvfNi+Qxn8v3ZeqymrKaleyzbSp+AIBfIWFGzal24R+/JG1jzxC\n/vHHkz5iBJ60NCKhKAtmrKB8RR3fzlxtBd2YLpBemnMuIvcA+26w+G5VfXRTtGdzk1CXu4h8hDPS\n8TOc0YYAqGq84f/dzrrcu0+kvJxlF19Cw+efk3/6afT99a9pCAVBlcrSNTx7w1Vst8feHHLBxc2D\nseqqqnjtb7ey/OsFnHnb3RRvvU3S2hetrGTZpZdR/+mneHJzGfb6a6S5gyKryxpY9GUp24/tR1Ze\n77w3bno163I3m7VEu9wzVfWqpLbE9AiNxoiscR4siCxfAbEY2QWFREIhPp/yABqL8cPsT5h47kXN\n22Tl5XHU5b8lGomQkZWd1PZJejqB3Xen/tNPydh5J8S37lc0tyjALhPtEUZjjIkn0Sv0m4CPVPW/\nyW9Sa3aF3j3KaoLEYjHyqspo+HQWWfvvT1rfdY+MVa1Zxfv/fowR+09gyE5j8G+iwJZIZSWxujo8\nGRn4+vTZJG0wJg67QjebtUQLeg3OlHlBnEckBGdemB65kWkFveuqG8Jc9eJc3pi3iinn7MEBO8Z/\n9jsSDuH1pbX7SFpXhCJRKuvD+LxCYZZ1m5texQq62awlNFRZVXNU1aOqAVXNdV/bqKReRFUJhZ15\n02uDbU+U5EvzJ62YA3y9soaJd77Hlc/NZW0bE90YY4zpuIQfWxORApzJ8pv7YVX1/WQ0ynS/vEw/\nt504mvpQlNyMpD6tSGTtWiJlZfiKi1uNhn/1y+XUBCNM/2YNIQtmMca0QZz47dNV9V+d2LaETsa6\nxtnXn3Dmef9fV/eVbIk+tnY+cDkwCCd9Zy/gY5z0HtNLdGbWNFWlvqoSELLyNz5jWbS2llU330LN\nf/9L3gknsNUffo8nsO4Z9PP2G8ayikYO2KGITH9yP1gYs7n4eviIVnnoI775ukfy0DckPZBD3k3y\ngV8ArQp6T56Dql7XE8fpDonODnI5sAewRFUnALvixNmZHtZQU+0W2J5RV1nB47+9lGduuIq6yoqN\nbyCC+J2Z4MTvd56Hb2FAfoC/nTKGk/cYTF7AsspN6nOLeas8dHd5p4nIT0Vklpv1fb+IeEWktsX7\nJ7pBKojIYyJyn4jMBG4XkUIReVlE5orIJ01xqCJyg4g8IXGy00XkSjdzfK60zkTfsG1nuet9KSJP\nuMuK3azyT93/9m1xzEfcbPJFInKZu5tbgW3d87tDRA50E9VexZlCHPccPhMnM/3CDvzsWm3n/vwe\nEycHfp6I/LLFz+5E9/vr3LbPF5EHJJn3Jzsh0UukRlVtFBFEJF1Vv5HNPOg9FdWsLeP1v99BONjI\nUZdfRUH/tiKNu080Eqa+uopgfR0a23gXuTcri35XXknRRRfhzc3Fk5FBYzjK4rI6pi5Yxfgditm+\nXzaBDsw0Z0wv114eeqeu0kVkBHAKsK8bbPIvNh5KMgjYR1WjIvIP4HNVPU5EDgIeB3Zx1xuN0wub\nBXwuIq8DO+Hcch2H86HkVREZH++2q4iMAv7gHqusRdDJ3cBdqvqBiAwB3gJGuO8Nx8lDzwG+FZF7\ncdI5d3Kz2RGRA3HCYnZqijkFzlXVchEJAJ+KyAuqujaBH2Gr7XAmThvo5ss3dflv6J+q+if3/SeA\no4D/JHC8HpFoQV/mntzLwDQRqcCZh930kFgsxicvPs3ybxYAMP3R+zj6iqtIz8xK6nED2Tmc89d7\n8fp8ZGwQ3BKJxfAgeDZINPP16bPe42bldSGO+ecHhKPK36Z/x7Rfjme7vnZ1brYYychDn4iTrPap\ne5EYoI3kyhaeaxEduh9uIpuqvi0ifUSkaaDzK6raADSISFN2+n7AJJw8dIBsnAIfbxzVQe6xytz9\nN2V1HAyMbHFRmysiTRNbvK6qQSAoImtYl4m+oVktijnAZSJyvPv9YLdNiRT0eNt9CwxzP+y8DkyN\ns90EEfktzgeyQmABva2gq2rTid/g/gPnAW8mrVWmFY/HQ17frZpf5xb1xeP1EY1EiASD+AMBJIGr\n3lhMqS5rYMXCSoaOLiIz19/u+v5AJoWB9S8uGsNRllXU89zsZZw0dhD/+3oNh++0FUMKM+OOkF9d\n3Ug46jweqQqLSuvYrq/le5stRrfnoeNcJU9R1avXWyjy6xYvN5xIoo7ExMtOF+DPqnp/h1q5Pg+w\nl6o2tlzo/s3YMPu8rdrUfA7uFfvBwN6qWi8i79L6nFtpazs3630McChwEXAycG6L7TJw7uePVdUf\nReSGRI7XkxLu9xSR3dx7G6Nxcs5DyWuWiWfnCYdw6M+vYMLZP2O/U35KLBbl24/f59W/3kLp0hJi\nsbYfR2vSUBPi1b99wTtPfsOct5bQmbS9NTVBDr97BjGFv0xdyK1vfMPFT82hvC7+r8Tggkx27OcU\n8EEFAcYMtjhQs0Xp9jx0YDpwooj0BSe/W9wscxEZIU4E6PHtbD8Dt4veLXBlqlrtvhcvO/0t4Nym\nK2oRGdh07DjeBk5yt2+ZLT4VuLRpJXHSONtTQ/sxqHlAhVuUh+PcJkhE3O1EpAjwuFOa/wGne7+l\npuJd5v4cTkzweD0m0VHu1wEnAS+6ix4VkedU9aaktcy0EsjNY6cDD25+XVtRzhv33AWq/O+hf3H8\nVdc1z7/eFq/PQ9+hOdRUNNJ/u7z1rqjXVDfyypcrOHynrRhUsOEtv3Xe/mY14aiyvLKecUMLeXP+\nKvbbrqjNXPOinHSePH9P6kMRAmle+uZuVh9qjUmqEd98/dTXw0dAN45yV9WvxMnonuoW7zBwMc59\n59dwcsFn43SNx3MD8IiIzMX5cDG5xXvxstNXuPftP3b/ZtQCPyVON7+qLhCRm4H3RCSK001/NnAZ\ncI97TB9Od/1FG27fYj9rReRDEZkPvEHrPPI3gYtE5Guc7vJPNtxHG9rabiBObWu60F2v90NVK0Xk\nQWA+sArng85mJdGZ4r4FxjR1lbgDCb5Q1R4ZGGczxa2vtqKcRZ/PZpsxu/HW/X9nyZdzOODM8xhz\nyBGkpW/80bSGmhDRSAx/hg+/G5UajES48bVvePKTJRy4YzH/PG1XsjPi3+f+8PsyznhoJgCXHLQd\n+29XxJA+mfTP61pEqjGbuc1qRHMyuN3Itar6l03dFtNxiQ6KW4HT3dB07yMdWJ6UFpl2xaJRPnj6\ncRa8+z9GHTCRw3/xS2LRKGkZGQkVc4BATuv75t+vqePgEX2ZtXgtp48bQnobV9sAI/rncOZeW/PU\nrKU8/nEJo/rnsvOgvM6ekjHGmG6QaEGvAhaIyDScARKHALNE5O8AqnpZexub7uPxehm+7wH8uGAe\n24/bh0BuLh5P28U3UT+sqWXm4nIuHD+MXYfkk+Zte3hFYVY6Vx22I5cctB0C5Gf68fvsMTRjejtV\nvSHRdd175NPjvDUxwUfHkmpzb18yJNrlPrm991V1Sre1KA7rcl9fJBQiWF+HP5CZ8FV5e8oayvhf\nyf/Yr99eFEez8RUW4m2noBuzhUr5LnfTuyX62FpzwRZnTvfBqjo3aa0y7fL5/fj87T9u1hGPzHuE\nJ75+gj222oM/1k+i//4HQ1FRt+3fGGNM8iV0GeZOyZfrPn4wB3hQRP6a3KaZnjJp6CQGZA3gqH4T\nSatthDSb9MUYY3qbRO+h56lqtTghLY+r6vXuowcmBYzsM5InD32cjDAEBvvw5dkAN2OM6W0SvVHq\nE5H+ODPnvJbE9phNwO/1U5zTj5zCfutN2WqM6d1E5BgR+V0b79W2sbxlGMm7IjI2mW1si4jsIiJH\n9MBxrmnx/VD3ufeu7rNYRGaKyOcisn+c9x8SkZFdPc6GEi3of8KZKegHVf1URIYB33V3Y0xr1WUN\nzHh2IVWlG040lXpqyht599/fULq0hqhlpRvTZar6qqreuqnb0Um7AEkr6OLw0LUZ+9oyEZinqruq\n6owNjutV1fNV9avuPmhCBV1Vn1PV0ar6c/f1IlU9obsbk8rKGsp47YfXKK0vTXibSCjKhy98z9y3\nl/Hh898TDm58atfeKhqJ8fFLP7BgxgqmPryAYG14UzfJmG5zz0Vvn37PRW+X3HPR2zH3a5eiU6H5\navIb94p6oYj8W0QOdmdX+05ExonI2SLyT3f9bcSJRZ0nIje12I+IyD9F5FsR+R8Qd0pXEZnkbj9H\nRJ5rEawSb93dReQ9cSJK33J7eBGRC8SJH/1SnCjVTHf5SeJEkn4pIu+LiB/nQvIUceJTT2njOG1F\nryIiv3L3OV9ErmjxM/tWRB7HmfHtYSDgHuPf7qZeEXlQnGjVqe5Eam2dZ6vzEWdK29txptD9QkQC\nIlIrIneKyJfA3i17PkTkMPdn+qWITHeXjXN/1p+LyEeSYLppooPidhCR6U1dESIyWpxpB00CIrEI\n//j8H1z9wdX8edafaYg0JLRdsKGGPY8u4tjLd2S3Q7fGl9bxR8nKG8qZsWwGq+tWd3jbnuT1eRi5\nb38y8/yM3G8AvoyuP1tvzObALd6t8tC7o6gD2wF34sSPDgdOx0lG+w2trzzvBu5V1Z2BlS2WHw/s\nCIwEzgL22fAg4sxz/gfgYFXdDWda2V/Fa5CIpAH/AE5U1d2BR4Cb3bdfVNU9VHUM8DVwnrv8OuBQ\nd/kxblbIdcAzqrqLqj7Tzs9gOE6gyjjgehFJE5HdgXOAPXHmar9ARHZ1198e+JeqjlLVc4AG9xhn\ntHj/HlUdBVTiptK1odX5qOoXG7S9ASeKdqaqjlHVD1r8rIpxfjdOcPdxkvvWN8D+qrqru69b2mlD\ns0QHxT0IXAncD6Cqc0XkKcDmck+Az+PjkCGH8N6P73Ho0EPxezb+yFl9VSX/+eufWf7NAvoM3pqT\n/nAT0iKmtKE2RCQUw5/hJT0z/qj0WCzGw/Mf5vGvHmdE4QjuO+Q+CjMK4667OdhqWB4nX7MHaX4v\n/vREfzWN2ex1ex56C4tVdR6AiCwApquqisg8nHzvlvZlXXF6ArjN/X488H9utOoKEXk7znH2win4\nH4ozl7sf+LiNNu2Ik58+zV3Xy7oPEDu5vQP5OPPMv+Uu/xB4TESeZV1mSKLiRa/uB7ykqnUAIvIi\nsD/wKrBEVdub932xW5QBPqP1z7Glts5nQ1HghTjL9wLeb4qEbRE1mwdMEZHtcSZzS+jRo0T/amaq\n6ixZPxozkuC2Bth9q9157ujnyE7LxpvAzG7B+rrm7PO1Py6havUqsvILAAgHo8z+bwlz317GpPNH\nsf3Y+NHBHo+HYfnDANg6d2t80j1FMhqNUbGyjsVzyxi138CNRrAmyuf34vPblblJOcnIQ2/SMnY0\n1uJ1jPh/3zser+gQYJqqnpbgugtUde847z0GHKeqX4rI2ThpbqjqRSKyJ3Ak8Jl7hZ2oRKNXm2ws\nRnbD/bUXUvEYcc4njsYWWfSJuBF4R1WPF5GhwLuJbJRoH26ZiGyL+8sgzgjIle1vYloK+AIUZxYT\nSEsswCQtI0BGtpMc6POnk5lfQG35WjQWQ2NKXZUTVVpfFWxvNxwy5BCmnjCVq8ddTW56+0ls8UTr\n6givXkOkvLx5WbAuzJsPzGfWq4tZOGtVh/dpzBamrdzzruShd8aHwKnu92e0WP4+zr1qr3uve0Kc\nbT8B9hWR7QBEJEtEdmjjON8CxSKyt7tumoiMct/LAVa63fLNbRCRbVV1pqpeh5MUN5iNx6e2ZwZw\nnHtPOwvntsKMNtYNu+3pjLjn0wGfAONFZBtYL2o2j3V5KWcnurNEC/rFON3tw0VkOXAF7cTema7L\nzMvjzFvv5sjLf8vJ19/CO489wONXXUZdVSX+gI/xp+zA6TfsyQ57btXufnLTc+mf3Z/CQOe62hvm\nzuX7CRNY/edbiVZVAeBL9zJ6wiCKBmUzdGebUc6YjUhGHnpnXA5c7HbHD2yx/CWcp5a+Ah4nTle6\nqpbiFJb/E2cOko9x7l234t7/PhG4zR0E9gXr7stfC8zE+XDxTYvN7nAH680HPgK+xIlwHdneoLi2\nqOocnKvnWe7xHlLVz9tY/QFgbotBcR3R1vkk2s5S4ELgRfdn1TRW4HbgzyLyOYn3pLc/l7uIXK6q\nd4vIvqr6oftJx6OqNR1teFdsyXO511VW8OivLiJY5/QSnXvX/RQMGLiRrbrP2sceY82tt5G+w/YM\nefTR5ufUw8Eo4VCUQFbaevf2u6IuXEdlYyWKkpeeR46/sx/OjUmKTv+iuwPg1stDv/i+g7p6/9yY\n9WysoH+hqruIyBx3ZOMmsSUX9IbaGma99Cyf/fcVtt19Tw654GIy8/J77PiR8nIav/6a9G23JW2r\ndb0BlfUh1tQEyQ+kUZyTzgbjKxISra4mVluLpKfj69OHOavncPabZ6MoD016iD3779mdp2JMV1k4\ni9msbexS/msR+Q4YIOtP9SqAquro5DVtyxGOhqkIViAiFAeK13svkJ3Dnj85hbHHnEDQG8EfaPPR\nz6TwFRaSve++ANRXB1m7vI6iITnMKinnwic+Y6vcDP5z6X4U53Q89a1+1iyWXXIp2RMPYsBtt/HV\n2q9Qd8zOgrIFVtCN2cyJyEvANhssvkpV2xrt3dnjnINzy6ClD1X14u48TjvHvwfnKYGW7lbVR3vi\n+Ilqt6Cr6mkishXOUPxjeqZJvUckGqEyVEmWLyvhwW7xlDWWccxLx1CYUci/j/w3RYH170tnZGVT\nUlXCjR/eyHk7ncceW+1BmrdnA1TCwQjvPb2QRXNK2ecn25K7rfPBIjfgoxMX5wDNA+2i5eVoOMxh\n2xzGnDVziMaiHLOd/boZs7lT1eN76DiPApusePbUB4eu2ujNdlVdBYzpgbb0Ot9Xfs+V71/J5FGT\nOWrYUWT4Mjq1n0g0QjAapCZUQ1u3QF76/iVmrZpFJBZhVNEo8rw9G6Di8XoYuF0+JXPLyO+XSdHA\nXD68agJpPg9F2fGvzqPRGHUVQSrX1FM8OIdAzvqPt+UccgiBXXfFV1CAr6CAIuDGfW5EUbL9PdsT\nYYwxvV27BV1EnlXVk91RkS0rjXW5A9OWTKOkuoTnFz7PxCETO13Q+wT68MYJb5DmSaMgoyDuOqcP\nP51wNMxPdvjJJhks5vV52HHv/my7e1/S0r34M3zkZLTfS9BYE+bpG2cRDkYZM3Ew+xy/LR7fugcr\nmgp5S1n+rKS03xhjUt3GrtCb7lkc1Zmdi0gJzrOEUSCiqmPd5+yewZl9pwQ4WVUrOrP/Te20EaeR\nk57DhMETyE/v3EC1WDRKuiedgdntj1zvl9WP3477baeO0V3SAz7SA4lPTqOAxpzPgdFIrNMzWhhj\njNm4dke5d3nnTkEfq6plLZbdDpSr6q3ixPoVqOpV7e0n1Ua5BxvqCdXX893Mj1j5/begSvHQYQzf\n9wDSA5mkZ6XGVWo0HKW6PEj58loGbJ/fqst9c6SqhINR0vzebnscz6QM+4Uwm7WNPbZWQ/ypApu6\n3NudeqyNgv4tcKCqrnRnJXpXVdtNkkmlgl5XWcF7TzzCtx+/Tyy6/kyAIh623X1PJp53EdmF3ZtL\n3lAbQkTIyOrewXShaIgfKn/gy9IvmTR00mY9V3wi1q6o5aMXvmfc0cPou3VOpx7HMykrpX4ZROQ4\nYGF3xXi66WFnqeplG105CUTkGGCke7FYDLyGM+f8ZcDVwOmqWrkp2tZTNjbKvas3axWYKiIK3K+q\nDwD9VLVp2thVOBPpbxHqKit4/uZrKVtaEvd91Rjfz/6Ysh9LOOWGW7utqNdWBpn60AK8acJBk4eT\nk9/+iPxQ1JlW1u/d+BV1VbCKn037GRXBCgozCpk0dFK3tHlTiMVizHlrKUsXlOPxCJPOH0WahcSY\n1HUcTtHrloKuqrNxUtg2CVV9FSd8BdblkZ/vvm5r2teU0vE8zo7Zz52Q5nCcKQfHt3xTne6BuF0E\nInKhiMwWkdmlpYlniG+uQg0NzHjqsTaLeUuVq1fy1gP/oLGutsvHrWqsYsmCMlZ+X8myryv44fvl\nlDeWt7l+eWM5d86+k79//ncqGjc+tCHdm85JO5zE8MLhjC7u3WMkPR4Pex69DcP36c8+J2xnxdx0\nmztPOer0O085quTOU46KuV+7Iw/9pyIyy50a9X53LvZ73b+bC0Tkjy3WvVVEvhKRuSLyFxHZB+dR\n5Dvc7bdt4xgJ5Ze7yw4Ukdfc7xPO8xYns/0VcTLCvxOR61u897I4meoLROTCFsvjZYifLU6ue7w8\n8hJxImARkbPcn8OXIvJE5/8FNj9JLeiqutz9ugZnvuBxwGpZF3bfH1jTxrYPqOpYVR1bXFwcb5Ve\nJdhQz9cfvJfw+iVffEawfmOhQO0rayjjF9N/QWBwjIzsNLLy08nt76cu1PZ+Kxsreeqbp5iyYArV\noeqNHiM3PZdzdjqHew6cwncrvKyubuxSmze13KIAB/10OAVbpcY4BrPpucW7VR56V4q6iIwATgH2\nVdVdcAYenwH8XlXHAqOBA0RktIj0wQknGeU+mXSTqn6EczV7pZvZ/UMbh0oovzzOdh3N8x6HE+06\nGjjJ7b4HONfNVB8LXCYifaTtDHEA2sgjb/q5jcLJdT/I3XbDyWp6taQVdDeNJ6fpe2ASMB/nl2iy\nu9pk4JVktWFzsuizmcSiHUicVWXBO9PQWKzTx2wINzC3bC43zP8DR/x2Rw7+5bZ8HZzX7mNv+en5\nHD70cI7Z9hhy0hK745KVlsVDM5Zw5sOzuOKZL6isD3W6zZsDGwxnull7eeidNRHYHfhURL5wXw8D\nThaROcDnwCicDPMqoBF4WER+QuugmPbsJCIz3EeXz3D3Cevyyy/AyTvfUB7wnBu2cleL7doyTVXX\nusX3RZw8c3CK+Jc4qWSDge1pO0M8EQcBzzWN6+rgtpu9ZPYp9gNecgcV+YCnVPVNEfkUeFZEzgOW\nACcnsQ2bBY3FWPn9wg5vt2bJYiLhEGnp8Z9vr6+uQmNKVn78R+Zy/Dn8ZuxvWFqzFH+Ol4KMIgbJ\nkXHXDdbXEQkGycvN5fq9rwdxCnUiRISdBzoT3ezUP5c0b7Lv5BjTqyQjD12AKap6dfMCJ4JzGrCH\nqlaIyGNAhqpGRGQcTtE/EbgEp7Al4jE6l1/e0TzvDW+9qogcCBwM7K2q9SLyLtC5yT62EEkr6Kq6\niDgzzKnqWpxfLNMGr8/HDnvtR5/BW7cxwsAZYPfqnTfTUFPNKdffSlZB69Hl+Rn5nDnyTGIaw+dp\n/U+tqpTWBPHEQix6fxpfvPkax191HcVbbzg188YduGMxM6+eiD/NQ5bdezampaU43ezxlnfWdOAV\nEblLVde483sMAer4//buPD6uqv7/+OszmWSyNkvTlRZoaVkr67CDsggtgkVEBazSKogiiAJ+Bfzy\nVUT9iX6/giLw9YuAoKhlE0W2WqFAZSmEtTstbekW2uzNnsnM+f1xb9o0zZ6ZzHT6fj4eeczMuefe\ne3Kb5pNz7rnnA3VmNgZv7tILZpYP5Drnnjazl4E1/jH6k2+8a77vTbAjfzmwyMzOwus9dzbQfN5n\n+N9DM95kva/ipXit8aV57AoAACAASURBVIP5gXg9c/B663eZ2STn3FozKxlAT/t5vI7mrc65qgHu\nm/LUlRoGFggwZvKUftf/1Lf+g/ySkZgZkUj3w9exaJSPPlhFTflmIm2tPR4rYIFugzlARX0rZ9/+\nb55fson3X11IfVUFG5Yt6Xc7OyvIzmRMYTbFuan/rLnIMIt7PnT/UbMb8Z4ieg+vZ96KN9S+Avgz\n3rA4eEH5Sb/ev4Fr/PK5wH/4E9e6nRTHwPKXdzbQfN6vA48B7wGP+TPmnwWCZrYcuAUvkPeWQ7xP\nzrmlwE+BF/19b+3vvruDhC4sEy/p8Bx6fXUl91x5yS7Pnnfngptu4aGbrgfg0jvuo3DU6F3qRFpb\nqNvyEW0tLZTsNYHsvIGvfb51Wwtn/XohYwuz+cMXplLxwfvsPe3QYU3PKrIbGfTkCn8C3E750K99\n6EnlQ8ebnY63XsmVyW7L7k5jo8MklJPH/sefzIp/v9BrvdzCIgIZQcKfPp+MzCBZ2d3fMsoMZVO6\n975DalNpfoinv30y7dEYoZwsDjxx7C51YrEYgYAGckSGwg/eCuCSUArowyQrJ4dTvnQJFevWULWx\n+1tno/aZxHHf+jpPb32R6Z8+i3G54whmxm9lt6rmKmIuRnF2McFAkEDAGDOi+z8YalpqeGrNU6ys\nWcmsg2YxuXByvxaa6SrW0kK0rg6iUQIFBWQUDH9iGRHpnQ1Dvm8zmw78vEvxWj8F6/3xOs+eTEPu\nw6yxpobn7/8tqxa9inM7P5J28pXf5Oc19/J+zftMLpzMvdPv3SU3+mBVNlcy+5nZVLdUM/ecuewz\nors5Op5oLMo9S+7hjrfvACA7I5unPvsUo3N3HfrvqrkhwtYPtxHMClC6Vz6xD1by4axZuLY2xv34\nx4w4dyaBLN1nl92SnmeUlKYe+jDLKy7mzK9fxSe+fCkrXn6RLWtW4RyU7r0vkw89ivFlz/B+zfuM\nyxtH0Px/nvot0N4CmbmQP7hFdpoiTayv90YGllct7zWgt0XbWFK5Y3JcS7SFbW3b+gzozjmWv7yZ\nVx/31qj43HVH4R5/HNfmTeyreWgu+aefTqBEAV1EJN4U0JMglJtHKDePY879HNFIBIcjmOkFuZtO\nuIm61joKQ4UUZRdB7Xq490yoL4dxh8GsRyG/755yVyOyRnD9MdezuWEzx4w7pte6OZk5XHjAhby0\n8SViLsakEZP6lR7WxRzVH+1Yha5qcyP7nnMONQ8/DO3t5M44h0ggSz90IiIJoCH3VLfgZ/DiLTs+\nf+kxmPLJQR3KOYdzrl+T3JoiTVS3VFPZXMnEgomMzOlfopiGmhYW/HEFmaEMPn7h/mQFo7RWVBNp\nbGVrJUw4YiK5I9RDl92ShtwlpamzlOpGjN/5c97g17U3s36nA83NzCU3M5cJBRMGdI784mzO/No0\nzCAr2/vxirgg5LQzYUKGgrnIbsJf4e1J59y0Puqc4Jz7s/85qSlU93QK6KnuwLOh8n348BU47CIo\n6vned0u7d687YAFGhkZSV9HMu89vYMIBxex1YDHZufHNhd6TUM7OP1Y5+Vnk5CuQi6ShfYEv4j+S\nl+wUqns6PWCcwlobG2mMZNB+8vdg1iNw1GzI2fVedm1rLU2RJj5q/Ijpj03n8n9dTmVjFY//8i2W\nvLiJZ+9eQkN1C/Wt9TS0DT0l63Brrm+jsa6V9ra+F+UR2VOY2b5mtsLM/mRmy83sUTPLNbPT/dXf\nFpvZfWYW8uuvM7Nf+OWvm9kUv/x+M/tcp+Pu8kvCP9dCP2XpW+alXwVvBbeT/TSlV3dJoVripz99\nz8xeM7ND/fKb/Ha9YGZrzEy9+ThRQE9R7ZE2Fi+Yz93f/Arrli6DvFIIhnapV9FUwdULrubBZQ/S\nGGmkPdZOdUs1zhyR1h0BsLUlws2v3cyNL99IVXPVcH4rQ9Lc0Ma/HljOH/7zFWq3DCRJlMge4QDg\nLufcQcA2vGVd7wcucM59DG8U9vJO9ev88juAXw3gPFuBM5xzR+Klbb3dL78eWOinKb2tyz4/At72\nU7Z+H/hDp20HAtPx0qb+0F8rXoZIAT1FRSMR1i9+h1i0nfVL3+sxjeoHtR9QtqWMu969i1E5o3j6\ns08z9+y5lISKOedbhzFuSiFHnbUPrQX11LXVUd5YzqLyRbscp66pjRdWbmXBiq0plf40FnVUbWwg\n1u6oq2zueweRPcsG51zHmu0P4iW+Wuuc60jv+ADw8U71/9Lp9fgBnCcT+J2fRvURvLSsfTkJ+COA\nc+55YKSZjfC3PeWca/XTmG7Fy84pQ6R76CmgpqWGba3bKAgVUJLtZU0L5eZx5jeu4qMP3mf81AOx\nHmam71+yP1cdcRXTSqeRn5XP6Mwdj7SNnVzIpy4/lGBWgLqGBubErqFgQhZjSnZdra2mKcKc378B\nwILvnkJRiiRZyS3I4vzvHcW2ymZGjh/4evUiaa7rY0q1QG+PpLhu3rfjd+7MLAB095//amALXgbN\nAF5+9aHonFEqimJRXKiHnmTOOR5e+TDn/O0cfvXmr2hu39ELzS8uYUr4uF6TpZRkl/C1Q7/G8eOP\nJzczF/BWeqtsrqSurZbsvEyCmRnUrW/j7cc389L/rSMntmtgzM3KYMyIEKMLQuRlZcT/Gx0kCxgF\nJdnstX8x2fkalRPpYm8z6+hpfxFvQtq+HffHgS8DL3aqf0Gn11f99+uAjnzmM/F6410VAuXOW97y\ny0DHL4neUrAuxEu5ip/bvNI5t61f35UMiv4qSjIz275oS1GoiEAc/sbaUL+Br8z7ClOLp/Kzk35G\nUaiIknG5hHKDFI7OISO4a8AeVRDiyW+dBBilmpEusrtYCVxhZvcBy4Cr8NKMPmJmQeAN4Led6hf7\naVRbgYv8st/h5VZ/Fy9laSO7ugt4zMwu7lLnPSDq73s/XvrWDjcB9/nnawJmD+1blb5oYZkUUNda\nR1OkiexgNsXZxUM+3t9X/50bX74RgOc//zzrtq3jpfUL+cqUS8nJzCanQAFbZBBSamGZ/jwn3qX+\nOrw0pZUJbJYkkXroKaAwVEhhqHBIx2iPtNFSX099VSWfKDqWO076Fc0Bb1nZW9+8lSWVS1jf+CE/\nP7lrsiMREUkHCuhJEolFaIu2kZeZ12OdiqYKIrEII7JGkJ/V+4SwrWvX8MiP/5P2tlYw45OXfpMT\nTj4VghlcfeTV3P3e3Vx+2OVkB7tPlyoiuxfn3DqgX71zv/6+CWuMpARNikuCbW3beOz9x7jupeso\nbyzvtk5VcxWXzLuE6Y9N354lrSdNdbX88+7feMEcwDleuP93tDY2kpmRyZFjjuS2U29j/+L94/2t\niIhIilBAT4LmSDM/XfRTXtz4InNXzO2xXjAQJGABMmzXSWwtTY1sbdjC02uepj6jZZebe+2RNqLR\n9u3HKcgqoKalhoqmCtqj7bTH2uP5LYmISJJpyD2OItEINa01xFyMolBRj8PbWRlZnDflPBaVL+Ls\nyWd3W2dkzkjuPvNuItEII0IjdtrW0lDPB8ve5vdNTzDvw3mcOP5Erpp1Mc/c8v+21xk9aT8ys3ac\nv6q5isvmX8Y5k8+hMFTIksolXHH4FX1mUatvifBRXQtZwQCjC0LkZOlHRkQkFem3cxxVt1Tz6b99\nmkg0wlOffYrx+eO7rVecXcx3w9+lNdq6fSGZ7pTmlHZb3h6J8GFZGR87/mDmMY8jxhzBxMkHc9KF\nF7PqjVcZu99UjjvvAnILd0y0i7kYG+o3cOioQ5nz7BwADht1GOdOObfX72nLthbOuO0lggFj4fdO\nVUAXEUlR+u0cZ845YsSIue6Xau3QtddNcy3Ul0NbI415k6hY/yGj9plELDdIRVMFOcEcQhkhCkOF\nhHJyOeDYk5gYbWH+Z/9JTlYuBaFCjp75WQ49fTrB7Bwys3Z+NK0oVMRfZ/4Vh+P0vU9nZc1Kjhxz\nZJ/fT1YwQDBgZGdmEAik1FM7Ins0M5sB/BpvkZd7nHO3JLlJkmR6Dj2O2qJt1LTUEHVRikJF21du\n61PDVi+Yt9YTWfMK85fA8pdf4pz/+iGrcrawvn49h446lFgsxqSiSUwsmAhAtD1CRnDgq6fVtdYR\niUUoyS4hYL1Po2hua6e2OULAjJK8LDIzNO1C9lgp8xetmWUA7wNnABvxFpC5yDm3LKkNk6RSDz2O\nsjKyGJM3wBwDrQ3w/I/hrT/AuMMJTL+F0XVrWA7kjCvlhie/CsD/ffL/qIvUsWHbhu0BfTDBHBjQ\nM+85WUENs4uknmOA1c65NQBmNhc4F2+1ONlD6Td1skUjUL3Ge1/7IRmReqaNbuKAO++lNRRg5n4z\n2dywmf2K9mNt3VoOLDkwue0VkVSwF7Ch0+eNwLFJaoukCAX0ZMsthvPuhnfnwuRPwAfPkX3QTLKL\nSynIyOD6Y64nGotSlF008N5/ElU2tLKtOcKI7ExKC3bN4y6ypwmHwzPxhsjnl5WVPZHs9kj6UUBP\nBYV7wcevhVgUxnwMMncEwIKsnhIZpa665jZufHwxzy7dwslTRnL7RUdSnKf142XP5QfzvwC5wFfD\n4fBFQwzqm4CJnT5P8MtkD6YZTqkkkLFTMK9urmZr01aaIk1JbNTARaKODTVeGtiNtS20x3qf8S+y\nBzgDL5jjv54xxOO9AUw1s0lmlgVcCKjXv4dTQI+zhrYGtjZtpbaldqfy6pZqnvzgST6o/YD2aN+r\ntNW01HDjyzdyxqNnsKRySaKamxCl+SF++6WjuG7GAfx+ztGU5mvIXfZ48/FSiOK/zh/KwZxz7cCV\nwDxgOfCwc27pkFoouz0F9Dh7tfxVTn/kdG5/+3Ya2hq2l89fN58b/n0Ds56eRW1bbfc7OwftrRCL\nEY1FWVG9gpiLsbJ65TC1vn8a2hoobyinoqkCgKZtbax9r5KmutbtdSaW5HL5KVPYtzQPs5R52kck\nKfzh9YuAO4ChDrcD4Jx72jm3v3NuP+fcT4fcSNnt6R56HDnnWFyxGICllUtpi7Zt33bwyIMJBoJ8\nrPRju67N3lQFTdXw5u+hbiPkFFN83BU8MP33rKxdxVFjjoprO9tj7USiEXIycwa1/6qaVcx+djZj\n88byyNmP8tYTm1n2781MOWo0p118EJmhXdeeF9nT+UFcw+KSMArocWRmzDlkDoeNOoxDSg+hJGfH\nsq5Ti6cy7/x5BANBirOLAW9YPau5ltx/XI2tWbDTsTLevJ+J+5zAxPN/D379eKhvq+eZtc/wWvlr\nfO/o75ETzBlwLvZNDZtwOCqbK4nSzoQDi1m56CMmHlRCRlC9cRGRZEj4SnH+ikZlwCbn3DlmNgmY\nC4wE3gS+7Jxr6+0YqbBSnHOOqpYqMixje0AequqqlRT99XICm97suVLhRLj0X1AwdpdNda115ARz\nyMrwZpBHY1HW1K3hhQ0vcN7U87pdC76iqYLTHjkNgGvD17JX3l58cp9PDmhYvKalhncq3mFiwUQm\n5k/E2jOItEbJzMogK0d/I0ra0l+rktKG4x76t/EmbXT4OXCbc24KUANcMgxtGLJNDZv44lNf5Krn\nr6KyuTIuxxxRs6H3YA5QtwEWPwrR6E7FG+o38J0F32Heunk0R7wZ5TWtNVzzwjXc/vbtPPFB9yN7\noYwQVx91NSeMP4EjRx/J4srFRF2027o9Kc4u5tSJpzKlaAqhYIis7CB5hSEFcxGRJEpoQDezCcDZ\nwD3+ZwNOAx71qzwAfCaRbYiXt7a+RXljOe9UvBOfx8iaagguvLV/dV+9g5g/Aa3Ds2ufpWxLGXe+\ncyeN7Y0A5AZzufDAC5lSNIVPTPhEt4caERrBrANncfMJNxOJRpgzbQ7BgAKxiMjuLtG/yX8FfA/o\nWB1lJFDrP3IB3nKFeyW4DXFxwvgTOGvSWUzIn0BBVgHNkWYa2xspzCokMyOTaCxKbWsteZl5u+RB\nb29rpb0tQiiv04zvaCtU9nP2en050WjrTn99nTvlXNbXr2fmfjO3Lz6Tm5nLeVPOY8a+MygKFfV4\nuFAwRH50JBNyCyGqUUQRkXSQsB66mZ0DbHXO9TGm3OP+l5lZmZmVVVRU9L1DgpXmlPKj43/E1w/9\nOtnBbJ5a+xSzn5nN4kpvVvvaurVcNv8y/vnhP2lt3/H4VvO2Ov4994/8/Zc/pXrTBnaas5DR/9XT\n2rukYx2dO5qbjr+Jo8ceTShjx3PeuZm5jMwZSUag95nmr6+t5vifPcePnlhGbVOvUxhEJMWY2UQz\nW2Bmy8xsqZl92y+/ycw2mdk7/tenOu1zg5mtNrOVZja9U/kMv2y1mV3fqXySmS3yyx/yF7DBzEL+\n59X+9n3jfQ4ZnEQOuZ8IzDSzdXiT4E7Dy91bZGYdIwM9LlfonLvbORd2zoVHjRqVwGb2X05mDqFg\niKZIEw8uf5D19et5aOVDRGIRnlv/HO/XvM/cFXNpat8xJF+9eRNvPvU3Ni5bzDN33kpz/TZvQ2gE\nTJ3ew5m6mPY5oi6X1qadh/r7Ctq9WbS2ipiDN9fX0BbVSm4iiRQOhyeHw+GbwuHwvf7r5CEesh24\n1jl3MHAccIWZHexvu805d7j/9TSAv+1C4BBgBnCXmWX4k5bvBM4CDgYu6nScnuY7XQLU+OW3+fXi\nfQ4ZhIQNuTvnbgBuADCzU4DvOudmmdkjwOfwgvxs4O+JakOiFGYV8pMTf8JfVvyFyw+7nMxAJufv\nfz6hjBCnTDxlp+Hu3KIizAI4F6NozDgygv4lz8qF46/wnj3vTWYuDR+/mSdu/W9GT5rMCV/4ErkF\nI4b8PVx68mQmj8rn6H1LKM3TSm4iiRAOh7OA+4Dz8TpQWUAbcF04HH4M+GpZWdmAh8icc+VAuf++\n3syW0/vty3OBuc65VmCtma3GS8EK3aRh9Y93GvBFv84DwE3A//rHuskvfxS4w58fFc9zyCAkYzbU\ndcBcM/sJ8DZwbxLaMCTBjCDTSqdx8wk3b+8ll+aUMmfanF3q5hWVMPt/7qDmo3LGTz2QUG7ejo35\no+GMH8P8/+r5ZEd/jYqNmyhftYLy1Ss57rwL4vI9lOaH+EJ4Yt8VRWQo7gPOAzpPrOkYVj7Pf/3S\nUE7gD3kfASzCGxm90swuxntc+FrnXA1esH+t026d5y91l4a1t/lO21O3OufazazOrx/Pc8ggDEtA\nd869ALzgv1/Djr/admv9GfLOys5m5IS9GTlh7103ZhfCkRdDyX7wrx9A1eod2wrGwcnXwrTzGRMJ\ncOx5FzBm8hQyswe3upuIDK9wOLwfXs88u4cqucD54XD4B2VlZWsGcw4zywceA77jnNtmZv8L/Bhw\n/usvga8O5tiy+9HzSsmWUwQHnQ0Tj4aWbdBcDaECyCmB3FLIyKCpqZIDZs4gM5BJKDu372OKSCr4\nMn3PUwoAF7NjCLvfzCwTL5j/yTn3VwDn3JZO238HPOl/7C3danflVfjznfwedOf6Hcfa6M+HKvTr\nx/McMghKzpIq8kdD6RSYeAyMPggKxkBGBlXNVWxq2MQPX/khvyj7BdXN1cluqYj0z0R2DK/3JAsv\nkA2If8/6XmC5c+7WTuXjOlU7D+hI1fgEcKE/Q30SMBV4nR7SsDrvcZwFePOdYOf5Tk/4n/G3P+/X\nj+c5ZBDUQ98NNLc3s3DTQgCuOOyKJLdGRPppA94EuN6CehveveOBOhFvBGCxmb3jl30fbwb54XhD\n7uuArwM455aa2cPAMrwZ8lc45y0RaWYdaVgzgPs6pWHtab7TvcAf/Ulv1XgBOt7nkEFI+Fru8ZAK\na7kn09amrfx5+Z8pyS5h5pSZvS4aIyIJM6BVmPx76Evo+R46QAtwyGDvoYt0poCeAJVNlbREWyjI\nKhhwJrOexGIxzEy5xUWSZ8D/+cLh8IN4Q9/dTX5pAh4vKysb0ix3kQ66hx5nVc1VzJk3h7P+ehaL\nyhcN/YBtzbBtE4GGLVisve/6IpJKvgo8jtcT73jevM3//DiagS5xpHvoceZw1LfVA1DbWjv0A9au\ng9+eBMFsuPJ1GKHHNEV2F/6iMV8Kh8M/wJvNPgHvnvkfNMwu8aaAHmcl2SU8dM5DlDeWM2nEpKEf\nsHoNxNqhrQGaaxXQRXZDfvC+KdntkPSmgB5nAQswNm8sY/PGxueAE4+FGT/3nlcvGB+fY4qISNpR\nQE91eaVw3DeS3QoRGYJwOJwNhIERwDagrKysrCW5rZJ0o0lxIiIJEg6H9wqHw7cBFcBTwJ/914pw\nOHxbOBwe9LCbma0zs8V+mtQyv6zEzOab2Sr/tdgvNzO73U9T+p6ZHdnpOLP9+qvMbHan8qP846/2\n97XhOocMjgJ6gjnnaKippr6qkva21r53EJG0EA6HDwMWA98E8vF654X+a75fvsSvN1in+mlSw/7n\n64HnnHNTgef8z+ClLp3qf12Gn9HMzEqAH+IlSzkG+GFHgPbrfK3TfjOG8RwyCAroCdZYW8OD13+b\ne751KU11dclujogMg3A4vBfesqbF9LxSXBZQBCwYSk+9i3Px0pDiv36mU/kfnOc1vDXUxwHTgfnO\nuWo/K9t8YIa/bYRz7jV/idY/dDlWos8hg6CAPgxisRjg2B0W8RGRuPgukNdnLW+xmjy//kA54J9m\n9qaZXeaXjfFzpQN8BIzx329PeerrSFXaW/nGbsqH6xwyCJoUl2B5hUVc/Ivf4GIxsvMLkt0cEUmw\ncDicA1xK34lZOmQBl4bD4e8PcKLcSc65TWY2GphvZis6b3TOOTNLaC9iOM4h/aceeoJZIEB+cQkF\nI0vJDIWS3RwRSbyjgNgA93F4s+D7v4Nzm/zXrXirzh0DbOnIuOa/bvWr95TatLfyCd2UM0znkEFQ\nQBcRia8ReAF6IJy/X7+YWZ6ZFXS8B87ESwTTObVp15SnF/sz0Y8D6vxh83nAmWZW7E9UOxOY52/b\nZmbH+TPPL6b79KmJOocMgobcRUTiaxsDT+Ri/n79NQZ43H/KKwj82Tn3rJm9ATxsZpcAHwJf8Os/\nDXwKWI2XFOYrAM65ajP7MV7OcoCbnXPV/vtvAvcDOcAz/hfALcNwDhkEZVsTEemffgVpfxGZCrxH\n0/qrHhitxWZkKDTkLiISR35Qvocd2dX60gbco2AuQ6WALiISf/8NNNL3vXTn1/ufhLdI0p4C+jCr\nb6tnWeUyVtWsojHSmOzmiEgClJWVbQZOBWrpuafe5m8/1a8vMiQK6MPso8aPuOCpCzj/ifOpa9XK\ncSLpqqys7F1gGnAn0IA36a3Of633y6f59USGTLPch1lOMIegBcnMyCTDMpLdHBFJIL/nfU04HP4+\n3lrmo/Ce235d98wl3jTLfZi1tLdQ21pLwAIUh4rJzMhMdpNEpH8GnAksHA6HgM8D1wGHABEgE1gK\n/Bx4pKysTFmbJC405D7MsoPZjM0by+jc0QrmImksHA4fA2wG7sIbeje8ZV7N/3wXsDkcDh890GOb\n2QF+2tSOr21m9h0zu8nMNnUq/1SnfW7w05SuNLPpncpn+GWrzez6TuWTzGyRX/6QmWX55SH/82p/\n+77xPocMjgK6iEic+UH6eaAE6CmJQ4G/fcFAg7pzbqWfNvVwvKVmm/CWfwW4rWObc+5pADM7GLgQ\nb5RgBnCXmWWYWQbevfyzgIOBi/y64I0g3OacmwLUAJf45ZcANX75bX69eJ9DBkEBXUQkjvxh9mfp\nX7Y1/HrP+vsNxunAB865D3upcy4w1znX6pxbi7ea2zH+12rn3BrnXBswFzjXX4r1NOBRf/+uaVI7\n0qc+Cpzu14/nOWQQFNBFROLr83j3yQciC/jcIM93IfCXTp+vNLP3zOw+f+10GHhq05FArXOuvUv5\nTsfyt9f59eN5DhkEBXQRkfi6jp6H2XuSD1zfZ60u/HvOM4FH/KL/BfYDDgfKgV8O9Jiy+1JAj7Pa\nlloWblzI46sep7qluu8dRCRthMPhDLx7yINxiL//QJwFvOWc2wLgnNvinIs652LA7/CGu2HgqU2r\ngCIzC3Yp3+lY/vZCv348zyGDoIAeZ4srF/PN577JD175AXe9fRet7QN8IqWpBlb/Cza/A21aSU5k\nN5OP92jaYLQzsIQuABfRabi9I0+57zy8lKrgpTa90J+hPgmYCryOlwFtqj/bPAtv+P4J5z3PvIAd\ntwG6pkntSJ/6OeB5v348zyGDoIVl4qyqpWr7+4rmCtpdOyEGMNelqRIePB8CGfCdJZDV/byaprpW\n2iMxsnKDZOfq8TeRFNHAwO+fdwj6+/eLnwf9DODrnYp/YWaH460Rv65jm3NuqZk9DCzD+8PhCudc\n1D/OlXg5yzOA+5xzS/1jXQfMNbOfAG8D9/rl9wJ/NLPVQDVegI73OWQQtLBMnFW3VPPbd3/LlsYt\n3HDsDYzNGzuwAzRs8QJ6wXj4zJ2QN2qXKk31bTzxq3eo2tTAmZcewtTwmDi1XkR60d/0qYvxnjMf\nqCVlZWUfG8R+IoB66HFXkl3Cd8PfpT3WTm5m7sAPkD8Gvvw4WAbklnRbxcUcjbXeUP62Kq0eKZJi\nfo63aMxAJsbVA7ckpjmyp0hYQDezbOAlIOSf51Hn3A/9eytz8R5ZeBP4sv9sYtrIysgiK2MICx51\n0yvvLKcgi89/P0xNeSOj9xkx+POISCI8Avx6gPtE2PE8tsigJHJSXCtwmnPuMLxHKGaY2XFoZaAh\nCwSMESNz2GdaKTkFWilRJJX4a7PPwMtz3h+NwAyt6S5DlbCA7jwdEzwy/S+HVgYSkTRXVlb2Bl4+\n9Gq84fTu1PvbT/XriwxJQh9b89fxfQcvXeB84AO0MpCI7AH8ID0euBzv8TGHN7TugMV++XgFc4mX\nhE6K8x9ZONzMivASBxzY333N7DLgMoC99947MQ0UEUkgfxj9T8Cf/EVj8oGGsrKyaHJbJuloWGa5\nO+dqzWwBcDz+ykB+L73HlYGcc3cDd4P32NpwtFNEJFH8IF6X7HZI+krYkLuZjfJ75phZDt4CCMvR\nykAiIiJxl8gev0GIjAAABvtJREFU+jjgAT8XbgB42Dn3pJktQysDiYiIxFXCArpz7j3giG7K17Aj\nYYCIiIjEgZKziIiIpAEFdBERkTSggC4iIpIGFNBFRETSgAK6iIhIGlBAFxERSQMK6CIiImlAAV1E\nRCQNKKCLiIikAQV0ERGRNKCALiIikgYU0EVERNKAArqIiEgaUEAXERFJAwroIiIiaUABXUREJA0o\noIuIiKQBBXQREZE0oIAuIiKSBhTQRURE0oACuoiISBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iI\npAEFdBERkTSggC4iIpIGFNBFRETSgAK6iIhIGlBAFxERSQMK6CIiImlAAV1ERCQNKKCLiIikAQV0\nERGRNJCwgG5mE81sgZktM7OlZvZtv7zEzOab2Sr/tThRbRAREdlTJLKH3g5c65w7GDgOuMLMDgau\nB55zzk0FnvM/i4iIyBAkLKA758qdc2/57+uB5cBewLnAA361B4DPJKoNIiIie4phuYduZvsCRwCL\ngDHOuXJ/00fAmOFog4iISDoLJvoEZpYPPAZ8xzm3zcy2b3POOTNzPex3GXCZ/7HBzFb2capCoG6A\nzevPPr3V6Wlb1/Lu6nUu67q9FKjso10DlcrXp7uy3j4n4vr01K547LMnX6P+1h/oNUrG9XnWOTdj\ngPuIDB/nXMK+gExgHnBNp7KVwDj//ThgZZzOdXci9umtTk/bupZ3V69zWTf1yxLwb5Gy16c/16zL\n9Yr79dE1Ssw16m/9gV6jVL0++tJXMr8SOcvdgHuB5c65WzttegKY7b+fDfw9Tqf8R4L26a1OT9u6\nlndX7x99bI+3VL4+3ZX15xrGm65R3wZ6jv7WH+g1StXrI5I05ly3I95DP7DZScBCYDEQ84u/j3cf\n/WFgb+BD4AvOueqENGI3ZWZlzrlwstuRqnR9+qZr1DtdH0lHCbuH7pz7N2A9bD49UedNE3cnuwEp\nTtenb7pGvdP1kbSTsB66iIiIDB8t/SoiIpIGFNBFRETSgAK6iIhIGlBAT3FmdpCZ/dbMHjWzy5Pd\nnlRlZnlmVmZm5yS7LanIzE4xs4X+z9IpyW5PqjGzgJn91Mx+Y2az+95DJPUooCeBmd1nZlvNbEmX\n8hlmttLMVpvZ9QDOueXOuW8AXwBOTEZ7k2Eg18h3Hd7jkHuMAV4jBzQA2cDG4W5rMgzw+pwLTAAi\n7CHXR9KPAnpy3A/stISkmWUAdwJnAQcDF/nZ6TCzmcBTwNPD28ykup9+XiMzOwNYBmwd7kYm2f30\n/+dooXPuLLw/fH40zO1Mlvvp//U5AHjFOXcNoJEw2S0poCeBc+4loOtiOscAq51za5xzbcBcvF4D\nzrkn/F/Gs4a3pckzwGt0Cl6K3i8CXzOzPeLneiDXyDnXsbhTDRAaxmYmzQB/hjbiXRuA6PC1UiR+\nEp6cRfptL2BDp88bgWP9+52fxfslvCf10LvT7TVyzl0JYGZzgMpOwWtP1NPP0WeB6UARcEcyGpYi\nur0+wK+B35jZycBLyWiYyFApoKc459wLwAtJbsZuwTl3f7LbkKqcc38F/prsdqQq51wTcEmy2yEy\nFHvE0ORuYhMwsdPnCX6Z7KBr1Dddo97p+kjaUkBPHW8AU81skpllARfiZaaTHXSN+qZr1DtdH0lb\nCuhJYGZ/AV4FDjCzjWZ2iXOuHbgSL3/8cuBh59zSZLYzmXSN+qZr1DtdH9nTKDmLiIhIGlAPXURE\nJA0ooIuIiKQBBXQREZE0oIAuIiKSBhTQRURE0oACuoiISBpQQJeUZ2avJLsNIiKpTs+hi4iIpAH1\n0CXlmVmD/3qKmb1gZo+a2Qoz+5OZmb/taDN7xczeNbPXzazAzLLN7PdmttjM3jazU/26c8zsb2Y2\n38zWmdmVZnaNX+c1Myvx6+1nZs+a2ZtmttDMDkzeVRAR6Z2yrcnu5gjgEGAz8DJwopm9DjwEXOCc\ne8PMRgDNwLcB55z7mB+M/2lm+/vHmeYfKxtYDVznnDvCzG4DLgZ+BdwNfMM5t8rMjgXuAk4btu9U\nRGQAFNBld/O6c24jgJm9A+wL1AHlzrk3AJxz2/ztJwG/8ctWmNmHQEdAX+CcqwfqzawO+Idfvhg4\n1MzygROAR/xBAPBy0ouIpCQFdNndtHZ6H2XwP8OdjxPr9DnmHzMA1DrnDh/k8UVEhpXuoUs6WAmM\nM7OjAfz750FgITDLL9sf2Nuv2ye/l7/WzD7v729mdlgiGi8iEg8K6LLbc861ARcAvzGzd4H5ePfG\n7wICZrYY7x77HOdca89H2sUs4BL/mEuBc+PbchGR+NFjayIiImlAPXQREZE0oIAuIiKSBhTQRURE\n0oACuoiISBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iIpIH/D7AiKzgsi64wAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -4555,8 +4562,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3c58ebb2-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3be06426-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_7a0e5ae1fa" + "window[\"0869805e-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07fcfa4c-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_e82b5da0b8" ], "text/plain": [ "" @@ -4573,8 +4580,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3c59f516-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_b99be0441d" + "window[\"086b0730-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_fbb9270362" ], "text/plain": [ "" @@ -4591,8 +4598,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3c5ad8c8-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_3\");\n", - "//# sourceURL=js_66b1ac991b" + "window[\"086b5578-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_3\");\n", + "//# sourceURL=js_499e4af1c5" ], "text/plain": [ "" @@ -4609,8 +4616,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3c5b17c0-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3c5ad8c8-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_7e187540f3" + "window[\"086ba208-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"086b5578-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_921bc3a752" ], "text/plain": [ "" @@ -4627,8 +4634,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3c5b4bbe-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(3);\n", - "//# sourceURL=js_0009773b0c" + "window[\"086bed26-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(3);\n", + "//# sourceURL=js_f5fbdd0fac" ], "text/plain": [ "" @@ -4644,9 +4651,9 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVdXV+PHvur3MzJ1eaFKkiLQI\nYkEFLKioscYSEzUqRmMseRNjiUaNRjEafTVq3thJ/Gk0ahQrKvYOigXpHQaYXm8v+/fHuQwzMAwD\nzAUc1ud5fLjllH1GhnX2PnuvJcYYlFJKKfXDZtvVDVBKKaXUjtOArpRSSnUDGtCVUkqpbkADulJK\nKdUNaEBXSimlugEN6EoppVQ3kNGALiJXiMhcEfleRK5Mf5YvIm+JyOL0n3mZbINSSim1J8hYQBeR\nYcAUYCwwEjheRPYGrgFmGmMGAjPT75VSSim1AzLZQ98H+NwYEzLGJID3gVOAE4Fp6W2mASdlsA1K\nKaXUHiGTAX0ucKiIFIiID5gM9AZKjDHr0tusB0oy2AallFJqj+DI1IGNMfNF5A7gTSAIfA0kN9nG\niEi7uWdF5CLgIoChQ4eO/v777zPVVKWU6gzZ1Q1QqiMZnRRnjHnUGDPaGHMYUAcsAipEpAwg/Wfl\nFvZ9yBgzxhgzxuv1ZrKZSiml1A9epme5F6f/7IP1/PwpYDpwbnqTc4GXMtkGpZRSak+QsSH3tOdF\npACIA5caY+pFZCrwrIhcAKwETs9wG5RSSqluL6MB3RhzaDuf1QBHZPK8Siml1J5GM8UppZRS3YAG\ndKWUUqob0ICulFJKdQMa0JVSSqluQAO6Ukop1Q1oQFdKKaW6AQ3oSimlVDegAV0ppZTqBjSgK6WU\nUt2ABnSllFKqG9CArpRSSnUDGtCVUkqpbkADulJKKdUNaEBXSimlugEN6EoppVQ3oAFdKaWU6gY0\noCullFLdgAZ0pZRSqhvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehKKaVUN6ABXSml\nlOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQMa0JVSSqluQAO6Ukop1Q1oQFdKKaW6AQ3oSimlVDeg\nAV0ppZTqBjSgK6WUUt2ABnSllFKqG9CArpRSSnUDGQ3oIvIbEfleROaKyNMi4hGRfiLyuYgsEZFn\nRMSVyTYopZRSe4KMBXQR6QlcDowxxgwD7MCZwB3APcaYvYE64IJMtUEppZTaU2R6yN0BeEXEAfiA\ndcDhwHPp76cBJ2W4DUoppVS3l7GAbowpB+4CVmEF8gbgS6DeGJNIb7YG6JmpNiillFJ7ikwOuecB\nJwL9gB6AHzhmG/a/SERmi8jsqqqqDLVSKaWU6h4yOeR+JLDcGFNljIkDLwDjgNz0EDxAL6C8vZ2N\nMQ8ZY8YYY8YUFRVlsJlKKaXUD18mA/oq4EAR8YmIAEcA84B3gdPS25wLvJTBNiillFJ7hEw+Q/8c\na/LbV8B36XM9BFwN/I+ILAEKgEcz1QallFJqTyHGmF3dhq0aM2aMmT179q5uhlJblGxuxkQi2LKz\nsbndu7o5KjNkVzdAqY5opjildlCitpaKP9/Gyp/9nOZ33yUVCu3qJiml9kAa0JXaQdFFi2j473+J\nrVhB+W9/R7K5eVc3SSm1B9KArtQOsufnb3ydl4fY9NdKKbXzOba+iVKqI86yMno/+gihWbPIPeUU\n7AUFu7pJSqk9kAZ0pXaQPTubrHHjyBo3blc3RSm1B9OxQaWUUqob0ICulFJKdQMa0NUeySSTu7oJ\nSinVpfQZutqjGGOIrVxJzT8ewjN0KDknHI8jN3ez7RLV1aSiUWxeL45Ws9iVUmp3pQFd7VGS1TWs\nOvc8EhUVNPz3vzh79CD7iMPbbJOormbVL84nungxvnHj6PmXO3DozHWl1G5Oh9zVHsVgSDY1tbxv\nLwlMoqaG6OLFAIQ+/phUOLzT2qeUUttLA7rao9gDAXo/+ACuvfem8M+3khrzIxZ99jFNNdUkkwkA\nHPn5LWvJs487DrHZSNTX78pmK6XUVmlxFrXHMfE4yWCQ9evW8MzN14IxOD1ezvvrg+QUFmFSKZI1\nNSSbmjDRKGt/fzX23Fx63HUXzpLiluMk6uoIf/kl2O14R43CkZfX5jyJ2lpMMok9Oxubx7OzL1N1\nPS3OonZr2kNXexxxOsHnY84bL0P6hjYeCbPim6+s7202HEVF2HJyWHv1NUQXLyY0axY1Dz/Ehhvg\nVDRKzSOPsObXl7Hmkl9R//S/MYlEyzniFRWsnjKF5Sf8mOBnn5GKRnf+hSql9iga0NUeye5w0HPI\nsDafFfft33ajRAJ7q163PS8fEauTZmIxIvPmt3wXnjsXE4+3vG+Y/jKR7+eRrK9n3R+uJ9nYmIGr\nUEqpjXSWu9ojic3GkHGHkYhFWfXd14w48hhyS8rabuNyUfz7q2h4/gXseblkTzqKSCyJx2XHlpVF\n8W9/y+oLLwSbjaIrr8Dm9bbs6+7fr+W1q3dvxK6/akqpzNJn6GqPE6+ooP7ZZ3GUlZE16SiSdgce\nv7/dbWPl5TS9+y4SyMU9egzheBJvUQF+nweTSJCsq8NgTaQTu71lv2R9PaE5XxNbuZKcyZNxFhft\npKtTGaTP0NVuTbsNao+SqKlh9ZQpRBdZy9KKqmsouGjKZtslm5owkQj2vDzqJhxDXlU5qycfi9jt\n9H7ySdhnCOJw4ChqP1Dbc3PJnjghk5eilFJt6DN01a3Ekyk6GnUyqRSx5Sta3kcWLGgzmQ2s2ekV\nd97J8jPOpOYfD1FmT9Dwp5sxkQipYJC6Jx7X1LFKqd2OBnTVLRhjWF4d5Hf/+YaHPlhGQ3OIptpq\nGqsqiYXDJKprSNTUWM++r/odALasLAovuRibywVYy9Biq1aRamom1dBIYu1aav7xD2x1tXgOOrjl\nXP6Dx7UZXldKqd2BDrmr3UYqZVhTH+bN79dzQP8CBhT68bk791e0ujnKWQ99xvrGCIsrmjm6OMqL\nt15HoLiU0y/5Hyp++zsQodf99xM49VSyJ00Cl4t6h4/Gxgg5xKm5/XYap7+MuFz0uu8+4qtXE5k3\nD0QonnIBgQmHYcvJIVjWhy+W19IcTTCsZw7F2brGXCm162lAV7uN6uYoJz/wMTXBGHab8N7vJnQ6\noBsDwag1dD6iZw7z35lBMpFg8H5jqb37npZUrpV33kmPO/+Cs7SUpZXNnPX3j4jEkzxx3hhy166z\njhWLUf/fF/BPnID7wAOxFRbiyMvDMXYstcEov/n313y4uBqAsoCHly4dR3GOBnWl1K6lQ+5qt2GM\n4fZThvPX00fSO89LdXPnk7Hk+pw8et4YhpblUBLwMOjgQ0GESDiEo1fPlu2ce/VBHA7iyRT3zlxM\nZVOUxkiCP7++EPvxJ7Vs59pnKBxxOL4zf9Km2lpTJNESzAHWNUT4dGnNDl65UkrtOO2hq91CLJFk\nSVWQa174jtIcD3//2WhKctyd3t/lsLNfnzz+dcFYXA4bbhPnwvseJpVM4Xe4cPYdgM1hI/uoo6zZ\n6cYwsncu079ZC8DQEj+B8RMJ7P8yEgzhKy0l7nHjjMYwtbWY9LI0m2y+csnt1PtipdSupwFd7RYa\nwnGufeE7aoMxaoMxZsxdz5VHDdq2g9TVkZNKYvP6sGdn4fL6CDfFmP7gtzhcQ8AYxgWdFBWAiHDK\nj3oyoNBHKBxjTO8cpt9xPVUrlzPy8KM5+NQzsVdUseKC8zGJJH2e/BeOvDz8DjcnjerBi19bNwKD\nSrIYvZfWS1dK7Xoa0NVuwWm30b/Iz6raEACDS7O3af94ZSWrzj2X2IqVlFxzDYHTTsXu95NKGapW\nNZFKWkvZasqbKepjHTvP7+KQYidNH31ObTBA1crlAHzzzgwOOPUMav76VxKVVeSecTrRhYuo/eQT\nnD17csMZZ3PZ4QOJJJKUZHsozO78SIJSSmWKjhWqHVLVFKW8LkzNNjzvbk+uz8VdPxnJ7acMZ9r5\n+3PQgIJt2j/02efW+nJjqLzrLlIh68bA6bYz7tS9EYG8Uh+999mkN22zE/7yS/L36ovd6QSgsPde\n2OwOXAMGWG079VSS+blUjR7B+p7FONatpF++h317BNoE82RjI7HycuIVlaRa5XVXSqmdQXvoartV\nNUU57/Ev+H5tI+MHFXH36SMpyNr+3mphlpuzxvbZ5v3qglHcgwaBzQapFJ5hwxCH9VfbFm6iZ3Au\nZ/2yHyYcwpVsBja20ZEboPiKK4iHQ/zirgepr6qgsPdeOJqa8R90kJUJriCfOa99wNdvvwHAgSee\nxoH9B4Bj469PKhSi/rnnqPzLnYjPR79n/o174MDt/lkopdS20oCutlttMMr3a60qYu8vqiIYihJI\nRnAEAp0+RiiaIJZMkeNxYrN1nCo73NTI+iWLACgdMBBvToDKxgjnPT6LcT19/Pq/L0H5avwjhrfU\nJjfRKI3THiVRW0di7Vrcjz+G86CD2hzXkZ+Pg3y8QKDUKtBS+fg0ah55BO/IkbgPPoj6qsqN112x\nHmNvO7iVDIao+39PWecMhWh8/XWKNKArpXYiHXJX2y3P56LAb2VZ61foR1atoPHV1zCJBOX1Ye6c\nsYA35q6jPhRrd/+a5ii3vjqfC6fNZt66RpLJ1BbPFY/FmP3yf3lh6k28MPUmZr/6IolYjI+WVDNv\nXSMPz17P0c+vYPneo6hzt33+HjjxJMpuupGCX12Cq2/fTl2b/6ADIZkk/NVXBF95lfE/u4Dc0h7k\n9+zFIWedg8PparO9zesh++ijrTcOB1kTJ3bqPErtKiLyYxG5Zle3Q3Ud7aGr7VaY5ea1yw9h7Zoq\niiVG+De/xvTsSXLyifzskS9YXh0E4OkpB3DQgMLN9n9/URVPfbEKgPOfmMUrlx2yxQQtiViU8oXz\nWt6XL5xHIhZlUMnG4F0a8LK0KthyjERNDat/eTHRhQsB2Ovpp3AUWu2INDeRiMdxuNztVlrz7Lsv\n/V95mUR1Ne5Bg7Dn5XHmzXcA4M/N22x7e1YWBRdNIfe0U61Z9rmdH6VQakeJiGBVz9zyXfEmjDHT\ngemZa5Xa2bSHrrabzSYU53gYFKqg8fSTia9ZQ/5552JsNiobIy3brW+ItLu/z7UxH7rXZUfaWeO9\ngTNlOOiUM7A7HNgdDg487mQcKcNeBT5euewQbj1pGDccP5TvyhvwOK3jmlSK6JIlLceILl6MOJ2E\nGht4+9EHeeyKi/jixWcJNzVtdj57djbuvffGf+CBVmlUEfy5ee0G8w0cubm4+/fHWVbapja6Upkg\nIn1FZKGI/BOYC/xcRD4Vka9E5D8ikpXebrKILBCRL0XkPhF5Jf35eSJyf6tjvSMi34rITBHpk/78\nifQ+n4jIMhE5bVddr9o6Dehqh4gI3uHD2fvtt9h75tv49t+fHK+TB87ejz75Po7cp4RDB7VfYnRs\nvwL+MHkIJ4/qybRz9iPflmh3u2RzM7WPP4Ht6Wc555qbOf+uB3G9ORMTiZDtcTKsZ4Afj+rB3rku\nfjtpEIFUlNiaNZhEwirEIoKrb1+yxo8HIFhfx8JPPiQejTBr+vPEQsGM/XyUyrCBwIPAeOAC4Ehj\nzH7AbOB/RMQD/AM41hgzGmj/lxH+BkwzxowA/h9wX6vvyoBDgOOBqRm5CtUldMi9mwo11JNKJnG4\nXHiytm1N97ayeTzYSktb3nuAgwcU8PwlB+Gy2wj4XO3ulxMLcuJ3b3BMVTXRRz8mcust+A84YLPt\nUqEQ9f/+N8m6OppffInCy36NxBMtM9mToRC2OV9T/+yz5J3zc+I5OaTqGzDJBN6xY+n33xeIV1aS\nbGjEUViIx5+F3eEgmUjgycpGYjFS4fAu61WHGmM01UbwB9x4s53YHR3fZ4caoyyeXUlWrpueg/Lw\nZDl3UkvVbmilMeYzETkeGAp8nB7pcgGfAkOAZcaY5entnwYuauc4BwGnpF//C/hLq+9eTA/lzxOR\nkgxcg+oiGQvoIjIYeKbVR/2BPwL/TH/eF1gBnG6MqctUO/ZEzXW1/OeW66gtX8N+k0/koFPPzHhQ\n35TLYacou+MSoyaRoO7xJ0g1NwMQ+vrrdgO6zeMhe9Ik6p95BnG5yJo4EWdpGY58a/g71dDA6ilT\nIJWiYMqFrL/xJsJffYWzVy96/e0+mt58i+oHH8QzbF96P/QQ3uwczr5xKqu/ncNe+wyj4Y478d74\nx10S0ENNMV65/xuqVjXhdNs568YDyM7fcqGXSDDOzGnzEZvQb0Qh9VUhSrO2/3l9uDlGsD6Ky+vA\n43fi8ug9/g/MhuElAd4yxpzV+ksRGdUF52idZKLjpShql8rYkLsxZqExZpQxZhQwGggB/wWuAWYa\nYwYCM9PvVRdaM+87asvXAPDVay8Ri7T/DHtXs/n9FF15JQCOoiICxx3X7nb2nByKrryC/q+9yoA3\n38Q9YEBLMAdIhcOQSs8FMobwV18BEF+zhmRTM9GVKwFw9u6DuFzYUimyxMGgsj6465vIPeVkxL1r\nsr2lEimqVlnP8OPRJHXrOh7+TyUNeSU+hhxYyjczVzNnxkpCTe2vItiaWCTBrFdW8Myts3jy+k+p\nKW/eruOo3cJnwDgR2RtARPwiMghYCPQXkb7p7c7Ywv6fAGemX58NfJi5pqpM2Vm340cAS40xK0Xk\nRGBC+vNpwHvA1TupHXuE/J69W15nFxRid+yc/81NkTjfrmng4yXV/GRMb/bK93W4ttzu8xE46USy\njzoSsduxF2w5O5wjL69lbflmx8nLI/f002l46SVMMol70CCiixZhLyjA1ac32RMn4PvRKHKOPRZS\nKeqefhpxOEk2N1Pz0EN499uPnqO6oiOz7exOO4PGlrDoiwqyCzwU9MrqcHu338Hwib155tYvrBuA\n9SH2Gl7N0HE9tvnc0VCClXOtSnHGwKq5NZQNyN2u61C7ljGmSkTOA54WkQ13p9cbYxaJyK+AN0Qk\nCMzawiEuAx4XkauAKuAXGW+06nJijMn8SUQeA74yxtwvIvXGmNz05wLUbXi/JWPGjDGzZ8/OeDu7\ni2g4RN3aciqWL6HfqDHkFG5pHkzXWlrZzBF3vw9Ans/JjCsP2+E64clkippgDBFrmdyWZsInGxpI\nxWIgQmL9elKNTdj8fnA68Q7dB4BEbS2JmhpMJAIIK37yEwDE5aL3o4/g33//HWrr9go3x4hHkzgc\nNnyBrY8UBBuiPDd1Ns111kjo5F8Np9+Ibft/HGqMsXj2elJJ+OT5Jbi8Dk67ejR5pZsv4VMtfpDD\nzSKSZYxpTv97+wCw2Bhzz65ul+p6Ge+6iYgL+DFw7abfGWOMiLR7RyEiF5GevNGnz7anA92Tub0+\nSgcMpHTAzs1UVtcqgUxDOE6qg3vFumCMeDKFz20ny93+pK5UyjB/fRPnPvYFLoeNJy84gLzsGEmT\nJNuVjcex8WbBHgiQqqrChMOsOP0MxG7HxOMUTJmCd+g+JOrqWHvNtQQ/+ADx+ej/0os4yspwnHwa\nqWNPYIXHT1kwRr6//Ql82yLUFMOkDE6XHZd3679i3iwX3o475m34clyc9D8/4qsZqyjqk01p/21/\nhr5mQS0fPbuEMZP7csrv9iMr34M/sOPXrnZLU0TkXKyJcnOwZr2rbmhnLFs7Fqt3XpF+XyEiZQDp\nPyvb28kY85AxZowxZkxR0c7pYarOM4kE8cpK4uvXk0wXQulflMVPx/ahX6Gfe84YRfYWJljVNEf5\nzbNfM/7O93jys1U0htsvZNIUTfDnV+dTE4yxriHCX99ayBNzn2TS85OYtX4W8eTG/RJVVaw88yya\nZs4kZ/JkTDyOuFzkTD7Wam88TvCDD6zXoRDhb7+l7zP/Zsn4Ezji0W857oFPuf+dxTRHdqyoSrAh\nyvT//Zp/3fApCz5dRzTc/lK8HSEiBIp8TPjpYIYd1hNv1tYDcSIep279WuZ9+C6NVZXkllgTAGe/\ntoJ3n1yA3SHY7LqKtTsyxtyTns801BhztjEmtKvbpDJjZzxcPQtrqcQG04FzsdYzngu8tBPaoLZD\nsqmJZGOj9Xw7ECAkTkLxBH6XA/uKZaz86U9JhcP0+MsdZE+aRL7fxXWThxBJpMhyO1oSvGxqaVWQ\n9xZWAXDv24s5fUyvdrdzOWwMLsni02XWc96hZVnkuHNIpBL8bc7fGJoziIIcaxVNKholXl5O1f/e\nS9mtt1B48S+xZWdjz7We5ojTiX/iRILvvovN78M7YgRSWMir73zbcr4351Vw8YQBZHm2fxlY5cpG\n9jtzb4Imhd/lIJlIkqlfM9lK7vvWIk2N/POqy0jEonhzAvx86n1MvmQ4Vaub2efgMnw5WgJWqR+6\njAZ0EfEDRwG/bPXxVOBZEbkAWAmcnsk2qO2TisVoemMG6264ARwOima8zeNz63jp67WcsX9vTvM2\nkgpaM7Jr/vEQ/oMOwlZQQJbHydZGj0sDbuw2we+y88QvxvL0F6vwuRycOKoH+f6NgcXrtHPZ+H6M\n7pmNkxQjTD2pxR5igy+iOl6Po7oe0gFdfD6yjjmG5jfeoGbav+jxwP04izeO7Djy8ujx51tJNjRg\n8/tx5OUhNhtnH9iHV79bSzxpOPuAPmS5duxXwtPLz0VPzGJxZTMlOW6mX3oIvh06YteIBJtJxKxn\n7uHGBlLJBP1GltBvpI5+KdVdZDSgG2OCQMEmn9VgzXpXu7FUMEjdM+k0AokEDbEUD7y7FIC/vrmI\nH19xcMu22cccQ8zuI1ofJSGGqA3cHSSUsXLAH0pTJM60T1fw0tdrAVjfGOGqSYNxtBr6zXUJE+Nr\nqbzjLzQsXAjGcNYbr9JQvozUnO+h/2AA6h0+5p9xMXtfdBnrQkle/76eS4vbBitHfj6O/Lb10If1\nyOGD308kkTTkeJ343Dv2KxE3hsWV1vKvisYo9eE4JYEdmxjYFXw5uey9/0Es+2oWI486Fpd3d7jN\nUEp1Jc0iodpl8/nIOf44InPnWsvC8nMY2SuXb9bU43HacHvdlL72GqlQkFTPAUz/27fUlAcZdkQv\nVpU4mFcd5PdHDybP7yIcT9AQiiMIeX4nPpeDwaXZNIWijOnpZ8G6bBZWNLGyJkQyZaCpHrHZsOfk\nYPf5SFZVEV2woKVtUltP/PFnKJ56e8tnBrj27VXUBK2JeVcc0bkJgV6XA+8O9spb87sdHNg/n8+W\n1TKwOKtLJtl1BV8gwKRfXkYqmcTudOLxb8MsPKXUD8JOWba2o3TZWucl40nCTXGa66PkFHrx5Wx/\nQEk0NJAKBqly5/Dit+vYt0cAuwhFOW76F/pxOaxn5Mu/rea1Bzc+i5541SgmP/wp7181gV65Xj5e\nWsP5T8zCYRem/WIsg0qz8STCfPn6dKpXLmfYiWdx/1dNXHXMEIqaqll7zbXYfF7KbrsNZ3ExiZoa\nyn9/NeGvviL3tNMomHIh4nLhyN242jGZMiyqaOJPL8+jT76Pq44ZTGHWrnkuXN0cJRxL4nHaKcrW\nZ9PdyA9y2dqOEJFPjDEHb31LtTvQHno3E2yI8dTNn5OMpyjpn8Nxl4zAm719Qd0RCFBl8/Czf3za\nUgr1xUvHMaQ0p812eSU+RKzkJDmFHppiCXI81qS45liSB99bQiJlSKQM//x0JcePKKNP3QI+f8Ea\n0l+3ZBE3334vWRJjzR+ub8n0VnXf3yi76UYcBQX0/OtdEI8jbjf2nLbnB7DbhCGl2fzfz0fjskuX\n9rq31a66kVCqq4iIwxiT0GD+w6IBvZupWRskGbfSoFYsayTV0WLwTjAY1jWEW96vawgzqnfbPED+\nXBdn3jCWqtXNlOwd4OM1dbx82SEU+l0kDUwcXMxny2oBOKB/PvPWNdLDtjE9dCIWw24TsNuxZW0c\nCrYHAmCznqe37o1viYgQ8LadoR5PJmmKJPA47fjSQT6WSFIbjCNAINqEQ8AWCGBz7R7D46r76XvN\nqz8FbgP6AKuA61ZMPe6pHTmmiLwI9Maqh3SvMeYhEWkG/g5MBtYB12EVWukDXGmMmS4idqzJyRMA\nN/CAMeYfIjIBuAWowyrqMkhEmo0xG8qwXg38DEgBrxtjrhGRKVj5QlzAEuDnuixu19Eh924mWB/l\n+Tu/pKkmwr7je3Lgj/vj8XewDKu5AupWQqAX+IvA3nbbcDzBR4uruWn6PIaW5TD11OEUbGMPtD4U\nY3VdiFA0yZxV9dhtcNaIAj56+glq1qxi4rlTKOk/ELvDQbyqiuq//x17Vjb5556Do4N0sFsTjif4\ndGkt97y1iIP6F3DxhAHk+10sXN/EDS9+y//un034+mtI1tVReMXlBI4/Hnv2zi1io35QtmvIPR3M\nH4Y2Cx5CwJQdCeoikm+MqRURL1ZK1/FANTDZGPO6iPwX8APHYVVim2aMGZVO2lVsjLk1nSb2Y+An\nwF7Aq8CwDdXZNgR0ETkWuAGrPGuo1bkL0hOdEZFbgQpjzN+295rUjtGA3g2FGqIkk1amsg5LazZX\nwOOToWYJuLPhV59ZgX0T0USShlAcl8NG7hZmrm9NLJGkPhgnlkqR43GS43USi4RJxGJ4/FnY7BvX\nrJtUCkS2mOa1syoaI4yb+g6J9CjFfy4+iP375nPfzMWM9KfoeeMVxNOFWwAGzHwbV8+eO3RO1a1t\nb0BfgRUsN7VyxdTj+m53Y0RuAk7ecBrgaOB9wJPOwvknIGqM+bOI2IBaY0yuiDwHjMC6qQAIYC0t\njgE3GmMmtjrHhoD+V2CBMebhTdowHrgVyAWygBnGmIu395rUjtEh926oM/nAAYhHrGAOEG2C6sXt\nBnS3w05xjhVwm+tqWfz5JxT06k1x3wF4sjo3W9rlsFMcaJtoxuXx4vK0LVkajCaIxJNkexwtk+62\nlwA+l53GiJWtLSu9JO3IfUpIVleTrK5us30qpCOFKiO2lLt6u3Nap4fHjwQOSveY38Maeo+bjb20\nFOnSp8aYlIhs+PdegMuMMTPaOWbH5f429wRwkjHmm3RxmAnbei2q62iuxz2Zywd90nNecnpA8T4d\nbh5qbOClu27lncf/j//c8geqVi3v0ubUBqNMfX0BZz/yOe8sqCQU27G0qQV+F/+5+GBOH9OL+3/6\nI3rkWuvB+xf56d2niPxLL21NWjMhAAAgAElEQVTZ1jNy5GZr1JXqIqu28fPOCGAVtgqJyBDgwG3Y\ndwZwiYg4AURkUDoJWEfeAn4hIr70Pht+WbKBdeljnb1NV6C6nPbQ92T+Ijj9nxBrBqcXsks73DyV\nTNJQsb7lfd26tfQeOnyL24caG4hHItidTrLyth4s569r4l+fWUPglz41h4+vPrxlItv2sNttDC7N\nZuopI9qUcfU47Xhys0meegqBI48gFQ7jKCzcoef1SnXgOtp/hn7dDhzzDeBiEZmPVfP8s23Y9xGs\nIfqv0hXYqoCTOtrBGPOGiIwCZotIDHgNq/03AJ+nj/E5VoBXu4g+Q98DJJMJYuEwTo8Hh2P78pTH\no1Fi4RDrlyzizYf+Rl6Pnpxw5TX4c9uvUR5qbGDG/93Lsi+/ICuvgLNuvWurZVy/XV3Pjx/4GLCG\nx9/57fgOy69WN0X5ek09Jdlu+uT7Cfi2Pwe7Up2w3ZM6MjHLXalNaUDv5mLhEMvmzObrGa8y5JDx\nDDn4sG3OEhYNBVn42ccU5RXgXl8BZWW4e/TAX1yyxX3qK9bx6OVTWt4fOeVSRh5pVT6LhOIkokls\ndmlTFKQ+FOOdBZV8tKSaKYf2Z2BxVps0sK1VN0U557EvmLeuEYA7TxvBKfv1spa/KZUZ+pdL7dZ0\nyL2biwSbefW+O8EYyhd8T9/hP9r2gB4MsuSLTyjOK6Pinv8FwD14MH0ee3SLw9QOlwtPVjaR5iYA\nivfqbx0rFOebmauZ/eoKsgs8Vi3uPKsXnutzccp+vfjxqB44bB1P74gmUi3BHODVb9dx7PDSltrq\nxhgwBtnKcZRSqrvQgN7Nidiw2WykkkkQabM8bFs43W5StbUt75N1ddbysi3wBXI5+7a7WfzFp5Tt\nPZj8ntbs+UQ8xZevW8/Jm2oilC+uZ/DYts/uNwTzZEMD2Gztrg13O20MKsliUYVVCOX8Q/pRF4yz\ncH0ze+W64dn/R3zNGgovuQRnacdzA5RSqjvQgN7NebKyOe36P/PtW68x5JAJnV5m1prbn8XA/Q/C\nV1RKfP584hWV9Lj9tg6zt9lsdnJLytj/hFM2+Vwo7Z/DuiUNiE0o6t3+HJpYeTnrrr8Bm8tF6Z9u\nxllSQjCaIBhN4HPbKcxy8+SFBzB7RR298704bTYm3vUeiZTh8EGF3BgoJPTXu4ksWEjvvz+oM9iV\nUt2ePkPfQyQTcezbOSEOrPSssXAIRzyBDSstqzg7d7xoKERN+SrWLlzA4APHYXcFCDZE8eW4cHkd\nOF1tRw2SjY2UX/kbgp98AkDg5JNwX3cjd7yxkJkLKpk4uJhrJw9pk7HumVmruPr57wBr7fkbx5UQ\nPPenuPr2pdcT03AVFyH6fF3tGP0LpHZr+oBxD7EjwRysZ+K+QC6uwkIchYVbDebRRJRg3MpREayr\n4ekbruL9fz3CUzdcRcjEea+inodnraQuEt98Z5sN8W5MOOMePIR3Flbx7JdrqAnGeO6rNbw1r6LN\nLocOLKIkPcHuVxMGYFu+FFe/fhT9eSqz3q+lYmUjycSWHxEopdQPnQ65qx0Sj0awO13YWk0+qwnX\ncP+c+6kKV3HN2GuwhYLWBDWxMenci5i5oIqr//s9AF8sr+XBs/drk1LWnpVF6Y1/pCo3F5vHQ+4p\nJ7NuVtsAvq4h0uZ9j1wvr1x2KIlkCr/bgS9SSMOoA3jnlQrKl9Tw/cfr+dktB+HvbBY9pZT6gdGA\nvpswxhBqqCfYUE+kuYnckjJcXu82z0jfWRKxGOuXLWb2yy9QNnAIww8/Gk9WNhjDa8te47nFzwFQ\nH63nnkPvZu+xB1NUUkZebT2rExuTUlU0RognN+85O4uLKb35JgQQh4PTRjv556crqG6OUeB3ccb+\nvTfbp03tcW8eSz+qo3yJNRM+mTD8EB4vKbWzpFO9xowxn6TfPwG8Yox5LgPnegS42xgzr6uPrTbS\ngL4LVIermbFiBqW+UkaXjCbHlU3d2nJemHozjVXpnqgI+x56OIf9/Hx8OYFd2+B2hJubeO6WP5BM\nJFjx9ZcMOvAIvnlnGc11USYddxxPZz/N6qbV2MWO0+li0i8vw9bUzNrLLufMW+9g9vp8Khuj3HP6\nKPK3UPDF5tj417M0x8NrVxxKcyRBltvRYc3xSDBGPJpi6CE9CDbFWPVdDQef0Jv4nFkkRg3Dkdd+\nMhylMuamwGaJZbipYVcnlpkANAOfZPpExpgLM30Opc/Qd7qGaAN/+OgPTP1iKle+dyWfr/ucaHOQ\nZ266ZmMwBzCGNQvm0lhVSUNlBaGG+i5vSyqZ3O5eayoRJ5mwcq33HTWaJV/V8dUbK1n0+Xo+emIZ\nt4y+naP7Hs3UQ6eS68nFm5WNIxAg94zTSfzpBqbmrufps4ayb48c7FtIHtOazSYUZ3voX5RFcY6n\nTSrX1iLBOF+8vIJ/XvcJ/7l9NqOP6sMJJ2bheeEB1l9yEU0zZrS7n1IZYwXzh7Eqrkn6z4fTn28X\nEfGLyKsi8o2IzBWRM0TkCBGZIyLfichj6dKoiMgKESlMvx4jIu+JSF/gYuA3IvK1iByaPvRhIvKJ\niCwTkdM6OH+WiMwUka/S5ztxS+1Kf/6eiIxJv/67iMwWke9F5Obt/RmozWkPfSeLp+KUN5e3vF/R\nuIJh0d6EmxrbbGd3OJh82VW8/sDd1JavpmzgEE666np8gS0vFdsWjdWVfPKfp8gt7cHII47Gu42j\nAG6fnzEnnMKXr7xIbmkPErGNNwbxaIoheYP5c68/47a3ygSXsvPpoIMp+tMEBua5yfW7iCZTLF3f\nxPuLqpg0tIS9Cnw7VGUtmUjx3XtrAAg1xlg1v5a8V5+m+ZXp1vfBbS0mpdQOu422edxJv78N2N5e\n+jHAWmPMcQAiEgDmAkcYYxaJyD+BS4D/bW9nY8wKEfk/oNkYc1f6GBcAZcAhwBBgOrCl4fcIcLIx\npjF9s/CZiEzfQrs29Yd0LXU7MFNERhhjvt2eH4JqSwP6TpbrzuWWcbfw+w9+T4mvhJMHnszS19/Z\nfLvSHlSuWEZt+WoA1i1eQH3F+i4J6KHGBl6+eyrrly4CwJ8TYPgRR2/TMTxZ2Rxw8umMPu6k9IQ4\nLw0VYUKNMSb+bAi+bHebeuaN4TjXvziX1+daxV0ePPtHTB7eg7r6MCc98DGJlOH+d5bw7u8mUBrY\n/oBuswlFfbKpWtWECJT2C5B96a9IrF+Ho7SM3JM6rEGhVCZ0eflU4DvgryJyB/AK0AgsN8YsSn8/\nDbiULQT0DrxojEkB80Rky7mdrZGG20TkMKwyrT2Bkk3bZYz5sJ19TxeRi7DiTxkwFNCA3gU0oO9k\nDpuD4QXDeXry09htdvI8edT33HyCVyTYTKBVrnQRG/4OErlsC2MM8Vi05X0sEu7Ufom6Okwkgrhc\nOAoKrAl7rYouHn7OPqSSKTxZmz8TjyZSzG+VqnXOqnomD+9BbTBGImX17sPxJOF4cjuvyuLNdnH8\nr0dQvbqZnEIv/oALpyebXvfdB04ndt+mHSWlMm4V1jB7e59vl3QvfD9gMnArsHmvYKMEGx+vbrna\nkSXa6nVH6+7PBoqA0caYuIisADybtktEZhpj/tRyQJF+wO+A/Y0xdemJeFtrk+okfYa+CzjsDgp9\nheR5rMlZPQfvgzc7p802wbpa1i9ZyOTLr2LoYYdz2vW34M3umslxvpwAJ1x5Db33Hc7Qw45gn0Mm\nkEglqApXUR2uJpnaPKgmamtZd8MfWTLxcFZdOIVEdfVm27i8jnaDOUDA6+CPxw/F7bDRI+DhnIP6\nAlAW8HD4kGJsAqfs15OAt+369mRjI/GqKpJNTdtwfW767FtAbokPp8e6Z7UHAhrM1a5yHVa51NZ2\nqHyqiPQAQsaYJ4E7gYOAviKyd3qTnwPvp1+vAEanX5/a6jBNbH+50wBQmQ7mE0nfsLTTrv022S8H\nCAIN6RGAY7fz/KodmiluN2BSKWrXruG/d9xMQ6U1MU7ExtDxhzPhnAtxeX1t1nl3lUhzMzaHHafb\nw4LaBVz45oWICI9OepTB+YPbbBtbs4alRx7V8r7v88/h3XffbTpfOJagKZJARNosMbN66Slcdlub\n9eiJujoq776b5pnvkHP00RRefpnOUFe70vZniuviWe4icjRWwEwBcazn5QHgLqyR11nAJcaYaHrC\n26NYw/LvAWOMMRNEZBDWM/IUcBlwAa2WrYlIszGm3XWz6efmLwNZwGzgQKzgPHjTdhljZovIe8Dv\n0q+fAA4GVgMNwHRjzBPb+7NQG2lA301sWIceamwg0txEoLgUl9eHx+/f+s47KBgPctX7V/FhufW4\na0LvCfzlsL/gdWzM1havqmLlWT8lvmYNtuxs+r/6Cs7i4oy2KzRnDivP2jgRuO9z/8E7bFhGz6lU\nBzT1q9qt6TP03YSI4M/Nw5+783ugbrubEUUjWgL6yKKRuGxth86dRUX0ffopoitW4OzVG+mi5/kd\nsXk8Hb5XSim1kQZ0hcPm4MzBZzKyaCQiwpC8Idhtm880T+blsyhs5/43l3LYwDAnjurZZoi8qzl7\n9KDkumtpfGMGOSccj72oKGPnUkptTkSGA//a5OOoMeaAXdEe1TEdcledtr4hwvg73yWaLnLy6uWH\nsG+PzGaxS8VipEIhbH4/tk5Wd1MqQ3TIXe3WtIeu2jDGtFk/vvn37b/OFJvLhc2VuVEApZTqLjSg\nKwDCTY0smfUZ65cuYv8fn0ZuSelm2+T5nEw7f38efG8p4wcV0SvP286RlFJK7Qoa0PdAsWQMh82B\nTTYuhatcvpQ3/3EfACu/ncNZt9y12QQ9t9POyOJs/nTYILL9Tjw7eQSyqTbC0jmVFPfJoaCnH7dP\nh+CVUmoDDeh7kJRJsaJhBQ9+8yBD84dyysBTyPVYs9UjoY05zqPBILQznB5qivHyfd9QvboZgFOu\n2o+yAZmf7Q4QbIjywp1f0lxnJbI69erRlPbb/arQKaXUrqKZ4vYgtZFafjHjF8xYMYN7vrqHL9Z/\n0fJd76HDGX740ZQOGMTJ19yIJ3vzBFImZWio3Jgmtmp9A+FE59LG7iiTMi3BHKBu3aaJt5RS7RGR\nm0Tkdxk6dkslt92RiBSJyOfpKnSHtvP9IyIydFe0LRMy2kMXkVzgEWAYVp/vfGAh8AzQFysl4enG\nmLpMtkNZjDEE4xt74o2xjbnVfTkBJpxzIclEHLfPj82++bI1l9fB+HMG8tHTS8kr9eLum6A51twm\nAQ1AKhzGxGLYcnI6nGC3LRxuO2Mm92X2ayvIK/XRZ9/8Ljlua9FQnLqKEPUVIfrsk48vsOWa60pt\ni+HThm+WKe67c7/b1fXQdykRcRhjEhk+zRHAd+3VYxcRe3er057pHvq9wBvGmCHASGA+cA0w0xgz\nEJiZfq92ghxXDvcdfh/9A/2ZtNckDu99eJvvXV4v3uycdoM5gNNlJ6s/jL2ikFHn9SciLkyybbKX\nRG0tFXfcwZpfX0Z0wUJMcseKrWzg8TkZdWRvzps6jtMuHYgsn09szRpSoa7rqdeuDfL8HV8y84n5\nvPHwXMLNsS47ttpzpYP5ZvXQ059vly3UQ9+s7nmrXUaKyKcislhEpnRw3DIR+SBdI33uhl7tVmqY\nX9aqLvqQ9PZj0+ebk66vPjj9+XkiMl1E3sEqnbqluup9RWS+iDycPuebIrLFWbgiMkVEZqV/Hs+L\niE9ERgF/AU5MX49XRJpF5K8i8g1w0CZ12o9Jt+MbEZnZ0XXsrjIW0NN1cA/DyiGMMSZmjKkHTsQq\n7Uf6T61nuZO4HW72L9mfaYc/xo0jr8UT3/Yypbn+AG53GSfdP4sT7/uWf3+xjqZIvOX75nffo/7f\nzxCaNYvVv/wlydrarmu/z4mbMBU338TKM89i6dHHEFu5ssuOX1Pe3PK6dm2QVHL3z9GgfhA6qoe+\nvTbUHR9pjBkGvLGV7UcAh2MVcfljuohKe34KzDDGjMLqhH2d/vwPxpgx6eOMF5ERrfapNsbsB/wd\nq5IawALgUGPMj4A/0vZa9wNOM8aMZ2Nd9f2AiVilVzcM6w0EHjDG7AvU07awzKZeMMbsb4zZ0HG8\nwBjzdfrczxhjRhljwlj1IT9P/9w+2rCziBRh3XSdmj7GTzpxHbudTPbQ+wFVwOPpu5tHRMQPlBhj\n1qW3WY9VQ1dlUjIJTeuhZhmppnoWv/8+j102hel330aoob79XRJJmuujVK5sJNS4safqd/l5f0Et\njRFrpOyfn64kHNvYC5dW6VnF7YYuGnLfwMTjhD77rOW6Ql9+2WXH7jeyiMJeWThcNsb/dDAur84Z\nVV0iU/XQjxKRO0TkUGNMw1a2f8kYEzbGVAPvAmO3sN0s4BcichMw3Bizoczh6SLyFTAH2BerhvkG\nL6T//BLrUSpYhWL+IyJzgXvS+2zwljFmw53+hrrq3wJvs7GuOlj13TfcULQ+dnuGiciHIvIdVmnX\nLVWOSgLPt/P5gcAHxpjlAK3a19F17HYy+S+WA+tO7DJjzOcici+bDK8bY4yItNsNEpGLgIsA+vTZ\nkb/3irpl8MgREGkgft6HfPDkYwCUz/+eyhXL6Dty0wqH0FwX49+3fE4ilqKwdxYnXDYKX46V4GXc\nwEKcdiGeNBy5Twke58aevv/ggyi64goiixZRdMXl2AsKuvRSbF4vhb+6hOBnnyMuF1kTJnTZsf25\nbk64fBTGGFweO07Xto9gKNWOjNdDTw8Rd1T3fNN/Z9v9d9cY84GIHAYcBzwhIncDH9JxDfMNs1WT\nbIwptwDvGmNOFpG+WFXeNgi2et1uXfVNjrvh2B0lvngCOMkY842InAdM2MJ2EWPMtjwH7Og6djuZ\nDOhrgDXGmM/T75/DCugVIlJmjFknImVAZXs7G2MeAh4CK/VrBtvZ/c1+DCLWDbwEK8ktKaO+Yh0i\nNgLFmyeQAahc0UgiZqV4rV7dTDKeavmuf6GfD34/kaZIgsIsNzmtapg78vIo+OVFmEQiIxne7FlZ\nJE8/jjdHJynwFjCh0E9XnmXDTYtSXeg6rOHc1sPuXVEPvdYY86SI1AMXsrHu+etsPjx9oojcjjXk\nPIEtzF0Skb2w/t1+WETcWJ2yb9i8hvl7W2liAChPvz5vK9ttVld9O2QD60TEiXWTUL6V7Tf1GfCg\niPQzxiwXkfx0L72z17FbyFhAN8asF5HVIjLYGLMQa7bhvPR/5wJT03++lKk2qLSSjaNE/vf+wBl/\nfJlV87+nuG9//HntzxYv6Z+Dy+sgFk5QtncAu3Pj0xmP005ZwEvZFpaBi82GbCWYN0YbmVczj6X1\nSzmq71EU+zpXirUuUsdvP/gdX1dZI3GXR2q4YPgFbZLkKLU7+e7c754aPm04dO0s9+HAnSLSuh66\nF3hURG5h84D7LdZQeyFwizFm7RaOOwG4SkTiQDNwTjrAzcF6nrwa+LgT7fsLME1Ergde7WC7/we8\nnB4qn50+x/a4Afgc6zHv51gBvtOMMVXpUeEXRMSG1dE8is5fx24ho8VZ0rMMHwFcwDLgF1hDQs9i\n/cVeibVsrcOZU1qcZQeFauCbZ2DNFzD2IigbBa5N5+i0lUqmCDfFiUUSuH3Obeq5JpMJIk1N2J1O\nPP6sdreZXTGbX7zxCwCG5g/l70f+nXzv1peiVYWqOHX6qdRFrZWOR+91NLcdehsuu/asVcZpcRa1\nW8vorJ/0hIYx7Xx1RCbPqzbhK4ADLyEZOZdILE6yMYgnS3B5tvxIyma34c9142fb1mIn4nHWLZrP\n248+SEGvPhx5wa/wBaxscvWhGN+VNxCOJ2lybHx8uKZ5DclOPtbKcmVx9dirue6j68hyZnHxyIs1\nmCulFJ0M6Okp/VOwZhm27GOMOT8zzVJdToTVixfxwu03goEf//Za+u83dotrzrdXpLmJl++ZSrip\nkdryNQwYfQD7jrfu3z5fXssv//UlHqeNF359AGNKxrC8YTk3HXwT2a7OjZB5HV4m9p7IW6e9hU1s\n5Lnztr6TUqoN+YHWOReRB4Bxm3x8rzHm8V3Rnt1NZ3voL2HNdHwba7ah2oUSyQTVkWrKm8vZK2cv\nCr1bz7wYj0b5esYrmJQ1uW3OjFfoNXQEHr+/3e2b62pZ8f03+Pv1wJcToDirpFNZ32w2G77cPMJN\nVha6rPyNs9znr7M+i8RT/PbfS3n8gjux2ww5rhzcjs6PBPicPnzOjh8ZKKW2zBjzHTBqV7djWxlj\nLt3VbdiddTag+4wxV2e0Japdwfo65r73Fv5AHv1Hj8WXE6AmUsOJL55IKBGif6A/jx39GAXejYGz\nPlLPh+UfsrZ5LacMPIUiXxEOl4sh48azdLa16GDIwYfh9LQfRIP1dbw77SHKThzPpR9dhNvu5h9H\n/oN+uf222l5fIJdTr72Zb95+naI+/SjpN6Dlu9PH9Oblb9axtj7Mb44cRK47r82SN6WUUtuvswH9\nFRGZbIx5LaOtUW1Egs289dD9LP3SCsJHnH8Jo44+jvLmckIJK+XpsoZlxFJtU5R+WP4h131krYiZ\nvX42d42/i4AnQN+Ro7ngvkcwJoU3Owe7vf3//YlYlNxB/bh3/oPURqz5ig988wC3HdK5yWfZBYUc\ncsbPN/u8R66XZy46kBSGbI9Dg7lSSnWhzq71uQIrqIdFpFFEmkSkcat7qR2SSiZpqq1ued9QWQHA\nXjl7MTB3IAA/HvBjvPa2k9vWNm9ckVIRriCRrn/g8fvJLSklr7THFmefAzhcLogl6Z/dt+WzwXmD\ncdh2fA5lYbab4mwPXqdmYVNKqa6U0WVrXWVPXbZmUimqV6/k1fvuxJOdzfGX/77lmXRNuIZ4Ko7H\n7mmpab5BVaiKaz68hqpwFbcfcjtD8odgt9lbvnty3pMU+4qZ3H8yeZ7NJ5UZY2isrqQ+1sCs+q/J\n8mZzQI8D22wbDSdIxJI4XDbcrRLLKNWN6bI1tVvrdEAXkTysZPktKf+MMR9kqF1t7KkBHaygHmpq\nwGaz483O6fR+DZEGEiZBrju3JZjXRer4n/f+h9kV1s/yqjFXcc6+52zxGMl4HESwO9r2psPNMT57\ncRnLv6li79HF7H98P7xZ3WvpWHW4mpRJ4Xf68Tvbnzio9jga0Hciscpv/9QY8+B27LsCGJPOXb+j\n7fgTVp73t3f0WJnW2WVrF2INu/fCqr5zIPApVvUelUFis+EPbPvSrIBn8zRuSZMk4Arw8KSHcdqc\nhOIdlx61O9vveddXhJj3kTWs/9175Qw5uEe7AT2aiFIfrSeWipHjyiHg3kJqud3M+uB6zn39XNYF\n13H9gddzfP/jdVa92iHzh+yzWT30fRbM3yX10GXn1CHvCrnAr4DNAvrOvAZjzB93xnm6wrY8Q98f\nWGmMmQj8CKucnfoByXPn8Zsxv+HaD6/lvDfO4+vKr2mKNW19x004NpnM5nC033FZ1riMY184lskv\nTOap+U9t9QZid/He6vdYG1yLwXDvV/cSjAe3vpNSW5AO5pvVQ09/vt1E5Gci8kW61vc/RMQuIs2t\nvj8tXUgFEXlCRP5PRD4H/iIi+SLyooh8KyKfbSiHKiI3ici/pJ3a6SJyVbrm+LeyeU30Tdt2Tnq7\nb0TkX+nPitK1ymel/xvX6pyPpWuTLxORy9OHmQoMSF/fnSIyIV1RbTpWCnHS1/ClWDXTL9qGn91m\n+6V/fk+IVQf+OxH5Tauf3Wnp139Mt32uiDwknVnLuxN1NqBHjDERABFxG2MWALt1oXe1ObvNzqdr\nP6U6bI1CPfb9Y0QSkW0+TnaBh3Gn7U1p/xwOO3MQ/kD7y9/eWvEW8ZRVK3360uktM/N3d8MKhyHp\n0dURRSNw2nSOgNohXV4PXUT2Ac4AxqVrlyexipJ0pBdwsDHmf4CbgTnGmBFYRWL+2Wq7zWqni8gk\nrEeuY7HWr49OV2Vrr237AtcDh6dri1+R/upe4B5jzP5YxWMeabXbEODo9PFvTBdZuQZYmq5lflV6\nu/2AK4wxg9LvzzfGjMbKSHq5iHS2vGN7+40CehpjhhljhgPtJau5P113fRhW7vzjO3m+naKzU43X\npJ9nvAi8JSJ1WHnY1Q/MqOJR2MRGyqQYXTx6u2aue/xOhk3oxZADS3F6HNgd7d8XTuo7iWnfTyOW\ninHS3ifhc/wwhq375fTjxRNfZH1wPUMKhmw26VCpbZSJeuhHYFVWm5XuJHrZQuXKVv7TqnToIaQr\nshlj3hGRAhHZMEnnJWNMGAiLyIba6YcAk7DqoQNkYQX49uZRHZ4+V3X6+BtqdRwJDG3Vqc0RkQ3L\nbV41xkSBqIhUsrEm+qa+2FCzPO1yETk5/br3/2/vzuOjLM/9j3+uZLIHwpKAbAq4L6B4RlpFLW5V\nqz/FHo9LbetWlxaPVnuqtj1t6W7VtrZWj5XagrZ1qUu1YhW0Ra2KGBVFQBQFBWQLSwJkT67fH88T\nGMIkmSyTSSbf9+uVV2ae9Z6HvLjmue/7ua6wTRtbvQot77cUGGtmtxMUYpkdZ7/jzOx6gi9kg4BF\nwN8TOF+3SOh/c3dv+uDTwn/gIuDppLVKkmbPfnvy5JQnWbt9LXsP3Hu3We4bqzbS6I0U5RS1+sx5\nJJJBpI2JcGP6j+Gpzz+1Ywy9t4xDF2QXMDZ7LGMHjE11UyQ9dHk9dIKu+5nu/q1dFpp9I+Zt85ro\niY4dxaudbsDP3P137WrlrjKATzf19jYJA3zz2uctxaYdn8HMJhN8STjS3SvNbC67f+bdtLRfWOv9\nUIKegiuBc4BLYvbLJRjPj7r7SjOblsj5ulPCNSfN7PBwbGM8Qb3c2rb2kZ4nPyufUf1HccSwIxiU\nu2t1szXb1nDR0xcx5fEpvLn+Teoa6jp1rpxIDkMLhjKq36heMyFOJAm+TVD/PFan6qEDzwFnm9kQ\ngHBMfC9gnZkdGJYAPauV/V8k7KIPA1yZuzflFjnTzHLDbujJwGvAM8AlTXfUZjai6dxx/BP4r6bu\nbzNr+o9mNvDfTRtZUMeTux0AACAASURBVI2zNVtpvQxqEbA5DMoHEEzWTkTc/cysGMhw90cIhgwO\nb7ZfU/AuC6/D2Qmer9skFNDN7HvATGAwQT3dP1pQH1Z6sMryLWzbvCl4/CwB9y+9nxUVK6ioreAn\nr/6EilrlDhLprHA2+2UEw5Qe/r6sM7Pc3X0xQdCZbWZvA3OAYQTjzk8CLwNrWjnENIJx8LcJJp9d\nGLOuqXb6PMLa6e4+G/gL8IoFtcsfpoVg6+6LgJ8Az5vZW8Avw1VXA9Fwstxigrvg1j7jRuClcALa\nLXE2eRqImNmS8DPMa+14Cew3AphrZguAPwG79H64+xaCyY3vEHzBeS3B83WbhJ5DN7OlwKExE+Py\ngAXu3i0T4/ryc+iJ2FS9ib9/8Hcqaio4/8DzKc4rZuvGMv52y48Ycdh4DjjlZLKycxiUO2jHM+nx\n/GP5P7j+hesBOGnPk/jBpB8kXAUNoK6hgYrq7WysXceK8uUcPvTwhArHiPQSPWpGczKE3cjb3P3W\nVLdF2i/RGVGfEHQ3NI195ACrk9IiaZf6xnruXXQv97xzDwCLNy7m58f+nIXPPk3/YXtQOX4wn3vi\ndAqzC7nv1PsYU7RrgZX6hnq21W0jL5LHUcOOYvpJ09lQtYFJwye1K5hvra7j5WUbGTBwA5c9ewGO\ns9/A/Zh+0nQG5Q1q+wAiItIpiQb0cmCRmc0h6DI6CZhvZr8BcPerW9tZkqfBG1i1ddWO92sr11LX\nWMegkaOIDBvIT977HQ3eQHlNOQ8ufZAbJ964Y9vKukpeW/say7YsY78B+3HokEP59PBEh6F2VVFV\nx51zl3HWMWvwcE7N+5vfp8FVbVekt3D3aYluG46RPxdn1Qlhd3lK9fT2JUOiAf2x8KfJ3K5vinRE\nTmYOVx9+NUs2LWF73XamHTWNATkDyB8/gbLN6zg8YwLLy4OnPD49bNdgvbV2K4XZhazetppFGxex\nZ9Ge9M9JPL1sLDPjgw3bmFDyKUb1G8XKrSu5asJV5EZ61CRQEekiYVDssTXVe3r7kqHdxVksyOk+\nyt3fTk6TdpeOY+h1NTWUrVzBkhf/xT4Tj2Lo2H3Iyev4Y11lVWW4OwNzBhKJKYu6uXoz729+n8Ls\nQipqKhiUN4i9+u1FTiSHLdVbmL5wOvcuDnJKHFJ8CHeecGfcgi1tqayp57UVm3ju3XVceHQxBTkZ\nFGTnt6vbXqSHS/sxdOndEs3lPhc4I9z+dWC9mb0UZhySDqjeWsED37uexoYG3nxmFpf86nedCugt\nTT4bmDuQsQPGct6T57Guch3ZGdk89fmnGBoZSn4kf0cmN4DahloavTHhc26o3MA7Ze8wrHAYwwuG\n85n9hzBx7GByIxlNz5aKiEg3SbTLvcjdKywo0nKvu38/fNxBOqimspLGhnB82Z3tWzYxcNjw1neq\nq4aaCsjMgrzgLnrd9nUsLFvIAYMOYEj+kLjJYCrrKllXGdRSr22s3ZGbPDuSzWXjLmPt9rVsqdnC\ntCOn7fZsekvKqsq4dPalO7rzbzn2Fk4Zcwp5WS3PohcRkeRJNLFMxMyGEWTOeTKJ7ekz8osGsM8R\nRwIw6qBxDBo+svUdKj6Bf/4IZpwGD10IH79C5da1XPDUBVw791rOevwsNldvjrtr/+z+nLPfOeRF\n8piy95RdutRL8kv46dE/5TfH/4axA8YmfGddXV+9I5hD8MhbVX1VQvuKSPcwszPM7MYW1m1rYXls\nMZK5ZhZNZhtbYmaHmdnnuuE83455PdrM3umCY5aY2atm9qaZHRNn/e/N7KDOnqe5RO/Qf0jwIP1L\n7v6amY0F3u/qxvQl+UVFfPaK/+aES79KRmYm+f2bZVKrqwp+sguhajPc81koXxmsK3sPlj9P7rn3\nMab/aNZVrqO6oZqN1RsZWrB7CuQBuQO45vBruPLQK8nJzNlt4lthduFu+7QlN5LLyH4jd8ywP37P\n48nN1AQ4kZ7E3Z8Ankh1OzroMILiKU8l4+BhpTQjyNjX4UI5LTgBWOjuX4lz3sx4y7tCornc/wr8\nNeb9h4SJ/aXj8vq1MKO8ciO8/FtY8QIc/Q2o3rIzmMfImP1dvnvOHzh97Xwm7jGRPfL3aPFcHZ29\n3pLivGJmnjKT+WvmM7LfSMYUjdG4uUgL7rjyn7vVQ5961/GdqoduZqMJsp7NA44iyFz2R4JKakMI\nUrseRJB7/CozG0OQ7a0QeDzmOAbcTvA48kogblrvsOLaDwjykHwAXOzuLd3l/wdBhrhCoAy4yN3X\nWFCO9XIgG1gGfClMwfpfwPcJ8riXE+Ra/yGQZ2ZHE+SRfzDOeaYRXNOx4e/b3P034brr2JmL/ffu\nflt4zZ4BXiUobjM/PMcCgkIr3wEyzWx6eE1XA2eGxWrifc7dPg+wH3BzeNwoQdW6DcDvws811cx+\nDPyPu5ea2SkEfxuZBCl4TzCziQTV6XKBqvBaL43Xhl3ak2CmuP2A/wOGuvshFtTOPcPdf9zmzl0g\nHWe5t+qtB+GxsLTv+HMgqwBej1fJDxquXcymrGwiGZEOzU7vSeprG6jeHkzSyy3IIpKt8XjpUTr0\njTUM5tPZtYRqJXBZZ4J6GJyWARMIgtFrwFvApQSTmC8mqJDZFNCfAB5293vNbCrwc3cvNLPPA18F\nTiGocrYY+Iq7PxxOiP4fYAXwKHCqu283sxuAHHf/YZx2ZQHPEwTCDWZ2LnCyu19iZoObngEPg9o6\nd789TCd7iruvNrMB7r7FzC5qansr12AaQRW44whS0S4F9iCoOTKDIE+7EQTwLwKbgQ8JysjOC4+x\nzd2bctQ3XdOouy8ws4eAJ9z9Ty2cv6XPs0vbzcyBc939ofB903X9CHgDONbdl5vZIHffZEHlu0p3\nrzezE4GvunubN9GJjqFPJ8hrWwcQPrJ2XoL7SnttXQMFxTDkQChfBXu2kOxl8D5kZmZRkl/S64O5\nu7N2eQX3/e8r3Pe/r7Dmg3K8sX2PVIr0UF1eDz3Gcndf6O6NBEH9OQ/u0hYCo5ttOwm4P3x9X8zy\nY4H73b3B3T8hKK7S3KcJ7vZfCu9mLyR+BTmA/YFDCEptLyDIOd80SegQM3sxDOAXAAeHy18CZoR3\nvO39Jj/L3WvCcq1NpVePBh5z9+1hL8KjQNNY9kdNwbwFy919Qfj6dXa/jrFa+jzNNQCPxFn+aeCF\nppKwMaVmi4C/huP5v2rluLtIdAw9393nN+tSrU9wX2mvcefAqImwfgmMjELBEBi8N2z8YOc2ZnDq\nzVDYUsGj3qWupoEFcz6msSEI4gvmfMzQMf3Jzm1/vXaRHiYZ9dCbxJYdbYx530j8/987+i3ZgDnu\nfn6C2y5y9yPjrJsBTHH3t8K72MkA7n6lmX0KOA14PeyyT1SipVebtFVGtvnx8lrZdgZxPk8c1TG1\n6BPxI+Bf7n5W2GswN5GdEr1DLzOzvQn/GMIZkK1V8pHOqN0azGafdR387WsQyYaL/gHH/S+MOBwO\nOB0ufyEI+qEt1Vt44oMnuLX0VlZvS06a/Y1VG9lQuYHq+uq2N26nSFYGo8fvfJZ+9PhiItkJV/cV\n6claqnvemXroHfESO3tWL4hZ/gJwrpllhk8zHRdn33nAJDPbB8DMCsKh2HiWAiVmdmS4bZaZNd1h\n9gPWhN3yO9pgZnu7+6vu/j2C8eZRtF0+tTUvAlPMLN/MCghKyb7YwrZ1YXs6Iu7naYd5wLHh/IbY\nUrNF7KyXclGiB0v09mcqcDdwgJmtBpbTscZLIsreg6YEL+sXQ0Md9NsDjr4WjrgEMnMgZ9eZ6a+s\neYXv/Ps7ADyz4hkeOO0BBucN7rImrd2+lstmX8aa7Wv42TE/45gRx3RpWteMzAz2jQ5h+D4DACe/\nKIeMDAV0SQvfJv4YemfqoXfENcBfwvHvx2OWPwYcTzB2/jHwSvMdw7Hwi4D7zSwnXPy/wHtxtq0N\nb/p+Y2ZFBHHmNoIhge8SjGdvCH83BexbzGxfgrv75wjmAnwM3Bh228edFNcSd3/DzGYQTHqDYFLc\nm+HdbnN3A2+b2RsEk+Lao6XPk2g7N5jZ5cCjFtSwX08wOfFmYKYFZcpnJXq8VifFmdk17v5rM5vk\n7i+F33Qy3H1rexrdWX1mUpw7bFsH9dWw8lV44mo44bsw4cuQ2/os9bsW3MUdb90BQIZl8OzZz1KS\nX9JlTXth5Yv86d37eOWTVyjJK+HB0x/s0uOL9AIdfowjGbPcRZprK6AvcPfDzOwNdz+8G9u1i3QO\n6JurN1PfWE9hViF52zfA70+Abevh01PhqP+G7ALI7U99Yz2Zltnio2Frt6/l8jmXs3LrSr418Vuc\nNvY0CrIKOt0+b3TKN1TxxpyP6Dcqk0+K3+MfnzzJTcfexICcAZ0+vkgvoucypUdrK6DfT/Bg/3CC\n5w53rALc3ccnt3mBdA3oZVVlfPP5b/Le5vf45hHf5KSMgRTce8bODb6xFPrtweqtq7ljwR2MGTCG\ns/c9u8UZ7RurNtLojeRn5XdJMAfYXl7Dgz+eT9XW4HGyU685mIFjsnv9rHqRDlBAb8bMHgPGNFt8\ng7s/08XnuZhgyCDWS+4+tSvP08r57yB4SiDWr909/vPEKdLqGLq7n29mexA8iH9Ga9tK+720+iVK\n1wVfVL7/8veZNOVJCsyCrvfhEyAjwsaqjVz1z6tYtmUZAEPyhnDmPmfGPV7smHl5TTkvf/Iy7216\nj3P2P4dhhcNo9EY2VW/C3RmQM4CszN3ngdQ11FHdUE1eJI9IRvDnUVO184GGxipTMBcRANz9rG46\nzx8JkuakRHd9ceisNifFufta4NBuaEufM7xwZzGWkrwSGjOz2HDdIrKqKxiQVwwFxXhl2S450rfV\nbqPRG8mw1ieMLSxbyPUvXA/Acyuf448n/5GK2goufvpiqhuquevEuxhXPI7MjJ2PfFbUVDDnozk8\ntfwpzt3/XCaNmEROfi6nXjmOlx9eRvGoQkbsq252EZGeqNWoEGbJwcwWmtnbMT8LTdXWOm3/gftz\n+/G3c+X4K5lxygzuXXwfJzx6Kj9bPIPNkeC71sDcgdx23G0cWnIonxvzOcaXjGfZ5mVtljldt33d\njtcbKjfQ4A3c/fbdbKzeyPa67dxaeitb63ad21heU860V6Yxf+18/uf5/6GipoJIViaj9h/IlOsO\n5zNfOIC8frtXcxMRkdRr67mgpjGL04H/F/PT9L5VZrYiDP4LzKw0XDbIzOaY2fvh7z7bf9s/pz+T\nR01m6oSpNHoj9y6+F8d5asVTbK0Ngm1mRib7DdyPqYdNZXjhcC6fcznffOGbLVZWazJ51GSOHnE0\nIwtHcutnbqUou4hDS3Z2tBw8+GByMnN22Sd2wp2Z7XifmZVJfv9scvKU5EVEpKdqawx9Tfj7o06c\n47gwJV+TGwnSE95kQVm/G4EbOnH8pGpobKC8tpzsjOwOVSVLVG4kl7xIHlX1VfTL6rfLM94ZlsHK\nrSv5/cLfA7Bvzr5tdrkPzhvMTcfcRF1jHf2z+5Odmc0pY05hTNEYquqrOLTkUPIiuyZAGpAzgJuP\nvZlZH87inP3PoX921xZ0ERGR5GlrlvtW4qcKbJrl3ur/+Ga2giBBfVnMsqXA5LDyzjBgrrvv39px\nUjXLvaGxgXc3vcsP5/2QkYUj+fanvt2lyVpi1TXUsXb7WhZsWMCEIRMYVjBsl/HtzdWb+fuHf+eT\nrZ9w8SEXxy2T2hUavZHq+mBSXEuPyLWlpr6GnEhO2xuK9C5pNcvdzKYA77n74i46XhT4srtf3RXH\n68D5zwAOCm8WS4AnCaqgXU1Qi+QL7r4lFW3rLglVW+vwwc2WE1S3ceB37n63mW1x9wHhegM2N71v\nSaoC+obKDZw/63zWVQbj0V8//OtcOu7Sbm9Hb1FVX8XCDQu5/937OXn0yUwaMYl+2R3N3CjS46Rb\nQJ8BPOnuD6e6LV3NzM4DTkxW3fGeKtmDokeH5fCGEFTeeTd2pbt7WFZuN2E6vMsB9tyzK2oYtF+G\nZezSLZ2OwWnz9lq21dSTE8mgpF9Op2qaV9RUcMWcK6j3ep79+FlmnTUrLa+ZSHv94tzTd8sU940H\nn+xsPfQvEtx9ZhOkHf0a8FvgCIKCIg+7+/fDbW8iePS4HphNUH3sDOAzYXrR/3T3D+KcI6H65e5+\nrJlNJqjxfbq1o553mFL2LIL85SOAP7n7D8J1fyPI655L8Nz33eHyeDXELyLIm/J7dq9HvoSwt9jM\nvkxQutSBt939S4lf9Z4tqQHd3VeHv9eHCQgmAuvMbFhMl/v6Fva9myDHLtFoNCV1NAfnDebOE+/k\n12/8mtH9R3PSXielohkAbK/dTnVDNf2z+8d9frwjtlTW8ovZS/nTqx9TXJjN41OPZsTA1goLta7R\nG6n3nc+s1zbWdkUzRXq1MJjH5nLfC5j+i3NPp6NB3cwOBM4FJrl7nZndSVBf4zthPe1M4DkzG09Q\n5OMs4IDwJqqp3vgTtH2H/qi7Tw/P+WOCWuu3A98jqHG+2szi9bC+CxwTU8/7p0Br9bwnEpRcrQRe\nM7NZ7l4KXBJ+nrxw+SMEk7mnE1NDPPZAYR3z77FrPfKm63YwQQ76o8Lgvsu+vV3Sql+E1Xj6Nb0m\nKEL/DvAEQS1dwt+Pxz9CzzCq3yh+evRP+dqhX0tZQpXN1Zu5pfQWvjL7K7z0yUtdVu2str6RP88P\nCj6Vbavl1eUbO3W8ftn9+PGkH3Pw4IO5esLVFOcVt72TSPpLRj30E4D/IAhyC8L3Y4FzwiIjbxLU\n0D4IKAeqgXvM7PMEQTNRHa1f3t563nPcfaO7VxH0HhwdLr/azN4iqEo2CtiXlmuIJ+J44K9N87ra\nuW+Pl8w79KHAY+E3owjwF3d/2sxeAx4ys0uBj4BzktiGLpGdmdpnr5dsXMIj7z8CwLVzr2X2f87u\nkkpnkUxj0t7F/HtZGTmRDA4b1bmkMYXZhZw65lSOHXks+ZF8TYwTCSSjHroBM939WzsWBCU45wBH\nuPvmcIw8N7xLnkgQ9M8GriIIbImYQcfql7e3nnfzXlgPu/BPBI4Mu/nnEnS9SwuSFtDd/UPiZJhz\n940Ef1h9Um1DLeU15WRaJoPyEuvtKcop2vG6f3b/To1zxxpUkMOvzzuM1VuqKCnMYVBB57+4ZGdm\np/wLkEgP8zFBN3u85R31HPC4mf0qHNIcRPAFYTtQbmZDgVOBuWZWCOS7+1Nm9hLwYXiMROqNN6/3\nvRp21i8HXjWzUwnunmO1t573SeFnqAKmAJcQjKdvDoP5AQR35hDcrd9pZmOautzbcaf9T4IbzV+6\n+8Z27tvjKVNIN6prqGPB+gVc/8L1lOSX8Nvjf5vQ42ej+o3il5N/SenaUs4/4HwG5XbdsM/gwhwG\nF+pOWiSJurweursvDiezzQ7raNcBUwm62t8FVhJ0i0MQlB83s1yCO/vrwuUPANPN7Grg7HiT4mhf\n/fLPxOzX3nre84FHgJEEk+JKw27+K81sCbCUIJC3VkO8Te6+yMx+AjxvZg0E1+uiRPbtDZL62FpX\nSZdqa2VVZXzpqS+xatsqAK4YfwVfOuhLvLDqBWoaajhu1HEJP+feVFmtX3a/Lul+F5E2dbhrLBmz\n3NNF0+z0pgls0nG6Q+9GkYwII/uN3BHQxxaN5dmPnmXaK9MAeKfsHW444gbyslqfaf7Jtk+48tkr\nWbt9LTcdcxOThk/SeLVIDxYGbwVwSSoF9G40IGcAPzvmZzyz/Bn2KNiD8SXjuWn+TTvWLy9fTm1j\nLXm0HNAr6yp59P1HWV6+HICfvvpT7j/tfkoiJUlvv4ikp+6o921mJwM/b7Z4eViCdUZXnacvU0Dv\nRuU15dQ11HHa2NMoyilie912Lj7kYhZvXExNQw3fPOKbuyRiqW+sZ33lehaWLWRc8TiG5A+hpqGG\nvfrvnF8ztmhslz2XLiJ9U3fU+3b3Z4Bnkn2evkxj6N2koqaC3739O+5dfC/FecX85XN/YVjhMMqr\ny9lat5UMy2BQ7qBdxsM3VG5gyuNTqKitoDCrkMenPE5+JJ+FZQvZWruVsqoyThx1IoWeS34/FVIR\nSbK0Sv0q6Ud36N2kpqGG+xbfBwST415d+ypT9plCUW4RRblFcfepqq+iorYCgG1126isq2RI/hAO\nGnwQdQ11ZFU2MuvmW6CxkdOvuZ7+Jckp2CIiIj1f0jLFya4iGRH+Y2iQeyFiEcYVj2tzn8LsQk7Y\nM3hkf/LIyfTPCe7Ci3KK6Gf5PDf9TtYsXcKa95fy/J/+QH1tTfI+gIiI9Gi6Q+8mA3MH8ovJv2BF\n+QqGFgxlcG7bj6cNyh3EtCOn8Z1PfYdIRmSX1LMZGZkUDNz5PHrhwMFYRrwMjCIi7RdmeHvS3Q9p\nY5uj3P0v4fuUllDt6xTQu9Gg3EHtTgozIDd+OtasnByOOf/L9C8ZQkZmJuOOO4nMyM5/zvKacirr\nKsnKyKI4XznVRSQpRgNfIHwkLyyo0rsnPPVi6nLvxfKLBnDkf57Hp6b8F/lFOwN/RU0F09+ezmcf\n+SznzTqPddvXpbCVIpIMZjbazN41sz+b2RIze9jM8s3sBDN708wWmtkfzCwn3H6Fmd0cLp9vZvuE\ny2eY2dkxx93WwrleNLM3wp+jwlU3AceY2QIzu9bMJpvZk+E+g8zsb2b2tpnNCyu/YWbTwnbNNbMP\nw0x10gUU0FOoqr6KN9e/yY/m/Yi3NrzVZVXUahpquG9JMAFvXeU6FmxY0CXHFZEeZ3/gTnc/EKgg\nSOs6AzjX3ccR9MJ+NWb78nD5b4Hb2nGe9cBJ7n44QdnW34TLbwRedPfD3P1Xzfb5AfCmu48nSHN7\nb8y6A4CTCcqmfj/MFS+dpICeQuU15Vzy9CU8tPQhLnr6IrbUbOmS40YyIhwx9AgAsjOyOXDQgV1y\nXBHpcVa6e1PO9j8RFL5a7u7vhctmAsfGbH9/zO8j23GeLIK87wuBvxKUZW3L0cB9AO7+T2CwmTU9\nXzvL3WvCMqbrCapzSidpDD2F6hrrqPd6IEgiU9dY1yXHHZg7kJuPvZnV21ZTkl/CwJzU1HEXkaRr\nnkhkC9DajFuP87qe8OYuLHYSr1zitcA6ggqaGQT11Tsj9pGcBhSLuoTu0FOof3Z/rp5wNWP6j+Hr\nh3+douw4z6NXbYE1b8GKf8P2jQkfe1DeIMaVjGOPgj2U510kfe1pZk132l8gmJA2uml8HPgS8HzM\n9ufG/H4lfL0CaKpnfgbB3XhzRcAad28Mj9n0SE1rJVhfJCi5SljbvMzdKxL6VNIh+laUQkU5RXzx\nwC/y+X0/T34kP35RlveehseuCF5HL4GTfgg5bZUwFpE+Yikw1cz+ACwGriYoM/pXM4sArwF3xWw/\n0MzeJrhDPj9cNp2gvOpbwNMENdWbuxN4xMy+3Gybt4GGcN8ZBOVIm0wD/hCerxK4sHMfVdqi1K8p\n4O7UbN9OZiRCVm4rpU8b6oJg/s4jwfvifeGip6BwSPc0VERi9ajUr4k8J95s+xUEZUrLktgsSSF1\nuXczb2ykbOVHPH7rj/nnzLuprChveePMLDjyKsjKAzOYdK3uzkVEJC51uXezyopynrj1J2xZt4ZV\nS95hj7335dATT215h6EHw3+/Ad4IuUVBcBeRPs/dVwAJ3Z2H249OWmOkR1BA725mRHJ2TlLLzm0j\nQEdyoP/wJDdKRER6OwX0JGhobGBT9SZqG2spiBTskr61oGgAU67/Li8/9BcGjxzF6PGHt3icTdWb\nqKqrIieSQ3Ge0reKiEjLNCkuCVaUr+CCpy6goraCs/c9m6//x9cpytn1kbTGhnosIxOz+PNsNlVt\n4oYXb2DemnmM6T+GGafOaHceeBHpUj1qUpxIc5oUlwR/W/a3HXXMH37/4bgpXTMyIy0Gc4DK+krm\nrZmHYVw67lLe3/w+89bMY0t112STExGR9KKAngSHDTlsx+uR/UYSyWj/yEZuJJe9+u/FSXudxPrK\n9Xxl9le4bPZlzFw0k5oG1T0X6evM7BQzW2pmy8zsxlS3R1JPY+hJMGHIBO757D18WP4hx406jsF5\nbdc+b644r5gZp8xga+1WbntjZw2FNze8SU19DTmZyv4m0leZWSZwB3ASsAp4zcyecPfFqW2ZpJIC\nehIU5RQxcdhEJg6b2KnjFOcVU5xXzBXjr2DeJ/Oob6xn6mFTKcgq2LlR5WZYvwiqNsOeR0KBJs+J\n9AETgWXu/iGAmT0AnEmQLU76KAX0XmC/Afvx5FlPAsGXhcyMzJ0rl82BRy8LXh/2RTj155BTmIJW\nikhrotFoBCgGykpLS+s7ebgRwMqY96uAT3XymNLLaQy9F4hkRijJL6Ekv4TszGaFkFbFzP5f+xZ0\nUU11Eek60Wj0KGADsBzYEL4X6VIK6L3dkV+DAXsGKWFP+RnEPPMuIqkX3pnPAgYAueHvWdFoNLPV\nHVu3GhgV835kuEz6MHW593YDR8NXngtSw+YNhEz9k4r0MMUEgTxWLlACrO3gMV8D9jWzMQSB/DyC\n8qnSh+l//3Sg6msiPVkZUM2uQb2aoAu+Q9y93syuAp4hqE3+B3df1KlWSq+nLncRkSQKJ8CdBmwh\nCORbgNNKS0sbOnNcd3/K3fdz973d/Sdd0FTp5RTQRUSSrLS09GWCrvcxQHH4XqRLqctdRKQbhHfk\nHR0zF2lT0u/QzSzTzN40syfD92PM7NUwXeGDZpbd1jFERESkdd3R5X4NsCTm/c+BX7n7PsBm4NJu\naIOIiEhaS2pAN7ORBJNBfh++N+B44OFwk5nAlGS2QUREpC9I9h36bcD1QGP4fjCwxd2b0h6uIkhh\nKCIiIp2QtIBuZqcD69399Q7uf7mZlZpZ6YYNHX5cU0QkbSU6R8nMcsL3y8L1o2OO8a1w+VIzOzlm\nedzyrN1xDumYZN6hTwLOMLMVwAMEXe2/BgaYWdPs+hbTFbr73e4edfdoSUlJEpspItJrJTpH6VJg\nc7j8V+F2mNlBB6L6uQAADaBJREFUBFnmDgZOAe4MvyQ0lWc9FTgIOD/ctrvOIR2QtIDu7t9y95Hu\nPprgH/Of7n4B8C/g7HCzC4HHk9UGEZGeIhqN9o9GowdFo9H+XXG8ds5ROjN8T7j+hHD7M4EH3L3G\n3ZcDywhKs+4oz+rutQQ3ZWd2xzm64tr0ValILHMDcJ2ZLSMYU78nBW0QEekW0Wg0KxqN3gmsA+YB\n66LR6J3RaDSrk4duzxylHeVWw/Xl4fbxyrCOaGV5d5xDOqhbEsu4+1xgbvj6Q4JvZiIifcGvCXoj\nc9mZz/3C8PfXOnLA2DlKZja50y2UtKDUryIiSRJ2r18M5DdblQ9c3Inu9/bOUdpRbjVcXwRspOUy\nrC0t39gN55AOUkAXEUmekUBdC+vq6GAXcwfmKD3Bzl6Bs8PtPVx+XjhDfQywLzCfmPKs4Sz284An\nwn2Seo6OXA8JKJe7iEjyrAJaGivPouvvSG8AHjCzHwNvsnOO0j3AfeHcpU0EwRN3X2RmDwGLgXpg\nqrs3ALRSnrU7ziEdYMEXqJ4tGo16aWlpqpshIn2bdWSncELcheza7V4JzCwtLe3QGLpIPLpDFxFJ\nrmvC3xcTdLNnETzedU2Le4h0gO7QRUQS06E79CbhBLgRwOrS0tKKrmmSyE66QxcR6QZhEFcgl6TR\nLHcREZE0oIAuIiKSBhTQRURE0oACuohIL2Rm15rZIjN7x8zuN7NclU/t2xTQRUR6GTMbAVwNRN39\nEILELOeh8ql9mma5i4gkUTQazQWmEgTgoQRV134D3FFaWlrdiUNHgDwzqyNIWrOGIKf7F8L1M4Fp\nwP8RlCWdFi5/GPht89KmwPIwy1tT8axlYTEtzKypfOqSZJ+DIKOcdIDu0EVEkiQM5s8DPwT2BHLC\n3z8Cng/Xt5u7rwZuBT4mCOTlwOuofGqfpoAuIpI8U4FD2L3aWh4wLlzfbmY2kOBudgwwHCgg6M6W\nPkwBXUQkea5m92DeJC9c3xEnAsvdfYO71wGPEpRUVfnUPkwBXUQkeYZ2cn1LPgY+bWb54Tj1CQRj\nzyqf2odpUpyISPKsIxgzb219u7n7q2b2MPAGQUnSN4G7gVmofGqfpeIsIiKJaXdxlmg0+g2CCXB5\ncVZXAd8tLS39RWcbJgLqchcRSaY7gIUEwTtWVbj8jm5vkaQtBXQRkSQJnzP/DPBdgnHvmvD3d4HP\ndPI5dJFdqMtdRCQxnaqHLpJsukMXERFJAwroIiIiaUABXUREJA0ooIuI9EJm9gczW29m78Qsu8XM\n3jWzt83sMTMbELOux5VJ7cg5pGUK6CIi3SAajY6JRqOTotHomC465Ax2z98+BzjE3ccD7wHfgh5d\nJrVd55DWKaCLiCRRNPA6sIggk9uiaDT6ejQajXbmuO7+AkFGtthls2Mqoc0jyI8OMSVM3X050FTC\ndCJhCVN3rwWayqQaQZnUh8P9ZwJTYo41M3z9MHBC8zKpSTyHtEIBXUQkScKgPRc4nCBbXFH4+3Bg\nbmeDehsuAf4Rvu6JZVI7cg5phQK6iEjy/I6gtGk8BcBdyTipmX2HIG/6n5NxfOmZFNBFRJIgHCs/\nsI3NDurCMXUAzOwi4HTgAt+ZOawnlkntyDmkFQroIiLJMRyobWOb2nC7LmFmpwDXA2e4e2XMqh5X\nJrWD55BWqHyqiEhyfAJkt7FNdrhdu5nZ/cBkoNjMVgHfJ5jVngPMCeeQzXP3K3twmdR2nUNap1zu\nIiKJ6Uj51NcJJsC15PXS0tJkToyTPkRd7iIiyXMFsL2FdduBK7uxLZLmkhbQzSzXzOab2VtmtsjM\nfhAuj5sZSEQk3ZQGXYuTgdcJaqCXh79fByaXqutRulDSutzDJAAF7r7NzLKAfwPXANcBj7r7A2Z2\nF/CWu/9fa8dSl7uI9ACdSmwSzmYfDnxSWlq6vGuaJLJT0ibFhTMSt4Vvs8IfJ8gM9IVw+UxgGtBq\nQBcR6e3CIK5ALkmT1DH0MI/vAmA9QY7hD2g5M5CIiIh0UFIDurs3uPthBAkDJgIHJLqvmV1uZqVm\nVrphw4aktVFERCQddMssd3ffQpBA4EhazgzUfJ+73T3q7tGSkpLuaKaIiEivlcxZ7iVNtXjNLA84\nCVhCy5mBREREpIOSmSluGDAzrIWbATzk7k+a2WLiZwYSERGRDkrmLPe3gQlxln9IMJ4uIiIiXUSZ\n4kRERNKAArqIiEgaUEAXERFJAwroIiIiaUABXUREJA0ooIuIiKQBBXQREZE0oIAuIiKSBhTQRURE\n0oACuoiISBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iIpAEFdBERkTSggC4iIpIGFNBFRETSQCTV\nDZCd6mtrqd62FYDcwkIi2TkpbpGIiPQWukPvIdydtR+8x++v/grTr7qU1UuX0NjYkOpmiYhIL6GA\n3kPUVVfz6t/+SkNdHY0N9bz62EPUVVWnulkiItJLKKD3EJHsbEYfeviO93uNn0BmTnYKWyQiIr2J\nxtB7iIzMTA465nhG7Hcgjd7IwD2GE4lkpbpZIiLSSyig9yB5/fqR169fqpshIiK9kLrcRURE0oAC\nuoiISBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iIpAEFdBERkTSggC4iIpIGFNBFRETSgAK6iIhI\nGlBAFxERSQNJC+hmNsrM/mVmi81skZldEy4fZGZzzOz98PfAZLVBRESkr0jmHXo98A13Pwj4NDDV\nzA4CbgSec/d9gefC9yIiItIJSQvo7r7G3d8IX28FlgAjgDOBmeFmM4EpyWqDiIhIX9EtY+hmNhqY\nALwKDHX3NeGqtcDQ7miDiIhIOkt6PXQzKwQeAb7u7hVmtmOdu7uZeQv7XQ5cHr7dZmZL2zhVEVDe\nzuYlsk9r27S0rvnyeNvFLmu+vhgoa6Nd7dWTr0+8Za29T8b1aaldXbFPX75GiW7f3muUiuvztLuf\n0s59RLqPuyftB8gCngGui1m2FBgWvh4GLO2ic92djH1a26aldc2Xx9sudlmc7UuT8G/RY69PItes\n2fXq8uuja5Sca5To9u29Rj31+uhHP6n8SeYsdwPuAZa4+y9jVj0BXBi+vhB4vItO+fck7dPaNi2t\na7483nZ/b2N9V+vJ1yfeskSuYVfTNWpbe8+R6PbtvUY99fqIpIy5x+3x7vyBzY4GXgQWAo3h4m8T\njKM/BOwJfASc4+6bktKIXsrMSt09mup29FS6Pm3TNWqdro+ko6SNobv7vwFrYfUJyTpvmrg71Q3o\n4XR92qZr1DpdH0k7SbtDFxERke6j1K8iIiJpQAFdREQkDSigi4iIpAEF9B7OzA40s7vM7GEz+2qq\n29NTmVmBmZWa2empbktPZGaTzezF8G9pcqrb09OYWYaZ/cTMbjezC9veQ6TnUUBPATP7g5mtN7N3\nmi0/xcyWmtkyM7sRwN2XuPuVwDnApFS0NxXac41CNxA8DtlntPMaObANyAVWdXdbU6Gd1+dMYCRQ\nRx+5PpJ+FNBTYwawSwpJM8sE7gBOBQ4Czg+r02FmZwCzgKe6t5kpNYMEr5GZnQQsBtZ3dyNTbAaJ\n/x296O6nEnzx+UE3tzNVZpD49dkfeNndrwPUEya9kgJ6Crj7C0DzZDoTgWXu/qG71wIPENw14O5P\nhP8ZX9C9LU2ddl6jyQQler8AXGZmfeLvuj3XyN2bkjttBnK6sZkp086/oVUE1wagoftaKdJ1kl6c\nRRI2AlgZ834V8KlwvPPzBP8J96U79HjiXiN3vwrAzC4CymKCV1/U0t/R54GTgQHAb1PRsB4i7vUB\nfg3cbmbHAC+komEinaWA3sO5+1xgboqb0Su4+4xUt6GncvdHgUdT3Y6eyt0rgUtT3Q6RzugTXZO9\nxGpgVMz7keEy2UnXqG26Rq3T9ZG0pYDec7wG7GtmY8wsGziPoDKd7KRr1DZdo9bp+kjaUkBPATO7\nH3gF2N/MVpnZpe5eD1xFUD9+CfCQuy9KZTtTSdeobbpGrdP1kb5GxVlERETSgO7QRURE0oACuoiI\nSBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iIpAEFdOnxzOzlVLdBRKSn03PoIiIiaUB36NLjmdm2\n8PdkM5trZg+b2btm9mczs3DdEWb2spm9ZWbzzayfmeWa2R/NbKGZvWlmx4XbXmRmfzOzOWa2wsyu\nMrPrwm3mmdmgcLu9zexpM3vdzF40swNSdxVERFqnamvS20wADgY+AV4CJpnZfOBB4Fx3f83M+gNV\nwDWAu/u4MBjPNrP9wuMcEh4rF1gG3ODuE8zsV8CXgduAu4Er3f19M/sUcCdwfLd9UhGRdlBAl95m\nvruvAjCzBcBooBxY4+6vAbh7Rbj+aOD2cNm7ZvYR0BTQ/+XuW4GtZlYO/D1cvhAYb2aFwFHAX8NO\nAAhq0ouI9EgK6NLb1MS8bqDjf8Oxx2mMed8YHjMD2OLuh3Xw+CIi3Upj6JIOlgLDzOwIgHD8PAK8\nCFwQLtsP2DPctk3hXf5yM/uvcH8zs0OT0XgRka6ggC69nrvXAucCt5vZW8AcgrHxO4EMM1tIMMZ+\nkbvXtHyk3VwAXBoecxFwZte2XESk6+ixNRERkTSgO3QREZE0oIAuIiKSBhTQRURE0oACuoiISBpQ\nQBcREUkDCugiIiJpQAFdREQkDSigi4iIpIH/DyzBJG0AmHMpAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd81PX9wPHX+/blklwmM+yNgKio\nqChU3Kt17+KutrW1ra2j1Vqr/rTbttZZBWetirtVKU5EURQRAUWZYWbncpfb9/n9cZeQkEEScklI\n3s/Hg0e47/x8Q8j7+5lvMcaglFJKqb2bpbsLoJRSSqk9pwFdKaWU6gU0oCullFK9gAZ0pZRSqhfQ\ngK6UUkr1AhrQlVJKqV4grQFdRH4sIl+IyEoRuSa1LU9EFojI16mvueksg1JKKdUXpC2gi8gk4HLg\nIGBf4CQRGQ1cDyw0xowBFqY+K6WUUmoPpLOGPgFYYoypNcbEgHeA04BvA/NSx8wDvpPGMiillFJ9\nQjoD+hfA4SKSLyIZwAnAEKC/MWZb6pjtQP80lkEppZTqE2zpurAxZrWI3AW8AQSAz4D4LscYEWl2\n7VkRuQK4AmDixIkHrFy5Ml1FVUqptpDuLoBSrUnroDhjzD+NMQcYY44AKoE1wA4RGQiQ+lrSwrkP\nGGOmGWOmud3udBZTKaWU2uule5R7v9TXoST7z58EXgLmpA6ZA7yYzjIopZRSfUHamtxTnhORfCAK\n/MAYUyUidwL/FpFLgY3AWWkug1JKKdXrpTWgG2MOb2ZbOTA7nfdVSiml+hpdKU4ppZTqBTSgK6WU\nUr2ABnSllFKqF9CArpRSSvUCGtCVUkqpXkADulJKKdULaEBXSimlegEN6EoppVQvoAFdKaWU6gU0\noCullFK9gAZ0pZRSqhfQgK6UUkr1AhrQlVJKqV5AA7pSSinVC2hAV0oppXoBDehKKaVUL6ABXSml\nlOoFNKArpZRSvYAGdKWUUqoX0ICulFJK9QIa0JVSSqleQAO6Ukop1QtoQFdKKaV6AQ3oSimlVC+g\nAV0ppZTqBTSgK6WUUr2ABnSllFKqF9CArpRSSvUCGtCVUkqpXkADulJKKdULaEBXSimlegEN6Eop\npVQvoAFdKaWU6gU0oCullFK9gAZ0pZRSqhdIa0AXkZ+IyEoR+UJEnhIRl4iMEJElIvKNiDwtIo50\nlkEppZTqC9IW0EVkMPAjYJoxZhJgBc4B7gL+bIwZDVQCl6arDEoppVRfke4mdxvgFhEbkAFsA44E\nnk3tnwd8J81lUEoppXq9tAV0Y8wW4A/AJpKBvBr4BKgyxsRSh20GBqerDEoppVRfkc4m91zg28AI\nYBDgAY5rx/lXiMhSEVlaWlqaplIqpZRSvUM6m9yPAtYbY0qNMVFgPnAYkJNqggcoArY0d7Ix5gFj\nzDRjzLTCwsI0FlMppZTa+6UzoG8CpotIhogIMBtYBbwFnJE6Zg7wYhrLoJRSSvUJ6exDX0Jy8Nun\nwIrUvR4ArgN+KiLfAPnAP9NVBqWUUqqvEGNMd5dht6ZNm2aWLl3a3cVQSvVt0t0FUKo1ulKcUp0g\nWlpKcMUKYpWV3V0UpVQfpQFdqT0Uq6xky49+zIYzz8L/9tvdXRylVB+lAV2pPSQ2G87x48FmwzFi\nRHcXRynVR2kfulKdIFZZiYlGsWZlYXG7u7s4Kj20D131aLbdH6KU2h1bbm53F0Ep1cdpk7tSSinV\nC2hAV0oppXoBDehKKaVUL6B96KrPiVdXE/f5EJcLu+YJUEr1ElpDV32Of/Fi1h59DBvOPodYWVmT\n/cYYwuvWsf2224hu29YNJVRKqfbTgK76nNiOHQCYWIy4Raj1VZOIx+r3J2pq2HHb7VQ+/gRlDz7Y\nXcVUSql20SZ31ed4TzkF59hxmDGjePfZp9i+dg1jph/GlNnHkZHtxeLxkH/l9zDxGHnnndfdxVVK\nqTbRhWVUnxSs8fHiH25ny5cr67cdfOpZTD/9XGx2OyYWI1Fbi4nHCa1ejS0vD8fQoVgyMhpdJ1ZW\nBiLY8vO7+hFU19OFZVSPpk3uqk+KRSKNgjnAVx8sIhzwA8nlXK3Z2YRWrab4kktZf9rpxKuqGl+j\ntJQN51/AxjkXES0tbbQvEQoRXLmKqpde0oQtSqkuoQFd9UlisZKZ27hWnV80BJvD2WibNTMTrFas\n2dkgjStocX+A6MaNRL75BhMON95X7WPDOeew7RfXEXj//fQ8hFJKNaB96KpPyvBmc/JPb+CF3/+W\noK+avMFFfOuiK3Du0qSeiIQZ/sQTGAzG1vi/iy0vl8F/+xvisGPNymq0T2xWnKNHE1m7FueYMWl/\nHqWU0j501efEKioIrliBbchQ4tmZxBMJbE4nHm9Ok2Pj1dVEdpQQy/CwqDTOfiMLGeB1te0+ZeWY\nRByr14vF6dz9Caqn0z501aNpDV31KXG/n5Lf/4Hq558HYOi8uXgPPrjZ40wohCUjg/KCwWzbtJ1J\ni14jsaYftUfNJiN/98lYbAU6UE4p1XW0D131KSYSIbR6df3n0OovmxwTq6yk9O672XD+BZTPe5Tc\nRIj+vhL89/yN6l/fhLU20JVFVkqpNtGArnqNqtoIG8sDlPhCGGNIxOPEY9FGx1izsxlw803YCgtx\nTdqH7OOPq98Xq6wkUlxMoqaG2I4dRDdupOzuu7FWVdBv7AicY8fiPfccqjNzWbm1mk82VlLiCxGO\nxrv6UZVSqgltclc9Sm0khj8Uw2mz4s2wt+vc974u4+qnltE/28nrVx3AV+/8j5qyUmacejZSWQki\n2AcOxDV5MiPmPwdWK7a8PABilVWU3PU7ql94AXE6KfrbX4kUbya8ejWC4BzQn6GPzqM4YuXM+5ew\npSoIgMdh5f4LD+DAEXk4bdZO/34opVRbaQ1d9Sgfb6jg0Dvf5IH31hIIx3Z/QgPl/uTUsZpQDBMJ\ns+ipeSxf8B8IBFh38imsO/kU4tXVWOx2bIWFBDOy+GBtGa+v3I4vYaH6hRcAMOEwVc/NJ+uo2eRf\n/UNshQUAVNvcfP+pZfXBHCAQiXPpvKVU1UabFkgppbqQ1tBVj/LNDj95Hgcfrqvg0hkJPO0YHH7K\n1EGMKPAwLN+Dwx5l0pHHUFNWisXhwD5oIFisSIOpZ75glHMfXALAgh/PwD5kCNHiYgBckyfhPO5Y\n7J5MrF4vALWROKu31TS5bziW4MttPvpnt230u1JKpYMGdNVjVAYijCjM5JGLDqQgy0Gex9Gu8/M8\nTmaO61f/edZ3L8PEE1jdGQx58l+IgK1BulSHzcrkwV58oShZiQjev/2V8OrVmESCrJkzsRUUNLq+\nRVqetWS1aGOXUqp76W8h1WN8U+rnkrkfc9q9i+mMKb9OdwauzEyqS4I8+aeveP+NckKBnU3jhVlO\n5l58IM9ccgA8/giVwQDLfWVY9t8PRIhVVVH90ktUzZ9PtLISl4lxwLCm09WynDbG9s/c4/IqpdSe\n0ICueoxBXjf5Hgf7D8vFZmlfQDfRKKE1a6h8+t/EKioa7dv2TRW11RG++aSEeCzRaF9+phPP16tx\nHDWb/zxyL0v/8yIrFr+LJTOTWEkJW39xHSYSoerRx6j67nn8+dhhTB7srT9/QLaLJy+fTm47WxOU\nUqqzaZO76jEGeF28ds3hWC2Wdje3x6uqKL7scmIlJVg8HrwnnVi/b+TUQmLRBING5+DKaPoj7xg2\nlER1FfsedTwr3nyDcYcdgcXpxOr1Yh86FPuQIVTMexTvL65Ftq3nvumZxEdOJW7A47SR73FiTb2A\nmEQC0eZ3pVQ30ICuOswYw4byWp5cspFLDhvBwBz3Hl3PahEKszo2sExcLrxnnEHNG2/gnjK50T5b\noILBG/+HZ+B0hNFA4+ll9oEDsWRmMqWoiIlHHIk7K5u4z0dw5UqG/OMeoiUl5N31f8z/5z3Y7HZO\nufAKsgg3WQkuVlFB+UMP4Z48Gc+Mw7FmaTO8UqrraEBXHeYPx/j1i1/w7tdl1Ebi3HrcaKzuPQvq\nrYnH4wR91QC4s71YrVbi8QQbK2pZtbWGmRdcSO655zYJtBXz5lHxyFyqhg1j+BOPY9llsBuANSsL\nK1A3qD4aCLDl+z8AYOR//0MkGqFqxzZEBEtBPtbcpn3pkfXrqXj4ERBh9LvvaEBXSnUpDeiqwzLs\nVq6cNYpQLMH5kwso/etfKbjsMmz5+QSjMXy1MaxWoSCz5blnJb4Q/nCMfI8Db0brzew1pSU8dv2P\nALjwrr+S038g5YEIFzy0hK3VIe46fQrTR+YxrMFo9EQoRO4FF5Bx4IHEAwEsu2RTa4k4HHhmzSLy\n9RrE4cCdlcUFt/8Ji82GKyu72WZ1x7BhZB1/PO7Jk7E4tE9d9Wwicgow0RhzZ3eXRXUO7exTHWa1\nWjhweB73nToO103XUvnIXBJ+PwBf7/Bz2F1v8qOnllERCDd7fmlNmNPuXcyRf3yHldt8u71f6cb1\nRIJBIsEgpRvXA+CyWzlxykCG5mUwqtDDK8u3NjontGo16447norHHsdzyCFtDui2/HwG3fl/DPvX\n09gHDsRdUED/UWMoHDYCZ3Z28+cUFDDw9tvIveD8+rnrSnUFSWrX73NjzEsazHsXraGrPWK3Wsi2\nC+aoIzGzjsCSCnYby2uJJQzflPiJJ5o/1yKQ7bIjEiTTufsfxUFjxzP+sJlgDINGjQUg223nh0eO\n4cLpw/hwfQVnThvS6Bz/+4sw0Si1H30EiZ0FqSkvo3jVCoZNnoonp/nMabacpulUd8faxhcGpfaU\niAwHXgeWAAcAvxORK0n2HK0FLjbG+EXkBOBPQAB4HxhpjDlJRC4Cphljfpi61sNAAVCaOneTiMwF\nfMA0YADwC2PMs131jKp9NB+66hR1P0eSau6uCET4aruPoXkeBnpdWFqYhlbiCxGLxciUBNm5zdd8\nAWLl5ZQ/Mhf3UbOJlZQQ/WIl/X/6kxaPj/uSNX4TiVA+dy6ZM2bgnjIFS0YGIb+fl//yf2xasZwp\nRx3H7Eu/j0VHpqvd61H50FNBeB1wKPANMB843hgTEJHrSAb23wFfA0cYY9aLyFNAVjMB/WXgWWPM\nPBG5BDjFGPOdVED3AGcD44GXjDGju/RBVZvpb7FeKhGPEw2Fuux+IlIfzAHyPA4OGVXA4Fx3i8Ec\nIHvbRmqOnknF1T8gVl7e4nHBlSupeOghtl50MY6sLLKPPqp+n0kkiBQXU/H444S/+YZYZSW+116n\n7MGHQITcc8/FkplJIppcVMZqtzNi32nYHE6GjZ+EqWm6nGtXMglD0B8hFmlb1rZEwhCoDhOsiaS5\nZGovsNEY8yEwHZgIvC8inwFzgGEkg/A6Y8z61PFPtXCdQ4AnU39/DJjRYN8LxpiEMWYV0L+zH0B1\nnrQ1uYvIOODpBptGAjcDj6a2Dwc2AGcZYyrTVY6+KFwbYO0nH7Hmw0Uccf4l5A0a3N1FalFg8WIS\ngVqCS5diIi0HKPeECWQdeyyeQw7BOWpUo1HmsfJyNpx1NvHKStwHH8yAG2/E/9Zb5Jx2GrHycjbO\nuYhEZSUjXngBm9eL3elk4kGHMKJwAMEF/8O3dQe5Z5/dFY/brKqSWv43dxX7HD6YMdP6Y3e2nrUt\nUBXm33d8RNH4PA4/ZywZmXs2AC8cjGGxCnaHZovbCwVSXwVYYIw5t+FOEZnaCfdoOAimR7VSqMbS\nFtCNMV8BUwFExApsAZ4HrgcWGmPuFJHrU5+vS1c5+qJIMMh///5HAGLhMCf95AZcHk83l6p53pNP\nJrKpmIz998fSShlthYUM/L87ELsdi32XtKqJBPHq5HQ21+hRlN13H/633iK6ZQtF992LLSeHWCKB\nNWfnQDWH3cGOv/4NsVjJuOCCtDxbW3314XZKNtQQ8m9k+OT83Qb0oD/C7DkTqfVFCPujOF02rLaO\nNbbV+iK8+dhq+g3LZsq3inB52peyVvUYHwL3iMhoY8w3IuIBBgNfASNFZLgxZgPJpvPmLAbOIVk7\nPx94rwvKrDpZVw2Kmw2sNcZsFJFvA7NS2+cBb6MBvVNZbDYKh42gdON6Ruw3DVsXTqGqrI0QjSXw\nOG142jDQzVZQwICbftWm1dVaGnBmycpi8B//SPkjj+Cauh/OEcOJbdtG3qWXYMvPZ9jjj0EigbUu\n93l5OeG1ayn6y18IfPghsusLQhebNHMwwZoI4w8dhLOZlex2ldMvg61rqnj/2W+wO62cf+t0PN52\npKVroLq0lo0rytn0RTn7HD6oQ9dQ3c8YU5rqE39KROp+GH5ljFkjIt8HXhORAPBxC5e4GnhERH5O\nalBc2gutOl2XDIoTkYeBT40xfxeRKmNMTmq7AJV1n1uig+LaL1BVSTwaxZFKUNIV/OEYf3zjK+Yt\n3sCTl09n+sj83Z/USRLRKAm/H8nIILxqFcFly4hs3Ubhld+rz5pm4nFi5eUEFi+mZsECXOPHU3bP\nP3BOmMDQhx7Elt915d2VSRikHevXr/uslP/et4LsAjen/3x/MtoZ0I0xBKrCJOKGNR9tp2BIFoPG\n5OBw6cSXVuyVzc0ikpka7S7APcDXxpg/d3e5VOdL+/9eEXEApwA37LrPGGNEpNk3ChG5ArgCYOjQ\noWktY2/U0lSsdIrFE3y5rYaEgbUl/k4J6FW1EZZvrsJttzJhYDZZruZr0xa7HcnMJO7zUf7Ag/jf\neguA3LPOrA/o4XXr2Pqza8mceQRZxxyDvV8/HKNG4b71DiqsbgoSptUBfOnUnmAOMHhsDhfefghW\nm6XdwRySTe3P//FTAlURTr12f/oPb3mGgdrrXS4icwAHsAy4v5vLo9KkK17HjydZO9+R+rxDRAYa\nY7aJyECgpLmTjDEPAA9AsobeBeVUeygnw8Ffz92PrVVBhuS1Ph97a1WQ5ZurOGh4HvmtrCRXWRtl\nzsPJVsL3fjGTL6s+Y0ftDmYMmkGOq3HDTmj1asoffZS8iy8m+PnnOMeOra91G2OomDeP8Jo1hNes\nYdSbC7G4XGQ/8W+ueGIZJTVbeeLygxmev2djDRLxBNVlIXasq2bYpHzcWenp7nBm2HFmtK+rIBIM\nEg0FcXoykyv4Dc4kUFWBza6TXXqzVG1ca+R9QFcE9HNpPFXiJZJTKu5MfX2xC8qgOigRDoPF0mQg\nWtznw//uu0Q2bSL3nHOwpfqnC7OcFGa1XmOsDES4+qllfLKxkl+eOIHLDx/Z4rEeh5WheRlkOKzY\nBe7/7D6W7PiI50+e3yigG2OoeuZZal55FfugQYx47lnE6cSWGg0vIuRfdBHh1avJ/NaRWD0erF4v\nlTtqWFZcBcCbX5ZwyWEjOvR9qhP0R1n83NdkFWXiKnYwfGL3NeM3FI/F+PrjxSx68lFOuPpnDNln\nCrMuGE8iYdr9YqCU6pnSGtBTIy2PBr7XYPOdwL9F5FJgI3BWOsugOi5WXk7JX+7GVpBP3pw5VNnc\nrCv1M6owk+zaWrZe+3MAPIceWh/Q28Jpt3DMxP5sKq9l1thCtleHEIF8jwObtXFtsTDLyTPfnULC\n5yP+uzu44+izWTjlcDJrYsSoxJa3M2Dnff/7mLx83KecQtCbR7a7ce3YMXIkQx54AHG76wfY5Xsc\nnDRlINuqQxy3z4A9+XYBYHdaGHnycO5c8BVXT85lSMLUp1btTrFohDUfLMJfWc7XH3/AkH2mpK31\nQCnVPXSlONWi4IoVbDgz+b41dNEifv3WZp79ZDPfPWQYvzpyGGW3306keDNFf/kztsLCdl27JhQl\nFI3jD8c47i/vYbda+N9PZzLA2zR9au3ST9hYN7XMamXEyy+x9Sc/ZehDD2ErTPaP10Zi3PrySsoD\nUVZv83Hv+fszuahtS7f6glFiCdPuHOzNMcZw4/wVPPVxMTPHFnLPefuR2UK/f1erqSijeGXry92q\nVnX/m5lSrdAhrapF9kGDyDrmGKyFBdgcdqYO8fLcp5uZOiQHe2Ym/X/5S0wsBpnZbF9XzddLdzDl\nqCG8sqaE2RP6McDbcirVLJedLJedDeUVhGMJwrEE/nAUaBrQE7WBnR/iccQYiv7+N6x5O4OSAJGY\nYcGq5FANu7Xt/cLZ7s4LuCLCD44cDQKXzBjRpql7XSUrr4CJh3+ru4uhlEoTraH3QrFInGgkjstj\nb7Qca0fE/X4iYqUmsfM6bru10WjzQHWYJ29ZQiQYY/yhA3kjI0pVMMKfzpqKx2mjMhDh9ZXbyXBa\nmTYsj0yXjUy7hUBVJf6qSsIuL2uqEhw0Io+seJjYjh2Iw4GtXz8sLhexigp23H4HtR9/RO5555Nz\n7jnYmslmVuYP88rybYzq52FKUQ7eTgzU7WWM2ePvvepx+tw/qIgsNsYc2t3lUG3Tc6oPqlNEw3HW\nfLyd1e9v4+hLJuIt3LPsX9bMTDZu8/Gdf7zPSVMGcdOJE5pMHbPaLIzYt4CvP97BkCn5bPxoLaft\nV4QztXpZdSjK9fNXAPDMlYewtSrI7KEu5l37A8K1AWbNuZxjTvg2AOG1xaw76WSw2xm94A0sAwZg\ny8tjwK9vJhEOY8nIwNrCinIFmU4uOmz4Hj1vZ9FgrvZmImIzxsQ0mO9dNKD3MtFQjE9f24SvLMj6\n5WVMPWrP5/BvKA8Qiib4rLiKaLxpi47LY2fGGWM45NRRJKzw11H74bZb6we4ZTptnDBpAG6HlR2+\nEK99sZ0jhwwjnkqWEg0G668lTidityMZGdBg9ThrdjadudK4MSa5Ytzq1cQrKsk4+CCs+flNl5VV\nqhMMv/7V84A7gKHAJuDGDXee+GTrZ7VORF4AhpDsp7rbGPOAiPiBe4ETgG3AjSQzrg0FrjHGvJRa\nivtOkit2OoF7jDH3i8gs4LdAJcmkLmNFxG+MyUzd7zrgAiAB/NcYc72IXE5yvRAHyYxvFxpjavfk\nuVTHaZN7LxOPJSjb7OebT3Yw9aihu18SNBKAcA3YXOBufhBZRSDCulI/RbnuVvvFW1PiC7Fg9Q4e\n/3ATd58zlZF5LnylJVRu28LAMePIyE42oSfCYeKVlWCxYMvPR6x7FsYrAxFK/WFyMxz10+lqQlGi\nZWVUff97hNd8DYC43Yx49hmco0bt0f1Ur9ahZpdUMH8QaNhcVgtcvidBXUTyjDEVIuImuaTrTKAM\nOMEY818ReZ5k6tMTSWZim2eMmZpatKufMea21DKx7wNnkszO9iowqS47W11AF5HjgZuAo4wxtQ3u\nnW+MKU8dexuwwxjzt44+k9ozWkPvZaw2C/2HZ7dt5a9YBNa8Di//GPa7AGZe12xQz/M4yPO0fVpa\nc/pluzhh0kCOmdiffI8Ti0XIGzS4SSY4i9OJZcCeTx+r88aq7Vz33Aqmj8zj3vMPINfjIBJP4P9s\nRX0wBzDBICV/+QuD7ryzxSZ9pTroDhoHc1Kf72BnytKO+JGInJr6+xBgDBABXkttWwGEjTFREVlB\nMsMlwDHAFBE5I/XZ2+DcjxqkWm3oKOCRutq3MaYitX1SKpDnAJnA63vwPGoP6RJRfVnED0vuhbAP\nPnoAYuHdnpKIxwlUVRCs8bX7drkeB4VZri5dXrVfVnLU/IDsnfd12ay4appm7I2XlWNS3QBKdaKW\n+r063B+Wah4/CjjEGLMvySVdXUDU7Gx2TZBKfWqMSbCzAifA1caYqak/I4wxb6T2NZhS0iZzgR8a\nYyYDv6G5aSqqy2hA78uc2XDUrTBgChx3F9h335zuKy1h3rU/5K2593coqLfGGMPWqiDvfV1KuX/3\nLxdtMW14Lh/ccCQ3nTSxftS7x2kjd+bhyC5Z6HIvuABbTtvmrivVDpvaub0tvCQTW9WKyHhgejvO\nfR24SkTsACIyNrUIWGsWABeLSEbqnLomuyxgW+pa57frCVSn0yb3vsxqg6JpcOHz4PC0KaBXlWwn\nWONj08oVJOLxVo8N19YSi4SxWCy4s5tOM9tVmT/C2Q98QHFFkKtmjeLnx4zb49p83Xz3Xdny8xn+\nzL8p+dOfiVdWknfhhXgOO2yP7qVUC26k+T70G/fgmq8BV4rIapI5zz9sx7kPkWx+/zSVga0U+E5r\nJxhjXhORqcBSEYkA/yFZ/puAJalrLCEZ4FU30UFxqk3i8TiRYC2JeJzy4o14+/Unq6AQi6X5QWvh\n2gCfL3yd9//1KIPH7cOJP/45Gd7Wa7/l/jCXzVvKsuIqfnPKPsw5dHirx2+vDvHu16X0z3YxpchL\nbkb7V3qL+/2YaBRrTo5ONVO70+EfkHSMcldqVxrQ+4BaXzXhgB9nRiYZzSzIsjvRcJjNq79g07JP\nmPatY7BZLFi93mYXd6njr6zg/qvmQOrn67zb/sjAMeN2e6/SmjC1kRhet52cVgJ0aU2I0+5dTHFF\ncsrbdceN45IZI3DaOnNym1KN6Buf6tG0D72XM4kEy9/4Dw9f8z3ef+ZxYpFIu68RCtTwwu9uZcoh\nh1N82umsO+ZYaj/4oNVzLBYL/YYns6jZHE4y83ZmHav1RfjolXVsX19NPNq42b4wy8mwfE+rwRyg\nNhKvD+YAr6/cQW249S4ApZTqzbQPvbcTwZWZCYA7M6uDzcoCCJJIYGqTa0ZEtmxp9YwMbw6nXX8L\n5VuKyek/oH6eOcC6z0r5+JUNfPHOFs7+1UF4vO2vVbvtVgZ5XWytDgFw5Ph+2CxCZSCC1w7xigpM\nOIw1Nxdrdhum8Cml1F5Om9z7gGBNDdFwEJvDRUYHglssEmbLV6up2VxMkcdLYstWso89pl0pUxuq\nLqnlv/d/wagDCpkyq6jZfNxxv59YaSlis2ErKCBstVMdjLHdF2RAtpucDBuVgSgLVu1gUI6bfYd4\neX7ZFhas2sHdZ+2L/+RjiZeXM+TBB8k8fEaHyqnULrTJXfVoWkPvIRKJOEGfj1gkjEkYrHY7dqer\nvna9J9xZWbizOj741OZwMmSfyURGjsbmcGLrwPKoQX8N8VgMV0YG2YVuTvnxVGwOCw5X8z+CsdJS\n1h1/AlitjH73HT6rMnz34Y+Ixg12qzD34oM4ZGQ+300NnCvxhbjvnXVUBCJ8tqmS8fn5xMvLie7Y\n3uHnVkqpvYkG9G5mEgkCVZV89cF7LH3lefwV5fX7hk7el+mnnUtB0VDc3dxsbLFYcXk69nIRDtby\n0QvP8Nnrr3LWzXcwcMw4AmKvXtZnAAAgAElEQVRIRGLk2gRHMwPZxG4Hux2x26nEzo3Pf1q/jnw0\nbrhh/grmX3UoBanlXL1uO/+cM43Fa8s5aGQ+7htvJLplC7aDZrB4/jdMnlVEVp6ueaGU6r00oHej\nRCJO5dYtPP2bGwj6qpvs37RiOZtWLGfs9BnMvvSqRv3QPVnCJCgPlhM3cbId2RCNsnnVF8QiYcqK\nN2HrN5Tz/vkRmyuDvH7N4QzNb7qmha2ggNEL3gARKu12KgKNB/NVBiIk2Nld5LRb2W9oLvsNTeVI\nn34wZVv8PHX7xyQShs1fVnLy1fvizmr/1DallNob6Cj3buSvqOBfv76u2WDe0JoPF/HOY/8k6K/p\nopLtXiIep3xLMf976B989cEiQn5//b7yYDlnvnwmxz13HOXBcjKyvZxy7Y2cfuOtjJs8lUh5OcWV\ntQSjccoCzY+6t7hc2AcMwN6/P163g4t2mZM+59BhZDezYExDtdUREolUrT4cZ28YL6JUVxGRWSJy\naIPPcxus797Z93pIRCam49pqJ62hd4N4Ik5FqJyqyq1tHnW+6t03OfjUs3Fn9oyFmGp91Tx107WE\nAwGWL/gPF971N+IxO4mEwWZ3YLVYEaT++bLyCsjKKyDwwQdEnvwXr179M6psGYws2H0iFKfdykWH\nDmfS4GxeX7mDoyf258DhubjsLY+Oj4RiFA7L5IDjh1NWXMOhp47EEa8lmS1SqS52i7fJwjLcUt3d\nC8vMAvzA4nTfyBhzWbrvoTSgd4vSYClnvXwWo3NG86PvXcbCP/yp2eMyc/P51sVXkJHtxVdWyucL\n/8thZ12I3dn9QckkEoRrd6Y9drjz+NdtHxEORDnrVwfx9IlPEzdxvM7G3QTOMWOw2yy43nmdYWed\nha2Nq7vlehwcPXEAR03ov9uXIF9ZkHf/tYZhk/LZd3YR1PrZftVFVAZDDHvsUWz5+a2er1SnSgbz\nhku/DgMe5BYvHQ3qqbXX/w0UAVaSeczLgD+Q/L3+MXCVMSYsIhuAacaYMhGZljrmIuBKIC4iFwBX\npy59hIj8FBgA/MIY82wL988EXgRyATvwK2PMi82VyxjztIi8DVxrjFkqIvcCBwJu4FljzK878j1Q\nTWlA7wYVoQoqw5WsLF+Je1Tzy6GKxcJJ1/yCN+c+QMn6tQzZZwoHf+dMwrWBTgnosUiEoL8Gi8WC\nJye33ec7MzI46rIfsPjfjzNw9FisdgexcBxjIBaOMyCjoMk5iYSh0pmJ+ze3k+u0Ykk9R5k/TG04\nhsdpIz+z9WfbXTBPJBJ89Op6Nn5RzsYvyhmxbwF2fxWhVaux5ufXr1ynVBdKR/rU44CtxpgTAUTE\nC3wBzDbGrBGRR4GrgL80d7IxZoOI3Af4jTF/SF3jUmAgMAMYD7wENBvQgRBwqjHGJyIFwIci8lIL\n5drVL1O51K3AQhGZYoz5vCPfBNWYBvRuMDhzMPOOfoSMuJPPn3im2WOy8gup2rGdkvVrAShe+TkH\nnXJ6p5XBX1HO3J9dRc6AQZx18x27XWd9Vw53BhNnzGLUAQdhs9uxOx2ce8vBRIJxsvKaD8rbqkOc\ndu/7jCjw8Pfz9qfACRWBMD/992e8u6aM0w8o4tcnTSTb3f5pcXUsFgvjpw/km6UlDB6bi8Vmwdav\nH6P+twCx25NBXamu1enpU0nmOv+jiNwFvAL4gPXGmDWp/fOAH9BCQG/FC6lUq6tEpH8rxwlwh4gc\nQTJN62Cg/67lMsa818y5Z4nIFSTjz0BgIqABvRNoQO8GXqeXgcFsnrvtJsK1zacfjtQGyC7sV//Z\nYrW2KWNZW8VjUeKxGKGAv8ODxewuF3bXzqlg2fmtZ2vbUB5ghy9MaU2YaDwBQCxu+HxzclDgZ5uq\nCMcSHSpLQwNGZHPhbYdgsQruTAfgwNoJ8/mV6qBNJJvZm9veIala+P7ACcBtwJutHB5j5wDo3c3d\nbJi3uLXmsPOBQuAAY0w01azv2rVcIrLQGHNr/QVFRgDXAgcaYypFZG4byqTaSAN6N8nKKyAej7W4\nPxTws+7TjznpmuvY9MXnjNz/QEo2rGNC0ZBOuX9mfgGX/f2fWG32NtfOI1u3Uv7QP8k95xyco0Yi\n1vYt2TphYDZ3nj6Z4fme+pSmORl2HrnoQOYt3siVs0aS52ncp54Ih0kEarF4Muqb6HfH5rBic2iS\nFtVjdHr6VBEZBFQYYx4XkSrgh8BwERltjPkGuBB4J3X4BuAA4L9Aw2a+GqCjC1x4gZJUMP8WqReW\nZsq162C4bCAAVKdaAI4H3u5gGdQuNKB3E6fHwz5HzGb5gv+0eMzSl+fTf+RocgcOZtFT8zjlZzdi\nc3TOgDinOwOne+fvl5pIDavLVyMijM8bT5aj8Wh6E49T+pe78b30EqEVKxjywP3YctvX957ncXDO\ngY1bGR225PzxyUVebJbGsyjjPh/VL7xI9Usv4j39DLwnnqDrsqu9zy3VT3KLFzp3lPtk4PcikgCi\nJPvLvcAzIlI3KO6+1LG/Af4pIr+lcfB8GXhWRL7NzkFxbfUE8LKIrACWAl+2Uq56xpjlIrIsdXwx\n8H4776taoWu5dyNfWSmPXfcjQm2YXz5x5mxmXXjZHi3h2pot/i0c99xxALx++usMyhzU5JjaZcvY\n9stfUXDVlWQdc0yba8wdFSkuZu3Rx9R/HvW/BTiKitJ6T6VaoWu5qx5NF5bpRll5+Zzzm7t22zc+\n7pDDmXnBJWkL5gBOq5Np/adx0ICDcFibn0rmmjSJYY/OI+voo9MezIFkk35drd1qRazaoKSUUi3R\nGno3M4kEgeoq1nywiKWvzKemvCy5Q4Shk/blkDPOJW9QUZcs+1oZqgQg19VyU3plIEJ1KEqmw1a/\njnq6xAMBgsuWUf3CC+SccQbuKVOwZOw6+0epLtPnaugiMhl4bJfNYWPMwd1RHtU6Deg9RCIRJ1hd\nTSwaxZgEVpsdu9OJq4esDFdn3uL1/PqlVcwcW8Dd5+xHThsXhtkTiVgMi01r56rb9bmArvYu+luy\nh7BYrHhyO5ZfvCulEp6R6ML3QA3mSim1e/qbUtULVFdh4nGcHg92Z/NTQ0+dOphvjetHlsvWJbVz\npZRSbaOD4hQAtT4fr93zJx784SVUbtva4nHZLhv97DYyu+FHJxSI4isLEqgO7/5gpZTqYzSg9zGV\noUq+rPiSHYEdxBPx+u3GJKipKCcRj7c6jc5XFuJft37E4vnfEApEu6LIAMRiCVa/v5XHfvUBz//x\nUw3qSim1Cw3ofUjCJJj/9XzOfPlMTnvpNCpCFfX7PN4czvzlbVz85/spHD6yxWtUbQ8QCkTZ/GUl\n4UjzuczTIR5NsPnL5Cj86pIgiXjPH8ypVE8gIreIyLVpuvaGVHKWHklECkVkiYgsE5HDm9nfq/K0\np7UPXURygIeASYABLgG+Ap4GhpNckvAsY0xlOsuhkowxlNaWAlAbqyVhGq+b7snNxbOb1d/yR2Rw\nxPeG4ymw85n/E2bmHpG28jbkdNs44tyxLH5uLcOnFOBwp+dHNxSIEo8lcGc5sFh0ULPqHJPnTW6S\nD33FnBXdnQ+9W4mIzRjT8vrXnWM2sKK5fOwiYu1tedrTXUO/G3jNGDMe2BdYDVwPLDTGjAEWpj6r\nLmC1WLliyhX85tDf8NSJTzXJVd4W4kqwSF7nH2vvZnTOqCb7jTFES0oIr1tHvLq6M4pdz1uYwdGX\nTGTc9AFYgz7igeYT23RU0B/h/We/4dk7l1JTHurUa6u+KxXMHyS53rmkvj6Y2t4hIuIRkVdFZLmI\nfCEiZzesLYvItFQO8jr7isgHIvK1iFzeynUHisi7IvJZ6rqHp7bfKyJLRWSliPxml9OuFpFPRWSF\niIxPHX9Q6n7LRGSxiIxLbb9IRF4SkTdJpk7NFJGFDc7/duq44SKyWkQeTN3zDRFpMfuTiFwuIh+n\nvh/PiUiGiEwFfgd8O/U8bhHxi8gfRWQ5cIiIvJ3KEY+IHJcqx3IRWdjac/RUaQvoqTy4RwD/BDDG\nRIwxVcC3Sab2I/X1O+kqg2oqz53HaWNOY3zeeFy29ic5ynJkcdaYCzmm8Gc8/E41Zf7Gfdnx8nI2\nnHEG6044keAXKzur2PVsDivx7dsovvIqyh98sFNfGhJxw/rPS/FXhqnc1rkvC6pPay0fekfV5R3f\n1xgzCXhtN8dPAY4EDgFuTiVRac55wOvGmKkkK2Gfpbb/0hgzLXWdmSIypcE5ZcaY/YF7SWZSg+Ra\n7YcbY/YDbqbxs+4PnGGMmcnOvOr7A98imXq1rmlsDHCPMWYfoIrGiWV2Nd8Yc6Axpq7ieKkx5rPU\nvZ82xkw1xgQBD7Ak9X1bVHeyiBSSfOk6PXWNM9vwHD1OOpvcRwClwCMisi/wCfBjoL8xZlvqmO0k\nc+iqdIoEoLYcqjdD3khqEy42rVzBwNFjyS7sx87/P42F/BHicYPDZcPu3Jm9LJ6w8cMnPyMST3D4\nmAJmjevX6DxJJX2xZLSeTrWjapctI/T554RXrybv/PM77bquTDun//wAyrcG6D9Sk8CoTpP2fOjG\nmPda+n+c8mIqoAVF5C3gIOCFZo77GHhYROwkc6PXBfTWcpjPT339BDgt9XcvME9ExpDsbrU3uMcC\nY0zdAJ6W8qpDMr973f0/IdlN25JJInIbkANkAq+3cFwceK6Z7dOBd40x6wEalK+15+hx0hnQbSTf\nxK42xiwRkbvZpXndGGNEpNnRTakfnisAhg7dk597xfYv4JHjwCRgwimsyTmbhQ/fR7/hIzn9xlub\nTZ8arInwzlNfsWFFObPnTGDk1AKstmRQd9msXH/8eBavLWPiwMaBz1ZQwPDHHyMRjaYtM5pn+nTy\nr/weGQceiMXj6bTrWq0Wcgd4yB3QeddUii7Ih55qIm4t7/muv2eb/b1rjHk3FVxPBOaKyJ+A92g9\nh3ldM12cnTHlt8BbxphTRWQ4jbO8NWz+ajav+i7Xrbt2azWEucB3UtncLgJmtXBcyBgTb2Ffc1p7\njh4nnX3om4HNxpglqc/PkgzwO0RkICT7a4CS5k42xjxgjJlmjJlWWFiYxmL2cmE/LPpTMpgDbF/B\n4LFjycovYMz0GS2mY41FE6z9tJR4NMHyhcVEwzv/D2S77Zw/fSh/OXsq/bKbNtvbCgtxDBqENTMz\nLY8UyLRR9d0TqJoyjFCPfl9WCkjmPa/dZVtn5EOvNcY8Dvye5O/WDSTznkPT5ulvi4hLRPJJBruP\nW7juMGCHMeZBkgOa96f5HOa74wW2pP5+0W6Oa5JXvQOygG2ploWONNt9CBwhIiMARKRu2c62PkeP\nkLaAbozZDhQ3GEQwG1gFvATMSW2bA7yYrjIowOaE/vvs/Fy5nrwsK+ff/if2O/ZEHO7mX3ptDgsT\nZwwiI9vBtBOHY3c2bsxx2qxkuvYsmlaGKikLlhGLt32gazwR54VvXuD0l0/nxOdPZLN/8x6VQal0\nS41mvxzYSLJmvBG4fA9HuU8GPhKRz4BfA7eRzHt+t4gsJVmjbehz4C2Sgeu3xpiWVo+aBdTlLD8b\nuNsYsxyoy2H+JG3LYf474P9S12mtJfgJYJok86p/l5151dvrJmBJqmztvoYxppRki/D81IC5p1O7\n2vocPUJak7OkRhk+BDiAdcDFJF8i/k2y/2gjyWlrFS1ehL6RnCWt/KXwzl2w5RM46HIYdwK4mzaz\n7ypcGyUWTeB027A5rLs9vj2qQlXcvuR2Fm1ZxFMnPsVw7/A2nReOhblh0Q0s2LgAgD8c8QeOHXFs\np5ZNqRboPEbVo6X1jSM1oGFaM7tmp/O+aheZhXDMbyFSi3F5MWJpU9OMM8NORxKkBv011JSVkpHt\nxZOb12jQXZk/TCJhEFuUpTuW4o/62VSzqc0B3Wlz8pMDfkJpbSmFGYVMG9Dcj5dSSvU9baqhp4b0\nX05ylGH9S4Ax5pK0lawBraF3jmCNj88Xvk48GmXqsSe2mmM9HAgQCQVBwOFy48xo+0CxTV8s55nf\n/hJvv/6c+9s/4MlJLlZT5g8z5+GPWFvq5/VrZmB1VFNcU8yEvAnkuHbfYtBQVagKm8VGpiM9/fRK\nNaPX1NBlL81zLiL3AIftsvluY8wj3VGenqatNfQXSY50/B9N+2ZUNwjHwgSiAbxOL1ZL25rDw7W1\nLHoquQTAhBmzWgzotb5q3nnsn6x+720GjBrDsCn7sd/xJ7f6AtCQJzcPm91BftFQLNadZYvGE6ze\n5iNh4LNiH9+eWkRRVlGbrrmr9r4AKKV2MsasAKZ2dznayxjzg+4uQ0/W1oCeYYy5Lq0lUc1KJOIE\nfT4QwZOaXhaOhVm4aSFzV87ljhl3MDp3dJPzKoIVxImT68zFZkn+MzvcbvY9+gTi0QjOjF3Xudhp\n3acfs+rdNzni+99ne0GIsM1DafkWhrUxoHv79efSvz2ExWrFnbVz6lq2y86/rjiEL7f5OHxMj13+\nWSml9kptDeiviMgJxpj/pLU0qolAVSWP/vxqsvILOP2Xt+Lx5hKIBXh01aOsrljNK+te4ZoDrml0\nTkWwgh+8+QM2VG/guVOeY1BmclGojGwvMy+8BAzYXc2vEheLRFj7yRIcbjfWofnc+G5yqeMXj3uW\neDSK1b77ke02u4PM3Lwm2z1OGweNyOOgEU33KaWU2jNtnbb2Y5JBPSgiPhGpERFfOgumkqKhMCF/\nDVXbt2ESyfEOOc4cbp9xO5dPvpzzJzSdchknzobqDfijfnyRxv9MdqerxWAOYLXbGTppX6LhMDkO\nL3muPIoyi3BYXVhsPX7WhlJK9VlpnbbWWfryoLhQIIC/ogy7y0Vmbj7WNgTVWCJGSW0JNZEaBnoG\nku3c2exdG63FF/FhFSt5rrxm+98D1VX85+7fEw4HOeDCc7E5nBQVDm/UfB6LJoiGY9hdNmw2zcKr\n+oReMyhO9U5tDugikktysfz66p0x5t00lauRvhzQO9vKspWc95/zyHZk89wpz9Evo1+zxwV9vkaj\n3BsG81BtlDVLdvDVkm1MPGwQow/ohzNDl2xTvZ4G9C4kyfTb5xlj/tGBczcA04wxZZ1QjltJrvP+\nvz29Vrq1qQ1VRC4j2exeRDL7znTgA5LZe9ReZGtgKwcPPJhBnkG09jLnzs7G3cJa7OFAjPeeXgNA\nyYavGDIhr8WAHkvESJgEDqtjzwvfRcLxMGur1rKibAXHDDuGXFfrOeKV2p3V4yc0yYc+4cvV3ZIP\nXbomD3lnyAG+DzQJ6F35DMaYm7viPp2hPX3oBwIbjTHfAvYjmc5O7WX277c/p44+lYRJdLi+YbFK\n/bliESyW5i/ki/h4bs1z3P7h7ZQHyztY4q7nC/u47PXLuO3D21heury7i6P2cqlg3iQfemp7h4nI\nBSLyUSrX9/0iYhURf4P9Z6QSqSAic0XkPhFZAvxORPJE5AUR+VxEPqxLhyoit4jIY9JM7nQR+Xkq\n5/jn0jQn+q5l+27quOUi8lhqW2EqV/nHqT+HNbjnw6nc5OtE5Eepy9wJjEo93+9FZJaIvCciL5Fc\nRpzUM3wiyZzpV7Tje9fkvNT3b64k88CvEJGfNPjenZH6+82psn8hIg80SPXaI7R1lFPIGBMSEUTE\naYz5Unp4onfVvIRJcN2712EwjPCO4OJJF7f7Gs4MGyf9cF++/CDZ5O70NF87D8fC3LbkNgBOGX0K\n+e78PSp7V3FanZwx7gw+2PoB43L1x1ztsdbyoXeoli4iE0iutX5YKrHJP9h9UpIi4FBjTFxE/gYs\nM8Z8R0SOBB5l57z0KSRbYT3AMhF5FZhEssv1IJIvJS+JyBHNdbuKyD7Ar1L3KmuQ6ORu4M/GmEUi\nMpRkitMJqX3jSeZDzwK+EpF7SWbnnJTKzY6IzCKZLGZSXZpT4BJjTIWIuIGPReQ5Y0xbag9NziO5\ncNrgVH75uib/Xf3dGHNrav9jwEnAy224X5doa0DfnHq4F4AFIlJJch12tZexW+ycPuZ0Ptz2ITOL\nZnboGg6XjWH75FM0LhdrKwPiXDYXN0+/mVXlqxjhHdHRIne5bGc2V0y+gjkT5+w1LyGqR0tHPvTZ\nJDOrfZyqJLppIXNlA880SB06g1RGNmPMmyKSLyJ1fWzN5U6fARxDMkkLJHOOjwGaG0d1ZOpeZanr\n1+XqOAqY2KBSmy0idUs9vmqMCQNhESlhZ070XX3UIJgD/EhETk39fUiqTG0J6M2d9xUwMvWy8yrw\nRjPnfUtEfkHyhSwPWMneFtCNMXUPfkvqH9gLvJa2Uqm0yXHl8JMDfkIkESHXuWd9w60Fc4AsRxan\njTmN74z+Dnbr3jVoLtORSSa6rKzqFJ2eD51kLXmeMeaGRhtFftbg467zUwO0TXO50wX4P2PM/e0q\nZWMWYLoxJtRwYyrA75r7vKXYVP8MqRr7UcAhxphaEXmbps/cREvnpXK97wscC1wJnAVc0uA8F8n+\n/GnGmGIRuaUt9+tKbZ5vJCL7p/o2ppDMcx5JX7FUOmU7sylwFzSZshaKhfiq4iveLX6XqnDnDJGw\nWqx7XTBXqpN1ej50YCFwhoj0g2T+bknlMheRCSJiAU5t5fz3SDXRpwJcmTGmbtGK5nKnvw5cUlej\nFpHBdfduxpvAmanzG+YWfwO4uu4gSWbjbE0NySb4lniBylRQHk+ym6Atmj1PRAoAizHmOZJdBvvv\ncl5d8C5LfR/OaOP9ukxbR7nfDJwJzE9tekREnjHG3Ja2kqku54v4OOfVc4glYjx14lPkOHW9dKX2\n1IQvVz+5evwE6MRR7saYVSLyK+CNVPCOAj8g2e/8ClAKLIUWm5luAR4Wkc9JvlzMabCvLnd6ATtz\np29N9dt/kKpR+4ELaKaZ3xizUkRuB94RkTjJZvqLgB8B96TuaSPZXH9lK89YLiLvi8gXwH9JNoM3\n9BpwpYisJtlc/mFL12rjeYNJxra6im6j1g9jTJWIPAh8AWwn+aLTo7Q129pXwL51TSWpgQSfGWO6\nZMSQzkNvXTgWpipcRczE8Dq8ZDoyiUUiVO3YRk1ZGYPGjW9TtrSKYAU3LLqBDdUbePT4R+nvaakb\nq3VVoSpiiRhZziyc1o4kYFWqR+pRI5rTIdWM7DfG/KG7y6Lar61N7ltp3FfgBLZ0fnFUR5QFyzh+\n/vEc99xxrK5YDUDIX8Pj1/+YgCXMv9fN573N7+GP+Fu9Tp47jzsPv5MnTnyixQVnWlPuD7OpqpTb\nPryNE58/kTUVazr0PEoppdqvraPcq4GVIrKA5ACJo4GPROSvAMaYH7V2skqvilAF0UQUgPXV6zlw\nwIFYrFaG7DMFX0aE3y3+HYKw4IwFTfKHV4Qq2OTbRFFmEQUZBR1eRCUUjfOHN9bw7QMyWVi8kFgi\nxtvFbzO5cPIeP59SqmsYY25p67GpPvKFzeya3capY2nV08uXDm0N6M+n/tR5u/OLojpqSNYQbjjo\nBipCFRw17CgAMrw5HP/Dn1FjCTExbyJDs4ditzQenBaNR3lr01uMzRvLet96DIbCjMIOlUGADIeV\n55aW8+cj/sFHJYs4d8K5e/poSqkeKhUUe2xO9Z5evnRod3IWSa7pPsQY83l6itRUb+1D91eUU7Jh\nHYXDRpCZm4dYWukBiUehtgJMDLCA3Q3utg1aqwhVkEgkkkuw2hz1g92iiSjFvmJOf/l0YokY98y+\nhyOKjujw85QHwviCMfIy7Hgz9p6lXpVqo17fh672bm0d5f42cErq+E+AEhF53xjz0zSWrVcLVFXy\n5E3XUlNWijsrm+/+/u/N5hAnEQf/Dvh0Hiy5H4KVIAIjj4RZ10PB2N0GdrfNzSNfPMK9y+/l4n0u\n5sp9ryTDnoHdYsdhdRBPJNeaCMVCrV6nIWMM2wPbeav4LYqyiphSOIV8Tw75Hh0Ep5RS3aGtTe5e\nY4xPkklaHjXG/Do19UB1UCIRp6Y8mQgoWOMjEWsmz0AiAeVfw8PHJQN5HWNg7UJYuxAz46dEpl9J\nwpmN2+5u9l7ReJRPdnwCwKclnxKOh8mwJ1eizHXm8szJz1AeKmdi/sQ2l78sWMa5r55LeSjZFXXN\n/tdwwYQLcNo0oCulVHdo6yh3m4gMJLlyzitpLE+f4XRncNyVP6Zg6HBmffcyHO5dl3oGAiUw96TG\nwXwXsuhPRNYu5JOST4jEm1/rJ9uZzW2H3cbPDvgZdx1xV6OBbx6Hh3F54zh00KHtmnfui/jqgznA\nW8VvEYwH23y+Uir9ROQUEbm+hX3NTnvZJRnJ2yIyLZ1lbImITBWRE7rgPjc2+Pvw1Lz3Pb1moYgs\nEZFlInJ4M/sfEpG216DaqK019FtJrhT0vjHmYxEZCXzd2YXpSxzuDMYdegQj9puG3eXG7tylZhuq\ngU0fQKB0t9fKev+v5J10F8FYsMU0pQMzB3LRpIs6oeRJ2Y5svE4v1eFq+P/27jxM6urK//j79L6x\nCKKASDCuURQdSyKYGDciGkXNJHFLXOLoY0YnzpgYdRKjzm+Sicm4jdGJGgxOYtw1IhoNLgSCC7QL\nIBAMQYgSkJ1m6b3P74/vbSib6u6q7qqu6urP63l4quu73vrST5+63++95wDjh4+nvDDxHQIRyQ53\nnwpMzXY7uuhwIAY8n4mDh0ppRpSx78dpPvyJwAJ3/6cE5y1MtDwdks3l/jjweNz7ZYTE/tJ1RSUl\nFJUkCMBbP4a/vgrv/Dq5A61ZzIFVe1NYOiC9DezAoLJBPPKlR3j+g+fZu9/ejBs2TrfbRdpx9+Wv\n7FIP/YpfnNCteuhmNooo69kbwHiizGW/Am4G9iBK7XowUe7xK81sH6LqblXAM3HHMeAuounIHwIJ\nb/WZ2RfDsUuBvwIXu3t7vfwjgdvCudYBF7n7KovKsV4GlABLgW+EFKxfBW4kyuO+mSjX+n8A5Wb2\nOaI88o8mOM9NRNf00+H1Dnf/n7DuanbmYv+lu98RrtmLwJtExW3mhHO8S1Ro5ftAYcgIN54o38oZ\noVhNos+5y+cBDgB+Gr4tycIAACAASURBVI4bA8YRZe67N3yuK8zsP4Hvunu1mU0k+t0oJErBe6KZ\njSWqTlcG1IZrvSRRG+IldcvdzA4ws5dbb0WY2WEh7aCkW3MTvH431NdEo9qTVNjUs6n1CwsKGdFv\nBJcddhmn7HMKA8uUJlYkkRDMd6mHHpZ3137ArUTlRw8CziOqjPZdds0Vfyfwv+5+KLAqbvlZwIFE\nwf8CokD2CSHP+Q+Ak9z9H4jSyiYcFG1mxURfEL7i7kcCDwA/Cqufcvej3H0MsBi4JCz/IXByWD4p\n1Ar5IfCoux+eKJjHOYiooMpY4EYzKw5fKC4GPkuUq/1SMzsibL8/cI+7H+LuFwO14Rznx62/290P\nATbRced1l8/j7u+2aXstUSnaN919jLv/Ke5aDSH63fjHcIyvhlV/Bj7v7keEYyV1ByHZZ+j3E+W1\nbQQIU9bOSXJfSUVLE2z6EGo3QWUKc8JLEjyD72XqtjYy7+UPefelv1G7VbV/JG90VA+9uz5w9wXu\n3kLUw3zZo7nIC4jqe8c7Bng4/Bx/++9Y4GF3bw55219JcJ6jiQL+7NCbvZDEFeQg+nIwmqjU9rtE\nXwRGhHWjzWyWmS0guoNwSFg+G5gSeryFbQ/YiefcvT6Ua20tvfo54Gl33xbuIjwFtD7LXuHuHeV9\n/yAEZYhmdY3qYNv2Pk9bzcCTCZYfDcxsLQkbV2p2APB46ETf3sFxPyHZZ+gV7j4nro4tQIJh2dJt\nxWXwhWtgxesQuxg++GPn+ww9DIp7f0Cv397Inx6PhmaMOmx3yqs0l13yQibqobeKLzvaEve+hcR/\n31NLPLKTAdPdPZlsUQYsdPdxCdZNAc5093lmdhFRNTfc/XIz+yzwJeCt0MNOVrKlV1t1Vka27fE6\nGhw0hQSfJ4G6uFr0yfh/wKvuflZ4TDAjmZ2S7aGvM7N9Cb8MYQTkqo53kS7rNwy2rYOqodB/r863\nP/GHNJYNYPW21Sxct5CNde2Pis9lxWVFfPqIIexz+BBKypL9rimS89qre96deuhdMZudd1bPj1s+\nEzjbzArDbKbjE+z7BnCMme0HYGaVZnZAO+dZAgwxs3Fh22Iza+1h9gNWhdvyO9pgZvu6+5vu/kOi\n581703n51I7MAs40swozqyR6rDCrnW0bQ3u6IuHnScEbwLFhfEN8qdkB7KyXclGyB0s2oF9B9ED/\nIDNbCfwrHZS9k25qboAFj8Lz34XzH4eqDqqenXQTjDiKDXUbOP3p0znnuXP45YJfppQkJhn1TfUs\n2bCE55c9n7EvDBX9SzjhGwdx4gUHUdFfvXPJG5moh94VVxENyFpAVCq01dNEs5YWAf8HvN52R3df\nSxRYHg45SF4nena9i/D8+yvALWY2D3iXnc/lbyAakDab6Dlxq5+Z2YJwi/k1YB5RCdeDzexdMzs7\nlQ/q7m8T9Z7nhPP90t3faWfz+4D5ZvZQKucI2vs8ybZzLdGguqfCtWodK/BT4L/M7B2Sv5PecepX\nM7vK3e80s2PcfXb4plPg7ltSbXh35Gvq14Sa6qGxFuo2w4o/wQGnQnM9LPwdvP5z2PwhFJXCgafB\n56+GAXtD+QCWblzKWVPPAmDcsHHcetyt9Cvp6pfbXa2rXcfEJydS31zPvRPuZfzwXcbNiOS7Lqd+\nzcQod5G2Ogvo77r74Wb2dhjZmBV9JqDXboR3HoJlr8CXboPdRu1c19IM29dFWeIASiqhdGfA3lS3\niUeWPML8tfO5fuz17N1/77Q1q257I3XbG9jQuJ4b3/k+txx7C8Orhqft+CK9hHK5S07rLKA/TDSx\nfzjRvMMdqwB398My27xIvgb0+qZ63t/4PnNWz+GM/c5g98Z6uC0kDzrsHDjzbigoYlvDNrY0bqHQ\nCjushtbY3EhDSwOVxZVpbefStz7mxfsXMnivSk75l9H0G1BOgSX7tEYkbyigt2FmTwP7tFl8rbu/\nmObzXEz0yCDebHe/Ip3n6eD8dxPNEoh3p7v/qifOn6wO7827+7lmNpRoIv6knmlS37G5YTMXvHAB\nTS1NfLz9Y6477J8pGDkeVs6FMedAQfTfs7xmOec+dy7Dq4bzm1N/w+7luyc8XnFhMcWFO8d2rK9d\nT1NLE/1L2s/znoyaddHz+G2bGiiyIgVzEQHA3c/qofP8iihpTlb01BeH7ur0Ybu7rwbG9EBb+pxC\nK2Rkv5Es27yMQ3c/lILygXDeI9Fz9NKqHdttbdyK42xp2IInOetkQ+0G/vmlf2bJxiU8eMqDjBky\nhq0NW1myYQmbGzZz5J5HMiBBZrn1tevZVL+JQWWDduR8/8z4YQzeq5LdhlZS3k+D1UREclGHAd3M\nHnP3r4VRkfGRpEdvueerweWDmXzyZBqaG6gqrmLllpVMWzaNSftOYljcvPKDBh3Ek5OepKq4im0N\n2ygpKEkYjOM1ezMrtqyIXmtWMGbIGLY0bOHiFy/GcaaeOXWXY2xt2MpP5vyEF5a/wPkHnc/Vsasp\nKSyhvF8Jnxqd+K6AiIjkhs566K3PLE7rysHNbDnRXMJmoMndY2Ge3aNE2XeWA19z9945cToNWm+f\n19TXcMNrNzB39VzmrZ3HT4/9KVUlUS99QOkAGpobmPS7SWxt3MpDpz7EYUM6/i61W9luPHbaY6yo\nWcHo3UcDUFJYQmzPGJvqNyUcAW9mFIXb/EWFmgcuItKbdPYMfVV4XdGNcxwfUvK1uo4oPeFPQlm/\n64Bru3H8vFBaWMqEkROYv3Y+Ez41YZdCJ2bGwLKB1DfX07+kf6fHKyooYmT/kYzsvzMZ1eDywdx6\n3K20eAuDywfvsk9lcSXXxK7h8jGX06+kX7uV20REJPd0Nsp9C4lTBbbecu8wsoQeeiw+oJvZEuC4\nUHlnGDDD3Q/s6DjZHOW+sW4ji9YvYljVMPaq3CujFcW2NmylrrmO8qLyhCPV125fSwstDCgZQFlR\nWcbaISIJ5dUodzM7E3jf3Rel6Xgx4AJ3/3Y6jteF808CDg6dxSHANKIqaN8mqkVynrtvykbbekqH\nAb3bBzf7ANhI9KXgXne/z8w2ufvAsN6Aja3v25PNgP7UX57ixtdupLigmN9/+ffsWdlB1jZhQ90G\naupr6FfSL+FdAJFeLN8C+hRgmrs/ke22pJuZnUNUGS4jdcdzVabnH30uJKQ5hSjl4LHxK0NVoITf\nKMzsMjOrNrPqtWvXZriZ7Wu9vV1WWJa307Uampppaen+F7u6pjrunXcvp//udG6YfQOb6zenoXUi\nvd+tZ5923q1nn7b81rNPawmv3S6damZfN7M5ITXqvSEX+/+Gv5sLzezmuG1/YmaLzGy+mf23mY0n\nmor8s7D/vu2c41Izm2tm88zsSTOrCMu/ambvheUzw7LjzGxa+Hmsmb1uZu+Y2Wtm1u5dWDO7yMye\nMbMZZvYXM7sxbt3vzOyt8Hkui1s+0czeDud/Oe44Pzezw4lSp54RPlu5mS23qAQsZnZBuA7zzOzX\nbdvTm2V05JO7rwyva0ICgrHAx2Y2LO6W+5p29r2PKMcusVgsc7cROnHU0KN49sxnqSiu2DGNK5+s\n3lzHj59fzKmHDuXz+w+hsrTrvxLuTk1DDQA1DTW0eEu6minSa4XgfT87S6h+Crj/1rNP4zuPTutS\n+lcz+wxwNnCMuzea2T1ExUG+7+4bzKwQeNnMDiMq8nEWcJC7u5kNdPdNZjaVznvoT7n7/eGc/0lU\nv/wudtYvX2lmie6wttbzbjKzk4jS3nZUV3wsUcnV7cBcM3vO3auBb4bPUx6WP0nUEb0fONbdP4gr\naAKAu79rZj8ketx7ZWh763U7hKic63h3X9d2394uYwE9Pu97+PmLwH8AU4lq6f4kvD6TqTakw4DS\nAZ1OEesJa7evZfW21YzoNyKtXyyeeOtDps77Oy8uXM2sa4/vVkAvLy7nu7HvctZ+Z7HPgH3y8guQ\nSBd0VA+9q/ncTwSOJApyEJX4XAN8LfRki4BhRDXMFwF1wOTQg56WwnlGh0A+EKgiSjIGO+uXP0ZU\na7ytAcCDZrY/0V3YzqqZTXf39QBm9hRRPfNq4Ntm1pq8Zm9gf2AIiWuIJ+ME4PHWcV0p7pvzMtlD\n3xN4OvyyFQG/dfcXzGwu8JiZXQKsAL6WwTbkhfW16/nWS99iycYl3DTuJv7xgI6+6Kbm1EOH8fv3\nVnPyIUMpLSrs9vEGlw/Ws3ORT8pEPXQDHnT363csiEpwTgeOcveN4Rl5WegljyX6EvAV4EqiwJaM\nKXStfnmq9bzb3oV1MzsOOAkY5+7bzWwGoNHAHchYQHf3ZSTIMBe+hZ2YqfPmo6KCIvbutzfvb3yf\nEf1GpPXY++xeyf99cyxlxYXd6p2LSLv+RnSbPdHyrnoZeMbMbg+PNAcRfUHYBmw2sz2Jxi7NMLMq\noMLdnzez2cCycIxk6o23rfe9EnbWLwfeNLNTiHrP8VKt5z0hfIZa4Ezgm0QlXjeGYH4QcHTY9g3g\nHjPbp/WWewo97VeIOpq3ufv6FPfNefk5yiuHbazbyEsrXmLxhsVJ1ywfUDqAG46+gelfmc4hgw9J\na3vMjMFVpQrmIpmT9nroYarZD4A/WFSffDpQD7xD9Pz6t0S3xSEKytPCdn8Crg7LHwGuCQPXEg6K\nI7X65fFSrec9B3gSmA88GZ6fvwAUmdlioke0b4TP3l4N8U65+0LgR8Afw763Jbtvb5DRaWvpkk/V\n1mavnM3lL11OUUERL/7ji+xRsQdrt0ej+AeXD87bkfQieaDL09bCwLhP1EPv6oC4fBNu5e8YwCZd\np25ZDxvRbwTlReWM7DeSQivk420f8/Xff526pjoeP/1xhlYO7fQYdU11/HXTX1les5zxw8dr8JlI\njgvBWwFcMkoBvYcNrxzOc2c9R4EVMLh8MMs2LWP1ttUAbKrblFRA31i3ka///us0tTRx94l3c+yI\nYzvdR0SkPdYD9b7N7GTgljaLPwglWKek6zx9mQJ6T7OoIEvrvMjK4kpuP+52GlsaE9Y53964nW2N\n26gortiRDnZ703aOGnoU7294n1H9R/Vk60UkD/VEvW93f5Gd094kAxTQe9Ca7Wu44607OGHkCYwb\nPo7K4kr2rNyTfiX9KC4oprjwk1M1m5qbmPHhDH705o/43lHf49RPn0pxQTG7le7GpaMvZUjFEIaU\nD8nSpxERkVyiEVg96Kn3n+LZZc9yzR+vYXvTzkGvFcUVuwRzgPrmeqYtm0ZNQw3Pf/D8jlHxg8oH\nERsaY1jxHmxbvYb1Kz+koa62xz6HiIjkHvXQe9CEUROY9sE0vjDiC5QUdF6atLKkkh8c/QOeWfoM\nk/ab9Ika5mZG3bYtPHjNlRjGP/18MiVl5ZlsvoiI5DAF9B40qv8opkycQmlh6SeCc0eGVw3nW4d/\nK+G6wsIiyioqscJCCgq7n+VNRKRVyPA2zd1Hd7LNeHf/bXif1RKqfZ0Ceg8qLChMOPCtqyoGDuTC\nW+/BgIoBHVagFRHJhFHAeYQpeSEhTH4kDemF9Ay9FysoKKRqt0FU7jYIK/jkf+X62vXc8dYdzF87\nn4bmhiy1UEQyxcxGmdmfzewhM1tsZk+YWYWZnRiyvy0wswfMrDRsv9zMfhqWzzGz/cLyKWb2lbjj\nbm3nXLNCydK3LSq/ClEGt8+HMqX/Zp8soToolD+db2ZvhMpvmNlNoV0zzGyZmak3nyYK6Fm2qW4T\nq7auYlPdprQed8aHM5j83mS+88fvUFNfk9Zji0jOOBC4x90/A9QQpXWdApzt7ocS3YWNf2a3OSz/\nOXBHCudZA0xw938gKtv6P2H5dcAsdz/c3W9vs8/NwDvufhhRmtv/i1t3EHAyUdnUG0OueOkmBfQs\nqm+u59eLfs0Xn/wiD//5Yeqb6tN27HHDx3Hknkdy6aGXUl6swXIieepDd2/N2f4bosJXH7j7+2HZ\ng0B85qmH417HpXCeYuB+M1sAPE5UlrUznwN+DeDurwCDzax/WPecu9eHMqZriKpzSjfpGXoWNbU0\nsWLLCgCW1yynhZa0HXt41XDuPP5OygrLKC0qTdtxRSSntC3GsQnoqH6xJ/i5idC5M7MCINEUnH8D\nPiaqoFlAVF+9O+J7L80oFqWFeuhZVFlcyfVjr2fyFyfzvaO+R3lROz3prWtgy8fQ0pzS8QeUDlAw\nF8lvI82stad9HtGAtFGtz8eBbwB/jNv+7LjX18PPy4HWeuaTiHrjbQ0AVrl7Szhm67SajkqwziIq\nuUqobb7O3fX8L4P0rSjLBpcPZnB5B1+ot34MU06D7evhkukwuL0qhyLSBy0BrjCzB4BFwLeJyow+\nbmZFwFzgF3Hb7xbKqNYD54Zl9xPVVp9HVLJ0W4Lz3AM8aWYXtNlmPtAc9p1CVL611U3AA+F824EL\nu/dRpTMqn5rr1iyGe46Ofp70c/iHb2S3PSJ9V5fLp2ZCMvPE22y/nKhM6boMNkuySD30LKjfvo3a\nLVsoKimhardBHW9cOQQ+eznUrIIDvtgzDRQRkV5HAT0LNq1exW+u/1f6DR7C+T++jcqBHdQzr9wd\nTropen5eWtVTTRSRHOfuy4Gkeudh+1EZa4zkBAX0LCgqLaWgsJDSysodZVQ7pGlnIiLSCQX0DNlY\nt5GmliaqSqp2Gb3ef/c9+Ke7JlNQWNhpyta6pjpKC0uTC/wiItJnadpaBqyvXc+/vPIvnP6705m9\ncvYuCWOKS0vpN3j3jm+1A8s2L+PaWdfy9pq3aWxuzGSTRUSkl1NAz4DFGxYzb+08tjVu42dzf8aW\nhi0pH6O2qZY73rqDV/72Cve8cw/r69azvnZ9BlorIiL5QAE9A0b1H7Wj3vmRex5JSVHntc/bKi0s\n5RsHf4NP9f8UN4y7gatevYpvvvhN1m5fm+7mikgvZGYTzWyJmS01s+uy3R7JPj1Dz4AhFUN47svP\nsbFuI3tW7kn/kv6d79RGgRUwZsgYHpz4INsat7Fo/SIANtRtYEjFkHQ3WUR6ETMrBO4GJgAfAXPN\nbKq7L8puyySbFNAzoLSwlKGVQxlaObRbxykpLGFw+WAKCwq5efzN1DbWskfFHrtuuH1DNK2tSoFe\npI8YCyx192UAZvYIcAZRtjjpoxTQe4GBpQP58v5fTrxy2zp45krY/Df4+tPQT0WLRPqAvYAP495/\nBHw2S22RHKGA3ts1N8LS6dDSBLUbFdBFclQsFptEdIt8enV19dRst0fyjwbF9XZlA+DSV+D8J6BK\nwVwkF4Vg/jBwJfBweN8dK4G9496PCMukD1MPvbcrqYBhY7LdChHp2ASgIvxcEd53p5c+F9jfzPYh\nCuTnEJVPlT5MPXQRkcybTlRClPA6vTsHc/cmot7+i8Bi4DF3X9itFkqvp/KpIiLJ6Vb+ZT1Dl0zT\nLXcRkR4QgrgCuWSMbrmLiIjkgYwHdDMrNLN3zGxaeL+Pmb0Z0hU+amap50UVERGRT+iJHvpVRIM2\nWt0C3O7u+wEbgUt6oA0iIiJ5LaMB3cxGAF8CfhneG3AC8ETY5EHgzEy2QUREpC/IdA/9DuB7QEt4\nPxjYFKZcQJSucK8Mt0FERCTvZSygm9lpwBp3f6uL+19mZtVmVr12rUqGioi0lewYJTMrDe+XhvWj\n4o5xfVi+xMxOjluesDxrT5xDuiaT09aOASaZ2alAGdAfuBMYaGZFoZfebrpCd78PuA+ieegZbKeI\nSMbEYjEDjgUuI7ojuZLob9vM6urq7v5tax2j1FqjuXWM0iNm9guiMUr/G143uvt+ZnZO2O5sMzuY\nKMvcIcBw4CUzOyAcq73yrD1xDumCjPXQ3f16dx/h7qOI/jNfcffzgVeBr4TNLgSeyVQbRESyKRaL\n7Qa8AUwDzgW+EF6nAW+E9V2S4hilM8J7wvoTw/ZnAI+4e727fwAsJSrNuqM8q7s3AI8AZ/TEObp6\nPSQ789CvBa42s6VEz9QnZ6ENIiIZFXrmLwBjgCp2Zpqz8H4M8ELYritSGaO0o9xqWL85bJ+oDOte\nHSzviXNIF/VIpjh3nwHMCD8vI/pmJiKSz44FDgZK21lfGtZ/HpiZyoHjxyiZ2XHdaaTkD6V+FRHJ\njMuAyk62qQzbpRTQSX2MUmu51Y/MrAgYAKyn4zKsiZav74FzSBcp9auISGbsRecFXYwokKWkC2OU\npob3hPWveFSZaypwThihvg+wPzCHuPKsYRT7OcDUsE9Gz5HqtZCd1EMXEcmMlYDTcVB3omfH6XIt\n8IiZ/SfwDjvHKE0Gfh3GLm0gCp64+0IzewxYBDQBV7h7M4CZtZZnLQQeiCvP2hPnkC5Q+VQRkeSk\nNHgtFot9gWg0e1UHm20FvlRdXZ3qLXeRXeiWu4hIZswk6pXWt7O+Pqyf1WMtkrymgC4ikgEhacxE\nYB5RT7z1dqiH9/OAiWlILiMCKKCLiGRMdXX1RuBoogQwvwX+GF6/BBwd1oukhQbFiYhkUOiBzyT1\nqWkiKVEPXUREJA+ohy4ikmGxWGxf4CSiBDA1wPTq6upl2W2V5Bv10EVEMiQWix0Ti8VmAu8BtwE/\nCq8LY7HYzFgsdkxXj21m/2ZmC83sPTN72MzKVD61b1NAFxHJgFgsdi4wnShXexlQARSH17KwfHrY\nLiVmthfwbSDm7qOJErO0liy93d33AzYSlTSFuNKmwO1hO9qUNp0I3GNRjfVCotKmpxDlmz83bEsP\nnUO6QAFdRCTNQs97MlDeyablwOQu9tSLgPKQN70CWIXKp/ZpCugiIun3X3QezFuVAz9O5eDuvhL4\nb+BvRIF8M/AWKp/apymgi4ikURgAd1SKu42NxWKfTnZjM9uNqDe7DzCcqGrbxBTPKXlGAV1EJL1O\nAlpS3KcFmJDiOT5w97Xu3gg8RVRSdWC4BQ+JS5uSZGnT9pbvKJ+awXNIFymgi4ikV3+iwW+pKAb6\npbD934CjzawiPKc+kSgvvMqn9mGahy4ikl41QCOpBfVGYEuyG7v7m2b2BPA2UUnSd4D7gOdQ+dQ+\nS+VTRUSSk1T51PAM/T2iqWnJqgMOUbIZ6Q7dchcRSaPq6uq/Et1OTsUcBXPpLgV0EZH0ux6oTXLb\nWuDfM9gW6SMU0EVE0qy6uno2Uea0zoJ6LXBJ2F6kWxTQRUQyoLq6+mGiqWgziZ6Rbyca/LY9vJ8J\nTAjbiXSbRrmLiGRI6Hl/ISSNOZkoc9o64A96Zi7ppoAuIpIhsVisFPgq0VSvQ9g5nW1hLBa7BXi8\nurq6PotNlDyiW+4iIhkQi8XGAn8H7gFGE017Kwmvo8Pyv8disVTTxAJgZg+Y2Rozey9u2c/M7M9m\nNt/MnjazgXHrcq5MalfOIe1TQBcRSbMQpF8BBtF+Brh+Yf2rXQzqU9g1f/t0YLS7Hwa8TzTaPpfL\npKZ0DumYArqISBqF2+wvEBVMSUYl8ELYL2nuPpMoI1v8sj/EVUJ7gyg/OuRgmdQunkM6oIAuIpJe\nXyX1XO4l7MyPni7fBH4ffs7FMqldOYd0QAFdRCS9riW1QisAVcB1nW6VJDP7PlHe9IfSdUzJfQro\nIiJpEovFComeIXfFIWH/bjGzi4DTgPN9Z7GOXCyT2pVzSAcU0EVE0qeKaGpaVzSF/bvMzCYC3wMm\nufv2uFU5Vya1i+eQDmgeuohI+mwl9efnrYrC/kkxs4eB44Ddzewj4EaiUe2lwPQwhuwNd788h8uk\npnQO6ZjKp4qIJCfZ8qkLiOaZp+q96urqQ7uwnwigW+4iIul2C7AlxX22AD/JQFukD8lYQDezMjOb\nY2bzzGyhmd0clifMDCQikiceJ/Xn6I3snI8t0iWZ7KHXAye4+xjgcGCimR1N+5mBRER6vZCbfSKw\nLcldtgETldNduitjAd0jrQM8isM/p/3MQCIieaG6unoucDzRgK72br9vCeuPD9uLdEtGn6GHPL7v\nAmuIcgz/lfYzA4mI5I0QpIcD3wLeI+rQNIbXBWH5cAVzSZeMTlsLUxYODxV/ngYOSnZfM7sMuAxg\n5MiRmWmgiEgGhdvoDwEPhaQxVcDW6urq5uy2TPJRj8xDd/dNZvYqMI6QGSj00uMzA7Xd5z7gPoim\nrfVEO0VEMiUE8c3Zbofkr0yOch/SWovXzMqBCcBi2s8MJCIiIl2UyR76MODBUAu3AHjM3aeZ2SIS\nZwYSERGRLspYQHf3+cARCZYvI6qPKyIiImmiTHEiIiJ5QAFdREQkDyigi4iI5AEFdBERkTyggC4i\nIpIHFNBFRETygAK6iIhIHlBAFxERyQMK6CIiInlAAV1ERCQPKKCLiIjkAQV0ERGRPKCALiIikgcU\n0EVERPKAArqIiEgeUEAXERHJAwroIiIieUABPcd4Swve0pLtZoiISC9TlO0GyE7ba2qY/9LzNDc1\nc8TE06joPyDbTRIRkV5CAT2H1NZsYvajvwFg/7HjFNBFRCRpCug5pKyqH0P3PYCWlmYqB+6W7eaI\niEgvYu6e7TZ0KhaLeXV1dbab0SO212wGh4oB6p2L5BjLdgNEOqIeeo7RbXYREekKjXIXERHJAwro\nIiIieUABXUREJA8ooIuIiOQBBXQREZE8oIAuIiKSBxTQRURE8oACuoiISB5QQBcREckDCugiIiJ5\nQAFdREQkD2QsoJvZ3mb2qpktMrOFZnZVWD7IzKab2V/Cq8qKiYiIdFMme+hNwHfc/WDgaOAKMzsY\nuA542d33B14O70VERKQbMhbQ3X2Vu78dft4CLAb2As4AHgybPQicmak2iIiI9BU98gzdzEYBRwBv\nAnu6+6qwajWwZ0+0QUREJJ9lvB66mVUBTwL/6u41ZrZjnbu7mXk7+10GXBbebjWzJZ2cagCwOcXm\nJbNPR9u0t67t8kTbxS9ru353YF0n7UpVLl+fRMs6ep+J69Neu9KxT1++Rslun+o1ysb1ecHdJ6a4\nj0jPcfeM/QOKgReBq+OWLQGGhZ+HAUvSdK77MrFPR9u0t67t8kTbxS9LsH11Bv4vcvb6JHPN2lyv\ntF8fXaPMXKNkPLJ6OQAABLpJREFUt0/1GuXq9dE//cvmv0yOcjdgMrDY3W+LWzUVuDD8fCHwTJpO\n+WyG9ulom/bWtV2eaLtnO1mfbrl8fRItS+YappuuUedSPUey26d6jXL1+ohkjbknvOPd/QObfQ6Y\nBSwAWsLifyd6jv4YMBJYAXzN3TdkpBG9lJlVu3ss2+3IVbo+ndM16piuj+SjjD1Dd/c/AdbO6hMz\ndd48cV+2G5DjdH06p2vUMV0fyTsZ66GLiIhIz1HqVxERkTyggC4iIpIHFNBFRETygAJ6jjOzz5jZ\nL8zsCTP7Vrbbk6vMrNLMqs3stGy3JReZ2XFmNiv8Lh2X7fbkGjMrMLMfmdldZnZh53uI5B4F9Cww\nswfMbI2Zvddm+UQzW2JmS83sOgB3X+zulwNfA47JRnuzIZVrFFxLNB2yz0jxGjmwFSgDPurptmZD\nitfnDGAE0EgfuT6SfxTQs2MK8IkUkmZWCNwNnAIcDJwbqtNhZpOA54Dne7aZWTWFJK+RmU0AFgFr\nerqRWTaF5H+PZrn7KURffG7u4XZmyxSSvz4HAq+5+9WA7oRJr6SAngXuPhNom0xnLLDU3Ze5ewPw\nCFGvAXefGv4Yn9+zLc2eFK/RcUQles8DLjWzPvF7nco1cvfW5E4bgdIebGbWpPg79BHRtQFo7rlW\niqRPxouzSNL2Aj6Me/8R8NnwvPPLRH+E+1IPPZGE18jdrwQws4uAdXHBqy9q7/foy8DJwEDg59lo\nWI5IeH2AO4G7zOzzwMxsNEykuxTQc5y7zwBmZLkZvYK7T8l2G3KVuz8FPJXtduQqd98OXJLtdoh0\nR5+4NdlLrAT2jns/IiyTnXSNOqdr1DFdH8lbCui5Yy6wv5ntY2YlwDlElelkJ12jzukadUzXR/KW\nAnoWmNnDwOvAgWb2kZld4u5NwJVE9eMXA4+5+8JstjObdI06p2vUMV0f6WtUnEVERCQPqIcuIiKS\nBxTQRURE8oACuoiISB5QQBcREckDCugiIiJ5QAFdREQkDyigS84zs9ey3QYRkVyneegiIiJ5QD10\nyXlmtjW8HmdmM8zsCTP7s5k9ZGYW1h1lZq+Z2Twzm2Nm/cyszMx+ZWYLzOwdMzs+bHuRmf3OzKab\n2XIzu9LMrg7bvGFmg8J2+5rZC2b2lpnNMrODsncVREQ6pmpr0tscARwC/B2YDRxjZnOAR4Gz3X2u\nmfUHaoGrAHf3Q0Mw/oOZHRCOMzocqwxYClzr7keY2e3ABcAdwH3A5e7+FzP7LHAPcEKPfVIRkRQo\noEtvM8fdPwIws3eBUcBmYJW7zwVw95qw/nPAXWHZn81sBdAa0F919y3AFjPbDDwbli8ADjOzKmA8\n8Hi4CQBRTXoRkZykgC69TX3cz810/Xc4/jgtce9bwjELgE3ufngXjy8i0qP0DF3ywRJgmJkdBRCe\nnxcBs4Dzw7IDgJFh206FXv4HZvbVsL+Z2ZhMNF5EJB0U0KXXc/cG4GzgLjObB0wnejZ+D1BgZguI\nnrFf5O717R9pF+cDl4RjLgTOSG/LRUTSR9PWRERE8oB66CIiInlAAV1ERCQPKKCLiIjkAQV0ERGR\nPKCALiIikgcU0EVERPKAArqIiEgeUEAXERHJA/8fmoK7Uvh8t40AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -4661,8 +4668,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3cb82618-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3c59f516-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_78c48573f5" + "window[\"08d45c08-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"086b0730-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_1e9fc0f938" ], "text/plain": [ "" @@ -4679,8 +4686,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3cbb25f2-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_0d5020cb75" + "window[\"08d5c868-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_b43bee868a" ], "text/plain": [ "" @@ -4697,8 +4704,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3cbb860a-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_4\");\n", - "//# sourceURL=js_e33ee3272e" + "window[\"08d60b7a-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_4\");\n", + "//# sourceURL=js_3e08db3b43" ], "text/plain": [ "" @@ -4715,8 +4722,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3cbbedb6-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3cbb860a-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_13e889ced8" + "window[\"08d64e14-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"08d60b7a-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_bdc2f04f5c" ], "text/plain": [ "" @@ -4733,8 +4740,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3cbc3ca8-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(4);\n", - "//# sourceURL=js_08b10358f0" + "window[\"08d68bc2-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(4);\n", + "//# sourceURL=js_7e5411a859" ], "text/plain": [ "" @@ -4750,9 +4757,9 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3WeAVNXZwPH/mTu9bW+UZWmKCAKC\nHRFFRcDeY++xYWISja+aWGOJUWMSNRGNYuy9N2yIoCJKB+lLXbaX2d3pc94PM2xhd2GBHWB3n9+X\nnblz77lnVtzn3nPPeR6ltUYIIYQQnZtpT3dACCGEELtOAroQQgjRBUhAF0IIIboACehCCCFEFyAB\nXQghhOgCJKALIYQQXUBSA7pS6jdKqUVKqcVKqd8mtqUrpaYppVYkfqYlsw9CCCFEd5C0gK6UGgJc\nCRwMDANOVEoNAG4BvtBaDwS+SLwXQgghxC5I5h36fsAPWut6rXUEmA6cDpwCTE3sMxU4NYl9EEII\nIbqFZAb0RcCRSqkMpZQTmAj0BnK01kWJfTYDOUnsgxBCCNEtmJPVsNZ6qVLqQeAzoA6YB0S32kcr\npVrNPauUugq4CmDw4MEjFy9enKyuCiFEe6g93QEhtiWpk+K01s9orUdqrccAlcByoFgplQeQ+FnS\nxrFPaa1Haa1HORyOZHZTCCGE6PSSPcs9O/Ezn/jz85eA94CLE7tcDLybzD4IIYQQ3UHShtwT3lRK\nZQBh4DqtdZVS6gHgNaXU5cBa4Owk90EIIYTo8pIa0LXWR7ayrRwYl8zzCiGEEN2NZIoTQgghugAJ\n6EIIIUQXIAFdCCGE6AIkoAshhBBdgAR0IYQQoguQgC6EEEJ0ARLQhRBCiC5AAroQQgjRBUhAF0II\nIboACehCCCFEFyABXQghhOgCJKALIYQQXYAEdCGEEKILkIAuhBBCdAES0IUQQoguQAK6EEII0QVI\nQBdCCCG6AAnoQgghRBcgAV0IIYToAiSgCyGEEF2ABHQhhBCiC5CALoQQQnQBEtCFEEKILkACuhBC\nCNEFSEAXQgghugAJ6EIIIUQXIAFdCCGE6AIkoAshhBBdgAR0IYQQoguQgC6EEEJ0ARLQhdgFsVBo\nT3dBCCEACehC7JRYOIx/4UI23fxHqt59j2hNzZ7ukhCimzPv6Q4I0RlFKytZe9HFaL8f3yef4Pjg\nfQyvd093SwjRjckduhA7Q2t0JAKAyeVCWax7uENCiO5OAroQO8FISaH3v5/EO3ECee+8xYIFc5j/\n+cfU11Tv6a4JIbqppA65K6VuBK4ANLAQuBTIA14BMoCfgAu11jKzSHQqJrsd16GHogbty+v3/Zny\nDesAKJw/l/G/nozd7dnDPRRCdDdJu0NXSvUEbgBGaa2HAAZwLvAg8KjWegBQCVyerD4IkUzKMIjG\nYg3BHGDD4gVEwuE92CshRHeV7CF3M+BQSpkBJ1AEHAO8kfh8KnBqkvsgRFLUV1dRXVpMdt/+Ddv6\njjgIs1Wepwshdr+kDblrrTcqpf4GrAP8wGfEh9irtNaRxG4bgJ7J6oMQybTsuxks+OJTJk3+A5Wb\ni/CkpZHaoxd2l3u7x8b8fpTNhjLJNBYhRMdI5pB7GnAK0BfoAbiAE3bg+KuUUnOUUnNKS0uT1Esh\ndp47PYOTLrsGY94Ccqprif57CtEFi4jV17d5zJb16xv/cBOVL7xApKpqN/ZYCNGVJfP24Fhgjda6\nVGsdBt4CjgBSE0PwAL2Aja0drLV+Sms9Sms9KisrK4ndFGLn5A8cRO3j/8ZeUMDGG35DzYcfse6K\nK4hWt0wyE4vF0Fo3rF+v/eILiu+7n1Bh4e7vuBCiS0rmLPd1wKFKKSfxIfdxwBzgK+BM4jPdLwbe\nTWIfhOgwkbIyKl54EYD0C87HbLNBOIwOh0Hr+E7RKDoUREejKMMAoLaygu/ffAWHN4Xh405AmUzo\nLY3KBDohRAdRWuvt77WzjSt1F3AOEAHmEl/C1pN4ME9PbLtAax3cVjujRo3Sc+bMSVo/hdieaG0t\nRX/6E76PPwHAM+EE8u69l2hVFcFVqwguW47vk4/xnDABZTHjnTgRS3Y2gbpaPnzsrxTO/xlPZhYT\nr/8DKSmp1L38KiarhfQLL8ScmrqHv51oJ7WnOyDEtiR1HbrW+g7gjq02rwYOTuZ5hegIWmuUiv8N\n1+Ew4Q2NT4fC6zeggyEwDCKbN2MbOACT9RQCS5dQ/c67uI4aiwXQsRjhQACby8WJv/0jX099mtqK\nMiZc9zty+w3E7HCgo1Gi5eVEqqsxp6VjzszYQ99YCNGZyRRbIVoRLimh+L77KP3X40QqKjC8XnJu\nuxWTy4XJ5SLn9tswUryoWIySRx7FnJpG2VNPUf3OuzhGjQJ3fKa7w+PlhGtvZNhxE1jz848UrfgF\nX3kZnzz5GKFgAIgP5a8++RTWnHQy66+9lkh5+Z786kKITkqKswixlWh1NUW33oapZ2/s40+luiqK\nTfmI5OXQ89OPsZkMDI8HZRiYvF5ybv0/yqZOpffTU9A2BzGXG7NhIrh6NSaXC296BgefcjZr5jY+\nNvJmZ2NKPGMPrVtHNDHbPbBgQfzOXwghdpAEdCG2oqNRTF4v6uQLeenR5Yw5J5/Vb7/Gitkzcaak\ncsH9f8djsQBguN14x4/HfcQRRMwWQlYHrmAdm++4A9+nn6Hsdvq+9Sa2fv3oc8BwTv7drVSXFjPo\niKNweOLV2ax9+mDOyyNSVIRr9GiU3daiT5GycrSOYaSmYkqcWwghmpKALjqFomo/XywtYUjPFPpn\nufDYkxjUDIPs3/+O9evC6JgmLdfGitkzgXh2uJLC1XgyMht2N9lsmGw2dEUFjvJitGHg+2waADoQ\noG7WLGz9+uHweBl4yOEtTmfJzqbva68S8wcwuZyY09ObfR7atIn1V15FtKKCXv/8B47hw1Fm+V9X\nCNGcPEMXe71SX5Bzn/qe299ZxKmPz2RjpT9p54pUVFB89z0UnnMuqSu/5bATcvFVhOi1/1AArA4n\nWfkFAISLi6l8+RVqv/2W8ObNBH/5heJ77iW4di3u444FQNntuA5vGcS3Zs7KwprfG3NGywlxlS+8\nSGjVKqKVlWy++26i1VLRTQjRklzmi71eTGvWVzRmX1tXUc+gPG9SzhVat46aDz8EoOQvf2H/L78k\nZEul16CbCdTWYHe5caSkEikrY93FlzQkhsm94w7sI0ZQO3069XPm0OeF/5F19dUYGRkY6enEYpqo\n1liMHb+Gtu+3X8Nr64CBKMkVL4RohQR0sddzWc3cfcoQ7v9oKUN6pnBgn7SkncuckQEmE8Ri8WBs\nMePJcAAO3GmN5w1HIs2yvPnnz4sPhTudxOrqqHzjTbKuuxZzejqlviCv/riSlaW1XHZEX/pluXHb\n2v+/nuvI0fR+5mmiZWW4Ro/G8EhpViFESxLQxV7PbTdz2oieHD84B7NhIt21/TvUirogNf4IDqtB\nusva7jtjIz2dgldfof7HOXiOPw4jM7PV/ZTdjnfSRGo+/AhlteKdNAmTy4mur8eclUXGRRdipKRQ\nXlnLda8tZPaaCgDenbeJT35zJPvmtn+EwZyaivuII9q9vxCie0pqpriOIpnixNaaJn3ZWlV9iDvf\nW8w78zbhtpl5f/Jo+ma6dvmcUZ+PwNKl+OfNJ+WkE1E2O9HqKpTZjHI44juFwyirFZPXS3DpUkrt\nKYz576Jm7VxzVH/+OGHQLvdH7HaSKU7s1WRSnOhUyuuC/OvLFdz9wRI2Vwda3ScUifHOvE0A1AYj\nzFi+89X6ImVlhDdvJlpTQ3jTJtZddDGljzxC4fkXQCyKrW9frL17QyRC0S23sOnW29DBINGaGtZf\nfQ2Ul5Hlab4MbVhvSfUqhOh4EtBFp/LK7PX87bPlPDuzkD++uYBSX8ugbjZMHDMoGwCb2cRh/Xcu\nlWq4uJjCc3/FyrFHU/7MM+hYrOGzSHFxQ0GWWDhM5UsvUfftTOq/+47N99wLMY3J6ST673/x1Mn9\n6ZPhxGqYuOjQPhzcd+fnAMRiMWJN+iGEEFvIM3TRqVTUNWZRq/GHCYZbBrd0l5WHzjyAEl+QVKeF\ndOfOzQqv/2E24Q0bACj/z1Oknfsr3MceS2DhQrJv+gN4PFQWb2bpt1+Td/RRpKWlUfngXzF53Jjc\nLvKfeZrSJ56g77qlvH7FGDCbcVnNuHZgQlyz/tSE+OmTQqLhGKMm9cEwR3C4ZYKcECJOArroVC4f\n3ZdVpbXU+MPcOnE/HFaj2eeRUJRoJEa6y0qGu2XGNQC/r4ZoJILJMHB6U9o8l23QoIYZ77ZBg1BW\nCz3+ci+xUAjD48FXV8erf76JuqpKAM6580Eyr7+OtHPPxXA4MPr0ocdf/tIhSWBi0RhzPlrDwq/j\nBWICdWFy+myk/4Ej8Gbl7HL7QojOTwK66FRSHRZum7gfm6r8ZLiseOyN/4TrfSFmv7+G6uJ6Rp89\nkPQ8F8rUfB5TfU01Xz33FL/MnE5O/3047eY/4UpNI1Jdjf/nnwmuWEHKKadgycnB2qsn/T54n9Da\ntTiGDm1I+rLlEiJSU9MQzAGqSovZ/9prUabGJ1kdldFNA+FgtOF9JByjrqqar59/hgnX/x6LrfnF\nS7A+jGE2Yd7qgkcI0XXJM3TRqThtZgbmeDhq32z6ZrmxmhsDVuH8MhZ/s5ENyyr56MkF1PtaFjkJ\n1Nbyy8zpABSvWs6mFcsACC5ZwoZrrqX0kUdZf/U1RMorMDmd2Pr1w3P00ZhbWb5mstgYddaFmAwz\nOf0Hkj9keLNg3pEMw8Shp/Sn7/BM+gzJYNQJWSyd8SmutHRMTZbk6ZimoqiOT6Ys4ts3VuJv5Xcg\nhOia5A5ddBmGufFu3GSYiMY04Wis2Rp0i82GYTYTjUQA0K5UquqD6Ca1ziNFRehY491wW1JTvRxw\n7AQOGDsOZTLh3SoHe0dzpdo49pLBhAMBlv/wFUPHjeeAY8ZjmBvz2vt9IT56cgHVJX42LK0kq7eb\n/Y/smdR+CSH2DhLQxR5RVR9iU1UAr9XAYxjYLCbs7l1LaZq/fwYHndiXyqI6hk8q4L4vl3FY/0yO\nGZTdUMzF4fFy1p0PsvDLaWQNHs4XGyKck1WPZ8yRuI44nOCaQnLvupOYbfvr1pVSpKUmJwVtW6x2\nM1a7mxHjT2qjU2CYGy9gzBYZhBOiu5DEMqJDhNavp+LFl3AMOwDX4YdjTml7slkoEuPZmWtYtdnH\n+QU5zH17Fam5Lo6/bDBOb+sT2dorFtOU1wZZsrmGVSV1PDptOdN+N4bcFEfDPhV1IZ79djWzVlcw\nfkAqZ1YvoezRv9Pjn/8i5Ejn55mVhKMmxp63Lw5P58qbHqgLU18dZM5Ha0nNdTJ0bE8cu3ihJBpI\nYhmxV5M7dLHLImVlrL3oYiJFRVQC+S/8D/OoUW3u7w9H+fKXEm46aiDfP7GISChGXVWI1fPLGHxE\nD6r8YayGwr1VidRoTFNWGyQW07jt5lZLqNYGI7w9byP/+molBxWk88LlB+MLRHhy+mIO6ZvGEf0z\nSXdZufjwvpx9UD4ZoVo2nvs40fJyQhYPLz+2sqGtEcfld0hAr/eFiEVimDtgFGJbQoEIM19fwaaV\nVeTvn0GPgSkSzIXoRmQ8TuwyrTXRqqqG99HyiobXMb+f0Nq11H47k0hZGQBuq8E1Y/tTF4zgTrM3\n7OtNt7OqtJZLn53NrW8voqw22Ow86yrqGf/3bzjsgS/5ZnkpoUjLNeh1oQj3ffQLNf4IXywtIdVl\n5cx/f8fUWYVc++JcftnsAyDTY6N3uhOb047zwAMBUJEQdnf8IkEpcHo7IJjXhPjoiQVM/b9ZTH9l\nOf7a5E1Si4RjlG2spaYswKLpG1n5UwmdYQROCNExJKCLXWZ4PPT65z+w9u+P98RJOEeNbPgsXFTE\nqomTWH/FFfHZ4xUVGIaJg/umM7hfKifeMIxREws44aoheHu6uOTZH5m/oZr35m/io4VFzc7zwYJN\nVNWHueHQHowoW0XFXx8ksGIFOjHBDcAwKbIS68+3rFir9ocbPl9e7KPM13ihYHi95Nx+G72ffhpn\nmoMzbx7JEWcN4MxbRuHwtBwB2FG1VUGK19QAsHJOCUF/ZDtH7Dyb08yRZ++D1WHGk2FnxHF92sx3\nL4ToemTIXewyk92O85BD6PP8VJTV2qy8Z3DZcojGZ4wHFi9ueF0fjBKMxDDsBoec3A+AzdX+ZuvK\nrYYJfyiCwxrfNnpAJo9/uZJz9/FQfcb5oDXVb75Jv48/wpIdT/Wa5bbx9nWH8+GCIgbleli0sZqb\nx+/Lv79ZxdAeKQzO8/LK7HVcP25gw3nM6em4R8ermdmA4ePyO+x34/BYsNgNwoEongw7/miMZGVy\nNwwTOX09nHfnIYkRhl2bjyCE6FwkoIsOYbJYMGW0zJnuGHkglvx8wuvWkXHN1SibjTJfkAv/+wNL\ni3yM7JPGfy4YSabHRorDwiNnD2fqd4Xkpzvpn+2mLhghHNW4rAZ9PHY+/c2ReIrXUr0lj3p9PUQb\nh96VUuSqEGft6+UfszYy9ceNXHRYAe9fcxjmNat4f9kmemTtvuIoEYti/O9HUF5UhyfHwaZgiLwk\nns8wG7hSJJmMEN2RBHSRVJbsbApeehGtNSa7HcPjYdOGKpYWxZ9l/7S2kgpfEJMvjCfdTq7XxlED\nMwnFNAo46qGv+fVR/bh0ZD5v3v0jkXCUSRcXkHbppdTNmEHGFZdj8jaOCIRLStj42xsJFxVxw113\nc8nVB+K2mXD4K4mUbOCY/Q4kMy9rt33/NLcNfyRGUVmMHnYLuVaDaCSKYZagK4ToWPIMXbQpGI5S\nVO1n0cZqyreaoLYjIvYUymutlJbFCNSGyfbYcSZSkqY4LBihGK/cM5uKMj8omHhAD3RMc8EzP1AX\nivL4V6vw+8KE/BFiEc2HzxXiuvBK+kx9Du8JJ2C4GteMVzz3HOgYvf7xGJZohB5WsJSXUfL7P1Dz\n0cf0S7WR7tq9M7/zUuwclO7hvfvn8NId31O0poaaesngJoToWHKHLtq0scrPhMdmEIzEOHrfLB4+\nexjprh17LhuNxFg8cyPfv70agENP68fQo3vx6W/HsGB9FQNTnMx7YxVaw9o11Xwyt5obxg3EbJgI\nJCqpZXttODwWMnq6KN9YR2qOE8PtxNzKM2IjI4Oc//s/1l95FdGqKsxZWfT+z78JLFkCsRiVL79C\n1uTrd/2XswNCgQjfv7OacCA+f+CHd1bT+6R8Bhek4bbL/4JCiI4hf026sVg0RiymMVtaH/6du66K\nYGJp2DcryojEdmAJVF05rJ1JxLsv6xfXNWxev6SSIUf2pHe6kxyHhcXfbmLzqmoyerrx9nbzwTdL\nuXx0X0bkp/LB5NFMX17KaSN64km1c/JvhhMOxrDYTG1O+Eo94wzqZs1qWEYXKS0lXLQZIy2NaHk5\nRvrO1yLfWWazQWa+m/VL48v5UvKc/LCukoKeHgnoQogOI39Nuim/L8TcaevwlQc47LT+eDMdLfY5\ntF8GGS4r5XUhLjwkH5u5nU9owgGY+RjMegxL32M48Jh/UrSyGoADj8/HkghiVoeFwaN70HdkNgs2\nVnP5Kz9z+eh+vDh7HU98tYrbJu3HJYcXNNQPb8+sbXNqKo5hw1A2GzoYxORyYdtvEJ7x47Hk5eGd\nMKGdv6GOY1hMjDgun/SebqrrQ5jynIQKyxoeOwghREeQ1K/d1IKv1jPj1RUAZPZ2c9INw3FulRUt\nlsjMFozEcNvNpDnb+ezZXwWvXgCFMwAIj3uA4P4XgzJhc1mwbBXItmSAi8Y0tTV12Py1qFiUrzcG\nOOHg/mR77a2dpU2xUIhISQmBJUtwDBmCOSsLDCNpldDaKxSJ4gtE8AUipDgspO3mZ/lil8mifrFX\nk0lx3VQs0nghp2M6XnB7a+EQmQ6D3unO9gdzAJsXjvkTWJxgcWLpcyDuVDvuNHuLYA7xZDA5Xjs9\nUh3klW8geMl5eJct5Oz9UnEFfcSibVc+CwejhIKRZhnRTFYr1l698B5/PJYePVAWyx4P5lprwnUR\nouVBsi1mCeZij1JKnayUumVP90N0LLlD76bqfSF+eHcVtRVBjjxnH1JznM0+D2/eTMlDD2HyeMma\nfD3mVtaYb1MkBP5EClhHOpjjAWxTlZ8vfylhWO9U+mY6cdsas7FprSn6059wHXYYscxMlq5cyoZV\nyxh+/InkDx2G3eVu/h1qQtSuL8G0bC74KkmZNBFLK3XLm4rW1oJSzWbG7w511UFev38OdVVBPBl2\nzrh5JK4USfzSyeyVd+gqng5Qaa1b5kIW3Yo8Q++mnB4rR569D9GoxuZo/s8gWlND0e23U/ftTABM\ndhvZN9+8Y3e5Zit4cpttKvUFOPPJWWyqDqAUfH7jUbizGwO6UgrvxIkYHi8bSjbx3XtvALB+ySIu\ne2wKOhpmTbiIN1e8yfg+48mo6YX7p28pve8uAPw//ECPB+7H8LZe0jRcVMTmu+5GWS3k3H57Q3a5\ntlTXhwhGYtitBt5WCsHsiHAgQl1VfOmfrzxAJLj9eutCtEUpVQB8CvwAjAT+qpS6mniyw1XApVrr\nWqXUROARoA6YCfTTWp+olLoEGKW1vj7R1n+BTKA0cew6pdRzQA0wCsgFbtZav7G7vqPYcTLk3o2Z\nrUZDMI+UlREuLY1nXgN0k+xrOtwx+cejMdhUHYi3qWFDZX2LfRzDhmHOzSEQ8Ddu1JpwMEh1rI6L\nPr6I15a9xpXTrsSSFSO6vrBht/D69ehwuEWbAFGfj6I/30Ht11/j+2wa5c8+S3l9GSX1JfhCvhb7\nV9QFufuDJRz9t6/5x+crqNzFdeNWh5nsPvEEOHkDUxomBgqxCwYCTwBHAZcDx2qtDwTmAL9TStmB\n/wATtNYjgbYyKv0TmKq1PgB4EfhHk8/ygNHAicADSfkWosNIQBeEi4ooPO98Vh0zjtqvp6NsNvL+\nci/uo8fiPelEMq+5ukOeQbtsBrdO3A+7xcTh/dLZP9sKgRqq/SEKy+vYUFlPvWHFkpVFv0OPIH//\nAzBbrAw97kTMyiCqowSj8bvcmI4RIoTrrF9h338w5rw8cu+9ByO17bSuyog/v1cWC1x4Gpd9djnj\nXh/HS0tfahHUK+vCvPnzRupCUZ7+dg21gV27qHF6bUy6bhgX/uUwTrhqaIdUchPd3lqt9ffAocBg\nYKZSah5wMdAHGASs1lqvSez/chvtHAa8lHj9P+IBfIt3tNYxrfUSIKejv4DoWEm7TVBK7Qu82mRT\nP+DPwPOJ7QVAIXC21royWf0QbauvriIU8KNCQcw5OYTXraP4gftxHDQKa48e9Pjb3+LPm53OVo8P\n1NYSjYSxu9wow0zIH8GwmFqd+AbgsVs4b3gGp/bqgbliBelTzid0xXQ+XFHJrW8vAuCpC0dy/P65\nuDIyOf76m9DRCJG6epg+Hc8p43nq2CksLV+Jy2pn2aYY5Yab/o/8i9pAiHDPbJxG6+c2PB5y77qT\n4gcfxNKrN4tD61hdHU9288T8Jzh94Ol4rI0pZF02M3ZLPLmN12HG2t4le9sgQVx0sC0JHhQwTWv9\nq6YfKqWGd8A5mqaI3CvnEIhGSQvoWutlwHAApZQBbATeBm4BvtBaP5CYZXkL8Mdk9UO0rr66ig/+\n/iDrlyzE7nJz9h9vJXz9b7ANHBi/g4VtThyrr65i2tOPU7ZuLeMuuxp3Rj9mvLqazHwPoyb0weFu\nPXi5VT3u/42FxPwdfzDMe/OLGz5/d94mxu6bhdVskJKeho5GidlsqLPPojoMS9Zk88NqM9eP7ceK\nDRWc896PAJw+oif39u25ze9sycmhx333gVL0CxRhJO76B6UNwjA1vxBId1n48IYjmb2mgsP7Z5Ap\ns9LF3ut74HGl1ACt9UqllAvoCSwD+imlCrTWhcA5bRw/CziX+N35+cCM3dBnkQS760HeOGCV1nqt\nUuoUYGxi+1TgaySg73bB+jrWL1kIQKCull/m/8zIRx/Bmp+POTFsHYtG8fuqicVimEwGDq8XUyLw\nrVu8gJWzvwPg/Ufv5+TfP8ymFVVsWlFFTh8P+xyc2/qJrV449Un4/E7oOQpXShoXH+7ghzUVGEpx\nwaH5WJsULlGG0TDJbXVRJfd8sBSAmSvL+PzXI/ntUX0o8cf47XH74LQ2/+estSZWW4uy2TBZ4wHZ\nZI+vac8xcnjv1PdY51vHoPRBpNvTm3fTbNA/y03/rOYz64XY22itSxOT3F5WSm1ZOnG71nq5Uupa\n4BOlVB3wYxtNTAaeVUrdRGJSXNI7LZJidwX0c2l8fpOjtS5KvN6MPJfZIyw2O2arjUgoPqKW3bc/\nzhEjGj7319SwaPrnzHn/Leqrq/BkZHLI6eeyzyFH4PB4cKc1BkB3WgbhYJNJdNtYCVmrbeh+k3Be\nMRbDasfsSGXMwAgz/3gMSkGqs+3Z5LFY4zliGqLV1Vw1MheVloZjq/S1OhIhsGwZJX97GMeQIXiv\nuIIakxVDKTLcNhxmB/nefPK9HVf7XIjdJXHHPaTJ+y+Bg1rZ9Sut9aDE0rbHiU+YQ2v9HPBc4vVa\n4JhWznHJVu/l6nYvl/R16EopK7AJ2F9rXayUqtJapzb5vFJr3SLBtlLqKuAqgPz8/JFr165Naj+7\nm2g4TMWmDcyf9hE99tmPviNG4fDE74QDdXXMePFZFnzxSYvjDj3jXA465Uyi4TAbf1lCyZpVDDn6\nOOprLHz72koye7s55OR+ODwth6gr60M8NX0V7y8o4vxD8jnvkD6kONq/HKyyNsiL363hx/U1TB6V\nRZ/lc0mfeEKrz/jDpaWsOelkolVV2MccRclNd/Gb1xeR47Xx1EWjyNnB7HNC0AmfISulbiQ+Sc4K\nzAWu1Fq3XF4iuoTdEdBPAa7TWh+feL8MGKu1LlJK5QFfa6333VYbklgmebTWxC/eG9WUlfD05CsZ\nec5Z5B0wlFBdHbOfeY7Kok0YFgtX/ONp3OnNE81EozFC/ihmi8Jia33gZ01ZLUf/bXrD+xk3H03v\ndCexaAyT0b5JZ0FfHfWVVdhqKrH27Ik5rfViK5HSUlafdjrRsjLsD/+DS5eYKSyP/x278bh9+M24\nge06nxBNdLqALrqX3bFs7Vc5IhhMAAAgAElEQVQ0Xy7xHvErRhI/390NfRBt2DqYA5StW8vw009j\ncc9KzphxAbesvI+jfvcbzFYb0XCY2sryFscYhgmH29JmMAewWwwsRvx8LquB12Ri7rR1fPH8L5Rv\nqiUa3X6iKyPox6liWPPytrlEzUhPp89zz+I5/jgcPfPIz2i8ix+QtXuzxAkhxO6Q1Dv0xGzLdcSz\nE1UntmUArwH5wFriy9YqttWO3KHvXhuXLaHWFOCc7y4jquMZze4efjs1L8ygbF0hlzz8JBm9ejfs\n76/1EfL7McxmXCmpba5Z94cirCytY9qSzZw9qjcV8yqY8epyAKx2g/PuPBRXatvpUCPl5az/9a8J\nLFqMOTeXvq+/Fi+8sg2xYBBlsVBWF+ajhUX0THUwsiBtx3LTCxEnd+hir5bUSXFa6zogY6tt5cRn\nvYu9VGpOHiXL5zIkYwjzy+ZjKIOBaQP5puo9UrJzsLvjc2O01tRVVTD3kw+Y/c7rODxezr/vUVKy\nW5/n6LCaGdozhaE9UwBYtXl9w2ehQHS7d+gxv5/AosUARDZvJlxaut2AbrLFLxCyPDYuPrygXd9f\nCCE6I8k/KVqwezzkpPXkrqw/ssa/nt7e3iz/4DOi4RAn33YPzpRUtNaUb1hHXVUl8z79gN6Dh1Kw\nz2BqiovaDOhbGzauN6t+LsHvC7P/mB5Yt5MO1eRw4Bg+HP+8eVh69sSynWAuhBDdiVRbE62KhEP4\na2pY/fOPFK9aQVZBXwYefDiOlFQMw6C+ppq37r+DQUcchcVk0NNsp+7lV3AMH0b6RRe1OVmt2Tkq\nKqgtqiSmFRarCVfvHEwOx7aPKSsnVleLyenc7t25EB2s2w25K6Vmaa0P39P9EO0jd+jdmI7F2nze\nbbZY8WRkMuy4CcTGjcfUyn4mw8ys11/iynsepnDiJIhEqP/uO+z77Yf3+ONb7F/qC1JU7SfXayfT\nbcP32WdsvjNeKU3Z7fSf9tl2A7o5MwMyd7CUqxBihyilzFrriATzzkWKs3RD0dpaar/5hqJbb6V+\n3jxigcA2928tmDu9KUy8/vdk9u5DsNYHkcbiJTFfy+plJb4AZzw5i5P/NZMJj82grDaItaCg4XNr\n794dUgBGiL1NwS0fnldwy4eFBbd8GEv8PK8j2lVKvaOU+kkptTiRtwOlVK1S6qHEts+VUgcrpb5W\nSq1WSp2c2MdI7POjUmqBUurXie1jlVIzlFLvAUu2tNfkfH9USi1USs1XSj2Q2HZlop35Sqk3lVKt\nF34Qu4UMuXdDoY0bWXXscaA1ymKh/7RpWHJ3LmFffU01RihM7XvvU/7009iH7E+P++/HnNH8Lnpt\neR1HPfR1w/sPbxjNIBf4Fy4kuHwF3kkTseTsXB+i9fXoujowDMzp6ds/QIids8ND7ongPQVoGujq\ngSsLH5j0UutHtbMzSqVrrSuUUg7iaV2PAsqAiVrrj5VSbwMuYBLxamxTtdbDE8E/W2t9byJV7Ezg\nLOIV2j4Ehmyp0KaUqtVau5VSE4A/ES/RWt/k3BmJic4ope4FirXW/9yV7yV2ngy5d0M6GGzIz6rD\nYXQsutNtOb3xGevmc8/Be9KJKIulIRd8Uy6bmdEDMvh2ZTn9Ml1ke2wYHjvu0aNxjx7dYv/2ilRW\nUv6f/1D50svY9hlIr3/8E0uPvJ1uT4gOdh/NgzmJ9/fRWLJ0Z92glDot8bo38froIWBLiseFQFBr\nHVZKLSRe4RLgeOAApdSZifcpTY6d3aTcalPHAs9uyTLXZKnxkEQgTwXcwKe7+J3ELpCA3g0Z6elk\n/fa3+D77jLTzz28ofrJLbTqdbZZZ9ft8mHw1PHR0BvbT9iFmc5Hhbnu9+Y4Ib9pExXNTAQgsWkzJ\nY4+Rd+cd230WL8Ru0laxgF0qIqCUGks8yB6WuGP+GrADYd047BojUf5Uax1TSm35e6+AyVrrT1tp\ns44d8xxwqtZ6fqJAzNgd/S6i40hA74bMqamkX3IxqWefhcntbqhElgyhgJ+fP3qX7996BYDsgn6c\nfuvdQMcEdL3V8/+Yz4eObT/jnBC7yTriQ9mtbd8VKUBlIpgPAg7dgWM/Ba5RSn2ZuHvfh3h5622Z\nBvxZKfVi0yF3wAMUKaUsxEuvbq8dkUQyC6mbMtntmNPTOyyYR6IxKutD+MPNh+9Dfj8/vvdGw/uS\nwtX4yko75JwA1oICnIccAoCRmkr2727cZh13IXazW4k/M2+qPrF9V3wCmJVSS4EHiNdEb6+niU96\n+1kptQj4D9u5udNaf0I8bfccpdQ84A+Jj/4E/ED8OfwvO/QNRIeTSXHdVMNEMqUwZ2buUluBcJQ5\nhRU8Mm0FB/dN49dj+pPmil8o1FZW8PxN1+P31TTsf8kjT5LRs3dbze2wSGUlsfp6lMWKOT0NZW7f\nwFOsvp5wURHB1atxDh8u69rF9uzUOvTExLj7iA+zrwNu3dUJcUK0RgJ6NxALBFBWa8OysFh9PTXT\nprH59j9h7tGDPs89iyVvxyaSNa3SVlwT4MgHvyKUSN368pWHcFj/+EVCNBJhw9JFfPjYXwnW1zPq\nxNMYddLpODyeDvyGOye4Zg2rJ50IsRi2ffYh/9lnMWfILHnRpm6XWEZ0LvIMvQuLhcMEly6l/Kkp\nOI84nJQJEzBSU4nW1bH5jjvR4TDhtWupev11sm64oV1t6miU0Nq1VEx9Huehh+A6/HBQNiyGIpQY\nbbeajYb9DbOZXvsN4aKH/gVorHYHVseuL1X1+0L4a8PYHGbsbjNGk3O2V2j1akg8bw+uWAG7MNtf\nCCH2NAnoXVi0spK1F1+C9vvxff45jqEH4EiNV0Oz5vcmuHwFANYBA9rfZkUFa887n2hVFVWvvkrB\na6+Svv8QPrhhNLPXVOC1W+i/VXlSw2zGndZxd77+2hCfP7eEdYsrMFtNnHPbwaTm7PhFgmPYMOyD\nBxP45Rey//B7lMyMF0J0YhLQu7omGdx0JAyAOSOD3k89RfW77yUmlR3c7ua01kSbZIKLVlURCkWZ\nu66KL38p5YrRfXFYd/xueUdEIzHWLY4vg42EYmxYVrlTAd2cmUnvKU+hYzFMdgdGooqcEEJ0RhLQ\nuzDD66X3lKcoe+IJnIcehrVPQcNnltxcMn991bYbiEWhYjX88BQMOBryD8fweOj590cpffTvOIYP\nwz5kCGt9QX732nwAvl5WwvSbjiY3JXlB3TBM9BqUxoZfKjFbTPTad/uFYNqydUY7IYTorGRSXBen\no1FidXUom62hNvj2+H0+/L4aLFYz9u8ewvLTlPgH18yCnP2JBYPEfD6U3Y7hdrO82Mfxj34DgNmk\n+PaPR5Obktzh63pfCH9NCJvLjMNlwbAkd1RACGRSnNjLyR16F6cMY4cywYUCfn764G1+eOc1TIbB\nr265hdy106FsOQSqATBtdXGQ7bFxx0mD+XxpMVeN6UeK09Lh32NrTo8Vpyd5CXGEEKKzkYC+F4pW\nV+NftIjwpiI8R4/d9jrxQDWULoP1s2HgcZCaD5advzsOBwIs+24GALFolJWLfiF3wDjoNxYy9231\nmFSnlQsO7cMZB/bCZTNjmLZ/IxMJBTGZLa1Wctsi5vcTra1FdcBaeSFEc4lUryGt9azE++eAD7TW\nb2zruJ0819PAI1rrJR3dtmgkAX0vVDd7Nhsnx5eR1RxxOD0ffrjVgicAbJoLz58Sf/3FXXDdbEjv\nu9PntjqcHHzaWXz2739gttnY94ixkHUyGDawtT1pzGKYsDi2n3gwFotSsXEDM197gbz++zB03Hgc\nnpYjCLFAgNoZ37Lp5psx5+TQ59n/YunRY6e/lxB7zJ0pLRLLcGf13pBYZixQC8xK9om01lck+xxC\nUr/ulYLLlje8Dq1eA+Ew4UAAX3kZNaUlBOub1E9Y+mHj62gIiua1bC8SpMxfRm2otsVnTflrali3\neAHezGyufPxZLv/7U6T36AXOjG0G8x3hr67htbtvZeXs75jx8lSKV69sdb+oz8fmu+5CBwKE166l\n8tVXO+T8QuxW8WA+hXg+d5X4OSWxfacppVxKqQ8TdcgXKaXOUUqNU0rNTdQs/2+iNCpKqUKlVGbi\n9ahEffQC4GrgRqXUPKXUkYmmxyilZiXqp5/Z6snj7biVUl8opX5OnO+UtvqV2P61UmpU4vWTSqk5\niZrtd+3K70E0JwF9L5R65hlYBwzA5HKRe+cdKK+XjcuXMuX6y5hy/WUs/34mkVAovvN+kxoPNKyQ\nN7xZW/Xher5a/xUXfXwRD8x+gMpAZavnDIeC/PDu67zz4F28ce/trP5pNu70DAxLBz8PV7pZ8ZRY\ntPVkLspsxtqnsaaFbd/Wh/uF2Mttq3zqrjgB2KS1Hqa1HkI8t/tzwDla66HER1+vaetgrXUh8G/g\nUa31cK31jMRHecBo4ETiOeLbEgBO01ofCBwNPKziqSNb69fWbtNajwIOAI5SSh3Q3i8ttk2G3PdC\nltxc+jz3HFrHMDweIjrG3I/fawiEP3/8Hv1HHozZaoUeI+DyaY3P0D25zdqqDddyy4xbiOoo633r\nOan/SRySd0iLc0ZDIYpXrWh4v3H5UoYeewKG0bGzx+2eFM68/R5mvPw8ef0Hkjew9UBtTkuj12N/\np+aTT7H07InjwBEd2g8hdpOklE8lXuv8YaXUg8AHQA2wRmu9ZXhvKnAd8PcdbPcdrXUMWKKUytnG\nfgq4Tyk1hniZ1p5Aztb9anKh0NTZSqmriMefPGAwsGAH+ylaIQF9L2XObFwfbY5F6T/qEFb//CMA\nfUeMwmyzUx2opiZUgzW9D6l5w7CZWy5LMykTqbZUygPlAGQ4Wl93bXO6GHP+Jbx53x2YrVYOO/2c\nHQrmUZ+PWCCAyWLBaOt5P2AYBtkF/Tnpt7dgWCyYtzECYM7KIv3CC9rdByH2Qkkpn6q1Xq6UOhCY\nCNwLfLmN3SM0jsbat9N0sMnrbc1uPR/IAkYmSrAWAvat+6WU+kJrfXdDg0r1JV6p7SCtdWViIt72\n+iTaSQJ6J2AyGexzyBHkDdiXSChEam4eESPGS4tf4on5T2AxWXhh4gsMzhjc4tgMewb/m/g/3ln5\nDgflHESOs/WLbmUykd13AJc++iSgcHpTGj4rqw3y6o/rMUyKs0b2IsPd/MIhWlVF2dNPU/m/F3CN\nGUPeXXdiTm871atSCptz1/O5C9EJ3Er8GXrTf/C7XD5VKdUDqNBav6CUqgKuBwqUUgO01iuBC4Hp\nid0LgZHAx8AZTZrxAe1f09pcClCSCOZHk7hoaaVfW0+G8wJ1QHViBGAC8PVO9kFsRQJ6J2F3e7C7\nGyuUlfnLWFyxmBHZI1hSvoRphdNaDehKKXp7ejN5xORtth/TMSrClUQtUdwWd0NlNn8oyl8/+YXX\n5mwA4pXVbp2wHxZz4/SLWF0dFU8/A0DttGmEr7l6mwFdiG7jzuqXuDMFOn6W+1DgIaVUDAgTf16e\nAryulDIDPxJ/Rg5wF/CMUuoemgfP94E3EhPatv0HoqUXgfeVUguBOTTWQm+tXw201vOVUnMT+68n\nXkdddBDJFNdJRepKCRfOIFS1nuq+RxCwe9knfZ+dbm+DbwO3fnsrvdy9GNNrDGN6jcFpceILhLnp\n9QUYJoVhildSu+eUIc3ytYdLSllz8slEq6rAYmHAZ5/ucDlWIToByRQn9mpyh95JmZe+j/mDG3EA\n3v7HEDt9yi61t7R0Cbf1vYE102eSZ7URTK/DmeLEY7fwz5N7oL97EhUNoQ6/HvNWxVfMmRkUvPE6\ndTNn4Rx5IEbazudWF0IIsXMkoHdGsRhs/KnhrSpZitHeWt6BGgj6oLIQXBnxNeauLEZ6h/K/311P\nJBhk8ZfTuOyxp+IDeHVlWF6/CDbMjh+/6lO47DNwZzWe32TC2qsXsUkTiEQiEIvSvqzxQoi9mVJq\nKPC/rTYHtdYtl8qIPU4CemdkMsERN8LyT8BfCSfcD/bmc1v8vhpCfj+GxYIrNQ2lFNRXwLePwnf/\nAp1YC54zBM5/DQNL49p2aHwdizZPVlO1DkwGWut4mwl1VZW8df8dlK4tZPSvLmLYcROwOZvXRRdC\ndC5a64XA8O3uKPYKklims0rvF69+duNiGHh8s/ztgVofs15/kacnX87//ngDvvKy+Aeb5hFOzafm\nzGcIjLoMlAmKF8FbV+Gwmpk0+Q9k9+3PYWf8CndaYnmb2Qb7nx5/bTLwX/g1c7/1MePVFdRWBhrO\nWbTiF0oKV6N1jBkvTyUcbLr6RQghRLLJHXpnZTKBu/UlaJFwmPmffQxAfXUVm5YvxeW0UWH0YuHS\nleQOy6Vy0IkM6XkgKe9eD4XfYtX1DDj4cPKHDsdis2PZUk3NkQrj74Nh54A9hWVLvcx6axUAJYU1\nTLruABweK2k9eqGUCa1jZPTK32bRFSGEEB1PAnoXZJjN9Bk2gsJ5P2G22sjtNxB/IMjLd95GOOCH\nj9/n9L8+SEmWkxSLA8J+iIYwWyyYLSktG3RlQP9jAKj7rjGbXL0vRCwWXyXhycji4ocfp3z9Onrs\nux/OlLaTywghhOh4EtC7IIfHy4TrbqS2shKHx4vD46W+ujIezAG0JlBfh8NrAa3B2wOs7XvePezY\nfDavqaG+OsRxlw7G7o5nerPa7WT07E1Gz97J+lpCCCG2QQJ6F+X0puL0Nt4l25xujrtqMj99+Da9\nhg3HkeIhvXAaxMJwyuPgbF+9cXeqjYnXDEVHNTa3BcOQoXUh9mZKqTuBWq3135LQdiEwSmtd1tFt\ndwSlVBbxXPdW4Iatc8t3tTrtSQ3oSqlU4GlgCKCBy4BlwKtAAfGUhGdrrVsvAdYNRcJhasvLKFq1\nnB77DMKdntkhBVJsTieDjxxLv+Ej0JEqHCs+wuwrgut+BE8emNp/Dofbusv9EaK7GDp1aIt66Asv\nXrg31EPfo5RSZq11JMmnGQcsbK0eu1LK6Gp12pN9e/UY8InWehAwDFgK3AJ8obUeCHyReC8S6qur\nmPqH6/joHw/x/E3X46+uarFPZaCS9b71lNSXEIm1//8Hs9WGOyMbT/ZAzAdfBcffCxn9wSp51YVI\nhkQwb1EPPbF9p7VRD71F3fMmhwxTSn2nlFqhlLpyG+3mKaW+SdRIX7SlTvp2aphPblIXfVBi/4MT\n55ubqK++b2L7JUqp95RSXwJfbKOueoFSaqlSakrinJ8ppRy0QSl1pVLqx8Tv402llFMpNRz4K3BK\n4vs4lFK1SqmHlVLzgcO2qtN+QqIf85VSX2zre+ytkhbQlVIpwBjgGQCtdUhrXQWcQry0H4mfpyar\nD51RVXERkXB8DXjI76e+prrZ59XBah796VEmvjWR0949jeL64h0/iVLxIG50cK1zIcTWdmc99G05\nADgGOAz4c6KISmvOAz7VWg8nfhO2JQnFtmqYlyXqoj9JvJIaxHO1H6m1HgH8mebf90DgTK31UbRd\nVx1gIPC41np/oIrmhWW29pbW+iCt9ZYbx8u11vMS5341UfPdD7iAHxK/t2+3HJwYmp8CnJFo46x2\nfI+9TjLv0PsCpcCziaubp5VSLiBHa12U2Gcz8Rq6IiGjRy+8WdkApPfshSu1eRrVUDTE+6veB6Am\nVMPc4rm7vY9dVV24jnJ/OYFIYPs7C9E+yayHfpxS6kGl1JFa6+rt7P+u1tqfeNb9FXBwG/v9CFya\neO4+VGvtS2w/Wyn1MzAX2J94DfMt3kr8/In4o1RoLBSzCHg0ccwW07TWFYnXW+qqLwA+p7GuOsTr\nu2+5oGjadmuGKKVmJIrFnL/V+ZqKAm+2sv1Q4But9RqAJv3b1vfY6yTzGbqZ+JXYZK31D0qpx9hq\neF1rrZVSrVaHUUpdBVwFkJ+/q//2Ow9XWjrn3fM3QsEAVrujRUC3GlbGF4znwzUf4rK4GJY9bIfa\nD0QChKIhXBYXxg48N9/TqgJVRHWUFGsKZqPj/9lWBaqYsnAK32z4hkv2v4TxBeNxW90dfh7R7eyW\neuiJIeJt1T3f+u9sq393tdbfKKXGAJOA55RSjwAz2HYN8y1ZpKI0xpR7gK+01qcppQpoXuWtrsnr\nVuuqb9XulrbbHHIHngNOTVRzuwQY28Z+Aa11O/NkA9v+HnudZN6hbwA2aK1/SLx/g3iAL1ZK5UH8\neQ1Q0trBWuuntNajtNajsrKyWtuly3KlpZOW26NFMAdIsaVw88E38/5p7/Peqe+R59x2VbNoNEJt\nRTlVxUXUVJXznwX/4YavbuDnkp8JRjpHNreS+hJu/PpGLvnkEuaXziccDSflHM8veZ7CmkLu/O5O\nfGHf9g8SYvtuJV7/vKmOqoder7V+AXiI+N/WQuJ1z6Hl8PQpSim7UiqDeLD7sY12+wDFWuspxCc0\nH0jrNcy3JwXYmHh9yXb2a1FXfSd4gCKllIX4RcKO+h4Yo5TqC6CU2lL/ub3fY6+QtICutd4MrG8y\niWAcsAR4D7g4se1i4N1k9aGrSrenU+AtINuZ3ebdam2oltL6UipqSpl682SeueFKfnznDRxRKz8V\n/8TV066mOrS9Ubo9LxqL8u/5/2ZO8RwKawqZ/OVkqoItJwruKpfFhUpUx3RZXBiq84xeiL1XYjb7\nlcBa4nfFa4ErO2CW+1BgtlJqHnAHcC/xuuePKaXmEL+jbWoB8aH274F7tNab2mh3LLClZvk5wGNa\n6/nEh9p/AV6ifTXM/wrcn2hnW0NqLwKjEkPlF9FYV31H/Qn4IdG3HW5Da11KfET4rcSEuVcTH7X3\ne+wVkloPPTHL8GniawBXA5cSv4h4jfgzpLXEl61VtNkI3bseut9XQ2XRRsxWG97MLOxuz3aPqQpW\n8dzi53hr+Vsc0/toTrMfw+d/fQi7y82B/3cNV826Hpth46PTPyLbmb0bvsXOi8ViPPzTwzy/5HkA\nMuwZvHHyG2Q62rduvr3qQnUsrVjK9A3TOaX/KRR4C5IytC86NamHLvZqSf2LlZjQMKqVj8Yl87xd\nRSgQYPY7rzPng7cBOOG637H/mGO2e5wv5OOZhc8A8ObKtzj9qJMwzGYGjT4Kk8XCIbmHcO3wa0m1\n7f3pWU0mE5cNuYyKQAXF9cXccvAtpNk6vt66y+piVO4oRuW29s9VCCH2fu0K6Ikp/VcSn2XYcIzW\n+rLkdEsARIIB1i5sLF26Zu4cBh1+JIZ528vNbIYNu2EnEA1gVmYyM3pw8cNPYHe6MVx2Hs0bisvq\nwqQ6R5a3DEcGfz70z4R1GI/F06xsqxBix3XWOudKqceBI7ba/JjW+tk90Z+9TXvv0N8lPtPxc1o+\nmxFJYnW6OOS0s/nwsYcwLBZGTjp1u8EcwFAGTxz7BNM3TOewvMOwGBbSchsnFlqNzpfpzWFx4Njm\nJFchRHt11jrnWuvr9nQf9mbteoaulJqXSDSwR3TnZ+ihgJ9gXR1KKeweL2ZLPKDXBGsIx8J4rV4s\nWyWIWe9bz1WfXcWAtAEUVhfy96P/Tv/U/nui+0J0JTI0JPZq7R1z/UApNTGpPRGtstodeDIycadn\nNATzcn85d8y6g0s/uZQ5xXNaLD9zWVwUpBTw9fqvSbGmdIpn5UIIIXZNe+/QfcRT5gWBMPErVa21\n9ia3e3Hd+Q69NW8sf4O7vounU3aYHXx02kdkblUtrSJQQTAaxGayke5Ib60ZIcSOkTt0sVdr1zN0\nrfX210qJ3abpLG+PNT5JLBaLESOG2RT/T5pulyAuhBDdSbuXrSml0ogny29I+ae1/iYZnRLbNjJn\nJP938P+xpHwJVx5wJWZl5l/z/kVxXTGTD5xMrit3T3dRCCF2iYqX3z5Pa/3EThxbSAfVaVdK3U08\nz/vnu9pWsrV32doVwG+AXsSr7xwKfEe8eo/YzVLtqZy333lEY1EMk8F/F/2XKQunALDWt5Z/HvNP\n0uxpBOrqCAf8KJMJV0oqytQ5lqkJ0ZUsHbRfi3ro+/2ydI/VQ1e7pw55R0gFrgVaBPTd+R201n/e\nHefpCO39C/8b4CBgrdb6aGAE8XJ2Yg/aUlylPtyYKjoQCaC1JhTws/SbL3jq2kt4/qbrqS7ZiTKr\nQohdkgjmLeqhJ7bvEqXUBUqp2Yla3/9RShlKqdomn5+ZKKSCUur/27vzOKmqM//jn6e76YW9BURA\nFBeMigtqgQtGEaOSjIPLEDVxXBJnjDMS84thIo4zRvOLE3UmcRsTJaNBnUSDSxR3+WmIqDHaqKCo\nKKuCCN3QLE3T+/P7456Goru6u3qpqu7i+369+tVV5y7n1LXxqXPuueeZZWb3mNlfgVvNbA8ze9LM\nFpnZm43pUM3sBjN7yBLkTjezfwk5xxdZ85zoTdt2cdhvoZk9FMqGhFzlb4efCXF13h9yky83s6vC\naW4GDgif7z/NbGLIqDaHaBlxwmdYYFHO9Mvbce2aHReu3yyL8sC/b2Y/jLt2U8Pr60PbPzCzmXGp\nXruFZIfcq9y9yswwswJ3/9i6eaL3bLW9djsVtRX0yu21Y/b6BQdfwMrNKymrKuP646+nuLCYbZvK\nefOPs6Njtm7h4zde5bhzz89k09mwfQO/++h35FgO3zr4WwwqGpTR9oikQWv50DvcSzezQ4jWWp8Q\nEpv8iraTkuwNnODu9WZ2F/Cuu59tZpOAB9n5XPoRRKOwfYB3zexZ4DCiW67jib6YzDGzkxLddjWz\nMcC/hbrK4hKd3AHc5u6vmdk+wIvAIWHbwUT50PsBS8zs10TZOQ9rfGTazCYSJYs5rDHNKfBdd99o\nZkXA22b2uLtvSOISNjuOaOG0ESG/fOOQf1P/7e4/DdsfAs4Enk6ivrRINqCvDh/uSWCumZUTrcMu\nabStdhsvrnyR2xfczpjBY7hpwk3sUbQHg4sGc+MJN1LXUEcOvVmzaTuFDTmMHHM4S96YD2bsc9gR\n1FRXUbu9krz8Qgp6N/1/TGpV11dz17t38finUSriTdWb+PG4H/fIRW5E2iFV+dBPJcqs9nboJBbR\nQubKOI/GpQ49kZCRzY2iqY0AACAASURBVN1fMbNBZtb41NJT7r4d2G5mjbnTTwROJ0rSAtCXKMAn\nmkc1KdRVFs7fmKvja8ChcZ3a/mbWmKP4WXevBqrNbD07c6I39VZcMAe4yszOCa9HhjYlE9ATHbcE\n2D982XkWeCnBcaeY2Y+JvpTtASympwV0d2/84DeE/8ADgBdS1ipJaFvtNm78y400eAOvrXmN98ve\n5+SRJwPRWuQNDc7zH6zlyt+/S5/8XF765+8y9owz6TNgIPm9+/Duc3NYOPd5Rh97Asedez5F/dLy\n1CEQJVkpry7f8b68qpwGb0hb/SIZkpJ86ES95Afc/dpdCs1+FPe2aU70bSQnUe50A37u7ve2q5W7\nygGOc/eq+MIQ4JvmPm8pNu34DKHH/jXgeHevNLN5NP/MzbR0XMj1fiRwBnAFcB7w3bjjConu58fc\n/XMzuyGZ+tIp6VlSZnZ0uLdxBFGe85rUNUsSybEchhTtXMJ1WJ9dc6Fvr63n0QWrAdhWU8/0Ocvo\nv+9BFA8bQV11Na898iBbN5TyznNPUbk5valTi3oVcc24a4gNjTFur3FMHzedwrxu9W9BJBVSkg8d\neBmYamZ7QpS/20IuczM7xMxygHNaOX4+YYg+BLgyd98StiXKnf4i8N3GHrWZjWisO4FXgG+G4+Nz\ni78EfL9xJ4uycbZmK9EQfEsGAOUhKB9MdJsgGQmPM7PBQI67P050y+DoJsc1/g+rLFyHqUnWlzbJ\nznK/Hvgm8EQo+q2ZPeruP0tZy6SZwUWDefDrD/LSypc4fMjhDOu7a0Av6pXLBeNG8udPSnGH88bt\nTVF+NHEuNy+PvPwC6mqqsZwc8goL0t7+4X2Hc9spt2EYAwoGpL1+kXQ75OOPfv/RwYdAF89yd/cP\nzezfgJdC8K4FriS67/wMUAqUEA2NJ3IDcL+ZLSL6gnFJ3LbG3OmD2Zk7/Ytw3/4voUddAfw9CYb5\n3X2xmd0E/NnM6omG6S8FrgLuDnXmEQ3XX9HKZ9xgZq+b2QfA80TD4PFeAK4ws4+IhsvfbOlcSR43\ngii2NXZ0dxn9cPdNZvYb4APgS6IvOt1KsivFLQGObBwqCRMJ3nP3tEyM00pxyauormVzZR2OM6Co\nF/0Ko+Vi62trKfvicz6Y/zLDjjycDX2rGTviaPJy8ijILegxmddEMqhbzWhOhTCMXOHu/5Xptkj7\nJTsp7gui4YbGex8FwJqUtEg6pW9BL/oWNM/IlturFyX1H/HSiA9YuewZlm9ezrPnPMt/lvwnJ+99\nMqfte5p6zSIiPViyAX0zsNjM5hJNkDgNeMvM7gRw96taO1i6h+LCYl757BUABhUOYk3FGuZ9Po95\nn8/j8MGHk5+bz4btG1i1ZRWji0czuGiweu4iuxF3vyHZfcM98pcTbDo1yUfHUqq7ty8Vkg3ofww/\njeZ1fVMk1cYMGsMvJ/6S98ve5+8O/Dv+9bWd83IMY2n5Ui56/iLqvZ49Cvfg0b99lD17tzTvRUR2\nZyEodtuc6t29famQ7GNrDzS+tmhN95HuvihlrRLKtpexassqRvQdwaDCQc1ynnfEgIIBnLbvaZy2\n72lU1lZy8ZiLmbV4FhOGT2BE3xH88p1fUh8eU91YtZHlm5YroIuI9BDJznKfB0wJ+y8A1pvZ6+5+\ndQrbttvasH0D//DSP7Bs0zKK8op48qwnGd53eJfW0btXbyaNnMT4vcZTlFdEYV4h44eOZ/aSaHW5\nPMtjZL+RXVqniIikTrJD7gPcfYtFSVoedPefhEcPJAVqGmpYtmkZANvrtvPZls+6PKAD9MrtRXHu\nzlSsxw07jl+c/AsWrFvAlAOmKI+6iEgPkuyMpzwzG0a0cs4zKWyPAIW5hZwx6gwA9u63NwcMPCAt\n9Q4oHMDpo07n2mOvZczgMRTlFaWlXhHpemY2xcxmtLCtooXy+EQk88wslso2tsTMxprZN9JQz7/G\nvR4Vnnnv7DmHmNlfzexdM/tqgu3/Y2aHdraeRJLtof+UaKWg1939bTPbH/g0FQ2SaDb6dcdex9XH\nXE1+bj6DiwZ3eR1l28t4bfVrjOw/ktEDR9O/IH3LwIpI6rn7HGBOptvRQWOBGPBcKk4esqQZ0Yp9\n/9HFpz8VeN/d/yFBvbmJyrtKspPiHgUejXu/nLCwv6RGcWExxRS3vWMHlFeVM33edBasXwDAzNNm\ncvzw41NSl8ju7u4rXmmWD/3KeyZ1aqU4MxtFtOLZm8AJRKuW/Ra4EdiTaFnXQ4nWHZ9mZvsRZXfr\nCzwVdx4D7iJ6FPlzIOGS3mZ2ejh3AbAM+I67t9TLPwb4ZairDLjU3ddalIr1ciAfWApcFJZf/Sbw\nE6I13DcTrbP+U6DIzE4kWkP+DwnquYHomu4fft/u7neGbVezcx32/3H328M1exH4K1Fim7dCHe8R\nJVm5DsgNq8GdQLTWylkhUU2iz9ns8wAHAbeG88aA44lW7bs3fK4rzexnwHR3LzGzyUR/G7lEy++e\nambjiTLTFQLbw7VekqgNTSU15G5mB5nZy43DEWZ2RFh2ULqZBm+gbHsZpZWlVNdVJ9ynrqGOZZuX\n7Xj/SfknCffbWLWR0spStlRvoaKmgtVbV7Ni8wo2V6d3HXiRnioE82b50EN5Zx0I/IIo9ejBwLeJ\nsqJNp/la8XcAv3b3w4G1ceXnAF8hCv4XEwWyXYQ1zv8N+Jq7H020pGzCCdFm1ovoC8JUdz8GuB+4\nKWx+wt3HufuRwEfAZaH8euCMUD4l5Am5HviDu49NFMzjHEyUTGU88BMz6xW+UHwHOJZonfZ/NLOj\nwv6jgV+5+xh3/w6wPdRxYdz2u919DLCJ1juuzT6Pu7/XpO3bidLQ/tXdj3T31+Ku1RCiv42/C+f4\nZtj0MfBVdz8qnCvpEYRk76H/hmhd21qA8MjaBclWsrvYWLWRN9a8weKyxSzftJytNVtTVldtfS3l\nVeVsr9v1y+OqLas496lzmfz4ZN5Z/w519XXNju2X34/rjr2OgtwCDhh4AJNHTW62z4btG/j+y99n\n0qOTuGfhPayuWM3Xn/g6U56cwqOfPEpVXVWzY0SkmdbyoXfWCnd/390biHqYL3u0lvf7RLm9400A\nHg6vH4orPwl42N3rw5rtrySo5ziigP966M1eQuIMchB9OTiMKM32e0RfBPYO2w4zs/lm9j7RCMKY\nUP46MCv0eHOT+NzxnnX36pCqtTHt6onAH919WxhFeAJovJe9yt1bW/N9RQjKED3RNaqVfVv6PE3V\nA48nKD8OeLUxHWxcmtkBwKOhA31bK+dtJtmA3tvd32pS1jxS7Ma2VG/hpjdv4nv/73tc8OwFLNu8\njM+3ft6hc22q2sScpXO4+727WV/ZPMXxttptzF01lyv+3xXcu/BeNlVtAqLe+azFsyivLqemoYbb\n37mdLbVbmh1fmFfIySNP5vlzn+e+0+9jaJ/mqYeXlC9hUVn0IMNDHz1EfUP9jm0vrnyRyrqmCaRa\nt7l6M2sq1rC+cj11DfrTkd1GqvKhw64pRxvi3jeQ+HZq24k7EjNgbuhxjnX3Q939slb2XRy37+Hu\nfnrYNguYFkYJbiRkL3P3K4gC/0hgQWOWtiQlm3a1UVspZNtzvlkk+DwJVMXloU/G/wX+5O6HAX/b\nynmbSTagl5nZAYQ/iDALcm3rh+xequurWVi6cMf7xWWL+aLiiw6da/6a+Vz3+nXcs/Aerp53NeVV\n5bts31K9hRnzZ/Dhhg+574P7+HRTND8xx3IYt9e4HfsdOeRICnMT/y0U5RUxpPcQBhUl/rczou+I\nHcu+DiocRL/8fjven3PgOfTJ65P059lWu41HPn6EyY9PZsqTU1i9dXXSx4r0cC3lPe9sPvT2ep2d\no6oXxpW/CpxvZrnhSaZTEhz7JjDBzA4EMLM+ZnZQC/UsAYaY2fFh315m1tjD7AesDcPyO9pgZge4\n+1/d/Xqi+80jaTt1amvmA2ebWW8z60N0W2F+C/vWhvZ0RMLP0w5vAieF+Q3xaWYHsDNXyqXtOWGy\ns9yvBGYCB5vZGmAFHfsAWatvfl+mjZ3G9W9cz6CiQZwy8hSG9B7S9oEJxH8RWF+5fsfqbS2xuCRQ\nXx3xVX73jd9RUVvBIXscQu9eTUf7kjOkaAizz5zNwtKFnDjiRIoLinnh716gvqGe/gX9KchLPv1q\nZW0ljyx5BIiC+yufvcJ3D/9us/3qG+pZuWUls5fM5sQRJzJ2z7H0y+/ov2mRbuFfiW5Zxv9D7Ip8\n6O31A+D3ZnYNcZPiiJb0ngR8SPQl4y9ND3T3UjO7FHjYzBr/4f8b0GzyjbvXhA7fnWY2gCjG3E50\nS+DfiSaklYbfjf+4/9PMRhP17l8GFoa2zAjD9gknxbXE3d8xs1lEk94gmhT3bpgU19RMYJGZvUM0\nKa49Wvo8ybaz1MwuB54IKVvXE01OvBV4IMxTa5oytlWtpk81sx+4+x1mNsHdXw/fdnLcPXU3hxPo\nKelTN2zfwNaareTn5lOQU0BxUXGHkpuUVpYy/c/TWVe5jp+f+HMOG3zYLku/bqvdxmtrXuOhDx/i\n+GHHc+EhFzKwcGBXfpQuVVFTwW0LbmP2J7PJy8nj4b95mIP3OLjZfqWVpZz91NlsqYluEzx19lPs\nP2D/dDdXpCUdSp+ailnuIom0FdDfc/exZvZOmN2YEd05oNfU11DbUEtlbSWzl8zmnkX3kGd5/Hby\nbxm7Z/vzApRXlWMYjlPfUM/AgoHk5TYfSKmrr6OiroKivCIKcpPvLWdKeVU5G6s20rdXXwYUDKAw\nr/mtgHXb1nH646fT4A0A/O4bv+OIIUeku6kiLcn6fOjSs7U15P6RmX0KDG+y1KsB7u679f9tN1Zt\nZObCmXy29TOmx6bz3IpoDYQ6r+Pp5U+3O6B/vvVzZrw6gxzL4ZaTbml1ude83DwG5nbfXnlTxYXF\nFBe2/lx9v/x+3HrSrdy78F6OHXYs+/TrinlDIpIKZvZHYL8mxde4+4tdXM93iG4ZxHvd3a/synpa\nqf9uoqcE4t3h7r9NR/3t0WoPHcDM9iJ6GH9K023uvipF7dpFd+2hP7T4IW4tuRWAfzryn6j3emYu\nmkme5XHfGfdx9NDmgxr1DfV8se0LXl39KuOGjmNk/5EU5RWxtWYr0/88nTe+eAOAU/c5lZ9/9ect\nLr/q7ny57Uve+vItDh9yOMP7DE/Y6+1pquur2VazjcK8wg7f/xdJEfXQpVtrc1Kcu38JHJmGtvQ4\ntQ21O14/tfQp7px0JxOGT2DP3nu2OHt8Y9VGLnjmArbUbCHP8nj23Gcp6ltEruUysGBnj7u4sJhc\na/5IZtn2MqrqqsjLyeNbz36LDVUbyMvJ47lznmNY32Fd/yHTrCC3gIKi7n8LQUSku2k1oJvZbHc/\nLzw4H9+V15A7cNaBZ7Fs8zLWVKzh2vHX7hhWLi4objF/eU1DzY5JX3Vex8aqjQzvO5zevXrz43E/\nZnDRYHItl0vHXEp+bv4ux5ZtL+OS5y/hs62f8ftv/J4NVRui8zTUsb5yfVYEdBER6Zi2euiN9y3O\n7MjJzWwl0fOE9UCdu8fCs3Z/IFqBZyVwnruXt3SO7mxQ0SCuO/Y6ahtq6Z/fn2hZ5Nb16dWHiw+9\nmIc/fpgJwycwvM/O++SDigYxPTYdIOG5SitL+Wxr9PjqkvIlTB09lcc+fYxjhh7TLXKXb6reRF1D\nHcUFxeTmtHfBJxER6Yw276F36uRRQI+FZfkay24FNrr7zSG1X7G7X9PaebrrPfSO2lKzheq6anrl\n9IoeN6vcCKvegPKVcPhU6LdXwuNKK0s575nzKNtexmGDDuOOSXdgGHk5eW1OOEu10spSrp1/Lesq\n1/EfJ/4Hhw46VEFdso3uoUu31tZja1tJvFxg45B7qzk3WwjoS4CJIfvOMGCeu3+ltfNkW0BvZtGj\n8ETIqLd3DL71B+jTPGWqu1O2vYwtNVsYUDAgJWlVO2rmopnc9e5dAOzbf19mnTGLwb27rn219bVs\nqo6WuB1YMLDFWxoiKZRVAd3MzgY+cfcPu+h8MeBid7+qK87XgfqnAIeGzuIQ4BmiTGhXEeUi+ba7\nb8pE29Kl1SF3d+/sMl0OvGRmDtzr7jOBoe7euGzsl0SL6e/e1sf9e9qwDBoSrwxnZgzpPaTDK9Cl\n0rA+O+/fDykaQl5OsosQts3dWbxhMZfPvRzDuP+M+xkzOOl8BSKS2NlEQa9LArq7lxBlYsuIJvnf\nm+Ykb2np16yS6iH3Ee6+xsz2BOYC3wfmuPvAuH3K3b3ZeHFYEu9ygH322eeYVavS8oRcZmz6HB6c\nAlvWwDn3wkGToVfix9W6q01Vm3h19ausqVjD1IOmdumXjoqaCn705x/teKTvlJGncMtJt7T4SJ9I\ninSoh/6L889stlLcj/7wTKdXijOzvyfqfeYTLT36z8B/A+OAIuAxd/9J2PdmokeP64CXiDKQPUOU\nf3wzUQrPZQnqSCqHubufZGYTifJ8n9menN5hWdlziNYwHwH8r7vfGLY9SbS2eyHRs98zQ3miPOKX\nAjHgf4gCexHRmujHE6U3jbl7mZldTJRi1oFF7n5Rste8u+u6blQC7r4m/F4fFiEYD6wzs2FxQ+7N\n04lFx8wkWmeXWCyWum8dGVZbX8vmgiLyvvs8A8mF/D4ZC+aNj8QV5RW1+NhdSwYWDmTKgc2WKugS\nBXkFjBs6bkdAH7fXOPJz8ts4SiTzQjCPX8t9X+A3vzj/TDoT1M3sEOB8YIK715rZr4jya1zn7hvN\nLBd42cyOIApq5wAHu7ub2UB332Rmc4Bn3P2xVqp6wt1/E+r8GVEO87vYmcN8jZklWuGqMad3nZl9\njSj4tpZbfDxR2tVK4G0zezb0+L8bPk9RKH+cKKnYb4CT3H1FXFITANz9PTO7niiATwttb7xuY4jW\noT8hBPddju3pUhbQ49d9D69PB35K9M3pEuDm8Pupls+S3Wrra1lYupB/f+PfGdFnBDefdDOD8zOz\nmErZ9jIue/Eylm9ezpFDjuSOU+5od1BPlV45vZh60FSOGXoMOTk57Nt/X024k56itXzonemlnwoc\nQxTkIOqNrgfOC6ObecAwojzmHwJVwH1m9gxRzzxZh4VAPhDoS7TIGOzMYT6bqLff1ACiBCOjiXrC\nbU16mevuGwDM7AminOYlwFVmdk7YZyQwGhhC4jziyZgEPNo4r6udx3Z7qeyhDwX+GP7Y8oDfu/sL\nZvY2MNvMLgNWAeelsA3d2ubqzVwz/xrWV65n9dbVPLf8OS4ec3FG2lK2vYzlm5cDsLB0Idtqt3Wb\ngA7RCMBRhUdluhki7ZWqfOgGPODu1+4oiNJwzgXGuXt5yDhWGHrJ44m+BEwFphEFtmTMAs5294Vh\nSHsiRDnMzexY4G+Icpgf0+S4xpze54QsZ/PaqKfpKKyHIfyvAceHYf55tCM3+O6o/anAkuTuy939\nyPAzxt1vCuUb3P1Udx/t7l/Ltm9I7ZGTk8OQop33mltbuz3VBhUOorggmsowvM9w3Z8W6Rqpyof+\nMjA1zE9qzKW9D7AN2GxmQ4Gvh219gQHu/hzwQ3au/JlMzvH25DCP196c3qeZ2R5haP1sohGAAUB5\nCOYHA8eFfVvKI56MV4BvmtmgDhzb7aX0Hrq0bo/CPbhz0p08/snjjOo/ithesYy25fEpj/PFti8Y\n0XdEt3okTqQHS0k+dHf/MOTLfink0q4FrgTeJbp//TlRUIQoKD9lZoVEPfurQ/kjwG/M7CpgaqJJ\ncbQvh/nJcce1N6f3W8DjwN5Ek+JKwgqlV5jZR8ASokDeWh7xNrn7YjO7CfizmdUTXa9Lkzm2J0jp\nLPeukvXPoYtIT9CtZrlni8bZ6Y0T2KTj1EPvZjZs30CDN9C7V2/69OqT6eaISCeF4K0ALimngN6N\nrK1Yy3de/A5rt63l2vHX8rf7/y198hXURSS10pHz28zOAG5pUrzC3c8hmnwnnaSAnmallaVU11fT\nu1dv9ijcdT7G08ufZk1FNI/klrdv4dR9TlVAF5GUc/cr01DHi+x87E1SQAE9jUorS7nwuQtZu20t\nE/eeyE8n/HSXpCoHFR+04/V+/fdLmA9dREQkEQX0NFqxeQVrt0XL2M9bPY+q+qpdth+151Hc87V7\nWLF5BaePOp09irLqiQoREUkhzXJPo9Jtpazbvo6a+hrWV65n3F7jutXiLSLSqqzKtibZJ2ULy0hz\nG6s3cukLl3LJC5fw8caPKcgtyHSTRESaMbNRZvZBEvt8O+59zMzuTH3rpCUK6Gn00qqXqK6vBmDO\nsjlU1VW1cYSISLc1CtgR0N29JFO50CWigJ5Gp+5z6o484ZNHTaYwT8sSi0j7hd7xx2b2OzP7yMwe\nM7PeZnaqmb1rZu+b2f1mVhD2X2lmt4byt8zswFA+y8ymxp23ooW65pvZO+HnhLDpZuCrZvaemf3Q\nzCaG5C+EZVyfNLNFZvZmyPqGmd0Q2jXPzJaHVeqki2hSXBrtP2B/nj/3earqqhhYOJC++X0z3SQR\n6bm+Alzm7q+b2f1ES7p+DzjV3T8xsweBfwJuD/tvdvfDQz7w24Ezk6xnPXCau1eF5V4fJso7PoOQ\n/xwgJFNpdCPwrrufbWaTgAeBsWHbwcApRMvILjGzX7t7bUcugOxKPfQ0KswrZK8+ezFqwCgGFiRK\nISwikrTP3b1xvfb/JcqmtsLdPwllDwAnxe3/cNzv49tRTy+iNd/fBx4lSsnalhOBhwDc/RVgkJn1\nD9uedffqkMJ0PVFmTukC6qGLiPRMTR9R2gS09tiMJ3hdR+jYhUQn+QmO+yGwjihLWw5RbvXOqI57\nXY/iUJdRDz1DtlRvobSylO212zPdFBHpmfYxs8ae9reBEmBU4/1x4CLgz3H7nx/3+y/h9UqgMZf5\nFKLeeFMDgLXu3hDO2bjiVWvpV+cT0q2Gofgyd9+S1KeSDlNAz4CNVRv52Zs/46LnLuKVz1+hoqbZ\nPJQuV1VXxdaarSmvR0TSZglwZUgvWgzcBnwHeDQMjzcA98TtX2xmi4AfEPW6IUrterKZLSQaht+W\noJ5fAZeEfQ6O22cRUG9mC83sh02OuQE4JtR3M3BJpz6pJEULy2TAO+ve4b9K/osZ42ewZOMSjht+\nHMN6DyMvNzUjTxurNnLnO3fyRcUXzDh2Bvv13w8zrZEh0k7d5h+NmY0CnnH3w5LcfyVRitKyFDZL\nMkz3LjJgUNEg/mXcvzDt5WmUV5fTO683T5/zNHv23jMl9T297Gke//RxAK565SpmTZ7F4KLBKalL\nREQyQ0PuGTC4cDD98/tTXl0OQGVdJZuqN6WsvvgkLzmWg3WfjoaIdIC7r0y2dx72H6XeefZTDz0D\n+uT3obihmIl7T2Te6nkcvefRDCpM3Zru39j/G6ypWMPqitVMj03X+vEiIllI99AzqLyqnJr6Gnrl\n9mqWG72r1dTXUNdQR+9evVNaj0gW09CWdGvqoWdQfC70VMvPzSc/N9EjpiIikg10D11ERCQLKKCL\niPRAZjbZzJaY2VIzm5Hp9kjmKaCLiPQwZpYL3A18nWht9W+ZWTJrrEsWU0AXEel5xgNL3X25u9cA\njwBnZbhNkmGaFCcikmKxWCwPGAyUlZSU1HXBKUcAn8e9Xw0c2wXnlR5MPXQRkRSKxWInAKXACqA0\nvBfpcgroIiIpEnrmzwIDgcLw+9lYLJbb6oFtWwOMjHu/dyiT3ZgCuohI6gwmCuTxCoEhnTzv28Bo\nM9vPzPKBC4A5nTyn9HC6hy4ikjplQBW7BvUqoiH4DnP3OjObBrxIlJ/8fndf3JlzSs+nHrqISIqE\nCXB/A2wiCuSbgL8pKSmp7+y53f05dz/I3Q9w95s6ez7p+RTQRURSqKSk5A2ioff9gMHhvUiX05C7\niEiKhR75l5luh2S3lPfQzSzXzN41s2fC+/3M7K9hucI/hAkdIiIi0gnpGHL/AfBR3PtbgNvc/UCg\nHLgsDW0QERHJaikN6Ga2N9GEkP8J7w2YBDwWdnkAODuVbRAREdkdpLqHfjvwY6AhvB8EbHL3xqUP\nVxMtYSgiIiKdkLKAbmZnAuvdfUEHj7/czErMrKS0tFOPbIqIZB0zW2lm75vZe2ZWEsr2MLO5ZvZp\n+F0cys3M7gxzlxaZ2dFx57kk7P+pmV0SV35MOP/ScKylqw7pmFT20CcAU8xsJVEmoEnAHcBAM2uc\nXd/icoXuPtPdY+4eGzKks4sqiYhkpVPcfay7x8L7GcDL7j4aeDm8hyjN6ujwcznwa4iCM/ATosQu\n44GfNAbosM8/xh03OY11SAekLKC7+7Xuvre7jyJalvAVd78Q+BMwNex2CfBUqtogItIdxGKxwlgs\ntm8sFmu6DGxXO4tobhLsOkfpLOBBj7xJ1LEaBpwBzHX3je5eDswFJodt/d39TXd34MEm50p1HdIB\nmVhY5hrgajNbSnRP/b4MtEFEJOVisVhuLBa7GdgALAY2xGKxm7sgOQuAAy+Z2QIzuzyUDXX3teH1\nl8DQ8DpRutURbZSvTlCerjqkA9KysIy7zwPmhdfLiYZdRESy3U3ANKB3XNm08HtG893b5UR3X2Nm\newJzzezj+I3u7mbmnayjVemoQ5KnpV9FRFIgDK9/H+jTZFMf4PudHX539zXh93rgj0QdpXVhKJvw\ne33YvaV0q62V752gnDTVIR2ggC4ikhpDiYbFE3F2DlW3m5n1MbN+ja+B04EPiFKoNs4ij5+jNAe4\nOMxEPw7YHIbNXwRON7PiMFHtdODFsG2LmR0XZp5f3ORcqa5DOkBruYuIpMY6oLXHsNZ14txDgT+G\np7zygN+7+wtm9jYw28wuA1YB54X9nwO+ASwFKoHvALj7RjP7v0T51QF+6u4bw+t/BmYBRcDz4Qfg\n5jTUIR1g0eTC7i0Wi3lJSUmmmyEiu7d2PyMdJsRNY9dh90rgrpKSks7eQxfZhXroIiKpc134/X12\nDr//d1y5SJdRcmUdfAAAC8xJREFUD11EJDkdXsUsTIAbCqwrKSmp6romieykHrqISIqFIL4q0+2Q\n7KZZ7iIiIllAAV1ERCQLKKCLiIhkAQV0EZEeyMzuN7P1ZvZBXFlWpE9tqQ5pnQK6iEjPNIvm6Uaz\nJX1qS3VIKzTLXUQkRUJWtYuAHxJlElsD3AY8VFJSUt+Zc7v7q2Y2qknxWcDE8PoBoqRY1xCX2hR4\n08waU5tOJKQ2BTCzxtSm8wipTUN5Y2rT5zNch7RCPXQRkRQIwXwO0UIyRxCliz4ivJ/TRSlUm8qW\n9Kkt1SGtUEAXEUmNi4CTSZxt7WTg71NZeegppzx9ajbUkS0U0EVEUuOHNA/mjfoAV6egzmxJn9pS\nHdIKBXQRkdQY0cntHZEt6VNbqkNaoUlxIiKpsYbovnlr2zvMzB4mmjg22MxWE80kT0dq00zWIa1Q\nchYRkeS0KzlLLBa7lGgCXKJh923AlSUlJQ90QbtEAA25i4ikykPAn4mCd7xtofx/094iyWoK6CIi\nKRCeM58CXAksAjaE31cCUzr7HLpIUxpyFxFJTofzoYukg3roIiIiWUABXUREJAsooIuIiGQBBXQR\nkR6ohfSpN5jZGjN7L/x8I27btSFN6RIzOyOufHIoW2pmM+LK9zOzv4byP5hZfigvCO+Xhu2j0lmH\ntEwBXUQkxWKx2H6xWGxCLBbbrwtPO4vm6VMBbnP3seHnOQAzOxS4ABgTjvmVmeWaWS5wN1Hq00OB\nb4V9AW4J5zoQKAcuC+WXAeWh/LawX1rqkNYpoIuIpEgssgBYDDwLLI7FYgtisViss+d291eBjW3u\nGDkLeMTdq919BdFqbuPDz1J3X+7uNcAjwFlhKdZJwGPh+AeIUps2nqtxQZzHgFPD/umoQ1qhgC4i\nkgIhaM8DjiZa2nRA+H00MK8rgnoLppnZojAkXxzK2pvadBCwyd3rmpTvcq6wfXPYPx11SCsU0EVE\nUuNeWs+2dk8K6vw1cAAwFlgL/CIFdUg3pYAuItLFwr3yQ9rY7dAuvqeOu69z93p3bwB+QzTcDe1P\nbboBGGhmeU3KdzlX2D4g7J+OOqQVCugiIl1vOFDTxj41Yb8u05hDPDgHaJwBPwe4IMwe3w8YDbxF\nlAFtdJhtnk80qW2OR0uI/gmYGo5vmia1MbXpVOCVsH866pBWKH2qiEjX+wLIb2Of/LBfh7SQPnWi\nmY0FHFgJfA/A3Reb2WzgQ6AOuNLd68N5phHlLM8F7nf3xaGKa4BHzOxnwLvAfaH8PuAhM1tKNCnv\ngnTVIa3TWu4iIslpb/rUBUQT4FqyoKSkJFUT42Q3pCF3EZHU+B7NU6c22gZckca2yG4gZQHdzArN\n7C0zW2hmi83sxlCecGUgEZFsUhINK04EFgDbiR692h7eTyzRsKN0sZQNuYdFAPq4e4WZ9QJeA34A\nXA084e6PmNk9wEJ3/3Vr59KQu4h0Ax1e2CTMZh8OfFFSUrKi65okslPKJsWFGYkV4W2v8ONEKwN9\nO5Q/ANxA9OykiEhWCkFcgVxSKqX30MM6vu8B64G5wDJaXhlIREREOiilAT0scDCWaMGA8cDByR5r\nZpebWYmZlZSWlqasjSIiItkgLbPc3X0T0QICx9PyykBNj5np7jF3jw0ZMiQdzRQREemxUjnLfYiZ\nDQyvi4DTgI9oeWUgERER6aBUrhQ3DHgg5MLNAWa7+zNm9iGJVwYSERGRDkrlLPdFwFEJypezM2GA\niIiIdAGtFCciIpIFFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGR\nLKCALiIikgUU0EVERLKAArqIiEgWUEAXERHJAgroIiIiWUABXUREJAsooIuIiGQBBXQREZEsoIAu\nIiKSBRTQRUREsoACuoiISBZQQBcREckCCugiIiJZQAFdREQkCyigi4iIZAEFdBERkSyggC4iIpIF\nFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGRLKCALiIikgUU0EVE\nRLJAygK6mY00sz+Z2YdmttjMfhDK9zCzuWb2afhdnKo2iIiI7C5S2UOvA37k7ocCxwFXmtmhwAzg\nZXcfDbwc3ouIiEgnpCygu/tad38nvN4KfASMAM4CHgi7PQCcnao2iIiI7C7Scg/dzEYBRwF/BYa6\n+9qw6UtgaDraICIiks3yUl2BmfUFHgf+j7tvMbMd29zdzcxbOO5y4PLwtsLMlrRR1QBgczubl8wx\nre3T0ram5Yn2iy9run0wUNZGu9qrO1+fRGWtvU/F9WmpXV1xTLb8DbXUjs7u31P+hl5w98ntPEYk\nfdw9ZT9AL+BF4Oq4siXAsPB6GLCki+qamYpjWtunpW1NyxPtF1+WYP+SFPy36LbXJ5lr1uR6dfn1\n6e7XqDv8DXXkGu1uf0P60U8mf1I5y92A+4CP3P2XcZvmAJeE15cAT3VRlU+n6JjW9mlpW9PyRPs9\n3cb2rtadr0+ismSuYVfrzteoO/wNdaSe3e1vSCRjzD3hiHfnT2x2IjAfeB9oCMX/SnQffTawD7AK\nOM/dN6akET2UmZW4eyzT7eiudH3apmvUOl0fyUYpu4fu7q8B1sLmU1NVb5aYmekGdHO6Pm3TNWqd\nro9knZT10EVERCR9tPSriIhIFlBAFxERyQIK6CIiIllAAb2bM7NDzOweM3vMzP4p0+3prsysj5mV\nmNmZmW5Ld2NmE81sfvg7mpjp9nRHZpZjZjeZ2V1mdknbR4h0PwroGWBm95vZejP7oEn5ZDNbYmZL\nzWwGgLt/5O5XAOcBEzLR3kxozzUKriF6HHK30M7r40AFUAisTndbM6Wd1+gsYG+glt3oGkl2UUDP\njFnALktImlkucDfwdeBQ4FshOx1mNgV4Fnguvc3MqFkkeY3M7DTgQ2B9uhuZQbNI/m9ovrt/nehL\nz41pbmcmzSL5a/QV4A13vxrQSJj0SAroGeDurwJNF9MZDyx19+XuXgM8QtRrwN3nhP8hX5jelmZO\nO6/RRKIUvd8G/tHMsv7vuj3Xx90bF3YqBwrS2MyMauff0Gqi6wNQn75WinSdlCdnkaSNAD6Pe78a\nODbc8zyX6H/Eu1MPPZGE18jdpwGY2aVAWVwA29209Dd0LnAGMBD470w0rBtJeI2AO4C7zOyrwKuZ\naJhIZymgd3PuPg+Yl+Fm9AjuPivTbeiO3P0J4IlMt6M7c/dK4LJMt0OkM7J+aLIHWQOMjHu/dyiT\nnXSNWqfr0zZdI8laCujdx9vAaDPbz8zygQuIMtPJTrpGrdP1aZuukWQtBfQMMLOHgb8AXzGz1WZ2\nmbvXAdOI8sd/BMx298WZbGcm6Rq1TtenbbpGsrtRchYREZEsoB66iIhIFlBAFxERyQIK6CIiIllA\nAV1ERCQLKKCLiIhkAQV0ERGRLKCALt2emb2R6TaIiHR3eg5dREQkC6iHLt2emVWE3xPNbJ6ZPWZm\nH5vZ78zMwrZxZvaGmS00s7fMrJ+ZFZrZb83sfTN718xOCfteamZPmtlcM1tpZtPM7Oqwz5tmtkfY\n7wAze8HMFpjZfDM7OHNXQUSkdcq2Jj3NUcAY4AvgdWCCmb0F/AE4393fNrP+wHbgB4C7++EhGL9k\nZgeF8xwWzlUILAWucfejzOw24GLgdmAmcIW7f2pmxwK/Aial7ZOKiLSDArr0NG+5+2oAM3sPGAVs\nBta6+9sA7r4lbD8RuCuUfWxmq4DGgP4nd98KbDWzzcDTofx94Agz6wucADwaBgEgykkvItItKaBL\nT1Md97qejv8Nx5+nIe59QzhnDrDJ3cd28PwiImmle+iSDZYAw8xsHEC4f54HzAcuDGUHAfuEfdsU\nevkrzOyb4XgzsyNT0XgRka6ggC49nrvXAOcDd5nZQmAu0b3xXwE5ZvY+0T32S929uuUzNXMhcFk4\n52LgrK5tuYhI19FjayIiIllAPXQREZEsoIAuIiKSBRTQRUREsoACuoiISBZQQBcREckCCugiIiJZ\nQAFdREQkCyigi4iIZIH/D4Y/kJDrHZypAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmT6zvdF7k44FFQWJ\nBbtiLzG2mFhiifozRmOMLSaWWGKP0dg1drEQKzZEUVBQEKX3tnW2zOxOfX9/3AvssoUFdrZxPs/D\nszN3bnnvsrvn3vd97zlijEEppZRSHZujrRuglFJKqZ2nAV0ppZTqBDSgK6WUUp2ABnSllFKqE9CA\nrpRSSnUCGtCVUkqpTiClAV1ELheR+SLyo4hcYS/LFZEPRWSx/TUnlW1QSimldgUpC+giMhI4H9gH\nGAMcIyKDgGuBacaYwcA0+71SSimldkIq79CHAV8bY8LGmDjwGXAicBzwtL3O08DxKWyDUkoptUtI\nZUCfDxwgInkiEgCOAnoDXY0x6+11NgBdU9gGpZRSapfgStWOjTE/icgdwAdACJgLJLZax4hIg7ln\nReQC4AKA4cOH7/Xjjz+mqqlKKdUc0tYNUKopKZ0UZ4z5jzFmL2PMRKAMWARsFJHuAPbXwka2/bcx\nZqwxZqzf709lM5VSSqkOL9Wz3LvYX/tgjZ+/ALwFnGOvcg7wZirboJRSSu0KUtblbntNRPKAGHCJ\nMSYoIrcDL4vIb4CVwKkpboNSSinV6aU0oBtjDmhgWQlwSCqPq5RSSu1qNFOcUkop1QloQFdKKaU6\nAQ3oSimlVCegAV0ppZTqBDSgK6WUUp2ABnSllFKqE9CArpRSSnUCGtCVUkqpTkADulJKKdUJaEBX\nSimlOgEN6EoppVQnoAFdKaWU6gQ0oCullFKdgAZ0pZRSqhPQgK6UUkp1AhrQlVJKqU5AA7pSSinV\nCWhAV0oppToBDehKKaVUJ6ABXSmllOoENKArpZRSnYAGdKWUUqoT0ICulFJKdQIa0JVSSqlOQAO6\nUkop1QloQFdKKaU6AQ3oSimlVCegAV0ppZTqBDSgK6WUUp2ABnSllFKqE9CArpRSSnUCrrZugFId\nVaKigmRVFeL14srLa+vmKKV2cXqHrtQOCs2cyZKDD6HwrrtJVFW1dXOUUrs4DehK7aCkHcRd+flE\nohFqQhrUlVJtR7vcldpB6QcfTL9PP6aouJCP7rkNt9fLgeecT27PXjid+qullGpdKb1DF5ErReRH\nEZkvIv8VEZ+I9BeRr0VkiYi8JCKeVLZBqVRxZWcTdTp49da/sH7xz6ya/z0v3XgN1RUVbd00pdQu\nKGUBXUR6Ar8HxhpjRgJO4HTgDuBeY8wgoAz4TaraoFSqla5dgzHJze8j4RDR6uo2bJFSaleV6jF0\nF+AXERcQANYDBwOv2p8/DRyf4jYolRLJRILcHj1x1Ope92dk4vH727BVSqldVcoG+owxa0XkLmAV\nUA18AHwLBI0xcXu1NUDPVLVBqVQKV5Tz9RuvcPzV1/Ptu2/h8fqY8MtzCGRltXXTlFK7oJQFdBHJ\nAY4D+gNB4BXgiO3Y/gLgAoA+ffqkoolK7RQRgWSCnMwsJp93MSYSwenz43A4m9wuHgySrKjAEQjg\nys9vpdYqpTq7VHa5TwKWG2OKjDEx4HVgPJBtd8ED9ALWNrSxMebfxpixxpixBQUFKWymUjsmLTuH\nA48/jei771N09z0sO/wIih96mOQ2xtAr33ufpYcdzupLLiVeWtpKrVVKdXapDOirgHEiEhARAQ4B\nFgCfACfb65wDvJnCNijVYhLBIOE5cwjPmUM8GASsu3SHx0OivByAeHExicrKutvF41SVlhAKlgGQ\nrLECvolEwJhWPAOlVGcmJoV/UETkZuA0IA7MAX6LNWb+IpBrLzvTGBNpaj9jx441s2fPTlk7lWqO\n8jffZN011wLQ447byTruOBKVlSQqKhCnk/B33+Hu2pUNt95Kn8ce29ydXllSzBNXXkggM4szbr0b\nrziIb9iAKy9Pu9w7FmnrBijVlJRmvzDG3AjcuNXiZcA+qTyuUqlQs2jxltcLF5IFJMNhVv3mt+T/\n7ncU3X038ZISSCQw0ejmdZOJBIlojB5DhlFTVUVxWQld+g3AlZG5ZZ1YDBMO48jMtMbmlVJqO2k6\nK6UakKyutrrRHQ5cubmIy0Xu2WcRWbgQgNxzz928bnzjRjx9++DIzITCQjJOOAGp9eiaPzOT3z7w\nOIjw5JUXEY9GOPXG2+g9fJR1rJoaqqZPp+zZZ+l20014Bwxo1XNVSnUOGtCVakBs3TqWnXQSWef+\nluwzzyaQn4kjN5ee/7wXkkmcmdbdtTM7m96P/ouy556nx+23I9nZJH1+nFlZxIuLEZ8PT3o6Hp+f\ncHmQ/N59KVm7mozcLV3tyVCIonv/SXTZMsqee45uN9zQVqetlOrAUjqG3lJ0DF21tvC331K1cgOL\nIv0IVRn2O74r0194khEHTqLXsJG4PFsyFptkkmQohHi9OOzlkaVLWXvllaSN24+8i3+HKzvb2m95\nkGQyiT8zc3O+92QsRvWcOZQ9/zxdrr4aT69erX/Cqjl0LES1a1ptTXUIkXiCwsoaguHotlduAd7B\ng/HtP4HvP9tILJpg3icf8vOXn/PBvx+oV1VNHA6cGRkAxAoLiVeFKH3mGSKLFlP6zDOYWo+xBbKy\nSc/JrVO8xeF2E9h7b3rceWeDwTxZU0NkyRJCM2dunk2vlFJb0y531SEs3FDJ6f+eyfG79+CaI4eS\n5U9dTZ9YYSGRxUvw77YbE04dREVxDcMnHsTan+cz6uDD8PoDAMRLSqj58Udc3bvjys+n+vsfKH3y\nCQL7jiPnjDOonjOHtHH71RlPb4yIIF5vg58lKipYfsKJmFiM/m++iVMz0SmlGqABXXUI364sIxxN\n8PniYq48NHXDRPFgkHV/+APhb2bR5Y9XM+qcc0kmDC6Pk8lXXYfL68XlchMvK2PtVX8gPHMmAH2e\nfoqK994j/PU3hL/+BmdeLr0ffRTJzKQ04WTm3LWsL6/hoKFd6JLhJTvQ/AsScbkI7Lsv0ZUrceZk\np+rUlVIdnAZ01SFMHtOD3ICHMb2zyUtL3d25eDwE9tmX6h/m4Rs9GofTwaZMrr609M3rmXic6u++\n2/w+9OVXZEw6hIopUwComTOXrMmTWRtOcvzD0ykNWUMFt737M5ccNJALJg4ky+9uVptcubn0+Med\nkEjoc+tKqUbpGLrqEPLSvRy3R0/65afhcGx7bpIxhtJQlHA0vs11a3MGAuSedSYDP/wA/4gRja7n\n8PvJO/98a5vsbDKPPop4cfHm93kXnE9IXNzyzoLNwXyThz5ZSvl2zgVw5eRoMFdKNUnv0FWntKIk\nzFUvz2XC4ALOG99vu7q4nVlZNFZeJR4MQiyGIyOD3LPPIvukE0EER3Y2mfn5pB9wAOJ248rLI1hR\nw8xlDedq/2FtOX3y0nbgzJRSqmF6h646nMLKGjaU1xCNJxpd54kvlvPdqiD3T1tMdazx9ZrDJJOA\nNTmt6N5/smTSoUSWLsWZlYW7Rw/c3bsjItZsdmNwpqcjTiemPEjP7IYnxPXK0ZrpSqmWpQFddSiF\nFTWc8NCXHHjXJ2ysaLwEwK/G9WFAfhpn7tsHr6vpcqaNSYbDVH3xBRtuuYVYYSEmFqN67lxMJEJk\n8eI66yaCQZYccSRLDzt886Nl2TVV/HF893r7HdY9g145gR1qk1JKNUa73FWHEk9aY+M1sSQloSi5\naR7SvPV/jAd3yeClC/fD53aQ4Wve5LOtJUIhVv/uYojFcKan0+UPf6D3o/8iunIl3sGDAaiurCAS\nDuNyO/EOGUJsxXJwWNfJ7l492asmzou/zebeaUsoropw+Ihu/Hp8P/LTG35ErSnJpKG6IooB/Olu\nnC69HldKbaEBXXUoAY+TNy7Zn8qaOKVVEVzdMxpcz+kQCjIaDpqxSIRodRi314vH3/idsrjdZB19\nFJWffErGYYcB4O7WDXe3bgBEo1G+n/YBM/77FDnde3Dqo4/gTRhcuTlWG9LTyU6HcfnwaI8sYokk\n2X4P7h0MxNUVUV786zck4kl+ecPeJBOVBLKycTfy/LpSateil/iqQ8kOeChI99Ijy8cefXLqdKcb\nYwiVRygvqiYSjjW4fbQ6zM9ffs6LN/yRr179L9WVFZs/i5eWEisqImlXSnNlZ9PlT39iwDtv4x06\ntN6+amqibFi0AIDghg0YEdxduyDu+j0C2QEPBRm+HQ7mAAaIRxMkYknCFRU8ccUF1FRVbnM7pdSu\nQe/QVYeT10h3dXVllFdum00oGOHEP+5F9wH1M6pFqqv54NH7wRhmv/MGoyYdgT8jk3hZGev+dB3h\nr7+m/6uv4h00EABXE1nZfAE/48++AF9GJgP33g9vWmpnrfvTXfzqlv1IJhN8M+U5ApnZiKP+BUKk\nOk4kHMPpcpCWpXfvSu0qNKCrTsXlcYDQ6Piyw+EgIzePypJiXB4v4rIfZ4vHqfnxR0xNDbE1azYH\n9KZ4XE5yCrow8bxL8HtcKa9j7nQ5Sc9xYoxh3EmnMO6kU0jLqp85rrK4mpf+NouMPB8nX7MXgUwN\n6krtCjSgqzYTDEcRocXysgcyvZxw1Z4kE4aEE1YUh8j0u8mtlVkuLTuH02/5Bz/P/Z6cvgN55ccy\nfn1AHs6cHPq99CKxtWvxDh7S7GO6nA5cztYduRIR0rNzGv3c4XIgDsHtdUKKLzKUUu2HjqGrFpEI\nhYht2Ei8pOFEKlsrroxwxYtzWL8xzMJvNlC6PkSiiefKmysty4s308NLc9cw+aEveHLGchL2c+Sb\nZOYX0HOv8by8sJojRvdCgmUU3nEH4blzkd1Gs2RhNRUl1Y0cof3zBlyc9df9mHz57gQyUpcmVynV\nvmhAVy0iungxSw4+mHXXXEO8rGyb65eFo0QThpKfy/joiQW88vdZ1IS2L01rYyqqY+SmeXn61/sw\nuEsawXCMJYWVFFbUYIxV2KVnjp8/HzOcPrkBQl9+SdmzzxH6fDqz31vFtKd+4r1H5xOubJ1SrS0p\nFIzw+j++48OnFqR8CEAp1b5oQFctIrp2LSSTRFetwiTq3mknqqqIFxfXWZ6X7uXYMd3p1jsDEcju\nGkBECIajLC6sZENFDclk3apq4WicL5YU88inSygNNZ5U5pmvVnD1qz9w41s/smffXB79bBmT7vmc\nyQ/OoLCy/nb+3XfH1a0brrxceg3JRgR6DMnG5d75Xw9jDMHCMN+8s5yqYONtbinVlVEqiqvZsCRI\nMpHc9gZKqU5DNt2xtGdjx441s2fPbutmqCbEy8qIrVqFq2s33N26bl6eqKyk9OlnqJj6Dr0eegjv\ngAGbPzPGEIsmiIbjOJxCINPLN8tLOPXRmeSne3jnsgl0y9qSIrWwsob9b/sYhwhfXLwnOS7BEQjg\nzEiv05YZS4r59ZOz+NW4PkwYlM+zM1fy6cIiHALvXn4AXTJ85NQaVzfJJImSEnC5SPoziEUSOF0O\nfGk7lpCmtppQjP89Mo/1S4IMP6AHB56xW0rvnGuqYqxfGiSQ6SG3ezpu345lyVMN0i4P1a7ppDjV\nIlw5Obhy6k/UMjU1BF96iXhREVXTp28O6JF4glAkTrrXRXqOb/P6aV4XLoeQn+4lvtUdusfp4LKD\nB9HdJ5gXnmHJf56g10MPknHIIXXWG90ri9d+tx8zl5fyt6kLuOfU3emdG2Di4HyenbmKX+7Tu05A\nF4cDV0HBluP4Wu7XwuV1MnxiD2qqovTcI59gOEpOWupmnfvS3fQfU7DtFZVSnY52uauUcmRn0+uR\nh8m/9FKyjj4agFAkzrvzNnDOE7OYvriYmlrFU3ICbl66cBzXHTUMt8NBUWWEhN117E3A2WP7cPTQ\nfKLLlgEQWb683jEDLgel5WGe/GI5y4rDXPDst5w6PJc9c128NGsV2c2sQ94SXC4HmQMzyTiyJ++u\nKcHoTZ5SKkW0y121uqLKGsbf/gnRRJKCdC9vXzKebK8LX8BNJJagLBwlaWDKnDW8MWcdd58yhsE5\nAT57YSFLvyti6H7dOODIAhJFhbi7d8eVm7t53/FgkOArrxJZuBDfxZfx2E+VHNQ3jf7JEAG/j5Lc\nbnTJ8OL3tF7nVCSWoLw6hs/lIN3nwtFAMhjVIejVmGrX9C+LalJ1NEFpaOdne4crIoTt6mguh4PD\nhlvj7IeP6MqKbwuZNXUFwfIaPC4H3bL8rC4Lc+f7i1hcWMV1U+YRiyVZPrcYgIUzNxDzZuIfMaJO\nMAeILllC+ZQpZJ92Kv6KUq7cI4eCyjWkSRKP30vvTE+rBnMAr9tJhjj48f3VfPX60g45e14p1f7p\nGLpqVEV1jBdnreK9+Rv45+l70Cd3x0p+hoIRXr/rO0TghKv2JCfby83HjeC6o4dRU1rDB/d8jzfN\nhWdEFt0T6fTJDdAjy4/X5SAST7JH7xwcbgfjTxnM3I9WMeaQ3rg8DU/2cmRk0P1vt7LuqquIrV2H\np39/ej36L5YddjgSCDDwvXdxdOmyM9+WHVK8torv3l8JQGafdHqNyKszjq+UUjtLA7pqVE08wf3T\nllAViTPtp438enz/5m+ciEO4GMRBsNBNRbGVqKW8KExatndzPvaww8m+xw0grU8at81YypGju9Mn\nN0C3TC+f/uFAiqui9Mzxk57mYdj+3Rm4ZwEen8vKgtYAd48eRBYvIbZ2HQDR5ctJhqvB58OZnd1m\nmdOyCvy4vVbaVn+ejyWFlezdP69N2qKU6pw0oO/CQuURkgmDL+DC3cDM7nSPi/tO351352/g6FHd\nt2/nFWvhXxMAIfd3Cxg2wdo+p1vdAiaBTA9DJvZgxpIieuT4OXBIAV8uLWbWijLO3LcPo3ptKY7i\n9jobDeSbODMycPfqiTM7m0QwiKtLAc7sLAa++z/E6cJd0DYzwNOyvfzypn0JRxP8b9FGjt2jZ5u0\nQynVeemkuF1UuDzCK7dblclOv2Ffcrs3Xiksnkhuf77ypZ/As8dbr89+m3iv8QCNdpUDJJJJSkNR\nbnl7AV6ncNLY3uw3MH/7jguYRIJ4cTGxNWtw9+6Nq6Cg3WRNSySSJIzB49Lnwzug9vFDpFQj9A59\nF2WARDyJMZBMNH1Rt0PFR7qNgv1/b73uOrzJQL6J0+EgPVrN9fEFUFVNbtchxGNRXO7Gx5qTySTJ\nhMHl3rJ/cTpxd+2Ku2vXRrdrC8lEklhNAo9ff+1U2xKRycBwY8ztbd0W1XL0Dn0XZZKGcGWURDyJ\nN+DGu1WQSdbUkAgGweHAlZuLuHYgCCXt3OyOLduGo3GqInE8TgfZgfqBOrZ+PavOv4CuDz/I8p/m\nsWLBPPY4YjLdBg7C5ambkKW6MsqPX6yjbx8Hmble3AV5OHakna3AJA0bl1fw5RtLmXDKILr0zWzr\nJqnt1y7v0MXqfhJjjOb63cXpY2u7KHEIaVleMvP89YI5QLy4mCWTDmXZUUcTL21eBbV6HK46wRzg\n+9VBxt/+MXe+v5CK6lj9dvl8dL3mj1SUlfLBE/9i0cwZvHrrnwmXlwNQEalgY2gjwZogC75YS/cu\nhso/X86K4yYT31jYZHMSVVVEV6wgunoNyerWraYWjyX57oOVrF8SZO6Hqzcny1FqR4hIPxFZKCLP\nAPOBs0TkKxH5TkReEZF0e72jRORnEflWRO4XkXfs5eeKyIO19vWxiPwgItNEpI+9/Cl7my9FZJmI\nnNxW56uaRwO6apgxkExaBVVasBfny6UlxBKGLxYXE2mgXKorJwf/3nsTTWypvJaIx4mHQiQqq/ho\n1UdMenUSz/30HL58Fz6fg8jSpSQrKoiXlDR57HhhEUuPOJKlRxxh9T5sQ2FFDe/OW09xAwVdtpfb\n62T8SYMYdWAvxh0/AGcr11BXndJg4GHgF8BvgEnGmD2B2cD/iYgPeBQ40hizF9DYjNAHgKeNMaOB\n54H7a33WHZgAHANo93w71z77J1WrStbUEFm6lMiiRaT/4kBcuTk4c3MZ+OEH4HAQ93qIlQfxpWfg\ncO7cZK5z9u9Hjywf4/rnkOeKAFYe95pYAsFKwuL0+egyYDDDJx7E6h/nsfsRx2IWL8bk5bGqYhUA\nKytWkTUijWVfFDL42ReRqnKke9Mzx8Uh1mNrDgdJt4tlwWV8s+EbDut7GLn+uglqwtE4N771I+/O\n38CZ4/pwy+SROBw71+Oa1SXAxNOH7NQ+lKplpTFmpogcAwwHZtiTPz3AV8BQYJkxZlN+5P8CFzSw\nn/2AE+3XzwJ31vpsit2Vv0BE2tekFFVPygK6iOwGvFRr0QDgBuAZe3k/YAVwqjFm2wW0VYsLlweJ\nVIdxudyU3ncf4c+n0/uxf+Pec08i4RDzZ3zKoq9nEK2uxpuWxvADDmLo+F/gDQTw+HcsyUx+updf\nDozC8xNhyBFw0HWUxL3c8+EiMnwuLpg4kNw0D4HsbA4+9yJiNdU4IhE8Hi+ujEzOHnE2h/Y9nGgk\nnQuen88F+/Yj4vTwUXGSE/s5GN3EsZ0FBQz86EPE4aDcb7j8g8tZUbECr9PLCYNPqLOu2+lg0rCu\nfLm0hIOHdt3pYK5UCoTsrwJ8aIz5Ze0PRWT3FjhG7e4p/SVo51IW0I0xC4HdAUTECawF3gCuBaYZ\nY24XkWvt99ekqh2qYaHyIG/edSvrF/2Mxx/g9GtvhkgEGT6MGa88z5z33q7T1V5ZUsTnzz/J9P8+\nzX4n/5I9jphMLFJDqKyErC7dMcbLqgUlFPTOIKvA3/Ss9tVfQ9lyWPUVJCJU1jh5/mvrzvvMcX3J\ntTOoedPS8KbVfZwuGUsjU/pQHg1TGopxxZR5mz/77S8G0BRnWhpOe3/+WIiTh5zMW0vfYq+ue9Vb\n1+10cPjIbhwwOJ90r3ZkqXZtJvCQiAwyxiwRkTSgJ7AQGCAi/YwxK4DTGtn+S+B0rLvzXwHTW6HN\nKgVa6y/VIcBSY8xKETkOONBe/jTwKRrQW11NVSXrF/0MQLQ6zPyZ09nvwQf49Nn/8ONn0xrdziST\nfPny8/QZOYb3H7mPsvVrOeGaG1m/PJu5H67G4RTOunU/0psK6LsdCee8DXmDIK2ATKL84bAhZPjc\nTQbPYDjKH1/7no9/LuI/Jw9jylkjOOSxuVTHEvzfoUPI9DW/ilqaO41ThpzCMQOOIcdXv+wrYJV2\n1WCu2jljTJGInAv8V0Q2PQpyvTFmkYhcDLwnIiFgViO7uAx4UkSuBoqAX6e80SolWuuv1elY4zcA\nXY0x6+3XGwAdl2kDHr8fp9tNImbNNO/SfyAVJcVNBvPaNi5dQkHfflQWF5GR34WVC8LWB82ZPxfI\ng/4TN7/NTfNwyUGDmpX8JW4/Mx+LxvAvnM/7V0zE6RDSfS4ytgroiYoKEhUVOHw+XPn1E9QE3AEC\n7h0bOlCqLdl33CNrvf8Y2LuBVT8xxgy1H217CGvCHMaYp4Cn7NcrgYMbOMa5W71Pb5HGq5RJ+XPo\nIuIB1gEjjDEbRSRojMmu9XmZMabeLZKIXIA9gaNPnz57rVy5MqXt3NXEY1FKVq9izvvv0H3wUAaN\n3YepD9zN6vnfN2t7jz/Asf/3J/J69cGfkUG0GpbOKaRrv0xyugVwN3JnW1wVYXlxiAH5aZvzuW+P\norIqqopKcXz7Nd3GjcXbv/H88lVffsnq836Db8Rwsh5/msVlEbpk+uiZ7dNMbWpHdLgxZBG5EjgH\na6LcHOB8Y0y4bVulUqU1np05EvjOGLPRfr9RRLoD2F8bfHjYGPNvY8xYY8zYgjbKv92Zudweug4Y\nxGEX/p4xk44gEU/UC+Yut4c+o8aQ1bVbve2j1WHeuP1mxF4vkOlh1C960aVvZqPBvDqa4G9TF3DK\nv77ioU+WkEhu/7PY+dlp9M7x0+OQA/H07t3kug6PNRbvzC9gVWWU0/49k6Pum04wXP/5d6U6I2PM\nvcaY3Y0xw40xv9Jg3rm1RkD/JVu62wHewrpixP76Ziu0QTXC4bB+BBKxujW6nS4XR974F6qO7Mfe\nV11E7zF71Ns2mYiTiMfrLW+MyymM6ZWNCIzulU0sHGfBjHV89uJCghvDmOS2e4tEBAkEcOVtO3ud\nd7fdGPTxNHr87VYKMv3kpnkY0zsLp85YV0p1QikdQ7dnWx4KXFhr8e3AyyLyG2AlcGoq26Caaavx\n64K+A5gb+ol75t9Pj7Qe3DbpalZ/P6eBzZofHN1OByfs2YujRnUn3eti1ffFfPKsNTFvyexCTv/L\nPqRlNd0NH1m+nMI77iTv/N/iHzOmyaDuzMjAmZEBQLek4f0rDsDpEHLTtr+rXyml2ruUBnRjTAjI\n22pZCdasd9WOuL0+PP4A0WqrR668aCOH5I1iaO5QDu1xMGVL6s9hGLjXPiBQVVrCt+++Sf8xe9F9\n8FDc3sYDZpbfDX5r8lrp+tDm5TVVMZLbuEM3xlDy+ONUffopifIgvR55BFd2dpPbbOJ0CAUZvmat\nq5RSHZHmn1QA+NIzGHPokZvfV1eUM+uR/3BVxln0W+Dg+zfqjox0HTCIcSf9kg///RDL5sxm0Vdf\n8NOMz4hFmp8mdfiEnqTnWMF/ryP74tlGrXMRIf+CC8g49FC6Xnvt5rtvpZRSWm1N1VJRVMiTV/2O\neDOC8qTfXMy8Tz6gdO0afvnXu/CGQoTemEL6hAkE9tyzWcE2GYkQDtaQjMZwp/nw5zbvqZhkTQ3i\n9babGudql7HL/cCJyJfGmP3buh2qefQOXW2Wlp3DSdfdgtPddIIWj99P75FjcDhdxCI1JMtK2XD+\nhQSffY41F15EvKi4we0i8QRFlRHCUWsiXaK8nDWTDmDtoQcQfvu1ZrfT4fNpMFcqhUTEBaDBvGPR\ngL6LipeWElu7lnitqmNOt5tuAwdz1u330X/3sfUmyonDweB9x3PWHfeT1bUbR116Fd0H74bT5SYZ\n2jIengyH2Fo8keSrpSWc/K8vmfrDesLROOJ04t1tN3A68Y8clbqTVaoN9bt26hn9rp26ot+1U5P2\n1zNaYr8iMsUui/qjnbcDEakSkX/Yyz4SkX1E5FO7/Olkex2nvc4su2TqhfbyA0Vkuoi8BSzYtL9a\nx7tGROaJyPcicru97Hx7P9+/F37xAAAgAElEQVSLyGsiopma2pB2ue+CEuEwhXfdRfCF/9Llj38k\n99xzEEfda7uaUBXRcJj1SxYSCYfwp2fSbdAQPH4/3sCW/OrhinIcSUNi0SKK7ruftHHjyDnzTFw5\ndSerVVTHuPC5b/lqaQkDC9J48YJxFGT4iJeUYBIJnOnpOALb/7fAxOPES0uJrliBu2tXnNnZOLOy\nduwbo1TTtrtbyA7ejwG1f7jDwPkrbj/6hZ1qjEiuMaZURPxYaV1/ARQDRxlj3hWRN4A04GisamxP\nG2N2t4N/F2PMrXaq2BnAKUBfYCowclOFNhGpMsaki8iRwF+wSrSGax07z57ojIjcCmw0xjywM+el\ndpwmqt4VJZPEN1r5fGIbNkAyCVsFdF9aOr60dDILujS5q0CmFTzNXnvR++GHEK8Ph6/uLHdjDM5I\nFfdNHsg7P+cxtFeONdsdcOXl1dvn9oiuXs2Kk0/Z3ENQ8H9XknPmmTh34OJAqRT4O3WDOfb7vwM7\nFdCB34vIpjKBvbHqo0eB9+xl84CIMSYmIvOwKlwCHAaMFpGT7fdZtbb9pla51domAU9uSkxjjCm1\nl4+0A3k2kA68v5PnpHaCBvRdkDM9ne633Ezsogtx9+y5zQQtzSFOZ4N3xpFwiJXzvueL/z5NJBxi\nxIGTGLP7CS2SejURDlP0wIN1uvuLH3iQrOOO04Cu2os+27m8WUTkQKwgu599x/wp4ANiZku3axK7\n/KkxJrlpXByrp+EyY8z7Deyz/nhZ054CjjfGfG8XiDlwe89FtRwdQ99FufLy8I8ahSs3N6XHKVu/\njrfv+Ttl69cSLg8y681X+fad14lvlZluhySTmFDdvz8mHq9T9lWpNrZqO5c3VxZQZgfzocC47dj2\nfeB3IuIGEJEhdhKwpnwI/HrTGLmIbPrDkQGst/f1q+06A9XiNKCrlEkm4sx9f2q95fM/+ZBIqKqB\nLbaPMz2d/IsvrjNckHXccTs0Fq9UilyHNWZeW9hevjPeA1wi8hNW9s2Z27Ht41iT3r4TkfnAo2yj\nt9YY8x5W2u7ZIjIX+IP90V+Ar7HG4X/erjNQLU4nxe3CknFrpnlLPAJWGoqyujRM9ywfXTKtjGzJ\nZJLpLzzF7Ldfr7NudrcenH7zHaRlN1yHfHskQiHiRUVUfTQN79Dd8A0fvl29DomqKkxNDc6cHMSp\nFdhUk3boF8WeGPd3rG72VcB1OzshTqmGaEDfRcU2bqTo3nvxjR5D1tFH7fTM8Ec+Xcod7/3MoC7p\nvHj+OPIzrIlxFUWFPHXVxcQiNZvXPeaKaxiy7/h6M+tbWyIUouy55yl/4w16PfJwk6VYlWIXTCyj\nOhadFNfJJYJBEpWVOPwBXPnWjHKTSFD0wAOUT3mT8ilvkj5h/HYF9ERFBYmqKhwe7+Z9ZvqsH6V0\nr6vO4+tpubmcc/dDzHnvHcLlQfY4/BhyevTa6WCeiCeoCcVxuh34Ak0nwmmMqa6m/K23iK5YQfV3\nczSgK6U6NA3onVzlR9NYf/31pI3fnx53340rOxtxOgnsuRflr76GMzsb8W1f0ZKq6V+w7qqr8O89\nll733Y8rN4ejRndnwuB8Ah4neelbHltzOl1kFXRl4q9+jUkmcbbAjHpjDIUrK/ng8R/ptVsO+580\nCH+GZ7v348zNpdfDD1E9Zw7pEyfudLuUUqotaUDv5JI11dbX6po6s78zDjmYwEcfIh4vrrztm+ke\nW2VN0I2vWw/JhLX/pMHpENzOhu+8HQ5HvWfdd1Q8muC791ZSVRbh55kb2PvY/vh3YD/icODt2xdv\n374t0i6llGpLGtA7ucyjjyZtv/1xZmXiytkyCc2ZldW8bvZIFUQqwemBNKt7Pfu0U/GNGol34ECc\neXlUReLc8d7PvDx7DXedPJqTx/ZO1ekA4PI42eOwvhSurKTnbtm4PTqZTSmlNKB3cq6cnDqBvLli\nkQgOpxPn2u/g2cmw+1lw+N/Al4krN5f0CRO2rGwMNTHrTj1sf00lEaFrvwxO/fPeOF0OfGk7Noau\nlFKdiQb0ziBWA7EQeLPAufP/peHyIJ8+8x+6DhjIiJF98BkDpUshGW9w/XSfmxuOHcFVh+1Gpq91\ngqvT7SQtS+/MlVJqE00s007FS0uJFxVZmc+aUlUI026B506Grx+BcMlOHzu4cQM/ffEJnz7zOPGM\n3nDRDDjlKQg0Ptaen+6lb14aOWnbPzlNKdX67Opq+9d6/1St/O4tfazHRWR4KvatttA79HYoXlLC\nmksvJbJ4Cf1ee7XxSVuRkBXM5zxrvV/3HXgzYM9z6pU+3R7ZXbsz9pgT6dJ/AG5fAHJH7vC+GhIJ\nh4iEQjjd7iaTy8RLSih7/gV8w4YR2HcfnJmZLdoOpVrFTVn1EstwU3l7SCxzIFAFfJnqAxljfpvq\nYyi9Q2+XTDxO9bz5JKuqiC7fUviopqqS6sqKLStGq2DZJ3U3/nkqxLbONNl84fJyxCFM/NW5DJtw\nYJ1SqS2laOVyHrv0PN6+93bCFeWNrlc+dSrFDz/MmssuI1m186lilWp1VjB/DKs0qdhfH7OX7zAR\nSRORqXYd8vkicpqIHCIic+ya5U/YpVERkRUikm+/HmvXR+8HXARcKSJzReQAe9cTReRLu356o3fr\nIpIuItNE5Dv7eMc11i57+aciMtZ+/YiIzLZrtt+8M98HVZcG9HbImZlJvxf/S/c778A/ZgwAofIg\n7z54D2/e9TeqSu1udU86DDio7sZDjwZ33VzmZTVl/FD0A8Xh4iaPGwqW8cYdNzP1/rsI175waGHJ\nhDVxLhGPNbmef/RocDqtinBunfimOqSmyqfujCOAdcaYMcaYkVi53Z8CTjPGjMLqff1dYxsbY1YA\n/wLuNcbsboyZbn/UHZgAHIOVI74xNcAJxpg9gYOAu8XKId1Qu7b2Z2PMWGA08AsRGd3ck1ZN0y73\ndsjh9+MfORL/yC1d3cWrVrBsziwAln73DWMmHQneNDjkBvBmwqqvYORJMOzYet3tn635jL/M+Au7\nF+zO/QffT46v4W7uWCTChqWLQITktsbud0KX/gP57QP/weXxbK6n3hDfbrsxaNpH4HTiKihIWXuU\nSqGUlE/FqnV+t4jcAbwDVADLjTGL7M+fBi4B/rmd+51ijEkCC0SkaxPrCfB3EZmIVaa1J9B163bV\nulCo7VQRuQAr/nQHhgM/bGc7VQM0oHcQeT17k5FfQDwSoc+IMZuXR/xZOA+5AVc0BL6GZ7n3z+yP\nS1wMzR2K29H4na4vLY2T/vxXPH4/3hRWLPOlpeNLS9/meg6/H4d/R1LGKNVurMLqZm9o+Q4zxiwS\nkT2Bo4BbgY+bWD3Olt7YbaWFjNR63dREnF8BBcBexpiYiKwAfFu3S0SmGWNu2bxDkf5Yldr2NsaU\nichTzWiTaiYN6B1Eem4ev/rbPQD47clhJdUl/PPbfzIsbxjHDDiGzEYeWRuSO4QPTv4At8NNuqfx\nQOpLz6Df6D3qLU8kkhSHrPrl+elenI76v+fx4mIqP/mUtPH74+nRY7vPT6lO6jqsMfTaV8g7XT5V\nRHoApcaY50QkCFwK9BORQcaYJcBZwGf26iuAvYB3gZNq7aYS2NGZpllAoR3MD8K+aGmgXVtPhssE\nQkC53QNwJPDpDrZBbUUDegey9YzwFRUrmLJ0ClOWTmFS30lkNvK76Xf58btq3elGqiAeAYfT6q7f\nRkrW4lCUQ+/5DKdDeO+KiXTNrHtBbRIJiu5/gODLL+PfYw96PfzQDiWzUarTuan8BW7Kgpaf5T4K\n+IeIJIEY1nh5FvCKiLiAWVhj5AA3A/8Rkb9SN3i+DbxqT2i7bDuP/zzwtojMA2azpRZ6Q+3azBjz\nvYjMsddfjVVHXbUQLZ/aUSUTJKo2UFVTzopYkP4FI8n0bONiu6oQSpbClw9A5Tpw+2HkybDbUVR7\nAswtXcDcwrmcNvQ0cn1bnjnfWB5m0bIVuJwwpF8/8jLrd8dXfvwxa6+4kvxLLib37LO1q1x1Rlo+\nVbVrGtA7qsoN8PA4qCnHnP0W0v+Axtc1BsqWw7MnWl+35vRQdOlM3lzyIRO6jCPNl0nvrgOsz6Ih\nkiu/wvHu1ZCMYw65CRl8KPjqXjwkwmGSoRAOr1efF1edlQZ01a7pY2sdVbgEqsvAJJEVXzS9bsU6\n+M9hDQdzgEQU/4Z57BsdzNQ/Xs/SDz4mGqmxPqspx/Hf06B0GQRXIa+d12A2OmcggLugQIO5Up2I\niIyyn1Ov/e/rtm6XapiOoXdUGd3gF9dagXbseY2vF6+BL+6FUFGTu0v/4TVqvMcAUFFYhLGfFSdU\nVD+He8kSyO1fZ1EykaBswzpWL5jHkH32J5CVvd2npJRqX4wx84Dd27odqnk0oHdUgTyYeDWYOLjq\nP/URCpbx9ZSXGbLP/nSrqdryHx3Igy7DoHiRNaa+ycL/MeL40+l/+z34c7tsyRCX3hV82VATBCAx\nYBI1eeNJFFfjTXPh9VuPwVVXVvDGHTdTvnEDJpFgjyOOTeHJK6WU2pp2uXdkTleDwRxg6XezmPPu\n2/zvwbuJDDgSgMghtxH89Rf8fPBfWX3GiyR777tlg2ScwOtnkD/vQdIyanWbBwrg/I9h1CkwbDI1\nxzzNC3+dzbPXf0XhysrNq7k8HoZNOJCM/AJ6j9DET0op1dr0Dr2T6jd6D/qO2ZNh+03AvWYa9B3P\nSs9I3r7sQnY/djI/DQ5z+oF/JP/Zk+puGAuBSbD5Ws/phLyBcOwDgCFZ6SBabXXBVxbXbN7MG0hj\nr6NPYMxhR+PP0HF0pZRqbRrQO6nM/AKOveIanPEqXPecAkOPoXTNGjCGirXryR3Zv+H65l1HgbOB\nbHIe6zE0byDOCVftSXlRNf1G5dVZxZeWBrR8MRellFLbpgG9E/MG0iAcgb77w+IPGH3a7+gz6k48\nORkkk2Xkv3Fx3Q3EAaOaLofs8bvoMTibHoN10ptSHYGI3ARUGWPuSsG+VwBjjTFNV35qIyJSgJXr\n3gP8fuvc8iLyOHCPMWZBW7SvpaU0oItINvA4MBIwwHnAQuAloB9WSsJTjTFlqWxHRxMKlhEJhfCm\npTVZL7xZArkw6Wb4z6EEXjiaQHo38OdA+Wqr/Gpto0626qkrpVrMqKdH1auHPu+cee2hHnqbEhGX\nMSZ1VaAshwDzGqrHLiLOzlanPdWT4u4D3jPGDAXGAD8B1wLTjDGDgWn2e2ULBct46aZrePL/LuK1\nv99AKNjwtU4sGaPZSYG6DIPJD1pV2Ko2QNFP9YN5vwPgsL9bBV6UUi3CDub16qHby3dYI/XQ69U9\nr7XJGBH5SkQWi8j5Tey3u4h8bj9vPn9TnfRt1DC/rFZd9KH2+vvYx5tj11ffzV5+roi8JSIfA9Oa\nqKveT0R+EpHH7GN+ICKNpp8UkfNFZJb9/XhNRAIisjtwJ3CcfT5+EakSkbtF5Htgv63qtB9ht+N7\nEZnW1Hm0VykL6CKSBUwE/gNgjIkaY4LAcVil/bC/Hp+qNnREsUiEsvXrAChauZxEA2VMi8JF3Pzl\nzUxfO53qePW2d+rNgBEnwEUzYPgJ4KjVMdNlOJzylPUvXUuUKtXCWrMeelNGAwcD+wE32EVUGnIG\n8L4xZnesm7C59vKmapgX23XRH8GqpAZWrvYDjDF7ADdQ93z3BE42xvyCxuuqAwwGHjLGjACC1C0s\ns7XXjTF7G2M23Tj+xhgz1z72S3bN92qsST5f29+3zRm57K75x4CT7H2c0ozzaHdS2eXeHygCnhSR\nMcC3wOVAV2PMenudDVg1dJXN4/czaJ/9WfLNl4w86DDcXm+9db5a/xVvLn2TGetm8Moxr9QtvNIY\nbzp0HQHHPQBH/B0SURAnuH2QpoFcqRRplXroxpjpW+Jgg960A1q1iHwC7ANMaWC9WcATIuLGqo2+\nKaA3VcP8dfvrt8CJ9uss4GkRGYw13Fp7pu2HxphS+3VjddXBqu++6fjfYg3TNmakiNwKZAPpwPuN\nrJcAXmtg+Tjgc2PMcoBa7WvqPNqdVAZ0F9aV2GXGmK9F5D626l43xhgRabDf2P7huQCgT5+d/dnv\nOAKZWRx2waUcct5FOF1u/Bn1x7T3674fh/c9nMP7H07AvZ11y70ZHXKcPJFMkDAJPE5Pyo5RUl3C\nmso19MnsQ45Pq8WpFtEq9dDtLuKm6p5v/Xe2wb+7xpjP7eB6NPCUiNwDTKfpGuabaqgn2BJT/gp8\nYow5QUT6UbfKW6jW6wbrqm+13037burO5SngeLua27nAgY2sV2OMSTSxn601dR7tTirH0NcAa4wx\nm/L+vooV4DeKSHewxmuAwoY2Nsb82xgz1hgztqBg17qD9Gdkkp6T22AwBygIFHDrhFs5uPfBzQro\nxhgSiQSJZIJ1VeuYsXYGpTWl29yuvSirKeOR7x/h+hnXsz60ftsb7ICqaBU3fnkjZ757Ji/+/GJK\njqF2Sddh1T+vraXqoYeNMc8B/8D627oCq+451O+ePk5EfCKShxXsZjWy377ARmPMY1gTmvek4Rrm\n25IFrLVfn7uN9erVVd8BGcB6u2fhVzuw/Uxgooj0BxCRTeUmm3se7ULKAroxZgOwutYkgkOABcBb\nwDn2snOAN1PVhs7M5/LhdDi3uV60uprFX8/go8cfIlRexhlTz+Cijy7iX3P/RSwRa4WW7rzZG2bz\n6A+P8u7yd/nLF3+hIlLR4sdwOpwMzh4MwKCcQS2+f7Vrsmeznw+sxLorXgmc3wKz3EcB34jIXOBG\n4Fasuuf3ichsrDva2n4APsEKXH81xqxrZL8HAptqlp8G3GeM+R7YVMP8BZpXw/xO4DZ7P031BD8P\njLXrqp/Nlrrq2+svwNd227Z7H8aYIqwe4dftCXMv2R819zzahZSWT7VnGT6O9QzgMuDXWBcRL2ON\nIa3EemytydvFXb18aihYhjgcBDKbPwO9MFzIF2u/YFy3ffn47/9g47IlTL76em7ceD/ziudx5rAz\n+b+x/4fb0a6HhAD4fM3nXDLtEgB+0esX3HbAbWR4Wn7YIFgTJJqMEnAFSPekt/j+VYen5VNVu6b1\n0Nu5ypJiXvnrn/GlZ3DcH/7crOfSQ7EQf5r+Jz5Z/QljCsbwt5HXs+Ct/zHxzF9T4aphVeUqhuQM\n6TDjxMGaIJ+v+ZyVFSs5fejpFAR2rSEY1W5oQFftWrO6EOwp/edjzTLcvI0xpom6naolFK9eSdl6\nawgnWl3drIDuEhej8kfxyepPGJE3grxuPTn0wktxuT2kAd3Tu6e41S0r25fN5EGT27oZSnUaIjIK\neHarxRFjzL4Nrd9eiMhDwPitFt9njHmyLdrT3jR3TOBNrJmOH1F/bEalUNf+Axlz6JEEsrLxpjUv\nT7rX5WVSn0ns020f0txp+Jx+XM52P/yjlGolHbXOuTHmkrZuQ3vW3L/yAWPMNSltiWpQICubg869\nABEHDue2J8EBRBNRHv7+Yd5b8R77dtuXew+6lwxnx3tUTSmlVPM1N6C/IyJHGWP+l9LWqAY5XXUn\nrkUSEdZUrmFx2WL27b5vvbFwj9PDlXtdSYG/gFN3O5V0t07wUkqpzq5Zk+JEpBIrZV4EiGFNDjHG\nmFYpfL0rT4prSGG4kKNeP4pIIsKle1zKhaMvbOsmKbUr0Elxql1r1h26MUb7a9sRQcjyZlEYLqR7\noGNNcFNKKZUazZ4pJSI5WMnyN6f8M8Z8nopGqabl+/N58egXqY5Xk+XNImmSlFSXkDAJMj2Z258O\nViml2hm7/PYZxpiHd2DbFbRQnXYRuQUrz/tHO7uvVGvuY2u/xSqs0gur+s444Cus6j2qlYlInWex\ni8JFnPL2KZRFynh98usMzB7Yhq1TStX209Bh9eqhD/v5pzarh95KdchbQjZwMVAvoLfmORhjbmiN\n47SE5qZ+vRzYG1hpjDkI2AOrnJ1qBwyGcDxM0iTrlFMNlwf5/PknWTJrJpHqrdNJK6VSzQ7m9eqh\n28t3ioicKSLf2LW+HxURp4hU1fr8ZLuQCiLylIj8S0S+Bu4UkVwRmSIiP4jIzE3lUEXkJhF5Vhqo\nnS4iV9s1x3+Q+jXRt27b2fZ634vIs/ayArtW+Sz73/hax3zCrk2+TER+b+/mdmCgfX7/EJEDRWS6\niLyFlUYc+xy+Fatm+gXb8b2rt539/XtKrDrw80Tkylrfu5Pt1zfYbZ8vIv+uVeq1XWhul3uNMaZG\nRBARrzHmZ2nnhd53JTneHN487k3C8XCdO/c1P/3IrLdeAxEufPgpvP627YpPJBObi8Lk+fNwSCpr\nAynVLjRVD32H79JFZBhWrvXxdmGTh9l2UZJewP7GmISIPADMMcYcLyIHA8+w5bn00Vi9sGnAHBGZ\nCozEGnLdB+vC5C0RmdjQsKuIjACut49VXKvQyX3AvcaYL0SkD1aJ02H2Z0Ox6qFnAAtF5BGs6pwj\n7drsiMiBWMViRm4qcwqcZ4wpFRE/MEtEXjPGlDTjW1hvO6zEaT3t+vKbuvy39qAx5hb782eBY4C3\nm3G8VtHcgL7GPrkpwIciUoaVh121stLqUmZvnM3wvOH0SO+BQxy4ne462d+qIjEw0G3QYLr0G0C3\ngUNwuNs+Z3tpTSknvnUiDnHw6rGvagpXtStIVT30Q7Aqq82ybxL9NFK5spZXapUOnYBdkc0Y87GI\n5InIpqeWGqqdPgE4DKtIC1g1xwcDDc2jOtg+VrG9/021OiYBw2vd1GaKyKZnaqcaYyJAREQK2VIT\nfWvf1ArmAL8XkRPs173tNjUnoDe03UJggH2xMxX4oIHtDhKRP2JdlOUCP9LRAroxZtOJ32T/B2cB\n76WsVapRby97m7tm30WvjF48e+Sz5Pvz63xeUhXhb1N/IppIcuvxIznpultwut14A2mEyoNsWLKI\nrgMGkZ6T28gRUidhElRGKxGExHaVJFaqw0pJPXSsu+SnjTF/qrNQ5Kpab7euiR6ieRqqnS7AbcaY\nR7erlXU5gHHGmJraC+0Av3Xt88Zi0+ZzsO/YJwH7GWPCIvIp9c+5nsa2s2u9jwEOBy4CTgXOq7Wd\nD2s8f6wxZrWI3NSc47WmZvd5isie9tjGaKw659HUNUs1ZmT+SFziYkzBmAYrpQXDMV6fs5Z3fljP\numC1lTI2kEYiFmP6C08x5c5beP+Rf1ITqmpg76mV5c1i6olTeefEd8j2NtSbpVSnk5J66MA04GQR\n6QJW/W6xa5mLyDARcQAnNLH9dOwuejvAFRtjNtUlbqh2+vvAeZvuqEWk56ZjN+Bj4BR7+9q1xT8A\nLtu0kljVOJtSidUF35gsoMwOykOxhgmao8HtRCQfcBhjXsMaMthzq+02Be9i+/twcjOP12qaO8v9\nBuAU4HV70ZMi8oox5taUtUw1aHjecD44+QNcDhdZ3vrlVLMDbk7dqxfRRJKumVsuHsXhoOuAQfz4\n6Ud06TcAh6v1c7v7XX56pvds9eMq1VaG/fzTCz8NHQYtPMvdGLNARK4HPrCDdwy4BGvc+R2gCJiN\n1TXekJuAJ0TkB6wLjHNqfbapdno+W2qnr7PH7b+y76irgDNpoJvfGPOjiPwN+ExEEljd9OcCvwce\nso/pwuquv6iJcywRkRkiMh94F6sbvLb3gItE5Ces7vKZje2rmdv1xIptm2506/R+GGOCIvIYMB/Y\ngHWh0640N1PcQmDMpq4SeyLBXGNMq0yM00xx2yccjWMMpHnrBu2KihJC4UqWh1bSq6A/fTJ3dhhP\nqV1Ku5rRnAp2N3KVMeautm6L2n7NvU1bh9XdsGnswwusTUmL1E4LeBr+b62Qao58/1gAxnYdyx0T\n76Cspow8f169sXillFIdS3MDejnwo4h8iDVB4lDgGxG5H8AY8/umNlbtg9fpJdOTSUW0gqG5Q/lu\n43dc/fnVDM0dyqOHPoogfLPhG75e/zXHDzqeAVkDSPdoYReldhXGmJuau649Rj6tgY8OaeajYynV\n3tuXCs0N6G/Y/zb5tOWbolItx5fDG8e9QTASJM+Xx33f3gdAOBZGEF5d9Cr3z7kfgFcWvcILR7/A\nqPxRbdlkpVQ7ZQfFdltTvb23LxWa+9ja05tei5XTvbcx5oeUtUoRS8Qoj5bjd/lJc6e1yD5dDhdd\nAl3oErAmp16+1+Uc1v8wBmUPImmSvLPsnTrrT1kyRQO6Ukp1EM16bM1OyZdpP37wHfCYiNyT2qbt\n2n4q/Ymz3j2Llxa+RCjW3MdHt0+eP48JPSfQLa0bAVeA0fmj63w+rntznwJRSinV1pr7HHqW/Yzi\nicAzxph9sR7MVymQTCZ5eeHLrKlcw/M/PU91rHrbG+0kv9vP5XtdzgmDTmBQ9iCu2PMKxnYdm/Lj\nKqWUahnNHUN3iUh3rMw5f05hexTgcDi4ePeLiSVjnDT4JDI8rVOOPt+fz5/2+RPheJgsbxYuR+s/\nq66UahkiMhkYboy5vYHPqowx9Wa8ilXM5R1jzKt2BrU/GGNa/ZlhO+lMD2PM/1J8nOuMMX+3X/fD\nOveRO7nPAqxcAB7g98aY6Vt9/jhwjzFmwc4cpyHN/Yt9C1amoBnGmFkiMgBY3NKNUVv0SO/BreNv\nxe1MTQ72eCJOMBrk/9u78zg5qzrf459vutPZV5YQlhhGUGRHirDLKkZHVlnlDssgXBSuC86doDNX\nEPVeFB0WhRlBmMCorIIsshg2ZVAgDSSEsAsBAgkkhCyddJbu/t0/ntOk0unqru6u6uqufN+vV726\n6jzLOf3Q5FfnPOc5vxrVMGbwmI/KhwwcwpCBQ8pSp5n1noi4C7ir0u3opl2BHFCWgJ6ypIlsxb7/\nW+LTHwLMioivtFNvTXvlpVLUkHtE3BoRO0fEV9Pn1yPiS+VqlGXKFcwB3mp4i8PvOJwpj035KAOa\nmZXelWc//OUrz354zpVnP9ySfpYidepESS+l1J6vSPqNpEPTymqvSpok6TRJv0j7b60sJeosST/M\nO48k/ULSy5IeBNpdzhAu74kAACAASURBVFXSYen4ZyTdmpdUpb19d5f0J2XpSR9Io7tIOlNZ6tGZ\nytKoDk3lxylLRzpT0p8l1ZF1Ik9Qljr1hAL1FEq7iqTz0jmfl/TNvGv2sqQbyFZ7uxYYkur4TTq0\nRtI1ytKq/jEtolbo91zv90kjCz8hWz53hqQhkhok/UzSTGDv1N5cOsfkdE1nSnoolU1K1/pZSX9R\nFzKbFjsp7hOSHkpL8CFpZ2XLDlo/9cqiV2hY08D0+dNpbimcKCV/JcHFKxc7+Jt1QQre6+VDL0VQ\nB7YBfkaWenQ74MtkWdH+ifXXir8c+PeI2AmYl1d+NPBJYHvgFGCftpUoW+P8X4FDI+LTZEvKntde\ngyQNBH4OHBsRuwPXAT9Km2+PiD0iYhfgReCMVP494HOp/IiUJ+R7wM0RsWtE3NzBNdiOLJnKJOAC\nSQMl7Q6cDuxJtk77mZJ2S/tvC1wVETtExOlAY6rj5LztV0bEDsBiUka6Atb7fSJiRpu2N5KloX0y\nInaJiP/Ou1abkP1tfCmd47i06SVg/4jYLZ2r6BGEYofcrwH+N/BLgIh4TtJvAa/l3sb8hvmsal7F\n4NrBbDR4I2prevc+dMOaBl744AUWrljIPpvvw+jB7SdBmTR+EhfucyHbjdmu3Xv0q5pWMfuD2dz9\nt7s5c+czGVI7hH/+0z+zdM1SrjjoCsYNK5Td0MzylCUfevJGRMwCkDQbeCgiQtIsstze+fZlbXD6\nL+DH6f1ngBtTWtV3JT3cTj17kQX8x7ORauqAvxZo0yfJcqdPS/vWsPYLxI5pdGA02RrzD6Tyx4Gp\nkm5hbb6QYrWXdnU/4I6IWA4g6XZgf7LbD29GREdrvr+RgjLA06x/HfMV+n3aagZ+1075XsCfW9PB\n5qWZHQVcL2lbsoXcih6qLTbaDI2Ip6R1ljJuKraSDcW8hnl8/ZGvs93Y7dht093Yd/N9ux34FjYu\npLmlmVGDRjG4dv0Mfe82vMu9b9zLflvsx9ajtmZQzSAAGlY38JUHvkIQ3H7E7QUD+tjBY/nStoW/\nfC5bvYyzHzybxqZGFjQuYMoeU3hifvb/wayFs7r1e7VECwNUdII/s2pQrnzosG7K0Za8zy20/297\n54k72idgWkScVOS+syNi73a2TQWOioiZkk4jy+RGRJwtaU/g74GnUw+7WMWmXW3V2TPAbc/X0YSi\nqbTz+7RjZV4e+mL8AHgkIo5OE/UeLfbAYv91XSjp46Q/CEnHsu6wjQF/W/I3Xlr0Enf/7W4mjJjA\n/OXzu3WehY0LOf3+05l8+2TeWrZ+2uQPGj/gnIfO4fJnLufkP5zMklVLPtpWN6COA7c6kO032n6d\nyW5dVTOghkmbTQJg/y32Z0TdCA772GHsudme7LLJLl0+36LGRVwy/RIefPNBlq8uz3P1Zn1Qobzn\nPc2H3lWPAyem9yfnlf+Z7F51TbrXfVA7xz4B7CtpGwBJwyR9okA9LwObSNo77TtQ0g5p2whgXhqW\n/6gNkj4eEU9GxPfIssRtReepUzvyGHBUuqc9jOy2wmMF9l2T2tMd7f4+XfAE8BlJW8M6aWZHsTZX\nymldOWGxPfRzgKuB7SS9A7xB936BqvapsZ/i27t/my1HbMlzC57jqG2O6tZ5WqKFdxreoamliXkN\n8/jEmPX/32nt6bbt8Y4dMpaL9r2Ilmhh7OCx6x1XrDGDx3DRvhexunk1Q2uHMnLQSC7c50JaoqXd\ntK2deXHRi/z6xV9z00s3Me24aQyj/dXvGtY0sGLNCgYOGNijLyRmfcR3yW5Z5g+7lyIfeld9A/it\npCnAnXnldwAHAy+QfclYbyg9IhakHuiNkgal4n8FXmln39Wpw3eFpFFkMeYyYDbwf4AnyYL2k6wN\n2Jek4WWRrb0+M7XlfEkzgP/XyX30tm14Rtnjd0+lol9FxLOpt9vW1cBzkp6h649kF/p9im3nAkln\nAbcrS9n6PlmelJ+QDbn/K+unjO1Qh+lTJX0jIi6XtG9EPJ6+7QyIiGVdqaSn+lP61CUrl9ASLSC6\nHZBWNa1ibsNc3m14l5023qndYfN5y+fx4JsPsuf4PZk4ciJ1NXU9bXpZLWxcyA/++gNym+U4apuj\nCj5b//g7j/PVB7/K8Z88nm99+lsMqyvNsrdmJdCt9KlpAtw6+dDP+Y+De3r/3Gw9nQX0GRGxq6Rn\n0uzGiugPAX3BigUsX7Ocf3v635gwYgJn7HSGe5htLF+znIEDBnb45eOml27iR0/+iL3G78VPD/hp\nt0YDzMqk6vOhW//W2ZD7i5JeBTaXlJ+MRUBExM4FjtsgrG5ezcLGhSxsXEjD6gbeXf4uj7z9CAAn\nbXdSlwP60tVLmbNkDjWqYcLICb22QlxvKSbJzOSJk9l1013ZZMgmDuZmfZikO4Ct2xRPiYhCs727\nW8/pZLcM8j0eEeeUsp4O6r+S7CmBfJdHxH/2Rv1d0WFAj4iTJG1GNh3/iN5pUv/x4coPOfL3R7Ky\neSXfnfRddhu3G/tvsT9bjtiSoQPbPqmy1rLVy2hsaqRuQN06w+kLVizg5HuzqQn3HnNvpwF9+Zrl\nrFizgrqauqoJfqMHjy44M9/M+o6IOLqX6vlPoGLBs7e+OJRCp7PcI2J+eiD+zbav3mhgX9ecnkYI\ngutmXccem+3BaTucVrB33tTSxH1v3Mchtx7ClTOupGF1w0fbBtcOZuCAgQyuGUzdgMLD0s0tzTS3\nNPPo249y6G2H8suZv2TZ6l6d1mBmZn1Mhz10SbdExPFpoYL8m+0ecgdGDxrN7UfczvwV89lm1DYc\nMuEQBmgAGw3ZqOAxa5rX8Jd3/wLAk/OfZGXzSoaTraK48eCNue+Y+7IJdYPW/0LQ3NLMq4tf5YbZ\nN/DN3b/Jg28+SEu08OjcR/nHnf6REd1+ysPMzPq7zu6ht963+GJ3Ti5pDtnzhM1AU0Tk0rN2N5Ot\nwDMHOD4iPuzO+SttUO0gJo6ayMRRE4s+ZsjAIXxn0nfYfqPtOexjh63zaNmg2kGMqy28YMvyNcu5\n+KmLefq9pxk/fDxTJk1hq5FbcfjfHd7uFwAzM9twdDjLvccnzwJ6LiIW5pX9BFgUERdLOh8YExFT\nOjpPf5jl3iMR0PAetDTB4FEwqP2edlNLEzPen8GvZv2KKZOmsPWotvNRKmdN8xreW/Eei1Yu4mMj\nP1Y19/TN8niWu/VpHd5Dl7RM0tJ2XsskLe1mnUcC16f31wPdW32lmjS8B1cfCJftCHOnF9ytdkAt\nu226Gz894KdMHDmx15pXjMWrFnPMXcdw8r0nM2fpnEo3x8w6IekoSduX8Hw5SVeU6nzdqP+I1ElE\n0iaSnkwZy/aXdK+kqp9t29ks957elA3gj5IC+GVEXA2Mi4jWZWPnky2mv2FrWgXL0iV56wn4+MEF\nd60ZUMPwuoKZCytmgAYwYcQE3lr2FmMHdX+FukKWrFrCE/OeoFa17LHZHowcNLLkdZhtYI4C7iFb\nJa7HIqKeLBNbRbTJ/942J3mhpV+rSrmH3LeIiHckbQpMA/4XcFdEjM7b58OIWO8GcFoS7yyACRMm\n7P7mm1U8qb5xMbzyALz7LOx/HgxvNyVxn/dB4we0RAujB40ueS73t5e9zRdu/wIA9x9zP1uM2KKk\n5zcrQreG3H92whfXWynu2zff0+OV4iT9D+DrZNnPngS+BvwC2IMsqchtEXFB2vdiskePm4A/kmU1\nuwdYkl5fioi/tVPHmWT/DtcBrwH/EBErJB0HXEA2P2pJRHxG0oHAP0XEFyVNIkvZOhhoBE6PiJcL\n/B6nka23PgrYAvh1RHw/bfs92drug8me/b46lU8mu6Y1wMKIOCSdJwf8iiywDyFbE31vsvSmuYhY\nKOkUshSzATwXEf9Q7DXv68qa2zMi3kk/30+LEEwC3pM0PiLmpWQA7xc49mqydXbJ5XLl+9bRFwwZ\nDbucADsfD6rcbbrmlmYamxoZOnBot7KidTS7v6eG1g5lr832oramtt3sc2Z9UQrm+Wu5fwy45mcn\nfJGeBHVJnwJOAPaNiDWSriLLr/EvEbFIUg3wkKSdyYLa0cB2Kb3q6IhYLOku4J6IuK2Dqm6PiGtS\nnT8ky2H+c9bmMH+nwFB2a07vJkmHkgXfjnKLTyJLu7oCmC7pD6nH/4/p9xmSyn9Hdqv4GuAzEfFG\nXlITACJihqTvkQXwc1PbW6/bDmTr0O+TgnvphxMrqGy5LFNGnhGt74HDgOfJvjmdmnY7lXUTBWxw\nFq9czPT503l76ds0tXQlw15prW5ezdPvPc23//RtXlr0Es0VbEt7NhqyEZcccAkX739xWb84mJVY\nR/nQe+IQYHeyIDcjff474PiUaORZYAeyPOZLgJXAtZKOIQuaxdpR0mPp0eWT0zlhbQ7zM8l6yW2N\nAm6V9Dxwad5xhUyLiA8iopFs9GC/VP51STPJMpNtBWxL4TzixTgYuLV1onYXj+3zytlDHwfckb4Z\n1QK/jYj7JU0HbpF0BvAmcHwZ29Dnzf5gNmc/eDZDa4dyz9H3sMnQTSrSjmWrl/GDJ37AnKVzWN28\nmssOuqzPzVT3CnLWD5UrH7qA6yPiOx8VZGk4pwF7RMSHKePY4NRLnkQW9I8FziULbMWYSvdymHc1\np3fbUdhIQ/iHAnunYf5HyYberYCy9dAj4vW0wtwuEbFDRPwolX8QEYdExLYRcWi1fUPqqvHDxlM3\noI6JIydSo/a+6PaOobVDOW2H0xg/bDynbH8KQ2sLL11rZkUrVz70h4Bj0/yk1lzaE4DlwBJJ44DP\np23DgVERcS/wLWCXdI5ico53JYd5vq7m9P6spLFpaP0oshGAUcCHKZhvR9Yzh8J5xIvxMHCcpI26\ncWyfV9Z76Na5LYZvwX1fuo8a1TB2SOX+toYMHMLnt/48B2x5ACPqRpR8UpvZBqos+dAj4oWUL/uP\nKZf2GuAcsqH2l4C3yYIiZEH5TkmDyXr256Xym4BrJH0dOLa9SXF0LYf5AXnHdTWn91PA74AtySbF\n1adh/rMlvQi8TBbIO8oj3qmImC3pR8CfJDWTXa/Tijm2PyjrLPdSqfqFZcysP+hTs9yrRevs9NYJ\nbNZ97qH3Mc0tzTRHc4c5w82s/0jB2wHcys4BvQ9ZsmoJ979xP8+8/wzn7X4e44Z5zR0zK7/eyPkt\n6XPAj9sUv5HSsE4tVT0bMgf0XhYRrG5ZzaCaQettW7Z6GT988ocA1NXUccHeF1A7wP+JzKy8eiPn\nd0Q8ADxQ7no2ZGWb5W7rW9W8iunzp/Mvj/0Lc5fNXW/7oJpBjBua9cr3Gr+Xg7mZmRXNEaMXLVu9\njAv+egFzl81lRN0Ivrf39z5awQhg4yEbc+Pf38ialjWMqHNuczMzK54Dei8aVjuMi/a5iFc+fIW9\nN9t7nWAO2fKElVpYxszM+jcPufei1S2rmbFgBk/Nf4oRBXKem5lVmqSJadnWzvb5ct7niqZPNQf0\nXtXY1MgVz1zBw289zNPvPV3p5piZ9cRE4KOAHhH1EfH1yjXHHNB70eCawZy101nsu/m+fHrcpyvd\nHDPrp1Lv+CVJv5H0oqTbJA2VdIikZyXNknSdpEFp/zmSfpLKn5K0TSqfKunYvPM2FKjrMUnPpNc+\nadPFwP6SZkj6lqQDJd2Tjhkr6feSnpP0RMr6hqQLU7selfR6WqXOSsQBvReNHjyar+z8FS454BI2\nHdo/c56bWZ/xSeCqiPgUsJRsSdepwAkRsRPZHKmv5u2/JJX/ArisC/W8D3w2Ij5NlrK1dVj9fOCx\niNg1Ii5tc8z3gWcjYmeyZW5vyNu2HfA5spSpF6R14q0EHNB72ZDaIZ7Bbmal8HZEtK7X/muybGpv\nRMQrqex64DN5+9+Y93PvLtQzkGzN91nArWQpWTuzH/BfABHxMLCRpJFp2x8iYlVKYfo+WWZOKwHP\ncjcz65/aJuJYDGxU5P6t75tIHbuU6KS9Nae/BbxHlqVtAFlu9Z5Ylfe+GcehknEP3cysf5ogqbWn\n/WWgHpjYen8c+AfgT3n7n5D386/p/RygNZf5EWS98bZGAfMioiWdszXPc0fpVx8jpVtNec0XRsTS\non4r6zYH9AqZv3w+j7z9CIsaN+h08GbWfS8D56T0omOAS4HTgVvT8HgL8B95+4+R9BzwDbJeN2Sp\nXQ+QNJNsGH55O/VcBZya9tkub5/ngGZJMyV9q80xFwK7p/ouBk7t0W9qRXH61ApYtHIRX3vwa+w+\nbncO//jhbDF8i7LeV29qaWJh40KWr1nOxkM2ZtSgUWWry6yKdSt9ajlImgjcExE7Frn/HLIUpQvL\n2CyrMPfQK6BuQB3Hf+J4Nh++Oafcdwq3vXIbjWsay1bfopWLOPrOoznqzqOYvXB22eoxM7PKcUCv\ngOF1w9l/y/155K1HaGxq5J7X76GxqXwBHWCAsv/UNQNqOtnTzPq6iJhTbO887T/RvfPq5yH3Cnpz\nyZtc+/y1nPypk9lm9DZlC7ZNLU0sWrmIxjWNjBk8hpGDRnZ+kJm11WeG3M3a44BeYS3R8lHv2cz6\nNAd069McSSrMwdzMzErB0cTMzKwKOKCbmfVDkiZLelnSa5LOr3R7rPIc0M3M+hlJNcCVwOfJ1lY/\nSVIxa6xbFXNANzPrfyYBr0XE6xGxGrgJOLLCbbIKc0A3M+t/tgDezvs8N5XZBsxZbszMyiyXyx0B\nfBaYVl9ff1el22PVyT10M7MySsH8RuBc4Mb0uafeAbbK+7xlKrMNmAO6mVl5fRYYmt4PTZ97ajqw\nraStJdUBJwLu+W/gHNDNzMprGrAivV+RPvdIRDSR9fgfAF4EbokIZ17awHnpVzOz4nR76VffQ7fe\n4ElxZmZlloK4A7mVlYfczczMqkDZA7qkGknPSronfd5a0pNpucKb04QOMzMz64He6KF/g2zSRqsf\nA5dGxDbAh8AZvdAGMzOzqlbWgC5pS+DvgV+lzwIOBm5Lu1wPHFXONpiZmW0Iyt1Dvwz4Z6Alfd4I\nWJweuQAvV2hmZlYSZQvokr4IvB8RT3fz+LMk1UuqX7BgQYlbZ2bWv0maI2mWpBmS6lPZWEnTJL2a\nfo5J5ZJ0RZq79JykT+ed59S0/6uSTs0r3z2d/7V0rHqrDuuecvbQ9wWOkDSHLBPQwcDlwGhJrY/L\nFVyuMCKujohcROQ22WSTMjbTzKx8crnctrlc7oe5XO769HPbEp7+oIjYNSJy6fP5wEMRsS3wUPoM\nWZrVbdPrLODfIQvOwAXAnmQZ3C5oDdBpnzPzjpvci3VYN5QtoEfEdyJiy4iYSLYs4cMRcTLwCHBs\n2u1U4M5ytcHMrFJyudygXC53MzCT7NbjKennzFwud3MulxtUhmqPJJubBOvOUToSuCEyT5B1rMYD\nnwOmRcSiiPiQbBW7yWnbyIh4IrLVx25oc65y12HdUInn0KcA50l6jeye+rUVaIOZWbndABwODAEG\nprKB6fPhrA2K3RXAHyU9LemsVDYuIual9/OBcel9oXSrHZXPbae8t+qwbuiVleIi4lHg0fT+dbJh\nFzOzqpSG1VuDeXuGAEfkcrlt6uvrX+tmNftFxDuSNgWmSXopf2NEhKSyru3dG3VY8bxSnJlZ6Z1K\n5x2mWuC07lYQEe+kn+8Dd5B1lN5LQ9mkn++n3QulW+2ofMt2yumlOqwbHNDNzEpvK9YOsxcykHUD\nXdEkDZM0ovU9cBjwPNl68a2zyPPnKN0FnJJmou8FLEnD5g8Ah0kakyaqHQY8kLYtlbRXmnl+Sptz\nlbsO6wYnZzEzK723gTV0HNTXsO695a4YB9yRnvKqBX4bEfdLmg7cIukM4E3g+LT/vcAXgNfIUrie\nDhARiyT9gCy/OsBFEbEovf8aMJXs9sB96QVwcS/UYd3g9KlmZsUp+hnpdA99JoXvoQOsBHbqwT10\ns3V4yN3MrMTq6+tfBe4GGgvs0gjc6WBupeSAbmZWHqeQ3VdeSTa8Tvq5knXvQ5uVhO+hm5mVQX19\n/SrgxDT8firZBLi3ganumVs5+B66mVlxvM649WkecjczM6sCHnI3MyujXC43FNgLGAEsA56or69f\nUdlWWTVyD93MrAxyudyEXC53JbCAbCW3G9LPBblc7spcLjehJ+eXdJ2k9yU9n1dWFelTC9VhHXNA\nNzMrsVwulwOeI0sNOhQYmfcamsqfy+Vyu/egmqmsn260WtKnFqrDOuCAbmZWQqnn/SAwisIrxQ1M\n2x/qbk89Iv4MLGpTXC3pUwvVYR1wQDczK60pZL3wYgwly5FeKtWSPrVQHdYBB3QzsxLJ5XLDyDKo\ndZaYpdVA4LQ0ca6kUq+37OlTq6GOauGAbmZWOnsCTV08pikdVwrVkj61UB3WAQd0M7PSGdHN40aW\nqP5qSZ9aqA7rgJ9DNzMrnWXdPG5pVw+QdCNwILCxpLlkM8l7I7VpJeuwDnjpVzOz4nS69Gu6F76A\n4ifFASwHNvViM9ZTHnI3MyuRFJSnsja7WmfWkCVrcTC3HnNANzMrrR+TDTkXY0Xa36zHHNDNzEqo\nvr7+LeAQYAmFe+pr0vZD6uvr3y6wj1mXOKCbmZVYfX3908DOwNVkvfAl6bU0fb4a2CntZ1YSnhRn\nZlacbuVDTxPl9gY2JXue+q++Z27l4MfWzMzKIJfLDQKOI1sKdgeyYfaBwOxcLvdj4Nb6+vpVFWyi\nVRkPuZuZlVgul5sEvAtcBexI1ruvSz93TOXv5nK5PbpbR4H0qRdKekfSjPT6Qt6276Q0pS9L+lxe\n+eRU9pqk8/PKt5b0ZCq/WVJdKh+UPr+Wtk/szTqsMAd0M7MSSkH6YWAshVeOG5G2P9KDoD6V9dOn\nAlwaEbum170AkrYHTiQbKZgMXCWpRlINcCVZ6tPtgZPSvpDNvr80IrYBPgTOSOVnAB+m8kvTfr1S\nh3XMAd3MrETSMPv9wLAiDxkG3J+O65IC6VMLORK4KSJWRcQbZKu5TUqv1yLi9YhYDdwEHJmWYj0Y\nuC0d3zZNamtq09uAQ9L+vVGHdcAB3cysdI6j+ExrreqAY0vYhnMlPZeG5Meksq6mNt0IWBwRTW3K\n1zlX2r4k7d8bdVgHHNDNzEpnCl1P0DIcOL/TvYrz78DHgV2BecDPSnRe6wcc0M3MSiCXy9WQ3T/u\njh3S8T0SEe9FRHNEtADXkA13Q9dTm34AjJZU26Z8nXOl7aPS/r1Rh3XAAd3MrDSGU/wa7m01peN7\npDWHeHI00DoD/i7gxDR7fGtgW+Apsgxo26bZ5nVkk9ruimyBkkdYeyugbZrU1tSmxwIPp/17ow7r\ngJ9DNzMrjQa6fv+8VW06vmgF0qceKGlXIIA5wP8EiIjZkm4BXiD78nBORDSn85xLlrO8BrguIman\nKqYAN0n6IfAscG0qvxb4L0mvkU3KO7G36rCOeaU4M7PiFJM+dRbZc+Zd9Xx9ff1O3TjO7CMecjcz\nK50fA8u6eMwy4OIytMU2MGUL6JIGS3pK0kxJsyV9P5W3uzKQmVkVuJWu30dfw9pnsc26rZw99FXA\nwRGxC9kjFJMl7UXhlYHMzPq1tDb7ZGB5kYcsByZ7TXcrhbIF9Mi0TvIYmF5B4ZWBzMz6vfr6+unA\nQWSTuQoNvy9L2w9K+5v1WFnvoad1fGeQpQycBvyNwisDmZlVhRSkNwe+SvboWJANrQcwK5Vv7mBu\npVTWx9bSIwu7ShoN3AFsV+yxks4CzgKYMGFCeRpoZlYmaRj9N8Bv0qIxw4GG+vr65sq2zKpVrzyH\nHhGLJT0C7E1aGSj10vNXBmp7zNXA1ZA9ttYb7TQzK4cUxJdUuh1W3co5y32T1DNH0hDgs8CLFF4Z\nyMzMzLqpnD308cD1KRfuAOCWiLhH0gu0vzKQmZmZdVPZAnpEPAfs1k7566xNGGBmZmYl4JXizMzM\nqoADupmZWRVwQDczM6sCDuhmZmZVwAHdzMysCjigm5mZVQEHdDMzsyrggG5mZlYFHNDNzMyqgAO6\nmZlZFXBANzMzqwIO6GZmZlXAAd3MzKwKOKCbmZlVAQd0MzOzKuCAbmZmVgUc0M3MzKqAA7qZmVkV\ncEA3MzOrAg7oZmZmVcAB3czMrAo4oJuZmVUBB3QzM7Mq4IBuZmZWBRzQzczMqoADupmZWRVwQDcz\nM6sCDuhmZmZVwAHdzMysCjigm5mZVQEHdDMzsyrggG5mZlYFHNDNzMyqgAO6mZlZFShbQJe0laRH\nJL0gabakb6TysZKmSXo1/RxTrjaYmZltKMrZQ28Cvh0R2wN7AedI2h44H3goIrYFHkqfzczMrAfK\nFtAjYl5EPJPeLwNeBLYAjgSuT7tdDxxVrjaYmZltKHrlHrqkicBuwJPAuIiYlzbNB8b1RhvMzMyq\nWW25K5A0HPgd8M2IWCrpo20REZKiwHFnAWeljw2SXu6kqlHAki42r5hjOtqn0La25e3tl1/WdvvG\nwMJO2tVVffn6tFfW0edyXJ9C7SrFMdXyN1SoHT3dv7/8Dd0fEZO7eIxZ74mIsr2AgcADwHl5ZS8D\n49P78cDLJarr6nIc09E+hba1LW9vv/yydvavL8N/iz57fYq5Zm2uV8mvT1+/Rn3hb6g712hD+xvy\ny69Kvso5y13AtcCLEfFveZvuAk5N708F7ixRlXeX6ZiO9im0rW15e/vd3cn2UuvL16e9smKuYan1\n5WvUF/6GulPPhvY3ZFYximh3xLvnJ5b2Ax4DZgEtqfi7ZPfRbwEmAG8Cx0fEorI0op+SVB8RuUq3\no6/y9emcr1HHfH2sGpXtHnpE/DegApsPKVe9VeLqSjegj/P16ZyvUcd8fazqlK2HbmZmZr3HS7+a\nmZlVAQd0MzOzKuCAbmZmVgUc0Ps4SZ+S9B+SbpP01Uq3p6+SNExSvaQvVrotfY2kAyU9lv6ODqx0\ne/oiSQMk/UjSzyWd2vkRZn2PA3oFSLpO0vuSnm9TPlnSy5Jek3Q+QES8GBFnA8cD+1aivZXQlWuU\nTCF7HHKD0MXrmQF5BwAAA3lJREFUE0ADMBiY29ttrZQuXqMjgS2BNWxA18iqiwN6ZUwF1llCUlIN\ncCXweWB74KSUnQ5JRwB/AO7t3WZW1FSKvEaSPgu8ALzf242soKkU/zf0WER8nuxLz/d7uZ2VNJXi\nr9Engb9ExHmAR8KsX3JAr4CI+DPQdjGdScBrEfF6RKwGbiLrNRARd6V/kE/u3ZZWThev0YFkKXq/\nDJwpqer/rrtyfSKidWGnD4FBvdjMiuri39BcsusD0Nx7rTQrnbInZ7GibQG8nfd5LrBnuud5DNk/\nxBtSD7097V6jiDgXQNJpwMK8ALahKfQ3dAzwOWA08ItKNKwPafcaAZcDP5e0P/DnSjTMrKcc0Pu4\niHgUeLTCzegXImJqpdvQF0XE7cDtlW5HXxYRK4AzKt0Os56o+qHJfuQdYKu8z1umMlvL16hjvj6d\n8zWyquWA3ndMB7aVtLWkOuBEssx0tpavUcd8fTrna2RVywG9AiTdCPwV+KSkuZLOiIgm4Fyy/PEv\nArdExOxKtrOSfI065uvTOV8j29A4OYuZmVkVcA/dzMysCjigm5mZVQEHdDMzsyrggG5mZlYFHNDN\nzMyqgAO6mZlZFXBAtz5P0l8q3QYzs77Oz6GbmZlVAffQrc+T1JB+HijpUUm3SXpJ0m8kKW3bQ9Jf\nJM2U9JSkEZIGS/pPSbMkPSvpoLTvaZJ+L2mapDmSzpV0XtrnCUlj034fl3S/pKclPSZpu8pdBTOz\njjnbmvU3uwE7AO8CjwP7SnoKuBk4ISKmSxoJNALfACIidkrB+I+SPpHOs2M612DgNWBKROwm6VLg\nFOAy4Grg7Ih4VdKewFXAwb32m5qZdYEDuvU3T0XEXABJM4CJwBJgXkRMB4iIpWn7fsDPU9lLkt4E\nWgP6IxGxDFgmaQlwdyqfBewsaTiwD3BrGgSALCe9mVmf5IBu/c2qvPfNdP9vOP88LXmfW9I5BwCL\nI2LXbp7fzKxX+R66VYOXgfGS9gBI989rgceAk1PZJ4AJad9OpV7+G5KOS8dL0i7laLyZWSk4oFu/\nFxGrgROAn0uaCUwjuzd+FTBA0iyye+ynRcSqwmdaz8nAGemcs4EjS9tyM7PS8WNrZmZmVcA9dDMz\nsyrggG5mZlYFHNDNzMyqgAO6mZlZFXBANzMzqwIO6GZmZlXAAd3MzKwKOKCbmZlVgf8PWKHNZ1m/\nEvsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -4767,8 +4774,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3d24eabe-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3cbb25f2-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_015eea8d9b" + "window[\"09504f34-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"08d5c868-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_4f77b2aa53" ], "text/plain": [ "" @@ -4785,8 +4792,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3d28ab18-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_1a6d7cbebd" + "window[\"0951cb98-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_35cec7bdd9" ], "text/plain": [ "" @@ -4803,8 +4810,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3d29158a-e908-11e8-b3f9-0242ac1c0002\"] = document.querySelector(\"#id1_content_5\");\n", - "//# sourceURL=js_56a91c6232" + "window[\"09521206-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_5\");\n", + "//# sourceURL=js_ebf236ae28" ], "text/plain": [ "" @@ -4821,8 +4828,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3d2985d8-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3d29158a-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_dbdf6d9758" + "window[\"095256d0-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"09521206-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_00b772df35" ], "text/plain": [ "" @@ -4839,8 +4846,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3d29e014-e908-11e8-b3f9-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(5);\n", - "//# sourceURL=js_2854f96898" + "window[\"0952a400-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(5);\n", + "//# sourceURL=js_e77035778f" ], "text/plain": [ "" @@ -4856,9 +4863,9 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3WdgVFXawPH/udNbJj0kkBB674gi\ngg0VG7K6tnVdsa/6Wncta3fVtayrq6ur4qprwVUsiF1RUVSKIKA06QktjZTpfc77YYYUSEICGYR4\nfl+YO/fec89Ek2dOfYSUEkVRFEVRDm7aL10BRVEURVH2nQroiqIoitIJqICuKIqiKJ2ACuiKoiiK\n0gmogK4oiqIonYAK6IqiKIrSCaQ0oAshrhVCrBBCrBRCXJd8L1MIMVsIsS75b0Yq66AoiqIovwYp\nC+hCiMHApcAYYBhwihCiN3AL8IWUsg/wRfJYURRFUZR9kMoW+gBgoZTSL6WMAl8DpwOnAS8lr3kJ\nmJLCOiiKoijKr0IqA/oKYLwQIksIYQVOAgqBPCllWfKaciAvhXVQFEVRlF8FfaoKllKuFkI8BHwG\n+IBlQGyXa6QQotm9Z4UQlwGXAQwcOHDUypUrU1VVRVGUthC/dAUUpTUpnRQnpXxeSjlKSjkBqAXW\nAhVCiHyA5L+VLdw7TUo5Wko52mKxpLKaiqIoinLQS/Us99zkv0Ukxs9fA94DLkhecgEwK5V1UBRF\nUZRfg5R1uSe9LYTIAiLAVVLKOiHEg8AMIcTFQClwVorroCiKoiidXkoDupRyfDPvVQPHpvK5iqIo\nivJro3aKUxRFUZROQAV0RVEURekEVEBXFEVRlE5ABXRFURRF6QRUQFcURVGUTkAFdEVRFEXpBFRA\nVxRFUZROQAV0RVEURekEVEBXFEVRlE5ABXRFURRF6QRUQFcURVGUTkAFdEVRFEXpBFRAVxRFUZRO\nQAV0RVEURekEVEBXFEVRlE5ABXRFURRF6QRUQFcURVGUTkAFdEVRFEXpBPS/dAUUpTPyu138PG8u\nAZeLoRNPwJGV0+HPiEWjxGMxDCZTh5etKMrBRwV0RelgIb+fudNfZOVXnwOw6ps5/O6+R7ClZ3TY\nM/xuF9/PegtXRTkTfn8hGV0KOqxsRVEOTiqgK0oHi4ZDbF+zqv7YXVVBLBpt8XoZj+OqqmTjku/p\nNmAwGfld99jqXjP/G374YCYAdeXb+e0d92NzpnfMB1AU5aCkxtAVpYMZLVYGTji2/rhrv0HoDYYW\nr/e56ph+6/XM+e80pt96PX5X3R6fEY/FG17H4yDlvlVaUZSDnmqhK0oHiEcixKpriJSXYezWjWHH\nn0T3ocMJ+fzkFvfA2krrORaNEvR6EuXEYvgqK3CkZ6AZjS3eM2DcBGq3b8VVWc7RUy/D6kzH73YR\ncLswWm1Y7A70rdyvKErnowK6onSAaGUlG0+djPT7MRQWUvzadPJ799vtulgkQjweb9KlbjSZGXPy\nb1jy+Ud0HzgUayRK3OdrNaBbnekc+YdLiEejmKxWgl4Pc195gZVzv0BnMHD+g4+T1a0oJZ9VUZQD\nkwroitIBgitXYsjPxz7+CGIeL7FQCC0UAinRzGYAfHW1fDfjVQxmC2NOPR1bRiYAlrQ0ho8Zx8A+\nA4hs2kR8xUq0AYP2+EyD0QjJoB+LRli/eEHidSTCltUrVEBXlF8ZNYauKB3APGYMBQ8+QGTrNjSb\nFc1gpOyvf2X7zbcQ2b6deCzGwnfeoGu37gwr7kNo8WLCVVX191u7dcNR1J2Mw8fhnDwZzdy+pWh6\no4mhx52YqIvNTvHQER36+RRFOfCpFrqi7KOAJ0yk2kf5ZZcTq60FQDObkf4Ank8/JbJtG92efYai\nEaPpIvTEy8sJbdhAvFsRMbMZncOBzm5HZ7fXlxmtqcE1axZxn5+Mc85Gn53dah1MVhujTzqNoROO\nQUSimMNRZDSK0KtfcUX5tVC/7YqyjzYuqyI3PULM7a5/L7qjGs1iASBWW0s4GGJxJJdTIlvYdt31\nALg/+JCiF19A53A0KU/G49S8/ArVzzwDQGjjRvLv/Ss6m63Veug9XkqPn5To5rfb6fnRhxhyczvy\noyqKcgBTAV1R9lE0HGftTx763H4PwW/nYD3rt1gGDCDy/SLCpaVkXnAB/g2b2BHKIlxXVn9feOvW\n5guMx4lWVNQfxqqqoJV17PW3+Xz1y9fiPh/EYvv2wRRFOaioMXRF2Ud9DskjENHh7nkI2lV/5N23\nXuH9fz8K/fqSd/ttBFYsx/vkE+RqEbTDDsc8bBiazUbeTTcS+PEn5C6BV+j15FxzNZYRIzD170+X\ne+5G53TusR76vDwyp16AsUcP8u+9F22Xlr+iKJ2bkAfBhhSjR4+Wixcv/qWroRzEorE4lZ4Q6yo9\n9O+SRl6auc33xlwu4qEQQqdHWMxIvx9htaKzWuuviYSiBLwu3rjrJtxVidb14ZPPoHhNCbYjjsC/\ncRPfDT2Gw/PN2NatRjMa8cyZQ8zlouChB9F22Rku5vUSLi0lWlmJLjsbc58+9bPlW62rz4cMBNDs\njnZPrFP2SPzSFVCU1qgud+VXodoX5vjH5uINRcl3mpl11Thy2xDUo3Uuqp99lpoXX6TgH48Q3rgJ\n1/vv4zxtMulnnw2xGEKnw5CdTTRswJGVXR/Q0zKykXIThq4FZA4dwrHLfkS4wdC1gK3XXItmsVD4\nzNO7BXOAWE0NJWf8NnFgMNB79mdoXbrssb46mw32MNauKErnpAK68qtQ7Q3hDSXGoctcQULR+B7u\nSJDBADUvvghCYOjShe1/+jMAcZ8f97uzqHzkEfQFBRS/Nh1TTg7HXnwF6xfOw5mZRb4zC+ull7Dl\nkktxnHAC1pEjCPywhLoZM8i/968Ye/XCmJ/f/HOjjbrho1G1tauiKHukxtCVX4Vch5kRRYntV08e\nko/VqGv1el8oSpkrQFRoGLp1AykRRiMkl4HZxo6l6qmnAIhu345n9ufIQICq0k2Ub1pPdUU5qzas\nxrt+PZHNmwn+uAxDt25U/+c/+OfNY8sllxLZvLnF5+uyMsn7y1+wjBpF138+hpaWtk+fP+AJs2Or\nB29tiFhETZZTlM5ItdCVTsfvDhMJxTCYdFjTEjupZTtM/OcPownH4pj0OjJtLW+rGorGmL2qghtm\nLGNgfhozXn6ZyLKlaOnpdH/5JVzvv4+hW1csI4bjnzcfNA1Tr15U/ftpelx+Gbb0DNxVlXTv3Y+K\nP0wFnY6M888HnQ59ly5Ey8tBp8PQQuscQO90kn7uOTinnIZmtSJaSe6yJwFvhC9fXk3J8mp0Bo1z\n7hhDeq51zzcqinJQSWlAF0JcD1wCSGA5cCGQD7wOZAE/AOdLKcOprIfy61DjC+MJRCASZ+UHJfir\nQ5x05dD6oJ5lb9skMXcgyr++XEdcwortbu76rpIHTp+EXqdBYSHWkSMB6Prww/iXLEGfnY1r5rvE\n6uowGgx0HzIcgKjLRfdXXk5s7qI3gE6j+/RX8c+fj3no0D1uFqM12tp1X8RjcUpX1gAQi8Sp2ORW\nAV1ROqGUdbkLIboC1wCjpZSDAR1wDvAQ8JiUsjdQC1ycqjoovx51/jB/+2g1Rz7yFac8M4/+pxZh\nS9cTCe55/fauLAaN0cUZ9ceH9sxKBPNd6LOzsQwbRvXzzxPZto28W//SZOa73unEWFiIIT8fQ042\nhsxMjF27kv7b32Lu2xfNuuegGgpE8NWF8Lv3/juvzqAxeEJB4rM5DBT0VnnTFaUzStmytWRAXwAM\nA9zAu8C/gOlAFyllVAgxFrhbSnlCa2WpZWvKnlS4gxz6ty/qj28+uit/GNYFLBnYnO1fvlXjC7Fi\nm5tsu4niNAMWs6HFbVR37hCn28dx7l2FA1FWfrudee+sJz3XypTrR2BL37ulaAFvhEgwis6gYXUY\nEZpagbUX1A9NOaClrIUupdwGPAJsBsoAF4ku9jop5c5m01aga6rqoPx66DXB0K6JzVeEgMOK7Fis\n7FUwB8i0mZjQN4feMRe1d91OxUMPE62ubvZaXVpahwdzgEg4xoKZG0BCXYWfrWtq97osi91AWrYF\nm9OkgrmidFIpG0MXQmQApwE9gDrgTWBSO+6/DLgMoKhIpYFUWpdlN/HCBSNZUVJGodNAXqwMzdi2\nfcxrfWFKqn2Y9Dq6pptxWo1UeoIEK6oIXXoB0bLEdq1xn48ud9xev0c7QLSujsCSpcTq6rAfOQF9\nVla7617nD+MPx9BpAqfFgNmQmIGvaYLsQjuVpR4QkN3NvoeSFEX5NUvlpLiJwCYpZRWAEOIdYByQ\nLoTQJ1vp3YBtzd0spZwGTINEl3sK66l0EtlpVo7qlwvhAJiHgGHPY9SBcIz/fLuRp+ZsAODvvx3K\nCYO7cOs7y/nT6GxolOI0snULMhKBRgHdO38B3qJeBLsU4y/bQZ7RuFuyldZUe0Pc+s5yPl1VgdWo\n48HThzJxYC5Wox6Lw8jJVw6lfJOb9Dwr9gy185uiKC1L5Tr0zcBhQgirEEIAxwKrgDlAcgssLgBm\npbAOygFASkk03raNXPaZyQGO3DYFc4BAJMY363bUH89ZU0k4GqfGF+bj9XXYrrsBAGGxkPvnP6M1\nSnEq43F8g0cyZWYJE19exc3za6iNtq87e8HGGj5dldhZzh+OceNbP+IONEzkszpN9ByeQ2a+DaNZ\nrTJVFKVlqRxDXwi8BSwhsWRNI9Hivhm4QQixnsTStedTVQfll1fjC/H4F+v4y9vL2V4X2C/PdAci\nbKzysmq7i1pf67PDHWYdVx7VC02ASa9xyfieZNmMPPzbYXy12ceSAePo8eWX9Pr0E0wDBiC0hl8Z\noWls8kt2eBPP+GZDDRHR+oY1u9pY5W1yHIrGicT205cfRVE6lZR+5ZdS3gXctcvbG4ExqXyucuB4\nd9l2/vn5OgA2VHn5zwWHtLqpy56EozFcgQg6TWu2nGgszmerKvjzmz8CcOG4Ym44ri8Oc/Mbsxh0\nOib0yeG7W45BQ5BhMyCEoFeOjRcvPASdJjBbW65v7y5pZNmMVPvCHN4rC6Ohfd+RTx1WwBNfriMS\nS4wqDenq3OMudoqiKM1RfXhKSnmCkfrXvlCM+D4skwxHYywureXGN3+ia4aFJ88dsVuClUAkxrtL\nG6ZlfPBTGVcc2as+oPtddbiqKrE507GkOTGYTFhNeqympr8KQojdNqKJud2Et2wlsm0b1pEj0Gdn\nk+sw8/G14/GFYzjMerJsDfeE/BGEEBgtLf+adXGa+fS6Cbw8v5SiTCunDito8wY4iqIojan0qUpK\nVXlC3P3+SipcQR44fQi9c+0kplS0X6U7yImPf0N1shv95kn9mDqqiOptXqwOA1ZjGC3iZZ7bjCkm\nMOs1St0Bjh3SBYfZgM9Vx8wH76Zi43o0nY5z732ELr36tPn53u++Y8vFlwBgHjyYwmnPos/MbPZa\nd3WAOa/+jE6vcfR5/fd6/bhyQFHr/ZQDmmqhKymV4zDx0OlDiMQl6RbDXgdzSCzjynGY6gP6UT2y\nmfvGWtYvrgRg8h970q3yecaPuZIZj5fi2hHkuIsGYUmOe0dDISo2rgcgHovx87y5TQJ6JBYnEIlh\nkjE0jxuEQJ+VVT9u7ps/v/7a4MqVyFCImM+XSFnaSCgQZe7/1rJ1dWLd+Px3N3D07/uj0zd0x0cj\ncUL+RO+FxW5Aa2YnOkVRlPZQf0WUlLObDWRYjfsUzAGy7SZemHoIF40r5v4pgylwmNm+tq7+/NZ1\nXkRtCeLbR8ntbicWifPVqz8TCkSJhEJoOh0Z+QX11/ca1TCVwx+Ksr0uwP0frOaxLzdStb2KkjPP\nJNwoI1r6b36Dlgze6Wf+FteHH+L59DPigaaT/YQAvbHhV8to1tH4o8diccrW1/HK7fP53z0Lqdnu\na/PPIBaLEvL7iMdUxjRFUZpSLXTloFKQbuHOUwcBEAnFGHViMd+8sRaTVU//ETZ4fyn0P5V4ciTJ\nnmkiHo3w9SsvM3zcUZxx3V+o2LSBjB69cOQ2bDzjCka4a9ZKvlqbWHeuH1fIOSNGUjv9NbrcdisA\nxu7d6fnxR8RqawksW0b1tOfIuuwyorW1GAwNW8MazXrGn90Xs82Azqhj1And0XQafneYnUNc385Y\nRywSJxaJs2DWRo6/ZNAel6UFfV7WLZzHz/O+ZsQJp1I0ZBhGs6XVexRF+fVQAV05aBlMOvodmkeP\noVloxLAsfRTZ40gYdx25i0OY7SaGH9OV9x+9A7PDQWTOV+x4+hkM3boRKOyG4957qYzqCMfiaELg\nb5Qn3BORYDBgHdPQihd6PYbcXCJbt1L5yD8oeu45Kh/9B9UvvEDBQw9iGTy4PqjbnCYmnNsXEGia\nwFUV4L3HlxEJRfnNn0eS3sVKTVmiZZ6Rb2vSHd+YlJJIKIbeoBH0ePjs2ScA2LJiOZc8+bwK6Iqi\n1FMBXTlgxaJxhAaa1vLIkMlqwGRNLkkbfwNoOoTBwrBjEuPki95/h7L1a+g5cgzEYshIhPCmTWh2\nO4FInM/Wb+f291fz6FnDeOD0Idz+7gqcZj1Xji8mbcCFGLsW7P7MPn3oMetdXDNn4v9+EQDbb7yJ\n7q+9hiGnISXqznrH43EWf7QJ945E1/zc19cycepA8ns5MZh09Bye02xAj0VjVG32svijEgr6ptNz\nWMPEOqEJ9nEEQ1GUTkYFdOWA5KkOsmDWBmwZZkZMLMTiaLoWvMYXptwVIM1sIMNmxGbSg6npXucB\nr4fV38wBYPPyZUy47V6cO3YQq6xEu/pP/P6d9TxxznAshrXcMONHfrhjIv8+byQGTWA3GyDH2Wzd\ndA4HOocDQ7du9e/pc3MR+ubXj2uaRm73NH6eXw5AWpYFo1nH8Imt5ygIeqPMemwp0Uic0hXVdB80\njFOuu4Wfv/ua4cefjNne9i1mFUXp/FRAVw44AU+YT55bTmWJBwCzTc/I47vXn/cEIzw6ew2vLtiM\nJuDtKw5nRFHGbuUIIcjs2o3c4p54amv4fs6n6KZczOqttcz8cAsl1X42VPoozrbiCUaJxyVZjrYv\nL7MfeST5Dz5AZMsW0s8+G33G7nXYqc/oXBxZZsKBKIUDMjGY2var13hRadCn0fewcfQadQh6o1oG\npyhKUyqgKwccKSEabtj+NBpqOqM7GInz1ZrE5LW4hLlrq5oN6CaTmeNOOxv3zJmYT5hCtLCItT4d\nj323HACzQaNvjp0bj+/HgII0chzm3cpojT49nfQpU5o95w5EKKn2UVrt57CeWeQ4TBQPyW722paY\n7AYmXzOc7z/YREEfJ1kFiTX8KpgritIctbGMcsCRUlJbE6BkTS3BCj9DxmRitevRORNd4P5wlLd/\n2Mods1aSZtHz7pXj6JnTtLu9zh9mWWkt60ormNTDQei6K0n71zOI9Gw27fCzYrubw4ozccSgsE/L\nLeud4qEQXlcta+d/S3ZxT7r07ovZ1nI600UlNZz5TGLd+uG9snjqdyPJ2Istb+NxSSQYRWfUoW9h\n4pyy36hZC8oBTbXQlQNOrT/Ck/M2sarMzS1H96DmkfsxXHZpfUC3GvVMGdGVYwfkodME2c0EyoWb\narj8lR8AeH2lnRdvvoOw14fOnkZeFCLVcYzpYXIHtJy/PFpTA5qGPj0dv9vFjPtux1WRGAc/4y/3\nUDx8VIv3rt7urn/9c7lnrxOuaJpomPSnKIrSCvWVXzlg+N1hfp5fxjc/V/LCdyUs2FjD1P/9hDj7\n94l++EYcZgMF6Rby0szomtll7actDRvObNrhRde9OxU6K3qrmaKB2Yw4oYhoOM7KuVvx1QaQ0WiT\n+0MlJWy5/I9su/oaIuXlyHi8PpgDVJZuIubzEa2uRjazycvxg7rQL8+BSa/x18mDcLSyn7uiKEpH\nUAFdOSCEg1HmvbOeZZ9vQUQbgrdBp6Hv2Qt9Qdc2lxWPS84a1ZV8Z2JM/JZJ/dAcDroX55OTZkFo\ngg1Lqvjiv6uZP3Mjc179GX/ZjvrAHK2ro+wvtxJcvhz/okVUPvx3jAYD4848D4C0nFz6jx1P2e13\nsPmiiwmtXbtbUO/iNDP90kP55qajOWZALhaDCuiKoqSW+iuj/CICHg/hgA9Nr8diTyMWhboKP9Xb\nvQwyGLn+mN6sqvBy4bhiFm1zM2lwQeJ/1qAHNA2MthbLjtfVYnjqX8w4cTLYHegyMvDGBH0azWCv\nq/TXv/bWhfGvWkM4TRA1aFgl9Vu8Amh2OzVPPEmPPr0Z9OQLaDododmf4/n4YwC2/enPdH/5JfTZ\nTSe9ZausaYqi7Eeqha7sd0Gvh3lvTuc/V1/C81dfQtn6NRjNOo44sw9Gk46Fr/7M2QMLGFOcwVNz\n1tMzN41n527gwx+3Ulu6DN67GrwVLZYvIxFcr7+O94Lf4T3jVGzrV1GUaW1yzYiJReR2d+DIMjPh\n1C7ECu088tMTHPPmMTy48gny7r8X5+mnk37eeThPm4z7gw+oufc+WL4SW2YWmr7hu7AuIwN0Koe5\noii/LDXLXdnvPNU7mHbl1PrjwkFDmPyn2zCYrAR9iQxk5aEwJz3xLX89bTDTF5by01YXANPO7M3x\n5c+C0QHH3pVore8iWltL2W234f1yDrqsLHq88zaGvLzdrvNVe4nW1hFftRTvkUM56d1T6s99MOUD\nCq0FxP1+tlxxJcElS8BgoNeHH2AsKiJaW4v7k0+IbN1G5h/+gCEvd7fylU5HzXJXDmiqy13Z74Sm\nYXWm43clJq5lFhSiNxjR6TVszkQ3dWHUwNc3Hk00FueRT9fU31vqEbiZgLlXfwxSNvsXVp+RQf69\n9xG/xYswm3frCt/JlmWHLDv07kbUX0WmOZOaYA02gw2LwYJmMKA5nRQ+8TjBNWvR+vSg1qYR95aR\nZk8j89xzO/xnoyiKsrdUC13Z73xhH/4d1Sx6Zwb2zGyGn3gaIb2l2Y1dwtEYi0tq+fObP1KYaeXR\nCbl4f38Wms1Oj3febjFYt1dcxqn0V/JT1XKKHX3ZWKZjTI9cMhstiVu+YzkXfnIh4ViYB8Y/wHHd\nj8Ooa//acuWgpVroygFNjaEr+92qmlX8Yf7l/DDCT8lQwds/b+fUf33Hlhr/btca9TpGF2fw7lXj\nePLE7vgvv4i4z0+0srLZ5WJ7IqNRIpWVRMrKiLkb1oprQsOqZfH1si6c/sTP/PHVH3lv2bb683EZ\nZ8aaGYRiISSSV1e/ii/S9jzmiqIoqaYCutI+8Th4KxOT0uLtD6gAy6uWs9W7lRnr3+Tl1a+Q7dBT\n7g4yc+m2Zq836nXkppnJsJsxDRqE5nSSd9ttaFZrs9e3Jrx5MxtPOpn1Rx9D3TszifkbvkRE43GW\nb3XhDSXWpG93BevPaULjhOITEMlG2sSiiVj17X++oihKqqgx9INYKOAn6PEQDYewOjOwOFKcfSsW\nga2L4N0rQMZh8pNQdBjo27c868QeJzJj7Qwq/BVcOfR65vzkwajTOG5ALr5QNJE5rRn6zEwKHvgb\nMhJBs9nQ7UVAd707i7jXC0DNCy+QdvJJ9eVkWI08cuYwrn9jGZk2Ixcf0aPJvSNyR/DxGR8TjoWx\n63JZtd1Pja+OEUUZTbrmFUVRfglqDP0gVvrTMt762x0gJWPP/B2HnHoGBlMK1z57yuHpseCvSRyb\nnXDV9+DoAiRSmgYjMQw6jZw9ZC2rDlQTl3GENLN4o5fB3ZxMX1DK2kovN0/qT+8cO5rW8UOW/kWL\nKP3DBSAlzilTyLv1L+jS0urPSymp8YXRaYJ0a8tB+qPlZVw5fQkAZ43uxp2nDEykXFU6MzWGrhzQ\nVAv9ILZ24bf1W6Ku/34+w487KbUBHQkhb8Nh2Ff//FpfmPs/XMXbS7bRO9fO/y49tNXsZVmWhj3U\nJw1x8NbiLTz99UYAftrq4qNrxu/xS8HeMA0YQK9PPiZaW4exqLBJMIdEytWsNmwIs6ikpv71j1tc\nBKNxWk7VoiiKknpqDP0gNnTipEQqTSEYddJpGC0pHtM1psExt4NINlQm3ASmRBgLRGK8vSQxBr6+\n0su6Cm9LpTQr3Ch5SSQWR9J6z1HAE8a9I4CvLkS8HYlPdHY7xu7dsQ4fhj4zs111bGzq4cXkpZkw\n6TVuO3kATrVXu6IovzDV5X4Qi0YiBD1u4vE4JpsNU6oDOkDABWEvIBObu1gSGdCqPCHOfGYeJdV+\nTHqNL/90JAVpJqLV1cQ9HnTp6UTNJsKBAJpOh82Zjmi0KUy1N8TDn6xhfZWX204aQP90PcZoGM3h\nQDM27foOeMJ8Nf1nNi7bgdGi54ybRpGZ3/JWsI3FPB6QcreWeXtJKdnhDSElOC0GTAa1U9yvgOpy\nVw5oqllxENMbDNgzW07/2R5BXwS/K4TBCOaYj2hFBYaCgt3XeVuc9UG8sRyHiRmXj2V1uZteOXay\n7SaiFRVsPG0KcY+HrDtvp9RuZu70F7E40vjd/f8gPS+//n6HWc/EAbkUZ1sx+NzUvjqd0Pffkzl1\nKo7jJqKzN3RohwNRNi7bgaYTTDi7B3pDGG9NEKPF0movRaSigrI77kRGIuTfdx/GrgV7/fMSQrQ6\npKAoirK/qS53hWgkzqrvtvPG/YuI19Sw8ZRTKTnrbDZfeBHRHTvaXE5umpkj++bSLcOKyaAjuGYt\ncY8HAJGXx+IPZgIQ8LhZv3hhk3uDkTgvzCvhjUVbcGzegPuVVwitWUPZX/5CvNF6cQCdQYfOqHHy\nLSNYGAny2LdbKHMFWDV3DiG/j2AkRpUnhDcYqb8nHgpR+fdH8M2di3/+fMrvuivRWm/t51JXR3D1\naoLr1hF1udr8c1AURfklqICuEA1F2bSsCrPdQHjzlvogHFq3jngovNflmgf0R5eV6EEQ0SjFw0Yk\nXmsahQOHNLnWbtJz86R+WI16tMb5zYVg155Os13PmbeM5odKD3d+uJYXF2zhpo9KCeothIJhfi5z\nM2vZNh77fC01vmT9NQ1htdSXoVktze4Dv1M8GKLu9dfZ9JvT2XTqZDwff7JXG9koiqLsL6rL/dcq\nFgVPGZT/hKFgDMMnFvHZf1agK+yDobCQyJYt2I48Es2S6FaOh0LE6lyAROd0opn33N2sz8ujx7sz\nkYEgmt3GkWPHMvKk07DY07B1LtPsAAAgAElEQVTsMoataYJBBWn896JDcIR8mC+7DN/8+WROvQDN\n2fRavUFHVoGd6vUNGddq/WFsWbls8EjueG8l3TNt/GFsdzZX+8i0GdEMBnKvuQah1yNDYXKuvRad\nrZUUrAE/njlf1R97vviCtFNObtL1rygHKyHEZGCglPLBX7ouSsdRk+IOUqGAH03TMJj2chzXXQb/\nPhSCLjClEb5yOaGYGU0nMIbcyHAIzWpFn5mJlJLA0qVsnnohSEnhc9OwjhnTZFJbR4sHg8QDATS7\nHc3Q/PruSleAO99bwZbaIPccX0ymUXLeG+soS+7wdsuJ/Zk8rICC9IaWuYxGkdAk/Wmzz49E8Mye\nTe3Lr2A97FAcJ5yAuV+/lH5m5YB3QE6KEyLRjSWlbPtyD6VTUi30g5CrspwvXngGk83OUedfjC09\no/2FBGoSwRwg5MYY3IYxb1DyZE6TS+PBIDUv/hcZTnRfV097DvOgQehSuDOdZjbvsRcg12nhb5MH\n4PcHMEUCxNMycVoM9QG9MMO623Iyode36a+yZjBgGzcOfXYO1dOmEXd7MFx1JfqsjpmEqCj7QghR\nDHwKLARGAQ8LIf4ImIANwIVSSq8Q4iTgUcAHfAf0lFKeIoSYCoyWUv5fsqwXgGygKnnvZiHEfwE3\nMBroAtwkpXxrf31Gpf1UQD/I+N0uPnj8YcrXrwXAaDZz7EV/RNO18z+lLQe6DIXynxL/2nJ2u6Q2\nWMvC8oXUBes45vbr0RYuJO52Yz3iCEQbutx3Cgf8RMMRTDYbuj20jNsr02kn09nQDf781EOYNncj\n/bs4OLxXFjbT3u/eJgMBNl98MUQi+AAZDiX2kLdY9nivouwHfYALgPXAO8BEKaVPCHEzcIMQ4mHg\nWWCClHKTEOJ/LZTzL+AlKeVLQoiLgCeAKclz+cARQH/gPUAF9AOYCugHGymJN5qcFY/F2KtRE3su\n/P5tiATAYEkc7+Kz0s+4b8F9APzQ/QRue/8tIiYdtXEvMlJHlj4LTbTeBR1wu/l2xiuUrf2Z8b+b\nSuHAwYnNcIBobS0yEkUY9OgzEr0MfreLqtJNaDo92YVFWBztWy/eNd3CPZMH7fG6mNdLPBBAZ7O1\nmOQl7vNBpGGmfGhTSaKXQgV05cBQKqVcIIQ4BRgIfJfofccIzCcRhDdKKTclr/8fcFkz5YwFTk++\nfgV4uNG5d5Nd+auEEHkp+AxKB0pZQBdC9APeaPRWT+BO4OXk+8VACXCWlLI2VfXobKzOdE659iY+\nm/YkJquVcWefv/et3maCeGOb6jbVv97s3ULQZuCqL69ibe1assxZvHnqm+RYd2/ZN1ZRsoGfZn8M\nwKxH7uOif04jGgphNxgpv+12fN98g33iRPL/eg8Rg4Evnn+atQu+BWDkSadx+FnndfiGOdHaWnb8\n60m8X39Fxvl/IP3009Gl7T58oHM6MQ8aSHDlKtA0si65GE1NilMOHDvz9wpgtpTy3MYnhRDDO+AZ\nocZFdkB5SgqlbIaPlHKNlHK4lHI4iTEePzATuAX4QkrZB/gieay0Q0Z+Vyb/6VZOvOoG7Bl7v33p\nnkwdPJWBWQPpZu/GXWPvAgFraxNd/dXBair9lXssw2xrCIAmqw1XRTmv3no9ng3r8X3zDQDezz8n\nVlNDPBZl/aIF9devW/gdkWBwtzL3VbSyktrXXiOybTuVDz5I3ONu9jp9djaF06bRY+Y79J49OzER\nUKd2hFMOOAuAcUKI3gBCCJsQoi+wBuiZHCMHOLuF++cB5yRfnwd8k7qqKqm0v7rcjwU2SClLhRCn\nAUcl338J+Aq4eT/Vo9Ow2FMzIU3GJX5PGCRkWXJ4euLTxGWcDFMGrpCL0XmjWVyxmEJHIXm2PffA\nped14dTrb2Hr6hUMP/5kPnn6caLhUKKLXa+HaBRhNCa2eNXpKBw0hNKflgJQNHh4SpLNaHZ7Yg16\nPI5msybq0QJ9VpaaCKcc0KSUVclJbv8TQuz8hbldSrlWCHEl8IkQwgcsaqGIq4EXhRA3kpwUl/JK\nKymxX5atCSFeAJZIKZ8UQtRJKdOT7wugdudxS9Sytf2nrtLPO3//gaAvysQLB9BzWA56Y0OrtDpQ\njT/qx6KzkG3NbqWk3flcdbx84//hd9UxdMIxjDvyeHxff43j2GMwds1Fc2Thd9VR8uMSdAYjhYOG\nYE3bfZvZfRXz+wmtXo13zleknTYZU3ExooWlcYrSyEHX5SyEsCdnuwvgKWCdlPKxX7peSmqkPKAL\nIYzAdmCQlLKicUBPnq+VUu627koIcRnJCRxFRUWjSktLU1pPJWHu62tZ/tVWAGzpJs78y2hszqat\n5FgkQsDrQQiBNc3Z5rXZUkq8NdWUb1hHdmEhjmgV+uXToXQemBww8W7IHQTmfUucoigpcjAG9OtJ\nzIQ3AkuBS6WU/l+2Vkqq7I9dMk4k0Trfua1XhRAiHyD5b7MDsVLKaVLK0VLK0Tk5rU+8UjpOl54N\nwTSrmx2dvun/IvFYjLL1a3nx+st5+aarqSnb1uayhRA4srLpM3woGetnoH/+KPj+OahYCZsXwAuT\nYONXoLZYVZQOIaV8LDmXaaCU8jwVzDu3/RHQzyWxXGKn90h8YyT576z9UAeljYoGZXHa9SOYeOFA\njv3DAMy2pl3RQZ+XOS9NIxwI4HfVMW/Gq0Qj7dzvPeiCOfc3f+7jG8Hf9oQwiqIoSkJKJ8UJIWzA\nccDljd5+EJghhLgYKAXOSmUdlPYx2wx069fyznM6g4Hswu5UbtoAQG5xL6SAja6NzC6ZzWEFh9E7\nvTc2Qyv5yavXQzza/DlPOUR8zZ9rQTwew+9yIeNxjBYrphbWlSuKonRmKQ3oUkofkLXLe9UkZr0r\nByGTxcqR519Mt4FDMJrNFA4eRm24jnM+OIdANMBTy55i1pRZ9HD2aLkQYyvBHkBr3wS1uopy/nfb\nnwj6vEy89P8YOP6ovd/jXlEU5SClMk10Yp6whwXbF/DEkifY7N5MvINyN1jTnAw5+jj6jR2P1ZFG\nIBogEA0AIJFs925vvYC0bmBrYYZ8t9FEdO3biW313C8J+rwAfP/uDMKBQLvuVxRF6QxUQD9IRWIR\nKv2VVPgqCESaD2BlvjIunX0pzy1/jvM+Oo/qQHVK6uIwOjim6BgA+mX0o39mf5ASPBVQ8i3UlECw\nYfOWmDEd/+9nEz7sWtA1ao3bcnCf+G/u+Gw7W2vbPnen+9CRybzpibXreqNxt2v8njDV27x460LE\nImrSnaK0hRBi3i9dB6XtVPrUg9Sq6lVM/WQqAsGMU2ewxb0Fh8lBcVoxTlNi7fa87fO4fHbD9IXP\nf/t5mzaD2Ru1wVrCsTB6TU+WJSsxFv7sePBWJoLtOa9D3xMIh0OULFvCwndep2jIMMYcdTiWJf9G\nFh1OXf4RXPhWKcu2uDi8VxZPnzcKp3XP3e+hgB+/q46gx4MzLx/rLrnW/Z4wn05bwfZ1degNGmfd\ndggZXfbQ7a8ouzvolq3tLSGEXkrZwkQX5UClkrMchKLxKK+seoVANMBFgy/i+eXPM3P9TAAenvAw\nJ/Y4EYD+mf2ZWDSRpZVLuXzY5a1PVNtHGeZdJtJt+iYRzCHRWp/7EHQ7hFBQ8sFjDyJlnMqSjfQZ\nMw7L5H+BlDz36RqWbUmkdDXqNfaQ96WeyWJN7PfepfnzsUic7evqAIhG4mxeWaMCurLfFN/y4e+A\nvwFFwGbg1pIHT35tX8sVQrwLFAJm4HEp5TQhhBd4GjgJKANuJZFspQi4Tkr5nhBCR2Jy8lEk0q0+\nJaV8VghxFHAvUEsisUtfIYRXSmlPPu9m4PdAHPhYSnmLEOJSEvuFGElkfTtfLY375aiAfhDSa3qO\nKTyGDzZ+QK41l++2fVd/bnHF4vqAnmnO5O7D7yYcC2Mz2LAa2j77OxANUOmvpNRdyoDMAXtMwrIb\nZ7ddjruD3oTQwuiNRiKhxB7thmQaViEEFx/Rg1A0jisQ5sYT+pNm7pjd23R6jdzuDipLPWg6Qdf+\n6Wz3bEev05NpzkSvqV8DJTWSwfw5YOcvX3fgueJbPqQDgvpFUsoaIYQFWCSEeBuwAV9KKW8UQswE\n7iOx0mggia223wMuBlxSykOSW8V+J4T4LFnmSGBwowxtAAghTgROAw6VUvqFEDuTSLwjpXwuec19\nybL/tY+fS9lL6i/ZQeqwgsN4b8p7CATFacVc8+U1OIwOzh9wfpPrdna/N8dbG6RsvYvsQjv2TDOG\nRlu8bvVs5cz3zyQmY3S1d+XVE1/FEnEQDcUwmPVY03Yfp24ipy8ceTP88CLkDIAT7geTHYsuytn3\nPMSSj2bRY8RoHFkNk+Oy7CZuPak/cQkGXcdN77CmGTn5qmG4dwSwOo18Uv4h935+D2nGNGacOoOu\n9q4d9ixF2cXfaAjmO1mT7+9rQL9GCPGb5OtCEvnRw8AnyfeWAyEpZUQIsZxEhkuA44GhQojfJo+d\nje79ftdgnjQReHFn61tKWZN8f3AykKcDduDTffxMyj5QAf0g5TA6cBgTCVrybfl8csYnCCHINLct\n+5rPFeKth37AVxdCaIKz7xyNLj1GujmxK+/SyqXEZGLy2DbvNgKRAB//fS3uHUG69HJy4uVDWg/q\n1iw44gYYfTHojGBNdMnr9HryevTihCuuQ2tmy1idppGKfGbWNCNho5+6cBV/+yGR490ddrOscpkK\n6EoqFbXz/TZJdo9PBMYmW8xfkeh6j8iGiVFxkulPpZRxIcTOv/cCuFpK+WkzZbZvEwj4LzBFSvlj\nMkHMUe39LErHUbPcOwGT3kSONYdsSzZaGweeY5E4vrpEqmMZl2ws2caTS5+kJpj44j02f2z9mPvg\n7MEYMOHekegmL9/gItpopngwGqTCV8F273bcoUapSA1mcOTVB/PGmgvmqeQNe3lk8SN8s+0bji48\nGgCr3srQnKH7tR7Kr87mdr7fVk4Sia38Qoj+wGHtuPdT4AohhAFACNE3uQlYa2YDFwohrMl7drYc\nHEBZsqzz2vUJlA6nWuidUF2wjp92/ERdsI7Dux5OtmX3Nd8Gk46eI3LYuLSKtGwLGYVmZn45k4uG\nXARAvj2f96a8hyfsId2UjiVix55hwlsbIqfIgd7Q0I5eXb2aiz+7mEg8ws2H3MwZfc7AYmjfWvJU\nC8VCrKhewezS2dw77l4uGXIJOdYcMk2pyyevKCQmpTUeQwfwJ9/fF58AfxRCrCaR93xBO+79D4nu\n9yXJLGxVwJTWbpBSfiKEGA4sFkKEgY9IfIY7gIXJMhaSCPDKL0QtW+tkgtEgz694nmd+fAaAvhl9\nmXbctMRSsl0EvGFCwTAl3k3cufQ24sT576T/NvsFABLd9JFgDKOlYQw9HAtz6ze38mlpovcu35bP\naye/Vl9GLB5jR2AHSyqX0D2tO13tXVsd10+VSCzCwrKFXDvnWpwmJy9NeonCtMKGzxb24Y/60Wm6\nNg9bKL86e7VsLVWz3BVlV6qF3skEogHmbp1bf7y2di2ReKTZay12I3qLIM+SzR1j76CHs0eLwRxI\npFHdJRYbdUYmFE6oD+iH5R+GWdew7Wp1sJrT3zsddzjRFX/n2Ds5vffp6LRUjJS3zKAzcEiXQ+rn\nGmSZG77g+CI+3t/4Pg8vepi+GX158tgnW/05KEp7JIO3CuBKyqmA3slY9VZO6H4Cq6pXATAsexhG\nreXJawadgXxbPvm2/BavCXo9bP15FVWlGxl81HFNZqYDHNntSGacMgNP2EOfjD7Yjfb6c8urltcH\nc4D/rf4fxxYeS6al7a3gaDiM31WHt6aa9C75SKsBb8SLhkaWJavN8wZMehM5+t2X3/kjfh76/iGi\nMsrK6pUsqVjC8cXHt7l+iqIoBwIV0Pczb9hLIBrAoDOQbkrv8PJNehNn9D2DkXkjcYVcDM4e3Obg\nWReqwxP2YNSMpJvSMelNAFSVbmLW3+8FYO38bznzjvuxOhvq7jQ5W+xGL0prOpm3b0bf+nLbyr2j\nkpf+/H/EY1EO+935VA00cee8O3GanEw/afpuz2gvndDRM70na2vXJpYBOov3qTxFUZRfggro+5E7\n5Oa1n1/jxRUvcmiXQ7l73N0pGa91mpwMzx3erntcIRdPLn2SN9a8gVEz8sKkFxiWMwwAT3VDfnJv\nTTXxeNuTvORZ83ho/EO8tOol+qT34eoRV6O1c3FFxaYNxGOJXShNeRk889OjSCR1oTpmbZjF1SOu\nbld5u8q0ZPLMxGf4vvx7eqf3pqtNLWNTFOXgo5at7Uf+qJ+nlj2FP+pnztY5bHFv2a/PD8fCVPmr\n2BHYQSwe2+3cG2veSLyOh5m+enr92HvxsJH0HDWG9Lx8TrnuZsx2+25ltyTNlMakHpP451H/pFd6\nL8776Dw+Lf0Uf6Ttu0N2GzAIR3aiq9xhS2d03uj6c4d2ObTN5bQmx5rDyT1Ppl9mP2x7Su+qKIpy\nAFIt9P1IJ3RkmbOoDlajE7r9OvEqFo+xvGo5V3xxBSadiRdPeJHeGb2b1K1/Zn9+rvkZgDFdxmBI\n5iW3OtM58cobiEUjmG12dIb2bcmqCY0PN33I40seB+DueXczrmBcm7eidWRmc979jxKLRjGazfxJ\n34ff9PkNGeYMci257aqLoihKZ6UC+n6UZcli+snTmbtlLiPzRu6e0KQVtcFavBEvZp2ZbEs2QjS/\ngqbOHyYcjaPXaWTaGibDucNu/vHDP+pzlz/949M8MP4BjLrENZmWTJ4+9mnmbptLvi2fAVkDmpTb\nnlZ5c4ocDePcOdacNk9k28mW3vCzMgOjzKP2qT6KoiidjQro+5EmNLrau3LugHPbdV9dsI4HFj7A\nxyUfk2XO4vVTXqeLbffUYrW+MH/7eDVvLt7K+D7Z/PPs4WTZExPQTDoTAzIHsHzHcgCGZA/ZLSlJ\ntjWb3/Sagt/tQvrjRAhhMLVvAltLxnQZw/1H3M+amjX8bsDvml0XryjK/pPc6jUspZyXPP4v8IGU\n8q0UPOs/wKNSylUdXbbSQAX0g0A4Hubjko+BxLrulTtWNhvQPaEoby7eCsA363ZQ7grWB3SrwcpV\nI67i0PxDMevNDM0e2mwruba8jNfvvJGQ38+UG2+naMhwdPp9/98k3ZzO5F6Todc+F6UoB5e7nbtt\nLMPdrgNhXfpRgBeYl+oHSSkvSfUzFDUp7qBg0Awclp/Yqtmqt9I/q3+z15n1GhnWxPi2Sa+RaW+6\n/jzTnMnxxcczoduE+iQsu1r68SwCHjfxWJRvX3+ZkL+9uRp2F4gEqPBVUOGrIBgN7nN5inLQSATz\n50ikTRXJf59Lvr/XhBA2IcSHQogfhRArhBBnCyGOFUIsFUIsF0K8kEyNihCiRAiRnXw9WgjxlRCi\nGPgjcL0QYpkQYnyy6AlCiHlCiI2NsrE193y7EOILIcSS5PNOa6leyfe/EkKMTr5+WgixWAixUghx\nz778HJSmVAv9IJBhzuDB8Q9SE6zBaXK2uP94lt3E+/93BAs2VTOyKINMa9OA7ne7kFJiTXO2OAZf\nOHgYyz77CICCfgPRG/eQJnUPYvEY35d/z7VzrkUIwbMTn2VM/ph9KrMloWgIg2bY74lfFKUVqUqf\nOgnYLqU8GUAI4QRWAMdKKdcKIV4GrgD+2dzNUsoSIcQzgFdK+UiyjIuBfOAIoD+J3Oktdb8Hgd9I\nKd3JLwsLhBDvtVCvXd2WzOOuA74QQgyVUv60Nz8EpSkV0A8SWZas3cadq/xVBKNBrAYrWZYsdJqg\nW6aV32buPnvcvaOKDx9/iHAwyCnX3UxW18LdrgEoGjSM3z/4OCGfl5yiHhjN+5ZkxR/18/KqlxOp\nWCW8svoVhuQMwaLvuOQt0ViU9a71PPvjs/TL7MfZ/c5u14RDRUmhlKRPJZHr/B9CiIeADwA3sElK\nuTZ5/iXgKloI6K14V0oZB1YJIfJauU4AfxNCTCCRprUrkLdrvaSU3zRz71lCiMtIxJ98YCCgAnoH\nUE2Zg1SVv4rbvr2N2aWzmbNlDjWBmhavjcfjLHj7dbav/Zkdm0v4/LmnCHg9zV5rttvJ69GLosHD\nsKSl7XM9zXozxxQeU398bNGxmHQdM9Fup5pQDVM/mcrnmz/nqWVP8cXmLzq0fEXZBylJn5oM3CNJ\nBND7aD1bWpSGv/XmVq6DZP70pNaS0ZwH5ACjpJTDgQrAvGu9hBB3Nr5JCNED+DOJnoShwIdtqJPS\nRqqFfpAq95VzxfAreHzJ49gMNsYVjGty3hv2EowFseqtCASOnIb12vasbHS6/fOf3qAZOKXXKRxW\ncBg6kchk1t4la3sSl3F8kYax/nJfeYeWryj7ICXpU4UQBUCNlPJVIUQd8H9AsRCit5RyPXA+8HXy\n8hJgFPAxcEajYjzA3n5rdwKVUsqIEOJoEnMDmqvXrpPh0gAf4Er2AJwIfLWXdVB2oQL6QSrbks1N\nc29iWdUyAJ63Ps+th96KpmnUBmv519J/8e22bzmjzxmMLRiLGFbAWMtUdGHJkKOOw2jZf/nKW9vr\nvSPYDDZuPORG/vnDP+nh7MGZfc9M2bMUpV3udr3G3U7o+FnuQ4C/CyHiQITEeLkTeFMIoQcWAc8k\nr70HeF4IcS9Ng+f7wFvJCW3t3T95OvC+EGI5sBj4uZV61ZNS/iiEWJq8fgvwXTufq7RC5UPfT2qD\ntUTiEfRCv1uylFA0hCvsQiDIMGWgb0PruS5Yx83f3My87YkVJ5cMvoRrRl6DEIIlFUu44JML6q99\nedLLXPTpRYzuMpoz+57ZKTOJ+SI+/BE/mtDUGnclVfYqH7qi7C9qDH0/qA3Wcse3d3Dsm8dy6exL\nqfJX1Z+LxqMsqVzCpLcnccrMU1hTu6ZNZaab07l33L2c0ecMLhp8EecPPL9+5rpZ3zAkJRCY9Wai\nMsqCsgWkGfd9XPxAZDPYyLHmqGCuKMqvlmqh7werqldx9gdn1x/fN+4+Tut9GgA1wRqumH0Fq2oS\nGyiN7zqeR458pMV9zmPxGDpNV38cjUfRhNZkXNoVcvHhhg/5attXnNbtZIbnDmdxzVK6O4vp6exJ\nmqlzBnVFSbFfXQtdCDEEeGWXt0NSyo7JiqR0KDWGvh84jI4mx42Tsph1ZgZlDaoP6ENzhtbvr96Y\nJ+xhUfkiPiv5jHP6n8OAzAGY9Kbdtm+FxJj15G4nkr86SvW7P/DWqpc5568Pk5ertmlTFKXtpJTL\ngfblYlZ+MSqg7wcZpgwePfJR3lz3JofnH86grEH156wGK1ePvJox+WMw68wMyx3WbJCuDdZy7Zxr\nAfis9DM+Pv1j8vRNl4nGZZwqfxWb3Jvob+rFpm++o7ZsG3qjCatDtcoVRVE6MxXQ9wO70c4xRccw\ntmAsZr15t4CdYc5gUo9JrZYRjDVsmRqJRxIbteyiOlDNWR+cRU2whkFZg5h255PUbNlMRkFXLM7m\nt3rdk0A0gIaGSd+xa8cVRVGUjqUCegrVBevY5t2GQWcgz5rX7qVb/ogfX8SHROIwOHh64tM8+sOj\nnNv/3GYnt3kjXmqCiQ1mVlavpEpz0WvYyDY/L+jz4qurJRIM4szNw6X5+fuiv2PSmbh+1PXkWHPw\nR/xs9W5l5Y6VHFZwGF2sXVrcRlZRFEXZf1RAT5FQNMTra17nqWVPAXDP4fcwpfeUNm+q4g65eWvt\nW7y+5nXGFoxlXME4NtRt4NmJz5JmTGu2xZxmTGNg5kBW1axifNfxTcbq22Lzih95/9EHADjktDMo\nH2rhs9LP6s/fOfZOKv2VnPn+mcRlnBxLDm+c8gY51px2PUdRFEXpeGrZWooEYgG+3fZt/fHXW78m\nHAu3+X5PxMNjSx6jzFfGO+vewaK38MqqxGTTlrq/syxZ/Hviv/nsjM+4YdQNLK1cynbvdkLRULPX\nNxaPxVi/aEH9ccmyJeQYGtbLB2NBJJISdwlxGQegKlBFJB5p82dSFGX/E//f3p2HyVXV+R9/f7KH\nBAKEgAgiiChLWC02QcSwiMiwKILADCAIg4IwIrL4cwQUZwBHHUQQATFxY0dAcIAMa2RNIyGsAWQZ\n9iQQIAQIWb6/P84pUulUVVcvt6u78nk9Tz9dde5yTt30k2+dc889X+kUSccVdO4PMrn1RZLGSLo3\nZ6H7TJXtF0pavxltK0KhAV3S8pKukPS4pMckbS1pRUkTJT2Zf7dkFo2Rg0ZyyNhDGKABDB4wmAPX\nP3Cx58M7MkiDGDJg0Wz35YYsx2rLrsZADaxzFDlJy0Deev8t7n7pbs578DxmzZ3VYX0DBg7kU7vu\nzqAhQ0Fi8z2+zAarbsRmK2/G1qtuzfGbH8/wQcMZu9JYPjbqYwDsufaeLDOo+uN1ZpZsOGHD/Tec\nsOGzG07YcGH+3a3Uqa0ir2hXtB2AhyJi0/aJYiQNjIivR8SjvdCOXlHoc+iSJgCTIuJCSUNI6xl/\nj7TW7+mSTgRWiIgT6p2nvz6H/s68d5j9/mwkMWrIqE5NLJs7fy7TZk3jiieuYNwa4xg5eCQfXe6j\nDQ1vT58znQsfvpBr/3EtJ299MquPXJ2Vl1mZMcuMqTvkv2DePN6d/RYRCxm6zEiGDB/OG3PfYAAD\nFnt2/bV3X2P+wvkMHTi0Zl51sxbU6ckiOXhXW8v9sIcOeqjLy79KGgFcBqwODAR+BJwBlCJiZs49\n/l8Rsb2kU4C1gY8DKwFnRsQFNc67KnApac31QcA3ImKSpF8BmwPDgSsi4uS8/7OkzG7/BAwGvhIR\nj0vaAjiLlHjlXeBrETFN0sHAl4CRud1fBK4BVsjHfz8irsn52v8H+BvwaeBFYI+IeLdGuw8DDgeG\nAOW17D9BSgE7PB+/NTAD+DWwIykb3WnAcRHRJmkX0hK9A4GZEbFDrc9R+1+muQr7hpTz4G4HHAwQ\nEe8D7+d1g7fPu00grS1cN6D3V8sMXqbmAjEdGTpoKBuN2YixK42tGYTnzJvDK3Ne4ZU5r7Deiut9\nsKTs0EFDmTNvDsdvfpIGsUkAACAASURBVDzXP309t79wOysMXYFL/+lSVh2xas06Bw4ezMgVF19p\nbfmhSwZsr8Zm1rDezId+Rp39NwK2AkYAD0i6PiJeqrLf/sCNEfHjnK+83PZ6OcxnRsRmkr5JyqT2\nddJa7Z+JiPmSdsyft5wYZjNgo3y+QVTPqw6wDrBfRBwm6bJ8/B9qfL6ryl9SJJ0GHBoRZ+dsb6WI\nOCpvGwHcGxHfye/Jv8eQvnhtFxHPSCrfb6z3OfqcIoc81iJ9G/qtpI2B+4FjgFUi4uW8zyukHLpW\nQ70e9ROznuDA/zkQgG1X25bTtjmN0cNHM2roKL616beY+e5MTr7rZABmzZ3F1OlTWXWt2gHdzHpc\nr+RDz73oevtfk3u370q6FdgCuLrKfpOBiyQNJuVGn5LL6+Uwvyr/vp/U+4aUKGaCpHWAIPW+yyZG\nRDnfc6286pDyu5frvx9Ys87nG5sD+fKk3v+NNfZbAFxZpXwr4I6IeAagon31PkefU+Q99EGkb2K/\niohNSSnzTqzcIdJ4f9Uxf0mHS2qT1DZjxoxquyz1pkyf8sHrqTOm8tp7r32QRvRDIz7EysNXZqOV\nNgLSinTrr9Rzcz9mvjuTGe/M4J157/TYOc1aUK/kQ8890Xp5z9v/P1v1/92IuIM0svoiMF7SgQ3k\nMC/Pul3Aok7ij4BbI2IsaTi+cv85Fa+r5lVvd972565mPHBURGxIyi5Xa8LSexFVFvGord7n6HOK\nDOgvAC9ExL35/RWkP8BX832a8v2a6dUOjojzI6IUEaUxY/xYVDU7r7kzY4ana3PwBgdz5RNXLpYX\nfOURK/OLcb/g4i9ezHV7Xccqy/TMYMhLb7/EAdcfwE5X7MRNz93Eu/Oq3tYyszRnqP233p7Kh/5O\nRPwB+Anp/9ZnSXnPYclh4T0kDZM0mnTLc3KN834UeDUPX1+Yz1sth3lHRpG+FEC+7VpnvyXyqnfB\nssDLeWThgC4cfw+wXf7yQsWQe6Ofo08oLKBHxCvA85I+mYt2AB4lTVIo5/Y8iDQhwrrgwyM+zB92\n/QPjdxnPewve46Znb1piiH708NGMXWksq4xYpeoa8V1x7VPX8tKcl1gQCzjjvjN4e97bPXJes1aT\nJ74dBjxH6hU/RzcnxGUbAvdJmgKcTJrcdSpwlqQ2Uo+20lTgVlLg+lGN++eQgn05Z/m+wFkR8SBQ\nzmH+JxrLYX4m8J/5PPV61n8ESjmv+oEsyqveWf8O3Jvb1ulzRMQM0qS6qyQ9SJoYCI1/jj6h6Fnu\nm5C+5Q0Bnga+RvoScRnpHtJzwD4V9yuq6q+z3HvDnHlzmPb6NNpebWPXtXZltZGrLVq5bd67MH8u\nDF0OBvTcd7fbn7+do245CoCNx2zM2ePOZoVhLfn0oVklL4lofZrTp7aqOTPhjp/Aqw/DuH+HD28K\nPbQe+5tz32Ta69N4fvbzfHb1z7LSMt1fV2LBwgW8NOcl7n35XkqrlFht5GoMHtin55/Y0scB3fq0\nhgJ6ntJ/GGmW4QfDDhFxSGEtq+CA3gUP/BGu+WZ6PXg4HD0Flv1Qc9tUx/R3prPn1Xsye95shg8a\nznV7XcfKy6zc7GaZVWqZgN5f85xLOgfYpl3xWRHx22a0p69p9J7ANcAk4H9Z8t6MtTPrvbQyW1OH\noSuXmV24APr4SMzcBXOZPW82kDK8efa8WXH6a57ziDiy2W3oyxoN6Mt0tJqbJS/MfoHj7zgegDO3\nO5PVl129OQ1Zbzd4/h549VHY8RQY3rfvcY8cPJL9PrkfV//janb66E6dzkxnZra0a3TI/TTgroj4\na/FNWlJ/GXJ/+/23Of6O45n0Yloy+LOrf5YztjuDEYNHNKdBc2enSXHDRkE/uB/91ty3mLtgLkMH\nDl1sqVmzPqJlhtytNTXaQz8G+J6kucA80h92RIT/160wcMDAxXqWKwxdocNkKoUaumz66SccxM3M\nuq6hgB4R/ScqNNHwQcM5rnQcKw5LaxIcMvaQTmVYMzMz66qGH1vLaU7XoWLpu7xMYOH6y5B7WTlf\neL112M2s3/GQey+StDywf0Sc24VjnyVnnuuBdvyQtM77/3b3XEVrqIcu6eukYffVgSmkhezvBsYV\n17T+y4HczMoeW3e9/UlZutYgreH+vfUef6y7K8V1maRBETG/WfV3wvLAN4ElAnpvfoaI+EFv1NMT\nGo08x5By4T4XEZ8DNgXeKKxVZmYtIAfzC0hrlCv/viCXd4ukf5Z0n6Qpkn4taaCktyu27y1pfH49\nXtJ5ku4FzpS0oqSrJU2VdI+kjfJ+p0j6vaS7JT2Z84yXz/ddSZPzMad20LYD834PSvp9Lhsj6cp8\njsmStqmo8yJJt0l6WtLR+TSnA2vnz/cTSdtLmpTTqz6aj71a0v2SHsnZ4Bq9dkscl6/feEkPS3pI\n0rcrrt3e+fUPctsflnS+Okhx19sanRT3XkS8JwlJQ3MC+092fJiZ2VKtkHzoktYjrbW+TU5sci4d\nJyVZHfh0RCyQdDbwQETsKWkc8DsWPZe+RO50YCzplusWpC8m10rartptV0kbAN/Pdc2sSHRyFvDz\niPibpDVIKU7Xy9vWBT5HSrIyTdKvSNk5x+YsbEjanpQsZmw5zSlwSM6rPhyYLOnKiHitgUu4xHGk\nhdNWy5nVykP+7f0yIn6Yt/8e2A34SwP19YpGA/oL+cNdDUyUNIu0DruZmdVWVD70HUiZ1SbnTuJw\namSurHB5RerQbckZ2SLiFkmjJZUfM6mWO31bYGdSkhZIOcfXAarNoxqX65qZz1/O1bEjsH5Fp3Y5\nSSPz6+sjYi4wV9J0FuVEb+++imAOcLSkvfLrj+Q2NRLQqx03DfhY/rJzPXBTleM+J+l40peyFYFH\n6G8BPSLKH/yU/A88CrihsFaZmbWG/6N6StBu5UMn9ZInRMRJixVK36l42/4Rmzk0plrudAH/GRG/\n7lQrFzcA2Coi3qsszAG+0dznH3yG3GPfEdg6It6RdBsN5CuvdVxEzJK0MfB54AhgH+CQiuOGke7n\nlyLieUmnNFJfb2p49pakzfK9jY1Iec7f7+gYM7OlXCH50IGbgb0lrQwpf7dyLnNJ60kaAOxV5/hJ\n5CH6HOBmRsRbeVu13Ok3AoeUe9SSVivXXcUtwFfy8ZW5xW8CvlXeSSkbZz2zSUPwtYwCZuWgvC7p\nNkEjqh4naSVgQERcSbplsFm748rBe2a+Dns3WF+vaSigS/oBMAEYDawE/FbS94tsmJlZf5dnsy+R\nD727s9wj4lFS0LlJ0lRgIrAq6b7zdcBdwMt1TnEK8Kl87OnAQRXblsidHhE3ke75362Uu/wKagTb\niHgE+DFwu1Ju8Z/lTUeTcp9PlfQoqRdc7zO+BtyZJ6D9pMouNwCDJD2WP8M99c7XwHGrAbcp5Zj/\nA7DY6EdEvEGa4Pgw6QvO5Abr6zWNLv06Ddi4PFSSJxJMiYhemRjX355DN7OW1KdmNBchDyO/HRH/\n1ey2WOc1OuT+EovfKxgKvNjzzTEzM7OuaHSW+5vAI5ImkoaNdgLuk/QLgIg4ut7BZmbW90XEKY3u\nm++R31xl0w4NPjpWqL7eviI0GtD/nH/Kbuv5ppiZWX+Rg2Kfzane19tXhEYfW5tQfq20pvtHImJq\nYa0yMzOzTml0lvttkpbLjx/8HbhA0s86Os7MzMx6R6OT4kblZxS/BPwuIrYkPZhvZmZmfUCjAX2Q\npFVJK+dcV2B7zMysB0jaXdKJNba9XaO8MhHJbZJKRbaxFkmbSNq1F+r5XsXrNSU93APnHCPpXkkP\nSPpMle0XSlq/u/VU02hA/yHpQfp/RMRkSR8DniyiQWZm1n0RcW1EnN7sdnTRJkBhAV3JALq/Yl81\nOwAPRcSmETGpXb0DI+LreWGgHtdQQI+IyyNio4j4Rn7/dER8uYgGmZm1knOOuGX/c4645dlzjrhl\nYf7dE6lT15T0eO5RPyHpj5J2lHSnUtrTLSQdLOmXef+1lFKiPiTptIrzSNIvJU2T9L9A1eVcJe2c\nj/+7pMsrkqpU2/dTkm5XSk96Yx7dRdJhSqlHH1RKo7pMLv9KXg3uQUl3SBpC6kTuq5Q6dd8a9dRK\nu4qkY/M5H5b0bxXXbJqk35FWe/sNMDzX8cd86EBJFyilVb0pL6JW63Mu8XnycrZnkpbPnSJpuKS3\nJf00r5q3deXIh6Rd8jV9UNLNuWyLfK0fkHSXOpHZtNFJcZ+QdHN5OELSRvLSr2ZmdeXgvUQ+9J4I\n6sDHgZ+SUo+uC+xPyop2HEv2PM8CfhURG7L4krB7AZ8E1gcOBD7dvhKlNc6/D+wYEZsBbcCx1Rok\naTBwNrB3RHwKuIi0DCzAVRGxeURsDDwGHJrLfwB8PpfvnvOE/AC4NCI2iYhL61yDdUnJVLYATpY0\nWNKngK8BW5LWaT9M0qZ5/3WAcyNig4j4GvBuruOAiu3nRMQGwBvkjHQ1LPF5ImJKu7a/S0pDe29E\nbBwRf6u4VmNIfxtfzuf4St70OPCZiNg0n+s/6rRhMY0OuV9AWtd2HkB+ZO2rjVZiZraUqpcPvbue\niYiHImIhKY3nzZHW8n6IlNu70jbAxfn17yvKtwMujogFEfESKbFKe1uRAv6dSuucH0T1DHKQvhyM\nJaXZnkL6IrB63jZW0iSlteAPADbI5XcC4yUdBgxs4HNXuj4i5uZUreW0q9sCf46IORHxNnAVUL6X\n/VxE1Fvz/ZkclAHuZ8nrWKnW52lvAXBllfKtgDvK6WAr0syOAi7PHeif1znvEhpdWGaZiLhPWmwp\n4/mNVmJmtpQqKh86LJ5ydGHF+4VU/7+948Qd1QmYGBH7NbjvIxGxdZVt44E9I+JBSQeTMrkREUdI\n2hL4InB/7mE3qtG0q2UdpZBtf76aQ+7U+DxVvFeRh74RPwJujYi9JK1JJxZya7SHPlPS2uQ/CKVZ\nkPUy+ZiZWe28593Nh95Zd7JoVPWAivI7SPeqB+Z73Z+rcuw9wDaSPg4gaYSkT9SoZxowRtLWed/B\nkso9zGWBl/Ow/AdtkLR2RNwbET8AZgAfoePUqfVMAvbM97RHkG4rTKqx77zcnq6o+nk64R5gO0lr\nwWJpZkexKFfKwZ05YaMB/Ujg18C6kl4E/o0OUt+ZmVlh+dA76xjgyDw8vFpF+Z9JTyw9CvwOuLv9\ngRExgxRYLlZKt3o36d71EvL9772BM/IksCksui//78C9pC8Xj1cc9pM8We9hUtrXB0npW9evNymu\nloj4O6n3fF+u78KIeKDG7ucDUysmxXVGrc/TaDtnAIcDV+VrVZ4rcCbwn5IeoPFRdKCD9KmSjomI\nsyRtExF35m87AyJidmcb3x39NX1qRDBr7iwGaRDLDV2u2c0xs+7pUvrUPAHuP0jD7P8HfO/I88Z1\nKx+6WTUdBfQpEbGJpL/n2Y1N0R8D+sJYyNNvPM337/w+o4eN5tRtTmWl4Ss1u1lm1nUtnw/d+reO\nuvOPSXoS+HAeaikTEBGxUXFN699mvTeLEyadwBOzngDg4scu5lubfavJrWrMgoULePP9NxkyYAgj\nh9R83NTMlmKS/gys1a74hIi4sYfr+RrplkGlOyPiyJ6sp07955CeEqh0VkT8tjfq74y6AT0i9pP0\nIdIqcbv3TpNaw8ABA1luyKJh9hWHr1hn775j/sL5PP764/zo7h/xkWU/wklbnsTo4aOb3Swz62Mi\nYq9eque3QNOCZ299cegJHd5wj4hXgI17oS0tZfmhy3PGdmdw4UMXsuqIVdl1rcKXJe4Rs96bxbdv\n+zavzHmFR19/lM0/tDn7rtupOSlmZtYEdQO6pMsiYp88M7LyZruH3Buw8jIrc9IWJ9Hu+f0+bYAG\nMGrIKF6Z8woAyw9bvsktMjOzRnTUQy/ft9itKyeX9CzpecIFwPyIKOVn7S4lrcDzLLBPRMzqyvn7\ng/4UzAFGDx/N2ePOZvwj4/nY8h9jyw9t2ewmmZlZA+rOcu/2yVNAL+Vl+cplZwKvR8TpSqn9VoiI\nE+qdpz/OcjezltO/vp3bUqfuwjKSZkt6q8rPbElvdbHOPYAJ+fUEYM8unsfMzLpI0p7qwbzckkqS\nftFT5+tC/R/kf1e7nOSS/iqp5e8fdjTLvatL731wCuAmSQH8OiLOB1aJiPKysa+QFtM3M7PetSdw\nHWmVuG6LiDZSJramiIhrgWvz23JO8q/n97WWfm0pnVpWrgu2jYgXJa1Myr6z2PJ4ERE52C9B0uGk\nZfFYY42eyGNgZtb7frrvbkusFPedS6/r9kpxkv4ZOBoYQlqC9JvAL4HNSUlFroiIk/O+p5MePZ4P\n3ETKQLY78NmcCvvLEfGPKnUcRvp/eAjwFPAvEfGOpK8AJ5PmR70ZEdtJ2h44LiJ2k7QFKWXrMOBd\n4GsRMa3G5ziYtN76KNKytH+IiFPztqtJa7sPIz37fX4u34V0TQcCMyNih3yeEnAhafnU4Tnv+Nak\n9KaliJgp6UBSitkApkbEvzR+1fu2QgN6RLyYf0/PixBsAbwqadWIeDknA5he49jzSevsUiqVirvR\nb2ZWkBzML2BRCtWPAhf8dN/d6E5Ql7QesC+wTUTMk3QuKUHI/4uI1yUNBG6WtBEp0cdewLq5E7V8\nRLwh6Vrguoi4ok5VV0XEBbnO00g5zM9mUQ7zF2sMZZdzes+XtCMp+NbLLb4FKe3qO8BkSdfnHv8h\n+fMMz+VXkm4VXwBsFxHPVCQ1ASAipkj6ASmAH5XbXr5uG5BSun46B/f+sUBIgxpNztJpOSPPsuXX\nwM7Aw6QhkYPybgcB1xTVBjOzJisqH/oOwKdIQW5Kfv8xYB9JfwceIOXRXh94E3gP+I2kL7Fksph6\nuprDvLM5vSdGxGsR8S5p9GDbXH50TlxyD6mnvg6184g3YhxweXmidieP7fOK7KGvAvw5fzMaBPwp\nIm6QNBm4TNKhwHPAPgW2wcysmYrKhy5gQkSc9EFBSsM5Edg8ImZJGg8My73kLUhBf2/gKFJga8R4\nupbDvLM5vduPwkYewt8R2DoP899GGnq3GgrroUfE0xGxcf7ZICJ+nMtfi4gdImKdiNix1b4hmZlV\nKCof+s3A3nl+UjmX9hrAHOBNSasAX8jbRgKjIuKvwLdZtPJnIznHO5PDvFJnc3rvJGnFPLS+J2kE\nYBQwKwfzdUk9c6idR7wRtwBfkTS6C8f2eYUFdDMzKyYfekQ8SroXfFNOnDURmEsaan8c+BMpKEIK\nytfl/f4GHJvLLwG+mx/tWrtGVZ3JYV6pszm97wOuBKYCV+b75zcAgyQ9BpxOCuT18oh3KCIeAX4M\n3J6P/Vmjx/YHhS4s01O8sIyZ9QFdWlimqFnuraI8O708gc26rujH1szMlmo5eDuAW+Ec0M3MlnK9\nkfNb0ueBM9oVP5PTsI7vqXqWZg7oZmZLud7I+R0RNwI3Fl3P0syT4szMzFqAA7qZmVkLcEA3MzNr\nAQ7oZma2GElr5mfMO9pn/4r3TU2fag7oZmbWNWsCHwT0iGiLiKOb1xxzQDcz62dy7/hxSX+U9Jik\nKyQtI2mHvPLbQ5IukjQ07/+spDNz+X2SPp7Lx0vau+K8b9eoa5Kkv+efT+dNpwOfkTRF0rclbS/p\nunzMipKuljRV0j056xuSTsntuk3S05L8BaAHOaCbmfVPnwTOjYj1gLdIS7qOB/aNiA1JjyV/o2L/\nN3P5L4H/7kQ904GdImIzUsrW8rD6icCkiNgkIn7e7phTgQciYiPSMre/q9i2LvB5UsrUk/M68dYD\nHNDNzPqn5yOivF77H0jZ1J6JiCdy2QRgu4r9L674vXUn6hkMXJBTqF5OSsnakW2B3wNExC3AaEnL\n5W3XR8TcnMJ0Oikzp/UALyxjZtY/tU/E8QYwusH9y6/nkzt2kgYAQ6oc923gVVKWtgGk3OrdMbfi\n9QIch3qMe+hmZv3TGpLKPe39gTZgzfL9ceBfgNsr9t+34vfd+fWzQDmX+e6k3nh7o4CXI2JhPufA\nXF4v/eokcrrVnNd8ZkS81dCnsi7zNyMzs/5pGnCkpIuAR4GjSSlGL5c0CJgMnFex/wo5hepcYL9c\ndgFwTU4legMpn3p75wJXSjqw3T5TgQX52PGk1K1lpwAX5freAQ7q3ke1Rjh9qplZY7qUPrUIktYE\nrouIsQ3u/ywpRenMAptlTeYhdzMzsxbgIXczs34mIp4FGuqd5/3XLKwx1me4h25mZtYCHNDNzMxa\ngAO6mZlZC3BANzMzawEO6GZm/ZCkXSRNk/SUpBOb3R5rPgd0M7N+RtJA4BzgC6S11feT1Mga69bC\nHNDNzPqfLYCnIuLpiHgfuATYo8ltsibzc+hmZgUrlUqDgJWAmW1tbfN74JSrAc9XvH8B2LIHzmv9\nmHvoZmYFKpVKnwZmAM8AM/J7sx7ngG5mVpDcM78eWB4Yln9fXyqVBtY9sGMvAh+peL96LrOlmAO6\nmVlxViIF8krDgDHdPO9kYB1Ja0kaAnwVuLab57R+zvfQzcyKMxN4j8WD+nukIfgui4j5ko4CbiTl\nJ78oIh7pzjmt/3MP3cysIHkC3BeBN0iB/A3gi21tbQu6e+6I+GtEfCIi1o6IH3f3fNb/OaCbmRWo\nra3tLtLQ+1rASvm9WY/zkLuZWcFyj/yVZrfDWlvhPXRJAyU9IOm6/H4tSffm5QovzRM6zMzMrBt6\nY8j9GOCxivdnAD+PiI8Ds4BDe6ENZmZmLa3QgC5pddKEkAvzewHjgCvyLhOAPYtsg5mZ2dKg6B76\nfwPHAwvz+9HAGxFRXvrwBdIShmZmZtYNhQV0SbsB0yPi/i4ef7ikNkltM2Z065FNM7OWI+lZSQ9J\nmiKpLZetKGmipCfz7xVyuST9Is9dmipps4rzHJT3f1LSQRXln8rnfyofq96qw7qmyB76NsDukp4l\nZQIaB5wFLC+pPLu+5nKFEXF+RJQiojRmTHcXVTIza0mfi4hNIqKU358I3BwR6wA35/eQ0qyuk38O\nB34FKTgDJ5MSu2wBnFwO0HmfwyqO26UX67AuKCygR8RJEbF6RKxJWpbwlog4ALgV2DvvdhBwTVFt\nMDPrC0qlkkql0rBSqVR0D3QP0twkWHyO0h7A7yK5h9SxWhX4PDAxIl6PiFnARGCXvG25iLgnIgL4\nXbtzFV2HdUEzFpY5AThW0lOke+q/aUIbzMwKlwP5N4BXgTnAq6VS6Rs9FNgDuEnS/ZIOz2WrRMTL\n+fUrwCr5dbV0q6t1UP5ClfLeqsO6oFcWlomI24Db8uunScMuZmat7gjgv4Bl8vsx+T3kIelu2DYi\nXpS0MjBR0uOVGyMiJEU366irN+qwxnnpVzOzAuRe+KksCuZlywCndreXHhEv5t/TgT+TOkqv5qFs\n8u/pefda6Vbrla9epZxeqsO6wAHdzKwYQ0m3FasZnbd3iaQRkpYtvwZ2Bh4mpVAtzyKvnKN0LXBg\nnom+FfBmHja/EdhZ0gp5otrOwI1521uStsozzw9sd66i67Au8FruZmbFmAu8RvXc56/l7V21CvDn\n/JTXIOBPEXGDpMnAZZIOBZ4D9sn7/xXYFXgKeAf4GkBEvC7pR6T86gA/jIjX8+tvAuOB4cD/5B+A\n03uhDusCpcmFfVupVIq2trZmN8PMlm6dHiLPE+Iq76FDCnbHtbW1dfceutliPORuZlac84DjgBmk\nFTNn5PfnNbNR1prcQzcza0yXJ7HlCXBDgbltbW19/z9d65d8D93MrGA5iL/X7HZYa/OQu5mZWQtw\nQDczM2sBDuhmZmYtwAHdzKwfknSRpOmSHq4oa4n0qbXqsPoc0M3M+qfxLJlutFXSp9aqw+pwQDcz\nK1CpVNqyVCr9sVQqTc6/t+yJ80bEHcDr7YpbJX1qrTqsDgd0M7OClEqlU4BbgK8Cpfz7llxehFZJ\nn1qrDqvDAd3MrAC5J/5d0rKv5f9rB+T33+2pnnotuddbePrUVqijVTigm5kV42hgWI1tw/L2ntYq\n6VNr1WF1OKCbmRXjE9T+P3YAaRJYT2uV9Km16rA6vPSrmVkxngA2o3pQXwg82Z2TS7oY2B5YSdIL\npJnkvZHatJl1WB1OzmJm1phOJWfJ98hvYfHUqWXvAOPa2tru7YmGmYGH3M3MCpGD9U9IwXthLl6Y\n3//Ewdx6mgO6mVlB2traTgHGAZeQhpwvIfXMT2lis6xF+R66mVmBck/8gGa3w1qfe+hmZmYtwAHd\nzMysBTigm5mZtQAHdDOzfqhG+tRTJL0oaUr+2bVi20k5Tek0SZ+vKN8llz0l6cSK8rUk3ZvLL5U0\nJJcPze+fytvX7M06rDYHdDOzgpVKpbVKpdI2pVJprR487XiWTJ8K8POI2CT//BVA0vqkxDAb5GPO\nlTRQ0kDgHFLq0/WB/fK+AGfkc30cmAUcmssPBWbl8p/n/XqlDqvPAd3MrCCl5H7gEeB64JFSqXR/\nqVQqdffcNdKn1rIHcElEzI2IZ0iruW2Rf56KiKcj4n3SY3V75KVYxwFX5OPbp0ktpza9Atgh798b\ndVgdDuhmZgXIQfs20vKvw4FR+fdmwG09EdRrOErS1Dwkv0Iu62xq09HAGxExv135YufK29/M+/dG\nHVaHA7qZWTF+DYyosW0EcF4Bdf4KWBvYBHgZ+GkBdVgf5YBuZtbD8r3y9TrYbf0evqdORLwaEQsi\nYiFwAWm4Gzqf2vQ1YHlJg9qVL3auvH1U3r836rA6HNDNzHreh4H3O9jn/bxfjynnEM/2Asoz4K8F\nvppnj69FSt16H2k52nXybPMhpElt10bK2nUrsHc+vn2a1HJq072BW/L+vVGH1eGlX83Met5LwJAO\n9hmS9+uSGulTt5e0CRDAs8C/AkTEI5IuAx4F5gNHRsSCfJ6jSDnLBwIXRcQjuYoTgEsknQY8APwm\nl/8G+L2kp0iT8r7aW3VYfU6fambWmM6mT72fNAGulvvb2tqKmhhnSyEPuZuZFeNfgTk1ts0BjujF\ntthSoLCALmmYtaFh3AAAB8VJREFUpPskPSjpEUmn5vKqKwOZmbWStjSsuD1wP/Au6dGrd/P77ds8\n7Gg9rLAh97wIwIiIeFvSYOBvwDHAscBVEXGJpPOAByPiV/XO5SF3M+sDurywSZ7N/mHgpba2tmd6\nrklmixQ2KS7PSHw7vx2cf4K0MtD+uXwCcArp2Ukzs5aUg7gDuRWq0HvoeR3fKcB0YCLwD2qvDGRm\nZmZdVGhAzwscbEJaMGALYN1Gj5V0uKQ2SW0zZsworI1mZmatoFdmuUfEG6QFBLam9spA7Y85PyJK\nEVEaM2ZMbzTTzMys3ypylvsYScvn18OBnYDHqL0ykJmZmXVRkSvFrQpMyLlwBwCXRcR1kh6l+spA\nZmZm1kVFznKfCmxapfxpFiUMMDMzsx7gleLMzMxagAO6mZlZC3BANzMzawEO6GZmZi3AAd3MzKwF\nOKCbmZm1AAd0MzOzFuCAbmZm1gIc0M3MzFqAA7qZmVkLcEA3MzNrAQ7oZmZmLcAB3czMrAU4oJuZ\nmbUAB3QzM7MW4IBuZmbWAhzQzczMWoADupmZWQtwQDczM2sBDuhmZmYtwAHdzMysBTigm5mZtQAH\ndDMzsxbggG5mZtYCHNDNzMxagAO6mZlZC3BANzMzawEO6GZmZi3AAd3MzKwFOKCbmZm1AAd0MzOz\nFuCAbmZm1gIc0M3MzFqAA7qZmVkLKCygS/qIpFslPSrpEUnH5PIVJU2U9GT+vUJRbTAzM1taFNlD\nnw98JyLWB7YCjpS0PnAicHNErAPcnN+bmZlZNxQW0CPi5Yj4e349G3gMWA3YA5iQd5sA7FlUG8zM\nzJYWvXIPXdKawKbAvcAqEfFy3vQKsEpvtMHMzKyVDSq6AkkjgSuBf4uItyR9sC0iQlLUOO5w4PD8\n9m1J0zqoahTwZieb18gx9fapta19ebX9Ksvab18JmNlBuzqrL1+famX13hdxfWq1qyeOaZW/oVrt\n6O7+/eVv6IaI2KWTx5j1nogo7AcYDNwIHFtRNg1YNb9eFZjWQ3WdX8Qx9fapta19ebX9Ksuq7N9W\nwL9Fn70+jVyzdterx69PX79GfeFvqCvXaGn7G/KPf5r5U+QsdwG/AR6LiJ9VbLoWOCi/Pgi4poeq\n/EtBx9Tbp9a29uXV9vtLB9t7Wl++PtXKGrmGPa0vX6O+8DfUlXqWtr8hs6ZRRNUR7+6fWNoWmAQ8\nBCzMxd8j3Ue/DFgDeA7YJyJeL6QR/ZSktogoNbsdfZWvT8d8jerz9bFWVNg99Ij4G6Aam3coqt4W\ncX6zG9DH+fp0zNeoPl8fazmF9dDNzMys93jpVzMzsxbggG5mZtYCHNDNzMxagAN6HydpPUnnSbpC\n0jea3Z6+StIISW2Sdmt2W/oaSdtLmpT/jrZvdnv6IkkDJP1Y0tmSDur4CLO+xwG9CSRdJGm6pIfb\nle8iaZqkpySdCBARj0XEEcA+wDbNaG8zdOYaZSeQHodcKnTy+gTwNjAMeKG329osnbxGewCrA/NY\niq6RtRYH9OYYDyy2hKSkgcA5wBeA9YH9cnY6JO0OXA/8tXeb2VTjafAaSdoJeBSY3tuNbKLxNP43\nNCkivkD60nNqL7ezmcbT+DX6JHBXRBwLeCTM+iUH9CaIiDuA9ovpbAE8FRFPR8T7wCWkXgMRcW3+\nD/mA3m1p83TyGm1PStG7P3CYpJb/u+7M9YmI8sJOs4ChvdjMpurk39ALpOsDsKD3WmnWcwpPzmIN\nWw14vuL9C8CW+Z7nl0j/ES9NPfRqql6jiDgKQNLBwMyKALa0qfU39CXg88DywC+b0bA+pOo1As4C\nzpb0GeCOZjTMrLsc0Pu4iLgNuK3JzegXImJ8s9vQF0XEVcBVzW5HXxYR7wCHNrsdZt3R8kOT/ciL\nwEcq3q+ey2wRX6P6fH065mtkLcsBve+YDKwjaS1JQ4CvkjLT2SK+RvX5+nTM18halgN6E0i6GLgb\n+KSkFyQdGhHzgaNI+eMfAy6LiEea2c5m8jWqz9enY75GtrRxchYzM7MW4B66mZlZC3BANzMzawEO\n6GZmZi3AAd3MzKwFOKCbmZm1AAd0MzOzFuCAbn2epLua3QYzs77Oz6GbmZm1APfQrc+T9Hb+vb2k\n2yRdIelxSX+UpLxtc0l3SXpQ0n2SlpU0TNJvJT0k6QFJn8v7HizpakkTJT0r6ShJx+Z97pG0Yt5v\nbUk3SLpf0iRJ6zbvKpiZ1edsa9bfbApsALwE3AlsI+k+4FJg34iYLGk54F3gGCAiYsMcjG+S9Il8\nnrH5XMOAp4ATImJTST8HDgT+GzgfOCIinpS0JXAuMK7XPqmZWSc4oFt/c19EvAAgaQqwJvAm8HJE\nTAaIiLfy9m2Bs3PZ45KeA8oB/daImA3MlvQm8Jdc/hCwkaSRwKeBy/MgAKSc9GZmfZIDuvU3cyte\nL6Drf8OV51lY8X5hPucA4I2I2KSL5zcz61W+h26tYBqwqqTNAfL980HAJOCAXPYJYI28b4dyL/8Z\nSV/Jx0vSxkU03sysJzigW78XEe8D+wJnS3oQmEi6N34uMEDSQ6R77AdHxNzaZ1rCAcCh+ZyPAHv0\nbMvNzHqOH1szMzNrAe6hm5mZtQAHdDMzsxbggG5mZtYCHNDNzMxagAO6mZlZC3BANzMzawEO6GZm\nZi3AAd3MzKwF/H9QoQy+LeLvHAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYlNX1wPHvnd52Z3ujLB0EFKQJ\nKiqoqKDYNVbsiT9jSWKisRsTxZJorEmMvUZAhYiKiiUI0kVBpPe2vU1v9/fHDGVhK+zA7nI+z+Oz\nO++85Q7u7nnvfe89R2mtEUIIIUTbZjjUDRBCCCHEgZOALoQQQrQDEtCFEEKIdkACuhBCCNEOSEAX\nQggh2gEJ6EIIIUQ7kNSArpS6VSm1TCn1k1LqtsS2DKXU50qp1Ymv6clsgxBCCHE4SFpAV0r1B64H\nhgEDgDOVUj2AO4GZWuuewMzEayGEEEIcgGT20I8A5mmtfVrrCPANcB5wNvBaYp/XgHOS2AYhhBDi\nsJDMgL4MGKmUylRKOYCxQCcgV2u9PbHPDiA3iW0QQgghDgumZJ1Ya/2zUupR4DPACywBonvto5VS\ndeaeVUrdANwA0Ldv38E//fRTspoqhBBNoQ51A4RoSFInxWmtX9JaD9ZanwBUAKuAIqVUPkDia3E9\nx/5Laz1Eaz3Ebrcns5lCCCFEm5fsWe45ia+diT8/fxuYBkxI7DIBmJrMNgghhBCHg6QNuSdMUUpl\nAmHgJq11pVJqIvCeUupaYCNwUZLbIIQQQrR7SQ3oWuuRdWwrA05O5nWFEEKIw41kihNCCCHaAQno\nQgghRDsgAV0IIYRoBySgCyGEEO2ABHQhhBCiHZCALoQQQrQDEtCFEEKIdkACuhBCCNEOSEAXQggh\n2gEJ6EIIIUQ7IAFdCCGEaAckoAshhBDtgAR0IYQQoh2QgC6EEEK0AxLQhRBCiHZAAroQQgjRDkhA\nF0IIIdoBCehCJEnI7yfgqTnUzRBCHCZMh7oBQrQ3Wmuqiov45o2XCHhqOO7iK8jt1h2z1XaomyaE\naMekhy5EC/NVVTLl4ftYs+A7tvy8jPf+9Ef8NS3bU9da46kop7qkmKDP16LnFkK0TRLQhWhhsWiE\nyh3bdr3WsRg1pSUNHhP0+/BUlONv4hC9t7KCN++8lRd/fQ0VO7YeUHuFEO2DBHQhWpjRbKGg9xG7\nXlvsDtw5ufXur7Vmw5JF/PPGCcz/cBIhf+M9bgXEYrH48YmvQojDmzxDF6KFRMrK0MEgFoeD8b+9\ni+X/+xJvVQVHn3YWDndavcfFYjE2LFkEWrNp2Q8MPu1MLHZHg9dyuNO48rFniIRC2Fwpu7aH/H6M\nZjNGk/xqC3G4kd96IVpApLSUzTf8ksDy5bjPO4+cO/7A0PHnN+lYo9HIcRdeRnZ2HoVH9MNYWgbZ\nOQ0eowwGXOkZtbZ5KsqZ+e/n6TpoCL1HnIDV0fBNgRCifZEhdyFaQMzrJbxtG66TTya8dSuEQvvs\nE/L7Kdu6mR1rVu2znM1mMNK5tBL/K69jzmk4mNdn++qVrFk4l/+9+QrhYGC/ziGEaLukhy5ECzCk\npND55Zeo+ugjLF26omMxSp55llgwQOaECZiys/FWVfDufX9g9EWX4zSZsTpdKKUAMGVkkH755RDT\nGFNTGrla3Qp6H8HRZ5xF1wGDsTYyZC+EaH8koAtxgLTWRMMxtj/wIIEffwSg4LFH8XzzNYFlPxHe\nuIn8Rx4GDeOuvYksDBgqKonYizHn7p4sZ3S5ap+ztBStNaaMDFQTnok73WmceMFl6HAYFYm0/AcV\nQrRqMuQuxAHyVYcoWl9JtKx017ZwcQmGxDPsSGkpfn+QJVVG8rv2oOyFf7DxiisJbdxY7zkjJSWs\nP/8C1p0xlkhpab377Snm91P24ousPvY4fPPnH9iHEkK0ORLQhWgBPy32kPHQo1h79sR90YW4zzqT\nWCiMpWtXcv94J+W+EFe/upASbwj/0qUQieD/cSm6vp50LEakrIyY10vM729SG3QkQnDVKtCa4Jo1\nLfjphBBtgdJaH+o2NGrIkCF64cKFh7oZQtQpFo3hqw4RCUUwGwOU7diGKz0DhzIQ3baN4sefwPr7\nP3LKtO2M75vN/f2teOfMwXH0IMydO9Uadt91Tr+f8PYd6GAAc8eOGFOa9lw9UlpKeNt2zB07YMrI\naPwA0RzqUDdAiIbIM3Rx2PCHoniCYVJtZqxmY4ud12A04EqP52nf/NM6Jj10FyarlStuuwubyYSt\nf3/SOhfw21F2Tit0Ei3egnfWt5Q+9zxdP3i/7nPa7RjT04j5fPX34utgysrClJXVIp9LCNG2yJC7\nOCwEI1E+Wbad816Yw+JNlc06NlxUxI5HJhL4+WfCxcVUf/EFkZK6U7k609IxWaxk5HcgVuPBmJqK\ne9xYTGguCq4n+sAfMaam4D7nHAr++gTGzMw6zxP1eil+7HHWnnwKle+9J9nghBCNkh66OCz4glHe\nmreJzeV+/rNgM0O6pGM2Nn4/G19+9gxVk6dgys3B991cvLNm4Rw9mvwHH6Bq2jScQ4dh7d0Lg9VK\nVWkJF9zzEA5XCsrnx7d5Ezt+eSO5D9yPb/4Ccm67De+sWaScfgaWTh1RhnraoDUxjweAqMcDbeDR\nmBDi0JKALg4LaQ4zj19wFJMWbuGKEYVNCuaBcBSTUqSefjrV0/6LOTcXS2Eh3lmzcAwZgm/ePEoe\nf4LytDS6vD8Fc24uKemZvHHnLcSiUQaNGUuvsnhQ9s9fgHPEcGpmfEb5a69RNXUaha+/Vu/wuNHl\nIu+B+8m65WZMmZko44E/Igh4w5gsBkwt+LhBCNF6yKQ40S5FwtEDClylNUEe/uRn8t02fjW8A7ZQ\nAGWxQDRKzOfD4HQS8/nY8uubcR57LKaMDFLPOhPcbvw11QQ9HqyxGFvPOQ9lNFL46iuEtm5Fmc1s\nu+NO0n/xC7L+78Zaa8+TqaY8wJev/Uz3wTn0GpaLxSb38vtBJsWJVi2pv9VKqd8A1wEaWApcDeQD\n7wKZwCLgCq31vnkyhWimcDRGhTdELBBl6fQNDD69Cxn5zv061zerSnh/cbws6XlHd6R7TvbuN3fO\nHk9Pp+Ozz1Lx7rsUP/ssqePGYrZaMVuzISubqNdLj89mgMGAMT0dS7duxAIBun88PT7p7SAFc4BN\nP5WxZWUFpVs9dB2QJQFdiHYoaZPilFIdgFuAIVrr/oAR+AXwKPCk1roHUAFcm6w2iMNHLKb5aWsV\nF/zjOx6euZKeo/L57v01hIPR/Trf4MJ03HYz3bKcpNjrD36mzAwyLr2EHh9Px5hWu6Ka0enEnJeH\nOScHg9mMMSUFc3Y25rw8jG73frVrf3U9Kot+IwsYc20/rA18HiFE25W0IfdEQJ8LDACqgQ+BZ4C3\ngDytdUQpNQJ4QGt9WkPnkiF30Zhqf5gb31rE7DVlAHx56whSoxYyC5woQ/NHSqPRGOW+EEaDIs1i\nQBkMLfIcu7l81SFWzdtBh97pZBQ4MJr2vw06pvfr30LsIv94olVLWg9da70VeALYBGwHqogPsVdq\nrXcurN0CdEhWG8Thw24xcP7R8R+lbllOXMYQ6fmO/Q5gRqOB7BQbrvJitt91N0WPPUakrKwlm7xL\nlT9EcXWA4uoAoUjt5WnrlpQwe8oapj29hID3wPKzSzAXon1L2tibUiodOBvoClQCk4DTm3H8DcAN\nAJ07d05GE0U7YjYaObVfHt91S8cUC5JtV9CEmew7lXqCGJQiw2kBIByNEi4tY9tVV8fLoQIxj5e8\ne+/BYLPVOjayZxGVZvTitdZsqfBz94dLmbW6lBSriauO68pVx3bZ1Y4OvdJIybTRbWA2RrOkjRBC\n1C+ZD9NOAdZrrUsAlFLvA8cBaUopU6KX3hHYWtfBWut/Af+C+JB7Etsp2okUm5kUmxlo3mSzouoA\nV740nxSbiRcuH0x2ipXimhCeMi+x4uJd+4W3bEGHQrBHQI+UlLDjyafQeR3Iveg8LHl5Tb5uiSfI\n+S/MobgmCEB1IMLTM1cTDEf5zam9sJmNuLPtnP+HwZjMBqwOc7M+lxDi8JLMW/5NwHCllEPFiz6f\nDCwHvgIuSOwzAZiaxDYI0aj1pV5WFtWwcGMFnmB8WDsQijJtVQWu394OSqEcDnJu/x2GvXKqB7Vi\n9XnX8FDaMIqUvVnXXbG9Zlcw39Pr322kyh8G4mllnW6rBHMhRKOS1kPXWs9TSk0GFgMR4HviPe7p\nwLtKqT8ntr2UrDaIQ09rTXFNkFhM47abcViTP8M6HI1S7g0T0xq3rfFr9sxxcfVxXUh3mHHb44Ez\nO9XK+OE9cRm7knvGGFRi6Vn83nQ3r9nOQ18vY12pl27ZTu48o+mz13dUB+rc7g9HicZkUEoI0TxJ\n/euqtb4fuH+vzeuAYcm8rmg9SmqCjH/2W0o9IT69dSQ9c5tWNexArC/1cc5zswmEo7x45RBG9c7B\n0MCEsEyXlbvHHoFSYEykYk21mUnNa7xX7E6xcc+ZfXlz7kYuO6awWe0c1rXuamj9ClKxmuR5uRCi\neeSvhkgqDXgCEaIxjTe0f2vC91TmCfLews18v6kCb7DuWd+fLN2OLxQlpuGNuRvxhaNEQiH8NdV4\nysso37oFT3kZ0T2qmJmMhl3BvN7PEosRLikhtHUr0epqAKwmIyf2zOLpS46mU4ajWZ8l3W7h5tE9\nam1zWow8ceEAMl3WZp1LCCEk9atIqnA0RklNEE8wQm6qbdeQ9v56bc4G7p/2EwYFs+8YTV6qDX9N\nCKU0Jh2EaJR1YRPTF23DbjZyZBc3/d0x5n/wHt0GDeOHzz9mww+LMVttXPbIk2R26NT0z1JczPpz\nzyNaVkbuPXeTdtFFGCyWuvcNRvDXhFEGhT3FXG8a2kpfiFJPiJk/F5HlsnJcjyyyXBZMzZihLw4a\nWfcnWjVJGSWSymw0UJDWvMliDemSFU/lmum0YjIqqssCTPv796TnORl1QS728Ha6pHRhYJnGU+Hl\niL7ZTH7od1QVF9H3hNFs+GExAOFggNXzZmMdPQane99n43WJFBURTaxFr/nsM9zjx0M9Ad3vCfPm\nvd+hjIorHhqBK33fgB4ORnCZjKTluOiRc/DSwAoh2ifpBog2ZVDnNL69YxTTbzmeTKeVbWsqqS4N\nsHFZGTFfDYaXR2EMV7Hiux1sXl7O/I8202PoSAC8FeXk9egFgMFoJL9nHz589E/UlMVrm5d5g2yp\n8LGjwkvFJ5/i+XZ2vHRpgrmgA84TT8CUn0/2Lbfinb+ASEVFne00GBRGkwGzxVjnzYK3KsjM13/m\nf++twlcjpQyEEAdOeuiiTdm91jyusF8mfY/PJ7ujA/PWLwCFMhp21Q93Z5mp2lEJwJLPP+GsW/5A\ndWkJ1pQU5k+dTNG6NXz6/FOc9ds/UulTjH16Fqk2Mx+M70LNxefR46svdxVRMWVmUPDoo8R8Por+\n8jCemTPp9OqruIYfs0877SlmLntoBCrx/d6Wf7uNtYviNxKdj8ikx+CcJn1+X1UVIb8Pq8OJPTW1\nOf90Qoh2TgK6aNMcqRZO/EVvCHlQ5QPg1wsI4WT8rb3xe0IQq2DelK8AGDnuXIp+cSk6HCbt1VcI\neOO9780//UjQ6yGKi1A0hjcUAbsd16mnxkum7sGUlkYEMBcUkHbFFZhzc/AtXIilR09MabuXrBlN\nRlxpu4fZw8EIlUV+gv4I2Z1TyO0SD8bKoEjPa9pkukgoyJxJb/HD5x9z/CUTGHb2BU16VCCEODxI\nQBdtnsFkAFMqOIYAsPi9N1ny6UeYrFY85bvzrxuMRohGiJaXE4gqIiMv4YThJ/G/F55g6Vdf0O/M\ni/j69pMwGw1k6CCmP/2pVpDeyZSWRvYtNxPzeFh7xlh0IEDn11/DNKz+1ZhBX4RJjyxAa7jsweHk\ndnNzxZ9HoAwKm7P+X0O/J0TAE8ZqN2G2K4yJGwyTxSLBXAhRiwR00SqFAhGC3ggGo8KeaqlzHXlN\nIIzJYMBu2d0TjobDlG/dEu99ez219l+7djW9X3+bYCjC09+X8Pr3xTx7fm9yu/WgcvsWDEQpzNxZ\nP73hiXzGlBR0MIilUydCmzZhys5ucH+D0UBuNzf+mhBmmxGr3dSkMqar5hXx7aTVZHV0Mf7WgRxz\nzoUMOv0sLPaWm2gohGgfJKCLVqmy2M+kRxZgdZi45L5jcLprr8suqQnwh8lLGdg5jQkjCklzJIbG\nlcJQz3pylZbNZR+sY2VRza5tX673cEaP3oQ8NZibWR7VlJVF51deRsdijdY3d6RaGPurI9E6/n1T\nxWKxxFeNBhypbkg9uLXUhRBtgwR00SqFgxHQEA3FqCtVwoYyH1+tLOabVcVcMmz3WnKjyUSHI/qx\nYs7/UAYDp195PR279yZsNLF+wxpG9S6oFdBP75NDbHaIgj79cNqbn8zFlJVV73tV/jChSJQslxWl\nFPaUpgfynfqMyKdT30zsLjOO/TheCHH4kIAuWqXMAhcX3TUEq82IRQeA2sG2W5aT28f0on8HN05L\n7R/jHkOG8/OcWYy4/rfomKLiu29Ry38kc8L1XJ3mxmk0sHBrFWcdkUufNDuzNm/guIsvb7RNvopy\ngn4/ZpsNZ1o6qoHMcpW+EI/PWMmctWW8ce0wOqY3L4vcTnaXBbtLArkQonES0EWrVB2NUqXCWL/9\nGvXFDAoeebjWsHamy8qvR/es+2CLjeN+eTvjX1xMpS/M3aN7clZuMSvK/OQUb+HswkKOd7mwxqJ4\nN68kp0t3LI6GA264poYfv/iU2ZPfxuFO44pHn8aVXncudoBQJMbHS7dT4QuzodS73wFdCCGaSgK6\naDWC/gj+mhABs+KCf33Hlgo/z53Zi8GdlzfrPJ6oAT9mKn3xEqTztvs5+7wLKQiEmPPM33C60+hy\n9HDy+gwA1ZHCI/thsdWeZBaprCTw448YHE6svXoSCYfYsnoFAL6qSsKBuiul7ZTutDD5V8eyuthD\n3wJ55i2ESD4J6KLVKNlUw9Qnv+eEX/XDaopPUHNkppP1qxsbnXS2p3BUs6UywE0ndeeHLVX8YXQX\n1s3/hhVff07Zlk2Ubd7IMeddxZdvbMNbGeTiPx5NJFaJKS1t1zkCy5ez+YZfAtDt4+nYOndm9BXX\n8WXsX3To3Reb00l4+3ai1dWY8/L2aZ/ZaKB7jovuktJVCHGQSEAXh4SvuoqAx4PJYsHmcmGx2Snd\nEp+s9sOUdbz668H40azYXk2lyUb9U8/25bQa6W/y06/iB64cOZSYCapTM+l5zPH0PEaT27Ub6Xkd\nqC7ZQiym8WwpxWyuqRXQjSmJMq9GI8pspuz110kZPZozb70Dk82Krqhi3ZlnEfN66TJ5EvZm3HAI\nIUQySEAXB52/uorPX3yONfPnoJSBM39zJ90HDaXXkFyKN8SDutti4rQnv8YXivLFb08kGtUYlSaL\neBpXnNlgrPvHN8NppfiLTyn/+9+xdO1C9cTn6DxoGDkpJ+zaJxyMcOEfB+PZWoZ583JMQ46ixFfC\nzE0zOanTSWR36Ur3GZ+iTGb8q1ZS8tjjVP7nPbq89SamlBQiBoW5oIDQ5s0YJQWrEKIVkIAuDrpQ\nIMCa+XMA0DrG3Cnv0LFPXxzuNEZd3hsAXzTGXWP7UOULE47EGPn3r+iZ6+K1UyHrw0vhpvmQml/v\nNdLPOZvQqlW4L7yQ/B55OJy2Wu+brSayOqWS5oyguw2FdDfPzP8LH6z5gG+3fsujJzyKs7AQgFgo\niLVnT9znn4dKJHSptQZ9j569EEIcKhLQxUFnNJmw2O2E/H4A0nLzMZrjS7PM1viPpBu47JhCtIYv\nfi4iFI2xtsRDNGMQ4fMmYYwaGiwVaM7Pp2DiI6hGUqSaMnbPVB/XbRxzt89lfPfxWA27l8lZCgvp\n/OorKLsd4x6z4Rtagy6EEAeb0nVl7WhlhgwZohcuXHiomyFaSDQaoXTzRma/+wbOtHSO/8WVONPS\n692/3BtiyeYKCtPtpPzvM8r+9Cc6v/wSzqFDW7RdwUiQ6lA1RG2AheyU2mvfq4PVfLX5K4p8RVzY\n60LSbfW3WbRLkjxftGpSD10cdDVhDx9WfUFgbHeGXn45ry4u5fPlRXgC4Tr3z3BaGN0nl0JzBM+b\nb0I4jH/R4v2+vo7FiEUi+2y3mqxEwi5O/uscLn1xLiU1wVrv+yI+7pl9D898/wwVgbrroAshxKEi\nQ+6iebyl4CkCNDhzwdVwUZK6RHSEfy/9N4FogE7pPXlznpcd1QHm3Dkal23f2uE7mTIy6PjC8wR+\n/BFHA5XNGhKtqqL600/xL/uJnFtv2WfYPBCOUR2IEI352Xv0yma0cf2R17PDu4M0qzw3F0K0LhLQ\n27hwMEgsFsVqPwiZyDwl8J/LYfPc+OsOg+GS/zQ7qKeYU3hj7BusrVxL97QeeEOLOKZrBmZj4wNG\nloICLAUF+9N6AGI+HzvufwAA5zHH4D5zXK33s1wWvvzdidjMRtKdtVOuptnSuOGoG4jpGA6zg0pf\niEhMk+Vqfg54IYRoaRLQ2zB/TTUL/juFqh07OPnaG3G4k9xrLF25O5gDbF0EO36EHifv2hSL6TpL\nne7JarLSJ6MPfTL6EI7GmPnbkzAZIRiOsXxbFflpdtIdyclfrqxWUs86i+DKldgHHb3P+yk2MykN\njBLYTPHZ8mWeIPd8uIyNZT5evXooOam2eo8RQoiDQZ6ht2GRUIgFU6ewat5sPBXlyb+gv7KObbuf\nJW+t9HPXB0tZvLGCUCTapFOajQayU6yEIpoxT/6PsU9/y6fLdrRUi/dhysgg79576PzySwfU0w9H\nNZ8tL2L59mpKPMHGDxBCiCSTHnobZrbZOP2m31BVVIQrIzP5F+w4JJ7QxVsSf+3IgMLjAIjGYvzt\n85VMWbSVWatL+eCmY8lJaUZ9cR0PkgD+cOM3A77qECF/BJPFgM1lwWRu+r1pSySCSbWZmPyrEWyr\n9FOQZm/8ACGESDJZtiaaTmuo2QHLJkMsCkddBK48SJQRnbeujJvf+Z4rRhRy9bFdcNnMxMJhdCCw\nO5VqPUKRKDuqgmwq99IrN6XBIWxfdYiPX/iR4g3VdDkqk+FnF2BzmrGnuhtccy7EAZIfLtGqSUAX\nuwR9YVAKM2FiXi9Gtxtlrv958j7Hh6NU+cPYLUZSbGZifj+er76icsoU8h54gIg7lR8++5gOffqS\n37M3ZmvtoF1aE+TuD5dxUicnZ9oq8X7+BemXXYalS2Gt2uOlWzxMengBp17TjfJtP/DT159gMBgY\ncta5dBt0DPZ6bh5iPh+RkhJ0NIopO7vRmwwh9iIBXbRq8gxdAPFe7+evLGfDgs1UTvsvGydcRWD5\nz806h9VsJCfVtmtSWczjoeiJv+KdPYear7+meP1a5kx6iw8e+xNBn2/fNoSjzPhpByPzbWy55loq\n3nqLTVdNIFJWVvs6DhO9h2dTtnkhto6dGfHL3+PKLeDT559i5XeziEXrHrKPVlay9oyxrBs7jkhp\naZM+U6S0dJ/rCyFEayQBXQDgrwmxcWkZZh2i/MUXCa1dS/kbb9SZgKWpDCkp5D/4IClnnEHqqaeS\n1bkLXQYM4tgLLsVs2Xepl9tu4vVrhpHuNMPOoXODcff3CVaniaNPzcXWsSv3zvFwzpsr6Xv+VVjs\nduZ/OImayiqWbK6kpGavmuWJymmYTChL47Powzt2sPGKK9h09TVESkr2+99BCCEOBpkUdzjzlkHE\nD2Y7jtQUBp9eiHLZyf/zQ1S8/TbZt9yMwbT/PyIGmw3n8cfhGDYUg9WKGTjz1jswmM2Y6wiobruF\nE3plE/P5KHzjdTxffU3aBedjyqw94c9iNRGyGTHZ7GytLCMQjuEJRjCazPQ760KKwiYMKsaTn6/i\njjP64LbHr2VMT6f7ZzNA6yYVVAmsWEFo/QYAQlu3YspufhIdIVojpdR4oK/WeuKhbotoOfIM/XDl\nr4AZd8OSt2DAJXD6I8SsafGHhAp0KITBursXHamooHr6dHQkgvvsszGlH9o85iG/n3nTplAwfDT+\ncIzSH+eyauZ0jrrlL/zile/pkGbnucsG0SvHhcO6fzclkdJSPHPmYO3eHVNmJqacnFrP8sVhp1U+\nQ1fxmaBKax071G0Rh5b8dWqD/DU1bF6+lOIN6+p8Ft0kkSAsnxr//udpEAliMCiUQaGUqhXMAWLV\nNRT9+S8UT3yUaGUd69EPMovdzqDTxrF00ivMfPBWFk96na4Dh5DpdmExGsh328h3W/c7mANgMOCb\nN48NF13Mhksuxb90Kbqe5/NCHExKqS5KqZVKqdeBZcAVSqnvlFKLlVKTlFKuxH5jlVIrlFKLlFJP\nK6U+Smy/Sin17B7n+lIp9aNSaqZSqnNi+6uJY+YopdYppS44VJ9XNI0MubdBm5b9wEdPxUfKrn7y\nH1gd+5H21ZoC4/4Gs5+E426Lv65Dub+cGDHSUlNwjBgBkUirmR3uTEvn9BtvJRwIgAKLzYE2W5n1\nh1EYjeqAU7L6Fi6iasr7AES2b2frzTfTdcoUGXoXrUVPYAKwBngfOEVr7VVK3QH8Vin1GPBP4ASt\n9Xql1Dv1nOcZ4DWt9WtKqWuAp4FzEu/lA8cDfYBpwOTkfRxxoCSgt0HRyO6qZPXN6G6UxQl9z4bu\no+LB3LxvcpQyfxm3fHkLO3w7eGfcO3R48m9ogwGfFezRMGZj05a0eSsr8NdU40zLqLWkTEejxPx+\nDHY7ymjcte/aRfMxmc0UDhiEs5F0tjanC5vTVXubuxkJbRoQXLWy1utIcQk6JqOaotXYqLWeq5Q6\nE+gLzE7kYbAA3xEPwuu01usT+78D3FDHeUYA5yW+fwN4bI/3PkwM5S9XSuUm4TOIFpS0gK6U6g38\nZ49N3YD7gNcT27sAG4CLtNZSi7IZug4czDl/uA+bK+XAMsSZbfH/6hHVUVaUryAUC+EL+8hJy2FV\nxSoe/uphrut/HcfkH9NoUPdVVzH1ib+wffUKzrztTgqPOppwwIfZYCSydBnlr79O5nXXYR84gEAw\nyPsTH6B4/drE5xzCGb/+Xb3ryg9EuLiYwM8rsPfvt8+ku51Sx51J6T/+CYmZ/q6TR6NskrNdtBre\nxFcFfK61vmTPN5VSA1vgGnvpZqMOAAAgAElEQVTmNW6VcwjEbkkL6FrrlcBAAKWUEdgKfADcCczU\nWk9USt2ZeH1HstrRHtlTUuk+eP/KhzaH2+rm/bPfxxPykGHPIBqL8uqyV1lUtIhAJEC/rH6kGxue\nHGcwGnHn5LJj7SpcGRksmDaF+R++x1X3TaTkpl+jw2H8S36g2zv/JJKSvSuYA6xfsrDWaERLiVRW\nsu322/HNX0DapZeQd9ddqDpm85vzcuk2bSqVkyZh7d4d16jRmNzuFm+PEAdoLvCcUqqH1nqNUsoJ\ndABWAt2UUl201huAi+s5fg7wC+K988uAWQehzSIJDtaQ+8nAWq31RqXU2cBJie2vAV8jAb1V0Vqj\ntcZqtFKYWljrvRsH3EgoGuLKfleSYmm852xzuhh11Q2cePk1aGD+h+8BUFVajLV3bwLLlmHr2wdV\nuhxjIIuMgo6Ub9sCQIc+/TAYW2b4fE/KbMbauw+++QuwHXEE1HMNg92OtVs3cu+QH0/RemmtS5RS\nVwHvKKV2Thy5R2u9Sin1f8CnSikvsKCeU9wMvKKU+j1QAlyd9EaLpDgoy9aUUi8Di7XWzyqlKrXW\naYntCqjY+bo+smzt4Al4w6xeUET5di9Dx3XFkbrvevFQNITF2Pzypr7KMqb+9RG2rVpBTtfuXHzL\n79FlWzAagpg+vgbsGXjOfJkfZs/DZHfRf9QYnOkZLfGx9hGpqEAHgxgcjhYp1iIOC21uyFkp5dJa\nexJ/a58DVmutnzzU7RLJkfQeulLKAowH/rj3e1prrZSq845CKXUDiQkcnTt3TmobxW5Bf4T/vbsK\ngPQ8B0eN6rTPPvsTzAEcsRrGXz6eIJdgsRgwT70EVbw0XvQFwFuK660xHNfzVIgawXTS/n6MRh3q\ndfRCHCTXK6UmEJ8o9z3xWe+inToYQ+5nEO+dFyVeFyml8rXW25VS+UBxXQdprf8F/AviPfSD0E4B\nmMwGUrPseCuD5Peoe+DEV13Fsq+/wO5KocfQ4dhTmtDDDfvhu2dxLngRpzJAfTkwwr7d6+N7nAID\nL90n9asQomkSvXHpkR8mDkZAv4T4comdphFfOzkx8XXqQWiDaCKn28r5fxiMjmmszrpnsO9Yu5pZ\nb70CQIfeRzQtoAeq4lnpoP5gvrfvnoWeY8Al676FEKIxSQ3oidmWpwK/3GPzROA9pdS1wEbgomS2\nQTRfXc/N95Se3wGz1YbZZsPicALxNevFvmKy7dlkObL2PSgajve+m6NqC2jJzCaEEE2R1ICutfYC\nmXttKyM+6120UalZ2Vzz1D9BKZzuNCoCFdz21W0sKVlCriOXd858h2z7Xr3q/Rk2NzbtxzPo97Fl\n+VKK169jwJixOFJlaZkQ4vAjmeLauTJ/GaFYCKfJSaq1ZWZzG02mWgltIrEIy8uWA1DkKyIcTawd\njwTjQ+0mK5hskFYIlRubfqGCQfHjGhH2+/nw8T+D1hT0PoLCI1sin4YQQrQtUpylHasIVHDXt3cx\nZvIYvtj0Bclaoug0O5l4wkR6pvXk1kG34jQ7wVsC30yEl0+DKdeDvxLGPLT7IEcmGBq5nzzhD2Bv\nvMyp0Wxm0Oln0aFPPzI71r0iIhSI4K0K4q8JNeejCXFYU0rNOdRtEE0nPfQ2qjpUzXfbvqPcX864\nbuOIxCIYDUbc1t3DzdFYlNUVqwFYVrqM8d3HY1It/7/cYXZwYscTGZwzGLvJjl1r+OpBWPhSfIfy\ndbB1AfzyW0gtwHfG81T6Dbgz0nBOuyr+/t5y+kJmtyZd356SynEXX0E0Eq5zgl4kFGXt4mK+emMF\n2YUpjPu/o3CkHljhFiHaM6WUSWsd0Vofe6jbIppOAnob5Q17uf2b21EoRnUexc1f3ky+M58Hjn2A\nDFs8GUu6LZ2XT3uZhUULGdVpFKbGesQHwGK0kGFPJIGp2QE//qf2Dr7y+PbrZrJk+qd89+H75HXv\nxbln/w7HJzfV3jejG9FLJ2F0Nn12u8VuB/YtMAPx3vn3n29CayjeUEPQF5GALg6aLndOvxR4GOgM\nbALu2jBx3NsHel6l1IdAJ8AG/F1r/S+llAd4ARgLbAfuIl5spTNwm9Z6WiIV90TiGTutwHNa638q\npU4CHgIqiBd26aWU8mitd5ZivQO4HIgBn2it71RKXU88X4iFeNW3K7TW+1nTWRwoGXJvo2xGGxf2\nupAxXcZQEahgRfkKvtnyze7n14DRYKSLuwsX9LqATHvzirhorSnxlbCpehPlgfLmNU4ZIKWOwkx2\nN7hycWXlAeBwp2IIe/Z4P53YCb8nctUnRF35zbtmA8xWI/1P6ABARoETq8NEKBpK2iMIIXZKBPMX\ngULimeYKgRcT2w/UNVrrwcAQ4BalVCbgBL7UWvcDaoA/E19pdC7wp8Rx1wJVWuuhwFDiyWe6Jt4b\nBNyqte6154WUUmcAZwPHaK0HsLsi2/ta66GJbT8nzi0OEemht1HptnR+N+R3xHSMqI7y6MhHyXHk\n4DK7Gj84IeANEw5GMZoM+yxVK/WXctFHF1HqL2VM4RjuHX4vabY0opEYRlMj94HObBj7N3jrPIgl\nlp31Ox/sGWAw0nPESAqPGoTJbMTm3wyXfwCOdEjJx2DPwGDav0x09TFbTfQ+Jo9uA7MxGA34zTU8\nPvtxTutyGsMLhmM31d2zF6IFPAw49trmSGw/0F76LUqpcxPfdyJeHz0EfJrYthQIaq3DSqmlxCtc\nAowBjlJKXZB47d7j2Pl7lFvd0ynAKzt731rrnXf5/ZVSfwbSABcw4wA/kzgAEtDbMKfZuev7sd3G\nNuvYcDDKj19vYcF/15PbNZXTf9UPZ6qNRD1lSvwllPpLAfhy85fcOexOSjZV8/1nmznm7G64sxsI\ngkpBp6Fwyw+wZQFkdAN3J3DEh+TtrhTsrp2FXQ5O0hirw4zVYaYqWMVXG75i+vrpzN0+l0lnTZKA\nLpKpvrzVB5TPOjE8fgowQmvtU0p9TXzoPax3Dz3FSJQ/1VrHlNo1gUYBN2utZ9RxTi/N8ypwjtb6\nh0SBmJOa+1lEy5Eh98NUJBRl/fclABStr6bEW8baqrW7hqFzHDn0TOsJwJVHXIlJm/l28hpWLyzi\n+8/3XXpWFayi3L/H0LzFCWmdoP95UDAQnAdQt72FlPhK+PXMX3NU9lGM7jyaO4bdUeumSIgk2NTM\n7U3lJl7YyqeU6gMMb8axM4AblVJmAKVUr0QSsIZ8DlytlHIkjtlZNSkF2J4412XN+gSixUkPvR0q\n85fxyYZPKPGWcHGfi8lz5mFQte/dLA4TJ17Sm1mTVtFhYCqzir5mbtkcHj/xcZxmJ1n2LF4c8yKR\nWASbyUaKKYUR53Rn8YyNDDyl8z7Xu3f2vZT5y/jbqL/RwdWh1vv+iB9PyIPJYCLdduiKohT5ilhS\nsoRbv7qVN854gzRbWlInCgpBfFLai9Qedvclth+IT4FfKaV+Jl73fG4zjv038eH3xYkqbCXAOQ0d\noLX+VCk1EFiolAoBHxP/DPcC8xLnmEc8wItD5KCUTz1QUj616TwhDw9+9yCfbog/Rsu0ZTLprElk\nO/Yd2o5FY3g8fuaWzOFPCx7kLyP/wvEFx2M01F0fXGtNJBTDbK39/oIdC7hmxjUAXNf/Om4dfOuu\n98r8ZbzwwwvM2DCDjikduW/4ffRI64HZWHee+GSqDFQye9tsClwF9E7vjcO896NNIRq0X1WCkjXL\nXYi9SUBvZ0p8JZwz9RyqQ9W7tn107kcUphbWe0x1qJpgJIjL4tqv58lF3iIumX4J1aFqXj39Vfpn\n9QcgEAnw5KIneXvF7r9dDpODj879qM4bjEOpPFDO3G1z6ZfVj46ujvXe1IjDmpT9E62ajDe2Mw6z\ng9GdRvPh2g8ByHXk4jQ1/Hgs1ZIaX0XaAH91FdFoFJsrBZO5du86x5HDe2e9R0zHaiW28YQ8fL7x\n81r7+iI+tnq2Njugh0NBIsFg0yq77Ydvt3zL3bPvpmNKR9444w2y7HUUmBFCiFZMAno74zQ7+c2Q\n3zC8YDil/lJO73p63dXP6uANe/GGvRgwkGnP3DXj3V9Tzef/fo713y/i8olPkdmhU63jlFJ1BkCT\n0UTn1M6U+EtqbW/umvig38dP38xk5exvGHvL74mlWJi6diq90noxIGdAi0xs65/dn1xHLqd2PhWr\nUZLOCCHaHgnoB1mZv4zZ22YzJHcIBa6CpFwjw5bBuG7jmnVMIBLgsw2fcf+c+8mwZfDm2DfpmNIR\ngFg0SvGGdURCQWrKSvcJ6PVJs6Zxz/B7mPDJhF2PAK7qd1V8RKAZwoEAC6dNoaaslO1rVlHdxcpf\nF/4VgzLw+QWft0hAL0wp5N1x72IxWUixyLweIUTbIwH9IHt52cu8vvx1+mX24/lTnt+VpvVQ84Q9\nPP/D82g0ZYEyZmyYwbVHxpM+OdxpXPzARLwV5bhzmpfBrWtqVz48+0OKfEXYTXbWV63HH/HXGppv\njN2Vwvjf3c367xfSue+ReMwhBmQPoE9GHyyGlklCYzQYmzySIYQQrZEE9INsRP4I3l7xNiPyRxz0\nod2KQAUfr/+YVEsqJ3Q8oVZQtRqtDMsbxrS101AoBucO3vWeUoqUjCxSMpof8IwGI9mObILRIGd9\ncBYRHeHkzifzyMhHmjwBz2g2k9e9J3nd4+viHcAzo5/BbDDjsjQ9M54QQrRnEtAPssG5g/ns/M+w\nGC3NHioORoOYDeZ91pQ31frq9UycPxGA6edOrxXQUywp3D7k9njed1smmbaWTQRjMVqwmWx4wh76\nZPTBbDiwZWuHcj27EEK0RhLQDzK72Y7d3PylYTu8O3hi4ROM7z6eoXlD6+3dbq3w8+a8jZw/qAPd\nslwYDLtX2hQ4C8iwZeAwO+o8Pt2WnrRAmWHLYOo5U6kOVpNlz5KELkIcYolUryGt9ZzE61eBj7TW\nk5NwrX8Df9NaL2/pc4vd5K9qG/Hhmg+ZsWEGi4oW8d6Z79UZkD3BCPdNW8bMn4v58udi3rruGLJS\ndg/r5zhymDJ+CgpV70zzkN9P8cZ11JSV0uWoo1tsmZjJYCLHkUOOI6dFzidEm/GAe5/EMjxQ1RoS\ny5wEeIA5yb6Q1vq6ZF9DSC73NmNct3EMyR3CLUffUu9QvdVk4PR+eRgUnNI3B5uldnIUgzKQZc9q\ncNlYyO/jvQf+yMdPP463sqLF2h/TMWI61mLnE6JNiAfzfcqnJrbvN6WUUyk1XSn1g1JqmVLqYqXU\nyUqp75VSS5VSLyulrIl9NyilshLfD1FKfa2U6gL8CviNUmqJUmpk4tQnKKXmKKXW7VGNra7ru5RS\nM5VSixPXO7u+diW2f62UGpL4/gWl1EKl1E9KqQcP5N9B1CY99DaiU0onnhr1FDajDaup7sl0ZqOB\n0/vncWLvbCxGAy5r8//3Gkwmjhh5EpVF21usd14RqODdFe9iNpo5v+f58vxbHE6SVT71dGCb1noc\ngFLKDSwDTtZar1JKvQ7cCDxV18Fa6w1KqX8AHq31E4lzXAvkA8cDfYBpQH3D7wHgXK11deJmYa5S\nalo97drb3VrrcqWUEZiplDpKa/3j/vwjiNokoLchey/18of9eCNeUiwpu2bMp9jMpNj2nXAWCYXw\nVJQTDYdwZWZhtdedx9yR6mbUVTegozHsqS0U0IMVPP/D8wCMKRyTlIC+w7uDqWum0jezLwOyB5Bq\nTU5GOSGaKSnlU4nXOv+rUupR4COgGlivtV6VeP814CbqCegN+FBrHQOWK6VyG9hPAQ8rpU4gXqa1\nA5C7d7u01rPqOPYipdQNxONPPtAXkIDeAiSgt1E1oRo+WPMBH6/9mJsG3cSwvGENLoMLeGp49Xc3\nEg2Hue6Zl+oN6AA2Z8suBXNb3JzU8SSsRisuc8svMyvzl/GrL37F2sq1ALw19i2Oyj6qxa8jxH7Y\nRHyYva7t+y3RCx8EjAX+DHzZwO4Rdj9etTVy6uAe3zeUu/4yIBsYrLUOK6U2ALa926WUmqm1/tOu\nEyrVFbgdGKq1rkhMxGusTaKJJKC3UcFIkKpgFb8b+jscJgc1wRqsjtoBPRwN765qphTu7Fz8nhqM\n5oNb6SzTnslfjv9LfD17ErKwxXSMEt/u9LKl/tIWv4YQ+ykp5VOVUgVAudb6TaVUJfBroItSqofW\neg1wBfBNYvcNwGDgE+D8PU5TA+zvUJYbKE4E81EkblrqaNfek+FSAS9QlRgBOAP4ej/bIPYiAb2N\nMhvMHN/heK785ErMBjMfn/fxrvd8YR+LixYzde1UJvSbQJ4zjzfWvcGFd/6BVEsqTnfaQW9vMofA\n3VY3T416iofnPUzvjN4MzBmYtGsJ0SwPVL3NA25o+VnuRwKPK6ViQJj483I3MEkpZQIWAP9I7Psg\n8JJS6iFqB8//ApMTE9pubub13wL+q5RaCiwEVjTQrl201j8opb5P7L8ZmN3M64oGSPnUg6QiUEEo\nGsJkMNU5yzwcDaOUatb67I1VGzln6jk4zA4+OPuDXUvCdnh3cNqU04jpGHaTndfPeJ0L/3shAJ+d\n/xn5rualb20LItEIVaEqLEbJxS6SRsqnilZNeugHQXmgnPu+vY9vtn5Dr/Re/POUf9bKG17uL+fZ\nJc/iNDu5pv81TZ40luvM5ZPzP8GgDLVywhuUAYvBQiAawGFy4DA5MCoj3dzddg/BtzMmY903SkII\ncbiQgH4QbPds55ut8cdZqypWMWvrLM7tee6u9+fvmM+kVZMAGNVpVJMDus1kI8+Ut8/2NGsa75z5\nDrO3fMvIvONxawczLpiBSUnQE0I0nVLqSOCNvTYHtdbHHIr2iIZJQD8I9h4CznZk13rdO6M3dpMd\ns8HcYEnVMn8Z3nB8mVpDQd9itNAjrQehZVuY8fQDuHNyOfeO+1tsXbkQ4vCgtV4KyKSUNkIC+kGQ\nYcvgryf+lcmrJnNswbH0z+xf6/2Oro58dO5HKFS95VSrglXcO/teZm2dxYS+E7j56JvrTDBTE6oh\nGAliM9nIKeyKMy2dAWPGYrbKyhAhhGjPJKAfBC6Li5M7n8yxBcdiM9n2mfhmNpobzXEe1VHK/GUA\nFPuLieroPvv4wj4mr5rMs98/y40Db+TS3pdwwd0PYbbZMVlapm64EEKI1kkCepKV+8sxKANptrT9\nrt0diAQwKiPPn/I8S0uXcmTWkTjM+yaG8UV8TFk9hVAsxJRVUzinxzlkuZtXw9zvqUHHYjhS3VQF\nq9hSswWz0UyBs2BX+8v8ZYSiIRxmxz7Z64QQQhwaUpwliUp8Jdz4xY3c9vVtu3rXzVHkLeKtn99i\nQ/UGnl78NDWhGk7qdFK9E9tSLancc8w9DMoZxD3D72n28i1fVSUzXniKDyY+iKeinBVlK/jF9F9w\n/rTz2ebdBsRvUH7z1W8YM2UMk1dNJhAJNPtzCSGEaHkS0JNoq2cry8uXs6hoETWhmmYdWxWs4q5v\n72Li/Inc9tVtDMsfxl8X/RVf2FfvMRajhSF5Q3h69NP0zehLRaCCykBlk68ZDgZYu3AeO9auomL7\n1lrV0ULREAARHWFJyRIAvt78NYGoBHQhWjOl1ANKqduTdO5dldxaI6VUtlJqXqIK3cg63v+3Uqrv\noWhbMiR1yF0plQb8G+gPaOAaYCXwH6AL8ZSEF2mtW65OZyvSObUzlx1xGS6zq9lD0yaDiY6ujsxn\nPnnOPGpCNYzsMBKLseFn4SaDCYvBwoxNM+iZ3nNXfvc0W+PZ4Sx2JyddeR01paVkduxMikXzzOhn\nsBltdErpBIDT7OSRkY/w0bqP+O3g35JqkZnzQjTkyNeO3Kce+tIJS1tDPfRDSill0lpHknyZk4Gl\nddVjV0oZ21ud9qRmilNKvQbM0lr/WyllIZ7P+C7iuX4nKqXuBNK11nc0dJ62nCkuHAujaF4GuJ3K\n/eVUh6qxm+zEiOE0OZuUQrUyWEmxr5hLp19Kj7QePHrCo+Q58uotu7onHYuhAYOh/sGbSCxCMBrE\nYXKglCTPEoeNZv+wJ4J5Xbncrz+QoK6UcgLvAR0BI/AQ8CgwRGtdmqg9/oTW+iSl1ANAd6AHkAU8\nprV+sZ7z5hPvcKUS7/DdqLWepZR6ARgK2IHJWuv7E/tvIF7Z7SzADFyotV6hlBoG/J144RU/cLXW\neqVS6irgPMCVaPc4YCqQnjj+Hq311ES99k+Ab4Fjga3A2Vprfz3tvh64AbAAO3PZ9yJeAtaeOH4E\nUAL8EziFeDW6PwO3a60XKqVOJ37jZQRKtdYn1/c56v8/c2glbcg9UQf3BOAlAK11SGtdCZxN/AeA\nxNdzktWG1sBsMO9XMAfIsGfQxd2FXGcu+c78OoN5VbCKUl9preHxNGsadqOdTimduH3I7dw7+16m\nrJ5CTbDxYX9lMDQYzCE+CuA0OyWYC9G4huqhH4iddccHaK37A582sv9RwGjiQe2+RBGVulwKzNBa\nDwQGAEsS2+/WWg9JnOdEpdSe5QxLtdaDgBeIV1KDeK72kVrro4H7qP15BwEXaK1PZHdd9UHAKOKl\nV3f+YekJPKe17gdUUruwzN7e11oP1VoPAH4GrtVaL0lc+z9a64GJmwEnMC/x7/btzoOVUtnEb7zO\nT5zjwiZ8jlYnmc/QuxK/G3ol8fzi34m7ylyt9fbEPjuI19AV+6EiUMEj8x7hik+uYGvN1lrvpdvS\neWb0M7y78l2+L/6eR+Y/Is+7hTj4klkP/VSl1KNKqZFa66pG9p+qtfZrrUuBr4Bh9ey3ALg60as/\nUmu9sxdwkVJqMfA90I94DfOd3k98XUT8USrsLhSzDHgyccxOn2utyxPf76yr/iPwBbvrqkO8vvvO\nG4o9z12X/kqpWYliMZftdb09RYEpdWwfDvxPa70eYI/2NfQ5Wp1kBnQT8TuxFxJ3N17gzj130PHx\n/jrH/JVSNyilFiqlFpaUlNS1y2EvHAvzyYZP2OLZwvwd86kK7v6ddllcdEzpyOVHXE6uI5fLjris\n0efvzdUWCvsIcYjVV/f8gOuhE//7upR43fH7aLju+d6/rHX+8mqt/0d8ZHUr8KpS6so9apifrLU+\nCpi+1/l31lCPsnte1kPAV4nRg7P22t+7x/d71lUfCBTtse+etdn3PHddXgV+rbU+knh1ufoyaQW0\nriOJR/0a+hytTjID+hZgi9Z6XuL1ZOI/gEWJ5zQ7n9cU13Ww1vpfWushWush2dnZde1y2HOanTwz\n6hkm9J1AF3cXpq+bvs8+/TL78c64d7hp4E0ttma8JlTDp+s/5bEFj0ntcSEadhfxZ+Z7aql66D6t\n9ZvA48T/tm4gXvcc9h2ePlspZVNKZQInEe+J13XeQqAo8Yz934nz1lXDvDFu4jcFAFc1st8+ddX3\nQwqwXSllJn6T0FxzgRMSNy8opXam7Gzq52gVkhbQtdY7gM1Kqd6JTScDy4lPUpiQ2DaB+IQIsR+c\nZidD8obQI70Ht355K73Te++zj9loJtuR3aIlRWtCNfz+f7/nzZ/fZMqqukavhBAAiYlv1wMbifeK\nN3KAE+ISjgTmK6WWAPcTn9z1IPB3pdRC4j3aPf1IfKh9LvCQ1npbPec9CdhZs/xi4O9a6x+ID7Wv\nAN6maTXMHwMeSZynoZ71W8CQxFD5leyuq95c9wLzEm1r9jm01iXEJ9W9r5T6gfjEQGj652gVkj3L\nfSDxuzwLsA64mvhNxHvEnyFtJL5srbzek9C2Z7kfDJWBSsKxME6zs84Mci2t1F/KNTOuYXP1Zl4+\n7WWOzj066dcUohWQWaCiVUtqQG8pEtD3Q8gLpatg62I44kxwtezcw1J/KVEdJdWSit1kb5Fz+sN+\nPGEPDpMDp8XZIucUogVJQBetWpOGEBJT+q8nPstw1zFa62uS0yxxwPwV8OJo0DFYMxPO/QfYWi4J\nTJa9ZZNDaa2Zs30O982+jzuH3ckZXc7AZGz1I1xCtElttc65Uuo54Li9Nv9da/3KoWhPa9PUv5hT\ngVnElxU0Z4agOFR0jF0TWaMBaOUjMREd4ZvN31AdqubLTV9ySudTJKALkSRttc651vqmQ92G1qxJ\nQ+5KqSWJJQWHRFsacq8OVrO6cjUKRY+0Hk3K7JYUgWrYvgQ2zYVBV0BK/qFpRzOU+ktZsGMBQ3KH\nkO2QlQ2i1ZEhd9GqNTWg/xmYo7X+OPlN+v/27jxOzqrO9/jnm3QgYQurEUEuKCibLFpsgl5Wicqw\nyaKgBEURhYuKMwPOnQvojDPoXEVFUEExgMouGgMCEYhGZEkLgRBCJLKMILJICEQgQvKbP84pUul0\nVVdX11PV/eT7fr36VVXnWc6pJ/3Kr895znN+KxpJAf0PC/7AB6akJ0auOfAaNl9n8y63yMzaxAHd\nhrVmH1v7DDBV0kuSnpf0gqTni2zYSLVaz2r0qIeeUT2MG9OeyWJmZmYDaeomZUS07yHmklt/3Pr8\n8gO/RIi1Vx04w5mZmVk7ND3rSNI6pMXyX1v6Li8TaDXG9ozl9T2v73YzzMxGtJx++6iIOK+FYx8h\nZ55rQzu+RFrn/VdDPVfRmn1s7eOkYfeNSdl3dgVuI2XvMTOzOuZuudUK+dC3emBu1/KhdygPeTus\nDXwaWCGgd/I7RMTpnainHQZzD30n4NGI2AvYkZTOzszM6sjB/ALSGuXKrxfk8iGR9GFJd0qaJel7\nkkZLWlSz/TBJk/P7yZK+K+kO4KuS1pX0M0n3Srq9mg5V0pmSLpF0m6QHc57x6vn+SdLMfMwXB2jb\nMXm/eyRdkss2kHR1PsdMSbvX1HmhpOmSHpJ0cj7NWcCb8/f7L0l75oxqU0jLiJO/w+8lzZF0/CCu\n3QrH5es3WdJ9kmZL+lzNtTssvz89t/0+SefXpHodFpodcn85Il6WhKRVcwL7FRcONzOzWo3yobfc\nS5e0FWmt9d1zYpPzGDgpycbAOyNiiaRzgLsj4mBJewMXs+y59O1Io7CrA3dLuhbYlnTLdWfSHyZT\nJL27v9uukrYB/jXX9Vi7v4oAACAASURBVExNopNvAmdHxG8lbQLcAGyVt21Jyoe+JjBP0ndI2Tm3\nrT4yLWlPUrKYbatpToGPRcSzksYBMyVdHRF/beISrnAcaeG0jXJmteqQf1/fjogv5e2XAAcAv2ii\nvo5oNqA/lr/cz4BpkhaQ1mE3M7P6isqHvg8ps9rM3EkcR53MlTWurEkdugc5I1tE3CxpPUnVRTN+\nHhEvAS9JquZO3wN4DylJC8AapADf3zyqvXNdz+TzV3N17AtsXdOpXUvSGvn9tRGxGFgs6SmW5UTv\n686aYA5wsqRD8vs35jY1E9D7O24e8Kb8x861wI39HLeXpH8m/VG2LjCHkRbQI6L6xc/M/8DjgesL\na5WZWTn8N/2nBB1SPnRSL/miiPjCcoXS52s+9s3d/Tea01/udAH/GRHfG1QrlzcK2DUiXq4tzAG+\n2dznr32H3GPfF9gtIl6UNJ0m8pXXOy4iFkjaHtgfOAE4AvhYzXFjSffzKxHxJ0lnNlNfJzWdPlXS\n2/O9je1Iec7/XlyzzMxKoZB86MBNwGGSXgcpf7dyLnNJW0kaBRzS4PgZ5CH6HOCeiYjq2iL95U6/\nAfhYtUctaaNq3f24GTg8H1+bW/xG4P9Ud1LKxtnIC6Qh+HrGAwtyUN6SdJugGf0eJ2l9YFREXE26\nZfD2PsdVg/cz+Toc1mR9HdNUQJd0OnARsB6wPvBDSf9aZMPMzEa6PJt9hXzoQ53lHhH3k4LOjZLu\nBaYBG5LuO08Ffgc80eAUZwLvyMeeBUyq2bZC7vSIuJF0z/82pdzlV1En2EbEHODLwK+Vcot/PW86\nmZT7/F5J95N6wY2+41+BW/MEtP/qZ5frgR5Jc/N3uL3R+Zo4biNgulKO+R8By41+RMRzpAmO95H+\nwJnZZH0d0+zSr/OA7atDJXkiwayI6MjEuJG09KuZldawmtFchDyMvCgi/n+322KD1+yQ+59Z/l7B\nqsDj7W+OmZmZtaLZWe4LgTmSppGGjfYD7pT0LYCIOLnRwWZmNvxFxJnN7pvvkd/Uz6Z9mnx0rFDD\nvX1FaDagX5N/qqa3vylmZjZS5KA4bHOqD/f2FaHZx9Yuqr5XWtP9jRFxb2GtMjMzs0Fpdpb7dElr\n5ccP7gIukPT1gY4zMzOzzmh2Utz4/IziocDFEbEL6cF8MzMzGwaaDeg9kjYkrZwztcD2mJlZG0g6\nUNJpdbYtqlNem4hkuqRKkW2sR9IOkt7XgXr+peb9ppLua8M5N5B0h6S7Jb2rn+3fl7T1UOvpT7MB\n/UukB+n/GBEzJb0JeLCIBpmZ2dBFxJSIOKvb7WjRDkBhAV3JKIa+Yl9/9gFmR8SOETGjT72jI+Lj\neWGgtmsqoEfElRGxXUR8Kn9+KCI+UESDzMzK5NwTbj7q3BNufuTcE25eml/bkTp1U0kP5B71HyT9\nWNK+km5VSnu6s6RjJX0777+ZUkrU2ZL+veY8kvRtSfMk/QrodzlXSe/Jx98l6cqapCr97fsOSb9W\nSk96Qx7dRdInlFKP3qOURnW1XH54Xg3uHkm/kbQKqRN5pFLq1CPr1FMv7SqSTsnnvE/SZ2uu2TxJ\nF5NWe/sBMC7X8eN86GhJFyilVb0xL6JW73uu8H3ycrZfJS2fO0vSOEmLJH0tr5q3W+3Ih6SJ+Zre\nI+mmXLZzvtZ3S/qdBpHZtNlJcW+RdFN1OELSdvLSr2ZmDeXgvUI+9HYEdWBz4Guk1KNbAkeRsqL9\nIyv2PL8JfCci3sbyS8IeArwV2Bo4Bnhn30qU1jj/V2DfiHg70Auc0l+DJI0BzgEOi4h3ABeSloEF\n+GlE7BQR2wNzgeNy+enA/rn8wJwn5HTg8ojYISIub3ANtiQlU9kZOEPSGEnvAD4K7EJap/0TknbM\n+28BnBcR20TER4GXch1H12w/NyK2AZ4jZ6SrY4XvExGz+rT9JVIa2jsiYvuI+G3NtdqA9LvxgXyO\nw/OmB4B3RcSO+Vz/0aANy2l2yP0C0rq2rwDkR9Y+2GwlZmYrqUb50Ifq4YiYHRFLSWk8b4q0lvds\nUm7vWrsDl+b3l9SUvxu4NCKWRMSfSYlV+tqVFPBvVVrnfBL9Z5CD9MfBtqQ027NIfwhsnLdtK2mG\n0lrwRwPb5PJbgcmSPgGMbuJ717o2IhbnVK3VtKt7ANdExN8iYhHwU6B6L/vRiGi05vvDOSgD/J4V\nr2Otet+nryXA1f2U7wr8ppoOtibN7HjgytyBPrvBeVfQ7MIyq0XEndJySxm/2mwlZmYrqaLyocPy\nKUeX1nxeSv//tw+cuKN/AqZFxIea3HdOROzWz7bJwMERcY+kY0mZ3IiIEyTtArwf+H3uYTer2bSr\nVQOlkO17vrpD7tT5Pv14uSYPfTP+DbglIg6RtCmDWMit2R76M5LeTP6FUJoF2SiTj5mZ1c97PtR8\n6IN1K8tGVY+uKf8N6V716Hyve69+jr0d2F3S5gCSVpf0ljr1zAM2kLRb3neMpGoPc03giTws/1ob\nJL05Iu6IiNOBp4E3MnDq1EZmAAfne9qrk24rzKiz7yu5Pa3o9/sMwu3AuyVtBsulmR3Pslwpxw7m\nhM0G9BOB7wFbSnoc+CwDpL4zM7PC8qEP1meAE/Pw8EY15deQnli6H7gYuK3vgRHxNCmwXKqUbvU2\n0r3rFeT734cBX8mTwGax7L78/wPuIP1x8UDNYf+VJ+vdR0r7eg8pfevWjSbF1RMRd5F6z3fm+r4f\nEXfX2f184N6aSXGDUe/7NNvOp4HjgZ/ma1WdK/BV4D8l3U3zo+jAAOlTJX0mIr4pafeIuDX/tTMq\nIl4YbOOHwulTzWwYaCl9ap4A9x+kYfb/Bv7lxO/uPaR86Gb9GSigz4qIHSTdlWc3dsVIDejPL36e\nJ198ktXHrM4G4zZgzOhWR3bMbBgofT50G9kG6s7PlfQg8IY81FIlICJiu+KaNvI9vuhxjph6BON6\nxjH1kKm8brV+H/E0MxtxJF0DbNan+NSIuKHN9XyUdMug1q0RcWI762lQ/7mkpwRqfTMiftiJ+gej\nYUCPiA9Jej1plbgDO9Ok8lh9zOqsMmoV1h27LqPU7HSF7lu4eCFPv/g0a626FuuPW39Etd3MOiMi\nDulQPT8EuhY8O/WHQzsMeMM9Iv4CbN+BtpTOhNUmcN2h1zFKo1h/3Prdbk7T/vjcH5l0/STWG7se\nVx141Yhqu5nZyqphQJd0RUQckWdG1t5s95B7E1btWZUJPRO63YxBG7/qeHpG9TBhtQmMavpBCDMz\n66aBeujV+xYHtHJySY+QnidcArwaEZX8rN3lpBV4HgGOiIgFrZzfirHRGhtxw6E3MHrUaNYdt+7A\nB5iZWdcNdA/9ifz66BDq2Csvy1d1GmmJwrOUUvudBpw6hPNbm43tGcvYnrHdboaZmQ1Cw/FUSS9I\ner6fnxckPd9inQcBF+X3FwEHt3geMzNrkaSD1ca83JIqkr7VrvO1UP9r+d/VJye5pOskrd2ttnXK\nQD30Vpfee+0UwI2SAvheRJwPTKj2/IG/kBbTNzOzzjoYmEpaJW7IIqKXlImtKyJiCjAlf6zmJP94\n/lxv6ddSGdSyci3YIyIel/Q6Uvad5ZbHi4jIwX4Fko4nLYvHJpu0I4+BmVnnfe3IA1ZYKe7zl08d\n8kpxkj4MnAysQlqC9NPAt4GdSElFroqIM/K+Z5EePX4VuJGUgexA4H/nVNgfiIg/9lPHJ0j/D68C\nzAc+EhEvSjocOIM0P2phRLxb0p7AP0bEAZJ2JqVsHQu8BHw0IubV+R7HktZbH09alvZHEfHFvO1n\npLXdx5Ke/T4/l08kXdPRwDMRsU8+TwX4Pmn51HE57/hupPSmlYh4RtIxpBSzAdwbER9p/qoPb4UG\n9Ih4PL8+lRch2Bl4UtKGEfFETgbwVJ1jzyets0ulUmk1S5CZWdfkYH4By1Ko/i/ggq8deQBDCeqS\ntgKOBHaPiFcknUdKEPJ/I+JZSaOBmyRtR0r0cQiwZe5ErR0Rz0maAkyNiKsaVPXTiLgg1/nvpBzm\n57Ash/njdYayqzm9X5W0Lyn4NsotvjMp7eqLwExJ1+Ye/8fy9xmXy68m3Sq+AHh3RDxck9QEgIiY\nJel0UgA/Kbe9et22IaV0fWcO7qWa9VvYM0k5I8+a1ffAe4D7SEMik/Juk4CfF9UGM7MuKyof+j7A\nO0hBblb+/CbgCEl3AXeT8mhvDSwEXgZ+IOlQVkwW00irOcwHm9N7WkT8NSJeIo0e7JHLT86JS24n\n9dS3oH4e8WbsDVxZnag9yGOHvSJ76BOAa/JfRj3ATyLiekkzgSskHQc8ChxRYBvMzLqpqHzoAi6K\niC+8VpDScE4DdoqIBZImA2NzL3lnUtA/DDiJFNiaMZnWcpgPNqd331HYyEP4+wK75WH+6aShd6uj\nsB56RDwUEdvnn20i4su5/K8RsU9EbBER+5btLyQzsxpF5UO/CTgsz0+q5tLeBPgbsFDSBOC9edsa\nwPiIuA74HMtW/mwm5/hgcpjXGmxO7/0krZuH1g8mjQCMBxbkYL4lqWcO9fOIN+Nm4HBJ67Vw7LDn\nZcDMzIpTSD70iLifdC/4xpw4axqwmDTU/gDwE1JQhBSUp+b9fguckssvA/4pP9r15jpVDSaHea3B\n5vS+E7gauBe4Ot8/vx7okTQXOIsUyBvlER9QRMwBvgz8Oh/79WaPHQkapk8dLkZq+lQzK5WW0qcW\nNcu9LKqz06sT2Kx1RT+2Zma2UsvB2wHcCueAbma2kutEzm9J+wNf6VP8cE7DOrld9azMHNDNzFZy\nncj5HRE3ADcUXc/KzJPizMzMSsAB3czMrAQc0M3MzErAAd3MzJYjadP8jPlA+xxV87mr6VPNAd3M\nzFqzKfBaQI+I3og4uXvNMQd0M7MRJveOH5D0Y0lzJV0laTVJ++SV32ZLulDSqnn/RyR9NZffKWnz\nXD5Z0mE1511Up64Zku7KP+/Mm84C3iVplqTPSdpT0tR8zLqSfibpXkm356xvSDozt2u6pIck+Q+A\nNnJANzMbmd4KnBcRWwHPk5Z0nQwcGRFvIz2W/Kma/Rfm8m8D3xhEPU8B+0XE20kpW6vD6qcBMyJi\nh4g4u88xXwTujojtSMvcXlyzbUtgf1LK1DPyOvHWBg7oZmYj058iorpe+49I2dQejog/5LKLgHfX\n7H9pzetug6hnDHBBTqF6JSkl60D2AC4BiIibgfUkrZW3XRsRi3MK06dImTmtDbywjJnZyNQ3Ecdz\nwHpN7l99/yq5YydpFLBKP8d9DniSlKVtFCm3+lAsrnm/BMehtnEP3cxsZNpEUrWnfRTQC2xavT8O\nfAT4dc3+R9a83pbfPwJUc5kfSOqN9zUeeCIiluZzjs7ljdKvziCnW815zZ+JiOeb+lbWMv9lZGY2\nMs0DTpR0IXA/cDIpxeiVknqAmcB3a/ZfJ6dQXQx8KJddAPw8pxK9npRPva/zgKslHdNnn3uBJfnY\nyaTUrVVnAhfm+l4EJg3tq1oznD7VzKw5LaVPLYKkTYGpEbFtk/s/QkpR+kyBzbIu85C7mZlZCXjI\n3cxshImIR4Cmeud5/00La4wNG+6hm5mZlYADupmZWQk4oJuZmZWAA7qZmVkJOKCbmY1AkiZKmidp\nvqTTut0e6z4HdDOzEUbSaOBc4L2ktdU/JKmZNdatxBzQzcxGnp2B+RHxUET8HbgMOKjLbbIuc0A3\nMxt5NgL+VPP5sVxmKzEvLGNmVrBKpXIgsB8wrbe3d0q322Pl5B66mVmBcjC/FDgJuDR/HqrHgTfW\nfN44l9lKzAHdzKxY+wGr5fer5c9DNRPYQtJmklYBPgi457+Sc0A3MyvWNFIKUfLrtKGeMCJeJfX4\nbwDmAldExJyhntdGNqdPNTNrTsvpU30P3TrBk+LMzAqWg7gDuRXKQ+5mZmYlUHhAlzRa0t2SpubP\nm0m6Iy9XeHme0GFmZmZD0Ike+mdIkzaqvgKcHRGbAwuA4zrQBjMzs1IrNKBL2hh4P/D9/FnA3sBV\neZeLgIOLbIOZmdnKoOge+jeAfwaW5s/rAc/lRy7AyxWamZm1RWEBXdIBwFMR8fsWjz9eUq+k3qef\nfrrNrTMzG9kkPSJptqRZknpz2bqSpkl6ML+uk8sl6Vt57tK9kt5ec55Jef8HJU2qKX9HPv/8fKw6\nVYe1psge+u7AgZIeIWUC2hv4JrC2pOrjcnWXK4yI8yOiEhGVDTbYoMBmmpkVp1KpjKlUKhMrlcpH\n8+uYNp5+r4jYISIq+fNpwE0RsQVwU/4MKc3qFvnneOA7kIIzcAawCymD2xnVAJ33+UTNcRM7WIe1\noLCAHhFfiIiNI2JT0rKEN0fE0cAtwGF5t0nAz4tqg5lZN1UqlQ8DTwKXA+fk1ydzeREOIs1NguXn\nKB0EXBzJ7aSO1YbA/sC0iHg2IhaQVrGbmLetFRG3R1p97OI+5yq6DmtBN55DPxU4RdJ80j31H3Sh\nDWZmhcpB+3vAOsBawOr5dR3ge20I6gHcKOn3ko7PZRMi4on8/i/AhPy+XrrVRuWP9VPeqTqsBR1Z\nKS4ipgPT8/uHSMMuZmallIfVv8WypCx9rQZ8q1KpXNbb2/tqnX0GskdEPC7pdcA0SQ/UboyIkFTo\n2t6dqMOa55XizMzabx9g9AD7jAb2bbWCiHg8vz4FXEPqKD2Zh7LJr0/l3eulW21UvnE/5XSoDmuB\nA7qZWfttyMABfRTw+lZOLml1SWtW3wPvAe4jrRdfnUVeO0dpCnBMnom+K7AwD5vfALxH0jp5otp7\ngBvytucl7Zpnnh/T51xF12EtcHIWM7P2ewJYMsA+S0n3oFsxAbgmP+XVA/wkIq6XNBO4QtJxwKPA\nEXn/64D3AfNJKVw/ChARz0r6N1J+dYAvRcSz+f2ngcnAOOCX+QfgrA7UYS1w+lQzs+Y0/Yx0vof+\nJGkCXD0LgNcN4R662XI85G5m1ma9vb2vACeTeqr9eRE42cHc2skB3cysAL29vT8CPknqiT8PLMqv\nC4BP5u1mbeMhdzOz5rS0LGkeft+HNAHuL8Cv3DO3InhSnJlZgfLw+/XdboeVn4fczczMSsAB3cys\nAyqVijOJWaEc0M3MClCpVFSpVHatVCpXViqVF4EllUrlxfx516EGeEkXSnpK0n01ZaVIn1qvDmvM\nAd3MrM3yRLhLgV8Bh5IWTlF+PTSXXzrEVKqTWTHdaFnSp9arwxpwQDcza6Pc874E+AdShrW+/8+O\nyuX/AFzcak89In4DPNunuCzpU+vVYQ04oJuZtdcuwAHUz7RWtRopqLcz+2RZ0qfWq8MacEA3M2uv\nz5OG1psxLu/fdrnXW3j61DLUURYO6GZm7fV+mv+/dRSpN98uZUmfWq8Oa8AB3cysTfL98LGDPGxs\nGx9pK0v61Hp1WANeKc7MrE16e3ujUqm8TPND7gAv9/b2DnpIWdKlwJ7A+pIeI80k70Rq027WYQ14\nLXczs+Y01YuuVCpXkh5Na2YEdClwdW9vrwOWDZmH3M3M2utrwEtN7vtS3t9syBzQzcza6w5gKvVz\noVe9CPwCuLPwFtlKwQHdzKyN8v3wj5Amdv2NNKxea2kunwIc08r9c7P+OKCbmbVZTpl6FCkP+tWk\nofXIr1fn8qPyfmZt4VnuZmYFyD3vO4AjKpVKD2m510W9vb1LutsyKysHdDOzAlQqlVWBw4FTgW2A\nV4AxlUplDvAV4Mre3t7FXWyilYyH3M3M2qxSqewM/Bk4D9iW9MjbKvl121z+50qlslOrddRJn3qm\npMclzco/76vZ9oWcpnSepP1ryifmsvmSTqsp30zSHbn8ckmr5PJV8+f5efumnazD6nNANzNroxyk\nbwbWBdass9uaefstQwjqk1kxfSrA2RGxQ/65DkDS1sAHSSMFE4HzJI2WNBo4l5T6dGvgQ3lfSKMI\nZ0fE5sAC4LhcfhywIJefnffrSB3WmAO6mVmb5GH260n3y5uxOnB9Pm5Q6qRPrecg4LKIWBwRD5NW\nc9s5/8yPiIci4u/AZcBBeSnWvYGr8vF906RWU5teBeyT9+9EHdaAA7qZWfscDowZ5DGrAIe1sQ0n\nSbo3D8mvk8sGm9p0PeC5iHi1T/ly58rbF+b9O1GHNeCAbmbWPqdSf5i9njWA0wbcqznfAd4M7AA8\ngVehW6k4oJuZtUGlUhlNun/cim3y8UMSEU9GxJKIWApcQBruhsGnNv0rsLaknj7ly50rbx+f9+9E\nHdaAA7qZWXusQXo0rRWv5uOHpJpDPDsEqM6AnwJ8MM8e3wzYgrTk7ExgizzbfBXSpLYpkbJ23cKy\nWwF906RWU5seBtyc9+9EHdaAn0M3M2uPRQz+/nlVTz6+aXXSp+4paQfSqnSPAJ8EiIg5kq4A7if9\n8XBiRCzJ5zmJlLN8NHBhRMzJVZwKXCbp34G7gR/k8h8Al0iaT5qU98FO1WGNOX2qmVlzBpxlXalU\nZpOeMx+s+3p7e9/WwnFmr/GQu5lZ+3wFeGGQx7wAnFVAW2wlU1hAlzRW0p2S7pE0R9IXc3m/KwOZ\nmZXAlQz+PvorLHsW26xlRfbQFwN7R8T2pEcoJkralforA5mZjWh5bfaJpPSozfgbMNFruls7FBbQ\nI6lO8hiTf4L6KwOZmY14vb29M4G9SJO56g2/v5C375X3NxuyQu+h53V8ZwFPAdOAP1J/ZSAzs1LI\nQfoNwKdIj44FaWg9gNm5/A0O5tZOhT62lh9Z2EHS2sA1wJbNHivpeOB4gE022aSYBpqZFSQPo/8Y\n+HFeNGYNnA/dCtSR59Aj4jlJtwC7kVcGyr302pWB+h5zPnA+pMfWOtFOM7Mi5CC+sNvtsHIrcpb7\nBrlnjqRxwH7AXOqvDGRmZmYtKrKHviFwUc6FOwq4IiKmSrqf/lcGMjMzsxYVFtAj4l5gx37KH2JZ\nwgAzMzNrA68UZ2ZmVgIO6GZmZiXggG5mZlYCDuhmZmYl4IBuZmZWAg7oZmZmJeCAbmZmVgIO6GZm\nZiXggG5mZlYCDuhmZmYl4IBuZmZWAg7oZmZmJeCAbmZmVgIO6GZmZiXggG5mZlYCDuhmZmYl4IBu\nZmZWAg7oZmZmJeCAbmZmVgIO6GZmZiXggG5mZlYCDuhmZmYl4IBuZmZWAg7oZmZmJeCAbmZmVgIO\n6GZmZiXggG5mZlYCDuhmZmYl4IBuZmZWAg7oZmZmJeCAbmZmVgIO6GZmZiXggG5mZlYCDuhmZmYl\nUFhAl/RGSbdIul/SHEmfyeXrSpom6cH8uk5RbTAzM1tZFNlDfxX4fERsDewKnChpa+A04KaI2AK4\nKX82MzOzISgsoEfEExFxV37/AjAX2Ag4CLgo73YRcHBRbTAzM1tZdOQeuqRNgR2BO4AJEfFE3vQX\nYEIn2mBmZlZmPUVXIGkN4GrgsxHxvKTXtkVESIo6xx0PHJ8/LpI0b4CqxgMLB9m8Zo5ptE+9bX3L\n+9uvtqzv9vWBZwZo12AN5+vTX1mjz0Vcn3rtascxZfkdqteOoe4/Un6Hro+IiYM8xqxzIqKwH2AM\ncANwSk3ZPGDD/H5DYF6b6jq/iGMa7VNvW9/y/varLetn/94C/i2G7fVp5pr1uV5tvz7D/RoNh9+h\nVq7RyvY75B//dPOnyFnuAn4AzI2Ir9dsmgJMyu8nAT9vU5W/KOiYRvvU29a3vL/9fjHA9nYbzten\nv7JmrmG7DedrNBx+h1qpZ2X7HTLrGkX0O+I99BNLewAzgNnA0lz8L6T76FcAmwCPAkdExLOFNGKE\nktQbEZVut2O48vUZmK9RY74+VkaF3UOPiN8CqrN5n6LqLYnzu92AYc7XZ2C+Ro35+ljpFNZDNzMz\ns87x0q9mZmYl4IBuZmZWAg7oZmZmJeCAPsxJ2krSdyVdJelT3W7PcCVpdUm9kg7odluGG0l7SpqR\nf4/27HZ7hiNJoyR9WdI5kiYNfITZ8OOA3gWSLpT0lKT7+pRPlDRP0nxJpwFExNyIOAE4Ati9G+3t\nhsFco+xU0uOQK4VBXp8AFgFjgcc63dZuGeQ1OgjYGHiFlegaWbk4oHfHZGC5JSQljQbOBd4LbA18\nKGenQ9KBwLXAdZ1tZldNpslrJGk/4H7gqU43sosm0/zv0IyIeC/pj54vdrid3TSZ5q/RW4HfRcQp\ngEfCbERyQO+CiPgN0HcxnZ2B+RHxUET8HbiM1GsgIqbk/5CP7mxLu2eQ12hPUoreo4BPSCr97/Vg\nrk9EVBd2WgCs2sFmdtUgf4ceI10fgCWda6VZ+xSenMWathHwp5rPjwG75Hueh5L+I16Zeuj96fca\nRcRJAJKOBZ6pCWArm3q/Q4cC+wNrA9/uRsOGkX6vEfBN4BxJ7wJ+042GmQ2VA/owFxHTgeldbsaI\nEBGTu92G4Sgifgr8tNvtGM4i4kXguG63w2woSj80OYI8Dryx5vPGucyW8TVqzNdnYL5GVloO6MPH\nTGALSZtJWgX4ICkznS3ja9SYr8/AfI2stBzQu0DSpcBtwFslPSbpuIh4FTiJlD9+LnBFRMzpZju7\nydeoMV+fgfka2crGyVnMzMxKwD10MzOzEnBANzMzKwEHdDMzsxJwQDczMysBB3QzM7MScEA3MzMr\nAQd0G/Yk/a7bbTAzG+78HLqZmVkJuIduw56kRfl1T0nTJV0l6QFJP5akvG0nSb+TdI+kOyWtKWms\npB9Kmi3pbkl75X2PlfQzSdMkPSLpJEmn5H1ul7Ru3u/Nkq6X9HtJMyRt2b2rYGbWmLOt2UizI7AN\n8GfgVmB3SXcClwNHRsRMSWsBLwGfASIi3paD8Y2S3pLPs20+11hgPnBqROwo6WzgGOAbwPnACRHx\noKRdgPOAvTv2Tc3MBsEB3UaaOyPiMQBJs4BNgYXAExExEyAins/b9wDOyWUPSHoUqAb0WyLiBeAF\nSQuBX+Ty2cB2ktYA3glcmQcBIOWkNzMblhzQbaRZXPN+Ca3/DteeZ2nN56X5nKOA5yJihxbPb2bW\nUb6HbmUwD9hQV+bxXgAAAJZJREFU0k4A+f55DzADODqXvQXYJO87oNzLf1jS4fl4Sdq+iMabmbWD\nA7qNeBHxd+BI4BxJ9wDTSPfGzwNGSZpNusd+bEQsrn+mFRwNHJfPOQc4qL0tNzNrHz+2ZmZmVgLu\noZuZmZWAA7qZmVkJOKCbmZmVgAO6mZlZCTigm5mZlYADupmZWQk4oJuZmZWAA7qZmVkJ/A/Ej+qZ\nvMr9vgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -4873,8 +4880,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"3d921986-e908-11e8-b3f9-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"3d28ab18-e908-11e8-b3f9-0242ac1c0002\"]);\n", - "//# sourceURL=js_340edfc2ec" + "window[\"09be588a-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"0951cb98-e91d-11e8-9ca7-0242ac1c0002\"]);\n", + "//# sourceURL=js_0beefe4cb1" ], "text/plain": [ "" @@ -4898,6 +4905,29158 @@ "source": [ "" ] + }, + { + "metadata": { + "id": "JiucBW8xRTRr", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "b6e8cfd9-92df-447a-e1a9-c29388059c8b" + }, + "cell_type": "code", + "source": [ + "df1.head()" + ], + "execution_count": 52, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearincomelifespanpopulationcountryregion
0180083334.4219286Arubaamerica
1180183334.4219286Arubaamerica
2180283334.4219286Arubaamerica
3180383334.4219286Arubaamerica
4180483334.4219286Arubaamerica
\n", + "
" + ], + "text/plain": [ + " year income lifespan population country region\n", + "0 1800 833 34.42 19286 Aruba america\n", + "1 1801 833 34.42 19286 Aruba america\n", + "2 1802 833 34.42 19286 Aruba america\n", + "3 1803 833 34.42 19286 Aruba america\n", + "4 1804 833 34.42 19286 Aruba america" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 52 + } + ] + }, + { + "metadata": { + "id": "3kXhLRyvRMP2", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "life_more_than_eighty_three = df1[df1.lifespan > 83]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4qJvwIHPRXZH", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134 + }, + "outputId": "73079fad-66ee-4c1c-bb2d-fa8579777f4e" + }, + "cell_type": "code", + "source": [ + "life_more_than_eighty_three.count()" + ], + "execution_count": 65, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "year 29\n", + "income 29\n", + "lifespan 29\n", + "population 29\n", + "country 29\n", + "region 29\n", + "dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 65 + } + ] + }, + { + "metadata": { + "id": "J5GNKxOha269", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "d56d2a28-adf7-4fff-f3d6-f006315542ba" + }, + "cell_type": "code", + "source": [ + "df1.shape" + ], + "execution_count": 97, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(41790, 6)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 97 + } + ] + }, + { + "metadata": { + "id": "I4FJPG6qVe0C", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 484139 + }, + "outputId": "6a8db3df-3549-4a61-a3b8-06d3073c9e9b" + }, + "cell_type": "code", + "source": [ + "# Want: method to calculate the top ten biggest changes in lifespan by country\n", + "# and plot it\n", + "\n", + "# to start with, let's make a list of all the unique countries\n", + "country_list = df1['country'].unique().tolist() # already alphabetical\n", + "\n", + "qatar = this_year[this_year.country=='Qatar']\n", + "qatar_income = qatar.income.values[0]\n", + "qatar_lifespan = qatar.lifespan.values[0]\n", + "\n", + "\n", + "#let's parse through by incremental years\n", + "# TODO : Finish creating a system to parse this \n", + "current_year = 1800\n", + "\n", + "for row in df1.index: # row labels aka 0 - 41789\n", + " working_year = df1[df1.year==current_year]\n", + " current_year += 1\n", + " \n", + " working_country = working_year.country\n", + " working_lifespan = working_year.lifespan\n", + " \n", + " " + ], + "execution_count": 109, + "outputs": [ + { + "output_type": "stream", + "text": [ + "0 Aruba\n", + "219 Afghanistan\n", + "438 Angola\n", + "657 Albania\n", + "923 United Arab Emirates\n", + "1142 Argentina\n", + "1361 Armenia\n", + "1580 Antigua and Barbuda\n", + "1799 Australia\n", + "2018 Austria\n", + "2237 Azerbaijan\n", + "2456 Burundi\n", + "2675 Belgium\n", + "2894 Benin\n", + "3113 Burkina Faso\n", + "3332 Bangladesh\n", + "3551 Bulgaria\n", + "3770 Bahrain\n", + "3989 Bahamas\n", + "4208 Bosnia and Herzegovina\n", + "4427 Belarus\n", + "4646 Belize\n", + "4912 Bolivia\n", + "5131 Brazil\n", + "5350 Barbados\n", + "5569 Brunei\n", + "5788 Bhutan\n", + "6007 Botswana\n", + "6226 Central African Republic\n", + "6445 Canada\n", + " ... \n", + "35222 Sweden\n", + "35441 Swaziland\n", + "35660 Seychelles\n", + "35879 Syria\n", + "36098 Chad\n", + "36317 Togo\n", + "36536 Thailand\n", + "36755 Tajikistan\n", + "36974 Turkmenistan\n", + "37193 Timor-Leste\n", + "37412 Tonga\n", + "37631 Trinidad and Tobago\n", + "37850 Tunisia\n", + "38069 Turkey\n", + "38288 Taiwan\n", + "38505 Tanzania\n", + "38724 Uganda\n", + "38943 Ukraine\n", + "39162 Uruguay\n", + "39381 United States\n", + "39600 Uzbekistan\n", + "39819 St. Vincent and the Grenadines\n", + "40038 Venezuela\n", + "40257 Vietnam\n", + "40476 Vanuatu\n", + "40695 Samoa\n", + "40914 Yemen\n", + "41133 South Africa\n", + "41352 Zambia\n", + "41571 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "1 Aruba\n", + "220 Afghanistan\n", + "439 Angola\n", + "658 Albania\n", + "924 United Arab Emirates\n", + "1143 Argentina\n", + "1362 Armenia\n", + "1581 Antigua and Barbuda\n", + "1800 Australia\n", + "2019 Austria\n", + "2238 Azerbaijan\n", + "2457 Burundi\n", + "2676 Belgium\n", + "2895 Benin\n", + "3114 Burkina Faso\n", + "3333 Bangladesh\n", + "3552 Bulgaria\n", + "3771 Bahrain\n", + "3990 Bahamas\n", + "4209 Bosnia and Herzegovina\n", + "4428 Belarus\n", + "4647 Belize\n", + "4913 Bolivia\n", + "5132 Brazil\n", + "5351 Barbados\n", + "5570 Brunei\n", + "5789 Bhutan\n", + "6008 Botswana\n", + "6227 Central African Republic\n", + "6446 Canada\n", + " ... \n", + "35223 Sweden\n", + "35442 Swaziland\n", + "35661 Seychelles\n", + "35880 Syria\n", + "36099 Chad\n", + "36318 Togo\n", + "36537 Thailand\n", + "36756 Tajikistan\n", + "36975 Turkmenistan\n", + "37194 Timor-Leste\n", + "37413 Tonga\n", + "37632 Trinidad and Tobago\n", + "37851 Tunisia\n", + "38070 Turkey\n", + "38289 Taiwan\n", + "38506 Tanzania\n", + "38725 Uganda\n", + "38944 Ukraine\n", + "39163 Uruguay\n", + "39382 United States\n", + "39601 Uzbekistan\n", + "39820 St. Vincent and the Grenadines\n", + "40039 Venezuela\n", + "40258 Vietnam\n", + "40477 Vanuatu\n", + "40696 Samoa\n", + "40915 Yemen\n", + "41134 South Africa\n", + "41353 Zambia\n", + "41572 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "2 Aruba\n", + "221 Afghanistan\n", + "440 Angola\n", + "659 Albania\n", + "925 United Arab Emirates\n", + "1144 Argentina\n", + "1363 Armenia\n", + "1582 Antigua and Barbuda\n", + "1801 Australia\n", + "2020 Austria\n", + "2239 Azerbaijan\n", + "2458 Burundi\n", + "2677 Belgium\n", + "2896 Benin\n", + "3115 Burkina Faso\n", + "3334 Bangladesh\n", + "3553 Bulgaria\n", + "3772 Bahrain\n", + "3991 Bahamas\n", + "4210 Bosnia and Herzegovina\n", + "4429 Belarus\n", + "4648 Belize\n", + "4914 Bolivia\n", + "5133 Brazil\n", + "5352 Barbados\n", + "5571 Brunei\n", + "5790 Bhutan\n", + "6009 Botswana\n", + "6228 Central African Republic\n", + "6447 Canada\n", + " ... \n", + "35224 Sweden\n", + "35443 Swaziland\n", + "35662 Seychelles\n", + "35881 Syria\n", + "36100 Chad\n", + "36319 Togo\n", + "36538 Thailand\n", + "36757 Tajikistan\n", + "36976 Turkmenistan\n", + "37195 Timor-Leste\n", + "37414 Tonga\n", + "37633 Trinidad and Tobago\n", + "37852 Tunisia\n", + "38071 Turkey\n", + "38290 Taiwan\n", + "38507 Tanzania\n", + "38726 Uganda\n", + "38945 Ukraine\n", + "39164 Uruguay\n", + "39383 United States\n", + "39602 Uzbekistan\n", + "39821 St. Vincent and the Grenadines\n", + "40040 Venezuela\n", + "40259 Vietnam\n", + "40478 Vanuatu\n", + "40697 Samoa\n", + "40916 Yemen\n", + "41135 South Africa\n", + "41354 Zambia\n", + "41573 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "3 Aruba\n", + "222 Afghanistan\n", + "441 Angola\n", + "660 Albania\n", + "926 United Arab Emirates\n", + "1145 Argentina\n", + "1364 Armenia\n", + "1583 Antigua and Barbuda\n", + "1802 Australia\n", + "2021 Austria\n", + "2240 Azerbaijan\n", + "2459 Burundi\n", + "2678 Belgium\n", + "2897 Benin\n", + "3116 Burkina Faso\n", + "3335 Bangladesh\n", + "3554 Bulgaria\n", + "3773 Bahrain\n", + "3992 Bahamas\n", + "4211 Bosnia and Herzegovina\n", + "4430 Belarus\n", + "4649 Belize\n", + "4915 Bolivia\n", + "5134 Brazil\n", + "5353 Barbados\n", + "5572 Brunei\n", + "5791 Bhutan\n", + "6010 Botswana\n", + "6229 Central African Republic\n", + "6448 Canada\n", + " ... \n", + "35225 Sweden\n", + "35444 Swaziland\n", + "35663 Seychelles\n", + "35882 Syria\n", + "36101 Chad\n", + "36320 Togo\n", + "36539 Thailand\n", + "36758 Tajikistan\n", + "36977 Turkmenistan\n", + "37196 Timor-Leste\n", + "37415 Tonga\n", + "37634 Trinidad and Tobago\n", + "37853 Tunisia\n", + "38072 Turkey\n", + "38291 Taiwan\n", + "38508 Tanzania\n", + "38727 Uganda\n", + "38946 Ukraine\n", + "39165 Uruguay\n", + "39384 United States\n", + "39603 Uzbekistan\n", + "39822 St. Vincent and the Grenadines\n", + "40041 Venezuela\n", + "40260 Vietnam\n", + "40479 Vanuatu\n", + "40698 Samoa\n", + "40917 Yemen\n", + "41136 South Africa\n", + "41355 Zambia\n", + "41574 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "4 Aruba\n", + "223 Afghanistan\n", + "442 Angola\n", + "661 Albania\n", + "927 United Arab Emirates\n", + "1146 Argentina\n", + "1365 Armenia\n", + "1584 Antigua and Barbuda\n", + "1803 Australia\n", + "2022 Austria\n", + "2241 Azerbaijan\n", + "2460 Burundi\n", + "2679 Belgium\n", + "2898 Benin\n", + "3117 Burkina Faso\n", + "3336 Bangladesh\n", + "3555 Bulgaria\n", + "3774 Bahrain\n", + "3993 Bahamas\n", + "4212 Bosnia and Herzegovina\n", + "4431 Belarus\n", + "4650 Belize\n", + "4916 Bolivia\n", + "5135 Brazil\n", + "5354 Barbados\n", + "5573 Brunei\n", + "5792 Bhutan\n", + "6011 Botswana\n", + "6230 Central African Republic\n", + "6449 Canada\n", + " ... \n", + "35226 Sweden\n", + "35445 Swaziland\n", + "35664 Seychelles\n", + "35883 Syria\n", + "36102 Chad\n", + "36321 Togo\n", + "36540 Thailand\n", + "36759 Tajikistan\n", + "36978 Turkmenistan\n", + "37197 Timor-Leste\n", + "37416 Tonga\n", + "37635 Trinidad and Tobago\n", + "37854 Tunisia\n", + "38073 Turkey\n", + "38292 Taiwan\n", + "38509 Tanzania\n", + "38728 Uganda\n", + "38947 Ukraine\n", + "39166 Uruguay\n", + "39385 United States\n", + "39604 Uzbekistan\n", + "39823 St. Vincent and the Grenadines\n", + "40042 Venezuela\n", + "40261 Vietnam\n", + "40480 Vanuatu\n", + "40699 Samoa\n", + "40918 Yemen\n", + "41137 South Africa\n", + "41356 Zambia\n", + "41575 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "5 Aruba\n", + "224 Afghanistan\n", + "443 Angola\n", + "662 Albania\n", + "928 United Arab Emirates\n", + "1147 Argentina\n", + "1366 Armenia\n", + "1585 Antigua and Barbuda\n", + "1804 Australia\n", + "2023 Austria\n", + "2242 Azerbaijan\n", + "2461 Burundi\n", + "2680 Belgium\n", + "2899 Benin\n", + "3118 Burkina Faso\n", + "3337 Bangladesh\n", + "3556 Bulgaria\n", + "3775 Bahrain\n", + "3994 Bahamas\n", + "4213 Bosnia and Herzegovina\n", + "4432 Belarus\n", + "4651 Belize\n", + "4917 Bolivia\n", + "5136 Brazil\n", + "5355 Barbados\n", + "5574 Brunei\n", + "5793 Bhutan\n", + "6012 Botswana\n", + "6231 Central African Republic\n", + "6450 Canada\n", + " ... \n", + "35227 Sweden\n", + "35446 Swaziland\n", + "35665 Seychelles\n", + "35884 Syria\n", + "36103 Chad\n", + "36322 Togo\n", + "36541 Thailand\n", + "36760 Tajikistan\n", + "36979 Turkmenistan\n", + "37198 Timor-Leste\n", + "37417 Tonga\n", + "37636 Trinidad and Tobago\n", + "37855 Tunisia\n", + "38074 Turkey\n", + "38293 Taiwan\n", + "38510 Tanzania\n", + "38729 Uganda\n", + "38948 Ukraine\n", + "39167 Uruguay\n", + "39386 United States\n", + "39605 Uzbekistan\n", + "39824 St. Vincent and the Grenadines\n", + "40043 Venezuela\n", + "40262 Vietnam\n", + "40481 Vanuatu\n", + "40700 Samoa\n", + "40919 Yemen\n", + "41138 South Africa\n", + "41357 Zambia\n", + "41576 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "6 Aruba\n", + "225 Afghanistan\n", + "444 Angola\n", + "663 Albania\n", + "929 United Arab Emirates\n", + "1148 Argentina\n", + "1367 Armenia\n", + "1586 Antigua and Barbuda\n", + "1805 Australia\n", + "2024 Austria\n", + "2243 Azerbaijan\n", + "2462 Burundi\n", + "2681 Belgium\n", + "2900 Benin\n", + "3119 Burkina Faso\n", + "3338 Bangladesh\n", + "3557 Bulgaria\n", + "3776 Bahrain\n", + "3995 Bahamas\n", + "4214 Bosnia and Herzegovina\n", + "4433 Belarus\n", + "4652 Belize\n", + "4918 Bolivia\n", + "5137 Brazil\n", + "5356 Barbados\n", + "5575 Brunei\n", + "5794 Bhutan\n", + "6013 Botswana\n", + "6232 Central African Republic\n", + "6451 Canada\n", + " ... \n", + "35228 Sweden\n", + "35447 Swaziland\n", + "35666 Seychelles\n", + "35885 Syria\n", + "36104 Chad\n", + "36323 Togo\n", + "36542 Thailand\n", + "36761 Tajikistan\n", + "36980 Turkmenistan\n", + "37199 Timor-Leste\n", + "37418 Tonga\n", + "37637 Trinidad and Tobago\n", + "37856 Tunisia\n", + "38075 Turkey\n", + "38294 Taiwan\n", + "38511 Tanzania\n", + "38730 Uganda\n", + "38949 Ukraine\n", + "39168 Uruguay\n", + "39387 United States\n", + "39606 Uzbekistan\n", + "39825 St. Vincent and the Grenadines\n", + "40044 Venezuela\n", + "40263 Vietnam\n", + "40482 Vanuatu\n", + "40701 Samoa\n", + "40920 Yemen\n", + "41139 South Africa\n", + "41358 Zambia\n", + "41577 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "7 Aruba\n", + "226 Afghanistan\n", + "445 Angola\n", + "664 Albania\n", + "930 United Arab Emirates\n", + "1149 Argentina\n", + "1368 Armenia\n", + "1587 Antigua and Barbuda\n", + "1806 Australia\n", + "2025 Austria\n", + "2244 Azerbaijan\n", + "2463 Burundi\n", + "2682 Belgium\n", + "2901 Benin\n", + "3120 Burkina Faso\n", + "3339 Bangladesh\n", + "3558 Bulgaria\n", + "3777 Bahrain\n", + "3996 Bahamas\n", + "4215 Bosnia and Herzegovina\n", + "4434 Belarus\n", + "4653 Belize\n", + "4919 Bolivia\n", + "5138 Brazil\n", + "5357 Barbados\n", + "5576 Brunei\n", + "5795 Bhutan\n", + "6014 Botswana\n", + "6233 Central African Republic\n", + "6452 Canada\n", + " ... \n", + "35229 Sweden\n", + "35448 Swaziland\n", + "35667 Seychelles\n", + "35886 Syria\n", + "36105 Chad\n", + "36324 Togo\n", + "36543 Thailand\n", + "36762 Tajikistan\n", + "36981 Turkmenistan\n", + "37200 Timor-Leste\n", + "37419 Tonga\n", + "37638 Trinidad and Tobago\n", + "37857 Tunisia\n", + "38076 Turkey\n", + "38295 Taiwan\n", + "38512 Tanzania\n", + "38731 Uganda\n", + "38950 Ukraine\n", + "39169 Uruguay\n", + "39388 United States\n", + "39607 Uzbekistan\n", + "39826 St. Vincent and the Grenadines\n", + "40045 Venezuela\n", + "40264 Vietnam\n", + "40483 Vanuatu\n", + "40702 Samoa\n", + "40921 Yemen\n", + "41140 South Africa\n", + "41359 Zambia\n", + "41578 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "8 Aruba\n", + "227 Afghanistan\n", + "446 Angola\n", + "665 Albania\n", + "931 United Arab Emirates\n", + "1150 Argentina\n", + "1369 Armenia\n", + "1588 Antigua and Barbuda\n", + "1807 Australia\n", + "2026 Austria\n", + "2245 Azerbaijan\n", + "2464 Burundi\n", + "2683 Belgium\n", + "2902 Benin\n", + "3121 Burkina Faso\n", + "3340 Bangladesh\n", + "3559 Bulgaria\n", + "3778 Bahrain\n", + "3997 Bahamas\n", + "4216 Bosnia and Herzegovina\n", + "4435 Belarus\n", + "4654 Belize\n", + "4920 Bolivia\n", + "5139 Brazil\n", + "5358 Barbados\n", + "5577 Brunei\n", + "5796 Bhutan\n", + "6015 Botswana\n", + "6234 Central African Republic\n", + "6453 Canada\n", + " ... \n", + "35230 Sweden\n", + "35449 Swaziland\n", + "35668 Seychelles\n", + "35887 Syria\n", + "36106 Chad\n", + "36325 Togo\n", + "36544 Thailand\n", + "36763 Tajikistan\n", + "36982 Turkmenistan\n", + "37201 Timor-Leste\n", + "37420 Tonga\n", + "37639 Trinidad and Tobago\n", + "37858 Tunisia\n", + "38077 Turkey\n", + "38296 Taiwan\n", + "38513 Tanzania\n", + "38732 Uganda\n", + "38951 Ukraine\n", + "39170 Uruguay\n", + "39389 United States\n", + "39608 Uzbekistan\n", + "39827 St. Vincent and the Grenadines\n", + "40046 Venezuela\n", + "40265 Vietnam\n", + "40484 Vanuatu\n", + "40703 Samoa\n", + "40922 Yemen\n", + "41141 South Africa\n", + "41360 Zambia\n", + "41579 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "9 Aruba\n", + "228 Afghanistan\n", + "447 Angola\n", + "666 Albania\n", + "932 United Arab Emirates\n", + "1151 Argentina\n", + "1370 Armenia\n", + "1589 Antigua and Barbuda\n", + "1808 Australia\n", + "2027 Austria\n", + "2246 Azerbaijan\n", + "2465 Burundi\n", + "2684 Belgium\n", + "2903 Benin\n", + "3122 Burkina Faso\n", + "3341 Bangladesh\n", + "3560 Bulgaria\n", + "3779 Bahrain\n", + "3998 Bahamas\n", + "4217 Bosnia and Herzegovina\n", + "4436 Belarus\n", + "4655 Belize\n", + "4921 Bolivia\n", + "5140 Brazil\n", + "5359 Barbados\n", + "5578 Brunei\n", + "5797 Bhutan\n", + "6016 Botswana\n", + "6235 Central African Republic\n", + "6454 Canada\n", + " ... \n", + "35231 Sweden\n", + "35450 Swaziland\n", + "35669 Seychelles\n", + "35888 Syria\n", + "36107 Chad\n", + "36326 Togo\n", + "36545 Thailand\n", + "36764 Tajikistan\n", + "36983 Turkmenistan\n", + "37202 Timor-Leste\n", + "37421 Tonga\n", + "37640 Trinidad and Tobago\n", + "37859 Tunisia\n", + "38078 Turkey\n", + "38297 Taiwan\n", + "38514 Tanzania\n", + "38733 Uganda\n", + "38952 Ukraine\n", + "39171 Uruguay\n", + "39390 United States\n", + "39609 Uzbekistan\n", + "39828 St. Vincent and the Grenadines\n", + "40047 Venezuela\n", + "40266 Vietnam\n", + "40485 Vanuatu\n", + "40704 Samoa\n", + "40923 Yemen\n", + "41142 South Africa\n", + "41361 Zambia\n", + "41580 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "10 Aruba\n", + "229 Afghanistan\n", + "448 Angola\n", + "667 Albania\n", + "933 United Arab Emirates\n", + "1152 Argentina\n", + "1371 Armenia\n", + "1590 Antigua and Barbuda\n", + "1809 Australia\n", + "2028 Austria\n", + "2247 Azerbaijan\n", + "2466 Burundi\n", + "2685 Belgium\n", + "2904 Benin\n", + "3123 Burkina Faso\n", + "3342 Bangladesh\n", + "3561 Bulgaria\n", + "3780 Bahrain\n", + "3999 Bahamas\n", + "4218 Bosnia and Herzegovina\n", + "4437 Belarus\n", + "4656 Belize\n", + "4922 Bolivia\n", + "5141 Brazil\n", + "5360 Barbados\n", + "5579 Brunei\n", + "5798 Bhutan\n", + "6017 Botswana\n", + "6236 Central African Republic\n", + "6455 Canada\n", + " ... \n", + "35232 Sweden\n", + "35451 Swaziland\n", + "35670 Seychelles\n", + "35889 Syria\n", + "36108 Chad\n", + "36327 Togo\n", + "36546 Thailand\n", + "36765 Tajikistan\n", + "36984 Turkmenistan\n", + "37203 Timor-Leste\n", + "37422 Tonga\n", + "37641 Trinidad and Tobago\n", + "37860 Tunisia\n", + "38079 Turkey\n", + "38298 Taiwan\n", + "38515 Tanzania\n", + "38734 Uganda\n", + "38953 Ukraine\n", + "39172 Uruguay\n", + "39391 United States\n", + "39610 Uzbekistan\n", + "39829 St. Vincent and the Grenadines\n", + "40048 Venezuela\n", + "40267 Vietnam\n", + "40486 Vanuatu\n", + "40705 Samoa\n", + "40924 Yemen\n", + "41143 South Africa\n", + "41362 Zambia\n", + "41581 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "11 Aruba\n", + "230 Afghanistan\n", + "449 Angola\n", + "668 Albania\n", + "934 United Arab Emirates\n", + "1153 Argentina\n", + "1372 Armenia\n", + "1591 Antigua and Barbuda\n", + "1810 Australia\n", + "2029 Austria\n", + "2248 Azerbaijan\n", + "2467 Burundi\n", + "2686 Belgium\n", + "2905 Benin\n", + "3124 Burkina Faso\n", + "3343 Bangladesh\n", + "3562 Bulgaria\n", + "3781 Bahrain\n", + "4000 Bahamas\n", + "4219 Bosnia and Herzegovina\n", + "4438 Belarus\n", + "4657 Belize\n", + "4923 Bolivia\n", + "5142 Brazil\n", + "5361 Barbados\n", + "5580 Brunei\n", + "5799 Bhutan\n", + "6018 Botswana\n", + "6237 Central African Republic\n", + "6456 Canada\n", + " ... \n", + "35233 Sweden\n", + "35452 Swaziland\n", + "35671 Seychelles\n", + "35890 Syria\n", + "36109 Chad\n", + "36328 Togo\n", + "36547 Thailand\n", + "36766 Tajikistan\n", + "36985 Turkmenistan\n", + "37204 Timor-Leste\n", + "37423 Tonga\n", + "37642 Trinidad and Tobago\n", + "37861 Tunisia\n", + "38080 Turkey\n", + "38299 Taiwan\n", + "38516 Tanzania\n", + "38735 Uganda\n", + "38954 Ukraine\n", + "39173 Uruguay\n", + "39392 United States\n", + "39611 Uzbekistan\n", + "39830 St. Vincent and the Grenadines\n", + "40049 Venezuela\n", + "40268 Vietnam\n", + "40487 Vanuatu\n", + "40706 Samoa\n", + "40925 Yemen\n", + "41144 South Africa\n", + "41363 Zambia\n", + "41582 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "12 Aruba\n", + "231 Afghanistan\n", + "450 Angola\n", + "669 Albania\n", + "935 United Arab Emirates\n", + "1154 Argentina\n", + "1373 Armenia\n", + "1592 Antigua and Barbuda\n", + "1811 Australia\n", + "2030 Austria\n", + "2249 Azerbaijan\n", + "2468 Burundi\n", + "2687 Belgium\n", + "2906 Benin\n", + "3125 Burkina Faso\n", + "3344 Bangladesh\n", + "3563 Bulgaria\n", + "3782 Bahrain\n", + "4001 Bahamas\n", + "4220 Bosnia and Herzegovina\n", + "4439 Belarus\n", + "4658 Belize\n", + "4924 Bolivia\n", + "5143 Brazil\n", + "5362 Barbados\n", + "5581 Brunei\n", + "5800 Bhutan\n", + "6019 Botswana\n", + "6238 Central African Republic\n", + "6457 Canada\n", + " ... \n", + "35234 Sweden\n", + "35453 Swaziland\n", + "35672 Seychelles\n", + "35891 Syria\n", + "36110 Chad\n", + "36329 Togo\n", + "36548 Thailand\n", + "36767 Tajikistan\n", + "36986 Turkmenistan\n", + "37205 Timor-Leste\n", + "37424 Tonga\n", + "37643 Trinidad and Tobago\n", + "37862 Tunisia\n", + "38081 Turkey\n", + "38300 Taiwan\n", + "38517 Tanzania\n", + "38736 Uganda\n", + "38955 Ukraine\n", + "39174 Uruguay\n", + "39393 United States\n", + "39612 Uzbekistan\n", + "39831 St. Vincent and the Grenadines\n", + "40050 Venezuela\n", + "40269 Vietnam\n", + "40488 Vanuatu\n", + "40707 Samoa\n", + "40926 Yemen\n", + "41145 South Africa\n", + "41364 Zambia\n", + "41583 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "13 Aruba\n", + "232 Afghanistan\n", + "451 Angola\n", + "670 Albania\n", + "936 United Arab Emirates\n", + "1155 Argentina\n", + "1374 Armenia\n", + "1593 Antigua and Barbuda\n", + "1812 Australia\n", + "2031 Austria\n", + "2250 Azerbaijan\n", + "2469 Burundi\n", + "2688 Belgium\n", + "2907 Benin\n", + "3126 Burkina Faso\n", + "3345 Bangladesh\n", + "3564 Bulgaria\n", + "3783 Bahrain\n", + "4002 Bahamas\n", + "4221 Bosnia and Herzegovina\n", + "4440 Belarus\n", + "4659 Belize\n", + "4925 Bolivia\n", + "5144 Brazil\n", + "5363 Barbados\n", + "5582 Brunei\n", + "5801 Bhutan\n", + "6020 Botswana\n", + "6239 Central African Republic\n", + "6458 Canada\n", + " ... \n", + "35235 Sweden\n", + "35454 Swaziland\n", + "35673 Seychelles\n", + "35892 Syria\n", + "36111 Chad\n", + "36330 Togo\n", + "36549 Thailand\n", + "36768 Tajikistan\n", + "36987 Turkmenistan\n", + "37206 Timor-Leste\n", + "37425 Tonga\n", + "37644 Trinidad and Tobago\n", + "37863 Tunisia\n", + "38082 Turkey\n", + "38301 Taiwan\n", + "38518 Tanzania\n", + "38737 Uganda\n", + "38956 Ukraine\n", + "39175 Uruguay\n", + "39394 United States\n", + "39613 Uzbekistan\n", + "39832 St. Vincent and the Grenadines\n", + "40051 Venezuela\n", + "40270 Vietnam\n", + "40489 Vanuatu\n", + "40708 Samoa\n", + "40927 Yemen\n", + "41146 South Africa\n", + "41365 Zambia\n", + "41584 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "14 Aruba\n", + "233 Afghanistan\n", + "452 Angola\n", + "671 Albania\n", + "937 United Arab Emirates\n", + "1156 Argentina\n", + "1375 Armenia\n", + "1594 Antigua and Barbuda\n", + "1813 Australia\n", + "2032 Austria\n", + "2251 Azerbaijan\n", + "2470 Burundi\n", + "2689 Belgium\n", + "2908 Benin\n", + "3127 Burkina Faso\n", + "3346 Bangladesh\n", + "3565 Bulgaria\n", + "3784 Bahrain\n", + "4003 Bahamas\n", + "4222 Bosnia and Herzegovina\n", + "4441 Belarus\n", + "4660 Belize\n", + "4926 Bolivia\n", + "5145 Brazil\n", + "5364 Barbados\n", + "5583 Brunei\n", + "5802 Bhutan\n", + "6021 Botswana\n", + "6240 Central African Republic\n", + "6459 Canada\n", + " ... \n", + "35236 Sweden\n", + "35455 Swaziland\n", + "35674 Seychelles\n", + "35893 Syria\n", + "36112 Chad\n", + "36331 Togo\n", + "36550 Thailand\n", + "36769 Tajikistan\n", + "36988 Turkmenistan\n", + "37207 Timor-Leste\n", + "37426 Tonga\n", + "37645 Trinidad and Tobago\n", + "37864 Tunisia\n", + "38083 Turkey\n", + "38302 Taiwan\n", + "38519 Tanzania\n", + "38738 Uganda\n", + "38957 Ukraine\n", + "39176 Uruguay\n", + "39395 United States\n", + "39614 Uzbekistan\n", + "39833 St. Vincent and the Grenadines\n", + "40052 Venezuela\n", + "40271 Vietnam\n", + "40490 Vanuatu\n", + "40709 Samoa\n", + "40928 Yemen\n", + "41147 South Africa\n", + "41366 Zambia\n", + "41585 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "15 Aruba\n", + "234 Afghanistan\n", + "453 Angola\n", + "672 Albania\n", + "938 United Arab Emirates\n", + "1157 Argentina\n", + "1376 Armenia\n", + "1595 Antigua and Barbuda\n", + "1814 Australia\n", + "2033 Austria\n", + "2252 Azerbaijan\n", + "2471 Burundi\n", + "2690 Belgium\n", + "2909 Benin\n", + "3128 Burkina Faso\n", + "3347 Bangladesh\n", + "3566 Bulgaria\n", + "3785 Bahrain\n", + "4004 Bahamas\n", + "4223 Bosnia and Herzegovina\n", + "4442 Belarus\n", + "4661 Belize\n", + "4927 Bolivia\n", + "5146 Brazil\n", + "5365 Barbados\n", + "5584 Brunei\n", + "5803 Bhutan\n", + "6022 Botswana\n", + "6241 Central African Republic\n", + "6460 Canada\n", + " ... \n", + "35237 Sweden\n", + "35456 Swaziland\n", + "35675 Seychelles\n", + "35894 Syria\n", + "36113 Chad\n", + "36332 Togo\n", + "36551 Thailand\n", + "36770 Tajikistan\n", + "36989 Turkmenistan\n", + "37208 Timor-Leste\n", + "37427 Tonga\n", + "37646 Trinidad and Tobago\n", + "37865 Tunisia\n", + "38084 Turkey\n", + "38303 Taiwan\n", + "38520 Tanzania\n", + "38739 Uganda\n", + "38958 Ukraine\n", + "39177 Uruguay\n", + "39396 United States\n", + "39615 Uzbekistan\n", + "39834 St. Vincent and the Grenadines\n", + "40053 Venezuela\n", + "40272 Vietnam\n", + "40491 Vanuatu\n", + "40710 Samoa\n", + "40929 Yemen\n", + "41148 South Africa\n", + "41367 Zambia\n", + "41586 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "16 Aruba\n", + "235 Afghanistan\n", + "454 Angola\n", + "673 Albania\n", + "939 United Arab Emirates\n", + "1158 Argentina\n", + "1377 Armenia\n", + "1596 Antigua and Barbuda\n", + "1815 Australia\n", + "2034 Austria\n", + "2253 Azerbaijan\n", + "2472 Burundi\n", + "2691 Belgium\n", + "2910 Benin\n", + "3129 Burkina Faso\n", + "3348 Bangladesh\n", + "3567 Bulgaria\n", + "3786 Bahrain\n", + "4005 Bahamas\n", + "4224 Bosnia and Herzegovina\n", + "4443 Belarus\n", + "4662 Belize\n", + "4928 Bolivia\n", + "5147 Brazil\n", + "5366 Barbados\n", + "5585 Brunei\n", + "5804 Bhutan\n", + "6023 Botswana\n", + "6242 Central African Republic\n", + "6461 Canada\n", + " ... \n", + "35238 Sweden\n", + "35457 Swaziland\n", + "35676 Seychelles\n", + "35895 Syria\n", + "36114 Chad\n", + "36333 Togo\n", + "36552 Thailand\n", + "36771 Tajikistan\n", + "36990 Turkmenistan\n", + "37209 Timor-Leste\n", + "37428 Tonga\n", + "37647 Trinidad and Tobago\n", + "37866 Tunisia\n", + "38085 Turkey\n", + "38304 Taiwan\n", + "38521 Tanzania\n", + "38740 Uganda\n", + "38959 Ukraine\n", + "39178 Uruguay\n", + "39397 United States\n", + "39616 Uzbekistan\n", + "39835 St. Vincent and the Grenadines\n", + "40054 Venezuela\n", + "40273 Vietnam\n", + "40492 Vanuatu\n", + "40711 Samoa\n", + "40930 Yemen\n", + "41149 South Africa\n", + "41368 Zambia\n", + "41587 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "17 Aruba\n", + "236 Afghanistan\n", + "455 Angola\n", + "674 Albania\n", + "940 United Arab Emirates\n", + "1159 Argentina\n", + "1378 Armenia\n", + "1597 Antigua and Barbuda\n", + "1816 Australia\n", + "2035 Austria\n", + "2254 Azerbaijan\n", + "2473 Burundi\n", + "2692 Belgium\n", + "2911 Benin\n", + "3130 Burkina Faso\n", + "3349 Bangladesh\n", + "3568 Bulgaria\n", + "3787 Bahrain\n", + "4006 Bahamas\n", + "4225 Bosnia and Herzegovina\n", + "4444 Belarus\n", + "4663 Belize\n", + "4929 Bolivia\n", + "5148 Brazil\n", + "5367 Barbados\n", + "5586 Brunei\n", + "5805 Bhutan\n", + "6024 Botswana\n", + "6243 Central African Republic\n", + "6462 Canada\n", + " ... \n", + "35239 Sweden\n", + "35458 Swaziland\n", + "35677 Seychelles\n", + "35896 Syria\n", + "36115 Chad\n", + "36334 Togo\n", + "36553 Thailand\n", + "36772 Tajikistan\n", + "36991 Turkmenistan\n", + "37210 Timor-Leste\n", + "37429 Tonga\n", + "37648 Trinidad and Tobago\n", + "37867 Tunisia\n", + "38086 Turkey\n", + "38305 Taiwan\n", + "38522 Tanzania\n", + "38741 Uganda\n", + "38960 Ukraine\n", + "39179 Uruguay\n", + "39398 United States\n", + "39617 Uzbekistan\n", + "39836 St. Vincent and the Grenadines\n", + "40055 Venezuela\n", + "40274 Vietnam\n", + "40493 Vanuatu\n", + "40712 Samoa\n", + "40931 Yemen\n", + "41150 South Africa\n", + "41369 Zambia\n", + "41588 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "18 Aruba\n", + "237 Afghanistan\n", + "456 Angola\n", + "675 Albania\n", + "941 United Arab Emirates\n", + "1160 Argentina\n", + "1379 Armenia\n", + "1598 Antigua and Barbuda\n", + "1817 Australia\n", + "2036 Austria\n", + "2255 Azerbaijan\n", + "2474 Burundi\n", + "2693 Belgium\n", + "2912 Benin\n", + "3131 Burkina Faso\n", + "3350 Bangladesh\n", + "3569 Bulgaria\n", + "3788 Bahrain\n", + "4007 Bahamas\n", + "4226 Bosnia and Herzegovina\n", + "4445 Belarus\n", + "4664 Belize\n", + "4930 Bolivia\n", + "5149 Brazil\n", + "5368 Barbados\n", + "5587 Brunei\n", + "5806 Bhutan\n", + "6025 Botswana\n", + "6244 Central African Republic\n", + "6463 Canada\n", + " ... \n", + "35240 Sweden\n", + "35459 Swaziland\n", + "35678 Seychelles\n", + "35897 Syria\n", + "36116 Chad\n", + "36335 Togo\n", + "36554 Thailand\n", + "36773 Tajikistan\n", + "36992 Turkmenistan\n", + "37211 Timor-Leste\n", + "37430 Tonga\n", + "37649 Trinidad and Tobago\n", + "37868 Tunisia\n", + "38087 Turkey\n", + "38306 Taiwan\n", + "38523 Tanzania\n", + "38742 Uganda\n", + "38961 Ukraine\n", + "39180 Uruguay\n", + "39399 United States\n", + "39618 Uzbekistan\n", + "39837 St. Vincent and the Grenadines\n", + "40056 Venezuela\n", + "40275 Vietnam\n", + "40494 Vanuatu\n", + "40713 Samoa\n", + "40932 Yemen\n", + "41151 South Africa\n", + "41370 Zambia\n", + "41589 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "19 Aruba\n", + "238 Afghanistan\n", + "457 Angola\n", + "676 Albania\n", + "942 United Arab Emirates\n", + "1161 Argentina\n", + "1380 Armenia\n", + "1599 Antigua and Barbuda\n", + "1818 Australia\n", + "2037 Austria\n", + "2256 Azerbaijan\n", + "2475 Burundi\n", + "2694 Belgium\n", + "2913 Benin\n", + "3132 Burkina Faso\n", + "3351 Bangladesh\n", + "3570 Bulgaria\n", + "3789 Bahrain\n", + "4008 Bahamas\n", + "4227 Bosnia and Herzegovina\n", + "4446 Belarus\n", + "4665 Belize\n", + "4931 Bolivia\n", + "5150 Brazil\n", + "5369 Barbados\n", + "5588 Brunei\n", + "5807 Bhutan\n", + "6026 Botswana\n", + "6245 Central African Republic\n", + "6464 Canada\n", + " ... \n", + "35241 Sweden\n", + "35460 Swaziland\n", + "35679 Seychelles\n", + "35898 Syria\n", + "36117 Chad\n", + "36336 Togo\n", + "36555 Thailand\n", + "36774 Tajikistan\n", + "36993 Turkmenistan\n", + "37212 Timor-Leste\n", + "37431 Tonga\n", + "37650 Trinidad and Tobago\n", + "37869 Tunisia\n", + "38088 Turkey\n", + "38307 Taiwan\n", + "38524 Tanzania\n", + "38743 Uganda\n", + "38962 Ukraine\n", + "39181 Uruguay\n", + "39400 United States\n", + "39619 Uzbekistan\n", + "39838 St. Vincent and the Grenadines\n", + "40057 Venezuela\n", + "40276 Vietnam\n", + "40495 Vanuatu\n", + "40714 Samoa\n", + "40933 Yemen\n", + "41152 South Africa\n", + "41371 Zambia\n", + "41590 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "20 Aruba\n", + "239 Afghanistan\n", + "458 Angola\n", + "677 Albania\n", + "943 United Arab Emirates\n", + "1162 Argentina\n", + "1381 Armenia\n", + "1600 Antigua and Barbuda\n", + "1819 Australia\n", + "2038 Austria\n", + "2257 Azerbaijan\n", + "2476 Burundi\n", + "2695 Belgium\n", + "2914 Benin\n", + "3133 Burkina Faso\n", + "3352 Bangladesh\n", + "3571 Bulgaria\n", + "3790 Bahrain\n", + "4009 Bahamas\n", + "4228 Bosnia and Herzegovina\n", + "4447 Belarus\n", + "4666 Belize\n", + "4932 Bolivia\n", + "5151 Brazil\n", + "5370 Barbados\n", + "5589 Brunei\n", + "5808 Bhutan\n", + "6027 Botswana\n", + "6246 Central African Republic\n", + "6465 Canada\n", + " ... \n", + "35242 Sweden\n", + "35461 Swaziland\n", + "35680 Seychelles\n", + "35899 Syria\n", + "36118 Chad\n", + "36337 Togo\n", + "36556 Thailand\n", + "36775 Tajikistan\n", + "36994 Turkmenistan\n", + "37213 Timor-Leste\n", + "37432 Tonga\n", + "37651 Trinidad and Tobago\n", + "37870 Tunisia\n", + "38089 Turkey\n", + "38308 Taiwan\n", + "38525 Tanzania\n", + "38744 Uganda\n", + "38963 Ukraine\n", + "39182 Uruguay\n", + "39401 United States\n", + "39620 Uzbekistan\n", + "39839 St. Vincent and the Grenadines\n", + "40058 Venezuela\n", + "40277 Vietnam\n", + "40496 Vanuatu\n", + "40715 Samoa\n", + "40934 Yemen\n", + "41153 South Africa\n", + "41372 Zambia\n", + "41591 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "21 Aruba\n", + "240 Afghanistan\n", + "459 Angola\n", + "678 Albania\n", + "944 United Arab Emirates\n", + "1163 Argentina\n", + "1382 Armenia\n", + "1601 Antigua and Barbuda\n", + "1820 Australia\n", + "2039 Austria\n", + "2258 Azerbaijan\n", + "2477 Burundi\n", + "2696 Belgium\n", + "2915 Benin\n", + "3134 Burkina Faso\n", + "3353 Bangladesh\n", + "3572 Bulgaria\n", + "3791 Bahrain\n", + "4010 Bahamas\n", + "4229 Bosnia and Herzegovina\n", + "4448 Belarus\n", + "4667 Belize\n", + "4933 Bolivia\n", + "5152 Brazil\n", + "5371 Barbados\n", + "5590 Brunei\n", + "5809 Bhutan\n", + "6028 Botswana\n", + "6247 Central African Republic\n", + "6466 Canada\n", + " ... \n", + "35243 Sweden\n", + "35462 Swaziland\n", + "35681 Seychelles\n", + "35900 Syria\n", + "36119 Chad\n", + "36338 Togo\n", + "36557 Thailand\n", + "36776 Tajikistan\n", + "36995 Turkmenistan\n", + "37214 Timor-Leste\n", + "37433 Tonga\n", + "37652 Trinidad and Tobago\n", + "37871 Tunisia\n", + "38090 Turkey\n", + "38309 Taiwan\n", + "38526 Tanzania\n", + "38745 Uganda\n", + "38964 Ukraine\n", + "39183 Uruguay\n", + "39402 United States\n", + "39621 Uzbekistan\n", + "39840 St. Vincent and the Grenadines\n", + "40059 Venezuela\n", + "40278 Vietnam\n", + "40497 Vanuatu\n", + "40716 Samoa\n", + "40935 Yemen\n", + "41154 South Africa\n", + "41373 Zambia\n", + "41592 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "22 Aruba\n", + "241 Afghanistan\n", + "460 Angola\n", + "679 Albania\n", + "945 United Arab Emirates\n", + "1164 Argentina\n", + "1383 Armenia\n", + "1602 Antigua and Barbuda\n", + "1821 Australia\n", + "2040 Austria\n", + "2259 Azerbaijan\n", + "2478 Burundi\n", + "2697 Belgium\n", + "2916 Benin\n", + "3135 Burkina Faso\n", + "3354 Bangladesh\n", + "3573 Bulgaria\n", + "3792 Bahrain\n", + "4011 Bahamas\n", + "4230 Bosnia and Herzegovina\n", + "4449 Belarus\n", + "4668 Belize\n", + "4934 Bolivia\n", + "5153 Brazil\n", + "5372 Barbados\n", + "5591 Brunei\n", + "5810 Bhutan\n", + "6029 Botswana\n", + "6248 Central African Republic\n", + "6467 Canada\n", + " ... \n", + "35244 Sweden\n", + "35463 Swaziland\n", + "35682 Seychelles\n", + "35901 Syria\n", + "36120 Chad\n", + "36339 Togo\n", + "36558 Thailand\n", + "36777 Tajikistan\n", + "36996 Turkmenistan\n", + "37215 Timor-Leste\n", + "37434 Tonga\n", + "37653 Trinidad and Tobago\n", + "37872 Tunisia\n", + "38091 Turkey\n", + "38310 Taiwan\n", + "38527 Tanzania\n", + "38746 Uganda\n", + "38965 Ukraine\n", + "39184 Uruguay\n", + "39403 United States\n", + "39622 Uzbekistan\n", + "39841 St. Vincent and the Grenadines\n", + "40060 Venezuela\n", + "40279 Vietnam\n", + "40498 Vanuatu\n", + "40717 Samoa\n", + "40936 Yemen\n", + "41155 South Africa\n", + "41374 Zambia\n", + "41593 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "23 Aruba\n", + "242 Afghanistan\n", + "461 Angola\n", + "680 Albania\n", + "946 United Arab Emirates\n", + "1165 Argentina\n", + "1384 Armenia\n", + "1603 Antigua and Barbuda\n", + "1822 Australia\n", + "2041 Austria\n", + "2260 Azerbaijan\n", + "2479 Burundi\n", + "2698 Belgium\n", + "2917 Benin\n", + "3136 Burkina Faso\n", + "3355 Bangladesh\n", + "3574 Bulgaria\n", + "3793 Bahrain\n", + "4012 Bahamas\n", + "4231 Bosnia and Herzegovina\n", + "4450 Belarus\n", + "4669 Belize\n", + "4935 Bolivia\n", + "5154 Brazil\n", + "5373 Barbados\n", + "5592 Brunei\n", + "5811 Bhutan\n", + "6030 Botswana\n", + "6249 Central African Republic\n", + "6468 Canada\n", + " ... \n", + "35245 Sweden\n", + "35464 Swaziland\n", + "35683 Seychelles\n", + "35902 Syria\n", + "36121 Chad\n", + "36340 Togo\n", + "36559 Thailand\n", + "36778 Tajikistan\n", + "36997 Turkmenistan\n", + "37216 Timor-Leste\n", + "37435 Tonga\n", + "37654 Trinidad and Tobago\n", + "37873 Tunisia\n", + "38092 Turkey\n", + "38311 Taiwan\n", + "38528 Tanzania\n", + "38747 Uganda\n", + "38966 Ukraine\n", + "39185 Uruguay\n", + "39404 United States\n", + "39623 Uzbekistan\n", + "39842 St. Vincent and the Grenadines\n", + "40061 Venezuela\n", + "40280 Vietnam\n", + "40499 Vanuatu\n", + "40718 Samoa\n", + "40937 Yemen\n", + "41156 South Africa\n", + "41375 Zambia\n", + "41594 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "24 Aruba\n", + "243 Afghanistan\n", + "462 Angola\n", + "681 Albania\n", + "947 United Arab Emirates\n", + "1166 Argentina\n", + "1385 Armenia\n", + "1604 Antigua and Barbuda\n", + "1823 Australia\n", + "2042 Austria\n", + "2261 Azerbaijan\n", + "2480 Burundi\n", + "2699 Belgium\n", + "2918 Benin\n", + "3137 Burkina Faso\n", + "3356 Bangladesh\n", + "3575 Bulgaria\n", + "3794 Bahrain\n", + "4013 Bahamas\n", + "4232 Bosnia and Herzegovina\n", + "4451 Belarus\n", + "4670 Belize\n", + "4936 Bolivia\n", + "5155 Brazil\n", + "5374 Barbados\n", + "5593 Brunei\n", + "5812 Bhutan\n", + "6031 Botswana\n", + "6250 Central African Republic\n", + "6469 Canada\n", + " ... \n", + "35246 Sweden\n", + "35465 Swaziland\n", + "35684 Seychelles\n", + "35903 Syria\n", + "36122 Chad\n", + "36341 Togo\n", + "36560 Thailand\n", + "36779 Tajikistan\n", + "36998 Turkmenistan\n", + "37217 Timor-Leste\n", + "37436 Tonga\n", + "37655 Trinidad and Tobago\n", + "37874 Tunisia\n", + "38093 Turkey\n", + "38312 Taiwan\n", + "38529 Tanzania\n", + "38748 Uganda\n", + "38967 Ukraine\n", + "39186 Uruguay\n", + "39405 United States\n", + "39624 Uzbekistan\n", + "39843 St. Vincent and the Grenadines\n", + "40062 Venezuela\n", + "40281 Vietnam\n", + "40500 Vanuatu\n", + "40719 Samoa\n", + "40938 Yemen\n", + "41157 South Africa\n", + "41376 Zambia\n", + "41595 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "25 Aruba\n", + "244 Afghanistan\n", + "463 Angola\n", + "682 Albania\n", + "948 United Arab Emirates\n", + "1167 Argentina\n", + "1386 Armenia\n", + "1605 Antigua and Barbuda\n", + "1824 Australia\n", + "2043 Austria\n", + "2262 Azerbaijan\n", + "2481 Burundi\n", + "2700 Belgium\n", + "2919 Benin\n", + "3138 Burkina Faso\n", + "3357 Bangladesh\n", + "3576 Bulgaria\n", + "3795 Bahrain\n", + "4014 Bahamas\n", + "4233 Bosnia and Herzegovina\n", + "4452 Belarus\n", + "4671 Belize\n", + "4937 Bolivia\n", + "5156 Brazil\n", + "5375 Barbados\n", + "5594 Brunei\n", + "5813 Bhutan\n", + "6032 Botswana\n", + "6251 Central African Republic\n", + "6470 Canada\n", + " ... \n", + "35247 Sweden\n", + "35466 Swaziland\n", + "35685 Seychelles\n", + "35904 Syria\n", + "36123 Chad\n", + "36342 Togo\n", + "36561 Thailand\n", + "36780 Tajikistan\n", + "36999 Turkmenistan\n", + "37218 Timor-Leste\n", + "37437 Tonga\n", + "37656 Trinidad and Tobago\n", + "37875 Tunisia\n", + "38094 Turkey\n", + "38313 Taiwan\n", + "38530 Tanzania\n", + "38749 Uganda\n", + "38968 Ukraine\n", + "39187 Uruguay\n", + "39406 United States\n", + "39625 Uzbekistan\n", + "39844 St. Vincent and the Grenadines\n", + "40063 Venezuela\n", + "40282 Vietnam\n", + "40501 Vanuatu\n", + "40720 Samoa\n", + "40939 Yemen\n", + "41158 South Africa\n", + "41377 Zambia\n", + "41596 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "26 Aruba\n", + "245 Afghanistan\n", + "464 Angola\n", + "683 Albania\n", + "949 United Arab Emirates\n", + "1168 Argentina\n", + "1387 Armenia\n", + "1606 Antigua and Barbuda\n", + "1825 Australia\n", + "2044 Austria\n", + "2263 Azerbaijan\n", + "2482 Burundi\n", + "2701 Belgium\n", + "2920 Benin\n", + "3139 Burkina Faso\n", + "3358 Bangladesh\n", + "3577 Bulgaria\n", + "3796 Bahrain\n", + "4015 Bahamas\n", + "4234 Bosnia and Herzegovina\n", + "4453 Belarus\n", + "4672 Belize\n", + "4938 Bolivia\n", + "5157 Brazil\n", + "5376 Barbados\n", + "5595 Brunei\n", + "5814 Bhutan\n", + "6033 Botswana\n", + "6252 Central African Republic\n", + "6471 Canada\n", + " ... \n", + "35248 Sweden\n", + "35467 Swaziland\n", + "35686 Seychelles\n", + "35905 Syria\n", + "36124 Chad\n", + "36343 Togo\n", + "36562 Thailand\n", + "36781 Tajikistan\n", + "37000 Turkmenistan\n", + "37219 Timor-Leste\n", + "37438 Tonga\n", + "37657 Trinidad and Tobago\n", + "37876 Tunisia\n", + "38095 Turkey\n", + "38314 Taiwan\n", + "38531 Tanzania\n", + "38750 Uganda\n", + "38969 Ukraine\n", + "39188 Uruguay\n", + "39407 United States\n", + "39626 Uzbekistan\n", + "39845 St. Vincent and the Grenadines\n", + "40064 Venezuela\n", + "40283 Vietnam\n", + "40502 Vanuatu\n", + "40721 Samoa\n", + "40940 Yemen\n", + "41159 South Africa\n", + "41378 Zambia\n", + "41597 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "27 Aruba\n", + "246 Afghanistan\n", + "465 Angola\n", + "684 Albania\n", + "950 United Arab Emirates\n", + "1169 Argentina\n", + "1388 Armenia\n", + "1607 Antigua and Barbuda\n", + "1826 Australia\n", + "2045 Austria\n", + "2264 Azerbaijan\n", + "2483 Burundi\n", + "2702 Belgium\n", + "2921 Benin\n", + "3140 Burkina Faso\n", + "3359 Bangladesh\n", + "3578 Bulgaria\n", + "3797 Bahrain\n", + "4016 Bahamas\n", + "4235 Bosnia and Herzegovina\n", + "4454 Belarus\n", + "4673 Belize\n", + "4939 Bolivia\n", + "5158 Brazil\n", + "5377 Barbados\n", + "5596 Brunei\n", + "5815 Bhutan\n", + "6034 Botswana\n", + "6253 Central African Republic\n", + "6472 Canada\n", + " ... \n", + "35249 Sweden\n", + "35468 Swaziland\n", + "35687 Seychelles\n", + "35906 Syria\n", + "36125 Chad\n", + "36344 Togo\n", + "36563 Thailand\n", + "36782 Tajikistan\n", + "37001 Turkmenistan\n", + "37220 Timor-Leste\n", + "37439 Tonga\n", + "37658 Trinidad and Tobago\n", + "37877 Tunisia\n", + "38096 Turkey\n", + "38315 Taiwan\n", + "38532 Tanzania\n", + "38751 Uganda\n", + "38970 Ukraine\n", + "39189 Uruguay\n", + "39408 United States\n", + "39627 Uzbekistan\n", + "39846 St. Vincent and the Grenadines\n", + "40065 Venezuela\n", + "40284 Vietnam\n", + "40503 Vanuatu\n", + "40722 Samoa\n", + "40941 Yemen\n", + "41160 South Africa\n", + "41379 Zambia\n", + "41598 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "28 Aruba\n", + "247 Afghanistan\n", + "466 Angola\n", + "685 Albania\n", + "951 United Arab Emirates\n", + "1170 Argentina\n", + "1389 Armenia\n", + "1608 Antigua and Barbuda\n", + "1827 Australia\n", + "2046 Austria\n", + "2265 Azerbaijan\n", + "2484 Burundi\n", + "2703 Belgium\n", + "2922 Benin\n", + "3141 Burkina Faso\n", + "3360 Bangladesh\n", + "3579 Bulgaria\n", + "3798 Bahrain\n", + "4017 Bahamas\n", + "4236 Bosnia and Herzegovina\n", + "4455 Belarus\n", + "4674 Belize\n", + "4940 Bolivia\n", + "5159 Brazil\n", + "5378 Barbados\n", + "5597 Brunei\n", + "5816 Bhutan\n", + "6035 Botswana\n", + "6254 Central African Republic\n", + "6473 Canada\n", + " ... \n", + "35250 Sweden\n", + "35469 Swaziland\n", + "35688 Seychelles\n", + "35907 Syria\n", + "36126 Chad\n", + "36345 Togo\n", + "36564 Thailand\n", + "36783 Tajikistan\n", + "37002 Turkmenistan\n", + "37221 Timor-Leste\n", + "37440 Tonga\n", + "37659 Trinidad and Tobago\n", + "37878 Tunisia\n", + "38097 Turkey\n", + "38316 Taiwan\n", + "38533 Tanzania\n", + "38752 Uganda\n", + "38971 Ukraine\n", + "39190 Uruguay\n", + "39409 United States\n", + "39628 Uzbekistan\n", + "39847 St. Vincent and the Grenadines\n", + "40066 Venezuela\n", + "40285 Vietnam\n", + "40504 Vanuatu\n", + "40723 Samoa\n", + "40942 Yemen\n", + "41161 South Africa\n", + "41380 Zambia\n", + "41599 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "29 Aruba\n", + "248 Afghanistan\n", + "467 Angola\n", + "686 Albania\n", + "952 United Arab Emirates\n", + "1171 Argentina\n", + "1390 Armenia\n", + "1609 Antigua and Barbuda\n", + "1828 Australia\n", + "2047 Austria\n", + "2266 Azerbaijan\n", + "2485 Burundi\n", + "2704 Belgium\n", + "2923 Benin\n", + "3142 Burkina Faso\n", + "3361 Bangladesh\n", + "3580 Bulgaria\n", + "3799 Bahrain\n", + "4018 Bahamas\n", + "4237 Bosnia and Herzegovina\n", + "4456 Belarus\n", + "4675 Belize\n", + "4941 Bolivia\n", + "5160 Brazil\n", + "5379 Barbados\n", + "5598 Brunei\n", + "5817 Bhutan\n", + "6036 Botswana\n", + "6255 Central African Republic\n", + "6474 Canada\n", + " ... \n", + "35251 Sweden\n", + "35470 Swaziland\n", + "35689 Seychelles\n", + "35908 Syria\n", + "36127 Chad\n", + "36346 Togo\n", + "36565 Thailand\n", + "36784 Tajikistan\n", + "37003 Turkmenistan\n", + "37222 Timor-Leste\n", + "37441 Tonga\n", + "37660 Trinidad and Tobago\n", + "37879 Tunisia\n", + "38098 Turkey\n", + "38317 Taiwan\n", + "38534 Tanzania\n", + "38753 Uganda\n", + "38972 Ukraine\n", + "39191 Uruguay\n", + "39410 United States\n", + "39629 Uzbekistan\n", + "39848 St. Vincent and the Grenadines\n", + "40067 Venezuela\n", + "40286 Vietnam\n", + "40505 Vanuatu\n", + "40724 Samoa\n", + "40943 Yemen\n", + "41162 South Africa\n", + "41381 Zambia\n", + "41600 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "30 Aruba\n", + "249 Afghanistan\n", + "468 Angola\n", + "687 Albania\n", + "953 United Arab Emirates\n", + "1172 Argentina\n", + "1391 Armenia\n", + "1610 Antigua and Barbuda\n", + "1829 Australia\n", + "2048 Austria\n", + "2267 Azerbaijan\n", + "2486 Burundi\n", + "2705 Belgium\n", + "2924 Benin\n", + "3143 Burkina Faso\n", + "3362 Bangladesh\n", + "3581 Bulgaria\n", + "3800 Bahrain\n", + "4019 Bahamas\n", + "4238 Bosnia and Herzegovina\n", + "4457 Belarus\n", + "4676 Belize\n", + "4942 Bolivia\n", + "5161 Brazil\n", + "5380 Barbados\n", + "5599 Brunei\n", + "5818 Bhutan\n", + "6037 Botswana\n", + "6256 Central African Republic\n", + "6475 Canada\n", + " ... \n", + "35252 Sweden\n", + "35471 Swaziland\n", + "35690 Seychelles\n", + "35909 Syria\n", + "36128 Chad\n", + "36347 Togo\n", + "36566 Thailand\n", + "36785 Tajikistan\n", + "37004 Turkmenistan\n", + "37223 Timor-Leste\n", + "37442 Tonga\n", + "37661 Trinidad and Tobago\n", + "37880 Tunisia\n", + "38099 Turkey\n", + "38318 Taiwan\n", + "38535 Tanzania\n", + "38754 Uganda\n", + "38973 Ukraine\n", + "39192 Uruguay\n", + "39411 United States\n", + "39630 Uzbekistan\n", + "39849 St. Vincent and the Grenadines\n", + "40068 Venezuela\n", + "40287 Vietnam\n", + "40506 Vanuatu\n", + "40725 Samoa\n", + "40944 Yemen\n", + "41163 South Africa\n", + "41382 Zambia\n", + "41601 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "31 Aruba\n", + "250 Afghanistan\n", + "469 Angola\n", + "688 Albania\n", + "954 United Arab Emirates\n", + "1173 Argentina\n", + "1392 Armenia\n", + "1611 Antigua and Barbuda\n", + "1830 Australia\n", + "2049 Austria\n", + "2268 Azerbaijan\n", + "2487 Burundi\n", + "2706 Belgium\n", + "2925 Benin\n", + "3144 Burkina Faso\n", + "3363 Bangladesh\n", + "3582 Bulgaria\n", + "3801 Bahrain\n", + "4020 Bahamas\n", + "4239 Bosnia and Herzegovina\n", + "4458 Belarus\n", + "4677 Belize\n", + "4943 Bolivia\n", + "5162 Brazil\n", + "5381 Barbados\n", + "5600 Brunei\n", + "5819 Bhutan\n", + "6038 Botswana\n", + "6257 Central African Republic\n", + "6476 Canada\n", + " ... \n", + "35253 Sweden\n", + "35472 Swaziland\n", + "35691 Seychelles\n", + "35910 Syria\n", + "36129 Chad\n", + "36348 Togo\n", + "36567 Thailand\n", + "36786 Tajikistan\n", + "37005 Turkmenistan\n", + "37224 Timor-Leste\n", + "37443 Tonga\n", + "37662 Trinidad and Tobago\n", + "37881 Tunisia\n", + "38100 Turkey\n", + "38319 Taiwan\n", + "38536 Tanzania\n", + "38755 Uganda\n", + "38974 Ukraine\n", + "39193 Uruguay\n", + "39412 United States\n", + "39631 Uzbekistan\n", + "39850 St. Vincent and the Grenadines\n", + "40069 Venezuela\n", + "40288 Vietnam\n", + "40507 Vanuatu\n", + "40726 Samoa\n", + "40945 Yemen\n", + "41164 South Africa\n", + "41383 Zambia\n", + "41602 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "32 Aruba\n", + "251 Afghanistan\n", + "470 Angola\n", + "689 Albania\n", + "955 United Arab Emirates\n", + "1174 Argentina\n", + "1393 Armenia\n", + "1612 Antigua and Barbuda\n", + "1831 Australia\n", + "2050 Austria\n", + "2269 Azerbaijan\n", + "2488 Burundi\n", + "2707 Belgium\n", + "2926 Benin\n", + "3145 Burkina Faso\n", + "3364 Bangladesh\n", + "3583 Bulgaria\n", + "3802 Bahrain\n", + "4021 Bahamas\n", + "4240 Bosnia and Herzegovina\n", + "4459 Belarus\n", + "4678 Belize\n", + "4944 Bolivia\n", + "5163 Brazil\n", + "5382 Barbados\n", + "5601 Brunei\n", + "5820 Bhutan\n", + "6039 Botswana\n", + "6258 Central African Republic\n", + "6477 Canada\n", + " ... \n", + "35254 Sweden\n", + "35473 Swaziland\n", + "35692 Seychelles\n", + "35911 Syria\n", + "36130 Chad\n", + "36349 Togo\n", + "36568 Thailand\n", + "36787 Tajikistan\n", + "37006 Turkmenistan\n", + "37225 Timor-Leste\n", + "37444 Tonga\n", + "37663 Trinidad and Tobago\n", + "37882 Tunisia\n", + "38101 Turkey\n", + "38320 Taiwan\n", + "38537 Tanzania\n", + "38756 Uganda\n", + "38975 Ukraine\n", + "39194 Uruguay\n", + "39413 United States\n", + "39632 Uzbekistan\n", + "39851 St. Vincent and the Grenadines\n", + "40070 Venezuela\n", + "40289 Vietnam\n", + "40508 Vanuatu\n", + "40727 Samoa\n", + "40946 Yemen\n", + "41165 South Africa\n", + "41384 Zambia\n", + "41603 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "33 Aruba\n", + "252 Afghanistan\n", + "471 Angola\n", + "690 Albania\n", + "956 United Arab Emirates\n", + "1175 Argentina\n", + "1394 Armenia\n", + "1613 Antigua and Barbuda\n", + "1832 Australia\n", + "2051 Austria\n", + "2270 Azerbaijan\n", + "2489 Burundi\n", + "2708 Belgium\n", + "2927 Benin\n", + "3146 Burkina Faso\n", + "3365 Bangladesh\n", + "3584 Bulgaria\n", + "3803 Bahrain\n", + "4022 Bahamas\n", + "4241 Bosnia and Herzegovina\n", + "4460 Belarus\n", + "4679 Belize\n", + "4945 Bolivia\n", + "5164 Brazil\n", + "5383 Barbados\n", + "5602 Brunei\n", + "5821 Bhutan\n", + "6040 Botswana\n", + "6259 Central African Republic\n", + "6478 Canada\n", + " ... \n", + "35255 Sweden\n", + "35474 Swaziland\n", + "35693 Seychelles\n", + "35912 Syria\n", + "36131 Chad\n", + "36350 Togo\n", + "36569 Thailand\n", + "36788 Tajikistan\n", + "37007 Turkmenistan\n", + "37226 Timor-Leste\n", + "37445 Tonga\n", + "37664 Trinidad and Tobago\n", + "37883 Tunisia\n", + "38102 Turkey\n", + "38321 Taiwan\n", + "38538 Tanzania\n", + "38757 Uganda\n", + "38976 Ukraine\n", + "39195 Uruguay\n", + "39414 United States\n", + "39633 Uzbekistan\n", + "39852 St. Vincent and the Grenadines\n", + "40071 Venezuela\n", + "40290 Vietnam\n", + "40509 Vanuatu\n", + "40728 Samoa\n", + "40947 Yemen\n", + "41166 South Africa\n", + "41385 Zambia\n", + "41604 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "34 Aruba\n", + "253 Afghanistan\n", + "472 Angola\n", + "691 Albania\n", + "957 United Arab Emirates\n", + "1176 Argentina\n", + "1395 Armenia\n", + "1614 Antigua and Barbuda\n", + "1833 Australia\n", + "2052 Austria\n", + "2271 Azerbaijan\n", + "2490 Burundi\n", + "2709 Belgium\n", + "2928 Benin\n", + "3147 Burkina Faso\n", + "3366 Bangladesh\n", + "3585 Bulgaria\n", + "3804 Bahrain\n", + "4023 Bahamas\n", + "4242 Bosnia and Herzegovina\n", + "4461 Belarus\n", + "4680 Belize\n", + "4946 Bolivia\n", + "5165 Brazil\n", + "5384 Barbados\n", + "5603 Brunei\n", + "5822 Bhutan\n", + "6041 Botswana\n", + "6260 Central African Republic\n", + "6479 Canada\n", + " ... \n", + "35256 Sweden\n", + "35475 Swaziland\n", + "35694 Seychelles\n", + "35913 Syria\n", + "36132 Chad\n", + "36351 Togo\n", + "36570 Thailand\n", + "36789 Tajikistan\n", + "37008 Turkmenistan\n", + "37227 Timor-Leste\n", + "37446 Tonga\n", + "37665 Trinidad and Tobago\n", + "37884 Tunisia\n", + "38103 Turkey\n", + "38322 Taiwan\n", + "38539 Tanzania\n", + "38758 Uganda\n", + "38977 Ukraine\n", + "39196 Uruguay\n", + "39415 United States\n", + "39634 Uzbekistan\n", + "39853 St. Vincent and the Grenadines\n", + "40072 Venezuela\n", + "40291 Vietnam\n", + "40510 Vanuatu\n", + "40729 Samoa\n", + "40948 Yemen\n", + "41167 South Africa\n", + "41386 Zambia\n", + "41605 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "35 Aruba\n", + "254 Afghanistan\n", + "473 Angola\n", + "692 Albania\n", + "958 United Arab Emirates\n", + "1177 Argentina\n", + "1396 Armenia\n", + "1615 Antigua and Barbuda\n", + "1834 Australia\n", + "2053 Austria\n", + "2272 Azerbaijan\n", + "2491 Burundi\n", + "2710 Belgium\n", + "2929 Benin\n", + "3148 Burkina Faso\n", + "3367 Bangladesh\n", + "3586 Bulgaria\n", + "3805 Bahrain\n", + "4024 Bahamas\n", + "4243 Bosnia and Herzegovina\n", + "4462 Belarus\n", + "4681 Belize\n", + "4947 Bolivia\n", + "5166 Brazil\n", + "5385 Barbados\n", + "5604 Brunei\n", + "5823 Bhutan\n", + "6042 Botswana\n", + "6261 Central African Republic\n", + "6480 Canada\n", + " ... \n", + "35257 Sweden\n", + "35476 Swaziland\n", + "35695 Seychelles\n", + "35914 Syria\n", + "36133 Chad\n", + "36352 Togo\n", + "36571 Thailand\n", + "36790 Tajikistan\n", + "37009 Turkmenistan\n", + "37228 Timor-Leste\n", + "37447 Tonga\n", + "37666 Trinidad and Tobago\n", + "37885 Tunisia\n", + "38104 Turkey\n", + "38323 Taiwan\n", + "38540 Tanzania\n", + "38759 Uganda\n", + "38978 Ukraine\n", + "39197 Uruguay\n", + "39416 United States\n", + "39635 Uzbekistan\n", + "39854 St. Vincent and the Grenadines\n", + "40073 Venezuela\n", + "40292 Vietnam\n", + "40511 Vanuatu\n", + "40730 Samoa\n", + "40949 Yemen\n", + "41168 South Africa\n", + "41387 Zambia\n", + "41606 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "36 Aruba\n", + "255 Afghanistan\n", + "474 Angola\n", + "693 Albania\n", + "959 United Arab Emirates\n", + "1178 Argentina\n", + "1397 Armenia\n", + "1616 Antigua and Barbuda\n", + "1835 Australia\n", + "2054 Austria\n", + "2273 Azerbaijan\n", + "2492 Burundi\n", + "2711 Belgium\n", + "2930 Benin\n", + "3149 Burkina Faso\n", + "3368 Bangladesh\n", + "3587 Bulgaria\n", + "3806 Bahrain\n", + "4025 Bahamas\n", + "4244 Bosnia and Herzegovina\n", + "4463 Belarus\n", + "4682 Belize\n", + "4948 Bolivia\n", + "5167 Brazil\n", + "5386 Barbados\n", + "5605 Brunei\n", + "5824 Bhutan\n", + "6043 Botswana\n", + "6262 Central African Republic\n", + "6481 Canada\n", + " ... \n", + "35258 Sweden\n", + "35477 Swaziland\n", + "35696 Seychelles\n", + "35915 Syria\n", + "36134 Chad\n", + "36353 Togo\n", + "36572 Thailand\n", + "36791 Tajikistan\n", + "37010 Turkmenistan\n", + "37229 Timor-Leste\n", + "37448 Tonga\n", + "37667 Trinidad and Tobago\n", + "37886 Tunisia\n", + "38105 Turkey\n", + "38324 Taiwan\n", + "38541 Tanzania\n", + "38760 Uganda\n", + "38979 Ukraine\n", + "39198 Uruguay\n", + "39417 United States\n", + "39636 Uzbekistan\n", + "39855 St. Vincent and the Grenadines\n", + "40074 Venezuela\n", + "40293 Vietnam\n", + "40512 Vanuatu\n", + "40731 Samoa\n", + "40950 Yemen\n", + "41169 South Africa\n", + "41388 Zambia\n", + "41607 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "37 Aruba\n", + "256 Afghanistan\n", + "475 Angola\n", + "694 Albania\n", + "960 United Arab Emirates\n", + "1179 Argentina\n", + "1398 Armenia\n", + "1617 Antigua and Barbuda\n", + "1836 Australia\n", + "2055 Austria\n", + "2274 Azerbaijan\n", + "2493 Burundi\n", + "2712 Belgium\n", + "2931 Benin\n", + "3150 Burkina Faso\n", + "3369 Bangladesh\n", + "3588 Bulgaria\n", + "3807 Bahrain\n", + "4026 Bahamas\n", + "4245 Bosnia and Herzegovina\n", + "4464 Belarus\n", + "4683 Belize\n", + "4949 Bolivia\n", + "5168 Brazil\n", + "5387 Barbados\n", + "5606 Brunei\n", + "5825 Bhutan\n", + "6044 Botswana\n", + "6263 Central African Republic\n", + "6482 Canada\n", + " ... \n", + "35259 Sweden\n", + "35478 Swaziland\n", + "35697 Seychelles\n", + "35916 Syria\n", + "36135 Chad\n", + "36354 Togo\n", + "36573 Thailand\n", + "36792 Tajikistan\n", + "37011 Turkmenistan\n", + "37230 Timor-Leste\n", + "37449 Tonga\n", + "37668 Trinidad and Tobago\n", + "37887 Tunisia\n", + "38106 Turkey\n", + "38325 Taiwan\n", + "38542 Tanzania\n", + "38761 Uganda\n", + "38980 Ukraine\n", + "39199 Uruguay\n", + "39418 United States\n", + "39637 Uzbekistan\n", + "39856 St. Vincent and the Grenadines\n", + "40075 Venezuela\n", + "40294 Vietnam\n", + "40513 Vanuatu\n", + "40732 Samoa\n", + "40951 Yemen\n", + "41170 South Africa\n", + "41389 Zambia\n", + "41608 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "38 Aruba\n", + "257 Afghanistan\n", + "476 Angola\n", + "695 Albania\n", + "961 United Arab Emirates\n", + "1180 Argentina\n", + "1399 Armenia\n", + "1618 Antigua and Barbuda\n", + "1837 Australia\n", + "2056 Austria\n", + "2275 Azerbaijan\n", + "2494 Burundi\n", + "2713 Belgium\n", + "2932 Benin\n", + "3151 Burkina Faso\n", + "3370 Bangladesh\n", + "3589 Bulgaria\n", + "3808 Bahrain\n", + "4027 Bahamas\n", + "4246 Bosnia and Herzegovina\n", + "4465 Belarus\n", + "4684 Belize\n", + "4950 Bolivia\n", + "5169 Brazil\n", + "5388 Barbados\n", + "5607 Brunei\n", + "5826 Bhutan\n", + "6045 Botswana\n", + "6264 Central African Republic\n", + "6483 Canada\n", + " ... \n", + "35260 Sweden\n", + "35479 Swaziland\n", + "35698 Seychelles\n", + "35917 Syria\n", + "36136 Chad\n", + "36355 Togo\n", + "36574 Thailand\n", + "36793 Tajikistan\n", + "37012 Turkmenistan\n", + "37231 Timor-Leste\n", + "37450 Tonga\n", + "37669 Trinidad and Tobago\n", + "37888 Tunisia\n", + "38107 Turkey\n", + "38326 Taiwan\n", + "38543 Tanzania\n", + "38762 Uganda\n", + "38981 Ukraine\n", + "39200 Uruguay\n", + "39419 United States\n", + "39638 Uzbekistan\n", + "39857 St. Vincent and the Grenadines\n", + "40076 Venezuela\n", + "40295 Vietnam\n", + "40514 Vanuatu\n", + "40733 Samoa\n", + "40952 Yemen\n", + "41171 South Africa\n", + "41390 Zambia\n", + "41609 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "39 Aruba\n", + "258 Afghanistan\n", + "477 Angola\n", + "696 Albania\n", + "962 United Arab Emirates\n", + "1181 Argentina\n", + "1400 Armenia\n", + "1619 Antigua and Barbuda\n", + "1838 Australia\n", + "2057 Austria\n", + "2276 Azerbaijan\n", + "2495 Burundi\n", + "2714 Belgium\n", + "2933 Benin\n", + "3152 Burkina Faso\n", + "3371 Bangladesh\n", + "3590 Bulgaria\n", + "3809 Bahrain\n", + "4028 Bahamas\n", + "4247 Bosnia and Herzegovina\n", + "4466 Belarus\n", + "4685 Belize\n", + "4951 Bolivia\n", + "5170 Brazil\n", + "5389 Barbados\n", + "5608 Brunei\n", + "5827 Bhutan\n", + "6046 Botswana\n", + "6265 Central African Republic\n", + "6484 Canada\n", + " ... \n", + "35261 Sweden\n", + "35480 Swaziland\n", + "35699 Seychelles\n", + "35918 Syria\n", + "36137 Chad\n", + "36356 Togo\n", + "36575 Thailand\n", + "36794 Tajikistan\n", + "37013 Turkmenistan\n", + "37232 Timor-Leste\n", + "37451 Tonga\n", + "37670 Trinidad and Tobago\n", + "37889 Tunisia\n", + "38108 Turkey\n", + "38327 Taiwan\n", + "38544 Tanzania\n", + "38763 Uganda\n", + "38982 Ukraine\n", + "39201 Uruguay\n", + "39420 United States\n", + "39639 Uzbekistan\n", + "39858 St. Vincent and the Grenadines\n", + "40077 Venezuela\n", + "40296 Vietnam\n", + "40515 Vanuatu\n", + "40734 Samoa\n", + "40953 Yemen\n", + "41172 South Africa\n", + "41391 Zambia\n", + "41610 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "40 Aruba\n", + "259 Afghanistan\n", + "478 Angola\n", + "697 Albania\n", + "963 United Arab Emirates\n", + "1182 Argentina\n", + "1401 Armenia\n", + "1620 Antigua and Barbuda\n", + "1839 Australia\n", + "2058 Austria\n", + "2277 Azerbaijan\n", + "2496 Burundi\n", + "2715 Belgium\n", + "2934 Benin\n", + "3153 Burkina Faso\n", + "3372 Bangladesh\n", + "3591 Bulgaria\n", + "3810 Bahrain\n", + "4029 Bahamas\n", + "4248 Bosnia and Herzegovina\n", + "4467 Belarus\n", + "4686 Belize\n", + "4952 Bolivia\n", + "5171 Brazil\n", + "5390 Barbados\n", + "5609 Brunei\n", + "5828 Bhutan\n", + "6047 Botswana\n", + "6266 Central African Republic\n", + "6485 Canada\n", + " ... \n", + "35262 Sweden\n", + "35481 Swaziland\n", + "35700 Seychelles\n", + "35919 Syria\n", + "36138 Chad\n", + "36357 Togo\n", + "36576 Thailand\n", + "36795 Tajikistan\n", + "37014 Turkmenistan\n", + "37233 Timor-Leste\n", + "37452 Tonga\n", + "37671 Trinidad and Tobago\n", + "37890 Tunisia\n", + "38109 Turkey\n", + "38328 Taiwan\n", + "38545 Tanzania\n", + "38764 Uganda\n", + "38983 Ukraine\n", + "39202 Uruguay\n", + "39421 United States\n", + "39640 Uzbekistan\n", + "39859 St. Vincent and the Grenadines\n", + "40078 Venezuela\n", + "40297 Vietnam\n", + "40516 Vanuatu\n", + "40735 Samoa\n", + "40954 Yemen\n", + "41173 South Africa\n", + "41392 Zambia\n", + "41611 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "41 Aruba\n", + "260 Afghanistan\n", + "479 Angola\n", + "698 Albania\n", + "964 United Arab Emirates\n", + "1183 Argentina\n", + "1402 Armenia\n", + "1621 Antigua and Barbuda\n", + "1840 Australia\n", + "2059 Austria\n", + "2278 Azerbaijan\n", + "2497 Burundi\n", + "2716 Belgium\n", + "2935 Benin\n", + "3154 Burkina Faso\n", + "3373 Bangladesh\n", + "3592 Bulgaria\n", + "3811 Bahrain\n", + "4030 Bahamas\n", + "4249 Bosnia and Herzegovina\n", + "4468 Belarus\n", + "4687 Belize\n", + "4953 Bolivia\n", + "5172 Brazil\n", + "5391 Barbados\n", + "5610 Brunei\n", + "5829 Bhutan\n", + "6048 Botswana\n", + "6267 Central African Republic\n", + "6486 Canada\n", + " ... \n", + "35263 Sweden\n", + "35482 Swaziland\n", + "35701 Seychelles\n", + "35920 Syria\n", + "36139 Chad\n", + "36358 Togo\n", + "36577 Thailand\n", + "36796 Tajikistan\n", + "37015 Turkmenistan\n", + "37234 Timor-Leste\n", + "37453 Tonga\n", + "37672 Trinidad and Tobago\n", + "37891 Tunisia\n", + "38110 Turkey\n", + "38329 Taiwan\n", + "38546 Tanzania\n", + "38765 Uganda\n", + "38984 Ukraine\n", + "39203 Uruguay\n", + "39422 United States\n", + "39641 Uzbekistan\n", + "39860 St. Vincent and the Grenadines\n", + "40079 Venezuela\n", + "40298 Vietnam\n", + "40517 Vanuatu\n", + "40736 Samoa\n", + "40955 Yemen\n", + "41174 South Africa\n", + "41393 Zambia\n", + "41612 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "42 Aruba\n", + "261 Afghanistan\n", + "480 Angola\n", + "699 Albania\n", + "965 United Arab Emirates\n", + "1184 Argentina\n", + "1403 Armenia\n", + "1622 Antigua and Barbuda\n", + "1841 Australia\n", + "2060 Austria\n", + "2279 Azerbaijan\n", + "2498 Burundi\n", + "2717 Belgium\n", + "2936 Benin\n", + "3155 Burkina Faso\n", + "3374 Bangladesh\n", + "3593 Bulgaria\n", + "3812 Bahrain\n", + "4031 Bahamas\n", + "4250 Bosnia and Herzegovina\n", + "4469 Belarus\n", + "4688 Belize\n", + "4954 Bolivia\n", + "5173 Brazil\n", + "5392 Barbados\n", + "5611 Brunei\n", + "5830 Bhutan\n", + "6049 Botswana\n", + "6268 Central African Republic\n", + "6487 Canada\n", + " ... \n", + "35264 Sweden\n", + "35483 Swaziland\n", + "35702 Seychelles\n", + "35921 Syria\n", + "36140 Chad\n", + "36359 Togo\n", + "36578 Thailand\n", + "36797 Tajikistan\n", + "37016 Turkmenistan\n", + "37235 Timor-Leste\n", + "37454 Tonga\n", + "37673 Trinidad and Tobago\n", + "37892 Tunisia\n", + "38111 Turkey\n", + "38330 Taiwan\n", + "38547 Tanzania\n", + "38766 Uganda\n", + "38985 Ukraine\n", + "39204 Uruguay\n", + "39423 United States\n", + "39642 Uzbekistan\n", + "39861 St. Vincent and the Grenadines\n", + "40080 Venezuela\n", + "40299 Vietnam\n", + "40518 Vanuatu\n", + "40737 Samoa\n", + "40956 Yemen\n", + "41175 South Africa\n", + "41394 Zambia\n", + "41613 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "43 Aruba\n", + "262 Afghanistan\n", + "481 Angola\n", + "700 Albania\n", + "966 United Arab Emirates\n", + "1185 Argentina\n", + "1404 Armenia\n", + "1623 Antigua and Barbuda\n", + "1842 Australia\n", + "2061 Austria\n", + "2280 Azerbaijan\n", + "2499 Burundi\n", + "2718 Belgium\n", + "2937 Benin\n", + "3156 Burkina Faso\n", + "3375 Bangladesh\n", + "3594 Bulgaria\n", + "3813 Bahrain\n", + "4032 Bahamas\n", + "4251 Bosnia and Herzegovina\n", + "4470 Belarus\n", + "4689 Belize\n", + "4955 Bolivia\n", + "5174 Brazil\n", + "5393 Barbados\n", + "5612 Brunei\n", + "5831 Bhutan\n", + "6050 Botswana\n", + "6269 Central African Republic\n", + "6488 Canada\n", + " ... \n", + "35265 Sweden\n", + "35484 Swaziland\n", + "35703 Seychelles\n", + "35922 Syria\n", + "36141 Chad\n", + "36360 Togo\n", + "36579 Thailand\n", + "36798 Tajikistan\n", + "37017 Turkmenistan\n", + "37236 Timor-Leste\n", + "37455 Tonga\n", + "37674 Trinidad and Tobago\n", + "37893 Tunisia\n", + "38112 Turkey\n", + "38331 Taiwan\n", + "38548 Tanzania\n", + "38767 Uganda\n", + "38986 Ukraine\n", + "39205 Uruguay\n", + "39424 United States\n", + "39643 Uzbekistan\n", + "39862 St. Vincent and the Grenadines\n", + "40081 Venezuela\n", + "40300 Vietnam\n", + "40519 Vanuatu\n", + "40738 Samoa\n", + "40957 Yemen\n", + "41176 South Africa\n", + "41395 Zambia\n", + "41614 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "44 Aruba\n", + "263 Afghanistan\n", + "482 Angola\n", + "701 Albania\n", + "967 United Arab Emirates\n", + "1186 Argentina\n", + "1405 Armenia\n", + "1624 Antigua and Barbuda\n", + "1843 Australia\n", + "2062 Austria\n", + "2281 Azerbaijan\n", + "2500 Burundi\n", + "2719 Belgium\n", + "2938 Benin\n", + "3157 Burkina Faso\n", + "3376 Bangladesh\n", + "3595 Bulgaria\n", + "3814 Bahrain\n", + "4033 Bahamas\n", + "4252 Bosnia and Herzegovina\n", + "4471 Belarus\n", + "4690 Belize\n", + "4956 Bolivia\n", + "5175 Brazil\n", + "5394 Barbados\n", + "5613 Brunei\n", + "5832 Bhutan\n", + "6051 Botswana\n", + "6270 Central African Republic\n", + "6489 Canada\n", + " ... \n", + "35266 Sweden\n", + "35485 Swaziland\n", + "35704 Seychelles\n", + "35923 Syria\n", + "36142 Chad\n", + "36361 Togo\n", + "36580 Thailand\n", + "36799 Tajikistan\n", + "37018 Turkmenistan\n", + "37237 Timor-Leste\n", + "37456 Tonga\n", + "37675 Trinidad and Tobago\n", + "37894 Tunisia\n", + "38113 Turkey\n", + "38332 Taiwan\n", + "38549 Tanzania\n", + "38768 Uganda\n", + "38987 Ukraine\n", + "39206 Uruguay\n", + "39425 United States\n", + "39644 Uzbekistan\n", + "39863 St. Vincent and the Grenadines\n", + "40082 Venezuela\n", + "40301 Vietnam\n", + "40520 Vanuatu\n", + "40739 Samoa\n", + "40958 Yemen\n", + "41177 South Africa\n", + "41396 Zambia\n", + "41615 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "45 Aruba\n", + "264 Afghanistan\n", + "483 Angola\n", + "702 Albania\n", + "968 United Arab Emirates\n", + "1187 Argentina\n", + "1406 Armenia\n", + "1625 Antigua and Barbuda\n", + "1844 Australia\n", + "2063 Austria\n", + "2282 Azerbaijan\n", + "2501 Burundi\n", + "2720 Belgium\n", + "2939 Benin\n", + "3158 Burkina Faso\n", + "3377 Bangladesh\n", + "3596 Bulgaria\n", + "3815 Bahrain\n", + "4034 Bahamas\n", + "4253 Bosnia and Herzegovina\n", + "4472 Belarus\n", + "4691 Belize\n", + "4957 Bolivia\n", + "5176 Brazil\n", + "5395 Barbados\n", + "5614 Brunei\n", + "5833 Bhutan\n", + "6052 Botswana\n", + "6271 Central African Republic\n", + "6490 Canada\n", + " ... \n", + "35267 Sweden\n", + "35486 Swaziland\n", + "35705 Seychelles\n", + "35924 Syria\n", + "36143 Chad\n", + "36362 Togo\n", + "36581 Thailand\n", + "36800 Tajikistan\n", + "37019 Turkmenistan\n", + "37238 Timor-Leste\n", + "37457 Tonga\n", + "37676 Trinidad and Tobago\n", + "37895 Tunisia\n", + "38114 Turkey\n", + "38333 Taiwan\n", + "38550 Tanzania\n", + "38769 Uganda\n", + "38988 Ukraine\n", + "39207 Uruguay\n", + "39426 United States\n", + "39645 Uzbekistan\n", + "39864 St. Vincent and the Grenadines\n", + "40083 Venezuela\n", + "40302 Vietnam\n", + "40521 Vanuatu\n", + "40740 Samoa\n", + "40959 Yemen\n", + "41178 South Africa\n", + "41397 Zambia\n", + "41616 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "46 Aruba\n", + "265 Afghanistan\n", + "484 Angola\n", + "703 Albania\n", + "969 United Arab Emirates\n", + "1188 Argentina\n", + "1407 Armenia\n", + "1626 Antigua and Barbuda\n", + "1845 Australia\n", + "2064 Austria\n", + "2283 Azerbaijan\n", + "2502 Burundi\n", + "2721 Belgium\n", + "2940 Benin\n", + "3159 Burkina Faso\n", + "3378 Bangladesh\n", + "3597 Bulgaria\n", + "3816 Bahrain\n", + "4035 Bahamas\n", + "4254 Bosnia and Herzegovina\n", + "4473 Belarus\n", + "4692 Belize\n", + "4958 Bolivia\n", + "5177 Brazil\n", + "5396 Barbados\n", + "5615 Brunei\n", + "5834 Bhutan\n", + "6053 Botswana\n", + "6272 Central African Republic\n", + "6491 Canada\n", + " ... \n", + "35268 Sweden\n", + "35487 Swaziland\n", + "35706 Seychelles\n", + "35925 Syria\n", + "36144 Chad\n", + "36363 Togo\n", + "36582 Thailand\n", + "36801 Tajikistan\n", + "37020 Turkmenistan\n", + "37239 Timor-Leste\n", + "37458 Tonga\n", + "37677 Trinidad and Tobago\n", + "37896 Tunisia\n", + "38115 Turkey\n", + "38334 Taiwan\n", + "38551 Tanzania\n", + "38770 Uganda\n", + "38989 Ukraine\n", + "39208 Uruguay\n", + "39427 United States\n", + "39646 Uzbekistan\n", + "39865 St. Vincent and the Grenadines\n", + "40084 Venezuela\n", + "40303 Vietnam\n", + "40522 Vanuatu\n", + "40741 Samoa\n", + "40960 Yemen\n", + "41179 South Africa\n", + "41398 Zambia\n", + "41617 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "47 Aruba\n", + "266 Afghanistan\n", + "485 Angola\n", + "704 Albania\n", + "970 United Arab Emirates\n", + "1189 Argentina\n", + "1408 Armenia\n", + "1627 Antigua and Barbuda\n", + "1846 Australia\n", + "2065 Austria\n", + "2284 Azerbaijan\n", + "2503 Burundi\n", + "2722 Belgium\n", + "2941 Benin\n", + "3160 Burkina Faso\n", + "3379 Bangladesh\n", + "3598 Bulgaria\n", + "3817 Bahrain\n", + "4036 Bahamas\n", + "4255 Bosnia and Herzegovina\n", + "4474 Belarus\n", + "4693 Belize\n", + "4959 Bolivia\n", + "5178 Brazil\n", + "5397 Barbados\n", + "5616 Brunei\n", + "5835 Bhutan\n", + "6054 Botswana\n", + "6273 Central African Republic\n", + "6492 Canada\n", + " ... \n", + "35269 Sweden\n", + "35488 Swaziland\n", + "35707 Seychelles\n", + "35926 Syria\n", + "36145 Chad\n", + "36364 Togo\n", + "36583 Thailand\n", + "36802 Tajikistan\n", + "37021 Turkmenistan\n", + "37240 Timor-Leste\n", + "37459 Tonga\n", + "37678 Trinidad and Tobago\n", + "37897 Tunisia\n", + "38116 Turkey\n", + "38335 Taiwan\n", + "38552 Tanzania\n", + "38771 Uganda\n", + "38990 Ukraine\n", + "39209 Uruguay\n", + "39428 United States\n", + "39647 Uzbekistan\n", + "39866 St. Vincent and the Grenadines\n", + "40085 Venezuela\n", + "40304 Vietnam\n", + "40523 Vanuatu\n", + "40742 Samoa\n", + "40961 Yemen\n", + "41180 South Africa\n", + "41399 Zambia\n", + "41618 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "48 Aruba\n", + "267 Afghanistan\n", + "486 Angola\n", + "705 Albania\n", + "971 United Arab Emirates\n", + "1190 Argentina\n", + "1409 Armenia\n", + "1628 Antigua and Barbuda\n", + "1847 Australia\n", + "2066 Austria\n", + "2285 Azerbaijan\n", + "2504 Burundi\n", + "2723 Belgium\n", + "2942 Benin\n", + "3161 Burkina Faso\n", + "3380 Bangladesh\n", + "3599 Bulgaria\n", + "3818 Bahrain\n", + "4037 Bahamas\n", + "4256 Bosnia and Herzegovina\n", + "4475 Belarus\n", + "4694 Belize\n", + "4960 Bolivia\n", + "5179 Brazil\n", + "5398 Barbados\n", + "5617 Brunei\n", + "5836 Bhutan\n", + "6055 Botswana\n", + "6274 Central African Republic\n", + "6493 Canada\n", + " ... \n", + "35270 Sweden\n", + "35489 Swaziland\n", + "35708 Seychelles\n", + "35927 Syria\n", + "36146 Chad\n", + "36365 Togo\n", + "36584 Thailand\n", + "36803 Tajikistan\n", + "37022 Turkmenistan\n", + "37241 Timor-Leste\n", + "37460 Tonga\n", + "37679 Trinidad and Tobago\n", + "37898 Tunisia\n", + "38117 Turkey\n", + "38336 Taiwan\n", + "38553 Tanzania\n", + "38772 Uganda\n", + "38991 Ukraine\n", + "39210 Uruguay\n", + "39429 United States\n", + "39648 Uzbekistan\n", + "39867 St. Vincent and the Grenadines\n", + "40086 Venezuela\n", + "40305 Vietnam\n", + "40524 Vanuatu\n", + "40743 Samoa\n", + "40962 Yemen\n", + "41181 South Africa\n", + "41400 Zambia\n", + "41619 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "49 Aruba\n", + "268 Afghanistan\n", + "487 Angola\n", + "706 Albania\n", + "972 United Arab Emirates\n", + "1191 Argentina\n", + "1410 Armenia\n", + "1629 Antigua and Barbuda\n", + "1848 Australia\n", + "2067 Austria\n", + "2286 Azerbaijan\n", + "2505 Burundi\n", + "2724 Belgium\n", + "2943 Benin\n", + "3162 Burkina Faso\n", + "3381 Bangladesh\n", + "3600 Bulgaria\n", + "3819 Bahrain\n", + "4038 Bahamas\n", + "4257 Bosnia and Herzegovina\n", + "4476 Belarus\n", + "4695 Belize\n", + "4961 Bolivia\n", + "5180 Brazil\n", + "5399 Barbados\n", + "5618 Brunei\n", + "5837 Bhutan\n", + "6056 Botswana\n", + "6275 Central African Republic\n", + "6494 Canada\n", + " ... \n", + "35271 Sweden\n", + "35490 Swaziland\n", + "35709 Seychelles\n", + "35928 Syria\n", + "36147 Chad\n", + "36366 Togo\n", + "36585 Thailand\n", + "36804 Tajikistan\n", + "37023 Turkmenistan\n", + "37242 Timor-Leste\n", + "37461 Tonga\n", + "37680 Trinidad and Tobago\n", + "37899 Tunisia\n", + "38118 Turkey\n", + "38337 Taiwan\n", + "38554 Tanzania\n", + "38773 Uganda\n", + "38992 Ukraine\n", + "39211 Uruguay\n", + "39430 United States\n", + "39649 Uzbekistan\n", + "39868 St. Vincent and the Grenadines\n", + "40087 Venezuela\n", + "40306 Vietnam\n", + "40525 Vanuatu\n", + "40744 Samoa\n", + "40963 Yemen\n", + "41182 South Africa\n", + "41401 Zambia\n", + "41620 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "50 Aruba\n", + "269 Afghanistan\n", + "488 Angola\n", + "707 Albania\n", + "973 United Arab Emirates\n", + "1192 Argentina\n", + "1411 Armenia\n", + "1630 Antigua and Barbuda\n", + "1849 Australia\n", + "2068 Austria\n", + "2287 Azerbaijan\n", + "2506 Burundi\n", + "2725 Belgium\n", + "2944 Benin\n", + "3163 Burkina Faso\n", + "3382 Bangladesh\n", + "3601 Bulgaria\n", + "3820 Bahrain\n", + "4039 Bahamas\n", + "4258 Bosnia and Herzegovina\n", + "4477 Belarus\n", + "4696 Belize\n", + "4962 Bolivia\n", + "5181 Brazil\n", + "5400 Barbados\n", + "5619 Brunei\n", + "5838 Bhutan\n", + "6057 Botswana\n", + "6276 Central African Republic\n", + "6495 Canada\n", + " ... \n", + "35272 Sweden\n", + "35491 Swaziland\n", + "35710 Seychelles\n", + "35929 Syria\n", + "36148 Chad\n", + "36367 Togo\n", + "36586 Thailand\n", + "36805 Tajikistan\n", + "37024 Turkmenistan\n", + "37243 Timor-Leste\n", + "37462 Tonga\n", + "37681 Trinidad and Tobago\n", + "37900 Tunisia\n", + "38119 Turkey\n", + "38338 Taiwan\n", + "38555 Tanzania\n", + "38774 Uganda\n", + "38993 Ukraine\n", + "39212 Uruguay\n", + "39431 United States\n", + "39650 Uzbekistan\n", + "39869 St. Vincent and the Grenadines\n", + "40088 Venezuela\n", + "40307 Vietnam\n", + "40526 Vanuatu\n", + "40745 Samoa\n", + "40964 Yemen\n", + "41183 South Africa\n", + "41402 Zambia\n", + "41621 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "51 Aruba\n", + "270 Afghanistan\n", + "489 Angola\n", + "708 Albania\n", + "974 United Arab Emirates\n", + "1193 Argentina\n", + "1412 Armenia\n", + "1631 Antigua and Barbuda\n", + "1850 Australia\n", + "2069 Austria\n", + "2288 Azerbaijan\n", + "2507 Burundi\n", + "2726 Belgium\n", + "2945 Benin\n", + "3164 Burkina Faso\n", + "3383 Bangladesh\n", + "3602 Bulgaria\n", + "3821 Bahrain\n", + "4040 Bahamas\n", + "4259 Bosnia and Herzegovina\n", + "4478 Belarus\n", + "4697 Belize\n", + "4963 Bolivia\n", + "5182 Brazil\n", + "5401 Barbados\n", + "5620 Brunei\n", + "5839 Bhutan\n", + "6058 Botswana\n", + "6277 Central African Republic\n", + "6496 Canada\n", + " ... \n", + "35273 Sweden\n", + "35492 Swaziland\n", + "35711 Seychelles\n", + "35930 Syria\n", + "36149 Chad\n", + "36368 Togo\n", + "36587 Thailand\n", + "36806 Tajikistan\n", + "37025 Turkmenistan\n", + "37244 Timor-Leste\n", + "37463 Tonga\n", + "37682 Trinidad and Tobago\n", + "37901 Tunisia\n", + "38120 Turkey\n", + "38339 Taiwan\n", + "38556 Tanzania\n", + "38775 Uganda\n", + "38994 Ukraine\n", + "39213 Uruguay\n", + "39432 United States\n", + "39651 Uzbekistan\n", + "39870 St. Vincent and the Grenadines\n", + "40089 Venezuela\n", + "40308 Vietnam\n", + "40527 Vanuatu\n", + "40746 Samoa\n", + "40965 Yemen\n", + "41184 South Africa\n", + "41403 Zambia\n", + "41622 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "52 Aruba\n", + "271 Afghanistan\n", + "490 Angola\n", + "709 Albania\n", + "975 United Arab Emirates\n", + "1194 Argentina\n", + "1413 Armenia\n", + "1632 Antigua and Barbuda\n", + "1851 Australia\n", + "2070 Austria\n", + "2289 Azerbaijan\n", + "2508 Burundi\n", + "2727 Belgium\n", + "2946 Benin\n", + "3165 Burkina Faso\n", + "3384 Bangladesh\n", + "3603 Bulgaria\n", + "3822 Bahrain\n", + "4041 Bahamas\n", + "4260 Bosnia and Herzegovina\n", + "4479 Belarus\n", + "4698 Belize\n", + "4964 Bolivia\n", + "5183 Brazil\n", + "5402 Barbados\n", + "5621 Brunei\n", + "5840 Bhutan\n", + "6059 Botswana\n", + "6278 Central African Republic\n", + "6497 Canada\n", + " ... \n", + "35274 Sweden\n", + "35493 Swaziland\n", + "35712 Seychelles\n", + "35931 Syria\n", + "36150 Chad\n", + "36369 Togo\n", + "36588 Thailand\n", + "36807 Tajikistan\n", + "37026 Turkmenistan\n", + "37245 Timor-Leste\n", + "37464 Tonga\n", + "37683 Trinidad and Tobago\n", + "37902 Tunisia\n", + "38121 Turkey\n", + "38340 Taiwan\n", + "38557 Tanzania\n", + "38776 Uganda\n", + "38995 Ukraine\n", + "39214 Uruguay\n", + "39433 United States\n", + "39652 Uzbekistan\n", + "39871 St. Vincent and the Grenadines\n", + "40090 Venezuela\n", + "40309 Vietnam\n", + "40528 Vanuatu\n", + "40747 Samoa\n", + "40966 Yemen\n", + "41185 South Africa\n", + "41404 Zambia\n", + "41623 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "53 Aruba\n", + "272 Afghanistan\n", + "491 Angola\n", + "710 Albania\n", + "976 United Arab Emirates\n", + "1195 Argentina\n", + "1414 Armenia\n", + "1633 Antigua and Barbuda\n", + "1852 Australia\n", + "2071 Austria\n", + "2290 Azerbaijan\n", + "2509 Burundi\n", + "2728 Belgium\n", + "2947 Benin\n", + "3166 Burkina Faso\n", + "3385 Bangladesh\n", + "3604 Bulgaria\n", + "3823 Bahrain\n", + "4042 Bahamas\n", + "4261 Bosnia and Herzegovina\n", + "4480 Belarus\n", + "4699 Belize\n", + "4965 Bolivia\n", + "5184 Brazil\n", + "5403 Barbados\n", + "5622 Brunei\n", + "5841 Bhutan\n", + "6060 Botswana\n", + "6279 Central African Republic\n", + "6498 Canada\n", + " ... \n", + "35275 Sweden\n", + "35494 Swaziland\n", + "35713 Seychelles\n", + "35932 Syria\n", + "36151 Chad\n", + "36370 Togo\n", + "36589 Thailand\n", + "36808 Tajikistan\n", + "37027 Turkmenistan\n", + "37246 Timor-Leste\n", + "37465 Tonga\n", + "37684 Trinidad and Tobago\n", + "37903 Tunisia\n", + "38122 Turkey\n", + "38341 Taiwan\n", + "38558 Tanzania\n", + "38777 Uganda\n", + "38996 Ukraine\n", + "39215 Uruguay\n", + "39434 United States\n", + "39653 Uzbekistan\n", + "39872 St. Vincent and the Grenadines\n", + "40091 Venezuela\n", + "40310 Vietnam\n", + "40529 Vanuatu\n", + "40748 Samoa\n", + "40967 Yemen\n", + "41186 South Africa\n", + "41405 Zambia\n", + "41624 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "54 Aruba\n", + "273 Afghanistan\n", + "492 Angola\n", + "711 Albania\n", + "977 United Arab Emirates\n", + "1196 Argentina\n", + "1415 Armenia\n", + "1634 Antigua and Barbuda\n", + "1853 Australia\n", + "2072 Austria\n", + "2291 Azerbaijan\n", + "2510 Burundi\n", + "2729 Belgium\n", + "2948 Benin\n", + "3167 Burkina Faso\n", + "3386 Bangladesh\n", + "3605 Bulgaria\n", + "3824 Bahrain\n", + "4043 Bahamas\n", + "4262 Bosnia and Herzegovina\n", + "4481 Belarus\n", + "4700 Belize\n", + "4966 Bolivia\n", + "5185 Brazil\n", + "5404 Barbados\n", + "5623 Brunei\n", + "5842 Bhutan\n", + "6061 Botswana\n", + "6280 Central African Republic\n", + "6499 Canada\n", + " ... \n", + "35276 Sweden\n", + "35495 Swaziland\n", + "35714 Seychelles\n", + "35933 Syria\n", + "36152 Chad\n", + "36371 Togo\n", + "36590 Thailand\n", + "36809 Tajikistan\n", + "37028 Turkmenistan\n", + "37247 Timor-Leste\n", + "37466 Tonga\n", + "37685 Trinidad and Tobago\n", + "37904 Tunisia\n", + "38123 Turkey\n", + "38342 Taiwan\n", + "38559 Tanzania\n", + "38778 Uganda\n", + "38997 Ukraine\n", + "39216 Uruguay\n", + "39435 United States\n", + "39654 Uzbekistan\n", + "39873 St. Vincent and the Grenadines\n", + "40092 Venezuela\n", + "40311 Vietnam\n", + "40530 Vanuatu\n", + "40749 Samoa\n", + "40968 Yemen\n", + "41187 South Africa\n", + "41406 Zambia\n", + "41625 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "55 Aruba\n", + "274 Afghanistan\n", + "493 Angola\n", + "712 Albania\n", + "978 United Arab Emirates\n", + "1197 Argentina\n", + "1416 Armenia\n", + "1635 Antigua and Barbuda\n", + "1854 Australia\n", + "2073 Austria\n", + "2292 Azerbaijan\n", + "2511 Burundi\n", + "2730 Belgium\n", + "2949 Benin\n", + "3168 Burkina Faso\n", + "3387 Bangladesh\n", + "3606 Bulgaria\n", + "3825 Bahrain\n", + "4044 Bahamas\n", + "4263 Bosnia and Herzegovina\n", + "4482 Belarus\n", + "4701 Belize\n", + "4967 Bolivia\n", + "5186 Brazil\n", + "5405 Barbados\n", + "5624 Brunei\n", + "5843 Bhutan\n", + "6062 Botswana\n", + "6281 Central African Republic\n", + "6500 Canada\n", + " ... \n", + "35277 Sweden\n", + "35496 Swaziland\n", + "35715 Seychelles\n", + "35934 Syria\n", + "36153 Chad\n", + "36372 Togo\n", + "36591 Thailand\n", + "36810 Tajikistan\n", + "37029 Turkmenistan\n", + "37248 Timor-Leste\n", + "37467 Tonga\n", + "37686 Trinidad and Tobago\n", + "37905 Tunisia\n", + "38124 Turkey\n", + "38343 Taiwan\n", + "38560 Tanzania\n", + "38779 Uganda\n", + "38998 Ukraine\n", + "39217 Uruguay\n", + "39436 United States\n", + "39655 Uzbekistan\n", + "39874 St. Vincent and the Grenadines\n", + "40093 Venezuela\n", + "40312 Vietnam\n", + "40531 Vanuatu\n", + "40750 Samoa\n", + "40969 Yemen\n", + "41188 South Africa\n", + "41407 Zambia\n", + "41626 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "56 Aruba\n", + "275 Afghanistan\n", + "494 Angola\n", + "713 Albania\n", + "979 United Arab Emirates\n", + "1198 Argentina\n", + "1417 Armenia\n", + "1636 Antigua and Barbuda\n", + "1855 Australia\n", + "2074 Austria\n", + "2293 Azerbaijan\n", + "2512 Burundi\n", + "2731 Belgium\n", + "2950 Benin\n", + "3169 Burkina Faso\n", + "3388 Bangladesh\n", + "3607 Bulgaria\n", + "3826 Bahrain\n", + "4045 Bahamas\n", + "4264 Bosnia and Herzegovina\n", + "4483 Belarus\n", + "4702 Belize\n", + "4968 Bolivia\n", + "5187 Brazil\n", + "5406 Barbados\n", + "5625 Brunei\n", + "5844 Bhutan\n", + "6063 Botswana\n", + "6282 Central African Republic\n", + "6501 Canada\n", + " ... \n", + "35278 Sweden\n", + "35497 Swaziland\n", + "35716 Seychelles\n", + "35935 Syria\n", + "36154 Chad\n", + "36373 Togo\n", + "36592 Thailand\n", + "36811 Tajikistan\n", + "37030 Turkmenistan\n", + "37249 Timor-Leste\n", + "37468 Tonga\n", + "37687 Trinidad and Tobago\n", + "37906 Tunisia\n", + "38125 Turkey\n", + "38344 Taiwan\n", + "38561 Tanzania\n", + "38780 Uganda\n", + "38999 Ukraine\n", + "39218 Uruguay\n", + "39437 United States\n", + "39656 Uzbekistan\n", + "39875 St. Vincent and the Grenadines\n", + "40094 Venezuela\n", + "40313 Vietnam\n", + "40532 Vanuatu\n", + "40751 Samoa\n", + "40970 Yemen\n", + "41189 South Africa\n", + "41408 Zambia\n", + "41627 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "57 Aruba\n", + "276 Afghanistan\n", + "495 Angola\n", + "714 Albania\n", + "980 United Arab Emirates\n", + "1199 Argentina\n", + "1418 Armenia\n", + "1637 Antigua and Barbuda\n", + "1856 Australia\n", + "2075 Austria\n", + "2294 Azerbaijan\n", + "2513 Burundi\n", + "2732 Belgium\n", + "2951 Benin\n", + "3170 Burkina Faso\n", + "3389 Bangladesh\n", + "3608 Bulgaria\n", + "3827 Bahrain\n", + "4046 Bahamas\n", + "4265 Bosnia and Herzegovina\n", + "4484 Belarus\n", + "4703 Belize\n", + "4969 Bolivia\n", + "5188 Brazil\n", + "5407 Barbados\n", + "5626 Brunei\n", + "5845 Bhutan\n", + "6064 Botswana\n", + "6283 Central African Republic\n", + "6502 Canada\n", + " ... \n", + "35279 Sweden\n", + "35498 Swaziland\n", + "35717 Seychelles\n", + "35936 Syria\n", + "36155 Chad\n", + "36374 Togo\n", + "36593 Thailand\n", + "36812 Tajikistan\n", + "37031 Turkmenistan\n", + "37250 Timor-Leste\n", + "37469 Tonga\n", + "37688 Trinidad and Tobago\n", + "37907 Tunisia\n", + "38126 Turkey\n", + "38345 Taiwan\n", + "38562 Tanzania\n", + "38781 Uganda\n", + "39000 Ukraine\n", + "39219 Uruguay\n", + "39438 United States\n", + "39657 Uzbekistan\n", + "39876 St. Vincent and the Grenadines\n", + "40095 Venezuela\n", + "40314 Vietnam\n", + "40533 Vanuatu\n", + "40752 Samoa\n", + "40971 Yemen\n", + "41190 South Africa\n", + "41409 Zambia\n", + "41628 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "58 Aruba\n", + "277 Afghanistan\n", + "496 Angola\n", + "715 Albania\n", + "981 United Arab Emirates\n", + "1200 Argentina\n", + "1419 Armenia\n", + "1638 Antigua and Barbuda\n", + "1857 Australia\n", + "2076 Austria\n", + "2295 Azerbaijan\n", + "2514 Burundi\n", + "2733 Belgium\n", + "2952 Benin\n", + "3171 Burkina Faso\n", + "3390 Bangladesh\n", + "3609 Bulgaria\n", + "3828 Bahrain\n", + "4047 Bahamas\n", + "4266 Bosnia and Herzegovina\n", + "4485 Belarus\n", + "4704 Belize\n", + "4970 Bolivia\n", + "5189 Brazil\n", + "5408 Barbados\n", + "5627 Brunei\n", + "5846 Bhutan\n", + "6065 Botswana\n", + "6284 Central African Republic\n", + "6503 Canada\n", + " ... \n", + "35280 Sweden\n", + "35499 Swaziland\n", + "35718 Seychelles\n", + "35937 Syria\n", + "36156 Chad\n", + "36375 Togo\n", + "36594 Thailand\n", + "36813 Tajikistan\n", + "37032 Turkmenistan\n", + "37251 Timor-Leste\n", + "37470 Tonga\n", + "37689 Trinidad and Tobago\n", + "37908 Tunisia\n", + "38127 Turkey\n", + "38346 Taiwan\n", + "38563 Tanzania\n", + "38782 Uganda\n", + "39001 Ukraine\n", + "39220 Uruguay\n", + "39439 United States\n", + "39658 Uzbekistan\n", + "39877 St. Vincent and the Grenadines\n", + "40096 Venezuela\n", + "40315 Vietnam\n", + "40534 Vanuatu\n", + "40753 Samoa\n", + "40972 Yemen\n", + "41191 South Africa\n", + "41410 Zambia\n", + "41629 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "59 Aruba\n", + "278 Afghanistan\n", + "497 Angola\n", + "716 Albania\n", + "982 United Arab Emirates\n", + "1201 Argentina\n", + "1420 Armenia\n", + "1639 Antigua and Barbuda\n", + "1858 Australia\n", + "2077 Austria\n", + "2296 Azerbaijan\n", + "2515 Burundi\n", + "2734 Belgium\n", + "2953 Benin\n", + "3172 Burkina Faso\n", + "3391 Bangladesh\n", + "3610 Bulgaria\n", + "3829 Bahrain\n", + "4048 Bahamas\n", + "4267 Bosnia and Herzegovina\n", + "4486 Belarus\n", + "4705 Belize\n", + "4971 Bolivia\n", + "5190 Brazil\n", + "5409 Barbados\n", + "5628 Brunei\n", + "5847 Bhutan\n", + "6066 Botswana\n", + "6285 Central African Republic\n", + "6504 Canada\n", + " ... \n", + "35281 Sweden\n", + "35500 Swaziland\n", + "35719 Seychelles\n", + "35938 Syria\n", + "36157 Chad\n", + "36376 Togo\n", + "36595 Thailand\n", + "36814 Tajikistan\n", + "37033 Turkmenistan\n", + "37252 Timor-Leste\n", + "37471 Tonga\n", + "37690 Trinidad and Tobago\n", + "37909 Tunisia\n", + "38128 Turkey\n", + "38347 Taiwan\n", + "38564 Tanzania\n", + "38783 Uganda\n", + "39002 Ukraine\n", + "39221 Uruguay\n", + "39440 United States\n", + "39659 Uzbekistan\n", + "39878 St. Vincent and the Grenadines\n", + "40097 Venezuela\n", + "40316 Vietnam\n", + "40535 Vanuatu\n", + "40754 Samoa\n", + "40973 Yemen\n", + "41192 South Africa\n", + "41411 Zambia\n", + "41630 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "60 Aruba\n", + "279 Afghanistan\n", + "498 Angola\n", + "717 Albania\n", + "983 United Arab Emirates\n", + "1202 Argentina\n", + "1421 Armenia\n", + "1640 Antigua and Barbuda\n", + "1859 Australia\n", + "2078 Austria\n", + "2297 Azerbaijan\n", + "2516 Burundi\n", + "2735 Belgium\n", + "2954 Benin\n", + "3173 Burkina Faso\n", + "3392 Bangladesh\n", + "3611 Bulgaria\n", + "3830 Bahrain\n", + "4049 Bahamas\n", + "4268 Bosnia and Herzegovina\n", + "4487 Belarus\n", + "4706 Belize\n", + "4972 Bolivia\n", + "5191 Brazil\n", + "5410 Barbados\n", + "5629 Brunei\n", + "5848 Bhutan\n", + "6067 Botswana\n", + "6286 Central African Republic\n", + "6505 Canada\n", + " ... \n", + "35282 Sweden\n", + "35501 Swaziland\n", + "35720 Seychelles\n", + "35939 Syria\n", + "36158 Chad\n", + "36377 Togo\n", + "36596 Thailand\n", + "36815 Tajikistan\n", + "37034 Turkmenistan\n", + "37253 Timor-Leste\n", + "37472 Tonga\n", + "37691 Trinidad and Tobago\n", + "37910 Tunisia\n", + "38129 Turkey\n", + "38348 Taiwan\n", + "38565 Tanzania\n", + "38784 Uganda\n", + "39003 Ukraine\n", + "39222 Uruguay\n", + "39441 United States\n", + "39660 Uzbekistan\n", + "39879 St. Vincent and the Grenadines\n", + "40098 Venezuela\n", + "40317 Vietnam\n", + "40536 Vanuatu\n", + "40755 Samoa\n", + "40974 Yemen\n", + "41193 South Africa\n", + "41412 Zambia\n", + "41631 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "61 Aruba\n", + "280 Afghanistan\n", + "499 Angola\n", + "718 Albania\n", + "984 United Arab Emirates\n", + "1203 Argentina\n", + "1422 Armenia\n", + "1641 Antigua and Barbuda\n", + "1860 Australia\n", + "2079 Austria\n", + "2298 Azerbaijan\n", + "2517 Burundi\n", + "2736 Belgium\n", + "2955 Benin\n", + "3174 Burkina Faso\n", + "3393 Bangladesh\n", + "3612 Bulgaria\n", + "3831 Bahrain\n", + "4050 Bahamas\n", + "4269 Bosnia and Herzegovina\n", + "4488 Belarus\n", + "4707 Belize\n", + "4973 Bolivia\n", + "5192 Brazil\n", + "5411 Barbados\n", + "5630 Brunei\n", + "5849 Bhutan\n", + "6068 Botswana\n", + "6287 Central African Republic\n", + "6506 Canada\n", + " ... \n", + "35283 Sweden\n", + "35502 Swaziland\n", + "35721 Seychelles\n", + "35940 Syria\n", + "36159 Chad\n", + "36378 Togo\n", + "36597 Thailand\n", + "36816 Tajikistan\n", + "37035 Turkmenistan\n", + "37254 Timor-Leste\n", + "37473 Tonga\n", + "37692 Trinidad and Tobago\n", + "37911 Tunisia\n", + "38130 Turkey\n", + "38349 Taiwan\n", + "38566 Tanzania\n", + "38785 Uganda\n", + "39004 Ukraine\n", + "39223 Uruguay\n", + "39442 United States\n", + "39661 Uzbekistan\n", + "39880 St. Vincent and the Grenadines\n", + "40099 Venezuela\n", + "40318 Vietnam\n", + "40537 Vanuatu\n", + "40756 Samoa\n", + "40975 Yemen\n", + "41194 South Africa\n", + "41413 Zambia\n", + "41632 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "62 Aruba\n", + "281 Afghanistan\n", + "500 Angola\n", + "719 Albania\n", + "985 United Arab Emirates\n", + "1204 Argentina\n", + "1423 Armenia\n", + "1642 Antigua and Barbuda\n", + "1861 Australia\n", + "2080 Austria\n", + "2299 Azerbaijan\n", + "2518 Burundi\n", + "2737 Belgium\n", + "2956 Benin\n", + "3175 Burkina Faso\n", + "3394 Bangladesh\n", + "3613 Bulgaria\n", + "3832 Bahrain\n", + "4051 Bahamas\n", + "4270 Bosnia and Herzegovina\n", + "4489 Belarus\n", + "4708 Belize\n", + "4974 Bolivia\n", + "5193 Brazil\n", + "5412 Barbados\n", + "5631 Brunei\n", + "5850 Bhutan\n", + "6069 Botswana\n", + "6288 Central African Republic\n", + "6507 Canada\n", + " ... \n", + "35284 Sweden\n", + "35503 Swaziland\n", + "35722 Seychelles\n", + "35941 Syria\n", + "36160 Chad\n", + "36379 Togo\n", + "36598 Thailand\n", + "36817 Tajikistan\n", + "37036 Turkmenistan\n", + "37255 Timor-Leste\n", + "37474 Tonga\n", + "37693 Trinidad and Tobago\n", + "37912 Tunisia\n", + "38131 Turkey\n", + "38350 Taiwan\n", + "38567 Tanzania\n", + "38786 Uganda\n", + "39005 Ukraine\n", + "39224 Uruguay\n", + "39443 United States\n", + "39662 Uzbekistan\n", + "39881 St. Vincent and the Grenadines\n", + "40100 Venezuela\n", + "40319 Vietnam\n", + "40538 Vanuatu\n", + "40757 Samoa\n", + "40976 Yemen\n", + "41195 South Africa\n", + "41414 Zambia\n", + "41633 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "63 Aruba\n", + "282 Afghanistan\n", + "501 Angola\n", + "720 Albania\n", + "986 United Arab Emirates\n", + "1205 Argentina\n", + "1424 Armenia\n", + "1643 Antigua and Barbuda\n", + "1862 Australia\n", + "2081 Austria\n", + "2300 Azerbaijan\n", + "2519 Burundi\n", + "2738 Belgium\n", + "2957 Benin\n", + "3176 Burkina Faso\n", + "3395 Bangladesh\n", + "3614 Bulgaria\n", + "3833 Bahrain\n", + "4052 Bahamas\n", + "4271 Bosnia and Herzegovina\n", + "4490 Belarus\n", + "4709 Belize\n", + "4975 Bolivia\n", + "5194 Brazil\n", + "5413 Barbados\n", + "5632 Brunei\n", + "5851 Bhutan\n", + "6070 Botswana\n", + "6289 Central African Republic\n", + "6508 Canada\n", + " ... \n", + "35285 Sweden\n", + "35504 Swaziland\n", + "35723 Seychelles\n", + "35942 Syria\n", + "36161 Chad\n", + "36380 Togo\n", + "36599 Thailand\n", + "36818 Tajikistan\n", + "37037 Turkmenistan\n", + "37256 Timor-Leste\n", + "37475 Tonga\n", + "37694 Trinidad and Tobago\n", + "37913 Tunisia\n", + "38132 Turkey\n", + "38351 Taiwan\n", + "38568 Tanzania\n", + "38787 Uganda\n", + "39006 Ukraine\n", + "39225 Uruguay\n", + "39444 United States\n", + "39663 Uzbekistan\n", + "39882 St. Vincent and the Grenadines\n", + "40101 Venezuela\n", + "40320 Vietnam\n", + "40539 Vanuatu\n", + "40758 Samoa\n", + "40977 Yemen\n", + "41196 South Africa\n", + "41415 Zambia\n", + "41634 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "64 Aruba\n", + "283 Afghanistan\n", + "502 Angola\n", + "721 Albania\n", + "987 United Arab Emirates\n", + "1206 Argentina\n", + "1425 Armenia\n", + "1644 Antigua and Barbuda\n", + "1863 Australia\n", + "2082 Austria\n", + "2301 Azerbaijan\n", + "2520 Burundi\n", + "2739 Belgium\n", + "2958 Benin\n", + "3177 Burkina Faso\n", + "3396 Bangladesh\n", + "3615 Bulgaria\n", + "3834 Bahrain\n", + "4053 Bahamas\n", + "4272 Bosnia and Herzegovina\n", + "4491 Belarus\n", + "4710 Belize\n", + "4976 Bolivia\n", + "5195 Brazil\n", + "5414 Barbados\n", + "5633 Brunei\n", + "5852 Bhutan\n", + "6071 Botswana\n", + "6290 Central African Republic\n", + "6509 Canada\n", + " ... \n", + "35286 Sweden\n", + "35505 Swaziland\n", + "35724 Seychelles\n", + "35943 Syria\n", + "36162 Chad\n", + "36381 Togo\n", + "36600 Thailand\n", + "36819 Tajikistan\n", + "37038 Turkmenistan\n", + "37257 Timor-Leste\n", + "37476 Tonga\n", + "37695 Trinidad and Tobago\n", + "37914 Tunisia\n", + "38133 Turkey\n", + "38352 Taiwan\n", + "38569 Tanzania\n", + "38788 Uganda\n", + "39007 Ukraine\n", + "39226 Uruguay\n", + "39445 United States\n", + "39664 Uzbekistan\n", + "39883 St. Vincent and the Grenadines\n", + "40102 Venezuela\n", + "40321 Vietnam\n", + "40540 Vanuatu\n", + "40759 Samoa\n", + "40978 Yemen\n", + "41197 South Africa\n", + "41416 Zambia\n", + "41635 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "65 Aruba\n", + "284 Afghanistan\n", + "503 Angola\n", + "722 Albania\n", + "988 United Arab Emirates\n", + "1207 Argentina\n", + "1426 Armenia\n", + "1645 Antigua and Barbuda\n", + "1864 Australia\n", + "2083 Austria\n", + "2302 Azerbaijan\n", + "2521 Burundi\n", + "2740 Belgium\n", + "2959 Benin\n", + "3178 Burkina Faso\n", + "3397 Bangladesh\n", + "3616 Bulgaria\n", + "3835 Bahrain\n", + "4054 Bahamas\n", + "4273 Bosnia and Herzegovina\n", + "4492 Belarus\n", + "4711 Belize\n", + "4977 Bolivia\n", + "5196 Brazil\n", + "5415 Barbados\n", + "5634 Brunei\n", + "5853 Bhutan\n", + "6072 Botswana\n", + "6291 Central African Republic\n", + "6510 Canada\n", + " ... \n", + "35287 Sweden\n", + "35506 Swaziland\n", + "35725 Seychelles\n", + "35944 Syria\n", + "36163 Chad\n", + "36382 Togo\n", + "36601 Thailand\n", + "36820 Tajikistan\n", + "37039 Turkmenistan\n", + "37258 Timor-Leste\n", + "37477 Tonga\n", + "37696 Trinidad and Tobago\n", + "37915 Tunisia\n", + "38134 Turkey\n", + "38353 Taiwan\n", + "38570 Tanzania\n", + "38789 Uganda\n", + "39008 Ukraine\n", + "39227 Uruguay\n", + "39446 United States\n", + "39665 Uzbekistan\n", + "39884 St. Vincent and the Grenadines\n", + "40103 Venezuela\n", + "40322 Vietnam\n", + "40541 Vanuatu\n", + "40760 Samoa\n", + "40979 Yemen\n", + "41198 South Africa\n", + "41417 Zambia\n", + "41636 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "66 Aruba\n", + "285 Afghanistan\n", + "504 Angola\n", + "723 Albania\n", + "989 United Arab Emirates\n", + "1208 Argentina\n", + "1427 Armenia\n", + "1646 Antigua and Barbuda\n", + "1865 Australia\n", + "2084 Austria\n", + "2303 Azerbaijan\n", + "2522 Burundi\n", + "2741 Belgium\n", + "2960 Benin\n", + "3179 Burkina Faso\n", + "3398 Bangladesh\n", + "3617 Bulgaria\n", + "3836 Bahrain\n", + "4055 Bahamas\n", + "4274 Bosnia and Herzegovina\n", + "4493 Belarus\n", + "4712 Belize\n", + "4978 Bolivia\n", + "5197 Brazil\n", + "5416 Barbados\n", + "5635 Brunei\n", + "5854 Bhutan\n", + "6073 Botswana\n", + "6292 Central African Republic\n", + "6511 Canada\n", + " ... \n", + "35288 Sweden\n", + "35507 Swaziland\n", + "35726 Seychelles\n", + "35945 Syria\n", + "36164 Chad\n", + "36383 Togo\n", + "36602 Thailand\n", + "36821 Tajikistan\n", + "37040 Turkmenistan\n", + "37259 Timor-Leste\n", + "37478 Tonga\n", + "37697 Trinidad and Tobago\n", + "37916 Tunisia\n", + "38135 Turkey\n", + "38354 Taiwan\n", + "38571 Tanzania\n", + "38790 Uganda\n", + "39009 Ukraine\n", + "39228 Uruguay\n", + "39447 United States\n", + "39666 Uzbekistan\n", + "39885 St. Vincent and the Grenadines\n", + "40104 Venezuela\n", + "40323 Vietnam\n", + "40542 Vanuatu\n", + "40761 Samoa\n", + "40980 Yemen\n", + "41199 South Africa\n", + "41418 Zambia\n", + "41637 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "67 Aruba\n", + "286 Afghanistan\n", + "505 Angola\n", + "724 Albania\n", + "990 United Arab Emirates\n", + "1209 Argentina\n", + "1428 Armenia\n", + "1647 Antigua and Barbuda\n", + "1866 Australia\n", + "2085 Austria\n", + "2304 Azerbaijan\n", + "2523 Burundi\n", + "2742 Belgium\n", + "2961 Benin\n", + "3180 Burkina Faso\n", + "3399 Bangladesh\n", + "3618 Bulgaria\n", + "3837 Bahrain\n", + "4056 Bahamas\n", + "4275 Bosnia and Herzegovina\n", + "4494 Belarus\n", + "4713 Belize\n", + "4979 Bolivia\n", + "5198 Brazil\n", + "5417 Barbados\n", + "5636 Brunei\n", + "5855 Bhutan\n", + "6074 Botswana\n", + "6293 Central African Republic\n", + "6512 Canada\n", + " ... \n", + "35289 Sweden\n", + "35508 Swaziland\n", + "35727 Seychelles\n", + "35946 Syria\n", + "36165 Chad\n", + "36384 Togo\n", + "36603 Thailand\n", + "36822 Tajikistan\n", + "37041 Turkmenistan\n", + "37260 Timor-Leste\n", + "37479 Tonga\n", + "37698 Trinidad and Tobago\n", + "37917 Tunisia\n", + "38136 Turkey\n", + "38355 Taiwan\n", + "38572 Tanzania\n", + "38791 Uganda\n", + "39010 Ukraine\n", + "39229 Uruguay\n", + "39448 United States\n", + "39667 Uzbekistan\n", + "39886 St. Vincent and the Grenadines\n", + "40105 Venezuela\n", + "40324 Vietnam\n", + "40543 Vanuatu\n", + "40762 Samoa\n", + "40981 Yemen\n", + "41200 South Africa\n", + "41419 Zambia\n", + "41638 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "68 Aruba\n", + "287 Afghanistan\n", + "506 Angola\n", + "725 Albania\n", + "991 United Arab Emirates\n", + "1210 Argentina\n", + "1429 Armenia\n", + "1648 Antigua and Barbuda\n", + "1867 Australia\n", + "2086 Austria\n", + "2305 Azerbaijan\n", + "2524 Burundi\n", + "2743 Belgium\n", + "2962 Benin\n", + "3181 Burkina Faso\n", + "3400 Bangladesh\n", + "3619 Bulgaria\n", + "3838 Bahrain\n", + "4057 Bahamas\n", + "4276 Bosnia and Herzegovina\n", + "4495 Belarus\n", + "4714 Belize\n", + "4980 Bolivia\n", + "5199 Brazil\n", + "5418 Barbados\n", + "5637 Brunei\n", + "5856 Bhutan\n", + "6075 Botswana\n", + "6294 Central African Republic\n", + "6513 Canada\n", + " ... \n", + "35290 Sweden\n", + "35509 Swaziland\n", + "35728 Seychelles\n", + "35947 Syria\n", + "36166 Chad\n", + "36385 Togo\n", + "36604 Thailand\n", + "36823 Tajikistan\n", + "37042 Turkmenistan\n", + "37261 Timor-Leste\n", + "37480 Tonga\n", + "37699 Trinidad and Tobago\n", + "37918 Tunisia\n", + "38137 Turkey\n", + "38356 Taiwan\n", + "38573 Tanzania\n", + "38792 Uganda\n", + "39011 Ukraine\n", + "39230 Uruguay\n", + "39449 United States\n", + "39668 Uzbekistan\n", + "39887 St. Vincent and the Grenadines\n", + "40106 Venezuela\n", + "40325 Vietnam\n", + "40544 Vanuatu\n", + "40763 Samoa\n", + "40982 Yemen\n", + "41201 South Africa\n", + "41420 Zambia\n", + "41639 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "69 Aruba\n", + "288 Afghanistan\n", + "507 Angola\n", + "726 Albania\n", + "992 United Arab Emirates\n", + "1211 Argentina\n", + "1430 Armenia\n", + "1649 Antigua and Barbuda\n", + "1868 Australia\n", + "2087 Austria\n", + "2306 Azerbaijan\n", + "2525 Burundi\n", + "2744 Belgium\n", + "2963 Benin\n", + "3182 Burkina Faso\n", + "3401 Bangladesh\n", + "3620 Bulgaria\n", + "3839 Bahrain\n", + "4058 Bahamas\n", + "4277 Bosnia and Herzegovina\n", + "4496 Belarus\n", + "4715 Belize\n", + "4981 Bolivia\n", + "5200 Brazil\n", + "5419 Barbados\n", + "5638 Brunei\n", + "5857 Bhutan\n", + "6076 Botswana\n", + "6295 Central African Republic\n", + "6514 Canada\n", + " ... \n", + "35291 Sweden\n", + "35510 Swaziland\n", + "35729 Seychelles\n", + "35948 Syria\n", + "36167 Chad\n", + "36386 Togo\n", + "36605 Thailand\n", + "36824 Tajikistan\n", + "37043 Turkmenistan\n", + "37262 Timor-Leste\n", + "37481 Tonga\n", + "37700 Trinidad and Tobago\n", + "37919 Tunisia\n", + "38138 Turkey\n", + "38357 Taiwan\n", + "38574 Tanzania\n", + "38793 Uganda\n", + "39012 Ukraine\n", + "39231 Uruguay\n", + "39450 United States\n", + "39669 Uzbekistan\n", + "39888 St. Vincent and the Grenadines\n", + "40107 Venezuela\n", + "40326 Vietnam\n", + "40545 Vanuatu\n", + "40764 Samoa\n", + "40983 Yemen\n", + "41202 South Africa\n", + "41421 Zambia\n", + "41640 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "70 Aruba\n", + "289 Afghanistan\n", + "508 Angola\n", + "727 Albania\n", + "993 United Arab Emirates\n", + "1212 Argentina\n", + "1431 Armenia\n", + "1650 Antigua and Barbuda\n", + "1869 Australia\n", + "2088 Austria\n", + "2307 Azerbaijan\n", + "2526 Burundi\n", + "2745 Belgium\n", + "2964 Benin\n", + "3183 Burkina Faso\n", + "3402 Bangladesh\n", + "3621 Bulgaria\n", + "3840 Bahrain\n", + "4059 Bahamas\n", + "4278 Bosnia and Herzegovina\n", + "4497 Belarus\n", + "4716 Belize\n", + "4982 Bolivia\n", + "5201 Brazil\n", + "5420 Barbados\n", + "5639 Brunei\n", + "5858 Bhutan\n", + "6077 Botswana\n", + "6296 Central African Republic\n", + "6515 Canada\n", + " ... \n", + "35292 Sweden\n", + "35511 Swaziland\n", + "35730 Seychelles\n", + "35949 Syria\n", + "36168 Chad\n", + "36387 Togo\n", + "36606 Thailand\n", + "36825 Tajikistan\n", + "37044 Turkmenistan\n", + "37263 Timor-Leste\n", + "37482 Tonga\n", + "37701 Trinidad and Tobago\n", + "37920 Tunisia\n", + "38139 Turkey\n", + "38358 Taiwan\n", + "38575 Tanzania\n", + "38794 Uganda\n", + "39013 Ukraine\n", + "39232 Uruguay\n", + "39451 United States\n", + "39670 Uzbekistan\n", + "39889 St. Vincent and the Grenadines\n", + "40108 Venezuela\n", + "40327 Vietnam\n", + "40546 Vanuatu\n", + "40765 Samoa\n", + "40984 Yemen\n", + "41203 South Africa\n", + "41422 Zambia\n", + "41641 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "71 Aruba\n", + "290 Afghanistan\n", + "509 Angola\n", + "728 Albania\n", + "994 United Arab Emirates\n", + "1213 Argentina\n", + "1432 Armenia\n", + "1651 Antigua and Barbuda\n", + "1870 Australia\n", + "2089 Austria\n", + "2308 Azerbaijan\n", + "2527 Burundi\n", + "2746 Belgium\n", + "2965 Benin\n", + "3184 Burkina Faso\n", + "3403 Bangladesh\n", + "3622 Bulgaria\n", + "3841 Bahrain\n", + "4060 Bahamas\n", + "4279 Bosnia and Herzegovina\n", + "4498 Belarus\n", + "4717 Belize\n", + "4983 Bolivia\n", + "5202 Brazil\n", + "5421 Barbados\n", + "5640 Brunei\n", + "5859 Bhutan\n", + "6078 Botswana\n", + "6297 Central African Republic\n", + "6516 Canada\n", + " ... \n", + "35293 Sweden\n", + "35512 Swaziland\n", + "35731 Seychelles\n", + "35950 Syria\n", + "36169 Chad\n", + "36388 Togo\n", + "36607 Thailand\n", + "36826 Tajikistan\n", + "37045 Turkmenistan\n", + "37264 Timor-Leste\n", + "37483 Tonga\n", + "37702 Trinidad and Tobago\n", + "37921 Tunisia\n", + "38140 Turkey\n", + "38359 Taiwan\n", + "38576 Tanzania\n", + "38795 Uganda\n", + "39014 Ukraine\n", + "39233 Uruguay\n", + "39452 United States\n", + "39671 Uzbekistan\n", + "39890 St. Vincent and the Grenadines\n", + "40109 Venezuela\n", + "40328 Vietnam\n", + "40547 Vanuatu\n", + "40766 Samoa\n", + "40985 Yemen\n", + "41204 South Africa\n", + "41423 Zambia\n", + "41642 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "72 Aruba\n", + "291 Afghanistan\n", + "510 Angola\n", + "729 Albania\n", + "995 United Arab Emirates\n", + "1214 Argentina\n", + "1433 Armenia\n", + "1652 Antigua and Barbuda\n", + "1871 Australia\n", + "2090 Austria\n", + "2309 Azerbaijan\n", + "2528 Burundi\n", + "2747 Belgium\n", + "2966 Benin\n", + "3185 Burkina Faso\n", + "3404 Bangladesh\n", + "3623 Bulgaria\n", + "3842 Bahrain\n", + "4061 Bahamas\n", + "4280 Bosnia and Herzegovina\n", + "4499 Belarus\n", + "4718 Belize\n", + "4984 Bolivia\n", + "5203 Brazil\n", + "5422 Barbados\n", + "5641 Brunei\n", + "5860 Bhutan\n", + "6079 Botswana\n", + "6298 Central African Republic\n", + "6517 Canada\n", + " ... \n", + "35294 Sweden\n", + "35513 Swaziland\n", + "35732 Seychelles\n", + "35951 Syria\n", + "36170 Chad\n", + "36389 Togo\n", + "36608 Thailand\n", + "36827 Tajikistan\n", + "37046 Turkmenistan\n", + "37265 Timor-Leste\n", + "37484 Tonga\n", + "37703 Trinidad and Tobago\n", + "37922 Tunisia\n", + "38141 Turkey\n", + "38360 Taiwan\n", + "38577 Tanzania\n", + "38796 Uganda\n", + "39015 Ukraine\n", + "39234 Uruguay\n", + "39453 United States\n", + "39672 Uzbekistan\n", + "39891 St. Vincent and the Grenadines\n", + "40110 Venezuela\n", + "40329 Vietnam\n", + "40548 Vanuatu\n", + "40767 Samoa\n", + "40986 Yemen\n", + "41205 South Africa\n", + "41424 Zambia\n", + "41643 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "73 Aruba\n", + "292 Afghanistan\n", + "511 Angola\n", + "730 Albania\n", + "996 United Arab Emirates\n", + "1215 Argentina\n", + "1434 Armenia\n", + "1653 Antigua and Barbuda\n", + "1872 Australia\n", + "2091 Austria\n", + "2310 Azerbaijan\n", + "2529 Burundi\n", + "2748 Belgium\n", + "2967 Benin\n", + "3186 Burkina Faso\n", + "3405 Bangladesh\n", + "3624 Bulgaria\n", + "3843 Bahrain\n", + "4062 Bahamas\n", + "4281 Bosnia and Herzegovina\n", + "4500 Belarus\n", + "4719 Belize\n", + "4985 Bolivia\n", + "5204 Brazil\n", + "5423 Barbados\n", + "5642 Brunei\n", + "5861 Bhutan\n", + "6080 Botswana\n", + "6299 Central African Republic\n", + "6518 Canada\n", + " ... \n", + "35295 Sweden\n", + "35514 Swaziland\n", + "35733 Seychelles\n", + "35952 Syria\n", + "36171 Chad\n", + "36390 Togo\n", + "36609 Thailand\n", + "36828 Tajikistan\n", + "37047 Turkmenistan\n", + "37266 Timor-Leste\n", + "37485 Tonga\n", + "37704 Trinidad and Tobago\n", + "37923 Tunisia\n", + "38142 Turkey\n", + "38361 Taiwan\n", + "38578 Tanzania\n", + "38797 Uganda\n", + "39016 Ukraine\n", + "39235 Uruguay\n", + "39454 United States\n", + "39673 Uzbekistan\n", + "39892 St. Vincent and the Grenadines\n", + "40111 Venezuela\n", + "40330 Vietnam\n", + "40549 Vanuatu\n", + "40768 Samoa\n", + "40987 Yemen\n", + "41206 South Africa\n", + "41425 Zambia\n", + "41644 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "74 Aruba\n", + "293 Afghanistan\n", + "512 Angola\n", + "731 Albania\n", + "997 United Arab Emirates\n", + "1216 Argentina\n", + "1435 Armenia\n", + "1654 Antigua and Barbuda\n", + "1873 Australia\n", + "2092 Austria\n", + "2311 Azerbaijan\n", + "2530 Burundi\n", + "2749 Belgium\n", + "2968 Benin\n", + "3187 Burkina Faso\n", + "3406 Bangladesh\n", + "3625 Bulgaria\n", + "3844 Bahrain\n", + "4063 Bahamas\n", + "4282 Bosnia and Herzegovina\n", + "4501 Belarus\n", + "4720 Belize\n", + "4986 Bolivia\n", + "5205 Brazil\n", + "5424 Barbados\n", + "5643 Brunei\n", + "5862 Bhutan\n", + "6081 Botswana\n", + "6300 Central African Republic\n", + "6519 Canada\n", + " ... \n", + "35296 Sweden\n", + "35515 Swaziland\n", + "35734 Seychelles\n", + "35953 Syria\n", + "36172 Chad\n", + "36391 Togo\n", + "36610 Thailand\n", + "36829 Tajikistan\n", + "37048 Turkmenistan\n", + "37267 Timor-Leste\n", + "37486 Tonga\n", + "37705 Trinidad and Tobago\n", + "37924 Tunisia\n", + "38143 Turkey\n", + "38362 Taiwan\n", + "38579 Tanzania\n", + "38798 Uganda\n", + "39017 Ukraine\n", + "39236 Uruguay\n", + "39455 United States\n", + "39674 Uzbekistan\n", + "39893 St. Vincent and the Grenadines\n", + "40112 Venezuela\n", + "40331 Vietnam\n", + "40550 Vanuatu\n", + "40769 Samoa\n", + "40988 Yemen\n", + "41207 South Africa\n", + "41426 Zambia\n", + "41645 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "75 Aruba\n", + "294 Afghanistan\n", + "513 Angola\n", + "732 Albania\n", + "998 United Arab Emirates\n", + "1217 Argentina\n", + "1436 Armenia\n", + "1655 Antigua and Barbuda\n", + "1874 Australia\n", + "2093 Austria\n", + "2312 Azerbaijan\n", + "2531 Burundi\n", + "2750 Belgium\n", + "2969 Benin\n", + "3188 Burkina Faso\n", + "3407 Bangladesh\n", + "3626 Bulgaria\n", + "3845 Bahrain\n", + "4064 Bahamas\n", + "4283 Bosnia and Herzegovina\n", + "4502 Belarus\n", + "4721 Belize\n", + "4987 Bolivia\n", + "5206 Brazil\n", + "5425 Barbados\n", + "5644 Brunei\n", + "5863 Bhutan\n", + "6082 Botswana\n", + "6301 Central African Republic\n", + "6520 Canada\n", + " ... \n", + "35297 Sweden\n", + "35516 Swaziland\n", + "35735 Seychelles\n", + "35954 Syria\n", + "36173 Chad\n", + "36392 Togo\n", + "36611 Thailand\n", + "36830 Tajikistan\n", + "37049 Turkmenistan\n", + "37268 Timor-Leste\n", + "37487 Tonga\n", + "37706 Trinidad and Tobago\n", + "37925 Tunisia\n", + "38144 Turkey\n", + "38363 Taiwan\n", + "38580 Tanzania\n", + "38799 Uganda\n", + "39018 Ukraine\n", + "39237 Uruguay\n", + "39456 United States\n", + "39675 Uzbekistan\n", + "39894 St. Vincent and the Grenadines\n", + "40113 Venezuela\n", + "40332 Vietnam\n", + "40551 Vanuatu\n", + "40770 Samoa\n", + "40989 Yemen\n", + "41208 South Africa\n", + "41427 Zambia\n", + "41646 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "76 Aruba\n", + "295 Afghanistan\n", + "514 Angola\n", + "733 Albania\n", + "999 United Arab Emirates\n", + "1218 Argentina\n", + "1437 Armenia\n", + "1656 Antigua and Barbuda\n", + "1875 Australia\n", + "2094 Austria\n", + "2313 Azerbaijan\n", + "2532 Burundi\n", + "2751 Belgium\n", + "2970 Benin\n", + "3189 Burkina Faso\n", + "3408 Bangladesh\n", + "3627 Bulgaria\n", + "3846 Bahrain\n", + "4065 Bahamas\n", + "4284 Bosnia and Herzegovina\n", + "4503 Belarus\n", + "4722 Belize\n", + "4988 Bolivia\n", + "5207 Brazil\n", + "5426 Barbados\n", + "5645 Brunei\n", + "5864 Bhutan\n", + "6083 Botswana\n", + "6302 Central African Republic\n", + "6521 Canada\n", + " ... \n", + "35298 Sweden\n", + "35517 Swaziland\n", + "35736 Seychelles\n", + "35955 Syria\n", + "36174 Chad\n", + "36393 Togo\n", + "36612 Thailand\n", + "36831 Tajikistan\n", + "37050 Turkmenistan\n", + "37269 Timor-Leste\n", + "37488 Tonga\n", + "37707 Trinidad and Tobago\n", + "37926 Tunisia\n", + "38145 Turkey\n", + "38364 Taiwan\n", + "38581 Tanzania\n", + "38800 Uganda\n", + "39019 Ukraine\n", + "39238 Uruguay\n", + "39457 United States\n", + "39676 Uzbekistan\n", + "39895 St. Vincent and the Grenadines\n", + "40114 Venezuela\n", + "40333 Vietnam\n", + "40552 Vanuatu\n", + "40771 Samoa\n", + "40990 Yemen\n", + "41209 South Africa\n", + "41428 Zambia\n", + "41647 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "77 Aruba\n", + "296 Afghanistan\n", + "515 Angola\n", + "734 Albania\n", + "1000 United Arab Emirates\n", + "1219 Argentina\n", + "1438 Armenia\n", + "1657 Antigua and Barbuda\n", + "1876 Australia\n", + "2095 Austria\n", + "2314 Azerbaijan\n", + "2533 Burundi\n", + "2752 Belgium\n", + "2971 Benin\n", + "3190 Burkina Faso\n", + "3409 Bangladesh\n", + "3628 Bulgaria\n", + "3847 Bahrain\n", + "4066 Bahamas\n", + "4285 Bosnia and Herzegovina\n", + "4504 Belarus\n", + "4723 Belize\n", + "4989 Bolivia\n", + "5208 Brazil\n", + "5427 Barbados\n", + "5646 Brunei\n", + "5865 Bhutan\n", + "6084 Botswana\n", + "6303 Central African Republic\n", + "6522 Canada\n", + " ... \n", + "35299 Sweden\n", + "35518 Swaziland\n", + "35737 Seychelles\n", + "35956 Syria\n", + "36175 Chad\n", + "36394 Togo\n", + "36613 Thailand\n", + "36832 Tajikistan\n", + "37051 Turkmenistan\n", + "37270 Timor-Leste\n", + "37489 Tonga\n", + "37708 Trinidad and Tobago\n", + "37927 Tunisia\n", + "38146 Turkey\n", + "38365 Taiwan\n", + "38582 Tanzania\n", + "38801 Uganda\n", + "39020 Ukraine\n", + "39239 Uruguay\n", + "39458 United States\n", + "39677 Uzbekistan\n", + "39896 St. Vincent and the Grenadines\n", + "40115 Venezuela\n", + "40334 Vietnam\n", + "40553 Vanuatu\n", + "40772 Samoa\n", + "40991 Yemen\n", + "41210 South Africa\n", + "41429 Zambia\n", + "41648 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "78 Aruba\n", + "297 Afghanistan\n", + "516 Angola\n", + "735 Albania\n", + "1001 United Arab Emirates\n", + "1220 Argentina\n", + "1439 Armenia\n", + "1658 Antigua and Barbuda\n", + "1877 Australia\n", + "2096 Austria\n", + "2315 Azerbaijan\n", + "2534 Burundi\n", + "2753 Belgium\n", + "2972 Benin\n", + "3191 Burkina Faso\n", + "3410 Bangladesh\n", + "3629 Bulgaria\n", + "3848 Bahrain\n", + "4067 Bahamas\n", + "4286 Bosnia and Herzegovina\n", + "4505 Belarus\n", + "4724 Belize\n", + "4990 Bolivia\n", + "5209 Brazil\n", + "5428 Barbados\n", + "5647 Brunei\n", + "5866 Bhutan\n", + "6085 Botswana\n", + "6304 Central African Republic\n", + "6523 Canada\n", + " ... \n", + "35300 Sweden\n", + "35519 Swaziland\n", + "35738 Seychelles\n", + "35957 Syria\n", + "36176 Chad\n", + "36395 Togo\n", + "36614 Thailand\n", + "36833 Tajikistan\n", + "37052 Turkmenistan\n", + "37271 Timor-Leste\n", + "37490 Tonga\n", + "37709 Trinidad and Tobago\n", + "37928 Tunisia\n", + "38147 Turkey\n", + "38366 Taiwan\n", + "38583 Tanzania\n", + "38802 Uganda\n", + "39021 Ukraine\n", + "39240 Uruguay\n", + "39459 United States\n", + "39678 Uzbekistan\n", + "39897 St. Vincent and the Grenadines\n", + "40116 Venezuela\n", + "40335 Vietnam\n", + "40554 Vanuatu\n", + "40773 Samoa\n", + "40992 Yemen\n", + "41211 South Africa\n", + "41430 Zambia\n", + "41649 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "79 Aruba\n", + "298 Afghanistan\n", + "517 Angola\n", + "736 Albania\n", + "1002 United Arab Emirates\n", + "1221 Argentina\n", + "1440 Armenia\n", + "1659 Antigua and Barbuda\n", + "1878 Australia\n", + "2097 Austria\n", + "2316 Azerbaijan\n", + "2535 Burundi\n", + "2754 Belgium\n", + "2973 Benin\n", + "3192 Burkina Faso\n", + "3411 Bangladesh\n", + "3630 Bulgaria\n", + "3849 Bahrain\n", + "4068 Bahamas\n", + "4287 Bosnia and Herzegovina\n", + "4506 Belarus\n", + "4725 Belize\n", + "4991 Bolivia\n", + "5210 Brazil\n", + "5429 Barbados\n", + "5648 Brunei\n", + "5867 Bhutan\n", + "6086 Botswana\n", + "6305 Central African Republic\n", + "6524 Canada\n", + " ... \n", + "35301 Sweden\n", + "35520 Swaziland\n", + "35739 Seychelles\n", + "35958 Syria\n", + "36177 Chad\n", + "36396 Togo\n", + "36615 Thailand\n", + "36834 Tajikistan\n", + "37053 Turkmenistan\n", + "37272 Timor-Leste\n", + "37491 Tonga\n", + "37710 Trinidad and Tobago\n", + "37929 Tunisia\n", + "38148 Turkey\n", + "38367 Taiwan\n", + "38584 Tanzania\n", + "38803 Uganda\n", + "39022 Ukraine\n", + "39241 Uruguay\n", + "39460 United States\n", + "39679 Uzbekistan\n", + "39898 St. Vincent and the Grenadines\n", + "40117 Venezuela\n", + "40336 Vietnam\n", + "40555 Vanuatu\n", + "40774 Samoa\n", + "40993 Yemen\n", + "41212 South Africa\n", + "41431 Zambia\n", + "41650 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "80 Aruba\n", + "299 Afghanistan\n", + "518 Angola\n", + "737 Albania\n", + "1003 United Arab Emirates\n", + "1222 Argentina\n", + "1441 Armenia\n", + "1660 Antigua and Barbuda\n", + "1879 Australia\n", + "2098 Austria\n", + "2317 Azerbaijan\n", + "2536 Burundi\n", + "2755 Belgium\n", + "2974 Benin\n", + "3193 Burkina Faso\n", + "3412 Bangladesh\n", + "3631 Bulgaria\n", + "3850 Bahrain\n", + "4069 Bahamas\n", + "4288 Bosnia and Herzegovina\n", + "4507 Belarus\n", + "4726 Belize\n", + "4992 Bolivia\n", + "5211 Brazil\n", + "5430 Barbados\n", + "5649 Brunei\n", + "5868 Bhutan\n", + "6087 Botswana\n", + "6306 Central African Republic\n", + "6525 Canada\n", + " ... \n", + "35302 Sweden\n", + "35521 Swaziland\n", + "35740 Seychelles\n", + "35959 Syria\n", + "36178 Chad\n", + "36397 Togo\n", + "36616 Thailand\n", + "36835 Tajikistan\n", + "37054 Turkmenistan\n", + "37273 Timor-Leste\n", + "37492 Tonga\n", + "37711 Trinidad and Tobago\n", + "37930 Tunisia\n", + "38149 Turkey\n", + "38368 Taiwan\n", + "38585 Tanzania\n", + "38804 Uganda\n", + "39023 Ukraine\n", + "39242 Uruguay\n", + "39461 United States\n", + "39680 Uzbekistan\n", + "39899 St. Vincent and the Grenadines\n", + "40118 Venezuela\n", + "40337 Vietnam\n", + "40556 Vanuatu\n", + "40775 Samoa\n", + "40994 Yemen\n", + "41213 South Africa\n", + "41432 Zambia\n", + "41651 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "81 Aruba\n", + "300 Afghanistan\n", + "519 Angola\n", + "738 Albania\n", + "1004 United Arab Emirates\n", + "1223 Argentina\n", + "1442 Armenia\n", + "1661 Antigua and Barbuda\n", + "1880 Australia\n", + "2099 Austria\n", + "2318 Azerbaijan\n", + "2537 Burundi\n", + "2756 Belgium\n", + "2975 Benin\n", + "3194 Burkina Faso\n", + "3413 Bangladesh\n", + "3632 Bulgaria\n", + "3851 Bahrain\n", + "4070 Bahamas\n", + "4289 Bosnia and Herzegovina\n", + "4508 Belarus\n", + "4727 Belize\n", + "4993 Bolivia\n", + "5212 Brazil\n", + "5431 Barbados\n", + "5650 Brunei\n", + "5869 Bhutan\n", + "6088 Botswana\n", + "6307 Central African Republic\n", + "6526 Canada\n", + " ... \n", + "35303 Sweden\n", + "35522 Swaziland\n", + "35741 Seychelles\n", + "35960 Syria\n", + "36179 Chad\n", + "36398 Togo\n", + "36617 Thailand\n", + "36836 Tajikistan\n", + "37055 Turkmenistan\n", + "37274 Timor-Leste\n", + "37493 Tonga\n", + "37712 Trinidad and Tobago\n", + "37931 Tunisia\n", + "38150 Turkey\n", + "38369 Taiwan\n", + "38586 Tanzania\n", + "38805 Uganda\n", + "39024 Ukraine\n", + "39243 Uruguay\n", + "39462 United States\n", + "39681 Uzbekistan\n", + "39900 St. Vincent and the Grenadines\n", + "40119 Venezuela\n", + "40338 Vietnam\n", + "40557 Vanuatu\n", + "40776 Samoa\n", + "40995 Yemen\n", + "41214 South Africa\n", + "41433 Zambia\n", + "41652 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "82 Aruba\n", + "301 Afghanistan\n", + "520 Angola\n", + "739 Albania\n", + "1005 United Arab Emirates\n", + "1224 Argentina\n", + "1443 Armenia\n", + "1662 Antigua and Barbuda\n", + "1881 Australia\n", + "2100 Austria\n", + "2319 Azerbaijan\n", + "2538 Burundi\n", + "2757 Belgium\n", + "2976 Benin\n", + "3195 Burkina Faso\n", + "3414 Bangladesh\n", + "3633 Bulgaria\n", + "3852 Bahrain\n", + "4071 Bahamas\n", + "4290 Bosnia and Herzegovina\n", + "4509 Belarus\n", + "4728 Belize\n", + "4994 Bolivia\n", + "5213 Brazil\n", + "5432 Barbados\n", + "5651 Brunei\n", + "5870 Bhutan\n", + "6089 Botswana\n", + "6308 Central African Republic\n", + "6527 Canada\n", + " ... \n", + "35304 Sweden\n", + "35523 Swaziland\n", + "35742 Seychelles\n", + "35961 Syria\n", + "36180 Chad\n", + "36399 Togo\n", + "36618 Thailand\n", + "36837 Tajikistan\n", + "37056 Turkmenistan\n", + "37275 Timor-Leste\n", + "37494 Tonga\n", + "37713 Trinidad and Tobago\n", + "37932 Tunisia\n", + "38151 Turkey\n", + "38370 Taiwan\n", + "38587 Tanzania\n", + "38806 Uganda\n", + "39025 Ukraine\n", + "39244 Uruguay\n", + "39463 United States\n", + "39682 Uzbekistan\n", + "39901 St. Vincent and the Grenadines\n", + "40120 Venezuela\n", + "40339 Vietnam\n", + "40558 Vanuatu\n", + "40777 Samoa\n", + "40996 Yemen\n", + "41215 South Africa\n", + "41434 Zambia\n", + "41653 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "83 Aruba\n", + "302 Afghanistan\n", + "521 Angola\n", + "740 Albania\n", + "1006 United Arab Emirates\n", + "1225 Argentina\n", + "1444 Armenia\n", + "1663 Antigua and Barbuda\n", + "1882 Australia\n", + "2101 Austria\n", + "2320 Azerbaijan\n", + "2539 Burundi\n", + "2758 Belgium\n", + "2977 Benin\n", + "3196 Burkina Faso\n", + "3415 Bangladesh\n", + "3634 Bulgaria\n", + "3853 Bahrain\n", + "4072 Bahamas\n", + "4291 Bosnia and Herzegovina\n", + "4510 Belarus\n", + "4729 Belize\n", + "4995 Bolivia\n", + "5214 Brazil\n", + "5433 Barbados\n", + "5652 Brunei\n", + "5871 Bhutan\n", + "6090 Botswana\n", + "6309 Central African Republic\n", + "6528 Canada\n", + " ... \n", + "35305 Sweden\n", + "35524 Swaziland\n", + "35743 Seychelles\n", + "35962 Syria\n", + "36181 Chad\n", + "36400 Togo\n", + "36619 Thailand\n", + "36838 Tajikistan\n", + "37057 Turkmenistan\n", + "37276 Timor-Leste\n", + "37495 Tonga\n", + "37714 Trinidad and Tobago\n", + "37933 Tunisia\n", + "38152 Turkey\n", + "38371 Taiwan\n", + "38588 Tanzania\n", + "38807 Uganda\n", + "39026 Ukraine\n", + "39245 Uruguay\n", + "39464 United States\n", + "39683 Uzbekistan\n", + "39902 St. Vincent and the Grenadines\n", + "40121 Venezuela\n", + "40340 Vietnam\n", + "40559 Vanuatu\n", + "40778 Samoa\n", + "40997 Yemen\n", + "41216 South Africa\n", + "41435 Zambia\n", + "41654 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "84 Aruba\n", + "303 Afghanistan\n", + "522 Angola\n", + "741 Albania\n", + "1007 United Arab Emirates\n", + "1226 Argentina\n", + "1445 Armenia\n", + "1664 Antigua and Barbuda\n", + "1883 Australia\n", + "2102 Austria\n", + "2321 Azerbaijan\n", + "2540 Burundi\n", + "2759 Belgium\n", + "2978 Benin\n", + "3197 Burkina Faso\n", + "3416 Bangladesh\n", + "3635 Bulgaria\n", + "3854 Bahrain\n", + "4073 Bahamas\n", + "4292 Bosnia and Herzegovina\n", + "4511 Belarus\n", + "4730 Belize\n", + "4996 Bolivia\n", + "5215 Brazil\n", + "5434 Barbados\n", + "5653 Brunei\n", + "5872 Bhutan\n", + "6091 Botswana\n", + "6310 Central African Republic\n", + "6529 Canada\n", + " ... \n", + "35306 Sweden\n", + "35525 Swaziland\n", + "35744 Seychelles\n", + "35963 Syria\n", + "36182 Chad\n", + "36401 Togo\n", + "36620 Thailand\n", + "36839 Tajikistan\n", + "37058 Turkmenistan\n", + "37277 Timor-Leste\n", + "37496 Tonga\n", + "37715 Trinidad and Tobago\n", + "37934 Tunisia\n", + "38153 Turkey\n", + "38372 Taiwan\n", + "38589 Tanzania\n", + "38808 Uganda\n", + "39027 Ukraine\n", + "39246 Uruguay\n", + "39465 United States\n", + "39684 Uzbekistan\n", + "39903 St. Vincent and the Grenadines\n", + "40122 Venezuela\n", + "40341 Vietnam\n", + "40560 Vanuatu\n", + "40779 Samoa\n", + "40998 Yemen\n", + "41217 South Africa\n", + "41436 Zambia\n", + "41655 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "85 Aruba\n", + "304 Afghanistan\n", + "523 Angola\n", + "742 Albania\n", + "1008 United Arab Emirates\n", + "1227 Argentina\n", + "1446 Armenia\n", + "1665 Antigua and Barbuda\n", + "1884 Australia\n", + "2103 Austria\n", + "2322 Azerbaijan\n", + "2541 Burundi\n", + "2760 Belgium\n", + "2979 Benin\n", + "3198 Burkina Faso\n", + "3417 Bangladesh\n", + "3636 Bulgaria\n", + "3855 Bahrain\n", + "4074 Bahamas\n", + "4293 Bosnia and Herzegovina\n", + "4512 Belarus\n", + "4731 Belize\n", + "4997 Bolivia\n", + "5216 Brazil\n", + "5435 Barbados\n", + "5654 Brunei\n", + "5873 Bhutan\n", + "6092 Botswana\n", + "6311 Central African Republic\n", + "6530 Canada\n", + " ... \n", + "35307 Sweden\n", + "35526 Swaziland\n", + "35745 Seychelles\n", + "35964 Syria\n", + "36183 Chad\n", + "36402 Togo\n", + "36621 Thailand\n", + "36840 Tajikistan\n", + "37059 Turkmenistan\n", + "37278 Timor-Leste\n", + "37497 Tonga\n", + "37716 Trinidad and Tobago\n", + "37935 Tunisia\n", + "38154 Turkey\n", + "38373 Taiwan\n", + "38590 Tanzania\n", + "38809 Uganda\n", + "39028 Ukraine\n", + "39247 Uruguay\n", + "39466 United States\n", + "39685 Uzbekistan\n", + "39904 St. Vincent and the Grenadines\n", + "40123 Venezuela\n", + "40342 Vietnam\n", + "40561 Vanuatu\n", + "40780 Samoa\n", + "40999 Yemen\n", + "41218 South Africa\n", + "41437 Zambia\n", + "41656 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "86 Aruba\n", + "305 Afghanistan\n", + "524 Angola\n", + "743 Albania\n", + "1009 United Arab Emirates\n", + "1228 Argentina\n", + "1447 Armenia\n", + "1666 Antigua and Barbuda\n", + "1885 Australia\n", + "2104 Austria\n", + "2323 Azerbaijan\n", + "2542 Burundi\n", + "2761 Belgium\n", + "2980 Benin\n", + "3199 Burkina Faso\n", + "3418 Bangladesh\n", + "3637 Bulgaria\n", + "3856 Bahrain\n", + "4075 Bahamas\n", + "4294 Bosnia and Herzegovina\n", + "4513 Belarus\n", + "4732 Belize\n", + "4998 Bolivia\n", + "5217 Brazil\n", + "5436 Barbados\n", + "5655 Brunei\n", + "5874 Bhutan\n", + "6093 Botswana\n", + "6312 Central African Republic\n", + "6531 Canada\n", + " ... \n", + "35308 Sweden\n", + "35527 Swaziland\n", + "35746 Seychelles\n", + "35965 Syria\n", + "36184 Chad\n", + "36403 Togo\n", + "36622 Thailand\n", + "36841 Tajikistan\n", + "37060 Turkmenistan\n", + "37279 Timor-Leste\n", + "37498 Tonga\n", + "37717 Trinidad and Tobago\n", + "37936 Tunisia\n", + "38155 Turkey\n", + "38374 Taiwan\n", + "38591 Tanzania\n", + "38810 Uganda\n", + "39029 Ukraine\n", + "39248 Uruguay\n", + "39467 United States\n", + "39686 Uzbekistan\n", + "39905 St. Vincent and the Grenadines\n", + "40124 Venezuela\n", + "40343 Vietnam\n", + "40562 Vanuatu\n", + "40781 Samoa\n", + "41000 Yemen\n", + "41219 South Africa\n", + "41438 Zambia\n", + "41657 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "87 Aruba\n", + "306 Afghanistan\n", + "525 Angola\n", + "744 Albania\n", + "1010 United Arab Emirates\n", + "1229 Argentina\n", + "1448 Armenia\n", + "1667 Antigua and Barbuda\n", + "1886 Australia\n", + "2105 Austria\n", + "2324 Azerbaijan\n", + "2543 Burundi\n", + "2762 Belgium\n", + "2981 Benin\n", + "3200 Burkina Faso\n", + "3419 Bangladesh\n", + "3638 Bulgaria\n", + "3857 Bahrain\n", + "4076 Bahamas\n", + "4295 Bosnia and Herzegovina\n", + "4514 Belarus\n", + "4733 Belize\n", + "4999 Bolivia\n", + "5218 Brazil\n", + "5437 Barbados\n", + "5656 Brunei\n", + "5875 Bhutan\n", + "6094 Botswana\n", + "6313 Central African Republic\n", + "6532 Canada\n", + " ... \n", + "35309 Sweden\n", + "35528 Swaziland\n", + "35747 Seychelles\n", + "35966 Syria\n", + "36185 Chad\n", + "36404 Togo\n", + "36623 Thailand\n", + "36842 Tajikistan\n", + "37061 Turkmenistan\n", + "37280 Timor-Leste\n", + "37499 Tonga\n", + "37718 Trinidad and Tobago\n", + "37937 Tunisia\n", + "38156 Turkey\n", + "38375 Taiwan\n", + "38592 Tanzania\n", + "38811 Uganda\n", + "39030 Ukraine\n", + "39249 Uruguay\n", + "39468 United States\n", + "39687 Uzbekistan\n", + "39906 St. Vincent and the Grenadines\n", + "40125 Venezuela\n", + "40344 Vietnam\n", + "40563 Vanuatu\n", + "40782 Samoa\n", + "41001 Yemen\n", + "41220 South Africa\n", + "41439 Zambia\n", + "41658 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "88 Aruba\n", + "307 Afghanistan\n", + "526 Angola\n", + "745 Albania\n", + "1011 United Arab Emirates\n", + "1230 Argentina\n", + "1449 Armenia\n", + "1668 Antigua and Barbuda\n", + "1887 Australia\n", + "2106 Austria\n", + "2325 Azerbaijan\n", + "2544 Burundi\n", + "2763 Belgium\n", + "2982 Benin\n", + "3201 Burkina Faso\n", + "3420 Bangladesh\n", + "3639 Bulgaria\n", + "3858 Bahrain\n", + "4077 Bahamas\n", + "4296 Bosnia and Herzegovina\n", + "4515 Belarus\n", + "4734 Belize\n", + "5000 Bolivia\n", + "5219 Brazil\n", + "5438 Barbados\n", + "5657 Brunei\n", + "5876 Bhutan\n", + "6095 Botswana\n", + "6314 Central African Republic\n", + "6533 Canada\n", + " ... \n", + "35310 Sweden\n", + "35529 Swaziland\n", + "35748 Seychelles\n", + "35967 Syria\n", + "36186 Chad\n", + "36405 Togo\n", + "36624 Thailand\n", + "36843 Tajikistan\n", + "37062 Turkmenistan\n", + "37281 Timor-Leste\n", + "37500 Tonga\n", + "37719 Trinidad and Tobago\n", + "37938 Tunisia\n", + "38157 Turkey\n", + "38376 Taiwan\n", + "38593 Tanzania\n", + "38812 Uganda\n", + "39031 Ukraine\n", + "39250 Uruguay\n", + "39469 United States\n", + "39688 Uzbekistan\n", + "39907 St. Vincent and the Grenadines\n", + "40126 Venezuela\n", + "40345 Vietnam\n", + "40564 Vanuatu\n", + "40783 Samoa\n", + "41002 Yemen\n", + "41221 South Africa\n", + "41440 Zambia\n", + "41659 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "89 Aruba\n", + "308 Afghanistan\n", + "527 Angola\n", + "746 Albania\n", + "1012 United Arab Emirates\n", + "1231 Argentina\n", + "1450 Armenia\n", + "1669 Antigua and Barbuda\n", + "1888 Australia\n", + "2107 Austria\n", + "2326 Azerbaijan\n", + "2545 Burundi\n", + "2764 Belgium\n", + "2983 Benin\n", + "3202 Burkina Faso\n", + "3421 Bangladesh\n", + "3640 Bulgaria\n", + "3859 Bahrain\n", + "4078 Bahamas\n", + "4297 Bosnia and Herzegovina\n", + "4516 Belarus\n", + "4735 Belize\n", + "5001 Bolivia\n", + "5220 Brazil\n", + "5439 Barbados\n", + "5658 Brunei\n", + "5877 Bhutan\n", + "6096 Botswana\n", + "6315 Central African Republic\n", + "6534 Canada\n", + " ... \n", + "35311 Sweden\n", + "35530 Swaziland\n", + "35749 Seychelles\n", + "35968 Syria\n", + "36187 Chad\n", + "36406 Togo\n", + "36625 Thailand\n", + "36844 Tajikistan\n", + "37063 Turkmenistan\n", + "37282 Timor-Leste\n", + "37501 Tonga\n", + "37720 Trinidad and Tobago\n", + "37939 Tunisia\n", + "38158 Turkey\n", + "38377 Taiwan\n", + "38594 Tanzania\n", + "38813 Uganda\n", + "39032 Ukraine\n", + "39251 Uruguay\n", + "39470 United States\n", + "39689 Uzbekistan\n", + "39908 St. Vincent and the Grenadines\n", + "40127 Venezuela\n", + "40346 Vietnam\n", + "40565 Vanuatu\n", + "40784 Samoa\n", + "41003 Yemen\n", + "41222 South Africa\n", + "41441 Zambia\n", + "41660 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "90 Aruba\n", + "309 Afghanistan\n", + "528 Angola\n", + "747 Albania\n", + "1013 United Arab Emirates\n", + "1232 Argentina\n", + "1451 Armenia\n", + "1670 Antigua and Barbuda\n", + "1889 Australia\n", + "2108 Austria\n", + "2327 Azerbaijan\n", + "2546 Burundi\n", + "2765 Belgium\n", + "2984 Benin\n", + "3203 Burkina Faso\n", + "3422 Bangladesh\n", + "3641 Bulgaria\n", + "3860 Bahrain\n", + "4079 Bahamas\n", + "4298 Bosnia and Herzegovina\n", + "4517 Belarus\n", + "4736 Belize\n", + "5002 Bolivia\n", + "5221 Brazil\n", + "5440 Barbados\n", + "5659 Brunei\n", + "5878 Bhutan\n", + "6097 Botswana\n", + "6316 Central African Republic\n", + "6535 Canada\n", + " ... \n", + "35312 Sweden\n", + "35531 Swaziland\n", + "35750 Seychelles\n", + "35969 Syria\n", + "36188 Chad\n", + "36407 Togo\n", + "36626 Thailand\n", + "36845 Tajikistan\n", + "37064 Turkmenistan\n", + "37283 Timor-Leste\n", + "37502 Tonga\n", + "37721 Trinidad and Tobago\n", + "37940 Tunisia\n", + "38159 Turkey\n", + "38378 Taiwan\n", + "38595 Tanzania\n", + "38814 Uganda\n", + "39033 Ukraine\n", + "39252 Uruguay\n", + "39471 United States\n", + "39690 Uzbekistan\n", + "39909 St. Vincent and the Grenadines\n", + "40128 Venezuela\n", + "40347 Vietnam\n", + "40566 Vanuatu\n", + "40785 Samoa\n", + "41004 Yemen\n", + "41223 South Africa\n", + "41442 Zambia\n", + "41661 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "91 Aruba\n", + "310 Afghanistan\n", + "529 Angola\n", + "748 Albania\n", + "1014 United Arab Emirates\n", + "1233 Argentina\n", + "1452 Armenia\n", + "1671 Antigua and Barbuda\n", + "1890 Australia\n", + "2109 Austria\n", + "2328 Azerbaijan\n", + "2547 Burundi\n", + "2766 Belgium\n", + "2985 Benin\n", + "3204 Burkina Faso\n", + "3423 Bangladesh\n", + "3642 Bulgaria\n", + "3861 Bahrain\n", + "4080 Bahamas\n", + "4299 Bosnia and Herzegovina\n", + "4518 Belarus\n", + "4737 Belize\n", + "5003 Bolivia\n", + "5222 Brazil\n", + "5441 Barbados\n", + "5660 Brunei\n", + "5879 Bhutan\n", + "6098 Botswana\n", + "6317 Central African Republic\n", + "6536 Canada\n", + " ... \n", + "35313 Sweden\n", + "35532 Swaziland\n", + "35751 Seychelles\n", + "35970 Syria\n", + "36189 Chad\n", + "36408 Togo\n", + "36627 Thailand\n", + "36846 Tajikistan\n", + "37065 Turkmenistan\n", + "37284 Timor-Leste\n", + "37503 Tonga\n", + "37722 Trinidad and Tobago\n", + "37941 Tunisia\n", + "38160 Turkey\n", + "38379 Taiwan\n", + "38596 Tanzania\n", + "38815 Uganda\n", + "39034 Ukraine\n", + "39253 Uruguay\n", + "39472 United States\n", + "39691 Uzbekistan\n", + "39910 St. Vincent and the Grenadines\n", + "40129 Venezuela\n", + "40348 Vietnam\n", + "40567 Vanuatu\n", + "40786 Samoa\n", + "41005 Yemen\n", + "41224 South Africa\n", + "41443 Zambia\n", + "41662 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "92 Aruba\n", + "311 Afghanistan\n", + "530 Angola\n", + "749 Albania\n", + "1015 United Arab Emirates\n", + "1234 Argentina\n", + "1453 Armenia\n", + "1672 Antigua and Barbuda\n", + "1891 Australia\n", + "2110 Austria\n", + "2329 Azerbaijan\n", + "2548 Burundi\n", + "2767 Belgium\n", + "2986 Benin\n", + "3205 Burkina Faso\n", + "3424 Bangladesh\n", + "3643 Bulgaria\n", + "3862 Bahrain\n", + "4081 Bahamas\n", + "4300 Bosnia and Herzegovina\n", + "4519 Belarus\n", + "4738 Belize\n", + "5004 Bolivia\n", + "5223 Brazil\n", + "5442 Barbados\n", + "5661 Brunei\n", + "5880 Bhutan\n", + "6099 Botswana\n", + "6318 Central African Republic\n", + "6537 Canada\n", + " ... \n", + "35314 Sweden\n", + "35533 Swaziland\n", + "35752 Seychelles\n", + "35971 Syria\n", + "36190 Chad\n", + "36409 Togo\n", + "36628 Thailand\n", + "36847 Tajikistan\n", + "37066 Turkmenistan\n", + "37285 Timor-Leste\n", + "37504 Tonga\n", + "37723 Trinidad and Tobago\n", + "37942 Tunisia\n", + "38161 Turkey\n", + "38380 Taiwan\n", + "38597 Tanzania\n", + "38816 Uganda\n", + "39035 Ukraine\n", + "39254 Uruguay\n", + "39473 United States\n", + "39692 Uzbekistan\n", + "39911 St. Vincent and the Grenadines\n", + "40130 Venezuela\n", + "40349 Vietnam\n", + "40568 Vanuatu\n", + "40787 Samoa\n", + "41006 Yemen\n", + "41225 South Africa\n", + "41444 Zambia\n", + "41663 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "93 Aruba\n", + "312 Afghanistan\n", + "531 Angola\n", + "750 Albania\n", + "1016 United Arab Emirates\n", + "1235 Argentina\n", + "1454 Armenia\n", + "1673 Antigua and Barbuda\n", + "1892 Australia\n", + "2111 Austria\n", + "2330 Azerbaijan\n", + "2549 Burundi\n", + "2768 Belgium\n", + "2987 Benin\n", + "3206 Burkina Faso\n", + "3425 Bangladesh\n", + "3644 Bulgaria\n", + "3863 Bahrain\n", + "4082 Bahamas\n", + "4301 Bosnia and Herzegovina\n", + "4520 Belarus\n", + "4739 Belize\n", + "5005 Bolivia\n", + "5224 Brazil\n", + "5443 Barbados\n", + "5662 Brunei\n", + "5881 Bhutan\n", + "6100 Botswana\n", + "6319 Central African Republic\n", + "6538 Canada\n", + " ... \n", + "35315 Sweden\n", + "35534 Swaziland\n", + "35753 Seychelles\n", + "35972 Syria\n", + "36191 Chad\n", + "36410 Togo\n", + "36629 Thailand\n", + "36848 Tajikistan\n", + "37067 Turkmenistan\n", + "37286 Timor-Leste\n", + "37505 Tonga\n", + "37724 Trinidad and Tobago\n", + "37943 Tunisia\n", + "38162 Turkey\n", + "38381 Taiwan\n", + "38598 Tanzania\n", + "38817 Uganda\n", + "39036 Ukraine\n", + "39255 Uruguay\n", + "39474 United States\n", + "39693 Uzbekistan\n", + "39912 St. Vincent and the Grenadines\n", + "40131 Venezuela\n", + "40350 Vietnam\n", + "40569 Vanuatu\n", + "40788 Samoa\n", + "41007 Yemen\n", + "41226 South Africa\n", + "41445 Zambia\n", + "41664 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "94 Aruba\n", + "313 Afghanistan\n", + "532 Angola\n", + "751 Albania\n", + "1017 United Arab Emirates\n", + "1236 Argentina\n", + "1455 Armenia\n", + "1674 Antigua and Barbuda\n", + "1893 Australia\n", + "2112 Austria\n", + "2331 Azerbaijan\n", + "2550 Burundi\n", + "2769 Belgium\n", + "2988 Benin\n", + "3207 Burkina Faso\n", + "3426 Bangladesh\n", + "3645 Bulgaria\n", + "3864 Bahrain\n", + "4083 Bahamas\n", + "4302 Bosnia and Herzegovina\n", + "4521 Belarus\n", + "4740 Belize\n", + "5006 Bolivia\n", + "5225 Brazil\n", + "5444 Barbados\n", + "5663 Brunei\n", + "5882 Bhutan\n", + "6101 Botswana\n", + "6320 Central African Republic\n", + "6539 Canada\n", + " ... \n", + "35316 Sweden\n", + "35535 Swaziland\n", + "35754 Seychelles\n", + "35973 Syria\n", + "36192 Chad\n", + "36411 Togo\n", + "36630 Thailand\n", + "36849 Tajikistan\n", + "37068 Turkmenistan\n", + "37287 Timor-Leste\n", + "37506 Tonga\n", + "37725 Trinidad and Tobago\n", + "37944 Tunisia\n", + "38163 Turkey\n", + "38382 Taiwan\n", + "38599 Tanzania\n", + "38818 Uganda\n", + "39037 Ukraine\n", + "39256 Uruguay\n", + "39475 United States\n", + "39694 Uzbekistan\n", + "39913 St. Vincent and the Grenadines\n", + "40132 Venezuela\n", + "40351 Vietnam\n", + "40570 Vanuatu\n", + "40789 Samoa\n", + "41008 Yemen\n", + "41227 South Africa\n", + "41446 Zambia\n", + "41665 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "95 Aruba\n", + "314 Afghanistan\n", + "533 Angola\n", + "752 Albania\n", + "1018 United Arab Emirates\n", + "1237 Argentina\n", + "1456 Armenia\n", + "1675 Antigua and Barbuda\n", + "1894 Australia\n", + "2113 Austria\n", + "2332 Azerbaijan\n", + "2551 Burundi\n", + "2770 Belgium\n", + "2989 Benin\n", + "3208 Burkina Faso\n", + "3427 Bangladesh\n", + "3646 Bulgaria\n", + "3865 Bahrain\n", + "4084 Bahamas\n", + "4303 Bosnia and Herzegovina\n", + "4522 Belarus\n", + "4741 Belize\n", + "5007 Bolivia\n", + "5226 Brazil\n", + "5445 Barbados\n", + "5664 Brunei\n", + "5883 Bhutan\n", + "6102 Botswana\n", + "6321 Central African Republic\n", + "6540 Canada\n", + " ... \n", + "35317 Sweden\n", + "35536 Swaziland\n", + "35755 Seychelles\n", + "35974 Syria\n", + "36193 Chad\n", + "36412 Togo\n", + "36631 Thailand\n", + "36850 Tajikistan\n", + "37069 Turkmenistan\n", + "37288 Timor-Leste\n", + "37507 Tonga\n", + "37726 Trinidad and Tobago\n", + "37945 Tunisia\n", + "38164 Turkey\n", + "38383 Taiwan\n", + "38600 Tanzania\n", + "38819 Uganda\n", + "39038 Ukraine\n", + "39257 Uruguay\n", + "39476 United States\n", + "39695 Uzbekistan\n", + "39914 St. Vincent and the Grenadines\n", + "40133 Venezuela\n", + "40352 Vietnam\n", + "40571 Vanuatu\n", + "40790 Samoa\n", + "41009 Yemen\n", + "41228 South Africa\n", + "41447 Zambia\n", + "41666 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "96 Aruba\n", + "315 Afghanistan\n", + "534 Angola\n", + "753 Albania\n", + "1019 United Arab Emirates\n", + "1238 Argentina\n", + "1457 Armenia\n", + "1676 Antigua and Barbuda\n", + "1895 Australia\n", + "2114 Austria\n", + "2333 Azerbaijan\n", + "2552 Burundi\n", + "2771 Belgium\n", + "2990 Benin\n", + "3209 Burkina Faso\n", + "3428 Bangladesh\n", + "3647 Bulgaria\n", + "3866 Bahrain\n", + "4085 Bahamas\n", + "4304 Bosnia and Herzegovina\n", + "4523 Belarus\n", + "4742 Belize\n", + "5008 Bolivia\n", + "5227 Brazil\n", + "5446 Barbados\n", + "5665 Brunei\n", + "5884 Bhutan\n", + "6103 Botswana\n", + "6322 Central African Republic\n", + "6541 Canada\n", + " ... \n", + "35318 Sweden\n", + "35537 Swaziland\n", + "35756 Seychelles\n", + "35975 Syria\n", + "36194 Chad\n", + "36413 Togo\n", + "36632 Thailand\n", + "36851 Tajikistan\n", + "37070 Turkmenistan\n", + "37289 Timor-Leste\n", + "37508 Tonga\n", + "37727 Trinidad and Tobago\n", + "37946 Tunisia\n", + "38165 Turkey\n", + "38384 Taiwan\n", + "38601 Tanzania\n", + "38820 Uganda\n", + "39039 Ukraine\n", + "39258 Uruguay\n", + "39477 United States\n", + "39696 Uzbekistan\n", + "39915 St. Vincent and the Grenadines\n", + "40134 Venezuela\n", + "40353 Vietnam\n", + "40572 Vanuatu\n", + "40791 Samoa\n", + "41010 Yemen\n", + "41229 South Africa\n", + "41448 Zambia\n", + "41667 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "97 Aruba\n", + "316 Afghanistan\n", + "535 Angola\n", + "754 Albania\n", + "1020 United Arab Emirates\n", + "1239 Argentina\n", + "1458 Armenia\n", + "1677 Antigua and Barbuda\n", + "1896 Australia\n", + "2115 Austria\n", + "2334 Azerbaijan\n", + "2553 Burundi\n", + "2772 Belgium\n", + "2991 Benin\n", + "3210 Burkina Faso\n", + "3429 Bangladesh\n", + "3648 Bulgaria\n", + "3867 Bahrain\n", + "4086 Bahamas\n", + "4305 Bosnia and Herzegovina\n", + "4524 Belarus\n", + "4743 Belize\n", + "5009 Bolivia\n", + "5228 Brazil\n", + "5447 Barbados\n", + "5666 Brunei\n", + "5885 Bhutan\n", + "6104 Botswana\n", + "6323 Central African Republic\n", + "6542 Canada\n", + " ... \n", + "35319 Sweden\n", + "35538 Swaziland\n", + "35757 Seychelles\n", + "35976 Syria\n", + "36195 Chad\n", + "36414 Togo\n", + "36633 Thailand\n", + "36852 Tajikistan\n", + "37071 Turkmenistan\n", + "37290 Timor-Leste\n", + "37509 Tonga\n", + "37728 Trinidad and Tobago\n", + "37947 Tunisia\n", + "38166 Turkey\n", + "38385 Taiwan\n", + "38602 Tanzania\n", + "38821 Uganda\n", + "39040 Ukraine\n", + "39259 Uruguay\n", + "39478 United States\n", + "39697 Uzbekistan\n", + "39916 St. Vincent and the Grenadines\n", + "40135 Venezuela\n", + "40354 Vietnam\n", + "40573 Vanuatu\n", + "40792 Samoa\n", + "41011 Yemen\n", + "41230 South Africa\n", + "41449 Zambia\n", + "41668 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "98 Aruba\n", + "317 Afghanistan\n", + "536 Angola\n", + "755 Albania\n", + "1021 United Arab Emirates\n", + "1240 Argentina\n", + "1459 Armenia\n", + "1678 Antigua and Barbuda\n", + "1897 Australia\n", + "2116 Austria\n", + "2335 Azerbaijan\n", + "2554 Burundi\n", + "2773 Belgium\n", + "2992 Benin\n", + "3211 Burkina Faso\n", + "3430 Bangladesh\n", + "3649 Bulgaria\n", + "3868 Bahrain\n", + "4087 Bahamas\n", + "4306 Bosnia and Herzegovina\n", + "4525 Belarus\n", + "4744 Belize\n", + "5010 Bolivia\n", + "5229 Brazil\n", + "5448 Barbados\n", + "5667 Brunei\n", + "5886 Bhutan\n", + "6105 Botswana\n", + "6324 Central African Republic\n", + "6543 Canada\n", + " ... \n", + "35320 Sweden\n", + "35539 Swaziland\n", + "35758 Seychelles\n", + "35977 Syria\n", + "36196 Chad\n", + "36415 Togo\n", + "36634 Thailand\n", + "36853 Tajikistan\n", + "37072 Turkmenistan\n", + "37291 Timor-Leste\n", + "37510 Tonga\n", + "37729 Trinidad and Tobago\n", + "37948 Tunisia\n", + "38167 Turkey\n", + "38386 Taiwan\n", + "38603 Tanzania\n", + "38822 Uganda\n", + "39041 Ukraine\n", + "39260 Uruguay\n", + "39479 United States\n", + "39698 Uzbekistan\n", + "39917 St. Vincent and the Grenadines\n", + "40136 Venezuela\n", + "40355 Vietnam\n", + "40574 Vanuatu\n", + "40793 Samoa\n", + "41012 Yemen\n", + "41231 South Africa\n", + "41450 Zambia\n", + "41669 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "99 Aruba\n", + "318 Afghanistan\n", + "537 Angola\n", + "756 Albania\n", + "1022 United Arab Emirates\n", + "1241 Argentina\n", + "1460 Armenia\n", + "1679 Antigua and Barbuda\n", + "1898 Australia\n", + "2117 Austria\n", + "2336 Azerbaijan\n", + "2555 Burundi\n", + "2774 Belgium\n", + "2993 Benin\n", + "3212 Burkina Faso\n", + "3431 Bangladesh\n", + "3650 Bulgaria\n", + "3869 Bahrain\n", + "4088 Bahamas\n", + "4307 Bosnia and Herzegovina\n", + "4526 Belarus\n", + "4745 Belize\n", + "5011 Bolivia\n", + "5230 Brazil\n", + "5449 Barbados\n", + "5668 Brunei\n", + "5887 Bhutan\n", + "6106 Botswana\n", + "6325 Central African Republic\n", + "6544 Canada\n", + " ... \n", + "35321 Sweden\n", + "35540 Swaziland\n", + "35759 Seychelles\n", + "35978 Syria\n", + "36197 Chad\n", + "36416 Togo\n", + "36635 Thailand\n", + "36854 Tajikistan\n", + "37073 Turkmenistan\n", + "37292 Timor-Leste\n", + "37511 Tonga\n", + "37730 Trinidad and Tobago\n", + "37949 Tunisia\n", + "38168 Turkey\n", + "38387 Taiwan\n", + "38604 Tanzania\n", + "38823 Uganda\n", + "39042 Ukraine\n", + "39261 Uruguay\n", + "39480 United States\n", + "39699 Uzbekistan\n", + "39918 St. Vincent and the Grenadines\n", + "40137 Venezuela\n", + "40356 Vietnam\n", + "40575 Vanuatu\n", + "40794 Samoa\n", + "41013 Yemen\n", + "41232 South Africa\n", + "41451 Zambia\n", + "41670 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "100 Aruba\n", + "319 Afghanistan\n", + "538 Angola\n", + "757 Albania\n", + "1023 United Arab Emirates\n", + "1242 Argentina\n", + "1461 Armenia\n", + "1680 Antigua and Barbuda\n", + "1899 Australia\n", + "2118 Austria\n", + "2337 Azerbaijan\n", + "2556 Burundi\n", + "2775 Belgium\n", + "2994 Benin\n", + "3213 Burkina Faso\n", + "3432 Bangladesh\n", + "3651 Bulgaria\n", + "3870 Bahrain\n", + "4089 Bahamas\n", + "4308 Bosnia and Herzegovina\n", + "4527 Belarus\n", + "4746 Belize\n", + "5012 Bolivia\n", + "5231 Brazil\n", + "5450 Barbados\n", + "5669 Brunei\n", + "5888 Bhutan\n", + "6107 Botswana\n", + "6326 Central African Republic\n", + "6545 Canada\n", + " ... \n", + "35322 Sweden\n", + "35541 Swaziland\n", + "35760 Seychelles\n", + "35979 Syria\n", + "36198 Chad\n", + "36417 Togo\n", + "36636 Thailand\n", + "36855 Tajikistan\n", + "37074 Turkmenistan\n", + "37293 Timor-Leste\n", + "37512 Tonga\n", + "37731 Trinidad and Tobago\n", + "37950 Tunisia\n", + "38169 Turkey\n", + "38388 Taiwan\n", + "38605 Tanzania\n", + "38824 Uganda\n", + "39043 Ukraine\n", + "39262 Uruguay\n", + "39481 United States\n", + "39700 Uzbekistan\n", + "39919 St. Vincent and the Grenadines\n", + "40138 Venezuela\n", + "40357 Vietnam\n", + "40576 Vanuatu\n", + "40795 Samoa\n", + "41014 Yemen\n", + "41233 South Africa\n", + "41452 Zambia\n", + "41671 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "101 Aruba\n", + "320 Afghanistan\n", + "539 Angola\n", + "758 Albania\n", + "1024 United Arab Emirates\n", + "1243 Argentina\n", + "1462 Armenia\n", + "1681 Antigua and Barbuda\n", + "1900 Australia\n", + "2119 Austria\n", + "2338 Azerbaijan\n", + "2557 Burundi\n", + "2776 Belgium\n", + "2995 Benin\n", + "3214 Burkina Faso\n", + "3433 Bangladesh\n", + "3652 Bulgaria\n", + "3871 Bahrain\n", + "4090 Bahamas\n", + "4309 Bosnia and Herzegovina\n", + "4528 Belarus\n", + "4747 Belize\n", + "5013 Bolivia\n", + "5232 Brazil\n", + "5451 Barbados\n", + "5670 Brunei\n", + "5889 Bhutan\n", + "6108 Botswana\n", + "6327 Central African Republic\n", + "6546 Canada\n", + " ... \n", + "35323 Sweden\n", + "35542 Swaziland\n", + "35761 Seychelles\n", + "35980 Syria\n", + "36199 Chad\n", + "36418 Togo\n", + "36637 Thailand\n", + "36856 Tajikistan\n", + "37075 Turkmenistan\n", + "37294 Timor-Leste\n", + "37513 Tonga\n", + "37732 Trinidad and Tobago\n", + "37951 Tunisia\n", + "38170 Turkey\n", + "38389 Taiwan\n", + "38606 Tanzania\n", + "38825 Uganda\n", + "39044 Ukraine\n", + "39263 Uruguay\n", + "39482 United States\n", + "39701 Uzbekistan\n", + "39920 St. Vincent and the Grenadines\n", + "40139 Venezuela\n", + "40358 Vietnam\n", + "40577 Vanuatu\n", + "40796 Samoa\n", + "41015 Yemen\n", + "41234 South Africa\n", + "41453 Zambia\n", + "41672 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "102 Aruba\n", + "321 Afghanistan\n", + "540 Angola\n", + "759 Albania\n", + "1025 United Arab Emirates\n", + "1244 Argentina\n", + "1463 Armenia\n", + "1682 Antigua and Barbuda\n", + "1901 Australia\n", + "2120 Austria\n", + "2339 Azerbaijan\n", + "2558 Burundi\n", + "2777 Belgium\n", + "2996 Benin\n", + "3215 Burkina Faso\n", + "3434 Bangladesh\n", + "3653 Bulgaria\n", + "3872 Bahrain\n", + "4091 Bahamas\n", + "4310 Bosnia and Herzegovina\n", + "4529 Belarus\n", + "4748 Belize\n", + "5014 Bolivia\n", + "5233 Brazil\n", + "5452 Barbados\n", + "5671 Brunei\n", + "5890 Bhutan\n", + "6109 Botswana\n", + "6328 Central African Republic\n", + "6547 Canada\n", + " ... \n", + "35324 Sweden\n", + "35543 Swaziland\n", + "35762 Seychelles\n", + "35981 Syria\n", + "36200 Chad\n", + "36419 Togo\n", + "36638 Thailand\n", + "36857 Tajikistan\n", + "37076 Turkmenistan\n", + "37295 Timor-Leste\n", + "37514 Tonga\n", + "37733 Trinidad and Tobago\n", + "37952 Tunisia\n", + "38171 Turkey\n", + "38390 Taiwan\n", + "38607 Tanzania\n", + "38826 Uganda\n", + "39045 Ukraine\n", + "39264 Uruguay\n", + "39483 United States\n", + "39702 Uzbekistan\n", + "39921 St. Vincent and the Grenadines\n", + "40140 Venezuela\n", + "40359 Vietnam\n", + "40578 Vanuatu\n", + "40797 Samoa\n", + "41016 Yemen\n", + "41235 South Africa\n", + "41454 Zambia\n", + "41673 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "103 Aruba\n", + "322 Afghanistan\n", + "541 Angola\n", + "760 Albania\n", + "1026 United Arab Emirates\n", + "1245 Argentina\n", + "1464 Armenia\n", + "1683 Antigua and Barbuda\n", + "1902 Australia\n", + "2121 Austria\n", + "2340 Azerbaijan\n", + "2559 Burundi\n", + "2778 Belgium\n", + "2997 Benin\n", + "3216 Burkina Faso\n", + "3435 Bangladesh\n", + "3654 Bulgaria\n", + "3873 Bahrain\n", + "4092 Bahamas\n", + "4311 Bosnia and Herzegovina\n", + "4530 Belarus\n", + "4749 Belize\n", + "5015 Bolivia\n", + "5234 Brazil\n", + "5453 Barbados\n", + "5672 Brunei\n", + "5891 Bhutan\n", + "6110 Botswana\n", + "6329 Central African Republic\n", + "6548 Canada\n", + " ... \n", + "35325 Sweden\n", + "35544 Swaziland\n", + "35763 Seychelles\n", + "35982 Syria\n", + "36201 Chad\n", + "36420 Togo\n", + "36639 Thailand\n", + "36858 Tajikistan\n", + "37077 Turkmenistan\n", + "37296 Timor-Leste\n", + "37515 Tonga\n", + "37734 Trinidad and Tobago\n", + "37953 Tunisia\n", + "38172 Turkey\n", + "38391 Taiwan\n", + "38608 Tanzania\n", + "38827 Uganda\n", + "39046 Ukraine\n", + "39265 Uruguay\n", + "39484 United States\n", + "39703 Uzbekistan\n", + "39922 St. Vincent and the Grenadines\n", + "40141 Venezuela\n", + "40360 Vietnam\n", + "40579 Vanuatu\n", + "40798 Samoa\n", + "41017 Yemen\n", + "41236 South Africa\n", + "41455 Zambia\n", + "41674 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "104 Aruba\n", + "323 Afghanistan\n", + "542 Angola\n", + "761 Albania\n", + "1027 United Arab Emirates\n", + "1246 Argentina\n", + "1465 Armenia\n", + "1684 Antigua and Barbuda\n", + "1903 Australia\n", + "2122 Austria\n", + "2341 Azerbaijan\n", + "2560 Burundi\n", + "2779 Belgium\n", + "2998 Benin\n", + "3217 Burkina Faso\n", + "3436 Bangladesh\n", + "3655 Bulgaria\n", + "3874 Bahrain\n", + "4093 Bahamas\n", + "4312 Bosnia and Herzegovina\n", + "4531 Belarus\n", + "4750 Belize\n", + "5016 Bolivia\n", + "5235 Brazil\n", + "5454 Barbados\n", + "5673 Brunei\n", + "5892 Bhutan\n", + "6111 Botswana\n", + "6330 Central African Republic\n", + "6549 Canada\n", + " ... \n", + "35326 Sweden\n", + "35545 Swaziland\n", + "35764 Seychelles\n", + "35983 Syria\n", + "36202 Chad\n", + "36421 Togo\n", + "36640 Thailand\n", + "36859 Tajikistan\n", + "37078 Turkmenistan\n", + "37297 Timor-Leste\n", + "37516 Tonga\n", + "37735 Trinidad and Tobago\n", + "37954 Tunisia\n", + "38173 Turkey\n", + "38392 Taiwan\n", + "38609 Tanzania\n", + "38828 Uganda\n", + "39047 Ukraine\n", + "39266 Uruguay\n", + "39485 United States\n", + "39704 Uzbekistan\n", + "39923 St. Vincent and the Grenadines\n", + "40142 Venezuela\n", + "40361 Vietnam\n", + "40580 Vanuatu\n", + "40799 Samoa\n", + "41018 Yemen\n", + "41237 South Africa\n", + "41456 Zambia\n", + "41675 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "105 Aruba\n", + "324 Afghanistan\n", + "543 Angola\n", + "762 Albania\n", + "1028 United Arab Emirates\n", + "1247 Argentina\n", + "1466 Armenia\n", + "1685 Antigua and Barbuda\n", + "1904 Australia\n", + "2123 Austria\n", + "2342 Azerbaijan\n", + "2561 Burundi\n", + "2780 Belgium\n", + "2999 Benin\n", + "3218 Burkina Faso\n", + "3437 Bangladesh\n", + "3656 Bulgaria\n", + "3875 Bahrain\n", + "4094 Bahamas\n", + "4313 Bosnia and Herzegovina\n", + "4532 Belarus\n", + "4751 Belize\n", + "5017 Bolivia\n", + "5236 Brazil\n", + "5455 Barbados\n", + "5674 Brunei\n", + "5893 Bhutan\n", + "6112 Botswana\n", + "6331 Central African Republic\n", + "6550 Canada\n", + " ... \n", + "35327 Sweden\n", + "35546 Swaziland\n", + "35765 Seychelles\n", + "35984 Syria\n", + "36203 Chad\n", + "36422 Togo\n", + "36641 Thailand\n", + "36860 Tajikistan\n", + "37079 Turkmenistan\n", + "37298 Timor-Leste\n", + "37517 Tonga\n", + "37736 Trinidad and Tobago\n", + "37955 Tunisia\n", + "38174 Turkey\n", + "38393 Taiwan\n", + "38610 Tanzania\n", + "38829 Uganda\n", + "39048 Ukraine\n", + "39267 Uruguay\n", + "39486 United States\n", + "39705 Uzbekistan\n", + "39924 St. Vincent and the Grenadines\n", + "40143 Venezuela\n", + "40362 Vietnam\n", + "40581 Vanuatu\n", + "40800 Samoa\n", + "41019 Yemen\n", + "41238 South Africa\n", + "41457 Zambia\n", + "41676 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "106 Aruba\n", + "325 Afghanistan\n", + "544 Angola\n", + "763 Albania\n", + "1029 United Arab Emirates\n", + "1248 Argentina\n", + "1467 Armenia\n", + "1686 Antigua and Barbuda\n", + "1905 Australia\n", + "2124 Austria\n", + "2343 Azerbaijan\n", + "2562 Burundi\n", + "2781 Belgium\n", + "3000 Benin\n", + "3219 Burkina Faso\n", + "3438 Bangladesh\n", + "3657 Bulgaria\n", + "3876 Bahrain\n", + "4095 Bahamas\n", + "4314 Bosnia and Herzegovina\n", + "4533 Belarus\n", + "4752 Belize\n", + "5018 Bolivia\n", + "5237 Brazil\n", + "5456 Barbados\n", + "5675 Brunei\n", + "5894 Bhutan\n", + "6113 Botswana\n", + "6332 Central African Republic\n", + "6551 Canada\n", + " ... \n", + "35328 Sweden\n", + "35547 Swaziland\n", + "35766 Seychelles\n", + "35985 Syria\n", + "36204 Chad\n", + "36423 Togo\n", + "36642 Thailand\n", + "36861 Tajikistan\n", + "37080 Turkmenistan\n", + "37299 Timor-Leste\n", + "37518 Tonga\n", + "37737 Trinidad and Tobago\n", + "37956 Tunisia\n", + "38175 Turkey\n", + "38394 Taiwan\n", + "38611 Tanzania\n", + "38830 Uganda\n", + "39049 Ukraine\n", + "39268 Uruguay\n", + "39487 United States\n", + "39706 Uzbekistan\n", + "39925 St. Vincent and the Grenadines\n", + "40144 Venezuela\n", + "40363 Vietnam\n", + "40582 Vanuatu\n", + "40801 Samoa\n", + "41020 Yemen\n", + "41239 South Africa\n", + "41458 Zambia\n", + "41677 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "107 Aruba\n", + "326 Afghanistan\n", + "545 Angola\n", + "764 Albania\n", + "1030 United Arab Emirates\n", + "1249 Argentina\n", + "1468 Armenia\n", + "1687 Antigua and Barbuda\n", + "1906 Australia\n", + "2125 Austria\n", + "2344 Azerbaijan\n", + "2563 Burundi\n", + "2782 Belgium\n", + "3001 Benin\n", + "3220 Burkina Faso\n", + "3439 Bangladesh\n", + "3658 Bulgaria\n", + "3877 Bahrain\n", + "4096 Bahamas\n", + "4315 Bosnia and Herzegovina\n", + "4534 Belarus\n", + "4753 Belize\n", + "5019 Bolivia\n", + "5238 Brazil\n", + "5457 Barbados\n", + "5676 Brunei\n", + "5895 Bhutan\n", + "6114 Botswana\n", + "6333 Central African Republic\n", + "6552 Canada\n", + " ... \n", + "35329 Sweden\n", + "35548 Swaziland\n", + "35767 Seychelles\n", + "35986 Syria\n", + "36205 Chad\n", + "36424 Togo\n", + "36643 Thailand\n", + "36862 Tajikistan\n", + "37081 Turkmenistan\n", + "37300 Timor-Leste\n", + "37519 Tonga\n", + "37738 Trinidad and Tobago\n", + "37957 Tunisia\n", + "38176 Turkey\n", + "38395 Taiwan\n", + "38612 Tanzania\n", + "38831 Uganda\n", + "39050 Ukraine\n", + "39269 Uruguay\n", + "39488 United States\n", + "39707 Uzbekistan\n", + "39926 St. Vincent and the Grenadines\n", + "40145 Venezuela\n", + "40364 Vietnam\n", + "40583 Vanuatu\n", + "40802 Samoa\n", + "41021 Yemen\n", + "41240 South Africa\n", + "41459 Zambia\n", + "41678 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "108 Aruba\n", + "327 Afghanistan\n", + "546 Angola\n", + "765 Albania\n", + "1031 United Arab Emirates\n", + "1250 Argentina\n", + "1469 Armenia\n", + "1688 Antigua and Barbuda\n", + "1907 Australia\n", + "2126 Austria\n", + "2345 Azerbaijan\n", + "2564 Burundi\n", + "2783 Belgium\n", + "3002 Benin\n", + "3221 Burkina Faso\n", + "3440 Bangladesh\n", + "3659 Bulgaria\n", + "3878 Bahrain\n", + "4097 Bahamas\n", + "4316 Bosnia and Herzegovina\n", + "4535 Belarus\n", + "4754 Belize\n", + "5020 Bolivia\n", + "5239 Brazil\n", + "5458 Barbados\n", + "5677 Brunei\n", + "5896 Bhutan\n", + "6115 Botswana\n", + "6334 Central African Republic\n", + "6553 Canada\n", + " ... \n", + "35330 Sweden\n", + "35549 Swaziland\n", + "35768 Seychelles\n", + "35987 Syria\n", + "36206 Chad\n", + "36425 Togo\n", + "36644 Thailand\n", + "36863 Tajikistan\n", + "37082 Turkmenistan\n", + "37301 Timor-Leste\n", + "37520 Tonga\n", + "37739 Trinidad and Tobago\n", + "37958 Tunisia\n", + "38177 Turkey\n", + "38396 Taiwan\n", + "38613 Tanzania\n", + "38832 Uganda\n", + "39051 Ukraine\n", + "39270 Uruguay\n", + "39489 United States\n", + "39708 Uzbekistan\n", + "39927 St. Vincent and the Grenadines\n", + "40146 Venezuela\n", + "40365 Vietnam\n", + "40584 Vanuatu\n", + "40803 Samoa\n", + "41022 Yemen\n", + "41241 South Africa\n", + "41460 Zambia\n", + "41679 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "109 Aruba\n", + "328 Afghanistan\n", + "547 Angola\n", + "766 Albania\n", + "1032 United Arab Emirates\n", + "1251 Argentina\n", + "1470 Armenia\n", + "1689 Antigua and Barbuda\n", + "1908 Australia\n", + "2127 Austria\n", + "2346 Azerbaijan\n", + "2565 Burundi\n", + "2784 Belgium\n", + "3003 Benin\n", + "3222 Burkina Faso\n", + "3441 Bangladesh\n", + "3660 Bulgaria\n", + "3879 Bahrain\n", + "4098 Bahamas\n", + "4317 Bosnia and Herzegovina\n", + "4536 Belarus\n", + "4755 Belize\n", + "5021 Bolivia\n", + "5240 Brazil\n", + "5459 Barbados\n", + "5678 Brunei\n", + "5897 Bhutan\n", + "6116 Botswana\n", + "6335 Central African Republic\n", + "6554 Canada\n", + " ... \n", + "35331 Sweden\n", + "35550 Swaziland\n", + "35769 Seychelles\n", + "35988 Syria\n", + "36207 Chad\n", + "36426 Togo\n", + "36645 Thailand\n", + "36864 Tajikistan\n", + "37083 Turkmenistan\n", + "37302 Timor-Leste\n", + "37521 Tonga\n", + "37740 Trinidad and Tobago\n", + "37959 Tunisia\n", + "38178 Turkey\n", + "38397 Taiwan\n", + "38614 Tanzania\n", + "38833 Uganda\n", + "39052 Ukraine\n", + "39271 Uruguay\n", + "39490 United States\n", + "39709 Uzbekistan\n", + "39928 St. Vincent and the Grenadines\n", + "40147 Venezuela\n", + "40366 Vietnam\n", + "40585 Vanuatu\n", + "40804 Samoa\n", + "41023 Yemen\n", + "41242 South Africa\n", + "41461 Zambia\n", + "41680 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "110 Aruba\n", + "329 Afghanistan\n", + "548 Angola\n", + "767 Albania\n", + "1033 United Arab Emirates\n", + "1252 Argentina\n", + "1471 Armenia\n", + "1690 Antigua and Barbuda\n", + "1909 Australia\n", + "2128 Austria\n", + "2347 Azerbaijan\n", + "2566 Burundi\n", + "2785 Belgium\n", + "3004 Benin\n", + "3223 Burkina Faso\n", + "3442 Bangladesh\n", + "3661 Bulgaria\n", + "3880 Bahrain\n", + "4099 Bahamas\n", + "4318 Bosnia and Herzegovina\n", + "4537 Belarus\n", + "4756 Belize\n", + "5022 Bolivia\n", + "5241 Brazil\n", + "5460 Barbados\n", + "5679 Brunei\n", + "5898 Bhutan\n", + "6117 Botswana\n", + "6336 Central African Republic\n", + "6555 Canada\n", + " ... \n", + "35332 Sweden\n", + "35551 Swaziland\n", + "35770 Seychelles\n", + "35989 Syria\n", + "36208 Chad\n", + "36427 Togo\n", + "36646 Thailand\n", + "36865 Tajikistan\n", + "37084 Turkmenistan\n", + "37303 Timor-Leste\n", + "37522 Tonga\n", + "37741 Trinidad and Tobago\n", + "37960 Tunisia\n", + "38179 Turkey\n", + "38398 Taiwan\n", + "38615 Tanzania\n", + "38834 Uganda\n", + "39053 Ukraine\n", + "39272 Uruguay\n", + "39491 United States\n", + "39710 Uzbekistan\n", + "39929 St. Vincent and the Grenadines\n", + "40148 Venezuela\n", + "40367 Vietnam\n", + "40586 Vanuatu\n", + "40805 Samoa\n", + "41024 Yemen\n", + "41243 South Africa\n", + "41462 Zambia\n", + "41681 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "111 Aruba\n", + "330 Afghanistan\n", + "549 Angola\n", + "768 Albania\n", + "1034 United Arab Emirates\n", + "1253 Argentina\n", + "1472 Armenia\n", + "1691 Antigua and Barbuda\n", + "1910 Australia\n", + "2129 Austria\n", + "2348 Azerbaijan\n", + "2567 Burundi\n", + "2786 Belgium\n", + "3005 Benin\n", + "3224 Burkina Faso\n", + "3443 Bangladesh\n", + "3662 Bulgaria\n", + "3881 Bahrain\n", + "4100 Bahamas\n", + "4319 Bosnia and Herzegovina\n", + "4538 Belarus\n", + "4757 Belize\n", + "5023 Bolivia\n", + "5242 Brazil\n", + "5461 Barbados\n", + "5680 Brunei\n", + "5899 Bhutan\n", + "6118 Botswana\n", + "6337 Central African Republic\n", + "6556 Canada\n", + " ... \n", + "35333 Sweden\n", + "35552 Swaziland\n", + "35771 Seychelles\n", + "35990 Syria\n", + "36209 Chad\n", + "36428 Togo\n", + "36647 Thailand\n", + "36866 Tajikistan\n", + "37085 Turkmenistan\n", + "37304 Timor-Leste\n", + "37523 Tonga\n", + "37742 Trinidad and Tobago\n", + "37961 Tunisia\n", + "38180 Turkey\n", + "38399 Taiwan\n", + "38616 Tanzania\n", + "38835 Uganda\n", + "39054 Ukraine\n", + "39273 Uruguay\n", + "39492 United States\n", + "39711 Uzbekistan\n", + "39930 St. Vincent and the Grenadines\n", + "40149 Venezuela\n", + "40368 Vietnam\n", + "40587 Vanuatu\n", + "40806 Samoa\n", + "41025 Yemen\n", + "41244 South Africa\n", + "41463 Zambia\n", + "41682 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "112 Aruba\n", + "331 Afghanistan\n", + "550 Angola\n", + "769 Albania\n", + "1035 United Arab Emirates\n", + "1254 Argentina\n", + "1473 Armenia\n", + "1692 Antigua and Barbuda\n", + "1911 Australia\n", + "2130 Austria\n", + "2349 Azerbaijan\n", + "2568 Burundi\n", + "2787 Belgium\n", + "3006 Benin\n", + "3225 Burkina Faso\n", + "3444 Bangladesh\n", + "3663 Bulgaria\n", + "3882 Bahrain\n", + "4101 Bahamas\n", + "4320 Bosnia and Herzegovina\n", + "4539 Belarus\n", + "4758 Belize\n", + "5024 Bolivia\n", + "5243 Brazil\n", + "5462 Barbados\n", + "5681 Brunei\n", + "5900 Bhutan\n", + "6119 Botswana\n", + "6338 Central African Republic\n", + "6557 Canada\n", + " ... \n", + "35334 Sweden\n", + "35553 Swaziland\n", + "35772 Seychelles\n", + "35991 Syria\n", + "36210 Chad\n", + "36429 Togo\n", + "36648 Thailand\n", + "36867 Tajikistan\n", + "37086 Turkmenistan\n", + "37305 Timor-Leste\n", + "37524 Tonga\n", + "37743 Trinidad and Tobago\n", + "37962 Tunisia\n", + "38181 Turkey\n", + "38400 Taiwan\n", + "38617 Tanzania\n", + "38836 Uganda\n", + "39055 Ukraine\n", + "39274 Uruguay\n", + "39493 United States\n", + "39712 Uzbekistan\n", + "39931 St. Vincent and the Grenadines\n", + "40150 Venezuela\n", + "40369 Vietnam\n", + "40588 Vanuatu\n", + "40807 Samoa\n", + "41026 Yemen\n", + "41245 South Africa\n", + "41464 Zambia\n", + "41683 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "113 Aruba\n", + "332 Afghanistan\n", + "551 Angola\n", + "770 Albania\n", + "1036 United Arab Emirates\n", + "1255 Argentina\n", + "1474 Armenia\n", + "1693 Antigua and Barbuda\n", + "1912 Australia\n", + "2131 Austria\n", + "2350 Azerbaijan\n", + "2569 Burundi\n", + "2788 Belgium\n", + "3007 Benin\n", + "3226 Burkina Faso\n", + "3445 Bangladesh\n", + "3664 Bulgaria\n", + "3883 Bahrain\n", + "4102 Bahamas\n", + "4321 Bosnia and Herzegovina\n", + "4540 Belarus\n", + "4759 Belize\n", + "5025 Bolivia\n", + "5244 Brazil\n", + "5463 Barbados\n", + "5682 Brunei\n", + "5901 Bhutan\n", + "6120 Botswana\n", + "6339 Central African Republic\n", + "6558 Canada\n", + " ... \n", + "35335 Sweden\n", + "35554 Swaziland\n", + "35773 Seychelles\n", + "35992 Syria\n", + "36211 Chad\n", + "36430 Togo\n", + "36649 Thailand\n", + "36868 Tajikistan\n", + "37087 Turkmenistan\n", + "37306 Timor-Leste\n", + "37525 Tonga\n", + "37744 Trinidad and Tobago\n", + "37963 Tunisia\n", + "38182 Turkey\n", + "38401 Taiwan\n", + "38618 Tanzania\n", + "38837 Uganda\n", + "39056 Ukraine\n", + "39275 Uruguay\n", + "39494 United States\n", + "39713 Uzbekistan\n", + "39932 St. Vincent and the Grenadines\n", + "40151 Venezuela\n", + "40370 Vietnam\n", + "40589 Vanuatu\n", + "40808 Samoa\n", + "41027 Yemen\n", + "41246 South Africa\n", + "41465 Zambia\n", + "41684 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "114 Aruba\n", + "333 Afghanistan\n", + "552 Angola\n", + "771 Albania\n", + "1037 United Arab Emirates\n", + "1256 Argentina\n", + "1475 Armenia\n", + "1694 Antigua and Barbuda\n", + "1913 Australia\n", + "2132 Austria\n", + "2351 Azerbaijan\n", + "2570 Burundi\n", + "2789 Belgium\n", + "3008 Benin\n", + "3227 Burkina Faso\n", + "3446 Bangladesh\n", + "3665 Bulgaria\n", + "3884 Bahrain\n", + "4103 Bahamas\n", + "4322 Bosnia and Herzegovina\n", + "4541 Belarus\n", + "4760 Belize\n", + "5026 Bolivia\n", + "5245 Brazil\n", + "5464 Barbados\n", + "5683 Brunei\n", + "5902 Bhutan\n", + "6121 Botswana\n", + "6340 Central African Republic\n", + "6559 Canada\n", + " ... \n", + "35336 Sweden\n", + "35555 Swaziland\n", + "35774 Seychelles\n", + "35993 Syria\n", + "36212 Chad\n", + "36431 Togo\n", + "36650 Thailand\n", + "36869 Tajikistan\n", + "37088 Turkmenistan\n", + "37307 Timor-Leste\n", + "37526 Tonga\n", + "37745 Trinidad and Tobago\n", + "37964 Tunisia\n", + "38183 Turkey\n", + "38402 Taiwan\n", + "38619 Tanzania\n", + "38838 Uganda\n", + "39057 Ukraine\n", + "39276 Uruguay\n", + "39495 United States\n", + "39714 Uzbekistan\n", + "39933 St. Vincent and the Grenadines\n", + "40152 Venezuela\n", + "40371 Vietnam\n", + "40590 Vanuatu\n", + "40809 Samoa\n", + "41028 Yemen\n", + "41247 South Africa\n", + "41466 Zambia\n", + "41685 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "115 Aruba\n", + "334 Afghanistan\n", + "553 Angola\n", + "772 Albania\n", + "1038 United Arab Emirates\n", + "1257 Argentina\n", + "1476 Armenia\n", + "1695 Antigua and Barbuda\n", + "1914 Australia\n", + "2133 Austria\n", + "2352 Azerbaijan\n", + "2571 Burundi\n", + "2790 Belgium\n", + "3009 Benin\n", + "3228 Burkina Faso\n", + "3447 Bangladesh\n", + "3666 Bulgaria\n", + "3885 Bahrain\n", + "4104 Bahamas\n", + "4323 Bosnia and Herzegovina\n", + "4542 Belarus\n", + "4761 Belize\n", + "5027 Bolivia\n", + "5246 Brazil\n", + "5465 Barbados\n", + "5684 Brunei\n", + "5903 Bhutan\n", + "6122 Botswana\n", + "6341 Central African Republic\n", + "6560 Canada\n", + " ... \n", + "35337 Sweden\n", + "35556 Swaziland\n", + "35775 Seychelles\n", + "35994 Syria\n", + "36213 Chad\n", + "36432 Togo\n", + "36651 Thailand\n", + "36870 Tajikistan\n", + "37089 Turkmenistan\n", + "37308 Timor-Leste\n", + "37527 Tonga\n", + "37746 Trinidad and Tobago\n", + "37965 Tunisia\n", + "38184 Turkey\n", + "38403 Taiwan\n", + "38620 Tanzania\n", + "38839 Uganda\n", + "39058 Ukraine\n", + "39277 Uruguay\n", + "39496 United States\n", + "39715 Uzbekistan\n", + "39934 St. Vincent and the Grenadines\n", + "40153 Venezuela\n", + "40372 Vietnam\n", + "40591 Vanuatu\n", + "40810 Samoa\n", + "41029 Yemen\n", + "41248 South Africa\n", + "41467 Zambia\n", + "41686 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "116 Aruba\n", + "335 Afghanistan\n", + "554 Angola\n", + "773 Albania\n", + "1039 United Arab Emirates\n", + "1258 Argentina\n", + "1477 Armenia\n", + "1696 Antigua and Barbuda\n", + "1915 Australia\n", + "2134 Austria\n", + "2353 Azerbaijan\n", + "2572 Burundi\n", + "2791 Belgium\n", + "3010 Benin\n", + "3229 Burkina Faso\n", + "3448 Bangladesh\n", + "3667 Bulgaria\n", + "3886 Bahrain\n", + "4105 Bahamas\n", + "4324 Bosnia and Herzegovina\n", + "4543 Belarus\n", + "4762 Belize\n", + "5028 Bolivia\n", + "5247 Brazil\n", + "5466 Barbados\n", + "5685 Brunei\n", + "5904 Bhutan\n", + "6123 Botswana\n", + "6342 Central African Republic\n", + "6561 Canada\n", + " ... \n", + "35338 Sweden\n", + "35557 Swaziland\n", + "35776 Seychelles\n", + "35995 Syria\n", + "36214 Chad\n", + "36433 Togo\n", + "36652 Thailand\n", + "36871 Tajikistan\n", + "37090 Turkmenistan\n", + "37309 Timor-Leste\n", + "37528 Tonga\n", + "37747 Trinidad and Tobago\n", + "37966 Tunisia\n", + "38185 Turkey\n", + "38404 Taiwan\n", + "38621 Tanzania\n", + "38840 Uganda\n", + "39059 Ukraine\n", + "39278 Uruguay\n", + "39497 United States\n", + "39716 Uzbekistan\n", + "39935 St. Vincent and the Grenadines\n", + "40154 Venezuela\n", + "40373 Vietnam\n", + "40592 Vanuatu\n", + "40811 Samoa\n", + "41030 Yemen\n", + "41249 South Africa\n", + "41468 Zambia\n", + "41687 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "117 Aruba\n", + "336 Afghanistan\n", + "555 Angola\n", + "774 Albania\n", + "1040 United Arab Emirates\n", + "1259 Argentina\n", + "1478 Armenia\n", + "1697 Antigua and Barbuda\n", + "1916 Australia\n", + "2135 Austria\n", + "2354 Azerbaijan\n", + "2573 Burundi\n", + "2792 Belgium\n", + "3011 Benin\n", + "3230 Burkina Faso\n", + "3449 Bangladesh\n", + "3668 Bulgaria\n", + "3887 Bahrain\n", + "4106 Bahamas\n", + "4325 Bosnia and Herzegovina\n", + "4544 Belarus\n", + "4763 Belize\n", + "5029 Bolivia\n", + "5248 Brazil\n", + "5467 Barbados\n", + "5686 Brunei\n", + "5905 Bhutan\n", + "6124 Botswana\n", + "6343 Central African Republic\n", + "6562 Canada\n", + " ... \n", + "35339 Sweden\n", + "35558 Swaziland\n", + "35777 Seychelles\n", + "35996 Syria\n", + "36215 Chad\n", + "36434 Togo\n", + "36653 Thailand\n", + "36872 Tajikistan\n", + "37091 Turkmenistan\n", + "37310 Timor-Leste\n", + "37529 Tonga\n", + "37748 Trinidad and Tobago\n", + "37967 Tunisia\n", + "38186 Turkey\n", + "38405 Taiwan\n", + "38622 Tanzania\n", + "38841 Uganda\n", + "39060 Ukraine\n", + "39279 Uruguay\n", + "39498 United States\n", + "39717 Uzbekistan\n", + "39936 St. Vincent and the Grenadines\n", + "40155 Venezuela\n", + "40374 Vietnam\n", + "40593 Vanuatu\n", + "40812 Samoa\n", + "41031 Yemen\n", + "41250 South Africa\n", + "41469 Zambia\n", + "41688 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "118 Aruba\n", + "337 Afghanistan\n", + "556 Angola\n", + "775 Albania\n", + "1041 United Arab Emirates\n", + "1260 Argentina\n", + "1479 Armenia\n", + "1698 Antigua and Barbuda\n", + "1917 Australia\n", + "2136 Austria\n", + "2355 Azerbaijan\n", + "2574 Burundi\n", + "2793 Belgium\n", + "3012 Benin\n", + "3231 Burkina Faso\n", + "3450 Bangladesh\n", + "3669 Bulgaria\n", + "3888 Bahrain\n", + "4107 Bahamas\n", + "4326 Bosnia and Herzegovina\n", + "4545 Belarus\n", + "4764 Belize\n", + "5030 Bolivia\n", + "5249 Brazil\n", + "5468 Barbados\n", + "5687 Brunei\n", + "5906 Bhutan\n", + "6125 Botswana\n", + "6344 Central African Republic\n", + "6563 Canada\n", + " ... \n", + "35340 Sweden\n", + "35559 Swaziland\n", + "35778 Seychelles\n", + "35997 Syria\n", + "36216 Chad\n", + "36435 Togo\n", + "36654 Thailand\n", + "36873 Tajikistan\n", + "37092 Turkmenistan\n", + "37311 Timor-Leste\n", + "37530 Tonga\n", + "37749 Trinidad and Tobago\n", + "37968 Tunisia\n", + "38187 Turkey\n", + "38406 Taiwan\n", + "38623 Tanzania\n", + "38842 Uganda\n", + "39061 Ukraine\n", + "39280 Uruguay\n", + "39499 United States\n", + "39718 Uzbekistan\n", + "39937 St. Vincent and the Grenadines\n", + "40156 Venezuela\n", + "40375 Vietnam\n", + "40594 Vanuatu\n", + "40813 Samoa\n", + "41032 Yemen\n", + "41251 South Africa\n", + "41470 Zambia\n", + "41689 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "119 Aruba\n", + "338 Afghanistan\n", + "557 Angola\n", + "776 Albania\n", + "1042 United Arab Emirates\n", + "1261 Argentina\n", + "1480 Armenia\n", + "1699 Antigua and Barbuda\n", + "1918 Australia\n", + "2137 Austria\n", + "2356 Azerbaijan\n", + "2575 Burundi\n", + "2794 Belgium\n", + "3013 Benin\n", + "3232 Burkina Faso\n", + "3451 Bangladesh\n", + "3670 Bulgaria\n", + "3889 Bahrain\n", + "4108 Bahamas\n", + "4327 Bosnia and Herzegovina\n", + "4546 Belarus\n", + "4765 Belize\n", + "5031 Bolivia\n", + "5250 Brazil\n", + "5469 Barbados\n", + "5688 Brunei\n", + "5907 Bhutan\n", + "6126 Botswana\n", + "6345 Central African Republic\n", + "6564 Canada\n", + " ... \n", + "35341 Sweden\n", + "35560 Swaziland\n", + "35779 Seychelles\n", + "35998 Syria\n", + "36217 Chad\n", + "36436 Togo\n", + "36655 Thailand\n", + "36874 Tajikistan\n", + "37093 Turkmenistan\n", + "37312 Timor-Leste\n", + "37531 Tonga\n", + "37750 Trinidad and Tobago\n", + "37969 Tunisia\n", + "38188 Turkey\n", + "38407 Taiwan\n", + "38624 Tanzania\n", + "38843 Uganda\n", + "39062 Ukraine\n", + "39281 Uruguay\n", + "39500 United States\n", + "39719 Uzbekistan\n", + "39938 St. Vincent and the Grenadines\n", + "40157 Venezuela\n", + "40376 Vietnam\n", + "40595 Vanuatu\n", + "40814 Samoa\n", + "41033 Yemen\n", + "41252 South Africa\n", + "41471 Zambia\n", + "41690 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "120 Aruba\n", + "339 Afghanistan\n", + "558 Angola\n", + "777 Albania\n", + "1043 United Arab Emirates\n", + "1262 Argentina\n", + "1481 Armenia\n", + "1700 Antigua and Barbuda\n", + "1919 Australia\n", + "2138 Austria\n", + "2357 Azerbaijan\n", + "2576 Burundi\n", + "2795 Belgium\n", + "3014 Benin\n", + "3233 Burkina Faso\n", + "3452 Bangladesh\n", + "3671 Bulgaria\n", + "3890 Bahrain\n", + "4109 Bahamas\n", + "4328 Bosnia and Herzegovina\n", + "4547 Belarus\n", + "4766 Belize\n", + "5032 Bolivia\n", + "5251 Brazil\n", + "5470 Barbados\n", + "5689 Brunei\n", + "5908 Bhutan\n", + "6127 Botswana\n", + "6346 Central African Republic\n", + "6565 Canada\n", + " ... \n", + "35342 Sweden\n", + "35561 Swaziland\n", + "35780 Seychelles\n", + "35999 Syria\n", + "36218 Chad\n", + "36437 Togo\n", + "36656 Thailand\n", + "36875 Tajikistan\n", + "37094 Turkmenistan\n", + "37313 Timor-Leste\n", + "37532 Tonga\n", + "37751 Trinidad and Tobago\n", + "37970 Tunisia\n", + "38189 Turkey\n", + "38408 Taiwan\n", + "38625 Tanzania\n", + "38844 Uganda\n", + "39063 Ukraine\n", + "39282 Uruguay\n", + "39501 United States\n", + "39720 Uzbekistan\n", + "39939 St. Vincent and the Grenadines\n", + "40158 Venezuela\n", + "40377 Vietnam\n", + "40596 Vanuatu\n", + "40815 Samoa\n", + "41034 Yemen\n", + "41253 South Africa\n", + "41472 Zambia\n", + "41691 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "121 Aruba\n", + "340 Afghanistan\n", + "559 Angola\n", + "778 Albania\n", + "1044 United Arab Emirates\n", + "1263 Argentina\n", + "1482 Armenia\n", + "1701 Antigua and Barbuda\n", + "1920 Australia\n", + "2139 Austria\n", + "2358 Azerbaijan\n", + "2577 Burundi\n", + "2796 Belgium\n", + "3015 Benin\n", + "3234 Burkina Faso\n", + "3453 Bangladesh\n", + "3672 Bulgaria\n", + "3891 Bahrain\n", + "4110 Bahamas\n", + "4329 Bosnia and Herzegovina\n", + "4548 Belarus\n", + "4767 Belize\n", + "5033 Bolivia\n", + "5252 Brazil\n", + "5471 Barbados\n", + "5690 Brunei\n", + "5909 Bhutan\n", + "6128 Botswana\n", + "6347 Central African Republic\n", + "6566 Canada\n", + " ... \n", + "35343 Sweden\n", + "35562 Swaziland\n", + "35781 Seychelles\n", + "36000 Syria\n", + "36219 Chad\n", + "36438 Togo\n", + "36657 Thailand\n", + "36876 Tajikistan\n", + "37095 Turkmenistan\n", + "37314 Timor-Leste\n", + "37533 Tonga\n", + "37752 Trinidad and Tobago\n", + "37971 Tunisia\n", + "38190 Turkey\n", + "38409 Taiwan\n", + "38626 Tanzania\n", + "38845 Uganda\n", + "39064 Ukraine\n", + "39283 Uruguay\n", + "39502 United States\n", + "39721 Uzbekistan\n", + "39940 St. Vincent and the Grenadines\n", + "40159 Venezuela\n", + "40378 Vietnam\n", + "40597 Vanuatu\n", + "40816 Samoa\n", + "41035 Yemen\n", + "41254 South Africa\n", + "41473 Zambia\n", + "41692 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "122 Aruba\n", + "341 Afghanistan\n", + "560 Angola\n", + "779 Albania\n", + "1045 United Arab Emirates\n", + "1264 Argentina\n", + "1483 Armenia\n", + "1702 Antigua and Barbuda\n", + "1921 Australia\n", + "2140 Austria\n", + "2359 Azerbaijan\n", + "2578 Burundi\n", + "2797 Belgium\n", + "3016 Benin\n", + "3235 Burkina Faso\n", + "3454 Bangladesh\n", + "3673 Bulgaria\n", + "3892 Bahrain\n", + "4111 Bahamas\n", + "4330 Bosnia and Herzegovina\n", + "4549 Belarus\n", + "4768 Belize\n", + "5034 Bolivia\n", + "5253 Brazil\n", + "5472 Barbados\n", + "5691 Brunei\n", + "5910 Bhutan\n", + "6129 Botswana\n", + "6348 Central African Republic\n", + "6567 Canada\n", + " ... \n", + "35344 Sweden\n", + "35563 Swaziland\n", + "35782 Seychelles\n", + "36001 Syria\n", + "36220 Chad\n", + "36439 Togo\n", + "36658 Thailand\n", + "36877 Tajikistan\n", + "37096 Turkmenistan\n", + "37315 Timor-Leste\n", + "37534 Tonga\n", + "37753 Trinidad and Tobago\n", + "37972 Tunisia\n", + "38191 Turkey\n", + "38410 Taiwan\n", + "38627 Tanzania\n", + "38846 Uganda\n", + "39065 Ukraine\n", + "39284 Uruguay\n", + "39503 United States\n", + "39722 Uzbekistan\n", + "39941 St. Vincent and the Grenadines\n", + "40160 Venezuela\n", + "40379 Vietnam\n", + "40598 Vanuatu\n", + "40817 Samoa\n", + "41036 Yemen\n", + "41255 South Africa\n", + "41474 Zambia\n", + "41693 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "123 Aruba\n", + "342 Afghanistan\n", + "561 Angola\n", + "780 Albania\n", + "1046 United Arab Emirates\n", + "1265 Argentina\n", + "1484 Armenia\n", + "1703 Antigua and Barbuda\n", + "1922 Australia\n", + "2141 Austria\n", + "2360 Azerbaijan\n", + "2579 Burundi\n", + "2798 Belgium\n", + "3017 Benin\n", + "3236 Burkina Faso\n", + "3455 Bangladesh\n", + "3674 Bulgaria\n", + "3893 Bahrain\n", + "4112 Bahamas\n", + "4331 Bosnia and Herzegovina\n", + "4550 Belarus\n", + "4769 Belize\n", + "5035 Bolivia\n", + "5254 Brazil\n", + "5473 Barbados\n", + "5692 Brunei\n", + "5911 Bhutan\n", + "6130 Botswana\n", + "6349 Central African Republic\n", + "6568 Canada\n", + " ... \n", + "35345 Sweden\n", + "35564 Swaziland\n", + "35783 Seychelles\n", + "36002 Syria\n", + "36221 Chad\n", + "36440 Togo\n", + "36659 Thailand\n", + "36878 Tajikistan\n", + "37097 Turkmenistan\n", + "37316 Timor-Leste\n", + "37535 Tonga\n", + "37754 Trinidad and Tobago\n", + "37973 Tunisia\n", + "38192 Turkey\n", + "38411 Taiwan\n", + "38628 Tanzania\n", + "38847 Uganda\n", + "39066 Ukraine\n", + "39285 Uruguay\n", + "39504 United States\n", + "39723 Uzbekistan\n", + "39942 St. Vincent and the Grenadines\n", + "40161 Venezuela\n", + "40380 Vietnam\n", + "40599 Vanuatu\n", + "40818 Samoa\n", + "41037 Yemen\n", + "41256 South Africa\n", + "41475 Zambia\n", + "41694 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "124 Aruba\n", + "343 Afghanistan\n", + "562 Angola\n", + "781 Albania\n", + "1047 United Arab Emirates\n", + "1266 Argentina\n", + "1485 Armenia\n", + "1704 Antigua and Barbuda\n", + "1923 Australia\n", + "2142 Austria\n", + "2361 Azerbaijan\n", + "2580 Burundi\n", + "2799 Belgium\n", + "3018 Benin\n", + "3237 Burkina Faso\n", + "3456 Bangladesh\n", + "3675 Bulgaria\n", + "3894 Bahrain\n", + "4113 Bahamas\n", + "4332 Bosnia and Herzegovina\n", + "4551 Belarus\n", + "4770 Belize\n", + "5036 Bolivia\n", + "5255 Brazil\n", + "5474 Barbados\n", + "5693 Brunei\n", + "5912 Bhutan\n", + "6131 Botswana\n", + "6350 Central African Republic\n", + "6569 Canada\n", + " ... \n", + "35346 Sweden\n", + "35565 Swaziland\n", + "35784 Seychelles\n", + "36003 Syria\n", + "36222 Chad\n", + "36441 Togo\n", + "36660 Thailand\n", + "36879 Tajikistan\n", + "37098 Turkmenistan\n", + "37317 Timor-Leste\n", + "37536 Tonga\n", + "37755 Trinidad and Tobago\n", + "37974 Tunisia\n", + "38193 Turkey\n", + "38412 Taiwan\n", + "38629 Tanzania\n", + "38848 Uganda\n", + "39067 Ukraine\n", + "39286 Uruguay\n", + "39505 United States\n", + "39724 Uzbekistan\n", + "39943 St. Vincent and the Grenadines\n", + "40162 Venezuela\n", + "40381 Vietnam\n", + "40600 Vanuatu\n", + "40819 Samoa\n", + "41038 Yemen\n", + "41257 South Africa\n", + "41476 Zambia\n", + "41695 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "125 Aruba\n", + "344 Afghanistan\n", + "563 Angola\n", + "782 Albania\n", + "1048 United Arab Emirates\n", + "1267 Argentina\n", + "1486 Armenia\n", + "1705 Antigua and Barbuda\n", + "1924 Australia\n", + "2143 Austria\n", + "2362 Azerbaijan\n", + "2581 Burundi\n", + "2800 Belgium\n", + "3019 Benin\n", + "3238 Burkina Faso\n", + "3457 Bangladesh\n", + "3676 Bulgaria\n", + "3895 Bahrain\n", + "4114 Bahamas\n", + "4333 Bosnia and Herzegovina\n", + "4552 Belarus\n", + "4771 Belize\n", + "5037 Bolivia\n", + "5256 Brazil\n", + "5475 Barbados\n", + "5694 Brunei\n", + "5913 Bhutan\n", + "6132 Botswana\n", + "6351 Central African Republic\n", + "6570 Canada\n", + " ... \n", + "35347 Sweden\n", + "35566 Swaziland\n", + "35785 Seychelles\n", + "36004 Syria\n", + "36223 Chad\n", + "36442 Togo\n", + "36661 Thailand\n", + "36880 Tajikistan\n", + "37099 Turkmenistan\n", + "37318 Timor-Leste\n", + "37537 Tonga\n", + "37756 Trinidad and Tobago\n", + "37975 Tunisia\n", + "38194 Turkey\n", + "38413 Taiwan\n", + "38630 Tanzania\n", + "38849 Uganda\n", + "39068 Ukraine\n", + "39287 Uruguay\n", + "39506 United States\n", + "39725 Uzbekistan\n", + "39944 St. Vincent and the Grenadines\n", + "40163 Venezuela\n", + "40382 Vietnam\n", + "40601 Vanuatu\n", + "40820 Samoa\n", + "41039 Yemen\n", + "41258 South Africa\n", + "41477 Zambia\n", + "41696 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "126 Aruba\n", + "345 Afghanistan\n", + "564 Angola\n", + "783 Albania\n", + "1049 United Arab Emirates\n", + "1268 Argentina\n", + "1487 Armenia\n", + "1706 Antigua and Barbuda\n", + "1925 Australia\n", + "2144 Austria\n", + "2363 Azerbaijan\n", + "2582 Burundi\n", + "2801 Belgium\n", + "3020 Benin\n", + "3239 Burkina Faso\n", + "3458 Bangladesh\n", + "3677 Bulgaria\n", + "3896 Bahrain\n", + "4115 Bahamas\n", + "4334 Bosnia and Herzegovina\n", + "4553 Belarus\n", + "4772 Belize\n", + "5038 Bolivia\n", + "5257 Brazil\n", + "5476 Barbados\n", + "5695 Brunei\n", + "5914 Bhutan\n", + "6133 Botswana\n", + "6352 Central African Republic\n", + "6571 Canada\n", + " ... \n", + "35348 Sweden\n", + "35567 Swaziland\n", + "35786 Seychelles\n", + "36005 Syria\n", + "36224 Chad\n", + "36443 Togo\n", + "36662 Thailand\n", + "36881 Tajikistan\n", + "37100 Turkmenistan\n", + "37319 Timor-Leste\n", + "37538 Tonga\n", + "37757 Trinidad and Tobago\n", + "37976 Tunisia\n", + "38195 Turkey\n", + "38414 Taiwan\n", + "38631 Tanzania\n", + "38850 Uganda\n", + "39069 Ukraine\n", + "39288 Uruguay\n", + "39507 United States\n", + "39726 Uzbekistan\n", + "39945 St. Vincent and the Grenadines\n", + "40164 Venezuela\n", + "40383 Vietnam\n", + "40602 Vanuatu\n", + "40821 Samoa\n", + "41040 Yemen\n", + "41259 South Africa\n", + "41478 Zambia\n", + "41697 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "127 Aruba\n", + "346 Afghanistan\n", + "565 Angola\n", + "784 Albania\n", + "1050 United Arab Emirates\n", + "1269 Argentina\n", + "1488 Armenia\n", + "1707 Antigua and Barbuda\n", + "1926 Australia\n", + "2145 Austria\n", + "2364 Azerbaijan\n", + "2583 Burundi\n", + "2802 Belgium\n", + "3021 Benin\n", + "3240 Burkina Faso\n", + "3459 Bangladesh\n", + "3678 Bulgaria\n", + "3897 Bahrain\n", + "4116 Bahamas\n", + "4335 Bosnia and Herzegovina\n", + "4554 Belarus\n", + "4773 Belize\n", + "5039 Bolivia\n", + "5258 Brazil\n", + "5477 Barbados\n", + "5696 Brunei\n", + "5915 Bhutan\n", + "6134 Botswana\n", + "6353 Central African Republic\n", + "6572 Canada\n", + " ... \n", + "35349 Sweden\n", + "35568 Swaziland\n", + "35787 Seychelles\n", + "36006 Syria\n", + "36225 Chad\n", + "36444 Togo\n", + "36663 Thailand\n", + "36882 Tajikistan\n", + "37101 Turkmenistan\n", + "37320 Timor-Leste\n", + "37539 Tonga\n", + "37758 Trinidad and Tobago\n", + "37977 Tunisia\n", + "38196 Turkey\n", + "38415 Taiwan\n", + "38632 Tanzania\n", + "38851 Uganda\n", + "39070 Ukraine\n", + "39289 Uruguay\n", + "39508 United States\n", + "39727 Uzbekistan\n", + "39946 St. Vincent and the Grenadines\n", + "40165 Venezuela\n", + "40384 Vietnam\n", + "40603 Vanuatu\n", + "40822 Samoa\n", + "41041 Yemen\n", + "41260 South Africa\n", + "41479 Zambia\n", + "41698 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "128 Aruba\n", + "347 Afghanistan\n", + "566 Angola\n", + "785 Albania\n", + "1051 United Arab Emirates\n", + "1270 Argentina\n", + "1489 Armenia\n", + "1708 Antigua and Barbuda\n", + "1927 Australia\n", + "2146 Austria\n", + "2365 Azerbaijan\n", + "2584 Burundi\n", + "2803 Belgium\n", + "3022 Benin\n", + "3241 Burkina Faso\n", + "3460 Bangladesh\n", + "3679 Bulgaria\n", + "3898 Bahrain\n", + "4117 Bahamas\n", + "4336 Bosnia and Herzegovina\n", + "4555 Belarus\n", + "4774 Belize\n", + "5040 Bolivia\n", + "5259 Brazil\n", + "5478 Barbados\n", + "5697 Brunei\n", + "5916 Bhutan\n", + "6135 Botswana\n", + "6354 Central African Republic\n", + "6573 Canada\n", + " ... \n", + "35350 Sweden\n", + "35569 Swaziland\n", + "35788 Seychelles\n", + "36007 Syria\n", + "36226 Chad\n", + "36445 Togo\n", + "36664 Thailand\n", + "36883 Tajikistan\n", + "37102 Turkmenistan\n", + "37321 Timor-Leste\n", + "37540 Tonga\n", + "37759 Trinidad and Tobago\n", + "37978 Tunisia\n", + "38197 Turkey\n", + "38416 Taiwan\n", + "38633 Tanzania\n", + "38852 Uganda\n", + "39071 Ukraine\n", + "39290 Uruguay\n", + "39509 United States\n", + "39728 Uzbekistan\n", + "39947 St. Vincent and the Grenadines\n", + "40166 Venezuela\n", + "40385 Vietnam\n", + "40604 Vanuatu\n", + "40823 Samoa\n", + "41042 Yemen\n", + "41261 South Africa\n", + "41480 Zambia\n", + "41699 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "129 Aruba\n", + "348 Afghanistan\n", + "567 Angola\n", + "786 Albania\n", + "1052 United Arab Emirates\n", + "1271 Argentina\n", + "1490 Armenia\n", + "1709 Antigua and Barbuda\n", + "1928 Australia\n", + "2147 Austria\n", + "2366 Azerbaijan\n", + "2585 Burundi\n", + "2804 Belgium\n", + "3023 Benin\n", + "3242 Burkina Faso\n", + "3461 Bangladesh\n", + "3680 Bulgaria\n", + "3899 Bahrain\n", + "4118 Bahamas\n", + "4337 Bosnia and Herzegovina\n", + "4556 Belarus\n", + "4775 Belize\n", + "5041 Bolivia\n", + "5260 Brazil\n", + "5479 Barbados\n", + "5698 Brunei\n", + "5917 Bhutan\n", + "6136 Botswana\n", + "6355 Central African Republic\n", + "6574 Canada\n", + " ... \n", + "35351 Sweden\n", + "35570 Swaziland\n", + "35789 Seychelles\n", + "36008 Syria\n", + "36227 Chad\n", + "36446 Togo\n", + "36665 Thailand\n", + "36884 Tajikistan\n", + "37103 Turkmenistan\n", + "37322 Timor-Leste\n", + "37541 Tonga\n", + "37760 Trinidad and Tobago\n", + "37979 Tunisia\n", + "38198 Turkey\n", + "38417 Taiwan\n", + "38634 Tanzania\n", + "38853 Uganda\n", + "39072 Ukraine\n", + "39291 Uruguay\n", + "39510 United States\n", + "39729 Uzbekistan\n", + "39948 St. Vincent and the Grenadines\n", + "40167 Venezuela\n", + "40386 Vietnam\n", + "40605 Vanuatu\n", + "40824 Samoa\n", + "41043 Yemen\n", + "41262 South Africa\n", + "41481 Zambia\n", + "41700 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "130 Aruba\n", + "349 Afghanistan\n", + "568 Angola\n", + "787 Albania\n", + "1053 United Arab Emirates\n", + "1272 Argentina\n", + "1491 Armenia\n", + "1710 Antigua and Barbuda\n", + "1929 Australia\n", + "2148 Austria\n", + "2367 Azerbaijan\n", + "2586 Burundi\n", + "2805 Belgium\n", + "3024 Benin\n", + "3243 Burkina Faso\n", + "3462 Bangladesh\n", + "3681 Bulgaria\n", + "3900 Bahrain\n", + "4119 Bahamas\n", + "4338 Bosnia and Herzegovina\n", + "4557 Belarus\n", + "4776 Belize\n", + "5042 Bolivia\n", + "5261 Brazil\n", + "5480 Barbados\n", + "5699 Brunei\n", + "5918 Bhutan\n", + "6137 Botswana\n", + "6356 Central African Republic\n", + "6575 Canada\n", + " ... \n", + "35352 Sweden\n", + "35571 Swaziland\n", + "35790 Seychelles\n", + "36009 Syria\n", + "36228 Chad\n", + "36447 Togo\n", + "36666 Thailand\n", + "36885 Tajikistan\n", + "37104 Turkmenistan\n", + "37323 Timor-Leste\n", + "37542 Tonga\n", + "37761 Trinidad and Tobago\n", + "37980 Tunisia\n", + "38199 Turkey\n", + "38418 Taiwan\n", + "38635 Tanzania\n", + "38854 Uganda\n", + "39073 Ukraine\n", + "39292 Uruguay\n", + "39511 United States\n", + "39730 Uzbekistan\n", + "39949 St. Vincent and the Grenadines\n", + "40168 Venezuela\n", + "40387 Vietnam\n", + "40606 Vanuatu\n", + "40825 Samoa\n", + "41044 Yemen\n", + "41263 South Africa\n", + "41482 Zambia\n", + "41701 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "131 Aruba\n", + "350 Afghanistan\n", + "569 Angola\n", + "788 Albania\n", + "1054 United Arab Emirates\n", + "1273 Argentina\n", + "1492 Armenia\n", + "1711 Antigua and Barbuda\n", + "1930 Australia\n", + "2149 Austria\n", + "2368 Azerbaijan\n", + "2587 Burundi\n", + "2806 Belgium\n", + "3025 Benin\n", + "3244 Burkina Faso\n", + "3463 Bangladesh\n", + "3682 Bulgaria\n", + "3901 Bahrain\n", + "4120 Bahamas\n", + "4339 Bosnia and Herzegovina\n", + "4558 Belarus\n", + "4777 Belize\n", + "5043 Bolivia\n", + "5262 Brazil\n", + "5481 Barbados\n", + "5700 Brunei\n", + "5919 Bhutan\n", + "6138 Botswana\n", + "6357 Central African Republic\n", + "6576 Canada\n", + " ... \n", + "35353 Sweden\n", + "35572 Swaziland\n", + "35791 Seychelles\n", + "36010 Syria\n", + "36229 Chad\n", + "36448 Togo\n", + "36667 Thailand\n", + "36886 Tajikistan\n", + "37105 Turkmenistan\n", + "37324 Timor-Leste\n", + "37543 Tonga\n", + "37762 Trinidad and Tobago\n", + "37981 Tunisia\n", + "38200 Turkey\n", + "38419 Taiwan\n", + "38636 Tanzania\n", + "38855 Uganda\n", + "39074 Ukraine\n", + "39293 Uruguay\n", + "39512 United States\n", + "39731 Uzbekistan\n", + "39950 St. Vincent and the Grenadines\n", + "40169 Venezuela\n", + "40388 Vietnam\n", + "40607 Vanuatu\n", + "40826 Samoa\n", + "41045 Yemen\n", + "41264 South Africa\n", + "41483 Zambia\n", + "41702 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "132 Aruba\n", + "351 Afghanistan\n", + "570 Angola\n", + "789 Albania\n", + "1055 United Arab Emirates\n", + "1274 Argentina\n", + "1493 Armenia\n", + "1712 Antigua and Barbuda\n", + "1931 Australia\n", + "2150 Austria\n", + "2369 Azerbaijan\n", + "2588 Burundi\n", + "2807 Belgium\n", + "3026 Benin\n", + "3245 Burkina Faso\n", + "3464 Bangladesh\n", + "3683 Bulgaria\n", + "3902 Bahrain\n", + "4121 Bahamas\n", + "4340 Bosnia and Herzegovina\n", + "4559 Belarus\n", + "4778 Belize\n", + "5044 Bolivia\n", + "5263 Brazil\n", + "5482 Barbados\n", + "5701 Brunei\n", + "5920 Bhutan\n", + "6139 Botswana\n", + "6358 Central African Republic\n", + "6577 Canada\n", + " ... \n", + "35354 Sweden\n", + "35573 Swaziland\n", + "35792 Seychelles\n", + "36011 Syria\n", + "36230 Chad\n", + "36449 Togo\n", + "36668 Thailand\n", + "36887 Tajikistan\n", + "37106 Turkmenistan\n", + "37325 Timor-Leste\n", + "37544 Tonga\n", + "37763 Trinidad and Tobago\n", + "37982 Tunisia\n", + "38201 Turkey\n", + "38420 Taiwan\n", + "38637 Tanzania\n", + "38856 Uganda\n", + "39075 Ukraine\n", + "39294 Uruguay\n", + "39513 United States\n", + "39732 Uzbekistan\n", + "39951 St. Vincent and the Grenadines\n", + "40170 Venezuela\n", + "40389 Vietnam\n", + "40608 Vanuatu\n", + "40827 Samoa\n", + "41046 Yemen\n", + "41265 South Africa\n", + "41484 Zambia\n", + "41703 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "133 Aruba\n", + "352 Afghanistan\n", + "571 Angola\n", + "790 Albania\n", + "1056 United Arab Emirates\n", + "1275 Argentina\n", + "1494 Armenia\n", + "1713 Antigua and Barbuda\n", + "1932 Australia\n", + "2151 Austria\n", + "2370 Azerbaijan\n", + "2589 Burundi\n", + "2808 Belgium\n", + "3027 Benin\n", + "3246 Burkina Faso\n", + "3465 Bangladesh\n", + "3684 Bulgaria\n", + "3903 Bahrain\n", + "4122 Bahamas\n", + "4341 Bosnia and Herzegovina\n", + "4560 Belarus\n", + "4779 Belize\n", + "5045 Bolivia\n", + "5264 Brazil\n", + "5483 Barbados\n", + "5702 Brunei\n", + "5921 Bhutan\n", + "6140 Botswana\n", + "6359 Central African Republic\n", + "6578 Canada\n", + " ... \n", + "35355 Sweden\n", + "35574 Swaziland\n", + "35793 Seychelles\n", + "36012 Syria\n", + "36231 Chad\n", + "36450 Togo\n", + "36669 Thailand\n", + "36888 Tajikistan\n", + "37107 Turkmenistan\n", + "37326 Timor-Leste\n", + "37545 Tonga\n", + "37764 Trinidad and Tobago\n", + "37983 Tunisia\n", + "38202 Turkey\n", + "38421 Taiwan\n", + "38638 Tanzania\n", + "38857 Uganda\n", + "39076 Ukraine\n", + "39295 Uruguay\n", + "39514 United States\n", + "39733 Uzbekistan\n", + "39952 St. Vincent and the Grenadines\n", + "40171 Venezuela\n", + "40390 Vietnam\n", + "40609 Vanuatu\n", + "40828 Samoa\n", + "41047 Yemen\n", + "41266 South Africa\n", + "41485 Zambia\n", + "41704 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "134 Aruba\n", + "353 Afghanistan\n", + "572 Angola\n", + "791 Albania\n", + "1057 United Arab Emirates\n", + "1276 Argentina\n", + "1495 Armenia\n", + "1714 Antigua and Barbuda\n", + "1933 Australia\n", + "2152 Austria\n", + "2371 Azerbaijan\n", + "2590 Burundi\n", + "2809 Belgium\n", + "3028 Benin\n", + "3247 Burkina Faso\n", + "3466 Bangladesh\n", + "3685 Bulgaria\n", + "3904 Bahrain\n", + "4123 Bahamas\n", + "4342 Bosnia and Herzegovina\n", + "4561 Belarus\n", + "4780 Belize\n", + "5046 Bolivia\n", + "5265 Brazil\n", + "5484 Barbados\n", + "5703 Brunei\n", + "5922 Bhutan\n", + "6141 Botswana\n", + "6360 Central African Republic\n", + "6579 Canada\n", + " ... \n", + "35356 Sweden\n", + "35575 Swaziland\n", + "35794 Seychelles\n", + "36013 Syria\n", + "36232 Chad\n", + "36451 Togo\n", + "36670 Thailand\n", + "36889 Tajikistan\n", + "37108 Turkmenistan\n", + "37327 Timor-Leste\n", + "37546 Tonga\n", + "37765 Trinidad and Tobago\n", + "37984 Tunisia\n", + "38203 Turkey\n", + "38422 Taiwan\n", + "38639 Tanzania\n", + "38858 Uganda\n", + "39077 Ukraine\n", + "39296 Uruguay\n", + "39515 United States\n", + "39734 Uzbekistan\n", + "39953 St. Vincent and the Grenadines\n", + "40172 Venezuela\n", + "40391 Vietnam\n", + "40610 Vanuatu\n", + "40829 Samoa\n", + "41048 Yemen\n", + "41267 South Africa\n", + "41486 Zambia\n", + "41705 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "135 Aruba\n", + "354 Afghanistan\n", + "573 Angola\n", + "792 Albania\n", + "1058 United Arab Emirates\n", + "1277 Argentina\n", + "1496 Armenia\n", + "1715 Antigua and Barbuda\n", + "1934 Australia\n", + "2153 Austria\n", + "2372 Azerbaijan\n", + "2591 Burundi\n", + "2810 Belgium\n", + "3029 Benin\n", + "3248 Burkina Faso\n", + "3467 Bangladesh\n", + "3686 Bulgaria\n", + "3905 Bahrain\n", + "4124 Bahamas\n", + "4343 Bosnia and Herzegovina\n", + "4562 Belarus\n", + "4781 Belize\n", + "5047 Bolivia\n", + "5266 Brazil\n", + "5485 Barbados\n", + "5704 Brunei\n", + "5923 Bhutan\n", + "6142 Botswana\n", + "6361 Central African Republic\n", + "6580 Canada\n", + " ... \n", + "35357 Sweden\n", + "35576 Swaziland\n", + "35795 Seychelles\n", + "36014 Syria\n", + "36233 Chad\n", + "36452 Togo\n", + "36671 Thailand\n", + "36890 Tajikistan\n", + "37109 Turkmenistan\n", + "37328 Timor-Leste\n", + "37547 Tonga\n", + "37766 Trinidad and Tobago\n", + "37985 Tunisia\n", + "38204 Turkey\n", + "38423 Taiwan\n", + "38640 Tanzania\n", + "38859 Uganda\n", + "39078 Ukraine\n", + "39297 Uruguay\n", + "39516 United States\n", + "39735 Uzbekistan\n", + "39954 St. Vincent and the Grenadines\n", + "40173 Venezuela\n", + "40392 Vietnam\n", + "40611 Vanuatu\n", + "40830 Samoa\n", + "41049 Yemen\n", + "41268 South Africa\n", + "41487 Zambia\n", + "41706 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "136 Aruba\n", + "355 Afghanistan\n", + "574 Angola\n", + "793 Albania\n", + "1059 United Arab Emirates\n", + "1278 Argentina\n", + "1497 Armenia\n", + "1716 Antigua and Barbuda\n", + "1935 Australia\n", + "2154 Austria\n", + "2373 Azerbaijan\n", + "2592 Burundi\n", + "2811 Belgium\n", + "3030 Benin\n", + "3249 Burkina Faso\n", + "3468 Bangladesh\n", + "3687 Bulgaria\n", + "3906 Bahrain\n", + "4125 Bahamas\n", + "4344 Bosnia and Herzegovina\n", + "4563 Belarus\n", + "4782 Belize\n", + "5048 Bolivia\n", + "5267 Brazil\n", + "5486 Barbados\n", + "5705 Brunei\n", + "5924 Bhutan\n", + "6143 Botswana\n", + "6362 Central African Republic\n", + "6581 Canada\n", + " ... \n", + "35358 Sweden\n", + "35577 Swaziland\n", + "35796 Seychelles\n", + "36015 Syria\n", + "36234 Chad\n", + "36453 Togo\n", + "36672 Thailand\n", + "36891 Tajikistan\n", + "37110 Turkmenistan\n", + "37329 Timor-Leste\n", + "37548 Tonga\n", + "37767 Trinidad and Tobago\n", + "37986 Tunisia\n", + "38205 Turkey\n", + "38424 Taiwan\n", + "38641 Tanzania\n", + "38860 Uganda\n", + "39079 Ukraine\n", + "39298 Uruguay\n", + "39517 United States\n", + "39736 Uzbekistan\n", + "39955 St. Vincent and the Grenadines\n", + "40174 Venezuela\n", + "40393 Vietnam\n", + "40612 Vanuatu\n", + "40831 Samoa\n", + "41050 Yemen\n", + "41269 South Africa\n", + "41488 Zambia\n", + "41707 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "137 Aruba\n", + "356 Afghanistan\n", + "575 Angola\n", + "794 Albania\n", + "1060 United Arab Emirates\n", + "1279 Argentina\n", + "1498 Armenia\n", + "1717 Antigua and Barbuda\n", + "1936 Australia\n", + "2155 Austria\n", + "2374 Azerbaijan\n", + "2593 Burundi\n", + "2812 Belgium\n", + "3031 Benin\n", + "3250 Burkina Faso\n", + "3469 Bangladesh\n", + "3688 Bulgaria\n", + "3907 Bahrain\n", + "4126 Bahamas\n", + "4345 Bosnia and Herzegovina\n", + "4564 Belarus\n", + "4783 Belize\n", + "5049 Bolivia\n", + "5268 Brazil\n", + "5487 Barbados\n", + "5706 Brunei\n", + "5925 Bhutan\n", + "6144 Botswana\n", + "6363 Central African Republic\n", + "6582 Canada\n", + " ... \n", + "35359 Sweden\n", + "35578 Swaziland\n", + "35797 Seychelles\n", + "36016 Syria\n", + "36235 Chad\n", + "36454 Togo\n", + "36673 Thailand\n", + "36892 Tajikistan\n", + "37111 Turkmenistan\n", + "37330 Timor-Leste\n", + "37549 Tonga\n", + "37768 Trinidad and Tobago\n", + "37987 Tunisia\n", + "38206 Turkey\n", + "38425 Taiwan\n", + "38642 Tanzania\n", + "38861 Uganda\n", + "39080 Ukraine\n", + "39299 Uruguay\n", + "39518 United States\n", + "39737 Uzbekistan\n", + "39956 St. Vincent and the Grenadines\n", + "40175 Venezuela\n", + "40394 Vietnam\n", + "40613 Vanuatu\n", + "40832 Samoa\n", + "41051 Yemen\n", + "41270 South Africa\n", + "41489 Zambia\n", + "41708 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "138 Aruba\n", + "357 Afghanistan\n", + "576 Angola\n", + "795 Albania\n", + "1061 United Arab Emirates\n", + "1280 Argentina\n", + "1499 Armenia\n", + "1718 Antigua and Barbuda\n", + "1937 Australia\n", + "2156 Austria\n", + "2375 Azerbaijan\n", + "2594 Burundi\n", + "2813 Belgium\n", + "3032 Benin\n", + "3251 Burkina Faso\n", + "3470 Bangladesh\n", + "3689 Bulgaria\n", + "3908 Bahrain\n", + "4127 Bahamas\n", + "4346 Bosnia and Herzegovina\n", + "4565 Belarus\n", + "4784 Belize\n", + "5050 Bolivia\n", + "5269 Brazil\n", + "5488 Barbados\n", + "5707 Brunei\n", + "5926 Bhutan\n", + "6145 Botswana\n", + "6364 Central African Republic\n", + "6583 Canada\n", + " ... \n", + "35360 Sweden\n", + "35579 Swaziland\n", + "35798 Seychelles\n", + "36017 Syria\n", + "36236 Chad\n", + "36455 Togo\n", + "36674 Thailand\n", + "36893 Tajikistan\n", + "37112 Turkmenistan\n", + "37331 Timor-Leste\n", + "37550 Tonga\n", + "37769 Trinidad and Tobago\n", + "37988 Tunisia\n", + "38207 Turkey\n", + "38426 Taiwan\n", + "38643 Tanzania\n", + "38862 Uganda\n", + "39081 Ukraine\n", + "39300 Uruguay\n", + "39519 United States\n", + "39738 Uzbekistan\n", + "39957 St. Vincent and the Grenadines\n", + "40176 Venezuela\n", + "40395 Vietnam\n", + "40614 Vanuatu\n", + "40833 Samoa\n", + "41052 Yemen\n", + "41271 South Africa\n", + "41490 Zambia\n", + "41709 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "139 Aruba\n", + "358 Afghanistan\n", + "577 Angola\n", + "796 Albania\n", + "1062 United Arab Emirates\n", + "1281 Argentina\n", + "1500 Armenia\n", + "1719 Antigua and Barbuda\n", + "1938 Australia\n", + "2157 Austria\n", + "2376 Azerbaijan\n", + "2595 Burundi\n", + "2814 Belgium\n", + "3033 Benin\n", + "3252 Burkina Faso\n", + "3471 Bangladesh\n", + "3690 Bulgaria\n", + "3909 Bahrain\n", + "4128 Bahamas\n", + "4347 Bosnia and Herzegovina\n", + "4566 Belarus\n", + "4785 Belize\n", + "5051 Bolivia\n", + "5270 Brazil\n", + "5489 Barbados\n", + "5708 Brunei\n", + "5927 Bhutan\n", + "6146 Botswana\n", + "6365 Central African Republic\n", + "6584 Canada\n", + " ... \n", + "35361 Sweden\n", + "35580 Swaziland\n", + "35799 Seychelles\n", + "36018 Syria\n", + "36237 Chad\n", + "36456 Togo\n", + "36675 Thailand\n", + "36894 Tajikistan\n", + "37113 Turkmenistan\n", + "37332 Timor-Leste\n", + "37551 Tonga\n", + "37770 Trinidad and Tobago\n", + "37989 Tunisia\n", + "38208 Turkey\n", + "38427 Taiwan\n", + "38644 Tanzania\n", + "38863 Uganda\n", + "39082 Ukraine\n", + "39301 Uruguay\n", + "39520 United States\n", + "39739 Uzbekistan\n", + "39958 St. Vincent and the Grenadines\n", + "40177 Venezuela\n", + "40396 Vietnam\n", + "40615 Vanuatu\n", + "40834 Samoa\n", + "41053 Yemen\n", + "41272 South Africa\n", + "41491 Zambia\n", + "41710 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "140 Aruba\n", + "359 Afghanistan\n", + "578 Angola\n", + "797 Albania\n", + "1063 United Arab Emirates\n", + "1282 Argentina\n", + "1501 Armenia\n", + "1720 Antigua and Barbuda\n", + "1939 Australia\n", + "2158 Austria\n", + "2377 Azerbaijan\n", + "2596 Burundi\n", + "2815 Belgium\n", + "3034 Benin\n", + "3253 Burkina Faso\n", + "3472 Bangladesh\n", + "3691 Bulgaria\n", + "3910 Bahrain\n", + "4129 Bahamas\n", + "4348 Bosnia and Herzegovina\n", + "4567 Belarus\n", + "4786 Belize\n", + "5052 Bolivia\n", + "5271 Brazil\n", + "5490 Barbados\n", + "5709 Brunei\n", + "5928 Bhutan\n", + "6147 Botswana\n", + "6366 Central African Republic\n", + "6585 Canada\n", + " ... \n", + "35362 Sweden\n", + "35581 Swaziland\n", + "35800 Seychelles\n", + "36019 Syria\n", + "36238 Chad\n", + "36457 Togo\n", + "36676 Thailand\n", + "36895 Tajikistan\n", + "37114 Turkmenistan\n", + "37333 Timor-Leste\n", + "37552 Tonga\n", + "37771 Trinidad and Tobago\n", + "37990 Tunisia\n", + "38209 Turkey\n", + "38428 Taiwan\n", + "38645 Tanzania\n", + "38864 Uganda\n", + "39083 Ukraine\n", + "39302 Uruguay\n", + "39521 United States\n", + "39740 Uzbekistan\n", + "39959 St. Vincent and the Grenadines\n", + "40178 Venezuela\n", + "40397 Vietnam\n", + "40616 Vanuatu\n", + "40835 Samoa\n", + "41054 Yemen\n", + "41273 South Africa\n", + "41492 Zambia\n", + "41711 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "141 Aruba\n", + "360 Afghanistan\n", + "579 Angola\n", + "798 Albania\n", + "1064 United Arab Emirates\n", + "1283 Argentina\n", + "1502 Armenia\n", + "1721 Antigua and Barbuda\n", + "1940 Australia\n", + "2159 Austria\n", + "2378 Azerbaijan\n", + "2597 Burundi\n", + "2816 Belgium\n", + "3035 Benin\n", + "3254 Burkina Faso\n", + "3473 Bangladesh\n", + "3692 Bulgaria\n", + "3911 Bahrain\n", + "4130 Bahamas\n", + "4349 Bosnia and Herzegovina\n", + "4568 Belarus\n", + "4787 Belize\n", + "5053 Bolivia\n", + "5272 Brazil\n", + "5491 Barbados\n", + "5710 Brunei\n", + "5929 Bhutan\n", + "6148 Botswana\n", + "6367 Central African Republic\n", + "6586 Canada\n", + " ... \n", + "35363 Sweden\n", + "35582 Swaziland\n", + "35801 Seychelles\n", + "36020 Syria\n", + "36239 Chad\n", + "36458 Togo\n", + "36677 Thailand\n", + "36896 Tajikistan\n", + "37115 Turkmenistan\n", + "37334 Timor-Leste\n", + "37553 Tonga\n", + "37772 Trinidad and Tobago\n", + "37991 Tunisia\n", + "38210 Turkey\n", + "38429 Taiwan\n", + "38646 Tanzania\n", + "38865 Uganda\n", + "39084 Ukraine\n", + "39303 Uruguay\n", + "39522 United States\n", + "39741 Uzbekistan\n", + "39960 St. Vincent and the Grenadines\n", + "40179 Venezuela\n", + "40398 Vietnam\n", + "40617 Vanuatu\n", + "40836 Samoa\n", + "41055 Yemen\n", + "41274 South Africa\n", + "41493 Zambia\n", + "41712 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "142 Aruba\n", + "361 Afghanistan\n", + "580 Angola\n", + "799 Albania\n", + "1065 United Arab Emirates\n", + "1284 Argentina\n", + "1503 Armenia\n", + "1722 Antigua and Barbuda\n", + "1941 Australia\n", + "2160 Austria\n", + "2379 Azerbaijan\n", + "2598 Burundi\n", + "2817 Belgium\n", + "3036 Benin\n", + "3255 Burkina Faso\n", + "3474 Bangladesh\n", + "3693 Bulgaria\n", + "3912 Bahrain\n", + "4131 Bahamas\n", + "4350 Bosnia and Herzegovina\n", + "4569 Belarus\n", + "4788 Belize\n", + "5054 Bolivia\n", + "5273 Brazil\n", + "5492 Barbados\n", + "5711 Brunei\n", + "5930 Bhutan\n", + "6149 Botswana\n", + "6368 Central African Republic\n", + "6587 Canada\n", + " ... \n", + "35364 Sweden\n", + "35583 Swaziland\n", + "35802 Seychelles\n", + "36021 Syria\n", + "36240 Chad\n", + "36459 Togo\n", + "36678 Thailand\n", + "36897 Tajikistan\n", + "37116 Turkmenistan\n", + "37335 Timor-Leste\n", + "37554 Tonga\n", + "37773 Trinidad and Tobago\n", + "37992 Tunisia\n", + "38211 Turkey\n", + "38430 Taiwan\n", + "38647 Tanzania\n", + "38866 Uganda\n", + "39085 Ukraine\n", + "39304 Uruguay\n", + "39523 United States\n", + "39742 Uzbekistan\n", + "39961 St. Vincent and the Grenadines\n", + "40180 Venezuela\n", + "40399 Vietnam\n", + "40618 Vanuatu\n", + "40837 Samoa\n", + "41056 Yemen\n", + "41275 South Africa\n", + "41494 Zambia\n", + "41713 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "143 Aruba\n", + "362 Afghanistan\n", + "581 Angola\n", + "800 Albania\n", + "1066 United Arab Emirates\n", + "1285 Argentina\n", + "1504 Armenia\n", + "1723 Antigua and Barbuda\n", + "1942 Australia\n", + "2161 Austria\n", + "2380 Azerbaijan\n", + "2599 Burundi\n", + "2818 Belgium\n", + "3037 Benin\n", + "3256 Burkina Faso\n", + "3475 Bangladesh\n", + "3694 Bulgaria\n", + "3913 Bahrain\n", + "4132 Bahamas\n", + "4351 Bosnia and Herzegovina\n", + "4570 Belarus\n", + "4789 Belize\n", + "5055 Bolivia\n", + "5274 Brazil\n", + "5493 Barbados\n", + "5712 Brunei\n", + "5931 Bhutan\n", + "6150 Botswana\n", + "6369 Central African Republic\n", + "6588 Canada\n", + " ... \n", + "35365 Sweden\n", + "35584 Swaziland\n", + "35803 Seychelles\n", + "36022 Syria\n", + "36241 Chad\n", + "36460 Togo\n", + "36679 Thailand\n", + "36898 Tajikistan\n", + "37117 Turkmenistan\n", + "37336 Timor-Leste\n", + "37555 Tonga\n", + "37774 Trinidad and Tobago\n", + "37993 Tunisia\n", + "38212 Turkey\n", + "38431 Taiwan\n", + "38648 Tanzania\n", + "38867 Uganda\n", + "39086 Ukraine\n", + "39305 Uruguay\n", + "39524 United States\n", + "39743 Uzbekistan\n", + "39962 St. Vincent and the Grenadines\n", + "40181 Venezuela\n", + "40400 Vietnam\n", + "40619 Vanuatu\n", + "40838 Samoa\n", + "41057 Yemen\n", + "41276 South Africa\n", + "41495 Zambia\n", + "41714 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "144 Aruba\n", + "363 Afghanistan\n", + "582 Angola\n", + "801 Albania\n", + "1067 United Arab Emirates\n", + "1286 Argentina\n", + "1505 Armenia\n", + "1724 Antigua and Barbuda\n", + "1943 Australia\n", + "2162 Austria\n", + "2381 Azerbaijan\n", + "2600 Burundi\n", + "2819 Belgium\n", + "3038 Benin\n", + "3257 Burkina Faso\n", + "3476 Bangladesh\n", + "3695 Bulgaria\n", + "3914 Bahrain\n", + "4133 Bahamas\n", + "4352 Bosnia and Herzegovina\n", + "4571 Belarus\n", + "4790 Belize\n", + "5056 Bolivia\n", + "5275 Brazil\n", + "5494 Barbados\n", + "5713 Brunei\n", + "5932 Bhutan\n", + "6151 Botswana\n", + "6370 Central African Republic\n", + "6589 Canada\n", + " ... \n", + "35366 Sweden\n", + "35585 Swaziland\n", + "35804 Seychelles\n", + "36023 Syria\n", + "36242 Chad\n", + "36461 Togo\n", + "36680 Thailand\n", + "36899 Tajikistan\n", + "37118 Turkmenistan\n", + "37337 Timor-Leste\n", + "37556 Tonga\n", + "37775 Trinidad and Tobago\n", + "37994 Tunisia\n", + "38213 Turkey\n", + "38432 Taiwan\n", + "38649 Tanzania\n", + "38868 Uganda\n", + "39087 Ukraine\n", + "39306 Uruguay\n", + "39525 United States\n", + "39744 Uzbekistan\n", + "39963 St. Vincent and the Grenadines\n", + "40182 Venezuela\n", + "40401 Vietnam\n", + "40620 Vanuatu\n", + "40839 Samoa\n", + "41058 Yemen\n", + "41277 South Africa\n", + "41496 Zambia\n", + "41715 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "145 Aruba\n", + "364 Afghanistan\n", + "583 Angola\n", + "802 Albania\n", + "1068 United Arab Emirates\n", + "1287 Argentina\n", + "1506 Armenia\n", + "1725 Antigua and Barbuda\n", + "1944 Australia\n", + "2163 Austria\n", + "2382 Azerbaijan\n", + "2601 Burundi\n", + "2820 Belgium\n", + "3039 Benin\n", + "3258 Burkina Faso\n", + "3477 Bangladesh\n", + "3696 Bulgaria\n", + "3915 Bahrain\n", + "4134 Bahamas\n", + "4353 Bosnia and Herzegovina\n", + "4572 Belarus\n", + "4791 Belize\n", + "5057 Bolivia\n", + "5276 Brazil\n", + "5495 Barbados\n", + "5714 Brunei\n", + "5933 Bhutan\n", + "6152 Botswana\n", + "6371 Central African Republic\n", + "6590 Canada\n", + " ... \n", + "35367 Sweden\n", + "35586 Swaziland\n", + "35805 Seychelles\n", + "36024 Syria\n", + "36243 Chad\n", + "36462 Togo\n", + "36681 Thailand\n", + "36900 Tajikistan\n", + "37119 Turkmenistan\n", + "37338 Timor-Leste\n", + "37557 Tonga\n", + "37776 Trinidad and Tobago\n", + "37995 Tunisia\n", + "38214 Turkey\n", + "38433 Taiwan\n", + "38650 Tanzania\n", + "38869 Uganda\n", + "39088 Ukraine\n", + "39307 Uruguay\n", + "39526 United States\n", + "39745 Uzbekistan\n", + "39964 St. Vincent and the Grenadines\n", + "40183 Venezuela\n", + "40402 Vietnam\n", + "40621 Vanuatu\n", + "40840 Samoa\n", + "41059 Yemen\n", + "41278 South Africa\n", + "41497 Zambia\n", + "41716 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "146 Aruba\n", + "365 Afghanistan\n", + "584 Angola\n", + "803 Albania\n", + "1069 United Arab Emirates\n", + "1288 Argentina\n", + "1507 Armenia\n", + "1726 Antigua and Barbuda\n", + "1945 Australia\n", + "2164 Austria\n", + "2383 Azerbaijan\n", + "2602 Burundi\n", + "2821 Belgium\n", + "3040 Benin\n", + "3259 Burkina Faso\n", + "3478 Bangladesh\n", + "3697 Bulgaria\n", + "3916 Bahrain\n", + "4135 Bahamas\n", + "4354 Bosnia and Herzegovina\n", + "4573 Belarus\n", + "4792 Belize\n", + "5058 Bolivia\n", + "5277 Brazil\n", + "5496 Barbados\n", + "5715 Brunei\n", + "5934 Bhutan\n", + "6153 Botswana\n", + "6372 Central African Republic\n", + "6591 Canada\n", + " ... \n", + "35368 Sweden\n", + "35587 Swaziland\n", + "35806 Seychelles\n", + "36025 Syria\n", + "36244 Chad\n", + "36463 Togo\n", + "36682 Thailand\n", + "36901 Tajikistan\n", + "37120 Turkmenistan\n", + "37339 Timor-Leste\n", + "37558 Tonga\n", + "37777 Trinidad and Tobago\n", + "37996 Tunisia\n", + "38215 Turkey\n", + "38434 Taiwan\n", + "38651 Tanzania\n", + "38870 Uganda\n", + "39089 Ukraine\n", + "39308 Uruguay\n", + "39527 United States\n", + "39746 Uzbekistan\n", + "39965 St. Vincent and the Grenadines\n", + "40184 Venezuela\n", + "40403 Vietnam\n", + "40622 Vanuatu\n", + "40841 Samoa\n", + "41060 Yemen\n", + "41279 South Africa\n", + "41498 Zambia\n", + "41717 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "147 Aruba\n", + "366 Afghanistan\n", + "585 Angola\n", + "804 Albania\n", + "1070 United Arab Emirates\n", + "1289 Argentina\n", + "1508 Armenia\n", + "1727 Antigua and Barbuda\n", + "1946 Australia\n", + "2165 Austria\n", + "2384 Azerbaijan\n", + "2603 Burundi\n", + "2822 Belgium\n", + "3041 Benin\n", + "3260 Burkina Faso\n", + "3479 Bangladesh\n", + "3698 Bulgaria\n", + "3917 Bahrain\n", + "4136 Bahamas\n", + "4355 Bosnia and Herzegovina\n", + "4574 Belarus\n", + "4793 Belize\n", + "5059 Bolivia\n", + "5278 Brazil\n", + "5497 Barbados\n", + "5716 Brunei\n", + "5935 Bhutan\n", + "6154 Botswana\n", + "6373 Central African Republic\n", + "6592 Canada\n", + " ... \n", + "35369 Sweden\n", + "35588 Swaziland\n", + "35807 Seychelles\n", + "36026 Syria\n", + "36245 Chad\n", + "36464 Togo\n", + "36683 Thailand\n", + "36902 Tajikistan\n", + "37121 Turkmenistan\n", + "37340 Timor-Leste\n", + "37559 Tonga\n", + "37778 Trinidad and Tobago\n", + "37997 Tunisia\n", + "38216 Turkey\n", + "38435 Taiwan\n", + "38652 Tanzania\n", + "38871 Uganda\n", + "39090 Ukraine\n", + "39309 Uruguay\n", + "39528 United States\n", + "39747 Uzbekistan\n", + "39966 St. Vincent and the Grenadines\n", + "40185 Venezuela\n", + "40404 Vietnam\n", + "40623 Vanuatu\n", + "40842 Samoa\n", + "41061 Yemen\n", + "41280 South Africa\n", + "41499 Zambia\n", + "41718 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "148 Aruba\n", + "367 Afghanistan\n", + "586 Angola\n", + "805 Albania\n", + "1071 United Arab Emirates\n", + "1290 Argentina\n", + "1509 Armenia\n", + "1728 Antigua and Barbuda\n", + "1947 Australia\n", + "2166 Austria\n", + "2385 Azerbaijan\n", + "2604 Burundi\n", + "2823 Belgium\n", + "3042 Benin\n", + "3261 Burkina Faso\n", + "3480 Bangladesh\n", + "3699 Bulgaria\n", + "3918 Bahrain\n", + "4137 Bahamas\n", + "4356 Bosnia and Herzegovina\n", + "4575 Belarus\n", + "4794 Belize\n", + "5060 Bolivia\n", + "5279 Brazil\n", + "5498 Barbados\n", + "5717 Brunei\n", + "5936 Bhutan\n", + "6155 Botswana\n", + "6374 Central African Republic\n", + "6593 Canada\n", + " ... \n", + "35370 Sweden\n", + "35589 Swaziland\n", + "35808 Seychelles\n", + "36027 Syria\n", + "36246 Chad\n", + "36465 Togo\n", + "36684 Thailand\n", + "36903 Tajikistan\n", + "37122 Turkmenistan\n", + "37341 Timor-Leste\n", + "37560 Tonga\n", + "37779 Trinidad and Tobago\n", + "37998 Tunisia\n", + "38217 Turkey\n", + "38436 Taiwan\n", + "38653 Tanzania\n", + "38872 Uganda\n", + "39091 Ukraine\n", + "39310 Uruguay\n", + "39529 United States\n", + "39748 Uzbekistan\n", + "39967 St. Vincent and the Grenadines\n", + "40186 Venezuela\n", + "40405 Vietnam\n", + "40624 Vanuatu\n", + "40843 Samoa\n", + "41062 Yemen\n", + "41281 South Africa\n", + "41500 Zambia\n", + "41719 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "149 Aruba\n", + "368 Afghanistan\n", + "587 Angola\n", + "806 Albania\n", + "1072 United Arab Emirates\n", + "1291 Argentina\n", + "1510 Armenia\n", + "1729 Antigua and Barbuda\n", + "1948 Australia\n", + "2167 Austria\n", + "2386 Azerbaijan\n", + "2605 Burundi\n", + "2824 Belgium\n", + "3043 Benin\n", + "3262 Burkina Faso\n", + "3481 Bangladesh\n", + "3700 Bulgaria\n", + "3919 Bahrain\n", + "4138 Bahamas\n", + "4357 Bosnia and Herzegovina\n", + "4576 Belarus\n", + "4795 Belize\n", + "5061 Bolivia\n", + "5280 Brazil\n", + "5499 Barbados\n", + "5718 Brunei\n", + "5937 Bhutan\n", + "6156 Botswana\n", + "6375 Central African Republic\n", + "6594 Canada\n", + " ... \n", + "35371 Sweden\n", + "35590 Swaziland\n", + "35809 Seychelles\n", + "36028 Syria\n", + "36247 Chad\n", + "36466 Togo\n", + "36685 Thailand\n", + "36904 Tajikistan\n", + "37123 Turkmenistan\n", + "37342 Timor-Leste\n", + "37561 Tonga\n", + "37780 Trinidad and Tobago\n", + "37999 Tunisia\n", + "38218 Turkey\n", + "38437 Taiwan\n", + "38654 Tanzania\n", + "38873 Uganda\n", + "39092 Ukraine\n", + "39311 Uruguay\n", + "39530 United States\n", + "39749 Uzbekistan\n", + "39968 St. Vincent and the Grenadines\n", + "40187 Venezuela\n", + "40406 Vietnam\n", + "40625 Vanuatu\n", + "40844 Samoa\n", + "41063 Yemen\n", + "41282 South Africa\n", + "41501 Zambia\n", + "41720 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "150 Aruba\n", + "369 Afghanistan\n", + "588 Angola\n", + "807 Albania\n", + "1073 United Arab Emirates\n", + "1292 Argentina\n", + "1511 Armenia\n", + "1730 Antigua and Barbuda\n", + "1949 Australia\n", + "2168 Austria\n", + "2387 Azerbaijan\n", + "2606 Burundi\n", + "2825 Belgium\n", + "3044 Benin\n", + "3263 Burkina Faso\n", + "3482 Bangladesh\n", + "3701 Bulgaria\n", + "3920 Bahrain\n", + "4139 Bahamas\n", + "4358 Bosnia and Herzegovina\n", + "4577 Belarus\n", + "4796 Belize\n", + "5062 Bolivia\n", + "5281 Brazil\n", + "5500 Barbados\n", + "5719 Brunei\n", + "5938 Bhutan\n", + "6157 Botswana\n", + "6376 Central African Republic\n", + "6595 Canada\n", + " ... \n", + "35372 Sweden\n", + "35591 Swaziland\n", + "35810 Seychelles\n", + "36029 Syria\n", + "36248 Chad\n", + "36467 Togo\n", + "36686 Thailand\n", + "36905 Tajikistan\n", + "37124 Turkmenistan\n", + "37343 Timor-Leste\n", + "37562 Tonga\n", + "37781 Trinidad and Tobago\n", + "38000 Tunisia\n", + "38219 Turkey\n", + "38438 Taiwan\n", + "38655 Tanzania\n", + "38874 Uganda\n", + "39093 Ukraine\n", + "39312 Uruguay\n", + "39531 United States\n", + "39750 Uzbekistan\n", + "39969 St. Vincent and the Grenadines\n", + "40188 Venezuela\n", + "40407 Vietnam\n", + "40626 Vanuatu\n", + "40845 Samoa\n", + "41064 Yemen\n", + "41283 South Africa\n", + "41502 Zambia\n", + "41721 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "151 Aruba\n", + "370 Afghanistan\n", + "589 Angola\n", + "808 Albania\n", + "1074 United Arab Emirates\n", + "1293 Argentina\n", + "1512 Armenia\n", + "1731 Antigua and Barbuda\n", + "1950 Australia\n", + "2169 Austria\n", + "2388 Azerbaijan\n", + "2607 Burundi\n", + "2826 Belgium\n", + "3045 Benin\n", + "3264 Burkina Faso\n", + "3483 Bangladesh\n", + "3702 Bulgaria\n", + "3921 Bahrain\n", + "4140 Bahamas\n", + "4359 Bosnia and Herzegovina\n", + "4578 Belarus\n", + "4797 Belize\n", + "5063 Bolivia\n", + "5282 Brazil\n", + "5501 Barbados\n", + "5720 Brunei\n", + "5939 Bhutan\n", + "6158 Botswana\n", + "6377 Central African Republic\n", + "6596 Canada\n", + " ... \n", + "35373 Sweden\n", + "35592 Swaziland\n", + "35811 Seychelles\n", + "36030 Syria\n", + "36249 Chad\n", + "36468 Togo\n", + "36687 Thailand\n", + "36906 Tajikistan\n", + "37125 Turkmenistan\n", + "37344 Timor-Leste\n", + "37563 Tonga\n", + "37782 Trinidad and Tobago\n", + "38001 Tunisia\n", + "38220 Turkey\n", + "38439 Taiwan\n", + "38656 Tanzania\n", + "38875 Uganda\n", + "39094 Ukraine\n", + "39313 Uruguay\n", + "39532 United States\n", + "39751 Uzbekistan\n", + "39970 St. Vincent and the Grenadines\n", + "40189 Venezuela\n", + "40408 Vietnam\n", + "40627 Vanuatu\n", + "40846 Samoa\n", + "41065 Yemen\n", + "41284 South Africa\n", + "41503 Zambia\n", + "41722 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "152 Aruba\n", + "371 Afghanistan\n", + "590 Angola\n", + "809 Albania\n", + "1075 United Arab Emirates\n", + "1294 Argentina\n", + "1513 Armenia\n", + "1732 Antigua and Barbuda\n", + "1951 Australia\n", + "2170 Austria\n", + "2389 Azerbaijan\n", + "2608 Burundi\n", + "2827 Belgium\n", + "3046 Benin\n", + "3265 Burkina Faso\n", + "3484 Bangladesh\n", + "3703 Bulgaria\n", + "3922 Bahrain\n", + "4141 Bahamas\n", + "4360 Bosnia and Herzegovina\n", + "4579 Belarus\n", + "4798 Belize\n", + "5064 Bolivia\n", + "5283 Brazil\n", + "5502 Barbados\n", + "5721 Brunei\n", + "5940 Bhutan\n", + "6159 Botswana\n", + "6378 Central African Republic\n", + "6597 Canada\n", + " ... \n", + "35374 Sweden\n", + "35593 Swaziland\n", + "35812 Seychelles\n", + "36031 Syria\n", + "36250 Chad\n", + "36469 Togo\n", + "36688 Thailand\n", + "36907 Tajikistan\n", + "37126 Turkmenistan\n", + "37345 Timor-Leste\n", + "37564 Tonga\n", + "37783 Trinidad and Tobago\n", + "38002 Tunisia\n", + "38221 Turkey\n", + "38440 Taiwan\n", + "38657 Tanzania\n", + "38876 Uganda\n", + "39095 Ukraine\n", + "39314 Uruguay\n", + "39533 United States\n", + "39752 Uzbekistan\n", + "39971 St. Vincent and the Grenadines\n", + "40190 Venezuela\n", + "40409 Vietnam\n", + "40628 Vanuatu\n", + "40847 Samoa\n", + "41066 Yemen\n", + "41285 South Africa\n", + "41504 Zambia\n", + "41723 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "153 Aruba\n", + "372 Afghanistan\n", + "591 Angola\n", + "810 Albania\n", + "1076 United Arab Emirates\n", + "1295 Argentina\n", + "1514 Armenia\n", + "1733 Antigua and Barbuda\n", + "1952 Australia\n", + "2171 Austria\n", + "2390 Azerbaijan\n", + "2609 Burundi\n", + "2828 Belgium\n", + "3047 Benin\n", + "3266 Burkina Faso\n", + "3485 Bangladesh\n", + "3704 Bulgaria\n", + "3923 Bahrain\n", + "4142 Bahamas\n", + "4361 Bosnia and Herzegovina\n", + "4580 Belarus\n", + "4799 Belize\n", + "5065 Bolivia\n", + "5284 Brazil\n", + "5503 Barbados\n", + "5722 Brunei\n", + "5941 Bhutan\n", + "6160 Botswana\n", + "6379 Central African Republic\n", + "6598 Canada\n", + " ... \n", + "35375 Sweden\n", + "35594 Swaziland\n", + "35813 Seychelles\n", + "36032 Syria\n", + "36251 Chad\n", + "36470 Togo\n", + "36689 Thailand\n", + "36908 Tajikistan\n", + "37127 Turkmenistan\n", + "37346 Timor-Leste\n", + "37565 Tonga\n", + "37784 Trinidad and Tobago\n", + "38003 Tunisia\n", + "38222 Turkey\n", + "38441 Taiwan\n", + "38658 Tanzania\n", + "38877 Uganda\n", + "39096 Ukraine\n", + "39315 Uruguay\n", + "39534 United States\n", + "39753 Uzbekistan\n", + "39972 St. Vincent and the Grenadines\n", + "40191 Venezuela\n", + "40410 Vietnam\n", + "40629 Vanuatu\n", + "40848 Samoa\n", + "41067 Yemen\n", + "41286 South Africa\n", + "41505 Zambia\n", + "41724 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "154 Aruba\n", + "373 Afghanistan\n", + "592 Angola\n", + "811 Albania\n", + "1077 United Arab Emirates\n", + "1296 Argentina\n", + "1515 Armenia\n", + "1734 Antigua and Barbuda\n", + "1953 Australia\n", + "2172 Austria\n", + "2391 Azerbaijan\n", + "2610 Burundi\n", + "2829 Belgium\n", + "3048 Benin\n", + "3267 Burkina Faso\n", + "3486 Bangladesh\n", + "3705 Bulgaria\n", + "3924 Bahrain\n", + "4143 Bahamas\n", + "4362 Bosnia and Herzegovina\n", + "4581 Belarus\n", + "4800 Belize\n", + "5066 Bolivia\n", + "5285 Brazil\n", + "5504 Barbados\n", + "5723 Brunei\n", + "5942 Bhutan\n", + "6161 Botswana\n", + "6380 Central African Republic\n", + "6599 Canada\n", + " ... \n", + "35376 Sweden\n", + "35595 Swaziland\n", + "35814 Seychelles\n", + "36033 Syria\n", + "36252 Chad\n", + "36471 Togo\n", + "36690 Thailand\n", + "36909 Tajikistan\n", + "37128 Turkmenistan\n", + "37347 Timor-Leste\n", + "37566 Tonga\n", + "37785 Trinidad and Tobago\n", + "38004 Tunisia\n", + "38223 Turkey\n", + "38442 Taiwan\n", + "38659 Tanzania\n", + "38878 Uganda\n", + "39097 Ukraine\n", + "39316 Uruguay\n", + "39535 United States\n", + "39754 Uzbekistan\n", + "39973 St. Vincent and the Grenadines\n", + "40192 Venezuela\n", + "40411 Vietnam\n", + "40630 Vanuatu\n", + "40849 Samoa\n", + "41068 Yemen\n", + "41287 South Africa\n", + "41506 Zambia\n", + "41725 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "155 Aruba\n", + "374 Afghanistan\n", + "593 Angola\n", + "812 Albania\n", + "1078 United Arab Emirates\n", + "1297 Argentina\n", + "1516 Armenia\n", + "1735 Antigua and Barbuda\n", + "1954 Australia\n", + "2173 Austria\n", + "2392 Azerbaijan\n", + "2611 Burundi\n", + "2830 Belgium\n", + "3049 Benin\n", + "3268 Burkina Faso\n", + "3487 Bangladesh\n", + "3706 Bulgaria\n", + "3925 Bahrain\n", + "4144 Bahamas\n", + "4363 Bosnia and Herzegovina\n", + "4582 Belarus\n", + "4801 Belize\n", + "5067 Bolivia\n", + "5286 Brazil\n", + "5505 Barbados\n", + "5724 Brunei\n", + "5943 Bhutan\n", + "6162 Botswana\n", + "6381 Central African Republic\n", + "6600 Canada\n", + " ... \n", + "35377 Sweden\n", + "35596 Swaziland\n", + "35815 Seychelles\n", + "36034 Syria\n", + "36253 Chad\n", + "36472 Togo\n", + "36691 Thailand\n", + "36910 Tajikistan\n", + "37129 Turkmenistan\n", + "37348 Timor-Leste\n", + "37567 Tonga\n", + "37786 Trinidad and Tobago\n", + "38005 Tunisia\n", + "38224 Turkey\n", + "38443 Taiwan\n", + "38660 Tanzania\n", + "38879 Uganda\n", + "39098 Ukraine\n", + "39317 Uruguay\n", + "39536 United States\n", + "39755 Uzbekistan\n", + "39974 St. Vincent and the Grenadines\n", + "40193 Venezuela\n", + "40412 Vietnam\n", + "40631 Vanuatu\n", + "40850 Samoa\n", + "41069 Yemen\n", + "41288 South Africa\n", + "41507 Zambia\n", + "41726 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "156 Aruba\n", + "375 Afghanistan\n", + "594 Angola\n", + "813 Albania\n", + "1079 United Arab Emirates\n", + "1298 Argentina\n", + "1517 Armenia\n", + "1736 Antigua and Barbuda\n", + "1955 Australia\n", + "2174 Austria\n", + "2393 Azerbaijan\n", + "2612 Burundi\n", + "2831 Belgium\n", + "3050 Benin\n", + "3269 Burkina Faso\n", + "3488 Bangladesh\n", + "3707 Bulgaria\n", + "3926 Bahrain\n", + "4145 Bahamas\n", + "4364 Bosnia and Herzegovina\n", + "4583 Belarus\n", + "4802 Belize\n", + "5068 Bolivia\n", + "5287 Brazil\n", + "5506 Barbados\n", + "5725 Brunei\n", + "5944 Bhutan\n", + "6163 Botswana\n", + "6382 Central African Republic\n", + "6601 Canada\n", + " ... \n", + "35378 Sweden\n", + "35597 Swaziland\n", + "35816 Seychelles\n", + "36035 Syria\n", + "36254 Chad\n", + "36473 Togo\n", + "36692 Thailand\n", + "36911 Tajikistan\n", + "37130 Turkmenistan\n", + "37349 Timor-Leste\n", + "37568 Tonga\n", + "37787 Trinidad and Tobago\n", + "38006 Tunisia\n", + "38225 Turkey\n", + "38444 Taiwan\n", + "38661 Tanzania\n", + "38880 Uganda\n", + "39099 Ukraine\n", + "39318 Uruguay\n", + "39537 United States\n", + "39756 Uzbekistan\n", + "39975 St. Vincent and the Grenadines\n", + "40194 Venezuela\n", + "40413 Vietnam\n", + "40632 Vanuatu\n", + "40851 Samoa\n", + "41070 Yemen\n", + "41289 South Africa\n", + "41508 Zambia\n", + "41727 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "157 Aruba\n", + "376 Afghanistan\n", + "595 Angola\n", + "814 Albania\n", + "1080 United Arab Emirates\n", + "1299 Argentina\n", + "1518 Armenia\n", + "1737 Antigua and Barbuda\n", + "1956 Australia\n", + "2175 Austria\n", + "2394 Azerbaijan\n", + "2613 Burundi\n", + "2832 Belgium\n", + "3051 Benin\n", + "3270 Burkina Faso\n", + "3489 Bangladesh\n", + "3708 Bulgaria\n", + "3927 Bahrain\n", + "4146 Bahamas\n", + "4365 Bosnia and Herzegovina\n", + "4584 Belarus\n", + "4803 Belize\n", + "5069 Bolivia\n", + "5288 Brazil\n", + "5507 Barbados\n", + "5726 Brunei\n", + "5945 Bhutan\n", + "6164 Botswana\n", + "6383 Central African Republic\n", + "6602 Canada\n", + " ... \n", + "35379 Sweden\n", + "35598 Swaziland\n", + "35817 Seychelles\n", + "36036 Syria\n", + "36255 Chad\n", + "36474 Togo\n", + "36693 Thailand\n", + "36912 Tajikistan\n", + "37131 Turkmenistan\n", + "37350 Timor-Leste\n", + "37569 Tonga\n", + "37788 Trinidad and Tobago\n", + "38007 Tunisia\n", + "38226 Turkey\n", + "38445 Taiwan\n", + "38662 Tanzania\n", + "38881 Uganda\n", + "39100 Ukraine\n", + "39319 Uruguay\n", + "39538 United States\n", + "39757 Uzbekistan\n", + "39976 St. Vincent and the Grenadines\n", + "40195 Venezuela\n", + "40414 Vietnam\n", + "40633 Vanuatu\n", + "40852 Samoa\n", + "41071 Yemen\n", + "41290 South Africa\n", + "41509 Zambia\n", + "41728 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "158 Aruba\n", + "377 Afghanistan\n", + "596 Angola\n", + "815 Albania\n", + "1081 United Arab Emirates\n", + "1300 Argentina\n", + "1519 Armenia\n", + "1738 Antigua and Barbuda\n", + "1957 Australia\n", + "2176 Austria\n", + "2395 Azerbaijan\n", + "2614 Burundi\n", + "2833 Belgium\n", + "3052 Benin\n", + "3271 Burkina Faso\n", + "3490 Bangladesh\n", + "3709 Bulgaria\n", + "3928 Bahrain\n", + "4147 Bahamas\n", + "4366 Bosnia and Herzegovina\n", + "4585 Belarus\n", + "4804 Belize\n", + "5070 Bolivia\n", + "5289 Brazil\n", + "5508 Barbados\n", + "5727 Brunei\n", + "5946 Bhutan\n", + "6165 Botswana\n", + "6384 Central African Republic\n", + "6603 Canada\n", + " ... \n", + "35380 Sweden\n", + "35599 Swaziland\n", + "35818 Seychelles\n", + "36037 Syria\n", + "36256 Chad\n", + "36475 Togo\n", + "36694 Thailand\n", + "36913 Tajikistan\n", + "37132 Turkmenistan\n", + "37351 Timor-Leste\n", + "37570 Tonga\n", + "37789 Trinidad and Tobago\n", + "38008 Tunisia\n", + "38227 Turkey\n", + "38446 Taiwan\n", + "38663 Tanzania\n", + "38882 Uganda\n", + "39101 Ukraine\n", + "39320 Uruguay\n", + "39539 United States\n", + "39758 Uzbekistan\n", + "39977 St. Vincent and the Grenadines\n", + "40196 Venezuela\n", + "40415 Vietnam\n", + "40634 Vanuatu\n", + "40853 Samoa\n", + "41072 Yemen\n", + "41291 South Africa\n", + "41510 Zambia\n", + "41729 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "159 Aruba\n", + "378 Afghanistan\n", + "597 Angola\n", + "816 Albania\n", + "1082 United Arab Emirates\n", + "1301 Argentina\n", + "1520 Armenia\n", + "1739 Antigua and Barbuda\n", + "1958 Australia\n", + "2177 Austria\n", + "2396 Azerbaijan\n", + "2615 Burundi\n", + "2834 Belgium\n", + "3053 Benin\n", + "3272 Burkina Faso\n", + "3491 Bangladesh\n", + "3710 Bulgaria\n", + "3929 Bahrain\n", + "4148 Bahamas\n", + "4367 Bosnia and Herzegovina\n", + "4586 Belarus\n", + "4805 Belize\n", + "5071 Bolivia\n", + "5290 Brazil\n", + "5509 Barbados\n", + "5728 Brunei\n", + "5947 Bhutan\n", + "6166 Botswana\n", + "6385 Central African Republic\n", + "6604 Canada\n", + " ... \n", + "35381 Sweden\n", + "35600 Swaziland\n", + "35819 Seychelles\n", + "36038 Syria\n", + "36257 Chad\n", + "36476 Togo\n", + "36695 Thailand\n", + "36914 Tajikistan\n", + "37133 Turkmenistan\n", + "37352 Timor-Leste\n", + "37571 Tonga\n", + "37790 Trinidad and Tobago\n", + "38009 Tunisia\n", + "38228 Turkey\n", + "38447 Taiwan\n", + "38664 Tanzania\n", + "38883 Uganda\n", + "39102 Ukraine\n", + "39321 Uruguay\n", + "39540 United States\n", + "39759 Uzbekistan\n", + "39978 St. Vincent and the Grenadines\n", + "40197 Venezuela\n", + "40416 Vietnam\n", + "40635 Vanuatu\n", + "40854 Samoa\n", + "41073 Yemen\n", + "41292 South Africa\n", + "41511 Zambia\n", + "41730 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "160 Aruba\n", + "379 Afghanistan\n", + "598 Angola\n", + "817 Albania\n", + "1083 United Arab Emirates\n", + "1302 Argentina\n", + "1521 Armenia\n", + "1740 Antigua and Barbuda\n", + "1959 Australia\n", + "2178 Austria\n", + "2397 Azerbaijan\n", + "2616 Burundi\n", + "2835 Belgium\n", + "3054 Benin\n", + "3273 Burkina Faso\n", + "3492 Bangladesh\n", + "3711 Bulgaria\n", + "3930 Bahrain\n", + "4149 Bahamas\n", + "4368 Bosnia and Herzegovina\n", + "4587 Belarus\n", + "4806 Belize\n", + "5072 Bolivia\n", + "5291 Brazil\n", + "5510 Barbados\n", + "5729 Brunei\n", + "5948 Bhutan\n", + "6167 Botswana\n", + "6386 Central African Republic\n", + "6605 Canada\n", + " ... \n", + "35382 Sweden\n", + "35601 Swaziland\n", + "35820 Seychelles\n", + "36039 Syria\n", + "36258 Chad\n", + "36477 Togo\n", + "36696 Thailand\n", + "36915 Tajikistan\n", + "37134 Turkmenistan\n", + "37353 Timor-Leste\n", + "37572 Tonga\n", + "37791 Trinidad and Tobago\n", + "38010 Tunisia\n", + "38229 Turkey\n", + "38448 Taiwan\n", + "38665 Tanzania\n", + "38884 Uganda\n", + "39103 Ukraine\n", + "39322 Uruguay\n", + "39541 United States\n", + "39760 Uzbekistan\n", + "39979 St. Vincent and the Grenadines\n", + "40198 Venezuela\n", + "40417 Vietnam\n", + "40636 Vanuatu\n", + "40855 Samoa\n", + "41074 Yemen\n", + "41293 South Africa\n", + "41512 Zambia\n", + "41731 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "161 Aruba\n", + "380 Afghanistan\n", + "599 Angola\n", + "818 Albania\n", + "1084 United Arab Emirates\n", + "1303 Argentina\n", + "1522 Armenia\n", + "1741 Antigua and Barbuda\n", + "1960 Australia\n", + "2179 Austria\n", + "2398 Azerbaijan\n", + "2617 Burundi\n", + "2836 Belgium\n", + "3055 Benin\n", + "3274 Burkina Faso\n", + "3493 Bangladesh\n", + "3712 Bulgaria\n", + "3931 Bahrain\n", + "4150 Bahamas\n", + "4369 Bosnia and Herzegovina\n", + "4588 Belarus\n", + "4807 Belize\n", + "5073 Bolivia\n", + "5292 Brazil\n", + "5511 Barbados\n", + "5730 Brunei\n", + "5949 Bhutan\n", + "6168 Botswana\n", + "6387 Central African Republic\n", + "6606 Canada\n", + " ... \n", + "35383 Sweden\n", + "35602 Swaziland\n", + "35821 Seychelles\n", + "36040 Syria\n", + "36259 Chad\n", + "36478 Togo\n", + "36697 Thailand\n", + "36916 Tajikistan\n", + "37135 Turkmenistan\n", + "37354 Timor-Leste\n", + "37573 Tonga\n", + "37792 Trinidad and Tobago\n", + "38011 Tunisia\n", + "38230 Turkey\n", + "38449 Taiwan\n", + "38666 Tanzania\n", + "38885 Uganda\n", + "39104 Ukraine\n", + "39323 Uruguay\n", + "39542 United States\n", + "39761 Uzbekistan\n", + "39980 St. Vincent and the Grenadines\n", + "40199 Venezuela\n", + "40418 Vietnam\n", + "40637 Vanuatu\n", + "40856 Samoa\n", + "41075 Yemen\n", + "41294 South Africa\n", + "41513 Zambia\n", + "41732 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "162 Aruba\n", + "381 Afghanistan\n", + "600 Angola\n", + "819 Albania\n", + "1085 United Arab Emirates\n", + "1304 Argentina\n", + "1523 Armenia\n", + "1742 Antigua and Barbuda\n", + "1961 Australia\n", + "2180 Austria\n", + "2399 Azerbaijan\n", + "2618 Burundi\n", + "2837 Belgium\n", + "3056 Benin\n", + "3275 Burkina Faso\n", + "3494 Bangladesh\n", + "3713 Bulgaria\n", + "3932 Bahrain\n", + "4151 Bahamas\n", + "4370 Bosnia and Herzegovina\n", + "4589 Belarus\n", + "4808 Belize\n", + "5074 Bolivia\n", + "5293 Brazil\n", + "5512 Barbados\n", + "5731 Brunei\n", + "5950 Bhutan\n", + "6169 Botswana\n", + "6388 Central African Republic\n", + "6607 Canada\n", + " ... \n", + "35384 Sweden\n", + "35603 Swaziland\n", + "35822 Seychelles\n", + "36041 Syria\n", + "36260 Chad\n", + "36479 Togo\n", + "36698 Thailand\n", + "36917 Tajikistan\n", + "37136 Turkmenistan\n", + "37355 Timor-Leste\n", + "37574 Tonga\n", + "37793 Trinidad and Tobago\n", + "38012 Tunisia\n", + "38231 Turkey\n", + "38450 Taiwan\n", + "38667 Tanzania\n", + "38886 Uganda\n", + "39105 Ukraine\n", + "39324 Uruguay\n", + "39543 United States\n", + "39762 Uzbekistan\n", + "39981 St. Vincent and the Grenadines\n", + "40200 Venezuela\n", + "40419 Vietnam\n", + "40638 Vanuatu\n", + "40857 Samoa\n", + "41076 Yemen\n", + "41295 South Africa\n", + "41514 Zambia\n", + "41733 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "163 Aruba\n", + "382 Afghanistan\n", + "601 Angola\n", + "820 Albania\n", + "1086 United Arab Emirates\n", + "1305 Argentina\n", + "1524 Armenia\n", + "1743 Antigua and Barbuda\n", + "1962 Australia\n", + "2181 Austria\n", + "2400 Azerbaijan\n", + "2619 Burundi\n", + "2838 Belgium\n", + "3057 Benin\n", + "3276 Burkina Faso\n", + "3495 Bangladesh\n", + "3714 Bulgaria\n", + "3933 Bahrain\n", + "4152 Bahamas\n", + "4371 Bosnia and Herzegovina\n", + "4590 Belarus\n", + "4809 Belize\n", + "5075 Bolivia\n", + "5294 Brazil\n", + "5513 Barbados\n", + "5732 Brunei\n", + "5951 Bhutan\n", + "6170 Botswana\n", + "6389 Central African Republic\n", + "6608 Canada\n", + " ... \n", + "35385 Sweden\n", + "35604 Swaziland\n", + "35823 Seychelles\n", + "36042 Syria\n", + "36261 Chad\n", + "36480 Togo\n", + "36699 Thailand\n", + "36918 Tajikistan\n", + "37137 Turkmenistan\n", + "37356 Timor-Leste\n", + "37575 Tonga\n", + "37794 Trinidad and Tobago\n", + "38013 Tunisia\n", + "38232 Turkey\n", + "38451 Taiwan\n", + "38668 Tanzania\n", + "38887 Uganda\n", + "39106 Ukraine\n", + "39325 Uruguay\n", + "39544 United States\n", + "39763 Uzbekistan\n", + "39982 St. Vincent and the Grenadines\n", + "40201 Venezuela\n", + "40420 Vietnam\n", + "40639 Vanuatu\n", + "40858 Samoa\n", + "41077 Yemen\n", + "41296 South Africa\n", + "41515 Zambia\n", + "41734 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "164 Aruba\n", + "383 Afghanistan\n", + "602 Angola\n", + "821 Albania\n", + "1087 United Arab Emirates\n", + "1306 Argentina\n", + "1525 Armenia\n", + "1744 Antigua and Barbuda\n", + "1963 Australia\n", + "2182 Austria\n", + "2401 Azerbaijan\n", + "2620 Burundi\n", + "2839 Belgium\n", + "3058 Benin\n", + "3277 Burkina Faso\n", + "3496 Bangladesh\n", + "3715 Bulgaria\n", + "3934 Bahrain\n", + "4153 Bahamas\n", + "4372 Bosnia and Herzegovina\n", + "4591 Belarus\n", + "4810 Belize\n", + "5076 Bolivia\n", + "5295 Brazil\n", + "5514 Barbados\n", + "5733 Brunei\n", + "5952 Bhutan\n", + "6171 Botswana\n", + "6390 Central African Republic\n", + "6609 Canada\n", + " ... \n", + "35386 Sweden\n", + "35605 Swaziland\n", + "35824 Seychelles\n", + "36043 Syria\n", + "36262 Chad\n", + "36481 Togo\n", + "36700 Thailand\n", + "36919 Tajikistan\n", + "37138 Turkmenistan\n", + "37357 Timor-Leste\n", + "37576 Tonga\n", + "37795 Trinidad and Tobago\n", + "38014 Tunisia\n", + "38233 Turkey\n", + "38452 Taiwan\n", + "38669 Tanzania\n", + "38888 Uganda\n", + "39107 Ukraine\n", + "39326 Uruguay\n", + "39545 United States\n", + "39764 Uzbekistan\n", + "39983 St. Vincent and the Grenadines\n", + "40202 Venezuela\n", + "40421 Vietnam\n", + "40640 Vanuatu\n", + "40859 Samoa\n", + "41078 Yemen\n", + "41297 South Africa\n", + "41516 Zambia\n", + "41735 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "165 Aruba\n", + "384 Afghanistan\n", + "603 Angola\n", + "822 Albania\n", + "1088 United Arab Emirates\n", + "1307 Argentina\n", + "1526 Armenia\n", + "1745 Antigua and Barbuda\n", + "1964 Australia\n", + "2183 Austria\n", + "2402 Azerbaijan\n", + "2621 Burundi\n", + "2840 Belgium\n", + "3059 Benin\n", + "3278 Burkina Faso\n", + "3497 Bangladesh\n", + "3716 Bulgaria\n", + "3935 Bahrain\n", + "4154 Bahamas\n", + "4373 Bosnia and Herzegovina\n", + "4592 Belarus\n", + "4811 Belize\n", + "5077 Bolivia\n", + "5296 Brazil\n", + "5515 Barbados\n", + "5734 Brunei\n", + "5953 Bhutan\n", + "6172 Botswana\n", + "6391 Central African Republic\n", + "6610 Canada\n", + " ... \n", + "35387 Sweden\n", + "35606 Swaziland\n", + "35825 Seychelles\n", + "36044 Syria\n", + "36263 Chad\n", + "36482 Togo\n", + "36701 Thailand\n", + "36920 Tajikistan\n", + "37139 Turkmenistan\n", + "37358 Timor-Leste\n", + "37577 Tonga\n", + "37796 Trinidad and Tobago\n", + "38015 Tunisia\n", + "38234 Turkey\n", + "38453 Taiwan\n", + "38670 Tanzania\n", + "38889 Uganda\n", + "39108 Ukraine\n", + "39327 Uruguay\n", + "39546 United States\n", + "39765 Uzbekistan\n", + "39984 St. Vincent and the Grenadines\n", + "40203 Venezuela\n", + "40422 Vietnam\n", + "40641 Vanuatu\n", + "40860 Samoa\n", + "41079 Yemen\n", + "41298 South Africa\n", + "41517 Zambia\n", + "41736 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "166 Aruba\n", + "385 Afghanistan\n", + "604 Angola\n", + "823 Albania\n", + "1089 United Arab Emirates\n", + "1308 Argentina\n", + "1527 Armenia\n", + "1746 Antigua and Barbuda\n", + "1965 Australia\n", + "2184 Austria\n", + "2403 Azerbaijan\n", + "2622 Burundi\n", + "2841 Belgium\n", + "3060 Benin\n", + "3279 Burkina Faso\n", + "3498 Bangladesh\n", + "3717 Bulgaria\n", + "3936 Bahrain\n", + "4155 Bahamas\n", + "4374 Bosnia and Herzegovina\n", + "4593 Belarus\n", + "4812 Belize\n", + "5078 Bolivia\n", + "5297 Brazil\n", + "5516 Barbados\n", + "5735 Brunei\n", + "5954 Bhutan\n", + "6173 Botswana\n", + "6392 Central African Republic\n", + "6611 Canada\n", + " ... \n", + "35388 Sweden\n", + "35607 Swaziland\n", + "35826 Seychelles\n", + "36045 Syria\n", + "36264 Chad\n", + "36483 Togo\n", + "36702 Thailand\n", + "36921 Tajikistan\n", + "37140 Turkmenistan\n", + "37359 Timor-Leste\n", + "37578 Tonga\n", + "37797 Trinidad and Tobago\n", + "38016 Tunisia\n", + "38235 Turkey\n", + "38454 Taiwan\n", + "38671 Tanzania\n", + "38890 Uganda\n", + "39109 Ukraine\n", + "39328 Uruguay\n", + "39547 United States\n", + "39766 Uzbekistan\n", + "39985 St. Vincent and the Grenadines\n", + "40204 Venezuela\n", + "40423 Vietnam\n", + "40642 Vanuatu\n", + "40861 Samoa\n", + "41080 Yemen\n", + "41299 South Africa\n", + "41518 Zambia\n", + "41737 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "167 Aruba\n", + "386 Afghanistan\n", + "605 Angola\n", + "824 Albania\n", + "1090 United Arab Emirates\n", + "1309 Argentina\n", + "1528 Armenia\n", + "1747 Antigua and Barbuda\n", + "1966 Australia\n", + "2185 Austria\n", + "2404 Azerbaijan\n", + "2623 Burundi\n", + "2842 Belgium\n", + "3061 Benin\n", + "3280 Burkina Faso\n", + "3499 Bangladesh\n", + "3718 Bulgaria\n", + "3937 Bahrain\n", + "4156 Bahamas\n", + "4375 Bosnia and Herzegovina\n", + "4594 Belarus\n", + "4813 Belize\n", + "5079 Bolivia\n", + "5298 Brazil\n", + "5517 Barbados\n", + "5736 Brunei\n", + "5955 Bhutan\n", + "6174 Botswana\n", + "6393 Central African Republic\n", + "6612 Canada\n", + " ... \n", + "35389 Sweden\n", + "35608 Swaziland\n", + "35827 Seychelles\n", + "36046 Syria\n", + "36265 Chad\n", + "36484 Togo\n", + "36703 Thailand\n", + "36922 Tajikistan\n", + "37141 Turkmenistan\n", + "37360 Timor-Leste\n", + "37579 Tonga\n", + "37798 Trinidad and Tobago\n", + "38017 Tunisia\n", + "38236 Turkey\n", + "38455 Taiwan\n", + "38672 Tanzania\n", + "38891 Uganda\n", + "39110 Ukraine\n", + "39329 Uruguay\n", + "39548 United States\n", + "39767 Uzbekistan\n", + "39986 St. Vincent and the Grenadines\n", + "40205 Venezuela\n", + "40424 Vietnam\n", + "40643 Vanuatu\n", + "40862 Samoa\n", + "41081 Yemen\n", + "41300 South Africa\n", + "41519 Zambia\n", + "41738 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "168 Aruba\n", + "387 Afghanistan\n", + "606 Angola\n", + "825 Albania\n", + "1091 United Arab Emirates\n", + "1310 Argentina\n", + "1529 Armenia\n", + "1748 Antigua and Barbuda\n", + "1967 Australia\n", + "2186 Austria\n", + "2405 Azerbaijan\n", + "2624 Burundi\n", + "2843 Belgium\n", + "3062 Benin\n", + "3281 Burkina Faso\n", + "3500 Bangladesh\n", + "3719 Bulgaria\n", + "3938 Bahrain\n", + "4157 Bahamas\n", + "4376 Bosnia and Herzegovina\n", + "4595 Belarus\n", + "4814 Belize\n", + "5080 Bolivia\n", + "5299 Brazil\n", + "5518 Barbados\n", + "5737 Brunei\n", + "5956 Bhutan\n", + "6175 Botswana\n", + "6394 Central African Republic\n", + "6613 Canada\n", + " ... \n", + "35390 Sweden\n", + "35609 Swaziland\n", + "35828 Seychelles\n", + "36047 Syria\n", + "36266 Chad\n", + "36485 Togo\n", + "36704 Thailand\n", + "36923 Tajikistan\n", + "37142 Turkmenistan\n", + "37361 Timor-Leste\n", + "37580 Tonga\n", + "37799 Trinidad and Tobago\n", + "38018 Tunisia\n", + "38237 Turkey\n", + "38456 Taiwan\n", + "38673 Tanzania\n", + "38892 Uganda\n", + "39111 Ukraine\n", + "39330 Uruguay\n", + "39549 United States\n", + "39768 Uzbekistan\n", + "39987 St. Vincent and the Grenadines\n", + "40206 Venezuela\n", + "40425 Vietnam\n", + "40644 Vanuatu\n", + "40863 Samoa\n", + "41082 Yemen\n", + "41301 South Africa\n", + "41520 Zambia\n", + "41739 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "169 Aruba\n", + "388 Afghanistan\n", + "607 Angola\n", + "826 Albania\n", + "1092 United Arab Emirates\n", + "1311 Argentina\n", + "1530 Armenia\n", + "1749 Antigua and Barbuda\n", + "1968 Australia\n", + "2187 Austria\n", + "2406 Azerbaijan\n", + "2625 Burundi\n", + "2844 Belgium\n", + "3063 Benin\n", + "3282 Burkina Faso\n", + "3501 Bangladesh\n", + "3720 Bulgaria\n", + "3939 Bahrain\n", + "4158 Bahamas\n", + "4377 Bosnia and Herzegovina\n", + "4596 Belarus\n", + "4815 Belize\n", + "5081 Bolivia\n", + "5300 Brazil\n", + "5519 Barbados\n", + "5738 Brunei\n", + "5957 Bhutan\n", + "6176 Botswana\n", + "6395 Central African Republic\n", + "6614 Canada\n", + " ... \n", + "35391 Sweden\n", + "35610 Swaziland\n", + "35829 Seychelles\n", + "36048 Syria\n", + "36267 Chad\n", + "36486 Togo\n", + "36705 Thailand\n", + "36924 Tajikistan\n", + "37143 Turkmenistan\n", + "37362 Timor-Leste\n", + "37581 Tonga\n", + "37800 Trinidad and Tobago\n", + "38019 Tunisia\n", + "38238 Turkey\n", + "38457 Taiwan\n", + "38674 Tanzania\n", + "38893 Uganda\n", + "39112 Ukraine\n", + "39331 Uruguay\n", + "39550 United States\n", + "39769 Uzbekistan\n", + "39988 St. Vincent and the Grenadines\n", + "40207 Venezuela\n", + "40426 Vietnam\n", + "40645 Vanuatu\n", + "40864 Samoa\n", + "41083 Yemen\n", + "41302 South Africa\n", + "41521 Zambia\n", + "41740 Zimbabwe\n", + "Name: country, Length: 190, dtype: object\n", + "170 Aruba\n", + "389 Afghanistan\n", + "608 Angola\n", + "827 Albania\n", + "876 Andorra\n", + "1093 United Arab Emirates\n", + "1312 Argentina\n", + "1531 Armenia\n", + "1750 Antigua and Barbuda\n", + "1969 Australia\n", + "2188 Austria\n", + "2407 Azerbaijan\n", + "2626 Burundi\n", + "2845 Belgium\n", + "3064 Benin\n", + "3283 Burkina Faso\n", + "3502 Bangladesh\n", + "3721 Bulgaria\n", + "3940 Bahrain\n", + "4159 Bahamas\n", + "4378 Bosnia and Herzegovina\n", + "4597 Belarus\n", + "4816 Belize\n", + "4865 Bermuda\n", + "5082 Bolivia\n", + "5301 Brazil\n", + "5520 Barbados\n", + "5739 Brunei\n", + "5958 Bhutan\n", + "6177 Botswana\n", + " ... \n", + "35392 Sweden\n", + "35611 Swaziland\n", + "35830 Seychelles\n", + "36049 Syria\n", + "36268 Chad\n", + "36487 Togo\n", + "36706 Thailand\n", + "36925 Tajikistan\n", + "37144 Turkmenistan\n", + "37363 Timor-Leste\n", + "37582 Tonga\n", + "37801 Trinidad and Tobago\n", + "38020 Tunisia\n", + "38239 Turkey\n", + "38458 Taiwan\n", + "38675 Tanzania\n", + "38894 Uganda\n", + "39113 Ukraine\n", + "39332 Uruguay\n", + "39551 United States\n", + "39770 Uzbekistan\n", + "39989 St. Vincent and the Grenadines\n", + "40208 Venezuela\n", + "40427 Vietnam\n", + "40646 Vanuatu\n", + "40865 Samoa\n", + "41084 Yemen\n", + "41303 South Africa\n", + "41522 Zambia\n", + "41741 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "171 Aruba\n", + "390 Afghanistan\n", + "609 Angola\n", + "828 Albania\n", + "877 Andorra\n", + "1094 United Arab Emirates\n", + "1313 Argentina\n", + "1532 Armenia\n", + "1751 Antigua and Barbuda\n", + "1970 Australia\n", + "2189 Austria\n", + "2408 Azerbaijan\n", + "2627 Burundi\n", + "2846 Belgium\n", + "3065 Benin\n", + "3284 Burkina Faso\n", + "3503 Bangladesh\n", + "3722 Bulgaria\n", + "3941 Bahrain\n", + "4160 Bahamas\n", + "4379 Bosnia and Herzegovina\n", + "4598 Belarus\n", + "4817 Belize\n", + "4866 Bermuda\n", + "5083 Bolivia\n", + "5302 Brazil\n", + "5521 Barbados\n", + "5740 Brunei\n", + "5959 Bhutan\n", + "6178 Botswana\n", + " ... \n", + "35393 Sweden\n", + "35612 Swaziland\n", + "35831 Seychelles\n", + "36050 Syria\n", + "36269 Chad\n", + "36488 Togo\n", + "36707 Thailand\n", + "36926 Tajikistan\n", + "37145 Turkmenistan\n", + "37364 Timor-Leste\n", + "37583 Tonga\n", + "37802 Trinidad and Tobago\n", + "38021 Tunisia\n", + "38240 Turkey\n", + "38459 Taiwan\n", + "38676 Tanzania\n", + "38895 Uganda\n", + "39114 Ukraine\n", + "39333 Uruguay\n", + "39552 United States\n", + "39771 Uzbekistan\n", + "39990 St. Vincent and the Grenadines\n", + "40209 Venezuela\n", + "40428 Vietnam\n", + "40647 Vanuatu\n", + "40866 Samoa\n", + "41085 Yemen\n", + "41304 South Africa\n", + "41523 Zambia\n", + "41742 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "172 Aruba\n", + "391 Afghanistan\n", + "610 Angola\n", + "829 Albania\n", + "878 Andorra\n", + "1095 United Arab Emirates\n", + "1314 Argentina\n", + "1533 Armenia\n", + "1752 Antigua and Barbuda\n", + "1971 Australia\n", + "2190 Austria\n", + "2409 Azerbaijan\n", + "2628 Burundi\n", + "2847 Belgium\n", + "3066 Benin\n", + "3285 Burkina Faso\n", + "3504 Bangladesh\n", + "3723 Bulgaria\n", + "3942 Bahrain\n", + "4161 Bahamas\n", + "4380 Bosnia and Herzegovina\n", + "4599 Belarus\n", + "4818 Belize\n", + "4867 Bermuda\n", + "5084 Bolivia\n", + "5303 Brazil\n", + "5522 Barbados\n", + "5741 Brunei\n", + "5960 Bhutan\n", + "6179 Botswana\n", + " ... \n", + "35394 Sweden\n", + "35613 Swaziland\n", + "35832 Seychelles\n", + "36051 Syria\n", + "36270 Chad\n", + "36489 Togo\n", + "36708 Thailand\n", + "36927 Tajikistan\n", + "37146 Turkmenistan\n", + "37365 Timor-Leste\n", + "37584 Tonga\n", + "37803 Trinidad and Tobago\n", + "38022 Tunisia\n", + "38241 Turkey\n", + "38460 Taiwan\n", + "38677 Tanzania\n", + "38896 Uganda\n", + "39115 Ukraine\n", + "39334 Uruguay\n", + "39553 United States\n", + "39772 Uzbekistan\n", + "39991 St. Vincent and the Grenadines\n", + "40210 Venezuela\n", + "40429 Vietnam\n", + "40648 Vanuatu\n", + "40867 Samoa\n", + "41086 Yemen\n", + "41305 South Africa\n", + "41524 Zambia\n", + "41743 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "173 Aruba\n", + "392 Afghanistan\n", + "611 Angola\n", + "830 Albania\n", + "879 Andorra\n", + "1096 United Arab Emirates\n", + "1315 Argentina\n", + "1534 Armenia\n", + "1753 Antigua and Barbuda\n", + "1972 Australia\n", + "2191 Austria\n", + "2410 Azerbaijan\n", + "2629 Burundi\n", + "2848 Belgium\n", + "3067 Benin\n", + "3286 Burkina Faso\n", + "3505 Bangladesh\n", + "3724 Bulgaria\n", + "3943 Bahrain\n", + "4162 Bahamas\n", + "4381 Bosnia and Herzegovina\n", + "4600 Belarus\n", + "4819 Belize\n", + "4868 Bermuda\n", + "5085 Bolivia\n", + "5304 Brazil\n", + "5523 Barbados\n", + "5742 Brunei\n", + "5961 Bhutan\n", + "6180 Botswana\n", + " ... \n", + "35395 Sweden\n", + "35614 Swaziland\n", + "35833 Seychelles\n", + "36052 Syria\n", + "36271 Chad\n", + "36490 Togo\n", + "36709 Thailand\n", + "36928 Tajikistan\n", + "37147 Turkmenistan\n", + "37366 Timor-Leste\n", + "37585 Tonga\n", + "37804 Trinidad and Tobago\n", + "38023 Tunisia\n", + "38242 Turkey\n", + "38461 Taiwan\n", + "38678 Tanzania\n", + "38897 Uganda\n", + "39116 Ukraine\n", + "39335 Uruguay\n", + "39554 United States\n", + "39773 Uzbekistan\n", + "39992 St. Vincent and the Grenadines\n", + "40211 Venezuela\n", + "40430 Vietnam\n", + "40649 Vanuatu\n", + "40868 Samoa\n", + "41087 Yemen\n", + "41306 South Africa\n", + "41525 Zambia\n", + "41744 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "174 Aruba\n", + "393 Afghanistan\n", + "612 Angola\n", + "831 Albania\n", + "880 Andorra\n", + "1097 United Arab Emirates\n", + "1316 Argentina\n", + "1535 Armenia\n", + "1754 Antigua and Barbuda\n", + "1973 Australia\n", + "2192 Austria\n", + "2411 Azerbaijan\n", + "2630 Burundi\n", + "2849 Belgium\n", + "3068 Benin\n", + "3287 Burkina Faso\n", + "3506 Bangladesh\n", + "3725 Bulgaria\n", + "3944 Bahrain\n", + "4163 Bahamas\n", + "4382 Bosnia and Herzegovina\n", + "4601 Belarus\n", + "4820 Belize\n", + "4869 Bermuda\n", + "5086 Bolivia\n", + "5305 Brazil\n", + "5524 Barbados\n", + "5743 Brunei\n", + "5962 Bhutan\n", + "6181 Botswana\n", + " ... \n", + "35396 Sweden\n", + "35615 Swaziland\n", + "35834 Seychelles\n", + "36053 Syria\n", + "36272 Chad\n", + "36491 Togo\n", + "36710 Thailand\n", + "36929 Tajikistan\n", + "37148 Turkmenistan\n", + "37367 Timor-Leste\n", + "37586 Tonga\n", + "37805 Trinidad and Tobago\n", + "38024 Tunisia\n", + "38243 Turkey\n", + "38462 Taiwan\n", + "38679 Tanzania\n", + "38898 Uganda\n", + "39117 Ukraine\n", + "39336 Uruguay\n", + "39555 United States\n", + "39774 Uzbekistan\n", + "39993 St. Vincent and the Grenadines\n", + "40212 Venezuela\n", + "40431 Vietnam\n", + "40650 Vanuatu\n", + "40869 Samoa\n", + "41088 Yemen\n", + "41307 South Africa\n", + "41526 Zambia\n", + "41745 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "175 Aruba\n", + "394 Afghanistan\n", + "613 Angola\n", + "832 Albania\n", + "881 Andorra\n", + "1098 United Arab Emirates\n", + "1317 Argentina\n", + "1536 Armenia\n", + "1755 Antigua and Barbuda\n", + "1974 Australia\n", + "2193 Austria\n", + "2412 Azerbaijan\n", + "2631 Burundi\n", + "2850 Belgium\n", + "3069 Benin\n", + "3288 Burkina Faso\n", + "3507 Bangladesh\n", + "3726 Bulgaria\n", + "3945 Bahrain\n", + "4164 Bahamas\n", + "4383 Bosnia and Herzegovina\n", + "4602 Belarus\n", + "4821 Belize\n", + "4870 Bermuda\n", + "5087 Bolivia\n", + "5306 Brazil\n", + "5525 Barbados\n", + "5744 Brunei\n", + "5963 Bhutan\n", + "6182 Botswana\n", + " ... \n", + "35397 Sweden\n", + "35616 Swaziland\n", + "35835 Seychelles\n", + "36054 Syria\n", + "36273 Chad\n", + "36492 Togo\n", + "36711 Thailand\n", + "36930 Tajikistan\n", + "37149 Turkmenistan\n", + "37368 Timor-Leste\n", + "37587 Tonga\n", + "37806 Trinidad and Tobago\n", + "38025 Tunisia\n", + "38244 Turkey\n", + "38463 Taiwan\n", + "38680 Tanzania\n", + "38899 Uganda\n", + "39118 Ukraine\n", + "39337 Uruguay\n", + "39556 United States\n", + "39775 Uzbekistan\n", + "39994 St. Vincent and the Grenadines\n", + "40213 Venezuela\n", + "40432 Vietnam\n", + "40651 Vanuatu\n", + "40870 Samoa\n", + "41089 Yemen\n", + "41308 South Africa\n", + "41527 Zambia\n", + "41746 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "176 Aruba\n", + "395 Afghanistan\n", + "614 Angola\n", + "833 Albania\n", + "882 Andorra\n", + "1099 United Arab Emirates\n", + "1318 Argentina\n", + "1537 Armenia\n", + "1756 Antigua and Barbuda\n", + "1975 Australia\n", + "2194 Austria\n", + "2413 Azerbaijan\n", + "2632 Burundi\n", + "2851 Belgium\n", + "3070 Benin\n", + "3289 Burkina Faso\n", + "3508 Bangladesh\n", + "3727 Bulgaria\n", + "3946 Bahrain\n", + "4165 Bahamas\n", + "4384 Bosnia and Herzegovina\n", + "4603 Belarus\n", + "4822 Belize\n", + "4871 Bermuda\n", + "5088 Bolivia\n", + "5307 Brazil\n", + "5526 Barbados\n", + "5745 Brunei\n", + "5964 Bhutan\n", + "6183 Botswana\n", + " ... \n", + "35398 Sweden\n", + "35617 Swaziland\n", + "35836 Seychelles\n", + "36055 Syria\n", + "36274 Chad\n", + "36493 Togo\n", + "36712 Thailand\n", + "36931 Tajikistan\n", + "37150 Turkmenistan\n", + "37369 Timor-Leste\n", + "37588 Tonga\n", + "37807 Trinidad and Tobago\n", + "38026 Tunisia\n", + "38245 Turkey\n", + "38464 Taiwan\n", + "38681 Tanzania\n", + "38900 Uganda\n", + "39119 Ukraine\n", + "39338 Uruguay\n", + "39557 United States\n", + "39776 Uzbekistan\n", + "39995 St. Vincent and the Grenadines\n", + "40214 Venezuela\n", + "40433 Vietnam\n", + "40652 Vanuatu\n", + "40871 Samoa\n", + "41090 Yemen\n", + "41309 South Africa\n", + "41528 Zambia\n", + "41747 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "177 Aruba\n", + "396 Afghanistan\n", + "615 Angola\n", + "834 Albania\n", + "883 Andorra\n", + "1100 United Arab Emirates\n", + "1319 Argentina\n", + "1538 Armenia\n", + "1757 Antigua and Barbuda\n", + "1976 Australia\n", + "2195 Austria\n", + "2414 Azerbaijan\n", + "2633 Burundi\n", + "2852 Belgium\n", + "3071 Benin\n", + "3290 Burkina Faso\n", + "3509 Bangladesh\n", + "3728 Bulgaria\n", + "3947 Bahrain\n", + "4166 Bahamas\n", + "4385 Bosnia and Herzegovina\n", + "4604 Belarus\n", + "4823 Belize\n", + "4872 Bermuda\n", + "5089 Bolivia\n", + "5308 Brazil\n", + "5527 Barbados\n", + "5746 Brunei\n", + "5965 Bhutan\n", + "6184 Botswana\n", + " ... \n", + "35399 Sweden\n", + "35618 Swaziland\n", + "35837 Seychelles\n", + "36056 Syria\n", + "36275 Chad\n", + "36494 Togo\n", + "36713 Thailand\n", + "36932 Tajikistan\n", + "37151 Turkmenistan\n", + "37370 Timor-Leste\n", + "37589 Tonga\n", + "37808 Trinidad and Tobago\n", + "38027 Tunisia\n", + "38246 Turkey\n", + "38465 Taiwan\n", + "38682 Tanzania\n", + "38901 Uganda\n", + "39120 Ukraine\n", + "39339 Uruguay\n", + "39558 United States\n", + "39777 Uzbekistan\n", + "39996 St. Vincent and the Grenadines\n", + "40215 Venezuela\n", + "40434 Vietnam\n", + "40653 Vanuatu\n", + "40872 Samoa\n", + "41091 Yemen\n", + "41310 South Africa\n", + "41529 Zambia\n", + "41748 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "178 Aruba\n", + "397 Afghanistan\n", + "616 Angola\n", + "835 Albania\n", + "884 Andorra\n", + "1101 United Arab Emirates\n", + "1320 Argentina\n", + "1539 Armenia\n", + "1758 Antigua and Barbuda\n", + "1977 Australia\n", + "2196 Austria\n", + "2415 Azerbaijan\n", + "2634 Burundi\n", + "2853 Belgium\n", + "3072 Benin\n", + "3291 Burkina Faso\n", + "3510 Bangladesh\n", + "3729 Bulgaria\n", + "3948 Bahrain\n", + "4167 Bahamas\n", + "4386 Bosnia and Herzegovina\n", + "4605 Belarus\n", + "4824 Belize\n", + "4873 Bermuda\n", + "5090 Bolivia\n", + "5309 Brazil\n", + "5528 Barbados\n", + "5747 Brunei\n", + "5966 Bhutan\n", + "6185 Botswana\n", + " ... \n", + "35400 Sweden\n", + "35619 Swaziland\n", + "35838 Seychelles\n", + "36057 Syria\n", + "36276 Chad\n", + "36495 Togo\n", + "36714 Thailand\n", + "36933 Tajikistan\n", + "37152 Turkmenistan\n", + "37371 Timor-Leste\n", + "37590 Tonga\n", + "37809 Trinidad and Tobago\n", + "38028 Tunisia\n", + "38247 Turkey\n", + "38466 Taiwan\n", + "38683 Tanzania\n", + "38902 Uganda\n", + "39121 Ukraine\n", + "39340 Uruguay\n", + "39559 United States\n", + "39778 Uzbekistan\n", + "39997 St. Vincent and the Grenadines\n", + "40216 Venezuela\n", + "40435 Vietnam\n", + "40654 Vanuatu\n", + "40873 Samoa\n", + "41092 Yemen\n", + "41311 South Africa\n", + "41530 Zambia\n", + "41749 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "179 Aruba\n", + "398 Afghanistan\n", + "617 Angola\n", + "836 Albania\n", + "885 Andorra\n", + "1102 United Arab Emirates\n", + "1321 Argentina\n", + "1540 Armenia\n", + "1759 Antigua and Barbuda\n", + "1978 Australia\n", + "2197 Austria\n", + "2416 Azerbaijan\n", + "2635 Burundi\n", + "2854 Belgium\n", + "3073 Benin\n", + "3292 Burkina Faso\n", + "3511 Bangladesh\n", + "3730 Bulgaria\n", + "3949 Bahrain\n", + "4168 Bahamas\n", + "4387 Bosnia and Herzegovina\n", + "4606 Belarus\n", + "4825 Belize\n", + "4874 Bermuda\n", + "5091 Bolivia\n", + "5310 Brazil\n", + "5529 Barbados\n", + "5748 Brunei\n", + "5967 Bhutan\n", + "6186 Botswana\n", + " ... \n", + "35401 Sweden\n", + "35620 Swaziland\n", + "35839 Seychelles\n", + "36058 Syria\n", + "36277 Chad\n", + "36496 Togo\n", + "36715 Thailand\n", + "36934 Tajikistan\n", + "37153 Turkmenistan\n", + "37372 Timor-Leste\n", + "37591 Tonga\n", + "37810 Trinidad and Tobago\n", + "38029 Tunisia\n", + "38248 Turkey\n", + "38467 Taiwan\n", + "38684 Tanzania\n", + "38903 Uganda\n", + "39122 Ukraine\n", + "39341 Uruguay\n", + "39560 United States\n", + "39779 Uzbekistan\n", + "39998 St. Vincent and the Grenadines\n", + "40217 Venezuela\n", + "40436 Vietnam\n", + "40655 Vanuatu\n", + "40874 Samoa\n", + "41093 Yemen\n", + "41312 South Africa\n", + "41531 Zambia\n", + "41750 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "180 Aruba\n", + "399 Afghanistan\n", + "618 Angola\n", + "837 Albania\n", + "886 Andorra\n", + "1103 United Arab Emirates\n", + "1322 Argentina\n", + "1541 Armenia\n", + "1760 Antigua and Barbuda\n", + "1979 Australia\n", + "2198 Austria\n", + "2417 Azerbaijan\n", + "2636 Burundi\n", + "2855 Belgium\n", + "3074 Benin\n", + "3293 Burkina Faso\n", + "3512 Bangladesh\n", + "3731 Bulgaria\n", + "3950 Bahrain\n", + "4169 Bahamas\n", + "4388 Bosnia and Herzegovina\n", + "4607 Belarus\n", + "4826 Belize\n", + "4875 Bermuda\n", + "5092 Bolivia\n", + "5311 Brazil\n", + "5530 Barbados\n", + "5749 Brunei\n", + "5968 Bhutan\n", + "6187 Botswana\n", + " ... \n", + "35402 Sweden\n", + "35621 Swaziland\n", + "35840 Seychelles\n", + "36059 Syria\n", + "36278 Chad\n", + "36497 Togo\n", + "36716 Thailand\n", + "36935 Tajikistan\n", + "37154 Turkmenistan\n", + "37373 Timor-Leste\n", + "37592 Tonga\n", + "37811 Trinidad and Tobago\n", + "38030 Tunisia\n", + "38249 Turkey\n", + "38468 Taiwan\n", + "38685 Tanzania\n", + "38904 Uganda\n", + "39123 Ukraine\n", + "39342 Uruguay\n", + "39561 United States\n", + "39780 Uzbekistan\n", + "39999 St. Vincent and the Grenadines\n", + "40218 Venezuela\n", + "40437 Vietnam\n", + "40656 Vanuatu\n", + "40875 Samoa\n", + "41094 Yemen\n", + "41313 South Africa\n", + "41532 Zambia\n", + "41751 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "181 Aruba\n", + "400 Afghanistan\n", + "619 Angola\n", + "838 Albania\n", + "887 Andorra\n", + "1104 United Arab Emirates\n", + "1323 Argentina\n", + "1542 Armenia\n", + "1761 Antigua and Barbuda\n", + "1980 Australia\n", + "2199 Austria\n", + "2418 Azerbaijan\n", + "2637 Burundi\n", + "2856 Belgium\n", + "3075 Benin\n", + "3294 Burkina Faso\n", + "3513 Bangladesh\n", + "3732 Bulgaria\n", + "3951 Bahrain\n", + "4170 Bahamas\n", + "4389 Bosnia and Herzegovina\n", + "4608 Belarus\n", + "4827 Belize\n", + "4876 Bermuda\n", + "5093 Bolivia\n", + "5312 Brazil\n", + "5531 Barbados\n", + "5750 Brunei\n", + "5969 Bhutan\n", + "6188 Botswana\n", + " ... \n", + "35403 Sweden\n", + "35622 Swaziland\n", + "35841 Seychelles\n", + "36060 Syria\n", + "36279 Chad\n", + "36498 Togo\n", + "36717 Thailand\n", + "36936 Tajikistan\n", + "37155 Turkmenistan\n", + "37374 Timor-Leste\n", + "37593 Tonga\n", + "37812 Trinidad and Tobago\n", + "38031 Tunisia\n", + "38250 Turkey\n", + "38469 Taiwan\n", + "38686 Tanzania\n", + "38905 Uganda\n", + "39124 Ukraine\n", + "39343 Uruguay\n", + "39562 United States\n", + "39781 Uzbekistan\n", + "40000 St. Vincent and the Grenadines\n", + "40219 Venezuela\n", + "40438 Vietnam\n", + "40657 Vanuatu\n", + "40876 Samoa\n", + "41095 Yemen\n", + "41314 South Africa\n", + "41533 Zambia\n", + "41752 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "182 Aruba\n", + "401 Afghanistan\n", + "620 Angola\n", + "839 Albania\n", + "888 Andorra\n", + "1105 United Arab Emirates\n", + "1324 Argentina\n", + "1543 Armenia\n", + "1762 Antigua and Barbuda\n", + "1981 Australia\n", + "2200 Austria\n", + "2419 Azerbaijan\n", + "2638 Burundi\n", + "2857 Belgium\n", + "3076 Benin\n", + "3295 Burkina Faso\n", + "3514 Bangladesh\n", + "3733 Bulgaria\n", + "3952 Bahrain\n", + "4171 Bahamas\n", + "4390 Bosnia and Herzegovina\n", + "4609 Belarus\n", + "4828 Belize\n", + "4877 Bermuda\n", + "5094 Bolivia\n", + "5313 Brazil\n", + "5532 Barbados\n", + "5751 Brunei\n", + "5970 Bhutan\n", + "6189 Botswana\n", + " ... \n", + "35404 Sweden\n", + "35623 Swaziland\n", + "35842 Seychelles\n", + "36061 Syria\n", + "36280 Chad\n", + "36499 Togo\n", + "36718 Thailand\n", + "36937 Tajikistan\n", + "37156 Turkmenistan\n", + "37375 Timor-Leste\n", + "37594 Tonga\n", + "37813 Trinidad and Tobago\n", + "38032 Tunisia\n", + "38251 Turkey\n", + "38470 Taiwan\n", + "38687 Tanzania\n", + "38906 Uganda\n", + "39125 Ukraine\n", + "39344 Uruguay\n", + "39563 United States\n", + "39782 Uzbekistan\n", + "40001 St. Vincent and the Grenadines\n", + "40220 Venezuela\n", + "40439 Vietnam\n", + "40658 Vanuatu\n", + "40877 Samoa\n", + "41096 Yemen\n", + "41315 South Africa\n", + "41534 Zambia\n", + "41753 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "183 Aruba\n", + "402 Afghanistan\n", + "621 Angola\n", + "840 Albania\n", + "889 Andorra\n", + "1106 United Arab Emirates\n", + "1325 Argentina\n", + "1544 Armenia\n", + "1763 Antigua and Barbuda\n", + "1982 Australia\n", + "2201 Austria\n", + "2420 Azerbaijan\n", + "2639 Burundi\n", + "2858 Belgium\n", + "3077 Benin\n", + "3296 Burkina Faso\n", + "3515 Bangladesh\n", + "3734 Bulgaria\n", + "3953 Bahrain\n", + "4172 Bahamas\n", + "4391 Bosnia and Herzegovina\n", + "4610 Belarus\n", + "4829 Belize\n", + "4878 Bermuda\n", + "5095 Bolivia\n", + "5314 Brazil\n", + "5533 Barbados\n", + "5752 Brunei\n", + "5971 Bhutan\n", + "6190 Botswana\n", + " ... \n", + "35405 Sweden\n", + "35624 Swaziland\n", + "35843 Seychelles\n", + "36062 Syria\n", + "36281 Chad\n", + "36500 Togo\n", + "36719 Thailand\n", + "36938 Tajikistan\n", + "37157 Turkmenistan\n", + "37376 Timor-Leste\n", + "37595 Tonga\n", + "37814 Trinidad and Tobago\n", + "38033 Tunisia\n", + "38252 Turkey\n", + "38471 Taiwan\n", + "38688 Tanzania\n", + "38907 Uganda\n", + "39126 Ukraine\n", + "39345 Uruguay\n", + "39564 United States\n", + "39783 Uzbekistan\n", + "40002 St. Vincent and the Grenadines\n", + "40221 Venezuela\n", + "40440 Vietnam\n", + "40659 Vanuatu\n", + "40878 Samoa\n", + "41097 Yemen\n", + "41316 South Africa\n", + "41535 Zambia\n", + "41754 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "184 Aruba\n", + "403 Afghanistan\n", + "622 Angola\n", + "841 Albania\n", + "890 Andorra\n", + "1107 United Arab Emirates\n", + "1326 Argentina\n", + "1545 Armenia\n", + "1764 Antigua and Barbuda\n", + "1983 Australia\n", + "2202 Austria\n", + "2421 Azerbaijan\n", + "2640 Burundi\n", + "2859 Belgium\n", + "3078 Benin\n", + "3297 Burkina Faso\n", + "3516 Bangladesh\n", + "3735 Bulgaria\n", + "3954 Bahrain\n", + "4173 Bahamas\n", + "4392 Bosnia and Herzegovina\n", + "4611 Belarus\n", + "4830 Belize\n", + "4879 Bermuda\n", + "5096 Bolivia\n", + "5315 Brazil\n", + "5534 Barbados\n", + "5753 Brunei\n", + "5972 Bhutan\n", + "6191 Botswana\n", + " ... \n", + "35406 Sweden\n", + "35625 Swaziland\n", + "35844 Seychelles\n", + "36063 Syria\n", + "36282 Chad\n", + "36501 Togo\n", + "36720 Thailand\n", + "36939 Tajikistan\n", + "37158 Turkmenistan\n", + "37377 Timor-Leste\n", + "37596 Tonga\n", + "37815 Trinidad and Tobago\n", + "38034 Tunisia\n", + "38253 Turkey\n", + "38472 Taiwan\n", + "38689 Tanzania\n", + "38908 Uganda\n", + "39127 Ukraine\n", + "39346 Uruguay\n", + "39565 United States\n", + "39784 Uzbekistan\n", + "40003 St. Vincent and the Grenadines\n", + "40222 Venezuela\n", + "40441 Vietnam\n", + "40660 Vanuatu\n", + "40879 Samoa\n", + "41098 Yemen\n", + "41317 South Africa\n", + "41536 Zambia\n", + "41755 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "185 Aruba\n", + "404 Afghanistan\n", + "623 Angola\n", + "842 Albania\n", + "891 Andorra\n", + "1108 United Arab Emirates\n", + "1327 Argentina\n", + "1546 Armenia\n", + "1765 Antigua and Barbuda\n", + "1984 Australia\n", + "2203 Austria\n", + "2422 Azerbaijan\n", + "2641 Burundi\n", + "2860 Belgium\n", + "3079 Benin\n", + "3298 Burkina Faso\n", + "3517 Bangladesh\n", + "3736 Bulgaria\n", + "3955 Bahrain\n", + "4174 Bahamas\n", + "4393 Bosnia and Herzegovina\n", + "4612 Belarus\n", + "4831 Belize\n", + "4880 Bermuda\n", + "5097 Bolivia\n", + "5316 Brazil\n", + "5535 Barbados\n", + "5754 Brunei\n", + "5973 Bhutan\n", + "6192 Botswana\n", + " ... \n", + "35407 Sweden\n", + "35626 Swaziland\n", + "35845 Seychelles\n", + "36064 Syria\n", + "36283 Chad\n", + "36502 Togo\n", + "36721 Thailand\n", + "36940 Tajikistan\n", + "37159 Turkmenistan\n", + "37378 Timor-Leste\n", + "37597 Tonga\n", + "37816 Trinidad and Tobago\n", + "38035 Tunisia\n", + "38254 Turkey\n", + "38473 Taiwan\n", + "38690 Tanzania\n", + "38909 Uganda\n", + "39128 Ukraine\n", + "39347 Uruguay\n", + "39566 United States\n", + "39785 Uzbekistan\n", + "40004 St. Vincent and the Grenadines\n", + "40223 Venezuela\n", + "40442 Vietnam\n", + "40661 Vanuatu\n", + "40880 Samoa\n", + "41099 Yemen\n", + "41318 South Africa\n", + "41537 Zambia\n", + "41756 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "186 Aruba\n", + "405 Afghanistan\n", + "624 Angola\n", + "843 Albania\n", + "892 Andorra\n", + "1109 United Arab Emirates\n", + "1328 Argentina\n", + "1547 Armenia\n", + "1766 Antigua and Barbuda\n", + "1985 Australia\n", + "2204 Austria\n", + "2423 Azerbaijan\n", + "2642 Burundi\n", + "2861 Belgium\n", + "3080 Benin\n", + "3299 Burkina Faso\n", + "3518 Bangladesh\n", + "3737 Bulgaria\n", + "3956 Bahrain\n", + "4175 Bahamas\n", + "4394 Bosnia and Herzegovina\n", + "4613 Belarus\n", + "4832 Belize\n", + "4881 Bermuda\n", + "5098 Bolivia\n", + "5317 Brazil\n", + "5536 Barbados\n", + "5755 Brunei\n", + "5974 Bhutan\n", + "6193 Botswana\n", + " ... \n", + "35408 Sweden\n", + "35627 Swaziland\n", + "35846 Seychelles\n", + "36065 Syria\n", + "36284 Chad\n", + "36503 Togo\n", + "36722 Thailand\n", + "36941 Tajikistan\n", + "37160 Turkmenistan\n", + "37379 Timor-Leste\n", + "37598 Tonga\n", + "37817 Trinidad and Tobago\n", + "38036 Tunisia\n", + "38255 Turkey\n", + "38474 Taiwan\n", + "38691 Tanzania\n", + "38910 Uganda\n", + "39129 Ukraine\n", + "39348 Uruguay\n", + "39567 United States\n", + "39786 Uzbekistan\n", + "40005 St. Vincent and the Grenadines\n", + "40224 Venezuela\n", + "40443 Vietnam\n", + "40662 Vanuatu\n", + "40881 Samoa\n", + "41100 Yemen\n", + "41319 South Africa\n", + "41538 Zambia\n", + "41757 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "187 Aruba\n", + "406 Afghanistan\n", + "625 Angola\n", + "844 Albania\n", + "893 Andorra\n", + "1110 United Arab Emirates\n", + "1329 Argentina\n", + "1548 Armenia\n", + "1767 Antigua and Barbuda\n", + "1986 Australia\n", + "2205 Austria\n", + "2424 Azerbaijan\n", + "2643 Burundi\n", + "2862 Belgium\n", + "3081 Benin\n", + "3300 Burkina Faso\n", + "3519 Bangladesh\n", + "3738 Bulgaria\n", + "3957 Bahrain\n", + "4176 Bahamas\n", + "4395 Bosnia and Herzegovina\n", + "4614 Belarus\n", + "4833 Belize\n", + "4882 Bermuda\n", + "5099 Bolivia\n", + "5318 Brazil\n", + "5537 Barbados\n", + "5756 Brunei\n", + "5975 Bhutan\n", + "6194 Botswana\n", + " ... \n", + "35409 Sweden\n", + "35628 Swaziland\n", + "35847 Seychelles\n", + "36066 Syria\n", + "36285 Chad\n", + "36504 Togo\n", + "36723 Thailand\n", + "36942 Tajikistan\n", + "37161 Turkmenistan\n", + "37380 Timor-Leste\n", + "37599 Tonga\n", + "37818 Trinidad and Tobago\n", + "38037 Tunisia\n", + "38256 Turkey\n", + "38475 Taiwan\n", + "38692 Tanzania\n", + "38911 Uganda\n", + "39130 Ukraine\n", + "39349 Uruguay\n", + "39568 United States\n", + "39787 Uzbekistan\n", + "40006 St. Vincent and the Grenadines\n", + "40225 Venezuela\n", + "40444 Vietnam\n", + "40663 Vanuatu\n", + "40882 Samoa\n", + "41101 Yemen\n", + "41320 South Africa\n", + "41539 Zambia\n", + "41758 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "188 Aruba\n", + "407 Afghanistan\n", + "626 Angola\n", + "845 Albania\n", + "894 Andorra\n", + "1111 United Arab Emirates\n", + "1330 Argentina\n", + "1549 Armenia\n", + "1768 Antigua and Barbuda\n", + "1987 Australia\n", + "2206 Austria\n", + "2425 Azerbaijan\n", + "2644 Burundi\n", + "2863 Belgium\n", + "3082 Benin\n", + "3301 Burkina Faso\n", + "3520 Bangladesh\n", + "3739 Bulgaria\n", + "3958 Bahrain\n", + "4177 Bahamas\n", + "4396 Bosnia and Herzegovina\n", + "4615 Belarus\n", + "4834 Belize\n", + "4883 Bermuda\n", + "5100 Bolivia\n", + "5319 Brazil\n", + "5538 Barbados\n", + "5757 Brunei\n", + "5976 Bhutan\n", + "6195 Botswana\n", + " ... \n", + "35410 Sweden\n", + "35629 Swaziland\n", + "35848 Seychelles\n", + "36067 Syria\n", + "36286 Chad\n", + "36505 Togo\n", + "36724 Thailand\n", + "36943 Tajikistan\n", + "37162 Turkmenistan\n", + "37381 Timor-Leste\n", + "37600 Tonga\n", + "37819 Trinidad and Tobago\n", + "38038 Tunisia\n", + "38257 Turkey\n", + "38476 Taiwan\n", + "38693 Tanzania\n", + "38912 Uganda\n", + "39131 Ukraine\n", + "39350 Uruguay\n", + "39569 United States\n", + "39788 Uzbekistan\n", + "40007 St. Vincent and the Grenadines\n", + "40226 Venezuela\n", + "40445 Vietnam\n", + "40664 Vanuatu\n", + "40883 Samoa\n", + "41102 Yemen\n", + "41321 South Africa\n", + "41540 Zambia\n", + "41759 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "189 Aruba\n", + "408 Afghanistan\n", + "627 Angola\n", + "846 Albania\n", + "895 Andorra\n", + "1112 United Arab Emirates\n", + "1331 Argentina\n", + "1550 Armenia\n", + "1769 Antigua and Barbuda\n", + "1988 Australia\n", + "2207 Austria\n", + "2426 Azerbaijan\n", + "2645 Burundi\n", + "2864 Belgium\n", + "3083 Benin\n", + "3302 Burkina Faso\n", + "3521 Bangladesh\n", + "3740 Bulgaria\n", + "3959 Bahrain\n", + "4178 Bahamas\n", + "4397 Bosnia and Herzegovina\n", + "4616 Belarus\n", + "4835 Belize\n", + "4884 Bermuda\n", + "5101 Bolivia\n", + "5320 Brazil\n", + "5539 Barbados\n", + "5758 Brunei\n", + "5977 Bhutan\n", + "6196 Botswana\n", + " ... \n", + "35411 Sweden\n", + "35630 Swaziland\n", + "35849 Seychelles\n", + "36068 Syria\n", + "36287 Chad\n", + "36506 Togo\n", + "36725 Thailand\n", + "36944 Tajikistan\n", + "37163 Turkmenistan\n", + "37382 Timor-Leste\n", + "37601 Tonga\n", + "37820 Trinidad and Tobago\n", + "38039 Tunisia\n", + "38258 Turkey\n", + "38477 Taiwan\n", + "38694 Tanzania\n", + "38913 Uganda\n", + "39132 Ukraine\n", + "39351 Uruguay\n", + "39570 United States\n", + "39789 Uzbekistan\n", + "40008 St. Vincent and the Grenadines\n", + "40227 Venezuela\n", + "40446 Vietnam\n", + "40665 Vanuatu\n", + "40884 Samoa\n", + "41103 Yemen\n", + "41322 South Africa\n", + "41541 Zambia\n", + "41760 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "190 Aruba\n", + "409 Afghanistan\n", + "628 Angola\n", + "847 Albania\n", + "896 Andorra\n", + "1113 United Arab Emirates\n", + "1332 Argentina\n", + "1551 Armenia\n", + "1770 Antigua and Barbuda\n", + "1989 Australia\n", + "2208 Austria\n", + "2427 Azerbaijan\n", + "2646 Burundi\n", + "2865 Belgium\n", + "3084 Benin\n", + "3303 Burkina Faso\n", + "3522 Bangladesh\n", + "3741 Bulgaria\n", + "3960 Bahrain\n", + "4179 Bahamas\n", + "4398 Bosnia and Herzegovina\n", + "4617 Belarus\n", + "4836 Belize\n", + "4885 Bermuda\n", + "5102 Bolivia\n", + "5321 Brazil\n", + "5540 Barbados\n", + "5759 Brunei\n", + "5978 Bhutan\n", + "6197 Botswana\n", + " ... \n", + "35412 Sweden\n", + "35631 Swaziland\n", + "35850 Seychelles\n", + "36069 Syria\n", + "36288 Chad\n", + "36507 Togo\n", + "36726 Thailand\n", + "36945 Tajikistan\n", + "37164 Turkmenistan\n", + "37383 Timor-Leste\n", + "37602 Tonga\n", + "37821 Trinidad and Tobago\n", + "38040 Tunisia\n", + "38259 Turkey\n", + "38478 Taiwan\n", + "38695 Tanzania\n", + "38914 Uganda\n", + "39133 Ukraine\n", + "39352 Uruguay\n", + "39571 United States\n", + "39790 Uzbekistan\n", + "40009 St. Vincent and the Grenadines\n", + "40228 Venezuela\n", + "40447 Vietnam\n", + "40666 Vanuatu\n", + "40885 Samoa\n", + "41104 Yemen\n", + "41323 South Africa\n", + "41542 Zambia\n", + "41761 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "191 Aruba\n", + "410 Afghanistan\n", + "629 Angola\n", + "848 Albania\n", + "897 Andorra\n", + "1114 United Arab Emirates\n", + "1333 Argentina\n", + "1552 Armenia\n", + "1771 Antigua and Barbuda\n", + "1990 Australia\n", + "2209 Austria\n", + "2428 Azerbaijan\n", + "2647 Burundi\n", + "2866 Belgium\n", + "3085 Benin\n", + "3304 Burkina Faso\n", + "3523 Bangladesh\n", + "3742 Bulgaria\n", + "3961 Bahrain\n", + "4180 Bahamas\n", + "4399 Bosnia and Herzegovina\n", + "4618 Belarus\n", + "4837 Belize\n", + "4886 Bermuda\n", + "5103 Bolivia\n", + "5322 Brazil\n", + "5541 Barbados\n", + "5760 Brunei\n", + "5979 Bhutan\n", + "6198 Botswana\n", + " ... \n", + "35413 Sweden\n", + "35632 Swaziland\n", + "35851 Seychelles\n", + "36070 Syria\n", + "36289 Chad\n", + "36508 Togo\n", + "36727 Thailand\n", + "36946 Tajikistan\n", + "37165 Turkmenistan\n", + "37384 Timor-Leste\n", + "37603 Tonga\n", + "37822 Trinidad and Tobago\n", + "38041 Tunisia\n", + "38260 Turkey\n", + "38479 Taiwan\n", + "38696 Tanzania\n", + "38915 Uganda\n", + "39134 Ukraine\n", + "39353 Uruguay\n", + "39572 United States\n", + "39791 Uzbekistan\n", + "40010 St. Vincent and the Grenadines\n", + "40229 Venezuela\n", + "40448 Vietnam\n", + "40667 Vanuatu\n", + "40886 Samoa\n", + "41105 Yemen\n", + "41324 South Africa\n", + "41543 Zambia\n", + "41762 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "192 Aruba\n", + "411 Afghanistan\n", + "630 Angola\n", + "849 Albania\n", + "898 Andorra\n", + "1115 United Arab Emirates\n", + "1334 Argentina\n", + "1553 Armenia\n", + "1772 Antigua and Barbuda\n", + "1991 Australia\n", + "2210 Austria\n", + "2429 Azerbaijan\n", + "2648 Burundi\n", + "2867 Belgium\n", + "3086 Benin\n", + "3305 Burkina Faso\n", + "3524 Bangladesh\n", + "3743 Bulgaria\n", + "3962 Bahrain\n", + "4181 Bahamas\n", + "4400 Bosnia and Herzegovina\n", + "4619 Belarus\n", + "4838 Belize\n", + "4887 Bermuda\n", + "5104 Bolivia\n", + "5323 Brazil\n", + "5542 Barbados\n", + "5761 Brunei\n", + "5980 Bhutan\n", + "6199 Botswana\n", + " ... \n", + "35414 Sweden\n", + "35633 Swaziland\n", + "35852 Seychelles\n", + "36071 Syria\n", + "36290 Chad\n", + "36509 Togo\n", + "36728 Thailand\n", + "36947 Tajikistan\n", + "37166 Turkmenistan\n", + "37385 Timor-Leste\n", + "37604 Tonga\n", + "37823 Trinidad and Tobago\n", + "38042 Tunisia\n", + "38261 Turkey\n", + "38480 Taiwan\n", + "38697 Tanzania\n", + "38916 Uganda\n", + "39135 Ukraine\n", + "39354 Uruguay\n", + "39573 United States\n", + "39792 Uzbekistan\n", + "40011 St. Vincent and the Grenadines\n", + "40230 Venezuela\n", + "40449 Vietnam\n", + "40668 Vanuatu\n", + "40887 Samoa\n", + "41106 Yemen\n", + "41325 South Africa\n", + "41544 Zambia\n", + "41763 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "193 Aruba\n", + "412 Afghanistan\n", + "631 Angola\n", + "850 Albania\n", + "899 Andorra\n", + "1116 United Arab Emirates\n", + "1335 Argentina\n", + "1554 Armenia\n", + "1773 Antigua and Barbuda\n", + "1992 Australia\n", + "2211 Austria\n", + "2430 Azerbaijan\n", + "2649 Burundi\n", + "2868 Belgium\n", + "3087 Benin\n", + "3306 Burkina Faso\n", + "3525 Bangladesh\n", + "3744 Bulgaria\n", + "3963 Bahrain\n", + "4182 Bahamas\n", + "4401 Bosnia and Herzegovina\n", + "4620 Belarus\n", + "4839 Belize\n", + "4888 Bermuda\n", + "5105 Bolivia\n", + "5324 Brazil\n", + "5543 Barbados\n", + "5762 Brunei\n", + "5981 Bhutan\n", + "6200 Botswana\n", + " ... \n", + "35415 Sweden\n", + "35634 Swaziland\n", + "35853 Seychelles\n", + "36072 Syria\n", + "36291 Chad\n", + "36510 Togo\n", + "36729 Thailand\n", + "36948 Tajikistan\n", + "37167 Turkmenistan\n", + "37386 Timor-Leste\n", + "37605 Tonga\n", + "37824 Trinidad and Tobago\n", + "38043 Tunisia\n", + "38262 Turkey\n", + "38481 Taiwan\n", + "38698 Tanzania\n", + "38917 Uganda\n", + "39136 Ukraine\n", + "39355 Uruguay\n", + "39574 United States\n", + "39793 Uzbekistan\n", + "40012 St. Vincent and the Grenadines\n", + "40231 Venezuela\n", + "40450 Vietnam\n", + "40669 Vanuatu\n", + "40888 Samoa\n", + "41107 Yemen\n", + "41326 South Africa\n", + "41545 Zambia\n", + "41764 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "194 Aruba\n", + "413 Afghanistan\n", + "632 Angola\n", + "851 Albania\n", + "900 Andorra\n", + "1117 United Arab Emirates\n", + "1336 Argentina\n", + "1555 Armenia\n", + "1774 Antigua and Barbuda\n", + "1993 Australia\n", + "2212 Austria\n", + "2431 Azerbaijan\n", + "2650 Burundi\n", + "2869 Belgium\n", + "3088 Benin\n", + "3307 Burkina Faso\n", + "3526 Bangladesh\n", + "3745 Bulgaria\n", + "3964 Bahrain\n", + "4183 Bahamas\n", + "4402 Bosnia and Herzegovina\n", + "4621 Belarus\n", + "4840 Belize\n", + "4889 Bermuda\n", + "5106 Bolivia\n", + "5325 Brazil\n", + "5544 Barbados\n", + "5763 Brunei\n", + "5982 Bhutan\n", + "6201 Botswana\n", + " ... \n", + "35416 Sweden\n", + "35635 Swaziland\n", + "35854 Seychelles\n", + "36073 Syria\n", + "36292 Chad\n", + "36511 Togo\n", + "36730 Thailand\n", + "36949 Tajikistan\n", + "37168 Turkmenistan\n", + "37387 Timor-Leste\n", + "37606 Tonga\n", + "37825 Trinidad and Tobago\n", + "38044 Tunisia\n", + "38263 Turkey\n", + "38482 Taiwan\n", + "38699 Tanzania\n", + "38918 Uganda\n", + "39137 Ukraine\n", + "39356 Uruguay\n", + "39575 United States\n", + "39794 Uzbekistan\n", + "40013 St. Vincent and the Grenadines\n", + "40232 Venezuela\n", + "40451 Vietnam\n", + "40670 Vanuatu\n", + "40889 Samoa\n", + "41108 Yemen\n", + "41327 South Africa\n", + "41546 Zambia\n", + "41765 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "195 Aruba\n", + "414 Afghanistan\n", + "633 Angola\n", + "852 Albania\n", + "901 Andorra\n", + "1118 United Arab Emirates\n", + "1337 Argentina\n", + "1556 Armenia\n", + "1775 Antigua and Barbuda\n", + "1994 Australia\n", + "2213 Austria\n", + "2432 Azerbaijan\n", + "2651 Burundi\n", + "2870 Belgium\n", + "3089 Benin\n", + "3308 Burkina Faso\n", + "3527 Bangladesh\n", + "3746 Bulgaria\n", + "3965 Bahrain\n", + "4184 Bahamas\n", + "4403 Bosnia and Herzegovina\n", + "4622 Belarus\n", + "4841 Belize\n", + "4890 Bermuda\n", + "5107 Bolivia\n", + "5326 Brazil\n", + "5545 Barbados\n", + "5764 Brunei\n", + "5983 Bhutan\n", + "6202 Botswana\n", + " ... \n", + "35417 Sweden\n", + "35636 Swaziland\n", + "35855 Seychelles\n", + "36074 Syria\n", + "36293 Chad\n", + "36512 Togo\n", + "36731 Thailand\n", + "36950 Tajikistan\n", + "37169 Turkmenistan\n", + "37388 Timor-Leste\n", + "37607 Tonga\n", + "37826 Trinidad and Tobago\n", + "38045 Tunisia\n", + "38264 Turkey\n", + "38483 Taiwan\n", + "38700 Tanzania\n", + "38919 Uganda\n", + "39138 Ukraine\n", + "39357 Uruguay\n", + "39576 United States\n", + "39795 Uzbekistan\n", + "40014 St. Vincent and the Grenadines\n", + "40233 Venezuela\n", + "40452 Vietnam\n", + "40671 Vanuatu\n", + "40890 Samoa\n", + "41109 Yemen\n", + "41328 South Africa\n", + "41547 Zambia\n", + "41766 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "196 Aruba\n", + "415 Afghanistan\n", + "634 Angola\n", + "853 Albania\n", + "902 Andorra\n", + "1119 United Arab Emirates\n", + "1338 Argentina\n", + "1557 Armenia\n", + "1776 Antigua and Barbuda\n", + "1995 Australia\n", + "2214 Austria\n", + "2433 Azerbaijan\n", + "2652 Burundi\n", + "2871 Belgium\n", + "3090 Benin\n", + "3309 Burkina Faso\n", + "3528 Bangladesh\n", + "3747 Bulgaria\n", + "3966 Bahrain\n", + "4185 Bahamas\n", + "4404 Bosnia and Herzegovina\n", + "4623 Belarus\n", + "4842 Belize\n", + "4891 Bermuda\n", + "5108 Bolivia\n", + "5327 Brazil\n", + "5546 Barbados\n", + "5765 Brunei\n", + "5984 Bhutan\n", + "6203 Botswana\n", + " ... \n", + "35418 Sweden\n", + "35637 Swaziland\n", + "35856 Seychelles\n", + "36075 Syria\n", + "36294 Chad\n", + "36513 Togo\n", + "36732 Thailand\n", + "36951 Tajikistan\n", + "37170 Turkmenistan\n", + "37389 Timor-Leste\n", + "37608 Tonga\n", + "37827 Trinidad and Tobago\n", + "38046 Tunisia\n", + "38265 Turkey\n", + "38484 Taiwan\n", + "38701 Tanzania\n", + "38920 Uganda\n", + "39139 Ukraine\n", + "39358 Uruguay\n", + "39577 United States\n", + "39796 Uzbekistan\n", + "40015 St. Vincent and the Grenadines\n", + "40234 Venezuela\n", + "40453 Vietnam\n", + "40672 Vanuatu\n", + "40891 Samoa\n", + "41110 Yemen\n", + "41329 South Africa\n", + "41548 Zambia\n", + "41767 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "197 Aruba\n", + "416 Afghanistan\n", + "635 Angola\n", + "854 Albania\n", + "903 Andorra\n", + "1120 United Arab Emirates\n", + "1339 Argentina\n", + "1558 Armenia\n", + "1777 Antigua and Barbuda\n", + "1996 Australia\n", + "2215 Austria\n", + "2434 Azerbaijan\n", + "2653 Burundi\n", + "2872 Belgium\n", + "3091 Benin\n", + "3310 Burkina Faso\n", + "3529 Bangladesh\n", + "3748 Bulgaria\n", + "3967 Bahrain\n", + "4186 Bahamas\n", + "4405 Bosnia and Herzegovina\n", + "4624 Belarus\n", + "4843 Belize\n", + "4892 Bermuda\n", + "5109 Bolivia\n", + "5328 Brazil\n", + "5547 Barbados\n", + "5766 Brunei\n", + "5985 Bhutan\n", + "6204 Botswana\n", + " ... \n", + "35419 Sweden\n", + "35638 Swaziland\n", + "35857 Seychelles\n", + "36076 Syria\n", + "36295 Chad\n", + "36514 Togo\n", + "36733 Thailand\n", + "36952 Tajikistan\n", + "37171 Turkmenistan\n", + "37390 Timor-Leste\n", + "37609 Tonga\n", + "37828 Trinidad and Tobago\n", + "38047 Tunisia\n", + "38266 Turkey\n", + "38485 Taiwan\n", + "38702 Tanzania\n", + "38921 Uganda\n", + "39140 Ukraine\n", + "39359 Uruguay\n", + "39578 United States\n", + "39797 Uzbekistan\n", + "40016 St. Vincent and the Grenadines\n", + "40235 Venezuela\n", + "40454 Vietnam\n", + "40673 Vanuatu\n", + "40892 Samoa\n", + "41111 Yemen\n", + "41330 South Africa\n", + "41549 Zambia\n", + "41768 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "198 Aruba\n", + "417 Afghanistan\n", + "636 Angola\n", + "855 Albania\n", + "904 Andorra\n", + "1121 United Arab Emirates\n", + "1340 Argentina\n", + "1559 Armenia\n", + "1778 Antigua and Barbuda\n", + "1997 Australia\n", + "2216 Austria\n", + "2435 Azerbaijan\n", + "2654 Burundi\n", + "2873 Belgium\n", + "3092 Benin\n", + "3311 Burkina Faso\n", + "3530 Bangladesh\n", + "3749 Bulgaria\n", + "3968 Bahrain\n", + "4187 Bahamas\n", + "4406 Bosnia and Herzegovina\n", + "4625 Belarus\n", + "4844 Belize\n", + "4893 Bermuda\n", + "5110 Bolivia\n", + "5329 Brazil\n", + "5548 Barbados\n", + "5767 Brunei\n", + "5986 Bhutan\n", + "6205 Botswana\n", + " ... \n", + "35420 Sweden\n", + "35639 Swaziland\n", + "35858 Seychelles\n", + "36077 Syria\n", + "36296 Chad\n", + "36515 Togo\n", + "36734 Thailand\n", + "36953 Tajikistan\n", + "37172 Turkmenistan\n", + "37391 Timor-Leste\n", + "37610 Tonga\n", + "37829 Trinidad and Tobago\n", + "38048 Tunisia\n", + "38267 Turkey\n", + "38486 Taiwan\n", + "38703 Tanzania\n", + "38922 Uganda\n", + "39141 Ukraine\n", + "39360 Uruguay\n", + "39579 United States\n", + "39798 Uzbekistan\n", + "40017 St. Vincent and the Grenadines\n", + "40236 Venezuela\n", + "40455 Vietnam\n", + "40674 Vanuatu\n", + "40893 Samoa\n", + "41112 Yemen\n", + "41331 South Africa\n", + "41550 Zambia\n", + "41769 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "199 Aruba\n", + "418 Afghanistan\n", + "637 Angola\n", + "856 Albania\n", + "905 Andorra\n", + "1122 United Arab Emirates\n", + "1341 Argentina\n", + "1560 Armenia\n", + "1779 Antigua and Barbuda\n", + "1998 Australia\n", + "2217 Austria\n", + "2436 Azerbaijan\n", + "2655 Burundi\n", + "2874 Belgium\n", + "3093 Benin\n", + "3312 Burkina Faso\n", + "3531 Bangladesh\n", + "3750 Bulgaria\n", + "3969 Bahrain\n", + "4188 Bahamas\n", + "4407 Bosnia and Herzegovina\n", + "4626 Belarus\n", + "4845 Belize\n", + "4894 Bermuda\n", + "5111 Bolivia\n", + "5330 Brazil\n", + "5549 Barbados\n", + "5768 Brunei\n", + "5987 Bhutan\n", + "6206 Botswana\n", + " ... \n", + "35421 Sweden\n", + "35640 Swaziland\n", + "35859 Seychelles\n", + "36078 Syria\n", + "36297 Chad\n", + "36516 Togo\n", + "36735 Thailand\n", + "36954 Tajikistan\n", + "37173 Turkmenistan\n", + "37392 Timor-Leste\n", + "37611 Tonga\n", + "37830 Trinidad and Tobago\n", + "38049 Tunisia\n", + "38268 Turkey\n", + "38487 Taiwan\n", + "38704 Tanzania\n", + "38923 Uganda\n", + "39142 Ukraine\n", + "39361 Uruguay\n", + "39580 United States\n", + "39799 Uzbekistan\n", + "40018 St. Vincent and the Grenadines\n", + "40237 Venezuela\n", + "40456 Vietnam\n", + "40675 Vanuatu\n", + "40894 Samoa\n", + "41113 Yemen\n", + "41332 South Africa\n", + "41551 Zambia\n", + "41770 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "200 Aruba\n", + "419 Afghanistan\n", + "638 Angola\n", + "857 Albania\n", + "906 Andorra\n", + "1123 United Arab Emirates\n", + "1342 Argentina\n", + "1561 Armenia\n", + "1780 Antigua and Barbuda\n", + "1999 Australia\n", + "2218 Austria\n", + "2437 Azerbaijan\n", + "2656 Burundi\n", + "2875 Belgium\n", + "3094 Benin\n", + "3313 Burkina Faso\n", + "3532 Bangladesh\n", + "3751 Bulgaria\n", + "3970 Bahrain\n", + "4189 Bahamas\n", + "4408 Bosnia and Herzegovina\n", + "4627 Belarus\n", + "4846 Belize\n", + "4895 Bermuda\n", + "5112 Bolivia\n", + "5331 Brazil\n", + "5550 Barbados\n", + "5769 Brunei\n", + "5988 Bhutan\n", + "6207 Botswana\n", + " ... \n", + "35422 Sweden\n", + "35641 Swaziland\n", + "35860 Seychelles\n", + "36079 Syria\n", + "36298 Chad\n", + "36517 Togo\n", + "36736 Thailand\n", + "36955 Tajikistan\n", + "37174 Turkmenistan\n", + "37393 Timor-Leste\n", + "37612 Tonga\n", + "37831 Trinidad and Tobago\n", + "38050 Tunisia\n", + "38269 Turkey\n", + "38488 Taiwan\n", + "38705 Tanzania\n", + "38924 Uganda\n", + "39143 Ukraine\n", + "39362 Uruguay\n", + "39581 United States\n", + "39800 Uzbekistan\n", + "40019 St. Vincent and the Grenadines\n", + "40238 Venezuela\n", + "40457 Vietnam\n", + "40676 Vanuatu\n", + "40895 Samoa\n", + "41114 Yemen\n", + "41333 South Africa\n", + "41552 Zambia\n", + "41771 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "201 Aruba\n", + "420 Afghanistan\n", + "639 Angola\n", + "858 Albania\n", + "907 Andorra\n", + "1124 United Arab Emirates\n", + "1343 Argentina\n", + "1562 Armenia\n", + "1781 Antigua and Barbuda\n", + "2000 Australia\n", + "2219 Austria\n", + "2438 Azerbaijan\n", + "2657 Burundi\n", + "2876 Belgium\n", + "3095 Benin\n", + "3314 Burkina Faso\n", + "3533 Bangladesh\n", + "3752 Bulgaria\n", + "3971 Bahrain\n", + "4190 Bahamas\n", + "4409 Bosnia and Herzegovina\n", + "4628 Belarus\n", + "4847 Belize\n", + "4896 Bermuda\n", + "5113 Bolivia\n", + "5332 Brazil\n", + "5551 Barbados\n", + "5770 Brunei\n", + "5989 Bhutan\n", + "6208 Botswana\n", + " ... \n", + "35423 Sweden\n", + "35642 Swaziland\n", + "35861 Seychelles\n", + "36080 Syria\n", + "36299 Chad\n", + "36518 Togo\n", + "36737 Thailand\n", + "36956 Tajikistan\n", + "37175 Turkmenistan\n", + "37394 Timor-Leste\n", + "37613 Tonga\n", + "37832 Trinidad and Tobago\n", + "38051 Tunisia\n", + "38270 Turkey\n", + "38489 Taiwan\n", + "38706 Tanzania\n", + "38925 Uganda\n", + "39144 Ukraine\n", + "39363 Uruguay\n", + "39582 United States\n", + "39801 Uzbekistan\n", + "40020 St. Vincent and the Grenadines\n", + "40239 Venezuela\n", + "40458 Vietnam\n", + "40677 Vanuatu\n", + "40896 Samoa\n", + "41115 Yemen\n", + "41334 South Africa\n", + "41553 Zambia\n", + "41772 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "202 Aruba\n", + "421 Afghanistan\n", + "640 Angola\n", + "859 Albania\n", + "908 Andorra\n", + "1125 United Arab Emirates\n", + "1344 Argentina\n", + "1563 Armenia\n", + "1782 Antigua and Barbuda\n", + "2001 Australia\n", + "2220 Austria\n", + "2439 Azerbaijan\n", + "2658 Burundi\n", + "2877 Belgium\n", + "3096 Benin\n", + "3315 Burkina Faso\n", + "3534 Bangladesh\n", + "3753 Bulgaria\n", + "3972 Bahrain\n", + "4191 Bahamas\n", + "4410 Bosnia and Herzegovina\n", + "4629 Belarus\n", + "4848 Belize\n", + "4897 Bermuda\n", + "5114 Bolivia\n", + "5333 Brazil\n", + "5552 Barbados\n", + "5771 Brunei\n", + "5990 Bhutan\n", + "6209 Botswana\n", + " ... \n", + "35424 Sweden\n", + "35643 Swaziland\n", + "35862 Seychelles\n", + "36081 Syria\n", + "36300 Chad\n", + "36519 Togo\n", + "36738 Thailand\n", + "36957 Tajikistan\n", + "37176 Turkmenistan\n", + "37395 Timor-Leste\n", + "37614 Tonga\n", + "37833 Trinidad and Tobago\n", + "38052 Tunisia\n", + "38271 Turkey\n", + "38490 Taiwan\n", + "38707 Tanzania\n", + "38926 Uganda\n", + "39145 Ukraine\n", + "39364 Uruguay\n", + "39583 United States\n", + "39802 Uzbekistan\n", + "40021 St. Vincent and the Grenadines\n", + "40240 Venezuela\n", + "40459 Vietnam\n", + "40678 Vanuatu\n", + "40897 Samoa\n", + "41116 Yemen\n", + "41335 South Africa\n", + "41554 Zambia\n", + "41773 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "203 Aruba\n", + "422 Afghanistan\n", + "641 Angola\n", + "860 Albania\n", + "909 Andorra\n", + "1126 United Arab Emirates\n", + "1345 Argentina\n", + "1564 Armenia\n", + "1783 Antigua and Barbuda\n", + "2002 Australia\n", + "2221 Austria\n", + "2440 Azerbaijan\n", + "2659 Burundi\n", + "2878 Belgium\n", + "3097 Benin\n", + "3316 Burkina Faso\n", + "3535 Bangladesh\n", + "3754 Bulgaria\n", + "3973 Bahrain\n", + "4192 Bahamas\n", + "4411 Bosnia and Herzegovina\n", + "4630 Belarus\n", + "4849 Belize\n", + "4898 Bermuda\n", + "5115 Bolivia\n", + "5334 Brazil\n", + "5553 Barbados\n", + "5772 Brunei\n", + "5991 Bhutan\n", + "6210 Botswana\n", + " ... \n", + "35425 Sweden\n", + "35644 Swaziland\n", + "35863 Seychelles\n", + "36082 Syria\n", + "36301 Chad\n", + "36520 Togo\n", + "36739 Thailand\n", + "36958 Tajikistan\n", + "37177 Turkmenistan\n", + "37396 Timor-Leste\n", + "37615 Tonga\n", + "37834 Trinidad and Tobago\n", + "38053 Tunisia\n", + "38272 Turkey\n", + "38491 Taiwan\n", + "38708 Tanzania\n", + "38927 Uganda\n", + "39146 Ukraine\n", + "39365 Uruguay\n", + "39584 United States\n", + "39803 Uzbekistan\n", + "40022 St. Vincent and the Grenadines\n", + "40241 Venezuela\n", + "40460 Vietnam\n", + "40679 Vanuatu\n", + "40898 Samoa\n", + "41117 Yemen\n", + "41336 South Africa\n", + "41555 Zambia\n", + "41774 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "204 Aruba\n", + "423 Afghanistan\n", + "642 Angola\n", + "861 Albania\n", + "910 Andorra\n", + "1127 United Arab Emirates\n", + "1346 Argentina\n", + "1565 Armenia\n", + "1784 Antigua and Barbuda\n", + "2003 Australia\n", + "2222 Austria\n", + "2441 Azerbaijan\n", + "2660 Burundi\n", + "2879 Belgium\n", + "3098 Benin\n", + "3317 Burkina Faso\n", + "3536 Bangladesh\n", + "3755 Bulgaria\n", + "3974 Bahrain\n", + "4193 Bahamas\n", + "4412 Bosnia and Herzegovina\n", + "4631 Belarus\n", + "4850 Belize\n", + "4899 Bermuda\n", + "5116 Bolivia\n", + "5335 Brazil\n", + "5554 Barbados\n", + "5773 Brunei\n", + "5992 Bhutan\n", + "6211 Botswana\n", + " ... \n", + "35426 Sweden\n", + "35645 Swaziland\n", + "35864 Seychelles\n", + "36083 Syria\n", + "36302 Chad\n", + "36521 Togo\n", + "36740 Thailand\n", + "36959 Tajikistan\n", + "37178 Turkmenistan\n", + "37397 Timor-Leste\n", + "37616 Tonga\n", + "37835 Trinidad and Tobago\n", + "38054 Tunisia\n", + "38273 Turkey\n", + "38492 Taiwan\n", + "38709 Tanzania\n", + "38928 Uganda\n", + "39147 Ukraine\n", + "39366 Uruguay\n", + "39585 United States\n", + "39804 Uzbekistan\n", + "40023 St. Vincent and the Grenadines\n", + "40242 Venezuela\n", + "40461 Vietnam\n", + "40680 Vanuatu\n", + "40899 Samoa\n", + "41118 Yemen\n", + "41337 South Africa\n", + "41556 Zambia\n", + "41775 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "205 Aruba\n", + "424 Afghanistan\n", + "643 Angola\n", + "862 Albania\n", + "911 Andorra\n", + "1128 United Arab Emirates\n", + "1347 Argentina\n", + "1566 Armenia\n", + "1785 Antigua and Barbuda\n", + "2004 Australia\n", + "2223 Austria\n", + "2442 Azerbaijan\n", + "2661 Burundi\n", + "2880 Belgium\n", + "3099 Benin\n", + "3318 Burkina Faso\n", + "3537 Bangladesh\n", + "3756 Bulgaria\n", + "3975 Bahrain\n", + "4194 Bahamas\n", + "4413 Bosnia and Herzegovina\n", + "4632 Belarus\n", + "4851 Belize\n", + "4900 Bermuda\n", + "5117 Bolivia\n", + "5336 Brazil\n", + "5555 Barbados\n", + "5774 Brunei\n", + "5993 Bhutan\n", + "6212 Botswana\n", + " ... \n", + "35427 Sweden\n", + "35646 Swaziland\n", + "35865 Seychelles\n", + "36084 Syria\n", + "36303 Chad\n", + "36522 Togo\n", + "36741 Thailand\n", + "36960 Tajikistan\n", + "37179 Turkmenistan\n", + "37398 Timor-Leste\n", + "37617 Tonga\n", + "37836 Trinidad and Tobago\n", + "38055 Tunisia\n", + "38274 Turkey\n", + "38493 Taiwan\n", + "38710 Tanzania\n", + "38929 Uganda\n", + "39148 Ukraine\n", + "39367 Uruguay\n", + "39586 United States\n", + "39805 Uzbekistan\n", + "40024 St. Vincent and the Grenadines\n", + "40243 Venezuela\n", + "40462 Vietnam\n", + "40681 Vanuatu\n", + "40900 Samoa\n", + "41119 Yemen\n", + "41338 South Africa\n", + "41557 Zambia\n", + "41776 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "206 Aruba\n", + "425 Afghanistan\n", + "644 Angola\n", + "863 Albania\n", + "912 Andorra\n", + "1129 United Arab Emirates\n", + "1348 Argentina\n", + "1567 Armenia\n", + "1786 Antigua and Barbuda\n", + "2005 Australia\n", + "2224 Austria\n", + "2443 Azerbaijan\n", + "2662 Burundi\n", + "2881 Belgium\n", + "3100 Benin\n", + "3319 Burkina Faso\n", + "3538 Bangladesh\n", + "3757 Bulgaria\n", + "3976 Bahrain\n", + "4195 Bahamas\n", + "4414 Bosnia and Herzegovina\n", + "4633 Belarus\n", + "4852 Belize\n", + "4901 Bermuda\n", + "5118 Bolivia\n", + "5337 Brazil\n", + "5556 Barbados\n", + "5775 Brunei\n", + "5994 Bhutan\n", + "6213 Botswana\n", + " ... \n", + "35428 Sweden\n", + "35647 Swaziland\n", + "35866 Seychelles\n", + "36085 Syria\n", + "36304 Chad\n", + "36523 Togo\n", + "36742 Thailand\n", + "36961 Tajikistan\n", + "37180 Turkmenistan\n", + "37399 Timor-Leste\n", + "37618 Tonga\n", + "37837 Trinidad and Tobago\n", + "38056 Tunisia\n", + "38275 Turkey\n", + "38494 Taiwan\n", + "38711 Tanzania\n", + "38930 Uganda\n", + "39149 Ukraine\n", + "39368 Uruguay\n", + "39587 United States\n", + "39806 Uzbekistan\n", + "40025 St. Vincent and the Grenadines\n", + "40244 Venezuela\n", + "40463 Vietnam\n", + "40682 Vanuatu\n", + "40901 Samoa\n", + "41120 Yemen\n", + "41339 South Africa\n", + "41558 Zambia\n", + "41777 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "207 Aruba\n", + "426 Afghanistan\n", + "645 Angola\n", + "864 Albania\n", + "913 Andorra\n", + "1130 United Arab Emirates\n", + "1349 Argentina\n", + "1568 Armenia\n", + "1787 Antigua and Barbuda\n", + "2006 Australia\n", + "2225 Austria\n", + "2444 Azerbaijan\n", + "2663 Burundi\n", + "2882 Belgium\n", + "3101 Benin\n", + "3320 Burkina Faso\n", + "3539 Bangladesh\n", + "3758 Bulgaria\n", + "3977 Bahrain\n", + "4196 Bahamas\n", + "4415 Bosnia and Herzegovina\n", + "4634 Belarus\n", + "4853 Belize\n", + "4902 Bermuda\n", + "5119 Bolivia\n", + "5338 Brazil\n", + "5557 Barbados\n", + "5776 Brunei\n", + "5995 Bhutan\n", + "6214 Botswana\n", + " ... \n", + "35429 Sweden\n", + "35648 Swaziland\n", + "35867 Seychelles\n", + "36086 Syria\n", + "36305 Chad\n", + "36524 Togo\n", + "36743 Thailand\n", + "36962 Tajikistan\n", + "37181 Turkmenistan\n", + "37400 Timor-Leste\n", + "37619 Tonga\n", + "37838 Trinidad and Tobago\n", + "38057 Tunisia\n", + "38276 Turkey\n", + "38495 Taiwan\n", + "38712 Tanzania\n", + "38931 Uganda\n", + "39150 Ukraine\n", + "39369 Uruguay\n", + "39588 United States\n", + "39807 Uzbekistan\n", + "40026 St. Vincent and the Grenadines\n", + "40245 Venezuela\n", + "40464 Vietnam\n", + "40683 Vanuatu\n", + "40902 Samoa\n", + "41121 Yemen\n", + "41340 South Africa\n", + "41559 Zambia\n", + "41778 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "208 Aruba\n", + "427 Afghanistan\n", + "646 Angola\n", + "865 Albania\n", + "914 Andorra\n", + "1131 United Arab Emirates\n", + "1350 Argentina\n", + "1569 Armenia\n", + "1788 Antigua and Barbuda\n", + "2007 Australia\n", + "2226 Austria\n", + "2445 Azerbaijan\n", + "2664 Burundi\n", + "2883 Belgium\n", + "3102 Benin\n", + "3321 Burkina Faso\n", + "3540 Bangladesh\n", + "3759 Bulgaria\n", + "3978 Bahrain\n", + "4197 Bahamas\n", + "4416 Bosnia and Herzegovina\n", + "4635 Belarus\n", + "4854 Belize\n", + "4903 Bermuda\n", + "5120 Bolivia\n", + "5339 Brazil\n", + "5558 Barbados\n", + "5777 Brunei\n", + "5996 Bhutan\n", + "6215 Botswana\n", + " ... \n", + "35430 Sweden\n", + "35649 Swaziland\n", + "35868 Seychelles\n", + "36087 Syria\n", + "36306 Chad\n", + "36525 Togo\n", + "36744 Thailand\n", + "36963 Tajikistan\n", + "37182 Turkmenistan\n", + "37401 Timor-Leste\n", + "37620 Tonga\n", + "37839 Trinidad and Tobago\n", + "38058 Tunisia\n", + "38277 Turkey\n", + "38496 Taiwan\n", + "38713 Tanzania\n", + "38932 Uganda\n", + "39151 Ukraine\n", + "39370 Uruguay\n", + "39589 United States\n", + "39808 Uzbekistan\n", + "40027 St. Vincent and the Grenadines\n", + "40246 Venezuela\n", + "40465 Vietnam\n", + "40684 Vanuatu\n", + "40903 Samoa\n", + "41122 Yemen\n", + "41341 South Africa\n", + "41560 Zambia\n", + "41779 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "209 Aruba\n", + "428 Afghanistan\n", + "647 Angola\n", + "866 Albania\n", + "915 Andorra\n", + "1132 United Arab Emirates\n", + "1351 Argentina\n", + "1570 Armenia\n", + "1789 Antigua and Barbuda\n", + "2008 Australia\n", + "2227 Austria\n", + "2446 Azerbaijan\n", + "2665 Burundi\n", + "2884 Belgium\n", + "3103 Benin\n", + "3322 Burkina Faso\n", + "3541 Bangladesh\n", + "3760 Bulgaria\n", + "3979 Bahrain\n", + "4198 Bahamas\n", + "4417 Bosnia and Herzegovina\n", + "4636 Belarus\n", + "4855 Belize\n", + "4904 Bermuda\n", + "5121 Bolivia\n", + "5340 Brazil\n", + "5559 Barbados\n", + "5778 Brunei\n", + "5997 Bhutan\n", + "6216 Botswana\n", + " ... \n", + "35431 Sweden\n", + "35650 Swaziland\n", + "35869 Seychelles\n", + "36088 Syria\n", + "36307 Chad\n", + "36526 Togo\n", + "36745 Thailand\n", + "36964 Tajikistan\n", + "37183 Turkmenistan\n", + "37402 Timor-Leste\n", + "37621 Tonga\n", + "37840 Trinidad and Tobago\n", + "38059 Tunisia\n", + "38278 Turkey\n", + "38497 Taiwan\n", + "38714 Tanzania\n", + "38933 Uganda\n", + "39152 Ukraine\n", + "39371 Uruguay\n", + "39590 United States\n", + "39809 Uzbekistan\n", + "40028 St. Vincent and the Grenadines\n", + "40247 Venezuela\n", + "40466 Vietnam\n", + "40685 Vanuatu\n", + "40904 Samoa\n", + "41123 Yemen\n", + "41342 South Africa\n", + "41561 Zambia\n", + "41780 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "210 Aruba\n", + "429 Afghanistan\n", + "648 Angola\n", + "867 Albania\n", + "916 Andorra\n", + "1133 United Arab Emirates\n", + "1352 Argentina\n", + "1571 Armenia\n", + "1790 Antigua and Barbuda\n", + "2009 Australia\n", + "2228 Austria\n", + "2447 Azerbaijan\n", + "2666 Burundi\n", + "2885 Belgium\n", + "3104 Benin\n", + "3323 Burkina Faso\n", + "3542 Bangladesh\n", + "3761 Bulgaria\n", + "3980 Bahrain\n", + "4199 Bahamas\n", + "4418 Bosnia and Herzegovina\n", + "4637 Belarus\n", + "4856 Belize\n", + "4905 Bermuda\n", + "5122 Bolivia\n", + "5341 Brazil\n", + "5560 Barbados\n", + "5779 Brunei\n", + "5998 Bhutan\n", + "6217 Botswana\n", + " ... \n", + "35432 Sweden\n", + "35651 Swaziland\n", + "35870 Seychelles\n", + "36089 Syria\n", + "36308 Chad\n", + "36527 Togo\n", + "36746 Thailand\n", + "36965 Tajikistan\n", + "37184 Turkmenistan\n", + "37403 Timor-Leste\n", + "37622 Tonga\n", + "37841 Trinidad and Tobago\n", + "38060 Tunisia\n", + "38279 Turkey\n", + "38498 Taiwan\n", + "38715 Tanzania\n", + "38934 Uganda\n", + "39153 Ukraine\n", + "39372 Uruguay\n", + "39591 United States\n", + "39810 Uzbekistan\n", + "40029 St. Vincent and the Grenadines\n", + "40248 Venezuela\n", + "40467 Vietnam\n", + "40686 Vanuatu\n", + "40905 Samoa\n", + "41124 Yemen\n", + "41343 South Africa\n", + "41562 Zambia\n", + "41781 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "211 Aruba\n", + "430 Afghanistan\n", + "649 Angola\n", + "868 Albania\n", + "917 Andorra\n", + "1134 United Arab Emirates\n", + "1353 Argentina\n", + "1572 Armenia\n", + "1791 Antigua and Barbuda\n", + "2010 Australia\n", + "2229 Austria\n", + "2448 Azerbaijan\n", + "2667 Burundi\n", + "2886 Belgium\n", + "3105 Benin\n", + "3324 Burkina Faso\n", + "3543 Bangladesh\n", + "3762 Bulgaria\n", + "3981 Bahrain\n", + "4200 Bahamas\n", + "4419 Bosnia and Herzegovina\n", + "4638 Belarus\n", + "4857 Belize\n", + "4906 Bermuda\n", + "5123 Bolivia\n", + "5342 Brazil\n", + "5561 Barbados\n", + "5780 Brunei\n", + "5999 Bhutan\n", + "6218 Botswana\n", + " ... \n", + "35433 Sweden\n", + "35652 Swaziland\n", + "35871 Seychelles\n", + "36090 Syria\n", + "36309 Chad\n", + "36528 Togo\n", + "36747 Thailand\n", + "36966 Tajikistan\n", + "37185 Turkmenistan\n", + "37404 Timor-Leste\n", + "37623 Tonga\n", + "37842 Trinidad and Tobago\n", + "38061 Tunisia\n", + "38280 Turkey\n", + "38499 Taiwan\n", + "38716 Tanzania\n", + "38935 Uganda\n", + "39154 Ukraine\n", + "39373 Uruguay\n", + "39592 United States\n", + "39811 Uzbekistan\n", + "40030 St. Vincent and the Grenadines\n", + "40249 Venezuela\n", + "40468 Vietnam\n", + "40687 Vanuatu\n", + "40906 Samoa\n", + "41125 Yemen\n", + "41344 South Africa\n", + "41563 Zambia\n", + "41782 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "212 Aruba\n", + "431 Afghanistan\n", + "650 Angola\n", + "869 Albania\n", + "918 Andorra\n", + "1135 United Arab Emirates\n", + "1354 Argentina\n", + "1573 Armenia\n", + "1792 Antigua and Barbuda\n", + "2011 Australia\n", + "2230 Austria\n", + "2449 Azerbaijan\n", + "2668 Burundi\n", + "2887 Belgium\n", + "3106 Benin\n", + "3325 Burkina Faso\n", + "3544 Bangladesh\n", + "3763 Bulgaria\n", + "3982 Bahrain\n", + "4201 Bahamas\n", + "4420 Bosnia and Herzegovina\n", + "4639 Belarus\n", + "4858 Belize\n", + "4907 Bermuda\n", + "5124 Bolivia\n", + "5343 Brazil\n", + "5562 Barbados\n", + "5781 Brunei\n", + "6000 Bhutan\n", + "6219 Botswana\n", + " ... \n", + "35434 Sweden\n", + "35653 Swaziland\n", + "35872 Seychelles\n", + "36091 Syria\n", + "36310 Chad\n", + "36529 Togo\n", + "36748 Thailand\n", + "36967 Tajikistan\n", + "37186 Turkmenistan\n", + "37405 Timor-Leste\n", + "37624 Tonga\n", + "37843 Trinidad and Tobago\n", + "38062 Tunisia\n", + "38281 Turkey\n", + "38500 Taiwan\n", + "38717 Tanzania\n", + "38936 Uganda\n", + "39155 Ukraine\n", + "39374 Uruguay\n", + "39593 United States\n", + "39812 Uzbekistan\n", + "40031 St. Vincent and the Grenadines\n", + "40250 Venezuela\n", + "40469 Vietnam\n", + "40688 Vanuatu\n", + "40907 Samoa\n", + "41126 Yemen\n", + "41345 South Africa\n", + "41564 Zambia\n", + "41783 Zimbabwe\n", + "Name: country, Length: 194, dtype: object\n", + "213 Aruba\n", + "432 Afghanistan\n", + "651 Angola\n", + "870 Albania\n", + "919 Andorra\n", + "1136 United Arab Emirates\n", + "1355 Argentina\n", + "1574 Armenia\n", + "1793 Antigua and Barbuda\n", + "2012 Australia\n", + "2231 Austria\n", + "2450 Azerbaijan\n", + "2669 Burundi\n", + "2888 Belgium\n", + "3107 Benin\n", + "3326 Burkina Faso\n", + "3545 Bangladesh\n", + "3764 Bulgaria\n", + "3983 Bahrain\n", + "4202 Bahamas\n", + "4421 Bosnia and Herzegovina\n", + "4640 Belarus\n", + "4859 Belize\n", + "4908 Bermuda\n", + "5125 Bolivia\n", + "5344 Brazil\n", + "5563 Barbados\n", + "5782 Brunei\n", + "6001 Bhutan\n", + "6220 Botswana\n", + " ... \n", + "35435 Sweden\n", + "35654 Swaziland\n", + "35873 Seychelles\n", + "36092 Syria\n", + "36311 Chad\n", + "36530 Togo\n", + "36749 Thailand\n", + "36968 Tajikistan\n", + "37187 Turkmenistan\n", + "37406 Timor-Leste\n", + "37625 Tonga\n", + "37844 Trinidad and Tobago\n", + "38063 Tunisia\n", + "38282 Turkey\n", + "38501 Taiwan\n", + "38718 Tanzania\n", + "38937 Uganda\n", + "39156 Ukraine\n", + "39375 Uruguay\n", + "39594 United States\n", + "39813 Uzbekistan\n", + "40032 St. Vincent and the Grenadines\n", + "40251 Venezuela\n", + "40470 Vietnam\n", + "40689 Vanuatu\n", + "40908 Samoa\n", + "41127 Yemen\n", + "41346 South Africa\n", + "41565 Zambia\n", + "41784 Zimbabwe\n", + "Name: country, Length: 193, dtype: object\n", + "214 Aruba\n", + "433 Afghanistan\n", + "652 Angola\n", + "871 Albania\n", + "920 Andorra\n", + "1137 United Arab Emirates\n", + "1356 Argentina\n", + "1575 Armenia\n", + "1794 Antigua and Barbuda\n", + "2013 Australia\n", + "2232 Austria\n", + "2451 Azerbaijan\n", + "2670 Burundi\n", + "2889 Belgium\n", + "3108 Benin\n", + "3327 Burkina Faso\n", + "3546 Bangladesh\n", + "3765 Bulgaria\n", + "3984 Bahrain\n", + "4203 Bahamas\n", + "4422 Bosnia and Herzegovina\n", + "4641 Belarus\n", + "4860 Belize\n", + "4909 Bermuda\n", + "5126 Bolivia\n", + "5345 Brazil\n", + "5564 Barbados\n", + "5783 Brunei\n", + "6002 Bhutan\n", + "6221 Botswana\n", + " ... \n", + "35436 Sweden\n", + "35655 Swaziland\n", + "35874 Seychelles\n", + "36093 Syria\n", + "36312 Chad\n", + "36531 Togo\n", + "36750 Thailand\n", + "36969 Tajikistan\n", + "37188 Turkmenistan\n", + "37407 Timor-Leste\n", + "37626 Tonga\n", + "37845 Trinidad and Tobago\n", + "38064 Tunisia\n", + "38283 Turkey\n", + "38502 Taiwan\n", + "38719 Tanzania\n", + "38938 Uganda\n", + "39157 Ukraine\n", + "39376 Uruguay\n", + "39595 United States\n", + "39814 Uzbekistan\n", + "40033 St. Vincent and the Grenadines\n", + "40252 Venezuela\n", + "40471 Vietnam\n", + "40690 Vanuatu\n", + "40909 Samoa\n", + "41128 Yemen\n", + "41347 South Africa\n", + "41566 Zambia\n", + "41785 Zimbabwe\n", + "Name: country, Length: 193, dtype: object\n", + "215 Aruba\n", + "434 Afghanistan\n", + "653 Angola\n", + "872 Albania\n", + "921 Andorra\n", + "1138 United Arab Emirates\n", + "1357 Argentina\n", + "1576 Armenia\n", + "1795 Antigua and Barbuda\n", + "2014 Australia\n", + "2233 Austria\n", + "2452 Azerbaijan\n", + "2671 Burundi\n", + "2890 Belgium\n", + "3109 Benin\n", + "3328 Burkina Faso\n", + "3547 Bangladesh\n", + "3766 Bulgaria\n", + "3985 Bahrain\n", + "4204 Bahamas\n", + "4423 Bosnia and Herzegovina\n", + "4642 Belarus\n", + "4861 Belize\n", + "4910 Bermuda\n", + "5127 Bolivia\n", + "5346 Brazil\n", + "5565 Barbados\n", + "5784 Brunei\n", + "6003 Bhutan\n", + "6222 Botswana\n", + " ... \n", + "35437 Sweden\n", + "35656 Swaziland\n", + "35875 Seychelles\n", + "36094 Syria\n", + "36313 Chad\n", + "36532 Togo\n", + "36751 Thailand\n", + "36970 Tajikistan\n", + "37189 Turkmenistan\n", + "37408 Timor-Leste\n", + "37627 Tonga\n", + "37846 Trinidad and Tobago\n", + "38065 Tunisia\n", + "38284 Turkey\n", + "38503 Taiwan\n", + "38720 Tanzania\n", + "38939 Uganda\n", + "39158 Ukraine\n", + "39377 Uruguay\n", + "39596 United States\n", + "39815 Uzbekistan\n", + "40034 St. Vincent and the Grenadines\n", + "40253 Venezuela\n", + "40472 Vietnam\n", + "40691 Vanuatu\n", + "40910 Samoa\n", + "41129 Yemen\n", + "41348 South Africa\n", + "41567 Zambia\n", + "41786 Zimbabwe\n", + "Name: country, Length: 193, dtype: object\n", + "216 Aruba\n", + "435 Afghanistan\n", + "654 Angola\n", + "873 Albania\n", + "922 Andorra\n", + "1139 United Arab Emirates\n", + "1358 Argentina\n", + "1577 Armenia\n", + "1796 Antigua and Barbuda\n", + "2015 Australia\n", + "2234 Austria\n", + "2453 Azerbaijan\n", + "2672 Burundi\n", + "2891 Belgium\n", + "3110 Benin\n", + "3329 Burkina Faso\n", + "3548 Bangladesh\n", + "3767 Bulgaria\n", + "3986 Bahrain\n", + "4205 Bahamas\n", + "4424 Bosnia and Herzegovina\n", + "4643 Belarus\n", + "4862 Belize\n", + "4911 Bermuda\n", + "5128 Bolivia\n", + "5347 Brazil\n", + "5566 Barbados\n", + "5785 Brunei\n", + "6004 Bhutan\n", + "6223 Botswana\n", + " ... \n", + "35438 Sweden\n", + "35657 Swaziland\n", + "35876 Seychelles\n", + "36095 Syria\n", + "36314 Chad\n", + "36533 Togo\n", + "36752 Thailand\n", + "36971 Tajikistan\n", + "37190 Turkmenistan\n", + "37409 Timor-Leste\n", + "37628 Tonga\n", + "37847 Trinidad and Tobago\n", + "38066 Tunisia\n", + "38285 Turkey\n", + "38504 Taiwan\n", + "38721 Tanzania\n", + "38940 Uganda\n", + "39159 Ukraine\n", + "39378 Uruguay\n", + "39597 United States\n", + "39816 Uzbekistan\n", + "40035 St. Vincent and the Grenadines\n", + "40254 Venezuela\n", + "40473 Vietnam\n", + "40692 Vanuatu\n", + "40911 Samoa\n", + "41130 Yemen\n", + "41349 South Africa\n", + "41568 Zambia\n", + "41787 Zimbabwe\n", + "Name: country, Length: 193, dtype: object\n", + "217 Aruba\n", + "436 Afghanistan\n", + "655 Angola\n", + "874 Albania\n", + "1140 United Arab Emirates\n", + "1359 Argentina\n", + "1578 Armenia\n", + "1797 Antigua and Barbuda\n", + "2016 Australia\n", + "2235 Austria\n", + "2454 Azerbaijan\n", + "2673 Burundi\n", + "2892 Belgium\n", + "3111 Benin\n", + "3330 Burkina Faso\n", + "3549 Bangladesh\n", + "3768 Bulgaria\n", + "3987 Bahrain\n", + "4206 Bahamas\n", + "4425 Bosnia and Herzegovina\n", + "4644 Belarus\n", + "4863 Belize\n", + "5129 Bolivia\n", + "5348 Brazil\n", + "5567 Barbados\n", + "5786 Brunei\n", + "6005 Bhutan\n", + "6224 Botswana\n", + "6443 Central African Republic\n", + "6662 Canada\n", + " ... \n", + "35220 Slovenia\n", + "35439 Sweden\n", + "35658 Swaziland\n", + "35877 Seychelles\n", + "36096 Syria\n", + "36315 Chad\n", + "36534 Togo\n", + "36753 Thailand\n", + "36972 Tajikistan\n", + "37191 Turkmenistan\n", + "37410 Timor-Leste\n", + "37629 Tonga\n", + "37848 Trinidad and Tobago\n", + "38067 Tunisia\n", + "38286 Turkey\n", + "38722 Tanzania\n", + "38941 Uganda\n", + "39160 Ukraine\n", + "39379 Uruguay\n", + "39598 United States\n", + "39817 Uzbekistan\n", + "40036 St. Vincent and the Grenadines\n", + "40255 Venezuela\n", + "40474 Vietnam\n", + "40693 Vanuatu\n", + "40912 Samoa\n", + "41131 Yemen\n", + "41350 South Africa\n", + "41569 Zambia\n", + "41788 Zimbabwe\n", + "Name: country, Length: 188, dtype: object\n", + "218 Aruba\n", + "437 Afghanistan\n", + "656 Angola\n", + "875 Albania\n", + "1141 United Arab Emirates\n", + "1360 Argentina\n", + "1579 Armenia\n", + "1798 Antigua and Barbuda\n", + "2017 Australia\n", + "2236 Austria\n", + "2455 Azerbaijan\n", + "2674 Burundi\n", + "2893 Belgium\n", + "3112 Benin\n", + "3331 Burkina Faso\n", + "3550 Bangladesh\n", + "3769 Bulgaria\n", + "3988 Bahrain\n", + "4207 Bahamas\n", + "4426 Bosnia and Herzegovina\n", + "4645 Belarus\n", + "4864 Belize\n", + "5130 Bolivia\n", + "5349 Brazil\n", + "5568 Barbados\n", + "5787 Brunei\n", + "6006 Bhutan\n", + "6225 Botswana\n", + "6444 Central African Republic\n", + "6663 Canada\n", + " ... \n", + "35221 Slovenia\n", + "35440 Sweden\n", + "35659 Swaziland\n", + "35878 Seychelles\n", + "36097 Syria\n", + "36316 Chad\n", + "36535 Togo\n", + "36754 Thailand\n", + "36973 Tajikistan\n", + "37192 Turkmenistan\n", + "37411 Timor-Leste\n", + "37630 Tonga\n", + "37849 Trinidad and Tobago\n", + "38068 Tunisia\n", + "38287 Turkey\n", + "38723 Tanzania\n", + "38942 Uganda\n", + "39161 Ukraine\n", + "39380 Uruguay\n", + "39599 United States\n", + "39818 Uzbekistan\n", + "40037 St. Vincent and the Grenadines\n", + "40256 Venezuela\n", + "40475 Vietnam\n", + "40694 Vanuatu\n", + "40913 Samoa\n", + "41132 Yemen\n", + "41351 South Africa\n", + "41570 Zambia\n", + "41789 Zimbabwe\n", + "Name: country, Length: 188, dtype: object\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "ERROR:root:Internal Python error in the inspect module.\n", + "Below is the traceback from this internal error.\n", + "\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Series([], Name: country, dtype: object)\n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py\", line 2882, in run_code\n", + " exec(code_obj, self.user_global_ns, self.user_ns)\n", + " File \"\", line 13, in \n", + " working_year = df1[df1.year==current_year]\n", + " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/frame.py\", line 2133, in __getitem__\n", + " return self._getitem_array(key)\n", + " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/frame.py\", line 2175, in _getitem_array\n", + " return self._take(indexer, axis=0, convert=False)\n", + " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/generic.py\", line 2150, in _take\n", + " verify=True)\n", + " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/internals.py\", line 4264, in take\n", + " axis=axis, allow_dups=True)\n", + " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/internals.py\", line 4150, in reindex_indexer\n", + " for blk in self.blocks]\n", + " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/internals.py\", line 4150, in \n", + " for blk in self.blocks]\n", + " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/internals.py\", line 1221, in take_nd\n", + " allow_fill=True, fill_value=fill_value)\n", + " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/algorithms.py\", line 1369, in take_nd\n", + " out_shape = list(arr.shape)\n", + "KeyboardInterrupt\n", + "\n", + "During handling of the above exception, another exception occurred:\n", + "\n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py\", line 1823, in showtraceback\n", + " stb = value._render_traceback_()\n", + "AttributeError: 'KeyboardInterrupt' object has no attribute '_render_traceback_'\n", + "\n", + "During handling of the above exception, another exception occurred:\n", + "\n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/ultratb.py\", line 1132, in get_records\n", + " return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset)\n", + " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/ultratb.py\", line 313, in wrapped\n", + " return f(*args, **kwargs)\n", + " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/ultratb.py\", line 358, in _fixed_getinnerframes\n", + " records = fix_frame_records_filenames(inspect.getinnerframes(etb, context))\n", + " File \"/usr/lib/python3.6/inspect.py\", line 1483, in getinnerframes\n", + " frameinfo = (tb.tb_frame,) + getframeinfo(tb, context)\n", + " File \"/usr/lib/python3.6/inspect.py\", line 1445, in getframeinfo\n", + " lines, lnum = findsource(frame)\n", + " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/ultratb.py\", line 170, in findsource\n", + " file = getsourcefile(object) or getfile(object)\n", + " File \"/usr/lib/python3.6/inspect.py\", line 696, in getsourcefile\n", + " if getattr(getmodule(object, filename), '__loader__', None) is not None:\n", + " File \"/usr/lib/python3.6/inspect.py\", line 733, in getmodule\n", + " if ismodule(module) and hasattr(module, '__file__'):\n", + "KeyboardInterrupt\n" + ], + "name": "stdout" + }, + { + "output_type": "error", + "ename": "KeyboardInterrupt", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m" + ] + } + ] + }, + { + "metadata": { + "id": "sV6UDqrgRaId", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 728 + }, + "outputId": "df5d990c-47c3-490d-85ae-8af989a2628a" + }, + "cell_type": "code", + "source": [ + "tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), \n", + " (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), \n", + " (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), \n", + " (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), \n", + " (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]\n", + "\n", + "# will saturate the RGB values into 0/1, aka matplotlib format\n", + "for i in range(len(tableau20)): \n", + " r, g, b = tableau20[i] \n", + " tableau20[i] = (r / 255., g / 255., b / 255.)\n", + " \n", + "plt.figure(figsize=(12, 12))\n", + "\n", + "\n", + "#removes the lines between ticks on the plot\n", + "ax = plt.subplot(111)\n", + "ax.spines['top'].set_visible(False)\n", + "ax.spines['bottom'].set_visible(False)\n", + "ax.spines['right'].set_visible(False)\n", + "ax.spines['left'].set_visible(False)\n", + "\n", + "# limit age/year plotted to clean up whitespace\n", + "plt.ylim(0, 95)\n", + "plt.xlim(1800, 2025)\n", + "\n", + "# increase axis tick size for readability\n", + "plt.yticks(range(0, 91, 10), [str(x) + ' years' for x in range(0, 91, 10)], \n", + " fontsize=14, color=\"sienna\", alpha=0.6)\n", + "plt.xticks(fontsize=14, color=\"sienna\", alpha=0.6)\n", + "\n", + "#create custom tick lines \n", + "for tick in range(10, 91, 10):\n", + " plt.plot(range(1800, 2025), [tick] * len(range(1800, 2025)), \"--\",\n", + " lw=0.4, color=\"purple\", alpha=0.6)\n", + " \n", + "# remove default ticks\n", + "plt.tick_params(axis='both', which='both', bottom='off', top='off', \n", + " labelbottom='on', left='off', right='off', labelleft='on')\n", + "\n", + "\n", + "\n" + ], + "execution_count": 83, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAKzCAYAAABGagHfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3X20ZlVhJ+jfrbrculUURUFJqzDx\nC02isM60ScfWJiR2j5IJ0gp90mbU6XVmMmYxS0lrHKMyfhFjjMbgwETTo+jYx0E0DqeT6FppEdC0\nIiFEXTNHRlrxAwhB5KuKoixuVd26d/44p+g3l6q6F63iWrWfZ6273vuevc9+937/Or+z9z7v1OLi\nYgAAgHKsWe0OAAAAjy0hAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRGCAAAgMIIAQAA\nUJjp1e7AEcbPKwMA8FiYOpyNmwkAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACg\nMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDC\nCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAoj\nBAAAQGGEAAAAKIwQAAAAhZlerkJbV7NJXpzk2UmOS/J3Sf606fpbJ+pMJTknyZlJNiT5XpJPNF1/\n52HoMwAA8GNYyUzAv0lyWpKPJnlHkm8k+e22rjZP1DkryQuTfDLJu5I8mOS1Y4D4idLW1drV7gMA\nAKymg84EtHV1TJKfS/J/NF3/rfHwZ9q6qpL8cpK/GGcBXpDks03Xf20876NJLk7ynCRf3E+7z0jy\nuiRvbLp++8Txc5NUTde/Y3x/apLzkjwlyQ+T9Em6puvnxvLTkpyd5OSxiVuTfKrp+u+P5VsyhJIP\nZ5ileFqSrq2rG5K8LMmzkqxPsi3J55uuv3b5rwwAAI5syy0HWpthtmB+yfE9SZ4+/r8lyaYMMwRJ\nkqbr97R1dUuSU7OfENB0/S1tXd2T5HlJrkoeXlL03CRXj+9PSfKaJJ9J8rEkxyZ5aZImyQfHptYl\nuTbJHUlmMgSCV7d1dVHT9ZN9Pi/JlWM7e5O8JMkpSd6fYdZiS4alTge17bZtmd08m907dmd6djoL\n8wuZmprK1Jqp7N29N8dsOCa7tu/K7Amzeej+h7LhcRuy896dj3hdf8L6zD0wl5mNM5mfm8+a6WFC\nZmF+IdOz09m9Y3dmj5/NQ1sP0saJ6zO3dS7rNq3Lnp17snZmbRYXFrO4uJg102syPzefmY0zmds2\nd8A29r0akzEZkzEZkzEZkzEZ0+qPafOTJxfaHF4HDQFN18+1dfXdJGe3dfX3SbYn+YUMd9TvHqsd\nP75uX3L69iQHG8l1Sc7IGAIyLDk6LskN4/uzknyl6fqr953Q1tUVSd7S1tVxTdc/uG/mYaK8TXJp\nhpmDb08UfWGy7jhDcPvEvob7DtJPAAA4qkwtLi4etEJbVydluPv+jCQLSW5P8oMkT266/u3jkp03\nJLmw6fr7J85rkmxuuv7SA7R7XJJ3J3lf0/Xfaevq/CQLTddfNpZflOSkDHfuH+5vhjv+72m6/rtj\n316S5KlJNo7l65J8pOn6GyeWA108sZwpbV2dnuT8DEHm5iT9ZPlBHPzLAgCAQ2PqcDa+7Mbgpuvv\nabr+j5L82yRvarr+DzIsE7p3rPLA+Lppyamb8sjZgcl2H8ywxv+Mtq6OTVIl+fJElakMswXvnPj7\nvSRvzfCEoiS5IMPF/+UZAsU7MwSVpTMcu5Z89k1JLsyw9GhjkgvG0AIAAEe9ZR8Ruk/T9buS7Grr\nakOGpTvdWHRfhov9Z2bYmLtvQ/HTJ+ocyJcy3JG/Z2zj5omy25Oc3HT93fs7cQwOT0hyRdP13xyP\nPSkr/O2Dput3ZFh6dENbVzcleWVbVx9fspcAAACOOiv5nYDTMtyVvyvD8pxfG/+/Pkmarl9s6+qa\nDPsG7sqwVOhFGe6+37hM8zdneOrPORmeLjS53OaqJG9q6+oVGTYX78pw0V81XX95kp1JdiQ5s62r\nrRn2H9QZZgKWG9OLM4SMOzPMajw7yb0CAAAAJVjJXfP1GR6n+btJfiPDhttLm66fXKv/uSTXJHl5\nkjdn2Cx8yb5HeR7IeNF/fYYL8euXlN2R5L0Zntzz+gzLgM7LuMRoPPeyDE/5efvYx09neHLRcuaT\nnJvkbRn2M8wm+cAKzgMAgCPeshuDD7fxTv9JTddfsqodWRkbgwEAeCwc1o3BK94TcKi1dbU+yRMz\n/DbAh1arHwAAUJpVCwFJXpXh0Z7XNV3/9VXsBwAAFGXVlwMdYXxZAAA8Flb3dwIAAICjixAAAACF\nEQIAAKAwQgAAABRGCAAAgMIIAQAAUBghAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRG\nCAAAgMIIAQAAUBghAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRGCAAAgMIIAQAAUBgh\nAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRGCAAAgMIIAQAAUBghAAAACiMEAABAYYQA\nAAAojBAAAACFEQIAAKAwQgAAABRGCAAAgMIIAQAAUBghAAAACiMEAABAYYQAAAAojBAAAACFEQIA\nAKAwQgAAABRGCAAAgMIIAQAAUBghAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRGCAAA\ngMIIAQAAUJjp5Sq0dbUmyb9M8k+THJ/kgSR/k+QzTdcvjHWmkpyT5MwkG5J8L8knmq6/8zD1GwAA\n+BGtZCbgV5I8P8knk7wtyZ+O7391os5ZSV441nlXkgeTvLatq9lD2NdDoq2rtavdBwAAWE3LzgQk\nOTVJ33R9P76/r62rPslTk4dnAV6Q5LNN139tPPbRJBcneU6SLy5tsK2rZyR5XZI3Nl2/feL4uUmq\npuvfMb4/Ncl5SZ6S5IdJ+iRd0/VzY/lpSc5OcvLYxK1JPtV0/ffH8i0ZQsmHM8xSPC1J19bVDUle\nluRZSdYn2Zbk803XX7uC7wMAAI5oKwkB307y/LauntB0/V1tXT0xyc8k+exYviXJpiTf2HdC0/V7\n2rq6JUOAeEQIaLr+lrau7knyvCRXJQ+HiecmuXp8f0qS1yT5TJKPJTk2yUuTNEk+ODa1Lsm1Se5I\nMpMhELy6rauLmq6fn/jI85JcObazN8lLkpyS5P0ZZi22JDluuS9i223bMrt5Nrt37M707HQW5hcy\nNTWVqTVT2bt7b47ZcEx2bd+V2RNm89D9D2XD4zZk5707H/G6/oT1mXtgLjMbZzI/N58108OEzML8\nQqZnp7N7x+7MHj+bh7YepI0T12du61zWbVqXPTv3ZO3M2iwuLGZxcTFrptdkfm4+MxtnMrdt7oBt\n7Hs1JmMyJmMyJmMyJmMyptUf0+Ynb17ucvSQWUkIuCrJbJKL2rpazLCE6C+brv+rsfz48XX7kvO2\nJznYSK5LcsbYfpKcluFC/Ibx/VlJvtJ0/dX7Tmjr6ookb2nr6rim6x/cN/MwUd4muTTDzMG3J4q+\nMFl3nCG4ven6W8dD9x2knwAAcFSZWlxcPGiFtq5+IUmdpEtyZ5KfSvLrSa5suv7L45KdNyS5sOn6\n+yfOa5Jsbrr+0gO0e1ySdyd5X9P132nr6vwkC03XXzaWX5TkpAx37h/ub4Y7/u9puv67bV2dlOGu\n/lOTbBzL1yX5SNP1N04sB7q46fpvTXz26UnOT3J3kpszLHf6VpZ38C8LAAAOjanD2fhKZgLqJFc3\nXf+34/u/b+vqxAwbg7+c4WlBybAk6P6J8zblkbMDD2u6/sFxb8EZbV3dlaRK8oGJKlMZZgv2t05/\n6/h6wfj/5RnW9e9N8rv7GdeuJZ99U1tXFyY5PcnPJrmgrauvNl3fHqi/AABwtFhJCJhJsrDk2GL+\nSzq5L8PF/jMzbMxNW1fHJHl6htmDg/lShjvy94xt3DxRdnuSk5uuv3t/J7Z1dWySJyS5oun6b47H\nnpQV/vZB0/U7Miw9uqGtq5uSvLKtq48v2UsAAABHnZWEgD7Jf9vW1b0ZlgM9KcPTgG5IkqbrF9u6\nuibJ2eMd/R8keVGGu+83LtP2zRme+nNOhqcLTS63uSrJm9q6ekWGzcW7Mlz0V03XX55kZ5IdSc5s\n62prhv0HdR4ZWB6hrasXZwgZdyZZm+TZSe4VAAAAKMFK7pp/MslXk7w8w1KbX8twB//PJ+p8Lsk1\nY503Z9gsfMm+R3keyHjRf32GC/Hrl5TdkeS9GZ7c8/okb83wlJ/tE+deluEpP2/P8MjPTyfZs4Ix\nzSc5N8PvHrwhw8bnDxz0DAAAOEosuzH4cBvv9J/UdP0lq9qRlbExGACAx8Kqbww+LNq6Wp/kiRl+\nG+BDq9UPAAAozaqFgCSvyvBoz+uarv/6KvYDAACKsurLgY4wviwAAB4Lh3U50IoepwkAABw9hAAA\nACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAA\noDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACA\nwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAK\nIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiM\nEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBC\nAAAAFEYIAACAwggBAABQmOnlKrR19a4kW/ZTdFPT9X88Ue/5Sc5KcnySO5N8qun6Ww5RPwEAgENk\nJTMBf5Dkdyb+3plkMclX9lVo6+qfJPn1JP9xLP9Okt9q6+rEQ93hH1dbV8sGHwAAOJote0HcdP2D\nk+/buvrFJHOZCAFJXpjk+qbrvzS+/2RbV6cl+eUkf7a0zbautiT5/SR/0HT9bRPHz0xyXpI3NF0/\n39bVE5P8WpJnJNmd5D9nmGHYPtZ/SpJzkzwpydokf5/kyqbrvzvR5geTfCLJzyY5Lcl/auvqz5L8\n6yQ/l+TYJA8mubHp+v+w3PcBAABHukd1V7ytq6kkZyT5m6br94zHpjNchH9uSfVvJDl1f+00XX9f\nW1c3j23dNlH0z5LcMAaA4zPMPFyX5MoMF/kvSfLqtq7e3XT9YpLZJDck+dMMsxP/PMMMxFuarv/h\nRLvnJPnzsZ0k+RdJ/nGSy5Lcl+SEJI9fbvzbbtuW2c2z2b1jd6Znp7Mwv5CpqalMrZnK3t17c8yG\nY7Jr+67MnjCbh+5/KBsetyE77935iNf1J6zP3ANzmdk4k/m5+ayZHiZkFuYXMj07nd07dmf2+Nk8\ntPUgbZy4PnNb57Ju07rs2bkna2fWZnFhMYuLi1kzvSbzc/OZ2TiTuW1zB2xj36sxGZMxGZMxGZMx\nGZMxrf6YNj9583KXo4fMo10a88wkj0vypYljGzMsK9q+pO6DSTYdpK0vJfk3bV39303X7xnv+j8t\nyf81lv9ykr+bvDvf1tVHk/xvSZ6c5Nam6//zZINtXX0yw93905P8zUTRV5quv26i3pYkP0jy7TFM\n3J9hCRMAABz1phYXF1dcua2r85Oc2HT9H0wc25zkPUn+aHIjcFtX5yR5TtP1bztAW2vH8z7VdP2N\nbV3VSX56X9ttXf1Wkmcl2bPk1HVJPtx0/d+2dXVchtmBn8kQOKaSzCT5i6br/+PYzgeT/Pum6/96\n4rOflOS1SX6YYcbipgwbnZf7Mlb+ZQEAwI9u6nA2vuJHhI4X3P91huU5k3YkWcgj7/ofl0fODjys\n6fq9Sf46yRltXa1J8twlbU8l+XqGjcaTf28djyfJ/5jkKUk+lSFQvDPJ1jxyhmPXks++Pcn/mmG/\nwpqxndeOy50AAOCo9miWA/2zJPNJbpw8OK7fvz3DUqGvThQ9K8nXlmnzuiS/m+T5Gdb3/+1E2e1J\nfj7JfWNg2J+nJ/lk0/VfT5K2rjZleETpspqunxv797W2rq5P8qYk/yjDMiEAADhqrSgEjHfIfzHJ\n3zZdv2s/Va5O8httXd2aYW39L2W4GP/iwdptuv4HbV19O0mdYd3+3ETxX42f+ZttXV2VYY/BSRmC\nwZVj3R8k+adtXX0vwzKhOkNQWW48L0jyQJI7kuxN8pwMTzzauty5AABwpFvpcqCfznCX/Ev7K2y6\n/isZluScneQtGe7Q/3HT9fetoO3rMoSRf7DMqOn6bUn+MMM6/H+b5KIkL8twkb/vQr/NMIPw5iS/\nmeTLGZ72s5xdSX4lyYXjuT+V5H9vun73Cs4FAIAj2qPaGHw4tHX1K0l+sen6t65qR1bGxmAAAB4L\nh3Wv6qr9em5bV+uSbEny3yT5y9XqBwAAlGbVQkCGpT2/kKTPMnsHAACAQ2fVlwMdYXxZAAA8Fn4y\nficAAAA4OggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQ\nGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBh\nhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIUR\nAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYI\nAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEA\nAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDDTK6nU1tXxSf5VktOTzCa5J8kVTdd/ayyfSnJOkjOT\nbEjyvSSfaLr+zsPRaQAA4Ee37ExAW1cbkrxhfPvHSd6e5JNJHpyodlaSF47H3zWWvbatq9lD2ttD\noK2rtavdBwAAWE0rmQk4K8kDTdd/dOLYvfv+GWcBXpDks03Xf2089tEkFyd5TpIvLm2wratnJHld\nkjc2Xb994vi5Saqm698xvj81yXlJnpLkh0n6JF3T9XNj+WlJzk5y8tjErUk+1XT998fyLRlCyYcz\nzFI8LUnX1tUNSV6W5FlJ1ifZluTzTddfu4LvAwAAjmgrCQH/OMn/19bVbyb5mSQPJLkuyV81Xb+Y\nZEuSTUm+se+Epuv3tHV1S5JTs58Q0HT9LW1d3ZPkeUmuSh4OE89NcvX4/pQkr0nymSQfS3Jskpcm\naZJ8cGxqXZJrk9yRZCZDIHh1W1cXNV0/P/GR5yW5cmxnb5KXJDklyfszzFpsSXLccl/Ettu2ZXbz\nbHbv2J3p2ekszC9kamoqU2umsnf33hyz4Zjs2r4rsyfM5qH7H8qGx23Iznt3PuJ1/QnrM/fAXGY2\nzmR+bj5rpocJmYX5hUzPTmf3jt2ZPX42D209SBsnrs/c1rms27Que3buydqZtVlcWMzi4mLWTK/J\n/Nx8ZjbOZG7b3AHb2PdqTMZkTMZkTMZkTMZkTKs/ps1P3rzc5eghs5IQcFKS5ye5Jslnk/xUkv9u\nLPtCkuPH/7cvOW97koON5LokZ2QMAUlOy3AhfsP4/qwkX2m6/up9J7R1dUWSt7R1dVzT9Q/um3mY\nKG+TXJph5uDbE0VfmKw7zhDc3nT9reOh+w7STwAAOKpMLS4uHrRCW1d/kuS2puvfM3Hs3CTPbrr+\n7eOSnTckubDp+vsn6jRJNjddf+kB2j0uybuTvK/p+u+0dXV+koWm6y8byy/KEED2TvY3wx3/9zRd\n/922rk7KcFf/qUk2juXrknyk6fobJ5YDXbxvE/PY9ulJzk9yd5Kbk/ST5Qdx8C8LAAAOjanD2fhK\nHhH6QJLvLzl2V5ITJ8qTYUnQpE155OzAw5qufzDDGv8z2ro6NkmV5MsTVaYyzBa8c+Lv95K8Ncnf\njXUuyHDxf3mGQPHOJAt55AzHriWffVOSCzMsPdqY5IIxtAAAwFFvJcuBvpPk8UuOPT7/ZQnNfRku\n9p+ZYWNu2ro6JsnTk3TLtP2lDHfk7xnbuHmi7PYkJzddf/f+ThyDwxMyPKr0m+OxJ2WFv33QdP2O\nDEuPbmjr6qYkr2zr6uNL9hIAAMBRZyUh4Jokb2zr6uwkX8mwJ+BfJPmzJGm6frGtq2uSnN3W1V1J\nfpDkRRnuvt+4TNs3Z3jqzzkZni40udzmqiRvauvqFRk2F+/KcNFfNV1/eZKdSXYkObOtq60Z9h/U\nGWYCDqqtqxdnCBl3Jlmb5NlJ7hUAAAAowbJ3zcfNs3+S5Ocz/EbAuUn+Isl/mqj2uQxh4eVJ3pxh\ns/Al+x7leZC2F5Ncn+FC/PolZXckeW+GJ/e8PsMyoPMyLjEaz70sw1N+3p7hkZ+fTrJnuTElmR/H\n8bYM+xlmk3xgBecBAMARb9mNwYfbeKf/pKbrL1nVjqyMjcEAADwWDuvG4JUsBzos2rpan+SJGX4b\n4EOr1Q8AACjNqoWAJK/K8GjP65qu//oq9gMAAIqy6suBjjC+LAAAHgur/jsBAADAUUQIAACAwggB\nAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQA\nAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAA\nAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAA\nFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQ\nGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBh\nhAAAACjM9HIV2rr6l0nOWXJ4e9P1vzNRZ2qsc2aSDUm+l+QTTdffeQj7CgAAHAIrnQn4QZLfmfh7\nx5Lys5K8MMknk7wryYNJXtvW1ewh6uch09bV2tXuAwAArKZlZwJGe5uu376/gnEW4AVJPtt0/dfG\nYx9NcnGS5yT54n7OeUaS1yV542S7bV2dm6Rquv4d4/tTk5yX5ClJfpikT9I1XT83lp+W5OwkJ49N\n3JrkU03Xf38s35IhlHw4wyzF05J0bV3dkORlSZ6VZH2SbUk+33T9tSv8PgAA4Ii10hBwUltXf5hk\nPsNSnz9ruv7esWxLkk1JvrGvctP1e9q6uiXJqdlPCGi6/pa2ru5J8rwkVyUPh4nnJrl6fH9Kktck\n+UySjyU5NslLkzRJPjg2tS7JtUnuSDKTIRC8uq2ri5qun5/4yPOSXDm2szfJS5KckuT9GWYttiQ5\nbrkvYdtt2zK7eTa7d+zO9Ox0FuYXMjU1lak1U9m7e2+O2XBMdm3fldkTZvPQ/Q9lw+M2ZOe9Ox/x\nuv6E9Zl7YC4zG2cyPzefNdPDhMzC/EKmZ6eze8fuzB4/m4e2HqSNE9dnbutc1m1alz0792TtzNos\nLixmcXExa6bXZH5uPjMbZzK3be6Abex7NSZjMiZjMiZjMiZjMqbVH9PmJ29e7nL0kFlJCPhekn+f\n5K4MF8pnJ3njeKH9wyTHj/WWzhRsT3KwkVyX5IyMISDJaWP7N4zvz0rylabrr953QltXVyR5S1tX\nxzVd/+C+mYeJ8jbJpRlmDr49UfSFybrjDMHtTdffOh667yD9BACAo8rU4uLiozqhrat1SX4/w/Kf\na8YlO29IcmHT9fdP1GuSbG66/tIDtHNckncneV/T9d9p6+r8JAtN1182ll+U5KQMd+4f7m+GO/7v\nabr+u21dnZThrv5Tk2wcy9cl+UjT9TdOLAe6uOn6b0189ulJzk9yd5Kbk/ST5Qfx6L4sAAD40Uwd\nzsYf9SNCm67fleT7SR4/HnpgfN20pOqmPHJ2YLKdBzOs8T+jratjk1RJvjxRZSrDbME7J/5+L8lb\nk/zdWOeCDBf/l2cIFO9MspBHznDsWvLZNyW5MMPSo41JLhhDCwAAHPVWuifgYW1dHZPkCUm+OR66\nL8PF/jMzbMzdV+fpSbplmvtShjvy94xt3DxRdnuSk5uuv/sA/Th27McVTdd/czz2pKww2DRdvyPD\n0qMb2rq6Kckr27r6+JK9BAAAcNRZye8E/FqGO/b3Z1iz/6IMS3L+Okmarl9s6+qaJGe3dXVXhseJ\nvijD3fcbl2n+5gxP/Tknw/KiyeU2VyV5U1tXr8iwuXhXhov+qun6y5PsTLIjyZltXW3NsP+gzjAT\nsNyYXpwhZNyZZG2SZye5VwAAAKAEK7lrfkKSV2b4bYD/OcMTgt7ddP3kZtrPJbkmycuTvDnDZuFL\n9j3K80DGi/7rM1yIX7+k7I4k783w5J7XZ1gGdF7GJUbjuZdleMrP2zM88vPTSfasYEzzSc5N8rYM\n+xlmk3xgBecBAMAR71FvDD7Uxjv9JzVdf8mqdmRlbAwGAOCxcFg3Bj/qPQGHSltX65M8McNvA3xo\ntfoBAAClWbUQkORVGR7teV3T9V9fxX4AAEBRVn050BHGlwUAwGPhJ+t3AgAAgCObEAAAAIURAgAA\noDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACA\nwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAK\nIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiM\nEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBC\nAAAAFEYIAACAwggBAABQGCEWmA5sAAAgAElEQVQAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBC\nAAAAFEYIAACAwggBAABQGCEAAAAKM/1oKrd19atJzk3yV03Xf2Li+FSSc5KcmWRDku8l+UTT9Xce\nwr4CAACHwIpnAtq6elqGi/w79lN8VpIXJvlkkncleTDJa9u6mj0UnTyU2rpau9p9AACA1bSimYC2\nrtYn+Z+StBnu+E+WTSV5QZLPNl3/tfHYR5NcnOQ5Sb64n/aekeR1Sd7YdP32iePnJqmarn/H+P7U\nJOcleUqSHybpk3RN18+N5aclOTvJyWMTtyb5VNP13x/Lt2QIJR/OEGCelqRr6+qGJC9L8qwk65Ns\nS/L5puuvXcn3AQAAR7KVLgf675N8ten6b7Z1dc6Ssi1JNiX5xr4DTdfvaevqliSnZj8hoOn6W9q6\nuifJ85JclTwcJp6b5Orx/SlJXpPkM0k+luTYJC9N0iT54NjUuiTXZpidmMkQCF7d1tVFTdfPT3zk\neUmuHNvZm+QlSU5J8v4MsxZbkhy33Jew7bZtmd08m907dmd6djoL8wuZmprK1Jqp7N29N8dsOCa7\ntu/K7Amzeej+h7LhcRuy896dj3hdf8L6zD0wl5mNM5mfm8+a6WFCZmF+IdOz09m9Y3dmj5/NQ1sP\n0saJ6zO3dS7rNq3Lnp17snZmbRYXFrO4uJg102syPzefmY0zmds2d8A29r0akzEZkzEZkzEZkzEZ\n0+qPafOTNy93OXrILBsC2ro6M8k/SvJ/HqDK8ePr9iXHtyc52EiuS3JGxhCQ5LQMF+I3jO/PSvKV\npuuvnujLFUne0tbVcU3XP7hv5mGivE1yaYaZg29PFH1hsu44Q3B70/W3jofuO0g/AQDgqDK1uLh4\nwMK2rh6f5A1J/rDp+h+Mx/6XJHfu2xg8Ltl5Q5ILm66/f+LcJsnmpusvPUDbxyV5d5L3NV3/nbau\nzk+y0HT9ZWP5RUlOynDn/uH+Zrjj/56m67/b1tVJGe7qPzXJxrF8XZKPNF1/48RyoIubrv/WxGef\nnuT8JHcnuTlJP1l+EAf+sgAA4NCZOpyNLzcTcGqGi+uL2rrad2xNkme0dfVLSX4ryQPj8U1J7p84\nd1MeOTvwsKbrH2zrqk9yRltXdyWpknxgospUhtmC/a3T3zq+XjD+f3mGdf17k/zufsa1a8ln39TW\n1YVJTk/ys0kuaOvqq03XtwfqLwAAHC2WCwH/T4bNtpP+hwx30P8yw0X3fRku9p+5r25bV8ckeXqS\nbpn2v5Thjvw9Yxs3T5TdnuTkpuvv3t+JbV0dm+QJSa5ouv6b47EnZYVPPGq6fkeGpUc3tHV1U5JX\ntnX18SV7CQAA4Khz0BDQdP3OJDsnj7V1tSvJDyd/A6Ctq2uSnD3e0f9BkhdluPt+4zKff3OGp/6c\nk+HpQpPLba5K8qa2rl6RYXPxrgwX/VXT9ZeP/dqR5My2rrZm2H9QJ1lY5jPT1tWLM4SMO5OsTfLs\nJPcKAAAAlOBQ/WLw55Jck+TlSd6cYbPwJfse5Xkg40X/9RkuxK9fUnZHkvdmeHLP65O8NcNTfrZP\nnHtZhqf8vD3DIz8/nWTPCvo7n+FHz96WYT/DbP7hUiQAADhqHXRj8GNhvNN/UtP1l6xqR1bGxmAA\nAB4Lq7ox+LAZf4DsiRl+G+BDq9UPAAAozaqFgCSvyvBoz+uarv/6KvYDAACKsurLgY4wviwAAB4L\nh3U50KHaGAwAABwhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBh\nhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIUR\nAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYI\nAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEA\nAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAA\nACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQmOnlKrR19fwkv5Rky3joziR/2XT91yfqTCU5\nJ8mZSTYk+V6STzRdf+eh7jAAAPDjWclMwNYk/yHJ7yd5V5JvJnlVW1f/1USds5K8MMknxzoPJnlt\nW1ezh7a7P762rtaudh8AAGA1LTsT0HT9/7vk0J+3dfXLSZ6W5I5xFuAFST7bdP3XkqStq48muTjJ\nc5J8cWmbbV09I8nrkryx6frtE8fPTVI1Xf+O8f2pSc5L8pQkP0zSJ+marp8by09LcnaSk8cmbk3y\nqabrvz+Wb8kQSj6cYZbiaUm6tq5uSPKyJM9Ksj7JtiSfb7r+2uW+DwAAONItGwImtXW1JsnPJ1mX\n5Dvj4S1JNiX5xr56TdfvaevqliSnZj8hoOn6W9q6uifJ85JcNbY9leS5Sa4e35+S5DVJPpPkY0mO\nTfLSJE2SD45NrUtybZI7ksxkCASvbuvqoqbr5yc+8rwkV47t7E3ykiSnJHl/hlmLLUmOW278227b\nltnNs9m9Y3emZ6ezML+QqampTK2Zyt7de3PMhmOya/uuzJ4wm4fufygbHrchO+/d+YjX9Sesz9wD\nc5nZOJP5ufmsmR4mZBbmFzI9O53dO3Zn9vjZPLT1IG2cuD5zW+eybtO67Nm5J2tn1mZxYTGLi4tZ\nM70m83Pzmdk4k7ltcwdsY9+rMRmTMRmTMRmTMRmTMa3+mDY/efNyl6OHzIpCwHhB/sYkxyTZleTf\nNV3/92Px8ePr9iWnbU9ysJFcl+SMjCEgyWkZLsRvGN+fleQrTddfPdGPK5K8pa2r45quf3DfzMNE\neZvk0gwzB9+eKPrCZN1xhuD2putvHQ/dd5B+AgDAUWVqcXFx2UptXU0nOTHD0pmfy7C05o+arr9z\nXLLzhiQXNl1//8Q5TZLNTddfeoA2j0vy7iTva7r+O21dnZ9koen6y8byi5KclOHO/cP9zXDH/z1N\n13+3rauTMtzVf2qSjWP5uiQfabr+xonlQBc3Xf+tic8+Pcn5Se5OcnOSfrL8IJb/sgAA4Mc3dTgb\nX9FMwLi05u7x7W1tXT0lwz6AjyV5YDy+Kcn9E6dtyiNnBybbfLCtqz7JGW1d3ZWkSvKBiSpTGWYL\n9rdOf+v4esH4/+UZ1vXvTfK7+xnXriWffVNbVxcmOT3Jzya5oK2rrzZd3x6ovwAAcLR4VHsCJkxN\nnHtfhov9Z2bYmJu2ro5J8vQk3TLtfCnDHfl7xjZunii7PcnJTdffvb8T27o6NskTklzRdP03x2NP\nygp/+6Dp+h0Zlh7d0NbVTUle2dbVx5fsJQAAgKPOSn4n4F8l+XqGu/yzGZ7489MZNtWm6frFtq6u\nSXL2eEf/B0lelOHu+43LNH9zhqf+nJPh6UKTy22uSvKmtq5ekWFz8a4MF/1V0/WXJ9mZZEeSM9u6\n2pph/0GdZGEFY3pxhpBxZ5K1SZ6d5F4BAACAEqzkrvmmJL+R5B1JfjvDpts/brr+pok6n0tyTZKX\nJ3lzhs3Cl+x7lOeBjBf912e4EL9+SdkdSd6b4ck9r0/y1gxP+dk+ce5lGZ7y8/YMj/z8dJI9KxjT\nfJJzk7wtw36G2fzDpUgAAHDUWtHG4MNpvNN/UtP1l6xqR1bGxmAAAB4Lq78x+HBo62p9kidm+G2A\nD61WPwAAoDSrFgKSvCrDoz2va7r+66vYDwAAKMqqLwc6wviyAAB4LBzW5UArepwmAABw9BACAACg\nMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDC\nCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAoj\nBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQ\nAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIA\nAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEA\nAFAYIQAAAAozvVyFtq5+Ncmzkzw+yXyS7yb5s6br75yoM5XknCRnJtmQ5HtJPjFZBwAA+MmwkpmA\nn07yV0nek+R9SRaS/HZbV8dO1DkryQuTfDLJu5I8mOS1bV3NHtLeHgJtXa1d7T4AAMBqmlpcXHxU\nJ7R1tS7JpUn+pOn6fpwF+MMkX2i6/i/HOsckuTjJlU3Xf3E/bTwjyeuSvLHp+u0Tx89NUjVd/47x\n/alJzkvylCQ/TNIn6ZqunxvLT0tydpKTxyZuTfKppuu/P5ZvyRBKPpxhluJpSbokNyR5WZJnJVmf\nZFuSzzddf+0yw390XxYAAPxopg5n48suB9qP2Qyd2jm+35JkU5Jv7KvQdP2etq5uSXJqkkeEgKbr\nb2nr6p4kz0tyVfLwkqLnJrl6fH9Kktck+UySjyU5NslLkzRJPjg2tS7JtUnuSDKTIRC8uq2ri5qu\nn5/4yPOSXDm2szfJS5KckuT9GWYttiQ5brmBb7ttW2Y3z2b3jt2Znp3OwvxCpqamMrVmKnt3780x\nG47Jru27MnvCbB66/6FseNyG7Lx35yNe15+wPnMPzGVm40zm5+azZnqYkFmYX8j07HR279id2eNn\n89DWg7Rx4vrMbZ3Luk3rsmfnnqydWZvFhcUsLi5mzfSazM/NZ2bjTOa2zR2wjX2vxmRMxmRMxmRM\nxmRMxrT6Y9r85M3LXY4eMj9KCPj1JH+XYW9Akhw/vm5fUm97koON5LokZ2QMAUlOy3AhfsP4/qwk\nX2m6/up9J7R1dUWSt7R1dVzT9Q82Xf+1yQbbumozzFI8Jcm3J4q+MFl3nCG4ven6W8dD9x2knwAA\ncFR5VMuB2rr610l+IckfNl1/73js1CRvSHJh0/X3T9Rtkmxuuv7SA7R1XJJ3J3lf0/Xfaevq/CQL\nTddfNpZflOSkDHfuH+5vhjv+72m6/rttXZ2U4a7+U5NsHMvXJflI0/U3TiwHurjp+m9NfPbpSc5P\ncneSm5P0k+UHYTkQAACPhcO6HGjFjwht6+qlSZ6T4aL93omiB8bXTUtO2ZRHzg48rOn6BzOs8T9j\n3GRcJfnyRJWpDLMF75z4+70kb80wE5EkF2S4+L88Q6B4Z4aNy0tnOHYt+eybklyYYenRxiQXjKEF\nAACOeitaDtTW1a8n+ScZAsBdS4rvy3Cx/8wMG3P3bQx+eoZNuAfzpQx35O8Z27h5ouz2JCc3XX/3\nAfp0bJInJLmi6fpvjseelBUGm6brd2RYenRDW1c3JXllW1cfX7KXAAAAjjor+Z2Al2XYsPvvkvyw\nrat9d/x3NV2/q+n6xbaurklydltXdyX5QZIXZbj7fuMyzd+c4ak/5yT5bNP1k8ttrkryprauXpFh\nc/GuDBf9VdP1l2fYmLwjyZltXW3NsP+gzjATsNyYXpwhZNyZZG2G30G4VwAAAKAEK7lr/vwMTwT6\n7STvnfg7a6LO55Jck+TlSd6cYbPwJfse5Xkg40X/9RkuxK9fUnbH+Dlbkrw+wzKg8zIuMRrPvSzD\nU37enuGRn59OsmcFY5pPcm6St2XYzzCb5AMrOA8AAI54j/p3Ag618U7/SU3XX7KqHVkZG4MBAHgs\n/MT9TsAh0dbV+iRPzLDU6EOr1Q8AACjNqoWAJK/K8GjP65qu//oq9gMAAIqy6suBjjC+LAAAHgs/\nGb8TAAAAHB2EAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAA\nKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACg\nMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDC\nCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAoj\nBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQ\nAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFCY6eUqtHX1jCRnJXlSks1J2qbrr19SZyrJOUnOTLIh\nyfeSfKLp+jsPeY8BAIAfy0pmAtYl/397dx51R10ecPz7hpC8gSxABEFkMQiKeMZSRW3BShWiRUXp\niBS0Dlo9ntYNd1Fpqbh7oIDaqlhxFBGUKR6EKosbREgpcsoQiGxhFdlCIAnZk7d/PHPJ5OZ9c2/y\n3uRd5vs55z03985y7zyZ+7vzzG/jj8CFwOoh1pkNHAlcAHwBWAKclKdJfy8+ZC/labLdSH8GSZIk\naSR1rAnIinIeMA8gT5MT25dXtQBHAL/IivLG6rVzgdOBlwJXD7LN/sCHgU9kRbm49vqbgCQrys9W\nz/cDjgH2BZ4CSqDIinJFtfwg4CjgWdUu7gF+nBXln6rlM4mk5DtELcUsoMjTZC5wPPACYArwBPCr\nrCh/2SkekiRJ0ljXMQnowkxgOnBr64WsKFfnaXIHsB+DJAFZUd6Rp8mjwF8Al8PTycTLgSur53sC\nHwR+Bnwf2BF4C5AB36p2NRn4JfAAMIlICN6bp8mpWVGuqb3lMcBF1X7WAm8E9gS+TtRazASmdTrQ\nJ+59gv6d+lm1dBUT+yeybs06+vr66JvQx9pVa9l+h+1ZuXgl/Tv3s/zx5ezwjB1Y9tiyjR6n7DyF\nFU+uYNLUSaxZsYYJE6NCZt2adUzsn8iqpavon9HP8kWb2McuU1ixaAWTp09m9bLVbDdpOwbWDTAw\nMMCEiRNYs2INk6ZOYsUTK4bcR+vRY/KYPCaPyWPymDwmj8ljGvlj2mmfnTpdjvZML5KAGdXj4rbX\nFxN9CIYyBziUKgkADiIuxOdWz2cDN2RFeWVrgzxNzgc+k6fJtKwol7RqHmrLc+AsoubgztqiX9fX\nrWoI7suK8p7qpYWbOkBJkiRpPOkbGBjoeuU8Tc4GLqh3DK6a7HwcODkrysdrr2fATllRnjXEvqYB\nXwLOyIryrjxN3gOsy4rynGr5qcCuxJ37pz8vccf/y1lRLsjTZFfirv5zgKnV8snAf2ZFeX2tOdDp\nWVHeXnvvFwLvAR4B5gNlffkmdB8sSZIkacv1bc2d92KI0Cerx+ltr09n49qBp2VFuYRo439oniY7\nAgnwu9oqfURtwedqf6cBpwD3V+u8j7j4P49IKD4HrGPjGo6Vbe89DziZaHo0FXhflbRIkiRJ414v\nmgMtJC72DyQ65pKnyfbAc4Giw7bXEHfkH632Mb+27D7gWVlRPjLYhlXisDtwflaUt1Wv7U2XiU1W\nlEuJpkdz8zSZB7wrT5MftvUlkCRJksadbuYJmAzsVj2dAOySp8lewFNZUT6eFeVAniZXAUflafIQ\n8DDwOuLu+/Uddj+fGPXn9cToQvXmNpcDn8zT5K1E5+KVxEV/khXlecAyYCnwijxNFhH9D1KiJqDT\nMR1NJBkPAtsBBwOPmQBIkiSpCbq5a74P8Jnqb3vgDdW/j66tcwVwFXAC8Gmis/CZraE8h1Jd9F9L\nXIhf27bsAeCrxMg9HyWaAR1D1cSo2vYcYpSffyGG/LyEoecyqFsDvAn4Z6I/Qz/wjS62kyRJksa8\nzeoYvDVUd/p3zYryzBH9IN2xY7AkSZK2ha3aMbgXfQK2SJ4mU4A9iLkBvj1Sn0OSJElqmhFLAoB/\nIob2nJMV5c0j+DkkSZKkRhnx5kBjjMGSJEnStjDq5wmQJEmSNIaYBEiSJEkNYxIgSZIkNYxJgCRJ\nktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1jEmAJEmS1DAmAZIkSVLDmARIkiRJDWMSIEmSJDWMSYAk\nSZLUMCYBkiRJUsOYBEiSJEkNYxIgSZIkNYxJgCRJktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1jEmA\nJEmS1DAmAZIkSVLDmARIkiRJDWMSIEmSJDWMSYAkSZLUMCYBkiRJUsOYBEiSJEkNYxIgSZIkNYxJ\ngCRJktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1jEmAJEmS1DAmAZIkSVLDmARIkiRJDWMSIEmSJDWM\nSYAkSZLUMCYBkiRJUsOYBEiSJEkNYxIgSZIkNYxJgCRJktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1\njEmAJEmS1DAmAZIkSVLDmARIkiRJDWMSIEmSJDWMSYAkSZLUMCYBkiRJUsOYBEiSJEkNYxIgSZIk\nNYxJgCRJktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1zMRe7ShPk8OB2cAM4EHgx1lR3tGr/UuSJEnq\njZ7UBORp8hLgOODnwOeAu4D352mySy/230t5mvQs8ZEkSZLGol5dEB8JXJsV5TXV8wvyNDkIeCVw\ncfvKeZrMBD4PfDEryntrr78COAb4eFaUa/I02QN4M7A/sAr4A1HDsLhaf1/gTcDewHbAH4GLsqJc\nUNvnt4AfAc8HDgJ+m6fJxcCxwJ8DOwJLgOuzovyv3oRDkiRJGr2GXRNQ3VnfG7i1bdGtwH6DbZMV\n5UJgPnBo26K/BOZWCcAM4GPEhf0XgTOBycB78zTpq9bvB+YCX63WuZ+ogdixbb+vB+YB/wr8BngV\n8GfAOcAp1eNDXR+0JEmSNIb1oiZgKpFMLG57fQkwfRPbXQP8fZ4mP8mKcnV1138W8INq+SuB++t3\n5/M0ORf4N2Af4J6sKP9Q32GeJhcQd/dfCPxPbdENWVHOqa03E3gYuDMrygHgcaIJUyd9nVeRJEmS\nRreRbB9/E3ACcDBwPVELcE9WlA9Wy/cBDsjT5OxBtt0VuCdPk2nAG4HnEQlHHzAJaO+LcG/b82uB\nk4DP5mlyK1FLMK9KCCRJkqRxrRcdg5cC69j4rv80Nq4deFpWlGuB64BD8zSZALwcmFNbpQ+4meho\nXP87pXod4B3AvsCPgS9XyxexcXKzsu297wM+RfRXmFDt56RaMyNJkiRp3Bp2TUDVfv8+4EDg97VF\nLwBu7LD5HKKd/uFE+/7/rS27D3gxsLBKGAbzXOCCrChvBsjTZDoxRGk3n3tF9fluzNPkWuCTwG5E\nMyFJkiRp3OpVc6ArgXfmaXIP0bb+r4iL8as3tVFWlA/naXInkBLt9lfUFv8GOAx4d54mlxN9DHYl\nEoOLqnUfBl6Wp8ndRKfhFFjT6cPmaXIE8CTwALAWeCmwgqhFkCRJksa1nswTkBXlDUSTnKOAzxB3\n6L9WjQLUyRwiGak3BSIryieArwADwAeAU4HjiYv81oV+TtQgfBp4N/A7oJv3XAm8Bji52nYv4Oys\nKFd1sa0kSZI0pvUNDIxsX9g8TV4DHJYV5Skj+kEkSZKkhhix0YHyNJkMzAReDfz3SH0OSZIkqWlG\ncojQ44FDgJIOfQd6JU+T/YHZxORmOwF5VpTX1pZPJmYsPpiYSfhx4OqsKK+qrTORmMX4pcD2xCzG\n52dFuai2zi7E8T0fWE0MgXpRVpQd+yuMBsONUzVZ2xuIzuG7ECNI3Qz8NCvKp2r7+QKRCNZdPpZm\nbu7ROfUR4IC2Xd+QFeU5tXV2AP4OeFH10k1Ep/hlPT+oraAH59RM4AtD7L7IivKKar2OsRztuojV\ndOBvie/XDsDtxLnwSG0dy6kOcWpKOdWj82ncl1HQk3OqEeVUniZ/Q5TVzySaZy8ALq4N8U412uLr\ngVcQsbob+FHbOh3PmTxN9iTKqX2Bp4g5pi4bC0O69yJO1Tn1OmIo/BlEf9YbgEuzolxd28+3BvkI\nP8yKcpPX1yOWBGRF+T3ge9v4bScTMxBfB7xzkOXHEqMcfRd4DNifmNBsaVaUc6t1jiNO2HOIE/JY\n4H15mnw+K8p11XCn7yd+UL5KXNC8o9r2gq1yVL033DjNIArQAvhT9e8TiH4bZ7bt61Lgt7XnKxlb\nenFOQcxdcXHt+Wo29C7iQuWs6vnbifPqG8M9gG1kuHFaRMwgXncw8ePQPgpZp1iOdkPGqvrB+Eei\nr9S/A8uBI4EP5WlyalaUre9Po8upLuPUlHKqF+cTjP8yCoYfq6aUUwcQg7fcQwznfjTr49BKoGcT\n8fke8BBxoXtSnib/XBsEZpPnTJ4m/cScTncQydXuwInE9+/KrXVwPdSLOO1O9N89nxgMZw/gbUSZ\nfV7b+/2AuLHesrzTBxzJmoBtLivKecTEYORpcuIgq+wHzM2K8rbq+cI8TQ4DngPMzdNkCnAocXdg\nfrWf7wJfJC5gbiHuEOwBnNy665anSQG8PU+Tn7aNgDQqDTdOVQb7zdr6j+RpchFxEdLfFoOVWVEO\nOZ/EaDfcWNXWWzVUHKrZtA8CvpIV5YLqtfOAj+Vp8sysKEf9sLY9OKfW0TbvSJ4mBwN/yIrysbZ9\nDRnLsaBDrHYjZlY/LSvKB6p1fkhcyB8CzLGcArqIU1PKqeHGqbbuuC6joCfnVCPKqawoz6o/r8qX\ns4hyvKwSpiOAX2RFeWO1zrnA6UTt5NVdnjMvIyaAPbe66/1gnia7A0fkaXLVaK8N6EWcsqK8hSiz\nWx7L0+TnRELRngQs29xzqlFJQBfuBF6Up8mcrCgX5WmyHzFy0BXV8n2A7YBbWxtU6z1EFA63VI8P\n1avdq/UnVtvfxtjXKU6DmUJUh7WPwHRkniavJe6g/B64Yqw0R+hSt7E6JE+TQ4gfkHlEVV/rImQW\ncedjQW39u6rX9mN8zPrMBLMAAAZOSURBVG2xWedUnibPIJqxfHuQxZuK5VjXKrOfvmuYFeVAniZr\niFHZ5mA5Bd3FaTBNK6c2J05NL6M2+5xqUDnVT9zpbjXjmUlMIFsvg1bnaXIHcT5cTXfnzCzgznqz\nl2qfb6zeoz2xGu22JE5D7WewZnbH5WnyNiIuc4BrOiVKJgEbuhB4K/ClPE3WVa/9KCvKVvXKdGJ2\n5KVt2y1m/SRl09l4puShZlUeqzrFaQNVu7+jWX+npOVXwP1Ec4V9ibaWzwC+v5U+90joJlbXE23g\nnwCeRbSNfzbrmyRMB5bUv8zVj88SupwcbwzYrHOKmENkKdGGtK5TLMe6h4jjOyZPkx8QP5ivBnZm\nwzKo6eVUN3HaQEPLqW7jZBm1BecUzSmnjiO+I60L+lY82suYxUSzO+junJnBxvM3La5tP9aSgC2J\n0waqPgKz2XhAnUuImzcricTzWGDqIOttwCRgQ39NZF/fIL6g+wNvztNkYVUlo9B1nPLo8PleorAr\n6suyWudY4IE8TVYQk8MV9Y55Y1zHWGVFeU1t/T/mafIocHKeJntnRXnfNv/EI2NzzqkJRHOX67K2\n2cTHeyyzolybp8k3ibazZxAX7fOJO4l9I/nZRpPNjVNTy6lu4zTev1fd2IJzqhHlVJ4mxxI1IV9p\nS55V04s45dEx/QNEzcEv68uyorys9vT+6vw7ig5JQE8mCxsP8jTZnsjGi6woy6woH8iK8tdEL+zZ\n1WqLiZhNbdt8OtFju7VO+520qdV2Y7L9X12XcWqtO5nofAjw9bYqvcHcXT3u1svPPFI2J1Zt7iV+\nYFpxWAxMq9oPtvbdB0xj/Xk3Zm1BnF5EfMeGatJR1x7LMS8rynuzojyN6DD38awozybKmEerVRpf\nTkFXcQIsp7qNU5tGlVEtmxmrcV9O5WnyFqLt+hltfR5a/+ftZUy9BrKbc+bJIfbR2n5MGGacWvuY\nDnwYeBD4bhf9Ie4G+qvthmQSsN521V97YNexPsu/F1hLdK4DIE+TnYne263qnQXA7tXrLQcS7Uzv\n7f3H3ua6iVOrV/8HiXPsa9mGo0wM5dnV43j50egqVoPYk4hbKw4LiFErZtXWmVW9dldPPunI2tw4\nHQbc3mVnw/ZYjhtZUS7PinJJnia7Ee34W00OLKdqNhEny6maTcVpEE0rozbQZazGdTmVp8lxRIfo\nM7KifKht8ULiIrZeBm1P3AlvnQ/dnDMLgOdW27YcSNTYLezNkWxdPYgTeZrMAD5KNEk7p8uahL2I\n/iubHKK3Uc2Bqjs+rUx7ArBLniZ7AU9lRfl4nia3E+39VhBNEg4AXk5VPZwV5fI8TX4HpFW7taXA\nW4ghxeZX+72VGG7uHXma/IS4S5ASHTTGRKef4cap9sM6hRhKbVKeJpOq/S3LinJNniaziC/8bcQw\nVvsSbdhuyory8W1wmD3Rg1jtSoyAcDNxPu1BxOF+qkIgK8o/5WlyC/C2qi0qxBBh5VgZdWO4cart\nZxdiRIlzB3mPjrEcC7qI1YuJ41tIXDwcB/xfVpS3guUUXcapKeVUD+LUiDIKhh+r2n7GdTmVp8nx\nRPn8H8BTtbvNK7OiXFm17b8KOCqPAQkeJsa6X0n0h+j2nLmeGDLzxDxNLiPG238t0Yl6VI8MBL2J\nU54mOwEfIRKfC4GpeZq03mJpFkM+J0T/gruIC//nEf2bruk0gEGjkgAiY/9I7fkbqr/riDFazyGa\nJfwD6ycsuoQY57XlQuIu27uJoavmE1Uz6wCq/5CvEeNNf4IYZeJ64KKtdExbw3DjtDfrs/vT2vZ9\nOjHByhrgJcQXfGK1jznA5b08kG1guLFaQ3TieRVxB2QR8eNwaVu2/x1iUpUPVs9vYuyM5w69+e5B\ntLFdzsZjbkP3sRztOsVqBnHR0GreMxe4bMNdWE7ROU5NKaeGG6emlFHQm+8ejP9y6vDq8UNtr18K\n/Kz69xVE2XMC6yfBOrPtJsMmz5nqhsaZxDwLnybual8J1PvpjGaHV4/DidMLiMR0N+BLbfv5FJGQ\nrgVeSZybfUSH6UuAX3f6gH0DA6M+mZIkSZLUQ/YJkCRJkhrGJECSJElqGJMASZIkqWFMAiRJkqSG\nMQmQJEmSGsYkQJIkSWoYkwBJkiSpYUwCJEmSpIYxCZAkSZIa5v8BKR+reaqB02kAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "FJ6ANHjIT9Ar", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] } ] } \ No newline at end of file From 54ac066dbc806438a26932c0bbeaa5cd7af2ead7 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Fri, 16 Nov 2018 00:01:06 -0500 Subject: [PATCH 07/12] Created using Colaboratory --- .../LS_DS_124_Sequence_your_narrative.ipynb | 29740 +--------------- 1 file changed, 459 insertions(+), 29281 deletions(-) diff --git a/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb b/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb index 36665f6..4a17049 100644 --- a/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb +++ b/module4-sequence-your-narrative/LS_DS_124_Sequence_your_narrative.ipynb @@ -65,31 +65,38 @@ "metadata": { "id": "xOCwT0RNXE24", "colab_type": "code", - "outputId": "5703301f-3545-4b6a-9866-8b3854d659ed", + "outputId": "d433e7d3-6ba6-4f60-f1f3-875165d5e451", "colab": { "base_uri": "https://localhost:8080/", - "height": 185 + "height": 302 } }, "cell_type": "code", "source": [ "!pip install --upgrade seaborn #restart runtime after running this command" ], - "execution_count": 32, + "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ - "Requirement already up-to-date: seaborn in /usr/local/lib/python3.6/dist-packages (0.9.0)\n", + "Collecting seaborn\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/a8/76/220ba4420459d9c4c9c9587c6ce607bf56c25b3d3d2de62056efe482dadc/seaborn-0.9.0-py3-none-any.whl (208kB)\n", + "\r\u001b[K 4% |█▋ | 10kB 18.7MB/s eta 0:00:01\r\u001b[K 9% |███▏ | 20kB 1.8MB/s eta 0:00:01\r\u001b[K 14% |████▊ | 30kB 2.6MB/s eta 0:00:01\r\u001b[K 19% |██████▎ | 40kB 1.7MB/s eta 0:00:01\r\u001b[K 24% |███████▉ | 51kB 2.1MB/s eta 0:00:01\r\u001b[K 29% |█████████▌ | 61kB 2.5MB/s eta 0:00:01\r\u001b[K 34% |███████████ | 71kB 2.9MB/s eta 0:00:01\r\u001b[K 39% |████████████▋ | 81kB 3.2MB/s eta 0:00:01\r\u001b[K 44% |██████████████▏ | 92kB 3.6MB/s eta 0:00:01\r\u001b[K 49% |███████████████▊ | 102kB 2.8MB/s eta 0:00:01\r\u001b[K 54% |█████████████████▎ | 112kB 2.8MB/s eta 0:00:01\r\u001b[K 59% |███████████████████ | 122kB 4.0MB/s eta 0:00:01\r\u001b[K 63% |████████████████████▌ | 133kB 4.0MB/s eta 0:00:01\r\u001b[K 68% |██████████████████████ | 143kB 7.5MB/s eta 0:00:01\r\u001b[K 73% |███████████████████████▋ | 153kB 7.6MB/s eta 0:00:01\r\u001b[K 78% |█████████████████████████▏ | 163kB 7.6MB/s eta 0:00:01\r\u001b[K 83% |██████████████████████████▊ | 174kB 7.7MB/s eta 0:00:01\r\u001b[K 88% |████████████████████████████▍ | 184kB 7.8MB/s eta 0:00:01\r\u001b[K 93% |██████████████████████████████ | 194kB 7.8MB/s eta 0:00:01\r\u001b[K 98% |███████████████████████████████▌| 204kB 37.3MB/s eta 0:00:01\r\u001b[K 100% |████████████████████████████████| 215kB 23.6MB/s \n", + "\u001b[?25hRequirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", "Requirement already satisfied, skipping upgrade: matplotlib>=1.4.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (2.1.2)\n", - "Requirement already satisfied, skipping upgrade: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.22.0)\n", - "Requirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", "Requirement already satisfied, skipping upgrade: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.1.0)\n", - "Requirement already satisfied, skipping upgrade: pytz in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2018.7)\n", + "Requirement already satisfied, skipping upgrade: numpy>=1.9.3 in /usr/local/lib/python3.6/dist-packages (from seaborn) (1.14.6)\n", + "Requirement already satisfied, skipping upgrade: python-dateutil>=2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2.5.3)\n", + "Requirement already satisfied, skipping upgrade: pytz>=2011k in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn) (2018.7)\n", + "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n", "Requirement already satisfied, skipping upgrade: six>=1.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (1.11.0)\n", "Requirement already satisfied, skipping upgrade: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.3.0)\n", - "Requirement already satisfied, skipping upgrade: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (2.5.3)\n", - "Requirement already satisfied, skipping upgrade: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=1.4.3->seaborn) (0.10.0)\n" + "Installing collected packages: seaborn\n", + " Found existing installation: seaborn 0.7.1\n", + " Uninstalling seaborn-0.7.1:\n", + " Successfully uninstalled seaborn-0.7.1\n", + "Successfully installed seaborn-0.9.0\n" ], "name": "stdout" } @@ -132,7 +139,7 @@ "metadata": { "id": "RhU2Y1s7Y4vN", "colab_type": "code", - "outputId": "835809de-0619-4655-9f16-6ff795ae266f", + "outputId": "c5b3f666-a325-4376-d9b0-85dda94e162f", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -142,7 +149,7 @@ "source": [ "incomes.shape, life_exp.shape, population.shape, entities.shape, concepts.shape" ], - "execution_count": 5, + "execution_count": 56, "outputs": [ { "output_type": "execute_result", @@ -154,7 +161,7 @@ "metadata": { "tags": [] }, - "execution_count": 5 + "execution_count": 56 } ] }, @@ -162,7 +169,7 @@ "metadata": { "id": "Qs-LXzp-ZtNr", "colab_type": "code", - "outputId": "e68ca8fa-5706-4de5-965a-60de951eef43", + "outputId": "9c5eb2ec-ac30-4cc9-f134-0d2ec1f2176a", "colab": { "base_uri": "https://localhost:8080/", "height": 266 @@ -173,7 +180,7 @@ "pd.options.display.max_columns = None\n", "entities.head()" ], - "execution_count": 6, + "execution_count": 57, "outputs": [ { "output_type": "execute_result", @@ -464,7 +471,7 @@ "metadata": { "tags": [] }, - "execution_count": 6 + "execution_count": 57 } ] }, @@ -472,7 +479,7 @@ "metadata": { "id": "3G13FulWaqIO", "colab_type": "code", - "outputId": "4f6551de-cfc9-47a3-9ca0-72cd231739c2", + "outputId": "ccd8fea1-2905-4faa-e6a0-6349dc70f9a6", "colab": { "base_uri": "https://localhost:8080/", "height": 195 @@ -482,7 +489,7 @@ "source": [ "incomes.head()" ], - "execution_count": 7, + "execution_count": 58, "outputs": [ { "output_type": "execute_result", @@ -558,7 +565,7 @@ "metadata": { "tags": [] }, - "execution_count": 7 + "execution_count": 58 } ] }, @@ -566,7 +573,7 @@ "metadata": { "id": "IaB-22CXaAao", "colab_type": "code", - "outputId": "f4d2b580-376c-481d-8f1b-ea528b652993", + "outputId": "f0a3d449-f944-43ed-f9f9-efa48263a2d0", "colab": { "base_uri": "https://localhost:8080/", "height": 551 @@ -576,7 +583,7 @@ "source": [ "concepts.head() # data dictionary" ], - "execution_count": 8, + "execution_count": 59, "outputs": [ { "output_type": "execute_result", @@ -772,7 +779,7 @@ "metadata": { "tags": [] }, - "execution_count": 8 + "execution_count": 59 } ] }, @@ -793,7 +800,7 @@ "metadata": { "id": "_PUnmOElbc9L", "colab_type": "code", - "outputId": "4c92f900-dc83-4dca-9b4a-730205494abf", + "outputId": "e06eff3d-86a9-4ada-e9d9-71d485012541", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -803,7 +810,7 @@ "source": [ "incomes.shape, life_exp.shape, df1.shape" ], - "execution_count": 10, + "execution_count": 61, "outputs": [ { "output_type": "execute_result", @@ -815,7 +822,7 @@ "metadata": { "tags": [] }, - "execution_count": 10 + "execution_count": 61 } ] }, @@ -823,7 +830,7 @@ "metadata": { "id": "huCO-0cLbjIp", "colab_type": "code", - "outputId": "940fbebe-f6f3-49ea-eec3-318bb045fa3e", + "outputId": "3c3a760b-0ef2-42db-b6f8-d5c4a1468988", "colab": { "base_uri": "https://localhost:8080/", "height": 195 @@ -833,7 +840,7 @@ "source": [ "df1.head()" ], - "execution_count": 11, + "execution_count": 62, "outputs": [ { "output_type": "execute_result", @@ -922,7 +929,7 @@ "metadata": { "tags": [] }, - "execution_count": 11 + "execution_count": 62 } ] }, @@ -930,7 +937,7 @@ "metadata": { "id": "qeWegGZNboI2", "colab_type": "code", - "outputId": "aaf3ff6a-6334-42a2-fa15-a4bc1a0d6452", + "outputId": "6ac3ffd3-1f63-47a1-c3c4-8edbe37dac1c", "colab": { "base_uri": "https://localhost:8080/", "height": 266 @@ -940,7 +947,7 @@ "source": [ "entities.head() # want real name and geographic region" ], - "execution_count": 12, + "execution_count": 63, "outputs": [ { "output_type": "execute_result", @@ -1231,7 +1238,7 @@ "metadata": { "tags": [] }, - "execution_count": 12 + "execution_count": 63 } ] }, @@ -1239,7 +1246,7 @@ "metadata": { "id": "MVbiK6kJcdq0", "colab_type": "code", - "outputId": "f3b6b059-e152-4b29-ba1a-d633a620b392", + "outputId": "8412bf33-9709-4875-cdad-cb196ed5ffee", "colab": { "base_uri": "https://localhost:8080/", "height": 101 @@ -1249,7 +1256,7 @@ "source": [ "entities.world_4region.value_counts()" ], - "execution_count": 13, + "execution_count": 64, "outputs": [ { "output_type": "execute_result", @@ -1265,7 +1272,7 @@ "metadata": { "tags": [] }, - "execution_count": 13 + "execution_count": 64 } ] }, @@ -1273,7 +1280,7 @@ "metadata": { "id": "PP7Db1NqcWLl", "colab_type": "code", - "outputId": "a96f1cb6-8084-4862-d6b6-53ff11f6e923", + "outputId": "05088821-389c-4284-b0a7-b1b9283097db", "colab": { "base_uri": "https://localhost:8080/", "height": 134 @@ -1283,15 +1290,15 @@ "source": [ "entities.world_6region.value_counts()" ], - "execution_count": 14, + "execution_count": 65, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "europe_central_asia 77\n", - "america 53\n", "sub_saharan_africa 53\n", + "america 53\n", "east_asia_pacific 46\n", "middle_east_north_africa 23\n", "south_asia 8\n", @@ -1301,7 +1308,7 @@ "metadata": { "tags": [] }, - "execution_count": 14 + "execution_count": 65 } ] }, @@ -1309,7 +1316,7 @@ "metadata": { "id": "DHH06jFqcvNK", "colab_type": "code", - "outputId": "3497a69a-a263-4cc6-a29b-2f7dc334b9c5", + "outputId": "ae03863c-55e0-4dd1-895b-c0b754cf8272", "colab": { "base_uri": "https://localhost:8080/", "height": 195 @@ -1320,7 +1327,7 @@ "variables = ['country', 'name', 'world_6region']\n", "entities[variables].head() # show variables, very cool filter process" ], - "execution_count": 15, + "execution_count": 66, "outputs": [ { "output_type": "execute_result", @@ -1396,7 +1403,7 @@ "metadata": { "tags": [] }, - "execution_count": 15 + "execution_count": 66 } ] }, @@ -1404,7 +1411,7 @@ "metadata": { "id": "EcN86p-ldBKV", "colab_type": "code", - "outputId": "cabf62c8-e030-4258-a74b-7df488d8653b", + "outputId": "81e5ae91-f21c-40fd-b867-fd24dbd99d60", "colab": { "base_uri": "https://localhost:8080/", "height": 195 @@ -1416,7 +1423,7 @@ "pd.merge(df1, entities[variables], how='inner', left_on='geo', \n", " right_on='country').head()" ], - "execution_count": 16, + "execution_count": 67, "outputs": [ { "output_type": "execute_result", @@ -1523,7 +1530,7 @@ "metadata": { "tags": [] }, - "execution_count": 16 + "execution_count": 67 } ] }, @@ -1544,7 +1551,7 @@ "metadata": { "id": "IUF3eAIRdkth", "colab_type": "code", - "outputId": "e6baac1e-ac96-48f4-a0f3-533a607ad5e3", + "outputId": "661abec1-4c7d-454b-99f7-64614d6f47a3", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -1569,7 +1576,7 @@ "\n", "df1.shape" ], - "execution_count": 18, + "execution_count": 69, "outputs": [ { "output_type": "execute_result", @@ -1581,7 +1588,7 @@ "metadata": { "tags": [] }, - "execution_count": 18 + "execution_count": 69 } ] }, @@ -1589,7 +1596,7 @@ "metadata": { "id": "4c5yn5agelG9", "colab_type": "code", - "outputId": "d788aff4-e3d8-4e4c-9f07-ae1e8defc3dd", + "outputId": "8fb74e18-02b2-49cd-ee76-7d52b2d32c86", "colab": { "base_uri": "https://localhost:8080/", "height": 195 @@ -1599,7 +1606,7 @@ "source": [ "df1.head()" ], - "execution_count": 19, + "execution_count": 70, "outputs": [ { "output_type": "execute_result", @@ -1693,7 +1700,7 @@ "metadata": { "tags": [] }, - "execution_count": 19 + "execution_count": 70 } ] }, @@ -1701,7 +1708,7 @@ "metadata": { "id": "dbLg4S9xeoy3", "colab_type": "code", - "outputId": "405cfe5c-a36d-45ae-9efa-1d105b7532ff", + "outputId": "198ff8cf-5600-4f3c-d092-e92033da0b62", "colab": { "base_uri": "https://localhost:8080/", "height": 166 @@ -1711,7 +1718,7 @@ "source": [ "df1.describe(exclude=[np.number])" ], - "execution_count": 20, + "execution_count": 71, "outputs": [ { "output_type": "execute_result", @@ -1752,7 +1759,7 @@ " \n", " \n", " top\n", - " Sweden\n", + " Ireland\n", " europe_central_asia\n", " \n", " \n", @@ -1765,17 +1772,17 @@ "" ], "text/plain": [ - " country region\n", - "count 41790 41790\n", - "unique 194 6\n", - "top Sweden europe_central_asia\n", - "freq 219 10991" + " country region\n", + "count 41790 41790\n", + "unique 194 6\n", + "top Ireland europe_central_asia\n", + "freq 219 10991" ] }, "metadata": { "tags": [] }, - "execution_count": 20 + "execution_count": 71 } ] }, @@ -1783,7 +1790,7 @@ "metadata": { "id": "qF650OSWe7uc", "colab_type": "code", - "outputId": "acd86d88-4140-4411-a009-bb481e2617bf", + "outputId": "a5fa709e-67ee-440e-951d-396398875b8f", "colab": { "base_uri": "https://localhost:8080/", "height": 689 @@ -1793,7 +1800,7 @@ "source": [ "df1.country.unique()" ], - "execution_count": 21, + "execution_count": 72, "outputs": [ { "output_type": "execute_result", @@ -1844,7 +1851,7 @@ "metadata": { "tags": [] }, - "execution_count": 21 + "execution_count": 72 } ] }, @@ -1852,7 +1859,7 @@ "metadata": { "id": "P9A0mufcfkWd", "colab_type": "code", - "outputId": "9b598dfc-cc2d-40cc-fe42-7abedd2a7d41", + "outputId": "0ea1fda7-7c78-49b9-d11d-ded76e01cc25", "colab": { "base_uri": "https://localhost:8080/", "height": 1058 @@ -1862,7 +1869,7 @@ "source": [ "df1.country == 'United States'" ], - "execution_count": 22, + "execution_count": 73, "outputs": [ { "output_type": "execute_result", @@ -1935,7 +1942,7 @@ "metadata": { "tags": [] }, - "execution_count": 22 + "execution_count": 73 } ] }, @@ -1943,7 +1950,7 @@ "metadata": { "id": "7Yuat41ufr0r", "colab_type": "code", - "outputId": "bd202f0b-1068-4e15-a9c4-6a792b85cd93", + "outputId": "529f8c32-6e5d-43a5-b311-8c94cafc2ffd", "colab": { "base_uri": "https://localhost:8080/", "height": 1882 @@ -1953,7 +1960,7 @@ "source": [ "df1[df1.country == 'United States'] # boolean indexing, aka return true" ], - "execution_count": 23, + "execution_count": 74, "outputs": [ { "output_type": "execute_result", @@ -2610,7 +2617,7 @@ "metadata": { "tags": [] }, - "execution_count": 23 + "execution_count": 74 } ] }, @@ -2618,7 +2625,7 @@ "metadata": { "id": "gspJjSV2fx0H", "colab_type": "code", - "outputId": "72a9d077-c51c-4f60-e4cd-caa04df8e473", + "outputId": "eacb76e4-49ed-489c-9040-9099b5d0964b", "colab": { "base_uri": "https://localhost:8080/", "height": 136 @@ -2629,7 +2636,7 @@ "usa = df1[df1.country=='United States']\n", "usa[usa.year.isin([1818, 1918, 2018])]" ], - "execution_count": 24, + "execution_count": 75, "outputs": [ { "output_type": "execute_result", @@ -2703,7 +2710,7 @@ "metadata": { "tags": [] }, - "execution_count": 24 + "execution_count": 75 } ] }, @@ -2711,7 +2718,7 @@ "metadata": { "id": "SDmbtDpBf77p", "colab_type": "code", - "outputId": "fa3ac579-68df-42af-9075-f64c89fb28bb", + "outputId": "9a323e95-b8c2-4181-e421-14d2be4189e7", "colab": { "base_uri": "https://localhost:8080/", "height": 136 @@ -2722,7 +2729,7 @@ "china = df1[df1.country=='China']\n", "china[china.year.isin([1818,1918,2018])]" ], - "execution_count": 25, + "execution_count": 76, "outputs": [ { "output_type": "execute_result", @@ -2796,7 +2803,7 @@ "metadata": { "tags": [] }, - "execution_count": 25 + "execution_count": 76 } ] }, @@ -2817,10 +2824,10 @@ "metadata": { "id": "7_pJr5BcgVwU", "colab_type": "code", - "outputId": "12a3a27d-4861-4945-d624-6b8239a7c050", + "outputId": "a620a62e-12c6-4aab-a081-59435c6956e6", "colab": { "base_uri": "https://localhost:8080/", - "height": 377 + "height": 360 } }, "cell_type": "code", @@ -2828,7 +2835,7 @@ "print(this_year.shape)\n", "this_year.sample(10)" ], - "execution_count": 27, + "execution_count": 78, "outputs": [ { "output_type": "stream", @@ -2869,75 +2876,66 @@ " \n", " \n", " \n", - " 27556\n", + " 17654\n", " 2018\n", - " 5569\n", - " 66.14\n", - " 195875237\n", - " Nigeria\n", - " sub_saharan_africa\n", - " \n", - " \n", - " 13061\n", - " 2018\n", - " 3409\n", - " 65.80\n", - " 106227\n", - " Micronesia, Fed. Sts.\n", - " east_asia_pacific\n", + " 65622\n", + " 81.49\n", + " 4803748\n", + " Ireland\n", + " europe_central_asia\n", " \n", " \n", - " 2674\n", + " 15902\n", " 2018\n", - " 691\n", - " 61.14\n", - " 11216450\n", - " Burundi\n", - " sub_saharan_africa\n", + " 7739\n", + " 68.15\n", + " 782225\n", + " Guyana\n", + " america\n", " \n", " \n", - " 24928\n", + " 5349\n", " 2018\n", - " 2021\n", - " 62.91\n", - " 19107706\n", - " Mali\n", - " sub_saharan_africa\n", + " 14341\n", + " 75.70\n", + " 210867954\n", + " Brazil\n", + " america\n", " \n", " \n", - " 3769\n", + " 10652\n", " 2018\n", - " 18853\n", - " 75.32\n", - " 7036848\n", - " Bulgaria\n", - " europe_central_asia\n", + " 15227\n", + " 76.11\n", + " 10882996\n", + " Dominican Republic\n", + " america\n", " \n", " \n", - " 27337\n", + " 39380\n", " 2018\n", - " 949\n", - " 62.45\n", - " 22311375\n", - " Niger\n", - " sub_saharan_africa\n", + " 21254\n", + " 77.57\n", + " 3469551\n", + " Uruguay\n", + " america\n", " \n", " \n", - " 18092\n", + " 6006\n", " 2018\n", - " 15867\n", - " 68.02\n", - " 39339753\n", - " Iraq\n", - " middle_east_north_africa\n", + " 9929\n", + " 74.83\n", + " 817054\n", + " Bhutan\n", + " south_asia\n", " \n", " \n", - " 6882\n", + " 22691\n", " 2018\n", - " 57133\n", - " 83.45\n", - " 8544034\n", - " Switzerland\n", + " 30368\n", + " 75.31\n", + " 2876475\n", + " Lithuania\n", " europe_central_asia\n", " \n", " \n", @@ -2950,48 +2948,57 @@ " sub_saharan_africa\n", " \n", " \n", - " 2893\n", + " 23786\n", " 2018\n", - " 42760\n", - " 81.23\n", - " 11498519\n", - " Belgium\n", + " 5330\n", + " 72.41\n", + " 4041065\n", + " Moldova\n", " europe_central_asia\n", " \n", + " \n", + " 1798\n", + " 2018\n", + " 21035\n", + " 77.60\n", + " 103050\n", + " Antigua and Barbuda\n", + " america\n", + " \n", " \n", "\n", "" ], "text/plain": [ - " year income lifespan population country \\\n", - "27556 2018 5569 66.14 195875237 Nigeria \n", - "13061 2018 3409 65.80 106227 Micronesia, Fed. Sts. \n", - "2674 2018 691 61.14 11216450 Burundi \n", - "24928 2018 2021 62.91 19107706 Mali \n", - "3769 2018 18853 75.32 7036848 Bulgaria \n", - "27337 2018 949 62.45 22311375 Niger \n", - "18092 2018 15867 68.02 39339753 Iraq \n", - "6882 2018 57133 83.45 8544034 Switzerland \n", - "14156 2018 1282 61.90 13052608 Guinea \n", - "2893 2018 42760 81.23 11498519 Belgium \n", + " year income lifespan population country \\\n", + "17654 2018 65622 81.49 4803748 Ireland \n", + "15902 2018 7739 68.15 782225 Guyana \n", + "5349 2018 14341 75.70 210867954 Brazil \n", + "10652 2018 15227 76.11 10882996 Dominican Republic \n", + "39380 2018 21254 77.57 3469551 Uruguay \n", + "6006 2018 9929 74.83 817054 Bhutan \n", + "22691 2018 30368 75.31 2876475 Lithuania \n", + "14156 2018 1282 61.90 13052608 Guinea \n", + "23786 2018 5330 72.41 4041065 Moldova \n", + "1798 2018 21035 77.60 103050 Antigua and Barbuda \n", "\n", - " region \n", - "27556 sub_saharan_africa \n", - "13061 east_asia_pacific \n", - "2674 sub_saharan_africa \n", - "24928 sub_saharan_africa \n", - "3769 europe_central_asia \n", - "27337 sub_saharan_africa \n", - "18092 middle_east_north_africa \n", - "6882 europe_central_asia \n", - "14156 sub_saharan_africa \n", - "2893 europe_central_asia " + " region \n", + "17654 europe_central_asia \n", + "15902 america \n", + "5349 america \n", + "10652 america \n", + "39380 america \n", + "6006 south_asia \n", + "22691 europe_central_asia \n", + "14156 sub_saharan_africa \n", + "23786 europe_central_asia \n", + "1798 america " ] }, "metadata": { "tags": [] }, - "execution_count": 27 + "execution_count": 78 } ] }, @@ -3012,7 +3019,7 @@ "metadata": { "id": "dbn1x_95g4zh", "colab_type": "code", - "outputId": "78d8a051-4da4-4de7-8a6b-cc10109c3d7a", + "outputId": "a3787070-56cf-45e3-f768-0fb946daddf2", "colab": { "base_uri": "https://localhost:8080/", "height": 369 @@ -3023,14 +3030,14 @@ "sns.relplot(x='income', y='lifespan', hue='region', size='population', \n", " sizes=(5, 200), data=this_year);" ], - "execution_count": 29, + "execution_count": 80, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFgCAYAAABNIYvfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4HNXVwOHf2SrtqsvCDdwwxhgb\nDBjTCR0SeichoeNAIHwhhHQIJBAIJYQQIPSSECD0FnoP1QZXMCUYG3erd2nb+f6Yka2yklfSriRL\n530eHuQpd+4sRmfvnTvniKpijDHGmE2bp787YIwxxpjes4BujDHGDAIW0I0xxphBwAK6McYYMwhY\nQDfGGGMGAQvoxhhjzCBgAd0YY4wZBCygG2OMMYOABXRjjDFmEPD1dwdSccghh+gLL7zQ390wxgxt\n0t8dMKYrm8QIvaysrL+7YIwxxgxom0RAN8YYY0zXLKAbY4wxg0BGA7qIXCgin4jIIhF5UESyRORe\nEflaROa5/0zPZB+MMcaYoSBji+JEZDRwATBFVRtF5N/ASe7ui1X10Uxd2xhjjBlqMj3l7gOyRcQH\nhIBVGb6eMcYYMyRlLKCr6krgOuAbYDVQraovubuvFJEFInKDiASTnS8is0RkjojMKS0tzVQ3jTHG\nmEEhYwFdRAqBI4HxwCggLCLfB34FTAZ2BoqAXyQ7X1VvV9UZqjqjpKQkU900xhhjBoVMTrkfAHyt\nqqWqGgUeB3ZX1dXqaAbuAWZmsA/GGGPMkJDJgP4NsKuIhEREgP2BxSIyEsDddhSwKIN9MMYYY4aE\njK1yV9UPRORR4GMgBswFbgeeF5ESnDSK84BzMtUH03uaSFBfXUWkoYFAKEROYVF/d8kYY0wSoqr9\n3YeNmjFjhs6ZM6e/uzEkVa9bywO/vpDG2hpyh5XwvT9cR05RcX93y5j+YLnczYBmmeJMl7788D0a\na2sAqC0rZfX/vujnHg1diXic+soKYpHm/u6KMWYAsoBuulS8+RZt/lwwfEQ/9cQ0VFfxr0t+RtXa\nNf3dFWPMALRJlE81/WfExEkc9MMLWDJ3NlP22pfcYfYKYX8Rj4eRW00mkJXd310xxgxA9gzdbJSq\nEo9G8AWS5gDqF7FolJWLF9FQU82EnWYSzA71d5f6RCwSwRcI9Hc3hip7hm4GNBuhm40SkQEVzAHi\n0SgLXnmB6tK1jJ22AwyRQasFc2NMZyygm01SMBRi/zPPRVXxx2LEysrwDRvW390yxph+Y4vihrhE\nczOJaLS/u9EjofwCgvEEy888i1W//BXxmpr+7pIxxvQbG6EPYbHyctZdfz3+zTen8LvfxVdY2N9d\n6jbJymLYuefgyc1FggPrscBg0FhbQ6SxkWA4TFY4p7+7Y4zpgo3Qh7DGRZ9Q/fgTlP31JhJ1df3d\nnR7xhsPkHXwwObvvjscCeto1VFdz54/PJNLY2N9dMcZshI3Qh7CsyZPJ2m47/KNG4gkNjVXipntC\n+fmcddNdBLKHyKpDYzZh9traEBerqEC8Xrz5+elvOxKhfOVymurqGD5hS5uyNZs6e23NDGg25T7E\n+YqKwO8n0dx5OtFEQwOxqqput91cX8e/L/8Vj17xGyKNDb3ppjHGmI2wKfchLrpuHWuv/CP+0aMp\nPvusDgvjYpWVlN9xJ40LFjDyD38gOH5cym37gkH2P/NcakrX4Q9kofE48cpKvPn5iN+f3hsxxpgh\nzkboQ1z1U09T++KLVNx9N7HS0g7749XVVNx9N41z5lB6/fUkmppSbjsYCjNlr33Z5egTyM7LI1ZW\nxrJTTyNWXp7OWzDGGIMF9CEnHk9QuaaeilX1xKNxwrvvhgQC+DbbLOlra55wGN/IkQDkHHBAj0bW\nIu6jx0CA0Tf8mYH2KFJjMaJr1xIrK+vvrgx4zme1jlhFRX93xRjTjgX0ISbSGOPV+xbz4p2LaG6M\nE9xyS7Z8+SXGP/Yo3iSZ1vwlJYz798NMfO1VcvffD/F6u2w/Gk90uk/icZbP+iFr/3Q18fr6Xt9L\nusQqK1l6/PGU3vhXNB7v7+4MaPHKSr4+9ljqXn+jv7tijGnHVrkPMapKQ3UEVQjlB/B40jdaXlvT\nxNXPf8bxMzZnpzGFBP1tg3+8upqqJ58kOHEioZkz8QyQ5+iJhgYiS5fhLcjHP2pUf3dnQEs0NBBd\nswZvfj6+4uL+7k5fG1hTS8a0YwHdpEzjcSJLl6HNTQS23LJDIpd73vmay5/5lPHDwvz7h7tRktsx\n0YuqbpiCN2bTYn9xzYBmq9xNyhKNjay79lpiZaVscdvtHQL6IVNH8MHXFZwwYwtyA8mf5ogIGosR\nWbGCeHk5wUmT8Obm9kX3jTFmULMRulmvuaGBWKSZYCiMLxAgXl+PeL14srLWHxMrK3MqnJWUJG2j\nMRLD21BP2XXXMuzcHxEY3XEKO1ZezvKzZ9H06adMfPMN/MOHZ+yejEkjG6GbAc0WxZn1qtet4c4f\nn0VjbQ3x2lrKbv07ta+/3uYY37BhnQZzgOyAD2mop/qpp4muWJH0GG9eHiOvvorNb/s7Hkspaowx\naWFT7ma9UH4BM488Dq/PByL4NyvBV1DQ7Xa8RUVMfPWVNiP71sTvJ2vSJLImTeptl9MuEY0OmMV6\nxhjTHTblnkFVDRGaogkKQ/4OK74HquaGeqLNzQSys/H7/CCy0VfVBotYWRnrrruOkgsvtMcAJhmb\ncjcDmk25Z9DH31Sx9zWvU9kQSUt7sYoKKv/9b6Jr167fpokE0XXrkmZ5667Gmmqe/9v13H7uaXyz\ncB7i87UJ5onmZmLl5SQaNp6XPVZaSuXDD9O4YCHxTaQ0q8bjNMyendL9GWPMQGMBPYO2HZXHlUdP\nxe9Lz8ecqKtnzaW/o+7V19Zvi5WXs/TEk1j1q18Tr6npVfvxeJyl8z9GNcGXH75HvFWSlURTE/Xv\nvsuyH5xC5YMPtblWdO061l1//fpMa/GqKlZedBFrfncZS088kVjpppGBzVdczNiHHrJ30Y0xmyQL\n6Bk0PC+L42dsQXG44/vYPeEtyGfLl14k95CD12/zZGWx2U8vpHjW2Ui7Z9ax8nLK77sv5ZSmwVCY\nY371e7Y/8NvsedIpeFuPzmtrWfOHK4gsWcK6a68l0di4fl/zl19QfsedRNetA5z0oLEyN1+7KsRj\nNM6fT3TVqp7eep8Qnw9/SUmH1/GMMWZTYAF9E+LNyyMwZoxT8rRlW24u+YcfTnjmTDyBQJvjNRaj\n/Na/E6+tTal9fzDImKnbsf+ZPyK3uG0aWMnOJu+ggwAI7bprm5zuWVOnsuWrrxAYPdrpU1ERm9/4\nF8J77sGw887Dk5PD8h+eQ9kdd6KJzlPDGmOM6TlbFDeIJaJR4lVVeMNhJBgk0diINyenx+3FKqvQ\nxkYkGNho2k9VJVFfjwQCiAixigrE68M3bMilCzWDhy2KMwOajdAHsIr6CJX1PV9Q5/H7nSnkUIjI\nsm9YdfHPe1VRzFdYgH/UyJRyeIsI3pwcPIEA4vfjHz7cgrkZEOqrm2moSc9CVWMGEgvoA1R5XTPn\n/+tjfvPkIip6EdRbiM+LJy8XLI+6GcKaGqK8cu+nvPng50SaYv3dHWPSyhLLpEFTfZREXMnO9aet\n8IgCq6ubaIzEScdjEf8WWzDy8ss7TfZizFDgD3rZ+8RJeDyCPzA08iuYocMCehp8/v5q5r2ynON/\ntTOhvMDGT0jBsJwgj/xwNxAozun9qmsR6bAK3pihxuv1UDgi3N/dMCYjMhrQReRC4CycAedC4HRg\nJPAQUAx8BPxAVTfJB1oV9RFWVjUyfMcStgc8aX6AMSxJ+VFjjDEmmYw9QxeR0cAFwAxVnQp4gZOA\nPwE3qOpEoBI4M1N9yLS3vijl8Jv+yy+fXMj43UeSlZOe0bkxxhjTXZleFOcDskXEB4SA1cB+wKPu\n/vuAozLch4zZarMc8rJ97LJFDoG4pQsdrBIJpaGmmXjM3qE3xgxcGQvoqroSuA74BieQV+NMsVep\nasvy0hXA6Ez1IdMmbpbDKz/ehZPH15LttV/2g1VjTYSnbphHXWVTf3fFGGM6lckp90LgSGA8MAoI\nA4d04/xZIjJHROaUpqHwSCYE/V42Kyogb8JMyC7M6LUSTU3Eq6st01o/EIHi0Tl405ST3xhjMiGT\nv6EOAL5W1VJVjQKPA3sABe4UPMDmwMpkJ6vq7ao6Q1VnlJSUZLCbaZDhd7tjlZWU3XwLy887n6bP\nPkNbFU0xmRfKD7LfqZPJKbS3BIwxA1cmA/o3wK4iEhLn5ez9gU+B14Hj3GNOBZ7KYB8GhejKlZTf\ncQeNc+aw8icXEquo7O8uDTm+TaSevTFm6MrYa2uq+oGIPAp8DMSAucDtwHPAQyJyhbvtrkz1YaBL\nJJTqpij5WX48no6j/HU1TSBQkF/gvBOXSOAfORLxdT+4JBoaiNfX48nKwpubm47u96lEQimrb+ab\n8gZiCWXCsDCFYT9+rwVaY4wBK87Sr1ZUNnDhw/O4/oTpjCkKtdlXWR/hh//8iJDfyy3HbYNn9Wqa\nv/iC8G674hs2rJMWO9f89dcsOfwIxv3zn2RP3z5dt9BnlpTWceJt71Na1wxATtDHA2ftwtTR+XiT\nfBkyJgPsL5oZ0CxTXD9qaI6zeHUtDc0dc0rnZvm45rjt8IiQlZONZ+tJZG09qcfX8oTDFBx3HL5R\nI3vT5X5RURfhJw/PWx/MAeqaY5zzz494+vw9KMm1Z9vGGGMBvR9tUZTNaxd9i5ysjv8ZfF4P44rT\nl6LSv9lm1J1zIV9WNbNTfoxwcNP5T98ci7NgRXWH7aurm2iI2AJBY4wBq7bWr7IDPjbLyyIUyHxw\njSUSPDRnBX964TMao5tWEPR4hFCSQhoegYDX/gobYwxYQB8yfB4PP9p3S+49fSbD0lDspS/lZ/s5\nc8/xHbYfsf2oTWqmwRhjMmlI/zasrI/w4qdr2G1CMWN7Mb1d0xilpilKwOuhJDeYthKq6VYc3rQC\neYssv5cz9hhPSU6Qe95dSjSe4IQZW3DyLmPIy/b3d/eMMWZAGNIBPRpPcMWzi7nooEmcvkfHEWCq\n5i2v4pS7P2R4XpBnzt+TzfJskVa6FYYDnLzrWL4zbSSKUhAK4LfpdmOMWW9IB/TCcIBXL/pWrwPD\n6upGAKoaoiQG/luAmyyvR6ykrDHGdGJIB3S/18PwFEfT62qaiCWUonCArHZZww6cMoJhOUHGFoco\nDNkUsDHGmL5nc5YpqKyP8KMHPmafa9+guiHaYX9ROMD+2wxn4ma5BNsF+4aaaj575y1W/+9zmhvS\nX2I1smIFlQ89RKysLO1tG2OM2XQM6RF6qrIDXmbtPYGFK6vxd6PiViIeZ/bTjzHnmccBOOMvtxMM\nhTZyVupilZWsuvhiGufOI7pqNZv99MK0td1aY20EgOzcQEbaN8YY03sW0FOQ5fdy4JTh7L/NZng9\nHhpqIsQjMXxNNVC2luC2U4jGBI9X8Ld5X1qJNm2ooR2PdcwI1xue7GzyDj+c6Oo15Oy/X1rbbtHc\nGOPNBz8HhX1/MJmgPVIwxpgByQJ6ikQErwixSJy3H/6CJXNL+cHvZxDavICmxgSv3f8Zw7bIZfr+\nm5OV44xkPV4fux//PQpGjKRw1GhyiorS2idPVhb5Rx5J7oEH4s3PT2vbLbxeYZs9RoFi9cCNMWYA\ns4DeTV6/h50PG8+E7YvxffEknvm3wlGPsGxROcsWlTN171Ftjg/lFzDjsKO7fR1NJBDPxgOoNxzG\nG05fitj2fAEvY7ctzlj7APF4gub6GIEsL74kGeGMMcZsnA25uklEKBoZZqupWQSXvwiTD8cfzmbr\nXUaw5wlb4Qt4qa+uomLlCpZ/spCVn31KTek6mupqu2x3XU0Tq6qc198iy5ez9qqriJWXd7t/0VWr\nKP3bzcQqKnp0f/2hYlU9T/1lLssXVxCPJ/q7O8YYs0myEXpPhQqRI28G8eEPhtnn5HxikSaWfPxf\nPnj8YSpWrWhz+Jhp27PnSadSNGo0wVDbEXVFfTOfr63lyucWc/8ZM8kpLaXurbcpPvvsbncrVl5O\n3euvUXjSib26vb709bxSKlbVs/jd1Ww+uRCvJYwxxphus3roadJQU82Lt97Iko8/XL/N4/Vy8A/O\nIq9oGC88cBfVa9ew3xnnMmWvfdoE9eZonFXVjdz136/5yQGTKJQY2tiIt7i422lkE42NJBoa8BVn\ndpo8nRpqIixfXM7oSYXkFA7uLHuNdbXEI1GycnPw+e2tgU3MwMzpbIzLhkJp0NxQz38fur9NMAcY\nv8MMir5ZRfT6v7DXYccA8Nrdt7Lqi8/aHBf0exk/LIfLDt+WYTlBvOEwvmHDepQT3pOdvUkFc4BQ\nXoCtdxk56IM5QNXqVdx5wZk01Xb9CMYYY7rLAnoaNDc0sOi1lztsL1+xnOCee5D3o3NY/tWX67e/\ncf+d1FdXdTjel4Gp5lh5OVWPPd5nz9QjzTG+mL2GNUs61i83kD98BCdcehW+gI3OjTHpZQG9lxLx\nGJ+8+QqqHRdzVa1ZxcN//RMvvfY85evWUDhyNAAVK5dTXV5OZX0k4/2LlZez+je/IVFXl/FrASRi\nytIFZaxZUo1aYvsOQnn5jJo0mayc3P7uijFmkLFFcb3U3NDA13M/6nR/0ZjxTD1pFm99VcWUEWF0\nyTzmPHgXn8+di26bw36Th2e0f77hI5j4xut4MvhqW2tZYT97nzgJ8QjiGRyPHBtqIkSaYmTnBghm\n2/8yxpiByX479ZKqEos0J93n8XrZ8fvncORdC6iPxAG46ZhpjJ68LYnmJkpyMl85zJefB/l5Gb9O\nay2JdQaLBa8t56MXlnHKH3e3gG6MGbDst1MnGmojRBpjhHIDBLr4Je71+QjlJc/Slp2XzzflDeuD\nOcAbX9dx4MjRlIzYjC1LctLeb5N+U781mlFbFeAPWtIbY8zAZc/QO7Hw9RU8cOn7NDduyL9eUd/M\n0/NWUVa7YUQeDIWZfvBhSdtorKlmbHGYnOCGLwQHTymhatVKxm23A+GgfZ/aFOQUZjFm22KywpbH\n3hgzcFlE6cS2e41i+Pi8NsVWonHl8mc+4cFZuzIsd8N0+YiJkwiGwzTX17dpIxGPU/HJRzw5ay/e\n+ryMycNzGRkUlk2alNaqa8YY0x0icgQwRVWv7u++mPSxxDLdEIsnqGiIEA742oyu49EoSxfM5clr\nfu9sEAH3c93p0OOIM5PqtY3UV0eYuvcwttq5iJzCTetdcWPMwEwsI07CCtFkr9qYIcUCepo0NzSw\n4rNPyAsEyc4Os2LNal6+46/4s7I46uKrWPB6Jdm5XqYfOIZwQRYez6b1PLa8rplQ0Eu23yZ1zJA1\nYAK6iIwDXgQ+AHYCrgHOAYLAV8DpqlonIt8B/gzUA+8AE1T1MBE5DZihque7bd0NDANK3XO/EZF7\ngRpgBjAC+LmqPtpHt2h6wJ6hp0kwFGLstOkknn+J5UccScHIsex+9oU01dbwziO3s/3+Ocz4zhbk\nFoU3uWBeWtvMaffM5ou1ffMuuzEmJVsBtwDfAs4EDlDVHYE5wE9FJAu4Dfi2qu4ElHTSzk3Afaq6\nHfAA8NdW+0YCewKHATY9P8DZcKsTsapqGt57l+zp0/GPHLnR46sbI3xT3kjuqT9k2EHf5r8r6th9\nu+0462934/F6O10J31OaSNBQVUnZim8oGTch7e235vUIx+w4uk9eszPGpGyZqr4vIocBU4B33HTR\nAeA9YDKwRFW/do9/EJiVpJ3dgGPcn/+BM9pv8aQ7lf+piGQ2aYbpNQvonYgiVL//IZpIkH/ooV0e\n29Aco7wuwuF/+y9Zfg8v/WRvdhvnYXh+NpCZhC6xmhre+fc/Wfj6y8w8+gT2OumUjFwHoCgc4PQ9\nxmesfWNMj7SswhXgZVX9buudIjI9DddonWRjwDxyMMnZlHsSNU1R7pm7jtlHnEFgr29t9PjqpigV\n9RGmjs5jr61K+OibKl7+dC2JDKY+FfEwYdoO5BaXMH77HTN2HWPMgPc+sIeITAQQkbCITAI+Bya4\nz8gBOqup/C5wkvvzycDbmeuqySQboScRiyeYv6KKyqIQ35628en25RUN/OyRBZy/30TqmmL87qlF\n7Di2kGN23LxX75rHysoA8A0b1mGfLz+PMdN35OQpUwmGLUGNMUOVqpa6i9weFJGW52K/VdUvRORH\nwAsiUg/M7qSJHwP3iMjFuIviMt5pkxG2yr2d+qpmPnpxGRP3GUV22E9hCs+NV1U1suefXqP1gPzS\nw6Zw6u7j8LbKZ97cEKO6tIFwQZBwftftxsrLWT5rFvGaWsY9+K+kQd0Y06c2uSlnEclxV7sLcDPw\npare0N/9MplhU+7tfDV3HQtfX8HrtywimEjt/9/8bD83n7wjReEAXo9w9A6jOHL6qDbBHCAWifPY\nnz5i0ZsriVVvpLyox4Nv+Ah8JSXOe+3dFK+tJVZWhibs1VRjhrCzRWQe8AmQj7Pq3QxSGRuhi8jW\nwMOtNk0ALgUKgLNxpnYAfq2q/+mqrb4coddVNvHfR75km91Hkjc2lzw3SG9MtDlCc00djVlhsvwe\ncrM6pgmNNsdorI1CZSnlv/05W9z8ty5H3rHKSlDFV1TU/ft45x1W/fwXTHjyCedLgTGmtza5EboZ\nWjI2QlfVz1V1uqpOx0l80AA84e6+oWXfxoJ5X8spzGL/U6cQ3DzMMbe9R1ld8kpq7SVWLKf84oso\nbKpNGswB/EEfuQV+/JFaSn58PrKR9K++wsI2wTxWVUXtK68SLS3t4ixHcMIEhp13HvhsmYQxxgwF\nffXbfn/gK1VdJj2YPs60pvo66israKqvp3DkKEJ5+UizsPdWw1IanQOIP4Bv+HDYyPHi85G97bY9\n6qdGo6z61a8YfcOf8W9k1O0fOZKi7323y2OMMcYMHn2yKE5E7gY+VtW/ichlwGk4KQXnABepamWS\nc2bhJkEYM2bMTsuWLctY/7766MP1edinH3Qoe37vVILZIVQVEYF4DBrKIasA/MkXs6kqGongCXY/\n+UpdpI5Pyz9lTN4YRoRHdHqcxmLEKivxBAJ48zOXSMYYk9TAG40Y00rGF8WJSAA4AnjE3XQrsCUw\nHVgNXJ/sPFW9XVVnqOqMkgw/A/567obn898smk8s4kyzxxPKe1+V8dBHK6md9yQ0lHXahoj0KJgD\nNMWbuPTdS3lv1XtdHic+H/6SEgvmxhhjOuiLVe7fxhmdrwVQ1bWqGnfTCd4BzOyDPnRp+kGHEsjO\nBhF2OfoEgtlOdrdoXHlq3iruf+8bIhMOAF8gI9cvzirmn9/5J/tusW9G2jfGmJ4QkXf7uw8mdRmf\ncheRh4AXVfUe988jVXW1+/OFwC6qelJXbWR6lXs8HqexphpNJAiGwk5wd5XXNZNQKMm1PObGDHE9\nnnIf98vnvgf8ERgDfAP8eunVh/4rXR1LNxHxqWqsv/thuiejI3QRCQMHAo+32nyNiCwUkQXAvsCF\nmexDKrxeLzmFReQWD2sTzAGKc4KU5AbtfW5jTI+4wfwOYCzOl4KxwB3u9h4TkSdF5CMR+cRdc4SI\n1InIte62V0Rkpoi8ISJLROQI9xive8xsEVkgIj90t+8jIm+LyNPApy3ttbreL9zf3fNF5Gp329lu\nO/NF5DER6frVHZNRGV3lrqr1QHG7bT/I5DUzIVZVRdXDDxPeYw+yp07t7+60UROpIZ6IU5hV2N9d\nMcYk90egfaALudt7M0o/Q1UrRCQbmC0ij+FUg3pNVS8WkSeAK3AGVVOA+4CncUqtVqvqzm6q2HdE\n5CW3zR2Bqa0qtAEgIt8GjsSZUW0QkZb3aR9X1TvcY65w276pF/dkesEyxaUiHqf2tddp+vzzjF+q\nqiFCYzT1ma7nlzzP79/7PdXNG8k8Z4zpL2O6uT1VF4jIfJziLFvg1EePAC+4+xcCb6pq1P15nLv9\nIOAUN4PcBziDrq3cfR+2D+auA4B7VLUBQFUr3O1T3VH9QpzCLj17J9ekhWUdwXltbF7pPMbkjiXf\nN5z8UNvFb77iYra45RYkkDxhTLqU1zfzmycWcfIuY9hrq9RW9u88YmdG5Ywi4MnMgj1jTK99gzPN\nnmx7j4jIPjhBdjd3xPwGkAVEdcPCqARu+VNVTYhIy+97AX6sqi8mabOe7rkXOEpV57sFYvbp7r2Y\n9LEROhBJRLht/m28s+ID7nl3KRX1kQ7H+IqL8ObmZrQfXhF2HFPI8LyslM+ZUDCBvTbfi2x/9sYP\nNsb0h1/jZMpsrcHd3lP5QKUbzCcDu3bj3BeBc0XEDyAik9z1Tl15GTi95Rl5qyn3XGC129bJ3boD\nk3YW0IGirCKu/9YNjPDvzNLy+rRnj4hVVhJdu5ZEQ/v/p9sqCAWYtfcEJg3P7BcHY0zfcVeznw0s\nA9T999m9XOX+AuATkcXA1TjT7qm6E2fR28cisginYEuXs7Wq+gLO8/c57lT9z9xdl+BM278DfNat\nOzBpZ+VTW6lpjKIK+aH0Tq1XP/ccqy7+ORNffQX/yI3XVzfGDEiWKc4MaEPnGXoiAbWrYe4/ISsX\nph4LOcPbHJKXnZln5NnTp1M862wkYM+5jTHGZMbQGaHXroFbd3dysgOMmAbffwJyBmdp0Wg8QSSW\nIBwcOt/ZjMkwG6GbAW3QPkNPxOOsW/oVa776gngsBlXfbAjmAGsWQrS7Czo3HZ+srObyZz5JusDP\nGGPM4DNoA3o8FmPeS8/z0XNPEYtGIHcEtC7dmlUIvo7pXJeU1nHfu0spT7EO+kAlIm7p14E/A2OM\nMab3BvWUe0ONk2wllJcPzbXw1evwyu9o2uZYyne8gGAgwLDcDa+INcfiXPTv+Ty7YDVvXbwPY4o3\n9ibHwBWLJ4jEE4QCNuVuTJrYlLsZ0AZ1QO8gEYeGctbFw+xxzZscOm0U1xy3HQHfhomKtTVNrKhs\nZMuSMAUhW8RmjFnPAroZ0IbW8M3jhZzNyGqMcv8Zu7B5YXabYA4wPC+rW4ldjDHGmIFgaAV0V162\nn922LN74ge001kaIxxJ4fB5CuTZ6N8ak6LL8DuVTuay6X8unuqleI6r6rvvne4FnVfXRDFzrTuDP\nqvpputs2GwzJgN4TjbURXr1mnCZXAAAgAElEQVRvMcsWlTNyYj6HzJpGKM+CujFmI5xgfgcbKq6N\nBe7gsnz6OajvA9QB72b6Qqp6VqavYQbxKvdUqCrx2to226LxBOtqm6hujLbZ3twYY9ki57W31f+r\npqFm014Fb4zpM12VT+0REQmLyHNuHfJFInKiiOwvInPdmuV3u6VREZGlIjLM/XmGWx99HHAOcKGI\nzBORvdym9xaRd9366cd1cf0cEXlVRD52r3dkZ/1yt78hIjPcn28VkTluzfbLe/oZmI6GdECPrVlD\n+TPPsHzRAmrLSwGorI9wzdML8FeUEV2zhkRTEwD+gJdgyIfHK2y5YwnhwtRG57GqKmKVlRm7B2PM\ngJeJ8qmHAKtUdXtVnYqT2/1e4ERVnYYz+3puZyer6lLg78ANqjpdVd92d40E9gQOw8kR35km4GhV\n3RHYF7heRKSTfrX3G1WdAWwHfEtEtkv1pk3XhkRAV1Wa15UTXVfadnsigXfcWF679zaWf7IQgIDP\nw+Xf2pxvvn0I/zvwIOJuMM7O9XPSpTP57qVTKdrsc96492aWLZxHY21Np9eN19Sw7trrWH3JJcQq\nqzJ3g8aYgayzMqk9Lp+KU9/8QBH5kzu6Hgd8rapfuPvvA/buQbtPqmrCfdY9vIvjBPijiCwAXgFG\nu8e36ZeqVic59wQR+RiYi1M/fUoP+mmSGBLP0Jtrm6i87z7qX/gP4x5+CN+wYQD4R4wgPzeX47a9\nAo/X+SgKQgGi1YImEqDq/AN4vB7QBh75/S8oGDGSsuXL+PSt19j1mJPY+ajjCASTrIz3ePCPGIEn\nJ4x47I0XY4aoX9P2GTr0snyqqn4hIjsC3wGuAF7r4vAYGwZvG3uFp/WzxK5+aZ0MlAA7qWpURJYC\nWe37JSKvqurv1zcoMh6nUtvOqlrpLsSz14rSZEgEdDwesqfvAM2N4PWu3yxeL768vA4fgrewkIkv\nvQiqeAsL129fOv9jpp9wGp9qCQeNzeXZ3/0fs595jO0O/HbSgO7NyaHojNOddnJyetT1eH09iZoa\nJBDAV9z9lfnGmH52WfW/uCwf0rjKXURGARWq+k8RqQLOB8aJyERV/R/wA+BN9/ClwE7A88CxrZqp\nBfJ62IV8YJ0bzPfFWeiXrF/tF8PlAfVAtYgMB74NvNHDPph2hkRAz8oJ4t9nT/L23h1PsGO61/Y8\nWVl4Ro3qsL2uopz8bXbkvudWMnVkDsHsEPVVlcRjcdZWN1EQ8hP0e9uc4w33Lttcoqqa/x1wAPnH\nHsuIS36bUv+NMQOME7zTuaJ9GnCtiCSAKM7z8nzgERHxAbNxnpEDXA7cJSJ/oG3wfAZ41F3Q9uNu\nXv8B4BkRWQjMYUMt9GT9Wk9V54vIXPf45Th11E2aDImADuD197406qRd9uDZv17DdUf/gFVvPE19\nVSUjJk6iUT3sc+3rvPXzfRneLqD3lgQD5OzzLfIOPADxDZn/XMaYLqjqi8CLSXbtkOTYt4FJSbZ/\ngbMwrcXb7fZ3Oq2oqmXAbkl2LU3WL1Xdp9XPp3XWrumdoZX6tZeaGxpYtnAur91zG/WVFYyZtj37\nn3cxzRKkKRanKBwkPwM11eN1dUgwiCcNX0qMMT1mC2HMgDb4h3xNNfDNu1C3Dt36UBJxP968nj02\nCoZCTJyxK6O3noJqAp8/SGXMy57XvM4L/7dXRoI50OPn78YY0xsiMg34R7vNzaq6S3/0x3Rt8Af0\naAM8eJKzWv283Vn5q6sZddVV+EpKetScx+slXLBhoVxWfYRHz9mNohzLGmeMGVxUdSEwvb/7YVIz\n+AO6LwsO/QvUriIhQWKlZaTzMUNhOEBhOPPBPFZZCYmErXQ3xhiT1KAN6E31ddSWlZKVm0vuTqeC\nKhKPM+buu/AWFfV391KmiQTNX33FmksuJdHYyPDf/Jrs7bbDk2WvbhpjjNlg0GaKa6qr5f6f/5gn\nrr6c+ppq8Hjw+P34iotxMhRuGuIVFaw451wa582j+fPPWT7rh8SrO89OZ4wxZmgatAHdH8xi/A4z\n2O6AQ/C77243RBuIJWL93LPu0YQSW7duw5+bmtBYtIszjDFmAxG5TER+lqG21xd+GYhEpEREPnCL\n1uyVZP+dIjJoUs8O2in3cEEhh15wMV6fD18gSEVTBdfPuZ5TppzC1kVb93f3UubJCVN0+umU3347\nAOF998UTal+4yRgzkE27b1qHeugLT13Yr/XQ+5uI+FQ10yOs/YGFycq3ioh3sJV1HbQjdIBgKIwv\n4IzOBSHkC+GVDYlfIk1NrF3yJXUV5eu3xSLN1JaXUbl6JQ01/T+17Q2FKDrjdCb85znGP/Uko668\nAl+rdLTGmIHNDeZ34KRHFfffd7jbe6ST8qkdyqS2OmV7EXlPRL4UkbO7aHekiLzlllRd1DKq3UjJ\n0x+3KqM62T1+pnu9uW451q3d7aeJyNMi8hrwahdlWMeJyGIRucO95ksikt1Fv88Wkdnu5/GYiIRE\nZDpwDXCkez/ZIlInIteLyHxgt3ZlXQ9x+zFfRF7t6j4GqkEd0FsrzCrkgh0vwCte1jU4U9jRpkae\nv/kGlsz7iFhFBZGVK2lcu5a7LjiLu3/yQ9564G6a6mo30nLqNJHo0Qp7X0EBwQkTyNp6a3yb0II+\nYwyQgXropFamtLXtgP1wsrtd6uZcT+Z7wIuqOh3YHpjnbu+q5GmZW0b1VpzCK+Ckdt1LVXcALqXt\nve4IHKeq36LzMqwAWwE3q+q2QBVt89C397iq7qyq2wOLgTNVdZ577YfdErGNQBj4wP3c/ttysoiU\n4HzpOtZt4/gU7mPAGTIBHaA53sz3n/8+Dy5+EHCm5Y+/5Eom7TiTsttu56v9D6D5w9mMnLQNAJ+8\n+SqxaHqeV8draqi4/37q33kXjcfT0qYxZpOQiXroqZQpbe0pVW10U7a+Dszs5LjZwOkichkwTVVb\nRjRdlTx93P33RzhlXGFDXvlFwA3uOS1eVtUK9+fOyrCCUw625QtF67aTmSoib7u55U9ud73W4sBj\nSbbvCrylql8DtOpfV/cx4AzaZ+jJ5AfyeeLIJ9pMu4vHw9J5H5Hvfin0ZWWhmgBgiynT8KYpf7rG\nYtS+9DLxikpCM3dGvOnN+W6MGbC+wa1GlmR7jyQrU0rXZVLbTw0mnSpU1bdEZG/gUOBeEfkzTo73\nrkqetpRcjbMhpvwBeF1VjxaRcbQtClPf6uekZVjbtdvSdqdT7sC9wFFu8ZfTgH06Oa5JVbszourq\nPgacjAV091nDw602TcCZsrjf3T4OJ5H/Capamal+tOb3+tkstFmbbc319bxw21/5zhk/YswJx+Ev\nKODA7adRV1lOyZgJZOf2tLpgW76iIja/6a/g9eIJWFY5Y4aQtNdD76RM6VKSl0kF5znyVThTzvsA\nv+yk3bHAClW9Q0SCONPj8+l+ydN8YKX782kbOa5DGdYeyAVWi4gf50vCyo0c3977wC0iMl5VvxaR\nIneUnup9DAgZm3JX1c/d5xbTcf6SNQBP4PxFelVVtwJepZO/WH0lEAoxctI2vPnEw0RC2QSKiine\nfAxjp+1AKD8/rdfyFRfjKyhIa5vGmIHNXc1+NrAMZ2S8DDi7l6vcpwEfisg84HfAFThlUm8UkTk4\nI9rWFuBMtb8P/EFVV3XS7j5AS4nTE4EbVXU+zlT7ZzglYFMpeXoNcJXbTlcDxweAGe5U+SlsKMPa\nXZcAH7h963YbqloKzAIedxfMtQxGU72PAaFPqq2JyEHA71R1DxH5HNhHVVeLyEjgDVXtcuVgpqut\nNdTUoIk4obx8xDOklhUYY1K36WSkMkNSX33jOAl40P15uKqudn9ew4YFEG2IyCycb0yMGdObtSOg\nqjRUR4hFE4TyA/gDbZ9fh/LyoKkWGspBBAJh8Hf1uMYYY4wZWDI+QheRALAK2FZV14pIlaoWtNpf\nqapdvljd2xF6Q22EZ/46j4qV9fzgj7uRU+CuuVCF+nVQ/hW8cyNULQOPDzbfGXb9EYSKIGTFUIwx\nwCAaoW+qZVFF5GZgj3abb1TVe/qjPwNNX4zQvw18rKpr3T+vFZGRrabc13Vxblr4g152PnQ85Svr\n8PrcKfV41AnkDxwL1SvanrBmIcy5GybsA8fcDjlJJxGMMWaTtKmWRVXV8/q7DwNZSgHdfen+bJyV\n6evPUdUzUjj9u2yYbgd4GjgVuNr991Mp9rXH/AEvE6aXMH67YYjH/ZJd8TXcuT9E6jo/cckb8I9j\n4AdPQk7P6qcbY4wxfSHVEfpTOO8ivkLH1ZOdEpEwcCDww1abrwb+LSJn4qz2PCHV9npLPEJteRnN\n9bXkLn2BYFfBvMXaRfDxfbDHT8A74Bc5GmOMGaJSjVAhVf1FdxtX1XqguN22cpyE+X2usa6W/9x0\nHSs++4RZV/6eYKonfnAr7PADyLWpd2OMMQNTqgH9WRH5jqr+J6O9ybBAdjb7nHIW675ajG/d/NRP\nrC+DmlUW0I0xxgxYqb50/X84Qb1RRGpEpFZE+r8UWTd5vT6GjxnLtMBisl/6SfdOri/NTKeMMcZ0\nICIFIvKjHp6btjrtIvJ7ETkgHW1lWkojdFXNzXRH+ozHS8yXRd2Bvyfnq9fxffVaaufZe+nGmB5a\nPHmbDvXQt/lscb/UQ5e+qUOeDgXAj4Bb2u/oy3tQ1Uv74jrpkHJaNBEpdGvD7t3yTyY7lilxlPnj\nZ3J+1Ycs3Ot84uP22vhJHi8UT+iwOZFIZKCHxpjBxA3mHeqhu9t7TES+LyIfurW+bxMRr4jUtdp/\nnFtIBRG5V0T+LiIfANeISJGIPCkiC0Tk/ZZyqCJymYj8Q5LUTheRi92a4wukY0309n07xT1uvoj8\nw91W4tYqn+3+s0era97t1iZfIiIXuM1cDWzp3t+1IrKPW1HtaeBT99wnReQjcWqmz+rGZ9fhPPfz\nu1ecOvALReTCVp/dce7Pl7p9XyQit4vIgMpNkOpra2fhTLtvjlMfd1fgPZz6upuUxlgjt31yN/NL\n53P7/x7lujG7EF76dtcnbX0YBNpOUlSsWsHCV19k5yOPI5SX3pzvxphBpat66D0apYvINji51vdw\nC5vcglOUpCubA7uralxEbgLmqupRIrIfTtGslvfSt8P5HR8G5orIc8BUnPrkM3G+lDwtInur6ltJ\n+rYt8Fv3WmUiUuTuuhG4QVX/KyJjgBeBbdx9k3HqoecCn4vIrTh1Pqa69UAQkX1wisVMbSlzCpyh\nqhUikg3MFpHH3IXXG9PhPJzXske79eURkWSFN/6mqr939/8DOAx4JoXr9YnuPEPfGVimqvsCO+AU\nnN/khP1hfrbTRRw49kAu2uZUQv/byJS7Lwv2vwSy2lZdq6usYPmnC1EbpRtjupaJeuj74xS9mu0W\naNkfp6JlVx5pVTp0T9xMcar6GlAsIi2/5JLVTj/I/Wcu8DFOAN6qk+vs516rzG2/pbb4AcDf3P4+\nDeSJSI677zlVbXbPWUcnKcGBD1sFc4AL3GIq7wNbdNGn9pKdtwSYICI3icghQLJ1YvuKyAduMZn9\nGGD10VNd5d6kqk0igogEVfUzccqjDniN0UYAst1n4CLCpKKtuXrX3xH45HFY9XHnJ/uz4ftPQEHH\nin4jtpzEMb+8jFC+VU8zxnQp7fXQcUbJ96nqr9psFLmo1R/b10SvJzXJaqcLcJWq3tatXrblAXZV\n1abWG91Z6/a1zzuLTevvwR2xHwDspqoNIvIGHe+5g87Oc2u9bw8cDJyDkyPljFbnZeE8z5+hqstF\n5LJUrteXUh2hr3CnH54EXhaRp3CSwgxoNc013LHwDu5adBc1kbZftgJZ+TDlaJj1Bmz9HZBWH0Uw\nF3b7MZz3IYzeCXwd65cHsrIsmBtjUvFrnPLRrfWqHjpO6enjRGQzAPeZ+Fic1NrbiIgHOLqL89/G\nnaJ3A1yZqrb8kjxSRLJEpBinnOpsnOnxM1pG1CIyuuXaSbwGHO+eT6sp95eAH7ccJCIbSz1bizMF\n35l8oNINypNxHhOkIul54qyK96jqYziPDHZsd15L8C5zP4fjUrxen0l1lXvLX4zLROR1nA/khYz1\nKk3iGmf2mtl4xMPJ27R7vNRUDZF6CObBoX+Gw/8CzXUoQtyXRbMvn3A43D8dN8YMGtt8tvhfiydv\nA2lc5a6qn4rIb4GX3OAdBc7Dee78LFAKzAFyOmniMuBuEVmA8+Xi1Fb7WmqnD2ND7fRV7nP799wR\ndR3wfZLU4lDVT0TkSuBNEYnjTNOfBlwA3Oxe0we8hTMS7uwey0XkHRFZBDwPPNfukBeAc0RkMfA5\nzvR5Kjo7bzRwj/t5ArSZ/VDVKhG5A1iEUyl0dorX6zMpV1sTkR1xnrso8I6qdjFXnV49rbZW21xL\nY7wRr3gpzm6VsK6pGt6/Fd682qm4NmwSnPoM5I6gtLaJfa97k+tP2I6Dtx3Z4z7XVzWzZH4p46YN\nI7doQM3KGGN6ZkCtaM4Edxq5TlWv6+++mO5LacpdRC4F7sNJ4zoM51vMbzPZsd6qjdRy36f3sbBs\nIYXBdtVZm2s3BHOAsi9IzL6L5vpasvxeHv7hruw0tqhjoymKxxK8+/j/eOvBL3jzX58TadwUXvk0\nxhizKUt1UdzJwPYtixlE5Gqc19euyFTHessvfg4ZdwiLKxZTF60jL9hqlXq0cUMwd0nF19SVl1I8\nZgLbjurda2gerzBxxnCWL65g4ozN8PlTft3fGGP6japeluqx7jPyV5Ps2j/FV8cyaqD3LxNSDeir\ncBYEtKxODAIrM9KjNMnyZ/FpxafcufBOdh+1e7ud+VA0ASqWrN+kM2cRKkxPiVQRYfOtCzjxtzPx\nZ3nx+CygG2MGFzcoDtia6gO9f5mQ0jN0EXkS5z30l3GeoR8IfAisAFDVCzo/u/d6+gy9urmaaCLK\nsOwkKX1rVsOHt0PVMtj1R1CytbO63Rhjkhv0z9DNpi3VEfoT7j8t3kh/V9IvP7hh6rwuUkdjrJGA\nN+BszxsJ+/0G4nHwp1xI1RhjjBmQUn1t7b6Wn0WkENhCVRdkrFdpFolHeGnZS1z+3uWcPPlkzp1+\nLrmBXPD4nH/6QGlDKYpSkl3SkkjBGGOMSZtUV7m/ISJ5boKAj4E7ROTPme1a+jTXxZka2p7JhZN5\n+ZuXaYo1bfykNGqINnDlB1fy67d/3SHBjTHGGJMOqa7WynezCB0D3K+qu+CkzhvwGmsjPH/zIt65\ncTXXz7yRa/e8jpB2lmshM0L+EL/d5bdctddVbR4DGGNMpojIESLyy0721XWyvXVlsTdEZEYm+9gZ\nEZkuIt/pg+v8utXP49wkNr1ts8TN9z5XRDqU8xSRO0VkSm+vk0yq880+ERmJk9v2N5noSKaoKk11\nUSKNMfL9Bbz79+VMmIVTR6gPVDdX4/f4GRZKsjDPGDMk3HzOax3qoZ/39/0yWg9dVZ/GKYKyKZoO\nzAD+k4nG3bKngpN+949pbn5/YKGqnpXkut5k29Ml1RH673Fy+X6lqrNFZALwZaY6lU6hvCBHXTyd\nY383nVigme+cO41gqG+em1c2VfKH9//A68tf75PrGWMGHjeYd6iH7m7vEXc0+Zk7ov5CRB4QkQPc\nVKlfishMETlNRP7mHj9enBrnC0XkilbtiIj8TUQ+F5FXgKT52UXkIPf8j0XkkVZV0pIdu5OIvClO\nvfEX3cEgInK2OLXE54tTFz3kbj9enPri80XkLREJ4MScE8WphX5iJ9fprI46IvJTt81FIvKTVp/Z\n5yJyP0761ruAbPcaD7inekXkDnHqpL8kTnnVzu6zw/24+emvwcmHP09EskWkTkSuF6e6226tZz5E\n5BD3M50vIq+622a6n/VcEXlXulEILaWArqqPqOp2qnqu++clqnpsqhfpbw8vf4B9n9uLpQ1LyCnM\nIpDtIxKPZPy6XvGydeHWjAqPyvi1jDEDVlf10HtjInA9TinTycD3cNJz/4yOhV9uBG5V1WnA6lbb\njwa2BqYApwDtknasL1ryW+AAVd0RJ0f8T5N1SET8wE3Acaq6E3A3cKW7+3FV3VlVtwcWA2e62y8F\nDna3H6GqEXfbw6o6XVUf7uIzmIxTHW0m8DsR8YvITsDpwC44hVfOFpEd3OO3Am5R1W1V9XSg0b3G\nya3236yq2+KUCO8qznW4H1Wd167vjTjzwR+o6vaq+t9Wn1UJzhe9Y902jnd3fQbspao7uG2l/Pck\npaGqiEwCbgWGq+pUEdkO54MfsJniwJlub4g1cNTEoxiTN4ZxeeOIJ+IsKFvAvxb/i4t3vpjNQp0V\nDOq9vGAep089Ha94M3YNY8yAl4l66ABfq+pCABH5BHhVVVWcWt3j2h27BxuC0z+AP7k/7w086NZJ\nXyUiryW5zq44Af8d9w2dAPBeJ33aGpiKU5UTwMuGLxBT3dmBApyiMS+6298B7hWRfwOPp3DfrT2n\nqs1As4i01FHfE3hCVesBRORxYC+cxw/LVLWrIi5fu0EZ4CM6fo6tdXY/7cWBx5Js3xV4q6W+e6u6\n8fnAfSKyFU7eF38XfWgj1Sn3O3Aqz0TdCy8ATkr1Iv0hEo+wsGwhP3vzZzz2xWPsNnI3CrMKaYg1\ncMu8W3hh6QvMXpP5Yjk+j89eUzNmaOus7nlv6qFD2xriiVZ/TpB8sJZaJa6OBHjZHXFOV9Upqnpm\nF8d+0urYaap6kLvvXuB8d5bgctxypKp6Ds4MwBbAR+KWXU1RqnXUW2ysJnx32ruXJPeTRJP7hSlV\nfwBeV9WpwOFdtNtBqgE9pKoftts2oCuOVDVXceaLZ/Lflf/l5vk38+aKNwHI8edwya6X8Iudf8Fu\nI3ejtLGUsoYyooloP/fYGDNIZaIeene9w4ZBWOta0m/hPKv2us+6901y7vvAHiIyEUBEwu6sbTKf\nAyUispt7rF9EtnX35QKr3Wn59X0QkS1V9QNVvRSn7OsWbLwWelfeBo5yn2mHcR4rvN3JsVG3Pz2R\n9H664X1gbxEZD23qxuezIbX6ad1pMNWAXiYiW+J+wxPntYbVXZ/SvxKaoDm+4ctWy/vfIsKYvDEc\nvuXhPPv1sxzxxBEc9fRRPLfkOWojtf3VXWPMIOWuZj8bWIbzO3QZcHamV7m383/Aee50/OhW25/A\nWeD8KXA/SabSVbUUJ7A8KE4t8/dwnl134D7/Pg74k7sIbB4bnstfAnyA8+Xis1anXesu1lsEvAvM\nx6nHPqWrRXGdcUt734uTnvwD4E5VndvJ4bcDC1otiuuOzu4n1X6WArOAx93PqmWtwDXAVSIyl9Tf\nRANSz+U+AefGdwcqga+Bk1V1WXcu1lM9yeVeH63n5WUvc9Pcm5hYMJE/7vnHNjXRP6v4jOOfOb7N\nOc8e/Sxj88ampc+pqo3UUhupJeQLUZBV0KfXNsZ0iz07MwNal9FfRP5PVW8ERqrqAe70hUdVB/xQ\nNuwPc/C4g9lz1J74vD4Kgm2D5aKyjvkDvqr6qs8Den20noMfO5iHDn3IAroxxpge29hw/nSc1x1u\nAnZsWTW4qcj2ZZPtS/4a4YzhMxAEddeJeMXL5KKks0gZFfKF+M8x/yHH37fZ64wxpjdE5AlgfLvN\nv1DVzlZ79/Q6p+M8MmjtHVU9L53X6eL6N+O8JdDajap6T19cvzu6nHIXkQdxsvWMAr5qvQtQVd0u\ns91z9LR8ant1FeVUrFrB8AkTifnh47Ufc9Pcm/B6vFy000VMKZ5CyN/2ddHmhnqizc1khXPwBQK9\n7oMxZpNlU+5mQOtyhK6q3xWRETjv1x3RN13KnNVffsZb/7qPky7/E+FQIXttvhfbDtsWQSjMKkx6\nTm1FOQ/88if84JbbmL3qY8bkjmGb4m36uOfGGGNM11JaFNffejtCr26uprypnGxvNuFEkLy8oo2f\n5GqormbNV1+Qt9U4fvnur9h15K6cMe0MPJLqCwLGmEHCRuhmQNvYlPu/VfUE91WH1gcO6Cn3yqZK\n5pXOY/uS7SnKKuLlpS/z0zd/StAb5Lmjn2N4eHiP+lHRWIHX47WKacYMTRbQzYC2sUVxLQsRDst0\nR9KpJlLDBa9dwBNHPEFRVhFr6tcA0BxvJpJom8NdVamL1hHyhfB6uk7RWpSd+sjeGGOM6Usbe4a+\n2v13j943F5EC4E6c3L4KnIGTSP9snIxAAL9W1bSWyCsMFvLSsS8R9js1Ug/d8lACvgBb5G7R4fW1\nb2q/4coPruS87c9ju5LtLE2rMWZIEJGjgC9U9dM0tTcDOEVVL9jowRkgIkcAU1T1arfwybM4eecv\nwEld/j1VreqPvvWVjb2HXkvy/L8tU+55G2n/RuAFVT3OLYkXwgnoN6jqdT3pcCrygnnkBZ2uqSp+\nj58TJp2QNFi/tPQl3lv1Hnn+PK7c80qCvmCmumWMGaKuP/GwDvXQL3r42b7MFJfMUThBLy0BXVXn\n4FRi6xft6r+3r0neWerXQaXLlV2qmquqeUn+yd1YMBeRfJxKPne5bUX649vR6vrVXPTmRayqX5V0\n/zFbHcMlu17Cz3b+mQVzY0zaucG8Qz10d3uPicj3ReRDNz3qbW4+9ltFZI5bz/vyVsdeLSKfisgC\nEblORHbHeXPpWvf8LTu5Rko1zN1t+4jIs+7PKdf0Fqdu+1NunfAvReR3rfY9KU5d9U9EZFar7cnq\niJ8mTm33ZDXJl7plYBGRU9zPYb6I/KPn/wUGnm7lie2m8TjT6veIyPY4pehansmfLyKn4Hybu0hV\nK9uf7P7HmwUwZkzPqwzWReuYvWY2NZEaRrdJYewozi7mhK1P6HH7xhizEV3VQ+/RKF1EtgFOBPZQ\n1aiI3IJTIOQ3qlohIl7gVbfU9UqcAiWT3fKqBapaJSJPA8+q6qNdXOpxVb3DveYVODXMb2JDDfOV\n7qPV9lpqesdE5AD3XruqLT4T59FsAzBbRJ5zR/xnuPeT7W5/DGcgegewt6p+3aqoCQCqOk9ELgVm\nqOr5bt9bPrdtcSq77RN4R38AABzmSURBVK6qZe3P3dRl8t0rH7AjcKtbqL0e+CVOXfUtgek4BV6u\nT3ayqt6uqjNUdUZJSUmPO7F5zua8dOxLjMntbelhY4zpkUzUQ98f2AknyM1z/zwBOEFEPgbmAtvi\n1DGvBpqAu0TkGDpWfuvKVBF5233T6WS3TdhQw/xsnJrn7eUDj7gFV25odV5nXlbVclVtxKmJvqe7\n/QK3cMn7OFXYtqLzOuKp2A94RFXLenDugJfJgL4CWKGqH7h/fhQnfexaVY2ragLnW9bMTFy85v/b\nu/soqaoz3+Pfp9+gaRpoXiT4NpCEaNAJaCpGR5dLY1R0uTQmmojGlxkT72gyNzfO3KuOWTFjbiaj\nN1GTMWp8iy/XdzJGJRHlKkmMRqVYKIiCoKCAKC1gA93QTVc/94+zW8umq+mqrlNVffr3WatWVe3a\n5+zdp1+ePvvss5/2LWxo3UhLmzOqduyHE+REREosjnzoBtyZlXd8P+BO4F+AY8Itxb8Hhrt7J9Hf\n2dlEdyzNzaOdOygsh3m+Ob17ztVyMzsK+DJwmLtPJ/onpd+5wYei2AK6u78LrMm6dnIM8KpFOXe7\nnQrsmiWlCDbv2MzazW2cduMLvL0pn39IRUSKKo586E8Bp5nZHvBhLu19iUZCW8xsInBC+GwkMDrc\nTfR9YHrYR39yjueTwzxbvjm9jzWzsWFo/StEIwCjgc3u3mZm+xOdmUPuPOL98TRwevc/IBpyz88/\nAfdYlEN3BtF1lKstyn27GDia6Aes6KKZ7o00Dq+husrY0bqNti0tcTQlIpJTmM2+Sz70gcxyD7ea\n/QB4MvwtnQe0E53FLiO6Nv9sqN4IzAn1/gJcHMrvB/5nmLjW66Q48sthni3fnN4vAr8FFgO/DdfP\n5wI1ZvYa8B9EgbyvPOK75e5LgZ8AfwrbXtPfbQeDRC/9msl0sbltJ2NG1LL4yTmsW/YaX/72RdSP\n3N0/pSIiu9AiFTEws/PImsAmhYtzlnvZVVdXMb4xuhVt3wOm0/SJPampqS1zr0RERIov0QE92/h9\n/4bx+/5NubshIlJxrAQ5v83seOCqHsWr3P1Uosl3MkBDJqDnsqFtA51dnewxYg9qqob84RCRIcjd\nv1OCNp4gSsUtMRnSOUBbd7by4+d/zEVPXcQH7Yle4ldERBIu8aekmUwnHW1t1DfuulJtQ20DPzz0\nh3R6J03DmvLbb1eGze2bqauq+3DdeBERkXJJ9Bn6js4dbGnewCM//wmtH+yyuiwAE0ZMYFLDpN2m\nTu3pjQ/e4JzHz+GnL/6UTTsStdiQiIgMQokN6Jt3bOb6RdfTYZ1M2HdKUdOidnkXd792N2u2rmHO\nm3PYvnN70fYtIlJuZjY53GO+uzpnZr1Pmdkv4++d5JLYIfeOTAd3vXoXf1n3F+4+6y5GFHFYvMqq\nOPuzZ7PwvYXMmDCD+tr6ou1bRGSQmAycSUgwU+70qZLghWVaO1rZuGMjVVbFhPoJRU+NqmvoIkNO\nxSwsY2aTiVZSW0iUBGspcA5wGPAzopO1BcCF7t5uZquBB4mWg90OnOnuK83sDrIyrpnZNncfGfY/\nx90PDK/vBroTYnzX3Z8zs+eBzwKriNaRXwT8i7ufFJZUvZ0oYUwbcIG7LzazHxEtUfvJ8Hydu+us\nvkgSO+Se8Qy3LrmV2a/PpiPTUfT9V1dVM75+vIK5iJTLfsAN7v5ZYAvRkq53AN8IyVRqgAuz6reE\n8uuB6/JoZwNwrLsfTJSytTsAXwo8E5LDXNtjm38DFoUkMf8K3JX12f7A8UQJY64I68RLESQ2oFdZ\nFWfufybTxk2jeXszH+zQbWkikihr3L17vfb/S5QAa5W7vx7K7gSOzKp/X9bzYXm0UwvcElKoPkSU\nknV3jiA6q8fdnwbGmVn32c/v3b09pDDdAEzMoy/Sh8QG9JF1I1m6cSn//Kd/5pt/+CbbOzVxTUQS\npef10t2dtXgvrzsJccDMqoC6Xrb7PvAeUZa2VI46+WjPep0hwXO5Si2xAR1g8ujJVFkV+4zaJ+/b\n0kREKty+ZtZ9pn0m0YS0yWb26VB2NvCnrPrfyHr+a3i9Gvh8eH0y0dl4T6OB9e7eFfbZ/ce0r/Sr\nzxDSrYa85u+7+5Z+fVVSsET+Z7Rp+yY6vZPJoybz5NeepKaqhnH148rdLRGRYloOfMfMbgdeBf47\nUYrRh8yse1LcTVn1m0IK1XZgVii7BXgkpBKdS5RPvacbgN+a2Tk96iwGMmHbO4gmxXX7EXB7aK8N\nOHdgX6r0R+JmuW/cvpFVLat48PUHmT5+OjOnzFQwF5FiqLRZ7nPc/cB+1l9NlKL0/Ri7JWWWuCH3\nbTu3UVtdy9xVc/ndG7+js6uz3F0SERGJXeKG3BtqG5i7ai53n3A3TcOb2Lb8LTKNm9lz6v7l7pqI\nSFG4+2qgX2fnof7k2DojFSNxZ+jj68fztc98jfH14xnNSFYvSrNp7Zpyd0tERCRWiTtDhyiob+/c\nTmtHK4ecfgbDtDSriIgkXOLO0Lu91/oex84+liXbllFXr4AuIiLJltiAXl9Tz0ETD2LiCC1CJCIi\nyZfYgD6xYSL/fvi/89d3/sq7re+WuzsiIkVlZjPNbLmZrTSzS8vdHym/xAZ0gOfffZ6rFlzFn9f+\nudxdEREpGjOrBn5FlD1tGjDLzPqzxrokWCInxXU7cq8jufW4W5naNLXcXRERKaZDgJXu/iaAmd0P\nnEK0YpwMUYkN6JmuDGPrx/LF+i8CsK1jG4s2LGLfxn0ZVTeKpvqmMvdQRIaSVCpVBUwANqTT6YEu\n0bkXkH0/7lrgiwPcpwxyiRxyX7FpBeu2rWN1y2pa2ltob2tlxR//xJh3nd+/MYfHVz/O+9u1AqKI\nlEYI5k8TBd754b1IUSXyh6qjq4Pn3nmOHzz7A1raW+js6OClxx/jrWef54R9jufF9S8yGNawF5HE\nmAAcTjQqenh4PxDrgH2y3u8dymQIS+SQ+54Ne3LfsvtYunEp1VXVNIxq4utX/BTM6KhzLj/0csbX\njy93N0Vk6NgAPEsUzJ8N7wdiATDVzKYQBfIziFKoyhCWuGxr3Zrbmsl0ZcCgtqpWGddEZKAGlG2t\nyNfQMbMTgeuI8pPf7u4/Geg+ZXBLbECHaLW4y/9yOalPpPjW336LmqpEDkiISGlUTPpUkd4kOsKZ\nGTOnzGTauGmYfhdFRCTBEjkprpu7c+Vfr+S6hdfR1tlW7u6IiIjEJtFn6A21DTz+1ccZXjOcxrrG\ncndHREQkNrGeoZvZGDObbWbLzOw1MzvMzMaa2TwzWxGeY1vhxXHmr5nPA8sfoKW9Ja5mREREyi7u\nIfdfAHPdfX9gOvAacCnwlLtPBZ4K72PRurOVB5Y/wL3L7mVn1864mhERESm72IbczWw0cCRwHoC7\ndwAdZnYKcFSodifwR+CSYre/pX0Lty25jauPvJqm4U00DdNSryIiklxxnqFPAZqB35jZIjO71cwa\ngInuvj7UeRfoNWG5mV1gZmkzSzc3N+fd+LDqYRy1z1Gs3baWUXWjqK6qLvTrEBEZkFQqZalUanoq\nlTohPA/4thszW21mS8zsJTNLh7JeL2la5Jch1epiMzs4az/nhvorzOzcrPLPh/2vDNtaqdqQwsQZ\n0GuAg4Eb3f0goJUew+se3QTf643w7n6zu6fcPTVhQv6rJA6rGcaB4w8kNTHF8Jrh+fdeRKQIUqnU\n0cDrRCvE3ReeXw/lA3W0u89w91R4n+uS5gnA1PC4ALgRouAMXEGU2OUQ4IqseU03At/O2m5mCduQ\nAsQZ0NcCa939hfB+NlGAf8/MJgGE54EugZjTnUvv5OzHz2bTjk1xNSEiklMI2nOATwMNwOjw/Glg\nTpGCerZTiC5lEp6/klV+l0eeB8aEv7/HA/PcfZO7bwbmATPDZ6Pc/flw4nVXj33F3YYUILaA7u7v\nAmvMbL9QdAxRrt5Hge4hl3OBR+Lqw6z9Z3H9l66nsTa6ZS3TlWHJ+0u4ftH1CvIiEqswrH4zMCJH\nlRHAzQMYfnfgSTNbaGYXhLJclzR7S7e6127K1/ZSXqo2pABx34f+T8A9ZlYHvAn8PdE/EQ+a2fnA\nW8DX42p8wogJTMhKarQjs4NbFt/C/DXz+erUr8bVrIgIwOeASbupMynUe7mA/R/h7uvMbA9gnpkt\ny/7Q3d3MYl3buxRtSP/FGtDd/SUg1ctHx8TZbi4NtQ388NAf8r2Dv6eFZkQkbnsCnbup0xnq5R3Q\n3X1deN5gZg8TXZ9+z8wmufv6Hpc0c6VbXcdHdx11l/8xlO/dS31K1IYUINFLv/Zm/IjxfGrMpxTQ\nRSRu77D7k6aaUC8vZtZgZo3dr4HjgFfIfUnzUeCcMBP9UKAlDJs/ARxnZk1hotpxwBPhsy1mdmiY\neX5Oj33F3YYUINFLv4qIlNFiYD3RBLhc3gn18jUReDjc5VUD3Ovuc81sAb1f0vwDcCKwEmgjuvyJ\nu28ysx8T5VcHuNLduycYXQTcAdQDj4cHwH+UoA0pQKLTp4qIFFHek9eyZrn3NjGuDTgpnU7PH2jH\nRCDpQ+5tm+DVR2H9y7Bze7l7IyJDTAjWJxGdtbYCLeF5BQrmUmTJDugfvA0Png23HgM7+pecpbmt\nmasXXM3G7Rtj7pyIDAUhaH8GOByYFZ73UzCXYkv2NfTGT8AnPgd7fBaqa/u1SXumnRfWv8B5B5wX\nb99EZMhIp9NONJO9kNvTRPol+dfQW5uhqhbqx/Sr+s7MTrZ0bGHs8LFoWWERyaI/CFLRkn2GDtCQ\n3zrwtdW1jKsfF1NnRERE4pHIgN6Z6SRDhmHVw8rdFREZ4lKp1AzgYuBkotnubUT3bF+TTqdfKmff\nJFkSNymuvbOdeW/P4+cLfq712kWkbFKpVE0qlbqNKLvamUSJWWrD85nAs6lU6rZUKlXQiZWZ3W5m\nG8zslayyRKRPzdWG9C1xAb2jq4PH3niMR954hExXptzdEZGh69fAGURn5dU9PqsO5WcANxW4/zvY\nNd1oUtKn5mpD+pC4gN5Y18iVh1/JY6c+RtMw/VMnIqUXhtm7g3lfRgCzUqnU9HzbcPc/Az2HIZOS\nPjVXG9KHxAV0gPH149ljxB7UVCdyioCIVL6Lgf5O4qkL9YshKelTc7UhfUhkQBcRKbOT2XWYPZca\nojPSogpnvbGnT01CG0mhgC4iUny7G2ofaP1c3gtD2eSR2jRXeZ/pU8vUhvRBAV1EpPjaYq6fS1LS\np+ZqQ/qgi8wiIsX3KNGtaf0Zdu+kgIBlZvcBRwHjzWwt0UzyUqQ2LWcb0ofkL/0qIlIc/V76Ncxy\nf5b+DaW3AX+XTqe1zrsMiIbcRUSKLKwAdz+7H0pvA+5TMJdi0JC7iEg8/hvR7OxZRLemZf+97QQ6\ngPuAfyx91ySJNOQuItI/BWVbC8Pv3ye6Na17LfdHgGu1lrsUk87QRURiFIL2uWHN9gZgWzqd1rrU\nUnQK6CIiMUmlUsOA04FLgAOAnUBtKpVaClwFPJROp9vL2EVJEE2KExGJQSqVOgR4B7gBOJBoyL4u\nPB8Yyt9JpVJfKFsnJVEU0EVEiiwE6aeBsUBjjmqN4fP5hQT1HOlTf2Rm68zspfA4Meuzy0Ka0uVm\ndnxW+cxQttLMLs0qn2JmL4TyB8ysLpQPC+9Xhs8nl7INyU0BXUSkiMIw+1yi6+X90QDMDdvl4w52\nTZ8KcK27zwiPPwCY2TSi7G8HhG1uMLNqM6sGfkWU+nQaMCvUheiSwLXu/mlgM3B+KD8f2BzKrw31\nStKG9E0BXUSkuE4HavPcpg44LZ8NcqRPzeUU4H53b3f3VUSruR0SHivd/U137yC6d/6UsBTrl4DZ\nYfueaVK7U5vOBo4J9UvRhvRBAV1EpLguIfcwey4jgUt3W6t/vmtmi8OQfFMoyze16TjgA3fv7FH+\nsX2Fz1tC/VK0IX1QQBcRKZJUKlVNNORciAPC9gNxI/ApYAawHvj5APcng4gCuohI8YwkujWtEJ1h\n+4K5+3vunnH3LuAWouFuyD+16UZgjJnV9Cj/2L7C56ND/VK0IX1QQBcRKZ5t5H/9vFtN2L5g3TnE\ng1OB7hnwjwJnhNnjU4CpwItEGdCmhtnmdUST2h71aAnR+Xx0Xb9nmtTu1KanAU+H+qVoQ/qghWVE\nRIoknU5nwqIxBxaw+dJ8VpDLkT71KDObQbSG/Gqi9eRx96Vm9iDwKtFIwHfcPRP2812inOXVwO3u\nvjQ0cQlwv5n9b2ARcFsovw2428xWEk3KO6NUbUjfYl3L3cxWA1uBDNDp7ikz+xHwbaA5VPvX7lsr\nctFa7iJSAfo1yzqVSn2TaNGYfCbGbQUuTKfT9xTSMREozRn60e7+fo+ya939ZyVoW0Sk1B4CfpHn\nNjv56PYtkYLoGrqISBGFtdlnAq393KQVmKk13WWg4g7oDjxpZgvN7IKs8t7ukxQRSYR0Or0AOJro\n+u/WHNW2hs+PDvVFBiTugH6Eux9MtOTfd8zsSPp5n6SZXWBmaTNLNzc391ZFRKRihSC9J3Ah0Wxz\nJxpad2BJKN9TwVyKJdZJcR9rKJoMty372nlYcH+Ou/c5I1ST4kSkAgxo6dGwaMxIlA9dYhLbpDgz\nawCq3H1reH0ccKWZTXL39aFa9n2SIiKJFYJ4S7n7IckV5yz3icDDYT39GuBed59rZnf3dp+kiIiI\nFC62gO7ubwLTeyk/O642RUREhirdtiYiIpIACugiIiIJoIAuIiKSAAroIiIiCaCALiIikgAK6CIi\nIgmggC4iIpIACugiIiIJoIAuIiKSAAroIiIiCaCALiIikgAK6CIiIgmggC4iIpIACugiIiIJoIAu\nIiKSAAroIiIiCaCALiIikgAK6CIiIgmggC4iIpIACugiIiIJoIAuIiKSAIkN6JmuTLm7ICIiUjKJ\nDOhvfPAG1yy8hk07NpW7KyIiIiWRyIC+dutanln7jM7SRURkyDB3L3cfdiuVSnk6ne53/W0d22jP\ntDOuflyMvRKRIcbK3QGRvtSUuwNxGFk3kpGM/FjZzsxO2jPtjKwbmWMrERGRwSuRQ+69eW3Ta1zx\n3BVs2q7r6iIikjxDJqBXWzX1NfWYadRMRESSJ5HX0HvT2dVJR6aDEbUjitQrERlidDYgFS2R19B7\nU1NVQ03VkPlyRURkiBkyQ+4iIiJJpoAuIiKSAAroIiIiCRDrRWUzWw1sBTJAp7unzGws8AAwGVgN\nfN3dN8fZDxERkaQrxRn60e4+w91T4f2lwFPuPhV4KrwXERGRASjHkPspwJ3h9Z3AV8rQBxERkUSJ\nO6A78KSZLTSzC0LZRHdfH16/C0zsbUMzu8DM0maWbm5ujrmbIiIig1vcN2Yf4e7rzGwPYJ6ZLcv+\n0N3dzHpd2cbdbwZuhmhhmZj7KSIiMqjFeobu7uvC8wbgYeAQ4D0zmwQQnjfE2QcREZGhILaAbmYN\nZtbY/Ro4DngFeBQ4N1Q7F3gkrj6IiIgMFXEOuU8EHg7JUGqAe919rpktAB40s/OBt4Cvx9gHERGR\nIWFQJGcxs2ai4N9f44H3Y+pOHAZTfwdTX0H9jdtQ6u/77j6zmJ0RKaZBEdDzZWbprPveK95g6u9g\n6iuov3FTf0Uqh5Z+FRERSQAFdBERkQRIakC/udwdyNNg6u9g6iuov3FTf0UqRCKvoYuIiAw1ST1D\nFxERGVIU0EVERBIgUQHdzGaa2XIzW2lmJU3Lamb7mNl8M3vVzJaa2fdC+Vgzm2dmK8JzUyg3M/tl\n6OtiMzs4a1/nhvorzOzcrPLPm9mSsM0vLazaM4A+V5vZIjObE95PMbMXwv4fMLO6UD4svF8ZPp+c\ntY/LQvlyMzs+q7yo3wszG2Nms81smZm9ZmaHVfix/X74OXjFzO4zs+GVdHzN7HYz22Bmr2SVxX48\nc7VRYH//T/h5WGxmD5vZmEKPWyHfG5GK4+6JeADVwBvAJ4E64GVgWgnbnwQcHF43Aq8D04CrgUtD\n+aXAVeH1icDjgAGHAi+E8rHAm+G5KbxuCp+9GOpa2PaEAfb5YuBeYE54/yBwRnh9E3BheH0RcFN4\nfQbwQHg9LRznYcCUcPyr4/heEKXa/VZ4XQeMqdRjC+wFrALqs47reZV0fIEjgYOBV7LKYj+eudoo\nsL/HATXh9VVZ/c37uOX7vdFDj0p8lL0DRftC4DDgiaz3lwGXlbE/jwDHAsuBSaFsErA8vP41MCur\n/vLw+Szg11nlvw5lk4BlWeUfq1dA//YGngK+BMwJf3jfz/oD+eHxBJ4ADguva0I963mMu+sV+3sB\njCYKkNajvFKP7V7AGqJAVxOO7/GVdnyByXw8QMZ+PHO1UUh/e3x2KnBPb8djd8etkJ/9Qn829NAj\nzkeShty7/4h2WxvKSi4Myx0EvEDu/O+5+ttX+dpeygt1HfC/gK7wfhzwgbt39rL/D/sUPm8J9fP9\nGgo1BWgGfmPRJYJbLUr4U5HH1qMsgz8D3gbWEx2vhVTu8e1WiuOZq42B+geikYBC+lvIz75IxUlS\nQK8IZjYS+C3wP9x9S/Zn7u5A2e8TNLOTgA3uvrDcfemnGqLh1hvd/SCglWi49kOVcmwBwnXhU4j+\nEdkTaAAG1RrgpTiexWrDzC4HOoF7BtwpkUEsSQF9HbBP1vu9Q1nJmFktUTC/x93/KxTnyv+eq799\nle/dS3khDgdONrPVwP1Ew+6/AMaYWXcGvuz9f9in8PloYGMBX0Oh1gJr3f2F8H42UYCvxGML8GVg\nlbs3u/tO4L+IjnmlHt9upTieudooiJmdB5wEnBX+QSikvxvJ/3sjUnGSFNAXAFPDbNU6ogksj5aq\n8TCL9zbgNXe/JuujXPnfHwXOCTOIDwVawlDkE8BxZtYUzvSOI7qetx7YYmaHhrbOocBc8u5+mbvv\n7e6TiY7T0+5+FjAfOC1HX7u/htNCfQ/lZ4SZwFOAqUSToYr6vXD3d4E1ZrZfKDoGeJUKPLbB28Ch\nZjYi7K+7vxV5fLOU4njmaiNvZjaT6LLRye7e1uPr6PdxC8c63++NSOUp90X8Yj6IZuO+TjST9fIS\nt30E0fDhYuCl8DiR6HrbU8AK4P8BY0N9A34V+roESGXt6x+AleHx91nlKeCVsM31FGFyDnAUH81y\n/yTRH76VwEPAsFA+PLxfGT7/ZNb2l4f+LCdrZnixvxfADCAdju/viGZVV+yxBf4NWBb2eTfRjOuK\nOb7AfUTX93cSjYCcX4rjmauNAvu7kuj6dvfv202FHrdCvjd66FFpDy39KiIikgBJGnIXEREZshTQ\nRUREEkABXUREJAEU0EVERBJAAV1ERCQBFNCl4pnZc+Xug4hIpdNtayIiIgmgM3SpeGa2LTwfZWZ/\ntI/yot+TlWf7C2b2nJm9bGYvmlmjRTnIf2NRXu5FZnZ0qHuemf3Oonzcq83su2Z2cajzvJmNDfU+\nZWZzzWyhmT1jZvuX7yiIiPStZvdVRCrKQcABwDvAs8DhZvYi8ADwDXdfYGajgO3A94hygPxtCMZP\nmtlnwn4ODPsaTrQK2CXufpCZXUu0VOl1wM3AP7r7CjP7InAD0br3IiIVRwFdBpsX3X0tgJm9RJQj\nuwVY7+4LADxkuTOzI4D/DGXLzOwtoDugz3f3rcBWM2sBHgvlS4DPhax5fwc8FAYBIFq+VUSkIimg\ny2DTnvU6Q+E/w9n76cp63xX2WUWUI3tGgfsXESkpXUOXJFgOTDKzLwCE6+c1wDPAWaHsM8C+oe5u\nhbP8VWZ2etjezGx6HJ0XESkGBXQZ9Ny9A/gG8J9m9jIwj+ja+A1AlZktIbrGfp67t+fe0y7OAs4P\n+1wKnFLcnouIFI9uWxMREUkAnaGLiIgkgAK6iIhIAiigi4iIJIACuoiISAIooIuIiCSAArqIiEgC\nKKCLiIgkwP8H/tBCpRdd1xEAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3043,7 +3050,7 @@ "metadata": { "id": "XAww6V5DmWsU", "colab_type": "code", - "outputId": "373e5dee-2139-4168-d944-b86a3bba9c7f", + "outputId": "0c0892f5-3f73-457b-e2a3-90024d55d5ff", "colab": { "base_uri": "https://localhost:8080/", "height": 166 @@ -3053,7 +3060,7 @@ "source": [ "this_year[this_year.income > 80000]" ], - "execution_count": 30, + "execution_count": 81, "outputs": [ { "output_type": "execute_result", @@ -3143,7 +3150,7 @@ "metadata": { "tags": [] }, - "execution_count": 30 + "execution_count": 81 } ] }, @@ -3151,7 +3158,7 @@ "metadata": { "id": "2QTzH_9tm904", "colab_type": "code", - "outputId": "80b4f12e-aed0-49cf-86fd-4291f1dd0463", + "outputId": "3f0857e8-17ca-4a10-893d-9bffccb2a473", "colab": { "base_uri": "https://localhost:8080/", "height": 1024 @@ -3161,7 +3168,7 @@ "source": [ "entities[entities.name=='Macao, China'].T" ], - "execution_count": 31, + "execution_count": 82, "outputs": [ { "output_type": "execute_result", @@ -3365,7 +3372,7 @@ "metadata": { "tags": [] }, - "execution_count": 31 + "execution_count": 82 } ] }, @@ -3386,7 +3393,7 @@ "metadata": { "id": "adPr6szPn1tY", "colab_type": "code", - "outputId": "624f5b5e-5a7c-464c-d16d-d7b20ef3c25d", + "outputId": "0d364a04-e764-4956-f392-d63c2dcae3a0", "colab": { "base_uri": "https://localhost:8080/", "height": 50 @@ -3396,7 +3403,7 @@ "source": [ "qatar.income" ], - "execution_count": 33, + "execution_count": 84, "outputs": [ { "output_type": "execute_result", @@ -3409,7 +3416,7 @@ "metadata": { "tags": [] }, - "execution_count": 33 + "execution_count": 84 } ] }, @@ -3417,7 +3424,7 @@ "metadata": { "id": "vyamBGBUn_hd", "colab_type": "code", - "outputId": "ce21b8eb-178e-4332-8364-6f7df243c651", + "outputId": "50e0d0e6-dc46-4f6d-d06c-4f60d6c2c053", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -3427,7 +3434,7 @@ "source": [ "qatar.income.values" ], - "execution_count": 34, + "execution_count": 85, "outputs": [ { "output_type": "execute_result", @@ -3439,7 +3446,7 @@ "metadata": { "tags": [] }, - "execution_count": 34 + "execution_count": 85 } ] }, @@ -3447,7 +3454,7 @@ "metadata": { "id": "rRWGyuqzoBRK", "colab_type": "code", - "outputId": "589e257d-3358-4771-d152-938bc9081d54", + "outputId": "50ddadcb-d90f-4af4-a806-a47d3f598e88", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -3457,7 +3464,7 @@ "source": [ "type(qatar.income.values)" ], - "execution_count": 35, + "execution_count": 86, "outputs": [ { "output_type": "execute_result", @@ -3469,7 +3476,7 @@ "metadata": { "tags": [] }, - "execution_count": 35 + "execution_count": 86 } ] }, @@ -3477,7 +3484,7 @@ "metadata": { "id": "yG88fJ-CoIQ8", "colab_type": "code", - "outputId": "33b9f02f-d4de-4182-d60e-970e26950808", + "outputId": "347be5cb-8570-447d-8257-f18ca23cd264", "colab": { "base_uri": "https://localhost:8080/", "height": 34 @@ -3487,7 +3494,7 @@ "source": [ "type(qatar.income.values[0])" ], - "execution_count": 36, + "execution_count": 87, "outputs": [ { "output_type": "execute_result", @@ -3499,7 +3506,7 @@ "metadata": { "tags": [] }, - "execution_count": 36 + "execution_count": 87 } ] }, @@ -3521,7 +3528,7 @@ "metadata": { "id": "wv39rkyRoQ3c", "colab_type": "code", - "outputId": "255655fc-a6d2-4ab0-f7ff-b90a761b5c05", + "outputId": "c6df82e7-9e0b-4550-e050-c68131ce14ee", "colab": { "base_uri": "https://localhost:8080/", "height": 382 @@ -3536,14 +3543,14 @@ "\n", "plt.title('Qatar has the highest incomes in 2018');" ], - "execution_count": 38, + "execution_count": 89, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFtCAYAAADxv5gBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVNX5wPHve6fszM5s32XpLB0E\nERC7IgjWGEti7w2TGJLYe+EXeyUxiTVRsEZFNNiClQiiKFVAUdrSWbbPlulzfn/cu8uy7C7bhm3n\n8zz7MHPLuefOLvPec+655xWlFJqmaZqmdWxGW1dA0zRN07SW0wFd0zRN0zoBHdA1TdM0rRPQAV3T\nNE3TOgEd0DVN0zStE9ABXdM0TdM6AR3QOxARyRWRyW1w3HkiclUrlVXvOYjIMSLyUyPLmSAiW1uj\nTk3RlDp2JCLSV0TKRcTW1nXRNK15dECvh4hcJiIrRaRSRHaKyFMiktKE/ZWIDIpnHeNBRKaJyCtt\ncWyl1Hyl1NC2OHaVfV00tYc6xoNSarNSyquUijZ1XxE5XEQ+EZEiEckXkbdEpEeN9SIiD4tIofXz\nsIhIjfXPichPIhITkctqlS0icp+IbBORUuvickSLTlbTOikd0OsgIjcADwM3ASnA4UAO8LGIOPbD\n8UVE9O9G6yjSgOcw/4/0A8qAF2usvxo4AzgIGAX8EvhNjfUrgGuApXWUfTZwBXAMkA58DbzcqrXX\ntM5CKaV/avwAyUA5cE6t5V4gH7jUen8o5pdLCbAD+DvgtNZ9CSigwirrXMwvvfetMoqt171rlD8P\nuB/4CvADg+qoWy5wI/A9UAq8Abisdfsq/zJgA+aX7UbgwjrKPwkIAWGr3itq1O1eq25lwMdAZo39\nDgcWWp/FCmBCA59vQ+cwAdhaY9uxwDLrmG9Z295Xc1vgBmCX9Tu4vMa+CcBjwGYgD3gGcFvrMq3P\npwQoAuZjXty+DMSsz78cuLmO+teuY73nY60/HVgO+ID1wEnW8p7AHOv464ApNfaZZp3vK9a5rwSG\nALdZ57oFOKHG9inAv6zPYBtwH2Cz1g0C/mfVrQB4o57fSw7m36y9Mb/zffwfGguU1Xi/ELi6xvsr\ngW/q2G8BcFmtZbcAb9Z4PwIItPX3hP7RP+3xp80r0N5+MINapOqLrda6mcCr1uuDMQOZ3foy/BG4\ntsa2ihpBGcgAfg0kAknWF/a7NdbPs4LPCKtMRx3HzwW+tYJBunXM3+6rfMBjBZSh1vsewIh6zn8a\n8EqtZfOsYDQEcFvvH7LW9QIKgVMwg+Lx1vusespv6BwmYAVLwAlsAv4EOIBfYV5s1AzoEeDP1vpT\ngEogzVo/HTNgplufx3vAg9a6BzEDvMP6OQaQGvWb3MDfR3UdG3E+h2IG0uOtz6YXMMxa9yXwFOAC\nRmNeiB1X43cQAE60/hZewrwIu8Oq7xRgY406vAM8a/2eu1n1+Y217nVrP8M61tH1nFcOewf0On/n\njfg/dC01Arb1GRxW4/04agT8GsvrCuj9gCVWPRzAI9T4f6N/9I/+2f2ju3X3lgkUKKUidazbAWQB\nKKWWKKW+UUpFlFK5mF+ox9ZXqFKqUCn1tlKqUilVhtkar739DKXUaqvMcD1FPamU2q6UKsIMUqMb\nWX4MGCkibqXUDqXU6n19ELW8qJT6WSnlB96sOi5wEfChUupDpVRMKfUJsBgzwNanznOopepi6Uml\nVFgpNRszUNUUBv5srf8Qs1U91Lo/ezVwnVKqyPo8HgDOq7FfD6Cfte98pVRLkhrUdz5XAi8opT6x\nPpttSqk1ItIHOAq4RSkVUEotB/4JXFKjzPlKqbnW3+FbmH93D1l/F/8GckQkVUSyMT/ra5VSFUqp\nXZgXMzXPtR/Q0zrWgiacV32/83qJyCjgbszbVVW8mEG9SingrXkfvQE7MAP9T5g9J2cD1zWu+prW\nteiAvrcCIFNE7HWs62GtR0SGiMj71oA5H2bAyKyvUBFJFJFnRWSTtf2XQGqtUcVbGlG/nTVeV2J+\nWTZYvlKqArPb/7fADhH5QESGNeJY+zwuZrA4W0RKqn6AozE/q6aWVVNPYFutQFv78ymsdeFVVVYW\nZk/Fkhp1+q+1HOBRzG7uj0Vkg4jc2kBdG6O+8+mD2cqtrSdQdaFRZRNmC75KXo3XfsyLzGiN91jH\n6YfZct1R41yfxWypA9wMCPCtiKwWkSta4bzqZA0C/Qj4k1Jqfo1V5Zi3sqokA+WNvIi6GzgE87N0\nAf8HfC4iiY3YV9O6FB3Q9/Y1EMTs4q0mIl7gZMyuR4CngTXAYKVUMnA75hdnfW4AhmJ2PSYD46uK\nrrFNS1qJDZZvtfaOxwy0a4Dn6ymnqXXYAryslEqt8eNRSj3U9FPYww6gV61WXJ9G7luAGfRG1KhT\nilLKC6CUKlNK3aCUGgCcBlwvIpOsfVsz/eAWYGAdy7cD6SKSVGNZX8z73805RhDz/nbVuSYrpUYA\nKKV2KqWmKKV6Yg5EeyoeT1+ISD/gU+BepVTtQWurMQfEVTnIWtYYozHv+2+1eq5mYI4XOaCFVda0\nTkcH9FqUUqWYrYC/ichJIuIQkRzMLscC4FVr0yTM+9LlVmv3d7WKygMG1HifhBlkSkQkHbinlate\nb/kiki0ip4uIB/PLvxyzC74ueZjduY3923gF+KWInCgiNhFxWc+I927+qQDmhVUUmCoidhE5HfOe\n9D4ppWKYFyzTRaQbgIj0EpETrdenisgg62Kh1DpO1edR+/fWEv8CLheRSSJiWHUYppTagjlQ7EHr\n8xqF2T3f5McFlVI7MAesPS4iydZxBorIsQAicnaN30Ux5gVLfb/7ZhGRXsDnwN+VUs/UsclLmBdN\nvUSkJ+bF54wa+ztFxIV58emwPpOqv7/vMHuAsq1zuxizR2Jda56DpnUGOqDXQSn1CGaL+zF2jwpP\nxBwsVWFtdiNwgbX+eczRzTVNA2Za3aDnAH/BHFxUAHyD2QXcmhoq3wCux2wZFmHeW699AVLlLevf\nQhGp6zGiPVjB6XTMzysfs8V4Ey3821JKhTB7Sa7EHI1+EebI9GAji7gF80v/G+sWxKeYPRgAg633\n5ZgXDk8ppb6w1j0I3Gn93m5s4Tl8C1yOeU+7FHO0eT9r9fmYA9G2Yw5qu0cp9WkzD3UJ5iDCHzCD\n9ix23/I4BFgkIuWYgwT/pJTa0Mzj1OcqzIugaWJOTlNuHa/Ks5hjC1YCq4APrGVVPsa8GD0S8/E3\nP7t7mB7GfHJiOebfwXXAr5VSJa18DprW4VWN7NUaICKXY46mPkoptbmt69NVicgi4Bml1Iv73FjT\nNK2LqWvgl1aLUupFEYlgtiB0QN9PrG7jnzB7HS7EnJSktXs2NE3TOgUd0BupjoE+WvwNxRy74MGc\nFOcs656xpmmaVovuctc0TdO0TkAPitM0TdO0TkAHdE3TNE3rBDrEPfSTTjpJ/fe/eiyUpmltqjFT\n1Wpam+kQLfSCgoK2roKmaZqmtWsdIqBrmqZpmtawuAZ0EbnOSgixSkRet6Z0nCEiG0VkufWzzwxO\nmqZpmqY1LG730K35nf8IHKCU8ovIm+xO6XiTUmpWvI6taZqmaV1NvLvc7YDbSkWaiDlvtaZpmqZp\nrSxuAV0ptQ0zuclmzFSYpUqpj63V94vI9yIyXUQS4lUHTdM0Tesq4hbQRSQNMwtXf6An4BGRi4Db\ngGGYWaDSMbNi1bX/1SKyWEQW5+fnx6uamqZpmtYpxLPLfTKwUSmVr5QKA7OBI5VSO5QpCLxIPTmu\nlVLPKaXGKaXGZWVlxbGamqZpmtbxxTOgbwYOF5FEERFgEvCjiPQAsJadgZkfWdM0TdO0FojbKHel\n1CIRmQUsBSLAMuA54CMRycKcdWk58Nt41UHTNE3TuooOkW1t3LhxavHixW1djS4pFotSWVpKsKKc\nBI8Xb1p6W1dJ09qKnvpVa9c6xFzuWtvx5e/i1duuI1BRjjc9gwvuf4Kk9Iy2rlaXFAmFCPkrsSck\n4HS527o6mqa1M3rqV61BP3+zgEBFOQDlRYVs/+mHNq5R1xSsrODHBfN48947+Gb2G/jLfG1dJU3T\n2hndQtcalNGr7x7vU7J7tFFNurZgZSUfP/skAIVbNjH8qAm4k5LbuFaaprUnOqBrDeo5dDiTrvwd\nucuXMOzoCaRmd2/rKgHgL/OxefX3hAMBBowZR2JKaltXKa4Mw8DuTCASCoIIDperraukaVo7owfF\nafukYjEioRD2hATMpw3bvj7fznmbBa/PBGDkcScw8dIpnfq+ciQcpnDrJlZ88hGDDz2SnkOGk5CY\n2NbV6mra/o9f0xqgW+jaPolhtKsWYSwWpWDTxur3RVs3Eykrw+FMQIzOOSzE7nCQ3X8Qx0+Z2i4u\nqjRNa38657ef1qnZ7A6OPOcikrOySUxJZfwZ51Jw9zRCGza0ddXiTgdzTdPqo1voXVikpISYz4c4\nHBgpKdg6UBduavcenD/tIUK5ufiefhb/gq/Idzro+cgjGAk6309rqSgpJuSvxJmYiCclra2ro2la\nA3RA76Ki5eUUvTiDwmefBcOgzzNP4znmmA7TAhQREj1eyj6ai3/BVwC4DhiBOBxtXLPOo6K4mNfu\nuhFffh7ZAwZx5q336KCuae2YDuhdVMzvp+TNN603MYpffx33uHEdqpVuuN1k/f4aEscdjJHgwj1m\ndKe9h94WKn0l+PLzAMjbsI5IMNTGNdI0rSH626+LMpxOPEceUf3eO3EiRisPfAsHg5QVFlCan0ew\nsqJVy65iT08n5eSTSTpuIvY03XpsTYkpqaR0ywag+8Ah2J3ONq6RpmkN0Y+tdWGRoiKCa9ZgJCfj\n7NMHW0pKq5a/5YeVzLrvTmLRKJOu/B0jjp2MQ9/f7lAqSooJBfw43Yl4Ovmz/o3QMe5HaV2WbqF3\nYfb0dFwjR2JLSyMWCBALBPbaRoXDhPN2EdqyhUhxcaPLjoRCLP1oDrFoFIClH71HpKKcSEEB0Yr4\ntNa11udJTSOte08dzDWtA9ABvQuLlpdT/NrrrJ80mfWTjyewahW1e2yCGzay/uSTWX/8Cex6+BEi\nxSWNKtvmcDBo3OHV70+46AoqZs0m9/wLKHzuOSIljStH0zRNaxw9KK6LCVSGCZSFUUrhkUoKnn0W\nMFvihc//k57Dh2PzeMxlSlH86quoykoASt99l6xr/9So44gIA8cdxiWP/p1wIECG20P+9y+Tfcft\nqEDALDO1fbT6omVlxMrLwWbDnp6O2PV/i/pEfT7zs3I4sGdmdpinIjStK9At9C4kFlPkrijg1Xu+\n4bVpiygvjeAaNqx6veugUXs8wy0iuMeOqX5v79mzScHO5fGS1TeHnkOGYbhcpJxxOttvuZVdT0xH\nRSKtc1ItFAsE8H3wIesmHseGk08hlJvb1lVqt6Ll5RS9+irrjpvExjPOJLx9e1tXqU5bt27l9NNP\nZ/DgwQwYMICpU6cSDAbr3T43N5fXXnttP9ZQ0+JDB/QuJBqOsm7prur3i74opNdf/0r2HXfQ84nH\nSTv//L0CtnfCBHr/4+9k3XgDOa++gj0zs97yC8qD/LSzjJ2+AGHr3nlN+X99klhpKeHNmyn8179Q\nsVjrnVwzxcrKKPzXv8zXFRWUvD27jWvUfsX8fopeeBGAaGEhFfMXtHGN9qaU4le/+hVnnHEGa9eu\nZe3atfj9fm6++eZ692lOQBcR3Y2jtTs6oHchdqeNURN7I4YgAkMOzcbIyCD94otIOeWUOh/7sqem\nkjRpEplXXYXh8eBfvZrK5cv3GiBXUB7kNy8v4cS/fMnER+exrXjPAXZGQgLOAf2r3ycMG94unhkX\ntxvPMcdYbwTvhGPbtkLtmDiceI480nxjt+/Re9NefP7557hcLi6//HIAbDYb06dP56WXXmLVqlUc\nc8wxjB07lrFjx7Jw4UIAbr31VubPn8/o0aOZPn06ubm5dW4nIhNEZL6IzAF+aKtz1LT66MfWuphw\nMEKwMoJSkJBox+lqXENDKUXJrFnsvOtuADJ/fw0ZU67GcJld9NuK/Rz18OfV2z/4qwM5/9A9c6lH\nCgsp++xzbGmpuEeNQgWD2JKTsbXxvfRIcTHh7duxJSVhS0/H5vW2aX3as0hREeEdO7CnpWNLT2v1\nuQta6sknn2Tjxo1Mnz59j+VjxozhH//4B2PHjsXlcrF27VrOP/98Fi9ezLx583jsscd4//33Aais\nrMQwjL22E5GJwAfASKXUxr2PrmltS3cbdTGOBDuOhLp/7f7yMqLhMI6EBBISPUR9PrDbsSUmokIh\nKqwpVgEqvv6G9EsuASugJzgMRvZKZtU2Hwl2g0Oy3fh/+AFnv37Vg+zsGRmknXM2/jVrWDdpMkQi\nZP5hKumXXVa9TVuwp6XpSWkayZ6ejj09va2r0SzhcJgpU6awfPlybDYbP//8c73bTZ06tb7tvtXB\nXGuvdEDXAKj0lfLFjOfYuGwxY07+JaOPnUzhHXdiS00j+9ZbsGdmknHVVZR/+SUqEiHzmmswarRk\nM70JzLjsULYWVZAR9RN+4gFyP/mYgR/P3SNYK6UofuUVsAbFlc5+h9Rzzm3TgK51HgcccACzZs3a\nY5nP52Pnzp18+OGHZGdns2LFCmKxGK56ehemT5/e0HZ6EgWt3Wr7m5hau1BeWMCar/5HsLKCb97+\nN4GiIioWfIXv/fcpmvkSAAnDhjJw7n8Z9OknJI47GLHZ9igjMymBEY4g5b88keDc/0IsRrTWvXYR\nIeXUU8G6f5504okY7vbVbat1XJMmTaKyspKXXjL/ZqPRKDfccANTp04lFArRo0cPDMPg5ZdfJmoN\n3ExKSqKsrKy6jNLS0jq307T2Tgf0OCosD7LLF8DnD7d1VfbJlZSMYQVol8eLrcaANcNK2GI4HDi6\ndcORnV3vvVPD6yHrD1OxpaaSfOqpOHr12vtYBx7IoE8/YcAH75MxZUq7uGcdCwbxr17Nzj//mYpF\ni/Rsdh2UiPDOO+8wa9YsBg8eTEZGBoZhcMcdd3DNNdcwc+ZMDjroINasWYPH6hUaNWoUNpuNgw46\niOnTp9e7naa1d3pQXJwUlAW5cuZ3fL+tlKkTB3HVMf1JcbcsuUWkoIDg2rU4+vXDnpmJ4XQSCwaJ\n+nwIYEtP36vV3FjhYJDiHVvZvHIF/UaNIdntofCvf8WWnkHGZZdiz8hodFnRigpigQCiFIbX2+4G\nTtUlnJfH+hNORAWDYBgM+vQTHD17tnW1tBZauHAh559/Pu+88w5jx45taXF6Fh2tXdP30OPkx50+\nVmwtBeBvn6/jwsP6keJufnmRggI2XXwJoY0bkYQEBnz4AY5u3fAvXcqW3/4Ow+2m36uvkDBwYLPK\ndyQkEI1E2bBsMd+9NxuXN4nzpz1Mgtdb/XhZpKCAaHk5RqIHe2YGYhjEwmEi23fgX7EC98FjcXTv\njthshNavp+Dvf8c5cBBZf5ja7gdSqWjUDOYAsRgxv79tK6S1iiOPPJJNmza1dTU0bb/QAT1O+qYn\nYjOEaExVv24JFQoT2mgOrlXBIKHcTRhuN7sefQwVDBINBil49jl6PnA/YrejolHC27ZR/sU8Eg8/\nDGe/fvtsKe9c9xNbVn8PQGVpCcGAH1dyMmAG881XXEHw57XY0tPp//YsHD16EC0qYsMZZ6D8foyU\nFAa8NweUYsuVV6HCYfzfryTt3HMIbd6MPTUVW2Zmu+hir83m9ZJ9110Uv/oqSccf36QeCU3TtPZA\nB/Q46ZaUwMfXjufHnT7G5aSTldSytKHidpF86qn43n8fR79+uIYMRhISSDjgAAI/mHNcuMeMqZ7p\nLVJYyMazzyFWWgoOB4M+/hijR/cGjzFw3OF8+59ZlBcVMuyoY3G6dncpRIqKCf68FoBoURGVi5eQ\n8stTiZaWoqzWbKy0FBUIgM2GCpvjBjKmTKHwxRn4/vMfEKHvzBl4Dj20RZ9FPNiSk0n99a9IPulE\nxO3GZo0b0DRN6yh0QI8Tt9POwG5eBnZrndaoPS2N7Dtup9v11yFOZ/UUrN2uvw7v+PEYSV5cw4fv\n3iEcNoO59TrqK8XwejA8nnpnaEvOzOLCB/9CLBzG4XLhTkquXmdLTcHwJBKrqAQREoYNNeuVkUHi\nkUdSuXAhyaecjOFNQmwGmb+/hoKnnyFh8CBKqh4jUoqKhQvbZUAHMFyuDnG/X9M0rS56UFw7ForE\nEAGHrekPI0RKSyl+6WWKX30Vz7HjSb/0UnY9+hhZf5iKa+RIDGfTBuipcJjwjh2UL/iKxDGjcfTt\nW/3seKSoGBUJmxca1qxv0bIy8z60YVD+6WfsnDYNIzmZnDf+TUL//g0dStPiJhKOEawwe49cXjs2\ne5MGkepBcVq7pgN6O5XnC/Dwf9eQYDO4/oQhZCU1veUYLS8n5vcT9fnIPetslN+PuFwM/Hgujm7d\n4lDrBupRMz1pM0fia1pLqJhi+9oS5vxtOYYIZ1w/huz+KU0pQgd0rV3TXe6twF8eIhZVuBLt2Bwt\nD1ZlgTC3zV7J52vMzGhRpbj39JEkNLFsm9eLzeslvH179X1usRmwn3NYV9VD09pSKBBh8Ye5xCKK\nGIolczdxwhUjsDv1BabWOeiJZVqoojTIR8+s4q0HF7NtbSmRcMtnlYrFFP4a5ZQHI7Qk0aizXw7Z\nd91J0gnH0/fll6u7xTWtK7E7bfQ+YPec/X2Hp2Oz669ArfPQXe4tUBYIU1QUYNeGUr5/dyMicO6d\nh+JJadmIdoDNRZXc+NYKHDbhsbMPokdLHmIHVCyGCocxElpeN03rqALlYUoL/BiGkJThwuVxNGV3\n3eWutWtx7XIXkeuAqwAFrAQuB3oA/wYygCXAxUqpUDzrEQ+llSFmfp3L0/M2MLZvKvf9cRRLXl+L\n0cLnzav0TU/k2YsPxhBaPMMcgBgGooO51sW5vA5c3iYFcU3rMOLW3yQivYA/AuOUUiMBG3Ae8DAw\nXSk1CCgGroxXHeKpPBjhiU/W4g9H+Wp9IWuKfZz6+5G4k1oefKukJTpbJZhrLROJxPCXhQiHdJIO\nTdPar3jfQLIDbhGxA4nADuA4oCq/4UzgjDjXIS7sNgNPjcE0PVwhXJQ1sIfWEQX9YX5etJM5Ty7n\n+8+2EKho/4l2NE3rmuLW5a6U2iYijwGbAT/wMWYXe4lSKmJtthXYOx1XB5DucTL7N+N4ZdFWju6T\nQP+ypcCEtq6W1spClRG+eHkNAAVbyhkwJqup9101TdP2i3h2uacBpwP9gZ6ABzipCftfLSKLRWRx\nfn5+nGrZfA6bwdB0O/eOLuHE8KekDDoMvFlxO16koIBw3i6iPl/cjqHtTQzBsFvjIgRsDj0qWtO0\n9imeg+ImAxuVUvkAIjIbOApIFRG71UrvDWyra2el1HPAc2COco9jPZvPnQoDJkD/Y+P6bHdo+3Y2\nXXQxke3bSb/0EjJ/9zts+tGz/cLlcXDm9WNZPX8bgw/J1q1zTdParXg2NzYDh4tIoogIMAn4AfgC\nOMva5lLgP3Gsw/7RgmAejdX9hHllKMKOUj/FlSGKXpxBZPt2AIpmvkS0vLzpx6msJJKf36x9uzK7\n00b3ASlMvHg4fQ/IwOnSczFpmtY+xS2gK6UWYQ5+W4r5yJqB2eK+BbheRNZhPrr2r3jVoT2rCEZY\nuK6AG978ngXrCqgIRqrXRWOKbzcWcfTDX3Dr299j9OhRvU6cTsTRtFZipLSUohkz2Xj2OeT/5a9E\niotb7Ty6itZ6HFHTNC1e4trcUErdA9xTa/EGoH2m29qPSv1hLn7hW6IxxZwV21hwy3F4EsxfR0Uw\nwvPzNxCNKT77cRc3X3486UWFBH/6mczf/bbJ3e0xXxkFTz6Js38OlUuWECkowJ6Wts/92ps8X4C3\nl2zFH45y3iF96Z6cgK0ZiWs0TdM6I91/2EbC0RjRmDk0IKYgFN3d9e522jh+eDZfrSskElMsK1Wc\n8cc/IeEQRmIi0sQufnE68Dz4CLm9h1JUGSY5qycdLUloflmAM//xFdtLAwDMXJjLJ9cfS3ZyRzsT\nTdO0+NABvY2kuh3cfspwZi3Zwq/G9ibVvbsb3WEzOGNML44clIkhkOV1YXc6wNm8AVm2tDSW9DmI\n62atBOCMHSHuPWMkSa6OM8ArzxesDuYAvkCEZVtKOGlE9zaslaZpWvuhA3obSUl0cvERffnV2F54\nnHbctTI+pSY6SU1snVniDKeT5dt3T3rzww4fwUiMpFYpff9Ice998dEzRbfONU3TqnTpG5D5ZQHe\nXbaNlVtLKAu0bAYwfyhCONq0nGhuh51Mb8JewTwerjy6P73T3HicNqadNqLOANmeJbsd3HjCEBw2\nwRC46LC+9E5LbOtqaZqmtRtdNttaYXmQy2d8x/dbSwF495qjGN236c92R2OK9fnlPDr3J3IyPPz2\n2AFkeNtnEpT8siAKRarbibMDpo2sCEYoC0RQKDxOO8kd7KJE6/D0ow5au9Zlu9yjSvHTzt3d0Gt2\n+poV0Asrgpz77NcUV5ot/DSPg2smDGq1eramrKT2eaHRWJ4Ee/WTAJqmadqeOl4zrZV4nHamnTYC\nuyEM7uZl4rBu9W4biynyy4Lk+QL4a2fcUmbmtSoFZcF4VVnTNE3T6tVlmzueBDu/PKgnk4Z1wzCE\nzAa6yXMLKzjrma8p9Yd58vwxTBrWDZfDvO/tddn52/ljuOOdVfRKc3P1+IF77BuLRQmUl2Oz2Unw\neFr9PCIFBahwGHG5OuSz5ZqmaVrr6LIBHcCbYMe7jy5cpRT/nL+BoooQAA9++COH5qRXB/REp50J\nQ7vx0bXHYBPZ4/55NBIhb8NaPnvhGbzpGRw/ZSretPRWq38kP59Nl15GaMMGkk48ge733IM9vfXK\nB/P8K33muScmO5v8DLymaZq2f3TZLvfGEhHG5ewOkmeO7okroigrqKBi8w7KvpyPvayUbkmuvQbD\nBcp8zLrvLnZtXM+GJd+y8M1XiUajtQ/RbP4V3xPasAGAsrkfEyuvaLWyq5TkVfLOY0uZ/ehSSvIq\nW718TdM0rXV06RZ6Yx03rBuvTzmMimCUsele3rj3W4KVEY7+9QCGjh5CMBCjYH0JLq8Td7KTBLf5\nsSrMLvcqkXAIVAxoncfUnP0HOqT2AAAgAElEQVRzzMQwSmGkpCCu1h30Fg5GWPj2Okrz/QB89fY6\nTrhyhE5Qomma1g7pb+ZGSE10csTATAC++c96gpXmILglH29hUG8n9uR0Pn4hn7LCAL/4/ShyDjS3\ndXm8nH7jnXzy3N/xpKVxzPmXYrO33qNW9u7dyXnrTfzLluE99ljsGRmtVjaAYTNI7e6BlYUApGYn\nYnTAx900TdO6gi77HHpzbfu5mHefWAbAwNFpTBixFGf+d3xZ+QdWL8hjyGHdmXTpMAzDDHyRcJhg\nRRli2EhMTqmzzIpghPJghEg0RoZdEV78LRXffkvaeefh7NMHMRoXRKM+H5WLF1O5eAlp552Lo0+f\nFt/z9peFyLUCes6BGbiTWmf2uiqxaIyyoiBbfiikx6BUkrPcOPbDRDua1gx6AInWrukWehNl9Uni\n/LsPoTK/gAx3Ia637yFyxHUECmKIIQw/snt1MAewOxzYU+sfqBYIR9lZGuDZLzewYksJN0wexJAv\nF+B//TV8/5lD//+8iyMrq1F1C23ewtZrfg+A7/336D97NvbMzBadrzvJyfAje+x7w2byl4V584Hv\nCPkjGIZwwZ8PJyXTHbfjaZqmdVY6oDeR020n3Z1EekoAlsyGE+5HhpzCoUMTOeqswbgS9+xSjxQU\noJTClpSE4dp77vHKYJg1O328uXgLANe8vpwvzjsHXn+NaGkpNKEHJVpUtPt1cQkq1rSpaNtCOBQl\n5DdvYcRiirLCQKcO6BWlJcQiEezOBNxJHWk2fU3T2jsd0JvLkwXjbwDMIW7pdXw3h7ZvZ/NllxMp\nKKD3X/9C4uGHYzj2DPgJdhuZNWZw87rs2NxunP1zyLr2OmxN+NJ3jRxByhmn4/9+Jd1uuhFbcnJz\nzmy/SnDbyTkwg9yVhWT08pLeo/Wf1W8vKkqKmXXfnRRs2cRBx5/CUederIO6pmmtRt9DjwN/mY9Q\nIID/5Vcofu55AJw5OfR75eU6u8B3+QJ8m1vE1+sLuezIHHI8BhLwYyQlYSQ0beR6tKwMFQxiJCcj\nhkE4L4/Ajz/iHjECe3Z2o+/HN1elL8jqBdtxe50MHJPVqHvu/vIQkVAMm90gMbl179G3J1tWr+TN\nP99W/f7qp2aQlNGyWyLaftVp7qGLyGnAAUqph9q6Llrr0S30VlbpK+XjZ56k0lfC5EPGVy93Dh1K\nzAqmxZUhwpEYSS47bqedbskuTh3Vk1NH9dxdkLd5LVVbUhJYrb7wrl1sPP0MYuXl2FJT6T9nDo5u\njbsf3xxBf4R5r/7ExhUFAERCUUZP7rvP/dzezhvEa0rJ7o7dmUAkFCSjd18Mu/7vp7WcmCNfRSnV\n6HtsSqk5wJz41UprC/obpRXFolFW/+8z1i9ZBMD2cYfT+5mniBYU4hg5gopQAF95gD/9eznrdpVz\n+ynDOX54NolxSjgSKy8nVl4OQLSkBBXwx+U41ceLxqgsDVW/LysMoJTq0LPLqZiisixENBzD4bK1\n6OLDk5LK5dOfpiRvJxm9+uBJaXoyIE0DEJEcYC6wCDgYeEREfgskAOuBy5VS5SJyCvAEUAF8BQxQ\nSp0qIpcB45RSU62yXgAygXxr380iMgPwAeOA7sDNSqlZ++sctabTDxW3In+Zj6Uf/qf6/Wevz2TR\n6uWUH3YMs7ZE+bFEke8L8NW6QvJ8Qa57Yzm+QKSBElvGlpKK5+ijAUg64XgMrzduxwJweRxMvHgY\n6T099BiUypgT+3boYA5QVhzg3/d+y8t3fs2iORsJVISbXZbN4SA5sxt9R4zCk6rn3ddabDDwFHAs\ncCUwWSk1FlgMXC8iLuBZ4GSl1MFAfd1zfwNmKqVGAa8CT9ZY1wM4GjgV0N3z7ZxuodehJa2yipLi\n6teGzcbQU8/ltOeXURGKApt45qKxHJKTxne5xbgdNow4xjt7Rjo9H3kEFQkjDkfck7eICOk9PJx+\n7WjEkE7Rlb51TTGBcjOIr56/jUN+kdO2FdK03TYppb4RkVOBA4CvrAtoJ/A1MAzYoJTaaG3/OnB1\nHeUcAfzKev0y8EiNde9aXfk/iEh2HM5Ba0U6oNehvDjIWw99h78szAFH9+SIMweSkGhnR2mA+Wvz\nGdM3jT5pbtzOPT8+w2ajx6AhbP95DQDu5BQ2F1Zawdz0yQ95XHFUf5JcDq6bPIQ0T3yDnj19/7YE\nxRASkzt23vWaegxMwbALsYiiz/B0DFvH7nHQOpWq5A0CfKKUOr/mShEZ3QrHqJkPWv/xt3M6oNdh\n29pi/GVmq+yHBds59Jf9yS8PcuZTX5HnC2I3hHk3TaB3rYDuTkpm/IVX8O97bgagsrSEAdnJeBPs\n1TnTTx7ZgwlDsxg/JAtPnO6da60nKcPFxfceQaUvRFK6q1P0OmidzjfAP0RkkFJqnYh4gF7AT8AA\nEclRSuUC59az/0LgPMzW+YXA/P1QZy0OdESpQ3ZOcnWrrNeQVAybEI3GyPOZF6uRmGJXWZDeaYl7\n7ZvVL4czb7mHz154Gl/+Lmxl5bx9+WF8taGQYdlJeHwRYqEYHrf+6DsCu8OGN82GN23vSYE0rT1Q\nSuVbg9xeF5Gq7rE7lVI/i8g1wH9FpAL4rp4i/gC8KCI3YQ2Ki3ultbjQz6HXIRKO4i8L4/eF8Ga4\nSExy4vOHeenrXJ6at54jBmTwyFmj9kqXqqJRIoWFqHAYlZBAQEUxDC+zH19OUpqLitIQ3vQETv7N\ngbg8rZekJd5CkRil/hAJdhvJ7o5Tb01rZR2uy1lEvNZodwH+AaxVSk1v63pp8aEDehOUBcL4Q1Ec\nNqPOe9+hzZvJPedcoiUlJE+5Gu+ll+FJTmbrT8V88q/VON12fvnH0R1qNjR/OMKCtQXc98GPjOqV\nwrTTRux1IaNpXURHDOjXAZdiDpRbBkxRSlW2ba20eNEBvR6R/HwqFi7EOWAAzpycfU7BGghHKd5Z\nQGTHDiJPPk7oxx+QV94mq29Pkhw2gtZ85YnJzlZ5lCsWDuMvLUGJYHM6cSfFZ5rXXb4ARz/8BaGo\nOWfFPy8dx+TherCr1iV1uICudS36OfQ6RIqKKXrtNcq+mMemCy8ilJvb4PahSJSv1xcy4dmlnDE3\nn8Ad9+E9/Qw2loSIxhR2pw1PSgKelITWCeahEJUF+fz3mb/y7DWX8ek//0Glr7TF5dZFRMiqMdd8\ndpJunWuaprVHOqDXochI4Nl+E3lz8hUkz3iV4IYNDW5f6g9z95xVBCMxCitCPLmkAHXVNQwY0IOM\nOIyKjvp8lGzZTO7K5QD8/M1X+Mt8rX4cgKykBN74zeH8adJgZl5xKH0zOs7tAk3TtK5ED7WupTwQ\n5q73fmDu6jwAQkf15caJE/e5X06Ghy1F5tSqg7p5cSV56OVtWYs8WlqKUgp76p5ThIoInvR0xDBQ\nsRg2hwOne+8R962ld1oi1x0/JG7la5qmaS2nA3otgUCUUv/u6T2LgjHw7HvK1OsmD2F0n1SS3Q5y\nMjysz68gM2nPR538ZSEqfCFciXZcHgd2p63e8sI7drL99ttR4TA9H3wAZ58+1evsGRm4o1HOu+Ne\ncletYPDhR+P26jScmqZpXZkO6DVUloVY9s567j5+GHd+9ANup43rjx+K3dbwnQmn3eC5+evxh2KE\nIjGWbynm8xsn7LFNoCLMl2/8zLrFuzDswjm3jiMty1lnetSY30/eQw9S+fXXAOy48y56P/lXbCkp\n1du4unWjZ7du9Bx5UJ11ihSXoCJhbF4vhtvdxE9C0zQNRGShUurItq6H1jg6oNcQDcX4eVEeBVvK\nuemoPnTvn0yaZ98fUYrbySOnDWfd5gIW5QX4v9NGkJ64573zaCRGrpVWNBZRbF22hcQBCtfQoUjt\nNJqGgZG4+161kegGW/2t+doihYVsu+kmAqt/IPvmm0g66SRsHn3vW9O0xhERu1IqooN5xxK3QXEi\nMlREltf48YnItSIyTUS21Vh+Srzq0FQ2h0FmHy9F2ytY8c4GFPDeih2UBRrOsBUpLiYw8wXSH7yD\niz3FDEp1kODYMwDbHQYjxvcCICHRTu+BXnY9/gTRsrK9yjMSEuh2w/WknHUWyaedRvdp/4fN6yWS\nn4/vw48IrF1LtKJir/2q+JevoHLh18RKS9lx192oSv3Yqaa1pZxbP7gg59YPcnNu/SBm/XtBS8sU\nkXdFZImIrBaRq61l5SLyqLXsUxE5VETmicgGETnN2sZmbfOdiHwvIr+xlk8QkfkiMgf4oaq8Gse7\nRURWisgKEXnIWjbFKmeFiLwtIvEbzKPt0355Dl1EbMA24DDMaQXLlVKPNXb//fkceqUvRHF+JSGH\n8Mi8tXz0Qx5f3XIcvdLq77auXLqUTRdcCIA4nQz89BMc3brttV2gIkygyIcqKabk0ftwDR5Etxuu\nx5ZY9/+BWDgMSmE4nUQKC9l06WWE1q0Dw2DAe3NIGDiwzv0CP/3ExtPPAMDRpw85/34de0ZGUz8K\nTdP21KwRrlbwfh6o+R+9EpiS+9AvXmt2ZUTSlVJFIuLGnNb1WKAAOEUp9ZGIvAN4gF9gZmObqZQa\nbQX/bkqp+6ypYr8Czgb6AR8AI6sytIlIuVLKKyInA3dhpmitrHHsDKVUobXtfUCeUupvzT0nrWX2\nV5f7JGC9UmpTe8yPXekrZf2SRfh9Pg44ZiK2zEROeOQLIjHFEQMzcDsEynaCIxFce0/gIs7d98HF\n4aC+//cujwN72EZwZzGZV1yO+6BR2BITKfQXsmzXMnp5e9E7qTdJTnOAm+HYPc2qikYJrV9vvonF\nCOVuqjegO3r2ot/rrxNYvZqkyZN0MNe0tvUAewZzrPcPAM0O6MAfReRM63UfzPzoIeC/1rKVQFAp\nFRaRlUCOtfwEYJSInGW9T6mx77c10q3WNBl4sWqWOaVUkbV8pBXIUwEvMLcF56O10P4K6Odh5uKt\nMlVELgEWAzcopYpr72BdRV4N0Ldv37hVLBwMsmj2Gyz9aA4AP3z5Ob++835eufIwHDZhc5Gf95dv\n4ZQ+YTJ/egqO/hMk7hkgnX160+O+eyn/aiGZU67CnpZa16EAsKemYj/kkOr3JYESbltwG19vNwfA\nvXTyS4zpNmav/YzERLrddBO7Hn8c1/BhuA8aVe8xbEleEseMJnFMa2RP1DSther7Amv2F5uITMAM\nskdYLeZ5gAsIq93drjGs9KdKqZiIVH3fC/AHpdTcOsqs/15e3WYAZyilVlgJYiY09Vy01hP3iWVE\nxAmcBrxlLXoaGAiMBnYAj9e1n1LqOaXUOKXUuKysrLjVLxIMVOcvByjcuhlBcdiADJZvLeXaN5Zz\n9/s/M21+OWWOdPDvde2BLSWF1LPOoucjD+M64ACrld444ViYNYW7j/9j4Y91bmfzekk952wGzfuC\nPs89hz0zswlnqWlaG9rcxOWNkQIUW8F8GHB4E/adC/xORBwAIjLESrnakE+Ay6vukYtIurU8Cdhh\nlXVhk85Aa3X7Y6a4k4GlSqk8AKVUnlIqqpSKYd5XOnQ/1KFeTncio088tfr9sKOOxWa3E4spft65\ne8DaxqIgocRscNT/d280IZBX8Tq93HzozdgNOznJOUzqO6nebW1eL46sLOzp6fVuo2lau3M75j3z\nmiqt5c31X8AuIj8CD2HmRG+sf2IOelsqIquAZ9lHb61S6r/AHGCxiCwHbrRW3QUswrwPv6ae3bX9\nJO6D4kTk38BcpdSL1vseSqkd1uvrgMOUUuc1VEa8B8UFKyvwl/kIB4N4UtNITDaf995aVMnlM77D\nFwjz3AWjGJkWw+ZJA3vrzmfuD/spj5RjYJDh1ve7Na2davYAIGtg3AOY3eybgdtbMiBO0+oS14Bu\ndeNsBgYopUqtZS9jdrcrIBf4TVWAr09bpk8tKAsSDYWwf/ExNkPwTjyuwXvk+1tRoIiYipGWkIbN\naPyz6pqmNVn7G9GraTXEdVCcUqoCyKi17OJ4HrO1pYYr2PLb3xJYuRKAXk88QfIpJ8flWNGYoqQy\nhNNukOTad/d9XkUe1867lpJACY8e+yjD04froK5pmtZF6WxrQKG/kNlrZ7Nw29cUVtYa9BaNEiks\nrH4b3pUXlzpEozFWby/lshe/4/bZKykoD+5zn1d+fIVVBavYWr6VaQunURqKTwpVTdM0rf3r8gG9\nJFjCnV/dyT0L7+E3n17N19sWk18WqF5vS0uj1xOP4xw4EM+x40k59dQGSmu+wsoQv3tlKSu3lfLe\n9zuYu3rnPvfpn9K/+nWfpD44jKYPytM0TdM6hy4/l3skFiG3NLf6/dqSdazZ0Ierxw8k2e1A7Hbc\nI0fSb+YMxOHYI0FKo49RVISKRjFcLmxJdWdFM0RITXSwrcRMwVp7Lvi6HNfnOLzHeinwF3BizonV\nE9JomqZpXU+Xb6GnOFO454h7SHelMzx9OBN7ncLGggpqTmgndjv2zMzmBfPCQrb+4Y+smzCRwhde\nJFpad7d4pjeB5y8Zx+VH5vDAmSM5fMC+R7unulI5IecELhh+gR4dr2ma1sXtl7ncWyreo9xD0RAF\nlcVsLPDz8ffl/G7CQLqntE7K0fKFX7Pliiuq3w/64nMcPXq0Stmapu1XepS71q51rS738nzYtdqc\nkz19AHjM2dacNic9k7LJcEcZ2xvcjtYbKe7s1RMMA2Ix7NnZe6dKjZNwJEYoGsOT0LV+xZqmNY41\n1WtIKbXQej8DeF8pNSsOx/on8IRS6ofWLlvbrdN+21eW+dj242pULEbvA0aSaAvDGxfBFmtCpUOu\ngsnTIGH3fecEe+s/8mXPyqL/O7Pxr1yJ96ijsMdxGtsqRRUhnp+/gZ92lnHbycMYmOXFMHTjQtPa\nzLSUvSaWYVppW08sMwEoBxbG+0BKqavifQytk95Dj8VifP/xh8x5/H7em/4gi9+bTSQa3R3MAZbO\nhNCeszH6QxG2FleyZFNxox4bawwjMRHX0KGknXXWfutq/2pdAU/PW8/na3Zx+YzvKKxonXPRNK0Z\nzGD+PGZ6UrH+fd5a3iwi4hGRD6w85KtE5FwRmSQiy6yc5S9YqVERkVwRybRej7Pyo+cAvwWuE5Hl\nInKMVfR4EVlo5U8/q86Dm+V4ReQzEVlqHe/0+uplLZ8nIuOs10+LyGIrZ/v/Nfcz0PbWKVvosUiY\nvNz11e93bdpINGZgT0wHfwm+4x6mLOcE7FEvGdEYdpt5XbO5yM8vnpxPJKY4rH86T190MOmefY82\n1zRNa0A80qeeBGxXSv0CQERSgFXAJKXUzyLyEvA74C917ayUyhWRZ4BypdRjVhlXAj2Ao4FhmHO3\n19f9HgDOVEr5rIuFb0RkTj31qu0OK5e6DfhMREYppb5vzoeg7alTttDtzgSOPu8SkjIy8aSlc+yF\nl+P0psEVc6n4xdO8Gjqao/6xmknTF5BbuDtb4He5RURi5iDBRRuLiERjbXUKLXLUoEymThzE5OHd\nmHH5oWR6W3fueU3TmqTV06di5jo/XkQetlrXOcBGpdTP1vqZwPhmlPuuUipm3evObmA7AR4Qke+B\nT4Fe1vZ71Ktqyu9azhGRpcAyYARwQDPqqdWhU7bQAdJ79OLCB6ajlCIxJQUxbJA5hApHb174m3nL\nqDwY4T/Lt3PDCUMBGD8ki9REByWVYc47pA9Oe8e83kn3OPnT5MGEIzES9aA4TWtrmzG72eta3ixW\nK3wscApwH/B5A5tH2N14c+2j6Jr35xoaeHMhkAUcrJQKi0gu4KpdLxH5TCn15+oCRfpjZmo7RClV\nbA3E21edtEbqtN/2Yhh4UtP2Wu5yOhg/JJO3l27DEDh2yO5Bar1S3cy9djzBSIykBDupjZjcpb1y\n2Awcto55QaJpncztmPfQa3a7tyh9qoj0BIqUUq+ISAkwFcgRkUFKqXXAxcD/rM1zgYOBj4Bf1yim\nDEhuZhVSgF1WMJ+IdcFSR71qD4ZLBiqAUhHJxkyvPa+ZddBq6bQBvT7Jbgd3/GI4lx6ZQ1qik7TE\n3dOl2gwhO7n+i8WK0iAhfwSn205ishMRPXJc07R9mFb6GtNSoHVHuR8IPCoiMSCMeb88BXhLROzA\nd8Az1rb/B/xLRO5lz+D5HjDLGtD2hyYe/1XgPRFZCSxmdy70uupVTSm1QkSWWdtvwcyjrrWSLj2x\njIrFiAUCGG53dXAu9YcJhKPYDSGjxr3nipIgbz+yhLKiAO4kB2ffdghJ6bqnSNO6EH0Fr7VrXbZP\nNurzUfbJJ5Rv3cJPX37OjrVr8JX6+Of8Dfz66YX8b9lGygt3Z17L31JGWZGZtMVfFmbbT8X1Fb3X\ncaI+X1zOQdM0TdOqdIku90gkRqS4GEPFcKSnIXY70ZISKgsLWPDdfDatXA7Ar++6nxVbA/z79P7E\nHnuAIhXD+ec/4+zVi5Qst3l9bnVopPfw7PO44bw8dtx5FyoSocd995mzxmmapnUQInIg8HKtxUGl\n1GFtUR+tYZ0+oIeDESL5Bey64xYiu3bR48EHcY8ciYrFMLKyKPhybvW2BbkbuergMcQe+TMVC82R\n8Dtuu41eTz6JJ9XLmdePJX+rj/6jkrEZUQLlZbi8dWc4iwWD7HrkUSrmzwdg57Rp9Hri8XqzrWma\nprU3SqmVwOi2rofWOJ2+yz0aUZS89RaVi74ltDGX7TfeRLS4BHt6OgkeDxPPvQS7M4GM3n0ZesTR\njO2djIpGqvdX1rPoTpednoNTSTswjZeXbGXZ1lJWffstlaUldR/YMBDP7kGthtttzune1PpXVhLJ\nzydSVNTkfTVN07Suo9O30JVS2LK6Vb+3Z2aCzcCWnEzyoYfhqqjgytFjzcfcUlIBcN5/P9tvvgVU\njJ4PPoA91VyeV1LB2c8tIs8XRATmXHkQW9esJmvkIfjDUdxOG2nWo26Gw0G3P/4Rw+4gFgqR9ac/\nYvPsu5u+pmhFBb4PPiDvwYdIGDiQPk8/tV/mgtc0TdM6nk4f0F0eB8YJkxFiRLdvJf2Si7GnpwNm\nnvOElBRqz6Pm7N2b3v/4OwD2tN3PsseAXWXmvAtKwc5SPxnFRcyYu4bXvt3CeYf04ZaTh1UHdXtm\nJtm334YCjGZkWYtVVLBz2v9BLEZg1SrK5s0j7eyzm1yOpmma1vl1+oAuIiR0yyDrovObtF/NQF7F\n47Rz/y+HM/2LDYztnUw/DyTnHMuZvgjjh3Tjnjmr+NPkwXse325v9rMuYhg4evQgvG0bAM5+dU02\npWmapmldIKATLIdACUTDKHcqykjESGje3ObJiQmcemA24welESkvxZOWyd0f/MRHq3YyslcyT194\ncKvOzmbPzKTfKy9T+t57uA44ANfQoa1WtqZpXYOITKNGEpZWLjsXGKeUKmjtsluDiGQB7wNO4I9K\nqfm11neqPO2dO6ArBbkL4N/ng4qhJt6DL687zgFDcI08EMPV9MCenOQhOckD3dLYWlzJR6t2ArBq\nmw+n3Wj1RCiOHj3IvPrqVi1T07T968CZB+6VD33lpSvbOh96mxIRu1Iqsu8tW2QSsLKufOwiYuts\nedo79yj3cCUseRGUOVLd+P5VbC4bmy+/gmh9o9ObIMFuIyfDHMme7LaTlaSzmmmaticrmO+VD91a\n3iz15EPfK+95jV0OEpGvRWStiExpoNweIvKllSN9VVWe9H3kMP9Djbzow6ztD7WOt8zKrz7UWn6Z\niMwRkc8xU6fWl1c9R0R+FJHnrWN+LCLuBuo9RUS+sz6Pt0UkUURGA48Ap1vn4xaRchF5XERWAEfU\nytN+klWPFSLyWUPn0V512hZ6yF9JyB9AJj5Iom8nsnM5sZzJBH7eiIpGzdZ7C2UlJfDmb49gU0El\nfdLdZMQxd3rU54NYDCMlRc8hr2kdy/7Kh/5wA9uPAg4HPMAyEflAKbW9ju0uAOYqpe638pVX1buh\nHOYFSqmxInINZia1qzDnaj9GKRURkcnWuVYlhhkLjLLKs1N3XnWAwcD5SqkpIvKmtf8r9ZzfbKXU\n89ZncR9wpVLqbyJyN+YtganWOg+wSCl1g/Ue698szIuu8UqpjSKSbpXb0Hm0O50yoIcCfn5c8D8+\n/ddTeFLTOH/aayRTQsQXpeKtx+n1179gJDc3ydCeuiW56JYU3zndQ9u2sfOee4gFgnS/8w4SBg9G\nbLa4HlPTtFYTr3zoj4vIw8D7Sqn5+7jQ/49Syg/4ReQL4FDg3Tq2+w54QUQcmLnRl1vLzxGRqzFj\nRg/MHOZVAX229e8S4FfW6xRgpogMxpxfc3cWLPhEKVU1sUZVXvXxmA8SVeVVBzO/e9Xxl2DmfK/P\nSCuQpwJeYG4920WBt+tYfjjwpVJqI0CN+jV0Hu1Op+xyD/n9/O/lf4FSVBQX8f0Xn0L2AQT75ND9\nqb+RNGECtsTaF8ztU6SwkK3X/J6KBV/hX7yYTRdfoieZ0bSOpb685y3Kh47Z0l2JmXf8bhrOe167\nS7LOLkql1JfAeGAbMENELqmRw3ySUmoU8EGt8qtyqEfZ3Ui8F/hCKTUS+GWt7StqvK6ZV300kFdj\n25q52WuWXZcZwFSl1IH8f3t3Hh5VdT5w/Ptmsu8riygQV0BFhRG1LnWXqnWvS90tUq1WrdXWpb+q\nra222lK17nsrti4VpWpRXFCrFQ2CLAICArJDWJIQsuf9/XFOYAhZJpOZJAzv53nmmbnnLufMDeTN\nPffc87rscq1dZVWrakMbx2mure/R48RlQE8IBCjYZcsfvwP2O4Cv13/NDf+9kUfmPsWGho3d2LqO\n0cZG6let2rzcWFEBDR3592iM6Wa34PKfh4pGPvRNqvoccA8uuC/C5T2HbbuFTxWRVBEpAI7EXYm3\ndNwBwCrfff2EP25LOczbk4P7owDgkna22yavegSygBW+Z+H8CPb/FDjC//FCSJd7uN+jR4jLLvf0\n7BxOu/FXLCj5jJxefUjt35uL3jiHtdVr+WT5J+xbtC/H9D+GTWVlrPpmHpn5hWQXFZGS3rGZ3LpC\nICODwmuuYdVvfgNA7snQAUMAACAASURBVHnnIWmtjg0xxvQwMy6e8fy+z+4L0R3l3lLe8TRaznsO\nrnv8faAQ+G0r98/BBfsbRaQO2Ahc5O8pdzSH+R9xXdW/wl3Rt6a1vOod9X/AZGCNf+9Q0gxVXeNv\nKbwiIgnAauA4wv8ePcIOkQ+9dFMp57xxDqs3rQbg/qPu58DcA3j38QeZ/9n/kIQELrnrPrJzcmlI\nDFCxYT2VG9ZT2H/g5ulgu1NDRYUbFFdfT0JOzuapaI0xXcpGo5oeLS6v0JvLT8vn0eMe5cGpD7Jb\n7m7UNNRQWV3ByvlfA3DK6Guoe/U1lvz3Y3LOO5d51RV8Mv5lehXvxhk33xGVoF5fWsr6F14gMb+A\nrBNOIDF/25noWhPIyrIsbcYYY9oUl/fQm0uQBPJT8inOKWZJxRJ++dEvmV05j+9ecBkZefnkJaWw\n7pFHqZ45k1W3/opB+7nbUKsXLqC+tqado7evobyc5bf+itIH/srKO+6gbPxrnT6mMcZESkT29c9m\nh74md3e72iMiD7bQ7ku7u109Rcyu0P0D+C+EFO0K/Br4my8fiBvEcbaqro9VO5qkJKaQnZzN4wsf\nJzs5m+KC3ejbtxd9dt+LxGUht5NE3AvILupNYlLnny3XujrqV6/evNw0N7sxxnSH7TXPuape1d1t\n6Mm65B66n4xgGXAQcBWwTlXvFpGbgDxV/WVb+3f2HnqTitoKNtZtJFESyU/Np7Gunjfvv4dBBxxI\n9uyvqfl0Mnnn/5DaPXZjyfy57DHiO2QVFHa6Xm1spObrr1l2/c8J5OTQ7y9jSOrdu/0djTE9id1D\nNz1aVwX044HbVPVQEZkLHKmqK0SkLzBJVducTi9aAb05VWXm+xN5+7EH2Pfwoynee1/6Dx9BSlZ0\nJp3Zqq6GBhrWr4dAoMVMbsaYHs8CuunRumpQ3LnAP/zn3qq6wn9eyZZZgWKmoaGR6o11qEJyWoDk\nFPe1RYQ9RhxC0YCBVJWX03vXPWISzAEkECCxsPNX+8YYY0xLYh7QRSQZOAW4ufk6VVURabGLwD8T\nOBqgf//OzJAIG1Zu4pV7plBX08Cxlw5h1/2LSEx2U6emZmbRJ9NGkBtjjNm+dcUo9+8BX6hq03Rn\nq3xXO/59dUs7qepjqhpU1WBRUVHElTc2KtPe+Zba6gZUYfL4hdRWxzpjnzHGmM4QkVyf8CWSfTdn\nnotCO37jE7P0eF0R0M9jS3c7wHjgYv/5YiCmz3AlJAj99tpyz7rPrtkEkiyxiTGm68weNPiHswcN\nXjR70OBG/x5x6tTO8hnOtge5QIsBvSu/g6r+WlXf6ar6OiOsQXE+tdzluEfNNp9IVb2snf0ycNMc\n7qqqZb6sAHgRNwXiYtxja21mG+nsoLjqyjrWr9xE9cZaeg3IoKG+kuS0NFIzMrdsVFkK9TUgCZCS\nCSnWDW+M2UpEg+J88H6crVOobgIuHzxndsTTv4rIBcA1QDJuutOfAGWqmunXnwWcrKqXiMgzQDVw\nAG7q1juBp3CPE28CRqvqdBG5HdgN2B03TewfQ9KS3gicDaQA41T1tjbadhEuoYsC01X1Qh9HHmFL\nlrnrVPVjX2d/35b+wF9U9X4R+SdwKjAXmIibevW3wHpgkKruKSKvArvgkqbcp6qP+foX4dKmlrbS\nvm32809jPQkEfbufUtUx/ty9rqov+yQ438dNs/sJ8GPtQdOthvtXzmvAR8A7uKw3YVHVSqCgWdla\n4JhwjxENqRlJ9N0th/XLl/HUtVdRW72JI86/lP2OP5HkBGD1LHjj57BiGiQEYK+TYORdkLNzVzbT\nGBOfop4PXUQGA+cAh/rEJg/RflKSnYHvqGqDiDwATFXV00TkaNz8IE3PpW+TOx3YB5effATuD5vx\nInKEz87WvG17A7/ydZWGJDq5Dxijqv8Vkf64FKeD/bpBwFG4OdjnisjDwE3APj4LGyJyJC5ZzD5N\naU6By3xe9TTgcxH5l48x7dlmP9wFaz+fWQ0RaWmK0L+q6m/8+r8DJwP/DqO+LhFuQE9v71nx7cG0\niW9SW+2SHk158zWGHH4UyXWr4KkToNHfV29sgNnjYflUGPUuZNnz4saYTolFPvRjcJnVPvd50NNo\nZTxSiJdCUocehs/IpqrviUiBiDQ94tNS7vTDgOOBqX6bTFyA3yagA0f7ukr98Zt6YI8FhoTkbc8W\nkaZu0jdUtQaoEZHVtP7002chwRzgGhE53X/exbcpnIDe0n5zgV39HztvAG+3sN9RIvIL3B9k+cAs\nelBAD/ce+usicmJMW9IFdh124ObPA/bdn0AAePc3W4J5qLIlsOijrmucMSZeRT0fOu4q+VlV3d+/\n9lLV29k6z3nz3N2VhKel3OkC3BVS3+6q+mQH25wAHBxyjH6q2pTLOtzc55u/g79iPxY4RFX3w/2x\n0W6+8tb28zOW7ofLVHcFLn1s6H6pwEPAWT7v+uPh1NeVwg3o1+KCepWIlItIhYiUx7JhsdBntz24\ndMyjnPebezjyolGkSh0saWP64nlvuyt2Y4yJXNTzoQPvAmeJSC9w+bubcpmLyGCfAvT0Nvb/CN9F\n7wNcqao2/U5vKXf6W8BlTVfUItKvqe4WvAf8wO8fmlv8beCnTRuJSHtTz1bQdhrUHGC9qm4SkUG4\n2wThaHE/Pyo+QVX/hbtlMKzZfk3Bu9Sfh7PCrK/LhNXlrqpxMUIsJT2DxNRU6nISmV4+m+Ks/hTs\ndjSBGS+1vEPuAHdP3RhjIjR4zuznZw8aDM3yoXdmQJyqfuVzdL/tg3cdblrtm4DXcXnBS3Bd4y25\nHXhKRKbj/ri4OGRdS7nTl/v79v/zXeYbgQtooZtfVWeJyO+AD0SkAXcFfAluAN+Dvs5EXHf9FW18\nx7Ui8rGIzAT+w7b5yCcAV4jIbFx3+aetHSvM/foBT/vzCc3mTlHVDSLyODATNyna52HW12XCnvpV\nRPJw9xk2dzG0NCAiFqI59euaTWs47bXTKK8tJyclh3HfG0vRmKHbbigJcM1UyBu4zarqjRUsnDqF\nFfPnMOzEU8np1YeQ+0LGmPgU9//J/Yjzjap6b3e3xXRcWF3uIjIK99fUW8Ad/v322DUrdlZWrqS8\n1vUsldWUUVq3EQ68fOuNAslw1tOQ0fKENmu+Xcybf72XqRNe58U7bmFT2YZYN9sYY4xpU7ij3K8F\nDgQ+VdWj/H2H38euWbHTN7MvfTP6sqJyBf0y+1GU3huOvhUOuQoW/dc9g77LwZCWA0nNnzRxqiu2\nDB+o3lhBD3oM0RhjIuYH1oXF3yN/t4VVx4T56FhM9fT2xUK4Ab1aVatFBBFJUdU5Pt95j7a2ai1j\nZ48F4PzB51OQVkBhWiHPn/Q85bXlZCdlU5juZwdMy4P84rCO22/w3gw54mhWL/rGDa7LbO02lTHG\nxCcfFHtsTvWe3r5YCDegL/UP2b8KTBSR9bhZ3nqs6vpq7ptyH+MWjAOgtKqUWw+6lZTEFArTCilM\na3ma37KqWjbVNpCYIBRltfxEQnp2Dkdf+mMa6upIycwkENheZlI0xhgTr8Id5d70+MPtfqKBHNxI\nwR6robGB0uots/6trV5LvdaTQsqWjSrXumfQ0/MhkER5VR1PfLSQB96bz855abx8xSH0yUlr8fgp\n6Rlt1l9VUUt9fSOJiQmkZSVH5TsZY4wxrQn70lJEhuFmC1LgY1WtjVmromB9zXquPuBq1lavRRBu\nHnEzGUkhQXjtAhg3GsqXo4ffQHXxCZCQxodz3VMYS9dX8fmi9Xx/v5YDels2VdTy9hMzWTZ3A72L\nsznxyqGkZ1tQN8YYEzvhjnL/NfAsbl72Qtyzer+KZcM6Y0P1BqaunsraqrX8IvgL/njEH9kpc6ct\nG1SWwr9GwdISKF+OvHE9DRtW8MKvb+T+0/cAICkgDOmb3UoNbauqqGXZXDfyfdXCcspLqzr9nYwx\nxpi2hDtT3PnAgap6m8+wczBwYeya1TnJgWTSEtP4ybs/4ZK3LuHW/95KWU3Zlg0aG6B86Vb7SPV6\n6mpqSKou55Urv8P7NxxJv7yOX50DpKQnEkhypzYhQcjIsatzY0zXEpFTROSmVtZtbKX8GZ+lDRGZ\nJCLBWLaxNSKyf1dMNy4it4R8HugnsensMYtEZLKITBWRw1tY/4SIDOlsPS0Jt8t9OW5CmWq/nAIs\ni0WDoiE9KZ3Vm7ZMYLSkYgn1ofO1p+XCYdfDBP9vvWB3qgJ5JKWkklNYxE65eXRGWkYSZ99yIItn\nrmWXwfl2D92YHdyDV7z3Q5rNFHfVI0dHPFNcOFR1PDA+lnXE0P64NKZvxuLg4mYCE9z0u9F+BPsY\nYIaqjmqh3kBL5dES7hV6GTDL//X2NG7quw0icr+I3B+rxnXGcQOOY2jhUPJS8rjj0DvITg7pPk9M\ngf3Og6s/h8veouGi10kuHMAP77yXjE4Gc4BAUoD8vhkccFx/CnfOJDHZpo81Zkflg/njwABcEBkA\nPO7LI+KvJuf438lfi8hYETnWT5U6T0RGiMglIvJXv32xiPxPRGaIyJ0hxxER+auIzBWRd4AW52cX\nkeP9/l+IyEshWdJa2na4iHwgIlNE5C0R6evLLxeRz0XkSxH5l4ik+/IfiMhMX/6hiCQDvwHOEZFp\nInJOK/XcLiJP+Z6Eb0TkmpB11/tjzhSR60LO2VwR+Rsuhj0JpPk6xvpdAyLyuIjMEpG3xaVXbe17\nbvN9xM1P/0fcfPjTRCRNRDaKyJ9E5EvgkNCeDxEZ6c/plyLyri8b4c/1VBH5pCOPiIc19auIXNzW\nelV9NtwKIxHp1K/rqtfR0NhAZmImq6pW8cHSDziwz4EMzB5IeiuTxsRCZV0lZTVlKEp2cjZZyXEx\nNb4xO5qIpn598Ir3FuGCeHOLr3rk6IERNURkIDAfOACXwvNz4EvgR8ApwKW4x4yDqnq1iIwHXlbV\nv4nIVcAfVDVTRM4ArgRG4lKWfgWMUtWXRWQScAOwCHgF+J6qVorIL4GUprzgzdqVBHwAnKqqa3ww\nPkFVLxORgqYJXfwfFatU9QERmQGMVNVlIpLr50y/pKntbZyD23EpXTfnUQf64PK5P4O7NSzAZNy8\n8+uBb3B52j/1x9ioqk0JZ5rOaVBVp4nIi8B4VX2ulfpb+z5btV1EFDhHVV/0y03ndTHwBXCEqi4U\nkXyfoz0b2KSq9SJyLHClqp7Z2nkIFe5ja5sDtrg53XdR1enh7Nud8lNdkp+yTWWM//rfvL743/x5\nyp959dRXKc4JbxKZzlJVJq+YzHXvX4ei/O7Q33Fi8Ykk2rPrxuwoYpEPHWChqs4AEJFZwLuqqj5A\nDmy27aH4/OfA34E/+M9HAP/wedKXi8h7LdRzMDAE+Nj1VJMM/K+VNu0F7IObrwQgAKzw6/bxgS8X\nlzTmLV/+MfCMD6CvhPG9Q7WUR/0wYJyqVgKIyCvA4bjbD4ubgnkrFqrqNP95Ctuex1CtfZ/mGoB/\ntVB+MPBhU373kLzxOcCzIrIH7qmypDbasJVwR7lPEpFscWnwvgAeF5E/h1tJd9pUXssX41aw17Sj\neOTgJ9glaxcWbVjUZdO11jTU8NqC11CfYnj8gvFUNdiod2N2ILHIhw5b5xBvDFlupOWLtUh/6Qkw\nMSSP+RBV/VEb284K2XZfVT3er3sGuNrnEr8Dn+hLVa/ApSvdBZgiPu1qmMLNo96kvZzwHTneM7Tw\nfVpQ7f9gCtdvgfdVdR/g+20cdxvh3kPP8blyzwD+pqoH4RLE92iNDY2UvLmQrz5azvwpq/li7Gp+\nOuhnDEzcnU3lsX+MXlWpb6znzD3OJEESEISz9jyLtMTIRs8bY7ZLsciH3lEfA+f6z+eHlH+Iu1cd\n8Pe6j2ph30+BQ0VkdwARyRCRPVupZy5QJCKH+G2TRGRvvy4LWOG75Te3QUR2U9XJqvprXNrXXWg/\nF3pbPgJO8/e0M3B54T9qZds6355ItPh9OuBT4AgRKYat8sbnsGXQ+SUdOWC4AT3R/7DPxuXa3S6o\nQm31lj+M6moaGJY3nI8fXUpddX0be3ZeozayYMMCrnjnClZVruLNM95kwpkTOKzfYSQmWHe7MTsK\nP5r9ctw9U/Xvl8d6lHsz1wJX+e74fiHl44B5uHvnf6OFrnRVXYMLLP8Ql8v8f8CglirxE46dBfzB\nDwKbBnzHr/4/3P3sj4E5IbvdI26w3kzgE9xYgPeBIW0NimuNqn6Bu3r+zNf3hKpObWXzx4DpIYPi\nOqK17xNuO9cAo4FX/Ll6wa/6I3CXiEylA5O/QfiD4n6Aa/zHqnqliOwK3BPujfrO6kw+9PJ1m3j3\nmTnUVtUz4oc7oyhfvrKKkaP3ienjZGur1jLq7VHM3zAfgGsOuIbLh17ezl7GmB4s7vOhm+1bWFfo\nqvqSqg5V1Sv98jddFcw7a2HDPGqOWUDKKau4ddYNJOU3MmJ0b6ZvnEppVWn7B4hQgiSQmbTlyY7c\nlNyY1WWMMcaEdTnv75c8DPRW1X1EZChwiqre2c6u3aqmvobe6b25ds61rK1ey5CCIQQCAU4edzJ1\njXUUZxfz1MinWs281hl5qXnc+917eXzG4/TL7MexA3r8kANjjAmbiIwDmj8u9EtVbW20d6T1XIq7\nZRDqY1W9Kpr1tFH/g7inBELdp6pPd0X9HRFul/sHwI3Ao6p6gC+b6UfhxVwkXe4bazcyackk3vv2\nPUbvN5rkhGRyUnKYvmY617y/ef4B3jrzra3neY+yRm0kQcIdqmCM6cGsy930aOFGmnRV/axZWWxH\nlXVSeW05t/z3FiZ+O5Ef/PsHvDLvFfJT8xmUP2jz8+kjB44kPTGd2obYjXi3YG6MMaYrhDuCrlRE\ndsM/xyhu8v4Vbe/Sveob6zc/+w1QUVdBozbSO6M3L3//Zeob66lrrONPU/5EckIyo/YdRd/Mvl3e\nzrVVa6msqyQtMY2i9KIur98YY0x8CDegX4Ub3j9IRJYBC4nsubsuk52czQWDL2Ds7LH0y+zHj4f+\nmECCm1O9KL2INZvWcP6b57Omag0Ak1dO5tmRz1KQ1pE5DTpnXdU6fj7p50xZPYW+GX0Ze+JYC+rG\nGGMi0mZ/sIg0DUToq6rHAkXAIFU9TFUXx7x1nZCbmsuV+13Juz94l+dOfG6b++Q1DTWbgznA4vLF\n1DbGfrKZUNUN1UxZPQWAFZUrWFm5skvrN8bsuETkNIliGk8RCUo3JuuSkHSx0iyFqYi8KSJx/6hR\nezd4L/XvDwCoaqWqVsS2SdGTnZJNUXoRBWkF1GyqZNU385nzyYdUblhPWmLaVvO5Dy0cSkogZZtj\nbCovY+P6dVRtjP7XTgmkMLRwKAC90nvRN6Pru/yNMTus03BztEeFqpao6jXtbxkbqjpeVe/2i00p\nTA9Q1Y9U9URV3dBdbesqbY5yF5F/4HLS7gQsCF0FqKoOjW3znM5MLNNk+bw5/ONXNwDQb/A+nHrD\nr9iYUMVbi94iKSGJYwYcs83ja5VlG3h9zB8oXbKIU353Jx+s+x+FaYUc3PdgclOj88fe2qq1bKzd\nSEZSBgVpBfiEBsaYnifi/5x/OufkbfKh//yF1zs1U5yIXABcg0uWMhn4CfBX4EAgDZdd7Ta/7d24\nLGz1wNu4JCiv41JjlwFnquqCFuq4HDebWTIuE9mFqrrJTzZ2G26+8zJVPUJEjgRuUNWTRWQEcB9u\nHvIq4FJVndvK97gENz1rDm4Wu+dU9Q6/7lXcVLCpuEfFHvPlI3HnMwCUquoxTVnOgCdwiVjScFOo\nHgLMxmVAKxWRi3DZzhSYrqoXhnvOe7o276Gr6nki0geXReaUrmlSbNRoHUO/dxJzJr1P6bcLaair\npSiviAuGXNDqPhWla1g6ewYHXnA+98z6C+8vnQTAbYfcxll7nhWVdhWkFXTpfXtjTNfywfxxoCln\n8wDg8T+dczKRBnURGQycAxyqqnUi8hBuXNOtPgVnAHjXzxmyDBcwB/lsbE0pSscDr6vqy21U9Yqq\nPu7rvBOXnvUB4Ne4tKjLWunKngMcHpIC9PdsyfbWkhG4LG2bgM9F5A1VLQEu898nzZf/C9ez/Dgh\naUdDD+RTn/6arVOYNp23vXGJYL7jg/tW+27v2h0Up6orgf26oC1RoaqsqVrDwrKFDMwZSGFqIUsq\nlnDvkkco3L2AC4/4PxpWbSAlvf186Bm5eSQmp5CUmcGyiuWbyxeVLYrhNzDGxJnfsyWYN0n35ZFe\npR8DDMcFOXBXo6uBs0VkNO53e19cl/pXQDXwpIi8TsfycUSa8rSjKUAnhuQWfwWXArUEuEZETvfb\n7ALsgRvL1VLa0XAcDbykqqUR7NvjtRnQReRFVT3bT+gf2jffpV3uHVFaVco5r59DaVUpeSl5vHDy\nC4x6exSrNq0CIDkxhZ8Pu56klPYz0qVl53DxvQ9Svm41t+99Gzd8eCN5qXltXtUbY0wzsciHLsCz\nqnrz5gKXtWsicKCqrheRZ4BUf5U8AvdHwFnA1bjAFo5ngNNU9UvfpX0kuJSnInIQcBIu5enwZvs1\npQA9XUQGApPaqaf5vV/1XfjHAof4bv5JdCCV6I6ovSv0plHuJ0dycN8V8wSuK0WBy4ATcJmHmoaY\n36Kqb0Zy/JZU1VdtnqN9fc16GrWR8tryzevXV69HEt1YwEZtZPWm1cwqncVe+XvRK70XyYEtCVsS\nk5LI7d2H3N59qG+s57kTnyOQENg8MY0xxoThW1w3e0vlkXoXeE1Exqjqat913B+X77tMRHoD3wMm\niUgmbnKwN0XkY+Abf4xwUpQ2TxG6DLakPAUmi8j3cFfPoTqaAvQ4/x2qcIP1LsPdT1/vg/kg4GC/\n7afAQyJS3NTl3oEr7feAcSLyZ1Vd28F9e7w2R7mr6gr/vrilVxjHvw+YoKqDcN32s335GFXd37+i\nFswBMpMyOaTvIQAM7zWc1MRU7vnuPeSk5FCcXcx1w6/bPJp9bdVazn39XK6bdB2nvXZam8laEhMS\nKUovsmBujOmoqOdDV9WvcPeC3/YpTScCNcBU3P3r53Hd4uCC8ut+u/8C1/vyfwI3+ke7dmulqo6k\nPA3V0RSgnwH/AqYD//L3zyfgUnfPBu7GBfK20o62S1VnAb8DPvD7/jncfbcH7Y1yr2DbrhDY0uWe\n3ca+ObhcuLtqSCUicjuwUVXvDbeRHR3lvq56HbUNtQQkwMrKlcxZN4cRfUaQlpRGr/Rem7f7tvxb\nThp30ublp054igP7HBh2PcaYHUqPGuUeL5pGpzcNYDORa2+Ue3vdMW0pxnWrPy0i+wFT2NKFf7V/\ndKAE+Lmqru9EPdtouopeWbmSi/5zEfVaT0ACTDhzwlbbZSRlMLzXcKasnkL/rP4UZzdPHGSMMZ3n\ng7cFcBNT4U79GumxhwE/VdXJInIfcBPuOcnf4q78fwv8CXe/ZCt+pOZogP79Ixs7UtdQR726HDIN\n2kBNQ81W6wvSCvjTkX+iur6alMSUmKRRNcaYnq4rUoSKyAnAH5oVL1TV03GD70wnhZU+NaIDu+fX\nP1XVgX75cOAmVT0pZJuBuOcg20zDGsnEMuuq11HfoGysrmP8wpdITgxw/uDzyUnJ6eA3McYYwNKn\nmh4uZlfoqrpSRJaIyF5+hqBjgK9EpG/TYDvcZAczo133uqp1TFr8KRUbduX1aes4/YBTOGFwL3JS\n0qJdlTHGGNMjxLLLHeCnwFgRScY9KnEpcL+I7I/rcl8E/DjalW6s28iu2ftw2jMzAFhdUcPxu2ZS\nWVdNWlY2CYFAtKs0xhhjulVMA7qqTsPNrRsq5vPmpiWmEZAaRKAgI5knztydCWPupHpjBd//2U0U\nDSgmIcGCujHGmPjRXra17VJBWgFFmZk8eP7+XH74rnz74X9YtWAeZatW8vajD1C9cWN3N9EYY3os\nERnonzFvb5sfhix3a/pUE/su926RIAn0ycpl5JAcahsamVu78+Z1ub37EEhsb1phY4wx7RgI/BD/\nOJ6fDKZzaTFNp8RlQG+SkCCkJgTY8+DDSMnIpKq8jD0POXxzYpbKukrKa8qp13pyknPITml1nhxj\njOkx/BNCE3DzewwDZgEX4VKF3ov73f45cKWq1ojIIuBF3HSwVcAPVXW+n+99c8Y1Edmoqpkt1PV3\nIMMXXa2qn+BmbxssItOAZ3Gz1DWlT80HngJ2xc2KN1pVp/uJxfr78v7AX1TVruqjJC673JtLy8pm\n0HeO4ICR3ycjZ0umv2mrpzHylZGc+MqJvLHwDWrqa9o4ijHG9Ch7AQ+p6mCgHDel6zPAOaq6Ly6o\nXxmyfZkv/yvwlw7Usxo4TlWH4VK2NgXgm4CP/BTeY5rtcwcw1SfwugX4W8i6QbicHiOA2/w88SYK\n4j6g19XUsKm8jIb6+q3K6xvreW3BazRqIwDjF4xnU33z6ZaNMabHWqKqTfO1P4d7NHihqn7ty54F\njgjZ/h8h74d0oJ4k4HGfdfMlXErW9hyGu6pHVd8DCkSkqQv0DVWt8SlMVwO9O9AW04a4DuhVFeVM\nHvcCr9x1Gwunfk5tdfXmdYkJiZy5x5kExI12P2OPM8hIymjtUNtYV7WOL1Z9wZKKJWyqsz8EjDFd\nrvmsYBs6sH3T53p8HBCRBCC5+U7Az4BVuARbwVa26YjQrtAG4vzWb1eK24C+oXoDpSuXMHnci6z6\nZj7j/3wXNZu2Ht0+tHAoE86cwIQzJzBy4MitUqe2ZV31Oq59/1ounnAxJ487mdnrZre/kzHGRFd/\nEWm60v4hbkDaQBHZ3ZddCHwQsv05Ie//858XAU25zE/BXY03lwOsUNVGf8ymZ37bSr/6ES7dKj6v\neamqlreyrYmSuAzolXWVPDb9MaoTtnSzJyan4P4A3SItKY0+GX3ol9mPrOTw89DUNdQxbc00wOVU\nn7BwQjt7GGNM1M0FrvLpRfOAMbjJu17y3eONwCMh2+f5FKrX4q66AR4HvutTiR6Cy6fe3EPAxX6b\nQSHbTAcaRORLlhE2eAAAGSdJREFUEflZs31uB4b7+u4GLu7UNzVhidlc7tEUSfrU//v4/7hwrwso\nashm6UeTGXzYkRTs0p9AoPO9O+uq13Hde9cxdc1UEiSBp054iuG9h7e/ozFme9Zj5nIPNw9GyPaL\ncClKS2PYLNPN4vLeRVZSFr848Bfc+emdqCq3n3o7RZn9EInO/8f81Hz+ctRf+LbiWwrTCslLzYvK\ncY0xxphIxWVAr2+sZ8yUMQzIHsB3d/4ui8sXk5mUSW5qbvs7hyk/LZ/8tPyoHc8YY8KlqouAsK7O\n/fYDY9YY02PE5T10EeGY/sfQP6s/N3xwA/d/cT9ltWWU1ZR1d9OMMcaYmIjLgJ6amEqwd5B7S+5l\nU/0mvlr3Fa/Oe3XbhzyMMcaYOBGXAR3cc+ahU7n2zexLUsAmJDLGGBOf4u4eek19DRtqNjCjdAZP\nHP8Ez8x8hj3z9+SoXY4iPSm9u5tnjDHGxETcBfQ1VWu47ZPb+GzlZwzIHsBvv/NbDuh9QHc3yxhj\nokpERgL34SZ6eUJV7+7mJpluFndd7uW15SzYsACAxeWLefObN/jmi8/ZVG4D4owx8UFEAsCDuOxp\nQ4DzRCScOdZNHIu7gJ6VlMWV+19JQAIUphVy5s6n8M4TDzFr0jvd3TRjzA4sGAwmBoPBPsFgMBo9\noyOA+ar6jarWAv8ETo3Ccc12LO4CemF6IYftdBj/Of1NHgveR8nDT1Oxdg2VG9Z3d9OMMTuoYDD4\nHWANsBBY45c7ox+wJGR5qS8zO7C4C+hpiWlkJWfxxeqpBCQBEWHg/sMJfv+M7m6aMWYH5K/I3wBy\ngVT//kYwGAy0uaMxHRR3g+IANtZt5Kb/3sSg/EH84KzTOLT/d8nMs1ndjDHdohAXyEOlAkXAygiP\nuQzYJWR5Z19mdmBxd4UOEEgIkBJIYc66Odw5/Q/UJDVQ31jf/o7GGBN9pUB1s7JqXBd8pD4H9hCR\nYhFJBs4FxnfieCYOxGVAz03J5ZmRz3DGHmdw9xF3M37+eNZVr+vuZhljdkAlJSX1wEnABlwg3wCc\nVFJS0hDpMVW1HrgaeAuYDbyoqrOi0FyzHYvLgJ4SSCE3JZe6hjrGfjWWx2Y8RnlteXc3yxizgyop\nKfkE1/VeDBT65U5R1TdVdU9V3U1Vf9fpRprtXlzeQwc3OG5h+UJmls7k4D4Hk5+Sz8qNK5EEITs5\nm7TEtO5uojFmB+KvyCO9Z25Mu+IuoFfUVjBv3Tzy0vJ4+JiHqW2oJbU2ga8+mERCajLVO6VRWNCX\norQiitKLuru5xhhjTFTEXZf7gg0LyE/L55Pln3D/1PtpqKnlg789ycdPP8VHDz9CwpzVLK1YynOz\nn2Nj7cbubq4xxhgTFXF3hV7bUMucdXO4+zM3rfHw7KFsWL7laY6KZSvZ6/ARTFw8kUYau6uZxhhj\nTFTF3RX6Xvl7sbZ6LQAXDrmQ/r1245hf3kif3fckr+9OjDj9bD5c9hHXDruW7OTsdo5mjDHGbB/i\n7go9JyWHY/sfCwoN2sC1711LYXoh9998H1kNaTSmBTgt9zRyU3O7u6nGGGNM1MTdFTpA74zeHDfg\nOIpzirn1kFu55aBbWFi+iIycXLKSsyyYG2O2eyKySERmiMg0ESnxZfkiMlFE5vn3PF8uInK/iMwX\nkekiMizkOBf77eeJyMUh5cP98ef7faWr6jCRicuADoDA+AXjue7967joPxch2L8TY0z3CQaDEgwG\nU4PBYDR/GR2lqvuratAv3wS8q6p7AO/6ZXBpVvfwr9HAw+CCM3AbcBAug9ttTQHab3N5yH4ju7AO\nE4G4DeiCULKqhH0L92Vo0VA+XfFpdzfJGLMD8oH8SmAVUAmsCgaDV0Y5sDc5FXjWf34WOC2k/G/q\nfArkikhf4ARgoqquU9X1wERgpF+XraqfqqoCf2t2rFjXYSIQ03voIpILPAHsAyhwGTAXeAEYCCwC\nzvY/5KhKT0rn4WMfZurqqdQ11HHcgOOiXYUxxoTjCuBeIN0vF/ll8FexEVLgbRFR4FFVfQzoraor\n/PqVQG//ubV0q22VL22hnC6qw0Qg1lfo9wETVHUQsB9uzuHWumuiKjkhmYmLJ/L7yb/nnpJ7eGz6\nY2yq2xSLqowxpkX+KvwOtgTzJunAHZ28Sj9MVYfhurqvEpEjQlf6q17txPHb1RV1mPDFLKCLSA5w\nBPAkgKrWquoGWu+uiarVVav5ev3Xm5fnbZhHbWNtLKoyxpjWpAAFrawr8OsjoqrL/PtqYBzu/vQq\n35WNf1/tN28t3Wpb5Tu3UE4X1WEiEMsr9GJcesCnRWSqiDwhIhm03l0TNdX11Tz31XNcMPgC8lLy\nyEzK5IbgDWQlZUW7KmOMaUsNsLaVdWv9+g4TkQwRyWr6DBwPzMSlUG0aRX4x8Jr/PB64yI9EPxgo\n87+H3wKOF5E8P1DteOAtv65cRA72I88vanasWNdhIhDLe+iJwDDgp6o6WUTuo1n3uqqqv/+zDREZ\njRspSf/+/TtWcUIi2SnZPDr9UX532O/IT82nOKeYQEIgoi9ijDGRKCkp0WAweBtb30MH2ATcVlJS\nEml3dW9gnH/KKxF4XlUniMjnwIsi8iNgMXC23/5N4ERgvq/7UgBVXSciv8XlVwf4jao25Zr+CfAM\nkAb8x78A7u6COkwExN0CicGBRfoAn6rqQL98OC6g7w4cqaorfHfNJFXdq61jBYNBLSkp6VD9Kzau\n4ONlH1PbWMtBfQ+iX2Y/UhNTI/ouxhgDkT376u+TX4G7l16AuzK/DXikEwHdmG3ELKADiMhHwChV\nnSsitwMZftVaVb1bRG4C8lX1F20dJ5KAft+U+/hk+SckJCRQXlvOsyOfJTWQysrKlSyvXM7eBXtT\nkNbarS1jjNlGpx4z84E9BaixQG5iIdZTv/4UGCsiycA3uC6YBFruromqw3c+nCdnPominLfXeaQF\n0vh6w9dc9J+LABjeazhjjhpDXmpeO0cyxpjO80G8urvbYeJXTAO6qk4Dgi2sOiaW9YJL0vLmGW9S\nUVtBn4w+ZCRnMG31tM3rp5dOp76xPtbNMMYYY7pE3M4Ul5GUwc5ZOzO4YPDmq/DjBhxHQarrZh89\ndDRpiWnd2URjjDEmauIu21pb+mX246Xvv0SDNpCemE5mcmZ3N8kYY4yJih0qoIsIRelF3d0MY4wx\nJuritssdgJoKKF8OFSuhoaG7W2OMMVEjIk+JyGoRmRlSFhfpU1urw7QtfgN6bSXMeBnGDIEHR0Dp\n3HZ3qayt5LOVn3HX5LuYu24udQ11XdBQY0y8CwaDBwWDwbHBYPBz/35QFA77DNumG42X9KldkvMj\n3sRvQK+pgHfvAFWoLoOP74N2RrVvqN3AqLdG8fyc57nwPxeyvibqSeCMMTuYYDB4O/AecC7uqZ9z\ngfd8ecRU9UNgXbPieEmf2iU5P+JN/Ab0QBL02nvL8i4jIKHtIQNV9VWoTxxUVV9FQ6N10xtjIuev\nxG/ETfva9Ps2wS/fGKUr9VDxkj415jk/4lH8DopLL4AfPA1z3oCsPrBL+/9vCtMKGbXvKN5f8j4X\nDr6QrGRL5mKM6ZRrgNbmnE7168+PRcVt5cqwOuJT/AZ0gMxeELw07M1zU3IZve9oLhh8AZlJmaQk\nRpzZ0BhjAPak9Z7QBNx942haJSJ9Q3JlhJPa9Mhm5ZMII31qN9Vh2hB3Xe4bqjfw1qK3+PtXf6e0\nqrTD+6clpVGQVmDB3BgTDV8Dja2sawTmRbm+eEmf2lodpg1xd4X+zrfvcMf/7gDgo6Ufcc937yEn\nJaebW2WM2UHdjxvQld7Cumq/PiIi8g/clW+hiCzFjSTvitSm3VmHaUNMs61FS0eyrd01+S6en/M8\n4GaGe+7E5yhMK4xl84wxO4ZI06fejhsYl4rrFW3EBfN7SkpKbo9W44yJuy73i/e+mOLsYrKTs7nt\nkNvISbarc2NM9/FB+2jgn7ir1H8CR1swN9EWd1foAGur1tKojeSk5JAcSI5hy4wxO5BO5UM3Jtbi\n7h46QEFaQXc3wRhjjOlScdflbowxxuyILKAbY4wxccACujHGGBMHLKAbY0wXCAaDxcFg8NBgMFgc\njeO1kj71dhFZJiLT/OvEkHU3+zSlc0XkhJDykb5svojcFFJeLCKTffkLIpLsy1P88ny/fmBX1mFa\nZwHdGGNiKOhMAWYBbwCzgsHglGAwGOzkoZ9h2/SpAGNUdX//ehNARIbgsrzt7fd5SEQCIhIAHsSl\nPh0CnOe3BfiDP9buwHrgR778R8B6Xz7Gb9cldZi2WUA3xpgY8UF7EjAMNxtajn8fBkzqTFBvJX1q\na04F/qmqNaq6EDeb2wj/mq+q36hqLe4Z+VP9VKxHAy/7/ZunSW1KbfoycIzfvivqMG2wgG6MMbHz\nKJDRyroM4JEY1Hm1iEz3XfJ5vqyjqU0LgA2qWt+sfKtj+fVlfvuuqMO0wQK6McbEgL9XPridzYZE\n65669zCwG7A/sAL4UxSPbXo4C+jGGBMbOwG17WxT67eLClVdpaoNqtoIPI7r7oa2U5u2VL4WyBWR\nxGblWx3Lr8/x23dFHaYNFtCNMSY2lgPtzT2d7LeLCp87vMnpQNMI+PHAuX70eDEuD/tnuLnl9/Cj\nzZNxg9rGq5sT/H3gLL9/8zSpTalNzwLe89t3RR2mDXE59asxxnS3kpKShcFgcDZuAFxrviopKVkY\nyfFbSZ96pIjsDyiwCPgxgKrOEpEXga+AeuAqVW3wx7kal7M8ADylqrN8Fb8E/ikidwJTgSd9+ZPA\n30VkPm5Q3rldVYdpW1wmZzHGmBjo8CjrkFHuLQ2MqwSOLLFfbiZKrMvdGGNixAfrI4EpQBVutHaV\nX7ZgbqLKutyNMSaGfNAO+tHsOwHLI+1mN6YtFtCNMaYL+CBugdzEjHW5G2OMMXHAAroxxhgTByyg\nG2OMMXEgpgFdRBaJyAyfxq/El7Wa3s8YY4wxkemKQXFHqWpps7IxqnpvF9RtjDHG7BCsy90YY4yJ\nA7EO6Aq8LSJTRGR0SHlL6f2MMcYYE6FYB/TDVHUY8D3gKhE5gjDT+4nIaBEpEZGSNWvWxLiZxhhj\nzPYtpgFdVZf599XAOGBEG+n9mu/7mKoGVTVYVFQUy2YaY4wx272YBXQRyRCRrKbPwPHAzDbS+xlj\njDEmQrEc5d4bGCciTfU8r6oTROTvLaX3M8YYY0zkYhbQVfUbYL8Wyi+MVZ3GGGPMjsoeWzPGGGPi\ngAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfG\nGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5Y\nQDfGGGPigAV0Y4wxJg5YQDfGGGPigAV0Y4wxJg5YQDfGGGPiQNwF9LKaMiYsnMC9n9/L0oql3d0c\nY4wxpkskdncDou3r9V9z44c3AjBx8UTGnjSWwrTCbm6VMcYYE1txd4W+rmrd5s/ra9ajqt3YGmOM\nMaZrxF1AP7DPgYwcOJLi7GLGHDmG7ORsAGobatlYu9ECvDHGmLgk20OACwaDWlJSEvb2FbUV1DbU\nkp2cTVIgifXV63l61tPMXTeX64dfz+65uxNICMSwxcaYOCTd3QBj2hJ399ABspKztlouWVnC0zOf\nBtw99pe+/5LdVzfGGBNX4q7LvSUJCVu+ZkDsytwYY0z8icsr9OaG9RrGVftfxex1s7nmgGvIT83v\n7iYZY4wxUbVDBPS81DxG7TuK+sZ6UhNTu7s5xhhjTNTtEAEdIDEhkcSEHebrGmOM2cHsEPfQjTHG\nmHhnAd0YY4yJAzHtgxaRRUAF0ADUq2pQRPKBF4CBwCLgbFVdH8t2GGOMMfGuK67Qj1LV/VU16Jdv\nAt5V1T2Ad/2yMcYYYzqhO7rcTwWe9Z+fBU7rhjYYY4wxcSXWAV2Bt0VkioiM9mW9VXWF/7wS6N3S\njiIyWkRKRKRkzZo1MW6mMcYYs32L9XNch6nqMhHpBUwUkTmhK1VVRaTFyeRV9THgMXBzuce4ncYY\nY8x2LaZX6Kq6zL+vBsYBI4BVItIXwL+vjmUbjDHGmB1BzAK6iGSISFbTZ+B4YCYwHrjYb3Yx8Fqs\n2mCMMcbsKGLZ5d4bGCciTfU8r6oTRORz4EUR+RGwGDg7hm0wxhhjdgjbRT50EVmDC/7hKgRKY9Sc\nWNie2rs9tRWsvbG2I7W3VFVHRrMxxkTTdhHQO0pESkKee+/xtqf2bk9tBWtvrFl7jek5bOpXY4wx\nJg5YQDfGGGPiQLwG9Me6uwEdtD21d3tqK1h7Y83aa0wPEZf30I0xxpgdTbxeoRtjjDE7lLgK6CIy\nUkTmish8EenSLG4isouIvC8iX4nILBG51pfni8hEEZnn3/N8uYjI/b6t00VkWMixLvbbzxORi0PK\nh4vIDL/P/eIf8u9EmwMiMlVEXvfLxSIy2R//BRFJ9uUpfnm+Xz8w5Bg3+/K5InJCSHlUfxYikisi\nL4vIHBGZLSKH9PBz+zP/72CmiPxDRFJ70vkVkadEZLWIzAwpi/n5bK2OCNt7j//3MF1ExolIbqTn\nLZKfjTE9jqrGxQsIAAuAXYFk4EtgSBfW3xcY5j9nAV8DQ4A/Ajf58puAP/jPJwL/AQQ4GJjsy/OB\nb/x7nv+c59d95rcVv+/3Otnm64Hngdf98ovAuf7zI8CV/vNPgEf853OBF/znIf48pwDF/vwHYvGz\nwGXmG+U/JwO5PfXcAv2AhUBayHm9pCedX+AIYBgwM6Qs5ueztToibO/xQKL//IeQ9nb4vHX0Z2Mv\ne/XEV7c3IGpfBA4B3gpZvhm4uRvb8xpwHDAX6OvL+gJz/edHgfNCtp/r158HPBpS/qgv6wvMCSnf\narsI2rczLh/90cDr/hdvacgvyM3nE3gLOMR/TvTbSfNz3LRdtH8WQA4uQEqz8p56bvsBS3CBLtGf\n3xN62vkFBrJ1gIz5+Wytjkja22zd6cDYls5He+ctkn/7kf7bsJe9YvmKpy73pl+iTZb6si7nu+UO\nACbTerrY1trbVvnSFsoj9RfgF0CjXy4ANqhqfQvH39wmv77Mb9/R7xCpYmAN8LS4WwRPiMsP0CPP\nrbqkRPcC3wIrcOdrCj33/DbpivMZVvrkCFyG6wmIpL2R/Ns3pseJp4DeI4hIJvAv4DpVLQ9dp6qK\nyxHfrUTkZGC1qk7p7raEKRHX3fqwqh4AVOK6azfrKecWwN8XPhX3h8hOQAawXU0Z2hXnM1p1iMit\nQD0wttONMmY7Fk8BfRmwS8jyzr6sy4hIEi6Yj1XVV3xxa+liW2tvW+U7t1AeiUOBU0RkEfBPXLf7\nfUCuiDQl7Ak9/uY2+fU5wNoIvkOklgJLVXWyX34ZF+B74rkFOBZYqKprVLUOeAV3znvq+W3SFecz\nqumTReQS4GTgfP8HQiTtXUvHfzbG9DjxFNA/B/bwo1WTcQNYxndV5X4U75PAbFX9c8iq1tLFjgcu\n8iOIDwbKfFfkW8DxIpLnr/SOx93PWwGUi8jBvq6LiDD1rKrerKo7q+pA3Hl6T1XPB94HzmqlrU3f\n4Sy/vfryc/1I4GJgD9xgqKj+LFR1JbBERPbyRccAX9EDz633LXCwiKT74zW1t0ee3xBdcT6jlj5Z\nREbibhudoqqbmn2PsM+bP9cd/dkY0/N09038aL5wo3G/xo1kvbWL6z4M1304HZjmXyfi7re9C8wD\n3gHy/fYCPOjbOgMIhhzrMmC+f10aUh7E5ZRfAPyVKAzOAY5kyyj3XXG/+OYDLwEpvjzVL8/363cN\n2f9W3565hIwMj/bPAtgfKPHn91XcqOoee26BO4A5/ph/x4247jHnF/gH7v5+Ha4H5EddcT5bqyPC\n9s7H3d9u+v/2SKTnLZKfjb3s1dNeNlOcMcYYEwfiqcvdGGOM2WFZQDfGGGPigAV0Y4wxJg5YQDfG\nGGPigAV0Y4wxJg5YQDc9noh80t1tMMaYns4eWzPGGGPigF2hmx5PRDb69yNFZJJsyYs+NiTP9oEi\n8omIfCkin4lIlrgc5E+Ly8s9VUSO8tteIiKvisvHvUhErhaR6/02n4pIvt9uNxGZICJTROQjERnU\nfWfBGGPaltj+Jsb0KAcAewPLgY+BQ0XkM+AF4BxV/VxEsoEq4FpcDpB9fTB+W0T29MfZxx8rFTcL\n2C9V9QARGYObqvQvwGPAFao6T0QOAh7CzXtvjDE9jgV0s735TFWXAojINFyO7DJghap+DqA+y52I\nHAY84MvmiMhioCmgv6+qFUCFiJQB//blM4ChPmved4CXfCcAuOlbjTGmR7KAbrY3NSGfG4j833Do\ncRpDlhv9MRNwObL3j/D4xhjTpeweuokHc4G+InIggL9/ngh8BJzvy/YE+vtt2+Wv8heKyA/8/iIi\n+8Wi8cYYEw0W0M12T1VrgXOAB0TkS2Ai7t74Q0CCiMzA3WO/RFVrWj/SNs4HfuSPOQs4NbotN8aY\n6LHH1owxxpg4YFfoxhhjTBywgG6MMcbEAQvoxhhjTBywgG6MMcbEAQvoxhhjTBywgG6MMcbEAQvo\nxhhjTBywgG6MMcbEgf8HfNGCjdsVDBEAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3581,7 +3588,7 @@ "metadata": { "id": "NBfTFlJcpgdh", "colab_type": "code", - "outputId": "b2def792-fc8a-4b03-beaa-d65eb98f528c", + "outputId": "a7798e73-12dc-418c-d705-180ffa475136", "colab": { "base_uri": "https://localhost:8080/", "height": 212 @@ -3591,7 +3598,7 @@ "source": [ "centuries.sample(5)" ], - "execution_count": 40, + "execution_count": 91, "outputs": [ { "output_type": "execute_result", @@ -3625,74 +3632,74 @@ " \n", " \n", " \n", - " 8972\n", - " 1918\n", - " 2323\n", - " 31.51\n", - " 406982\n", - " Costa Rica\n", - " america\n", - " \n", - " \n", - " 13061\n", - " 2018\n", - " 3409\n", - " 65.80\n", - " 106227\n", - " Micronesia, Fed. Sts.\n", - " east_asia_pacific\n", + " 10233\n", + " 1818\n", + " 2080\n", + " 46.38\n", + " 1161500\n", + " Denmark\n", + " europe_central_asia\n", " \n", " \n", - " 218\n", + " 40037\n", " 2018\n", - " 39219\n", - " 76.14\n", - " 105670\n", - " Aruba\n", + " 11362\n", + " 72.03\n", + " 110200\n", + " St. Vincent and the Grenadines\n", " america\n", " \n", " \n", - " 1817\n", - " 1818\n", - " 849\n", - " 34.05\n", - " 335495\n", - " Australia\n", - " east_asia_pacific\n", + " 6125\n", + " 1918\n", + " 648\n", + " 11.08\n", + " 146397\n", + " Botswana\n", + " sub_saharan_africa\n", " \n", " \n", - " 26461\n", - " 2018\n", - " 21003\n", - " 74.89\n", - " 1268315\n", - " Mauritius\n", + " 3012\n", + " 1918\n", + " 971\n", + " 12.65\n", + " 1656525\n", + " Benin\n", " sub_saharan_africa\n", " \n", + " \n", + " 2036\n", + " 1818\n", + " 1986\n", + " 34.40\n", + " 3366878\n", + " Austria\n", + " europe_central_asia\n", + " \n", " \n", "\n", "" ], "text/plain": [ - " year income lifespan population country \\\n", - "8972 1918 2323 31.51 406982 Costa Rica \n", - "13061 2018 3409 65.80 106227 Micronesia, Fed. Sts. \n", - "218 2018 39219 76.14 105670 Aruba \n", - "1817 1818 849 34.05 335495 Australia \n", - "26461 2018 21003 74.89 1268315 Mauritius \n", + " year income lifespan population country \\\n", + "10233 1818 2080 46.38 1161500 Denmark \n", + "40037 2018 11362 72.03 110200 St. Vincent and the Grenadines \n", + "6125 1918 648 11.08 146397 Botswana \n", + "3012 1918 971 12.65 1656525 Benin \n", + "2036 1818 1986 34.40 3366878 Austria \n", "\n", - " region \n", - "8972 america \n", - "13061 east_asia_pacific \n", - "218 america \n", - "1817 east_asia_pacific \n", - "26461 sub_saharan_africa " + " region \n", + "10233 europe_central_asia \n", + "40037 america \n", + "6125 sub_saharan_africa \n", + "3012 sub_saharan_africa \n", + "2036 europe_central_asia " ] }, "metadata": { "tags": [] }, - "execution_count": 40 + "execution_count": 91 } ] }, @@ -3700,7 +3707,7 @@ "metadata": { "id": "4QPRRQjfplIW", "colab_type": "code", - "outputId": "fdfbd344-37fe-42e0-a6cd-64620b1828e4", + "outputId": "0ed09000-6a07-414e-9adf-79c68e3457cc", "colab": { "base_uri": "https://localhost:8080/", "height": 393 @@ -3713,14 +3720,14 @@ "\n", "plt.xscale('log');" ], - "execution_count": 41, + "execution_count": 92, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAAFkCAYAAAAOk60fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVNX9x/H3mV52Z2f70pYFFBBQ\naaKIvZvYYtdY0CRG/UUTk9hiitHYC4ldE429xp4odqyIYkcRUJBetpfp5fz+mHVhZZddYBGQz+t5\nfJ6Ze88599xV7zPzne/5HmOtRURERERERERERDrn2NgTEBERERERERER2dQpiCYiIiIiIiIiItIF\nBdFERERERERERES6oCCaiIiIiIiIiIhIFxREExERERERERER6YKCaCIiIiIiIiIiIl1QEE2khxhj\nJhtjGowx//3O8b2NMR8aYz42xrxljNmq9fhurcfTxpgjv9PnamPM58aYmcaYG4wx5vu8FxGRTc0a\nnrF7tT5LZxhj7jHGuFqPDzXGTDXGJIwxv/9On3Nan7EzjDEPGWN83+e9iIhsSowxI1ufl58bYz41\nxhyzyrkBxphpxpivjDGPGGM8rcf1OVZEtkgKoom0MsY413OIa4ATOzh+K/BTa+1I4EHgj63HFwAT\nW4+tOo+dgQnAdsAIYAdg9/Wcm4jIRrUhnrHGGAdwD3CstXYEMB84ufV0HXA2cO13+vRpPT62tY8T\nOHY95yYislGt5zM2CpxkrR0OHAD83RgTbj13FTDJWrsVUA/8rPW4PseKyBZJQTTZ7BhjLjHG/GaV\n95cZY37d+vpcY8z7rb+i/XWVNk8ZYz5o/VXstFWOtxhjrjPGfAKMX595WWtfAZo7OgWEWl8XAEta\n239jrf0UyHbQ3gd4AC/gBpavz9xERLprM3vGFgNJa+3s1vcvAUe0tl9hrX0fSHUwnAvwt2atBWh9\nLouIbGib4jPWWjvbWjun9fUSYAVQ2ppBthfwn9am9wCHtbbT51gR2SK5NvYERNbBXcAT5H4lc5DL\nIBhnjNkP2BoYBxjgGWPMbtbaN4BTrbV1xhg/8L4x5nFrbS0QBKZZa3/33YsYY84FftrB9d+w1p69\nFvP9OfCcMSYGNAE7ramxtXaqMeY1YGnrfdxkrZ25FtcTEVkfm9MztgZwGWPGWmunA0cC/dbUwVq7\n2BhzLbksihjworX2xW5eT0RkfW3Sz1hjzDhyAbCvyf1Q0WCtTbeeXgT0WdPN6XOsiPzQKYgmmx1r\n7TfGmFpjzCigHPjIWlvb+uFjP+Cj1qZ55D6MvAGcbYz5Sevxfq3Ha4EM8Hgn17mG3PKh9XUO8CNr\n7bTWDzTXkwusdcjkaqZtA/RtPfSSMWZXa+2bPTAXEZE12pyesdZaa4w5FphkjPECL7Zes1PGmELg\nUGAA0AA8Zow5wVp7//rMRUSkOzblZ6wxphdwH3CytTa7LqXM9DlWRH7oFESTzdW/yNVhqCD3ix7k\nfu26wlp7+6oNjTF7APsA4621UWPMFHJp5gBxa22HX7h6IkvCGFMKbG+tndZ66BFgchfdfgK8a61t\naR3jeXIp+vrwISLfl83iGQu5rAdg19Yx9wMGd9FlH2Cetba6tc8TwM6Agmgi8n3Z5J6xxpgQ8D/g\nImvtu62Ha4GwMcbVmo3WF1jcxb3pc6yI/KCpJppsrp4kV/h0B+CF1mMvAKcaY/IgVzzaGFNGrg5Z\nfesHj6F0sZzyW9baa6y1Izv4Z22WctYDBcaYb7/U7Qt0ldK+ANjdGOMyxrjJFWNVGryIfJ82l2cs\nrXOgNRPtfOC2LrosAHYyxgRa6/3sjZ6xIvL92qSesSa34+aTwL3W2v+sMoYFXiO3VB5yG7c83cWl\n9TlWRH7QlIkmmyVrbbK13kLDt7/AWWtfNMZsA0xtTT9vAU4gl/l1ujFmJjALeLeTYdeLMeZNYCiQ\nZ4xZBPzMWvuCMeYXwOPGmCy5oNqpre13IPeBpRA42Bjz19Zdkf5DrojrZ+SKs0621j67IeYsItKR\nzekZC5xrjDmI3A+Dt1prX21tXwFMJ7exS7a1kPew1qX1/wE+BNLklk7dsSHmLCLSkU3wGXs0sBtQ\nbIyZ2HpsorX2Y3I/TjxsjPkbueflnaDPsSKy5TK5HxhENi+thVg/BI76djchERHpGXrGiohsOHrG\niohsvrScUzY7xphhwFfAK/rgISLSs/SMFRHZcPSMFRHZvCkTTUREREREREREpAvKRBMRERERERER\nEemCgmgiIiIiIiIiIiJdUBBNRERERERERESkC66NPYHuOOCAA+zkyZM39jRERDY1picG0TNWRKRD\n6/2M1fNVRKRDPfIZVmRj2Cwy0Wpqajb2FEREfrD0jBUR2TD0fBUREflh2SyCaCIiIiIiIiIiIhuT\ngmgiIiIiIiIiIiJdUBBNRERERERERESkCwqiiYiIiIiIiIiIdEFBNBERERERERERkS4oiCYiIiIi\nIiIiItIFBdFERERERERERES6oCCaiIiIiIiIiIhIFxREExERERERERER6YKCaCIiIiIiIiIiIl1w\nbewJiIiIiIiIiGzukrEoNQvnM+e9qQwYOZbygYPwBoIbe1ptIo0NGCBQEN7YUxHZbCmIJiIiIiIi\nIrKeGqtX8NCfzwNrmf7sExx36bX0Hjx0ncZKJ5MkIi1gDMFw4XrPrX7pYp6ddCUOp5ODf3shBaXl\n6z2myJZIyzlFRERERERE1tOKeV+DtW3vl8z5cp3GSadSLPziM+789Wk89Kff07h86XrNKxGN8Mpd\nt1E9fx7L537FG/ffRTqZXK8xRbZUCqKJiIiIiIiIdJPNZEgtXUrT5BdILlhANpEAoO82w3F7fQA4\n3W4GjhyzTuMnIi28etdtpBJxGlcs58P/PU2mqWmd5+twusgvKml7n19SinGsDAWkk0kaq1ew8IvP\niDY2rPN1RLYEWs4pIiIiIiIi0k3p2jrm/eRwXBUVuAoLqfjbpXj69CGvqISJ199KzcJvKO5b2eEy\nzJaGOlKxGB5/oNNlmk6Xm+J+lTS0ZqCV9epDctEi/MOGrdN83V4vux5/MuFevXG6XAzbdS+crpWh\ngJa6Wu7+3Rlk0mnKBw3m8PP/rLppIp1QEE1ERERERESkG2zWksoYel11FZn6etJLlkAmkzsZj+Ne\nspTCOfPwFZbhDJt2fSMN9Tz0x3MZtO1IdjzgEBItEZz5+bgKCtq18+Xlse/PzmTQ0BEEQwUEq+tw\nhkLt59F6TeN0dmvegYIwOx52VIfnahctIJNOA7D869lks9lujSmyJVIQTURERERERKQL6VSW5fMa\nWfB5A4Mztaz44x8AaHj6aaoefIB0dTXfHH0MAI5ggIHPP4+7rAyAmpYEyYyToXsdwOjh25GaPp2m\nTz8jfMThmIEDcebltbtWsKiYbXbejfgXX+AeMwZXycrlmOmaGmpuux2speSM09udWxflg7YmXNGb\nhmVLGHPAwZhoDBvKdDtAJ7IlURBNREREREREpAvxSJJnb/iErceWEZ/zIQCu3r0J7LIL1uEg09xM\n/v770fLGm2QjUdLLlmMcDqrdQY7/5zQW18e495TdMU2LWHrRHwFoev55Bj791GpBNABXcTF5u+7a\n7lg2kWDF9ZNofOIJADKRCL3+ejEOr3ed7yuvsIijL7iY5PLlpD75lEVHHc2gp5/CVVq6zmOK/FBp\nYwERERERERGRLhgMFsuyeU0EfnI03m22ofimG/go5GHqc0+RKSrEXVVF5R134B83jkxzE8uvuZbZ\n86uZVxMhmcly3UtfkY1E28bMtrSQrq4mXVPbvUlks2QjLW1vbSTStrRzfTgXLWHFscdTf8WV2JYW\n7Cq7jIrISspEExERERERkU1OQzTJu3Nr+XRRI8fvWEnfwkCPjZ1paCC1fAUYcJWX4yooIF1TQzYS\nxRHwd5iF5Q24OOSskXwweT51tpjy22/l6X9cxbKvZgPgc7np9eUsGhsa6H31VcQ/+QTjclLic+J3\nO7nhRwMYVuDEWxKi4LBDiX74EcUTJ9L43/9RdOIJQHGX83b4/ZRfcAHZSASA0l+fjU2l1vvv4dlq\nEMWn/YLo+9Mp/fXZOL9Tp01EchREExERERERkU3OrGXNnH5/btnkfz9dyuNn7Exp/rovW/xWNpWi\n4amnWXHllQCU//nPhPbdhwWn/ZLEzJm4+/en6oH7cZWUkFy4kLp/341v2xHk7bknvbcOU1KZj9vt\nIB5pIrNKACuTToPDQaa+nvoHHiTy+hT63nILruo6njtxGM47bsTdpzexEdtS8qtfEf3wQyJvvkX8\ns88o+cXPu38DLheBMWMAw8Jfnk7fm25cbXOCteUqLKTkzDPJxuM48/NVD02kEwqiiYiIiIiIyCZn\nWWO87XV1c2K9lhjWtCSIJNL4PU6KbZKW115rO9fy6qsEd96ZxMyZAKTmzyddVwfAglNOJbVoEQB9\nb74Z4/fhGz4ch7+AQEGYA3/1O6bc+0/yCosZNnYnGl97i5LTT2fROeeQXrKE2jvvJNsSoeKkE1n4\n1lsU/30SCyaegn/MGMov+gOefpV4+vVdu80BrKXmttuxiQQAxutb57/Lqhw+Hw7fmseyWUu0OUmk\nPkFeoZdAwfoHNUU2Jxu0Jpox5hxjzOfGmBnGmIeMMT5jzABjzDRjzFfGmEeMMZ4NOQcRERERERHZ\nNDTFUjTFUkQbE8x4YzFLv24gEe14OeKErUvYd1g5lUUBbvnpaAr87nW6Zk1LgjMf+IDdr5nC4be8\nQ5NxU3TKRHA6weWiaOJEHMEAnqoqAFxlZbgKC7HWkmlsbBsntWwZ1ddeR+LLL9uOBQvCVG0/hsLe\nfVm+ZBFll13Gkj//ifSSJQA4w4XYRJxscwvuyn6kq6sBiH3wAd8ceRTuPr3XendNZzhM//vuI3TQ\nQfSZNAlXSdfLQHtKtDnJw5e+x2NXTueJ6z4k0pj43q4tsinYYJloxpg+wNnAMGttzBjzKHAs8CNg\nkrX2YWPMbcDPgFs31DxERERERERk41tUH+XCJz7D5XBw2aFDcRPhiWtmceQFYymvWj1AVpLn5doj\ntyOZyVLgd+NxrdsSw2gyw3vz6lvnEGN2dZQdxo1jq1deBsBZUIDD76f//feRrqvHVRjGWVKCTafp\nd8stLLvsMrxbDcI7aCDx2bNJL1veNnagIMw2u+xBKhHH4/PjCebR+2+XUT1pEp4BAyg87jiiH3xA\nJhGnz7XXko1GyT9gf2IffUzp2WfjCAbX+n4cHg/+7bal15VXkMkY4vE0zkgKX3DdgoxrI9acJN6S\nC3o2roiRSWU3+DVFNiUbejmnC/AbY1JAAFgK7AUc33r+HuBiFEQTERERERH5wWqIJjn3sU+ZOje3\nC+Vf/mu4doKDgdsX0bA8SnlVqMN+BYH1X7jkdzsYUBJkXk2EkM/F0AInmUgE43K3y+JylZS0ywoz\nbjf+USPp9887yNTVsfi888nbfTeCu0xoN35eYVG7974Rw+lzwz8wbjcOr5eCAw9od77XX/+KTSZx\n5Od3uXxyTdIpmP3+Mt57di4VAwrY88Sh+PM37EKvQMhDcZ8gtYsj9NumEJdXtdNky7LBgmjW2sXG\nmGuBBUAMeBH4AGiw1qZbmy0C+myoOYiIiIiIiMimwdK+ppmz8Wv6Dx1Jv6GF6z12SzxFNJXB5XBQ\nFGwfSCrN9/HQL3YkmsxQYlKk/vcMX193Pe5+/aj81z9xV1R0Oq5xuXCXlmL8fipvuxWMwRkOr3Eu\nxhiceXmdnu9q58uWeIpoMoPb6aAw2HlQLJnI8PpDs8DCvE9r2HZhM/2GbdilnYGQl0N+PYp0KoPb\n49zgQTuRTc0Gq4lmjCkEDgUGAL2BIHDAGju173+aMWa6MWZ6deu6cRER6Rl6xoqIbBh6vop0LBzw\ncO2R27PLViXsMbiUS/YsIljUl0Hj+q93cfrmeIoH31vIble/xpkPfEBNS/s6XbWRBH98agZ7Xfc6\nTbUNrLj8CmwiQfKrr6i59VZsds1LErOpFInPP2fZ0loW10WprWlcY/v1UdOSm+se107hF/dOZ2Fd\ntNO2DpPLDPtWsLBnNhjoSiDkIVTsVwBNtkgbcmOBfYB51tpqa20KeAKYAISNMd9mwPUFFnfU2Vp7\nh7V2rLV2bGlp6QacpojIlkfPWBGRDUPPV9kY6qNJqpvjNMaSG3sqa9S3KMDNx23LDUcMplc4iO29\nPXGHIZ7KrNe4LYk0lz83k3gqy7tz6/h0UUO78/FklpdnrgAgZQ3GvbJ2mCMUAmPWOH62qYn60j4c\n/cJy9rh3Jn9/cwEN0Z7/W6cyWe6d+g1PfbyEaDLD9Pn1nP3QR9RFOr6WP+ThiPPGMP7wQRx+7miC\nYe2UKbKhbcgg2gJgJ2NMwBhjgL2BL4DXgCNb25wMPL0B5yAiIiIiIvKDVRdJcNETn7Hzla9yzeRZ\n1HcScNmQ4qkMqUz3CswXBAOECsIk/CVMXxzjl/dN5+rJX1IXWfddHl0OQ3loZQCpb2Gg3Xmv28HQ\ninwA7plRR5/bb8e37baEDjmE4okTMV0E0YzPx6fVcZY2xgG4f/pikumeL6gfTWZ4v3UDhG/NWNJI\nupNMOWMMoWI/o/frT69BYbz+DV3yXEQ2ZE20acaY/wAfAmngI+AO4H/Aw8aYv7Ueu3NDzUFERERE\nROSHrLo5yXMzlgFw/7QFnLbbwDXW0eppi+qjXP7cTEryvJy999aU5HWeDZWJRnPF9t1u6iMpTrzz\nPXxuJx/Ob2BIRT7H7FDZYb90MkmsuZFIQwP5JaUEC9rXJCvN9/H4GTvzwufLGV0ZpldB+2WNJXle\n7vvZjixrilOW78Xvc9DvjtsxHg/O1t0xM42NpJYsJRtpwTNoEK7ClXXanMEgwwdV4HXNIZHOMrZ/\nIU5Hx4G3eCRFNp3FG3DhdK9d0f18r4uDt+/VtvkCwF5Dy/Ct466kItLzNmio2lr7F+Av3zk8Fxi3\nIa8rIiIiIiKyJSjwu/G6HCTSWUJ+F961DNysj9pIgrMe/IiPFuaWT+Z5XZy7/xCMMSSiKZbMaWDJ\nVw0MH19OkFpcrgyZeJpsQS/Aw/0njsWfhGC+h6XxzjPo6pcu5oE/nEMmnaa0/wCO+MMlBMPtNyPo\nWxjgZ7sM6HSM0nwvpfmrBPg8KwONNpul+ZVXWPqHiwAoOOIIyi84H2d+flubigI/U36/B8ub4/Qt\nDFDcQbAw2pTktfu/pG5JC7seO5i+gwtxebr/78PhMBw4oheZLDz18WJGV4Y5bbdBhPzurjuLyPdC\n+Z4iIiIiIiKbqcKAm+d+vSvvzatjwlYlFH+PWWjWQmKVZY2xVAZrcyXG6pdHee7WzwCY9e4yjvm/\nMtx3jMNVWEX2uKfI8/Vm2UuLWTCjDgwc+ptR7caONTURa2kiFYvx1QfTyKTTAFTPn0cq0fnSz2gi\nTUM0xZKmGKV5XgpNmvg9d+Hw+ggfewyuoqLV7yORoPmVV9veR958k9QJP6X6iScpOvkkPH374nU7\n6RX20yvs7/Tai76s45tPawB44Y4ZnHDp+C6DaNGmJJ+9vohsxrL9Xn0pDHk5fsdKDt6+FwGPC49r\n3SswZTMZHE5lsYn0JAXRRERERERENlNet5NBpXkMKs373q9dHPRw4/GjuODxTykKejhjj0E4Wpc5\nRhtXZpbFW1KQbd08oP4bqJ2No09vFnxelztm4euPVtB3SC67rKW+jv/+4yoWz/ycfU78BZXbjOBd\nY8BaQqVluL2dLxmtaUlw/UtzeOrjxTgMPHbS9oRfepnk3LlkWpop+93vMN8JLDn8fgqPO46WKVMg\nkyF81FE0PvU09ffdR/Sjj+h3803gcODweHAWFHR67VUL+wcLvO32K0jG0yTjGYyBQL4H4zCkEhmm\nPvkVX07NLcdtXBFlzxO3wet3EQ6sezA0k05Ts3A+H/z3SQaN3Yn+243EF/z+//sQ+SFSEE1ERERE\nRETWmjGGQaV53HHSWFwOQ75v5bLDikEFDNy+hOXzmxl/aBXubx7NnXD7MRXb4HAYBo4qZe6H1RiH\nYfAOFQDEW1p44fYbWDzzc1weL5X9+hP532ROuPAS6pYsou/YHUl7cnXM6iIJXp9VTSZr2XNoGcV5\nXqLJDO98ncsGy1p4e149P+nXj+TcuaRrarHZ7GpBNAD/qJFs9fJL2FSKTCTCN0fk9sIrP+9cFv/+\nXGLvv0/4+OMpPfssXOHwav0BivvkceDp27JifhPDd+lDoHWzg3Qyw9yPa3j1ni/wBt0cce4YwuUB\nspkszXUrs+qa6+Jku7lBw7eiTUlSiQxur6PterHmJh75y/mkEnFmvjWFidffqiCaSA9REE1ERERE\nRETaSSUzRBsS1C6JUF4Vapdl9V2FrVlTqUyGukiKTNaS73Ox50nbkElncdkUbo7GVo6EkkGYvAp8\nLg97HDeEcT8egMfvwhfMfTVNxmN889F0ABxOJ9lIhOa778H5zLN4SoqpuWoEFz05l38cN4qbXpnD\nPe/OB+DIMX25+OBhFAU9nDS+P9e+OJsCv5sfj67EPusgMG4Hyn57Dg53x/XFnMFg2yYD6bo6Qgcd\nRGrRIozTSez99wFoePBBin92KnQSRPMF3QwcWcrAkaXtjifjad7/7zyszWXlffnuUnY6dBAev4td\nj96aZ2/8BJu17HH8EHyB7tc/izYlmXzHZyz9qpGCMj+H/240gQIv1mbJpFNt7dLJ73/HVpEfKgXR\nREREREREpJ1YU5IHL5lGNm0Jlfg44twxBAo6D6QBfL0iwuG3vkMsleHqI7bjkO17Ewy6AS+QB+E+\n7dr78z3481cuW8zG47hicX5yzoXMmzWTWW++Sn0qQfjUU4hNfRfPSadw/8wG3plby4zFjcTSmba+\nMxY3kkhnKQv5OHpsPw4d2QeX01CW78Nedhk4TKcZZN/lKiqi4s9/wiYS2GQS4/Fgk0lcZWUYz5qX\nWWaylpZ4Gp/b0bbJg9PtpPfgME01MYC2ZavGGAp7BTnqwrG5v0eeG9PJrp8dSSUyLP2qEYDGFTFa\nGhIECrz4gnkc8ruLmPbko1SNHEOopLSLkUSkuxREExERERERkXYiTQn6DS2iZlELTTVx0sk01now\npvMgzyPvLySazAW2/vnmXPYcWtat3UJrWxLEkmlczY3EzjsXV/8qBv7yV/TfdT9eueZP7HTwEXgP\nOZZJ7y3j2S+WAOCx8ItdBvDEh4uxwG/3HUy+L/f1tizka3+BokLWJBOJEItFyWYzuP0B/PkhnHl5\nkJdHNpFgwDNPk/hiJv7Ro3CVlHQ6TiKV4ZNFDVz34mzGDSjilAkDKAp68Ppd7PyTQWyzcy/8eW6C\nqwQjHQ7T7v3acHsdhMsDNCyP4stzt2ULur0+qkaOpvfgobi8PtxdBP5EpPsURBMREREREREyqSzG\naYinMix3WeYM8rLvgf2Iz64nMfVN/DuNxl1W1mn//YZXcPfUb7AW9tmmnEA3Amg1zQnOfvgj3vm6\nluG9Q/zzootpPPonBPY/iNsb8tlv9/147cF/c+wN95G0KyjL9/Lj4RVUhf2UFQd454I9yVgI+z14\nXJ1fLxuPk21pwXi9OPPzV95zJEJLXS2PXvVXmqqXM3yPfdj9hFPx54cAcHi9eKuq8FZVdXkvjbEU\nJ975Hol0lmnz6thlqxJ2HFgMrJ511xMCIS8/+e0oIo1JAgUeAquM73S62u5BRHqOgmgiIiIiIiJb\nMGstjdUxpj09l8KKAL12ruDwW98ha+Hf0+bzwpk7UXvA0QTv/Ncag2jb9i3gzXP3JJLMUJbvJeDt\n+utmQyzJO1/XAvD5kiYWpcoJh8O4igqJLE+Ay0kmlWL+6y/wl333o74+QUmxj4UfVjOrNs4OB1Ti\nc8RxOTqvJZaJRGh57TWqb7wJ/8jtKT//fFxFRbl7z2ZZ8NF0mqqX5+Yw5WV2PvJ4/PkhMk1NZFta\nwOXCVVzc4YYE7Rjwuhwk0rnNAbwuR5f3v74CBd4ul9mKSM9REE1EREREROQHLt7SQiadxNFBhlKs\nKcnTkz6ipT6B2+fENTxM1ubONcXTNKSh4JY78PTtu8Zr5Hld5HUjcPatbCpFnhPyvS6aE2k8Tge9\nK4pw/e1ypsc9nL9/f9xNBYzefXc8/gC+YJCSQh9fvruMac/MA6BucYTdhqygYPRwvP37AxBNRUlm\nk4Q8IRzGQba5mSXnnQ/ZLKn58wkdeCD+kSNpfv55MA7Kxo4CY8Ba8otLcLjdZCIR6h9+mOrrJ+EM\nh6l69BE8lZVrvJ/igIdHfzmeW6Z8zfhBxVSVBLv9txCRzYOCaCIiIiIiIj9g0aZG3njgbmZNfYPK\n4dux/xm/IRAqaDtvgUQ0DUAqnqHY5eSI0X14fXY1x46r5PU5NVSGKxgfKOCz2dVEEml2rApT1DgD\nPn0MtjsGyoeD29fxBDqRqa8n9qc/89Q5FzJtYSM7DK/k8/oY48bvzG4OByG/G4rz2vXx+B0kYum2\n98lEGpwuWqZMwXvyydTF6vj7h39nXuM8LtzxQoYUDgGHA4ffTzYSAcAZKqDh8SeovuYaAEqvvpIT\nLr2WFfPn0n/7MeSFC0mtqKburn/n5tnQQPMrr1J8ysQ13o/T6WBorxDXHb09bueGz0ITke+f/s8W\nERERERH5AatfupjPp7xEOpFg7ofvM//Tj9qd9wbc7H/aCPIKvfQaVEBJgY/zDhjCFYdvSyyZ4erJ\nX1JW4OeZTxZz0l3vccYDH3LtS3OIzJtOumQHUjU1ZKONaz8xa4m/8w6Ziccy/l+XU1a3hDGVRRQG\nvbkAWieG79KHQaNLKR8QYp8j+hB59H6CO+0EwBuL3+DJr57k4+qPOfvVs6mL1+EqLKT/A/cTOvQQ\nel1xOZ4BVSRmftE2XvSpZyjp3Zche+5NoDi3zNPh8xLcdddcA6eTwI7jun1bCqCJ/HApE01ERERE\nROQHzHwnqONwuamLJHA6DAV+Dy63g76Dwxx5wVgcToM/z4Mva6ksSvPgtIWcsfsgti7P4/53F7SN\n8fmSJuLjD2P5L08nvWIFfSZdj39sEQ5358Gv73IWhOl3++3U3n4bwQkTyOvbG2d+1/W9AiEPe544\nlEw0jqO5lsJrr8YZDgOQ517ydFVZAAAgAElEQVSZuRZwB4gls9RmspQMHUrvyy7DuHJfgUvPOYfk\nN99gk0nK/3ox1TQz6e1JlPpLOXXbUykKFVF+4QUUTZyIKxzG2cUOnyKyZVAQTURERERE5AeqNlbL\nfFPNdgcfzDfvvkfliO0JDRjCYTe/zbBeBVz2kxEU53lxup0EC1YWznc6DEMq8rnp+FF4nA7cLgdn\n7bUVb39VQzSZ5qIfb4N98xUSs2cDsPQvF1P14AM4Skq6PTeHz0twx3H4RwzH+Hw4PJ3vXpmJRMg2\nNWGzWZyhEN78fPC7oTi/Xbsx5WM4b4fzmF0/hyMHTuS0u2fh9zj550ljKclbGaDz9OlDvzvuAGtp\nCTq5cMo5TF8+HYCwN8zPt/s5rqKitg0IRERAQTQREREREdlMZbMZYs3NOJxO/Hn5XXfYVERqYMUX\nkIpD75GQ1/mOl+t9qVSEM94+i5O3PoERow9n+16j2WPSdKLJDAvqYhw2qjcHjOjVaf/gKhsFDCgJ\n8tyvd8VaSzjgJj5z5d/cM6AKXGv/9dI4nThDoTW2sdYSff99Fp35f5DN0uuKKwgd9OMOs94KfYWc\nOOxEvq5u5KQ7P2BxQwyAVOuOmatqC5DFG0hnV9ZZS2VTAEQTaVoSaVxOQ1FQO2CKiIJoIiIiIiKy\nGcpmM1TP/4bnb76evMIiDvy/cwiGN4OsoXgjvHgRfPJw7n3leDjmfgh2nMHVFEsRT2dwORwUBTvP\n1OpMwB2gV14v7pp9D72Cvbi3/wMEPE6iyUzu8sVBFtfHmDavlpH9wvQJ+/G6nR2O5XAYSldZbunY\neTz97rid1LJl5O+9N67WJZU9zcbjNDz6GGRzgbCGxx4jf889YA3Xy/d6MSb3ev/h5XjdndcpC/vC\nXLHrFVzx3hUU+4o5esjRRJNpXvxiOX96agaDK/K57YQx7e5dRLZMCqKJiIiIiMhmJ9bcxHM3Xkvd\n4oXULpzPp6+8wPgjjtvY0+paKgafPrry/YKpuWMdaIwmufPtedw65WvG9i/kxuNHt1uS2B0l/hLu\nO/A+amO1FPuLKfYV85/Td+a+d+cztn8hhQE3P77hLeoiSTxOB1PO3YPeYX+3xnaFw+Tttlu7Y9Za\nzLfRqx5ifD4KDjuUlldfBSB0yMGYQGCNfcpCPp48c2fiqSwBr7PLTLK++X25erercRonPpePFU1x\nzn/8UxLpLB/Mr+ftr2o4bFSfHrsnEdk8KYgmIiIiIiKbHYfDSTAcpm7xQgBCJaUbeUbd5HBBxXaw\n9OPc+/wKcHZcjD+SzHDDK18BMHVuHXOWN68WREvX1UE2i7OgANO6vDGTyZCMtODyeHH7fJT4Syjx\nr8x0qyoJ8qeDhgGwoDZCXSQJQDKTZWljrNtBtO9qaUjw8UsLcHkcbLdnPwKhtc+c64gxhuD4nRn0\nysuQyeIMF6yxftq3SvN9a3WdoDvY9trhMAwsDTJzaTMAA0uDnXUTkS2IgmgiIiIiIrLZ8eeH+NFZ\n5/LpS88RKi1n4Khx39u1E7E0iWgKYwzegAtnIkKmqQnjduMMh3H41hC8CZbAcQ/CG9dBMgJ7nA/B\njmuiuZyGsnwvK5oTOAz0Kmgf3EotX86is39Npqaa3tddh3/ECDLZLEtmz+SNB++m99ZDGX/EsfhD\nBZ1OJ8/n4uDte/PsJ0sY1S8MGOobIviXLqD+4UfI23UXAuPGdVm3LNqc5H83fULNohaMgXBFgF5D\n8yARxel24w+FcDrX/utnuqGByDvvkJg9h8Jjjsbd5/vJBivJ83L3KeN49csVDKnIp6pEQTQRAWOt\n3dhz6NLYsWPt9OnTN/Y0REQ2NT2yVkLPWBGRDq33M1bP1x+mTCbLV9NX8PK/v8AYOPq8beHFJ6ie\n9Hdwu+l/370ERo7seqB0EmwW3J0H3Ky1LGmMM2XWCkb1K6SqOEBglUL/K/5xA7W33grkCvv3v+9+\n4k7DnWf9nHQql112xEWXUrXdqDVOZVljjAV1MZY3xbnk2S94+eRhLD34x9h4HICqxx7Fv+22axwj\n0pjg3oveIZu27HH6cN5saObjRY2csWM5c/7zL/Y44RRK+vVvax9LpmmMprAGwgE3fnfHAbbmV1/N\nbSgAeLfemsq7/42ruHiNc+lMprmZxOzZxGd8Tv5+++Lu1fmGCrJB9ex6X5HvUefVFUVERERERLZ0\nLdXQuCi3oyaQTmT44q0lAFgLyboWGp54Mtc2laLx6ac7HMZmMqRra0k3NOYOuDxrDKBBbhljn7Cf\nn+7Yn2G9Q+0CaACeysq21+7efcDlwhiD278yY83bRe0wAI/LwTUvfMlZD31ETSSBO5NuC6ABpJYs\n7XIMl8fBqH0qCZcHWOrIcuXkWUyesYyfP/IlQw48ktfvv4tENArAiqY4b8ypYWlTnEue/ZyP5jd0\nOm5q6cprp5Yvx2ZX32Wzu5Lz5jH/pyew/IormH/CCaRratZ5LBHZMmk5p4iIiIiIbDbikRYyqRQe\nfwC3dwPvlthSDQ8eBUs+ggG7wxF34vYVM2SnCpbMaQADnnAeroN+TO3Nt4DTScFBB602jM1kSMye\nzZLzz8dZXELvq67CXbb+Ndzy9tiDPtdfR2rpMgoOPQRXuABnNsuxf72K6c8+Sd9hIwhX9O5ynKKg\nl1t/OoZPFjVQWRzA4UxReMJPqX/wIXzbbUtgzJgux/D63Yzct5Lhu/XmvWWNbcfT2SwYg81kwFqq\nmxMce8e7zK2J4HU5ePSX47njja8ZVVmI37P6rqCh/fen+aWXSc6fT69LL+lyWemaJObOxXi9lJx+\nOt7BW2PT6XUeS0S2TFrOKSKy+dJyThGRDUfLOTdB0cZGXrv7dpbMmcX4I49j8I474/F3nWm1zhZN\nh3/tvfL9r6ZDydYkoikS0XRbTTRHooVMQwMOnw9nKIQjEKAuXkcmmyHfk4+roYUFp5xKYs4cAIpP\nO42y356z4eYN2GwW41j3hUeZxkZsMglOJ66iorXqWxdJcuebX/Pp4ibOntCbBU/fzS5HH0/5gEEs\nbYwx/opX29redNwo3E4H+w0v73RXz0xDAzaVwlHQvQ0FOpOuribx9dc0PPEkLa+/jn/UKHpf9rd1\nXh4q60zLOWWzpUw0ERERERHZLCyZ8yVfvvMGAC/c9g/6bztywwbR8nuBywvpBHhD4MkDwBtw4w2s\nsqOmP4wrHG57uyK6gv975f9Y2LyQyyZcxvjC0TiLCgFwVVTAEQeyIroCr9NLgbfzov/d1VJfx/xP\nP6KkX3/CvXrj9Qc6DKBlolFsJILx+XDm569+PpMh1thAKpnA6w8QKF23bLmioIez9tqaSDQGkUa2\n+cWZ+Fqv53c7+dkuA7jzrXmM6BNiTFUhQa+r0wAagHOVvy1ApqUFrO3wHtbEVVpK7LPPaHrmGQAi\nU6bQ+NTTFP/s1LW8QxHZUimIJiIiIiIimwVfcOUOiW6Pd42Blx4RKIHT34GF06BqAgS7F1R6Zf4r\nfFn3JQCXvnspjx38GL2vuYa6e+/DnHQ4Z757LrPqZ3HckOM4c9SZhL3hLkbsXLSxgSeu+AvV8+cB\ncOJVN1BWNZBYcxPNtTUYY8grKsGTzVL/yKPUP/ggwQkTKPv973AVFrYbq2HZEh686HckY1F6bT2U\nQ8/9I8GCdZubz+PC58mHcPtAVzjg4ay9tuK03QbichiK89ZuSW5qxQqWXXIpNpGg118vxt276+Wq\nq8quUusNIBuNrFV/EdmyaWMBERERERHZLBT3689+vzyLoRN255i/XoU/tP5ZXGvk9kLJVjDqp1BY\nBc6OcxCstaQSGb4tlbNV4VZt5wYWDMTlcOEuK6P897/jm0w1s+pnAfDQrIeIp+Mdjtld2WyWusUL\n297XL11MKhHng/89xX3nn829553FZ6++QKapierrrye9bBmNjz9Ocu7c1cb6ePKzJGO54v9L53xJ\nrKlxtTY9IRzwUB7yrXUALZtKUT3p77S8/DKRN99k6V8uJtPcvFZjBMeNw7f99gB4qqoIH3XUWvUX\nkS2bMtFERERERGSz4M/LZ9u99mfY7vvgdK5ehH5jSMbSLJxZx6xpyxg6vhd9hxQytGgo9x14Hwub\nFzK+93gKfSszvvrm98XtcJPKpqjMr8TlWL+vZB6/n71//n+8+u/bKK2sou82I0jG4sx+9+22NrOm\nvsnIHXYGlwtai+k7fG5oWgyefPDlivWX9B/Q1sfhdOENBNmUGGMw/pU7mjp8XljLum+ukhL63XIz\nNpnEuN24Skp6epoi8gOmIJqIiIiIiGxWNpUAGkA8kmLyHTMAmPdpDSf+bTyh4nxGlo1kZNnI1doX\n+4p55rBnmNs4l6HhIXhaskQS9QTDhau17Q6Pz8+Q8bswYOQYHE4ngVAByXicITvvyruPPwzA0Am7\nY4IBKu+4hfpH/kPehB1wr5gC//kL7Pp7GH8m+AsZPG4CqXicpXNmMfrAQ/DlrV3NsQ3NuFyUnnkm\nBsjGE5T+5tc4g2sf6NNGAiKyrhREExERERERWUfZrF35xoLNrrm91+Wlb35fimw+T1x2McvnzqGw\nVx+OufjK9QqkeXz+Vd77GP2jQxm844TWmmjFuOPLcc+8BP++o3E0PAmvv5xr/MbVULkTbLU3/lCI\nMT8+jGw6jdPt7uRqG5erpITyP/wBay2OTXSOIvLDpSCaiIiIiIjIOvLnuZlw5FZtyzm9we59xUpE\nWlg+dw6Qq2MWbWxoF0Srj9fzZd2XeJweBoUHrfXmA/68fPzfZpJlUvDGHbDwPRwL31u98ZvXQe/R\nECjEGNPjAbRoYwOZdBqX290jdeyMy8UG3lJCRKRDCqKJiIiIiMgWw1pLbbwWLBT6CnE61m9pqDfg\nZsTufRiyYwVunxOXu3vjefwBQqVlNFWvIBgubBdciqQi3PLxLTw8K7cc86xRZzFx+EQ8Ts+6TTKT\ngob5nZ9vXgrZ1LqN3YVoYwNPX3cZS2bNZOsdJ7DPz88ksKE3hBAR2UAURBMRERERkc1OY6KRdDZN\ngbdgrYrzz2+azxkvn0Eqm+LmvW9mcOFgjFm/vCaXu/vBs28Fw4Uc/7fraKmrJVhY1C4LLZ6OM23Z\ntLb3U5dM5Zghx7QPoiUjEG/MrR/15IG/80y1jHHhHHUCzJ7ccYO+OxDDx+yFDfjcTioKvBT41zFg\n9x2RxgaWzJoJwJxpb7P7CadAN4Jo2awl1pwEwOt34fJsOnXwRGTLtXZbmYiIiIiIiGxkNbEaLnjz\nAiZOnsiMmhmkM2lqY7VMWzqNRc2LiKfjHfaLpWNM+mASi1oWsTy6nCvfu5KmZNP3PPuVguFCygdu\nRV5hUbtAXp47jxO3OREAh3FwwrATCLpXKaCfTsDMZ+Ef28Gk4fDKJRCtW238dCrFsq9n8/wtf2dm\nTZD4ftesPgmnB7v7+dwzvZpDb36b/f/+Bq/Pqumxe/Tn57ft8plfXILL4+1Wv4ZlUR6+9D3uu2gq\ni2bXk05lemxOIiLrSploIiIiIiKyWZk8bzJvLX4LgPPeOI/7DryP373+Oz6p/gSXcfHEoU8woGDA\nav3cDjdVoaq29/3z++Nx9EzG1beyNktdPBfQKvYVr1OWm9fl5cABBzKhT25jgJAn1D7bLlYPz/0+\nt0wTYPqdMOHXEChqN068uYlHLr6QdDLBrHfe4OSrb8C39f4w54Vcg4rt4OB/EPGW8+IXn7b1e23W\nCn60XQUux/rnXPhDYU665ibqliyipG9ltzZPSCUyvPv018Rbcvf3xoOzOeL8MbgKnERSERzGgd/l\n72IUEZGepyCaiIiIiIhsVnoFe7W9LvWXAvBZzWcApG2aWfWzOgyiuRwuJo6YSGWokmQmyf5V++N3\nrzkYE2tOkoylcXmcBEIejKPzoJi1lrmNc/nNa7/BYPj7nn9nYMHAtkBaPJIik87idDrw5a25eH+e\nJ488T17nDcx3ljd2EKyz1pJJr6x1lk6n4fA7cktByYLLD8ESfJksZ++9FT+/Zzpel4Of7zqgRwJo\nAE6nk1BJKaGS0u73cRkKKwLM+yT3PlTqw+E0LI0s5fJpl5Pvzue3Y39Lib+kR+YoItJdCqKJiIiI\niMhmZUzFGK7e9Wq+afqGIwYfgd/l57TtTuO2T26jb35fRpeN7rRvoa+QIwYf0a3rxJqTvHzPTBbM\nqMWX5+bIC0ZT764mz5PXYQCnIdHAn97+E/ObckX8//z2n7lp75so9BUSa07y1n++YvZ7yxg4spTd\njx9CIH8ds+D8RXDIjfDkLyEdh51/DZ781Zp58/I4+JwLee+px6jafhQFZRXgD61WP83ldLDjwCLe\nOn8vjIGiYM9m560th9PByH0qCRR4iUeSbD2hlCXphVz13lVMXToVgLA3zO93+D0OowpFIvL9URBN\nREREREQ2K2FvmAMHHtju2InbnMiRWx+Jy+Gi2F/c7lxdrI5UNoXb4abI337J45qkU1kWzKgFIN6S\nYtYXi7iu8c/EMjHu2v+u1QJpDuMg6FpZuyzoDuJszRhLxtPMnrYMgLkfVTP+sIGdBtEaEg28t/Q9\n5jfN55BBh1AeLG/fwOWBrfeFsz8Ea3MbC/hCq43j8foYOHoH+m4zHJfXi3sN9cj8bhf+gk3n66E/\n38Ow3St4/pvnOWfylZw0/KR2AbO12UxCZGMxxhwCDLPWXrmx5yI9Q08eERERERHZ7IW8IULe1QNJ\ntbFafvXKr5hRO4NtS7blxr1uXC3I1hmny0FR7yB1SyI4nIbiygDLpi2jLl5HJBVZLYhW4C3gsl0u\n44r3rsBguGDcBW1zcrmdeIMuEpE0Hp8Tt7fzr2JvL36bC968AIDn5z3PP/f75+pzdvtz/wCRZIS6\n5oUsbl7MwPBAin3FOB3O1ntw4c9f/e+yOYhn4jz91dM0p5p5fM7j3LzXzYS9YfI9+Zw8/OTVstAy\n2Qz1iXocONYqWCrSHSa3LttYa7Pd7WOtfQZ4ZsPNSr5vCqKJiIiIiMgP1vRl05lROwPI1U37YPkH\n7Fe1X7f6BkIeDv3NSOqWRskr9nDLrBupi9cxIDSg/W6ZqygPlnPFLleAoa34fTqZwBLlmD+MZMX8\nGKWVIXz5nddE+6r+q7bXC5oXYLFrnOdnNZ9x2kunYbEUeAt4/ODHV89e60GpRByH04nTtea6busr\n6A5yzphzOO3F00hmkrgdbi6ZcAkO41gtEy2TzfBl3Zf8ZspvCHlC3LTXTfTK69XJyCLdY4ypAl4A\npgFjgKuNMacDXuBr4BRrbYsx5kfA9UAEeBsYaK09yBgzERhrrf1V61h3ASVAdWvfBcaYu4EmYCxQ\nAZxnrf3P93WPsna0gFxERERERNZLLB0jk81s7Gl06LvZaQXegrXqHwh56TukkHBJkNNG/ZynD3ua\nuw7ILeVsTDRSHa0mkoq06+N3+9sCaMlYjFnvvs3Dfz6Xdx67m95b+QiV+HE6O/8qdtSQo+iT1weX\ncXHRjhcRcAU6bduUaOKOz+5oC7Q1Jhp5e8nba3WPa6Nh+TKeu/E63njgbqJNjQCkMinmNs7lzs/u\nZHbdbBLpRI9cy2EcDC0cyjM/eYbHD3mcylAlHqenw6WcjclGLnn3EpZFljG7fjZ3zbirR+YgAmwN\n3ALsDvwM2MdaOxqYDvzWGOMDbgcOtNaOATrbReNG4B5r7XbAA8ANq5zrBewCHARo6ecmTJloIiIi\nIiKyTtKZNLMbZnPrJ7cypmwMh219GGFvuOuO36NtirbhjO3P4LWFr7F3v70ZUjRknccqCZRQQm4J\nZ12sjovfuZhPaz7lpGEnceTgIztcTpqMRZl8yySwlsblyxix5770Ca05kNc7rzf3/+h+rLUE3UEC\n7s6DaF6nl6r8Kt5f9n7bsT55faiP11PoK1zHO+1YtLGBZyddwYp5XwNQUFbO6AMPoT5Rz7H/PZZY\nOsbNH9/M84c/T7mrZzLhXE5Xt3bh9Dg89M/vzxe1XwCwVeFWPXJ9EWC+tfZdY8xBwDDg7dYddz3A\nVGAoMNdaO6+1/UPAaR2MMx44vPX1fcDVq5x7qnWZ6BfGmA2XRirrTUE0ERERERFZJ/WJek594VQi\nqQhTFk5hRMkIxlaM3djTaifsC3PqiFM5duixBFwBfC5fh+3q4nXURGsIeUOEveFO233r7SVv89qi\n1wCY9OEk9qvar8MgmnE48OflE2tuAuh2fbLuBI4AvC4vZ4w8g7pEHV/UfsEhgw6hOlrNJVMv4V/7\n/WuDLmm0Npf9lswkiaVjAKSyKaLp6Aa7ZmfyPHlcMO4CxlaMJewNM65i3Pc+B/nB+jbV1AAvWWuP\nW/WkMWZkD1xj1fRN0wPjyQaiIJqIiIiIiKyz7Co1tjO2Z5d01sXqyNgMIW8Ir7PznSU7Ux9NYoBw\nwLfGoFhjopHLp13OC9+8gMvh4pGDHmFw4eA1jr1qdpjDONoK+a/WLlTAcZdeyxdvvkrl8O0Jhns2\nOwygNFDK3yb8jaZkE3d9dhd/+uxPpG2ah2Y9xG/H/LbHrhMoCHPwORfy+r3/Ir+0jG122QOAfE8+\np213Go/Pfpz9+u9Hobfn77E7ivxFHD3k6I1ybdkivAvcbIzZylr7lTEmCPQBZgEDjTFV1tpvgGM6\n6f8OcCy5LLSfAm9+D3OWHqYgmoiIiIiIrJOwN8w/9/0nN318EyPLRnYZeFobK6IrOOvVs1geWc7l\nu17O2PKxeJyebvdfWBflt49+jMvh4Lqjt6d32N9p21Q2xZSFUwBIZ9NMXTK1y3sZXTaaX2z7C+Y1\nzuO84b8hEHUSyzThD7XPNDMOB4W9ejPh6BO6Pfd1kefJI5FJMH3FdNI2DcDAgoE9fp1weQU/Ouv3\nuY0F3LmNBQq8BZwy/BSOHXIsPpePfE9+j19XZGOz1la3bhTwkDHm26j+H621s40xZwKTjTER4P1O\nhjgL+Lcx5lxaNxbY4JOWHme+TcHdlI0dO9ZOnz59Y09DRGRT0yOp3nrGioh0aL2fsVvK8zVrs0RS\nEbxO71oFubryr8/+xT8+/AcA5YFyHvrxQ5QGOqvX3V5TLMVZD33E67OrAfjRthVcd/RI/O6Os8Wa\nEk3c9NFNPDTrIYLuIA//+GGqCqq6vE7y/9m77/goy2yB478zM5n0nlClLahIk9VYWBdE7L1hZy1r\nuXrtut7dxbK6Kquy6lpQEQuui13EunYRxYrSRFCUXpOQnkkmU879Y15CCCmTkDAhnO/nk0/eed6n\nnHfUMTl5SqgGf1k5M+66jfwVyxiw/+84/OLLSWpmz7P2UhWsoipQxYs/vUivtF78vsfvyUjoWHvU\nGUMnXK4oIinOKZ0CTAKWqur9sY7LtD2biWaMMcYYY4xpNZe42mXmUb+0frXXvVJ7EeeKi7qt2yWk\nxG9JmKUnxuFu4tf2JInn8oGXcOHgCxG3kBWfFdU4XreXkpIS8lcsA+CXb75g9LkXAjs2iaaqrChb\nwf3f3U//jP6cO+jcNj9UYHupKoFwoE0TrcZ0IBeLyHlEDhuYS+S0TtMJWRLNGGOMMcYY0+Hkdc1j\n0phJrKlYwxF9j9hmRlVRdREFvgLS49O3OQggOd7DrScMJjslnji3i8sO7o/X0/AstKryMua9/zYr\n5n/PASefQa9BQ/G4o/81KSkjk4TkFKorK8js3gNP3I5PEm2q3sRlH17G2oq1fLL6E/qn9+e4/sft\n8DgaU1Jdwn+X/5dvN37LuYPOZa+svYj3tHyPO2M6KmfWmc082wVYEs0YY4wxxhjT4aQnpDOq16gG\n7xVXF/Pgdw9y/IDjKa4upk9aH7oldyOykioiNzWBvx0/CEFwuRqehhYMBykt2MgXL00D4PWJt3Px\nw08RFx99gicpLZ3z/jmJ0oKNZHTt3i4HB0SjPQ942F4/bPqBCd9MAGDm6pn895T/0tXTNcZRGWNM\ny1kSzRhjjDHGGLNTCYaDHNnvSG774jaWly1vdM80t8sFQKGvkGcXP0ucK46zBp5FdmI2xdXFvPbL\na4xJOmBLfU8cSMu2a3K53aRkZZOSlb39D9ZKWQlZPHLYI0z8diL9M/ozcreRMYulIfm+/NrrQDhA\nIByIYTTGGNN6lkQzxhhjjDHGRC0YDlJUXURhVSFdkrqQnZC91Qyw+vxBPyX+EioDlWQmZLbJXl1x\nrjhSvaksL1sOwEbfRkr8JQ0ePFDmL+PWL2/l0zWfArCuch03HXATCwsXcv939+MZei2jLr2M/B8W\nk3fsSSSmpm3TR0fnEhcDMgZw78H34nV7O9y+Y6N6jmJIzhAWb1rMuL3G2emdxpidliXRjDHGGGOM\nMVHb6NvI2DfGUhGoiOrUzJVlKznz7TMJhAMc0/cYxh84nvT47dt4PyMhA3/Iz6CsQfxY9CN90vo0\nmpwLapD1letrX68tX0tRwQZqgjUATFx4PyN7juQfF91JemLH2oy/pVK8KbEOoUE5STlMOnQSIQ0R\n744nzbvzJSqNMQbAFesAjDHGGGOMMTuPORvmUBGoACIJtTUVa5qs/8nqT2qX772/8v0WLeXzBXws\n3rSY5xc/z7qKdahq7b2uyV2ZdNgk3j75baYeNZWcxJwG+0jzpnHjATeSHJdMmjeNqwZeyqxHHmFQ\n0u6cNfAshuUM47zB55EQlxR1XKblshKyyE3MtQSaMQ0QkS9iHYOJjs1EM8YYY4wxxkRtUPYgXOIi\nrGES3Al0T+7eZP1Deh3C5AWTCYQDHNHnCOJccVGPVVBVwJlvn0lYw0xeMJmXj395q1lvOYk5kNhw\n20JfIa//+jpZCVmM7jWaN054nZKNG5j//CusX7qEXz78lGtPvxZ/0E+qNxW3q+HTO40xO4e+f3n7\nbGAC0BtYBYxfcdexz8U2qqaJiEdVg6r6u1jHYqJjSTRjjDHGGGNMkwqrCgmFQyTFJdEzpScvHfcS\nc/PncmD3A8lKyGqybZ+0Pvz3lP9SEaggMyGz0aWcNaEaAqEACZ4Eiv3FuMVNcXVx7amTm6o3EQwH\no4q31F/KjbNv5It1kUIuLcIAACAASURBVMkd1+97Pefu9QdCWkrx2jV0/c0AfnvkMSR6Ekn0NJKF\ni4Lf56OmugqXy0VSekbt3nAl1SWsqViDW9z0SOnR4DMXVRXhC/qI98STm9j4clhjTPOcBNoUYPOU\n0j7AlL5/eZvtTaSJyAygF5AAPKCqj4tIBfAocAywHhgP3EMkgXeNqr4hIm7gLmA0EA9MUtXJIjIa\nuB0oBgYCe4hIhaqmOOP9GRgHhIH/qupfRORi4BLAC/wC/EFVfdvzXKZ1LIlmjDHGGGOMadSGyg2M\ne2ccG30buWafazhjzzPYM2tP9szaM6r28Z54unq60pWujdYpqi5i8vzJrCpfxTX7XMOUBVNYX7me\niQdP5PA+h/PJqk84f8j5JEW55DIQDrC2Yu1Wz1Ad9pPauwfnTLgfAZLSM6LqqzE11VUsnj2Tj558\nlOSMTM76+0TSu3SlOljN80ue55H5jwDw5/3+zJkDz8Tj2vKrV1F1ETd+fiOfr/ucbsndmHbMNLok\nddmueIzZxU1gSwJtsySnfHtno/1RVYtEJBH4VkReBZKBj1X1BhF5DbgDOBwYBDwDvAFcCJSq6n4i\nEg/MFpH3nT73AYao6vK6A4nI0cCJwAGq6hORzX+lmK6qU5w6dzh9P7Sdz2VawfZEM8YYY4wxxjTq\nk1WfsNG3EYBJ8yZRHaxu8zHeWfYOzy15js/Xfs4VH1/BEX2PYEHhAh6b/xi3jbiND077gD8O+WPU\nBxJkeDP424i/kR6fzl5Ze3H+kPN589c3WVW+ilK3D3dy62efbVZTVcXsF54FVSqLi/jpy88AqA5W\n89naz2rrzVw9k6pA1VZtqwJVfL7ucyCS4Fu8afF2x2PMLq53C8tb4ioRmQ98RWRG2u5ADfCuc38h\n8KmqBpzrvk75EcC5IjIP+BrIdtoCfFM/geY4DHh68ywzVS1yyoeIyGcishA4BxjcBs9lWqFdk2gi\nkiEir4jIEhFZLCIjRCRLRD4QkaXO9537CBxjjDHGGGM6sSG5QxAiyxSHZA9pl73DQhqqvQ5ruHZZ\nZFZCFsneZHISc0j1pkbdn8ftYXjucF474TWmHDGFD1d+SHp8Oue8cw5j3xzLmoo15PvyKa4ubnXM\nbo+H7rtvmY3XY4+BACTHJTNur3EIgktcjBs0bpsZdPGeeHql9gLA6/LSP6N/q+MwxgCRPdBaUh4V\nZ+nlYcAIVd0bmEtkWWdAt5x0Egb8AKoaZsuKPwGuVNXhzlc/Vd08E62yhaFMBa5Q1aHAbU4MJgba\neznnA8C7qjpWRLxEplOOBz5S1btE5C/AX4A/t3McxhhjjDHGmFbol9aP6SdMZ03FGobmDCUzoe3/\nBn58/+P5teRXVpev5v/2+z8+W/MZFwy+gHMHn4tLGv+7f0l1CT9u+pGQhhiSM2Sr2OLcceQm5RIK\nh+iR0oNnf3yWYDjIjQfcyGPzH+PdFe9yYPcDuXvk3WQlNr2vW0MSU9M46rJr2LBsKanZuaTl5NaO\ne3Cvg3nv1PcQEdK8adskHnMSc3jmqGf4peQXeqf1bvRkUWNM1Maz9Z5oAD6nfHukA8XO0sqBwIEt\naPsecJmIfKyqARHZA1jbTJsPgFtEZNrm5ZzObLRUYL2IxBGZidZcP6adtFsSTUTSgVHA+QCqWgPU\niMiJRDbWg8ha4ZlYEs0YY4wxxpgOKcWbwgDvAAZkDmi3MbISsvjr/n+lJlxDmjeNAZkDcOPG5Wo8\ngRYMB3np55d4aG5kW6CLhlzEGQPPIMWbQkpcSm09t8vN8C7DWVi4kDkb59AtuRvvroiswvpq/Vds\n9G1sVRINIvuq/ea3+21TnhyXTHJccpNtc5NyyU3KxR/01870M8a0zoq7jn2u71/ehrY/nfNd4FIR\nWQz8RGRJZ7SeILK083uJTK8tAE5qqoGqvisiw4E5IlIDvEMkEXgzkSWhBc736KfmmjYlW2YgtnHH\nkX/wjwM/AnsD3wFXA2tVNcOpI0Syutvs6ikilxA5fYLevXvvu3LlynaJ0xhjdmKt/onbPmONMaZZ\nrfqMtc/XHccX8HHDrBuYtWYWAAd2P5DhXYZzQLcDyOuWt039oqoilpctp2tSV8546wzKasqIc8Xx\nzinv0C25244OH4CNlRu577v78Lq8XL3v1TYjzewqLGtsdlrtuZzTQ+TEiStV9WsReYDI0s1aqqoi\n0mAWT1UfJ5KEIy8vr30yfcYYs4uyz1hjjGkf9vm64yTFJXH58MuZu3EuIQ1x7qBzmbxgMmENN5hE\ny0rMIisxi1A4xAvHvcDX679mn677kBkfmy2ay2vKue3L27Y6hODmETfjdXtjEo8xxpjmtWcSbQ2w\nRlW/dl6/QiSJtlFEuqvqehHpDuS3YwzGGGOMMcaYTmqPzD2YcdIMymvK+df3/2JF2QruPOjOhisH\nqqGyAHf5enpl9qPXHmN3bLD1hDVMTaim9rU/5Ces4ZjEEggFKPYXoyjp3nQSPLZnuTHGNKTdkmiq\nukFEVovInqr6E3AokaWdPwLnAXc5319vrxiMMcYYY4wxnZfH5aFLUheS45K56YCbcImLrIRG9jcr\nWQGP/R5CAei+N5zzKqTk7tB460qPT+e2g27jltm34HV7uT7v+pglr34q/okL3r2AoAZ5eMzDHNj9\nwHY5hdUYY3Z27X0655XANOdkzmXABYALeElELgRWAqe3cwzGGGOMMcaYKG2q2oQv4CMxLnGn2aMr\nmo38WTE7kkADWD8fQv72D6wZPVN6cv/o+xERUr2x2Se8JlTD1B+mUh2qBuCJhU8wJGcI6fHpMYnH\nGGM6snZNoqnqPGDbDQkis9KMMcYYY4wxHUhhVSH/88H/8HPxzwzIGMCUI6bsNIm0Zv1mNHiToaYS\n+o6EDrJkMS0+Labje91eRvUaxXsr3wPgoJ4HkehJjGlMxhjTUbX3TDRjjDHGGGPMTqKipoKfi38G\n4JeSXyj1l3aeJFpGL7jiO/CXQWIWJHeS52oDo3cbzWsnvEYgHKBHSg873MAYYxphSTRjjDHGGGMM\nEFkW2TWpKxt9G8lNzCXNG9tZUm3K7YW07kD3WEfS4aTFp8V8RpwxnZWIjAZqVPUL5/VU4C1VfaUd\nxnoCuE9Vf2zrvk2EJdGMMcYYY4wxAOQk5vD8sc+zoXID3ZK7dZ5ZaMaYzu/W9LOBCUBvYBUwnltL\nn4ttUACMBiqAL9p7IFW9qL3H2NW5Yh2AMcYYY4wxpmMQEXKTchmaO5TcpFxEJNYhGWNM8yIJtClA\nH0Cc71Oc8lYTkWQReVtE5ovIDyJyhogcKiJzRWShiDwlIvFO3RUikuNc54nITBHpC1wKXCsi80Rk\npNP1KBH5QkSWicjYJsZPEZGPROR7Z7wTG4vLKZ8pInnO9aMiMkdEFonIbdvzPpgtLIlmjDHGmJjS\ncJiatWspefVV/MuWEfbH/sQ8Y4wxxuxUJgBJ9cqSnPLtcRSwTlX3VtUhwLvAVOAMVR1KZHXfZY01\nVtUVwGPA/ao6XFU/c251B34PHAfc1cT41cDJqroPcAhwr0T+utFQXPXdqKp5wDDgYBEZFu1Dm8ZZ\nEs0YY4wxMRUsLGTFqWNZf+NNLD/pZELFxbEOyRhjjDE7l94tLI/WQuBwEbnbmUXWF1iuqj87958B\nRrWi3xmqGnb2LuvaRD0BJojIAuBDoKdTf6u4VLW0gbani8j3wFxgMDCoFXGaeiyJZowxxpiY0kCA\nUElJ5LqmhlBpQz8HGmOMMcY0alULy6PiJMv2IZK0ugM4qYnqQbbkWBKa6brutPum1s2fA+QC+6rq\ncGAjkFA/LhG5pW4jEekH/Ak4VFWHAW9HEZOJgiXRjDHGGBNTruRkss4/H/F6STnicDy5ubEOyRhj\njDE7l/GAr16ZzylvNRHpAfhU9T/ARGAE0FdEBjhV/gB86lyvAPZ1rk+t0005kNrKENKBfFUNiMgh\nRPZ6ayiufeq1SwMqgVIR6Qoc3crxTT12OqcxxhhjYsqTkUHO/15G1oV/xBUXhzsjY5s6wZoaKkuL\nKdmwnpxefUjOyIxBpMYYY4zpkG4tfY5b06HtT+ccCkwUkTAQILL/WTrwsoh4gG+J7HkGcBvwpIjc\nDsys08ebwCvOoQBXtnD8acCbIrIQmAMsaSKuWqo6X0TmOvVXA7NbOK5phKhqrGNoVl5ens6ZMyfW\nYRhjTEfTJkem2Wes2RmU5m/g6esuIxQIkN2rD6fffCdJ6dsm24xpQ9v9GWufr8YY0yA79tfstGw5\npzHGGGM6vKJ1awkFAgBsWr2SUCgU44iMMcYYY8yuxpZzGmOMMabDy+3Tj6weu1G0bg17H34Mnjhv\nrEMyxhhjjGkTIjIUeLZesV9VD4hFPKZxlkQzxhhjTIeXkpnF6X+7i3AoiCc+nsSU1u7Pa4wxxhjT\nsajqQmB4rOMwzbMkmjHGGGN2CskNHDhgjDHGGGPMjmJ7ohljjDHGGGOMMcYY0wxLohljjDHGGGOM\nMcYY0wxLohljjDHGGGOMMcYY0wxLohljjDHGGGOMMcZsBxG5VUT+1E59rxCRnPbouy2ISK6IfC0i\nc0VkZAP3nxCRQbGIra3ZwQLGGGOMMcaYJqkqqorLZX+DN8Z0TEOfGXo2MAHoDawCxi88b+FzsY0q\n9kTEo6rBdh7mUGChql7UwPjuhsp3VvZ/QWOMMcYYY0yjiqqLmDRvEnd+cyf5vvxYh2OMMdtwEmhT\ngD6AON+nOOWtJiLJIvK2iMwXkR9E5Iy6s8JEJE9EZtZpsreIfCkiS0Xk4ib67S4is0RkntPvSKf8\nURGZIyKLROS2es2uFJHvRWShiAx06u/vjDdXRL4QkT2d8vNF5A0R+Rj4SERSROSjOu1PdOr1FZHF\nIjLFGfN9EUlsIu6LReRb5/14VUSSRGQ4cA9wovM8iSJSISL3ish8YISIzBSRPKePo5w45ovIR009\nR0dkSTRjjDGmEwmVlhJYt45Afj4aCsU6HGNMJ/DiTy8yecFkXvrpJW6afRNl/rJYh9QhbaraxOry\n1RRWFcY6FGN2RROApHplSU759jgKWKeqe6vqEODdZuoPA8YAI4BbRKRHI/XOBt5T1eHA3sA8p/xG\nVc1z+jlYRIbVaVOoqvsAjwKbl40uAUaq6m+BW9j6efcBxqrqwUA1cLLT/hDgXhERp97uwCRVHQyU\nAKc28XzTVXU/Vd0bWAxcqKrznLFfVNXhqloFJANfO+/b55sbi0gukWTnqU4fp0XxHB2KLec0xhhj\nOolQRQVF/5lG4UMP4c7IoO9LL+Lt3TvWYRljdmKqSrm/vPa1L+AjpJagr29T1SYu/+hyFm1axO4Z\nu/P4EY+Tk9hhty8ypjNq7Aee7f1BaCGRhNPdwFuq+tmW3FODXneSSFUi8gmwPzCjgXrfAk+JSBww\nw0lEAZwuIpcQydV0BwYBC5x7053v3wGnONfpwDMisjugQFydMT5Q1SLnWoAJIjIKCAM9ga7OveV1\nxv8O6NvE8w0RkTuADCAFeK+ReiHg1QbKDwRmqepygDrxNfUcHYrNRDPGGGM6iXBVFcXPPgtAqKSE\nilmzYhyRMWZnJyJcMOQCRu82mt92+S13/v5OMhMyYx1Wh+ML+Fi0aREAS0uWUlFTEeOIjNnlrGph\neVRU9WciM7oWAneIyC1AkC25lIT6TZp5vbnfWcAoYC0wVUTOFZF+RGaYHaqqw4C36/Xvd76H2DIh\n6nbgE2eW3PH16lfWuT4HyAX2dWa/baxT11+nXt2+GzIVuEJVhwK3se3zb1at2qK/uDT1HB2KJdGM\nMcaYTsLl9ZJ88MGRF3FxJO2/f7uOp6rUrF1H0TP/pmrhQkKVlc03MsbsdHKTcvnHyH/w4JgH6ZPW\nJ9bhdEiJcYn0TesLQI/kHiTHJcc2IGN2PeMBX70yn1Peas5yTJ+q/geYSCShtgLY16lSf+njiSKS\nICLZwGgiM84a6rcPsFFVpwBPOP2mEUl8lYpIV+DoKEJMJ5KIAzi/mXr5qhoQkUOI7BnXGqnAemcG\n3TmtaP8VMMpJGCIiWXXii+Y5Ys6WcxpjjDGdhDs9na5//jPZf7wAd3o67oyMdh0vWFjIyrPOIpif\nj6dnT/o8MxWtrsadlUUzSx2MMTuZFG9KrEPo0HISc3j6qKcp9ZeSHp9uSzmN2cEWnrfwuaHPDIW2\nP51zKDBRRMJAALgMSASeFJHbgZn16i8APgFygNtVdV0j/Y4GbhCRAFABnKuqy0VkLpH9wVYDs6OI\n7x4iyyBvIjJzrTHTgDdFZCEwxxmjNW4GvgYKnO+pLWmsqgXOctXpIuIC8oHDif45Yk5UG5xd2KHk\n5eXpnDlzYh2GMcZ0NG2SpbDP2Palqmyq3oSqkuZNI94TH+uQ2kTY7yewfgPLjjoKd3Y2vR6ZRP4/\n7yVUXk7Pf07E27+/JdLMzm67/wW2z1djjGmQ/YBgdlq2nNMYY4xpR6vLV3Pam6dx9PSj+T7/e4Kh\nYKxDahOhsjLK3n6b3GuvIfWIIyiZ/hq+b7/Fv2QJ68bfSKikJNYhGmOMMcYY06YsiWaMMca0o2d/\nfJbCqkL8IT/3fXcfZYGyWIfUJkRclL3zDsHCQjJOPglPt2619zzZ2YjbHcPojDHGGGNiT0SGisi8\nel9fxzqu5ojIpAbiviDWcXUEtieaMcYY04727bovL/z0AgBDc4YS7+4cyzk9Odn0fmIKJa+8SqCg\ngIyxp+JKTCBUVEzWH8bhTkuLdYjGGGOMMTGlqguB4bGOo6VU9fJYx9BRWRLNGGOMaUcjeoxg2jHT\nKPOXMThncKc6sS2ue3dyr7yi9nX2+efHLhhjjDHGGGPamSXRjDHGmHaUHp/OsNxhsQ7DGGOMMcYY\ns50siWaMMcaYdhP2+yOHDITDuNLScCd3npl4xhhjjDFm12IHCxhjjDGm3VQvXsyvhx/BL2MOpeKT\nTwjX1LSqn6qaEP5AKKq6gVCIgnI/Jb7WjWWMMcYYY0xDokqiiUiuiIwXkcdF5KnNX+0dnDHGGGN2\nXuFgkOL//AetqQFViqZOJVxR2eJ+1pVUce1L87j1zUUUVvgBCPj9lBXks/6Xn/GVldbW9QdCfLWs\niDMf/5JL//Md60ur2ux5jDHGGGM6ExHJEJH/bWXbFSKS00Zx/F1EDmuLvtpbtMs5Xwc+Az4Eovsz\nsOlwwlVVhEpKCPt8uLOy8GRmxjokY4wxDQiWlFD9ww+EKipI3n9/PFlZsQ6pVVweD6lHHknZW28D\nkHLIIbiSElvUR7GvhutemsdXy4oifcR7GH/MXpTmb+DZP19FOBSif94BHHnp1SSmplHsC3Dh1DnU\nhML8WlDJLa8v4v4z9iYlPq7Nn88YY4wxHcfigXudDUwAegOrgPF7LVn8XCxiERGPqgZjMXYLZQD/\nCzxS/8aOfAZVvWVHjNMWol3OmaSqf1bVl1T11c1f7RqZaXP+Zcv45fAjWHbscRQ+8iihioo27T9Y\nWEhgwwZCpaXNVzbGGNOo8vffZ/VFF7Pummsp+NcDhHy+WIfUaskHHkj/d9+l3xuvk3nOObgSElrc\nR1i3XIfCiiqs/3kJ4VDk73qrFs4nFIz8jKcoNaFwbX1fTZBwGGOMMcZ0Yk4CbQrQBxDn+xSnvNVE\nZJyIfCMi80Rksoi4RaSizv2xIjLVuZ4qIo+JyNfAPSKSJSIzRGSBiHwlIsOcereKyLMi8qWILBWR\ni+v0d4OIfOu0ua2Z2M516s0XkWedslwRedXp41sROajOmE+JyEwRWSYiVznd3AX0d55vooiMFpHP\nROQN4Een7QwR+U5EFonIJS1477Zp57x/U0XkBxFZKCLX1nnvxjrXtzix/+CshpRox9wRok2ivSUi\nx7RrJKbdVXz6KTi/ZJR/+CFa1XZLXAIbNrB87Gn8MvoQip55hlB5eZv1bYwxuxINh6la+EPt6+ol\nSyLLIXdS7tRUvH37kLDHHngyMlrcPjPJy32n782YgV04+bc9uWz0AFwuoc+w35KcEZlRnXf8KcTF\nxwORmWq3HT8Ij0vITY3n1uMGkZZos9CMMcaYTm4CkFSvLMkpbxUR2Qs4AzhIVYcTWZV3TjPNdgN+\np6rXAbcBc1V1GDAe+HedesOAMcAI4BYR6SEiRwC7A/sDw4F9RWRUI7ENBm4Cxqjq3sDVzq0HgPtV\ndT/gVOCJOs0GAkc6/f9NROKAvwC/qupwVb3BqbcPcLWq7uG8/qOq7gvkAVeJSHYz78FmDbUbDvRU\n1SGqOhR4uoF2D6vqfqo6BEgEjotyvB0i2uWcVwPjRcQPBIhkdlVV09otMtPm0o48iqInnyRc6SPz\nnLORNjwhzffNtwQ3bACgcMoTZJ51FqSmtln/xhizqxCXi5xLLsb35ZeEKyroOn487l3883S3zCQe\nPHM4bpeLRK8bgNScXP5w1wOEQiG8iYnEJ0X+n5ZYVcGhv37JmNOHo9XVpHz5CZx8YizDN8YYY0z7\n693C8mgcCuwLfOtMhkoE8ptp87Kqbt4C6/dEElmo6sciki0im3Mor6tqFVAlIp8QSWz9HjgCmOvU\nSSGSVJvVwDhjnLEKnf6LnPLDgEF1Jm+liUiKc/22qvoBv4jkA10beYZvVHV5nddXicjJznUvJ6ZN\nTb4Ljbf7CfiNiDwEvA2830C7Q0Tk/4gkQbOARcCbUYy3Q0SVRFPVXfun907C27sXv/nvf9FAAHdq\nKu6k+on61ksYPBg8HggGSdovL3JtjDGmVby9etH3hedRVTwZGYjbHeuQYi4lYevZZCJCcmbDe8UF\n3nqd6gm3A5B0zdUN1jHGGGNMp7KKyBLOhspbS4BnVPWvWxWKXF/nZf19KqI9QUkbeC3AP1R1coui\n3JoLOFBVq+sWOkk1f52iEI3ng2qfQURGE0nMjVBVn4jMZNtn3kZj7VS1WET2JjIj7lLgdOCPddol\nENmfLU9VV4vIrdGMtyNFu5wTEckUkf1FZNTmr/YMzLQ9iYsjrksXvD174k5r20mEcT170P+9d+nz\n3DR6TvynHVpgjDHbyZOTQ1xuLhJnSxFbwpOZSc/77iVlzBgyzjqTjNNOi3VIxhhjjGl/44H6m8j6\nnPLW+ggYKyJdAJw9zvoAG0VkLxFxASc30f4znOWfTlKpUFXLnHsnikiCs8RxNPAt8B7wx80zx0Sk\n5+axG/AxcNrmpZUisvkvi+8DV26uJCLDm3nGcqCpSVPpQLGTCBsIHNhMf022c07zdDl77N9EZOlo\nXZsTZoXO+zA2yvF2mKimC4nIRUSWdO4GzCPyBnxJZAqhMbgSEvD27Im3Z89Yh2KMMWYX591tN3r8\ncyLiduNy9kozxhhjTOe115LFzy0euBe04emcqvqjiNwEvO8kzALA5UT2EXsLKADmEFl22ZBbgadE\nZAGRhN55de4tAD4BcoDbVXUdsM7Zh+1LZ+ZYBTCOBpaQquoiEbkT+FREQkSWgJ4PXAVMcsb0EFkK\nemkTz7hJRGaLyA/Af4kssazrXeBSEVlMZCnmV431FWW7nsDTzvsJsNUsP1UtEZEpwA/ABiLJxQ5F\nVOvPImygkshCYD/gK1Ud7mQSJ6jqKe0dIEBeXp7OmTNnRwxljDE7kzY5qcY+Y40xpkHb/Rlrn6/G\nGNOgDnXa4o7mLFGsUNV/xjoW03LRLues3rymVkTiVXUJsGf7hWWMMcYYY4wxxhhjTMcR7e7va0Qk\nA5gBfCAixcDK9gvLGGOMMcYYY4wxpnNR1VujrevsefZRA7cOVdVoTshsVx09vvYQ7emcmzfLu9U5\nfjWdyBpXs4OE/X7C5eVIfDzuVDss1RhjjDHGGGOM6cycRFRzhwPETEePrz205HTOfUTkKmAYsEZV\na9ovLFNXuKqKipmfsuKccWy8806CRUWxDskYY4wxxhhjjDFmlxJVEk1EbgGeAbKJnB7xtHNKhdkB\nQuXlrL3+egIrV1I643X8S36KdUjGGGOMMcYYY4wxu5Ro90Q7B9i7zuECdwHzgDvaKzCzhYgLT2Ym\nwYICANzZ2TGOyBhjjGkZVcU5rt0YY4wxxpidUrRJtHVAAlDtvI4H1rZLRGYb7pxs+jw3jZLpr5GU\nty9xPbrHOiRjjDEmKsHiYkrfeIPAylVkX3Ixcd26xTokY4wxxhhjWiXaPdFKgUUiMlVEngZ+AEpE\n5EERebD9wjMAIoK3Vy+6XH0VKQcdZAcLGGOM2WlUzPyU/H/cRfFzz7H2mmsJFhfHOiRjjDHGmDYj\nIieIyF8auVfRSPlUERnrXM8Ukbz2jLExIjJcRI7ZAeOMr3PdV0R+aIM+c0XkaxGZKyIjG7j/hIgM\n2t5x6ot2JtprztdmM9s6EGOMMcZ0PqGSki3XZWUQCsUwGmOMMcZ0VpMu/fhsYALQG1gFjL/8sTHP\ntfe4qvoG8EZ7j9NOhgN5wDvt0blE9vIQYDyRfzZt6VBgoape1MC47obK20JUM9FU9ZnNX0T+5Zhb\nr8zsIGG/n1BFg8lsY4wxpsNJP+F4Uo85hoS996bnv+7HnZXVaN2yqgBLN5bz7fIiiirtEHBjjDHG\nRMdJoE0B+hBJ2vQBpjjlrebMmlrizBz7WUSmichhIjJbRJaKyP4icr6IPOzU7yciX4rIQhG5o04/\nIiIPi8hPIvIh0KWR8Y5w2n8vIi+LSEoTse0rIp+KyHci8p6IdHfKLxaRb0Vkvoi8KiJJTvlpIvKD\nUz5LRLzA34EzRGSeiJzRyDi3ishTzoy5ZSJyVZ171zl9/iAi19R5z34SkX8TWcX4JJDojDHNaeoW\nkSkiskhE3heRxCaec5vnEZHhwD3AiU6/iSJSISL3ish8YETdGX4icpTzns4XkY+csv2d93quiHwh\nIns2FkNd0Z7OOVNE0kQkC/gemCIi90XT1rSdYFER+f/6F2uvuRb/0l/QcDjWIRljjDFN8mRn0/3v\nt9HrsUeJ3313xNX4jx5zVhZx+P2zOG3yl9zz7hLKqwM7MFJjjDHG7MQmAEn1ypJom9lPA4B7gYHO\n19nA74E/EZlhlTnPYwAAIABJREFUVdcDwKOqOhRYX6f8ZGBPYBBwLvC7+oOISA5wE3CYqu4DzAGu\nayggEYkDHgLGquq+wFPAnc7t6aq6n6ruDSwGLnTKbwGOdMpPUNUap+xFVR2uqi828R4MBI4E9gf+\nJiJxIrIvcAFwAHAgcLGI/NapvzvwiKoOVtULgCpnjHPq3J+kqoOBEuDUJsbe5nlUdV692KuAZOBr\nVd1bVT+v817lEkmwnur0cZpzawkwUlV/6/QV1b8r0S7nTFfVMhG5CPi3qv5NRBZE2da0kcrZsyl+\neioAq5cvo88LLxCXmxvboIwxxphmuFMa/SPqVmb+VFB7/eWyTVQHwqQmtFdUxhhjjOlEerewvCWW\nq+pCABFZBHykqioiC4G+9eoexJaE0LPA3c71KOB5VQ0B60Tk4wbGOZBIkm22c6K5F/iykZj2BIYA\nHzh13WxJ2g1xZsFlACnAe075bGCqiLwETI/iuet6W1X9gF9E8oGuRBKJr6lqJYCITAdGElm9uFJV\nv2qiv+VOIgzgO7Z9H+tq7HnqCwGvNlB+IDBLVZcDqGqRU54OPCMiuwMKxDURQ61ok2geZ2rg6cCN\nUbYxbc3t3nLticP5j8UYY4zpFMYd2IcZc9dS7g9y5ZgBpMS7m2/UAA0EIgcYBIO4UlJwp6W1caTG\nGGOM6WBWEVnC2VD59vLXuQ7XeR2m4ZyKtnIcAT5Q1bOirLtIVUc0cG8qcJKqzheR84HRAKp6qYgc\nABwLfOfMJItW3fcgRPO5pMoW9tfock4aeZ4GVDtJymjdDnyiqieLSF+i3Ps/2tM5/04k2/erqn4r\nIr8BlkbTUETczhrTt5zX/SRygsIvIvKisw7XRCF5xAhyrryS1COPpNfkx3BnZ7dJv6HKSoKFhYR9\nvjbpryHBkhJqVqwksGED4aqqdhvHGGPMzqt/TjIfXncwX/xlDEcN6U6iN9q/9W3Nv2wZy44+ml/G\nHErx888TKre9RI0xxphObjxQ/xdaH9sut2xvs4Eznetz6pTPIrL3mNuZoHRIA22/Ag4SkQEAIpIs\nIns0Ms5PQK6IjHDqxonIYOdeKrDeWfJZG4OI9FfVr1X1FqAA6AWUO/Vb4zPgJGePsmQiS1Y/a6Ru\nwImnNRp8nhb4ChglIv0AnG3KIDITba1zfX60nUV7sMDLqjpMVS9zXi9T1abWrNZ1NZF1q5vdDdyv\nqgOAYraszzXN8GRmknPp/9DjnruJ79u3TWaiBUtKKHrySVacfQ5F06YRLC1tg0i3FvL5KJr6DL8e\ndRS/HHY4/p9/blF7DQQIrF9P5ddfEywo2OZ+qLSUqh9/pGrRIoJ1ToEzxhizc3G7XXRJS6B7eiIp\n8a1LoGkoRNHTTxOujPwcXfjIo4Sr7Y83xhhjTGfmnMJ5MbCSyEywlcDFO+J0znquBi53lnr2rFP+\nGpGJSD8C/6aBZZqqWkAkmfO8s33Wl0T2ItuGs5/ZWOBuZyP9eWzZZ+1m4GsiCb0ldZpNlMiBBz8A\nXwDzgU+AQU0dLNAYVf2eyCyxb5zxnlDVuY1UfxxYUOdggZZo7HmijbMAuASY7rxXm/d+uwf4h4jM\nJfpVmohq8zMNnezno0BXVR0iIsOIbER3RzPtdgOeIbLB3XXA8UQynt1UNehkTW9V1SOb6icvL0/n\nzJkT1QOZlqlZuZJfjzyq9nX/Dz7A22u3Num7xFdDTTBMQrCG/LPPILBiBQBZF/6RrjfcEHU/gQ0b\nWHbssYQrfcTttht9n38Oj7MXnIZCFD//PBvviOyh2OUvfyZr3DjE07pfvozZybTJmm77jDWdTcnL\nr7D+5psBSBi+N70eeQRPE6eCGtOI7f6Mtc9XY4xpkO1LZHZa0S7nnAL8FQgAqOoCtkxRbMq/gP8j\nslYYIBsoUdWg83oNW2dna4nIJSIyR0TmFDQw+8i0DYmPByfhJF4v4m3tDMutbar0c9NrP3DY/Z/y\n9PcbSL1rYu0Yacce26K+AmvX1s4oCKxZQ9i/Zfl02O+n8vPZta8rP59NuLq6DZ7AmM7NPmNNZ5Zy\n+GH0mvI43W6/nV4PP2wJNLND2eerMcYY03lFm0RLUtVv6pUFG6zpEJHjgHxV/a41ganq46qap6p5\nuXYCZbtxp6fTe9o0Ui+4gNx//4eqxOhOUGvOqk0+3lq4nrKqIPd/uJRAr370/+AD+n/wPvH9+7eo\nL2+fPnj79gUg+aCDcCVuObnYlZhI9iUXI/HxiNdL9v9cgis5uU2ewZjOzD5jTWfmycggZeRIMk8b\niycnJ9bhmF2Mfb4aY4xpSyLymrPcsu5Xk6v5WjnOBQ2MM6mtx2li/EkNjH/Bjho/WtGueSsUkf44\np0yIyFi2HJ/amIOAE0TkGCABSAMeADJExOPMRtuNLRu5mTqCJSVoIIB4PHgyM9ttnOKwi/uWCbLn\n0Xz50SbOLE/m4pG/abJNqKSEUHk54vXizszE5d32bIiclHhcAmGFtEQPcXHuVi8T9eTk0Oc/zxL2\n+3ElJm41o0BESBg8mP4fvA9EkoJ2aqkxxjQvVFlJzfLlVM1fQMrog4nr0cM+P40xxhhjOhhVPXkH\njfM08PSOGKuR8S+P1dgtEW0S7XIiG8ENFJG1wHKaORVBVf9KZAkoIjIa+JOqniMiLxPZAO8F4Dzg\n9daF3nkFi4vJv/seSmfMIHnkSHrc9Q88bXQSZ30J1T6u7BmguqSMEw/rzYKypn+BCpaUUPTEk2x6\n4gkkPp4+0/5D4pAh29TLSvYy/X8PYvYvhRwztBs5ydt3CGtTMwlc8fG4unTZrv6NMWZXE1y/nhWn\nnQ6qFD7yCP1mvEaczZoxxhhjjDGmUU0m0UTkalV9AOiuqoc5x5a6VLV8O8b8M/CCiNwBzAWe3I6+\nOqVwZSWlM2YAUPnZZ4SKi9stiRb8YjbFzib/3c84k72uubbJ+urzUfz885Frv5+SV15pMImWHO9h\neK8MhvfKaLyvcJjAhg1UfT+XxGHD8HTvhiuubfZkM8YY07SaVavAOVwotGkTWhOIcUTGGGOMMcZ0\nbM3tibZ5/elDAKpa2ZoEmqrOVNXjnOtlqrq/qg5Q1dNU1d9c+12NxMfXnj7pSk7GlZbWLuNoOEzl\n11/Vvq5ZMJ8EbXKrOxAhab/9al8m/35kq8cPFhay4pRTWfenP7HspJMIFRW1ui9jjDEtkzhsGPF7\n7glAxtln40pOaqaFMcYYY4wxu7bmlnMuFpGlQA8RWVCnXABV1WHtF9quy5OTQ9+XX6J60SLiBw5s\nsz3RQmVlALidpJy4XGRfcAHlH3xI2Ocj9+qrcaWmNtmHKyWFLjfcQNoJJxDXoztxPRs8XDUq6vcT\nKimJXPt8hCsqoGvXVvdnjDEmep6cHHo/9SQaCkX+eJOeHuuQjDHGGGOM6dCaTKKp6lki0g14Dzhh\nx4RkakI1lKQKVXn9SY9PIrMNljgGNmxg/U03g4bpfscdxHXvDoC3b19+8/rraDiEOyWl2eWU7tRU\nxOPBnZmBxMXhbibp1hRXSgrpp59G6avTSRkzBnc7HqBgjDFmW+21VYAxxhhjjAEROQn4WVV/bKP+\n8oBzVfWqtuivFeOfAAxS1btEJBd4C/ACVxHZE/9sVS2JRWw7SrMHC6jqBmDvHRDLLivs8xGurARx\n4cnJZmX5Ss5860wC4QBnDzybK357BaneppNVYb+fUGUlAludXrn5Xv49E6n8/HMANk74B93vvguC\nQcKVldSsXMXGiRPJGDuW9OOPw52S0uRYrsREXImJ2/XMAJ7MTLpcfz25V16JeOLwZDa+f5oxxhhj\njDHGGNOYe8847mxgAtAbWAWMv/7Ft56LbVScRCTR1CZJNFWdA8xpi75aOf4bwBvOy0OBhap6kfP6\ns9hEtWM1uSeaiLzkfF8oIgvqfC2st7zT1BPy+QgHmt+kOVxVRfnHH/PLmENZcfbZBNavZ86GOQTC\nkbbvr3yf6mB1k334SktYtXAev875morVqwgWFGxdweWq3VfNlZJCXN++aE0N5R9/zK9HH8PGu+5i\ntwcfoOSVVwj7fK174FbypKcTl5trCTRjjDHGGGOMMa3iJNCmAH2IbD/VB5jilLeaiIwTkW9EZJ6I\nTBYRt4g8KiJzRGSRiNxWp+5dIvKjkzP5p4j8jsiKvolO+/6NjHGxiHwrIvNF5FURSXLKTxORH5zy\nWU7ZaBF5y7neX0S+FJG5IvKFiOzZxHOcLyKvi8hMEVkqIn+rc2+GiHznPM8ldcqPEpHvnfE/qtPP\nwyIyHLgHONF5tkQRWSEiOU69c533Yb6IPNv6fwIdT3Mz0a52vh/X3oF0JjUrV7Lxnol4+/Qh+6IL\na2eGBYuKqF68BE9ODnE9uuNOTSVUUcHGO+5EAwECq1ZR8vobjPnDiTw490EqA5WM3WMsSXGNb/Yc\nDoVYNPNDZj03FYBBvxvF70YdRrpzMAFE9hvLvvgisi+6EA2HCZWUEPb5IuNWV+NfsoTy996j++1/\nR1zNnTVhjDHGGGOMMcZ0KBOA+r84JznlrZqNJiJ7AWcAB6lqQEQeAc4BblTVIhFxAx+JyDBgLXAy\nMFBVVUQyVLVERN4A3lLVV5oYarqqTnHGvAO4kMjhjrcAR6rqWhFpaNbJEmCkqgZF5DDnWU9tYpz9\ngSGAD/hWRN52Zrb90XmeRKf8VSITrqYAo1R1uYhstdxNVeeJyC1Anqpe4cS++X0bDNwE/E5VC+u3\n3dk1tyfaeuf7yh0Tzs4vWFjI6suvoOaXXwDw9u1D5umnEyorY+OEf1D21lsA9H76KZJHjEA8Hry7\nD6Dq28iMzISBe+KtieONE2ZQo0FSvakkxyU3Pl6ghjVLtswM3bBiGXJiZG+xsuoAFb4aKPeR8M0X\nUO2n7J13SD38cJJH/p743Xenau7cSJz9+uFOz8CTk7NV/xoMEiovR7xe3MmNx2GMMWbXFPb7CW7a\nRGD1auL799/m/yPGGGOMMTtA7xaWR+NQYF8iiSWARCAfON2ZseUBugODiCzXrAaedGaKvdWCcYY4\nybMMIIXInvQAs4GpzgrB6Q20SweeEZHdAQWa20z9A1XdBCAi04HfE1kaepWInOzU6QXsDuQCs1R1\nOYCqFrXgecYAL6tqYSvadnhNJtFEpJzIP4xtbhE5nTOtXaLa2aludR12ElFV8+bVFvu++57kESPw\nZGay2/33UzFrFnE9elD981LWXHoZmVdfQ/JpZ5Ca3PRbHBefwFHjLqTqqBMo3FRAOM5DQlYWPn+Q\nV75bw9/f/JH0xDi+Ov8AVhx5JK7kJHKvuRr/Tz/T8/77KP/4Y7y77UagoIDExISt+g4HAlQvWsTG\nOycQv8fudLn++m32WzPGmF2NBoMECwqo/ulnEvYaiKdLl9q/vO2KgoWFLDvmWNTvJ3733en99NN4\ncuzAAmOMMcbsUKuILOFsqLy1BHhGVf9aWyDSD/gA2E9Vi0VkKpDgzAbbn0jibSxwBZFkUjSmAiep\n6nwROR8YDaCql4rIAcCxwHcism+9drcDn6jqySLSF5jZzDj1czsqIqOBw4ARquoTkZlAQv2GZosm\n1+6paqqqpjXwlWoJtIa5s7PZbdLDpBwymszzziP18MMJrFlDuLqa3GuuAbcbT5dc0k86sbaNJyeH\njFNOoWblKvInTACg7JmpLF9dSGGFH7+vksriImr82+6NFszPZ81ZZ7HxjLNIfu9DfjNoGN60dCr8\nQabM+pWrRvTgsWP6oG43kpBA5rhxlLz8Muv+9CdWjhtH0ogRuHffE1/e7yiL33qmWbikhDWXXkb1\nwoWUvjqdyi++2Pp+TQ2h8nJUG8qzGmNM5xQsKmLZCSey5tJLWTH2NIKFhU3W11CIUGkpYb9/B0XY\nfsJ+/zbPUfPrMtQp8y9digab3w/UGGOMMaaNjSeyTLEun1PeWh8BY0WkC4CzLLE3UAmUikhX4Gjn\nXgqQrqrvANey5XDGcqDpUwIj99eLSByR5aI4ffZX1a9V9RaggMgssbrSiSwjBTg/iuc5XESynGWb\nJxGZ6ZYOFDsJtIHAgU7dr4BRTtKQFi7J/Bg4TUSyW9G2w7MNsNqYiBDfty897r2XLtdfhycri3B5\nOSvGnkbVd9/R75WX6fviS8T17LlN24RBe4GzJ5n3wBH8WFhNTTDEp/95mmk3XsfCj97DX1kJQFlh\nAfkrllE5fz7B/MhBAmWvv4GEQpG+4tz869j+jF0xm+xrL6Jk8mT6vTad+L32omZFZHVuYM1aNj09\nlZtmreOgR7/nXx8upaomVPdhcNU5qdOVuuW//WBRMYUPPsTaq6+hevFiNFSnnTHGdGLh8nLC5eUA\nBAsK0OrGD38JV1dT+dVXrLniSoqenkqoZOc98TuQn8/68Tey/uabtzrAJmGvgcT1ifzhN/2UU5B4\n++OlMcYYY3Ys5xTOi4GVRGZcrQQu3p7TOVX1RyJ7e73vHKz4AeAH5hLZj+w5IokoiCTC3nLqfQ5c\n55S/ANzgbP7f4MECwM3A105fS+qUT3QOdfwB+AKYX6/dPcA/RGQuze93D/AN8CqwAHjV2Q/tXcAj\nIouBu4gkz1DVAuASYLqIzAdejKJ/nLaLgDuBT52290XbdmcgO8Msory8PJ0zJ2anuG63TU89Rf49\nEwFwZ2TQb8ZrxHXrtk29UGUlweJiStblsz4xi1n5NZw+NJtpV55XW+eSR6ai4TAzJt5Ojb+ac667\niVWnnEq4spKkgw6i2z33EJ8dSfRWr17D8sMPr23b7/UZxPXqRc3Spay+/ArcqSlkPPQox738K+tL\nq9mvbyZTzs0jI8lb26Zm1WoKJ08mYfAg0o4+pvYUzfIPP2TNFVdueabXpuPp2tUOJjBmx2qTNYQ7\n+2fsjhbctIm1N9yA74svSTv6aLrefFOjS90DGzfyy2GHg3Nac99XXyFx8ODoxyopIZhfgCsxAXdG\nJu7UlOYbtTENBglu2kSwcBPl77/HpsmPk3bC8XS//XZc8fGROAsL0ZoAkpSIJ8NOWzadxnZ/xtrn\nqzHGNGjX3QcjRpxlorWHAJjWiyZbaeoJ+/2RWVpeb/OVgcQjjyS7a1dCy5bh8vtxNbJBvzs5maKQ\nmzlFLn6TncTxOWESqEHEhWqY+ORkPPHxfPv6KxSsXA7AZ++8xqg3X6e0sIx1xBPvSSQnFKagwk+a\n240kJaE+H7hcuFNScSclkTBoEP1em46IsNGdhNu1jOxkLzcfN4i0hK33IvT27tXwqZ11X7tc+Jct\nI1xdTXy/ftG/kcYY085UFV9JMaFgEG9iIgkpzc2mb54nO5ue//wnGgwiXm/TSSMRxONBnSSaxDW3\n3+sW4aoqiqdNo/ChhwHoNfkxUg4+eLtibw3/smWsPPscwhUVdPnTn8g86yxCZWVb7f9phwkYY4wx\nxphdwS6bRFNVgoWFBAsKiMvNxZObG1W7wMaNFDw8Cddpx0Hf3Yj3JpKZkNlo/aryMuZ8+gFLv5rN\nkMOOpv9BhxBISMLdSP0Fa0sZkKrMf+JuKktLOWn83zjrgYfY9POv9Oi/B/GJSeT02rJfYlVlJcXi\n4ejXVlFSFeSz/+vGpsoajrx/1v+zd9/xUVXp48c/t03vmVQ6hA7SAlJEERVRVESssCr2Al/bWtfu\nb9e6u+rqrrtiw7rYUBQV14IFEQkivRMgoaRnJtPb/f0xQ2gJhKYC572vfeXOveeecyfBZO5zz3ke\nBrZ28tBLryLP+gL7sBNQMrPIJE1Dy7zfAl1n2vVD0HUdj9WALO/+UKCx2WXmPn3wTppIZOkyPJde\nQtVzz6FmZ5P/yCPI+3CTKAiCcCgFaqp58+4/Eqitpt+o0QwcexEm64HP5mpukRXF7abNa69S89LL\nWI8fipab2+wxUuEwga++anjt//xzrEOH/qozflOJBNXPP08qEACgavJkWj77LIY2rZFNYtmmIAiC\nIAhCc0mS9E9gyC67n9Z1/eWDOMapwGO77C7RdX0M6QIGwgE6aoNoiaoq1o89l0RFBVrr1rR6/VWM\nOXu+uUkGg5T/+c9w0dk8sPl55iyYy5CCITx83MN4zI3fUIXr/cz78F0Avn/jJVzd+hGSjLT2WACo\nqI9QH07gMGtk2410L3Cw5KO3KV26mKHXXct7Gz5kdsUcruhxBR1yspAVhXZ9ihhzx/0Eaqtp33cA\nn5cEaeG2cMPJLXGYNMrqQvgjCT5fVc3yqhDTrr8Ws83Y6PVJkkSWTaM6XE1lOIFVs+Iw7r1mhOp2\nk3XFFdR/8y3ljzxKdOVKcu66UwTQBEH4Xdm0YhmB2moAfv70I/qfde6vOr6saZh79CD/0UeaPXu5\n4VybDc9ll7H5ttuRjEZcY8eSCoVQbL/ekk5ZVTH37o3/4xkAmDp3wtCuLZqYeSYIgiAIgrBPdF2f\n+CuMMROYeajHOZodtUG0VH09iYoKAOIbNxIK1KJ5s5H38oRfT+nEcpzMWT0XgNmbZxOIB3YLoiV8\nPojFUDUDsqKQSiZRjUZ0SSEcjhPyx4ihM37yXNw2A51ybNx2amc8FgPZ+Xm4C1pgKWzJ01+mq+n+\nUvELn439DLNqxmx30L5v/4axRihWhrfLxmzTMGoK8ZSJni2cLN7ko1dLF7K05yXnW4JbGDdjHDWR\nGq7vNZHzO44jy7r3QJpsNmMdMABJlpDNZkw9eu71HEEQhF9TbvtCFE0jGY/TukcvJKWpecCH1r4G\n0LadY+nfnzZvvA66Ts1LL5N9040ohYWH4Aqb5jjjDLT8fBKVldhPPlks3RQEQRAEQRCOWkdtEE2y\n23CMu5DEoN4oBiN1SgxLKo5RbnzGFqRzluXddy91eogpp0wjmVSJpuqwqJad2iVqa6n429/xvf8+\n2Q8+wIUPPsaa4rkU9B3MloiCfaOfabOW076Pl9cu6k38q08xR0CqyKYiaqBt0VC8fYYSlrY29ClL\nMlIjwTB/VZjPX1yKJEuMuLwbxiwzXpuRly/rTzyZQpUlQrEEkXgSl1nDYtz9R/5d2XfURGoAeHXZ\nFE7IPwOTYiEQSxCOJbGbVDRFxheOoyoSTrOGxZDuR/W4cYwYsV8/A0EQhEPN7vVyxdOTCfpqcXhz\nsNj3/oDgd0WHDRdfApkKyN7rr2uyaTKRIBIMoKjqQVmyuo3qcmE/6aS9X2oiQaKigvCSJZi6dkXN\nyWkoPCAIgiAIgiAIR4KjNogmezxUX3s2d35/F16zl8eyHsOo7v3Dvpabi+4PM+mfP+C0aIzqmU+P\n7O03ZbWRWqS6SnzvvovsdOI8pgPawifItznw5Q5DlWIkPJBXZeXnzzbSsaeT2sceJhCP47xoDRVF\nF1Bj8XLuv3/kplNb8eCgh5m9eRYXdx2HS9p5qWQskuC7t1dTXuIH4If313LSpV1RDQpem5FYIsW0\nBWXc8d5iFFni9SsGMKjD7jMI+ub2RZVUEnqCAbkDWVwWwGmIceazs6kJxrj79K6YNYV7PlyCKku8\nedVABrRrXj4gQRCE35KqGbBnebFnHZ6zpxSng5bPPEP15OexHn88WkFBw7FEXR2xkhJI6Sgd2rNl\nwzpmvfoCztw8Rlz9f1hdTefrPBQSNTWsG302qfp6JKOR9jM+RmvRAj2ZRFaP2o8bgiAIgiAIwhHk\n18tO/Dvji/m494f7KK0vZUHFAj5Y88Ee21eFq1hWvYzKUCU1oRiDCx3cdbaVGtNUqiIbqQhVUBep\nY9rqaVSn/CgeD9b+/VHWvg9L3iVq9fB+6Rec8cEZnPO/s1B615HbzoGqAokEAIlNpbTp5uCjX0rp\nXuAgGFQJVPXgTz1vpTDZgkBFgkh9hHC9n/rqKhKxCBbn9iVCVpdxp8IAwWiCqfNKAUimdKbOKyOR\nSu323lrbWzP97Bk8c8IUxrS+gbqAxsqt9dQEYwBIEkwtTveTSOm8M7+UVErfrR9BEATh4JLNZmxD\nj6Plc8+RdfnlKJlKoHoigW/aB2y4aBwbxo8nUlfLB48/RHXZRtbN/4kFn328Uz+1wRhLNvlYU1GP\nLxw/JNea2LqVVH19+vqiUaIrV1I79W223HkXsY0bD8mYgiAIgiAIhzNJktpKkrSkGW3G7fC6SJKk\nfxz6qxMac9Q+GlZllXxrPut86wBo5WjVcCyejJPQE5hVM5AOoE34bAIb/BvIMmXx3zOmctPIAs76\n4EzuH3Q/ryx7hRnrZjC89XCu63Udc0vnMPytF1A2lSOZSsHsprrXpXw25zYAUnqKryq+4MZLb8VI\nDGPHQvRkCu/tt5EwJhnfJ4+r+hYQri5HMyVQU0amPPQLAANHt8PWzYZJSbFk6gsMveBK7B4TsizR\ncWAexaW1FLjSSzpNisTYPi35eWMdiixxXlFL1EZyvplUE15TDprbTSCapFeBgUgiiduiURuKo+tw\nbr+WLN7kQ5Elzu3bstEqnoIgCMLBJ2kaaiZ4tk0qFiP009yG13o4jCRt//0uK9u3I/EkU+as56kv\nVgPwr/F9Ob1n/m7jJP1+UtEossGA4nTu83Vq+fmoubkkystRXC4MHTqw6Y+3okciRJYsoc3rr4l8\naoIgCIIgCPuuLTAOeBNA1/VioPi3vKCj2VEbRHManfz5uD/z8dqPybPmMbBgINFklPpYPS8sfoGt\nwa3cVnQbLewtiCQibPBvAKA6Uo0vWgdAjiWHzu7O3DP7HgA+3/A5V3W+DNsXpcTOG4ChVxckqSe4\n27FwU4oz2pzLsuqH0GSN0R1G83HV+4wuHE3wr7dTHa7inhX38MjgP5NNLj/PnM5PH7wFwMlXTqRd\nrwJKFlZTsqiaE/pkU7rBz3EXXM2MfzxAzwm3YDBbufuTpUxfuAWDIvP5zcfjlRXa+XVmXjsERZLI\ncjS9XNVsUDEbtv9zSKV0Prvp+J1yog3vkoMqp3OiCYIgCL8dxWLBe911BOf+BLqOQTNwzp8e5JvX\nXsSdV0CvEaMa2oZjSb5ZWdnw+n/Lyjm1ey7KDg9VErW1VDz5JP4Pp+MYdTo5t96G6tm35aCK10u7\nd98hXlET5TU7AAAgAElEQVSJmu0lvGgReiQCQCoUAl3MYBYEQRAE4fAiSVJb4DNgPtAXWApcAgwC\n/ko6pjIPuE7X9agkSeuBt4HTgDAwTtf1NZIkvQJ8rOv6u5l+A7qu2xoZ6zXAmtk1Sdf1H4BHga6S\nJP0CTAEWALfqun6GJEke4CWgPRACrtZ1fZEkSQ8ArTP7WwNP6bouZq8dBEdtEA3Aa/YyoccEIJ3L\n7JN1n1ARquCN5W8AUBGq4J8n/ROLZmFQwSDmbJ5DZ3dn7AY7szfN5oVTJpOKxnEYHPhjfsyqGUNS\nYfXcH6ivqmLMnfeDwwntjsOyqpLK0s5MOeVDzJrGluBG5myZw6ntTuWGX+6lKlxFZ3dnltSu4Hhn\nFptWLGq4zvWLfsbbth2SBL1OasW8aesoWVjF+kInx5x0NiRizF4bJs9pwmXRqAvFWVVeT1a+iwXT\n1jX0c/GfBzX7eyPLErkO0077HCJ4JgiC8PvRsTP5H31CwGBiiy7jMqmcc9eDKKqG0bK94I3NpDLx\nxEKueX0+RlXmiuPa7RRAA0j56/G9/Q4AvvenkXX1NfscRJMkCTU7GzU7O/26b1+cY8YQW19C7r33\nonhELk1BEARBEA5LnYErdF2fLUnSS8AtwDXASbqur5Ik6VXgOuCpTHufrus9JUm6JLPvjGaOUwGc\nout6RJKkjsBbQBFwJ5mgGYAkScN2OOdBYIGu62dLkjQceBXonTnWBTgRsAMrJUl6Ttf1Q5PX4yhy\nVAfRdrQpsAmX0YXb5G5Isq9n/ucxeXh06KNEEhEkSeLKmVeysX4jbqOb14a+yMvH/YeFdUsoajGA\n4slTANDZ+Yl7pzyNBDaWlIYZ1MFMOFnH/YPux2lwcs0x12A32IklYyT1JJLZQP+zzmPL6pXIikK/\nM8fgzG9Fj2FtiIUitOluxubOZfmcKgaNbseWlMao1m42rqzh/IsH8MR3a+jb2o2iSJxyVXeWfL2J\nTsfmYrSIH7cgCEeebVUhI8tXYOreDTUnB6mRpetHmtpoipKwwuPTFrOwzMep3XJ5eGxPsiw7zzrW\nFJkhhV5m33EikiThse7+QEQym5CtVlLBIJLFgmwxH/D1qR4Puffegx6LoTgcR8XPRBAEQRCEI1Kp\nruuzM9uvA/cCJbqur8rsmwJMZHsQ7a0dvj65D+NowLOSJPUGkkCnZpxzHDAWQNf1ryRJypIkaVvl\nwxm6rkeBqCRJFUAuULYP1yM04qiOqtSEa0iRwqgYWVy5mLdWvMWJrU5k8ojJvLbsNW7seyOqlP4W\neUzpJ+gra1aysT6dILk2WksoHuTLhx6h69DhZLd04crOxVA0kN4XnEfMoLNtLsCP5V/zn8X/wabZ\neG7tJj4Y/QG51lwARncYzbQ103jkp0do72xPkaUHthwvF/39aWqiNfyzZAp/8FxCgdKSDQu/YfGX\nn1F47BDOv+tUDCYTloTGm/f9SCqlY7ZrPPGn/sR8MZYsqiK3qwfT8FymldVxXdLL3uuPCoIgHF4S\nVVXESksJzp3Llnvvpd0H09Bycn7ryzpkthV2kSWJlK6zsMwHwMxl5dxzRjeyrLufYzYomA1NB8ZU\nj4d2094nOHculgEDUNwHp7KnYrHADrPi9pU/EicaT+EwqRg15aBckyAIgiAIwj7aNSdFHZDVzPbb\nthNkCjtK6US2hl1PAm4GyoFembaR/bnYHUR32E5ylMd/Dpaj4rFwMB6kMlRJXSaXGcCW4BbeWfUO\nC8oX4Iv6ePinhynxl/DS0pcwqSbaOdsx6atJzN0yd6e+si3ZDGs5DEVSOK/jeWhxKCwaSJ8zzmJq\n2TTajx5BalRXriu+GX/M33Ber+xelIfKWVm7kv65/TEq28NZRsXIytqVANze/SY+e/RRStYuYuJP\nt3DBrEv4ZONnxIJBUiE/Lbt2o3WPXvw0bSqhuipKl/5CoCbScFMVro+jJ3XeebSYedNLmPnUL3Rw\nW3hzXikpdJLJFKH6GOW+CD+uq2aLL0wiuXvFTkEQhMNBorKS0uuuZ+OVV6Hl5+EYNaohD9ehFI4n\n2OoLs8UXJhRLHPLxtqkKRHnssxX8vxnLUGVo57U25Kls5TFj1Pbtz7qeSpEMBAAwtG6N+7zzMLZp\ng6z99sv3qwNR7v9gKef/Zw7frKokHP/1vs+CIAiCIAg7aC1J0rbcSONIJ/VvK0lSYWbfxcA3O7S/\nYIevczLb64F+me2zSM8625UT2KLreirT57YniPWkl2Q25jtgPDQs86zSdd3fRFvhIDjiI5GBWIDp\na6fzz1/+Sd+cvjw4+EFcJhdLKpegyRp/m/83nj7xacyqmXAijCzJyJLMy0tfJqWnKK0v3ak/j8nD\nQ0MeIpwIs6Z2DSFNpv+lF3PujPOpDFfy/KLnee7k55AlGYu2/el7vrWAT8Z8Qm20ljxrHi5TutJa\nMpliQ3WIizpdxoLyBTgNTuprqrBY7AxzDmNV7SrGF15I8KdVvPLuQ0iSzBk33cHWdatRNI1Pnvkr\nVzzzJu16edm0qo5eJ7VEAlKJdFAtHk2iIPHsuD7YjSpVpQF88QSXv/8LZbVhHCaV/91ywm75zwRB\nEA4HwR/nEl2+HIDKvz9J69dfQ7bZ9nLWgdF1nQUb6rj05Z/QdXhpQn+OK/Qe8qrF8WSKf3y5mlfn\npAvd1IbiPHx2d2beNJSNNSHaZlnJsZuoDkSJxFMYNRmvrfH5x6mUTjwaI7F6JVIyCaSraypZWb+L\nABrA4k0+pv2yCYCJb/7M93cMx6wd8R9bBEEQBEH4/VkJTMzkQ1sG3AD8CLwjSdK2wgL/3qG9W5Kk\nRaRngl2U2TcZ+FCSpIWkCxUEGxnnX8B7mVxqO7ZZBCQz575CurDANg8AL2XGCwGXHthbFfbmiP80\nGowHeeSnRwCYVTaLFTUr6OTpRAdXB2755hYAnv3lWV4Z+QofrvmQIQVDkJDIs+SRZ81jVPtRu/WZ\nTCXZEtyCLMk8Nv8x7hl4D5XhdOWzUCJEtiWbV0a+gtfsBaAmGOXl2RvY6gtzyymd8Zi2L6mpDsW4\n7s35TD6/D3/t9Qx2k5HTJv2RoB6hvbM9r4x8hQLJy8z3HwdA11OsX/gzJ185kV9mfozV5SYRDdGx\nKJdB5xSiajKKJnPMSS1ZO7+SbkML8LpNtLLaSUWSfPPmSnpe0IGy2jAA/kiCaDxJKhJBNh36QFqi\npgY9kUAyGFBdrkM+niAIRzZjYYft2506ouXloR7iBPbheJIXZ5cQT6YfVrzw3Tr6tnZhMx3a4JOu\nQ31k+2ys+kicFJDnNJPnNFMdiLLVF+aPby9k9tpq+rR2MfniIrz2nQNptcEY/51XytLNPm4+vg3m\nF57B99+pSGYz7ad/iKFVq0P6Ppory7p9lYPHakCWDm2QUhAEQRAEoQkJXdf/sMu+L4E+TbR/Qtf1\nO3bcoet6OTBwh113ZPavB3pktlcDxzTSJg4M32WMWZljNcDZu16ArusP7PK6RxPXKuyjIz6IpsgK\nuZZcykPlyJKMWTMz4bMJTD5lMnbNTn28nm/LvuX2/rdTG63l34v+zYODHuSOAXdQGapk7pa5nNT6\nJKyGdJKZaCLKT1t/4k/f/4kscxZ/P+HvWFQLE7pPYFbpLC7udjFuoxubYftMiPd/3sQzX60BoFsL\nMyOPcaLKClnmLNBhfJ9WLJi6lrKVtQCcenUXOhQaWVI6g7u/v5ux7cZw+smnMuvl51FUlR7DTiYR\nj2FxujjzljsxO0y4dIn3HismmUhx1g29GTCqHX1HtEEzKhhM6R9zLKHjzrMQqYpyWrc8Pl22lb+d\n3gFn8Ww2f/wxzjFno3iyULO9aLm5SOrB/eeRqK6m9NrriCxejPP888i55RYRSBME4YBorVrRbtr7\nRNeuw3rsgIbKkAdDyB/FVxHGnmXC7DCgKOmlkkZVYWT3PL5cXgHAqd3zMDUzX1dtKMbXKypYttnP\npYPbYjEqeCwGpGYEiAyqzB0ju1AbjJFI6fy/0T2wGdOBu6r6KNe8Pp87RnZm9tpqABZsrMMfie8W\nRPtpfTWPfbaioc1/TxmF5Zh+yG3a4g9E8Dbv23PItcmy8tKE/hSvr+HC/q3w2hpLHSIIgiAIgiAI\nv54jPojmNXt59bRXmVU6i9aO1ny09iM2+DcgIfHGqDeYsW4GQ1oMIaWn+KzkMzp7OjO/Yj5/mfsX\nADRZo39ef74u/ZpeOb0wKSae+vkpknqSQlchlaFKCl2FXNvrWiZ0n4BVs2JS0zO6ookkwWiClu70\nzLNz+uVicS/n1Pfuw2l08vrpr5NnacmwjtnM+6m24ZqrNoYp7FvA2YVnM7z1cDRZw6abKex3LLKs\nEPLV8eVLzzHo3HFIskIyEWfZd1VEQ+kZCj9OX8fp1/bE6tz5xslgVjn+wk6Urqjl7lM6ce+Z3fD4\nKigZeSMA9V98Qdup/6Xk7DG0n/HxQU/MHV29msjixQD43n4H79VXgwiiCYJwABSbDaVrV0xdux7U\nfkP+GB88uYDaLSE0k8K4+4/F5k7/bldkiRHdc+nX5gR0HXLsRlSlebnIft5Qyy1vLwTgu9VV3HBS\nIX1auylwNa8aZp7TxD8u6oOug9Oyfebb8q1+5m+oJZmClm4zZbVhsu1GbMbd/8xHYtvzYEYTSdTO\nnbljWYIf55dx/bD2XNY2htP82wesHGaN4V1yGN7lyC0SIQiCIAjC79uOM8Wa2b7tIbsY4XfhiA+i\nARTYChjVfhQPz32YT0o+4bgWx2FQDOTZ8pjUZxIAwViQd858h7L6MlrYWiAhoaPT0d2RXyp/4a7v\n78KiWph+9nR6eHswofAPdKh2UT1jIaEzC/G0aIXVvL0kWm0wzMeLtvJ28SbG9m3B8xf3Q9EC/G3J\nfejo1EXr+HDNh1zV8RrsK+czclw3ard6oMCEbklQHa4my5yFw+ho6DNkVIkkIiiGfIbdeC9r/vcR\n8z6cird1W8685X6WfJvOHVPQwYmyS3LpVDxOvLSM4I8/0nrIYDSvG0nTiFTsULBD19GjMVKhEMn6\n+oMeRNMKCkBRIJlE8XiQjKJWqCAIvw/JUAhJ0xrygSUTKWq3hACIR5LU10QagmgATrMBp9lAoqaG\n0Lc/ELDbMHXrtsfZtbquU14fbnhdHYxiUGV+WFvFuf2av4TSYd592WgrjwVFlrj3wyU8N74v8aRO\nC7eZbPvuv2eHdvRyyaA2rNxazwNndWNzfZxv19YA8NSXazi/f2uczYvpCYIgCIIgCMJR5agIogE4\njU7uHHAnt/S7BYNiwG1y73TcarDS2dOZzp7OBGNB3j3rXUp8JfTK7sUfPkkvfw4lQkQSEe4deC+h\nzRX895E/ArCu+Ccm/P05bO50Hp5kKkldOMa9Hy4D0smRv7ltGDazmf6V/RuKFfS29+N/Ly/n1HM7\nU37PXSRqarD/+R5u/vlvRFNxnjv5uYa8anXROl5b+honFJzBM59XYTWqXDt0JJ2rK1j5/dfEI/Wc\ne3s/4vEUWS1sqLssLUrW1FByzjnokQiVVivtP/0ELScHNTcHz2WXUf/5TOwjRxItKcHcvz/SIUjM\nrWZn027a+4QXLsQ6eDBq1p6qAguCIBx6ejJJdM0aKp98CmOnTngmXIrq8aAaZDoW5bK6uBxPvhWn\nd/eoUjIUovLpf1A3dSoAeQ89hPv885ocqzZSS8/WOiO6ZVNSFebeMzuypCzAKd1y0w0SUYiFwGgD\nZd/yq+XYjcy8aSgrttaT4zDtsViMx2bkrtO6EkuksJtUtvjCaIpEPKmT7zShKc3LPVYTjFG8voZY\nMsXgDll4rOLBiCAIgiAIgnBkO2qCaMBugbOmWA1WOhk60cndidpILYPyB/HRuo8Y0WYEdqMdt8lN\nKL6loX0iFgX0hteBqJ9wMoIqS2iKzL/O7YwlVI1RsnJLn5sZXTgaq25n69womlGn9s23CP7wAwDS\nfQ9zwd3n8KcljxJNREmkUqiyTFW4iuLyYtTAMI5vY6OLXkHZV9MZeM4FBGuqsLpc2NzOJt9TKhxG\nj0TS28EgejQ9A011ufBOvB7XJRcT9PtIRqPYjukO9oMfRJPNZkydOmHq1Omg9y0IgrA/kjU1bLx0\nAsm6OgKzZmFo0xrX2LGYbQaGXtiRQed0QFFlLA4Duq4T8sfQdR2DUUWORomsWNHQV3jRIlznjkWS\nG1/aqcoqLy9/hn49e3OSwUtEXcn5RYOwGlUI1cKCV2HFDBg0CToMTwfTmsliUCnMsVOY01T1852Z\nDQpmQ/phS5bNyKc3DmVRmY9B7bPItu+9yEwqpfPmTxv468xVAFw+pC13jOyCsZm54QRBEARBEATh\ncHRUBdH2h9vk5tb+t3JjvxtRZRWXMb1Ux1PQkgFnn0fZssUMOm88JmvmZqd+C6YNP1BitPHcJV0w\nxGUCs97j1e+/RtUMjH/sKYqrijFJZooKh7KxvB5Dfl7DeHKWh2AqzAktTiAedXL7p4volu9gZG8z\n0WSU1lkWWkXq+d/jTwBQMm82Fz7wGBZn0wE0AMXpxHX++fg//RTnmDHI9u03WorNhmKzkbRaSCWT\naEYjRot1D70JgiAcOVLR7cvaU+Htyy3NuySyr6+O8N7j8wnVxzhxfBc6FmWTe9edlF5zLYrNivfq\nq5oMoAE4jA7uOvYuXl/+OnZZpX/+INzbqiLXlcP/7ktvl82DmxbvUxDtQJg0ZZ8CcADxVIqlm/wN\nr1dsrSeaTIkgmiAIgiAIgnBEE0G0ZnAadw9Qme0OBo69kMQZ52CwWFAUJb0M57O7MK74mMGXf8p6\npYY2agteL/4RgEQ8xqrF8/g29S0LKxdy77FGzhx3NlqsJZKqEC+vwHnheQw0RjieCxg/uZiSqiDv\ns4midkXc3v92DBKwOtBwHSGfD0lRkOU937iobjc5t/4R7/9NQjaZUOy73yxZHHsOxAmCIBxpZIeD\nVv/5N+V/eRhDhw44TjutybZr5lcQ8scA+OnjdbTpmYW5e3faf/wRkiShehuvaxlPJqkJxgnHkjjN\nTm7ud/PujXZcvimrIDUejEulUkiS1KxqnvtD13XC/hgpXcdgUhuqO+/KqCrcOqIzv5TWEU+muPv0\nrtgbKWIgCIIgCIJwuJMkaSTwNKAAL+i6/uhvfEnCb0h84j0AmsGIZmgkB0wyjvuFU3APvpHowD9y\nzEmnMn/GB5isNgq6dWPDD08B4Iv5MjMdDLgvuKDh9LZARX2EcCzZsK+kMs6YPn0BCJm8dBlyAhUl\naxl26VXbZ8HtheJwIOYICIIgbCcbjVj69qX1Sy8iGY0oe8gHmV/oAgnQM9uyhKxpyNnZexxjQ3WI\nM5+ZTTie5Jy+LbjvjG64LLtUv7R64dyXYfl0GHANmD279eOvqmDOO2/hysun50kjsTgcu7U5UIGa\nKO89UUzQF+OECzvR+dh8NFPjfznaea1Mn3Qcuq6TZTUcssCeIAiCIAjCb0WSJAX4J3AKUAbMkyRp\nuq7ry37bKxN+KyKItg8SPh8pvx9J01BcLmTTLnljDBYY+ShICsgKDLweo91B39Fj6DFiJLKqEtCi\ntLa3pn9ef87peE6TY2VZDLw0oYgHPlpGp1wbx3fcfpNmcTg5+crrScRimKw2FG3fElBDOiF0KJbA\nqMrNyn8jCIJwpJJUtVmFTrJaWBn/wEDq66JEzDL3fbqM20d22WMSf4CZS8sJx5MUtXYzcWA7YlVR\nQi6wONKBtHB9jFTKhNLuTExdRoG6+8OZkN/H9L8/Qvna1QBYXW56nHjKfrzbPVv3SyXBum2z7Upo\n1zu7ySCaLEuNVv8UBEEQBEH4rRQVFamAF6gqLi5OHIQuBwBrdF1fByBJ0n+B0YAIoh2lRBCtmVLh\nMLVTp1L19ydB02j92qvUO+w4c3Iw29JLI6sDUWTZg/vs59InqekbpC8rvuW+H9K5bu4ecDdPD38a\nk2LCZmh6xoOiyHTJczD54n4YVBmzYecfldFi3e+8ZXWhGI98upx3isvId5qYdv0Q8pwikCYIgrAn\nBpOKpMk8W7yeTbVhhnbMZvaaKk7tnpcuDtCE4ztl89QXq3j8jO589fRCosEE3lY2zvy/3gB88u9F\nlK/zc8xJLel9UmvWLy6joNCFM9uMmkn+r6d04pniMADRcOiA3ksqEiFZH0A2GXda3p/XwbF9tl0H\nJ4radI43QRAEQRCE35OioqLBwAzABESKiopGFRcX/3CA3bYASnd4XQYce4B9Cocx8em4mVLBIP5p\nH6RfxOPUzviIuJZi04p0ALqkKsj1b8xno6+Cl1e8yWsrp1ITqSGeivPjlh8b+plRMgNN1vYYQNtG\nliWcFsNuAbTmSFRXk6iqQtf13Y5F4yneKS4DYIsvwqKyun3uXxAE4fckFYvtVCBgf4X8MQJ1USKh\neJNtOufaGN4lhxe/L2H2mirC8WSTbQE6eK18c9swDLEUnQd46Tsyn3g0STKRwlcZonxdOkH/oi/L\nCNRE+PatVbz98DzC9bGGPixOJ2fdchetuh9D0Zlj6XrcsP1+j8lAAN/06Wy48ELKH3ucRG1twzF3\nbnq23eib+3DC+C6YrPs+01kQBEEQBOHXlpmBNgNwkQ6iuYAZRUVFIqORcFCJIFozyVYr9jGj0y80\nDemU40lIKapLNxLw+zAEqvjHme3Y5P+Fv8//G48XP86Li19EQuLyHpdj02xossakPpOwaTsH0CLB\nAOt+nse3b7yMr7KcqkCUkqogFf5Io0GwnSR3n6Ea37qVYFWA2oowoergbsdVVaJP63SVUaMq0yX/\n4OfVEQRB+LUkqqrY+sADbLnnXuIVFfvdT6AuSn11mPrqMOsXVjYaSNMUmSGF2dz1/mLWVgZ47+dN\nrNxav8d+LUaVApcFVxYEqz9ny/KpnHJZSzSjgs1tapjt5fCaiUXSAblUUifoi+GvTlcLlSQJT4tW\njLrhNlp374k/HGNrXZBwfN9XKaTqA2y9737imzbhe/ddYuvWNRwzmFVcuRZadnZjsRv20IsgCIIg\nCMLvipd08GxHJmDPyWv3bhPQaofXLTP7hKOUWM7ZTLLZjPXcMejDB5GQYUFoFQUbY/QYdjILZ37M\nnHffQpJkTrvjTrpndWdp9VK2BLeQSCXo4OrA9DHTQQeHwYGySyVNX0U50x57EAB3t748MGct8zfW\nkuswMvWaQXitGgYNDMr2/Dmq7kdd8ylSyTcw+AZwtQazi1Q0SiiY4sMpm6ivieDOtzD6hl5Y3eaG\n8bKsRiZfUkRZbYh8pwn3rgmuBUEQDhOpeJyKp57G9/40LKeOIBAMEFpRiTu/BRanq9n9JBIpSpdW\n89XrK1BUmdOu6Ukq0fhDDE2RcFk0qgLpmWJua/N+hy7+aiZLv/kCgHC9nzF33o/ZbuOi+4+lZnOA\nrBY21i6oxGhRadnFjdGi8s0bKxlxZXeMFo1oMMhXL/+HtieM5F+zNjJnvY9JJxZyxjH52Ey7zxhL\nVFfjnzkT2WrDdvxQVLc7fUCRka1WUsH0QxbF+fuqzJwMBkkFAiDLqB4PkiIeIAuCIAiCsFdVQISd\nA2kRoPIA+50HdJQkqR3p4NmFwLgD7FM4jIkg2h6E4iGC8SCSJOE1ezG6PIRNMpKeYlAyD7NuIBGL\nsXpuepm1rqconTefoUXHAfDHfn/EpKb/G842Nx0AD/t9DduqzcX8jemlluX+KOW+MN9sfY8lVYuZ\n2HsiTimPKn+UNrHVSNMnpU9aNRMu/gCsXiRHS+Ko1Nekc+fUbgmRiO9+I5hl0TDFUtSWriFW0AKD\ne/dKcIIgCIcFXUd2OLBefRVT7rmFZCJBQedujL71biyO3QNEeipF0FdHKpnAYDJjstmJhxMs+roM\ndEjGU6yZX05u+8Zn6WZZjbx77WDe+mkjA9tn0cJlbrTdruQdgkGSLIMkoWoKzmwzzmwzgbookgQn\nX9YNk03j55kbMZhVJFkiEowTCUkMHHs568Jx3lnwC6f3zCMUSxKMJXYLoiWDQcqfeAL/Bx8CkH3b\nrbgnXIaiyKhuN23eepPa//4X2/HHo+bmNvc7fcilwmHqP/+cLXffg2y30/aN1zEWFv7WlyUIgiAI\nwu9ccXFxoqioaBQ75EQDRhUXF+8578Ze6LqekCRpEjATUICXdF1fesAXLBy2jpogWiqZJFBbQ+X6\ndeS064DN7UnfxDQhkojw1cavuGf2PXjNXl4Z+QpfbPiCeeXzuLHvjXRwdkCRFQK1NXQdeiLfvfkK\niqbR44STObZNARd1G4fH1HRgqjZSy+ra1RhVIy07tKL7sJPZsnoFdpuFge09/LiuhhYuM7kulSu/\newKAQCzAxe0e4k/TlvDuySG82zqLByEZgfeuQBo3FbPHjqfASs3mILntHWim3X/MQV8dr97+f4Tr\n/dg8WYx/+ElsIpAmCMJhRtY0cm66EcXtomrrZpKJ9PLGzauWk0o2/pnJX1XJG3ffQtjvY9B54+h3\n+mhUg4m2x3ipKgsA0L53DiZL4/nAZFmirdfKXad33Wl/IpYkUBulqqyevA5ObK6dVxT0PHEEIV8d\ngZpqTvjD5VjsOwfpbC4jnY7NIxlPsXWtD6NFZdDZ7ZEkiaXflvHjh+swmBROuqsvVxzXjg7ZVt6Y\nu5G6cIzLBrdrmBFXE4wSj+lQ0LKh79i6EqKBKBanGUnTMHXqRP599+3Dd/rXkQwEqHjscUilSPl8\nVP3nefIfeRhZPWo+rgiCIAiCsJ+Ki4t/KCoq8pJewll5oAG0bXRd/wT45GD0JRz+jppPpSFfHa/e\nPoloMIjZ4eSSx5/ZY9AoEAvw5M9PktSTlIfKmbFuBgsqFjB782yWVi3l3bPexWv2IkkSLbv2YNxf\n/o5mNGJxurCY9rw0JpKIMGXpFF5c8iIA9w+6n9GXXUssEsZotfHMRX2oC8WJJVKs9v3ScJ7H5GHO\numo21ITYZOmCs/elaJvnweBJsOgdqNsIyQRWt5nRN/UmHk2hGRUsjt2XGsXCYcL16WTWgZpqErED\nT/pLPU0AACAASURBVMgtCIJwsMUiYSRJRjMam2yjZmeTPWkSlmAAZ04uvopy+p9xDqqh8WWWJQvn\nN8wA/nnGhxxz0khsbiu9hreiQ78cNIOMybbvy9xD/hhvPTSXVFLH7jEx9o5+RFWJr1dU4I/EObNX\nAcePvww9lWry2rblIbN7TBQW5SBJEiF/jJVzt2a+H0nCZUEuHtiGE/82C12HpZv9nN4zH7fVQIU/\nwvVv/MyGmhBPnHMuHQJBEsU/YfnDFZRvDNKuZ/Nmzf1WJFXFUFhIuLgYAFOP7iKAJgiCIAhCs2UC\nZ1t/6+sQjlxHzSfTWCRCNJP/Jez37TVopCkaPbN68mXoSwCOyT6Gmetn7tZu1dzZpBIJslu1JRKo\nx2AyE4uEMZiavlGJJqMsqFjQ8Hre1nmcXXg2VlM6X022puEx6Piqt5JrL2B85wtY5VvHhB4TUJP5\nvDG3lAteX8W0K+6kU98ylDn/gOUfwcjHwJzuw+Jo+oYTwGS10rJrT8qWL6Z93/4YzJY9thcEQfi1\n+Ssr+Orlf2O02jh+/GVYXe4m28omE+ZIhAvu/jO6JKGZTJisjVdBbtmlO7KikkomaNurL4qWnnFm\nsmmYbPtfjdJXGSaVTC+fr6+JIMsS7/1cxl9mLAdgYWkdfxnTE6uxeQE6SZIA0IwKXQbnM+f9tciq\nRJbHTDiSxKQqDZVBLVp6qehnS7dSvCFdbfPW9xbzwRXXkhh4Nl9+VM2IK/P3+70lamoIzZ+PmuXF\n2KH9IcujprrdtHzqSXyffIKWnY1l4MBDMo4gCIIgCIIg7I+jJohmstpo328A6+b/RKeBx+01aOQ0\nOrlv8H2MrRpLriUXt8nNKW1OId+Wz419bsBtTN/MdejcneCH0zEYrGyIh5k1ZTKdBg6h7+mjMdsb\nz6dj02zc0OcGrv3iWgyKgSt7Xokq7/yjUIxmPLktIeLnpj43EAPsBjvJQJDvrzqGuGZCtVlR4hoM\nvQ1OfgAsXlCbd3Nmcbo48+Y7SCYSKJrWaN4gQRCE30okEGDmf55m4+KFAJgdTk74w+UNgaVdJf1+\nyh95FP+HH4Kq0vbtqdBEYQFXbh5X/GMykUA9Nk8WZpv9oFxzVgsbWS1sVG8K0O24AmRVpqQy0HC8\ntDZMLJnCuo/9akaFbkMKKOybg6xIrF9SzbrFVbz2hyLeXbyZU3vkNSzlbOfd3ntrjwWjxYi9Z2tG\n9pP3u9pmsLqWmoceIjAz/SCpxbPP4Dj55P3qqzlUr5esSy45ZP0LgiAIgiAIwv46aoJoFqeTkdfd\nlA4aqWqTAa4deUwehrYc2vD6isLx1KdWEP/XO0RHjcLUowfJ4vnUPfdvct6Zytd//hMAP74/la5D\nT2xyDEVW6Jndk0/O+QQJCbepidkVigbWLEykMyMm6uqonvwC/o8/xjX2HGyXXgrObLDtX9Xefalc\nJwiC8GuSJAl5h0rGyl6W9KWiUYLffpt+kUgQ+nEu5m7dGm2rGow4vNk4vAda8XxnFoeBs27qTSqZ\nQtUUjGaVScM7snSzn0A0wcNjeuAy799MN5NVw2RNn+vJt/LtW6sIVIa5ZkwHWnXwoGZmovVs4WTK\n5QNYVxlgVM98sh27VnrfN75wnHVlNdiXL2/YF16w4JAG0QRBEARBEATh9+qoCaIBzQqc7UmqdBMV\n4y4FoO6ddymc9TV6JF0FU0ZCNRhJxKJIsoxm2PNySoNiINvS/Bu4cCBGMq6QlDQSFRVU/es5nGPG\nHLIlNYIgCL8lo9XKiGtv4Ls3p2Cy2eh7+ugmZ6EByBYLnksvpfKpp5CdTuwnDT/k1xgJxEgmdUw2\nDUVJF6rZdbZXgcvMSxP6k9Ihy2rY43toruxWNi7+8yASsSSRYJzqTUHceRYMJhWXxcAJnbI5odPB\nCRDGEik+XhfgshtvIXHnbSgeD+4LLzwofQuCIAiCIAjC4eaoCqIdMF3faVuPx3GcdhqR5SuIfvkl\nFz34GMt/+JaOAwZhOkjLgwBC9TG+eGkpW9f5KTrpVPL/z4Jv8nNITSSmFgRBOBLYPV5OveYGJFlC\nVvb850qxWnGPuwjnWWeCqqJmZR3w+MlkgmBNDVWlG8hu2w67p6EmMkFflM9fWEp9TYSTJ3Qjt50D\nRW284nOWbc8PVQD0VGqPFaN3pBlVYpEkHzy5gJAvBhKMf2AghkYqMYdiCSr8UTZUB+lW4CTbvvdr\n2ZHLojK8ZwteWZTionc+It9lxpCXs099CIIgCIIgCMKRQgTR9oFaUEDuXXcR+P57vNdcjeJyIRsM\n5N79J0gkUBwOctoXHvRxq8sClC5PJ4qe88lm/nDXaDwjTkTxNF1dVBAE4UiwLel/s9o6HCiOA5tx\nvKOwz8crt04kHgljc2cx/pEnG6o6r5y7lc2r6wD44pVljL2jH9a9FHRpTNLnI/jjjwS+/RbXeedh\n6twZ2bz3Cpp6Sk8H0AD0dFDPlbt7rs8tdRFGPPUtyZTOMS2dvDyhf7OCettoikJRGzcdc2zIkoRl\nH4NwgiAIgiAIhztJktYD9UASSOi6XiRJkgeYCrQF1gPn67peK6WXHTwNnA6EgAm6rv+c6edS4J5M\nt3/WdX1KZn8/4BXADHwC3Kjruv5rjHEwv09Hi+Y99hYAUF0u3OPH0eLJv2Pu1w85MxNMsVgO6o3b\nruweE9tWANncRjS3E2NhIfI+3FwKgiAIu9B18G+GlZ+BrwySCQAS8TghXx0hv494JAxAoLaaZDze\ncKrTuz3QZXObUOT9W6YZXbOGTTfehO+999nwh4tJ1tU16zzNpDJ4bCFGi0rbnll48hsvV7CqvJ5k\nKv35aMkmH8ldPiv5w3F+WFPFs1+tYVNtqNE+jJpCjsOEVwTQBEEQBEH4nSsqKpKKiopMRUVFB55D\nY2cn6rreW9f1oszrO4EvdV3vCHyZeQ1wGtAx8/+rgecAMgGx+4FjgQHA/ZIkbUuO/hxw1Q7njfwV\nxxD2kZiJto8kVUWx2X7VMa1OI+f9qT8V6/206Z6FZT9mOwiCIAi7CJTDf46HYCWYnDBxLsGUmfkf\nTaPkl2JGXn8zLbp0Z9OKpXQZcgKaaXuS/hadXYy8uge+yjCdB+Zhsu19eX0iFqWufCtly5bQtnc/\nTDYP0ZKSHRokCFXXgtOL07LnhySynKBDHwuFfXuDpCErjX9O7NfGTYdsK2srg9x8SidMqrLT8Y01\nIca9MBeA/87byAcTh+Ddh5lqgiAIgiAIvweZoNm1wINAFlBdVFR0P/Dv4uLiQzHjajQwLLM9BZgF\n3JHZ/2pmltePkiS5JEnKz7T9n67rNQCSJP0PGClJ0izAoev6j5n9rwJnA5/+SmMI+0gE0Q4Dmkkh\nu5Wd7FYHL8+aIAjCUS8eTgfQACI+9HAdX7/1Git/SFf5fO/h+zj12hs5/f9uRTMadypOY7Ia6NB3\n33KDhf1+XrvjRlLJBGa7g3Pu+ivGHv3RWrYkXlaGsaiI9bqZaHk9A9o1vVxfT6XYtGIZQV+Yio1O\nShbWcspl7bFnKagGA1aXu6GAQY7DxNSrB5HUdcyagmOX6qDl/shO26mUmNUvCIIgCMJh6Vrgr8C2\n/BbZmdeQmal1AHTgc0mSdOA/uq4/D+Tqur4lc3wrkJvZbgGU7nBuWWbfnvaXNbKfX2kMYR+J5ZyC\nIAjC0clohy5npLfbHkfK6GLVnO8bDofr/XzwxP9D11MHXN0ZIBIMkMosGQ3X+0kmEnz63y3Ynnie\nNjM/Z/ON93H312UYVZnaUKzJfmLRCPNnfIArtw3Lvq+gz4g8lnz9Li/ecCWv33kjgZrqndp77UZy\nHabdAmgAvVu5OK1HHi1cZp6+sA92k0gTIAiCIAjC4SUzC+1BtgfQtrEADx6EpZ3H6brel/QyyomS\nJB2/48HMjLBD+iTy1xhDaB4RRBMEQRCOXIEKKF8K9VshmSBRXU3Viy9SPWUKiZgCZ/4DblkO500h\nghmry73T6apmQNlLZdDmsro9dD1uGEarlWPHXkRlaZTarSG+mLaVerOHJ4srePzcXjz22QqufW0+\nZTWN5yhTDUY6HjsEWdk2U9nMsm//B0Cwrpata1c1+5qybEYeHduTaRMHM7xLDmaDsveTBEEQBEEQ\nfl+MpJdwNiYrc3y/6bq+KfO1AphGOt9YeWYJJZmvFZnmm4BWO5zeMrNvT/tbNrKfX2kMYR+JIJog\nCIJwZApWwlsXwXOD4V8D0QPlVD77Tyqf+CsVjzxK9eTJ6EYnOArA6sVst3PK1ZOQ5O1/Go//w+UY\nLY0n7d9XFoeTEyZcw5kPPo2//WBs7bycfFV3xvyxL26PiRcuKeL5b9fyw9pq5pbUcP9HSwlEE7v1\noygKnQYOweI0ct4d/dCMGm179QVAM5rIadt+n67LaTaQYzdh0kQATRAEQRCEw1IUqG7iWHXm+H6R\nJMkqSZJ92zYwAlgCTAcuzTS7FPgwsz0duERKGwj4MksyZwIjJElyZ5L9jwBmZo75JUkamKm6ecku\nfR3qMYR9JHKiCYIgCEemRAw2Fae3w7VQu55koL7hcHzTZvRkEklN/ymUZYVW3Xpy1bMvUrNlM67s\nXEx2+04FBQ6U1W4nqZo4xhpHVSWcreyYDZnxJQmPdXuBArfFgCI1vvrAZLVhsm4rcmPjtIm3EPLV\nYbLZMTucB+16BUEQBEEQfu+Ki4v1TBGBHXOiAYSA+w+wsEAuMC2Tb1YF3tR1/TNJkuYBb0uSdAWw\nATg/0/4T4HRgTWb8ywB0Xa+RJOn/AfMy7R7aVgAAuB54BTCTTva/LeH/o7/CGMI+OmRBNEmSWgGv\nkv5HpwPP67r+dKbs6lSgLbAeOF/X9dpDdR2CIAjC0SPk96GnkpjsDhTNBF3OghXTwdUGKauQnEmT\niK9dB7JMzu23IRt3nt2vmUxoJhP2rOw9jlMbijGvpIZyf5TTeuThtTd/lYDDrDWan0xVZCaeWIjD\nrBFPprhscLudllcm6uoIzf2JREU5jtNOQ/V6G45ZnC4sTlezr0EQBEEQBOEI8+/M14bqnMD9O+zf\nL7qurwN6NbK/Gjipkf06MLGJvl4CXmpkfzHQ47cYQ9h3Uvr7fwg6Tq/Zzdd1/efM9Mf5pMuoTgBq\ndF1/VJKkOwG3rut37KmvoqIivbi4+JBcpyAIwmHsQJOkAkfO79hATTUfPfkIiXicU66eRHab9iiR\nWogFQTOBLV3QKFFdDZKE6mm6AubeTPu5jJvfXgjAKd1y+et5vXCaNeLRKNFQEFmW9xrUSkUiJP31\n6PEYstWK6tpz+7r332fLn+4GwDrsBFo89hiK8+DNOtNTKZK1taCoqC4xm00QOAi/Y4+U36+CIAgH\n2UH5DNuYTBEBIxA9wBlogtCoQzYTLbPudktmu16SpOWky6iOBoZlmk0BZgF7DKIJgiAIwt4s/upz\nWg8ZiLFTC9Yky9DCLrJs2WD17tROzWoq72zTkskk0WAA1ZAuNNDKojPxuFYoskZHrw09mSIejVKy\nYB6fPfc0rtw8zrnzAWyexsfS43GilZWEf5hDzfP/wdy3H7l33bnHwF50zdqG7fiGjejx+G5tUpEI\nsQ0bCP04F9uwYWgtWyApe891pqdSRFetYvPtd6B4vRQ89iha9p5n4wmCIAiCIPzeZAJnkd/6OoQj\n169SWECSpLZAH2AukJsJsAFsJb3cUxAEQRAOSIsu3SlvkeKy767muh9u4OXlrxBOhA+430Qsxqbl\nS3j/kftZM28ua3+ex/Ipf+P/t3fn8XFV9f/HX5/ZJ/vWpjvUblCgbBEqBa2staJlE1EE/KIofgVR\nkUVRQf2i8MMdBGSzbNKWVZayVAqCINAgS2mhtHSha5qm2ZOZzCTn98cMaUqbZmkmk0zfz8djHpl7\n7rn3nplP53Qenzn3nLP2K+aQaqP5n5uoX9tINBJlwS03EIs0U7lmFe++9C8AYhUVVN50M3VPPUW8\npgaApvo6WpoaqbjqKmLrN1D32GNE33tvl+0oOutrBPfZB9+QIQz/v//b6Si01upqVp32JSp+8xtW\nnX56YtRdN7RWV7PhssuJvv8+TS+/TPW99/bwXRIRERERyXwpT6KZWQ7wIPB951xdx33Je3l3OsTS\nzL5lZuVmVl5ZWZnqZoqI7FEysY8dOm48b9W9075dXvE6kfju/xAZaWzg4Wt+QcXKFeQPGcLjf7yG\nWHMT1RsiLHlxA5Uf1vPEjW/j2vwUjhjZflzJ6L2I19ay7nsXseVPf2L9939A8+v/TZyzqYloJIIn\ne9vKn94ubi/1Dx/OmNtvY+xDDxKacgDm33Fetdb6ekiOUGurrW1/3hXz+babY80/bHi3jhORHWVi\n/yoiIiIJKV2d08z8JBJo9zrnHkoWV5jZcOfcxuS8aZt3dqxz7hbgFkjMJ5HKdoqI7GkyqY918Tjx\nqira1q3n8vHf4d2t77G8ZjkXHnwhuf7c3T6/meEPh4nHWnAOvF4f8ViMQHjbf6GBkBevx8Osi69g\n+Wv/oXD4SIZ+YhyuOUK8oqK9XmzDegCCWVn88547+Mxfb6L50cfJOXIa/hEjumxLV7ei+kpKyD/l\nFBqee47Cs87Ck5Ozy/of8ebnM+Ka37B1zhz8pcPIPe7Ybh0nIjvKpP5VREREtpfKhQWMxJxnW51z\n3+9Qfh1Q1WFhgSLn3KW7OpcmZRUR2SktLEDidsmVnz+RtoYGAmPHMuLOO6jP8ZAfyCfo6/6qmZ1x\nbW1Ub9rAosceYp+pR+L1eHn9qcf45Elfo3qzn00f1HHwcWMoLM3CPNuHpC0WI/LW22y44goCo0Yy\n4tpr8ZWU0BqPU19VyZa1HzJ8wiRWN0BhdpDSvBBez+6FtbWujrZIBE9WFt6cHJqicaLxNvJCPrze\nfpnFQSRTaGEBEZHUSNnCAiKplspv09OAs4CjzezN5GMmcA1wnJktB45NbouIiPRKbONG2hoaAGhZ\ntQpvvI2hWUM7TaA11dVSX7WFptrabp3fPB6KRozi+PMuYNT4SZT4Anz6a9/i1ncbuPa9dTwVbqGS\n1vYEWrymhubFi2lesgTX2Ej4wCnsfc/djPjd79pvmfT6fBSUDqdwn4M44ab/8vnrX2Lmn19kS0N0\nt98Pb14e/qFD8ebksLUhytXz3+V/Zi/i9Q+raYm37vb5RURERPYUZnaHmW02s3c6lBWZ2QIzW578\nW5gsNzP7s5mtMLO3zeyQDseck6y/3MzO6VB+qJktTh7z5+RgpLReQ3YtZUk059y/nXPmnJvinDso\n+ZjvnKtyzh3jnJvgnDvWObc1VW0QEZHMFxg1isC4cQDkHH8cnnC407pNtTU8+Zffc8v/fp3H/3gN\njbU13b6OeTx4s7MJ7bsvsZw8/v7aWl5YvoX7X1/H8spEEq+tpYWGl16ibvUqat96k7rnngOPB9+Q\nIfgKCnY4Z10kzrqaxOIHNU0xmlv6Nsn10gdV3Pvqh7y5toZz7lhETVP35kgTERERGWzKysoOLysr\nu7esrGxR8u/hfXDa2cCMj5VdDjzrnJsAPJvcBvgcMCH5+BZwEySSVcCVwOHAYcCVHRJWNwHndThu\nxgC4huyC7usQEZFBzVdSwl53zmb8wmcZftVV+Ao7/xEt2tzE6jdfB2Dt0sVEkyPYPq6quYrKpkqa\nYk073Z8T8HHdaQdSlB3giHHFTB2bmKusNRqlfthQHl/wGP96fzGeKQfQFu18dFleyMcJ+yUWqT5h\nv1JyQ307VWnIv+2/+YDPo5snREREJCOVlZVdBSwEzgDKkn8XJst7zTn3AvDxgT+zSExdRfLvSR3K\n73IJrwAFyXngTwAWOOe2OueqgQXAjOS+POfcK8lFF+/62LnSdQ3ZhZQuLCAiItIfOq4suTPReJS6\nljpclocRk/Zlw7J3CeXkEsjK2qFuRWMF5y04j7X1a/nlEb/k2L2OJezbfnRbVtDHcfsNZeonivB7\nPRRmB5LXifHkHTdSv6WSmoqNvLPoP0w746xO21WcE+Q3pxzAL2ftT6DDefrKoXsVcckJE3l7XS3f\nP3YixVl9e34RERGRdEuOOLsE6PjFzpPcvqSsrOzJ8vLyV/vwkqXOuY3J55uA0uTzkcDaDvXWJct2\nVb5uJ+XpvobsgpJoIiKS0aLxKC9vfJnLXriMYdnDuOniG4l8sJEhY/YmKz9/h/oLP1zIqtpVAFzz\n2jVMHT51hyQaQNjvI+zf/r9Rj9dLVn4B9VsqAcgdWkp9Sz3N8Wa85qU4vG11zaqGKK1tjqDfS1G2\nvy9fcrui7ADnf2YcLa2OsN+bkmuIiIiIpNn3gFAn+0LJ/Wem4sLOOWdmKV2JOVOukSl0O6eIiGS0\n+lg9v3711zTHm1lVu4p/LHuY1W+W4/F68Xh2TCztU7xP+/NJhZPwebr/e1NWXj6zLr6CQ088iWPO\n/Q6jDzuUe5bewzH3H8O5T59LZVMiubalPsrX/7aIw3/zLLe9uJLaFM5V5vV4lEATERGRTDaRznMb\nHhLzgPWliuRtkiT/bk6WrwdGd6g3Klm2q/JROylP9zVkF5REExGRjOb3+JlQsO2704TccXh9AXz+\nnY/+Gl8wnrknzuW3n/kt133mOgpDPVuoKLe4hOlnfZODTvg8MU8rN751IwAra1fyysZXAHivoo7F\n62txDq5fuILmmFbNFBEREeml94G2Tva1Acv7+HqPAh+tfnkO8I8O5WcnV9CcCtQmb5d8GjjezAqT\nk/0fDzyd3FdnZlOTK2ae/bFzpesasgu6nVNERDJafjCfX037Fa9seIXh2cModYUUnjSNUE7uTuvn\nBnKZXDyZycWTd/vaXvMyKmcU6xoSU1GMK0isIjqmKBu/14i1OsYNycbn1Yz/IiIiIr30ZxKT4u84\n2S1Ekvt7xczuA6YDJWa2jsQKmNcA88zsG8Aa4PRk9fnATGAF0AT8D4BzbquZ/QpYlKz3S+fcR4sV\n/C+JFUDDwJPJB2m+huyCJRZoGNjKyspceXl5upshIjLQ9EnmZTD1sa61ldatie8Dnvx8PIH0T5Qf\nr66hdWsVnqwsvPn5eD62WEFFYwUvrn+RSUWTGJs3lpxADpFYKxV1Ed6vqOfAUQUMzetsGg8RSaPd\n7mMHU/8qItKP+vzXw+QqnJeQmAPNQ2IEWgS4rry8/Kq+vp7suXQ7p4iIDBotq1ax8ouzWHHCDCKL\n38G1pvc2yNaGBqpuvYWVnz+RFcceR3TFih3qlGaXctrE0zig5AByAjkAhPxe9irO5rjJw5RAExER\nEdlNyUTZ0cAcEqOx5gBHK4EmfU23c4qIyKDQFo+z5ea/0lpdDcDm3/2O0TfdiHcnK2z2W5siEeqf\nWZDYaG2l/rnnCU+Zkrb2iIiIiOypysvLXyVFq3CKfEQj0UREZFDw+HxklZW1b4cPPggLBtPYIvBm\nZVH4tcR3NcvKIm/m59LaHhERERERSR2NRBMRkUEjd8YJBCeMp625mdB+++EJpfdWSE9WFgWnnELu\nccdhfj/ewm0reUabm4hHowTCWfjTnOwTEREREZHdpySaiIgMGr6CAnyHHtpn54vEIzTHm8nx5+D3\n+rusH6+pwcVieMJhvDmJ+c28eXl48/K2q9dUV8tL8+5h7Ttvc8jMWew77TMEs7P7rN19KV5Ti2tp\nwXxefEVF6W6OiIiIiMiApds5RUQk48Xb4mxu2sz6hvXURmsBqInUcPfSu/nOP7/Dsx8+S2Oscdfn\n2LqVjVdeyQcnzKDq9ttp2rq507oVK5fz9oInqd64nmdvv5FIY0Ofvp6+Eq+pofIPf2DFpz/N+u//\ngHhVVbqbJCIiIiIyYCmJJiIiKdUYa2TRpkVc+9q1LNu6jFhrrN/bsK5+HbMemcWMB2dw33v30Rhr\npCpSxfVvXM+SqiVc+sKl1LfUA7CxYSN3vXMXa+rWsLJmJVuatwAQ27SJhqefwTU1UXXTzVRv3UBl\nU+VOr+ftOKrNDPMMzP9u2xobqZk7F4Cm114jtmlTmlskIiIi0ntlZWVjy8rKppWVlY3ti/OZ2R1m\nttnM3ulQdpWZrTezN5OPmR32/djMVpjZMjM7oUP5jGTZCjO7vEP5WDN7NVk+18wCyfJgcntFcv/e\n/XkN6dzA/FYvIiIZoyZaw+2Lb6eyqZLvLfwe1dHqbh1XG61lweoF3Pb2bZ0mq3amqaWJtfVreWrV\nU2xo2EBrWyvPrX2OhlgDo3JGYRjNsWa85mXuiXM5e/LZBLwBDKOquYrvPvtdDhl2CGfNP4tZ/5jF\nJf+6hE2Nm/AVFoI/kRzzFhXRSAtLqpbscP2GlgbyR49k6qlfYeSkyXzh+5el7FbOrZGtPLDsAZ5Z\n/Qw1kZoeH2+BAL7S0sTzUAhfSUlfN1FEREQk5coSXgeWAE8AS8rKyl4vK+uwKlXvzAZm7KT8D865\ng5KP+QBmNhk4A9gvecyNZuY1My/wF+BzwGTgK8m6ANcmzzUeqAa+kSz/BlCdLP9Dsl6/XEN2TUk0\nERFJKcOYOmIqxeFirvvMdeC6d1z5pnJ++K8f8qc3/sQPnv8B1ZGuk2+x1hhV0Sq+9NiXuOSFSzj9\n8dPZ0ryFw4YdxhEjjuDqI6+mNlrLO1Xv8ODyB/ny41/moKEHcf+J91MYKqTVtQKwtn5te7KvvKKc\nWGuMxiwvez/0IDk/u5Tsu/7CL5f9mbF5Y2mojdKwNUJLJE5dtI47l97J8U98ng8nw4wfXsq4T04l\nGM7q9fvXmYaWBq597Vp+8covuPhfF/PMmmd6fA7/kCHsPXcuI6//M5947NHtFkYQERERGQySibLn\ngUOAMJCf/HsI8PzuJNKccy8AW7tZfRYwxzkXdc6tAlYAhyUfK5xzK51zLcAcYJaZGXA08EDy+DuB\nkzqc687k8weAY5L1++MasgtKoomISEq9sfkNflf+O/7+3t/59au/ps21te+Lt8UBqIvW8czqZ7j6\nlatZU7cG5xzrG9e316toqmiv25loPEpVpIqq5qr2+c1qo7XUtSQSWz+b+jMuePYC7n73bi5cSObh\nMAAAFzpJREFUeCHHjDmGoDfIs2ueZUzeGNpcG5saN/GjsovZO29vSrMSI7SmjZjGG5VvcNJTp1M/\nMp+8005hdbiRq4+6mlAkj3t++h/uvOJl1rxTRSwe4+a3bqYp3sSvX7+GD2Mb8HpTs4ZPrC3Gmro1\n7dvLq5f36jz+YaXkHXccgdGj8QQCfdU8ERERkf7yV6CzYf/ZwM0puOYFZvZ28nbPj36FHAms7VBn\nXbKss/JioMY5F/9Y+XbnSu6vTdbvj2vILiiJJiIiuyXempi0v6KxgqZY0w77P5pTDKA6Uk20LUp1\npJrl1cv52Us/45lVz7C6bjUX/+ti5iybwzlPnkNVpIoZe8/gsGGHMTJnJL858jcUBAs6bUNDSwNP\nrHqCh1c8jN/j56iRRwFwwl4nUN9Sz5OrnqSiqYKG2LYJ/p1z3Hr8rXz34O+2J9vOefIcxgeKGbZl\nFffMuIvHTnqMUyecyjWvXkNVpIrXK14nP5jPoaWHMiQ8hMVPbaQ11gYO3vrnWjwxP0PCQwDwmY+S\ncOpuj8wL5PHzT/2c4dnDmVQ4iXP3Pzdl1xIREREZiJJzn+3bRbXJfTVHWtJNwDjgIGAj8Ls+PLcM\ncKn5eVxERPYYH9R+wNlPnk2kNcK1R13L0WOOJuDdNqLpxE+cyGsbX2ND4wYuPvRirlt0HRcefCFX\n/PsKllUv463Kt7j0k5e2169rqSMaj/Kn//6Jb0/5NqNzR1MSLsHfcbL+j2mINXDly1fiNS9j88Zy\n6Scv5SeH/4SGWAMNLQ0EvUFeWv8SVx95Nbctvo0jRhxB3MU596lzKQgWcOMxNxLyhRidN5q2ljoK\n7/sKkaMu5r/7HMODyx+kPlZP0Btkv+L9qI5Uc8MbN+D3+Dn94HNZ9p/EZPxjDy4hJyuLe2bew6sb\nX+WAIQdQFCpK2fvu9XiZVDiJe2fei8c8FIf1w6GIiIjscUYALSRu3+xMS7Leqr64oHOu4qPnZnYr\n8Hhycz0wukPVUckyOimvAgrMzJccCdax/kfnWmdmPhK3qFb10zVkF5REExGRXnPOMee9OTTFEyPQ\nbn/ndg4ffvh2SbTicDE/nfpTyivKuWPJHSzatIhJhZMYkzeGZdXLWFe/jvEF4zl1wqks3rKYiw65\niIUfLuTMyWfyduXbFAQLukwQecxD2BemOd7MpS9cyn0n3sd5T5/HqRNP5VtTvsWTpzyJmYFLzNG2\nf8n+nPzoyUBi4YNl1cvI8mdxw9E3sLZqGSVH/5SY18f97z/A1/b9GmdNPovS7FJKwiXMXzWfee/P\nA2D4lJGc+atTcHEI5wXwB3yMCIzg5Aknp+gd357X42VI1pB+uVZ31ERqaIg1EPAGKA4V4/V4090k\nERERyWwbgK7mowgk6/UJMxvunNuY3DwZ+GjlzkeBv5vZ70kk7SYArwEGTDCzsSQSV2cAX3XOOTN7\nDjiNxBxm5wD/6HCuc4D/JPcvTNZP+TX66n3KVEqiiYhIr5kZnx3zWR5YnpirdNrIaYR8oR3q5QZy\nWV69nEWbFuEzH9NHT+codxSbmzZTVlpGjj+HSz55CdF4FICiUBHn//N8aqO1hLwhHj/l8fY5yppi\nTSytWsozq59h1vhZjMgeQX4gn7s/dzcPr3iYo0cfTWGwkL/N+BulWaXkBnLJDeQCsL5hPT/+94+5\n6lNXccTwI3hh/QvkBfLYp2gfCoOFjMwdycickXhHfIrceISL4vVc/K8fke3L5ppPX0OWP2u7BOGD\na+7nxH1mahQYiXntbnjzBuYum0teII+5J85lVO6odDdLREREMlh5efmqsrKyd0ksItCZpeXl5b0a\nhWZm9wHTgRIzWwdcCUw3s4NILJe1Gvg2gHNuiZnNA5YCceC7ziVWrTKzC4CnAS9wh3PuoyXeLwPm\nmNn/AW8AtyfLbwfuNrMVJBY2OKO/riG7ZoMh0VhWVubKy8vT3QwRkYGmT1bP2d0+tr6lnqrmKprj\nzQzPHk5BaOdzl9VEaqiJ1hDyhcgP5uP3+GmINRDyhnZIvK2uXc0XHvlC+/YDX3iASUWTANjYsJEZ\nD82gzbUR9Aa563N30dLawn7F++3ylk9IzMl29StX8/KGl/n99N8zNGsoYV8Yv8dPUbgIj+04VWhV\ncxVm1n5rZnWkmjnL5vBBzQdcdMhFjM4dvcMxe6LKpkqOf/D49gUgrvrUVZw68dQ0t0pkt+x2H6vv\nsCIiO9WnK0B2WJ1zZ4sLNALTy9UZSx/RSDQREdktHUd67UpBqGCHBFtniwXkBfOYufdM5q+ez+HD\nDm+frB8g0hppX+Ez2holEo9w4cILeWTWI13e2lgYKuSKqVcQbY0S8Aa6NWfZx0eZFYYK+fYB3ybu\n4tuNStvT+T1+po+azj8//CdBb5BDSnf1g7CIiIhI3ygvLy8vKyubTmIVzskk5kALkBitdb4SaNKX\nNBJNRGTwGhAj0VKlJlJDS1sLfo+fwlBhe3lttJa7l97NgjUL+MK4L9Dm2rj//fu57/P3pXQ1TOna\n1shWqpqryAvkURAqIOgNprtJIrtDI9FERFKjT0eidZRchXMEsKG3t3CK7IpGoomIyIDU2W2h+cF8\nzt3/XE6beBpbm6oIx3ycPnIW2b689jo1kRoa440EPIHtR6c118DWlVC/EUYfBtk9m5S/vqWemkgN\n0bYoJaGSTts4mMS3bqX28cehtY38L34RX3HvVxQtChWldEVSERERkV1JJs6UPJOUURJNREQGnSx/\nFln+LDxbmph75eW0tbZy6hW/ZOTEfamL1fP713/PwysepjSrlHtn3ktpdmJRAtYtgntPA6Bt8knE\nZl5HMGdot6+7aNMiLnruIgC+d/D3OHvy2QR9fT/aqrY5RjTWitdjFOekbjRXWyzGlr/eQvWddwLQ\n8uEaSi+/HE9QI8hERERERD5uxxmURUREBoHWWIxXH5pHS3MT8ZYoL8+7l5bmZqKtUR5e8TAAFU0V\nLK1a2n6MW7fttirPxrfYWLuaSDzSrevF2+IsWLOgffu5tc/RHG/uo1ezTW1TjBufW8Fhv36Wb9y5\niC310T6/Rrt4nPj69e2bsfUbcLFY6q4nIiIiIjKIKYkmIiKDksfnY8z+B7Zvj9p3f7yBAD6Pj7LS\nMgDCvjATiyZuO+jgM6FgL/AFqfvsj3liw0vdTqL5PD6+us9XCXqDeMzD2ZPPJtu/s0Wgdk9TLM5f\nX1gJwJtra1lR2dDn1/iIJxxm6GWXEtxnH4ITJzLsJz/Bm5OTsuuJiIiIiAxmup1TREQGldbWOPFo\nFF8wxMRPHcnQsZ+gNRaneNRofH4/Rf4ifvuZ37K5aTPF4WIKg9sWJbCCMTSe8yibGjYwZ818pu11\nLDn+7ieNJhZNZP4p8/HgISeQg9/r7/PX5/N42Ks4izVVTQS8HkYVhvv8Gh0FRo9mzO23gXP4SrQw\ng4iIiIhIZ5REExGRQSPa2MjyRf9h6QsLOfC4mYw96BCGj5+0Q73icDHF4eKdnsOfN4LcYBbfLLqQ\nvEAePm/3/ysMeoMMbTPYvCQxv9oBpyVGtlnfLTI1JDfIvG9/irfW1jBpWC4lKZwT7SO+4p2/VyIi\nIiIiso2SaCIiMmhEGut5+qY/ArB26WLOu+F2AuGsHp0j4A0wNFgE5gFPD2c1aKyEynfhri8mtl+9\nGc7/N+QO69l5ulCaF+L4/fr2nCIiIiIisnuURBMRkUHDzJMY9eUcZpbY7qm69bDwasgdDlO/A9nd\nvIUx1gzlsyGraFtZYyW0xXveBhERERERGXSURBMRkUEjlJPDrB9dwdIXnmPKsTMIZvdwEvymrfDg\nN2HNy4ntYA4c+YPuHRtrhg+ehWOvhNGHwYY3E8d6U3+7pYiIiIiIpJ+SaCIiMmgEwlmML5vK3lMO\nwRcI9PwErjWRDPtIpL77x4YK4OCvwbxz4Jifw/SfQLgAcob0vB0iIiIiIjLo9OI+GBERkfTqVQIN\nIHsInHIb7HUETJ4FU7/d/WM9Hpg0E07+K2x8G+cL0hwYwsr/LqKxtqZ37RERERERkUFDI9FERGTP\nUjIezvg7eHwQzO3ZsVlFMO6zMO6zVK5eyd3fPR+AvQ88hJkX/ohwbh4AkXiEoDeI9eGqnSIiIiIi\nkl4aiSYiInuecGHPE2gfs2HZu+3PK1auoDUeJxqP8sbmN7jsxct4ZMUj1EXrdrelIiIiIiIyQGgk\nmoiISFJjTTUtzU34Q2EqPbXc8+49TB81nYOGHkRuYPuk27iywyl/4mHqNm/m02eeSzCcRXVLLd98\n+pu0tLWw8MOFTBkyhbxgXppejYiIiIiI9CUl0dIg0hijNdaGx2uEc3s5r4+IiPSpxppqHvz1z6lc\ns4qC0uEc8aMLmLdsHvOWzeOxkx7bIYmWW1zCV355Hc45AuEw/lAI11hLm2trrxNvi/f3yxARERER\nkRRREq2fRRpjvPbYKhY/v44hY3I58YIDycpTIk1EJN1i0QiVa1YBUFOxEW+Lw2Me2lwbjfHGnR6T\nXVC43XZeMI8bjrmBv73zN44adRTDsoelvN0iIiIiItI/lETrZ/GWVhY/vw6Ayg/rqd3cpCSaiMgA\n4A+FGTp2HJtXfUDh8BEU5JcwvmA800ZMY2T2yG6dI+wLM3X4VKYMmULIF8Lv8ae41SIiIiIi0l+U\nROtnHq+RPzRM7eZmvH4POUWhdDdJRESA7PwCTrn8KloizQRCYfy52dx6/K2EvCGy/FndPo/X493h\n1k8RERERERn8lETrZ1l5QU6++BC2rG2gcFgW4VyNUhARGSiyCwrJZtstmkXeojS2RkREREREBhIl\n0dIgOz9Idn4w3c0QEREREREREZFu8qS7ASIiIiIiIiIiIgOdkmgiIiIiIiIiIiJdUBJNRERERERE\nRESkC0qiiYiIiIiIiIiIdEFJNBERERERERERkS4oiSYiIiIiIiIiItIFJdFERERERERERES6oCSa\niIiIiIiIiIhIF3zpboCIiIjsWmNNNc45AuEwgVA43c0REREREdkjaSSaiIjIAFZftYX7fn4Jt373\nf/hg0SvEotF0N0lEREREZI+kJJqIiMgA9v6rL1FbsYm21laev/t2Wpoa090kEREREZE9UlqSaGY2\nw8yWmdkKM7s8HW0QEREZDIaNm9D+vPQT4/H4/GlsjYiIiIjInqvf50QzMy/wF+A4YB2wyMwedc4t\n7e+2iIiIDHQlo/fi7P93PbWVmxkxYRLh3Nx0N0lEREREZI+UjoUFDgNWOOdWApjZHGAWoCSaiIjI\nxwSzshmy11iG7DU23U0REREREdmjpeN2zpHA2g7b65Jl2zGzb5lZuZmVV1ZW9lvjRET2BOpjRURS\nQ/2riIhI5hqwCws4525xzpU558qGDBmS7uaIiGQU9bEiIqmh/lVERCRzpSOJth4Y3WF7VLJMRERE\nRERERERkQEpHEm0RMMHMxppZADgDeDQN7RAREREREREREemWfl9YwDkXN7MLgKcBL3CHc25Jf7dD\nRERERERERESku9KxOifOufnA/HRcW0REREREREREpKcG7MICIiIiIiIiIiIiA4WSaCIiIiIiIiIi\nIl1QEk1ERERERERERKQLSqKJiIiIiIiIiIh0QUk0ERERERERERGRLphzLt1t6JKZVQJrulE1H6jt\nxSV6clx36+6qXm/27ay8BNjSjbb0h96+96k4p+K5+xTPnu1LVzy3OOdm7O5JutnH7s6/ib6OYVd1\nBlMMu6uvP5OKZ3opnj3bN2j72H74DtvTY/e0GHaXPpM926d4pubYPSmeffIdViQtnHMZ8wBuSfVx\n3a27q3q92bezcqA83e/57r73iqfiqXgOjsfu/Jvo6xh2VScTY9jXn0nFU/FUPAfWQzEcvO+/4ql4\nKp566LFnPTLtds7H+uG47tbdVb3e7Ovta+svqWif4pk+imfP9g30ePaF3XmNfR3DrupkYgz7un2K\nZ3opnj3bN9Dj2RcUw/TSZ7Jn+xTP1ByreIoMAoPidk7ZOTMrd86Vpbsd0jcUz8yieA5+imFmUTwz\ni+I5+CmGmUXxzCyKp0jnMm0k2p7mlnQ3QPqU4plZFM/BTzHMLIpnZlE8Bz/FMLMonplF8RTphEai\niYiIiIiIiIiIdEEj0URERERERERERLqgJJqIiIiIiIiIiEgXlEQTERERERERERHpgpJoGcTM9jWz\nm83sATP7TrrbI7vPzLLNrNzMTkx3W2T3mNl0M3sx+Rmdnu72SM+pj8086mMzh/rYwU39a+ZR/5pZ\n1MeKbKMk2gBnZneY2WYze+dj5TPMbJmZrTCzywGcc+86584HTgempaO9sms9iWfSZcC8/m2ldFcP\n4+mABiAErOvvtsrOqY/NLOpjM4v62MFN/WtmUf+aedTHivSOkmgD32xgRscCM/MCfwE+B0wGvmJm\nk5P7vgg8Aczv32ZKN82mm/E0s+OApcDm/m6kdNtsuv/5fNE59zkSXyp/0c/tlM7NRn1sJpmN+thM\nMhv1sYPZbNS/ZpLZqH/NNLNRHyvSY0qiDXDOuReArR8rPgxY4Zxb6ZxrAeYAs5L1H012cGf2b0ul\nO3oYz+nAVOCrwHlmps/rANOTeDrn2pL7q4FgPzZTdkF9bGZRH5tZ1McObupfM4v618yjPlakd3zp\nboD0ykhgbYftdcDhyfvTTyHRselXvMFjp/F0zl0AYGZfB7Z0+M9LBrbOPp+nACcABcAN6WiYdJv6\n2MyiPjazqI8d3NS/Zhb1r5lHfaxIF5REyyDOueeB59PcDOljzrnZ6W6D7D7n3EPAQ+luh/Se+tjM\npD42M6iPHdzUv2Ym9a+ZQ32syDYaWjs4rQdGd9gelSyTwUnxzCyK5+CnGGYWxTOzKJ6Dm+KXWRTP\nzKOYinRBSbTBaREwwczGmlkAOAN4NM1tkt5TPDOL4jn4KYaZRfHMLIrn4Kb4ZRbFM/MopiJdUBJt\ngDOz+4D/AJPMbJ2ZfcM5FwcuAJ4G3gXmOeeWpLOd0j2KZ2ZRPAc/xTCzKJ6ZRfEc3BS/zKJ4Zh7F\nVKR3zDmX7jaIiIiIiIiIiIgMaBqJJiIiIiIiIiIi0gUl0URERERERERERLqgJJqIiIiIiIiIiEgX\nlEQTERERERERERHpgpJoIiIiIiIiIiIiXVASTUREREREREREpAtKoskew8xeTncbREQylfpYEZHU\nUR8rIjIwmHMu3W0QEREREREREREZ0DQSTfYYZtaQ/DvdzJ43swfM7D0zu9fMLLnvk2b2spm9ZWav\nmVmumYXM7G9mttjM3jCzzybrft3MHjGzBWa22swuMLMfJuu8YmZFyXrjzOwpM3vdzF40s33S9y6I\niKSG+lgRkdRRHysiMjD40t0AkTQ5GNgP2AC8BEwzs9eAucCXnXOLzCwPaAYuApxz7oDkF4dnzGxi\n8jz7J88VAlYAlznnDjazPwBnA38EbgHOd84tN7PDgRuBo/vtlYqI9D/1sSIiqaM+VkQkTZREkz3V\na865dQBm9iawN1ALbHTOLQJwztUl9x8JXJ8se8/M1gAfffl4zjlXD9SbWS3wWLJ8MTDFzHKAI4D7\nkz8SAgRT/NpERNJNfayISOqojxURSRMl0WRPFe3wvJXefxY6nqetw3Zb8pweoMY5d1Avzy8iMhip\njxURSR31sSIiaaI50US2WQYMN7NPAiTnkfABLwJnJssmAmOSdbuU/BVwlZl9KXm8mdmBqWi8iMgA\npz5WRCR11MeKiPQDJdFEkpxzLcCXgevN7C1gAYk5Im4EPGa2mMRcE193zkU7P9MOzgS+kTznEmBW\n37ZcRGTgUx8rIpI66mNFRPqHOefS3QYREREREREREZEBTSPRREREREREREREuqAkmoiIiIiIiIiI\nSBeURBMREREREREREemCkmgiIiIiIiIiIiJdUBJNRERERERERESkC0qiiYiIiIiIiIiIdEFJNBER\nERERERERkS4oiSYiIiIiIiIiItKF/w+tFVXXduBccQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3743,7 +3750,7 @@ "metadata": { "id": "b9-orbM-rWpG", "colab_type": "code", - "outputId": "77e2226e-1401-45b9-b589-940d20acb36f", + "outputId": "b887d124-3e64-4637-dff6-cd1bfd417d12", "colab": { "base_uri": "https://localhost:8080/", "height": 101 @@ -3753,7 +3760,7 @@ "source": [ "centuries.groupby('year').country.count()" ], - "execution_count": 42, + "execution_count": 93, "outputs": [ { "output_type": "execute_result", @@ -3769,7 +3776,7 @@ "metadata": { "tags": [] }, - "execution_count": 42 + "execution_count": 93 } ] }, @@ -3777,7 +3784,7 @@ "metadata": { "id": "NRJlh_TErjpT", "colab_type": "code", - "outputId": "132e40b1-f40c-4dc6-f98b-36ccf8e8eca5", + "outputId": "39bad013-32c3-4d85-f823-edd2c49ff6c2", "colab": { "base_uri": "https://localhost:8080/", "height": 84 @@ -3788,7 +3795,7 @@ "years_per_country = centuries.groupby('country').year.count()\n", "years_per_country[years_per_country < 3]" ], - "execution_count": 43, + "execution_count": 94, "outputs": [ { "output_type": "execute_result", @@ -3803,7 +3810,7 @@ "metadata": { "tags": [] }, - "execution_count": 43 + "execution_count": 94 } ] }, @@ -3811,7 +3818,7 @@ "metadata": { "id": "T4YRATMhsEeQ", "colab_type": "code", - "outputId": "2ed4fb11-a2ab-4588-a8d5-9d710dd2bf8f", + "outputId": "5de3e5c1-de72-478c-ec8c-8c83328ceea1", "colab": { "base_uri": "https://localhost:8080/", "height": 393 @@ -3829,14 +3836,14 @@ "plt.xscale('log')\n", "plt.xlim(150, 1500000);" ], - "execution_count": 44, + "execution_count": 95, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACQ0AAAFkCAYAAACAKo/fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVNX9x/H3mV52dne277L0Ik0Q\nUAG7YhQTu0aJBbsmaixJTNOYGEv8WWJLjBpNTNRYYo3RYI8FjVIEkd5hYWHZPjM7fe7vjxlXVkBA\n2sJ+Xs/D48y955x77jyP370757vfYyzLQkREREREREREREREREREREREug7brp6AiIiIiIiIiIiI\niIiIiIiIiIjsXEoaEhERERERERERERERERERERHpYpQ0JCIiIiIiIiIiIiIiIiIiIiLSxShpSERE\nRERERERERERERERERESki1HSkIiIiIiIiIiIiIiIiIiIiIhIF6OkIRERERERERERERERERERERGR\nLkZJQyI7gDFmkjGm2Rjz768cP8IYM90Y87kx5m/GGEfu+EBjzEfGmLgx5idf6XO1MWZ2rs+TxhjP\nzrwXEZHdyTeIvycYYz4zxswwxkw1xhy0Xp/bcvF3rjHmXmOM2dn3IyKyO/gGsfcwY0xLLvbOMMZc\nv14fPfuKiGyBbxB7r1kv7n5ujEkbY4py5xR7RUS2wDeIvUFjzAu57x0+McYMXa+PYq+IyGYYY/bJ\nrZ3NzsXS09c719sY87ExZpEx5mljjCt3/JBcTE4ZY079ynj6vldEZCOUNCSyEcYY+zYOcTtw9lfG\ntAF/AyZYljUUWA6ckzvdCFwB3PGVPt1yx/fN9bEDE7ZxbiIindYuiL9vAcMty9oHOB94ONfnAOBA\nYBgwFNgPOHQb5yYi0intgtgL8L5lWfvk/v0210fPviLSZezs2GtZ1u1fxF3gF8C7lmU1KvaKSFey\nC557fwnMsCxrGDARuCfXR7FXRLqMbYy9bcBEy7KGAOOBu40xhblz/wfcZVlWP6AJuCB3fAVwLvCP\nr8xD3/eKiGyCkoZkt2aM+a0x5qr13t9sjLky9/oaY8yUXPbxDeu1edEYMy2XTXzxesfDxpg7jTEz\ngbHbMi/Lst4CQl85XAwkLMtakHv/BnBKrn2dZVlTgORGhnMA3txfqPiA1dsyNxGR7WEPir9hy7Ks\n3HE/8MVrC/AALsANOIG12zI3EZFttafE3s3Qs6+IdCp7aOz9HvDkeu8Ve0WkU9mDYu9g4O1c33lA\nL2NMee6cYq+IdCqdMfZalrXAsqyFudergTqgNFch6Ajg2VzTvwEn5totsyzrMyDz1eHQ970iIhul\npCHZ3f2F7F9pfPFXHROAx40xRwH9gf2BfYBRxphDcn3OtyxrFLAvcIUxpjh33A98bFnWcMuyPlj/\nIqZjGe/1/927FXOtBxzGmH1z708Fun9dB8uyVpGtPrQCqAVaLMt6fSuuKSKyo+wx8dcYc5IxZh7w\nCtlqQ1iW9RHwDtnYWwu8ZlnW3K24pojIjrDHxF5grDFmpjHmP8aYIaBnXxHptPak2Isxxkf2r7Sf\nA8VeEem09pTYOxM4OXet/YGeQLVir4h0Up069ubiqAtYTDZhs9myrFTudA3Q7ev66/teEZFNc+zq\nCYhsC8uylhljGowxI4By4FPLshpyDzFHAZ/mmuaRfah5j+yDy0m5491zxxuANLkvzTZyndvJlp/d\nlrlaxpgJwF3GGDfweu6am2SMCQInAL2BZuCfxpizLMt6fFvmIiKyrfak+GtZ1gvAC7lfdm8EjjTG\n9AMGAdW5Zm8YYw62LOv9bZmLiMi22INi73Sgp2VZYWPMt4EXgf569hWRzmgPir1fOA6YbFlWI+h7\nBxHpnPag2HsrcI8xZgYwKzfvtGKviHRGnTn2GmMqgceAcyzLymQLDW0dfd8rIrJpShqSPcHDZPcn\nrSCbCQ1ggN9ZlvXg+g2NMYcBRwJjLctqM8b8l2w5QoCYZVkbTeIxxlwDnLmRU+9ZlnXFlk40l8l8\ncG7Mo4ABm+lyJLDUsqx1uT7PAwcA+gVSRDqDPSr+Wpb1njGmjzGmBDgJ+J9lWeFcn/+QLaWrXyJF\nZFfb7WOvZVmt67V51Rhzfy72Ho6efUWkc9rtY+96JtBxazJ97yAindVuH3tzz73n5Y4bYCmwBDga\nxV4R6Zw6Xew1xuSTrRB/rWVZ/8sdbgAKjTGOXLWhamDVZu5N3/eKiGyCtieTPcELZEtr7we8ljv2\nGnC+MSYPwBjTzRhTBhQATbkHmIHAmC25gGVZt1uWtc9G/m3xL4+5eZTl/usGfgY8sJkuK4Axxhhf\n7hfLcYDKJYpIZ7Hbx19jTL9cfMUYM5LsftYNZOPvocYYhzHGCRyK4q+IdA57QuytWC/27k/299Iv\nYq+efUWkM9rtY2/uWAHZ59qX1uui2CsindVuH3uNMYXGGFeu2YVkF8RbUewVkc6rU8XeXAx9Afi7\nZVnPrjeGRXarsVNzh86h4zPuxuj7XhGRTVClIdntWZaVMMa8Q3b/0nTu2OvGmEHAR7n1iDBwFjAJ\n+L4xZi4wH/jfJobdJsaY94GBQJ4xpga4wLKs14BrjDHHkl0Y+ZNlWW/n2lcAU4F8IGOMuQoYbFnW\nx8aYZ8lu4ZAiW/7xoR0xZxGRrbUnxF/gFGCiMSYJRIHTc6XFnwWOIFs+3AImWZb18o6Ys4jI1thD\nYu+pwA+MMSmysXdC7gs/PfuKSKe0h8ReyP519euWZUXWuzfFXhHplPaQ2DsI+JsxxgJmAxfk7kOx\nV0Q6pU4Ye08DDgGKjTHn5o6da1nWDLJJmk8ZY24iG0cfATDG7Ec20SgIHGeMucGyrCGAvu8VEdkE\nk/1uVmT3ZYyxkf0F67uWZS3c1fMREekqFH9FRHY+xV4RkZ1PsVdEZOdT7BUR2fkUe0VEuiZtTya7\nNWPMYGAR8JYeYEREdh7FXxGRnU+xV0Rk51PsFRHZ+RR7RUR2PsVeEZGuS5WGRERERERERERERERE\nRERERES6GFUaEhERERERERERERERERERERHpYpQ0JCIiIiIiIiIiIiIiIiIiIiLSxShpSERERERE\nRERERERERERERESki3Hs6glsifHjx1uTJk3a1dMQEdldmO0xiGKviMhWUewVEdn5FHtFRHaNbY6/\nir0iIltNsVdEZOfbLt87iHR2u0Wlofr6+l09BRGRLkexV0Rk51PsFRHZ+RR7RUR2PsVeEZGdT7FX\nRERENma3SBoSEREREREREREREREREREREZHtR0lDIiIiIiIiIiIiIiIiIiIiIiJdjJKGRERERERE\nRERERERERERERES6GCUNiYiIiIiIiIiIiIiIiIiIiIh0MUoaEhERERERERERERERERERERHpYpQ0\nJCIiIiIiIiIiIiIiIiIiIiLSxShpSERERERERERERERERERERESki1HSkIiIiIiIiIiIiIiIiIiI\niIhIF6OkIRERERERERERERERERERERGRLkZJQyIiIiIiIiIiIiIiIiIiIiIiXYxjV09ARERERERE\nRERERERERERkV0glEsQjYbDZ8BcU7urpiIjsVEoaEhERERERERERERERERGRLicRj7Hs06m88+if\n8RUUcPyPf0lBWcUOvWakuYlENIrL58VfENyh1xIR2RxtTyYiIiIiIiIiIiIiIiIiIl1OPBzm3/fc\nRripgbplS3jtgXuJhcOb7RcNh6hfuZz6FcuIhUNbfL1IcxNPXf9T/nLVxTx38/VEmpu2ZfoiIttM\nlYZERERERERERERERERERKRLsJJJMtEoxuvFsjJYmUz7uVQigWVlvqY3ZNJp5n/4Hm898icADj/3\nYoaPG4/d5drstaOhVprX1gKwbvlSkvFYh2vbHA5sNtX9EJGdRxFHRERERERERERERERERET2eOlQ\niNZJk6i5/HKan3wSp93BQd87B4zB48/jWxddhicv8LVjJBNxFk/9uP39kulTSLS2btH1vYEA+aVl\nABR374nT7cHKZGioWcmrf7iTKf96jmhoy8YSEdkeVGlIRERERERERERERERERET2eOmWFuofeJDC\n734XLDCNTQwfN57BBx2KMTZ8wSDGGFLJBI2ralg+awb99x2Dv7gEZ66SkMvtYdS3T2TF5zMBGHHw\nEZhIBEpKNnt9f2ERZ9x0B/G2Ntw+P/7CIJHmJv5507VEmhpZ+PFkSnv2os+I/Xbo5yAi8gVVGhIR\nERERERERERERERERkT2albFI+oJ0u+8+Qq9NouXVVzEWpOfMpW7ieTT9+gYyjU0AREMh3nn0IQYO\n2htnzSqS8+aRamkBwNhsVPbsxbk33M45v7gR/+x5OPx+AFL19STXrSMTj29yHv7CIoqqqvEXBrPz\nwiKTTrefzyRTO+ojEBHZgJKGRERERERERERERERERERkj9baEGXFtBrWXHcd0U9nEJs5k9U//znx\nRYtILFlC+M03aXrqaSLxFMsihu9ccjVmdS2rf/xj1lx3Hemmpvax3MEiAsUlBEpKKTntNBwlJSRW\nrWLZhO+x+OjxtE2ZQiaZ3KJ5+QIFnPqLG+g5bAT7jj+O0rx8UutdS0RkR1LSkIiIiIiIiIiIiIiI\niIiI7NHmfLCadDIDgLt/f0ofeoCi227FfdCBVNzwG+wlJVjxOJmmRi55/FPaIjHqbr+DVN064gsW\n0vjoo6Sj0fbxHEVFOCsrcRQXA9D0xD9I1tRgtbWx9qabyeQqE22OzW6nwOXhgIIy+i2vZfXp3yMT\nDm//D0BEZCMcu3oCIiIiIiIiIiIiIiIiIiLSddWH41gWlOS5MMZ8ozEyySQ2p3OT56v6B5n83EK+\n86sbyThSPHfv/xFqaODocy+mqLGJHg//mUw0StODD3DIkONZFslQWV1NfOFCAJyVlaQbG7F367bR\n8T17D21/7erfH+NybfHcbS4XrX95FKutDVtBAcbt3uK+IiLbQklDIiIiIiIiIiIiIiIiO1i6pYXE\n6tVkwmHc/frhCAZ39ZRERDqF5Q0RLv77NNKWxUNnj6JPad5W9U+1tBB+620iH06m5NJLMXY7ra+9\nhn///XH174+VTGIlk1RWu/nWeUNI2WHRJ/+hpW4tAO899ySnnHo2sXnz8ew9FP9BB/H9flW4PptK\n6a+vp3noEOyFhTiKiojPX4BrE0lDvn33pdt995FaU4tn2DCsLdyeDMAeDNLnxReIfjoD76iR7dWL\nRER2NG1PJiIiIiIiIiIiIiIisoOFJ09m2Ukns+LsiTQ8+CCZ9ba4ERHpqqLJNLe8Oo/5a0Msqgtz\nw8tzCMe2PNkGILliBbW//CWt/36FdEMDy06fwLrf38WyM84kEwpRe+21LDn2OEIvvkChL0FxtwDl\nffu39y/r0Zv02jocJcWs/MGluEpL8L3yHMHu3Yh88gmOykpCr71O4xP/wDt82CbnYcXjrPv9nbS8\n+CLLzzqbVF3dFt+DzenE1aMHBSccj6u6GmO3b9Amk7G26nMREdkSqjQkIiIiIiIiIiIiIiKyA1mW\nReSj/wFg8/uw77cfodYW7LEovvwCbBtZHBYR2dPEoyky6Qwev7N9CzKHzdCzyNfepkeRD4d983Uv\nmtsSTF/RTEM4xvhU5MsTxka6uTk7dkkx8SVLCL/1NgB1t96Kb9RIDBZFld04+Rc3kIiEqajuiW1d\nPfFZs0itWEHolVdx9etL6K03aXjkLxRfdCEll1+Oq0ePr60AZHO7sdIZYrPnYCsowL6dqgVZlkXL\nuijTJy2nvHc+fUeW4fFvehs2EZGtsUOThowxVwMXAhYwCzgPqASeAoqBacDZlmUlduQ8RERERERE\nREREREREdhVjDMXnnEPo9dcpvum3fDTzExY8dBduv58JN9xGSfeeu3qKIiI7RDpj0RCOk0pniNZF\nmfmvZRxyxl4UV/oxNoPTbuP7h/Whe5GXdMbiuOFVeJybT6T8cHEDlz4xHYCBE4dSOnEibVOmYHxe\nSn/0IxoefhjvfvvjrKwCmw0yGRxlZaRbW4l+OgPfKScRaqhn6YyptPRbx159BlB32+0A+EaPBqcD\nKxaDTIaGBx+ibeo0qv9w39fOyVFaSq8nHidRU4OzW7fttsVYtDXBS3d9SrgpztwPa8kv8dJ9UNF2\nGVtEZIclDRljugFXAIMty4oaY54BJgDfBu6yLOspY8wDwAXAn3bUPERERERERERERERERHY1V+9e\ndH/l30RjbSx4+F4A4pEIHzz1d75zxTU43Z5dO0ERkR1gaX2Ek/80mdZoil8c1YcTz+jBG4/M5oSr\n9sGX7wagyO/m7LG9tmrcubWt7a/Pf2EBb116GSXfT2ELBHD17EnhSSeCy4VxOOj19NNEPvwQ3+j9\nWfvbGym57FI8/jwGHXgofUftj8Plwh5po9t99+Lq3gN7QT5Y4OnXD5vPR2LVaoITTscRDG52Xo7S\nUtJ5QWJtKTKNCTx+B27ftlUFsoBENNX+fv3XIiLbakdvT+YAvMaYJOADaoEjgDNy5/8G/AYlDYmI\niIiIiIiIiIiIyB4sEY/x2Xtv0Wv4SDCGwrIKAiWlFJRXYLNpezIR2TP9/aNltOaSXO5+ZzknDvTR\na1hx+/Zk39SE/XowbXkT/Yq9/HRMObZVK7DKyzEOBzanE/z+9rbevYfirO5G6M03KfnhD/GO2AcA\np8eD05NL2PT5yT/yyA2uU3jKKVs9t9ULm3j1T7PAgkO/N4BBB1Zhd2x+y7VN8fgdHHv5cD7450JK\nuweo6l/4jccSEfmqHZY0ZFnWKmPMHcAKIAq8TnY7smbLsr5If6wBum2svzHmYuBigB49euyoaYqI\nyHoUe0VEdj7FXhGRnU+xV0Rk51PsFYFkPM6KWTMZNHJ/zrj2JjyRNhKfzaLwsKOxOTa/XJNubqZt\n+nTii5dQcPxxOMvLd8KsZXem2Cudwf69gvz9o+UADK0K4Ig2ss+4wXgDri3qb1kW60Jx1oXjlAbc\nlAWyST55bgdXH9mfvWxRVp14ApnW1uz2YM89i7OsbKNjufv3xxYIwDYmLDW3JWiNpUikMgR9Torz\n3O3nUsk08/+3JlseCFjwyVr67Vu+TUlDdoed8t75HHv5cBwuG073jq4LIiJdyTePTpthjAkCJwC9\ngSrAD4zf0v6WZT1kWda+lmXtW1pauoNmKSIi61PsFRHZ+RR7RUR2PsVeEZGdT7FXuqJMPE5q3TpS\n69ZhpdPYHQ6OPO0s6s6/kEJjZ815F9D4+7tY/r0zSNXVbdA/lUgQbmok0tyElckQ/ewzai69jHV3\n3knNpZeSamzcBXcluxPFXukMDupfytMX7sfvj+/N/SdUU1TeDW/AvfmOOetCcU7442S+c+8HnPTH\nD6lrjQEwa1ULv3ppNg2fTCXTmt2qLLVuHYllyzYYI93WxrpZc5hLgEkrozRG09/4fprbEtzx2nwO\nue0djvz9u5z71ynUh+Lt5x1OO0MO7oaxZROTBh9chdO97dXkbHYb3oBLCUMist3tyKhyJLDUsqx1\nAMaY54EDgUJjjCNXbagaWLUD5yAiIiIiIiIiIiIiIrJTZZJJ2qZOpeayy7F5PPT426N499oLe34B\nDakUiRUrwMqWoUg3NJBubsa43TgKs1vOpNMpaubN5qXbbsTl83HGLXdBYSF5Rx9F+LXXSa5ajZX+\n5oveItL11IfirG6JUp7vodjvwmHfYbUlOij0uRjdrwyq3SRSFusyHmiNUbSFcwjFUtS2ZBOFVjVH\nCcdTlAFza1tZ2xrDPW4QMbsd0mmM242re/cNxrASCRYHKjnrqbkAHLQgxL1njKAoz7PV9xOOp3j8\n4xXt72etamFGTTNHDvqy+ltFnwIm3jwWKwMun2ObqgyJiOxoOzJCrQDGGGN8Jrsp5ThgDvAOcGqu\nzTnASztwDiIiIiIiIiIiIvI1rFSK5BeVMDKZXT0dEZHdUrq1lVRTU/v7TEsLa357I1YsRrq5mbo7\n7iQdDmPPz6fo/PNwduuG/5BDsPl9FF9yCeF33yXV3NLePx6J8P4/HiWVTDDsyPEsnzGNSc//g+bx\nR1L0859R+X+3Ys/PByDV0EBs/nySdXVKJBKRjaoPxZn4l084/g+TOfLOd1kXjm++01aOv7Y1RiSe\n2mSbNpufF+a2Mvp3bzHuzndZWBfeaDsrl1D5hXyvkwHleQAMqgwQ8DgBOG54JSV5bh6YG6Lbs89T\nfsNv6P3Si9iLirAyGTLxL+/R5vczt/nLuc1dGybV8TJbLJXZsGMk1vG+nW47eUEPgWIPbq8qA4lI\n57bDopRlWR8bY54FpgMp4FPgIeAV4CljzE25Y4/sqDmIiIiIiIiIiIjIplmWRWzefFZeeCHG5aTH\nXx/F3bfPrp6WiMhuJVlXR+0vf4l7vzH4TzgFT1E+GZeLgkt/QORf/yI6+UNcvXthXC5sLhfeESPI\nhMKU/fhHpNaspW3KFNbdex+BY48jHYlgJRI43G4q++1F3dLF9B6xL09e9xMAauZ+zoX3/hl/YRE2\nt5tUQwMrL72M2MyZ2AIB+rz8L5wVFbv2AxGRTieRzjCnNruFVyieYnlDG5UF3u0y9urmKKc9+BG1\nLTFuOWkoxw2rwu2wEQsnMVYGZyaKsdsJWQ7uf2cRJ+/TjWTG4v7/Lub2U4fhcWa37oq3tVG7aD7z\nP3yfgQceQkW/Abi9PkoDbp64cAxtiRQ+l53S3NZmFQVenrxoDBksnB4H+YMGAJBqaqLl+ReIzpxB\n8SWX4B4wAJvTybEjqnly2mpqmqL85vjBBDxfLpNHQwkS0RQOtx1fvotsPYyNy/c4GN27iI+XZreI\nLAu4Gdu3eLt8liIiu8IOTW20LOvXwK+/cngJsP+OvK6IiIiIiIiIiIhsXiYcpu6OO0g3NwOw7r77\nqLrt/7C5XLt4ZiIiuwcrlWLdfX/AdfA4VheNYMHDCzlkQg9WzfsfS2Z+zKiLzqfynInkDd27PbY6\nKypYdsXplF55Bam6OmILFlD+hz9iczpZe8stxOfPp+xnP+PA755Bv/3G4AsUYIwNy8qAMRi7A5s7\nu2huJZPEZs4EIBMKkVi6dKNJQ5lolEwkgvH5sPt8O+8DEpFOweO0861B5bwxdy3VQS99SvzbbewX\nPl1FTVMUgBtensO3BpbRsjLGm4/OwV/g5uhz++Fd9iolvQ/l8TP3Y+F/V2F32eh3cBVOezY5J5PJ\nEG5q4LmbfwXA5/99g/PvfhC3NxuvsolCblKZDG2JFB6HjUxjI4WAvbi4Q5JPdNo06m6/HYDwB5Pp\n+8q/sfx5VBYGeOb7Y8lYFgG3E28uWSkaSvDmo3NYMbsRX76L0365H/5C9wb3mUpliEeSeO2GP545\nknm1rbTGUuzbM9ieyCQisjtSPTQREREREREREZEuyrhceIYOoe1//wPAO3wYxuncxbMSEdk6q5ra\nmDR7LSN7FNK/LECeZ+ctfaSamik68wzS3gAv3LYAu8NGMh7i3ccezs5t3hwuvO8RHEVFAKTb2jAu\nF72ff450OIwJBAicfDLG6SL8ztu0PPc8ACsvvoR+r79Gr+EjScSinPjT65j1zhsMPexI3P4vF/uN\ny03ekUcSfvNNHJWVuPr23WCO6dZWWl54kaanniL/mPEEJ07EUVi4Ez4dEeksivwubj11b66PD8bj\ntG/XJJchVfntrweUB7AlLd746xxCDTFa62N8/t5KRidfxvr0r9j3+xNz318NQCaeofTUPkTCzSz4\n+EMKy9ZLeLQswo0NBCuq2g+FoklWt0R55IOl7F2VzxHJWqI330D3P/2pQ6XML5LhAaxolGRtLc3P\nPU/ZNT+hZCOxL5XKsGJ2tmpQW2uCxjWRDZKGUok0qxY08/bf55JX5OaY7w/joP6lW/U5RUOtZFIp\nnF4vLs/2qfIkIrI9KGlIRERERERERESki7K53RSffwG+UaOyCURDhnztdgwiIp3NulCMU/70EWta\nYxgDb1x9CP08gZ1y7WTdOpafdRbJFSsInnsuB377BD6atAabzdbexhgDubiaamyk7s47iS9YSMll\nl+IZMoTQpNeou/12/AcdRMGx32nvZ3O72/u5PF76jNyfHkOH43B1XMh2FAWp/O0NZH72U4zHg7N0\nw0XsdCjE2t/9DoD6+/9E/vHHK2lIpAsq9rsp3n4FhtqN6F7IUxePYXlDhMMHluHGhi/fRaghBkCg\n0A6rIpi6Obg9X/aLNMcJNTTy2M9+QO+9R7DXxP0p692XuqWLqeg3gKKqahKpDKFYEp/LQWNbgosf\nm8byhjaeAcqO70t/r5e1t95Kt7t+jz0vD4C8ww/Hf+ghxOfOo/iCCwi9+x6BIw4nsWQpmZJi7EVF\n7W0BHA4blf0LqF3YgtvvIFjuI5VM09aSoGlNhJLu2Z8prz38OclYmrbWBDPfXsmBJ/fb4s+oraWZ\nV+67g9qF8zl4wtkMPvRI3Kr6JiKdhJKGREREREREREREujBHUZDA4Yfv6mmIiHwjmQysac0uTFsW\n1LbE6Fe2c5KGYp9/TnLFCgCaHn2UAW+dQ119Bm9+IUf/4CoWT/2YUd85AW9edj4tL/2rvZLQqh9e\nQc+nnoR0CisaJfzmmxSdM5GSK64gPm8uJVdcQYsnwPQ5a5hXG+LY4VVUFng2uqjjKCqCXCWjjTEO\nB8bjwYrFwOHAtv6qvYjIFspkMqQSGZxue4ck8wKfizF9ihnTp7j92PhL9ubzd1YSKHHTu3gpfPAe\n1nfuxJlXgNvvwOmyc8DJfXnjoZtIJ5MM2XcM9VddzTGXXIwpLsLu9pBwenl/3lrue3sR4waWceqo\nakKxVPs1WmMpjNuNq3evDpUyHcXFVN12G5lwhIa//AVHUZDQ62/Q8tJLYAw9//43fPvt197eG3Ax\n/qK9ibclcXkdeAMuIs1x/vGbj0mnMhSUeTnhqhF481wkY9lt2PIKvn4r32g4Qc3cJozdUD2gkLpl\nS1gxawYAbz/6EP1HH6ikIRHpNJQ0JCIiIiIiIiIi0smlmpqwUilsPh92/w74E3ERkd2U323nxhOG\ncOcbCxjVI8jgyvzNdwLSGYu6UIz5a0LsVRGgLODBbtu6Smvu/v0wLhdWIoFn+HAcXhdHnD0Im81Q\nVHkEe409GFsqhdXaSqagACvinyD2AAAgAElEQVSRaO9rpdNYiST2snJseXlkwmFCr79O0QUXYHO5\niGLnnrcW8vePlgNw79sLef3qQ+ldsvU/A+zBIL2efJKWl18m/6hvYS8s2OoxRKRri0WSzP94DStm\nNzDy6J6U98rH4bJ3aJPOWNS2RJmyrJF9ewbZ9/je2I2BiAuunoNx5eF3+Pne9aMBiLfVUzP3cwDa\nImEKfH7WXXo5AP7b7+LGT8JcOW4As1e3Mnt1K6fuW839Z47kd6/OZUB5HocOLMd52ncJHHFEtjrb\nehwFBVh5eRRPPJt0cws1V12VPWFZhCdP7pA0BODLd+HL/zIRKNQQJZ3KANBSF8XuMJxw1T5MeWUp\nBWU+BoyuYFNSyTTT/rOcmW+tBGD0CX3oM7wcY2xYVoaCsnKMzb7J/iIiO5uShkRERERERERERDqx\nVEMDq35yDbHPPqP06qsoOOFE7IG8DdqlW1pomzKFtumfEvzeBJzV1dpqTET2eHkeJ6eMrOboIRW4\nnTbiqQxL6yPkue2UBjZdUac+HOeYe96nuS1Joc/Ja1cdQnn+1lXgcZSV0XfSf0jW1uLq1QtbIECm\nuQnL48Hu82HCEWpvvJHYnDmUX3ctBSefRNv0aSQWLab4kkuwFxdhXE6q77+fdCSMd/AQjN1GzaWX\n4rjmWp6esrL9Wsm0xYufruLqbw3Y6s/I5nLhGTQQz6CBW91XRASgtSHKB88sBKBmfhMTbzpgg6Sh\n+nCc4+77gKa2JD6Xnbd/fBgVBR4IlLe3sQP+gmyCj4nauPi3d2LPC7C6uZni34zC/t/3yZRXMc1b\nwRuTl3L1uAHkexy0xlLUNscY1SPIn8/ZF5/LQZ7bAaeeusk5G7sdV8+eZMqiFF90IWt/eyO2QICC\n44/foG00maI1msIAQb+LwnI/pT0CrFsRYtjh1djsNvJL3Bx+9sAOW1BuTDqZoaEm3P5+7ZIWhhzc\nj7NuvZu1SxfTa9gI/NoiUkQ6ESUNiYiIiIiIiIiIdGLRmTNp++gjANbedDP5x3x7o+0Sy5ZRc/kP\nAWh95RV6P/csjpKSnTZPEZFdxed24HM7WBeKcfL9H1LTFGWf7oU8cNZIKgq8G+0TjqVobksC0NyW\nJBxLUb5lRYra2dxubFVVOKuqyESjRD78kPp778U7chQll/6Atk+nE5o0CchuR9b3rTfpdtttZDIZ\nMjYbsfffZ/VPrgGg/Fe/wnHIIcQXLSL66Qx8dWvpXuRjUd2XC897VWz7tmtWxiIeTeFw2jZY8BcR\n2RTjsrHfmQOINcWZ/04NVioFdKzuk0hlaMrF1bZEmnA8tZGRoCWaZEV9mNW1EfZ2Z2i74nzy/vAA\nbd48pu59GA++v4S5tUvxuewUuB0c2K+E3iV+BpQHcDpslH1NQmgmkaAt1ErtgnkUVlaRX1aB2+ej\n4Ljjstvx2u04ios79EmlM0xZ2sQFf5uC22HnmUvGMrgqn2N/OBwrbWF32vD4s9ufbS5hCMDldXDA\nKf341z0zMDYYc2JfvHl+vHl9KOvVZ7P9RUR2NiUNiYiIiIiIiIiIdGLObtXtr4tv+i3Lly5g1Wvz\nGHTQYQQrq3A4s1sppJqa2tv5Ro/GSiRIrFqFPZCPPX/DheZUS0t2a5yCfGwu1wbnRUR2N2tb49Q0\nRQGYsbKZlmhyk0lDBT4no3oGmba8iVE9gxR4ndt07XQoRM1ll0MqRWz2HAKHH4arW7f2847SUgwQ\nsWDeB/+ldsEc9j/uVHyHH0bbO/8l/O67FJx4AvZgMLtd2UP3c+8td/PDVxazvKGNk0d2Y3Tvom2b\nYzpD/cowk59dRGmPPEZ8qxor04bHn4fTs3VVlkRkz2dZFtHWBElgZmOEW6csZnhVAT/5+UhCj/8V\nz9nf65CAk+d2cNaYHjw9ZSVHD64g6Nt4XP1kaSMX/X0qAAf2CXLL9y8nOmMGSwcMZ2zPUiKR7ixq\njHDaqO4EHHZuO2koDqcD71cSHa10mlRDA1YigS0vD0dhIW3NTbzw+1uoW7oYgNN/fSvVg4diDwSw\nBzaeeBmKp7jnrYUk0xbJdIqH3lvCHd8dhi/wzZ6PjTEUd/Mz4fr9AfB+w3FERHYWJQ2JiIiIiIiI\niIh0Ys6qKnr+4wmStbXUlRTyr9tvAmD6qy9xwT1/JlCcrSbkHTaMghNPJN3WRvB7E1h89HisZJLy\n666l8NRTsa23IJxqaKD2ul8RX7CA8uuvxz96/w7nrVSKRE0N4XffxT92LK4ePTqcFxHpjEryXFQV\neFjdEmNot3wy1oZtIs1xGlaHCVb4efjsUbQlM3icNorzOlbMiEXC1MydzYpZn7L3uPEUVVVjd2SX\nVFItLWRaWzFOF/bCgvb4aHO7yaSylTWMz4ezWzeqH3iA2GczKTjlFKzCIlbNmMb7jz8CwPLPZjDx\nupuJfjCZ4gsvwObzYXO76fPyv4gvWoy7zM/TF48lg4XPaSfPs22JTbFwkpfvm0E8kqJ2UTPBchvT\nX72XQ844l57DRmx0S0srY4FB212KdEHNa9t46e4ZHHDhYH7wxDSSaYtFdWGOGVJK/5nTsc48vUP7\noN/FNUfvxRXj+uOy2yj0bZgsk8lYvL9gXfv7aStbsI3qicPrpdjpZN6k5/nOUSfhdFbx7lPz+WB+\nM4d8tzc9+/qwSoOY9Sr9JGpqWHbqd8mEQgTPPJPiS3+AZVntCUMANXM/p6KqmsiHH+IZMABnVRU2\nn6/DnLxOOwf1K2Ha8mwC/uEDS3HYN19R6OvY7Lb2bdhERDo7JQ2JiIiIiIiIiIh0YvZAHr6RIwGY\n/uhD7cfTySShhvr2pCFHURHl112LZbNRd8stWMns9hBNTz5F4KijOiT9RD6YTPiddwBY/aOr6Ttp\nUsekosZGlp1yKplIBON00veN17FVVOzwexUR2RalAQ///P5Y1obi2I2hPL/jgm2kJc5zt08j1BDD\n6bZzxg1j6BbceCWixlU1vHT7jQB8/s6bnHPXAxQUl5Bua6P5yadYd/fdGKeTnk89iXfIEBzBID0f\nf4yGhx/GN3o07l69sOfnEzjsUAKHHQpAWzxJWyTafo10MoEtGKTvW29iz8/PJuY4HDgrK3FWVgKw\nvTeZdDhtxL947bKRTiaZ8dq/6bbX4A2qDbW1xJn++gocThvDxnX/xlU3RKRzS8SixEIhkvEY3vwC\nfPkFpBJp/vfiEiLNcdLJNAGPk8ZIAgC700n+7++mzenEnUzjSTZDOgXeIAXer48TmdZWJgwt5rnp\nNUQSaS46sBfeHhW0JqG7z06/Y4/Hl5/H3Mm1LJ1RD8B/n1rMdyeWYHdAi88ilUkRcAaIvfkmmVAI\ngKannqLw1FOIzpnN8HHjmfnWJDz+PAaMOZCayy8nOnUa2Gz0eeXfuHv37jAnj9POuQf24oiBZXic\nNirylSgvIl2LkoZEREREREREREQ6uVRjI5YFgw46jBmvv0ImnSYvWExBaXmHdva8PNKxGHmHHkrL\nc8+DZZF36KGkjY10MoXHmf060FHxZT9HWRl8pYKEFY+TiUSyr5NJ0qEQTiUNichO0NyWIJm2CPqc\nW13pwW4zVBV68bkduOw2/O6OSyDpVIZQQwyAZDxNqClGs5Umz+3YoCJGS92a9tfJeIx1zRGS7gAF\n0QjNzz8PZONj66uv4h0yBON04hk0iMpbb8Xm3HhFIK/LQa8hQ9nrkCNpWLqQsaedjTcQwOneOQvU\nvoCLE64awZRXllHa3YeVXkPjqpWMPWUCjq9sU5mMp/jgnwtZOLUOgFQqwwEn98Vm27bqGyLSuWTS\naVZ8/hkv3XETWBYDRh/IkRddhtuXR0FZNqly9r+X8cTE/Xh82goGVxUQjqdYHkrzf6/NYWB5gB8O\nh6IXz4Tj7oEeY8Cx6Qo7mVAr3ttvYdKVPyaFDU9hPhm3lz6lHeNgYfmX1YAKSn1kGhto2quEc/9z\nPitDK7l02KWcM/pgsNshncY3ZjTRWZ/TeNNN7H39r9j37gexO124jY21U6flLp4hsXzFBklDAEGf\ni+BGKiOJiHQFShoSERERERERERHpxFINDdRcdTXRKVMoue5azr/rQVrr1xGs6oavsLBD20w0ipVK\n4e7bl17PPE2mLYq9pJjWZ57BM2pfXPsMw+bx4B44kOo//oHYnDkUnnoqjpKOtSxsgQBF559P8zPP\nkDduHI7i4p15yyKym0uHQqSbmshEIjgqKnAEg1vUb10ozk+fnckpe1cxwOaipTbCoLGV5BVteVKN\nMWaTC79Ot50Bo8tZPquBESf3Ieqzcd2znzGqZ5BLDunTYfuvHkOGU9qzN+uWL2XgYUcxuz7Okflh\nYnPmkP/tY2h44EFwOvEecRTNayMEij3YHfZNJgx9Mbf8YCEHnnkBVjpJXl4eTvfOW6Q2NkOwws+4\ncweRSsSJtni48L6H8eQFOmz5A9mkqkQs3f4+HknCRrZ7E5HdWyIWZfqrL4KV/R98wceTOeyci/AG\nbIz4Vg+8ARexcILuhV7KCzz8+7NaLjy4Nxf8bSoNkQQfLW5geNUQvn3MYxjAEW3FBEo3eT3jdpOY\n8Smxk4/D+HxUvfoqzrwNk4yKu/k58ap9qF9ST8/eLjKffsScJouVoZUA3P/Z/Zxx4in0fW0Sqbo6\nnFVVLDnxJKxEguhzz2M76iCSDnBYDkp/9CPW3XMPnsGD8Q4dskM+RxGR3ZmShkRERERERERERHay\nVDpDY1sCuzEUb2ShZH3xxUuITpkCQP1NN9Pn4IMpGLL3hmM2NVH/hz8Smz2bsl/8HHt5OSaVpuHu\nu2j99yvgdNIvt82Yo6CAwLhxBMaN2+g1HYWFlPzg+xSddy42lwt7QcG237SIdBnRWbNYef4FABSd\nfz4ll1+G3efr0CYTi2GcTozd3n7spRmrWNUcpbtl542HPgdg4ZS1nPijkdh9dlqiSQxQkufObuW1\n/ngZi/pwnEgiTcDjoGQjsdWb5+Kg7w5g+MlpfvPvOSyZuoSfHzOQ2uYooViKP7yziNKAm5NGdKMo\nGOSEn/+WNc0RPl7Ryop1SQ4LfcrqK66k4lfX0fs//yGWMEx5r4lFf5vCmb8dS16hfYNrfpXTbiNY\nGNhsO8uyaGtNkIqncXod23VrMLvdht3rxe3d+NZsqWSaFbMb2ffbvUgnM9idNsac0BfbVlZ+EpHd\ngN1GeZ/+rJw9C4D80jJSlqE+HKck4GbEt3q0Nz19vx70Lw8woDyAw/5lDHYkk6z6xW9ILF9B7xef\nx/U1Ic5RXEzv554lOn063n32wVFchM1mNmjn9jnpNrCI8m5OiMcxx36HPqYVt91NPB1ncPFgVsVS\nVATLKKquJh0OU33P3bRNm0bijGOZ+OZ5NEQbuOuwu9j3zNMpOOlEjN2Oo6ho+312IiJ7CCUNiYiI\niIiIdCGZRIJMJILN58Pm/vpFahER2bjGSJxEysLlsFHk3/pF3FQ6w6xVLVz51AxK8tw8dPYonLEW\n5n3wXyoHDKS8ohtWfQNg4ayowFme2z7MsrCXlkJBAalMBofNRrq5mcjUqcTnzScw/miiMz4lNnsO\ny888iz5vvEE41JZNGAJIpbAcDtaF4lhYFHpduBybXgC2BwLYA5tf2BYR+arwm299+frddym+4HzI\nJQ1ZySSxhQtpuP9PePffj4Ljj8eRq5pWnu8h4HESaYp/2b8pTiaTYdqSFi56bCoFXidPXTyG3iV5\nHa5ZF4pz7H3vUx9OcPP4fpyyVz52ux17MNih+o83z8lLn9Ty6qxaAK7552c8dfEYrnx6Bp8sbQQg\nEk9x3gG9KSgKknD6OCJYRMDjgLeXQSbD2t/dStET/+Kff1zcPm4mndmun2GkJcE/b5lCW2uCnkOL\nOXziQPz5O+f5PRlL89k7NSRiKQaOraSgzIs3X9v2iHQqsVZwesG+6epmW6IlHcJ7wF6MKTqHWFML\n+xx5LKc/9jn5XicPnDWqQwJmeb6HY4ZWkslYPH7BaO54fT6DKgKMSNbTOmcuWBaxefNxVXff5PWM\n3Y6ruhpXdfVGz6caGwm/+y5kMuQdfng2ySf3PFqW9vCvE19mfv1K/LZyzn14Dj88oh9nj+2FPS8P\n/+jR+EeP5t7p91ITqgHg1k9u5dHxj1JcuunqRyIiXZ2ShkRERERERLqIdGsrrZMm0fzscxSddx6+\nkSMwDscGW86kGhtJrlqFvagIRzCI7St/FS4i0pU1hOP88MlP+XBxA98eWsGNJw7dbKWgr2pqS/Lj\nZ2ayorGNFY1ttDQ18tatvyDUUM+A/cdyYEVv1t54IwDl115Lwckn0/OJJ4h88jGZ087ihreXYLcZ\nrhw3ANe0aay6/IcAND/zNJW/u5WVF1wA6TTGyuArK6H05z8j/NrrBK+8kllhG1c+MplQLMVPj96L\n44ZXke/dtsUmEZGvKjz9NFpeepFMW5TiCy/Alvdlgk+quZkVZ08kE4kQevNNvEP3xjFyBACjexcR\nS6bp2S1I3exGmta0cdgZe5GyG25+dS6xZIZYMs4j7y/lumMH43F+WdlnWUOE+nCCYwaWcGjrYpaO\nuwbjdtPz8cfwDum4Hc36cbvQ5ySaTLO2NdZ+bGVjlBdnrOL44VWUBr5smxo7lsIJE4jPm4e/JI9h\n46pZNrOevQ+rxu3dvsstDavCtLUmAFj+eQOJRAb/dr3Cpjk9dgaOreT9pxfwyctLOeGqfTZaCUSk\nK4o0N5FKxHG6PfgKCjffYXuLtcKqqfDhH6DbSBh9Cfi/eUJMY6yRiz+4jP0q9sNX6aMoNY4Fa8N4\nnDbS6Qyt0SQBj6NDdTebzdC/PMDdE0Zgj0VZ95s/Z5Pbg8EN4u3WyCQSNDzyFxofeQSA4MSzKfvx\nj9v/4Mlld+GmiD+/sZwPF2er0dW2xDYYZ++SLytyjiofRSrpZVEo3F6Fzq54JiLSgZKGRERERERE\nuoh0a4g11/8aV+/eOMvLWHnRRQBU33cfrp49s21CIRIrVkIqSdsnU3AP3AvvoEG7ctoiIp1KNJnm\nyiP7c+lh/bjuxVlE4qmtThpy2A3l+R6W1EcA8DlshJuy1S2CpeVEPni/vW34vfcoOPmkbKLn0L35\n+fOzeGnGagBSaYtrihz4Dz6YdFMjsc9nYy/Ix9m9O8FLLsaWF8CXH8BzxhkUnngijcbNxfd+QEMk\nuwh97Yufc+iAUiUNich25+7Thz7/+Q+k09gCgY4VLi0LK53+8m0qCUBTJMGdr8+npjnK6uYo55w3\nGHsGvHkOoukMgyrzmbcmBMCgqnya2hIYDEV+Jw5j6Bn0URZwc2i1j+SDd0ImgxWN0vT4E3huvglj\n+7Ky2qiqPG47eShz14Q5ZVQ1r31eyw3HD+Gnz35G0Ofi4oN7c9XTMzl6SEWH+3IUFVH202uwEgns\ngQCjjytg1FE9cXocON2b35psawQr/Xj8TmKRJIMOqiRubd9KRl/H4bSz1+hyeu1djM1mcPu1lCQC\n2YSh5265nnXLl1I5YCAn/OQ6/Ds7cShSB4+dlH29+C3IpOGwX4AjWw0skUrTGEnS1JagLODe7HNq\nua+cg7sdzOTVkzlz0JnMq43jtBseO380f/zvYpbWR7juO4PoVxbYINnG67SDM4/ya6+l9MorMB4P\njpKSb3xrVjJJYtGi9veJxYuxkklY72dIkd/Fr48bzFVPz6DY7+LcA3ptMM7I8pE8dsxjrIuuY+/g\nAVz2jxlMXdZE0OfkP1ceQkWB5xvPUURkT6QnPRERERERkS7COOzgcBA46ls0PPgQ8QULAVhz8y10\n+/2d2PPyyLS1UfuLn5NYuoy8ceNw9e2zi2ctItJ5NITj/OSfM/nfkkZ6Ffu46/R9OlS52FJBn4sH\nTxvKwpoGmm0ufHl+xv/gKt574q8Eu/cmOHAfIpM/BKD4oovaK75lLIglv1xojybTOIYPY1XtUkoq\nu1Fud5H0eal86AFsbVEi77+Pf8wYHMVF2FwurJYYTW2JDnMJxVPb8ImISFfy5daGTlyOr499xunE\nWVa20XP2wkJ6PPpXoi0xnL16Y/KzVYjC8RRPT81uJzN5UQODS/JIf9LAqG/3wlXk4idHDWBMnyIK\nfS5K8lzc8dp8XplVy6tXHEy508mHj8zhiQmj8HssHIceSmzWLAAC48Z1SBhKNzcTu+12DnY4OO60\n72JMG2V7eUnFGnnpwlHYkglc6SgnjqjC795wCcXu87Vvteayg8uzY5ZZjM/Ot68ZgcMYWlZHWDOr\nEd8IO3avHb9nxyd7un1O3D4llYqsLx6JsG75UgBqF8wjGYvCzk4aalza8f2qqZBsa08aWtUcY/zd\n7xFPZThsQCm/P32fr91Ot8hbxI0H3kgyk8RldxOLuxh7dTXvLajn7x8tB+Ccv0zh5R8e1KHy2voc\nRUEoCgIQiyRJp5I43fatjo92v5+ya37C/7N331FSlfcfx9+3TK87s73DAguCSBUQBRERUYMNGwRL\nbNhFjTVqNLG3WBITS1TsvYGKLWJXUJr0srvAsr1NL3fu/f0xuLiwCwti+/m8zuE45dY5x7vP3Ocz\n329szRrQdbKvuALF2bEVpSRJ9M528eTpI1BlCa99+3PzWDwMyh4EQE1blAWVLUC62mdlU1iEhgRB\nELYhQkOCIAiCIAiCIAi/E4rHQ/Fjj5HctJFUa1v766b8PCRTekIgUVVFoqISgNAHH5Bz5RW/xKEK\ngiD8KkWTKb5cn64IVNkUQZWlLidPdkRraSH68CP4lyyh32WXYrVl0nvEaIr3HgTY+Pq1NQx89g0k\nIGRx4NjSDsJhUfnr5P4kUwaKLHHFhF68fd9NbFqRbs9w/LU3U9SzjNbXX6fmiitBkih+7DGiS6Ok\nYnEsw0dy4vBinvl6AwB9cpy7dfyCIPz+bGyOMP3Rr2iOJHh4+jCGlGRgUuSdr7gtw0A2maDnXnw5\nawWVzy6j55AsDjypHIsq43OYaQ4nkCXId9v4fEULTdVhco4sprzUw0F9c0imdJ6bv4GXv60G4LO1\njUzulUPt2jZq71iIJMHJVx+He8LByBYLyjatePV4nPDnn1Pwj3uonnkJWm0tmddcjbOsJ9VHpat3\n+M48k2lnno29k9DQz8VlNYEXNi9t4v1HlwOwdn4dvY/tQXG+i4xOJsoFQfhpWRx2XP4sgk0NZOTl\nY7L8AuGT3L3BkQnhxvTzkeeCbWtw6duqFuJaujLZvDUNaKn0Y625GT0USlcD8vuJRcIk43EUVcXr\nzWhf37NlaPjx6sb21wwMlFQSrSEAioLq83V6aJFggnnPrKJmbSt998tj6KGlu9S6UY/HUfx+Sp95\nGklRtrt+f0+WJTK7WenToiqM75vNByvryfNY6ZH5czV6FARB+O0QoSFBEARBEARBEITfCdlmwzF8\nGMbQITjHjMFUUAAYeI89tr1lhLmoCNlhRw9HMJeVIVnEZLIgCL89sWSK+mCcjc0RynNd3Z5U2BmL\nqtAvz8WKmiBZLgs5biuSJO18xW2P77vvaP7vfwHYePoZ9HznbUxZWZgsFiJtcapWBFjxVXqi5siL\nB3VYN89j456j+xH+aB7OZAF1Feva3ws0NaDH4kQXLQbAOXYsiXiMVpPM8iVL2MttZ+a4wZy0bxGh\nuEav7I6fjdbYSHTpd5h7lGLKyUG22Xb53ARB+G2JhZNoSR1ZkbC7ug6hPPJpBZVNEQCue30ZT585\nYtevraEG+PJBSGnE9r6Myu+aAFj/bQOjjiwjM8vG6+eNZt7qBgbmudn0SS2JqIYny0YooXH/h2u5\n/NC+rKsPMaFfLi9/U01jKM6oskzMNoW+o3JZ+UUtWSUuZI8Xa1HnlY4kVcVz1FG0Pv88yY0bAWi4\n8W+UvvhC+zKRLz7Hf9ppwC87ueyymmiuDrc/b62PEIpptEWSIjQkCL8Ah9fHtJvvIhIIYHd7cPwg\nbPNjxEIJNq9tJRbW6NXHTPjDD5GdDhz77Yeasc0+HNkw4zPYvBB8PcHVsY3iiJ4+vHYTrZEkxw4p\nxKzKaC0t1NxwA6G576J4vRS+8TpfzH6ZRXPn4M3J44QbbsOZ0TEIdPjAPFbVBalsCnPdxN5I3y2h\n4tq/oGZlUXjfvZhyO+4XoHJxI+sXNlC6j5+S/XOobW4h2bCRvNIeO/2s9GiU8BdfUH/7HVj22ovc\nv1zToUrcDteNxdAjUWSnA9nc8droc5i5fcpAwnENq1kh2yWqDAmCIGxLhIYEQRAEQRAEQRB+ZyRZ\nRvX7yTzrzO3fVBSKn3iC5KZNqDk5sBuT4YIgCL+02rYYE+6ZRzJlMKjQwyNT98FnNyFbd2+SQEvp\nqIpMlsvCrD+NoDWSwGMzdVmlJxGLEg+HQJKwOd2oWyYvmkJxPl7dwBh56y25bcOZZj3CUTN6s+jz\nJvw+FV/W9q1hPB4ntkEDaPv4Yw4//1I+eOzf+AuLKR00lNjyZXiOOJzQBx+g5OQgFRfy6tUzMXSd\nVZ9/whn3PczehTnbn2NTExvOOJP4ypWgKPScMxtLaelufV6CIPw2xMJJ5r9VwZIPNuEvcDD5wkHY\nPZ1f1wbku9sf98lxYlF3scqQFoePboYF6cCkeeC5qCYZLaljsiiYLAqyLFHks/PHkSXEwgkSPhvK\nqFxKx+Zz9suLOP+gXlSsq8aS1Hh3dZxnzhyBWZXx2c1YTAqjp/Rm5FFlSPKOA1Cq34/vtFNpfuyx\n9tcUtxvZ5UKy2zHicfwzZiC7nF1u4+fU/4AC1i6oJ9QaY/BRPXltZR3nFbl3vqIgCD8Jh9eHw9t5\npZ3dtW5RIx89tZJ9J+RQ/+rjBGfPBiDr0kvxn3F6x5C6LKeDQuWTOt1WnsfG3IvHEE+mcFpNeO1m\nkqFWQnPfBdItGrVkgkVz5wDQWldDQ1XFdqEht83E3oUeMp0WjECA+pkXoweDaDU1ND74ILnXXYek\ndGxVaRgGLr+Vfsf04LhHviYU1/jnlL6seuoxDpz+JxS7k6ZQgtV1IfrluTu0CUsFg2y66GJIJklU\nVuKeeAjuiRN3+tlprX80RPIAACAASURBVK20PPkUoXkf4TvlFJzjxm3X0szvtODfQz8iEARB+P9I\nhIYEQRAEQRAEQRCEdkY8TuVJU1HcblLNzZS9O/eXPiRBEIRdtrouSDJlALC4uo1Y9WbCzbU49tsP\nXVbY1BLlo9X1jC7LpNhnx2JSOt1OMJbkq/XNvLlkMyePKqF/vocsl2WHLb1SySSVi75h9j9uR1YV\npvzl7xT27U9CS3H/h2t5/PNKHvxDLwZffQ2pJYvwz5jR3uLBMAz0SAQWfM6ooXsTeH8u5O0P/sHb\n7cdcUkKGx4NHlph20z3IqoLN5abuvfeJzJ9P3o03omT6SVhtGLq+Zft6++NtGakU8VWrtpxEisT6\nChEaEoT/57REiiUfbAKgqTpM0+Zwp6EhPRplfFkGj506jOZwkgPLs9Kts3aFnoJQfftT29KHOOGa\nS6heG6Cw3IvVqRJJaFjVdHjI6jAzdFIJoWiSr6ua+fuRAxjkTFE38884Ru/P3kcfiaYFkWUzFlO6\nKprVsf0x6SmdaDiJoicxmWUUux0A1ePBN306RiJJctNGMi+4AN3joedbc5CQUNyudBu1XwG338pR\nlw5G0w0W17YxtVepqDIkCL910VZo25i+LhbuS1N1CACbTSJZVdW+WHzNGkilQE1P5yYbGjDicWS7\nvcsWYYoskePuGJSXTCYcY8cSnjcP2eVCMZvJ7dWH2rWrUc0WfAWF223HpMj0zXXz1zeWMfqoXmS4\nXOjBYHof3ox0eGkbPfbJIplI8dCnlWxuiwFw50cbuaxHX8Ia/G9RDR+tque4YUXc9+EaLjm4D5lb\nxtWSLKN4PKQa09U2u2pNti1t82Ya//lPADZffgW9Pnh/u9CQIAiCsGMiNCQIgiAIgiAIgiAAEA0G\niCXi+M89h+Abb+I79RRkt5tYOEQqmUBRzVh38+ab1tBAKhBA8XhQMzP38JELgiB0NKjIS89MB+sb\nw5w7shDti89omP0atgEDaDI5+MP9nxKMa1hUmXl/PpBcT+dtuFoiSc6YtQCAt5fW8vHl48j1dB4w\n+l48Euar117EMHRSSZ1v3nyVnB69SKKwsSXd2ufc2Wu5fOJIegwcy/DcbKxbfqWdamyk6qST0Oob\nkGw2Sp99FjXTv2W7EaKBNhKxKC5/JjaXG9XrBeCHU8feKcfS+tJLbDznHHJv+Cu2iROZOONClv7v\nPfqPGY/F5er0uGWbjayLLqThH/di6dMb28C9u/15C4Lw2yQrEhm5dlpqI8iqhCdr+2thKhCg7Y03\naX7ySQaecDye445D3Z1qDWY7TLwJAtWgxVGGnIg304k310kkrvHx2iae+qqKowYVtIeSJEnCZTcz\nvl+6BU7Tc8+j5uRiHjCAuqoK5j75CDaXm8mXXoPTZkd1uwknw4STYWRJxmfx07w5hBJtI/LIAxix\nKDlXX93eUkf1+8m+ZCaGpm2tROfxAOl2jVpTE7LN9ouPXaOhBB89tZKWmgj+IicFx/XuMuwqCMJP\nIx6JEI+EkCQZq8OJaTerV7ar+gyem5p+PGgag8ffSfXKFqoqEhx4zTVUn38+st1O1vnnIW0JDGkN\nDVRNnUZy40Yc48aRf9PfuwwObUvNyCD/5ptIBQLIDgeqz89Rl19HW11telzp9nS63l55Lub9eRyK\nBM5HH6Hhzrsw5eXhO3l6py167W4ze43OZ9ASg+fmp9s/9su2kwpvojkhccXLSwD436p6nvjTvqR0\no31dxe+n9OmnaH5iFrYhQ7D27t29z9JkwnnQQWSefRZGMgnSLlbCEwRBEERoSBAEQRAEQRAEQQA9\nmaR2zSrmPHAX46afQd4h/8Se6ScpwWfPzmLZxx9QPmoMY6adir2LG4pdSTY0UHn8CWg1NZjLyih5\n4vFffPJFEIT/37LdVl44exSJUJjE23OI3ns33mOPQbJYSCR0gnENgLimE4qnutxOUttalSep6+ip\nrpcFSEUi6Js3U9y3P/UV6wAoLu+HFIvh8Hj4y+F7sak5Sv98N5P65/D8N5sY0TsHrbkZI5nEiMfR\n6hsAMKJRjGSi/XpZs2YlL998HQDD/nAMo6achNm6/QS/ubSUnnNmQ0pHdjpRXE76HXAQZcNGYbbZ\nUNTObwcqLhcZU6fiOeYYJEVB7eavuwVB+O2yuy0cOXMwjRtDZOTasbnNaC2tkNJQMjKQFAU9FKLu\n738HoP72O3Dsvz9qF+HDncoohWkvgWGAY+tYsDWa5PQn5qMb8MGKej65fFynlYysPXpALEbK5WDO\nP+8kFg4Ram5i3lOPMvaQyZhKCnin9n/c8MUNZNmzmDVxFjVL4+R/OYvAG28AYMQT5N91Z3sVCklV\n2yfkv6c1Nra3a7T07Uvxo48QcZpIpBI4zA5saudB043NEZ7+qorBxRmM7OHHY98zlYr0lMHG5c0Y\nBgSbY/QZnoM7s/NjEARhz9OSCdbO/4J3/nUPkixzzJV/pWTvQUidVNrpFsOA1T+o6LvqLVwTbuDI\nmYMwDLBaJXq8+gqSJJHw2GkIVaMbOo5EkuTGdBAn8uWX6InELu1W9ftR/X7ikTCpVAqHx4vD493h\nOmZVIce9JaTo6kHBnXeAqu6wEpvZqjKhXzb5pwymuTVEP4+BEiol/oNilyndIMNuxmbZGoCUJAlz\nSQm51127a+eVm4v/zDOoOvU0jGgUS79+FD/8kLjnIAiCsAtE3FIQBEEQBEEQBOF3IhUIkGxoINXW\n1uH1ZG0ttdf/Fevsdzjlr7fztVTIH2dvYtaiBqKRMIvfewstHmfZR+8RD4d2fb+trWg1NQAk1q1D\nj0T3yPkIgvDrZ+g6oZZmWutqiATadr7CHpTpspBjV8gZPoiif/+brItnojidOK0qZx3QE7dVZcrQ\nQnyOrlu8+J1mrprYhyHFXu45rAxz1Vr0eLzL5fVAgI0nnET//FKmXHgF0/52J/mxFGyZ1OmR6eDF\nkwfy1/wwprtu5ryMAM5QC4kNG9BqatEjUdxHHA6AbdAg1Ozs9m2vW/Bl++PKRd+QaGnp9BgkRcGU\nnY0pLxfFlZ4UV1QVm8vVZWDoe4rbjSk7e7cDQ+HWOBuWNxFsjpFKdd4GbVuplE5LbZhv3qmkcWMQ\nLbHjYNauMn7wC3ZBELbn8FgoGeBPh1DaWth0/vlUTZ9ObOVKjFQKFBXJtiWgIsvIDseP3GEmOLPg\nBxUqjC3/vqdrCYim/2Y0BuMsqGympi2K0q8fjlEjke32DlU+TFYbycYmwkaM+xfej4FBfaSed6ve\nw+WzdtgX8vaVMbaVCgaJr1wJQHzVKtpMSf76xV85fvbxvFPxDuFkeLt1GoJxTnr4S/49bz1nP/kN\n6xp2fczcFcUks/e4dOsgu8dMXtmuBfgFQfhxEpEI38x5DUiPbb996w2SOxgP7pQkwfAzwJRul8jI\nc0G1YndbcHgsKBYzpqws1MxMvqr5ikkvT+KwVw7j/eB8HFOOxnraNCxvPMFyNtMca+72bg3DoKl6\nI2/+4zY+mvVI+9jcMNJX4FQgSKK6mmRtLXos1r5eNBhg3Tdfsejdt4hEI91q3eh32RjdO5tD+udQ\nmJ9Nj6HDKMiwcdWkvowq8/PfU4aT47Lg3kGrS625mWRdHVoXY97vyWYzzY89hhFN32eIr1hBYsOG\nnR6jIAiCsJWoNCQIgiAIgiAIgvA7oLW0UH/X3QTffgvn+PHkXHkVqi8DrbmZ6otnEl20CAA9EqFx\n1IksrwmwvCbA8f1HYLbZSESjqBYLJsuul2FXvRmYe5SSqKjEOqA/st2+h89OEIRfq2BzE09fPZNI\nWyu99t2PQ848r8v2Bz8FxePBtnfHNlsZdjPnH9SLMw7ogcUk47F1HRpym2WOql/EIc4k0ksvEtiw\nAe+jjyBbdtCaR9dpuPAi1Owssv75TyJtga0T7oA1EmLdWWeCYSDZbFiKi6i/7XYA8m76O1mX/ZmM\nE04kWV9HwwP/JPcv1yBbLAwcfyjL5n1IZkkpY6dMI7lwMbo/E9nc9fH/nMJtcV68dQHh1jhmm8rU\n60fg8O68hVEsmGTuQ98xZmo5oZY4VocJu1dG7sbE/o7EI0k2rmim6rsm9jm4mIxcO4oifj8pCNuK\nBgOs/3Y+TdUbGDByDHo8TqKikpqrrqb4sf+i+DIoffYZWl99Fdf48SjezqtSJKIRIoEAiUgYV2YW\nitlOPKyR0nSsDhNWR9cTwx6riQdOHMRTX29kcl8nGaueh7IRNGr9mPbIV6yqC+IwK7x/6VjyystR\nAwGOueJ6PnziIawuN/sdP53IfffjGDaAew54BBNOrIqBpESxxF04pp+BoSUhFiX78svbqwx1RXE6\nUXNz0WprsQ4YwNpgJe9VvQfA9Z9fz+iC0ThMHcNTBgaNoa0hgh8+/rGsdhPDD+vBPuOLUVQJu/vX\ncd0XhN8L1WqldJ8hNFRVANBjyDDUHzv+yuoLF3wLehIsbrBsX8EtkUowZ/0cjC2xyrcr32HCn2+j\nMrKRU96dhoHB4T0O5+oRV+O2uHe6y0hbK2/cdTPN1RupAjKLSynqP4AFb77GoHETUL/8mvpbbgWT\nieL/Popj+HBSmsbSD9/lk2ceB2DB7Fc46cY7cHgzdro/RVU7VCn22uG00T04ad9iHBYVZQdjPa2p\niU0XX0x0/gKcEw8h7/rru2zFJqkqpoLCDq91t22bIAiCkCZCQ4IgCIIgCIIgCL8DWn09bS+9BEDg\njTfxTfsjhp7CiETQGhral0vV1+PeMqcjSRA32Zh+631sWLaE0oGDiaoOosEYTqsJm0npbFfbUbMy\nKZn1JHo0gmy3o2aKljeC8HtRs2YlkbZWANZ+/TkHnXrWL3YsTaE4axtCZDktZLutZLt3HoKUVRV7\nVibN554LQOZFFyLbum4Jo3i9FD/8EC1PP4Pr0EMxZWeTceIJHSao9WAw3ZYCMBfkE3z33fb3Qp98\nin3ffamaPh2AjKkngSyjtbZiXl/F6bf8A2PDRtqefAb1sMMwkkn4lYSGtIROuDU9SZ6IasQiyW6F\nhlIpnVHH9OKjp1bSUhvB4lA56druBY66koxrBJvjzH14GQDrFjYw7YaRODy7v01B+P9q5Wfz+PCx\n/wCw7KMPOOHKy6n748moOTlIW1rQWPv2xXvhBYRbm6lbvQJ/QSEWuwOrc+skd31lBc/fcCUYBoMn\n/YG9x0/hxZsXYxgw7LASBh9Sgtna+XSE06oysczGAS0LsNV8i2n5y5D5NAl7OavqggCEEyk2NUfJ\n89hQ3W4y3W4OOf8KACxNDTgvvohWycn1r6xkyaY2yrKcPD1tb15bWoXZYqP3iTMo9Nkw5Ww/DjVS\nKfRwGMlqRTabUTIz6fHiCyTr6jDl5mKYAkhIGBhk2bOQpe0DiG6rif9MH8aNby5n7wI3Q0t3PqG+\nK6xOE1bnnml3JgjCrjFbrAyffCy9ho9CMZnwZGUjK937Ltwl1QzuvE7fikeTaAkdWZaYttc0Ptjw\nASkjxYl9T8Tl8vF15avtQaKvar8inupmSFGSOlSdVFSVD//7bzZ8t4SyPv0wnpiVfiOZpGXWk9gG\nDkTTNCoXf9u+TltdLVoyuXvnDJhVGbO68xC31tREdP4CAEJz30W/7DLoKjSkKPjPOJ1UWxvx1avx\nnTwdRbTZFQRB2CUiNCQIgiAIgiAIgvArozU2YiSSSDYrasbWCQcjlUJrakIPhlC8HlS/H8Mw0AMB\nJLN5hxPZss2WTgFtmaiWHXY2nX8+qjeDnKuvZvOVVyLbrGRfdSWDFB8TmzSOHVKAw2LG6cnDm5vH\nuoYQMx75iurWKOccWMb0kSV47d2brFazMn/chyIIwm9Sdo8yVJMZLZkgp2evnbbH+qm0RRNc/8Yy\nZi+pQZLglXP2Y3Bx9yZ07cOHU/b+exjxOIrf3+W1tiEYJ5JI4dh7CPl3DkayWJCk7X9Brebm4Dn6\nKILvvY+anUPGSScRXbQYVBXvMUcjO134zjwDSVHImDqV6JIlGNEoRqANubGJyjPORFIUdLsDedAg\nHD+2VdAeYrYq9BycxfqFDeSWebA5u/f3wWxTcXjNtNRGAIiHNYLNsd0ODcUjSdYsqMOZsTUUlkro\n7a03BEHYSk+lqFm7uv15pK0VOTuLrIsvxnvsMSiedIWI1roaXrrpWtrqatuX7Tt6LONOPau9isT6\nhfPbx5mVi76h59DDvn/Kyi9qGTC2sMvQEEDUUHFmFiJ/+0/ocygUj8AmKUwZWshL32yid7aT0syO\n1zuvb0vVoy3/jTSFWbIp3W5nXUOI1qY2junt5qgX1jB5UD5n9cza/jOIxYku/JbGBx/Esd9o3FOn\n0oKJpOrA2bMPNruZ7ISVWZNmsbB+IRNLJ5Jp235cazUpjOrp47mzRmI1ybh20HJHEITfHpvLjc21\n82o+P1YskmTp/zax4K1Kcnq4mXhWf94+9m0Mw8BtcaPKKpN6TOKpFU/RGm/lzL3P3K7yWVccHi9H\nXnYNnzw7i4y8Akr3GcJ7Dz8AQHN9HQUjRhB49VUAnPsNR2pageopYa8x49i4bAmwZWz/MwTWFa8X\n2eFAD4dRs7KQrDsO+6t+Pzl/uQYjHkd2OrvVQk0QBEHYSoSGBEEQBEEQBEEQfkW0hgaqTj6FREUF\n7iMnk3Plle3BIa2ujvVHHoUeDGIfPZqCu+9Cq6mh7qabMZeWkjXz4q5Ldlut5N92G8EPP8Q55gD0\nZJJUYxOxRYtRCwvp8fprSJKE7PMxwmJhnyIv1h9UEmqNJLjipSWsqQ8BcNe7qzl877xuh4YEQfh9\ncvmz+NO9/yHU3Iw7Owe7p/O2NnuSkUqRamtDMpvbK/zENZ2vKprT7xuwoLJlh6GhUDzJhuYoq2oD\njC7LJLuwsMtlARqCMU586EvWNYTZp9DDf6YPYmHN/wgnwxxUfBA+69Zrs+rzkX355fjPPhutvp5U\nayslzzwNkkTba69j6deP7EsuwdA0mh79L43/+AcAmeefh7W8HCQJ1yOPM2uzTOWcdVw5qR+lfnun\nAaXdkYylaG2IUFcRoGSAH5eve20pbS4zB04r54Dje6OoMjZX9/4+WO0mUkmdwr4ZbFrZgifbhtvf\n/VaYhq4TCbRh6Dpmu514FOY9s5oJp/dnn/FF1K5rY9jhpVjsYvJIELYlKwrDjjiaNV9/jhaP03f0\nWMwZPrwzzm5fJtzayiu3XE9OeTnlhx5C85r1rP38U1Z+No/MohKGTz4GWVHpP3Y8S957m3g0wvDJ\nU7D+INBYNjgLk6Xrqhx1gRjHPriA0SX5nHX0bAozvVgcfjKAaw7rxyUT+mBWZDJdOw4T2swK5Tku\nVtUFKcyw4TSSeO02Xjt/NG6rqcPY9nupQBsbzzobI5kkvr6C0NEnMvnf8whENS4a35szD+iB0+pk\nUPYgBmUP2uH+zapClutHVh8RBOF3LRlL8fWb6TZoNWvbqK8M0WNgbodlCl2FvDL5FbRUklhdEy3r\nK1EKS7B0I0juyc5l0rkzkRSFWChI+X4HsPLTeaxdtohBF83Ee/AoZKcLU2IV0kNjUXodTK8j/k3O\n7fcTbmslq6QHjp9hPK/6fPR88w1iq1Zj3asfaubOf4Sk2O0gWqELgiDsFhEaEgRBEARBEARB+BWJ\nr11LoiJ9kzDw+htkX3xx+3uxlavSbW2AyGefoYfDbDznXLSaGiLz52PbZyDeKVMA0BMJjEQC2eFA\nkiQUjwdzrzKsTU0YKT1dpSiRwFRQgPeoI9k0YwZaUzN5N/0dx8hRWK0dJ2U03SAQ61iGPJZM/ZQf\nhSAI/w+oJhMufxYu//bVHXaX1tSEHo0iW22omX7CcY1wXMNiknGbZGLLl1N7442YSnuQe9WVqH4/\nLouJSyb04epXl5LptHDogNwd7qO6Jcrh932CYUC/XBfPnTUSi0npdMIZoDWSZF1DGIDFm9qIxDWe\nXv4UixuX8F3DUv48aCYOx9YJFiOZpGLykZjLysg8ZwZVU6eBYeA69FAksxlJktCjUSJffN6+TnTJ\nUmzDhlP4wP28ErLyny/XA7CqNsiLM/YjayeT6d0VDsSpbYogF9ioD8RQzBJ2Z/e23d3qQttyeCxM\n+FN/kokUJpOMfRfaiLXV1/HMtZcRCwaZdP5Migbsi2KS+eCx5ew1Jp9DzuyPw2tBUXbeCkMQfo/8\nhcWc/o+H0JJJLDb7dpU0ooE2+kw4mIqCCM9vfoMjxx3O0KJ8vnn+Bb5563UGjJuAw5tBRm4+p979\nIHoqhcXhQMLM9JtGkYylsHssO6wytLS6jU0tUZ5vifL8oga+veZg4o1R1i9uIKvIRWahs1vBvyyX\nlSdPG0ogEMGeiOIJNqFmFJO9kwoVqCokk1jKynh/VQOBqAbArC8qmTaiGKeoGiQIws9EViRsLhPR\nYPq7d2dBalmSsSdNvHjj9TRt2gDAiTfcRkHf/gAk9SSGYWBWOh+XKVuq8NjdHg469WzG/vF05Egj\n5qfHY5ZV0GIQ3tLCfO37WOsWYC2fxJ4bze+cpKqY8vMx5ef/jHsVBEH4/RKhIUEQBEEQBEEQhJ+Y\nHo+jh0LIdvsOW4gBmEpKkKxWjFgMc8+eSD8oq23dqx+K34/icuEcf1C6MtAPwj3Slm1rzc00PfwI\n8dWryLroIiz9+iFbLFjLyzEXFCBZrEgWM6Uvv4ShadTfcgvx1WsAqL7wIso+eB/Z2vGWoN9h5prD\n+nHGrAUkUwYjevjIdne/EoQgCMKeoDU1sen8C4guXIilvBzfY7N4aVkjD360jgN6Z3LtoX1oPv98\ntPoGYt8twzlyBN4pU7CZFSYPymNceRaKLJG5kxBMRWMYw0h3dbxgfG+e+moDS6vbuGRCH8qynChy\nx6o+HruJfI+VzW0xemc7sdTVckfhBVwt/Zuq4AZiTfUdQkMYgKIQX7GCyIJv6DlnNqlAAHNxMeqW\ndkCyw0HmeeexceEikGUyzz4bc88eyE4nyS82tG8qoe3Z1lthQ+eeb6v4cHUDfoeZN8/fn5/jN9t2\n9+4FjpbN+4BoIN2O6LMXnubE/vsw5fKhrPq6jrLBWdicJhEYEoQdUFQVp8/f5fuRYBtZA/txzodT\nAVjcsJiXxz3DN8+/QDTQ1n79kRUFZ0a6qlo0FKS1Zh2GoZORV4DNuePQTXmOC6tJJpbUGV6agaoZ\nvHjrAmKh9KT5kRcPorBv59U0fygViSA9OwtbRSWmkhJMk/+AvJPAkJKRQcmTs2h6+BFch05kdK8s\nTMpqkimD8f1ysKiicpAgCD8fu9vMlCuGsfbbevLKPDi7qPho6DrNmze1P2/YWEVB3/40RZv41+J/\nEUwEmTlkJnnOvB3uz+ZyQ7QFXr0QgjWdLzT/YSjZH6yuXT6fVDJJuK2VtrpafAWFOLzdaw8sCIIg\n/LxEaEgQBEEQBEEQBOEnlAoGCbz9Ni1PP4Pr0IlknDQV1evpcnnZbqfHSy8SW7kSc2kpxg/azajZ\n2WS++TarmqJ8F0wwxuOn6D//oeG++7D06o1jv/0wdJ346tW0vf46qeZmIt8upGzuO8jZ2RjxOIkN\nGwh99jnuQydiLirC0LT2sBGk25h11uBGkiSG9/DxyeUHkdBSOK0qPseeqWohCILQXXo4THThQgCS\nNTUkZYWHPl5PUzjBa4s2c9p+Jbjz8tDq07+OVnr3pb4qwLpv6+k5JJuVoSjN8SQHlmfjc2wNqbRG\nEiRTOh6bCbOqMLTEx6AiL/3yXOS4Lfx99nI2t8WYX9HMOxcfQJbLip5MIikKkiyT7bLy2owRtDYH\nsQdbiF58HgAXPHANNrMD6evFUNynfX8RuxPvgw+RfPJxkvlFLA3LDBywN+oPJqclRcG2zz6Uvf9e\n+ly8XmRz+piPGlLIitogVU0R/nbUAPzdrATUHbJF4cPV6c+vKZxgTX2Q/IwdB15/SUUDBvLlK88B\nUNhvACaLBWeGg8yiXZ/YEgRhe96cPBLxBmRJRjd0VElFltJBvLzefVHUrVMMkUAbDVUVNFRV8PmL\nz1A2ZDh9R4+ldNDQDsttK8dt4aPLxlEfjJHvtWFE9fbAEEDt+kC3QkNGOEzr8y+g1da2v5Z13rk7\nXEc2mbANGED+7bchmc1YNJ2PLx9HIKqR5TLjEa0NBUHYDcFEkEA8gCzJuM1uHOadtw6D9Pdud6aN\nIYeU7HA5s9XKuJPP4H+zHiEjL59eQ0cQT8W579v7eGXtKwBUB6u5f/z9HdrkdsowQE92/X5KwzD0\nTu8T7Ey4rZXHZs5AS8TxFxZz3LU3ieCQIAjCr5AIDQmCIAiCIAiCIPyE9GCQ2uuuByC+ahXuiRM7\nDQ1pzc0gyxiJBBXHTkHxetEaG8m97joyTjgewzBItbby1YYw5zy3BIBD++dy+3EDybvlFiRFIdXS\nQv2dd5JqC1D04L/YdMGFaI2NGMl0iwWtpYXKE04EXaf50UfpOWc2puxssi+9DD0UTu/v2mtRMjq/\niWc3q9jNO/4aaSSTaM0tGIkEisuJ4vXucHlBEP7/SsQ0YqEk8YiG02fZ7dZVPyTbbJiKipC9XpRb\n7uL9VU3cf9Jgnvyyire/q8XvspJ99900PfIIlvJypMIyXr7uS/SUweIPNjHhz4M59ckFXDWpL2eP\nLQOgMRjnspcWs74hzN+O7E+fHBc+h5knpg2gduVSNv3vJR6fMoHL51azriGMLEskqqtpuPc+zEWF\nZEybhurz4bfIJB+6l8DrrwNgKiykj5pP8z0P4Lzyyg7nocsq92024z3kTNa3JcitCDNor+2nYmSL\nBTk7e7vXM50WbjxyAImUjtdmQpJ2ZxqncxaTzLjyLP63qgGfw0x57q87fJPTo4xT736QaKANf0Ex\nFnv3JuUEQegei91OZE0t94y4nffqP+Kw3Amsevs9JElm3KlntrczS0QjfPbck5hsNsItzZz052tJ\nvjkH5swlVVSKkpPT5T7MqkKuRyHXk66oEUnFKCj3Ur2qFbNNpdeQzG4dq2Sz4Z54CM1PzAKTCeeB\nY7t9nrIlHb60aaHtLAAAIABJREFUmhTyPDbyus74C4LwO2UYBo3RRhKpBA6TA6/Vi6ZrqHLH78iJ\nVIJ3Kt7hxi9vRELi/oPuZ2xR969H3WG22el/4MH0Hrk/kizj8HiJJCO0xlvblwkkAuiGnn4Sqofq\nb0C1QW5/cGytLKzJdmIT/4lcuxD7J3+DQHWHfcX7n8iT85uYNNBMgXfXguStdTVoiTgATZs2oKc6\nb3GeiKe/NySiGg6PBZvrx39vEARBELpPhIYEQRAEQRAEQRB+SrIMJhMkkyBJSObtb34lKqtomjUL\n2W7H98dpmHv2JL5iBQCWsp4AaA0NNPzjXpaOOL59vVV1QeJJHbfVgqHrND3+BM3/fQyAVGMjvtNO\nRbbZMOKx9GutraCnbxrqwWD6mABTdhb5t92KoWkobjeSvPttXBLV1VQeOwU9HMZ/1ln4zzwTxeXc\n7e0JgvDb1VQd5tU7v8EwoP+YAkYd3ROL7cdVbFCzsih95mkaJQtH/PsrGkMJzIrM2xcfwIyxZfjs\nZswZBeRedx2SJNFaF0FPpVvnpDSdlJa+Bq5rCJHSdRRZ5sNV9Xy0Kl1ZZ+YLi7n1mL0ZWOghVVvN\n7HtuBWD15x9z0+W3Ejc5cEVDVF9wIbHly9uPKePEE1HsdrIvvQQ90EaqtZXcG25E8fnI/+tfUTM7\nTnhnOMxcOL4Pd7+3iiK/g7PHlqF2o4VWMJbEpMhYTQoOi8pPEY/xOSzcedw+BGIaDrOy01ZuvzSL\n3ZEOChUU/dKHIgi/OalQCD0cRpJlFL+/0zGgxe6g94Bh2FYs49Dqvmx6920kRWbqTXfh/8H/d1oi\nQc3aVUiyzOFnX0TkXw8SfHM2AMn16ym479729os/1BpJ8OX6JpZWt3HSvsUUZtgxJYIcMDSJMaEn\nqqxjbtkIuf12ej6K04l/xjl4TzwR2WYT4XVBEPao2nAtJ805iaZYEzfudyNFriJeXvMyf+j5B/bJ\n3geHKT0yiyQjvLr2VQAMDF5Z+woj8kZgVfdse2+zzY7ZtrWJrN1k57Lhl7ExuJFwMszNB9xMhiUD\nwg3w9HFQsyi9YL/JMPl+sHnREnEqlizkvYfux5ubx5FnPIvjmUmQCKeXzd2bKt9I/v7SCl5fvJnH\nTxu+SxUu/QVF+AuLadq0gQHjDkHt5H4IQENVkNfvWYhhQJ/hORxwYh+sDlHpTRAE4eciQkOCIAiC\nIOxxWmMjoY/mYSouwlpejtLJjUFBEITfi4TFTP7ct9Hr6jDHE9tNXqTa2tBamjHl5mLEYqQCAYr+\n+yhtL7+MrX9/LH3S7WyMWIzQvHmccOpZvLOmhfpgnBuP7I/Hlv5al4pE0CMRbIMHIQ0dgcksYxsy\nlODcubgOPhgAU14e7iMnE/74E3ynnIzs3BrmUZx7JtgTnvcxejh9g7H1xRfJmP5HERoShN+pjcub\nMNJ5HTYsa2L44aVYdvbj5FQSIo3pgKPVDZbtq9yoWVmkWqM0hhIAJFI6sUSKAQVbx5zfV96xOkwM\nmlDMmvl19BmZy7rWCOU5Li4c3xtly+R4vmfrBE6ex0owplHbFsPW2tz+ejQYoDDDijPDi9HchB6L\ntb+nR6Ltj03Z2eTffns6hOn17rACUK7Hys1H740sSchyermElqK6Ncb8ymZG9vBT4LWiKDKGYbC+\nIcxt76zk+jH5WD/9ECMcwXPUkZh2UL1jd/mdlj3a8kwQhF8fPRol+M471Fx7HUpGBqXPPYu5uLjT\nZW0uN72GjSC/T1+MQyejKCo2V8frs9luZ+jhR/POv+6mqWo95tq69ve0ujrYUvlyW8trAsx46lsA\nXl+0mVfPHY3XMGi46ByMaPr6WvLcs90+LzXDi5qxfVgoFYmkA1KqitpFVU1BEIQdWdSwiKZYEwBl\n3jJOefsUNEPjrYq3eOeYd9pDQzbVxhE9j2Bp41IkJCaXTd6twFBci9MabyWpJ3GZXXgsO7+/WuQq\n4uFDHsYwDDKsGSiyAvHQ1sAQwIo3YNJtYPMSC4eZ++A/iEfCRIMB1ixfx6D+R0PNEhj8R9p6/oGT\nH07/oCkYS6Ibu3YODm8Gx113E7qmoZot7dXpfsgwDFZ9Wdv+vWHdwgZGHtuTYKQVRVZ23l5NEARB\n+NFEaEgQBEEQhD1Ka2lh08yZKHYH/hlnozU1gSShuLf/UigIgvBbZxhGlxPCqVCIWDLBK7fdQH3F\nOnJ7l3PUn6/dLpxjGAaBOXNoeeppAGIrlpN3661knnFGh+VkpxPbsGEoTz3K8388FT0rB6/LillV\n0FpbaXzw3zin/pGqqMIj39RycHkWhxT58P/ptPYKF6rPR+4116BfFke221Ece75GhWP0fkgWC0Y8\njuvQie2tHgRB+P3pPTyHxR9uIhHVGDyhGLO1G7ehGlfDo4dAMgyTH4D+x4J5+6SRw6xwwUG9ePTT\nCsb0ySTPYyURjWLoOpYfXNusThPDDy9l0MFFKGaFgKbxdHlmh+o5Awo8/Gf6UJZuamN8v2zumLuS\nf5w4GKdnAL2Gj6KuYi1jp/0Jm9OJIksYfj+F991L7Q03ohbk4zlycodjU1zdb+e1bXWhlnCSw+79\nhGgyhduq8t4lY8lxW2kMJTjryW84ZaCP5F23EXjvXQDaXnuNkidnbVfJSBAEYWf0UIiG+x8AwyDV\n3EzbG2+Sdf55XS4vyTIOb9dhG9VkptfwEZz5wKMgKZiuymfjn07HSCbIvfEGFE/n9wScUorJA3N4\nZ1kDDcE4hmGgZGRQ8sTjNP7nIRwjR2AuLf1R56q1tdH6wou0PDkLc2kp+XfeiamT1o+CIAg7MiBz\nAFbFSiwVQ5VVNCMdhtQNHU3fGoy0qBaO6HkE+xfsjyIreMzbh33iUY22+ggNG0OU9PfhzNg+VLS6\nZTWnvnMqCT3ByXudzNn7nI05YSUSSGCyKFgcpk7H136bv+MLqhVMdkhG0s/dBSApAMiyjCcnl/qK\ndQBkFPaAXn8DQwebj2QkyYiePjY2R7jp6L3xOXa9bZjDs+OgpiRJ9BmRy8ovajAM6DE4k7WB1Zzy\nv+kMyBzA/Qfdv/05CYIgCHuUCA0JgiAIgrBHGckkRiSK77zz2HD6GRiRCNlXXE7GCScg2+0734Ag\nCMJvQDiusbS6jdcWVnPC8CL65bmxmpT29xObN9P00MMExoxqv/lWu2YV9RXr6DFoaPtyqVCI+Jo1\nJCoq2l+Lr69obxsWCydJaTqyImHbEvgJvDUHaf4XZEyahKqmJ8aNaJSWJ54gedRxnPLcCuKazvsr\n6hkycwy+nI4TyYrbjcJPx1RURNm7c9EjERSvV4RGBeF3zJNlY+r1I9B1A7NNxWTZydXHMODLByER\nSj//5C7ofUinoSGv3cxZY3oyfWQJFlVGTYSZ+/BDxMNBDj7rfLzZue3Lmq1q+4SKtZNbYV67mYn9\ncxnV008wluTeE4eQ5bIAVibOuIiUlsRit6Oa00GjaCJFKLsA5+13Y7VbUD3dDwntTDihEU2mAAjE\nNOJbHksSmBSJ3l4ziYXfti+fqKjA2PI3QxAEYVdIFgv2YUMJzHkLAPu++/7obba3CwSMjAx6vvkG\nBqB4PEimjm1mYuEQ1SuXsWbuHI4pK+fM0w6kJi7jsqnIJhXbwIEU3HkHktmMpPy40WuqsZGGu+4C\nQKtvoOHue8i98QbkLtrkCIIgdCbXnsucY+bQFm/Da/Fy43438uLqFzm8x+HbVQFyW9y4LV1/F26r\nj/DiLQsAcPmtjLuwB4rDIN+ZD4Cmazy14ikSerqy5tMrnuaUvU7lu3frWfjuBiQJjr50CHm9OlZW\ni2txwskwdpN9a3Ujmw9OeQPmXgMmG0y6HRxZANg9Xo6+/DpWffEJ/sJisnv2AvvWsW2m08JNRw8g\nqRl4bKb26ph7Wnapi2l/G0koFMXqUZj01iEYGCxtXMra1rUiNCQIvyKSJE0G9jIM49Zf+liEPUeE\nhgRBEARB2KMUt5ucv1xDcO5cjEj6FywtTz2N+4g/iNCQIAj/b7RFk0x9+Et0A175tpqPLz+QXE96\nUjsVCFD7l2uJV1Rgm3hwh/Xs27RrNKJR6u+6m6zzzyO6aBF6IknOVVciu91EQwm+fG0dyz+roXgv\nH4ec3IvmBx6g9YUXgPSER9aFFyApCpLJhKmoCHQD3dhaL/z7x3o0SmLDBkIff4xjxEjMPXvssXZk\n25ItFuSfoFWOIAi/PbIi4/DuQrUxSUqHhBY+mX5eMjr9y+guuKwmXFYThmEw7+VXWP3lJwDMffBe\nJl9y9Xatc7YVDQZIaRqyomB3e3DbTLhtHSe1rZ1cK1fWBTnu31+Q0g3+NLqUmRP64LKatltud3jt\nJo4eXMDb39UwZWhh+3YznRYePnkYK9Zupujggwk+91z6+AbtgyQqugmCsBsUt5uca67Be/wJqJl+\n1Ow9O36TFIWoy4tugMe8/TWyrb6W127/GwCVi79lWDLBmClTsZq2TlnItp31tOwePRrt8DwVDEIq\ntUe2LQjC74dJMZFtzybbnq5UdnjPwxlXNA6basOiWohrcVriLWwKbqLEXYLf5keW5E631bgp1P44\n2BQjHA9z3sdn8/wRz5Npy0SVVUbmjeStinSwc4B/ALIhU7G4EUhn7dcvbuwQGgokAsxeN5tX1rzC\nhJIJnFB+Al6rF0wWKBwOJz0Hkgw2Lyk91f5jIqfPz9DDj+ryvJ0WE/zEw02zRaUp2cAxc4/i9jG3\nk2XLYkNwA6qsUugs/Gl3Lgi/Y1K6fLpkGIbe3XUMw3gDeOOnOyrhlyBCQ4IgCIIg7FGy1Yq1Xz8A\nmp98ClIpXAcfTEqGUO1mzFbbDkuaC4Ig/BrpsRip1tZ09ZyMDBIpM/qWbE4ipaPpW4M6SBIoClpN\nDe6qjRw0/XTWLfqG8v3G4MnK7bhhRQEMWp56msJ//QtTYSGq349sNqOForTWR3F4zGxY1kwykiC5\nubp91eSmjRipFJKioGZmUvL0U4TrGnns5KH859NKDuqbTa47Pdmu1dVTcewU0DQagNKXXsI2oP9P\n+6EJgiB0IpXSiAYCANhcbhR1m1tTPcbAjE8h2gLZe4F1x9XKosEABmC2bg0XmcwWZLnzCZrvRQJt\nfPTEw6z49KP29pEOj3eH63zv3WW1pLZc9+cuq+OcA8t2GhoKRJOsqguyYnOA8f1yyPdaO21v6XNY\nuP4Pe3HVYX2xKAoe+9btFvns5AzpgdzrQrwHj0cPR7APHYLq83XruAVBELYlu1yYS0sw4nEMbc9W\nLasLxPjLa0uJJFLcdsxACn0df0RUvXJ5h+cbly9h38QxYN3zM9Om/HwcBxxA+JNPkD0esmdevMuB\nJD2RILlhI6FPPsY5Zgym4mJk054JjAqC8NtkVsyYla0VyzaFNnH8m8eT0BP4rX5e/MOLZNmzOl23\nuL8Pd6aVQGOM8jFZLG1bQn2knpS+NdB4UNFBFE4spD5Sz4i8EXgULwMPKuTjZ1djsij0Hdnx/kJb\nvI1bvr4FgFUtqxhXPC4dGvqe3UdLrIW5K59jedNypu81nSJX0daKRL8CUS3KHQvu4OYDbqYuXEd5\nRnmHKkMNkQaiWhSnyYnPJsbAgrA7JEkqBeYCXwFDgdslSZpBOh64DjjNMIyQJEmHAXcDYeAzoKdh\nGEdIknQqMMwwjPO3bOu/QCbQsGXdDZIkPQ4EgGFALnC5YRgv/VznKOw6ERoSBEEQBGGPk61WrOXl\n9Hr/PfRwGDweXrj9Ruor1+MrKOT4624RwSFBEH5TElVVVE45DiOZJGPqVDwXX8pVk/ryxuLNTN23\nuENlCsXlIu/vf6P+9jtILV/OgEtmstdBh6BarCjbtFZQfT6KHvgn0aVLUbOyULxeZKsVPZHA1FLD\nKNdSrAeNYP7XMWSHk5xr/kL1RRchmU1kzZzZoaWCKTsbb3Y2++kG+5T4sJoUTEp60jy2ciVoWvuy\n0W+/EaEhQRB+EY0bKnnhhqswdIPjrr2J3F59OoZnbN70v26IBgN89MTD7LPfWPoPGIwWjRKLRtlv\nyklYHI4drhuPhFnx6UdAun1kQ1UFjoGDAUildAINUdYvbKB4gJ+MHDuqeev1+8hBBTz+eSWxpM60\nEcXYzTu/vba0uo1pj3wFwP0frmXOhfuT7e58gsZr77pdjllVwJeBc//9d7pPQRAE+EH4PRZD8XpR\nvVuvscmqKiqmHIcRi+E5/jhyLr0UZZvKmDtj6DpaYyNGLIbsdKL6fCRTOne9u4r3ltcDcMUrS/jX\ntKF4fjBm7jFoKB/JMoae/mH7XgeMw+LYs5Uwo6EEesrA7HCTf9ut6NEoksmE6t/1NjeplhYqpkzB\niMVouO9+yt55W1TXFAShgw+qPmhvJ9YUa6IqUNVlaMjptXLs5UNJainmN37J3Qvu4NKhl2I3bQ1Y\neqwehucOb38eaWulqK+Jk28ahKI6sDg6BhcVqeP9BpPc8f24FufhJQ/z5Ip0Vc83173J7GNmU+As\n2O1zjgTaMHQd1WLBYrP/H3v3HV5FlT5w/Htmbu+5aSSE3gWkSBOQ5oq9gGVd0F0QldW17trWde0i\nrnXt5ber2LGwdgUUFFHpAgqC9JKE9Hb7nTvz++PGhJAEQkgE9Xyeh4c7986cORP0ZO6c97wvES1S\nE9RjVg8usNJj9fDwmId5a9Nb5AfyOS7nOJzm2nv6olARf/jwDxSECjg2+1hmHjcTv00GDklSM3UD\n/gRsBuYAvzMMIyiEuBH4qxDiX8AzwCjDMLYJIV5rpJ3HgFmGYcwSQlwEPAr8lLosCxgJ9CSZmUgG\nDR3BZNCQJEmSJEmtQg+FMHQd1e8nEItSuH0rAKW5u4mGgjJoSJKkX5Tg4sUY8eTq66r580m97M/8\naXgHzjkmB5fVhNW8z8O5zEyyZtwDQtQJ7NETCeKRCCartSa7hiktFffYMXWOT5SVsf3sszEiEYTF\nwuhP5qI6VFRPR9o//18QotHMEooi6mW8sB/dF8XpQA+GEGYzzhEjDvVHIkmSdNDi0QjfvPUaseoy\nMV+/9SqnX3MTlmaWn4mFw2xf+y2DevUjf+rFdD7hBITVijV24GwZZosVs9VGPBoBIfCk1U7ohKvi\nvDlzBfFIgmUfbOPCu4/FtVfQUJd0J59fN5Z4QsdjN2OLBNECGqrPh9gnOPQnK7aX1rwuCkTRdIM9\nFRGCUQ2fw4S7ooTg4q9wHDMQc04Oiu3IWfEtSdIvW3TzZrb/YRLE4/inTSPtsj/XlKmtnDcPIxIB\noGLO/8i48sqDbl8rLGTbxLNJlJbiOuEEsu68A+H10i3DxXXje1AajJJfEUbZJ7may5/Gn+5/nB8W\nf052j15kde2B0sgY2hyhiihz/7OO0twgI87pSucB6VgOITObEY3W/KyMcBgjGm2prkqS1AoMw6Ak\nUoJhGPisvoMOYGmOYzKPqXltUSwHDMZxeJKZ1Y5xDOD9du9jUSyE4iEqo5W4LW481tqMm8GKct69\n/y7yN22kTZfunHXDP1FNdZ+teiwe7h91P3M2zeHEjieSaqsbIBmIB/hi9xc125qhsbF0Y7ODhoLl\nZbz7wD0UbtvMqAsuouOoEby+aTaLdi9iWp9pjGg7ok4Q1IE4zU7GtBvDsOxh2FQbqlL3d8LOqp0U\nhAoA+CbvG2KJWLP6LUkSADsMw1gihDgNOAr4qnoxjwX4hmSgz1bDMLZV7/8acGkD7RwLTKx+/RLw\nr70+e6e67Nl6IYSMtD7C7T9XsyRJkiRJv2p6JEJ8zx7ie/agV0/etAStuJgdF/6RLcf/jry/34xd\nKKRkZQOQ2bkLds/BrVyUJEk63FzjxqFUZ63w/f48FIcDm9lEqstaL2DoJ4rVWidgKBYJs231Ct59\n8B6+WzCXSCDQ6Pn0qqraSYlYDL2yHNWUPI8pNfWgS9GY0tPp/P775DzxBJ0//ghz2+avJJQkSWou\n1Wwhp1ffmu2cnr1RD6G0i2o2o5rNmNPTMWIxqj74gMDcudWlH/fP7vEyecZDHHvOJM6/4z7sHg+B\nslLCgSr0hE48kiwNoScMYpFEnWMtJpU2Xhvt/A6cgXJy/3YdO6deRGTjRoxEAl03KKiMsKMkSHFV\nclL59H7ZuKzJYNETj8okqiUY9+DnHP/QF9z23nr2LFnJnttuY+uEiSTKypr9M5EkSdpX1aefQnXw\ne+XHH2Ps9d3fddxxNWOm87jjwHSAMTlcDlUFEKoNhIx8v45EaXI7MH8+RiwGBgzplMqiTUVENZ3b\nz+hTL6jdbLWSmtOekef/kc4DBmN3778c5cHa/n0JeT+WEwnGWfDiD8SjiQMftB+K241/6lTU1FT8\n06aheFq2v5IktaxdVbuY9OEkJrw3gfWl6+uU/Wot3f3def7E57mi/xXMPm12k7PgpNhSSLWlsqFs\nAyfNOYmT5pzEyz+8TCBW+8wgFg6Rv2kjAHu2/EgsHKrXjsvi4oQOJ/DgmAc5s+uZdYKOfvp8XPtx\nNdsmxUQ3Xzcqo5XNuVzyN/9I/qYNJDSNr2a/QmGkkKfWPMW6knVct+g6KmMH366qqDjNznoBQwDt\n3O1qAqEGZgzEojSenVOSpAMKVv8tgPmGYfSv/nOUYRjTWugce0dY16/NLR1RZKYhSZIkSfoNC69Z\nw86LLwFdp93TT+EcMQKhHHpMcWz3bmLbkkHowS++QGgav7/9PuLRKPa4RvDtOTBwIJbOnVEPUDpC\nkiTpSGDJyaHzxx9hxGIobvdBjV3RcIhwZSXRUIB4NEruhvXsWreW9n36YXM1XIJB9ftxjBhB6Kuv\ncAwdiik945D6L8xmzNnZmLOzD6kdSZKkQ6EoCr1HH09Wt+4YukFqTruarGvN4fT6OO/We6nctYN2\ns14gtGQJ3tNOa1LZGdVkIjWnPcPPnUQ8GuHHbxbz5WuzyOrWg+MvvpbfXdYHNcWKYhLgbDwIqez1\n2QQXLwYg77rr6fDyS+QaVs564ivKQnF6Z3uYddEQ2vsdfPa30YRjCXwOMws2FBKKJSev5q0r4Maz\nOycbjMeJ7imgXHPiTrFjc7X+qnhJkn7dPCefTOnzL2BEo/jOnojY6z7W2qULXebNJVFairltW0wp\n9ctD1pSeETrWr++HFf+BHqfAqQ+CMw1rr54oTid6MIhjyBCE2UxpMMbFs1ZQFIiybFspx3ZJ5bSj\nf977UFdKbcY2u9tyyDNVppQU0v5yOakXTUXY7TXZmiRJOvJousYza54hP5gPwH3L7uPJ45/EZ2ta\nCdzmclvcDGoziEFtBtX7rCxSxvwd8wnGg5zR5QxS7XXvV0NaiBe+fwFNT5YVf2HdC5zb/VxcluRY\nY7HZ8aRnUllUgCc9A4u94Qw+qqLitrgb/MyqWpnaZyodPR1ZX7KekzudzKPfPkq/9H6c2/1crCbr\nQV1vSlY2CAGGgTczA6taO+5aFAuKaNm8FWn2NN48/U2C8SBuixu/XZYmk6QWsAR4QgjR1TCMzUII\nJ9AW2Ah0FkJ0NAxjO/D7Ro7/GjifZJahycCXP0OfpVYgg4YkSZIk6TdKD4cpnfVizYrD0lmzsA8Y\n0CIPvsxZWSgeD3plJZbOnVGsVpy+FOJFRWz/w3loRUVYe/Ui/ZmnMMIhLHY7Nqd84CZJ0pEjEqhC\nCAVr9aSKMJsxZzQvcKdg62bevOsfYBj0H38qA085gxXvzyGWgEc/+5Hzh7Qnw518uKaHwyTKy0kE\ng2TPuKfm3AebWUiSJOlIZXe7advjqBZpSygKvsw2+DLbAOAaMqTms1g4TDwaxWK3Y7bWnQApCBbw\nwroXaOdux8mdTsYcNpj79KMYhs6ezZswxYLkmXWmPbUY3YAHzu3Hmf2zMDeQwciUXlvWTE1JQVgs\nvPblTspCyXvsdXmV7CgOktbRT6andiJlSCc/PoeZ8lCc8wbloAYqQQjsQ4YSVP28dc8KhpzeiQEn\ntMdkablyPZIkHfn0aBQUBaWpmdgMAyKVoJrBUn8S2dKxI13mzcWIxVA9HlRH7T6Kw4HF4YBGslAG\nK8p578EZ7Nn8IyPOm8zRLh+2RAzWvwNjbgJnGuaMDDp//BGJigpMfj8mvx9RFcVqrp0sdjSSmbM1\nZXRwM/7i3hRsr6Tv6BzsnkPPSKG6XCCDhSTpiGdSTByVdhTvbX0PgG4p3bCoBzcGaAmN0mgpUS2K\n2+I+YMBRWTBGOJ7AYlJIc9W999QNndc3vM6Ta54EYH3Jem479raagCBIBvQMyBjAl7lfogqVkdkj\nMSm1U7hOXwqT7n6AYHkZTl8KTl/d0mRN5bf5ObnTyZRGSrlh0Q0UhYvYUbmDUzufetBBQ25/Gn/8\n12MU79hGuz79MOxmHhnzCJ/t/IzJvSaTYm1eHxujCIV0RzrppB94Z0mSmsQwjCIhxBTgNSHET4PA\nLYZh/CiEuBz4RAgRBJY30sSVwPNCiOuBImBqq3daahUyaEiSJEmSfqOE1Yr7pBMJLFgAgPuE8Sg2\n2wGOahpTaiqd338frWAP5uxsTGlpyQ90Ha2oCMXpxHfPnbx62w0ESksYNvF8jjltAjaZdUiSpCNA\necEe5j79b8wWK+OnX4nLf+CMFfuzZeWy5GQOsHPdGkZNmoovpyPvbqjgmS93URKM8bcTeuCxm4nn\n5RHbsQPF5SKyYQPuUaNQ9yp9EKooR4vFMFmtOA6y1GMiobOlOMjLS3Ywuns6gzv58dhkBgtJ+i0q\nDZeio+Myu7CZau//ghXl5G5Yx9ZVy0nv0Jkew0bg9KW0SCbKn1O4qpIlc15n+5pV9B9/Kr1GjUPX\nzCQ0HUNNcPOSm1m2ZxkATrOT8ZnjcPlTqSop4pQpl1L24ce8Ye6Dnhy6eWPFLk7olYHXUX/S233i\neAwtTjw3F/+UKaguF53TayeAhIA0d/0JmCyvnXnXjCKi6bitJtyxEGmff05xXpgPZu0AYPvaYnoP\nTUP1O39x/waSJDVPvKCAwgceRHE6Sb/iCkxpB7gPTcShYD18eis4UuHEGeBuU2cXxWpFycxsVn+K\ntm8lb+OSKaEvAAAgAElEQVR6AL58bRZH3XsnLL4XzHaonkD/Kbh+7wD7NJeFl6YN5dHPNtGnrZcB\n7Zs2cRwJBIhFwiiqmvz9IxrPD6TH4yRKSojn5mLp0KH2uUM1m9NMt0GZdBvUvGuXJOmX7dROp5Lj\nyiEYDzIsexgOc8OZeRqTF8zjvA/OIxgPcm73c7lm4DX1yn39pDQY45/vfM+H3+XTK8vNixcNJX2v\n+7+EkWBH5Y6a7dxALnE9XqcNk2Li3O7n0ju1N10t7QnmF6IGNBImrSYz56EEC+3Noljw2/wUhYsA\nOKnjSdhN9oNvx24nvX1H0tt3rHnv+A7HM6bdmAbLi0mSdGSozhzUZ6/tBcDgBnZdaBhGT5G8IXsC\nWFG9/wvAC9WvdwDj9j3QMIwp+2zLqOsjnAwakiRJkqTfKKEouMeMxTH3k2Sqcb8fcQjlIeq0bTJh\nzszAnFk3K4ficJB589+pWrCQ3O1bCZSWALD8vbfof+KpQONBQ4ZhQCLRYn2UJElqSDhQxdyn/83u\n9d8B8NXsl/ndpVegNpBdoqn6jj2B7xfMJRaJMOj0s8np1Yd31pXwybIdzJ3cA/3777AUetCzswAo\nmHkf8d27yfzHP9A1jZ/OHCwvY87M2ynctoVOAwZx0mXX4PDuf7WjrhsoSnKypSQY45ynvqYyovHi\nNzuYd+0oGTQkSb9BBcECpn86ndyqXGYcN4NRbUdhNVkJVpQzZ8atFG7fWrPvkrdf44J7H8Fit5PQ\nNMxWK1bHkR/kXbxzB6s+Sq4sX/D8M3QbcjwfPPEtJblBug7O4I+jptYEDZVGSrG73Zx/5338uORr\n0tq2p/yTT/n96SOZu24PugHnHpODw9rw7wFTSgr+Cy6o897vemXyt/HdWbG9jAuGtSfVWX9lu6oI\nMqozD4WqYnwzr5BQVYwhp3XC6swjEozTa6CXskcfxDRtKpYOHVryRyRJ0hEoUVXFnltvI/DFF0Dy\ne3Xm329CqCrhqioSWhxVVbHvHTgeLIYXToFYILkdC8KEZ8FeP7g8okWIJqK4zK4DTuZq8RiRqiq8\nGW0YfeE0vnj5v/gysxDetnDWM9BuMDgaz4QphKBTmpP7zzkak9q0oMdoKMi3c9/n6zdeweH1Mfme\nh/Dsp0SvVljI1tNOxwiHsXbrRvvn/1svcEiSpN8un83H6Hajm338kvwlBONBAN7f8j6X97u80X1D\nMY0Pv0uWQvshv4qdJcE6QUNmxcwVA65gY9lGQvEQtw67Fa+1/jjts/no5+zF67fdSPmePMxWG1Mf\nfhp3asuObeFEmJFtR/LJxE+I6TH8Nn+dhQSHSgYMSdKvxiVCiD8BFuBb4JnD3B+pFclZN0mSJEn6\nDVM9blRPw3WuW+V8bjfes8/GfcopuMIhFNWEntDI6X00yn4m5LXSUspen018927Sr/gL5uzsn63P\nkiT9tiiKUqeMjdlu3+8K56ZIyW7L1IefwdATWBxOrHYH43ubOS5VELjwfBKlpWy32ei6cAFVCz8n\nvnMn7hNOwNazJ8HFi3EOHoyank6oopzCbVsA2PbtCuLRaKPnrAzHWbatlHnr93DBsA70yHSjG1AV\n1Wr2KQ/FGz1ekqRfr093fsqW8uRYcs+Se+h/en/STelsW72yTsAQJCdwI4EqPvvvU+RuWEf/E09j\n0GkTsbtb/v4xVFnBdwvmEQlUMei0CYe0ilox1d5X2t0eKksilOQmJ302Ly/kD2cMpndqb7KcWZzR\n5QwAPGkZ9DnxdHaXBFk++lyGZ3hYfPkgdIcTr9NKeUjjg7U7aeO1MaxzKimOxktc+J0WLhvdhcjw\nBA6LqSZ4syGGYbB2wS7WLtwNQLAsyhlX9SNRVk7ks48pf2M2ljQ/6Vdd1eyfhyRJvxCGgaHV3p8Z\n8RgYBuHKSj5/6f9Y/+VCOvTtzylXXIfDWz3ZrGu1AUMAFbtBj9VruixSxkvrX2JlwUr+MuAv9Evr\nt98yNKW5u3ntluvQ4jGOmzSF82+/D29GJk5/KqSe3+RLamrAEEA8GmX5e3OAZHbN7Wu/5ejjT2x0\n/9iWLRjhMADRTZswYvWvW5IkqbkGtxmMTbURSUQY33E8ZrXxBTdWk0Jbn53c8jA2s0J2St2sPXoi\nQUrCyQsjn0W3KngcPhTR8PiY0OKU78kDIB6NECgradGgoYpoBc+tfY7XNrzGiLYjuH347Q0GMLUk\n3dApDZdiYOC3+WVQkST9QhiG8TDw8OHuh/TzkEFDkiRJkiQdsoLKCCu2l9I9001bnx2Htf4thqHr\nJEpKMADV68XrcTPt388SKCvBl5mF3d1wil+AqnnzKH70UQCiP/5Iu2efweRvfFWjJElSc1kdTsZP\nv4qv3ngZi83O0LPORTnEkjCqasKVkhyzqiJx1mwrYeWOMqZ0slBRWgqAEYkQLy3DftRRoKqkTr+U\nHZMmY8RiqGlpdHztVczROHa3h3BVJb7MLEyWxiesC6uiXPziCgDeXZ3HF9ePxWUz8dB5/Xh8wWaG\ndU6la8aRny1EkqSW1yOlR83rbindMCtm4tEoW5Z9U29ff3YOBdu2sO3b5Hiy7J036TtufKsEDa39\nbC5fvf4iAGX5eZz8l2ubnNXIMAz0QABhsaBYrfizcxhx3gVsW72C/iedjjvVjtmqEo8m8GbYsVos\nPPm7J7EoFlyW2izppcEYpzz2FbGETuriXD66YjjZKU7KgjGuev1bvtmSzJJ5/zlHc+6gdvvtk0lV\ncDVxsjwe02tea3EdVTEIvPg0FW++CYBj2LAmtSNJ0i+b6vGQdddd7LnzLoTdRvoVVyBMJqKhIOsX\nJcuK71j7LRVFBTVBQxVmK/rkN0mZfysU/wjj/llTNmxvWyu28tx3zwFw2fzL+OTsT0g3pTfalw1f\nL0KLJ4Nwvl84j96jf4fTt/8Mlw0x9OT41pQSi6rJTIe+/dm8/BsUVSW7e8/97m/t2RNTVhZafj6u\ncWMRLVRuXZIkCSDHlcOHEz8kFA/htXrxWr0YhsHuwG6+zv2a3mm9ae9uj8fqId1tY87lw1mfX0m3\nDFe9LJOlebt5/bYb0GIxJt50O95ejY+nZquNPmPH8/3CeWR27oo3vWVLLAbjQWatnwXAwl0LuSx4\nGX5b6z1jNQyDzeWbufKzK0kYCR4d9yg9/T0bDZqSJEmSDg8ZNCRJkiRJ0iEpDkQ5/9klbCsOogiY\nd+0oumbUn0iKbdnKjqlT0UMhch5/DMfgwXjSM/abbvwniWCw5rUeCoGu72dvSZKkQ+NK8XPCxZeD\nUA45YGhf+RURzntmCQBjp/bFedppBD/4ANuQIRRhJbNXL9q/9BJ6OFyzWjpRXIxWVETZzPuYdMdt\nBLUYvnYd6mThiATjlBeEiATiZHbyEIzWrlKPajqaruOymji5TxYju6ZjNyu4ZGkySfpN6pHSg1dP\neZXcQC6D2wzGZ/OhJxJ422TV21eLRXF4agO7haKgmlp+7DAMg1BFec12JFiFntCJJ+KUR8tRhYrf\n3vBkhqFpRDZspOjhh7D16YN/yhTsKSkMOmMi/cafgsXuABT+cNtQKgpDpGQ5cXqtOKmfYaMkECOW\nSN5nlgRjxElmCIrrOtuLa+9HN+ypqt8PXSdRVgaKgiml6VmShBAMHN+eYGmEcDDO2Mk9cfodWP96\nLb6JE1B9PlluR5J+Q8zZ2WQ/cD8oCqrDAYDJYsFssxOPhFFUFWd1edqCYAE3L76ZiBbh3smv0V5x\ngNUFDWTDsKm1ATVWtfEMQz/pNmQ4qz95n3g0So/hozDbao+pCMXJLQ8Tjmt0TnOR0kAJRgCtqIji\np59BWC2kTpuGKTV1v+e0u92ccOkVDJ1wHg6Pt24ZtgaYMzLo9MZs9GgUxeGQC4skSWpRZtVMhqPu\nM8vicDGLdy/GY/WwcNdCzup6Fh5r8l4502Mj02MjmohSGS3DnDDjtXoJRYMsf+9totXPNr+a/RJn\n3XBbo0H4dreHUZOnMPy8Saiq6YAlyQ/6uhQzPquP8mg5JsVEiq352T2boiJawe1f305eMJk96ZbF\nt/Dc+OdIte//d4IkSZL085JBQ5IkSZIkHRItYbCtehJFN2BzYbBe0FAiGKTgX/9CsVqx9+tH6csv\nY+vWDSW98ZWNe/OddRaRH35Ay8sn6447UA/wsFGSJOlQKWrrfFUqrIzUvH57c4DfXXA5/mmXs7k8\nxrtLCph5dl9cAweglZTgGDqU0NKl+M4/H62wkMjateRPPIe2jz+Os2//Ou3u3ljG3Ge/B6DnsVkM\nmtCJ8we348tNxUwZ0RFPdYCQzaxiM8tU4JL0W+a2uumb3pe+6X1r3lNUlQEnnsrquR+QiNcGHVYU\nFuBrk824i/7MjjWr6H/S6dicroaaPSRCCIaceQ7lBflEgwFOnH41Zqed74q+49rPryXVnsoTxz9B\nG2ebescmysrYedFF6JWVBL/6GvuAAbjHjMFktmAy105ku/023P79Z6HI9tkY1zODxZuKmTK8I67q\n7Jlem5kZE/pyxauryPDYmDqiY53jjESC6I+byL3+ehSnk7YPP4TlIMrpOr1Wxv2xF7puYHMmx2tT\nSspBBR9JkvTrobrqjrN2r5cL7n2YLSuX0aFvf+weL5qusbVgNb/PGce7eYu4a+kMHhzzIB5Lwxna\nctw53Dn8TpbmL+WivhftN6tEPBFHyfJy0sMzSLH4cOHAYqsttbNgYwHXzl6DEDB9VGeuPr47dkvd\n+8tEMMieGTOo+vgTAIx4nMwbb0SY9n+P7fB4cRwgWGhvpiY+U5AkSWoJAkGqPZW/ffE3AD7d8SnP\nn/h8TXB7RIvwTd43/GvFv+jk6cQdw+/gy91f0rZ7F6jOGJfdo/d+swYD+83GfqhS7am8furrfJP/\nDQMyBpBibd37TUUouC21z4ndFjeqkM8kJEmSjjQyaEiSJEmSpENityhcNrozT32xla4ZLga2r10B\no5WWoodCKA4H1uN/R+CaIfxvcwVHt3HiMttp6jpAU2oqWXfcgRGPo3q9CCFa52IkSZJaWa8sD6f2\nbcOqneUM7JBCdraXK1/7lnhC54lJA2uy/5hSU2n78EMYiQTCYsEIh/FPm4a1SxccAwfWa3fP5toM\nHYU7KjGjcPMpvYhqCZxWEw6L/OonSdL+OVP8TLr7QT77z5PkbdqIL6MNIyf9CZc/lX4nnEyf0b/D\n3IqlX1wpfk654m8Yuo7d7aEkXMIdS+6gJFJCSaSE2Rtmc/UxVzd47N5lb4Ta/EmIVJeVB8/rh5bQ\nsZpUPPbkmGw1qxzbJZWF141BEYI0d90sHYmyMnL/ei2xbdsBKJw5k+z77kOx2/c9RaMsdjlOS5LU\nMFU14c/OwZ+dU/OeEShkyPKXUEu2MGTcP/hIK9nvJKzX6mVCtwmc0eUMVGX/4+Se0B5+2L2WDtYc\ngrYKrCk2fhrNtISOVQ+z7IqeGPEI+TEL4XiiXtAQuo5eFajdrKrCMAzkN3lJklqTbujkBfJ4d/O7\ndPV1ZWjWUHz7lGysiFawunA12yu3c3Knk+tlE9ofu9lOSbikZjsvkEfCSNRsV8Yq+evnf0UzNHZX\n7ebdLe+ysmAl4zKO46Rbb8GhW2jTsStm64EzvrUWRSi0dbflHPc5P8v5PFYPdw6/k38t/xcJI8GN\nQ26s928iSZIkHX7yiYQkSZIkSYfEa7fw5zFdmTKiE6oiSHMlv/hqpaXk/eMWggsXYurUCecrbzLh\noUVEtWTJh0d+b+esAU1fqa46G14xKUmS1FwlgShRTcdqUkh1texDu4RuUBKI1pS5+XBNPsd2TSXb\na2fGxL5ENR23zYTdbOI/fxqEATXj50/qlFjwesm8/rpGz9d3bDs2ryokEtQYfnZXrA4TDpMCyBJk\nkiQ1jclsIaNjZ8664Vb0RAIQOPYK1lZsrb8ieO8sRhbVQkdPR7aUbwGgW0q3Bo9R/X7az3qBokcf\nw9ynL5UduhELxvA3Ui7nQFIcDR+330xtQiD2ysKhOF3QwuUtJUmS9ibWvYP6w/sA+OZcynlXLMdk\nPvB35pqAoXA5VOXD2jeT5cyOPg+cGWBzEwlUoS36kQ8WPIXV6WTyvQ+DPZn9x2TEGW/5HtN/poJh\nkN7rTMh5CKhbRlF1u2lzx+3k3/wPhMVC2jXXoJjlfakkSa2rJFzC5I8mUxopBeCO4XcwsdvEOvus\nLFjJ1QuTgejvb3mfZ094ttEyuABhLYyu6zgtTpxmJ8d3OJ652+eytWIrtwy7pU4WHYHArJrRNA0A\nh+rAJEzcufpe0u3pvHLKK9hdrZdF6EiV6czk7pF3g5EMvJIk6bdBCPG1YRjDD3c/pKaRQUOSJEmS\nJB0yr92M1173AaAeCBBcuDC5EQiwI7+sJmAI4Isfizi9XxaqnFCRJOkwKA5EufLVVXyztZQhnVJ4\ncvIx9YJ2DsXushBnPvEV5aE4l43ugm4YTHzya967YiSpLguZntpsHc0JWApENaLxBG6bCYtJxZNm\n47y/D8YArHYTqkmOrZIkNU9rlkM4GG6Lm38O+yejc0aTZk+rU05tb0JV0Tt1Yc2Uv/LppjLee2ol\nN57Uk+mju/xsfTWlppLz2KMU3HMPittDxl+vRTmMK8glSfoNsO01VlucmJT6j/nDVZWU5u3GZLbg\nycjE7qqe2I5UwqoX4duXIFAIkXJYdB+c9TQcdQbpljQ+/HIRANFgkNwN60nJzK451vTlfWAYACgb\n3iN24sPEK6IIReBw1wZeivR0nDffyPa1q1n85IOcfvUNuFNlOTFJklpPLBGrCRgCWFWwijO7nFkn\nw9qPZT/WvN5RuaNOpqB9FYeLeXDFg1REK7h56M3kuHPIcGTw8NiH0XQNt8WNzZT8bh/VopgUE/85\n8T88tuoxOrk6MNRxNAN79qVvWl+ObXssXmvTyy/+2thNMlhIkpqj400fTgJmAO2BncDN22ee+urh\n7dX+CSFMhmFoMmDol0U+SZYkSZIkqVUImw2lOjuQVlJCp0wPPkcysEgImDiwrQwYkiTpsAlGNb7Z\nmnyYuGxbGVURrc7nRiKBVlpGIhBo6PADWrChkPJQHIDXlu9kYIcUNN2gOBDlk+/3HFLfS4MxZn70\nA5P/bylfbiomHNcQQuDwWnF6rZj2LQ/RDJqu19kOVUQp3lVFsCJ6yG1LkiQ1lUdxMT5jLEdbumON\nNX7fGI3r/Hf5Ht5ZuwfdgC1FARL7jGOtzZKTQ/YDD5B15x2Y0uWkuCRJrazbCTD2ZjjqLPjTB+Co\nO+5osRirPnqX12+9gZf/fg1bViyt+SwYilLS8UwKz32L3Is+JNL3nGQQ0AfXQKQSq8VGt6HJOR6z\n1UbbHkfVNqxawNexZjM28lY2rAry4s1f8/6/V9e5V4wGA7z54D188dYr5G/8gY3ffNU6PwtJkqRq\nDrODkdkjAbCqVib1mlSvJONZXc+ig6cDJsXELcNuwWVuOAu6buj897v/8sHWD/gy90tu+vImyiJl\nAKTYUkh3pNcEDFVGK3lnyztMnz+dUCzEdTnTGbjBx/u3/JPNb33ElO4X0DetLw6zoxWvXpKkX5vq\ngKHngA6AqP77uer3D4kQ4h0hxEohxDohxKXV7wWEEPdXv/epEGKIEOJzIcRWIcQZ1fuo1fssF0Ks\nFUJMr35/jBDiSyHEe8D6n9rb63w3CiG+E0KsEULMrH7vkup21ggh3hZCyEHyMJKZhiRJkiRJahWm\nlBQ6vjGb8rfexj5wADaL4KOrjuPbnWV0zXCT7bMduBFJkqRmCJSVUrB1M6k57XClpGKy1C81Yzer\nZHlt5FdEyHBbcVprHyQaiQSRDRvZc9ttmDt0oM3Nf8eUmnpQfTi2cypmVRBPGIzunk5+eZgJA9oS\njGl0ST+0cosb8it5eelOAP788koW3zgOu7llvtoZhsH2khCPLdhEvxwvZ/Rri0UzmHP/SiqLI7hS\nrJxz0yCcXplBQ5KklhFPxKmKV2FVrTj3Ka1TmreLV/9xHXpCY9BpExh29h+wOuo/R/Tazdx1Zm/+\n/MpKnBYTV47rdliC038qp2sYBoGyKPlbyslo78GV0jIBnZIkSTUcqXDc9aDHwFT/u3U8FmXX+u9r\ntnes/ZZex40lUlXJ2zPvpGjHNrwZmYy84SoSwy+n/ab5EKmA8p3Y2w1h7J8u5dizJ2Gx2bB79sqM\nYffC6f+G+V4IFRHvfzGLb1mBYUDx7gA715XQa3gyK5FqMpHRsTPb16wCILNz19b9mUiS9JtVGi5l\nd2A3GfYM7hp5F8F4EJvJhs/qq7dvG2cbZp00C93QcZqddcplVcWqiCai6LpOwkhwepfTWZS7iB2V\nO/Z7/spYJXcvuRuAyz67jAWnfUKhcz29jhvL8HMnYbE3bR5c1xOEKsqpKi7Gk56B05dCYaiQF75/\ngXRHOmd2PRO/LVlKrSJawZbyLQTiAfqm9SXFltLUH5ckSb8cM4B9BxBH9fuHmm3oIsMwSoUQdmC5\nEOJtwAksMAzjeiHE/4C7gROAo4BZwHvANKDCMIzBQggr8JUQYl51mwOBPoZhbNv7REKIk4EzgaGG\nYYSEED/VhJxjGMZz1fvcXd32Y4d4XVIzyaAhSZIkSZJahTCbsXbpQuaNN9S8lw1k+2Q6WkmSWk+w\nvJw37riJsvw8VJOJqY88izc9o95+GR4b7/5lBLvLw+T47KTvVSJMKy0l96oriefmEfn+e5yDBpHy\nh/MPqh8dUh18cf1YKsJx0lwW4ppOn7ZeErpBzzbuQ7pGr6O2HKTbZkYRh9RcHcWBGJOfW0JeRYQ5\nq3LplOain89JZXEEgEBZlHgkAb/drOqSJLWgiBZh+Z7lPLLqEY5OO5qrBl5VZ8Jjy8pl6IlkJrgf\nl37FoNMnNBg0pCgCa2GUR8f1Qo/rFC4rJGNMNlZb/aDRn0OoMsZbM1cQqoyhqILJdw7DkyrvgSVJ\namGKAkrDi3GsdgfDz53EnHtvQzWbGXzmOaiqSjwapWhHch6norAAEUmwTdtGe2d6MmjIlrzJc3i8\nODyN3PC5M+H0R0DXEFEL7lQ7lcVhAHyZtWO03e3h5L/8ldyNP+BJT8ebkdWCFy9JkpRUFinjhkU3\nsHTPUkyKibdOf4suvv2XqU21118UVBmt5LUNr/H0mqc5KvUorht8Hbd/dTsPj3mYx1c/zo2Db2w0\nMEcVKgKBgcGpnU8lZNY46oxT8Vm8KGrTA8dDFRXMuu4KIoEqfJlZnHv7vfxtyd9YXbQagLge59Kj\nL8UwDOZun8tdS+4CktmTbhh8A27LoT1rkCTpiNP+IN8/GFcJISZUv24HdANiwCfV730HRA3DiAsh\nvgM6Vr8/HjhaCHFO9bZ3r2OX7RswVO13wPOGYYQADMP4qY5kn+pgIR/gAua2wHVJzSSDhiRJkiRJ\nkiRJ+tXQExpl+XkAJDSNyqKCBoOGIBk4lOGpP9EiFAXF7QGS7SgeN1pFBSZv0yNl7BYTdoupTqBk\ndkrLZNnNSXHw7IXH8M2WEi48tgOpzpbL+mMYBuF4omY7FNMw20y06eJlz5YK0tu7sdhltgxJklpG\nZaySqxZehaZr/Fj2I6NyRjG2/diaz3sMG8mK9+YQj0bod8IpmK0NB97oCZ1tq4v4cWkBAFldvXQY\n5m00aEiPRBAmE8LUOo/FEnGdUGWsum8GwfJoqwcNRQJxouE4JrOKzW1GVWUZYEn6pYlHo0QCVSQ0\nDavTid3V/MlfRVXJ7t6Lix//L0BNtiCzzUZm564UbN2Mr002wm6hl9oZKnZBek+wNzFTRXVmDocV\nJvxtAFu+LSItx4U/q27GOIfXR7chxzb7OiRJkg4koSdYtmcZAJqusbZo7QGDhhoS0kI8vvpxANYW\nr2VL+RYMYVAcLubekffut7SYx+Lh0XGPsrV8Kz39PSmLlLGzaif90/vTxtkGIZq20idYVkokUAVA\neUE+WjxGcbi45vO8QB4JPUHCSLA0v7bs5LeF3xJLxA76miVJOuLtJFmSrKH3m00IMYZkIM+x1Zl/\nPgdsQNwwDKN6Nx2IAhiGoQshfvryLIArDcOY20CbwYPsygvAWYZhrBFCTAHGHOy1SC2nVYOGhBA+\n4P+APoABXARsBGaTjEjbDpxnGEZZa/ZDkiRJkqTDRyspQY9EUKxWTGlph7s7kiT9ypmtVgaffjbL\n33+bzC7d8bdtd9BtmFJTaffkExQ/939YOnQAIdh18cW0e+qpOuOYVlZGaPkK0BM4hg3DiEaJ7dqF\npUMHzOnpLXlZdXjtZsb3bsP43m1avO0Up4UXLxrK/XM30CnNxZBOqTicFk6e3hctnsBkVnF4Dk/m\nDkmSfn0EAptqI2SEyHZm47F46nzua5PNRY88k5xAdziw2BsOvFFUhYEntWfPlgoGntsVc4aVsCGI\nJRJY9lrdbRgG8Z07KXzwQSydu+D/44WY/P4G2zwUZptK98GZbFpRwOkXdcZTuZ3wWgVz+w6YfC2f\nqi0airPsg2189/luzDaV824ejC+jZQJVJUn6+ezZsom37r4FPaEx7OzzGXTaBKyO+mVtS8IllERK\nSLGm4Lf5UZWGA7pNFgsuS90xzun1cdYNtxILB1EsJvTILvxv/wXaHgMTngVXw8H2++NKsdFv3MHf\nc0uSJLUEi2rh9z1+z+sbX8dv8zM0a2iz2lGFSqotlZJICQA5rhzC8TDtPe0bDBiKaBGsqhUhBE6L\nk9E5o+nl70VxuJhL519K37S+dPR0pDJWSZo9rcHsRvty+VPxt21Hae4u2vfuh9VqZ8bIGVy/6Hp8\nVh/Tj56OqqioqEztM5VFuxcRTUSZfvR0XGZXs65bkqQj2s3Ac9QtURaqfv9QeIGy6oChnsCwgzh2\nLnCZEGJBdRai7kDuAY6ZD9wqhHjlp/Jk1dmG3EC+EMIMTG5CO1IrErUBY63QuBCzgC8Nw/g/IYSF\n5H/UNwOlhmHMFELcBKQYhnHj/toZNGiQsWLFilbrpyRJ0q9MixQpkWPvL1OiqopEZSVCVVG9XpRG\nJgOsnK8AACAASURBVFZ+LlpJCbnXXkto2XKsPXvS/v+ek4FD0q+VHHuPIJFgAC0WQ1EUHF5fs9vR\nKirIv/EmAl98AYZBzrPP4B41CgBD0yh++mmKH38CgM4ffsCOyReQKC/HlJVFxzdmNzlwSA+FiBcU\nEt+9G9tRvTCl1n+YWB6KsXx7KRv3BDjnmLa08bbO+F4eipFbHkYRggy3lVRXy2UxOlKEKsopyd2F\nOzUdpy8Fs/XXd42/IXLs/SULlaIDO+OVGKEY0bxi0tu0w52ahsXW+BinJ3QiwThCEdhdtUGMVdEq\nyqri3D9/G++v2YPDovLR1cfRMbV2wl0rKmbHhRcS274dgKyZ9+I766xWubxwIAaaRvCNlyl66GEA\nMm/+OymTJyMOokxFUwQrorxy25Jk+Uhg9KTu9BmV06LnkKR9HPL4K8feurRYjI8ee4BNy74GwOp0\nMuXBp3Cl1A36KQmX8JfP/sK6knV4rV7mnDGHDMfBB/oAECyGeAiEAmYHOFo+iFKSpBYlx95GlEfK\nCcaDWFQLqfZUFHHwGRcNwyAvmMf87fPpm94XszCTYkshw5GB1VT7nTGiRVhXso6X1r/EuHbjGNNu\nDB6rp6YfW8q3cNXCq3jy+Ce5ZP4lhLUwx2Qew0NjHsJvO/A4GywvQ4vFMFutOLw+4ok45dFyFKHU\nCTyKJ+KURcvQDR23xY3TXD/IVJKkFtEizx2aq+NNH04CZpAsSbYTuHn7zFNfPZQ2hRBW4B2SCV42\nkiwPdjvwgWEYrup9bgcChmE8UL0dMAzDJYRQgLuB00n+bIqAs4ABwHWGYZy213kCe7V3E/BHkmXM\nPjIM42YhxGXADdVtLAXchmFMOZRrk5qv1TINCSG8wChgCoBhGDEgJoQ4k9r0UrOAz4H9Bg1JkiRJ\nknRgeixG1bx55P/jFjCZaP/f/+AcMqRZbWklpRjxGMJixeRvYnryhvoUDBJathyA6IYNaKWlDQYN\n6aEQiWAQoSgNTpZLkiQdDJvTBQd4XhbTEuRVRPg+t4JjOqTQxmOrnzJc04jt3AmGAaqKtX1tyXAj\nHifyw4bkhqqSqKggUV6ePCw/HyMSaXJ/Y7t2s23CBNB1vI8/QOnR7QkkgvRI6UGKLTkGr8ur5JIX\nVwLw0Xf5vDRtSIsH9MQ0ndeX72Lmx8nrmjmxL+cNaoeiHNbnIy0qXFXJh489wM7vViMUhT/+63HS\n2rVEKXhJkprMMKBkE7x3JYrJTsZpT/Phc8+xc90ahFC4YOYjZHTs3OChiYRO8c4q5j+/HofbwvhL\n+uDyJcdCt9VNIBLkk++TJcpCsQSrdpTVCRpCgJGoLcGIprXaZdpdFhKBGEUrV+IaOwZhsRJaswbv\nOeegOlo2C5BqVug2KIP1i/MxWRTa9mj+/bskSYeHajbTsf/AmqChnJ69UU3mevvF9TjrStYBUBGt\nYHfV7mYFDUW1KBGTGac9G5PSqsUIfjZlkTIMwyDFltLkUkCHer75O+YTjAc5o8sZTcoiIklS6/DZ\nfPhszV8wBCCEoK2rLVP6TNnvfhXRCi6ZdwlxPc5nOz9j9mmzyTKySLGl4LP5yHHnMDx7OOtL1xPW\nwgCsLFhJPBFvUj+cvrr3cWbVTLqj/oIks2om3Z5OSaSEcDyMVbX+asZzSZJqVQcIHVKQ0L4Mw4gC\nJzfwkWuvfW7f5xhX9d86yQQx+2Y7+rz6T71jql/PBGbu8/lTwFMH2X2plbTmb5BOJCPDnhdC9ANW\nAlcDmYZh5FfvswfIbOhgIcSlwKUA7dvLh7iSJEk/Bzn2/rLpoRDlb76V3NA0yt98C8fAgQjTwf26\n10pK2HX5X4isWYPr+ONpc9utAAhVPeiAHmG3Y8rORsvLQ01JweSr/wVeD4ep+uwz8m/5J5aOHWn3\n3LOYM5q5UlKSfoHk2Ns69EgEPRJBdbvrZ3RIaOiBItZtKmHGwgI03eCDK0eS4bHV2c2UmkrOSy8S\nLSzA4vVhSql9eKfY7WRcew2R777DMnwEIqsttgH9iXy7GueoUQhz/UmexkQ3bABdxzFsGKvSA/z9\n40kATO41masHXI3dbCe3PFyzf35FmITe8hljw7EECzcU1mx/tqGQM/tnY7f8eh486ppG7obkRJuh\n6xRu2yyDhn6j5Nh7GAUL4bXzoWQLAHp5LvmbNwJgGDqF27c2GjQUDcSZ95/1VBaHqSgM8+28HRx3\nXveazx1mM+cNascrS3fitZsZ3LHuam7V76fdU09ScO+9WDp1xjVu3AG7G4gFiCaieCwezGrTx3YA\nxeHAce+tvLflPcq1Ki44anKLBwwB2Bxmhp3VhQHjO2CyqNhdB9dPSfq5yLG3cUIIug8dQWpOB8JV\nlWR364Hd7a63n1W1MrbdWBbuWkiOK4f2nqb9HEOVFZTvycPu8aI4bby+9U2+zvuaaX2nMThzMHbz\n4c1SfKjyAnncsOgGookoM4+bSWdv51YNHDIMg9kbZ/PE6mTW0U3lm7hl6C0NljCSpMNNjr0ty8Ag\nYdQGoVdEK1hZsJILj7oQgExnJn8f8neCWhCPxUNlrJLj2h6HRW35Mt87Kncwff50ookoTxz/BL1S\nezUry5IkSZIkteZvDxMwEHjKMIwBQBC4ae8djGRttAafdhuG8axhGIMMwxiU3sS0/pIkSdKhkWPv\nL5vicOA544zqDQXvWWc2GDCUqKoiXliIVlLSYDtaSQmRNWsACHz2GVpxMZtHjWbnxZegFRdjJBLE\ncnOpeP8DYjt3occbXyljTk+n4+zX6fDqK3R69x3UBrIMJQIB9tx5F0Y0SnTjxmQZIEn6DZFjb8vT\nysoofvJJdl92OaHly9Gj0doPExrkfYvtxVM4df11vDm5E1FNJ5bQ67UTDQXZ/P1qPpo9i43r1xDT\nE3U+t3TuTPY777J9ytVMeW8rjhn30+n99/Cccgo7L76EeH5+vTYb4hg2FHP79pjaZLIisL7m/dWF\nq4kkkhmLxvXIYEyPdNr57Tw+aSBee9MnhEOVUYIVUeKxxH73c1lV/jy6C6oisKgKF4/s9KsKGAIw\nWa0ce/YfAPCkZ9Cu99GHuUfS4SLH3sPIMCBem43Nkr+CkedfCELgzWxDh779Gz1UKAK7u3b8+ynL\n0E+8DgvXje/BouvHMO/aUWT77Pscr2Dt2pW2//436ddfh8m//xIRZZEyZi6bySXzLmHZnmVEteh+\n99+XAby6/W0eXv8kz//4EjcvuY2KSMVBtdFUdpcFX4YDl8+KapKTRdKRSY69+2dzuWnboxddBw3F\n4fVhGAbB8jICZaVo8RgAKbYUbh9+O59M/ISXTnmJNHvj5b9LwiUs2LmATWWb2LhmGa/983r+e810\nKnbn8vH2j1lVuIqrFlxFZazy57rEVhGMB7ln6T2sKVrDhtIN3LDoBkojpa16zoSRIDeQW7OdH8gn\nrjcti4gk/dzk2NuyPBYPD45+kAEZA5h+9HTyAnnkVuWSnO5M8tv9ZDuz+d+Z/+PDCR9y98i7a7II\nt5SIFuGRVY+QF8yjJFLCjKUzqIz+ssdzSZIk6fBpzSfAu4HdhmEsrd5+i2TQUIEQIsswjHwhRBZQ\n2GgLkiRJkiQ1mWKx4D3tVFzHjUSYTCgeT719ElUByma/QdEDD2Dp1JH2s2bVy+qj+nwoHg96ZSWm\nrCz0yuQXzugPPxD8ZgmOEcPZNvFs9IoKhMNBl48/QslsMHEgkAwcMu/noYRQTVi7dSO8ahUAtu49\nmnH1kiRJtaKbNlHy7HMA7Lp0Ol0+nY/y01gXLoX/XQqlW6F0K6nrX+Qfp1yEy5r8amRoGno0iuJw\nEAkE+OTJhwHI/WEd7XsfnSx9Vk0oCkGTjUtf/oaoppNfmU75ReejB0MABL5YRMr5vz9gf82ZmXR8\n9RUMIfiTWsGCXQsJxoNcPfBq3JbkCvM0t5VHft+feELHazdjMdXNnqRVVEAsjrCYUb3emverSiL8\n76FVBCuijJ/Whw59UjGZG55MVlWFYZ1TWXzjWAQCn+PXl6nC6nDSb/wpHDVqHIqq1kv9LknSz8CR\nBufOgjf/CCYbpm6j6W7JpNuwkcn/L72Nl5awuy2cdGkfVs7dgSvFRs9js+rtk+K0kOJsfCV3NBQk\nd9MGNi35iv4nnUpaTgfUvbLDlQSibCkK0tZnY1PVGt7d8i4AVy+8mo8nfky6qemTbZqhsatqV832\nntAeNKP1SqJJkvTrUr4nnzfu+DuRUIAJN9xK2169UVUTfpsfbPs/tjRSytULr2ZN0RoEgudHP4sn\nPZPKogJ2r/+ObG82W8q3IPjll6EVCKxKbRCpRbW0enkyk2Li8n6Xs7V8K5FEhH8e+0+8Vu+BD5Qk\n6RfPYXYwOmc0PVJ68P6W9/lk2yfcc9w9teOOrkP5DtQVz5PRdiB0Hg0tHDAEyXGoo6djzXY7T7uD\nzorZFEWhInZW7aSdux2ptlRURT3wQZIkSdIvTqsFDRmGsUcIsUsI0cMwjI3A8cD66j9/Ilm37k/A\nu63VB0mSJEn6JdPKytArK5Mlvvz+JpUZUz0e1AaChX5iRMIUPfIIALFt2wmtWIH3lFPq7GPy++n8\n3rvEduzA0qEDu6+6uuYzc7scjHAYvSK5QtoIhUiUlWHKyGj2QzmTP4WcR/9NcMlSLB07YukgUyVL\nknRoFFvtLIqw7DNpoKjgykwGDQGWtI6c2jcbp9WEVl5OxdtzCC5dStplf0Ztl1OnXT2R4Ks3Xqbr\noGGk5rTDZLEiBPgcZgoqo+yoiNG//wBCX30FioLt6L5N7rOpOhNbByOFOWfOwTAMPBYPJqV27Pc5\nGp4E10pLKbjnHqrmzcc7cSLp11xdU0pt49J8qkqSGT2+emsTWZ09mLzWBtsBsFtU7JZfdnmKA7E5\nXXWCvyRJOjSheIi4Hsdj8TTtflA1QfYA9GkLCFaU894jz1Cal8sf7nqgSeUCVbPGkNPaYjKbMVsP\nvsxDuKqK/828HYANXy9i2r+fxeVPluAtD8W46e3vmP9DATk+G/+eUlua12v1HvT9rkW1cNXAq/ih\n9AeqYlXcOfxOvBY5qSxJ0oHpus7Sd94gUJbMELzghWc575/34NhPYOXeEnqCdSXVJVkx2BTchsuf\nSjwaoeeIMYwuV9F0jal9puKxNv4M4ZfAYXZw09Cb0NGJaBFuGXZLMrCqlWW5snj8+MfRDf1nOZ8k\nSUcOs2omx53D+b3OZ/JRk+sGDQaL4D8nJP8GuGAOdD2+xftgUkz8sfcfaetqS/j/2bvv8Kiq9IHj\n33Onz2Qy6YSWBELvHSwgqCiirqLiqljBsrq6uq7u6q7u2te1/VR27QUXdcVeQOxYUCxYAEV6E0JJ\nL9Nn7vn9MTEhkoQkJIbyfp7Hh5k75557LupJ5p73vG8syLHdj8Vj87TqNQqDhZz55pkU+AvwOXy8\n8ptXyHRLtiohhNgftXWu+cuAZ5RSdmAdcB6JkmjPK6VmABuBU9t4DEIIIcQ+J1ZezvZ/3k7F669j\nJCXR7dVXsHfpsvsTd8diwTVwAMFvv0ssaPfqtUsTZbViy87Glp2NjsXodNttlL74Ip7Ro3B0744Z\nDuOdNInKt97Cc+ihxKuqMAMBLJ6WfzG1ZmTgO+7YPbkzIYSoYc/NpePNN+P/4nPSL7gAy87lZ9zp\nMHUWfPkopORg9D0OT3WWoci69ey4804AAl9+Sfe33+Koi/7ADx++R+9DxrFh6bd8/tJzfPXai8y4\n/zG86Q4ykhw8f+FBPLlwHVa3g9S/X0/SqpUk9eiJ9ReZ3JrCUEajZSbqEy8ppWLemwCUzZlD+ozp\nUB00lJVXuwiUlePFaCDLkBBCNCbkryLsr8KwWHEmebE5EsGHJcES/u+b/+Onyp+4dtS19Ejpscvu\n41AsRHm4vCawKNmRDBYrQe3ihXtuoHRrorzLDx+9x2FnTm90HIHyMhbPf43MQ4byedGXHJIzllxf\nHg5rw8GQvxSL1JYYi0ejaF1bnjISM/lifWKBfnNZCDOcwT2H3cO3O77l9L6nk+5M36W/3enq7cqs\nSbPQWpPiSMFq2b/KPgoh2oZhGGT36MUPH74HQGbXvDpZ0WJmjJgZw2ltOOXQhQMv5IElD9DJ04mx\nOeNIvuIoDMPAnezj5KyTmdx9Mm6re7/IGpHlzuK2Q28jruM1mTp/Da1dbkgI0TSBaICt/q2sLlvN\n8Kzh7RLIopSqP2BQx2sDhgBK1pLIqdD60pxpTO09tU36BgjHwhT4CwAoD5dTEamQoCEhhNhPtemT\nCq31d8CIej5qm5+QQgghxP4iEqHizcQCsFlVRfCbb1slaMialkaXmf8mtHw5tq5dsXVofEFbWa04\neuSTfc1fao9Fo6SecTpp06YRXr+e0JKluIYM2eOxCSFEa7H4fKRMPYXkE0/AsNWTntubDUdcX/O2\nqCrM/GVbmayitW1ME6UU/cYdTo9RBxELh3nkknMBiMdiNYvOSilyMzxcPb4rnzw7i5fXruLEP1+P\no8OuJXPaiuFNQjkc6HAYw+NB7ZRpqUNeMlOvHYG/LEx2dx/O/bDkmBCibUXDYZZ//AELZj2CYbHy\n2xtvp1PPPgB8sOkDXl3zKgBXLLiC2ZNn7xL4uKZsDWfPP5uoGeWqEVdxau9TcVld2Bx2ug0dngga\nUoruQ+t7fFTXys8X0nHMMM7+5EKqolXM/P4B5p80nw7Whkvl/pInJY2DT53G2q+/ZORxJ+HYKfOY\n227lkgk9uH3+CjKS7GR70xiZNpGJeROb3H99mhsMKoQQAL3HHEpyeiahqkryBg/D4U5s1CkNlfLM\nj8+wpmwNlw+7nLzkvF0zoalEMPqsSbMIRAOsKl3FhJwJNR9bMX7V4Jpfg9vmbu8hCCF+Jdv82zjp\n9ZMwtUmON4f/HvNf0l3ND+5uE3YPHPEPWHALZPSGvse394hazG1zM77LeD7c/CGDMwaT4mhatjsh\nhBD7HtneJIQQQuyN7HZ8v/kN5S+/jOH14ho2tNW6tmakkzRu7G7bxUpL0eEwym7HulOWDsNmw9Gz\nJ+Eff8TepQuOvn0wmlA6TQghfm31Bgz9QjAS5863VjJn8U90mtKLfpf9gcjir8j8/SVYUlIwrFZc\nSV6CwKgTp7L8ow/oc+hhOJPqLrJ4UlIYO+1c0LrJZSN2pzwQ5bO1RXy5voSzD84jN82NYexaGseS\nkkK3lxNl1TyHHFxTmgzA4baRlWuD3FYZkhDiABQNBVn2wTsAmPEYP378QU3Q0M4LtC6rC8Wuc9S8\ndfOImomgzFfWvMJx3Y/DZXVhd7kZc9Jp9Bt3BDaXC9VACcadxcJh4sqkKlqVGJsZpSJSQQdP04OG\nXF4vI44/mSETJ2N3uetk7khyWjl9VA4nDO6ExVBkJDU9g5EQQrQ2lzeZ7sNG7nL8480f8/DShwH4\nofgH/jf5f2S46wYnem1e8lPy+dOHf6K7rzt3HHbHrzJmIYT4NawpW4NZnS1yU+UmYmasnUe0E6cP\nRp4PQ84AZYGkfTczT5ozjZsOuYlwPIzdsJPmklKMQogEpdR4IKK1/qz6/Sxgrtb6xTa41mPAPVrr\n5a3dt6glK3xCCCHEXsjq85F19VVk/O4ilNOJNf3X3S0TKymh4G/X4V+wANfIEXS++26IxcAwsPh8\nWFNTsR588K86JiGEaAsx02RbRQiAC15dxa3HHcXJZ07D5k1CGbWlvFxJXkafOJVhk47H6nDicO+6\nk9nTzGChWGkp4RUrwGrF0bMn1pS6568v9nPxM98A8PqSAt66YiyZ3l1LUBgOB4787jjyuzfr+kII\n0RQ2p4v+hx3BR7Mfx7BY6Du2NlPFQZ0O4srhV7K2bC0XD7m43h3ek7tN5rmVzxEzYxzf/fg6gUaG\ny8FStY6/vfc3kh3JzJo0iy7ehrNr9h07gTWrvuXMnmfw6obXmdB1/C5ZfIKVETYsKyYaidNjWBbu\n5F2DkWx2OzZ7/UFKPpcNn2vfzspWEizBxCTdmb5r9hEhxD4vFAvVvI7EI2g0xcFi1pWvo1NSJzKc\nGTitTg7tfCgvHP8CVsMqZbSEEPuVoVlDyUvOY0PFBs7ud3ajpRrbhTM58c9+QH5+CNHObvCdAdwG\n5ACbgL9yQ/mz7TsoAMYDVcBnbX0hrfX5bX0NIUFDQgghxF7LmpoKqe3zxcys8uNfsACA4FeLiRUV\nseGUqWAY5Dz5BJ6Rtbsd46ZJ3NTYrZZ2GasQQuwJr9PGjb/pz6X/+wa7xeCw/p2w+1z1trW73Nhd\ndYOF4vE45dsKWPn5QroNGU56lxxsjt0/sDTDYUpmP03xAw8AkHXNX0g7++w6gUrFVeGa1+XBKKZu\nyR0KIcSesTkcDBg/kR4jD8JitdbJtJbqTOW8AecRM2NYjfofMfVM7cn8k+YTNaMk25NxWWvn2IpI\nBW+tf4tHj3qUmI5RFCxqNGgoKTWNXn2Gk8Mgzh10Hi6bm2RH7YJMPGryzTub+O7dTQBsWVHK4Wf3\nwdFAacZANEB5uJyqaBUZroz9YlGkoKqAKxZcQSge4v/G/x/5KfntPSQhRCubmDeRZUXL2FCxgWtG\nXYPNsHHRuxexvGQ5NsPGqye8Sk5yDk6rE5u2EKysoKx8Kw63B5d3/1jEFkIc2DLdmcyaNIu4juOw\nOPA5fO09JCGEaH2JgKFHgZ8fRuYCj3KDjz0JHFJKeYDngS6ABbgZKALuIhE78hVwsdY6rJTaAIzQ\nWhcppUZUtzkX+B0QV0qdCVxW3fU4pdSVQDbw54ayDimlkoDXgFTABlyntX6tvnFprecopT4ErtJa\nL1ZKPQiMBFzAi1rrf7T070HUJUFDYp9mBoMoh6PO4ooQQog9p1xOrFlZxHbswJKSkig1YZpgmpTN\neR7X0KEYVislVWEeW7ien0oC/HlSH7qm7Zp5Qwgh2ko8FsNfVkrZtgLSOnclKbVlqbLzMjw8dd4o\nlFKkeXZfHmdnwfIynvnblUSCQRa9+D/On/lYk4KGdDhM8JtvavtZ/DX6tNNQTidVoRiBSIz+nZK5\n5LB85v+wjb9M6o3XKV/fhBDtw5mUhDMpqcHPGwoYAnBanWRbs+v9zGFxMGPQDGa8PYOqaBXHdT+O\nbr5ujS78uH0pNPQbZywap2hzZc374oIq4jGzwb7WlK3h7PlnE9dxpvWdxqVDLiXJ3vB97u1iZoz/\nfPsffiz5EYBbv7iVe8ffWyewSgix70tzpvHX0X8lYkZItidTFCxieUmiWkPUjLK6dDU5yTkAlG3f\nytN//SOxcJjhx03hoJNPw+H2tOfw61URriAQC2BRFjJcGZIlTQixW/VluBRCiP3MbbDL11939fE9\nyTY0CSjQWh8LoJTyAd8DR2itVyml/gtcDNxb38la6w1KqYeAKq31XdV9zAA6AocCfYDXgYZKlYWA\nKVrrCqVUBvC5Uur1Bsb1S3/TWpcopSzA+0qpQVrrpS35SxB1SaSF2CeZ0SjBZcvY8qerKJk9m1hZ\nWXsPSQgh9ivWjAzyXnyBnFlP0u3VVwhvWJ843qkTGZddSnTTJqI7CvlsTSEPfLiWN5Zu5YL/LqZo\np6wYQgjR1vxlpcy68mJeuPlv/O/6q/CXlba4r/QkB2keO+FAlEBFmHg03qTzzHicSDAIgDbNmte/\nVBaIsKMyRDAaA8BISiLzistRbjeG10vGJZdgVAcMvfLtZsb8831OfnARp4/O4YXfjeHwPh1w2yVo\nSAixf0l2JLOyZCVV0SoA3lz/JpF4pMX92V1WRh/fHavNQBmKg6bkY3c1PHcu3LKQuE7M9x/+9CGh\neKjBtvsCi7KQ68uted8lqQs2y75dak0IUcsf9bOoYBE3LbqJjRUb8Vg9GMrAYXFweu/TAeic1JlB\nGcPZVh6ixB9h7ddfEgsnvqcv/+h9ouEw0XAYf1kZ0dDeMedVRaqYs3IOE1+cyNQ3plJQVdDeQxJC\nCCGE2BvkNPN4Uy0DJiql/qWUGgvkAeu11quqP38KGNeCfl/VWpta6+VAh0baKeA2pdRS4D2gc3X7\nOuPSWpfXc+6pSqlvgG+B/kC/FoxT1EOeOot9Ury0lI3nnIsOBKj64ANcQ4ZgTUlp72EJIcR+QymF\nLSsLW1YWAEmHHUaPDxeA1vx00e8Ir1qFJTWVQ597HqfNIBQ1CUbjaC21c4QQv57SrVuIhhOLHRWF\nO4iGQ5hmnEB5OeGAH2eSF4+v6b8jBioiLHhmBSVb/Iw7rRede6VgtTdeetHu9nDYWTP4Zv7r5I8Y\ng8dXW9omHI1TVBXB1Jqb5y7nu5/K+MukPkwakI3HYcXZvz/5b72FUmCpLkcZiMS48Y3lmBq2lAV5\n9stN/GVSnxb87QghxL5heIfhuKwugrEgR+Qcgc2oG+QSi8coCZcQNaN4bd5Gs+YopcjMSeLMmw9C\no3G4bFhtDc/jk7pN4r/L/4s/6ufMvmfise592TeaQynF1F5TyXJnEYgGmNRtUp1ycEKIfVtpqJSL\n3r0IjeaNtW8w76R5ZLmz8Dl8/H7o7zlv4Hk4LS5+3BzjnCc/oEuKm2dOGYblhWeIR6P0GnMoSim+\nefM1ln/8Af3HH8mgIyY1mknu1xCMBXny+ycBKA4V88mWTzitz2ntOiYhhBBCiL3AJhIlyeo73mLV\n2YSGAZOBW4APGmkeozYJze5Sq++8o7yxtJHTgExguNY6Wl0CzfnLcSml3tda31TToVLdgKuAkVrr\nUqXUrCaMSTSRBA2JfVc8Xv9rIYQQrcYMBAguW0bZiy/hO/EEbJ07E16VCDiPl5aiVq/gjNE5fLux\njNtOGki6x9HOIxZCHEjSu+TgzciksqiQTr37YbU78JeVMfvPlxGsrKBjzz6ccPV1TQ4c2ryihA1L\nigB4+9HvmXbTmJqgoUAkxoaiAF+sL+bIvh3onOLCMBROj4dBE4+h76GHYbU7cbhrswZvKg1w8exv\n+N347ryzfDsAV7+4hEN7ZuBxWDFsNoyszDpjMJSia5qb9UV+AHp38O7x35MQQuwNtGlixuNYEIZq\nbgAAIABJREFUbHWDgjp6OjJ3ylz8UT8+h48UZ905e2PlRs6YdwaBWIA/DP0DZ/Q9A4+t4eAei9WC\nJ6XxgM+f5XhzeP3E14mbcZLsSbhs+36ATaozlRN7nNjewxBCtIFALIAmsVEnFA8RN2ufh/ocPnwO\nH5WhKA98+A3RuGZ9sZ+X14SZft+jxMJhXElewkE/C5/7LwCfPDuLXmMOafegIbvFzuhOo3lv43tY\nlZVhWcPadTxCCCGEEHuJvwKPUrdEWaD6eIsppToBJVrrp5VSZcClQJ5SqofWeg1wFvBRdfMNwHBg\nPnDyTt1UAi2tg+0DdlQHDE2gOjCqnnGd/4vzkgE/UK6U6gAcA3zYwjGIX5CgIbFPsqSkkPPE4xT9\n5wHco0Zh7969vYckhBD7pXhFBZumz4B4nIp58+jx/ntYs7OJbduGcjpx9enDHzM6EItrfC4bhtFY\nALkQQrSupNQ0pt16D5FggGBlBYtfe4m8ocMJVlYAsHX1CuKRppe58fhqAx/dPjtKJea0aNykqDLM\n8f9eSNzU/PuDNcy/fCxZyYnNLHaHE7tj140tn64pojQQITu5dhE60+ugsakyw+vg2QtG8/zizeRn\nejgkP6PJ4xdCiPYWjUfZHtjOD8U/MChzEB3cHTCUQbCygh8+ep/KokL6TTkeZbPgtrpJsidhs9jI\ncmc12Od7G98jEAsAMGflHKb0mNJo0FBDtNaUBiKYyk9JqAi3zU2qI7XRawshxN4ky5XFjAEz+Gjz\nR5zV7yy89l2Dy502C4f1zmThmkQgvNvlxJ2ShtWS2CAei4YxLBbMeBzDYiVuaMKxMDEdI27GG83m\n1lZ8Dh/Xj7me6f2nk+5KJ9WZuvuThBBCCCH2dzeUP8sNPoDbSJQk2wT8lRvKn93DngcCdyqlTCAK\nXEwikOcFpZQV+Ap4qLrtjcDjSqmbqRug8wbwolLqBOCyZl7/GeANpdQyYDGwopFx1dBaL1FKfVvd\n/ifg02ZeVzRCgobEPsmw23ENHUrn++5FOZ0YO+1U9JeX8d3b87DYrAw6/GjczShJIYQQ+zJ/1I/d\nsGOz2HbfuIl0LFabzc00QWvynp9DeM1a7Hm5WDMysNtb73pCCNFcbl8KX897ja9efxHDYqX/hCNx\n+1IIlJfRpe9ArHZ7k/tK75LEpIsGULipkv5jO+NOTpxbGYyyqSRA3Ezs7C72R4iZuy/HeFD3DG6Z\n+yOfrS3ioTOHsWZHFScM6Uymt/HMuR19Li4/omeTxy2EEHuLknAJJ71+EsFYkFRHKi/95iUy3Zls\nX7eGRS8+yzE33cC5709nS+UWrhl1DSfkn4DHXjcAKGbGKA2VorUmyZ7EuC7jeGjpQ8TMGBNzJ+K0\nNj/7uGlq1uyo4rP1W9jMK8xZ9SwKxWNHP8ao7FGtdftCCNGmUpwpXDjoQs7qdxZJtiQc1l0z/dos\nBlOHd2FMt3SUgi6prpqAIQBnUjIn//0Wflz4IV1Gj2Dmjw9x0bCLuf+b+9kW2MZ1Y66ju687SinC\nsTBV0SocFgdJ9rbNRpTmTCPNmdam1xBCCCGE2OckAoT2NEioDq3128Db9Xw0tJ62nwC96jm+Chi0\n06FPfvF5g788aq2LgIPq+WhDfePSWo/f6fW5DfUr9owEDYl9ljIMLN66O2qi4TCfPPMkP3z0PgDB\nigrGTTsPi1X+UxdC7L/iZpy15Wu59+t76ZPWh7P6nbXHO/NiRUVUvPU2rqFDyPrrtZS/9DLJvzke\nw+PB4vNhy5Id2UKIvYNSClW9EGLGYyx5/y3OvP1eYuEIDre7WQHkTo+N/KFZ5A+tnePKQmV8tu1T\neqYM4fhBHVm4poiLDsvH49j975c5aS4+uGo8G4r89O+UzKQBHZt/g0IIsQ8pDhYTjAUBKA2X1ryO\nRSNkdM3li6Iv2Vy5GYB7v7mXibkTdwka2lS5iaJAEcFYkG6+bnRK6sT8k+YTiAZIc6a1aOG6xB/h\nsv99ywXjM/h0/ccAaDQfbPpAgoaEEPsUt82N2+ZutE2K206Ku/7AeZvDQWFqhAW9trB6/YesKVvD\nmQPPZu76uQBcseAKnpz0JHbDzpvr3+R/K/5H3/S+/HnEn0lzSVCPEEIIIYQQ+yOJpBD7FTMew19W\nWvPeX1qCNs12HJEQQrS90lApF717EUXBIj7Z8gkDMgZweM7hLe4vXlHB1htvourddwHo8tij5Dzx\nOIbHg+Fs/s5uIYRoa8OO+Q3RYIBgZSWjT5iKN631Snq9v+l9blh0A26rmxtG/4u/HNyPpGQvPtfu\ns6y57FZy0qzkpDW+sCOEEO0hWFnB1tUrqSotIX/4KDwpe14OpoO7AwMzBrKsaBnju4yvCfDp1Ksv\n3YaOxJHRHYVCo+mf3p+SUAkWw1Inu0RxsJgHlzzI4u2LsRt2XvjNC3T3tawkudYapRQWQ5HssvLN\nxiBTup/OzCV34rK6mNJjyh7fsxBCtCZTmxQHi9nm30a2J5tMd2arX6O7rzteuxeF4q5xd7HVv7Xm\nM5thQ6EoCZVw6xe3ArCufB35vnwuGHRBq49FCCGEEELsn5RSA4HZvzgc1lqPbo/xiMZJ0JDYrzjc\nHo6YfjHz7r8Tw2Iwbtp5zSpJIYQQ+ypDGfW+bo54RQVmIJB4s1P6cv8HC/AeeugejU8IIdqSx5fC\nYWedD1pjsbVuycRNlZsACMQCPLZ8JnfHT8YzZgKJUt9CCLHvWvPV57zz8P0A/NhvIL+58lpc3uQW\n9xeJRwC4d8K9mNrEYXHUZL90J/sYftwUAlE/r5zwCuvL15PqTOXCdy9kVPYo/n7Q3/HaE5mEs9xZ\nLN6+ONGnGWFp4dJmBw0FogGWFy9n3rp5TMydyKDMQcw8fRj/WbCaAb7DmX/SEdgtNlIdex4oJYQQ\nrak4WMzUN6ZSHCqmk6cTT09+utUDh1Kdqfxx+B8JxUIk2ZOoilZxVt+z2OLfwlXDryLdlc6OwI46\n55SFy1p1DEIIIYQQYv+mtV4GDGnvcYimkaAhsd9Jye7IlGv+AUrh3oMHnkIIsa9Ic6XxyMRHuP/b\n++mX1o/BmYOb3Ue8qorS5+ZQeM89WLOyyJ39XyKrV6MMC2nnz2iDUQshRMsEqyKYcY3dacXmsNQc\nb6tytNP6TuPr7V9TGirlhn5XkvTFBpR778kcFKyMYJoap8eKxWrZ/QlCCAFo06Rg9Yqa90Ub1xOP\nxZp2cuU22PwlBMogfzx4MggrC59v/Zxbv7iVnik9uemQm3Ypl2uz2/HZ7fhI5b2N7/HgkgeJ6zjL\ni5fXBBwBeGweju9+PG+se4MURwojs0c2+/5KQiXMeGcGpjZ5cfWLvHrCq+Sn5HPjbwZgGKrZ/Qkh\nxK+lIlJBcagYgAJ/QU2Zx9a2c5mzNEsaVw6/kqiO4rK6AMj2ZHNEzhG8v+l9Onk6cWbfM9tkHEII\nIYQQQoj2J0FDYr/kTpad30KIA4ehDPJT8rl97O3YDBtWo+Ef77GiIrRpYjgcWHy1c6UZCFL88EOJ\nNjt2UPXZInKffhpME2t6epvfgxDiwFEUKCJqRnHb3PgczfudLVAZ4f2nfmT7unLGnNCdXqOzsTvb\n9itNljuLmYfPJBYOkRy3Yz1uQJ35sz35y8K89cgyqkrDHHluP7LzkyVwSAjRJMowGHHcFNZ8uYiQ\nv4qx087F7vpFQKRpgr8Q0OBOB4sNKgrg0QmJwCEAwwpnvkKw00Cu/vhqgrEgW/1b+XLblxzT7ZgG\nrz+522TmrJxDWbiMq0ZeVZNlCCDDlcHVI6/mkiGX4LA4SHc1/3fRomARpq4tVV5QVUB+Sr4EDAkh\n9nopjhR6pfZiVekqBmcOxmPztOn1KsIVrClbw8aKjYztPLYmaCjVmcoNB93AtaOuxWJYyHC1Xvlf\nIYQQQgghxN5FgoaEEEKI/cTPD/caEt2xg03nnEtk/XrSzjuP9N9dhLV64VvZbbhGjMT/0UdgGLiH\nDsGaKuUahBCta7t/O9PenMb2wHam95/OjEEzSLY3PTNkoMxPdjcHYb+bj55bRd7gzBYHDZWGSikK\nFpFkS8Ln8NXstK5PqjMVnC26TJta+fk2tq2rAOD9p37k5L8Mx+OToCEhRNOkduzEuXc/gGmaOFwu\n7M6dJjqtoXAFPDsVYmE4dTZ0HAyfzawNGAIwY/DGZXjOe5OOno6sK18HQEdPx0av3cXbheePfx6t\nNV67F7ulblnxVGfqLpmKmiPHm8OgjEEsLVpKr9Re9Evv1+K+GhIORrFYDaw2mXeFEK0n3ZXOIxMf\nIRQL4bQ6WxQ4CRAzY2g0NqPx0r0rS1cy/e3pAAzOHMzMw2fWzL8pzpRG+6yMVBKOh/HavDisjhaN\nUwghhBBCCNH+JGhICCGEOED4P/uMyPr1AJQ8+SRp088jVliI1mBJ8dHptluJrN+AtUOWZBcSQrSJ\nb3Z8w/bAdgCeWv4UZ/U/q8nnBsrL+ebNpykp2Mzok85m7bdODKP285A/SkVxiEggRnoXD64ke4N9\nVUYqeeC7B3hu5XNYlIXZk2czMGNgi++rIdFwnEgohmEoXN6Gx9NSvqzaYNGkNCeGRTJoCCGazjAs\neFIaCMwJlMDcyyG5E8Sj8OJ0OP892Prdrm1LN2DD4JGJjzB33Vz6pPWhu697o9dWSrVp1oo0Vxoz\nD59JOB7GbrG3eNG9PqapKdnq57MX15DWycPwSbltMscLIfZ+5eFyysPlWJQFi7LgdXhbJTNQU+as\naDyKP+rHYXXssoGoOFjMo0sfpTJSyeXDLyfLndVgP6tLV9e8Xle2jphZf6nKnfv8w7A/4LQ6+ecX\n/2Rp0VIuG3oZh3U5rNEgfCGEEEIIIcTeS4KGhBBCiAOEIz+/5rV7zGjihYVsPPscdDRKzuOP4Ro6\nFPeI4e04QiHE/q5fej/shp2IGWFU9igsqunZGVYu+phlH7wNwLx7b+LsOx/A7qqNGtqyspS3Hvke\ngAHjO3PwifnYGshCFI6FWfDTAgDiOs4nmz/Zo6CheEUFOhLB8PkwbImd19FwjHXfFfHh0ytIyXZz\n3KWD8fhadwd2516pHPO7AVQUheg5skOjgVJCCNEshgFH3w6bPgOHFzxZYHVC/pGw8bO6bTsOAYuN\nDp4MZgycASQWs4uCRVgNKymOlHou0PbSXGlt0m+wMsK8fy+hqjTMTz+WkJXrpdeo7Da5lhBi7xWI\nBpizcg4zv52J3bBz/+H3Y7fYGZk9co/6LQoWMXv5bDw2D6f0OoU0565zWSAaYFHBIh7//nFGZY/i\n3P7n1mQF0loze/lsnlnxDAAl4RLuGHdHnTKQOzsy90heWv0Smyo2cf1B15NkT9qljWmaPPH9EzV9\nbgts4+qRVzNv/TwArvnkGt495d0WBQ3FzTjFoWJ2BHaQ7cmWMmhCCCGEEHsRpdQNQJXW+q426HsD\nMEJrXdTafbcGpVQmMBewA3/QWn/yi88fA+7RWi9vj/G1NgkaEkIIIfYy8YoKzEAQZbFgzdz1gVms\nqAitNZaUlJrF6aaw5+WR+/Rsgsu+J/m4Y9l+622YVVUAFM6cSZeZM7EkN71MkBBCNFe2O5t5J82j\nMFBIZ2/nZpWe0Xrn15rK4h2s/OxDBkw4CpfXy+aVpTWfb1tbTjRqYmugpJjb5mZa32nc8/U9eGwe\nJuVNauEdQay4mK033kRk9So6XH897hEjMOx2IqE4Hz27kljUpOinKjb9UELfgxsv19NcziQb3Yc0\nvHNcCCFazLDB4sfgu2cT74/+J/Q+BoadBavmw+avEsc9GTDl4cSf1cKxMIu3L+aWz28hJzmHWw+9\ntU0XgasiVfxU+RNry9YyuuNoMt2ZbXatnymjNrObkixvQhyQArEAr655FYCIGeHjzR/TOakzgzMH\n71JysamqIlXc9sVtvLvxXQD8UT+XD70cY+f0mkBFpIIrP7oSU5ssK1rGmI5jGNNpDAAaTSQeqWkb\njUfRO/8i/QtZ7iwemfgIpjbx2Dz1lj03MfFH/TXvg7EgdqP2HpNsSShaNhcWh4qZ8toUKiIVdPd1\n54mjn2g001JpqDSRYcniIMOVgVIyBwshhBBi/zXwqYFnALcBOcAm4K/Lzln2bPuOqv0ppaxa6/pT\nZLaeI4BlWuvz67m+pb7j+zIJGhJCCCH2IvHKSkpmP03RzJlYO3Yk73/PYsuu3bkc2bKFn86/gHhF\nBV1mzsQ1aCDK2rQf5xavF/eIEbhHjEBrjXv0KCrfegsA14gRKEfrZsAQQohfclgdZFuzyfY0PyND\nn4PHUrhpPSVbfmL0lN/y5avPs+6br8gbMhyX18vgw7uy5usdREIxxpyQj8PV8Nzotrk5uefJHJ13\nNFbDSpqj5dko/IsWUfXOOwBsuewPdH9rPkZmJoahyMrzkt4jBZvXRmburru2m0trjen3o5xOjOq5\nvyhQxJqyNXRN7kqGMwOHVeZyIcQeChRDJAADp8LaBVC5FQpXJKI3k7Lg9OcgWJpo482uEzAEUBmt\n5I8f/pFgLMjmqs3MXTuXcwec2yZD1VpTFfDz8JKHef+n9+md2puHJz7cquXIfsmdbOf4y4bw+Wtr\nSe+cRJfeTQ+AFULsP9xWN9eMvAavw4tCYVEW/FF/iwOGIJEBszRUGwhfGCgkThwDo5GzqBM4YyiD\n6QOnUxwqpjJSyXVjriPZ0fjmoN3NmVbDyiVDLmGbfxtV0SpuOeQW0l3p3D72dr7a9hVn9juz3oxI\nTVEYKKQiUgHAuvJ1hOPhBtuWh8u59+t7eXnNy6Q703nuuOda9L1CCLH/CcfCVEYrcVqc9WZME0KI\nfVF1wNCjwM/pHHOBRwc+NZA9CRxSSnmA54EugAW4GfgX1Vl/lFIjgLu01uOrTxmslFoEZAB3aK0f\nbaDfjsAcIJlEDMrFWutPlFIPAiMBF/Ci1vofO512mVLqeMAGTNVar1BKjQLuA5xAEDhPa71SKXUu\ncBKQBFiUUscCrwGp1edfp7V+TSmVB8wHFgIHA1uAE7TWwQbGfQFwIYmMQmuAs4BewB2Aq/rv4yCg\nEHgYOBL4vVLqFuAqrfVipdQkEsFdFqBIa31EQ/dR/7+V9idBQ0IIIcReRIdCFD34IACxrVvxf/op\nKSefnPhMa4ofe4zI+vUAbLvhBnKefBJrevMfzimlSD7mGJz9+kEkgr1HDwwJGhJC7AX8UT+BaACL\nYamz+OD2pTDhnAsIVlYyf+ZdRKNhhp16KlZPYje0L9PFadePAsDhsmKxNr64kuxI3u0CSlNYM2sz\nWlizMjFNKC8MYndaOGRGP26Z9yOr11VxY25/fPE4NkvTS7LtzIxECH3/PUUPPIh7zGhSTzmFMkec\nGe/MYF35OmyGjddOeI2uyV33+J6EEAcOf9RPRbgCjSbZnkxSNARvXgU/vJIoO3bqU/DG5TDuKqI6\nTlmgGGUoUtO6YzEans+S7ckEY4nncc3JKtcc0XCMbWsrWPLBNs4YcAkjB4/mrmV3YGqzTa73M6UU\nqdluJp7XD8OqdskAIoTYf5WHywnFQhjKwB/1Uxgs5Pcf/B67Yeexox9jYGbLy90WBYuIm3GuH3M9\n135yLU6rkz8M+wM2Y9fswj67j3sn3MsTy55gVMdR9E7rXefzDFcG/zjoH5jabLXF8yx3FneMu4O4\njtfM68d2P5Zjuh2DoVo+D2Z7sslPyWdt2VomdJmA09pAqlAgEo/w8pqXgUSGou+LvpegISEE/qif\ndze+yyNLH2FMxzFcNvSyNvv9UwghfmW3URsw9DN39fE9yTY0CSjQWh8LoJTykQgaasggYAzgAb5V\nSs3TWhfU0+4M4G2t9a1KKctOY/+b1rqk+tj7SqlBWuul1Z8Vaa2HKaUuAa4CzgdWAGO11jGl1JHV\n93tydfthwKDq/qzAFK11hVIqA/hcKfV6dbuewOla6wuUUs9Xn/90A/f38s+BUNWBQDO01jOVUn8n\nEUh1afVnHuALrfWfqt9T/WcmieCucVrr9Uqpnx9oN3Yfex0JGhItEispIbxmLbbsDlgzMjDcza9Z\nLYQQoh4WC67Bgwl+/TUYBs4BA2o+Ukrh6F37MNDevTvKXn95Mh2PEy8pAaWwZtRfDsKakoI1JaV1\nxy+EOKBURioJxAJYlKVVSs8EogHmr5/PrV/cSndfdx468qE6ZWbsThdozUGnnUmZN8p/VjzMkg0l\nnOM5h1RnKh7frx/86OjTh8733Udo+XJ8p57Kuy8UsPH7YvocnE3FgGReW5L4Dn3B7MW8c8U4spJb\nFjQULytj0/QZ6FAI/8KFuEeMINKzA+vK1wEQNaM1GYeEEKIp4macRQWLuPLDK9Fo7hx3J0emD8b6\nwyuJBlu/S2QXOvsN4u40fihaxu/e+x1Oi5PHj36c/JT8evtNd6bzxNFP8NCSh+iZ2pPDuhyG1pqi\nYBHBWJAkWxJprtqg0IpwBYYymr2wHQ7EmPvvJZimZuP3MOmaQ7lujB237dd5PmG1t2w+F0Lsm8rD\n5Ty69FGeWv4Uucm53D/hfv634n9AojzZ8yuf5+ZDbm7w/FAsRHm4HFObJDuS8dg8NZ8VBYuY/tZ0\n1les59Tep3Lf4ffhtDhJcdb/fd1lczG281j6p/dHaUU0HsXUZp3gnbaYC+sLuN+TgCFIZDl6/KjH\nCcfDOK3ORjMWWQ0rYzuP5ZMtn+CyuuiT1mePri2E2D9URar4+6d/R6P5qfInTuhxwj4fNBSJR9gR\n2MHasrX0S+/3q5TfFULslXKaebyplgF3K6X+BcytzgbUWPvXqrP0BJVSC4BRwKv1tPsKeEIpZQNe\n1Vp/V338VKXUhSTiUjoC/YCfg4Zerv7zaxJZhAB8wFNKqZ6AJpFF6Gfvaq1Lql8r4Dal1DjABDoD\nHao/W7/T9b8G8hq5vwHVwUIpJLIYvd1AuzjwUj3HxwAfa63XA+w0vsbuY68jQUOi2WKlZRRccw3+\njz8Bw6DbKy/j7N179ycKIYTYLWtaGl3uv4/QipXYO3fCmpVV5/PkSZOwpqcTLy3FM3EiwVgUVVaK\nO9mHqt7lrE2T0I8r2HzJJRgeN10ffRR7ly7tcTtCiP2YP+rn5dUvc9fiu+jg7sDTk5/e452+gViA\n27+8nZgZY1XpKr7Y+gXH5R9Xp43d5cad15Gz3ziFklAJiwoWMThrMBO6Ttija7eU1ecj+eijSD76\nKEq2+dn4/QoAdmyoJHtkbamHFJeNxr6AB6uirF9SSPmOAAPHdyEptZ5d1judrwwLTouTyXmTeXPD\nm3TydKJ/Rv/WuzEhxH4vGAvywqoX0GgAXlj1AiMPGULswvex+otJf+fv4OsKSZlUhcu55+t78Ef9\n+KN+HlryEH8/6O947d5d+lVKkZOcw02H3ITVSDx22hHYwW/n/paiYBGjs0dzx2F3kOZM46fKn7jh\nsxvw2r1cN+a6egNQw/Ewa0rX8MqaVzg672j6p/evWQzXWte089lTmNR5Up2FeCGEaC2hWIinlj8F\nwMaKjWwPbOfgzgezsjRRYWBi7sSaOa8+y4uXc/475xMzY/xz7D+ZmDuxppRZQVUB6ysSGYWfX/k8\n5/U/jxTPrgFD4ViYsnAZcR3HYXEwZ+UcHln6CGnONJ6Z/AxdvPvm9/6mlpRMdaZyy6G3UBoqxWv3\n7lGJYSHE/sNQBkm2JCqjlUAi4+W+riRUwpTXphCKh+ic1JmnJz/dKhu1hBD7nE0kSpLVd7zFtNar\nlFLDgMnALUqp94EY1NTE/eVDSb2b9z/3+3F1AM+xwCyl1D3AJyQyCI3UWpcqpWb9ov+fa9PGqY1b\nuRlYoLWeUl1q7MOd2vt3ej0NyASGa62jSqkNO/W9c83bOInSaA2ZBZyotV5SXQJtfAPtQlrreCP9\n/FJj97HXkRzKotl0NJrIgAFgmgSXLWuVfuOBAGY02ip9CSHEvsyank7SIQdjz8vbJZObNSWF5IkT\n8Z1yMkVF25l15cXMvuZySrfWZoOMV1Sw/dZbiO3YQWT9Booeehht1i3TECsrI1ZYiBkOI4QQLRGI\nBnhwSaKc4vbAdhZuWbjHfRrKoGdqz5r3PVJ7NNjWomozPFjV3rEXwuGy4k1LfDdVSjGwk487TxnE\n2QflMnvGaDK9DWdC2vRDMQtmr+Cbtzfx5oPLCFZG6nxuSU0l96lZJE2YQIe/XostJ4dUZyrXjL6G\nt09+m2eOfYYsd1YDvQshxK5cVhfHdj+25v0x3Y7hs21fceS753Hu9/+m8JxXwZNYnHBYHPRPrw1M\n7JXai/c2vEdZqKzB/ndePN9QvoGiYBEAX2z7gnA8THm4nOs/vZ4vt33J+5ve5/Flj9dbWqwsXMY5\nb53DnJVzOP+d8ykPlyfG5LZxzMUD6dw7lbG/7UmSzykBQ0KINmM1rHT1JjI6KhRJtiT6pvbliaOf\nYO6UuYzKHtXguZF4hGd/fJaoGUWj+e/y/+KP1q53ZHuy8doSQZg53pwGS3StKVvD5Jcnc/RLR1MS\nKmHW97OAxOLyx5s/bqU73bulOdPIT8kny52F1bJ3fAcQQrSvNGcaT09+mnP6ncMjEx8h07XvZ+XZ\n7t9OKB4CYEvVFqJxWTcT4gD1VyDwi2OB6uMtppTqBAS01k8Dd5Io+bUBGF7d5JcltE5QSjmVUukk\nAmq+aqDfXGB7damvx6r7TSYR6FOulOoAHNOEIfqALdWvz91Nux3VAUMTqD/Aqim8wNbqDEnTWnD+\n58A4pVQ3gJ3KkzX1PvYK8pu1aDbD4ybj0kvZ8a87sHbsSNIhh+xRf9o0iazfwI677sSRn0/a9OlY\n02SniBBi/xGNxynxR4nGTbxOKz6XfY/7DJSXg6kZftwUPn/pORa9/ByTLvkjFosFZbfjyO+BTk6B\nE0/G0rVrTRaiaEEBpXPmYO+ag45FsXXtinvUKAxbyzMjhqNxQlGTJKcVi9FoGkshxH7EZtgYmjWU\nhVsWYiiDgRkD97jPNGcaMw+fydfbvibPl0fnpM71tkt3pfPoUY/yn+/+Q//0/q1y7dZlvxFSAAAg\nAElEQVTg8Tk4+S/DiQRjONxW3MkOpo7oytQRiQWm0lApcR0n1ZGKxahb1qayJFTzOlARxjTrbtox\nbDZcgwbR6e67MBwOlCVxfqozlVT2rtTr8VickD8GgNNjw2KVvSpCNFc4HsbUJi5rY5vh9ozFsDCh\n6wTmnzQfrTV2q50jXzgSgA0VG1havJwjco8AwGl1cuGgCxnRYQTheJiYjnHdwusYkT2iwfI5O8vz\n5ZHqSKU0XMqwrGE4DAeGMnBbawPkvTZvvWVu4maccDwR6G5qk2A8CIDNYSG3fzqdeqRgs1swZK4R\nQrShdFc6sybNYvG2xfRM7UmGK4OOSR1RqN1myrFb7ByZeyRvb0xUOhjfZXxifjfj4C8kLRbi1d+8\nREFgO128XRrMJvH62teJmInA8lWlqxiZPZJPCz7FUAZDs4a27g23Aq01W/1bWfDTAoZmDSUvOe9X\nKyEphDhwWAwL3VO6c9XIq9p7KK2mi7cLgzIGsbRoKaf2OrVNvxMIIfZey85Z9uzApwYC3EaiJNkm\n4K/Lzln27B52PRC4UyllAlHgYhKZeB5XSt3MrhlxlgILgAzgZq11AfUbD1ytlIoCVcDZWuv1Sqlv\ngRXAT8CnTRjfHSTKel0HzGuk3TPAG0qpZcDi6mu0xPXAF0Bh9Z+7plRuhNa6sLr82stKKQPYAUyk\n6fexV1A7p3LeW40YMUIvXry4vYchdhKvrMQMBFAWC9aMPUuLGC0sZOPpZxAvK6PDtdfgGjoUS0qK\nBA4J0XKtErUhc2/rWbmtkhP/8ynBaJxrj+nDWWNycTtaHrcbKC/n3Uf/zfpvv2LA4UeR0TUX0zQZ\nNun4mjahsnK+2x7kz6/9SNdUF/eeNpTUcCUbzzyLyIYNAHS6+27KXnmFzrf/s8Vzeak/wlOLNrBo\nbTFXHNmTYbmpOKyW3Z4nxH7ogJx7S0IlrCtbRwd3B9Jd6b/6IkA4FsZm2DCMli0Ua1MTqIwQCcaw\nuyx4fPXv6m4N2/3b+dNHf6I8XM5dh91Fz9SedRbH/eVh3nn8B6pKQhxxTj86dEveJ4NttNZs31DB\na//3LUopTvjjUDrk7fvp4cVea7+ce4uCRdz39X0EYgGuHnn1Hpd+bKqSYAkXvHsBq0pXYVVWXjnh\nFfJ8eXXaFAeLufDdC1lVugqX1cXcKXOblOXM1CbFwWL8UT9eu7dmgX1HYAcPL30Yn93Hmf3OJM25\n63OAykglc9fN5bkVz3FU7lFM6zeNFMfuA5Uau0+NJs2Z1mjZSCFEo/b4f569be5ta5WRSoqDxUTM\nCFnurMQ8Vr4ZHjoUgqWQczD8dnZNhrf6fLP9G6a/PZ24jvOn4X/iuPzj2FixkQ7uDqQ50/a6gJzC\nQCFT35hKcagYQxnMnTK3JltTWwhGg5RHEtnofHYfLpsssov9jsy9B5CSUAkxM4bD4sDn8LX3cIQ4\nkMmXRnFAkExDB4jycDkVkQrshh2fw9dgmtumsni9WLzNCrRrkA4ldlV3vOkmyl9/na1/uw7XiBF0\nue9erOlNq2kthBB7s3nLCghGE6VOn/5iIycN67xHQUP+shLWfLUIgPXffs2hx5yIYbEQKy9HRyIo\noMKexJUvL6agPMSmkgBzlxZwdv9UYoU7avqJFe7A2bs3yt7yzEfriqq4973VAJz75Fd8/OcJdEiW\noCEhDhRpzjTSslsn0DsaiRAJ+LE6HDhcTVvwcFgbLve1O6WhUixBBy/c+jWhqigdunk5dEY3kn3u\nRhdcSkOlfLT5I2JmjMNzDq93gbs+T/3wFEsKl9DB3YE31r3BBQMvqPPgz+NzMOnCAei4xpFkw2LZ\n9wKGAKLhOIvnbSAWSZQYWvzmBo6a0R+bQ342CNEUMTPGg989yKtrXwWgKlrFnYfdSbK97YPv0lxp\nPDzxYX4s/pHc5Fwy3buWdvDavdwx7g4WblnI2C5jSXU0LdOZoQwy3ZlkUrfPLHcWfxv1N5RSdQJ4\ngtE4kZiJ12HFa/cypccUjso9CpfVtUeL4lsqt/DHD/9IzIxx9/i76ebr1uK+hBCiObx2L177L56l\nbluWCBgC2PQZRION9tEnrQ9vnfwW4XiYFEcKPoevwaxEe4O4jlMcKgYSwaOFgcI2CxoytcnX27/m\n0g8uBeDfh/+bgzsfXG8GOyGE2Bc09VmDEEII0Rrkt+YDQDAaZM7KOUx+eTKTXp7EmrI17T2kOioX\nfEinf/4TW5fOVH34IQDBxYuJlZS078CEEKKVHNm3AzZLYhFk8sCOuGx7FrPr9Hqx2uzYnC5OufQq\nCi76HWsnHE7p089Q/trrrJ00CSoryPbV7qrrmupGuVx0uuf/sHXujOewcXgnTCB9+nlYklu+CGXf\naVHbaigJuxdCtEhVaQkfP/Mkz994LW8/cC+l2wowzXibXa8oUMQ/Pv0H6zdsIVQVBWD7+krKAxVU\nRCoaPC9mxpi9fDbXf3o9Ny66kYeWPEQ4Fm7SNXOScxicMYTbxzxOZMfRLNsUoTIUrdPGlWTH7XPs\nswFDAFabQedetRlAOvdKwWKTnw5CNEdc185/pjbhV0wQneHKYGyXseQk5zRYBiHNmcZpvU+ju687\nNkvLS9z+zDCMOgFDJf4Id7y1gotmL+aHggpicROn1bnHGe3CsTD3fH0PP5b8yOqy1dz6+a2NzvlC\nCNGWYmaMko4DqTzqJnD6oPMIsDW+ydNtc5PtySY3ObfNs06UhcrYEdhBSajlz2c9Ng9/Gv4nku3J\nTOg6oU0DNYOxIM+seIa4jhPXcZ5d8SzBWONBWEIIIYQQovmUUgOVUt/94p8v2ntcu6OU+k894z6v\nvce1t5BMQweAQCzA3HVzgcQX0rc2vMWAjAHtPKpajh75bL3xRjrfczfWzExihYUYXi8Wn6RcFELs\nH3pmJfHxnycQjMRJddtJcu7Zj1+XN5mz7/w3ZTu2ob/9jvDqRKafopkzyZ09m0J/gMjd/+L+a6/n\n9R+K6JaZxIi8VAyHHc+Y0eQ+9xzKbkMlefCXllD07WKycruRlNa87G5aa7qmufnnSQNZuLqIi8fn\nk+ppedYiIcSBKVBexqt33MT2dYnA9pKCzWz6YQnn3v0gSanN21mntSZUVYlhseBwexps92nBp3xS\n8AlX9L0al9dGsDJKh3wvOyLb8erces8JB/zElMmGig01xzZWbCRqRnGw+4xHk/ImMTLjCKY++B0l\n/giPfLyJd68ch9e55wvuexPDYtD34E5k5/tQSpHSwd3i8nFCHIishpXfD/k9VdEqAtEA14+5nmTH\n3lHirzJSybsb301sSuo2mRN7nNgmi9afrS3iyU83AHD2E1/w9hXjyEre8/KRFsNCx6SONe87eDpg\nU/vXHCyE2DdE41G+L/qeW764hW7Jefz10i9IwwKeXTO8tYfSUCl3Lb6L19e+zuDMwdw34b6aspLN\n4bV7mdp7Ksd2Pxa7xd6mgU5Oi5NJeZNYuGUhkPjd22lpu9LDQgghhBAHKq31MmBIe4+jubTWv2/v\nMezNJGjoAOC2uTmp50ncvfhu7Iadyd0mt/eQ6nANHESXmfdjhsPkPT+H8OrVOHr2lNJkQoj9hstu\nxWVvvR+5Vpud1I6dSMnuSFWwNkuFJSMDMxJBud2k/Pa3mBVFzBiUiiO9Nl254XBgZCYWt6tKipn1\np98TDQXxpmcy7bZ78KTsvsREZSjKl+tLeHf5ds45OI9Thnfm5GGdsVul9IwQovkioWBNwNDPwn4/\nW1Yup/eYQxNtggGi4TAOtxurvf4AHa01JQWbeeeh+3Anp3LkBZc0OKflJucSM2P87Zu/cOsfb8er\nUiiMb6Ug9hM+e+1iRmFliEAkTooO8P5j/8GTmsblv/0Da8vWEjNj/GXkX0iyJzXpPlOcKYTDIcoC\nkZpjJVURyGrS6fsUZ5KNjkkpu28ohKhXpjuTmw6+CVObTZ5jmiNmxoBEgFJzVEYq+cdn/wBgefFy\nJnSd0CYLwDtnsrRbDVQrJSuzGlamD5hOpiuTSDzy/+zdd5iU1fXA8e+d3md2Z3YX2AXpXUBBREFE\nFI0IhGKLxtiDJdZojA2NGk2MP40aO/YIJlaMErGXICBNRARBellge5s+c39/zLCwbGFgWer5PA8P\nM+/c9o56nZn3vOcwvst47OaGsykJIURLKo+Uc/0X11MaLmV52XKOzx/M+C7j9/eyatXEanhv5XsA\nLCpaxKbqTXsUNASpbENOc+PB/HuL0WDkpLYn8cG4D1AofDYfRoP8RiGEEEIIIUQmJGjoMGA32Rnf\neTwj2o3AZDDhsx5YP+Ab3S6M7u0/hJpbt26itRBCHJ7iiSRlwSga8NrMWM1G1pYEmR9xM/CRxzCv\nWEb22F8SLSqi3ZTXKH36Gao+/BBrjx60e+5ZTIFAvTGDlRXEwql03VUlRcRj0XptGlJcHeHSl+cB\n8J9Fm/jspmHk7YW7v4UQYkc6marHE6ysZM47r7N64XwG/vIsug46Hou9fnmaUGUl0x9/iK2rVwIQ\nOKI9g88+v8GxO/k68eIvXmR56XKcXis+ux1rrDVdTNtL7RRVhZnw1CxO7+Gn98/TWb0wte/ZXW4m\nj52MMij8tt27eOKymXjknH48/PFyBrbPpkve3g8GEEIcGppThqspJaESnvv+OYLxIL876nfkOlKR\ni1rrOiXCGmJURkwGE/FkHIMyYDa0TJaeY9pnc/NpXflhYyW/P7Urfueus7llKtuWzYW9Ltxr4wkh\nxJ4wKANeq7e29FeWddc37+xLVqMVv81PSbgEi8FCjuPAyIC0Kx6r54DJzieEEEIIIcTBRIKGDhPy\npUkIIQ5uyzZX8atnZ5PUmucuHEB7v4Ppiwt5cMZq+hZ46d9hODc5XcRsTizVFVR9+CEAkaVLia5b\n12DQkCsrm/zuvdi4bAm9hp6MxZrZndbBaKL2cSiWIKn13jlJIcRhyWKzk9u+I1vXrNp+zO6goHtP\nAIKV5fz0zdfUlJcx45lHOaJPvwaDhpTRgM25PQjH4Wn8s6/b4mZA3gAG5A2oPWa21r34XRWOs640\nSCzhx2jbvj+Gq6vItvgwmnf/YrnTauK0Xq04vlMAm9lwyJUmE0Ic2BLJBJMXT+a1Za8BqUwX9w+5\nn+pYNS/88AIBe4AJXSY0mk3CZ/Xxwmkv8Nbytzij4xl4rB4qI5VURCswKiNeq3evZJPIclq48sTO\nxJJJrJLJUghxCPLb/Tx9ytO8vORlumV346i8o/b3kuoI2AO8Pup1Fm5dSC9/L7JsB1ZQkxBCCCGE\nEGLvkqAhcUCLl5URXb0aoy8LU24ORpfcjS2EODjoWIx4WRk6HMbgdmPK2vMf2ULROI9+uoKqSKqU\nxLNfrmJQJz/De+Ty4IyfWLShghO65mA2GikqqwRtwpSbQ3xrEcpiaTSDm8PrY8zvbyMZj2M0m7G7\nMwsubeO187uTOvPF8q1cNawzXrnoLYRoBofXx7hb7mLWm1NZu3gh/rZHcOKvL8Xh9VEcKmZBbCnH\n3XotW2YuYPknn6EMhgbHsbvcnH71jXz73lt4/AG6HT804zVURCoIxoOYDWYC9lSQpdtmonOuize/\nK+S8i8/GZrejFAwce1ZtwFBZuIxgLIjFaCFgD+wySweAzWzEZm78Ini8uBi0xuDxYLDuvewaQgih\n0YTj4drn4USY6lg1d868k9mFswEwYOCyPpc12N9qsnJU7lH0DfTFYDBQHanmo7Uf8adZf0KheOSk\nRzi53cl7Za0Gg8IqZWWEEIewNq423HrsrUAq29vG6o38Z+V/ODJwJEcGjtyvN38qpWjlbMXpHU7f\nb2sQQgghhBBC7DsZBQ0ppXKAy4H2O/bRWl/SMssSAhKVlWx98G9UvPMOAO1efgnnscc23SepKamJ\nYEARcDd8kaWkOkI0kcRiNOB3yYUYIUTLiBUWsnrceJI1NfjOPpvc39+I0evdo7EsJgPHtM/i4x+3\nANAr30theQivzcw7Vx2PNRmnfaiY8qlT8Zw+ioUVml4v/hP10494evXEmJ3d6NgOT901VYRilAej\nWIwGvA4zDkv9jwpZTgtXn9SZS4a0x2U1YWniDvDqslJWLZyHP78Af0G7OllAhBBiG1e2n2EXXk40\nFMRksWB1OCkNlXLtZ9eyuHgxAK+c/CLHDB9db9/aeZyTLrw8o+CdbSoiFTy16CleW/oa+a58Xjn9\nFXIdueS4bUy9fBDBaBynxUTH36QuohvSQUtl4TLumXUPn6z7hBx7Dq+NfI3WrszL7EbDccq3BNmy\nupIjjgzgzrYS27CBdRdfQqKsjDZ//zvOYwdisFgyHlMIIZoSjAWZ2HciZZEyQvEQdx13F2iojFbW\nttlWKmdH8WScklAJqytX09HbsbakWVWsiumrpwOpgKT3Vr7H4DaDsZmkbK0QQuyoLFxGTawGq9Ha\nYKB5SbiE3/z3N2wNbgXg5V+8zNF5R++PpQohhBBCCHHQU0r5gPO01k/uQd81wACtdfFeWMc9wFda\n60+aO1ZLyzTT0DTga+ATILGLtuIgprVGJxIYTPs/CZWORKiZPbv2ec3/ZjYZNJRMapZvqeLyV+Zh\nNxt56ZKBeJNBls78kkBBO1p36U41Zi5/ZR4L15XTt62Xyb85hpxGgouEEKI5ar79lmRNDQAV771H\nzjW/2+OxjAYDZw1oS9+2PqrDcQxKke+zYTAo/C4reZEwq0afA7EY6qmnOO6zTwkpM+4Rp2A2Z76f\nh2MJ3pi3nvs+WIrRoHjtsmMZ1LHh8hR2ixG7pem7v4OVFUx76D42/7wcgHPveZD8bj0zP3EhxGHF\nbLVi3iGzTkInWFq6tPb5yuAajuo6AOJRqNgMFRsguz248uqMszsBQwCRRITXlqZK9Wys3siirYsY\n0X4EQPpzYsOfFYPxIJ+sS33fKwoVMXPTTM7sembG81aXRXjjL/NAg2P6Gn416RhKn3qa2IYNAGye\nNIl2U6ZibZ23i5GEEGLXqqJVvPrjq7yx/A3O7X4uYzqNoY2rDRXhCm4/9nYe+PYBvBYvF/a6sF7f\nsnAZ498bT2W0kjxHHlPPmEqOIwejwchp7U9j7ua5GJSBCZ3HE68OErEksDqaX6ZMCCEOBeXhcv4y\n5y9MXzMdv83P66Nep5WzVZ02SZ2sDRgCWF+1XoKGhBBCCCEES7v3OA+4H2gHrANu67Fs6ZT9tR6l\nlElrHd9f8+8GH3AVUC9oaF+eg9Z60r6YZ29oOLd/fQ6t9S1a639rrd/a9qdFVyb2uXhZGSXPPEvh\nbbcTTV+s2J8MLheBK69IPfZ48I4b22T7inCMO979gQ1lIVZsrWZTYRHv/u1evvrnC7z9l7sp3bSB\neWtKWbiuHIBF6yuYs7qkxc9DCHF4ch4zEIPTAYBn9ChUM0vMZDksHNvBz+BOfo5q58PrsDD2iZmM\nePhLyreWQiwGgI5GMVRUku337lbAEEBNJM7bCzYCqcxtb87fQDKp93jNyUSCssKNtc9LN21sorUQ\nQtRlN9m5/ujrAShwFXBC/gmpFyo3wj/6wwunwounQ/WWZs1jUiZ6ZqcCGk0GE12zumbUz2K01Gbb\nAOiR3WO35q0oCkF6iw1WRtFaYenUsfZ1c0EBNdXJ3RpTCCEaE4lHeHXpq5SES3jiuyf4dN2nAHht\nXtq72/PwiQ9z7+B7yXPWD1SsiFbUZiPaEtxCOJEqceY0O+nt783bY97mg9H/Ifz5Up6Z+BtWzv+W\nROJg+A1RCCFaXiwZY0CrAbx42otc0vsSlpYsrdfGYXJwyzG3YDFY6B3ozeD8wfthpUIIIYQQ4kCS\nDhh6DjgCUOm/n0sfbxal1K+VUt8qpb5TSj2jlDIqpap3eP1MpdRL6ccvKaWeVkrNAR5USmUrpd5V\nSn2vlJqtlOqTbne3UupVpdQspdQKpdTlO4x3s1JqbrrPn3axtt+k2y1SSr2aPpajlHorPcZcpdTg\nHeZ8QSn1hVJqlVLq2vQwfwE6pc/vb0qpYUqpr5VS7wE/pvu+q5Sar5RaopT67W68d/X6pd+/l5RS\nPyilFiulbtjhvTsz/XhSeu0/KKWeVbt752sLy/Rq4vtKqZFa6+ktuhqxX1V/9RVFf/87AJGffqLd\nC89j8jecYWJfMNjteEaOxDV0KMpobLK8DoDFaKBdtp35a8sA8NlNVBZtv0unsmgL3lY5dfr47FLu\nQQix94WqKom7HBTM+BBzKIzB5cLo8dRpk4xE0JEIBrd7t7Ji2CwmbBaYtbKYworUBZu1SRutTzmF\n6s8+w33qqRizfACU1kT5dnUJoViCoV1ydlmS0Wk1cfaAttz9nyWYDIqzB7TFYNjzzy1Wh5NTf3st\nHz37GNltCuh4VP89HksIcfhxWVyM7zKe0zucjlEZ8dvTn0s3LoBYKPW4ZCVEg7scqzpaTSQRwW1x\nYzFaiMeSRIIxDEZFtiubJ095kp/Lf6bAXYDfltnn320lyWZtmkW37G60c7fbrfPLa+8hp52bonVV\n9DulLcqg8IwZR9LmJlFUhPUXYwgrKfEjhNg7zEYzg9sM5qO1H2FSJo5pdUztax6bBw+eRvtmWbPo\nm9OXRUWLGFYwDKcplUXIaXbSw9+DcDjIx08+ys/fzgJg8Wcf0fHoYzBKWVohhECj+Xz959w7+17O\n6HgGI44YUa+Ny+JibJex/KLDLzAoA9m2pn8DFUIIIYQQh4X7AcdOxxzp43ucbUgp1QM4BxistY4p\npZ4Ezt9FtwLgeK11Qin1OLBQaz1WKTUceAXol27XBxgEOIGFSqkPgN5AF2AgqeCn95RSQ7XWXzWw\ntl7AHem5ipVS2z4YPwo8orX+n1KqHTAD2HYHZ3fgJMAN/KSUegr4I9Bba90vPe4w4Oj0sdXpfpdo\nrUuVUnZgrlLqLa11JtlG6vUD2gP5Wuve6fl8DfT7h9b6nvTrrwKjgP9kMN8+kWnQ0HXAbUqpCBAj\n9Q9Ua60b/1VJHHR0OLz9cSSCbkZ2ib3F6HJhdGX2Q6PTauL2M3rSp8CHw2IkN5DFyGtu4qNnHsPX\nqg1te/UhV1m4YVgHPlpewsmds+mZa2/hMxBCHG6ClRV8/tKzLJv5Ja27dueXN92B01v380G8tJTi\nZ54lunoV9gce4sPlpdjMRk7ukUe200KipobI8uUE587Fc/rpmAsK6gUWdQg48TnMlAdjPLGgmKfu\nvpvWd01Cmc0YfT601rw5fz33T18GwK8HteP2kT2bLClmMxsZf3Q+J/fIxWRUeO3mZr0XZquVDkcN\n4KL/ewqD0YjD423WeEKIw4/b4sZtcQOgk0mClRXY8/tjsLohUgW5PcFSvwROIpmgLFKGUaX2vP+b\n938sLl7Mjf1vZEDuMWxZWsNXry8nq5WDEZf0JNudTZ9AH2wm224FcrZytmJcl3F7dG4Oj4XR1/Ql\nmdQYzQZsDjM4s3GPGcvG5WVEEyby2u75BfdwMEY8msRgUDg8EigvxOHOa/Vyx6A7uPTIS/FZfWTZ\nsjLu67f7eeykx4gmo1iN1jp9DcqAw+6i97BT+HnubNCa3ieejNlWN+ixOFTMzI0z6eDtQAdPB9xW\n9147NyGEOJBVRCr4euPXALy/6n2u6ntVg+1cZhcuswRbCiGEEEKIWo3dobh7dy7WdzLQn1TAC4Ad\n2NpkD3hDa51IPx4CTADQWn+mlPIrpbbFjEzTWoeAkFLqc1KBQkOAU4GF6TYuUkFE9YKGgOHpuYrT\n45emj58C9Nzhd1uPUmrbh+cPtNYRIKKU2grUT6Gc8u0OAUMA1yqltv2w2za9pkyChhrq9xPQMR1Q\n9QHwUQP9TlJK/YFU4Fc2sISDLWhIay2/5hwG3CNGEF7yI9G1a2l1xx2Y/AffXS0Bl5WLB3eofe7s\n2Zvz7n8Eo9GI3e3BvH49v5zzFmO698Iw7yuc3X8F3o5NjCiEELsnFg6xbOaXABQuX0Z1SXG9oKHg\nt99S9vLLOC65jIc/XcnUBZsAuP6ULlw7vAuJoiLWnnc+aE3py6/Q8d13MOXUzZSW47Yx4/qhVIXj\n+OxmHO66WYTiSc2STZW1z1dsqSYaTzYZNATgsZvxNDNYaEdmqxVzM0uzCSEEQPmWzbx+1x9o1aEj\noyd+gzFagXLlgSu3TrtEMsFPZT9x85c30z27O2M7j2XaymkA3PDFDfx33IfMmLyEZFxTUx5hxbwt\nJHuX8MIPLzC642iOb3M8Lkv9CzbReIKKUAyL0YjXsXf2Sbu7fjCP3W2hc//GvttmJhyMsfCjdSz4\ncC3ZrZ388vp+OLyyFwtxuMuyZdULFgrGgpSES9hcs5lO3k5k2xv+HaCx49sU9DySy//xPDqpsblc\nGI3bf24qC5dx3WfX8X3x9wC8evqr9Mvt19hQQghxSPFavdiMNsKJcOqxSTJJCiGEEEKIjKwjVZKs\noePNoYCXtda31jmo1O93eLrzh9aaDMfeOSOJTs/3gNb6md1aZV0GYJDWOrzjwXQQUWSHQwkaj3+p\nPYd05qFTgOO01kGl1BfUP+d6GuuntS5TSvUFTgOuAM4GLtmhnw14EhigtV6vlLo7k/n2JUOmDZVS\nWUqpgUqpodv+tOTCxL5nys4m79Y/UvD4Y1g6d0IZMv7X44BlMltw+bKwu1MBjspiITztXcJ33U7o\njX9hcOyc1U0IIZrHaLbgzEpdVDFZrTh89e/iVpbURWLt9bGucvvnmdXFNSS0Jl5SAjr12SpRWopO\nJuvPY1DkeWx0znURcNe/EGw2GrhhRFfa+x208tiYNLonHnumCQaFEGL/KQ2XUhwspipaVef4/A/e\nJVhRzqrvFjD1rw8RcrSrFzAEUBGtYNLMSayrWsfCrQvrXJjxWX0oVCqrT5o3144z5uOaTr/HGffU\nmxcgEk8we3UpE56axY3//o7iqki9NgeSRDTJgg/XAlBaWMPWdfXPSQghADZUb2D0O6O5ZMYl3PL1\nLZSFy/ZoHKvdgSeQizc3D6ujbga4eDLO6ortN/OtqljVrDULIcTBJMuaxVtj3lnwrJUAACAASURB\nVOLPQ/7Mv0b9S0qPCSGEEEKITN0GBHc6Fkwfb45PgTOVUrkASqlspdQRwBalVA+llAFoKrX616TL\nmaWDaIq11tvuYP+lUsqmlPIDw4C5pEqJXbItM5BSKn/b3A34DDgr3Z8dypN9BFyzrZFSald3IlWR\nKlfWGC9Qlg786U6qpFomGuynlAoABq31W6TKqx29U79tP1AXp9+HMzOcb5/J6OqhUuoyUiXKCoDv\nSL0Bs0iliBKHEIPdDvZDt2SXMTubDm++QdVnn+E64QSMvoZKCgohxO5JBoMkampQJjNOXxbn//lh\nNq9cQW77jjjc9St52o86ipzf30iitIS7L+jBFVMXYjUZuenUbpiNBlSHDnhGjSI4dy6Bq6/C4Kxf\neicT7f1O3rjieDQan83M1qoIVeE4WQ4zfpdknBBCHHhKQiW12Sgm9pnIBT0vwGNN7aMFPXuz6OPp\nALTq0g2TueGSW2aDmTauNvxU9hNFoSLMBjOPD3+c+Vvmc1bXs7CaLIz9/VEsnLGOnHZu/Pku3nlo\nBVUlYdp089Lzovp7bkUwxu9eW0BlOM660iCf/7SVswa0bbk3opmUQeHPd1GysRqDUZGVJ4HyQoiG\n/VD8A4l0hvGFWxfWPm5Q9VbQSbD7YDcyZbgsLiYdN4m7Z93NEZ4jOCH/hOYuWwghDhpmo5l2nna0\n86SqSCSTSZLJJIZD4GZNIYQQQgjRcnosWzplafceAPeTKkm2Dritx7KlU5ozrtb6R6XUHcBH6QCh\nGHA18EfgfaAImEeqjFhD7gZeUEp9TyqI6cIdXvse+BwIAPdqrTcBm5RSPYBZ6cxA1cCvaaAkmtZ6\niVLqz8CXSqkEqZJmFwHXAk+k5zSRKm12RRPnWKKUmqmU+gH4L6mSYTv6ELhCKbWUVGmx2Y2NlWG/\nfODF9PsJUCeLk9a6XCn1HPADsJlUMNUBRWm9c5aoBhoptRg4Bpitte6Xjpy6X2s9vqUXCDBgwAA9\nb968fTGVEEIcCtSum+ya7L2ZSQSDVM2Ywda/Poi1V0/yH3wQk9+/y346mUTHYiiLhZLqKKhUicXa\ncSsrSUYiGF2uVEBnM20sC/GLv39FVSTOiV1zeOScvnhtZgorw3y/oYK+bX208tgwGvbKvz5CHI5k\n790L5hTO4bKPLqt9/ulZn5LrSN14Eq6upqxwI+GaavI6dsHhqR+UuU1JqIT3V71PwB5gcJvB+Gw+\namI1TPlxCv9Y9A9OPeJUJg26C02SqvVx3n3ou9q+v75vEN5A3SCb4qoI5z43m5+3VgPw2mXHMrhz\nYG+e+l4XrIxQvKEab64Dp8eCaRflKYU4SMne20ybazbz6+m/ZktwC9ccdQ3ndT+vwRKNlK2Bl8dA\nsBjOfhXaDwFT5kHooXiI6mg1RmXcZakzIcRBodn77+G49xaHinn2+2fJd+UzrvO42uD4fak8Uo5R\nGXFbmrrxWghxgJK9Vwgh9j25YJKhdMmtaq31Q/t7LWL3ZVqnJKy1DiulUEpZtdbLlFLdWnRlQggh\nxEEgWV1D4Z2TIB4nOPMbggsX4jnllF32UwYDypq60NJQeTGjx8PevLz7Y2EFVZE4AF8uLyKW0BTX\nRBn56NdUhuN47WY+umEoeZ4DqoyqEOIwk+/Kx2QwEU/Gaeduh1Ft3wltLhetu2T2FcRv93Nhrwvr\nHKuKVvHYd48B8OGaD5nYZyKfrP2EU3NHYnOZCVfHyGnnxmyp/xUp4Lby6iUDmTp3HT1be+jVZt9f\n4NldDo+Vdj0lq5wQoj6dTFJTUY7WSbLtHl4f9TqJZAK7yd5wwBDAN/+A8lTZQ6bfBBd/CO68jOe0\nm+zYTYduVmMhhNiVUDzEQ3Mfop2nHTmOHF5Y8gJndjmTfFc+6TuuW9y6ynXcOfNOnGYnfzr+T+Q4\ncvbJvEIIIYQQQogDW6ZBQxuUUj7gXeBjpVQZsLblliWEEEIcHJTJiGf0KELzFxBbtw5LQUG9NqFo\ngopwDAPgd1kbzeaTDIVIlJYRLynBXJCPKXvv3YXdO99LwGWhuDrK6L5tsJgMlAdjVIZTgUQVoRjh\nWBPlKIQQooUEY0GC8SA2o42APcC7Y95lRfkK+ub0xW/fnrmtLFxGYU0hHouHLGsWTktmpRvDNdUE\nK8pRsShPHf8Y187+PVprHGYHry59la82fM09N/4Ze8JFlteNw9Nw2bPWPjs3jpD7JoQQB7/yrZuZ\nesdNhKqrOHXitXQ/fihm+y6CDNv03f440BVMDe+VQgghGpbUSUwGE30Cfbjy0ysBmPbzNN4Y/QYB\ne8tnsCwPl3PHzDtYuHUhAE9+9yS3D7odkyHTywNCCCGEEEI0Tmt9d6ZtlVJ+4NMGXjpZa12y1xa1\nhw709bWEjL4VaK3HpR/erZT6HPCSqtkmhBBCHLaSyQRV0TAbjz2athecj8diw5xX947raDzB1yuK\nuPK1BbhtJt664ng65abv4K4phuqtYPeBPZvo+g2sHj8e4nFcJ59M6wfuJ5JMEI9GMVutOLy+PV5r\nntvGB9eeQCSWwGkzkeWwkExqRh3Zmg9+KGRM3za4bfJjoRBi36qMVPLWireYumwqJ7U9iSv6XsER\n3iM4wntEnXbV0Wqe/O5JXv/pdRSKl37xEkfnHd3gmOXhcmLJGDaTDTtWlv7vCz574WkA+o4YyZSR\nr2BxOrCZbJyQfwIfrP6Asz4Zx9RRU8l1elv8nIUQYn9b+vUXhKoqAZj91ut0PKo/Zusugoa6jwFn\nK6jaBN1Ggj1rH6xUCCEOHU6zk+uOuo5vCr+pPVYSKiGpk/tkfoMy1Mn45ra4MSjDPplbCCGEEEKI\nHaUDb/rt73U05kBfX0vI+OqgUupoYAiggZla62iLrUoIIYQ4CAQrKphy242Ea6oxGI1c+thkjG53\nnTZV4TgPf7ycRFJTHozx6uy13D2mF8nSQtTHt6CWTgOTFa6eR2jBAoinMv8EZ88iHIvy5gN3UbJ+\nLfk9ejP6hj/i3MPAIYNB1Ss95ndZuXdsbyaN6YnFaMDnkDvGhRDNVxOroTpajUEZyLZlYzQ0Xmyx\nOlbNw/MfBmDKsimc2fVMsmz1L0SHE2FmbpoJgEYzc9PMekFDwYpySsNl3LvoAb7dMpcLe13IBV3O\nZ/GnM2rb/PjVZwyacC4ubyqT2x8G/oGLel+Ey+xixpoZVEWrsBltRBIROvs647NltucWV0cIRhPY\nzUZyGig5KYQQ+0o8EWdLaAtLipfQO9CbXEduvSwS7Xr3YdZbU0Fr2vXui8nS+L4ViUfYHNzMstJl\n9MvvR55zREufghBCHLJynDkc3+Z4huYPZUnJEq47+jqc5syyZzaXx+rh3sH38sR3T+Axe7io10US\nNCSEEEIIIYQAMgwaUkpNAs4C3k4felEp9YbW+r4WW5kQQghxgEsmEoRrqus8NnmyKKqK8P2GcgZ2\n8OO2mhjU0c+yzVUAnNAlQLyqiuSWTVhWpC9kxyOw+kucJwzH6PeTKCkh+/LLCVVVUrI+VQ1049If\niIXD4IVEZSWJigoAjF4vRo9nj88hyymBQkKIvSccD/Px2o+ZNHMSboubf478Jx28HRptbzKYsJvs\nhOIhDMrQ6EUTe8LCA8fex1VfXcPRuUczvvN44sl47YXwRCzG3PffxjKwE98UzgLg+cXPc3aXs2nb\nqw9Fa1cD0KZ7T4ym7V+Bsm3ZJHWSCe9NoJe/F1ajlb/O/SsAF/W6iKv6XoXdbKcpJdURrpmygFmr\nSumU4+T13w4ix21rso8QQrSU0kgp46eNJxgP4jK7mDZ2GrmO3Dptctp35JJHniFUVYGvVRusjsYv\nWJeGSxk3bRyxZIxTjziVm4+5maRO4jQ78VolO5sQQuyuHEcO959wP9FEFKfZicPs2Gdz5zpyuXPQ\nnRgwYDBIwJAQQgghhBAiJdNMQ+cDfbXWYQCl1F+A7wAJGhJCCHHYstgdDP31Jcz/4F069BuA02Il\nseg79IJF9Bs2nFvfWsyDZ/Xh2pO7cEaf1njtZlp5bBCsJLRkGaYjz8Ow8AWw+aD9EMxZbejw7jsQ\nj2NwOgkl4ji8PoIV5fhatcFstaITCao+/ZTCW28DoPWDf8V7xhkoY+OZPIQQYl+pjlbzzPfPoNFU\nRiuZ9vM0ru9/faPts6xZ/HPkP5m+ajontj0Rn9UH0RqIpAItiUcoj5j59MVncHi8TLvwHaoSNVTF\nqli5cSVZtizynHn4DG7KNxfS23kcJoOJeDJOjj0Hi8nCoHHnUNCjF7FwmPZ9j8bu3inQUqf+auVs\nxQ/FP9Qenr9lPpFEZJdBQ8FoglmrSgFYWVTD1qqIBA0JIfabklAJwXgQSGVzKw+X1wsastodWO0O\nslq32eV4m2o2EUvGCNgDnN/jfCa8N4HKaCVX9r2S3/T8DS6Lq0XOQwghDmX7M+hy5+xzQgghhBBC\nCJHpt4RNgA0Ip59bgY0tsiIhdhIvL0cZDM3KpCGEEC3B5nTSd8TpdDtuCOt++J7o+g1s/s2FAJjf\neJ2r/vYUyaQm4LGS7cyu7actPqy9+xPc4MV2wQUY/XkodyuUUphzcmrbOZNJLvjrY9SUleLK9uP0\nZZGorqbyg+m1bao+mI775JMxOnc/pXkyFCJeWkq8qAhLu3aYsrN33UkIIZpgM9kY1HoQb1a9CcBx\nbY5rsr3ZaKZrVle69u+aOhAshZmPwcpPYMClhFwd+O+UD9j001J6jDiV6Ws/5G/z/obVaOWx4Y+h\nlOLKT65k8qmTOfHXl7Lg8+m8NvwlVgRXc2ybQfhtfpRd0WXg8Y2uIcuWxXOnPseby9/kVz1+xZcb\nviScCHN1v6szuhhuMxvonOvi563VBFwWclxSnkwIsf/kOnLpmtWV5WXL6ZbVDb/d36zx2nva0yfQ\nB4fZwbzN86iMVgLw2tLXOKvrWfX3yZoSSMbB4gCru4ERhRBCCCGEEEIIIcSBJNOgoQpgiVLqY1L3\n4o4AvlVKPQagtb62hdYnDnPRtWvZdOttGD1uWt17b52L6UIIcSCw2OxEg0Hmvf8OgUHDao/HNm2i\nQ7Ydq7V+BiBlNGLt0gVTIAAmE8rna3BsZTDgysrGlbU9mMdgt5N13nnUfPMNKIXvvPMw2FNZMLTW\nFFdHKAvGyHJYyHE3feE6un49q8dPgHgc59ChtHnwr5gaWYsQQmTCZXFx7VHXMrbzWLwWLwF7YPcG\nKFsNMx9JPf7gRpg4r7acWKBbZ55e/jQAkUSEL9Z/wbndzmV95fpUZqG8VgwaOQFQ9Mzvm/GURoOR\nrllduaH/DRiUgffGvodG47V4M7oTO8dtY+rlx1JcHcXvtBDYw6AhrTVKqT3qK4QQ2/jtfp4d8Syh\neAi7yd7soCG/3c/jJz+O1potwS08tegp4jrOCfknYDHuVOa2ugjevBg2zofhk+Co88EmN/8IIYQQ\nQgghhBAHE6XUGKCn1vovDbxWrbWud6elUuol4H2t9ZtKqS+Am7TW81p8sfXX0Q9oo7WevsvGzZvn\nNq31/enH7Umde+9mjpkDvA9YgGu11l/v9Ppk4GGt9Y/NmachmQYNvZP+s80Xe3shQuwsXl7Opttu\nJ7RgAQAlz00m79Y/ysUUIcQBx2Sx0qFff4zdumE/9lgiy5aR84ebsfs82K3mBvsoozEVNLSblNGI\nY9CxdP70E0Bh9HpQBgMARVURxvxjJpsrw3TOdTH18mObLJETWrgQ4nEAgrNno2Ox3V6PEELsLMuW\nRZYta886mx3bH5us2BMVnH7xRXw97X2cVhentT+Np79/GqMycnK7k1lSsoSbB96Mw5Tq5/DseakH\nuykVgJnj2P0g9Ry3bY9LkpXWRHln4QbWlgS5clgnWnubLocmhBC70txAoZ1l21IB7A6zg+njp1Me\nKSfPmVe/vM7mxbAm/XvWjD9Cr7ESNCSEEEIIIYQQQuyhJ6747DzgfqAdsA647eqnh09p6Xm11u8B\n77X0PC2kHzAAaJGgIZUKVFDAbaT+2exNJwOLtdaXNTCvsaHje0tGQUNa65d3WFAW0FZr/X1LLUoI\nSF0Y37EkmSk7WwKGhBAHpEQ8Rt8RIzGZTXj+9lcMyoDR6cTgcOy68x4wOhwYGxi7PBRjc2WqkujP\nW6sJxZJNjuMcMgSj30+ipITsSy7BYNuzC95CCLG7YokYZmMDQZXu1nDmi/DTdBg4EVC4/QFOu+Ja\nYsk4gVg3RnYcic1ow2qy0tHbEafZicPcMvvtvjBjSSH3vr8UgEXry3nhomPwS4kzIcQByG6yY3fZ\nae1q3XCDrHagDKCTkNUBDPUzbgohhBBCCCGEEGLX0gFDzwHbfvg8AnjuiSs+ozmBQ+msOB8Cs4Hj\ngbnAi8CfgFzgfKAnMEBr/TulVAdgCuACpu0wjgIeJ1Whaj0QbWS+U9NjW4GVwMVa6+pG2vYHHk7P\nVQxcpLUuVEpdDvyWVAaen4ELtNZBpdRZwF1AglTlrFOAewC7UmoI8IDW+l8NzHM3qUCsjum//661\nfiz92o3AJemmk7XWf0+/ZzOAOUB/4Nv0HN8BS4DbAaNS6rn0e7oR+KXWOtTIedY7H6Ar8GB63AHA\ncUAR8Ez6vK5WSt1HOoOTUuoXpIKWjECx1vpkpdRA4FHABoTS7/VPDa1hZxkFDaVTSI1Jt58PbFVK\nzdRa35hJfyH2hNHtpvU9f6Lk+SMwZvnwnXVWvTZbKsO8MW89nXJcDOrkJ8thaWAkIYRoOTVlpbx+\n1y2Ubymk04BBnDrxGqzNyHSRiMUwmhvOTrQrWQ4LXXJdrNhazcAOWTgsTV+oMbdpQ4d334FYDOV0\nYnS767VJRiIkKyvRSmHy+yV4UwixS0mdpChYxM/lP9PZ15kcRw4GlcqIFoqF+L74e95c/iajO42m\nf15/nGbn9s52H/QeDz1Gww5BRToZZ07ht1z3+XVYjVYmnzqZI3OO3NenttsSyQQJnagt4RMJxojH\nkpitRiy21FexoqpIbfvSYJSE1vtlrUII0Wyu1jDxa9j8PXQcBq7c/b0iIYQQQgghhBDiYHU/2wOG\ntnGkjzc321Bn4CxSwTFzgfOAIaTiQW4D3t2h7aPAU1rrV5RSV+9wfBzQjVSAUR7wI/DCjpMopQLA\nHcApWusapdQtwI2kAnvYqa2ZVBDSL7XWRUqpc4A/p9f4ttb6uXS7+4BL020nAadprTcqpXxa66hS\nahLpgKddvAfdgZMAN/CTUuopoA9wMXAsqWxCc5RSXwJlQBfgQq317PQ6ztJa90s/bp9+/Vda68uV\nUv8GJgD/bGTueuejtX5857UrpZzAHK3179PPt71XOaQCyoZqrVcrpbLT4y4DTtBax5VSp5D6d2XC\nLt4HIPPyZF6tdaVS6jLgFa31XUopyTQkWpwpJ4fcW/7Q4EXq4uoIl748lx82VgIw+TcDOKVn3r5e\nohDiMFe8YS3lWwoBWDlvNrGLfrtH44Rrqln93Tx+/nY2A0aNJad9J0w7BA/VlJcRj8UwW62Nlt/J\ncVuZcvmxhGNJ7BYjgV1kqlBKYc5pvAxPMhyhZtY3bPrjrRjdbto++yzWjh326PyEEIePklAJZ/3n\nLMoiZWTbsnlz9Ju1Jb8qohVM/HgiCZ1gxpoZfDjhw7pBQ9vslIWoOlrN5MWTSegEwXiQV358hfuH\n3N9wtqJmSuokSZ3EZMj0q1LDSsOlvLrkVTbWbOS6o68jmxxmvbWS1YuL6XNSAUcOK8DmNPOrge1Y\nsK6czRVhHjyzD34JghdCHKysTmjVO/VHCCGEEEIIIYQQzdFuN4/vjtVa68UASqklwKdaa62UWgy0\n36ntYLYHnrwK/DX9eCgwVWudADYppT5rYJ5BpIKKZqav9VuAWY2sqRvQG/g43dYIFKZf650OrvGR\nykI0I318JvBSOkjn7QzOe0cfaK0jQEQptZVU4NMQ4B2tdQ2AUupt4ARSpdrWbgsYasRqrfV36cfz\nqf8+7qix89lZAnirgeODgK+01qsBtNal6eNe4GWlVBdAAxn/eJ7pL+EmpVRr4GxS6ZWE2Gcay2qR\nTGo2lYdrn68rDe6rJQkhRK2s1vmYLFbi0Qi+Vm3qBPrsjmBFOdMfewiAVfO/5dLHnsOV7QdSAUP/\nvuc2Sjeup32//px+1Y04vI0FDmVeYiwYjVMRihFPaLx2Mx573bUnKivZeN316GiUZEUFm+++i4LH\nH8fYyNxCCAEQjAcpi5QBqcCZUHx7FtakTpLQCQA0uvZxZaSS5eXLWVm+kuFth9cGGW1jN9kZkj+E\n74pS37uGtR222wFD5eFyDMqAx+pptE1puJTXlr5GcaiYiX0mYjPZyLZlN9q+Kf9d/V8m/zAZgE3V\nm3ikz1MsnZX6nvvtf1bTbVArbE4zOW4bj57Tj1hSk+WwYDRIRjchhBBCCCGEEEIIIQ5z60iVJGvo\neHNFdnic3OF5kobjR/Y0NboCPtZa/yrDtku01sc18NpLwFit9SKl1EXAMACt9RVKqWOBM4D56fJm\nmdrxPUiw67iZmt0cz95E25do4HwaEE4HZWXqXuBzrfW4dPajLzLtmGnQ0D2kIpxmaq3nKqU6Aisy\n6aiUMgLzgI1a61HpunevA35SUVYXaK0brHEnRFO8DjOPnN2Xm9/8nnbZDkb1aZ1Rv3hJCbHCQkzZ\nfoxZPgz2pv6bFUKIpjm9WVz8yFOUby7EX9AOpy9rj8ZJxuPbHycT6B0+g5VvKaR043oA1nw3n1gk\nRCpguHl+2FjBr56bQyKp+dOYXpx7TFus5h1KmilQZjM6mvrftLJYQMqTCXFYiiVilEXKKAmVkOvI\nxW/3N9rWbXYzuM1gZm6ayZA2Q3CZXdtfs7i5b/B9vLn8TUZ1GoXXmtrLfi7/mYs/vBiAt1e8zdMD\nbiNrW+CQMmJ1Bjin+zkMLRiKxWghx14/S5rWmuJQMVXRKrxWb501rqlYwx0z78BpdnLf4PvqBSVt\n8+6Kd3n2+2cB2FC1gTM6nsHQgqEE7IHde8OAcHx7cHswFsTqMGEwKpIJjdVhwmgy1L7ulexCQggh\nhBBCCCGEEEKI7W4jVYJqxxJlwfTxfWkmcC6pUlvn73D8K2CiUuplIJdUqa+dy6bNBp5QSnXWWv+c\nLreVr7Ve3sA8PwE5SqnjtNaz0uXKumqtl5AqIVaYPnY+sBFAKdVJaz2HVBmx04G2QFW6/Z74mlTm\nor+QCmIaB1zQSNuYUsqstY7twTwNns9umA08qZTqsK08WTrbkHeHsS7anQEzChrSWr8BvLHD81Vk\nWP8MuA5YCmy7pfevwCNa69eVUk+Tqjn3VMYrFiLNajIyqKOf968dgsmgyHY2XYYHIF5aysYbf09w\nzhwwmWj/+lTsvSV1uhCivmgoSCwSwWyzYbE1HlxoNJvxBHLxBHL3eC6tNeasHMb84S4WvP8Ox4wZ\nj825/SK7J5CL2WYnFg7hycnFZNn1frcryaTmX3PXk0imgpP+PW89o/q0rhM0ZPT5aDt5MoV33onR\n46HVPfdg9DSeoUMIcejaEtzC+PfGE4qH6J/Xn4eHPdxoBp5sezYPnPAA0UQUi9FClm17MKXb4mZk\nx5EMKxiG3WzHYkwFy6ypXFPbpiJcgcfigbcvhzX/A08+TJiML38ArqwulIfLiSajJHUSg9oeeFMc\nKubs98+mOFRMz+yePHnKk/jtfsoj5Uz6ZhKLihYB8Pzi57ll4C0NZrOsjlXXPg7FQwRjQYKxYNP3\nhTRibOexrK5YTWFNIbcPuh27zcxZtx7Dhp9K6XBkALtbAoWEEEIIIYQQQgghhBD1Xf308ClPXPEZ\nwP2kSpKtA267+unhOwfmtLTrgClKqVuAaTscfwcYDvyYXlu9smNa66J0Jp2pSqltF7buAOoFDWmt\no0qpM4HHlFJeUnEsfweWAHcCc4Ci9N/bgoL+li7FpYBPgUXptfxRKfUd8IDW+l+ZnqjWeoFS6iXg\n2/ShyVrrhemsPTt7FvheKbWA3a/U1dj5ZLrOIqXUb4G3lVIGYCswAniQVHmyO4APdmdMpfWus0kp\npbqSCuzJ01r3Vkr1AcZore/bRb8C4GXgz8CNwGhSJ99Kax1XSh0H3K21Pq2pcQYMGKDnzZuX0QkJ\n0ZTYli38fOKw2uf+KyaSe/31+29BQrSMvZIK5nDee0NVlcx59w1WzPmGfqedwZHDT60TxLM3xRIJ\nlmyq5O+frOC4jn7OPKo1WU4rBuP24J1EIk51aQmlG9eTnd8Wm8OF1emsfT0cS1AejBJLaDx2M157\nZiV7Zq0s5tfPf0siqblzVA/OP/YIbDtmGgJ0IkGirAyMRvC4qYhWYDFacFv2NFBbiEPWIb33frL2\nE2744oba55+f/TkKRSwZw2ay4bP6SOokJaESEjqB0+yst08kkwkiNTUYjCasDked14qDxdzwxQ2s\nqVzDy0MfpsOsZ1GL/729gdWN/t08lkZLmfjxRMwGM5NPm0xHb8faJkuKl3DuB+fWPp8xYQZtXG2o\njlZz2/9u4/P1nwNw7VHXcnmfyxs8z+JQMQ/MeYCySBm3D7wDnXSSZbfid/j26H0LxoLEk/EmS6IJ\nIZrlkN57hRDiANbs/Vf2XiGE2G2y9wohxL4npRfEYSHT8mTPATcDzwBorb9XSk0BmgwaIhX99Qe2\nR0f5gXKt9bYaLBuA/N1asRDNoMxmHIMGEZw9G0wm3Kecsr+XJIQ4AIUqK5n//jsAfPXPF+g6aEiL\nBA3Fy8ooxcx5z80hGE3wxU9FDGifjd9T92J6Mp5g0Uf/ZdnML6kpL+XUidfR68Thta//tLmKs5+Z\nRSSe5A+ndePC49vjtO76f/F9Cnz87w8nEUtovA5zvYAhAGU0YgoEiCaiLCpayJ/n/JkOng7cOehO\nsu0NZxkRQhx6egd6E7AHKA4VM6rDKJI6yW8//i0ry1cyrvM4bhxwI9XRas774DzKImXccPQNnNP9\nHJzmVIBjIpGgaM0qPn3hKXy5rRh20W9xercH4gQcAR4b/hjxWJDssvWofhR22gAAIABJREFU9XPq\nLiBShY5U8X/z/4/ySDnZtmxmb5xFW1dbzMZUoGSeM48CdwEbqjZwTN4x2Ew2AFwWF5MGTaK9pz0+\nm4+xncc2ep4Be4DbB97NvHXFXPnSOjaUhXj/miH4HY12aZLDvIcdhRBCCCGEEEIIIYQQQoh9INOg\nIYfW+tudUvjHG2sMoJQaBWzVWs9XSg3b3YWlUyr9FqBdu3a7212IBpmys8l/+P+IFRZiys7G6Nuz\nu8aFOFQdrntvcaiY8kg5XouXgD2A2ZbK9JNMJDDb7BiN9YNpmiteWkrhpLvgsivrvZZIaoyG7f/P\njUcjrFuyiKqSIgDWfr+AHkOGYjCa0FozZc5aIvEkAK/OXsuZ/QsyChpyWk0ZtQOoiFRw3WfXURWr\nYmX5SobkD2FC10wrlQohmnIw7L15jjz+PerfRBIRXGYXK8pXsLJ8JQDv/PwOV/W7ii/Wf0FZpAyA\nl5a8xOhOo2uDhkKVFbz74D3UlJex+efl5HboxDFj6u4hWbYssGWBwQrth8B3a7e/aPOC1UX37O5s\nqNrAE8c+zJqPv2LRyv/Q88STcXhS+/crv3iFcCKMw+SoUz4t4Ahw44AbMzrXeMLMDVN+oiaaAOB/\nK4rpmNMy2eaEEPvPwbD3CiHEoUb2XiGE2Pdk7xVCCHGgUUq9A3TY6fAtWusZe3mei0mVV9vRTK31\n1XtznibmfwIYvNPhR7XWL+6L+XdHpkFDxUqpToAGSNeTK9xFn8HAGKXUSMAGeIBHAZ9SypTONlQA\nbGyos9b6WVK14BgwYMCua6iJA04yFsNgzqxEzr5kys7GlC3ZMYRoyOG49xaHirl0xqWsqlhFniOP\nqWdMxefy8Kt7H2LVgrl0O24Idq93r8+brKmh+pNPsCWT/PPKm3hyQTEDO2RTFY7xr7nrGHlka3wO\nCwAWh4PjzzqfaX+7D5PFwjFjJpBAURWM4bQaOP3I1vxr3gYAhnfPxW7Z+0FOSim8Ni9VsSogfXFf\nCLFXHAx7r1KKHEdO7fMCdwF2k51QPERHb0fMBjMDWg3AqIwkdILj2xyP1Wit099ottQ+N1mtNMoZ\ngJMnQfVWWPkJ+NrD+OcwOAJcduRlnNn2l8x5+nk2Ll0CgNlmo++IkQB11rinrEYjv+yXz5Rv12E3\nGxncJdDsMYUQB56DYe8VQohDjey9Qgix78neK4QQ4kCjtR63j+Z5EdhvATr7Kjhpb8g0aOhqUh8q\nuiulNgKrgfOb6qC1vhW4FSCdaegmrfX5Sqk3gDOB14ELgWl7tnRxoEpUVFD18SdUz5yJ/5KLsXbv\nfkAGDwkhBEA4HmZVxSoAtgS3UBmtJMeXQ6tOXWjVqUuLzWuw2TDl5hJftoyOKxfxyOiTePh/63ng\nv8vQGo5ql1UbNGQ0mmjb80gu/8fzoBTK5uQ/iwr519z1nNm/gJO65/LFTcOoCsfIz3Lgtu39PTdg\nD/DciOd44YcX6JHdg6Pzjt7rcwghDh4BW4BpY6exoWoDHbwd8Nv9OMwOpo+fTnmknNbO1nisntr2\nDq+PCbf9ia9fe4msNvl0O+6Epidwt4IJkyEeBqXAmQtKkWXMwmJX6KSm50mnoLUmEqzZq+fmdZi5\n6bSuXD60Iw6zkSynfI4VQgghhBBCCCGEEEIIcWhqMmhIKXWd1vpRoLXW+hSllBMwaK2rmjHnLcDr\nSqn7gIXA880YSxyAIqvXUHjHHQBUf/45nT6agSE3dz+vSgghGmY32Tk692gWbF1AZ19nvNa9n1Wo\nIcZAgPZvvYkOhdh8z73wwXQuvfk2pv9gZUtlhGSy7o0/ZqsVczozx4ayIDf+exEAc1aX8vUfTqJ9\nwNniay5wF3DnoDvZqVypEOIwZDaaae1sTWtn69pjdpMdu8tOG1ebeu2VUmS3KWDktTdhMJowmjK4\nd8HecBnZGlOUYTddz+QfJmMymLjsyBP3+Dwak+20ku1sIhuSEEIIIYQQQgghhBBCCHEI2NWv9ReT\nKin2OHC01nqPbuPVWn8BfJF+vAoYuCfjiINDsqqy9rGORCCR2I+rEUKIpvntfh4e9jCheAibyUbA\nXrcMTSKZwKAMexQoEw3FSSSS2Jzmev2VUhhdLjbdey81//sfAG7XY1w/4Sra5LjIdSeoqKzGarBi\nc9XNcqFQKAVapxJw7MsYHgkYEkI0h9lqa/YYi4sX8+GaD/lwzYcAxElw68BbMRkyTaIqhBBCCCGE\nEEIIIYQQQgjYddDQUqXUCqCNUur7HY4rQGut+7Tc0sTBytarF95x4wjOm0fgiokY3O79vSQhhGiS\n3+5v8PiWmi08tegpcuw5nNfjPLJsWRmPGayM8uWUZdRURBl+QXeyWjvrB9wYDBhc2/dIg9vF6H55\n/Fi1lJu/eZJe3t6c3fY88lQOth3K43jtJp4+v///s3ff8VXV5wPHP99z975ZJIFAAgTZoBC21I3i\nRmxVVESxWqt1VX9q1eKoe1urrXtUrHWhBXFPhkoA2XvP7Hlv7v7+/rjXAJIww9Ln/XrllXO/57vO\nTTgBzpPn4c3idfy2KA+fQ0rnCCEOPhUNFSR0ApfFhdPibLF5c1w5hOPhxtfBaJCETrTY/EIIIYQQ\nQgghhBBCCCHEr8UOg4a01ucppXKAj4HT98+WxKHOnJ5O9l9uQYfDGG43hn3vf6NcCCH2t5pwDbdO\nuZUfNv9Aob+QPHceZ3Q6Y5fHL5y6kZU/lgPwyQsLOP2aw3F6ty11Y9hsZFx3DbgcaAUN551MIlHD\nFZ9dQSQRYWbJTLr7epHlO3qbcW67hRO6ZXNkp0wcFhOGsePsP7GqKnQshmGzYfJ6t7THEkSCMcxW\nA6tdMnQIIVpOWbCMP3z2B1bVrOKvg/7KsPxhLRY41NaZw41FNxJNRDEbZq7rex1Wk7VF5hZCCCGE\nEEIIIYQQQgjRPKXUmcBSrfXCFpqvCBittb66Jebbg/VPB7ppre9XSmUBEwErcDVwCzBKa119IPa2\nv+z0CaHWejPQez/sRfyCmDwekAxDQohDWEIniMQjPH3kv3CWZ2CrsdNQH8Hh3rUH01tnBrI6LKhm\nAnvqXAavHGtQF63ji+l/5PWTX9/mvMmkUAbUhaI4LSZMJgMAw1C4bE3/GNexGBgGyjCIVVay8f9u\nIjB9OumjR5Nx+WWY/X6i4Thr5pczY9Jq8jqnUXRKwXbXprVmbWWQd2atZ0D7DHrl+fDYJauREGLn\nvt3wLUurlgJw7/f3MqTNkJYJGgrX4y1+Ce+yT3io97lQeBxuZ6u9n1cIIYQQQgghhBBCCCEOIo+c\nc+oo4F6gHbAW+Muf35w4/sDuCoAzSQbWtEjQkNa6GChuibn2cP0PgA9SL48D5mmtL029/vbA7Gr/\nMnZ0Uin139TneUqpuVt9zPtZuTIhhBDiFyXNnsYjv3kU5qcz/aX1fPX8cuZ+sY668nK+Gf8y6xbO\nI9wQbHZ8xyOyGHx2Ib85txMnXNKNeEwTjcS36+e2uunXuj+frfucXFcuXquXZ45/hr7Zfbm428X0\nzevLxEUlXP7aTD5bXEp9OLbDfUc3l7Bp3DhKH32MWEUl0U2bCEyZAvE4lS+9hA4m9xxuiPHJ8wuo\n3Bhg7pfrqSlp2G6usvowZz8znSc/X875z3/PxurQbr6LQohfq0J/YeNxB18HTMrUMhNH6mHGc7Du\ne9wTr8M989WWmVcIIYQQQgghhBBCCCEOEqmAoeeAfEClPj+Xat8rSqkLlFI/KKV+VEr9SyllUko9\no5QqVkotUErduVXf+5VSC1MxIg8rpQaTrFD1UGp8x2bW+L1SaoZSao5S6h2llDPV/lul1PxU+zep\ntqOVUhNTx/2VUtOVUrOVUtOUUp13cB1jlFLvK6W+UkotU0qN2+rcBKXUzNT1XLZV+0lKqVmp9T/f\nap6nlFKHAw8CZ6SuzaGUWq2Uykz1G516H+YopV7b86/AwWdnmYauSX0+dV9vRAghhDigEgkIloEG\nHD4w2/Fb/FSv39DYpWxtPfPCs5jx/tvM+OAdxj7+LDZH05kzHB4rRxzfjrK1dXzzn6XYXWY6D8gh\nt5O/MVsQgN1sZ0ibIUw+azIAGY4M0u3pPHnMk5jDcSJzFjPY7qayjYM//HsmU246FnczGYZi1dVs\nvPFGgjNmAKAMg/SLx6CsVnQkgrlVK5QlmSlIKbA6zISDySAkq3P7ObWGikB4y/XXhemcI1nkhBA7\n197XnvGnjGd1zWoGtR5Euj29ZSa2OOGwk2Hmi2CY4LCTWmZeIYQQQgghhBBCCCGEOHjcC/z8AZQz\n1b7H2YaUUl2Bc4AhWuuoUupp4HzgVq11pVLKBHyulOoFbABGAF201lop5ddaVyulPgAmaq3f3sFS\n72qtn0ut+TdgLPB34K/AiVrrDUopfxPjFgNDtdYxpdTxqesduYN1+gM9gCAwQyk1KZW56JLU9ThS\n7e+QTKjzHPAbrfUqpdQ2/2mttf5RKfVXoEhrfVVq7z+9b92B24DBWuvyn4891O0waEhrvSn1ec3+\n2Y4QQgjRvIqGChSKdMe2P4tjiRi14VqsJituq3vPJq9cCS8Ph3AdnPcfyB+CxWZh0JkdKV1dC8CA\nM9oz+e/PJ/trTai+DshtdspEPEGgOkzbbumUr6vDbDURC8UwubaUAQsFAtRXlFFXUUZ2+0JwgMkw\n4YooSu5/iJp33wPg5CefZmJrH4mEbv4a4gnidXVbXtZUYzidtP/gfULzF+Ds2wdzVhYADreFkTf2\nZf63G2jXLQOXb/uya26bmYd/25tHPllK3/w0urWWgCEhxK7xWD30zOxJz8yejW3RcJhIQxCzxYrN\n5dqzie1eOO426H8p2Lzg+EX920wIIYQQQgghhBBCCCEgWZJsd9p31XFAX5KBNAAOoBT4XSojj5nk\ng69uJMuPhYAXUpmAJu7GOj1SwUJ+wA18nGqfCrycqnj1bhPjfMArSqlOJH/N37KTdT7VWlcAKKXe\nBY4kWersaqXUiFSftkAnIAv4Rmu9CkBrXbkb13Ms8JbWunwPxh70dhg0pJSqI/nF2O4UoLXW3n2y\nK/GrE6+tJbRoEaEFC/EOPwlLbvMP4YUQv05ra9dy3VfXoVA8fszj5HnyAIjGo8wtm8t9P9xH57TO\n/Lnfn3FZXKysWcnkVZMZlj+MQn8hdrO9+ckTCZj6GNSXJl9/chtcOAFcmaTlujjntv4AmK0Jeg87\nhRnvv0V+ryPwtspunKIqVIVSCr9tS2C0YTIwWw2+/c9SAFbPLeecW/tjS50PxUKUBUpYPW8GP771\nNmm5bTjr5jtw+vzocJjIunV4zz4bQ0F80XyuGfZbfI7m/35kSk+jzUMPsfHmmzA8XjL/eCWGzYat\noABbQcE2fQ2TQVqui6G/O6zZ+Vw2M8N75nBkYSZ2iwnvDtYWQogdiTQ0sGzGdKa++Rp5XXtw9OhL\ncXp9ezaZMyP5IYQQQgghhBBCCCGEEL9Ma0mWJGuqfW8o4BWt9S2NDUq1Bz4F+mmtq5RSLwP2VLaf\n/iQDjc4GriIZPLMrXgbO1FrPUUqNAY4G0Fr/QSk1ADgFmKmU6vuzcXcDX2qtRyilCoCvdrLOz2NZ\ntFLqaOB4YJDWOqiU+grYwUNCsbNMQ5JS4BCQCIeJrFpF3Sef4hl2Atb27TFstp0PPIhE1qxh7UVj\nAKh64w0K3hiPOTPzwG5KCHHQCEQDPDjjQZZWJYNvHil+hPuG3ofdbKc6XM2fvvgTddE6llQtYWje\nUPrl9OOCSRcQSUR4bcFrfDTyox0HDRkG5A2A2f+GtPaEB9+IgQULYBgKl2/LPbXb0GMoLBqA2WrF\n5kxmylhXt45bvr0Fi2HhvqH3kePKaewfiyYajyOhOAk05fVhrOYoX6z/jKdmP0Wv9J5cfvNNTLzj\nTuKxZLkww+vF/PDfeeKbNbTLcHLWEW3oa91x4I5SCmthR9o+9xwYBmZ/U5kdd4/DYsZh2Vk1UyGE\n2LFIQ5CPn34crRMs+vZLeh47DGe3njsfKIQQQgghhBBCCCGEEL8+fyFZSmvrEmXBVPve+Bx4Xyn1\nmNa6NFVmqx0QAGqUUtnAcOArpZQbcGqtP1RKTQVWpuaoA3YWR+IBNimlLCTLn20AUEp11Fp/D3yv\nlBpOMgvQ1nw/9QXG7ML1nJC6hgbgTOASoA1QlQoY6gIMTPX9DnhaKdX+p/Jku5Ex6AvgPaXUo1rr\nit0ce9AzDvQGxN6LV1Wz+nfnUP7006w+51zi1dXb96mvJ1pWtk3ZmgMpEQ4n91ObLPkTWbeu8Vx0\n40b0jsrvCCF+dSyGhTx3XuPrPE8eZiMZyKKUwmfbkq3Cb/MTTUSJJCIAxHSMUDy04wViYeh0PPqS\nj6kbNZkpxRv55KXnCVRXNXZpiDYQT8Sx2Gxop4VaglQ1VNEQbeCZH59hTtkcikuKeXLWk0Tj0cZx\n2QVeug9tTWZbNydf0ZMPF5dwzr++ozJUx1+n/pWSYAmfrv+MDbqcrkOPIa5MlNeFqYporvjvfP47\ncz0Pf7KUyQs2U1obprYmxP2TF/Pl4lLqQtHtLkUphTk9vUUChoQQosUYBg7vliSlTp/co4QQQggh\nhBBCCCGEEKIpf35z4njg98Aaktl01gC/T7XvMa31QuA24BOl1FySGYbCwGxgMTCeZAkxSAb+TEz1\nmwJcn2r/D3CjUmq2UqpjM0vdDnyfmmvxVu0PKaXmKaXmA9OAOT8b9yBwn1JqNjtJgJPyA/AOMBd4\nR2tdDHwEmJVSi4D7SQYLobUuAy4D3lVKzQHe3IX5SY1dANwDfJ0a++iujj0USOqAXwAdCaMjyYfj\nOrzl+Cex6moqnn+emnfexTt8OJl/ugpzWtqB2CoAiVCIwLTplNx3H7auXcm9Yxyu/v1x9u9PaMkS\nsm++CcPtOmD7E0IcfGKJGBd1v4hhBcNYVbOKY9od0xg0lOnI5Llhz/HKglfomdmTrhldAbimzzW8\nu+xdhrcfjs+6kxI4Nevhv6MpO/9t5mz6kVD/bDrSmuKJ7zHw3PNZWLmQF+e/yNA2Qzm23bF8sPwD\nPl7zMbcPvJ355fM5+7CzMZTB+yveJ9ORiaG2xOQ6PFYGjywkHk2wpq6BD6Ztwm0zsb4qRIYjg/KG\ncgDaZXck/dz+nPPKPBJa8+KYfgQjscZ56sNxFm+opWxNA53bOLn45Rl8dv1ReOzJzENaa0qCJRRv\nLqZHZg9yXbnYzIdW1jkhxC+Xy+fnvLsfZtGUL2nbrSfuNCkvJoQQQgghhBBCCCGEEM1JBQjtVZBQ\nU7TWb7J9wMx3zXTv38T4qUC3nazxDPBME+1nNdH9q9QHWuvpwGFbnbttR+sA67XWZ/5sjTDJbElN\n7WsyMPlnbS+TLKe2zXHqdcFWx68Ar+xkP4ckCRr6BTC8XjKuuIKa99/HP+JMTFv9FjdAoq6Oyudf\nAKBq/HjSRl/YbNCQjsWIbtxIcMYMnP36YcnNRVmaL4Wzu3Q8Try6GsPlJPeuO9l4y18I/vAD3pNO\nos0Tj6NjMUxuN4bD0WJrCiEObXWROt5b/h4vznuRgbkDuan/TaTZt72H5XnyuHXgrdu0jeoyijML\nz8RpduK0OGlKMBokEA1giQbw9r+MCav+x99//DsA53U6lxFdjqYmUsOlH19KJBHhq3Vf0SurF8/P\ne55Hj3mUP33xJ8obyjEpE2+d9hZt3G0YedhITIZpm3WsdjNRFaeNw8Y1BbmYHGZCDWZeHPYSH6/+\niH65/fDZWvH7VxewpCSZEW7C7PX8Y1Qfbpswn9Z+B0cWZuDWiu8nrOHwXl0AqN0q01B5QzmjJo2i\nrKEMi2Fh0ohJpJGJ3d1y93AhhNhTSin82TkMGnnegd6KEEIIIYQQQgghhBBCCCFSJGjoIBGLRmmo\nqyVUX4fLl4bTt5OsGFsx+/1kXDqW9FHnoZxOTK5ts/QoqxXD5SQRCKJsth0G5MQqK1k14iwSgQCG\ny0mHyZOxtGq1x9e13fylpawacRbx6mpsXbqQe+edGKn9HsjsR0KIg1cgGuChGQ8BMGnVJEZ1HbVd\n0FBTnJbmg4V+mnfyqsk8Wvwo3TO68/CA21k0+7HG88tql9NqyGXE0Wi2lEyMxqN09HfEYlgaswTF\ndZzNgc2srVvL0sqltHJue98M1ISZ+vYyYpEEfU/K5+PnFtDvjPZMWD6BQKyeQn8hZly0z3Axc02y\nJJrNbCK8qJqHT+2O3WulvjxEw7pKTrq0HZF4De9ecjgFGVvu97FEjLKGsuQeE1E2lpdQPLGEYy/o\nissvGYeEEEIIIYQQQgghhBBCCCFEy1FK/QMY8rPmJ7TWL7XgGicCD/yseZXWegRbZQUSe06Chg4S\ndeVlvHrjVcSiETr27c+JV1yLw+Pd+cAUk8sFrqZLepnT0yl4+23qv/kG95AhmPz+ZufRoRCJQACA\nRCBIoqFh9y5kJxrmzydeXQ1AePFizLm5mLNbLihJCPHLY1ImfDYfNeEaDGXsUsDQrghGg9z93d0k\ndAKPzUO5jvLHw69gdulsooko1/W9DmU2YVMm/nnCP3l90euM7joal8XFXUPuIp6Ic9XhV/Hi/Bfp\nn9Mfq8nKlA1TuLbPtdusE48n+P6DlSybUQpAIq7pMiiH0g1VrPavagxAclrM3HJyF/oWpOG2muig\nLHz9z/loDWdcfzh5rd2sKV3AazfdD8DQUWPwtj+jcR2nxcnYHmN5deGrDMgZiDuSxtr5K5j75ToG\njShskfdMCCFamtbJwMytyzoKIYQQQgghhBBCCCGEOPhpra/cD2t8DHy8r9f5NZOgoYPE5hVLiUUj\nAKz6cSaJeLzF5lYWC7b27bG1b7/TvobHg2/kSGonTsRz4jAMq7XF9gFg79oV5XCgGxqwtG2LOc2P\neTeyKgkhfn3S7emMP3k8H63+iAG5A0i3p7fIvIYyyHPncUL+CeS4chg3fRwXdr2QN099E43ms7Wf\ncfmnl3Nah9O4pMOF3N7nLywrXcy/l/0Ps9XK2B5jQcFDRz1EOBamnacd757+LhmODAAqGirQWuMw\nO8lq52Hl7DLCwRhKgc1lpnPvfPJMV5PhyGjMiJThtnFe/3aE6iP8554f0KkER0orrA4Ty2dMb9z/\nypk/0PO4EzGnSkj6bD7G9hzLqM7nU7aynm//uQYAd5q9Rd4vIYRoaZWhSsYvGk99pJ6xPceS5cw6\n0FsSQgghhBBCCCGEEEIIIX5VJGjoINGmSzccXh8NtTX0On44JrPlgOzDsNtxHzkE78nDCS9eTMn9\nD5B77z3blTzbU+bsbDp+OInoxo1Y2+VjzspskXmFEL9cJsNEO287Lut12S6PaYg1YFZmLKbm76UZ\njgxePPFFAtEAZ75/JhrNnLI5TBoxCY3mgR+SmQ7fWPIGl3Ucw7wJ77N6zmxOOOF45meVEYwFeWr2\nU43zfXr2p2QpM9RupMRkcNlnV7C+bj3jBo/D2s7KsFt6surTevqclI/ZYuDwWPHRscm92VwWzry2\nDzM/Wk1OBz8ZbdwYJhN9Tj6D5TO+Ix6LUnT6WVgd25Zf81g9eKweXPleaofGcafZKSzaNptbfShK\nOJbA57BgNklmDyHEgZHQCV5d8CovzH8BgI2Bjdx75L24re4DvDMhhBBCCCGEEEIIIYQQ4tdDgoYO\nEp70TEY/+Hfi0ShWhwO7+wA9MDGZCHz3PdVvvgmAb+RIlHnbb5NgTTVaa0wWK/bdDCYyLBaM3Fws\nublNno+WlFD91luYs7LwnHAC5vSWySgihPj1WFe7jodnPkxbd1vG9hy7w3Jm2a5sqhqq6JfTjwUV\nC7iw64UYysBiWHCYHTTEGmjtak2osopZH34AwLSXX+KMBx/AarKSYc+gIlRBUXYRFhRMeRw2FPN5\n79NYWbMSgIdmPMS4QeP468xbefTMx/A4d575J56Ik/CG6HdOW9w2V2PZnqz89ox94lm01thcbkwm\nU5PjXT5bkyXJKurD3PvhYhZvrmXcad3o3spDzaYgkWCM7PZeHJ6WzS4nhBDN0VpTE65pfF0XqSOu\nWy7TphBCCCGEEEIIIYQQQgghdk6Chg4SyjBwpx34ABnDaiXr6j9h8vnQOkHGmDEos5nI6tXUfvop\nttNP471H7qF83RoGjjiHPiefjt3taZG1YxUVrPv9ZYSXLgUgunkz6WPGYNjsGHZbi6whhPhlq2io\n4NqvrmVpVfI+0tbblnM6n9Ns/8qGSj5c9SEndziZuwbfxT/m/IM/fvZH7hh8B2+c8gbfrviCga0G\nQGDLGMNkJtOVybebf+DxYx4nruO4zC7SNTDtCcg8jM6+Do39C/2FVIQqqGioIKF2/kA8oRMsqlrE\nHz79A1aTlRdOfIF8Vz6hQAylFO70jD1+f6YsL+edWesBGPtyMZOuGML/Hp4FQPehrRlydiEWm/zV\nQAix75kME1ccfgWbApsIxoLcOfhOfDYpWSuEEEIIIYQQQgghhBCHKqVUATBRa91jJ30Ga63Hp14X\nAaO11lfvhy2KJsiTQbEdc0YGra6/Dq01SimipaWsOudc7N26sdLjoGzNKgCmv/MGPY45AWVzsq4q\nyHcrKxnaKZM8vwPTnpS8SSQIr1rV+DK8cBE1700AwD/iTEw+eZAkhEiKxWPUx+pxmBzYzDsIKtTN\nnwpEAzxU/BATV06kractXquX/634HwBjPxnLpyM/ofuGNL7814MUnTqCYy++nHUL53P4iSfj8vgZ\nZu9POFxLbSKCy5WNischpzds+pHD1s5k/Emvsi6wifa+9tz3w33cP/R+0mzNZz36SX2knkeKH6E2\nUgvA56u+4GTnSCb/ax4Ot5XTru6NN8OxW+/XT3yOLeXaPHYz0YZY4+vSNXXEogksEqMphNhPWjlb\n8eBvHiShE/jt/gO9HSGEEEIIIYQQQgghhBD7XgEwChgPoLUuBooP5IZ+7fYgskP8WiilkgfxOIma\nGhKBAB7/lgc6Fpsdw2SiKhjllCencNuE+Zz21BTKA5HGPrHKKiKI8KGZAAAgAElEQVQbNxIrL9/5\nenYHWVdemTq24z/vXGonTaL0/vuJ19a27MUJIQ4JsXgsWbImsSVDTzAa5Ov1X3PV51fx2qLXKAmU\nsL52PaXBUuI6zqNHP8qxbY/lom4XcULBCTuce0P9BgAaYg3bZLhIs6WBUnQ/6nh6HXcS87/6lFAw\nyPGXXEpefi6WUBm2ZZ/h/dfR5E19Gn88TjDuIX7OmyR++xqeLqfS01fIyR1OJtedy6NHP0qX9C6Y\njKbLiW2zr0SM0d1GNwYYHZl5FN/8ZynhQIzqkiBzv1hPOBDdo/ezd56fe87swe+K2jL+soFkeW24\n/FYsNhNDRhZidUgssRBi//LavBIwJIQQQgghhBBCCCGEEPuBUqpAKbVYKfW6UmqRUuptpZRTKXWc\nUmq2UmqeUupFpZQt1X+1UurBVPsPSqnCVPvLSqmzt5q3vpm1vlVKzUp9DE6duh8YqpT6USl1nVLq\naKXUxNSYdKXUBKXUXKXUd0qpXqn2O1L7+koptVIpJVmJWpA8HRQ7ZbjdZN96KxXPP09OVg7HXHQZ\nm5Ytpuj0kTi8PjZXhgjHEgDUNsSIpI5jVVWU3H03tZMnY21fQP5rr2HOzGx2HZPHTdqo8/Cdfhoa\nKH3wIULz5oHJhDLLt6oQvza14Vo+XfMpH6/+mFFdR9E/pz9Oi5PaSC3Xf309CZ1gTtkcemb2ZEPd\nBr7b/B2TV01mYO5A7jvyPnw2HxaTpdn5vTYvtw+8nZu+uYmRBWdSaM3n3ye+xucbvuC3h/2WDHsG\nyqEYMPIcDj/xFOxGFNPUR2DGs2CYYegNMOhK+PoB9MA/8uZjiwkFonQd1IkeZ7RCJ0LYwhq/bdcf\nhq+pXcO4aePw2/y8fsrrrKtdRxtva9a2DlO5MVkjzdfKwaLvNtHrmDwMY/dif9NcVs4fmM95CY1h\nKLTW/O6WfmjA7jTvWZY4IYRoRkVDBRpNmi1tl4ImhRBCCCGEEEIIIYQQQuxznYGxWuupSqkXgeuB\ny4HjtNZLlVKvAlcAj6f612iteyqlRqfaTt3FdUqBE7TWIaVUJ+ANoAi4GbhBa30qgFLq6K3G3AnM\n1lqfqZQ6FngVODx1rgtwDOABliilntFa79lv2YttSCSG2CmTx0Ni+GlYTzyNTVFNfuee9DphOGZL\n8mF8usvK2X3z+GTBZs7r3w6PPfltpUMhaidPBiCyajXh1at3GDQEYPJ6MXm9JIJB0s47F2W14j9r\nBIbXu28vUghx0KkOV3PH9DsA+H7z93w88mOcFieGMrAaVkLxEAA2k40CXwHjpo8D4LtN37GiZgUD\ncgc0OW88FgOtMVksdPR35OWjnmPGe28x6Y17GTpqDFf3vAqz1ZrsHA5grt+MuXYj2Nzw/TPJ9kQc\nvrwHLv0Mvn0EbXGTlhsivTCN/D5ebpxyAzNLZjK622h+3+v322Qxak5VqIpbp9zKnLI5AOR787mu\n73UAHPnbTrTu5MfmtBAORqkta9jTtxUAw0hmklNK4fRJPTIhRMtbX7eeq7+4mmAsyKNHP0rntM57\nFjgUqoHKVVCzDtoOBHdWy29WCCGEEEIIIYQQQgghfj3Waa2npo7/DdwOrNJaL021vQJcyZagoTe2\n+vzYbqxjAZ5SSh0OxIHDdmHMkcBIAK31F0qpDKXUT4ECk7TWYSCslCoFsoH1u7Ef0QxJKXAAxOvr\nCc6cRdlT/yCyejU6Ht/5oAOoIRJnSVWU/3tvISf/fSrDHvuG8mCs8Xy6y8rtp3bls+uP4spjCvE7\nkw/blcWC7bDkn33D5cKal7fLaxpOJ64BA2h93724Bg7E5HK17EUJIQ56jSUSAWOrH1d+m5+XTnqJ\nUzucyiNHPcLUDVOpClfROa0zAA6zg3xvfpNzBqqr+PzFZ/jk2aeor6rEUAZV69bx40cTKV21ggkP\n3kUosFUGxapV8FQRTLoOShdvP2EiDqM/IGj14Du1nvfdL7JRr6W4pBiN5pWFrxCMBnfpek3KhMuy\n5V63daCRy2ej4xFZlKyqoWx1HUUnF+x2liEhhNhfIvEIT8x6gmXVy9hQv4Fx08ZRE67Zs8k2z4dn\nj4I3L4AJf4RgZbNdG+qjrFtUyfolVYTqI832E0IIIYQQQgghhBBCiF8x/bPX1bvR/6fjGKlYE6WU\nAVibGHcdUAL0JplhqKk+uyO81XEcSZDTYuSNPADitbWQSGDv2oV1V/2J/JdexJx1cP7WdDgWJxqP\nk+G28v2q5EOaikCE1RVBcnyOxn4+hxUc2441Z2bS7sUXiGzYgCUnB3N6+m6vr0y79hvpiYSmIhBG\nA36HBatZSmAIcajz2/w8MPQBPlr9Eed1Oa8xiMZqstIjswd3D7mbhE7QO6s3Gs0zxz/DpsAmsl3Z\npNu2v9/EYzGmvfU68z7/GIBYJMyJV1yDzels7GO1O7YJVmLjLNAJqFgBGR3BkQbRILHeFxNP74w1\noxDlyiQYKOH6adeS5cji+r7X8/BRD/PVuq+YsXnGLgf3eG1e/jbkbzw791kyHBmcWXjmNuedXhsD\nz+iIMsBskXucEOLgZSiDXFdu4+ssRxZmYw//2bFx9pbjkrkQbzoYKBZNMPfLdRRPWg3A4LM60vv4\nthJgKYQQQgghhBBCCCGEENtqp5QapLWeDowCioHLlVKFWuvlwIXA11v1Pwe4P/V5eqptNdAX+C9w\nOsmsQj/nA9ZrrRNKqYuAnx5u1ZEsMdaUb4HzgbtTZcvKtda12zy7Ey1Ogob2s1hFBRtvuJGGWbOw\n9+hB9s03tUimoepghPL6CHaLQZrTgsvW1J/L3VPTEOW9WeuZOHcTj51zOL85LJNvlpaT7bXRPnPH\nmX/iwSCJhgYMpxNn7957vZedWVUe4Jxnp9MQifPyxf3p086PySQPiYQ4lHmsHk5qfxLHtDsGh9mx\n3fmfHkBnu7Ib27KczQdgVoeriW91v02kjv3ZrTnlmv9j7fw5FJ0yAqd3q1JiHY8Fbxuo3QDlS+Hy\nb2kIKTZuNhMOJsiutpHmSAZVW0wWnj7+ae6cfifLqpdxY9ENXH34n7CoXb8fZzmzuGXALRiq6fuX\nxSbBQkKIg5/ZMDOm+xh8Nh+1kVou7HohXtselprtPgJmvgjV6+DE+6CZco/xaJzNy7dkM9q0ooYe\nR+VhSAVGIYQQQgghhBBCCCGE2NoS4Eql1IvAQuBq4DvgLaWUGZgB/HOr/mlKqbkkM/2cl2p7Dnhf\nKTUH+AgINLHO08A7SqnRP+szF4inxr4MbPWbo9wBvJhaLwhctHeXKnaFBA3tZ4n6AA2zZgEQmj8f\nc0YGxl6W3mqIxHll2moe+2wZhoJ/jx3A4MLMvd5rVTDCHf9bCMBpf/+Wydf+hkgsgctqQgPLS+vx\n2s1keWyNmTkSCU1VTQDKSrDX1xBdtQrXkCFYcnL2ej/NiSUSPP3VcspTZSjum7yIF8b0I825txnO\nhBAHmqGMJgOGdlddpI57Z9zH5adeTDQcRsdiHDPmMgDCwQBZ7QrI73k4DlMM5r4JSkHh8eDLg8u+\nhHgMrC5w+Kmv3IxylhIoWYUyDyAUsOFz+Hht+GssqljI9E3JIOu/ThvH28eNx+rfvSfWzQUM7W+J\nhEbHNSbLwbEfIcShJd2RztieY/d+Il8buPgj0BpsbrA2/TPBajcz4IwOlDzxI0pBv1PaS6ClEEII\nIYQQQgghhBBCbC+mtb7gZ22fA0c00/8hrfVNWzdorUuAgVs13ZRqXw30SB0vA3o10ScKHPuzNb5K\nnasEzvzZObTWd/zsdY9m9ir2gAQN7WeG04GlTRuiGzZgzs7GlJGBydNc9q1dE4zEmDx/MwAJDR/O\n37TDoKFQNE48oXHZdvzltxgKpZLPaOrDyYwcWR4b1cEol75SzMJNtbTy2Jj4pyNp5bWTSGiWlNRx\n8ztzyfXZ+WsfH7X33IslO5v8117FnLn3gUxNMRsGRQXpvDNrAwC98/zYpTyZEGIrJmXCYli4dMof\nGTHwDI7I7Isjzc/GRQt56+5bQWsGjjyXfl19WCf8ITnoyOvhmL+Ae0smo+pQNYHaKt77a3LMj1nv\nc+6dDxFtiGHfHKRddrvGvq1drbHandhMh16ai4a6CPO+Wk/V5iADz+yIL2vvA7eEEGKPuVvttIsy\nFFnt3Jx/V/LfqXb33mfdFEIIIYQQQgghhBBCCCF+6SRoaD8zZ2VR8J//EC0twdKqFabdDKTRCU1d\nZYh1iyrJLfTjzbDjtpkZM7iAm9+dh81scE5R22bHl9eFefiTJVQEItx2Sld8Dgv+ZjLy+BxWXhrT\nj/dmb+D8Ae1Ic1ooXl2F1WywcFMtAKV1Ycrrw7Ty2qkIRLhq/CxWlAWYu6GGC4ra0O6t91H19cSV\nsU+/2Yb3yKFjlotAOE7vtn4cVgkaEuLXKhwLUx2uBsBr8+IwO3BanNzQ7wZeXfAqFpOVXm2OwGyY\nWfb91GRkJLB8xncc3vVUGu+I5UsgHgXTlgfPGk1N2ebGMbVlpWid4OXrryAWjTDokot57vhnWVy5\nmBMLTiTDnoHVcugFDa2ZX8GMSasBqNwU4Ixrj8DplextQoiDm8lswuWTvwMKIYQQQgghhBBCCCFE\nU7bOBLSL/Qv22WbEQUOChg4Ac1Ym5qw9y7oTrIvw1n3FhAJRDLPiwrsH4U6zc0qvXIZ2ysJhMeF1\nNP9lfWnaKv4zYx0A1cEIVxxdSL+CNDz27X8b2203c3TnVhxZmInZZBAIx3hhymp+W5RH//bp/LCq\nkoIMJ1keOwCGonGeCwfms6A0wAWTl+B3WphwRR4Fe3TFu8bvtNK/fcY+XEEIcShI6ARzyuZw+WeX\ng4Ynj32Swa0HYzJMZDoyua7vdY3lFAF6Hnsi87/6jFg4TJ+Tz8DWpgtkFCbLk51wF1id28zvt/lR\nHbvTrtfhbF62lCHnXECkIUgsmiyPOP3Fl7js6ZcZ2HPQfr3ulhaPJX52rA/cZoQQQgghhBBCCCGE\nEEIIIYQQ+4QEDR0C4vX16FAIw+MhHksQCkQBSMQ0oUAUd5odj92CMxSg/utplM+bR/qFF2Bt02ab\neWLxGFs9K8dQirK6EA3ReJNBQz8xmwwA7BYTJ/fM4db35nH/yF7cdUZ30l1WsjzJLBoZbhvPXNCH\nf3y5nJF98rjstWIAqoNRJi/YzBVHF7bk2yKEENsJRoO8MP8FYokYAC/Mf4HeWb3x2rwA2wQMAWS0\nacvYx58lkUhgc7owOxxw8YeAAlfWdvMrpfClZXHCFdegYzFMhhnDZCKzbT7l69ZQ2G8QJkvz99OK\nhorkuo6DO8ix/eFZlK+vp6a0gSN/1wmHR7IMCSGEEEIIIYQQQgghhBBCCPFLI0FDB7lYZSWljz1O\nQ/EMMi67DMfRx3HEsHbM+2o9+T0ycPm2lL0JLVnCxj//GYD6L76gYPzrmLcqf1YTqeH4nhYqA22o\nDsa59oR8VpdF8RlhqKsBix3svmb3YjIUJ3bPoaggHYAMlxWvY9uH47k+B3ed3oP6cIyjDsviv8Xr\nMRmKIwubzqwUiydYUVbPq9PWcGzXVvQrSN9uTiGE2FV2s50hrYcwbeM0AAbmDsRmar48mMliwZ3+\nswAed/YO11BK4U/fNqDo7NvvIR6NYrFacXibvo+uqV3DtV9eC8ATxzxBO2+7JvvF4glqQ1FsZhMu\n2579mC6vD5PQmjSnBYtp90v1OD1WhowsJB5PYJN7shBCCCGEEEIIIYQQQgghhBC/SBI0dJALLVhA\nzVtvAbDpL7dS+MVA+p6UT+/j2mIyJzMA1ZY3YJgU2rzlwXi8qgqd2LacjNVk5b/LX8CR7cZvcrA5\nXMTR7Xth/eEZKH4BDhsOx48DZ/MZMLwOy06DegxD4XVYuHl4Vy4aXIDPYSHd2XSWiopAhJHPTKc+\nHOP1H9by2fW/kaAhIcQeMxtmTu94On2y+xDXcfI9+djMzQcNtRSXz7/D88FokIdmPMTy6uUAPFT8\nEA8MfQCnZdvyZ5FYnNlrq7l70kJ6tPbxfyd1Id21e1l+NlY3MPaVGZTXRXj6/D4c3s6PJZUxbneY\nrSbM7H7AkRBCCCGEEEIIIYQQQgghhBDi0CBBQwc5w+VqPFYWCxgGNqcFGxANx5n39Xqmv7sCk9ng\nrBuOIP2SSwhMmUL2bbdi8m+b7cJj9XBDvxv4YdMPZDoy6ZTWCWuwGr66L9lh1isw8A87DBraHeku\n604fdmutCUZija/rQrEd9BZCiJ3z2/347TsO4tnfzIaZtp62ja/betpiMbYPkKxuiHLJyzMIROLM\n31DLMV1acWL3nN1a69/frWHRpjoAbn53Hm9ePpBM974PnBJCCCGEEEIIIYQQQgghhBAHN6XUScAT\ngAl4Xmt9/wHekjjAJGjoIGft0IHs228nOH066ZdcjMm/5UF4NBxn0dRNAMRjCZbNLGPgn64iY+wl\nmLzeZJBRSlUgwrqqIGbDzJCc4/D8lM0nEgSbB8J1YJjB5m0cE4/HiAQbsNhtmC27l+lia6FAlHBD\nDJPZwO4yY7ZsyVzhsVt44twjeOqL5RzZKZP8DNcOZhJCiEOT1WTl971+TztvOxSKYQXDsJi2DxpS\nKDx2C4FIHACvffd/TB+W7Wk87pDl2qMsQ0IIIYQQQgghhBBCCCGEEOKXRSllAv4BnACsB2YopT7Q\nWi88sDsTB5IEDR3kzH4/aeedi3/kWRh2+zbnLDYThw3I5ocPVmGYFB37ZIHVhtnh2KZfQyTOS9NW\n8eTny3FZTdx7Vk9O6ZmL2WSAMxMu/QIWfQCFx4MjHYBIKMTa+T/yw4S36dC3H72PPxmHx8PuioRj\nzP9mA9+/vxKTxeDsm4rIzHM3nnfZzJzYPYdBHTNwWEy4bPItKYTYvwLRACWBEtbUrqFnVk8yHZn7\nZJ10ezrndTlvh30y3Vb+c9lA/vn1Cvrkp9E117vD/gAN9REa6qJYbCbsbgtHd87ihYuKKK0Lc0K3\nbHxS8lEIIYQQQgghhBBCCCGEEOKQU1RUZAYygfLi4uKWKNnTH1iutV4JoJT6D3AGIEFDv2ISoXEI\nUIaB+lnAECSDhnoelUdh32wCsTiv/LiOE82t6dHamwwISmmIxvh8USn989O4b3g3ajcECFSFcXos\nhINxtKkdtn7XYrGbUEoBEA7W88Ej96ITCTYtW0zHvgP2KGgoGoqzaOpGAOLRBCtmlmwTNARgNRtS\nOkcIccBsqNvA2f87G42mR2YP/nHcP0i3p7fI3JFQjLK1dayZX0GXQbn4WzkwdpD5RylFQaaLe0f0\nxDDUTucPB6N8N2EFC6dswjAUI2/qS6t8L8d1zW6R/QshhBBCCCGEEEIIIYQQQoj9r6ioaDAwCbAD\noaKiolOKi4un7eW0bYB1W71eDwzYyznFIU6Chg5xdpeF8bPXUV4fYchhrVhTEaBNmp0s95YgI7fN\nwsVDCuiZ4eHLJ+cSDsaY6TTzu1v7MX7c98RjCY65oAuJRIKc9j7Scl0oFCaLhVg4DIDZsmuZKrTW\nxCsqQGsMrzeZDal/NsUfrsEwKdofnrVP3gchhNhTS6qWoNEALK5YTDwRb7G5G+qiTHhsNmhY8O1G\nRo0bgMu/8yDJXQkYAohFE6yYVQZAIqFZNbecVvk7z04khBBCCCGEEEIIIYQQQgghDk6pDEOTAH+q\nyQ5MKioqyiwuLm65B1lCIEFDB0ysuhoSGnN62i71j8cTNNRFiccS2Oxm7O4tQTxFBel8srCES16e\nQZ98PwM7ZGwz1mo2OLF7DtGaCL2PzcadZmLtogCh+uR8APO/2cBhA7J59+FZjLpjAA6Pl3PuuJ9l\n30+j/RH9cPr87IrI2rWsvXA08dpa8p7+B85+/eh9XDu6DMzFZDGwu6RMjhDi4DIgdwAF3gLW1K7h\nmj7X4DA7dj5oF0UaYqTikYiEYiQSusXmBjBbDLoMymHO5+sxWQw6HiGBmUIIIYQQQgghhBBCCCGE\nEIe4TJKBQluzA1nA5r2YdwPQdqvXeak28SsmQUMHQHRzCRtv+j+0hjYPPoAlJ2enYwLVYeqrwpjM\nBuVr62jbNR2rI/nly3TbeOqL5QB8t7KSlWX1ZHu3vYd47BbqGwKUrPiAOSuWMOjs0dhdgAI0tOue\nQdWmILFInFg0QTRiIi2nNe2P6EfYZKcqDHYi+J3W7famYzGU2YxOJKh47nlipaUAlNxzL/mvvIw9\nM1OChYQQB61Wzla8fNLLxHUcp9mJ2+re+aBd5E630evYPNYuqOSIYe2wOVv2x67NaaHv8Pb0PCoP\nk9WE3SU/1oUQQgghhBBCCCGEEEIIIQ5x5UCIbQOHQkDZXs47A+iklGpPMljoXGDUXs4pDnHGgd7A\nr42OxSj7+5NEN5fgu+lGFhV/R8nK5UQags2OiUbiLPluM+89PIu3HygmEdfE44nG8xaTQV5aMjOG\nyVC09jedJaNszQqWTPuampLNfPzMwygjyui/Debc2/uT19lP6Zpajr6gC7UVDURDMeoqyqmNwt3f\nlDDowa948KPFVAUijfPFqmuoevO/bLzlL4RXrACtcfTq2Xje1rkzyrbzMjx7Q8fjREtLiaxdS6yy\ncp+uJYT45cpwZNDK2apFA4YAHG4rA07rwIg/9+GwftlY7S0f1ONwW/C1cuL22zBbTC0+vxBCCCGE\nEEIIIYQQQgghhNh/iouLY8ApQDXJYKFq4JS9LU2mtY4BVwEfA4uA/2qtF+zldsUhTlIS7G+GgTmr\nFf6b/48Jzz9F5cb1oBRjHv4HGXntGrs11NXSUFeHxWbDMDtY+WMqaFDDmvkV5PfcUoIsy2Pj7T8M\nZtqKcnq08ZHlaTpQx+XfUgrN6fVhGAYuv51AdZgNS6s4/Li2pLdxM/WdZZwwpjuRkAvSfMzZsJ47\nTutOjs9OQzTOT7NEli9j87hxAASmTqVgwnt4hg3DkpNDvKoa19AjMXk8Lfv+/Ux04yZWnX02iZoa\nXMccQ+t7/oY5PX2frimEELvD6jBjbbmKZ0IIIYQQQgghhBBCCCGEEOIXrri4eFpRUVEmyZJkZXsb\nMPQTrfWHwIctMZf4ZZCgof1MGQbpoy8kUFtD1aaNyUatqd68qTFoKNIQ5If336b4f+9imMyM+tsj\n9Dkxn0+eX4BhVnQb2nq7bBU5Pjtn9clrfF1XGWLx9E1ktvWQ29GH1WHGk5nFWTffwfrFC+h57DCc\nPj8ALr+NTkXZhBtilKyu5djRXZn75XpmfbyG4bf25dkLi3ji82XM31jDLcO7cmqvXELROJG2HXHc\nfBsNjzyADoeIhRM4W/lx/+Y3++fNBOqnTiFRUwNA4Msv0aHwfltbCCGEEEIIIYQQQgghhBBCCCGE\n2BdSgUKbD/Q+xC+bBA3tI/F4nFBdLSazBbt723I35vR07A47x429gq9fe4FWHTqS06lz4/loOMzS\n76YAkIjHWDHrB/qd9jtG3zMYZYDdZdnh2sHaMO8/Ppua0gYMk2LEXQN4fepKNteEuGl4D4YeUbTd\nGIfHisNjxd/KSUN9hPWLk6W+Vn61kUSfNKYsLwfgL+/NY2inTC59pZiFm2r5/eBeXPTAwzg9ftat\njdK57V69bbvNecQRYBiQSGBt3x5l3fF7I4QQQgghhBBCCCGEEEIIIYQQQgghwDjQG/glisdjbF6+\nhP/eeQuTn3qEQE3Vdn0sKDp178WYvz3CaVfegCuV9QfAYrfT6/jhyWObncMGDMZiM+HJsONOs2O2\nmna4vtZQX5nMuNO2Wzrvz9vI379Yzlsz13Pl67OpCkZ2ON5qN1N0SgGGodi8pIo835a6OnlpDsLR\nOAs31QLw3LS1JI4YyHfzrGR3ymhuym3Eysspf+45qt56m1hl5S6NaXavbdvSYdIk8p55hvxXX8Gc\nmblX8wkhhBBCCCGEEL9msUiEUH09OpE40FsRQgghhBBCCCGEEPuYZBraB0K1tUx64kHqKsqp3Lie\nZd9P4/Bhp2zTJ1ZSyppTToF4HGv7AvL//W/MGcmgG6vdQe/jT6LL4N9gMptxeH27tb7VbuK4MV35\n5o2lZOS5WBHb8h99oWicRELvcLzJbJDXOY0L7x1ENBRnxZJKxl/YjwWbazmlTxuUAqvJIBJP0DHL\njc1h4ajzu+L0Wne6t2BlNeXj7iDw+ecAJOrrybh4zG5d39YMpxNb+wJs7Qv2eA4hhBBCCCGEEEJA\nsLaGGR+8y+blSzjyvIvI6VCIySIZfYUQQgghhBBCCCF+qSRoaB9QhgmnP426imRJL0/69tlvImvX\nQDyePF61Gp06/ond7cHu9uzR+habmfa9MmndyY9hKDqhWVMRpLQuzD0jepDhtu3SHBabmdqKBuZO\nXI3VYebIk/LJsFvArPjsz0exorSe7m28tPLYd3lvpVUBdMmWsouRNWvQiQTKkKRXQohDWyyaIByI\nAmB3mzGZd5wVTgghhBBCiINNyYplFP/vHQDeued2LnniWdxp6Qd4V0IIIYQQQgghhBBiX5GgoX3A\n6fNx5g23Mfezj0jPa0vrzt2262Pv1g17j+6EFi4i88orMey7HnjTlHg8Qaj+p4fVFsxWU2MZMwfw\ntxE9iMU1Xsfu/YagJ93O7/7Sj0g4Tk1JkEBVCH+2k3bpyY/dNbdWU3Tz7cRvvQmT10v6ZZdJwJAQ\n4pCnE5rS1bV88MSPKAVnXHcEOR12L0ucEEIIIYQQB5ph3vLfRIbJBEodwN0IIYQQQgghhBBCiH1N\ngob2EXd6BoN/d36z582ZmbR99lmIx1E2Gyavd5fnbqirY+PSRdSVl9FpwGBc/jSqNgaY8NhsdEJz\nxnVHkNXOg9rqP/ec1qa/1IlQCB2PY3K5mjyvlCJYG+Gt+4oBsDrMjLpjAC5fMltRbUOUJSV1LNhY\nw0ndc8jxOXa490GFWbz8bS1D73mSTrk+zNlZu3zdQghxsIqEY8z4cBXxVDnImR+tYdjY7lhskm1I\nCCGEEEIcOloVdOCoCy5hw9JFDDr7PJyeXf+/CiGEEEIIIYyo424AACAASURBVIQQQhz8lFKrgTog\nDsS01kVKqXTgTaAAWA38TmtdpZIBB08AJwNBYIzWelZqnouA21LT/k1r/UqqvS/wMsncJh8C12it\n9f5YoyXfp18TSfFyAJnT0zFnZe1WwBDAugVzmPDgXXz+/+3deXzdVZ34/9fJzb42SfcFKFD23QgI\nOCwiqwIuIOgIMiiiCI46CvN1fiLujqDghqBgYRgVBxUKFpFFBFEqkcGRnbZQ6EqbNG2a/d57fn/k\nUlpIuqSf3Nw0r+fjkUfvPZ/zOefc9+fmTcG359xwDXf94Nt0ru1k3h0v0NOZprc7w7zbF9LXk9ns\nOOmVK1n2/32BJZ/6ND0vvMBgv0e9Xa+Nle7JwAbdFrV0cPqP/sIX5zzFB37yV1at61l/LZuNZLLZ\njcaaUFPGR4+exaw9dmTclImkUn4FJY1+xSUppu9Rv/799D3qSZWY3yRJkjS6VNTUctDJp3HyRf/G\nxB137t9tSJIkSZIkjYimpqbQ1NRU3tTUlPRWwEfHGA+IMTbl3l8K3BdjnAXcl3sPcCIwK/dzPnAN\nQK4A6DLgEOBg4LIQwqv/Q9k1wEc2uO+EPM6hIXCnoULW1wNtL8D8+2HXY4njdqSnp49Vi19a36Vt\nxTJCyDJ5lzpe/L9VAEzauY5U8ab/x+pMZyfLv/4N2ufOBeCl555jp//5JSUT3rjzT+P0KvY5ehrL\nnlvDIafMpLTitf9o+HJr1wavO8nmCo9Wrevh2j8uoCed5aJjdmVCzWvHr23tEWmSVOhSxUXsfcQ0\nps2qJwSom1hJUZFHOUiSJGn0KSoqoqi0bKSXIUmSJEnSmJUrEroAuBxoBFqampouA37U3Nw8HDvq\nnAoclXt9I/AAcEmu/abcLj6PhBDGhRCm5PreE2NsBQgh3AOcEEJ4AKiNMT6Sa78JOA24K09zaAgs\nGipkXS1w7ZGQ7ob7v0z6gke49crvcOy/fJyFf/sr7S2rOP6jF1NaUc5eh09l0o41xAjjZ1QPWDSU\n7u1l1cuLeOIP9/DmY08ks3r1+muZtjbSmSwDlvPEHg44ppGDjp1BKAoUbTD2wTMbOGLXRp5e1s5l\n79ybmrIS0tks379/PrP//CIAbZ29fOM9+w16RJokbQ/Kq0qYvHPdSC9DkiRJkiRJkiRJo9sFwBVA\nZe79hNx7yO3Esw0i8PsQQgSujTFeB0yKMS7LXV8OTMq9nga8vMG9i3Ntm2pfPEA7eZpDQ2AVRyHr\n6+wvGMq97mlbyYoF87nz6m9y6LvPZPIus6ifMo1UcTEV1TB9j4ZNDtfVvpZffOGzZNJpls1/lvd8\n7nMsPu88su3tVF/2JX71bBunjmugpvy10qHenm7mN8+jsm43Hrl9Pke9fwada/qorKulur6B8TVl\nfO+sg+jLZqkpL6aiJEVfJktHT3r9GB29mfU7EEmSJEmSJEmSJEmSpDfK7TJ0Oa8VDL2qEri8qalp\nW3cbOiLGuCSEMBG4J4TwzIYXY4wxV1A0bPIxh7acRUMFKtvXRygbR3jTh+CJX5Pd5wxWLO0/fmzN\nKyu4+0dXs2vToZx08WdJbXqo18bMZsik+4t5XnlhAesqaqj5/s1Ujy/j4ZU9zKyroas3s1HRUF93\nN309GZ74YwtHnD6N31/7ZVqXLKamcTzv/+q3qa5voL6qdKN5SlJF/Nvxu7Omu4/evixfPnUfqss8\nkkySJEmSJEmSJEmSpE0oo/9IsoE05q53D3XwGOOS3J+vhBB+AxwMrAghTIkxLssdDfZKrvsSYMYG\nt0/PtS3htaPGXm1/INc+fYD+5GkODcEbz7DSyOhYBQvuh1eeIdOyjOVfuIwV37+e7BH/Dp94lI43\nXcgdP/rRRrdM2mUWqeItr/sqr6zmmH/5GBN2nMlb3vtBlr/QxZ03vUR3WR1rsyku/vn/8plfPs6q\ndT3r7yktr6B+yiQmzqwgVZyhdUn/Tl/tLavo6ewYdK5JteV8+/T9+d77D2TquIqtDIYkSZIkSZIk\nSZIkSWNOD9AyyLWW3PUhCSFUhRBqXn0NHAc8AcwBzsl1Owe4Pfd6DnB26HcosCZ3xNjdwHEhhPoQ\nQn1unLtz19aGEA4NIQTg7NeNNdxzaAjcaagQdLXBHf8Kz9zR//70X9H197/Tu3AhIZVi4mc+TSq2\nM+uQw3nm4T8CMHHmLux7zHEUpbZ0nyEoq6pil8OOpm+HfZlUW0N3e5YzL5tOTwr+47Yn6c1keWh+\nC80vtnLCPlMAKCkrY8qusxg/I5Lp62bq7nuy9NmnaZyxI+VV1Zucr7rc3YUkSZIkSZIkSZIkSdoS\nzc3Nsamp6TLgCjY+oqwTuGwbjyabBPymv9aGYuBnMcbfhRAeBX4ZQjgPWASckes/FzgJmJ+b/1yA\nGGNrCOHLwKO5fl+KMbbmXn8cmA1UAHflfgC+kYc5NAQWDRWCdDcsefS198sfo2TyZHoXLiR29+8s\nVllbxzHnXsBbzzqHbDZDaXkFlXXjtnqq2ppKdt1hMt19GarqiqipLqOnvYcZDRUsWNm/c9D0+tdy\nT8xmKa+qorwKoJpTP/N5+nq6KS4to2pc/bZ8akmSJEmSJEmSJEmStLFXjyC6nP4jyVqAyzZoH5IY\n40Jg/wHaW4C3DdAegQsHGesG4IYB2puBfUZiDg3NsBUNhRBmADfRX60WgetijFeHEBqAW4CdgBeB\nM2KMq4drHYWse1076XQfRaGUyuO+Cr/+CNRMoeiAM0j99nvUnHQi4z92AaGo/xS5ipoaKmpqBhxr\n1boebvjTC6SKAuccthPjq8sGnbehqnSj9+NryvjvDx/C3U+uYO+ptezQ2F801LdsGauuu47SHXak\n7rRTKa6vH1KhkiRJkiRJkiRJkiRJ2rzcbkLXNDU1/QgoA3q2cYchaVDDudNQGvhMjPGx3Ll4fwsh\n3AN8CLgvxviNEMKlwKXAJcO4joLU1d7On2/9GYv+7zF22u8gDn3X6VR++mkIRYTqiUz+0uVQVESq\nsnKzY3X3ZfjmXc/wP39bDMDa7jT/74Td6Otohxgpr66muHTjIqJsZyeZtWshRiguZvKECZxz2E7r\nr6dbW1l80UV0P/EkAKnaGsa95z1b/TmzfX1k29qgqIjixsatvl+SJEmSJEmSJEmSpLEmVyjUPdLr\n0PZt2IqGYozLgGW51+0hhKeBacCpwFG5bjcCDzAGi4b6ursoqq1gjwvPYsHaF1hb1E1lzdT111PV\n1ZsdI93XR8+6dmJRMf+8fz2n79NIJltKZVmKtqUv84svfJaYyXDaJZexw977QYwUFfc/8r7Vq2n9\n8Y9pu/VXVB1xOFO/+tWNi3qyWTJr1r421+rXNoPKdnXR/cwzrLntdupOPYXyPfekqKLiDeuL6TTd\nf/87iz9xEan6ccz4yU8onTZtKOGSJEmSJEmSJEmSJElSgoryMUkIYSfgQGAeMClXUASwnP7jywa6\n5/wQQnMIoXnlypX5WGZeFZeWUnngznz04Yv4z398m4v++Elau1u3+P50Xx+Ln36Ce6+/htaXX2D5\n/bczvhue/a/nef5XL1BUVE0qVUwmneYvt/6MzqVLWXbppbTdPoeu1a30rltH2y9ugXSajgf+SN/S\nZRuNn6qvZ9rVV1G+917UHHcc4047bf21zJo1LPrg2bTdcguLzj6HzJo1A64xs2YNy7/0ZTJtbfS+\n8CKt/3Xz0IIlKW+299wrSYXI3CtJ+WfulaT8M/dKUv6ZeyVJ0uYMe9FQCKEa+BXwrzHGtRteizFG\nYMCz92KM18UYm2KMTRMmTBjuZeZdZd04ulJ9lKfKAVi0dhGZmNni+7vXtXPX969kx/0O4A83/pgd\n9j2EP/3PS3S09bDihbW8+I92pszaHYDpe+zD2pv/m7V3/pZll1xCpq+P3nQvRa/uZlRSQnFjw0bj\nh1SK8j32YMaPf8yUr36F4vHj11+L6TSk0/1v0un+9wMIpaWUztp1/fuKvfbc4s8naWRs77lXkgqR\nuVeS8s/cK0n5Z+6VpPwz90qSpM0ZtuPJAEIIJfQXDP13jPHXueYVIYQpMcZlIYQpwCvDuYZClO3s\npG/pUg54toM73noTn/y/L3LuPudSXbL5I8leVZRKUTdxEr1dXVTXN9DT0U51wzjaW/uPNKyfUs1O\n+/4LB592Oo2TprLo2Le/dnNvL/9o/gv7X/9juv7yCPVHHkmqoeENc4SiIooHaE/V1jLp//07bb/+\nDXWnnUaqpmbANaZqapj8+c9Tc+SRpBobKd977y3+fJIkSZIkSZIkSZIkSRo+w7bTUAghANcDT8cY\nv73BpTnAObnX5wC3D9caClXfihUsPOVUln3ms3R89NPMPvRqjppxFBXFFVs8RmVtHad85vOUVlby\ntnMvoKejhaP/eWfe8p5dOO78fZi6Wz0TdtiJGXvtS3l1DTO+/z0qDjqI8Rd+nPKaWg4+7Qy6Kiuo\nOuMMHi+up6Vvy9efqq1l3BnvY4cbrqf+zPfRXlLByvZuetJv3CmpuKGBulNOofrwwykeN27LJ5Ek\nSZIkSZIkSZIkSYkIIdwQQnglhPDEBm0NIYR7QgjP5/6sz7WHEMJ3QwjzQwj/F0I4aIN7zsn1fz6E\ncM4G7W8KIfwjd893czUjIzqHNm84jyc7HPggcEwI4fHcz0nAN4C3hxCeB47NvR9Tehctgmy2//WL\nL1IciygvLl9/PcbIutWttK1YTufaNYOOU13fwAFvP4nqikp2PupkPn/vQq56aTn/8df5tGezpFtb\nWXPXXXQ2P0r5Xnsx44c/oPEj51NcV0dl3Tiey9Tz5ivncdb1f+Nfb3mc1Z29W/wZisrLKG5ooDUd\n+NdbHufU7z/MA8+spKtv4KPKJEmSJEmSJEmSJEnS5jU1NR3S1NT0301NTY/m/jwkgWFnAye8ru1S\n4L4Y4yzgvtx7gBOBWbmf84FroL84B7gMOAQ4GLhsgwKda4CPbHDfCQUwhzZj2IqGYox/ijGGGON+\nMcYDcj9zY4wtMca3xRhnxRiPjTG2DtcaClXFPvtQvs/eUFTE+E9eTFF5+UbX17W28F+XXMz1F3+Y\n+396LV3tazc5XvG4cazqzjD3ieU8+Pwq/rpoNZlMlrb77iPdUE9Xxzo6580jNW4cReVl6+97avla\nejP9xUuLWjrpS2e3+rP84ZlXeODZlSxd081FP/9f2rssGpIkSZIkSZIkSZIkaSiampq+CNwPnAk0\n5f68P9c+ZDHGB4HX12ecCtyYe30jcNoG7TfFfo8A40IIU4DjgXtijK0xxtXAPcAJuWu1McZHYowR\nuOl1Y43UHNqM4dxpSIMoHj+eGdddx6w/PkDDP/8zqdraja4vX/g8nWvaAHj2zw+S6Xvt7LDV3atZ\n1rGMlq6Wje6ZXFvOBUfuzB6Ta7jy9P2pCX2srK/h5u9/i9/efTvZ3Xej//fmNe8+aDr7T69jQnUZ\n//me/RhXWbLVn2VS7WsFT43VpeR2/5IkSZIkSZIkSZIkSVsht6PQZ4FKXqvnKMq9/2xCOw5taFKM\ncVnu9XJgUu71NODlDfotzrVtqn3xAO0jPYc2o3ikFzBWFTc0DNje0tVC1e478E8Xfpw/X/cTpsza\nnaLi/sfU2t3Kl/7yJe576T72bNiTa469hsaKRgDqq0q56JhZfOStO1NdXkzf2jbu/9ls0r09tCx+\nieceb+bgmTtvNNfk2nJu+NCbyWQj4ypLKC1ObfXn2G96HVefeQCPv9zGuYfPZEJN2eZvkiRJkiRJ\nkiRJkiRJr3cxUD7ItfLc9Q8Mx8QxxhhCiJvv6RzbE4uGCkhLVwvn33M+z61+jnftchoXfPs71BZX\nU1lbB0BXXxf3vXQfAE+3Ps0rna+sLxoCqCorpqqs/5FmiosZN2Uqy+c/R3lVNVMPP5il65ZSliqj\nsaKR1R29dPZmKC0uYmLtYDln88ZVlnLqAdM49YBpm+8sSZIkSZIkSZIkSZIGsxuDnxhVBMxKeL4V\nIYQpMcZlueO/Xsm1LwFmbNBveq5tCXDU69ofyLVPH6D/SM+hzfB4sgKyaO0inlv9HAC/WXAb7Z1t\nZLPZ9dfLisuYUdP/O1NbWrtRwdDrVdbWceq//QfH/MsFvOs//5MvP/51jv/V8Zz3+/NYvradL97x\nJId/837OuPYvrGzvHt4PJkmSJEmSJEmSJEmSNuc5IDvItSzwfMLzzQHOyb0+B7h9g/azQ79DgTW5\n47/uBo4LIdSHEOqB44C7c9fWhhAODSEE4OzXjTVSc2gz3GmogEytnkpFcQVd6S5m1s0k9GVJlZSs\nvz6+Yjw3nXgTi9YuYnr1dBrKBz7i7FXV9Q0cePw7eLn9Zf687M8ALGhbQE86y+2PLwXghVUdvLCq\ngwk1Q99tSJIkSZIkSZIkSZIkbbPvAqcBlQNc685dH5IQws/p38FnfAhhMXAZ8A3glyGE84BFwBm5\n7nOBk4D5QCdwLkCMsTWE8GXg0Vy/L8UYW3OvPw7MBiqAu3I/jPAc2gyLhgpIY3kjt596O4vWLmJm\nzU7UxIr1R5O9anzFeMZXjN+qcctT5UyqnMSKzhVUFFdQmkqx99Ranly6lpqyYmY0DJRvJEmSJEmS\nJEmSJElSvjQ3N89ramr6FvBZoJz+06Oy9BcMfau5uXneUMeOMZ41yKW3DdA3AhcOMs4NwA0DtDcD\n+wzQ3jJSc2jzLBrKk3RLK7Gnm1BeTnHDwDsElaRKmFI9hSnVU4Y+z+rV9C5aRFF5OSVTppCqq2NC\n5QR+dvLPeG71c+xctzPjK8q48V8OZmlbFxNryhlfXTrk+SRJkiRJkiRJkiRJUjKam5u/2NTUdBdw\nMTCL/iPJvrstBUPSYCwayoN0SwuLL7qYrsceo/KQQ5j27SspbmxMfJ5sdzets2fTcu11AEy94grq\n3nEyABMrJzKxcuL6vuOrYXx1WeJrkCRJkiRJkiRJkiRJQ5crEPrASK9D27+ikV7AWJBpb6frsccA\n6Jw3j+y6jmGZJ9vdTccjrxUXdvzpIWImMyxzSZIkSZIkSZIkSZIkafSyaCgPiqqqKJ44AYDiyZMJ\nlRXDMk+qupoJF34cSkooqq6m4dxzCanUsMwlSZIkSZIkSZIkSZKk0cvjyfKgePx4Zt56K71LllA6\nfTrFEyYMyzyhuJjKgw9m1/vuBQLFDfVkMmm61q4lhEDVuPphmVeSJEmSJEmSJEmSJEmji0VDeRBC\noHjiRIonTtzqe9t72+lJ91BVUkVFyRt3KIp9faTb2iBCqn4cReXlFJWXA5DJpFk+/3nu+M7XKS2v\n4F2XXkb95Knb/Hm2RIyR9KpVkE5TVFVFqrY2L/NKkiRJkiRJkiRJkiRp8zyebAgy2Qx92b5hGbul\nq4UX1rzAys6VtHa3ctXfruIDcz/AbQtuo723nWzM0pvpXd+/+/nnWXjCiSw4/ng6//F/9KZ7XrvW\n3s5d37+CjtWtrF62hAdu/Am93V3Dsu7X61u6lBfe9W7mH30Mrf91M5n2dXmZV5IkSZIkSZIkSZKk\n0a6pqWlmU1PT4U1NTTOTGC+EcEMI4ZUQwhMbtH0xhLAkhPB47uekDa79ewhhfgjh2RDC8Ru0n5Br\nmx9CuHSD9pkhhHm59ltCCKW59rLc+/m56zvlcw5tmkVDW+nVQp7L/3w5KzpWbLJvjJEY4xaPvbp7\nNZ978HOcctspvH/u+1nRsYL7XrqPZR3L+Pq8r9PZ18lvF/6Wl9a+xGMrHmNVx0rabvkl2Y4OYlcX\nrT/4Iatbl64fL4Qiymte2+Gnsq6OoqLU1n/oIVj30ENkVq0CoPWG68nmqVhJkiRJkiRJkiRJkqTR\nqqnf34Angd8CTzY1Nf2tqampaRuHng2cMED7d2KMB+R+5gKEEPYCzgT2zt3zwxBCKoSQAn4AnAjs\nBZyV6wvwzdxYuwKrgfNy7ecBq3Pt38n1y8sc2jyLhrbSnPlz6Eh3EELgK/O+wtqetQP2W9W1iqse\nu4qrH7ualq6WQcdb1bmKecvmcfPTN9Od6WZpx1J2q9+Nbx7xTSZWTuTrb/06N514E8fMOIYnVj3B\nznU7c/ZdZ3PO787hw/d+hPDhs9aPFQ7Yh4dWziOdTQOQqSjiHZ+6lD0O+yf2f/tJHHHW2RSXlg7p\nc6/pWcNvF/6WKx69gqXrlm62f+WBB0Kqv0Cp8tBDCSUlQ5pXkiRJkiRJkiRJkqSxIFcY9ABwEFAB\n1OX+PAh4YFsKh2KMDwKtW9j9VOAXMcaeGOMLwHzg4NzP/BjjwhhjL/AL4NQQQgCOAW7N3X8jcNoG\nY92Ye30r8LZc/3zMoc0oHukFjDZvnf5WbnjiBqpKqjhz9zPJkt3oek+6hxAC333su/xm/m8AaO9t\n55KDL6E0tXHBTndfN/Pb5vORez4CwG+e/w1X/NMVpGOam5+6mX3H70tpqpTfPP8brjr6Kp5qeYoV\nnSto72sHYEHbAjJ1lUz72U2s6VzNwvo+aqtK6F6TJhb1cf3867lz4Z28/6gzee9up1NVUTfkz/10\ny9Nc+lD/rl8PLn6Qn57wUxorGgftX7rDDuzy+7tJr1pF6YwZFI8bN+S5JUmSJEmSJEmSJEkaA64F\nqga5VgX8CNjWHYde7xMhhLOBZuAzMcbVwDTgkQ36LM61Abz8uvZDgEagLcaYHqD/tFfviTGmQwhr\ncv3zMceqLYzBmOVOQ1uhvbedK5uvZM6COfz8mZ/zuxd/R2Wqks6+Ttb2rOWBlx/g0ocu5a/L/spe\njXutv29NzxqyMfuG8db1rWN+2/z1719a+xL15fV87J6P8bsXf8e3mr/FlKoprOxaSSCwQ+0O7FCz\nA7uO2xWAY3c4lkdf+Rv31Swmtf8+7Dhtb+oW7siN//5n7r3+afavOYgVnSv4zuNX89ya57fps7d0\nv7ZbUmtP64CfZ0NFFRWUTptG5f77U9zQsE1zS5IkSZIkSZIkSZK0PWtqapoJ7LmZbnvl+iXlGmAX\n4ABgGXBlgmNrFHCnoUH0pHto62kjHdPUltZSU1pDNmbpyfSs79OV7qK9r50rHr2Cc/c9l4vvv5hI\n5P6X72fuu+dy8KKDCQT+7c3/Rnlx+Ubjr+xcye9f/D2HTj2UAyceyMI1C7n04Evp7OukN9u7vl9Z\ncRnXH3c9kUh3xyvstvJFrj32GlZ1t/Js67N8bd7XmFk3kyOmHUF2RTnNv3wcgKXPtbFv5S4AlBaV\nMrV66jbF4y1T3sIJO53AgrYFfP6QzzOuzJ2DJEmSJEmSJEmSJElKyFSgl/7jyAbTm+v3QhITxhhX\nvPo6hPBj4M7c2yXAjA26Ts+1MUh7CzAuhFCc2wlow/6vjrU4hFBM/5FrLXmaQ5vhTkODeL7teU76\n9Umc8KsTuHPhnfSke6grq+Pywy7nsKmHcewOx/LOXd7JnPlzmFE7g66+LiIRgBgj63rX8cE9P8iX\nD/8yk6smv2H82xfczreav8Vzrc9x+WGXc8vJt7Bz7c7MfmI2Vx99NU2Tmvjwvh+mrbuN0+acxlMt\nTzG+bifKHr6aVNcalnUs40t/+RJd6S5O2/U0/vjyH8lUd1E1rv8ItOl71DOhupFrjr2G20+7fZNH\niW2JhooGLnvLZfzkuJ+w/4T9KUmVbNN4kiRJkiRJkiRJkiRpvaVA6Wb6lOb6JSKEMGWDt+8Cnsi9\nngOcGUIoCyHMBGYBfwUeBWaFEGaGEEqBM4E5McYI/AF4b+7+c4DbNxjrnNzr9wL35/rnYw5thjsN\nDeK2+bet3/Hn1udu5fidjqesuIzGikbO2O0Mnmx5kovvv5jG8kbO3ONMHln2CF849Avc9eJdnLLz\nKRSFIp5oeYLaslqqS6upKa0BoDfTS2mqlJ1qdyITM1zy0CUcOvlQjpxxJHs17sUn3/RJMjHDxQdd\nzMNLHubShy4lG7P8ZdlfmFY9jfp3/YjeTDcPvPwAN554I9mYZXz5eE6+7WRmjZvFVz7xDSaWTKa8\nspTKmlKOGHdEYjGpLq1ObKzBtPe2s6ZnDQB1ZXXr4yZJkiRJkiRJkiRJ0vaqubn5haampqeBgzbR\n7anm5uYh7TIUQvg5cBQwPoSwGLgMOCqEcAAQgReBjwLEGJ8MIfwSeApIAxfGGDO5cT4B3A2kgBti\njE/mprgE+EUI4SvA/wLX59qvB/4rhDAfaKW/CCgvc2jzLBoaxEkzT+LW524lEzOcsNMJVBT37wBW\nUVzBpKpJfO7Bz9Gb7eX8/c6nL9PH6p7VvG/39/H2Hd9Oe28777njPXSlu7jhiRuY++65FFHEY688\nxm3zb+Nds97F/hP25/vHfJ/F6xbzth3eBkB1STXVpdU0L2/m9gW3s0fDHmRihvJUOcfteByTKidR\nXl9LTVcLb5p4EF+b9zVOmHkCR08/mmzM8uzqZ7ng4Q9z6ym3Ulkx/AU+SctkMzy4+EEufehSAL56\n+Fc5aeeTKC7yaypJkiRJkiRJkiRJ2u59FHgAqBrgWgdwwVAHjjGeNUDz9QO0vdr/q8BXB2ifC8wd\noH0hcPAA7d3A6SM1hzbNaoxB7NGwB797z+/ozfRSV1a3vmgIYNa4Wcx991zSMU1taS0lRSWkQmr9\nkV1retbQle4CoC/bR0dfBzFGLrzvQiKRe1+6l1vecQv7T9ifI2cc+Ya5Z9bN5MU1LzKjegZ3nHYH\nZakySlOl1FfUA1BdNZGTdj6ZI2ccRWVxJT2ZHq488kqalzfzgb0+QGP5th1FNlK6M93cufDO9e/v\nXHgnx+xwTF52OJIkSZIkSZIkSZIkaSQ1Nzc3NzU1HQX8CNgL6KX/SLKngAuam5ubR3B52g5ZNDSI\nypJKKksqB7xWVlzGpOJJg95bV1bHmbufyZwFczh2x2NpKG/oLxyi/8i8bMzSk+7hrhfv4qw93ljM\n11jRyNXHXE0mm6G8uHzAI7pKU6WUpkrXr+e4nY7juJ2OG8pHLRjlqXJO3+10Hl7yMADv3e29GxVr\nSZIkSZIkSZIkSZK0PcsVBjU1NTXNBKYCS4d6JJm0kp6dWQAAFK9JREFUORYNDYNx5eO46KCLOH+/\n8ylNlVJXVkdxUTGXveUy5iyYw/E7Hc/DSx9mr8a9Bh2jobwhjysePjGbJRQVbVHfVFGKQ6Ycwt3v\nuRuA2rJaUkWp4VyeJEmSJEmSJEmSJEkFJ1coZLGQhpVFQ8OktrS2f5OwnJrSGk7d9VSOnH4k6fZO\nimKgorz/GMKVnSvpSndRVVJFY0UjdLbAi3+C3k6Y9XaoGj/oPNmYZWXnSha0LWCX+l2YUDGBorBl\nRTrDKdvdTfczz9B2yy+pPflkKg48gFTVQMcubqyqpIqqks33kyRJkiRJkiRJkiRJ0tBZNJRHJUUl\nVPak+MXXvkrb8qXsfdTbOejss3j/3PezonMFB0w4gKuPvpqGx38Gv/8PALJvOpf02y+ntLxuwDFb\nulo4484zaO1upaG8gVvfeSsTKicMaX0dPWnau/soCoHGqlJSqaEXH2XWrOGlD55N7OtjzW23scu9\n92xR0ZAkSZIkSZIkSZIkSZKG38hvSTPGrFr8Em3LlwKw4NG/sGzdMlZ0rgDg8ZWP053pIq54cn3/\nolXP0dm9etDxOtOdtHa3AtDa3UpXumtI6+pJZ7jnqRUc9o37Ofbbf2RhS8eQxlkvkyH29fW/jpHY\n27tt40mSJEmSJEmSJEmSJCkxFg3lWf2UqZSUlQNQO2kyU6omM7FyIgD7j9+fslQ52X/6LIzfDeqm\ns/rof+epjiWDjlddUs3hUw8H4PCphw/5aK+1XWm+d/98shHWdqf5+byXhjTOq4pqapj85S9Rtuee\nTPjUv5Kqr9+m8SRJkiRJkiRJkiRJkpQcjyfLk2w2Q8+6dZRWVHHuVdeyrmUVtRMnUVlVxy9O/gWd\n6U6qS6pprGiko7ic1e+5luUdy7ntpbl8sunTg47bWNHI1976NYhQliqjqnRoRUMVpSneOms8C1au\nA+Co3ScOaZxXpWpqqHvnO6k55hiKqqooKi/fpvEkSZIkSZIkSZIkSZKUHIuG8iCbyfDKiwu59/of\nUj9lGkef/WGmzNp9/fUJlRM26l9VUkW2cRalddP51LRDaKxo3OT4DdkIi/8Gz98Nb/oQjN8diku3\nao3VZcVc/LZZnHbgNGrLi5lQU7ZV9w+kqLzcYiFJkiRJkiRJkiRJkqQCZNFQHnStXcOcK79Ge8tK\nVix4nh323o99jzluk/fUFFdRE4Hiyk0P3tkKbS/Bz07vf//4z+Cix6B2ylavs6GqlIaqrSs2kiRJ\nkiRJkiRJkiRJ0uhTNNILGAtCURFlVa8dG1ZeXb3pG3o7YOH98D8fgsdvhq62wfu2LuwvGnpVXyek\nu7dtwZIkSZIkSZIkSZIkSdquudNQHlTWjeNdn/sCj97xK8bvsBPT99xn0zd0tcHPzoBsBubfCzse\nBhXjBu77ytNQMxn2fhcsehgOOhuKt/1oMUmSJEmSJEmSJEmSJG2/LBrKk9oJEznm3AsIISQ78C5H\nw3VHwaEfh71O699pqLRqs7dJkiRJkiRJkiRJkiRp7PJ4sjza4oKhinFw1i2wy9vgHVdB1YTB+1ZP\ngo/8AVKlZIuK6Zx8KMuXrKC7oyOZRUuSJEmSJEmSJEmSJGm7405Dhai0CnY5BmYcCiUVkNrEY0qV\nwLgZdO9/Lvf/9FqefuhHAJz15SuYtOssOtOdlKXKKE2V5mnxkiRJkiRJkiRJkiRJKnTuNFSoilJQ\nXjNowVBfpm+j9+neHhb+bd769129nTSvaOZTf/gUNz91M209bcO6XEmSJEmSJEmSJEmSJI0eFg2N\nEtlMhnWrW1n50ou0tCzj6/O+zr2L7qW9tx2AsspKjv3IhZSUVzBp512p2nEKH7v3Y8xbPo/vPPYd\nlrQvGeFPIEmSJEmSJEmSJEmSpELh8WSjREfbam787IX0dHQwedZuHPnBE/nEA59i7rvnUlNaQ0lZ\nObu86WDOu+paQqqIdaleUiFFH/07EhUX+aglSZIkSZIkSZIkSZLUz0qSUaJt+TJ6OjoAWP78cxxU\ndjYA6Wx6fZ+SsnJKysoBKM70cv3x13P9E9dzxLQjmFw1Of+LliRJkiRJkiRJkiRJUkGyaGiUqJ86\njdoJE1m78hV2PeQwWtKr+WzTZ2kobxiwf2mqlP0m7Mc33/pNSlOlFAVPopMkSZIkSZIkSZIkSVI/\ni4ZGier6Bt7/lStJ9/ZSXFZGXxkcXHI4panSTd5XXlyepxVKkiRJkiRJkiRJkiRptLBoaBSpGlc/\n0kuQJEmSJEmSJEmSJEnSdsAzqyRJkiRJkiRJkiRJkqQxxqIhSZIkSZIkSZIkSZIkaYyxaEiSJEmS\nJEmSJEmSJEkaYywakiRJkiRJkiRJkiRJksYYi4YkSZIkSZIkSZIkSZKkMcaiIUmSJEmSJEmSJEmS\nJGmMsWhIkiRJkiRJkiRJkiRJGmMsGpIkSZIkSZIkSZIkSZLGGIuGJEmSJEmSJEmSJEmSpDGmeKQX\noMLUuXYNmXSa4pISKmpqR3o5kiRJkiRJkiRJkiRJSpBFQ3qDjjVt3Pmdb7D46SfY44gjOeac86mo\nrRvpZUmSJEmSJEmSJEmSJCkhHk+mN+hc08bip58A4Jk//ZHe7u4RXpEkSZIkSZIkSZIkSZKSNCJF\nQyGEE0IIz4YQ5ocQLh2JNWhwFdU1lFZUAlDTOIHikpIRXpEkSZIkSZIkSZIkSZKSlPfjyUIIKeAH\nwNuBxcCjIYQ5Mcan8r0WDayibhznXPEDWpe8zPgZO1JV3zDSS5IkSZIkSZIkSZIkSVKC8l40BBwM\nzI8xLgQIIfwCOBWwaKhApFIpasdPoHb8hJFeiiRJkiRJkiRJkiRJkobBSBxPNg14eYP3i3NtGwkh\nnB9CaA4hNK9cuTJvi5OksczcK0n5Z+6VpPwz90pS/pl7JSn/zL2SJGlzRqJoaIvEGK+LMTbFGJsm\nTHDHG0nKB3OvJOWfuVeS8s/cK0n5Z+6VpPwz90qSpM0ZiaKhJcCMDd5Pz7VJkiRJkiRJkiRJkiRJ\nyoORKBp6FJgVQpgZQigFzgTmjMA6JEmSJEmSJEmSJEmSpDGpON8TxhjTIYRPAHcDKeCGGOOT+V6H\nJEmSJEmSJEmSJEmSNFblvWgIIMY4F5g7EnNLkiRJkiRJkiRJkiRJY91IHE8mSZIkSZIkSZIkSZIk\naQRZNCRJkiRJkiRJkiRJkiSNMRYNSZIkSZIkSZIkSZIkSWOMRUOSJEmSJEmSJEmSJEnSGBNijCO9\nhs0KIawEFm1B1zpgzRCn2dJ7N9dvU9cHu/b69oH6vb5tPLBqkyvddkON59bcN9R4bk375uJbyLHc\nmnuT/m4ay6FdL4Tf81UxxhOGcN9GRlnu3VSfsZIvzL1btq6k7x2J3Pv6tu0lllvSt5C/m9tj7t2S\nvoX8TLbG9povjOWWX9vav6vlI5aDrSPp+0bz73m+cy/4TJI0GvOFsRza9bHy3RxLv+fbnH/NvQO+\nL+Tv99bc678nJ3uv383k7hvtfy8YLbl3a+4d7c9kS43GWA7UXgi5d7B1JH2fuTe5e0f773ki/91B\nKngxxu3mB7huuO/dXL9NXR/s2uvbB+o3QJ/mQo3n1tw31HhuTfvm4lvIsdyae5P+bhrL5GK5JbEb\nqXhuL89ka2K/lc9g1HzHzb3JxXJr7h2J3Pv6tu0lltsSz9H23fSZFN4z2V7zhbHc8mtb+3e1fOUK\n/15QeD8+k5GP5dbca+4t3Fhuj/H099xnMhqeyWjMF0Np215iuS3xHCvfzXzEckvjViixHOlnsjX3\njpVnMhpjuSWxe31bvr7fhZwvxkru3Zp7x8rvuT/+jPaf7e14sjvycO/m+m3q+mDXXt8+UL9t+WxD\nNdQ5t+a+ocZza9q3JL7DbTR+N43l0K6Ptt/zJBTCM9lUn7GSL8y9m1/DcNw7Erl3S+ZNWj5iuSV9\nt5fvZhJ8JsnaXvOFsdzya4X6dzX/XlB4fCbJGY35wlgO7fpY+W76ez58fCbJGY35wn9PHtr1sfLd\nzEcsB7tWqLFMyvaaL0bT93tr7vXfk5O9z9yb3L1j5fdcGtVGxfFkeqMQQnOMsWmk17E9MJbJMZbJ\nMp6Fx2eSHGOZHGOZLONZeHwmyTGWyTGWyTKehcdnkhxjmSzjmRxjWXh8JskxlskynskxloXHZ5Ic\nY5ks45kcYylt3va209BYct1IL2A7YiyTYyyTZTwLj88kOcYyOcYyWcaz8PhMkmMsk2Msk2U8C4/P\nJDnGMlnGMznGsvD4TJJjLJNlPJNjLAuPzyQ5xjJZxjM5xlLaDHcakiRJkiRJkiRJkiRJksYYdxqS\nJEmSJEmSJEmSJEmSxhiLhiRJkiRJkiRJkiRJkqQxxqIhSZIkSZIkSZIkSZIkaYyxaGg7EELYM4Tw\noxDCrSGEj430eka7EEJVCKE5hPCOkV7LaBdCOCqE8FDu+3nUSK9nNAshFIUQvhpC+F4I4ZyRXo/M\nvcPB/JsMc29yzL2Fx9ybPHNvMsy9yTH3Fh5zb/LMvckw9ybL/Ft4zL/JMvcmw9ybLHNv4TH3Jsvc\nmxzzb3LMvdIbWTRUoEIIN4QQXgkhPPG69hNCCM+GEOaHEC4FiDE+HWO8ADgDOHwk1lvItiaWOZcA\nv8zvKkePrYxnBNYB5cDifK+10G1lLE8FpgN9GMthY+5Nlvk3Oebe5Jh7C4+5N1nm3uSYe5Nj7i08\n5t5kmXuTY+5Nlvm38Jh/k2PuTY65N1nm3sJj7k2OuTdZ5t/kmHulbWPRUOGaDZywYUMIIQX8ADgR\n2As4K4SwV+7aKcBvgbn5XeaoMJstjGUI4e3AU8Ar+V7kKDKbLf9uPhRjPJH+vxhenud1jgaz2fJY\n7g78Ocb4acD/h8PwmY25N0mzMf8mZTbm3qTMxtxbaGZj7k3SbMy9SZmNuTcpszH3FprZmHuTNBtz\nb1JmY+5N0mzMv4VmNubfpMzG3JuU2Zh7kzQbc2+hmY25NymzMfcmaTbm36TMxtwrDZlFQwUqxvgg\n0Pq65oOB+THGhTHGXuAX9FdDEmOck/uHxQfyu9LCt5WxPAo4FHg/8JEQgr8jr7M18YwxZnPXVwNl\neVzmqLCV383F9McRIJO/VY4t5t5kmX+TY+5Njrm38Jh7k2XuTY65Nznm3sJj7k2WuTc55t5kmX8L\nj/k3Oebe5Jh7k2XuLTzm3uSYe5Nl/k2OuVfaNsUjvQBtlWnAyxu8XwwcEvrPrnw3/f+QsPJ5ywwY\nyxjjJwBCCB8CVm3wD2Ft2mDfzXcDxwPjgO+PxMJGoQFjCVwNfC+E8FbgwZFY2Bhm7k2W+Tc55t7k\nmHsLj7k3Webe5Jh7k2PuLTzm3mSZe5Nj7k2W+bfwmH+TY+5Njrk3WebewmPuTY65N1nm3+SYe6Ut\nZNHQdiDG+ADwwAgvY7sSY5w90mvYHsQYfw38eqTXsT2IMXYC5430OvQac+/wMP9uO3Nvcsy9hcfc\nOzzMvdvO3Jscc2/hMfcOD3PvtjP3Jsv8W3jMv8kz9247c2+yzL2Fx9ybPHNvMsy/yTH3Sm/kVnCj\nyxJgxgbvp+fatPWMZbKMZ3KMZeHxmSTLeCbHWCbHWBYen0myjGdyjGVyjGXh8Zkky3gmx1gmy3gW\nHp9Jcoxlcoxlsoxn4fGZJMdYJst4JsdYSlvIoqHR5VFgVghhZgihFDgTmDPCaxqtjGWyjGdyjGXh\n8Zkky3gmx1gmx1gWHp9Jsoxncoxlcoxl4fGZJMt4JsdYJst4Fh6fSXKMZXKMZbKMZ+HxmSTHWCbL\neCbHWEpbyKKhAhVC+DnwF2D3EMLiEMJ5McY08AngbuBp4JcxxidHcp2jgbFMlvFMjrEsPD6TZBnP\n5BjL5BjLwuMzSZbxTI6xTI6xLDw+k2QZz+QYy2QZz8LjM0mOsUyOsUyW8Sw8PpPkGMtkGc/kGEtp\n24QY40ivQZIkSZIkSZIkSZIkSVIeudOQJEmSJEmSJEmSJEmSNMZYNCRJkiRJkiRJkiRJkiSNMRYN\nSZIkSZIkSZIkSZIkSWOMRUOSJEmSJEmSJEmSJEnSGGPRkCRJkiRJkiRJkiRJkjTGWDQkSZIkSZIk\nSZIkSZIkjTEWDWlMCiH8eaTXIEljjblXkkaG+VeS8s/cK0n5Z+6VpPwz90rS6BdijCO9BkmSJEmS\nJEmSJEmSJEl55E5DGpNCCOtyfx4VQngghHBrCOGZEMJ/hxBC7tqbQwh/DiH8PYTw1xBCTQihPITw\n0xDCP0II/xtCODrX90MhhNtCCPeEEF4MIXwihPDpXJ9HQggNuX67hBB+F0L4WwjhoRDCHiMXBUnK\nL3OvJI0M868k5Z+5V5Lyz9wrSfln7pWk0a94pBcgFYADgb2BpcDDwOEhhL8CtwDvizE+GkKoBbqA\nTwIxxrhv7i8gvw8h7JYbZ5/cWOXAfOCSGOOBIYTvAGcDVwHXARfEGJ8PIRwC/BA4Jm+fVJIKh7lX\nkkaG+VeS8s/cK0n5Z+6VpPwz90rSKGTRkAR/jTEuBgghPA7sBKwBlsUYHwWIMa7NXT8C+F6u7ZkQ\nwiLg1b/E/CHG2A60hxDWAHfk2v8B7BdCqAYOA/4nV1wNUDbMn02SCpW5V5JGhvlXkvLP3CtJ+Wfu\nlaT8M/dK0ihk0ZAEPRu8zjD034sNx8lu8D6bG7MIaIsxHjDE8SVpe2LulaSRYf6VpPwz90pS/pl7\nJSn/zL2SNAoVjfQCpAL1LDAlhPBmgNz5qsXAQ8AHcm27ATvk+m5Wrnr6hRDC6bn7Qwhh/+FYvCSN\nUuZeSRoZ5l9Jyj9zryTln7lXkvLP3CtJBc6iIWkAMcZe4H3A90IIfwfuof/s1B8CRSGEf9B/BuuH\nYow9g4/0Bh8AzsuN+SRwarIrl6TRy9wrSSPD/CtJ+WfulaT8M/dKUv6ZeyWp8IUY40ivQZIkSZIk\nSZIkSZIkSVIeudOQJEmSJEmSJEmSJEmSNMZYNCRJkiRJkiRJkiRJkiSNMRYNSZIkSZIkSZIkSZIk\nSWOMRUOSJEmSJEmSJEmSJEnSGGPRkCRJkiRJkiRJkiRJkjTGWDQkSZIkSZIkSZIkSZIkjTEWDUmS\nJEmSJEmSJEmSJEljjEVDkiRJkiRJkiRJkiRJ0hjz/wM1uqos6VfMwgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3849,7 +3856,7 @@ "metadata": { "id": "utJ2CXsIszAZ", "colab_type": "code", - "outputId": "d15fa110-1588-4802-db6c-4ae6690dd661", + "outputId": "2f455272-0a03-40bb-d5a7-a89289f770cc", "colab": { "base_uri": "https://localhost:8080/", "height": 2230 @@ -3869,14 +3876,14 @@ " plt.axhline(y=50, color='cyan')\n", " " ], - "execution_count": 45, + "execution_count": 96, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8VNX9//HXJwtJSCDsCLgAigq4\nVUfEutS91lqX1rrXpVZqq9Vq+6vYWrVqrUtbq361rSvYuu9+XYso1a+tS9xAwB1wQ9aQsGaZfH5/\n3BMYwiRMlptl8n4+Hnlk5tx7zzmTWj5zzj33fMzdERERka4tp6M7ICIiIq2ngC4iIpIFFNBFRESy\ngAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKBLl2JmZ5lZmZlVmdmkBsd+ZGYfmdkKM3vGzIam\nHNvXzF4wswozm5um3p3M7KVw/HMz+238n0ZEpO0ooEtX8yVwOXB7aqGZ7QNcARwO9APmAPeknLIy\nXPP/Gqn3buDFcO03gJ+a2WFt2XERkTgpoEuX4u4Pu/ujwJIGhw4FHnD3me5eDVwG7G1mW4brXnP3\nfwCfNFL1cOAud0+6+8fA/wFjY/kQIiIxUECXbGJpXm+X4bV/AU4ys3wz2wbYHXiuLTsnIhInBXTJ\nFs8AR5vZDmZWBFwEONAzw+ufAI4CVgPvAbe5++ux9FREJAYK6JIV3P054GLgIWBu+FkOfL6xa82s\nH9EXgkuBQmAz4Jtm9tOYuisi0uYU0CVruPuN7j7K3QcTBfY84N0MLh0JJN39TnevdffPgXuBQ2Ls\nrohIm1JAly7FzPLMrBDIBXLNrLC+zMy2s8jmwM3Ade5eHq7LCdflR2+t0Mx6hGo/CGXHh/M2AY4B\nprf/JxQRaRkFdOlqLiS6zz0RODG8vpBoqvxuYAXwGvBfIPVZ8r3DuU8Bm4fX/wJw90rgu8C5QDnw\nNtHI/vLYP42ISBsxd+/oPoiIiEgraYQuIiKSBWIN6GZ2jpm9a2YzzeznoayfmU0xsw/D775x9kFE\nRKQ7iC2gm9l2wOnAOGBH4FAz24ro3udUdx8FTA3vRUREpBXiHKGPBl5191XuXgv8m2jh0eHA5HDO\nZOCIGPsgIiLSLcQZ0N8F9jKz/mbWk+iZ3s2Awe4+P5zzFTA4xj6IiIh0C3lxVezus83sKqJHg1YS\nPQqUbHCOm1naZfZmNgGYADBmzJhdZs6cGVdXRUQyYRs/RaTjxLoozt1vc/dd3H1voud7PwAWmNkQ\ngPB7YSPX3uzuCXdPFBUVxdlNERGRLi/uVe6Dwu/Nie6f3w08DpwcTjkZeCzOPoiIiHQHsU25Bw+Z\nWX+gBjjT3ZeZ2ZXA/WZ2GjAPODrmPoiIiGS9WAO6u++VpmwJsH+c7YqIiHQ32ilOREQkCyigi4iI\nZAEFdBERkSyggC4iIpIFFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0\nERGRLKCALiIikgUU0EVERLKAArqIiEgWUEAXERHJAgroIiIiWUABXUREJAsooIuIiGQBBXQREZEs\noIAuIiKSBRTQRUREsoACuoiISBZQQBcREckCCugiIiJZQAFdREQkCyigi4iIZAEFdBERkSyggC4i\nIpIFFNBFRESygAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGRLBBrQDezc81s\nppm9a2b3mFmhmY0ws1fN7CMzu8/MesTZBxERke4gtoBuZsOAs4GEu28H5ALHAlcB17r7VkA5cFpc\nfRAREeku4p5yzwOKzCwP6AnMB/YDHgzHJwNHxNwHERGRrBdbQHf3L4A/Ap8SBfIK4A1gmbvXhtM+\nB4bF1QcREZHuIs4p977A4cAIYChQDBzcjOsnmFmZmZUtWrQopl6KiIhkhzin3A8A5rj7InevAR4G\n9gD6hCl4gE2BL9Jd7O43u3vC3RMDBw6MsZsiIiJdX5wB/VNgvJn1NDMD9gdmAS8AR4VzTgYei7EP\nIiIi3UKc99BfJVr89iYwI7R1M3A+cJ6ZfQT0B26Lqw8iIiLdhbl7R/dhoxKJhJeVlXV0N0Ske7OO\n7oBIU7RTnIiISBZQQBcREckCCugiIiJZQAFdREQkCyigi4iIZAEFdBERkSyggC4iIpIFFNBFRESy\ngAK6iIhIFlBAFxERyQIK6CIiIllAAV1ERCQLKKCLiIhkAQV0ERGRLKCALiIikgUU0EVERLKAArqI\niEgWUEAXERHJAgroIiIiWUABXUREJAsooIuIiGQBBXQREZEsoIAuIiKSBRTQRUS6ITM7zMwmdnQ/\npO3kdXQHRESkdczMAHP3ukyvcffHgcfj65W0N43QRUS6IDMbbmbvm9mdwLvAD8zsv2b2ppk9YGYl\n4bxDzOw9M3vDzK43sydC+Slm9j8pdT1vZtPNbKqZbR7KJ4Vr/mNmn5jZUR31eWXjFNBFRLquUcBN\nwDeA04AD3H1noAw4z8wKgb8D33L3XYCBjdRzAzDZ3XcA7gKuTzk2BNgTOBS4MpZPIW1CAV1EpOua\n5+6vAOOBMcDLZvY2cDKwBbAt8Im7zwnn39NIPbsDd4fX/yAK4PUedfc6d58FDG7rDyBtR/fQRUS6\nrpXhtwFT3P241INmtlMbtFGVWmUb1Ccx0QhdRKTrewXYw8y2AjCzYjPbGngfGGlmw8N5xzRy/X+A\nY8PrE4CX4uuqxEUjdBGRLs7dF5nZKcA9ZlYQii909w/M7KfAM2a2Eni9kSp+BtxhZv8PWAScGnun\npc2Zu3d0HzYqkUh4WVlZR3dDRLq3LjndbGYl7r4iPNp2I/Chu1/b0f2StqcpdxGR7HZ6WCg3Eygl\nWvUuWUhT7iIiWSyMxjUi7wZiG6Gb2TZm9nbKT6WZ/dzM+pnZFDP7MPzuG1cfREREuovYArq7v+/u\nO7n7TsAuwCrgEWAiMNXdRwFTw3sRERFphfa6h74/8LG7zwMOByaH8snAEe3UBxERkazVXgH9WNbt\nUDTY3eeH11+hnYdERERaLfaAbmY9gMOABxoe8+iZubTPzZnZBDMrM7OyRYsWxdxLERFpyMz+09F9\nkMy1xwj9W8Cb7r4gvF9gZkMAwu+F6S5y95vdPeHuiYEDG8snICIibc3M8gDc/esd3RfJXHsE9ONY\nPyHA40SJAwi/H2uHPoiIdJjhE588fvjEJ+cOn/hkXfh9fGvrNLNHQ0rUmWY2IZStMLNrQtlzZjbO\nzKaF1KeHhXNywzmvh3SpPw7l+5jZS2b2ODCrvr6U9s43sxlm9o6ZXRnKTg/1vGNmD5lZz9Z+Lmm5\nWHeKM7Ni4FNgpLtXhLL+wP3A5sA84Gh3X9pUPdopTkQ6gRbtFBeC9y1AarBbBZw+98pv353+qgw6\nY9bP3ZeaWRHRlq7fABYDh7j702b2CFAMfJsoE9tkd98pBP9B7n552Cb2ZeD7RNnZngS2q8/OZmYr\n3L3EzL4F/JYoPeuqlLb7u/uScO7lwAJ3v6Gln0laJ9aNZdx9JdC/QdkSolXvIiLdwRWsH8wJ769g\nXcrSljjbzI4Mrzcjyo1eDTwTymYAVe5eY2YzgOGh/CBgBzM7KrwvTbn2tZRUq6kOAO5w91UAKYOw\n7UIg7wOUAM+24vNIK2mnOBGReG3ezPKNMrN9iILs7mHEPA0oBGp83bRrHSH1qbvX1d8XJ5pp+Jm7\nP5umzpU0zyTgCHd/JySH2ae5n0XajvZyFxGJ16fNLM9EKVAegvm2wPhmXPss8BMzywcws63D7dGm\nTAFOrb9Hbmb9QnkvYH6o64RmfQJpcwroIiLx+jXRPfNUq0J5Sz0D5JnZbOBKonzombqVaNHbm2b2\nLlGyliZna939GaIFzWUh0csvw6HfAq8S3Yd/r1mfQNqc0qeKiGSmxelTw8K4K4im2T8Fft2aBXEi\n6Sigi4hkpkvmQ5fuQ1PuIiIiWUABXUREJAsooIuIiGQBBXQREZEsoIAuIiKSBRTQRUREsoACuohI\nNxSyq3095f2klP3d27qtW81sTBx1yzray11EJG6XlG6wsQyXVHT0xjL7ACuA/8TdkLv/KO42RCN0\nEZF4RcH8FqL0pBZ+3xLKW8TMis3syZCH/F0zO8bM9jezt0LO8ttDalTMbK6ZDQivEyE/+nDgDOBc\nM3vbzPYKVe9tZv8J+dMbHa2bWYmZTTWzN0N7hzfWr1A+zcwS4fVfzaws5Gz/XUv/BrIhBXQRkXg1\nlT61pQ4GvnT3Hd19O6K93ScBx7j79kSzrz9p7GJ3nwv8DbjW3Xdy95fCoSHAnsChRHvEN2YNcKS7\n7wzsC/zJzKyRfjX0G3dPADsA3zCzHTL90NI0BXQRkXi1efpUolznB5rZVWF0PRyY4+4fhOOTgb1b\nUO+j7l7n7rOAwU2cZ8AVZjYdeA4YFs5fr1/uXpHm2qPN7E3gLWAsoHvrbUQBXUQkXm2ePjUE7p2J\nAujlwBFNnF7Lun/rCzdSdVXK66b2rj8BGAjs4u47AQuAwob9MrOLUi8ysxFEmdr2d/cdgCcz6JNk\nSAFdRCRebZ4+1cyGAqvc/Z/ANcDuwHAz2yqc8gPg3+H1XGCX8Pp7KdUsJ8pn3hKlwEJ3rzGzfYnW\nBaTr184NrusNrAQqzGww8K0Wti9paJW7iEicLqm4m0tKoW1XuW8PXGNmdUAN0f3yUuABM8sDXie6\nRw7wO+A2M7sMmJZSx/8CD4YFbT9rZvt3Af9rZjOAMtblQk/Xr7Xc/R0zeyuc/xlRHnVpI0qfKiKS\nGaVPlU5NU+4iIiJZQFPuIiKSlpltD/yjQXGVu+/WEf2Rpimgi4hIWu4+A9ipo/shmdGUu4iISBZQ\nQBcREckCCugiIiJZQAFdREQkCyigi4hkMTO7xMx+GVPdazO5dUZmNtDMXg1Z6PZKczyr8rRrlbuI\nSMy2n7z9BvnQZ5w8o6PzoXcoM8tz99qYm9kfmJEuH7uZ5WZbnnaN0EVEYhSC+Qb50EN5izSSD32D\nvOcpl+xoZv81sw/N7PQm6h1iZi+GHOnv1o9qN5LD/GcpedG3DeePC+29FfKrbxPKTzGzx83seWBq\nE3nVh5vZbDO7JbT5LzMraqLfp5vZ6+Hv8ZCZ9TSznYCrgcPD5ykysxVm9iczewfYvUGe9oNDP94x\ns6lNfY7OSgFdRCRe7ZUPvSk7APsRJXG5KCRRSed44NmQQW1H4O1Q3lQO88UhL/pfiTKpQbRX+17u\n/jXgItb/rDsDR7n7N2g8rzrAKOBGdx8LLGP9xDINPezuu7r7jsBs4DR3fzu0fV/I+b4aKAZeDX+3\n/6u/2MwGEn3p+l6o4/sZfI5OR1PuIiLxiisf+p/M7CrgCXd/aV0cTOuxENBWm9kLwDjg0TTnvQ7c\nbmb5RLnR6wP60WY2gShmDCHKYT49HHs4/H4D+G54XQpMNrNRgAP5KW1Mcfel4XV9XvW9gTrW5VWH\nKL97fftvEOV8b8x2ZnY50AcoAZ5t5Lwk8FCa8vHAi+4+ByClf019jk5HI3QRkXjFng895B1vKu95\nwyxcabNyufuLwN7AF8AkMzspgxzm9TnUk6wbJF4GvBBmD77T4PyVKa/T5lVvUG/DutOZBJzl7tsT\nZZdrLMf6GndPNlFPQ019jk5HAV1EJF7tkQ99ZxrPew7RfeRCM+sP7EM0Ek9X7xbAAne/Bbg11NuS\nHOalRF8KAE7ZyHkb5FVvgV7A/DCzcEILrn8F2Dt8ecHM+qX0L5PP0SnEGtDNrI+ZPWhm74UFDrub\nWT8zmxIWZ0wxs75x9kFEpCOF1eynA/OIRsbzgNNbucp9e+A1M3sbuBi4nGhkep2ZlRGNaFNNB14g\nClyXufuXjdS7D1Cfs/wY4Dp3fweoz2F+N5nlML8a+EOop6mR9V1AIuRVP4l1edWb67fAq6Fvza7D\n3RcBE4CHw4K5+8KhTD9HpxBrPnQzmwy85O63mlkPooUgvwaWuvuVZjYR6Ovu5zdVj/Khi0gnoHzo\n0qnFNkI3s1KiezG3Abh7tbsvAw4HJofTJgNHxNUHERGR7iLOKYQRwCLgDjPbkWiV4jnAYHefH875\ninUrGkVEpB101TznZnYjsEeD4uvc/Y6O6E9nE2dAzyNaUPEzd3/VzK4DJqae4O5uZmnn/MMjEhMA\nNt+8NU93iIhIqq6a59zdz+zoPnRmcS6K+xz43N1fDe8fJArwC8xsCES7EgEL013s7je7e8LdEwMH\nDoyxmyIiIl1fbAHd3b8CPkvZKm9/YBbwOHByKDsZeCyuPoiIiHQXcS/D/xlwV1jh/glwKtGXiPvN\n7DSixzeOjrkPIiIiWS/WgB627UukObR/nO2KiIh0NxkF9LBx/elEe+muvcbdfxhPt0REpDszsz7A\n8e5+UwuunQsk3H1xG/TjUqJ93p9rbV1xy3SE/hjwEvAcG+5AJCIiTZi97egN8qGPfm92h+RDt/bJ\nQ94W+gA/BTYI6O35Gdz9ovZopy1kuiiup7uf7+73u/tD9T+x9kxEJAuEYL5BPvRQ3mJmdqKZvRZy\nff/dzHLNbEXK8aPMbFJ4PcnM/mZmrwJXhy24HzWz6Wb2Sn06VDO7xMz+YWlyp5vZ/ws5x6fbhjnR\nG/btpHDeO2b2j1A2MOQqfz387JHS5u0hN/knZnZ2qOZKYMvw+a4xs33M7CUze5xogTXhM7xhUc70\nCc34221wXfj7TbIoD/wMMzs35W93VHh9Uej7u2Z2c0qq104h0xH6E2Z2iLs/FWtvRESyT1P50Fs0\nSjez0UR7re8REpvcxMaTkmwKfN3dk2Z2A/CWux9hZvsBd7LuufQdiNKJFgNvmdmTwHZE+cnHEX0p\nedzM9g7Z2Rr2bSxwYWhrcUqik+uAa939/8xsc6IUp6PDsW2J8qH3At43s78S7VuyXcjChpntQ/To\n83b1aU6BH7r7UjMrAl43s4fcfUkGf8INriO6pTwsZFarn/Jv6H/c/dJw/B/AocD/ZtBeu8g0oJ8D\n/NrMqoAaov9B3d17x9YzEZHsEEc+9P2JMqu9HgaJRTSyp0eKB1JSh+5JyMjm7s+bWX8zq//3PF3u\n9D2Bg4iStECUc3wUsEFAB/YLbS0O9dfnFj8AGJMyqO1tZiXh9ZPuXgVUmdlCGt9B9LWUYA5wtpkd\nGV5vFvqUSUBPd937wMjwZedJ4F9prtvXzH5F9IWsHzCTrhbQ3b1X3B0REclSn5I+LWiL86ETDaom\nu/sF6xWa/SLlbcPc3SvJTLrc6Qb8wd3/3qxeri8HGO/ua1ILQ4DPNPf52s8QRuwHALu7+yozm0YG\n+cobu87dy8M25d8EziB6pPqHKdcVEt3PT7j7Z2Z2SSbttaeMN5Yxs75mNs7M9q7/ibNjIiJZos3z\noQNTgaPMbBBE+bst5DI3s9FmlgMc2cT1LxGm6EOAW+zuleFYutzpzwI/rB9Rm9mw+rbTeB74frg+\nNbf4v4j2JiGUb2zr2eVEU/CNKQXKQ1Delug2QSbSXmdmA4CcsD7sQqLp/VT1wXtx+DsclWF77SbT\nx9Z+RDTtvinwNtEf4L9EUysiItKI0e/Nvnv2tqOhDVe5u/ssM7sQ+FcI3jXAmUT3nZ8gSoxVRjQ1\nns4lwO1mNp3oy8XJKcfqc6cPYF3u9C/Dffv/hhH1CuBE0kzzu/tMM/s98G8zSxJN058CnA3cGNrM\nI5quP6OJz7jEzF42s3eBp4mmwVM9A5xhZrOJpstfaayuDK8bRpRMrH6gu97sh7svM7NbgHeJEou9\nnmF77SajfOgWJZ/fFXjF3XcK32qucPfvxt1BUD50EekUOtWK5jiEaeQV7v7Hju6LNF+mi+LWuPsa\nM8PMCtz9PVu3R7tIs3gySXLpUrzOyelVQm7PhguARUSkuTIN6J+HJfyPAlPMrJxoH3aRZque9ynz\njj+eZGUlQ6+5ml77709OYadaWyLSLbn7JZmeG+6RT01zaP8MHx2LVWfvXxwyXeVev7jikvAYQynR\nfQiRZiu/+y6Sy5YBsOj6GyjebTcFdJEuJgTFTptTvbP3Lw7NWeW+c9jBZweiPOfV8XVLslnP3XZb\n+7popx2xgoIO7I2ISHbIdJX7RcD3gYdD0R1m9oC7Xx5bzyRrFY8bx/CHHiS5tJzCsWPI7aVtDkRE\nWivTe+gnADvWbwhgZlcSPb6mgC7NlltaSlFpaUd3Q0Qkq2Q65f4l6++IUwB80fbdke7K3alctJB3\npjzFwrmfUL1mzcYvEpEmmdlhZjaxkWMrGilPTUYyzcwScfaxMWa2k5kd0g7t/Drl9fDw3Htr6xxo\nZq+a2Vtmtlea47ea2ZjWttNQpiP0CmCmmU0h2gbwQOA1M7sewN3PbupikY1Zuaycuy/8BSuXlWOW\nw6nX/o0eQ4Z2dLdEujR3fxx4vKP70UI7AQkglqRgIVOaEe3Yd0UbV78/MMPdf5Sm3dx05W0h04D+\nSPipN63tuyLdWV1tLSuXlQPgXkfFogX0VUCXLHHjGc9vkA/9zL/t16p86GY2nOhpo1eArxPtXHYH\n8DtgENGt0jFEe4+fZWYjiLK7lQCPpdRjwA1EA7XPgLQLns3soFB3AfAxcKq7NzbK3wX4c2hrMXCK\nu8+3KB3rBKAH8BHwg7AF6/eBi4n2ca8g2mv9UqDIzPYk2kf+vjTtXEL0Nx0Zfv/F3a8Px85j3V7s\nt7r7X8Lf7FngVaLkNq+FNt4mSrTyGyA37Aj3daKZ6MNDspp0n3ODzwNsDVwd6k0AuxPt3Pf38LnO\nNLPLgV+6e5mZHUz030Yu0Ra8+5vZOKLsdIXA6vC3fj9dH1JlNOXu7pPrf4i+7b3VoEykVfKLitjl\n0CPBjCFbb8vALUZ0dJdE2kQI5hvkQw/lrbUV8Cei9KPbAscTZUb7JRvuFX8d8Fd33x6Yn1J+JLAN\nUfA/iSiQrSfsc34hcIC770y0rex56TpkZvlEXxCOcvddgNuB34fDD7v7ru6+IzAbOC2UXwR8M5Qf\nFp6iugi4z913ShfMU2xLlFBlHHCxmeWHLxSnArsRbVV+upl9LZw/CrjJ3ce6+6nA6tDGCSnHb3T3\nscAyQla6Rmzwedz97QZ9X02UivZVd9/R3f8v5W81kOi/je+FOr4fDr0H7OXuXwt1ZTSDkOkq92nA\nYeH8N4CFZvayu6f9H1SkuYpKejH+u8eQOPRIcnJz6dlbi+Yka7R5PvQUc9x9BoCZzQSmuruH7bqH\nNzh3D9YFp38AV4XXewP3hNSqX5rZ82naGU8U8F8Oe7n3IMrnkc42RPnTp4Rzc1n3BWK7MDrtQzR6\nfzaUvwxMMrP7Wfc0VabSpV7dE3jE3VcCmNnDwF5EA9J57t7Uvu9zQlCGKN4Nb+Lcxj5PQ0ngoTTl\n44EX61PCpqSaLQUmm9kootvc+U30Ya1Mp9xL3b0yJGm5090vDhvsi7SZwuKS6HusSHaJIx96vdS0\no3Up7+tI/+/7xpN3pGfAFHc/LsNzZ7r77mmOTQKOcPd3zOwUomxuuPsZZrYb8G3gjTDCzlSmqVfr\nbSyNbMP6ipo4dxJpPk8aa1Jy0WfiMuAFdz8y3CaYlslFma5yzzOzIUT5YZ9oRqdERLq7xvKetyYf\neku8DBwbXp+QUv4icIyZ5YZ/5/dNc+0rwB5mthWAmRWb2daNtPM+MNDMdg/n5pvZ2HCsFzA/TMuv\n7YOZbenur7r7RUT3mzdj4+lTm/IScISZ9TSzYqLbCi81cm5N6E9LpP08zfAKsHdY35CaaraUdU+S\nnZJpZZkG9EuJphI+dvfXzWwk8GGmjYiIdGNx5ENviXOIFmTNIEoVWu8Ron/PZwF3kmYq3d0XEQWW\ne8Ls7H+J7l1vINz/Pgq4yszeIdqzpP6+/G+JFqS9THSfuN41ZjYjPDL2H+AdohSuY8zsbTM7pjkf\n1N3fJBo9vxbau9Xd32rk9JuB6WZ2V3PaCBr7PJn2cxHRorqHw9+qfq3A1cAfzOwtMp9Jzyx9akdT\n+lQR6QRanD41jlXuIg1lmg99a+CvwGB3387MdiBaidguO8UpoItIJ5D1+dCla8t0yv0W4AKgBsDd\np7PuXoyIiHRDZvZImBJP/flmDO2cmqadG9u6nSbavzFN+6e2V/uZynRuvqe7vxYeQahXG0N/RESk\ni0hJrR13O3cQbZrTIdz9zI5quzkyHaEvNrMtCY88hH1+5zd9iYiIiLSXTEfoZxKtBNzWzL4A5tCy\nJfoiIiISgyYDupmd4+7XAUPc/YDwPF+Ouy9vn+6JiIhIJjY25V5/0/8GAHdfqWAuIiLS+WwsoM82\nsw+BbcxsesrPDG39mj3qqqupXbaMupqaju6KiLQTMzuiLXNym1miPqV2R7CU3O8N85Gb2VNm1qej\n+tZempxyd/fjzGwTol3iDmufLkl7SlZWUvHkU1Q+/jh9jj2WXvvvR25JSUd3S0TidwTRVt6z2qIy\ndy8jysLWIRrkfm+Yj7yxbV+zinaK6+aqP/uMjw88aO37rZ6fSv5Q5SEXSaPFG8v86ZhDN9gp7hf3\nPdHafOgnAmcTZT57Ffgp8D/ArkQJRR5094vDuVcSDcpqgX8RZTR7gij3eAVR+s6P07SRUf5yd9/b\nzPYhyvF9aHPyeYekJkcS7V8+DPinu/8uHHuUaF/3QuA6d785lKfLIX4KkABuJQrsRUT7oe9OlNo0\n4e6LzewkovSyDkx39x9k+jfv7Da2KO5+dz867P2bGvkNcHffIdbeSewsNxdycqCuDvLyotci0mZC\nML+FdSlUtwBu+dMxh9LSoG5mo4FjgD3cvcbMbiJ68ug37r7UzHKBqWFXzy+IAua2IbVqH3dfZmaP\nA0+4+4NNNPWwu98S2rycKH/5DazLX/5FI1PZ9fm8a83sAKLg21Re8XFEKVdXAa+b2ZNhxP/D8HmK\nQvlDRLeKbwH2dvc5KQlNAHD3t83sIqIAflboe/3fbSxRXvevh+C+3rVd3cYeWzsn/D60JZWb2Vyi\njDlJoNbdE+EPeB9Rjtm5wNHuXt6S+qX1ckpL2ezmv1Px6GP0Ofr75Ja2LA95cvly6iorITeX3NJS\ncoqayjgo0q3EkQ99f2AXoiAH0Wh0IXC0mU0g+rd9CFEO81nAGuA2M3uC5mXMbGn+8ubm857i7ktg\nbe7yPYmm7882s/rNazYDRgG3+GODAAAgAElEQVQDSZ9DPBP7AQ+4++IWXNvpbewe+vzwe14r2ti3\n/o8XTASmuvuVYQHDROD8VtQvrZBbXEzJnntSPH48lpdxUp/11FVVUfn003x10cWQn88Wd9xOz0Si\njXsq0mXFkQ/dgMnufsHagigF5xRgV3cvN7NJQGEYJY8j+hJwFHAWUWDLxCRalr+8ufm8G9779TCF\nfwCwe5jmn0Y09S6NaHJ+1cyWm1llmp/lZlbZwjYPByaH15OJFmZIB2tpMAeoW7mS8nvuxXr2ZNB5\n50JeHsmKijbsnUiXFkc+9KnAUWY2CNbm0d4cWAlUmNlg4FvhWAlQ6u5PAecCO4Y6Msk33pz85ama\nm8/7QDPrF6bWjyCaASgFykMw3xYYH85tLId4Jp4Hvm9m/Vtwbae3sRF6S5PLr60C+JeZOfD3sKBh\ncP3IH/gKGLyxSt4nfC2UDSTrkjhOXk7LA3Jrea9e1N5wPTnFxdQuXkKyYhl5y5aRX1zcqi8KIp3J\ntJZf+mvWv4cOrcyH7u6zzOxCon9fc4gSZ50JvEV0//ozoqAIUVB+zMwKiUb254Xye4FbzOxs4Kh0\ni+JYl+97UfhdHxOuCdPpRvTl4h3gGynXXU005X4h8GQGH+k14CFgU6JFcWVh7dYZZjabKAy8Ej77\nonBb4eHw2RcCB2bQBu4+08x+D/zbzJJEf69TMrm2K4h1lbuZDQuLJgYRTQX9DHjc3fuknFPu7n3T\nXDuBaHUlBTvssMv4d96JrZ9dVU2yhs+Wf0p1XQ3De29BYW4hWPtneExWVOBV1eT0LGLNrHVPwBTt\nsANWqBkyyQ7TOtkq92xRvzq9fgGbtFy7PbZmZpcAK4DTgX3cfb6ZDQGmufs2TV2rx9bSu3XGrVz3\n5nUAbN13a2458Bb6FbX/DFLVnDl8ctjhDL/7LuYeexwkk1hREVs+8zT5gzc6ASPSVSgfegwU0NtO\nbPOhqfu+h9cHAZcSPR94MnBl+P1YXH3Idr3y190RKc4vJsc65pGzvEGDGH7vPdQuLWeLu/7Jyhdf\npNfB3yK3X1bdnhLJWhblFt+jQfF1IW1pW7XxTeCqBsVzQgrWSW3VTncW2wjdzEYCj4S3ecDd7v77\nsBjhfqKpp3lEj601+eiARujpla8p58EPH2T+8vlM2HECmxRv0tFdEslmGqFLp6ad4rJAXV0dOdoQ\nRiRuCujSqSkKZAEFcxERUSQQERHJAgroEqvkypXULluG19V1dFdEpBnMbLiZvZvBOcenvO/QFKrd\nnQK6xKZ2yRLmX3wxn5/xE9a89x6eTHZ0l0SkbQ0H1gZ0dy9z97M7rjvdmwK6xGbZw4+w/IknWf32\n23x+xk+oXdr4wwzVtUkWLa+icnXNBsfKV1bz/lfLefWTJSxavibOLot0GWF0/J6Z3WVms83sQTPr\naWb7m9lbZjbDzG43s4Jw/lwzuzqUv2ZmW4XySWZ2VEq9Kxpp6yUzezP8fD0cuhLYy8zeNrNzzWyf\nkACGsJXro2Y23cxeCZnfMLNLQr+mmdknYac6aQPal1NiYz16NHidfpHw6ppa/vvREn7/1Gy22aQX\nV3x7FFStoq62Bnr1489TP+Gfr0bbXg/uXcDjZ+3J4N7agU4E2AY4zd1fNrPbibZ1/TGwv7t/YGZ3\nAj8B/hLOr3D37S3KCf4XMs+kuRA40N3XhC1f7yHKPT6RkAMdICRUqfc74C13P8LM9gPuBHYKx7YF\n9iXaSvZ9M/uru2/4bV6aRSP0LFe7aBE18+dT2wHJUkq/cyj9Tj2Fkn33ZbObbyZvQP+05y1fXcuP\n//kGHy9aydKV1cx/fya3nf0j7jjvJ1SuquKu19blsFhQWcXTM+anrUekG/rM3ev3bP8nUUa1Oe7+\nQSibDOydcv49Kb93b0Y7+UT7vs8AHiBKy7oxewL/AHD354H+ZtY7HHvS3atCJs6FZJDTQzZOI/Qs\nVvPVV8w95lhqFyyg/4QJ9P/RaeT27r3xC9tIXr9+DDzvPLymhtyeDdNBpzAo6pFLzepathrQk09e\nm7L2UG11VTv0VKTLariRyDIg/TfnDc+vf11LGNyFZCc9Gl5ElKVtAVGmthyi/Oqtkfp/7CSKRW1C\nI/Qstuq116ldsACAJXfcgVe1f3DMyc9vOpgD/Xv24P4f784h22/CTlv0Y8eDDiE3Lw/MyKut4oTd\n1qWNHty7gG9tPyTubot0FZubWf1I+3igDBhef38c+AHw75Tzj0n5/d/wei5Qn8/8MKLReEOlwHx3\nrwt15obyplKwvkRIuRqm4he7e0vTbksG9K0oixVuvx2Wn4/X1FC8227QSVOZ5ubmsO0mvbn26J3I\nz82hrraG0264Da+ro7C4mHP7DuDE7QewdPkattpsAANL0g0gRLql94Ezw/3zWcDZRGlGHzCzPOB1\n4G8p5/c1s+lEI+TjQtktROlV3wGeIcqp3tBNwEPh3nvqOdOBZLh2ElE60nqXALeH9lYR5e6QGGnr\n1yxWt2YNyfJyahctIn/YMPL6NzUT13mVP/AAC6+6mpziYjBjxAP3kzdwYEd3S7qfTrX1q5kNB55w\n9+0yPH8uUVazxTF2SzpQ5xyySZvIKSwkZ8gQ8od08SlqM+pWrKBuxQryhgzpkJzvIiKdnQK6dHq9\n9tuPqlM+pvrjjxl8/q+UllUEcPe5QEaj83D+8Ng6I52CArp0enn9+jHovHPx6mpyS0o6ujsiIp2S\nArp0CTk9ekAPLYYTEWmMHlsTERHJAgroIiIiWUABXUSkCzKzg83sfTP7yMwmdnR/pOMpoIuIdDFm\nlgvcCHyLaF/148wsk/3VJYspoIuIdD3jgI/c/RN3rwbuBQ7v4D5JB9MqdxGRdpBIJPKAAcDisrKy\n2lZWNwz4LOX958BuraxTujiN0EVEYpZIJL4OLALmAIvCe5E2pYAuIhKjMDJ/EugDFIbfTyYSidwm\nL2zaF8BmKe83DWXSjSmgi4jEawBRIE9VCLQmw9DrwCgzG2FmPYBjgcdbUZ9kAd1DFxGJ12JgDesH\n9TVEU/At4u61ZnYW8CxRbvLb3X1mq3opXZ5G6BIbr6mhZsECqubNo7a8vKO7I9IhwgK4bwPLiAL5\nMuDbZWVlydbU6+5PufvW7r6lu/++DboqXZwCusSmZv58PjnkED755sEs/OOfSFZUdHSXRDpEWVnZ\nf4im3kcAA8J7kTalKXeJzarXX6du5SoAKp98kkE/P6eDeyTSccKI/KuO7odkL43QJTY9d92VnOJi\nAEoPOwxTtjQRkdhohC6xyR86lJFPP4WvWUNOr17klpaud7xyTQ3JpNOnZz5m1kG9FBHJDgroEhvL\nyyN/0KC0xxZWruGCR2awbFUNV31ve7YcWKKgLiLSCppyl3aXrKvjuqkfMnX2Qt6YV85P73qTJSuq\nOrpbIiJdmgK6tDvDKMhb959efm6ORucizWBmm5nZC2Y2y8xmmtk5obyfmU0xsw/D776h3Mzs+pBq\ndbqZ7ZxS18nh/A/N7OSU8l3MbEa45noL/ydtjzakZRTQpd3l5Bg/2Wcrjk5syv6jB/HXE3amf0lB\nR3dLpCupBX7h7mOA8cCZIX3qRGCqu48Cpob3EKVZHRV+JgB/hSg4AxcTJXYZB1xcH6DDOaenXHdw\nKG+PNqQFYr+HHvL2lgFfuPuhZjaCKNVff+AN4Ach/Z90IwN7FXDp4duRrHOKC5r+zzC5fDlVH33E\n6rfeouQb+5C/6TByCvQFQLqWRCIxABgOzC0rK1vcmrrcfT4wP7xebmaziTKwHQ7sE06bDEwDzg/l\nd7q7A6+YWR8zGxLOneLuSwHMbApwsJlNA3q7+yuh/E7gCODpdmpDWqA9RujnALNT3l8FXOvuWwHl\nwGnt0AfphArzczcazAHWzJjBvOOOZ+HV1zDnyCOpXdTiHTNF2l0ikShMJBJ3EaU4fQ74PJFI3JVI\nJBru794iZjYc+BrwKjA4BHuInnkfHF6nS7c6bCPln6cpp53akBaINaCb2aZEWx7eGt4bsB/wYDhl\nMtE3MpFGLX9h2trXXl1N1QcfdlxnRJrvNuBIoAAoDb+PJPy72BpmVgI8BPzc3StTj4WRsre2jaa0\nRxuSubhH6H8BfgXUhff9gWXuXhve6xuZbFSvAw9Y+9qKiijYZusO7I1I5sI0+3eBogaHioDvheMt\nYmb5RMH8Lnd/OBQvCNPchN8LQ3lj6VabKt80TXl7tSEtEFtAN7NDgYXu/kYLr59gZmVmVrZIU6zd\nWuGYMYx45GE2uewyRj72KHmNPNsu0gkNBxp7JrMK2KIllYbZztuA2e7+55RDjwP1q8hPBh5LKT8p\nrEQfD1SEafNngYPMrG9YqHYQ8Gw4Vmlm40NbJzWoK+42pAXiXBS3B3CYmR1ClDawN3Ad0MfM8sIo\nvdFvZO5+M3AzQCKR0JRON5ZbUkLu6NEUjh7d0V0Raa65RFPs6RQA81pY7x7AD4AZZvZ2KPs1cCVw\nv5mdFuo+Ohx7CjgE+AhYBZwK4O5LzewyovzqAJfWL14DfgpMIppNeJp1i9Xaow1pAYtugcTciNk+\nwC/DKvcHgIfc/V4z+xsw3d1vaur6RCLhZWVlsfdTRKQJLXpGOiyIO5L1p91XAw+XlZWd2BYdE4GO\neQ79fOA8M/uI6J76bR3QB8lQctUqksuXd3Q3RLqy04CHiXKhV4TfDwM/6shOSfZplxF6a2mE3jFq\nFi5kwRV/oG7Fcgb/5jf0GD5cO7pJd9aq//jDArgtgHmtfQ5dJB0FdEkruXIl8ydOZPmU5wDIHzaU\n4ffdR96AFi/KFenq9G1WOjVt/Srp1daSrKhY+zZZUYnXdf4vfyIi3ZUCuqSV07s3g3/7W3IHDMCK\nihh69dXk9u7V0d0SEZFGKB+6pGVmFGy5JSMfeRh3yO3di5zCNtmpUkREYqARujTKcnLIGziQ/EED\nFcxFOiEzyzWzt8zsifB+hJm9GtKR3mdmPUJ5QXj/UTg+PKWOC0L5+2b2zZTyg0PZR2Y2MaU89jak\nZRTQRUTaSSKRaOt/czNNfnUaUB7Krw3nEVKuHguMJUpdelP4kpAL3EiUEnUMcFw4t73akBZQQBcR\niVEikeidSCSuTCQS5UAykUiUh/e9W1NvM5NfHR7eE47vH84/HLjX3avcfQ7RLm/jws9H7v5JSG99\nL3B4e7TRmr9Jd6eALiISkxC0Xwd+DvQJxX3C+9daGdSbk/xqbQrTcLwinN/clKft0Ya0kAK6iEh8\nfk20mUzD/dwLiBK3XNCSSlub/EqykwK6iEh8fkzTyVl+3MJ665NfzSWaqt6PlORX4ZzU5FdrU5iG\n46XAEpqf8nRJO7QhLaSALiISg0Qikcu6afbG9G3JQjl3v8DdN3X34UQLzp539xOAF4CjwmkNU5vW\npzw9KpzvofzYsEJ9BDAKeI3oNsGosKK9R2jj8XBNrG00928h6yigS5vwZJKahQupmjOX2iVLOro7\nIh2urKwsCSzbyGnlZWVldRs5pzkaS351G9A/lJ8HTARw95nA/cAs4BngTHdPhnvgZxHlMp8N3B/O\nba82pAW0l3sn58kkyfJyyM0lr2/fju5Oo2rmz2fOkd8luWwZRYkEm153HXn9+3V0t0TaUrP3ck8k\nElcSLYBLN+1eBVxbVlbWovvoIg1phN6JeTLJmlmzmHvCiXx+5lnULFjQ0V1q1Op33yW5LBqMrC4r\no27Nmg7ukUincAUwlyh4p6oK5X9o5/5IFlNA78SS5eV8OfECaubNY/Wbb1J+9z0bnFNXW4vXteWM\nXfPUt104egzWsycABaNHk1PQo8P6JNJZlJWVVRI9b30t0SYshN/XAuPCcZE2ob3cO7O8PPIGD6b6\n448ByN900/UO13z5JQuvu478IUPpd9IPyOvXflPcyYoKVr7yCitefJF+J55I/ogRbPn0U9QuXkz+\n4MFKsyoShKB9AXBBIpHIaeN75iJrKaB3Ynl9+jDsqispf/Ah8jcZTMk++6w9Vltezufnnsead96J\nzu3fn34/OLHRuuqqqsgpaOzpmearWbKEZffdz5pZs6h8+hm2fOZp8gcPJn/w4DZrQyTbKJhLnDTl\n3snlDRzIwJ+cQZ8jj1x/UVxdHV617rZc3erVaa9PVlZS8eSTfPmrX7HqjTfa5N52bXk5VbPfo2in\nndjsb3+jxxZbQG3txi8UEZHYaITejlYvr6S2uprcvDx6lm7s8dSm5fbrx7Br/8xXv7uUvE0G0+d7\n3017Xu2SpXz5i18CsOL5F9jyuSmtypxWV1PDsgceZNGf/wzAsgcfYPPb7yCnl3Kli4h0JI3Q28nq\n5ZX8+x+3c/NPT+GhP1zMyoqNPZ7aNDOjYMQINr3+Oja56CLy+vdPf2JtzdqXnkxCKxfQ+erVrHz5\n5XXVL1yE5eeTq4Au0q7MrI+ZPWhm75nZbDPb3cz6mdkUM/sw/O4bzjUzuz6kKZ1uZjun1HNyOP9D\nMzs5pXwXM5sRrrk+JFqhPdqQllFAbyc1a9Yw89/PAbBwzsdULPiqTerN7d2b3LC6PO3xgQMZ+Mtf\nULTzzgy79tpWj6Rzevak9LDD1r7vseWW5BQ33r6IRBKJxIhEIrFHIpEY0UZVXgc84+7bAjsSbc4y\nEZjq7qOAqeE9RClKR4WfCcBfIQrOwMXAbkSr8S+uD9DhnNNTrjs4lLdHG9ICmnJvJ7n5+ZQOGkzF\nwgXkFRTQq3/7rALPKSykcLvtoK6Oyn89S8FWW5JbUtLi+iwvj14HHkDB6G2pXbCAou2204p2kSYk\nEokE8HdgNFAN9EgkErOBH5e1cMcsMysF9gZOAQjpR6vN7HBgn3DaZGAa0c5uhwN3hq1YXwmj+yHh\n3CnuvjTUOwU42MymAb3d/ZVQfidRmtSnQ11xtyEtoIDeTor79OXYS69h8adz6Tt0GD17l7ZLu3XL\nlzP/gl9TO38+AHmlfdjkot+2qs7c3r0pGjMGxoxpiy6KZK0QzKcBxaGoKPzeGZiWSCT2aWFQHwEs\nAu4wsx2BN4BzgMHuPj+c8xVQ/9hJc1OYDguvG5bTTm1IC2jKvR2V9O3H8B13pnTgYHLz89ulTSso\noOfXvrb2ffHXd4+1vdolS6j+9FNqFixodOW9SDfyd9YF84aKgb+1sN48oi8Ff3X3rwErWTf1DUAY\nKce6t3d7tCGZU0DPcrm9ezP4wt+w2S03M/yhh+g5btzaY6uXV/LVxx/y4ev/ZUX50la3Vbt4MZ+d\nPoGPD/omHx9wIKvDM/Ii3VG4Vz56I6eNaeE99c+Bz9391fD+QaIAvyBMcxN+LwzHm5vC9IvwumE5\n7dSGtIACejeQ168fJXvtRdHYMeT27k3NggUsfewx3p36LHf9+lwe/+PvufvCX7ByWfnGK2tC1Qcf\nsGbWLAC8poYFV12tzGvSnQ0lumfelOpwXrO4+1fAZ2a2TSjanyibWWoK04apTU8KK9HHAxVh2vxZ\n4CAz6xsWqh0EPBuOVZrZ+LDy/CTSp0mNqw1pAd1D72Zqy8v54rxfUHT0UcyYNmVt+fLFi1hZWUFV\nfjErq2opyMthYK8CmvMUiTVYbZ/TsyerZ82iaPRoLZyT7uhLYGNJDXqE81riZ8BdIZf4J8CpRIO0\n+83sNGAecHQ49yngEOAjYFU4F3dfamaXEeUmB7i0fvEa8FNgEtF9/6dZt1jtynZoQ1pA6VO7mdrF\ni5l30skUHXQgb3kV773yEgA5uXmceOM/uHrqJzxQ9jkDexXw+Fl7MKS0aCM1ptS9dCkL//RnKh55\nhPwhmzDkyiv56pLfUTBqFEMuv6xVq+tFOoGWpE99g2gqvDFvlJWVJVreJZF1NELvZnL79mXoH69h\nweWXs+clF1MyYADlX33J+O8dS11OHg+URYtOFy2v4p3PKhhSWkRy+XKSS5ZQV11N3qBB5PVJv8td\nXr9+DJ54PgPP/hnVc+ey8Jo/Uv3xx1Fe9GSyPT+mSGfxY9Zf5Z5qJXBGu/ZGspruoXczlptL4Tbb\nMOz66ykaOIg9jzuZQ372SzYZOYr8vFz23nogAD175DJ2aG8AVr78Mh8f/C3mHHY45ffc0+R+8Lm9\nekVJWoYOhdpaCrbemk0u+R25pe3zmJ5IZxIeSduH6LGy1UBF+P0G0NJH1kTS0pR7N7R0ZTVPvzuf\novwcdh85gCF91k2rL1lRxeIV1fTpmU/f4nzykkm+PH8iy5+Obm0VbjeWzW6+hbx+fRurfq36BXG5\n/fo16168SCfVqv+Iw2r2ocCXZWVlc9qmSyLraMo9RslVq/CqKnJKSshpp+fOMzHriwpGDCjm7//+\nhHe/rOTHe2/J4N5Rwpb+JQX0L0lJs5qbS78TT2DFc8/htbX0O/lkckoae6x2fY3uLy/SDYUgrkAu\nsVFAj0lteTmLb7qJ1W+8yYCzzqJ49/HkFGW+wCxOA3oXcNJtr7FweRX//mARu2zel2/v0PiTM4Vj\nx7LllH+BOzm9epHTY2MLd0VEpL0poMek5ssvKRw7lpyexXxx3nls+ewznSaglxbmk5MyBZ6X2/RM\nYk5hITmbbBJbf2qSddS5U5CXG1sbIiLZTgE9Bsnly1n9xhssvfMfFI8fz9BrroZW3EOuTdZRk3SK\nerQu4JWvrOaDBcspKcxj8g/H8ad/vc+Yob3ZdXjHTY0vXlHF9VM/pHxlNRccMpqhfTrHlx4Rka4m\ntoBuZoXAi0BBaOdBd7/YzEYA9wL9iVZ6/iBkCsoadcuXs+CKPwCw7MEH6XPM0eT23fgisnSWrqzi\n1pfm8PGiFUw8eDTDB/Rs0QKzmto6/vnqPP70rw8AuPK723PtMTtRkJ9DXk76hx3qqqtJLovytucU\nFcWS83zyf+Zy53/nAbB4RTV/PXFn+vTUlL6ISHPF+dhaFbCfu+8I7ESULm88cBVwrbtvBZQDp8XY\nh46Rl0dOcVg4ZkZun74tXhQ3dfZCbpr2Mc/OXMAPJ7/O4hVVLaqnqjbJa3PW7df+zMyvcKCuzvmq\nYg0zvqjYoO7lS5ZRvXI15ffcQ/m991GzaFGL2m5KTbJu7evaujpleRARaaHYRughC8+K8DY//Diw\nH3B8KJ8MXEKU5D5r5PXty/D77mXZo4/S6xvfIDeDR7wak6xbF+Jq6+po6ZMzPXvk8fMDRvH63KUY\nxjn7j6K4Ry6fLV3FQX95kTU1dew2oi83nbgLfYp68NHCFVz5zDxG9S/k5HF7UPmjU0hWVjDonHOw\nvLb7z+ZHe45k8fIqlqys4bLDx9JXo3MRkRaJ9R66meUSTatvBdwIfAwsc/facEpW5r+1/HwKttqK\nwb/8ZbOvralKUr2mlrweuRQU5XHgmMHMnl/JJ4tX8ttDx9C/eMOAt6q6lmWraqhJ1lFalJ92yjon\nx9h+WCkv/r99AejTM58FlWt4bW45a2qiUfKrc8pJJp2lK6v4wW2vsnB5FS8Ao781kl0POoiaL77A\nk8k2DegDehVw2RHbk6yro6Sw8zzaJyLS1cQa0N09CexkZn2AR4BtM73WzCYAEwA233zzeDrYyVSt\nqmHWy/OZ/vxnDN9hAOO+M5L+JQX8+pDRVCfr6NVIwHvns2WceNtrJOuc8w7cmuPGbcbAXoUbnNcj\nL5dBvaOFdZVrarjw0Xc5a9+tGFpayJcVazhu3Ob0yMuhujZadQ5w8HabMHabYcw67qfsuNUm5BQU\nbFBva0WL/bTCXUSkNdpllbu7LzOzF4DdgT5mlhdG6Y3mv3X3m4GbIdoprj362dGqVtfyn4c+AuDd\nf3/B2L2GUlSST0F+LgX56QNeXZ3z4Jufr52a/993vmTMkN6MH5nb5Ig3x6BHbg7nPzSDq4/akb7F\n+QwpLaRPzx4kk3VMPnUcVz3zHuceMIpDb3iZ6mQdIwd8zv1n7M6AkrYP6iIi0jqxLYozs4FhZI6Z\nFQEHArOBF4CjwmmpuXS7vdzcHPILosBtBj2Kou9bXltLzcKFrJ4xg9rFi9e7xgy+t/NQcnOie+vf\n3XkYc5esoCbZ9HegkoJ8Ljl8LLuN7Mf/fbSIwb0L6VdcsLYfY4b25n+O35mlK6upDgvXPlm8cr1F\nbCIi0nnEOUIfAkwO99FzgPvd/QkzmwXca2aXA28Bt8XYh06vdulS1sycSU7PYnqMHMn3frUL773y\nFSN3HEBhSTTCrl2ylE++8x3qKisp2HoUm99++9r84uVV5UyvfIJHf3Yg1ck6qurKGd57G/r03Pj9\n6EG9CrnkO2OB6B57KjOjd1E+owb3Yvthpcz4ooIJe4+kZ/6G/8lU1yZZtroGAwaUNC+HuoiItI04\nV7lPB76WpvwTYFxc7XYltcuWMf/CC1nx/AsADPz5z+l3yins8b2t1juv5qv51FVWAlD1wYd49brH\n9vMsj3cWv86N068F4FeJ8xk/dCy2YkF0Qs/+kNvE1HtO08F3QEkBk07dlWSdU5CfQ2nR+nXVJut4\n69NlnDa5jF6Fedxz+niGD8hsr3cREWk7Sp/akWpqWPHiS2vfLn9uCnWrVq19v3p5NSuWrYHNtqRg\nbDSSLvnmQVjhugVvvQt6c+kel/LDsT/k/F3P59CRh5Dz5Rtw/U5wwy7w1XRoZUa9/iUFDOpdSGnR\nhqvnK1bXcMn/zmRFVS3zK9bwPy98GB6vExGR9qStXzuQ5edTsu++rJgyBYBe3zyYnOKeAKyqrOaZ\nm2cw/6MKRu06mD1vmUTemkpyCgvJ69dvvXoG9hzIuYlzozery2HqpVCzOnr/whXw/UlQ0Pa7vAH0\nyMth1KASZs9fDsDYoaWN7jwn/7+9O4+SqroTOP791au9q7p6w6ZZmm4IIKsioCBBiRpNYgSDcSUT\nnGAck6NjxjjqGGdixrhMJjETzWQcxxiTjGOMuJFlZPQEAcWIgBBEFtm3hgZ6r/1V3fmjSqDpjZZu\nqmh+n3P6UPXefe/d+nWd/nHfu4tSSvUeTeg5ZBUVUfG9+4nPuQGHvwBX5eDDw8IizQlqNjcC8NF7\n+5kyayj+Ae2viGaMOez49vYAABYaSURBVPLc2umFgRNhx9uZ9wMngdV2CFtPCXpdfPeKMVwwvB+F\nPheTqkq6PkgppVSP04SeY86SEpxTprTZ7itw4fZaJGIpAsUeLFfbVm9dOMGrq/eweX8L86ZXU1Va\ngMPlg2nfgsop4LBg0GRwZjvXJRKk7CRuX/fng49HbaLNCRKxFMESL77AkWfppQEPX540uJufXCml\nVE8Sc4LPV0+GSZMmmRUrVuS6GidVKpUm0pigfl+Y0gEBCorajv1+cskWHvrjBgCK/S4WfusCzihs\nvzUeaWpk+csvcGDXNi78yjzKKofgcBz/ZC671tex4LHVYGD8xYM474qhuL36/0F1WtHhGyqv6cPO\nPGVZDgqKPDgH+Hlx/V421DQRTdiH99upNOtrmhGBm6dW8cMrxmKlOj7frnV/YeUfX2Hn2jW89Mj9\nRBobu1Wf7WsP8vHKKbvW1WEntOObUkrlE21i5bGDLXG++Phb1IUTOB3Ckrs+g8+d+ZU5LQd/c+FQ\nJvQvZGgzbH5+KzK2kXMvr2bDOzWUV4coGVCA22vh8jixjlrtzXK6un3LfcynB7B+WQ3JeIoJl1bi\n9upUrUoplU80oecxO22oKvXzzzPHYKBVCx1gWL8A/Z0unr3vHQDWv1XD8InlrFq4k2Q8xczbz2b3\nxnrOvmQwA0eOZvoNN1K7fSvTrpmDP1TU6bVNMomdXQvdKioiVO5nzvemkE4ZPH4nTrcmdKWUyiea\n0PNEMp4iGU/h8liHp38t9Dq5f+YYvvnsKkTg6bmTWx3jshy4nA6CpV48fidNB6O4fU5S2dXTmg/F\n2Lb6AP2HhqgeX8bkK2aTTqVatdbbY1IpYuvXs/Nr88AYBv/8KXzjxlEQ0jnclVIqX+kz9F5iNzYS\nXbeOyMqV2PX1nZaNhZPsWHeI1W/s5MNle4mFk5kdIvz49Y/YXR9lV12UHyzc2KaV7vLC5d+sZPTU\nZq6+50wcFhQUeag+q4zCfj4aaqO4PRbJuE3Ktom2NBNuqKezzpCp5mb2P/ww6ZYW0uEw+x96mFR2\npjqllFL5SVvovaTljTeo+c59OMvLKbvtVkJf/CIOb/s90JPxFM0Ho8RaklSfVUYyZuMtcOG2MpO2\nLNpYC8DwMwI4rdb/B4u3NPHru28jlUziDxXxV488xpV3TMBOpvjgzT1M+/Kn8IfcxFriHNy5gbpw\nDG9FFcVpN8UBz+Fn8gCppibE5UJcLlxVVUTfXw2Au6oKcbedJU4ppVT+0ITeC9LJJOFly/BffDHe\nm+ex5aMNDD14gFD/Cixn25Af2NHEspe2ALDzwzquumsikJmF7ZYZQxlVEUREuGBEP1zHJPSW+jpS\nyUyLPtLYQMpO4vIFeO8P2wBIRGwO7mqhdKCwa8cOlsgwnvr9alyW8OI3zmf8oCJMOk1i61b2PfB9\n3IMH0++Ov6P8zjvxDPsUpNMUXTUbq6Dn52e3DxzAbmjACoVwlpYilj6XV0qpT0oTei9wuFyU3nQT\nMYfwywfuxU4mWLbgRb72b/9JoKQUADuZJB5uwel2E48cuY0eCyeRoxZMKSnw8KVzBnV4rdAZ5QwY\nOZq9Gz9kzIzP4vb58AXdTLlyGPGIzb6tjWz/8CAVnxrC0KkXce8zq/C5LCpL/CzeVMv4QUWk6urY\nfdvfkti2jci77+IZNYqSOTdQdtO8XotRsvYA26+9FrumBkcwSPX8+biHVPba9ZRSqq/ThN5LPMOH\nE63dh53MrIyWjMewsy3pZDzOrnVrWPzrpykfNpwL5syj6qwy6vaEueC6EXj9Hf9a4tEkdiKN5XTg\nLXDhDxUx687vZDq7OV34gpk52wtCHlxeiyH+UoaMLeXDt/fSHEnyjU8PZczgEGv3NHH+sFLiyRSW\nCOI50uHNuDwk4jZuT+99PWIb1mPX1ACQbm6maeFCym7+eq9dTyml+jpN6L1EnE68wULO/twVbHx7\nMWNnfBaPP7PwSjwSZsGjD5NKJqnbu5szp07nkrkTSNlpPD4nlqv9W8/RlgSrXtvB+mU1VI4p5cLr\nR2BcDvyFoXbLuz1O3B4nLfUxli/Yhghc/k+Tue6Z5dQ0xvA4HSy6cwbi9OP8r1/hW78WWf0+sWET\n8cZSvZrQ3YMGg8jhleC8o87stWsppdTpQBN6L/IFC5l2zVc478qrcXk8ePyZ59Aigr8wRPOhgwD4\ni4rw+DsfSgYQj9isfmMXAI6Ak7e21/HCqt1cPXEQ5w0tJdBBAnZYmaFtzYdixCKZZU4B4naamsYo\nX//VCurCSe6+dCRTzprJRwv3ccWI9heC6SnOM/pR+fTPaXjpZQIXTMc7fnyvXk8ppfo6TegnqLF2\nP6v++Cr9PzWS6rPPwRtovUypMxrFaQwO35FWd0FRMdfe/wh/eWMhA0acSVH/40ueTpcDcQgmbRgy\npZzLnnibtIGF6/bx9t0XdZjQ/YVuZt95Dns2NRAKupk7ZQi/encHU4eW4nVZ1GWHyb24eg+XX3sO\nI88+A1+w817t9qE60uEWxOvDWVaKdHPJVCsQoGDqVPyTJyPtdBRUSinVPfqX9ASEG+p54YF7aazd\nD8A1332YwaPHHd6f2LOHnV/9KnbtAQb86EcELph+eOha6Iz+TL9hbreu5/E7mfWts1m3dC9un5N0\ndii5MZDuYpGdQLGXytElPP/gci79zEDmfG0qgZCH2lhmWlk7bbjqnIH06+fH18UscHZdHXvv/QfC\ni5dgFRdT/dKLuCoquvVZPqbJXCmleob+NT0Bxhiizc2H30ePmXyl4YX5JPfsBWD/Qw/hn/DbDsei\nHw+Xx8nAEcX0HxYikkzx2HUT+M17O7lm0mBCvq5v2SNQNijI6pe34Slwct1951JUFGTp3Z8hYacJ\n+VxdJnOAZDRGePESAFL19UTXrv3ECV0ppVTP0IR+AryBIFf+/X0s+uV/0W9INYNGj2213zfuSGvd\nM3IkuHpmchbLchC0HHxhXH9mnNkPv8tqM+FMe3wBNxfNHUUiauNyW/gK3Tgcgt99/F+DuJ1iR1MS\n77hxxNauRXw+PKNGncjHUUop1QN0PfQTlEqliLc0Y7nch3uxf8xubCTx0WaS+/dRMGUKztLSHNWy\ntUhTgkTMxuWx8Be6u7Xymp1K8++LNnPpADcFTXUEKsrxn1GK1/fJ7zwodYrQ9dBVXtMW+gmyLKvD\nlcucoRDOSRO7fc50Oo0xBsuysBMpIk0Jmg7FKKkowF94Yq38SFOChU99wN5NDfgL3Vx972QCRUfG\noCdT6Taz0R3NaTn4ypQhzF+5m7Qp5OqSMrw+XbRFKaVyTRN6nok0NrD81fnEWlqYdv1fkUr4eO6f\n3yWdMvSrDHLFbWd12gM9bdukGxoQtwerMNhmv51MsXdTZlnUSFOCQ7tbCBR5SKXSfHSghf94cwvn\nDyvlsjH9KfK3f53SgIe/uXBYz3xgpZRSPUITeh4x6TQr//AKK//wCpAZPz500rWkU5nHIgd2Nh9+\n3R67oYGmBQuo++9ncVdVUfG9+9t0VnO6HJQODHBoTwtur0XJgMzY+EORBNc88Q5NMZtXV+/lzP6F\nHSZ0pZRS+UcTeq611IJJYzsDJO008Ujk8K6G/TWUVxcenhRm/EWDsFwd3w5PbN/O/oceBiC5cyd7\n7/kHBj72E5yhIzPJ+Qs9zLz9LMINCfyFbrzBbO94k5lo5mPRZAqA+nCCcMLG7XRwRlCfkyulVL7S\nhJ5LDbvg2augpRYz8z9Z+uY6xl7yBVrqDhKPRLjkplsJlvj48l0TSaUMLo+Ft6D94Wl2Ik5806ZW\n2+JbtkAi0aasv9CDv7D1c++Q38UvbpzMj17fxOSqYkaWB2mIJPjBwo08t3wnFSEvL39zGv1DmtSV\nUiofaULPpWWPw4GNALgW3smIc/+VBT98kPGXfB6ny0VDbQ3F/SvwhzrudGYnEuzbson3/3cBF3/p\nesTrxcQyU7sGZ88m4Sto9UtOJZPEwi2kbCfisPAFvThdDjxOi/OqS/j53El4XBY+l0VtU4znlu8E\noKYxxgd7GzWhK6VUntKEnktlww+/NIWDiYYjhBvqeWf+/wAQLO3HnIcepaCouMNTRFuamP/9+0jZ\nNulkkstefYWG/30dz6iRrPH3Z0gsTXXgSPmmA7XEo7Do2d1Uji5k5JQSAkUBvIECLMvR6rm50xKm\nDC3hz1vr8LksRpa37WSnlFIqP2hCz6Wxs0mKG9Owi+iwmSz+wQ9b7W4+dAA7Ee/yNB9PJbB51XtM\nnPUV1qQmM6aqir9+4i2W3jWwVdlDe3ZxYHeIkecVE218n5cf+T9GnHc+5155Nb5gYauyJQUefnrD\nOexvilFa4KE0cByz0SmllMoJTeg5ko5GwRlkuxnO2hXb2PPs90lEI63KiDhwdDHXubcgyJX3fJdV\nv3+ZyrGTOLQnzf7tTUz0Wvzp2zOwHEIylcJlZaZ07VdVjW1HCJZa/OYffw3Ait+/zLiLLmuT0AHK\nAh7KAjrOXCml8p0m9JMlHoboIYjUkfaXU/PAD5FAkPJbv8Hv/rIKk063OWTopHNxe/3tnOwIl8dD\naOgo/J8rYtCAUnZtbuLL90xiTzzBl366DIcIz319CmcNzkx+EyguZdDIAuxkFKfHgx2P47AsXCcw\nx7xSSqnc696al+qTO7QJHjsbnrwQ3vguvlHDaHz+eewVK/nCbXci0vpXUVRewcV/fUub6WTbE/J7\nGFNVzp9rmqgYXYzxWzzy2kZiyTSRRIqfLtpMNGEDYDmdBEoCBEuLmfPgo0y56jquf+Bf2yz7qpRS\n6tSiLfSTZetiSGfGdjt2LMYzYSYAiffXMPRbt3PT40+xYdkSmg7UUj1hEv2HDe+0M9zRLIdQWeKn\nsiST/JOpNFOHlrJ40wEAzh9WitvZehU1y+mkbPAQygYP6alPqJRSKod0cZaTpW4bPHURROowlz5I\n4+4Swu+vpfzb38ZZVtbjl6uPJNh2MIwlwpBSv876ptSJ08VZVF7rtYQuIoOBXwHlgAGeNMb8RERK\ngOeBKmA7cI0xpr6zc53KCT2dSmEn4rjcHiRyANI2eIKk0i7E4ehyffSmaJLVuxpYs7uB2ecMYmCR\n7xPVIxUOE1+/nuY/LSI0aybu6mocbk3ySnWDJnSV13ozoVcAFcaYVSISBFYCVwI3AnXGmEdE5B6g\n2Bhzd2fnOlUTerSlmU3vvMWWFe8yeeZsKoaPxOnuXo/x93fW86WfLQOgssTPS988/xP1Ok/s2s2W\nSy8FYxCvl2ELX8NVXt7t8yh1GtOErvJar3WKM8bUGGNWZV83A+uBgcAs4JfZYr8kk+T7pHB9HUue\n/QWeQIC1b75OrKWl2+fY1xg7/DqdNrgTYT548w12rF1DtKW5VdnEvn1EP1hH858WkaytbbUv1dR4\neMC6icUwR00JmwqHsevrMbbdbh3SySTJ/fuJbdiAfehQtz+DUkqp3ndSOsWJSBUwAXgXKDfG1GR3\n7SNzS75PEoeDL9z/T/y2ZgFOcTLZnSLQ9WEAJGJRkvE40wZ6eO2Wc0gknQwo9LDsN0+zbvEbAFx+\n+12cef4FANiNjSS2bWPX1+aBMXjHj2fwE/+Bs6QEAFdFBYWzZhFevJii667DCmZ6tdt1ddQ++mPi\nGzdS/p178Y4Zg8PVegIZu6aGrTNnYWIxCqZPZ8AP/gVn8fF12FNKKXVy9HqnOBEJAIuBB40xL4lI\ngzGm6Kj99caYNtlBRG4Gbs6+HQls7OJSIaCxm9U7nmM6K9PRvmO3t1fu6G3H7i8DDnZRr+7K5/i0\nt62z970Rn47q1RPHnM4xOt7y3Y1RLuJz0BjzuW4eo9TJY4zptR/ABSwE7jhq20Yyz9YBKoCNPXSt\nJ3vjmM7KdLTv2O3tlTt6WzvlV/TC7yJv43M8MTsmXj0eH41R78ToeMt3N0b5Gh/90Z9c/vTaM3QR\nEeDnwHpjzKNH7VoAzM2+ngu82kOX/F0vHdNZmY72Hbu9vXK/62J/T8vn+LS37Xhi2NM0Rl3r7jWO\nt3x3Y5Sv8VEqZ3qzl/ungaXAWuDjeU3vJfMc/bdAJbCDzLC1ul6pxClKRFYYYybluh75SuPTNY1R\n5zQ+qi/qtU5xxpi36HiYx8W9dd0+4slcVyDPaXy6pjHqnMZH9TmnxExxSimllOqcLs6ilFJK9QGa\n0JVSSqk+QBO6Ukop1QdoQs9zIjJKRJ4Qkfki8o1c1ydfiUiBiKwQkS/mui75SERmiMjS7HdpRq7r\nk29ExCEiD4rI4yIyt+sjlMo/mtBzQESeFpFaEfngmO2fE5GNIrI5u3ANxpj1xphbgGuAabmoby50\nJ0ZZd5MZDnna6GaMDNACeIHdJ7uuudDN+MwCBgFJTpP4qL5HE3puPAO0mkJSRCzg34HPA6OB60Vk\ndHbfTOAPwB9PbjVz6hmOM0Yi8lngQ6D22JP0cc9w/N+jpcaYz5P5j8/3TnI9c+UZjj8+I4Flxpg7\nAL0Tpk5JmtBzwBizBDh2Mp1zgc3GmK3GmATwGzKtBowxC7J/jOec3JrmTjdjNAOYAtwAfF1ETovv\ndXdiZIz5eHKneqD76++egrr5HdpNJjYAqZNXS6V6zklZbU0dl4HArqPe7wbOyz7vnE3mj/Dp1EJv\nT7sxMsbcCiAiN5JZQCPdzrGni46+R7OBy4Ai4Ke5qFieaDc+wE+Ax0VkOrAkFxVT6kRpQs9zxpg3\ngTdzXI1TgjHmmVzXIV8ZY14CXsp1PfKVMSYCzMt1PZQ6EafFrclTxB5g8FHvB2W3qSM0Rl3TGHVO\n46P6LE3o+eM9YLiIVIuIG7iOzMp06giNUdc0Rp3T+Kg+SxN6DojIc8A7wEgR2S0i84wxNnArmfXj\n1wO/Ncasy2U9c0lj1DWNUec0Pup0o4uzKKWUUn2AttCVUkqpPkATulJKKdUHaEJXSiml+gBN6Eop\npVQfoAldKaWU6gM0oSullFJ9gCZ0lfdEZFmu66CUUvlOx6ErpZRSfYC20FXeE5GW7L8zRORNEZkv\nIhtE5FkRkey+ySKyTETWiMhyEQmKiFdEfiEia0XkfRH5TLbsjSLyioi8LiLbReRWEbkjW+bPIlKS\nLTdMRF4TkZUislREzsxdFJRSqnO62po61UwAxgB7gbeBaSKyHHgeuNYY856IFAJR4HbAGGPGZZPx\n/4nIiOx5xmbP5QU2A3cbYyaIyI+BrwL/BjwJ3GKM+UhEzgN+Blx00j6pUkp1gyZ0dapZbozZDSAi\nq4EqoBGoMca8B2CMacru/zTweHbbBhHZAXyc0BcZY5qBZhFpBH6X3b4WGC8iAeB84IXsTQDIrEmv\nlFJ5SRO6OtXEj3qd4pN/h48+T/qo9+nsOR1AgzHm7E94fqWUOqn0GbrqCzYCFSIyGSD7/NwJLAXm\nZLeNACqzZbuUbeVvE5Grs8eLiJzVG5VXSqmeoAldnfKMMQngWuBxEVkDvE7m2fjPAIeIrCXzjP1G\nY0y84zO1MQeYlz3nOmBWz9ZcKaV6jg5bU0oppfoAbaErpZRSfYAmdKWUUqoP0ISulFJK9QGa0JVS\nSqk+QBO6Ukop1QdoQldKKaX6AE3oSimlVB+gCV0ppZTqA/4fw9L3xyhJLYYAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3888,7 +3895,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8ldX9wPHP945sMggJIEOGKAoi\n1Yi497auOipWxYE/W2eno+5a62pta7V1UVCrdeGoOIuzDgRERYaKDBkBQhbZueP7++N5Qi7JTXIz\nLkluvu/XK6/c+4zznOeK+d5znnPOV1QVY4wxxvRunu6ugDHGGGM6zwK6McYYkwAsoBtjjDEJwAK6\nMcYYkwAsoBtjjDEJwAK6McYYkwAsoBtjjDEJwAK66VVE5DIRmS8idSIyo8m+i0RkuYhUisjrIrJD\nxL6fi8gKEdkiIutF5F4R8UXsnygiH4hIuYisFZEbtuNtGWNMp1lAN73NeuA2YHrkRhE5BLgdOAno\nD6wEnoo45GVgT1XNBMYDewBXROx/EnjfPfdg4GcicmJ8bsEYY7qeBXTTq6jqLFV9EShususE4FlV\nXayq9cDvgINEZLR73neqWuYeK0AY2Cni/BHAv1Q1pKrfAf8DxsXxVowxpktZQDeJRKK8Hr91g8gU\nEdkCbMZpoT8YcfyfgXNFxC8iuwD7Av+Nc32NMabLWEA3ieJ14AwRmSAiqcCNgAJpDQeo6pNul/vO\nwD+AjRHnvwKcBtQAy4BHVXXe9qq8McZ0lgV0kxBU9b/ATcDzwCr3pwJYG+XYb4HFwAMAItIf5wvB\nrUAKMAw4WkR+th2qbowxXcICukkYqnq/qo5R1YE4gd0HfNXC4T5gtPt6FBBS1cdUNaiqa4F/A8fF\nvdLGGNNFLKCbXkVEfCKSAngBr4ikNGwTkfHiGA48BPxFVUvd8y4SkXz39W7AtcAct9hvnM0yRUQ8\nIjIIOBP4cnvfnzHGdJQFdNPbXI/znPsa4Cfu6+txusqfBCqBT4GPgci55PsDi0SkCnjV/bkOQFW3\nAKcCPwdKgc9xWva3xf92jDGma4iqdncdjDHGGNNJ1kI3xhhjEkBcA7qIXCkiX4nIYhG5yt3WX0Te\nEpFv3d858ayDMcYY0xfELaCLyHhgGjAJZxGPE0RkJ5xnn3NUdQzOoKRr4lUHY4wxpq+IZwt9V2Cu\nqlarahB4D2fg0UnATPeYmcDJcayDMcYY0yfEM6B/BRwoIrkikoYzp3cYMFBVC91jNgAD41gHY4wx\npk/wtX1Ix6jqUhG5E3gTqMKZChRqcoyKSNRh9iJyMXAxwG677bbX4sWL41VVY4yJhbR9iDHdJ66D\n4lT1UVXdS1UPwpnf+w2wUUQGA7i/N7Vw7kOqWqCqBampqfGspjHGGNPrxXuUe8PKXMNxnp8/iZOX\n+jz3kPOAl+JZB2OMMaYviFuXu+t5EckFAsClqlomIncAz4jIhcBq4Iw418EYY4xJeHEN6Kp6YJRt\nxcDh8byuMcYY09fYSnHGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQA\nC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowx\nxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCA\nbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNM\nArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMAohrQBeRn4vIYhH5\nSkSeEpEUERkpInNFZLmIPC0iSfGsgzHGGNMXxC2gi8gQ4AqgQFXHA17gx8CdwL2quhNQClwYrzoY\nY4wxfUW8u9x9QKqI+IA0oBA4DHjO3T8TODnOdTDGGGMSXtwCuqquA+4BvscJ5OXAAqBMVYPuYWuB\nIfGqgzHGGNNXxLPLPQc4CRgJ7ACkA8e04/yLRWS+iMwvKiqKUy2NMcaYxBDPLvcjgJWqWqSqAWAW\nsD+Q7XbBAwwF1kU7WVUfUtUCVS3Iy8uLYzWNMcaY3i+eAf17YLKIpImIAIcDS4B3gNPcY84DXopj\nHYwxxpg+IZ7P0OfiDH77DFjkXush4GrgFyKyHMgFHo1XHYwxxpi+QlS1u+vQpoKCAp0/f353V8MY\n07dJd1fAmNbYSnHGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jG\nGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQA\nC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowxxiQAC+jGGGNMArCAbowx\nxiQAC+jGGGNMArCAbowxfZCInCgi13R3PUzX8XV3BYwxxnSOiAggqhqO9RxVfRl4OX61MtubtdCN\nMaYXEpERIvK1iDwGfAWcIyIfi8hnIvKsiGS4xx0nIstEZIGI/FVEXnG3TxWRv0WU9baIfCkic0Rk\nuLt9hnvORyKyQkRO6677NW2zgG6MMb3XGOAB4GDgQuAIVd0TmA/8QkRSgAeBY1V1LyCvhXLuA2aq\n6gTgX8BfI/YNBg4ATgDuiMtdmC5hAd0YY3qv1ar6CTAZ2A34UEQ+B84DdgTGAitUdaV7/FMtlLMv\n8KT7+nGcAN7gRVUNq+oSYGBX34DpOvYM3Rhjeq8q97cAb6nqWZE7RWRiF1yjLrLILijPxIm10I0x\npvf7BNhfRHYCEJF0EdkZ+BoYJSIj3OPObOH8j4Afu6/PBj6IX1VNvFgL3RhjejlVLRKRqcBTIpLs\nbr5eVb8RkZ8Br4tIFTCvhSIuB/4pIr8GioDz415p0+VEVbu7Dm0qKCjQ+fPnd3c1jDF9W6/sbhaR\nDFWtdKe23Q98q6r3dne9TNezLndjjEls09yBcouBLJxR7yYBWZe7McYkMLc1bi3yPiBuLXQR2UVE\nPo/42SIiV4lIfxF5S0S+dX/nxKsOxhhjTF8Rt4Cuql+r6kRVnQjsBVQDLwDXAHNUdQwwx31vjDHG\nmE7YXs/QDwe+U9XVwEnATHf7TODk7VQHY4wxJmFtr4D+YxpXKBqoqoXu6w3YykPGGGNMp8U9oItI\nEnAi8GzTferMmYs6b05ELhaR+SIyv6ioKM61NMYY05SIfNTddTCx2x4t9GOBz1R1o/t+o4gMBnB/\nb4p2kqo+pKoFqlqQl9dSPgFjjDFdTUR8AKq6X3fXxcRuewT0s9g2IcDLOIkDcH+/tB3qYIwx3WbE\nNbOnjLhm9qoR18wOu7+ndLZMEXnRTYm6WEQudrdVisjd7rb/isgkEXnXTX16onuM1z1mnpsu9f/c\n7YeIyAci8jKwpKG8iOtdLSKLROQLEbnD3TbNLecLEXleRNI6e1+m4+K6UpyIpAPfA6NUtdzdlgs8\nAwwHVgNnqGpJa+XYSnHGmB6gQyvFucH7YSAy2FUD01bdcfyT0c+KoTIi/VW1RERScZZ0PRjYDByn\nqq+JyAtAOnA8Tia2mao60Q3++ap6m7tM7IfA6TjZ2WYD4xuys4lIpapmiMixwA046VmrI66dq6rF\n7rG3ARtV9b6O3pPpnLguLKOqVUBuk23FOKPejTGmL7idbYM57vvbaUxZ2hFXiMgp7uthOLnR64HX\n3W2LgDpVDYjIImCEu/0oYIKInOa+z4o499OIVKuRjgD+qarVABGNsPFuIM8GMoA3OnE/ppNspThj\njImv4e3c3iYROQQnyO7rtpjfBVKAgDZ2u4ZxU5+qarjhuThOT8PlqvpGlDKraJ8ZwMmq+oWbHOaQ\n9t6L6Tq2lrsxxsTX9+3cHossoNQN5mOBye049w3gpyLiBxCRnd3Ho615Czi/4Rm5iPR3t/cDCt2y\nzm7XHZguZwHdGGPi6zqcZ+aRqt3tHfU64BORpcAdOPnQY/UIzqC3z0TkK5xkLa321qrq6zgDmue7\niV5+5e66AZiL8xx+WbvuwHQ5S59qeiQNhQiVlYHXhy87q7urYwx0In2qOzDudpxu9u+B6zozIM6Y\naCygmx5HQyFqly6j8Lpr8fbPZYe77sSfn9/d1TKmV+ZDN32HdbmbHidUUsK6q67Cl5/PgP+7mFBx\nCaG6uu6uljHG9GgW0E3P4/GQsvt4+p9/AWsvv4JVZ51F3aJFaCjU3TUzxpgeywK66XF8ubnkX3st\nZU89RbiyEq2tZdO9fyZcWdn2ycYY00dZQDc9kn/AAFL32nPr+9SJE5Hk5G6skTHG9Gy2sIzpkcTj\nIeuUU0jZbTe0vp7kceOorqmGmmpSM7Pwer3dXUVjjOlRLKCbHsuXnY1vn30Ih0Ks/3YZz99+I16v\njzNu+gP5I0Z1d/WMMaZHsS530+PVVVfx/hPTCdbVUVddxYdPP059bU13V8uYXs3NrrZfxPsZEeu7\nd/W1HhGR3eJRtmlkLXTTI6kqwaLNaE0NvrRUdthlNwq//RqA/JE74fX5u7mGxrTDzVnNFpbh5vLu\nXljmEKAS+CjeF1LVi+J9DWMB3XSxYGkp4vXizczsXDlFRaw67XSCmzaRNmlv9rvnHvJHjMLr9zNs\nt93x+uyfruklnGAemT51R+Bhbs6io0HdXXv9GWAo4AV+h5M69R6cv+vzgJ+qap2IrAIKVHWziBS4\nx0wFLgFCIvIT4HK36INE5BfAIOA3qvpcC9fPAF4CcgA/cL2qvhStXqr6tJs85leqOl9E/g7sDaQC\nz6nqTR35DExz1uVuukzdihWs/enPWH/11QSLijpX1vLlBDdtAqD603kQCLDbgYcyZuLe+OvqCW4u\n7ooqG7M9tJY+taOOAdar6h6qOh5nbfcZwJmqujtOUP9pSyer6irgH8C9qjpRVT9wdw0GDgBOwFkj\nviW1wCmquidwKPBHEZEW6tXUb1W1AJgAHCwiE2K9adM6C+imSwRLSll/9TXUfP45le+8S8ljj3Wq\nvORRo/BkZDivdx6DJzmZcG0tVR99yIpjjmX11KkENmzoiqobE29dnj4VJ9f5kSJyp4gciJPrfKWq\nfuPunwkc1IFyX1TVsKouAQa2cpwAt4vIl8B/gSHu8dvUS1XLo5x7hoh8BiwExgH2bL2LWL+l6RLi\n9eDNakyi4s3N7VR5vgEDGPXqbIJFRfgHDsQ3YACBoiI23HQz4aoqvDk5VFdV4i0tITktHb/NUTc9\n1/c43ezRtneIqn4jInsCxwG3AW+3cniQxsZbShtFR66x3Nra9WcDecBeqhpwu/VTmtZLROao6q1b\nCxQZiZOpbW9VLRWRGTHUycTIArrpEt6sLAb/4XZKHp2OLy+PrBNP7FR54vPhz8/fJimL+Hz4R+yI\npKaS9utf8MTtN1BfU8NJv/4tO+7+A3uubnqq69j2GTp0Mn2qiOwAlKjqEyJSBlwGjBCRnVR1OXAO\n8J57+CpgL+A14EcRxVQAHR3skgVscoP5obhfWKLUq+lguEygCigXkYHAscC7HayDacL+Apou48/L\nY+A1V8etfF9ODkPvvZfab5fz0cfvU1tZAcD/nnqMQaN2Ji3L0qyaHujm8ie5OQu6dpT77sDdIhIG\nAjjPy7OAZ0WkYVDcP9xjbwEeFZHfsW3w/A/wnIicROOguFj9C/iPiCwC5tOYCz1avbZS1S9EZKF7\n/BqcPOqmi1j6VNMrLf3wPV79690A7HHUcRw05XySUlObHafhMOHqajwpKYi14E3nWPpU06NZQDe9\nUm1lJWUb11NbVUX+iFGkZTZvnYdraqheuJCSf84g47DDyDzuWHzWijcdZwHd9GjWZDE9RlFFLaEw\npCV5yUxtfeGYlIwMBmXs3OoxofJy1lz8fxAMUvXBB6TttacFdGPaQUR2Bx5vsrlOVffpjvqY1llA\nNz3C+rIafvT3jygsr+Xyw3biogNHkRUR1ENbtlCzaBGVH/yPzKOPInnnnfGmp7deqKrz0yAcjlPt\njUlMqroImNjd9TCxsXnopkeY/WUhheW1ANz39nJqA6Ft9td+/TVrLryI0hkzWD3lbALr1rdZpicr\ni6H33UfapL3J/81v8A0aFJe6G2NMT2AtdNMjjB/SOHtmx9w0vJ5tH1dWL/gMREgeOxaCQeqWLSNl\n5zGtlulNSyPjoANJK9gLSUnBk5QUl7obY0xPYIPiTI9QXhNg2YYtfLOhgiN3G8igLGfEugaDhKuq\nCJaWsrkmxIJNtSR5Pew5bhj5ORndXGvTx9igONOjWQvd9AhZqX72GZnLPiMbV5gLlpZSNmsWlW+/\nQ8q9f+NHTy5gwxanW36nTzfx1LTJ5PWzFeKMMQbsGbrpwSrfe4+iu+9B62r5ePHarcEcYPmmSlZt\nrurG2hnTO4jIzSLyqziVvUpEBsSj7K4gInkiMldEFrpr3jfdn1B52q2FbnokDYWo/uQT93UYn6d5\nb6fPaz2gpnfYfebuzfKhLzpvUXfnQ+9WIuJT1WCcL3M4sChaPnYR8SZannZroZseSbxecqZMARHq\nli5lz1wfI3Ibl8LeY1gWw/o3zUhpTM/jBvOHcdY7F/f3w+72DhGRdBGZLSJfiMhXInJmZGtZRArc\nHOQN9hCRj0XkWxGZ1kq5g0XkfRH53C33QHf730VkvogsFpFbmpx2uYh8JiKLRGSse/wk93oLReQj\nEdnF3T5VRF4WkbeBOSKSISJzIs4/yT1uhIgsFZGH3Wu+KSLNl4JsrPc0EZnnfh7Pi0iaiEwE7gJO\ncu8nVUQqReSPIvIFsK+IvOvmiEdEjnHr8YWIzGntPnoqa6GbHitp9GhGvfIfqubNIz0rjWcvnszy\nzVX4vR5GDEhnQIY9Pze9Qmv50DvaSm/IO348gIhkAXe2cvwEYDKQDiwUkdmqGm3u5xTgDVX9vYh4\nI+r9W1UtcbfNEZEJqvqlu2+zqu4pIj/DyaR2Ec5a7QeqalBEjnDvtSExzJ7ABLc8H05e9S3ul5FP\nRORl97gxwFmqOk1EnnHPf6KF+5ulqg+7n8VtwIWqep+I3AgUqOpl7r50YK6q/tJ9j/s7D+dL10Gq\nulJE+rvltnYfPY4FdNNjedPT8Y4eTfLo0YCTqzEvq8Uv6cb0VPHKh/5HEbkTeEVVP2gITi14SVVr\ngBoReQeYBLwY5bh5wHQR8ePkRv/c3X6GiFyMEzMG4+Qwbwjos9zfC4BT3ddZwEwRGQMoELn041uq\nWuK+bsirfhAQpjGvOjj53RuuvwAn53tLxruBPBvIAN5o4bgQ8HyU7ZOB91V1JUBE/Vq7jx7HutyN\nMSa+Wsp73ql86Dgt3UU4ecdvpPW8503nJ0edr6yq7wMHAeuAGSJybkQO88NVdQIwu0n5DTnUQzQ2\nEn8HvKOq44EfNjk+cjRrZF71icDGiGMjc7NHlh3NDOAyVd0dJ7tcSznWa1U11MK+aFq7jx7HArox\nxsTXdTj5zyN1RT70alV9ArgbJ7ivwsl7Ds27hU8SkRQRyQUOwWmJRyt3R2Cj2339iFtutBzmbcnC\n+VIAMLWN45rlVe+AfkCh27NwdgfO/wQ4yP3yQkSXe6z30SPENaCLSLaIPCciy9wBDvuKSH8Recsd\nnPGWiOTEsw7GGNOd3NHs04DVOC3j1cC0To5y3x34VEQ+B24CbsNpmf5FRObjtGgjfQm8gxO4ftfC\n83Nwgn1DzvIzgb+o6hdAQw7zJ4kth/ldwB/cclprWf8LKBAnr/q5NOZVb68bgLlu3dpdhqoWARcD\ns9wBc0+7u2K9jx4hrivFichM4ANVfUREknAGWFwHlKjqHSJyDZCjqle3Vo6tFNe3BTdvRsNhPGlp\neDNsdTjTbWyepOnR4tZCd0ddHgQ8CqCq9apaBpwEzHQPmwmcHK86mK4RDgYJVVai3ZCtLLBhA6vO\nmsLygw+hfNYsQpWV270OxhjTG8Szy30kUAT8053D94g7ZWCgqha6x2ygcUSj6YGCZWWUPvY46666\niprPPiNcV9f2SV1oy2uvEVizBlTZeOddhGtqtuv1jUlEIrK7Ozc78mdud9erLSJyf5R6n9/d9eop\n4vlMwIczoOJyVZ0rIn8Brok8QFVVRKL2+btTJC4GGD68M7M7TGcEvl/DprvuAqD603mM/u9bePLz\nYz4/WFxMqLISb1oa3gEDts77jFXKLmO3vk4aORLxNP8OGty8GQ2F8KSm4c3s167yjemLemuec1W9\ntLvr0JPFM6CvBdaqasO3vudwAvpGERmsqoUiMhjYFO1kVX0IeAicZ+hxrKdpTWQAbmcwDhYXs/aK\nK6lZsABffh4jnnkG8fqQ9DS8abGt8pYyfhzDZ86k7rvl9Dv8cHy5udvsD2zc6OZHX8eAK6+g/09+\ngrefBXVjTN8Tty53Vd0ArIlYKu9wYAnwMnCeu+084KV41cF0nn/YMAZeey0ZBx/M8OmP4s3Ojvnc\ncF0dNQsWABDcVETt4iV8/9OfUjL9nwTLyghVVBAsKiJYUtJiGd7MTNL3mUT/KVPwD2z+dKZ63nwC\n65xZJZvvfwCtrW12jDHG9AXxHoZ/OfAvd4T7CuB8nC8Rz4jIhTjTN86Icx1MJ/iys8g5ewpZp/0I\nT1pasy7zYFkZdUuWoOEwKePG4ctpnIXoSU4mZeIe1H7+Bd7cXHz5edQtXUrdV1+RceghVH34IUV/\nvY/U3ccz9L778A1of9KmlF3Hgs8HwSCpP/gBeHv8zBJjjImLuP71c5ftK4iy6/B4Xtd0LfH58Pqa\n/1PRYJCyZ5+l6I9/AmDApT8j95JL8Pid1RF9ubkMu/9+Qlu2gCrrf3M1hJzpsVpTQ8mMmRAMUrPw\nc6oXLiTzyCPbXTf/Djsw+rVXCRQWkjx6NL7+tqyBMaZviimguwvXT8NZS3frOap6QXyqZeIpHAgQ\nKitDPJ5mz6TbVU59PTULP9/6vuaLL9C6OvA3Lnfsy83Fl5tLYNMmtL4egH5HHom/yUBH/8BBhAOB\nrV8GYuVJTSVp2DCShg3r8H0YY3oeEckGpqjqAx04dxVOUpbNXVCPW3HWef9vZ8uKt5gWlhGRj4AP\ncBbI37oCkapGW+S+y9nCMl1HAwGqF37OuquuclrQDz2If/DgDpdXu2wZq8+bCuEww/85nZRx41oc\nyR4sLkZDIcSfhKSmUL/8OyrefIOU8eMJFBaS9cMf4uvfP+q5xvQAHV5YZunYXZvlQ9912dJuyYcu\n2ycPeaeJyAicxDPjo+xr9R66MqD3JrEOiktT1atV9RlVfb7hJ641M3ERKi9nwy23ECopoe7bbyl9\n6t+dKi95zBhGv/IfRr06m5Rddml1WpovNxd/fj6+nGw8SUnULP6K2mVfs/lvf6N+1SokpUfnPTCm\nQ9xg3iwfuru9w0TkJyLyqTsX+0ER8YpIZcT+00Rkhvt6hoj8w51rfpe7BPeLIvKliHwiIhPc424W\nkcclSu50Efm1ODnHv5TmOdGb1u1c97gvRORxd1ueOLnK57k/+0dcc7o4uclXiMgVbjF3AKPd+7tb\nRA4RkQ/ESa+6xD33RRFZIE7O9Ivb8dk1O8/9/GaIkwd+kYj8POKzO819faNb969E5CFp7zzcOIv1\nGforInKcqr4a19qYuJOkJJJGjqT+u+8ASB67SxtntFGe14svL6/953k8ZB51NMk77ki4uprUiRNj\nnspmTC/T5fnQRWRXnLXW93cTmzxA20lJhgL7qWpIRO4DFqrqySJyGPAYjfPSm+VOB8bj5CefhPOl\n5GUROcjNzta0buOA691rbZbGRCd/Ae5V1f+JyHCcFKe7uvvGAofiJFn5WkT+jjPNebybhQ0ROQRn\nbZPxDWlOgQvcvOqpwDwReV5Vi2P4CJudh/NIeUhDj4Db5d/U31T1Vnf/48AJwH9iuN52EWtAvxK4\nTkTqgADOf1BV1cy41czEhTczk8G33EzlYYfhy88jZXyz3qy4iPZ83JeTjW/y5O1yfWO6UTzyoR+O\nk1ltnttITKWFNT0iPBuROvQA3Ixsqvq2iOSKSMPf82i50w8AjsJJ0gJOzvExQLOADhzmXmuzW37D\nvNQjgN0iGrWZItKQnGG2qtYBdSKyiZZXEP00IpgDXCEip7ivh7l1iiWgRzvva2CU+2VnNvBmlPMO\nFZHf4Hwh6w8sprcFdFW1lToSiC83l+xTT2n7wC4Qrq2l9quvKH3yKTKPO5a0yZMtwYrpa74nelrQ\nDudDx2lUzVTVa7fZKPLLiLdNn2FVEZtoudMF+IOqPtiuWm7LA0xW1W0Wi3ADfKy5z7feg9tiPwLY\nV1WrReRdYshX3tJ5qloqInsARwOX4EypviDivBTgAZxn82tE5OZYrrc9xbywjIjkiMgkETmo4See\nFTOJIVRWxurzL2DLq6+y9rLLCRYXU/bii9Sv/p5wINDd1TNme+jyfOjAHOA0EckHJ3+3uLnMRWRX\nEfEArX1r/wC3i94NcJtVdYu7L1ru9DeACxpa1CIypOHaUbwNnO6eH5lb/E2ctUlwt7e19GwFThd8\nS7KAUjcoj8V5TBCLqOeJyADA444Pux6nez9SQ/De7H4Op8V4ve0m1mlrF+F0uw8FPsf5AD7G6Vox\npmXhMAQbB6MGN21iww03gs/H6NdfwxNl9TdjEsmuy5Y+uXTsrtCFo9xVdYmIXA+86QbvAHApznPn\nV3ASY83H6RqP5mZguoh8ifPl4ryIfQ250wfQmDt9vfvc/mO3RV0J/IQo3fyqulhEfg+8JyIhnG76\nqcAVwP3uNX043fWXtHKPxSLyoYh8BbyG0w0e6XXgEhFZitNd/klLZcV43hCcZGINDd1tej9UtUxE\nHga+wkksNi/G6203sU5bWwTsDXyiqhPdbzW3q+qp8a4g2LS13ixUWUnF229T+sS/6HfkEXgz+rHh\nFmeA7KjZs0kePYqSqjoWfl9Gss/LuB0yyUlP6uZaGxNVjxrRHA9uN3Klqt7T3XUx7RfroLhaVa0V\nEUQkWVWXSeMa7ca0yJuRQeaxx5Jx0EFOCtTf/x6AzBNPxJc3gJr6IH9682uemLsGgF8euTOXHDwa\nvy+emX2NMSbxxNpCfwFnHfbQ/VqXAAAgAElEQVSrcLrZSwG/qh4X3+o5rIWeOEJlZYTDYbSmhvIX\nXsSbl0fhhH045Ykl1IfC7Dc6l3+csxeZKe1bMc6Y7SDhW+jt4T4jnxNl1+ExTh2Lq55ev3iIdZR7\nw+CKm91pDFk4zyGMaRdvdjbhoiJW/+QcgoWFAOSccw4X7n0cD3+6nv87eBTpSZZgxZiezg2KPTan\nek+vXzzE/JdTRPbEmYuowIeqWh+3WpmEE66vJ1RaSqi8HE9q6tZgDlC38DN+etE0zj1kF7LS/Hg9\n1hAyxpj2iulBpYjcCMwEcnFGPv7THWFpTEwCa9fy3VFHs/LEk6hfs4bUHzR+cc465VQycrIYnJ1K\nmrXOjTGmQ2L963k2sEfDggAicgfO9LXb4lUxk1iqPv3UycQGrP/1bxg563nqV67Em52Db/AgPEk2\nst0YYzoj1qHE69l2RZxkYF3XV8ckqvR9JiOpqQCkjNsN8SeRPnkyKWN3wZeV1c21MyYxiciJInJN\nC/sqW9gemYzkXREpiGcdWyIiE0Uk7gOvReS6iNcj3HnvnS0zT0TmishCETkwyv5HRGS3zl6nqVhb\n6OXAYhF5C+cZ+pHApyLyVwBVvaK1k03vo6psrtlMaV0p/VP6MyB1QMfKCQQIlpXh6ZfB6NdfI1xZ\n6bTK++d0cY2NMU2p6svAy91djw6aCBQAcUkK5mZKE5wV+27v4uIPBxap6kVRruuNtr0rxBrQX3B/\nGrzb9VUxPcnmms2cNfssNlZvZGTWSKYfPb3dQV3DYWqXLeP78y8AEYZPn07K+JbzpRuTqO6/5O1m\n+dAv/cdhncqHLk6+8NdxVjrbD2flsn8CtwD5OI9Kd8NZe/wyERmJk90tA3gpohwB7sNpqK0Bog54\nFpGj3LKTge+A81W1pVb+XsCf3GttBqaqaqE46VgvBpKA5cA57hKspwM34azjXo6z1vqtQKqIHICz\njvzTUa5zM85nOsr9/WdV/au77xc0rsX+iKr+2f3M3gDm4iS3+dS9xuc4iVZ+C3jdFeH2w+mJPslN\nVhPtPpvdD7AzcJdbbgGwL87KfQ+693WpiNwG/EpV54vIMTj/Nrw4S/AeLiKTcLLTpQA17mf9dbQ6\nRIqpy11VZzb84HzbW9hkm0kwW+q3sLF6IwAry1dSG6xt44zmwpWVbLrnHsKVlYQrKra+NqYvcYN5\ns3zo7vbO2gn4I0760bHAFJzZSL+i+VrxfwH+rqq7A4UR208BdsEJ/ufiBLJtuOucXw8coap74iwr\n+4toFRIRP84XhNNUdS9gOvB7d/csVd1bVfcAlgIXuttvBI52t5/ozqK6EXhaVSdGC+YRxuIkVJkE\n3CQifvcLxfnAPjhLlU8TkR+4x48BHlDVcap6PlDjXuPsiP33q+o4oAw3K10Lmt2Pqn7epO41OKlo\n56rqHqr6v4jPKg/n38aP3DJOd3ctAw5U1R+4ZcXUgxDrKPd3RSTTXWT/M+BhEflTLOea3ikrOYsx\n2WMA2Ct/L1J9qe06X8Nh8HpJP6Dx8VHy2LGI3wa/mT6ntXzonbVSVRepahinhTlHndXCFuHk9460\nP/CU+/rxiO0HAU+pashdt/3tKNeZjBPwP3Rbs+cRPYMcOF8OxgNvucdej5MHBGC8iHzgLid+NjDO\n3f4hMMNt8XpjuO9Is1W1zk3X2pB69QDgBVWtcnsRZgENf4xWq2pr676vdIMywAKaf46RWrqfpkLA\n81G2Twbeb0gJG5FqNgt41n2ef28r5W4j1i73LFXd4iZpeUxVb3IX2DcJakDqAB466iFqg7Wk+lLJ\nTc2N+dxgaSllzz1H7aJFDLj0UpJ3HUu4tJT0/ffHk5Icx1ob0yPFIx96g8i0o+GI92Gi/31ve2nQ\n6AR4S1XPivHYxaq6b5R9M4CTVfULEZmKk80NVb1ERPYBjgcWuC3sWMWaerVBW2lkm5bXWmtmBlHu\nJ4raiFz0sfgd8I6qnuI+Jng3lpNiHeXuE5HBOPlhX2lHpUwvNiB1AEP7DW1XMAeo/eJLiv74Jyre\nfIvvz5tK6i5jyfrhD/H179/2ycYknpbynncmH3pHfAj82H19dsT294EzRcTr/p0/NMq5nwD7i8hO\nACKSLiI7t3Cdr4E8EdnXPdYvIg0tzH5Aodstv7UOIjJaVeeq6o04z5uH0Xb61NZ8AJwsImkiko7z\nWOGDFo4NuPXpiKj30w6fAAe54xsiU81m0TiTbGqshcUa0G/FGUjwnarOE5FRwLexXsQkplB1NYGi\nIoKbN2+zPVzf+AVXAwG0w40CYxJCPPKhd8SVOAOyFuGkCm3wAs7f8yXAYzipsbehqkU4geUpt3f2\nY5xn1824z79PA+4UkS9w1ixpeC5/A86AtA9xnhM3uFtEFrldzB8BX+CkcN1NRD4XkTPbc6Oq+hlO\n6/lT93qPqOrCFg5/CPhSRP7Vnmu4WrqfWOtZhDOobpb7WTWMFbgL+IOILKQ9K7rGkpylu1lylp4n\nVFnJlldms/H22/ENGsTw6Y+SNNR5TBYsKWHzPx6kdvFi8n/1K1LGj8Pjt2Qrptfr8PSMeIxyN6ap\nWLOt7Qz8HRioquNFZALOSMTtslKcBfSeJ7BhA8sPPQzcfz+Zxx3H4D/cjifZeUYerq1F6+rwZGQg\n3vaOcTGmR7L5lqZHi7XL/WHgWiAAoKpf0vgsxvRFHg8SsVxr2v77ESotJVBYSKiqCk9KCt6sLAvm\nxiQwEXnB7RKP/Dk6Dtc5P8p17u/q67Ry/fujXP/87XX9WMXaN5+mqp82WRAkGIf6mF7Cm53N8Ecf\nZeOdd5J+4AH4Bw9m+RFHQjjMkD/fS7/DDkN8lmjFmEQWkVo73tf5J86iOd1CVS/trmu3R6wt9M0i\nMhp3yoO7zm9h66eYROZJSiL1BxMZ9tCD9J86lbKn/g3BIITDlD7xBOHqpmOAjDHGxFOsAf1SnGXr\nxorIOuAq4JK41crERbCsjC1vvknJU/8mWFy8zb5AURHVCz4jsHEjGoptuqR4vfhycvD260fmccdu\n3d7vmGO3JmIxxhizfbTaJyoiV6rqX4DBqnqEO5/Po6oV26d6pittefU1Nt56KwCV777DDnfdhS8r\ni0BREavOOJNgYSHe7GxGvvwS/vz8mMsVEdIPOIDRb72JhkL4cnJsVLsxxmxnbbXQGx763wfgLqNn\nwbwX0nCY2iVLtr6vX7ESrXdyMGh1NcFC5wlKqKyMYFFRu8v39utH0rBhJI8YgdfSoRpjzHbXVkBf\nKiLfAruIyJcRP4ts6dfeRTweBky7CN+gQUhKCoNuuH5r4PWkp5Oy++4AJI0ciX/gwO6sqjFmOxCR\nk7syJ7eIFDSk1O4OEpH7vWk+chF5VUSyu6tu20ub89BFZBDOKnEnNt2nqqvjVK9t2Dz0rqGqhIqL\nUVW8mZlb54wDBIuLCVdX40lNxTegeZrUcE0NobJyNBTEm5mJNzNze1bdmJ4goeahi8gM4BVVfa67\n69LVROTHOJnh4pJ3vKeyleLMNlSV6vIyANKysrfmLq+ev4DVU6dCMMjA668n+/TTtvlCYEwf0OGA\n/sczT2i2Utwvn36ls/nQfwJcgZOLey7wM+BvwN44CUWeU9Wb3GPvwGmUBYE3cbKPvYKTe7wcJ33n\nd1GuEVP+clU9SEQOwcnxfUJ78nm7SU1OwVm/fAjwhKre4u57EWdd9xTgL6r6kLs9Wg7xqUAB8AhO\nmu9UnPXQ98VJbVqgqptF5Fyc9LIKfKmq58T6mfd0bQ2Ke0ZVz3DX/o2M/AKoqk6Ia+3Mdle2YT0v\n3vU7VMOc9OsbyB0yDFWl7MUXnGlpQPmsWWQed6wFdGNi4Abzh2lMoboj8PAfzzyBjgZ1EdkVOBPY\nX1UDIvIATnKQ36pqiYh4gTnuqp7rcALmWFVVEclW1TIReZm2W+izVPVh95q34eQvv4/G/OXrWujK\nbsjnHRSRI3CCb2t5xSfhpFytBuaJyGxVnQ9c4N5Pqrv9eZxHxQ8DB6nqyoiEJgCo6uciciNOAL/M\nrXvD5zYOJ53rfm5wT6iMUW2t/HGl+/uEjhQuIqtwMuaEgKCqFrgf4NM4OWZXAWeoamlHyjddK1BX\ny/tP/JOS9WsBeO+xRzn+qt+QnJpG9sknU/7iSxAMknXqKXjS051zNm5C62qpWbqM1F12xj9smK0O\nZ8y2WsuH3tFW+uHAXjhBDpzW6CbgDBG5GOdv+2CcHOZLgFrgURF5hfZlzBzvBvJsIAPn8Ss05i9/\nBqe131QWMFNExuA0Btua9vKWqhYDiMgsnHzm84ErRKRh8ZphwBggj+g5xGNxGPCsmzu9vef2eK0O\nilPVQvf36mg/MV7jUFWdqKoF7vtrgDmqOgaY4743nVBaXc+Hyzfz9rKNlFTVd7icQG0t+552Fmfe\nfCeDRu9M9uAd8LqrvaWMG8ewd98n56N5BE84FUlKon7delafcw4rTjwJra5i86OPNpvfHquSqnqK\nKuoIh3v+IyBj2ike+dAFmOn+bZ2oqrsAM3G6kg93e09nAymqGsRpAT+H0zh7vR3XmQFcpqq7A7fg\ndH2jqpfgtHSH4eQvb5pjuSGf93jghw3ntaLp//jqduEfAeyrqnsAC2Mop09rq8u9guYfNDR2uXdk\nZNRJNCaBn4mTuP3qDpRjcJ55z/psHb97xZmSdsnBo/j5ETuT7G9fK7mmooL3npjOkvffJi0rmzNv\nvoOUjH74/M567UF/Mv/bUMalT35MTpqf5y7Zj/T//IfA905K56J772XgNddCjIvSRNpQXsPP/vUZ\n5TUB/jZlT3YZ2A+PJ6HGH5m+7XucbvZo2ztqDvCSiNyrqpvcns/hQBVQLiIDgWOBd0UkA2f57ldF\n5ENghVtGLPnGm+b7XgeN+cuBuSJyLE5gj9TefN5HuvdQA5wMXIDzPL3UfWY/FpjsHvsJ8ICIjGzo\ncm9HS/tt4AUR+ZOqFrfz3B6v1YCuqh1NLr+1COBNEVHgQXdAw8CGlj+wAWhzjtTXNH4DMNtSYPmY\nARRf7Pxb/1OKn9keob2d3qGUFNYfciQcciQi8Fh2Dslp6Vv3B4AlWanUXLQP64DDBIZMmULdnj8A\nwNOvH/6hQ/GkprZv5JAqqwJhNhzjpFY+IBRmrCr+xBpQbBLAux0/9Tq2fYYOncyHrqpLROR6nL+v\nHpz/RS/FacUuA9bgdIuDE5RfEpEUnMbYL9zt/wYeFpErgNOiDYqjMd93kfu7ISbc7XanC86Xiy+A\ngyPOuwuny/16nJ6CtnwKPA8MxRkUN98du3WJiCzFCQOfuPde5D5WmOXe+ybgyBiugaouFpHfA++J\nSAjn85oay7m9QVxHuYvIEHfQRD7wFnA58LKqZkccU6qqOVHOvRhndCXJEybsNfmLL+JWz96upj7I\nksIKVJVdB2WSnuwFaV9ADAeDlKxfS21lBXlDd8RbU0O4rg5ffj7higrIzGJ1eT1FlXUAjB3Uj6wk\nD+GKCrS+Hm9ODni9HXp+XlhWw+oSZ+33nDQ/o/My8HljXZXYmO3j3R42yj1RNIxObxjAZjpuu01b\nE5GbgUpgGnCIqhaKyGDgXff5T4ts2lrrwmFlc1UdKOSkJ+HvYDCsLi8jVF9PzVNPU/zAAwD48vMZ\n/Ic/sPbKKxnw5tss21xDbr8UhmSnkpnaNcu7llTV89pXhZRU1fPjvYeR188ek5keybqN4sACeteJ\nW37LyHXf3ddHAbfizA88D7jD/f1SvOrQV3g8Qn4XBMG0rGxCVVWULV68dVtw0yY8SUloZSW6aAHp\ntRWMOfRofEnbBvNwKER1eRm1lZWkZmWRnhX7okz905M4e59ojxiNMduDm1t8/yab/+KmLe2qaxwN\n3Nlk80o3BeuMrrpOXxbPhNUDcQYfNFznSVV9XUTmAc+IyIXAauCMONbBtJM3PZ3+F15A5UcfQSBA\nv6OPpm71KjKOOgrPDoNZ+dw7jJm0PxlJ207frCov5bFfXUZtVSWDx4zl5F9fT1obQb2ooo7KuiAZ\nyV5rlRvTjbZHvm9VfYPGaW8mDuIW0FV1BbBHlO3FOHMoTQ+0pSZAxfAxDH/tdbyBejxpKZSXlJC7\ndwHlL/+Hg3adSFIo3Oy8sg2F1FZVAlD47TJCwUCr1ymqqOWcRz9l2YYKdsxN47lL9rWgbowxnRDP\nFrrpBbbUBKipD+H1CgMyklm4pozzpn8KwMkTd+C2o0eSkppG4c8uo/47ZxCs7/e/J+lHp25TTs7g\nIWTm5bOlaBOjC/bB6053a0l1fYhlG5zEfauLq9lSEySvs3MqjDGmD7OA3odV1AZ47ONV3PPmN4zI\nTWPmBZNI9TUOqKuoC1K5pYZQyEv96sZ1hGoXfwVNAnpGTn+m/O4egoF6/CmppGW2nkI1LcnHuB0y\nWbx+C6Pz0rtsgJ0xxvRVNjeoD6sJhPjzf78FYFVxNe987eRBP3CnAfi9wqWH7IQUrmPhxhrSL7sC\nAG///uScd17U8tJz+pOVP6jNYA6Q1y+ZGedP4r1fH8K/L55MXj9bF96YnkRERojIVzEcMyXifbem\nUO3rrIXeS4Vra6n79lvKX3mFrOOOJ3mXnfGktO8ZtFeEPYZms+D7UrweYddB/VhVUsV9U35AfTBM\nlh/EP4SC6nqKDjiC4ccdS3JyEkl5zdOrdoQTxC2QG9OLjQCm4K5J7yZUsTnG3cTSp/ZSgQ0bWH7k\nURAIgN/PTm+9iX/QoHaXU1RRy1frtpCd5uej5Zs5w50HHiwuZvM/HqR+5UryrroS/9ChSHIy3tTU\nmMqtD4YoqQpQURugf3oSuRntD9yhYJCSdWtZ/N5/2WnSvuSPGEVSSmzXNyYOetQ8dBEZgbMu+wJg\nT2AxcC5OutB7cBps84CfqmqdmyzrGZwlYWuAKaq6vGledBGpVNUMt/xXVHW8+/pxoGH5yMtU9SMR\n+QTYFViJs5T3QhpTqPYHpgOjcFbGu1hVv3TXJBnubh8O/FlVrVXfBazLvZfSQMAJ5gCBAFrfsaQs\nef1SOGBMLkNzUpkyeUcyU/xU1AYofeopSh9/nKr//Y/vzzvPWQ0uxmAOsK6slkPueYcj732fa2ct\norQDSWNqtpTz5A2/ZMHsF3nm5muprahodxnGJLhdgAdUdVdgC86yrjOAM92EKj7gpxHHl7vb/wb8\nuR3X2QQcqap74qRtbQjA1wAfuAli7m1yzi3AQjdRzHXAYxH7xgJH4ySNucldK950kgX0XsqTmUne\nL35B0sgRDLjySrxZbT+3bonf68wD94rw9Pw1PPL+dwSKNm/dH66qhnDzqWqt+XRlMbUB55y3lm4k\nEGWqW1vC4TDBOmepWdUwgbradpdhTIJbo6oNa7Y/gTMleKWqfuNumwkcFHH8UxG/923Hdfw4674v\nAp7FScvalgNwWvWo6ttArog0JPSarap1bhrTTcSQ08O0zZ6h91K+rCz6n/MTsk89BU9aGp60pumW\n26+8JsCNLy0mv18yp591Lklz51K/bh0Df/MbPBkZ7Spr8qhcMpJ9VNYFOWHCDvh97f/umJyWxhEX\nXcpnr73MmL33bXOhGmP6oKbPTMuApqlMWzq+4XUQt3HnJjuJNuf058BGnLVFPDj51TujLuJ1CItF\nXcI+xF5IVakuLwNVUnNy8HQgIUo0Pq/g8wibKuq44LU1vDjzMZI8IGlpeNPTKamq46PviqmoDXLU\nbgNbfS4+JDuVOb88mJr6EJmpPnLSWp+XHk1yWjq7HXQYO03aF39ysj0/N6a54SKyr6p+jDM4bT7w\nfyKyk6ouB84B3os4/kycZbfPBD52t60C9sJ5vn4iTmu8qSxgraqGReQ82JrQsbUUrB/gpFz9nZvb\nfLOqbpF2Jo4ysbOA3guVFq5j1h03EwoEOPk3N5C/4yjE47SANRQisG4dW958E+/Rx1GVnoXH4yE7\n1U9aso9gSQnhikokNRXfgNyt5wFkpfp5ctpknpm/htP3GgrZWfiSG/+JvLBw/da86/NXlXLrSeNI\nT47+T8jn9TAws/Mrv/mTk/En20h4Y1rwNXCpiEwHlgBX4KQZfVZEGgbF/SPi+BwR+RKnhXyWu+1h\nnPSqX+AMsquKcp0HgOdF5Nwmx3wJhNxzZ+AMimtwMzDdvV41Tu4OE0c2yr2Xqa+t4dW/3s13C5zV\n3AbttDOnXnMzqf2cR1OBTZtYeeJJJE3ahwWnXcIvX/0Oj8D0qXtzQL6fwutvoHLOHLw5OYx8YVbU\nkfHhsOLxSLNt18z6kmfmrwVgz+HZPHre3uSkt7/lbUwv1aOalpGj0GM8fhVOVrPNbR1reicbFNfL\neL0+svIbg3DmgLxtu9yDQUJlZTBhIs8sLQUgrPDveWsI19dTOWcOAKHSUmqXLot6jabBvGHb5YeN\nYUx+BoOzUrj1pPFk2epuxhjTY1iXey/j9fvZ59QzyeifS7C+nglHHkNyWvrW/Z6MDPKuupLqFcs5\n5dj9mbuyBBE4bc+heJKSSD/wQKo++ABPVhYpY1tNQ9/MsP5pPHXxZMKq5KYlRQ38xpjtQ1VXATG1\nzt3jR8StMqZHsC73BBSqrERraqhKSmVLyIPHI2Sl+MlI8REsLiZUUYEnLQ1fbi7SiQF1VXVBPCKk\nJnXNoDxjejj7Bmt6NGuh9xLB4mIChYX48vLw9u+Px99yd7c3IwMyMsjCGZoayZebiy+3tVktsVlf\nVsNNLy+mX4qPa4/d1dZiN8aYbmYBvRcIlpSw9rLLqFn4OZKayqj/vEzS0KHdVp/y6np+9ewXfPRd\nMQDZqX5+fuTOLFpXzutfbeDHew9np/x0knzWcjfGmO3FBsX1AhoIULPwc+d1TQ11X3/TxhnxJngi\n5pL6vEJZdYCzH5nLYx+v5kd//4iSqkA31s8YY/oeC+i9gCQnk3nSiQD4Bg4kZfy4DpUTqqwkXFfX\n9oFtyErzc/fpEzh+98GcNWkYFx84mppAiIbhGDWBEOFeMDbDmN5MRI4Rka9FZLmIXNPd9THdzwbF\n9RKBigqoqwNV/Hl52+wrrqxjSeEWBmWmMCgrhX4p2z5fV1XqV65i4+234x86lLwrLsfXv3+n61RT\nH8LrgSSfl9KqeqZ/uJI3F2/kwgNHctz4QWSk2LQ2k1B6zKA4EfEC3wBHAmtxFpA5S1WXdGvFTLey\nZ+g9nIbDlBSuY+6LzzJ07G6MmbT/NusyllXXc92sRbyxZCMAz/90P/baMQeqi6Hse/CnEgpns/ay\ny6hfsQKA1N13x3/4oQTr6/Alp5DewTXSI0e356Qn8dNDRjN1vxFkpPhItufnxsTTJGC5qq4AEJF/\nAyfhrBZn+igL6D1c9ZZynr75Gmq2lLP0/bfJHTKcIWMbEx3VB8N8tqZs6/uF35fyg1yQD/+MfOxm\nOJz64TbT0zwFe/L87TdStHolA0ftxClX30R6dk6n65qW5CMtyf5JGRNNQUGBDxgAbJ4/f36wk8UN\nAdZEvF8L7NPJMk0vZ8/QezhV3ZpCFJylX8Nhpbiyji21ATJSfFx9zC54BAZnpXDs+EGESjch3721\n9Rzft88y9G/30e+II+g/bRr1AkWrVwKwccVy6muqt/t9GdOXFBQU7AcUASuBIve9MV3KmlM9XEpG\nP0697hY+eHIGg8fswsBRY/i+pJqH/7eCsqp6bjlxPMeMH8yBY/LwiJDXL5kt/1uGZ/x5eN++BrxJ\n6JijSdpxR3a4527w+aiu2EJaVjbV5WWk5/THn5JKaMsWqufPp3r+AnLOPBP/8GFYViRjOs9tmc8G\nGp5tpQCzCwoKBsyfPz/UwWLXAcMi3g91t5k+zAbF9QLhcIjayipCoSC+ugCbX3gJTUllc8EBfLkF\npu4/cpvj61asoOrt1+l3wN54snOQrIF4UhszHGo4TFV5GeUbN5A1cBDp2TnUfrWYVaefDoA3N5dR\nL72Ib8CA7XqfxvRwHfqGW1BQMAinZR6ZfrAWGDl//vwNHaqIk0ntG+BwnEA+D5iiqos7Up5JDNZC\n7wU8Hi/hYICv57zJwI8+pfK11wHIn3YxE049t9nxSTvuiOfE0yEcgsxMPKlp2+wXj4eMnP5k5DSO\ndA8WNyZgCpWVoeFwu+sZLClBQyG8/frhSel86lRjEsRmnADeNKAXdbRAVQ2KyGXAGzi5yadbMDf2\nDL2XqKuuwu/3E1wb0au2dg27DEhtdqx4vfjz8/APGoQ3La3Z/mhSJ0wg87jj8A8dypB77naWj22H\nwMaNrJk2jRXHHU/l++8Trq1t1/nGJCp3ANzxQBlOIC8Dju9EdzsAqvqqqu6sqqNV9fddUFXTy1mX\ney9RVVbKB0/OYNKekym+5jo8qSkMe/BBkoYP77JrhLZUEK6r3aaFXVxZx3vfFJGW5GXSyFz6t5D/\nvPiRR9l0zz0AeNLTGfXaa/jz86Iea0wv1alBJQUFBV4gDyjqbDA3Jhrrcu8l0rNzOPDs8wkHggx/\n6km8fn+XP+P2ZvbDS+Oz9uq6IH966xv+Nfd7AH57/K5MO3BU1HP9I3ZsfD1kCOK1zh9jIrlBvEPP\nzI2JhQX0XiQtM2u7jjyvD4X5ZmPF1vdLC7cQDIXxRQnWaQUFDPnrX6lbsYLsU07ukoxuxhhjYmcB\nvReorapkzeIvWfHZfPY48lgGDN8Rnz961/f/t3fn4VGVZ+PHv/fsM9k3QJawqyAFl4go1SKKuwX3\nrRWtb7VafbX0p9i+dXnb2lrrq3Wt1aqoVSjuuxRRFEWEICAi+6aBELJPMpPZn98fcyCBJARCNsL9\nua5cZJ55zjkPh5B7zrPdbSnd4+Suc4/gmucW4XM5uPmUoU0GcwBHZibpp01o9zYppZRqmo6hHwBK\nNq7jX7ffAoDd6eS/Hv4nqdkd8wQcjycoD0YQZL9ynsfKy0nUBhCPOzlGv5eT9ZTqQnRjBtWl6RP6\nAaC2omLn9/FolFh031KTBv3VrJ7/KXW1NYw69cxdtnmtq/GTiMfxpKRidzZOpmK32+iRtn9L0GJl\nZXz3s2sIr1kDDgd9/nwSRx8AACAASURBVPYgaePGIQ798VNKqbaiM5cOAL2GHEq/I0Ziszs46sxz\nce/j0+03H8/mo2f/wRcvv8Scp58gHAwAUFtZwdt/+wvT77yVolUriEUj7dF8Agu+TAZzgFiMkt//\ngXhlZbtcS6mDgYj0E5GPReRbEVkhIjdb5dkiMltE1lp/ZlnlIiIPW6lWvxaRoxuca7JVf62ITG5Q\nfoyILLeOeVisCTwdcQ3VOhrQDwApGZmce8tUrn38WU646Aq8ael7faxJJKgpr9+/IlBdQSKeXDGz\n5IO3+f6bZVSXbOPNv/6RUG1tq9tYXhvmsY/X8qd3V7Ldv/sa9N2HdUyjEqXUPokBvzbGDAfGAL8U\nkeHA7cAcY8xQYI71GuBMYKj1dS3wd0gGZ+AukoldRgN37QjQVp2fNzjuDKu8I66hWqHd+zytvL2F\nwBZjzDkiMhCYAeQAi4GfGmPa59GwG/GmZ7TqOLHZOG7SxZQXfUc4GOS06/575wcCT0r95jFOj6fV\nM+gTCcPTn23k8bnrAVhfVssDFx9JhjfZhZ8yZgzuoUMJr10LDgc9f3cHjqz9z+6m1IGkoKDATf06\n9HBL9ffEGFMMFFvf14jISpIZ2CYC46xqzwFzgalW+fMmOWlqgYhkisghVt3ZxpgKABGZDZwhInOB\ndGPMAqv8eWAS8H4HXUO1QkcMYt4MrAR2PFb+BXjQGDNDRJ4ArsH6JKfaR2p2Duf+6reYRHyXDwZH\njDuVQHUlVcVbOfHyq/C18kND3BhKGjyVl9WEiTfYOtaRm0v+tGdJ1NYiHg+21FQdP1cHjYKCAhvw\nB5K/CwUwBQUFDwF3FBYW7vsey7sRkQHAUcCXQE8r2ENyzXtP6/um0q32aaG8qIlyOugaqhXa9beq\niPQlueXhPcAUa3xkPHC5VeU54G4O4oBe56+meP1afGnpZPbqjWcft1xtSVltmEA4htflpEdG2i7v\n+dIz+OGlVxINh3B6vIitdSMwTruNX592GBtKA9SGY/z1olFk+XZdVufIyQFdm64OTjuCeUqDsput\nP/9nf04sIqnAq8Atxhh/w142Y4wRkXYd3eqIa6i9196PSX8DboOd24/lAFXGmJj1+qD+RBYOBvnk\nxWdZMfdDACb++n8YMvr4Njt/eW2Y6/+1mEWbKumb5eX1G04gr8GM9VgkzNY1q/jy9ZnkjxjJyFPP\n3NkdX1YT5q1lW0n1ODh1WA+yU/a8ZK13ppenryognoCcFNceu+/L68pJmAReh5dUV9t+gFGqK7G6\n2XcP5livby4oKPh9a7vfRcRJMpi/aIx5zSouEZFDjDHFVnf3dqu8uXSrW6jvPt9RPtcq79tE/Y66\nhmqFdpsUJyLnANuNMYtbefy1IlIoIoWlpa1OStSlxaMRtq1fu/N10epv2+zcibo6gqEoizYlZ5MX\nVdZR4t/190aotpbX/nwX332zjM9mvEDFlmTvV2UwwpSXl/L7d77ltle+5u9z1xOOtrz1dHaKm7w0\nNzZb88G8OFDM5e9ezikvn8Ira16hNtL6iXhKHQDyaH79uljv7zOrt/NpYKUx5oEGb70F7JhFPhl4\ns0H5ldZM9DFAtdVtPgs4TUSyrIlqpwGzrPf8IjLGutaVu52rva+hWqE9Z7mPBX4sIptIToIbDzwE\nZFq5fGEPn8iMMU8aYwqMMQV5ed0nyUc4Fqa8rpxANIDbl8KPfvIzHE4XqVk5HHnaWW1yjUQwiH/2\nbFizilF9k+PivdI99EhvYWMY69dONJZgVXH9lq/fbPUTju33UB8A7254l62BrRgMD371IHWxujY5\nr1JdVCmNl3nskKD1KVTHAj8FxovIUuvrLOBeYIKIrAVOtV4DvAdsANYBTwE3AFgT1f5AMp/6IuD3\nOyavWXX+aR2znvrJah1xDdUKHbJTnIiMA/6fNcv9ZeDVBpPivjbGPL6n47vLTnGBaIDZm2fz9PKn\n+WGfH3LtyGtJs/kIBQKICL6MzDbZqz1WWsq68adgz8zE838PE+ndj5Q0HzYBt9NOhjc5vh2LRNi6\ndhULX59JvxGjGHnK6XjT0glGYry1dCu/eX05TpuN568ZzbEDsrHv4cl7b80rmscNc24AYED6AKad\nMY0cr46tqwNCq/4DFBQU3EPjbvcA8FBhYeF+jaEr1VBnBPRBJJ/Ys4ElwE+MMXscQ+ouAX1bYBun\nvXLazlXYM8+ZybCcYW1+nVh5OZuvnExkfXIZWf6//81VX9SyaFMlN40fws9PHES6taTMJBJEQnU4\nXG6M2Kiui+Jy2BDAH4phEyHT58TjtLdJ26rD1Xxb/i3rq9Yzof8Eeqb0bPkgpbqG1gb03We5J4CH\naaNZ7krtoHu5d6Dtwe1MfGMitdFaBOHd89+lX1q/lg9shWhJCTVzPsJ75Ci2p+cx7rGFGAM2gQW/\nPaXRdq6RWJxl31dz99srGJyXwp3nHkFuauv3bleqG9rffOhttg5dqaboYuAOlO3J5sWzX+SNdW9w\nYp8TyXK33+Yqzp49ST/jdIKLFpFuvmfGxcO44uVVjOqX2WTXeVUwylXPLiQQibNiq5+j87O5auyA\ndmufUgcbK4gXtVhRqVbSgN6BHDYHgzIGMeWYKe1+rUQ0SsVzz1H+jycBGHD9L/jgxivJTPeR09QS\nNGt8PRBJzmb3udumi10ppVTH0L3cD2CxaIJQbYR4vPEwnAmHCa1ctfN1ZNUqBma6sROitKqcYE2E\nhsMtOSlupv98DKcO68EvTx7MqcN0bFsppQ4kOobeBVSGKvnk+08orSvlvKHnkevNbfGYUCDKt59v\nZePSUo48NZ9+R2Tjcu/a4RJas4bvr/kvEKHvP58i0DebO+ffSV2sjtt+8Bv6p/fHt1uO82AkhtNu\nw2nXz3pK7UYzgakuTX9rdwGzN8/mjvl38PCSh7l7/t34w/4Wjwn6I3zx2nq2bfAz66lviARijeqE\n+/Ug8cxf8T9xJ7NYwd1f3M28LfMoLCnk11/eQlWkcQpTn8uhwVypA4SI2EVkiYi8Y70eKCJfWulI\n/y0iLqvcbb1eZ70/oME5fmOVrxaR0xuUn2GVrROR2xuUt/s1VOvob+4uYEvNFuxiZ2zvsfRP708s\n0Tg4785ur39YsNltyenruwmbCBfO/y+uWnQLJXXbCcXqE6iEYiHsrn3/50+EQkSLi6lbsYJYRcXO\n8lAgSk1liKC/6cm7iYShNhwjnuj6PUJKHUB2JL/aYUfyqyFAJcnkV1h/VlrlD1r1sFKuXgocQTJ1\n6ePWhwQ78BjJlKjDgcusuh11DdUKOimuC7hi+BVM6HUmgVU2zDY77kNTwLvnYzypTs64bgTrvypl\n5Ml98aQ4G9Vx2V2cN+Q8Xl/3Ol8Uf8Fdx9/FzR/dTDAW5L4T7yPDk0kwEsPn2vsfg+iWLWycdB4m\nGiV1/Mkc8qc/EXOmsOi9jXw9p4iMPC/n/fpoUjLru/ID4RgLNpTzwoLN/HhUb04Z1nNnalWlujtr\nHfplwK9I7o5ZRDLgTd+fdej7mPxqovU9wCvAo1b9icAMay+QjSKyjmTOcoB1xpgN1rVmABOtNK3t\neg2g7fbAPshoQO8Cevh68P2nQQrf2ABA+Xe1nHhJf6q2bSa3X398GZmNjnH7nAw+qgcDRuZCApqa\nC5HpzuRXx/yK60Zeh8vuItebyzNnPIMxBgdp/OPTzXxdVMXPxg7kqH6Z+NyNfxzifj+hFd8SXLaM\njLPOJLx5MyYaBSDw2eeYaJQ4Cb6ek1yNU11ax/bNfgZm1m/XW10X5efPF5IwMHd1KZ/cOk4Dujoo\nWMH8VWAC9TvF9QT+AVxYUFBwwX4E9X1JfrUzhakxJiYi1Vb9PsCCBudseMzuKU+P66BrqFbSLvcu\nwCQMNRX13eGB6gjrCwt5+Q//w7sP30/Q3/yYejgQY97MNXw47dtdzrFDlieLPml9yPPlISLkenPJ\n8+Wx6fsKooEgS7+r4spnFlJVF236/GvX8t3VV1P2t7+x6eJL8B5+OHYrDWrWlT/F5vFgswt5+cnf\nKTaHkN171wxqxuy6mbX2uquDyGXsGsx3SLHKL23NSfc3+ZXqnvQJvTPUVUGwHGwO8GYhnnQKzhxA\n2fe1hIMxTrp0EB8982cAtqxeQSLRdKYzkzAsmb2ZWCRBeq6Xwvc2cvx5Q5rsfm8oWlJC3qP3conT\nyYW/uJnzZqyiJhSlqX7+0Nr6bHDxqipMIsHA11/DRKPYUlOxp6XhBc65cRSV2wKk5Xjxpe96/Qyf\ng0cuPYoXFmzm3FG9yU5xodRB4lc0DuY7pFjvv9SK8+5IfnUW4AHSaZD8ynqCbpj8akdq0yIrOVYG\nUE7zKU9ppry8A66hWkkD+l6IxCNAcky6IWPMvidTiYZg6XSYZU3ovPBZGD6J1CwPZ/9yJCZhiMdq\nqd6+DYDRky7G6Wo+AA46sgebvymjrKiWI0/NB6l//A36q9m4pJDqkmJGnHwaqTk5mFCYkj/eQ83s\n2QCkeTz8csJkcprZ5jVt3Dgq+jxFdMtWMiZNwpaSgiOr8Q53vnQXvvSm25nqdnL6iF6cODQPr8uO\ny6EdQ+qg0beF91u197Mx5jfAb2CXXBlXWMmvLiSZL2P31KaTgS+s9z8yxhgReQt4SUQeAHoDQ4GF\nJJfoDRWRgSSD7KXA5dYxH7fnNVpzP1SSBvQWbA9u54HCB/A4PNx01E07M4OVBEr45/J/0ie1DxOH\nTMQudqrCVUBy7Drdnd70CSMB+HpG/etl02HoaeBOxZuaDIjGuLjyvkeIx2K4PF7cvqY/4ItNiNTF\nWPz+ZgCK11Zx+f+OASAaDrP43TdZ9p93CQcDLJn1LpPvfwyv2wPO+n92u8vFJaPzSWtq9zjA2asX\nA2b8GxOLIl4vjszG4/l7w2m3keHTQK4OOkUkx8yb8/0e3muNqcAMEfkjyeRXT1vlTwMvWBPSKrC6\n+o0xK0RkJsmJaDHgl8aYOICI3Egyl7kdeMYYs6IDr6FaQQP6HgSiAe5ZcA8fff8RkNy69fbRt1MT\nqWHK3Cl8XfY1AKmuVHr5enH9nOsBuPv4u5k4ZCIOWxO315UCR14OxUuTr4+8Apy+XaqICCmZuz4F\nV4erqQhV4La7yXBlkOJqHOQbzourjvqhoA8nj72d4vmLWfb6G4QCtaRmZZPzuzux3TgFm8tJTkYK\nzhRPo3M15MhreaMbpVSTHiQ5Aa6pT+UB6/39YoyZC8y1vt9A/QzyhnVCwEXNHH8PyZnyu5e/RzLH\n+e7l7X4N1Toa0FuQoH4CaiKR/D5u4tREanaWV4QqKAmU7Hw9a/MsTh9wOqmuXSeHAeD0wMhLYOgE\nYnYfUePAGYvicDWf2SwUCzFz9UweXvIwgvDkhCcZ0zv5JN5jQBrHnNmfko1+jps4iLAdArVVPLjk\nAd7Z8A4Aj53wN/quGoEnJZV4wvBNdYLJ077B7bDx/M9Gk2+PkOHTcW2l2sF0kt3Pu0+MCwCzSXZb\nK9UmtA90D1KcKfzuuN9xav6pnDvoXG446gYcNgfZnmz++qO/MjxnOCf3O5nzh57PyLyR2MSGTWxc\ndthleB3NLCRPxCFWR1BS+XbxMl697x6W/uc9QrW1jaoGogGqwlWEY2FmbZoFgMHwwaYPdi5T86a6\nKDhrIKdfO4K6VDvnPvo5S4tKKSyp3yp3WfU3nDvlNzhT06kJRbn3g1UEI3Eqg1GemreRjaUB1m6p\n5i8frGK7v/FMeaVU61hL0i4ArgUKgRLrz2uB/VmyplQjupf7XqiL1iEieBz1XdMJk6A6XI3D5iDN\nlUYwGsQfSS4vS3el49utG32nyk1EP/w9laf+karKUmJ1IRZNe4FJt95BNM3Ousp15Kfn47a7ub/w\nfg7PPpxT8k8hnohz5/w7+absG6adOY0f5P5gl9NWBSP8/PlCFm2q5JLRvRh1+AbuXfQHMt2ZvHDm\nC5RXpvPUZxu47keDeGvpVp75fBMAU884jEOzU+kVMjyzoYTimhCPXXE0WdYTe3ldOQmTINWZitfZ\nwm43SnVvupe76tK0y30PdnSlZ3oyG+Uut4mNLE99mc/paz6IN7T2Q6qOv47/FM/hvkV/pWdKTx77\n7weJeOG/Zl3DhuoNuO1uZp4zE4c48Dg8nP362aS70nn2jGdxirPJCXcuh41Lj+nLBUccwrJtfno5\nRvP++e/jtDshlsbFT35MLGGYs3I786aezJhBOcQThhS3g942B1/P2sCoY7NYXlxNPJ78kLctsI2r\nZ13NtsA2/vzDPzOu37hdPtQopZTqOrTLvRmVoUru+vwuLn7nYs569Sy+q/luv84XT8QpDZZSdvjp\nxFNy+NtXD2EwbAtsY17FAmwOBxuqkzvFheNhvq/5nhP6nMC0FdNImARV4Spmrp7JI0seYV3Vukbn\nt0UTHOPx4VpYwfnpGQzKcDLpzUkYY4jGDXGrJyYSTxAIxxg3NJcje6Yha2r4+NGvyS/oQVFtiAcu\nPpIsa534Bxs/oKimiFgixn2L7qO6zt9kqlallFKdTwN6M+ImzmdbPgMgZmIsLF64X+dbX72ei96+\niIs/mEzc4eGwrMN2vjeixw9w2pxcdGhygujgzMEMzRpKjieHUXmj6uvljqA4UNxom9fayhCfvLSG\n9V9t5/hJQ1g26ztiwRgJkyCaiJLhdfLgxUdydH4Wd5w9jNCWIHOeXUm6y8lRY3tzyR0jGXqEm18e\n34thh6RjtxK9jMgdsfMaw7KGsXVFNds3+onHNKgrpVRXo2PozfCH/Tz01UPMXDOTVGcqM86ZQf/0\n/q06VyAa4NZPbmXelnkAnDf4PG46+ia+LP6S/PR8BmYMJM2VRlWoitK6Uopqinjoq4c4f8j5nD34\nbNZUriHNlcaq8lVsCWxh8vDJZHqS68FDwSiznvyGolXJVKjDTjgEu9NGv+NTmVsziwsOvYAMdwbR\neJyaYIzNi0qYPzP5hH/ocb0Ye0FfPn3haVZ8OofsPn25+M4/71wyVxOpoaimiO8rihjkOJy5j2zE\n4bJx0W+OJSWj+Vn5SnVTXWoMXUQygX8CI0jurvwzYDXwb2AAsAm42BhTaSVJeQg4CwgCVxljvrLO\nMxn4nXXaPxpjnrPKjwGmkdxC8j3gZmujmOz2vkYb3qaDio6hNyPdnc6NR93IVSOuwm13k+3JbvW5\nXDYXh2cfzoLiBdx45I2c1Pck7GLnnMHn4A/7qairoCbkx/hDLAssY3jucKaOnorP4aMmUsPy0uWM\n6jGKcfnjSHWm7jqObcwuT8yxaILBx/QgM9vNpX0u3Tmu77TbSXdD2ab65XZOp41YJMyKT+cAULGl\niMriLTsDeporjWE5w5C1mcx+fhWJhCEtO3Xfd8dTSlFQUDCQ5E5pWwsLCze2wSkfAj4wxlxo5ST3\nAb8F5hhj7rXyi99OciOYM0nu0DaUZAKUvwPHWcH5LqCA5IeCxSLyljGm0qrzc+BLksH2DOB965zt\nfQ3VChrQ9yDLk7XLxLfWctqd/HT4Tzl9wOm8tvY1zn/rfI7peQz/96P/4831b/LA4gewiY2nTnqC\n4/OO4/PvPuWz0i9I92ZyaPahPLL0EQDenPgmud7kJi+1kVrqYnW4HC4m/Gw4c55bid1u4/jzBuNN\ndeJw2Ru1w+GyM/aCIThddsQuHHv2QIwJktd/IKWbN+L0eMno0XhTq/4jcjhu0iD82+s45qwBzW7x\nqpRqrKCgoIDk5jLDgAjgKigoWAlcV9jKrkcRyQBOAq4CMMZEgIiITATGWdWeI7nhzFSSaUmft55+\nF4hIpogcYtWdbYypsM47GzhDROYC6caYBVb588AkksG2I66hWkEDegfJ8mQRioV4aVUyD0NhSSHV\n4Wre3fAuADZsHOLtyYpX3ySycT1Xnf1jPnN8S5/UPjvPURWugkgQf6SG6evfYNqKaRzX6zimFExh\n7LX5pNsycLeQltSX4eakyw5NXtNuA1xc8D9/oLpkG2k5ufia2NrVm+ri6NP6k0gYbDZ9Oldqb1nB\nfC71m8rsWPt5NDC3oKBgXCuD+kCgFHhWREYBi4GbgZ7GmGKrzjbqt53dmdrUsiOF6Z7Ki5oop4Ou\noVpBJ8W1gfK6cr7zf0dZXdke6zntTg5JOQQAt91NijOFH+efDcCovFGUr1jD8g8/oGT9WuY+8igX\n5U8ky53FoIxBnDfkPAak9oVP/0qgdiuPLn2U2mgtc76fw9qqtdw271YC1Ozp8jvZ7DYrmCelZGTS\n+9DDScvJxW5v/jPe7sG8rDbM/HVlbCoLEAzHCAejhGoje9UGpQ4SzW37ilX+RCvP6yD5oeDvxpij\nSO48d3vDCtaTcruOR3fENdTe0yf0/VRWV8YNH97AyoqVDMwYyDOnP7OzW3x3ud5cXj73ZdZVrqN3\nam+MSXC0OZRXxr9EijuNbYuW7qxrTAKXcbCxcj0/GfYTYokYGaWr4bMHcBw2gUx3JlXhKmxiI8+b\nx/Ky5cRMbI9tjSViVIYqCcaCpLnS9mteQHltmOv/tZhFmyqxCbx14w8pmbOV6u11nHLl4WT02Is1\n+Up1Y9aY+bAWqg0vKCgY2Iox9SKgyBjzpfX6FZIBvUREDjHGFFvd3dut95tLYbqF+u7zHeVzrfK+\nTdSng66hWkGf0PdTXbSOlRUrAdhYvXGXPd4bqgpV8eqaV5m+ajq5vlyueO8Kznj9TIp8Vax85S1e\nmfIreg0awuCC40jP68GPfnoNwapqDs8dTlldGePzx2OPJwN2zn/u5qWTHuS2Y37NE6c+watrX+WK\nw6/AY9/zpi/bg9uZ9OYkznn9HO76/C78dX7qaiNEQnv+INCUeMJQuDk5sz5hYOG6cvyldRSvq+Kj\nF1YRCkT3+ZxKdTO9SY6Z70nEqrdPjDHbgO9FZMf611NIZjPbkcIUGqc2vVKSxgDVVrf5LOA0EckS\nkSzgNGCW9Z5fRMZYs9evpHGa1Pa8hmoFfULfT16nlyGZQ1hXtY6+aX1Jc6Y1WW/BtgXc/cXdnJp/\nKv6In9K6UgAe+/YJ7jj2etYv+II3/voHRk+8iEOPG0vxujUcPvZH9MvK5ojcI5In6eWAI6/Atm42\n/Va+z0/H3kwFMQZlDMLj8DSfstWyvGz5zu1pneLC/32M+a8sIy8/jTETB+FN2/vJbm6nnatPGMAz\nn28iO8XFuEPz+Pit5Idrt8+hY+1KwVagpf9ULqtea9wEvGjNcN8AXE3yIW2miFwDbAYutuq+R3I5\n2TqSS8quBjDGVIjIH4BFVr3f75i8BtxA/ZKy96mfrHZvB1xDtYKuQ99LsXiMinAF4XiYNGfaznXg\nkOx2r43UkupMJdfXdHf7iytf5N6F9zIydySXHX4Zv/nsNwCcM+gcft7rct778x8JBwJ409I54bzz\nOGLMaBwOF7JuNmDg8LMhJRfqqiEWAqcXPHsO4LvbUruFC966gEA0wCunvMEn9xcRDcUBOOPaEQw+\nusc+na8qGKE2HMNlt5Fmt7Hiky2EAjGOOi1f16mr7mifP6UWFBQsJjnW3ZzFhYWFBa1vklL19Am9\nGTsSr6Q4k/NZttRu4eJ3LiYYC3LFsCs4a+BZ9PD1oDRYSs+UnvRN7YtjDxPKzhhwBguLF1JUW8QR\nuUcw4+wZVIQqGJE7gjRHKlf939+JRyOkOcLIJ39GnrsTMvvD2Jthw8eYkm/wHzmVTavqGHx0D1LT\n9i1g1kXrcNlcvD3pbWoiNeSYnri923YGdICgP7JPS9IyfS4yG6RdLThrIMYYXaeuVL3r2HWWe0MB\n4Bcd2hrVrekTehM2VW/i9wt+T64nl6mjp5LjzWH6yun8aeGfgGQ2tefPfJ7bPr2NNZVrSHGm8MbE\nN+iV0muP5/WH/SRMgjRXGnZb43Xi1JbAP06Cmm31ZSJw+cuw+FlW9/wtH/57O0OO6cExl/bG43Y1\nnXN9N9Xhal5d8yqvrXuNsweezeXDLifdlU7V9jqW/GczOX1ScThspGS6GTCy6R4GpVTrdoqzlq49\nAQzHWodOcrz7F61dh65UU3RS3G4qQhVM/XQqi7Yt4v1N7zN91XQAxvQeszPH+Sn5pwCwpnINkNza\ndZN/U4vn9hoX4eJyvnr3Taq2bSWRqH86JuSHjZ/tGswBjIEFfydx/E0UbYiRm59K/lkupnx2C7/9\n7LctLpWD5BauD371IJv9m3l82eNUh6uT6WB9DrxpLjZ/U868l9eS3bu51TVKqdYqTCoAjgDOBo4o\nLCws0GCu2pp2ue9GENyO+u7sHVun9k3tyzvnvUMwGmRL7RbWVK7hxD4nMm/LPHqn9GZwxuBG54qG\nQ4SDQURspGRmUlfj58Xf/gqTSLDwjZeZfP9jpGZlQ6AMlr4EoaqmG+Uvgox+9PlhnKF5dn79+a9Y\nVbEKgD6pfbjt2Nv22M3ttDlx2VxEEhEcNgdue/Lv501zMWp8X6q315Ga7cGXtudNaZRSrWctTWuL\nLV+VapIG9N1kebK476T7eOSrR+jh68GkIZOA5KYwPXzJSWOZ7kziiTgFPQsIx8O47W7yfHm7nCcW\nCbNxSSHvP/oAabl5XHTHPYSCtZhEct/1UG0Nibj1hO7fCl88AhMfb7pRh55J0O3j3g1TmJCYsDMg\nQ/IDR0tj1pnuTP511r94f9P7nNb/NDLcGfXHp7vxpesENqWUOtBpQG9Cr5Re3D32buzYsdkaj0o0\nnOHenHAgwEfTniQWjVBZvIXV8+cxYvxpDDvxZDYt+4qCc87D5bV2gfRmJp/Sq4vgyMuTT+uQnNWe\n1gvGXM/WujIWb19MijOFh8Y9xOvrX6eiroJLD7u0xba4HW6G5QxjWE5Le1wopZQ6UGlAb4bTtn/d\nzzFJkJs/gEBlcrllj4GD8aSkMP7q64hHIjg93gYBPQd+NgvW/AdOug3G3kJdIp2qaju+zBR8TjeZ\ndhu9Unpxx5g7+Pe300l3pXNZ/wvZVlZERp8MXHZNmKKUUgezdpvlLiIe4FPATfKDwyvGmLtEZCAw\nA8ghmVDgp1am+bLdigAADWxJREFUoGZ1hXXo+8If9nN/4f1ckn8+/nXf0bv3QHr1HYQ7ZbdJZ/EY\nNLHULRSIsvabrfgyHfi3Rug7OJfMPh7KQ+X8ZeFf+PC7DwG44YhfcMGASaRlZu+csKeUaje6HlN1\nae05yz0MjDfGjAKOJJkubwzwF+BBY8wQoBK4ph3b0CkiiQiLSxbzk7lXc3/Nc7wVmIvD5cJfVkrR\nym8IVFVC5WZ485ew8EkIVuxyfB215A6AjQveIVy7GIcnhNPuxGP3UBIs2VlvW7gEnydFg7lSSqn2\n63K3svDUWi+d1pcBxgOXW+XPAXeTTHLfbaS50rj12FuZMncKFaEKJg6ZSKC6kmenXE8sHCY3fwAX\n/uwCUr6eAV/PgOwhMGT8zuOj4To+f+opNi9PJmtxOlwM/+HJ2MJR7j7+bm799FZSnalcN/IXpKa2\nPJ7fWaKhOBXbailaVcmQo3uQluvVLWGVUqqdtOsYuojYSXarDwEeA9YDVcbsTAvWLfPfuu1uxhwy\nhlkXzEJEyPHk8P23y4mFwwCUfbeJhKt+pjnR2l2OtxuhrrY+yUuwuop5059j+ZwPOGL8BJ667B84\nXW6yPFkd8vdprbraCK/+ZTHGwJLZ33HZncfplrBKKdVO2nVjGWNM3BhzJMm0eKOBw/f2WBG5VkQK\nRaSwtLS03drYFrYHt/PehvdYXbGa2kgyOHscHvJ8eeR6c5NBvU8/cvrmAzDy1DNxpGZD/vEw+jrI\nP2GX83nTMphww830GnIog445lpHjT2f1/E8BWPHRbJyBeJcP5gB1tVF2TNEIB2Ik4l1/V0KllDpQ\ndcgsd2NMlYh8DBwPZIqIw3pKbzb/rTHmSeBJSE6K64h2tkZZXRmT359MUW0RAC+d/RI/yP1Bo3op\nmVlcdOefSMRiOFwuvCmpcOl0cLjBtWvucJ/Lh6PHIZxzy1RikQgGQyySnDfoSU3D6TkwxszTczwc\nelwvilZWcNRp+bi8uqhCKaXaS7v9hhWRPCBqBXMvMIHkhLiPgQtJznRvmEv3gBSNR3cGc4CvS79u\nMqADpGTsNt7ta/4p2+Xx4rICdywSZvL9j1GyYS19DhuOLyOj2eO6Em+aixMvGUo8msDpseNya0BX\nSqn20p6/YQ8BnrPG0W3ATGPMOyLyLTBDRP4ILAGebsc2tDuPw8OE/hOYvXk2We4sftT3R21+DYfL\nTXbvPmT3bn66QUWogtUVq+mV0ose3h6kuLrGvuwen24nq5RSHUGzrbWBylAlgWgAt91NjjcHm3Rs\nzpuqUBVT501l/tb5CMKLZ7/YZC9BVTBCNJ4gw+vE5Wgi21szKgMRwrEETruQk6qT2tRBS5doqC5N\ns621gSxPFn3T+pLny+vwYA4QTURZsn0JAAbD0u1LG9Upqwnz3zOWMOmx+Xy+rpxQNN6oTlPKa8Pc\n/trXjPnzHG548SvKasNt2nallFJtQwN6N+B1eLl25LUA5HhyGN9vfKM6H64q4dM1ZWypquOm6Uvw\nh6J7de7acIxZK5Kb2Xy5sYKKwB439VNKKdVJdJZSN5DqSuWSwy7hnEHn4LA5yPHkNKpzSEb9zPie\n6R5se9l76HXayUt1U1obJs3tIMOrY+JKKdUV6Rj6QaIqGGH++nJWFvu5bHQ+vTP3bumbMYZt/hAr\ni/0c1iudnmluHHbt2FEHJR1DV12aBvQOFE/EqQhV4I/4yXRnkuNt/CTdFYQCUaLhODa74EtzIbpd\nq1KgAV11cdrl3oFK60q54K0L8Ef8jModxcPjHybbm71f56yriRCLJrA7bfjS9j+FajgYZemH37H4\n/c14Up1cOPUYMvJ8LR+olFKqU2nfaQfaULUBf8QPwLKyZYTj+zdjPOiPMOupb3j+t/P54MnlBP37\nP2EtFkmw+P3NAIRqo3z7efF+n1MppVT704DegQZnDt45YW10r9G4Hfu3pjsairFlTRUAxWuriYRi\nLRzRMrEJmT3rn8h7Dkzf73MqpZRqf9rl3oHyfHm8fO7LBGNBUp2pZHv2r7vd4baTkukmUBXGl+HC\n6d77zWKa40t3MfFXR7Fx6XYye6aQl5+23+dUSinV/nRS3AEuUB2mpjxEWo4HX7oLEZ23o1Q70f9c\nqkvTJ/QDXEqGW3OMK6WU0jF0pZRSqjvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehK\nKaVUN6ABXSmllOoGNKArpZRS3YAG9AOISRjqaqNtsme7Ukqp7kV3ijtAJOIJyrbU8un0NWTkeRl7\n4VB86fufLlUppVT3oE/oB4i62ijvPvY1JRv9rFlYwvqvtnd2k5RSSnUhGtAPECLskk2tLTKrKaWU\n6j60y/0A4Ut3c+5No/jyzY1k9/bRf0ROZzdJKaVUF6IB/QCSkefjlKuGYbMJYtNMjkoppeppQD/A\n2B06SqKUUqoxjQ5KKaVUN6ABXSmllOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQMa0JVSSqluQAO6\nUkop1Q1oQFdKKaW6gXYL6CLST0Q+FpFvRWSFiNxslWeLyGwRWWv9mdVebVBKKaUOFu35hB4Dfm2M\nGQ6MAX4pIsOB24E5xpihwBzrtVJKKaX2Q7sFdGNMsTHmK+v7GmAl0AeYCDxnVXsOmNRebVBKKaUO\nFh0yhi4iA4CjgC+BnsaYYuutbUDPjmiDUkop1Z21e3IWEUkFXgVuMcb4ReqzhBljjIiYZo67FrjW\nelkrIqtbuFQGUL2PzdubY/ZUp7n3di9vql7Dst3fzwXKWmjXvurK96epsj29bo/701y72uKYg/ke\n7W39fb1HnXF/PjDGnLGPxyjVcYwx7fYFOIFZwJQGZauBQ6zvDwFWt9G1nmyPY/ZUp7n3di9vql7D\nsibqF7bDv0WXvT97c892u19tfn/0HrXPPdrb+vt6j7rq/dEv/erMr/ac5S7A08BKY8wDDd56C5hs\nfT8ZeLONLvl2Ox2zpzrNvbd7eVP13m7h/bbWle9PU2V7cw/bmt6jlu3rNfa2/r7eo656f5TqNGJM\nkz3e+39ikR8C84DlQMIq/i3JcfSZQD6wGbjYGFPRLo04QIlIoTGmoLPb0VXp/WmZ3qM90/ujuqN2\nG0M3xnwGSDNvn9Je1+0mnuzsBnRxen9apvdoz/T+qG6n3Z7QlVJKKdVxdOtXpZRSqhvQgK6UUkp1\nAxrQlVJKqW5AA3oXJyLDROQJEXlFRK7v7PZ0VSKSIiKFInJOZ7elKxKRcSIyz/pZGtfZ7elqRMQm\nIveIyCMiMrnlI5TqejSgdwIReUZEtovIN7uVnyEiq0VknYjcDmCMWWmM+QVwMTC2M9rbGfblHlmm\nklwOedDYx3tkgFrAAxR1dFs7wz7en4lAXyDKQXJ/VPejAb1zTAN22UJSROzAY8CZwHDgMis7HSLy\nY+Bd4L2ObWanmsZe3iMRmQB8C2zv6EZ2smns/c/RPGPMmSQ/+PxvB7ezs0xj7+/PYcB8Y8wUQHvC\n1AFJA3onMMZ8Cuy+mc5oYJ0xZoMxJgLMIPnUgDHmLeuX8RUd29LOs4/3aBzJFL2XAz8XkYPi53pf\n7pExZsfmTpWAuwOb2Wn28WeoiOS9AYh3XCuVajvtnpxF7bU+wPcNXhcBx1njneeT/CV8MD2hN6XJ\ne2SMuRFARK4CyhoEr4NRcz9H5wOnA5nAo53RsC6iyfsDPAQ8IiInAp92RsOU2l8a0Ls4Y8xcYG4n\nN+OAYIyZ1tlt6KqMMa8Br3V2O7oqY0wQuKaz26HU/jgouiYPEFuAfg1e97XKVD29Ry3Te7Rnen9U\nt6UBvetYBAwVkYEi4gIuJZmZTtXTe9QyvUd7pvdHdVsa0DuBiEwHvgAOE5EiEbnGGBMDbiSZP34l\nMNMYs6Iz29mZ9B61TO/Rnun9UQcbTc6ilFJKdQP6hK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0op\npboBDehKKaVUN6ABXSmllOoGNKCrLk9E5nd2G5RSqqvTdehKKaVUN6BP6KrLE5Fa689xIjJXRF4R\nkVUi8qKIiPXesSIyX0SWichCEUkTEY+IPCsiy0VkiYicbNW9SkTeEJHZIrJJRG4UkSlWnQUikm3V\nGywiH4jIYhGZJyKHd95dUEqpPdNsa+pAcxRwBLAV+BwYKyILgX8DlxhjFolIOlAH3AwYY8wPrGD8\nHxE51DrPCOtcHmAdMNUYc5SIPAhcCfwNeBL4hTFmrYgcBzwOjO+wv6lSSu0DDejqQLPQGFMEICJL\ngQFANVBsjFkEYIzxW+//EHjEKlslIpuBHQH9Y2NMDVAjItXA21b5cmCkiKQCJwAvW50AkMxJr5RS\nXZIGdHWgCTf4Pk7rf4YbnifR4HXCOqcNqDLGHNnK8yulVIfSMXTVHawGDhGRYwGs8XMHMA+4wio7\nFMi36rbIesrfKCIXWceLiIxqj8YrpVRb0ICuDnjGmAhwCfCIiCwDZpMcG38csInIcpJj7FcZY8LN\nn6mRK4BrrHOuACa2bcuVUqrt6LI1pZRSqhvQJ3SllFKqG9CArpRSSnUDGtCVUkqpbkADulJKKdUN\naEBXSimlugEN6EoppVQ3oAFdKaWU6gY0oCullFLdwP8HkOCw8CrGzdAAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3900,7 +3907,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmba971KlCVIUOyrY\nFbtGY2+xYYnGGmOLMUqiP2NJbNGYqFFRo4ldogajRCPBBtIRUaT37buzbdr5/XHvLgtsmV12WBjO\n53n22Zlb37sse+a+933PEVXFGGOMMds3T3c3wBhjjDFbzgK6McYYkwQsoBtjjDFJwAK6McYYkwQs\noBtjjDFJwAK6McYYkwQsoBtjjDFJwAK62a6IyDUiMl1EGkTk+U3WXSYii0QkKCKTRKRPs3XjRSTs\nrmv82rnZ+iNFZIaIVInIYhG5YiteljHGbDEL6GZ7sxq4B3i2+UIRORy4FzgFyAeWAK9ssu8/VDWz\n2ddid18/8BbwFyAHOBt4SET2TOSFGGNMV7KAbrYrqvqmqr4NlG6y6iTgNVWdr6oh4G7gUBEZHMdh\n84Fs4EV1TAMWALt2ZduNMSaRLKCbZCItvB7ZbNmPRKRMROaLyFWNC1V1Hc7d/CUi4hWRMcAA4H8J\nb7ExxnQRC+gmWUwCzhKRPUQkDbgTUCDdXf8qMAIoAi4H7hSRc5vt/4q7TwMwBfiVqq7YWo03xpgt\nZQHdJAVV/Qi4C3gDWOp+VQMr3fXfqOpqVY2q6mfAo8AZACIyHPg7cCEQAHYDbhGRE7fyZRhjTKdZ\nQDdJQ1WfUNVdVLUnTmD3AfNa25yNu+W/U9UPVDWmqguB94DjE95oY4zpIhbQzXZFRHwikgp4Aa+I\npDYuE5GR4ugPPAU8qqrl7n6niEieu35/4DrgHfewM4Fd3Klr4g6kOwmYs/Wv0BhjOkesHrrZnojI\neJyu9eZ+AzwCfAoMxulqfw64Q1Wj7n6vAMcAKTjd8H9S1ceaHfcsnGfoA4BK4G/AL1U1lsjrMcaY\nrmIB3RhjjEkC1uVujDHGJIGEBnQRuV5E5rnzfm9wl+WLyIci8r37PS+RbTDGGGN2BAkL6CIyEme+\n7/7AnsBJIjIEuA2YrKq7AJPd98YYY4zZAom8Qx8BfKmqtaoaAf4LnIaTa3uCu80E4McJbIMxxhiz\nQ0hkQJ8HHCIiBSKSDpwA9AN6quoad5u1QM8EtsEYY4zZIfgSdWBVXSAi9wP/BmqAWUB0k21URFoc\nZu+Wr7wCYNddd913/vz5iWqqMcbEQ9rfxJjuk9BBcar6V1XdV1UPBcqB74B1ItIbwP2+vpV9n1LV\nUao6Ki0tLZHNNMYYY7Z7iR7l3sP93h/n+fnLwETgIneTi9iQrcsYY4wxnZSwLnfXGyJSAISBq1W1\nQkTuA14VkUuBZcBZCW6DMcYYk/QSGtBV9ZAWlpUCYxN5XmOMMWZHY5nijDHGmCRgAd0YY4xJAhbQ\njTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJ\nAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0Y\nY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRg\nAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHGmCRgAd0YY4xJAhbQjTHG\nmCRgAd0YY4xJAhbQjTHGmCSQ0IAuIj8XkfkiMk9EXhGRVBEZJCJfisgiEfmHiAQS2QZjjDFmR5Cw\ngC4ifYHrgFGqOhLwAucA9wMPq+oQoBy4NFFtMMYYY3YUie5y9wFpIuID0oE1wJHA6+76CcCPE9wG\nY4wxJuklLKCr6irg98BynEBeCXwNVKhqxN1sJdA3UW0wxhhjdhSJ7HLPA04BBgF9gAzguA7sf4WI\nTBeR6cXFxQlqpTHGGJMcEtnlfhSwRFWLVTUMvAkcBOS6XfAAOwGrWtpZVZ9S1VGqOqqoqCiBzTTG\nGGO2f4kM6MuB0SKSLiICjAW+AT4GznC3uQh4J4FtMMYYY3YIiXyG/iXO4LcZwFz3XE8BtwI3isgi\noAD4a6LaYIwxxuwoRFW7uw3tGjVqlE6fPr27m2GM2bFJdzfAmLZYpjhjjDEmCVhAN8YYY5KABXRj\njDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KA\nBXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YY\nY5KABXRjjDEmCVhAN8YYY5KAr7sbYExnaDRKpLQUDYfxZGbiy8np7iYZY0y3sjt0s10Kr1zJ4hNP\nYsmpp9GwcCHhtWuJBoNN66NVVdR89RWlzz5HeM2abmypMcZsHRbQzXap+pNPiNXUsNNjj1L69DMs\nPulHlL34ItHKSgDC69YRXrECT0Y6q++4g0hJSTe32BhjEssCutkuZYweg39Af8Jr11EzZQqxYJCS\nRx8jFqxBVdGGBkr/+iwVr71Gj+uuQ7u7wcZsY0TkZBG5rbvbYbqOBXSzXQoM6M+A558nZejQpmWe\njAzw+4iWl7P27nsILV5M/bz5lL3wAp60tG5srTGJJY4O/T1X1Ymqel+i2mS2PhsUZ7ZLntRU5ys9\nnX5PP0Vw6mfknXE6vrw8YvX1+AoLm7b19eyJJyWlG1trTNcTkYHAB8CXwL7AAyJyJZAC/ABcoqpB\nETkBeAioAaYCO6vqSSJyMTBKVa9xj/UsUAgUu/suF5HngSpgFNALuEVVX99a12g6xgK62a55s7LI\nPOQQMg85ZMMyv59ed/6asgED8GRkkHvWmYjPftVNUtoFuAhYBLwJHKWqNSJyK3CjiDwA/AU4VFWX\niMgrrRznj8AEVZ0gIuOAx4Afu+t6AwcDw4GJgAX0bZR1uZuko9EoVZMmEV6zhoZvv6VswgRi9fXd\n3SxjEmGZqn4BjAZ2BaaKyCycID8AJwgvVtUl7vatBfQxwMvu6xdxAnijt1U1pqrfAD27+gJM17Hb\nFpN0NBSi9qtpBCdPBiBt1Ci0oQFSU7u5ZcZ0uRr3uwAfquq5zVeKyF5dcI6G5ofsguOZBLE7dJN0\nPGlpFF17DZ7sbCQ9nR433ognM7O7m2VMIn0BHCQiQwBEJENEhgILgZ3dZ+QAZ7ey/2fAOe7r84Ep\niWuqSRS7QzdJp666ikhBAQMnvoPH48Gbl4d4vZ0+XrSyEg2F8GRl4bG7fLMNUtVid5DbKyLSOAL0\nDlX9TkR+BkwSkRpgWiuHuBZ4TkRuxh0Ul/BGmy4nqtv+DN1Ro0bp9OnTu7sZZjtQXxPkf6+8wOwP\n38fnD3DevQ+R37cf1cXrWTp7Bv1G7kFOj574/IG4jhcpLWXNXeNpWPANPW65hcxDD7UpcDuu7bK7\nWUQy3dHuAjwBfK+qD3d3u0zXszt0kzRUFYI1FOQXMOSAA+l/8LFURb2kVlbw4m3XE6qrxecPMO6x\np8nKL4jrmDVffUXwo48AWPWLmxjyn8kW0M325nIRuQgIADNxRr2bJGQB3WyXojU1aEMDnsxMPIEA\nGo3SsGgRa8f/hvzUVIb95jdcOmklPxQv5L1LdiVUVwtAJBwiVFsLcQZ0f1GPpte+/DzEY8NOzPbF\nvRu3O/IdQML+OonIMBGZ1eyrSkRuEJF8EflQRL53v+clqg0mOUXKylh3770sH3cpVe//i2h1NdHy\ncpZfdDF1M2dS+/nnrLvpJs4Zms366gbmrm9gr2NPwpeSwoiDjyAtOzvucwV2GULfRx8h/5JLGPDS\nS3gL4vsgYIwxW9tWeYYuIl5gFXAAcDVQpqr3uXmE81T11rb2t2foprnS555j/f0PNL0f/NGHSCDA\noiOOhGgUAH+/fiwd/wiX/XMJY4cX8fCpw/DEonj9ftIys7qr6Wb7tl0+Qzc7jq3VfzgW+EFVlwGn\nABPc5RPYkI3ImLg0VlRrFKurJ7xqNT1vuw1EEL+fnr/+NZW+NC4cM4DfnbYH2Tk5ZOblU6MBvl1b\nxeLiIGU1oW66AmOM6Xpb6xn6OWzIUNRTVRsLVK/FMg/tMCJlZaCKNz8fZ8Ctk9UtWlaGquLNyopr\nwFnumWdS/e8PCS1eTM4ppyABP8vOP5+Cyy5l8AeTkJQUvDm5nJYS4FQFj8c5V3F1Pec+/SWL1jt1\n04/brRf3nrY7+RnxjXg3xphtWcLv0EUkAJwMvLbpOnX6+1vs8xeRK0RkuohMLy4uTnArTaKFVq1m\nxU+vZPkl4wgtXrxh+dKl/HDSj1h0xJHUfP45kbIyaj7/nJrPvyBSXt7isSSQQtHPf07/F18gdeRu\nxKqqIBaj9KmnqZ0xE3/PnnhSUxCRpmAO8P7ctU3BHGDS/LWsqaxL3EUbs50Tkc+6uw0mflujy/14\nYIaqrnPfrxOR3gDu9/Ut7aSqT6nqKFUdVVRUtBWaaRIl1tDA+gcfpH7uXBq++441d/yaSHk5qkrZ\nCy8Sq6yEaJS62XMof/kVll8yjuWXXEL5K38nFg5vdjxvTjYpQ4YQWrqUzEMOoX7hd+D10vfhhwkM\nHEDws8+JlJZutt/K8s2Dt3W7G7M5EfEBqOqB3d0WE7+tEdDPZeOCABNxCgfgfn9nK7TBdCePB1/h\nhtHh3rw8xOdDRMgYM7ppeequu1I3c0bT+7oZXzs52HGmqTUGd08gQMqggeSdeSaBgQPJPuZohkye\nTP2Cb1h2zrmsGDeOFT+7erOgfs5+/fA2u2PPS/czrKcNkDOJN/C2984beNt7Swfe9l7M/X7elh5T\nRN4Wka9FZL6IXOEuC4rIg+6yj0RkfxH5REQWi8jJ7jZed5tpIjJHRH7qLj9cRKaIyETgm8bjNTvf\nrSIyV0Rmi8h97rLL3ePMFpE3RCR9S6/LdF5CR7mLSAawHKf+bqW7rAB4FegPLAPOUtWyto5jo9y3\nf5HSUuduvLaWgisux+/2ukQrKwmtXEWsqpKU3XYjtHgxyy8ZB0D/554jZbddCX37LSWPP4G/f38K\nr7oSX37+ZscPFxez5ORTiDbrph/84b8J9OvX9L42FGFFWS1/+XQxuWl+Lj14Z3rnpG7ULW9MGzr1\ni+IG76eB5sGuFrh86X0nvtzyXnE0RiRfVctEJA0npethQAlwgqr+S0TeAjKAE3EqsU1Q1b3c4N9D\nVe9x08ROBc7Eqc72HjCysTqbiARVNVNEjgd+jVOetbbZuQtUtdTd9h5gnar+sbPXZLZMQgfFqWoN\nULDJslKcUe8mCURKS6mbN59A3z74evXC21oRFI+H1JG7EVq+gtDSpXgzM/GkpeHNycGXmUVFbZiQ\nR8jZbTcGf/ABAN68XKJlZSy74EK0sfypR+hx002Iz0e0tNQZTJedjfh8BIYMpm6a88HPk52NpKRs\n1IT0gI9hvbK577Q98Aj4vJYkxmwV97JxMMd9fy8bSpZ2xnUicqr7uh9ObfQQMMldNhdoUNWwiMwF\nBrrLjwH2EJEz3Pc5zfb9qlmp1eaOAp5T1VqAZjdhI91AngtkAh9swfWYLWSZ4kynRcrLWXnd9dR9\n/TWIMPDvfydtzz1a3Lb2y69YdcMNzhufjyEffYgnLY1wNMacFRXc8OosemWn8sR5+9Cjh3P3rqpo\nOEzB5ZdR/tLfiJaXE16+HA2HiaxZw7ILLyJaUcFOjz1K+ujR9H3oIYofeYRoRSVFN1yPr5UkMAGf\nBXKzVfXv4PJ2icjhOEF2jHvH/AmQCoR1Q7drDLf0qarGGp+L4/Q0XKuqH7RwzBo65nngx6o62y0O\nc3hHr8V0HfvLZjovEqFu9mzntSq1s2ZutolGIsTCYaI1wY3203CYWDhMWVk1N7w6ixVldUxbWs6r\n01e4h1NCP/zA6ptupv6bBez05J/wFhaSf9FFqCqlf/0rkbVr0fp61t7zf8SqqvAXFdFr/Hj6/uH3\npO6yS6cqrEUqKgitWkWkuJjtoXCR2S4s7+DyeOQA5W4wHw6Mbm+HZj4ArhIRP4CIDHUfj7blQ+CS\nxmfkItL43CsLWOMe6/wOXYHpchbQTadJaiqFP70CAG9hIVlHHbXR+khpKevuv5+1d40n86CDyDjk\nEPD5yB83Dm9WFtGyMuqnfEqv7A0lSfvnOz2T0bIyVt34C+pmzSI4eTLBjz9hwAsTqPnyKyQaJXXk\nyKZ9UoYMQQLOXHKP39/pEqfRqipKHn+cH8YexeIfn0pkzdpOHceYTdyO88y8uVp3eWdNAnwisgC4\nD6ceeryewRn0NkNE5uEUa2mzt1ZVJ+EMaJ4uIrOAm9xVvwa+xHkO/22HrsB0OSufarZINBgkVluL\niOAtLNwoYUzphAmkDBiAJy2dhiVLyDr2GETVSfySnU3d/PmsvPoa0v78V95YFGRgnzwOHdaTvIyA\n051/9TXUzXBGvRfdcAOx+npyzzyDQN++RCsqqJ05k0hJCVlHHtlq93pHRIqL+f7wI5rSx/b5/e/J\nOenELT6uSRqdHj3pDoy7F6ebfTlw+5YMiDOmJfYM3XRasLyMVd9+Q0ZuLvl9+5Euzf7eqZJxwAGs\nvOZaoiUl9LjlZsTj2WiEur9XLwL9+1NzwTlccMMNZB/2I3yNWdtU6fPA/VTMmE2sdx+yhwzC6/Xg\ndQureHNzyTriiK69IL+fzMMOJfifj5HUVNJ2H9n+PsbEwQ3eFsBNQtkduumUmopy/varG6kucbL4\n7XP8yRx0zgUEUp3UrdGaGlbfdBPBjz9xdhBhyCcf4++5cabfSFkZGokggRR8uTnOspISlo8bR8ot\nv+KlinSmr6zmF8cMY+/+uaT4Ov5cvCMiZWVEiovx5ubizcvDE7C0sKaJzW802zR7hm5aFKx35mx/\nt66a8mbZ1DQWI7RqFVWrVjYFc4A5kz8g3Di1DIjV1OBJ3zBTR1JSQFr4e+jxoPUNaEN9U+KYWH09\nsZoaFgdyefJ/y5m2tJyLnv2KitrNs8Z1NV9+PqnDhjnpYy2YG2O2IxbQTYtmrajg0Ac/5piHP+XZ\nqUuoDUUAiJaWsvTsc0gRz0YBOr/vTojH+XWK1ddT/Mgj5F94IZmHHUbqbrvS/5mn8ebmUlcdYtHX\n61gyu5iGskpKn36GH445hh+OO57wcmfQryctjcDgIQSazRP3ez1Nt0eRykrCxcVENqm6ZowxOzIL\n6GYzqsp7c1fT+DTm3/PXURtyBorFQiGiJSXUvvU2p1z1c3ruPIRBe4/i5Bt/SXq202WO14snI5OV\n11xL2l57UXjddaSMHEkML9MnLeODp+fz/pNzqSuppvLNN51z1tU1dc/7Cgroc+//MaR/Ib89eVdO\n2L0X//jpaPIzAoSLi1l1w89ZdNjhrL7xRiJWuMcYYwAbFGeaiZSWouEwkp7O+QcM4K2Zq6gPxxh3\n8ECyUpxfFW9GBvkXXUjZiy+Rq3Dqjbfjy8ggJX3DNFaP30/hlVfi69kDYjHSRo7Em5pKQ22Y0hXV\nTduVloTJOvEEKl76GxIIkHHYoU3rfIWFFAAXFOZy9v79SfF5iYVCrPvLX6j9/HMAaqZ+Rukzz1D0\ni19Y97gxZodng+IM4A5Eu/wKGhYsIOf008m75VYq8RFVyE71kZXqb9o2WlXlFE3xelvMq96aWEMD\noZJyaiob+H5+kKEHDyQ7NUS0stJJA5ubi2eTdK3NRaurWXX9DdR8tqGiY8bBB9P3kYdbTzlrTNex\nQXFmm2Zd7gaA0IoVNCxYAEDlG2/gqw3SKyeNvrlpGwVzAG92Nr6iog4Fc41GqZ8zl6UnHMf6M09k\n1+xV5OZ58eXlkTJwoDMIrY1gDuDNyiJ/3CUbLSsYN86CuTGd4FZXO7DZ++eb5Xfv6nM9IyK7JuLY\nZgPrcjcA+Hv3RtLT0dpaAoMGIn5/u/tsKhqN4m0l3Wq0qop1Dz7YVA513X33kb7P3h3O6pa2554M\nmvgOtZ9/QfqY0fh79+5wO43Z6sbnbJZYhvGV3T0v/XAgCHzWznZbTFUvS/Q5jN2hG5e3oIDB771L\n/wnPM+CFF/AVFsa9b6i+nuXzZjPpiYdYMutrQvV1m20jgQD+/htKmQZ22gl8Hf886c3KInXoUPIv\nupDUoUPxZlk9c7ONc4L50zjlScX9/rS7vFNEJENE3nPrkM8TkbNFZKyIzHRrlj/rlkZFRJaKSKH7\nepRbH30gcCXwcxGZJSKHuIc+VEQ+c+unt3q3LiKZIjJZRGa45zultXa5yz8RkVHu6ydFZLpbs/03\nnf0ZmM3ZHboB3BzovXt3+I5XYzFCdbVMffUlVi9cwMLPpnDZ4880JZhp5M3IoNcvf0lgp52I1dVR\ncOml+PLyuvISjNlWJaJ86nHAalU9EUBEcoB5wFhV/U5EXgCuAh5paWdVXSoifwaCqvp79xiXAr2B\ng4HhOLnbX2/l/PXAqapa5X5Y+EJEJrbSrk39yq2l7gUmi8geqjqnMz8EszEL6KbT6oPVfD/tCxZP\n/5L9fnQ6Cwun8O3U/xKNRInFFI9n4zFEvoICetxwA6ralPPdmB1Al5dPxal1/gcRuR94F6gClqjq\nd+76CcDVtBLQ2/C2qsaAb0SkZxvbCXCviByKU6a1L9Bz03ap6pQW9j1LRK7AiT+9gV0BC+hdwAL6\nDiwWjSIeT6eDa7C8nH//+VEAlsz+mrPH30/PwUOZua6Bhd8u5pz9+pGXESBaVU20rAyNRfEWFODL\naelDuzFJazlON3tLyzvFvQvfBzgBuAf4TxubR9jweLW9QSsNzV639YfhfKAI2FdVwyKyFEjdtF0i\nMllVf9t0QJFBOJXa9lPVchF5Po42mThZQN9BVaxby+evv0J+n77sPvbYDUlhOsD5IO++jsVIz8ll\nUmQQz7wyH4ARvbM4bGgRwSmfUv2vSeDzkTFmDDmnn4bHfX4ei0WJhiP42xnh3lwkGmN9dQPfr6tm\neK9semSn2B2/2ZbdjvMMvXm3+xaVTxWRPkCZqr4kIhXANcBAERmiqouAC4D/upsvBfYF/gWc3uww\n1UB2J5uQA6x3g/kRuB9YWmjXpoPhsoEaoNLtATge+KSTbTCbsIC+A6qpKOfN391J+ZrVAKRmZrHn\n0cd3+DiZ+QUcfuFlLJ4xjVE/Oo1oSjpvzlnHTnlpXLhHIQNSFG1oIDBgIIHBg4nV1ZG2x+5ofT1k\nZlJXXc3Czz5l2dxZHHDqWRQNGIQ3joFyJTUhjnn4U4INEXpkpfDutQfTI9s+5Jtt1PjKlxmfA107\nyn134EERiQFhnOflOcBrIuIDpgF/drf9DfBXEbmbjYPnP4HX3QFt13bw/H8D/ikic4HpbKiF3lK7\nmqjqbBGZ6W6/AqeOuukiFtB3QKpKfTDY9L62qqJTx0nLzGKvY09i5BFH409NRVX4+xUHkBusoP6+\ne0CE6L3/R8Ubr1Pxyt9BhFiwmh633gpA5bo1TH72SQCWzZnJuEefIjOv5bnt9eEoXo/g93oorqon\n2ODkll9f3UBdONqp9huz1TjBu8umqanqB8AHLazau4VtpwBDW1j+HbBHs0VTNlnfaoIHVS0BxrSw\namlL7VLVw5u9vri145otY9PWdkBpmVmc/IvbyevdhwF77M0eY4/r9LG8Ph8p6Rl4PF68Xg87Z3ho\nePB31EyZQs2nnxKcMoXwipWI389Oj/+RjNFjqJ83j0hFBbHYxl32rVlZXsuNr85i/MT5lFQ30Ds3\njV17Oz2FBw8pIDPFPpcaY4z9JdwBef1+eg8dztnj78fj85GWueVzucPRKGU1YQKhMHg2fE4Mffc9\nPW65mcp/vkvNZ59R/jfnJqXoxhvJGXskB595PisWfsOY088ltYV2lAQbuPyF6SxY4+SAV5TfnDyS\nCeP2JxSJker3UJAZ//N3Y0z8RGR34MVNFjeo6gHd0R7TNgvoOyiv10dGbtfNA19WWsvJj08lO83H\nx7/+NfgD4BFiZ55Lfc8i8s8/j1U3/Lxp+7oZM4hVV9G3uJhhJ55I9i7D8DTLMqcxxakzoFTVRZqW\nl9eEiUSVoiwL4sYkmqrOBfbq7naY+FiXu+kSk+Y5JVbrwzGmVXv5x9iL+fvhF3HyywsJhmL4iooo\nvO46xO9H0tLIu+An1HzxJdVvv0PdR5M3mh9TVx1i2vtLmfzCtwQalL9csC99c9MY0TuLX50wgrRA\ny+lljTFmR2Z36KZLHDm8B49O/o7KujC9c1J5fV4Ja6vqGTUwj1S/F/F6Sd93HwZP/ghw6qqjSvro\n0RT+7Cqk2d35DzPWM+3dJQBUrK3hhKv34K2rD8QjQqF1rxtjTIssoJsusXNRBp/ecgR1oSiFGSlM\nvOYgakNRMlN8TUHYk5KCp0ePpn36PfUX8Hjw5eZudKxQw4ZR65FQDEHoYV3sxhjTJgvoZovUh6N4\nREj1e+mdsyF/ezbtV2trrfzq8NG9KVsVpLq8gcPOHUZaVscrvxljzI7GAnqSi8aUkmAD4WiMrBQ/\nOelbHhwr68JU1YXxiPDunNUsK63h+qOG0rOLkrukZwc47LxhRCNKaoYFc2O2hIiMp1kRli4+9lJg\nlDsvfZsjIkU4ue4DwHWb5pYXkWeAh1T1m+5oX1ezgJ7kVpY7o88r68L84pihXHLgIDJTO//PXhuK\n8PevlvO7f31Lis/D0xeO4h/TVpD26WJ+eujOXZaxzZ/iw2+97CZJ7D5h983qoc+9aG5310PvViLi\nU9VI+1tukbHA3JbqsYuIN9nqtNso9yT30YL1VNaFAXh+6lJqw1v2/6emIcorXzk1JRoiMT5euJ5h\nvbJQVd6ds5qGSMeztpXXhPj8h1K+XFxKRW1oi9rXlmik9eQ1xiSKG8w3q4fuLu+UVuqhb1b3vNku\ne4rI5yLyvYhc3sZxe4vIp26N9HmNddLbqWF+bbO66MPd7fd3zzfTra8+zF1+sYhMFJH/4JROba2u\n+kARWSAiT7vn/LeIpNEKEblcRKa5P483RCRdRPYCHgBOca8nTUSCIvIHEZkNjNmkTvtxbjtmi8jk\ntq5jW2UBPckdOLgAv9eZFHZVpzapAAAgAElEQVTkiB6k+jaMJo9UVBAuLiZSVh738dIDXn60Zx8A\nfB5h7PAe7FyUwQm796Y2FMXn6ViRlHAkxotfLOPcp7/g7Ke+4NXpK4i2kTUuXnWhKGU1IcLRKOFQ\nlFULy/nouW9YMqeEUF2ibwqM2Uhb9dA7q7Hu+J6qOhKY1M72ewBH4qRrvdMtotKS84APVHUvYE9g\nlrv8V6o6yj3OYSLSPGVsiaruAzyJU0kNnFzth6jq3sCdbHyt+wBnqOphbKirvg9wBE7p1cY/IrsA\nT6jqbkAFGxeW2dSbqrqfqu4JLAAuVdVZ7rn/oap7qWodkAF86f7c/te4s9s1/zRwunuMM+O4jm2O\ndblv56pLi1k+bw69hgwlp6gHvsDG/dQDC9L59OYjqKwP0yMrhew055l0pKyc9b9/kMo33yL9oIPo\n+8D9+AoK2j1fRoqPSw8exGn79CXV58Xv9ZDi97C2sp7zDhiA19Oxz4gNkSjTl5Y1vZ+2tJyfHDCA\n9JTOf9Ysrwnx1/8t5tPvS7j2yF0Y3SuHiY/OIhZTFs1YzwX3HEggzX71zVaT8HroqjqlnYqD77gB\nrU5EPgb2B95uYbtpwLMi4sepjd4Y0NuqYf6m+/1r4DT3dQ4wQUR2ARQ2GiX7oao2/qdvra46OPXd\nG8//NTCwjesbKSL3ALlAJi3nuQeIAm+0sHw08KmqLgFo1r62rmObY3/VtmPBinJevuMmgmWleLw+\nLn30KbKLemy0TVrAR1rAR2827q2K1QSpfPMtAGqnTiVSWhpXQAfITQ+Qmx5oel+4BVPKMlJ83HjM\nML5eVo5HhOvH7kL6FuZmX1lex+Mf/wDAlS99zdc3HkFM1VmpThY6Y7aihNdDd7uI26p7vukvfYv/\nCVT1Uze4ngg8LyIP4RRtaauGeWMN9SgbYsrdwMeqeqqIDGTjKm81zV63WFd9k+M2HrvVLnfgeeDH\nbjW3i4HDW9muXlU78lywrevY5liX+3YsFokQLCt1Xkcj1FTE33Uuqal4Cwud12lpeDeZC761iAi7\n9cni45sP5z83HcbwXlueVz4tsOHXOtXnQf3CMZfuRp9dcjnsvGGkZtjnWLNV3Y5T/7y5rqiHXquq\nLwEP4nRjL8Wpew6bd0+fIiKpIlKAE+ymtXLcAcA6VX0aeMY9bks1zNuTA6xyX1/cznab1VXvhCxg\njduzcH4n9v8COFREBgGISOOc2nivY5uQ0L9sIpKL80sxEucT4ThgIfAPnO6TpcBZqhp/JDJNAmlp\njD79HKZNfIN+u+1BTo9ece/rKyxk0GuvUTd7NqkjRkA0SqSiYrMkL1uD3+ulR1bXpXMtykrlLz/Z\nl8nfruOSgwaRmRkge+8i+o3Ix5/ixeuzz7Fm65l70dyXd5+wO3TtKPeW6o6n0XLdc3C6xz8GCoG7\nVXV1K8c9HLhZRMJAELhQVZd0oob5Azhd1XcA77WxXWt11Tvq18CXQLH7vUN3Bqpa7D5SeFNEPMB6\n4Gjiv45tgqgmrvtRRCYAU1T1GREJ4AwEuR0oU9X7ROQ2IE9Vb23rOKNGjdLp06cnrJ3bs4baGsKh\nEF6vl7Ss7A7vH1q+nKXnn0+0uIT8yy+n8KdX4M3MRGMxwmvWUPO/qaQfsD+ejAyiJSV4CwrxFeRv\nlKp1WxWLKZ4ODtIzpg32y2S2aQm7VRGRHOBQ4K8AqhpS1QrgFGCCu9kE4MeJasOOICU9g8zcvE4F\nc4CqSZOIFjs5ISrfegutqwMgUlLC0jPOZO1ddxFetpwV4y5lyamnseSUU4iUlsZ17EhlJZHiYqKV\nlZuti8aUdVX1LCutobSmoYW9O682FGF9VX3TdL3tVW1lBTXlZUTD2/d1GGO2jkT2PQ7C6f54zp3D\n94yIZAA9VXWNu81aNoxoNAkSjcUIR1ueCpZ52GFIwBngln3iCUiqMx5Fw2Gi5c6TEE96Og3ff+8c\nq7ycyPr17Z4zUlbGurvvYdGRYyl+4k9EgtU07w1aW1nPMQ9/ymEPfsI97y7osvnnNQ0R3p+7huMe\nncI1L8+gpLprPyxsLdWlJbz+f7/mhVuvY82ihUSjNtXOdB0R2d2dm93868vubld7ROSJFtp9SXe3\na1uRyIDuwxlQ8aQ7h68GuK35BtpY8LoFInKFm8hgenFxcQKbmdxKgw08+MFCbn59Nqsr6jZbHxg4\nkMEf/pudJ/2LwiuvwpvlPHryZmSQf9FF4PMRC4fIOOggZ/tBg/D3av9ZfbSykqp338WTlUXszOP5\n/fwneHzW45TVO7NBZq0ob7qDfmfWKkKtfODoqGBDhFten0NZTYipP5Tyv0XbZEbKds2ZPIniZUuo\nrazgw6cepz5Y3d1NMklEVee6c7Obfx3Q3e1qj6pe3UK7n+vudm0rEjkobiWwUlUbP/W9jhPQ14lI\nb1VdIyK9cQYfbEZVnwKeAucZegLbmdRmrqhg7qpKpi4qZVV5HU9dMIq8jA1TzjwpKXh6bt5J4s3N\npfDqn5Ezbhxzi+tJvfEOetwSIzsrDUlra/aIe9z0dDwZ6aSedwa/XzGBD1c4ZVOjsSjX7XMde+6U\nS1aKj+qGCCeM7I2/g/PXWz2vQGFmCuvdO/O+ee23dVtU2G/DYN+8Pn3xerfp6a/GmG1AwgK6qq4V\nkRUiMkxVF+Lk1P3G/boIuM/9/k6i2rAjiFZXE1q2jPDKlaTvt9/Gc8nLl3HE0ifZb7cRfLXX/jzx\nZRm6SYdIXXUVaxZ9RzQUou+I3UjPzmla583Oplj9fFNVS79MH/0rVrDm1gdI3XVXetz0i1arpYFT\nSW3Q229TVVNGcMUTTcurQlWoKr1yUvnoF4dR0xAhJ82/0YeMLVGYmcLrVx3I379azt79cxnaY8un\nwXWH/iP34rRfjqe6rIzB++5PamZmdzfJGLONS/Qo971wpq0FgMXAJTjd/K/iTN9YhjNtrazVg2Cj\n3NtSM20ayy+4EID00aPp+/BD+PLyILgenjkKKpYBUP3j5wkOOm6jEqeRUIgv3vw7X771KgDDDz6M\nseOuIjXDCR6qyp8++YEHP1jIez8ZgfeCM5oGzfV97FGyjzkmrjauql7FXZ/dRZovjTvH3ElRelGH\nrzMajVFbGaJ8TQ0FfTPJyLXKLWars1HuZpuW0Hnobtq+US2sGpvI8+5I6ufN3/B6wQI04g6eUoXg\nuqZ1mXVryGoWzDUaJRIOs+KbuU3LVn37zUYjqiMxZdH6IAChSIzMzEwibkD3NruTb0/frL48dPhD\neMRDZqD9O81oVRXa0AA+n/PhBKivDvPKb78kXB8lMy+FM24bRUaOBXVjjGkU14NLESkSkdtF5CkR\nebbxK9GNM+3LPu5Y/DvtBF4vPW+7FW9j12xqFpz2NGT2gP4HIrs7iaOi1dVUT57Mml/9itiiRRx2\n7sXg5oDe5/hTqFy/jrJVKwk11OP3evj5UUPZpUcmf55bTp/nnyfn9NPpdffdpAzvWNGh7JTsuIJ5\npKKC4sef4PsjjmTVTTc3TZGrC4YI1zsZG4PlDVY5zZgkJyK5IvKzTu7bVHmuC9rxWxE5qiuOlWhx\ndbmLyGc4+Xy/xsmpC4CqtpTkvstZl3vbIiUlaCyGJzMTb3qzok7heqivBK8P0p1n6w1LlrD4+BMA\nkECAnf/9AfU+D7FIlGVzZ/LRX59ERLj4D38iv89OACxdvprSVStZ9eXH5PXoyX4nn05qZmKeTYdW\nruSHo45uej/gby+Rvu++1FaFmPTUXNYsqmTY6F4cdMYQ0jK75rm7MXHqdJf7guEjNquHPuLbBd1S\nD122Th3yLebmTn/XrSa36bo2r8HNCT9KVbfPaS6dFG+Xe3p72dxM9/EVtvJB1J/qfLliMSUaDDa9\n11AIolGye/WiurSYj575k7NcldKVK5oCeo/cDFZ+thCNRhh5xNGkZCRugJYEAs5Ut+pq8HjwFTnP\n29OzAxz/092JRhWfX0jtokF0xiSaG8yfZkMJ1QHA0wuGj2BLgrqI/AS4DmeM0pfAz4BKVc10158B\nnKSqF7sFVeqBvYGpbmWyZ4GdcfLKX6Gqc0RkPDAYGIKTJvYBN687InIzcBaQArylqne10bYLcQq6\nKDBHVS9wS5T+mQ1V5m5Q1anuOfu7bekPPKKqj+EMnB4sIrOAD3FSr94NlAPDgaEi8jbQD6egy6Pu\n7Kh4fnab7SciXpxEaKPcdj+rqg+7P7t3VfV1EbkT+BFOmt3PgJ9qIgeidVC8Af1dETlBVd9PaGtM\nwlTUhnh3zhr2yc0h97zzqZ3yKfkXXIA328kw50tJZc+jT2D2h++T17sPvXfZ0KWenp3DgWeeRzQS\nwZ+S2OfWvoICBr72KtUffUTGAQfgbTZqPy3LgrjZLrVVD71TAV1ERgBnAwe5hU3+RPtFSXYCDlTV\nqIj8EZipqj8WkSOBF4C93O32wCknmgHMFJH3cOpx7IJTdlWAiSJyqKp+2kLbdgPucM9V0qzQyaPA\nw6r6PxHpj1PidIS7bjhOPfQsYKGIPIkzzXmkW5sdETkcJ7fJyMYyp8A4VS0TkTRgmoi8oarxpLLc\nbD+c+iJ9G3sE3Fokm3pcVX/rrn8ROAn4Zxzn2yriDejXA7eLSANOIQDByQvTuXyjZqtbUVbHHW/P\nI+D1cOPBJ3PB5ZeTlpuNx51TnpaZxUHnXMABp56Fx+slIzdvo/09Xi+eLsjfXhJs4JvVVeyUl0bP\n7FQyNimVKl4vKQMHknLZZVt8LmO2EYmohz4Wp7LaNLcOehqt5PRo5rVmpUMPxq3Ipqr/EZECEWn8\ne95S7fSDgWOAme42mTgBfrOADhzpnqvEPX7jLKajgF2b1W3PFpHG7r73VLUBaBCR9bSeQfSrZsEc\n4DoROdV93c9tUzwBvaX9FgI7ux923gP+3cJ+R4jILTgfyPKB+WxvAV1Vt8/JvKZJJOYMIgtFYzw8\ndRWnHjSUjLSNSyanZWZBFzwbj4XDaF0dnrQ0xL8hIUppsIErX/qa6UvL8Qi8c83B7N43/tHyxmyn\nurweOs5N1QRV/eVGC0V+0eztpjXRa4hPS7XTBfidqv6lQ63cmAcYrar1zRe6AX7T2uetxaama3Dv\n2I8CxqhqrYh8wubXvJnW9nNrve8JHAtcifN4YVyz/VKBP+E8m1/hPipo93xbU9zpuUQkT0T2F5FD\nG78S2TDTtQYWZnDrccM4ZJdCXrr0APLSE9N9Ha2qpmriRFZec41T+KXZM/toTJmxzMkPH1P4elmb\n6QeMSRZdXg8dmAycISI9wKnf3VjLXERGuCVAT21j/ym4XfRugCtR1Sp3XUu10z8AxjXeUYtI38Zz\nt+A/wJnu/s1ri/8buLZxIzdPSVuqabsMag5Q7gbl4TiPCeLR4n7uqHiPO9j7Dpzu/eYag3eJ+3M4\nI87zbTVx3aGLyGU43e47AbNwfgCf43StmO1AXnqASw/emZ+MHkBGwBd3WdHaygrmfvwhgbR0ho05\neKNMci2JVlaw5ld3OPt+NY3Bkyc3TaVL9Xv56aE78+R/F1OUmcJRI6wuj0l+I75d8PKC4SOgC0e5\nq+o3bo3uf7vBOwxcjfPc+V2cwljTcbrGWzIeeFZE5uB8uLio2bqWaqevdp/bf+7eUQeBn9BCN7+q\nzheR/wP+KyJRnG76i3EG8D3hntOH011/ZRvXWCoiU0VkHvAvNq9HPgm4UkQW4HSXf9HaseLcry9O\nMbHGG92Nej9UtUJEngbm4RQWmxbn+baaeKetzQX2A75Q1b3cTzX3quppiW4g2LS1RrFYlLoqJ3Vq\namYWPn9i83uH6uv56JknWDDlYwAOPOt8Rp92TmMXWcv7NJ92JsKQyR/h79OnaX1VXZjq+gh+r1CU\nldLmsYzZxiT9L6vbjRxU1d93d1tMx8Xb5V7f+NxDRFJU9VugY5lFzBZRVUpXLGfCTVfz7A0/ZfXC\nBUQjiZ1KGotGCJZtmMZZtX49Gms7oYs3J4e+Dz9M5uGHs9Pjj+PJyaEuFGHuqkoemPQt366tJjvN\nR4/sVAvmxhjTheK9Q38LJw/7DTjd7OWAX1VPSGzzHHaHDvXBIO/8/h5WLpgHQHZRT8675/ebjUaP\n71hhotEY/hQvgdS2n7qUrV7Je48+gC8lhROvu4Xswo3zsFfWhmmIRvF7PE0FVjQWI1Zfjyc1FfF4\nWFley+EPfkIk5vyuTbrhEIb3sgkSZrtjn0CbcZ+RT25h1dg4p44l1LbevkSId5R74+CK8e40hhyc\n5xBmK/H4vGTkbQjeGbl5iMdDTWU50bAzPzwtq/0gWVcdYvKEBaxdXMl+Jw1i+JhepKS13nWf17sv\np9/+W/B4SG92/NJgA9UNEZ793xJe+Wo5Rw7vwb2n7k5BZgri8WyUsW5NRX1TMAf4YX3QArox2zk3\nKLY3sK3bbOvtS4S4i7OIyD44cxEVmKqqoYS1ymwmkJrGERddQWpGFqGGeg4550JUlVfH/5Ky1SsZ\nOvpgxl56VbuD1opXVLNsnvPh9H+vfs/gvYuaAnp5TYiGSAy/VyjIdBLIiAjpORvnVygNNnDNyzO4\n4eihvPC5U83tg/nruG7sLk37NTewMIPBRZn8UBykd04q+w7oeK+CMcaYtsU7yv1O4EzgTXfRcyLy\nmqrek7CWmc1k5OZx5CU/JVRfRywWZe3331G2eiUA333xPw49/xJoJ6Bn5m2YNpmeHUDc0e5lNSHG\nT5zPxNmrOWBQPk+cvw+FLQRngJpQlM8Xl/ELEbLTfFTVOYPc8luZCleUlcLfrxhNTUOE9ICXHtnb\n1NRNY4xJCvHeoZ8P7NlsYNx9ONPXLKBvZfU1QT554Rl++PpLzrrzd3i8XmLRKJn5BXjjGPWekZvC\naTftw+pFFewyqifp2U4QrqoLM3H2agC+XFJGaTDUakBP8XnICHh58IOFPHvRfny9rJzDhxU1PUNv\nSVFWCkVZVu7UGGMSJd5R7qvZOCNOCrCq65tj2hOqrWXBlI8J1dYy/Z9vcsEDf+TE62/hvHv+QGZe\nfrv7p6T56D0kl32PG0h2YRoiQnF1A8XVDfTOcf6Js1J85Ka3/uEgPyPAq1eOIS3g5e1Zqzhr1E4M\n65VNqn/LU8MaY7qOiJwsIre1si7YyvLn3cIuiMgnIjIqkW1sjYjsJSIJH3gtIrc3ez3Qnfe+pccs\nEpEvRWSmiBzSwvpnRGTXLT3PpuK9Q68E5ovIhzjP0I8GvhKRxwBU9bqubphpmc8d/FZXXcXiGdM4\n7MLLGH7gliXti0oN+VkhXrvyAOavqmZor2wK2rjb9ns97NYnh8fP2wefRyyQG7ONUtWJwMTubkcn\n7YVT+SwhRcHEmTcrOBn77u3iw48F5qrqZkUpRMTb0vKuEG9Af8v9avRJ1zfFxCM9J4ef/O4R1i7+\nnp47D4lrZHtbKhoq+Ou8J/nHwn8wpucB3LPrzWQRwOfNaHffzJS4x1Qas0N74sr/bFYP/eo/H7lF\n9dDFqRc+CSfT2YE4mcueA34D9MB5VLorTu7xa0RkEE51t0zgnWbHEeCPODdqK4AWBzyLyDHusVOA\nH4BLVLW1u/x9gYfcc5UAF6vqGhG5HLgCp+TrIuACNwXrmcBdOHncK3Fyrf8WSBORg3HyyP+jhfOM\np+XSq4jIjWzIxf6Mqj7i/sw+wCk3uy/wlXuOWTiFVn4FeN2McAfi9ESf4haraek6N7seYCjwgHvc\nUcAYnMx9f3Gv62pxytfepKrTReQ4nN8NL04K3rEisj9OdbpUoM79WS9sqQ0btaejpVxFJA/op6pz\nOrTjFrB56ImzOriaY984tun9ywc8waByP5ljxnRjq4zZJnVqHrobzJvXQwcn3erlWxLU3eC0CKfG\n+XycgD4buBQ4GSd3yNtsCOgTgddV9QURuRq4X1UzReQ04CrgOJwqZ98Al7n1vz/BqWu+FGdQ9PGq\nWiMitwIpjaVEN2mXH/gvTiAsFpGzgWNVdZyIFDTOAXeD2jpV/aObjfQ4VV0lIrlumtWLG9vexs9g\nPE4VuKbSq0AvnBKwz+OkKRecAP4TnBwqi3FKu37hHiPYrIZ84890lKrOEpFXgYmq+lIr52/tejZq\nu4gocLaqvuq+b/y5LgNmAIeq6hIRyXfLumYDtaoaEZGjgKtU9fTWfg6N4h3l/gnOL4gP+BpYLyJT\nVfXGePY32y6/x0/P9J6sq11HqjeV/LQCvNH29zPGxK3L66E3s0RV5wKIyHxgsqqqGyAHbrLtQbgl\nU4EXgfvd14cCr7ilVVeLyH9aOM9onLv9qW6GxwBOPY+WDMOpn/6hu60XWOOuG+kGvlycu/cP3OVT\ngefdAPomHdNS6dWDgbdUtQZARN4EDsF5/LCsMZi3YomqznJff83mP8fmWrueTUWBN1pYPhr4tLEk\nbLNSsznABBHZBecxd1x5vuPtM81R1Sq3SMsLqnqXm2DfbOeK0ov42wl/Y866WQxNG0Dm2iCBnXfp\n7mYZk0wSUQ+9UfOyo7Fm72O0/Pe9Y12yGwjwoaqeG+e281W1pW6+54Efq+ps9y72cABVvVJEDgBO\nBL52u+zjFW/p1UbtlZHd9HhpbWz7PC1cTwvqm9Wij8fdwMeqeqrba/BJPDvFO8rdJyK9cerDvtuB\nRpktVFsVorqsntqqxOXx6ZnRk6N3PpYBvYeTs/covDndU6O8Lhiiujyx12pMN2it7vmW1EPvjKnA\nOe7r85st/xQ4W0S87t/5I1rY9wvgIBEZAiAiGSIytJXzLASKRGSMu61fRHZz12UBa9xu+aY2iMhg\nVf1SVe/Eed7cj/bLp7ZlCvBjEUkXkQycUrJTWtk27LanM1q8ng74AjjUHd/QvNRsDhtmkl0c78Hi\nDei/xelK+EFVp4nIzsD38Z7EQFVDFSW1JVQ2VMa9T21ViElPz+OF2z/jX3+Zm9SBri4YYso/vueF\nX37GPx+bldTXanY4iaiH3hnX4wzImotTKrTRWzh/z78BXqCFrnRVLcYJLK+4vbOfA8NbOombRfQM\n4H4RmY2Ts+RAd/WvcZ5nTwW+bbbbgyIy150y9hnOWICPgV1FZJb7HD5uqjoD5+75K/d8z6jqzFY2\nfwqYIyJ/68g5XK1dT7ztLMYZVPem+7NqHPj3APA7EZlJRzK6dnRQXHfY3gfFldeX89jMx3hn0Tsc\n3f9obj3gVvJT258zXrG+lr/dueFRz/m/HU1uj00fxbWtPlJPMBQk1ZdKZqC10sjdr6q0jhd/teHv\nyOk370Ovwblt7GHMVtfp4iyJGOVuzKbiHRQ3FHgS6KmqI0VkD+BkS/0an2A4yOvfvQ7A+0vf56q9\nrooroHu99Zx6484ofqa/vx5/ysbzvWMxxeNp/W9MMBTkg6Uf8My8ZxjTewzX7n0teanbZh51n89D\nVkEq1aX1+AIeMvMtPaxJHm7wtgBuEireW/mngZtx5tGhqnNE5GUs9WtcUrwpZAeyqQpVkeZLI93f\n/l12TUU5r99zO2WrV5KZV8C59/yhKU1rQ12Y1d9V8sOs9exx+E4U9M3A69s8uUswHOQ3n/8GRXmt\n+jVOGXJKlwX02qoQsWgMX8BLakZnHz9tkJ6Twum37EvpyiB5vTJIy9ryYxpjEkuc0tqDNll8q6q2\nNtq7s+e5BOeRQXNTVfXqrjxPG+d/AmeWQHOPqupzW+P88Yo3oKer6lfuFIRGkQS0JykVpBbw6o9e\nZca6GexVtBf5Ke3fnVeVFDcVXgmWl7Ju8fdkFxYCUFcd5v0nnUkGP0xfz0/uHkNG7uYB3SMe0v3p\n1ISdQZ3Zga4pWVpT2cDbD82kYl0tex3Vj32PH9glQT0jJ4WMHMv3bsz2ollp7USf5zmcpDndYmt9\ncNhS8Qb0EhEZjDvlwc3zu6btXUwjr8dL38y+9M3s2/7Grsy8fHz+AJFwCBEPOT16Urx8Kbk9ehEN\nx5q2i0ZitDYOIj81n5dOeInXv3udQ/oeQmFaYYfaraqEV6yg4q23ydhvFKm77443K4viZdVUrHPG\n+Mz6aAV7HdUVs2+MMcZsiXgD+tU4IwGHi8gqYAmdG6Jv4pSWncMF9z/K4plfU9h/ADMn/ZP5n0zm\n4oeeJCO3iP1PHsSyOaXsfUx/Aukt/zP6PD6G5A7htv1brM3QrmhJCUvPPY9oaSmlT8Kgd97GO2wY\neb0z8PiEWEQp7JeJeDs9VsgYY0wXaTOgi8j1qvoo0FtVj3Ln83lUtXrrNG/H5fP7ye/bD28ghVd/\n80uqitcBUL56Jfl9+rL3Uf0ZeWhfAqk+vL54Zx92jKoSLS9veh8pKYVhkJEb4Py7x1BVFyYr0096\nVuuFXNo9RySC+Jxfw7L6MiYtmYSiHD/o+LgGDhpjjHG0Fwkucb//EUBVayyYJ0Y0Fm2x69wXCJDu\nJnop7DeAnoN3cZd7ScsMJCyYA3gyM+l93+/w9+1D9oknkDJsGDWVDYQjMZYE67n+nbk8MPl7ymoa\n2j/YJjQSoX7hQlb/8nYq3nqbmmA5j339GL/76nfc99V9/GH6H5qe/RtjjGlfe13uC0Tke6DPJqle\nBVBV3SNxTdtxrK9dz59n/5mC1ALOHXHuRnemGTm5nHrrXQSlnpKGEupSoqTFong9iS9Z6k1PJ/uY\nY8k88P/bu/P4qKrz8eOfZ2Yyk8meQNhBUBBBpSgRLaKAFESl4lZFtEK1WlutFa1f11a76M8uLq1b\nK264ouIOKCpCxQU1uKCAKJtsYcm+z2Rmzu+Pe7ORPZnJJMPzfr3yytxzz7335JLw3HvuuecZR1Bc\nrHpvLxuz1zPpt6OY8/inFJRXsfqHAsYOyWDG6NaPDwAIFBTwwwUXEiotpfiNN+h13BI2FW2qWb+5\naDP+oJ/EuJazviml2k5EzgC+M8asC9P+soCLopVOW0ROB0YaY+4UkUysWU3dwFXAjcAsY0xhNNrW\nWZoN6MaY80WkD9Yscad3TpO6j33l+1ifv56DUw8mMyETj7PtI7SLfcXc8sEtfJxjTaridXm5+MiL\n69WpiAvw63d+w3cF32z4OkIAACAASURBVJHqSeXl01+mV0KvsPwMLXHEe3DEeyjOKWPNMmvUfUle\nJd44JwVUAZDgbvriIlAVIhgI4o53Ue8tCWMI+Wrv7L2FlVybdS2XvXMZANdlXRe2UflKqUadgRX0\nwhLQjTHZQNRmANsv9/v++cibmvY1prQ4KM4Ysxv4USe0pVvJrchl9luz2V6yHY/TwxtnvEHfpL5t\n3k/QBCkP1M4KWewvblDHH/TzXcF3ABT5ithTtqfTAno1d7wTh1MIBQ0b39vO05ccy73LvueI/ilk\nHdT4s+6KUj9fvrONfdtKOXbGwfQckFTziMCZksrAhx5k3333k3BMFu4+fTg8JYnFZy4GINWT2im9\nEEp1hrvOm95gprhrn1/U0XzoF2Ldfbqxph/9DXA/cAxWQpGFxphb7bp3Yt2UBYC3sTKanQ5MEJFb\ngLONMZsaOUar8pcbY04UkYlYOb6ntyWft53U5Eys+cv7A08bY/5kr3sVa173eKz3vh+2yxvLIT4H\nyAIeoWE+8vVY6UxzReQirNSlBlhjjPl5689619bSoLgXjDHn2nP/1n3Ae8B3uQdCAbaXbAfAF/SR\nU5bTroCeHp/OHePv4LaPbyPNk8aFIy9sUCfeFc9JA0/ive3vMSR1SLuO01HxiXH87IYstq3LZ8jo\nnqT08HLXuT/C5RD2m5+gxo4NBXy+1Mo/sXtzERf8+bia98wd8R4SjzuO+COOwOHx4PBaCY0yEzI7\n5wdSqpPYwbxuPvSDgHl3nTed9gZ1ERkBnAccb4ypEpEHsd48utnOp+0Eltmzeu7ECpiH2alVq/ON\nvw4sMsYsbOZQLxtj5tnH/CtWrvX7gD9i5TjfKSKNzdH8LXBCnXzed1CburUxY7FSrpYDn4nIYvuO\n/2L75/Ha5S9hjf2aR50c4nV3ZOcx/yP185FXn7fDgVuw8qHn7r9td9fSHXr1zDzT27NzEdmKlTEn\nCASMMVn2CXweK8fsVuBcY0xBU/voqrwuL+cPP5/nNjzHyB4jOSjloHbva1DKIO6deC9OcZLobvjM\nOD0+nVvH3cr1getxO91tfp88HFxuJz0HJtNzYG3yo5bun03INPq5mrhcuNJ0vnYV8yKRD30yMAYr\nyIF1R74XOFdELsP6v70vVg7zdUAl8KiILKJtGTPbm7+8rfm83zHG5EFN7vLxWN33V4lI9eQ1A4Fh\nQCaN5xBvjZOAF40xue3Ytstr6Rl6jv39hw4cY1L1ybPdACyzBy7cYC9f34H9R0WqJ5UrjrqCX476\nJS5xkeHt2IVeiqf558Vd+RWuvIo8giZIgiuhXgKYgYdlcMSE/uzbVsK4s4aGZTa5SCsr8uErD+BJ\ncOmsdSpcIpEPXYD5xpgbawqsFJzvAMcYYwpE5Akg3r5LHot1EXAOcCVWYGuNJ2hf/vK25vPe/4rf\n2F34PwF+bHfzr8DqeldNaKnLvYSGJxpqu9zbM2ppBrVJ4Odj/UN3u4AOVlDvDvwVAXwVAQTwJMY1\nSPLSEXvK9jDnrTnsKN3BjWNvZMYhM2p6GbzJbsadNZRgVRC314XDGblX7MKh7pS2yRnxnH39GA3q\nKhy2YXWzN1beXsuA10TkHmPMXrvncxBQBhSJSG/gFGCFiCRhTd+9REQ+BDbb+2hNvvH9833vhNr8\n5cAnInIK1t1zXW3N5z3F/hkqsAbrXYz1PL3ADuaHAcfZdVcBD4rIkOou9zbcab8HvCIidxtj8tq4\nbZfX0h16e5PL1+wCeFtEDPBfe0BD7+o7f2A30LulnWyg9gogphhDKBgEwOF0QhPPojt2CENFVZCC\n3AoESHc7cMfR5ICzYChI0FjT9LvEhaOFgWm54mDL8X8G4HJx8IAzrn7fmsdpfXUDAa+LPRcMr1l+\n2OtqfSJiFfNWtH/Tm6j/DB06mA/dGLPOHsz2tog4gCqsGT2/wHp+vR2rWxysoPyaiMRj3YxdY5cv\nAOaJyFXAOY0NiqM23/c++3t1TPiH3Z0uWBcXXwET6mz3d6wu91uAxa34kT4FXgIGYA2Ky7bHbl0u\nIuuxwsAq+2ffZz9WeNn+2fcCU1pxDIwxa0XkduB/IhLEOl9zWrNtdxDRfOgi0t8eNNELqyvot8Dr\nxpi0OnUKjDENUoDZ/2CXAXhGjRpz3FdfRayd0RAMBKgoLqKsMB8MJKSmkZCWhtMVvm7pQChAMBCi\nOKcSv8+6cIhPiCM+U0j0NHxWb4yhwFfA5kLr73po+jDS3KnNXmiUV5WzLm8tmd7epLrTSXR7iXN2\nzzAYCoTI21WGvzJAnNtJzwFJOCI4cY/qXlZ0IB96JEa5x4rq0enVA9hU+0U0oNc7kMhtQClwKTDR\nGJMjIn2BFcaY4c1tm5WVZbKzo/Z6Y9iVFRWy8K+3kLtta73ytN59mfnnv5GYFp7n5Ys2LeKbPev4\n8Z7T+GapNXXs0Wf3Z0u/zzl3xM9wOeoH3hJ/CVcvv5pPd38KwIQBE/j7iX9vNt1rWVUZBeWVLP26\ngMc/3MbEQzO5ZupwMhLbPx1sNJUX+6nyBYnzOGvS1Spl06QFEaABPXwidvshIokiklz9GZgKfIP1\n4v9su9ps4LVItaErMsaw8dOPGwRzgMI9OaxZtpRQsOOZaUMmxGd7PmPBxmfxj9zDT+Yewhk3jCK3\n/yay+o1pEMwB4p3xnDrk1Jrl0w4+jXhX82NQEuMScZgE/rJoAzsKKnj6k23kFFV0uP3RkpDiJjXT\nq8FcHVBE5AER+XK/r1+0vGWbjnFyI8d4xRjzhAbz8Ihk32hvrMEH1cd51hjzloh8BrwgIpcAPwDn\nRrANXU5laQnfrHinyfXrVy5n1ORpJKY1eApRT0VJMTu/XYu/ooLBo8eQkFJ/gJ5DHMweOZt3f3iX\n338yl7sm3MVRmUdxHMfUGzFfFQxRVVlJRUEue7duZtKoExl71hIEIdWTikNavuZzOoRkj4sSXwCH\nQEp81x/NrpSq1Rn5vo0xS6l97U1FQMQCujFmM43MMGe/azg5UsftFpp5ymGMdRdfnLsXEQfxSUnE\neRreJa9fuZzl8+cBMGryNCZe9Evi4uvXOyjlIF4941WMMSTFJTXoOs8r9fHw+5u5YGQiC2+8EhMK\nkdq7D+f/+Z8ktuH98B6Jbl654nhe/WInE4dndtvudqWU6s665+ilbiw+MYmREyaze9N3ja4f97NZ\nbF+7hiX334XD4eDsm/7MoCPqXxeFQiH2/rClZjlvxzYCgSri9ntF0+lwkulteua1lz7fyRtf7WJK\nWhImFAKgaM9uTCjYpp/J5XQwtFcSvz+52aEQSimlIkiH8HYycTg49Nhx9BjQcE6JlMzeDBhxBF+9\n+2bNK21rli0lGKiqV8/hcHDcWTPJ6DeApIweTPrFZcQntD0rWcgYdhdX4u7Vn/4jjsDpcnHCrDkN\n7vSVUkp1fZ02yr0jYm2UO0BZYQHrP1jB2hXvEgqFGDF+IkdMmgLeOPbl7WLzyg9Z88brzLj2Zg4+\n+pgm94ExeFNSrffY2yiv1Me9735Pia+KP0w+iHiX4HK78bTj4kCpA8ABNcrdnuFtkTHmiBbqjDPG\nPGsvRzWF6oFOA3oUhYJBKkpLwIA3OYniqlKeXPckb2x+g2kHnczsw35OsisZj7fp18Zaq9BXyPcF\n31PoK2RM7zE1A+N8VUECIUOip/7Tl8LKQlblrGJD/gbOGHYGA5IGtDr7mQkZECshQrC4mEB+Pqai\nAlefPrjSmx/sp1QXpgG9YZ2J2BnWOqlZqhna5R5FDqeTxNQ0EtPScDhdFPmLmPf1PHaX7eaJdfMp\nDpWFJZgDvLftPS5eejHXrLiGv3/6d0r9pQB44pwNgjnAe9vf47r3r+ORbx5h1uJZ5FXmteo4ZYU+\nVr7wHR+/uonKEh8ly1ewedopbDnzLPbdcy/B4obpYZVSbScig0XkWxF5RkTWi8hCEUkQkcki8oWI\nfC0ij4mIx66/VUT+bpd/KiJD7fInROScOvstbeJYK0Xkc/trnL3qTuAE+xW0uSIy0U4Ag4hkiMir\nIrJGRFaJlfkNEbnNbtcKEdlsz1SnwkADehficXpwinUX7BAHXqeVUpTSvVC0A8pym9m6acFQkNW7\nV9csr81biy/oa7b+53s+r1ku9hdTGahs8TiVpVW88/g6vl6xky+WbiNn7W6KX6udZqD4zTcJlLe8\nH6VUqw0HHjTGjACKsaZ1fQI4zxhzJNbA51/XqV9kl98P3NuG4+wFphhjjsZK2/pvu/wGYKUxZrQx\n5p79tvkT8IWdZvsm4Mk66w4DTsZKm3qrPVe86iAN6F1IqjuVR6Y+woxDZvDwlIet5C/FOfD4KXDP\n4bDw4nYFdafDycVHXkyKOwWXuJg7Zm69rGiN1Z952EziHNbf2Kieo0iMa/m5eihkKCusvVDYt7eK\npKlTa5a9J0ygsunrCKVU2203xlTP2f401ivBW4wx1a/RzAdOrFP/uTrff9yG48Rhzfv+NfAiVlrW\nlowHngIwxrwH9BCR6oRei40xPjsT515akdNDtUxfW+tCvHFesvpkcXTvo2sndPniGcjbaH3e8j8o\n2AKJbc+HPjhlMK/OeBWDIdmdjMfZfBaxYWnDePOsNympKiHdk04Pb48Wj+FJdDHpwsNY/OAaXHEO\nDh7ThwT3VPoMHUmwpBRfSl8qiad75KhTqlvYfxBUIdDcH6tp5HMA++bOTnbS2EQSc4E9WHOLOLDy\nq3dE3Uv7IBqLwkLv0LugerOzpfSrv7KFvOsh+31y67PBV15FoCpovZOekEmvhF54Xd4W2+Bxeeid\n2JuhaUNbFcwBnE4HvYckM+u2Yzn35mPI6JtIXHoqgT6D+WZXBsU+N6k9Wz62UqrVBolI9Z32LCAb\nGFz9fBz4OfC/OvXPq/P9Y/vzVqA6n/npQGPd36lAjjEmZO+zeoRscylYV2KlXK0ePJdrjNFBNBGk\nV0Vd3aAfw+TbYMsKOHo2JDY9UUxOaQ7z1sxjcOpgph/8U8q2Gla/uZXeQ1IYPWUQ3qTIz+DmdDlJ\nTK0zGt4hZA5I5oSZw3B28XzoSnVDG4ArROQxYB1wFVaa0RdFxAV8BvynTv10EVmDdYd8vl02Dyu9\n6lfAW1g51ff3IPCSiFy0X501QNDe9gmsdKTVbgMes49XTm0ODxUh+tpaFxXw+yjI2cUPX3/FiHHH\n442Pw+FJhv3eNy+oLGB7yXZ6xPfg6hVX823+twDcOf5OfK/0IWdjEQA/uXgEmaM8BEIB0jxpuJ3d\nY3rWyrIqcjYWsm97KSPG9SU5Qye9UVHTpV5ba81rZfvV34qV1ax9o2tVl6e3TF1URUkJT984l/89\n9QiPX3sl5b5Qg2Be4i/hruy7uGDJBXy+93PKqmovrIv9JTgctf//lJf5uG7FdZz68ql8k/sNIROq\nt69QyLC3pJJ9JZUEQ13nIi9vRylLHvqazxZt4Y1/f0l5sT/aTVJKqS5Ju9y7gEAwQFmgDK/LW3Pn\n7Csvq0mj6isvazD9K0BloJJVOasAWPjdQv7f+P/HP7L/wcDkgUw5aAo5Yyoo2F1OzwFJ9DkygavL\nfk95oIzFmxczLH0Yye7aR18b95Uy+7FPMQbmXzyW4X2aeizWuUoLK+t89tEdepSU6gzGmK1Aq+7O\n7fqDI9YY1SVoQI+ysqoyVu5YybPfPsu0wdOYfvB0UjwpJKSmccSkqWzKXsXok6c3OsFMUlwSvzzy\nl9z+ye1sLtpMZkIm90++nzhHHIlxiaQeF+Tg0ZngCLHt+zw+fHwPCcluLr3qN/VGuZf6qrhjyXpy\niqzgeceS9Tww6yiSukAa1IEjenDQkT3I31XGhPOH4/Hqr6xSSjVGn6FH2e6y3UxdOBVjv0Gy6MxF\nHJRyEACVZaUE/H7iPPF4EhqfMa7UX0ppVSlOcdLD2wOHOMivzGdt7lp6JfSiX2I/nJVuXvrHaopz\nrYD9o58MZPw5w2r24Q+E+OfSDTy8cjMAl54whOtOHo7b1fb54SOhsqyKUCCEJ8GFM65rtEkdkLrU\nM3Sl9qe3O1EmCE6Hk0AogCC4HLX/JPGJSdDCfC5J7qR6k8QU+Yq47cPbWL5jOQBPnfIUgz2HkNE/\nsSag9xmSUm8fbpeDyycezIh+yWBgwvBeXSaYA8QnRr+nQCmlujoN6FGW5knjkamP8PyG5zllyCmk\nujs27Yo/6GdN7pqa5WR3Mr/83y/4009vp/eRA+ndM4PMgSkNtstI9HDmUQM6dGyllFLRo6Pco8zj\n8jCm9xhuH387kwZOqne37Q/6KfM39kpo4wJVVXgqHfxr/N2kxKXQN7EvvqCPDQUbuHD5TP5RcAuu\nAX6941UqBojINBHZICIbReSGaLdHRZ/eoUdBMBQkvzIff8hPYlwiaZ60mnnTq+VX5vPo14+yuWgz\nv8/6PUNSh9SfQW4/FSXFfLl0MWvfX0b/4SN5c9br+D3Wc/m+iX3JKcshYALEOTWYK9XdiYgTeACY\nAuwAPhOR140x66LbMhVNGtCjIKcsh5mLZ1LkK2LWYbO4YvQVpHjqd4N/sPMDnlxnJSfaWryVp055\nip7e+nO4l/hLqAxUEu+KJ3/rZj568RkAivbsJrlHT8b9bBYOp4tnT32W0qpSktxJDfahlOqWxgIb\njTGbAURkATADa7Y4dYDSgB5m/qAfYwweV9PJT1buWEmRz5rB7fkNz3PpqEsb1KlOo1r9WeoMsA34\nfRRUFPLUd0/z6qbXmDp4KhcNOLfe9nk7thMMBHA4XfRM6Imz0smK7SsA+HE/a+rnpLikZrOuVSss\n9+NwCCld4DU2pbqrrKwsF9ATyM3Ozg50cHf9ge11lncAx3Zwn6qb02foYZRXkcftq27nlg9vYU/Z\nnibrjekzBpdY11Jj+4yt+VzXuH7juHzU5fxk0E944KQHyIivTcpSkpdLXuFuHl/3BAW+Ap7f8DyB\nRCfeJGsyGHE4OPaMnxHnqZ0mddm2ZTzw5QMMShnE2a+fzZSFU3ht42uUV5U3+zNtyy/n8qdXc9Vz\nX7CnWHOZK9UeWVlZ44B9wBZgn72sVFjpHXqYBEIBHvrqIV7e+DIA5YFy/nbC3xq9Ax6YPJBFZy1i\nX/k+BiUPIi0+rd56f0UFbh9cMnwOoTihIlBBaVVpzcxue7duxtU/A6/LS0WgwppIxp3ERf98gIKc\nnaRm9sabUr8LP6c0h5E9RvLetvco9lsJj+Z9PY+TB59MQlzj77gXlvu5fuEaVm3OB+Cutzdw+5lH\nEqdJVpRqNfvOfDFQ/YceDyzOysrqmZ2dHWznbncCA+ssD7DL1AFMA3oYBUPBep9Ng1TFFq/LS/+k\n/vRP6l9b6K8AXzEVviBfvLecte8v46RfX0ncwJ4U+grZVLCJ0b1HkxyXTP/hI3n/xad4ZNpDfJT7\nCRMHn0SaJw1Pooek9MbTq848bCb3f3k/R/c6uubZfFbvrGaTtDgdQoKntus/yePCoVNrKNVWPbGC\neF3xQCawu537/AwYJiJDsAL5TKz0qeoApgE9TFwOF1ccdQXlgXLKA+XcfOzN9eZKb1LAB3vXQ/Zj\nMPh4fGlH8/FLz5HRbwD+XvFcsOhcKgIV/OG4P7C9ZDtvb32b6465jgnnzSYUCjE8c0STs8jVlZmQ\nydwxc6kKVvHaGa+RV5HH0LShDQbj1ZUcH8cdZx7JPUnfkehx8euJh+B06N25Um2UC1RSP6hXYnXB\nt4sxJiAiVwJLsXKTP2aMWduhVqpuT6d+DbOKqgpChEiMa2GKt2rFu+DfR0HAej5d8pv1PHrNFQz/\n8Ql8MrqYlza+BMCh6Yfy53F/5vZPbudfk/5FZkLTedHDLRAM4RCpl71NqQNQu/8A7Gfmi7GCeiVw\nWnZ29kfhaphSoIPiws4b5219MAcIBWqCOYC3fDvn33Qz/Q4dwQn9x9eUH9vnWCoCFVx65KWkuJu+\nq44El9PRrmDeHS4WleoMdvDuCQwBemowV5Ggd+jRVlFodbd/+l8YMgGO+w0kZkJqf0r8Jewr30dZ\nVRl9k/pijCHFndLsK3FdQbk/wLpdxSxcvYMZo/sxakAaiR59uqO6Pe2iUl2aBvSuwFcK/lJwecHb\nsbncu4KcwgpO+PtyAiGDQ2Dl/02if3rLz/mV6uI0oKsuTW+bOklloJISfwkuh4v0+PT6Kz1J1lcd\nxb5ivsn9hjX71nD60NPpl9SvE1vbMb5AiEDIulAMGSjzt/fNHKWUUq2lz9DDKBgK8kPxDzz05UN8\nseeLmsQqFVUVLN++nDNfP5Orl19NbkVui/v6oeQHfvXur3jgqweY/dZs8iryIt38dvNVBCgr8uEr\nrwIgNSGO30w8hN4pHn5x/GAyk7r2IwKllIoFeoceRvmV+Vyw5AKKfEU89NVDLDpzEYnuREqrSrnl\ng1vwh/x8vvdzPtr5EacPPb3Zfe0uq309Nbc8l5AJRbr5rba7bDfz185ncOpgTuk7nW/ezWH9hzkc\nktWLY386hPQkN7+ZdAhzxg3G63aSrFPGKqVUxOkdehgFTbBmjnaDIb/SmmHNIQ76J9dOIjMg2co7\nXlZVxr7yfTX16jq619Gc2P9EMr2Z3D7+dpLiWp5zvTWqglXsLd/L9pLtFFYWtnn7/Ip8rlh2BU+v\nf5q/rvorFeV+vnh7G5VlVaz93058ZdZdepInjl4p8RrMlYoAERkoIstFZJ2IrBWR39nlt4nIThH5\n0v46tc42N9qpVjeIyMl1yhtNwyoiQ0TkE7v8eRFx2+Uee3mjvX5wuI+h2kcDehglxiVy49gbyfRm\nctqQ0zgo5SAAenh7MG/KPK4dcy3zpsxjaNpQyvxlLNmyhFNePoUrll1Bbvneevvq4e3BHSfcwQvT\nX+CkQSfhjfO2qg15FXnsKdtTc2Gxvx2lO5j+ynROfflU7v/yfrYVb6MqWNXqnzFkQvUvQBwh4uzZ\n5JxxDlxuZxNbKqXCKABca4wZCRwHXCEiI+119xhjRttfSwDsdTOBw4FpwIMi4qyThvUUYCRwfp39\n/M3e11CgALjELr8EKLDL77HrhfsYqh0i3uVu/2NmAzuNMdPtqQoXAD2A1cDPjTH+SLejowoqC9ha\nvJVkdzK9E3o3OgtcsjuZM4aewdSDpuJ2uuvNwtY7sTdzjphTs7yvYh93rLqDgAmwtWgrpnQf5G+H\nnC+h1wjoMZTUpF5NtievIo/cilzS49PJ8GTgcrrILc/lkrcvYXPRZmaPnM1loy5rNC1rRaACgMWb\nFzNhwATiXfH0Smj6WHWlelK5a8Jd/PGjP9IvsR/uJCfn3nQMP3yTx8ARGcQn6R25Uo3JysqKB3oB\ne7OzszuU6cgYkwPk2J9LRGQ9Vga2pswAFhhjfMAWEdmIlYIVGknDau/vJGqnk50P3AY8ZO/rNrt8\nIXC/iEiYj6HaoTOeof8OWA9UR5bqK7IFIvIfrCuyLv0PWOov5b4v7uPF714E4N5J9zJ50ORG6ybE\nJTSZ7KQuJ04Gpw5mY+FGHhl/Jz2X/hE2vVtbodcI+PlrkNy7wbb5lfn8/n+/J3tPNgmuBF6Z8Qr9\nkvqxPn89m4s2AzB/3XwuOvwiUqgf0Mf1G4fH6cEX9DFx4ES+K/iOoelDW3sqiHPGMarnKJ6Y9gQu\nh4s0TxokQFpvfS1NqcZkZWU5gb8CVwEGkKysrH8Bf+hAcpYadpf3UcAnwPHAlSJyEdaN1LXGmAKs\nYL+qzmY7qL0AaCwNaw+g0BgTaKR+TepWewraIrt+OI+h2iGiXe4iMgA4DXjEXhasK7KFdpX5wBmR\nbEM4VAYr+Tjn45rlFdtXdHiQWoY3g4enPMyDk+5jeEEOUjeYA+xdT2jVg3yz5wseXvMw+8prp30O\nhAJk77Heyy8PlPN9wfcADEkdQpzDukM+NP3QejnVqw1IHsCiMxfx3GnPcfawsxmYMpDkuFbMOV+H\ny+mip7enFcyVUi35K/BbIAFItL//DvhLR3csIknAS8DVxphirJujQ4DRWHfwd3X0GKr7iPQz9HuB\n/wOqo1+3vCJLikvi4iMuBqxMaXMOn8Pe8r2s3rO65hW03PJcPt71MbtKd+EP1n+CUFZUSFlBPv7K\ninrlmQmZnNDjSFzfLKQxjnWvUVi4hfu+uI+5K+ZSUFkAgNvh5rQhpwHQK6EXh2UcZu3Pm8nrZ7zO\nvCnz+O+U/9LD26PBPj1OD70TepPqGMLqDWlkmCxMSF8rUyoS7G72q7ACeV0JwFX2+nYRkTisYP6M\nMeZlAGPMHmNM0BgTAuZR2+XdVLrVpsrzgDQRce1XXm9f9vpUu344j6HaIWJd7iIyHdhrjFktIhPb\nsf1lwGUAgwYNCnPr2ibeFc+0wdMY3388TnFijGHGazMoqypjYPJAHj/5cS59+1K2FG8h3hnP62e+\nTt/EvgCU5OWy8PY/ULQnh0lzfsWI8RNwe+t0T7sTwdt4ylO8aZTaz7srAhU16VnT4tO4fuz1/Pao\n3+J2umsStXhcHgYkD6gZRd+U3FIfZz/0MXtLfAC8M/dEHY2uVGT0gibyKFszz2VSvzu6VezezkeB\n9caYu+uU97WfrwOcCXxjf34deFZE7gb6AcOAT+02NEjDaowxIrIcOAdrzNNs4LU6+5oNfGyvf8+u\nH85jqHaI5DP044HT7dcm4rGeof8L+4rMvktv8orMGPMw8DBYU79GsJ2tkuxOrhkI99W+ryirsiaN\n2V6yHX/Qz5biLYDVPb+rdFdNQF/z7pvk77T+Xt999EEOyRpbP6DHxcO4q2DN8w2OGTr+d6wp/575\nEx6hZ2UCziI/PinH400gPT694YxzrRQMURPMAXYVVjCsd9u63ZVSrbKXpqeMNbQ/herxwM+Br0Xk\nS7vsJqwR5KPtfW8FfgVgjFkrIi8A67BGyF9hjAkCNJOG9XpggYj8FfgC6wIC+/tT9qC3fKwAHe5j\nqHaIWEA3xtwI3Ahg36H/3hhzgYi8SDe/IhuQNIBD0g5hU+EmJg2YhMflYebwmSzYsIDDMg6reV0N\nILVXn5rPCSmpY15YnQAAEf9JREFUiDTylCP9IDj3KXjzOijZDfGpcOL/4RgykV8FJvDxM0+yfMW7\nIMJ5t97JgBGHd6j9iR4nt/10JHe/8x1HDUrniP7df/54pbqi7OzsSnsA3O+wutmrlQP/bu9od2PM\nBzR+obCkmW1uB25vpHxJY9vZo9LHNlJeCfwsksdQ7dMpyVnqBPTpInIwVjDPwLoiu9B+zaFJXTE5\nS15FHr6gj3hXPBnxGRT5ivAFfbjERUadLvSKkmK+/WAF+7Zt5ZjTzyGtT1+s3rL9BINQvg+CfnC6\nwZsOLg9lBfk8c/M1lORZz+qPO3smx597YYfbX+YLUOYLEOd0kJ6oczko1QrtSs5ij3L/C9azdMG6\ne/43YRrlrlQ1zbbWSUwohDjaPgaxqrKSte8v439PPoo7IYHzbruTjH7NPyNXSkVEh7Kt2QPgMoF9\nHX0PXanGaEDv4vIr88krzSUkIeJd8aR50kmN1y5ypaJA06eqLk2nfu3iviv4jre2L+WcRT9j+qs/\n5ZPdn0S7SUoppbogDehdXKIrkVW7aidfenfbu1SFWj/3ulJKqQODBvQIMMa0KeFJcwYkD+C8w85D\nENwON7MOm1UzG5xSSilVTQN6mBVWFvLkuie56YOb2Fy4ucNTxKbHpzN54GSWnr2UN89+kxEZI8LU\nUqVUdyYiW0XkaztNarZdliEi74jI9/b3dLtcROTfdprSNSJydJ39zLbrfy8is+uUj7H3v9HeVjrr\nGKp9NKCH2ZrcNfwz+5+8tfUtLl56caO5ztukdC+Jn86j77rF9DIOPC6dplUpVWOSnSY1y16+AVhm\njBkGLLOXwUpdOsz+ugw7IZaIZAC3YiVLGQvcWh2g7TqX1tluWiceQ7VDZ2RbO6CUV5XXfg6U06G3\nCCqLYcn/wbpXrOXiXXDSTeDQfzalugv7PfRZwDVYs2PuAO4Gno3Ae+gzgIn25/nACqzZ2GYATxrr\nP6RVIpImIn3tuu8YY/IBROQdYJqIrABSjDGr7PInsRJpvdlJx1DtoHfoYTa271jOHnY2h/c4nIcm\nP0SqpwOvmAX9ULi1djl/IwQDTVZXSnUtdjB/BetOdDTQ0/7+EPCKvb69DPC2iKy2c18A9K4zl/tu\noDr/ck3KU1t1Yqzmync0Ut5Zx1DtoLd6YZYRn8F1x1yHP+gnxZ2C09GBv1dvOpx2Fzw3E+ISYfKt\n1tzvSqnuYhZWyuj9s60l2uWzgKfaue/xxpidItILeEdEvq270k5+EtGJRjrjGKr19A49AhLjEkmP\nT+9YMAdwOKHPj+BXK+GSpZBxcHgaqJTqLNfQMJhXSwTmtnfHxpid9ve9WL0AY4E9djc39ve9dvW2\npjbdaX/ev5xOOoZqBw3onSAYCBDw+1uu2BinC5L7QFJv0AGgSnU3Lc3T3K55nEUkUUSSqz8DU7FS\npVanNoWGKU8vskeiHwcU2d3mS4GpIpJuD1SbCiy11xWLyHH2yPOLaJg+NZLHUO2gXe4RVl5UyKqX\nF1BeVMSJF15MSs/MaDdJKdV5dmA9N29ufXv0Bl6x3/JyAc8aY94Skc+AF0TkEuAH4Fy7/hLgVGAj\nVqa3XwAYY/JF5C/AZ3a9P1cPXgN+AzwBeLEGqlUPVruzE46h2kHnco+wj158ho8XPgfAwMOP5KfX\n3IQ3SXOPK9UNtbmLLCsr6+dYA+Aa63YvA36dnZ3d3mfoStWjXe4RFgqF6n/uBhdQSqmweRZ4Dyt4\n11WG9Q73s53eIhWztMs9wo6a9lPKCguoKC7ipDmX4U1OiXaTlFKdJDs7O5iVlXUm1mj2udS+h34P\nkXkPXR3AtMu9EwT8fkKhIO54b7SbopRqPx2Vqro0vUPvBC63O9pNUEopFeP0GbpSSikVAzSgK6WU\nUjFAA7pSSnUzIjLcTpta/VUsIleLyG0isrNO+al1trnRTlO6QUROrlM+zS7bKCI31CkfIiKf2OXP\ni4jbLvfYyxvt9YPDfQzVPhrQo6CgsoAiX1G0m6GU6kRZWVlDsrKyjs/KyhrS0X0ZYzbYaVNHA2Ow\nJnKx0zJyT/U6Y8wSABEZCcwEDsdKUfqgiDhFxAk8gJX6dCRwvl0X4G/2voYCBcAldvklQIFdfo9d\nL9zHUO2gAb2TbS/ezlXvXcU1K65hd9nuaDdHKRVhWZbVwFpgMbA2KytrdVZWVlYLm7bWZGCTMeaH\nZurMABYYY3zGmC1Ys7mNtb82GmM2G2P8wAJghj0V60nAQnv7+VipTav3Nd/+vBCYbNcP5zFUO2hA\n70TFvmL+9PGf+HLfl3y6+1PuXn03/mA753hXSnV5dtBeARyNNb1pqv39aGBFmIL6TOC5OstXisga\nEXnMnjsd2p7atAdQaIwJ7Fdeb1/2+iK7fjiPodpBA3oncoqTZHfttK+p7lREE64oFcv+S/PZ1v7T\nkZ3bz5xPB160ix4CDsHKuZ4D3NWR/avuRd9D70SJ7kRuPu5menh74HV6mXPEHOIccdFullIqAuxn\n5SNaqDYyKytrSHZ29pZ2HuYU4HNjzB6A6u8AIjIPWGQvNpXClCbK84A0EXHZd9B161fva4eIuLB6\nHfLCfAzVDnqH3sl6enty09ibmJs1lx7eHtFujlIqcvoBLT1T89v12ut86nS3V+cpt52JlVIVrNSm\nM+0R6kOAYcCnWBnQhtmjzd1Y3fevG2sK0eXAOfb2+6dJrU6feg7wnl0/nMdQ7aB36FHgcOh1lFIH\ngF1AS69hue16bWbnQZ8C/KpO8d9FZDRggK3V64wxa0XkBWAdEACuMMYE7f1ciZWz3Ak8ZoxZa+/r\nemCBiPwV+AJ41C5/FHhKRDYC+VgBOtzHUO2gc7krpVTrtCd96mqsAXBNWZ2dnR2u0e7qAKe3ikop\nFTm/omHq1GplwOWd2BYV4zSgR0BVqApfwBftZiiloizb6lqcCKwGKrBe8aqwlydma9ejCiN9hh5m\neRV5/Oer/5Bfmc/VY65mYPLAljeqK+CHinxAIKkX6GttSnVrdtDOske99wN2dWBUu1JN0oAeRoFQ\ngP+u+S8LNiwAYFPRJh6d+mjrR7MHg7AzG549D+JTYPYbkHFwk9WNMfoeu1LdhB3ENZCriNEu9zAK\nmRD5lfk1y4WVhYRMqPU7qCyEpTeDrxiKdsCH/4ZGBi1WllXx7cc5rHhmA4V7yjGhrj+wUSmlVGRp\nQA8jt9PN3DFzGZo2lJ7envxjwj9I86S1fgdx8dD3R7XLA8Y22uWet7OUZfPXs+6DXbz8z9VUlOj0\nsUopdaDTLvcw65/Un0emPkLIhEjzpBHnbMNMcO5EOOkWGPoT8KZBr8MbrVZZWlXz2VcRQO/PlVJK\nRSygi0g88D7gsY+z0Bhzqz2D0AKsiflXAz+3M/DEjA7NAJfYE0ZMb7ZKv2FpDBvbm9xtJYw7eyge\nr16XKaXUgS6SkcAHnGSMKRWROOADEXkTuAYr/+0CEfkPVv7bhyLYjpjjTXYz4fzhBKtCeLxOnHHO\naDdJKaVUlEXsGbqxlNqLcfaXQfPfhoXH6yIhxa3BXCmlFBDhQXEi4hSRL4G9wDvAJjT/rVJKKRV2\nEQ3oxpigMWY0Vlq8scBhrd1WRC4TkWwRyd63b1/E2qiUUkrFgk55bc0YU4iVJu/H2Plv7VVN5r81\nxjxsjMkyxmRlZmZ2RjOVUkqpbitiAV1EMkUkzf7sxUrztx7Nf6uUUkqFXSRHufcF5ouIE+vC4QVj\nzCIRWYfmv1VKKaXCKmIB3RizBjiqkfLNWM/TlVJKKRUmOvWrUkopFQM0oCullFIxQAO6UkopFQM0\noCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6Ukop\nFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6\nUkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIx\nQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCullFIxQAO6UkopFQM0oCul\nlFIxIGIBXUQGishyEVknImtF5Hd2eYaIvCMi39vf0yPVBqWUUupAEck79ABwrTFmJHAccIWIjARu\nAJYZY4YBy+xlpZRSSnVAxAK6MSbHGPO5/bkEWA/0B2YA8+1q84EzItUGpZRS6kDRKc/QRWQwcBTw\nCdDbGJNjr9oN9O6MNiillFKxzBXpA4hIEvAScLUxplhEatYZY4yImCa2uwy4zF4sFZENLRwqFShq\nY/Nas01zdZpat395Y/Xqlu2/vieQ20K72qorn5/GyppbjsT5aapd4djmQD5Hra3f1nMUjfPzljFm\nWhu3UarzGGMi9gXEAUuBa+qUbQD62p/7AhvCdKyHI7FNc3WaWrd/eWP16pY1Uj87Av8WXfb8tOac\n7Xe+wn5+9BxF5hy1tn5bz1FXPT/6pV/R/IrkKHcBHgXWG2PurrPqdWC2/Xk28FqYDvlGhLZprk5T\n6/Yvb6zeGy2sD7eufH4aK2vNOQw3PUcta+sxWlu/reeoq54fpaJGjGm0x7vjOxYZD6wEvgZCdvFN\nWM/RXwAGAT8A5xpj8iPSiG5KRLKNMVnRbkdXpeenZXqOmqfnR8WiiD1DN8Z8AEgTqydH6rgx4uFo\nN6CL0/PTMj1HzdPzo2JOxO7QlVJKKdV5dOpXpZRSKgZoQFdKKaVigAZ0pZRSKgZoQO/iRGSEiPxH\nRBaKyK+j3Z6uSkQSRSRbRKZHuy1dkYhMFJGV9u/SxGi3p6sREYeI3C4i94nI7Ja3UKrr0YAeBSLy\nmIjsFZFv9iufJiIbRGSjiNwAYIxZb4y5HDgXOD4a7Y2Gtpwj2/VYr0MeMNp4jgxQCsQDOzq7rdHQ\nxvMzAxgAVHGAnB8VezSgR8cTQL0pJEXECTwAnAKMBM63s9MhIqcDi4ElndvMqHqCVp4jEZkCrAP2\ndnYjo+wJWv97tNIYcwrWhc+fOrmd0fIErT8/w4GPjDHXANoTprolDehRYIx5H9h/Mp2xwEZjzGZj\njB9YgHXXgDHmdfs/4ws6t6XR08ZzNBErRe8s4FIROSB+r9tyjowx1ZM7FQCeTmxm1LTxd2gH1rkB\nCHZeK5UKn4gnZ1Gt1h/YXmd5B3Cs/bzzLKz/hA+kO/TGNHqOjDFXAojIHCC3TvA6EDX1e3QWcDKQ\nBtwfjYZ1EY2eH+BfwH0icgLwfjQaplRHaUDv4owxK4AVUW5Gt2CMeSLabeiqjDEvAy9Hux1dlTGm\nHLgk2u1QqiMOiK7JbmInMLDO8gC7TNXSc9QyPUfN0/OjYpYG9K7jM2CYiAwRETcwEysznaql56hl\neo6ap+dHxSwN6FEgIs8BHwPDRWSHiFxijAkAV2Llj18PvGCMWRvNdkaTnqOW6Tlqnp4fdaDR5CxK\nKaVUDNA7dKWUUioGaEBXSimlYoAGdKWUUioGaEBXSimlYoAGdKWUUioGaEBXSimlYoAGdNXlichH\n0W6DUkp1dfoeulJKKRUD9A5ddXkiUmp/nygiK0RkoYh8KyLPiIjY644RkY9E5CsR+VREkkUkXkQe\nF5GvReQLEZlk150jIq+KyDsislVErhSRa+w6q0Qkw653iIi8JSKrRWSliBwWvbOglFLN02xrqrs5\nCjgc2AV8CBwvIp8CzwPnGWM+E5EUoAL4HWCMMUfawfhtETnU3s8R9r7igY3A9caYo0TkHuAi4F7g\nYeByY8z3InIs8CBwUqf9pEop1QYa0FV386kxZgeAiHwJDAaKgBxjzGcAxphie/144D677FsR+QGo\nDujLjTElQImIFAFv2OVfA6NEJAkYB7xodwKAlZNeKaW6JA3oqrvx1fkcpP2/w3X3E6qzHLL36QAK\njTGj27l/pZTqVPoMXcWCDUBfETkGwH5+7gJWAhfYZYcCg+y6LbLv8reIyM/s7UVEfhSJxiulVDho\nQFfdnjHGD5wH3CciXwHvYD0bfxBwiMjXWM/Y5xhjfE3vqYELgEvsfa4FZoS35UopFT762ppSSikV\nA/QOXSmllIoBGtCVUkqpGKABXSmllIoBGtCVUkqpGKABXSmllIoBGtCVUkqpGKABXSmllIoBGtCV\nUkqpGPD/AVpeh4x0Xu7DAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3912,7 +3919,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VeX9wPHP9+6R5GaShCVDhsiq\n4kAc4BatA/05W7UqVm3RLqu1zmotjmq1jrq1Wq1bceKuW4bgYo8wwshe9+bu5/fHuWSQEALkAobv\n+/Xildxzn3POcwLhe89zvs/zFWMMSimllPpxs+3oDiillFJq22lAV0oppboBDehKKaVUN6ABXSml\nlOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQMa0NWPioj8WkRmiUhERB7f6L0LRGSJiDSIyNsi0rPF\ne2+ltm/4ExWR71q8P1pEPhGRWhFZLSLXbMfLUkqpbaYBXf3YrAFuAh5tuVFExgM3AycAucBy4JkN\n7xtjjjHGZGz4A3wOPN/iEE8DH6f2PQS4RESOT+N1KKVUl9KArn5UjDEvGWNeASo3eus44HljzA/G\nmChwI3CwiAzc+Bgi0g84CPh3i839gP8YYxLGmKXAp8CeXX8FSimVHhrQVXci7Xw/vJ12ZwOfGGNK\nWmz7B3C2iDhFZAgwFngvLb1USqk00ICuuou3gVNFZKSIeIFrAQP42ml7NvD4RtteB04BGoEFwCPG\nmJnp665SSnUtDeiqWzDGvAdcB7wIlKT+1AOrW7YTkQOBIuCFFttysT4Q/AXwAH2Ao0Tkku3QdaWU\n6hIa0FW3YYy51xgzyBhTiBXYHcD3GzU7B3jJGNPQYtsAIGGM+bcxJm6MWQ38F5i4XTqulFJdQAO6\n+lEREYeIeAA7YBcRz4ZtIjJcLH2BB4G7jDHVLfb1AqfSdrh9kfW2nCkiNhEpAk4Dvt0uF6WUUl1A\nA7r6sbka6zn3lcDPUt9fjTVU/jTQAMwAvgA2nkt+IlADfNhyozGmDpgE/BaoBuZi3dnflK6LUEqp\nribGmB3dB6WUUkptI71DV0oppbqBtAZ0EblMRL4XkR9E5Depbbki8q6ILE59zUlnH5RSSqldQdoC\nuogMByYD+wKjgONEZHesZ5/vG2MGAe+nXiullFJqG6TzDn0P4CtjTMgYEwf+h5V4dALwRKrNE1iJ\nSkoppZTaBukM6N8DB4lInoj4sOb09gEKjTFrU23WAYVp7INSSim1S3Ck68DGmPkicgvwDhDEmgqU\n2KiNEZF20+xF5ELgQoBhw4bt/cMPP6Srq0op1Rmy+SZK7ThpTYozxjxijNnbGHMw1vzeRcB6ESkG\nSH0t28S+Dxpjxhhjxni93nR2UymllPrRS3eWe4/U175Yz8+fBqZhLb9J6uur6eyDUkoptStI25B7\nyosikgfEgF8ZY2pEZCrwnIicD6zAWopTKaWUUtsgrQHdGHNQO9sqgcPSeV6llFJqV6MrxSmllFLd\ngAZ0pZRSqhvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehKKaVUN6ABXSmllOoGNKAr\npZRS3YAGdKWUUqob0ICulFJKdQMa0JVSSqluQAO6Ukop1Q1oQFdKKaW6AQ3oSimlVDegAV0ppZTq\nBjSgK6WUUt2ABnSllFKqG9CArpRSSnUDGtCVUkqpbkADulJKKdUNaEBXSimlugEN6EoppVQ3oAFd\nKaWU6gY0oCullFLdgAZ0pZRSqhvQgK6UUkp1AxrQlVJKqW5AA7pSSinVDWhAV0oppboBDehKKaVU\nN6ABXSmllOoGNKArpZRS3YAGdKWUUqob0ICulFJKdQNpDegi8lsR+UFEvheRZ0TEIyL9ReQrEVki\nIs+KiCudfVBKKaV2BWkL6CLSC7gUGGOMGQ7YgdOBW4A7jTG7A9XA+enqg1JKKbWrSPeQuwPwiogD\n8AFrgUOBF1LvPwGcmOY+KKWUUt1e2gK6MaYUuB1YiRXIa4HZQI0xJp5qthrola4+KKWUUruKdA65\n5wAnAP2BnoAfOHoL9r9QRGaJyKzy8vI09VIppZTqHtI55H44sNwYU26MiQEvAeOA7NQQPEBvoLS9\nnY0xDxpjxhhjxhQUFKSxm0oppdSPXzoD+kpgfxHxiYgAhwHzgA+BU1JtzgFeTWMflFJKqV1COp+h\nf4WV/PY18F3qXA8CVwC/E5ElQB7wSLr6oJRSSu0qxBizo/uwWWPGjDGzZs3a0d1QapMSDQ2YcBhb\nZiY2t3tHd0elh+zoDijVEV0pTqltFK+qYv1fb2bFz35Ow4cfkgyFdnSXlFK7IA3oSm2jyKJF1L78\nMtGSEkp//wcSDQ07uktKqV2QBnSltpE9N7f5+5wcxKa/Vkqp7c+x+SZKqY44i4vp88jDhGbOJHvS\nJOx5eTu6S0qpXZAGdKW2kT0zk4xx48gYN25Hd0UptQvTsUGllFKqG9CArpRSSnUDGtDVLskkEju6\nC0op1aX0GbrapRhjiK5YQeUDD+IZNoysnx6HIzu7Tbt4RQXJSASb14ujRRa7UkrtrDSgq11KoqKS\nleecS3z9empffhlnz55kHnZoqzbxigpW/uI8IosX4xs3jl633oJDM9eVUjs5HXJXuxSDIVFf3/S6\nvUVg4pWVRBYvBiD02WckGxu3W/+UUmpraUBXuxR7IECf++7Ftfvu5P/1JpJjfsKiLz+jvrKCRCIO\ngCM3t2kueeaxxyI2G/Gamh3ZbaWU2iwtzqJ2OSYWIxEMsm7tap694U9gDE6Pl3P/fh9Z+QWYZJJE\nZSWJ+npMJMKaP16BPTubnrffjrOwR9Nx4tXVNM6eDXY73tGjceTktDpPvKoKk0hgz8zE5vFs78tU\nXU+Ls6idmt6hq12OOJ3g8zHn7dcg9YE2Fm6k5JuvrfdtNhwFBdiyslhzxZVEFi8mNHMmlQ89yIYP\nwMlIhMqHH2b1r6ew+uJLqHnmv5h4vOkcsfXrWTV5Mst/ejzBL78kGYls/wtVSu1SNKCrXZLd4aDX\n0OGttvXoN6B1o3gce4u7bntOLiLWTZqJRgnPm9/0XuP332NisabXtdNeI/zDPBI1Naz989Uk6urS\ncBVKKdVMs9zVLklsNoaOO5h4NMLK7+Yy8vCjyS4sbt3G5aLHHy+n9sWXsOdkk3nkEYSjCTwuO7aM\nDHr8/vesuuACsNko+M1l2Lzepn3dA/o3fe/q0wex66+aUiq99Bm62uXE1q+n5rnncBQXk3HkESTs\nDjx+f7tto6Wl1H/4IRLIxr33GBpjCbwFefh9Hkw8TqK6GoOVSCd2e9N+iZoaQnPmEl2xgqyJE3H2\nKNhOV6fSSJ+hq52a3jaoXUq8spJVkycTWWRNSyuoqCTvwslt2iXq6zHhMPacHKrHH01OeSmrJh6D\n2O30eeop2GMo4nDgKGg/UNuzs8mcMD6dl6KUUq3oM3TVrcQSSToadTLJJNHlJU2vwwsWtEpmAys7\nff1tt7H8tNOpfOBBiu1xav9yAyYcJhkMUv34Y7p0rFJqp6MBXXULxhiWVwT5w/Pf8ODHy6htCFFf\nVUFdeRnRxkbiFZXEKyutZ9+X/wEAW0YG+RdfhM3lAqxpaNGVK0nWN5CsrSO+Zg2VDzyArboKz9gD\nms7lP2Bcq+F1pZTaGeiQu9ppJJOG1TWNvPPDOvYbkMfAfD8+d+f+iVY0RDjjwS9ZVxdm8foGjuoR\n4ZWbriLQo4hTL/4d63//BxCh9z33EDj5ZDKPPBJcLmocPurqwmQRo/Jvf6Nu2muIy0Xvu+8mtmoV\n4XnzQIQek88nMP5gbFlZBIv7MmN5FQ2ROMN7ZdEjU+eYK6V2PA3oaqdR0RDhpHs/ozIYxW4TPvrD\n+E4HdGMgGLGGzkf2ymL+B9NJxOMM2Wtfqu64s2kp17LbbqPnbbfiLCpiaVkDZ9z/KeFYgsfPHUP2\nmrXWsaJRal5+Cf+E8bj33x9bfj6OnBwc++5LVTDCb/87l08WVwBQHPDw6q/G0SNLg7pSasfSIXe1\n0zDG8LdJI/j7qaPok+OloqHzi7Fk+5w8cu4YhhVnURjwMPiAg0CEcGMIR+9eTe2cu/VFHA5iiSR3\nvb+YsvoIdeE4f31rIfbjTmxq59pjGBx2KL7T/69VtbX6cLwpmAOsrQ3zxdLKbbxypZTadnqHrnYK\n0XiCJeVBrnzpO4qyPNz/s70pzHJ3en+Xw85efXN48vx9cTlsuE2MC+5+iGQiid/hwtlvIDaHjcwj\njrCy041hVJ9spn2zBoBhhX4Ch0wgsM9rSDCEr6iImMeNMxLFVFVhUtPSbNJ25pLbqZ+L1Y+PiBwP\nDDPGTN3RfVFdQwO62inUNsb400vfURWMUhWMMv37dfzmiMFbdpDqarKSCWxeH/bMDFxeH431Uabd\n9y0O11AwhnFBJwV5ICJM+kkvBub7CDVGGdMni2m3XE35iuWMOvQoDjj5dOzryyk5/zxMPEHfp57E\nkZOD3+HmxNE9eWWu9UFgcGEGe++m9dLVjiXWEoZijEl2dh9jzDRgWvp6pbY3Dehqp+C02xhQ4Gdl\nVQiAIUWZW7R/rKyMleecQ7RkBYVXXknglJOx+/0kk4bylfUkE9ZUtsrSBgr6WsfO8bs4sIeT+k+/\noioYoHzFcgC++WA6+518GpV//zvxsnKyTzuVyMJFVH3+Oc5evbjmtLOYcuggwvEEhZke8jM7P5Kg\nVFcRkX7AdOArYG/gVhG5CHADS4FfGGMaRGQicAcQBD4DBhhjjhORc4Exxphfp471KJAPlKf2XSki\njwN1wBigCPijMeaF7XWNasvoWKHaJuX1EUqrG6ncgufd7cn2ubj9/0bxt0kjeOK8fRg7MG+L9g99\n+ZU1v9wYym6/nWTI+mDgdNsZd/LuiEBOkY8+e2x0N22z0zh7Nrm79cPudAKQ32c3bHYHroEDrb6d\nfDKJ3GzK9x7Jul49cKxdQf9cD3v2DLQK5om6OqKlpcTWl5Fssa67Umk0CLgPOAQ4HzjcGLMXMAv4\nnYh4gAeAY4wxewObWrLwn8ATxpiRwH+Au1u8VwwcCBwH6PD8Tkzv0NVWK6+PcO5jM/hhTR2HDC7g\njlNHkZex9Xer+Rluzti37xbvVx2M4B48GGw2SCbxDB+OOKx/2rbGenoFv+eMX/bHNIZwJRqwbmAs\njuwAPS67jFhjiF/cfh815evJ77MbjvoG/GPHWivB5eUy582Pmfve2wDsf8Ip7D9gIDiaf32SoRA1\nL7xA2a23IT4f/Z/9L+5Bg7b6Z6FUJ60wxnwpIscBw4DPUgWEXMAXwFBgmTFmear9M8CF7RxnLDAp\n9f2TwK0t3nslNZQ/T0QK03ANqotoQFdbrSoY4Yc1VhWx/y0qJxiKEEiEcQQCnT5GKBInmkiS5XFi\ns3W8VHZjfR3rliwCoGjgILxZAcrqwpz72EzG9fLx65dfhdJV+EeOaKpNbiIR6p54hHhVNfE1a3A/\n9ijOsWNbHdeRm4uDXLxAoMgq0FL22BNUPvww3lGjcB8wlprysubrXr8OY289uJUIhqj+z9PWOUMh\n6t56iwIN6Cr9gqmvArxrjDmj5ZsiMroLztFy+E3Xs9+J6ZC72mo5Phd5fmuVtf75fmRlCXVvvImJ\nxymtaeS26Qt4+/u11ISi7e5f2RDhpjfmc8ETs5i3to5EYtP5PLFolFmvvcxLU6/npanXM+uNV4hH\no3y6pIJ5a+t4aNY6jnqxhOW7j6ba3fr5e+CEEym+/jryLrkYV79+nbo2/9j9IZGg8euvCb7+Bof8\n7Hyyi3qS26s3B55xNg6nq1V7m9dD5lFHWS8cDjImTOjUeZTqIl8C40RkdwAR8YvIYGAhMCD1jBzg\ntE3s/zlweur7s4BP0tdVlS56h662Wn6GmzcvPZA1q8vpIVEaf/trTK9eJCaewM8ensHyCuvm4ZnJ\n+zF2YH6b/f+3qJynZ6wE4LzHZ/L6lAM3uUBLPBqhdOG8ptelC+cRj0YYXNgcvIsCXpaWB5uOEa+s\nZNUvLyKycCEAuz3zNI58qx/hhnrisRgOl7vdSmuePfdkwOuvEa+owD14MPacHE6/4RYA/Nk5bdrb\nMzLIu3Ay2aecbGXZZ3d+lEKpbWWMKU8luT0jIhueKV1tjFkkIpcAb4tIEJi5iUNMAR4TkctJJcWl\nvdOqy2lAV1vNZhN6ZHnICK1n5S/OA2Mo+vNVhGw2yurCTe3W1Ybb3d/nal4P3euyI+3M8d7AmTSM\nnXQaL9/6FwD2P/YkHEnDbnk+Xp9yIHNX1bBHcRavfbOGCUN7AFYhlsiSJU3HiCxejO8nPyFUV8sH\nj/2LZbNnMvqoY9nn+FPwZra+q7dnZmLPzMS9++5N29oL5C05srNxZGd32EaprmKMKQGGt3j9AbBP\nO00/NMYMTU1tuxcrYQ5jzOPA46nvVwCHtnOOczd6ndElnVdpofXQ1TZLhsMkamoAsAcCRB0uvlxW\nybWv/sDgwkymnjyC/HaS5aqCUV6cvYp5a+q5bEJ/+mQ4sLdzt5xoaKDykUeJrF2D/6wzcOQX0PDo\nYxRMnoyzhxW868IxTCSKze3CFwuTqK0Fu5366dMpu+VWXLvtRt8nHsdZWEj5yhL+ffmvm45/wd0P\nEygsStNPR3UjP8rnxyLyW+AcrES5OcBkY0xox/ZKpYPeoXdTodoakokEDpcLT8aWzeneUjaPB1tR\nc0D0AAcMzOPFi8fistsI+Fzt7pcVDXLCd29zdHkFkUc+I3zTjfj3269Nu2QoRM1//0uiupqGV14l\nf8qvkVi8KZM9EQphmzOXmueeI+fsnxPLyiJZU4tJxPHuuy/9X36JWFkZido6HPn5ePwZ2B0OEvE4\nnoxMJBol2diIzetNy89nc0J1UeqrwvgDbryZTuyOjlNbQnURFs8qIyPbTa/BOXgynNupp+rHyBhz\nJ3Dnju6HSr+0BXQRGQI822LTAOBa4N+p7f2AEuBUY0x1uvqxK2qoruL5G6+iqnQ1e008gbEnn572\noL4xl8NOQWbHJUZNPE71Y4+TbGgAIDR3brsB3ebxkHnkkdQ8+yzicpExYQLOomIcudYQeLK2llWT\nJ0MySd7kC1h33fU0fv01zt696f3Pu6l/510q7rsPz/A96fPgg3gzszjruqms+nYOu+0xnNpbbsN7\n3bU7JKCH6qO8fs83lK+sx+m2c8Z1+5GZu+lCL+FgjPefmI/YhP4j86kpD1GUsfXP6xsbogRrIri8\nDjx+Jy6PfsZX6scqbVnuxpiFxpjRxpjRWKsYhYCXgSuB940xg4D3U69VF1o97zuqSlcD8PWbrxIN\nt/8Me0ez+f0U/OY3ADgKCggce2y77exZWRT85jIGvPkGA995B/fAgU3BHCDZ2AjJVIa8MTR+/TUA\nsdWrSdQ3EFmxAgBnn76Iy4UtmSRDHAwu7ou7pp7sSSch7h2z2lsynqR8Zb3V30iC6rXBjtsnDDmF\nPobuX8Q3769izvQVhOrbn0WwOdFwnJmvl/DsTTN56uovqCxt2KrjKKV2Dtvr4/hhwFJjzAoROQEY\nn9r+BPARcMV26scuIbdXn6bvM/PysTu2z19zfTjGt6tr+WxJBf83pg+75fo6nFtu9/kInHgCmUcc\njtjt2PM2vTqcIyenaW55m+Pk5JB96qnUvvoqJpHAPXgwkUWLsOfl4erbh8wJ4/H9ZDRZxxwDySTV\nzzyDOJzWs/kHH8S71170Gt0V03W3nN1pZ/C+hSyasZ7MPA95vTvOOXL7HYyY0Idnb5phfQBYF2K3\nERUMG9dzi88dCcVZ8b1VKc4YWPl9JcUDNalPqR+r7ZIUJyKPAl8bY+4RkRpjTHZquwDVG15viibF\nbZlIY4jqNaWsX76E/qPHkJW/qdUeu9bSsgYOu+N/AOT4nEz/zcHbXCc8kUhSGYwiYk2T21QmfKK2\nlmQ0CiLE160jWVePze8HpxPvsD0AiFdVEa+sxITDgFDyf/8HgLhc9HnkYfz7tJcgnH6NDVFikQQO\nhw1fYPMjBcHaCC9MnUVDtbXex8RLRtB/5Jb9HYfqoiyetY5kAj5/cQkur4NTrtibnKK2SYmqyY8y\nKU7tOtJ+6yYiLuB44E8bv2eMMSLS7icKEbmQ1BKFfftu+XKguzK310fRwEEUDdy+K5VVt1hAprYx\nRrKDz4rVwSixRBKf206Gu/2krmTSMH9dPec8OgOXw8ZT5+9HTmaUhEmQ6crE42j+sGAPBEiWl2Ma\nGyk59TTEbsfEYuRNnox32B7Eq6tZc+WfCH78MeLzMeDVV3AUF+M46RSSx/yUEo+f4mCUXH/7CXxb\nIlQfxSQNTpcdl3fzv2LeDBfeLZgM5MtyceLvfsLX01dS0DeTogFb/gx99YIqPn1uCWMm9mPSH/Yi\nI9eDP7Dt1666FxH53BhzwI7uh+qc7bFS3DFYd+frU6/Xi0gxQOprWXs7GWMeNMaMMcaMKSjYPneY\nqvNMPE6srIzYunUkUoVQBhRkcOa+femf7+fO00aTuYkEq8qGCL99bi6H3PYRT325krrG9guZ1Efi\n/PWN+VQGo6ytDfP3dxfy+PdPceSLRzJz3Uxiieb94uXlrDj9DOrff5+siRMxsRjicpE18Rirv7EY\nwY8/tr4PhWj89lv6PftflhzyUw575FuOvfcL7vlgMQ3hbSuqEqyNMO0fc3nymi9Y8MVaIo3xbTpe\ne0SEQIGP8WcOYfjBvfBmbD4Qx2MxqtetYd4nH1JXXkZ2oZUAOOvNEj58agF2h2Cz68KRyiIiDgAN\n5j8u2+Ph6hlYBQE2mIY1J3Jq6uur26EPaisk6utJ1NVZz7cDAULiJBSL43c5sJcsY8WZZ5JsbKTn\nrbeQeeSR5PpdXDVxKOF4kgy3A4+z/Sz3peVBPlpYDsBd7y3m1DG9223nctgYUpjBF8us57zDijPI\ncmcRT8b555x/MixrMHlZVq2IZCRCrLSU8n/cRfFNN5J/0S+xZWZiTy30Ik4n/gkTCH74ITa/D+/I\nkUh+Pm988G3T+d6Zt56Lxg8kw7P108DKVtSx1+m7EzRJ/C4HiXiCdP2ayWbWvm8pXF/Hvy+fQjwa\nwZsV4OdT72bixSMoX9XAHgcU48vSErDp1O/KN84Ebgb6AiuBq0qmHvv0thxTRF4B+mDNFL3LGPOg\niDQA9wMTgbXAVViFVvoCvzHGTBMRO9b/v+OxKhXda4x5QETGAzcC1VhFXQaLSMOGxWRE5ArgZ0AS\neMsYc6WITMYaSXUBS4Cf6xz3HSetAV1E/MARwC9bbJ4KPCci5wMrgFPT2Qe1dZLRKPVvT2ftNdeA\nw0HB9Pd47PtqXp27htP26cMp3jqSQSsju/KBB/GPHYstL48Mj5PNjR4XBdzYbYLfZefxX+zLMzNW\n4nM5OGF0T3L9zYHF67Qz5ZD+7N0rEydJRpoakos9RIdcSEWsBkdFDaQCuvh8ZBx9NA1vv03lE0/S\n8957cPZoHtlx5OTQ8683kaitxeb348jJQWw2ztq/L298t4ZYwnDWfn3JcG3br4Snt58LH5/J4rIG\nCrPcTPvVgfi26YhdIxxsIB61nrk31tWSTMTpP6qQ/qN09CvdUsH8IWj6p7Ab8FC/K99gG4P6ecaY\nKhHxAjNF5EXAD3xgjLlcRF4GbsL6P3gYVhLyNKwyq7XGmH1Sy8R+JiLvpI65FzC8RXU2AETkGOAE\nYD9jTEhENtQhfskY81CqzU2pY/9zG65JbYO0BnRjTBDI22hbJVbWu9qJJYNBqp9NLSMQj1MbTXLv\nh0sB+Ps7izj+suaRuMyjjyZq9xGpiRAXQ8QG7g4WlLHWgD+I+nCMJ74o4dW5awBYVxfm8iOH4Ggx\n9JvtEibE1lB2y63ULlwIxnDG229QW7qM5JwfYMAQAGocPuafdhG7XziFtaEEb/1Qw696tA5Wjtxc\nHLmt66EP75nFx3+cQDxhyPI68bm37VciZgyLy6zpX+vrItQ0xigMbFtiYFfwZWWz+z5jWfb1TEYd\ncQwu787wMWOXcTO0+VznS23floB+qYiclPq+D1Zt9Cjwdmrbd0DEGBMTke+w1v4AOBIYKSKnpF4H\nWuw7Y+NgnnI48NiGu29jTFVq+/BUIM8GMoDp23A9ahvpKhKqXTafj6zjjiX8/ffWtLDcLEb1zuab\n1TV4nDbcXjdFb75JMhQk2Wsg0/75LZWlQYYf1puVhQ7mVQT541FDyPG7aIzFqQ3FEIQcvxOfy8GQ\nokzqQxHG9PKzYG0mC9fXs6IyRCJpoL4GsdmwZ2Vh9/lIlJcTWbCgqW9SVUPssWfpMfVvTdsM8Kf3\nVlIZtBLzLjuscwmBXpcD7zbelbfkdzvYf0AuXy6rYlCPjC5JsusKvkCAI385hWQigd3pxOPXJbm3\no01l9W51tm9qePxwYGzqjvkjrKH3mGmeupQkVfrUGJPc8FwcK1t/ijFmejvH7HghhLYeB040xnyT\nKg4zfkuvRXUdDejdTCKWoLE+RkNNhKx8L76srQsoNrebwEknkXnkkZS7s/jv12v47RGDsItQkOUm\nN8ONK7s/AMu/raCy1Pp/4Pv3VzPh8tFc8+Z8LjpkAFkeBzOXV3Pe4zNx2IUnfrEvg4sy8cQb+eat\naWSuWM69J5zBPV9ncPnRQ5G1pay+8k/YfF6Kb74ZZ48e+MeNwzduHI1ff032Kafg7N2bXrff1qoQ\nSl6Gm6cu2I+/vDaPvrk+fj52t23/YW6FvAw395y5F43RBB6nnYLMnefZtDcza0d3YVe1EmuYvb3t\nWyuANeU3JCJDgf23YN/pwMUi8kHq7n0wULqZfd4FrhWR/2wYck/dpWcCa0XEiVV2dXPHUWmkAb2b\nCdZGefqGr0jEkhQOyOLYi0fizdy6oO4IBCi3efjZA180lUJ95VfjGFrUOjDkFPoQsRYnycr3UB+N\nk+WxkuIaognu+2gJ8aQhnjT8+4sVHDeymL7VC/jqJWtIf+2SRdzwt7vIkCir/3x100pv5Xf/k+Lr\nr8ORl0evv98OsRjidmPPahuY7DZhaFEm//r53rjs0qV33VuqvUI0apd2Fa2foYO1cuZV23DMt4GL\nRGQ+Vs3zL7dg34exht+/Tq0FUg6c2NEOxpi3RWQ0MEtEosCbWP2/BvgqdYyvsAK82kE0oHczlWuC\nJGLWMqjrl9WR7GgyeCcYDGv3M/l5AAAgAElEQVRrG5ter61tZHSf1usA+bNdnH7NvpSvaqBw9wCf\nra7mtSkHku93kTAwYUgPvlxmPXLbb0Au89bW0dMWado/Ho1itwnY7dgymoeC7YEA2Kzn6Z0pSyoi\nBLytM9RjiQT14Tgepx1fKshH4wmqgjEECETqcQjYAgFsrp1jeFx1LyVTj32635VvQBdmuRtjIlhT\ngjeW0aLN9Rvtk5H6msQKxht/oPgo9afNPqnvp2IlNbd8/36srHq1E9Dyqd1MsCbCi7fNpr4yzJ6H\n9GL/4wfg8XcwDathPVSvgEBv8BeAvXXbxlicTxdXcP20eQwrzmLqySPI28I70JpQlFXVIUKRBHNW\n1mC3wRkj8/j0mcepXL2SCedMpnDAIOwOB7Hyciruvx97Ria555yNo4PlYDenMRbni6VV3PnuIsYO\nyOOi8QPJ9btYuK6ea175ln/sk0nj1VeSqK4m/7JLCRx3HPZMvcFQm6Qrxamdmgb0bihUGyGRsFYq\n67C0ZsN6eGwiVC4BdyZc8qUV2DcSiSeoDcVwOWxkbyJzfXOi8QQ1wRjRZJIsj5Msr5NouJF4NIrH\nn4HN3jxn3SSTILLJZV47a31dmHFTPyCeGqV4/qKx7NMvl7vfX8wof5Je111GLFW4BWDg++/h6tVr\nm86pujUN6GqnpkPu3VBn1gMHIBa2gjlApB4qFrcb0N0OOz2yrIDbUF3F4q8+J693H3r0G4gno3PZ\n0i6HnR6B1gvNuDxeXJ7WJUuDkTjhWIJMjwOXo+Pyq5sjgM9lpy5srdaWkZqSdvgehSQqKkhUVLRq\nnwzpehhKqR8vXetxV+byQd/UfPKsntBjjw6bh+pqefX2m/jgsX/x/I1/pnxle9NVt15VMMLUtxZw\n1sNf8cGCMkLRbVs2Nc/v4vmLDuDUMb2558yf0DPbmg8+oMBPn74F5P7qV01tPaNGtZmjrpRSPyZ6\nh74r8xfAqf+GaAM4vZBZ1GHzZCJB7fp1Ta+r166hz7ARm2wfqqslFg5jdzrJyNl8sJy/tp4nv7SG\nwH/19Bw+u+LQpkS2rWG32xhSlMnUSSNblXH1OO14sjNJnDyJwOGHkWxsxJGfv03P65VSakfTgL4L\nSCTiRBsbcXo8OBwbPVPPKAA2v/xnLBJBRDjqost458F/ktOzFwP33neT7UN1tUz/110smz2DjJw8\nzrjp9s2Wcc1ssUqb12lnc0uVV9RHmLu6hsJMN31z/QR87ecLbKomuz0QsDLplVKqG9CA3s1FG0Ms\nmzOLudPfYOiBhzD0gIO3eJWwSCjIwi8/oyAnj5zySk675Pe4e/bEn53T8XlnzwCgobqS5XNnMepw\na5ZNOBQjHklgs0uroiB983zcceooPl1SweSDBnS4ylpFfYSzH53BvLV1ANx2ykgm7dXbmv6mlFK7\nIA3o3Vw42MAbd98GxlC64Af6jfjJlgf0YJAlMz6nR04x6+/8BwDuIUPo++gjmxymdrhceDIyCTfU\nA9BjtwHWsUIxvnl/FbPeKCEzz2PV4s6xnm1n+1xM2qs3x4/uicPWcXpHJJ5sCuYAb3y7lmNGFDXV\nVjfGgDHIZo6j1K4qtdRr1Bjzeer148DrxpgX0nCuh4E7jDHzuvrYqpkG9G5OxIbNZiOZSIBIq+lh\nW8LpdpOsqmp6naiutqaXbYIvkM1ZN9/B4hlfULz7EHJ7Wdnz8ViS2W9Zz8nrK8OULq5hyL6tn91v\nCOaJ2lqw2dqdG+522hhcmMGi9VYhlPMO7E91MMbCdQ3slu2G5/5DbPVq8i++GGdRx7kBSqXd9YE2\n5VO5vnabyqd2gfFAA/B5uk9kjLkg3edQGtC7PU9GJqdc/Ve+ffdNhh44vtPTzFpy+zMYtM9YfAVF\nxObPJ7a+jJ5/u7nD1dtsNjvZhcXs89NJG20XigZksXZJLWITCvq0v5BLtLSUtVdfg83lougvN+As\nLCQYiROMxPG57eSn1m6fVVJNn1wvTpuNCbd/RDxpOHRwPtcF8gn9/Q7CCxbS5/77NINd7ThWMG9T\nPpXrA2xtUE+Vpn4O6A3YseqYVwC3Y/2/PhO42BgTEZESYIwxpkJExqTanAtcBCRE5GfAlNShDxaR\n3wFFwB83dbcuIhnAq0AO4ASuNsa82l6/jDHPporH/MEYM0tE7gf2AbzAC8aY67bmZ6Da0oDezTnd\nbvoMG07PwUOwb5wQ10lun4/d9z2AaGOI4jvuwIaVUCbOzh0vEgpRWbqSNQsXMGT/cRx94QiCtRF8\nWS5c3rb/BBN1day75lpCX3wBQPk//oH7quu45e2FvL+gjAlDevCniUPpkelh4ohiAJ6dubJpAZkv\nS6qRY/sBkKytJRGNY08aRJ+vqx0jHeVTjwbWGGOOBRCRAPA9cJgxZpGI/Bu4GPhHezsbY0pE5F9A\ngzHm9tQxzgeKgQOBoVi10zc1/B4GTjLG1IlIPvCliEzbRL829udUHXc78L6IjDTGfLs1PwTVmj5g\n3EVsbTDfwOFy4Qtk48rPx5Gfv9lgHolHCMasgi7B6kqeueZy/vfkwzx9zeWETIyP1tfw0MwVVIdj\nbXe22RBv84Iz7iFD+WBhOc/NXk1lMMoLX6/m3XnrW+1y0KACClMJdpeMH4ht+VJc/ftT8NepzPxf\nFetX1JGIb/oRgVJp1OXlU7FqnR8hIreIyEFYxVaWG2MWpd5/Ajh4K477ijEmmXrWXdhBOwFuFpFv\ngfeAXqn2rfpljKltZ99TReRrYA6wJzBsK/qp2qF36GqbxCJh7E4XthbJZ5WNldwz5x7KG8u5ct8r\nsYWCVoKa2DjynAt5f0E5V7z8AwAzlldx31l7tVpS1p6RQdF111KenY3N4yF70kmsndk6gK+tDbd6\n3TPby+tTDiKeSOJ3O/CF86kdvR8fvL6e0iWV/PDZOn5241j8nV1FT6mu0+XlU1N34XsBE4GbgA86\naB6n+ebNs5lDR1p839GQ1llY8133TpVgLQE8G/dLRN43xvyl6YAi/YE/APsYY6pTiXib65PqJA3o\nOwljDKHaGoK1NYQb6skuLMbl9W5xRvr2Eo9GWbdsMbNee4niQUMZcehReDIywRjeXPYmLyy2Rupq\nIjXcedAd7L7vARQUFpNTVcOquL/pOOvrwsQSbe+cnT16UHTD9QggDgen7O3k31+UUNEQJc/v4rR9\n+rTZp1XtcW8OSz+tpnSJlQmfiBt+DHULVLfU5eVTRaQnUGWMeUpEaoBfA/1EZHdjzBLg58D/Us1L\ngL2Bt4CTWxymHmhbi7hzAkBZKphPIPWBpZ1+bZwMlwUEgVoRKcSqGPfRVvZBbUQD+g5Q0VjB9JLp\nFPmK2Ltwb7JcmVSvKeWlqTdQV566ExVhz4MO5eCfn4cva+db/KSxoZ4XbvwziXickrmzGbz/YXzz\nwTIaqiMceeyxPJP5DKvqV2EXO06niyN/OQVbfQNrplzK6Tfdwqx1uZTVRbjz1NHkbqLgi83R/M+z\nKMvDm5cdREM4Tobb0WHN8XAwSiySZNiBPQnWR1n5XSUH/LQPsTkziY8ejiNn0/Pnlepy19c+zfUB\n6Nos9xHAbSKSBGJYz8sDwPMisiEp7l+ptjcAj4jIjbQOnq8BL4jICTQnxXXWf4DXROQ7YBawoIN+\nNTHGfCMic1LtVwGfbeF5VQe02tp2Vhup5Y8f/5HP11gzRW4/+HYOzhvLY7+7iMb6ulZtAz0KOe43\nV+LNzMLpduMLbL4m+JZIJhKIzbZVVc1qy9bx8BTrw/fAMfvRa88zmTHNmo5WNCCLfqc5eabkSX6/\n9+8pzrAS1xKhEHVvvEHty6/AiafgHTeO/KJ87PauS+UIB2PMeG053320Gl+Wi5Mv34v40sUEX3ia\nhtenUXT9deScfnqXnU/tUjSrUu3U9A59O4slY5Q2lDa9LqkrYXikT5tgbnc4mDjlct669w6qSldR\nPGgoJ15+dZcF9bqKMj5//mmyi3oy6rCj8G7hKIDb52fMTycx+/VXyC7qSTza/MEwFkkyNGcIf+39\nV9z25jvpmqSdLwYfQMFfxjMox02230UkkWTpunr+t6icI4cVslueb5uqrCXiSb77aDUAobooK+dX\nkfPGMzS8Ps16Pxjc6mMrpdTOTAP6dpbtzubGcTfyx4//SKGvkJMGncTSt9rms2QX9aSsZBlVpasA\nWLt4ATXr13VJQA/V1fLaHVNZt9RKiPVnBRhx2FFbdAxPRib7nXQqex97Yiohzkvt+kZCdVEm/Gwo\nvkx3qzv/usYYV7/yPW99bxV3ue+snzBxRE+qaxo58d7PiCcN93ywhA//MJ6iwNYHdJtNKOibSfnK\nekSgqH+AzF9dQnzdWhxFxWSfeOJWH1upXY2IjACe3GhzxBiz347oj+qYBvTtzGFzMCJvBM9MfAa7\nzU6OJ4eaXm0TvMLBBgI9mmeNiNjwd7CQy5YwxhCLNiezRsONndovXl2NCYcRlwtHXp6VsNec38ah\nZ+9BMpHEk9H2mXgknmR+i6Va56ysYeKInlQFo03zxxtjCRpjia28Kos308Vxvx5JxaoGsvK9+AMu\nnJ5Met99Nzid2H0bTwdWSm2KMeY7YPSO7ofqHJ2HvgM47A7yffnkeKzkrF5D9sCb2TrZNFhdxbol\nC5l46eUMO/hQTrn6RryZXZMc58sK8NPfXEmfPUcw7ODD2OPA8cSTccoby6lorCCRbBtU41VVrL3m\nWpZMOJSVF0wmXlHRpo3L62g3mAMEvA6uPW4YboeNngEPZ4/tB0BxwMOhQ3tgE5i0Vy8C3tbz2xN1\ndcTKy0nU12/B9bnpu2ce2YU+nB7rM6s9ENBgrpTq1jQpbidgkkmq1qzm5VtuoLbMynIXsTHskEMZ\nf/YFuLy+VvO8u0q4oQGbw47T7WFB1QIueOcCRIRHjnyEIblDWrWNrl7N0sOPaHrd78UX8O655xad\nrzEapz4cR0RaTTGz7tKTuOy2VvPR49XVlN1xBw3vf0DWUUeRf+kUzVBXO5Imxamdmg657wTEZiO3\nVx/OuPF2QnW1hBvqCfQowuX14fH7N3+ArbRhXfdgLMg/5/yTuqg1JH7P3Hu49eBb8TqaV2sTtxtn\n797EVq/GlpmJo2DzNdQ35nU58Lra/pPbVJnUaEkJtc9b89mrn3mGwMmTNKArpdQmaEDfSYgI/uyc\nDmuMp4vb7mZkwUg+Kf0EgFEFo3DZWgdZZ0EB/Z55mkhJCc7efZAuep7fEZvH0+FrpZRSzTSgKxw2\nB6cPOZ1RBaMQEYbmDMVua5tpnsjJZVGjnXveWcrBgxo5YXSvVkPkXc3ZsyeFV/2Jurenk/XT47Bv\nxaiAUrs6EbmeFkVYuvjYJaQquXX1sbuCiBQArwMu4FJjzCcbvd+t6rRrQFcAZHuyGdtzbIdtqoMx\nTn/wKyLxJO/PL2NMv9y0BnR7IED26aeTdfzx2Px+bJ2s7qbUzmbEEyPa1EP/7pzvdnQ99B1KRBzG\nmHiaT3MY8F179dhFxN7d6rRrlrtqZXNJki3f3h75lDaXC0d2tgZz9aOVCuYPYa13LqmvD6W2bxUR\n8YvIGyLyjYh8LyKniUhJqpQpIjImVYN8g1Ei8oWILBaRyR0ct1hEPhaRuanjHpTafr+IzBKRH0Tk\nho12myIiX4vIdyIyNNV+39T55ojI5yIyJLX9XBGZJiIfYJVOzRCR91vsf0KqXT8RmS8iD6XO+Y6I\neNkEEZksIjNTP48XRcQnIqOBW4ETUtfjFZEGEfm7iHwDjBWRj1I14hGRo1P9+EZE3u/oOnZWGtAV\nAI31dXz3wTu89/C91Kxf126bHJ+TJ87bh4MG5XP1sXvQO2eTv19KqWYd1UPfWhvqjo8yxgwH3t5M\n+5HAocBY4NpUEZX2nAlMN8aMBkYBc1Pb/2yMGZM6ziEiMrLFPhXGmL2A+7EqqYG1VvtBxpifANfS\n+lr3Ak4xxhxCc131vYAJwN+leUWqQcC9xpg9gRpaF5bZ2EvGmH2MMaOA+cD5xpi5qXM/a4wZbYxp\nxFo546vUz+3TDTunhuYfAk5OHeP/OnEdOx0dct8FRRNRHDYHNmn+PFe2fCnvPHA3ACu+ncMZN97e\nJkHP7bQzqkcmfzl4MJl+J57tPIunvirM0jll9OibRV4vP26f3rWrH4V01UP/u4jcArxujPlkMzUZ\nXk0FtEYR+RDYF3ilnXYzgUdFxIlVG31DQD9VRC7EihnFWDXMv02991Lq62xgUur7APCEiAwCDNDy\nl/VdY0xV6vsNddUPBpI011UHq777hvPPxqr5vinDReQmIBvIAKZvol0CeLGd7fsDHxtjlgO06F9H\n17HT0YC+C0maJCW1Jdz3zX0Myx3GpEGTyPZY2erhUPMa55Fg0Pqnu5FQfZTX7v6GilUNAEy6fC+K\nB6Y/2x0gWBvhpdtm01BtrXB38hV7U9R/56tCp1Q70l4PPTVE3FHd841/o9t9YGaM+TgVXI8FHheR\nO4BP6LiG+YZlJxM0x5QbgQ+NMSeJSD9aV3lrWVCh3brqGx13w7E7GhJ8HDgxVc3tXGD8JtqFjTFb\nshxlR9ex09Eh911IVbiKX0z/BdNLpnPn13cyY92Mpvf6DBvBiEOPomjgYE668jo8mZlt9jdJQ21Z\n8zKx5etqaYx3btnYbWWSpimYA1SvDW2X8yrVBa7Cqn/eUlfUQw8ZY54CbsMaxi7BqnsObYenTxAR\nj4jkYQW7mZs47m7AemPMQ8DDqeO2V8N8cwLAhipU526mXZu66lshE1ibGlk4ayv2/xI4WET6A4hI\nbov+deY6dgppDegiki0iL4jIglSCw1gRyRWRd1PJGe+KiK4Usp0YYwjGmj8cb1hIBqzlYMeffQGT\n/nQ9RQMHY3e0HbxxeR0ccvYgPBlOinfPwt0vTkO0oU27ZGMjidrazSbYbQmH286Yif0AyCny0XfP\n3I532AqRUIx1y2tZ8OVaQrWRze+gVCekstknAyuw7oxXAJO3Mct9BDBDROYC1wE3YdU9v0tEZmHd\n0bb0LfAhVuC60RizZhPHHQ9sqFl+GnCXMeYbYEMN86fpXA3zW4G/pY7T0Ujwf4AxYtVVP5vmuupb\n6hrgq1TftvgYxphy4ELgpVTC3LOptzp7HTuFtC79KiJPAJ8YYx4WERdWIshVQJUxZqqIXAnkGGOu\n6Og43X3p1+0lEo8wu2w2t8y4hd2zd+fP+/2ZXO+WBcbS6jVUNdTi9xZSHw1SnJlNjxZ38/GqKsrv\nvpvo0mUUXnUV7sGDEPvWV09r1f9QjHg0iTPWQLx0FY78fBy5udi6aI32tUtqeOn2rwEo3j3AMReN\nwLuJtenVLkmXflU7tbR94hCRAHAwqWEKY0wUiKamJYxPNXsC65lEhwFddQ23w80+hfvwxKGPYksY\nHDF7x0+l2pHtDxCM+Tjxnq+oC8f53RGD+MU4D5keK1ek4cOPqPmv9eF21S9/Sf8XX9iqZWLb7b/P\niT1aw9obrqfhvffAbqf/C8/j2WOPLjl+ZWnzaEPVmiDJxM5f50AppTZI55B7f6AceCw1h+9hEfED\nhcaYtak262jOaFTpkkhA/TqoXEayvobF//sfj06ZzLQ7biZUW9P+LvEEDTURylbUEaqLNm33u/z8\nb0EVdWFrPYh/f7GCxmjz6J60WJ5V3G7oOPN2i5lYjNCXXzZdV2j27C47dv9RBeT3zsDhsnHImUNw\neXf6ETaltoqIjEjNzW7556sd3a/NEZF72+n3L3Z0v3YW6fwfy4GVUDHFGPOViNwFXNmygTHGiEi7\nt0GpKRIXAvTtuy2zOxTVy+DhwyBcS+zcT/j4qUcBKJ3/A2Uly+g3aq82uzRUR/nvjV8RjybJ75PB\nT6eMxpdlDT+PG5SP0y7EEobD9yjE42weUvcfMJaCyy4jvGgRBZddij0vr0svxeb1kn/JxQS//Apx\nucgYP77Lju3PdvPTS0djjMHlseN0dc2jAqV2Nj/WOufGmF/t6D7szNIZ0FcDq40xGz71vYAV0NeL\nSLExZq2IFANl7e1sjHkQeBCsZ+hp7Gf3N+tRCNcCIMEysguLqVm/FhEbgR5F7e5SVlJHPJoEoGJV\nA4lYsum9Afl+Pv7jBOrDcfIz3GS1qGHuyMkh75cXYuJxbK6uf/5sz8ggceqxvLN3gjxvHuPz/XTl\nWTZ8aFFKqR+btAV0Y8w6EVklIkOMMQux1tSdl/pzDjA19fXVdPVBpRQ21y33f/RnTrv2NVbO/4Ee\n/Qbgz2k/Ka5wQBYur4NoY5zi3QPYnc1PZzxOO8UBL8WbmAYuNhuymWBeF6ljXuU8ltYs5Yh+R9DD\n16NTl1Idrub3H/+BueXWehOXhis5f8T5rRbJUUqpXVG6HxJOAf6TynBfBvwC67n9cyJyPtb0jVPT\n3Ac15Bg46m+wegbseyEZWRkMO2hCh7tkZLs587r9iIbjuH3OLbpzTSTihOvrsTudePwZ7bZZVLOI\nye9aS0pPWzqN+w+/v1MZ9/FknBV1K5peL6xaSDwZx2XXO2ul1K4trQE9tWzfmHbeOiyd51Ub8eXB\n/heTCJ9DOBojURfEkyG4PJtOcbfZbfiz3fhxb9Gp4rEYaxfN571H7iOvd18OP/8SfAFrNbmaUJTv\nSmtpjCWodzQvkrW6YTWJTi7elOHK4Ip9r+CqT68iw5nBRaMu0mCulFJ0MqCnFq6fjLWWbtM+xpjz\n0tMt1eVEWLV4ES/97TowcPzv/8SAvfbF1kVzxDcIN9Tz2p1Taayvo6p0NQP33o89D7E+v321vIpf\nPjkbj9PGS7/ejzGFY1heu5zrD7ieTFfblena43V4mdBnAu+e8i42sZHj1nWJlOqORCQbONMYc99W\n7FtCF9VpF5G/YK3z/t62HivdOnuH/irWer7v0XYFIrWdxRNxKsIVlDaUslvWbuR78ze7TywSYe70\n1zFJK7ltzvTX6T1sJB6/v932DdVVlPzwDf7+PfFlBeiRUchmij8AYLPZ8GXn0FhvrUKXkduc5T5/\nrbUtHEvy+/8u5bHzb8NuM2S5snA7Oj8S4HP68Dm7ZjEZpbaH+UP3aFMPfY8F83dIPXTZPnXIu0I2\ncAnQJqBvz2swxly7Pc7TFTqbSeQzxlxhjHnOGPPihj9p7ZkCIFhTzVevPMf3H75LqM7KVK8MV3LC\nKydw7tvncv7086lsrGy1T024hteWvsYD3zxAeagcAIfLxdBxhzS1GXrAwTg97QfRYE01Hz7xIOFe\nHs799EJ+Pv1sSmpLOtVfXyCbk/90A/tNOo3jfnMlhf0HNr136pg+DCzIwOu089vDB5PtzqHAV7BF\nwVypH5tUMG9TDz21fauJyM9EZEZqLvYDImIXkYYW75+SKqSCiDwuIv9KzTW/NbUE9ysi8q2IfLmh\nHKqIXC8iT0o7tdNF5HKxao5/K21rom/ct7NT7b4RkSdT2wrEqlU+M/VnXItzPipWbfJlInJp6jBT\ngYGp67tNRMaLyCciMg0ruZrUNcwWq2b6hVvws2uzX+rn97hYdeC/E5HftvjZnZL6/tpU378XkQel\nM3c521Fn79BfF5GJxpg309ob1Uo42MC7D97D0tnWzL/DzruY0UcdS2lDKaG4VethWe0yosloq/0+\nKf2Eqz616j7MWjeL2w+5nYAnQL9Re3P+3Q9jTBJvZhZ2e/t//fFohOzB/blr/n1Uha0qgvd+cy83\nH3hzp55XZ+blc+BpP2+zvWe2l2cv3J8khkyPo9X8daW6sY7qoW/VXbqI7IG11vq4VGGT+9h8UZLe\nwAHGmISI/BOYY4w5UUQOBf5N87z0kVjlRP3AHBF5AxiOVZ98X6wPJdNE5GBjzMft9G1P4OrUuSpa\nFDq5C7jTGPOpiPTFKnG6YZnHoVj10DOBhSJyP9Y05+Gp2uyIyHistU2GbyhzCpxnjKkSES8wU0Re\nNMa0vsNpX5v9sB4p90rVl98w5L+xe4wxf0m9/yRwHPBaJ863XXQ2oF8GXCUiESCG9RdqjDFZaeuZ\nIplIUF/V/Aiotmw9ALtl7cag7EEsrlnM8QOPx2tvndy2pqG57sL6xvXEUyNTHr9/k0PsLTlcLogm\nGJDXr2l62JCcIThs255DmZ+pd+Nql5OOeuiHYVVWm5m6SfSyiTU9Wni+RenQA0lVZDPGfCAieSKy\n4f/z9mqnHwgciVWkBaya44OANgEdODR1rorU8TfUFj+c/2/vzuPrKqv9j39WcjKnmdq0dIK2lBkK\nhTBPZS6CtKIyXK4yCaJw4adeEWeUSRGRQbhIFSmoIDILCFSQQaCUMBRoS6HQIp2bDumQOVm/P/ZO\nc5qcJCfJORlOvu/XK6+cs8cnu2nWeZ797LVg96hObYGZNT8G86S71wK1Zraa9jOIzokK5gCXmtkX\nwtdjwzbFE9Bj7bcQmBB+2HkSeDbGfkeZ2eUEH8hKgHkMtIDu7vHNWJKEyskfwtRv/D+evOVXZA8Z\nwn4nTQNgaM5QZhw/g/qmerLTs7fWNG926k6nMmflHNZUr+G6w66jKKtl/ZqqNfxp/p8Ynjucz034\nHMXZbSeV5RYWM+nQY9i+roy9SvYiP2cIB446aJtnvWurG2ioaySSmUZWVGIZEWkj4fXQCTpVM939\n+9ssNPtO1NvWNdG3EJ9YtdMNuM7df9elVm4rDTjI3WuiF4YBvnXt8/Zi09afIeyxHwsc7O5VZvYC\nbX/mNtrbL6z1vjdwAnARwSPV50Xtl01wP7/M3T8zsyvjOV9virvLZUGZ052I+gFiDbdI4lhaGsPG\n7sCXf3INaWnp5AxpGRAZmtN+StXS3FJuPPJGGryBoqwi0tOCoe31Neu5/KXLKV8VVK5r9Ea+usdX\n257XjMLSEeTXlzBmxIQ2pVSrN9cx+9FPWDx3DRP3G87+J49PuapkFdUVNHkTeRl55GV0Pqoh0oEf\nENxDjx5271E9dOA54DEz+427rw6HtYcQZOLcjaC3+QVgUzv7v0wwRH9VGOAq3H1jGFynmdl1BEPu\nUwiGvqvDbf/s7pvNbOS8FlcAACAASURBVDRQ7+6xRgWeBx4xsxvdfa2ZlYS99GcJcpP8CsDM9gkf\nbW7PpvBnak8hsD4MyrsS3CaIR8z9zGwYUOfuD5nZQuBPrfZrjn0V4cjClwgyoPYb8T629jWCYfcx\nwDsEF+A1gqEVSSJLSyOvsOuPZhVmt03j1uiNFGYWMuP4GWSkZVBVX9XhMdIzYve8N6yqYv6/g2H9\n915Yxq6HjIoZ0GsbatlQu4G6pjoKMgsozGontVw/s3LLSs7+x9ms2LKCHx30I06ecLJm1Uu37fbB\ngr8s2HU3SOAsd3efb2Y/Ap41szSCW6EXEwTfJwgKY5UTDI3HciVwl5m9S/Dh4uyodc2104fRUjt9\nefhB4bUw6G8G/psYw/zuPs/MrgFeNLNGgmH6c4BLgdvCc0YIhusv6uBnXGtmr5jZ+8A/CIbBoz0N\nXGRmCwg+wMxu71hx7jeaoJhY81DkNqMf7r7BzGYA7xMUFnsjzvP1mrjqoVtQfH5/YLa77xN+qrnW\n3U9NdgNB9dATpbGpkaWbl3LO0+dQUV3BhXtdyDl7nhP3M+DN1vxnEw9c2/K7fOZPDqBkVNu/GwvW\nLeCsJ8+ivqmeb+79Tc7e4+wBERjv/+B+rnn9GgAKMgt4dNqjlOYmpgSsDGj9akZzMoTDyJvd/Ya+\nbot0XbyPrdU03/cwsyx3/wDYJXnNkmRIT0vnteWvUVEdTLS7a95d1DTUdLJXW0OGZnPolyay3YQC\njjhjZ/IKY090m7VkFvVN9UCQ3rV5Zn5/t+ewPbHwb/ek0klkpGmOgIj0f/HeQ18aTuF/FJhlZusJ\n8rDLALPP8H1IszSavIn9hu/XrZnr2XkZ7DllDLsetB0Z2RHSI7E/Fx4/7nhmzptJXVMd0ydOJzfS\n/3vnAOMLxvPotEdZuWUluw7dtc2kQ5FU5e5XxrutmQ0luJff2jFxPjqWVP29fckQ15D7NjuYHUkw\nqeBpd6/rbPtE0JB74lTVV7G2ei0rt6xkx+IdKcnetiDK2uq1NHkThVmFPc6RPlDvoYu0I+WH3GVg\n68os930JnkV04JXeCuaSWM1pU8cWjG2zbsXmFVw460LW1azjxik3su/wfclI7/5wc1YkixGR9h4n\nFRGRRIrrHrqZ/QSYCQwlmPn4x3CGpfRjVZUb2Lx+HY319XFtf9/C+1iycQkb6zZyzevXsLFuY5Jb\nKCIiiRJvD/0sYO+oiXG/IHh87epkNUzit65mHX//+O9srN3ImbudybCcYWxaW8Gjv7qK0ftMYtep\nJ5CRmUVJdsnWZ9Jj2a1kt62vJxZO7PKQe31jIxtrtrC2bhVLKhez74h94yocIyIiPRdvQF9O8FB9\n85ToLGBZUlokXdLQ1MA98+7hD+//AYD5a+fzyyN+yXv/fJqCkdtRNWkon3v8ZPIz87n3xHsZXzh+\n2/0bG9hcv5mcSA6HjDyEGcfNYE31Gg4ddWiXHmfbVFPPq4vWUlS8hgv+eRaOs3Pxzsw4bgYlOSWd\nH0BEEs7MTgF2d/dfxFi32d3bPG9qQUGXJ9z9wTCL2v+6e69PYjKzfYBRya4hYmY/cPdrw9fjCH72\nPXt4zFKCfACZwKXu/nKr9b8HbnT3+T05T2vxPrZWCcwLq878keDB+g1mdouZ3ZLIBknXNHojSzct\n3fp+ZdVK6pvqKRkzlu0mT+LOD++i0RuprK3krwv/us2+VfVVvLL8FR766CHmrJiDmXHQqIP4/I6f\n73IQ3lhdz+0vLGJBxQd4mDnyo/Uf0eiqtivSV9z98VjBfIDYB/hcsg5ugTR6lrGvPccA77n75BjB\nPN3dv5boYA7x99AfCb+avZDohkj3ZKVncem+l7Jg3QK21G/hykOupCiriNxJk6lYv4p90yazuDKo\nZXDQyG0zI26q20R+Zj7LNi9j3tp5bF+4PQVZ3au3Y2Z8vGYzk0sPZOyQsXy26TMumXwJ2ZF+lepY\npE/cdtHzbeqhX3zH0T2qhx72Jp8myHR2CEHmsj8CPwOGE9wq3Z0g9/glZjaeoLpbPvBY1HEMuBU4\nDvgMiDnh2cyOD4+dBXwMnOvum9vZdj/gxvBcFcA57r7CgnKsFxL0XBcBXwlTsH4Z+ClBHvdKglzr\nPwdyzOwwgjzyf41xnisJrumE8PtN7n5LuO7btORi/7273xRes2eA1wmK28wJz/EOQaGVHwLpYUa4\nQwhGoqeFxWpi/Zxtfh5gZ+D68LhlwMEEmft+F/5cF5vZ1YQjH2Y2leB3I50gBe8xZnYAQXW6bIK0\nu+e6+8JYbdimPd14bK0YGOvu73Zpxx5IxcfW6mtrqfhsCQte/hcTDziEERMmkpXT/ee0K6orcHeK\ns4qJRJVFXV+zno/Wf0R+Zj4bazdSklPCDkN2ICuSxYaaDcx4bwb3zL8HCBKq3H7M7TELtnSmqraB\nN5as47kPVnH2YcPIy0ojLzO3y1noRPqxbj22FgbzWLncL+hJUA+D0yJgMkEwegOYC5wPnAKcS5A7\npDmgPw486O73mNnFwC/dPd/MTgW+AUwlqHI2H/ha9JA7sAR4GDjR3beY2feArOZSoq3alQG8SBAI\n15jZ6cAJ7n6emQ1tfgY8DGqr3P3WMBvpVHdfZmZFYZrVc5rb3sE1uJKgCtzW0qvAdgQlYO8mSFNu\nBAH8v4H1wCcEpV1nh8fYeush6pqWufs7ZvYA8Li7t87r3nz+9n6ebdpuZg6c7u4PhO+br+unwFvA\nEe6+uDnvvQWV76rcvcHMjgW+4e5fbO86NIs3l/sLBL8gEeBNYLWZveLu345nf2mrZtNG7v/J5TQ1\nNvL2M09y3m9+16OA3t7ks+LsYiYUTeCMJ85gVdUqMtMyeerUpxgRGUFuJHdrJjeAusY6mrwp7nOu\nqVrD+xXvMzJ/JKPyRnHkLsM5YMJQsiNpzRWURCQJ9dCjLHb39wDMbB7wnLt7GCDHtdr2UMKSqcC9\nwC/D10cA94WlVZeb2fMxznMQQW//lfD/diZBPY9YdiGonz4r3DYdWBGu2zMMfEUEvfdnwuWvAHeH\nAfThOH7uaLFKrx4GPOLuWwDM7GHgcOBx4NPmYN6OxVFFY96k7XWM1t7P01oj8FCM5QcBLzWXhI0q\nNVsIzDSznQgeFY/r+eF4h9wLw0o8XwPucfefhgn2pZtqq6poagzvL7uzZcM6ikeO6nin+hqo3Qjp\nGZAT9KJXbVnFexXvsWvJrgzPHR5zZnpVfRWrqoJa6nVNdWypDyoQZkYyuWCvC1i5ZSUbajdw5cFX\ntkk0056K6grOf/b8rcP5vzriV0wdP5WcjPZn0YsMUsmoh94suuxoU9T7JmL/fe/akGwLA2a5+5lx\nbjvP3Q+Ose5uYLq7zw17sVMA3P0iMzsQOAl4Mxyyj1e8pVebdVZGtvXxcjrY9m5i/Dwx1ETVoo/H\nVcC/3P0L4ajBC/HsFO+kuIiZjSSoD/tEFxol7cgtLGLi/sHv+9jd96Jk1JiOd9i4HJ6/Cu4+CR44\nG/7zGlWbVnLWU2fxrRe+xRce+wLra9bH3LUgs4DTdj6NnEgO03ecvs2QemluKdcedi23HH0LE4om\nxN2zrmmo2RrMAf6x+B9UN8S8zSQy2LVX97wn9dC74xXgjPD1WVHLXwJON7P08O/8UTH2nQ0camYT\nAcwsz8x2buc8C4FSMzs43DbDzPYI1w0BVoTD8lvbYGY7uvvr7v4TgvvNY+m8fGpHXgamm1mumeUR\nlJJ9uZ1t68P2dEfMn6cLZgNHhPMbsKAMLgQ99OYnyc6J92Dx9tB/TjCU8Iq7v2FmE4CP4j2JtJVb\nWMjxX/8fjjn/G6Slp5Nb0Cotan118JWZD9Xr4Q/HQ+VnwbqKD2Hxi2Sffi/jC8axqmoVNY01rK1Z\ny4i8tpnZirKLuGzfy7ho74vISs9qM/EtP7O9Covty45kM2bImK0z7I/e/miy0zUBTiSGZNRD747L\ngL+E978fi1r+CEEp7PkEHzLaDKWH98LPAe4zs+ZqTD8CPoyxbZ2ZfQm4xcwKCeLMTQT3+X9McD97\nTfi9OWD/KhxeNoL863PDtlwRTliLOSmuPe7+Vvj43Zxw0e/d/e2wt9vancC7ZvYWwaS4rmjv54m3\nnWvM7ELg4XDG/WqCyYnXEwy5/4i2ZWPb1eVJcX0hFSfFdahqLbz6W1jyEhz2HajZAI9+o+12xeP4\nz2l3cfKz53LAdgdw/RHX9+oz36urVjNnxRzGDBnD+MLxytUuqa7bE0OSMctdpLV466HvDPwfMMLd\n9zSzScAp7t4rmeIGXUCf+1d45MLg9aTTICMP3vxjzE0bvzWfdRmZRNIi3Zqd3p801DVSsyWYpJed\nl0EkU/fjpV/RTE/p1+K9hz4D+D5QDxA+snZGh3tI921aAXnDYPhuULkUtj8o9nZDJ5KenkFpbumA\nD+buzsrFG7n3R69x749eY8XHlXhT/x89EhnMzOwRM3un1dcJSTjPuTHOc1uiz9PB+W+Lcf5ze+v8\n8Yr3Hnquu89pNWGqIQntEYC9ToOxB8DqBTCmDPKGw9AdYe3HLduYwYnXQ/7wvmtnAtXXNvLOrP/Q\n1BgE8Xdm/YcR4wvIzO56vXYR6R3u/oVeOs8fCZLm9Al3v7ivzt0V8f61rDCzHQkfeQgnPKzoeBfp\ntrpNwWx2b4IRe8LZj8M5/4C37oEPn4Iho+DI70FJS172DTUbeGnZS3y4/kPO3PVMRuePTnizmmul\nD8kckvAMcJGMNMZNGsan768FYNykYUQy4x1AEhGReAP6xQQzAXc1s2XAYro3RV/iUfFhEMwBVs+H\nxnoYsh0c9i3Y/zxIz4KsbWemv7biNX7472CC5jNLnuH+k+5naM7QhDVp5ZaVXPDsBazYsoLrDr+O\nw0cfntCgnpaexk5lwxk1sQhwcguzSEtTQBcRiVeHfzHN7LLw5Uh3PxYoBXZ198Pc/dOkt26wcYdN\nK2G7veDUOyGSDcdfBRnh0y7pEcgd2iaYA3xa2fLPsbpqdZcyvsXjw3UfMTJ/JLWNtVz3+nVsqtuU\n0OMDZOVmUDIqj5JR+WTndfexUBGRwamzLlDzTf9bAdx9i7sn/i/5ILa+Zj1rqtZQXV8dPGf+u8Ph\n5r1h+Vy49B2Y/FXILqChqYGOnkiYvtN0xheOJ5IW4YcH/pDcjO6nkY3mTc6GVVU0vDiMCzL/l6vL\nrmPn4p3JSFfAFRHpTzp8bM3M7gPKgFEE1XW2rgLc3Sclt3mBVH1sraK6gu+++F0+XP8h393/uxyX\nVkzePae0bPCdhTBkO5ZtWsZt79zG+KLxfGmnL7U7o735HnduRi55GXkJaeOWylr+evUcqjcFj5Od\neNkeFI/PHPCz6kW6IaUeWzOz6cCHiSrjGVYW+6q7X5qI43Xj/Ftrv1ureuQET2n9l7tv6Iu29ZYO\n76G7+5lmth1BlrhTOtpWuu6VZa9Qvir4oPLTV3/KodOfIM8sGHofNRnSIqytXsslz1/Cog2LABie\nM5xpE6fFPF70PfPK2kpeXf4qH677kNN2OY2R+SNp8ibW1azD3SnKKorZy65vrKemsYacSA6RtODX\no7a65YGGpmpTMBdJDdMJgl5CArq7lwN91vNy98cJiq9ASz3yr4Xv20v7mlI6nRTn7iuBvXuhLYPO\nqPyWYiylOaU0pWew5tvzyKjZSFHOMMgbhldVbJMjfXPdZpq8iTTr+G7JexXvcflLlwPw3GfP8ccT\n/sjGuo2c+/S51DTWcMexd7DXsL1IT2tJ3rKxdiOzPp3FU4uf4vRdTufQ0YeSlZvNiRftxasPLmLY\n2HxG71SU4Ksgkvp+ffrJbTLFfeevT/S0Hvp/E/Q+MwnSjn4T+C2wP0FBkQfd/afhtr8g6JQ1AM8S\nVDQ7BTgyTC/6RXf/OMY54qpf7u5HmNkUghrfJ3elnneYUvYLBPnLRwN/cvefheseJcjrng3c7O53\nhstj1RA/h2BE+fe0rUe+gKCcaYWZfZWgdKkD77r7V+K/6v1bhwHdzB5w99PCUnzRY/O9OuSeqnYp\n3oVbj76VeRXzmDZxGvfMv5d759/LieNO5IoDr6CYoPzpTUfdxNWzr2Z0/mgmlU5i0fpFTCye2GFQ\nX7Vl1dbXa6rW0OiN3PnunaytCR4Lu6H8Bn57zG8pymoJ0JW1lVz52pUAvLHyDZ754jOMzM9j7C7F\nTP/2vqRnpJGVo+fCRboiDObRudx3AGb8+vST6W5QN7PdgNOBQ9293sxuJ3jy6IdhPe104Lkwq+cy\ngoC5a1hatbne+OPAE+7+YAenetjdZ4TnvJqg1vqtwE8IapwvM7NYn/I/AA6Pqud9LS2lW2M5gKDk\nahXwhpk9Gfb4zwt/npxw+UMEc79mEFVDPPpAYR3zn7BtPfLm67YHQQ76Q8Lg3nu5sntBZ5Pimme5\nnwx8Puqr+X2HzGyJmb0XZtUpD5eVmNksM/so/D5ox28LsgqYMnYKF0++mCZv4p759+A4Ty15auss\n8vS0dHYu3pmL97mYUfmjuHDWhXz3pe+2W1mt2ZSxUzhs9GGMyR/DDUfeQGFmIXuXtgy07DF0D7LS\ns7bZJzpxkJltfZ+ekU5uQaaCuUj3dFQPvbuOAfYjCHLvhO8nAKeFRUbeBvYgqGFeCdQAfzCzUwmC\nZrz2NLOXw07dWeExoaV++QUEveTWCoG/mdn7wG+i9mvPLHdf6+7VBKMHh4XLLzWzuQRVycYCO9F+\nDfF4HA38zd0rurFvv9fZPfQV4feePKJ2VPPFC10BPBdOXLgifP+9Hhw/qRqbGqmsqyQzLbNbVcni\nlR3JJieSQ3VDNUMytk3ckmZpfLbpM37/3u8B2Clrp06H3IfmDOUXh/+C+qZ6CjILyEzPZOr4qYwv\nHE91QzV7l+5NTmTbMr9FWUVcf8T1PPnJk5y2y2kUZBa0c3QR6YJk1EM3YKa7f3/rgqAE5yxgf3df\nH1Ybyw57yQcQBP0vAZcQBLZ43E336pd3tZ5369nZHg7hHwscHA7zv0Aw9C7t6GzIfRNtLzS0DLl3\n5y/+NFqKwM8k+IfulwG9samRD9Z9wM9n/5wx+WP4wYE/SGiylmjFWcU89PmHeGfNO0wePpmh2due\n57gdjqOmsYblm5Zz7p7nxjUxrXX1s6KsIg4ceWC72+dn5nPCuBM4csyR5ERy4q6N3lptQy1ZkazO\nNxQZHP5DMMwea3l3PQc8Zma/cffV4dDx9sAWoNLMRgAnAi+YWT5B+u6nzOwV4JPwGPHUG29d73sZ\ntNQvB143sxMJes/RulrP+7jwZ6gmmKx3HsH99PVhMN+VoGcOQW/9djMb3zzk3oWe9vPAI2Z2o7uv\n7eK+/V5nPfTuFpffegjgWTNz4HfhhIYRzT1/YCXQtoB3Kwtp+QTQm+q9kflNDdSV/S8ATzTWMTJZ\nJ0vPgIKxwVcs2cWw+1cBeDpZbQCwtJZENl3U5I1sqdvCqqrVlGSXUJhVQHqahuklNbzQ/V0TXg/d\n3eeHk9meDeto1xNk9Hyb4P71ZwTD4hAE5cfMLJugM/btcPn9wAwzuxT4UqxJcXStfvmRUft1tZ73\nHOAhYAzBpLjycJj/IjNbQBAGZoc/e3s1xDvl7vPM7BrgRTNrJLhe58Sz70CQ1HroZjY6nDQxnGAo\n6H+Ax929KGqb9e7eprsZ/oNdCJA1adJ+B82dm7R2tqe+sZ4P1n1ATWMNAOMKdqA0NzWKoTRraGyi\nsclJMyMj3YKiL91U11jHu2vexcNBnUnD9iIrwTnfRfrKCz14Dj0Zs9xTRfPs9OYJbNJ9SQ3o25zI\n7EpgM3ABMMXdV5jZSOAFd9+lo337MrHMZ5s+4+a3bmZcwTjO2u2sPnsGe0vdFmoaayjILEhYlrYN\nVXXc8MxC/vT6fxiWn8ljFx/G6OKczndsx4rNKzj+oeO3vn9k2iNMLJqYiKaK9AcplVimv1BAT5yk\njYeaWR6Q5u6bwtfHAz8nePD/bOAX4ffHktWGRBg7ZCzXHnYtEYv0WbGQ9TXrufmtm5m7Zi6X7XsZ\nB408KCGFUeoamvjznOA2XsXmOl5fvJZTi8d0+3hDModw9aFXc98H93HM9scwLGdYj9soIskX1hY/\ntNXim8OypYk6xwnAL1stXhyWYL07UecZzJLWQzezCcAj4dsI8Bd3v8bMhgIPEAw9fQqc1tmkhFRN\n/RqvV5e9ytf/+XUAImkRnv3is5Tmlvb4uOu21HLpfe/w70UVZEXS+MdlhzOhtGcz+esa69hSv4Xc\nSK4mxkmqUQ9d+rWk9dDd/RNiZJhz97UEj08MSnWNdVTWVpJu6ZTkxJfTIHq2ekFmQbdnn7dWkpfF\nzWfsw7IN1ZTmZ1GSl9njY2amZ5KZ3vPjiIhI12gKci+qb6znndXvcPlLl1OaW8pvj/4tI/I6neTP\n2CFjuXHKjZSvLOfMXc+kJDtxyY2G5mcxNF89aRGRga7XJsX1RKoMuVdUV/CVp77C0s1LAfj6pK/z\nld2/wktLX6K2sZajxh4V93PuzZXVhmQOScj9dBHplIbcpV/rm1leg1QkLcKYIS2TziYUTuCfn/6T\nH/z7B/zstZ9x69u3BnXRO7F883LOfeZcTnrkJF5d/iq1DbXJbLaIDEJmNi5M3drZNv8V9b7MzG5J\nfuskFgX0XlSUVcR1h1/HFftfwU1TbmL/7fbn1eWvbl2/uHIxdU11HR6jqr6Khz96mMWVi6luqOba\n169lY93GZDddRCSWccDWgO7u5X1VD10U0HtVZW0l9Y31nDThJI7e/mhyIjmcu+e5jMkfQ2lOKd/d\n/7sMyWxJztfQ1MDyzct5ZskzLN+8nIamBmoba9mhoCWL5ITCCQl7Ll1EBo6wd/yBmf3ZzBaY2YNm\nlmtmx5jZ22FhrLvMLCvcfomZXR8un2NmE8Pld5vZl6KOu7mdc71sZm+FX4eEq34BHB4W4PqWmU0x\nsyfCfUrM7FEze9fMZoeV3zCzK8N2vWBmn4SZ6iQBNCmul2ys3cid797JPfPvYVjOMP7yub8wMn8k\nY/PHMuP4GaRZGiXZJdsUXVlfs54v//3LbKzbSH5GPo9Nf4zcSC7Dcobx6yN/TUV1BceOPZbMujTQ\nvDaRwWgX4Hx3f8XM7iJI6/p14Bh3/9DM7gG+AdwUbl/p7ntZUBP8JoLKmfFYDRzn7jVhytf7CGqP\nX0FYAx0gLKjS7GfA2+4+3cyOBu4B9gnX7QocRZBKdqGZ/Z+713fnAkgL9dB7SW1jLffOvxcIJse9\nvvJ1AAqzCxkzZAyj8ke1mdxW3VC9dTh9c/1mquqryM/MZ/ehu7Pv8H05qfRY/nn9r3j0lz9j45pV\niMig85m7N+ds/xPBI8GL3f3DcNlM4Iio7e+L+n5wF86TQZD3/T3gbwRlWTtzGHAvgLs/Dww1s+aC\nXk+6e21YiXM1cdT0kM4poPeSSFqE/UYEFQYjFmGvYXt1uk9+Zj7HbB88sj9lzBQKsoL/C4VZhQyx\nXJ6bcTsrFi5gxUcLefFPd9FQp8lxIoNM68eUNnRh++bXDYSxICx2EiuRxLeAVQS5Rcra2aYrov9Y\nNaLR4oTQRewlxdnF/HrKr1lSuYQReSPalEeNpSS7hCsPvpIfHvhDImmRbfLIp6Wlk1fc8jx6fvFQ\nLC09KW0XkX5rezM72N1fI5icVg583cwmuvsi4CvAi1Hbn05w3/t04LVw2RJgP4IMnqcQ9MZbKwSW\nunuTmZ0NNP+x6agE68sEJVevCofiK9x9Y6ISY0lbCui9qCS7pMtJYYqyi2Iuz8jK4vAzv0pB6XDS\n0tPZ66jjSI+0/HNW1lZSVV9FRloGw3KVU10kRS0ELg7vn88HLiUoM/o3M4sAbwB3RG1fbGbvEvSQ\nzwyXzSAorzqXoDrzlhjnuR14KLz3Hr3Nu0BjuO/dBOVIm10J3BWer4qgdockkRLLpKDmCXgz589k\nRO4I/vy5P8eVkU5EOtSvupZmNg54wt33jHP7JQRVzSqS2CzpQ7qH3oeqG6p5e/XbXDX7KuaumUtN\nQ01CjlvbWMu9C4IJeKuqVvHOmncSclwREem/FND7UGVtJec9fR4PLHyAc54+hw21nc1niU8kLcL+\nI/YHIDMtk91KdkvIcUWk/3D3JfH2zsPtx6l3ntp0D70P1TfV0+ANQJBEpr4pMY9hFmcXc/0R17Ns\n8zJKc0spzirufCcRERnQFND7UEFmAZdOvpS/f/x3pk2cRmFmYduNqjfAhk+hdhOU7gZ58RVvKckp\nibs8q4iIDHyaFNfHquurqWqoIjeSS05GTtsN5t4Pj3w9eF12Hhz3c8hq7ykREUmifjUpTqQ19dD7\ngLtTu2UL6ZEIOdk5sQM5QGM9fPRsy/slL0N9tQK6iIi0oUlxvcybmqj47FMeu+Fqnp95J1UbK9vf\nOD0DDr4EMnLADA79loK5iABgZlPNbKGZLTKzK/q6PdL31EPvZVUbK3n8hmvYsGoFSxe8z3Y77sTe\nx57Y/g4j9oD/eQu8CbILg+AuIoOamaUDtwHHAUuBN8zscXef37ctk76kgN7bzIhktZRGy8zuJEBH\nsqBgVJIbJSIDzAHAInf/BMDM7gemEWSLk0FKAT0JGpsaWVezjrqmOvIiedukb80rLGL65T/m1Qf+\nwtAxYxk3ad92j7OuZh3V9dVkRbIYlqP0rSIDWVlZWQQYBlSUl5c39PBwo4HPot4vBQ7s4TFlgNM9\n9CT4bNNnTH9sOlMfmsrNb91MZe2298kLS0dwwkX/w/6nfJGcgoKYx1hXvY7vvfQ9pj48lfOePo91\nNet6o+kikgRlZWWHAGuAxcCa8L1IQimgJ8Gjix7dWsf8wY8ejJnSNS09QkdVh6oaqpi9YjaGcf5e\n5/PR+o+YvWI2G2oSk01ORHpH2DN/EigCssPvT5aVlfWkPOIyYGzU+zHhMhnEFNCTYJ/h+2x9PWbI\nGCJpXb+zkR3JZoeCHThuh+NYXbWarz37NS549gJmzptJbaPqnosMIMMIAnm0bKC0B8d8A9jJzMab\nWSZwBvB4D44ngepRbQAAD7xJREFUKUD30JNg8vDJ/OH4P/BJ5SccNfYohubEl90t2rCcYdw99W42\n1W3iprdu2rr87TVvU9tQS1Z6Vgd7i0g/UgHUsG1QryEYgu8Wd28ws0uAZwhqk9/l7vN61EoZ8JQp\nbgCYv3Y+5z59Lg1NDdxx3B3sO3xf0tPC0bqq9bB6HlSvh+0PhjxNnhNJkm5nigvvmT9JENRrgJPK\ny8tfTVTDREABfUBoaGxgfe16AAqzCslMz2xZ+e4D8PAFwet9/htO/CVk5fdBK0VSXo9Sv4b3zEuB\nNeXl5Y2JaZJICw25DwCR9Ailue3cblsa9UFn5VxoqFFAF+mHwiC+sq/bIalLk+IGuoO/CUXbBylh\np14HUc+8i4jI4KEe+kBXPA6+9lyQGjanGNL1TyoiMhjpr38qyB/e1y0QEZE+piF3ERGRFKCALiIy\nQJlZupm9bWZPhO/Hm9nrYUnVv4ZJZzCzrPD9onD9uKhjfD9cvtDMTohaHrM8a2+cQ7pHAV1EZOC6\nDFgQ9f6XwG/cfSKwHjg/XH4+sD5c/ptwO8xsd4Isc3sAU4Hbww8JzeVZTwR2B84Mt+2tc0g3JD2g\nx/sJUkQklZWVlRWUlZXtXlZWFrsiUxeZ2RjgJOD34XsDjgYeDDeZCUwPX08L3xOuPybcfhpwv7vX\nuvtiYBFBadat5VndvQ64H5jWG+dIxLUZrHqjhx7vJ0gRkZRTVlaWUVZWdjuwCpgNrCorK7u9rKws\no4eHvgm4HGgK3w8FNrh7c2nWpQRlViGq3Gq4vjLcPlYZ1tEdLO+Nc0g3JTWgd/ETpIhIKroZOJsg\n7euQ8PvZ4fJuMbOTgdXu/mZCWigpIdk99K58ghQRSSnh8Pq5QG6rVbnAuT0Yfj8UOMXMlhAMVR9N\n8AGhyMyaH0eOLqm6tdxquL4QWEv7ZVjbW762F84h3ZS0gN7TT5BmdqGZlZtZ+Zo13S5KJCLSl8YA\n9e2sq6ebHRp3/767j3H3cQQTzp5397OAfwFfCjc7G3gsfP14+J5w/fMeFPJ4HDgjnKE+HtgJmEM7\n5VnDfZJ6ju5cDwkkM7FM8yfIzxEMMRUQ9Qky7KW3+4nM3e8E7oSgOEsS2ykikixLgfbulWeQ+B7p\n94D7zexq4G3gD+HyPwD3mtkiYB1B8MTd55nZA8B8oAG42N0bATooz9ob55Bu6JVqa2Y2Bfhfdz/Z\nzP4GPOTu95vZHcC77n57R/sP9mprItIvdKvaWjgh7my2HXavAmaWl5d/MxENE4G+eQ79e8C3w09x\nQ2n5dCcikoouI5gAXANsCr/PDJeLJIzqoYuIxKen9dALCO6ZLysvL9+YmCaJtFBxFhGRXhAGcQVy\nSRqlfhUREUkBCugiIiIpQAFdREQkBSigi4gMQGb2LTObZ2bvm9l9Zpat8qmDmwK6iMgAY2ajgUuB\nMnffkyAxyxmofOqgplnuIiJJVFZWlg1cTBCARxBUXbsFuK28vLymB4eOADlmVk+QtGYFQU73/wrX\nzwSuBP6PoCzpleHyB4Hfti5tCiwO84McEG63yN0/ATCz5vKpC5J9DoKMctIN6qGLiCRJGMxfBH4O\nbA9khd+vAl4M13eZuy8DbgD+QxDIK4E3UfnUQU0BXUQkeS4G9qRttbUcYK9wfZeZWTFBb3Y8MArI\nIxjOlkFMAV1EJHkupW0wb5YTru+OY4HF7r7G3euBhwkKYql86iCmgC4ikjwjeri+Pf8BDjKz3PA+\n9TEE955VPnUQ06Q4EZHkWUVwz7yj9V3m7q+b2YPAWwQlSd8mKDf9JCqfOmipOIuISHy6XJylrKzs\nOwQT4HJirK4GflxeXv7rnjZMBDTkLiKSTLcB7xEE72jV4fLber1FkrIU0EVEkiR8zvxI4McE971r\nw+8/Bo7s4XPoItvQkLuISHx6VA9dJNnUQxcREUkBCugiIiIpQAFdREQkBSigi4gMQGZ2l5mtNrP3\no5b9ysw+MLN3zewRMyuKWtfvyqR25xzSPgV0EZFeUFZWNr6srOzQsrKy8Qk65N20zd8+C9jT3ScB\nHwLfh35dJrVL55COKaCLiCRRWeBNYB5BJrd5ZWVlb5aVlZX15Lju/hJBRrboZc9GVUKbTZAfHaJK\nmLr7YqC5hOkBhCVM3b0OaC6TagRlUh8M958JTI861szw9YPAMa3LpCbxHNIBBXQRkSQJg/YLwL4E\n2eIKw+/7Ai/0NKh34jzgH+Hr/lgmtTvnkA4ooIuIJM/vCEqbxpIH3JGMk5rZDwnypv85GceX/kkB\nXUQkCcJ75bt1stnuCbynDoCZnQOcDJzlLZnD+mOZ1O6cQzqggC4ikhyjgLpOtqkLt0sIM5sKXA6c\n4u5VUav6XZnUbp5DOqDyqSIiybEcyOxkm8xwuy4zs/uAKcAwM1sK/JRgVnsWMCucQzbb3S/qx2VS\nu3QO6ZhyuYuIxKc75VPfJJgA1543y8vLkzkxTgYRDbmLiCTP14Et7azbAlzUi22RFKeALiKSJOXB\n0OIU4E2CGuiV4fc3gSnlGnqUBNI9dBGRJAqDdlk4m30UsLy8vHxxHzdLUpACuohILwiDuAK5JI2G\n3EVERFKAArqIiEgKUEAXERFJAUkL6GaWbWZzzGyumc0zs5+Fy2PWvxUREZHuS2YPvRY42t33BvYB\npprZQbRf/1ZERES6KWkB3QObw7cZ4ZfTfv1bERER6aak3kM3s3QzewdYDcwCPqb9+rciIiLSTUkN\n6O7e6O77EJTFOwDYNd59zexCMys3s/I1a9YkrY0iIiKpoFdmubv7BoIyeQfTfv3b1vvc6e5l7l5W\nWlraG80UEREZsJI5y73UzIrC1znAccAC2q9/KyIiIt2UzNSvI4GZZpZO8MHhAXd/wszmE7v+rYiI\niHRT0gK6u78LTI6x/BOC++kiIiKSIMoUJyIikgIU0EVERFKAArqIiEgKUEAXERFJAQroIiIiKUAB\nXUREJAUooIuIiKQABXQREZEUoIAuIiKSAhTQRUREUoACuoiISApQQBcREUkBCugiIiIpQAFdREQk\nBSigi4iIpAAFdBERkRSggC4iIpICIn3dAGnRUFdHzeZNAGTn5xPJzOrjFomIyEChHno/4e6s/PhD\nfn/p15hxyfksW7iApqbGvm6WiIgMEAro/UR9TQ2vP/o3GuvraWps4PVHHqC+uqavmyUiIgOEAno/\nEcnMZNze+259v8OkyaRnZfZhi0REZCDRPfR+Ii09nd0PP5rRO+9GkzdRvN0oIpGMvm6WiIgMEAro\n/UjOkCHkDBnS180QEZEBSEPuIiIiKUABXUREJAUooIuIiKQABXQREZEUoIAuIiKSAhTQRUREUoAC\nuoiISApQQBcREUkBCugiIiIpQAFdREQkBSigi4iIpICkBXQzG2tm/zKz+WY2z8wuC5eXmNksM/so\n/F6crDaIiIgMFsnsoTcA33H33YGDgIvNbHfgCuA5d98JeC58LyIiIj2QtIDu7ivc/a3w9SZgATAa\nmAbMDDebCUxPVhtEREQGi165h25m44DJwOvACHdfEa5aCYzojTaIiIiksqTXQzezfOAh4P+5+0Yz\n27rO3d3MvJ39LgQuDN9uNrOFnZyqEKjsYvPi2aejbdpb13p5rO2il7VePwyo6KRdXdWfr0+sZR29\nT8b1aa9didhnMF+jeLfv6jXqi+vztLtP7eI+Ir3H3ZP2BWQAzwDfjlq2EBgZvh4JLEzQue5Mxj4d\nbdPeutbLY20XvSzG9uVJ+Lfot9cnnmvW6nol/ProGiXnGsW7fVevUX+9PvrSV19+JXOWuwF/ABa4\n+41Rqx4Hzg5fnw08lqBT/j1J+3S0TXvrWi+Ptd3fO1mfaP35+sRaFs81TDRdo8519Rzxbt/Va9Rf\nr49InzH3mCPePT+w2WHAy8B7QFO4+AcE99EfALYHPgVOc/d1SWnEAGVm5e5e1tft6K90fTqna9Qx\nXR9JRUm7h+7u/wasndXHJOu8KeLOvm5AP6fr0zldo47p+kjKSVoPXURERHqPUr+KiIikAAV0ERGR\nFKCALiIikgIU0Ps5M9vNzO4wswfN7Bt93Z7+yszyzKzczE7u67b0R2Y2xcxeDn+XpvR1e/obM0sz\ns2vM7FYzO7vzPUT6HwX0PmBmd5nZajN7v9XyqWa20MwWmdkVAO6+wN0vAk4DDu2L9vaFrlyj0PcI\nHoccNLp4jRzYDGQDS3u7rX2hi9dnGjAGqGeQXB9JPQrofeNuYJsUkmaWDtwGnAjsDpwZVqfDzE4B\nngSe6t1m9qm7ifMamdlxwHxgdW83so/dTfy/Ry+7+4kEH3x+1svt7Ct3E//12QV41d2/DWgkTAYk\nBfQ+4O4vAa2T6RwALHL3T9y9DrifoNeAuz8e/jE+q3db2ne6eI2mEJTo/S/gAjMbFL/XXblG7t6c\n3Gk9kNWLzewzXfwdWkpwbQAae6+VIomT9OIsErfRwGdR75cCB4b3O08l+CM8mHroscS8Ru5+CYCZ\nnQNURAWvwai936NTgROAIuC3fdGwfiLm9QFuBm41s8OBl/qiYSI9pYDez7n7C8ALfdyMAcHd7+7r\nNvRX7v4w8HBft6O/cvcq4Py+bodITwyKockBYhkwNur9mHCZtNA16pyuUcd0fSRlKaD3H28AO5nZ\neDPLBM4gqEwnLXSNOqdr1DFdH0lZCuh9wMzuA14DdjGzpWZ2vrs3AJcQ1I9fADzg7vP6sp19Sdeo\nc7pGHdP1kcFGxVlERERSgHroIiIiKUABXUREJAUooIuIiKQABXQREZEUoIAuIiKSAhTQRUREUoAC\nuvR7ZvZqX7dBRKS/03PoIiIiKUA9dOn3zGxz+H2Kmb1gZg+a2Qdm9mczs3Dd/mb2qpnNNbM5ZjbE\nzLLN7I9m9p6ZvW1mR4XbnmNmj5rZLDNbYmaXmNm3w21mm1lJuN2OZva0mb1pZi+b2a59dxVERDqm\namsy0EwG9gCWA68Ah5rZHOCvwOnu/oaZFQDVwGWAu/teYTB+1sx2Do+zZ3isbGAR8D13n2xmvwG+\nCtwE3Alc5O4fmdmBwO3A0b32k4qIdIECugw0c9x9KYCZvQOMAyqBFe7+BoC7bwzXHwbcGi77wMw+\nBZoD+r/cfROwycwqgb+Hy98DJplZPnAI8LdwEACCmvQiIv2SAroMNLVRrxvp/u9w9HGaot43hcdM\nAza4+z7dPL6ISK/SPXRJBQuBkWa2P0B4/zwCvAycFS7bGdg+3LZTYS9/sZl9OdzfzGzvZDReRCQR\nFNBlwHP3OuB04FYzmwvMIrg3fjuQZmbvEdxjP8fda9s/UhtnAeeHx5wHTEtsy0VEEkePrYmIiKQA\n9dBFRERSgAK6iIhIClBAFxERSQEK6CIiIilAAV1ERCQFKKCLiIikAAV0ERGRFKCALiIikgL+Py2h\nrpUAb8TzAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3924,7 +3931,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmT47ZfvCUpYFRJEi\nINgRUVQEVGI39h67MUX9qYlGjSVFY6LRWKIk9hZFsWFHLIgiHalLXWB7nT7v748ZtsAudQeW3fN5\nHp6dmfvee9/Ls3DmrUeMMSillFJq72bZ0xVQSiml1K7TgK6UUkp1ABrQlVJKqQ5AA7pSSinVAWhA\nV0oppToADehKKaVUB6ABXSmllOoANKCrvYqIXCsiM0UkJCLPbnbsMhFZKiK1IvK+iHRrcixDRCaJ\nyMbknzs3O3eoiEwTkSoRWSMiv9s9T6SUUm1DA7ra26wD7gH+3fRDERkN3AtMBLKAFcCLTYo8BKQB\nhcDBwPkicnGT4y8AXyTPPQq4WkROTskTKKVUCmhAV3sVY8wbxpg3gbLNDp0IvGqMmW+MCQN3A6NE\npG/y+EnAn4wx9caYIuBp4JIm5xcCzxtjYsaYZcCXwMAUPopSSrUpDeiqI5EWXg/ayvGmx/4GXCAi\ndhHZDzgM+CgltVRKqRTQgK46iveBM0XkABFxA78HDIlu9k3HbxERn4jsQ6J1ntbk/HeA04EAsAh4\n2hjz3W6rvVJK7SIN6KpDMMZ8BNwBvA4UJf/UAGuSRa4nEayXAG+RGF9fAyAiWSQC/l2AC+gJjBWR\nq3fbAyil1C7SgK46DGPMo8aYfsaYLiQCuw2YlzxWbow51xjT1RgzkMTv/ozkqX2AmDHmP8aYqDFm\nDfASMH4PPIZSSu0UDehqryIiNhFxAVbAKiKuTZ+JyCBJKACeAB42xlQkz+srItkiYhWRccAVJGbL\nAyxOFJFzRMQiIl2Bs4A5u/8JlVJq52hAV3ub20l0nd8CnJd8fTuJrvIXgFoSLe+vgaZryYcDc0l0\nw98HnGuMmQ9gjKkGTgVuBCqAH0m07O9BKaX2EmKM2dN1UEoppdQu0ha6Ukop1QGkNKCLyA0iMk9E\n5ovIL5OfZYnIVBFZkvyZmco6KKWUUp1BygK6iAwCLiexzeYQ4MTk+t9bgI+NMf2Aj5PvlVJKKbUL\nUtlC3x/4NrnVZhT4nMTEo4nApGSZScDPUlgHpZRSqlNIZUCfBxyZXCqURmJNb0+gizGmOFlmPdAl\nhXVQSimlOgVbqi5sjFkoIg8AHwJ1JJYCxTYrY0SkxWn2InIFibXCDBgwYPj8+fNTVVWllNoesu0i\nSu05KZ0UZ4x52hgz3BgzisT63sXABhHJB0j+3NjKuU8YY0YYY0a43e5UVlMppZTa66V6lnte8mcB\nifHzF4DJwIXJIheS2FdbKaWUUrsgZV3uSa+LSDYQAa4xxlSKyP3AKyJyKbASODPFdVBKKaU6vJQG\ndGPMkS18VgaMSeV9lVJKqc5Gd4pTSimlOgAN6EoppVQHoAFdKaWU6gA0oCullFIdgAZ0pZRSqgPQ\ngK6UUkp1ABrQlVJKqQ5AA7pSSinVAWhAV0oppToADehKKaVUB6ABXSmllOoANKArpZRSHYAGdKWU\nUqoD0ICulFJKdQAa0JVSSqkOQAO6Ukop1QFoQFdKKaU6AA3oSimlVAegAV0ppZTqADSgK6WUUh2A\nBnSllFKqA9CArpRSSnUAGtCVUkqpDkADulJKKdUBaEBXSimlOgAN6EoppVQHoAFdKaWU6gA0oCul\nlFIdgAZ0pZRSqgPQgK6UUkp1ABrQldoF8XB4T1dBKaUADehK7ZR4JEJg7lzW3XQzlW9NJlZdvaer\npJTq5Gx7ugJK7Y1iFRWsvOBCTCBAzfvv437nbax+/56ullKqE9MWulI7wxhMNAqAxeNB7I49XCGl\nVGenAV2pnWBNT6fn44/hHz+O/DffYM6cmcz+6D3qq6v2dNWUUp1USrvcReRG4DLAAHOBi4F84CUg\nG/geON8YozOL1F7F4nLhOfRQpP9+vHrv7ylbswqAotmzGPuL63B5fXu4hkqpziZlLXQR6Q5cD4ww\nxgwCrMDZwAPAQ8aYfYAK4NJU1UGpVBKrlVg83hDMAdbMn0M0EtmDtVJKdVap7nK3AW4RsQFpQDFw\nDPBa8vgk4GcproNSKVFfVUlVyQbyevdt+Kz3sIOwOXQ8XSm1+6Wsy90Ys1ZE/gKsAgLAhyS62CuN\nMdFksTVA91TVQalU+unracz5+AMmXPcbKtYX48vMJKNbD1we7zbPjQcCiNOJWHQai1KqbaSyyz0T\nmAj0BroBHuCEHTj/ChGZKSIzS0pKUlRLpXaeNyubky65CuuPc+hSVUvs8SeJzZlHvL6+1XM2rV9f\n+5vfUvHcc0QrK3djjZVSHVkqmwfHAiuMMSXGmAjwBnAEkJHsggfoAaxt6WRjzBPGmBHGmBG5ubkp\nrKZSO6egX39qH30cV2Eha6+/geop77LqssuIVW25yUw8HscY07B+vfbjj9lw732Ei4p2f8WVUh1S\nKme5rwIOFZE0El3uY4CZwKfA6SRmul8IvJXCOijVZqKlpZQ/9zwAWeedi83phEgEE4mAMYlCsRgm\nHMLEYojVCkBtRTnfvP4Sbn86Q8ecgFgsmE0X1Ql0Sqk2IsaYbZfa2YuL/AE4C4gCs0gsYetOIphn\nJT87zxgT2tp1RowYYWbOnJmyeiq1LbHaWop/9ztq3nsfAN+4E8i/5x5ilZWEli0j9NNiat5/D98J\n4xC7Df/48djz8gjW1TLl4T9RNPsHfDm5jL/2N6SnZ1D34stYHHayzj8fW0bGHn46tZ1kT1dAqa1J\n6Tp0Y8wdwB2bfbwcODiV91WqLRhjEEn8H24iESJrGkeHIqvXYEJhsFqJrl+Ps98+WBwTCS5cQNWb\nb+E5ajR2wMTjRIJBnB4PJ/7yZj6b9BS15aWMu+ZXdO3TD5vbjYnFiJWVEa2qwpaZhS0new89sVJq\nb6ZTbJVqQWTjRjbcey8ljzxKtLwcq99Pl9tuxeLxYPF46HL7bVjT/Ug8zsYHH8KWkUnpE09Q9eZb\nuEeMAG9iprvb5+eEq29kyHHjWPHDdxQvWURNWSnvP/Yw4VAQSHTlLz95IitOOpnVV19NtKxsTz66\nUmovpclZlNpMrKqK4ltvw9K9J66xP6OqMoZTaojmd6H7B+/htFix+nyI1YrF76fLrf9H6aRJ9Hzq\nSYzTTdzjxWa1EFq+HIvHgz8rm4MnnsmKWY3DRv68PCzJMfbwqlXEkrPdg3PmJFr+Sim1gzSgK7UZ\nE4th8fuRk8/nhYcWM+qsApb/7xWWzJhOWnoG5933N3x2OwBWrxf/2LF4jziCqM1O2OHGE6pj/R13\nUPPBh4jLRe83XsfZpw+9DhjKyb+6laqSDfQ/4ijcvkR2NkevXtjy84kWF+MZORJxObeoU7S0DGPi\nWDMysCTvrZRSTWlAV3uF4qoAHy/cyKDu6fTN9eBzpTCoWa3k/fpXrF4VwcQNmV2dLJkxHUjsDrex\naDm+7JyG4hanE4vTiSkvx122AWO1UvPhVABMMEjdV1/h7NMHt89Pv0MO3+J29rw8er/yMvFAEIsn\nDVtWVrPj4XXrWH35FcTKy+nxj7/jHjoUsek/XaVUczqGrtq9kpoQZz/xDbe/OY+fPTqdtRWBlN0r\nWl7Ohrvupuiss8lY+iWHndCVmvIwPQYOBsDhTiO3oBCAyIYNVLz4ErVffklk/XpCixax4e57CK1c\nife4YwEQlwvP4VsG8c3ZcnNxFPTElr3lhLiK554nvGwZsYoK1t91F7EqzeimlNqSfs1X7V7cGFaX\nN+6+tqq8nv75/pTcK7xqFdVTpgCw8Y9/ZOAnnxB2ZtCj/00Ea6txeby40zOIlpay6sKLGjaG6XrH\nHbiGDaP288+pnzmTXs/9l9wrr8SanY01K4t43BAzBrt1x79Du/bfv+G1Y59+iO4Vr5RqgQZ01e55\nHDbumjiI+95dyKDu6RzYKzNl97JlZ4PFAvF4Ihjbbfiy3YAbb2bjfSPRaLNd3gKzf0x0haelEa+r\no+K118m95mpsWVmU1IR4+bulLC2p5ZIjetMn14vXuf3/9DxHjqTn008RKy3FM3IkVp+mZlVKbUkD\numr3vC4bpwzrzvEDumCzWsjybLuFWl4XojoQxe2wkuVxbHfL2JqVReHLL1H/3Ux8xx+HNSenxXLi\ncuGfMJ7qKe8iDgf+CROweNIw9fXYcnPJvuB8rOnplFXUcs0rc5mxohyAt35cx/s3HMl+Xbe/h8GW\nkYH3iCO2u7xSqnNK6U5xbUV3ilOba7rpy+Yq68PcOXk+b/64Dq/TxtvXjaR3jmeX7xmrqSG4cCGB\nH2eTftKJiNNFrKoSsdkQtztRKBJBHA4sfj+hhQspcaUz6t/zml3nqqP6cvO4/rtcH7Xb6U5xql3T\nSXFqr1JWF+KRT5Zw1zsLWF8VbLFMOBrnzR/XAVAbijJt8c5n64uWlhJZv55YdTWRdetYdcGFlDz4\nIEXnngfxGM7evXH07AnRKMW33MK6W2/DhELEqqtZfeVVUFZKrq/5MrQhPXWrV6VU29OArvYqL81Y\nzV8+XMwz04u4+fU5lNRsGdRtVgvH9M8DwGmzcFjfndtKNbJhA0Vn/5ylo4+m7OmnMfF4w7Hohg0N\nCVnikQgVL7xA3ZfTqf/6a9bffQ/EDZa0NGKPP8ITJ/elV3YaDquFCw7txcG9d34OQDweJ96kHkop\ntYmOoau9Snld4y5q1YEIociWwS3L4+DPpx/AxpoQGWl2stJ2blZ4/bcziKxZA0DZv54g8+yf4z32\nWIJz55L329+Az0fFhvUs/PIz8o8+iszMTCoe+BMWnxeL10PB009R8s9/0nvVQl69bBTYbHgcNjw7\nMCGuWX2qw3z/fhGxSJwRE3phtUVxe3WCnFIqQQO62qtcOrI3y0pqqQ5EuHX8/rgd1mbHo+EYsWic\nLI+DbO+WO64BBGqqiUWjWKxW0vzprd7L2b9/w4x3Z//+iMNOtz/eQzwcxurzUVNXx8u//y11lRUA\nnHXnA+Rcew2ZZ5+N1e3G2qsX3f74xzbZBCYeizPz3RXM/SyRICZYF6FLr7X0PXAY/twuu3x9pdTe\nTwO62qtkuO3cNn5/1lUGyPY48Lkaf4Xra8LMeHsFVRvqGXlmP7LyPYil+Tym+uoqPn32CRZN/5wu\nfffllJt+hycjk2hVFYEffiC0ZAnpEydi79IFR4/u9HnnbcIrV+IePLhh05dNXyGi1dUNwRygsmQD\nA6++GrE0jmS11Y5uBoiEYg3vo5E4dZVVfPafpxl37a+xO5t/eQnVR7DaLNg2+8KjlOq4dAxd7VXS\nnDb6dfFx1H559M714rA1Bqyi2aXM/2Ita36q4N3H5lBfs2WSk2BtLYumfw7AhmWLWbfkJwBCCxaw\n5qqrKXnwIVZfeRXRsnIsaWk4+/TBd/TR2FpYvmaxOxlxxvlYrDa69O1HwaChzYJ5W7JaLRw6sS+9\nh+bQa1A2I07IZeG0D/BkZmFpsiTPxA3lxXW8/+Q8vnxtKYEW/g6UUh2TttBVh2G1NbbGLVYLsbgh\nEos3W4Nudzqx2mzEolEAjCeDyvoQpkmu82hxMSbe2BpuTUaGnwOOHccBo8cgFgv+zfZgb2ueDCfH\nXjSASDDI4m8/ZfCYsRxwzFistsZ97QM1Yd59bA5VGwOsWVhBbk8vA4/sntJ6KaXaBw3oao+orA+z\nrjKI32HFZ7XitFtweXdtS9OCgdkcdGJvKorrGDqhkHs/+YnD+uZwTP+8hmQubp+fM+58gLmfTCV3\nwFA+XhPlrNx6fKOOxHPE4YRWFNH1D3cSd2573bqIkJmRmi1oW+Nw2XC4vAwbe1IrlQKrrfELjM2u\nnXBKdRa6sYxqE+HVqyl//gXcQw7Ac/jh2NJbn2wWjsZ5ZvoKlq2v4dzCLsz63zIyuno4/pIBpPlb\nnsi2veJxQ1ltiAXrq1m2sY6Hpi5m6q9G0TXd3VCmvC7MM18u56vl5YzdJ4PTqxZQ+tDf6PaPRwi7\ns/hhegWRmIXR5+yH27d37ZserItQXxVi5rsryeiaxuDR3XHv4hcl1UA3llHtmrbQ1S6Llpay8oIL\niRYXUwEUPPdfbCNGtFo+EInxyaKN/Paofnzzz3lEw3HqKsMsn13KgCO6URmI4LAK3s1SpMbihtLa\nEPG4weuytZhCtTYU5X8/ruWRT5dyUGEWz116MDXBKI99Pp9DemdyRN8csjwOLjy8N2ceVEB2uJa1\nZz9KrKyMsN3Hiw8vbbjWsOMK2iSg19eEiUfj2NqgF2JrwsEo019dwrqllRQMzKZbv3QN5kp1Itof\np3aZMYZYZWXD+1hZecPreCBAeOVKar+cTrS0FACvw8pVo/tSF4rizXQ1lPVnuVhWUsvFz8zg1v/N\no7Q21Ow+q8rrGfu3Lzjs/k/4YnEJ4eiWa9DrwlHufXcR1YEoHy/cSIbHwemPf82kr4q4+vlZLFpf\nA0COz0nPrDScaS7SDjwQAImGcXkTXxJEIM3fBsG8Osy7/5zDpP/7is9fWkygNnWT1KKROKVra6ku\nDTLv87Us/X4je0MPnFKqbWhAV7vM6vPR4x9/x9G3L/4TJ5A2YnjDsUhxMcvGT2D1ZZclZo+Xl2O1\nWji4dxYD+mRw4vVDGDG+kBOuGIS/u4eLnvmO2WuqmDx7He/OLW52n3fmrKOyPsL1h3ZjWOkyyv/0\nAMElSzDJCW4AVouQm1x/vmnFWlUg0nB88YYaSmsavyhY/X663H4bPZ96irRMN6ffNJwjztiH028Z\ngdu3ZQ/AjqqtDLFhRTUAS2duJBSIbuOMnedMs3HkmfvicNvwZbsYdlyvVve7V0p1PNrlrnaZxeUi\n7ZBD6PWfSYjD0Sy9Z+inxRBLzBgPzp/f8Lo+FCMUjWN1WTnk5D4ArK8KNFtX7rBaCISjuB2Jz0bu\nk8Ojnyzl7H19VJ12LhhD1euv0+e9d7HnJbZ6zfU6+d81hzNlTjH9u/qYt7aKm8bux+NfLGNwt3QG\n5Pt5acYqrh3Tr+E+tqwsvCMT2cycwNAxBW32d+P22bG7rESCMXzZLgKxOKnayd1qtdClt49z7jwk\n2cOwa/MRlFJ7Fw3oqk1Y7HYs2Vvume4efiD2ggIiq1aRfdWViNNJaU2I8//9LQuLaxjeK5N/nTec\nHJ+TdLedB88cyqSviyjISqNvnpe6UJRIzOBxWOnlc/HBDUfi27CSqk37qNfXQ6yx611E6CphztjP\nz9+/Wsuk79ZywWGFvH3VYdhWLOPtn9bRLXf3JUeJ2oWxvx5GWXEdvi5u1oXC5KfwflabFU+6biaj\nVGekAV2llD0vj8IXnscYg8XlwurzsW5NJQuLE2PZ36+soLwmhKUmgi/LRVe/k6P65RCOGwQ46s+f\n8Yuj+nDx8AJev+s7opEYEy4sJPPii6mbNo3syy7F4m/sEYhs3MjaX95IpLiY6/9wFxddeSBepwV3\noILoxjUcs/+B5OTn7rbnz/Q6CUTjFJfG6eay09VhJRaNYbVp0FV7joicDAwwxty/p+ui2o6OoatW\nhSIxiqsCzFtbRdlmE9R2RNSVTlmtg5LSOMHaCHk+F2nJLUnT3Xas4Tgv3T2D8tIACIw/oBsmbjjv\n6W+pC8d49NNlBGoihANR4lHDlGeL8Jx/Ob0mPYv/hBOwehrXjJc/+yyYOD3+/jD2WJRuDrCXlbLx\n17+h+t336JPhJMuze2d+56e7OCjLx+T7ZvLCHd9QvKKa6nrdwU21DUnYof/LjTGTNZh3PNpCV61a\nWxlg3MPTCEXjHL1fLn89cwhZnh0bl41F48yfvpZv/rccgENP6cPgo3vwwS9HMWd1Jf3S0/jxtWUY\nAytXVPH+rCquH9MPm9VCMJlJLc/vxO2zk93dQ9naOjK6pGH1pmFrYYzYmp1Nl//7P1ZffgWxykps\nubn0/NfjBBcsgHicihdfIve6a3f9L2cHhINRvnlzOZFgYv7At28up+dJBQwozMTr0n+CaseJSCHw\nAfAtMBz4k4hcSWIayDLgYmNMrYiMBx4E6oDpQB9jzIkichEwwhhzbfJa/wZygJLkuatE5FmgGhgB\ndAVuMsa8trueUe04baF3YvFYnGik9S1OZ62qJJRcGvbFklKi8R1YAlVXBgsmE12/hNXzG5exrV5Q\ngYkaemalcdy+udQtqWL9siqyu3vx9/Tyzpx11IWiDCvI4J3rRvLbsfvx8hWH4ctwcfINQznv7sOY\n+MuhrU74yjjtNMJr1jQso4uWlBApXo81M5GD3Jq187nId5bNZiWnwNvwPj0/jW9XVVAfSd2Md9Up\n9AP+CRwFXAoca4w5EJgJ/EpEXMC/gHHGmOFAa2NN/wAmGWMOAJ4H/t7kWD4wEjgR0BZ9O6fNg04q\nUBNm1tRV1JQFOeyUvvhz3FuUObRPNtkeB2V1Yc4/pACnbTu//0WCMP1h+Oph7L2P4cBj/kHx0ioA\nDjy+AHuyVepw2xkwshu9h+cxZ20Vl770A5eO7MPzM1bxz0+XcduE/bno8MKG/OHbM2vblpGBe8gQ\nxOnEhEJYPB6c+/fHN3Ys9vx8/OPGbeffUNux2i0MO66ArO5equrDWPLTCBeVNgw7KLWTVhpjvhGR\nE4EBwPTkMkUH8DXQH1hujFmRLP8icEUL1zkMODX5+r/An5oce9MYEwcWiIjm6W3nNKB3UktmbmDW\nh6sAqNxYz0nXDyVts13R8tNdvHfDkYSicbwuG+nu7Rx7jgZh3Q8AWFZ8Qn6ftzn/ngtBLDg9dixN\nUpo63XZsThv72YRXrzyM2uo6nIFazr6wP5+tDVAXijYE9O1ly82lz5R3CC5YgHvQIGy5uXS9/baU\nZULbHm6vgz4H5lITjFITjHJJjz54nbu+zl11anXJnwJMNcb8vOlBERnaBvdoOnlGNzVo57TLvZOK\nRxu7z03cJBJuby4SJsdtpWdWGplpOzCRzOmHY34H9jSwp2HvdSDeDBfeTBf2FlqlVovQxe+iW4ab\n/LI1hC46B/9Pczlz/ww8oRrisdaHBSKhGOFQtNmOaBaHA0ePHviPPx57t26I3b5HgzkkdtOL1EWJ\nlYXIs9vI3M0T81SH9g1whIjsAyAiHhHZF/gJ6JMcIwc4q5XzvwLOTr4+F5iWuqqqVNIWeie176Fd\nqdhQR215iCPP2neLbU4j69ez8c9/xuLzk3vdtdhaWGPeKosFug2D62cl3ruzEp8B6yoDfLJoI0N6\nZtA7J61ZK9UYQ83rr9Hl9tuI5+Tww2dTWbPsJ4YefyIFg4fg8nib3aa+Okzt6o1YfpoFNRWkTxiP\nvYW85U3FamtBpNnM+N2hvjrMq/fNpK4yhC/bxWk3DceTrhu/qF1njClJTnJ7UUQ2/VLdboxZLCJX\nA++LSB3wXSuXuA54RkR+S3JSXMorrVJCA3onleZzcOSZ+xKLGZzu5r8Gsepqim+/nbovpwNgcTnJ\nu+mmHWvl2hzg69rso5KaIKc/9hXrqoKIwEc3HoU3rzGgiwj+8eOx+vys2biOrycnJtSuXjCPSx5+\nEhOLsCJSzOtLXmdsr7FkV/fA+/2XlNz7BwAC335Lt/vvw+pvOaVppLiY9X+4C3HY6XL77Q27y7Wm\nqj5MKBrH5bDibyERzI6IBKPUVSZ6L2vKgkRD2863rlRrjDFFwKAm7z8BDmqh6KfGmP6SGFx/lMSE\nOYwxzwLPJl+vBI5p4R4Xbfbeu3kZ1b5oQO/EbA5rwy9AtLQUY0xDy9U02X3NtNFs7Fgc1lUFE9c0\nsKainr55zf+PcA8ZQry+nuCqZY0fGkMkFCLkjHLBexcQioV4bfFrvH3iFGKrixqKRVavxkQitCRW\nU0Px7++gblqiN9HWvTv26y4lRhy3zY3P4WtWvrwuxB+nLOT9eev5+cEFXHPMPjs27LAZh9tGXi8f\nG1fWkN8vvWFioFIpdrmIXEhiotwsErPeVQelY+iKSHExReecy7JjxlD72eeI00n+H+/Be/Ro/Ced\nSM5VV7bJGLTHaeXW8fvjsls4vE8WA/McEKymKhCmqKyONRX11Fsd2HNz6XPoERQMPACb3cHg407E\nJlZiJkYolmjlxk2cMGE8Z/wc18AB2PLz6XrP3VgzWt/WVayJ8Xux2+H8U7jkw0sZ8+oYXlj4AjXh\nmmZlK+oivP7DWurCMZ76cgW1wV37UpPmdzLhmiGc/8fDOOGKwW2SyU2pbTHGPGSMGWqMGWCMOdcY\nU7+n66RSR1KVXlFE9gNebvJRH+D3wH+SnxcCRcCZxpiKrV1rxIgRZubMmSmpZ2dWX1VJOBhAgiEq\nbv89ge++w5aXS+Hrr2PPzSVWV5cYb05La/H8YG0tsWgEl8eLWG2EA1GsdkuLE982qa2uor60CFv5\nErI+uYnwZZ/z2pI4t/5vHgBPnD+c4wcmuuqryiswsSjRunosX36JbeJY5lcvZWHZUjwOF97oUHKs\nfvqmxagNhsnsnke6d8vld5tENmxgwwMPYO/Rk/mnDuaGz28EwCIWPjr9I3LTGpfprq8KMvovnxKM\nxPG7bUy98Si6+F2tXVp1DjrLW7VrKev3M8b8BAwFEBErsBb4H3AL8LEx5n4RuSX5/uZU1UO1rL6q\nknf+9gCrF8zF5fFy5s23Ern2Bpz9+iVasLDViWP1VZVMfepRSletZMwlV+LN7sO0l5eTU+BjxLhe\nuL0tt0C9Uo/3v6PBJLr0A6EIk2dvaDj+1o/rGL1fLg6blfSsTEwsRtzpRM48g6oILFiRx7fLbVw7\nug9L1pRz1uTEPJ9Th3Xnnt7dt/rM9i5d6HbvvSBCn2Ax1mSrv39mf6yW5l9Csjx2plx/JDNWlHN4\n32xydFa6Uqqd210DeWOAZcaYlSIyERid/HwS8Bka0He7UH0dqxfMBSBYV8ui2T8w/KEHcRQUYEt2\nW8djMQI1VcTjcSwWK26/H0sy8K2aP4elM74G4O2H7uPkX/+VdUsqWbekki69fOx7cNeWb+zww88e\ng4/uhO4j8KRncuHhbr5dUY5VhPMOLcDRJHGJWK0Nk9yWF1dw9zsLAZi+tJSPfjGcXx7Vi42BOL88\nbl/SHM1/nY0xxGtrEacTiyNX/y6qAAAgAElEQVQRkC2uRCu7i7ULk382mVU1q+if1Z8sV1bzatqs\n9M310jdX5wEppfYOuyugn01ilyKALsaY4uTr9YDuPrQH2J0ubA4n0XBiTDqvd1/Shg1rOB6ormbe\n5x8x8+03qK+qxJedwyGnns2+hxyB2+fDm9kYAL2Z2URCTSbRbWUUp9Y4MX0mkHbZaKwOFzZ3BqP6\nRZl+8zGIQEZa67PJ4/HGe8QNxKqquGJ4VyQzE7e9eQvbRKMEf/qJjX/5K+5Bg/BfdhnVFgdWEbK9\nTtw2NwX+Agr8bZf7XCml9qSUjaE33EDEAawDBhpjNohIpTEmo8nxCmPMFhtsi8gVJLcpLCgoGL5y\n5cqU1rOziUUilK9bw+yp79Jt3/3pPWwEbl+iJRysq2Pa888w5+P3tzjv0NPO5qCJpxOLRFi7aAEb\nVyxj0NHHUV9t58tXlpLT08shJ/fB7duyi7qiPswTny/j7TnFnHtIAecc0ot09/YvB6uoDfH81yv4\nbnU1143IpdfiWWSNP6HFMf5ISQkrTjqZWGUlrlFHsfG3f+CGV+fRxe/kiQtG6Hi42hmdbgxdRL4y\nxhy+p+uhts/uCOgTgWuMMccn3/8EjDbGFItIPvCZMWa/rV1DJ8WljjGG5P7PDapLN/LUdZcz/Kwz\nyD9gMOG6OmY8/SwVxeuw2u1c9ven8GY132gmFosTDsSw2QV7K1u1riit5ei/fN7wftpNR9MzK414\nLI7Fun2z6EM1ddRXVOKsrsDRvTu2zJaTrURLSlh+yqnESktx/fXvXLzARlFZYoLvjcftyw1j+m3X\n/ZRqotMEdBGxGWM0e9BeZncsW/s5jd3tAJOBC5OvLwTe2g11UK3YPJgDlK5aydBTT2F+9wpOm3Ye\ntyy9l6N+dQM2h5NYJEJtRdkW51itFtxee6vBHMBlt2K3Ju7ncVjxWyzMmrqKj/+ziLJ1tcSarH1v\njTUUIE3iOPLzt7pEzZqVRa9nn8F3/HG4u+dTkN3Yit8nd/fuEqc6t8JbppxTeMuUosJbpsSTP89p\ni+uKyJsi8r2IzE/2aCIitSLy5+RnH4nIwSLymYgsF5GTk2WsyTLficgcEflF8vPRIjJNRCYDCzZd\nr8n9bhaRuSIyW0TuT352efI6s0XkdRFpeUmM2i1S2kIXEQ+wikQO3qrkZ9nAK0ABsJLEsrXy1q+i\nLfTdbe1PC6i1BDnr60uImcSOZncNvZ3q56ZRuqqIi/76GNk9ejaUD9TWEA4EsNpseNIzWl2zHghH\nWVpSx9QF6zlzRE/Kfyxn2suLAXC4rJxz56F4MlrfDjVaVsbqX/yC4Lz52Lp2pferr2DLbS0jZEI8\nFELsdkrrIrw7t5juGW6GF2bu0iYxqtPa4RZ6Mng/CTQNdPXA5UX3T3hhlyojkmWMKRcRN4ltXY8C\nSoHxxpj3ROR/gAeYQCIb2yRjzNBk8M8zxtyT3Cp2OnAG0AuYAgzalKFNRGqNMV4RGQf8jkSK1vom\n9842xpQly94DbDDG/GNXnkvtvJROijPG1AHZm31WRmLWu2qnMrrks3HxLAZlD2J26WysYqVfZj++\nqJxMel4XXN7EzG9jDHWV5cx6/x1mvPkqbp+fc+99iPS8luc5uh02BndPZ3D3dACWrV/dcCwcjG2z\nhR4PBAjOmw9AdP16IiUl2wzoFmfiC0Kuz8mFhxdu1/Mr1YbupXkwJ/n+XmCXAjpwvYicknzdk0R+\n9DCwafLLXCBkjImIyFwSe38AHA8cICKnJ9+nNzl3RpN0q00dCzyzaWOaJo2wQclAngF4gQ928ZnU\nLtD9J9UWXD4fXTK784fcm1kRWE1Pf08Wv/MhsUiYk2+7m7T0DIwxlK1ZRV1lBT9+8A49BwymcN8B\nVG8objWgb27ImJ4s+2EjgZoIA0d1w7GN7VAtbjfuoUMJ/Pgj9u7dsW8jmCvVDrS2jGKXlleIyGgS\nQfawZIv5M8AFRExjt2ucZPpTY0xcRDb9AxPgOmPMBy1cs44d8yzwM2PM7GSCmNE7+iyq7WhAV1uw\nWm3kFfYmUF1N7dI1rPziU3oU7svRZ16EOz0DEaG+uor3//kQ/Y84ilFnnk93m4u6F1/CubGcaI9e\nrU5Wa8prC3LqRd2IG8HusOCwRIHWZ73bsrPp8cgjxOtqsaSlbbN1rlQ7sIpEV3ZLn++KdKAiGcz7\nA4fuwLkfAFeJyCfJ1vu+JDb+2pqpwO9F5PmmXe6ADygWETuJ1Kvbuo5KIQ3onZiJx1sd77bZHfiy\ncxhy3DjiY8ZiaaGcxWrjq1df4PK7/0rR+AkQjVL/9de49t8f//HHb1G+pCZEcVWArn4XOV4nNR9+\nyPo7E5nSxOWi79QPsbhb37oVwJaTDTk7kMpVqT3rVloeQ791F6/7PnCliCwkkff8mx049ykS3e8/\nJLOwlQA/29oJxpj3RWQoMFNEwsC7JJ7hd8C3yWt8SyLAqz1EA3onFKutJfDDD1S/+y4ZZ5+Nq3//\nhh3UWtJSME/zpzP+2l/z7iN/JVRbA9HGFS7xmpotym+sCXL6Y1+zqryebI+D9244Ek9hYcNxR8+e\nbZIARqn2pOj+CS8U3jIFEmPmBSRa5rfu6oQ4Y0wIGNfCIW+TMndudo43+TNOIhhv/qXis+SfLc5J\nvr4fuH+z448Bj+1g9VWKpHwdelvQWe5tK7x2LcuOPQ6MQex2+k6dir3rzm3YV19dhTUcoXby25Q9\n9RSuQQPpdt992LKbt6JXltVx1J8/a3g/5fqR9PdAYO5cQouX4J8wHnuXnatDrL4eU1cHViu2rKxt\nn6DUzuk069DV3klb6J2QCYUa9mc1kQgmHtvpa6X5EzPWbWefhf+kExG7vWEv+KY8Thsj98nmy6Vl\n9MnxkOdzYvW58I4ciXfkyJ2+f7SigrJ//YuKF17EuW8/evz9H9i75e/09ZRSam+lLfROKFpZSeVL\nL1Pz4YdknnsuvrHHY/WmLglJoKaGQE01oUA9roxs4k4P2d7W15vv0LXnz6fotNMb3vsnTiT/zju2\nORav1E7QFrpq17SF3gnZMjLIuuhCMs48A4vX25CJLBXCwQA/vPsW37zxEgB5hX049da7gLYJ6CYY\nbPY+XlODiW97xzmllOpodBZSJ2VxubBlZbVZMI/G4lTUhwlEmnffhwMBvpv8WsP7jUXLqSktaZN7\nAjgKC0k75BAArBkZ5P3qxq3mcVdKqY5KW+idVMNEMhFsOTm7dK1gJMbMonIenLqEg3tn8otRfcn0\nNH5RcLjTCNRUN7y3b2VG/Y6yZWfT/W8PEa+vR+wObFnbXv++Sby+nkhxMaHly0kbOlTXtSul9mra\nQu8E4sFgs27oeH09NVOnsvSYMRSdex6R4uKtnN2ypnMvqgIRLnl2Jj+squDxz5ezaH1j8Hb7/Ey4\n4SbcPj8Wq42DJ55Bmr/1pCo7w5aZiaN7d+x5uYht+7+jRjZsYPlJJ7P2uutZdellRMu2mlJAKaXa\nNW2hd2DxSITQwoWUPfEkaUccTvq4cVgzMojV1bH+jjsxkQiRlSupfPVVcq+/fruuaWIxwitXUj7p\nP6Qdegieww8HcWK3CuFkb7vDZm0ob7XZ6LH/IC748yOAweFy43DvekKmQE2YQG0Ep9uGy2vD2uSe\n2yu8fDkkv+iEliyBXZjtr9TeJrnVa9gY81Xy/bPAO8aY17Z23k7e6yngQWPMgra+tmqkAb0Di1VU\nsPLCizCBADUffYR78AG4MxLZ0BwFPQktXgKAY599tv+a5eWsPOdcYpWVVL78MoWvvEzWwEG8c/1I\nZqwox++y03ez9KRWmw1vZtutDw/Uhvno2QWsml+OzWHhrNsOJqPLjn9JcA8ZgmvAAIKLFpH3m18j\nOjNepcKd6eew2cYy3Fm1q4lZ2sJooBb4KtU3MsZclup7KO1y7/ia7OBmohEgMe7c84knyL3xRro/\n/HCilb2djDHEmuwEF6uspD4cY9aqSj5ZVEKO14nbseOt5R0Ri8ZZNT/RPR4Nx1nzU8VOXceWk0PP\nJ59gn88/I+OMM1O6dE91Uolg/iSJ/dwl+fPJ5Oc7TUQ8IjIlmYd8noicJSJjRGRWMmf5v5OpURGR\nIhHJSb4ekcyPXghcCdwoIj+KyJHJS48Ska+S+dNPb/Hmiet4ReRjEfkheb+JrdUr+flnIjIi+fox\nEZmZzNn+h135e1DNaQu9A7P6/fR88glK//lP0g49DEevwoZj9q5dyfnFFVu/QDwG5cvh2ydgn6Oh\n4HCsPh/d//YQJQ/9DffQIbgGDWJlTYhfvTIbgM9+2sjnvz2arumpC+pWq4Ue/TNZs6gCm91Cj/22\nfyLc5jbf0U6pNpaq9KknAOuMMRMARCQdmAeMMcYsFpH/AFcBf2vpZGNMkYg8DtQaY/6SvMalQD4w\nEugPTAZa634PAqcYY6qTXxa+EZHJrdRrc7clc6lbgY9F5ABjzJyd+UtQzWlA78AsLhdpBx1Ej0ce\nQZzOhtzg27JpIxi7w4br639h//5J+O4JuOorLF0G4h01irRhwxCXC6vXS2xDkxZ73ACp3azI7XNw\n3KUDCVSHcXpsuD2tZ2hTag9LSfpUErnO/yoiDwDvANXACmPM4uTxScA1tBLQt+LN5F7vC0Rka3sx\nC3CviIwikaa1O9Bl83oZY6a1cO6ZInIFifiTDwwANKC3AQ3oHZxYrVj9/u0uHw4G+P6d//Htm69g\nsVr5+S230HXl51C6GIJVAFg2+3KQ53Nyx0kD+GjhBq4Y1Yf0tNQH2DSfgzRf6jbEUaqNpCR9arIV\nfiAwHrgH+GQrxaM0Dq9ua81oqMnrre2Mdy6QCwxPpmAtAlyb10tEPjbG3NVwQZHewG+Ag4wxFcmJ\neG23jrWT04DeDsWqqgjMm0dkXTG+o0dvfZ14sApKfoLVM6DfcZBRAPadn9wVCQb56evEl+p4LMbS\neYvous8Y6DMacvZr8ZyMNAfnHdqL0w7sgcdpw2rZ9g6Z0XAIi83eYia3TeKBALHaWqQN1sortYek\nJH2qiHQDyo0xz4lIJXAtUCgi+xhjlgLnA58nixcBw4H3gNOaXKYG2P5v+82lAxuTwfxokl9aWqjX\n5pPh/EAdUJXsARjHZhne1M7TSXHtUN2MGay+9DLW/+53rL35ZqKVla0XXjcLnj4OPrwNHh8JNet3\n6d4OdxoHn3IGADank/2OGA2jfgtj7gBP6+PNdqsFv9u+zWAej8coXb2SKf/4CzMnv95sw5lm5YJB\naqd9ybLjjk+slV+3bqefSak9JjGb/XJgJYmxqJXA5W0wy30wMENEfgTuAG4HLgZeFZG5JLrBH0+W\n/QPwsIjMBJquzXwbOGWzSXHb63lgRPJeFwCLWqnXPU1PMsbMBmYly78ATN/B+6qt0OQs7VDJI49S\n+sgjANjy8+n9yssYn49gXS0mHsfp8eBMSy4Nm/LbxPj2Jmc8CwNPaXa9UDRETaQGl9WF19H6TO5A\ndTXrlv6EzW4nM787FosFt8+P1d52Xeh1FRVMuulaAtWJ7vvTbr2LwiEHblEuUlLCip+dQqysDIDs\nX1xB3o03tlk9lNoJmpxFtWvaQm+HMk4/Dcc++2DxeOh65x2I38/axQt58tpLePLaS1j8zXSi4XCi\n8P4TGk+0OiB/aLNr1Ufq+XT1p1zw3gXcP+N+KoItL/GKhEN8+9arvPnAH3jtnttZ/v0MvFnZbRrM\nARDTfNe6WMubuYjNhqNX49Cjc7+Wu/uVUkol6Bh6O2Tv2pVezz6LMXGsPh9RE2fWe5MbAuEP702m\n7/CDsTkc0G0YXDq1cQzd17XZtWojtdwy7RZiJsbqmtWc1PckDsk/ZIt7xsJhNixb0vB+7eKFDD72\nBKzWtl1+5vKlc/rtdzPtxf+Q37cf+f1aDtS2zEx6PPw3qt//AHv37rgPHNam9VBKbZuIDAb+u9nH\nIWPMlv+JqD1OA3o7ZctpHK+2xWP0HXEIy3/4DoDew0Zgc7qoClZRHa7GkdWLjPwhOG1bLkuziIUM\nZwZlwWTXtbvlcXBnmodR517E6/fegc3h4LBTz9qhYB6rqSEeDGKx27FmtL5Xu9VqJa+wLyf98has\ndju2rfQA2HJzyTr/vO2ug1KqbRlj5gJDt1lQtQs6hr6XCNbWUFNWSjQcJqNrPsZlY9L8Sfxz9j+x\nW+w8N/45BmQP2OI8Ywxratfw5tI3OajLQQzMGYjP4WvxHrFolGBtNSCk+dOR5Az00toQL3+3GqtF\nOGN4D7K9zb84xCorKX3qKSr++xyeUaPI/8Od2LLabqtXpdoJHUNX7Zq20PcSLq8Pl7cxEJcGSplf\nPp9hecNYULaAqUVTWwzoIkJPX0+uG3bdVq8fN3HKIxXE7DG8dm9DMA+EY/zp/UW8MnMNABuqg9w6\nbn/stsbpF/G6OsqfehqA2qlTiVx1pQZ0pZTazTSg76Uy4oY/dzmGcOVqqoZcT9C1s8tJE9bVruPW\nL2+lh7cHo3qMYlSPUaTZ04jG41QHokwYnI/VAjXBKNG4oVlHud2RyOJWWQl2O7bMnd+KVSml1M7R\ngL6Xsi18G9s7N+IG/H2PIX7qk7t0vYUlC7it9/Ws+Hw6+Q4noaw60tLT8Lns/OPkbpivH0NiYeTw\na7FtlnzFlpNN4WuvUjf9K9KGH4hVA7pSSu12umxtbxSPw9rvG97KxoVYtzeXd7AaqtZC0XQoWQR1\nJQAM9w/m/XvvY/4nU/nowb9CIJGZjbpS7K9egOObh7F/9xi2/54EtSXNLikWC44ePXBPGEc0J5uI\n5hVXqt0QkTtF5DcpunZDJrf2SERyReTbZBa6LTbPEZGnRGTLscq9lLbQ90YWCxxxIyx+HwIVcMJ9\nsFmXe6CmmnAggNVux5ORiYhAfTl8+RB8/QiY5FrwLoPg3FewYm9c2w6Nr+MxKP6x8cKVq8BixRiT\nuGZSXWUFb9x3ByUrixj58wsYcty4xs1vlOrEBk8avEU+9LkXzm0P+dD3KBGxGWOi2y65S8YAc1vK\nxy4i1o6Wp11b6HurrD5w1Vdw43zod3yz/duDtTV89erzPHXdpfz35uupKStNHFj3I5GMAqpPf5rg\niEtALLBhHrxxBW6HjQnX/Ya83n057LSf481MLm+zOWHgqYnXFiuB8z9j1pc1THt5CbUVwYZ7Fi9Z\nxMai5RgTZ9qLk4iEmuZ4UKpzSgbzLfKhJz/faa3kQ98i73mTU4aIyNciskRELt/KdfNF5IvkdrDz\nNrVqt5HD/LomedH7J8sfnLzfrGR+9f2Sn18kIpNF5BMSqVNby6teKCILReTJ5D0/FJFWk1SIyOUi\n8l3y7+N1EUkTkaHAn4CJyedxi0itiPxVRGYDh22Wp/2EZD1mi8jHW3uO9kpb6HsriwW8LWc3jEYi\nzP7wPQDqqypZt3ghnjQn5dYezF24lK5DulLR/0QGdT+Q9LeuhaIvcZh69jn4cAoGD8XudGHflE3N\nnQFj74UhZ4ErnZ8W+vnqjWUAbCyqZsI1B+D2Ocjs1gMRC8bEye5RsNWkK0p1IrszH/oDWyl/AHAo\n4AFmicgUY0xLCRLOAT4wxvwxma98U923lsO81BhzoIhcTSKT2mUk9mo/0hgTFZFjk8+7KTHMgcAB\nyevZaDmvOkA/4OfGmMtF5JXk+c+18nxvGGOeTP5d3ANcaoz5h4j8HhhhjLk2ecwDfGuM+XXyPcmf\nuSS+eI0yxqwQkU3LdLb2HO2OBvQOyGqz0WvIMIp+/B6bw0nXPv0IBEO8eOdtRIIBeO9tTv3TA2zM\nTSPd7oZIAGJhbHY7Nnv6lhf0ZEPfYwCo+7pxN7n6mjDxeGIfA192Lhf+9VHKVq+i2377k5be+uYy\nSnUiuyUfujFmWtMhsBa8ZYwJAAER+RQ4GHizhXLfAf8WETuJ3Oibxtu2lsP8jeTP74Fkdx7pwCQR\n6UciKU3ThTFTjTHlydet5VWHRH73Tff/HijcyvMNSgbyDMALfNBKuRjwegufHwp8YYxZAdCkflt7\njnZHA3oH5Pb5GXfNjdRWVOD2+XH7/NRXVSSCOYAxBOvrcPvtYAz4u4Fj+8a7hxxbwPoV1dRXhTnu\n4gG4vInfb4fLRXb3nmR375mqx1Jqb7Rb8qEnu4i3lvd88x3EWtxRzBjzRTK4TgCeFZEHgWlsPYf5\npvG1GI0x5W7gU2PMKSJSSPMUqXVNXreYV32z62669tbyQj8L/MwYM1tELgJGt1IuaIzZkVm7W3uO\ndkf7RTuoNH8Geb1648vKxma340zzctwV15HVvQcHjD8Rd7qPrJVfQzwCEx+FtO2bqOrNcDL+qsGc\n9tsDyS30YbXqr5BSW3ErifznTbVVPvR6Y8xzwJ9JdGMXkch7Dlt2C08UEZeIZJMIdt+1ct1ewIZk\n9/VTyeu2lMN8W9KBtcnXF22j3BZ51XeCDyhO9iycuxPnfwOMEpHeAE263Lf3OdqFlLbQRSSDxC/F\nIBLfCC8BfgJeJtF9UgScaYxpOQVYJxSNRKgtK6V42WK67dsfb1ZOmyRIcaalMeDI0fQZOgwTrcS9\n5F1sNcVwzXfgywfL9t/D7XXscn2U6gzmXjj3hcGTBkPbz3IfDPxZROJABLiKRAv2aRG5my1bknOA\nT4Ec4O5Wxs8hEex/KyIRoBa4IDmmvCmH+Wq2L4f5n0h0Vd8OTNlKueeBtyWRV30mjXnVd9TvgG+B\nkuTPlve3boUxpiQ5pPCGiFiAjcBxbP9ztAsp3ctdRCYB04wxT4mIg8QEi1uBcmPM/SJyC5BpjLl5\na9fpTHu5V5eW8Mwvf0E0EsbhdnPxg4/jzWqeUKUiWEFtpBan1UmWKwubZQe/lxmTGDe32hN/lFLb\nQ/dyV+1ayvpLk7MuRwFPAxhjwsaYSmAiMClZbBLws1TVYW9UuaGYaCSxBjwcCFBfXdXseFWoioe+\nf4jxb4znlLdOYUP9hh2/iQg40jSYK6VUB5LKAdDeJLo/nkmu4XsquWSgizGmOFlmPY0zGhWQ3a0H\n/tw8ALK698CT0Xwb1XAszNvL3gagOlzNrA2zdnsdO6q6SB1lgTKC0eC2Cyu1FxORwcm12U3/fLun\n67UtIvJoC/W+eE/Xq71I5Ri6jcSEiuuMMd+KyMPALU0LGGOMiLTY558cz7gCoKBgV1d47D08mVmc\nc/dfCIeCOFzuLQK6w+pgbOFYpqyYgsfuYUjekB26fjAaJBwL47F7sO7AuPmeVhmsJGZipDvSsVnb\n/te2MljJk3Of5Is1X3DRwIsYWzgWr8Pb5vdRqj3YW/OcG2Ou2dN1aM9SNoYuIl2Bb4wxhcn3R5II\n6PsAo40xxSKSD3xmjNnq7judaQx9e5QHy6kOV5NmSyPLmbXVABeLRQlUVRGNhLE4HTyz/DlmbZzF\nNUOv4YCcA3DanK2e215srN/IzV/cTGmglDsPu5MDcg/A3sbDBYvLF3Pa240Tgz88/UPyPflteg+1\n19MxdNWupazL3RizHljdZKu8McACYDJwYfKzC4G3UlWHjirLlUWhv5C8tLxWg3ltuJaS+hLKq0uY\ndNN1PH395Xz35mu4Yw6+3/A9V069kqpwVYvntiexeIzHZz/OzA0zKaou4rpPrqMyVNnm9/HYPUjy\n/2uP3YNV9p7eC6WUgtRvLHMd8Hxyhvty4GISXyJeEZFLgZXAmSmuw14tUFNNRfFabA4n/pxcXN5t\nr8aoDFXy7PxneWPxGxzT82hOueoXfPSnP7Poi0858IirgMYtD9s7QXDbGveTcFgdKal7hjODf4/9\nN5+v+ZyJfSeS5cza9klKKdWOpDSgJ7ftG9HCoTGpvG9HEQ4GmfHmq8x8538AnHDNrxg46phtnlcT\nruHpuU8D8PrSNzj1qJOw2mz0H3kUFrudQ7oewtVDrybD2f63Z7VYLFwy6BLKg+VsqN/ALQffQqaz\n7fOtexweRnQdwYiuLf26KqVU+7ddAT25cf3lJDaDaTjHGHNJaqqlAP6/vTuPj7I89z/+ubKHNYEg\nAtqiFkVxQQ0qohX3pf7cSl2r0npqPUr1p7Uutcft6Kn1/OpSl1qtFvRYLe6ouB0VRa1LqAIiooCg\n4MIW1pCQ5fr98dyBIZkkk2VmkuH7fr3mNTP3s9z3PJlXrnnu537uq6aqkoUzN6Uu/eLDMobufyDZ\nOc1fP87Pzqcgu4DK2kpyLIeSvgM5+493U9CtB9ndC7h1wG50z+tOlnWNWd76Fvbl6v2uptqr6Znb\ns8v0LohI24WJyU5397vbsO0CoqQsyzqgHdcTzfP+v+3dV7Ileob+DNF8vv9LNKeupEBet+7se+LJ\nPH/7f5Odm8vePzqhxWAOkG3Z3H3Y3byx6A1GDhhJbnYuxVv327Tf7K4301thbiGFzU7lLNI5zR66\nc6N86Dt/Ojtt+dAtNXnIO0IRcD7QKKCn8jO4+9WpqKcjJHqK1s3dL3f3ie7+RP0jqS0TcnJz2W7P\nUn5x1wOcc/u99Pv+dhuXra5azfL1y6murW60XUVNBVe/fTULVy/kpvdvYvWG1alstogEIZg3yoce\nytvFzH5qZu+He7H/YmbZZrY2ZvmYkEgFMxtvZveEe81vNrM+Zva0mc0ws3fNbPew3rVm9pDFyZ1u\nZr+xKOf4DGucE71h284K6003s4dCWT+LcpV/EB6jYup8wKLc5PPN7MKwm5uAHcLn+28zG21mUy1K\nr/pJ2PZpM5tmUc70c1tx7BptF47feIvywM80s4tjjt2Y8Prq0PaPzexe62TdhYmeoT9nZse4++Sk\ntkYaySsoJK9g8zPT5euXc8O7NzBv5Tyu3PdK9tpqr81uP+ue253BvQcz5asp7FGyR5e4Vi6SoZKS\nD93MdgZOAUaFxCZ303JSkm2A/d291szuAD509xPM7BDgQTbdl94odzpRPo4hRGlXDZhkZj909zfj\ntG0Y8LtQ17KYRCe3A7e6+1tm9j2iFKc7h2VDgYOJ5mCfY2Z/JrrNeVd3Hx72O5pobpNd69OcAj8P\nedULgQ/M7Al3X57AIfcuMFkAACAASURBVGy0HdEl5UHuvmuoL94/zjvd/fqw/CHgWODZBOpLiUQD\n+kXAb82siigRgBHNC9MraS2TJr3+1ev875fR5ZyLXr+IySdO3iyg9ynow40H3EhVbRX5Wfn0KdSI\nbZE0SVY+9EOJMqt9EE4SC4kSijTnsZjUoQcQMrK5+2tm1tfM6v+fx8udfgBwBFA/NWUPogDfKKAD\nh4S6loX91+cWPwzYJeaktpeZ1c/e9Ly7VwFVZraEpmcQfT8mmANcaGYnhtfbhjYlEtDjbTcH2D78\n2HkeeDnOdgeb2WVEP8r6ALPoagHd3VuVuUaSK3aUd8+8aJBYXV0dddRtTNTSp0BBXKQTSEo+dKKT\nqgnufuVmhWa/jnnbMCf6OhITL3e6Ab9397+0qpWbywL2c/fN5lYOAb5h7vOmYtPGzxDO2A8DRrp7\nhZlNofFnbqSp7UKu9z2AI4HziG6p/nnMdgVE1/NL3f0rM7s2kfpSKeFhzmZWbGb7mNkP6x/JbJg0\nbe/+e3PlPldy/A7H88CRD5BjOdz50Z1c8/Y1fLvu23Q3T0Q2SUo+dOBVYIyZbQVR/m4LuczNbGeL\nUoCe2Mz2Uwld9CHALXP3+sE28XKnvwT8vP6M2swG1dcdx2vAT8L2sbnFXyaam4RQ3tLUs2toPg1q\nb6A8BOWhRJcJEhF3OzMrAbLC+LDfEXXvx6oP3svCcRiTYH0pk+hta/9G1O2+DfAR0QH4J1HXiqRY\nUUERp+98OrV1tWRnZfPAxw9w38z7AFi4ZiF3HHIHxQXFVK5bR3Xleiwri+69i7CsrnGbmkim2PnT\n2X+fPXRn6OBR7u7+iUU5ul8OwbsauIDouvNzRImxyoi6xuO5FnjAzGYQ/cA4O2ZZvNzpX4fr9v8M\nZ9RrgZ8Sp5vf3WeZ2Y3AG2ZWS9RNPxa4ELgr1JlD1F1/XjOfcbmZvW1mHwMv0Dgf+YvAeWY2m6i7\n/N2m9pXgdoOIkonV/6PcrPfD3Vea2X3Ax0SJxT5IsL6USWgud4uSz48gmpt9ePhV81/uflKyGwia\ny70ld354J3+ZEfWE7VS8E/cefi89rJBZr7/Ca+PvpbBnL06/4Y8Uba25yUXaoVONaE6G0I281t3/\nX7rbIq2X6KC4SnevNDPMLN/dP7VNc7RLCq2vXs/a6rXkZuduHL1+6tBTWbBqAcsql3H1yKspLihm\n3cpy3n1qYrTNmtV8+s6b7HfSKelsOsvXL+fh2Q+TZVmcNvQ0+hb2TWt7REQySaIBfVEYwv808IqZ\nlRPNwy4ptK56HS8teInbpt3GsJJh3DjqRvoU9qGksITr9r+OmroasujG4pXrKajLYtthuzHnnalg\nxvd23Z0NVZVUr68gJ6+A/G4N76RJrqraKu748A6e+DyavmBl1UouG3FZl5zkRiRTufu1ia4brpG/\nGmfRoQneOpZUnb19yZDoKPf6wRXXhtsYehNdh5AUWle9juv+eR11Xsdbi99i5rKZHLTtQUA0F3ld\nnfPCx99wwd8/pHteNi+f/3OGH3ks3XsXkdetOx9OnsT0V15gyL77s99Jp1DYM3V3HdbV1VFeVb7x\nfXllOXVel7L6RaRjhaDYaXOqd/b2JUNrRrnvFWbw2R1Y5O4bktcsiSfLsuhXuGkK14b5utdX1/LY\ntEUArNtQy6WT5tHr+ztSPGAQNVVVvPXog6xZvpR/TX6GilWpTZ1amFvI5SMup7R/KSO2HsGlIy6l\nIKdT3fEhItKlJTrK/WrgJ8CToehvZvaYu9+QtJZJIyWFJTx49IO8vOBlduu3GwN6bB7QC3OzOXXE\ntrzx2VLc4eQR21CYF+X1zs7JIScvn5oNVVhWFjkF+fGqSKqBPQZy68G3Yhi983unvH4RkUyW6Cj3\nOcAe9RMChOnyPnL3lAyM0yj3xK2tqmZVRQ2O07swl54FUTKX2upqln39FR9PfZUBe+zG8h5VDB+0\nFzlZOeRn53eZzGsiaZTxo9yla0v0v/jXbD4jTj6wuOObI+3VIz+XQcWFbFPcbWMwB8jOzaWsdjaT\nBn3MlfN+z/lvjqO8spzL3ryMJz9/klVVqe2CF5HkMrPjzOyKJpatbaI8NhHJFDMrTWYbm2Jmw83s\nmBTU89uY14PDPe/t3Wc/M3vPzD40swPjLP+rme3S3nriSXSU+ypglpm9QjQN4OHA+2b2JwB3v7C5\njaVzKC4o5rUvXwOgb0FfFq9dzJSvpjDlqynsVrIbedl5LF+/nIWrFzKkeAglhSU6cxfpotx9EjAp\n3e1oo+FAKZCUhGAhS5oRzdj3Xx28+0OBme7+b3HqzY5X3lESDehPhUe9KR3fFEm2YX2HccvoW5i5\nbCY//sGP+e1bm2afNIy55XM584UzqfVa+hT04bH/8xhbdWtqdkcRScRd573WKB/6Bfcc0q6Z4sxs\nMNGdRu8C+xPNWvY34DpgK6JpXXchmnd8nJltR5TdrQfwTMx+DLiD6CTtKyDuYGczOyLsOx+YB/zM\n3Zs6y98buCXUtQwY6+7fWJSK9VwgD5gLnBmmX/0JcA3RHO6riOZZvx4oNLMDiOaQ/0eceq4lOqbb\nh+fb3P1PYdklbJqH/a/ufls4Zi8B7xEltnk/1PERUZKVq4DsMBvc/kS90MeHRDXxPmejzwPsCNwc\n9lsKjCSate8v4XNdYGY3AJe6e5mZHUX03cgmmn73UDPbhygzXQGwPhzrOfHa0FBCp1/uPqH+QfSL\n78MGZdLBlq1fxrTvpvHtum/j5jxvi975vTn8+4dzyd6X0K9bP84adha7luzKL3f/JYN6DOLpeU9T\nG5IxrahcwfyV8zukXpEtVQjmjfKhh/L2+gHwR6LUo0OB04myol1K47nibwf+7O67Ad/ElJ8I7EQU\n/M8iCmSbCXOc/w44zN33IppS9pJ4DTKzXKIfCGPcfW/gAeDGsPhJdx/h7nsAs4FzQvnVwJGh/Lhw\nB9XVwD/cfXi8YB5jKFEylX2Aa8wsN/yg+BmwL9E05b8wsz3D+kOAu919mLv/DFgf6jgjZvld7j4M\nWEnISNeERp/H3T9q0Pb1RGlo33P3Pdz9rZhj1Y/ou/HjsI+fhEWfAge6+55hXwn3ICQ6yn0KcFxY\nfxqwxMzedve4f1Rpn+Xrl/NvL/8b81bOozCnkKePf5qBPQZ2aB3dcrtxyLaHsM/W+1CYU0hBTgH7\n9N+HiXOi2eVyLIdte27boXWKbIGSkg89+MLdZwKY2SzgVXf3MFX34AbrjmJTcHoI+EN4/UPgkZBW\n9Wszey1OPfsRBfy3wzzueUS5POLZiSh3+ith3Ww2/YDYNZydFhGdvb8Uyt8GxpvZRDbdSZWoeGlX\nDwCecvd1AGb2JHAg0cnoQndvbs73L0JQhijWDW5m3aY+T0O1wBNxyvcD3qxPBxuTZrY3MMHMhhBd\n4s6Ns21ciXa593b31SFJy4Pufk2YYF+SYEPdBuatnAfA+pr1fLn6yw4P6AC52bkUZ29KxbrfgP34\n40F/ZNp30zhuh+OUR12k/ZKVDx02TzlaF/O+jvj/21u+pSk+A15x99MSXHeWu4+Ms2w8cIK7Tzez\nsUSZ3HD388xsX+BHwLRwhp2oRNOu1msphWzD/RU2s+544nyeOCpj8tAn4j+B1939xHCZYEqiGyY6\n4inHzAYQ5Yd9rhUNkzYoyC7gyMFHArBNz23YoWiHlNTbu6A3Rww+giv3vZJhJcMozGnuuywiCWgq\n73l786G31tvAqeH1GTHlbwKnmFl2+B9/cJxt3wVGmdkPAMysu5nt2EQ9c4B+ZjYyrJtrZsPCsp7A\nN6FbfmMbzGwHd3/P3a8mut68LS2nTm3OVOAEM+tmZt2JLitMbWLd6tCetoj7eVrhXeCHYXxDbJrZ\n3my6i2xsa3aYaEC/nqg7YZ67f2Bm2wOft6YiSVxxQTFX7XsVL/34JR46+iH6devX8kattGz9Mp7+\n/GmmfTeN1VWrW95ARNoiWfnQW+siogFZM4nShNZ7iuh/+SfAg8TpSnf3pUSB5ZHQM/tPomvXjYTr\n32OAP5jZdKJ02/XX5f+DaEDa20TXiev9t5nNDLeMvQNMJ0rfuouZfWRmrcoq5e7/Ijp7fj/U91d3\n/7CJ1e8FZpjZw62pI2jq8yTazqVEg+qeDMeqfqzAzcDvzexDEu9FBxKcWCbdNLFMxyqvLOfi1y9m\n2pJpANx7+L2MHBivh0xEYrRpYplkjHIXiSfRQXE7An8G+rv7rma2O9FoRE392snUeR0rKlfg7vTK\n60V+TuMpXmvqapi3at7G95+VfxY3oK+oXEFtXe3GmeRWVq2kuq6aPgV9NHWrSIJC8FYAl6RLtMv9\nPuBKoBrA3Wew6XqMBCsqV/DO4neYtWwW81fOZ82GNUmrq7q2mvLKctbXbH6L5MLVCznpmZM46omj\n+NeSf1FTW9No2555Pblq36vIz85nh6IdOGrwUY3WWb5+Ob969Vcc8tgh3DP9HhatXcTRTx7NcU8f\nx2OfPUZlTWXSPpuIdH5m9lToEo99HJmEen4Wp567OrqeZuq/K079P0tV/a2RaP98N3d/P9yGUK9x\npNiCra5azY3v3sjLC18G4JbRt1BZW8kufVs/w9/KypW8uehNvlr7FT/Z8SeNJndZV72ON756gwmf\nTGDkgJGMHTaWooIi6ryO8bPGb0xTetu/buPPh/2ZPtmbj1YvyCngoG0P4oWTXiDLsuhb2LdRG+aU\nz2HGsuhGhodmP8SPtv/RxmUvLXiJk4ac1KpsaauqVrG2ei25Wbn0KehDTlarLg2JSCcTk1Y72fX8\njWjSnLRw9wvSVXdrJXqGvszMdiDc9hDm+v2m+U22LFW1VUxfOn3j+1nLZvH12q/btK+pi6dy1dtX\ncc/0e7hkyiWUV5Zvtnx11WqumHoFnyz/hPs/vp/PV0bjE7MsixFbj9i43h799qAgO37QLcwppF+3\nfnGDOcCgHoM2Tvvat6AvPfN6bnx/4g9OpHtO94Q/z7rqdTz66aMc9cRRHPf0cSxasyjhbUVEJDGJ\nniZdQDQacKiZLQa+oG3D9DNWj7wejBs+jqvfuZq+hX05eNuD2zw6PfaHwJKKJRtnb2uKxYzVOXDQ\ngTx8zMOsrV7Lzn12pltuwzktEtOvsB8Tj53I9KXTOWDQARTnF/Pij1+ktq6WXvnxr803paK6gkfn\nPApEwf21L1/j57v9vNF6tXW1LFi9gIlzJnLAoAMYvtVweua19c4VEZEtS7Oj3M3sIne/3cxGufvb\n4Z6+LHdP3sXhOLrKKPfl65ezZsMa8rLzyM/Kp7iwuE3JTZZWLOXSNy7lu4rv+P0Bv2fXkl3Jzd50\nq+S66nW8tfgtHvrkIUYOGMkZO59BUUFRR36UDrV2w1punXYrEz+bSE5WDo/86BGG9ml818vSiqWc\n8MwJrN4Q3Ub3zAnPsH3v7VPdXJGmKH2qdGotBfSP3H24mf0rzOGbFp05oG+o3UB1XTUV1RVMnDOR\ne2bcQ47l8Lej/sbwrYa3en/lleUYhuPU1tVSlF9ETnbjjpSa2hrW1qylMKeQ/OzEz5bTpbyynBWV\nK+iR24Pe+b3jXn//bt13HPHEEdR5HQAPH/Mwu/fbPdVNFWmKArp0ai2dPs42s8+BncxsRsxjpqZ+\njUa131J2C7954zes2bCGyV9Emf5qvIZn5z/b6v19teYrxr06jl+99ivW16ynpFtJ3GAOkJOdQ1F+\nUZcI5hBNlrND0Q70796/ycF0PfN6cvMPb2ZI0RB+uvNP+V7PjpgdU0TiMbMTOjIvt5mV1qfUTgeL\nyf/eMCe5mU02s87bjdlBWpxYxsy2Jpol7riGy9x9YZLatZnOeob+0KyHuLnsZgD+fY9/p9ZruXfG\nveRYDvcfeT979W/cqVFbV8vX677mzUVvMqL/CLbttS2FOYWs2bCGS9+4lHe+fgeAQ793KL8/8PdN\nTr/q7ny77lve//Z9duu3GwO7D2zVqPPOqqq2inUb1lGQU9Dm6/8iSZJRZ+hmNh54zt0fT3dbOpqZ\nnUqUHS5pucc7oxYHxbn7t8AeKWhLl1Ndtymt6TNzn+FPh/yJUQNHsVW3rZocPb6icgWnPncqqzes\nJsdyeP6k5ynsUUi2ZVOUv+kHZHFBMdmW3Wj7ZeuXUVlTSU5WDqc9fxrLK5eTk5XD5BMnM6DHgI7/\nkCmWn51PfmHX6HUQScQfTzm20Uxxv/7Hc+2eaMbMfgpcSJT97D3gfOBOYARRUpHH3f2asO5NRCdl\nNcDLRFnNjgMOMrPfEaXwnBenjoRymLv7D81sNFGe72Nbk9M7JDY5kWgO80HA/7j7dWHZ00RzuxcA\nt7v7vaE8Xh7xsUAp8Fca5ySfTZQbfpmZnUWUYtaBGe5+ZuJHvXNrNqCb2UR3PznM/xt7Km+Au/sW\nfYHz+B8cz7xV81i8djFX7nMlxQXF0SO/eLNBbLE21G3YOOirxmtYUbmCgT0G0i23G5eNuIySwhKy\nLZuxw8aSl5232bbL1i/j7BfO5ss1X/L3Y/7O8srl0X7qalhSsSQjArpIJgnB/D42pVD9PnDfH085\nlvYEdTPbGTgFGOXu1WZ2N9GdR1e5+wozywZeDbN6LiYKmENDetUid19pZpNo+Qz9SXe/L9R5A1EO\n8zvYlMN8cRNd2fU5vWvM7DCi4NtcbvF9iNKuVgAfmNnz7l4G/Dx8nsJQ/gTRpeL7gB+6+xcxSU0A\ncPePzOxqogA+LrS9/rgNI8rtvn8I7hmVUrKlM/SLwvOxbdm5mS0gyppTC9S4e2k4gP8gyjO7ADjZ\n3cub2kdn1rewL1ftexXVddX0yuu18UvTnO653Tlrl7N45NNHGDVwFAO7b0qL2rewL5eWXgoQd19L\nK5by5ZooSdOc8jmMGTKGxz9/nL37790pcpevrFpJTV0NxfnFZGc17l0Q2QIlKx/6ocDeREEOojPy\nJcDJZnYu0f/2AUR5zD8BKoH7zew5Wpcxs605zFub0/sVd18OG/OXHwCUAReaWf0ENtsCQ4B+xM8j\nnohDgMfcfVkbtu30mg3o7v5NeG7PtfKD6w9ecAXwqrvfFAYwXAFc3o79p1Vrr/MW5Rfxyz1+ydhh\nY8nNyo1uN6tYAQvfgfIF2G5joOfWcbctKSyhpLCEZeuX8cRnT3D7Ibdz/vDzycnKobigOO42qbK0\nYilXTr2S7yq+478O+C926buLgrpI8vKhGzDB3a/cWBCl4XwFGOHu5eEaeUE4S96H6EfAGGAcUWBL\nxHjalsO8tTm9Gw7m8tCFfxgwMnTzTyHqepcmtNTlvobGBxo2dbn3akOdx7MpEfwEoj90lw3obdEr\nr1d0Rare3FfhyTB245On4LR/QPeSRtuVFJYw8diJrN6wmt75vSkpbLxOujw19yne+/Y9AK5860rG\nHzmekm4d177q2mpWVq0Eoh9FTV3SEOlkviTqZo9X3h6vAs+Y2a3uviT0fH4PWAesMrP+wNHAFDPr\nQTR992QzexuYH/aRSM7xhjm/F8OmHObAe2Z2NNHZc6zW5vQ+PHyG9cAJwM+JrqeXh2A+FNgvrPsu\ncLeZbVff5d6KM+3XgKfM7BZ3X97KbTu9ls7Q2ztNlwMvm5kDfwkDGvrXn/kD3wL9W9rJHDb9AshI\n246AsaEXLCsX8pv4nWQG3fpFj05m+ZCTmL/VngAszevJCQVFrUvk2xx31tZW8Vm43LBTbje6K6BL\nik1p22a/ZfNr6NAB+dDd/ZMwmO1lM8siSpx1AfAh0fXrr4i6xSEKys+YWQHRydglofxR4D4zuxAY\nE29QHJtyfi8Nz/Ux4b9Dd7oR/biYDhwUs93NRF3uvwOeT+AjvQ88AWxDNCiuLIzdOs/MZhOFgXfD\nZ18aLis8GT77EuDwBOrA3WeZ2Y3AG2ZWS3S8xiaybVeQ1HzoZjYoDJrYiqgr6FfAJHcvilmn3N0b\n9ReHP9i5APm77773ftOnN1wlc9RUwrcfQ20VlOwIhX2gi3VX19TVsKpqJVW1VfQr7EdugwF97VFb\nV8u8lXNZFQYTFucXsX3R9mTFuQtAJFmmtPG2tWSNcs8U9aPT6wewSdslNaBvVpHZtcBa4BfAaHf/\nxswGAFPcfafmtu2s96F3hOraalZtWEVObQ1FZENed8hLz/3X9bfEFeYUNnnbXTpU11Uz4eMJ3P7h\n7QBcNuIyTh96uq7RS6pl1H3onYUCesdJWg7L2Hnfw+sjgOuBScDZwE3h+ZlktaGzq66tZvrS6fzH\nO//BoO6DuOmHN1GSxmB+zkvnMH/VfPbotwe3H3x7pwnquVm5jNlxDHv335usrCy+3+v7CuYiHcii\n/OKjGhTfHlKXdlQdRwJ/aFD8RUjDOr6j6tmSJTMpdX+iwQf19fzd3V80sw+AiWZ2DrAQODmJbejU\nVlWt4vKpl7OkYgmL1ixi8vzJnDXsrLS0Zdn6ZcxfFY2Vmb50Ouuq13WagA5QVFDEngV7prsZIhkp\nFTm/3f0lNt32JkmQtIDu7vOJM8NcuNfw0GTV25VkZWXRr7AfSyqWADCwx8AWtkievgV9Kc4vpryq\nnIHdBzY55ayIiHROKbuG3h6ZfA19ScUSnvjsCQb3GszIQSM3m/41lWrrallRuYKv133NoB6DOtUt\ncSKdhK6hS6emgC4ikhgFdOnUWkqfKim2fP1yllYsZV31unQ3RUS2UGY22Mw+TmCd02PepzV9qiig\ndyrfrP2GMyafwWGPH8az855l3QYFdRHptAYDGwO6u5e5+4Xpa44ooKfY0oqlLFqziBWVjWcbfHb+\nsyxeu5g6r+MPH/yBipqKNLRQRDq7cHb8qZk9bGazzexxM+tmZoea2YdmNtPMHjCz/LD+AjO7OZS/\nb2Y/COXjzWxMzH7XNlHXVDP7V3jsHxbdBBxoZh+Z2cVmNjokf8HM+pjZ02Y2w8zeDVnfMLNrQ7um\nmNn8MEuddBAF9BRaWrGUMyafwdFPHs01b19DeeXmSeZ2LN5x4+vtem0XNx+6iEiwE3C3u+8MrCaa\n0nU8cIq770Z0F9O/x6y/KpTfCdzWinqWAIe7+15EKVvru9WvAKa6+3B3v7XBNtcBH4YU278FHoxZ\nNhQ4kihl6jVhnnjpAMm8D10a+GLVF3yzLprGfsqiKVTWVm62fM+t9uSew+7hi1VfcMTgI+hTmFGp\nekWkY33l7vXztf8P0bzrX7j7Z6FsAtH87vXB+5GY54YBuDm5wJ1mNpwoFfaOLawPUfrTHwO4+2tm\n1tfM6pNUPO/uVUCVmS0hmrNkUSvaI01QQE+h7XptxyM/eoQNtRtYUrGEvKzN5zvvnd+bUYNGMWpQ\nwwmbREQaaXiL0kqgudmgPM7rGkJPbUh0Ei8Jw8XAd0TzimQR5VZvj6qY17UoDnUYdbmn0IqqFYx9\ncSxnv3g2n674lPzs/HQ3SUS6ru+Z2cjw+nSgDBhcf30cOBN4I2b9U2Ke/xleLwDqc5kfR3Q23lBv\n4Bt3rwv7rL8W2Fz61alE6VYJec2XufvqhD6VtJkCegq9vPBlqmqjH6eT5k2isqa9P3RFZAs2B7gg\npBctJupG/xnwWEg9WgfcE7N+sZnNAC4iOuuGKLXrQWY2HRhJlE+9obuBs8M6Q2PWmQHUmtl0M7u4\nwTbXAnuH+urzdkiSaWKZFPpk+SecMfkMaupqOHPnMzl/+Pn0yOuR7maJSGI6zcQyZjYYeM7dd01w\n/QVEGc2WJbFZkma6dpFC2/fenhdOeoHKmkqKCooUzEVEpMMooKdQQU4BW+dsne5miEgX5+4LgITO\nzsP6g5PWGOk0dA1dREQkA+gMPU1WV62mqraKHrk9KMxVqlIREWkfnaGnwYrKFdzw7g2cOflMXvvq\nNdZuaDTbYoerrKlkzYY1Sa9HRETSQwE9DRasWsCitYu4+aCbqaiuoLyqnJramqTVt6JyBTe9fxO/\nnvJr5q+aT1e4s0FERFpHAT0N+hb25TcjfsO4V8dx/bvXM2bSGFZUNU7W0lGenfcsT3z+BP/85p9c\n+NqFLK9cnrS6RCQ1zOwoM5tjZnPN7Ip0t0fSTwE9DUoKSuiV14vyqig5S0VNBSurViatvtgkL1mW\nhXWe22lFpA3MLBu4Czga2AU4zcx2SW+rJN00KC4Nuud1p7iumNHbjGbKoinstdVe9C1obgrm9jlm\n+2NYvHYxi9Yu4tLSS+lbmLy6RCQl9gHmuvt8ADN7FDge+CStrZK0UkBPkz4Ffbh+1PVsqN1AbnYu\nfQqSl1mtT0EfLt77YmrqauiW2y1p9YhIfKWlpTlACbCsrKysIwbMDAK+inm/CNi3A/YrXZi63NOo\nuKCY/t37JzWY18vLzlMwF0mD0tLS/YGlwBfA0vBepMMpoIuIJEk4M38eKAIKwvPzpaWl2c1u2LLF\nwLYx77cJZbIFU0AXEUmeEqJAHqsA6NfO/X4ADDGz7cwsDzgVmNTOfUoXp2voIiLJswyoZPOgXknU\nBd9m7l5jZuOAl4jykz/g7rPas0/p+nSGLiKSJGEA3I+AlUSBfCXwo7Kystr27tvdJ7v7ju6+g7vf\n2N79SdengC4ikkRlZWXvEHW9bweUhPciHU5d7iIiSRbOyL9Ndzsks+kMXUREJAMooIuIiGQABXQR\nEZEMoIAuIiKSARTQRUS6IDNbYGYzzewjMysLZX3M7BUz+zw8F4dyM7M/hVSrM8xsr5j9nB3W/9zM\nzo4p3zvsf27Y1lJVh7SNArqISNd1sLsPd/fS8P4K4FV3HwK8Gt5DlGZ1SHicC/wZouAMXEOU2GUf\n4Jr6AB3W+UXMdkelsA5pg6QHdDPLNrMPzey58H47M3sv/CL7R5i2UEQkY5WWlhaUlpZ+v7S0tOE0\nsB3teGBCeD0BOCGm/EGPvAsUmdkA4EjgFXdf4e7lwCvAUWFZL3d/190deLDBvpJdh7RBKs7QLwJm\nx7z/A3Cru/8AKAfOSUEbRERSrrS0NLu0tPQmYDkwC1heWlp6UwckZwFw4GUzm2Zm54ay/u7+TXj9\nLdA/vI6XbnVQ2SfsMAAADapJREFUC+WL4pSnqg5pg6QGdDPbhmjaw7+G9wYcAjweVon9dScikmlu\nBMYB3YDu4XlcKG+vA9x9L6Ku7gvM7IexC8NZr3dAPU1KRR2SuGSfod8GXAbUhfd9gZXuXhPe6xeZ\niGSk0L3+K6JAHqs78Kv2dr+7++LwvAR4iuj69HehK5vwvCSs3lS61ebKt4lTTorqkDZIWkA3s2OB\nJe4+rY3bn2tmZWZWtnRpuxITiYikQ3+aPnt1NnVVt5qZdTeznvWvgSOAj4lSqNaPIj8beCa8ngSc\nFUai7wesCt3mLwFHmFlxGKh2BPBSWLbazPYLPatnNdhXsuuQNkjmXO6jgOPM7Bii1IG9gNuJBkrk\nhLP0Jn+Rufu9wL0ApaWl6tIRka7mO6C527C+a8e++wNPhbu8coC/u/uLZvYBMNHMzgEWAieH9ScD\nxwBzgQrgZwDuvsLM/pMovzrA9e6+Irw+HxgPFAIvhAfATSmoQ9rAoksgSa7EbDRwqbsfa2aPAU+4\n+6Nmdg8ww93vbm770tJSLysrS3o7RUSa0ep7pMOAuHFs3u1eAdxRVlZ2RfytRNomHfehXw5cYmZz\nia6p35+GNoiIpMJVwJ1EQXxdeNwRykU6VErO0NtLZ+gi0gm0eRazMACuP/BdWVlZZcc1SWQT5UMX\nEUmyEMQXprsdktk09auIiEgGUEAXERHJAAroIiIiGUABXUSkCzKzB8xsiZl9HFOWEelTm6pDmqeA\nLiLSNY2ncbrRTEmf2lQd0gyNchcRSZKQVe1M4GKivBWLgVuBh8rKymrbs293f9PMBjcoPh4YHV5P\nAKYQzf2xMbUp8K6Z1ac2HU1IbQpgZvWpTacQUpuG8vrUpi+kuQ5phs7QRUSSIATzSUQTy+xONJHW\n7uH9pA5KodpQpqRPbaoOaYYCuohIcpwJHET8bGsHAT9NZuWZkj5VKVoTp4AuIpIcF9M4mNfrDlyS\nhDozJX1qU3VIMxTQRUSSY1A7l7dFpqRPbaoOaYYGxYmIJMdiouvmzS1vMzN7hGjgWImZLSIaSZ6K\n1KbprEOaoeQsIiKJaVVyltLS0rFEA+DidbuvAy4oKyub0AHtEgHU5S4ikiwPAW8QBe9Y60L5/6S8\nRZLRFNBFRJIg3Gd+HHABMANYHp4vAI5r733oIg2py11EJDFtzocukgo6QxcREckACugiIiIZQAFd\nREQkAyigi4h0QU2kT73WzBab2UfhcUzMsitDmtI5ZnZkTPlRoWyumV0RU76dmb0Xyv9hZnmhPD+8\nnxuWD05lHdI0BXQRkSQrLS3drrS0dFRpael2Hbjb8TROnwpwq7sPD4/JAGa2C3AqMCxsc7eZZZtZ\nNnAXUerTXYDTwroAfwj7+gFQDpwTys8BykP5rWG9lNQhzVNAFxFJktLINGAW8Dwwq7S0dFppaWlp\ne/ft7m8CK1pcMXI88Ki7V7n7F0Szue0THnPdfb67bwAeBY4PU7EeAjwetp9AlNq0fl/1E+I8Dhwa\n1k9FHdIMBXQRkSQIQXsKsBfR1Ka9w/NewJSOCOpNGGdmM0KXfHEoa21q077ASnevaVC+2b7C8lVh\n/VTUIc1QQBcRSY6/0Hy2tXuSUOefgR2A4cA3wB+TUId0UgroIiIdLFwr37mF1Xbp4GvquPt37l7r\n7nXAfUTd3dD61KbLgSIzy2lQvtm+wvLeYf1U1CHNUEAXEel4A4ENLayzIazXYepziAcnAvUj4CcB\np4bR49sBQ4D3iTKgDQmjzfOIBrVN8mgK0deBMWH7hmlS61ObjgFeC+unog5phtKnioh0vK+BvBbW\nyQvrtUkT6VNHm9lwwIEFwC8B3H2WmU0EPgFqgAvcvTbsZxxRzvJs4AF3nxWquBx41MxuAD4E7g/l\n9wMPmdlcokF5p6aqDmme5nIXEUlMa9OnTiMaANeUaWVlZckaGCdbIHW5i4gkxy9pnDq13jrgvBS2\nRbYACugiIklQFnUrjgamAeuJbr1aH96PLlO3o3QwXUMXEUmSELRLw2j2gcDXZWVlX6S5WZKhFNBF\nRJIsBHEFckkqdbmLiIhkAAV0ERGRDKCALiIikgGSFtDNrMDM3jez6WY2y8yuC+Vx89+KiIhI2yXz\nDL0KOMTd9yBKFHCUme1H0/lvRUREpI2SFtA9sja8zQ0Pp+n8tyIiItJGSb2GbmbZZvYRsAR4BZhH\n0/lvRUREpI2SGtBDGr/hRGnx9gGGJrqtmZ1rZmVmVrZ06dKktVFERCQTpGSUu7uvJEqTN5Km8982\n3OZedy9199J+/fqlopkiIiJdVjJHufczs6LwuhA4HJhN0/lvRUREpI2SOfXrAGCCmWUT/XCY6O7P\nmdknxM9/KyIiIm2UtIDu7jOAPeOUzye6ni4iIiIdRDPFiYiIZAAFdBERkQyggC4iIpIBFNBFREQy\ngAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVERDKAArqI\niEgGUEAXERHJAAroIiIiGUABXUREJAMooIuIiGQABXQREZEMoIAuIiKSARTQRUREMoACuoiISAZQ\nQBcREckACugiIiIZQAFdREQkAyigi4iIZAAFdBERkQyggC4iIpIBFNBFREQygAK6iIhIBlBAFxER\nyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDJC0gG5m25rZ62b2iZnNMrOLQnkfM3vFzD4Pz8XJ\naoOIiMiWIpln6DXAr919F2A/4AIz2wW4AnjV3YcAr4b3IiIi0g5JC+ju/o27/yu8XgPMBgYBxwMT\nwmoTgBOS1QYREZEtRUquoZvZYGBP4D2gv7t/ExZ9C/RPRRtEREQyWU6yKzCzHsATwP9199VmtnGZ\nu7uZeRPbnQucG96uNbM5LVTVG1jVyuYlsk1z6zS1rGF5vPViyxouLwGWtdCu1urMxydeWXPvk3F8\nmmpXR2yTKd+hptrR3vW7ynfoRXc/qpXbiKSOuyftAeQCLwGXxJTNAQaE1wOAOR1U173J2Ka5dZpa\n1rA83nqxZXHWL0vC36LTHp9EjlmD49Xhx6ezH6PO8B1qyzHa0r5DeuiRzkcyR7kbcD8w291viVk0\nCTg7vD4beKaDqnw2Sds0t05TyxqWx1vv2RaWd7TOfHzilSVyDDtaZz5GneE71JZ6trTvkEjamHvc\nHu/279jsAGAqMBOoC8W/JbqOPhH4HrAQONndVySlEV2UmZW5e2m629FZ6fi0TMeoeTo+komSdg3d\n3d8CrInFhyar3gxxb7ob0Mnp+LRMx6h5Oj6ScZJ2hi4iIiKpo6lfRUREMoACuoiISAZQQBcREckA\nCuidnJntbGb3mNnjZvbv6W5PZ2Vm3c2szMyOTXdbOhszG21mU8P3aHS629MZmVmWmd1oZneY2dkt\nbyHS+Sigp4GZPWBmS8zs4wblR5nZHDOba2ZXALj7bHc/DzgZGJWO9qZDa45RcDnR7ZBbhFYeHwfW\nAgXAolS3NV1aeYyOB7YBqtmCjpFkFgX09BgPbDaFpJllA3cBRwO7AKeF7HSY2XHA88Dk1DYzrcaT\n4DEys8OBT4AlqW5kGo0n8e/QVHc/muhHz3Upbmc6jSfxY7QT8I67XwKoJ0y6JAX0NHD3N4GGk+ns\nA8x19/nuvgF4lOisAXefFP4hn5HalqZPK4/RaKIUvacDvzCzjP9et+b4uHv9xE7lQH4Km5lWrfwO\nLSI6PgC1qWulSMdJenIWSdgg4KuY94uAfcM1z5OI/hFvSWfo8cQ9Ru4+DsDMxgLLYgLYlqap79BJ\nwJFAEXBnOhrWicQ9RsDtwB1mdiDwZjoaJtJeCuidnLtPAaakuRldgruPT3cbOiN3fxJ4Mt3t6Mzc\nvQI4J93tEGmPjO+a7EIWA9vGvN8mlMkmOkbN0/FpmY6RZCwF9M7jA2CImW1nZnnAqUSZ6WQTHaPm\n6fi0TMdIMpYCehqY2SPAP4GdzGyRmZ3j7jXAOKL88bOBie4+K53tTCcdo+bp+LRMx0i2NErOIiIi\nkgF0hi4iIpIBFNBFREQygAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKBLp2dm76S7DSIinZ3u\nQxcREckAOkOXTs/M1obn0WY2xcweN7NPzexhM7OwbISZvWNm083sfTPraWYFZvY3M5tpZh+a2cFh\n3bFm9rSZvWJmC8xsnJldEtZ518z6hPV2MLMXzWyamU01s6HpOwoiIs1TtjXpavYEhgFfA28Do8zs\nfeAfwCnu/oGZ9QLWAxcB7u67hWD8spntGPaza9hXATAXuNzd9zSzW4GzgNuAe4Hz3P1zM9sXuBs4\nJGWfVESkFRTQpat5390XAZjZR8BgYBXwjbt/AODuq8PyA4A7QtmnZrYQqA/or7v7GmCNma0Cng3l\nM4HdzawHsD/wWOgEgCgnvYhIp6SALl1NVczrWtr+HY7dT13M+7qwzyxgpbsPb+P+RURSStfQJRPM\nAQaY2QiAcP08B5gKnBHKdgS+F9ZtUTjL/8LMfhK2NzPbIxmNFxHpCAro0uW5+wbgFOAOM5sOvEJ0\nbfxuIMvMZhJdYx/r7lVN76mRM4Bzwj5nAcd3bMtFRDqOblsTERHJADpDFxERyQAK6CIiIhlAAV1E\nRCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVERDKAArqIiEgG+P/TN6Scm1i3agAAAABJRU5ErkJg\ngg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3936,7 +3943,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFxCAYAAACFq1rhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4leX5wPHv8569shMIkBBA9kZE\nEUVF3IpWtNraKu5qW0db96hWrWitVqs/V91iFQfi3lhUBEVAEJBN2EnIPHs+vz/OIQMSkkCCJN6f\n6/LKOe943udEkjvPvJXWGiGEEEJ0bMZPXQEhhBBC7D0J6EIIIUQnIAFdCCGE6AQkoAshhBCdgAR0\nIYQQohOQgC6EEEJ0AhLQhRBCiE5AArroUJRSNqXUU0qpYqWUVym1SCl1Qr3zRyulflRKBZRSs5RS\nPeud+6VSak7q3OeNlD1BKbVAKVWjlFqrlLpkH30sIYTYaxLQRUdjBjYCRwDpwM3AdKVUkVIqB3gD\nuAXIAuYDr9S7twL4FzB150KVUhZgBvB4qtyzgPuVUsPb76MIIUTbUbJTnOjolFKLgduBbGCK1vrQ\n1HEXsB0YqbX+sd71FwG/0VofWe9YF2Ab4NJaB1LHvgXu11r/d199FiGE2FPSQhcdWioQ9wOWAoOB\n73ec01r7gTWp47ultS4B/gucr5QyKaXGAj2BL9uj3kII0dYkoIsOK9VNPg14LtUCdwPVO11WDXha\nWOR/gVuBMPAFcJPWemMbVVcIIdqVBHTRISmlDOAFIAL8IXXYB6TtdGka4G1BeQOAl4FzASvJVv21\nSqmT2qrOQgjRniSgiw5HKaWAp4AuwGStdTR1aikwvN51LqBP6nhzhgArtdYfaq0TWusVwLvACc3c\nJ4QQ+wUJ6KIjehQYCJyitQ7WOz4DGKKUmqyUspPsPl+8Y0JcamzcTnKmvKGUsqe67QEWAn1TS9eU\nUqoPcDKweF99KCGE2Bsyy110KKl15etJjnPH6p26VGs9TSk1EXiY5IS2eSRnva9P3TsFeGanIp/T\nWk9Jnf8lyT8CepIce58G3KC1TrTTxxFCiDYjAV0IIYToBKTLXQghhOgE2jWgK6WuVEr9oJRaqpS6\nKnUsSyn1sVJqVeprZnvWQQghhPg5aLeArpQaAlwMjCE58/hkpdQBwPXAp1rrvsCnqfdCCCGE2Avt\n2UIfCMzTWge01jHgf8DpwKnAc6lrngNOa8c6CCGEED8L7RnQfwAOV0plK6WcwIlAAdBFa701dc02\nkmuJhRBCCLEXzO1VsNZ6uVLqHuAjwA8sAuI7XaOVUo1Os0+lrrwEYNCgQQcuXdqSvUGEEKLdqJ+6\nAkLsTrtOitNaP6W1PlBrPR6oBFYCJUqpfIDU19Im7n1Caz1aaz3a4XC0ZzWFEEKIDq+9Z7nnpb4W\nkhw/fwl4Czgvdcl5wMz2rIMQQgjxc9BuXe4pryulsoEo8HutdZVSaiowXSl1IVAM/LKd6yCEEEJ0\neu0a0LXWhzdyrBw4uj2fK4QQQvzcyE5xQgghRCcgAV0IIYToBCSgCyGEEJ2ABHQhhBCiE5CALoQQ\nQnQCEtCFEEKITkACuhBCCNEJSEAXQgghOgEJ6EIIIUQnIAFdCCGE6AQkoAshhBCdgAR0IYQQohOQ\ngC6EEEJ0AhLQhRBCiE5AAroQQgjRCUhAF0IIIToBCehCCCFEJyABXQghhOgEzD91BYTojAI11fw4\nZzbB6mqGTTwOT3Zumz8jHouRiMex2GxtXrYQouORgC5EGwsHAsye9gxLP/8EgGVfzOLXd96HKyOz\nzZ4RqKnmm5mvUV2yjfG/OZ/Mrt3arGwhRMckAV2INhaLhNmyYlnt+5qyEuKxWJPX60SC6rJS1i74\nhh4Dh5CZ373ZVveKr7/gu3dmAFC1bQtn3HIXrvSMtvkAQogOScbQhWhjVoeTQeOPrn3fvf9gzBZL\nk9f7q6uYduPVzHr2CabdeDWB6qpmn5GIJ+peJxKg9d5VWgjR4UkLXYg2kIhGiZdXEN22FWuPHgw/\n9kR6DhtB2B8gr6gXzt20nuOxGCGfN1lOPI6/tARPRiaG1drkPQPHjadyyyaqS7dx1JRLcKZnEKip\nJlhTjdXpwuH2YN7N/UKIzkcCuhBtIFZaytpTJqEDASwFBRS9NI38A/rvcl08GiWRSDToUrfa7Iw5\n6Rcs+OQ9eg4ahjMaI+H37zagO9MzOOLci0jEYticTkI+L7NfeJqlsz/FZLHw26kPkt2jsF0+qxBi\n/yQBXYg2EFq6FEt+Pu7DDyPu9REPhzHCYdAaw24HwF9VyVfTX8RidzDmlNNxZWYB4EhLY8SYcQzq\nO5DounUkfliKMXBws8+0WK2QCvrxWJTV8+cmX0ejbFz+gwR0IX5mZAxdiDZgHzOGblPvJrppM4bL\niWGxsvVvf2PLddcT3bKFRDzOvDdeoXuPngwv6kt4/nwiZWW19zt79MBT2JPMQ8eRPmkShr11S9HM\nVhvDjjkhWReXm6JhI9v08wkh9n/SQhdiLwW9EaLlfrZdcinxykoADLsdHQji/fBDops30+Pxxygc\nOZquykxi2zbCa9aQ6FFI3G7H5PFgcrsxud21ZcYqKqieOZOEP0Dm2WdhzsnZbR1sThejTzyVYeMn\noKIx7JEYOhZDmeVHXIifC/lpF2IvrV1URl5GlHhNTe2x2PZyDIcDgHhlJZFQmPnRPE6ObmTzVVcD\nUPPOuxQ+8zQmj6dBeTqRoOL5Fyh/7DEAwmvXkn/H3zC5XLuth9nro/jY45Pd/G43vd97F0teXlt+\nVCHEfkwCuhB7KRZJsHKxl743307oy1k4f3kGjoEDiX7zLZHiYrLOO4/AmnVsD2cTqdpae19k06bG\nC0wkiJWU1L6Nl5XBbtax197m99cuX0v4/RCP790HE0J0KDKGLsRe6ntQF4JREzW9D8L4/e9487UX\nePv/7of+/ehy800Ef1iC7+GHyDOiGIccin34cAyXiy7XXkPw+8XonQKvMpvJveKPOEaOxDZgAF1v\nvw1Tenqz9TB36ULWlPOw9upF/h13YOzU8hdCdG5Kd4ANKUaPHq3nz5//U1dDdGCxeIJSb5hVpV4G\ndE2jS5q9xffGq6tJhMMokxnlsKMDAZTTicnprL0mGo4R9FXzyl+vpaYs2bo+dNJkilasx3XYYQTW\nruOrYRM4NN+Oa9VyDKsV76xZxKur6XbPVIyddoaL+3xEiouJlZZiysnB3rdv7Wz53dbV70cHgxhu\nT6sn1olmqZ+6AkLsjnS5i5+Fcn+EYx+YjS8cIz/dzszfjyOvBUE9VlVN+eOPU/HMM3T7531E1q6j\n+u23ST91EhlnnQXxOMpkwpKTQyxiwZOdUxvQ0zJz0Hodlu7dyBo2lKMXfY+qAUv3bmy64koMh4OC\nxx7dJZgDxCsqWD/5jOQbi4UDPv4Io2vXZutrcrmgmbF2IUTnJAFd/CyU+8L4wslx6K3VIcKxRDN3\nJOlQkIpnngGlsHTtypY//wWAhD9AzZszKb3vPszdulH00jRsubkcfeFlrJ43h/SsbPLTs3FefBEb\nL7oYz3HH4Rw1kuB3C6iaPp38O/6GtU8frPn5jT83Vq8bPhaTrV2FEM2SMXTxs5DnsTOyMLn96klD\n83FaTbu93h+OsbU6SEwZWHr0AK1RViukloG5xo6l7JFHAIht2YL340/QwSBlxevYtm415SXbWLZm\nOb7Vq4lu2EDo+0VYevSg/D//ITBnDhsvupjohg1NPt+UnUWXG27AceCBdP/XAxhpaXv1+YPeCNs3\nefFVholHZbKcEJ2RtNBFpxOoiRANx7HYTDjTkjup5Xhs/Ofc0UTiCWxmE1muprdVDcfifLyshD9N\nX8Sg/DSmP/880UULMTIy6Pn8c1S//TaWHt1xjBxBYM7XYBjY+vSh7P8epdell+DKyKSmrJSeB/Sn\n5NwpYDKR+dvfgsmEuWtXYtu2gcmEpYnWOYA5PZ2MX51N+mmnYjidqN0kd2lO0Bfls+eXs35JOSaL\nwdm3jCEjz9n8jUKIDqVdA7pS6mrgIkADS4DzgXzgZSAb+A74rdY60p71ED8PFf4I3mAUogmWvrOe\nQHmYEy8fVhvUs90tmyRWE4zx789WkdDww5Ya/vpVKXeffjxmkwEFBThHjQKg+733EliwAHNODtUz\n3iReVYXVYqHn0BEAxKqr6fnC88nNXcwWMBn0nPYiga+/xj5sWLObxRj1tnbdG4l4guKlFQDEowlK\n1tVIQBeiE2q3LnelVHfgCmC01noIYALOBu4BHtBaHwBUAhe2Vx3Ez0dVIMLf31vOEfd9zsmPzWHA\nKYW4MsxEQ82v396Zw2Iwuiiz9v3BvbOTwXwn5pwcHMOHU/7UU0Q3b6bLjTc0mPluTk/HWlCAJT8f\nS24OlqwsrN27k3HGGdj79cNwNh9Uw8Eo/qowgZo9/5vXZDEYMr5b8rN5LHQ7QPKmC9EZtduytVRA\nnwsMB2qAN4F/A9OArlrrmFJqLHCb1vq43ZUly9ZEc0pqQhz8909r3193VHfOHd4VHJm40lu/fKvC\nH+aHzTXkuG0UpVlw2C1NbqO6Y4c4016Oc+8sEoyx9MstzHljNRl5Tk67eiSujD1bihb0RYmGYpgs\nBk6PFWXICqw9IN80sV9rtxa61nozcB+wAdgKVJPsYq/SWu9oNm0CurdXHcTPh9lQDOue3HxFKTik\n0I3DyR4Fc4Asl43x/XI5IF5N5V9vpuSee4mVlzd6rSktrc2DOUA0EmfujDWgoaokwKYVlXtclsNt\nIS3HgSvdJsFciE6q3cbQlVKZwKlAL6AKeBU4vhX3XwJcAlBYKGkgxe5lu208fd4ofli/lYJ0C13i\nWzGsLdvHvNIfYX25H5vZRPcMO+lOK6XeEKGSMsIXn0dsa3K71oTfT9dbbq7dox0gVlVFcMFC4lVV\nuI8Yjzk7u9V1rwpECETimAxFusOC3ZKcgW8YipwCN6XFXlCQ08PdTElCiJ+z9pwUNxFYp7UuA1BK\nvQGMAzKUUuZUK70HsLmxm7XWTwBPQLLLvR3rKTqJnDQnR/bPg0gQ7EPB0vwYdTAS5z9fruWRWWsA\n+McZwzhuSFdufGMJfx6dA/VSnEY3bURHo1AvoPu+nouvsA+hrkUEtm6ni9W6S7KV3Sn3hbnxjSV8\nuKwEp9XE1NOHMXFQHk6rGYfHykmXD2PbuhoyujhxZ8rOb0KIprXnOvQNwCFKKadSSgFHA8uAWUBq\nCyzOA2a2Yx3EfkBrTSzRso1c9prNA568FgVzgGA0zhertte+n7WilEgsQYU/wvurq3Bd9ScAlMNB\n3l/+glEvxalOJPAPGcVpM9Yz8fllXPd1BZWx1nVnz11bwYfLkjvLBSJxrnnte2qCdRP5nOk2eo/I\nJSvfhdUuq0yFEE1rzzH0ecBrwAKSS9YMki3u64A/KaVWk1y69lR71UH89Cr8YR78dBU3vL6ELVXB\nffLMmmCUtWU+lm2pptK/+9nhHruJy4/sg6HAZja46PDeZLus3HvGcD7f4GfBwHH0+uwz+nz4AbaB\nA1FG3Y+MMgzWBTTbfclnfLGmgqja/YY1O1tb5mvwPhxLEI3voz9+hBCdSrv+ya+1/ivw150OrwXG\ntOdzxf7jzUVb+NcnqwBYU+bjP+cdtNtNXZoTicWpDkYxGUaj5cTiCT5aVsJfXv0egPPHFfGnY/rh\nsTe+MYvFZGJ831y+un4CBopMlwWlFH1yXTxz/kGYDIXd2XR9D+iaRrbLSrk/wqF9srFaWvc38inD\nu/HQZ6uIxpOjSkO7pze7i50QQjRG+vBEu/KGorWv/eE4ib1YJhmJxZlfXMk1ry6me6aDh381cpcE\nK8FonDcX1k3LeGfxVi47ok9tQA9UV1FdVoorPQNHWjoWmw2nzYzT1vBHQSm1y0Y08ZoaIhs3Ed28\nGeeokZhzcsjz2Hn/ysPxR+J47GayXXX3hANRlFJYHU3/mHVNt/PhVeN5/utiCrOcnDK8W4s3wBFC\niPokfapoV2XeMLe9vZSS6hB3nz6UA/LcJKdUtF5pTYgTHvyC8lQ3+nXH92fKgYWUb/bh9FhwWiMY\nUR9zauzY4gq72aC4JsjRQ7visVvwV1cxY+ptlKxdjWEy8as77qNrn74tfr7vq6/YeOFFANiHDKHg\niccxZ2U1em1NeZBZL/6IyWxw1DkD9nj9uNivyHo/sV+TFrpoV7keG/ecPpRoQpPhsOxxMIfkMq5c\nj602oB/ZK4fZr6xk9fxSACb9rjc9Sp/i8DGXM/3BYqq3hzjmgsE4UuPesXCYkrWrAUjE4/w4Z3aD\ngB6NJwhG49h0HMNbA0phzs6uHTf3f/117bWhpUvR4TBxvz+ZsrSecDDG7P+uZNPy5Lrxr99cw1G/\nGYDJXNcdH4smCAeSvRcOtwWjkZ3ohBCiNeS3iGh3bruFTKd1r4I5QI7bxtNTDuKCcUXcddoQunns\nbFlZVXt+0yofqnI96sv7yevpJh5N8PmLPxIOxoiGwxgmE5n53Wqv73Ng3VSOQDjGlqogd72znAc+\nW0vZljLWn3kmkXoZ0TJ+8QuMVPDOOPMMqt99F++HH5EINpzspxSYrXU/Wla7ifofPR5PsHV1FS/c\n/DX/vX0eFVv8Lf4exOMxwgE/ibhkTBNCNCQtdNGhdMtwcOspgwGIhuMceEIRX7yyEpvTzICRLnh7\nIQw4hURqJMmdZSMRi/K/F55nxLgjmXzVDZSsW0Nmrz548uo2nqkORfnrzKV8vjK57tw8roCzR46i\nctpLdL3pRgCsPXvS+/33iFdWEly0iPInniT7kkuIVVZisdRtDWu1mzn8rH7YXRZMVhMHHtcTw2QQ\nqImwY4jry+mriEcTxKMJ5s5cy7EXDW52WVrI72PVvDn8OOd/jDzuFAqHDsdqd+z2HiHEz4cEdNFh\nWWwm+h/chV7DsjGI41h4P7rXETDuKvLmh7G7bYyY0J23778Fu8dDdNbnbH/0MSw9ehAs6IHnjjso\njZmIxBMYShGolyfcG9VgseAcU9eKV2Yzlrw8ops2UXrfPyl88klK7/8n5U8/Tbd7puIYMqQ2qLvS\nbYz/VT9AYRiK6rIgbz24iGg4xi/+MoqMrk4qtiZb5pn5rgbd8fVprYmG45gtBiGvl48efwiAjT8s\n4aKHn5KALoSoJQFd7LfisQTKAMNoemTI5rRgc6aWpB3+JzBMKIuD4ROS4+Tfvv0GW1evoPeoMRCP\no6NRIuvWYbjdBKMJPlq9hZvfXs79vxzO3acP5eY3fyDdbubyw4tIG3g+1u7ddn1m3770mvkm1TNm\nEPjmWwC2XHMtPV96CUtuXUrUHfVOJBLMf28dNduTXfOzX17JxCmDyO+TjsVmoveI3EYDejwWp2yD\nj/nvradbvwx6D6+bWKcMxV6OYAghOhkJ6GK/5C0PMXfmGlyZdkZOLMDhabgWvMIfYVt1kDS7hUyX\nFZfNDLaGe50HfV6WfzELgA1LFjH+pjtI376deGkpxh//zG/eWM1DZ4/AYVnJn6Z/z3e3TOT/zhmF\nxVC47RbITW+0biaPB5PHg6VHj9pj5rw8lLnx9eOGYZDXM40fv94GQFq2A6vdxIiJu89REPLFmPnA\nQmLRBMU/lNNz8HBOvup6fvzqf4w49iTs7pZvMSuE6PwkoIv9TtAb4YMnl1C63guA3WVm1LE9a897\nQ1Hu/3gFL87dgKHg9csOZWRh5i7lKKXI6t6DvKLeeCsr+GbWh5hOu5DlmyqZ8e5G1pcHWFPqpyjH\niTcUI5HQZHtavrzMfcQR5E+9m+jGjWScdRbmzF3rsEPf0Xl4su1EgjEKBmZhsbXsR6/+otKQ36Df\nIePoc+BBmK2yDE4I0ZAEdLHf0RpikbrtT2PhhjO6Q9EEn69ITl5LaJi9sqzRgG6z2Tnm1LOomTED\n+3GnESsoZKXfxANfLQHAbjHol+vmmmP7M7BbGrke+y5l7I45I4OM005r9FxNMMr6cj/F5QEO6Z1N\nrsdG0dCcRq9tis1tYdIVI/jmnXV065tOdrfkGn4J5kKIxsjGMmK/o7WmsiLI+hWVhEoCDB2ThdNt\nxpSe7AIPRGK8/t0mbpm5lDSHmTcvH0fv3Ibd7VWBCIuKK1lVXMLxvTyEr7qctH8/hsrIYd32AD9s\nqeGQoiw8cSjo23TLeodEOIyvupKVX39JTlFvuh7QD7ur6XSm366v4MzHkuvWD+2TzSO/HkXmHmx5\nm0hooqEYJqsJcxMT58Q+I7MWxH5NWuhiv1MZiPLwnHUs21rD9Uf1ouK+u7BccnFtQHdazZw2sjtH\nD+yCyVDkNBIo562r4NIXvgPg5aVunrnuFiI+PyZ3Gl1iEC1PYM2IkDew6fzlsYoKMAzMGRkEaqqZ\nfufNVJckx8En33A7RSMObPLe5Vtqal//uM27xwlXDEPVTfoTQojdkD/5xX4jUBPhx6+38sWPpTz9\n1Xrmrq1gyn8Xo876TbIfvh6P3UK3DAdd0uyYGtllbfHGug1n1m33YerZkxKTE7PTTuGgHEYeV0gs\nkmDp7E34K4PoWKzB/eH169l46e/Y/McriG7bhk4kaoM5QGnxOuJ+P7HycnQjm7wcO7gr/bt4sJkN\n/jZpMJ7d7OcuhBBtQQK62C9EQjHmvLGaRZ9sRMXqgrfFZGDu3Qdzt+4tLiuR0PzywO7kpyfHxK8/\nvj+Gx0PPonxy0xwoQ7FmQRmfPrucr2esZdaLPxLYur02MMeqqth6w42Eliwh8O23lN77D6wWC+PO\nPAeAtNw8Bow9nK0338KGCy4kvHLlLkG9a7qdaRcfzBfXHsWEgXk4LBLQhRDtS37LiJ9E0OslEvRj\nmM043GnEY1BVEqB8i4/BFitXTziAZSU+zh9XxLebazh+SLfkP9aQFwwDrK4my05UVWJ55N9MP2ES\nuD2YMjPxxRV9681gryoN1L72VUUILFtBJE0Rsxg4NbVbvAIYbjcVDz1Mr74HMPjhpzFMJsIff4L3\n/fcB2Pznv9Dz+ecw5zSc9JYjWdOEEPuQtNDFPhfyeZnz6jT+88eLeOqPF7F19QqsdhOHndkXq83E\nvBd/5KxB3RhTlMkjs1bTOy+Nx2ev4d3vN1FZvAje+iP4SposX0ejVL/8Mr7zfo1v8im4Vi+jMMvZ\n4JqREwvJ6+nBk21n/CldiRe4uW/xQ0x4dQJTlz5El7vuIP3008k45xzST51EzTvvUHHHnbBkKa6s\nbAxz3d/CpsxMMEkOcyHET0tmuYt9zlu+nScun1L7vmDwUCb9+SYsNichfzID2bZwhBMf+pK/nTqE\nafOKWbypGoAnzjyAY7c9DlYPHP3XZGt9J7HKSrbedBO+z2Zhys6m1xuvY+nSZZfr/OU+YpVVJJYt\nxHfEME588+Tac++c9g4Fzm4kAgE2XnY5oQULwGKhz7vvYC0sJFZZSc0HHxDdtJmsc8/F0iVvl/JF\npyOz3MV+TbrcxT6nDANnegaB6uTEtaxuBZgtVkxmA1d6spu6IGbhf9ccRSye4L4PV9TeW+xV1DAe\ne58BWLRu9DesOTOT/DvuJHG9D2W379IVvoMr2w3ZbjigB7FAGVn2LCpCFbgsLhwWB4bFgpGeTsFD\nDxJasRKjby8qXQYJ31bS3Glk/epXbf69EUKIPSUtdLHP+SN+AtvL+faN6bizchhxwqmEzY5GN3aJ\nxOLMX1/JX179noIsJ/ePz8P3m19iuNz0euP1JoN1ayV0gtJAKYvLllDk6cfarSbG9Mojq96SuCXb\nl3D+B+cTiUe4+/C7OabnMVhNrV9bLjosaaGL/ZqMoYt9blnFMs79+lK+Gxlg/TDF6z9u4ZR/f8XG\nisAu11rNJkYXZfLm78fx8Ak9CVx6AQl/gFhpaaPLxZqjYzGipaVEt24lXlO3VtxQBk4jm/8t6srp\nD/3I7178nrcWba49n9AJpq+YTjgeRqN5cfmL+KMtz2MuhBDtTQK6aJ1EAnylyUlpidYHVIAlZUvY\n5NvE9NWv8vzyF8jxmNlWE2LGws2NXm81m8hLs5PptmMbPBgjPZ0uN92E4XQ2ev3uRDZsYO2JJ7H6\nqAlUvTGDeKDuj4hYIsGSTdX4wsk16VuqQ7XnDGVwXNFxqFQjbWLhRJzm1j9fCCHai4yhd2DhYICQ\n10ssEsaZnonD087Zt+JR2PQtvHkZ6ARMehgKDwFz65ZnndDrBKavnE5JoITLh13NrMVerCaDYwbm\n4Q/HkpnTGmHOyqLb3X9HR6MYLhemPQjo1W/OJOHzAVDx9NOknXRibTmZTiv3nTmcq19ZRJbLyoWH\n9Wpw78i8kbw/+X0i8QhuUx7LtgSo8FcxsjCzQde8EEL8FGQMvQMrXryI1/5+C2jN2DN/zUGnTMZi\na8e1z95t8OhYCFQk39vT4fffgKcrkExpGorGsZgMcpvJWlYeLCehEyhtZ/5aH0N6pDNtbjErS31c\nd/wADsh1YxhtP2QZ+PZbis89D7Qm/bTT6HLjDZjS0mrPa62p8EcwGYoMZ9NB+r0lW7l82gIAfjm6\nB7eePCiZclV0ZjKGLvZr0kLvwFbO+7J2S9TV33zNiGNObN+Ajoawr+5txF/7/Ep/hLveXcbrCzZz\nQJ6b/1588G6zl2U76vZQP36oh9fmb+TR/60FYPGmat674vBm/yjYE7aBA+nzwfvEKquwFhY0COaQ\nTLma3YINYb5dX1H7+vuN1YRiCZpO1SLE/kUpNQkYpLWe+lPXRbQdGUPvwIZNPD6ZSlMpDjzxVKyO\ndh7TtabBhJtBpRoq468FWzKMBaNxXl+QHANfXepjVYmvqVIaFamXvCQaT6DZfc9R0BuhZnsQf1WY\nRCsSn5jcbqw9e+IcMRxzVlar6ljflEOL6JJmw2Y2uOmkgaTLXu3iJ6KSWvW7XGv9lgTzzke63Duw\nWDRKyFtDIpHA5nJha++ADhCshogP0MnNXRzJDGhl3jBnPjaH9eUBbGaDz/58BN3SbMTKy0l4vZgy\nMojZbUSCQQyTCVd6BqrepjDlvjD3frCC1WU+bjpxIAMyzFhjEQyPB8PasOs76I3w+bQfWbtoO1aH\nmcnXHkhWftNbwdYX93pB611a5q2ltWa7L4zWkO6wYLPITnE/A/tNl7tSqgj4EJgHHAjcC/wOsAFr\ngPO11j6l1InA/YAf+ArorbWxQagHAAAgAElEQVQ+WSk1BRittf5DqqyngRygLHXvBqXUs0ANMBro\nClyrtX5tH31EsQekWdGBmS0W3FlNp/9sjZA/SqA6jMUK9rifWEkJlm7ddl3n7UivDeL15XpsTL90\nLMu31dAn102O20aspIS1p55Gwusl+9abKXbbmT3tGRyeNH591z/J6JJfe7/HbmbiwDyKcpxY/DVU\nvjiN8DffkDVlCp5jJmJy13VoR4Ix1i7ajmFSjD+rF2ZLBF9FCKvDsdteimhJCVtvuRUdjZJ/551Y\nu3fb4++XUmq3QwpC7AN9gfOA1cAbwESttV8pdR3wJ6XUvcDjwHit9Tql1H+bKOffwHNa6+eUUhcA\nDwGnpc7lA4cBA4C3AAno+zHpchfEogmWfbWFV+76lkRFBWtPPoX1vzyLDedfQGz79haXk5dm54h+\nefTIdGKzmAitWEnC6wVAdenC/HdmABD01rB6/rwG94aiCZ6es55Xvt2IZ8Maal54gfCKFWy94QYS\n9daLA5gsJkxWg5OuH8m8aIgHvtzI1uogy2bPIhzwE4rGKfOG8YWitfckwmFK/3Ef/tmzCXz9Ndv+\n+tdka31335eqKkLLlxNatYpYdXWLvw9C7CPFWuu5wCHAIOArpdQikkG+J8kgvFZrvS51fVMBfSzw\nUur1CyQD+A5vaq0TWutlwK77J4v9igR0QSwcY92iMuxuC5ENG2uDcHjVKhLhyB6Xax84AFN2sgdB\nxWIUDR+ZfG0YFAwa2uBat83Mdcf3x2k1Y9TPb64UO/d02t1mzrx+NN+Vern13ZU8M3cj175XTMjs\nIByK8OPWGmYu2swDn6ykwp+qv2GgnI7aMgyno9F94HdIhMJUvfwy635xOutOmYT3/Q/2aCMbIdrR\njp2NFPCx1npE6r9BWusL2+gZ4Xqv95shB9E46XL/uYrHwLsVti3G0m0MIyYW8tF/fsBU0BdLQQHR\njRtxHXEEhiPZrZwIh4lXVQMaU3o6hr357mZzly70enMGOhjCcLs4YuxYRp14Kg53Go6dxrANQzG4\nWxrPXnAQnrAf+yWX4P/6a7KmnIeR3vBas8VEdjc35avrMq5VBiK4svNY49Xc8tZSema5OHdsTzaU\n+8lyWTEsFvKuuAJlNqPDEXKvvBKTazcpWIMBvLM+r33v/fRT0k4+qUHXvxD7ibnAI0qpA7TWq5VS\nLqA7sALorZQq0lqvB85q4v45wNkkW+fnAF/sgzqLdiCT4jqocDCAYRhYbHs4jluzFf7vYAhVgy2N\nyOVLCMftGCaFNVyDjoQxnE7MWVlorQkuXMiGKeeD1hQ8+QTOMWMaTGpra4lQiEQwiOF2Y1gaX99d\nWh3k1rd+YGNliNuPLSLLqjnnlVVsTe3wdv0JA5g0vBvdMupa5joWQ0OD9KeNPj8axfvxx1Q+/wLO\nQw7Gc9xx2Pv3b9fPLPZ7+00LNTWR7R2t9ZDU+wnAPSQnxQHcrLV+Syl1CvAPkq35bwGP1vqcnSbF\n9QSeofFJce/smAinlPJpreUv2v2YtNA7oOrSbXz69GPYXG6O/O2FuDIyW19IsCIZzAHCNVhDm7F2\nGZw6mdvg0kQoRMUzz6Ijye7r8ieexD54MKZ23JnOsNub7QXIS3fw90kDCQSC2KJBEmlZpDsstQG9\nINO5y3IyZTa36LeyYbHgGjcOc04u5U88QaLGi+X3l2PObptJiELsjVSLe0i9958BBzVy6Syt9QCl\nlAIeAeanrn8WeDb1uhiY0Mgzpuz0XoL5fk4CegcTqKnmnQfvZdvqlQBY7XaOvuB3GKZW/q905ULX\nYbBtcfKrK3eXSypDlczbNo+qUBUTbr4aY948EjU1OA87DNWCLvcdIsEAsUgUm8uFqZmWcWtlpbvJ\nSq/7PfPUlIN4YvZaBnT1cGifbFy2Pd+9TQeDbLjwQohG8QM6Ek7uIe9wNHuvEPuJi5VS5wFWYCHJ\nWe+ik5KA3tFoTaLe5KxEPM4ejZq48+A3r0M0CBZH8v1OPir+iDvn3gnAdz2P46a3XyNqM1GZ8KGj\nVWSbszGa2c8iWFPDl9NfYOvKHzn811MoGDQkuRkOEKusREdjKIsZc2aylyFQU01Z8ToMk5mcgkIc\nntatF++e4eD2SYObvS7u85EIBjG5XE0meUn4/RCtmykfXrc+2UshAV10EFrrB4AHfup6iH2j3QYE\nlVL9lVKL6v1Xo5S6SimVpZT6WCm1KvV1D/qLf76c6RmcfOW19Bg0lD6jD2bcWb/d81avOw8yezYa\nzAHWVa2rfb3Bt5GQy8LvZv+R09+ezJlvn0l5sLzZR5SsX8Pij9+nrHgdM++7k0BNDRWbNxEpLWXL\ntdexevx4tt5yK7GKCoJeL58+9Siv3Xkz02+/nrlvvEI4uGtK1b0Vq6yk7P4HKD77bCqnv0q8pvHl\na6b0dOyDByXfGAbZF12IIZPihBD7qXYL6FrrFTuWUZDcySgAzACuBz7VWvcFPk29F62Qmd+dSX++\nkRN+/yfcmXu+fWlzpgyZwqDsQfRw9+CvY/8KClZWJrv6y0PllAZKmy3D7qoLgDani+qSbbx449V4\n16zG/0VyMq3vk0+IV1SQiMdY/e3c2utXzfuKaCi0S5l7K1ZaSuVLLxHdvIXSqVNJeGsavc6ck0PB\nE0/Qa8YbHPDxx8mJgCbZEU4IsX/aV13uRwNrtNbFSqlTgSNTx58DPgeu20f16DQc7vaZkKYTmoA3\nAhqyHbk8OvFREjpBpi2T6nA1o7uMZn7JfAo8BXRxNb/PREaXrpxy9fVsWv4DI449iQ8efZBYJJzs\nYjebIRZDWa3JLV5NJgoGD6V48UIACoeMaJdkM4bbnVyDnkhguJzJejTBnJ0tE+GEEB3CPlm2ppR6\nGligtX5YKVWltc5IHVdA5Y73TZFla/tOVWmAN/7xHSF/jInnD6T38FzM1rpWaXmwnEAsgMPkIMeZ\ns5uSduWvruL5a/5AoLqKYeMnMO6IY/H/7394jp6AtXsehiebQHUV679fgMlipWDwUJxpu24zu7fi\ngQDh5cvxzfqctFMnYSsqQjWxNE6IevabZWtCNKbdA7pSygpsAQZrrUvqB/TU+Uqt9S7j6EqpS4BL\nAAoLCw8sLi5u13qKpNkvr2TJ55sAcGXYOPOG0bjSG7aS49EoQZ8XpRTOtPQWr83WWuOrKGfbmlXk\nFBTgiZVhXjINiueAzQMTb4O8wWDfu8QpQrSTn11AV0rN0Vof+lPXQ7TMvtgl4wSSrfMd23qVKKXy\nAVJfGx2I1Vo/obUerbUenZu765Iq0T669q4Lptk93JjMDf+JJOJxtq5eyTNXX8rz1/6Riq2bW1y2\nUgpPdg59Rwwjc/V0zE8dCd88CSVLYcNcePp4WPs5yBarQvyklFJmAAnmHcu+COi/omFSgLdIJg8g\n9XXmPqiDaKHCwdmcevVIJp4/iKPPHYjd1bArOuT3Meu5J4gEgwSqq5gz/UVi0Vbu9x6qhll3NX7u\n/Wsg0PKEMELs74quf/fXRde/u77o+ncTqa+/botylVJvKqW+U0otTfVoopTyKaX+kTr2iVJqjFLq\nc6XUWqXUpNQ1ptQ13yqlFiulLk0dP1Ip9YVS6i1g2Y7y6j3vOqXUEqXU90qpqaljF6fK+V4p9bpS\nah/kcBZNadeAntpT+BiSqf12mAoco5RaBUxMvRf7CbvLQo/+mfQ/uCvONOsu500WCzkFPWvf5xX1\nQStYW72Wx79/nO/Lvscf9e9yXwPlqyERa/ycdxs0d/9OEok4vsoKvOXbCQfafpmbEHsqFbyfJJn9\nTKW+PtlGQf0CrfWBJPOVX6GUygZcwGda68GAF7iT5O/gXwB/S913IVCttT6I5O5yFyuleqXOjQKu\n1Fr3q/8gpdQJwKnAwVrr4STzrwO8obU+KHVseaps8RNp11nuWms/kL3TsXKSs95FB2RzODnitxfS\nY9BQrHY7BUOGUxmp4ux3ziYYC/LIokeYedpMeqX3aroQa9NJUQAwWjdBrapkG/+96c+E/D4mXvwH\nBh1+5J7vcS9E2/o7sHOr1Zk6/tKul7fKFUqpX6ReF5DMjx4BPkgdWwKEtdZRpdQSoCh1/FhgmFLq\njNT79Hr3flMv3Wp9E4FntNYBAK11Rer4EKXUnUAG4AY+3MvPJPaCZJroxLwRL3O3zOWhBQ+xoWYD\nCZ1ok3KdaekMPeoY+o89HKcnjWAsSDAWBECj2eLbsvsC0nqAq4kZ8j1GEzW1bie25bM/I+RP9gx+\n8+Z0IsFgq+4Xoh0VtvJ4iyiljiQZZMemWscLATsQ1XUznROk0p9qrRPUNeAU8Md66VZ7aa0/Sp1r\nXfdYcj/4P2ithwK3p+ogfiIS0DuoaDxKaaCUEn8JwWjjAWyrfysXf3wxTy55knPeO6dFO7vtCY/V\nw4TCZG6H/pn9GZA1ALQGbwms/xIq1kOobvOWuDWDwG8+JnLIlWCq1xp35VJzwv9xy0db2FTZ8q7z\nnsNGpfKmJ9eum627DhUEvBHKN/vwVYWJR2XSndhnNrTyeEulk1zyG1BKDQAOacW9HwKXKaUsAEqp\nfqnh0d35GDh/xxi5UmrHjlYeYGuqrHNa9QlEm5O93DuoVVWrmPLBFBSK6adMZ2PJRjw2D0VpRaTb\nkmu3twfrJpdVhavarIW+syx7FreNvY0bx9yI2TCT7chOjoU/fjj4SpPB9uyXod9xRCJh1i9awLw3\nXqZw6HDGnP8FjgX/hy48lKr8wzj/tWIWbaxmQ0WAR885kHRn893vuUW9uOBfjxPyeknvko/N2fB3\nU8Ab4cMnfmDLqirMFoNf3nQQmV2b+/0lRJu4keQYev1u90Dq+N74APidUmo5ybznc5u5vr7/kOx+\nX5DaC6QMOG13N2itP1BKjQDmK6UiwHskP8MtwLxUGfNIBnjxE5GA3gHFEjFeWPYCwViQC4ZcwFNL\nnmLG6hkA3Dv+Xk7odQIAA7IGMLFwIgtLF3Lp8EtxWdoviGXad9pKYN0XyWAOydb67Hugx0GEQ5p3\nHpiK1glK16+l75hxOCb9G7TmyQ9XsGhjMqWr1WzQTN6XWjaHE5vDCV0bPx+PJtiyqgqAWDTBhqUV\nEtDFPrF+6kkvFV3/LiTHzAtJtsxvXD/1pL0aP9dah0kuCd6Zu941t+10jzv1NUEyGO/8R8Xnqf92\nuSf1eio7TWLWWj8KPNrK6ot2IgG9AzIbZiYUTOCdte+Q58zjq81f1Z6bXzK/NqBn2bO47dDbiMQj\nuCwunJaWrygJxoKUBkoprilmYNZAcp2t3AsgvcdO73uC2YYyIpitVqLh5B7tllQaVqUUFx7Wi3As\nQXUwwjXHDSDN3ja7t5nMBnk9PZQWezFMiu4DMtji3YLZZCbLnoXZkB8D0X5SwXtvJ8AJ0ax9svXr\n3pKtX3fljXjZHtyOQrHZt5krPrsCj9XDs8c/S1F6UYvK8FWG2Lq6mpwCN+4sO5Z6W7yuqlzFmW+f\nSVzH6e7uzosnvIgj6iEWjmOxmxtd0tZAoBzmPQ7fPQO5A+G0RyG9O/FYjO0bi1nw3kx6jRxN0fBR\nDRK4xBMJEhosprad3hGoiVCzPYgz3coH297ljvm3k2ZNY/op0+nu7t6mzxKd1s9upzjRsUjTpIPy\nWD14rMnhqnxXPh9M/gClFFn2lmVf81eHee2e7/BXhVGG4qxbR2PKiJNhT+7Ku7B0IXGdnDy22beZ\nYDTI+/9YSc32EF37pHPCpUN3H9Sd2XDYn2D0hWCygjPZJW8ym+nSqw/HXXYVRiNbxpoMg/bIZ+ZM\nsxKxBqiKlPH375I53msiNSwqXSQBXQjRKcgs907AZraR68wlx5GD0cKB53g0gb8qDCQzrK1dv5mH\nFz5MRSi5vHRs/tjaMfchOUOwYKNme7KbfNuaamL1ZoqHYiFK/CVs8W2hJlwvFanFDp4utcG8vsaC\neXvyRXzcN/8+vtj8BUcVHAWA0+xkWO6wfVoPIYRoL9JC74SqQlUs3r6YqlAVh3Y/lBzHrmu+LTYT\nvUfmsnZhGWk5DjIL7Mz4bAYXDL0AgHx3Pm+d9hbeiJcMWwaOqBt3pg1fZZjcQg9mS107enn5ci78\n6EKiiSjXHXQdk/tOxmFp3Vry9haOh/mh/Ac+Lv6YO8bdwUVDLyLXmUuWrf3yyQshxL4kY+idTCgW\n4qkfnuKx7x8DoF9mP5445onkUrKdBH0RwqEI633ruHXhTSRI8Ozxzzb6BwAku+mjoThWR90YeiQe\n4cYvbuTD4uQGUfmufF466aXaMuKJONuD21lQuoCeaT3p7u5eu6xuX4rGo8zbOo8rZ11Jui2d545/\njoK0grrPFvETiAUwGaYWD1uInx0ZQxf7NWmhdzLBWJDZm2bXvl9ZuZJoItrotQ63FbND0cWRwy1j\nb6FXeq8mgzmQTKO6Uyy2mqyMLxhfG9APyT8Eu6lus6jyUDmnv3U6NZFkV/ytY2/l9ANOx2S0x0h5\n0ywmCwd1Pah2rkG2ve4PHH/Uz9tr3+beb++lX2Y/Hj764d1+H4QQYn8kAb2TcZqdHNfzOJaVLwNg\neM5wrEbTk9csJgv5rnzyXflNXhPyedn04zLKitcy5Mhj8GQ3DHZH9DiC6SdPxxvx0jezL25r3az1\nJWVLaoM5wH+X/5ejC44my9HyVnAsEiFQXYWvopyMrvlopwVf1IeBQbYju8XzBmxmG7nmXZffBaIB\n7vnmHmI6xtLypSwoWcCxRce2uH5CdESp7WMjWus5qffPAu9orV9rh2f9B7hfa72srcsWdSSg72O+\niI9gLIjFZCHDltHm5dvMNib3m8yoLqOoDlczJGdIi4NnVbgKb8SL1bCSYcvAZrYBUFa8jpn/uAOA\nlV9/yZm33IUzva7u6bb0JrvRC9MablndL7NfbbktVbO9lOf+8gcS8RiH/Pq3lA2yceucW0m3pTPt\nxGm7PKO1TMpE74zerKxciUK1eNmfEC1yW/qv2WljGW6r3h/WpR8J+IA57f0grfVF7f0MIbPc96ma\ncA0vLn+Rk2eczK1f3lo7o7ytpdvSGZE3giMKjmh07Lwx1eFqHl74MCe+cSInvnEiP1b+WHvOW163\nhayvopxEouVbyHZxduGew+9hUPYgTu1zKlcfeDVGK//ZlaxbQyKeTLdq65LJY4sfQ6OpClcxc83M\nVpXVmCxHFo9NfIyph0/l1VNepbtLlrGJNpIM5rukT00d32NKKZdS6t1UHvIflFJnKaWOVkotTOUs\nf1opZUtdu14plZN6PTqVH70I+B1wtVJqkVLq8FTR45VSc1L5089o9OHJctxKqU+VUgtSzzu1qXql\njn+ulBqdev2oUmp+Kmf77XvzfRANSUDfhwKxAI8seoRALMCsTbPYWLNxnz4/Eo9QFihje3A78UR8\nl3OvrHgl+ToRYdryabVj70XDR9H7wDFkdMnn5Kuuw+5271J2U9JsaRzf63j+deS/6JPRh3PeO4cP\niz8kEG158pUeAwfjyUl2lXtcGYzuMrr23MFdD25xObuT68zlpN4n0T+rP67m0rsK0XK7S5+6N44H\ntmith2uth5Dc2/1Z4KxU5jMzcFlTN2ut1wOPAQ+kMq59kTqVDxwGnMxO27zuJAT8Qms9CjgK+Gdq\nX/jG6rWzm7TWo4FhwBFKKVk72kaky30fMikT2fZsykPlmJRpn068iifiLClbwmWfXobNZOOZ457h\ngMwDGtRtQNYAfqxItszHdB2DJZWX3JmewQmX/4l4LIrd5cZkad2WrIYyeHfduzy44EEAbptzG+O6\njWvxVrSerBzOuet+4rEYVrudP5v78ou+vyDTnkmeI69VdRFiH2uX9Kkkc53/Uyl1D/AOUAOs01qv\nTJ1/Dvg98K9Wlvtmaq/3ZUqpLru5TgF/V0qNJ5mmtTvQZed61ftDob5fKqUuIRl/8oFBwOJW1lM0\nQgL6PpTtyGbaSdOYvXE2o7qM2jWhyW5UhirxRX3YTXZyHDko1fgKmqpAhEgsgdlkkOWqmwxXE6nh\nn9/9szZ3+aPfP8rdh9+N1ZS8JsuRxaNHP8rszbPJd+UzMHtgg3Jb0ypvTKGn7vdXrjO3xRPZdnBl\n1H2v7MCB9gP3qj5C7CMbSHazN3Z8j2mtVyqlRgEnAncCn+3m8hh1vbHN5SsP13u9u2V65wC5wIFa\n66hSaj1g37leSqlPtdZ/qy1QqV7AX4CDtNaVqYl4kkO9jUiX+z5kKIPu7u78auCv6J/Vv8Ut1KpQ\nFXfPu5sT3ziRM98+k5JASaPXVfoj3PXecsb8/VOufHkh5b66n02bycbArLogPTRn6C5JSXKcOfyi\nz2kMcw7AHEgQDYdpK2O6juGuw+7i3EHn8uzxz7Z4bF+IDu5GkulS69vr9KlKqW5AQGv9IvAPYCxQ\npJTa0e32W+B/qdfrgR1/AU+uV4yXPU93mg6UpoL5UaT+aGmkXqN2ui8N8APVqR6AxjLGiT0kLfQO\nIJKI8P7694Hkuu6l25fS1bVrrlBvOMar8zcB8MWq7WyrDpHtTs4od1qc/H7k7zk4/2DsZjvDcoY1\n2kqu3LaVl2+9hnAgwGnX3Ezh0BGYzHv/zyTDnsGkPpOgz14XJUTHcVv1S9yWDm0/y30o8A+lVAKI\nkhwvTwdeVUqZgW9JjpED3A48pZS6g4bpUd8GXktNaPtjK58/DXhbKbUEmA/smEXbWL1qaa2/V0ot\nTF2/EfgK0WYkoHcAFsPCIfmHMHfrXJxmJwOyBzR6nd1skOm0UBmIYjMbZLkbrj/Psmc1u7564fsz\nCXqT68a/fPl5JvfpizNt73Z2C0aDtWvR023p2M3SwyZ+RpLBu02XqWmtPwQ+bOTUyEau/QLo18jx\nlSQnpu3wxU7nmxxn01pvJ9krsLP1jdVLa31kvddTmipX7B0J6B1Apj2TqYdPpSJUQbotvcn9x7Pd\nNt7+w2HMXVfOqMJMspwNA3qgphqtNc609CbH4AuGDGfRR+8B0K3/IMzWZtKkNiOeiPPNtm+4ctaV\nKKV4fOLjjMkfs1dlNiUcC2MxLPs88YsQQuwPJKB3ENmO7F3GncsCZYRiIZwWJ9mObEyGokeWkzOy\ndh2br9lexrsP3kMkFOLkq64ju3vBLtcAFA4ezm+mPkjY7yO3sBdW+94lWQnEAjy/7PlkKlYNLyx/\ngaG5Q3GY2y55SyweY3X1ah7//nH6Z/XnrP5ntWrCoRCicUqpocALOx0Oa63bZr2oaFMS0DuoskAZ\nN315E4fkH0KaLY0JBROa3BEukUgw9/WX2bIyOcz1yZOPMOkvN+Fw7zofxu527/WM9gblme1MKJjA\nN9u+AeDowqOxmVq3U1xzKsIVTPlgCv6on082fEKOI4cz+jW5J4YQooW01kuAET91PUTLSEDvoLb5\nt3HZiMt4cMGDuCwuxnUb1+C8L+IjFA/hNDtRKDy5deu13dk5mEz75n+9xbBwcp+TOaTbIZhUMpNZ\na5esNSehE/ij/tr32/zb2rR8IYToCCSgd1A5jhyunX0ti8oWAfCU8yluPPhGDMOgMlTJvxf+my83\nf8nkvpMZ220sang3xjqmYIpohh55DFbHvstXvru93tuCy+LimoOu4V/f/Yte6b04s9+Z7fYsIYTY\nX0lA30cqQ5VEE1HMyrxL13g4FqY6Uo1CkWnLxNyC1rPD7Giwjt1j9dROdFtXvY5XV74KwMOLHmZM\n1zFc9tUVjO46mjOHn9kgsUpn4LF6mNx3MicUnYChDFnjLoT4WZLpwPtAZaiSW768haNfPZqLP76Y\nskBZ7blYIsaC0gUc//rxnDzjZFZUrmhRmRn2DO4YdweT+07mgiEX8NtBv60N6PWXhSkUdrOdmI4x\nd+tc0qxpbfvh9hMui4tcZ64EcyHEz5YE9H1gq38r/9uc3LRpZeVK5mypy1ZYE6nhX9/9i2giWpe8\nZTeJS+onVclz5nHzITdz5agrG7T6u7u7c8NBNzC221juHnMHaTi589A7eOGEFxiUPagdPqEQYn+l\nlLpNKfWXdiq7NpPb/kgplauUmpfKQnd4I+f/o5TqNL8Upct9H/BYG84mr5+UxW6yMzh7MMsqlgEw\nLHdY7f7q9XkjXr79//buPEzOqsz7+PeXztZJyEIIIWyCiBBA1hKIIMaAisgLQZFFZgBBeFEQXsEZ\nwHFYXGZYHBURREAMosNiQIjgSBgWySCBNBISkhDZh0AgCUkgO1nu94/ndFLpVFVXd7qquiu/z3XV\nVVXPdk49qfRd5zznOffbkxj/2nhO2PUEhm8+nF7de20wfStk16yP2vbzDJuxinfvfYax03/DCd+7\niqFbepo2s2r72K0f2yAf+tRTpnaGfOg1Jal7RKyqcDGHAlML5WOX1FBvedrdQq+CQb0G8eNP/ZgR\nW4/ggv0uYPfBu69d16dHH7657ze5+pCrufbT13L8LscXDNILli/gvEfP44FXH+C0B09j4YqFG2yz\nJtbwzpJ3mDh7IqtWreLVCU/w+uS/ZeVsVp9d7WadWQrmG+RDT8vbrUg+9A3ynuftspekJyW9KOmM\nEscdJunxlCP9+eZWbSs5zL+Zlxd917T9/qm8Z1N+9V3S8lMljZP0CPBwibzqO0iaIemmVOZ4SUVH\n8ko6Q9KkdD7ultRH0t7AVcDR6fM0Slos6T8kPQeMaJGn/fBUj+ckPVzqc3RWbqFXQb+e/Ri1/ShG\nbD2C3t17bxCwB/UexOE7Hl7yGMtXL1/7euWaldlELS28u+xdjrv/OOYvn8/ug3fnxkt+zvw3/pdB\nW29DYzsHwi1btYxudKNX9469d9xsE1EqH/rGtNKb845/AUDSAODKEtvvCRwI9AWelfRARLxVYLuv\nAA9GxA8lNeTV/V8iYn5a9rCkPSOiOeXpvIjYV9I3yDKpfY1srvZPRsQqSYelz9ucGGZfYM90vO5k\nedXfTz9GJkoal7bbGTgxIs6QdFfa/7dFPt89EXFTOhc/AE6PiGslXQLkIuKctK4v8FREXJDek56H\nkP3wOiQiXpXUfA2z1CwchTUAACAASURBVOfodBzQK2jh8oW8ufhNejT0YGifoW2+dWvpyqUsWbmE\nINisx2b84rBf8ONnfsyJu55YcHDb4pWLmb98PgDT3p3G3G7vsdNeLZMdFbd8yWKWLFzAyuXLGbDl\nUN7rtpSrJ11Nr4ZefGu/bzGkzxCWrlzKrMWzmDZvGgdufSBb9dmq6DSyZladfOgRMaGV/4f3RcQy\nYJmkR4H9gXsLbDcJuEVSD7Lc6JPT8lI5zO9Jz88AX0yvBwC3StoZCKBHXhkPRcT89LpYXnXI8rs3\nl/8MsEOJz7dHCuQDgX4UnuceYDVwd4HlBwKPR8SrAHn1K/U5Oh0H9ApZsWoFd8y8g+smXwfA5Z+4\nnNEfGV32pCrvr3ifsX8fyx0z72DE1iM4aOuDeHnhy/zysF/Sv2f/gi3m/j37s9vmuzF9/nQ+uc0n\n17tWX47/ff45/vjjfwfg40d/ibf3bGT86+PXrr9kxCXMWTqHL//xy6yJNQxpHMKdR97JkD5D2lSO\n2SakKvnQUxdxqbzn0cr75uM+noLrF4Axkn5MlrSlVA7z5jzLq1kXU74PPBoRx0jagfWzvC3Je10w\nr3qL4zYfu9TkGWOA0Smb26nAyCLbLY8o0L1ZXKnP0en4GnqFLFu9jP9583/Wvv/LrL/wweoPyt5/\n0cpF/ORvP2H2ktnc8+I9NHZv5Lbp2ZTKxbq/BzcO5vrDrmf8l8Zz/n7n8+ycZ3lr8VusWNV6XvM1\nq1fz0qSJa9+/NvlvDOmxbuT88tXLCYLX3n+NNbEGgLnL5rJyzcqyP5PZJqha+dD3pXjec8iuI/eW\nNJgs2E0qctwPAe+k7uub03Hbk8N8APBmen1qK9ttkFe9HTYDZqeehZPasf9E4BBJOwLkdbmX+zk6\nhYoGdEkDJY2V9EIa4DBC0uaSHkqDMx6SVJdZNPp178dpe5xGN3WjR7cenLzbyW1KG9pd3enZbd1o\n9/49+7PNZtvQoIaS+2VJWhp4/4P3efKtJ7nhuRtYsGJBq+V1a2hgvyOOonvPXiDx8aO/xO7D9mTf\nLfdlxLAR/PPH/5nG7o3sscUefHjAhwEYvdNo+nTfMBGMmWXSaPYzgNfJWsWvA2d0wCj3jwFPS5oM\nXAr8gCzv+TWSmshatPmmAI+SBa7vF7l+Dlmwb85ZfjxwTUQ8BzTnMP9PysthfhXw7+k4pXqCfwfk\nlOVVP5l1edXb6l+Bp1Ld2nyMiJgLnAnckwbM3ZlWlfs5OgVFFOx56ZiDS7cCEyLiZkk9yQZYfAeY\nHxFXSLoIGBQRF5Y6Ti6Xi6amporVs1KWrlzKog8WIYkBPQe0aWDZilUrmLlgJmP/PpZR24+iX49+\nfKj/h8rq3p6zZA43P38z414ex6UjLmXbftuyZZ8tGdJnSMku/9UrV7Js0ftErKFXn370bGxk4YqF\ndKMb/Xutu2b/7rJ3WbVmFb0aejGwd33NOmdWggeLWKdWsYCeRl1OBj4ceYVImgmMjIjZkoYBj0VE\nyVsBumpA7whrYk3RILxk5RLeXvI2by95m+GbD187ucx7K97jqklXsd/Q/Xjkfx/hL7P+wqBeg7jz\n/9zJsL7Dqll9s3rigG6dWiW7EHYE5gK/lrQX2SjF84ChETE7bfM260Y0WgGlWtR/X/B3Tv6vkwE4\neJuD+cFBP2Bw42AG9BrAN/f5JvOWzePSv14KwIIVC5gyZwrDdnRAN9vUqYvmOZd0HXBQi8XXRMSv\na1GfzqaSAb072YCKb0bEU5KuAS7K3yAiQlLBLoJ0i8SZANtvv7F3eNSnyXMmr309Ze4U3l3+Lr27\n96Zvj75s1XcrutGNPbfYkynzptC7oTe7bdFxMxzOWzaPiKBvj77rJYkxs86vq+Y5j4iza12HzqyS\ng+JmAbMi4qn0fixZgH8ndbWTnucU2jkiboyIXETkhgzxbVGFfHaHzzKkMTs3p+5+Knf//e718oJv\n2XdLfjbqZ9z+hdu5/5j7GdqnYzpD3lr8Fic9cBKfGfsZxr8+nmUrl3XIcc3MrP0qFtAj4m3gjbyp\n8g4FpgPjgFPSslOA+ypVh3q3dd+t+e0Rv2XM4WNYvno5418bv0EX/eDGweyxxR4M7Tu04Bzx7THu\npXG8teQtVsdqrnz6ShavXNwhxzUzs/ar9DD8bwK/SyPcXwG+SvYj4i5Jp5PdwnFchetQtyQxoNcA\n3l7yNr0aenHbEbcxuHde+tCVy2DVCujVH7p13G+34YOHr32908CdCs49b2Zm1VXR29Y6yqY8yr3d\nlsyDx6+Gd56HUf8KW+8DHTQf+3sr3mPm/Jm8segNPrXtp9iiz8ZnT1y9ZjVvLXmLp2Y/RW5ojm36\nbUOPhk49y6JtejzK3Tq1sgJ6mrj+DLK5dNc2xyLitIrVLI8Dejs8+zu47xvZ6x6NcO5k2Gyr2tap\nhDlL5zD63tEsWrmIxu6N3H/M/WzZZ8taV8ssnwN6FUkaCHwlIq5vx76vkSVlmdcB9fge2Tzv/72x\nx6q0cvtK7yObz/e/2XAGImthwfJsZrZBvWs4CV7+NLNrVkMn74lZsXoFi1YuArIMb0tXtpwt06xr\nmrHr8A3yoQ9/YUbN8qGrOnnIO8JA4BvABgG9mp8hIi6pRjkdodwLq30i4sKIuCsi7m5+VLRmXdSs\nRbM4++GzOfvhs5m1aFbtKjL8SNjrBNhqTzjxDmjs3DPs9uvRjxN3OZHG7o0ctdNRbc5MZ9YZpWC+\nQT70tHyjSPoHSU+nXN+/lNQgaXHe+mNTIhUkjZF0g6SngKvSFNz3SpoiaaKkPdN2l0m6TQVyp0v6\nJ2U5x6dow5zoLet2ctruOUm3pWVDlOUqn5QeB+WVeYuy3OSvSDo3HeYKYKf0+a6WNFLShJRedXra\n915JzyjLmX5mG87dBvul8zdGWR74qZK+lXfujk2vL0l1f17SjVLnSjVZbgv9fklHRMSfKlqbLm7x\nB4v5t6f+janzpgJwxdNXcOUhV9K3R9/qV6bvEDjiR9mguN4DoJNfjx7UexDn7HMOZ+x5Br0aeq03\n1axZF1aRfOiShpPNtX5QSmxyPa0nJdkW+ERErJZ0LfBsRIyWNAr4DevuS98gdzqwB1l+8v3JfpiM\nk3RIRDxeoG67A99NZc3LS3RyDfCTiPgfSduTpThtHmG7K/BpsiQrMyX9gmzekj0iYu903JFktz7v\n0ZzmFDgt5VVvBCZJujsi3i3jFG6wH9kl5W0iYo9UXqF5rX8eEd9L628DjgT+WEZ5VVFuQD8P+I6k\nFcBKsn/QiAj/1c3T0K1hvZbloF6DWk2mUlG9NsseXYSDuNWhSuVDP5Qss9qk1EhspMicHnl+n5c6\n9GBSRraIeETSYEnN/wEL5U4/GPgsWZIWyHKO7wxsENCBUamseen4zbnFDwN2y2vU9pfUL71+ICJW\nACskzaH4DKJP5wVzgHMlHZNeb5fqVE5AL7TfTODD6cfOA8D4Avt9WtI/k/0o2xyYRlcL6BHRdaJC\nDTV2b+TbuW+zee/sB+lpe5zWpgxrZlZ3KpIPnaxRdWtEXLzeQumCvLct//gsoTyFcqcL+PeI+GWb\narm+bsCBEbE8f2EK8C1znxeLTWs/Q2qxHwaMiIilkh5jw8+8gWL7pVzvewGfA84iu6X6tLz9epNd\nz89FxBuSLiunvGoq++ZkSYMk7S/pkOZHJSvWVQ1uHMwFuQu4IHcBgxsHt76DmdWziuRDBx4GjpW0\nJWT5u5VymUsaLqkbcEyJ/SeQuuhTgJsXEe+ndYVypz8InNbcopa0TXPZBTwCfDntn59bfDzZ3CSk\n5a1NPbuIrAu+mAHAghSUdyW7TFCOgvtJ2gLolsaHfZesez9fc/Cel87DsWWWVzVltdAlfY2s231b\nsgxqBwJPknWtWAulEqqY2aZj+Asz/nPGrsOhg0e5R8R0Sd8FxqfgvRI4m+y68/1kibGayLrGC7kM\nuEXSFLIfGKfkrWvOnb4F63Knv5Wu2z+ZWtSLgX+gQDd/REyT9EPgL5JWk3XTnwqcC1yXyuxO1l1/\nVonP+K6kJyQ9D/wXWTd4vj8DZ0maQdZdPrHYscrcbxuyZGLNf8DX6/2IiIWSbgKeJ0ssNqnM8qqm\n3PvQpwIfByZGxN7pV82/RcQXK11B8H3oZtYpdKoRzZWQupEXR8SPal0Xa7tym5LLm697SOoVES8A\nJXOYm5mZWfWUO8p9VhrCfy/wkKQFZPOwm5lZnYiIy8rdNl0jf7jAqkPLvHWsojp7/SqhzXO5S/oU\n2aCCP0fEB61t3xHc5W5mnUDdd7lb11Z2mixJ+5LdixjAE9UK5mZmZta6sq6hS7oEuBUYTDby8ddp\nhKWZmZl1AuW20E8C9sobGHcF2e1rP6hUxczMzKx85Y5yf4v1Z8TpBbzZ8dUxM7OOIOkoSRcVWbe4\nyPL8RCSPScpVso7FSNpb0hFVKOc7ea93SPe8b+wxh0h6StKzkj5ZYP3Nknbb2HIKKTegvwdMS//Y\nvya7sX6hpJ9J+lklKmZmZu0XEeMi4opa16Od9gYqFtCV6cbGz9hXyKHA1IjYJyImtCi3ISK+FhHT\nK1Bu2V3uf0iPZo91fFXMzOrPdWc9skE+9LNvGLVRM8VJ2oFsxrOJwCfIZi37NXA5sCXZZdLdyOYd\nP0fSjmTZ3foB9+UdR8C1wGeAN4CCg50lfTYduxfwMvDViCjWyt8P+HEqax5wakTMVpaK9UygJ/AS\n8I9p+tUvA5eSzeH+Htk8698DGiUdTDaH/J0FyrmM7Jx+OD3/NCJ+ltadz7p52G+OiJ+mc/Yg8BRZ\nYpunUxmTyZKs/AvQkGaD+wRZL/TRKVFNoc+5wecBPgpclY6bA0aQzdr3y/S5zpb0A+DbEdEk6XCy\n70YD2fS7h0ranywzXW9gWTrXMwvVYYM6teO2tUHAdhExpU07bgTftmZmnUCbb1tLwfwm1k+huhQ4\nY2OCegpOLwH7kAWjScBzwOnAUcBXyeYNaQ7o44CxEfEbSWcDV0ZEP0lfBL4OHE6W4Ww68LWIGJuS\nlnwbeA24B/h8RCyRdCHQqzmNaIt69QD+QhYI50o6HvhcRJwmaXDz/d8pqL0TEdemmUgPj4g3JQ1M\nU6ye2lz3EufgMrIMcGvTrgJbkaV/HUM2RbnIAvg/AAuAV8jSuk5Mx1gcEc3z0zef01xETJZ0FzAu\nIn5bpPxin2e9uksK4PiIuCu9bz6vrwN/Aw6JiFclbZ5SuvYHlkbEKkmHAV+PiC8VOw/5yp3L/TGy\nL0l34BlgjqQnIuL8cvY3M9tEVSQfevJqREwFkDQNeDgiIgXIHVpsexApXSpwG3Blen0IcHtKq/qW\npEcKlHMgWWv/iTSPe0+yXB6F7EKWO/2htG0DMDut2yMFvoFkrfcH0/IngDEpgN5TxufOVyjt6sHA\nHyJiCYCke4BPAuOA15uDeRGvRsTk9PoZNjyP+Yp9npZWA3cXWH4g8HhzOti8NLMDgFsl7Ux2m3iP\nEnVYT7ld7gMi4v2UpOU3EXFpmmDfzMyKq1Q+dFg/5eiavPdrKPy3vW3dsesIeCgiTixz22kRMaLA\nujHA6Ih4LrViRwJExFmSDgC+ADyTuuzLVW7a1WatpZBtebzGEtuOocDnKWB5Xh76cnwfeDQijkm9\nBo+Vu2O5g+K6SxpGlh/2/jZUzMxsU1Ys7/nG5kNvqyeAE9Lrk/KWPw4cL6kh/Y3/dIF9JwIHSfoI\ngKS+kj5apJyZwBBJI9K2PSTtntZtBsxO3fJr6yBpp4h4KiIuIbvevB2tp04tZQIwWlIfSX3J0shO\nKLLtylSf9ij4edpgInBIGt+Qn2Z2AOvuIju1LQcsN6B/j6w74eWImCTpw8CLbSnIzGwTVKl86G11\nHtmArKlkaUKb/YHsb/l04DcU6EqPiLlkgeX21DP7JLBroULSDKLHAldKeo5svpJPpNX/SnY9+wng\nhbzdrpY0Nd0y9leysQCPArtJmpyuw5ctIv5G1np+OpV3c0Q8W2TzG4Epkn7XljKSYp+n3HrOJRtU\nd086V80D/64C/l3Ss7RhNldox6C4WvCgODPrBNo1l3slRrmbFVJuPvSPAr8AhkbEHpL2BI6KiKrM\nFOeAbmadgJOzWKdWbpf7TcDFwEqAdMvaCSX3MDOzuiXpD6lLPP/xuQqU89UC5VzX0eWUKP+6AuV/\ntVrlt0W5/fN9IuLpdBtCs1UVqI+ZmXUBEXFMlcr5NdmkOTUREWfXquy2KreFPk/STqTbHpTN9Tu7\n9C5mZmZWLeW20M8mGw24q6Q3gVdp3zB9MzMzq4CSAV3SeRFxDTAsIg5L9/R1i4hF1ale1xYRLFix\ngO7qTv9e/WtdHTMzq2Otdbk3X/i/FiAiljiYl2dNrOHlhS/zjf/+BhdPuJh5y+bVukpmZlbHWgvo\nMyS9COwiaUreY6qnfi1twfIFXDjhQqa9O43H33yc22fcXusqlW31mtXMXz6fxR8UTKZkZnVA0mh1\nYF5uSTnVMJ228vK/q0VOckl/kjSwVnWrlpJd7hFxoqStyGaJO6o6VaoPDd0a6N9zXTf75o2bl9i6\n81i1ZhUvzH+B7z/5fbbbbDsuPuBiBjcOrnW1zKzjjSabyrtDcnNHRBNQswlDImIcWQIWWJeT/Gvp\nfbGpX+uKZ4qroDlL53Dz1JsZ1ncYoz8ymkG9B9W6Sq2au3QuX/nTV3h7ydsAfPeA73L8rm2aedGs\nXrVrYpn/OP7IDWaKu+DO+zd6pjhJ/wCcS5b97CngG8DPgY+TJRUZGxGXpm2vIGuUrQLGk2U1u58s\n//h7wJci4uUCZZSVwzwiDpE0kizP95FtyemdEpscQzaH+TbAbyPi8rTuXrK53XsD10TEjWl5oTzi\npwI54GaywN5INif6CGAGWUrTeZJOJktfGsCUiPjHcs95Z9faoLi7IuK4NP9vfuQXEBGxZ0Vr18Vt\n2WdLLt7/Ylrcv9+pdVM3BvQcsDagD+xd971UZhWTgnl+PvQPATf9x/FHsjFBXdJw4HjgoIhYKel6\nsjuP/iXl1G4AHk6zer5JFjB3TelVm3OOjwPuj4ixJYq6JyJuSmX+gCzf+rXAJWR5zt8s0pX9AvDJ\nvJze/8a69K2F7E+WdnUpMEnSA6nFf1r6PI1p+d1kl4pvIi+PeP6BUi7zS1g/J3nzedsd+C5ZTvR5\nLfft6lq7be289Hxkew4u6TWyrDmrgVURkUsn8E6yPLOvAcdFxIL2HL8r6ErBHGBw42CuHXUtY6aN\n4cMDP8wBWx1Q6yqZdWWVyod+KLAfWZCDrDU6BzhO0plkf9uHkeUxnw4sB34l6X7aljGzvTnM25rT\n+6GIeBfW5i8/mKz7/lxJzRPYbAfsDAyhcB7xcowCfh8R89qxb6fX2jX02en59Y0o49PNJy+5CHg4\nIq5IAxguAi7ciONbBxvWbxgXH3BxrathVg8qlQ9dwK0RsfY/akrD+RDw8YhYIGkM0Du1kvcn+xFw\nLHAOWWArxxjal8O8rTm9W177jdSFfxgwInXzP0bW9W5FlBzlLmmRpPcLPBZJer+dZR4N3Jpe30o2\nMMPMrB5VKh/6w8CxkraEtbm0tweWAO9JGgp8Pq3rBwyIiD8B3wL2SscoJ+d4W3KY52trTu/PSNo8\nda2PJusBGAAsSMF8V+DAtG2xPOLleAT4sqTB7di302uthd7eBPNrDwGMlxTAL9OAhqHNLX/gbWBo\naweZSfpZaGZWI4+1b7fvsP41dOiAfOgRMV3Sd8n+vnYjS5x1NvAs2fXrN8iCImRB+T5Jvcla9uen\n5XcAN0k6Fzi20KA41uX8npuem2PC1ak7XWQ/Lp4DPpW331VkXe7fBR4o4yM9DdwNbEs2KK4pjd06\nS9IMsjAwMX32uemywj3ps88BPlNGGUTENEk/BP4iaTXZ+Tq1nH27goqOcpe0TRo0sSVZV9A3gXER\nMTBvmwURscHw7/QPdiZArz333O/A556rWD3NzFrzWCcb5V4vmkenNw9gs/ar2m1rki4DFgNnACMj\nYrakYcBjEbFLqX276m1rZlZXutYI1y7CAb3jlJttrc0k9ZW0WfNr4LPA82T3B56SNjsFuK9SdTAz\ns9apCjm/JX2uQBl/iIgxDuYdo9xsa+0xFPhDuqWiO/CfEfFnSZOAuySdDrwOHFfBOpiZWSuqkfM7\nIh5k3W1vVgEVC+gR8QrrRlPmL3+X7PYJMzMz6yAV63I3MzOz6nFANzMzqwMO6GZmth5JO0h6voxt\nvpL3vqbpU80B3czM2mcHYG1Aj4imiDi3dtUxB3Qzsy4mtY5fkPQ7STMkjZXUR9Khkp6VNFXSLZJ6\npe1fk3RVWv60pI+k5WMkHZt33MVFypog6W/p8Ym06grgk+n2s29JGpmSv5Cmcb1X0hRJE5VlfUPS\nZalej0l6Jc1SZx3EAd3MrGvaBbg+IoYD75NN6ToGOD4iPkZ2F9PX87Z/Ly3/OfDTNpQzB/hMROxL\nlrK1uVv9ImBCROwdET9psc/lwLMpxfZ3gN/krdsV+BxZytRL0zzx1gEc0M3MuqY3IqJ5vvbfkt0O\n/GpE/D0tuxU4JG/72/OeR7ShnB5kc75PBX5PlpK1NQcDtwFExCPAYEn907oHImJFysI5hzLyeVh5\nKjmxjJmZVU7LebsXAoPL3L759SpSwy4lOulZYL9vAe+QzSvSjSy3+sZYkfd6NY5DHcYtdDOzrml7\nSc0t7a8ATcAOzdfHgX8E/pK3/fF5z0+m168BzbnMjyJrjbc0AJgdEWvSMRvS8lLpVyeQ0q2mvObz\nIqK9KbetTP5lZGbWNc0EzpZ0CzAdOJcsxejvJXUHJgE35G0/SNIUshbyiWnZTWSpVZ8D/kyWT72l\n64G7JZ3cYpspwOq07xiyVKTNLgNuSeUtZV3+DqugqmVb2xjOtmZmnUCnybYmaQfg/ojYo8ztXyPL\naDavgtWyGnOXu5mZWR1wl7uZWRcTEa8BZbXO0/Y7VKwy1mm4hW5mZlYHHNDNzMzqgAO6mZlZHXBA\nNzMzqwMO6GZmXZCkwyXNlPSSpItqXR+rPQd0M7MuRlIDcB3webK51U+UVM4c61bHHNDNzLqe/YGX\nIuKViPgAuAM4usZ1shrzfehmZhWWy+W6A1sA85qamlZ1wCG3Ad7Iez8LOKADjmtdmFvoZmYVlMvl\nPgHMBV4F5qb3Zh3OAd3MrEJSy/wBYCDQOz0/kMvlGkru2Lo3ge3y3m+bltkmzAHdzKxytiAL5Pl6\nA0M28riTgJ0l7SipJ3ACMG4jj2ldnK+hm5lVzjxgOesH9eVkXfDtFhGrJJ0DPEiWn/yWiJi2Mce0\nrs8tdDOzCkkD4L4ALCQL5AuBLzQ1Na3e2GNHxJ8i4qMRsVNE/HBjj2ddnwO6mVkFNTU1/ZWs631H\nYIv03qzDucvdzKzCUov87VrXw+qbW+hmZmZ1wAHdzMysDjigm5mZ1QEHdDMzszrggG5m1gVJek3S\nVEmTJTWlZZtLekjSi+l5UFouST9LqVanSNo37zinpO1flHRK3vL90vFfSvuqWmVY+zigm5l1XZ+O\niL0jIpfeXwQ8HBE7Aw+n95ClWd05Pc4EfgFZcAYuJUvssj9waXOATtuckbff4VUsw9qh4gFdUoOk\nZyXdn97vKOmp9IvszjRtoZlZ3crlcsrlcr1zuVylW6BHA7em17cCo/OW/yYyE4GBkoYBnwMeioj5\nEbEAeAg4PK3rHxETIyKA37Q4VqXLsHaoRgv9PGBG3vsrgZ9ExEeABcDpVaiDmVnVpUD+deAdYAnw\nTi6X+3oHBfYAxkt6RtKZadnQiJidXr8NDE2vC6Vb3aaV5bMKLK9WGdYOFQ3okrYlm/bw5vRewChg\nbNok/9edmVm9OQv4EVkylm7p+Udp+cY6OCL2JevqPlvSIfkrU6s3OqCcoqpRhpWv0i30nwL/DKxJ\n7wcDCyNiVXrvX2RmVpdSK/xyoE+LVX2Ayze2lR4Rb6bnOcAfyK5Pv5O6sknPc9LmxdKtllq+bYHl\nVKkMa4eKBXRJRwJzIuKZdu5/pqQmSU1z525UYiIzs1roRdaIKWRwWt8ukvpK2qz5NfBZ4HmyFKrN\no8hPAe5Lr8cBJ6eR6AcC76Vu8weBz0oalAaqfRZ4MK17X9KBqWf15BbHqnQZ1g6VnMv9IOAoSUeQ\npQ7sD1xDNlCie2qlF/1FFhE3AjcC5HI5d+mYWVezAniXwrnP303r22so8Id0l1d34D8j4s+SJgF3\nSTodeB04Lm3/J+AI4CVgKfBVgIiYL+n7ZPnVAb4XEfPT628AY4BG4L/SA+CKKpRh7aDsEkiFC5FG\nAt+OiCMl/R64OyLukHQDMCUiri+1fy6Xi6amporX08yshDZ3kacBcT9i/W73pcC3m5qaftFRFTOD\n2tyHfiFwvqSXyLqdflWDOpiZVcMNwLeBuWRjieam9zfUslJWn6rSQt9YbqGbWSfQ7kFsaQBcL2BF\nU1NT5/+ja12S86GbmVVYCuLLa10Pq2+e+tXMzKwOOKCbmZnVAQd0MzOzOuCAbmbWBUm6RdIcSc/n\nLauL9KnFyrDSHNDNzLqmMWyYbrRe0qcWK8NKcEA3M6ugXC53QC6X+10ul5uUng/oiONGxOPA/BaL\n6yV9arEyrAQHdDOzCsnlcpcBjwAnALn0/EhaXgn1kj61WBlWggO6mVkFpJb4P5FN+9r8t7Zbev9P\nHdVSL6Ze0qc6RWv5HNDNzCrjXLLEVIX0Tus7Wr2kTy1WhpXggG5mVhkfpfjf2G5kg8A6Wr2kTy1W\nhpXgqV/NzCrj78C+FA7qa4AXN+bgkm4HRgJbSJpFNpK8GqlNa1mGleDkLGZm5WlTcpZ0jfwR1k+d\n2mwpMKqpqempjqiYGbjL3cysIlKwvposeK9Ji9ek91c7mFtHc0A3M6uQpqamy4BRwB1kXc53kLXM\nL6thtaxO+Rq6mVkFpZb4SbWuh9U/t9DNzMzqgAO6mZlZHXBANzMzqwMO6GZmXVCR9KmXSXpT0uT0\nOCJv3cUpTelM0+hn/QAACfJJREFUSZ/LW354WvaSpIvylu8o6am0/E5JPdPyXun9S2n9DtUsw4pz\nQDczq7BcLrdjLpc7KJfL7diBhx3DhulTAX4SEXunx58AJO1Glhhm97TP9ZIaJDUA15GlPt0NODFt\nC3BlOtZHgAXA6Wn56cCCtPwnabuqlGGlOaCbmVVILvMMMA14AJiWy+WeyeVyuY09dpH0qcUcDdwR\nESsi4lWy2dz2T4+XIuKViPiA7La6o9NUrKOAsWn/lmlSm1ObjgUOTdtXowwrwQHdzKwCUtB+jGz6\n10ZgQHreF3isI4J6EedImpK65AelZW1NbToYWBgRq1osX+9Yaf17aftqlGElOKCbmVXGL4G+Rdb1\nBW6oQJm/AHYC9gZmA/9RgTKsk3JANzPrYOla+fBWNtutg6+pExHvRMTqiFgD3ETW3Q1tT236LjBQ\nUvcWy9c7Vlo/IG1fjTKsBAd0M7OOtzXwQSvbfJC26zDNOcSTY4DmEfDjgBPS6PEdyVK3Pk02He3O\nabR5T7JBbeMiy9r1KHBs2r9lmtTm1KbHAo+k7atRhpXgqV/NzDreW0DPVrbpmbZrlyLpU0dK2hsI\n4DXg/wJExDRJdwHTgVXA2RGxOh3nHLKc5Q3ALRExLRVxIXCHpB8AzwK/Sst/Bdwm6SWyQXknVKsM\nK83pU83MytPW9KnPkA2AK+aZpqamSg2Ms02Qu9zNzCrj/wJLiqxbApxVxbrYJsAB3cysApqybsWR\nwDPAMrJbr5al9yOb3O1oHczX0M3MKiQF7Vwazb418FZTU9OrNa6W1SkHdDOzCktB3IHcKspd7mZm\nZnXAAd3MzKwOOKCbmZnVgYoFdEm9JT0t6TlJ0yRdnpYXzH9rZmZm7VfJFvoKYFRE7EWWKOBwSQdS\nPP+tmZmZtVPFAnpkFqe3PdIjKJ7/1szMzNqpotfQJTVImgzMAR4CXqZ4/lszMzNrp4oG9JTGb2+y\ntHj7A7uWu6+kMyU1SWqaO3duxepoZmZWD6oyyj0iFpKlyRtB8fy3Lfe5MSJyEZEbMmRINappZmbW\nZVVylPsQSQPT60bgM8AMiue/NTMzs3aq5NSvw4BbJTWQ/XC4KyLulzSdwvlvzczMrJ0qFtAjYgqw\nT4Hlr5BdTzczM7MO4pnizMzM6oADupmZWR1wQDczM6sDDuhmZmZ1wAHdzMysDjigm5mZ1QEHdDMz\nszrggG5mZlYHHNDNzMzqgAO6mZlZHXBANzMzqwMO6GZmZnXAAd3MzKwOOKCbmZnVAQd0MzOzOuCA\nbmZmVgcc0M3MzOqAA7qZmVkdcEA3MzOrAw7oZmZmdcAB3czMrA44oJuZmdUBB3QzM7M64IBuZmZW\nBxzQzczM6oADupmZWR1wQDczM6sDDuhmZmZ1wAHdzMysDjigm5mZ1QEHdDMzszrggG5mZlYHHNDN\nzMzqgAO6mZlZHahYQJe0naRHJU2XNE3SeWn55pIekvRieh5UqTqYmZltKirZQl8FXBARuwEHAmdL\n2g24CHg4InYGHk7vzczMbCNULKBHxOyI+Ft6vQiYAWwDHA3cmja7FRhdqTqYmZltKqpyDV3SDsA+\nwFPA0IiYnVa9DQytRh3MzMzqWfdKFyCpH3A38P8i4n1Ja9dFREiKIvudCZyZ3i6WNLOVogYA77Wx\neuXsU2qbYutaLi+0Xf6yluu3AOa1Uq+26sznp9CyUu8rcX6K1asj9qmX71Cxemzs9l3lO/TniDi8\njfuYVU9EVOwB9AAeBM7PWzYTGJZeDwNmdlBZN1Zin1LbFFvXcnmh7fKXFdi+qQL/Fp32/JRzzlqc\nrw4/P539HHWG71B7ztGm9h3yw49aPio5yl3Ar4AZEfHjvFXjgFPS61OA+zqoyD9WaJ9S2xRb13J5\noe3+2Mr6jtaZz0+hZeWcw47Wmc9RZ/gOtaecTe07ZFYziijY473xB5YOBiYAU4E1afF3yK6j3wVs\nD7wOHBcR8ytSiS5KUlNE5Gpdj87K56d1Pkel+fxYParYNfSI+B9ARVYfWqly68SNta5AJ+fz0zqf\no9J8fqzuVKyFbmZmZtXjqV/NzMzqgAO6mZlZHXBANzMzqwMO6J2cpOGSbpA0VtLXa12fzkpSX0lN\nko6sdV06G0kjJU1I36ORta5PZySpm6QfSrpW0imt72HW+Tig14CkWyTNkfR8i+WHS5op6SVJFwFE\nxIyIOAs4DjioFvWthbaco+RCstshNwltPD8BLAZ6A7OqXddaaeM5OhrYFljJJnSOrL44oNfGGGC9\nKSQlNQDXAZ8HdgNOTNnpkHQU8ADwp+pWs6bGUOY5kvQZYDowp9qVrKExlP8dmhARnyf70XN5letZ\nS2Mo/xztAvw1Is4H3BNmXZIDeg1ExONAy8l09gdeiohXIuID4A6yVgMRMS79QT6pujWtnTaeo5Fk\nKXq/Apwhqe6/1205PxHRPLHTAqBXFatZU238Ds0iOz8Aq6tXS7OOU/HkLFa2bYA38t7PAg5I1zy/\nSPaHeFNqoRdS8BxFxDkAkk4F5uUFsE1Nse/QF4HPAQOBn9eiYp1IwXMEXANcK+mTwOO1qJjZxnJA\n7+Qi4jHgsRpXo0uIiDG1rkNnFBH3APfUuh6dWUQsBU6vdT3MNkbdd012IW8C2+W93zYts3V8jkrz\n+Wmdz5HVLQf0zmMSsLOkHSX1BE4gy0xn6/gclebz0zqfI6tbDug1IOl24ElgF0mzJJ0eEauAc8jy\nx88A7oqIabWsZy35HJXm89M6nyPb1Dg5i5mZWR1wC93MzKwOOKCbmZnVAQd0MzOzOuCAbmZmVgcc\n0M3MzOqAA7qZmVkdcEC3Tk/SX2tdBzOzzs73oZuZmdUBt9Ct05O0OD2PlPSYpLGSXpD0O0lK6z4u\n6a+SnpP0tKTNJPWW9GtJUyU9K+nTadtTJd0r6SFJr0k6R9L5aZuJkjZP2+0k6c+SnpE0QdKutTsL\nZmalOduadTX7ALsDbwFPAAdJehq4Ezg+IiZJ6g8sA84DIiI+loLxeEkfTcfZIx2rN/AScGFE7CPp\nJ8DJwE+BG4GzIuJFSQcA1wOjqvZJzczawAHdupqnI2IWgKTJwA7Ae8DsiJgEEBHvp/UHA9emZS9I\neh1oDuiPRsQiYJGk94A/puVTgT0l9QM+Afw+dQJAlpPezKxTckC3rmZF3uvVtP87nH+cNXnv16Rj\ndgMWRsTe7Ty+mVlV+Rq61YOZwDBJHwdI18+7AxOAk9KyjwLbp21blVr5r0r6ctpfkvaqROXNzDqC\nA7p1eRHxAXA8cK2k54CHyK6NXw90kzSV7Br7qRGxoviRNnAScHo65jTg6I6tuZlZx/Fta2ZmZnXA\nLXQzM7M64IBuZmZWBxzQzczM6oADupmZWR1wQDczM6sDDuhmZmZ1wAHdzMysDjigm5mZ1YH/D8Yr\nxdZO1eYhAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -3949,7 +3956,7 @@ "metadata": { "id": "DPpz37L4tuWU", "colab_type": "code", - "outputId": "2457b70b-4ebf-44ea-ce2c-98b0ce11e5ac", + "outputId": "0d9c0cbf-0d23-44ba-ea3d-5d6d6d9cafff", "colab": { "base_uri": "https://localhost:8080/", "height": 166 @@ -3959,7 +3966,7 @@ "source": [ "df1[(df1.year==1918) & (df1.lifespan >= 50)]" ], - "execution_count": 48, + "execution_count": 97, "outputs": [ { "output_type": "execute_result", @@ -4043,7 +4050,7 @@ "metadata": { "tags": [] }, - "execution_count": 48 + "execution_count": 97 } ] }, @@ -4061,7 +4068,7 @@ "metadata": { "id": "FWJuO2s6uPA4", "colab_type": "code", - "outputId": "3b6e590c-ad33-462e-ae09-4fceb44a9290", + "outputId": "9bb67637-eec1-4d9d-fff0-da914ea9290f", "colab": { "base_uri": "https://localhost:8080/", "height": 47 @@ -4071,7 +4078,7 @@ "source": [ "df1[(df1.year==2018) & (df1.lifespan < 50)]" ], - "execution_count": 49, + "execution_count": 98, "outputs": [ { "output_type": "execute_result", @@ -4117,7 +4124,7 @@ "metadata": { "tags": [] }, - "execution_count": 49 + "execution_count": 98 } ] }, @@ -4125,7 +4132,7 @@ "metadata": { "id": "qplqX7D9uwFq", "colab_type": "code", - "outputId": "e9561038-1f4d-4e5d-9b02-bbda65c13a2b", + "outputId": "cb69a902-ae20-4473-ada2-d2b2536d8ae2", "colab": { "resources": { "http://localhost:8080/nbextensions/google.colab/tabbar.css": { @@ -4174,7 +4181,7 @@ " plt.xlim(150, 1500000)\n", " plt.ylim(20, 90)" ], - "execution_count": 51, + "execution_count": 99, "outputs": [ { "output_type": "display_data", @@ -4188,7 +4195,7 @@ }, "metadata": { "tags": [ - "outputarea_id1" + "outputarea_id2" ] } }, @@ -4204,7 +4211,7 @@ }, "metadata": { "tags": [ - "outputarea_id1" + "outputarea_id2" ] } }, @@ -4212,7 +4219,7 @@ "output_type": "display_data", "data": { "text/html": [ - "
" + "
" ], "text/plain": [ "" @@ -4220,7 +4227,7 @@ }, "metadata": { "tags": [ - "outputarea_id1" + "outputarea_id2" ] } }, @@ -4228,8 +4235,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"0711ef3e-e91d-11e8-9ca7-0242ac1c0002\"] = colab_lib.createTabBar({\"location\": \"top\", \"elementId\": \"id1\", \"tabNames\": [\"1918\", \"1938\", \"1958\", \"1978\", \"1998\", \"2018\"], \"initialSelection\": 0, \"contentBorder\": [\"0px\"], \"contentHeight\": [\"initial\"], \"borderColor\": [\"#a7a7a7\"]});\n", - "//# sourceURL=js_3100555ff3" + "window[\"46db07fe-e945-11e8-9ea1-0242ac1c0002\"] = colab_lib.createTabBar({\"location\": \"top\", \"elementId\": \"id2\", \"tabNames\": [\"1918\", \"1938\", \"1958\", \"1978\", \"1998\", \"2018\"], \"initialSelection\": 0, \"contentBorder\": [\"0px\"], \"contentHeight\": [\"initial\"], \"borderColor\": [\"#a7a7a7\"]});\n", + "//# sourceURL=js_42243258da" ], "text/plain": [ "" @@ -4237,7 +4244,7 @@ }, "metadata": { "tags": [ - "outputarea_id1" + "outputarea_id2" ] } }, @@ -4245,8 +4252,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07127206-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(0);\n", - "//# sourceURL=js_4eb88374f1" + "window[\"46db62a8-e945-11e8-9ea1-0242ac1c0002\"] = window[\"id2\"].setSelectedTabIndex(0);\n", + "//# sourceURL=js_d3d26aea4b" ], "text/plain": [ "" @@ -4254,7 +4261,7 @@ }, "metadata": { "tags": [ - "outputarea_id1" + "outputarea_id2" ] } }, @@ -4262,8 +4269,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07143910-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_f01b318fb2" + "window[\"46dcf65e-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_3bd5a9056d" ], "text/plain": [ "" @@ -4271,8 +4278,8 @@ }, "metadata": { "tags": [ - "id1_content_0", - "outputarea_id1" + "id2_content_0", + "outputarea_id2" ] } }, @@ -4280,8 +4287,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07147aa6-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_0\");\n", - "//# sourceURL=js_0361afdbd1" + "window[\"46dd4e1a-e945-11e8-9ea1-0242ac1c0002\"] = document.querySelector(\"#id2_content_0\");\n", + "//# sourceURL=js_6cbf723043" ], "text/plain": [ "" @@ -4289,8 +4296,8 @@ }, "metadata": { "tags": [ - "id1_content_0", - "outputarea_id1" + "id2_content_0", + "outputarea_id2" ] } }, @@ -4298,8 +4305,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"0714e612-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07147aa6-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_f143386a7c" + "window[\"46dda31a-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"46dd4e1a-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_ee0e219238" ], "text/plain": [ "" @@ -4307,8 +4314,8 @@ }, "metadata": { "tags": [ - "id1_content_0", - "outputarea_id1" + "id2_content_0", + "outputarea_id2" ] } }, @@ -4316,8 +4323,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"071580cc-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(0);\n", - "//# sourceURL=js_1f70aca4d5" + "window[\"46de2538-e945-11e8-9ea1-0242ac1c0002\"] = window[\"id2\"].setSelectedTabIndex(0);\n", + "//# sourceURL=js_7884e60baf" ], "text/plain": [ "" @@ -4325,8 +4332,8 @@ }, "metadata": { "tags": [ - "id1_content_0", - "outputarea_id1" + "id2_content_0", + "outputarea_id2" ] } }, @@ -4335,13 +4342,13 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd83WX5//HXldWsNmnTCQVaZtkr\nLEEEyhYZyhK+MoUvgoDiAMEfoqKCiogCfkXEFmSPApZZCigySsPoYEmljJZC07Rpm6YZJ+f6/fG5\n056mSXoyPhkn7+fj0UfOuT/rPmkfvc59f+7PdZm7IyIiIv1bVm93QERERLpOAV1ERCQDKKCLiIhk\nAAV0ERGRDKCALiIikgEU0EVERDJArAHdzC42s7lm9paZfSe0DTOzaWb2fvg5NM4+iIiIDASxBXQz\n2wE4B9gT2Bk4ysy2BC4Dprv7VsD08F5ERES6IM4R+rbADHevdfcE8E/gq8AxwOSwz2Tg2Bj7ICIi\nMiDEGdDnAl80szIzKwSOBDYBRrn7orDPZ8CoGPsgIiIyIOTEdWJ3f8fMrgWeBlYBbwJNLfZxM2s1\n96yZnQucC7Dddtvt/tZbb8XVVRGRdFhvd0CkPbEuinP3v7r77u6+P7AM+A/wuZmNAQg/F7dx7C3u\nXu7u5QUFBXF2U0REpN+Le5X7yPBzU6L753cBjwKnh11OBx6Jsw8iIiIDQWxT7sGDZlYGNAIXuHu1\nmV0D3GdmZwMfASfG3AcREZGMF2tAd/cvttJWBUyM87oiIiIDjTLFiYiIZAAFdBERkQyggC4iIpIB\nFNBFREQygAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVE\nRDKAArqIiEgGUEAXERHJAAroIiIiGUABXUREJAMooIuIiGQABXQREZEMoIAuIiKSARTQRUREMoAC\nuoiISAZQQBcREckACugiIiIZQAFdREQkAyigi4iIZAAFdBERkQyggC4iIpIBFNBFREQygAK6iIhI\nBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCLiIhkAAV0ERGRDKCALiIikgFiDehm9l0ze8vM5prZ3WaW\nb2bjzWyGmc0zs3vNLC/OPoiIiAwEsQV0M9sYuAgod/cdgGzgZOBa4Hp33xJYBpwdVx9EREQGirin\n3HOAAjPLAQqBRcBBwANh+2Tg2Jj7ICIikvFiC+juvhD4LfAxUSBfDrwGVLt7Iuy2ANg4rj6IiIgM\nFHFOuQ8FjgHGAxsBRcDhHTj+XDOrMLOKysrKmHopIiKSGeKccj8YmO/ule7eCDwE7AuUhil4gLHA\nwtYOdvdb3L3c3ctHjBgRYzdFRET6vzgD+sfA3mZWaGYGTATeBp4Djg/7nA48EmMfREREBoQ476HP\nIFr89jowJ1zrFuBS4BIzmweUAX+Nqw8iIiIDhbl7b/dhg8rLy72ioqK3uyEiA5v1dgdE2qNMcSIi\nIhlAAV1ERCQDKKCLiIhkAAV0ERGRDKCALiIikgEU0EVERDKAArqIiEgGUEAXERHJAAroIiIiGUAB\nXUREJAMooIuIiGQABXQREZEMoIAuIiKSARTQRUREMoACuoiISAZQQBcREckACugiIiIZQAFdREQk\nAyigi4iIZAAFdBERkQyggC4iIpIBFNBFREQygAK6iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCL\niIhkAAV0ERGRDKCALiIikgEU0EVEBiAzO9rMLuvtfkj3yentDoiISNeYmQHm7sl0j3H3R4FH4+uV\n9DSN0EVE+iEzG2dm75nZ7cBc4Btm9rKZvW5m95tZcdjvSDN718xeM7M/mNnU0H6Gmd2Ycq5nzWy2\nmU03s01D+6RwzEtm9oGZHd9bn1c2TAFdRKT/2gq4GfgScDZwsLvvBlQAl5hZPvBn4Ah33x0Y0cZ5\n/ghMdvedgDuBP6RsGwPsBxwFXBPLp5BuoYAuItJ/feTurwB7A9sBL5rZm8DpwGbABOADd58f9r+7\njfPsA9wVXt9BFMCbPezuSXd/GxjV3R9Auk9s99DNbBvg3pSmzYErgdtD+zjgQ+BEd18WVz9ERDLY\nqvDTgGnu/vXUjWa2Szdcoz71lN1wPolJbCN0d3/P3Xdx912A3YFaYApwGTDd3bcCpof3IiLSea8A\n+5rZlgBmVmRmWwPvAZub2biw30ltHP8ScHJ4fSrwQnxdlbj01JT7ROC/7v4RcAwwObRPBo7toT6I\niGQkd68EzgDuNrPZwMvABHdfDZwPPGlmrwErgeWtnOJC4Mxw7DeAi3uk49KtzN3jv4jZbcDr7n6j\nmVW7e2loN2BZ8/u2lJeXe0VFRez9FBFpR7+cbjazYnevCf/f3gS87+7X93a/pPvFPkI3szzgaOD+\nlts8+jbR6jcKMzvXzCrMrKKysjLmXoqIZKxzwkK5t4ASolXvkoFiH6Gb2THABe5+aHj/HnCAuy8y\nszHA8+6+TXvn0AhdRPqAfjlCl4GjJ+6hf511H5V4lOiRCsLPR3qgDyIiIhkt1oBuZkXAIcBDKc3X\nAIeY2fvAwShRgYiISJfFmsvd3VcBZS3aqohWvYuIiEg3UaY4ERGRDKCALiIirTKzl3q7D5I+BXQR\nEVmHmeUAuPsXersvkj4FdBGRmI277LFTxl322IfjLnssGX6e0tVzmtnDoSTqW2Z2bmirMbPfhLZn\nzGxPM3s+lD49OuyTHfaZGcql/m9oP8DMXjCzR4G3m8+Xcr1LzWyOmc0ys2tC2znhPLPM7EEzK+zq\n55LOU0AXEYlRCN5/Iap+ZuHnX7ohqJ8VSqKWAxeZWRlQBDzr7tsTpXm9muhJo+OAn4XjzgaWu/se\nwB5EiWfGh227ARe7+9apFzKzI4jSdu/l7jsDvw6bHnL3PULbO+Hc0ktiXeUuIiL8Emg5ci0M7Xet\nv3vaLjKz48LrTYhqozcAT4a2OUC9uzea2RyiCpcAhwI7mdnx4X1JyrGvppRaTXUw8Dd3rwVw96Wh\nfQczuxooBYqBp7rweaSLFNBFROK1aQfbN8jMDiAKsvu4e62ZPQ/kA42+Nv1nklD61N2TzffFiWYJ\nLnT3p1o55yo6ZhJwrLvPMrMzgAM6+lmk+2jKXUQkXh93sD0dJUSFrWrNbAKwdweOfQr4lpnlApjZ\n1iEJWHumEVVjKwzHDAvtg4FF4VyndugTSLdTQBcRidflQG2LttrQ3llPAjlm9g5Rts1XOnDsrUSL\n3l43s7lExVrana119yeJ0nZXhEIv3w+b/h8wA3gReLdDn0C6XY+UT+0qFWcRkT6g08VZwgK4XxJN\ns38MXP7hNV/uyv1zkfUooIuIpEfV1qRP05S7iIhIBlBAFxERyQAK6CIiIhlAAV1ERCQDKKCLiIhk\nAAV0ERGRDKCALiIyAIXqal9IeT8pJb97d1/rVjPbLo5zy1rK5S4iErerStZLLMNVy3s7scwBQA3w\nUtwXcvdvxn0N0QhdRCReUTBfr3xqaO8UMysys8dCHfK5ZnaSmU00szdCzfLbzGxQ2PdDMxseXpeH\n+ujjgPOA75rZm2b2xXDq/c3spVA/vc3RupkVm9l0M3s9XO+YtvoV2p83s/Lw+k9mVhFqtv+0s78D\nWZ8CuohIvNorn9pZhwOfuvvO7r4DUW73ScBJ7r4j0ezrt9o62N0/BP4PuN7dd3H3F8KmMcB+wFFE\nOeLbUgcc5+67AQcC15mZtdGvlq5w93JgJ+BLZrZTuh9a2qeALiISr24vn0pU6/wQM7s2jK7HAfPd\n/T9h+2Rg/06c92F3T7r728CodvYz4JdmNht4Btg47L9Ov9x9eSvHnmhmrwNvANsDurfeTRTQRUTi\n1e3lU0Pg3o0ogF4NHNvO7gnW/l+fv4FT16e8bi93/anACGB3d98F+BzIb9kvM7sy9SAzG09UqW2i\nu+8EPJZGnyRNCugiIvHq9vKpZrYRUOvufwd+A+wDjDOzLcMu3wD+GV5/COweXn8t5TQrieqZd0YJ\nsNjdG83sQKJ1Aa31a7cWxw0BVgHLzWwUcEQnry+t0Cp3EZE4XbX8Lq4qge5d5b4j8BszSwKNRPfL\nS4D7zSwHmEl0jxzgp8BfzeznwPMp5/gH8EBY0HZhB69/J/APM5sDVLC2Fnpr/VrD3WeZ2Rth/0+I\n6qhLN1H5VBGR9Kh8qvRpmnIXERHJAJpyFxGRVpnZjsAdLZrr3X2v3uiPtE8BXUREWuXuc4Bdersf\nkh5NuYuIiGQABXQREZEMoIAuIiKSARTQRUREMoACuohIBjOzq8zs+zGde00lt77IzEaY2YxQhe6L\nrWzPqDrtsa5yN7NS4FZgB8CBs4D3gHuJigl8CJzo7svi7IeISG/acfKO69VDn3P6nN6uh96rzCzH\n3RMxX2YiMKe1euxmlp1pddrjHqHfADzp7hOAnYF3gMuA6e6+FTA9vBcRyUghmK9XDz20d0ob9dDX\nq3uecsjOZvaymb1vZue0c94xZvavUCN9bvOodgM1zC9MqYs+Iey/Z7jeG6G++jah/Qwze9TMngWm\nt1NXfZyZvWNmfwnXfNrMCtrp9zlmNjP8Ph40s0Iz2wX4NXBM+DwFZlZjZteZ2SxgnxZ12g8P/Zhl\nZtPb+xx9VWwB3cxKiMr3/RXA3RvcvRo4hqi0H+Fne1WCRET6u56qh96enYCDiIq4XBmKqLTmFOCp\nUEFtZ+DN0N5eDfMloS76n4gqqUGUq/2L7r4rcCXrftbdgOPd/Uu0XVcdYCvgJnffHqhm3cIyLT3k\n7nu4e/PA8Wx3fzNc+95Q8301UATMCL+3fzcfbGYjiL50fS2c44Q0PkefE+eU+3igEvibme0MvAZc\nDIxy90Vhn89ov+auiEh/F1c99OvM7Fpgqru/sDYOtuqRENBWm9lzwJ7Aw63sNxO4zcxyiWqjNwf0\nE83sXKKYMYaohvnssO2h8PM14KvhdQkw2cy2IrrdmptyjWnuvjS8bq6rvj+QZG1ddYjquzdf/zWi\n27Rt2cHMrgZKgWLgqTb2awIebKV9b+Bf7j4fIKV/7X2OPifOKfccom9ifwrfblbRYnrdo8owrVaH\nMbNzwxRPRWVlZYzdFBGJVez10EPd8fbqnrf8f7bV/3fd/V9EM6sLgUlmdloaNcyba6g3sXaQ+HPg\nuTB78JUW+69Ked1qXfUW52157tZMAr7t7jsSVZdrq8Z6nbs3tXOeltr7HH1OnAF9AbDA3WeE9w8Q\n/QP83MzGQHS/Bljc2sHufou7l7t7+YgRI2LspohIrHqiHvputF33HKL7yPlmVgYcQDQSb+28mwGf\nu/tfiBY070bnapiXEH0pADhjA/utV1e9EwYDi8LMwqmdOP4VYP/w5QUzG5bSv3Q+R58QW0B398+A\nT1IWEUwE3gYeBU4PbacDj8TVBxGR3hZWs58DfEQ0Mv4IOKeLq9x3BF41szeBnwBXE41MbzCzCqIR\nbarZwHNEgevn7v5pG+c9AGiuWX4ScIO7zwKaa5jfRXo1zH8N/Cqcp72R9Z1Aeairfhpr66p31P8D\nZoS+dfgc7l4JnAs8FBbM3Rs2pfs5+oRY66GHVYa3AnnAB8CZRF8i7iO6f/QR0WNrS9s8CaqHLiJ9\nguqhS58W6zeOsKChvJVNE+O8roiIyECTVkAPS/rPIVpluOYYdz8rnm6JiEhc+mudczO7Cdi3RfMN\n7v633uhPX5PuCP0R4AXgGda/NyMiIv1If61z7u4X9HYf+rJ0A3qhu18aa09ERESk09Jd5T7VzI6M\ntSciIiLSaekG9IuJgvpqM1thZivNbEWcHRMREZH0pTXl7u6D4+6IiIiIdF7aiWXMbGioPLN/8584\nOyYiIgOXmZWa2fmdPLbb6rSb2c/M7ODuOFfc0n1s7ZtE0+5jiarv7A28TFS9R0RE2vHOhG3Xq4e+\n7bvv9Eo9dOuZOuTdoRQ4H7i55Yae/AzufmVPXKc7dOQe+h7AR+5+ILArUTk7ERFpRwjm69VDD+2d\nZmb/Y2avhlrffzazbDOrSdl+vJlNCq8nmdn/mdkM4NdmNszMHjaz2Wb2SnM5VDO7yszusFZqp5vZ\nD0LN8dm2fk30ln07Lew3y8zuCG0jQq3ymeHPvinXvC3UJv/AzC4Kp7kG2CJ8vt+Y2QFm9oKZPUqU\nRpzwGV6zqGb6uR343a13XPj9TbKoDvwcM/tuyu/u+PD6ytD3uWZ2S0qp1z4h3cfW6ty9zswws0Hu\n/q718ULvIiJ9RHv10Ds1SjezbYlyre8bCpvczIaLkowFvuDuTWb2R+ANdz/WzA4Cbmftc+k7Ec3C\nFgFvmNljwA5E9cn3JPpS8qiZ7R+qs7Xs2/bAj8O1lqQUOrkBuN7d/21mmxKVON02bJtAVA99MPCe\nmf2JqDrnDqEKG2Z2AFGxmB2ay5wCZ7n7UjMrAGaa2YPuXpXGr3C944gSp20cKqthZqWtHHeju/8s\nbL8DOAr4RxrX6xHpBvQF4cM9DEwzs2VEedhFOqxpxQpq/vlP6v/7AcNO+wY5w4Zt+CCR/iuOeugT\niSqrzQyDxALaqFyZ4v6U0qH7ESqyufuzZlZmZkPCttZqp+8HHEpUpAWimuNbAesFdKJbsfe7+5Jw\n/uZaHQcD26UMaoeYWXF4/Zi71wP1ZraYtTXRW3o1JZgDXGRmx4XXm4Q+pRPQWzvuPWDz8GXnMeDp\nVo470Mx+SPSFbBjwFv0toLt78we/KvwFlwBPxtYryWjJmho+/cEPASjYaUcGH6SlGJLRPqb1sqCd\nrodONEqe7O4/WqfR7Hspb1vW7l5FelqrnW7Ar9z9zx3q5bqygL3dvS61MQT4dGufr/kMYcR+MLCP\nu9ea2fOkUa+8rePcfZmZ7QwcBpwHnAiclXJcPtH9/HJ3/8TMrkrnej2pI6vcdwv3NnYiqnPeEF+3\nJJPZoEEU7rUXuRtvxKBtJvR2d0Ti1u310IHpwPFmNhKi+t0Wapmb2bZmlgUc187xLxCm6EOAW+Lu\nzblFWqud/hRwVvOI2sw2br52K54FTgjHp9YWfxq4sHkni6pxtmcl0RR8W0qAZSEoTyC6TZCOVo+z\naFV8lrs/SHTLYLcWxzUH7yXh93B8mtfrMemucr8SOAF4KDT9zczud/erY+uZZKycsjI2/v310NRE\ndllZb3dHJFbbvvvOXe9M2Ba6cZW7u79tZj8Gng7BuxG4gOi+81SgEqggmhpvzVXAbWY2m+jLxekp\n25prpw9nbe30T8N9+5fDiLoG+B9ameZ397fM7BfAP82siWia/gzgIuCmcM0coun689r5jFVm9qKZ\nzQWeIJoGT/UkcJ6ZvUM0Xf5KW+dK87iNiWJb80B3ndkPd682s78Ac4HPiL7o9Clp1UM3s/eAnZun\nSsJCgjfdvUcWxqkeuoj0AX1qRXMcwjRyjbv/trf7Ih2X7qK4T4mmG5rvfQwCFsbSIxmw6latIlFf\nR1ZODoVDSnq7OyIi/Uq6AX058JaZTSNaIHEI8KqZ/QHA3S9q72CRDWlqauL9V1/i6f+7ga322pdD\nzrmAgsFDNnygiHQbd78q3X3DPfLprWyamOajY7Hq6/2LQ7oBfUr40+z57u+KDGTJRIL5r0e3pD6Z\nO4tkoj8kshIZuEJQ7LM11ft6/+KQ7mNrk5tfm9lQYBN3nx1br2TAyR00iANOP4fBZcOZsN+XGFSs\nekAiIh2R7qK454Gjib4AvEa0svFFd78k1t4FWhQnIn1Axi+Kk/4t3efQS8Izil8Fbnf3vYgezBcR\nEZE+IN2AnmNmY4gy50yNsT8iItJNzOxoM7usjW01bbSnFiN53szK4+xjW8xsFzM7sgeuc3nK63Hh\nufeunnOEmc0wszfM7IutbL/VzLbr6nVaSjeg/4woU9B/3X2mmW0OvN/dnRERke7j7o+6+zW93Y9O\n2gWILaBbJIuuZexry0Rgjrvv6u4vtLhutrt/093f7u6LphXQ3f1+d9/J3b8V3n/g7l/r7s6IiGSi\nm8579pSbznv2w5vOezYZfnapdCqsGU2+G0bU/zGzO83s4JBd7X0z29PMzjCzG8P+4y0qizrHzK5O\nOY+Z2Y1m9p6ZPQO0mtLVzA4Nx79uZvenFFZpbd/dzeyfFpUofSrM8GJm51hUfnSWRaVUC0P7CRaV\nJJ1lZv8yszyigeRJFpVPPamN67RVehUzuyScc66ZfSfld/aemd1OlPHtr0BBuMad4dBsM/uLRaVV\nnw6J1Nr6nOt9npDS9tdEKXTfNLMCM6sxs+vMbBawT+rMh5kdHn6ns8xsemjbM/yu3zCzlyzN6qZp\nBXQz29rMpjdPRZjZThalHRQRkXaE4L1ePfTuCOrAlsB1ROVHJwCnEFVG+z7rjzxvAP7k7jsCi1La\njwO2AbYDTgO+0PIiFuU5/zFwsLvvRpRWttVF0WaWC/wRON7ddwduA34RNj/k7nu4+87AO8DZof1K\n4LDQfnSoFXIlcK+77+Lu97bzO5hAVFBlT+AnZpZrZrsDZwJ7EeVqP8fMdg37bwXc7O7bu/uZwOpw\njVNTtt/k7tsD1YSqdG1Y7/O4+5st+r6aqBTtDHff2d3/nfK7GkH0b+Nr4RwnhE3vAl90913DuX7Z\nTh/WSHfK/S9EeW0bAcIjayeneayIyEDWXj30rprv7nPcPUlUynO6R48uzSGq751qX+Du8PqOlPb9\ngbvdvSnkbX+2levsTRTwXzSzN4lyv7dWQQ6iLwc7EJXafpPoi8DYsG0HM3vBzOYQFYfZPrS/CEwy\ns3OA7DQ+d6rH3L0+lGttLr26HzDF3Ve5ew1RHZLme9kfuXt7ed/nh6AM0VNd49rZt63P01IT8GAr\n7XsD/2ouCZtSarYEuD8Moq9v57zrSDexTKG7v2q2zlMbyvwhIrJhcdRDb5ZadjSZ8j5J6/+/b/g5\n5dYZMM3dv57mvm+5+z6tbJsEHOvus8zsDKJqbrj7eWa2F/Bl4LUwwk5XuqVXm22ojGzL87U55U4b\nn6cVdSm16NPxc+A5dz/OzMaRZjK3dEfoS8xsC8I/BotWQC5q/xAREaHtuuddqYfeGS+ydmb11JT2\nfxHdq84O97oPbOXYV4B9zWxLADMrMrOt27jOe8AIM9sn7JtrZs0jzMHAojAtv6YPZraFu89w9yuJ\nKsVtwobLp7bnBeDYcE+7iOi2wgtt7NsY+tMZrX6eDngF2N/MxsM6pWZLWFsv5Yx0T5ZuQL8A+DMw\nwcwWAt+hnbJ3IiKyRhz10DvjYuCCMD28cUr7FKKnlt4Gbgdebnmgu1cSBZa7LSp/+jLRvev1hPvf\nxwPXhkVgb7L2vvz/A2YQfbl4N+Ww34TFenOBl4BZRCVct2tvUVxb3P11otHzq+F6t7r7G23sfgsw\nO2VRXEe09XnS7WclcC7wUPhdNa8V+DXwKzN7g/Rn0tvPFGdmF7v7DWa2r7u/GL7pZLn7yo52vCuU\nKU5E+oBOZ4oLC+DWqYd+wf8d1Ol66CKt2VBAf9PddzGz18PKxl6hgC4ifYBSv0qftqGh/Dtm9j6w\nUZhmaWaAu/tO8XVNRET6MjObAoxv0Xypuz/Vzdc5k+iWQaoX3f2C7rxOO9e/iegpgVQ3uPvfeuL6\n6dpgcRYzG02UJe7oltvc/aOY+rUOjdDjlVi6lKbly8kuKSFn2LANHyAyMGmELn3aBhfFuftn4WH4\nj1r+6YkOSryS9fVU/vFGPjjiSJZOmow3deTJChER6SvanXI3s/vc/cSwKjJ1KK8p90yRlUVOWRkA\n2WVlYBqEiIj0RxtaFDfG3ReZWasZgTY0SjezD4meJWwCEu5eHp6zu5co+86HwInuvqy982jKPV6J\nZcvw1avJKiwku7S00+dJ1tVBVhZZeXnd2DuRPkPfdqVPa3eE7u6Lws+uTK8fGFLyNbuMKD3hNRaV\n9bsMuLQL55cuyhk6FIYO7dI5ElVVLL7uOnJGjGTYGadH5xQRkR7T7j10M1tpZita+bPSzFZ08prH\nAJPD68nAsZ08j/QhDR9+yPKHprDiscfwhLICi/R1ZnasdWNNbjMrN7M/dNf5OnH9NbXfrUU9cjN7\n3Mw6P/3YT2xwlXuXTm42H1hGdP/9z+5+i5lVu3tp2G7Asub3bdGUe9/mTU0kFi+m6vY7KDnyCFY+\n+xylx3+NvI033vDBIv1HRk25m9kkYKq7P9DbfeluZnYyUWW4b/Z2X3pS2inlOmk/d19oZiOJKu+s\nkxrP3d3MWv1GYWbnEqXEY9NNu6OGQeZJepKq1VU0JBsoySuhOK/N8sSxSixdxicXXsToH1/Bwku+\nR+Mnn1A7cyZjb/wjOV24Jy+SKa476aj1MsV9796pXcoUZ2b/A1wE5BGlHz0fuBHYg6igyAPu/pOw\n7zVEjx4ngKeJqo8dDXwplML+mrv/t5VrnEP0/3AeMA/4hrvXmtkJwE+I1kctd/f9zewA4PvufpSZ\n7UlUrjUfWA2c6e7vtfE5ziDKtV5ClJL27+7+07DtYaK87vlEz33fEtoPJ/p9ZgNL3H1iOE85cCtR\n6tSCUHN8H6LSpuXuvsTMTiMqL+vAbHf/Rvq/9b4t3VzuneLuC8PPxUT5gvcEPre1xe7HEJW7a+3Y\nW9y93N3LR4wYEWc3+62ldUs54R8ncMSDR1C5urLX+pGVl0v+Vlux+s03GTRhGwAKdtgB0+I4keZg\nvl499NDeKWa2LXASsK+770IUWE8FrnD3cmAnomC9k5mVEQXM7cOTSVe7+0vAo8APQs3u9YJ5kFb9\n8laO62g97z2J6o7vBJwQAjHAWaGmejlwkZmVtVNDHIA26pE3/962JyrnelA4tmWymn4tthF6at73\n8PpQ4GdE/4hOB64JPx+Jqw+ZzjCGDBpCTWMNedm9FzyzS0oY+cMf4IkEQ778ZfzSS8kqKiK7sGUJ\naJEBqb166J0dpU8EdgdmhrLWBUSDoxPD7GYOMIaohvnbQB3wVzObCkztwHV2MLOrgVKgmCjJGKyt\nX34f0Wi/pRJgspltRTQS3lA1s2nuXgVgZg8R1TOvIArix4V9NgG2AkbQeg3xdBwE3N+8ULuDx/Z5\ncU65jwKmhH9sOcBd7v6kmc0E7jOzs4GPgBNj7ENGKyso47bDbiPpSUoGlfRqX7SqXaRNcdRDN2Cy\nu/9oTUNUgnMasIe7Lwv3yPO83LhRAAAgAElEQVTdPRGmwCcSVUH7NlFgS8ckOle/vKP1vFveevUw\nhX8wsE+Y5n+eaOpd2hBbQHf3D4CdW2mvIvqHJd1geMHw3u6CiLTvY6Jp9tbaO2s68IiZXe/ui0N+\nj02BVcByMxsFHAE8b2bFQKG7P25mLwIfhHOkU2+8Zb3vhbC2fjkww8yOIBo9p+poPe9DwmdYTfTk\n01lE99OXhWA+Adg77PsKcLOZjXf3+WY2rAMj7WeJBpq/c/eqDh7b58V6D11ERLq/Hrq7v010L/jp\nUDhrGlAPvEF0//ouomlxiILy1LDfv4FLQvs9wA/Co11btHGpjtQvT9XRet6vAg8Cs4EH3b0CeBLI\nMbN3iG7RvhI+e1s1xDfI3d8CfgH8Mxz7u3SP7Q9ifWytu+ixNRHpAzr92Focq9wzRfPqdHf/dm/3\npb+L+7E1EZEBLwRvBXCJlQK6xCa5ejWNCxfSsGABBTvtTM6wzi2cq6qpZ1V9grpEktLCXEoLcsnL\nye7m3ooMXD1R79vMDgOubdE8392PI1p8J12kgC6xaVq+nA+OPQ4SCUZdfjnDTut4/obPV9Txv3e8\nxpufVAMwpCCHm0/ZjfJxw8jPVVAX6Q7ufkEPXOMp1j72JjHQojiJjxmWE31ntIKCdnetXFnP316c\nz5ufVFPbkKChbjXLVtby44fnrAnmACtWJzhrUgXVtQ2xdl1EpL/RCF1ikz10KJs/NpWmpUvJHdvy\nqZa16hub+PWT73L/awvIyTIqvrcPL025m80PPY7p76yfSLChKcmr85dx9C7tf0kQERlINELPYMmG\nBmpnzWLxDX8gUVXV49fPyssjb+ONKdhxR3KGtp3TPcuMsuIo011BbjbJRD2zpj1OY31dT3VVRKTf\n0wg9gzUtX87CCy8isXgxg8ZtRskxx/R2l1qVm5PFuftvzqHbjWZ0ST752Y0cePq5eG0NE7cdybS3\n1x2l52Vnsed4ZaYTiVPI8DbV3XfYwD5fcPe7wvty4DR3v6gHuigtKKBnsKzCQsrO+19WPvEkhXvs\n0dvdadewokEMKxoU3hWw6xFfwd25enwDlSvXXxRXWqjCLyJ9wDjgFMIjeSEhjJKG9BIllslwybo6\nknV1/bqM6ZKlK1mxpJq6hgTDyoYwbESpHluT3tCn6qGH0fGTwGvAbsBbwGlE5UJ/SzRgmwl8y93r\nzexD4D6ilLCrgVPcfV7LuuhmVuPuxakj9PD6DqAoXP7b7v6Smb0CbAvMByYTZaprLqE6DLgN2Jwo\nM9657j7bzK4iSrCzefj5e3f/Qwy/ogFH99AzXFZ+fr8O5gAlidUkTj8J+/oxFM59Q8FcZK1tgJvd\nfVtgBVFa10nASe6+I1FQ/1bK/stD+43A7ztwncXAIe6+G1HZ1uYAfBnwQihTen2LY34KvBFKtl4O\n3J6ybQJwGFHZ1J+EXPHSRZpylz4vp6yM8Q9PIVlTQ05ZWW93R6Qv+cTdm3O2/50o9/p8d/9PaJsM\nXMDa4H13ys+WAbg9ucCNZtZce33rNI7Zj6jGOe7+bKhlPiRse8zd64F6M1tMVJ1zQQf6I61QQJc+\nz7KzyR01CkaN6u2uiPQ1Le+ZVgPtfev1Vl4nCLO1ZpYFtLZA5bvA50QVNLOI6qt3RX3K6yYUi7qF\nptxFRPqvTc1sn/D6FKIFaePMbMvQ9g3gnyn7n5Ty8+Xw+kOguZ750USj8ZZKgEXungznbL7v1V4J\n1heISq4SapsvcfcVaX0q6RR9KxIR6b/eAy4ws9uAt4GLiMqM3m9mzYvi/i9l/6GhjGo98PXQ9hei\n2uqziBbZrWrlOjcDD5rZaS32mQ00hWMnES2Ka3YVcFu4Xi1wetc+qmyIVrmLiKSnL65yb/c58Rb7\nf0hUpnRJjN2SXqQpdxERkQygKXcRkX7I3T8E0hqdh/3HxdYZ6RM0QhcREckACugiIiIZQAFdREQk\nAyigi4iIZAAFdBGRfsjMDjez98xsnpld1tv9kd6ngC4i0s+YWTZwE1HltO2Ar5vZdr3bK+ltCugS\nK29qIllfv+EdRaQj9gTmufsH7t4A3AMc08t9kl6mgC6xaaqtZeXTT7Po8itIVFb2dndEMsnGwCcp\n7xeENhnAlFhGYpNctYrPfvozmqqrKZ54ECVHHtnbXRLpNeXl5UcDhwDTKioqHu3t/kjm0QhdYpNd\nVMTon/+MkmOPoWiPPXu7OyK9JgTzu4FvA3eH912xENgk5f3Y0CYDmEboEpuswkIGH3wwxQccQFZu\naxUZRQaMQ4DC8LowvO/KKH0msJWZjScK5CcTlU+VAUwjdImVmbUazFesbuTV+Ut5bPYilq5q6IWe\nifSoaUQlRAk/p3XlZO6eIBrtPwW8A9zn7m91qYfS76l8qvSK/y6uYeLv/gnAL47bgVP32qyXeySy\nQV0qn6p76BI3TblLr8jJNszAHQpys3u7OyKxC0FcgVxio4AuvaKsOI8nL96fZbUNbDN68Ab3TzY0\n4LW1ZA0ejGXrC4CISEuxB/SQ0agCWOjuR4VFHPcAZcBrwDdCYgQZQIoH5bLN6PQWyiWqqlh6++3U\nzqyg5JijGXzoYeQMLY25hyIi/UtPLIq7mGjRRrNrgevdfUtgGXB2D/RB+qlkXR2Vf/oTVX++hdWv\nv85nP7mK2hkzertbIiJ9TqwB3czGAl8Gbg3vDTgIeCDsMhk4Ns4+SP+WrKmh9sWX1mlb+cw0PJHo\npR6JiPRNcY/Qfw/8EEiG92VAdXjkApSuUDYga/Bgig84YJ22IUceieVo+YeISKrYArqZHQUsdvfX\nOnn8uWZWYWYVlcoDPmBlDRpE2TnfZMT3LqFov/3Y6LrfUrDb7r3dLZFeZWabmNlzZva2mb1lZheH\n9mFmNs3M3g8/h4Z2M7M/hFKrs81st5RznR72f9/MTk9p393M5oRj/hBmWHvkGtI5sT2Hbma/Ar4B\nJIB8YAgwBTgMGO3uCTPbB7jK3Q9r71x6Dl08kSC5uo7swcW93RUZuDoVbMrLy/OArwLfAkYDnwF/\nAh6qqKjo1IJgMxsDjHH3181sMNEC42OBM4Cl7n5NqJE+1N0vNbMjgQuBI4G9gBvcfS8zG0a0aLkc\n8HCe3d19mZm9ClwEzAAeB/7g7k+Y2a/jvkZnficS4wjd3X/k7mPdfRxRWsJn3f1U4Dng+LDb6cAj\ncfVBMofl5CiYS79TXl6+KfAf4BZgf2Dr8PMW4D9he4e5+yJ3fz28Xkm08HhjohKqk8NuqWuUjgFu\n98grQGn4UnAYMM3dl7r7MqIMdoeHbUPc/RWPRn23tzhX3NeQTuiN1K+XApeY2Tyie+p/7YU+SJqS\n9fUkV6/u7W6I9DthZP4vosIpLZMtDA7t/wr7dZqZjQN2JRrljnL3RWHTZ8Co8LqtcqvttS9opZ0e\nuoZ0Qo+sLHL354Hnw+sPAJXe6gcSS5aw+PrrSa5YychLf0je2LG93SWR/uSrRIOWtjIhZYftxwH3\nduYCZlYMPAh8x91XpN6Cdnc3s1hze/fENSR9Ks4irUrW1fH5b69j+YMPsXLaNBZ863wSVVW93S2R\n/uRbwIbuExWH/TrMzHKJgvmd7v5QaP48TGU332dfHNrbKrfaXvvYVtp76hrSCQro0ipvaiK5bNma\n903Lq/Fksp0jRKSF0d283xphNfhfgXfc/Xcpmx4lWpsE665RehQ4LaxE3xtYHqbNnwIONbOhYbX6\nocBTYdsKM9s7XOu0FueK+xrSCXqYV1qVXVTEyB9dRv38+SRXrmSj3/6W7FKlWxXpgM+IFsGls19H\n7Uv0FNEcM3sztF0OXAPcZ2ZnAx8BJ4ZtjxOtPp9HVL71TAB3X2pmPyeqrw7wM3dfGl6fD0wCCoAn\nwh966BrSCSqfKm1yd5qqqnB3sktLW61rLjKAdOixtfLy8pOJVrO3V31oJXBORUVFp+6hi6TSlLu0\nyczIGT6c3BEjFMxFOu4hYCnQ1Mb2prB9So/1SDKaArqISAxC0pj9iR7HqmmxuSa079/Z5DIiLSmg\ni4jEpKKi4mOi++jfBP4JvBd+fhPYOmwX6Ra6hy4ikh7lGZc+TSN0ERGRDKDH1kREYlReXp4FTAQO\nJ8oMVwU8CUyvqKhQcgfpNhqhi4jEpLy8/EyiPOYPAd8lSsTy3fD+k/Ly8jO6cn4zyzazN8xsang/\n3sxmhHKk95pZXmgfFN7PC9vHpZzjR6H9PTM7LKX98NA2L1RVo6euIZ2jgC7dpqmmhsYlS0g2aNGu\nSHl5+a+BG4GNiFK8Nt+Dt/B+I+Cm8vLya7twmYuJKq01uxa43t23BJYBZ4f2s4Flof36sB9mth1R\nNcztiWYQbg5fErKBm4AjgO2Ar4d9e+oa0gkK6NItEsuXU3XLLXx08tdZ/frreCLR210S6TVhZH4B\nULiBXQuBb3dmpG5mY4EvA7eG9wYcBDwQdmlZ2rS55OkDwMSw/zHAPe5e7+7zibK87Rn+zHP3D9y9\nAbgHOKYnrtHR34OspYDexyWqq6l9/XUaPvyIZH19b3enTV5XR9Utf6FxwQIq/3gjyVWrertLIr0i\n3DO/mg0H82aFwC/CcR3xe+CHQPN9+DKg2t2bv02nliNdU8I0bF8e9u9oydOeuIZ0kgJ6H9f48cd8\ndMqpfHDMMTRVL+/t7rTJ8vIoOf54sgYPpuysM7HCdP8vE8k4E2k/3WtrBhONfNNiZkcBi939tQ5e\nRzKYVrn3cdlDh2KFheRutBGWve73r2RdHU3V1Vh2NjkjRvR43xKVlSSqq8kpKyNn2DBG/eD7jLj4\nIrIHD1aqWBnIDmfDZVNbKia6l/xMmvvvCxxtZkcC+cAQ4Aag1Mxywgg5tRxpcwnTBWaWA5QQrbZv\nq7QpbbRX9cA1pJM0Qu/jckaPZosnn2CzSX8jZ/jwdbYlPvuMeQcfwocnn0xiyZIe7Vdi2TKWTZnC\nwu98l8o/3khTbS3ZJSVR3vf8/B7ti0gfU0bHk9AYMCzdnd39R+4+1t3HES04e9bdTwWeA44Pu7Us\nbdpc8vT4sL+H9pPDCvXxwFbAq0SV0bYKK9rzwjUeDcfEeo10fweyPo3Q+7is3FyyRo5sdVuysRES\nCZKraqGdjH+JqiqStbVkFReTM3Rol/uUqKyk6m+TaPjoI0b98IfUvf8f0CI4kWZVgNOxoO5EhVq6\n6lLgHjO7GniDqGY64ecdZjYvXOdkAHd/y8zuA94GEsAF7t4EYGbfJqplng3c5u5v9eA1pBOU+rUf\na6qpiabc8/LIGT4cy1p/wqVp5UoW/eQqVj7+OCO//z2GnXVWq/ulfc0VK/n0ssuoefbZqCE7my2e\nfIK8TTZp/0CR/i+tAF1eXn4I0XPmHZl2Xwl8taKiIt0pd5H1aMq9B9UsreLf995B1cJP8GTXE0Rl\nFxeTN3YsuSNHth2kk0mSK1cCUTDuqmR9HbWpX66ammj4SPUlRFJMB1Z08JiVwLMx9EUGEAX0HjRj\nyn3MeOheHv/jb1ld0/Xgmo7skhI2uuZXjH/4YYadcXqXRucAWYWFDD7k4DXvraCAQVtu0dVuimSM\nkM71CqA2zUNqgSuUBla6SgG9B223/0GUjhrDzgcfQe6gHlw45s7Se+5h+SOPkqiu7tKpsouKGPm9\n7zHmF1cz7Oyz2fyRh8kuK+umjopkhoqKiklEWeI2FNRrgRvD/iJdonvoPaipsZG6VTXk5ueTl1/Q\nY9etfuBBFv34xwBsMe3p2O93N9XUYHl5ZOXlxXodkR7W4fKpIQPcL4ieM29O/+pADdE0+xUK5tJd\ntMq9B2Xn5lJU2vVV5h1VsPvuZJeWkjt2LFkF636RqF9dS1NjIwWDhxBlaey8RHU1tS+/TPWDD5E3\nfhxlZ51NzuhRXT6vSH9VUVExqby8/HaipDFHAiOBxcDjwLOaZpfupBH6AOBNTTQtXQZZRk6YHvdk\nkurFn/Gvv/+NlUuXsOvhR7H5bntSUNzRBFfhGokES++8k8W/umZNW87IEYx/8CFyRgxv50iRfqMz\nI/RBwAlEj3ptDzQCucBbRMVL7q+oqOi7OZ2lX9E99AEgyiQ3fE0wT65ezaqqJdxz5Q+ZN/NlPv/v\n+zx50/Usev/dTl+jqbqaZbffvk5bYnElDR9/1KW+i/RX5eXlewKfAjcDOxB9IcgLP3cI7Z+Wl5fv\n0Znzm1mpmT1gZu+a2Ttmto+ZDTOzaWb2fvg5NOxrZvaHUKZ0tpntlnKe08P+75vZ6Sntu5vZnHDM\nH0KhFXriGtI5CugDUMMnn1C76FNql6+7QO6t558h0dhAU2ceqTPDCtbP3265eTSpUIsMMCFIP0uU\n/a2taa/BYftznQzqNwBPuvsEYGeiMqqXAdPdfSuix+eaa4wfQZShbSvgXOBPEAVn4CfAXkTVz37S\nHKDDPuekHHd4aO+Ja0gnKKAPQE1Ll5KTlU1WdvY67WO325Gq1UmumDKXl/9bRX2iKe1zZg8bxsjv\nXbJOW/7225FYUknjQqVnloEjTLM/CRSleUgR8GQ4Li1mVgLsT8jS5u4N7l7NuiVMW5Y2vd0jrxDl\nYx8DHAZMc/el7r4MmAYcHrYNcfdXQvrW22m9TGpc15BOUEAfgAZNmEDeoHyOOP+75IVFcuN3KWfb\nfQ/g8TmLuGfmJ3z//lmsWN245pim5ctJLFvW5jnNjMI99mDzqf9g+Le/zUa/+Q0jf/ADPvvJVTQt\n7Y6MliL9xglE98k7Io+1+dHTMR6oBP5mZm+Y2a1mVgSMcvdFYZ/PgFHhdUdLmG4cXrdsp4euIZ2g\nVe4DUE5pKcWlpWy52WaM3X5HPOnk5A0iv7iYQ7fL4tl3F/O13cZSNCj655GoqmLRT66iqbqasdf/\nrs3KbtnFxWRvuSUjvr0lTStXUvvqq4y64nIGTZjQkx9PpLddSsfLpxYTTV3fmeb+OcBuwIXuPsPM\nbmDt1DcA7u5mFuuq5564hqRPAX2AqlxZR2OTU1JYQvGgtf8MNh5ayE2n7kZ+TjZ5OdEETnLVKmqe\niVJMN3z8cVqlWrMHD2bwxInxdF6kjyovL88mWs3eGduXl5dnV1RUpHOvawGwwN1nhPcPEAX0z81s\njLsvClPai8P2tkqYLgQOaNH+fGgf28r+9NA1pBM05T4ALamp5/E5n/H5ijqW1Tast31Ifu6aYA6Q\nNXgww88/n9KTTyZv/Pie7KpIf1NM9GhaZyRIs6CLu38GfGJm24SmiUTVzFJLmLYsbXpaWIm+N7A8\nTJs/BRxqZkPDQrVDgafCthVmtndYeX4arZdJjesa0gkaocfEm5poXLSIunffpXDXXdc8MtYXZJsx\npiSf425+ia1HFXPXN/dm+OC21+PkDB1K2fnfgmRS2d9E2ldDx++fN8sJx6frQuDOUEv8A+BMokHa\nfWZ2NvARcGLY93GixDbziNLNngng7kvN7OdEtckBfubuzYtezgcmAQXAE+EPwDU9cA3pBCWWiUmi\nspJP/vc86ufNo+S44xh1xeV9KhjOnL+UE/78MtuNGcIdZ+9JWXHaC2xFBqp0y6fOIXrOvKPmVlRU\n7NiJ40QAjdBj4+4MO/MM8jbdlFUzZ0IXq5x1l6qaKCnVhDGDefHSA8nLyerVYN6UdJbU1JN0p7Qg\nl4I8/ZOUfu9aoqQxHVkYt5Jo5CvSabFFGTPLN7NXzWyWmb1lZj8N7ePNbEbIDHRvmC7KKN7URNWt\nf+XTH/yQxdddR8lXvkJWTucD1eIVdSxYVsvKus7emotUrqzjjL/N5MxJM6lrTLLx0EJGDG676pu7\n07i4ksZFi0gsX96la7elqqaew3//L7547XNUrlQGTMkI99Px++iNRAvbRDotzmFjPXCQu+8M7EKU\nSGBvom+v17v7lsAy4OwY+9ArLDub/G2jR7XyttqarKJ080usr3JlPcfd/BL7Xfsc73/ekdtr61tZ\nl2DOwuXMXrCcmvrEmvb6RBPVrSyOa1y0iKV//zuJykqalizpcunV1jjRKD3pTrLv3/0R2aCQm/1w\nIN0UiauAw5XTXboqtvnNkPmnOQLlhj9OVHXolNA+GbiKkCIwkwyeOJGi55/DBg0iuzithattamiK\nUrE2diYla4qhhXn88rgdycqC0oJo3U5tQ4In5izivooF/PaEndlkWJS+dVltA5815lL6jbP49KLz\naXxrLps/NhVKS7vUh5bKivKYdsmXSDQ5pYWdXUsk0rdUVFTMLC8vP5AoY1wurU+/ryQamR9eUVEx\ns5XtIh0S6w1LM8sGXgO2BG4C/gtUu3vz8DBjMwNlDxlC9pAhXT7P8OI8HrtwP1Y3NlFa2PbdidqG\nBE1JZ3B+20FxaFEep+y16Zr3qxsSVNU0cMP0eXy8tJZn3vmcM/eNHkt77t3FXHLfLEoLc5l62Y9p\nOOmrJKqqur2Wek52FqOGtD3tL9JfhaC+EVEGuMuInk9PEP2/O5dotvIBjcylu8Qa0N29CdjFzEqB\nKUDaKcPM7FyiBP9suummG9g7c9SuaGDRvGpGjR9C8dB8zIyRGwh4S1fVc/20//BpdR2/OG5HhuTn\nUDhow3+1y2ob+ek/3uKnR2/Pv+ct4cs7jVmzrTHMCiSTTs7o0ZRMmUrOxiO79uFEBpgQrO8E7gxJ\nZ4qBmjSTx4h0SI8sKXb3ajN7DtiHKGF/Thilt5kZyN1vAW6B6LG1nuhnb2tqTPLylHm8+/JnjN58\nCEeevxMFxRteM1hT38Qdr3wMwJHzlrDrpqVsPmLD0/xZWcYrHyylLpHkpq/vSknKDMCh241mwugh\njB6Sz/R3P+ev/17AzaeOYJuuTzqIDEghiMezulSEeFe5jwgjc8ysADiEqLzfc6wtQpCaZWjAs2wY\nvkl0q61so2Kystf+9SQbG2lavpzW8gbk58Lp+2zKIduOZMKYwSyqrkvresOL8pj+vS/xuxN2ZkjB\nulP1Q4vy2HmTUnKyjbtf/YT/Vtbw7LuVXfh0IiISpzhH6GOAyeE+ehZwn7tPNbO3gXvM7GrgDUL5\nv4EqsXQpdXPnklVYSN4WW7LNXqPZfJcR5ORmMagg+utJNjZS+9LLVN16K6N/ehWDNt98nXOsTlZS\nNHo65ZsOZXDhpmxUMrS1S60nnfvXw4ry+OMpu/Kv/1Ry5I5j2t1XRER6T5yr3GcDu7bS/gFRkfsB\nL1FdzaeXX8Gq558HYPhFF1F21pnkD1s3yCZXrWLJn//M6tdfZ/nDjzDyku+us31QziAenHc3owpH\n8bUJX2ZoQR64g6WV2KpdZsa4siLG7dP2o3dLVzXw5NxFjBicz57jh1FSoNXqIiI9TWm5epE3NrLq\nhRfWvK955hmGnnwSWfnrBvTsIUMY8/OfUT1lCkNPPXW98wzPH87U46ZiZgwvGA6rlkDFXyErF3Y/\nHQrjzSP/7qIVXD5lLgD/vvRABXQRkV6ggN6LLDeX4gMOoGb6dAAGH3YYWYWFa7avWLKaea8tZpu9\nRlO0xRaM+v73Wz1PTnYOIwpTSpoueR+e+2X0eouDYg/omwwrZEh+DqWFeeRl940UtyIiA40Cei/K\nKS1lzM9/Rv2pp2JFheRtttma0Xl9bSPP3/ken7yzlBVLVvOlU7bB0p1CL90kCuJZOVA8KsZPEBlT\nks8zl3wJM2NEO1XbREQkPgrovSxn2DByvrDP+u152Wy//0bUVNcxYZ8xrQbzpasaeGz2p7y/uIaz\n9h3PpsMKycoyGLwRfOvlqDZUUfc9O95QlyDZ5OQXrTulnpOdtcFn5UVEJF4K6H1Udk4Wm21fxpgt\nShjURkrUKW8s5OdT3wZg6uxFPHnxF6PAmpUFg9cfma+qXkqioZFBRcXkdzC//OqaBmZOnc+yRbUc\ncvZ2FA7RSFxEpC/RDc8+LCcvGyvIpqq2gRWr1y3e1JRM8s6iKEdFXnYWw4ryaGqnuknt8moe+MWV\n3Hrh2Sxd+EmH+9LUmGTO8wtZ8N4ylleu7vDxIiISLwX0Pu6Nj6s56Lp/cv9rC6hrXJstMjsri3P3\n34KNS/OZcvbe/O4LW1OUNBINTaxaXs/qmhbV08zIHZSPWRbZuR1fhZ6bn81h52zPnl8ZT+nIwg0f\nICIiPUpT7n3cKx9UUVqYyzufLqehKUl+bvaabZsPL+KxC/fjjSnzefvfnzJvixIOPG1b7vn5DLYu\nH0X5UePJzcuicMggCoeUcMz3ryDZlGBQYXrV35pqa8Gd7KIiBhXksuXu8S+wExGRzlFA7+P+Z6/N\n2G/L4eRmZ603nZKTnUVJYR6jxg/h7X9/yvDNBlO/qpFkwln80Uo+fb+a2c9+wlcu2oXCwXkUlaaX\nQQ4gsWQJn/3yl+DO6CuuIGf48O79YCIi0q0U0GOUWL4ckklyhm44kK5e2cDyytWUjCigYPDaIikN\nTUlO/PMrALx46YEUtyiPamZstkMRp/1iZ7JyBpGVncexl+xK8dBBPPnnuRSV5uEp99abEgksK4us\nrPbvtiyfOpWVjz8BQMH221P2zW+m/blFRKTn6R56TBJVVSy6/HIWfPtCEkuWtLtvUyJJ7YoG3OGz\n+ctJNKy9V56XncW4skI2H15EbitJW+pX1/LG449w64Vns+Ct1xlUkM2wjYv4YFYlXzx5a3Y5ZDOW\nLqqhsb6JVdXLeOGuycybO5ealava7VP+NtuseT1oQtpVb0VEpJcooMckWV9PzfRnyd11F1Y3JWio\na3tleN2qRqbeOIuHfvMatSsaycpe+8z5yCH5PHDeF7jvvH1afdY7UV/P+6++RLIpwbsvv0BTIkF+\nYS7jdxrBh7OXkJObxbsvfYZ7ktnPPMXYL0zkd7MamDxzIdW1axfONa2soWHhQhoro4pq+TvswOZP\nPMHmTzxOwU47deNvJpKsr6dh4UKW/2Mq9fPn01RT0+3XEBEZSDTlHpPs4mI2vfsu5i9dzAM/uIDD\nv/Udtt57v1YTxLjD6pXRY2mrltWtUzYVYHg72dcKBg/hqO/+//buPDzq+k7g+Psz85uZTCY34Uok\nHBLCJcql4gkKLh4g9Rl5sHEAABDGSURBVMC2VsVjK/q428ruCu52H9enLVrX1rZWa/EodnW3VeqF\nsorrBWqVUwzIjQLhEnJOJslMZua7f8wACeSYQCYzGT6v55mHzPf4zTcffk8+87u+33ls+Og9xkyd\nhsMVaZvTK52xl/fn4K5aJlwzGGeagwFnjaG0OsjbGw7w9oYDXDe26Mh2Gvfu4eurZ2D16cPARS9j\n5edjz8zsjFC0KLh/PzumTccEAiBC/xf+i/SxY+P2eUopleo0oceJPSsL14gR7F7wAUG/n52lX1B8\n9gTEHgl5vbeGmkMH8eTkkpaRw/X3j+Pgbi9FI9qfdz0YCGE5I3e72+x2ehYNYOJNtx/XzuV2cFpJ\n5Pp9nTeAtzKLs4Zk88BVdsYOyMVhHf1yIZYDLAubx0O4jefZO0v14sWRZA5gDBULnydtxIjjFqZR\nSikVG03ocWQ5nVz0g1sZev5F9Bo0GJv9aLh3b/iSxY89TK+Bp3Pt/Q/SozCHHoVtP04WCoY5tNvL\nmqW7GH5+AQXFOThc9jb7HLbls/188tdtjLiwgDMv6M1dL6zhHy4ZzHdGFyIiNPbsQ8GrS2jwhdi5\nK0xx580Y26K0kSObvx91BnICz8crpZSK0GvocebJyWXg6HF4snOalWf36o3NbpF/WlGzRN+WBl8j\nb/x2HTvWHmTJU6VU1Qcoq6yjwhdot2/h0Fwycl0MOCOfpRv2s6eqnlfX7qG6vpFnP97Bg+9spTYr\nl/de30/Povidaj/MfeaZ9LrvX3ANG0bebbeRc+21iD22LydKKaWOJ8bE//TqyRo3bpxZtWpVoofR\noka/H7+vFpvdTvoxSbvdfnU+bHaL9KysmPrU1QR4/bG1VOzzMeLiAkp72/nl0i38eHIx90wajNXG\n0qWhYJgGXyPGGCrqGlm+s5yLSnrhsmycPT+yfOuiOycwPD8Dt8eB2Npe2c2Ew4Sqq7G53Sd8mtwE\ng5FtZGRgc+nc8CrpxbjcoVKJoUfoJ6ly3x6evud23vnDb6n31jSrC/l8+FasoOLFFwlWVDSrc7hc\nZOTmxZzMAdKznEz/0Vlccfcoxl05kPro4211gRDtfS+zWzY82S62fH6At3+xhvz1tfRw2HFYNu6d\nMoQZowsZ0NNDeqaz3WQO4N+6ld2z76Lq5ZcJeb0x/w5NiWVh9eihyVwppTqBXkM/Sb6qSsKhINXf\nHiAcDjerC3u97Jp1K4TDOHr3IXPypSf9eZ4cFwNzIgnwjgsHMXNcPzLdFg4rtu9mxeN7c+DrGkrO\n7YPTZZHutDP74kGEwwa3M7bdob62jvInnqBh3ToavvySrKlTIY53xCullGqfJvST1GfwEG559AnS\nMjKPu04uDgfuMWMIbNuGq7i40z87z+Mkz+Nsv2ETmXlpTL51OHaHLbJ2OuCyOnbtujZswzbz+1jr\nN5A5dSo4OzYGpZRSnU+vocdZsKICQiHseXlJc9NXOBTGXxfE4bIfefytIw7UNPCfb61nxqAMRp3e\nm6z82OeIV6ob02voKqnpEXqcWXl5MbUL1NfT2FCPAcRmIz0zC4nOtx6oDxJsDJHmcRw36UxHmbDh\n4O5aPvrvzQw7ry8l5/TB6e7YbpCf4eK+K0diAHcHzxAopZSKD03oCVZXU42vqpKVry9i91el9B5U\nzITrvoffV4sjzY3l8LB+2T62rDjA1DtH0qOg9WfVQ14vwfJyfMuX4+zfn7ThI7Dym09U0+gP8fkb\nOzi4y0v53loGje55JKHX1DdS6w/itGzkZ7R+o5rdJi1OQ6uUUipxNKEnkK+qkjd//QhlG0uPlE2b\ncz8vPTiPxgY/Mx+YT1pGL0o/LKPe28iOtQdbTejhQADv+++zb+68I2WukhKKnn2m2dKnlsvO6ClF\nVO7zMXRCXyzH0SP+1TsruXXhSiYP682j148iJ12PvpVSqrvQx9YSpK66ilceeoBwOMigMeOxR2dJ\nE7ERDDRiTJhgIMDqJS8z5bahnDGxkOEXFLS6vVBVFQfmP9SszL95M3Vr1jQrs9mEvoNzuG7eOEZP\nKcKVfnR2tqr6yAQ1Fb4A4W5wb4VSSqmj9Ag9AcKhEOs/eo+R553D0EI79upvqJ7+b7z4s5+x5q3X\nuOE/HqbR38DezV+x/v3/5dCu7Vwz70HcbSzSQjBEuLr6uGL/1q1w2WXNyiyHDSv7+G1NHNKL9+Zc\nTJbbQZ4nUn/Q62fBsu1cNaqA4QWZOJLkxj6llFLNaUJPgHpvDavffJWb7/9n3M9fDEDmJRn0KS5h\n06fL2L56BTbLjt8XWbN8/7YtrP9gKWOvnIGthYRa7/UiAq4hQ/Bv2dKsLnPSJce1D4VChIPBIyuz\nHZbrcZJ7zE1u72zYz9PLv+b/Nn7LS3dOoGemJnSllEpGeso9AWoryqmrriKEDTz5IDbC+UOpr4kc\nYTf6G44k88PWvbvkuJnoDtu++nP+/OhP6fmLh3AOGgSApKWRPeefkL59m7X119Wxe0Mp5Xtq+Kb0\nIA2+xjbHOqmkJxcMzufeycVkpGkyV0qpZKVH6Angq64CYPEzC7li1iIsu401Hy6jYk9Z630qK2lt\nzoBwKER52S7Wrl7ByMeeQhoDWNluVpQ3ckFG8xncgv4G7FYGS36/ictuG8SBHRvJ79cPT07Lz5IX\n5qbz5I1jSHPYccY4G51SSqmupwk9AQ7fALd/2xae+8m/x9bH2frSosVnT6Bg6Bk0eA1//f02Bo3p\nxehphYzPt+NyND+qttLScHnSGXtFEZs/e5Mv3l5MyYQLuWz2P+JMc7e4/Sy3LmuqlFLJThN6VwrU\nQShAbq8+IEK7K6o0UTBkGJaz5Zvi3JlZrDngxxY2TJ87lswMJwE7fLr9EJbNxvgBeWRH72Z3udPJ\n7+ciq2cIhzWEL4DepxfHvISrUkqp5KR/xbtKfRWsfAZ2foLzyqfof8ZZ7Pxybczdz732u6R5PK3W\nj+mfi7c+iMdlke6yOFRRx+wXIo+sfTx30pGEDmCz2UlLt3P62LO586k/YTmcWA49CldKqe5ME3pX\nCfph2SMQ9OOq2sr5V36HXaXrMCbcbtf8ogHk9OrTZhu3w8LtOPrfme60M6mkJ5bdRpqj5ZvZXOke\nXOmtf0lQSinVfejiLF0l4IOyVbD7c8yYWTTUG3Zu2cSS3/2yzaSe3bsPNzzwMJk98ltt05qqugAC\nZOuMb0p1Bl2cRSW1uCV0EekH/AnoDRhggTHmNyKSB/wFGAB8A8w0xlS2ta2USOgtCDTUU7m3jI9e\neI7dG0qb1bnSPYyaPJUxV1xNwJlBMBQmy+1o9Wg7FsHycsK+OmwZnpgXjVFKHaEJXSW1eCb0vkBf\nY8waEckEVgMzgFlAhTHmYRGZB+QaY+a2ta3unNDrqqsINNTjSvfgzsxqsU19rZdAnY9Du3fR6G/A\nk5NHbt8C0jIyqW00/OS19SzdcIBX7j6PkYXZJzSOYGUVe++7D9/y5eTedBM97/0x9vT0k/nVlDrV\naEJXSS1u19CNMfuAfdGfvSKyESgErgYmRps9D3wItJnQuyt/nY/3//gHNv9tOZfecTdnTbmixXbu\njEzcGZlkt3CdvLHBz5dl1QRCYbZ9W0txroW/zofNbuHJzjmyxCpAqKGBcGUlpjGIPTsLe/bR5G+C\nQfzbt0fGtXkTJhCADiT0sN+PaWhotk2llFLJo0tuihORAcBo4HOgdzTZA+wncko+ZeX268f0GQ/h\nzswkGA5i2ToW8lyX8OodoznkFwpy09m5biWLfzUfd1Y2Nz/yOBm5R0+dhyoq+Ob6mYTKy+k5Zw55\nN/0AmzvybLmVl0vRM09T8+675EybhpWTc6Rf8OBBQl4v9h49sFpI2CGfj5o336JmyVv0nT8fZ2Hh\nCUZDKaVUvMT9pjgRyQA+An5ujHlFRKqMMTlN6iuNMcdNUyYiPwR+GH1bAmxu56OygeNXJzn5Pm21\naa3u2PKW2jUtO7Y+HzjUzrg6Kpnj01JZW+/jEZ/WxtUZfU7lGMXavqMxSkR8Dhljpnawj1JdxxgT\ntxfgAN4B5jQp20zk2jpAX2BzJ33Wgnj0aatNa3XHlrfUrmlZC+1XxeH/ImnjE0vMjolXp8dHYxSf\nGMXavqMxStb46EtfiXzFbXJuERHgWWCjMeZXTareAG6J/nwL8HonfeTiOPVpq01rdceWt9RucTv1\nnS2Z49NSWSwx7Gwao/Z19DNibd/RGCVrfJRKmHje5X4BsBwoBQ4/aP2vRK6jvwQUATuJPLZWEZdB\ndFMissoYMy7R40hWGp/2aYzapvFRqSied7l/TOuPeVwar89NEQsSPYAkp/Fpn8aobRoflXK6xUxx\nSimllGqbLnCtlFJKpQBN6EoppVQK0ISulFJKpQBN6ElORIaJyFMiskhE7kr0eJKViHhEZJWIXJXo\nsSQjEZkoIsuj+9LERI8n2YiITUR+LiKPi8gt7fdQKvloQk8AEXlORL4VkfXHlE8Vkc0isi26cA3G\nmI3GmNnATOD8RIw3EToSo6i5RB6HPGV0MEYGqAXSgLKuHmsidDA+VwOnAY2cIvFRqUcTemIsBJpN\nISkiduAJ4HJgOPA9ERkerZsOvAUs6dphJtRCYoyRiEwBvgK+7epBJthCYt+PlhtjLifyxefBLh5n\noiwk9viUAJ8aY+YAeiZMdUua0BPAGLMMOHYynbOBbcaYHcaYAPBnIkcNGGPeiP4xvrFrR5o4HYzR\nROBc4PvA34vIKbFfdyRGxpjDkztVAq4uHGbCdHAfKiMSG4BQ141Sqc7TJautqZgUArubvC8Dzole\n77yGyB/hU+kIvSUtxsgYcw+AiMwisoBGuIW+p4rW9qNrgL8DcoDfJWJgSaLF+AC/AR4XkQuBZYkY\nmFInSxN6kjPGfEhkzXjVDmPMwkSPIVkZY14BXkn0OJKVMaYOuD3R41DqZJwSpya7iT1AvybvT4uW\nqaM0Ru3TGLVN46NSlib05LESKBaRgSLiBL5LZGU6dZTGqH0ao7ZpfFTK0oSeACLyP8DfgBIRKROR\n240xQeAeIuvHbwReMsZsSOQ4E0lj1D6NUds0PupUo4uzKKWUUilAj9CVUkqpFKAJXSmllEoBmtCV\nUkqpFKAJXSmllEoBmtCVUkqpFKAJXSmllEoBmtBV0hORTxM9BqWUSnb6HLpSSimVAvQIXSU9EamN\n/jtRRD4UkUUisklEXhQRidaNF5FPRWSdiKwQkUwRSRORP4pIqYisFZFJ0bazROQ1EXlXRL4RkXtE\nZE60zWcikhdtd7qIvC0iq0VkuYgMTVwUlFKqbbramupuRgMjgL3AJ8D5IrIC+AtwgzFmpYhkAfXA\njwBjjDkjmoyXisiQ6HZGRreVBmwD5hpjRovIY8DNwK+BBcBsY8xWETkHeBK4pMt+U6WU6gBN6Kq7\nWWGMKQMQkS+AAUA1sM8YsxLAGFMTrb8AeDxatklEdgKHE/oHxhgv4BWRamBxtLwUGCUiGcB5wMvR\nkwAQWZNeKaWSkiZ01d34m/wc4sT34abbCTd5H45u0wZUGWPOOsHtK6VUl9Jr6CoVbAb6ish4gOj1\ncwtYDtwYLRsCFEXbtit6lP+1iFwf7S8icmY8Bq+UUp1BE7rq9owxAeAG4HERWQe8S+Ta+JOATURK\niVxjn2WM8be+pePcCNwe3eYG4OrOHblSSnUefWxNKaWUSgF6hK6UUkqlAE3oSimlVArQhK6UUkql\nAE3oSimlVArQhK6UUkqlAE3oSimlVArQhK6UUkqlAE3oSimlVAr4f2qkU3LHDg3zAAAAAElFTkSu\nQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { "tags": [ - "id1_content_0", - "outputarea_id1", + "id2_content_0", + "outputarea_id2", "user_output" ] } @@ -4350,8 +4357,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"077f50ba-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07143910-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_bd74355cf0" + "window[\"47523e32-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"46dcf65e-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_5179d92b99" ], "text/plain": [ "" @@ -4359,8 +4366,8 @@ }, "metadata": { "tags": [ - "id1_content_0", - "outputarea_id1" + "id2_content_0", + "outputarea_id2" ] } }, @@ -4368,8 +4375,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07810856-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_c5320037f7" + "window[\"475527dc-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_601e82349e" ], "text/plain": [ "" @@ -4377,8 +4384,8 @@ }, "metadata": { "tags": [ - "id1_content_1", - "outputarea_id1" + "id2_content_1", + "outputarea_id2" ] } }, @@ -4386,8 +4393,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07828082-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_1\");\n", - "//# sourceURL=js_3a51e71f6a" + "window[\"475580ba-e945-11e8-9ea1-0242ac1c0002\"] = document.querySelector(\"#id2_content_1\");\n", + "//# sourceURL=js_9dd6bc0333" ], "text/plain": [ "" @@ -4395,8 +4402,8 @@ }, "metadata": { "tags": [ - "id1_content_1", - "outputarea_id1" + "id2_content_1", + "outputarea_id2" ] } }, @@ -4404,8 +4411,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"0783440e-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07828082-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_47886df5cd" + "window[\"4755e41a-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"475580ba-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_805eb59406" ], "text/plain": [ "" @@ -4413,8 +4420,8 @@ }, "metadata": { "tags": [ - "id1_content_1", - "outputarea_id1" + "id2_content_1", + "outputarea_id2" ] } }, @@ -4422,8 +4429,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"0783974c-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(1);\n", - "//# sourceURL=js_21346da144" + "window[\"47563500-e945-11e8-9ea1-0242ac1c0002\"] = window[\"id2\"].setSelectedTabIndex(1);\n", + "//# sourceURL=js_9fe603bc20" ], "text/plain": [ "" @@ -4431,8 +4438,8 @@ }, "metadata": { "tags": [ - "id1_content_1", - "outputarea_id1" + "id2_content_1", + "outputarea_id2" ] } }, @@ -4441,13 +4448,13 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYlNX1wPHvmZntlV2WakEFBbuw\ndrChRhOjJrFEjYIajYlRo9Fo1J8tzRJ7i733EkVNVESNBUWwgYgIAiJ9ey9Tzu+P9y4sy+wyO7uz\nZTif5+GZmbfed133zL3vfc8RVcUYY4wx/ZuvtxtgjDHGmK6zgG6MMcYkAQvoxhhjTBKwgG6MMcYk\nAQvoxhhjTBKwgG6MMcYkgYQGdBE5T0S+EpG5IvIHt6xARKaKyAL3OiCRbTDGGGM2BQkL6CKyI3AG\nsAewC3CEiIwELgGmqeooYJr7bIwxxpguSGQPfQwwQ1XrVTUE/A/4OXAU8Ijb5hHg6AS2wRhjjNkk\nJDKgfwVMEJFCEckEfgxsDgxW1ZVum1XA4AS2wRhjjNkkBBJ1YFWdJyLXAW8CdcAXQLjNNioiUXPP\nisiZwJkA22+//bi5c+cmqqnGGBML6e0GGNORhE6KU9UHVHWcqu4HVADfAqtFZCiAe13Tzr73qmqx\nqhZnZGQkspnGGGNMv5foWe6D3OsWePfPnwSmAJPcJpOAlxPZBmOMMWZTkLAhd+cFESkEgsDZqlop\nItcCz4rI6cD3wHEJboMxxhiT9BIa0FV1QpRlZcDERJ7XGGOM2dRYpjhjjDEmCVhAN8YYY5KABXRj\njDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KA\nBXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YY\nY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhA\nN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEmCVhAN8YYY5KABXRjjDEm\nCVhAN8YYY5KABXRjjDEmCSQ0oIvI+SIyV0S+EpGnRCRdRLYSkRkislBEnhGR1ES2wRhjjNkUJCyg\ni8hw4FygWFV3BPzAL4HrgJtVdSRQAZyeqDYYY4wxm4pED7kHgAwRCQCZwErgIOB5t/4R4OgEt8EY\nY4xJegkL6Kq6HPgnsBQvkFcBnwKVqhpymy0DhieqDcYYY8ymIpFD7gOAo4CtgGFAFnBYJ/Y/U0Rm\niciskpKSBLXSGGOMSQ6JHHI/GFisqiWqGgReBPYF8t0QPMBmwPJoO6vqvaparKrFRUVFCWymMcYY\n0/8lMqAvBfYSkUwREWAi8DXwDnCM22YS8HIC22CMMcZsEhJ5D30G3uS3z4A57lz3AhcDF4jIQqAQ\neCBRbTDGGGM2FaKqvd2GjSouLtZZs2b1djOMMZs26e0GGNMRyxRnjDHGJAEL6MYYY0wSsIBujDHG\nJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBu\njDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wS\nsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYY\nY0wSsIBujDHGJAEL6MYYY0wSsIBujDHGJAEL6MYYswkSkSNF5JLebofpPoHeboAxxpiuEREBRFUj\nse6jqlOAKYlrlelp1kM3xph+SERGiMh8EXkU+Ao4WUQ+EpHPROQ5Ecl22/1YRL4RkU9F5DYRedUt\nnywid7Q61tsiMltEponIFm75w26f6SKySESO6a3rNRtnAd0YY/qvUcBdwP7A6cDBqjoWmAVcICLp\nwD3A4ao6Dihq5zi3A4+o6s7AE8BtrdYNBcYDRwDXJuQqTLewgG6MMf3X96r6MbAXsD3woYh8AUwC\ntgRGA4tUdbHb/ql2jrM38KR7/xheAG/xkqpGVPVrYHB3X4DpPgm7hy4i2wHPtFq0NXAF8KhbPgJY\nAhynqhWJaocxxiSxOvcqwFRVPaH1ShHZtRvO0dT6kN1wPJMgCeuhq+p8Vd1VVXcFxgH1wL+BS4Bp\nqjoKmOY+G2OMid/HwL4iMhJARLJEZFtgPrC1iIxw2x3fzv7TgV+69ycB7yeuqSZRemrIfSLwnap+\nDxwFPOKWPwIc3UNtMMaYpKSqJcBk4CkRmQ18BIxW1Qbgd8DrIvIpUANURTnEOcCpbt+TgfN6pOGm\nW4mqJv4kIg8Cn6nqHSJSqar5brkAFS2f21NcXKyzZs1KeDuNMaYD/XK4WUSyVbXW/b29E1igqjf3\ndrtM90t4D11EUoEjgefarlPv20TUbxQicqaIzBKRWSUlJQlupTHGJK0z3ES5uUAe3qx3k4QS3kMX\nkaOAs1X1UPd5PnCAqq4UkaHAu6q6XUfHsB66MaYP6Jc9dLPp6Il76Cew/qMSU/AeqcC9vtwDbTDG\nGGOSWkIDuohkAYcAL7ZafC1wiIgsAA7GEhUYY4wxXZbQXO6qWgcUtllWhjfr3RhjjDHdxDLFGWOM\nMUnAAroxxpioRGR6b7fBxM4CujHGmPWISABAVffp7baY2FlAN8aYBBtxyWsnjrjktSUjLnkt4l5P\n7OoxReQlVxJ1roic6ZbVisgNbtlbIrKHiLzrSp8e6bbxu21munKpv3HLDxCR90VkCvB1y/Fane9i\nEZkjIl+KyLVu2RnuOF+KyAsiktnV6zLxs4Bu+qRQeTmVL75I3YwZhGtqers5xsTNBe/78KqfiXu9\nrxuC+mmuJGoxcK6IFAJZwNuqugNemte/4j1p9DPgGrff6UCVqu4O7I6XeGYrt24scJ6qbtv6RCJy\nOF7a7j1VdRfgerfqRVXd3S2b545teokFdNMnVb/2GisvvYzSu+4m0tDQ280xpiv+DrTtuWa65V1x\nroh8iVeYZXO82ujNwOtu/Rzgf6oadO9HuOWHAqe47HEz8J5EGuXWfdKq1GprBwMPqWo9gKqWu+U7\nul79HLyiLjt08ZpMFyT0sTVj4uUvKGDw5ZcBUPPWW+QefjiBAQN6uVXGxGWLTi7fKBE5AC/I7q2q\n9SLyLpAOBHVd+s8IrvSpqkZa7ovjjRKco6pvRDlmHZ3zMHC0qn4pIpOBAzp7Lab7WEA3fVL2+PGE\nystZdPiPAcgcO84CuumvluINs0dbHq88vMJW9SIyGtirE/u+AfxWRN5W1aArs7p8I/tMBa4QkSfc\nOQtcLz0HWCkiKXg99I0dxySQBXTTJ/nz8tDmIGljxqCNDQQKC3q7ScbE61K8e+ith93r3fJ4vQ6c\nJSLz8Gqef9yJfe/HG37/zFVgK2EjZaxV9XUR2RWYJSLNwH/w2v9/eMP2Je41p5PXYbpRj5RP7Sor\nzrLpCpWVgSqBgQPRSARE8P4GGdPj4v7FcxPg/o43zL4UuHTJtT95srsaZgxYQDf9RH11FZ/+52VS\n09LZeeJhZOTm9naTzKbHvkmaPs2G3E2/sOq7BXzy72cB2HKnXS2gG2NMGxbQTZ8VaWoiUl+PPzeX\ngqHDSUlLx5+SQtYAu59ujDFtWUA3fVK4ro6a//6XimefY8j/XU72mNGcdss9IEJmXl5vN88YY/oc\nSyxjuk24tpbmH34guHo1Ggp16VhaX8+qv/2dxtmzKbnlFqSxieyCQrIHFODz+bupxcYYkzwsoJtu\nEy4r47tDDmXRT44gXFHRpWNJWhqFp59OYPBgCk47DV9GBuClhK145hnqP/uMSH19dzTbGGOSgg25\nm24jaWn4sjIJFA2ELj5a5s/NpWDSJPKPPw5/bi7i93rlddOns+rKq8DvZ9R77+HLtFoQxhgDFtBN\nNwoUFrL1f/+L+HwEBg7s8vH8Odn4c7LXW5a27bZIWhoDLrqQpUsWUvNZGdvutS8ZOTbr3ZjOcKle\nm1V1uvv8MPCqqj6fgHPdD9ykql9397HNOhbQTbeRlBRSBg1K6DlSt9ySbaa+SQPK4+d4hZ0Gbz3S\nArrp267K2yCxDFdV9XZimQOAWmB6ok+kqr9O9DmM3UM3/YwvLY2UQYPwp6Wx9W67U7TlVmQXFPZ2\ns4xpnxfMNyif6pbHRUSyROQ1V4f8KxE5XkQmisjnrmb5gyKS5rZdIiID3ftiVx99BHAWcL6IfCEi\nE9yh9xOR6a5++jEdnD9bRKaJyGfufEe11y63/F0RKXbv7xaRWa5m+9Xx/gzMhqyHbvqlrLx8Djv7\nfCKRCFl5+e1uFyovJ1RaRqCggMBAC/ymV3RUPjXeXvphwApV/QmAiOQBXwETVfVbEXkU+C1wS7Sd\nVXWJiPwLqFXVf7pjnA4MBcYDo4EpQHvD743Az1S12n1Z+FhEprTTrrYuU9VyEfED00RkZ1WdHc8P\nwazPeuimz2gMhqmqD7a7PtLYRKisjEjQ2yYjJ7fDYB5pbqbsvvtYfOSRLDvvPEJdnHlvTJy6vXwq\nXn3zQ0TkOte7HgEsVtVv3fpHgP3iOO5Lqhpx97oHd7CdAH8XkdnAW8Bwt/167VLVqij7HicinwGf\n49VP3z6OdpooLKCbPqGirpl//e87znriU74rqd1gfaisjJKbbmLpqadSevfdhMrLYzquBt3z8OEw\n9IO6BSYptVcmNe7yqS5wj8ULoH+l42ppIdb9rU/fyKGbWr3v6FGVk4AiYJyq7gqsBtLbtktErmi9\nk4hsBVyIN5KwM/BaDG0yMbKAbvqE6sYgt7y1gI++K+OqKXOpaVzXU48Eg5Q/8igVTz+NLyuLug8+\npPr1N7zqax3wpaYy8He/ZcRzz7LZHbcTKLCUsaZXXIpXLrW1LpVPFZFhQL2qPg7cAOwNjBCRkW6T\nk4H/ufdLgHHu/S9aHaaG+Mud5gFrXD31A3H13qO0a2yb/XKBOqBKRAYDh8d5fhOF3UM3fUJGip/B\nuWmsrm5iwqiBpAXWZYOL1NXRPHgYGc9PYfrSavwi7DNyIOkNTWRmZXR43EBBgQVy07uuqnqSq/Kg\ne2e57wTcICIRIIh3vzwPeE5EAsBM4F9u26uBB0TkL8C7rY7xCvC8m9B2TifP/wTwiojMAWYB33TQ\nrrVU9UsR+dxt/wPwYSfPazpg5VNNn6CqlNQ00RiKkJseID8zlUhjI+Hqauolhdfml3PZa9+sHTUP\n+IR//Woc40cNJD3FUsGaHmHlU02fZkPupk8QEQblprNFQaYXzINB6mfOZNFPj6Sioma9YA4Qiihn\nP/kZVQ3tT6IzxphNiQ25mz4pXFHBiov+RNrIkby/pCrqfLamUIRvVlYzONfm1BiTCCKyE/BYm8VN\nqrpnb7THdMwCuumTNBgkXFkJkQi+DgY6fR2tNMZ0iarOAXbt7XaY2NiQu+mTfOnppI0aReNXXzFh\ny9yoQT0z1c92g+OdpGuMMcnFArrpkwKFhWx2911kjN2NyIvPcttR25HqX/frmpHi58HJu5OfmdKL\nrTTGmL7DZrmbPi1UWQXBZppSM6iVAHOWVZHiF0YPzSU/I4U0m+Fueo7d3zF9mt1DN31aIN9LBR0A\nsoDB29sEOGOMicaG3I0xJomJyFUicmGCjr22kltfJCJFIjLDVaGbEGX9/SKSNLnkE9pDF5F84H5g\nR0CB04D5wDN4xQSWAMepqlXNMMYkrZ0e2WmDeuhzJs3p7XrovUpEAqoaSvBpJgJzotVjFxF/stVp\nT3QP/VbgdVUdDewCzAMuAaap6ihgmvtsTLtUdW2FNWP6GxfMN6iH7pbHpZ166BvUPW+1yy4i8pGI\nLBCRMzo47lARec/VSP+qpVe7kRrm57Sqiz7abb+HO9/nrr76dm75ZBGZIiJv45VOba+u+ggRmSci\n97lzviki7eZ5FpEzRGSm+3m8ICKZIrIrcD1wlLueDBGpFZEbReRLYO82ddoPc+34UkSmdXQdfVXC\nArqrg7sf8ACAqjaraiVwFF5pP9xrR1WCzCYuXF1N1Yv/ZuVllxNctaq3m2NMPDqqhx6vlrrju6jq\njsDrG9l+Z+AgvCIuV7giKtGcCLzhKqjtAnzhll+mqsXuOPuLyM6t9ilV1bHA3XiV1MDL1T5BVXcD\nrmD9ax0LHKOq+7OurvpY4EDgRhFpmXw4CrhTVXcAKlm/sExbL6rq7qra0nE8XVW/cOd+RlV3VdUG\nvKk4M9zP7YOWnUWkCO9L1y/cMY6N4Tr6nEQOuW8FlAAPicguwKfAecBgVV3ptllFxzV3TR8QKi0l\nUleHLzeXwIABPXrucE0NKy+7DAAJBBh6zdVIwOZymn4lUfXQbxSR64BXVfX9dXEwqpddQGsQkXeA\nPYCXomw3E3hQRFLwaqO3BPTjRORMvJgxFK+G+Wy37kX3+inwc/c+D3hEREbh3W5t/XzpVFVtqX/c\nUld9PyDCurrq4NV3bzn/p3i3aduzo4j8FcgHsoE32tkuDLwQZflewHuquhigVfs6uo4+J5FD7gG8\nb2J3u283dbQZXlfvmbmoz82JyJluiGdWSUlJAptpOhKqqGD5RX/iux8dRvUb7f0/0j5VJVxTg8Y5\nZO5LTSVlC+/vXvb4fS2Ym/4o4fXQXd3xjuqet/07G/Xvrqq+hzeyuhx4WEROiaGGeUsN9TDrOol/\nAd5xowc/bbN9Xav3Ueuqtzlu22NH8zDwe1XdCa+6XHuPwzSqariD47TV0XX0OYkM6MuAZao6w31+\nHu8XcLWIDAXvfg2wJtrOqnqvqharanFRUVECm2k6JOL9A8TX+V+X5kWLWX7eH6j94ANCpWUEV6/2\nUrrGKFBUxIgnHmfk22+TNWGDSapEgkEav/6asgceJFRW1un2GdMDeqIe+ljar3sO3n3kdBEpBA7A\n64lHO+6WwGpVvQ9vQvNY4qthnof3pQBg8ka226CuehxygJVuZOGkOPb/GNjPfXlBRFpqLsd6HX1C\nwro7qrpKRH4Qke1UdT7ebMOv3b9JwLXu9eVEtcF0XSA/n+HXX0ekvh5fbm6n9tVQiNJ77qFu+nSa\nly1j0AXns/wP55M1YQLDrv0HgcJCNBLZ6BeFQAdf6MKVlfzwu7MJrVpFYOBA8o46slNtNCbR5kya\n8+ROj+wE3TvLPVrd8Qyi1z0Hb3j8HWAg8BdVXdHOcQ8ALhKRIFALnKKqi+OoYX493lD15Xg9+va0\nV1e9s/4PmIF3m3cGXoCPmaqWuFsKL4qID6+jeQixX0efkNBMcW6W4f1AKrAIOBVvVOBZvF/s7/Ee\nWytv9yBYpri+LlTu/ecLFBRssK5pwQJWXfMX8o89hrrp06l6yfv+Nuz668jce29KbrmF3B//mMyx\nY/FltDuJtV3h2loqn3uO6tf+w/BbbiZ1s826djHGtM8yxZk+zVK/mi4JlZay7Jxz0FCYze++i8DA\n9XNMaCRCqKKCqn+/RMk//7l2+ZArrqB5+XLKH3gA/H5Gvv02KYMHxdWGSH09kcbGqF8ojOlGFtBN\nnxbTkLub0n8G3izDtfuo6mmJaZbpLyKNTTR87k1EjTQ0bLBefD5SCgvJOfAAyu65h0hNDSlbbEH2\nwROpfMGbHJu2zda0M0cnJr7MTHyZbZ8KMsa0R/ppnXMRuRPYt83iW1X1od5oT18TUw9dRKYD7+M9\nOrB2hqCqRpv+3+2sh969wpWVNH7zDYGiIlI22wxfWlr8x6qupmH2bDQUInO33fDn5UXdTkMhQuXl\naGMjvsxMAgMH0rx0KaE1a4g0NaORCDkTxsfdDmN6gPXQTZ8W66S4TFW9OKEtMT0muHIlSyefiqSm\nss1bU/ENim+oG8Cfm0v2+I0HYgkESGlzHknPYPkFfyTS0MBWL/bId0NjjElasQb0V0Xkx6r6n4S2\nxvQIf0EBgWHDSNt66159rjtlUBFbvfgCqmr3v40xpotiHXKvwUuZ14T3iITg5YXp3HNMcbIh9+6l\nqoTLysDv7/HMb8b0Yzbkbvq0mLpnqtqpZ/pM3yYiG8xGT6RQRQWR2lp8WVnWEzfGmASJOfWXiAxw\nlWf2a/mXyIaZ5KChEBVPP8N3hxzKmhtuIFReTrCkhHB1dW83zRjTh4lIvoj8Ls59u61Ou4hcIyIH\nd8exEi2mgC4ivwbew0t4f7V7vSpxzTLJQlUJu8Qz4YoKmhYvZuEBB1L53PNEGht7uXXG9Ix5o8ec\nOG/0mCXzRo+JuNe4S6d2lYj0l4II+UDUgN6T16CqV6jqWz11vq6ItYd+HrA78L2qHgjshlfOzpgO\n+VJSGPjbsxjx/HMMueYvVDz2OITD1Lz11tqAXt8cYkVlA6uqGmkKdqZugjF9nwveG9RD72pQF5Ff\nicgnrtb3PSLiF5HaVuuPEZGH3fuHReRfIjIDuF5ECkTkJRGZLSIft5RDFZGrROQxiVI7XUQucjXH\nZ8uGNdHbtu0Ut92XIvKYW1bkapXPdP/2bXXOB11t8kUicq47zLXANu76bhCRA0TkfRGZgpdCHHcN\nn4pXM/3MTvzsNtjP/fweFq8O/BwROb/Vz+4Y9/4K1/avRORe2UiJu54W67ecRlVtFBFEJE1Vv5E+\nXujd9B2BgoK1984HXfhH0rbaivzjjkUCASKNjXyzuoFj7/mIgE+Y8vvxbDfEpmyYpNJRPfS48rmL\nyBjgeGBfV9jkLjZelGQzYB9VDYvI7cDnqnq0iBwEPArs6rbbGa+caBbwuYi8BuyIV598D7wvJVNE\nZD9Xna1t23YALnfnKm1V6ORW4GZV/UBEtsAb6R3j1o3Gq4eeA8wXkbvxqnPu6KqwISIH4BWL2bGl\nzClwmqqWi0gGMFNEXlDVWKo0bbAfXuK04a6yGiKSH2W/O1T1Grf+MeAI4JUYztcjYg3oy9zFvQRM\nFZEKvDzsxnRK6mabUfibM2n6dgElV1xJYPAgRvz6LIbmpbOsooGZS8otoJtkk4h66BPxKqvNdJ3E\nDNqpXNnKc61Kh47HVWRT1bdFpFBEWp5ailY7fTxwKPC52yYbL8BvENCBg9y5St3xW2p1HAxs36pT\nmysi2e79a6raBDSJyBrW1URv65NWwRzgXBH5mXu/uWtTLAE92n7zga3dl53XgDej7HegiPwJ7wtZ\nATCX/hbQVbXlwq9y/4HzgNcT1iqT1MKVlSw56SRwNdKbF37HXy64hls+Wc3BY+JPcmNMH7WU6GVB\n466HjtdLfkRV/7zeQpE/tvrYtnZ3HbGJVjtdgH+o6j2dauX6fMBeqrre5BkX4GOtfb72GlyP/WBg\nb1WtF5F3iaFeeXv7qWqFiOwC/Ag4CzgOOK3VfunAXUCxqv4gIlfFcr6e1JlZ7mPdvY2d8eqcNyeu\nWSYZhaqqCJaUEly1am0wB2iYPZt9tszjwcm7MySv8xXXjOnjur0eOjANOEZEBoFXv1tcLXMRGSNe\nCdCfdbD/+7ghehfgSlW15dGTaLXT3wBOa+lRi8jwlnNH8TZwrNu/dW3xN4FzWjYSrxpnR2rouAxq\nHlDhgvJovNsEsYi6n3iz4n0upfnleMP7rbUE71L3czgmxvP1mFhnuV8BPAIU4tXTfUi8+rDGxCRU\nXs6qq69h8VFHESgsxJ+/7vZUzo9+RCAzg8Ls+HPKG9NXjflm3pN4xa2+x+vtfg+c4ZbHRVW/xgs6\nb4rIbGAqMBTvvvOrwHRgZQeHuAoY5/a9FpjUal1L7fSPcbXTVfVNvPv9H4lXu/x52gm2qjoX+Bvw\nPxH5ErjJrToXKHaT5b7G6wV3dI1lwIduAtoNUTZ5HQiIyDx3DR93dLwY9hsOvCsiXwCPA+uNfqhq\nJd7kxq/wvuDMjPF8PSbWTHHzgV1ahkrcRIIvVLVHJsZZprj+r3n5cr6b6D3KOeC00yj41UlUv/IK\ngcFDyJ4wnkBhYS+30JiN6lMzmhPBDSPXquo/N7at6XtinRS3Am+4oeXeRxqwPCEtMknJl5FB3tFH\nUffRx+QePJGUoUMZ+Jvf9HazjDEmacTaQ38J7zn0qXhDRocAnwDLAFT13Pb37jrrofeOcCRMQ6iB\nrJSslokrXTtedTWRpib8+fn4UlK6oYXG9Kik76F3hrtHPi3KqokxPjqWUH29fYkQaw/93+5fi3e7\nvymmL4lohK9Kv+LOL+/kT7v/iZH5I+M6Tqi8gopnngFgwC+PJ6WoqDubaYzpJS4obmxiW6/p6+1L\nhFgfW3uk5b2IDAA2V9XZCWuV6XUNoQbumX0PH634iMe+fowr974Sn8T8UMRaTQu+pfTWWwHIHDeW\nwB57dHdTjTHGEGNAd8/pHem2/xRYIyIfquoFCWyb6UWZgUwu2v0ihmYN5fSdTo8rmAOkbLYZvqxM\nQEgZPrx7G2mMMWatWO+hf66qu4lXpGVzVb1SRGar6s6Jb6LdQ++PQiUlRBob8WVno+6Z80BBARLo\nL3UhjNmA3UM3fVqs3a6AiAzFy5zzagLbY5JAqKyM7085he8OOZT6GTNIGTSIlEGDLJgb08NE5EgR\nuaSddbXtLG9djORdESlOZBvbIyK7isiPe+A8l7Z6P0JEvuqGYxaJyAwR+VxEJkRZf7+IbN/V87QV\na0C/Bu9B+u9UdaaIbA0s6O7GmP4lXFdHqKSEUGnp+itUiTR4TzhG6mLNNmmM6W6qOkVVr+3tdsRp\nVyBhAV08PrqWsa89E4E5qrqbqr7f5rx+Vf21Sw7UrWKdFPcc8Fyrz4twif3NpilcW0vVSy+x+rrr\nSRk0iC0efojUzTcHwF9YyIhnnyFcVkZgyNBebqkxve/Os94+Ea+62hZ4OdwvPftfB8WdKQ683iRe\n1rOPgX3wMpc9BFwNDMJL7bo9Xu7x34vIVnjZ3rKBl1sdR4Db8R5H/gGImtZbRA51x04DvgNOVdX2\nevnj8DLEZQOlwGRVXSleOdYzgVRgIXCyS8F6LHAlXh73Krxc69cAGSIyHi+P/DNRznMV3s90a/d6\ni6re5tZdwLpc7Per6i3uZ/YGMAOvuM0n7hxf4BVauQzwi8h97me6HDjKFauJdp0bXA+wLXC9O24x\nsDdQAtzjrutsEfkrcKGqzhKkuhpOAAAgAElEQVSRw/B+N/x4KXgnisgeeNXp0oEG97OeH60NrcWa\n+nVbEZnWMhQhIjtb6tdNW6S2ltV//RsEgwSXL2fNP28k0uTVVxARUgYNIn3MGAIDolUgNGbT4YL5\nBvXQ3fKuGgnciFd+dDRwIl5ltAvZsOd5K3C3qu7E+mlhfwZshxf8T8ELZOtxec4vBw5W1bHALCDq\npGgRScH7gnCMqo4DHsRLBQvwoqrurqq7APOA093yK4AfueVHulohVwDPqOqu0YJ5K6PxCqrsAVwp\nIinuC8WpwJ54udrPEJHd3PajgLtUdQdVPRVocOc4qdX6O1V1B6CSjjuvG1yPqn7Rpu0NeKVoZ6jq\nLqr6QaufVRHe78Yv3DGOdau+ASao6m7uWH/voA1rxTrkfh9eXtsggHtk7Zcx7muSkQiSmrr2oy8v\nD0TQcLiDnYzZJHVUD72rFqvqHFWN4PUwp6k303kOXn3v1vYFnnLvH2u1fD/gKVUNq+oKvOIqbe2F\nF/A/dL3ZSUSvIAfel4Md8Uptf4H3RWAzt25HEXnf5YM/CdjBLf8QeNj1eP0xXHdrr6lqkyvX2lJ6\ndTzwb1Wtc6MILwIt97K/V9WO8r4vdkEZvKe6RnSwbXvX01YYeCHK8r2A91pKwrYqNZsHPOc60Td3\ncNz1xDpLKVNVP2mTLSwU474mCfnz89n8/vtYc/31pAwdRtHZv6P84YeJ1NdTcMopBAoKNn4QYzYN\niaiH3qJ12dFIq88Rov993/hjTdEJMFVVT4hx27mquneUdQ8DR6vqlyIyGa+aG6p6lojsCfwE+NT1\nsGMVa+nVFhub2NP2eB2VgHyYKNcTRWOrWvSx+Avwjqr+zN0meDeWnWLtoZeKyDa4XwY3A7KjSj4m\nyfnS0sgcN47N772PoX//G9rcTMlNN1P2r3sIV1X1dvOM6Uvaq3velXro8fiQdSOrJ7Va/h5wvIj4\n3dNMB0bZ92NgXxEZCSAiWSKybTvnmQ8UicjebtsUEWnpYeYAK92w/No2iMg2qjpDVa/Au9+8ORsv\nn9qR94GjRSRTRLLwbiu83862QdeeeES9nk74GNjPzW9oXWo2j3X1UibHerBYA/rZeDf0R4vIcuAP\nbKT0nel7VJVQSQnB1auJNDauty5cX0+wpIRwTdQ5LlGJ30+gYAD+nBx8WVnkH3ssuT89An9ubnc3\n3Zj+LBH10ONxHt6ErDl4pUJb/BvvqaWvgUeBj9ruqKoleIHlKVdy9SO8e9cbcPe/jwGuc+VTv2Dd\nffn/w5uQ9iHefeIWN4jIHDfEPB34Eq+E6/Yi8oWIHN+ZC1XVz/B6z5+4892vqp+3s/m9wGwReaIz\n53Dau55Y21mCN6nuRfezapkrcD3wDxH5nNhH0jtOLCMi56nqrSKyr6p+6L7p+FS1prMN7wpLLNM9\ngiUlLPn5LwhVVjLi6afJ2MF7DDLS1ET1f//Lmmuvo+D00xlw4gn4s7I6ffxwfT2oxrWvMf1A3Ill\nEjHL3Zi2Nhb5T8WbGXk7MFZV7aHifkzr6wmVlADQOHfuuoBeX0/Fo48Rrqyk4vHHyTv6qLiCsj+z\n7bwfYwyAC94WwE1CbSygzxORBcAwN8zSQgDtqdSvpnv48/IY+pe/0LR0KTkTD1q3PDubwZdeypob\nb6Tw16fjz4n3tpUxZlMiIv8Gtmqz+GJVfaObz3Mq3i2D1j5U1bO78zwdnP9OvKcEWrtVVR/qifPH\naqO53EVkCN6D+Ee2Xaeq3yeoXeuxIffE01CIcG0tvqysdmuVayiEqlotc7Opslzupk/b6M12VV0F\n7NIDbTG9SAIBAvntJ4EJVVZS9eKLBJevYODZv7PH0owxpo/pMKCLyLOqepybFdm6K29D7kmqqb6e\nipXLUY1QMGwz0jK9e+na0MCa628AIP/44yygG2NMH7OxHnrLPYsj4jm4iCzBe5YwDIRUtdg9Z/cM\nXvadJcBxqloRz/FN92uqq+WJS88H4Nd3PLA2oEtGBoMuupDg8hUEBg5cb59wTQ2R+np8mZl2/90Y\nY3pJhwFdVVe6167cKz/QpeRrcQleesJrXVm/S4CLu3B8A1TUNaMoBVlpXTpOSnoGI/fch1Xfzscf\nWHevPJCfT8GkSevdQw9XV1P30cc0zvuarH32IbhyJXlHHkmbjILGGGN6wMaG3GuIniqwZcg9ngwi\nR7EuPd4jeCntLKB3QWlNE+c98zl1TWHuO2UcRTnpcR2ntqKc6c8+wW6H/oTC039LVt6A9dZXNkV4\na95qRhRmsf2wXFJralh+njeI48vIQFJSIRyGTtY9b2gOsbyykeqGIFsXZZGfmbrxnYwxXSIiRwPf\ndlcZT1dZ7BRVPbc7jhfH+Y8EtnedxSLgVbwqaOfi1SI5UVUre6NtPWVjPfSujp8q8KaIKHCPqt4L\nDG7p+QOr8BLpmy5oDkeY/l0ZqtAQjMR9nIWzPmbO22+wbN4cTvzbTWgkgvjWJRP8vryOi56fjd8n\nTL/kIApTU0kZPpzg6tVkjhtH6jbbIJ0M5gBVDUEOv/U9gmHlP+dOsIBuTM84Gi/odUtAV9VZeFXY\neoWqTgGmuI8t9ch/7T63l/Y1qXT+r2/njFfV5SIyCK/yznqp8VRVXbDfgIiciZcSjy226I4aBskr\nJz3AC2ftQ0MwTF56/I+UbTN2D5bu+QUTjzuZmsefoPyHZRSediqSmYmKMCQ3h103z2fU4GxS/EKg\nqIgtn34KIhH8ubn4MjqqYdA+n08YmpdBWW0TeRmJ/pU0pufdePwRG2SK++Mzr3a1Hvqv8HqfqXjp\nR38H3AHsjldQ5HlVvdJtey3eo8ch4E286mNHAvu7Uti/UNXvopwjpvrlqrqfiByAV+P7iM7U83ZF\nTX6Gl798OPC4ql7t1r2El9c9He+573vd8mg1xCcDxcD9bFiPfB5eXfhSETkFr7ysArNV9eTYf+p9\n20afQ++2E3mF6GuBM4ADXLH7ocC7qrpdR/vac+g9J1hbS9ltt1Px6KOAV1Vt+O23UXrPveivJ+Pf\nYiQ5ubnkZ8cXvNtTUtNERJWCrFRS/LGWGDCmR8U1OcQF8/tYv4RqPXBGvEFdRMbgBa2fq2pQRO7C\nK/TxqqqWi4gfmIYX8Jfj5Ucf7TpR+apaKSIPu+2f7+A8hapa5t7/FVitqre7J58Ocx22luMdwLqA\nngvUq2pIRA4GfquqUeuKu0D8D7ySq/XATGCyqs4SkQJ3PRlu+f54NUg+A/ZT1cWttpmMF7R/3/q9\nO8cSvGA/GC93/T4uuBe0Klna7yXsL6erxpPT8h44FPgKb0hkkttsEvByotpgOs8XidD0zby1n8OV\nlQhC09y5+BWe++MZ+Bqjp/IPh0M01ceXHbgoJ43BuekWzE0ySkQ99InAOGCmqzk+EdgaOE5EPgM+\nx6uhvT1QBTQCD4jIz9mwUExH4q1f3tl63lNVtUxVG/BGD8a75ee6oiUf4/XUR9F+DfFYHAQ81zJR\nO5mCOSQwoON9E/rA/cf4BK8I/evAtcAhLqXswe6z6SN8WVkUnHYauHvnWfvui6IMvOmffDn9f4gI\nq75bsMF+oeZmlnzxGa/c9A8qVq2I+XyNwc6UCDamX0pEPXQBHlHVXd2/7fAmGV8ITHQ5Ql4D0lU1\nBOwBPI/3CPLrnTjPw8DvVXUn4Gq8oW9U9Szgcrwg+6mIFLbZr6We947AT1v260DboWJ1Pf6Dgb1V\ndRe8LynxzfjdRCQsoKvqIlXdxf3bQVX/5paXqepEVR2lqgcn2zek/k78fvy7jWPrqVPZasrLZF14\nAdNnz6TO72PvfQ/ktCuuZdDwDf8ONTfU8+Ezj/H9nC+Y++5bMZ3ru5Jaznv6C75eUU1P3foxphck\noh76NOAYNz+ppY72FkAdUCUig4HD3bpsIE9V/wOcz7rMn7HUG+9M/fLWOlvP+xARKXBD60fjjQDk\nARXunv1ovJ45tF9DPBZvA8e2fAHp5L59no1vmvWU1zVz9VuLOebFRdQM3QJ/wQAy09LxT3uXNZNP\nY8Wxx5MR3nAmfVp2Noec8Xt2OOBgdjnkxxs9TzgS4Y63F/LG3FXcOHU+DdZTN8mr2+uhu0fNLsd7\nimg2MBVowuvFfoNX2e1Dt3kO8Krb7gPgArf8aeAiEflcRLZp51SdqV/eWmfreX8CvADMBl5wM+Zf\nBwIiMg9vJPdjd+3t1RDfKFWdC/wN+J/b96ZY9+0PemxSXFfYpLjEKattYsqXK9hzqwKG5mUQCkfY\n57q3CYaVl87ehx3z/DTV11N60Z+onzkTgM0feIDsffeJerxIJILPF9v3xMWlddz05nx+f9BIth2c\nYwlpTF8X9y9oIma5J4u2E9hM/Cygb+Je/GwZFzz7JZsNyODvP9uJMUNzWFnVyOLSOvYbVUR2XSXl\njREoL6XuystJ3Worhlzxf92Wyz0YjthEONNf2DfOBLCA3n0soPdjoaoqtKEBSU/vsFJaR5aW1/Pb\nxz/lkO0HIwgn7rn52kxzqkqkoYHmZcuoy8onww/pmen4c+NJEGhMv5e0Ab0n6n2LyI+A69osXqyq\nP+uuc2zqLKD3U5FQiIpHH2PN9ddTdMEFFJw6Oa465arKqqpG6ppCZKQFGJKbjt8nhMrLqXz+BZoW\nLGDg735L6pZbrpc1LhZ1TSEag2EKslLjHk5vqq8j2NiIPzWVjGwr/GJ6VdIGdJMcbKyzvwqHaVro\nPT7WtHAhhEJxHUZEGJqfwcjBOQzPz8Dv8/5m1bz9DiU33UT1K6/w/cmnEC7v3MMIlfXN3Pf+IiY/\nNJPFpfE9mw6w5MvPuOe3k/jyzdcIBZvjPo4xxiQ7y7PZT/nS0hj0xz+S9/Ofk7bVVnGnXW2rrLaJ\n+uYwaWvWrF0WrqpCI53LEd8cinDLW94Xjmdn/cAlh4+Jqz2lP3hP9pQu/Z5IOAzxZ7Y1xpikZgG9\nHwsUFhIobJvPIX7NoQi3TFvAy58vZ9rkI8l4/32af/iBIVf8X6frnKel+LnsJ2N46+vVnLhH/Pkz\ndjvsCLYZtwe5A4tITe/edLPGGJNMLKCbtXwCw/LSqW4M8eqKZn51xx1IJIwvJwdfujdRrqy2iYjC\nwOyO74vnZaRw8l5bcOy4zbpUPS0zN4/M3Ly49zfGxEdERuDlet9xI9vso6pPus+9WkJ1U2cBvR9q\nqKlm/kcfEGxsYIcDDt4g4IVra4nU1SOpKURy8hAgJbBuukSksRFJTd1gklvA7+OXu2/BUbsOJyPV\nT0qbQFxS08QpD86grLaZV84Zz+DcjrMwpqcE6ELxN2NM3zcCOBEvkU2vl1Dd1NmkuH6ofMUypj1w\nF+898RA/zJ2z3jpVpfadd1i4//6UrinnH/+Zx21vL6C8zptQFly5khUXX0zdBx8SaWzc4NgDslIZ\nlp/BgCi96lAkwrera1lT00RNY3yT8Iwx3UNERojINyLyhIjME5HnRSRTRCa67G9zRORBEUlz2y8R\nkevd8k9EZKRb/rCIHNPquLXtnOt9EfnM/WvJLHUtMEFEvhCR80XkABF51e1TICIvichsEflYRHZ2\ny69y7XpXRBaJiPXmu4kF9H4oK38APn8AER/5g4esvzIcpu6TmeDzUU0qD01fwu1vL6S2MQhA5ctT\nqHnjTVZdfTXhmg3+v+1QXnoKr5wznmfO3Iui7PiH0Y0x3WY74C5VHQNU46V1fRg43hVUCQC/bbV9\nlVt+B3BLJ86zBjhEVccCxwO3ueWXAO+7AjE3t9nnauBzVyjmUuDRVutGAz/CKxpzpcsVb7rIhtz7\noewBhfz69vtRVdKzs9dbJ4EAg847l4yddyZclM+Je25BVqqf7HTvP3XekT+l8csvyD/mGPw52dEO\n367MtADbD7WkMsb0IT+oakvO9sfxcq8vVtVv3bJHgLNZF7yfavXaNgB3JAW4Q0R2BcLAtjHsMx74\nBYCqvi0iha5OOnjVN5uAJhFZg1edc1kn2mOisIDeDwVSU8kpHNj++oEDGXCsN4J2xRHbI3izzgFS\nhw1j2D//iS8tDQnYf35j+rm2mcEqgY4efdEo70O40VoR8QHRht/OB1bjVWrz4dVX74qmVu/DWCzq\nFjbk3k9oJEKovJxIQ0On9ktP8a8N5i38WVldDub1TSGWVzawqqqRYJTqa8aYHrGFiOzt3p+INyFt\nRMv9ceBk4H+ttj++1etH7v0SYJx7fyTRsz3kAStVNeKO2fJHpaMSrO/jSq662ualqlod01WZuFhA\n7yealyzhhzPPpPKFFwjXdu7edyKU1jYx4bq3mXjju5TXehPuKuqbWVXVSHVDsJdbZ8wmYz5wtisx\nOgBvGP1U4DkRmQNEgH+12n6AK6N6Hl6vG+A+YH9XTnRvvJrqbd0FTHLbjG61zWwgLCJfisj5bfa5\nChjnznctMKlLV2o2yoY5+omql6fQ+NVcgqtWk/ujH0F25+5/dzcRQUTwiYBAQzDM/e8v4s53vuP2\nE3bjp7sM69X2GbOJCKnqr9osmwbs1s72N6jqxa0XqOpqYK9Wiy52y5cAO7r3C4Cdo2wTBA5qc453\n3bpy4Oi2DVDVq9p8bvc5d9M5FtD7iQEn/JLgihXkHX0Uvk5mbUuEgdmpfPCnA/H5hMKsVBpDYZa4\nnO2LS3t/BMEYYzY1Vm2tH4kEg+1WVCurbSIt4CO7nUwu4ZoawpWVSFo6gYGFna6cFovS2ibWVDcy\nJC+Dgix7rM0kHau2Zvo0u4feDzQ31FNTVkpjffSqZauqGjj14Znc+tYCKutbVSSrXQN1pd4xFi3i\nu0MOZfHRRxMuKyMSCdNYV0ckEu62dg7MTmP7YXkWzI0xphdYQO8HSpYu4d6zT+WNe26jobZmg/Xf\nldQxe1kVT3yylGY341wrlsJDh8FTx3tB3edNSpWAn7DPx/JvvuaVm//OygXfEg5b1jdjjOnv7B56\nP9BUVweqNFRXRy1jOmZoDtcfszNjhuSQl5FCqKoKWfA+/rLvvA3qy0jdagTbTHsLX0oKTX4fb91/\nF+XLf6CxtpZfXHqNFUAxxph+zgJ6PzBs29Gcduu9pKZnkJmbR3VDkNLaJrLSAhRlp1GQlcZxxZuv\n3T7Y2EgkZzS+0UdCdhGSWYg/Kxu/mxmvTY2M/fFRTH/2ccYefuTasqShsjI0GMSXld3pLHLGGGN6\nlw259wPp2TkMGDIMRKgtWUOgvBQtK+WKF2dTVte0wfa+rCyayxpo2PosIhMug6z1s8qlpKUzZvz+\nnHLdbYzac18CqamEKipYccmfWXjgQdR/9mlPXZoxJk4icpiIzBeRhSJySW+3x/Q+C+j9RH11FVP/\ndRuhlStZevhhhE45nmv2H+Y9B96GPzub7PHjydxjX/x50bNApqZnkDWggFRX51xDYZoXLQJVmhYu\nTOi1GGO6RkT8wJ3A4cD2wAkisn3vtsr0Nhty7yci4TAlP3xPcMVKtLkZbW4mV4NkZKd1y/EDAwvZ\n8rFHaVq4kPQdO5/nIVxfT+NXX9EwZw75Rx9NoLCjdNLGmC7aA1ioqosARORp4Cjg615tlelVFtD7\niZS0NHY++DBqszMouuZqUgsLSS0s6Lbjiwgpw4aRMmzDDG8lNU34BAo7+PIQqa5m6eRTIRKBcISB\nZ57RbW0zxmxgOPBDq8/LgD17qS2mj7CA3k+kZWax249+QnNjI6nj9iA1I6NHzrumupFj/vUReRkp\nPDi5mKKc9Kjbid9PyvDhBJctI33HHXqkbcb0J8XFxUcChwBTZ82aNaW322OSjwX0fiQ1I5PUjMwe\nPWdDMMzS8np8AqFw+1kFA0VFjHjyCTQU6hOpaY3pS1wwfwrIBE4rLi4+oYtBfTmweavPm7llZhNm\nAb0fiITD1JaXUfrD9wzeeiRZ+QN67NwDMlN59jd7k5XmJzcjelrZFoGionbXRRobidTUgN9PoKD7\nbhUY008cghfMca+HAF0J6DOBUSKyFV4g/yVe+VSzCbOA3g/UV1fx6J/Ooam+jkFbbcMv/nw1mXn5\nPXLu3IwU9tiqawE4VFpKyR13UvPWW6QMGcygP11M+o474M/s2dEGY3rRVOA0vGBe7z7HTVVDIvJ7\n4A282uQPqurcLrfS9Gv22Fo/EA4FaXJ53KtWryISJVvcxtRVVlBbUR41d3siC/SEKitZ/scLqXz6\nacKlpTR+NZelkycTWrEiYec0pq9xw+snAHcAXR1uB0BV/6Oq26rqNqr6ty430vR71kPvB9Iyszj4\njN8zf/p77HPsiaRnd+4edV1lBc9e/Wfqq6uYdMMdZBd4j5Q11NSwcOZ01ixexJ4/O27t8u6k9fXU\nz5ix/sJIhPLHn2DI/12O+P3dfk5j+iIXxG0ynEkYC+j9QHpWNjsecDCj955ASkY6Pl/ngqBGIlSX\nlhBqbiIUDK5dXl26hjfvuR2A2opyDv/9BWvTwHZWKByhrK6ZiCr5GSlkpG7kV6sflO01xpj+JOEB\n3WU0mgUsV9Uj3CSOp4FC4FPgZFVt7ugYBvyBAP5AfP+50nNyOfWmuwkFm8nIzV27PCVt3SNoGTk5\n+LpQI72srpmDb/wfDcEwr/9hP0YO8nLBS0YGmXvsQf0nn6zbWISCX51kvXNjjOlGPdFDPw+YB7RE\nkuuAm1X1aRH5F3A6cHcPtGOTFUhJIbdo0AbLswYM4KS/30zlyhVssdMuBFLjzzoXDEeoafLKsJbX\nrft+FhgwgOE3/pOS22+nZupbBIYMYfAlFxOIksDGGGNM/CSRE6JEZDPgEeBvwAXAT4ESYIibpbk3\ncJWq/qij4xQXF+usWbMS1s7eVl9Vic8fID07MRXOguEIKf7Ezn+saQyycE0tVQ1Bdtk8nwGZqeut\njzQ0EK6tRXx+At2Y4c6YHrRh4QRj+pBE99BvAf4EtMziKgQqVTXkPi/DS2G4yaqtKOel66+hYNhw\nDph0ZrfXJf+hvJ5/vjmfMyZszZihufh96/9Nqq+uomr1KnIGFpE9YF2grahrZsGaWrLS/Gw2IIO8\njNS2h15PTnoKu23R/vPxvowMfC67XTASpDncTFZKVheuzBhjTGsJ67aJyBHAGlWNqxaniJwpIrNE\nZFZJSUk3t67vaKiuYvWihcz/6AMiodDGd+ikBz9YzMtfrOCvr31NbdP6x4+EQ8yc8gJPXv5Hnr36\nEuoqKwFoCoV56MPFHHfPR/zktg+YvrCs29pT1VTF418/ziXvX8KymmXddlxjNiUisrmIvCMiX4vI\nXBE5zy0vEJGpIrLAvQ5wy0VEbnOlVmeLyNhWx5rktl8gIpNaLR8nInPcPreJeKUde+IcJj6J7KHv\nCxwpIj8G0vHuod8K5ItIwPXS201XqKr3AveCN+SewHb2quyCQn56wZ/JHVhEWlb39VhD5eXUz5nD\npL12Y0VVA7/ZfxuyUzechLbu/x9ZO6DYFIww8/uKtdt8sricw3ca2i3tqm6q5qZPbwIgIAH+MeEf\npAei54c3JlkUFxdvCfwKL13rD8Djs2bN+r4LhwwBf1TVz0QkB/hURKYCk4Fpqnqtq5F+CXAxXpnV\nUe7fnnjzlvYUkQLgSqAYUHecKapa4bY5A5gB/Ac4DPivO2aiz2HikLCArqp/Bv4MICIHABeq6kki\n8hxwDN5M90nAy4lqQ19U0VjB8trlDM0aSmFGIRk5uWy7577dfp7ad95h5WWXk7l7MTfddieZ+Tm0\n/fLr8wco/unP2XavfckuGEiWyz6XnRbgz4eN5pSHPiE7LcCp+47otnalB9IZmDGQ0oZS9hq6Fym+\njtPJGtOfFRcXB/A6JifgjYimAs3A5cXFxU8BZ86aNavTQ3OquhJY6d7XiMg8vNuXRwEHuM0eAd7F\nC7ZHAY+qN2nqYxHJF5GhbtupqloO4L4UHCYi7wK5qvqxW/4ocDResO2Jc5g49MZz6BcDT4vIX4HP\ngQd6oQ295t8L/83Nn97MhOETuHa/a8lNzd34TnFI3357JCMD/6BBpBBm9rIq3pm/hpP23JKinHWz\n2TNz8za4b+/zCWOG5fLmH/ZDhHYrrMVjYMZAnj3iWZrCTeSm5uLv5DP1xvQz9wLH441StmiZkHK8\nez2tKycQkRHAbni93MEu2AOsAga799HKrQ7fyPJlUZbTQ+cwceiRgK6q7+J9i0NVFwF79MR5+6KR\n+SMRhFEDRpEiieudpm69NSPffAMCASr8Gfz60Q8oqWmiMCuNk/feMuo+ZbVNvDO/hNFDcti6KItB\nud0/FC4iFGW2X8TFmGRRXFw8Aq9n3t7/SJnACcXFxVfHO/wuItnAC8AfVLW69SicqqqIJPR2ZU+c\nw8TOcrn3sLGDxzLt2GmcusOpZKQkrqa5Ly3Nq34WiZDbVMt5E0cyekgO40cNjLp9OBLhrne/48Ln\nvuToOz+kqiEYdTtjTMxOYuN/YwXv3nqniUgKXjB/QlVfdItXu2Fu3Osat7y9cqsdLd8syvKeOoeJ\ngwX0Hpadkk1RZhH56YmvlhYqKeH7k09h2eTJHLd1Jo+fvidbFkSvcCYIOenegE3AL4g9cmtMV23O\nuuH19qSxflCLiZsN/gAwT1VvarVqCt7cJFh/jtIU4BQ3E30voMoNm78BHCoiA9xs9UOBN9y6ahHZ\ny53rlDbHSvQ5TBwsl3sSizQ10bxokfchGGTgoDSaw82EmsJkpKQjrZ5J9/mEU/Yewd5bFzIsP4OC\nLJusZkwX/YA3Aa6joN7E+veRY7UvcDIwR0S+cMsuBa4FnhWR04HvgePcuv8APwYW4pVvPRVAVctF\n5C949dUBrmmZvAb8DngYyMCbqNYyWa0nzmHikNBMcd0l2TPFAZQ1lBHRCAXpBTFPFKuvbqapPkh6\ndgoZ2Rv+zQhXV9P49TxUlMB2o6hNU27//HZqm2s5f9cLGJo9FH/ABmmMiVGnhq3co2rf0P49dIBG\nYHQXH2EzBrAh9z6hrKGM30z9DUe/fDSlDaUx7dPcEOK9Z77lyatmMPf96LXF/bm5lI4Zwp9qHuXD\nqi/+v737jpOquhs//lPVqPsAACAASURBVPlO3ZmdrfTeBCxREQfBWGOiwRDF3lA0UUk0+hj1F1ti\nIfEx0SeJGh9LTGL0SWJUwI6oqGBBRVfE0ESWKkVg+8zs9Dm/P+4FFtjO1uH7fr32tTvnnnvv4bCv\n/d5z77nny8OfP8zzq57nzfVvcuuHt1AZrax3P6XUvrOD9L+xRqv1qQX+rcFctRW95d4FZEyGDaEN\nRFNRIslIs/YRB/js2+K+QMO3x2d8NYP3N73P0PyhRFK7jl2bqoVWvjGWicXIxGK4Ctt/HoBS3dw0\n+3vd99DjWAusPFtnu1L7TG+5dwHJdJKKWAWeuB+XuPAHPDjdTUfbaChBKpHGneMip4Fn3lvCW7jv\n0/s444AzGFU0ils/uJVIMsLvjvsdfX1DqE2kKfK7cTUzeUs6FKJq1izCb79D/3vvxd3fWkGutjrO\nf+ZvYviYXvQYkLvXrfzycJyKSIKiXA89A63P6qZUJ2r1TNE6K8UNxHpmvq8rxSm1Fw3oXUSkOs6M\n35YQjyS58M7xeHJSpJNJfPkFOPYxb3gsFcPtcON0OKmKVZEhAyk/019dwdJNNUw9egiTx/Sn0L/3\nc3iTTJIqLye5eTOeIUMwxrDm1B+QCYXo99t7KDzzTAA+n7uBD2eVktcjh7NvOpLcgl1BO5pI85vZ\ny3l64Qa+d1Bv/nDeGAp8OulOdTv66ofq0vQZehdhMobamgSpZIbaUJwFz/2Tf/3yRiq3NP5aZjqd\nIVwVJ1QRIxlL11snx5Wzc6JdYU4huc4CHni7lJcWb2b19jB3vryMjZXRevdNVVayZtIk1l80hU2/\n+AUAAx58gKJLLiZw3HE76w07rCc9BwY4/KRBuL27X4AYY0imMoCVypVucBGplFLdjY7QO0tku/Ug\n3N8DgGQ8RU1ZjFgkSUEvN3++6kIwhuOn/Ihxp5/d4GHCVXGevutjUok0F94xnqK+uyd4iVRXYTIZ\ncgIBXG5rBB4J1xLZVk48neG2eZt4f00lf77kSL5/SN+9jh9buZK1k88AwJGfz/DZr+Lu1QtjzG5r\nw5uMIRpJ4vY49wroYN1y31QVpX+hT2+5q+5qX265e7CWZ80HaoDPS0pKEm3VMKVAR+ido2Yz/PMc\neGYKhK1FltxeFz0GBBgwqghPjoMfXncT3/rOKRx03HcaPZQ4hNOuHcMZN4zd7bl1Kplk81dfMuM3\nv+T/fnENC194jmioBgBPJETFmadRe8HZ/PqE/vTJ93LEoPonuLl69SL/9NNx9e1Lv7t/gzPPSm2/\nZ6IXcQj+PE+9wRygR8DLYQMLNZir/UowGOwTDAZ/i7Wa2pvADPv7tmAw+NtgMNin0QM0QUScIvK5\niLxqfx4mIgvtdKTPiojHLvfan0vt7UPrHONWu3yliHy/TvlEu6zUzqpGR51DtY4G9CYk0gm2Rray\nrXYbqcyupEjRVJStka1sr92Vqz2UCBFKhJo+6NcLYcti2PARVKzZa7PH52f00cdx8pU/I1BU3Pix\njGHeP1fwwu8XsaW0emdxLBxi5t2/ovzr9URDNXw86xk2Ll+6c7u4XIjbTe+8HF699tgG1213FRfT\n91e/ZNiM5wgcfzyOHE11qlRzBIPBg4GlwPVAAdbovO7364Gldr3Wug5YUefzvcD9xpgDgErgcrv8\ncqDSLr/froeIHAxcAByClbr0EfsiwQk8jJUS9WDgQrtuR51DtYIG9CZUxiqZ9MIkznzpTCpiFTvL\nt4S3MHHWRKbOmUpZtIzyaDl3LLiDOxbcQXm0vPGDDhoPA8bC0OOgeHiD1facDBdJRoilYruViQiZ\ntPXYJJPZ9fgklYgz/orLGHfRRbi81qi4tORjTCaDq7iYEXPfZPhrs/H36dVkNjVnfj6uXr00mCvV\nTPbI+12gB9byrvXx2tvfbc1IXUQGApOAv9qfBTgJmGlXeQorHSlYqU2fsn+eCXzXrj8ZeMYYEzfG\nrMVa5e0o+6vUGLPGGJPASnc9uSPO0dJ+ULtoQG+CwZAxGdJm9wlnNYkaUiZFRawCYww1iRre2vAW\nb214i+p4dQNHs+X3h4tmwHn/B4HezWpHRbSCuz68i0e/eJSqWNXOcn++hzNvHMuFd45n6GG7Eq9E\n/fDH6n/wZtEyvj3tCgAOOOpoxOGgKmGYvSHKe9uSbItoEhal2sHPgTyafu4udr3rWnGOB4CbgIz9\nuQdQZYzZcSuxbjrSnSlM7e3Vdv2WpjztiHOoVtKFZZpQ5C1izllzEBGKvbtufw8rGMaM02aQ78mn\nyFuEy+Fi6sFTMZjmJV7J7UltTTWhtavJK+6Bv6DxfbbWbuX1da8DcOGBF+5+qAIvuQVeqmsTfLGm\nnCK/h22p1SyvWM6KihVcesIFfPvcKQw88BAAysJxrnvGWv75pZ8dg1OsiedpYyjye/A24x14pVT9\n7AlwV9HwyHxPXuDqYDB4V3MnyonID4FtxpjPROTE1rVUZRsN6E3wurz0ce19N6zAW0CBt2Dn5yJn\nEdeNtS6yPc5GcjEka2HDQsKFQ1m3fC0r35+PNzeXU6b9Fw6vm+p4NT6XD5/LR1m0jHg6To+cHgwI\nDOBHh/yIAYEB+Fz1p10tjyS44PGPcTmFBbeN55ojruGgooPoWdCPPhMPYFs8QyAcp8DnZmTvAHk5\nbiKJFKHKOFXxFBc89QlzrjuO4b0C+9ZpSu3fjqDlM+LF3m9hM+sfA5wuIj/AWis+H3gQKBQRlz1C\nrpuOdEcK040i4sJ6hl9Ow6lNaaC8vAPOoVpJb7k3Ip1JUxYta95EN6xA3mgwB4jVwLv3EfJ4mOV8\nH8fkwxh+/LGI00lpZSmXvX4ZL5a+SHm0nCmzp7C+Zj1PLX+Khd8s5LQRp3HCoBPIdeXWe+gCn5up\nRw/huJG9SKe8XHzgxRw/6HgC/mIeX7CBE/5nPr997UtyvU7+cflRPHD+4QzI8fDp01/hN0IqYyiP\n7BogxNNxvqz4ktlrZlMZ03XflWqmfKylXVvC2Ps1r7IxtxpjBhpjhmJNOHvHGDMFmAecY1fbM7Xp\njpSn59j1jV1+gT1DfRgwEvgEKzPaSHtGu8c+x8v2Pu16jub2gdqbBvRGrKtZx6VzLuX3n/6+7QKa\nJxdOuImZq2Yxc9VM7iiZTuGIoSSiEV5b+xrratbxzJfPkEwnGFU8iopYBQ8vfpgb5t9AKBFi8ouT\nqYhX7HXYVDJDqizGSWEX95wwkqeW/S//+vJfJNIJDIbqmPWsvDqWIG2gb4GP3l4P5csq6TeikN69\nfPz7yvGM7L1rdB6Kh5g6Zyq3vH8LX1V+1Tb/fqWyXw2tG6HXtMG5bwZuEJFSrOfXf7PL/wb0sMtv\nAG4BMMYsA54DlgOvAz8zxqTt0fc1WLnMVwDP2XU76hyqFfSWeyNeWf0KG0Ib2BDawFVjrtqnY4US\nIUqrSnHgYOTAIMcGCnhi2d8ZVTiKSFk5L97zCybf8StMOsPE4RMhkeaOo24nJWmGFQxjcN5gyqJl\nmHou/OO1ScKVcXbM23v5j4s586Zz+Pvav5DOpPG5PVz/vZGcHxxE3/wcHLE04VgaX8DDmO8Nggw4\nXA6OKtr9Vr7L4WLSsEl8vv1zBvoHsWLBZoYe1hNfXhN3IZTav31Oy0foGXu/FjPGzAfm2z+vwZo9\nvmedGHBuA/v/N/Df9ZS/hpXjfM/ydj+Hah1dKa4Rm8KbuOvDuziq71GcN/q83Z6Zt9Tm8Ga+P8ta\nT+HNs98klxzKq7cS2r6djx77K+HKcnx5+Zw+/dfcvfz3LClbwj+O/xvu6iQ5Q/qQJsPCLQs5tNeh\nDAoMwu3ctRb6ltVVPP8/ixCBs35xJK/+7xeccdvhSG6KHr4eu7UjXBnjn3d8jMMhXDR9AoFCL5HK\nChbPfY3R3z6e4v4DcNTJx14TryEajzP/obWUfR3mmHMOYMz3Bre6H5Tqxpo96rYXk7me5k2MiwN/\nLCkpua21DVMKdITeqAGBAfzhhD/gdXrxuvZthTOP08PBxQfjd/sJ4KNk1gwWvfYSvrx8DjrlFFKx\nOMvefJ1oopbBeYMZ22csRmDFog85dMAPyfH6mXxA/a9ophLWWyvGWO+ln37dGAoLcnHVM1tdRHC6\nHIhj11+nJfPm8vGsZ1i7+DPOuuUu/Pm7Llzyvfk4o3Gqt1trvef3rH9CnlJqNw8AV2ClS23sQsAA\nIawJbUrtEx2hd6DKaCVJk2T+hnmMyT2Ej/70GMdcNY1H1z9JL29PTnEcRWFxb7bkVPPWpnf48ahL\nWVexlms++jnnjjqX68deT65n7wlxsUiSsq9DuLxOCvv4yfE3nMksnc4QC1nP0335HhwOoWLzJt54\n7AHG/mAyI8Yehcvj2WufaChJKpHGF3DjbeT4SmWxFj0Xt1eAexfrPfP6RgRxrGB+QklJyfJ9b57a\n3+kIvQMV+Yp4aNFDPL7kcYJ9gkw7+XS2psp5c8NcAH488RI2fr6YihVLueDUSWyu2UhVqpqMybC6\najVJk4RUHBK1lJPmg80LOLLPkeS6cukzMm+32/ANcTod5Bbu/relqF9/zvjF7bhzcnYmcNlzn0Ch\nrsGuVEuUlJQsDwaD38JaNOZqrAsCU+f7I8CDJSUlWzuvlSqb6Ai9jSTSiaZfWQOWbl/KTe/fxKUH\nXEzugs2MPvlkntryHMMCQznZM54Zv7Yeo3l8fi6+70E2blxFrMDJgKLB9PflwaKnyKTi/NaT4Jmv\nnuXA4gOZcuAURhaN5JCeh7T3P3M3iVSaqtokbpeDonpyqSuVZfY121oQ6IWVqOUzzbam2pq+ttYG\n1lWv47YPbmNV5SqaukAa4h3APUNuov9qQ2jLVt6853ecuG4ww5c7d2ZDA8ik04TLynjz3vv4+DcP\nsnXREqhaD3PvwLH+Q8YXH4QgHNbrMDaENjB3/dxmtTWeilMTb4u3Y2DZ5hq+d/+73DTjP5SF44Qr\n49SUR0nGUk3vrNR+IBgMeoPB4MXAZ8AHWK9vLQA+CwaDFweDQb31pdqMBvR9lMwkeeSLR3hj3Rvc\n/9n9RFPRBuuWR8updcRxJA3uwwbjOnssx141jS9efYVFLz8PxjDu9HMYdMihnHnz7XgdaQ494Tuk\nU0nyCoohba+7vmYeE9Yv4u2z5nDRgRcRToS56KCLmmxrOBHmpdUvcd2869hQs2Gf/+3PL9pITTTF\n3BVbiSfSPH3Xx/zzVx8R1fXhlSIYDB4FbMa6tf4trBH+jkly37LLNweDwXGtOb6IFIrITBH5UkRW\niMjRIlIsInNFZJX9vciuKyLyJztN6X9EZGyd41xq118lIpfWKT9SRJbY+/zJTrRCR5xDtY4G9H3k\ndriZdtg0Thx0ItcecW2Dy7JWRCu46q2r+MELk+hxyCh+uuBafr34HqJFTnx5+RT07kPPYj/jxg3j\n9FNGM3Dx3fR+7SJOHFrBFXffxYCRB1iZ2Y6+BoqHE/Dk08vlZ0ThCG4dfyu9/U0neYmmotz7yb2U\nbC3hH8v/QSySpGJLhEh1vFX/9p+cMILvjO7NnacdjNfpICfgxuV14nDqr5Xav9lB+h2gGGtSXH3y\n7O3zWhnUHwReN8YcCByOtTjLLcDbxpiRwNv2Z7BSlI60v6YBj4IVnIE7gfFY75bfuSNA23WurLPf\nRLu8I86hWkGfobeAMYaUSeF27D35LJqMkuPKoaELzLJoGWe8dAbV8WpeOeMVHv38EdaE1nLvmOm8\n9bv/4YL/dz35s38MZav23tntw1z8PDIgCOkEJCPgCVirzrVAKBHipdKXmLN2Dvcdfx/JdV5mP/wf\nivvncvrPx5Cb3/K7f+FYEo/Licfl2HlhkBNw49SgrrJPs0aP9m30zVjBurkqgP4lJSXNuroWkQJg\nMTDc1PkjLiIrgRONMVtEpB8w3xgzWkT+bP/877r1dnwZY35il/8Za5Ga+cA8+2IBEblwR72OOEcL\n+k3VobPcm6k2WcsHmz7gg00fcO0R1wLgc/mIp+P4XD78bn+j+xd5i5h52kyq49UUuPP56eCplG36\nmnfv/xMnnXcO+e/cWH8wB0hGkX+ehfnZp9RKb3ICvVoVMPM8eZwz6hwmDZ9EobeQbYEaRCC30Eu0\nJonH68TtbdmvRCBn18VNboE+DlQKa7W0lr7b6cFa//xfzaw/DNgO/F1EDsd6Rn8d0McYs8Wu8w2w\nI7NUS1OYDrB/3rOcDjqHagUdRtUjlAixoWYDWyNbSWWsCV6RZIQ7PryDF0pf4NNvPuX3Jb9nZcVK\nLnv9Mp5f9TyRZKTRYzodTvrm9mV08WiK/MX06z0ER02c2qoq+vbvAV9/0nijklHMF8+y8MVV1JTF\nWvxvqohWsHjbYiLJCEU5RYgIRX39nHvbOA45rj+zH/2CRCzd9IGUUk25mYZvszckwK5b183hAsYC\njxpjjgAie+5vj9zb9RZsR5xDNZ8G9HpsCW9h0guTmPzS5J1JWfwuP7dPuJ1JwyYxtGAoxd5inv3q\nWdbVrOOJpU8QTTY8Ga6uWDhMpKoSh8vFt75zMpf+4VFy1r/drH0dS55h2EgHtYRZvG0xa6rWNDoJ\nb4dUJsWjXzzKJXMu4f7P7ieesu7qeXxu0skMC2aUcuD4frjc+uug1L4IBoNOoLXvjx5i798cG4GN\nxpgd6VZnYgX4rfZtcOzv2+ztDaUwbax8YD3ldNA5VCvoX/B6uJ1unOLcbYJbrieXiUMnMv2Y6RR6\nCzm89+FcffjVnDjoRKZ/ezp5nqYvyJPxOIvfeJXHr/4Rm1Ysw+vPJVBUhDMVbl7DEhEGHNST9alS\nLplzCWe9fBbV8eomdxOE0cWjARhdPBpnnbXaew0OcPbNRzLm5MG6ApxS+y4AtPY1j5S9f5OMMd8A\nX4vIaLvou1jZzOqmMN0ztelUeyb6BKDavm3+BnCKiBTZE9VOAd6wt9WIyAR75vlU6k+T2l7nUK2g\nz9Dr0Te3L6+f/TpOcdLT13NnudPhxImT/oH+9A/0B+De4+7F6/TuFiR3iNbUsGHZFxQPGERRvwGk\nk0m+Xr6ETDrFxhXLGHZEEADpc2jzGlY8gtW1a3deaLgdbqQZ83ScDienDD2F4wceT44zB5dj13+7\n0+Ukt6C5gwKlVBPCtPz5+Q4ue//muhb4l51LfA3wI6xB2nMicjmwHjjPrvsa8AOgFKi162KMqRCR\n32DlJgf4tTFmR37mq4EnAR8wx/4C+F0HnEO1gs5yb0frlyxm5t2/wu3N4fI//YXcwiLCFeVsXbua\nfgeMxl9gJ0Gp3gQPjYVU48/Gq8//Py796u/ceOSNDMkfgtvhpthXjNepk9GU6gDNneW+BOs985Za\nWlJS0syre6X2prfc20k6k6agb18K+/Zn5IRjcDitUXCguAcjjjxqVzAH8BXCd2/f/QDFw4l9948k\nx/0XOJyYQeNJ9BzFhL4TGJl/AJnaOKlItM1WfVNKtZl7sZKutEQIa+SrVKu12y13EckB3sPKMuQC\nZhpj7hSRYcAzQA+sVy0uMcZk3ZrGmyObmb5oOldcO5UDex6ELy+/4cqeXBgzBRxueHs6mAzhM2bx\n3uwwvfofzWGTv413xJH4PH4uOfgSJr98BvnefP567CP1vhOvlOpUM2h5OtQk1sQ2pVqtPUfoceAk\nY8zhwBhgoj1R4l7gfmPMAUAlcHk7tqHTrKpcxcJvFnLlgp9R67LmyKQScWprqjGZDMTD1q328HZr\nB18RjL0Url0EF80gVpDPuLN6MGJCD9JDT4RAbwKeAJFkhNpULdtrt+P2+chx5XTeP1IptRd7cZiJ\nWK+SNUcEmNjcRWWUakiHPEMXET9WYoKrgNlAX2NMSkSOBu4yxny/sf274zP0ilgFz696niH5Qxjf\nbzx+vKz65CMWvfYyp15zA8XOGnjsGBh6HJzzd8jtsXPfUCJETdl2Zt16M3k9enLOr+7G5fGQTiZJ\negzrI1+T68plQKA//hauFtfRYpEk6VQGd44TTwsXrVGqi2lpPvRxwOtYk+Tqew0mhDUyn1hSUvJp\nPduVapF2fYYuIk4RWYz1nuJcYDVQZYzZkY4ra1cGKs4p5opDr+DkISeT78knEYtR8uoLfLP6K0o/\n/RhMxvqKVljf63CKE5NKk4xFiVRWYDJp3n3qrzxx3TS+mvsOBwZGMbJ4ZJcP5slYisVzN/DUrR+y\nZVVVZzdHqQ5lB+n+WAOZpVgLsCTt70vs8v4azFVb6agReiHwAnA78KR9ux0RGQTMMcbsNSNURKZh\nLfDP4MGDj1y/fn27t7O1KmOVhBIhfC4fPX09613P3WQyVGzZxKqFH3LoSaeQ63VYwdzjh0CfvY9Z\ntZ10bQyHw4nT4eSv11pPJkQc/OTRJ8ktasky0Z0jGk4y57ElbCmt4shThzBh8ojObpJS+2KfMoHZ\ni8YEgHBJSYkuy6jaXIfcAzXGVInIPOBooFBEXPYovcGVgYwxjwOPg3XLvSPa2RrhRJjHvniMp798\nmp6+njz3w+fo5e+1Vz1xOOgxYBA9zjp/V6GvYK96OxQV9iLmCpNOJTFAUb8BVG7ZxOBDD8fh7B63\nrn0BN6dccQhlX4foM7SRSYFK7QfsIN70SlBKtVJ7znLvBSTtYO4DTsaaEDcPKwnBM+y+ylC3FEvH\neG/je4CVUa0mUVNvQG+NnMCuRaPOv+t3JKJRvH4/vvzuExwDhV4ChfqevFJKtbf2fIbeD5gnIv/B\nWiForjHmVazEBTeISCnWq2t/a8c2tLs8dx43Bm+k0FvISYNOoshb1PROrZBbWERRv/74Cwrr3Z7O\npCmLljVrKVillFLZR1eKawOxVIxwIozb6abA2/Bt9Pa0pnoN096cxhG9j+C28bdRlNM+FxZK7cf2\n6Rm6Uu1NV4prAzmuHHr6e3ZaMAdYsGkBW2u38sa6N0hm9s4NkUpnWFcW4Z0VW6mItGwdn42Vtdwz\newVrtofpDheASim1P+oes6tUk04ddiprq9cyod8E/C7/XtsrahOc9tAHhOIp/nDu4Zx95MB6jrK3\naCLNb15dwRvLvuHzryv5y9QghX5PWzdfKaXUPtKAniV6+nryy/G/rDfrG4BThOG9clm6uYbhvZr/\n/rrH5eD8cYNY/HUlF4wbhN+jvzJKKdUV6TP0/UhZKE4qY8jPceFvwapt0USKUDxFwNOy/ZTKMvoM\nXXVp+te5g8VTcSKpCAWeggZH0+2lZ17zXh/LpDPEIimcLsHrd+PzuPDpyFwppbo0nRTXgSLJCLPX\nzubqt66mtKq0s5tTr0zGULYxzIv3L2L+0yuJhrIuEZ5SSmUlDegdqDZZy4OLHmRZ+TKeWPoEqUyq\n6Z2aUFMe5aMXV1NTHm2DFkKiNsn7z35F5ZZaSku2Ub29bY6rlFKqfWlA70ABd4Cbxt1EsE+QKw+7\nEpdj325jp1MZPnphNYteX8+Hs0pJJfZ9eWinx8nA0dY77G6vk0CRrvKmlFLdgU6K62CJdIJYKkae\nJ6/eJC4t9c2aaj6YsYpjzjmAvsML2uSY0XCCWDiJJ8dFTp4bp1Ov+5RCJ8WpLk4DejeXTmdIRFN4\nfC4NvEq1Lw3oqkvTqcvdnNPpwBfQhV6UUmp/p0M6pZRSKgtoQFdKKaWygAZ0pZRSKgtoQFdKKaWy\ngAZ0pZRSKgtoQFdKKaWygAZ0pZRSKgtoQFdKKaWygAZ0pZRSKgtoQO9GYuEk36ypJlQeI53OdHZz\nlFJKdSG69Gs3snFlJW/8ZSnuHCdTpk8gt0AzoSmllLLoCL0b8ficgJXWVCmllKpLR+jdSJ+h+Vxy\n99E43Q78+ZqQRSml1C4a0LsRr9+N1+/u7GYopZTqgvSWu1JKKZUFNKArpZRSWUADulJKKZUFNKAr\npZRSWUADulJKKZUFNKArpZRSWUADulJKKZUFNKArpZRSWUADulJKKZUF2i2gi8ggEZknIstFZJmI\nXGeXF4vIXBFZZX8vaq82KKWUUvuL9hyhp4AbjTEHAxOAn4nIwcAtwNvGmJHA2/ZnpZRSSu2Ddgvo\nxpgtxphF9s8hYAUwAJgMPGVXewo4o73aoJRSSu0vOuQZuogMBY4AFgJ9jDFb7E3fAH06og1KKaVU\nNmv3bGsiEgBmAT83xtSIyM5txhgjIqaB/aYB0+yPYRFZ2cSpCoDqFjavOfs0VqehbXuW11evbtme\n23sCZU20q6W6cv/UV9bY5/bon4ba1Rb77M991Nz6Le2jzuif140xE1u4j1IdxxjTbl+AG3gDuKFO\n2Uqgn/1zP2BlG53r8fbYp7E6DW3bs7y+enXL6qlf0g7/F122f5rTZ3v0V5v3j/ZR+/RRc+u3tI+6\nav/ol3515ld7znIX4G/ACmPMH+tsehm41P75UuClNjrlK+20T2N1Gtq2Z3l99V5pYntb68r9U19Z\nc/qwrWkfNa2l52hu/Zb2UVftH6U6jRhT7x3vfT+wyLHA+8ASIGMX34b1HP05YDCwHjjPGFPRLo3o\npkSkxBgT7Ox2dFXaP03TPmqc9o/KRu32DN0Y8wEgDWz+bnudN0s83tkN6OK0f5qmfdQ47R+Vddpt\nhK6UUkqpjqNLvyqllFJZQAO6UkoplQU0oCullFJZQAN6FyciB4nIYyIyU0Su6uz2dFUikisiJSLy\nw85uS1ckIieKyPv279KJnd2erkZEHCLy3yLykIhc2vQeSnU9GtA7gYg8ISLbRGTpHuUTRWSliJSK\nyC0AxpgVxpifAucBx3RGeztDS/rIdjPW65D7jRb2kQHCQA6wsaPb2hla2D+TgYFAkv2kf1T20YDe\nOZ4EdltCUkScwMPAqcDBwIV2djpE5HRgNvBaxzazUz1JM/tIRE4GlgPbOrqRnexJmv979L4x5lSs\nC5/pHdzOzvIkze+f0cCHxpgbAL0TprolDeidwBjzHrDnYjpHAaXGmDXGmATwDNaoAWPMy/Yf4ykd\n29LO08I+OhErRe9FwJUisl/8Xrekj4wxOxZ3qgS8HdjMTtPC36GNWH0DkO64VirVdto9OYtqtgHA\n13U+bwTG28874JbKBQAAAtlJREFUz8L6I7w/jdDrU28fGWOuARCRy4CyOsFrf9TQ79FZwPeBQuB/\nO6NhXUS9/QM8CDwkIscB73VGw5TaVxrQuzhjzHxgfic3o1swxjzZ2W3oqowxzwPPd3Y7uipjTC1w\neWe3Q6l9sV/cmuwmNgGD6nweaJepXbSPmqZ91DjtH5W1NKB3HZ8CI0VkmIh4gAuwMtOpXbSPmqZ9\n1DjtH5W1NKB3AhH5N/ARMFpENorI5caYFHANVv74FcBzxphlndnOzqR91DTto8Zp/6j9jSZnUUop\npbKAjtCVUkqpLKABXSmllMoCGtCVUkqpLKABXSmllMoCGtCVUkqpLKABXSmllMoCGtBVlyciH3Z2\nG5RSqqvT99CVUkqpLKAjdNXliUjY/n6iiMwXkZki8qWI/EtExN42TkQ+FJEvROQTEckTkRwR+buI\nLBGRz0XkO3bdy0TkRRGZKyLrROQaEbnBrvOxiBTb9UaIyOsi8pmIvC8iB3ZeLyilVOM025rqbo4A\nDgE2AwuAY0TkE+BZ4HxjzKcikg9EgesAY4w51A7Gb4rIKPs437KPlQOUAjcbY44QkfuBqcADwOPA\nT40xq0RkPPAIcFKH/UuVUqoFNKCr7uYTY8xGABFZDAwFqoEtxphPAYwxNfb2Y4GH7LIvRWQ9sCOg\nzzPGhICQiFQDr9jlS4DDRCQAfBuYYd8EACsnvVJKdUka0FV3E6/zc5rW/w7XPU6mzueMfUwHUGWM\nGdPK4yulVIfSZ+gqG6wE+onIOAD7+bkLeB+YYpeNAgbbdZtkj/LXisi59v4iIoe3R+OVUqotaEBX\n3Z4xJgGcDzwkIl8Ac7GejT8COERkCdYz9suMMfGGj7SXKcDl9jGXAZPbtuVKKdV29LU1pZRSKgvo\nCF0ppZTKAhrQlVJKqSygAV0ppZTKAhrQlVJKqSygAV0ppZTKAhrQlVJKqSygAV0ppZTKAhrQlVJK\nqSzw/wHvAuyC7mflLAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { "tags": [ - "id1_content_1", - "outputarea_id1", + "id2_content_1", + "outputarea_id2", "user_output" ] } @@ -4456,8 +4463,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07fbac1e-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07810856-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_3391f00fe5" + "window[\"47d79a3c-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"475527dc-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_0265bf16d9" ], "text/plain": [ "" @@ -4465,8 +4472,8 @@ }, "metadata": { "tags": [ - "id1_content_1", - "outputarea_id1" + "id2_content_1", + "outputarea_id2" ] } }, @@ -4474,8 +4481,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07fcfa4c-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_55d8297db4" + "window[\"47da0948-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_908b2590b4" ], "text/plain": [ "" @@ -4483,8 +4490,8 @@ }, "metadata": { "tags": [ - "id1_content_2", - "outputarea_id1" + "id2_content_2", + "outputarea_id2" ] } }, @@ -4492,8 +4499,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07fd3aac-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_2\");\n", - "//# sourceURL=js_02b9c68757" + "window[\"47da4804-e945-11e8-9ea1-0242ac1c0002\"] = document.querySelector(\"#id2_content_2\");\n", + "//# sourceURL=js_937e8684ad" ], "text/plain": [ "" @@ -4501,8 +4508,8 @@ }, "metadata": { "tags": [ - "id1_content_2", - "outputarea_id1" + "id2_content_2", + "outputarea_id2" ] } }, @@ -4510,8 +4517,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07fd7ae4-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07fd3aac-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_9974939b34" + "window[\"47da9156-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"47da4804-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_0539de946c" ], "text/plain": [ "" @@ -4519,8 +4526,8 @@ }, "metadata": { "tags": [ - "id1_content_2", - "outputarea_id1" + "id2_content_2", + "outputarea_id2" ] } }, @@ -4528,8 +4535,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"07fdb6ee-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(2);\n", - "//# sourceURL=js_3aba3fe65e" + "window[\"47dae80e-e945-11e8-9ea1-0242ac1c0002\"] = window[\"id2\"].setSelectedTabIndex(2);\n", + "//# sourceURL=js_48be3c947c" ], "text/plain": [ "" @@ -4537,8 +4544,8 @@ }, "metadata": { "tags": [ - "id1_content_2", - "outputarea_id1" + "id2_content_2", + "outputarea_id2" ] } }, @@ -4547,13 +4554,13 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VfX9x/HX596bm9zshARkirgY\nCg7EjSKKe9WtVdy1dXZYq62jddRRa21r3QO1/tyrWhWKCxeIqAwHKgRkJ2SvOz+/P85JCOQm3Iwb\nyOXzfDx8JPfcM74nxHzu+Z7v+b5FVTHGGGNM7+bZ1A0wxhhjTNdZQTfGGGNSgBV0Y4wxJgVYQTfG\nGGNSgBV0Y4wxJgVYQTfGGGNSQFILuohcLiLzRWSBiFzhLisUkWki8p37tSCZbTDGGGO2BEkr6CKy\nE3ABMA4YAxwlItsBvwOmq+r2wHT3tTHGGGO6IJlX6COAmapar6oR4D3gJ8CxwBR3nSnAcUlsgzHG\nGLNFSGZBnw/sLyJ9RCQTOAIYDPRT1ZXuOquAfklsgzHGGLNF8CVrx6r6tYjcBkwF6oAvgOgG66iI\nxJ17VkQuBC4EGDly5O4LFixIVlONMSYRsqkbYEx7kjooTlUfVtXdVXU8UAEsBFaLSH8A9+uaNrZ9\nQFXHqurYQCCQzGYaY4wxvV6yR7n3db8Owbl//hTwKjDZXWUy8Eoy22CMMcZsCZLW5e56QUT6AGHg\nYlWtFJFbgWdF5DxgCXBykttgjDHGpLykFnRV3T/OsrXAxGQe1xhjjNnS2ExxxhhjTAqwgm6MMcak\nACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6M\nMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqw\ngm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhj\nTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvoxhhjTAqwgm6MMcakACvo\nxhhjTAqwgm6MMcakACvoxhhjTApIakEXkV+KyAIRmS8i/yciGSKyjYjMFJHvReQZEfEnsw3GGGPM\nliBpBV1EBgKXAWNVdSfAC5wK3AbcparbARXAeclqgzHGGLOlSHaXuw8IiIgPyARWAgcBz7vvTwGO\nS3IbjDHGmJSXtIKuqsuBvwBLcQp5FfAZUKmqEXe1ZcDAZLXBGGOM2VIks8u9ADgW2AYYAGQBh3Vg\n+wtFZLaIzC4tLU1SK40xxpjUkMwu94OBxapaqqph4EVgXyDf7YIHGAQsj7exqj6gqmNVdWxxcXES\nm2mMMcb0fsks6EuBvUQkU0QEmAh8BbwDnOiuMxl4JYltMMYYY7YIybyHPhNn8NscYJ57rAeAq4Bf\nicj3QB/g4WS1wRhjjNlSiKpu6jZs1NixY3X27NmbuhnGmC2bbOoGGNMemynOGGOMSQFW0I0xxpgU\nYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0x\nxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXdGGOMSQFW\n0I0xxpgUYAXdGGOMSQFW0I0xxpgUYAXd9GqquqmbYIwxmwUr6KZXitbVUfPee6y5/Q4ilZVx14mU\nlxNes4ZYfX0Pt84YY3qeFXTTK8Xq61l++RVEStcQXLiQVTfdRGjZsub3IxUVlN53Pz9ecCGNX321\nCVtqjDE9w7epG2BMZ3gyMuh75ZUExoxmyWmno+EwwW8XMvAff8eXn4+Gw2TssD1Zu+yCRiKburnG\nGJN0VtBNr+TNySH/pBOJVlaSNmgQocWL8e+wA+L3AxBatIhVf7gWgGFv/HdTNtUYY3qEFXTTa3n8\nfjx9+7L141OI1tXhzc3Fm5kJgLdPH/B6Eb8fj7vMGGNSmRV00+v5iovxFRevt8w/aBDbTp2KeARv\nYeEmapkxxvQcGxRnUlK0tpYfzzuPktPPIFpRsambY4wxSWdX6CYlaX09oZISAKJlZaT17btpG2SM\nMUlmBd2kJE9eHv3/fAuxxkZ8/ftv6uYYs9kRkWOAkap666Zui+keVtBNylFVQgKZhx+OPyNjUzfH\nmKQTEQFEVWOJbqOqrwKvJq9VpqfZPXSTcipXreD5m6/lncceoL66CoBgQz11lRU01tV2aF8aiRAs\nKaHqjTeIlJcno7nGdIqIDBWRb0XkcWA+cKaIfCwic0TkORHJdtc7QkS+EZHPROTvIvKau/xsEfln\ni329LSJzRWS6iAxxlz/mbvORiCwSkRM31fmajbOCblJGLBwmUlpKdG05WQUFqHgIx5RYNMoPs2fy\nwC/OYcF704mEQwnvM1pRQclJJ7Pil7+i4umnk9h6Yzple+BfwAHAecDBqrobMBv4lYhkAPcDh6vq\n7kBxG/v5BzBFVUcD/wb+3uK9/sB+wFGAdc9vxqygm14pUllJuLSUqDtPe7S+npqpU1l0zLFUXHYF\nkw46kvJRh3PL/5ZQ0xBk8eeziUUjLP7iM6LhcOIH8nrxbz0EgIztt0/GqRjTFUtU9RNgL2Ak8KGI\nfAFMBrYGhgOLVHWxu/7/tbGfvYGn3O+fwCngTV5W1ZiqfgX06+4TMN0naffQRWRH4JkWi4YB1wGP\nu8uHAiXAyapqzxWZhEXKyljxu6sJLlxI/mmnUnj66cQaGllx1e8gEoGKClZe8UtG3vc417y2jG37\nZnH6mecxZOddGDp6V9IzsxI+lq+wkMH33YeGQniys5N4VsZ0Sp37VYBpqnpayzdFZJduOEaw5S67\nYX8mSZJ2ha6q36rqLqq6C7A7UA+8BPwOmK6q2wPT3dfGJERjMcruf4C6Dz4gsmYNZXf/nfCqVWg0\n4hRzV7S2lsw0LwBF2RlkFxSyzd4TqPVmMXXBKt5fWMrq6kZCkehGj+krKiJtwAC8ublJOy9juugT\nYF8R2Q5ARLJEZAfgW2CYiAx11zulje0/Ak51vz8DmJG8pppk6alR7hOBH1R1iYgcCxzoLp8CvAtc\n1UPtML2cxmJEq6vXWxarq8Obn0/OoZOoeWsqAH0uuIBYYR4v/mIfhhVlUd0Q5tnZP/LnN74hGnMy\n1LP8Xh6cPJbdhxSQ7hZ/Y3ojVS0VkbOB/xORdHfxH1R1oYj8AnhTROqAT9vYxaXAoyJyJVAKnJP0\nRptuJ6qa/IOIPALMUdV/ikilqua7ywWoaHrdlrFjx+rs2bOT3k7TOwRLSlh65llESkvJ3Htv+t98\nE4uPOZYBt9+Gf+hQJM2PJzcHX15e8zbzl1dx1D8+aLWvdJ+H9387gX659nib2ahe2d0sItmqWuv+\nvb0H+E5V79rU7TLdL+lX6CLiB44Brt7wPVVVEYn7iUJELgQuBBgyZEhS22iSL1pdTeOCBcTq6sgc\nOxZvfn7z8rqPPya8fDl5xx+Pr6CAyNq1APj69Im7L29REYPuvRdtaACBxnnziNXWsur6Gxj6wvN4\nMjPxtrjfHYpEeezDxXH3FYzE+GTRWo7dZWA3n7Exm40LRGQy4Ac+xxn1blJQT3S5H45zdb7afb1a\nRPqr6koR6Q+sibeRqj4APADOFXoPtNMkUaS0lKXnnAvAkMceJWuvvQCI1day/PIrAAiMHg1bD2XJ\nOecgIgx55OFWoSsAvuxsGDgAbWxEMjLwDRhA4UU/I+/II1lz+x1Eq6oo+vlFpO+4I96sLCIxpaKh\n7ZHtFfWJP8ZmTG/jXo3bFfkWoCcK+mms/6jEqziPVNzqfn2lB9pgNjFPIBNJS0OjUbwF69LPxJ9O\n1vjxRFauJG3wYKLVVYS+/x6AaHUNvuJiNBolWlmJ+P14c3IA8BUUrNt5QQGFp53O4mOPJVpZCUDd\nBx8w7D//wbvdtmT6fRw9uj/Tv4772ZH9tmvr0VxjjOk9klrQRSQLOAT4WYvFtwLPish5wBLg5GS2\nwWwevH0K2XbaVIjF8LS4t+0r6sOA226FWAxfnz5E/On0u/46EMFbWEC0poba99+n7F/3kjZoIP3/\n+EfSttqq1f6ja9c2F3MAVKn+3zSKt9sWgP22L2Zk/1y+Wrn+gLoTdx9EUbY/OSdtjDE9qEcGxXWV\nDYrbfMWCQWLV1eD14msndzxSVUXdBx9Q99FHFJ41mfRthyG+jX+eDP24jB8OOaT5ddaBBzDwjjua\nr9SbhFes5PuJE6HF7/PgBx8ge//9m1+X1QR5Y/5KXvp8BRlpHs7ddxt227qAwiwr6CYhvXJQnNly\nWDiL6ZLGb75h6dnnEBgzhoF3/qXNgWyhxYtZ8evfAFDz5lsMe+O/zZGmFXUhvllVw1Z5GQzMz8Dv\nW/cIWbS2BvH70ZBznzuyfAUaChGtqqL2gw8IL1lK/qmn4MnNof9NN7L6lj8Ta2wk/8QTyBg1ar02\nFOWkc8aeW3PUmAF4RMgLpCXjR2KMMZuEFXTTJTVvvok2NFD/ySfNRTeeaPm6yQBj9fUQc0Khog0N\nfLOihtMe/pSMNA/vXTmBfrlOQY9WVyMeD0Of/j/W3PU36mbMoM9FP8NbUEB4xYrmDwhpQwaTd9RR\n5B51FFn77w+qzkj3Da7iATweoSDTrsiNSYSIfKSq+2zqdpjEWEE3XVI4eTLhFSvJ2ntvPFnrT6mq\nkYiTUKZKxpjR5Bx6KA1ffEHRxb/Ak51NLBikZuo0ikbuRkaah2FF2XhlXa9maOlSSk48CcnMZNhL\nLxIpL8dXVIR4PEh6OmkDBxApW0vG8OEAeNLT8bhX/Z0VKSuj7IEHyDn4EAJjRuNJT9/4RsakGBHx\nqWrEinnvYgXddFo4FCSU7qfg+msJ5OTiSVu/CztSWUnohx/A58M/eDD9//RHYqEQ3uxsPIEAkcpK\nKp97Dl/BdKb/+ir8fQopyllXQD2ZmeDz4c3JQdLS8OblNz+/nlZczNBnnkFjseZl3aF2xgwqHn+C\nmjffcp5pj/PYnDEdNfR3r58O3AIMAZYC15TceuRT7W/VPhF5GRgMZAB3q+oDIlIL3AscAawErgFu\nd497haq+KiJenMHJBwLpwD2qer+IHAjcCFTghLrsICK1qtoUw3oV8FMgBryhqr8TkQtw5gvxA98D\nZ6pqfVfOy3SeDYoznVJfXcXMF59h/rvTyMjOZcLZFzB41GjSA5kAqCrBhQtZOvlsolVVFP/qlxSc\nemqrbvDQjz9S8/bb5B1xxHrPnMcaG4nW1EA4DD4fvuJiRJI/Jim8ahUrr72O3COOIOfQSXgzM5N+\nTNNrdOoX0C3mDwItf5nqgQu6UtRFpFBVy0UkgDOl6wFAGXCEqr4hIi8BWcCROElsU1R1F3fSrr6q\nepM7TeyHwEk46WyvAzs1pbM1FXQRORy4Fieetb7Fsfuo6lp33ZuA1ar6j86ek+kai081HRaLRpg7\n/U3mvPEqoYYGqktX88pfbqa+ssV98upqVt98s/MomSqld/6VWG1tq335Bw+mz+TJ6xfzcJi6Dz9k\n2cWXsDbmY3E0g8r6DkSedkHaVlsx8K93knvkEVbMTXe5hfWLOe7rW7q438tE5EucYJbBONnoIeBN\n9/15wHuqGna/H+ounwSc5caszgT6uNsCzGoRtdrSwcCjTVffqlruLt9JRGaIyDycUJdRcbY1PcQK\numlTXTBCdZwZ1hoqKvj2ow3CmFQp+XJOi5eKp2VMaVoaeOL/usWCQbRFUlqsro61Dz6E56zzOP+l\nb5l09wzemL9y3b5jMaL19ag7sK67eXNy8Pht4JzpNm3NXd3pOa3d7vGDgb1VdQzOlK4ZQFjXdbvG\ncKNPVTXGulusAlzalIapqtuo6lT3vaY41kQ9BlyiqjsDf3TbYDYRK+gmrvK6EHe89S1XPPMFZTXr\n4pBjoRDhxSUU9G09uUvhwMHN32soRNHPf05g7Fj82wxl8L/uwetOKFNfHaS+2n0MrayMlX+4lsqX\nX3G62AFvVhZFl16Cx+cly++MeM9O9zWvXz7lcVb8+teUP/EkkbKypJy/Md1oaQeXJyIPJ9iqXkSG\nA3t1YNu3gJ+LSBqAiOzgTgLWnmnAOSKS6W7TNOlEDrDS3dcZHToD0+1sUJyJqzEc5bGPSgD4saK+\nebCahkLUP/8C+5x5Bsu+/YqGGmfmtSE7jaF4yND19rHqlpvJP/54svYfj69vMZ60NOqqgrx05xx8\naV6OuWIXIl98QfV//kP1a6+Rc8B4cAfAZY4dS0ZtLf/cO5PGqJIbSCNSVsaSs89pnhq29p13qXrh\neYY8+mibz78bsxm4hvj30K/pwj7fBC4Ska9xMs8/6cC2D+F0v89xE9hKgePa20BV3xSRXYDZIhIC\n/ovT/mtxuu1L3a+tnxU1PcYGxZm4KutDvD53JSVr67jogG3pk71u9Hlo+XKq33qL9CMOp6piLelZ\n2WTlF5CZu25KV1Vtvnr2FRU1D2irXFPPv69z/vacefM+ZMZqWHXjjWSOG0feMcfgzc1ts011M2ey\ndPLZrZZv/eQTZI4d2x2nbUx7Oj0qMxmj3I3ZkBV0AzgFOFRSQs3UqeT/5CdOKIoqMVW8bdz77vAx\nYjHCpWWEg1EayCSnKJP0zDSi9fWIz7fR+9aVL7/Myt+1SuFlwB13kHf0Ud3SRmPaYVO/ms2adbkb\nAKKVlay8+hoavviCWGOQvpdfhoisN9FLV4VKSlh6zrloMMjgBx/AP3AkQMKjyTPHjgWR9eZrR4TA\nbrt2WxuNMaa3skFxBnAmcSk486ekjxhB7uGHdfv+Y42NlN71NyKrVxOtrGT1zbc0D4JLlLeggP63\n3Yony/kA4MnKYsAdd3TrxDLGGNNb2RW6AZxpU3MmHkzWXnt1qkDWV1cRamjAHwisdy+9ifh8pG+/\nPTXTpgHgHzYM6eCjYd6sLHIPPZSsvfZCGxqQQABvbi6eDHtSxhhjrKCbZp6MdDwZHZ+7PBIO8dlr\nLzHrlefZ9bCj2f/0s0nbYA508fko+OlPSdt6a7SxkZxDDu7UxC3dMV+7McakIivopkvqqyoJNTQw\naOTOzHr1BeqqKtuc8MVXWED+scf0cAuNMWbLYAXddFqwvo63H72fbz+ewcRzf845f70Pf2Yma0Pg\nizRSnLOuKzxaXw+qeLM2Nn+FMcaYzrBBcVuohtoa1i77kdrytUSjkY1vEIcqRNwM9Eg4TOGAgXxX\nDfvc+jYXPzWH8jr3vfJySv92N2vu+AuRtWu7pf3VDWHW1DRSF+xc243Z0onIgSKyT4vXj4nIiUk6\n1kMiMjIZ+zbr2BX6FmrR7Jm8ee/fSMsIcO5d95Fd2PGZ1jKyspj0s0sJ1p9LRrYzQVQ4qqhClt8H\nOI+XxRobyTloArHGRmLB4Hr7qK+qJBwKkZ6ZSUZWdkLHrQ2GmfJxCfe9+wN/OnYUR48ZiN9nn03N\nZuyGvFYTy3BD1aaeWOZAoBb4KNkHUtXzk30MY1foW6yatc4sbuFgI7EuhJxk5uVT0H8ggRxnhrfh\nW+Xw5a/25p+7ZxBY/B3RujrCy5ax9OxzWHbRz6mb8UHzto11tUx78B4euuRcln+9IOFj1oeiPPPp\nj9SFojz96Y/Uh+wq3WzGnGL+IE48qbhfH3SXd4qIZInI6yLypYjMF5FTRGSiiHwuIvNE5BE3GhUR\nKRGRIvf7sSLyrogMBS4CfikiX4jI/u6ux4vIRyKyqL2rdRHJFpHpIjLHPd6xbbXLXf6uiIx1v79X\nRGaLyAIR+WNnfwamNbtC30KNPvgwMvPy6TN4CBndeF87N5BGw6KVlJx8CgDD3nqT0JIlAAR22YWM\nUaMIl5WRVlQEqkQjTppbNNJ2UV5bG+T970opzPIzZlA++YE07jxpDA99sJhfHbIDuRlp3dZ+Y5Kg\nvfjUzl6lHwasUNUjAUQkD5gPTFTVhSLyOPBz4G/xNlbVEhG5D6hV1b+4+zgP6A/sBwwHXgWeb+P4\njcDxqlrtflj4RERebaNdG/q9m6XuBaaLyGhVnduZH4JZnxX0LVRmXj6jD07CBDIxRbze5tcaDpNz\n0EE0zJ1H4Rmns/Tc8xC/n6HPPoMXmHT+JUSikTY/VESiMe57bxEPzlgEwJRz9+CAHfoybptCRg/K\nI+C3X2Gz2ev2+FScfPM7ReQ24DWgGlisqgvd96cAF9NGQW/Hy27U6lci0q+d9QS4RUTG48S0DgT6\nbdguVZ0RZ9uTReRCnPrTHxgJWEHvBvbX0HSLmsYw7y0s5bOSCn6970AGv/wKDdEYdbmF9OlTyFa/\nv4b6zz4jWl4OQGT1apaefwEiwjavvkJadvyQppgqpbWNza/Lap2BdiJixdz0FktxutnjLe8U9yp8\nN+AI4Cbg7XZWj7Du9urGZmFqOcilvXmfzwCKgd1VNSwiJUDGhu0Skemq+qfmHYpsA/wG2ENVK0Tk\nsQTaZBJkfxFNt2gIR7n86S+IxpRT9xjMde+v5esV1Rw1OsQtPynEk5FBxogRFJ5zDp5ABt7CQmJV\nVeDzQZx7+HVVQTSmpGf6uPrwEQAUZ2dw4A7FPX1qxnRVt8enisgAoFxVnxSRSuASYKiIbKeq3wNn\nAu+5q5cAuwNvACe02E0N0Ha8YfvygDVuMZ+A+4ElTrs2HAyXC9QBVW4PwOHAu51sg9mAFXTTLTLS\nvFx/1Eg+LSmnKCedXx28Aw99sJgLx2/bvI6vsJC+v/4VeDzEamoY+vxzeDKz8Oatf5utvirIC7d/\nRm1FkFOvHUe//lnc9pPReDxCmtfGcZpe5oaqp7ghD7p3lPvOwB0iEgPCOPfL84DnRMQHfArc5677\nR+BhEbmR9Yvnf4Dn3QFtl3bw+P8G/iMi84DZwDfttKuZqn4pIp+76/8IfNjB45p2WHyq6TbhaIxI\nNEbA7yMWUxojUTI70S1eVxXk6T/NorEuzEnX7EHfIfG7443pYRafajZrdoVuuk2a19N8Be3xSKeK\nOUAgx8+p144jHIoSyLYR7MYYkwgr6KZTmq7GKxvCeEQoyk7H6+meCxiPR8jK73hIjDGme4nIzsAT\nGywOquqem6I9pn1W0FNcfTDC7CUVfLxoLefvtw19srteKNfWBrnrfwsZsVUuVQ1hHpixiNcu3Y+C\nTD9Z6fYrZUyqUNV5wC6buh0mMTbCKMXVhiL87InPuPfdH5i3vKpb9vlDaS1PfrKU3788n7FDC1CF\nlZWNVDWEO73P8rpg89zvxhhjOs4KeorL8Hm56rAdmTiiLyP7d/YJlfUNK87m6NH9+e1hOzKoIJMn\nz9+Tpz9dSpq3c13upTVBLnpyDhc/NYeymuDGN+iExtow1WsbaKi1Dw3GmNRko9x7uUg4TGNtDf6M\nDPyBDWeXdAQjUcKRGNkbTJEaXrOG6tdfJ+eQQ/APGtSh49aHIvg8Hvw+j1OEBYo62Z3/Y3k9+9/+\nDgAfXDWBQQXxz6MjymqCVDaE6ZPlJz8zjblv/8gHz33Pbodtzbgjt8GbZp9lTYfZKHezWbO/ar1c\n6ZJFPHn1FSx4723CwfhXt+k+b6tiHotEKP3rX1lz2+2s/P3viVZ1rDs+0+9rTjgryknvdDEHyMnw\n8dDksTx69h7kdMO87NUNYX77wlwO/ut7vDF/JSgE65254kP1EXrDh1hjjOkoK+i9XMmXn1NXUc7C\nmR82Z5MnwuPzkXvU0fiKi8k95hgkY9PNvpif6efgEf2YMLwveYGuF3SPB7bKdc6nb04G4hF2njCI\nM/60F+OO3gaf37uRPRiTOkTkBhH5TZL23ZzktjkSkWIRmemm0O0f5/2UymlPape7iOQDDwE74YRj\nnwt8CzwDDMWZkvBkVa1obz/W5d62+qpKli6Yy4AdRpBb1LFpUWONjURravAEAkhaGp701HlUrLwu\nSDASIzvd1y1X/cbQhS73nafs3CoPfd7keT2Shy4iN9AiVa2b910CjFXVsk5s61PVpGYfi8ipwMHx\n8thFxKuq0WQev6cl+wr9buBNVR0OjAG+Bn4HTFfV7YHp7mvTSZl5+QzfZ3yHizmAJyMDT0YG1W+8\nwcrrridStv7/k9HaWiKlpUSqqtBYjEhlJbFw50ey96TCrHT65wWsmJtNzi3mrfLQ3eWd0kYeeqvc\n8xabjBGRj0XkOxG5oJ399heR992M9PlNV7UbyTC/tEUu+nB3/XHu8T5389V3dJefLSKvisjbONGp\nbeWqDxWRr0XkQfeYU0Uk0E67LxCRT92fxwsikikiuwC3A8e65xMQkVoRuVNEvgT23iCn/TC3HV+K\nyPT2zmNzlbSC7ubgjgceBlDVkKpWAsfiRPvhfj0uWW0wGxdrbGTVtddR/corNMxdl2CosRi177/P\ndwccSNXLrxBc+B3LfnEx9R993G1FXVUJR1sHsxiTYtrLQ++sptzxMaq6E/DmRtYfDRwE7A1c54ao\nxHM68Jaq7oJzEfaFu/z3qjrW3c8BIjK6xTZlqrobcC9Okho4c7Xvr6q7Atex/rnuBpyoqgewLld9\nN2ACTvRqU0/I9sA9qjoKqGT9YJkNvaiqe6hq04Xjear6hXvsZ1R1F1VtALKAme7P7YOmjUWkGOdD\n1wnuPk5K4Dw2O8m8Qt8GKAUedT/dPCQiWUA/VV3prrMKJ0PXbCKe9HT6XnMNOZMmEdh53f+jGolQ\n+/Y7EIsRraig/MknaZgzh9J//YtYbW1C+w6vKaXqP6+1uvIHaAxHeW9hKb97YS6rqxvjbN15pTVB\nHpyxiHnLqwhGemePWiQcpnzFcpZ9PZ+G2ppN3RzTNcnKQz9ERG4Tkf1VdWOjWl9R1Qa3a/wdYFwb\n630KnON20++sqk2/fCeLyBzgc2AUToZ5kxfdr5/h3EqFdUEx84G73G2aTFPVcvf7plz1ucD/WJer\nDk6+e9MHipb7jmcnEZnhhsWcscHxWooCL8RZvhfwvqouBmjRvvbOY7OTzGm9fDifxC5V1Zkicjcb\ndK+rqopI3Jv4InIhcCHAkCFd+b03a2oaicUgPzONjLT1B4R5c3MpOPUU8k88AW/muosIj99P3yt/\nQ8bIEWRPmkQ0phCJUHDWmXhB9GGUAAAgAElEQVRzN/48e6yxkdW33ELNm2/S58pfw6nHICIUBYoQ\nEWoaw1zz4jxWVDWyx9BCTh3XPf/GsZjyz7e/Y8rHS0j3eXj/txPol9v7BsE11tbwxFWXEQkFOfO2\nvxNoIy/e9ApJz0N3u4jbyz3f8O9s3L+7qvq+iIwHjgQeE5G/AjNoP8O86fGaKOtqyo3AO6p6vIgM\nZf2Ut7oW38fNVd9gv037brPLHXgMOM5NczsbOLCN9Ro7eN+8vfPY7CTzCn0ZsExVZ7qvn8cp8KtF\npD8492uANfE2VtUHVHWsqo4tLrYM7M4qrWnkJ//6iPG3v0NZbfzH2jx+/3rFvElav35k/vQsbv6s\nkkOf/o779jyN+iHbIt6NF0hJSyP38MPw9S1GTziM4145jtNeP42yBudqPTvDxw3HjOLInfszYXjf\nrp1ky3PxCDsNdOJYhxRmdtv88j3N4/EyaMRO5PQpJpDTPRMCmU3mGpz885a6Iw+9XlWfBO7A+dta\ngpN7Dq27p48VkQwR6YNT7D5tY79bA6tV9UGcAc27ET/DfGPygOXu92dvZL1WueqdkAOsFJE0nA8J\nHfUJMF5EtgEQkcIW7UvkPDYLSbtCV9VVIvKjiOyoqt8CE4Gv3P8mA7e6X19JVhu2FJHKSgiH8RYW\nrl9sGyooDFXy7BnD+NlLS4nFWn8oD9bX0VBTTSwSJZCX1+pKMBSNcciIfuy/fTF5oXrSv/+GcP+t\n8PXty7pbXa2J10v2+PEEdtuNMl+E+kg9EY2g7oVBIM3HxBH9GL9Dcateg66aNKofe287gXSft0vP\nx29KmXl5HH7Jr9BYjMy8/E3dHNMF8ybPe2rnKTtD945yj5c7HiB+7jnAXJyu9iLgRlVd0cZ+DwSu\nFJEwUAucpaqLpeMZ5rcDU0TkD8Dr7azXVq56R10LzMS5zTsTp8AnTFVL3V7hF0XEg3OheQiJn8dm\nIdmPre2C8ynPDywCzsHpFXgW5xd7Cc5ja+Vt7gR7bK09kfJyVl53PQ2ff87WTz5J+jZD1735+ZPw\nysWQ3Y/IBe8Ryigmc4PwlEVzPuWl25xBqwedexFjDj4Mj3fdOqU1jZz1yCyGFWVzY2AJq6+5Bt+A\nAWzz7DP4ihJ7/LQh0kBlsBKPeChMLyTN27mR55FQlFBjlPQsH16vTaFgelzv7O4xW4ykRmO5AxrG\nxnlrYjKPuyXRSITad9+FSITG+fPXFXRVWP2V831dKT5i+DYo5qrK97M/aX696LNZjBx/EOmBdetF\nosrC1bV4RPDt5nSN+4qLndlbEhTwBQj42rv9tXHRSIwlC9Yy6z+LmTh5BH23tm5oY4xpKaGC7g7p\nvwBnlGHzNqp6bnKaZRLlzclh68cfp2HeXLL23WfdGyKw3xWQVQyDx0HGum7bSFkZ0dpavLm57HbE\nsSz8+AOi4TDjjjuZaChEfSRCpnvfNi+Qxn8v3ZeqymrKaleyzbSp+AIBfIWFGzal24R+/JG1jzxC\n/vHHkz5iBJ60NCKhKAtmrKB8RR3fzlxtBd2YLpBemnMuIvcA+26w+G5VfXRTtGdzk1CXu4h8hDPS\n8TOc0YYAqGq84f/dzrrcu0+kvJxlF19Cw+efk3/6afT99a9pCAVBlcrSNTx7w1Vst8feHHLBxc2D\nseqqqnjtb7ey/OsFnHnb3RRvvU3S2hetrGTZpZdR/+mneHJzGfb6a6S5gyKryxpY9GUp24/tR1Ze\n77w3bno163I3m7VEu9wzVfWqpLbE9AiNxoiscR4siCxfAbEY2QWFREIhPp/yABqL8cPsT5h47kXN\n22Tl5XHU5b8lGomQkZWd1PZJejqB3Xen/tNPydh5J8S37lc0tyjALhPtEUZjjIkn0Sv0m4CPVPW/\nyW9Sa3aF3j3KaoLEYjHyqspo+HQWWfvvT1rfdY+MVa1Zxfv/fowR+09gyE5j8G+iwJZIZSWxujo8\nGRn4+vTZJG0wJg67QjebtUQLeg3OlHlBnEckBGdemB65kWkFveuqG8Jc9eJc3pi3iinn7MEBO8Z/\n9jsSDuH1pbX7SFpXhCJRKuvD+LxCYZZ1m5texQq62awlNFRZVXNU1aOqAVXNdV/bqKReRFUJhZ15\n02uDbU+U5EvzJ62YA3y9soaJd77Hlc/NZW0bE90YY4zpuIQfWxORApzJ8pv7YVX1/WQ0ynS/vEw/\nt504mvpQlNyMpD6tSGTtWiJlZfiKi1uNhn/1y+XUBCNM/2YNIQtmMca0QZz47dNV9V+d2LaETsa6\nxtnXn3Dmef9fV/eVbIk+tnY+cDkwCCd9Zy/gY5z0HtNLdGbWNFWlvqoSELLyNz5jWbS2llU330LN\nf/9L3gknsNUffo8nsO4Z9PP2G8ayikYO2KGITH9yP1gYs7n4eviIVnnoI775ukfy0DckPZBD3k3y\ngV8ArQp6T56Dql7XE8fpDonODnI5sAewRFUnALvixNmZHtZQU+0W2J5RV1nB47+9lGduuIq6yoqN\nbyCC+J2Z4MTvd56Hb2FAfoC/nTKGk/cYTF7AsspN6nOLeas8dHd5p4nIT0Vklpv1fb+IeEWktsX7\nJ7pBKojIYyJyn4jMBG4XkUIReVlE5orIJ01xqCJyg4g8IXGy00XkSjdzfK60zkTfsG1nuet9KSJP\nuMuK3azyT93/9m1xzEfcbPJFInKZu5tbgW3d87tDRA50E9VexZlCHPccPhMnM/3CDvzsWm3n/vwe\nEycHfp6I/LLFz+5E9/vr3LbPF5EHJJn3Jzsh0UukRlVtFBFEJF1Vv5HNPOg9FdWsLeP1v99BONjI\nUZdfRUH/tiKNu080Eqa+uopgfR0a23gXuTcri35XXknRRRfhzc3Fk5FBYzjK4rI6pi5Yxfgditm+\nXzaBDsw0Z0wv114eeqeu0kVkBHAKsK8bbPIvNh5KMgjYR1WjIvIP4HNVPU5EDgIeB3Zx1xuN0wub\nBXwuIq8DO+Hcch2H86HkVREZH++2q4iMAv7gHqusRdDJ3cBdqvqBiAwB3gJGuO8Nx8lDzwG+FZF7\ncdI5d3Kz2RGRA3HCYnZqijkFzlXVchEJAJ+KyAuqujaBH2Gr7XAmThvo5ss3dflv6J+q+if3/SeA\no4D/JHC8HpFoQV/mntzLwDQRqcCZh930kFgsxicvPs3ybxYAMP3R+zj6iqtIz8xK6nED2Tmc89d7\n8fp8ZGwQ3BKJxfAgeDZINPP16bPe42bldSGO+ecHhKPK36Z/x7Rfjme7vnZ1brYYychDn4iTrPap\ne5EYoI3kyhaeaxEduh9uIpuqvi0ifUSkaaDzK6raADSISFN2+n7AJJw8dIBsnAIfbxzVQe6xytz9\nN2V1HAyMbHFRmysiTRNbvK6qQSAoImtYl4m+oVktijnAZSJyvPv9YLdNiRT0eNt9CwxzP+y8DkyN\ns90EEfktzgeyQmABva2gq2rTid/g/gPnAW8mrVWmFY/HQ17frZpf5xb1xeP1EY1EiASD+AMBJIGr\n3lhMqS5rYMXCSoaOLiIz19/u+v5AJoWB9S8uGsNRllXU89zsZZw0dhD/+3oNh++0FUMKM+OOkF9d\n3Ug46jweqQqLSuvYrq/le5stRrfnoeNcJU9R1avXWyjy6xYvN5xIoo7ExMtOF+DPqnp/h1q5Pg+w\nl6o2tlzo/s3YMPu8rdrUfA7uFfvBwN6qWi8i79L6nFtpazs3630McChwEXAycG6L7TJw7uePVdUf\nReSGRI7XkxLu9xSR3dx7G6Nxcs5DyWuWiWfnCYdw6M+vYMLZP2O/U35KLBbl24/f59W/3kLp0hJi\nsbYfR2vSUBPi1b99wTtPfsOct5bQmbS9NTVBDr97BjGFv0xdyK1vfMPFT82hvC7+r8Tggkx27OcU\n8EEFAcYMtjhQs0Xp9jx0YDpwooj0BSe/W9wscxEZIU4E6PHtbD8Dt4veLXBlqlrtvhcvO/0t4Nym\nK2oRGdh07DjeBk5yt2+ZLT4VuLRpJXHSONtTQ/sxqHlAhVuUh+PcJkhE3O1EpAjwuFOa/wGne7+l\npuJd5v4cTkzweD0m0VHu1wEnAS+6ix4VkedU9aaktcy0EsjNY6cDD25+XVtRzhv33AWq/O+hf3H8\nVdc1z7/eFq/PQ9+hOdRUNNJ/u7z1rqjXVDfyypcrOHynrRhUsOEtv3Xe/mY14aiyvLKecUMLeXP+\nKvbbrqjNXPOinHSePH9P6kMRAmle+uZuVh9qjUmqEd98/dTXw0dAN45yV9WvxMnonuoW7zBwMc59\n59dwcsFn43SNx3MD8IiIzMX5cDG5xXvxstNXuPftP3b/ZtQCPyVON7+qLhCRm4H3RCSK001/NnAZ\ncI97TB9Od/1FG27fYj9rReRDEZkPvEHrPPI3gYtE5Guc7vJPNtxHG9rabiBObWu60F2v90NVK0Xk\nQWA+sArng85mJdGZ4r4FxjR1lbgDCb5Q1R4ZGGczxa2vtqKcRZ/PZpsxu/HW/X9nyZdzOODM8xhz\nyBGkpW/80bSGmhDRSAx/hg+/G5UajES48bVvePKTJRy4YzH/PG1XsjPi3+f+8PsyznhoJgCXHLQd\n+29XxJA+mfTP61pEqjGbuc1qRHMyuN3Itar6l03dFtNxiQ6KW4HT3dB07yMdWJ6UFpl2xaJRPnj6\ncRa8+z9GHTCRw3/xS2LRKGkZGQkVc4BATuv75t+vqePgEX2ZtXgtp48bQnobV9sAI/rncOZeW/PU\nrKU8/nEJo/rnsvOgvM6ekjHGmG6QaEGvAhaIyDScARKHALNE5O8AqnpZexub7uPxehm+7wH8uGAe\n24/bh0BuLh5P28U3UT+sqWXm4nIuHD+MXYfkk+Zte3hFYVY6Vx22I5cctB0C5Gf68fvsMTRjejtV\nvSHRdd175NPjvDUxwUfHkmpzb18yJNrlPrm991V1Sre1KA7rcl9fJBQiWF+HP5CZ8FV5e8oayvhf\nyf/Yr99eFEez8RUW4m2noBuzhUr5LnfTuyX62FpzwRZnTvfBqjo3aa0y7fL5/fj87T9u1hGPzHuE\nJ75+gj222oM/1k+i//4HQ1FRt+3fGGNM8iV0GeZOyZfrPn4wB3hQRP6a3KaZnjJp6CQGZA3gqH4T\nSatthDSb9MUYY3qbRO+h56lqtTghLY+r6vXuowcmBYzsM5InD32cjDAEBvvw5dkAN2OM6W0SvVHq\nE5H+ODPnvJbE9phNwO/1U5zTj5zCfutN2WqM6d1E5BgR+V0b79W2sbxlGMm7IjI2mW1si4jsIiJH\n9MBxrmnx/VD3ufeu7rNYRGaKyOcisn+c9x8SkZFdPc6GEi3of8KZKegHVf1URIYB33V3Y0xr1WUN\nzHh2IVWlG040lXpqyht599/fULq0hqhlpRvTZar6qqreuqnb0Um7AEkr6OLw0LUZ+9oyEZinqruq\n6owNjutV1fNV9avuPmhCBV1Vn1PV0ar6c/f1IlU9obsbk8rKGsp47YfXKK0vTXibSCjKhy98z9y3\nl/Hh898TDm58atfeKhqJ8fFLP7BgxgqmPryAYG14UzfJmG5zz0Vvn37PRW+X3HPR2zH3a5eiU6H5\navIb94p6oYj8W0QOdmdX+05ExonI2SLyT3f9bcSJRZ0nIje12I+IyD9F5FsR+R8Qd0pXEZnkbj9H\nRJ5rEawSb93dReQ9cSJK33J7eBGRC8SJH/1SnCjVTHf5SeJEkn4pIu+LiB/nQvIUceJTT2njOG1F\nryIiv3L3OV9ErmjxM/tWRB7HmfHtYSDgHuPf7qZeEXlQnGjVqe5Eam2dZ6vzEWdK29txptD9QkQC\nIlIrIneKyJfA3i17PkTkMPdn+qWITHeXjXN/1p+LyEeSYLppooPidhCR6U1dESIyWpxpB00CIrEI\n//j8H1z9wdX8edafaYg0JLRdsKGGPY8u4tjLd2S3Q7fGl9bxR8nKG8qZsWwGq+tWd3jbnuT1eRi5\nb38y8/yM3G8AvoyuP1tvzObALd6t8tC7o6gD2wF34sSPDgdOx0lG+w2trzzvBu5V1Z2BlS2WHw/s\nCIwEzgL22fAg4sxz/gfgYFXdDWda2V/Fa5CIpAH/AE5U1d2BR4Cb3bdfVNU9VHUM8DVwnrv8OuBQ\nd/kxblbIdcAzqrqLqj7Tzs9gOE6gyjjgehFJE5HdgXOAPXHmar9ARHZ1198e+JeqjlLVc4AG9xhn\ntHj/HlUdBVTiptK1odX5qOoXG7S9ASeKdqaqjlHVD1r8rIpxfjdOcPdxkvvWN8D+qrqru69b2mlD\ns0QHxT0IXAncD6Cqc0XkKcDmck+Az+PjkCGH8N6P73Ho0EPxezb+yFl9VSX/+eufWf7NAvoM3pqT\n/nAT0iKmtKE2RCQUw5/hJT0z/qj0WCzGw/Mf5vGvHmdE4QjuO+Q+CjMK4667OdhqWB4nX7MHaX4v\n/vREfzWN2ex1ex56C4tVdR6AiCwApquqisg8nHzvlvZlXXF6ArjN/X488H9utOoKEXk7znH2win4\nH4ozl7sf+LiNNu2Ik58+zV3Xy7oPEDu5vQP5OPPMv+Uu/xB4TESeZV1mSKLiRa/uB7ykqnUAIvIi\nsD/wKrBEVdub932xW5QBPqP1z7Glts5nQ1HghTjL9wLeb4qEbRE1mwdMEZHtcSZzS+jRo0T/amaq\n6ixZPxozkuC2Bth9q9157ujnyE7LxpvAzG7B+rrm7PO1Py6havUqsvILAAgHo8z+bwlz317GpPNH\nsf3Y+NHBHo+HYfnDANg6d2t80j1FMhqNUbGyjsVzyxi138CNRrAmyuf34vPblblJOcnIQ2/SMnY0\n1uJ1jPh/3zser+gQYJqqnpbgugtUde847z0GHKeqX4rI2ThpbqjqRSKyJ3Ak8Jl7hZ2oRKNXm2ws\nRnbD/bUXUvEYcc4njsYWWfSJuBF4R1WPF5GhwLuJbJRoH26ZiGyL+8sgzgjIle1vYloK+AIUZxYT\nSEsswCQtI0BGtpMc6POnk5lfQG35WjQWQ2NKXZUTVVpfFWxvNxwy5BCmnjCVq8ddTW56+0ls8UTr\n6givXkOkvLx5WbAuzJsPzGfWq4tZOGtVh/dpzBamrdzzruShd8aHwKnu92e0WP4+zr1qr3uve0Kc\nbT8B9hWR7QBEJEtEdmjjON8CxSKyt7tumoiMct/LAVa63fLNbRCRbVV1pqpeh5MUN5iNx6e2ZwZw\nnHtPOwvntsKMNtYNu+3pjLjn0wGfAONFZBtYL2o2j3V5KWcnurNEC/rFON3tw0VkOXAF7cTema7L\nzMvjzFvv5sjLf8vJ19/CO489wONXXUZdVSX+gI/xp+zA6TfsyQ57btXufnLTc+mf3Z/CQOe62hvm\nzuX7CRNY/edbiVZVAeBL9zJ6wiCKBmUzdGebUc6YjUhGHnpnXA5c7HbHD2yx/CWcp5a+Ah4nTle6\nqpbiFJb/E2cOko9x7l234t7/PhG4zR0E9gXr7stfC8zE+XDxTYvN7nAH680HPgK+xIlwHdneoLi2\nqOocnKvnWe7xHlLVz9tY/QFgbotBcR3R1vkk2s5S4ELgRfdn1TRW4HbgzyLyOYn3pLc/l7uIXK6q\nd4vIvqr6oftJx6OqNR1teFdsyXO511VW8OivLiJY5/QSnXvX/RQMGLiRrbrP2sceY82tt5G+w/YM\nefTR5ufUw8Eo4VCUQFbaevf2u6IuXEdlYyWKkpeeR46/sx/OjUmKTv+iuwPg1stDv/i+g7p6/9yY\n9WysoH+hqruIyBx3ZOMmsSUX9IbaGma99Cyf/fcVtt19Tw654GIy8/J77PiR8nIav/6a9G23JW2r\ndb0BlfUh1tQEyQ+kUZyTzgbjKxISra4mVluLpKfj69OHOavncPabZ6MoD016iD3779mdp2JMV1k4\ni9msbexS/msR+Q4YIOtP9SqAquro5DVtyxGOhqkIViAiFAeK13svkJ3Dnj85hbHHnEDQG8EfaPPR\nz6TwFRaSve++ANRXB1m7vI6iITnMKinnwic+Y6vcDP5z6X4U53Q89a1+1iyWXXIp2RMPYsBtt/HV\n2q9Qd8zOgrIFVtCN2cyJyEvANhssvkpV2xrt3dnjnINzy6ClD1X14u48TjvHvwfnKYGW7lbVR3vi\n+Ilqt6Cr6mkishXOUPxjeqZJvUckGqEyVEmWLyvhwW7xlDWWccxLx1CYUci/j/w3RYH170tnZGVT\nUlXCjR/eyHk7ncceW+1BmrdnA1TCwQjvPb2QRXNK2ecn25K7rfPBIjfgoxMX5wDNA+2i5eVoOMxh\n2xzGnDVziMaiHLOd/boZs7lT1eN76DiPApusePbUB4eu2ujNdlVdBYzpgbb0Ot9Xfs+V71/J5FGT\nOWrYUWT4Mjq1n0g0QjAapCZUQ1u3QF76/iVmrZpFJBZhVNEo8rw9G6Di8XoYuF0+JXPLyO+XSdHA\nXD68agJpPg9F2fGvzqPRGHUVQSrX1FM8OIdAzvqPt+UccgiBXXfFV1CAr6CAIuDGfW5EUbL9PdsT\nYYwxvV27BV1EnlXVk91RkS0rjXW5A9OWTKOkuoTnFz7PxCETO13Q+wT68MYJb5DmSaMgoyDuOqcP\nP51wNMxPdvjJJhks5vV52HHv/my7e1/S0r34M3zkZLTfS9BYE+bpG2cRDkYZM3Ew+xy/LR7fugcr\nmgp5S1n+rKS03xhjUt3GrtCb7lkc1Zmdi0gJzrOEUSCiqmPd5+yewZl9pwQ4WVUrOrP/Te20EaeR\nk57DhMETyE/v3EC1WDRKuiedgdntj1zvl9WP3477baeO0V3SAz7SA4lPTqOAxpzPgdFIrNMzWhhj\njNm4dke5d3nnTkEfq6plLZbdDpSr6q3ixPoVqOpV7e0n1Ua5BxvqCdXX893Mj1j5/begSvHQYQzf\n9wDSA5mkZ6XGVWo0HKW6PEj58loGbJ/fqst9c6SqhINR0vzebnscz6QM+4Uwm7WNPbZWQ/ypApu6\n3NudeqyNgv4tcKCqrnRnJXpXVdtNkkmlgl5XWcF7TzzCtx+/Tyy6/kyAIh623X1PJp53EdmF3ZtL\n3lAbQkTIyOrewXShaIgfKn/gy9IvmTR00mY9V3wi1q6o5aMXvmfc0cPou3VOpx7HMykrpX4ZROQ4\nYGF3xXi66WFnqeplG105CUTkGGCke7FYDLyGM+f8ZcDVwOmqWrkp2tZTNjbKvas3axWYKiIK3K+q\nDwD9VLVp2thVOBPpbxHqKit4/uZrKVtaEvd91Rjfz/6Ysh9LOOWGW7utqNdWBpn60AK8acJBk4eT\nk9/+iPxQ1JlW1u/d+BV1VbCKn037GRXBCgozCpk0dFK3tHlTiMVizHlrKUsXlOPxCJPOH0WahcSY\n1HUcTtHrloKuqrNxUtg2CVV9FSd8BdblkZ/vvm5r2teU0vE8zo7Zz52Q5nCcKQfHt3xTne6BuF0E\nInKhiMwWkdmlpYlniG+uQg0NzHjqsTaLeUuVq1fy1gP/oLGutsvHrWqsYsmCMlZ+X8myryv44fvl\nlDeWt7l+eWM5d86+k79//ncqGjc+tCHdm85JO5zE8MLhjC7u3WMkPR4Pex69DcP36c8+J2xnxdx0\nmztPOer0O085quTOU46KuV+7Iw/9pyIyy50a9X53LvZ73b+bC0Tkjy3WvVVEvhKRuSLyFxHZB+dR\n5Dvc7bdt4xgJ5Ze7yw4Ukdfc7xPO8xYns/0VcTLCvxOR61u897I4meoLROTCFsvjZYifLU6ue7w8\n8hJxImARkbPcn8OXIvJE5/8FNj9JLeiqutz9ugZnvuBxwGpZF3bfH1jTxrYPqOpYVR1bXFwcb5Ve\nJdhQz9cfvJfw+iVffEawfmOhQO0rayjjF9N/QWBwjIzsNLLy08nt76cu1PZ+Kxsreeqbp5iyYArV\noeqNHiM3PZdzdjqHew6cwncrvKyubuxSmze13KIAB/10OAVbpcY4BrPpucW7VR56V4q6iIwATgH2\nVdVdcAYenwH8XlXHAqOBA0RktIj0wQknGeU+mXSTqn6EczV7pZvZ/UMbh0oovzzOdh3N8x6HE+06\nGjjJ7b4HONfNVB8LXCYifaTtDHEA2sgjb/q5jcLJdT/I3XbDyWp6taQVdDeNJ6fpe2ASMB/nl2iy\nu9pk4JVktWFzsuizmcSiHUicVWXBO9PQWKzTx2wINzC3bC43zP8DR/x2Rw7+5bZ8HZzX7mNv+en5\nHD70cI7Z9hhy0hK745KVlsVDM5Zw5sOzuOKZL6isD3W6zZsDGwxnull7eeidNRHYHfhURL5wXw8D\nThaROcDnwCicDPMqoBF4WER+QuugmPbsJCIz3EeXz3D3Cevyyy/AyTvfUB7wnBu2cleL7doyTVXX\nusX3RZw8c3CK+Jc4qWSDge1pO0M8EQcBzzWN6+rgtpu9ZPYp9gNecgcV+YCnVPVNEfkUeFZEzgOW\nACcnsQ2bBY3FWPn9wg5vt2bJYiLhEGnp8Z9vr6+uQmNKVn78R+Zy/Dn8ZuxvWFqzFH+Ol4KMIgbJ\nkXHXDdbXEQkGycvN5fq9rwdxCnUiRISdBzoT3ezUP5c0b7Lv5BjTqyQjD12AKap6dfMCJ4JzGrCH\nqlaIyGNAhqpGRGQcTtE/EbgEp7Al4jE6l1/e0TzvDW+9qogcCBwM7K2q9SLyLtC5yT62EEkr6Kq6\niDgzzKnqWpxfLNMGr8/HDnvtR5/BW7cxwsAZYPfqnTfTUFPNKdffSlZB69Hl+Rn5nDnyTGIaw+dp\n/U+tqpTWBPHEQix6fxpfvPkax191HcVbbzg188YduGMxM6+eiD/NQ5bdezampaU43ezxlnfWdOAV\nEblLVde483sMAer4//buPD6uqv7/+OszmWSyNkvTlRZoaVkr67CDsggtgkVEBazSKogiiAJ+Bfzy\nVUT9iX6/giLw9YuAoKhlE0W2WqFAZSmEtTstbekW2uzNnsnM+f1xb9o0zZ6ZzHT6fj4eeczMuefe\ne3Kb5pNz7rnnA3VmNgZv7tILZpYP5Drnnjazl4E1/jH6k2+8a77vTbAjfzmwyMzOwus9dzbQfN5n\n+N9DM95kva/ipXit8aV57AoAACAASURBVIP5gXg9c/B663eZ2STn3FozKxlAT/t5vI7mrc65qgHu\nm/LUlRoGFggwZvKUftf/1Lf+g/ySkZgZkUj3w9exaJSPPlhFTflmIm2tPR4rYIFugzlARX0rZ9/+\nb55fson3X11IfVUFG5Yt6Xc7OyvIzmRMYTbFuan/rLnIMIt7PnT/UbMb8Z4ieg+vZ96KN9S+Avgz\n3rA4eEH5Sb/ev4Fr/PK5wH/4E9e6nRTHwPKXdzbQfN6vA48B7wGP+TPmnwWCZrYcuAUvkPeWQ7xP\nzrmlwE+BF/19b+3vvruDhC4sEy/p8Bx6fXUl91x5yS7Pnnfngptu4aGbrgfg0jvuo3DU6F3qRFpb\nqNvyEW0tLZTsNYHsvIGvfb51Wwtn/XohYwuz+cMXplLxwfvsPe3QYU3PKrIbGfTkCn8C3E750K99\n6EnlQ8ebnY63XsmVyW7L7k5jo8MklJPH/sefzIp/v9BrvdzCIgIZQcKfPp+MzCBZ2d3fMsoMZVO6\n975DalNpfoinv30y7dEYoZwsDjxx7C51YrEYgYAGckSGwg/eCuCSUArowyQrJ4dTvnQJFevWULWx\n+1tno/aZxHHf+jpPb32R6Z8+i3G54whmxm9lt6rmKmIuRnF2McFAkEDAGDOi+z8YalpqeGrNU6ys\nWcmsg2YxuXByvxaa6SrW0kK0rg6iUQIFBWQUDH9iGRHpnQ1Dvm8zmw78vEvxWj8F6/3xOs+eTEPu\nw6yxpobn7/8tqxa9inM7P5J28pXf5Oc19/J+zftMLpzMvdPv3SU3+mBVNlcy+5nZVLdUM/ecuewz\nors5Op5oLMo9S+7hjrfvACA7I5unPvsUo3N3HfrvqrkhwtYPtxHMClC6Vz6xD1by4axZuLY2xv34\nx4w4dyaBLN1nl92SnmeUlKYe+jDLKy7mzK9fxSe+fCkrXn6RLWtW4RyU7r0vkw89ivFlz/B+zfuM\nyxtH0Px/nvot0N4CmbmQP7hFdpoiTayv90YGllct7zWgt0XbWFK5Y3JcS7SFbW3b+gzozjmWv7yZ\nVx/31qj43HVH4R5/HNfmTeyreWgu+aefTqBEAV1EJN4U0JMglJtHKDePY879HNFIBIcjmOkFuZtO\nuIm61joKQ4UUZRdB7Xq490yoL4dxh8GsRyG/755yVyOyRnD9MdezuWEzx4w7pte6OZk5XHjAhby0\n8SViLsakEZP6lR7WxRzVH+1Yha5qcyP7nnMONQ8/DO3t5M44h0ggSz90IiIJoCH3VLfgZ/DiLTs+\nf+kxmPLJQR3KOYdzrl+T3JoiTVS3VFPZXMnEgomMzOlfopiGmhYW/HEFmaEMPn7h/mQFo7RWVBNp\nbGVrJUw4YiK5I9RDl92ShtwlpamzlOpGjN/5c97g17U3s36nA83NzCU3M5cJBRMGdI784mzO/No0\nzCAr2/vxirgg5LQzYUKGgrnIbsJf4e1J59y0Puqc4Jz7s/85qSlU93QK6KnuwLOh8n348BU47CIo\n6vned0u7d687YAFGhkZSV9HMu89vYMIBxex1YDHZufHNhd6TUM7OP1Y5+Vnk5CuQi6ShfYEv4j+S\nl+wUqns6PWCcwlobG2mMZNB+8vdg1iNw1GzI2fVedm1rLU2RJj5q/Ijpj03n8n9dTmVjFY//8i2W\nvLiJZ+9eQkN1C/Wt9TS0DT0l63Brrm+jsa6V9ra+F+UR2VOY2b5mtsLM/mRmy83sUTPLNbPT/dXf\nFpvZfWYW8uuvM7Nf+OWvm9kUv/x+M/tcp+Pu8kvCP9dCP2XpW+alXwVvBbeT/TSlV3dJoVripz99\nz8xeM7ND/fKb/Ha9YGZrzEy9+ThRQE9R7ZE2Fi+Yz93f/Arrli6DvFIIhnapV9FUwdULrubBZQ/S\nGGmkPdZOdUs1zhyR1h0BsLUlws2v3cyNL99IVXPVcH4rQ9Lc0Ma/HljOH/7zFWq3DCRJlMge4QDg\nLufcQcA2vGVd7wcucM59DG8U9vJO9ev88juAXw3gPFuBM5xzR+Klbb3dL78eWOinKb2tyz4/At72\nU7Z+H/hDp20HAtPx0qb+0F8rXoZIAT1FRSMR1i9+h1i0nfVL3+sxjeoHtR9QtqWMu969i1E5o3j6\ns08z9+y5lISKOedbhzFuSiFHnbUPrQX11LXVUd5YzqLyRbscp66pjRdWbmXBiq0plf40FnVUbWwg\n1u6oq2zueweRPcsG51zHmu0P4iW+Wuuc60jv+ADw8U71/9Lp9fgBnCcT+J2fRvURvLSsfTkJ+COA\nc+55YKSZjfC3PeWca/XTmG7Fy84pQ6R76CmgpqWGba3bKAgVUJLtZU0L5eZx5jeu4qMP3mf81AOx\nHmam71+yP1cdcRXTSqeRn5XP6Mwdj7SNnVzIpy4/lGBWgLqGBubErqFgQhZjSnZdra2mKcKc378B\nwILvnkJRiiRZyS3I4vzvHcW2ymZGjh/4evUiaa7rY0q1QG+PpLhu3rfjd+7MLAB095//amALXgbN\nAF5+9aHonFEqimJRXKiHnmTOOR5e+TDn/O0cfvXmr2hu39ELzS8uYUr4uF6TpZRkl/C1Q7/G8eOP\nJzczF/BWeqtsrqSurZbsvEyCmRnUrW/j7cc389L/rSMntmtgzM3KYMyIEKMLQuRlZcT/Gx0kCxgF\nJdnstX8x2fkalRPpYm8z6+hpfxFvQtq+HffHgS8DL3aqf0Gn11f99+uAjnzmM/F6410VAuXOW97y\ny0DHL4neUrAuxEu5ip/bvNI5t61f35UMiv4qSjIz275oS1GoiEAc/sbaUL+Br8z7ClOLp/Kzk35G\nUaiIknG5hHKDFI7OISO4a8AeVRDiyW+dBBilmpEusrtYCVxhZvcBy4Cr8NKMPmJmQeAN4Led6hf7\naVRbgYv8st/h5VZ/Fy9laSO7ugt4zMwu7lLnPSDq73s/XvrWDjcB9/nnawJmD+1blb5oYZkUUNda\nR1OkiexgNsXZxUM+3t9X/50bX74RgOc//zzrtq3jpfUL+cqUS8nJzCanQAFbZBBSamGZ/jwn3qX+\nOrw0pZUJbJYkkXroKaAwVEhhqHBIx2iPtNFSX099VSWfKDqWO076Fc0Bb1nZW9+8lSWVS1jf+CE/\nP7lrsiMREUkHCuhJEolFaIu2kZeZ12OdiqYKIrEII7JGkJ/V+4SwrWvX8MiP/5P2tlYw45OXfpMT\nTj4VghlcfeTV3P3e3Vx+2OVkB7tPlyoiuxfn3DqgX71zv/6+CWuMpARNikuCbW3beOz9x7jupeso\nbyzvtk5VcxWXzLuE6Y9N354lrSdNdbX88+7feMEcwDleuP93tDY2kpmRyZFjjuS2U29j/+L94/2t\niIhIilBAT4LmSDM/XfRTXtz4InNXzO2xXjAQJGABMmzXSWwtTY1sbdjC02uepj6jZZebe+2RNqLR\n9u3HKcgqoKalhoqmCtqj7bTH2uP5LYmISJJpyD2OItEINa01xFyMolBRj8PbWRlZnDflPBaVL+Ls\nyWd3W2dkzkjuPvNuItEII0IjdtrW0lDPB8ve5vdNTzDvw3mcOP5Erpp1Mc/c8v+21xk9aT8ys3ac\nv6q5isvmX8Y5k8+hMFTIksolXHH4FX1mUatvifBRXQtZwQCjC0LkZOlHRkQkFem3cxxVt1Tz6b99\nmkg0wlOffYrx+eO7rVecXcx3w9+lNdq6fSGZ7pTmlHZb3h6J8GFZGR87/mDmMY8jxhzBxMkHc9KF\nF7PqjVcZu99UjjvvAnILd0y0i7kYG+o3cOioQ5nz7BwADht1GOdOObfX72nLthbOuO0lggFj4fdO\nVUAXEUlR+u0cZ845YsSIue6Xau3QtddNcy3Ul0NbI415k6hY/yGj9plELDdIRVMFOcEcQhkhCkOF\nhHJyOeDYk5gYbWH+Z/9JTlYuBaFCjp75WQ49fTrB7Bwys3Z+NK0oVMRfZ/4Vh+P0vU9nZc1Kjhxz\nZJ/fT1YwQDBgZGdmEAik1FM7Ins0M5sB/BpvkZd7nHO3JLlJkmR6Dj2O2qJt1LTUEHVRikJF21du\n61PDVi+Yt9YTWfMK85fA8pdf4pz/+iGrcrawvn49h446lFgsxqSiSUwsmAhAtD1CRnDgq6fVtdYR\niUUoyS4hYL1Po2hua6e2OULAjJK8LDIzNO1C9lgp8xetmWUA7wNnABvxFpC5yDm3LKkNk6RSDz2O\nsjKyGJM3wBwDrQ3w/I/hrT/AuMMJTL+F0XVrWA7kjCvlhie/CsD/ffL/qIvUsWHbhu0BfTDBHBjQ\nM+85WUENs4uknmOA1c65NQBmNhc4F2+1ONlD6Td1skUjUL3Ge1/7IRmReqaNbuKAO++lNRRg5n4z\n2dywmf2K9mNt3VoOLDkwue0VkVSwF7Ch0+eNwLFJaoukCAX0ZMsthvPuhnfnwuRPwAfPkX3QTLKL\nSynIyOD6Y64nGotSlF008N5/ElU2tLKtOcKI7ExKC3bN4y6ypwmHwzPxhsjnl5WVPZHs9kj6UUBP\nBYV7wcevhVgUxnwMMncEwIKsnhIZpa665jZufHwxzy7dwslTRnL7RUdSnKf142XP5QfzvwC5wFfD\n4fBFQwzqm4CJnT5P8MtkD6YZTqkkkLFTMK9urmZr01aaIk1JbNTARaKODTVeGtiNtS20x3qf8S+y\nBzgDL5jjv54xxOO9AUw1s0lmlgVcCKjXv4dTQI+zhrYGtjZtpbaldqfy6pZqnvzgST6o/YD2aN+r\ntNW01HDjyzdyxqNnsKRySaKamxCl+SF++6WjuG7GAfx+ztGU5mvIXfZ48/FSiOK/zh/KwZxz7cCV\nwDxgOfCwc27pkFoouz0F9Dh7tfxVTn/kdG5/+3Ya2hq2l89fN58b/n0Ds56eRW1bbfc7OwftrRCL\nEY1FWVG9gpiLsbJ65TC1vn8a2hoobyinoqkCgKZtbax9r5KmutbtdSaW5HL5KVPYtzQPs5R52kck\nKfzh9YuAO4ChDrcD4Jx72jm3v3NuP+fcT4fcSNnt6R56HDnnWFyxGICllUtpi7Zt33bwyIMJBoJ8\nrPRju67N3lQFTdXw5u+hbiPkFFN83BU8MP33rKxdxVFjjoprO9tj7USiEXIycwa1/6qaVcx+djZj\n88byyNmP8tYTm1n2781MOWo0p118EJmhXdeeF9nT+UFcw+KSMArocWRmzDlkDoeNOoxDSg+hJGfH\nsq5Ti6cy7/x5BANBirOLAW9YPau5ltx/XI2tWbDTsTLevJ+J+5zAxPN/D379eKhvq+eZtc/wWvlr\nfO/o75ETzBlwLvZNDZtwOCqbK4nSzoQDi1m56CMmHlRCRlC9cRGRZEj4SnH+ikZlwCbn3DlmNgmY\nC4wE3gS+7Jxr6+0YqbBSnHOOqpYqMixje0AequqqlRT99XICm97suVLhRLj0X1AwdpdNda115ARz\nyMrwZpBHY1HW1K3hhQ0vcN7U87pdC76iqYLTHjkNgGvD17JX3l58cp9PDmhYvKalhncq3mFiwUQm\n5k/E2jOItEbJzMogK0d/I0ra0l+rktKG4x76t/EmbXT4OXCbc24KUANcMgxtGLJNDZv44lNf5Krn\nr6KyuTIuxxxRs6H3YA5QtwEWPwrR6E7FG+o38J0F32Heunk0R7wZ5TWtNVzzwjXc/vbtPPFB9yN7\noYwQVx91NSeMP4EjRx/J4srFRF2027o9Kc4u5tSJpzKlaAqhYIis7CB5hSEFcxGRJEpoQDezCcDZ\nwD3+ZwNOAx71qzwAfCaRbYiXt7a+RXljOe9UvBOfx8iaagguvLV/dV+9g5g/Aa3Ds2ufpWxLGXe+\ncyeN7Y0A5AZzufDAC5lSNIVPTPhEt4caERrBrANncfMJNxOJRpgzbQ7BgAKxiMjuLtG/yX8FfA/o\nWB1lJFDrP3IB3nKFeyW4DXFxwvgTOGvSWUzIn0BBVgHNkWYa2xspzCokMyOTaCxKbWsteZl5u+RB\nb29rpb0tQiiv04zvaCtU9nP2en050WjrTn99nTvlXNbXr2fmfjO3Lz6Tm5nLeVPOY8a+MygKFfV4\nuFAwRH50JBNyCyGqUUQRkXSQsB66mZ0DbHXO9TGm3OP+l5lZmZmVVVRU9L1DgpXmlPKj43/E1w/9\nOtnBbJ5a+xSzn5nN4kpvVvvaurVcNv8y/vnhP2lt3/H4VvO2Ov4994/8/Zc/pXrTBnaas5DR/9XT\n2rukYx2dO5qbjr+Jo8ceTShjx3PeuZm5jMwZSUag95nmr6+t5vifPcePnlhGbVOvUxhEJMWY2UQz\nW2Bmy8xsqZl92y+/ycw2mdk7/tenOu1zg5mtNrOVZja9U/kMv2y1mV3fqXySmS3yyx/yF7DBzEL+\n59X+9n3jfQ4ZnEQOuZ8IzDSzdXiT4E7Dy91bZGYdIwM9LlfonLvbORd2zoVHjRqVwGb2X05mDqFg\niKZIEw8uf5D19et5aOVDRGIRnlv/HO/XvM/cFXNpat8xJF+9eRNvPvU3Ni5bzDN33kpz/TZvQ2gE\nTJ3ew5m6mPY5oi6X1qadh/r7Ctq9WbS2ipiDN9fX0BbVSm4iiRQOhyeHw+GbwuHwvf7r5CEesh24\n1jl3MHAccIWZHexvu805d7j/9TSAv+1C4BBgBnCXmWX4k5bvBM4CDgYu6nScnuY7XQLU+OW3+fXi\nfQ4ZhIQNuTvnbgBuADCzU4DvOudmmdkjwOfwgvxs4O+JakOiFGYV8pMTf8JfVvyFyw+7nMxAJufv\nfz6hjBCnTDxlp+Hu3KIizAI4F6NozDgygv4lz8qF46/wnj3vTWYuDR+/mSdu/W9GT5rMCV/4ErkF\nI4b8PVx68mQmj8rn6H1LKM3TSm4iiRAOh7OA+4Dz8TpQWUAbcF04HH4M+GpZWdmAh8icc+VAuf++\n3syW0/vty3OBuc65VmCtma3GS8EK3aRh9Y93GvBFv84DwE3A//rHuskvfxS4w58fFc9zyCAkYzbU\ndcBcM/sJ8DZwbxLaMCTBjCDTSqdx8wk3b+8ll+aUMmfanF3q5hWVMPt/7qDmo3LGTz2QUG7ejo35\no+GMH8P8/+r5ZEd/jYqNmyhftYLy1Ss57rwL4vI9lOaH+EJ4Yt8VRWQo7gPOAzpPrOkYVj7Pf/3S\nUE7gD3kfASzCGxm90swuxntc+FrnXA1esH+t026d5y91l4a1t/lO21O3OufazazOrx/Pc8ggDEtA\nd869ALzgv1/Djr/admv9GfLOys5m5IS9GTlh7103ZhfCkRdDyX7wrx9A1eod2wrGwcnXwrTzGRMJ\ncOx5FzBm8hQyswe3upuIDK9wOLwfXs88u4cqucD54XD4B2VlZWsGcw4zywceA77jnNtmZv8L/Bhw\n/usvga8O5tiy+9HzSsmWUwQHnQ0Tj4aWbdBcDaECyCmB3FLIyKCpqZIDZs4gM5BJKDu372OKSCr4\nMn3PUwoAF7NjCLvfzCwTL5j/yTn3VwDn3JZO238HPOl/7C3danflVfjznfwedOf6Hcfa6M+HKvTr\nx/McMghKzpIq8kdD6RSYeAyMPggKxkBGBlXNVWxq2MQPX/khvyj7BdXN1cluqYj0z0R2DK/3JAsv\nkA2If8/6XmC5c+7WTuXjOlU7D+hI1fgEcKE/Q30SMBV4nR7SsDrvcZwFePOdYOf5Tk/4n/G3P+/X\nj+c5ZBDUQ98NNLc3s3DTQgCuOOyKJLdGRPppA94EuN6CehveveOBOhFvBGCxmb3jl30fbwb54XhD\n7uuArwM455aa2cPAMrwZ8lc45y0RaWYdaVgzgPs6pWHtab7TvcAf/Ulv1XgBOt7nkEFI+Fru8ZAK\na7kn09amrfx5+Z8pyS5h5pSZvS4aIyIJM6BVmPx76Evo+R46QAtwyGDvoYt0poCeAJVNlbREWyjI\nKhhwJrOexGIxzEy5xUWSZ8D/+cLh8IN4Q9/dTX5pAh4vKysb0ix3kQ66hx5nVc1VzJk3h7P+ehaL\nyhcN/YBtzbBtE4GGLVisve/6IpJKvgo8jtcT73jevM3//DiagS5xpHvoceZw1LfVA1DbWjv0A9au\ng9+eBMFsuPJ1GKHHNEV2F/6iMV8Kh8M/wJvNPgHvnvkfNMwu8aaAHmcl2SU8dM5DlDeWM2nEpKEf\nsHoNxNqhrQGaaxXQRXZDfvC+KdntkPSmgB5nAQswNm8sY/PGxueAE4+FGT/3nlcvGB+fY4qISNpR\nQE91eaVw3DeS3QoRGYJwOJwNhIERwDagrKysrCW5rZJ0o0lxIiIJEg6H9wqHw7cBFcBTwJ/914pw\nOHxbOBwe9LCbma0zs8V+mtQyv6zEzOab2Sr/tdgvNzO73U9T+p6ZHdnpOLP9+qvMbHan8qP846/2\n97XhOocMjgJ6gjnnaKippr6qkva21r53EJG0EA6HDwMWA98E8vF654X+a75fvsSvN1in+mlSw/7n\n64HnnHNTgef8z+ClLp3qf12Gn9HMzEqAH+IlSzkG+GFHgPbrfK3TfjOG8RwyCAroCdZYW8OD13+b\ne751KU11dclujogMg3A4vBfesqbF9LxSXBZQBCwYSk+9i3Px0pDiv36mU/kfnOc1vDXUxwHTgfnO\nuWo/K9t8YIa/bYRz7jV/idY/dDlWos8hg6CAPgxisRjg2B0W8RGRuPgukNdnLW+xmjy//kA54J9m\n9qaZXeaXjfFzpQN8BIzx329PeerrSFXaW/nGbsqH6xwyCJoUl2B5hUVc/Ivf4GIxsvMLkt0cEUmw\ncDicA1xK34lZOmQBl4bD4e8PcKLcSc65TWY2GphvZis6b3TOOTNLaC9iOM4h/aceeoJZIEB+cQkF\nI0vJDIWS3RwRSbyjgNgA93F4s+D7v4Nzm/zXrXirzh0DbOnIuOa/bvWr95TatLfyCd2UM0znkEFQ\nQBcRia8ReAF6IJy/X7+YWZ6ZFXS8B87ESwTTObVp15SnF/sz0Y8D6vxh83nAmWZW7E9UOxOY52/b\nZmbH+TPPL6b79KmJOocMgobcRUTiaxsDT+Ri/n79NQZ43H/KKwj82Tn3rJm9ATxsZpcAHwJf8Os/\nDXwKWI2XFOYrAM65ajP7MV7OcoCbnXPV/vtvAvcDOcAz/hfALcNwDhkEZVsTEemffgVpfxGZCrxH\n0/qrHhitxWZkKDTkLiISR35Qvocd2dX60gbco2AuQ6WALiISf/8NNNL3vXTn1/ufhLdI0p4C+jCr\nb6tnWeUyVtWsojHSmOzmiEgClJWVbQZOBWrpuafe5m8/1a8vMiQK6MPso8aPuOCpCzj/ifOpa9XK\ncSLpqqys7F1gGnAn0IA36a3Of633y6f59USGTLPch1lOMIegBcnMyCTDMpLdHBFJIL/nfU04HP4+\n3lrmo/Ce235d98wl3jTLfZi1tLdQ21pLwAIUh4rJzMhMdpNEpH8GnAksHA6HgM8D1wGHABEgE1gK\n/Bx4pKysTFmbJC405D7MsoPZjM0by+jc0QrmImksHA4fA2wG7sIbeje8ZV7N/3wXsDkcDh890GOb\n2QF+2tSOr21m9h0zu8nMNnUq/1SnfW7w05SuNLPpncpn+GWrzez6TuWTzGyRX/6QmWX55SH/82p/\n+77xPocMjgK6iEic+UH6eaAE6CmJQ4G/fcFAg7pzbqWfNvVwvKVmm/CWfwW4rWObc+5pADM7GLgQ\nb5RgBnCXmWWYWQbevfyzgIOBi/y64I0g3OacmwLUAJf45ZcANX75bX69eJ9DBkEBXUQkjvxh9mfp\nX7Y1/HrP+vsNxunAB865D3upcy4w1znX6pxbi7ea2zH+12rn3BrnXBswFzjXX4r1NOBRf/+uaVI7\n0qc+Cpzu14/nOWQQFNBFROLr83j3yQciC/jcIM93IfCXTp+vNLP3zOw+f+10GHhq05FArXOuvUv5\nTsfyt9f59eN5DhkEBXQRkfi6jp6H2XuSD1zfZ60u/HvOM4FH/KL/BfYDDgfKgV8O9Jiy+1JAj7Pa\nlloWblzI46sep7qluu8dRCRthMPhDLx7yINxiL//QJwFvOWc2wLgnNvinIs652LA7/CGu2HgqU2r\ngCIzC3Yp3+lY/vZCv348zyGDoIAeZ4srF/PN577JD175AXe9fRet7QN8IqWpBlb/Cza/A21aSU5k\nN5OP92jaYLQzsIQuABfRabi9I0+57zy8lKrgpTa90J+hPgmYCryOlwFtqj/bPAtv+P4J5z3PvIAd\ntwG6pkntSJ/6OeB5v348zyGDoIVl4qyqpWr7+4rmCtpdOyEGMNelqRIePB8CGfCdJZDV/byaprpW\n2iMxsnKDZOfq8TeRFNHAwO+fdwj6+/eLnwf9DODrnYp/YWaH460Rv65jm3NuqZk9DCzD+8PhCudc\n1D/OlXg5yzOA+5xzS/1jXQfMNbOfAG8D9/rl9wJ/NLPVQDVegI73OWQQtLBMnFW3VPPbd3/LlsYt\n3HDsDYzNGzuwAzRs8QJ6wXj4zJ2QN2qXKk31bTzxq3eo2tTAmZcewtTwmDi1XkR60d/0qYvxnjMf\nqCVlZWUfG8R+IoB66HFXkl3Cd8PfpT3WTm5m7sAPkD8Gvvw4WAbklnRbxcUcjbXeUP62Kq0eKZJi\nfo63aMxAJsbVA7ckpjmyp0hYQDezbOAlIOSf51Hn3A/9eytz8R5ZeBP4sv9sYtrIysgiK2MICx51\n0yvvLKcgi89/P0xNeSOj9xkx+POISCI8Avx6gPtE2PE8tsigJHJSXCtwmnPuMLxHKGaY2XFoZaAh\nCwSMESNz2GdaKTkFWilRJJX4a7PPwMtz3h+NwAyt6S5DlbCA7jwdEzwy/S+HVgYSkTRXVlb2Bl4+\n9Gq84fTu1PvbT/XriwxJQh9b89fxfQcvXeB84AO0MpCI7AH8ID0euBzv8TGHN7TugMV++XgFc4mX\nhE6K8x9ZONzMivASBxzY333N7DLgMoC99947MQ0UEUkgfxj9T8Cf/EVj8oGGsrKyaHJbJuloWGa5\nO+dqzWwBcDz+ykB+L73HlYGcc3cDd4P32NpwtFNEJFH8IF6X7HZI+krYkLuZjfJ75phZDt4CCMvR\nykAiIiJxl8gev0GIjAAABvtJREFU+jjgAT8XbgB42Dn3pJktQysDiYiIxFXCArpz7j3giG7K17Aj\nYYCIiIjEgZKziIiIpAEFdBERkTSggC4iIpIGFNBFRETSgAK6iIhIGlBAFxERSQMK6CIiImlAAV1E\nRCQNKKCLiIikAQV0ERGRNKCALiIikgYU0EVERNKAArqIiEgaUEAXERFJAwroIiIiaUABXUREJA0o\noIuIiKQBBXQREZE0oIAuIiKSBhTQRURE0oACuoiISBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iI\npAEFdBERkTSggC4iIpIGFNBFRETSgAK6iIhIGlBAFxERSQMK6CIiImlAAV1ERCQNKKCLiIikAQV0\nERGRNJCwgG5mE81sgZktM7OlZvZtv7zEzOab2Sr/tThRbRAREdlTJLKH3g5c65w7GDgOuMLMDgau\nB55zzk0FnvM/i4iIyBAkLKA758qdc2/57+uB5cBewLnAA361B4DPJKoNIiIie4phuYduZvsCRwCL\ngDHOuXJ/00fAmOFog4iISDoLJvoEZpYPPAZ8xzm3zcy2b3POOTNzPex3GXCZ/7HBzFb2capCoG6A\nzevPPr3V6Wlb1/Lu6nUu67q9FKjso10DlcrXp7uy3j4n4vr01K547LMnX6P+1h/oNUrG9XnWOTdj\ngPuIDB/nXMK+gExgHnBNp7KVwDj//ThgZZzOdXci9umtTk/bupZ3V69zWTf1yxLwb5Gy16c/16zL\n9Yr79dE1Ssw16m/9gV6jVL0++tJXMr8SOcvdgHuB5c65WzttegKY7b+fDfw9Tqf8R4L26a1OT9u6\nlndX7x99bI+3VL4+3ZX15xrGm65R3wZ6jv7WH+g1StXrI5I05ly3I95DP7DZScBCYDEQ84u/j3cf\n/WFgb+BD4AvOueqENGI3ZWZlzrlwstuRqnR9+qZr1DtdH0lHCbuH7pz7N2A9bD49UedNE3cnuwEp\nTtenb7pGvdP1kbSTsB66iIiIDB8t/SoiIpIGFNBFRETSgAK6iIhIGlBAT3FmdpCZ/dbMHjWzy5Pd\nnlRlZnlmVmZm5yS7LanIzE4xs4X+z9IpyW5PqjGzgJn91Mx+Y2az+95DJPUooCeBmd1nZlvNbEmX\n8hlmttLMVpvZ9QDOueXOuW8AXwBOTEZ7k2Eg18h3Hd7jkHuMAV4jBzQA2cDG4W5rMgzw+pwLTAAi\n7CHXR9KPAnpy3A/stISkmWUAdwJnAQcDF/nZ6TCzmcBTwNPD28ykup9+XiMzOwNYBmwd7kYm2f30\n/+dooXPuLLw/fH40zO1Mlvvp//U5AHjFOXcNoJEw2S0poCeBc+4loOtiOscAq51za5xzbcBcvF4D\nzrkn/F/Gs4a3pckzwGt0Cl6K3i8CXzOzPeLneiDXyDnXsbhTDRAaxmYmzQB/hjbiXRuA6PC1UiR+\nEp6cRfptL2BDp88bgWP9+52fxfslvCf10LvT7TVyzl0JYGZzgMpOwWtP1NPP0WeB6UARcEcyGpYi\nur0+wK+B35jZycBLyWiYyFApoKc459wLwAtJbsZuwTl3f7LbkKqcc38F/prsdqQq51wTcEmy2yEy\nFHvE0ORuYhMwsdPnCX6Z7KBr1Dddo97p+kjaUkBPHW8AU81skpllARfiZaaTHXSN+qZr1DtdH0lb\nCuhJYGZ/AV4FDjCzjWZ2iXOuHbgSL3/8cuBh59zSZLYzmXSN+qZr1DtdH9nTKDmLiIhIGlAPXURE\nJA0ooIuIiKQBBXQREZE0oIAuIiKSBhTQRURE0oACuoiISBpQQJeUZ2avJLsNIiKpTs+hi4iIpAH1\n0CXlmVmD/3qKmb1gZo+a2Qoz+5OZmb/taDN7xczeNbPXzazAzLLN7PdmttjM3jazU/26c8zsb2Y2\n38zWmdmVZnaNX+c1Myvx6+1nZs+a2ZtmttDMDkzeVRAR6Z2yrcnu5gjgEGAz8DJwopm9DjwEXOCc\ne8PMRgDNwLcB55z7mB+M/2lm+/vHmeYfKxtYDVznnDvCzG4DLgZ+BdwNfMM5t8rMjgXuAk4btu9U\nRGQAFNBld/O6c24jgJm9A+wL1AHlzrk3AJxz2/ztJwG/8ctWmNmHQEdAX+CcqwfqzawO+Idfvhg4\n1MzygROAR/xBAPBy0ouIpCQFdNndtHZ6H2XwP8OdjxPr9DnmHzMA1DrnDh/k8UVEhpXuoUs6WAmM\nM7OjAfz750FgITDLL9sf2Nuv2ye/l7/WzD7v729mdlgiGi8iEg8K6LLbc861ARcAvzGzd4H5ePfG\n7wICZrYY7x77HOdca89H2sUs4BL/mEuBc+PbchGR+NFjayIiImlAPXQREZE0oIAuIiKSBhTQRURE\n0oACuoiISBpQQBcREUkDCugiIiJpQAFdREQkDSigi4iIpIH/D7AiKzgsi64wAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { "tags": [ - "id1_content_2", - "outputarea_id1", + "id2_content_2", + "outputarea_id2", "user_output" ] } @@ -4562,8 +4569,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"0869805e-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"07fcfa4c-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_e82b5da0b8" + "window[\"4843c1f8-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"47da0948-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_211fb40525" ], "text/plain": [ "" @@ -4571,8 +4578,8 @@ }, "metadata": { "tags": [ - "id1_content_2", - "outputarea_id1" + "id2_content_2", + "outputarea_id2" ] } }, @@ -4580,8 +4587,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"086b0730-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_fbb9270362" + "window[\"48455a0e-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_adc51871b6" ], "text/plain": [ "" @@ -4589,8 +4596,8 @@ }, "metadata": { "tags": [ - "id1_content_3", - "outputarea_id1" + "id2_content_3", + "outputarea_id2" ] } }, @@ -4598,8 +4605,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"086b5578-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_3\");\n", - "//# sourceURL=js_499e4af1c5" + "window[\"48459d16-e945-11e8-9ea1-0242ac1c0002\"] = document.querySelector(\"#id2_content_3\");\n", + "//# sourceURL=js_d134bd99bc" ], "text/plain": [ "" @@ -4607,8 +4614,8 @@ }, "metadata": { "tags": [ - "id1_content_3", - "outputarea_id1" + "id2_content_3", + "outputarea_id2" ] } }, @@ -4616,8 +4623,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"086ba208-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"086b5578-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_921bc3a752" + "window[\"4845dcd6-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"48459d16-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_c76e6a429c" ], "text/plain": [ "" @@ -4625,8 +4632,8 @@ }, "metadata": { "tags": [ - "id1_content_3", - "outputarea_id1" + "id2_content_3", + "outputarea_id2" ] } }, @@ -4634,8 +4641,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"086bed26-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(3);\n", - "//# sourceURL=js_f5fbdd0fac" + "window[\"48465a1c-e945-11e8-9ea1-0242ac1c0002\"] = window[\"id2\"].setSelectedTabIndex(3);\n", + "//# sourceURL=js_f7ced7a9f2" ], "text/plain": [ "" @@ -4643,8 +4650,8 @@ }, "metadata": { "tags": [ - "id1_content_3", - "outputarea_id1" + "id2_content_3", + "outputarea_id2" ] } }, @@ -4653,13 +4660,13 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd81PX9wPHX+/blklwmM+yNgKio\nqChU3Kt17+KutrW1ra2j1Vqr/rTbttZZBWetirtVKU5EURQRAUWZYWbncpfb9/n9cZeQkEEScklI\n3s/Hg0e47/x8Q8j7+5lvMcaglFJKqb2bpbsLoJRSSqk9pwFdKaWU6gU0oCullFK9gAZ0pZRSqhfQ\ngK6UUkr1AhrQlVJKqV4grQFdRH4sIl+IyEoRuSa1LU9EFojI16mvueksg1JKKdUXpC2gi8gk4HLg\nIGBf4CQRGQ1cDyw0xowBFqY+K6WUUmoPpLOGPgFYYoypNcbEgHeA04BvA/NSx8wDvpPGMiillFJ9\nQjoD+hfA4SKSLyIZwAnAEKC/MWZb6pjtQP80lkEppZTqE2zpurAxZrWI3AW8AQSAz4D4LscYEWl2\n7VkRuQK4AmDixIkHrFy5Ml1FVUqptpDuLoBSrUnroDhjzD+NMQcYY44AKoE1wA4RGQiQ+lrSwrkP\nGGOmGWOmud3udBZTKaWU2uule5R7v9TXoST7z58EXgLmpA6ZA7yYzjIopZRSfUHamtxTnhORfCAK\n/MAYUyUidwL/FpFLgY3AWWkug1JKKdXrpTWgG2MOb2ZbOTA7nfdVSiml+hpdKU4ppZTqBTSgK6WU\nUr2ABnSllFKqF9CArpRSSvUCGtCVUkqpXkADulJKKdULaEBXSimlegEN6EoppVQvoAFdKaWU6gU0\noCullFK9gAZ0pZRSqhfQgK6UUkr1AhrQlVJKqV5AA7pSSinVC2hAV0oppXoBDehKKaVUL6ABXSml\nlOoFNKArpZRSvYAGdKWUUqoX0ICulFJK9QIa0JVSSqleQAO6Ukop1QtoQFdKKaV6AQ3oSimlVC+g\nAV0ppZTqBTSgK6WUUr2ABnSllFKqF9CArpRSSvUCGtCVUkqpXkADulJKKdULaEBXSimlegEN6Eop\npVQvoAFdKaWU6gU0oCullFK9gAZ0pZRSqhdIa0AXkZ+IyEoR+UJEnhIRl4iMEJElIvKNiDwtIo50\nlkEppZTqC9IW0EVkMPAjYJoxZhJgBc4B7gL+bIwZDVQCl6arDEoppVRfke4mdxvgFhEbkAFsA44E\nnk3tnwd8J81lUEoppXq9tAV0Y8wW4A/AJpKBvBr4BKgyxsRSh20GBqerDEoppVRfkc4m91zg28AI\nYBDgAY5rx/lXiMhSEVlaWlqaplIqpZRSvUM6m9yPAtYbY0qNMVFgPnAYkJNqggcoArY0d7Ix5gFj\nzDRjzLTCwsI0FlMppZTa+6UzoG8CpotIhogIMBtYBbwFnJE6Zg7wYhrLoJRSSvUJ6exDX0Jy8Nun\nwIrUvR4ArgN+KiLfAPnAP9NVBqWUUqqvEGNMd5dht6ZNm2aWLl3a3cVQSvVt0t0FUKo1ulKcUp0g\nWlpKcMUKYpWV3V0UpVQfpQFdqT0Uq6xky49+zIYzz8L/9tvdXRylVB+lAV2pPSQ2G87x48FmwzFi\nRHcXRynVR2kfulKdIFZZiYlGsWZlYXG7u7s4Kj20D131aLbdH6KU2h1bbm53F0Ep1cdpk7tSSinV\nC2hAV0oppXoBDehKKaVUL6B96KrPiVdXE/f5EJcLu+YJUEr1ElpDV32Of/Fi1h59DBvOPodYWVmT\n/cYYwuvWsf2224hu29YNJVRKqfbTgK76nNiOHQCYWIy4Raj1VZOIx+r3J2pq2HHb7VQ+/gRlDz7Y\nXcVUSql20SZ31ed4TzkF59hxmDGjePfZp9i+dg1jph/GlNnHkZHtxeLxkH/l9zDxGHnnndfdxVVK\nqTbRhWVUnxSs8fHiH25ny5cr67cdfOpZTD/9XGx2OyYWI1Fbi4nHCa1ejS0vD8fQoVgyMhpdJ1ZW\nBiLY8vO7+hFU19OFZVSPpk3uqk+KRSKNgjnAVx8sIhzwA8nlXK3Z2YRWrab4kktZf9rpxKuqGl+j\ntJQN51/AxjkXES0tbbQvEQoRXLmKqpde0oQtSqkuoQFd9UlisZKZ27hWnV80BJvD2WibNTMTrFas\n2dkgjStocX+A6MaNRL75BhMON95X7WPDOeew7RfXEXj//fQ8hFJKNaB96KpPyvBmc/JPb+CF3/+W\noK+avMFFfOuiK3Du0qSeiIQZ/sQTGAzG1vi/iy0vl8F/+xvisGPNymq0T2xWnKNHE1m7FueYMWl/\nHqWU0j501efEKioIrliBbchQ4tmZxBMJbE4nHm9Ok2Pj1dVEdpQQy/CwqDTOfiMLGeB1te0+ZeWY\nRByr14vF6dz9Caqn0z501aNpDV31KXG/n5Lf/4Hq558HYOi8uXgPPrjZ40wohCUjg/KCwWzbtJ1J\ni14jsaYftUfNJiN/98lYbAU6UE4p1XW0D131KSYSIbR6df3n0OovmxwTq6yk9O672XD+BZTPe5Tc\nRIj+vhL89/yN6l/fhLU20JVFVkqpNtGArnqNqtoIG8sDlPhCGGNIxOPEY9FGx1izsxlw803YCgtx\nTdqH7OOPq98Xq6wkUlxMoqaG2I4dRDdupOzuu7FWVdBv7AicY8fiPfccqjNzWbm1mk82VlLiCxGO\nxrv6UZVSqgltclc9Sm0khj8Uw2mz4s2wt+vc974u4+qnltE/28nrVx3AV+/8j5qyUmacejZSWQki\n2AcOxDV5MiPmPwdWK7a8PABilVWU3PU7ql94AXE6KfrbX4kUbya8ejWC4BzQn6GPzqM4YuXM+5ew\npSoIgMdh5f4LD+DAEXk4bdZO/34opVRbaQ1d9Sgfb6jg0Dvf5IH31hIIx3Z/QgPl/uTUsZpQDBMJ\ns+ipeSxf8B8IBFh38imsO/kU4tXVWOx2bIWFBDOy+GBtGa+v3I4vYaH6hRcAMOEwVc/NJ+uo2eRf\n/UNshQUAVNvcfP+pZfXBHCAQiXPpvKVU1UabFkgppbqQ1tBVj/LNDj95Hgcfrqvg0hkJPO0YHH7K\n1EGMKPAwLN+Dwx5l0pHHUFNWisXhwD5oIFisSIOpZ75glHMfXALAgh/PwD5kCNHiYgBckyfhPO5Y\n7J5MrF4vALWROKu31TS5bziW4MttPvpnt230u1JKpYMGdNVjVAYijCjM5JGLDqQgy0Gex9Gu8/M8\nTmaO61f/edZ3L8PEE1jdGQx58l+IgK1BulSHzcrkwV58oShZiQjev/2V8OrVmESCrJkzsRUUNLq+\nRVqetWS1aGOXUqp76W8h1WN8U+rnkrkfc9q9i+mMKb9OdwauzEyqS4I8+aeveP+NckKBnU3jhVlO\n5l58IM9ccgA8/giVwQDLfWVY9t8PRIhVVVH90ktUzZ9PtLISl4lxwLCm09WynDbG9s/c4/IqpdSe\n0ICueoxBXjf5Hgf7D8vFZmlfQDfRKKE1a6h8+t/EKioa7dv2TRW11RG++aSEeCzRaF9+phPP16tx\nHDWb/zxyL0v/8yIrFr+LJTOTWEkJW39xHSYSoerRx6j67nn8+dhhTB7srT9/QLaLJy+fTm47WxOU\nUqqzaZO76jEGeF28ds3hWC2Wdje3x6uqKL7scmIlJVg8HrwnnVi/b+TUQmLRBING5+DKaPoj7xg2\nlER1FfsedTwr3nyDcYcdgcXpxOr1Yh86FPuQIVTMexTvL65Ftq3nvumZxEdOJW7A47SR73FiTb2A\nmEQC0eZ3pVQ30ICuOswYw4byWp5cspFLDhvBwBz3Hl3PahEKszo2sExcLrxnnEHNG2/gnjK50T5b\noILBG/+HZ+B0hNFA4+ll9oEDsWRmMqWoiIlHHIk7K5u4z0dw5UqG/OMeoiUl5N31f8z/5z3Y7HZO\nufAKsgg3WQkuVlFB+UMP4Z48Gc+Mw7FmaTO8UqrraEBXHeYPx/j1i1/w7tdl1Ebi3HrcaKzuPQvq\nrYnH4wR91QC4s71YrVbi8QQbK2pZtbWGmRdcSO655zYJtBXz5lHxyFyqhg1j+BOPY9llsBuANSsL\nK1A3qD4aCLDl+z8AYOR//0MkGqFqxzZEBEtBPtbcpn3pkfXrqXj4ERBh9LvvaEBXSnUpDeiqwzLs\nVq6cNYpQLMH5kwso/etfKbjsMmz5+QSjMXy1MaxWoSCz5blnJb4Q/nCMfI8Db0brzew1pSU8dv2P\nALjwrr+S038g5YEIFzy0hK3VIe46fQrTR+YxrMFo9EQoRO4FF5Bx4IHEAwEsu2RTa4k4HHhmzSLy\n9RrE4cCdlcUFt/8Ji82GKyu72WZ1x7BhZB1/PO7Jk7E4tE9d9Wwicgow0RhzZ3eXRXUO7exTHWa1\nWjhweB73nToO103XUvnIXBJ+PwBf7/Bz2F1v8qOnllERCDd7fmlNmNPuXcyRf3yHldt8u71f6cb1\nRIJBIsEgpRvXA+CyWzlxykCG5mUwqtDDK8u3NjontGo16447norHHsdzyCFtDui2/HwG3fl/DPvX\n09gHDsRdUED/UWMoHDYCZ3Z28+cUFDDw9tvIveD8+rnrSnUFSWrX73NjzEsazHsXraGrPWK3Wsi2\nC+aoIzGzjsCSCnYby2uJJQzflPiJJ5o/1yKQ7bIjEiTTufsfxUFjxzP+sJlgDINGjQUg223nh0eO\n4cLpw/hwfQVnThvS6Bz/+4sw0Si1H30EiZ0FqSkvo3jVCoZNnoonp/nMabacpulUd8faxhcGpfaU\niAwHXgeWAAcAvxORK0n2HK0FLjbG+EXkBOBPQAB4HxhpjDlJRC4Cphljfpi61sNAAVCaOneTiMwF\nfMA0YADwC2PMs131jKp9NB+66hR1P0eSau6uCET4aruPoXkeBnpdWFqYhlbiCxGLxciUBNm5zdd8\nAWLl5ZQ/Mhf3UbOJlZQQ/WIl/X/6kxaPj/uSNX4TiVA+dy6ZM2bgnjIFS0YGIb+fl//yf2xasZwp\nRx3H7Eu/j0VHpqvd61H50FNBeB1wKPANMB843hgTEJHrSAb23wFfA0cYY9aLyFNAVjMB/WXgWWPM\nPBG5BDjFGPOdVED3AGcD44GXjDGju/RBVZvpb7FeKhGPEw2Fuux+IlIfzAHyPA4OGVXA4Fx3i8Ec\nIHvbRmqOnknF1T8gVl7e4nHBlSupeOghtl50MY6sLLKPPqp+n0kkiBQXU/H444S/+YZYZSW+116n\n7MGHQITcc8/FkplJIppcVMZqtzNi32nYHE6GjZ+EqWm6nGtXMglD0B8hFmlb1rZEwhCoDhOsiaS5\nZGovsNEY8yEwHZgIvC8inwFzgGEkg/A6Y8z61PFPtXCdQ4AnU39/DJjRYN8LxpiEMWYV0L+zH0B1\nnrQ1uYvIOODpBptGAjcDj6a2Dwc2AGcZYyrTVY6+KFwbYO0nH7Hmw0Uccf4l5A0a3N1FalFg8WIS\ngVqCS5diIi0HKPeECWQdeyyeQw7BOWpUo1HmsfJyNpx1NvHKStwHH8yAG2/E/9Zb5Jx2GrHycjbO\nuYhEZSUjXngBm9eL3elk4kGHMKJwAMEF/8O3dQe5Z5/dFY/brKqSWv43dxX7HD6YMdP6Y3e2nrUt\nUBXm33d8RNH4PA4/ZywZmXs2AC8cjGGxCnaHZovbCwVSXwVYYIw5t+FOEZnaCfdoOAimR7VSqMbS\nFtCNMV8BUwFExApsAZ4HrgcWGmPuFJHrU5+vS1c5+qJIMMh///5HAGLhMCf95AZcHk83l6p53pNP\nJrKpmIz998fSShlthYUM/L87ELsdi32XtKqJBPHq5HQ21+hRlN13H/633iK6ZQtF992LLSeHWCKB\nNWfnQDWH3cGOv/4NsVjJuOCCtDxbW3314XZKNtQQ8m9k+OT83Qb0oD/C7DkTqfVFCPujOF02rLaO\nNbbV+iK8+dhq+g3LZsq3inB52peyVvUYHwL3iMhoY8w3IuIBBgNfASNFZLgxZgPJpvPmLAbOIVk7\nPx94rwvKrDpZVw2Kmw2sNcZsFJFvA7NS2+cBb6MBvVNZbDYKh42gdON6Ruw3DVsXTqGqrI0QjSXw\nOG142jDQzVZQwICbftWm1dVaGnBmycpi8B//SPkjj+Cauh/OEcOJbdtG3qWXYMvPZ9jjj0EigbUu\n93l5OeG1ayn6y18IfPghsusLQhebNHMwwZoI4w8dhLOZlex2ldMvg61rqnj/2W+wO62cf+t0PN52\npKVroLq0lo0rytn0RTn7HD6oQ9dQ3c8YU5rqE39KROp+GH5ljFkjIt8HXhORAPBxC5e4GnhERH5O\nalBc2gutOl2XDIoTkYeBT40xfxeRKmNMTmq7AJV1n1uig+LaL1BVSTwaxZFKUNIV/OEYf3zjK+Yt\n3sCTl09n+sj83Z/USRLRKAm/H8nIILxqFcFly4hs3Ubhld+rz5pm4nFi5eUEFi+mZsECXOPHU3bP\nP3BOmMDQhx7Elt915d2VSRikHevXr/uslP/et4LsAjen/3x/MtoZ0I0xBKrCJOKGNR9tp2BIFoPG\n5OBw6cSXVuyVzc0ikpka7S7APcDXxpg/d3e5VOdL+/9eEXEApwA37LrPGGNEpNk3ChG5ArgCYOjQ\noWktY2/U0lSsdIrFE3y5rYaEgbUl/k4J6FW1EZZvrsJttzJhYDZZruZr0xa7HcnMJO7zUf7Ag/jf\neguA3LPOrA/o4XXr2Pqza8mceQRZxxyDvV8/HKNG4b71DiqsbgoSptUBfOnUnmAOMHhsDhfefghW\nm6XdwRySTe3P//FTAlURTr12f/oPb3mGgdrrXS4icwAHsAy4v5vLo9KkK17HjydZO9+R+rxDRAYa\nY7aJyECgpLmTjDEPAA9AsobeBeVUeygnw8Ffz92PrVVBhuS1Ph97a1WQ5ZurOGh4HvmtrCRXWRtl\nzsPJVsL3fjGTL6s+Y0ftDmYMmkGOq3HDTmj1asoffZS8iy8m+PnnOMeOra91G2OomDeP8Jo1hNes\nYdSbC7G4XGQ/8W+ueGIZJTVbeeLygxmev2djDRLxBNVlIXasq2bYpHzcWenp7nBm2HFmtK+rIBIM\nEg0FcXoykyv4Dc4kUFWBza6TXXqzVG1ca+R9QFcE9HNpPFXiJZJTKu5MfX2xC8qgOigRDoPF0mQg\nWtznw//uu0Q2bSL3nHOwpfqnC7OcFGa1XmOsDES4+qllfLKxkl+eOIHLDx/Z4rEeh5WheRlkOKzY\nBe7/7D6W7PiI50+e3yigG2OoeuZZal55FfugQYx47lnE6cSWGg0vIuRfdBHh1avJ/NaRWD0erF4v\nlTtqWFZcBcCbX5ZwyWEjOvR9qhP0R1n83NdkFWXiKnYwfGL3NeM3FI/F+PrjxSx68lFOuPpnDNln\nCrMuGE8iYdr9YqCU6pnSGtBTIy2PBr7XYPOdwL9F5FJgI3BWOsugOi5WXk7JX+7GVpBP3pw5VNnc\nrCv1M6owk+zaWrZe+3MAPIceWh/Q28Jpt3DMxP5sKq9l1thCtleHEIF8jwObtXFtsTDLyTPfnULC\n5yP+uzu44+izWTjlcDJrYsSoxJa3M2Dnff/7mLx83KecQtCbR7a7ce3YMXIkQx54AHG76wfY5Xsc\nnDRlINuqQxy3z4A9+XYBYHdaGHnycO5c8BVXT85lSMLUp1btTrFohDUfLMJfWc7XH3/AkH2mpK31\nQCnVPXSlONWi4IoVbDgz+b41dNEifv3WZp79ZDPfPWQYvzpyGGW3306keDNFf/kztsLCdl27JhQl\nFI3jD8c47i/vYbda+N9PZzLA2zR9au3ST9hYN7XMamXEyy+x9Sc/ZehDD2ErTPaP10Zi3PrySsoD\nUVZv83Hv+fszuahtS7f6glFiCdPuHOzNMcZw4/wVPPVxMTPHFnLPefuR2UK/f1erqSijeGXry92q\nVnX/m5lSrdAhrapF9kGDyDrmGKyFBdgcdqYO8fLcp5uZOiQHe2Ym/X/5S0wsBpnZbF9XzddLdzDl\nqCG8sqaE2RP6McDbcirVLJedLJedDeUVhGMJwrEE/nAUaBrQE7WBnR/iccQYiv7+N6x5O4OSAJGY\nYcGq5FANu7Xt/cLZ7s4LuCLCD44cDQKXzBjRpql7XSUrr4CJh3+ru4uhlEoTraH3QrFInGgkjstj\nb7Qca0fE/X4iYqUmsfM6bru10WjzQHWYJ29ZQiQYY/yhA3kjI0pVMMKfzpqKx2mjMhDh9ZXbyXBa\nmTYsj0yXjUy7hUBVJf6qSsIuL2uqEhw0Io+seJjYjh2Iw4GtXz8sLhexigp23H4HtR9/RO5555Nz\n7jnYmslmVuYP88rybYzq52FKUQ7eTgzU7WWM2ePvvepx+tw/qIgsNsYc2t3lUG3Tc6oPqlNEw3HW\nfLyd1e9v4+hLJuIt3LPsX9bMTDZu8/Gdf7zPSVMGcdOJE5pMHbPaLIzYt4CvP97BkCn5bPxoLaft\nV4QztXpZdSjK9fNXAPDMlYewtSrI7KEu5l37A8K1AWbNuZxjTvg2AOG1xaw76WSw2xm94A0sAwZg\ny8tjwK9vJhEOY8nIwNrCinIFmU4uOmz4Hj1vZ9FgrvZmImIzxsQ0mO9dNKD3MtFQjE9f24SvLMj6\n5WVMPWrP5/BvKA8Qiib4rLiKaLxpi47LY2fGGWM45NRRJKzw11H74bZb6we4ZTptnDBpAG6HlR2+\nEK99sZ0jhwwjnkqWEg0G668lTidityMZGdBg9ThrdjadudK4MSa5Ytzq1cQrKsk4+CCs+flNl5VV\nqhMMv/7V84A7gKHAJuDGDXee+GTrZ7VORF4AhpDsp7rbGPOAiPiBe4ETgG3AjSQzrg0FrjHGvJRa\nivtOkit2OoF7jDH3i8gs4LdAJcmkLmNFxG+MyUzd7zrgAiAB/NcYc72IXE5yvRAHyYxvFxpjavfk\nuVTHaZN7LxOPJSjb7OebT3Yw9aihu18SNBKAcA3YXOBufhBZRSDCulI/RbnuVvvFW1PiC7Fg9Q4e\n/3ATd58zlZF5LnylJVRu28LAMePIyE42oSfCYeKVlWCxYMvPR6x7FsYrAxFK/WFyMxz10+lqQlGi\nZWVUff97hNd8DYC43Yx49hmco0bt0f1Ur9ahZpdUMH8QaNhcVgtcvidBXUTyjDEVIuImuaTrTKAM\nOMEY818ReZ5k6tMTSWZim2eMmZpatKufMea21DKx7wNnkszO9iowqS47W11AF5HjgZuAo4wxtQ3u\nnW+MKU8dexuwwxjzt44+k9ozWkPvZaw2C/2HZ7dt5a9YBNa8Di//GPa7AGZe12xQz/M4yPO0fVpa\nc/pluzhh0kCOmdiffI8Ti0XIGzS4SSY4i9OJZcCeTx+r88aq7Vz33Aqmj8zj3vMPINfjIBJP4P9s\nRX0wBzDBICV/+QuD7ryzxSZ9pTroDhoHc1Kf72BnytKO+JGInJr6+xBgDBABXkttWwGEjTFREVlB\nMsMlwDHAFBE5I/XZ2+DcjxqkWm3oKOCRutq3MaYitX1SKpDnAJnA63vwPGoP6RJRfVnED0vuhbAP\nPnoAYuHdnpKIxwlUVRCs8bX7drkeB4VZri5dXrVfVnLU/IDsnfd12ay4appm7I2XlWNS3QBKdaKW\n+r063B+Wah4/CjjEGLMvySVdXUDU7Gx2TZBKfWqMSbCzAifA1caYqak/I4wxb6T2NZhS0iZzgR8a\nYyYDv6G5aSqqy2hA78uc2XDUrTBgChx3F9h335zuKy1h3rU/5K2593coqLfGGMPWqiDvfV1KuX/3\nLxdtMW14Lh/ccCQ3nTSxftS7x2kjd+bhyC5Z6HIvuABbTtvmrivVDpvaub0tvCQTW9WKyHhgejvO\nfR24SkTsACIyNrUIWGsWABeLSEbqnLomuyxgW+pa57frCVSn0yb3vsxqg6JpcOHz4PC0KaBXlWwn\nWONj08oVJOLxVo8N19YSi4SxWCy4s5tOM9tVmT/C2Q98QHFFkKtmjeLnx4zb49p83Xz3Xdny8xn+\nzL8p+dOfiVdWknfhhXgOO2yP7qVUC26k+T70G/fgmq8BV4rIapI5zz9sx7kPkWx+/zSVga0U+E5r\nJxhjXhORqcBSEYkA/yFZ/puAJalrLCEZ4FU30UFxqk3i8TiRYC2JeJzy4o14+/Unq6AQi6X5QWvh\n2gCfL3yd9//1KIPH7cOJP/45Gd7Wa7/l/jCXzVvKsuIqfnPKPsw5dHirx2+vDvHu16X0z3YxpchL\nbkb7V3qL+/2YaBRrTo5ONVO70+EfkHSMcldqVxrQ+4BaXzXhgB9nRiYZzSzIsjvRcJjNq79g07JP\nmPatY7BZLFi93mYXd6njr6zg/qvmQOrn67zb/sjAMeN2e6/SmjC1kRhet52cVgJ0aU2I0+5dTHFF\ncsrbdceN45IZI3DaOnNym1KN6Buf6tG0D72XM4kEy9/4Dw9f8z3ef+ZxYpFIu68RCtTwwu9uZcoh\nh1N82umsO+ZYaj/4oNVzLBYL/YYns6jZHE4y83ZmHav1RfjolXVsX19NPNq42b4wy8mwfE+rwRyg\nNhKvD+YAr6/cQW249S4ApZTqzbQPvbcTwZWZCYA7M6uDzcoCCJJIYGqTa0ZEtmxp9YwMbw6nXX8L\n5VuKyek/oH6eOcC6z0r5+JUNfPHOFs7+1UF4vO2vVbvtVgZ5XWytDgFw5Ph+2CxCZSCC1w7xigpM\nOIw1Nxdrdhum8Cml1F5Om9z7gGBNDdFwEJvDRUYHglssEmbLV6up2VxMkcdLYstWso89pl0pUxuq\nLqnlv/d/wagDCpkyq6jZfNxxv59YaSlis2ErKCBstVMdjLHdF2RAtpucDBuVgSgLVu1gUI6bfYd4\neX7ZFhas2sHdZ+2L/+RjiZeXM+TBB8k8fEaHyqnULrTJXfVoWkPvIRKJOEGfj1gkjEkYrHY7dqer\nvna9J9xZWbizOj741OZwMmSfyURGjsbmcGLrwPKoQX8N8VgMV0YG2YVuTvnxVGwOCw5X8z+CsdJS\n1h1/AlitjH73HT6rMnz34Y+Ixg12qzD34oM4ZGQ+300NnCvxhbjvnXVUBCJ8tqmS8fn5xMvLie7Y\n3uHnVkqpvYkG9G5mEgkCVZV89cF7LH3lefwV5fX7hk7el+mnnUtB0VDc3dxsbLFYcXk69nIRDtby\n0QvP8Nnrr3LWzXcwcMw4AmKvXtZnAAAgAElEQVRIRGLk2gRHMwPZxG4Hux2x26nEzo3Pf1q/jnw0\nbrhh/grmX3UoBanlXL1uO/+cM43Fa8s5aGQ+7htvJLplC7aDZrB4/jdMnlVEVp6ueaGU6r00oHej\nRCJO5dYtPP2bGwj6qpvs37RiOZtWLGfs9BnMvvSqRv3QPVnCJCgPlhM3cbId2RCNsnnVF8QiYcqK\nN2HrN5Tz/vkRmyuDvH7N4QzNb7qmha2ggNEL3gARKu12KgKNB/NVBiIk2Nld5LRb2W9oLvsNTeVI\nn34wZVv8PHX7xyQShs1fVnLy1fvizmr/1DallNob6Cj3buSvqOBfv76u2WDe0JoPF/HOY/8k6K/p\nopLtXiIep3xLMf976B989cEiQn5//b7yYDlnvnwmxz13HOXBcjKyvZxy7Y2cfuOtjJs8lUh5OcWV\ntQSjccoCzY+6t7hc2AcMwN6/P163g4t2mZM+59BhZDezYExDtdUREolUrT4cZ28YL6JUVxGRWSJy\naIPPcxus797Z93pIRCam49pqJ62hd4N4Ik5FqJyqyq1tHnW+6t03OfjUs3Fn9oyFmGp91Tx107WE\nAwGWL/gPF971N+IxO4mEwWZ3YLVYEaT++bLyCsjKKyDwwQdEnvwXr179M6psGYws2H0iFKfdykWH\nDmfS4GxeX7mDoyf258DhubjsLY+Oj4RiFA7L5IDjh1NWXMOhp47EEa8lmS1SqS52i7fJwjLcUt3d\nC8vMAvzA4nTfyBhzWbrvoTSgd4vSYClnvXwWo3NG86PvXcbCP/yp2eMyc/P51sVXkJHtxVdWyucL\n/8thZ12I3dn9QckkEoRrd6Y9drjz+NdtHxEORDnrVwfx9IlPEzdxvM7G3QTOMWOw2yy43nmdYWed\nha2Nq7vlehwcPXEAR03ov9uXIF9ZkHf/tYZhk/LZd3YR1PrZftVFVAZDDHvsUWz5+a2er1SnSgbz\nhku/DgMe5BYvHQ3qqbXX/w0UAVaSeczLgD+Q/L3+MXCVMSYsIhuAacaYMhGZljrmIuBKIC4iFwBX\npy59hIj8FBgA/MIY82wL988EXgRyATvwK2PMi82VyxjztIi8DVxrjFkqIvcCBwJu4FljzK878j1Q\nTWlA7wYVoQoqw5WsLF+Je1Tzy6GKxcJJ1/yCN+c+QMn6tQzZZwoHf+dMwrWBTgnosUiEoL8Gi8WC\nJye33ec7MzI46rIfsPjfjzNw9FisdgexcBxjIBaOMyCjoMk5iYSh0pmJ+ze3k+u0Ykk9R5k/TG04\nhsdpIz+z9WfbXTBPJBJ89Op6Nn5RzsYvyhmxbwF2fxWhVaux5ufXr1ynVBdKR/rU44CtxpgTAUTE\nC3wBzDbGrBGRR4GrgL80d7IxZoOI3Af4jTF/SF3jUmAgMAMYD7wENBvQgRBwqjHGJyIFwIci8lIL\n5drVL1O51K3AQhGZYoz5vCPfBNWYBvRuMDhzMPOOfoSMuJPPn3im2WOy8gup2rGdkvVrAShe+TkH\nnXJ6p5XBX1HO3J9dRc6AQZx18x27XWd9Vw53BhNnzGLUAQdhs9uxOx2ce8vBRIJxsvKaD8rbqkOc\ndu/7jCjw8Pfz9qfACRWBMD/992e8u6aM0w8o4tcnTSTb3f5pcXUsFgvjpw/km6UlDB6bi8Vmwdav\nH6P+twCx25NBXamu1enpU0nmOv+jiNwFvAL4gPXGmDWp/fOAH9BCQG/FC6lUq6tEpH8rxwlwh4gc\nQTJN62Cg/67lMsa818y5Z4nIFSTjz0BgIqABvRNoQO8GXqeXgcFsnrvtJsK1zacfjtQGyC7sV//Z\nYrW2KWNZW8VjUeKxGKGAv8ODxewuF3bXzqlg2fmtZ2vbUB5ghy9MaU2YaDwBQCxu+HxzclDgZ5uq\nCMcSHSpLQwNGZHPhbYdgsQruTAfgwNoJ8/mV6qBNJJvZm9veIala+P7ACcBtwJutHB5j5wDo3c3d\nbJi3uLXmsPOBQuAAY0w01azv2rVcIrLQGHNr/QVFRgDXAgcaYypFZG4byqTaSAN6N8nKKyAej7W4\nPxTws+7TjznpmuvY9MXnjNz/QEo2rGNC0ZBOuX9mfgGX/f2fWG32NtfOI1u3Uv7QP8k95xyco0Yi\n1vYt2TphYDZ3nj6Z4fme+pSmORl2HrnoQOYt3siVs0aS52ncp54Ih0kEarF4Muqb6HfH5rBic2iS\nFtVjdHr6VBEZBFQYYx4XkSrgh8BwERltjPkGuBB4J3X4BuAA4L9Aw2a+GqCjC1x4gZJUMP8WqReW\nZsq162C4bCAAVKdaAI4H3u5gGdQuNKB3E6fHwz5HzGb5gv+0eMzSl+fTf+RocgcOZtFT8zjlZzdi\nc3TOgDinOwOne+fvl5pIDavLVyMijM8bT5aj8Wh6E49T+pe78b30EqEVKxjywP3YctvX957ncXDO\ngY1bGR225PzxyUVebJbGsyjjPh/VL7xI9Usv4j39DLwnnqDrsqu9zy3VT3KLFzp3lPtk4PcikgCi\nJPvLvcAzIlI3KO6+1LG/Af4pIr+lcfB8GXhWRL7NzkFxbfUE8LKIrACWAl+2Uq56xpjlIrIsdXwx\n8H4776taoWu5dyNfWSmPXfcjQm2YXz5x5mxmXXjZHi3h2pot/i0c99xxALx++usMyhzU5JjaZcvY\n9stfUXDVlWQdc0yba8wdFSkuZu3Rx9R/HvW/BTiKitJ6T6VaoWu5qx5NF5bpRll5+Zzzm7t22zc+\n7pDDmXnBJWkL5gBOq5Np/adx0ICDcFibn0rmmjSJYY/OI+voo9MezIFkk35drd1qRazaoKSUUi3R\nGno3M4kEgeoq1nywiKWvzKemvCy5Q4Shk/blkDPOJW9QUZcs+1oZqgQg19VyU3plIEJ1KEqmw1a/\njnq6xAMBgsuWUf3CC+SccQbuKVOwZOw6+0epLtPnaugiMhl4bJfNYWPMwd1RHtU6Deg9RCIRJ1hd\nTSwaxZgEVpsdu9OJq4esDFdn3uL1/PqlVcwcW8Dd5+xHThsXhtkTiVgMi01r56rb9bmArvYu+luy\nh7BYrHhyO5ZfvCulEp6R6ML3QA3mSim1e/qbUtULVFdh4nGcHg92Z/NTQ0+dOphvjetHlsvWJbVz\npZRSbaOD4hQAtT4fr93zJx784SVUbtva4nHZLhv97DYyu+FHJxSI4isLEqgO7/5gpZTqYzSg9zGV\noUq+rPiSHYEdxBPx+u3GJKipKCcRj7c6jc5XFuJft37E4vnfEApEu6LIAMRiCVa/v5XHfvUBz//x\nUw3qSim1Cw3ofUjCJJj/9XzOfPlMTnvpNCpCFfX7PN4czvzlbVz85/spHD6yxWtUbQ8QCkTZ/GUl\n4UjzuczTIR5NsPnL5Cj86pIgiXjPH8ypVE8gIreIyLVpuvaGVHKWHklECkVkiYgsE5HDm9nfq/K0\np7UPXURygIeASYABLgG+Ap4GhpNckvAsY0xlOsuhkowxlNaWAlAbqyVhGq+b7snNxbOb1d/yR2Rw\nxPeG4ymw85n/E2bmHpG28jbkdNs44tyxLH5uLcOnFOBwp+dHNxSIEo8lcGc5sFh0ULPqHJPnTW6S\nD33FnBXdnQ+9W4mIzRjT8vrXnWM2sKK5fOwiYu1tedrTXUO/G3jNGDMe2BdYDVwPLDTGjAEWpj6r\nLmC1WLliyhX85tDf8NSJTzXJVd4W4kqwSF7nH2vvZnTOqCb7jTFES0oIr1tHvLq6M4pdz1uYwdGX\nTGTc9AFYgz7igeYT23RU0B/h/We/4dk7l1JTHurUa6u+KxXMHyS53rmkvj6Y2t4hIuIRkVdFZLmI\nfCEiZzesLYvItFQO8jr7isgHIvK1iFzeynUHisi7IvJZ6rqHp7bfKyJLRWSliPxml9OuFpFPRWSF\niIxPHX9Q6n7LRGSxiIxLbb9IRF4SkTdJpk7NFJGFDc7/duq44SKyWkQeTN3zDRFpMfuTiFwuIh+n\nvh/PiUiGiEwFfgd8O/U8bhHxi8gfRWQ5cIiIvJ3KEY+IHJcqx3IRWdjac/RUaQvoqTy4RwD/BDDG\nRIwxVcC3Sab2I/X1O+kqg2oqz53HaWNOY3zeeFy29ic5ynJkcdaYCzmm8Gc8/E41Zf7Gfdnx8nI2\nnHEG6044keAXKzur2PVsDivx7dsovvIqyh98sFNfGhJxw/rPS/FXhqnc1rkvC6pPay0fekfV5R3f\n1xgzCXhtN8dPAY4EDgFuTiVRac55wOvGmKkkK2Gfpbb/0hgzLXWdmSIypcE5ZcaY/YF7SWZSg+Ra\n7YcbY/YDbqbxs+4PnGGMmcnOvOr7A98imXq1rmlsDHCPMWYfoIrGiWV2Nd8Yc6Axpq7ieKkx5rPU\nvZ82xkw1xgQBD7Ak9X1bVHeyiBSSfOk6PXWNM9vwHD1OOpvcRwClwCMisi/wCfBjoL8xZlvqmO0k\nc+iqdIoEoLYcqjdD3khqEy42rVzBwNFjyS7sx87/P42F/BHicYPDZcPu3Jm9LJ6w8cMnPyMST3D4\nmAJmjevX6DxJJX2xZLSeTrWjapctI/T554RXrybv/PM77bquTDun//wAyrcG6D9Sk8CoTpP2fOjG\nmPda+n+c8mIqoAVF5C3gIOCFZo77GHhYROwkc6PXBfTWcpjPT339BDgt9XcvME9ExpDsbrU3uMcC\nY0zdAJ6W8qpDMr973f0/IdlN25JJInIbkANkAq+3cFwceK6Z7dOBd40x6wEalK+15+hx0hnQbSTf\nxK42xiwRkbvZpXndGGNEpNnRTakfnisAhg7dk597xfYv4JHjwCRgwimsyTmbhQ/fR7/hIzn9xlub\nTZ8arInwzlNfsWFFObPnTGDk1AKstmRQd9msXH/8eBavLWPiwMaBz1ZQwPDHHyMRjaYtM5pn+nTy\nr/weGQceiMXj6bTrWq0Wcgd4yB3QeddUii7Ih55qIm4t7/muv2eb/b1rjHk3FVxPBOaKyJ+A92g9\nh3ldM12cnTHlt8BbxphTRWQ4jbO8NWz+ajav+i7Xrbt2azWEucB3UtncLgJmtXBcyBgTb2Ffc1p7\njh4nnX3om4HNxpglqc/PkgzwO0RkICT7a4CS5k42xjxgjJlmjJlWWFiYxmL2cmE/LPpTMpgDbF/B\n4LFjycovYMz0GS2mY41FE6z9tJR4NMHyhcVEwzv/D2S77Zw/fSh/OXsq/bKbNtvbCgtxDBqENTMz\nLY8UyLRR9d0TqJoyjFCPfl9WCkjmPa/dZVtn5EOvNcY8Dvye5O/WDSTznkPT5ulvi4hLRPJJBruP\nW7juMGCHMeZBkgOa96f5HOa74wW2pP5+0W6Oa5JXvQOygG2ploWONNt9CBwhIiMARKRu2c62PkeP\nkLaAbozZDhQ3GEQwG1gFvATMSW2bA7yYrjIowOaE/vvs/Fy5nrwsK+ff/if2O/ZEHO7mX3ptDgsT\nZwwiI9vBtBOHY3c2bsxx2qxkuvYsmlaGKikLlhGLt32gazwR54VvXuD0l0/nxOdPZLN/8x6VQal0\nS41mvxzYSLJmvBG4fA9HuU8GPhKRz4BfA7eRzHt+t4gsJVmjbehz4C2Sgeu3xpiWVo+aBdTlLD8b\nuNsYsxyoy2H+JG3LYf474P9S12mtJfgJYJok86p/l5151dvrJmBJqmztvoYxppRki/D81IC5p1O7\n2vocPUJak7OkRhk+BDiAdcDFJF8i/k2y/2gjyWlrFS1ehL6RnCWt/KXwzl2w5RM46HIYdwK4mzaz\n7ypcGyUWTeB027A5rLs9vj2qQlXcvuR2Fm1ZxFMnPsVw7/A2nReOhblh0Q0s2LgAgD8c8QeOHXFs\np5ZNqRboPEbVo6X1jSM1oGFaM7tmp/O+aheZhXDMbyFSi3F5MWJpU9OMM8NORxKkBv011JSVkpHt\nxZOb12jQXZk/TCJhEFuUpTuW4o/62VSzqc0B3Wlz8pMDfkJpbSmFGYVMG9Dcj5dSSvU9baqhp4b0\nX05ylGH9S4Ax5pK0lawBraF3jmCNj88Xvk48GmXqsSe2mmM9HAgQCQVBwOFy48xo+0CxTV8s55nf\n/hJvv/6c+9s/4MlJLlZT5g8z5+GPWFvq5/VrZmB1VFNcU8yEvAnkuHbfYtBQVagKm8VGpiM9/fRK\nNaPX1NBlL81zLiL3AIftsvluY8wj3VGenqatNfQXSY50/B9N+2ZUNwjHwgSiAbxOL1ZL25rDw7W1\nLHoquQTAhBmzWgzotb5q3nnsn6x+720GjBrDsCn7sd/xJ7f6AtCQJzcPm91BftFQLNadZYvGE6ze\n5iNh4LNiH9+eWkRRVlGbrrmr9r4AKKV2MsasAKZ2dznayxjzg+4uQ0/W1oCeYYy5Lq0lUc1KJOIE\nfT4QwZOaXhaOhVm4aSFzV87ljhl3MDp3dJPzKoIVxImT68zFZkn+MzvcbvY9+gTi0QjOjF3Xudhp\n3acfs+rdNzni+99ne0GIsM1DafkWhrUxoHv79efSvz2ExWrFnbVz6lq2y86/rjiEL7f5OHxMj13+\nWSml9kptDeiviMgJxpj/pLU0qolAVSWP/vxqsvILOP2Xt+Lx5hKIBXh01aOsrljNK+te4ZoDrml0\nTkWwgh+8+QM2VG/guVOeY1BmclGojGwvMy+8BAzYXc2vEheLRFj7yRIcbjfWofnc+G5yqeMXj3uW\neDSK1b77ke02u4PM3Lwm2z1OGweNyOOgEU33KaWU2jNtnbb2Y5JBPSgiPhGpERFfOgumkqKhMCF/\nDVXbt2ESyfEOOc4cbp9xO5dPvpzzJzSdchknzobqDfijfnyRxv9MdqerxWAOYLXbGTppX6LhMDkO\nL3muPIoyi3BYXVhsPX7WhlJK9VlpnbbWWfryoLhQIIC/ogy7y0Vmbj7WNgTVWCJGSW0JNZEaBnoG\nku3c2exdG63FF/FhFSt5rrxm+98D1VX85+7fEw4HOeDCc7E5nBQVDm/UfB6LJoiGY9hdNmw2zcKr\n+oReMyhO9U5tDugikktysfz66p0x5t00lauRvhzQO9vKspWc95/zyHZk89wpz9Evo1+zxwV9vkaj\n3BsG81BtlDVLdvDVkm1MPGwQow/ohzNDl2xTvZ4G9C4kyfTb5xlj/tGBczcA04wxZZ1QjltJrvP+\nvz29Vrq1qQ1VRC4j2exeRDL7znTgA5LZe9ReZGtgKwcPPJhBnkG09jLnzs7G3cJa7OFAjPeeXgNA\nyYavGDIhr8WAHkvESJgEDqtjzwvfRcLxMGur1rKibAXHDDuGXFfrOeKV2p3V4yc0yYc+4cvV3ZIP\nXbomD3lnyAG+DzQJ6F35DMaYm7viPp2hPX3oBwIbjTHfAvYjmc5O7WX277c/p44+lYRJdLi+YbFK\n/bliESyW5i/ki/h4bs1z3P7h7ZQHyztY4q7nC/u47PXLuO3D21heury7i6P2cqlg3iQfemp7h4nI\nBSLyUSrX9/0iYhURf4P9Z6QSqSAic0XkPhFZAvxORPJE5AUR+VxEPqxLhyoit4jIY9JM7nQR+Xkq\n5/jn0jQn+q5l+27quOUi8lhqW2EqV/nHqT+HNbjnw6nc5OtE5Eepy9wJjEo93+9FZJaIvCciL5Fc\nRpzUM3wiyZzpV7Tje9fkvNT3b64k88CvEJGfNPjenZH6+82psn8hIg80SPXaI7R1lFPIGBMSEUTE\naYz5Unp4onfVvIRJcN2712EwjPCO4OJJF7f7Gs4MGyf9cF++/CDZ5O70NF87D8fC3LbkNgBOGX0K\n+e78PSp7V3FanZwx7gw+2PoB43L1x1ztsdbyoXeoli4iE0iutX5YKrHJP9h9UpIi4FBjTFxE/gYs\nM8Z8R0SOBB5l57z0KSRbYT3AMhF5FZhEssv1IJIvJS+JyBHNdbuKyD7Ar1L3KmuQ6ORu4M/GmEUi\nMpRkitMJqX3jSeZDzwK+EpF7SWbnnJTKzY6IzCKZLGZSXZpT4BJjTIWIuIGPReQ5Y0xbag9NziO5\ncNrgVH75uib/Xf3dGHNrav9jwEnAy224X5doa0DfnHq4F4AFIlJJch12tZexW+ycPuZ0Ptz2ITOL\nZnboGg6XjWH75FM0LhdrKwPiXDYXN0+/mVXlqxjhHdHRIne5bGc2V0y+gjkT5+w1LyGqR0tHPvTZ\nJDOrfZyqJLppIXNlA880SB06g1RGNmPMmyKSLyJ1fWzN5U6fARxDMkkLJHOOjwGaG0d1ZOpeZanr\n1+XqOAqY2KBSmy0idUs9vmqMCQNhESlhZ070XX3UIJgD/EhETk39fUiqTG0J6M2d9xUwMvWy8yrw\nRjPnfUtEfkHyhSwPWMneFtCNMXUPfkvqH9gLvJa2Uqm0yXHl8JMDfkIkESHXuWd9w60Fc4AsRxan\njTmN74z+Dnbr3jVoLtORSSa6rKzqFJ2eD51kLXmeMeaGRhtFftbg467zUwO0TXO50wX4P2PM/e0q\nZWMWYLoxJtRwYyrA75r7vKXYVP8MqRr7UcAhxphaEXmbps/cREvnpXK97wscC1wJnAVc0uA8F8n+\n/GnGmGIRuaUt9+tKbZ5vJCL7p/o2ppDMcx5JX7FUOmU7sylwFzSZshaKhfiq4iveLX6XqnDnDJGw\nWqx7XTBXqpN1ej50YCFwhoj0g2T+bknlMheRCSJiAU5t5fz3SDXRpwJcmTGmbtGK5nKnvw5cUlej\nFpHBdfduxpvAmanzG+YWfwO4uu4gSWbjbE0NySb4lniBylRQHk+ym6Atmj1PRAoAizHmOZJdBvvv\ncl5d8C5LfR/OaOP9ukxbR7nfDJwJzE9tekREnjHG3Ja2kqku54v4OOfVc4glYjx14lPkOHW9dKX2\n1IQvVz+5evwE6MRR7saYVSLyK+CNVPCOAj8g2e/8ClAKLIUWm5luAR4Wkc9JvlzMabCvLnd6ATtz\np29N9dt/kKpR+4ELaKaZ3xizUkRuB94RkTjJZvqLgB8B96TuaSPZXH9lK89YLiLvi8gXwH9JNoM3\n9BpwpYisJtlc/mFL12rjeYNJxra6im6j1g9jTJWIPAh8AWwn+aLTo7Q129pXwL51TSWpgQSfGWO6\nZMSQzkNvXTgWpipcRczE8Dq8ZDoyiUUiVO3YRk1ZGYPGjW9TtrSKYAU3LLqBDdUbePT4R+nvaakb\nq3VVoSpiiRhZziyc1o4kYFWqR+pRI5rTIdWM7DfG/KG7y6Lar61N7ltp3FfgBLZ0fnFUR5QFyzh+\n/vEc99xxrK5YDUDIX8Pj1/+YgCXMv9fN573N7+GP+Fu9Tp47jzsPv5MnTnyixQVnWlPuD7OpqpTb\nPryNE58/kTUVazr0PEoppdqvraPcq4GVIrKA5ACJo4GPROSvAMaYH7V2skqvilAF0UQUgPXV6zlw\nwIFYrFaG7DMFX0aE3y3+HYKw4IwFTfKHV4Qq2OTbRFFmEQUZBR1eRCUUjfOHN9bw7QMyWVi8kFgi\nxtvFbzO5cPIeP59SqmsYY25p67GpPvKFzeya3capY2nV08uXDm0N6M+n/tR5u/OLojpqSNYQbjjo\nBipCFRw17CgAMrw5HP/Dn1FjCTExbyJDs4ditzQenBaNR3lr01uMzRvLet96DIbCjMIOlUGADIeV\n55aW8+cj/sFHJYs4d8K5e/poSqkeKhUUe2xO9Z5evnRod3IWSa7pPsQY83l6itRUb+1D91eUU7Jh\nHYXDRpCZm4dYWukBiUehtgJMDLCA3Q3utg1aqwhVkEgkkkuw2hz1g92iiSjFvmJOf/l0YokY98y+\nhyOKjujw85QHwviCMfIy7Hgz9p6lXpVqo17fh672bm0d5f42cErq+E+AEhF53xjz0zSWrVcLVFXy\n5E3XUlNWijsrm+/+/u/N5hAnEQf/Dvh0Hiy5H4KVIAIjj4RZ10PB2N0GdrfNzSNfPMK9y+/l4n0u\n5sp9ryTDnoHdYsdhdRBPJNeaCMVCrV6nIWMM2wPbeav4LYqyiphSOIV8Tw75Hh0Ep5RS3aGtTe5e\nY4xPkklaHjXG/Do19UB1UCIRp6Y8mQgoWOMjEWsmz0AiAeVfw8PHJQN5HWNg7UJYuxAz46dEpl9J\nwpmN2+5u9l7ReJRPdnwCwKclnxKOh8mwJ1eizHXm8szJz1AeKmdi/sQ2l78sWMa5r55LeSjZFXXN\n/tdwwYQLcNo0oCulVHdo6yh3m4gMJLlyzitpLE+f4XRncNyVP6Zg6HBmffcyHO5dl3oGAiUw96TG\nwXwXsuhPRNYu5JOST4jEm1/rJ9uZzW2H3cbPDvgZdx1xV6OBbx6Hh3F54zh00KHtmnfui/jqgznA\nW8VvEYwH23y+Uir9ROQUEbm+hX3NTnvZJRnJ2yIyLZ1lbImITBWRE7rgPjc2+Pvw1Lz3Pb1moYgs\nEZFlInJ4M/sfEpG216DaqK019FtJrhT0vjHmYxEZCXzd2YXpSxzuDMYdegQj9puG3eXG7tylZhuq\ngU0fQKB0t9fKev+v5J10F8FYsMU0pQMzB3LRpIs6oeRJ2Y5svE4v1eFq+P/27jxM6urK//j79L6x\nCKKASDCuURQdSyKYGDciGkXNJHFLXOLoY0YnzpgYdRKjzm+Sicm4jdGJGgxOYtw1IhoNLgSCC7QL\nIBAMQYgSkJ1m6b3P74/vbSib6u6q7qqu6urP63l4quu73vrST5+63++95wDjh4+nvDDxHQIRyQ53\nnwpMzXY7uuhwIAY8n4mDh0ppRpSx78dpPvyJwAJ3/6cE5y1MtDwdks3l/jjweNz7ZYTE/tJ1RSUl\nFJUkCMBbP4a/vgrv/Dq5A61ZzIFVe1NYOiC9DezAoLJBPPKlR3j+g+fZu9/ejBs2TrfbRdpx9+Wv\n7FIP/YpfnNCteuhmNooo69kbwHiizGW/Am4G9iBK7XowUe7xK81sH6LqblXAM3HHMeAuounIHwIJ\nb/WZ2RfDsUuBvwIXu3t7vfwjgdvCudYBF7n7KovKsV4GlABLgW+EFKxfBW4kyuO+mSjX+n8A5Wb2\nOaI88o8mOM9NRNf00+H1Dnf/n7DuanbmYv+lu98RrtmLwJtExW3mhHO8S1Ro5ftAYcgIN54o38oZ\noVhNos+5y+cBDgB+Gr4tycIAACAASURBVI4bA8YRZe67N3yuK8zsP4Hvunu1mU0k+t0oJErBe6KZ\njSWqTlcG1IZrvSRRG+IldcvdzA4ws5dbb0WY2WEh7aCkW3MTvH431NdEo9qTVNjUs6n1CwsKGdFv\nBJcddhmn7HMKA8uUJlYkkRDMd6mHHpZ3137ArUTlRw8CziOqjPZdds0Vfyfwv+5+KLAqbvlZwIFE\nwf8CokD2CSHP+Q+Ak9z9H4jSyiYcFG1mxURfEL7i7kcCDwA/Cqufcvej3H0MsBi4JCz/IXByWD4p\n1Ar5IfCoux+eKJjHOYiooMpY4EYzKw5fKC4GPkuUq/1SMzsibL8/cI+7H+LuFwO14Rznx62/290P\nATbRced1l8/j7u+2aXstUSnaN919jLv/Ke5aDSH63fjHcIyvhlV/Bj7v7keEYyV1ByHZZ+j3E+W1\nbQQIU9bOSXJfSUVLE2z6EGo3QWUKc8JLEjyD72XqtjYy7+UPefelv1G7VbV/JG90VA+9uz5w9wXu\n3kLUw3zZo7nIC4jqe8c7Bng4/Bx/++9Y4GF3bw55219JcJ6jiQL+7NCbvZDEFeQg+nIwmqjU9rtE\nXwRGhHWjzWyWmS0guoNwSFg+G5gSeryFbQ/YiefcvT6Ua20tvfo54Gl33xbuIjwFtD7LXuHuHeV9\n/yAEZYhmdY3qYNv2Pk9bzcCTCZYfDcxsLQkbV2p2APB46ETf3sFxPyHZZ+gV7j4nro4tQIJh2dJt\nxWXwhWtgxesQuxg++GPn+ww9DIp7f0Cv397Inx6PhmaMOmx3yqs0l13yQibqobeKLzvaEve+hcR/\n31NLPLKTAdPdPZlsUQYsdPdxCdZNAc5093lmdhFRNTfc/XIz+yzwJeCt0MNOVrKlV1t1Vka27fE6\nGhw0hQSfJ4G6uFr0yfh/wKvuflZ4TDAjmZ2S7aGvM7N9Cb8MYQTkqo53kS7rNwy2rYOqodB/r863\nP/GHNJYNYPW21Sxct5CNde2Pis9lxWVFfPqIIexz+BBKypL9rimS89qre96deuhdMZudd1bPj1s+\nEzjbzArDbKbjE+z7BnCMme0HYGaVZnZAO+dZAgwxs3Fh22Iza+1h9gNWhdvyO9pgZvu6+5vu/kOi\n581703n51I7MAs40swozqyR6rDCrnW0bQ3u6IuHnScEbwLFhfEN8qdkB7KyXclGyB0s2oF9B9ED/\nIDNbCfwrHZS9k25qboAFj8Lz34XzH4eqDqqenXQTjDiKDXUbOP3p0znnuXP45YJfppQkJhn1TfUs\n2bCE55c9n7EvDBX9SzjhGwdx4gUHUdFfvXPJG5moh94VVxENyFpAVCq01dNEs5YWAf8HvN52R3df\nSxRYHg45SF4nena9i/D8+yvALWY2D3iXnc/lbyAakDab6Dlxq5+Z2YJwi/k1YB5RCdeDzexdMzs7\nlQ/q7m8T9Z7nhPP90t3faWfz+4D5ZvZQKucI2vs8ybZzLdGguqfCtWodK/BT4L/M7B2Sv5PecepX\nM7vK3e80s2PcfXb4plPg7ltSbXh35Gvq14Sa6qGxFuo2w4o/wQGnQnM9LPwdvP5z2PwhFJXCgafB\n56+GAXtD+QCWblzKWVPPAmDcsHHcetyt9Cvp6pfbXa2rXcfEJydS31zPvRPuZfzwXcbNiOS7Lqd+\nzcQod5G2Ogvo77r74Wb2dhjZmBV9JqDXboR3HoJlr8CXboPdRu1c19IM29dFWeIASiqhdGfA3lS3\niUeWPML8tfO5fuz17N1/77Q1q257I3XbG9jQuJ4b3/k+txx7C8Orhqft+CK9hHK5S07rLKA/TDSx\nfzjRvMMdqwB398My27xIvgb0+qZ63t/4PnNWz+GM/c5g98Z6uC0kDzrsHDjzbigoYlvDNrY0bqHQ\nCjushtbY3EhDSwOVxZVpbefStz7mxfsXMnivSk75l9H0G1BOgSX7tEYkbyigt2FmTwP7tFl8rbu/\nmObzXEz0yCDebHe/Ip3n6eD8dxPNEoh3p7v/qifOn6wO7827+7lmNpRoIv6knmlS37G5YTMXvHAB\nTS1NfLz9Y6477J8pGDkeVs6FMedAQfTfs7xmOec+dy7Dq4bzm1N/w+7luyc8XnFhMcWFO8d2rK9d\nT1NLE/1L2s/znoyaddHz+G2bGiiyIgVzEQHA3c/qofP8iihpTlb01BeH7ur0Ybu7rwbG9EBb+pxC\nK2Rkv5Es27yMQ3c/lILygXDeI9Fz9NKqHdttbdyK42xp2IInOetkQ+0G/vmlf2bJxiU8eMqDjBky\nhq0NW1myYQmbGzZz5J5HMiBBZrn1tevZVL+JQWWDduR8/8z4YQzeq5LdhlZS3k+D1UREclGHAd3M\nHnP3r4VRkfGRpEdvueerweWDmXzyZBqaG6gqrmLllpVMWzaNSftOYljcvPKDBh3Ek5OepKq4im0N\n2ygpKEkYjOM1ezMrtqyIXmtWMGbIGLY0bOHiFy/GcaaeOXWXY2xt2MpP5vyEF5a/wPkHnc/Vsasp\nKSyhvF8Jnxqd+K6AiIjkhs566K3PLE7rysHNbDnRXMJmoMndY2Ge3aNE2XeWA19z9945cToNWm+f\n19TXcMNrNzB39VzmrZ3HT4/9KVUlUS99QOkAGpobmPS7SWxt3MpDpz7EYUM6/i61W9luPHbaY6yo\nWcHo3UcDUFJYQmzPGJvqNyUcAW9mFIXb/EWFmgcuItKbdPYMfVV4XdGNcxwfUvK1uo4oPeFPQlm/\n64Bru3H8vFBaWMqEkROYv3Y+Ez41YZdCJ2bGwLKB1DfX07+kf6fHKyooYmT/kYzsvzMZ1eDywdx6\n3K20eAuDywfvsk9lcSXXxK7h8jGX06+kX7uV20REJPd0Nsp9C4lTBbbecu8wsoQeeiw+oJvZEuC4\nUHlnGDDD3Q/s6DjZHOW+sW4ji9YvYljVMPaq3CujFcW2NmylrrmO8qLyhCPV125fSwstDCgZQFlR\nWcbaISIJ5dUodzM7E3jf3Rel6Xgx4AJ3/3Y6jteF808CDg6dxSHANKIqaN8mqkVynrtvykbbekqH\nAb3bBzf7ANhI9KXgXne/z8w2ufvAsN6Aja3v25PNgP7UX57ixtdupLigmN9/+ffsWdlB1jZhQ90G\naupr6FfSL+FdAJFeLN8C+hRgmrs/ke22pJuZnUNUGS4jdcdzVabnH30uJKQ5hSjl4LHxK0NVoITf\nKMzsMjOrNrPqtWvXZriZ7Wu9vV1WWJa307Uampppaen+F7u6pjrunXcvp//udG6YfQOb6zenoXUi\nvd+tZ5923q1nn7b81rNPawmv3S6damZfN7M5ITXqvSEX+/+Gv5sLzezmuG1/YmaLzGy+mf23mY0n\nmor8s7D/vu2c41Izm2tm88zsSTOrCMu/ambvheUzw7LjzGxa+Hmsmb1uZu+Y2Wtm1u5dWDO7yMye\nMbMZZvYXM7sxbt3vzOyt8Hkui1s+0czeDud/Oe44Pzezw4lSp54RPlu5mS23qAQsZnZBuA7zzOzX\nbdvTm2V05JO7rwyva0ICgrHAx2Y2LO6W+5p29r2PKMcusVgsc7cROnHU0KN49sxnqSiu2DGNK5+s\n3lzHj59fzKmHDuXz+w+hsrTrvxLuTk1DDQA1DTW0eEu6minSa4XgfT87S6h+Crj/1rNP4zuPTutS\n+lcz+wxwNnCMuzea2T1ExUG+7+4bzKwQeNnMDiMq8nEWcJC7u5kNdPdNZjaVznvoT7n7/eGc/0lU\nv/wudtYvX2lmie6wttbzbjKzk4jS3nZUV3wsUcnV7cBcM3vO3auBb4bPUx6WP0nUEb0fONbdP4gr\naAKAu79rZj8ketx7ZWh763U7hKic63h3X9d2394uYwE9Pu97+PmLwH8AU4lq6f4kvD6TqTakw4DS\nAZ1OEesJa7evZfW21YzoNyKtXyyeeOtDps77Oy8uXM2sa4/vVkAvLy7nu7HvctZ+Z7HPgH3y8guQ\nSBd0VA+9q/ncTwSOJApyEJX4XAN8LfRki4BhRDXMFwF1wOTQg56WwnlGh0A+EKgiSjIGO+uXP0ZU\na7ytAcCDZrY/0V3YzqqZTXf39QBm9hRRPfNq4Ntm1pq8Zm9gf2AIiWuIJ+ME4PHWcV0p7pvzMtlD\n3xN4OvyyFQG/dfcXzGwu8JiZXQKsAL6WwTbkhfW16/nWS99iycYl3DTuJv7xgI6+6Kbm1EOH8fv3\nVnPyIUMpLSrs9vEGlw/Ws3ORT8pEPXQDHnT363csiEpwTgeOcveN4Rl5WegljyX6EvAV4EqiwJaM\nKXStfnmq9bzb3oV1MzsOOAkY5+7bzWwGoNHAHchYQHf3ZSTIMBe+hZ2YqfPmo6KCIvbutzfvb3yf\nEf1GpPXY++xeyf99cyxlxYXd6p2LSLv+RnSbPdHyrnoZeMbMbg+PNAcRfUHYBmw2sz2Jxi7NMLMq\noMLdnzez2cCycIxk6o23rfe9EnbWLwfeNLNTiHrP8VKt5z0hfIZa4Ezgm0QlXjeGYH4QcHTY9g3g\nHjPbp/WWewo97VeIOpq3ufv6FPfNefk5yiuHbazbyEsrXmLxhsVJ1ywfUDqAG46+gelfmc4hgw9J\na3vMjMFVpQrmIpmT9nroYarZD4A/WFSffDpQD7xD9Pz6t0S3xSEKytPCdn8Crg7LHwGuCQPXEg6K\nI7X65fFSrec9B3gSmA88GZ6fvwAUmdlioke0b4TP3l4N8U65+0LgR8Afw763Jbtvb5DRaWvpkk/V\n1mavnM3lL11OUUERL/7ji+xRsQdrt0ej+AeXD87bkfQieaDL09bCwLhP1EPv6oC4fBNu5e8YwCZd\np25ZDxvRbwTlReWM7DeSQivk420f8/Xff526pjoeP/1xhlYO7fQYdU11/HXTX1les5zxw8dr8JlI\njgvBWwFcMkoBvYcNrxzOc2c9R4EVMLh8MMs2LWP1ttUAbKrblFRA31i3ka///us0tTRx94l3c+yI\nYzvdR0SkPdYD9b7N7GTgljaLPwglWKek6zx9mQJ6T7OoIEvrvMjK4kpuP+52GlsaE9Y53964nW2N\n26gortiRDnZ703aOGnoU7294n1H9R/Vk60UkD/VEvW93f5Gd094kAxTQe9Ca7Wu44607OGHkCYwb\nPo7K4kr2rNyTfiX9KC4oprjwk1M1m5qbmPHhDH705o/43lHf49RPn0pxQTG7le7GpaMvZUjFEIaU\nD8nSpxERkVyiEVg96Kn3n+LZZc9yzR+vYXvTzkGvFcUVuwRzgPrmeqYtm0ZNQw3Pf/D8jlHxg8oH\nERsaY1jxHmxbvYb1Kz+koa62xz6HiIjkHvXQe9CEUROY9sE0vjDiC5QUdF6atLKkkh8c/QOeWfoM\nk/ab9Ika5mZG3bYtPHjNlRjGP/18MiVl5ZlsvoiI5DAF9B40qv8opkycQmlh6SeCc0eGVw3nW4d/\nK+G6wsIiyioqscJCCgq7n+VNRKRVyPA2zd1Hd7LNeHf/bXif1RKqfZ0Ceg8qLChMOPCtqyoGDuTC\nW+/BgIoBHVagFRHJhFHAeYQpeSEhTH4kDemF9Ay9FysoKKRqt0FU7jYIK/jkf+X62vXc8dYdzF87\nn4bmhiy1UEQyxcxGmdmfzewhM1tsZk+YWYWZnRiyvy0wswfMrDRsv9zMfhqWzzGz/cLyKWb2lbjj\nbm3nXLNCydK3LSq/ClEGt8+HMqX/Zp8soToolD+db2ZvhMpvmNlNoV0zzGyZmak3nyYK6Fm2qW4T\nq7auYlPdprQed8aHM5j83mS+88fvUFNfk9Zji0jOOBC4x90/A9QQpXWdApzt7ocS3YWNf2a3OSz/\nOXBHCudZA0xw938gKtv6P2H5dcAsdz/c3W9vs8/NwDvufhhRmtv/i1t3EHAyUdnUG0OueOkmBfQs\nqm+u59eLfs0Xn/wiD//5Yeqb6tN27HHDx3Hknkdy6aGXUl6swXIieepDd2/N2f4bosJXH7j7+2HZ\ng0B85qmH417HpXCeYuB+M1sAPE5UlrUznwN+DeDurwCDzax/WPecu9eHMqZriKpzSjfpGXoWNbU0\nsWLLCgCW1yynhZa0HXt41XDuPP5OygrLKC0qTdtxRSSntC3GsQnoqH6xJ/i5idC5M7MCINEUnH8D\nPiaqoFlAVF+9O+J7L80oFqWFeuhZVFlcyfVjr2fyFyfzvaO+R3lROz3prWtgy8fQ0pzS8QeUDlAw\nF8lvI82stad9HtGAtFGtz8eBbwB/jNv+7LjX18PPy4HWeuaTiHrjbQ0AVrl7Szhm67SajkqwziIq\nuUqobb7O3fX8L4P0rSjLBpcPZnB5B1+ot34MU06D7evhkukwuL0qhyLSBy0BrjCzB4BFwLeJyow+\nbmZFwFzgF3Hb7xbKqNYD54Zl9xPVVp9HVLJ0W4Lz3AM8aWYXtNlmPtAc9p1CVL611U3AA+F824EL\nu/dRpTMqn5rr1iyGe46Ofp70c/iHb2S3PSJ9V5fLp2ZCMvPE22y/nKhM6boMNkuySD30LKjfvo3a\nLVsoKimhardBHW9cOQQ+eznUrIIDvtgzDRQRkV5HAT0LNq1exW+u/1f6DR7C+T++jcqBHdQzr9wd\nTropen5eWtVTTRSRHOfuy4Gkeudh+1EZa4zkBAX0LCgqLaWgsJDSysodZVQ7pGlnIiLSCQX0DNlY\nt5GmliaqSqp2Gb3ef/c9+Ke7JlNQWNhpyta6pjpKC0uTC/wiItJnadpaBqyvXc+/vPIvnP6705m9\ncvYuCWOKS0vpN3j3jm+1A8s2L+PaWdfy9pq3aWxuzGSTRUSkl1NAz4DFGxYzb+08tjVu42dzf8aW\nhi0pH6O2qZY73rqDV/72Cve8cw/r69azvnZ9BlorIiL5QAE9A0b1H7Wj3vmRex5JSVHntc/bKi0s\n5RsHf4NP9f8UN4y7gatevYpvvvhN1m5fm+7mikgvZGYTzWyJmS01s+uy3R7JPj1Dz4AhFUN47svP\nsbFuI3tW7kn/kv6d79RGgRUwZsgYHpz4INsat7Fo/SIANtRtYEjFkHQ3WUR6ETMrBO4GJgAfAXPN\nbKq7L8puyySbFNAzoLSwlKGVQxlaObRbxykpLGFw+WAKCwq5efzN1DbWskfFHrtuuH1DNK2tSoFe\npI8YCyx192UAZvYIcAZRtjjpoxTQe4GBpQP58v5fTrxy2zp45krY/Df4+tPQT0WLRPqAvYAP495/\nBHw2S22RHKGA3ts1N8LS6dDSBLUbFdBFclQsFptEdIt8enV19dRst0fyjwbF9XZlA+DSV+D8J6BK\nwVwkF4Vg/jBwJfBweN8dK4G9496PCMukD1MPvbcrqYBhY7LdChHp2ASgIvxcEd53p5c+F9jfzPYh\nCuTnEJVPlT5MPXQRkcybTlRClPA6vTsHc/cmot7+i8Bi4DF3X9itFkqvp/KpIiLJ6Vb+ZT1Dl0zT\nLXcRkR4QgrgCuWSMbrmLiIjkgYwHdDMrNLN3zGxaeL+Pmb0Z0hU+amap50UVERGRT+iJHvpVRIM2\nWt0C3O7u+wEbgUt6oA0iIiJ5LaMB3cxGAF8CfhneG3AC8ETY5EHgzEy2QUREpC/IdA/9DuB7QEt4\nPxjYFKZcQJSucK8Mt0FERCTvZSygm9lpwBp3f6uL+19mZtVmVr12rUqGioi0lewYJTMrDe+XhvWj\n4o5xfVi+xMxOjluesDxrT5xDuiaT09aOASaZ2alAGdAfuBMYaGZFoZfebrpCd78PuA+ieegZbKeI\nSMbEYjEDjgUuI7ojuZLob9vM6urq7v5tax2j1FqjuXWM0iNm9guiMUr/G143uvt+ZnZO2O5sMzuY\nKMvcIcBw4CUzOyAcq73yrD1xDumCjPXQ3f16dx/h7qOI/jNfcffzgVeBr4TNLgSeyVQbRESyKRaL\n7Qa8AUwDzgW+EF6nAW+E9V2S4hilM8J7wvoTw/ZnAI+4e727fwAsJSrNuqM8q7s3AI8AZ/TEObp6\nPSQ789CvBa42s6VEz9QnZ6ENIiIZFXrmLwBjgCp2Zpqz8H4M8ELYritSGaO0o9xqWL85bJ+oDOte\nHSzviXNIF/VIpjh3nwHMCD8vI/pmJiKSz44FDgZK21lfGtZ/HpiZyoHjxyiZ2XHdaaTkD6V+FRHJ\njMuAyk62qQzbpRTQSX2MUmu51Y/MrAgYAKyn4zKsiZav74FzSBcp9auISGbsRecFXYwokKWkC2OU\npob3hPWveFSZaypwThihvg+wPzCHuPKsYRT7OcDUsE9Gz5HqtZCd1EMXEcmMlYDTcVB3omfH6XIt\n8IiZ/SfwDjvHKE0Gfh3GLm0gCp64+0IzewxYBDQBV7h7M4CZtZZnLQQeiCvP2hPnkC5Q+VQRkeSk\nNHgtFot9gWg0e1UHm20FvlRdXZ3qLXeRXeiWu4hIZswk6pXWt7O+Pqyf1WMtkrymgC4ikgEhacxE\nYB5RT7z1dqiH9/OAiWlILiMCKKCLiGRMdXX1RuBoogQwvwX+GF6/BBwd1oukhQbFiYhkUOiBzyT1\nqWkiKVEPXUREJA+ohy4ikmGxWGxf4CSiBDA1wPTq6upl2W2V5Bv10EVEMiQWix0Ti8VmAu8BtwE/\nCq8LY7HYzFgsdkxXj21m/2ZmC83sPTN72MzKVD61b1NAFxHJgFgsdi4wnShXexlQARSH17KwfHrY\nLiVmthfwbSDm7qOJErO0liy93d33AzYSlTSFuNKmwO1hO9qUNp0I3GNRjfVCotKmpxDlmz83bEsP\nnUO6QAFdRCTNQs97MlDeyablwOQu9tSLgPKQN70CWIXKp/ZpCugiIun3X3QezFuVAz9O5eDuvhL4\nb+BvRIF8M/AWKp/apymgi4ikURgAd1SKu42NxWKfTnZjM9uNqDe7DzCcqGrbxBTPKXlGAV1EJL1O\nAlpS3KcFmJDiOT5w97Xu3gg8RVRSdWC4BQ+JS5uSZGnT9pbvKJ+awXNIFymgi4ikV3+iwW+pKAb6\npbD934CjzawiPKc+kSgvvMqn9mGahy4ikl41QCOpBfVGYEuyG7v7m2b2BPA2UUnSd4D7gOdQ+dQ+\nS+VTRUSSk1T51PAM/T2iqWnJqgMOUbIZ6Q7dchcRSaPq6uq/Et1OTsUcBXPpLgV0EZH0ux6oTXLb\nWuDfM9gW6SMU0EVE0qy6uno2Uea0zoJ6LXBJ2F6kWxTQRUQyoLq6+mGiqWgziZ6Rbyca/LY9vJ8J\nTAjbiXSbRrmLiGRI6Hl/ISSNOZkoc9o64A96Zi7ppoAuIpIhsVisFPgq0VSvQ9g5nW1hLBa7BXi8\nurq6PotNlDyiW+4iIhkQi8XGAn8H7gFGE017Kwmvo8Pyv8disVTTxAJgZg+Y2Rozey9u2c/M7M9m\nNt/MnjazgXHrcq5MalfOIe1TQBcRSbMQpF8BBtF+Brh+Yf2rXQzqU9g1f/t0YLS7Hwa8TzTaPpfL\npKZ0DumYArqISBqF2+wvEBVMSUYl8ELYL2nuPpMoI1v8sj/EVUJ7gyg/OuRgmdQunkM6oIAuIpJe\nXyX1XO4l7MyPni7fBH4ffs7FMqldOYd0QAFdRCS9riW1QisAVcB1nW6VJDP7PlHe9IfSdUzJfQro\nIiJpEovFComeIXfFIWH/bjGzi4DTgPN9Z7GOXCyT2pVzSAcU0EVE0qeKaGpaVzSF/bvMzCYC3wMm\nufv2uFU5Vya1i+eQDmgeuohI+mwl9efnrYrC/kkxs4eB44Ddzewj4EaiUe2lwPQwhuwNd788h8uk\npnQO6ZjKp4qIJCfZ8qkLiOaZp+q96urqQ7uwnwigW+4iIul2C7AlxX22AD/JQFukD8lYQDezMjOb\nY2bzzGyhmd0clifMDCQikiceJ/Xn6I3snI8t0iWZ7KHXAye4+xjgcGCimR1N+5mBRER6vZCbfSKw\nLcldtgETldNduitjAd0jrQM8isM/p/3MQCIieaG6unoucDzRgK72br9vCeuPD9uLdEtGn6GHPL7v\nAmuIcgz/lfYzA4mI5I0QpIcD3wLeI+rQNIbXBWH5cAVzSZeMTlsLUxYODxV/ngYOSnZfM7sMuAxg\n5MiRmWmgiEgGhdvoDwEPhaQxVcDW6urq5uy2TPJRj8xDd/dNZvYqMI6QGSj00uMzA7Xd5z7gPoim\nrfVEO0VEMiUE8c3Zbofkr0yOch/SWovXzMqBCcBi2s8MJCIiIl2UyR76MODBUAu3AHjM3aeZ2SIS\nZwYSERGRLspYQHf3+cARCZYvI6qPKyIiImmiTHEiIiJ5QAFdREQkDyigi4iI5AEFdBERkTyggC4i\nIpIHFNBFRETygAK6iIhIHlBAFxERyQMK6CIiInlAAV1ERCQPKKCLiIjkAQV0ERGRPKCALiIikgcU\n0EVERPKAArqIiEgeUEAXERHJAwroIiIieUABPcd4Swve0pLtZoiISC9TlO0GyE7ba2qY/9LzNDc1\nc8TE06joPyDbTRIRkV5CAT2H1NZsYvajvwFg/7HjFNBFRCRpCug5pKyqH0P3PYCWlmYqB+6W7eaI\niEgvYu6e7TZ0KhaLeXV1dbab0SO212wGh4oB6p2L5BjLdgNEOqIeeo7RbXYREekKjXIXERHJAwro\nIiIieUABXUREJA8ooIuIiOQBBXQREZE8oIAuIiKSBxTQRURE8oACuoiISB5QQBcREckDCugiIiJ5\nQAFdREQkD2QsoJvZ3mb2qpktMrOFZnZVWD7IzKab2V/Cq8qKiYiIdFMme+hNwHfc/WDgaOAKMzsY\nuA542d33B14O70VERKQbMhbQ3X2Vu78dft4CLAb2As4AHgybPQicmak2iIiI9BU98gzdzEYBRwBv\nAnu6+6qwajWwZ0+0QUREJJ9lvB66mVUBTwL/6u41ZrZjnbu7mXk7+10GXBbebjWzJZ2cagCwOcXm\nJbNPR9u0t67t8kTbxS9ru353YF0n7UpVLl+fRMs6ep+J69Neu9KxT1++Rslun+o1ysb1ecHdJ6a4\nj0jPcfeM/QOKgReBq+OWLQGGhZ+HAUvSdK77MrFPR9u0t67t8kTbxS9LsH11Bv4vcvb6JHPN2lyv\ntF8fXaPMXKNkPLJ6OQAABLpJREFUt0/1GuXq9dE//cvmv0yOcjdgMrDY3W+LWzUVuDD8fCHwTJpO\n+WyG9ulom/bWtV2eaLtnO1mfbrl8fRItS+YappuuUedSPUey26d6jXL1+ohkjbknvOPd/QObfQ6Y\nBSwAWsLifyd6jv4YMBJYAXzN3TdkpBG9lJlVu3ss2+3IVbo+ndM16piuj+SjjD1Dd/c/AdbO6hMz\ndd48cV+2G5DjdH06p2vUMV0fyTsZ66GLiIhIz1HqVxERkTyggC4iIpIHFNBFRETygAJ6jjOzz5jZ\nL8zsCTP7Vrbbk6vMrNLMqs3stGy3JReZ2XFmNiv8Lh2X7fbkGjMrMLMfmdldZnZh53uI5B4F9Cww\nswfMbI2Zvddm+UQzW2JmS83sOgB3X+zulwNfA47JRnuzIZVrFFxLNB2yz0jxGjmwFSgDPurptmZD\nitfnDGAE0EgfuT6SfxTQs2MK8IkUkmZWCNwNnAIcDJwbqtNhZpOA54Dne7aZWTWFJK+RmU0AFgFr\nerqRWTaF5H+PZrn7KURffG7u4XZmyxSSvz4HAq+5+9WA7oRJr6SAngXuPhNom0xnLLDU3Ze5ewPw\nCFGvAXefGv4Yn9+zLc2eFK/RcUQles8DLjWzPvF7nco1cvfW5E4bgdIebGbWpPg79BHRtQFo7rlW\niqRPxouzSNL2Aj6Me/8R8NnwvPPLRH+E+1IPPZGE18jdrwQws4uAdXHBqy9q7/foy8DJwEDg59lo\nWI5IeH2AO4G7zOzzwMxsNEykuxTQc5y7zwBmZLkZvYK7T8l2G3KVuz8FPJXtduQqd98OXJLtdoh0\nR5+4NdlLrAT2jns/IiyTnXSNOqdr1DFdH8lbCui5Yy6wv5ntY2YlwDlElelkJ12jzukadUzXR/KW\nAnoWmNnDwOvAgWb2kZld4u5NwJVE9eMXA4+5+8JstjObdI06p2vUMV0f6WtUnEVERCQPqIcuIiKS\nBxTQRURE8oACuoiISB5QQBcREckDCugiIiJ5QAFdREQkDyigS84zs9ey3QYRkVyneegiIiJ5QD10\nyXlmtjW8HmdmM8zsCTP7s5k9ZGYW1h1lZq+Z2Twzm2Nm/cyszMx+ZWYLzOwdMzs+bHuRmf3OzKab\n2XIzu9LMrg7bvGFmg8J2+5rZC2b2lpnNMrODsncVREQ6pmpr0tscARwC/B2YDRxjZnOAR4Gz3X2u\nmfUHaoGrAHf3Q0Mw/oOZHRCOMzocqwxYClzr7keY2e3ABcAdwH3A5e7+FzP7LHAPcEKPfVIRkRQo\noEtvM8fdPwIws3eBUcBmYJW7zwVw95qw/nPAXWHZn81sBdAa0F919y3AFjPbDDwbli8ADjOzKmA8\n8Hi4CQBRTXoRkZykgC69TX3cz810/Xc4/jgtce9bwjELgE3ufngXjy8i0qP0DF3ywRJgmJkdBRCe\nnxcBs4Dzw7IDgJFh206FXv4HZvbVsL+Z2ZhMNF5EJB0U0KXXc/cG4GzgLjObB0wnejZ+D1BgZguI\nnrFf5O717R9pF+cDl4RjLgTOSG/LRUTSR9PWRERE8oB66CIiInlAAV1ERCQPKKCLiIjkAQV0ERGR\nPKCALiIikgcU0EVERPKAArqIiEgeUEAXERHJA/8fmoK7Uvh8t40AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { "tags": [ - "id1_content_3", - "outputarea_id1", + "id2_content_3", + "outputarea_id2", "user_output" ] } @@ -4668,8 +4675,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"08d45c08-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"086b0730-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_1e9fc0f938" + "window[\"48b1f77c-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"48455a0e-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_1a55834bcc" ], "text/plain": [ "" @@ -4677,8 +4684,8 @@ }, "metadata": { "tags": [ - "id1_content_3", - "outputarea_id1" + "id2_content_3", + "outputarea_id2" ] } }, @@ -4686,8 +4693,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"08d5c868-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_b43bee868a" + "window[\"48b38f42-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_ffa41b526f" ], "text/plain": [ "" @@ -4695,8 +4702,8 @@ }, "metadata": { "tags": [ - "id1_content_4", - "outputarea_id1" + "id2_content_4", + "outputarea_id2" ] } }, @@ -4704,8 +4711,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"08d60b7a-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_4\");\n", - "//# sourceURL=js_3e08db3b43" + "window[\"48b3dac4-e945-11e8-9ea1-0242ac1c0002\"] = document.querySelector(\"#id2_content_4\");\n", + "//# sourceURL=js_0a9688acba" ], "text/plain": [ "" @@ -4713,8 +4720,8 @@ }, "metadata": { "tags": [ - "id1_content_4", - "outputarea_id1" + "id2_content_4", + "outputarea_id2" ] } }, @@ -4722,8 +4729,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"08d64e14-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"08d60b7a-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_bdc2f04f5c" + "window[\"48b429de-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"48b3dac4-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_1aeb84efcc" ], "text/plain": [ "" @@ -4731,8 +4738,8 @@ }, "metadata": { "tags": [ - "id1_content_4", - "outputarea_id1" + "id2_content_4", + "outputarea_id2" ] } }, @@ -4740,8 +4747,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"08d68bc2-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(4);\n", - "//# sourceURL=js_7e5411a859" + "window[\"48b46dc2-e945-11e8-9ea1-0242ac1c0002\"] = window[\"id2\"].setSelectedTabIndex(4);\n", + "//# sourceURL=js_78a2488d8d" ], "text/plain": [ "" @@ -4749,8 +4756,8 @@ }, "metadata": { "tags": [ - "id1_content_4", - "outputarea_id1" + "id2_content_4", + "outputarea_id2" ] } }, @@ -4759,13 +4766,13 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYVOX1wPHvmT6zvdF7k44FFQWJ\nBbtiLzG2mFhiifozRmOMLSaWWGKP0dg1drEQKzZEUVBQEKX3tnW2zOxOfX9/3AvssoUFdrZxPs/D\nszN3bnnvsrvn3vd97zlijEEppZRSHZujrRuglFJKqZ2nAV0ppZTqBDSgK6WUUp2ABnSllFKqE9CA\nrpRSSnUCGtCVUkqpTiClAV1ELheR+SLyo4hcYS/LFZEPRWSx/TUnlW1QSimldgUpC+giMhI4H9gH\nGAMcIyKDgGuBacaYwcA0+71SSimldkIq79CHAV8bY8LGmDjwGXAicBzwtL3O08DxKWyDUkoptUtI\nZUCfDxwgInkiEgCOAnoDXY0x6+11NgBdU9gGpZRSapfgStWOjTE/icgdwAdACJgLJLZax4hIg7ln\nReQC4AKA4cOH7/Xjjz+mqqlKKdUc0tYNUKopKZ0UZ4z5jzFmL2PMRKAMWARsFJHuAPbXwka2/bcx\nZqwxZqzf709lM5VSSqkOL9Wz3LvYX/tgjZ+/ALwFnGOvcg7wZirboJRSSu0KUtblbntNRPKAGHCJ\nMSYoIrcDL4vIb4CVwKkpboNSSinV6aU0oBtjDmhgWQlwSCqPq5RSSu1qNFOcUkop1QloQFdKKaU6\nAQ3oSimlVCegAV0ppZTqBDSgK6WUUp2ABnSllFKqE9CArpRSSnUCGtCVUkqpTkADulJKKdUJaEBX\nSimlOgEN6EoppVQnoAFdKaWU6gQ0oCullFKdgAZ0pZRSqhPQgK6UUkp1AhrQlVJKqU5AA7pSSinV\nCWhAV0oppToBDehKKaVUJ6ABXSmllOoENKArpZRSnYAGdKWUUqoT0ICulFJKdQIa0JVSSqlOQAO6\nUkop1QloQFdKKaU6AQ3oSimlVCegAV0ppZTqBDSgK6WUUp2ABnSllFKqE9CArpRSSnUCrrZugFId\nVaKigmRVFeL14srLa+vmKKV2cXqHrtQOCs2cyZKDD6HwrrtJVFW1dXOUUrs4DehK7aCkHcRd+flE\nohFqQhrUlVJtR7vcldpB6QcfTL9PP6aouJCP7rkNt9fLgeecT27PXjid+qullGpdKb1DF5ErReRH\nEZkvIv8VEZ+I9BeRr0VkiYi8JCKeVLZBqVRxZWcTdTp49da/sH7xz6ya/z0v3XgN1RUVbd00pdQu\nKGUBXUR6Ar8HxhpjRgJO4HTgDuBeY8wgoAz4TaraoFSqla5dgzHJze8j4RDR6uo2bJFSaleV6jF0\nF+AXERcQANYDBwOv2p8/DRyf4jYolRLJRILcHj1x1Ope92dk4vH727BVSqldVcoG+owxa0XkLmAV\nUA18AHwLBI0xcXu1NUDPVLVBqVQKV5Tz9RuvcPzV1/Ptu2/h8fqY8MtzCGRltXXTlFK7oJQFdBHJ\nAY4D+gNB4BXgiO3Y/gLgAoA+ffqkoolK7RQRgWSCnMwsJp93MSYSwenz43A4m9wuHgySrKjAEQjg\nys9vpdYqpTq7VHa5TwKWG2OKjDEx4HVgPJBtd8ED9ALWNrSxMebfxpixxpixBQUFKWymUjsmLTuH\nA48/jei771N09z0sO/wIih96mOQ2xtAr33ufpYcdzupLLiVeWtpKrVVKdXapDOirgHEiEhARAQ4B\nFgCfACfb65wDvJnCNijVYhLBIOE5cwjPmUM8GASsu3SHx0OivByAeHExicrKutvF41SVlhAKlgGQ\nrLECvolEwJhWPAOlVGcmJoV/UETkZuA0IA7MAX6LNWb+IpBrLzvTGBNpaj9jx441s2fPTlk7lWqO\n8jffZN011wLQ447byTruOBKVlSQqKhCnk/B33+Hu2pUNt95Kn8ce29ydXllSzBNXXkggM4szbr0b\nrziIb9iAKy9Pu9w7FmnrBijVlJRmvzDG3AjcuNXiZcA+qTyuUqlQs2jxltcLF5IFJMNhVv3mt+T/\n7ncU3X038ZISSCQw0ejmdZOJBIlojB5DhlFTVUVxWQld+g3AlZG5ZZ1YDBMO48jMtMbmlVJqO2k6\nK6UakKyutrrRHQ5cubmIy0Xu2WcRWbgQgNxzz928bnzjRjx9++DIzITCQjJOOAGp9eiaPzOT3z7w\nOIjw5JUXEY9GOPXG2+g9fJR1rJoaqqZPp+zZZ+l20014Bwxo1XNVSnUOGtCVakBs3TqWnXQSWef+\nluwzzyaQn4kjN5ee/7wXkkmcmdbdtTM7m96P/ouy556nx+23I9nZJH1+nFlZxIuLEZ8PT3o6Hp+f\ncHmQ/N59KVm7mozcLV3tyVCIonv/SXTZMsqee45uN9zQVqetlOrAUjqG3lJ0DF21tvC331K1cgOL\nIv0IVRn2O74r0194khEHTqLXsJG4PFsyFptkkmQohHi9OOzlkaVLWXvllaSN24+8i3+HKzvb2m95\nkGQyiT8zc3O+92QsRvWcOZQ9/zxdrr4aT69erX/Cqjl0LES1a1ptTXUIkXiCwsoaguHotlduAd7B\ng/HtP4HvP9tILJpg3icf8vOXn/PBvx+oV1VNHA6cGRkAxAoLiVeFKH3mGSKLFlP6zDOYWo+xBbKy\nSc/JrVO8xeF2E9h7b3rceWeDwTxZU0NkyRJCM2dunk2vlFJb0y531SEs3FDJ6f+eyfG79+CaI4eS\n5U9dTZ9YYSGRxUvw77YbE04dREVxDcMnHsTan+cz6uDD8PoDAMRLSqj58Udc3bvjys+n+vsfKH3y\nCQL7jiPnjDOonjOHtHH71RlPb4yIIF5vg58lKipYfsKJmFiM/m++iVMz0SmlGqABXXUI364sIxxN\n8PniYq48NHXDRPFgkHV/+APhb2bR5Y9XM+qcc0kmDC6Pk8lXXYfL68XlchMvK2PtVX8gPHMmAH2e\nfoqK994j/PU3hL/+BmdeLr0ffRTJzKQ04WTm3LWsL6/hoKFd6JLhJTvQ/AsScbkI7Lsv0ZUrceZk\np+rUlVIdnAZ01SFMHtOD3ICHMb2zyUtL3d25eDwE9tmX6h/m4Rs9GofTwaZMrr609M3rmXic6u++\n2/w+9OVXZEw6hIopUwComTOXrMmTWRtOcvzD0ykNWUMFt737M5ccNJALJg4ky+9uVptcubn0+Med\nkEjoc+tKqUbpGLrqEPLSvRy3R0/65afhcGx7bpIxhtJQlHA0vs11a3MGAuSedSYDP/wA/4gRja7n\n8PvJO/98a5vsbDKPPop4cfHm93kXnE9IXNzyzoLNwXyThz5ZSvl2zgVw5eRoMFdKNUnv0FWntKIk\nzFUvz2XC4ALOG99vu7q4nVlZNFZeJR4MQiyGIyOD3LPPIvukE0EER3Y2mfn5pB9wAOJ248rLI1hR\nw8xlDedq/2FtOX3y0nbgzJRSqmF6h646nMLKGjaU1xCNJxpd54kvlvPdqiD3T1tMdazx9ZrDJJOA\nNTmt6N5/smTSoUSWLsWZlYW7Rw/c3bsjItZsdmNwpqcjTiemPEjP7IYnxPXK0ZrpSqmWpQFddSiF\nFTWc8NCXHHjXJ2ysaLwEwK/G9WFAfhpn7tsHr6vpcqaNSYbDVH3xBRtuuYVYYSEmFqN67lxMJEJk\n8eI66yaCQZYccSRLDzt886Nl2TVV/HF893r7HdY9g145gR1qk1JKNUa73FWHEk9aY+M1sSQloSi5\naR7SvPV/jAd3yeClC/fD53aQ4Wve5LOtJUIhVv/uYojFcKan0+UPf6D3o/8iunIl3sGDAaiurCAS\nDuNyO/EOGUJsxXJwWNfJ7l492asmzou/zebeaUsoropw+Ihu/Hp8P/LTG35ErSnJpKG6IooB/Olu\nnC69HldKbaEBXXUoAY+TNy7Zn8qaOKVVEVzdMxpcz+kQCjIaDpqxSIRodRi314vH3/idsrjdZB19\nFJWffErGYYcB4O7WDXe3bgBEo1G+n/YBM/77FDnde3Dqo4/gTRhcuTlWG9LTyU6HcfnwaI8sYokk\n2X4P7h0MxNUVUV786zck4kl+ecPeJBOVBLKycTfy/LpSateil/iqQ8kOeChI99Ijy8cefXLqdKcb\nYwiVRygvqiYSjjW4fbQ6zM9ffs6LN/yRr179L9WVFZs/i5eWEisqImlXSnNlZ9PlT39iwDtv4x06\ntN6+amqibFi0AIDghg0YEdxduyDu+j0C2QEPBRm+HQ7mAAaIRxMkYknCFRU8ccUF1FRVbnM7pdSu\nQe/QVYeT10h3dXVllFdum00oGOHEP+5F9wH1M6pFqqv54NH7wRhmv/MGoyYdgT8jk3hZGev+dB3h\nr7+m/6uv4h00EABXE1nZfAE/48++AF9GJgP33g9vWmpnrfvTXfzqlv1IJhN8M+U5ApnZiKP+BUKk\nOk4kHMPpcpCWpXfvSu0qNKCrTsXlcYDQ6Piyw+EgIzePypJiXB4v4rIfZ4vHqfnxR0xNDbE1azYH\n9KZ4XE5yCrow8bxL8HtcKa9j7nQ5Sc9xYoxh3EmnMO6kU0jLqp85rrK4mpf+NouMPB8nX7MXgUwN\n6krtCjSgqzYTDEcRocXysgcyvZxw1Z4kE4aEE1YUh8j0u8mtlVkuLTuH02/5Bz/P/Z6cvgN55ccy\nfn1AHs6cHPq99CKxtWvxDh7S7GO6nA5cztYduRIR0rNzGv3c4XIgDsHtdUKKLzKUUu2HjqGrFpEI\nhYht2Ei8pOFEKlsrroxwxYtzWL8xzMJvNlC6PkSiiefKmysty4s308NLc9cw+aEveHLGchL2c+Sb\nZOYX0HOv8by8sJojRvdCgmUU3nEH4blzkd1Gs2RhNRUl1Y0cof3zBlyc9df9mHz57gQyUpcmVynV\nvmhAVy0iungxSw4+mHXXXEO8rGyb65eFo0QThpKfy/joiQW88vdZ1IS2L01rYyqqY+SmeXn61/sw\nuEsawXCMJYWVFFbUYIxV2KVnjp8/HzOcPrkBQl9+SdmzzxH6fDqz31vFtKd+4r1H5xOubJ1SrS0p\nFIzw+j++48OnFqR8CEAp1b5oQFctIrp2LSSTRFetwiTq3mknqqqIFxfXWZ6X7uXYMd3p1jsDEcju\nGkBECIajLC6sZENFDclk3apq4WicL5YU88inSygNNZ5U5pmvVnD1qz9w41s/smffXB79bBmT7vmc\nyQ/OoLCy/nb+3XfH1a0brrxceg3JRgR6DMnG5d75Xw9jDMHCMN+8s5yqYONtbinVlVEqiqvZsCRI\nMpHc9gZKqU5DNt2xtGdjx441s2fPbutmqCbEy8qIrVqFq2s33N26bl6eqKyk9OlnqJj6Dr0eegjv\ngAGbPzPGEIsmiIbjOJxCINPLN8tLOPXRmeSne3jnsgl0y9qSIrWwsob9b/sYhwhfXLwnOS7BEQjg\nzEiv05YZS4r59ZOz+NW4PkwYlM+zM1fy6cIiHALvXn4AXTJ85NQaVzfJJImSEnC5SPoziEUSOF0O\nfGk7lpCmtppQjP89Mo/1S4IMP6AHB56xW0rvnGuqYqxfGiSQ6SG3ezpu345lyVMN0i4P1a7ppDjV\nIlw5Obhy6k/UMjU1BF96iXhREVXTp28O6JF4glAkTrrXRXqOb/P6aV4XLoeQn+4lvtUdusfp4LKD\nB9HdJ5gXnmHJf56g10MPknHIIXXWG90ri9d+tx8zl5fyt6kLuOfU3emdG2Di4HyenbmKX+7Tu05A\nF4cDV0HBluP4Wu7XwuV1MnxiD2qqovTcI59gOEpOWupmnfvS3fQfU7DtFZVSnY52uauUcmRn0+uR\nh8m/9FKyjj4agFAkzrvzNnDOE7OYvriYmlrFU3ICbl66cBzXHTUMt8NBUWWEhN117E3A2WP7cPTQ\nfKLLlgEQWb683jEDLgel5WGe/GI5y4rDXPDst5w6PJc9c128NGsV2c2sQ94SXC4HmQMzyTiyJ++u\nKcHoTZ5SKkW0y121uqLKGsbf/gnRRJKCdC9vXzKebK8LX8BNJJagLBwlaWDKnDW8MWcdd58yhsE5\nAT57YSFLvyti6H7dOODIAhJFhbi7d8eVm7t53/FgkOArrxJZuBDfxZfx2E+VHNQ3jf7JEAG/j5Lc\nbnTJ8OL3tF7nVCSWoLw6hs/lIN3nwtFAMhjVIejVmGrX9C+LalJ1NEFpaOdne4crIoTt6mguh4PD\nhlvj7IeP6MqKbwuZNXUFwfIaPC4H3bL8rC4Lc+f7i1hcWMV1U+YRiyVZPrcYgIUzNxDzZuIfMaJO\nMAeILllC+ZQpZJ92Kv6KUq7cI4eCyjWkSRKP30vvTE+rBnMAr9tJhjj48f3VfPX60g45e14p1f7p\nGLpqVEV1jBdnreK9+Rv45+l70Cd3x0p+hoIRXr/rO0TghKv2JCfby83HjeC6o4dRU1rDB/d8jzfN\nhWdEFt0T6fTJDdAjy4/X5SAST7JH7xwcbgfjTxnM3I9WMeaQ3rg8DU/2cmRk0P1vt7LuqquIrV2H\np39/ej36L5YddjgSCDDwvXdxdOmyM9+WHVK8torv3l8JQGafdHqNyKszjq+UUjtLA7pqVE08wf3T\nllAViTPtp438enz/5m+ciEO4GMRBsNBNRbGVqKW8KExatndzPvaww8m+xw0grU8at81YypGju9Mn\nN0C3TC+f/uFAiqui9Mzxk57mYdj+3Rm4ZwEen8vKgtYAd48eRBYvIbZ2HQDR5ctJhqvB58OZnd1m\nmdOyCvy4vVbaVn+ejyWFlezdP69N2qKU6pw0oO/CQuURkgmDL+DC3cDM7nSPi/tO351352/g6FHd\nt2/nFWvhXxMAIfd3Cxg2wdo+p1vdAiaBTA9DJvZgxpIieuT4OXBIAV8uLWbWijLO3LcPo3ptKY7i\n9jobDeSbODMycPfqiTM7m0QwiKtLAc7sLAa++z/E6cJd0DYzwNOyvfzypn0JRxP8b9FGjt2jZ5u0\nQynVeemkuF1UuDzCK7dblclOv2Ffcrs3Xiksnkhuf77ypZ/As8dbr89+m3iv8QCNdpUDJJJJSkNR\nbnl7AV6ncNLY3uw3MH/7jguYRIJ4cTGxNWtw9+6Nq6Cg3WRNSySSJIzB49Lnwzug9vFDpFQj9A59\nF2WARDyJMZBMNH1Rt0PFR7qNgv1/b73uOrzJQL6J0+EgPVrN9fEFUFVNbtchxGNRXO7Gx5qTySTJ\nhMHl3rJ/cTpxd+2Ku2vXRrdrC8lEklhNAo9ff+1U2xKRycBwY8ztbd0W1XL0Dn0XZZKGcGWURDyJ\nN+DGu1WQSdbUkAgGweHAlZuLuHYgCCXt3OyOLduGo3GqInE8TgfZgfqBOrZ+PavOv4CuDz/I8p/m\nsWLBPPY4YjLdBg7C5ambkKW6MsqPX6yjbx8Hmble3AV5OHakna3AJA0bl1fw5RtLmXDKILr0zWzr\nJqnt1y7v0MXqfhJjjOb63cXpY2u7KHEIaVleMvP89YI5QLy4mCWTDmXZUUcTL21eBbV6HK46wRzg\n+9VBxt/+MXe+v5CK6lj9dvl8dL3mj1SUlfLBE/9i0cwZvHrrnwmXlwNQEalgY2gjwZogC75YS/cu\nhso/X86K4yYT31jYZHMSVVVEV6wgunoNyerWraYWjyX57oOVrF8SZO6Hqzcny1FqR4hIPxFZKCLP\nAPOBs0TkKxH5TkReEZF0e72jRORnEflWRO4XkXfs5eeKyIO19vWxiPwgItNEpI+9/Cl7my9FZJmI\nnNxW56uaRwO6apgxkExaBVVasBfny6UlxBKGLxYXE2mgXKorJwf/3nsTTWypvJaIx4mHQiQqq/ho\n1UdMenUSz/30HL58Fz6fg8jSpSQrKoiXlDR57HhhEUuPOJKlRxxh9T5sQ2FFDe/OW09xAwVdtpfb\n62T8SYMYdWAvxh0/AGcr11BXndJg4GHgF8BvgEnGmD2B2cD/iYgPeBQ40hizF9DYjNAHgKeNMaOB\n54H7a33WHZgAHANo93w71z77J1WrStbUEFm6lMiiRaT/4kBcuTk4c3MZ+OEH4HAQ93qIlQfxpWfg\ncO7cZK5z9u9Hjywf4/rnkOeKAFYe95pYAsFKwuL0+egyYDDDJx7E6h/nsfsRx2IWL8bk5bGqYhUA\nKytWkTUijWVfFDL42ReRqnKke9Mzx8Uh1mNrDgdJt4tlwWV8s+EbDut7GLn+uglqwtE4N771I+/O\n38CZ4/pwy+SROBw71+Oa1SXAxNOH7NQ+lKplpTFmpogcAwwHZtiTPz3AV8BQYJkxZlN+5P8CFzSw\nn/2AE+3XzwJ31vpsit2Vv0BE2tekFFVPygK6iOwGvFRr0QDgBuAZe3k/YAVwqjFm2wW0VYsLlweJ\nVIdxudyU3ncf4c+n0/uxf+Pec08i4RDzZ3zKoq9nEK2uxpuWxvADDmLo+F/gDQTw+HcsyUx+updf\nDozC8xNhyBFw0HWUxL3c8+EiMnwuLpg4kNw0D4HsbA4+9yJiNdU4IhE8Hi+ujEzOHnE2h/Y9nGgk\nnQuen88F+/Yj4vTwUXGSE/s5GN3EsZ0FBQz86EPE4aDcb7j8g8tZUbECr9PLCYNPqLOu2+lg0rCu\nfLm0hIOHdt3pYK5UCoTsrwJ8aIz5Ze0PRWT3FjhG7e4p/SVo51IW0I0xC4HdAUTECawF3gCuBaYZ\nY24XkWvt99ekqh2qYaHyIG/edSvrF/2Mxx/g9GtvhkgEGT6MGa88z5z33q7T1V5ZUsTnzz/J9P8+\nzX4n/5I9jphMLFJDqKyErC7dMcbLqgUlFPTOIKvA3/Ss9tVfQ9lyWPUVJCJU1jh5/mvrzvvMcX3J\ntTOoedPS8KbVfZwuGUsjU/pQHg1TGopxxZR5mz/77S8G0BRnWhpOe3/+WIiTh5zMW0vfYq+ue9Vb\n1+10cPjIbhwwOJ90r3ZkqXZtJvCQiAwyxiwRkTSgJ7AQGCAi/YwxK4DTGtn+S+B0rLvzXwHTW6HN\nKgVa6y/VIcBSY8xKETkOONBe/jTwKRrQW11NVSXrF/0MQLQ6zPyZ09nvwQf49Nn/8ONn0xrdziST\nfPny8/QZOYb3H7mPsvVrOeGaG1m/PJu5H67G4RTOunU/0psK6LsdCee8DXmDIK2ATKL84bAhZPjc\nTQbPYDjKH1/7no9/LuI/Jw9jylkjOOSxuVTHEvzfoUPI9DW/ilqaO41ThpzCMQOOIcdXv+wrYJV2\n1WCu2jljTJGInAv8V0Q2PQpyvTFmkYhcDLwnIiFgViO7uAx4UkSuBoqAX6e80SolWuuv1elY4zcA\nXY0x6+3XGwAdl2kDHr8fp9tNImbNNO/SfyAVJcVNBvPaNi5dQkHfflQWF5GR34WVC8LWB82ZPxfI\ng/4TN7/NTfNwyUGDmpX8JW4/Mx+LxvAvnM/7V0zE6RDSfS4ytgroiYoKEhUVOHw+XPn1E9QE3AEC\n7h0bOlCqLdl33CNrvf8Y2LuBVT8xxgy1H217CGvCHMaYp4Cn7NcrgYMbOMa5W71Pb5HGq5RJ+XPo\nIuIB1gEjjDEbRSRojMmu9XmZMabeLZKIXIA9gaNPnz57rVy5MqXt3NXEY1FKVq9izvvv0H3wUAaN\n3YepD9zN6vnfN2t7jz/Asf/3J/J69cGfkUG0GpbOKaRrv0xyugVwN3JnW1wVYXlxiAH5aZvzuW+P\norIqqopKcXz7Nd3GjcXbv/H88lVffsnq836Db8Rwsh5/msVlEbpk+uiZ7dNMbWpHdLgxZBG5EjgH\na6LcHOB8Y0y4bVulUqU1np05EvjOGLPRfr9RRLoD2F8bfHjYGPNvY8xYY8zYgjbKv92Zudweug4Y\nxGEX/p4xk44gEU/UC+Yut4c+o8aQ1bVbve2j1WHeuP1mxF4vkOlh1C960aVvZqPBvDqa4G9TF3DK\nv77ioU+WkEhu/7PY+dlp9M7x0+OQA/H07t3kug6PNRbvzC9gVWWU0/49k6Pum04wXP/5d6U6I2PM\nvcaY3Y0xw40xv9Jg3rm1RkD/JVu62wHewrpixP76Ziu0QTXC4bB+BBKxujW6nS4XR974F6qO7Mfe\nV11E7zF71Ns2mYiTiMfrLW+MyymM6ZWNCIzulU0sHGfBjHV89uJCghvDmOS2e4tEBAkEcOVtO3ud\nd7fdGPTxNHr87VYKMv3kpnkY0zsLp85YV0p1QikdQ7dnWx4KXFhr8e3AyyLyG2AlcGoq26Caaavx\n64K+A5gb+ol75t9Pj7Qe3DbpalZ/P6eBzZofHN1OByfs2YujRnUn3eti1ffFfPKsNTFvyexCTv/L\nPqRlNd0NH1m+nMI77iTv/N/iHzOmyaDuzMjAmZEBQLek4f0rDsDpEHLTtr+rXyml2ruUBnRjTAjI\n22pZCdasd9WOuL0+PP4A0WqrR668aCOH5I1iaO5QDu1xMGVL6s9hGLjXPiBQVVrCt+++Sf8xe9F9\n8FDc3sYDZpbfDX5r8lrp+tDm5TVVMZLbuEM3xlDy+ONUffopifIgvR55BFd2dpPbbOJ0CAUZvmat\nq5RSHZHmn1QA+NIzGHPokZvfV1eUM+uR/3BVxln0W+Dg+zfqjox0HTCIcSf9kg///RDL5sxm0Vdf\n8NOMz4hFmp8mdfiEnqTnWMF/ryP74tlGrXMRIf+CC8g49FC6Xnvt5rtvpZRSWm1N1VJRVMiTV/2O\neDOC8qTfXMy8Tz6gdO0afvnXu/CGQoTemEL6hAkE9tyzWcE2GYkQDtaQjMZwp/nw5zbvqZhkTQ3i\n9babGudql7HL/cCJyJfGmP3buh2qefQOXW2Wlp3DSdfdgtPddIIWj99P75FjcDhdxCI1JMtK2XD+\nhQSffY41F15EvKi4we0i8QRFlRHCUWsiXaK8nDWTDmDtoQcQfvu1ZrfT4fNpMFcqhUTEBaDBvGPR\ngL6LipeWElu7lnitqmNOt5tuAwdz1u330X/3sfUmyonDweB9x3PWHfeT1bUbR116Fd0H74bT5SYZ\n2jIengyH2Fo8keSrpSWc/K8vmfrDesLROOJ04t1tN3A68Y8clbqTVaoN9bt26hn9rp26ot+1U5P2\n1zNaYr8iMsUui/qjnbcDEakSkX/Yyz4SkX1E5FO7/Olkex2nvc4su2TqhfbyA0Vkuoi8BSzYtL9a\nx7tGROaJyPcicru97Hx7P9+/F37xAAAgAElEQVSLyGsiopma2pB2ue+CEuEwhXfdRfCF/9Llj38k\n99xzEEfda7uaUBXRcJj1SxYSCYfwp2fSbdAQPH4/3sCW/OrhinIcSUNi0SKK7ruftHHjyDnzTFw5\ndSerVVTHuPC5b/lqaQkDC9J48YJxFGT4iJeUYBIJnOnpOALb/7fAxOPES0uJrliBu2tXnNnZOLOy\nduwbo1TTtrtbyA7ejwG1f7jDwPkrbj/6hZ1qjEiuMaZURPxYaV1/ARQDRxlj3hWRN4A04GisamxP\nG2N2t4N/F2PMrXaq2BnAKUBfYCowclOFNhGpMsaki8iRwF+wSrSGax07z57ojIjcCmw0xjywM+el\ndpwmqt4VJZPEN1r5fGIbNkAyCVsFdF9aOr60dDILujS5q0CmFTzNXnvR++GHEK8Ph6/uLHdjDM5I\nFfdNHsg7P+cxtFeONdsdcOXl1dvn9oiuXs2Kk0/Z3ENQ8H9XknPmmTh34OJAqRT4O3WDOfb7vwM7\nFdCB34vIpjKBvbHqo0eB9+xl84CIMSYmIvOwKlwCHAaMFpGT7fdZtbb9pla51domAU9uSkxjjCm1\nl4+0A3k2kA68v5PnpHaCBvRdkDM9ne633Ezsogtx9+y5zQQtzSFOZ4N3xpFwiJXzvueL/z5NJBxi\nxIGTGLP7CS2SejURDlP0wIN1uvuLH3iQrOOO04Cu2os+27m8WUTkQKwgu599x/wp4ANiZku3axK7\n/KkxJrlpXByrp+EyY8z7Deyz/nhZ054CjjfGfG8XiDlwe89FtRwdQ99FufLy8I8ahSs3N6XHKVu/\njrfv+Ttl69cSLg8y681X+fad14lvlZluhySTmFDdvz8mHq9T9lWpNrZqO5c3VxZQZgfzocC47dj2\nfeB3IuIGEJEhdhKwpnwI/HrTGLmIbPrDkQGst/f1q+06A9XiNKCrlEkm4sx9f2q95fM/+ZBIqKqB\nLbaPMz2d/IsvrjNckHXccTs0Fq9UilyHNWZeW9hevjPeA1wi8hNW9s2Z27Ht41iT3r4TkfnAo2yj\nt9YY8x5W2u7ZIjIX+IP90V+Ar7HG4X/erjNQLU4nxe3CknFrpnlLPAJWGoqyujRM9ywfXTKtjGzJ\nZJLpLzzF7Ldfr7NudrcenH7zHaRlN1yHfHskQiHiRUVUfTQN79Dd8A0fvl29DomqKkxNDc6cHMSp\nFdhUk3boF8WeGPd3rG72VcB1OzshTqmGaEDfRcU2bqTo3nvxjR5D1tFH7fTM8Ec+Xcod7/3MoC7p\nvHj+OPIzrIlxFUWFPHXVxcQiNZvXPeaKaxiy7/h6M+tbWyIUouy55yl/4w16PfJwk6VYlWIXTCyj\nOhadFNfJJYJBEpWVOPwBXPnWjHKTSFD0wAOUT3mT8ilvkj5h/HYF9ERFBYmqKhwe7+Z9ZvqsH6V0\nr6vO4+tpubmcc/dDzHnvHcLlQfY4/BhyevTa6WCeiCeoCcVxuh34Ak0nwmmMqa6m/K23iK5YQfV3\nczSgK6U6NA3onVzlR9NYf/31pI3fnx53340rOxtxOgnsuRflr76GMzsb8W1f0ZKq6V+w7qqr8O89\nll733Y8rN4ejRndnwuB8Ah4neelbHltzOl1kFXRl4q9+jUkmcbbAjHpjDIUrK/ng8R/ptVsO+580\nCH+GZ7v348zNpdfDD1E9Zw7pEyfudLuUUqotaUDv5JI11dbX6po6s78zDjmYwEcfIh4vrrztm+ke\nW2VN0I2vWw/JhLX/pMHpENzOhu+8HQ5HvWfdd1Q8muC791ZSVRbh55kb2PvY/vh3YD/icODt2xdv\n374t0i6llGpLGtA7ucyjjyZtv/1xZmXiytkyCc2ZldW8bvZIFUQqwemBNKt7Pfu0U/GNGol34ECc\neXlUReLc8d7PvDx7DXedPJqTx/ZO1ekA4PI42eOwvhSurKTnbtm4PTqZTSmlNKB3cq6cnDqBvLli\nkQgOpxPn2u/g2cmw+1lw+N/Al4krN5f0CRO2rGwMNTHrTj1sf00lEaFrvwxO/fPeOF0OfGk7Noau\nlFKdiQb0ziBWA7EQeLPAufP/peHyIJ8+8x+6DhjIiJF98BkDpUshGW9w/XSfmxuOHcFVh+1Gpq91\ngqvT7SQtS+/MlVJqE00s007FS0uJFxVZmc+aUlUI026B506Grx+BcMlOHzu4cQM/ffEJnz7zOPGM\n3nDRDDjlKQg0Ptaen+6lb14aOWnbPzlNKdX67Opq+9d6/1St/O4tfazHRWR4KvatttA79HYoXlLC\nmksvJbJ4Cf1ee7XxSVuRkBXM5zxrvV/3HXgzYM9z6pU+3R7ZXbsz9pgT6dJ/AG5fAHJH7vC+GhIJ\nh4iEQjjd7iaTy8RLSih7/gV8w4YR2HcfnJmZLdoOpVrFTVn1EstwU3l7SCxzIFAFfJnqAxljfpvq\nYyi9Q2+XTDxO9bz5JKuqiC7fUviopqqS6sqKLStGq2DZJ3U3/nkqxLbONNl84fJyxCFM/NW5DJtw\nYJ1SqS2laOVyHrv0PN6+93bCFeWNrlc+dSrFDz/MmssuI1m186lilWp1VjB/DKs0qdhfH7OX7zAR\nSRORqXYd8vkicpqIHCIic+ya5U/YpVERkRUikm+/HmvXR+8HXARcKSJzReQAe9cTReRLu356o3fr\nIpIuItNE5Dv7eMc11i57+aciMtZ+/YiIzLZrtt+8M98HVZcG9HbImZlJvxf/S/c778A/ZgwAofIg\n7z54D2/e9TeqSu1udU86DDio7sZDjwZ33VzmZTVl/FD0A8Xh4iaPGwqW8cYdNzP1/rsI175waGHJ\nhDVxLhGPNbmef/RocDqtinBunfimOqSmyqfujCOAdcaYMcaYkVi53Z8CTjPGjMLqff1dYxsbY1YA\n/wLuNcbsboyZbn/UHZgAHIOVI74xNcAJxpg9gYOAu8XKId1Qu7b2Z2PMWGA08AsRGd3ck1ZN0y73\ndsjh9+MfORL/yC1d3cWrVrBsziwAln73DWMmHQneNDjkBvBmwqqvYORJMOzYet3tn635jL/M+Au7\nF+zO/QffT46v4W7uWCTChqWLQITktsbud0KX/gP57QP/weXxbK6n3hDfbrsxaNpH4HTiKihIWXuU\nSqGUlE/FqnV+t4jcAbwDVADLjTGL7M+fBi4B/rmd+51ijEkCC0SkaxPrCfB3EZmIVaa1J9B163bV\nulCo7VQRuQAr/nQHhgM/bGc7VQM0oHcQeT17k5FfQDwSoc+IMZuXR/xZOA+5AVc0BL6GZ7n3z+yP\nS1wMzR2K29H4na4vLY2T/vxXPH4/3hRWLPOlpeNLS9/meg6/H4d/R1LGKNVurMLqZm9o+Q4zxiwS\nkT2Bo4BbgY+bWD3Olt7YbaWFjNR63dREnF8BBcBexpiYiKwAfFu3S0SmGWNu2bxDkf5Yldr2NsaU\nichTzWiTaiYN6B1Eem4ev/rbPQD47clhJdUl/PPbfzIsbxjHDDiGzEYeWRuSO4QPTv4At8NNuqfx\nQOpLz6Df6D3qLU8kkhSHrPrl+elenI76v+fx4mIqP/mUtPH74+nRY7vPT6lO6jqsMfTaV8g7XT5V\nRHoApcaY50QkCFwK9BORQcaYJcBZwGf26iuAvYB3gZNq7aYS2NGZpllAoR3MD8K+aGmgXVtPhssE\nQkC53QNwJPDpDrZBbUUDegey9YzwFRUrmLJ0ClOWTmFS30lkNvK76Xf58btq3elGqiAeAYfT6q7f\nRkrW4lCUQ+/5DKdDeO+KiXTNrHtBbRIJiu5/gODLL+PfYw96PfzQDiWzUarTuan8BW7Kgpaf5T4K\n+IeIJIEY1nh5FvCKiLiAWVhj5AA3A/8Rkb9SN3i+DbxqT2i7bDuP/zzwtojMA2azpRZ6Q+3azBjz\nvYjMsddfjVVHXbUQLZ/aUSUTJKo2UFVTzopYkP4FI8n0bONiu6oQSpbClw9A5Tpw+2HkybDbUVR7\nAswtXcDcwrmcNvQ0cn1bnjnfWB5m0bIVuJwwpF8/8jLrd8dXfvwxa6+4kvxLLib37LO1q1x1Rlo+\nVbVrGtA7qsoN8PA4qCnHnP0W0v+Axtc1BsqWw7MnWl+35vRQdOlM3lzyIRO6jCPNl0nvrgOsz6Ih\nkiu/wvHu1ZCMYw65CRl8KPjqXjwkwmGSoRAOr1efF1edlQZ01a7pY2sdVbgEqsvAJJEVXzS9bsU6\n+M9hDQdzgEQU/4Z57BsdzNQ/Xs/SDz4mGqmxPqspx/Hf06B0GQRXIa+d12A2OmcggLugQIO5Up2I\niIyyn1Ov/e/rtm6XapiOoXdUGd3gF9dagXbseY2vF6+BL+6FUFGTu0v/4TVqvMcAUFFYhLGfFSdU\nVD+He8kSyO1fZ1EykaBswzpWL5jHkH32J5CVvd2npJRqX4wx84Dd27odqnk0oHdUgTyYeDWYOLjq\nP/URCpbx9ZSXGbLP/nSrqdryHx3Igy7DoHiRNaa+ycL/MeL40+l/+z34c7tsyRCX3hV82VATBCAx\nYBI1eeNJFFfjTXPh9VuPwVVXVvDGHTdTvnEDJpFgjyOOTeHJK6WU2pp2uXdkTleDwRxg6XezmPPu\n2/zvwbuJDDgSgMghtxH89Rf8fPBfWX3GiyR777tlg2ScwOtnkD/vQdIyanWbBwrg/I9h1CkwbDI1\nxzzNC3+dzbPXf0XhysrNq7k8HoZNOJCM/AJ6j9DET0op1dr0Dr2T6jd6D/qO2ZNh+03AvWYa9B3P\nSs9I3r7sQnY/djI/DQ5z+oF/JP/Zk+puGAuBSbD5Ws/phLyBcOwDgCFZ6SBabXXBVxbXbN7MG0hj\nr6NPYMxhR+PP0HF0pZRqbRrQO6nM/AKOveIanPEqXPecAkOPoXTNGjCGirXryR3Zv+H65l1HgbOB\nbHIe6zE0byDOCVftSXlRNf1G5dVZxZeWBrR8MRellFLbpgG9E/MG0iAcgb77w+IPGH3a7+gz6k48\nORkkk2Xkv3Fx3Q3EAaOaLofs8bvoMTibHoN10ptSHYGI3ARUGWPuSsG+VwBjjTFNV35qIyJSgJXr\n3gP8fuvc8iLyOHCPMWZBW7SvpaU0oItINvA4MBIwwHnAQuAloB9WSsJTjTFlqWxHRxMKlhEJhfCm\npTVZL7xZArkw6Wb4z6EEXjiaQHo38OdA+Wqr/Gpto0626qkrpVrMqKdH1auHPu+cee2hHnqbEhGX\nMSZ1VaAshwDzGqrHLiLOzlanPdWT4u4D3jPGDAXGAD8B1wLTjDGDgWn2e2ULBct46aZrePL/LuK1\nv99AKNjwtU4sGaPZSYG6DIPJD1pV2Ko2QNFP9YN5vwPgsL9bBV6UUi3CDub16qHby3dYI/XQ69U9\nr7XJGBH5SkQWi8j5Tey3u4h8bj9vPn9TnfRt1DC/rFZd9KH2+vvYx5tj11ffzV5+roi8JSIfA9Oa\nqKveT0R+EpHH7GN+ICKNpp8UkfNFZJb9/XhNRAIisjtwJ3CcfT5+EakSkbtF5Htgv63qtB9ht+N7\nEZnW1Hm0VykL6CKSBUwE/gNgjIkaY4LAcVil/bC/Hp+qNnREsUiEsvXrAChauZxEA2VMi8JF3Pzl\nzUxfO53qePW2d+rNgBEnwEUzYPgJ4KjVMdNlOJzylPUvXUuUKtXCWrMeelNGAwcD+wE32EVUGnIG\n8L4xZnesm7C59vKmapgX23XRH8GqpAZWrvYDjDF7ADdQ93z3BE42xvyCxuuqAwwGHjLGjACC1C0s\ns7XXjTF7G2M23Tj+xhgz1z72S3bN92qsST5f29+3zRm57K75x4CT7H2c0ozzaHdS2eXeHygCnhSR\nMcC3wOVAV2PMenudDVg1dJXN4/czaJ/9WfLNl4w86DDcXm+9db5a/xVvLn2TGetm8Moxr9QtvNIY\nbzp0HQHHPQBH/B0SURAnuH2QpoFcqRRplXroxpjpW+Jgg960A1q1iHwC7ANMaWC9WcATIuLGqo2+\nKaA3VcP8dfvrt8CJ9uss4GkRGYw13Fp7pu2HxphS+3VjddXBqu++6fjfYg3TNmakiNwKZAPpwPuN\nrJcAXmtg+Tjgc2PMcoBa7WvqPNqdVAZ0F9aV2GXGmK9F5D626l43xhgRabDf2P7huQCgT5+d/dnv\nOAKZWRx2waUcct5FOF1u/Bn1x7T3674fh/c9nMP7H07AvZ11y70ZHXKcPJFMkDAJPE5Pyo5RUl3C\nmso19MnsQ45Pq8WpFtEq9dDtLuKm6p5v/Xe2wb+7xpjP7eB6NPCUiNwDTKfpGuabaqgn2BJT/gp8\nYow5QUT6UbfKW6jW6wbrqm+13037burO5SngeLua27nAgY2sV2OMSTSxn601dR7tTirH0NcAa4wx\nm/L+vooV4DeKSHewxmuAwoY2Nsb82xgz1hgztqBg17qD9Gdkkp6T22AwBygIFHDrhFs5uPfBzQro\nxhgSiQSJZIJ1VeuYsXYGpTWl29yuvSirKeOR7x/h+hnXsz60ftsb7ICqaBU3fnkjZ757Ji/+/GJK\njqF2Sddh1T+vraXqoYeNMc8B/8D627oCq+451O+ePk5EfCKShxXsZjWy377ARmPMY1gTmvek4Rrm\n25IFrLVfn7uN9erVVd8BGcB6u2fhVzuw/Uxgooj0BxCRTeUmm3se7ULKAroxZgOwutYkgkOABcBb\nwDn2snOAN1PVhs7M5/LhdDi3uV60uprFX8/go8cfIlRexhlTz+Cijy7iX3P/RSwRa4WW7rzZG2bz\n6A+P8u7yd/nLF3+hIlLR4sdwOpwMzh4MwKCcQS2+f7Vrsmeznw+sxLorXgmc3wKz3EcB34jIXOBG\n4Fasuuf3ichsrDva2n4APsEKXH81xqxrZL8HAptqlp8G3GeM+R7YVMP8BZpXw/xO4DZ7P031BD8P\njLXrqp/Nlrrq2+svwNd227Z7H8aYIqwe4dftCXMv2R819zzahZSWT7VnGT6O9QzgMuDXWBcRL2ON\nIa3EemytydvFXb18aihYhjgcBDKbPwO9MFzIF2u/YFy3ffn47/9g47IlTL76em7ceD/ziudx5rAz\n+b+x/4fb0a6HhAD4fM3nXDLtEgB+0esX3HbAbWR4Wn7YIFgTJJqMEnAFSPekt/j+VYen5VNVu6b1\n0Nu5ypJiXvnrn/GlZ3DcH/7crOfSQ7EQf5r+Jz5Z/QljCsbwt5HXs+Ct/zHxzF9T4aphVeUqhuQM\n6TDjxMGaIJ+v+ZyVFSs5fejpFAR2rSEY1W5oQFftWrO6EOwp/edjzTLcvI0xpom6naolFK9eSdl6\nawgnWl3drIDuEhej8kfxyepPGJE3grxuPTn0wktxuT2kAd3Tu6e41S0r25fN5EGT27oZSnUaIjIK\neHarxRFjzL4Nrd9eiMhDwPitFt9njHmyLdrT3jR3TOBNrJmOH1F/bEalUNf+Axlz6JEEsrLxpjUv\nT7rX5WVSn0ns020f0txp+Jx+XM52P/yjlGolHbXOuTHmkrZuQ3vW3L/yAWPMNSltiWpQICubg869\nABEHDue2J8EBRBNRHv7+Yd5b8R77dtuXew+6lwxnx3tUTSmlVPM1N6C/IyJHGWP+l9LWqAY5XXUn\nrkUSEdZUrmFx2WL27b5vvbFwj9PDlXtdSYG/gFN3O5V0t07wUkqpzq5Zk+JEpBIrZV4EiGFNDjHG\nmFYpfL0rT4prSGG4kKNeP4pIIsKle1zKhaMvbOsmKbUr0Elxql1r1h26MUb7a9sRQcjyZlEYLqR7\noGNNcFNKKZUazZ4pJSI5WMnyN6f8M8Z8nopGqabl+/N58egXqY5Xk+XNImmSlFSXkDAJMj2Z258O\nViml2hm7/PYZxpiHd2DbFbRQnXYRuQUrz/tHO7uvVGvuY2u/xSqs0gur+s444Cus6j2qlYlInWex\ni8JFnPL2KZRFynh98usMzB7Yhq1TStX209Bh9eqhD/v5pzarh95KdchbQjZwMVAvoLfmORhjbmiN\n47SE5qZ+vRzYG1hpjDkI2AOrnJ1qBwyGcDxM0iTrlFMNlwf5/PknWTJrJpHqrdNJK6VSzQ7m9eqh\n28t3ioicKSLf2LW+HxURp4hU1fr8ZLuQCiLylIj8S0S+Bu4UkVwRmSIiP4jIzE3lUEXkJhF5Vhqo\nnS4iV9s1x3+Q+jXRt27b2fZ634vIs/ayArtW+Sz73/hax3zCrk2+TER+b+/mdmCgfX7/EJEDRWS6\niLyFlUYc+xy+Fatm+gXb8b2rt539/XtKrDrw80Tkylrfu5Pt1zfYbZ8vIv+uVeq1XWhul3uNMaZG\nRBARrzHmZ2nnhd53JTneHN487k3C8XCdO/c1P/3IrLdeAxEufPgpvP627YpPJBObi8Lk+fNwSCpr\nAynVLjRVD32H79JFZBhWrvXxdmGTh9l2UZJewP7GmISIPADMMcYcLyIHA8+w5bn00Vi9sGnAHBGZ\nCozEGnLdB+vC5C0RmdjQsKuIjACut49VXKvQyX3AvcaYL0SkD1aJ02H2Z0Ox6qFnAAtF5BGs6pwj\n7drsiMiBWMViRm4qcwqcZ4wpFRE/MEtEXjPGlDTjW1hvO6zEaT3t+vKbuvy39qAx5hb782eBY4C3\nm3G8VtHcgL7GPrkpwIciUoaVh121stLqUmZvnM3wvOH0SO+BQxy4ne462d+qIjEw0G3QYLr0G0C3\ngUNwuNs+Z3tpTSknvnUiDnHw6rGvagpXtStIVT30Q7Aqq82ybxL9NFK5spZXapUOnYBdkc0Y87GI\n5InIpqeWGqqdPgE4DKtIC1g1xwcDDc2jOtg+VrG9/021OiYBw2vd1GaKyKZnaqcaYyJAREQK2VIT\nfWvf1ArmAL8XkRPs173tNjUnoDe03UJggH2xMxX4oIHtDhKRP2JdlOUCP9LRAroxZtOJ32T/B2cB\n76WsVapRby97m7tm30WvjF48e+Sz5Pvz63xeUhXhb1N/IppIcuvxIznpultwut14A2mEyoNsWLKI\nrgMGkZ6T28gRUidhElRGKxGExHaVJFaqw0pJPXSsu+SnjTF/qrNQ5Kpab7euiR6ieRqqnS7AbcaY\nR7erlXU5gHHGmJraC+0Av3Xt88Zi0+ZzsO/YJwH7GWPCIvIp9c+5nsa2s2u9jwEOBy4CTgXOq7Wd\nD2s8f6wxZrWI3NSc47WmZvd5isie9tjGaKw659HUNUs1ZmT+SFziYkzBmAYrpQXDMV6fs5Z3fljP\numC1lTI2kEYiFmP6C08x5c5beP+Rf1ITqmpg76mV5c1i6olTeefEd8j2NtSbpVSnk5J66MA04GQR\n6QJW/W6xa5mLyDARcQAnNLH9dOwuejvAFRtjNtUlbqh2+vvAeZvuqEWk56ZjN+Bj4BR7+9q1xT8A\nLtu0kljVOJtSidUF35gsoMwOykOxhgmao8HtRCQfcBhjXsMaMthzq+02Be9i+/twcjOP12qaO8v9\nBuAU4HV70ZMi8oox5taUtUw1aHjecD44+QNcDhdZ3vrlVLMDbk7dqxfRRJKumVsuHsXhoOuAQfz4\n6Ud06TcAh6v1c7v7XX56pvds9eMq1VaG/fzTCz8NHQYtPMvdGLNARK4HPrCDdwy4BGvc+R2gCJiN\n1TXekJuAJ0TkB6wLjHNqfbapdno+W2qnr7PH7b+y76irgDNpoJvfGPOjiPwN+ExEEljd9OcCvwce\nso/pwuquv6iJcywRkRkiMh94F6sbvLb3gItE5Ces7vKZje2rmdv1xIptm2506/R+GGOCIvIYMB/Y\ngHWh0640N1PcQmDMpq4SeyLBXGNMq0yM00xx2yccjWMMpHnrBu2KihJC4UqWh1bSq6A/fTJ3dhhP\nqV1Ku5rRnAp2N3KVMeautm6L2n7NvU1bh9XdsGnswwusTUmL1E4LeBr+b62Qao58/1gAxnYdyx0T\n76Cspow8f169sXillFIdS3MDejnwo4h8iDVB4lDgGxG5H8AY8/umNlbtg9fpJdOTSUW0gqG5Q/lu\n43dc/fnVDM0dyqOHPoogfLPhG75e/zXHDzqeAVkDSPdoYReldhXGmJuau649Rj6tgY8OaeajYynV\n3tuXCs0N6G/Y/zb5tOWbolItx5fDG8e9QTASJM+Xx33f3gdAOBZGEF5d9Cr3z7kfgFcWvcILR7/A\nqPxRbdlkpVQ7ZQfFdltTvb23LxWa+9ja05tei5XTvbcx5oeUtUoRS8Qoj5bjd/lJc6e1yD5dDhdd\nAl3oErAmp16+1+Uc1v8wBmUPImmSvLPsnTrrT1kyRQO6Ukp1EM16bM1OyZdpP37wHfCYiNyT2qbt\n2n4q/Ymz3j2Llxa+RCjW3MdHt0+eP48JPSfQLa0bAVeA0fmj63w+rntznwJRSinV1pr7HHqW/Yzi\nicAzxph9sR7MVymQTCZ5eeHLrKlcw/M/PU91rHrbG+0kv9vP5XtdzgmDTmBQ9iCu2PMKxnYdm/Lj\nKqWUahnNHUN3iUh3rMw5f05hexTgcDi4ePeLiSVjnDT4JDI8rVOOPt+fz5/2+RPheJgsbxYuR+s/\nq66UahkiMhkYboy5vYHPqowx9Wa8ilXM5R1jzKt2BrU/GGNa/ZlhO+lMD2PM/1J8nOuMMX+3X/fD\nOveRO7nPAqxcAB7g98aY6Vt9/jhwjzFmwc4cpyHN/Yt9C1amoBnGmFkiMgBY3NKNUVv0SO/BreNv\nxe1MTQ72eCJOMBrk/9u78zg5qzrf459vutPZV5YQlhhGUGRHirDLKkZHVlnlDssgXBSuC86doDNX\nEPVeFB0WhRlBmMCorIIsshg2ZVAgDSSEsAsBAgkkhCyddJbu/t0/ntOk0unqru6u6uqufN+vV726\n6jzLOf3Q5FfnPOc5vxrVMGbwmI/KhwwcwpCBQ8pSp5n1noi4C7ir0u3opl2BHFCWgJ6ypIlsxb7/\nW+LTHwLMioivtFNvTXvlpVLUkHtE3BoRO0fEV9Pn1yPiS+VqlGXKFcwB3mp4i8PvOJwpj035KAOa\nmZXelWc//OUrz354zpVnP9ySfpYidepESS+l1J6vSPqNpEPTymqvSpok6TRJv0j7b60sJeosST/M\nO48k/ULSy5IeBNpdzhAu74kAACAASURBVFXSYen4ZyTdmpdUpb19d5f0J2XpSR9Io7tIOlNZ6tGZ\nytKoDk3lxylLRzpT0p8l1ZF1Ik9Qljr1hAL1FEq7iqTz0jmfl/TNvGv2sqQbyFZ7uxYYkur4TTq0\nRtI1ytKq/jEtolbo91zv90kjCz8hWz53hqQhkhok/UzSTGDv1N5cOsfkdE1nSnoolU1K1/pZSX9R\nFzKbFjsp7hOSHkpL8CFpZ2XLDlo/9cqiV2hY08D0+dNpbimcKCV/JcHFKxc7+Jt1QQre6+VDL0VQ\nB7YBfkaWenQ74MtkWdH+ifXXir8c+PeI2AmYl1d+NPBJYHvgFGCftpUoW+P8X4FDI+LTZEvKntde\ngyQNBH4OHBsRuwPXAT9Km2+PiD0iYhfgReCMVP494HOp/IiUJ+R7wM0RsWtE3NzBNdiOLJnKJOAC\nSQMl7Q6cDuxJtk77mZJ2S/tvC1wVETtExOlAY6rj5LztV0bEDsBiUka6Atb7fSJiRpu2N5KloX0y\nInaJiP/Ou1abkP1tfCmd47i06SVg/4jYLZ2r6BGEYofcrwH+N/BLgIh4TtJvAa/l3sb8hvmsal7F\n4NrBbDR4I2prevc+dMOaBl744AUWrljIPpvvw+jB7SdBmTR+EhfucyHbjdmu3Xv0q5pWMfuD2dz9\nt7s5c+czGVI7hH/+0z+zdM1SrjjoCsYNK5Td0MzylCUfevJGRMwCkDQbeCgiQtIsstze+fZlbXD6\nL+DH6f1ngBtTWtV3JT3cTj17kQX8x7ORauqAvxZo0yfJcqdPS/vWsPYLxI5pdGA02RrzD6Tyx4Gp\nkm5hbb6QYrWXdnU/4I6IWA4g6XZgf7LbD29GREdrvr+RgjLA06x/HfMV+n3aagZ+1075XsCfW9PB\n5qWZHQVcL2lbsoXcih6qLTbaDI2Ip6R1ljJuKraSDcW8hnl8/ZGvs93Y7dht093Yd/N9ux34FjYu\npLmlmVGDRjG4dv0Mfe82vMu9b9zLflvsx9ajtmZQzSAAGlY38JUHvkIQ3H7E7QUD+tjBY/nStoW/\nfC5bvYyzHzybxqZGFjQuYMoeU3hifvb/wayFs7r1e7VECwNUdII/s2pQrnzosG7K0Za8zy20/297\n54k72idgWkScVOS+syNi73a2TQWOioiZkk4jy+RGRJwtaU/g74GnUw+7WMWmXW3V2TPAbc/X0YSi\nqbTz+7RjZV4e+mL8AHgkIo5OE/UeLfbAYv91XSjp46Q/CEnHsu6wjQF/W/I3Xlr0Enf/7W4mjJjA\n/OXzu3WehY0LOf3+05l8+2TeWrZ+2uQPGj/gnIfO4fJnLufkP5zMklVLPtpWN6COA7c6kO032n6d\nyW5dVTOghkmbTQJg/y32Z0TdCA772GHsudme7LLJLl0+36LGRVwy/RIefPNBlq8uz3P1Zn1Qobzn\nPc2H3lWPAyem9yfnlf+Z7F51TbrXfVA7xz4B7CtpGwBJwyR9okA9LwObSNo77TtQ0g5p2whgXhqW\n/6gNkj4eEU9GxPfIssRtReepUzvyGHBUuqc9jOy2wmMF9l2T2tMd7f4+XfAE8BlJW8M6aWZHsTZX\nymldOWGxPfRzgKuB7SS9A7xB936BqvapsZ/i27t/my1HbMlzC57jqG2O6tZ5WqKFdxreoamliXkN\n8/jEmPX/32nt6bbt8Y4dMpaL9r2Ilmhh7OCx6x1XrDGDx3DRvhexunk1Q2uHMnLQSC7c50JaoqXd\ntK2deXHRi/z6xV9z00s3Me24aQyj/dXvGtY0sGLNCgYOGNijLyRmfcR3yW5Z5g+7lyIfeld9A/it\npCnAnXnldwAHAy+QfclYbyg9IhakHuiNkgal4n8FXmln39Wpw3eFpFFkMeYyYDbwf4AnyYL2k6wN\n2Jek4WWRrb0+M7XlfEkzgP/XyX30tm14Rtnjd0+lol9FxLOpt9vW1cBzkp6h649kF/p9im3nAkln\nAbcrS9n6PlmelJ+QDbn/K+unjO1Qh+lTJX0jIi6XtG9EPJ6+7QyIiGVdqaSn+lP61CUrl9ASLSC6\nHZBWNa1ibsNc3m14l5023qndYfN5y+fx4JsPsuf4PZk4ciJ1NXU9bXpZLWxcyA/++gNym+U4apuj\nCj5b//g7j/PVB7/K8Z88nm99+lsMqyvNsrdmJdCt9KlpAtw6+dDP+Y+De3r/3Gw9nQX0GRGxq6Rn\n0uzGiugPAX3BigUsX7Ocf3v635gwYgJn7HSGe5htLF+znIEDBnb45eOml27iR0/+iL3G78VPD/hp\nt0YDzMqk6vOhW//W2ZD7i5JeBTaXlJ+MRUBExM4FjtsgrG5ezcLGhSxsXEjD6gbeXf4uj7z9CAAn\nbXdSlwP60tVLmbNkDjWqYcLICb22QlxvKSbJzOSJk9l1013ZZMgmDuZmfZikO4Ct2xRPiYhCs727\nW8/pZLcM8j0eEeeUsp4O6r+S7CmBfJdHxH/2Rv1d0WFAj4iTJG1GNh3/iN5pUv/x4coPOfL3R7Ky\neSXfnfRddhu3G/tvsT9bjtiSoQPbPqmy1rLVy2hsaqRuQN06w+kLVizg5HuzqQn3HnNvpwF9+Zrl\nrFizgrqauqoJfqMHjy44M9/M+o6IOLqX6vlPoGLBs7e+OJRCp7PcI2J+eiD+zbav3mhgX9ecnkYI\ngutmXccem+3BaTucVrB33tTSxH1v3Mchtx7ClTOupGF1w0fbBtcOZuCAgQyuGUzdgMLD0s0tzTS3\nNPPo249y6G2H8suZv2TZ6l6d1mBmZn1Mhz10SbdExPFpoYL8m+0ecgdGDxrN7UfczvwV89lm1DYc\nMuEQBmgAGw3ZqOAxa5rX8Jd3/wLAk/OfZGXzSoaTraK48eCNue+Y+7IJdYPW/0LQ3NLMq4tf5YbZ\nN/DN3b/Jg28+SEu08OjcR/nHnf6REd1+ysPMzPq7zu6ht963+GJ3Ti5pDtnzhM1AU0Tk0rN2N5Ot\nwDMHOD4iPuzO+SttUO0gJo6ayMRRE4s+ZsjAIXxn0nfYfqPtOexjh63zaNmg2kGMqy28YMvyNcu5\n+KmLefq9pxk/fDxTJk1hq5FbcfjfHd7uFwAzM9twdDjLvccnzwJ6LiIW5pX9BFgUERdLOh8YExFT\nOjpPf5jl3iMR0PAetDTB4FEwqP2edlNLEzPen8GvZv2KKZOmsPWotvNRKmdN8xreW/Eei1Yu4mMj\nP1Y19/TN8niWu/VpHd5Dl7RM0tJ2XsskLe1mnUcC16f31wPdW32lmjS8B1cfCJftCHOnF9ytdkAt\nu226Gz894KdMHDmx15pXjMWrFnPMXcdw8r0nM2fpnEo3x8w6IekoSduX8Hw5SVeU6nzdqP+I1ElE\n0iaSnkwZy/aXdK+kqp9t29ks957elA3gj5IC+GVEXA2Mi4jWZWPnky2mv2FrWgXL0iV56wn4+MEF\nd60ZUMPwuoKZCytmgAYwYcQE3lr2FmMHdX+FukKWrFrCE/OeoFa17LHZHowcNLLkdZhtYI4C7iFb\nJa7HIqKeLBNbRbTJ/942J3mhpV+rSrmH3LeIiHckbQpMA/4XcFdEjM7b58OIWO8GcFoS7yyACRMm\n7P7mm1U8qb5xMbzyALz7LOx/HgxvNyVxn/dB4we0RAujB40ueS73t5e9zRdu/wIA9x9zP1uM2KKk\n5zcrQreG3H92whfXWynu2zff0+OV4iT9D+DrZNnPngS+BvwC2IMsqchtEXFB2vdiskePm4A/kmU1\nuwdYkl5fioi/tVPHmWT/DtcBrwH/EBErJB0HXEA2P2pJRHxG0oHAP0XEFyVNIkvZOhhoBE6PiJcL\n/B6nka23PgrYAvh1RHw/bfs92drug8me/b46lU8mu6Y1wMKIOCSdJwf8iiywDyFbE31vsvSmuYhY\nKOkUshSzATwXEf9Q7DXv68qa2zMi3kk/30+LEEwC3pM0PiLmpWQA7xc49mqydXbJ5XLl+9bRFwwZ\nDbucADsfD6rcbbrmlmYamxoZOnBot7KidTS7v6eG1g5lr832oramtt3sc2Z9UQrm+Wu5fwy45mcn\nfJGeBHVJnwJOAPaNiDWSriLLr/EvEbFIUg3wkKSdyYLa0cB2Kb3q6IhYLOku4J6IuK2Dqm6PiGtS\nnT8ky2H+c9bmMH+nwFB2a07vJkmHkgXfjnKLTyJLu7oCmC7pD6nH/4/p9xmSyn9Hdqv4GuAzEfFG\nXlITACJihqTvkQXwc1PbW6/bDmTr0O+TgnvphxMrqGy5LFNGnhGt74HDgOfJvjmdmnY7lXUTBWxw\nFq9czPT503l76ds0tXQlw15prW5ezdPvPc23//RtXlr0Es0VbEt7NhqyEZcccAkX739xWb84mJVY\nR/nQe+IQYHeyIDcjff474PiUaORZYAeyPOZLgJXAtZKOIQuaxdpR0mPp0eWT0zlhbQ7zM8l6yW2N\nAm6V9Dxwad5xhUyLiA8iopFs9GC/VP51STPJMpNtBWxL4TzixTgYuLV1onYXj+3zytlDHwfckb4Z\n1QK/jYj7JU0HbpF0BvAmcHwZ29Dnzf5gNmc/eDZDa4dyz9H3sMnQTSrSjmWrl/GDJ37AnKVzWN28\nmssOuqzPzVT3CnLWD5UrH7qA6yPiOx8VZGk4pwF7RMSHKePY4NRLnkQW9I8FziULbMWYSvdymHc1\np3fbUdhIQ/iHAnunYf5HyYberYCy9dAj4vW0wtwuEbFDRPwolX8QEYdExLYRcWi1fUPqqvHDxlM3\noI6JIydSo/a+6PaOobVDOW2H0xg/bDynbH8KQ2sLL11rZkUrVz70h4Bj0/yk1lzaE4DlwBJJ44DP\np23DgVERcS/wLWCXdI5ico53JYd5vq7m9P6spLFpaP0oshGAUcCHKZhvR9Yzh8J5xIvxMHCcpI26\ncWyfV9Z76Na5LYZvwX1fuo8a1TB2SOX+toYMHMLnt/48B2x5ACPqRpR8UpvZBqos+dAj4oWUL/uP\nKZf2GuAcsqH2l4C3yYIiZEH5TkmDyXr256Xym4BrJH0dOLa9SXF0LYf5AXnHdTWn91PA74AtySbF\n1adh/rMlvQi8TBbIO8oj3qmImC3pR8CfJDWTXa/Tijm2PyjrLPdSqfqFZcysP+hTs9yrRevs9NYJ\nbNZ97qH3Mc0tzTRHc4c5w82s/0jB2wHcys4BvQ9ZsmoJ979xP8+8/wzn7X4e44Z5zR0zK7/eyPkt\n6XPAj9sUv5HSsE4tVT0bMgf0XhYRrG5ZzaCaQettW7Z6GT988ocA1NXUccHeF1A7wP+JzKy8eiPn\nd0Q8ADxQ7no2ZGWb5W7rW9W8iunzp/Mvj/0Lc5fNXW/7oJpBjBua9cr3Gr+Xg7mZmRXNEaMXLVu9\njAv+egFzl81lRN0Ivrf39z5awQhg4yEbc+Pf38ialjWMqHNuczMzK54Dei8aVjuMi/a5iFc+fIW9\nN9t7nWAO2fKElVpYxszM+jcPufei1S2rmbFgBk/Nf4oRBXKem5lVmqSJadnWzvb5ct7niqZPNQf0\nXtXY1MgVz1zBw289zNPvPV3p5piZ9cRE4KOAHhH1EfH1yjXHHNB70eCawZy101nsu/m+fHrcpyvd\nHDPrp1Lv+CVJv5H0oqTbJA2VdIikZyXNknSdpEFp/zmSfpLKn5K0TSqfKunYvPM2FKjrMUnPpNc+\nadPFwP6SZkj6lqQDJd2Tjhkr6feSnpP0RMr6hqQLU7selfR6WqXOSsQBvReNHjyar+z8FS454BI2\nHdo/c56bWZ/xSeCqiPgUsJRsSdepwAkRsRPZHKmv5u2/JJX/ArisC/W8D3w2Ij5NlrK1dVj9fOCx\niNg1Ii5tc8z3gWcjYmeyZW5vyNu2HfA5spSpF6R14q0EHNB72ZDaIZ7Bbmal8HZEtK7X/muybGpv\nRMQrqex64DN5+9+Y93PvLtQzkGzN91nArWQpWTuzH/BfABHxMLCRpJFp2x8iYlVKYfo+WWZOKwHP\ncjcz65/aJuJYDGxU5P6t75tIHbuU6KS9Nae/BbxHlqVtAFlu9Z5Ylfe+GcehknEP3cysf5ogqbWn\n/WWgHpjYen8c+AfgT3n7n5D386/p/RygNZf5EWS98bZGAfMioiWdszXPc0fpVx8jpVtNec0XRsTS\non4r6zYH9AqZv3w+j7z9CIsaN+h08GbWfS8D56T0omOAS4HTgVvT8HgL8B95+4+R9BzwDbJeN2Sp\nXQ+QNJNsGH55O/VcBZya9tkub5/ngGZJMyV9q80xFwK7p/ouBk7t0W9qRXH61ApYtHIRX3vwa+w+\nbncO//jhbDF8i7LeV29qaWJh40KWr1nOxkM2ZtSgUWWry6yKdSt9ajlImgjcExE7Frn/HLIUpQvL\n2CyrMPfQK6BuQB3Hf+J4Nh++Oafcdwq3vXIbjWsay1bfopWLOPrOoznqzqOYvXB22eoxM7PKcUCv\ngOF1w9l/y/155K1HaGxq5J7X76GxqXwBHWCAsv/UNQNqOtnTzPq6iJhTbO887T/RvfPq5yH3Cnpz\nyZtc+/y1nPypk9lm9DZlC7ZNLU0sWrmIxjWNjBk8hpGDRnZ+kJm11WeG3M3a44BeYS3R8lHv2cz6\nNAd069McSSrMwdzMzErB0cTMzKwKOKCbmfVDkiZLelnSa5LOr3R7rPIc0M3M+hlJNcCVwOfJ1lY/\nSVIxa6xbFXNANzPrfyYBr0XE6xGxGrgJOLLCbbIKc0A3M+t/tgDezvs8N5XZBsxZbszMyiyXyx0B\nfBaYVl9ff1el22PVyT10M7MySsH8RuBc4Mb0uafeAbbK+7xlKrMNmAO6mVl5fRYYmt4PTZ97ajqw\nraStJdUBJwLu+W/gHNDNzMprGrAivV+RPvdIRDSR9fgfAF4EbokIZ17awHnpVzOz4nR76VffQ7fe\n4ElxZmZlloK4A7mVlYfczczMqkDZA7qkGknPSronfd5a0pNpucKb04QOMzMz64He6KF/g2zSRqsf\nA5dGxDbAh8AZvdAGMzOzqlbWgC5pS+DvgV+lzwIOBm5Lu1wPHFXONpiZmW0Iyt1Dvwz4Z6Alfd4I\nWJweuQAvV2hmZlYSZQvokr4IvB8RT3fz+LMk1UuqX7BgQYlbZ2bWv0maI2mWpBmS6lPZWEnTJL2a\nfo5J5ZJ0RZq79JykT+ed59S0/6uSTs0r3z2d/7V0rHqrDuuecvbQ9wWOkDSHLBPQwcDlwGhJrY/L\nFVyuMCKujohcROQ22WSTMjbTzKx8crnctrlc7oe5XO769HPbEp7+oIjYNSJy6fP5wEMRsS3wUPoM\nWZrVbdPrLODfIQvOwAXAnmQZ3C5oDdBpnzPzjpvci3VYN5QtoEfEdyJiy4iYSLYs4cMRcTLwCHBs\n2u1U4M5ytcHMrFJyudygXC53MzCT7NbjKennzFwud3MulxtUhmqPJJubBOvOUToSuCEyT5B1rMYD\nnwOmRcSiiPiQbBW7yWnbyIh4IrLVx25oc65y12HdUInn0KcA50l6jeye+rUVaIOZWbndABwODAEG\nprKB6fPhrA2K3RXAHyU9LemsVDYuIual9/OBcel9oXSrHZXPbae8t+qwbuiVleIi4lHg0fT+dbJh\nFzOzqpSG1VuDeXuGAEfkcrlt6uvrX+tmNftFxDuSNgWmSXopf2NEhKSyru3dG3VY8bxSnJlZ6Z1K\n5x2mWuC07lYQEe+kn+8Dd5B1lN5LQ9mkn++n3QulW+2ofMt2yumlOqwbHNDNzEpvK9YOsxcykHUD\nXdEkDZM0ovU9cBjwPNl68a2zyPPnKN0FnJJmou8FLEnD5g8Ah0kakyaqHQY8kLYtlbRXmnl+Sptz\nlbsO6wYnZzEzK723gTV0HNTXsO695a4YB9yRnvKqBX4bEfdLmg7cIukM4E3g+LT/vcAXgNfIUrie\nDhARiyT9gCy/OsBFEbEovf8aMJXs9sB96QVwcS/UYd3g9KlmZsUp+hnpdA99JoXvoQOsBHbqwT10\ns3V4yN3MrMTq6+tfBe4GGgvs0gjc6WBupeSAbmZWHqeQ3VdeSTa8Tvq5knXvQ5uVhO+hm5mVQX19\n/SrgxDT8firZBLi3ganumVs5+B66mVlxvM649WkecjczM6sCHnI3MyujXC43FNgLGAEsA56or69f\nUdlWWTVyD93MrAxyudyEXC53JbCAbCW3G9LPBblc7spcLjehJ+eXdJ2k9yU9n1dWFelTC9VhHXNA\nNzMrsVwulwOeI0sNOhQYmfcamsqfy+Vyu/egmqmsn260WtKnFqrDOuCAbmZWQqnn/SAwisIrxQ1M\n2x/qbk89Iv4MLGpTXC3pUwvVYR1wQDczK60pZL3wYgwly5FeKtWSPrVQHdYBB3QzsxLJ5XLDyDKo\ndZaYpdVA4LQ0ca6kUq+37OlTq6GOauGAbmZWOnsCTV08pikdVwrVkj61UB3WAQd0M7PSGdHN40aW\nqP5qSZ9aqA7rgJ9DNzMrnWXdPG5pVw+QdCNwILCxpLlkM8l7I7VpJeuwDnjpVzOz4nS69Gu6F76A\n4ifFASwHNvViM9ZTHnI3MyuRFJSnsja7WmfWkCVrcTC3HnNANzMrrR+TDTkXY0Xa36zHHNDNzEqo\nvr7+LeAQYAmFe+pr0vZD6uvr3y6wj1mXOKCbmZVYfX3908DOwNVkvfAl6bU0fb4a2CntZ1YSnhRn\nZlacbuVDTxPl9gY2JXue+q++Z27l4MfWzMzKIJfLDQKOI1sKdgeyYfaBwOxcLvdj4Nb6+vpVFWyi\nVRkPuZuZlVgul5sEvAtcBexI1ruvSz93TOXv5nK5PbpbR4H0qRdKekfSjPT6Qt6276Q0pS9L+lxe\n+eRU9pqk8/PKt5b0ZCq/WVJdKh+UPr+Wtk/szTqsMAd0M7MSSkH6YWAshVeOG5G2P9KDoD6V9dOn\nAlwaEbum170AkrYHTiQbKZgMXCWpRlINcCVZ6tPtgZPSvpDNvr80IrYBPgTOSOVnAB+m8kvTfr1S\nh3XMAd3MrETSMPv9wLAiDxkG3J+O65IC6VMLORK4KSJWRcQbZKu5TUqv1yLi9YhYDdwEHJmWYj0Y\nuC0d3zZNamtq09uAQ9L+vVGHdcAB3cysdI6j+ExrreqAY0vYhnMlPZeG5Meksq6mNt0IWBwRTW3K\n1zlX2r4k7d8bdVgHHNDNzEpnCl1P0DIcOL/TvYrz78DHgV2BecDPSnRe6wcc0M3MSiCXy9WQ3T/u\njh3S8T0SEe9FRHNEtADXkA13Q9dTm34AjJZU26Z8nXOl7aPS/r1Rh3XAAd3MrDSGU/wa7m01peN7\npDWHeHI00DoD/i7gxDR7fGtgW+Apsgxo26bZ5nVkk9ruimyBkkdYeyugbZrU1tSmxwIPp/17ow7r\ngJ9DNzMrjQa6fv+8VW06vmgF0qceKGlXIIA5wP8EiIjZkm4BXiD78nBORDSn85xLlrO8BrguIman\nKqYAN0n6IfAscG0qvxb4L0mvkU3KO7G36rCOeaU4M7PiFJM+dRbZc+Zd9Xx9ff1O3TjO7CMecjcz\nK50fA8u6eMwy4OIytMU2MGUL6JIGS3pK0kxJsyV9P5W3uzKQmVkVuJWu30dfw9pnsc26rZw99FXA\nwRGxC9kjFJMl7UXhlYHMzPq1tDb7ZGB5kYcsByZ7TXcrhbIF9Mi0TvIYmF5B4ZWBzMz6vfr6+unA\nQWSTuQoNvy9L2w9K+5v1WFnvoad1fGeQpQycBvyNwisDmZlVhRSkNwe+SvboWJANrQcwK5Vv7mBu\npVTWx9bSIwu7ShoN3AFsV+yxks4CzgKYMGFCeRpoZlYmaRj9N8Bv0qIxw4GG+vr65sq2zKpVrzyH\nHhGLJT0C7E1aGSj10vNXBmp7zNXA1ZA9ttYb7TQzK4cUxJdUuh1W3co5y32T1DNH0hDgs8CLFF4Z\nyMzMzLqpnD308cD1KRfuAOCWiLhH0gu0vzKQmZmZdVPZAnpEPAfs1k7566xNGGBmZmYl4JXizMzM\nqoADupmZWRVwQDczM6sCDuhmZmZVwAHdzMysCjigm5mZVQEHdDMzsyrggG5mZlYFHNDNzMyqgAO6\nmZlZFXBANzMzqwIO6GZmZlXAAd3MzKwKOKCbmZlVAQd0MzOzKuCAbmZmVgUc0M3MzKqAA7qZmVkV\ncEA3MzOrAg7oZmZmVcAB3czMrAo4oJuZmVUBB3QzM7Mq4IBuZmZWBRzQzczMqoADupmZWRVwQDcz\nM6sCDuhmZmZVwAHdzMysCjigm5mZVQEHdDMzsyrggG5mZlYFHNDNzMyqgAO6mZlZFShbQJe0laRH\nJL0gabakb6TysZKmSXo1/RxTrjaYmZltKMrZQ28Cvh0R2wN7AedI2h44H3goIrYFHkqfzczMrAfK\nFtAjYl5EPJPeLwNeBLYAjgSuT7tdDxxVrjaYmZltKHrlHrqkicBuwJPAuIiYlzbNB8b1RhvMzMyq\nWW25K5A0HPgd8M2IWCrpo20REZKiwHFnAWeljw2SXu6kqlHAki42r5hjOtqn0La25e3tl1/WdvvG\nwMJO2tVVffn6tFfW0edyXJ9C7SrFMdXyN1SoHT3dv7/8Dd0fEZO7eIxZ74mIsr2AgcADwHl5ZS8D\n49P78cDLJarr6nIc09E+hba1LW9vv/yydvavL8N/iz57fYq5Zm2uV8mvT1+/Rn3hb6g712hD+xvy\ny69Kvso5y13AtcCLEfFveZvuAk5N708F7ixRlXeX6ZiO9im0rW15e/vd3cn2UuvL16e9smKuYan1\n5WvUF/6GulPPhvY3ZFYximh3xLvnJ5b2Ax4DZgEtqfi7ZPfRbwEmAG8Cx0fEorI0op+SVB8RuUq3\no6/y9emcr1HHfH2sGpXtHnpE/DegApsPKVe9VeLqSjegj/P16ZyvUcd8fazqlK2HbmZmZr3HS7+a\nmZlVAQd0MzOzKuCAbmZmVgUc0Ps4SZ+S9B+SbpP01Uq3p6+SNExSvaQvVrotfY2kAyU9lv6ODqx0\ne/oiSQMk/UjSzyWd2vkRZn2PA3oFSLpO0vuSnm9TPlnSy5Jek3Q+QES8GBFnA8cD+1aivZXQlWuU\nTCF7HHKD0MXrmQF5BwAAA3lJREFUE0ADMBiY29ttrZQuXqMjgS2BNWxA18iqiwN6ZUwF1llCUlIN\ncCXweWB74KSUnQ5JRwB/AO7t3WZW1FSKvEaSPgu8ALzf242soKkU/zf0WER8nuxLz/d7uZ2VNJXi\nr9Engb9ExHmAR8KsX3JAr4CI+DPQdjGdScBrEfF6RKwGbiLrNRARd6V/kE/u3ZZWThev0YFkKXq/\nDJwpqer/rrtyfSKidWGnD4FBvdjMiuri39BcsusD0Nx7rTQrnbInZ7GibQG8nfd5LrBnuud5DNk/\nxBtSD7097V6jiDgXQNJpwMK8ALahKfQ3dAzwOWA08ItKNKwPafcaAZcDP5e0P/DnSjTMrKcc0Pu4\niHgUeLTCzegXImJqpdvQF0XE7cDtlW5HXxYRK4AzKt0Os56o+qHJfuQdYKu8z1umMlvL16hjvj6d\n8zWyquWA3ndMB7aVtLWkOuBEssx0tpavUcd8fTrna2RVywG9AiTdCPwV+KSkuZLOiIgm4Fyy/PEv\nArdExOxKtrOSfI065uvTOV8j29A4OYuZmVkVcA/dzMysCjigm5mZVQEHdDMzsyrggG5mZlYFHNDN\nzMyqgAO6mZlZFXBAtz5P0l8q3QYzs77Oz6GbmZlVAffQrc+T1JB+HijpUUm3SXpJ0m8kKW3bQ9Jf\nJM2U9JSkEZIGS/pPSbMkPSvpoLTvaZJ+L2mapDmSzpV0XtrnCUlj034fl3S/pKclPSZpu8pdBTOz\njjnbmvU3uwE7AO8CjwP7SnoKuBk4ISKmSxoJNALfACIidkrB+I+SPpHOs2M612DgNWBKROwm6VLg\nFOAy4Grg7Ih4VdKewFXAwb32m5qZdYEDuvU3T0XEXABJM4CJwBJgXkRMB4iIpWn7fsDPU9lLkt4E\nWgP6IxGxDFgmaQlwdyqfBewsaTiwD3BrGgSALCe9mVmf5IBu/c2qvPfNdP9vOP88LXmfW9I5BwCL\nI2LXbp7fzKxX+R66VYOXgfGS9gBI989rgceAk1PZJ4AJad9OpV7+G5KOS8dL0i7laLyZWSk4oFu/\nFxGrgROAn0uaCUwjuzd+FTBA0iyye+ynRcSqwmdaz8nAGemcs4EjS9tyM7PS8WNrZmZmVcA9dDMz\nsyrggG5mZlYFHNDNzMyqgAO6mZlZFXBANzMzqwIO6GZmZlXAAd3MzKwKOKCbmZlVgf8PWKHNZ1m/\nEvsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { "tags": [ - "id1_content_4", - "outputarea_id1", + "id2_content_4", + "outputarea_id2", "user_output" ] } @@ -4774,8 +4781,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"09504f34-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"08d5c868-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_4f77b2aa53" + "window[\"49323cd4-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"48b38f42-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_846769d066" ], "text/plain": [ "" @@ -4783,8 +4790,8 @@ }, "metadata": { "tags": [ - "id1_content_4", - "outputarea_id1" + "id2_content_4", + "outputarea_id2" ] } }, @@ -4792,8 +4799,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"0951cb98-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", - "//# sourceURL=js_35cec7bdd9" + "window[\"4933dd3c-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.getActiveOutputArea();\n", + "//# sourceURL=js_2acffb7ac8" ], "text/plain": [ "" @@ -4801,8 +4808,8 @@ }, "metadata": { "tags": [ - "id1_content_5", - "outputarea_id1" + "id2_content_5", + "outputarea_id2" ] } }, @@ -4810,8 +4817,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"09521206-e91d-11e8-9ca7-0242ac1c0002\"] = document.querySelector(\"#id1_content_5\");\n", - "//# sourceURL=js_ebf236ae28" + "window[\"49342bde-e945-11e8-9ea1-0242ac1c0002\"] = document.querySelector(\"#id2_content_5\");\n", + "//# sourceURL=js_8878ab7924" ], "text/plain": [ "" @@ -4819,8 +4826,8 @@ }, "metadata": { "tags": [ - "id1_content_5", - "outputarea_id1" + "id2_content_5", + "outputarea_id2" ] } }, @@ -4828,8 +4835,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"095256d0-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"09521206-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_00b772df35" + "window[\"49346de2-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"49342bde-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_72454a62a5" ], "text/plain": [ "" @@ -4837,8 +4844,8 @@ }, "metadata": { "tags": [ - "id1_content_5", - "outputarea_id1" + "id2_content_5", + "outputarea_id2" ] } }, @@ -4846,8 +4853,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"0952a400-e91d-11e8-9ca7-0242ac1c0002\"] = window[\"id1\"].setSelectedTabIndex(5);\n", - "//# sourceURL=js_e77035778f" + "window[\"4934b04a-e945-11e8-9ea1-0242ac1c0002\"] = window[\"id2\"].setSelectedTabIndex(5);\n", + "//# sourceURL=js_c00ca3ea6e" ], "text/plain": [ "" @@ -4855,8 +4862,8 @@ }, "metadata": { "tags": [ - "id1_content_5", - "outputarea_id1" + "id2_content_5", + "outputarea_id2" ] } }, @@ -4865,13 +4872,13 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFlCAYAAAAd7BpsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYlNX1wPHvnd52Z3ujLB0EFKQJ\nKiqoqKDYNVbsiT9jSWKisRsTxZJorEmMvUZAhYiKiiUI0kVBpPe2vU1v9/fHDGVhK+zA7nI+z+Oz\nO++85Q7u7nnvfe89R2mtEUIIIUTbZjjUDRBCCCHEgZOALoQQQrQDEtCFEEKIdkACuhBCCNEOSEAX\nQggh2gEJ6EIIIUQ7kNSArpS6VSm1TCn1k1LqtsS2DKXU50qp1Ymv6clsgxBCCHE4SFpAV0r1B64H\nhgEDgDOVUj2AO4GZWuuewMzEayGEEEIcgGT20I8A5mmtfVrrCPANcB5wNvBaYp/XgHOS2AYhhBDi\nsJDMgL4MGKmUylRKOYCxQCcgV2u9PbHPDiA3iW0QQgghDgumZJ1Ya/2zUupR4DPACywBonvto5VS\ndeaeVUrdANwA0Ldv38E//fRTspoqhBBNoQ51A4RoSFInxWmtX9JaD9ZanwBUAKuAIqVUPkDia3E9\nx/5Laz1Eaz3Ebrcns5lCCCFEm5fsWe45ia+diT8/fxuYBkxI7DIBmJrMNgghhBCHg6QNuSdMUUpl\nAmHgJq11pVJqIvCeUupaYCNwUZLbIIQQQrR7SQ3oWuuRdWwrA05O5nWFEEKIw41kihNCCCHaAQno\nQgghRDsgAV0IIYRoBySgCyGEEO2ABHQhhBCiHZCALoQQQrQDEtCFEEKIdkACuhBCCNEOSEAXQggh\n2gEJ6EIIIUQ7IAFdCCGEaAckoAshhBDtgAR0IYQQoh2QgC6EEEK0AxLQhRBCiHZAAroQQgjRDkhA\nF0IIIdoBCehCJEnI7yfgqTnUzRBCHCZMh7oBQrQ3Wmuqiov45o2XCHhqOO7iK8jt1h2z1XaomyaE\naMekhy5EC/NVVTLl4ftYs+A7tvy8jPf+9Ef8NS3bU9da46kop7qkmKDP16LnFkK0TRLQhWhhsWiE\nyh3bdr3WsRg1pSUNHhP0+/BUlONv4hC9t7KCN++8lRd/fQ0VO7YeUHuFEO2DBHQhWpjRbKGg9xG7\nXlvsDtw5ufXur7Vmw5JF/PPGCcz/cBIhf+M9bgXEYrH48YmvQojDmzxDF6KFRMrK0MEgFoeD8b+9\ni+X/+xJvVQVHn3YWDndavcfFYjE2LFkEWrNp2Q8MPu1MLHZHg9dyuNO48rFniIRC2Fwpu7aH/H6M\nZjNGk/xqC3G4kd96IVpApLSUzTf8ksDy5bjPO4+cO/7A0PHnN+lYo9HIcRdeRnZ2HoVH9MNYWgbZ\nOQ0eowwGXOkZtbZ5KsqZ+e/n6TpoCL1HnIDV0fBNgRCifZEhdyFaQMzrJbxtG66TTya8dSuEQvvs\nE/L7Kdu6mR1rVu2znM1mMNK5tBL/K69jzmk4mNdn++qVrFk4l/+9+QrhYGC/ziGEaLukhy5ECzCk\npND55Zeo+ugjLF26omMxSp55llgwQOaECZiys/FWVfDufX9g9EWX4zSZsTpdKKUAMGVkkH755RDT\nGFNTGrla3Qp6H8HRZ5xF1wGDsTYyZC+EaH8koAtxgLTWRMMxtj/wIIEffwSg4LFH8XzzNYFlPxHe\nuIn8Rx4GDeOuvYksDBgqKonYizHn7p4sZ3S5ap+ztBStNaaMDFQTnok73WmceMFl6HAYFYm0/AcV\nQrRqMuQuxAHyVYcoWl9JtKx017ZwcQmGxDPsSGkpfn+QJVVG8rv2oOyFf7DxiisJbdxY7zkjJSWs\nP/8C1p0xlkhpab377Snm91P24ousPvY4fPPnH9iHEkK0ORLQhWgBPy32kPHQo1h79sR90YW4zzqT\nWCiMpWtXcv94J+W+EFe/upASbwj/0qUQieD/cSm6vp50LEakrIyY10vM729SG3QkQnDVKtCa4Jo1\nLfjphBBtgdJaH+o2NGrIkCF64cKFh7oZQtQpFo3hqw4RCUUwGwOU7diGKz0DhzIQ3baN4sefwPr7\nP3LKtO2M75vN/f2teOfMwXH0IMydO9Uadt91Tr+f8PYd6GAAc8eOGFOa9lw9UlpKeNt2zB07YMrI\naPwA0RzqUDdAiIbIM3Rx2PCHoniCYVJtZqxmY4ud12A04EqP52nf/NM6Jj10FyarlStuuwubyYSt\nf3/SOhfw21F2Tit0Ei3egnfWt5Q+9zxdP3i/7nPa7RjT04j5fPX34utgysrClJXVIp9LCNG2yJC7\nOCwEI1E+Wbad816Yw+JNlc06NlxUxI5HJhL4+WfCxcVUf/EFkZK6U7k609IxWaxk5HcgVuPBmJqK\ne9xYTGguCq4n+sAfMaam4D7nHAr++gTGzMw6zxP1eil+7HHWnnwKle+9J9nghBCNkh66OCz4glHe\nmreJzeV+/rNgM0O6pGM2Nn4/G19+9gxVk6dgys3B991cvLNm4Rw9mvwHH6Bq2jScQ4dh7d0Lg9VK\nVWkJF9zzEA5XCsrnx7d5Ezt+eSO5D9yPb/4Ccm67De+sWaScfgaWTh1RhnraoDUxjweAqMcDbeDR\nmBDi0JKALg4LaQ4zj19wFJMWbuGKEYVNCuaBcBSTUqSefjrV0/6LOTcXS2Eh3lmzcAwZgm/ePEoe\nf4LytDS6vD8Fc24uKemZvHHnLcSiUQaNGUuvsnhQ9s9fgHPEcGpmfEb5a69RNXUaha+/Vu/wuNHl\nIu+B+8m65WZMmZko44E/Igh4w5gsBkwt+LhBCNF6yKQ40S5FwtEDClylNUEe/uRn8t02fjW8A7ZQ\nAGWxQDRKzOfD4HQS8/nY8uubcR57LKaMDFLPOhPcbvw11QQ9HqyxGFvPOQ9lNFL46iuEtm5Fmc1s\nu+NO0n/xC7L+78Zaa8+TqaY8wJev/Uz3wTn0GpaLxSb38vtBJsWJVi2pv9VKqd8A1wEaWApcDeQD\n7wKZwCLgCq31vnkyhWimcDRGhTdELBBl6fQNDD69Cxn5zv061zerSnh/cbws6XlHd6R7TvbuN3fO\nHk9Pp+Ozz1Lx7rsUP/ssqePGYrZaMVuzISubqNdLj89mgMGAMT0dS7duxAIBun88PT7p7SAFc4BN\nP5WxZWUFpVs9dB2QJQFdiHYoaZPilFIdgFuAIVrr/oAR+AXwKPCk1roHUAFcm6w2iMNHLKb5aWsV\nF/zjOx6euZKeo/L57v01hIPR/Trf4MJ03HYz3bKcpNjrD36mzAwyLr2EHh9Px5hWu6Ka0enEnJeH\nOScHg9mMMSUFc3Y25rw8jG73frVrf3U9Kot+IwsYc20/rA18HiFE25W0IfdEQJ8LDACqgQ+BZ4C3\ngDytdUQpNQJ4QGt9WkPnkiF30Zhqf5gb31rE7DVlAHx56whSoxYyC5woQ/NHSqPRGOW+EEaDIs1i\nQBkMLfIcu7l81SFWzdtBh97pZBQ4MJr2vw06pvfr30LsIv94olVLWg9da70VeALYBGwHqogPsVdq\nrXcurN0CdEhWG8Thw24xcP7R8R+lbllOXMYQ6fmO/Q5gRqOB7BQbrvJitt91N0WPPUakrKwlm7xL\nlT9EcXWA4uoAoUjt5WnrlpQwe8oapj29hID3wPKzSzAXon1L2tibUiodOBvoClQCk4DTm3H8DcAN\nAJ07d05GE0U7YjYaObVfHt91S8cUC5JtV9CEmew7lXqCGJQiw2kBIByNEi4tY9tVV8fLoQIxj5e8\ne+/BYLPVOjayZxGVZvTitdZsqfBz94dLmbW6lBSriauO68pVx3bZ1Y4OvdJIybTRbWA2RrOkjRBC\n1C+ZD9NOAdZrrUsAlFLvA8cBaUopU6KX3hHYWtfBWut/Af+C+JB7Etsp2okUm5kUmxlo3mSzouoA\nV740nxSbiRcuH0x2ipXimhCeMi+x4uJd+4W3bEGHQrBHQI+UlLDjyafQeR3Iveg8LHl5Tb5uiSfI\n+S/MobgmCEB1IMLTM1cTDEf5zam9sJmNuLPtnP+HwZjMBqwOc7M+lxDi8JLMW/5NwHCllEPFiz6f\nDCwHvgIuSOwzAZiaxDYI0aj1pV5WFtWwcGMFnmB8WDsQijJtVQWu394OSqEcDnJu/x2GvXKqB7Vi\n9XnX8FDaMIqUvVnXXbG9Zlcw39Pr322kyh8G4mllnW6rBHMhRKOS1kPXWs9TSk0GFgMR4HviPe7p\nwLtKqT8ntr2UrDaIQ09rTXFNkFhM47abcViTP8M6HI1S7g0T0xq3rfFr9sxxcfVxXUh3mHHb44Ez\nO9XK+OE9cRm7knvGGFRi6Vn83nQ3r9nOQ18vY12pl27ZTu48o+mz13dUB+rc7g9HicZkUEoI0TxJ\n/euqtb4fuH+vzeuAYcm8rmg9SmqCjH/2W0o9IT69dSQ9c5tWNexArC/1cc5zswmEo7x45RBG9c7B\n0MCEsEyXlbvHHoFSYEykYk21mUnNa7xX7E6xcc+ZfXlz7kYuO6awWe0c1rXuamj9ClKxmuR5uRCi\neeSvhkgqDXgCEaIxjTe0f2vC91TmCfLews18v6kCb7DuWd+fLN2OLxQlpuGNuRvxhaNEQiH8NdV4\nysso37oFT3kZ0T2qmJmMhl3BvN7PEosRLikhtHUr0epqAKwmIyf2zOLpS46mU4ajWZ8l3W7h5tE9\nam1zWow8ceEAMl3WZp1LCCEk9atIqnA0RklNEE8wQm6qbdeQ9v56bc4G7p/2EwYFs+8YTV6qDX9N\nCKU0Jh2EaJR1YRPTF23DbjZyZBc3/d0x5n/wHt0GDeOHzz9mww+LMVttXPbIk2R26NT0z1JczPpz\nzyNaVkbuPXeTdtFFGCyWuvcNRvDXhFEGhT3FXG8a2kpfiFJPiJk/F5HlsnJcjyyyXBZMzZihLw4a\nWfcnWjVJGSWSymw0UJDWvMliDemSFU/lmum0YjIqqssCTPv796TnORl1QS728Ha6pHRhYJnGU+Hl\niL7ZTH7od1QVF9H3hNFs+GExAOFggNXzZmMdPQane99n43WJFBURTaxFr/nsM9zjx0M9Ad3vCfPm\nvd+hjIorHhqBK33fgB4ORnCZjKTluOiRc/DSwAoh2ifpBog2ZVDnNL69YxTTbzmeTKeVbWsqqS4N\nsHFZGTFfDYaXR2EMV7Hiux1sXl7O/I8202PoSAC8FeXk9egFgMFoJL9nHz589E/UlMVrm5d5g2yp\n8LGjwkvFJ5/i+XZ2vHRpgrmgA84TT8CUn0/2Lbfinb+ASEVFne00GBRGkwGzxVjnzYK3KsjM13/m\nf++twlcjpQyEEAdOeuiiTdm91jyusF8mfY/PJ7ujA/PWLwCFMhp21Q93Z5mp2lEJwJLPP+GsW/5A\ndWkJ1pQU5k+dTNG6NXz6/FOc9ds/UulTjH16Fqk2Mx+M70LNxefR46svdxVRMWVmUPDoo8R8Por+\n8jCemTPp9OqruIYfs0877SlmLntoBCrx/d6Wf7uNtYviNxKdj8ikx+CcJn1+X1UVIb8Pq8OJPTW1\nOf90Qoh2TgK6aNMcqRZO/EVvCHlQ5QPg1wsI4WT8rb3xe0IQq2DelK8AGDnuXIp+cSk6HCbt1VcI\neOO9780//UjQ6yGKi1A0hjcUAbsd16mnxkum7sGUlkYEMBcUkHbFFZhzc/AtXIilR09MabuXrBlN\nRlxpu4fZw8EIlUV+gv4I2Z1TyO0SD8bKoEjPa9pkukgoyJxJb/HD5x9z/CUTGHb2BU16VCCEODxI\nQBdtnsFkAFMqOIYAsPi9N1ny6UeYrFY85bvzrxuMRohGiJaXE4gqIiMv4YThJ/G/F55g6Vdf0O/M\ni/j69pMwGw1k6CCmP/2pVpDeyZSWRvYtNxPzeFh7xlh0IEDn11/DNKz+1ZhBX4RJjyxAa7jsweHk\ndnNzxZ9HoAwKm7P+X0O/J0TAE8ZqN2G2K4yJGwyTxSLBXAhRiwR00SqFAhGC3ggGo8KeaqlzHXlN\nIIzJYMBu2d0TjobDlG/dEu99ez219l+7djW9X3+bYCjC09+X8Pr3xTx7fm9yu/WgcvsWDEQpzNxZ\nP73hiXzGlBR0MIilUydCmzZhys5ucH+D0UBuNzf+mhBmmxGr3dSkMqar5hXx7aTVZHV0Mf7WgRxz\nzoUMOv0sLPaWm2gohGgfJKCLVqmy2M+kRxZgdZi45L5jcLprr8suqQnwh8lLGdg5jQkjCklzJIbG\nlcJQz3pylZbNZR+sY2VRza5tX673cEaP3oQ8NZibWR7VlJVF51deRsdijdY3d6RaGPurI9E6/n1T\nxWKxxFeNBhypbkg9uLXUhRBtgwR00SqFgxHQEA3FqCtVwoYyH1+tLOabVcVcMmz3WnKjyUSHI/qx\nYs7/UAYDp195PR279yZsNLF+wxpG9S6oFdBP75NDbHaIgj79cNqbn8zFlJVV73tV/jChSJQslxWl\nFPaUpgfynfqMyKdT30zsLjOO/TheCHH4kIAuWqXMAhcX3TUEq82IRQeA2sG2W5aT28f0on8HN05L\n7R/jHkOG8/OcWYy4/rfomKLiu29Ry38kc8L1XJ3mxmk0sHBrFWcdkUufNDuzNm/guIsvb7RNvopy\ngn4/ZpsNZ1o6qoHMcpW+EI/PWMmctWW8ce0wOqY3L4vcTnaXBbtLArkQonES0EWrVB2NUqXCWL/9\nGvXFDAoeebjWsHamy8qvR/es+2CLjeN+eTvjX1xMpS/M3aN7clZuMSvK/OQUb+HswkKOd7mwxqJ4\nN68kp0t3LI6GA264poYfv/iU2ZPfxuFO44pHn8aVXncudoBQJMbHS7dT4QuzodS73wFdCCGaSgK6\naDWC/gj+mhABs+KCf33Hlgo/z53Zi8GdlzfrPJ6oAT9mKn3xEqTztvs5+7wLKQiEmPPM33C60+hy\n9HDy+gwA1ZHCI/thsdWeZBaprCTw448YHE6svXoSCYfYsnoFAL6qSsKBuiul7ZTutDD5V8eyuthD\n3wJ55i2ESD4J6KLVKNlUw9Qnv+eEX/XDaopPUHNkppP1qxsbnXS2p3BUs6UywE0ndeeHLVX8YXQX\n1s3/hhVff07Zlk2Ubd7IMeddxZdvbMNbGeTiPx5NJFaJKS1t1zkCy5ez+YZfAtDt4+nYOndm9BXX\n8WXsX3To3Reb00l4+3ai1dWY8/L2aZ/ZaKB7jovuktJVCHGQSEAXh4SvuoqAx4PJYsHmcmGx2Snd\nEp+s9sOUdbz668H40azYXk2lyUb9U8/25bQa6W/y06/iB64cOZSYCapTM+l5zPH0PEaT27Ub6Xkd\nqC7ZQiym8WwpxWyuqRXQjSmJMq9GI8pspuz110kZPZozb70Dk82Krqhi3ZlnEfN66TJ5EvZm3HAI\nIUQySEAXB52/uorPX3yONfPnoJSBM39zJ90HDaXXkFyKN8SDutti4rQnv8YXivLFb08kGtUYlSaL\neBpXnNlgrPvHN8NppfiLTyn/+9+xdO1C9cTn6DxoGDkpJ+zaJxyMcOEfB+PZWoZ583JMQ46ixFfC\nzE0zOanTSWR36Ur3GZ+iTGb8q1ZS8tjjVP7nPbq89SamlBQiBoW5oIDQ5s0YJQWrEKIVkIAuDrpQ\nIMCa+XMA0DrG3Cnv0LFPXxzuNEZd3hsAXzTGXWP7UOULE47EGPn3r+iZ6+K1UyHrw0vhpvmQml/v\nNdLPOZvQqlW4L7yQ/B55OJy2Wu+brSayOqWS5oyguw2FdDfPzP8LH6z5gG+3fsujJzyKs7AQgFgo\niLVnT9znn4dKJHSptQZ9j569EEIcKhLQxUFnNJmw2O2E/H4A0nLzMZrjS7PM1viPpBu47JhCtIYv\nfi4iFI2xtsRDNGMQ4fMmYYwaGiwVaM7Pp2DiI6hGUqSaMnbPVB/XbRxzt89lfPfxWA27l8lZCgvp\n/OorKLsd4x6z4Rtagy6EEAeb0nVl7WhlhgwZohcuXHiomyFaSDQaoXTzRma/+wbOtHSO/8WVONPS\n692/3BtiyeYKCtPtpPzvM8r+9Cc6v/wSzqFDW7RdwUiQ6lA1RG2AheyU2mvfq4PVfLX5K4p8RVzY\n60LSbfW3WbRLkjxftGpSD10cdDVhDx9WfUFgbHeGXn45ry4u5fPlRXgC4Tr3z3BaGN0nl0JzBM+b\nb0I4jH/R4v2+vo7FiEUi+2y3mqxEwi5O/uscLn1xLiU1wVrv+yI+7pl9D898/wwVgbrroAshxKEi\nQ+6iebyl4CkCNDhzwdVwUZK6RHSEfy/9N4FogE7pPXlznpcd1QHm3Dkal23f2uE7mTIy6PjC8wR+\n/BFHA5XNGhKtqqL600/xL/uJnFtv2WfYPBCOUR2IEI352Xv0yma0cf2R17PDu4M0qzw3F0K0LhLQ\n27hwMEgsFsVqPwiZyDwl8J/LYfPc+OsOg+GS/zQ7qKeYU3hj7BusrVxL97QeeEOLOKZrBmZj4wNG\nloICLAUF+9N6AGI+HzvufwAA5zHH4D5zXK33s1wWvvzdidjMRtKdtVOuptnSuOGoG4jpGA6zg0pf\niEhMk+Vqfg54IYRoaRLQ2zB/TTUL/juFqh07OPnaG3G4k9xrLF25O5gDbF0EO36EHifv2hSL6TpL\nne7JarLSJ6MPfTL6EI7GmPnbkzAZIRiOsXxbFflpdtIdyclfrqxWUs86i+DKldgHHb3P+yk2MykN\njBLYTPHZ8mWeIPd8uIyNZT5evXooOam2eo8RQoiDQZ6ht2GRUIgFU6ewat5sPBXlyb+gv7KObbuf\nJW+t9HPXB0tZvLGCUCTapFOajQayU6yEIpoxT/6PsU9/y6fLdrRUi/dhysgg79576PzySwfU0w9H\nNZ8tL2L59mpKPMHGDxBCiCSTHnobZrbZOP2m31BVVIQrIzP5F+w4JJ7QxVsSf+3IgMLjAIjGYvzt\n85VMWbSVWatL+eCmY8lJaUZ9cR0PkgD+cOM3A77qECF/BJPFgM1lwWRu+r1pSySCSbWZmPyrEWyr\n9FOQZm/8ACGESDJZtiaaTmuo2QHLJkMsCkddBK48SJQRnbeujJvf+Z4rRhRy9bFdcNnMxMJhdCCw\nO5VqPUKRKDuqgmwq99IrN6XBIWxfdYiPX/iR4g3VdDkqk+FnF2BzmrGnuhtccy7EAZIfLtGqSUAX\nuwR9YVAKM2FiXi9Gtxtlrv958j7Hh6NU+cPYLUZSbGZifj+er76icsoU8h54gIg7lR8++5gOffqS\n37M3ZmvtoF1aE+TuD5dxUicnZ9oq8X7+BemXXYalS2Gt2uOlWzxMengBp17TjfJtP/DT159gMBgY\ncta5dBt0DPZ6bh5iPh+RkhJ0NIopO7vRmwwh9iIBXbRq8gxdAPFe7+evLGfDgs1UTvsvGydcRWD5\nz806h9VsJCfVtmtSWczjoeiJv+KdPYear7+meP1a5kx6iw8e+xNBn2/fNoSjzPhpByPzbWy55loq\n3nqLTVdNIFJWVvs6DhO9h2dTtnkhto6dGfHL3+PKLeDT559i5XeziEXrHrKPVlay9oyxrBs7jkhp\naZM+U6S0dJ/rCyFEayQBXQDgrwmxcWkZZh2i/MUXCa1dS/kbb9SZgKWpDCkp5D/4IClnnEHqqaeS\n1bkLXQYM4tgLLsVs2Xepl9tu4vVrhpHuNMPOoXODcff3CVaniaNPzcXWsSv3zvFwzpsr6Xv+VVjs\nduZ/OImayiqWbK6kpGavmuWJymmYTChL47Powzt2sPGKK9h09TVESkr2+99BCCEOBpkUdzjzlkHE\nD2Y7jtQUBp9eiHLZyf/zQ1S8/TbZt9yMwbT/PyIGmw3n8cfhGDYUg9WKGTjz1jswmM2Y6wiobruF\nE3plE/P5KHzjdTxffU3aBedjyqw94c9iNRGyGTHZ7GytLCMQjuEJRjCazPQ760KKwiYMKsaTn6/i\njjP64LbHr2VMT6f7ZzNA6yYVVAmsWEFo/QYAQlu3YspufhIdIVojpdR4oK/WeuKhbotoOfIM/XDl\nr4AZd8OSt2DAJXD6I8SsafGHhAp0KITBursXHamooHr6dHQkgvvsszGlH9o85iG/n3nTplAwfDT+\ncIzSH+eyauZ0jrrlL/zile/pkGbnucsG0SvHhcO6fzclkdJSPHPmYO3eHVNmJqacnFrP8sVhp1U+\nQ1fxmaBKax071G0Rh5b8dWqD/DU1bF6+lOIN6+p8Ft0kkSAsnxr//udpEAliMCiUQaGUqhXMAWLV\nNRT9+S8UT3yUaGUd69EPMovdzqDTxrF00ivMfPBWFk96na4Dh5DpdmExGsh328h3W/c7mANgMOCb\nN48NF13Mhksuxb90Kbqe5/NCHExKqS5KqZVKqdeBZcAVSqnvlFKLlVKTlFKuxH5jlVIrlFKLlFJP\nK6U+Smy/Sin17B7n+lIp9aNSaqZSqnNi+6uJY+YopdYppS44VJ9XNI0MubdBm5b9wEdPxUfKrn7y\nH1gd+5H21ZoC4/4Gs5+E426Lv65Dub+cGDHSUlNwjBgBkUirmR3uTEvn9BtvJRwIgAKLzYE2W5n1\nh1EYjeqAU7L6Fi6iasr7AES2b2frzTfTdcoUGXoXrUVPYAKwBngfOEVr7VVK3QH8Vin1GPBP4ASt\n9Xql1Dv1nOcZ4DWt9WtKqWuAp4FzEu/lA8cDfYBpwOTkfRxxoCSgt0HRyO6qZPXN6G6UxQl9z4bu\no+LB3LxvcpQyfxm3fHkLO3w7eGfcO3R48m9ogwGfFezRMGZj05a0eSsr8NdU40zLqLWkTEejxPx+\nDHY7ymjcte/aRfMxmc0UDhiEs5F0tjanC5vTVXubuxkJbRoQXLWy1utIcQk6JqOaotXYqLWeq5Q6\nE+gLzE7kYbAA3xEPwuu01usT+78D3FDHeUYA5yW+fwN4bI/3PkwM5S9XSuUm4TOIFpS0gK6U6g38\nZ49N3YD7gNcT27sAG4CLtNZSi7IZug4czDl/uA+bK+XAMsSZbfH/6hHVUVaUryAUC+EL+8hJy2FV\nxSoe/uphrut/HcfkH9NoUPdVVzH1ib+wffUKzrztTgqPOppwwIfZYCSydBnlr79O5nXXYR84gEAw\nyPsTH6B4/drE5xzCGb/+Xb3ryg9EuLiYwM8rsPfvt8+ku51Sx51J6T/+CYmZ/q6TR6NskrNdtBre\nxFcFfK61vmTPN5VSA1vgGnvpZqMOAAAgAElEQVTmNW6VcwjEbkkL6FrrlcBAAKWUEdgKfADcCczU\nWk9USt2ZeH1HstrRHtlTUuk+eP/KhzaH2+rm/bPfxxPykGHPIBqL8uqyV1lUtIhAJEC/rH6kGxue\nHGcwGnHn5LJj7SpcGRksmDaF+R++x1X3TaTkpl+jw2H8S36g2zv/JJKSvSuYA6xfsrDWaERLiVRW\nsu322/HNX0DapZeQd9ddqDpm85vzcuk2bSqVkyZh7d4d16jRmNzuFm+PEAdoLvCcUqqH1nqNUsoJ\ndABWAt2UUl201huAi+s5fg7wC+K988uAWQehzSIJDtaQ+8nAWq31RqXU2cBJie2vAV8jAb1V0Vqj\ntcZqtFKYWljrvRsH3EgoGuLKfleSYmm852xzuhh11Q2cePk1aGD+h+8BUFVajLV3bwLLlmHr2wdV\nuhxjIIuMgo6Ub9sCQIc+/TAYW2b4fE/KbMbauw+++QuwHXEE1HMNg92OtVs3cu+QH0/RemmtS5RS\nVwHvKKV2Thy5R2u9Sin1f8CnSikvsKCeU9wMvKKU+j1QAlyd9EaLpDgoy9aUUi8Di7XWzyqlKrXW\naYntCqjY+bo+smzt4Al4w6xeUET5di9Dx3XFkbrvevFQNITF2Pzypr7KMqb+9RG2rVpBTtfuXHzL\n79FlWzAagpg+vgbsGXjOfJkfZs/DZHfRf9QYnOkZLfGx9hGpqEAHgxgcjhYp1iIOC21uyFkp5dJa\nexJ/a58DVmutnzzU7RLJkfQeulLKAowH/rj3e1prrZSq845CKXUDiQkcnTt3TmobxW5Bf4T/vbsK\ngPQ8B0eN6rTPPvsTzAEcsRrGXz6eIJdgsRgwT70EVbw0XvQFwFuK660xHNfzVIgawXTS/n6MRh3q\ndfRCHCTXK6UmEJ8o9z3xWe+inToYQ+5nEO+dFyVeFyml8rXW25VS+UBxXQdprf8F/AviPfSD0E4B\nmMwGUrPseCuD5Peoe+DEV13Fsq+/wO5KocfQ4dhTmtDDDfvhu2dxLngRpzJAfTkwwr7d6+N7nAID\nL90n9asQomkSvXHpkR8mDkZAv4T4comdphFfOzkx8XXqQWiDaCKn28r5fxiMjmmszrpnsO9Yu5pZ\nb70CQIfeRzQtoAeq4lnpoP5gvrfvnoWeY8Al676FEKIxSQ3oidmWpwK/3GPzROA9pdS1wEbgomS2\nQTRfXc/N95Se3wGz1YbZZsPicALxNevFvmKy7dlkObL2PSgajve+m6NqC2jJzCaEEE2R1ICutfYC\nmXttKyM+6120UalZ2Vzz1D9BKZzuNCoCFdz21W0sKVlCriOXd858h2z7Xr3q/Rk2NzbtxzPo97Fl\n+VKK169jwJixOFJlaZkQ4vAjmeLauTJ/GaFYCKfJSaq1ZWZzG02mWgltIrEIy8uWA1DkKyIcTawd\njwTjQ+0mK5hskFYIlRubfqGCQfHjGhH2+/nw8T+D1hT0PoLCI1sin4YQQrQtUpylHasIVHDXt3cx\nZvIYvtj0Bclaoug0O5l4wkR6pvXk1kG34jQ7wVsC30yEl0+DKdeDvxLGPLT7IEcmGBq5nzzhD2Bv\nvMyp0Wxm0Oln0aFPPzI71r0iIhSI4K0K4q8JNeejCXFYU0rNOdRtEE0nPfQ2qjpUzXfbvqPcX864\nbuOIxCIYDUbc1t3DzdFYlNUVqwFYVrqM8d3HY1It/7/cYXZwYscTGZwzGLvJjl1r+OpBWPhSfIfy\ndbB1AfzyW0gtwHfG81T6Dbgz0nBOuyr+/t5y+kJmtyZd356SynEXX0E0Eq5zgl4kFGXt4mK+emMF\n2YUpjPu/o3CkHljhFiHaM6WUSWsd0Vofe6jbIppOAnob5Q17uf2b21EoRnUexc1f3ky+M58Hjn2A\nDFs8GUu6LZ2XT3uZhUULGdVpFKbGesQHwGK0kGFPJIGp2QE//qf2Dr7y+PbrZrJk+qd89+H75HXv\nxbln/w7HJzfV3jejG9FLJ2F0Nn12u8VuB/YtMAPx3vn3n29CayjeUEPQF5GALg6aLndOvxR4GOgM\nbALu2jBx3NsHel6l1IdAJ8AG/F1r/S+llAd4ARgLbAfuIl5spTNwm9Z6WiIV90TiGTutwHNa638q\npU4CHgIqiBd26aWU8mitd5ZivQO4HIgBn2it71RKXU88X4iFeNW3K7TW+1nTWRwoGXJvo2xGGxf2\nupAxXcZQEahgRfkKvtnyze7n14DRYKSLuwsX9LqATHvzirhorSnxlbCpehPlgfLmNU4ZIKWOwkx2\nN7hycWXlAeBwp2IIe/Z4P53YCb8nctUnRF35zbtmA8xWI/1P6ABARoETq8NEKBpK2iMIIXZKBPMX\ngULimeYKgRcT2w/UNVrrwcAQ4BalVCbgBL7UWvcDaoA/E19pdC7wp8Rx1wJVWuuhwFDiyWe6Jt4b\nBNyqte6154WUUmcAZwPHaK0HsLsi2/ta66GJbT8nzi0OEemht1HptnR+N+R3xHSMqI7y6MhHyXHk\n4DK7Gj84IeANEw5GMZoM+yxVK/WXctFHF1HqL2VM4RjuHX4vabY0opEYRlMj94HObBj7N3jrPIgl\nlp31Ox/sGWAw0nPESAqPGoTJbMTm3wyXfwCOdEjJx2DPwGDav0x09TFbTfQ+Jo9uA7MxGA34zTU8\nPvtxTutyGsMLhmM31d2zF6IFPAw49trmSGw/0F76LUqpcxPfdyJeHz0EfJrYthQIaq3DSqmlxCtc\nAowBjlJKXZB47d7j2Pl7lFvd0ynAKzt731rrnXf5/ZVSfwbSABcw4wA/kzgAEtDbMKfZuev7sd3G\nNuvYcDDKj19vYcF/15PbNZXTf9UPZ6qNRD1lSvwllPpLAfhy85fcOexOSjZV8/1nmznm7G64sxsI\ngkpBp6Fwyw+wZQFkdAN3J3DEh+TtrhTsrp2FXQ5O0hirw4zVYaYqWMVXG75i+vrpzN0+l0lnTZKA\nLpKpvrzVB5TPOjE8fgowQmvtU0p9TXzoPax3Dz3FSJQ/1VrHlNo1gUYBN2utZ9RxTi/N8ypwjtb6\nh0SBmJOa+1lEy5Eh98NUJBRl/fclABStr6bEW8baqrW7hqFzHDn0TOsJwJVHXIlJm/l28hpWLyzi\n+8/3XXpWFayi3L/H0LzFCWmdoP95UDAQnAdQt72FlPhK+PXMX3NU9lGM7jyaO4bdUeumSIgk2NTM\n7U3lJl7YyqeU6gMMb8axM4AblVJmAKVUr0QSsIZ8DlytlHIkjtlZNSkF2J4412XN+gSixUkPvR0q\n85fxyYZPKPGWcHGfi8lz5mFQte/dLA4TJ17Sm1mTVtFhYCqzir5mbtkcHj/xcZxmJ1n2LF4c8yKR\nWASbyUaKKYUR53Rn8YyNDDyl8z7Xu3f2vZT5y/jbqL/RwdWh1vv+iB9PyIPJYCLdduiKohT5ilhS\nsoRbv7qVN854gzRbWlInCgpBfFLai9Qedvclth+IT4FfKaV+Jl73fG4zjv038eH3xYkqbCXAOQ0d\noLX+VCk1EFiolAoBHxP/DPcC8xLnmEc8wItD5KCUTz1QUj616TwhDw9+9yCfbog/Rsu0ZTLprElk\nO/Yd2o5FY3g8fuaWzOFPCx7kLyP/wvEFx2M01F0fXGtNJBTDbK39/oIdC7hmxjUAXNf/Om4dfOuu\n98r8ZbzwwwvM2DCDjikduW/4ffRI64HZWHee+GSqDFQye9tsClwF9E7vjcO896NNIRq0X1WCkjXL\nXYi9SUBvZ0p8JZwz9RyqQ9W7tn107kcUphbWe0x1qJpgJIjL4tqv58lF3iIumX4J1aFqXj39Vfpn\n9QcgEAnw5KIneXvF7r9dDpODj879qM4bjEOpPFDO3G1z6ZfVj46ujvXe1IjDmpT9E62ajDe2Mw6z\ng9GdRvPh2g8ByHXk4jQ1/Hgs1ZIaX0XaAH91FdFoFJsrBZO5du86x5HDe2e9R0zHaiW28YQ8fL7x\n81r7+iI+tnq2Njugh0NBIsFg0yq77Ydvt3zL3bPvpmNKR9444w2y7HUUmBFCiFZMAno74zQ7+c2Q\n3zC8YDil/lJO73p63dXP6uANe/GGvRgwkGnP3DXj3V9Tzef/fo713y/i8olPkdmhU63jlFJ1BkCT\n0UTn1M6U+EtqbW/umvig38dP38xk5exvGHvL74mlWJi6diq90noxIGdAi0xs65/dn1xHLqd2PhWr\nUZLOCCHaHgnoB1mZv4zZ22YzJHcIBa6CpFwjw5bBuG7jmnVMIBLgsw2fcf+c+8mwZfDm2DfpmNIR\ngFg0SvGGdURCQWrKSvcJ6PVJs6Zxz/B7mPDJhF2PAK7qd1V8RKAZwoEAC6dNoaaslO1rVlHdxcpf\nF/4VgzLw+QWft0hAL0wp5N1x72IxWUixyLweIUTbIwH9IHt52cu8vvx1+mX24/lTnt+VpvVQ84Q9\nPP/D82g0ZYEyZmyYwbVHxpM+OdxpXPzARLwV5bhzmpfBrWtqVz48+0OKfEXYTXbWV63HH/HXGppv\njN2Vwvjf3c367xfSue+ReMwhBmQPoE9GHyyGlklCYzQYmzySIYQQrZEE9INsRP4I3l7xNiPyRxz0\nod2KQAUfr/+YVEsqJ3Q8oVZQtRqtDMsbxrS101AoBucO3vWeUoqUjCxSMpof8IwGI9mObILRIGd9\ncBYRHeHkzifzyMhHmjwBz2g2k9e9J3nd4+viHcAzo5/BbDDjsjQ9M54QQrRnEtAPssG5g/ns/M+w\nGC3NHioORoOYDeZ91pQ31frq9UycPxGA6edOrxXQUywp3D7k9njed1smmbaWTQRjMVqwmWx4wh76\nZPTBbDiwZWuHcj27EEK0RhLQDzK72Y7d3PylYTu8O3hi4ROM7z6eoXlD6+3dbq3w8+a8jZw/qAPd\nslwYDLtX2hQ4C8iwZeAwO+o8Pt2WnrRAmWHLYOo5U6kOVpNlz5KELkIcYolUryGt9ZzE61eBj7TW\nk5NwrX8Df9NaL2/pc4vd5K9qG/Hhmg+ZsWEGi4oW8d6Z79UZkD3BCPdNW8bMn4v58udi3rruGLJS\ndg/r5zhymDJ+CgpV70zzkN9P8cZ11JSV0uWoo1tsmZjJYCLHkUOOI6dFzidEm/GAe5/EMjxQ1RoS\ny5wEeIA5yb6Q1vq6ZF9DSC73NmNct3EMyR3CLUffUu9QvdVk4PR+eRgUnNI3B5uldnIUgzKQZc9q\ncNlYyO/jvQf+yMdPP463sqLF2h/TMWI61mLnE6JNiAfzfcqnJrbvN6WUUyk1XSn1g1JqmVLqYqXU\nyUqp75VSS5VSLyulrIl9NyilshLfD1FKfa2U6gL8CviNUmqJUmpk4tQnKKXmKKXW7VGNra7ru5RS\nM5VSixPXO7u+diW2f62UGpL4/gWl1EKl1E9KqQcP5N9B1CY99DaiU0onnhr1FDajDaup7sl0ZqOB\n0/vncWLvbCxGAy5r8//3Gkwmjhh5EpVF21usd14RqODdFe9iNpo5v+f58vxbHE6SVT71dGCb1noc\ngFLKDSwDTtZar1JKvQ7cCDxV18Fa6w1KqX8AHq31E4lzXAvkA8cDfYBpQH3D7wHgXK11deJmYa5S\nalo97drb3VrrcqWUEZiplDpKa/3j/vwjiNokoLchey/18of9eCNeUiwpu2bMp9jMpNj2nXAWCYXw\nVJQTDYdwZWZhtdedx9yR6mbUVTegozHsqS0U0IMVPP/D8wCMKRyTlIC+w7uDqWum0jezLwOyB5Bq\nTU5GOSGaKSnlU4nXOv+rUupR4COgGlivtV6VeP814CbqCegN+FBrHQOWK6VyG9hPAQ8rpU4gXqa1\nA5C7d7u01rPqOPYipdQNxONPPtAXkIDeAiSgt1E1oRo+WPMBH6/9mJsG3cSwvGENLoMLeGp49Xc3\nEg2Hue6Zl+oN6AA2Z8suBXNb3JzU8SSsRisuc8svMyvzl/GrL37F2sq1ALw19i2Oyj6qxa8jxH7Y\nRHyYva7t+y3RCx8EjAX+DHzZwO4Rdj9etTVy6uAe3zeUu/4yIBsYrLUOK6U2ALa926WUmqm1/tOu\nEyrVFbgdGKq1rkhMxGusTaKJJKC3UcFIkKpgFb8b+jscJgc1wRqsjtoBPRwN765qphTu7Fz8nhqM\n5oNb6SzTnslfjv9LfD17ErKwxXSMEt/u9LKl/tIWv4YQ+ykp5VOVUgVAudb6TaVUJfBroItSqofW\neg1wBfBNYvcNwGDgE+D8PU5TA+zvUJYbKE4E81EkblrqaNfek+FSAS9QlRgBOAP4ej/bIPYiAb2N\nMhvMHN/heK785ErMBjMfn/fxrvd8YR+LixYzde1UJvSbQJ4zjzfWvcGFd/6BVEsqTnfaQW9vMofA\n3VY3T416iofnPUzvjN4MzBmYtGsJ0SwPVL3NA25o+VnuRwKPK6ViQJj483I3MEkpZQIWAP9I7Psg\n8JJS6iFqB8//ApMTE9pubub13wL+q5RaCiwEVjTQrl201j8opb5P7L8ZmN3M64oGSPnUg6QiUEEo\nGsJkMNU5yzwcDaOUatb67I1VGzln6jk4zA4+OPuDXUvCdnh3cNqU04jpGHaTndfPeJ0L/3shAJ+d\n/xn5rualb20LItEIVaEqLEbJxS6SRsqnilZNeugHQXmgnPu+vY9vtn5Dr/Re/POUf9bKG17uL+fZ\nJc/iNDu5pv81TZ40luvM5ZPzP8GgDLVywhuUAYvBQiAawGFy4DA5MCoj3dzddg/BtzMmY903SkII\ncbiQgH4QbPds55ut8cdZqypWMWvrLM7tee6u9+fvmM+kVZMAGNVpVJMDus1kI8+Ut8/2NGsa75z5\nDrO3fMvIvONxawczLpiBSUnQE0I0nVLqSOCNvTYHtdbHHIr2iIZJQD8I9h4CznZk13rdO6M3dpMd\ns8HcYEnVMn8Z3nB8mVpDQd9itNAjrQehZVuY8fQDuHNyOfeO+1tsXbkQ4vCgtV4KyKSUNkIC+kGQ\nYcvgryf+lcmrJnNswbH0z+xf6/2Oro58dO5HKFS95VSrglXcO/teZm2dxYS+E7j56JvrTDBTE6oh\nGAliM9nIKeyKMy2dAWPGYrbKyhAhhGjPJKAfBC6Li5M7n8yxBcdiM9n2mfhmNpobzXEe1VHK/GUA\nFPuLieroPvv4wj4mr5rMs98/y40Db+TS3pdwwd0PYbbZMVlapm64EEKI1kkCepKV+8sxKANptrT9\nrt0diAQwKiPPn/I8S0uXcmTWkTjM+yaG8UV8TFk9hVAsxJRVUzinxzlkuZtXw9zvqUHHYjhS3VQF\nq9hSswWz0UyBs2BX+8v8ZYSiIRxmxz7Z64QQQhwaUpwliUp8Jdz4xY3c9vVtu3rXzVHkLeKtn99i\nQ/UGnl78NDWhGk7qdFK9E9tSLancc8w9DMoZxD3D72n28i1fVSUzXniKDyY+iKeinBVlK/jF9F9w\n/rTz2ebdBsRvUH7z1W8YM2UMk1dNJhAJNPtzCSGEaHkS0JNoq2cry8uXs6hoETWhmmYdWxWs4q5v\n72Li/Inc9tVtDMsfxl8X/RVf2FfvMRajhSF5Q3h69NP0zehLRaCCykBlk68ZDgZYu3AeO9auomL7\n1lrV0ULREAARHWFJyRIAvt78NYGoBHQhWjOl1ANKqduTdO5dldxaI6VUtlJqXqIK3cg63v+3Uqrv\noWhbMiR1yF0plQb8G+gPaOAaYCXwH6AL8ZSEF2mtW65OZyvSObUzlx1xGS6zq9lD0yaDiY6ujsxn\nPnnOPGpCNYzsMBKLseFn4SaDCYvBwoxNM+iZ3nNXfvc0W+PZ4Sx2JyddeR01paVkduxMikXzzOhn\nsBltdErpBIDT7OSRkY/w0bqP+O3g35JqkZnzQjTkyNeO3Kce+tIJS1tDPfRDSill0lpHknyZk4Gl\nddVjV0oZ21ud9qRmilNKvQbM0lr/WyllIZ7P+C7iuX4nKqXuBNK11nc0dJ62nCkuHAujaF4GuJ3K\n/eVUh6qxm+zEiOE0OZuUQrUyWEmxr5hLp19Kj7QePHrCo+Q58uotu7onHYuhAYOh/sGbSCxCMBrE\nYXKglCTPEoeNZv+wJ4J5Xbncrz+QoK6UcgLvAR0BI/AQ8CgwRGtdmqg9/oTW+iSl1ANAd6AHkAU8\nprV+sZ7z5hPvcKUS7/DdqLWepZR6ARgK2IHJWuv7E/tvIF7Z7SzADFyotV6hlBoG/J144RU/cLXW\neqVS6irgPMCVaPc4YCqQnjj+Hq311ES99k+Ab4Fjga3A2Vprfz3tvh64AbAAO3PZ9yJeAtaeOH4E\nUAL8EziFeDW6PwO3a60XKqVOJ37jZQRKtdYn1/c56v8/c2glbcg9UQf3BOAlAK11SGtdCZxN/AeA\nxNdzktWG1sBsMO9XMAfIsGfQxd2FXGcu+c78OoN5VbCKUl9preHxNGsadqOdTimduH3I7dw7+16m\nrJ5CTbDxYX9lMDQYzCE+CuA0OyWYC9G4huqhH4iddccHaK37A582sv9RwGjiQe2+RBGVulwKzNBa\nDwQGAEsS2+/WWg9JnOdEpdSe5QxLtdaDgBeIV1KDeK72kVrro4H7qP15BwEXaK1PZHdd9UHAKOKl\nV3f+YekJPKe17gdUUruwzN7e11oP1VoPAH4GrtVaL0lc+z9a64GJmwEnMC/x7/btzoOVUtnEb7zO\nT5zjwiZ8jlYnmc/QuxK/G3ol8fzi34m7ylyt9fbEPjuI19AV+6EiUMEj8x7hik+uYGvN1lrvpdvS\neWb0M7y78l2+L/6eR+Y/Is+7hTj4klkP/VSl1KNKqZFa66pG9p+qtfZrrUuBr4Bh9ey3ALg60as/\nUmu9sxdwkVJqMfA90I94DfOd3k98XUT8USrsLhSzDHgyccxOn2utyxPf76yr/iPwBbvrqkO8vvvO\nG4o9z12X/kqpWYliMZftdb09RYEpdWwfDvxPa70eYI/2NfQ5Wp1kBnQT8TuxFxJ3N17gzj130PHx\n/jrH/JVSNyilFiqlFpaUlNS1y2EvHAvzyYZP2OLZwvwd86kK7v6ddllcdEzpyOVHXE6uI5fLjris\n0efvzdUWCvsIcYjVV/f8gOuhE//7upR43fH7aLju+d6/rHX+8mqt/0d8ZHUr8KpS6so9apifrLU+\nCpi+1/l31lCPsnte1kPAV4nRg7P22t+7x/d71lUfCBTtse+etdn3PHddXgV+rbU+knh1ufoyaQW0\nriOJR/0a+hytTjID+hZgi9Z6XuL1ZOI/gEWJ5zQ7n9cU13Ww1vpfWushWush2dnZde1y2HOanTwz\n6hkm9J1AF3cXpq+bvs8+/TL78c64d7hp4E0ttma8JlTDp+s/5bEFj0ntcSEadhfxZ+Z7aql66D6t\n9ZvA48T/tm4gXvcc9h2ePlspZVNKZQInEe+J13XeQqAo8Yz934nz1lXDvDFu4jcFAFc1st8+ddX3\nQwqwXSllJn6T0FxzgRMSNy8opXam7Gzq52gVkhbQtdY7gM1Kqd6JTScDy4lPUpiQ2DaB+IQIsR+c\nZidD8obQI70Ht355K73Te++zj9loJtuR3aIlRWtCNfz+f7/nzZ/fZMqqukavhBAAiYlv1wMbifeK\nN3KAE+ISjgTmK6WWAPcTn9z1IPB3pdRC4j3aPf1IfKh9LvCQ1npbPec9CdhZs/xi4O9a6x+ID7Wv\nAN6maTXMHwMeSZynoZ71W8CQxFD5leyuq95c9wLzEm1r9jm01iXEJ9W9r5T6gfjEQGj652gVkj3L\nfSDxuzwLsA64mvhNxHvEnyFtJL5srbzek9C2Z7kfDJWBSsKxME6zs84Mci2t1F/KNTOuYXP1Zl4+\n7WWOzj066dcUohWQWaCiVUtqQG8pEtD3Q8gLpatg62I44kxwtezcw1J/KVEdJdWSit1kb5Fz+sN+\nPGEPDpMDp8XZIucUogVJQBetWpOGEBJT+q8nPstw1zFa62uS0yxxwPwV8OJo0DFYMxPO/QfYWi4J\nTJa9ZZNDaa2Zs30O982+jzuH3ckZXc7AZGz1I1xCtElttc65Uuo54Li9Nv9da/3KoWhPa9PUv5hT\ngVnElxU0Z4agOFR0jF0TWaMBaOUjMREd4ZvN31AdqubLTV9ySudTJKALkSRttc651vqmQ92G1qxJ\nQ+5KqSWJJQWHRFsacq8OVrO6cjUKRY+0Hk3K7JYUgWrYvgQ2zYVBV0BK/qFpRzOU+ktZsGMBQ3KH\nkO2QlQ2i1ZEhd9GqNTWg/xmYo7X+OPlN+v/27jxOzqrO9/jnm3QgYQurEUEuKCibLFpsgl5Wicqw\nyaKgBEURhYuKMwPOnQvojDPoXEVFUEExgMouGgMCEYhGZEkLgRBCJLKMILJICEQgQvKbP84pUul0\nVVdX11PV/eT7fr36VVXnWc6pJ/3Kr895znN+KxpJAf0PC/7AB6akJ0auOfAaNl9n8y63yMzaxAHd\nhrVmH1v7DDBV0kuSnpf0gqTni2zYSLVaz2r0qIeeUT2MG9OeyWJmZmYDaeomZUS07yHmklt/3Pr8\n8gO/RIi1Vx04w5mZmVk7ND3rSNI6pMXyX1v6Li8TaDXG9ozl9T2v73YzzMxGtJx++6iIOK+FYx8h\nZ55rQzu+RFrn/VdDPVfRmn1s7eOkYfeNSdl3dgVuI2XvMTOzOuZuudUK+dC3emBu1/KhdygPeTus\nDXwaWCGgd/I7RMTpnainHQZzD30n4NGI2AvYkZTOzszM6sjB/ALSGuXKrxfk8iGR9GFJd0qaJel7\nkkZLWlSz/TBJk/P7yZK+K+kO4KuS1pX0M0n3Srq9mg5V0pmSLpF0m6QHc57x6vn+SdLMfMwXB2jb\nMXm/eyRdkss2kHR1PsdMSbvX1HmhpOmSHpJ0cj7NWcCb8/f7L0l75oxqU0jLiJO/w+8lzZF0/CCu\n3QrH5es3WdJ9kmZL+lzNtTssvz89t/0+SefXpHodFpodcn85Il6WhKRVcwL7FRcONzOzWo3yobfc\nS5e0FWmt9d1zYpPzGDgpycbAOyNiiaRzgLsj4mBJewMXs+y59O1Io7CrA3dLuhbYlnTLdWfSHyZT\nJL27v9uukrYB/jXX9Vi7v4oAACAASURBVExNopNvAmdHxG8lbQLcAGyVt21Jyoe+JjBP0ndI2Tm3\nrT4yLWlPUrKYbatpToGPRcSzksYBMyVdHRF/beISrnAcaeG0jXJmteqQf1/fjogv5e2XAAcAv2ii\nvo5oNqA/lr/cz4BpkhaQ1mE3M7P6isqHvg8ps9rM3EkcR53MlTWurEkdugc5I1tE3CxpPUnVRTN+\nHhEvAS9JquZO3wN4DylJC8AapADf3zyqvXNdz+TzV3N17AtsXdOpXUvSGvn9tRGxGFgs6SmW5UTv\n686aYA5wsqRD8vs35jY1E9D7O24e8Kb8x861wI39HLeXpH8m/VG2LjCHkRbQI6L6xc/M/8DjgesL\na5WZWTn8N/2nBB1SPnRSL/miiPjCcoXS52s+9s3d/Tea01/udAH/GRHfG1QrlzcK2DUiXq4tzAG+\n2dznr32H3GPfF9gtIl6UNJ0m8pXXOy4iFkjaHtgfOAE4AvhYzXFjSffzKxHxJ0lnNlNfJzWdPlXS\n2/O9je1Iec7/XlyzzMxKoZB86MBNwGGSXgcpf7dyLnNJW0kaBRzS4PgZ5CH6HOCeiYjq2iL95U6/\nAfhYtUctaaNq3f24GTg8H1+bW/xG4P9Ud1LKxtnIC6Qh+HrGAwtyUN6SdJugGf0eJ2l9YFREXE26\nZfD2PsdVg/cz+Toc1mR9HdNUQJd0OnARsB6wPvBDSf9aZMPMzEa6PJt9hXzoQ53lHhH3k4LOjZLu\nBaYBG5LuO08Ffgc80eAUZwLvyMeeBUyq2bZC7vSIuJF0z/82pdzlV1En2EbEHODLwK+Vcot/PW86\nmZT7/F5J95N6wY2+41+BW/MEtP/qZ5frgR5Jc/N3uL3R+Zo4biNgulKO+R8By41+RMRzpAmO95H+\nwJnZZH0d0+zSr/OA7atDJXkiwayI6MjEuJG09KuZldawmtFchDyMvCgi/n+322KD1+yQ+59Z/l7B\nqsDj7W+OmZmZtaLZWe4LgTmSppGGjfYD7pT0LYCIOLnRwWZmNvxFxJnN7pvvkd/Uz6Z9mnx0rFDD\nvX1FaDagX5N/qqa3vylmZjZS5KA4bHOqD/f2FaHZx9Yuqr5XWtP9jRFxb2GtMjMzs0Fpdpb7dElr\n5ccP7gIukPT1gY4zMzOzzmh2Utz4/IziocDFEbEL6cF8MzMzGwaaDeg9kjYkrZwztcD2mJlZG0g6\nUNJpdbYtqlNem4hkuqRKkW2sR9IOkt7XgXr+peb9ppLua8M5N5B0h6S7Jb2rn+3fl7T1UOvpT7MB\n/UukB+n/GBEzJb0JeLCIBpmZ2dBFxJSIOKvb7WjRDkBhAV3JKIa+Yl9/9gFmR8SOETGjT72jI+Lj\neWGgtmsqoEfElRGxXUR8Kn9+KCI+UESDzMzK5NwTbj7q3BNufuTcE25eml/bkTp1U0kP5B71HyT9\nWNK+km5VSnu6s6RjJX0777+ZUkrU2ZL+veY8kvRtSfMk/QrodzlXSe/Jx98l6cqapCr97fsOSb9W\nSk96Qx7dRdInlFKP3qOURnW1XH54Xg3uHkm/kbQKqRN5pFLq1CPr1FMv7SqSTsnnvE/SZ2uu2TxJ\nF5NWe/sBMC7X8eN86GhJFyilVb0xL6JW73uu8H3ycrZfJS2fO0vSOEmLJH0tr5q3W+3Ih6SJ+Zre\nI+mmXLZzvtZ3S/qdBpHZtNlJcW+RdFN1OELSdvLSr2ZmDeXgvUI+9HYEdWBz4Guk1KNbAkeRsqL9\nIyv2PL8JfCci3sbyS8IeArwV2Bo4Bnhn30qU1jj/V2DfiHg70Auc0l+DJI0BzgEOi4h3ABeSloEF\n+GlE7BQR2wNzgeNy+enA/rn8wJwn5HTg8ojYISIub3ANtiQlU9kZOEPSGEnvAD4K7EJap/0TknbM\n+28BnBcR20TER4GXch1H12w/NyK2AZ4jZ6SrY4XvExGz+rT9JVIa2jsiYvuI+G3NtdqA9LvxgXyO\nw/OmB4B3RcSO+Vz/0aANy2l2yP0C0rq2rwDkR9Y+2GwlZmYrqUb50Ifq4YiYHRFLSWk8b4q0lvds\nUm7vWrsDl+b3l9SUvxu4NCKWRMSfSYlV+tqVFPBvVVrnfBL9Z5CD9MfBtqQ027NIfwhsnLdtK2mG\n0lrwRwPb5PJbgcmSPgGMbuJ717o2IhbnVK3VtKt7ANdExN8iYhHwU6B6L/vRiGi05vvDOSgD/J4V\nr2Otet+nryXA1f2U7wr8ppoOtibN7HjgytyBPrvBeVfQ7MIyq0XEndJySxm/2mwlZmYrqaLyocPy\nKUeX1nxeSv//tw+cuKN/AqZFxIea3HdOROzWz7bJwMERcY+kY0mZ3IiIEyTtArwf+H3uYTer2bSr\nVQOlkO17vrpD7tT5Pv14uSYPfTP+DbglIg6RtCmDWMit2R76M5LeTP6FUJoF2SiTj5mZ1c97PtR8\n6IN1K8tGVY+uKf8N6V716Hyve69+jr0d2F3S5gCSVpf0ljr1zAM2kLRb3neMpGoPc03giTws/1ob\nJL05Iu6IiNOBp4E3MnDq1EZmAAfne9qrk24rzKiz7yu5Pa3o9/sMwu3AuyVtBsulmR3Pslwpxw7m\nhM0G9BOB7wFbSnoc+CwDpL4zM7PC8qEP1meAE/Pw8EY15deQnli6H7gYuK3vgRHxNCmwXKqUbvU2\n0r3rFeT734cBX8mTwGax7L78/wPuIP1x8UDNYf+VJ+vdR0r7eg8pfevWjSbF1RMRd5F6z3fm+r4f\nEXfX2f184N6aSXGDUe/7NNvOp4HjgZ/ma1WdK/BV4D8l3U3zo+jAAOlTJX0mIr4pafeIuDX/tTMq\nIl4YbOOHwulTzWwYaCl9ap4A9x+kYfb/Bv7lxO/uPaR86Gb9GSigz4qIHSTdlWc3dsVIDejPL36e\nJ198ktXHrM4G4zZgzOhWR3bMbBgofT50G9kG6s7PlfQg8IY81FIlICJiu+KaNvI9vuhxjph6BON6\nxjH1kKm8brV+H/E0MxtxJF0DbNan+NSIuKHN9XyUdMug1q0RcWI762lQ/7mkpwRqfTMiftiJ+gej\nYUCPiA9Jej1plbgDO9Ok8lh9zOqsMmoV1h27LqPU7HSF7lu4eCFPv/g0a626FuuPW39Etd3MOiMi\nDulQPT8EuhY8O/WHQzsMeMM9Iv4CbN+BtpTOhNUmcN2h1zFKo1h/3Prdbk7T/vjcH5l0/STWG7se\nVx141Yhqu5nZyqphQJd0RUQckWdG1t5s95B7E1btWZUJPRO63YxBG7/qeHpG9TBhtQmMavpBCDMz\n66aBeujV+xYHtHJySY+QnidcArwaEZX8rN3lpBV4HgGOiIgFrZzfirHRGhtxw6E3MHrUaNYdt+7A\nB5iZWdcNdA/9ifz66BDq2Csvy1d1GmmJwrOUUvudBpw6hPNbm43tGcvYnrHdboaZmQ1Cw/FUSS9I\ner6fnxckPd9inQcBF+X3FwEHt3geMzNrkaSD1ca83JIqkr7VrvO1UP9r+d/VJye5pOskrd2ttnXK\nQD30Vpfee+0UwI2SAvheRJwPTKj2/IG/kBbTNzOzzjoYmEpaJW7IIqKXlImtKyJiCjAlf6zmJP94\n/lxv6ddSGdSyci3YIyIel/Q6Uvad5ZbHi4jIwX4Fko4nLYvHJpu0I4+BmVnnfe3IA1ZYKe7zl08d\n8kpxkj4MnAysQlqC9NPAt4GdSElFroqIM/K+Z5EePX4VuJGUgexA4H/nVNgfiIg/9lPHJ0j/D68C\nzAc+EhEvSjocOIM0P2phRLxb0p7AP0bEAZJ2JqVsHQu8BHw0IubV+R7HktZbH09alvZHEfHFvO1n\npLXdx5Ke/T4/l08kXdPRwDMRsU8+TwX4Pmn51HE57/hupPSmlYh4RtIxpBSzAdwbER9p/qoPb4UG\n9Ih4PL8+lRch2Bl4UtKGEfFETgbwVJ1jzyets0ulUmk1S5CZWdfkYH4By1Ko/i/ggq8deQBDCeqS\ntgKOBHaPiFcknUdKEPJ/I+JZSaOBmyRtR0r0cQiwZe5ErR0Rz0maAkyNiKsaVPXTiLgg1/nvpBzm\n57Ash/njdYayqzm9X5W0Lyn4NsotvjMp7eqLwExJ1+Ye/8fy9xmXy68m3Sq+AHh3RDxck9QEgIiY\nJel0UgA/Kbe9et22IaV0fWcO7qWa9VvYM0k5I8+a1ffAe4D7SEMik/Juk4CfF9UGM7MuKyof+j7A\nO0hBblb+/CbgCEl3AXeT8mhvDSwEXgZ+IOlQVkwW00irOcwHm9N7WkT8NSJeIo0e7JHLT86JS24n\n9dS3oH4e8WbsDVxZnag9yGOHvSJ76BOAa/JfRj3ATyLiekkzgSskHQc8ChxRYBvMzLqpqHzoAi6K\niC+8VpDScE4DdoqIBZImA2NzL3lnUtA/DDiJFNiaMZnWcpgPNqd331HYyEP4+wK75WH+6aShd6uj\nsB56RDwUEdvnn20i4su5/K8RsU9EbBER+5btLyQzsxpF5UO/CTgsz0+q5tLeBPgbsFDSBOC9edsa\nwPiIuA74HMtW/mwm5/hgcpjXGmxO7/0krZuH1g8mjQCMBxbkYL4lqWcO9fOIN+Nm4HBJ67Vw7LDn\nZcDMzIpTSD70iLifdC/4xpw4axqwmDTU/gDwE1JQhBSUp+b9fguckssvA/4pP9r15jpVDSaHea3B\n5vS+E7gauBe4Ot8/vx7okTQXOIsUyBvlER9QRMwBvgz8Oh/79WaPHQkapk8dLkZq+lQzK5WW0qcW\nNcu9LKqz06sT2Kx1RT+2Zma2UsvB2wHcCueAbma2kutEzm9J+wNf6VP8cE7DOrld9azMHNDNzFZy\nncj5HRE3ADcUXc/KzJPizMzMSsAB3czMrAQc0M3MzErAAd3MzJYjadP8jPlA+xxV87mr6VPNAd3M\nzFqzKfBaQI+I3og4uXvNMQd0M7MRJveOH5D0Y0lzJV0laTVJ++SV32ZLulDSqnn/RyR9NZffKWnz\nXD5Z0mE1511Up64Zku7KP+/Mm84C3iVplqTPSdpT0tR8zLqSfibpXkm356xvSDozt2u6pIck+Q+A\nNnJANzMbmd4KnBcRWwHPk5Z0nQwcGRFvIz2W/Kma/Rfm8m8D3xhEPU8B+0XE20kpW6vD6qcBMyJi\nh4g4u88xXwTujojtSMvcXlyzbUtgf1LK1DPyOvHWBg7oZmYj058iorpe+49I2dQejog/5LKLgHfX\n7H9pzetug6hnDHBBTqF6JSkl60D2AC4BiIibgfUkrZW3XRsRi3MK06dImTmtDbywjJnZyNQ3Ecdz\nwHpN7l99/yq5YydpFLBKP8d9DniSlKVtFCm3+lAsrnm/BMehtnEP3cxsZNpEUrWnfRTQC2xavT8O\nfAT4dc3+R9a83pbfPwJUc5kfSOqN9zUeeCIiluZzjs7ljdKvziCnW815zZ+JiOeb+lbWMv9lZGY2\nMs0DTpR0IXA/cDIpxeiVknqAmcB3a/ZfJ6dQXQx8KJddAPw8pxK9npRPva/zgKslHdNnn3uBJfnY\nyaTUrVVnAhfm+l4EJg3tq1oznD7VzKw5LaVPLYKkTYGpEbFtk/s/QkpR+kyBzbIu85C7mZlZCXjI\n3cxshImIR4Cmeud5/00La4wNG+6hm5mZlYADupmZWQk4oJuZmZWAA7qZmVkJOKCbmY1AkiZKmidp\nvqTTut0e6z4HdDOzEUbSaOBc4L2ktdU/JKmZNdatxBzQzcxGnp2B+RHxUET8HbgMOKjLbbIuc0A3\nMxt5NgL+VPP5sVxmKzEvLGNmVrBKpXIgsB8wrbe3d0q322Pl5B66mVmBcjC/FDgJuDR/HqrHgTfW\nfN44l9lKzAHdzKxY+wGr5fer5c9DNRPYQtJmklYBPgi457+Sc0A3MyvWNFIKUfLrtKGeMCJeJfX4\nbwDmAldExJyhntdGNqdPNTNrTsvpU30P3TrBk+LMzAqWg7gDuRXKQ+5mZmYlUHhAlzRa0t2SpubP\nm0m6Iy9XeHme0GFmZmZD0Ike+mdIkzaqvgKcHRGbAwuA4zrQBjMzs1IrNKBL2hh4P/D9/FnA3sBV\neZeLgIOLbIOZmdnKoOge+jeAfwaW5s/rAc/lRy7AyxWamZm1RWEBXdIBwFMR8fsWjz9eUq+k3qef\nfrrNrTMzG9kkPSJptqRZknpz2bqSpkl6ML+uk8sl6Vt57tK9kt5ec55Jef8HJU2qKX9HPv/8fKw6\nVYe1psge+u7AgZIeIWUC2hv4JrC2pOrjcnWXK4yI8yOiEhGVDTbYoMBmmpkVp1KpjKlUKhMrlcpH\n8+uYNp5+r4jYISIq+fNpwE0RsQVwU/4MKc3qFvnneOA7kIIzcAawCymD2xnVAJ33+UTNcRM7WIe1\noLCAHhFfiIiNI2JT0rKEN0fE0cAtwGF5t0nAz4tqg5lZN1UqlQ8DTwKXA+fk1ydzeREOIs1NguXn\nKB0EXBzJ7aSO1YbA/sC0iHg2IhaQVrGbmLetFRG3R1p97OI+5yq6DmtBN55DPxU4RdJ80j31H3Sh\nDWZmhcpB+3vAOsBawOr5dR3ge20I6gHcKOn3ko7PZRMi4on8/i/AhPy+XrrVRuWP9VPeqTqsBR1Z\nKS4ipgPT8/uHSMMuZmallIfVv8WypCx9rQZ8q1KpXNbb2/tqnX0GskdEPC7pdcA0SQ/UboyIkFTo\n2t6dqMOa55XizMzabx9g9AD7jAb2bbWCiHg8vz4FXEPqKD2Zh7LJr0/l3eulW21UvnE/5XSoDmuB\nA7qZWfttyMABfRTw+lZOLml1SWtW3wPvAe4jrRdfnUVeO0dpCnBMnom+K7AwD5vfALxH0jp5otp7\ngBvytucl7Zpnnh/T51xF12EtcHIWM7P2ewJYMsA+S0n3oFsxAbgmP+XVA/wkIq6XNBO4QtJxwKPA\nEXn/64D3AfNJKVw/ChARz0r6N1J+dYAvRcSz+f2ngcnAOOCX+QfgrA7UYS1w+lQzs+Y0/Yx0vof+\nJGkCXD0LgNcN4R662XI85G5m1ma9vb2vACeTeqr9eRE42cHc2skB3cysAL29vT8CPknqiT8PLMqv\nC4BP5u1mbeMhdzOz5rS0LGkeft+HNAHuL8Cv3DO3InhSnJlZgfLw+/XdboeVn4fczczMSsAB3cys\nAyqVijOJWaEc0M3MClCpVFSpVHatVCpXViqVF4EllUrlxfx516EGeEkXSnpK0n01ZaVIn1qvDmvM\nAd3MrM3yRLhLgV8Bh5IWTlF+PTSXXzrEVKqTWTHdaFnSp9arwxpwQDcza6Pc874E+AdShrW+/8+O\nyuX/AFzcak89In4DPNunuCzpU+vVYQ04oJuZtdcuwAHUz7RWtRopqLcz+2RZ0qfWq8MacEA3M2uv\nz5OG1psxLu/fdrnXW3j61DLUURYO6GZm7fV+mv+/dRSpN98uZUmfWq8Oa8AB3cysTfL98LGDPGxs\nGx9pK0v61Hp1WANeKc7MrE16e3ujUqm8TPND7gAv9/b2DnpIWdKlwJ7A+pIeI80k70Rq027WYQ14\nLXczs+Y01YuuVCpXkh5Na2YEdClwdW9vrwOWDZmH3M3M2utrwEtN7vtS3t9syBzQzcza6w5gKvVz\noVe9CPwCuLPwFtlKwQHdzKyN8v3wj5Amdv2NNKxea2kunwIc08r9c7P+OKCbmbVZTpl6FCkP+tWk\nofXIr1fn8qPyfmZt4VnuZmYFyD3vO4AjKpVKD2m510W9vb1LutsyKysHdDOzAlQqlVWBw4FTgW2A\nV4AxlUplDvAV4Mre3t7FXWyilYyH3M3M2qxSqewM/Bk4D9iW9MjbKvl121z+50qlslOrddRJn3qm\npMclzco/76vZ9oWcpnSepP1ryifmsvmSTqsp30zSHbn8ckmr5PJV8+f5efumnazD6nNANzNroxyk\nbwbWBdass9uaefstQwjqk1kxfSrA2RGxQ/65DkDS1sAHSSMFE4HzJI2WNBo4l5T6dGvgQ3lfSKMI\nZ0fE5sAC4LhcfhywIJefnffrSB3WmAO6mVmb5GH260n3y5uxOnB9Pm5Q6qRPrecg4LKIWBwRD5NW\nc9s5/8yPiIci4u/AZcBBeSnWvYGr8vF906RWU5teBeyT9+9EHdaAA7qZWfscDowZ5DGrAIe1sQ0n\nSbo3D8mvk8sGm9p0PeC5iHi1T/ly58rbF+b9O1GHNeCAbmbWPqdSf5i9njWA0wbcqznfAd4M7AA8\ngVehW6k4oJuZtUGlUhlNun/cim3y8UMSEU9GxJKIWApcQBruhsGnNv0rsLaknj7ly50rbx+f9+9E\nHdaAA7qZWXusQXo0rRWv5uOHpJpDPDsEqM6AnwJ8MM8e3wzYgrTk7ExgizzbfBXSpLYpkbJ23cKy\nWwF906RWU5seBtyc9+9EHdaAn0M3M2uPRQz+/nlVTz6+aXXSp+4paQfSqnSPAJ8EiIg5kq4A7if9\n8XBiRCzJ5zmJlLN8NHBhRMzJVZwKXCbp34G7gR/k8h8Al0iaT5qU98FO1WGNOX2qmVlzBpxlXalU\nZpOeMx+s+3p7e9/WwnFmr/GQu5lZ+3wFeGGQx7wAnFVAW2wlU1hAlzRW0p2S7pE0R9IXc3m/KwOZ\nmZXAlQz+PvorLHsW26xlRfbQFwN7R8T2pEcoJkralforA5mZjWh5bfaJpPSozfgbMNFruls7FBbQ\nI6lO8hiTf4L6KwOZmY14vb29M4G9SJO56g2/v5C375X3NxuyQu+h53V8ZwFPAdOAP1J/ZSAzs1LI\nQfoNwKdIj44FaWg9gNm5/A0O5tZOhT62lh9Z2EHS2sA1wJbNHivpeOB4gE022aSYBpqZFSQPo/8Y\n+HFeNGYNnA/dCtSR59Aj4jlJtwC7kVcGyr302pWB+h5zPnA+pMfWOtFOM7Mi5CC+sNvtsHIrcpb7\nBrlnjqRxwH7AXOqvDGRmZmYtKrKHviFwUc6FOwq4IiKmSrqf/lcGMjMzsxYVFtAj4l5gx37KH2JZ\nwgAzMzNrA68UZ2ZmVgIO6GZmZiXggG5mZlYCDuhmZmYl4IBuZmZWAg7oZmZmJeCAbmZmVgIO6GZm\nZiXggG5mZlYCDuhmZmYl4IBuZmZWAg7oZmZmJeCAbmZmVgIO6GZmZiXggG5mZlYCDuhmZmYl4IBu\nZmZWAg7oZmZmJeCAbmZmVgIO6GZmZiXggG5mZlYCDuhmZmYl4IBuZmZWAg7oZmZmJeCAbmZmVgIO\n6GZmZiXggG5mZlYCDuhmZmYl4IBuZmZWAg7oZmZmJeCAbmZmVgIO6GZmZiXggG5mZlYCDuhmZmYl\nUFhAl/RGSbdIul/SHEmfyeXrSpom6cH8uk5RbTAzM1tZFNlDfxX4fERsDewKnChpa+A04KaI2AK4\nKX82MzOzISgsoEfEExFxV37/AjAX2Ag4CLgo73YRcHBRbTAzM1tZdOQeuqRNgR2BO4AJEfFE3vQX\nYEIn2mBmZlZmPUVXIGkN4GrgsxHxvKTXtkVESIo6xx0PHJ8/LpI0b4CqxgMLB9m8Zo5ptE+9bX3L\n+9uvtqzv9vWBZwZo12AN5+vTX1mjz0Vcn3rtascxZfkdqteOoe4/Un6Hro+IiYM8xqxzIqKwH2AM\ncANwSk3ZPGDD/H5DYF6b6jq/iGMa7VNvW9/y/varLetn/94C/i2G7fVp5pr1uV5tvz7D/RoNh9+h\nVq7RyvY75B//dPOnyFnuAn4AzI2Ir9dsmgJMyu8nAT9vU5W/KOiYRvvU29a3vL/9fjHA9nYbzten\nv7JmrmG7DedrNBx+h1qpZ2X7HTLrGkX0O+I99BNLewAzgNnA0lz8L6T76FcAmwCPAkdExLOFNGKE\nktQbEZVut2O48vUZmK9RY74+VkaF3UOPiN8CqrN5n6LqLYnzu92AYc7XZ2C+Ro35+ljpFNZDNzMz\ns87x0q9mZmYl4IBuZmZWAg7oZmZmJeCAPsxJ2krSdyVdJelT3W7PcCVpdUm9kg7odluGG0l7SpqR\nf4/27HZ7hiNJoyR9WdI5kiYNfITZ8OOA3gWSLpT0lKT7+pRPlDRP0nxJpwFExNyIOAE4Ati9G+3t\nhsFco+xU0uOQK4VBXp8AFgFjgcc63dZuGeQ1OgjYGHiFlegaWbk4oHfHZGC5JSQljQbOBd4LbA18\nKGenQ9KBwLXAdZ1tZldNpslrJGk/4H7gqU43sosm0/zv0IyIeC/pj54vdrid3TSZ5q/RW4HfRcQp\ngEfCbERyQO+CiPgN0HcxnZ2B+RHxUET8HbiM1GsgIqbk/5CP7mxLu2eQ12hPUoreo4BPSCr97/Vg\nrk9EVBd2WgCs2sFmdtUgf4ceI10fgCWda6VZ+xSenMWathHwp5rPjwG75Hueh5L+I16Zeuj96fca\nRcRJAJKOBZ6pCWArm3q/Q4cC+wNrA9/uRsOGkX6vEfBN4BxJ7wJ+042GmQ2VA/owFxHTgeldbsaI\nEBGTu92G4Sgifgr8tNvtGM4i4kXguG63w2woSj80OYI8Dryx5vPGucyW8TVqzNdnYL5GVloO6MPH\nTGALSZtJWgX4ICkznS3ja9SYr8/AfI2stBzQu0DSpcBtwFslPSbpuIh4FTiJlD9+LnBFRMzpZju7\nydeoMV+fgfka2crGyVnMzMxKwD10MzOzEnBANzMzKwEHdDMzsxJwQDczMysBB3QzM7MScEA3MzMr\nAQd0G/Yk/a7bbTAzG+78HLqZmVkJuIduw56kRfl1T0nTJV0l6QFJP5akvG0nSb+TdI+kOyWtKWms\npB9Kmi3pbkl75X2PlfQzSdMkPSLpJEmn5H1ul7Ru3u/Nkq6X9HtJMyRt2b2rYGbWmLOt2UizI7AN\n8GfgVmB3SXcClwNHRsRMSWsBLwGfASIi3paD8Y2S3pLPs20+11hgPnBqROwo6WzgGOAbwPnACRHx\noKRdgPOAvTv2Tc3MBsEB3UaaOyPiMQBJs4BNgYXAExExEyAins/b9wDOyWUPSHoUqAb0WyLiBeAF\nSQuBX+Ty2cB2ktYA3glcmQcBIOWkNzMblhzQbaRZXPN+Ca3/DteeZ2nN56X5nKOA5yJihxbPb2bW\nUb6HbmUwD9hQV+bxXgAAAJZJREFU0k4A+f55DzADODqXvQXYJO87oNzLf1jS4fl4Sdq+iMabmbWD\nA7qNeBHxd+BI4BxJ9wDTSPfGzwNGSZpNusd+bEQsrn+mFRwNHJfPOQc4qL0tNzNrHz+2ZmZmVgLu\noZuZmZWAA7qZmVkJOKCbmZmVgAO6mZlZCTigm5mZlYADupmZWQk4oJuZmZWAA7qZmVkJ/A/Ej+qZ\nvMr9vgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { "tags": [ - "id1_content_5", - "outputarea_id1", + "id2_content_5", + "outputarea_id2", "user_output" ] } @@ -4880,8 +4887,8 @@ "output_type": "display_data", "data": { "application/javascript": [ - "window[\"09be588a-e91d-11e8-9ca7-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"0951cb98-e91d-11e8-9ca7-0242ac1c0002\"]);\n", - "//# sourceURL=js_0beefe4cb1" + "window[\"499ed4b6-e945-11e8-9ea1-0242ac1c0002\"] = google.colab.output.setActiveOutputArea(window[\"4933dd3c-e945-11e8-9ea1-0242ac1c0002\"]);\n", + "//# sourceURL=js_c926081db4" ], "text/plain": [ "" @@ -4889,8 +4896,8 @@ }, "metadata": { "tags": [ - "id1_content_5", - "outputarea_id1" + "id2_content_5", + "outputarea_id2" ] } } @@ -4910,17 +4917,17 @@ "metadata": { "id": "JiucBW8xRTRr", "colab_type": "code", + "outputId": "4a171e3a-bfbb-4abb-db62-49e8fdf6bf79", "colab": { "base_uri": "https://localhost:8080/", "height": 195 - }, - "outputId": "b6e8cfd9-92df-447a-e1a9-c29388059c8b" + } }, "cell_type": "code", "source": [ "df1.head()" ], - "execution_count": 52, + "execution_count": 100, "outputs": [ { "output_type": "execute_result", @@ -5014,7 +5021,7 @@ "metadata": { "tags": [] }, - "execution_count": 52 + "execution_count": 100 } ] }, @@ -5035,17 +5042,17 @@ "metadata": { "id": "4qJvwIHPRXZH", "colab_type": "code", + "outputId": "334beb99-05b1-48f5-ed4c-36ae93e950af", "colab": { "base_uri": "https://localhost:8080/", "height": 134 - }, - "outputId": "73079fad-66ee-4c1c-bb2d-fa8579777f4e" + } }, "cell_type": "code", "source": [ "life_more_than_eighty_three.count()" ], - "execution_count": 65, + "execution_count": 102, "outputs": [ { "output_type": "execute_result", @@ -5063,7 +5070,7 @@ "metadata": { "tags": [] }, - "execution_count": 65 + "execution_count": 102 } ] }, @@ -5071,17 +5078,17 @@ "metadata": { "id": "J5GNKxOha269", "colab_type": "code", + "outputId": "52486a5d-3db3-472a-8601-bf7f86d9d2be", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "d56d2a28-adf7-4fff-f3d6-f006315542ba" + } }, "cell_type": "code", "source": [ "df1.shape" ], - "execution_count": 97, + "execution_count": 103, "outputs": [ { "output_type": "execute_result", @@ -5093,7 +5100,7 @@ "metadata": { "tags": [] }, - "execution_count": 97 + "execution_count": 103 } ] }, @@ -5101,28877 +5108,44 @@ "metadata": { "id": "I4FJPG6qVe0C", "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "sorted_lifespan = df1.sort_values(by=['lifespan'], \n", + " ascending=False)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "n3540_IlZCGH", + "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 484139 + "height": 34 }, - "outputId": "6a8db3df-3549-4a61-a3b8-06d3073c9e9b" + "outputId": "d4d4c271-ce29-4878-dc1a-d735ae477ff9" }, "cell_type": "code", "source": [ - "# Want: method to calculate the top ten biggest changes in lifespan by country\n", - "# and plot it\n", + "uniques = sorted_lifespan.country.unique().tolist()\n", "\n", - "# to start with, let's make a list of all the unique countries\n", - "country_list = df1['country'].unique().tolist() # already alphabetical\n", - "\n", - "qatar = this_year[this_year.country=='Qatar']\n", - "qatar_income = qatar.income.values[0]\n", - "qatar_lifespan = qatar.lifespan.values[0]\n", - "\n", - "\n", - "#let's parse through by incremental years\n", - "# TODO : Finish creating a system to parse this \n", - "current_year = 1800\n", - "\n", - "for row in df1.index: # row labels aka 0 - 41789\n", - " working_year = df1[df1.year==current_year]\n", - " current_year += 1\n", - " \n", - " working_country = working_year.country\n", - " working_lifespan = working_year.lifespan\n", " \n", - " " + "top_ten_uniques = uniques[:9]\n", + "print(top_ten_uniques)\n", + "\n", + "countries_subset = df1[df1.country.isin(top_ten_uniques)]\n" ], - "execution_count": 109, + "execution_count": 160, "outputs": [ { "output_type": "stream", "text": [ - "0 Aruba\n", - "219 Afghanistan\n", - "438 Angola\n", - "657 Albania\n", - "923 United Arab Emirates\n", - "1142 Argentina\n", - "1361 Armenia\n", - "1580 Antigua and Barbuda\n", - "1799 Australia\n", - "2018 Austria\n", - "2237 Azerbaijan\n", - "2456 Burundi\n", - "2675 Belgium\n", - "2894 Benin\n", - "3113 Burkina Faso\n", - "3332 Bangladesh\n", - "3551 Bulgaria\n", - "3770 Bahrain\n", - "3989 Bahamas\n", - "4208 Bosnia and Herzegovina\n", - "4427 Belarus\n", - "4646 Belize\n", - "4912 Bolivia\n", - "5131 Brazil\n", - "5350 Barbados\n", - "5569 Brunei\n", - "5788 Bhutan\n", - "6007 Botswana\n", - "6226 Central African Republic\n", - "6445 Canada\n", - " ... \n", - "35222 Sweden\n", - "35441 Swaziland\n", - "35660 Seychelles\n", - "35879 Syria\n", - "36098 Chad\n", - "36317 Togo\n", - "36536 Thailand\n", - "36755 Tajikistan\n", - "36974 Turkmenistan\n", - "37193 Timor-Leste\n", - "37412 Tonga\n", - "37631 Trinidad and Tobago\n", - "37850 Tunisia\n", - "38069 Turkey\n", - "38288 Taiwan\n", - "38505 Tanzania\n", - "38724 Uganda\n", - "38943 Ukraine\n", - "39162 Uruguay\n", - "39381 United States\n", - "39600 Uzbekistan\n", - "39819 St. Vincent and the Grenadines\n", - "40038 Venezuela\n", - "40257 Vietnam\n", - "40476 Vanuatu\n", - "40695 Samoa\n", - "40914 Yemen\n", - "41133 South Africa\n", - "41352 Zambia\n", - "41571 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "1 Aruba\n", - "220 Afghanistan\n", - "439 Angola\n", - "658 Albania\n", - "924 United Arab Emirates\n", - "1143 Argentina\n", - "1362 Armenia\n", - "1581 Antigua and Barbuda\n", - "1800 Australia\n", - "2019 Austria\n", - "2238 Azerbaijan\n", - "2457 Burundi\n", - "2676 Belgium\n", - "2895 Benin\n", - "3114 Burkina Faso\n", - "3333 Bangladesh\n", - "3552 Bulgaria\n", - "3771 Bahrain\n", - "3990 Bahamas\n", - "4209 Bosnia and Herzegovina\n", - "4428 Belarus\n", - "4647 Belize\n", - "4913 Bolivia\n", - "5132 Brazil\n", - "5351 Barbados\n", - "5570 Brunei\n", - "5789 Bhutan\n", - "6008 Botswana\n", - "6227 Central African Republic\n", - "6446 Canada\n", - " ... \n", - "35223 Sweden\n", - "35442 Swaziland\n", - "35661 Seychelles\n", - "35880 Syria\n", - "36099 Chad\n", - "36318 Togo\n", - "36537 Thailand\n", - "36756 Tajikistan\n", - "36975 Turkmenistan\n", - "37194 Timor-Leste\n", - "37413 Tonga\n", - "37632 Trinidad and Tobago\n", - "37851 Tunisia\n", - "38070 Turkey\n", - "38289 Taiwan\n", - "38506 Tanzania\n", - "38725 Uganda\n", - "38944 Ukraine\n", - "39163 Uruguay\n", - "39382 United States\n", - "39601 Uzbekistan\n", - "39820 St. Vincent and the Grenadines\n", - "40039 Venezuela\n", - "40258 Vietnam\n", - "40477 Vanuatu\n", - "40696 Samoa\n", - "40915 Yemen\n", - "41134 South Africa\n", - "41353 Zambia\n", - "41572 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "2 Aruba\n", - "221 Afghanistan\n", - "440 Angola\n", - "659 Albania\n", - "925 United Arab Emirates\n", - "1144 Argentina\n", - "1363 Armenia\n", - "1582 Antigua and Barbuda\n", - "1801 Australia\n", - "2020 Austria\n", - "2239 Azerbaijan\n", - "2458 Burundi\n", - "2677 Belgium\n", - "2896 Benin\n", - "3115 Burkina Faso\n", - "3334 Bangladesh\n", - "3553 Bulgaria\n", - "3772 Bahrain\n", - "3991 Bahamas\n", - "4210 Bosnia and Herzegovina\n", - "4429 Belarus\n", - "4648 Belize\n", - "4914 Bolivia\n", - "5133 Brazil\n", - "5352 Barbados\n", - "5571 Brunei\n", - "5790 Bhutan\n", - "6009 Botswana\n", - "6228 Central African Republic\n", - "6447 Canada\n", - " ... \n", - "35224 Sweden\n", - "35443 Swaziland\n", - "35662 Seychelles\n", - "35881 Syria\n", - "36100 Chad\n", - "36319 Togo\n", - "36538 Thailand\n", - "36757 Tajikistan\n", - "36976 Turkmenistan\n", - "37195 Timor-Leste\n", - "37414 Tonga\n", - "37633 Trinidad and Tobago\n", - "37852 Tunisia\n", - "38071 Turkey\n", - "38290 Taiwan\n", - "38507 Tanzania\n", - "38726 Uganda\n", - "38945 Ukraine\n", - "39164 Uruguay\n", - "39383 United States\n", - "39602 Uzbekistan\n", - "39821 St. Vincent and the Grenadines\n", - "40040 Venezuela\n", - "40259 Vietnam\n", - "40478 Vanuatu\n", - "40697 Samoa\n", - "40916 Yemen\n", - "41135 South Africa\n", - "41354 Zambia\n", - "41573 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "3 Aruba\n", - "222 Afghanistan\n", - "441 Angola\n", - "660 Albania\n", - "926 United Arab Emirates\n", - "1145 Argentina\n", - "1364 Armenia\n", - "1583 Antigua and Barbuda\n", - "1802 Australia\n", - "2021 Austria\n", - "2240 Azerbaijan\n", - "2459 Burundi\n", - "2678 Belgium\n", - "2897 Benin\n", - "3116 Burkina Faso\n", - "3335 Bangladesh\n", - "3554 Bulgaria\n", - "3773 Bahrain\n", - "3992 Bahamas\n", - "4211 Bosnia and Herzegovina\n", - "4430 Belarus\n", - "4649 Belize\n", - "4915 Bolivia\n", - "5134 Brazil\n", - "5353 Barbados\n", - "5572 Brunei\n", - "5791 Bhutan\n", - "6010 Botswana\n", - "6229 Central African Republic\n", - "6448 Canada\n", - " ... \n", - "35225 Sweden\n", - "35444 Swaziland\n", - "35663 Seychelles\n", - "35882 Syria\n", - "36101 Chad\n", - "36320 Togo\n", - "36539 Thailand\n", - "36758 Tajikistan\n", - "36977 Turkmenistan\n", - "37196 Timor-Leste\n", - "37415 Tonga\n", - "37634 Trinidad and Tobago\n", - "37853 Tunisia\n", - "38072 Turkey\n", - "38291 Taiwan\n", - "38508 Tanzania\n", - "38727 Uganda\n", - "38946 Ukraine\n", - "39165 Uruguay\n", - "39384 United States\n", - "39603 Uzbekistan\n", - "39822 St. Vincent and the Grenadines\n", - "40041 Venezuela\n", - "40260 Vietnam\n", - "40479 Vanuatu\n", - "40698 Samoa\n", - "40917 Yemen\n", - "41136 South Africa\n", - "41355 Zambia\n", - "41574 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "4 Aruba\n", - "223 Afghanistan\n", - "442 Angola\n", - "661 Albania\n", - "927 United Arab Emirates\n", - "1146 Argentina\n", - "1365 Armenia\n", - "1584 Antigua and Barbuda\n", - "1803 Australia\n", - "2022 Austria\n", - "2241 Azerbaijan\n", - "2460 Burundi\n", - "2679 Belgium\n", - "2898 Benin\n", - "3117 Burkina Faso\n", - "3336 Bangladesh\n", - "3555 Bulgaria\n", - "3774 Bahrain\n", - "3993 Bahamas\n", - "4212 Bosnia and Herzegovina\n", - "4431 Belarus\n", - "4650 Belize\n", - "4916 Bolivia\n", - "5135 Brazil\n", - "5354 Barbados\n", - "5573 Brunei\n", - "5792 Bhutan\n", - "6011 Botswana\n", - "6230 Central African Republic\n", - "6449 Canada\n", - " ... \n", - "35226 Sweden\n", - "35445 Swaziland\n", - "35664 Seychelles\n", - "35883 Syria\n", - "36102 Chad\n", - "36321 Togo\n", - "36540 Thailand\n", - "36759 Tajikistan\n", - "36978 Turkmenistan\n", - "37197 Timor-Leste\n", - "37416 Tonga\n", - "37635 Trinidad and Tobago\n", - "37854 Tunisia\n", - "38073 Turkey\n", - "38292 Taiwan\n", - "38509 Tanzania\n", - "38728 Uganda\n", - "38947 Ukraine\n", - "39166 Uruguay\n", - "39385 United States\n", - "39604 Uzbekistan\n", - "39823 St. Vincent and the Grenadines\n", - "40042 Venezuela\n", - "40261 Vietnam\n", - "40480 Vanuatu\n", - "40699 Samoa\n", - "40918 Yemen\n", - "41137 South Africa\n", - "41356 Zambia\n", - "41575 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "5 Aruba\n", - "224 Afghanistan\n", - "443 Angola\n", - "662 Albania\n", - "928 United Arab Emirates\n", - "1147 Argentina\n", - "1366 Armenia\n", - "1585 Antigua and Barbuda\n", - "1804 Australia\n", - "2023 Austria\n", - "2242 Azerbaijan\n", - "2461 Burundi\n", - "2680 Belgium\n", - "2899 Benin\n", - "3118 Burkina Faso\n", - "3337 Bangladesh\n", - "3556 Bulgaria\n", - "3775 Bahrain\n", - "3994 Bahamas\n", - "4213 Bosnia and Herzegovina\n", - "4432 Belarus\n", - "4651 Belize\n", - "4917 Bolivia\n", - "5136 Brazil\n", - "5355 Barbados\n", - "5574 Brunei\n", - "5793 Bhutan\n", - "6012 Botswana\n", - "6231 Central African Republic\n", - "6450 Canada\n", - " ... \n", - "35227 Sweden\n", - "35446 Swaziland\n", - "35665 Seychelles\n", - "35884 Syria\n", - "36103 Chad\n", - "36322 Togo\n", - "36541 Thailand\n", - "36760 Tajikistan\n", - "36979 Turkmenistan\n", - "37198 Timor-Leste\n", - "37417 Tonga\n", - "37636 Trinidad and Tobago\n", - "37855 Tunisia\n", - "38074 Turkey\n", - "38293 Taiwan\n", - "38510 Tanzania\n", - "38729 Uganda\n", - "38948 Ukraine\n", - "39167 Uruguay\n", - "39386 United States\n", - "39605 Uzbekistan\n", - "39824 St. Vincent and the Grenadines\n", - "40043 Venezuela\n", - "40262 Vietnam\n", - "40481 Vanuatu\n", - "40700 Samoa\n", - "40919 Yemen\n", - "41138 South Africa\n", - "41357 Zambia\n", - "41576 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "6 Aruba\n", - "225 Afghanistan\n", - "444 Angola\n", - "663 Albania\n", - "929 United Arab Emirates\n", - "1148 Argentina\n", - "1367 Armenia\n", - "1586 Antigua and Barbuda\n", - "1805 Australia\n", - "2024 Austria\n", - "2243 Azerbaijan\n", - "2462 Burundi\n", - "2681 Belgium\n", - "2900 Benin\n", - "3119 Burkina Faso\n", - "3338 Bangladesh\n", - "3557 Bulgaria\n", - "3776 Bahrain\n", - "3995 Bahamas\n", - "4214 Bosnia and Herzegovina\n", - "4433 Belarus\n", - "4652 Belize\n", - "4918 Bolivia\n", - "5137 Brazil\n", - "5356 Barbados\n", - "5575 Brunei\n", - "5794 Bhutan\n", - "6013 Botswana\n", - "6232 Central African Republic\n", - "6451 Canada\n", - " ... \n", - "35228 Sweden\n", - "35447 Swaziland\n", - "35666 Seychelles\n", - "35885 Syria\n", - "36104 Chad\n", - "36323 Togo\n", - "36542 Thailand\n", - "36761 Tajikistan\n", - "36980 Turkmenistan\n", - "37199 Timor-Leste\n", - "37418 Tonga\n", - "37637 Trinidad and Tobago\n", - "37856 Tunisia\n", - "38075 Turkey\n", - "38294 Taiwan\n", - "38511 Tanzania\n", - "38730 Uganda\n", - "38949 Ukraine\n", - "39168 Uruguay\n", - "39387 United States\n", - "39606 Uzbekistan\n", - "39825 St. Vincent and the Grenadines\n", - "40044 Venezuela\n", - "40263 Vietnam\n", - "40482 Vanuatu\n", - "40701 Samoa\n", - "40920 Yemen\n", - "41139 South Africa\n", - "41358 Zambia\n", - "41577 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "7 Aruba\n", - "226 Afghanistan\n", - "445 Angola\n", - "664 Albania\n", - "930 United Arab Emirates\n", - "1149 Argentina\n", - "1368 Armenia\n", - "1587 Antigua and Barbuda\n", - "1806 Australia\n", - "2025 Austria\n", - "2244 Azerbaijan\n", - "2463 Burundi\n", - "2682 Belgium\n", - "2901 Benin\n", - "3120 Burkina Faso\n", - "3339 Bangladesh\n", - "3558 Bulgaria\n", - "3777 Bahrain\n", - "3996 Bahamas\n", - "4215 Bosnia and Herzegovina\n", - "4434 Belarus\n", - "4653 Belize\n", - "4919 Bolivia\n", - "5138 Brazil\n", - "5357 Barbados\n", - "5576 Brunei\n", - "5795 Bhutan\n", - "6014 Botswana\n", - "6233 Central African Republic\n", - "6452 Canada\n", - " ... \n", - "35229 Sweden\n", - "35448 Swaziland\n", - "35667 Seychelles\n", - "35886 Syria\n", - "36105 Chad\n", - "36324 Togo\n", - "36543 Thailand\n", - "36762 Tajikistan\n", - "36981 Turkmenistan\n", - "37200 Timor-Leste\n", - "37419 Tonga\n", - "37638 Trinidad and Tobago\n", - "37857 Tunisia\n", - "38076 Turkey\n", - "38295 Taiwan\n", - "38512 Tanzania\n", - "38731 Uganda\n", - "38950 Ukraine\n", - "39169 Uruguay\n", - "39388 United States\n", - "39607 Uzbekistan\n", - "39826 St. Vincent and the Grenadines\n", - "40045 Venezuela\n", - "40264 Vietnam\n", - "40483 Vanuatu\n", - "40702 Samoa\n", - "40921 Yemen\n", - "41140 South Africa\n", - "41359 Zambia\n", - "41578 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "8 Aruba\n", - "227 Afghanistan\n", - "446 Angola\n", - "665 Albania\n", - "931 United Arab Emirates\n", - "1150 Argentina\n", - "1369 Armenia\n", - "1588 Antigua and Barbuda\n", - "1807 Australia\n", - "2026 Austria\n", - "2245 Azerbaijan\n", - "2464 Burundi\n", - "2683 Belgium\n", - "2902 Benin\n", - "3121 Burkina Faso\n", - "3340 Bangladesh\n", - "3559 Bulgaria\n", - "3778 Bahrain\n", - "3997 Bahamas\n", - "4216 Bosnia and Herzegovina\n", - "4435 Belarus\n", - "4654 Belize\n", - "4920 Bolivia\n", - "5139 Brazil\n", - "5358 Barbados\n", - "5577 Brunei\n", - "5796 Bhutan\n", - "6015 Botswana\n", - "6234 Central African Republic\n", - "6453 Canada\n", - " ... \n", - "35230 Sweden\n", - "35449 Swaziland\n", - "35668 Seychelles\n", - "35887 Syria\n", - "36106 Chad\n", - "36325 Togo\n", - "36544 Thailand\n", - "36763 Tajikistan\n", - "36982 Turkmenistan\n", - "37201 Timor-Leste\n", - "37420 Tonga\n", - "37639 Trinidad and Tobago\n", - "37858 Tunisia\n", - "38077 Turkey\n", - "38296 Taiwan\n", - "38513 Tanzania\n", - "38732 Uganda\n", - "38951 Ukraine\n", - "39170 Uruguay\n", - "39389 United States\n", - "39608 Uzbekistan\n", - "39827 St. Vincent and the Grenadines\n", - "40046 Venezuela\n", - "40265 Vietnam\n", - "40484 Vanuatu\n", - "40703 Samoa\n", - "40922 Yemen\n", - "41141 South Africa\n", - "41360 Zambia\n", - "41579 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "9 Aruba\n", - "228 Afghanistan\n", - "447 Angola\n", - "666 Albania\n", - "932 United Arab Emirates\n", - "1151 Argentina\n", - "1370 Armenia\n", - "1589 Antigua and Barbuda\n", - "1808 Australia\n", - "2027 Austria\n", - "2246 Azerbaijan\n", - "2465 Burundi\n", - "2684 Belgium\n", - "2903 Benin\n", - "3122 Burkina Faso\n", - "3341 Bangladesh\n", - "3560 Bulgaria\n", - "3779 Bahrain\n", - "3998 Bahamas\n", - "4217 Bosnia and Herzegovina\n", - "4436 Belarus\n", - "4655 Belize\n", - "4921 Bolivia\n", - "5140 Brazil\n", - "5359 Barbados\n", - "5578 Brunei\n", - "5797 Bhutan\n", - "6016 Botswana\n", - "6235 Central African Republic\n", - "6454 Canada\n", - " ... \n", - "35231 Sweden\n", - "35450 Swaziland\n", - "35669 Seychelles\n", - "35888 Syria\n", - "36107 Chad\n", - "36326 Togo\n", - "36545 Thailand\n", - "36764 Tajikistan\n", - "36983 Turkmenistan\n", - "37202 Timor-Leste\n", - "37421 Tonga\n", - "37640 Trinidad and Tobago\n", - "37859 Tunisia\n", - "38078 Turkey\n", - "38297 Taiwan\n", - "38514 Tanzania\n", - "38733 Uganda\n", - "38952 Ukraine\n", - "39171 Uruguay\n", - "39390 United States\n", - "39609 Uzbekistan\n", - "39828 St. Vincent and the Grenadines\n", - "40047 Venezuela\n", - "40266 Vietnam\n", - "40485 Vanuatu\n", - "40704 Samoa\n", - "40923 Yemen\n", - "41142 South Africa\n", - "41361 Zambia\n", - "41580 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "10 Aruba\n", - "229 Afghanistan\n", - "448 Angola\n", - "667 Albania\n", - "933 United Arab Emirates\n", - "1152 Argentina\n", - "1371 Armenia\n", - "1590 Antigua and Barbuda\n", - "1809 Australia\n", - "2028 Austria\n", - "2247 Azerbaijan\n", - "2466 Burundi\n", - "2685 Belgium\n", - "2904 Benin\n", - "3123 Burkina Faso\n", - "3342 Bangladesh\n", - "3561 Bulgaria\n", - "3780 Bahrain\n", - "3999 Bahamas\n", - "4218 Bosnia and Herzegovina\n", - "4437 Belarus\n", - "4656 Belize\n", - "4922 Bolivia\n", - "5141 Brazil\n", - "5360 Barbados\n", - "5579 Brunei\n", - "5798 Bhutan\n", - "6017 Botswana\n", - "6236 Central African Republic\n", - "6455 Canada\n", - " ... \n", - "35232 Sweden\n", - "35451 Swaziland\n", - "35670 Seychelles\n", - "35889 Syria\n", - "36108 Chad\n", - "36327 Togo\n", - "36546 Thailand\n", - "36765 Tajikistan\n", - "36984 Turkmenistan\n", - "37203 Timor-Leste\n", - "37422 Tonga\n", - "37641 Trinidad and Tobago\n", - "37860 Tunisia\n", - "38079 Turkey\n", - "38298 Taiwan\n", - "38515 Tanzania\n", - "38734 Uganda\n", - "38953 Ukraine\n", - "39172 Uruguay\n", - "39391 United States\n", - "39610 Uzbekistan\n", - "39829 St. Vincent and the Grenadines\n", - "40048 Venezuela\n", - "40267 Vietnam\n", - "40486 Vanuatu\n", - "40705 Samoa\n", - "40924 Yemen\n", - "41143 South Africa\n", - "41362 Zambia\n", - "41581 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "11 Aruba\n", - "230 Afghanistan\n", - "449 Angola\n", - "668 Albania\n", - "934 United Arab Emirates\n", - "1153 Argentina\n", - "1372 Armenia\n", - "1591 Antigua and Barbuda\n", - "1810 Australia\n", - "2029 Austria\n", - "2248 Azerbaijan\n", - "2467 Burundi\n", - "2686 Belgium\n", - "2905 Benin\n", - "3124 Burkina Faso\n", - "3343 Bangladesh\n", - "3562 Bulgaria\n", - "3781 Bahrain\n", - "4000 Bahamas\n", - "4219 Bosnia and Herzegovina\n", - "4438 Belarus\n", - "4657 Belize\n", - "4923 Bolivia\n", - "5142 Brazil\n", - "5361 Barbados\n", - "5580 Brunei\n", - "5799 Bhutan\n", - "6018 Botswana\n", - "6237 Central African Republic\n", - "6456 Canada\n", - " ... \n", - "35233 Sweden\n", - "35452 Swaziland\n", - "35671 Seychelles\n", - "35890 Syria\n", - "36109 Chad\n", - "36328 Togo\n", - "36547 Thailand\n", - "36766 Tajikistan\n", - "36985 Turkmenistan\n", - "37204 Timor-Leste\n", - "37423 Tonga\n", - "37642 Trinidad and Tobago\n", - "37861 Tunisia\n", - "38080 Turkey\n", - "38299 Taiwan\n", - "38516 Tanzania\n", - "38735 Uganda\n", - "38954 Ukraine\n", - "39173 Uruguay\n", - "39392 United States\n", - "39611 Uzbekistan\n", - "39830 St. Vincent and the Grenadines\n", - "40049 Venezuela\n", - "40268 Vietnam\n", - "40487 Vanuatu\n", - "40706 Samoa\n", - "40925 Yemen\n", - "41144 South Africa\n", - "41363 Zambia\n", - "41582 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "12 Aruba\n", - "231 Afghanistan\n", - "450 Angola\n", - "669 Albania\n", - "935 United Arab Emirates\n", - "1154 Argentina\n", - "1373 Armenia\n", - "1592 Antigua and Barbuda\n", - "1811 Australia\n", - "2030 Austria\n", - "2249 Azerbaijan\n", - "2468 Burundi\n", - "2687 Belgium\n", - "2906 Benin\n", - "3125 Burkina Faso\n", - "3344 Bangladesh\n", - "3563 Bulgaria\n", - "3782 Bahrain\n", - "4001 Bahamas\n", - "4220 Bosnia and Herzegovina\n", - "4439 Belarus\n", - "4658 Belize\n", - "4924 Bolivia\n", - "5143 Brazil\n", - "5362 Barbados\n", - "5581 Brunei\n", - "5800 Bhutan\n", - "6019 Botswana\n", - "6238 Central African Republic\n", - "6457 Canada\n", - " ... \n", - "35234 Sweden\n", - "35453 Swaziland\n", - "35672 Seychelles\n", - "35891 Syria\n", - "36110 Chad\n", - "36329 Togo\n", - "36548 Thailand\n", - "36767 Tajikistan\n", - "36986 Turkmenistan\n", - "37205 Timor-Leste\n", - "37424 Tonga\n", - "37643 Trinidad and Tobago\n", - "37862 Tunisia\n", - "38081 Turkey\n", - "38300 Taiwan\n", - "38517 Tanzania\n", - "38736 Uganda\n", - "38955 Ukraine\n", - "39174 Uruguay\n", - "39393 United States\n", - "39612 Uzbekistan\n", - "39831 St. Vincent and the Grenadines\n", - "40050 Venezuela\n", - "40269 Vietnam\n", - "40488 Vanuatu\n", - "40707 Samoa\n", - "40926 Yemen\n", - "41145 South Africa\n", - "41364 Zambia\n", - "41583 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "13 Aruba\n", - "232 Afghanistan\n", - "451 Angola\n", - "670 Albania\n", - "936 United Arab Emirates\n", - "1155 Argentina\n", - "1374 Armenia\n", - "1593 Antigua and Barbuda\n", - "1812 Australia\n", - "2031 Austria\n", - "2250 Azerbaijan\n", - "2469 Burundi\n", - "2688 Belgium\n", - "2907 Benin\n", - "3126 Burkina Faso\n", - "3345 Bangladesh\n", - "3564 Bulgaria\n", - "3783 Bahrain\n", - "4002 Bahamas\n", - "4221 Bosnia and Herzegovina\n", - "4440 Belarus\n", - "4659 Belize\n", - "4925 Bolivia\n", - "5144 Brazil\n", - "5363 Barbados\n", - "5582 Brunei\n", - "5801 Bhutan\n", - "6020 Botswana\n", - "6239 Central African Republic\n", - "6458 Canada\n", - " ... \n", - "35235 Sweden\n", - "35454 Swaziland\n", - "35673 Seychelles\n", - "35892 Syria\n", - "36111 Chad\n", - "36330 Togo\n", - "36549 Thailand\n", - "36768 Tajikistan\n", - "36987 Turkmenistan\n", - "37206 Timor-Leste\n", - "37425 Tonga\n", - "37644 Trinidad and Tobago\n", - "37863 Tunisia\n", - "38082 Turkey\n", - "38301 Taiwan\n", - "38518 Tanzania\n", - "38737 Uganda\n", - "38956 Ukraine\n", - "39175 Uruguay\n", - "39394 United States\n", - "39613 Uzbekistan\n", - "39832 St. Vincent and the Grenadines\n", - "40051 Venezuela\n", - "40270 Vietnam\n", - "40489 Vanuatu\n", - "40708 Samoa\n", - "40927 Yemen\n", - "41146 South Africa\n", - "41365 Zambia\n", - "41584 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "14 Aruba\n", - "233 Afghanistan\n", - "452 Angola\n", - "671 Albania\n", - "937 United Arab Emirates\n", - "1156 Argentina\n", - "1375 Armenia\n", - "1594 Antigua and Barbuda\n", - "1813 Australia\n", - "2032 Austria\n", - "2251 Azerbaijan\n", - "2470 Burundi\n", - "2689 Belgium\n", - "2908 Benin\n", - "3127 Burkina Faso\n", - "3346 Bangladesh\n", - "3565 Bulgaria\n", - "3784 Bahrain\n", - "4003 Bahamas\n", - "4222 Bosnia and Herzegovina\n", - "4441 Belarus\n", - "4660 Belize\n", - "4926 Bolivia\n", - "5145 Brazil\n", - "5364 Barbados\n", - "5583 Brunei\n", - "5802 Bhutan\n", - "6021 Botswana\n", - "6240 Central African Republic\n", - "6459 Canada\n", - " ... \n", - "35236 Sweden\n", - "35455 Swaziland\n", - "35674 Seychelles\n", - "35893 Syria\n", - "36112 Chad\n", - "36331 Togo\n", - "36550 Thailand\n", - "36769 Tajikistan\n", - "36988 Turkmenistan\n", - "37207 Timor-Leste\n", - "37426 Tonga\n", - "37645 Trinidad and Tobago\n", - "37864 Tunisia\n", - "38083 Turkey\n", - "38302 Taiwan\n", - "38519 Tanzania\n", - "38738 Uganda\n", - "38957 Ukraine\n", - "39176 Uruguay\n", - "39395 United States\n", - "39614 Uzbekistan\n", - "39833 St. Vincent and the Grenadines\n", - "40052 Venezuela\n", - "40271 Vietnam\n", - "40490 Vanuatu\n", - "40709 Samoa\n", - "40928 Yemen\n", - "41147 South Africa\n", - "41366 Zambia\n", - "41585 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "15 Aruba\n", - "234 Afghanistan\n", - "453 Angola\n", - "672 Albania\n", - "938 United Arab Emirates\n", - "1157 Argentina\n", - "1376 Armenia\n", - "1595 Antigua and Barbuda\n", - "1814 Australia\n", - "2033 Austria\n", - "2252 Azerbaijan\n", - "2471 Burundi\n", - "2690 Belgium\n", - "2909 Benin\n", - "3128 Burkina Faso\n", - "3347 Bangladesh\n", - "3566 Bulgaria\n", - "3785 Bahrain\n", - "4004 Bahamas\n", - "4223 Bosnia and Herzegovina\n", - "4442 Belarus\n", - "4661 Belize\n", - "4927 Bolivia\n", - "5146 Brazil\n", - "5365 Barbados\n", - "5584 Brunei\n", - "5803 Bhutan\n", - "6022 Botswana\n", - "6241 Central African Republic\n", - "6460 Canada\n", - " ... \n", - "35237 Sweden\n", - "35456 Swaziland\n", - "35675 Seychelles\n", - "35894 Syria\n", - "36113 Chad\n", - "36332 Togo\n", - "36551 Thailand\n", - "36770 Tajikistan\n", - "36989 Turkmenistan\n", - "37208 Timor-Leste\n", - "37427 Tonga\n", - "37646 Trinidad and Tobago\n", - "37865 Tunisia\n", - "38084 Turkey\n", - "38303 Taiwan\n", - "38520 Tanzania\n", - "38739 Uganda\n", - "38958 Ukraine\n", - "39177 Uruguay\n", - "39396 United States\n", - "39615 Uzbekistan\n", - "39834 St. Vincent and the Grenadines\n", - "40053 Venezuela\n", - "40272 Vietnam\n", - "40491 Vanuatu\n", - "40710 Samoa\n", - "40929 Yemen\n", - "41148 South Africa\n", - "41367 Zambia\n", - "41586 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "16 Aruba\n", - "235 Afghanistan\n", - "454 Angola\n", - "673 Albania\n", - "939 United Arab Emirates\n", - "1158 Argentina\n", - "1377 Armenia\n", - "1596 Antigua and Barbuda\n", - "1815 Australia\n", - "2034 Austria\n", - "2253 Azerbaijan\n", - "2472 Burundi\n", - "2691 Belgium\n", - "2910 Benin\n", - "3129 Burkina Faso\n", - "3348 Bangladesh\n", - "3567 Bulgaria\n", - "3786 Bahrain\n", - "4005 Bahamas\n", - "4224 Bosnia and Herzegovina\n", - "4443 Belarus\n", - "4662 Belize\n", - "4928 Bolivia\n", - "5147 Brazil\n", - "5366 Barbados\n", - "5585 Brunei\n", - "5804 Bhutan\n", - "6023 Botswana\n", - "6242 Central African Republic\n", - "6461 Canada\n", - " ... \n", - "35238 Sweden\n", - "35457 Swaziland\n", - "35676 Seychelles\n", - "35895 Syria\n", - "36114 Chad\n", - "36333 Togo\n", - "36552 Thailand\n", - "36771 Tajikistan\n", - "36990 Turkmenistan\n", - "37209 Timor-Leste\n", - "37428 Tonga\n", - "37647 Trinidad and Tobago\n", - "37866 Tunisia\n", - "38085 Turkey\n", - "38304 Taiwan\n", - "38521 Tanzania\n", - "38740 Uganda\n", - "38959 Ukraine\n", - "39178 Uruguay\n", - "39397 United States\n", - "39616 Uzbekistan\n", - "39835 St. Vincent and the Grenadines\n", - "40054 Venezuela\n", - "40273 Vietnam\n", - "40492 Vanuatu\n", - "40711 Samoa\n", - "40930 Yemen\n", - "41149 South Africa\n", - "41368 Zambia\n", - "41587 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "17 Aruba\n", - "236 Afghanistan\n", - "455 Angola\n", - "674 Albania\n", - "940 United Arab Emirates\n", - "1159 Argentina\n", - "1378 Armenia\n", - "1597 Antigua and Barbuda\n", - "1816 Australia\n", - "2035 Austria\n", - "2254 Azerbaijan\n", - "2473 Burundi\n", - "2692 Belgium\n", - "2911 Benin\n", - "3130 Burkina Faso\n", - "3349 Bangladesh\n", - "3568 Bulgaria\n", - "3787 Bahrain\n", - "4006 Bahamas\n", - "4225 Bosnia and Herzegovina\n", - "4444 Belarus\n", - "4663 Belize\n", - "4929 Bolivia\n", - "5148 Brazil\n", - "5367 Barbados\n", - "5586 Brunei\n", - "5805 Bhutan\n", - "6024 Botswana\n", - "6243 Central African Republic\n", - "6462 Canada\n", - " ... \n", - "35239 Sweden\n", - "35458 Swaziland\n", - "35677 Seychelles\n", - "35896 Syria\n", - "36115 Chad\n", - "36334 Togo\n", - "36553 Thailand\n", - "36772 Tajikistan\n", - "36991 Turkmenistan\n", - "37210 Timor-Leste\n", - "37429 Tonga\n", - "37648 Trinidad and Tobago\n", - "37867 Tunisia\n", - "38086 Turkey\n", - "38305 Taiwan\n", - "38522 Tanzania\n", - "38741 Uganda\n", - "38960 Ukraine\n", - "39179 Uruguay\n", - "39398 United States\n", - "39617 Uzbekistan\n", - "39836 St. Vincent and the Grenadines\n", - "40055 Venezuela\n", - "40274 Vietnam\n", - "40493 Vanuatu\n", - "40712 Samoa\n", - "40931 Yemen\n", - "41150 South Africa\n", - "41369 Zambia\n", - "41588 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "18 Aruba\n", - "237 Afghanistan\n", - "456 Angola\n", - "675 Albania\n", - "941 United Arab Emirates\n", - "1160 Argentina\n", - "1379 Armenia\n", - "1598 Antigua and Barbuda\n", - "1817 Australia\n", - "2036 Austria\n", - "2255 Azerbaijan\n", - "2474 Burundi\n", - "2693 Belgium\n", - "2912 Benin\n", - "3131 Burkina Faso\n", - "3350 Bangladesh\n", - "3569 Bulgaria\n", - "3788 Bahrain\n", - "4007 Bahamas\n", - "4226 Bosnia and Herzegovina\n", - "4445 Belarus\n", - "4664 Belize\n", - "4930 Bolivia\n", - "5149 Brazil\n", - "5368 Barbados\n", - "5587 Brunei\n", - "5806 Bhutan\n", - "6025 Botswana\n", - "6244 Central African Republic\n", - "6463 Canada\n", - " ... \n", - "35240 Sweden\n", - "35459 Swaziland\n", - "35678 Seychelles\n", - "35897 Syria\n", - "36116 Chad\n", - "36335 Togo\n", - "36554 Thailand\n", - "36773 Tajikistan\n", - "36992 Turkmenistan\n", - "37211 Timor-Leste\n", - "37430 Tonga\n", - "37649 Trinidad and Tobago\n", - "37868 Tunisia\n", - "38087 Turkey\n", - "38306 Taiwan\n", - "38523 Tanzania\n", - "38742 Uganda\n", - "38961 Ukraine\n", - "39180 Uruguay\n", - "39399 United States\n", - "39618 Uzbekistan\n", - "39837 St. Vincent and the Grenadines\n", - "40056 Venezuela\n", - "40275 Vietnam\n", - "40494 Vanuatu\n", - "40713 Samoa\n", - "40932 Yemen\n", - "41151 South Africa\n", - "41370 Zambia\n", - "41589 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "19 Aruba\n", - "238 Afghanistan\n", - "457 Angola\n", - "676 Albania\n", - "942 United Arab Emirates\n", - "1161 Argentina\n", - "1380 Armenia\n", - "1599 Antigua and Barbuda\n", - "1818 Australia\n", - "2037 Austria\n", - "2256 Azerbaijan\n", - "2475 Burundi\n", - "2694 Belgium\n", - "2913 Benin\n", - "3132 Burkina Faso\n", - "3351 Bangladesh\n", - "3570 Bulgaria\n", - "3789 Bahrain\n", - "4008 Bahamas\n", - "4227 Bosnia and Herzegovina\n", - "4446 Belarus\n", - "4665 Belize\n", - "4931 Bolivia\n", - "5150 Brazil\n", - "5369 Barbados\n", - "5588 Brunei\n", - "5807 Bhutan\n", - "6026 Botswana\n", - "6245 Central African Republic\n", - "6464 Canada\n", - " ... \n", - "35241 Sweden\n", - "35460 Swaziland\n", - "35679 Seychelles\n", - "35898 Syria\n", - "36117 Chad\n", - "36336 Togo\n", - "36555 Thailand\n", - "36774 Tajikistan\n", - "36993 Turkmenistan\n", - "37212 Timor-Leste\n", - "37431 Tonga\n", - "37650 Trinidad and Tobago\n", - "37869 Tunisia\n", - "38088 Turkey\n", - "38307 Taiwan\n", - "38524 Tanzania\n", - "38743 Uganda\n", - "38962 Ukraine\n", - "39181 Uruguay\n", - "39400 United States\n", - "39619 Uzbekistan\n", - "39838 St. Vincent and the Grenadines\n", - "40057 Venezuela\n", - "40276 Vietnam\n", - "40495 Vanuatu\n", - "40714 Samoa\n", - "40933 Yemen\n", - "41152 South Africa\n", - "41371 Zambia\n", - "41590 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "20 Aruba\n", - "239 Afghanistan\n", - "458 Angola\n", - "677 Albania\n", - "943 United Arab Emirates\n", - "1162 Argentina\n", - "1381 Armenia\n", - "1600 Antigua and Barbuda\n", - "1819 Australia\n", - "2038 Austria\n", - "2257 Azerbaijan\n", - "2476 Burundi\n", - "2695 Belgium\n", - "2914 Benin\n", - "3133 Burkina Faso\n", - "3352 Bangladesh\n", - "3571 Bulgaria\n", - "3790 Bahrain\n", - "4009 Bahamas\n", - "4228 Bosnia and Herzegovina\n", - "4447 Belarus\n", - "4666 Belize\n", - "4932 Bolivia\n", - "5151 Brazil\n", - "5370 Barbados\n", - "5589 Brunei\n", - "5808 Bhutan\n", - "6027 Botswana\n", - "6246 Central African Republic\n", - "6465 Canada\n", - " ... \n", - "35242 Sweden\n", - "35461 Swaziland\n", - "35680 Seychelles\n", - "35899 Syria\n", - "36118 Chad\n", - "36337 Togo\n", - "36556 Thailand\n", - "36775 Tajikistan\n", - "36994 Turkmenistan\n", - "37213 Timor-Leste\n", - "37432 Tonga\n", - "37651 Trinidad and Tobago\n", - "37870 Tunisia\n", - "38089 Turkey\n", - "38308 Taiwan\n", - "38525 Tanzania\n", - "38744 Uganda\n", - "38963 Ukraine\n", - "39182 Uruguay\n", - "39401 United States\n", - "39620 Uzbekistan\n", - "39839 St. Vincent and the Grenadines\n", - "40058 Venezuela\n", - "40277 Vietnam\n", - "40496 Vanuatu\n", - "40715 Samoa\n", - "40934 Yemen\n", - "41153 South Africa\n", - "41372 Zambia\n", - "41591 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "21 Aruba\n", - "240 Afghanistan\n", - "459 Angola\n", - "678 Albania\n", - "944 United Arab Emirates\n", - "1163 Argentina\n", - "1382 Armenia\n", - "1601 Antigua and Barbuda\n", - "1820 Australia\n", - "2039 Austria\n", - "2258 Azerbaijan\n", - "2477 Burundi\n", - "2696 Belgium\n", - "2915 Benin\n", - "3134 Burkina Faso\n", - "3353 Bangladesh\n", - "3572 Bulgaria\n", - "3791 Bahrain\n", - "4010 Bahamas\n", - "4229 Bosnia and Herzegovina\n", - "4448 Belarus\n", - "4667 Belize\n", - "4933 Bolivia\n", - "5152 Brazil\n", - "5371 Barbados\n", - "5590 Brunei\n", - "5809 Bhutan\n", - "6028 Botswana\n", - "6247 Central African Republic\n", - "6466 Canada\n", - " ... \n", - "35243 Sweden\n", - "35462 Swaziland\n", - "35681 Seychelles\n", - "35900 Syria\n", - "36119 Chad\n", - "36338 Togo\n", - "36557 Thailand\n", - "36776 Tajikistan\n", - "36995 Turkmenistan\n", - "37214 Timor-Leste\n", - "37433 Tonga\n", - "37652 Trinidad and Tobago\n", - "37871 Tunisia\n", - "38090 Turkey\n", - "38309 Taiwan\n", - "38526 Tanzania\n", - "38745 Uganda\n", - "38964 Ukraine\n", - "39183 Uruguay\n", - "39402 United States\n", - "39621 Uzbekistan\n", - "39840 St. Vincent and the Grenadines\n", - "40059 Venezuela\n", - "40278 Vietnam\n", - "40497 Vanuatu\n", - "40716 Samoa\n", - "40935 Yemen\n", - "41154 South Africa\n", - "41373 Zambia\n", - "41592 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "22 Aruba\n", - "241 Afghanistan\n", - "460 Angola\n", - "679 Albania\n", - "945 United Arab Emirates\n", - "1164 Argentina\n", - "1383 Armenia\n", - "1602 Antigua and Barbuda\n", - "1821 Australia\n", - "2040 Austria\n", - "2259 Azerbaijan\n", - "2478 Burundi\n", - "2697 Belgium\n", - "2916 Benin\n", - "3135 Burkina Faso\n", - "3354 Bangladesh\n", - "3573 Bulgaria\n", - "3792 Bahrain\n", - "4011 Bahamas\n", - "4230 Bosnia and Herzegovina\n", - "4449 Belarus\n", - "4668 Belize\n", - "4934 Bolivia\n", - "5153 Brazil\n", - "5372 Barbados\n", - "5591 Brunei\n", - "5810 Bhutan\n", - "6029 Botswana\n", - "6248 Central African Republic\n", - "6467 Canada\n", - " ... \n", - "35244 Sweden\n", - "35463 Swaziland\n", - "35682 Seychelles\n", - "35901 Syria\n", - "36120 Chad\n", - "36339 Togo\n", - "36558 Thailand\n", - "36777 Tajikistan\n", - "36996 Turkmenistan\n", - "37215 Timor-Leste\n", - "37434 Tonga\n", - "37653 Trinidad and Tobago\n", - "37872 Tunisia\n", - "38091 Turkey\n", - "38310 Taiwan\n", - "38527 Tanzania\n", - "38746 Uganda\n", - "38965 Ukraine\n", - "39184 Uruguay\n", - "39403 United States\n", - "39622 Uzbekistan\n", - "39841 St. Vincent and the Grenadines\n", - "40060 Venezuela\n", - "40279 Vietnam\n", - "40498 Vanuatu\n", - "40717 Samoa\n", - "40936 Yemen\n", - "41155 South Africa\n", - "41374 Zambia\n", - "41593 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "23 Aruba\n", - "242 Afghanistan\n", - "461 Angola\n", - "680 Albania\n", - "946 United Arab Emirates\n", - "1165 Argentina\n", - "1384 Armenia\n", - "1603 Antigua and Barbuda\n", - "1822 Australia\n", - "2041 Austria\n", - "2260 Azerbaijan\n", - "2479 Burundi\n", - "2698 Belgium\n", - "2917 Benin\n", - "3136 Burkina Faso\n", - "3355 Bangladesh\n", - "3574 Bulgaria\n", - "3793 Bahrain\n", - "4012 Bahamas\n", - "4231 Bosnia and Herzegovina\n", - "4450 Belarus\n", - "4669 Belize\n", - "4935 Bolivia\n", - "5154 Brazil\n", - "5373 Barbados\n", - "5592 Brunei\n", - "5811 Bhutan\n", - "6030 Botswana\n", - "6249 Central African Republic\n", - "6468 Canada\n", - " ... \n", - "35245 Sweden\n", - "35464 Swaziland\n", - "35683 Seychelles\n", - "35902 Syria\n", - "36121 Chad\n", - "36340 Togo\n", - "36559 Thailand\n", - "36778 Tajikistan\n", - "36997 Turkmenistan\n", - "37216 Timor-Leste\n", - "37435 Tonga\n", - "37654 Trinidad and Tobago\n", - "37873 Tunisia\n", - "38092 Turkey\n", - "38311 Taiwan\n", - "38528 Tanzania\n", - "38747 Uganda\n", - "38966 Ukraine\n", - "39185 Uruguay\n", - "39404 United States\n", - "39623 Uzbekistan\n", - "39842 St. Vincent and the Grenadines\n", - "40061 Venezuela\n", - "40280 Vietnam\n", - "40499 Vanuatu\n", - "40718 Samoa\n", - "40937 Yemen\n", - "41156 South Africa\n", - "41375 Zambia\n", - "41594 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "24 Aruba\n", - "243 Afghanistan\n", - "462 Angola\n", - "681 Albania\n", - "947 United Arab Emirates\n", - "1166 Argentina\n", - "1385 Armenia\n", - "1604 Antigua and Barbuda\n", - "1823 Australia\n", - "2042 Austria\n", - "2261 Azerbaijan\n", - "2480 Burundi\n", - "2699 Belgium\n", - "2918 Benin\n", - "3137 Burkina Faso\n", - "3356 Bangladesh\n", - "3575 Bulgaria\n", - "3794 Bahrain\n", - "4013 Bahamas\n", - "4232 Bosnia and Herzegovina\n", - "4451 Belarus\n", - "4670 Belize\n", - "4936 Bolivia\n", - "5155 Brazil\n", - "5374 Barbados\n", - "5593 Brunei\n", - "5812 Bhutan\n", - "6031 Botswana\n", - "6250 Central African Republic\n", - "6469 Canada\n", - " ... \n", - "35246 Sweden\n", - "35465 Swaziland\n", - "35684 Seychelles\n", - "35903 Syria\n", - "36122 Chad\n", - "36341 Togo\n", - "36560 Thailand\n", - "36779 Tajikistan\n", - "36998 Turkmenistan\n", - "37217 Timor-Leste\n", - "37436 Tonga\n", - "37655 Trinidad and Tobago\n", - "37874 Tunisia\n", - "38093 Turkey\n", - "38312 Taiwan\n", - "38529 Tanzania\n", - "38748 Uganda\n", - "38967 Ukraine\n", - "39186 Uruguay\n", - "39405 United States\n", - "39624 Uzbekistan\n", - "39843 St. Vincent and the Grenadines\n", - "40062 Venezuela\n", - "40281 Vietnam\n", - "40500 Vanuatu\n", - "40719 Samoa\n", - "40938 Yemen\n", - "41157 South Africa\n", - "41376 Zambia\n", - "41595 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "25 Aruba\n", - "244 Afghanistan\n", - "463 Angola\n", - "682 Albania\n", - "948 United Arab Emirates\n", - "1167 Argentina\n", - "1386 Armenia\n", - "1605 Antigua and Barbuda\n", - "1824 Australia\n", - "2043 Austria\n", - "2262 Azerbaijan\n", - "2481 Burundi\n", - "2700 Belgium\n", - "2919 Benin\n", - "3138 Burkina Faso\n", - "3357 Bangladesh\n", - "3576 Bulgaria\n", - "3795 Bahrain\n", - "4014 Bahamas\n", - "4233 Bosnia and Herzegovina\n", - "4452 Belarus\n", - "4671 Belize\n", - "4937 Bolivia\n", - "5156 Brazil\n", - "5375 Barbados\n", - "5594 Brunei\n", - "5813 Bhutan\n", - "6032 Botswana\n", - "6251 Central African Republic\n", - "6470 Canada\n", - " ... \n", - "35247 Sweden\n", - "35466 Swaziland\n", - "35685 Seychelles\n", - "35904 Syria\n", - "36123 Chad\n", - "36342 Togo\n", - "36561 Thailand\n", - "36780 Tajikistan\n", - "36999 Turkmenistan\n", - "37218 Timor-Leste\n", - "37437 Tonga\n", - "37656 Trinidad and Tobago\n", - "37875 Tunisia\n", - "38094 Turkey\n", - "38313 Taiwan\n", - "38530 Tanzania\n", - "38749 Uganda\n", - "38968 Ukraine\n", - "39187 Uruguay\n", - "39406 United States\n", - "39625 Uzbekistan\n", - "39844 St. Vincent and the Grenadines\n", - "40063 Venezuela\n", - "40282 Vietnam\n", - "40501 Vanuatu\n", - "40720 Samoa\n", - "40939 Yemen\n", - "41158 South Africa\n", - "41377 Zambia\n", - "41596 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "26 Aruba\n", - "245 Afghanistan\n", - "464 Angola\n", - "683 Albania\n", - "949 United Arab Emirates\n", - "1168 Argentina\n", - "1387 Armenia\n", - "1606 Antigua and Barbuda\n", - "1825 Australia\n", - "2044 Austria\n", - "2263 Azerbaijan\n", - "2482 Burundi\n", - "2701 Belgium\n", - "2920 Benin\n", - "3139 Burkina Faso\n", - "3358 Bangladesh\n", - "3577 Bulgaria\n", - "3796 Bahrain\n", - "4015 Bahamas\n", - "4234 Bosnia and Herzegovina\n", - "4453 Belarus\n", - "4672 Belize\n", - "4938 Bolivia\n", - "5157 Brazil\n", - "5376 Barbados\n", - "5595 Brunei\n", - "5814 Bhutan\n", - "6033 Botswana\n", - "6252 Central African Republic\n", - "6471 Canada\n", - " ... \n", - "35248 Sweden\n", - "35467 Swaziland\n", - "35686 Seychelles\n", - "35905 Syria\n", - "36124 Chad\n", - "36343 Togo\n", - "36562 Thailand\n", - "36781 Tajikistan\n", - "37000 Turkmenistan\n", - "37219 Timor-Leste\n", - "37438 Tonga\n", - "37657 Trinidad and Tobago\n", - "37876 Tunisia\n", - "38095 Turkey\n", - "38314 Taiwan\n", - "38531 Tanzania\n", - "38750 Uganda\n", - "38969 Ukraine\n", - "39188 Uruguay\n", - "39407 United States\n", - "39626 Uzbekistan\n", - "39845 St. Vincent and the Grenadines\n", - "40064 Venezuela\n", - "40283 Vietnam\n", - "40502 Vanuatu\n", - "40721 Samoa\n", - "40940 Yemen\n", - "41159 South Africa\n", - "41378 Zambia\n", - "41597 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "27 Aruba\n", - "246 Afghanistan\n", - "465 Angola\n", - "684 Albania\n", - "950 United Arab Emirates\n", - "1169 Argentina\n", - "1388 Armenia\n", - "1607 Antigua and Barbuda\n", - "1826 Australia\n", - "2045 Austria\n", - "2264 Azerbaijan\n", - "2483 Burundi\n", - "2702 Belgium\n", - "2921 Benin\n", - "3140 Burkina Faso\n", - "3359 Bangladesh\n", - "3578 Bulgaria\n", - "3797 Bahrain\n", - "4016 Bahamas\n", - "4235 Bosnia and Herzegovina\n", - "4454 Belarus\n", - "4673 Belize\n", - "4939 Bolivia\n", - "5158 Brazil\n", - "5377 Barbados\n", - "5596 Brunei\n", - "5815 Bhutan\n", - "6034 Botswana\n", - "6253 Central African Republic\n", - "6472 Canada\n", - " ... \n", - "35249 Sweden\n", - "35468 Swaziland\n", - "35687 Seychelles\n", - "35906 Syria\n", - "36125 Chad\n", - "36344 Togo\n", - "36563 Thailand\n", - "36782 Tajikistan\n", - "37001 Turkmenistan\n", - "37220 Timor-Leste\n", - "37439 Tonga\n", - "37658 Trinidad and Tobago\n", - "37877 Tunisia\n", - "38096 Turkey\n", - "38315 Taiwan\n", - "38532 Tanzania\n", - "38751 Uganda\n", - "38970 Ukraine\n", - "39189 Uruguay\n", - "39408 United States\n", - "39627 Uzbekistan\n", - "39846 St. Vincent and the Grenadines\n", - "40065 Venezuela\n", - "40284 Vietnam\n", - "40503 Vanuatu\n", - "40722 Samoa\n", - "40941 Yemen\n", - "41160 South Africa\n", - "41379 Zambia\n", - "41598 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "28 Aruba\n", - "247 Afghanistan\n", - "466 Angola\n", - "685 Albania\n", - "951 United Arab Emirates\n", - "1170 Argentina\n", - "1389 Armenia\n", - "1608 Antigua and Barbuda\n", - "1827 Australia\n", - "2046 Austria\n", - "2265 Azerbaijan\n", - "2484 Burundi\n", - "2703 Belgium\n", - "2922 Benin\n", - "3141 Burkina Faso\n", - "3360 Bangladesh\n", - "3579 Bulgaria\n", - "3798 Bahrain\n", - "4017 Bahamas\n", - "4236 Bosnia and Herzegovina\n", - "4455 Belarus\n", - "4674 Belize\n", - "4940 Bolivia\n", - "5159 Brazil\n", - "5378 Barbados\n", - "5597 Brunei\n", - "5816 Bhutan\n", - "6035 Botswana\n", - "6254 Central African Republic\n", - "6473 Canada\n", - " ... \n", - "35250 Sweden\n", - "35469 Swaziland\n", - "35688 Seychelles\n", - "35907 Syria\n", - "36126 Chad\n", - "36345 Togo\n", - "36564 Thailand\n", - "36783 Tajikistan\n", - "37002 Turkmenistan\n", - "37221 Timor-Leste\n", - "37440 Tonga\n", - "37659 Trinidad and Tobago\n", - "37878 Tunisia\n", - "38097 Turkey\n", - "38316 Taiwan\n", - "38533 Tanzania\n", - "38752 Uganda\n", - "38971 Ukraine\n", - "39190 Uruguay\n", - "39409 United States\n", - "39628 Uzbekistan\n", - "39847 St. Vincent and the Grenadines\n", - "40066 Venezuela\n", - "40285 Vietnam\n", - "40504 Vanuatu\n", - "40723 Samoa\n", - "40942 Yemen\n", - "41161 South Africa\n", - "41380 Zambia\n", - "41599 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "29 Aruba\n", - "248 Afghanistan\n", - "467 Angola\n", - "686 Albania\n", - "952 United Arab Emirates\n", - "1171 Argentina\n", - "1390 Armenia\n", - "1609 Antigua and Barbuda\n", - "1828 Australia\n", - "2047 Austria\n", - "2266 Azerbaijan\n", - "2485 Burundi\n", - "2704 Belgium\n", - "2923 Benin\n", - "3142 Burkina Faso\n", - "3361 Bangladesh\n", - "3580 Bulgaria\n", - "3799 Bahrain\n", - "4018 Bahamas\n", - "4237 Bosnia and Herzegovina\n", - "4456 Belarus\n", - "4675 Belize\n", - "4941 Bolivia\n", - "5160 Brazil\n", - "5379 Barbados\n", - "5598 Brunei\n", - "5817 Bhutan\n", - "6036 Botswana\n", - "6255 Central African Republic\n", - "6474 Canada\n", - " ... \n", - "35251 Sweden\n", - "35470 Swaziland\n", - "35689 Seychelles\n", - "35908 Syria\n", - "36127 Chad\n", - "36346 Togo\n", - "36565 Thailand\n", - "36784 Tajikistan\n", - "37003 Turkmenistan\n", - "37222 Timor-Leste\n", - "37441 Tonga\n", - "37660 Trinidad and Tobago\n", - "37879 Tunisia\n", - "38098 Turkey\n", - "38317 Taiwan\n", - "38534 Tanzania\n", - "38753 Uganda\n", - "38972 Ukraine\n", - "39191 Uruguay\n", - "39410 United States\n", - "39629 Uzbekistan\n", - "39848 St. Vincent and the Grenadines\n", - "40067 Venezuela\n", - "40286 Vietnam\n", - "40505 Vanuatu\n", - "40724 Samoa\n", - "40943 Yemen\n", - "41162 South Africa\n", - "41381 Zambia\n", - "41600 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "30 Aruba\n", - "249 Afghanistan\n", - "468 Angola\n", - "687 Albania\n", - "953 United Arab Emirates\n", - "1172 Argentina\n", - "1391 Armenia\n", - "1610 Antigua and Barbuda\n", - "1829 Australia\n", - "2048 Austria\n", - "2267 Azerbaijan\n", - "2486 Burundi\n", - "2705 Belgium\n", - "2924 Benin\n", - "3143 Burkina Faso\n", - "3362 Bangladesh\n", - "3581 Bulgaria\n", - "3800 Bahrain\n", - "4019 Bahamas\n", - "4238 Bosnia and Herzegovina\n", - "4457 Belarus\n", - "4676 Belize\n", - "4942 Bolivia\n", - "5161 Brazil\n", - "5380 Barbados\n", - "5599 Brunei\n", - "5818 Bhutan\n", - "6037 Botswana\n", - "6256 Central African Republic\n", - "6475 Canada\n", - " ... \n", - "35252 Sweden\n", - "35471 Swaziland\n", - "35690 Seychelles\n", - "35909 Syria\n", - "36128 Chad\n", - "36347 Togo\n", - "36566 Thailand\n", - "36785 Tajikistan\n", - "37004 Turkmenistan\n", - "37223 Timor-Leste\n", - "37442 Tonga\n", - "37661 Trinidad and Tobago\n", - "37880 Tunisia\n", - "38099 Turkey\n", - "38318 Taiwan\n", - "38535 Tanzania\n", - "38754 Uganda\n", - "38973 Ukraine\n", - "39192 Uruguay\n", - "39411 United States\n", - "39630 Uzbekistan\n", - "39849 St. Vincent and the Grenadines\n", - "40068 Venezuela\n", - "40287 Vietnam\n", - "40506 Vanuatu\n", - "40725 Samoa\n", - "40944 Yemen\n", - "41163 South Africa\n", - "41382 Zambia\n", - "41601 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "31 Aruba\n", - "250 Afghanistan\n", - "469 Angola\n", - "688 Albania\n", - "954 United Arab Emirates\n", - "1173 Argentina\n", - "1392 Armenia\n", - "1611 Antigua and Barbuda\n", - "1830 Australia\n", - "2049 Austria\n", - "2268 Azerbaijan\n", - "2487 Burundi\n", - "2706 Belgium\n", - "2925 Benin\n", - "3144 Burkina Faso\n", - "3363 Bangladesh\n", - "3582 Bulgaria\n", - "3801 Bahrain\n", - "4020 Bahamas\n", - "4239 Bosnia and Herzegovina\n", - "4458 Belarus\n", - "4677 Belize\n", - "4943 Bolivia\n", - "5162 Brazil\n", - "5381 Barbados\n", - "5600 Brunei\n", - "5819 Bhutan\n", - "6038 Botswana\n", - "6257 Central African Republic\n", - "6476 Canada\n", - " ... \n", - "35253 Sweden\n", - "35472 Swaziland\n", - "35691 Seychelles\n", - "35910 Syria\n", - "36129 Chad\n", - "36348 Togo\n", - "36567 Thailand\n", - "36786 Tajikistan\n", - "37005 Turkmenistan\n", - "37224 Timor-Leste\n", - "37443 Tonga\n", - "37662 Trinidad and Tobago\n", - "37881 Tunisia\n", - "38100 Turkey\n", - "38319 Taiwan\n", - "38536 Tanzania\n", - "38755 Uganda\n", - "38974 Ukraine\n", - "39193 Uruguay\n", - "39412 United States\n", - "39631 Uzbekistan\n", - "39850 St. Vincent and the Grenadines\n", - "40069 Venezuela\n", - "40288 Vietnam\n", - "40507 Vanuatu\n", - "40726 Samoa\n", - "40945 Yemen\n", - "41164 South Africa\n", - "41383 Zambia\n", - "41602 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "32 Aruba\n", - "251 Afghanistan\n", - "470 Angola\n", - "689 Albania\n", - "955 United Arab Emirates\n", - "1174 Argentina\n", - "1393 Armenia\n", - "1612 Antigua and Barbuda\n", - "1831 Australia\n", - "2050 Austria\n", - "2269 Azerbaijan\n", - "2488 Burundi\n", - "2707 Belgium\n", - "2926 Benin\n", - "3145 Burkina Faso\n", - "3364 Bangladesh\n", - "3583 Bulgaria\n", - "3802 Bahrain\n", - "4021 Bahamas\n", - "4240 Bosnia and Herzegovina\n", - "4459 Belarus\n", - "4678 Belize\n", - "4944 Bolivia\n", - "5163 Brazil\n", - "5382 Barbados\n", - "5601 Brunei\n", - "5820 Bhutan\n", - "6039 Botswana\n", - "6258 Central African Republic\n", - "6477 Canada\n", - " ... \n", - "35254 Sweden\n", - "35473 Swaziland\n", - "35692 Seychelles\n", - "35911 Syria\n", - "36130 Chad\n", - "36349 Togo\n", - "36568 Thailand\n", - "36787 Tajikistan\n", - "37006 Turkmenistan\n", - "37225 Timor-Leste\n", - "37444 Tonga\n", - "37663 Trinidad and Tobago\n", - "37882 Tunisia\n", - "38101 Turkey\n", - "38320 Taiwan\n", - "38537 Tanzania\n", - "38756 Uganda\n", - "38975 Ukraine\n", - "39194 Uruguay\n", - "39413 United States\n", - "39632 Uzbekistan\n", - "39851 St. Vincent and the Grenadines\n", - "40070 Venezuela\n", - "40289 Vietnam\n", - "40508 Vanuatu\n", - "40727 Samoa\n", - "40946 Yemen\n", - "41165 South Africa\n", - "41384 Zambia\n", - "41603 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "33 Aruba\n", - "252 Afghanistan\n", - "471 Angola\n", - "690 Albania\n", - "956 United Arab Emirates\n", - "1175 Argentina\n", - "1394 Armenia\n", - "1613 Antigua and Barbuda\n", - "1832 Australia\n", - "2051 Austria\n", - "2270 Azerbaijan\n", - "2489 Burundi\n", - "2708 Belgium\n", - "2927 Benin\n", - "3146 Burkina Faso\n", - "3365 Bangladesh\n", - "3584 Bulgaria\n", - "3803 Bahrain\n", - "4022 Bahamas\n", - "4241 Bosnia and Herzegovina\n", - "4460 Belarus\n", - "4679 Belize\n", - "4945 Bolivia\n", - "5164 Brazil\n", - "5383 Barbados\n", - "5602 Brunei\n", - "5821 Bhutan\n", - "6040 Botswana\n", - "6259 Central African Republic\n", - "6478 Canada\n", - " ... \n", - "35255 Sweden\n", - "35474 Swaziland\n", - "35693 Seychelles\n", - "35912 Syria\n", - "36131 Chad\n", - "36350 Togo\n", - "36569 Thailand\n", - "36788 Tajikistan\n", - "37007 Turkmenistan\n", - "37226 Timor-Leste\n", - "37445 Tonga\n", - "37664 Trinidad and Tobago\n", - "37883 Tunisia\n", - "38102 Turkey\n", - "38321 Taiwan\n", - "38538 Tanzania\n", - "38757 Uganda\n", - "38976 Ukraine\n", - "39195 Uruguay\n", - "39414 United States\n", - "39633 Uzbekistan\n", - "39852 St. Vincent and the Grenadines\n", - "40071 Venezuela\n", - "40290 Vietnam\n", - "40509 Vanuatu\n", - "40728 Samoa\n", - "40947 Yemen\n", - "41166 South Africa\n", - "41385 Zambia\n", - "41604 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "34 Aruba\n", - "253 Afghanistan\n", - "472 Angola\n", - "691 Albania\n", - "957 United Arab Emirates\n", - "1176 Argentina\n", - "1395 Armenia\n", - "1614 Antigua and Barbuda\n", - "1833 Australia\n", - "2052 Austria\n", - "2271 Azerbaijan\n", - "2490 Burundi\n", - "2709 Belgium\n", - "2928 Benin\n", - "3147 Burkina Faso\n", - "3366 Bangladesh\n", - "3585 Bulgaria\n", - "3804 Bahrain\n", - "4023 Bahamas\n", - "4242 Bosnia and Herzegovina\n", - "4461 Belarus\n", - "4680 Belize\n", - "4946 Bolivia\n", - "5165 Brazil\n", - "5384 Barbados\n", - "5603 Brunei\n", - "5822 Bhutan\n", - "6041 Botswana\n", - "6260 Central African Republic\n", - "6479 Canada\n", - " ... \n", - "35256 Sweden\n", - "35475 Swaziland\n", - "35694 Seychelles\n", - "35913 Syria\n", - "36132 Chad\n", - "36351 Togo\n", - "36570 Thailand\n", - "36789 Tajikistan\n", - "37008 Turkmenistan\n", - "37227 Timor-Leste\n", - "37446 Tonga\n", - "37665 Trinidad and Tobago\n", - "37884 Tunisia\n", - "38103 Turkey\n", - "38322 Taiwan\n", - "38539 Tanzania\n", - "38758 Uganda\n", - "38977 Ukraine\n", - "39196 Uruguay\n", - "39415 United States\n", - "39634 Uzbekistan\n", - "39853 St. Vincent and the Grenadines\n", - "40072 Venezuela\n", - "40291 Vietnam\n", - "40510 Vanuatu\n", - "40729 Samoa\n", - "40948 Yemen\n", - "41167 South Africa\n", - "41386 Zambia\n", - "41605 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "35 Aruba\n", - "254 Afghanistan\n", - "473 Angola\n", - "692 Albania\n", - "958 United Arab Emirates\n", - "1177 Argentina\n", - "1396 Armenia\n", - "1615 Antigua and Barbuda\n", - "1834 Australia\n", - "2053 Austria\n", - "2272 Azerbaijan\n", - "2491 Burundi\n", - "2710 Belgium\n", - "2929 Benin\n", - "3148 Burkina Faso\n", - "3367 Bangladesh\n", - "3586 Bulgaria\n", - "3805 Bahrain\n", - "4024 Bahamas\n", - "4243 Bosnia and Herzegovina\n", - "4462 Belarus\n", - "4681 Belize\n", - "4947 Bolivia\n", - "5166 Brazil\n", - "5385 Barbados\n", - "5604 Brunei\n", - "5823 Bhutan\n", - "6042 Botswana\n", - "6261 Central African Republic\n", - "6480 Canada\n", - " ... \n", - "35257 Sweden\n", - "35476 Swaziland\n", - "35695 Seychelles\n", - "35914 Syria\n", - "36133 Chad\n", - "36352 Togo\n", - "36571 Thailand\n", - "36790 Tajikistan\n", - "37009 Turkmenistan\n", - "37228 Timor-Leste\n", - "37447 Tonga\n", - "37666 Trinidad and Tobago\n", - "37885 Tunisia\n", - "38104 Turkey\n", - "38323 Taiwan\n", - "38540 Tanzania\n", - "38759 Uganda\n", - "38978 Ukraine\n", - "39197 Uruguay\n", - "39416 United States\n", - "39635 Uzbekistan\n", - "39854 St. Vincent and the Grenadines\n", - "40073 Venezuela\n", - "40292 Vietnam\n", - "40511 Vanuatu\n", - "40730 Samoa\n", - "40949 Yemen\n", - "41168 South Africa\n", - "41387 Zambia\n", - "41606 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "36 Aruba\n", - "255 Afghanistan\n", - "474 Angola\n", - "693 Albania\n", - "959 United Arab Emirates\n", - "1178 Argentina\n", - "1397 Armenia\n", - "1616 Antigua and Barbuda\n", - "1835 Australia\n", - "2054 Austria\n", - "2273 Azerbaijan\n", - "2492 Burundi\n", - "2711 Belgium\n", - "2930 Benin\n", - "3149 Burkina Faso\n", - "3368 Bangladesh\n", - "3587 Bulgaria\n", - "3806 Bahrain\n", - "4025 Bahamas\n", - "4244 Bosnia and Herzegovina\n", - "4463 Belarus\n", - "4682 Belize\n", - "4948 Bolivia\n", - "5167 Brazil\n", - "5386 Barbados\n", - "5605 Brunei\n", - "5824 Bhutan\n", - "6043 Botswana\n", - "6262 Central African Republic\n", - "6481 Canada\n", - " ... \n", - "35258 Sweden\n", - "35477 Swaziland\n", - "35696 Seychelles\n", - "35915 Syria\n", - "36134 Chad\n", - "36353 Togo\n", - "36572 Thailand\n", - "36791 Tajikistan\n", - "37010 Turkmenistan\n", - "37229 Timor-Leste\n", - "37448 Tonga\n", - "37667 Trinidad and Tobago\n", - "37886 Tunisia\n", - "38105 Turkey\n", - "38324 Taiwan\n", - "38541 Tanzania\n", - "38760 Uganda\n", - "38979 Ukraine\n", - "39198 Uruguay\n", - "39417 United States\n", - "39636 Uzbekistan\n", - "39855 St. Vincent and the Grenadines\n", - "40074 Venezuela\n", - "40293 Vietnam\n", - "40512 Vanuatu\n", - "40731 Samoa\n", - "40950 Yemen\n", - "41169 South Africa\n", - "41388 Zambia\n", - "41607 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "37 Aruba\n", - "256 Afghanistan\n", - "475 Angola\n", - "694 Albania\n", - "960 United Arab Emirates\n", - "1179 Argentina\n", - "1398 Armenia\n", - "1617 Antigua and Barbuda\n", - "1836 Australia\n", - "2055 Austria\n", - "2274 Azerbaijan\n", - "2493 Burundi\n", - "2712 Belgium\n", - "2931 Benin\n", - "3150 Burkina Faso\n", - "3369 Bangladesh\n", - "3588 Bulgaria\n", - "3807 Bahrain\n", - "4026 Bahamas\n", - "4245 Bosnia and Herzegovina\n", - "4464 Belarus\n", - "4683 Belize\n", - "4949 Bolivia\n", - "5168 Brazil\n", - "5387 Barbados\n", - "5606 Brunei\n", - "5825 Bhutan\n", - "6044 Botswana\n", - "6263 Central African Republic\n", - "6482 Canada\n", - " ... \n", - "35259 Sweden\n", - "35478 Swaziland\n", - "35697 Seychelles\n", - "35916 Syria\n", - "36135 Chad\n", - "36354 Togo\n", - "36573 Thailand\n", - "36792 Tajikistan\n", - "37011 Turkmenistan\n", - "37230 Timor-Leste\n", - "37449 Tonga\n", - "37668 Trinidad and Tobago\n", - "37887 Tunisia\n", - "38106 Turkey\n", - "38325 Taiwan\n", - "38542 Tanzania\n", - "38761 Uganda\n", - "38980 Ukraine\n", - "39199 Uruguay\n", - "39418 United States\n", - "39637 Uzbekistan\n", - "39856 St. Vincent and the Grenadines\n", - "40075 Venezuela\n", - "40294 Vietnam\n", - "40513 Vanuatu\n", - "40732 Samoa\n", - "40951 Yemen\n", - "41170 South Africa\n", - "41389 Zambia\n", - "41608 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "38 Aruba\n", - "257 Afghanistan\n", - "476 Angola\n", - "695 Albania\n", - "961 United Arab Emirates\n", - "1180 Argentina\n", - "1399 Armenia\n", - "1618 Antigua and Barbuda\n", - "1837 Australia\n", - "2056 Austria\n", - "2275 Azerbaijan\n", - "2494 Burundi\n", - "2713 Belgium\n", - "2932 Benin\n", - "3151 Burkina Faso\n", - "3370 Bangladesh\n", - "3589 Bulgaria\n", - "3808 Bahrain\n", - "4027 Bahamas\n", - "4246 Bosnia and Herzegovina\n", - "4465 Belarus\n", - "4684 Belize\n", - "4950 Bolivia\n", - "5169 Brazil\n", - "5388 Barbados\n", - "5607 Brunei\n", - "5826 Bhutan\n", - "6045 Botswana\n", - "6264 Central African Republic\n", - "6483 Canada\n", - " ... \n", - "35260 Sweden\n", - "35479 Swaziland\n", - "35698 Seychelles\n", - "35917 Syria\n", - "36136 Chad\n", - "36355 Togo\n", - "36574 Thailand\n", - "36793 Tajikistan\n", - "37012 Turkmenistan\n", - "37231 Timor-Leste\n", - "37450 Tonga\n", - "37669 Trinidad and Tobago\n", - "37888 Tunisia\n", - "38107 Turkey\n", - "38326 Taiwan\n", - "38543 Tanzania\n", - "38762 Uganda\n", - "38981 Ukraine\n", - "39200 Uruguay\n", - "39419 United States\n", - "39638 Uzbekistan\n", - "39857 St. Vincent and the Grenadines\n", - "40076 Venezuela\n", - "40295 Vietnam\n", - "40514 Vanuatu\n", - "40733 Samoa\n", - "40952 Yemen\n", - "41171 South Africa\n", - "41390 Zambia\n", - "41609 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "39 Aruba\n", - "258 Afghanistan\n", - "477 Angola\n", - "696 Albania\n", - "962 United Arab Emirates\n", - "1181 Argentina\n", - "1400 Armenia\n", - "1619 Antigua and Barbuda\n", - "1838 Australia\n", - "2057 Austria\n", - "2276 Azerbaijan\n", - "2495 Burundi\n", - "2714 Belgium\n", - "2933 Benin\n", - "3152 Burkina Faso\n", - "3371 Bangladesh\n", - "3590 Bulgaria\n", - "3809 Bahrain\n", - "4028 Bahamas\n", - "4247 Bosnia and Herzegovina\n", - "4466 Belarus\n", - "4685 Belize\n", - "4951 Bolivia\n", - "5170 Brazil\n", - "5389 Barbados\n", - "5608 Brunei\n", - "5827 Bhutan\n", - "6046 Botswana\n", - "6265 Central African Republic\n", - "6484 Canada\n", - " ... \n", - "35261 Sweden\n", - "35480 Swaziland\n", - "35699 Seychelles\n", - "35918 Syria\n", - "36137 Chad\n", - "36356 Togo\n", - "36575 Thailand\n", - "36794 Tajikistan\n", - "37013 Turkmenistan\n", - "37232 Timor-Leste\n", - "37451 Tonga\n", - "37670 Trinidad and Tobago\n", - "37889 Tunisia\n", - "38108 Turkey\n", - "38327 Taiwan\n", - "38544 Tanzania\n", - "38763 Uganda\n", - "38982 Ukraine\n", - "39201 Uruguay\n", - "39420 United States\n", - "39639 Uzbekistan\n", - "39858 St. Vincent and the Grenadines\n", - "40077 Venezuela\n", - "40296 Vietnam\n", - "40515 Vanuatu\n", - "40734 Samoa\n", - "40953 Yemen\n", - "41172 South Africa\n", - "41391 Zambia\n", - "41610 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "40 Aruba\n", - "259 Afghanistan\n", - "478 Angola\n", - "697 Albania\n", - "963 United Arab Emirates\n", - "1182 Argentina\n", - "1401 Armenia\n", - "1620 Antigua and Barbuda\n", - "1839 Australia\n", - "2058 Austria\n", - "2277 Azerbaijan\n", - "2496 Burundi\n", - "2715 Belgium\n", - "2934 Benin\n", - "3153 Burkina Faso\n", - "3372 Bangladesh\n", - "3591 Bulgaria\n", - "3810 Bahrain\n", - "4029 Bahamas\n", - "4248 Bosnia and Herzegovina\n", - "4467 Belarus\n", - "4686 Belize\n", - "4952 Bolivia\n", - "5171 Brazil\n", - "5390 Barbados\n", - "5609 Brunei\n", - "5828 Bhutan\n", - "6047 Botswana\n", - "6266 Central African Republic\n", - "6485 Canada\n", - " ... \n", - "35262 Sweden\n", - "35481 Swaziland\n", - "35700 Seychelles\n", - "35919 Syria\n", - "36138 Chad\n", - "36357 Togo\n", - "36576 Thailand\n", - "36795 Tajikistan\n", - "37014 Turkmenistan\n", - "37233 Timor-Leste\n", - "37452 Tonga\n", - "37671 Trinidad and Tobago\n", - "37890 Tunisia\n", - "38109 Turkey\n", - "38328 Taiwan\n", - "38545 Tanzania\n", - "38764 Uganda\n", - "38983 Ukraine\n", - "39202 Uruguay\n", - "39421 United States\n", - "39640 Uzbekistan\n", - "39859 St. Vincent and the Grenadines\n", - "40078 Venezuela\n", - "40297 Vietnam\n", - "40516 Vanuatu\n", - "40735 Samoa\n", - "40954 Yemen\n", - "41173 South Africa\n", - "41392 Zambia\n", - "41611 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "41 Aruba\n", - "260 Afghanistan\n", - "479 Angola\n", - "698 Albania\n", - "964 United Arab Emirates\n", - "1183 Argentina\n", - "1402 Armenia\n", - "1621 Antigua and Barbuda\n", - "1840 Australia\n", - "2059 Austria\n", - "2278 Azerbaijan\n", - "2497 Burundi\n", - "2716 Belgium\n", - "2935 Benin\n", - "3154 Burkina Faso\n", - "3373 Bangladesh\n", - "3592 Bulgaria\n", - "3811 Bahrain\n", - "4030 Bahamas\n", - "4249 Bosnia and Herzegovina\n", - "4468 Belarus\n", - "4687 Belize\n", - "4953 Bolivia\n", - "5172 Brazil\n", - "5391 Barbados\n", - "5610 Brunei\n", - "5829 Bhutan\n", - "6048 Botswana\n", - "6267 Central African Republic\n", - "6486 Canada\n", - " ... \n", - "35263 Sweden\n", - "35482 Swaziland\n", - "35701 Seychelles\n", - "35920 Syria\n", - "36139 Chad\n", - "36358 Togo\n", - "36577 Thailand\n", - "36796 Tajikistan\n", - "37015 Turkmenistan\n", - "37234 Timor-Leste\n", - "37453 Tonga\n", - "37672 Trinidad and Tobago\n", - "37891 Tunisia\n", - "38110 Turkey\n", - "38329 Taiwan\n", - "38546 Tanzania\n", - "38765 Uganda\n", - "38984 Ukraine\n", - "39203 Uruguay\n", - "39422 United States\n", - "39641 Uzbekistan\n", - "39860 St. Vincent and the Grenadines\n", - "40079 Venezuela\n", - "40298 Vietnam\n", - "40517 Vanuatu\n", - "40736 Samoa\n", - "40955 Yemen\n", - "41174 South Africa\n", - "41393 Zambia\n", - "41612 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "42 Aruba\n", - "261 Afghanistan\n", - "480 Angola\n", - "699 Albania\n", - "965 United Arab Emirates\n", - "1184 Argentina\n", - "1403 Armenia\n", - "1622 Antigua and Barbuda\n", - "1841 Australia\n", - "2060 Austria\n", - "2279 Azerbaijan\n", - "2498 Burundi\n", - "2717 Belgium\n", - "2936 Benin\n", - "3155 Burkina Faso\n", - "3374 Bangladesh\n", - "3593 Bulgaria\n", - "3812 Bahrain\n", - "4031 Bahamas\n", - "4250 Bosnia and Herzegovina\n", - "4469 Belarus\n", - "4688 Belize\n", - "4954 Bolivia\n", - "5173 Brazil\n", - "5392 Barbados\n", - "5611 Brunei\n", - "5830 Bhutan\n", - "6049 Botswana\n", - "6268 Central African Republic\n", - "6487 Canada\n", - " ... \n", - "35264 Sweden\n", - "35483 Swaziland\n", - "35702 Seychelles\n", - "35921 Syria\n", - "36140 Chad\n", - "36359 Togo\n", - "36578 Thailand\n", - "36797 Tajikistan\n", - "37016 Turkmenistan\n", - "37235 Timor-Leste\n", - "37454 Tonga\n", - "37673 Trinidad and Tobago\n", - "37892 Tunisia\n", - "38111 Turkey\n", - "38330 Taiwan\n", - "38547 Tanzania\n", - "38766 Uganda\n", - "38985 Ukraine\n", - "39204 Uruguay\n", - "39423 United States\n", - "39642 Uzbekistan\n", - "39861 St. Vincent and the Grenadines\n", - "40080 Venezuela\n", - "40299 Vietnam\n", - "40518 Vanuatu\n", - "40737 Samoa\n", - "40956 Yemen\n", - "41175 South Africa\n", - "41394 Zambia\n", - "41613 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "43 Aruba\n", - "262 Afghanistan\n", - "481 Angola\n", - "700 Albania\n", - "966 United Arab Emirates\n", - "1185 Argentina\n", - "1404 Armenia\n", - "1623 Antigua and Barbuda\n", - "1842 Australia\n", - "2061 Austria\n", - "2280 Azerbaijan\n", - "2499 Burundi\n", - "2718 Belgium\n", - "2937 Benin\n", - "3156 Burkina Faso\n", - "3375 Bangladesh\n", - "3594 Bulgaria\n", - "3813 Bahrain\n", - "4032 Bahamas\n", - "4251 Bosnia and Herzegovina\n", - "4470 Belarus\n", - "4689 Belize\n", - "4955 Bolivia\n", - "5174 Brazil\n", - "5393 Barbados\n", - "5612 Brunei\n", - "5831 Bhutan\n", - "6050 Botswana\n", - "6269 Central African Republic\n", - "6488 Canada\n", - " ... \n", - "35265 Sweden\n", - "35484 Swaziland\n", - "35703 Seychelles\n", - "35922 Syria\n", - "36141 Chad\n", - "36360 Togo\n", - "36579 Thailand\n", - "36798 Tajikistan\n", - "37017 Turkmenistan\n", - "37236 Timor-Leste\n", - "37455 Tonga\n", - "37674 Trinidad and Tobago\n", - "37893 Tunisia\n", - "38112 Turkey\n", - "38331 Taiwan\n", - "38548 Tanzania\n", - "38767 Uganda\n", - "38986 Ukraine\n", - "39205 Uruguay\n", - "39424 United States\n", - "39643 Uzbekistan\n", - "39862 St. Vincent and the Grenadines\n", - "40081 Venezuela\n", - "40300 Vietnam\n", - "40519 Vanuatu\n", - "40738 Samoa\n", - "40957 Yemen\n", - "41176 South Africa\n", - "41395 Zambia\n", - "41614 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "44 Aruba\n", - "263 Afghanistan\n", - "482 Angola\n", - "701 Albania\n", - "967 United Arab Emirates\n", - "1186 Argentina\n", - "1405 Armenia\n", - "1624 Antigua and Barbuda\n", - "1843 Australia\n", - "2062 Austria\n", - "2281 Azerbaijan\n", - "2500 Burundi\n", - "2719 Belgium\n", - "2938 Benin\n", - "3157 Burkina Faso\n", - "3376 Bangladesh\n", - "3595 Bulgaria\n", - "3814 Bahrain\n", - "4033 Bahamas\n", - "4252 Bosnia and Herzegovina\n", - "4471 Belarus\n", - "4690 Belize\n", - "4956 Bolivia\n", - "5175 Brazil\n", - "5394 Barbados\n", - "5613 Brunei\n", - "5832 Bhutan\n", - "6051 Botswana\n", - "6270 Central African Republic\n", - "6489 Canada\n", - " ... \n", - "35266 Sweden\n", - "35485 Swaziland\n", - "35704 Seychelles\n", - "35923 Syria\n", - "36142 Chad\n", - "36361 Togo\n", - "36580 Thailand\n", - "36799 Tajikistan\n", - "37018 Turkmenistan\n", - "37237 Timor-Leste\n", - "37456 Tonga\n", - "37675 Trinidad and Tobago\n", - "37894 Tunisia\n", - "38113 Turkey\n", - "38332 Taiwan\n", - "38549 Tanzania\n", - "38768 Uganda\n", - "38987 Ukraine\n", - "39206 Uruguay\n", - "39425 United States\n", - "39644 Uzbekistan\n", - "39863 St. Vincent and the Grenadines\n", - "40082 Venezuela\n", - "40301 Vietnam\n", - "40520 Vanuatu\n", - "40739 Samoa\n", - "40958 Yemen\n", - "41177 South Africa\n", - "41396 Zambia\n", - "41615 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "45 Aruba\n", - "264 Afghanistan\n", - "483 Angola\n", - "702 Albania\n", - "968 United Arab Emirates\n", - "1187 Argentina\n", - "1406 Armenia\n", - "1625 Antigua and Barbuda\n", - "1844 Australia\n", - "2063 Austria\n", - "2282 Azerbaijan\n", - "2501 Burundi\n", - "2720 Belgium\n", - "2939 Benin\n", - "3158 Burkina Faso\n", - "3377 Bangladesh\n", - "3596 Bulgaria\n", - "3815 Bahrain\n", - "4034 Bahamas\n", - "4253 Bosnia and Herzegovina\n", - "4472 Belarus\n", - "4691 Belize\n", - "4957 Bolivia\n", - "5176 Brazil\n", - "5395 Barbados\n", - "5614 Brunei\n", - "5833 Bhutan\n", - "6052 Botswana\n", - "6271 Central African Republic\n", - "6490 Canada\n", - " ... \n", - "35267 Sweden\n", - "35486 Swaziland\n", - "35705 Seychelles\n", - "35924 Syria\n", - "36143 Chad\n", - "36362 Togo\n", - "36581 Thailand\n", - "36800 Tajikistan\n", - "37019 Turkmenistan\n", - "37238 Timor-Leste\n", - "37457 Tonga\n", - "37676 Trinidad and Tobago\n", - "37895 Tunisia\n", - "38114 Turkey\n", - "38333 Taiwan\n", - "38550 Tanzania\n", - "38769 Uganda\n", - "38988 Ukraine\n", - "39207 Uruguay\n", - "39426 United States\n", - "39645 Uzbekistan\n", - "39864 St. Vincent and the Grenadines\n", - "40083 Venezuela\n", - "40302 Vietnam\n", - "40521 Vanuatu\n", - "40740 Samoa\n", - "40959 Yemen\n", - "41178 South Africa\n", - "41397 Zambia\n", - "41616 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "46 Aruba\n", - "265 Afghanistan\n", - "484 Angola\n", - "703 Albania\n", - "969 United Arab Emirates\n", - "1188 Argentina\n", - "1407 Armenia\n", - "1626 Antigua and Barbuda\n", - "1845 Australia\n", - "2064 Austria\n", - "2283 Azerbaijan\n", - "2502 Burundi\n", - "2721 Belgium\n", - "2940 Benin\n", - "3159 Burkina Faso\n", - "3378 Bangladesh\n", - "3597 Bulgaria\n", - "3816 Bahrain\n", - "4035 Bahamas\n", - "4254 Bosnia and Herzegovina\n", - "4473 Belarus\n", - "4692 Belize\n", - "4958 Bolivia\n", - "5177 Brazil\n", - "5396 Barbados\n", - "5615 Brunei\n", - "5834 Bhutan\n", - "6053 Botswana\n", - "6272 Central African Republic\n", - "6491 Canada\n", - " ... \n", - "35268 Sweden\n", - "35487 Swaziland\n", - "35706 Seychelles\n", - "35925 Syria\n", - "36144 Chad\n", - "36363 Togo\n", - "36582 Thailand\n", - "36801 Tajikistan\n", - "37020 Turkmenistan\n", - "37239 Timor-Leste\n", - "37458 Tonga\n", - "37677 Trinidad and Tobago\n", - "37896 Tunisia\n", - "38115 Turkey\n", - "38334 Taiwan\n", - "38551 Tanzania\n", - "38770 Uganda\n", - "38989 Ukraine\n", - "39208 Uruguay\n", - "39427 United States\n", - "39646 Uzbekistan\n", - "39865 St. Vincent and the Grenadines\n", - "40084 Venezuela\n", - "40303 Vietnam\n", - "40522 Vanuatu\n", - "40741 Samoa\n", - "40960 Yemen\n", - "41179 South Africa\n", - "41398 Zambia\n", - "41617 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "47 Aruba\n", - "266 Afghanistan\n", - "485 Angola\n", - "704 Albania\n", - "970 United Arab Emirates\n", - "1189 Argentina\n", - "1408 Armenia\n", - "1627 Antigua and Barbuda\n", - "1846 Australia\n", - "2065 Austria\n", - "2284 Azerbaijan\n", - "2503 Burundi\n", - "2722 Belgium\n", - "2941 Benin\n", - "3160 Burkina Faso\n", - "3379 Bangladesh\n", - "3598 Bulgaria\n", - "3817 Bahrain\n", - "4036 Bahamas\n", - "4255 Bosnia and Herzegovina\n", - "4474 Belarus\n", - "4693 Belize\n", - "4959 Bolivia\n", - "5178 Brazil\n", - "5397 Barbados\n", - "5616 Brunei\n", - "5835 Bhutan\n", - "6054 Botswana\n", - "6273 Central African Republic\n", - "6492 Canada\n", - " ... \n", - "35269 Sweden\n", - "35488 Swaziland\n", - "35707 Seychelles\n", - "35926 Syria\n", - "36145 Chad\n", - "36364 Togo\n", - "36583 Thailand\n", - "36802 Tajikistan\n", - "37021 Turkmenistan\n", - "37240 Timor-Leste\n", - "37459 Tonga\n", - "37678 Trinidad and Tobago\n", - "37897 Tunisia\n", - "38116 Turkey\n", - "38335 Taiwan\n", - "38552 Tanzania\n", - "38771 Uganda\n", - "38990 Ukraine\n", - "39209 Uruguay\n", - "39428 United States\n", - "39647 Uzbekistan\n", - "39866 St. Vincent and the Grenadines\n", - "40085 Venezuela\n", - "40304 Vietnam\n", - "40523 Vanuatu\n", - "40742 Samoa\n", - "40961 Yemen\n", - "41180 South Africa\n", - "41399 Zambia\n", - "41618 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "48 Aruba\n", - "267 Afghanistan\n", - "486 Angola\n", - "705 Albania\n", - "971 United Arab Emirates\n", - "1190 Argentina\n", - "1409 Armenia\n", - "1628 Antigua and Barbuda\n", - "1847 Australia\n", - "2066 Austria\n", - "2285 Azerbaijan\n", - "2504 Burundi\n", - "2723 Belgium\n", - "2942 Benin\n", - "3161 Burkina Faso\n", - "3380 Bangladesh\n", - "3599 Bulgaria\n", - "3818 Bahrain\n", - "4037 Bahamas\n", - "4256 Bosnia and Herzegovina\n", - "4475 Belarus\n", - "4694 Belize\n", - "4960 Bolivia\n", - "5179 Brazil\n", - "5398 Barbados\n", - "5617 Brunei\n", - "5836 Bhutan\n", - "6055 Botswana\n", - "6274 Central African Republic\n", - "6493 Canada\n", - " ... \n", - "35270 Sweden\n", - "35489 Swaziland\n", - "35708 Seychelles\n", - "35927 Syria\n", - "36146 Chad\n", - "36365 Togo\n", - "36584 Thailand\n", - "36803 Tajikistan\n", - "37022 Turkmenistan\n", - "37241 Timor-Leste\n", - "37460 Tonga\n", - "37679 Trinidad and Tobago\n", - "37898 Tunisia\n", - "38117 Turkey\n", - "38336 Taiwan\n", - "38553 Tanzania\n", - "38772 Uganda\n", - "38991 Ukraine\n", - "39210 Uruguay\n", - "39429 United States\n", - "39648 Uzbekistan\n", - "39867 St. Vincent and the Grenadines\n", - "40086 Venezuela\n", - "40305 Vietnam\n", - "40524 Vanuatu\n", - "40743 Samoa\n", - "40962 Yemen\n", - "41181 South Africa\n", - "41400 Zambia\n", - "41619 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "49 Aruba\n", - "268 Afghanistan\n", - "487 Angola\n", - "706 Albania\n", - "972 United Arab Emirates\n", - "1191 Argentina\n", - "1410 Armenia\n", - "1629 Antigua and Barbuda\n", - "1848 Australia\n", - "2067 Austria\n", - "2286 Azerbaijan\n", - "2505 Burundi\n", - "2724 Belgium\n", - "2943 Benin\n", - "3162 Burkina Faso\n", - "3381 Bangladesh\n", - "3600 Bulgaria\n", - "3819 Bahrain\n", - "4038 Bahamas\n", - "4257 Bosnia and Herzegovina\n", - "4476 Belarus\n", - "4695 Belize\n", - "4961 Bolivia\n", - "5180 Brazil\n", - "5399 Barbados\n", - "5618 Brunei\n", - "5837 Bhutan\n", - "6056 Botswana\n", - "6275 Central African Republic\n", - "6494 Canada\n", - " ... \n", - "35271 Sweden\n", - "35490 Swaziland\n", - "35709 Seychelles\n", - "35928 Syria\n", - "36147 Chad\n", - "36366 Togo\n", - "36585 Thailand\n", - "36804 Tajikistan\n", - "37023 Turkmenistan\n", - "37242 Timor-Leste\n", - "37461 Tonga\n", - "37680 Trinidad and Tobago\n", - "37899 Tunisia\n", - "38118 Turkey\n", - "38337 Taiwan\n", - "38554 Tanzania\n", - "38773 Uganda\n", - "38992 Ukraine\n", - "39211 Uruguay\n", - "39430 United States\n", - "39649 Uzbekistan\n", - "39868 St. Vincent and the Grenadines\n", - "40087 Venezuela\n", - "40306 Vietnam\n", - "40525 Vanuatu\n", - "40744 Samoa\n", - "40963 Yemen\n", - "41182 South Africa\n", - "41401 Zambia\n", - "41620 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "50 Aruba\n", - "269 Afghanistan\n", - "488 Angola\n", - "707 Albania\n", - "973 United Arab Emirates\n", - "1192 Argentina\n", - "1411 Armenia\n", - "1630 Antigua and Barbuda\n", - "1849 Australia\n", - "2068 Austria\n", - "2287 Azerbaijan\n", - "2506 Burundi\n", - "2725 Belgium\n", - "2944 Benin\n", - "3163 Burkina Faso\n", - "3382 Bangladesh\n", - "3601 Bulgaria\n", - "3820 Bahrain\n", - "4039 Bahamas\n", - "4258 Bosnia and Herzegovina\n", - "4477 Belarus\n", - "4696 Belize\n", - "4962 Bolivia\n", - "5181 Brazil\n", - "5400 Barbados\n", - "5619 Brunei\n", - "5838 Bhutan\n", - "6057 Botswana\n", - "6276 Central African Republic\n", - "6495 Canada\n", - " ... \n", - "35272 Sweden\n", - "35491 Swaziland\n", - "35710 Seychelles\n", - "35929 Syria\n", - "36148 Chad\n", - "36367 Togo\n", - "36586 Thailand\n", - "36805 Tajikistan\n", - "37024 Turkmenistan\n", - "37243 Timor-Leste\n", - "37462 Tonga\n", - "37681 Trinidad and Tobago\n", - "37900 Tunisia\n", - "38119 Turkey\n", - "38338 Taiwan\n", - "38555 Tanzania\n", - "38774 Uganda\n", - "38993 Ukraine\n", - "39212 Uruguay\n", - "39431 United States\n", - "39650 Uzbekistan\n", - "39869 St. Vincent and the Grenadines\n", - "40088 Venezuela\n", - "40307 Vietnam\n", - "40526 Vanuatu\n", - "40745 Samoa\n", - "40964 Yemen\n", - "41183 South Africa\n", - "41402 Zambia\n", - "41621 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "51 Aruba\n", - "270 Afghanistan\n", - "489 Angola\n", - "708 Albania\n", - "974 United Arab Emirates\n", - "1193 Argentina\n", - "1412 Armenia\n", - "1631 Antigua and Barbuda\n", - "1850 Australia\n", - "2069 Austria\n", - "2288 Azerbaijan\n", - "2507 Burundi\n", - "2726 Belgium\n", - "2945 Benin\n", - "3164 Burkina Faso\n", - "3383 Bangladesh\n", - "3602 Bulgaria\n", - "3821 Bahrain\n", - "4040 Bahamas\n", - "4259 Bosnia and Herzegovina\n", - "4478 Belarus\n", - "4697 Belize\n", - "4963 Bolivia\n", - "5182 Brazil\n", - "5401 Barbados\n", - "5620 Brunei\n", - "5839 Bhutan\n", - "6058 Botswana\n", - "6277 Central African Republic\n", - "6496 Canada\n", - " ... \n", - "35273 Sweden\n", - "35492 Swaziland\n", - "35711 Seychelles\n", - "35930 Syria\n", - "36149 Chad\n", - "36368 Togo\n", - "36587 Thailand\n", - "36806 Tajikistan\n", - "37025 Turkmenistan\n", - "37244 Timor-Leste\n", - "37463 Tonga\n", - "37682 Trinidad and Tobago\n", - "37901 Tunisia\n", - "38120 Turkey\n", - "38339 Taiwan\n", - "38556 Tanzania\n", - "38775 Uganda\n", - "38994 Ukraine\n", - "39213 Uruguay\n", - "39432 United States\n", - "39651 Uzbekistan\n", - "39870 St. Vincent and the Grenadines\n", - "40089 Venezuela\n", - "40308 Vietnam\n", - "40527 Vanuatu\n", - "40746 Samoa\n", - "40965 Yemen\n", - "41184 South Africa\n", - "41403 Zambia\n", - "41622 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "52 Aruba\n", - "271 Afghanistan\n", - "490 Angola\n", - "709 Albania\n", - "975 United Arab Emirates\n", - "1194 Argentina\n", - "1413 Armenia\n", - "1632 Antigua and Barbuda\n", - "1851 Australia\n", - "2070 Austria\n", - "2289 Azerbaijan\n", - "2508 Burundi\n", - "2727 Belgium\n", - "2946 Benin\n", - "3165 Burkina Faso\n", - "3384 Bangladesh\n", - "3603 Bulgaria\n", - "3822 Bahrain\n", - "4041 Bahamas\n", - "4260 Bosnia and Herzegovina\n", - "4479 Belarus\n", - "4698 Belize\n", - "4964 Bolivia\n", - "5183 Brazil\n", - "5402 Barbados\n", - "5621 Brunei\n", - "5840 Bhutan\n", - "6059 Botswana\n", - "6278 Central African Republic\n", - "6497 Canada\n", - " ... \n", - "35274 Sweden\n", - "35493 Swaziland\n", - "35712 Seychelles\n", - "35931 Syria\n", - "36150 Chad\n", - "36369 Togo\n", - "36588 Thailand\n", - "36807 Tajikistan\n", - "37026 Turkmenistan\n", - "37245 Timor-Leste\n", - "37464 Tonga\n", - "37683 Trinidad and Tobago\n", - "37902 Tunisia\n", - "38121 Turkey\n", - "38340 Taiwan\n", - "38557 Tanzania\n", - "38776 Uganda\n", - "38995 Ukraine\n", - "39214 Uruguay\n", - "39433 United States\n", - "39652 Uzbekistan\n", - "39871 St. Vincent and the Grenadines\n", - "40090 Venezuela\n", - "40309 Vietnam\n", - "40528 Vanuatu\n", - "40747 Samoa\n", - "40966 Yemen\n", - "41185 South Africa\n", - "41404 Zambia\n", - "41623 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "53 Aruba\n", - "272 Afghanistan\n", - "491 Angola\n", - "710 Albania\n", - "976 United Arab Emirates\n", - "1195 Argentina\n", - "1414 Armenia\n", - "1633 Antigua and Barbuda\n", - "1852 Australia\n", - "2071 Austria\n", - "2290 Azerbaijan\n", - "2509 Burundi\n", - "2728 Belgium\n", - "2947 Benin\n", - "3166 Burkina Faso\n", - "3385 Bangladesh\n", - "3604 Bulgaria\n", - "3823 Bahrain\n", - "4042 Bahamas\n", - "4261 Bosnia and Herzegovina\n", - "4480 Belarus\n", - "4699 Belize\n", - "4965 Bolivia\n", - "5184 Brazil\n", - "5403 Barbados\n", - "5622 Brunei\n", - "5841 Bhutan\n", - "6060 Botswana\n", - "6279 Central African Republic\n", - "6498 Canada\n", - " ... \n", - "35275 Sweden\n", - "35494 Swaziland\n", - "35713 Seychelles\n", - "35932 Syria\n", - "36151 Chad\n", - "36370 Togo\n", - "36589 Thailand\n", - "36808 Tajikistan\n", - "37027 Turkmenistan\n", - "37246 Timor-Leste\n", - "37465 Tonga\n", - "37684 Trinidad and Tobago\n", - "37903 Tunisia\n", - "38122 Turkey\n", - "38341 Taiwan\n", - "38558 Tanzania\n", - "38777 Uganda\n", - "38996 Ukraine\n", - "39215 Uruguay\n", - "39434 United States\n", - "39653 Uzbekistan\n", - "39872 St. Vincent and the Grenadines\n", - "40091 Venezuela\n", - "40310 Vietnam\n", - "40529 Vanuatu\n", - "40748 Samoa\n", - "40967 Yemen\n", - "41186 South Africa\n", - "41405 Zambia\n", - "41624 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "54 Aruba\n", - "273 Afghanistan\n", - "492 Angola\n", - "711 Albania\n", - "977 United Arab Emirates\n", - "1196 Argentina\n", - "1415 Armenia\n", - "1634 Antigua and Barbuda\n", - "1853 Australia\n", - "2072 Austria\n", - "2291 Azerbaijan\n", - "2510 Burundi\n", - "2729 Belgium\n", - "2948 Benin\n", - "3167 Burkina Faso\n", - "3386 Bangladesh\n", - "3605 Bulgaria\n", - "3824 Bahrain\n", - "4043 Bahamas\n", - "4262 Bosnia and Herzegovina\n", - "4481 Belarus\n", - "4700 Belize\n", - "4966 Bolivia\n", - "5185 Brazil\n", - "5404 Barbados\n", - "5623 Brunei\n", - "5842 Bhutan\n", - "6061 Botswana\n", - "6280 Central African Republic\n", - "6499 Canada\n", - " ... \n", - "35276 Sweden\n", - "35495 Swaziland\n", - "35714 Seychelles\n", - "35933 Syria\n", - "36152 Chad\n", - "36371 Togo\n", - "36590 Thailand\n", - "36809 Tajikistan\n", - "37028 Turkmenistan\n", - "37247 Timor-Leste\n", - "37466 Tonga\n", - "37685 Trinidad and Tobago\n", - "37904 Tunisia\n", - "38123 Turkey\n", - "38342 Taiwan\n", - "38559 Tanzania\n", - "38778 Uganda\n", - "38997 Ukraine\n", - "39216 Uruguay\n", - "39435 United States\n", - "39654 Uzbekistan\n", - "39873 St. Vincent and the Grenadines\n", - "40092 Venezuela\n", - "40311 Vietnam\n", - "40530 Vanuatu\n", - "40749 Samoa\n", - "40968 Yemen\n", - "41187 South Africa\n", - "41406 Zambia\n", - "41625 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "55 Aruba\n", - "274 Afghanistan\n", - "493 Angola\n", - "712 Albania\n", - "978 United Arab Emirates\n", - "1197 Argentina\n", - "1416 Armenia\n", - "1635 Antigua and Barbuda\n", - "1854 Australia\n", - "2073 Austria\n", - "2292 Azerbaijan\n", - "2511 Burundi\n", - "2730 Belgium\n", - "2949 Benin\n", - "3168 Burkina Faso\n", - "3387 Bangladesh\n", - "3606 Bulgaria\n", - "3825 Bahrain\n", - "4044 Bahamas\n", - "4263 Bosnia and Herzegovina\n", - "4482 Belarus\n", - "4701 Belize\n", - "4967 Bolivia\n", - "5186 Brazil\n", - "5405 Barbados\n", - "5624 Brunei\n", - "5843 Bhutan\n", - "6062 Botswana\n", - "6281 Central African Republic\n", - "6500 Canada\n", - " ... \n", - "35277 Sweden\n", - "35496 Swaziland\n", - "35715 Seychelles\n", - "35934 Syria\n", - "36153 Chad\n", - "36372 Togo\n", - "36591 Thailand\n", - "36810 Tajikistan\n", - "37029 Turkmenistan\n", - "37248 Timor-Leste\n", - "37467 Tonga\n", - "37686 Trinidad and Tobago\n", - "37905 Tunisia\n", - "38124 Turkey\n", - "38343 Taiwan\n", - "38560 Tanzania\n", - "38779 Uganda\n", - "38998 Ukraine\n", - "39217 Uruguay\n", - "39436 United States\n", - "39655 Uzbekistan\n", - "39874 St. Vincent and the Grenadines\n", - "40093 Venezuela\n", - "40312 Vietnam\n", - "40531 Vanuatu\n", - "40750 Samoa\n", - "40969 Yemen\n", - "41188 South Africa\n", - "41407 Zambia\n", - "41626 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "56 Aruba\n", - "275 Afghanistan\n", - "494 Angola\n", - "713 Albania\n", - "979 United Arab Emirates\n", - "1198 Argentina\n", - "1417 Armenia\n", - "1636 Antigua and Barbuda\n", - "1855 Australia\n", - "2074 Austria\n", - "2293 Azerbaijan\n", - "2512 Burundi\n", - "2731 Belgium\n", - "2950 Benin\n", - "3169 Burkina Faso\n", - "3388 Bangladesh\n", - "3607 Bulgaria\n", - "3826 Bahrain\n", - "4045 Bahamas\n", - "4264 Bosnia and Herzegovina\n", - "4483 Belarus\n", - "4702 Belize\n", - "4968 Bolivia\n", - "5187 Brazil\n", - "5406 Barbados\n", - "5625 Brunei\n", - "5844 Bhutan\n", - "6063 Botswana\n", - "6282 Central African Republic\n", - "6501 Canada\n", - " ... \n", - "35278 Sweden\n", - "35497 Swaziland\n", - "35716 Seychelles\n", - "35935 Syria\n", - "36154 Chad\n", - "36373 Togo\n", - "36592 Thailand\n", - "36811 Tajikistan\n", - "37030 Turkmenistan\n", - "37249 Timor-Leste\n", - "37468 Tonga\n", - "37687 Trinidad and Tobago\n", - "37906 Tunisia\n", - "38125 Turkey\n", - "38344 Taiwan\n", - "38561 Tanzania\n", - "38780 Uganda\n", - "38999 Ukraine\n", - "39218 Uruguay\n", - "39437 United States\n", - "39656 Uzbekistan\n", - "39875 St. Vincent and the Grenadines\n", - "40094 Venezuela\n", - "40313 Vietnam\n", - "40532 Vanuatu\n", - "40751 Samoa\n", - "40970 Yemen\n", - "41189 South Africa\n", - "41408 Zambia\n", - "41627 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "57 Aruba\n", - "276 Afghanistan\n", - "495 Angola\n", - "714 Albania\n", - "980 United Arab Emirates\n", - "1199 Argentina\n", - "1418 Armenia\n", - "1637 Antigua and Barbuda\n", - "1856 Australia\n", - "2075 Austria\n", - "2294 Azerbaijan\n", - "2513 Burundi\n", - "2732 Belgium\n", - "2951 Benin\n", - "3170 Burkina Faso\n", - "3389 Bangladesh\n", - "3608 Bulgaria\n", - "3827 Bahrain\n", - "4046 Bahamas\n", - "4265 Bosnia and Herzegovina\n", - "4484 Belarus\n", - "4703 Belize\n", - "4969 Bolivia\n", - "5188 Brazil\n", - "5407 Barbados\n", - "5626 Brunei\n", - "5845 Bhutan\n", - "6064 Botswana\n", - "6283 Central African Republic\n", - "6502 Canada\n", - " ... \n", - "35279 Sweden\n", - "35498 Swaziland\n", - "35717 Seychelles\n", - "35936 Syria\n", - "36155 Chad\n", - "36374 Togo\n", - "36593 Thailand\n", - "36812 Tajikistan\n", - "37031 Turkmenistan\n", - "37250 Timor-Leste\n", - "37469 Tonga\n", - "37688 Trinidad and Tobago\n", - "37907 Tunisia\n", - "38126 Turkey\n", - "38345 Taiwan\n", - "38562 Tanzania\n", - "38781 Uganda\n", - "39000 Ukraine\n", - "39219 Uruguay\n", - "39438 United States\n", - "39657 Uzbekistan\n", - "39876 St. Vincent and the Grenadines\n", - "40095 Venezuela\n", - "40314 Vietnam\n", - "40533 Vanuatu\n", - "40752 Samoa\n", - "40971 Yemen\n", - "41190 South Africa\n", - "41409 Zambia\n", - "41628 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "58 Aruba\n", - "277 Afghanistan\n", - "496 Angola\n", - "715 Albania\n", - "981 United Arab Emirates\n", - "1200 Argentina\n", - "1419 Armenia\n", - "1638 Antigua and Barbuda\n", - "1857 Australia\n", - "2076 Austria\n", - "2295 Azerbaijan\n", - "2514 Burundi\n", - "2733 Belgium\n", - "2952 Benin\n", - "3171 Burkina Faso\n", - "3390 Bangladesh\n", - "3609 Bulgaria\n", - "3828 Bahrain\n", - "4047 Bahamas\n", - "4266 Bosnia and Herzegovina\n", - "4485 Belarus\n", - "4704 Belize\n", - "4970 Bolivia\n", - "5189 Brazil\n", - "5408 Barbados\n", - "5627 Brunei\n", - "5846 Bhutan\n", - "6065 Botswana\n", - "6284 Central African Republic\n", - "6503 Canada\n", - " ... \n", - "35280 Sweden\n", - "35499 Swaziland\n", - "35718 Seychelles\n", - "35937 Syria\n", - "36156 Chad\n", - "36375 Togo\n", - "36594 Thailand\n", - "36813 Tajikistan\n", - "37032 Turkmenistan\n", - "37251 Timor-Leste\n", - "37470 Tonga\n", - "37689 Trinidad and Tobago\n", - "37908 Tunisia\n", - "38127 Turkey\n", - "38346 Taiwan\n", - "38563 Tanzania\n", - "38782 Uganda\n", - "39001 Ukraine\n", - "39220 Uruguay\n", - "39439 United States\n", - "39658 Uzbekistan\n", - "39877 St. Vincent and the Grenadines\n", - "40096 Venezuela\n", - "40315 Vietnam\n", - "40534 Vanuatu\n", - "40753 Samoa\n", - "40972 Yemen\n", - "41191 South Africa\n", - "41410 Zambia\n", - "41629 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "59 Aruba\n", - "278 Afghanistan\n", - "497 Angola\n", - "716 Albania\n", - "982 United Arab Emirates\n", - "1201 Argentina\n", - "1420 Armenia\n", - "1639 Antigua and Barbuda\n", - "1858 Australia\n", - "2077 Austria\n", - "2296 Azerbaijan\n", - "2515 Burundi\n", - "2734 Belgium\n", - "2953 Benin\n", - "3172 Burkina Faso\n", - "3391 Bangladesh\n", - "3610 Bulgaria\n", - "3829 Bahrain\n", - "4048 Bahamas\n", - "4267 Bosnia and Herzegovina\n", - "4486 Belarus\n", - "4705 Belize\n", - "4971 Bolivia\n", - "5190 Brazil\n", - "5409 Barbados\n", - "5628 Brunei\n", - "5847 Bhutan\n", - "6066 Botswana\n", - "6285 Central African Republic\n", - "6504 Canada\n", - " ... \n", - "35281 Sweden\n", - "35500 Swaziland\n", - "35719 Seychelles\n", - "35938 Syria\n", - "36157 Chad\n", - "36376 Togo\n", - "36595 Thailand\n", - "36814 Tajikistan\n", - "37033 Turkmenistan\n", - "37252 Timor-Leste\n", - "37471 Tonga\n", - "37690 Trinidad and Tobago\n", - "37909 Tunisia\n", - "38128 Turkey\n", - "38347 Taiwan\n", - "38564 Tanzania\n", - "38783 Uganda\n", - "39002 Ukraine\n", - "39221 Uruguay\n", - "39440 United States\n", - "39659 Uzbekistan\n", - "39878 St. Vincent and the Grenadines\n", - "40097 Venezuela\n", - "40316 Vietnam\n", - "40535 Vanuatu\n", - "40754 Samoa\n", - "40973 Yemen\n", - "41192 South Africa\n", - "41411 Zambia\n", - "41630 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "60 Aruba\n", - "279 Afghanistan\n", - "498 Angola\n", - "717 Albania\n", - "983 United Arab Emirates\n", - "1202 Argentina\n", - "1421 Armenia\n", - "1640 Antigua and Barbuda\n", - "1859 Australia\n", - "2078 Austria\n", - "2297 Azerbaijan\n", - "2516 Burundi\n", - "2735 Belgium\n", - "2954 Benin\n", - "3173 Burkina Faso\n", - "3392 Bangladesh\n", - "3611 Bulgaria\n", - "3830 Bahrain\n", - "4049 Bahamas\n", - "4268 Bosnia and Herzegovina\n", - "4487 Belarus\n", - "4706 Belize\n", - "4972 Bolivia\n", - "5191 Brazil\n", - "5410 Barbados\n", - "5629 Brunei\n", - "5848 Bhutan\n", - "6067 Botswana\n", - "6286 Central African Republic\n", - "6505 Canada\n", - " ... \n", - "35282 Sweden\n", - "35501 Swaziland\n", - "35720 Seychelles\n", - "35939 Syria\n", - "36158 Chad\n", - "36377 Togo\n", - "36596 Thailand\n", - "36815 Tajikistan\n", - "37034 Turkmenistan\n", - "37253 Timor-Leste\n", - "37472 Tonga\n", - "37691 Trinidad and Tobago\n", - "37910 Tunisia\n", - "38129 Turkey\n", - "38348 Taiwan\n", - "38565 Tanzania\n", - "38784 Uganda\n", - "39003 Ukraine\n", - "39222 Uruguay\n", - "39441 United States\n", - "39660 Uzbekistan\n", - "39879 St. Vincent and the Grenadines\n", - "40098 Venezuela\n", - "40317 Vietnam\n", - "40536 Vanuatu\n", - "40755 Samoa\n", - "40974 Yemen\n", - "41193 South Africa\n", - "41412 Zambia\n", - "41631 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "61 Aruba\n", - "280 Afghanistan\n", - "499 Angola\n", - "718 Albania\n", - "984 United Arab Emirates\n", - "1203 Argentina\n", - "1422 Armenia\n", - "1641 Antigua and Barbuda\n", - "1860 Australia\n", - "2079 Austria\n", - "2298 Azerbaijan\n", - "2517 Burundi\n", - "2736 Belgium\n", - "2955 Benin\n", - "3174 Burkina Faso\n", - "3393 Bangladesh\n", - "3612 Bulgaria\n", - "3831 Bahrain\n", - "4050 Bahamas\n", - "4269 Bosnia and Herzegovina\n", - "4488 Belarus\n", - "4707 Belize\n", - "4973 Bolivia\n", - "5192 Brazil\n", - "5411 Barbados\n", - "5630 Brunei\n", - "5849 Bhutan\n", - "6068 Botswana\n", - "6287 Central African Republic\n", - "6506 Canada\n", - " ... \n", - "35283 Sweden\n", - "35502 Swaziland\n", - "35721 Seychelles\n", - "35940 Syria\n", - "36159 Chad\n", - "36378 Togo\n", - "36597 Thailand\n", - "36816 Tajikistan\n", - "37035 Turkmenistan\n", - "37254 Timor-Leste\n", - "37473 Tonga\n", - "37692 Trinidad and Tobago\n", - "37911 Tunisia\n", - "38130 Turkey\n", - "38349 Taiwan\n", - "38566 Tanzania\n", - "38785 Uganda\n", - "39004 Ukraine\n", - "39223 Uruguay\n", - "39442 United States\n", - "39661 Uzbekistan\n", - "39880 St. Vincent and the Grenadines\n", - "40099 Venezuela\n", - "40318 Vietnam\n", - "40537 Vanuatu\n", - "40756 Samoa\n", - "40975 Yemen\n", - "41194 South Africa\n", - "41413 Zambia\n", - "41632 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "62 Aruba\n", - "281 Afghanistan\n", - "500 Angola\n", - "719 Albania\n", - "985 United Arab Emirates\n", - "1204 Argentina\n", - "1423 Armenia\n", - "1642 Antigua and Barbuda\n", - "1861 Australia\n", - "2080 Austria\n", - "2299 Azerbaijan\n", - "2518 Burundi\n", - "2737 Belgium\n", - "2956 Benin\n", - "3175 Burkina Faso\n", - "3394 Bangladesh\n", - "3613 Bulgaria\n", - "3832 Bahrain\n", - "4051 Bahamas\n", - "4270 Bosnia and Herzegovina\n", - "4489 Belarus\n", - "4708 Belize\n", - "4974 Bolivia\n", - "5193 Brazil\n", - "5412 Barbados\n", - "5631 Brunei\n", - "5850 Bhutan\n", - "6069 Botswana\n", - "6288 Central African Republic\n", - "6507 Canada\n", - " ... \n", - "35284 Sweden\n", - "35503 Swaziland\n", - "35722 Seychelles\n", - "35941 Syria\n", - "36160 Chad\n", - "36379 Togo\n", - "36598 Thailand\n", - "36817 Tajikistan\n", - "37036 Turkmenistan\n", - "37255 Timor-Leste\n", - "37474 Tonga\n", - "37693 Trinidad and Tobago\n", - "37912 Tunisia\n", - "38131 Turkey\n", - "38350 Taiwan\n", - "38567 Tanzania\n", - "38786 Uganda\n", - "39005 Ukraine\n", - "39224 Uruguay\n", - "39443 United States\n", - "39662 Uzbekistan\n", - "39881 St. Vincent and the Grenadines\n", - "40100 Venezuela\n", - "40319 Vietnam\n", - "40538 Vanuatu\n", - "40757 Samoa\n", - "40976 Yemen\n", - "41195 South Africa\n", - "41414 Zambia\n", - "41633 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "63 Aruba\n", - "282 Afghanistan\n", - "501 Angola\n", - "720 Albania\n", - "986 United Arab Emirates\n", - "1205 Argentina\n", - "1424 Armenia\n", - "1643 Antigua and Barbuda\n", - "1862 Australia\n", - "2081 Austria\n", - "2300 Azerbaijan\n", - "2519 Burundi\n", - "2738 Belgium\n", - "2957 Benin\n", - "3176 Burkina Faso\n", - "3395 Bangladesh\n", - "3614 Bulgaria\n", - "3833 Bahrain\n", - "4052 Bahamas\n", - "4271 Bosnia and Herzegovina\n", - "4490 Belarus\n", - "4709 Belize\n", - "4975 Bolivia\n", - "5194 Brazil\n", - "5413 Barbados\n", - "5632 Brunei\n", - "5851 Bhutan\n", - "6070 Botswana\n", - "6289 Central African Republic\n", - "6508 Canada\n", - " ... \n", - "35285 Sweden\n", - "35504 Swaziland\n", - "35723 Seychelles\n", - "35942 Syria\n", - "36161 Chad\n", - "36380 Togo\n", - "36599 Thailand\n", - "36818 Tajikistan\n", - "37037 Turkmenistan\n", - "37256 Timor-Leste\n", - "37475 Tonga\n", - "37694 Trinidad and Tobago\n", - "37913 Tunisia\n", - "38132 Turkey\n", - "38351 Taiwan\n", - "38568 Tanzania\n", - "38787 Uganda\n", - "39006 Ukraine\n", - "39225 Uruguay\n", - "39444 United States\n", - "39663 Uzbekistan\n", - "39882 St. Vincent and the Grenadines\n", - "40101 Venezuela\n", - "40320 Vietnam\n", - "40539 Vanuatu\n", - "40758 Samoa\n", - "40977 Yemen\n", - "41196 South Africa\n", - "41415 Zambia\n", - "41634 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "64 Aruba\n", - "283 Afghanistan\n", - "502 Angola\n", - "721 Albania\n", - "987 United Arab Emirates\n", - "1206 Argentina\n", - "1425 Armenia\n", - "1644 Antigua and Barbuda\n", - "1863 Australia\n", - "2082 Austria\n", - "2301 Azerbaijan\n", - "2520 Burundi\n", - "2739 Belgium\n", - "2958 Benin\n", - "3177 Burkina Faso\n", - "3396 Bangladesh\n", - "3615 Bulgaria\n", - "3834 Bahrain\n", - "4053 Bahamas\n", - "4272 Bosnia and Herzegovina\n", - "4491 Belarus\n", - "4710 Belize\n", - "4976 Bolivia\n", - "5195 Brazil\n", - "5414 Barbados\n", - "5633 Brunei\n", - "5852 Bhutan\n", - "6071 Botswana\n", - "6290 Central African Republic\n", - "6509 Canada\n", - " ... \n", - "35286 Sweden\n", - "35505 Swaziland\n", - "35724 Seychelles\n", - "35943 Syria\n", - "36162 Chad\n", - "36381 Togo\n", - "36600 Thailand\n", - "36819 Tajikistan\n", - "37038 Turkmenistan\n", - "37257 Timor-Leste\n", - "37476 Tonga\n", - "37695 Trinidad and Tobago\n", - "37914 Tunisia\n", - "38133 Turkey\n", - "38352 Taiwan\n", - "38569 Tanzania\n", - "38788 Uganda\n", - "39007 Ukraine\n", - "39226 Uruguay\n", - "39445 United States\n", - "39664 Uzbekistan\n", - "39883 St. Vincent and the Grenadines\n", - "40102 Venezuela\n", - "40321 Vietnam\n", - "40540 Vanuatu\n", - "40759 Samoa\n", - "40978 Yemen\n", - "41197 South Africa\n", - "41416 Zambia\n", - "41635 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "65 Aruba\n", - "284 Afghanistan\n", - "503 Angola\n", - "722 Albania\n", - "988 United Arab Emirates\n", - "1207 Argentina\n", - "1426 Armenia\n", - "1645 Antigua and Barbuda\n", - "1864 Australia\n", - "2083 Austria\n", - "2302 Azerbaijan\n", - "2521 Burundi\n", - "2740 Belgium\n", - "2959 Benin\n", - "3178 Burkina Faso\n", - "3397 Bangladesh\n", - "3616 Bulgaria\n", - "3835 Bahrain\n", - "4054 Bahamas\n", - "4273 Bosnia and Herzegovina\n", - "4492 Belarus\n", - "4711 Belize\n", - "4977 Bolivia\n", - "5196 Brazil\n", - "5415 Barbados\n", - "5634 Brunei\n", - "5853 Bhutan\n", - "6072 Botswana\n", - "6291 Central African Republic\n", - "6510 Canada\n", - " ... \n", - "35287 Sweden\n", - "35506 Swaziland\n", - "35725 Seychelles\n", - "35944 Syria\n", - "36163 Chad\n", - "36382 Togo\n", - "36601 Thailand\n", - "36820 Tajikistan\n", - "37039 Turkmenistan\n", - "37258 Timor-Leste\n", - "37477 Tonga\n", - "37696 Trinidad and Tobago\n", - "37915 Tunisia\n", - "38134 Turkey\n", - "38353 Taiwan\n", - "38570 Tanzania\n", - "38789 Uganda\n", - "39008 Ukraine\n", - "39227 Uruguay\n", - "39446 United States\n", - "39665 Uzbekistan\n", - "39884 St. Vincent and the Grenadines\n", - "40103 Venezuela\n", - "40322 Vietnam\n", - "40541 Vanuatu\n", - "40760 Samoa\n", - "40979 Yemen\n", - "41198 South Africa\n", - "41417 Zambia\n", - "41636 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "66 Aruba\n", - "285 Afghanistan\n", - "504 Angola\n", - "723 Albania\n", - "989 United Arab Emirates\n", - "1208 Argentina\n", - "1427 Armenia\n", - "1646 Antigua and Barbuda\n", - "1865 Australia\n", - "2084 Austria\n", - "2303 Azerbaijan\n", - "2522 Burundi\n", - "2741 Belgium\n", - "2960 Benin\n", - "3179 Burkina Faso\n", - "3398 Bangladesh\n", - "3617 Bulgaria\n", - "3836 Bahrain\n", - "4055 Bahamas\n", - "4274 Bosnia and Herzegovina\n", - "4493 Belarus\n", - "4712 Belize\n", - "4978 Bolivia\n", - "5197 Brazil\n", - "5416 Barbados\n", - "5635 Brunei\n", - "5854 Bhutan\n", - "6073 Botswana\n", - "6292 Central African Republic\n", - "6511 Canada\n", - " ... \n", - "35288 Sweden\n", - "35507 Swaziland\n", - "35726 Seychelles\n", - "35945 Syria\n", - "36164 Chad\n", - "36383 Togo\n", - "36602 Thailand\n", - "36821 Tajikistan\n", - "37040 Turkmenistan\n", - "37259 Timor-Leste\n", - "37478 Tonga\n", - "37697 Trinidad and Tobago\n", - "37916 Tunisia\n", - "38135 Turkey\n", - "38354 Taiwan\n", - "38571 Tanzania\n", - "38790 Uganda\n", - "39009 Ukraine\n", - "39228 Uruguay\n", - "39447 United States\n", - "39666 Uzbekistan\n", - "39885 St. Vincent and the Grenadines\n", - "40104 Venezuela\n", - "40323 Vietnam\n", - "40542 Vanuatu\n", - "40761 Samoa\n", - "40980 Yemen\n", - "41199 South Africa\n", - "41418 Zambia\n", - "41637 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "67 Aruba\n", - "286 Afghanistan\n", - "505 Angola\n", - "724 Albania\n", - "990 United Arab Emirates\n", - "1209 Argentina\n", - "1428 Armenia\n", - "1647 Antigua and Barbuda\n", - "1866 Australia\n", - "2085 Austria\n", - "2304 Azerbaijan\n", - "2523 Burundi\n", - "2742 Belgium\n", - "2961 Benin\n", - "3180 Burkina Faso\n", - "3399 Bangladesh\n", - "3618 Bulgaria\n", - "3837 Bahrain\n", - "4056 Bahamas\n", - "4275 Bosnia and Herzegovina\n", - "4494 Belarus\n", - "4713 Belize\n", - "4979 Bolivia\n", - "5198 Brazil\n", - "5417 Barbados\n", - "5636 Brunei\n", - "5855 Bhutan\n", - "6074 Botswana\n", - "6293 Central African Republic\n", - "6512 Canada\n", - " ... \n", - "35289 Sweden\n", - "35508 Swaziland\n", - "35727 Seychelles\n", - "35946 Syria\n", - "36165 Chad\n", - "36384 Togo\n", - "36603 Thailand\n", - "36822 Tajikistan\n", - "37041 Turkmenistan\n", - "37260 Timor-Leste\n", - "37479 Tonga\n", - "37698 Trinidad and Tobago\n", - "37917 Tunisia\n", - "38136 Turkey\n", - "38355 Taiwan\n", - "38572 Tanzania\n", - "38791 Uganda\n", - "39010 Ukraine\n", - "39229 Uruguay\n", - "39448 United States\n", - "39667 Uzbekistan\n", - "39886 St. Vincent and the Grenadines\n", - "40105 Venezuela\n", - "40324 Vietnam\n", - "40543 Vanuatu\n", - "40762 Samoa\n", - "40981 Yemen\n", - "41200 South Africa\n", - "41419 Zambia\n", - "41638 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "68 Aruba\n", - "287 Afghanistan\n", - "506 Angola\n", - "725 Albania\n", - "991 United Arab Emirates\n", - "1210 Argentina\n", - "1429 Armenia\n", - "1648 Antigua and Barbuda\n", - "1867 Australia\n", - "2086 Austria\n", - "2305 Azerbaijan\n", - "2524 Burundi\n", - "2743 Belgium\n", - "2962 Benin\n", - "3181 Burkina Faso\n", - "3400 Bangladesh\n", - "3619 Bulgaria\n", - "3838 Bahrain\n", - "4057 Bahamas\n", - "4276 Bosnia and Herzegovina\n", - "4495 Belarus\n", - "4714 Belize\n", - "4980 Bolivia\n", - "5199 Brazil\n", - "5418 Barbados\n", - "5637 Brunei\n", - "5856 Bhutan\n", - "6075 Botswana\n", - "6294 Central African Republic\n", - "6513 Canada\n", - " ... \n", - "35290 Sweden\n", - "35509 Swaziland\n", - "35728 Seychelles\n", - "35947 Syria\n", - "36166 Chad\n", - "36385 Togo\n", - "36604 Thailand\n", - "36823 Tajikistan\n", - "37042 Turkmenistan\n", - "37261 Timor-Leste\n", - "37480 Tonga\n", - "37699 Trinidad and Tobago\n", - "37918 Tunisia\n", - "38137 Turkey\n", - "38356 Taiwan\n", - "38573 Tanzania\n", - "38792 Uganda\n", - "39011 Ukraine\n", - "39230 Uruguay\n", - "39449 United States\n", - "39668 Uzbekistan\n", - "39887 St. Vincent and the Grenadines\n", - "40106 Venezuela\n", - "40325 Vietnam\n", - "40544 Vanuatu\n", - "40763 Samoa\n", - "40982 Yemen\n", - "41201 South Africa\n", - "41420 Zambia\n", - "41639 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "69 Aruba\n", - "288 Afghanistan\n", - "507 Angola\n", - "726 Albania\n", - "992 United Arab Emirates\n", - "1211 Argentina\n", - "1430 Armenia\n", - "1649 Antigua and Barbuda\n", - "1868 Australia\n", - "2087 Austria\n", - "2306 Azerbaijan\n", - "2525 Burundi\n", - "2744 Belgium\n", - "2963 Benin\n", - "3182 Burkina Faso\n", - "3401 Bangladesh\n", - "3620 Bulgaria\n", - "3839 Bahrain\n", - "4058 Bahamas\n", - "4277 Bosnia and Herzegovina\n", - "4496 Belarus\n", - "4715 Belize\n", - "4981 Bolivia\n", - "5200 Brazil\n", - "5419 Barbados\n", - "5638 Brunei\n", - "5857 Bhutan\n", - "6076 Botswana\n", - "6295 Central African Republic\n", - "6514 Canada\n", - " ... \n", - "35291 Sweden\n", - "35510 Swaziland\n", - "35729 Seychelles\n", - "35948 Syria\n", - "36167 Chad\n", - "36386 Togo\n", - "36605 Thailand\n", - "36824 Tajikistan\n", - "37043 Turkmenistan\n", - "37262 Timor-Leste\n", - "37481 Tonga\n", - "37700 Trinidad and Tobago\n", - "37919 Tunisia\n", - "38138 Turkey\n", - "38357 Taiwan\n", - "38574 Tanzania\n", - "38793 Uganda\n", - "39012 Ukraine\n", - "39231 Uruguay\n", - "39450 United States\n", - "39669 Uzbekistan\n", - "39888 St. Vincent and the Grenadines\n", - "40107 Venezuela\n", - "40326 Vietnam\n", - "40545 Vanuatu\n", - "40764 Samoa\n", - "40983 Yemen\n", - "41202 South Africa\n", - "41421 Zambia\n", - "41640 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "70 Aruba\n", - "289 Afghanistan\n", - "508 Angola\n", - "727 Albania\n", - "993 United Arab Emirates\n", - "1212 Argentina\n", - "1431 Armenia\n", - "1650 Antigua and Barbuda\n", - "1869 Australia\n", - "2088 Austria\n", - "2307 Azerbaijan\n", - "2526 Burundi\n", - "2745 Belgium\n", - "2964 Benin\n", - "3183 Burkina Faso\n", - "3402 Bangladesh\n", - "3621 Bulgaria\n", - "3840 Bahrain\n", - "4059 Bahamas\n", - "4278 Bosnia and Herzegovina\n", - "4497 Belarus\n", - "4716 Belize\n", - "4982 Bolivia\n", - "5201 Brazil\n", - "5420 Barbados\n", - "5639 Brunei\n", - "5858 Bhutan\n", - "6077 Botswana\n", - "6296 Central African Republic\n", - "6515 Canada\n", - " ... \n", - "35292 Sweden\n", - "35511 Swaziland\n", - "35730 Seychelles\n", - "35949 Syria\n", - "36168 Chad\n", - "36387 Togo\n", - "36606 Thailand\n", - "36825 Tajikistan\n", - "37044 Turkmenistan\n", - "37263 Timor-Leste\n", - "37482 Tonga\n", - "37701 Trinidad and Tobago\n", - "37920 Tunisia\n", - "38139 Turkey\n", - "38358 Taiwan\n", - "38575 Tanzania\n", - "38794 Uganda\n", - "39013 Ukraine\n", - "39232 Uruguay\n", - "39451 United States\n", - "39670 Uzbekistan\n", - "39889 St. Vincent and the Grenadines\n", - "40108 Venezuela\n", - "40327 Vietnam\n", - "40546 Vanuatu\n", - "40765 Samoa\n", - "40984 Yemen\n", - "41203 South Africa\n", - "41422 Zambia\n", - "41641 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "71 Aruba\n", - "290 Afghanistan\n", - "509 Angola\n", - "728 Albania\n", - "994 United Arab Emirates\n", - "1213 Argentina\n", - "1432 Armenia\n", - "1651 Antigua and Barbuda\n", - "1870 Australia\n", - "2089 Austria\n", - "2308 Azerbaijan\n", - "2527 Burundi\n", - "2746 Belgium\n", - "2965 Benin\n", - "3184 Burkina Faso\n", - "3403 Bangladesh\n", - "3622 Bulgaria\n", - "3841 Bahrain\n", - "4060 Bahamas\n", - "4279 Bosnia and Herzegovina\n", - "4498 Belarus\n", - "4717 Belize\n", - "4983 Bolivia\n", - "5202 Brazil\n", - "5421 Barbados\n", - "5640 Brunei\n", - "5859 Bhutan\n", - "6078 Botswana\n", - "6297 Central African Republic\n", - "6516 Canada\n", - " ... \n", - "35293 Sweden\n", - "35512 Swaziland\n", - "35731 Seychelles\n", - "35950 Syria\n", - "36169 Chad\n", - "36388 Togo\n", - "36607 Thailand\n", - "36826 Tajikistan\n", - "37045 Turkmenistan\n", - "37264 Timor-Leste\n", - "37483 Tonga\n", - "37702 Trinidad and Tobago\n", - "37921 Tunisia\n", - "38140 Turkey\n", - "38359 Taiwan\n", - "38576 Tanzania\n", - "38795 Uganda\n", - "39014 Ukraine\n", - "39233 Uruguay\n", - "39452 United States\n", - "39671 Uzbekistan\n", - "39890 St. Vincent and the Grenadines\n", - "40109 Venezuela\n", - "40328 Vietnam\n", - "40547 Vanuatu\n", - "40766 Samoa\n", - "40985 Yemen\n", - "41204 South Africa\n", - "41423 Zambia\n", - "41642 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "72 Aruba\n", - "291 Afghanistan\n", - "510 Angola\n", - "729 Albania\n", - "995 United Arab Emirates\n", - "1214 Argentina\n", - "1433 Armenia\n", - "1652 Antigua and Barbuda\n", - "1871 Australia\n", - "2090 Austria\n", - "2309 Azerbaijan\n", - "2528 Burundi\n", - "2747 Belgium\n", - "2966 Benin\n", - "3185 Burkina Faso\n", - "3404 Bangladesh\n", - "3623 Bulgaria\n", - "3842 Bahrain\n", - "4061 Bahamas\n", - "4280 Bosnia and Herzegovina\n", - "4499 Belarus\n", - "4718 Belize\n", - "4984 Bolivia\n", - "5203 Brazil\n", - "5422 Barbados\n", - "5641 Brunei\n", - "5860 Bhutan\n", - "6079 Botswana\n", - "6298 Central African Republic\n", - "6517 Canada\n", - " ... \n", - "35294 Sweden\n", - "35513 Swaziland\n", - "35732 Seychelles\n", - "35951 Syria\n", - "36170 Chad\n", - "36389 Togo\n", - "36608 Thailand\n", - "36827 Tajikistan\n", - "37046 Turkmenistan\n", - "37265 Timor-Leste\n", - "37484 Tonga\n", - "37703 Trinidad and Tobago\n", - "37922 Tunisia\n", - "38141 Turkey\n", - "38360 Taiwan\n", - "38577 Tanzania\n", - "38796 Uganda\n", - "39015 Ukraine\n", - "39234 Uruguay\n", - "39453 United States\n", - "39672 Uzbekistan\n", - "39891 St. Vincent and the Grenadines\n", - "40110 Venezuela\n", - "40329 Vietnam\n", - "40548 Vanuatu\n", - "40767 Samoa\n", - "40986 Yemen\n", - "41205 South Africa\n", - "41424 Zambia\n", - "41643 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "73 Aruba\n", - "292 Afghanistan\n", - "511 Angola\n", - "730 Albania\n", - "996 United Arab Emirates\n", - "1215 Argentina\n", - "1434 Armenia\n", - "1653 Antigua and Barbuda\n", - "1872 Australia\n", - "2091 Austria\n", - "2310 Azerbaijan\n", - "2529 Burundi\n", - "2748 Belgium\n", - "2967 Benin\n", - "3186 Burkina Faso\n", - "3405 Bangladesh\n", - "3624 Bulgaria\n", - "3843 Bahrain\n", - "4062 Bahamas\n", - "4281 Bosnia and Herzegovina\n", - "4500 Belarus\n", - "4719 Belize\n", - "4985 Bolivia\n", - "5204 Brazil\n", - "5423 Barbados\n", - "5642 Brunei\n", - "5861 Bhutan\n", - "6080 Botswana\n", - "6299 Central African Republic\n", - "6518 Canada\n", - " ... \n", - "35295 Sweden\n", - "35514 Swaziland\n", - "35733 Seychelles\n", - "35952 Syria\n", - "36171 Chad\n", - "36390 Togo\n", - "36609 Thailand\n", - "36828 Tajikistan\n", - "37047 Turkmenistan\n", - "37266 Timor-Leste\n", - "37485 Tonga\n", - "37704 Trinidad and Tobago\n", - "37923 Tunisia\n", - "38142 Turkey\n", - "38361 Taiwan\n", - "38578 Tanzania\n", - "38797 Uganda\n", - "39016 Ukraine\n", - "39235 Uruguay\n", - "39454 United States\n", - "39673 Uzbekistan\n", - "39892 St. Vincent and the Grenadines\n", - "40111 Venezuela\n", - "40330 Vietnam\n", - "40549 Vanuatu\n", - "40768 Samoa\n", - "40987 Yemen\n", - "41206 South Africa\n", - "41425 Zambia\n", - "41644 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "74 Aruba\n", - "293 Afghanistan\n", - "512 Angola\n", - "731 Albania\n", - "997 United Arab Emirates\n", - "1216 Argentina\n", - "1435 Armenia\n", - "1654 Antigua and Barbuda\n", - "1873 Australia\n", - "2092 Austria\n", - "2311 Azerbaijan\n", - "2530 Burundi\n", - "2749 Belgium\n", - "2968 Benin\n", - "3187 Burkina Faso\n", - "3406 Bangladesh\n", - "3625 Bulgaria\n", - "3844 Bahrain\n", - "4063 Bahamas\n", - "4282 Bosnia and Herzegovina\n", - "4501 Belarus\n", - "4720 Belize\n", - "4986 Bolivia\n", - "5205 Brazil\n", - "5424 Barbados\n", - "5643 Brunei\n", - "5862 Bhutan\n", - "6081 Botswana\n", - "6300 Central African Republic\n", - "6519 Canada\n", - " ... \n", - "35296 Sweden\n", - "35515 Swaziland\n", - "35734 Seychelles\n", - "35953 Syria\n", - "36172 Chad\n", - "36391 Togo\n", - "36610 Thailand\n", - "36829 Tajikistan\n", - "37048 Turkmenistan\n", - "37267 Timor-Leste\n", - "37486 Tonga\n", - "37705 Trinidad and Tobago\n", - "37924 Tunisia\n", - "38143 Turkey\n", - "38362 Taiwan\n", - "38579 Tanzania\n", - "38798 Uganda\n", - "39017 Ukraine\n", - "39236 Uruguay\n", - "39455 United States\n", - "39674 Uzbekistan\n", - "39893 St. Vincent and the Grenadines\n", - "40112 Venezuela\n", - "40331 Vietnam\n", - "40550 Vanuatu\n", - "40769 Samoa\n", - "40988 Yemen\n", - "41207 South Africa\n", - "41426 Zambia\n", - "41645 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "75 Aruba\n", - "294 Afghanistan\n", - "513 Angola\n", - "732 Albania\n", - "998 United Arab Emirates\n", - "1217 Argentina\n", - "1436 Armenia\n", - "1655 Antigua and Barbuda\n", - "1874 Australia\n", - "2093 Austria\n", - "2312 Azerbaijan\n", - "2531 Burundi\n", - "2750 Belgium\n", - "2969 Benin\n", - "3188 Burkina Faso\n", - "3407 Bangladesh\n", - "3626 Bulgaria\n", - "3845 Bahrain\n", - "4064 Bahamas\n", - "4283 Bosnia and Herzegovina\n", - "4502 Belarus\n", - "4721 Belize\n", - "4987 Bolivia\n", - "5206 Brazil\n", - "5425 Barbados\n", - "5644 Brunei\n", - "5863 Bhutan\n", - "6082 Botswana\n", - "6301 Central African Republic\n", - "6520 Canada\n", - " ... \n", - "35297 Sweden\n", - "35516 Swaziland\n", - "35735 Seychelles\n", - "35954 Syria\n", - "36173 Chad\n", - "36392 Togo\n", - "36611 Thailand\n", - "36830 Tajikistan\n", - "37049 Turkmenistan\n", - "37268 Timor-Leste\n", - "37487 Tonga\n", - "37706 Trinidad and Tobago\n", - "37925 Tunisia\n", - "38144 Turkey\n", - "38363 Taiwan\n", - "38580 Tanzania\n", - "38799 Uganda\n", - "39018 Ukraine\n", - "39237 Uruguay\n", - "39456 United States\n", - "39675 Uzbekistan\n", - "39894 St. Vincent and the Grenadines\n", - "40113 Venezuela\n", - "40332 Vietnam\n", - "40551 Vanuatu\n", - "40770 Samoa\n", - "40989 Yemen\n", - "41208 South Africa\n", - "41427 Zambia\n", - "41646 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "76 Aruba\n", - "295 Afghanistan\n", - "514 Angola\n", - "733 Albania\n", - "999 United Arab Emirates\n", - "1218 Argentina\n", - "1437 Armenia\n", - "1656 Antigua and Barbuda\n", - "1875 Australia\n", - "2094 Austria\n", - "2313 Azerbaijan\n", - "2532 Burundi\n", - "2751 Belgium\n", - "2970 Benin\n", - "3189 Burkina Faso\n", - "3408 Bangladesh\n", - "3627 Bulgaria\n", - "3846 Bahrain\n", - "4065 Bahamas\n", - "4284 Bosnia and Herzegovina\n", - "4503 Belarus\n", - "4722 Belize\n", - "4988 Bolivia\n", - "5207 Brazil\n", - "5426 Barbados\n", - "5645 Brunei\n", - "5864 Bhutan\n", - "6083 Botswana\n", - "6302 Central African Republic\n", - "6521 Canada\n", - " ... \n", - "35298 Sweden\n", - "35517 Swaziland\n", - "35736 Seychelles\n", - "35955 Syria\n", - "36174 Chad\n", - "36393 Togo\n", - "36612 Thailand\n", - "36831 Tajikistan\n", - "37050 Turkmenistan\n", - "37269 Timor-Leste\n", - "37488 Tonga\n", - "37707 Trinidad and Tobago\n", - "37926 Tunisia\n", - "38145 Turkey\n", - "38364 Taiwan\n", - "38581 Tanzania\n", - "38800 Uganda\n", - "39019 Ukraine\n", - "39238 Uruguay\n", - "39457 United States\n", - "39676 Uzbekistan\n", - "39895 St. Vincent and the Grenadines\n", - "40114 Venezuela\n", - "40333 Vietnam\n", - "40552 Vanuatu\n", - "40771 Samoa\n", - "40990 Yemen\n", - "41209 South Africa\n", - "41428 Zambia\n", - "41647 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "77 Aruba\n", - "296 Afghanistan\n", - "515 Angola\n", - "734 Albania\n", - "1000 United Arab Emirates\n", - "1219 Argentina\n", - "1438 Armenia\n", - "1657 Antigua and Barbuda\n", - "1876 Australia\n", - "2095 Austria\n", - "2314 Azerbaijan\n", - "2533 Burundi\n", - "2752 Belgium\n", - "2971 Benin\n", - "3190 Burkina Faso\n", - "3409 Bangladesh\n", - "3628 Bulgaria\n", - "3847 Bahrain\n", - "4066 Bahamas\n", - "4285 Bosnia and Herzegovina\n", - "4504 Belarus\n", - "4723 Belize\n", - "4989 Bolivia\n", - "5208 Brazil\n", - "5427 Barbados\n", - "5646 Brunei\n", - "5865 Bhutan\n", - "6084 Botswana\n", - "6303 Central African Republic\n", - "6522 Canada\n", - " ... \n", - "35299 Sweden\n", - "35518 Swaziland\n", - "35737 Seychelles\n", - "35956 Syria\n", - "36175 Chad\n", - "36394 Togo\n", - "36613 Thailand\n", - "36832 Tajikistan\n", - "37051 Turkmenistan\n", - "37270 Timor-Leste\n", - "37489 Tonga\n", - "37708 Trinidad and Tobago\n", - "37927 Tunisia\n", - "38146 Turkey\n", - "38365 Taiwan\n", - "38582 Tanzania\n", - "38801 Uganda\n", - "39020 Ukraine\n", - "39239 Uruguay\n", - "39458 United States\n", - "39677 Uzbekistan\n", - "39896 St. Vincent and the Grenadines\n", - "40115 Venezuela\n", - "40334 Vietnam\n", - "40553 Vanuatu\n", - "40772 Samoa\n", - "40991 Yemen\n", - "41210 South Africa\n", - "41429 Zambia\n", - "41648 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "78 Aruba\n", - "297 Afghanistan\n", - "516 Angola\n", - "735 Albania\n", - "1001 United Arab Emirates\n", - "1220 Argentina\n", - "1439 Armenia\n", - "1658 Antigua and Barbuda\n", - "1877 Australia\n", - "2096 Austria\n", - "2315 Azerbaijan\n", - "2534 Burundi\n", - "2753 Belgium\n", - "2972 Benin\n", - "3191 Burkina Faso\n", - "3410 Bangladesh\n", - "3629 Bulgaria\n", - "3848 Bahrain\n", - "4067 Bahamas\n", - "4286 Bosnia and Herzegovina\n", - "4505 Belarus\n", - "4724 Belize\n", - "4990 Bolivia\n", - "5209 Brazil\n", - "5428 Barbados\n", - "5647 Brunei\n", - "5866 Bhutan\n", - "6085 Botswana\n", - "6304 Central African Republic\n", - "6523 Canada\n", - " ... \n", - "35300 Sweden\n", - "35519 Swaziland\n", - "35738 Seychelles\n", - "35957 Syria\n", - "36176 Chad\n", - "36395 Togo\n", - "36614 Thailand\n", - "36833 Tajikistan\n", - "37052 Turkmenistan\n", - "37271 Timor-Leste\n", - "37490 Tonga\n", - "37709 Trinidad and Tobago\n", - "37928 Tunisia\n", - "38147 Turkey\n", - "38366 Taiwan\n", - "38583 Tanzania\n", - "38802 Uganda\n", - "39021 Ukraine\n", - "39240 Uruguay\n", - "39459 United States\n", - "39678 Uzbekistan\n", - "39897 St. Vincent and the Grenadines\n", - "40116 Venezuela\n", - "40335 Vietnam\n", - "40554 Vanuatu\n", - "40773 Samoa\n", - "40992 Yemen\n", - "41211 South Africa\n", - "41430 Zambia\n", - "41649 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "79 Aruba\n", - "298 Afghanistan\n", - "517 Angola\n", - "736 Albania\n", - "1002 United Arab Emirates\n", - "1221 Argentina\n", - "1440 Armenia\n", - "1659 Antigua and Barbuda\n", - "1878 Australia\n", - "2097 Austria\n", - "2316 Azerbaijan\n", - "2535 Burundi\n", - "2754 Belgium\n", - "2973 Benin\n", - "3192 Burkina Faso\n", - "3411 Bangladesh\n", - "3630 Bulgaria\n", - "3849 Bahrain\n", - "4068 Bahamas\n", - "4287 Bosnia and Herzegovina\n", - "4506 Belarus\n", - "4725 Belize\n", - "4991 Bolivia\n", - "5210 Brazil\n", - "5429 Barbados\n", - "5648 Brunei\n", - "5867 Bhutan\n", - "6086 Botswana\n", - "6305 Central African Republic\n", - "6524 Canada\n", - " ... \n", - "35301 Sweden\n", - "35520 Swaziland\n", - "35739 Seychelles\n", - "35958 Syria\n", - "36177 Chad\n", - "36396 Togo\n", - "36615 Thailand\n", - "36834 Tajikistan\n", - "37053 Turkmenistan\n", - "37272 Timor-Leste\n", - "37491 Tonga\n", - "37710 Trinidad and Tobago\n", - "37929 Tunisia\n", - "38148 Turkey\n", - "38367 Taiwan\n", - "38584 Tanzania\n", - "38803 Uganda\n", - "39022 Ukraine\n", - "39241 Uruguay\n", - "39460 United States\n", - "39679 Uzbekistan\n", - "39898 St. Vincent and the Grenadines\n", - "40117 Venezuela\n", - "40336 Vietnam\n", - "40555 Vanuatu\n", - "40774 Samoa\n", - "40993 Yemen\n", - "41212 South Africa\n", - "41431 Zambia\n", - "41650 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "80 Aruba\n", - "299 Afghanistan\n", - "518 Angola\n", - "737 Albania\n", - "1003 United Arab Emirates\n", - "1222 Argentina\n", - "1441 Armenia\n", - "1660 Antigua and Barbuda\n", - "1879 Australia\n", - "2098 Austria\n", - "2317 Azerbaijan\n", - "2536 Burundi\n", - "2755 Belgium\n", - "2974 Benin\n", - "3193 Burkina Faso\n", - "3412 Bangladesh\n", - "3631 Bulgaria\n", - "3850 Bahrain\n", - "4069 Bahamas\n", - "4288 Bosnia and Herzegovina\n", - "4507 Belarus\n", - "4726 Belize\n", - "4992 Bolivia\n", - "5211 Brazil\n", - "5430 Barbados\n", - "5649 Brunei\n", - "5868 Bhutan\n", - "6087 Botswana\n", - "6306 Central African Republic\n", - "6525 Canada\n", - " ... \n", - "35302 Sweden\n", - "35521 Swaziland\n", - "35740 Seychelles\n", - "35959 Syria\n", - "36178 Chad\n", - "36397 Togo\n", - "36616 Thailand\n", - "36835 Tajikistan\n", - "37054 Turkmenistan\n", - "37273 Timor-Leste\n", - "37492 Tonga\n", - "37711 Trinidad and Tobago\n", - "37930 Tunisia\n", - "38149 Turkey\n", - "38368 Taiwan\n", - "38585 Tanzania\n", - "38804 Uganda\n", - "39023 Ukraine\n", - "39242 Uruguay\n", - "39461 United States\n", - "39680 Uzbekistan\n", - "39899 St. Vincent and the Grenadines\n", - "40118 Venezuela\n", - "40337 Vietnam\n", - "40556 Vanuatu\n", - "40775 Samoa\n", - "40994 Yemen\n", - "41213 South Africa\n", - "41432 Zambia\n", - "41651 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "81 Aruba\n", - "300 Afghanistan\n", - "519 Angola\n", - "738 Albania\n", - "1004 United Arab Emirates\n", - "1223 Argentina\n", - "1442 Armenia\n", - "1661 Antigua and Barbuda\n", - "1880 Australia\n", - "2099 Austria\n", - "2318 Azerbaijan\n", - "2537 Burundi\n", - "2756 Belgium\n", - "2975 Benin\n", - "3194 Burkina Faso\n", - "3413 Bangladesh\n", - "3632 Bulgaria\n", - "3851 Bahrain\n", - "4070 Bahamas\n", - "4289 Bosnia and Herzegovina\n", - "4508 Belarus\n", - "4727 Belize\n", - "4993 Bolivia\n", - "5212 Brazil\n", - "5431 Barbados\n", - "5650 Brunei\n", - "5869 Bhutan\n", - "6088 Botswana\n", - "6307 Central African Republic\n", - "6526 Canada\n", - " ... \n", - "35303 Sweden\n", - "35522 Swaziland\n", - "35741 Seychelles\n", - "35960 Syria\n", - "36179 Chad\n", - "36398 Togo\n", - "36617 Thailand\n", - "36836 Tajikistan\n", - "37055 Turkmenistan\n", - "37274 Timor-Leste\n", - "37493 Tonga\n", - "37712 Trinidad and Tobago\n", - "37931 Tunisia\n", - "38150 Turkey\n", - "38369 Taiwan\n", - "38586 Tanzania\n", - "38805 Uganda\n", - "39024 Ukraine\n", - "39243 Uruguay\n", - "39462 United States\n", - "39681 Uzbekistan\n", - "39900 St. Vincent and the Grenadines\n", - "40119 Venezuela\n", - "40338 Vietnam\n", - "40557 Vanuatu\n", - "40776 Samoa\n", - "40995 Yemen\n", - "41214 South Africa\n", - "41433 Zambia\n", - "41652 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "82 Aruba\n", - "301 Afghanistan\n", - "520 Angola\n", - "739 Albania\n", - "1005 United Arab Emirates\n", - "1224 Argentina\n", - "1443 Armenia\n", - "1662 Antigua and Barbuda\n", - "1881 Australia\n", - "2100 Austria\n", - "2319 Azerbaijan\n", - "2538 Burundi\n", - "2757 Belgium\n", - "2976 Benin\n", - "3195 Burkina Faso\n", - "3414 Bangladesh\n", - "3633 Bulgaria\n", - "3852 Bahrain\n", - "4071 Bahamas\n", - "4290 Bosnia and Herzegovina\n", - "4509 Belarus\n", - "4728 Belize\n", - "4994 Bolivia\n", - "5213 Brazil\n", - "5432 Barbados\n", - "5651 Brunei\n", - "5870 Bhutan\n", - "6089 Botswana\n", - "6308 Central African Republic\n", - "6527 Canada\n", - " ... \n", - "35304 Sweden\n", - "35523 Swaziland\n", - "35742 Seychelles\n", - "35961 Syria\n", - "36180 Chad\n", - "36399 Togo\n", - "36618 Thailand\n", - "36837 Tajikistan\n", - "37056 Turkmenistan\n", - "37275 Timor-Leste\n", - "37494 Tonga\n", - "37713 Trinidad and Tobago\n", - "37932 Tunisia\n", - "38151 Turkey\n", - "38370 Taiwan\n", - "38587 Tanzania\n", - "38806 Uganda\n", - "39025 Ukraine\n", - "39244 Uruguay\n", - "39463 United States\n", - "39682 Uzbekistan\n", - "39901 St. Vincent and the Grenadines\n", - "40120 Venezuela\n", - "40339 Vietnam\n", - "40558 Vanuatu\n", - "40777 Samoa\n", - "40996 Yemen\n", - "41215 South Africa\n", - "41434 Zambia\n", - "41653 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "83 Aruba\n", - "302 Afghanistan\n", - "521 Angola\n", - "740 Albania\n", - "1006 United Arab Emirates\n", - "1225 Argentina\n", - "1444 Armenia\n", - "1663 Antigua and Barbuda\n", - "1882 Australia\n", - "2101 Austria\n", - "2320 Azerbaijan\n", - "2539 Burundi\n", - "2758 Belgium\n", - "2977 Benin\n", - "3196 Burkina Faso\n", - "3415 Bangladesh\n", - "3634 Bulgaria\n", - "3853 Bahrain\n", - "4072 Bahamas\n", - "4291 Bosnia and Herzegovina\n", - "4510 Belarus\n", - "4729 Belize\n", - "4995 Bolivia\n", - "5214 Brazil\n", - "5433 Barbados\n", - "5652 Brunei\n", - "5871 Bhutan\n", - "6090 Botswana\n", - "6309 Central African Republic\n", - "6528 Canada\n", - " ... \n", - "35305 Sweden\n", - "35524 Swaziland\n", - "35743 Seychelles\n", - "35962 Syria\n", - "36181 Chad\n", - "36400 Togo\n", - "36619 Thailand\n", - "36838 Tajikistan\n", - "37057 Turkmenistan\n", - "37276 Timor-Leste\n", - "37495 Tonga\n", - "37714 Trinidad and Tobago\n", - "37933 Tunisia\n", - "38152 Turkey\n", - "38371 Taiwan\n", - "38588 Tanzania\n", - "38807 Uganda\n", - "39026 Ukraine\n", - "39245 Uruguay\n", - "39464 United States\n", - "39683 Uzbekistan\n", - "39902 St. Vincent and the Grenadines\n", - "40121 Venezuela\n", - "40340 Vietnam\n", - "40559 Vanuatu\n", - "40778 Samoa\n", - "40997 Yemen\n", - "41216 South Africa\n", - "41435 Zambia\n", - "41654 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "84 Aruba\n", - "303 Afghanistan\n", - "522 Angola\n", - "741 Albania\n", - "1007 United Arab Emirates\n", - "1226 Argentina\n", - "1445 Armenia\n", - "1664 Antigua and Barbuda\n", - "1883 Australia\n", - "2102 Austria\n", - "2321 Azerbaijan\n", - "2540 Burundi\n", - "2759 Belgium\n", - "2978 Benin\n", - "3197 Burkina Faso\n", - "3416 Bangladesh\n", - "3635 Bulgaria\n", - "3854 Bahrain\n", - "4073 Bahamas\n", - "4292 Bosnia and Herzegovina\n", - "4511 Belarus\n", - "4730 Belize\n", - "4996 Bolivia\n", - "5215 Brazil\n", - "5434 Barbados\n", - "5653 Brunei\n", - "5872 Bhutan\n", - "6091 Botswana\n", - "6310 Central African Republic\n", - "6529 Canada\n", - " ... \n", - "35306 Sweden\n", - "35525 Swaziland\n", - "35744 Seychelles\n", - "35963 Syria\n", - "36182 Chad\n", - "36401 Togo\n", - "36620 Thailand\n", - "36839 Tajikistan\n", - "37058 Turkmenistan\n", - "37277 Timor-Leste\n", - "37496 Tonga\n", - "37715 Trinidad and Tobago\n", - "37934 Tunisia\n", - "38153 Turkey\n", - "38372 Taiwan\n", - "38589 Tanzania\n", - "38808 Uganda\n", - "39027 Ukraine\n", - "39246 Uruguay\n", - "39465 United States\n", - "39684 Uzbekistan\n", - "39903 St. Vincent and the Grenadines\n", - "40122 Venezuela\n", - "40341 Vietnam\n", - "40560 Vanuatu\n", - "40779 Samoa\n", - "40998 Yemen\n", - "41217 South Africa\n", - "41436 Zambia\n", - "41655 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "85 Aruba\n", - "304 Afghanistan\n", - "523 Angola\n", - "742 Albania\n", - "1008 United Arab Emirates\n", - "1227 Argentina\n", - "1446 Armenia\n", - "1665 Antigua and Barbuda\n", - "1884 Australia\n", - "2103 Austria\n", - "2322 Azerbaijan\n", - "2541 Burundi\n", - "2760 Belgium\n", - "2979 Benin\n", - "3198 Burkina Faso\n", - "3417 Bangladesh\n", - "3636 Bulgaria\n", - "3855 Bahrain\n", - "4074 Bahamas\n", - "4293 Bosnia and Herzegovina\n", - "4512 Belarus\n", - "4731 Belize\n", - "4997 Bolivia\n", - "5216 Brazil\n", - "5435 Barbados\n", - "5654 Brunei\n", - "5873 Bhutan\n", - "6092 Botswana\n", - "6311 Central African Republic\n", - "6530 Canada\n", - " ... \n", - "35307 Sweden\n", - "35526 Swaziland\n", - "35745 Seychelles\n", - "35964 Syria\n", - "36183 Chad\n", - "36402 Togo\n", - "36621 Thailand\n", - "36840 Tajikistan\n", - "37059 Turkmenistan\n", - "37278 Timor-Leste\n", - "37497 Tonga\n", - "37716 Trinidad and Tobago\n", - "37935 Tunisia\n", - "38154 Turkey\n", - "38373 Taiwan\n", - "38590 Tanzania\n", - "38809 Uganda\n", - "39028 Ukraine\n", - "39247 Uruguay\n", - "39466 United States\n", - "39685 Uzbekistan\n", - "39904 St. Vincent and the Grenadines\n", - "40123 Venezuela\n", - "40342 Vietnam\n", - "40561 Vanuatu\n", - "40780 Samoa\n", - "40999 Yemen\n", - "41218 South Africa\n", - "41437 Zambia\n", - "41656 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "86 Aruba\n", - "305 Afghanistan\n", - "524 Angola\n", - "743 Albania\n", - "1009 United Arab Emirates\n", - "1228 Argentina\n", - "1447 Armenia\n", - "1666 Antigua and Barbuda\n", - "1885 Australia\n", - "2104 Austria\n", - "2323 Azerbaijan\n", - "2542 Burundi\n", - "2761 Belgium\n", - "2980 Benin\n", - "3199 Burkina Faso\n", - "3418 Bangladesh\n", - "3637 Bulgaria\n", - "3856 Bahrain\n", - "4075 Bahamas\n", - "4294 Bosnia and Herzegovina\n", - "4513 Belarus\n", - "4732 Belize\n", - "4998 Bolivia\n", - "5217 Brazil\n", - "5436 Barbados\n", - "5655 Brunei\n", - "5874 Bhutan\n", - "6093 Botswana\n", - "6312 Central African Republic\n", - "6531 Canada\n", - " ... \n", - "35308 Sweden\n", - "35527 Swaziland\n", - "35746 Seychelles\n", - "35965 Syria\n", - "36184 Chad\n", - "36403 Togo\n", - "36622 Thailand\n", - "36841 Tajikistan\n", - "37060 Turkmenistan\n", - "37279 Timor-Leste\n", - "37498 Tonga\n", - "37717 Trinidad and Tobago\n", - "37936 Tunisia\n", - "38155 Turkey\n", - "38374 Taiwan\n", - "38591 Tanzania\n", - "38810 Uganda\n", - "39029 Ukraine\n", - "39248 Uruguay\n", - "39467 United States\n", - "39686 Uzbekistan\n", - "39905 St. Vincent and the Grenadines\n", - "40124 Venezuela\n", - "40343 Vietnam\n", - "40562 Vanuatu\n", - "40781 Samoa\n", - "41000 Yemen\n", - "41219 South Africa\n", - "41438 Zambia\n", - "41657 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "87 Aruba\n", - "306 Afghanistan\n", - "525 Angola\n", - "744 Albania\n", - "1010 United Arab Emirates\n", - "1229 Argentina\n", - "1448 Armenia\n", - "1667 Antigua and Barbuda\n", - "1886 Australia\n", - "2105 Austria\n", - "2324 Azerbaijan\n", - "2543 Burundi\n", - "2762 Belgium\n", - "2981 Benin\n", - "3200 Burkina Faso\n", - "3419 Bangladesh\n", - "3638 Bulgaria\n", - "3857 Bahrain\n", - "4076 Bahamas\n", - "4295 Bosnia and Herzegovina\n", - "4514 Belarus\n", - "4733 Belize\n", - "4999 Bolivia\n", - "5218 Brazil\n", - "5437 Barbados\n", - "5656 Brunei\n", - "5875 Bhutan\n", - "6094 Botswana\n", - "6313 Central African Republic\n", - "6532 Canada\n", - " ... \n", - "35309 Sweden\n", - "35528 Swaziland\n", - "35747 Seychelles\n", - "35966 Syria\n", - "36185 Chad\n", - "36404 Togo\n", - "36623 Thailand\n", - "36842 Tajikistan\n", - "37061 Turkmenistan\n", - "37280 Timor-Leste\n", - "37499 Tonga\n", - "37718 Trinidad and Tobago\n", - "37937 Tunisia\n", - "38156 Turkey\n", - "38375 Taiwan\n", - "38592 Tanzania\n", - "38811 Uganda\n", - "39030 Ukraine\n", - "39249 Uruguay\n", - "39468 United States\n", - "39687 Uzbekistan\n", - "39906 St. Vincent and the Grenadines\n", - "40125 Venezuela\n", - "40344 Vietnam\n", - "40563 Vanuatu\n", - "40782 Samoa\n", - "41001 Yemen\n", - "41220 South Africa\n", - "41439 Zambia\n", - "41658 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "88 Aruba\n", - "307 Afghanistan\n", - "526 Angola\n", - "745 Albania\n", - "1011 United Arab Emirates\n", - "1230 Argentina\n", - "1449 Armenia\n", - "1668 Antigua and Barbuda\n", - "1887 Australia\n", - "2106 Austria\n", - "2325 Azerbaijan\n", - "2544 Burundi\n", - "2763 Belgium\n", - "2982 Benin\n", - "3201 Burkina Faso\n", - "3420 Bangladesh\n", - "3639 Bulgaria\n", - "3858 Bahrain\n", - "4077 Bahamas\n", - "4296 Bosnia and Herzegovina\n", - "4515 Belarus\n", - "4734 Belize\n", - "5000 Bolivia\n", - "5219 Brazil\n", - "5438 Barbados\n", - "5657 Brunei\n", - "5876 Bhutan\n", - "6095 Botswana\n", - "6314 Central African Republic\n", - "6533 Canada\n", - " ... \n", - "35310 Sweden\n", - "35529 Swaziland\n", - "35748 Seychelles\n", - "35967 Syria\n", - "36186 Chad\n", - "36405 Togo\n", - "36624 Thailand\n", - "36843 Tajikistan\n", - "37062 Turkmenistan\n", - "37281 Timor-Leste\n", - "37500 Tonga\n", - "37719 Trinidad and Tobago\n", - "37938 Tunisia\n", - "38157 Turkey\n", - "38376 Taiwan\n", - "38593 Tanzania\n", - "38812 Uganda\n", - "39031 Ukraine\n", - "39250 Uruguay\n", - "39469 United States\n", - "39688 Uzbekistan\n", - "39907 St. Vincent and the Grenadines\n", - "40126 Venezuela\n", - "40345 Vietnam\n", - "40564 Vanuatu\n", - "40783 Samoa\n", - "41002 Yemen\n", - "41221 South Africa\n", - "41440 Zambia\n", - "41659 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "89 Aruba\n", - "308 Afghanistan\n", - "527 Angola\n", - "746 Albania\n", - "1012 United Arab Emirates\n", - "1231 Argentina\n", - "1450 Armenia\n", - "1669 Antigua and Barbuda\n", - "1888 Australia\n", - "2107 Austria\n", - "2326 Azerbaijan\n", - "2545 Burundi\n", - "2764 Belgium\n", - "2983 Benin\n", - "3202 Burkina Faso\n", - "3421 Bangladesh\n", - "3640 Bulgaria\n", - "3859 Bahrain\n", - "4078 Bahamas\n", - "4297 Bosnia and Herzegovina\n", - "4516 Belarus\n", - "4735 Belize\n", - "5001 Bolivia\n", - "5220 Brazil\n", - "5439 Barbados\n", - "5658 Brunei\n", - "5877 Bhutan\n", - "6096 Botswana\n", - "6315 Central African Republic\n", - "6534 Canada\n", - " ... \n", - "35311 Sweden\n", - "35530 Swaziland\n", - "35749 Seychelles\n", - "35968 Syria\n", - "36187 Chad\n", - "36406 Togo\n", - "36625 Thailand\n", - "36844 Tajikistan\n", - "37063 Turkmenistan\n", - "37282 Timor-Leste\n", - "37501 Tonga\n", - "37720 Trinidad and Tobago\n", - "37939 Tunisia\n", - "38158 Turkey\n", - "38377 Taiwan\n", - "38594 Tanzania\n", - "38813 Uganda\n", - "39032 Ukraine\n", - "39251 Uruguay\n", - "39470 United States\n", - "39689 Uzbekistan\n", - "39908 St. Vincent and the Grenadines\n", - "40127 Venezuela\n", - "40346 Vietnam\n", - "40565 Vanuatu\n", - "40784 Samoa\n", - "41003 Yemen\n", - "41222 South Africa\n", - "41441 Zambia\n", - "41660 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "90 Aruba\n", - "309 Afghanistan\n", - "528 Angola\n", - "747 Albania\n", - "1013 United Arab Emirates\n", - "1232 Argentina\n", - "1451 Armenia\n", - "1670 Antigua and Barbuda\n", - "1889 Australia\n", - "2108 Austria\n", - "2327 Azerbaijan\n", - "2546 Burundi\n", - "2765 Belgium\n", - "2984 Benin\n", - "3203 Burkina Faso\n", - "3422 Bangladesh\n", - "3641 Bulgaria\n", - "3860 Bahrain\n", - "4079 Bahamas\n", - "4298 Bosnia and Herzegovina\n", - "4517 Belarus\n", - "4736 Belize\n", - "5002 Bolivia\n", - "5221 Brazil\n", - "5440 Barbados\n", - "5659 Brunei\n", - "5878 Bhutan\n", - "6097 Botswana\n", - "6316 Central African Republic\n", - "6535 Canada\n", - " ... \n", - "35312 Sweden\n", - "35531 Swaziland\n", - "35750 Seychelles\n", - "35969 Syria\n", - "36188 Chad\n", - "36407 Togo\n", - "36626 Thailand\n", - "36845 Tajikistan\n", - "37064 Turkmenistan\n", - "37283 Timor-Leste\n", - "37502 Tonga\n", - "37721 Trinidad and Tobago\n", - "37940 Tunisia\n", - "38159 Turkey\n", - "38378 Taiwan\n", - "38595 Tanzania\n", - "38814 Uganda\n", - "39033 Ukraine\n", - "39252 Uruguay\n", - "39471 United States\n", - "39690 Uzbekistan\n", - "39909 St. Vincent and the Grenadines\n", - "40128 Venezuela\n", - "40347 Vietnam\n", - "40566 Vanuatu\n", - "40785 Samoa\n", - "41004 Yemen\n", - "41223 South Africa\n", - "41442 Zambia\n", - "41661 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "91 Aruba\n", - "310 Afghanistan\n", - "529 Angola\n", - "748 Albania\n", - "1014 United Arab Emirates\n", - "1233 Argentina\n", - "1452 Armenia\n", - "1671 Antigua and Barbuda\n", - "1890 Australia\n", - "2109 Austria\n", - "2328 Azerbaijan\n", - "2547 Burundi\n", - "2766 Belgium\n", - "2985 Benin\n", - "3204 Burkina Faso\n", - "3423 Bangladesh\n", - "3642 Bulgaria\n", - "3861 Bahrain\n", - "4080 Bahamas\n", - "4299 Bosnia and Herzegovina\n", - "4518 Belarus\n", - "4737 Belize\n", - "5003 Bolivia\n", - "5222 Brazil\n", - "5441 Barbados\n", - "5660 Brunei\n", - "5879 Bhutan\n", - "6098 Botswana\n", - "6317 Central African Republic\n", - "6536 Canada\n", - " ... \n", - "35313 Sweden\n", - "35532 Swaziland\n", - "35751 Seychelles\n", - "35970 Syria\n", - "36189 Chad\n", - "36408 Togo\n", - "36627 Thailand\n", - "36846 Tajikistan\n", - "37065 Turkmenistan\n", - "37284 Timor-Leste\n", - "37503 Tonga\n", - "37722 Trinidad and Tobago\n", - "37941 Tunisia\n", - "38160 Turkey\n", - "38379 Taiwan\n", - "38596 Tanzania\n", - "38815 Uganda\n", - "39034 Ukraine\n", - "39253 Uruguay\n", - "39472 United States\n", - "39691 Uzbekistan\n", - "39910 St. Vincent and the Grenadines\n", - "40129 Venezuela\n", - "40348 Vietnam\n", - "40567 Vanuatu\n", - "40786 Samoa\n", - "41005 Yemen\n", - "41224 South Africa\n", - "41443 Zambia\n", - "41662 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "92 Aruba\n", - "311 Afghanistan\n", - "530 Angola\n", - "749 Albania\n", - "1015 United Arab Emirates\n", - "1234 Argentina\n", - "1453 Armenia\n", - "1672 Antigua and Barbuda\n", - "1891 Australia\n", - "2110 Austria\n", - "2329 Azerbaijan\n", - "2548 Burundi\n", - "2767 Belgium\n", - "2986 Benin\n", - "3205 Burkina Faso\n", - "3424 Bangladesh\n", - "3643 Bulgaria\n", - "3862 Bahrain\n", - "4081 Bahamas\n", - "4300 Bosnia and Herzegovina\n", - "4519 Belarus\n", - "4738 Belize\n", - "5004 Bolivia\n", - "5223 Brazil\n", - "5442 Barbados\n", - "5661 Brunei\n", - "5880 Bhutan\n", - "6099 Botswana\n", - "6318 Central African Republic\n", - "6537 Canada\n", - " ... \n", - "35314 Sweden\n", - "35533 Swaziland\n", - "35752 Seychelles\n", - "35971 Syria\n", - "36190 Chad\n", - "36409 Togo\n", - "36628 Thailand\n", - "36847 Tajikistan\n", - "37066 Turkmenistan\n", - "37285 Timor-Leste\n", - "37504 Tonga\n", - "37723 Trinidad and Tobago\n", - "37942 Tunisia\n", - "38161 Turkey\n", - "38380 Taiwan\n", - "38597 Tanzania\n", - "38816 Uganda\n", - "39035 Ukraine\n", - "39254 Uruguay\n", - "39473 United States\n", - "39692 Uzbekistan\n", - "39911 St. Vincent and the Grenadines\n", - "40130 Venezuela\n", - "40349 Vietnam\n", - "40568 Vanuatu\n", - "40787 Samoa\n", - "41006 Yemen\n", - "41225 South Africa\n", - "41444 Zambia\n", - "41663 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "93 Aruba\n", - "312 Afghanistan\n", - "531 Angola\n", - "750 Albania\n", - "1016 United Arab Emirates\n", - "1235 Argentina\n", - "1454 Armenia\n", - "1673 Antigua and Barbuda\n", - "1892 Australia\n", - "2111 Austria\n", - "2330 Azerbaijan\n", - "2549 Burundi\n", - "2768 Belgium\n", - "2987 Benin\n", - "3206 Burkina Faso\n", - "3425 Bangladesh\n", - "3644 Bulgaria\n", - "3863 Bahrain\n", - "4082 Bahamas\n", - "4301 Bosnia and Herzegovina\n", - "4520 Belarus\n", - "4739 Belize\n", - "5005 Bolivia\n", - "5224 Brazil\n", - "5443 Barbados\n", - "5662 Brunei\n", - "5881 Bhutan\n", - "6100 Botswana\n", - "6319 Central African Republic\n", - "6538 Canada\n", - " ... \n", - "35315 Sweden\n", - "35534 Swaziland\n", - "35753 Seychelles\n", - "35972 Syria\n", - "36191 Chad\n", - "36410 Togo\n", - "36629 Thailand\n", - "36848 Tajikistan\n", - "37067 Turkmenistan\n", - "37286 Timor-Leste\n", - "37505 Tonga\n", - "37724 Trinidad and Tobago\n", - "37943 Tunisia\n", - "38162 Turkey\n", - "38381 Taiwan\n", - "38598 Tanzania\n", - "38817 Uganda\n", - "39036 Ukraine\n", - "39255 Uruguay\n", - "39474 United States\n", - "39693 Uzbekistan\n", - "39912 St. Vincent and the Grenadines\n", - "40131 Venezuela\n", - "40350 Vietnam\n", - "40569 Vanuatu\n", - "40788 Samoa\n", - "41007 Yemen\n", - "41226 South Africa\n", - "41445 Zambia\n", - "41664 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "94 Aruba\n", - "313 Afghanistan\n", - "532 Angola\n", - "751 Albania\n", - "1017 United Arab Emirates\n", - "1236 Argentina\n", - "1455 Armenia\n", - "1674 Antigua and Barbuda\n", - "1893 Australia\n", - "2112 Austria\n", - "2331 Azerbaijan\n", - "2550 Burundi\n", - "2769 Belgium\n", - "2988 Benin\n", - "3207 Burkina Faso\n", - "3426 Bangladesh\n", - "3645 Bulgaria\n", - "3864 Bahrain\n", - "4083 Bahamas\n", - "4302 Bosnia and Herzegovina\n", - "4521 Belarus\n", - "4740 Belize\n", - "5006 Bolivia\n", - "5225 Brazil\n", - "5444 Barbados\n", - "5663 Brunei\n", - "5882 Bhutan\n", - "6101 Botswana\n", - "6320 Central African Republic\n", - "6539 Canada\n", - " ... \n", - "35316 Sweden\n", - "35535 Swaziland\n", - "35754 Seychelles\n", - "35973 Syria\n", - "36192 Chad\n", - "36411 Togo\n", - "36630 Thailand\n", - "36849 Tajikistan\n", - "37068 Turkmenistan\n", - "37287 Timor-Leste\n", - "37506 Tonga\n", - "37725 Trinidad and Tobago\n", - "37944 Tunisia\n", - "38163 Turkey\n", - "38382 Taiwan\n", - "38599 Tanzania\n", - "38818 Uganda\n", - "39037 Ukraine\n", - "39256 Uruguay\n", - "39475 United States\n", - "39694 Uzbekistan\n", - "39913 St. Vincent and the Grenadines\n", - "40132 Venezuela\n", - "40351 Vietnam\n", - "40570 Vanuatu\n", - "40789 Samoa\n", - "41008 Yemen\n", - "41227 South Africa\n", - "41446 Zambia\n", - "41665 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "95 Aruba\n", - "314 Afghanistan\n", - "533 Angola\n", - "752 Albania\n", - "1018 United Arab Emirates\n", - "1237 Argentina\n", - "1456 Armenia\n", - "1675 Antigua and Barbuda\n", - "1894 Australia\n", - "2113 Austria\n", - "2332 Azerbaijan\n", - "2551 Burundi\n", - "2770 Belgium\n", - "2989 Benin\n", - "3208 Burkina Faso\n", - "3427 Bangladesh\n", - "3646 Bulgaria\n", - "3865 Bahrain\n", - "4084 Bahamas\n", - "4303 Bosnia and Herzegovina\n", - "4522 Belarus\n", - "4741 Belize\n", - "5007 Bolivia\n", - "5226 Brazil\n", - "5445 Barbados\n", - "5664 Brunei\n", - "5883 Bhutan\n", - "6102 Botswana\n", - "6321 Central African Republic\n", - "6540 Canada\n", - " ... \n", - "35317 Sweden\n", - "35536 Swaziland\n", - "35755 Seychelles\n", - "35974 Syria\n", - "36193 Chad\n", - "36412 Togo\n", - "36631 Thailand\n", - "36850 Tajikistan\n", - "37069 Turkmenistan\n", - "37288 Timor-Leste\n", - "37507 Tonga\n", - "37726 Trinidad and Tobago\n", - "37945 Tunisia\n", - "38164 Turkey\n", - "38383 Taiwan\n", - "38600 Tanzania\n", - "38819 Uganda\n", - "39038 Ukraine\n", - "39257 Uruguay\n", - "39476 United States\n", - "39695 Uzbekistan\n", - "39914 St. Vincent and the Grenadines\n", - "40133 Venezuela\n", - "40352 Vietnam\n", - "40571 Vanuatu\n", - "40790 Samoa\n", - "41009 Yemen\n", - "41228 South Africa\n", - "41447 Zambia\n", - "41666 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "96 Aruba\n", - "315 Afghanistan\n", - "534 Angola\n", - "753 Albania\n", - "1019 United Arab Emirates\n", - "1238 Argentina\n", - "1457 Armenia\n", - "1676 Antigua and Barbuda\n", - "1895 Australia\n", - "2114 Austria\n", - "2333 Azerbaijan\n", - "2552 Burundi\n", - "2771 Belgium\n", - "2990 Benin\n", - "3209 Burkina Faso\n", - "3428 Bangladesh\n", - "3647 Bulgaria\n", - "3866 Bahrain\n", - "4085 Bahamas\n", - "4304 Bosnia and Herzegovina\n", - "4523 Belarus\n", - "4742 Belize\n", - "5008 Bolivia\n", - "5227 Brazil\n", - "5446 Barbados\n", - "5665 Brunei\n", - "5884 Bhutan\n", - "6103 Botswana\n", - "6322 Central African Republic\n", - "6541 Canada\n", - " ... \n", - "35318 Sweden\n", - "35537 Swaziland\n", - "35756 Seychelles\n", - "35975 Syria\n", - "36194 Chad\n", - "36413 Togo\n", - "36632 Thailand\n", - "36851 Tajikistan\n", - "37070 Turkmenistan\n", - "37289 Timor-Leste\n", - "37508 Tonga\n", - "37727 Trinidad and Tobago\n", - "37946 Tunisia\n", - "38165 Turkey\n", - "38384 Taiwan\n", - "38601 Tanzania\n", - "38820 Uganda\n", - "39039 Ukraine\n", - "39258 Uruguay\n", - "39477 United States\n", - "39696 Uzbekistan\n", - "39915 St. Vincent and the Grenadines\n", - "40134 Venezuela\n", - "40353 Vietnam\n", - "40572 Vanuatu\n", - "40791 Samoa\n", - "41010 Yemen\n", - "41229 South Africa\n", - "41448 Zambia\n", - "41667 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "97 Aruba\n", - "316 Afghanistan\n", - "535 Angola\n", - "754 Albania\n", - "1020 United Arab Emirates\n", - "1239 Argentina\n", - "1458 Armenia\n", - "1677 Antigua and Barbuda\n", - "1896 Australia\n", - "2115 Austria\n", - "2334 Azerbaijan\n", - "2553 Burundi\n", - "2772 Belgium\n", - "2991 Benin\n", - "3210 Burkina Faso\n", - "3429 Bangladesh\n", - "3648 Bulgaria\n", - "3867 Bahrain\n", - "4086 Bahamas\n", - "4305 Bosnia and Herzegovina\n", - "4524 Belarus\n", - "4743 Belize\n", - "5009 Bolivia\n", - "5228 Brazil\n", - "5447 Barbados\n", - "5666 Brunei\n", - "5885 Bhutan\n", - "6104 Botswana\n", - "6323 Central African Republic\n", - "6542 Canada\n", - " ... \n", - "35319 Sweden\n", - "35538 Swaziland\n", - "35757 Seychelles\n", - "35976 Syria\n", - "36195 Chad\n", - "36414 Togo\n", - "36633 Thailand\n", - "36852 Tajikistan\n", - "37071 Turkmenistan\n", - "37290 Timor-Leste\n", - "37509 Tonga\n", - "37728 Trinidad and Tobago\n", - "37947 Tunisia\n", - "38166 Turkey\n", - "38385 Taiwan\n", - "38602 Tanzania\n", - "38821 Uganda\n", - "39040 Ukraine\n", - "39259 Uruguay\n", - "39478 United States\n", - "39697 Uzbekistan\n", - "39916 St. Vincent and the Grenadines\n", - "40135 Venezuela\n", - "40354 Vietnam\n", - "40573 Vanuatu\n", - "40792 Samoa\n", - "41011 Yemen\n", - "41230 South Africa\n", - "41449 Zambia\n", - "41668 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "98 Aruba\n", - "317 Afghanistan\n", - "536 Angola\n", - "755 Albania\n", - "1021 United Arab Emirates\n", - "1240 Argentina\n", - "1459 Armenia\n", - "1678 Antigua and Barbuda\n", - "1897 Australia\n", - "2116 Austria\n", - "2335 Azerbaijan\n", - "2554 Burundi\n", - "2773 Belgium\n", - "2992 Benin\n", - "3211 Burkina Faso\n", - "3430 Bangladesh\n", - "3649 Bulgaria\n", - "3868 Bahrain\n", - "4087 Bahamas\n", - "4306 Bosnia and Herzegovina\n", - "4525 Belarus\n", - "4744 Belize\n", - "5010 Bolivia\n", - "5229 Brazil\n", - "5448 Barbados\n", - "5667 Brunei\n", - "5886 Bhutan\n", - "6105 Botswana\n", - "6324 Central African Republic\n", - "6543 Canada\n", - " ... \n", - "35320 Sweden\n", - "35539 Swaziland\n", - "35758 Seychelles\n", - "35977 Syria\n", - "36196 Chad\n", - "36415 Togo\n", - "36634 Thailand\n", - "36853 Tajikistan\n", - "37072 Turkmenistan\n", - "37291 Timor-Leste\n", - "37510 Tonga\n", - "37729 Trinidad and Tobago\n", - "37948 Tunisia\n", - "38167 Turkey\n", - "38386 Taiwan\n", - "38603 Tanzania\n", - "38822 Uganda\n", - "39041 Ukraine\n", - "39260 Uruguay\n", - "39479 United States\n", - "39698 Uzbekistan\n", - "39917 St. Vincent and the Grenadines\n", - "40136 Venezuela\n", - "40355 Vietnam\n", - "40574 Vanuatu\n", - "40793 Samoa\n", - "41012 Yemen\n", - "41231 South Africa\n", - "41450 Zambia\n", - "41669 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "99 Aruba\n", - "318 Afghanistan\n", - "537 Angola\n", - "756 Albania\n", - "1022 United Arab Emirates\n", - "1241 Argentina\n", - "1460 Armenia\n", - "1679 Antigua and Barbuda\n", - "1898 Australia\n", - "2117 Austria\n", - "2336 Azerbaijan\n", - "2555 Burundi\n", - "2774 Belgium\n", - "2993 Benin\n", - "3212 Burkina Faso\n", - "3431 Bangladesh\n", - "3650 Bulgaria\n", - "3869 Bahrain\n", - "4088 Bahamas\n", - "4307 Bosnia and Herzegovina\n", - "4526 Belarus\n", - "4745 Belize\n", - "5011 Bolivia\n", - "5230 Brazil\n", - "5449 Barbados\n", - "5668 Brunei\n", - "5887 Bhutan\n", - "6106 Botswana\n", - "6325 Central African Republic\n", - "6544 Canada\n", - " ... \n", - "35321 Sweden\n", - "35540 Swaziland\n", - "35759 Seychelles\n", - "35978 Syria\n", - "36197 Chad\n", - "36416 Togo\n", - "36635 Thailand\n", - "36854 Tajikistan\n", - "37073 Turkmenistan\n", - "37292 Timor-Leste\n", - "37511 Tonga\n", - "37730 Trinidad and Tobago\n", - "37949 Tunisia\n", - "38168 Turkey\n", - "38387 Taiwan\n", - "38604 Tanzania\n", - "38823 Uganda\n", - "39042 Ukraine\n", - "39261 Uruguay\n", - "39480 United States\n", - "39699 Uzbekistan\n", - "39918 St. Vincent and the Grenadines\n", - "40137 Venezuela\n", - "40356 Vietnam\n", - "40575 Vanuatu\n", - "40794 Samoa\n", - "41013 Yemen\n", - "41232 South Africa\n", - "41451 Zambia\n", - "41670 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "100 Aruba\n", - "319 Afghanistan\n", - "538 Angola\n", - "757 Albania\n", - "1023 United Arab Emirates\n", - "1242 Argentina\n", - "1461 Armenia\n", - "1680 Antigua and Barbuda\n", - "1899 Australia\n", - "2118 Austria\n", - "2337 Azerbaijan\n", - "2556 Burundi\n", - "2775 Belgium\n", - "2994 Benin\n", - "3213 Burkina Faso\n", - "3432 Bangladesh\n", - "3651 Bulgaria\n", - "3870 Bahrain\n", - "4089 Bahamas\n", - "4308 Bosnia and Herzegovina\n", - "4527 Belarus\n", - "4746 Belize\n", - "5012 Bolivia\n", - "5231 Brazil\n", - "5450 Barbados\n", - "5669 Brunei\n", - "5888 Bhutan\n", - "6107 Botswana\n", - "6326 Central African Republic\n", - "6545 Canada\n", - " ... \n", - "35322 Sweden\n", - "35541 Swaziland\n", - "35760 Seychelles\n", - "35979 Syria\n", - "36198 Chad\n", - "36417 Togo\n", - "36636 Thailand\n", - "36855 Tajikistan\n", - "37074 Turkmenistan\n", - "37293 Timor-Leste\n", - "37512 Tonga\n", - "37731 Trinidad and Tobago\n", - "37950 Tunisia\n", - "38169 Turkey\n", - "38388 Taiwan\n", - "38605 Tanzania\n", - "38824 Uganda\n", - "39043 Ukraine\n", - "39262 Uruguay\n", - "39481 United States\n", - "39700 Uzbekistan\n", - "39919 St. Vincent and the Grenadines\n", - "40138 Venezuela\n", - "40357 Vietnam\n", - "40576 Vanuatu\n", - "40795 Samoa\n", - "41014 Yemen\n", - "41233 South Africa\n", - "41452 Zambia\n", - "41671 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "101 Aruba\n", - "320 Afghanistan\n", - "539 Angola\n", - "758 Albania\n", - "1024 United Arab Emirates\n", - "1243 Argentina\n", - "1462 Armenia\n", - "1681 Antigua and Barbuda\n", - "1900 Australia\n", - "2119 Austria\n", - "2338 Azerbaijan\n", - "2557 Burundi\n", - "2776 Belgium\n", - "2995 Benin\n", - "3214 Burkina Faso\n", - "3433 Bangladesh\n", - "3652 Bulgaria\n", - "3871 Bahrain\n", - "4090 Bahamas\n", - "4309 Bosnia and Herzegovina\n", - "4528 Belarus\n", - "4747 Belize\n", - "5013 Bolivia\n", - "5232 Brazil\n", - "5451 Barbados\n", - "5670 Brunei\n", - "5889 Bhutan\n", - "6108 Botswana\n", - "6327 Central African Republic\n", - "6546 Canada\n", - " ... \n", - "35323 Sweden\n", - "35542 Swaziland\n", - "35761 Seychelles\n", - "35980 Syria\n", - "36199 Chad\n", - "36418 Togo\n", - "36637 Thailand\n", - "36856 Tajikistan\n", - "37075 Turkmenistan\n", - "37294 Timor-Leste\n", - "37513 Tonga\n", - "37732 Trinidad and Tobago\n", - "37951 Tunisia\n", - "38170 Turkey\n", - "38389 Taiwan\n", - "38606 Tanzania\n", - "38825 Uganda\n", - "39044 Ukraine\n", - "39263 Uruguay\n", - "39482 United States\n", - "39701 Uzbekistan\n", - "39920 St. Vincent and the Grenadines\n", - "40139 Venezuela\n", - "40358 Vietnam\n", - "40577 Vanuatu\n", - "40796 Samoa\n", - "41015 Yemen\n", - "41234 South Africa\n", - "41453 Zambia\n", - "41672 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "102 Aruba\n", - "321 Afghanistan\n", - "540 Angola\n", - "759 Albania\n", - "1025 United Arab Emirates\n", - "1244 Argentina\n", - "1463 Armenia\n", - "1682 Antigua and Barbuda\n", - "1901 Australia\n", - "2120 Austria\n", - "2339 Azerbaijan\n", - "2558 Burundi\n", - "2777 Belgium\n", - "2996 Benin\n", - "3215 Burkina Faso\n", - "3434 Bangladesh\n", - "3653 Bulgaria\n", - "3872 Bahrain\n", - "4091 Bahamas\n", - "4310 Bosnia and Herzegovina\n", - "4529 Belarus\n", - "4748 Belize\n", - "5014 Bolivia\n", - "5233 Brazil\n", - "5452 Barbados\n", - "5671 Brunei\n", - "5890 Bhutan\n", - "6109 Botswana\n", - "6328 Central African Republic\n", - "6547 Canada\n", - " ... \n", - "35324 Sweden\n", - "35543 Swaziland\n", - "35762 Seychelles\n", - "35981 Syria\n", - "36200 Chad\n", - "36419 Togo\n", - "36638 Thailand\n", - "36857 Tajikistan\n", - "37076 Turkmenistan\n", - "37295 Timor-Leste\n", - "37514 Tonga\n", - "37733 Trinidad and Tobago\n", - "37952 Tunisia\n", - "38171 Turkey\n", - "38390 Taiwan\n", - "38607 Tanzania\n", - "38826 Uganda\n", - "39045 Ukraine\n", - "39264 Uruguay\n", - "39483 United States\n", - "39702 Uzbekistan\n", - "39921 St. Vincent and the Grenadines\n", - "40140 Venezuela\n", - "40359 Vietnam\n", - "40578 Vanuatu\n", - "40797 Samoa\n", - "41016 Yemen\n", - "41235 South Africa\n", - "41454 Zambia\n", - "41673 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "103 Aruba\n", - "322 Afghanistan\n", - "541 Angola\n", - "760 Albania\n", - "1026 United Arab Emirates\n", - "1245 Argentina\n", - "1464 Armenia\n", - "1683 Antigua and Barbuda\n", - "1902 Australia\n", - "2121 Austria\n", - "2340 Azerbaijan\n", - "2559 Burundi\n", - "2778 Belgium\n", - "2997 Benin\n", - "3216 Burkina Faso\n", - "3435 Bangladesh\n", - "3654 Bulgaria\n", - "3873 Bahrain\n", - "4092 Bahamas\n", - "4311 Bosnia and Herzegovina\n", - "4530 Belarus\n", - "4749 Belize\n", - "5015 Bolivia\n", - "5234 Brazil\n", - "5453 Barbados\n", - "5672 Brunei\n", - "5891 Bhutan\n", - "6110 Botswana\n", - "6329 Central African Republic\n", - "6548 Canada\n", - " ... \n", - "35325 Sweden\n", - "35544 Swaziland\n", - "35763 Seychelles\n", - "35982 Syria\n", - "36201 Chad\n", - "36420 Togo\n", - "36639 Thailand\n", - "36858 Tajikistan\n", - "37077 Turkmenistan\n", - "37296 Timor-Leste\n", - "37515 Tonga\n", - "37734 Trinidad and Tobago\n", - "37953 Tunisia\n", - "38172 Turkey\n", - "38391 Taiwan\n", - "38608 Tanzania\n", - "38827 Uganda\n", - "39046 Ukraine\n", - "39265 Uruguay\n", - "39484 United States\n", - "39703 Uzbekistan\n", - "39922 St. Vincent and the Grenadines\n", - "40141 Venezuela\n", - "40360 Vietnam\n", - "40579 Vanuatu\n", - "40798 Samoa\n", - "41017 Yemen\n", - "41236 South Africa\n", - "41455 Zambia\n", - "41674 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "104 Aruba\n", - "323 Afghanistan\n", - "542 Angola\n", - "761 Albania\n", - "1027 United Arab Emirates\n", - "1246 Argentina\n", - "1465 Armenia\n", - "1684 Antigua and Barbuda\n", - "1903 Australia\n", - "2122 Austria\n", - "2341 Azerbaijan\n", - "2560 Burundi\n", - "2779 Belgium\n", - "2998 Benin\n", - "3217 Burkina Faso\n", - "3436 Bangladesh\n", - "3655 Bulgaria\n", - "3874 Bahrain\n", - "4093 Bahamas\n", - "4312 Bosnia and Herzegovina\n", - "4531 Belarus\n", - "4750 Belize\n", - "5016 Bolivia\n", - "5235 Brazil\n", - "5454 Barbados\n", - "5673 Brunei\n", - "5892 Bhutan\n", - "6111 Botswana\n", - "6330 Central African Republic\n", - "6549 Canada\n", - " ... \n", - "35326 Sweden\n", - "35545 Swaziland\n", - "35764 Seychelles\n", - "35983 Syria\n", - "36202 Chad\n", - "36421 Togo\n", - "36640 Thailand\n", - "36859 Tajikistan\n", - "37078 Turkmenistan\n", - "37297 Timor-Leste\n", - "37516 Tonga\n", - "37735 Trinidad and Tobago\n", - "37954 Tunisia\n", - "38173 Turkey\n", - "38392 Taiwan\n", - "38609 Tanzania\n", - "38828 Uganda\n", - "39047 Ukraine\n", - "39266 Uruguay\n", - "39485 United States\n", - "39704 Uzbekistan\n", - "39923 St. Vincent and the Grenadines\n", - "40142 Venezuela\n", - "40361 Vietnam\n", - "40580 Vanuatu\n", - "40799 Samoa\n", - "41018 Yemen\n", - "41237 South Africa\n", - "41456 Zambia\n", - "41675 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "105 Aruba\n", - "324 Afghanistan\n", - "543 Angola\n", - "762 Albania\n", - "1028 United Arab Emirates\n", - "1247 Argentina\n", - "1466 Armenia\n", - "1685 Antigua and Barbuda\n", - "1904 Australia\n", - "2123 Austria\n", - "2342 Azerbaijan\n", - "2561 Burundi\n", - "2780 Belgium\n", - "2999 Benin\n", - "3218 Burkina Faso\n", - "3437 Bangladesh\n", - "3656 Bulgaria\n", - "3875 Bahrain\n", - "4094 Bahamas\n", - "4313 Bosnia and Herzegovina\n", - "4532 Belarus\n", - "4751 Belize\n", - "5017 Bolivia\n", - "5236 Brazil\n", - "5455 Barbados\n", - "5674 Brunei\n", - "5893 Bhutan\n", - "6112 Botswana\n", - "6331 Central African Republic\n", - "6550 Canada\n", - " ... \n", - "35327 Sweden\n", - "35546 Swaziland\n", - "35765 Seychelles\n", - "35984 Syria\n", - "36203 Chad\n", - "36422 Togo\n", - "36641 Thailand\n", - "36860 Tajikistan\n", - "37079 Turkmenistan\n", - "37298 Timor-Leste\n", - "37517 Tonga\n", - "37736 Trinidad and Tobago\n", - "37955 Tunisia\n", - "38174 Turkey\n", - "38393 Taiwan\n", - "38610 Tanzania\n", - "38829 Uganda\n", - "39048 Ukraine\n", - "39267 Uruguay\n", - "39486 United States\n", - "39705 Uzbekistan\n", - "39924 St. Vincent and the Grenadines\n", - "40143 Venezuela\n", - "40362 Vietnam\n", - "40581 Vanuatu\n", - "40800 Samoa\n", - "41019 Yemen\n", - "41238 South Africa\n", - "41457 Zambia\n", - "41676 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "106 Aruba\n", - "325 Afghanistan\n", - "544 Angola\n", - "763 Albania\n", - "1029 United Arab Emirates\n", - "1248 Argentina\n", - "1467 Armenia\n", - "1686 Antigua and Barbuda\n", - "1905 Australia\n", - "2124 Austria\n", - "2343 Azerbaijan\n", - "2562 Burundi\n", - "2781 Belgium\n", - "3000 Benin\n", - "3219 Burkina Faso\n", - "3438 Bangladesh\n", - "3657 Bulgaria\n", - "3876 Bahrain\n", - "4095 Bahamas\n", - "4314 Bosnia and Herzegovina\n", - "4533 Belarus\n", - "4752 Belize\n", - "5018 Bolivia\n", - "5237 Brazil\n", - "5456 Barbados\n", - "5675 Brunei\n", - "5894 Bhutan\n", - "6113 Botswana\n", - "6332 Central African Republic\n", - "6551 Canada\n", - " ... \n", - "35328 Sweden\n", - "35547 Swaziland\n", - "35766 Seychelles\n", - "35985 Syria\n", - "36204 Chad\n", - "36423 Togo\n", - "36642 Thailand\n", - "36861 Tajikistan\n", - "37080 Turkmenistan\n", - "37299 Timor-Leste\n", - "37518 Tonga\n", - "37737 Trinidad and Tobago\n", - "37956 Tunisia\n", - "38175 Turkey\n", - "38394 Taiwan\n", - "38611 Tanzania\n", - "38830 Uganda\n", - "39049 Ukraine\n", - "39268 Uruguay\n", - "39487 United States\n", - "39706 Uzbekistan\n", - "39925 St. Vincent and the Grenadines\n", - "40144 Venezuela\n", - "40363 Vietnam\n", - "40582 Vanuatu\n", - "40801 Samoa\n", - "41020 Yemen\n", - "41239 South Africa\n", - "41458 Zambia\n", - "41677 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "107 Aruba\n", - "326 Afghanistan\n", - "545 Angola\n", - "764 Albania\n", - "1030 United Arab Emirates\n", - "1249 Argentina\n", - "1468 Armenia\n", - "1687 Antigua and Barbuda\n", - "1906 Australia\n", - "2125 Austria\n", - "2344 Azerbaijan\n", - "2563 Burundi\n", - "2782 Belgium\n", - "3001 Benin\n", - "3220 Burkina Faso\n", - "3439 Bangladesh\n", - "3658 Bulgaria\n", - "3877 Bahrain\n", - "4096 Bahamas\n", - "4315 Bosnia and Herzegovina\n", - "4534 Belarus\n", - "4753 Belize\n", - "5019 Bolivia\n", - "5238 Brazil\n", - "5457 Barbados\n", - "5676 Brunei\n", - "5895 Bhutan\n", - "6114 Botswana\n", - "6333 Central African Republic\n", - "6552 Canada\n", - " ... \n", - "35329 Sweden\n", - "35548 Swaziland\n", - "35767 Seychelles\n", - "35986 Syria\n", - "36205 Chad\n", - "36424 Togo\n", - "36643 Thailand\n", - "36862 Tajikistan\n", - "37081 Turkmenistan\n", - "37300 Timor-Leste\n", - "37519 Tonga\n", - "37738 Trinidad and Tobago\n", - "37957 Tunisia\n", - "38176 Turkey\n", - "38395 Taiwan\n", - "38612 Tanzania\n", - "38831 Uganda\n", - "39050 Ukraine\n", - "39269 Uruguay\n", - "39488 United States\n", - "39707 Uzbekistan\n", - "39926 St. Vincent and the Grenadines\n", - "40145 Venezuela\n", - "40364 Vietnam\n", - "40583 Vanuatu\n", - "40802 Samoa\n", - "41021 Yemen\n", - "41240 South Africa\n", - "41459 Zambia\n", - "41678 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "108 Aruba\n", - "327 Afghanistan\n", - "546 Angola\n", - "765 Albania\n", - "1031 United Arab Emirates\n", - "1250 Argentina\n", - "1469 Armenia\n", - "1688 Antigua and Barbuda\n", - "1907 Australia\n", - "2126 Austria\n", - "2345 Azerbaijan\n", - "2564 Burundi\n", - "2783 Belgium\n", - "3002 Benin\n", - "3221 Burkina Faso\n", - "3440 Bangladesh\n", - "3659 Bulgaria\n", - "3878 Bahrain\n", - "4097 Bahamas\n", - "4316 Bosnia and Herzegovina\n", - "4535 Belarus\n", - "4754 Belize\n", - "5020 Bolivia\n", - "5239 Brazil\n", - "5458 Barbados\n", - "5677 Brunei\n", - "5896 Bhutan\n", - "6115 Botswana\n", - "6334 Central African Republic\n", - "6553 Canada\n", - " ... \n", - "35330 Sweden\n", - "35549 Swaziland\n", - "35768 Seychelles\n", - "35987 Syria\n", - "36206 Chad\n", - "36425 Togo\n", - "36644 Thailand\n", - "36863 Tajikistan\n", - "37082 Turkmenistan\n", - "37301 Timor-Leste\n", - "37520 Tonga\n", - "37739 Trinidad and Tobago\n", - "37958 Tunisia\n", - "38177 Turkey\n", - "38396 Taiwan\n", - "38613 Tanzania\n", - "38832 Uganda\n", - "39051 Ukraine\n", - "39270 Uruguay\n", - "39489 United States\n", - "39708 Uzbekistan\n", - "39927 St. Vincent and the Grenadines\n", - "40146 Venezuela\n", - "40365 Vietnam\n", - "40584 Vanuatu\n", - "40803 Samoa\n", - "41022 Yemen\n", - "41241 South Africa\n", - "41460 Zambia\n", - "41679 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "109 Aruba\n", - "328 Afghanistan\n", - "547 Angola\n", - "766 Albania\n", - "1032 United Arab Emirates\n", - "1251 Argentina\n", - "1470 Armenia\n", - "1689 Antigua and Barbuda\n", - "1908 Australia\n", - "2127 Austria\n", - "2346 Azerbaijan\n", - "2565 Burundi\n", - "2784 Belgium\n", - "3003 Benin\n", - "3222 Burkina Faso\n", - "3441 Bangladesh\n", - "3660 Bulgaria\n", - "3879 Bahrain\n", - "4098 Bahamas\n", - "4317 Bosnia and Herzegovina\n", - "4536 Belarus\n", - "4755 Belize\n", - "5021 Bolivia\n", - "5240 Brazil\n", - "5459 Barbados\n", - "5678 Brunei\n", - "5897 Bhutan\n", - "6116 Botswana\n", - "6335 Central African Republic\n", - "6554 Canada\n", - " ... \n", - "35331 Sweden\n", - "35550 Swaziland\n", - "35769 Seychelles\n", - "35988 Syria\n", - "36207 Chad\n", - "36426 Togo\n", - "36645 Thailand\n", - "36864 Tajikistan\n", - "37083 Turkmenistan\n", - "37302 Timor-Leste\n", - "37521 Tonga\n", - "37740 Trinidad and Tobago\n", - "37959 Tunisia\n", - "38178 Turkey\n", - "38397 Taiwan\n", - "38614 Tanzania\n", - "38833 Uganda\n", - "39052 Ukraine\n", - "39271 Uruguay\n", - "39490 United States\n", - "39709 Uzbekistan\n", - "39928 St. Vincent and the Grenadines\n", - "40147 Venezuela\n", - "40366 Vietnam\n", - "40585 Vanuatu\n", - "40804 Samoa\n", - "41023 Yemen\n", - "41242 South Africa\n", - "41461 Zambia\n", - "41680 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "110 Aruba\n", - "329 Afghanistan\n", - "548 Angola\n", - "767 Albania\n", - "1033 United Arab Emirates\n", - "1252 Argentina\n", - "1471 Armenia\n", - "1690 Antigua and Barbuda\n", - "1909 Australia\n", - "2128 Austria\n", - "2347 Azerbaijan\n", - "2566 Burundi\n", - "2785 Belgium\n", - "3004 Benin\n", - "3223 Burkina Faso\n", - "3442 Bangladesh\n", - "3661 Bulgaria\n", - "3880 Bahrain\n", - "4099 Bahamas\n", - "4318 Bosnia and Herzegovina\n", - "4537 Belarus\n", - "4756 Belize\n", - "5022 Bolivia\n", - "5241 Brazil\n", - "5460 Barbados\n", - "5679 Brunei\n", - "5898 Bhutan\n", - "6117 Botswana\n", - "6336 Central African Republic\n", - "6555 Canada\n", - " ... \n", - "35332 Sweden\n", - "35551 Swaziland\n", - "35770 Seychelles\n", - "35989 Syria\n", - "36208 Chad\n", - "36427 Togo\n", - "36646 Thailand\n", - "36865 Tajikistan\n", - "37084 Turkmenistan\n", - "37303 Timor-Leste\n", - "37522 Tonga\n", - "37741 Trinidad and Tobago\n", - "37960 Tunisia\n", - "38179 Turkey\n", - "38398 Taiwan\n", - "38615 Tanzania\n", - "38834 Uganda\n", - "39053 Ukraine\n", - "39272 Uruguay\n", - "39491 United States\n", - "39710 Uzbekistan\n", - "39929 St. Vincent and the Grenadines\n", - "40148 Venezuela\n", - "40367 Vietnam\n", - "40586 Vanuatu\n", - "40805 Samoa\n", - "41024 Yemen\n", - "41243 South Africa\n", - "41462 Zambia\n", - "41681 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "111 Aruba\n", - "330 Afghanistan\n", - "549 Angola\n", - "768 Albania\n", - "1034 United Arab Emirates\n", - "1253 Argentina\n", - "1472 Armenia\n", - "1691 Antigua and Barbuda\n", - "1910 Australia\n", - "2129 Austria\n", - "2348 Azerbaijan\n", - "2567 Burundi\n", - "2786 Belgium\n", - "3005 Benin\n", - "3224 Burkina Faso\n", - "3443 Bangladesh\n", - "3662 Bulgaria\n", - "3881 Bahrain\n", - "4100 Bahamas\n", - "4319 Bosnia and Herzegovina\n", - "4538 Belarus\n", - "4757 Belize\n", - "5023 Bolivia\n", - "5242 Brazil\n", - "5461 Barbados\n", - "5680 Brunei\n", - "5899 Bhutan\n", - "6118 Botswana\n", - "6337 Central African Republic\n", - "6556 Canada\n", - " ... \n", - "35333 Sweden\n", - "35552 Swaziland\n", - "35771 Seychelles\n", - "35990 Syria\n", - "36209 Chad\n", - "36428 Togo\n", - "36647 Thailand\n", - "36866 Tajikistan\n", - "37085 Turkmenistan\n", - "37304 Timor-Leste\n", - "37523 Tonga\n", - "37742 Trinidad and Tobago\n", - "37961 Tunisia\n", - "38180 Turkey\n", - "38399 Taiwan\n", - "38616 Tanzania\n", - "38835 Uganda\n", - "39054 Ukraine\n", - "39273 Uruguay\n", - "39492 United States\n", - "39711 Uzbekistan\n", - "39930 St. Vincent and the Grenadines\n", - "40149 Venezuela\n", - "40368 Vietnam\n", - "40587 Vanuatu\n", - "40806 Samoa\n", - "41025 Yemen\n", - "41244 South Africa\n", - "41463 Zambia\n", - "41682 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "112 Aruba\n", - "331 Afghanistan\n", - "550 Angola\n", - "769 Albania\n", - "1035 United Arab Emirates\n", - "1254 Argentina\n", - "1473 Armenia\n", - "1692 Antigua and Barbuda\n", - "1911 Australia\n", - "2130 Austria\n", - "2349 Azerbaijan\n", - "2568 Burundi\n", - "2787 Belgium\n", - "3006 Benin\n", - "3225 Burkina Faso\n", - "3444 Bangladesh\n", - "3663 Bulgaria\n", - "3882 Bahrain\n", - "4101 Bahamas\n", - "4320 Bosnia and Herzegovina\n", - "4539 Belarus\n", - "4758 Belize\n", - "5024 Bolivia\n", - "5243 Brazil\n", - "5462 Barbados\n", - "5681 Brunei\n", - "5900 Bhutan\n", - "6119 Botswana\n", - "6338 Central African Republic\n", - "6557 Canada\n", - " ... \n", - "35334 Sweden\n", - "35553 Swaziland\n", - "35772 Seychelles\n", - "35991 Syria\n", - "36210 Chad\n", - "36429 Togo\n", - "36648 Thailand\n", - "36867 Tajikistan\n", - "37086 Turkmenistan\n", - "37305 Timor-Leste\n", - "37524 Tonga\n", - "37743 Trinidad and Tobago\n", - "37962 Tunisia\n", - "38181 Turkey\n", - "38400 Taiwan\n", - "38617 Tanzania\n", - "38836 Uganda\n", - "39055 Ukraine\n", - "39274 Uruguay\n", - "39493 United States\n", - "39712 Uzbekistan\n", - "39931 St. Vincent and the Grenadines\n", - "40150 Venezuela\n", - "40369 Vietnam\n", - "40588 Vanuatu\n", - "40807 Samoa\n", - "41026 Yemen\n", - "41245 South Africa\n", - "41464 Zambia\n", - "41683 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "113 Aruba\n", - "332 Afghanistan\n", - "551 Angola\n", - "770 Albania\n", - "1036 United Arab Emirates\n", - "1255 Argentina\n", - "1474 Armenia\n", - "1693 Antigua and Barbuda\n", - "1912 Australia\n", - "2131 Austria\n", - "2350 Azerbaijan\n", - "2569 Burundi\n", - "2788 Belgium\n", - "3007 Benin\n", - "3226 Burkina Faso\n", - "3445 Bangladesh\n", - "3664 Bulgaria\n", - "3883 Bahrain\n", - "4102 Bahamas\n", - "4321 Bosnia and Herzegovina\n", - "4540 Belarus\n", - "4759 Belize\n", - "5025 Bolivia\n", - "5244 Brazil\n", - "5463 Barbados\n", - "5682 Brunei\n", - "5901 Bhutan\n", - "6120 Botswana\n", - "6339 Central African Republic\n", - "6558 Canada\n", - " ... \n", - "35335 Sweden\n", - "35554 Swaziland\n", - "35773 Seychelles\n", - "35992 Syria\n", - "36211 Chad\n", - "36430 Togo\n", - "36649 Thailand\n", - "36868 Tajikistan\n", - "37087 Turkmenistan\n", - "37306 Timor-Leste\n", - "37525 Tonga\n", - "37744 Trinidad and Tobago\n", - "37963 Tunisia\n", - "38182 Turkey\n", - "38401 Taiwan\n", - "38618 Tanzania\n", - "38837 Uganda\n", - "39056 Ukraine\n", - "39275 Uruguay\n", - "39494 United States\n", - "39713 Uzbekistan\n", - "39932 St. Vincent and the Grenadines\n", - "40151 Venezuela\n", - "40370 Vietnam\n", - "40589 Vanuatu\n", - "40808 Samoa\n", - "41027 Yemen\n", - "41246 South Africa\n", - "41465 Zambia\n", - "41684 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "114 Aruba\n", - "333 Afghanistan\n", - "552 Angola\n", - "771 Albania\n", - "1037 United Arab Emirates\n", - "1256 Argentina\n", - "1475 Armenia\n", - "1694 Antigua and Barbuda\n", - "1913 Australia\n", - "2132 Austria\n", - "2351 Azerbaijan\n", - "2570 Burundi\n", - "2789 Belgium\n", - "3008 Benin\n", - "3227 Burkina Faso\n", - "3446 Bangladesh\n", - "3665 Bulgaria\n", - "3884 Bahrain\n", - "4103 Bahamas\n", - "4322 Bosnia and Herzegovina\n", - "4541 Belarus\n", - "4760 Belize\n", - "5026 Bolivia\n", - "5245 Brazil\n", - "5464 Barbados\n", - "5683 Brunei\n", - "5902 Bhutan\n", - "6121 Botswana\n", - "6340 Central African Republic\n", - "6559 Canada\n", - " ... \n", - "35336 Sweden\n", - "35555 Swaziland\n", - "35774 Seychelles\n", - "35993 Syria\n", - "36212 Chad\n", - "36431 Togo\n", - "36650 Thailand\n", - "36869 Tajikistan\n", - "37088 Turkmenistan\n", - "37307 Timor-Leste\n", - "37526 Tonga\n", - "37745 Trinidad and Tobago\n", - "37964 Tunisia\n", - "38183 Turkey\n", - "38402 Taiwan\n", - "38619 Tanzania\n", - "38838 Uganda\n", - "39057 Ukraine\n", - "39276 Uruguay\n", - "39495 United States\n", - "39714 Uzbekistan\n", - "39933 St. Vincent and the Grenadines\n", - "40152 Venezuela\n", - "40371 Vietnam\n", - "40590 Vanuatu\n", - "40809 Samoa\n", - "41028 Yemen\n", - "41247 South Africa\n", - "41466 Zambia\n", - "41685 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "115 Aruba\n", - "334 Afghanistan\n", - "553 Angola\n", - "772 Albania\n", - "1038 United Arab Emirates\n", - "1257 Argentina\n", - "1476 Armenia\n", - "1695 Antigua and Barbuda\n", - "1914 Australia\n", - "2133 Austria\n", - "2352 Azerbaijan\n", - "2571 Burundi\n", - "2790 Belgium\n", - "3009 Benin\n", - "3228 Burkina Faso\n", - "3447 Bangladesh\n", - "3666 Bulgaria\n", - "3885 Bahrain\n", - "4104 Bahamas\n", - "4323 Bosnia and Herzegovina\n", - "4542 Belarus\n", - "4761 Belize\n", - "5027 Bolivia\n", - "5246 Brazil\n", - "5465 Barbados\n", - "5684 Brunei\n", - "5903 Bhutan\n", - "6122 Botswana\n", - "6341 Central African Republic\n", - "6560 Canada\n", - " ... \n", - "35337 Sweden\n", - "35556 Swaziland\n", - "35775 Seychelles\n", - "35994 Syria\n", - "36213 Chad\n", - "36432 Togo\n", - "36651 Thailand\n", - "36870 Tajikistan\n", - "37089 Turkmenistan\n", - "37308 Timor-Leste\n", - "37527 Tonga\n", - "37746 Trinidad and Tobago\n", - "37965 Tunisia\n", - "38184 Turkey\n", - "38403 Taiwan\n", - "38620 Tanzania\n", - "38839 Uganda\n", - "39058 Ukraine\n", - "39277 Uruguay\n", - "39496 United States\n", - "39715 Uzbekistan\n", - "39934 St. Vincent and the Grenadines\n", - "40153 Venezuela\n", - "40372 Vietnam\n", - "40591 Vanuatu\n", - "40810 Samoa\n", - "41029 Yemen\n", - "41248 South Africa\n", - "41467 Zambia\n", - "41686 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "116 Aruba\n", - "335 Afghanistan\n", - "554 Angola\n", - "773 Albania\n", - "1039 United Arab Emirates\n", - "1258 Argentina\n", - "1477 Armenia\n", - "1696 Antigua and Barbuda\n", - "1915 Australia\n", - "2134 Austria\n", - "2353 Azerbaijan\n", - "2572 Burundi\n", - "2791 Belgium\n", - "3010 Benin\n", - "3229 Burkina Faso\n", - "3448 Bangladesh\n", - "3667 Bulgaria\n", - "3886 Bahrain\n", - "4105 Bahamas\n", - "4324 Bosnia and Herzegovina\n", - "4543 Belarus\n", - "4762 Belize\n", - "5028 Bolivia\n", - "5247 Brazil\n", - "5466 Barbados\n", - "5685 Brunei\n", - "5904 Bhutan\n", - "6123 Botswana\n", - "6342 Central African Republic\n", - "6561 Canada\n", - " ... \n", - "35338 Sweden\n", - "35557 Swaziland\n", - "35776 Seychelles\n", - "35995 Syria\n", - "36214 Chad\n", - "36433 Togo\n", - "36652 Thailand\n", - "36871 Tajikistan\n", - "37090 Turkmenistan\n", - "37309 Timor-Leste\n", - "37528 Tonga\n", - "37747 Trinidad and Tobago\n", - "37966 Tunisia\n", - "38185 Turkey\n", - "38404 Taiwan\n", - "38621 Tanzania\n", - "38840 Uganda\n", - "39059 Ukraine\n", - "39278 Uruguay\n", - "39497 United States\n", - "39716 Uzbekistan\n", - "39935 St. Vincent and the Grenadines\n", - "40154 Venezuela\n", - "40373 Vietnam\n", - "40592 Vanuatu\n", - "40811 Samoa\n", - "41030 Yemen\n", - "41249 South Africa\n", - "41468 Zambia\n", - "41687 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "117 Aruba\n", - "336 Afghanistan\n", - "555 Angola\n", - "774 Albania\n", - "1040 United Arab Emirates\n", - "1259 Argentina\n", - "1478 Armenia\n", - "1697 Antigua and Barbuda\n", - "1916 Australia\n", - "2135 Austria\n", - "2354 Azerbaijan\n", - "2573 Burundi\n", - "2792 Belgium\n", - "3011 Benin\n", - "3230 Burkina Faso\n", - "3449 Bangladesh\n", - "3668 Bulgaria\n", - "3887 Bahrain\n", - "4106 Bahamas\n", - "4325 Bosnia and Herzegovina\n", - "4544 Belarus\n", - "4763 Belize\n", - "5029 Bolivia\n", - "5248 Brazil\n", - "5467 Barbados\n", - "5686 Brunei\n", - "5905 Bhutan\n", - "6124 Botswana\n", - "6343 Central African Republic\n", - "6562 Canada\n", - " ... \n", - "35339 Sweden\n", - "35558 Swaziland\n", - "35777 Seychelles\n", - "35996 Syria\n", - "36215 Chad\n", - "36434 Togo\n", - "36653 Thailand\n", - "36872 Tajikistan\n", - "37091 Turkmenistan\n", - "37310 Timor-Leste\n", - "37529 Tonga\n", - "37748 Trinidad and Tobago\n", - "37967 Tunisia\n", - "38186 Turkey\n", - "38405 Taiwan\n", - "38622 Tanzania\n", - "38841 Uganda\n", - "39060 Ukraine\n", - "39279 Uruguay\n", - "39498 United States\n", - "39717 Uzbekistan\n", - "39936 St. Vincent and the Grenadines\n", - "40155 Venezuela\n", - "40374 Vietnam\n", - "40593 Vanuatu\n", - "40812 Samoa\n", - "41031 Yemen\n", - "41250 South Africa\n", - "41469 Zambia\n", - "41688 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "118 Aruba\n", - "337 Afghanistan\n", - "556 Angola\n", - "775 Albania\n", - "1041 United Arab Emirates\n", - "1260 Argentina\n", - "1479 Armenia\n", - "1698 Antigua and Barbuda\n", - "1917 Australia\n", - "2136 Austria\n", - "2355 Azerbaijan\n", - "2574 Burundi\n", - "2793 Belgium\n", - "3012 Benin\n", - "3231 Burkina Faso\n", - "3450 Bangladesh\n", - "3669 Bulgaria\n", - "3888 Bahrain\n", - "4107 Bahamas\n", - "4326 Bosnia and Herzegovina\n", - "4545 Belarus\n", - "4764 Belize\n", - "5030 Bolivia\n", - "5249 Brazil\n", - "5468 Barbados\n", - "5687 Brunei\n", - "5906 Bhutan\n", - "6125 Botswana\n", - "6344 Central African Republic\n", - "6563 Canada\n", - " ... \n", - "35340 Sweden\n", - "35559 Swaziland\n", - "35778 Seychelles\n", - "35997 Syria\n", - "36216 Chad\n", - "36435 Togo\n", - "36654 Thailand\n", - "36873 Tajikistan\n", - "37092 Turkmenistan\n", - "37311 Timor-Leste\n", - "37530 Tonga\n", - "37749 Trinidad and Tobago\n", - "37968 Tunisia\n", - "38187 Turkey\n", - "38406 Taiwan\n", - "38623 Tanzania\n", - "38842 Uganda\n", - "39061 Ukraine\n", - "39280 Uruguay\n", - "39499 United States\n", - "39718 Uzbekistan\n", - "39937 St. Vincent and the Grenadines\n", - "40156 Venezuela\n", - "40375 Vietnam\n", - "40594 Vanuatu\n", - "40813 Samoa\n", - "41032 Yemen\n", - "41251 South Africa\n", - "41470 Zambia\n", - "41689 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "119 Aruba\n", - "338 Afghanistan\n", - "557 Angola\n", - "776 Albania\n", - "1042 United Arab Emirates\n", - "1261 Argentina\n", - "1480 Armenia\n", - "1699 Antigua and Barbuda\n", - "1918 Australia\n", - "2137 Austria\n", - "2356 Azerbaijan\n", - "2575 Burundi\n", - "2794 Belgium\n", - "3013 Benin\n", - "3232 Burkina Faso\n", - "3451 Bangladesh\n", - "3670 Bulgaria\n", - "3889 Bahrain\n", - "4108 Bahamas\n", - "4327 Bosnia and Herzegovina\n", - "4546 Belarus\n", - "4765 Belize\n", - "5031 Bolivia\n", - "5250 Brazil\n", - "5469 Barbados\n", - "5688 Brunei\n", - "5907 Bhutan\n", - "6126 Botswana\n", - "6345 Central African Republic\n", - "6564 Canada\n", - " ... \n", - "35341 Sweden\n", - "35560 Swaziland\n", - "35779 Seychelles\n", - "35998 Syria\n", - "36217 Chad\n", - "36436 Togo\n", - "36655 Thailand\n", - "36874 Tajikistan\n", - "37093 Turkmenistan\n", - "37312 Timor-Leste\n", - "37531 Tonga\n", - "37750 Trinidad and Tobago\n", - "37969 Tunisia\n", - "38188 Turkey\n", - "38407 Taiwan\n", - "38624 Tanzania\n", - "38843 Uganda\n", - "39062 Ukraine\n", - "39281 Uruguay\n", - "39500 United States\n", - "39719 Uzbekistan\n", - "39938 St. Vincent and the Grenadines\n", - "40157 Venezuela\n", - "40376 Vietnam\n", - "40595 Vanuatu\n", - "40814 Samoa\n", - "41033 Yemen\n", - "41252 South Africa\n", - "41471 Zambia\n", - "41690 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "120 Aruba\n", - "339 Afghanistan\n", - "558 Angola\n", - "777 Albania\n", - "1043 United Arab Emirates\n", - "1262 Argentina\n", - "1481 Armenia\n", - "1700 Antigua and Barbuda\n", - "1919 Australia\n", - "2138 Austria\n", - "2357 Azerbaijan\n", - "2576 Burundi\n", - "2795 Belgium\n", - "3014 Benin\n", - "3233 Burkina Faso\n", - "3452 Bangladesh\n", - "3671 Bulgaria\n", - "3890 Bahrain\n", - "4109 Bahamas\n", - "4328 Bosnia and Herzegovina\n", - "4547 Belarus\n", - "4766 Belize\n", - "5032 Bolivia\n", - "5251 Brazil\n", - "5470 Barbados\n", - "5689 Brunei\n", - "5908 Bhutan\n", - "6127 Botswana\n", - "6346 Central African Republic\n", - "6565 Canada\n", - " ... \n", - "35342 Sweden\n", - "35561 Swaziland\n", - "35780 Seychelles\n", - "35999 Syria\n", - "36218 Chad\n", - "36437 Togo\n", - "36656 Thailand\n", - "36875 Tajikistan\n", - "37094 Turkmenistan\n", - "37313 Timor-Leste\n", - "37532 Tonga\n", - "37751 Trinidad and Tobago\n", - "37970 Tunisia\n", - "38189 Turkey\n", - "38408 Taiwan\n", - "38625 Tanzania\n", - "38844 Uganda\n", - "39063 Ukraine\n", - "39282 Uruguay\n", - "39501 United States\n", - "39720 Uzbekistan\n", - "39939 St. Vincent and the Grenadines\n", - "40158 Venezuela\n", - "40377 Vietnam\n", - "40596 Vanuatu\n", - "40815 Samoa\n", - "41034 Yemen\n", - "41253 South Africa\n", - "41472 Zambia\n", - "41691 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "121 Aruba\n", - "340 Afghanistan\n", - "559 Angola\n", - "778 Albania\n", - "1044 United Arab Emirates\n", - "1263 Argentina\n", - "1482 Armenia\n", - "1701 Antigua and Barbuda\n", - "1920 Australia\n", - "2139 Austria\n", - "2358 Azerbaijan\n", - "2577 Burundi\n", - "2796 Belgium\n", - "3015 Benin\n", - "3234 Burkina Faso\n", - "3453 Bangladesh\n", - "3672 Bulgaria\n", - "3891 Bahrain\n", - "4110 Bahamas\n", - "4329 Bosnia and Herzegovina\n", - "4548 Belarus\n", - "4767 Belize\n", - "5033 Bolivia\n", - "5252 Brazil\n", - "5471 Barbados\n", - "5690 Brunei\n", - "5909 Bhutan\n", - "6128 Botswana\n", - "6347 Central African Republic\n", - "6566 Canada\n", - " ... \n", - "35343 Sweden\n", - "35562 Swaziland\n", - "35781 Seychelles\n", - "36000 Syria\n", - "36219 Chad\n", - "36438 Togo\n", - "36657 Thailand\n", - "36876 Tajikistan\n", - "37095 Turkmenistan\n", - "37314 Timor-Leste\n", - "37533 Tonga\n", - "37752 Trinidad and Tobago\n", - "37971 Tunisia\n", - "38190 Turkey\n", - "38409 Taiwan\n", - "38626 Tanzania\n", - "38845 Uganda\n", - "39064 Ukraine\n", - "39283 Uruguay\n", - "39502 United States\n", - "39721 Uzbekistan\n", - "39940 St. Vincent and the Grenadines\n", - "40159 Venezuela\n", - "40378 Vietnam\n", - "40597 Vanuatu\n", - "40816 Samoa\n", - "41035 Yemen\n", - "41254 South Africa\n", - "41473 Zambia\n", - "41692 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "122 Aruba\n", - "341 Afghanistan\n", - "560 Angola\n", - "779 Albania\n", - "1045 United Arab Emirates\n", - "1264 Argentina\n", - "1483 Armenia\n", - "1702 Antigua and Barbuda\n", - "1921 Australia\n", - "2140 Austria\n", - "2359 Azerbaijan\n", - "2578 Burundi\n", - "2797 Belgium\n", - "3016 Benin\n", - "3235 Burkina Faso\n", - "3454 Bangladesh\n", - "3673 Bulgaria\n", - "3892 Bahrain\n", - "4111 Bahamas\n", - "4330 Bosnia and Herzegovina\n", - "4549 Belarus\n", - "4768 Belize\n", - "5034 Bolivia\n", - "5253 Brazil\n", - "5472 Barbados\n", - "5691 Brunei\n", - "5910 Bhutan\n", - "6129 Botswana\n", - "6348 Central African Republic\n", - "6567 Canada\n", - " ... \n", - "35344 Sweden\n", - "35563 Swaziland\n", - "35782 Seychelles\n", - "36001 Syria\n", - "36220 Chad\n", - "36439 Togo\n", - "36658 Thailand\n", - "36877 Tajikistan\n", - "37096 Turkmenistan\n", - "37315 Timor-Leste\n", - "37534 Tonga\n", - "37753 Trinidad and Tobago\n", - "37972 Tunisia\n", - "38191 Turkey\n", - "38410 Taiwan\n", - "38627 Tanzania\n", - "38846 Uganda\n", - "39065 Ukraine\n", - "39284 Uruguay\n", - "39503 United States\n", - "39722 Uzbekistan\n", - "39941 St. Vincent and the Grenadines\n", - "40160 Venezuela\n", - "40379 Vietnam\n", - "40598 Vanuatu\n", - "40817 Samoa\n", - "41036 Yemen\n", - "41255 South Africa\n", - "41474 Zambia\n", - "41693 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "123 Aruba\n", - "342 Afghanistan\n", - "561 Angola\n", - "780 Albania\n", - "1046 United Arab Emirates\n", - "1265 Argentina\n", - "1484 Armenia\n", - "1703 Antigua and Barbuda\n", - "1922 Australia\n", - "2141 Austria\n", - "2360 Azerbaijan\n", - "2579 Burundi\n", - "2798 Belgium\n", - "3017 Benin\n", - "3236 Burkina Faso\n", - "3455 Bangladesh\n", - "3674 Bulgaria\n", - "3893 Bahrain\n", - "4112 Bahamas\n", - "4331 Bosnia and Herzegovina\n", - "4550 Belarus\n", - "4769 Belize\n", - "5035 Bolivia\n", - "5254 Brazil\n", - "5473 Barbados\n", - "5692 Brunei\n", - "5911 Bhutan\n", - "6130 Botswana\n", - "6349 Central African Republic\n", - "6568 Canada\n", - " ... \n", - "35345 Sweden\n", - "35564 Swaziland\n", - "35783 Seychelles\n", - "36002 Syria\n", - "36221 Chad\n", - "36440 Togo\n", - "36659 Thailand\n", - "36878 Tajikistan\n", - "37097 Turkmenistan\n", - "37316 Timor-Leste\n", - "37535 Tonga\n", - "37754 Trinidad and Tobago\n", - "37973 Tunisia\n", - "38192 Turkey\n", - "38411 Taiwan\n", - "38628 Tanzania\n", - "38847 Uganda\n", - "39066 Ukraine\n", - "39285 Uruguay\n", - "39504 United States\n", - "39723 Uzbekistan\n", - "39942 St. Vincent and the Grenadines\n", - "40161 Venezuela\n", - "40380 Vietnam\n", - "40599 Vanuatu\n", - "40818 Samoa\n", - "41037 Yemen\n", - "41256 South Africa\n", - "41475 Zambia\n", - "41694 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "124 Aruba\n", - "343 Afghanistan\n", - "562 Angola\n", - "781 Albania\n", - "1047 United Arab Emirates\n", - "1266 Argentina\n", - "1485 Armenia\n", - "1704 Antigua and Barbuda\n", - "1923 Australia\n", - "2142 Austria\n", - "2361 Azerbaijan\n", - "2580 Burundi\n", - "2799 Belgium\n", - "3018 Benin\n", - "3237 Burkina Faso\n", - "3456 Bangladesh\n", - "3675 Bulgaria\n", - "3894 Bahrain\n", - "4113 Bahamas\n", - "4332 Bosnia and Herzegovina\n", - "4551 Belarus\n", - "4770 Belize\n", - "5036 Bolivia\n", - "5255 Brazil\n", - "5474 Barbados\n", - "5693 Brunei\n", - "5912 Bhutan\n", - "6131 Botswana\n", - "6350 Central African Republic\n", - "6569 Canada\n", - " ... \n", - "35346 Sweden\n", - "35565 Swaziland\n", - "35784 Seychelles\n", - "36003 Syria\n", - "36222 Chad\n", - "36441 Togo\n", - "36660 Thailand\n", - "36879 Tajikistan\n", - "37098 Turkmenistan\n", - "37317 Timor-Leste\n", - "37536 Tonga\n", - "37755 Trinidad and Tobago\n", - "37974 Tunisia\n", - "38193 Turkey\n", - "38412 Taiwan\n", - "38629 Tanzania\n", - "38848 Uganda\n", - "39067 Ukraine\n", - "39286 Uruguay\n", - "39505 United States\n", - "39724 Uzbekistan\n", - "39943 St. Vincent and the Grenadines\n", - "40162 Venezuela\n", - "40381 Vietnam\n", - "40600 Vanuatu\n", - "40819 Samoa\n", - "41038 Yemen\n", - "41257 South Africa\n", - "41476 Zambia\n", - "41695 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "125 Aruba\n", - "344 Afghanistan\n", - "563 Angola\n", - "782 Albania\n", - "1048 United Arab Emirates\n", - "1267 Argentina\n", - "1486 Armenia\n", - "1705 Antigua and Barbuda\n", - "1924 Australia\n", - "2143 Austria\n", - "2362 Azerbaijan\n", - "2581 Burundi\n", - "2800 Belgium\n", - "3019 Benin\n", - "3238 Burkina Faso\n", - "3457 Bangladesh\n", - "3676 Bulgaria\n", - "3895 Bahrain\n", - "4114 Bahamas\n", - "4333 Bosnia and Herzegovina\n", - "4552 Belarus\n", - "4771 Belize\n", - "5037 Bolivia\n", - "5256 Brazil\n", - "5475 Barbados\n", - "5694 Brunei\n", - "5913 Bhutan\n", - "6132 Botswana\n", - "6351 Central African Republic\n", - "6570 Canada\n", - " ... \n", - "35347 Sweden\n", - "35566 Swaziland\n", - "35785 Seychelles\n", - "36004 Syria\n", - "36223 Chad\n", - "36442 Togo\n", - "36661 Thailand\n", - "36880 Tajikistan\n", - "37099 Turkmenistan\n", - "37318 Timor-Leste\n", - "37537 Tonga\n", - "37756 Trinidad and Tobago\n", - "37975 Tunisia\n", - "38194 Turkey\n", - "38413 Taiwan\n", - "38630 Tanzania\n", - "38849 Uganda\n", - "39068 Ukraine\n", - "39287 Uruguay\n", - "39506 United States\n", - "39725 Uzbekistan\n", - "39944 St. Vincent and the Grenadines\n", - "40163 Venezuela\n", - "40382 Vietnam\n", - "40601 Vanuatu\n", - "40820 Samoa\n", - "41039 Yemen\n", - "41258 South Africa\n", - "41477 Zambia\n", - "41696 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "126 Aruba\n", - "345 Afghanistan\n", - "564 Angola\n", - "783 Albania\n", - "1049 United Arab Emirates\n", - "1268 Argentina\n", - "1487 Armenia\n", - "1706 Antigua and Barbuda\n", - "1925 Australia\n", - "2144 Austria\n", - "2363 Azerbaijan\n", - "2582 Burundi\n", - "2801 Belgium\n", - "3020 Benin\n", - "3239 Burkina Faso\n", - "3458 Bangladesh\n", - "3677 Bulgaria\n", - "3896 Bahrain\n", - "4115 Bahamas\n", - "4334 Bosnia and Herzegovina\n", - "4553 Belarus\n", - "4772 Belize\n", - "5038 Bolivia\n", - "5257 Brazil\n", - "5476 Barbados\n", - "5695 Brunei\n", - "5914 Bhutan\n", - "6133 Botswana\n", - "6352 Central African Republic\n", - "6571 Canada\n", - " ... \n", - "35348 Sweden\n", - "35567 Swaziland\n", - "35786 Seychelles\n", - "36005 Syria\n", - "36224 Chad\n", - "36443 Togo\n", - "36662 Thailand\n", - "36881 Tajikistan\n", - "37100 Turkmenistan\n", - "37319 Timor-Leste\n", - "37538 Tonga\n", - "37757 Trinidad and Tobago\n", - "37976 Tunisia\n", - "38195 Turkey\n", - "38414 Taiwan\n", - "38631 Tanzania\n", - "38850 Uganda\n", - "39069 Ukraine\n", - "39288 Uruguay\n", - "39507 United States\n", - "39726 Uzbekistan\n", - "39945 St. Vincent and the Grenadines\n", - "40164 Venezuela\n", - "40383 Vietnam\n", - "40602 Vanuatu\n", - "40821 Samoa\n", - "41040 Yemen\n", - "41259 South Africa\n", - "41478 Zambia\n", - "41697 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "127 Aruba\n", - "346 Afghanistan\n", - "565 Angola\n", - "784 Albania\n", - "1050 United Arab Emirates\n", - "1269 Argentina\n", - "1488 Armenia\n", - "1707 Antigua and Barbuda\n", - "1926 Australia\n", - "2145 Austria\n", - "2364 Azerbaijan\n", - "2583 Burundi\n", - "2802 Belgium\n", - "3021 Benin\n", - "3240 Burkina Faso\n", - "3459 Bangladesh\n", - "3678 Bulgaria\n", - "3897 Bahrain\n", - "4116 Bahamas\n", - "4335 Bosnia and Herzegovina\n", - "4554 Belarus\n", - "4773 Belize\n", - "5039 Bolivia\n", - "5258 Brazil\n", - "5477 Barbados\n", - "5696 Brunei\n", - "5915 Bhutan\n", - "6134 Botswana\n", - "6353 Central African Republic\n", - "6572 Canada\n", - " ... \n", - "35349 Sweden\n", - "35568 Swaziland\n", - "35787 Seychelles\n", - "36006 Syria\n", - "36225 Chad\n", - "36444 Togo\n", - "36663 Thailand\n", - "36882 Tajikistan\n", - "37101 Turkmenistan\n", - "37320 Timor-Leste\n", - "37539 Tonga\n", - "37758 Trinidad and Tobago\n", - "37977 Tunisia\n", - "38196 Turkey\n", - "38415 Taiwan\n", - "38632 Tanzania\n", - "38851 Uganda\n", - "39070 Ukraine\n", - "39289 Uruguay\n", - "39508 United States\n", - "39727 Uzbekistan\n", - "39946 St. Vincent and the Grenadines\n", - "40165 Venezuela\n", - "40384 Vietnam\n", - "40603 Vanuatu\n", - "40822 Samoa\n", - "41041 Yemen\n", - "41260 South Africa\n", - "41479 Zambia\n", - "41698 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "128 Aruba\n", - "347 Afghanistan\n", - "566 Angola\n", - "785 Albania\n", - "1051 United Arab Emirates\n", - "1270 Argentina\n", - "1489 Armenia\n", - "1708 Antigua and Barbuda\n", - "1927 Australia\n", - "2146 Austria\n", - "2365 Azerbaijan\n", - "2584 Burundi\n", - "2803 Belgium\n", - "3022 Benin\n", - "3241 Burkina Faso\n", - "3460 Bangladesh\n", - "3679 Bulgaria\n", - "3898 Bahrain\n", - "4117 Bahamas\n", - "4336 Bosnia and Herzegovina\n", - "4555 Belarus\n", - "4774 Belize\n", - "5040 Bolivia\n", - "5259 Brazil\n", - "5478 Barbados\n", - "5697 Brunei\n", - "5916 Bhutan\n", - "6135 Botswana\n", - "6354 Central African Republic\n", - "6573 Canada\n", - " ... \n", - "35350 Sweden\n", - "35569 Swaziland\n", - "35788 Seychelles\n", - "36007 Syria\n", - "36226 Chad\n", - "36445 Togo\n", - "36664 Thailand\n", - "36883 Tajikistan\n", - "37102 Turkmenistan\n", - "37321 Timor-Leste\n", - "37540 Tonga\n", - "37759 Trinidad and Tobago\n", - "37978 Tunisia\n", - "38197 Turkey\n", - "38416 Taiwan\n", - "38633 Tanzania\n", - "38852 Uganda\n", - "39071 Ukraine\n", - "39290 Uruguay\n", - "39509 United States\n", - "39728 Uzbekistan\n", - "39947 St. Vincent and the Grenadines\n", - "40166 Venezuela\n", - "40385 Vietnam\n", - "40604 Vanuatu\n", - "40823 Samoa\n", - "41042 Yemen\n", - "41261 South Africa\n", - "41480 Zambia\n", - "41699 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "129 Aruba\n", - "348 Afghanistan\n", - "567 Angola\n", - "786 Albania\n", - "1052 United Arab Emirates\n", - "1271 Argentina\n", - "1490 Armenia\n", - "1709 Antigua and Barbuda\n", - "1928 Australia\n", - "2147 Austria\n", - "2366 Azerbaijan\n", - "2585 Burundi\n", - "2804 Belgium\n", - "3023 Benin\n", - "3242 Burkina Faso\n", - "3461 Bangladesh\n", - "3680 Bulgaria\n", - "3899 Bahrain\n", - "4118 Bahamas\n", - "4337 Bosnia and Herzegovina\n", - "4556 Belarus\n", - "4775 Belize\n", - "5041 Bolivia\n", - "5260 Brazil\n", - "5479 Barbados\n", - "5698 Brunei\n", - "5917 Bhutan\n", - "6136 Botswana\n", - "6355 Central African Republic\n", - "6574 Canada\n", - " ... \n", - "35351 Sweden\n", - "35570 Swaziland\n", - "35789 Seychelles\n", - "36008 Syria\n", - "36227 Chad\n", - "36446 Togo\n", - "36665 Thailand\n", - "36884 Tajikistan\n", - "37103 Turkmenistan\n", - "37322 Timor-Leste\n", - "37541 Tonga\n", - "37760 Trinidad and Tobago\n", - "37979 Tunisia\n", - "38198 Turkey\n", - "38417 Taiwan\n", - "38634 Tanzania\n", - "38853 Uganda\n", - "39072 Ukraine\n", - "39291 Uruguay\n", - "39510 United States\n", - "39729 Uzbekistan\n", - "39948 St. Vincent and the Grenadines\n", - "40167 Venezuela\n", - "40386 Vietnam\n", - "40605 Vanuatu\n", - "40824 Samoa\n", - "41043 Yemen\n", - "41262 South Africa\n", - "41481 Zambia\n", - "41700 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "130 Aruba\n", - "349 Afghanistan\n", - "568 Angola\n", - "787 Albania\n", - "1053 United Arab Emirates\n", - "1272 Argentina\n", - "1491 Armenia\n", - "1710 Antigua and Barbuda\n", - "1929 Australia\n", - "2148 Austria\n", - "2367 Azerbaijan\n", - "2586 Burundi\n", - "2805 Belgium\n", - "3024 Benin\n", - "3243 Burkina Faso\n", - "3462 Bangladesh\n", - "3681 Bulgaria\n", - "3900 Bahrain\n", - "4119 Bahamas\n", - "4338 Bosnia and Herzegovina\n", - "4557 Belarus\n", - "4776 Belize\n", - "5042 Bolivia\n", - "5261 Brazil\n", - "5480 Barbados\n", - "5699 Brunei\n", - "5918 Bhutan\n", - "6137 Botswana\n", - "6356 Central African Republic\n", - "6575 Canada\n", - " ... \n", - "35352 Sweden\n", - "35571 Swaziland\n", - "35790 Seychelles\n", - "36009 Syria\n", - "36228 Chad\n", - "36447 Togo\n", - "36666 Thailand\n", - "36885 Tajikistan\n", - "37104 Turkmenistan\n", - "37323 Timor-Leste\n", - "37542 Tonga\n", - "37761 Trinidad and Tobago\n", - "37980 Tunisia\n", - "38199 Turkey\n", - "38418 Taiwan\n", - "38635 Tanzania\n", - "38854 Uganda\n", - "39073 Ukraine\n", - "39292 Uruguay\n", - "39511 United States\n", - "39730 Uzbekistan\n", - "39949 St. Vincent and the Grenadines\n", - "40168 Venezuela\n", - "40387 Vietnam\n", - "40606 Vanuatu\n", - "40825 Samoa\n", - "41044 Yemen\n", - "41263 South Africa\n", - "41482 Zambia\n", - "41701 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "131 Aruba\n", - "350 Afghanistan\n", - "569 Angola\n", - "788 Albania\n", - "1054 United Arab Emirates\n", - "1273 Argentina\n", - "1492 Armenia\n", - "1711 Antigua and Barbuda\n", - "1930 Australia\n", - "2149 Austria\n", - "2368 Azerbaijan\n", - "2587 Burundi\n", - "2806 Belgium\n", - "3025 Benin\n", - "3244 Burkina Faso\n", - "3463 Bangladesh\n", - "3682 Bulgaria\n", - "3901 Bahrain\n", - "4120 Bahamas\n", - "4339 Bosnia and Herzegovina\n", - "4558 Belarus\n", - "4777 Belize\n", - "5043 Bolivia\n", - "5262 Brazil\n", - "5481 Barbados\n", - "5700 Brunei\n", - "5919 Bhutan\n", - "6138 Botswana\n", - "6357 Central African Republic\n", - "6576 Canada\n", - " ... \n", - "35353 Sweden\n", - "35572 Swaziland\n", - "35791 Seychelles\n", - "36010 Syria\n", - "36229 Chad\n", - "36448 Togo\n", - "36667 Thailand\n", - "36886 Tajikistan\n", - "37105 Turkmenistan\n", - "37324 Timor-Leste\n", - "37543 Tonga\n", - "37762 Trinidad and Tobago\n", - "37981 Tunisia\n", - "38200 Turkey\n", - "38419 Taiwan\n", - "38636 Tanzania\n", - "38855 Uganda\n", - "39074 Ukraine\n", - "39293 Uruguay\n", - "39512 United States\n", - "39731 Uzbekistan\n", - "39950 St. Vincent and the Grenadines\n", - "40169 Venezuela\n", - "40388 Vietnam\n", - "40607 Vanuatu\n", - "40826 Samoa\n", - "41045 Yemen\n", - "41264 South Africa\n", - "41483 Zambia\n", - "41702 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "132 Aruba\n", - "351 Afghanistan\n", - "570 Angola\n", - "789 Albania\n", - "1055 United Arab Emirates\n", - "1274 Argentina\n", - "1493 Armenia\n", - "1712 Antigua and Barbuda\n", - "1931 Australia\n", - "2150 Austria\n", - "2369 Azerbaijan\n", - "2588 Burundi\n", - "2807 Belgium\n", - "3026 Benin\n", - "3245 Burkina Faso\n", - "3464 Bangladesh\n", - "3683 Bulgaria\n", - "3902 Bahrain\n", - "4121 Bahamas\n", - "4340 Bosnia and Herzegovina\n", - "4559 Belarus\n", - "4778 Belize\n", - "5044 Bolivia\n", - "5263 Brazil\n", - "5482 Barbados\n", - "5701 Brunei\n", - "5920 Bhutan\n", - "6139 Botswana\n", - "6358 Central African Republic\n", - "6577 Canada\n", - " ... \n", - "35354 Sweden\n", - "35573 Swaziland\n", - "35792 Seychelles\n", - "36011 Syria\n", - "36230 Chad\n", - "36449 Togo\n", - "36668 Thailand\n", - "36887 Tajikistan\n", - "37106 Turkmenistan\n", - "37325 Timor-Leste\n", - "37544 Tonga\n", - "37763 Trinidad and Tobago\n", - "37982 Tunisia\n", - "38201 Turkey\n", - "38420 Taiwan\n", - "38637 Tanzania\n", - "38856 Uganda\n", - "39075 Ukraine\n", - "39294 Uruguay\n", - "39513 United States\n", - "39732 Uzbekistan\n", - "39951 St. Vincent and the Grenadines\n", - "40170 Venezuela\n", - "40389 Vietnam\n", - "40608 Vanuatu\n", - "40827 Samoa\n", - "41046 Yemen\n", - "41265 South Africa\n", - "41484 Zambia\n", - "41703 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "133 Aruba\n", - "352 Afghanistan\n", - "571 Angola\n", - "790 Albania\n", - "1056 United Arab Emirates\n", - "1275 Argentina\n", - "1494 Armenia\n", - "1713 Antigua and Barbuda\n", - "1932 Australia\n", - "2151 Austria\n", - "2370 Azerbaijan\n", - "2589 Burundi\n", - "2808 Belgium\n", - "3027 Benin\n", - "3246 Burkina Faso\n", - "3465 Bangladesh\n", - "3684 Bulgaria\n", - "3903 Bahrain\n", - "4122 Bahamas\n", - "4341 Bosnia and Herzegovina\n", - "4560 Belarus\n", - "4779 Belize\n", - "5045 Bolivia\n", - "5264 Brazil\n", - "5483 Barbados\n", - "5702 Brunei\n", - "5921 Bhutan\n", - "6140 Botswana\n", - "6359 Central African Republic\n", - "6578 Canada\n", - " ... \n", - "35355 Sweden\n", - "35574 Swaziland\n", - "35793 Seychelles\n", - "36012 Syria\n", - "36231 Chad\n", - "36450 Togo\n", - "36669 Thailand\n", - "36888 Tajikistan\n", - "37107 Turkmenistan\n", - "37326 Timor-Leste\n", - "37545 Tonga\n", - "37764 Trinidad and Tobago\n", - "37983 Tunisia\n", - "38202 Turkey\n", - "38421 Taiwan\n", - "38638 Tanzania\n", - "38857 Uganda\n", - "39076 Ukraine\n", - "39295 Uruguay\n", - "39514 United States\n", - "39733 Uzbekistan\n", - "39952 St. Vincent and the Grenadines\n", - "40171 Venezuela\n", - "40390 Vietnam\n", - "40609 Vanuatu\n", - "40828 Samoa\n", - "41047 Yemen\n", - "41266 South Africa\n", - "41485 Zambia\n", - "41704 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "134 Aruba\n", - "353 Afghanistan\n", - "572 Angola\n", - "791 Albania\n", - "1057 United Arab Emirates\n", - "1276 Argentina\n", - "1495 Armenia\n", - "1714 Antigua and Barbuda\n", - "1933 Australia\n", - "2152 Austria\n", - "2371 Azerbaijan\n", - "2590 Burundi\n", - "2809 Belgium\n", - "3028 Benin\n", - "3247 Burkina Faso\n", - "3466 Bangladesh\n", - "3685 Bulgaria\n", - "3904 Bahrain\n", - "4123 Bahamas\n", - "4342 Bosnia and Herzegovina\n", - "4561 Belarus\n", - "4780 Belize\n", - "5046 Bolivia\n", - "5265 Brazil\n", - "5484 Barbados\n", - "5703 Brunei\n", - "5922 Bhutan\n", - "6141 Botswana\n", - "6360 Central African Republic\n", - "6579 Canada\n", - " ... \n", - "35356 Sweden\n", - "35575 Swaziland\n", - "35794 Seychelles\n", - "36013 Syria\n", - "36232 Chad\n", - "36451 Togo\n", - "36670 Thailand\n", - "36889 Tajikistan\n", - "37108 Turkmenistan\n", - "37327 Timor-Leste\n", - "37546 Tonga\n", - "37765 Trinidad and Tobago\n", - "37984 Tunisia\n", - "38203 Turkey\n", - "38422 Taiwan\n", - "38639 Tanzania\n", - "38858 Uganda\n", - "39077 Ukraine\n", - "39296 Uruguay\n", - "39515 United States\n", - "39734 Uzbekistan\n", - "39953 St. Vincent and the Grenadines\n", - "40172 Venezuela\n", - "40391 Vietnam\n", - "40610 Vanuatu\n", - "40829 Samoa\n", - "41048 Yemen\n", - "41267 South Africa\n", - "41486 Zambia\n", - "41705 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "135 Aruba\n", - "354 Afghanistan\n", - "573 Angola\n", - "792 Albania\n", - "1058 United Arab Emirates\n", - "1277 Argentina\n", - "1496 Armenia\n", - "1715 Antigua and Barbuda\n", - "1934 Australia\n", - "2153 Austria\n", - "2372 Azerbaijan\n", - "2591 Burundi\n", - "2810 Belgium\n", - "3029 Benin\n", - "3248 Burkina Faso\n", - "3467 Bangladesh\n", - "3686 Bulgaria\n", - "3905 Bahrain\n", - "4124 Bahamas\n", - "4343 Bosnia and Herzegovina\n", - "4562 Belarus\n", - "4781 Belize\n", - "5047 Bolivia\n", - "5266 Brazil\n", - "5485 Barbados\n", - "5704 Brunei\n", - "5923 Bhutan\n", - "6142 Botswana\n", - "6361 Central African Republic\n", - "6580 Canada\n", - " ... \n", - "35357 Sweden\n", - "35576 Swaziland\n", - "35795 Seychelles\n", - "36014 Syria\n", - "36233 Chad\n", - "36452 Togo\n", - "36671 Thailand\n", - "36890 Tajikistan\n", - "37109 Turkmenistan\n", - "37328 Timor-Leste\n", - "37547 Tonga\n", - "37766 Trinidad and Tobago\n", - "37985 Tunisia\n", - "38204 Turkey\n", - "38423 Taiwan\n", - "38640 Tanzania\n", - "38859 Uganda\n", - "39078 Ukraine\n", - "39297 Uruguay\n", - "39516 United States\n", - "39735 Uzbekistan\n", - "39954 St. Vincent and the Grenadines\n", - "40173 Venezuela\n", - "40392 Vietnam\n", - "40611 Vanuatu\n", - "40830 Samoa\n", - "41049 Yemen\n", - "41268 South Africa\n", - "41487 Zambia\n", - "41706 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "136 Aruba\n", - "355 Afghanistan\n", - "574 Angola\n", - "793 Albania\n", - "1059 United Arab Emirates\n", - "1278 Argentina\n", - "1497 Armenia\n", - "1716 Antigua and Barbuda\n", - "1935 Australia\n", - "2154 Austria\n", - "2373 Azerbaijan\n", - "2592 Burundi\n", - "2811 Belgium\n", - "3030 Benin\n", - "3249 Burkina Faso\n", - "3468 Bangladesh\n", - "3687 Bulgaria\n", - "3906 Bahrain\n", - "4125 Bahamas\n", - "4344 Bosnia and Herzegovina\n", - "4563 Belarus\n", - "4782 Belize\n", - "5048 Bolivia\n", - "5267 Brazil\n", - "5486 Barbados\n", - "5705 Brunei\n", - "5924 Bhutan\n", - "6143 Botswana\n", - "6362 Central African Republic\n", - "6581 Canada\n", - " ... \n", - "35358 Sweden\n", - "35577 Swaziland\n", - "35796 Seychelles\n", - "36015 Syria\n", - "36234 Chad\n", - "36453 Togo\n", - "36672 Thailand\n", - "36891 Tajikistan\n", - "37110 Turkmenistan\n", - "37329 Timor-Leste\n", - "37548 Tonga\n", - "37767 Trinidad and Tobago\n", - "37986 Tunisia\n", - "38205 Turkey\n", - "38424 Taiwan\n", - "38641 Tanzania\n", - "38860 Uganda\n", - "39079 Ukraine\n", - "39298 Uruguay\n", - "39517 United States\n", - "39736 Uzbekistan\n", - "39955 St. Vincent and the Grenadines\n", - "40174 Venezuela\n", - "40393 Vietnam\n", - "40612 Vanuatu\n", - "40831 Samoa\n", - "41050 Yemen\n", - "41269 South Africa\n", - "41488 Zambia\n", - "41707 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "137 Aruba\n", - "356 Afghanistan\n", - "575 Angola\n", - "794 Albania\n", - "1060 United Arab Emirates\n", - "1279 Argentina\n", - "1498 Armenia\n", - "1717 Antigua and Barbuda\n", - "1936 Australia\n", - "2155 Austria\n", - "2374 Azerbaijan\n", - "2593 Burundi\n", - "2812 Belgium\n", - "3031 Benin\n", - "3250 Burkina Faso\n", - "3469 Bangladesh\n", - "3688 Bulgaria\n", - "3907 Bahrain\n", - "4126 Bahamas\n", - "4345 Bosnia and Herzegovina\n", - "4564 Belarus\n", - "4783 Belize\n", - "5049 Bolivia\n", - "5268 Brazil\n", - "5487 Barbados\n", - "5706 Brunei\n", - "5925 Bhutan\n", - "6144 Botswana\n", - "6363 Central African Republic\n", - "6582 Canada\n", - " ... \n", - "35359 Sweden\n", - "35578 Swaziland\n", - "35797 Seychelles\n", - "36016 Syria\n", - "36235 Chad\n", - "36454 Togo\n", - "36673 Thailand\n", - "36892 Tajikistan\n", - "37111 Turkmenistan\n", - "37330 Timor-Leste\n", - "37549 Tonga\n", - "37768 Trinidad and Tobago\n", - "37987 Tunisia\n", - "38206 Turkey\n", - "38425 Taiwan\n", - "38642 Tanzania\n", - "38861 Uganda\n", - "39080 Ukraine\n", - "39299 Uruguay\n", - "39518 United States\n", - "39737 Uzbekistan\n", - "39956 St. Vincent and the Grenadines\n", - "40175 Venezuela\n", - "40394 Vietnam\n", - "40613 Vanuatu\n", - "40832 Samoa\n", - "41051 Yemen\n", - "41270 South Africa\n", - "41489 Zambia\n", - "41708 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "138 Aruba\n", - "357 Afghanistan\n", - "576 Angola\n", - "795 Albania\n", - "1061 United Arab Emirates\n", - "1280 Argentina\n", - "1499 Armenia\n", - "1718 Antigua and Barbuda\n", - "1937 Australia\n", - "2156 Austria\n", - "2375 Azerbaijan\n", - "2594 Burundi\n", - "2813 Belgium\n", - "3032 Benin\n", - "3251 Burkina Faso\n", - "3470 Bangladesh\n", - "3689 Bulgaria\n", - "3908 Bahrain\n", - "4127 Bahamas\n", - "4346 Bosnia and Herzegovina\n", - "4565 Belarus\n", - "4784 Belize\n", - "5050 Bolivia\n", - "5269 Brazil\n", - "5488 Barbados\n", - "5707 Brunei\n", - "5926 Bhutan\n", - "6145 Botswana\n", - "6364 Central African Republic\n", - "6583 Canada\n", - " ... \n", - "35360 Sweden\n", - "35579 Swaziland\n", - "35798 Seychelles\n", - "36017 Syria\n", - "36236 Chad\n", - "36455 Togo\n", - "36674 Thailand\n", - "36893 Tajikistan\n", - "37112 Turkmenistan\n", - "37331 Timor-Leste\n", - "37550 Tonga\n", - "37769 Trinidad and Tobago\n", - "37988 Tunisia\n", - "38207 Turkey\n", - "38426 Taiwan\n", - "38643 Tanzania\n", - "38862 Uganda\n", - "39081 Ukraine\n", - "39300 Uruguay\n", - "39519 United States\n", - "39738 Uzbekistan\n", - "39957 St. Vincent and the Grenadines\n", - "40176 Venezuela\n", - "40395 Vietnam\n", - "40614 Vanuatu\n", - "40833 Samoa\n", - "41052 Yemen\n", - "41271 South Africa\n", - "41490 Zambia\n", - "41709 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "139 Aruba\n", - "358 Afghanistan\n", - "577 Angola\n", - "796 Albania\n", - "1062 United Arab Emirates\n", - "1281 Argentina\n", - "1500 Armenia\n", - "1719 Antigua and Barbuda\n", - "1938 Australia\n", - "2157 Austria\n", - "2376 Azerbaijan\n", - "2595 Burundi\n", - "2814 Belgium\n", - "3033 Benin\n", - "3252 Burkina Faso\n", - "3471 Bangladesh\n", - "3690 Bulgaria\n", - "3909 Bahrain\n", - "4128 Bahamas\n", - "4347 Bosnia and Herzegovina\n", - "4566 Belarus\n", - "4785 Belize\n", - "5051 Bolivia\n", - "5270 Brazil\n", - "5489 Barbados\n", - "5708 Brunei\n", - "5927 Bhutan\n", - "6146 Botswana\n", - "6365 Central African Republic\n", - "6584 Canada\n", - " ... \n", - "35361 Sweden\n", - "35580 Swaziland\n", - "35799 Seychelles\n", - "36018 Syria\n", - "36237 Chad\n", - "36456 Togo\n", - "36675 Thailand\n", - "36894 Tajikistan\n", - "37113 Turkmenistan\n", - "37332 Timor-Leste\n", - "37551 Tonga\n", - "37770 Trinidad and Tobago\n", - "37989 Tunisia\n", - "38208 Turkey\n", - "38427 Taiwan\n", - "38644 Tanzania\n", - "38863 Uganda\n", - "39082 Ukraine\n", - "39301 Uruguay\n", - "39520 United States\n", - "39739 Uzbekistan\n", - "39958 St. Vincent and the Grenadines\n", - "40177 Venezuela\n", - "40396 Vietnam\n", - "40615 Vanuatu\n", - "40834 Samoa\n", - "41053 Yemen\n", - "41272 South Africa\n", - "41491 Zambia\n", - "41710 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "140 Aruba\n", - "359 Afghanistan\n", - "578 Angola\n", - "797 Albania\n", - "1063 United Arab Emirates\n", - "1282 Argentina\n", - "1501 Armenia\n", - "1720 Antigua and Barbuda\n", - "1939 Australia\n", - "2158 Austria\n", - "2377 Azerbaijan\n", - "2596 Burundi\n", - "2815 Belgium\n", - "3034 Benin\n", - "3253 Burkina Faso\n", - "3472 Bangladesh\n", - "3691 Bulgaria\n", - "3910 Bahrain\n", - "4129 Bahamas\n", - "4348 Bosnia and Herzegovina\n", - "4567 Belarus\n", - "4786 Belize\n", - "5052 Bolivia\n", - "5271 Brazil\n", - "5490 Barbados\n", - "5709 Brunei\n", - "5928 Bhutan\n", - "6147 Botswana\n", - "6366 Central African Republic\n", - "6585 Canada\n", - " ... \n", - "35362 Sweden\n", - "35581 Swaziland\n", - "35800 Seychelles\n", - "36019 Syria\n", - "36238 Chad\n", - "36457 Togo\n", - "36676 Thailand\n", - "36895 Tajikistan\n", - "37114 Turkmenistan\n", - "37333 Timor-Leste\n", - "37552 Tonga\n", - "37771 Trinidad and Tobago\n", - "37990 Tunisia\n", - "38209 Turkey\n", - "38428 Taiwan\n", - "38645 Tanzania\n", - "38864 Uganda\n", - "39083 Ukraine\n", - "39302 Uruguay\n", - "39521 United States\n", - "39740 Uzbekistan\n", - "39959 St. Vincent and the Grenadines\n", - "40178 Venezuela\n", - "40397 Vietnam\n", - "40616 Vanuatu\n", - "40835 Samoa\n", - "41054 Yemen\n", - "41273 South Africa\n", - "41492 Zambia\n", - "41711 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "141 Aruba\n", - "360 Afghanistan\n", - "579 Angola\n", - "798 Albania\n", - "1064 United Arab Emirates\n", - "1283 Argentina\n", - "1502 Armenia\n", - "1721 Antigua and Barbuda\n", - "1940 Australia\n", - "2159 Austria\n", - "2378 Azerbaijan\n", - "2597 Burundi\n", - "2816 Belgium\n", - "3035 Benin\n", - "3254 Burkina Faso\n", - "3473 Bangladesh\n", - "3692 Bulgaria\n", - "3911 Bahrain\n", - "4130 Bahamas\n", - "4349 Bosnia and Herzegovina\n", - "4568 Belarus\n", - "4787 Belize\n", - "5053 Bolivia\n", - "5272 Brazil\n", - "5491 Barbados\n", - "5710 Brunei\n", - "5929 Bhutan\n", - "6148 Botswana\n", - "6367 Central African Republic\n", - "6586 Canada\n", - " ... \n", - "35363 Sweden\n", - "35582 Swaziland\n", - "35801 Seychelles\n", - "36020 Syria\n", - "36239 Chad\n", - "36458 Togo\n", - "36677 Thailand\n", - "36896 Tajikistan\n", - "37115 Turkmenistan\n", - "37334 Timor-Leste\n", - "37553 Tonga\n", - "37772 Trinidad and Tobago\n", - "37991 Tunisia\n", - "38210 Turkey\n", - "38429 Taiwan\n", - "38646 Tanzania\n", - "38865 Uganda\n", - "39084 Ukraine\n", - "39303 Uruguay\n", - "39522 United States\n", - "39741 Uzbekistan\n", - "39960 St. Vincent and the Grenadines\n", - "40179 Venezuela\n", - "40398 Vietnam\n", - "40617 Vanuatu\n", - "40836 Samoa\n", - "41055 Yemen\n", - "41274 South Africa\n", - "41493 Zambia\n", - "41712 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "142 Aruba\n", - "361 Afghanistan\n", - "580 Angola\n", - "799 Albania\n", - "1065 United Arab Emirates\n", - "1284 Argentina\n", - "1503 Armenia\n", - "1722 Antigua and Barbuda\n", - "1941 Australia\n", - "2160 Austria\n", - "2379 Azerbaijan\n", - "2598 Burundi\n", - "2817 Belgium\n", - "3036 Benin\n", - "3255 Burkina Faso\n", - "3474 Bangladesh\n", - "3693 Bulgaria\n", - "3912 Bahrain\n", - "4131 Bahamas\n", - "4350 Bosnia and Herzegovina\n", - "4569 Belarus\n", - "4788 Belize\n", - "5054 Bolivia\n", - "5273 Brazil\n", - "5492 Barbados\n", - "5711 Brunei\n", - "5930 Bhutan\n", - "6149 Botswana\n", - "6368 Central African Republic\n", - "6587 Canada\n", - " ... \n", - "35364 Sweden\n", - "35583 Swaziland\n", - "35802 Seychelles\n", - "36021 Syria\n", - "36240 Chad\n", - "36459 Togo\n", - "36678 Thailand\n", - "36897 Tajikistan\n", - "37116 Turkmenistan\n", - "37335 Timor-Leste\n", - "37554 Tonga\n", - "37773 Trinidad and Tobago\n", - "37992 Tunisia\n", - "38211 Turkey\n", - "38430 Taiwan\n", - "38647 Tanzania\n", - "38866 Uganda\n", - "39085 Ukraine\n", - "39304 Uruguay\n", - "39523 United States\n", - "39742 Uzbekistan\n", - "39961 St. Vincent and the Grenadines\n", - "40180 Venezuela\n", - "40399 Vietnam\n", - "40618 Vanuatu\n", - "40837 Samoa\n", - "41056 Yemen\n", - "41275 South Africa\n", - "41494 Zambia\n", - "41713 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "143 Aruba\n", - "362 Afghanistan\n", - "581 Angola\n", - "800 Albania\n", - "1066 United Arab Emirates\n", - "1285 Argentina\n", - "1504 Armenia\n", - "1723 Antigua and Barbuda\n", - "1942 Australia\n", - "2161 Austria\n", - "2380 Azerbaijan\n", - "2599 Burundi\n", - "2818 Belgium\n", - "3037 Benin\n", - "3256 Burkina Faso\n", - "3475 Bangladesh\n", - "3694 Bulgaria\n", - "3913 Bahrain\n", - "4132 Bahamas\n", - "4351 Bosnia and Herzegovina\n", - "4570 Belarus\n", - "4789 Belize\n", - "5055 Bolivia\n", - "5274 Brazil\n", - "5493 Barbados\n", - "5712 Brunei\n", - "5931 Bhutan\n", - "6150 Botswana\n", - "6369 Central African Republic\n", - "6588 Canada\n", - " ... \n", - "35365 Sweden\n", - "35584 Swaziland\n", - "35803 Seychelles\n", - "36022 Syria\n", - "36241 Chad\n", - "36460 Togo\n", - "36679 Thailand\n", - "36898 Tajikistan\n", - "37117 Turkmenistan\n", - "37336 Timor-Leste\n", - "37555 Tonga\n", - "37774 Trinidad and Tobago\n", - "37993 Tunisia\n", - "38212 Turkey\n", - "38431 Taiwan\n", - "38648 Tanzania\n", - "38867 Uganda\n", - "39086 Ukraine\n", - "39305 Uruguay\n", - "39524 United States\n", - "39743 Uzbekistan\n", - "39962 St. Vincent and the Grenadines\n", - "40181 Venezuela\n", - "40400 Vietnam\n", - "40619 Vanuatu\n", - "40838 Samoa\n", - "41057 Yemen\n", - "41276 South Africa\n", - "41495 Zambia\n", - "41714 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "144 Aruba\n", - "363 Afghanistan\n", - "582 Angola\n", - "801 Albania\n", - "1067 United Arab Emirates\n", - "1286 Argentina\n", - "1505 Armenia\n", - "1724 Antigua and Barbuda\n", - "1943 Australia\n", - "2162 Austria\n", - "2381 Azerbaijan\n", - "2600 Burundi\n", - "2819 Belgium\n", - "3038 Benin\n", - "3257 Burkina Faso\n", - "3476 Bangladesh\n", - "3695 Bulgaria\n", - "3914 Bahrain\n", - "4133 Bahamas\n", - "4352 Bosnia and Herzegovina\n", - "4571 Belarus\n", - "4790 Belize\n", - "5056 Bolivia\n", - "5275 Brazil\n", - "5494 Barbados\n", - "5713 Brunei\n", - "5932 Bhutan\n", - "6151 Botswana\n", - "6370 Central African Republic\n", - "6589 Canada\n", - " ... \n", - "35366 Sweden\n", - "35585 Swaziland\n", - "35804 Seychelles\n", - "36023 Syria\n", - "36242 Chad\n", - "36461 Togo\n", - "36680 Thailand\n", - "36899 Tajikistan\n", - "37118 Turkmenistan\n", - "37337 Timor-Leste\n", - "37556 Tonga\n", - "37775 Trinidad and Tobago\n", - "37994 Tunisia\n", - "38213 Turkey\n", - "38432 Taiwan\n", - "38649 Tanzania\n", - "38868 Uganda\n", - "39087 Ukraine\n", - "39306 Uruguay\n", - "39525 United States\n", - "39744 Uzbekistan\n", - "39963 St. Vincent and the Grenadines\n", - "40182 Venezuela\n", - "40401 Vietnam\n", - "40620 Vanuatu\n", - "40839 Samoa\n", - "41058 Yemen\n", - "41277 South Africa\n", - "41496 Zambia\n", - "41715 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "145 Aruba\n", - "364 Afghanistan\n", - "583 Angola\n", - "802 Albania\n", - "1068 United Arab Emirates\n", - "1287 Argentina\n", - "1506 Armenia\n", - "1725 Antigua and Barbuda\n", - "1944 Australia\n", - "2163 Austria\n", - "2382 Azerbaijan\n", - "2601 Burundi\n", - "2820 Belgium\n", - "3039 Benin\n", - "3258 Burkina Faso\n", - "3477 Bangladesh\n", - "3696 Bulgaria\n", - "3915 Bahrain\n", - "4134 Bahamas\n", - "4353 Bosnia and Herzegovina\n", - "4572 Belarus\n", - "4791 Belize\n", - "5057 Bolivia\n", - "5276 Brazil\n", - "5495 Barbados\n", - "5714 Brunei\n", - "5933 Bhutan\n", - "6152 Botswana\n", - "6371 Central African Republic\n", - "6590 Canada\n", - " ... \n", - "35367 Sweden\n", - "35586 Swaziland\n", - "35805 Seychelles\n", - "36024 Syria\n", - "36243 Chad\n", - "36462 Togo\n", - "36681 Thailand\n", - "36900 Tajikistan\n", - "37119 Turkmenistan\n", - "37338 Timor-Leste\n", - "37557 Tonga\n", - "37776 Trinidad and Tobago\n", - "37995 Tunisia\n", - "38214 Turkey\n", - "38433 Taiwan\n", - "38650 Tanzania\n", - "38869 Uganda\n", - "39088 Ukraine\n", - "39307 Uruguay\n", - "39526 United States\n", - "39745 Uzbekistan\n", - "39964 St. Vincent and the Grenadines\n", - "40183 Venezuela\n", - "40402 Vietnam\n", - "40621 Vanuatu\n", - "40840 Samoa\n", - "41059 Yemen\n", - "41278 South Africa\n", - "41497 Zambia\n", - "41716 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "146 Aruba\n", - "365 Afghanistan\n", - "584 Angola\n", - "803 Albania\n", - "1069 United Arab Emirates\n", - "1288 Argentina\n", - "1507 Armenia\n", - "1726 Antigua and Barbuda\n", - "1945 Australia\n", - "2164 Austria\n", - "2383 Azerbaijan\n", - "2602 Burundi\n", - "2821 Belgium\n", - "3040 Benin\n", - "3259 Burkina Faso\n", - "3478 Bangladesh\n", - "3697 Bulgaria\n", - "3916 Bahrain\n", - "4135 Bahamas\n", - "4354 Bosnia and Herzegovina\n", - "4573 Belarus\n", - "4792 Belize\n", - "5058 Bolivia\n", - "5277 Brazil\n", - "5496 Barbados\n", - "5715 Brunei\n", - "5934 Bhutan\n", - "6153 Botswana\n", - "6372 Central African Republic\n", - "6591 Canada\n", - " ... \n", - "35368 Sweden\n", - "35587 Swaziland\n", - "35806 Seychelles\n", - "36025 Syria\n", - "36244 Chad\n", - "36463 Togo\n", - "36682 Thailand\n", - "36901 Tajikistan\n", - "37120 Turkmenistan\n", - "37339 Timor-Leste\n", - "37558 Tonga\n", - "37777 Trinidad and Tobago\n", - "37996 Tunisia\n", - "38215 Turkey\n", - "38434 Taiwan\n", - "38651 Tanzania\n", - "38870 Uganda\n", - "39089 Ukraine\n", - "39308 Uruguay\n", - "39527 United States\n", - "39746 Uzbekistan\n", - "39965 St. Vincent and the Grenadines\n", - "40184 Venezuela\n", - "40403 Vietnam\n", - "40622 Vanuatu\n", - "40841 Samoa\n", - "41060 Yemen\n", - "41279 South Africa\n", - "41498 Zambia\n", - "41717 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "147 Aruba\n", - "366 Afghanistan\n", - "585 Angola\n", - "804 Albania\n", - "1070 United Arab Emirates\n", - "1289 Argentina\n", - "1508 Armenia\n", - "1727 Antigua and Barbuda\n", - "1946 Australia\n", - "2165 Austria\n", - "2384 Azerbaijan\n", - "2603 Burundi\n", - "2822 Belgium\n", - "3041 Benin\n", - "3260 Burkina Faso\n", - "3479 Bangladesh\n", - "3698 Bulgaria\n", - "3917 Bahrain\n", - "4136 Bahamas\n", - "4355 Bosnia and Herzegovina\n", - "4574 Belarus\n", - "4793 Belize\n", - "5059 Bolivia\n", - "5278 Brazil\n", - "5497 Barbados\n", - "5716 Brunei\n", - "5935 Bhutan\n", - "6154 Botswana\n", - "6373 Central African Republic\n", - "6592 Canada\n", - " ... \n", - "35369 Sweden\n", - "35588 Swaziland\n", - "35807 Seychelles\n", - "36026 Syria\n", - "36245 Chad\n", - "36464 Togo\n", - "36683 Thailand\n", - "36902 Tajikistan\n", - "37121 Turkmenistan\n", - "37340 Timor-Leste\n", - "37559 Tonga\n", - "37778 Trinidad and Tobago\n", - "37997 Tunisia\n", - "38216 Turkey\n", - "38435 Taiwan\n", - "38652 Tanzania\n", - "38871 Uganda\n", - "39090 Ukraine\n", - "39309 Uruguay\n", - "39528 United States\n", - "39747 Uzbekistan\n", - "39966 St. Vincent and the Grenadines\n", - "40185 Venezuela\n", - "40404 Vietnam\n", - "40623 Vanuatu\n", - "40842 Samoa\n", - "41061 Yemen\n", - "41280 South Africa\n", - "41499 Zambia\n", - "41718 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "148 Aruba\n", - "367 Afghanistan\n", - "586 Angola\n", - "805 Albania\n", - "1071 United Arab Emirates\n", - "1290 Argentina\n", - "1509 Armenia\n", - "1728 Antigua and Barbuda\n", - "1947 Australia\n", - "2166 Austria\n", - "2385 Azerbaijan\n", - "2604 Burundi\n", - "2823 Belgium\n", - "3042 Benin\n", - "3261 Burkina Faso\n", - "3480 Bangladesh\n", - "3699 Bulgaria\n", - "3918 Bahrain\n", - "4137 Bahamas\n", - "4356 Bosnia and Herzegovina\n", - "4575 Belarus\n", - "4794 Belize\n", - "5060 Bolivia\n", - "5279 Brazil\n", - "5498 Barbados\n", - "5717 Brunei\n", - "5936 Bhutan\n", - "6155 Botswana\n", - "6374 Central African Republic\n", - "6593 Canada\n", - " ... \n", - "35370 Sweden\n", - "35589 Swaziland\n", - "35808 Seychelles\n", - "36027 Syria\n", - "36246 Chad\n", - "36465 Togo\n", - "36684 Thailand\n", - "36903 Tajikistan\n", - "37122 Turkmenistan\n", - "37341 Timor-Leste\n", - "37560 Tonga\n", - "37779 Trinidad and Tobago\n", - "37998 Tunisia\n", - "38217 Turkey\n", - "38436 Taiwan\n", - "38653 Tanzania\n", - "38872 Uganda\n", - "39091 Ukraine\n", - "39310 Uruguay\n", - "39529 United States\n", - "39748 Uzbekistan\n", - "39967 St. Vincent and the Grenadines\n", - "40186 Venezuela\n", - "40405 Vietnam\n", - "40624 Vanuatu\n", - "40843 Samoa\n", - "41062 Yemen\n", - "41281 South Africa\n", - "41500 Zambia\n", - "41719 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "149 Aruba\n", - "368 Afghanistan\n", - "587 Angola\n", - "806 Albania\n", - "1072 United Arab Emirates\n", - "1291 Argentina\n", - "1510 Armenia\n", - "1729 Antigua and Barbuda\n", - "1948 Australia\n", - "2167 Austria\n", - "2386 Azerbaijan\n", - "2605 Burundi\n", - "2824 Belgium\n", - "3043 Benin\n", - "3262 Burkina Faso\n", - "3481 Bangladesh\n", - "3700 Bulgaria\n", - "3919 Bahrain\n", - "4138 Bahamas\n", - "4357 Bosnia and Herzegovina\n", - "4576 Belarus\n", - "4795 Belize\n", - "5061 Bolivia\n", - "5280 Brazil\n", - "5499 Barbados\n", - "5718 Brunei\n", - "5937 Bhutan\n", - "6156 Botswana\n", - "6375 Central African Republic\n", - "6594 Canada\n", - " ... \n", - "35371 Sweden\n", - "35590 Swaziland\n", - "35809 Seychelles\n", - "36028 Syria\n", - "36247 Chad\n", - "36466 Togo\n", - "36685 Thailand\n", - "36904 Tajikistan\n", - "37123 Turkmenistan\n", - "37342 Timor-Leste\n", - "37561 Tonga\n", - "37780 Trinidad and Tobago\n", - "37999 Tunisia\n", - "38218 Turkey\n", - "38437 Taiwan\n", - "38654 Tanzania\n", - "38873 Uganda\n", - "39092 Ukraine\n", - "39311 Uruguay\n", - "39530 United States\n", - "39749 Uzbekistan\n", - "39968 St. Vincent and the Grenadines\n", - "40187 Venezuela\n", - "40406 Vietnam\n", - "40625 Vanuatu\n", - "40844 Samoa\n", - "41063 Yemen\n", - "41282 South Africa\n", - "41501 Zambia\n", - "41720 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "150 Aruba\n", - "369 Afghanistan\n", - "588 Angola\n", - "807 Albania\n", - "1073 United Arab Emirates\n", - "1292 Argentina\n", - "1511 Armenia\n", - "1730 Antigua and Barbuda\n", - "1949 Australia\n", - "2168 Austria\n", - "2387 Azerbaijan\n", - "2606 Burundi\n", - "2825 Belgium\n", - "3044 Benin\n", - "3263 Burkina Faso\n", - "3482 Bangladesh\n", - "3701 Bulgaria\n", - "3920 Bahrain\n", - "4139 Bahamas\n", - "4358 Bosnia and Herzegovina\n", - "4577 Belarus\n", - "4796 Belize\n", - "5062 Bolivia\n", - "5281 Brazil\n", - "5500 Barbados\n", - "5719 Brunei\n", - "5938 Bhutan\n", - "6157 Botswana\n", - "6376 Central African Republic\n", - "6595 Canada\n", - " ... \n", - "35372 Sweden\n", - "35591 Swaziland\n", - "35810 Seychelles\n", - "36029 Syria\n", - "36248 Chad\n", - "36467 Togo\n", - "36686 Thailand\n", - "36905 Tajikistan\n", - "37124 Turkmenistan\n", - "37343 Timor-Leste\n", - "37562 Tonga\n", - "37781 Trinidad and Tobago\n", - "38000 Tunisia\n", - "38219 Turkey\n", - "38438 Taiwan\n", - "38655 Tanzania\n", - "38874 Uganda\n", - "39093 Ukraine\n", - "39312 Uruguay\n", - "39531 United States\n", - "39750 Uzbekistan\n", - "39969 St. Vincent and the Grenadines\n", - "40188 Venezuela\n", - "40407 Vietnam\n", - "40626 Vanuatu\n", - "40845 Samoa\n", - "41064 Yemen\n", - "41283 South Africa\n", - "41502 Zambia\n", - "41721 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "151 Aruba\n", - "370 Afghanistan\n", - "589 Angola\n", - "808 Albania\n", - "1074 United Arab Emirates\n", - "1293 Argentina\n", - "1512 Armenia\n", - "1731 Antigua and Barbuda\n", - "1950 Australia\n", - "2169 Austria\n", - "2388 Azerbaijan\n", - "2607 Burundi\n", - "2826 Belgium\n", - "3045 Benin\n", - "3264 Burkina Faso\n", - "3483 Bangladesh\n", - "3702 Bulgaria\n", - "3921 Bahrain\n", - "4140 Bahamas\n", - "4359 Bosnia and Herzegovina\n", - "4578 Belarus\n", - "4797 Belize\n", - "5063 Bolivia\n", - "5282 Brazil\n", - "5501 Barbados\n", - "5720 Brunei\n", - "5939 Bhutan\n", - "6158 Botswana\n", - "6377 Central African Republic\n", - "6596 Canada\n", - " ... \n", - "35373 Sweden\n", - "35592 Swaziland\n", - "35811 Seychelles\n", - "36030 Syria\n", - "36249 Chad\n", - "36468 Togo\n", - "36687 Thailand\n", - "36906 Tajikistan\n", - "37125 Turkmenistan\n", - "37344 Timor-Leste\n", - "37563 Tonga\n", - "37782 Trinidad and Tobago\n", - "38001 Tunisia\n", - "38220 Turkey\n", - "38439 Taiwan\n", - "38656 Tanzania\n", - "38875 Uganda\n", - "39094 Ukraine\n", - "39313 Uruguay\n", - "39532 United States\n", - "39751 Uzbekistan\n", - "39970 St. Vincent and the Grenadines\n", - "40189 Venezuela\n", - "40408 Vietnam\n", - "40627 Vanuatu\n", - "40846 Samoa\n", - "41065 Yemen\n", - "41284 South Africa\n", - "41503 Zambia\n", - "41722 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "152 Aruba\n", - "371 Afghanistan\n", - "590 Angola\n", - "809 Albania\n", - "1075 United Arab Emirates\n", - "1294 Argentina\n", - "1513 Armenia\n", - "1732 Antigua and Barbuda\n", - "1951 Australia\n", - "2170 Austria\n", - "2389 Azerbaijan\n", - "2608 Burundi\n", - "2827 Belgium\n", - "3046 Benin\n", - "3265 Burkina Faso\n", - "3484 Bangladesh\n", - "3703 Bulgaria\n", - "3922 Bahrain\n", - "4141 Bahamas\n", - "4360 Bosnia and Herzegovina\n", - "4579 Belarus\n", - "4798 Belize\n", - "5064 Bolivia\n", - "5283 Brazil\n", - "5502 Barbados\n", - "5721 Brunei\n", - "5940 Bhutan\n", - "6159 Botswana\n", - "6378 Central African Republic\n", - "6597 Canada\n", - " ... \n", - "35374 Sweden\n", - "35593 Swaziland\n", - "35812 Seychelles\n", - "36031 Syria\n", - "36250 Chad\n", - "36469 Togo\n", - "36688 Thailand\n", - "36907 Tajikistan\n", - "37126 Turkmenistan\n", - "37345 Timor-Leste\n", - "37564 Tonga\n", - "37783 Trinidad and Tobago\n", - "38002 Tunisia\n", - "38221 Turkey\n", - "38440 Taiwan\n", - "38657 Tanzania\n", - "38876 Uganda\n", - "39095 Ukraine\n", - "39314 Uruguay\n", - "39533 United States\n", - "39752 Uzbekistan\n", - "39971 St. Vincent and the Grenadines\n", - "40190 Venezuela\n", - "40409 Vietnam\n", - "40628 Vanuatu\n", - "40847 Samoa\n", - "41066 Yemen\n", - "41285 South Africa\n", - "41504 Zambia\n", - "41723 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "153 Aruba\n", - "372 Afghanistan\n", - "591 Angola\n", - "810 Albania\n", - "1076 United Arab Emirates\n", - "1295 Argentina\n", - "1514 Armenia\n", - "1733 Antigua and Barbuda\n", - "1952 Australia\n", - "2171 Austria\n", - "2390 Azerbaijan\n", - "2609 Burundi\n", - "2828 Belgium\n", - "3047 Benin\n", - "3266 Burkina Faso\n", - "3485 Bangladesh\n", - "3704 Bulgaria\n", - "3923 Bahrain\n", - "4142 Bahamas\n", - "4361 Bosnia and Herzegovina\n", - "4580 Belarus\n", - "4799 Belize\n", - "5065 Bolivia\n", - "5284 Brazil\n", - "5503 Barbados\n", - "5722 Brunei\n", - "5941 Bhutan\n", - "6160 Botswana\n", - "6379 Central African Republic\n", - "6598 Canada\n", - " ... \n", - "35375 Sweden\n", - "35594 Swaziland\n", - "35813 Seychelles\n", - "36032 Syria\n", - "36251 Chad\n", - "36470 Togo\n", - "36689 Thailand\n", - "36908 Tajikistan\n", - "37127 Turkmenistan\n", - "37346 Timor-Leste\n", - "37565 Tonga\n", - "37784 Trinidad and Tobago\n", - "38003 Tunisia\n", - "38222 Turkey\n", - "38441 Taiwan\n", - "38658 Tanzania\n", - "38877 Uganda\n", - "39096 Ukraine\n", - "39315 Uruguay\n", - "39534 United States\n", - "39753 Uzbekistan\n", - "39972 St. Vincent and the Grenadines\n", - "40191 Venezuela\n", - "40410 Vietnam\n", - "40629 Vanuatu\n", - "40848 Samoa\n", - "41067 Yemen\n", - "41286 South Africa\n", - "41505 Zambia\n", - "41724 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "154 Aruba\n", - "373 Afghanistan\n", - "592 Angola\n", - "811 Albania\n", - "1077 United Arab Emirates\n", - "1296 Argentina\n", - "1515 Armenia\n", - "1734 Antigua and Barbuda\n", - "1953 Australia\n", - "2172 Austria\n", - "2391 Azerbaijan\n", - "2610 Burundi\n", - "2829 Belgium\n", - "3048 Benin\n", - "3267 Burkina Faso\n", - "3486 Bangladesh\n", - "3705 Bulgaria\n", - "3924 Bahrain\n", - "4143 Bahamas\n", - "4362 Bosnia and Herzegovina\n", - "4581 Belarus\n", - "4800 Belize\n", - "5066 Bolivia\n", - "5285 Brazil\n", - "5504 Barbados\n", - "5723 Brunei\n", - "5942 Bhutan\n", - "6161 Botswana\n", - "6380 Central African Republic\n", - "6599 Canada\n", - " ... \n", - "35376 Sweden\n", - "35595 Swaziland\n", - "35814 Seychelles\n", - "36033 Syria\n", - "36252 Chad\n", - "36471 Togo\n", - "36690 Thailand\n", - "36909 Tajikistan\n", - "37128 Turkmenistan\n", - "37347 Timor-Leste\n", - "37566 Tonga\n", - "37785 Trinidad and Tobago\n", - "38004 Tunisia\n", - "38223 Turkey\n", - "38442 Taiwan\n", - "38659 Tanzania\n", - "38878 Uganda\n", - "39097 Ukraine\n", - "39316 Uruguay\n", - "39535 United States\n", - "39754 Uzbekistan\n", - "39973 St. Vincent and the Grenadines\n", - "40192 Venezuela\n", - "40411 Vietnam\n", - "40630 Vanuatu\n", - "40849 Samoa\n", - "41068 Yemen\n", - "41287 South Africa\n", - "41506 Zambia\n", - "41725 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "155 Aruba\n", - "374 Afghanistan\n", - "593 Angola\n", - "812 Albania\n", - "1078 United Arab Emirates\n", - "1297 Argentina\n", - "1516 Armenia\n", - "1735 Antigua and Barbuda\n", - "1954 Australia\n", - "2173 Austria\n", - "2392 Azerbaijan\n", - "2611 Burundi\n", - "2830 Belgium\n", - "3049 Benin\n", - "3268 Burkina Faso\n", - "3487 Bangladesh\n", - "3706 Bulgaria\n", - "3925 Bahrain\n", - "4144 Bahamas\n", - "4363 Bosnia and Herzegovina\n", - "4582 Belarus\n", - "4801 Belize\n", - "5067 Bolivia\n", - "5286 Brazil\n", - "5505 Barbados\n", - "5724 Brunei\n", - "5943 Bhutan\n", - "6162 Botswana\n", - "6381 Central African Republic\n", - "6600 Canada\n", - " ... \n", - "35377 Sweden\n", - "35596 Swaziland\n", - "35815 Seychelles\n", - "36034 Syria\n", - "36253 Chad\n", - "36472 Togo\n", - "36691 Thailand\n", - "36910 Tajikistan\n", - "37129 Turkmenistan\n", - "37348 Timor-Leste\n", - "37567 Tonga\n", - "37786 Trinidad and Tobago\n", - "38005 Tunisia\n", - "38224 Turkey\n", - "38443 Taiwan\n", - "38660 Tanzania\n", - "38879 Uganda\n", - "39098 Ukraine\n", - "39317 Uruguay\n", - "39536 United States\n", - "39755 Uzbekistan\n", - "39974 St. Vincent and the Grenadines\n", - "40193 Venezuela\n", - "40412 Vietnam\n", - "40631 Vanuatu\n", - "40850 Samoa\n", - "41069 Yemen\n", - "41288 South Africa\n", - "41507 Zambia\n", - "41726 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "156 Aruba\n", - "375 Afghanistan\n", - "594 Angola\n", - "813 Albania\n", - "1079 United Arab Emirates\n", - "1298 Argentina\n", - "1517 Armenia\n", - "1736 Antigua and Barbuda\n", - "1955 Australia\n", - "2174 Austria\n", - "2393 Azerbaijan\n", - "2612 Burundi\n", - "2831 Belgium\n", - "3050 Benin\n", - "3269 Burkina Faso\n", - "3488 Bangladesh\n", - "3707 Bulgaria\n", - "3926 Bahrain\n", - "4145 Bahamas\n", - "4364 Bosnia and Herzegovina\n", - "4583 Belarus\n", - "4802 Belize\n", - "5068 Bolivia\n", - "5287 Brazil\n", - "5506 Barbados\n", - "5725 Brunei\n", - "5944 Bhutan\n", - "6163 Botswana\n", - "6382 Central African Republic\n", - "6601 Canada\n", - " ... \n", - "35378 Sweden\n", - "35597 Swaziland\n", - "35816 Seychelles\n", - "36035 Syria\n", - "36254 Chad\n", - "36473 Togo\n", - "36692 Thailand\n", - "36911 Tajikistan\n", - "37130 Turkmenistan\n", - "37349 Timor-Leste\n", - "37568 Tonga\n", - "37787 Trinidad and Tobago\n", - "38006 Tunisia\n", - "38225 Turkey\n", - "38444 Taiwan\n", - "38661 Tanzania\n", - "38880 Uganda\n", - "39099 Ukraine\n", - "39318 Uruguay\n", - "39537 United States\n", - "39756 Uzbekistan\n", - "39975 St. Vincent and the Grenadines\n", - "40194 Venezuela\n", - "40413 Vietnam\n", - "40632 Vanuatu\n", - "40851 Samoa\n", - "41070 Yemen\n", - "41289 South Africa\n", - "41508 Zambia\n", - "41727 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "157 Aruba\n", - "376 Afghanistan\n", - "595 Angola\n", - "814 Albania\n", - "1080 United Arab Emirates\n", - "1299 Argentina\n", - "1518 Armenia\n", - "1737 Antigua and Barbuda\n", - "1956 Australia\n", - "2175 Austria\n", - "2394 Azerbaijan\n", - "2613 Burundi\n", - "2832 Belgium\n", - "3051 Benin\n", - "3270 Burkina Faso\n", - "3489 Bangladesh\n", - "3708 Bulgaria\n", - "3927 Bahrain\n", - "4146 Bahamas\n", - "4365 Bosnia and Herzegovina\n", - "4584 Belarus\n", - "4803 Belize\n", - "5069 Bolivia\n", - "5288 Brazil\n", - "5507 Barbados\n", - "5726 Brunei\n", - "5945 Bhutan\n", - "6164 Botswana\n", - "6383 Central African Republic\n", - "6602 Canada\n", - " ... \n", - "35379 Sweden\n", - "35598 Swaziland\n", - "35817 Seychelles\n", - "36036 Syria\n", - "36255 Chad\n", - "36474 Togo\n", - "36693 Thailand\n", - "36912 Tajikistan\n", - "37131 Turkmenistan\n", - "37350 Timor-Leste\n", - "37569 Tonga\n", - "37788 Trinidad and Tobago\n", - "38007 Tunisia\n", - "38226 Turkey\n", - "38445 Taiwan\n", - "38662 Tanzania\n", - "38881 Uganda\n", - "39100 Ukraine\n", - "39319 Uruguay\n", - "39538 United States\n", - "39757 Uzbekistan\n", - "39976 St. Vincent and the Grenadines\n", - "40195 Venezuela\n", - "40414 Vietnam\n", - "40633 Vanuatu\n", - "40852 Samoa\n", - "41071 Yemen\n", - "41290 South Africa\n", - "41509 Zambia\n", - "41728 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "158 Aruba\n", - "377 Afghanistan\n", - "596 Angola\n", - "815 Albania\n", - "1081 United Arab Emirates\n", - "1300 Argentina\n", - "1519 Armenia\n", - "1738 Antigua and Barbuda\n", - "1957 Australia\n", - "2176 Austria\n", - "2395 Azerbaijan\n", - "2614 Burundi\n", - "2833 Belgium\n", - "3052 Benin\n", - "3271 Burkina Faso\n", - "3490 Bangladesh\n", - "3709 Bulgaria\n", - "3928 Bahrain\n", - "4147 Bahamas\n", - "4366 Bosnia and Herzegovina\n", - "4585 Belarus\n", - "4804 Belize\n", - "5070 Bolivia\n", - "5289 Brazil\n", - "5508 Barbados\n", - "5727 Brunei\n", - "5946 Bhutan\n", - "6165 Botswana\n", - "6384 Central African Republic\n", - "6603 Canada\n", - " ... \n", - "35380 Sweden\n", - "35599 Swaziland\n", - "35818 Seychelles\n", - "36037 Syria\n", - "36256 Chad\n", - "36475 Togo\n", - "36694 Thailand\n", - "36913 Tajikistan\n", - "37132 Turkmenistan\n", - "37351 Timor-Leste\n", - "37570 Tonga\n", - "37789 Trinidad and Tobago\n", - "38008 Tunisia\n", - "38227 Turkey\n", - "38446 Taiwan\n", - "38663 Tanzania\n", - "38882 Uganda\n", - "39101 Ukraine\n", - "39320 Uruguay\n", - "39539 United States\n", - "39758 Uzbekistan\n", - "39977 St. Vincent and the Grenadines\n", - "40196 Venezuela\n", - "40415 Vietnam\n", - "40634 Vanuatu\n", - "40853 Samoa\n", - "41072 Yemen\n", - "41291 South Africa\n", - "41510 Zambia\n", - "41729 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "159 Aruba\n", - "378 Afghanistan\n", - "597 Angola\n", - "816 Albania\n", - "1082 United Arab Emirates\n", - "1301 Argentina\n", - "1520 Armenia\n", - "1739 Antigua and Barbuda\n", - "1958 Australia\n", - "2177 Austria\n", - "2396 Azerbaijan\n", - "2615 Burundi\n", - "2834 Belgium\n", - "3053 Benin\n", - "3272 Burkina Faso\n", - "3491 Bangladesh\n", - "3710 Bulgaria\n", - "3929 Bahrain\n", - "4148 Bahamas\n", - "4367 Bosnia and Herzegovina\n", - "4586 Belarus\n", - "4805 Belize\n", - "5071 Bolivia\n", - "5290 Brazil\n", - "5509 Barbados\n", - "5728 Brunei\n", - "5947 Bhutan\n", - "6166 Botswana\n", - "6385 Central African Republic\n", - "6604 Canada\n", - " ... \n", - "35381 Sweden\n", - "35600 Swaziland\n", - "35819 Seychelles\n", - "36038 Syria\n", - "36257 Chad\n", - "36476 Togo\n", - "36695 Thailand\n", - "36914 Tajikistan\n", - "37133 Turkmenistan\n", - "37352 Timor-Leste\n", - "37571 Tonga\n", - "37790 Trinidad and Tobago\n", - "38009 Tunisia\n", - "38228 Turkey\n", - "38447 Taiwan\n", - "38664 Tanzania\n", - "38883 Uganda\n", - "39102 Ukraine\n", - "39321 Uruguay\n", - "39540 United States\n", - "39759 Uzbekistan\n", - "39978 St. Vincent and the Grenadines\n", - "40197 Venezuela\n", - "40416 Vietnam\n", - "40635 Vanuatu\n", - "40854 Samoa\n", - "41073 Yemen\n", - "41292 South Africa\n", - "41511 Zambia\n", - "41730 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "160 Aruba\n", - "379 Afghanistan\n", - "598 Angola\n", - "817 Albania\n", - "1083 United Arab Emirates\n", - "1302 Argentina\n", - "1521 Armenia\n", - "1740 Antigua and Barbuda\n", - "1959 Australia\n", - "2178 Austria\n", - "2397 Azerbaijan\n", - "2616 Burundi\n", - "2835 Belgium\n", - "3054 Benin\n", - "3273 Burkina Faso\n", - "3492 Bangladesh\n", - "3711 Bulgaria\n", - "3930 Bahrain\n", - "4149 Bahamas\n", - "4368 Bosnia and Herzegovina\n", - "4587 Belarus\n", - "4806 Belize\n", - "5072 Bolivia\n", - "5291 Brazil\n", - "5510 Barbados\n", - "5729 Brunei\n", - "5948 Bhutan\n", - "6167 Botswana\n", - "6386 Central African Republic\n", - "6605 Canada\n", - " ... \n", - "35382 Sweden\n", - "35601 Swaziland\n", - "35820 Seychelles\n", - "36039 Syria\n", - "36258 Chad\n", - "36477 Togo\n", - "36696 Thailand\n", - "36915 Tajikistan\n", - "37134 Turkmenistan\n", - "37353 Timor-Leste\n", - "37572 Tonga\n", - "37791 Trinidad and Tobago\n", - "38010 Tunisia\n", - "38229 Turkey\n", - "38448 Taiwan\n", - "38665 Tanzania\n", - "38884 Uganda\n", - "39103 Ukraine\n", - "39322 Uruguay\n", - "39541 United States\n", - "39760 Uzbekistan\n", - "39979 St. Vincent and the Grenadines\n", - "40198 Venezuela\n", - "40417 Vietnam\n", - "40636 Vanuatu\n", - "40855 Samoa\n", - "41074 Yemen\n", - "41293 South Africa\n", - "41512 Zambia\n", - "41731 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "161 Aruba\n", - "380 Afghanistan\n", - "599 Angola\n", - "818 Albania\n", - "1084 United Arab Emirates\n", - "1303 Argentina\n", - "1522 Armenia\n", - "1741 Antigua and Barbuda\n", - "1960 Australia\n", - "2179 Austria\n", - "2398 Azerbaijan\n", - "2617 Burundi\n", - "2836 Belgium\n", - "3055 Benin\n", - "3274 Burkina Faso\n", - "3493 Bangladesh\n", - "3712 Bulgaria\n", - "3931 Bahrain\n", - "4150 Bahamas\n", - "4369 Bosnia and Herzegovina\n", - "4588 Belarus\n", - "4807 Belize\n", - "5073 Bolivia\n", - "5292 Brazil\n", - "5511 Barbados\n", - "5730 Brunei\n", - "5949 Bhutan\n", - "6168 Botswana\n", - "6387 Central African Republic\n", - "6606 Canada\n", - " ... \n", - "35383 Sweden\n", - "35602 Swaziland\n", - "35821 Seychelles\n", - "36040 Syria\n", - "36259 Chad\n", - "36478 Togo\n", - "36697 Thailand\n", - "36916 Tajikistan\n", - "37135 Turkmenistan\n", - "37354 Timor-Leste\n", - "37573 Tonga\n", - "37792 Trinidad and Tobago\n", - "38011 Tunisia\n", - "38230 Turkey\n", - "38449 Taiwan\n", - "38666 Tanzania\n", - "38885 Uganda\n", - "39104 Ukraine\n", - "39323 Uruguay\n", - "39542 United States\n", - "39761 Uzbekistan\n", - "39980 St. Vincent and the Grenadines\n", - "40199 Venezuela\n", - "40418 Vietnam\n", - "40637 Vanuatu\n", - "40856 Samoa\n", - "41075 Yemen\n", - "41294 South Africa\n", - "41513 Zambia\n", - "41732 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "162 Aruba\n", - "381 Afghanistan\n", - "600 Angola\n", - "819 Albania\n", - "1085 United Arab Emirates\n", - "1304 Argentina\n", - "1523 Armenia\n", - "1742 Antigua and Barbuda\n", - "1961 Australia\n", - "2180 Austria\n", - "2399 Azerbaijan\n", - "2618 Burundi\n", - "2837 Belgium\n", - "3056 Benin\n", - "3275 Burkina Faso\n", - "3494 Bangladesh\n", - "3713 Bulgaria\n", - "3932 Bahrain\n", - "4151 Bahamas\n", - "4370 Bosnia and Herzegovina\n", - "4589 Belarus\n", - "4808 Belize\n", - "5074 Bolivia\n", - "5293 Brazil\n", - "5512 Barbados\n", - "5731 Brunei\n", - "5950 Bhutan\n", - "6169 Botswana\n", - "6388 Central African Republic\n", - "6607 Canada\n", - " ... \n", - "35384 Sweden\n", - "35603 Swaziland\n", - "35822 Seychelles\n", - "36041 Syria\n", - "36260 Chad\n", - "36479 Togo\n", - "36698 Thailand\n", - "36917 Tajikistan\n", - "37136 Turkmenistan\n", - "37355 Timor-Leste\n", - "37574 Tonga\n", - "37793 Trinidad and Tobago\n", - "38012 Tunisia\n", - "38231 Turkey\n", - "38450 Taiwan\n", - "38667 Tanzania\n", - "38886 Uganda\n", - "39105 Ukraine\n", - "39324 Uruguay\n", - "39543 United States\n", - "39762 Uzbekistan\n", - "39981 St. Vincent and the Grenadines\n", - "40200 Venezuela\n", - "40419 Vietnam\n", - "40638 Vanuatu\n", - "40857 Samoa\n", - "41076 Yemen\n", - "41295 South Africa\n", - "41514 Zambia\n", - "41733 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "163 Aruba\n", - "382 Afghanistan\n", - "601 Angola\n", - "820 Albania\n", - "1086 United Arab Emirates\n", - "1305 Argentina\n", - "1524 Armenia\n", - "1743 Antigua and Barbuda\n", - "1962 Australia\n", - "2181 Austria\n", - "2400 Azerbaijan\n", - "2619 Burundi\n", - "2838 Belgium\n", - "3057 Benin\n", - "3276 Burkina Faso\n", - "3495 Bangladesh\n", - "3714 Bulgaria\n", - "3933 Bahrain\n", - "4152 Bahamas\n", - "4371 Bosnia and Herzegovina\n", - "4590 Belarus\n", - "4809 Belize\n", - "5075 Bolivia\n", - "5294 Brazil\n", - "5513 Barbados\n", - "5732 Brunei\n", - "5951 Bhutan\n", - "6170 Botswana\n", - "6389 Central African Republic\n", - "6608 Canada\n", - " ... \n", - "35385 Sweden\n", - "35604 Swaziland\n", - "35823 Seychelles\n", - "36042 Syria\n", - "36261 Chad\n", - "36480 Togo\n", - "36699 Thailand\n", - "36918 Tajikistan\n", - "37137 Turkmenistan\n", - "37356 Timor-Leste\n", - "37575 Tonga\n", - "37794 Trinidad and Tobago\n", - "38013 Tunisia\n", - "38232 Turkey\n", - "38451 Taiwan\n", - "38668 Tanzania\n", - "38887 Uganda\n", - "39106 Ukraine\n", - "39325 Uruguay\n", - "39544 United States\n", - "39763 Uzbekistan\n", - "39982 St. Vincent and the Grenadines\n", - "40201 Venezuela\n", - "40420 Vietnam\n", - "40639 Vanuatu\n", - "40858 Samoa\n", - "41077 Yemen\n", - "41296 South Africa\n", - "41515 Zambia\n", - "41734 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "164 Aruba\n", - "383 Afghanistan\n", - "602 Angola\n", - "821 Albania\n", - "1087 United Arab Emirates\n", - "1306 Argentina\n", - "1525 Armenia\n", - "1744 Antigua and Barbuda\n", - "1963 Australia\n", - "2182 Austria\n", - "2401 Azerbaijan\n", - "2620 Burundi\n", - "2839 Belgium\n", - "3058 Benin\n", - "3277 Burkina Faso\n", - "3496 Bangladesh\n", - "3715 Bulgaria\n", - "3934 Bahrain\n", - "4153 Bahamas\n", - "4372 Bosnia and Herzegovina\n", - "4591 Belarus\n", - "4810 Belize\n", - "5076 Bolivia\n", - "5295 Brazil\n", - "5514 Barbados\n", - "5733 Brunei\n", - "5952 Bhutan\n", - "6171 Botswana\n", - "6390 Central African Republic\n", - "6609 Canada\n", - " ... \n", - "35386 Sweden\n", - "35605 Swaziland\n", - "35824 Seychelles\n", - "36043 Syria\n", - "36262 Chad\n", - "36481 Togo\n", - "36700 Thailand\n", - "36919 Tajikistan\n", - "37138 Turkmenistan\n", - "37357 Timor-Leste\n", - "37576 Tonga\n", - "37795 Trinidad and Tobago\n", - "38014 Tunisia\n", - "38233 Turkey\n", - "38452 Taiwan\n", - "38669 Tanzania\n", - "38888 Uganda\n", - "39107 Ukraine\n", - "39326 Uruguay\n", - "39545 United States\n", - "39764 Uzbekistan\n", - "39983 St. Vincent and the Grenadines\n", - "40202 Venezuela\n", - "40421 Vietnam\n", - "40640 Vanuatu\n", - "40859 Samoa\n", - "41078 Yemen\n", - "41297 South Africa\n", - "41516 Zambia\n", - "41735 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "165 Aruba\n", - "384 Afghanistan\n", - "603 Angola\n", - "822 Albania\n", - "1088 United Arab Emirates\n", - "1307 Argentina\n", - "1526 Armenia\n", - "1745 Antigua and Barbuda\n", - "1964 Australia\n", - "2183 Austria\n", - "2402 Azerbaijan\n", - "2621 Burundi\n", - "2840 Belgium\n", - "3059 Benin\n", - "3278 Burkina Faso\n", - "3497 Bangladesh\n", - "3716 Bulgaria\n", - "3935 Bahrain\n", - "4154 Bahamas\n", - "4373 Bosnia and Herzegovina\n", - "4592 Belarus\n", - "4811 Belize\n", - "5077 Bolivia\n", - "5296 Brazil\n", - "5515 Barbados\n", - "5734 Brunei\n", - "5953 Bhutan\n", - "6172 Botswana\n", - "6391 Central African Republic\n", - "6610 Canada\n", - " ... \n", - "35387 Sweden\n", - "35606 Swaziland\n", - "35825 Seychelles\n", - "36044 Syria\n", - "36263 Chad\n", - "36482 Togo\n", - "36701 Thailand\n", - "36920 Tajikistan\n", - "37139 Turkmenistan\n", - "37358 Timor-Leste\n", - "37577 Tonga\n", - "37796 Trinidad and Tobago\n", - "38015 Tunisia\n", - "38234 Turkey\n", - "38453 Taiwan\n", - "38670 Tanzania\n", - "38889 Uganda\n", - "39108 Ukraine\n", - "39327 Uruguay\n", - "39546 United States\n", - "39765 Uzbekistan\n", - "39984 St. Vincent and the Grenadines\n", - "40203 Venezuela\n", - "40422 Vietnam\n", - "40641 Vanuatu\n", - "40860 Samoa\n", - "41079 Yemen\n", - "41298 South Africa\n", - "41517 Zambia\n", - "41736 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "166 Aruba\n", - "385 Afghanistan\n", - "604 Angola\n", - "823 Albania\n", - "1089 United Arab Emirates\n", - "1308 Argentina\n", - "1527 Armenia\n", - "1746 Antigua and Barbuda\n", - "1965 Australia\n", - "2184 Austria\n", - "2403 Azerbaijan\n", - "2622 Burundi\n", - "2841 Belgium\n", - "3060 Benin\n", - "3279 Burkina Faso\n", - "3498 Bangladesh\n", - "3717 Bulgaria\n", - "3936 Bahrain\n", - "4155 Bahamas\n", - "4374 Bosnia and Herzegovina\n", - "4593 Belarus\n", - "4812 Belize\n", - "5078 Bolivia\n", - "5297 Brazil\n", - "5516 Barbados\n", - "5735 Brunei\n", - "5954 Bhutan\n", - "6173 Botswana\n", - "6392 Central African Republic\n", - "6611 Canada\n", - " ... \n", - "35388 Sweden\n", - "35607 Swaziland\n", - "35826 Seychelles\n", - "36045 Syria\n", - "36264 Chad\n", - "36483 Togo\n", - "36702 Thailand\n", - "36921 Tajikistan\n", - "37140 Turkmenistan\n", - "37359 Timor-Leste\n", - "37578 Tonga\n", - "37797 Trinidad and Tobago\n", - "38016 Tunisia\n", - "38235 Turkey\n", - "38454 Taiwan\n", - "38671 Tanzania\n", - "38890 Uganda\n", - "39109 Ukraine\n", - "39328 Uruguay\n", - "39547 United States\n", - "39766 Uzbekistan\n", - "39985 St. Vincent and the Grenadines\n", - "40204 Venezuela\n", - "40423 Vietnam\n", - "40642 Vanuatu\n", - "40861 Samoa\n", - "41080 Yemen\n", - "41299 South Africa\n", - "41518 Zambia\n", - "41737 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "167 Aruba\n", - "386 Afghanistan\n", - "605 Angola\n", - "824 Albania\n", - "1090 United Arab Emirates\n", - "1309 Argentina\n", - "1528 Armenia\n", - "1747 Antigua and Barbuda\n", - "1966 Australia\n", - "2185 Austria\n", - "2404 Azerbaijan\n", - "2623 Burundi\n", - "2842 Belgium\n", - "3061 Benin\n", - "3280 Burkina Faso\n", - "3499 Bangladesh\n", - "3718 Bulgaria\n", - "3937 Bahrain\n", - "4156 Bahamas\n", - "4375 Bosnia and Herzegovina\n", - "4594 Belarus\n", - "4813 Belize\n", - "5079 Bolivia\n", - "5298 Brazil\n", - "5517 Barbados\n", - "5736 Brunei\n", - "5955 Bhutan\n", - "6174 Botswana\n", - "6393 Central African Republic\n", - "6612 Canada\n", - " ... \n", - "35389 Sweden\n", - "35608 Swaziland\n", - "35827 Seychelles\n", - "36046 Syria\n", - "36265 Chad\n", - "36484 Togo\n", - "36703 Thailand\n", - "36922 Tajikistan\n", - "37141 Turkmenistan\n", - "37360 Timor-Leste\n", - "37579 Tonga\n", - "37798 Trinidad and Tobago\n", - "38017 Tunisia\n", - "38236 Turkey\n", - "38455 Taiwan\n", - "38672 Tanzania\n", - "38891 Uganda\n", - "39110 Ukraine\n", - "39329 Uruguay\n", - "39548 United States\n", - "39767 Uzbekistan\n", - "39986 St. Vincent and the Grenadines\n", - "40205 Venezuela\n", - "40424 Vietnam\n", - "40643 Vanuatu\n", - "40862 Samoa\n", - "41081 Yemen\n", - "41300 South Africa\n", - "41519 Zambia\n", - "41738 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "168 Aruba\n", - "387 Afghanistan\n", - "606 Angola\n", - "825 Albania\n", - "1091 United Arab Emirates\n", - "1310 Argentina\n", - "1529 Armenia\n", - "1748 Antigua and Barbuda\n", - "1967 Australia\n", - "2186 Austria\n", - "2405 Azerbaijan\n", - "2624 Burundi\n", - "2843 Belgium\n", - "3062 Benin\n", - "3281 Burkina Faso\n", - "3500 Bangladesh\n", - "3719 Bulgaria\n", - "3938 Bahrain\n", - "4157 Bahamas\n", - "4376 Bosnia and Herzegovina\n", - "4595 Belarus\n", - "4814 Belize\n", - "5080 Bolivia\n", - "5299 Brazil\n", - "5518 Barbados\n", - "5737 Brunei\n", - "5956 Bhutan\n", - "6175 Botswana\n", - "6394 Central African Republic\n", - "6613 Canada\n", - " ... \n", - "35390 Sweden\n", - "35609 Swaziland\n", - "35828 Seychelles\n", - "36047 Syria\n", - "36266 Chad\n", - "36485 Togo\n", - "36704 Thailand\n", - "36923 Tajikistan\n", - "37142 Turkmenistan\n", - "37361 Timor-Leste\n", - "37580 Tonga\n", - "37799 Trinidad and Tobago\n", - "38018 Tunisia\n", - "38237 Turkey\n", - "38456 Taiwan\n", - "38673 Tanzania\n", - "38892 Uganda\n", - "39111 Ukraine\n", - "39330 Uruguay\n", - "39549 United States\n", - "39768 Uzbekistan\n", - "39987 St. Vincent and the Grenadines\n", - "40206 Venezuela\n", - "40425 Vietnam\n", - "40644 Vanuatu\n", - "40863 Samoa\n", - "41082 Yemen\n", - "41301 South Africa\n", - "41520 Zambia\n", - "41739 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "169 Aruba\n", - "388 Afghanistan\n", - "607 Angola\n", - "826 Albania\n", - "1092 United Arab Emirates\n", - "1311 Argentina\n", - "1530 Armenia\n", - "1749 Antigua and Barbuda\n", - "1968 Australia\n", - "2187 Austria\n", - "2406 Azerbaijan\n", - "2625 Burundi\n", - "2844 Belgium\n", - "3063 Benin\n", - "3282 Burkina Faso\n", - "3501 Bangladesh\n", - "3720 Bulgaria\n", - "3939 Bahrain\n", - "4158 Bahamas\n", - "4377 Bosnia and Herzegovina\n", - "4596 Belarus\n", - "4815 Belize\n", - "5081 Bolivia\n", - "5300 Brazil\n", - "5519 Barbados\n", - "5738 Brunei\n", - "5957 Bhutan\n", - "6176 Botswana\n", - "6395 Central African Republic\n", - "6614 Canada\n", - " ... \n", - "35391 Sweden\n", - "35610 Swaziland\n", - "35829 Seychelles\n", - "36048 Syria\n", - "36267 Chad\n", - "36486 Togo\n", - "36705 Thailand\n", - "36924 Tajikistan\n", - "37143 Turkmenistan\n", - "37362 Timor-Leste\n", - "37581 Tonga\n", - "37800 Trinidad and Tobago\n", - "38019 Tunisia\n", - "38238 Turkey\n", - "38457 Taiwan\n", - "38674 Tanzania\n", - "38893 Uganda\n", - "39112 Ukraine\n", - "39331 Uruguay\n", - "39550 United States\n", - "39769 Uzbekistan\n", - "39988 St. Vincent and the Grenadines\n", - "40207 Venezuela\n", - "40426 Vietnam\n", - "40645 Vanuatu\n", - "40864 Samoa\n", - "41083 Yemen\n", - "41302 South Africa\n", - "41521 Zambia\n", - "41740 Zimbabwe\n", - "Name: country, Length: 190, dtype: object\n", - "170 Aruba\n", - "389 Afghanistan\n", - "608 Angola\n", - "827 Albania\n", - "876 Andorra\n", - "1093 United Arab Emirates\n", - "1312 Argentina\n", - "1531 Armenia\n", - "1750 Antigua and Barbuda\n", - "1969 Australia\n", - "2188 Austria\n", - "2407 Azerbaijan\n", - "2626 Burundi\n", - "2845 Belgium\n", - "3064 Benin\n", - "3283 Burkina Faso\n", - "3502 Bangladesh\n", - "3721 Bulgaria\n", - "3940 Bahrain\n", - "4159 Bahamas\n", - "4378 Bosnia and Herzegovina\n", - "4597 Belarus\n", - "4816 Belize\n", - "4865 Bermuda\n", - "5082 Bolivia\n", - "5301 Brazil\n", - "5520 Barbados\n", - "5739 Brunei\n", - "5958 Bhutan\n", - "6177 Botswana\n", - " ... \n", - "35392 Sweden\n", - "35611 Swaziland\n", - "35830 Seychelles\n", - "36049 Syria\n", - "36268 Chad\n", - "36487 Togo\n", - "36706 Thailand\n", - "36925 Tajikistan\n", - "37144 Turkmenistan\n", - "37363 Timor-Leste\n", - "37582 Tonga\n", - "37801 Trinidad and Tobago\n", - "38020 Tunisia\n", - "38239 Turkey\n", - "38458 Taiwan\n", - "38675 Tanzania\n", - "38894 Uganda\n", - "39113 Ukraine\n", - "39332 Uruguay\n", - "39551 United States\n", - "39770 Uzbekistan\n", - "39989 St. Vincent and the Grenadines\n", - "40208 Venezuela\n", - "40427 Vietnam\n", - "40646 Vanuatu\n", - "40865 Samoa\n", - "41084 Yemen\n", - "41303 South Africa\n", - "41522 Zambia\n", - "41741 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "171 Aruba\n", - "390 Afghanistan\n", - "609 Angola\n", - "828 Albania\n", - "877 Andorra\n", - "1094 United Arab Emirates\n", - "1313 Argentina\n", - "1532 Armenia\n", - "1751 Antigua and Barbuda\n", - "1970 Australia\n", - "2189 Austria\n", - "2408 Azerbaijan\n", - "2627 Burundi\n", - "2846 Belgium\n", - "3065 Benin\n", - "3284 Burkina Faso\n", - "3503 Bangladesh\n", - "3722 Bulgaria\n", - "3941 Bahrain\n", - "4160 Bahamas\n", - "4379 Bosnia and Herzegovina\n", - "4598 Belarus\n", - "4817 Belize\n", - "4866 Bermuda\n", - "5083 Bolivia\n", - "5302 Brazil\n", - "5521 Barbados\n", - "5740 Brunei\n", - "5959 Bhutan\n", - "6178 Botswana\n", - " ... \n", - "35393 Sweden\n", - "35612 Swaziland\n", - "35831 Seychelles\n", - "36050 Syria\n", - "36269 Chad\n", - "36488 Togo\n", - "36707 Thailand\n", - "36926 Tajikistan\n", - "37145 Turkmenistan\n", - "37364 Timor-Leste\n", - "37583 Tonga\n", - "37802 Trinidad and Tobago\n", - "38021 Tunisia\n", - "38240 Turkey\n", - "38459 Taiwan\n", - "38676 Tanzania\n", - "38895 Uganda\n", - "39114 Ukraine\n", - "39333 Uruguay\n", - "39552 United States\n", - "39771 Uzbekistan\n", - "39990 St. Vincent and the Grenadines\n", - "40209 Venezuela\n", - "40428 Vietnam\n", - "40647 Vanuatu\n", - "40866 Samoa\n", - "41085 Yemen\n", - "41304 South Africa\n", - "41523 Zambia\n", - "41742 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "172 Aruba\n", - "391 Afghanistan\n", - "610 Angola\n", - "829 Albania\n", - "878 Andorra\n", - "1095 United Arab Emirates\n", - "1314 Argentina\n", - "1533 Armenia\n", - "1752 Antigua and Barbuda\n", - "1971 Australia\n", - "2190 Austria\n", - "2409 Azerbaijan\n", - "2628 Burundi\n", - "2847 Belgium\n", - "3066 Benin\n", - "3285 Burkina Faso\n", - "3504 Bangladesh\n", - "3723 Bulgaria\n", - "3942 Bahrain\n", - "4161 Bahamas\n", - "4380 Bosnia and Herzegovina\n", - "4599 Belarus\n", - "4818 Belize\n", - "4867 Bermuda\n", - "5084 Bolivia\n", - "5303 Brazil\n", - "5522 Barbados\n", - "5741 Brunei\n", - "5960 Bhutan\n", - "6179 Botswana\n", - " ... \n", - "35394 Sweden\n", - "35613 Swaziland\n", - "35832 Seychelles\n", - "36051 Syria\n", - "36270 Chad\n", - "36489 Togo\n", - "36708 Thailand\n", - "36927 Tajikistan\n", - "37146 Turkmenistan\n", - "37365 Timor-Leste\n", - "37584 Tonga\n", - "37803 Trinidad and Tobago\n", - "38022 Tunisia\n", - "38241 Turkey\n", - "38460 Taiwan\n", - "38677 Tanzania\n", - "38896 Uganda\n", - "39115 Ukraine\n", - "39334 Uruguay\n", - "39553 United States\n", - "39772 Uzbekistan\n", - "39991 St. Vincent and the Grenadines\n", - "40210 Venezuela\n", - "40429 Vietnam\n", - "40648 Vanuatu\n", - "40867 Samoa\n", - "41086 Yemen\n", - "41305 South Africa\n", - "41524 Zambia\n", - "41743 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "173 Aruba\n", - "392 Afghanistan\n", - "611 Angola\n", - "830 Albania\n", - "879 Andorra\n", - "1096 United Arab Emirates\n", - "1315 Argentina\n", - "1534 Armenia\n", - "1753 Antigua and Barbuda\n", - "1972 Australia\n", - "2191 Austria\n", - "2410 Azerbaijan\n", - "2629 Burundi\n", - "2848 Belgium\n", - "3067 Benin\n", - "3286 Burkina Faso\n", - "3505 Bangladesh\n", - "3724 Bulgaria\n", - "3943 Bahrain\n", - "4162 Bahamas\n", - "4381 Bosnia and Herzegovina\n", - "4600 Belarus\n", - "4819 Belize\n", - "4868 Bermuda\n", - "5085 Bolivia\n", - "5304 Brazil\n", - "5523 Barbados\n", - "5742 Brunei\n", - "5961 Bhutan\n", - "6180 Botswana\n", - " ... \n", - "35395 Sweden\n", - "35614 Swaziland\n", - "35833 Seychelles\n", - "36052 Syria\n", - "36271 Chad\n", - "36490 Togo\n", - "36709 Thailand\n", - "36928 Tajikistan\n", - "37147 Turkmenistan\n", - "37366 Timor-Leste\n", - "37585 Tonga\n", - "37804 Trinidad and Tobago\n", - "38023 Tunisia\n", - "38242 Turkey\n", - "38461 Taiwan\n", - "38678 Tanzania\n", - "38897 Uganda\n", - "39116 Ukraine\n", - "39335 Uruguay\n", - "39554 United States\n", - "39773 Uzbekistan\n", - "39992 St. Vincent and the Grenadines\n", - "40211 Venezuela\n", - "40430 Vietnam\n", - "40649 Vanuatu\n", - "40868 Samoa\n", - "41087 Yemen\n", - "41306 South Africa\n", - "41525 Zambia\n", - "41744 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "174 Aruba\n", - "393 Afghanistan\n", - "612 Angola\n", - "831 Albania\n", - "880 Andorra\n", - "1097 United Arab Emirates\n", - "1316 Argentina\n", - "1535 Armenia\n", - "1754 Antigua and Barbuda\n", - "1973 Australia\n", - "2192 Austria\n", - "2411 Azerbaijan\n", - "2630 Burundi\n", - "2849 Belgium\n", - "3068 Benin\n", - "3287 Burkina Faso\n", - "3506 Bangladesh\n", - "3725 Bulgaria\n", - "3944 Bahrain\n", - "4163 Bahamas\n", - "4382 Bosnia and Herzegovina\n", - "4601 Belarus\n", - "4820 Belize\n", - "4869 Bermuda\n", - "5086 Bolivia\n", - "5305 Brazil\n", - "5524 Barbados\n", - "5743 Brunei\n", - "5962 Bhutan\n", - "6181 Botswana\n", - " ... \n", - "35396 Sweden\n", - "35615 Swaziland\n", - "35834 Seychelles\n", - "36053 Syria\n", - "36272 Chad\n", - "36491 Togo\n", - "36710 Thailand\n", - "36929 Tajikistan\n", - "37148 Turkmenistan\n", - "37367 Timor-Leste\n", - "37586 Tonga\n", - "37805 Trinidad and Tobago\n", - "38024 Tunisia\n", - "38243 Turkey\n", - "38462 Taiwan\n", - "38679 Tanzania\n", - "38898 Uganda\n", - "39117 Ukraine\n", - "39336 Uruguay\n", - "39555 United States\n", - "39774 Uzbekistan\n", - "39993 St. Vincent and the Grenadines\n", - "40212 Venezuela\n", - "40431 Vietnam\n", - "40650 Vanuatu\n", - "40869 Samoa\n", - "41088 Yemen\n", - "41307 South Africa\n", - "41526 Zambia\n", - "41745 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "175 Aruba\n", - "394 Afghanistan\n", - "613 Angola\n", - "832 Albania\n", - "881 Andorra\n", - "1098 United Arab Emirates\n", - "1317 Argentina\n", - "1536 Armenia\n", - "1755 Antigua and Barbuda\n", - "1974 Australia\n", - "2193 Austria\n", - "2412 Azerbaijan\n", - "2631 Burundi\n", - "2850 Belgium\n", - "3069 Benin\n", - "3288 Burkina Faso\n", - "3507 Bangladesh\n", - "3726 Bulgaria\n", - "3945 Bahrain\n", - "4164 Bahamas\n", - "4383 Bosnia and Herzegovina\n", - "4602 Belarus\n", - "4821 Belize\n", - "4870 Bermuda\n", - "5087 Bolivia\n", - "5306 Brazil\n", - "5525 Barbados\n", - "5744 Brunei\n", - "5963 Bhutan\n", - "6182 Botswana\n", - " ... \n", - "35397 Sweden\n", - "35616 Swaziland\n", - "35835 Seychelles\n", - "36054 Syria\n", - "36273 Chad\n", - "36492 Togo\n", - "36711 Thailand\n", - "36930 Tajikistan\n", - "37149 Turkmenistan\n", - "37368 Timor-Leste\n", - "37587 Tonga\n", - "37806 Trinidad and Tobago\n", - "38025 Tunisia\n", - "38244 Turkey\n", - "38463 Taiwan\n", - "38680 Tanzania\n", - "38899 Uganda\n", - "39118 Ukraine\n", - "39337 Uruguay\n", - "39556 United States\n", - "39775 Uzbekistan\n", - "39994 St. Vincent and the Grenadines\n", - "40213 Venezuela\n", - "40432 Vietnam\n", - "40651 Vanuatu\n", - "40870 Samoa\n", - "41089 Yemen\n", - "41308 South Africa\n", - "41527 Zambia\n", - "41746 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "176 Aruba\n", - "395 Afghanistan\n", - "614 Angola\n", - "833 Albania\n", - "882 Andorra\n", - "1099 United Arab Emirates\n", - "1318 Argentina\n", - "1537 Armenia\n", - "1756 Antigua and Barbuda\n", - "1975 Australia\n", - "2194 Austria\n", - "2413 Azerbaijan\n", - "2632 Burundi\n", - "2851 Belgium\n", - "3070 Benin\n", - "3289 Burkina Faso\n", - "3508 Bangladesh\n", - "3727 Bulgaria\n", - "3946 Bahrain\n", - "4165 Bahamas\n", - "4384 Bosnia and Herzegovina\n", - "4603 Belarus\n", - "4822 Belize\n", - "4871 Bermuda\n", - "5088 Bolivia\n", - "5307 Brazil\n", - "5526 Barbados\n", - "5745 Brunei\n", - "5964 Bhutan\n", - "6183 Botswana\n", - " ... \n", - "35398 Sweden\n", - "35617 Swaziland\n", - "35836 Seychelles\n", - "36055 Syria\n", - "36274 Chad\n", - "36493 Togo\n", - "36712 Thailand\n", - "36931 Tajikistan\n", - "37150 Turkmenistan\n", - "37369 Timor-Leste\n", - "37588 Tonga\n", - "37807 Trinidad and Tobago\n", - "38026 Tunisia\n", - "38245 Turkey\n", - "38464 Taiwan\n", - "38681 Tanzania\n", - "38900 Uganda\n", - "39119 Ukraine\n", - "39338 Uruguay\n", - "39557 United States\n", - "39776 Uzbekistan\n", - "39995 St. Vincent and the Grenadines\n", - "40214 Venezuela\n", - "40433 Vietnam\n", - "40652 Vanuatu\n", - "40871 Samoa\n", - "41090 Yemen\n", - "41309 South Africa\n", - "41528 Zambia\n", - "41747 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "177 Aruba\n", - "396 Afghanistan\n", - "615 Angola\n", - "834 Albania\n", - "883 Andorra\n", - "1100 United Arab Emirates\n", - "1319 Argentina\n", - "1538 Armenia\n", - "1757 Antigua and Barbuda\n", - "1976 Australia\n", - "2195 Austria\n", - "2414 Azerbaijan\n", - "2633 Burundi\n", - "2852 Belgium\n", - "3071 Benin\n", - "3290 Burkina Faso\n", - "3509 Bangladesh\n", - "3728 Bulgaria\n", - "3947 Bahrain\n", - "4166 Bahamas\n", - "4385 Bosnia and Herzegovina\n", - "4604 Belarus\n", - "4823 Belize\n", - "4872 Bermuda\n", - "5089 Bolivia\n", - "5308 Brazil\n", - "5527 Barbados\n", - "5746 Brunei\n", - "5965 Bhutan\n", - "6184 Botswana\n", - " ... \n", - "35399 Sweden\n", - "35618 Swaziland\n", - "35837 Seychelles\n", - "36056 Syria\n", - "36275 Chad\n", - "36494 Togo\n", - "36713 Thailand\n", - "36932 Tajikistan\n", - "37151 Turkmenistan\n", - "37370 Timor-Leste\n", - "37589 Tonga\n", - "37808 Trinidad and Tobago\n", - "38027 Tunisia\n", - "38246 Turkey\n", - "38465 Taiwan\n", - "38682 Tanzania\n", - "38901 Uganda\n", - "39120 Ukraine\n", - "39339 Uruguay\n", - "39558 United States\n", - "39777 Uzbekistan\n", - "39996 St. Vincent and the Grenadines\n", - "40215 Venezuela\n", - "40434 Vietnam\n", - "40653 Vanuatu\n", - "40872 Samoa\n", - "41091 Yemen\n", - "41310 South Africa\n", - "41529 Zambia\n", - "41748 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "178 Aruba\n", - "397 Afghanistan\n", - "616 Angola\n", - "835 Albania\n", - "884 Andorra\n", - "1101 United Arab Emirates\n", - "1320 Argentina\n", - "1539 Armenia\n", - "1758 Antigua and Barbuda\n", - "1977 Australia\n", - "2196 Austria\n", - "2415 Azerbaijan\n", - "2634 Burundi\n", - "2853 Belgium\n", - "3072 Benin\n", - "3291 Burkina Faso\n", - "3510 Bangladesh\n", - "3729 Bulgaria\n", - "3948 Bahrain\n", - "4167 Bahamas\n", - "4386 Bosnia and Herzegovina\n", - "4605 Belarus\n", - "4824 Belize\n", - "4873 Bermuda\n", - "5090 Bolivia\n", - "5309 Brazil\n", - "5528 Barbados\n", - "5747 Brunei\n", - "5966 Bhutan\n", - "6185 Botswana\n", - " ... \n", - "35400 Sweden\n", - "35619 Swaziland\n", - "35838 Seychelles\n", - "36057 Syria\n", - "36276 Chad\n", - "36495 Togo\n", - "36714 Thailand\n", - "36933 Tajikistan\n", - "37152 Turkmenistan\n", - "37371 Timor-Leste\n", - "37590 Tonga\n", - "37809 Trinidad and Tobago\n", - "38028 Tunisia\n", - "38247 Turkey\n", - "38466 Taiwan\n", - "38683 Tanzania\n", - "38902 Uganda\n", - "39121 Ukraine\n", - "39340 Uruguay\n", - "39559 United States\n", - "39778 Uzbekistan\n", - "39997 St. Vincent and the Grenadines\n", - "40216 Venezuela\n", - "40435 Vietnam\n", - "40654 Vanuatu\n", - "40873 Samoa\n", - "41092 Yemen\n", - "41311 South Africa\n", - "41530 Zambia\n", - "41749 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "179 Aruba\n", - "398 Afghanistan\n", - "617 Angola\n", - "836 Albania\n", - "885 Andorra\n", - "1102 United Arab Emirates\n", - "1321 Argentina\n", - "1540 Armenia\n", - "1759 Antigua and Barbuda\n", - "1978 Australia\n", - "2197 Austria\n", - "2416 Azerbaijan\n", - "2635 Burundi\n", - "2854 Belgium\n", - "3073 Benin\n", - "3292 Burkina Faso\n", - "3511 Bangladesh\n", - "3730 Bulgaria\n", - "3949 Bahrain\n", - "4168 Bahamas\n", - "4387 Bosnia and Herzegovina\n", - "4606 Belarus\n", - "4825 Belize\n", - "4874 Bermuda\n", - "5091 Bolivia\n", - "5310 Brazil\n", - "5529 Barbados\n", - "5748 Brunei\n", - "5967 Bhutan\n", - "6186 Botswana\n", - " ... \n", - "35401 Sweden\n", - "35620 Swaziland\n", - "35839 Seychelles\n", - "36058 Syria\n", - "36277 Chad\n", - "36496 Togo\n", - "36715 Thailand\n", - "36934 Tajikistan\n", - "37153 Turkmenistan\n", - "37372 Timor-Leste\n", - "37591 Tonga\n", - "37810 Trinidad and Tobago\n", - "38029 Tunisia\n", - "38248 Turkey\n", - "38467 Taiwan\n", - "38684 Tanzania\n", - "38903 Uganda\n", - "39122 Ukraine\n", - "39341 Uruguay\n", - "39560 United States\n", - "39779 Uzbekistan\n", - "39998 St. Vincent and the Grenadines\n", - "40217 Venezuela\n", - "40436 Vietnam\n", - "40655 Vanuatu\n", - "40874 Samoa\n", - "41093 Yemen\n", - "41312 South Africa\n", - "41531 Zambia\n", - "41750 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "180 Aruba\n", - "399 Afghanistan\n", - "618 Angola\n", - "837 Albania\n", - "886 Andorra\n", - "1103 United Arab Emirates\n", - "1322 Argentina\n", - "1541 Armenia\n", - "1760 Antigua and Barbuda\n", - "1979 Australia\n", - "2198 Austria\n", - "2417 Azerbaijan\n", - "2636 Burundi\n", - "2855 Belgium\n", - "3074 Benin\n", - "3293 Burkina Faso\n", - "3512 Bangladesh\n", - "3731 Bulgaria\n", - "3950 Bahrain\n", - "4169 Bahamas\n", - "4388 Bosnia and Herzegovina\n", - "4607 Belarus\n", - "4826 Belize\n", - "4875 Bermuda\n", - "5092 Bolivia\n", - "5311 Brazil\n", - "5530 Barbados\n", - "5749 Brunei\n", - "5968 Bhutan\n", - "6187 Botswana\n", - " ... \n", - "35402 Sweden\n", - "35621 Swaziland\n", - "35840 Seychelles\n", - "36059 Syria\n", - "36278 Chad\n", - "36497 Togo\n", - "36716 Thailand\n", - "36935 Tajikistan\n", - "37154 Turkmenistan\n", - "37373 Timor-Leste\n", - "37592 Tonga\n", - "37811 Trinidad and Tobago\n", - "38030 Tunisia\n", - "38249 Turkey\n", - "38468 Taiwan\n", - "38685 Tanzania\n", - "38904 Uganda\n", - "39123 Ukraine\n", - "39342 Uruguay\n", - "39561 United States\n", - "39780 Uzbekistan\n", - "39999 St. Vincent and the Grenadines\n", - "40218 Venezuela\n", - "40437 Vietnam\n", - "40656 Vanuatu\n", - "40875 Samoa\n", - "41094 Yemen\n", - "41313 South Africa\n", - "41532 Zambia\n", - "41751 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "181 Aruba\n", - "400 Afghanistan\n", - "619 Angola\n", - "838 Albania\n", - "887 Andorra\n", - "1104 United Arab Emirates\n", - "1323 Argentina\n", - "1542 Armenia\n", - "1761 Antigua and Barbuda\n", - "1980 Australia\n", - "2199 Austria\n", - "2418 Azerbaijan\n", - "2637 Burundi\n", - "2856 Belgium\n", - "3075 Benin\n", - "3294 Burkina Faso\n", - "3513 Bangladesh\n", - "3732 Bulgaria\n", - "3951 Bahrain\n", - "4170 Bahamas\n", - "4389 Bosnia and Herzegovina\n", - "4608 Belarus\n", - "4827 Belize\n", - "4876 Bermuda\n", - "5093 Bolivia\n", - "5312 Brazil\n", - "5531 Barbados\n", - "5750 Brunei\n", - "5969 Bhutan\n", - "6188 Botswana\n", - " ... \n", - "35403 Sweden\n", - "35622 Swaziland\n", - "35841 Seychelles\n", - "36060 Syria\n", - "36279 Chad\n", - "36498 Togo\n", - "36717 Thailand\n", - "36936 Tajikistan\n", - "37155 Turkmenistan\n", - "37374 Timor-Leste\n", - "37593 Tonga\n", - "37812 Trinidad and Tobago\n", - "38031 Tunisia\n", - "38250 Turkey\n", - "38469 Taiwan\n", - "38686 Tanzania\n", - "38905 Uganda\n", - "39124 Ukraine\n", - "39343 Uruguay\n", - "39562 United States\n", - "39781 Uzbekistan\n", - "40000 St. Vincent and the Grenadines\n", - "40219 Venezuela\n", - "40438 Vietnam\n", - "40657 Vanuatu\n", - "40876 Samoa\n", - "41095 Yemen\n", - "41314 South Africa\n", - "41533 Zambia\n", - "41752 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "182 Aruba\n", - "401 Afghanistan\n", - "620 Angola\n", - "839 Albania\n", - "888 Andorra\n", - "1105 United Arab Emirates\n", - "1324 Argentina\n", - "1543 Armenia\n", - "1762 Antigua and Barbuda\n", - "1981 Australia\n", - "2200 Austria\n", - "2419 Azerbaijan\n", - "2638 Burundi\n", - "2857 Belgium\n", - "3076 Benin\n", - "3295 Burkina Faso\n", - "3514 Bangladesh\n", - "3733 Bulgaria\n", - "3952 Bahrain\n", - "4171 Bahamas\n", - "4390 Bosnia and Herzegovina\n", - "4609 Belarus\n", - "4828 Belize\n", - "4877 Bermuda\n", - "5094 Bolivia\n", - "5313 Brazil\n", - "5532 Barbados\n", - "5751 Brunei\n", - "5970 Bhutan\n", - "6189 Botswana\n", - " ... \n", - "35404 Sweden\n", - "35623 Swaziland\n", - "35842 Seychelles\n", - "36061 Syria\n", - "36280 Chad\n", - "36499 Togo\n", - "36718 Thailand\n", - "36937 Tajikistan\n", - "37156 Turkmenistan\n", - "37375 Timor-Leste\n", - "37594 Tonga\n", - "37813 Trinidad and Tobago\n", - "38032 Tunisia\n", - "38251 Turkey\n", - "38470 Taiwan\n", - "38687 Tanzania\n", - "38906 Uganda\n", - "39125 Ukraine\n", - "39344 Uruguay\n", - "39563 United States\n", - "39782 Uzbekistan\n", - "40001 St. Vincent and the Grenadines\n", - "40220 Venezuela\n", - "40439 Vietnam\n", - "40658 Vanuatu\n", - "40877 Samoa\n", - "41096 Yemen\n", - "41315 South Africa\n", - "41534 Zambia\n", - "41753 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "183 Aruba\n", - "402 Afghanistan\n", - "621 Angola\n", - "840 Albania\n", - "889 Andorra\n", - "1106 United Arab Emirates\n", - "1325 Argentina\n", - "1544 Armenia\n", - "1763 Antigua and Barbuda\n", - "1982 Australia\n", - "2201 Austria\n", - "2420 Azerbaijan\n", - "2639 Burundi\n", - "2858 Belgium\n", - "3077 Benin\n", - "3296 Burkina Faso\n", - "3515 Bangladesh\n", - "3734 Bulgaria\n", - "3953 Bahrain\n", - "4172 Bahamas\n", - "4391 Bosnia and Herzegovina\n", - "4610 Belarus\n", - "4829 Belize\n", - "4878 Bermuda\n", - "5095 Bolivia\n", - "5314 Brazil\n", - "5533 Barbados\n", - "5752 Brunei\n", - "5971 Bhutan\n", - "6190 Botswana\n", - " ... \n", - "35405 Sweden\n", - "35624 Swaziland\n", - "35843 Seychelles\n", - "36062 Syria\n", - "36281 Chad\n", - "36500 Togo\n", - "36719 Thailand\n", - "36938 Tajikistan\n", - "37157 Turkmenistan\n", - "37376 Timor-Leste\n", - "37595 Tonga\n", - "37814 Trinidad and Tobago\n", - "38033 Tunisia\n", - "38252 Turkey\n", - "38471 Taiwan\n", - "38688 Tanzania\n", - "38907 Uganda\n", - "39126 Ukraine\n", - "39345 Uruguay\n", - "39564 United States\n", - "39783 Uzbekistan\n", - "40002 St. Vincent and the Grenadines\n", - "40221 Venezuela\n", - "40440 Vietnam\n", - "40659 Vanuatu\n", - "40878 Samoa\n", - "41097 Yemen\n", - "41316 South Africa\n", - "41535 Zambia\n", - "41754 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "184 Aruba\n", - "403 Afghanistan\n", - "622 Angola\n", - "841 Albania\n", - "890 Andorra\n", - "1107 United Arab Emirates\n", - "1326 Argentina\n", - "1545 Armenia\n", - "1764 Antigua and Barbuda\n", - "1983 Australia\n", - "2202 Austria\n", - "2421 Azerbaijan\n", - "2640 Burundi\n", - "2859 Belgium\n", - "3078 Benin\n", - "3297 Burkina Faso\n", - "3516 Bangladesh\n", - "3735 Bulgaria\n", - "3954 Bahrain\n", - "4173 Bahamas\n", - "4392 Bosnia and Herzegovina\n", - "4611 Belarus\n", - "4830 Belize\n", - "4879 Bermuda\n", - "5096 Bolivia\n", - "5315 Brazil\n", - "5534 Barbados\n", - "5753 Brunei\n", - "5972 Bhutan\n", - "6191 Botswana\n", - " ... \n", - "35406 Sweden\n", - "35625 Swaziland\n", - "35844 Seychelles\n", - "36063 Syria\n", - "36282 Chad\n", - "36501 Togo\n", - "36720 Thailand\n", - "36939 Tajikistan\n", - "37158 Turkmenistan\n", - "37377 Timor-Leste\n", - "37596 Tonga\n", - "37815 Trinidad and Tobago\n", - "38034 Tunisia\n", - "38253 Turkey\n", - "38472 Taiwan\n", - "38689 Tanzania\n", - "38908 Uganda\n", - "39127 Ukraine\n", - "39346 Uruguay\n", - "39565 United States\n", - "39784 Uzbekistan\n", - "40003 St. Vincent and the Grenadines\n", - "40222 Venezuela\n", - "40441 Vietnam\n", - "40660 Vanuatu\n", - "40879 Samoa\n", - "41098 Yemen\n", - "41317 South Africa\n", - "41536 Zambia\n", - "41755 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "185 Aruba\n", - "404 Afghanistan\n", - "623 Angola\n", - "842 Albania\n", - "891 Andorra\n", - "1108 United Arab Emirates\n", - "1327 Argentina\n", - "1546 Armenia\n", - "1765 Antigua and Barbuda\n", - "1984 Australia\n", - "2203 Austria\n", - "2422 Azerbaijan\n", - "2641 Burundi\n", - "2860 Belgium\n", - "3079 Benin\n", - "3298 Burkina Faso\n", - "3517 Bangladesh\n", - "3736 Bulgaria\n", - "3955 Bahrain\n", - "4174 Bahamas\n", - "4393 Bosnia and Herzegovina\n", - "4612 Belarus\n", - "4831 Belize\n", - "4880 Bermuda\n", - "5097 Bolivia\n", - "5316 Brazil\n", - "5535 Barbados\n", - "5754 Brunei\n", - "5973 Bhutan\n", - "6192 Botswana\n", - " ... \n", - "35407 Sweden\n", - "35626 Swaziland\n", - "35845 Seychelles\n", - "36064 Syria\n", - "36283 Chad\n", - "36502 Togo\n", - "36721 Thailand\n", - "36940 Tajikistan\n", - "37159 Turkmenistan\n", - "37378 Timor-Leste\n", - "37597 Tonga\n", - "37816 Trinidad and Tobago\n", - "38035 Tunisia\n", - "38254 Turkey\n", - "38473 Taiwan\n", - "38690 Tanzania\n", - "38909 Uganda\n", - "39128 Ukraine\n", - "39347 Uruguay\n", - "39566 United States\n", - "39785 Uzbekistan\n", - "40004 St. Vincent and the Grenadines\n", - "40223 Venezuela\n", - "40442 Vietnam\n", - "40661 Vanuatu\n", - "40880 Samoa\n", - "41099 Yemen\n", - "41318 South Africa\n", - "41537 Zambia\n", - "41756 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "186 Aruba\n", - "405 Afghanistan\n", - "624 Angola\n", - "843 Albania\n", - "892 Andorra\n", - "1109 United Arab Emirates\n", - "1328 Argentina\n", - "1547 Armenia\n", - "1766 Antigua and Barbuda\n", - "1985 Australia\n", - "2204 Austria\n", - "2423 Azerbaijan\n", - "2642 Burundi\n", - "2861 Belgium\n", - "3080 Benin\n", - "3299 Burkina Faso\n", - "3518 Bangladesh\n", - "3737 Bulgaria\n", - "3956 Bahrain\n", - "4175 Bahamas\n", - "4394 Bosnia and Herzegovina\n", - "4613 Belarus\n", - "4832 Belize\n", - "4881 Bermuda\n", - "5098 Bolivia\n", - "5317 Brazil\n", - "5536 Barbados\n", - "5755 Brunei\n", - "5974 Bhutan\n", - "6193 Botswana\n", - " ... \n", - "35408 Sweden\n", - "35627 Swaziland\n", - "35846 Seychelles\n", - "36065 Syria\n", - "36284 Chad\n", - "36503 Togo\n", - "36722 Thailand\n", - "36941 Tajikistan\n", - "37160 Turkmenistan\n", - "37379 Timor-Leste\n", - "37598 Tonga\n", - "37817 Trinidad and Tobago\n", - "38036 Tunisia\n", - "38255 Turkey\n", - "38474 Taiwan\n", - "38691 Tanzania\n", - "38910 Uganda\n", - "39129 Ukraine\n", - "39348 Uruguay\n", - "39567 United States\n", - "39786 Uzbekistan\n", - "40005 St. Vincent and the Grenadines\n", - "40224 Venezuela\n", - "40443 Vietnam\n", - "40662 Vanuatu\n", - "40881 Samoa\n", - "41100 Yemen\n", - "41319 South Africa\n", - "41538 Zambia\n", - "41757 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "187 Aruba\n", - "406 Afghanistan\n", - "625 Angola\n", - "844 Albania\n", - "893 Andorra\n", - "1110 United Arab Emirates\n", - "1329 Argentina\n", - "1548 Armenia\n", - "1767 Antigua and Barbuda\n", - "1986 Australia\n", - "2205 Austria\n", - "2424 Azerbaijan\n", - "2643 Burundi\n", - "2862 Belgium\n", - "3081 Benin\n", - "3300 Burkina Faso\n", - "3519 Bangladesh\n", - "3738 Bulgaria\n", - "3957 Bahrain\n", - "4176 Bahamas\n", - "4395 Bosnia and Herzegovina\n", - "4614 Belarus\n", - "4833 Belize\n", - "4882 Bermuda\n", - "5099 Bolivia\n", - "5318 Brazil\n", - "5537 Barbados\n", - "5756 Brunei\n", - "5975 Bhutan\n", - "6194 Botswana\n", - " ... \n", - "35409 Sweden\n", - "35628 Swaziland\n", - "35847 Seychelles\n", - "36066 Syria\n", - "36285 Chad\n", - "36504 Togo\n", - "36723 Thailand\n", - "36942 Tajikistan\n", - "37161 Turkmenistan\n", - "37380 Timor-Leste\n", - "37599 Tonga\n", - "37818 Trinidad and Tobago\n", - "38037 Tunisia\n", - "38256 Turkey\n", - "38475 Taiwan\n", - "38692 Tanzania\n", - "38911 Uganda\n", - "39130 Ukraine\n", - "39349 Uruguay\n", - "39568 United States\n", - "39787 Uzbekistan\n", - "40006 St. Vincent and the Grenadines\n", - "40225 Venezuela\n", - "40444 Vietnam\n", - "40663 Vanuatu\n", - "40882 Samoa\n", - "41101 Yemen\n", - "41320 South Africa\n", - "41539 Zambia\n", - "41758 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "188 Aruba\n", - "407 Afghanistan\n", - "626 Angola\n", - "845 Albania\n", - "894 Andorra\n", - "1111 United Arab Emirates\n", - "1330 Argentina\n", - "1549 Armenia\n", - "1768 Antigua and Barbuda\n", - "1987 Australia\n", - "2206 Austria\n", - "2425 Azerbaijan\n", - "2644 Burundi\n", - "2863 Belgium\n", - "3082 Benin\n", - "3301 Burkina Faso\n", - "3520 Bangladesh\n", - "3739 Bulgaria\n", - "3958 Bahrain\n", - "4177 Bahamas\n", - "4396 Bosnia and Herzegovina\n", - "4615 Belarus\n", - "4834 Belize\n", - "4883 Bermuda\n", - "5100 Bolivia\n", - "5319 Brazil\n", - "5538 Barbados\n", - "5757 Brunei\n", - "5976 Bhutan\n", - "6195 Botswana\n", - " ... \n", - "35410 Sweden\n", - "35629 Swaziland\n", - "35848 Seychelles\n", - "36067 Syria\n", - "36286 Chad\n", - "36505 Togo\n", - "36724 Thailand\n", - "36943 Tajikistan\n", - "37162 Turkmenistan\n", - "37381 Timor-Leste\n", - "37600 Tonga\n", - "37819 Trinidad and Tobago\n", - "38038 Tunisia\n", - "38257 Turkey\n", - "38476 Taiwan\n", - "38693 Tanzania\n", - "38912 Uganda\n", - "39131 Ukraine\n", - "39350 Uruguay\n", - "39569 United States\n", - "39788 Uzbekistan\n", - "40007 St. Vincent and the Grenadines\n", - "40226 Venezuela\n", - "40445 Vietnam\n", - "40664 Vanuatu\n", - "40883 Samoa\n", - "41102 Yemen\n", - "41321 South Africa\n", - "41540 Zambia\n", - "41759 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "189 Aruba\n", - "408 Afghanistan\n", - "627 Angola\n", - "846 Albania\n", - "895 Andorra\n", - "1112 United Arab Emirates\n", - "1331 Argentina\n", - "1550 Armenia\n", - "1769 Antigua and Barbuda\n", - "1988 Australia\n", - "2207 Austria\n", - "2426 Azerbaijan\n", - "2645 Burundi\n", - "2864 Belgium\n", - "3083 Benin\n", - "3302 Burkina Faso\n", - "3521 Bangladesh\n", - "3740 Bulgaria\n", - "3959 Bahrain\n", - "4178 Bahamas\n", - "4397 Bosnia and Herzegovina\n", - "4616 Belarus\n", - "4835 Belize\n", - "4884 Bermuda\n", - "5101 Bolivia\n", - "5320 Brazil\n", - "5539 Barbados\n", - "5758 Brunei\n", - "5977 Bhutan\n", - "6196 Botswana\n", - " ... \n", - "35411 Sweden\n", - "35630 Swaziland\n", - "35849 Seychelles\n", - "36068 Syria\n", - "36287 Chad\n", - "36506 Togo\n", - "36725 Thailand\n", - "36944 Tajikistan\n", - "37163 Turkmenistan\n", - "37382 Timor-Leste\n", - "37601 Tonga\n", - "37820 Trinidad and Tobago\n", - "38039 Tunisia\n", - "38258 Turkey\n", - "38477 Taiwan\n", - "38694 Tanzania\n", - "38913 Uganda\n", - "39132 Ukraine\n", - "39351 Uruguay\n", - "39570 United States\n", - "39789 Uzbekistan\n", - "40008 St. Vincent and the Grenadines\n", - "40227 Venezuela\n", - "40446 Vietnam\n", - "40665 Vanuatu\n", - "40884 Samoa\n", - "41103 Yemen\n", - "41322 South Africa\n", - "41541 Zambia\n", - "41760 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "190 Aruba\n", - "409 Afghanistan\n", - "628 Angola\n", - "847 Albania\n", - "896 Andorra\n", - "1113 United Arab Emirates\n", - "1332 Argentina\n", - "1551 Armenia\n", - "1770 Antigua and Barbuda\n", - "1989 Australia\n", - "2208 Austria\n", - "2427 Azerbaijan\n", - "2646 Burundi\n", - "2865 Belgium\n", - "3084 Benin\n", - "3303 Burkina Faso\n", - "3522 Bangladesh\n", - "3741 Bulgaria\n", - "3960 Bahrain\n", - "4179 Bahamas\n", - "4398 Bosnia and Herzegovina\n", - "4617 Belarus\n", - "4836 Belize\n", - "4885 Bermuda\n", - "5102 Bolivia\n", - "5321 Brazil\n", - "5540 Barbados\n", - "5759 Brunei\n", - "5978 Bhutan\n", - "6197 Botswana\n", - " ... \n", - "35412 Sweden\n", - "35631 Swaziland\n", - "35850 Seychelles\n", - "36069 Syria\n", - "36288 Chad\n", - "36507 Togo\n", - "36726 Thailand\n", - "36945 Tajikistan\n", - "37164 Turkmenistan\n", - "37383 Timor-Leste\n", - "37602 Tonga\n", - "37821 Trinidad and Tobago\n", - "38040 Tunisia\n", - "38259 Turkey\n", - "38478 Taiwan\n", - "38695 Tanzania\n", - "38914 Uganda\n", - "39133 Ukraine\n", - "39352 Uruguay\n", - "39571 United States\n", - "39790 Uzbekistan\n", - "40009 St. Vincent and the Grenadines\n", - "40228 Venezuela\n", - "40447 Vietnam\n", - "40666 Vanuatu\n", - "40885 Samoa\n", - "41104 Yemen\n", - "41323 South Africa\n", - "41542 Zambia\n", - "41761 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "191 Aruba\n", - "410 Afghanistan\n", - "629 Angola\n", - "848 Albania\n", - "897 Andorra\n", - "1114 United Arab Emirates\n", - "1333 Argentina\n", - "1552 Armenia\n", - "1771 Antigua and Barbuda\n", - "1990 Australia\n", - "2209 Austria\n", - "2428 Azerbaijan\n", - "2647 Burundi\n", - "2866 Belgium\n", - "3085 Benin\n", - "3304 Burkina Faso\n", - "3523 Bangladesh\n", - "3742 Bulgaria\n", - "3961 Bahrain\n", - "4180 Bahamas\n", - "4399 Bosnia and Herzegovina\n", - "4618 Belarus\n", - "4837 Belize\n", - "4886 Bermuda\n", - "5103 Bolivia\n", - "5322 Brazil\n", - "5541 Barbados\n", - "5760 Brunei\n", - "5979 Bhutan\n", - "6198 Botswana\n", - " ... \n", - "35413 Sweden\n", - "35632 Swaziland\n", - "35851 Seychelles\n", - "36070 Syria\n", - "36289 Chad\n", - "36508 Togo\n", - "36727 Thailand\n", - "36946 Tajikistan\n", - "37165 Turkmenistan\n", - "37384 Timor-Leste\n", - "37603 Tonga\n", - "37822 Trinidad and Tobago\n", - "38041 Tunisia\n", - "38260 Turkey\n", - "38479 Taiwan\n", - "38696 Tanzania\n", - "38915 Uganda\n", - "39134 Ukraine\n", - "39353 Uruguay\n", - "39572 United States\n", - "39791 Uzbekistan\n", - "40010 St. Vincent and the Grenadines\n", - "40229 Venezuela\n", - "40448 Vietnam\n", - "40667 Vanuatu\n", - "40886 Samoa\n", - "41105 Yemen\n", - "41324 South Africa\n", - "41543 Zambia\n", - "41762 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "192 Aruba\n", - "411 Afghanistan\n", - "630 Angola\n", - "849 Albania\n", - "898 Andorra\n", - "1115 United Arab Emirates\n", - "1334 Argentina\n", - "1553 Armenia\n", - "1772 Antigua and Barbuda\n", - "1991 Australia\n", - "2210 Austria\n", - "2429 Azerbaijan\n", - "2648 Burundi\n", - "2867 Belgium\n", - "3086 Benin\n", - "3305 Burkina Faso\n", - "3524 Bangladesh\n", - "3743 Bulgaria\n", - "3962 Bahrain\n", - "4181 Bahamas\n", - "4400 Bosnia and Herzegovina\n", - "4619 Belarus\n", - "4838 Belize\n", - "4887 Bermuda\n", - "5104 Bolivia\n", - "5323 Brazil\n", - "5542 Barbados\n", - "5761 Brunei\n", - "5980 Bhutan\n", - "6199 Botswana\n", - " ... \n", - "35414 Sweden\n", - "35633 Swaziland\n", - "35852 Seychelles\n", - "36071 Syria\n", - "36290 Chad\n", - "36509 Togo\n", - "36728 Thailand\n", - "36947 Tajikistan\n", - "37166 Turkmenistan\n", - "37385 Timor-Leste\n", - "37604 Tonga\n", - "37823 Trinidad and Tobago\n", - "38042 Tunisia\n", - "38261 Turkey\n", - "38480 Taiwan\n", - "38697 Tanzania\n", - "38916 Uganda\n", - "39135 Ukraine\n", - "39354 Uruguay\n", - "39573 United States\n", - "39792 Uzbekistan\n", - "40011 St. Vincent and the Grenadines\n", - "40230 Venezuela\n", - "40449 Vietnam\n", - "40668 Vanuatu\n", - "40887 Samoa\n", - "41106 Yemen\n", - "41325 South Africa\n", - "41544 Zambia\n", - "41763 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "193 Aruba\n", - "412 Afghanistan\n", - "631 Angola\n", - "850 Albania\n", - "899 Andorra\n", - "1116 United Arab Emirates\n", - "1335 Argentina\n", - "1554 Armenia\n", - "1773 Antigua and Barbuda\n", - "1992 Australia\n", - "2211 Austria\n", - "2430 Azerbaijan\n", - "2649 Burundi\n", - "2868 Belgium\n", - "3087 Benin\n", - "3306 Burkina Faso\n", - "3525 Bangladesh\n", - "3744 Bulgaria\n", - "3963 Bahrain\n", - "4182 Bahamas\n", - "4401 Bosnia and Herzegovina\n", - "4620 Belarus\n", - "4839 Belize\n", - "4888 Bermuda\n", - "5105 Bolivia\n", - "5324 Brazil\n", - "5543 Barbados\n", - "5762 Brunei\n", - "5981 Bhutan\n", - "6200 Botswana\n", - " ... \n", - "35415 Sweden\n", - "35634 Swaziland\n", - "35853 Seychelles\n", - "36072 Syria\n", - "36291 Chad\n", - "36510 Togo\n", - "36729 Thailand\n", - "36948 Tajikistan\n", - "37167 Turkmenistan\n", - "37386 Timor-Leste\n", - "37605 Tonga\n", - "37824 Trinidad and Tobago\n", - "38043 Tunisia\n", - "38262 Turkey\n", - "38481 Taiwan\n", - "38698 Tanzania\n", - "38917 Uganda\n", - "39136 Ukraine\n", - "39355 Uruguay\n", - "39574 United States\n", - "39793 Uzbekistan\n", - "40012 St. Vincent and the Grenadines\n", - "40231 Venezuela\n", - "40450 Vietnam\n", - "40669 Vanuatu\n", - "40888 Samoa\n", - "41107 Yemen\n", - "41326 South Africa\n", - "41545 Zambia\n", - "41764 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "194 Aruba\n", - "413 Afghanistan\n", - "632 Angola\n", - "851 Albania\n", - "900 Andorra\n", - "1117 United Arab Emirates\n", - "1336 Argentina\n", - "1555 Armenia\n", - "1774 Antigua and Barbuda\n", - "1993 Australia\n", - "2212 Austria\n", - "2431 Azerbaijan\n", - "2650 Burundi\n", - "2869 Belgium\n", - "3088 Benin\n", - "3307 Burkina Faso\n", - "3526 Bangladesh\n", - "3745 Bulgaria\n", - "3964 Bahrain\n", - "4183 Bahamas\n", - "4402 Bosnia and Herzegovina\n", - "4621 Belarus\n", - "4840 Belize\n", - "4889 Bermuda\n", - "5106 Bolivia\n", - "5325 Brazil\n", - "5544 Barbados\n", - "5763 Brunei\n", - "5982 Bhutan\n", - "6201 Botswana\n", - " ... \n", - "35416 Sweden\n", - "35635 Swaziland\n", - "35854 Seychelles\n", - "36073 Syria\n", - "36292 Chad\n", - "36511 Togo\n", - "36730 Thailand\n", - "36949 Tajikistan\n", - "37168 Turkmenistan\n", - "37387 Timor-Leste\n", - "37606 Tonga\n", - "37825 Trinidad and Tobago\n", - "38044 Tunisia\n", - "38263 Turkey\n", - "38482 Taiwan\n", - "38699 Tanzania\n", - "38918 Uganda\n", - "39137 Ukraine\n", - "39356 Uruguay\n", - "39575 United States\n", - "39794 Uzbekistan\n", - "40013 St. Vincent and the Grenadines\n", - "40232 Venezuela\n", - "40451 Vietnam\n", - "40670 Vanuatu\n", - "40889 Samoa\n", - "41108 Yemen\n", - "41327 South Africa\n", - "41546 Zambia\n", - "41765 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "195 Aruba\n", - "414 Afghanistan\n", - "633 Angola\n", - "852 Albania\n", - "901 Andorra\n", - "1118 United Arab Emirates\n", - "1337 Argentina\n", - "1556 Armenia\n", - "1775 Antigua and Barbuda\n", - "1994 Australia\n", - "2213 Austria\n", - "2432 Azerbaijan\n", - "2651 Burundi\n", - "2870 Belgium\n", - "3089 Benin\n", - "3308 Burkina Faso\n", - "3527 Bangladesh\n", - "3746 Bulgaria\n", - "3965 Bahrain\n", - "4184 Bahamas\n", - "4403 Bosnia and Herzegovina\n", - "4622 Belarus\n", - "4841 Belize\n", - "4890 Bermuda\n", - "5107 Bolivia\n", - "5326 Brazil\n", - "5545 Barbados\n", - "5764 Brunei\n", - "5983 Bhutan\n", - "6202 Botswana\n", - " ... \n", - "35417 Sweden\n", - "35636 Swaziland\n", - "35855 Seychelles\n", - "36074 Syria\n", - "36293 Chad\n", - "36512 Togo\n", - "36731 Thailand\n", - "36950 Tajikistan\n", - "37169 Turkmenistan\n", - "37388 Timor-Leste\n", - "37607 Tonga\n", - "37826 Trinidad and Tobago\n", - "38045 Tunisia\n", - "38264 Turkey\n", - "38483 Taiwan\n", - "38700 Tanzania\n", - "38919 Uganda\n", - "39138 Ukraine\n", - "39357 Uruguay\n", - "39576 United States\n", - "39795 Uzbekistan\n", - "40014 St. Vincent and the Grenadines\n", - "40233 Venezuela\n", - "40452 Vietnam\n", - "40671 Vanuatu\n", - "40890 Samoa\n", - "41109 Yemen\n", - "41328 South Africa\n", - "41547 Zambia\n", - "41766 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "196 Aruba\n", - "415 Afghanistan\n", - "634 Angola\n", - "853 Albania\n", - "902 Andorra\n", - "1119 United Arab Emirates\n", - "1338 Argentina\n", - "1557 Armenia\n", - "1776 Antigua and Barbuda\n", - "1995 Australia\n", - "2214 Austria\n", - "2433 Azerbaijan\n", - "2652 Burundi\n", - "2871 Belgium\n", - "3090 Benin\n", - "3309 Burkina Faso\n", - "3528 Bangladesh\n", - "3747 Bulgaria\n", - "3966 Bahrain\n", - "4185 Bahamas\n", - "4404 Bosnia and Herzegovina\n", - "4623 Belarus\n", - "4842 Belize\n", - "4891 Bermuda\n", - "5108 Bolivia\n", - "5327 Brazil\n", - "5546 Barbados\n", - "5765 Brunei\n", - "5984 Bhutan\n", - "6203 Botswana\n", - " ... \n", - "35418 Sweden\n", - "35637 Swaziland\n", - "35856 Seychelles\n", - "36075 Syria\n", - "36294 Chad\n", - "36513 Togo\n", - "36732 Thailand\n", - "36951 Tajikistan\n", - "37170 Turkmenistan\n", - "37389 Timor-Leste\n", - "37608 Tonga\n", - "37827 Trinidad and Tobago\n", - "38046 Tunisia\n", - "38265 Turkey\n", - "38484 Taiwan\n", - "38701 Tanzania\n", - "38920 Uganda\n", - "39139 Ukraine\n", - "39358 Uruguay\n", - "39577 United States\n", - "39796 Uzbekistan\n", - "40015 St. Vincent and the Grenadines\n", - "40234 Venezuela\n", - "40453 Vietnam\n", - "40672 Vanuatu\n", - "40891 Samoa\n", - "41110 Yemen\n", - "41329 South Africa\n", - "41548 Zambia\n", - "41767 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "197 Aruba\n", - "416 Afghanistan\n", - "635 Angola\n", - "854 Albania\n", - "903 Andorra\n", - "1120 United Arab Emirates\n", - "1339 Argentina\n", - "1558 Armenia\n", - "1777 Antigua and Barbuda\n", - "1996 Australia\n", - "2215 Austria\n", - "2434 Azerbaijan\n", - "2653 Burundi\n", - "2872 Belgium\n", - "3091 Benin\n", - "3310 Burkina Faso\n", - "3529 Bangladesh\n", - "3748 Bulgaria\n", - "3967 Bahrain\n", - "4186 Bahamas\n", - "4405 Bosnia and Herzegovina\n", - "4624 Belarus\n", - "4843 Belize\n", - "4892 Bermuda\n", - "5109 Bolivia\n", - "5328 Brazil\n", - "5547 Barbados\n", - "5766 Brunei\n", - "5985 Bhutan\n", - "6204 Botswana\n", - " ... \n", - "35419 Sweden\n", - "35638 Swaziland\n", - "35857 Seychelles\n", - "36076 Syria\n", - "36295 Chad\n", - "36514 Togo\n", - "36733 Thailand\n", - "36952 Tajikistan\n", - "37171 Turkmenistan\n", - "37390 Timor-Leste\n", - "37609 Tonga\n", - "37828 Trinidad and Tobago\n", - "38047 Tunisia\n", - "38266 Turkey\n", - "38485 Taiwan\n", - "38702 Tanzania\n", - "38921 Uganda\n", - "39140 Ukraine\n", - "39359 Uruguay\n", - "39578 United States\n", - "39797 Uzbekistan\n", - "40016 St. Vincent and the Grenadines\n", - "40235 Venezuela\n", - "40454 Vietnam\n", - "40673 Vanuatu\n", - "40892 Samoa\n", - "41111 Yemen\n", - "41330 South Africa\n", - "41549 Zambia\n", - "41768 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "198 Aruba\n", - "417 Afghanistan\n", - "636 Angola\n", - "855 Albania\n", - "904 Andorra\n", - "1121 United Arab Emirates\n", - "1340 Argentina\n", - "1559 Armenia\n", - "1778 Antigua and Barbuda\n", - "1997 Australia\n", - "2216 Austria\n", - "2435 Azerbaijan\n", - "2654 Burundi\n", - "2873 Belgium\n", - "3092 Benin\n", - "3311 Burkina Faso\n", - "3530 Bangladesh\n", - "3749 Bulgaria\n", - "3968 Bahrain\n", - "4187 Bahamas\n", - "4406 Bosnia and Herzegovina\n", - "4625 Belarus\n", - "4844 Belize\n", - "4893 Bermuda\n", - "5110 Bolivia\n", - "5329 Brazil\n", - "5548 Barbados\n", - "5767 Brunei\n", - "5986 Bhutan\n", - "6205 Botswana\n", - " ... \n", - "35420 Sweden\n", - "35639 Swaziland\n", - "35858 Seychelles\n", - "36077 Syria\n", - "36296 Chad\n", - "36515 Togo\n", - "36734 Thailand\n", - "36953 Tajikistan\n", - "37172 Turkmenistan\n", - "37391 Timor-Leste\n", - "37610 Tonga\n", - "37829 Trinidad and Tobago\n", - "38048 Tunisia\n", - "38267 Turkey\n", - "38486 Taiwan\n", - "38703 Tanzania\n", - "38922 Uganda\n", - "39141 Ukraine\n", - "39360 Uruguay\n", - "39579 United States\n", - "39798 Uzbekistan\n", - "40017 St. Vincent and the Grenadines\n", - "40236 Venezuela\n", - "40455 Vietnam\n", - "40674 Vanuatu\n", - "40893 Samoa\n", - "41112 Yemen\n", - "41331 South Africa\n", - "41550 Zambia\n", - "41769 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "199 Aruba\n", - "418 Afghanistan\n", - "637 Angola\n", - "856 Albania\n", - "905 Andorra\n", - "1122 United Arab Emirates\n", - "1341 Argentina\n", - "1560 Armenia\n", - "1779 Antigua and Barbuda\n", - "1998 Australia\n", - "2217 Austria\n", - "2436 Azerbaijan\n", - "2655 Burundi\n", - "2874 Belgium\n", - "3093 Benin\n", - "3312 Burkina Faso\n", - "3531 Bangladesh\n", - "3750 Bulgaria\n", - "3969 Bahrain\n", - "4188 Bahamas\n", - "4407 Bosnia and Herzegovina\n", - "4626 Belarus\n", - "4845 Belize\n", - "4894 Bermuda\n", - "5111 Bolivia\n", - "5330 Brazil\n", - "5549 Barbados\n", - "5768 Brunei\n", - "5987 Bhutan\n", - "6206 Botswana\n", - " ... \n", - "35421 Sweden\n", - "35640 Swaziland\n", - "35859 Seychelles\n", - "36078 Syria\n", - "36297 Chad\n", - "36516 Togo\n", - "36735 Thailand\n", - "36954 Tajikistan\n", - "37173 Turkmenistan\n", - "37392 Timor-Leste\n", - "37611 Tonga\n", - "37830 Trinidad and Tobago\n", - "38049 Tunisia\n", - "38268 Turkey\n", - "38487 Taiwan\n", - "38704 Tanzania\n", - "38923 Uganda\n", - "39142 Ukraine\n", - "39361 Uruguay\n", - "39580 United States\n", - "39799 Uzbekistan\n", - "40018 St. Vincent and the Grenadines\n", - "40237 Venezuela\n", - "40456 Vietnam\n", - "40675 Vanuatu\n", - "40894 Samoa\n", - "41113 Yemen\n", - "41332 South Africa\n", - "41551 Zambia\n", - "41770 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "200 Aruba\n", - "419 Afghanistan\n", - "638 Angola\n", - "857 Albania\n", - "906 Andorra\n", - "1123 United Arab Emirates\n", - "1342 Argentina\n", - "1561 Armenia\n", - "1780 Antigua and Barbuda\n", - "1999 Australia\n", - "2218 Austria\n", - "2437 Azerbaijan\n", - "2656 Burundi\n", - "2875 Belgium\n", - "3094 Benin\n", - "3313 Burkina Faso\n", - "3532 Bangladesh\n", - "3751 Bulgaria\n", - "3970 Bahrain\n", - "4189 Bahamas\n", - "4408 Bosnia and Herzegovina\n", - "4627 Belarus\n", - "4846 Belize\n", - "4895 Bermuda\n", - "5112 Bolivia\n", - "5331 Brazil\n", - "5550 Barbados\n", - "5769 Brunei\n", - "5988 Bhutan\n", - "6207 Botswana\n", - " ... \n", - "35422 Sweden\n", - "35641 Swaziland\n", - "35860 Seychelles\n", - "36079 Syria\n", - "36298 Chad\n", - "36517 Togo\n", - "36736 Thailand\n", - "36955 Tajikistan\n", - "37174 Turkmenistan\n", - "37393 Timor-Leste\n", - "37612 Tonga\n", - "37831 Trinidad and Tobago\n", - "38050 Tunisia\n", - "38269 Turkey\n", - "38488 Taiwan\n", - "38705 Tanzania\n", - "38924 Uganda\n", - "39143 Ukraine\n", - "39362 Uruguay\n", - "39581 United States\n", - "39800 Uzbekistan\n", - "40019 St. Vincent and the Grenadines\n", - "40238 Venezuela\n", - "40457 Vietnam\n", - "40676 Vanuatu\n", - "40895 Samoa\n", - "41114 Yemen\n", - "41333 South Africa\n", - "41552 Zambia\n", - "41771 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "201 Aruba\n", - "420 Afghanistan\n", - "639 Angola\n", - "858 Albania\n", - "907 Andorra\n", - "1124 United Arab Emirates\n", - "1343 Argentina\n", - "1562 Armenia\n", - "1781 Antigua and Barbuda\n", - "2000 Australia\n", - "2219 Austria\n", - "2438 Azerbaijan\n", - "2657 Burundi\n", - "2876 Belgium\n", - "3095 Benin\n", - "3314 Burkina Faso\n", - "3533 Bangladesh\n", - "3752 Bulgaria\n", - "3971 Bahrain\n", - "4190 Bahamas\n", - "4409 Bosnia and Herzegovina\n", - "4628 Belarus\n", - "4847 Belize\n", - "4896 Bermuda\n", - "5113 Bolivia\n", - "5332 Brazil\n", - "5551 Barbados\n", - "5770 Brunei\n", - "5989 Bhutan\n", - "6208 Botswana\n", - " ... \n", - "35423 Sweden\n", - "35642 Swaziland\n", - "35861 Seychelles\n", - "36080 Syria\n", - "36299 Chad\n", - "36518 Togo\n", - "36737 Thailand\n", - "36956 Tajikistan\n", - "37175 Turkmenistan\n", - "37394 Timor-Leste\n", - "37613 Tonga\n", - "37832 Trinidad and Tobago\n", - "38051 Tunisia\n", - "38270 Turkey\n", - "38489 Taiwan\n", - "38706 Tanzania\n", - "38925 Uganda\n", - "39144 Ukraine\n", - "39363 Uruguay\n", - "39582 United States\n", - "39801 Uzbekistan\n", - "40020 St. Vincent and the Grenadines\n", - "40239 Venezuela\n", - "40458 Vietnam\n", - "40677 Vanuatu\n", - "40896 Samoa\n", - "41115 Yemen\n", - "41334 South Africa\n", - "41553 Zambia\n", - "41772 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "202 Aruba\n", - "421 Afghanistan\n", - "640 Angola\n", - "859 Albania\n", - "908 Andorra\n", - "1125 United Arab Emirates\n", - "1344 Argentina\n", - "1563 Armenia\n", - "1782 Antigua and Barbuda\n", - "2001 Australia\n", - "2220 Austria\n", - "2439 Azerbaijan\n", - "2658 Burundi\n", - "2877 Belgium\n", - "3096 Benin\n", - "3315 Burkina Faso\n", - "3534 Bangladesh\n", - "3753 Bulgaria\n", - "3972 Bahrain\n", - "4191 Bahamas\n", - "4410 Bosnia and Herzegovina\n", - "4629 Belarus\n", - "4848 Belize\n", - "4897 Bermuda\n", - "5114 Bolivia\n", - "5333 Brazil\n", - "5552 Barbados\n", - "5771 Brunei\n", - "5990 Bhutan\n", - "6209 Botswana\n", - " ... \n", - "35424 Sweden\n", - "35643 Swaziland\n", - "35862 Seychelles\n", - "36081 Syria\n", - "36300 Chad\n", - "36519 Togo\n", - "36738 Thailand\n", - "36957 Tajikistan\n", - "37176 Turkmenistan\n", - "37395 Timor-Leste\n", - "37614 Tonga\n", - "37833 Trinidad and Tobago\n", - "38052 Tunisia\n", - "38271 Turkey\n", - "38490 Taiwan\n", - "38707 Tanzania\n", - "38926 Uganda\n", - "39145 Ukraine\n", - "39364 Uruguay\n", - "39583 United States\n", - "39802 Uzbekistan\n", - "40021 St. Vincent and the Grenadines\n", - "40240 Venezuela\n", - "40459 Vietnam\n", - "40678 Vanuatu\n", - "40897 Samoa\n", - "41116 Yemen\n", - "41335 South Africa\n", - "41554 Zambia\n", - "41773 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "203 Aruba\n", - "422 Afghanistan\n", - "641 Angola\n", - "860 Albania\n", - "909 Andorra\n", - "1126 United Arab Emirates\n", - "1345 Argentina\n", - "1564 Armenia\n", - "1783 Antigua and Barbuda\n", - "2002 Australia\n", - "2221 Austria\n", - "2440 Azerbaijan\n", - "2659 Burundi\n", - "2878 Belgium\n", - "3097 Benin\n", - "3316 Burkina Faso\n", - "3535 Bangladesh\n", - "3754 Bulgaria\n", - "3973 Bahrain\n", - "4192 Bahamas\n", - "4411 Bosnia and Herzegovina\n", - "4630 Belarus\n", - "4849 Belize\n", - "4898 Bermuda\n", - "5115 Bolivia\n", - "5334 Brazil\n", - "5553 Barbados\n", - "5772 Brunei\n", - "5991 Bhutan\n", - "6210 Botswana\n", - " ... \n", - "35425 Sweden\n", - "35644 Swaziland\n", - "35863 Seychelles\n", - "36082 Syria\n", - "36301 Chad\n", - "36520 Togo\n", - "36739 Thailand\n", - "36958 Tajikistan\n", - "37177 Turkmenistan\n", - "37396 Timor-Leste\n", - "37615 Tonga\n", - "37834 Trinidad and Tobago\n", - "38053 Tunisia\n", - "38272 Turkey\n", - "38491 Taiwan\n", - "38708 Tanzania\n", - "38927 Uganda\n", - "39146 Ukraine\n", - "39365 Uruguay\n", - "39584 United States\n", - "39803 Uzbekistan\n", - "40022 St. Vincent and the Grenadines\n", - "40241 Venezuela\n", - "40460 Vietnam\n", - "40679 Vanuatu\n", - "40898 Samoa\n", - "41117 Yemen\n", - "41336 South Africa\n", - "41555 Zambia\n", - "41774 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "204 Aruba\n", - "423 Afghanistan\n", - "642 Angola\n", - "861 Albania\n", - "910 Andorra\n", - "1127 United Arab Emirates\n", - "1346 Argentina\n", - "1565 Armenia\n", - "1784 Antigua and Barbuda\n", - "2003 Australia\n", - "2222 Austria\n", - "2441 Azerbaijan\n", - "2660 Burundi\n", - "2879 Belgium\n", - "3098 Benin\n", - "3317 Burkina Faso\n", - "3536 Bangladesh\n", - "3755 Bulgaria\n", - "3974 Bahrain\n", - "4193 Bahamas\n", - "4412 Bosnia and Herzegovina\n", - "4631 Belarus\n", - "4850 Belize\n", - "4899 Bermuda\n", - "5116 Bolivia\n", - "5335 Brazil\n", - "5554 Barbados\n", - "5773 Brunei\n", - "5992 Bhutan\n", - "6211 Botswana\n", - " ... \n", - "35426 Sweden\n", - "35645 Swaziland\n", - "35864 Seychelles\n", - "36083 Syria\n", - "36302 Chad\n", - "36521 Togo\n", - "36740 Thailand\n", - "36959 Tajikistan\n", - "37178 Turkmenistan\n", - "37397 Timor-Leste\n", - "37616 Tonga\n", - "37835 Trinidad and Tobago\n", - "38054 Tunisia\n", - "38273 Turkey\n", - "38492 Taiwan\n", - "38709 Tanzania\n", - "38928 Uganda\n", - "39147 Ukraine\n", - "39366 Uruguay\n", - "39585 United States\n", - "39804 Uzbekistan\n", - "40023 St. Vincent and the Grenadines\n", - "40242 Venezuela\n", - "40461 Vietnam\n", - "40680 Vanuatu\n", - "40899 Samoa\n", - "41118 Yemen\n", - "41337 South Africa\n", - "41556 Zambia\n", - "41775 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "205 Aruba\n", - "424 Afghanistan\n", - "643 Angola\n", - "862 Albania\n", - "911 Andorra\n", - "1128 United Arab Emirates\n", - "1347 Argentina\n", - "1566 Armenia\n", - "1785 Antigua and Barbuda\n", - "2004 Australia\n", - "2223 Austria\n", - "2442 Azerbaijan\n", - "2661 Burundi\n", - "2880 Belgium\n", - "3099 Benin\n", - "3318 Burkina Faso\n", - "3537 Bangladesh\n", - "3756 Bulgaria\n", - "3975 Bahrain\n", - "4194 Bahamas\n", - "4413 Bosnia and Herzegovina\n", - "4632 Belarus\n", - "4851 Belize\n", - "4900 Bermuda\n", - "5117 Bolivia\n", - "5336 Brazil\n", - "5555 Barbados\n", - "5774 Brunei\n", - "5993 Bhutan\n", - "6212 Botswana\n", - " ... \n", - "35427 Sweden\n", - "35646 Swaziland\n", - "35865 Seychelles\n", - "36084 Syria\n", - "36303 Chad\n", - "36522 Togo\n", - "36741 Thailand\n", - "36960 Tajikistan\n", - "37179 Turkmenistan\n", - "37398 Timor-Leste\n", - "37617 Tonga\n", - "37836 Trinidad and Tobago\n", - "38055 Tunisia\n", - "38274 Turkey\n", - "38493 Taiwan\n", - "38710 Tanzania\n", - "38929 Uganda\n", - "39148 Ukraine\n", - "39367 Uruguay\n", - "39586 United States\n", - "39805 Uzbekistan\n", - "40024 St. Vincent and the Grenadines\n", - "40243 Venezuela\n", - "40462 Vietnam\n", - "40681 Vanuatu\n", - "40900 Samoa\n", - "41119 Yemen\n", - "41338 South Africa\n", - "41557 Zambia\n", - "41776 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "206 Aruba\n", - "425 Afghanistan\n", - "644 Angola\n", - "863 Albania\n", - "912 Andorra\n", - "1129 United Arab Emirates\n", - "1348 Argentina\n", - "1567 Armenia\n", - "1786 Antigua and Barbuda\n", - "2005 Australia\n", - "2224 Austria\n", - "2443 Azerbaijan\n", - "2662 Burundi\n", - "2881 Belgium\n", - "3100 Benin\n", - "3319 Burkina Faso\n", - "3538 Bangladesh\n", - "3757 Bulgaria\n", - "3976 Bahrain\n", - "4195 Bahamas\n", - "4414 Bosnia and Herzegovina\n", - "4633 Belarus\n", - "4852 Belize\n", - "4901 Bermuda\n", - "5118 Bolivia\n", - "5337 Brazil\n", - "5556 Barbados\n", - "5775 Brunei\n", - "5994 Bhutan\n", - "6213 Botswana\n", - " ... \n", - "35428 Sweden\n", - "35647 Swaziland\n", - "35866 Seychelles\n", - "36085 Syria\n", - "36304 Chad\n", - "36523 Togo\n", - "36742 Thailand\n", - "36961 Tajikistan\n", - "37180 Turkmenistan\n", - "37399 Timor-Leste\n", - "37618 Tonga\n", - "37837 Trinidad and Tobago\n", - "38056 Tunisia\n", - "38275 Turkey\n", - "38494 Taiwan\n", - "38711 Tanzania\n", - "38930 Uganda\n", - "39149 Ukraine\n", - "39368 Uruguay\n", - "39587 United States\n", - "39806 Uzbekistan\n", - "40025 St. Vincent and the Grenadines\n", - "40244 Venezuela\n", - "40463 Vietnam\n", - "40682 Vanuatu\n", - "40901 Samoa\n", - "41120 Yemen\n", - "41339 South Africa\n", - "41558 Zambia\n", - "41777 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "207 Aruba\n", - "426 Afghanistan\n", - "645 Angola\n", - "864 Albania\n", - "913 Andorra\n", - "1130 United Arab Emirates\n", - "1349 Argentina\n", - "1568 Armenia\n", - "1787 Antigua and Barbuda\n", - "2006 Australia\n", - "2225 Austria\n", - "2444 Azerbaijan\n", - "2663 Burundi\n", - "2882 Belgium\n", - "3101 Benin\n", - "3320 Burkina Faso\n", - "3539 Bangladesh\n", - "3758 Bulgaria\n", - "3977 Bahrain\n", - "4196 Bahamas\n", - "4415 Bosnia and Herzegovina\n", - "4634 Belarus\n", - "4853 Belize\n", - "4902 Bermuda\n", - "5119 Bolivia\n", - "5338 Brazil\n", - "5557 Barbados\n", - "5776 Brunei\n", - "5995 Bhutan\n", - "6214 Botswana\n", - " ... \n", - "35429 Sweden\n", - "35648 Swaziland\n", - "35867 Seychelles\n", - "36086 Syria\n", - "36305 Chad\n", - "36524 Togo\n", - "36743 Thailand\n", - "36962 Tajikistan\n", - "37181 Turkmenistan\n", - "37400 Timor-Leste\n", - "37619 Tonga\n", - "37838 Trinidad and Tobago\n", - "38057 Tunisia\n", - "38276 Turkey\n", - "38495 Taiwan\n", - "38712 Tanzania\n", - "38931 Uganda\n", - "39150 Ukraine\n", - "39369 Uruguay\n", - "39588 United States\n", - "39807 Uzbekistan\n", - "40026 St. Vincent and the Grenadines\n", - "40245 Venezuela\n", - "40464 Vietnam\n", - "40683 Vanuatu\n", - "40902 Samoa\n", - "41121 Yemen\n", - "41340 South Africa\n", - "41559 Zambia\n", - "41778 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "208 Aruba\n", - "427 Afghanistan\n", - "646 Angola\n", - "865 Albania\n", - "914 Andorra\n", - "1131 United Arab Emirates\n", - "1350 Argentina\n", - "1569 Armenia\n", - "1788 Antigua and Barbuda\n", - "2007 Australia\n", - "2226 Austria\n", - "2445 Azerbaijan\n", - "2664 Burundi\n", - "2883 Belgium\n", - "3102 Benin\n", - "3321 Burkina Faso\n", - "3540 Bangladesh\n", - "3759 Bulgaria\n", - "3978 Bahrain\n", - "4197 Bahamas\n", - "4416 Bosnia and Herzegovina\n", - "4635 Belarus\n", - "4854 Belize\n", - "4903 Bermuda\n", - "5120 Bolivia\n", - "5339 Brazil\n", - "5558 Barbados\n", - "5777 Brunei\n", - "5996 Bhutan\n", - "6215 Botswana\n", - " ... \n", - "35430 Sweden\n", - "35649 Swaziland\n", - "35868 Seychelles\n", - "36087 Syria\n", - "36306 Chad\n", - "36525 Togo\n", - "36744 Thailand\n", - "36963 Tajikistan\n", - "37182 Turkmenistan\n", - "37401 Timor-Leste\n", - "37620 Tonga\n", - "37839 Trinidad and Tobago\n", - "38058 Tunisia\n", - "38277 Turkey\n", - "38496 Taiwan\n", - "38713 Tanzania\n", - "38932 Uganda\n", - "39151 Ukraine\n", - "39370 Uruguay\n", - "39589 United States\n", - "39808 Uzbekistan\n", - "40027 St. Vincent and the Grenadines\n", - "40246 Venezuela\n", - "40465 Vietnam\n", - "40684 Vanuatu\n", - "40903 Samoa\n", - "41122 Yemen\n", - "41341 South Africa\n", - "41560 Zambia\n", - "41779 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "209 Aruba\n", - "428 Afghanistan\n", - "647 Angola\n", - "866 Albania\n", - "915 Andorra\n", - "1132 United Arab Emirates\n", - "1351 Argentina\n", - "1570 Armenia\n", - "1789 Antigua and Barbuda\n", - "2008 Australia\n", - "2227 Austria\n", - "2446 Azerbaijan\n", - "2665 Burundi\n", - "2884 Belgium\n", - "3103 Benin\n", - "3322 Burkina Faso\n", - "3541 Bangladesh\n", - "3760 Bulgaria\n", - "3979 Bahrain\n", - "4198 Bahamas\n", - "4417 Bosnia and Herzegovina\n", - "4636 Belarus\n", - "4855 Belize\n", - "4904 Bermuda\n", - "5121 Bolivia\n", - "5340 Brazil\n", - "5559 Barbados\n", - "5778 Brunei\n", - "5997 Bhutan\n", - "6216 Botswana\n", - " ... \n", - "35431 Sweden\n", - "35650 Swaziland\n", - "35869 Seychelles\n", - "36088 Syria\n", - "36307 Chad\n", - "36526 Togo\n", - "36745 Thailand\n", - "36964 Tajikistan\n", - "37183 Turkmenistan\n", - "37402 Timor-Leste\n", - "37621 Tonga\n", - "37840 Trinidad and Tobago\n", - "38059 Tunisia\n", - "38278 Turkey\n", - "38497 Taiwan\n", - "38714 Tanzania\n", - "38933 Uganda\n", - "39152 Ukraine\n", - "39371 Uruguay\n", - "39590 United States\n", - "39809 Uzbekistan\n", - "40028 St. Vincent and the Grenadines\n", - "40247 Venezuela\n", - "40466 Vietnam\n", - "40685 Vanuatu\n", - "40904 Samoa\n", - "41123 Yemen\n", - "41342 South Africa\n", - "41561 Zambia\n", - "41780 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "210 Aruba\n", - "429 Afghanistan\n", - "648 Angola\n", - "867 Albania\n", - "916 Andorra\n", - "1133 United Arab Emirates\n", - "1352 Argentina\n", - "1571 Armenia\n", - "1790 Antigua and Barbuda\n", - "2009 Australia\n", - "2228 Austria\n", - "2447 Azerbaijan\n", - "2666 Burundi\n", - "2885 Belgium\n", - "3104 Benin\n", - "3323 Burkina Faso\n", - "3542 Bangladesh\n", - "3761 Bulgaria\n", - "3980 Bahrain\n", - "4199 Bahamas\n", - "4418 Bosnia and Herzegovina\n", - "4637 Belarus\n", - "4856 Belize\n", - "4905 Bermuda\n", - "5122 Bolivia\n", - "5341 Brazil\n", - "5560 Barbados\n", - "5779 Brunei\n", - "5998 Bhutan\n", - "6217 Botswana\n", - " ... \n", - "35432 Sweden\n", - "35651 Swaziland\n", - "35870 Seychelles\n", - "36089 Syria\n", - "36308 Chad\n", - "36527 Togo\n", - "36746 Thailand\n", - "36965 Tajikistan\n", - "37184 Turkmenistan\n", - "37403 Timor-Leste\n", - "37622 Tonga\n", - "37841 Trinidad and Tobago\n", - "38060 Tunisia\n", - "38279 Turkey\n", - "38498 Taiwan\n", - "38715 Tanzania\n", - "38934 Uganda\n", - "39153 Ukraine\n", - "39372 Uruguay\n", - "39591 United States\n", - "39810 Uzbekistan\n", - "40029 St. Vincent and the Grenadines\n", - "40248 Venezuela\n", - "40467 Vietnam\n", - "40686 Vanuatu\n", - "40905 Samoa\n", - "41124 Yemen\n", - "41343 South Africa\n", - "41562 Zambia\n", - "41781 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "211 Aruba\n", - "430 Afghanistan\n", - "649 Angola\n", - "868 Albania\n", - "917 Andorra\n", - "1134 United Arab Emirates\n", - "1353 Argentina\n", - "1572 Armenia\n", - "1791 Antigua and Barbuda\n", - "2010 Australia\n", - "2229 Austria\n", - "2448 Azerbaijan\n", - "2667 Burundi\n", - "2886 Belgium\n", - "3105 Benin\n", - "3324 Burkina Faso\n", - "3543 Bangladesh\n", - "3762 Bulgaria\n", - "3981 Bahrain\n", - "4200 Bahamas\n", - "4419 Bosnia and Herzegovina\n", - "4638 Belarus\n", - "4857 Belize\n", - "4906 Bermuda\n", - "5123 Bolivia\n", - "5342 Brazil\n", - "5561 Barbados\n", - "5780 Brunei\n", - "5999 Bhutan\n", - "6218 Botswana\n", - " ... \n", - "35433 Sweden\n", - "35652 Swaziland\n", - "35871 Seychelles\n", - "36090 Syria\n", - "36309 Chad\n", - "36528 Togo\n", - "36747 Thailand\n", - "36966 Tajikistan\n", - "37185 Turkmenistan\n", - "37404 Timor-Leste\n", - "37623 Tonga\n", - "37842 Trinidad and Tobago\n", - "38061 Tunisia\n", - "38280 Turkey\n", - "38499 Taiwan\n", - "38716 Tanzania\n", - "38935 Uganda\n", - "39154 Ukraine\n", - "39373 Uruguay\n", - "39592 United States\n", - "39811 Uzbekistan\n", - "40030 St. Vincent and the Grenadines\n", - "40249 Venezuela\n", - "40468 Vietnam\n", - "40687 Vanuatu\n", - "40906 Samoa\n", - "41125 Yemen\n", - "41344 South Africa\n", - "41563 Zambia\n", - "41782 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "212 Aruba\n", - "431 Afghanistan\n", - "650 Angola\n", - "869 Albania\n", - "918 Andorra\n", - "1135 United Arab Emirates\n", - "1354 Argentina\n", - "1573 Armenia\n", - "1792 Antigua and Barbuda\n", - "2011 Australia\n", - "2230 Austria\n", - "2449 Azerbaijan\n", - "2668 Burundi\n", - "2887 Belgium\n", - "3106 Benin\n", - "3325 Burkina Faso\n", - "3544 Bangladesh\n", - "3763 Bulgaria\n", - "3982 Bahrain\n", - "4201 Bahamas\n", - "4420 Bosnia and Herzegovina\n", - "4639 Belarus\n", - "4858 Belize\n", - "4907 Bermuda\n", - "5124 Bolivia\n", - "5343 Brazil\n", - "5562 Barbados\n", - "5781 Brunei\n", - "6000 Bhutan\n", - "6219 Botswana\n", - " ... \n", - "35434 Sweden\n", - "35653 Swaziland\n", - "35872 Seychelles\n", - "36091 Syria\n", - "36310 Chad\n", - "36529 Togo\n", - "36748 Thailand\n", - "36967 Tajikistan\n", - "37186 Turkmenistan\n", - "37405 Timor-Leste\n", - "37624 Tonga\n", - "37843 Trinidad and Tobago\n", - "38062 Tunisia\n", - "38281 Turkey\n", - "38500 Taiwan\n", - "38717 Tanzania\n", - "38936 Uganda\n", - "39155 Ukraine\n", - "39374 Uruguay\n", - "39593 United States\n", - "39812 Uzbekistan\n", - "40031 St. Vincent and the Grenadines\n", - "40250 Venezuela\n", - "40469 Vietnam\n", - "40688 Vanuatu\n", - "40907 Samoa\n", - "41126 Yemen\n", - "41345 South Africa\n", - "41564 Zambia\n", - "41783 Zimbabwe\n", - "Name: country, Length: 194, dtype: object\n", - "213 Aruba\n", - "432 Afghanistan\n", - "651 Angola\n", - "870 Albania\n", - "919 Andorra\n", - "1136 United Arab Emirates\n", - "1355 Argentina\n", - "1574 Armenia\n", - "1793 Antigua and Barbuda\n", - "2012 Australia\n", - "2231 Austria\n", - "2450 Azerbaijan\n", - "2669 Burundi\n", - "2888 Belgium\n", - "3107 Benin\n", - "3326 Burkina Faso\n", - "3545 Bangladesh\n", - "3764 Bulgaria\n", - "3983 Bahrain\n", - "4202 Bahamas\n", - "4421 Bosnia and Herzegovina\n", - "4640 Belarus\n", - "4859 Belize\n", - "4908 Bermuda\n", - "5125 Bolivia\n", - "5344 Brazil\n", - "5563 Barbados\n", - "5782 Brunei\n", - "6001 Bhutan\n", - "6220 Botswana\n", - " ... \n", - "35435 Sweden\n", - "35654 Swaziland\n", - "35873 Seychelles\n", - "36092 Syria\n", - "36311 Chad\n", - "36530 Togo\n", - "36749 Thailand\n", - "36968 Tajikistan\n", - "37187 Turkmenistan\n", - "37406 Timor-Leste\n", - "37625 Tonga\n", - "37844 Trinidad and Tobago\n", - "38063 Tunisia\n", - "38282 Turkey\n", - "38501 Taiwan\n", - "38718 Tanzania\n", - "38937 Uganda\n", - "39156 Ukraine\n", - "39375 Uruguay\n", - "39594 United States\n", - "39813 Uzbekistan\n", - "40032 St. Vincent and the Grenadines\n", - "40251 Venezuela\n", - "40470 Vietnam\n", - "40689 Vanuatu\n", - "40908 Samoa\n", - "41127 Yemen\n", - "41346 South Africa\n", - "41565 Zambia\n", - "41784 Zimbabwe\n", - "Name: country, Length: 193, dtype: object\n", - "214 Aruba\n", - "433 Afghanistan\n", - "652 Angola\n", - "871 Albania\n", - "920 Andorra\n", - "1137 United Arab Emirates\n", - "1356 Argentina\n", - "1575 Armenia\n", - "1794 Antigua and Barbuda\n", - "2013 Australia\n", - "2232 Austria\n", - "2451 Azerbaijan\n", - "2670 Burundi\n", - "2889 Belgium\n", - "3108 Benin\n", - "3327 Burkina Faso\n", - "3546 Bangladesh\n", - "3765 Bulgaria\n", - "3984 Bahrain\n", - "4203 Bahamas\n", - "4422 Bosnia and Herzegovina\n", - "4641 Belarus\n", - "4860 Belize\n", - "4909 Bermuda\n", - "5126 Bolivia\n", - "5345 Brazil\n", - "5564 Barbados\n", - "5783 Brunei\n", - "6002 Bhutan\n", - "6221 Botswana\n", - " ... \n", - "35436 Sweden\n", - "35655 Swaziland\n", - "35874 Seychelles\n", - "36093 Syria\n", - "36312 Chad\n", - "36531 Togo\n", - "36750 Thailand\n", - "36969 Tajikistan\n", - "37188 Turkmenistan\n", - "37407 Timor-Leste\n", - "37626 Tonga\n", - "37845 Trinidad and Tobago\n", - "38064 Tunisia\n", - "38283 Turkey\n", - "38502 Taiwan\n", - "38719 Tanzania\n", - "38938 Uganda\n", - "39157 Ukraine\n", - "39376 Uruguay\n", - "39595 United States\n", - "39814 Uzbekistan\n", - "40033 St. Vincent and the Grenadines\n", - "40252 Venezuela\n", - "40471 Vietnam\n", - "40690 Vanuatu\n", - "40909 Samoa\n", - "41128 Yemen\n", - "41347 South Africa\n", - "41566 Zambia\n", - "41785 Zimbabwe\n", - "Name: country, Length: 193, dtype: object\n", - "215 Aruba\n", - "434 Afghanistan\n", - "653 Angola\n", - "872 Albania\n", - "921 Andorra\n", - "1138 United Arab Emirates\n", - "1357 Argentina\n", - "1576 Armenia\n", - "1795 Antigua and Barbuda\n", - "2014 Australia\n", - "2233 Austria\n", - "2452 Azerbaijan\n", - "2671 Burundi\n", - "2890 Belgium\n", - "3109 Benin\n", - "3328 Burkina Faso\n", - "3547 Bangladesh\n", - "3766 Bulgaria\n", - "3985 Bahrain\n", - "4204 Bahamas\n", - "4423 Bosnia and Herzegovina\n", - "4642 Belarus\n", - "4861 Belize\n", - "4910 Bermuda\n", - "5127 Bolivia\n", - "5346 Brazil\n", - "5565 Barbados\n", - "5784 Brunei\n", - "6003 Bhutan\n", - "6222 Botswana\n", - " ... \n", - "35437 Sweden\n", - "35656 Swaziland\n", - "35875 Seychelles\n", - "36094 Syria\n", - "36313 Chad\n", - "36532 Togo\n", - "36751 Thailand\n", - "36970 Tajikistan\n", - "37189 Turkmenistan\n", - "37408 Timor-Leste\n", - "37627 Tonga\n", - "37846 Trinidad and Tobago\n", - "38065 Tunisia\n", - "38284 Turkey\n", - "38503 Taiwan\n", - "38720 Tanzania\n", - "38939 Uganda\n", - "39158 Ukraine\n", - "39377 Uruguay\n", - "39596 United States\n", - "39815 Uzbekistan\n", - "40034 St. Vincent and the Grenadines\n", - "40253 Venezuela\n", - "40472 Vietnam\n", - "40691 Vanuatu\n", - "40910 Samoa\n", - "41129 Yemen\n", - "41348 South Africa\n", - "41567 Zambia\n", - "41786 Zimbabwe\n", - "Name: country, Length: 193, dtype: object\n", - "216 Aruba\n", - "435 Afghanistan\n", - "654 Angola\n", - "873 Albania\n", - "922 Andorra\n", - "1139 United Arab Emirates\n", - "1358 Argentina\n", - "1577 Armenia\n", - "1796 Antigua and Barbuda\n", - "2015 Australia\n", - "2234 Austria\n", - "2453 Azerbaijan\n", - "2672 Burundi\n", - "2891 Belgium\n", - "3110 Benin\n", - "3329 Burkina Faso\n", - "3548 Bangladesh\n", - "3767 Bulgaria\n", - "3986 Bahrain\n", - "4205 Bahamas\n", - "4424 Bosnia and Herzegovina\n", - "4643 Belarus\n", - "4862 Belize\n", - "4911 Bermuda\n", - "5128 Bolivia\n", - "5347 Brazil\n", - "5566 Barbados\n", - "5785 Brunei\n", - "6004 Bhutan\n", - "6223 Botswana\n", - " ... \n", - "35438 Sweden\n", - "35657 Swaziland\n", - "35876 Seychelles\n", - "36095 Syria\n", - "36314 Chad\n", - "36533 Togo\n", - "36752 Thailand\n", - "36971 Tajikistan\n", - "37190 Turkmenistan\n", - "37409 Timor-Leste\n", - "37628 Tonga\n", - "37847 Trinidad and Tobago\n", - "38066 Tunisia\n", - "38285 Turkey\n", - "38504 Taiwan\n", - "38721 Tanzania\n", - "38940 Uganda\n", - "39159 Ukraine\n", - "39378 Uruguay\n", - "39597 United States\n", - "39816 Uzbekistan\n", - "40035 St. Vincent and the Grenadines\n", - "40254 Venezuela\n", - "40473 Vietnam\n", - "40692 Vanuatu\n", - "40911 Samoa\n", - "41130 Yemen\n", - "41349 South Africa\n", - "41568 Zambia\n", - "41787 Zimbabwe\n", - "Name: country, Length: 193, dtype: object\n", - "217 Aruba\n", - "436 Afghanistan\n", - "655 Angola\n", - "874 Albania\n", - "1140 United Arab Emirates\n", - "1359 Argentina\n", - "1578 Armenia\n", - "1797 Antigua and Barbuda\n", - "2016 Australia\n", - "2235 Austria\n", - "2454 Azerbaijan\n", - "2673 Burundi\n", - "2892 Belgium\n", - "3111 Benin\n", - "3330 Burkina Faso\n", - "3549 Bangladesh\n", - "3768 Bulgaria\n", - "3987 Bahrain\n", - "4206 Bahamas\n", - "4425 Bosnia and Herzegovina\n", - "4644 Belarus\n", - "4863 Belize\n", - "5129 Bolivia\n", - "5348 Brazil\n", - "5567 Barbados\n", - "5786 Brunei\n", - "6005 Bhutan\n", - "6224 Botswana\n", - "6443 Central African Republic\n", - "6662 Canada\n", - " ... \n", - "35220 Slovenia\n", - "35439 Sweden\n", - "35658 Swaziland\n", - "35877 Seychelles\n", - "36096 Syria\n", - "36315 Chad\n", - "36534 Togo\n", - "36753 Thailand\n", - "36972 Tajikistan\n", - "37191 Turkmenistan\n", - "37410 Timor-Leste\n", - "37629 Tonga\n", - "37848 Trinidad and Tobago\n", - "38067 Tunisia\n", - "38286 Turkey\n", - "38722 Tanzania\n", - "38941 Uganda\n", - "39160 Ukraine\n", - "39379 Uruguay\n", - "39598 United States\n", - "39817 Uzbekistan\n", - "40036 St. Vincent and the Grenadines\n", - "40255 Venezuela\n", - "40474 Vietnam\n", - "40693 Vanuatu\n", - "40912 Samoa\n", - "41131 Yemen\n", - "41350 South Africa\n", - "41569 Zambia\n", - "41788 Zimbabwe\n", - "Name: country, Length: 188, dtype: object\n", - "218 Aruba\n", - "437 Afghanistan\n", - "656 Angola\n", - "875 Albania\n", - "1141 United Arab Emirates\n", - "1360 Argentina\n", - "1579 Armenia\n", - "1798 Antigua and Barbuda\n", - "2017 Australia\n", - "2236 Austria\n", - "2455 Azerbaijan\n", - "2674 Burundi\n", - "2893 Belgium\n", - "3112 Benin\n", - "3331 Burkina Faso\n", - "3550 Bangladesh\n", - "3769 Bulgaria\n", - "3988 Bahrain\n", - "4207 Bahamas\n", - "4426 Bosnia and Herzegovina\n", - "4645 Belarus\n", - "4864 Belize\n", - "5130 Bolivia\n", - "5349 Brazil\n", - "5568 Barbados\n", - "5787 Brunei\n", - "6006 Bhutan\n", - "6225 Botswana\n", - "6444 Central African Republic\n", - "6663 Canada\n", - " ... \n", - "35221 Slovenia\n", - "35440 Sweden\n", - "35659 Swaziland\n", - "35878 Seychelles\n", - "36097 Syria\n", - "36316 Chad\n", - "36535 Togo\n", - "36754 Thailand\n", - "36973 Tajikistan\n", - "37192 Turkmenistan\n", - "37411 Timor-Leste\n", - "37630 Tonga\n", - "37849 Trinidad and Tobago\n", - "38068 Tunisia\n", - "38287 Turkey\n", - "38723 Tanzania\n", - "38942 Uganda\n", - "39161 Ukraine\n", - "39380 Uruguay\n", - "39599 United States\n", - "39818 Uzbekistan\n", - "40037 St. Vincent and the Grenadines\n", - "40256 Venezuela\n", - "40475 Vietnam\n", - "40694 Vanuatu\n", - "40913 Samoa\n", - "41132 Yemen\n", - "41351 South Africa\n", - "41570 Zambia\n", - "41789 Zimbabwe\n", - "Name: country, Length: 188, dtype: object\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n" + "['Japan', 'Singapore', 'Hong Kong, China', 'Switzerland', 'Macao, China', 'Spain', 'Australia', 'Andorra', 'Italy']\n" ], "name": "stdout" - }, - { - "output_type": "stream", - "text": [ - "ERROR:root:Internal Python error in the inspect module.\n", - "Below is the traceback from this internal error.\n", - "\n" - ], - "name": "stderr" - }, - { - "output_type": "stream", - "text": [ - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Series([], Name: country, dtype: object)\n", - "Traceback (most recent call last):\n", - " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py\", line 2882, in run_code\n", - " exec(code_obj, self.user_global_ns, self.user_ns)\n", - " File \"\", line 13, in \n", - " working_year = df1[df1.year==current_year]\n", - " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/frame.py\", line 2133, in __getitem__\n", - " return self._getitem_array(key)\n", - " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/frame.py\", line 2175, in _getitem_array\n", - " return self._take(indexer, axis=0, convert=False)\n", - " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/generic.py\", line 2150, in _take\n", - " verify=True)\n", - " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/internals.py\", line 4264, in take\n", - " axis=axis, allow_dups=True)\n", - " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/internals.py\", line 4150, in reindex_indexer\n", - " for blk in self.blocks]\n", - " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/internals.py\", line 4150, in \n", - " for blk in self.blocks]\n", - " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/internals.py\", line 1221, in take_nd\n", - " allow_fill=True, fill_value=fill_value)\n", - " File \"/usr/local/lib/python3.6/dist-packages/pandas/core/algorithms.py\", line 1369, in take_nd\n", - " out_shape = list(arr.shape)\n", - "KeyboardInterrupt\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py\", line 1823, in showtraceback\n", - " stb = value._render_traceback_()\n", - "AttributeError: 'KeyboardInterrupt' object has no attribute '_render_traceback_'\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/ultratb.py\", line 1132, in get_records\n", - " return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset)\n", - " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/ultratb.py\", line 313, in wrapped\n", - " return f(*args, **kwargs)\n", - " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/ultratb.py\", line 358, in _fixed_getinnerframes\n", - " records = fix_frame_records_filenames(inspect.getinnerframes(etb, context))\n", - " File \"/usr/lib/python3.6/inspect.py\", line 1483, in getinnerframes\n", - " frameinfo = (tb.tb_frame,) + getframeinfo(tb, context)\n", - " File \"/usr/lib/python3.6/inspect.py\", line 1445, in getframeinfo\n", - " lines, lnum = findsource(frame)\n", - " File \"/usr/local/lib/python3.6/dist-packages/IPython/core/ultratb.py\", line 170, in findsource\n", - " file = getsourcefile(object) or getfile(object)\n", - " File \"/usr/lib/python3.6/inspect.py\", line 696, in getsourcefile\n", - " if getattr(getmodule(object, filename), '__loader__', None) is not None:\n", - " File \"/usr/lib/python3.6/inspect.py\", line 733, in getmodule\n", - " if ismodule(module) and hasattr(module, '__file__'):\n", - "KeyboardInterrupt\n" - ], - "name": "stdout" - }, - { - "output_type": "error", - "ename": "KeyboardInterrupt", - "evalue": "ignored", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m" - ] } ] }, @@ -33979,11 +5153,11 @@ "metadata": { "id": "sV6UDqrgRaId", "colab_type": "code", + "outputId": "fcf64e67-c544-4986-86f9-6a5af42279ac", "colab": { "base_uri": "https://localhost:8080/", - "height": 728 - }, - "outputId": "df5d990c-47c3-490d-85ae-8af989a2628a" + "height": 708 + } }, "cell_type": "code", "source": [ @@ -34008,9 +5182,8 @@ "ax.spines['right'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "\n", - "# limit age/year plotted to clean up whitespace\n", - "plt.ylim(0, 95)\n", - "plt.xlim(1800, 2025)\n", + "plt.ylim(0, 95) # lifespan limiter\n", + "plt.xlim(1800, 2025) # timer period limiter\n", "\n", "# increase axis tick size for readability\n", "plt.yticks(range(0, 91, 10), [str(x) + ' years' for x in range(0, 91, 10)], \n", @@ -34026,17 +5199,22 @@ "plt.tick_params(axis='both', which='both', bottom='off', top='off', \n", " labelbottom='on', left='off', right='off', labelleft='on')\n", "\n", + "for rank, column in enumerate(unique_top_ten):\n", + " # give a line to each unique, assign color with T20\n", + " plt.plot(countries_subset.year.values,\n", + " countries_subset.lifespan.values,\n", + " lw=2.5, color=tableau20[rank])\n", "\n", - "\n" + " # hah, what a hot mess.\n" ], - "execution_count": 83, + "execution_count": 167, "outputs": [ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAKzCAYAAABGagHfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3X20ZlVhJ+jfrbrculUURUFJqzDx\nC02isM60ScfWJiR2j5IJ0gp90mbU6XVmMmYxS0lrHKMyfhFjjMbgwETTo+jYx0E0DqeT6FppEdC0\nIiFEXTNHRlrxAwhB5KuKoixuVd26d/44p+g3l6q6F63iWrWfZ6273vuevc9+937/Or+z9z7v1OLi\nYgAAgHKsWe0OAAAAjy0hAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRGCAAAgMIIAQAA\nUJjp1e7AEcbPKwMA8FiYOpyNmwkAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACg\nMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDC\nCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAoj\nBAAAQGGEAAAAKIwQAAAAhZlerkJbV7NJXpzk2UmOS/J3Sf606fpbJ+pMJTknyZlJNiT5XpJPNF1/\n52HoMwAA8GNYyUzAv0lyWpKPJnlHkm8k+e22rjZP1DkryQuTfDLJu5I8mOS1Y4D4idLW1drV7gMA\nAKymg84EtHV1TJKfS/J/NF3/rfHwZ9q6qpL8cpK/GGcBXpDks03Xf20876NJLk7ynCRf3E+7z0jy\nuiRvbLp++8Txc5NUTde/Y3x/apLzkjwlyQ+T9Em6puvnxvLTkpyd5OSxiVuTfKrp+u+P5VsyhJIP\nZ5ileFqSrq2rG5K8LMmzkqxPsi3J55uuv3b5rwwAAI5syy0HWpthtmB+yfE9SZ4+/r8lyaYMMwRJ\nkqbr97R1dUuSU7OfENB0/S1tXd2T5HlJrkoeXlL03CRXj+9PSfKaJJ9J8rEkxyZ5aZImyQfHptYl\nuTbJHUlmMgSCV7d1dVHT9ZN9Pi/JlWM7e5O8JMkpSd6fYdZiS4alTge17bZtmd08m907dmd6djoL\n8wuZmprK1Jqp7N29N8dsOCa7tu/K7Amzeej+h7LhcRuy896dj3hdf8L6zD0wl5mNM5mfm8+a6WFC\nZmF+IdOz09m9Y3dmj5/NQ1sP0saJ6zO3dS7rNq3Lnp17snZmbRYXFrO4uJg102syPzefmY0zmds2\nd8A29r0akzEZkzEZkzEZkzEZ0+qPafOTJxfaHF4HDQFN18+1dfXdJGe3dfX3SbYn+YUMd9TvHqsd\nP75uX3L69iQHG8l1Sc7IGAIyLDk6LskN4/uzknyl6fqr953Q1tUVSd7S1tVxTdc/uG/mYaK8TXJp\nhpmDb08UfWGy7jhDcPvEvob7DtJPAAA4qkwtLi4etEJbVydluPv+jCQLSW5P8oMkT266/u3jkp03\nJLmw6fr7J85rkmxuuv7SA7R7XJJ3J3lf0/Xfaevq/CQLTddfNpZflOSkDHfuH+5vhjv+72m6/rtj\n316S5KlJNo7l65J8pOn6GyeWA108sZwpbV2dnuT8DEHm5iT9ZPlBHPzLAgCAQ2PqcDa+7Mbgpuvv\nabr+j5L82yRvarr+DzIsE7p3rPLA+Lppyamb8sjZgcl2H8ywxv+Mtq6OTVIl+fJElakMswXvnPj7\nvSRvzfCEoiS5IMPF/+UZAsU7MwSVpTMcu5Z89k1JLsyw9GhjkgvG0AIAAEe9ZR8Ruk/T9buS7Grr\nakOGpTvdWHRfhov9Z2bYmLtvQ/HTJ+ocyJcy3JG/Z2zj5omy25Oc3HT93fs7cQwOT0hyRdP13xyP\nPSkr/O2Dput3ZFh6dENbVzcleWVbVx9fspcAAACOOiv5nYDTMtyVvyvD8pxfG/+/Pkmarl9s6+qa\nDPsG7sqwVOhFGe6+37hM8zdneOrPORmeLjS53OaqJG9q6+oVGTYX78pw0V81XX95kp1JdiQ5s62r\nrRn2H9QZZgKWG9OLM4SMOzPMajw7yb0CAAAAJVjJXfP1GR6n+btJfiPDhttLm66fXKv/uSTXJHl5\nkjdn2Cx8yb5HeR7IeNF/fYYL8euXlN2R5L0Zntzz+gzLgM7LuMRoPPeyDE/5efvYx09neHLRcuaT\nnJvkbRn2M8wm+cAKzgMAgCPeshuDD7fxTv9JTddfsqodWRkbgwEAeCwc1o3BK94TcKi1dbU+yRMz\n/DbAh1arHwAAUJpVCwFJXpXh0Z7XNV3/9VXsBwAAFGXVlwMdYXxZAAA8Flb3dwIAAICjixAAAACF\nEQIAAKAwQgAAABRGCAAAgMIIAQAAUBghAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRG\nCAAAgMIIAQAAUBghAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRGCAAAgMIIAQAAUBgh\nAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRGCAAAgMIIAQAAUBghAAAACiMEAABAYYQA\nAAAojBAAAACFEQIAAKAwQgAAABRGCAAAgMIIAQAAUBghAAAACiMEAABAYYQAAAAojBAAAACFEQIA\nAKAwQgAAABRGCAAAgMIIAQAAUBghAAAACiMEAABAYYQAAAAojBAAAACFEQIAAKAwQgAAABRGCAAA\ngMIIAQAAUJjp5Sq0dbUmyb9M8k+THJ/kgSR/k+QzTdcvjHWmkpyT5MwkG5J8L8knmq6/8zD1GwAA\n+BGtZCbgV5I8P8knk7wtyZ+O7391os5ZSV441nlXkgeTvLatq9lD2NdDoq2rtavdBwAAWE3LzgQk\nOTVJ33R9P76/r62rPslTk4dnAV6Q5LNN139tPPbRJBcneU6SLy5tsK2rZyR5XZI3Nl2/feL4uUmq\npuvfMb4/Ncl5SZ6S5IdJ+iRd0/VzY/lpSc5OcvLYxK1JPtV0/ffH8i0ZQsmHM8xSPC1J19bVDUle\nluRZSdYn2Zbk803XX7uC7wMAAI5oKwkB307y/LauntB0/V1tXT0xyc8k+exYviXJpiTf2HdC0/V7\n2rq6JUOAeEQIaLr+lrau7knyvCRXJQ+HiecmuXp8f0qS1yT5TJKPJTk2yUuTNEk+ODa1Lsm1Se5I\nMpMhELy6rauLmq6fn/jI85JcObazN8lLkpyS5P0ZZi22JDluuS9i223bMrt5Nrt37M707HQW5hcy\nNTWVqTVT2bt7b47ZcEx2bd+V2RNm89D9D2XD4zZk5707H/G6/oT1mXtgLjMbZzI/N58108OEzML8\nQqZnp7N7x+7MHj+bh7YepI0T12du61zWbVqXPTv3ZO3M2iwuLGZxcTFrptdkfm4+MxtnMrdt7oBt\n7Hs1JmMyJmMyJmMyJmMyptUf0+Ynb17ucvSQWUkIuCrJbJKL2rpazLCE6C+brv+rsfz48XX7kvO2\nJznYSK5LcsbYfpKcluFC/Ibx/VlJvtJ0/dX7Tmjr6ookb2nr6rim6x/cN/MwUd4muTTDzMG3J4q+\nMFl3nCG4ven6W8dD9x2knwAAcFSZWlxcPGiFtq5+IUmdpEtyZ5KfSvLrSa5suv7L45KdNyS5sOn6\n+yfOa5Jsbrr+0gO0e1ySdyd5X9P132nr6vwkC03XXzaWX5TkpAx37h/ub4Y7/u9puv67bV2dlOGu\n/lOTbBzL1yX5SNP1N04sB7q46fpvTXz26UnOT3J3kpszLHf6VpZ38C8LAAAOjanD2fhKZgLqJFc3\nXf+34/u/b+vqxAwbg7+c4WlBybAk6P6J8zblkbMDD2u6/sFxb8EZbV3dlaRK8oGJKlMZZgv2t05/\n6/h6wfj/5RnW9e9N8rv7GdeuJZ99U1tXFyY5PcnPJrmgrauvNl3fHqi/AABwtFhJCJhJsrDk2GL+\nSzq5L8PF/jMzbMxNW1fHJHl6htmDg/lShjvy94xt3DxRdnuSk5uuv3t/J7Z1dWySJyS5oun6b47H\nnpQV/vZB0/U7Miw9uqGtq5uSvLKtq48v2UsAAABHnZWEgD7Jf9vW1b0ZlgM9KcPTgG5IkqbrF9u6\nuibJ2eMd/R8keVGGu+83LtP2zRme+nNOhqcLTS63uSrJm9q6ekWGzcW7Mlz0V03XX55kZ5IdSc5s\n62prhv0HdR4ZWB6hrasXZwgZdyZZm+TZSe4VAAAAKMFK7pp/MslXk7w8w1KbX8twB//PJ+p8Lsk1\nY503Z9gsfMm+R3keyHjRf32GC/Hrl5TdkeS9GZ7c8/okb83wlJ/tE+deluEpP2/P8MjPTyfZs4Ix\nzSc5N8PvHrwhw8bnDxz0DAAAOEosuzH4cBvv9J/UdP0lq9qRlbExGACAx8Kqbww+LNq6Wp/kiRl+\nG+BDq9UPAAAozaqFgCSvyvBoz+uarv/6KvYDAACKsurLgY4wviwAAB4Lh3U50IoepwkAABw9hAAA\nACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAA\noDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACA\nwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAK\nIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiM\nEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBC\nAAAAFEYIAACAwggBAABQmOnlKrR19a4kW/ZTdFPT9X88Ue/5Sc5KcnySO5N8qun6Ww5RPwEAgENk\nJTMBf5Dkdyb+3plkMclX9lVo6+qfJPn1JP9xLP9Okt9q6+rEQ93hH1dbV8sGHwAAOJote0HcdP2D\nk+/buvrFJHOZCAFJXpjk+qbrvzS+/2RbV6cl+eUkf7a0zbautiT5/SR/0HT9bRPHz0xyXpI3NF0/\n39bVE5P8WpJnJNmd5D9nmGHYPtZ/SpJzkzwpydokf5/kyqbrvzvR5geTfCLJzyY5Lcl/auvqz5L8\n6yQ/l+TYJA8mubHp+v+w3PcBAABHukd1V7ytq6kkZyT5m6br94zHpjNchH9uSfVvJDl1f+00XX9f\nW1c3j23dNlH0z5LcMAaA4zPMPFyX5MoMF/kvSfLqtq7e3XT9YpLZJDck+dMMsxP/PMMMxFuarv/h\nRLvnJPnzsZ0k+RdJ/nGSy5Lcl+SEJI9fbvzbbtuW2c2z2b1jd6Znp7Mwv5CpqalMrZnK3t17c8yG\nY7Jr+67MnjCbh+5/KBsetyE77935iNf1J6zP3ANzmdk4k/m5+ayZHiZkFuYXMj07nd07dmf2+Nk8\ntPUgbZy4PnNb57Ju07rs2bkna2fWZnFhMYuLi1kzvSbzc/OZ2TiTuW1zB2xj36sxGZMxGZMxGZMx\nGZMxrf6YNj9583KXo4fMo10a88wkj0vypYljGzMsK9q+pO6DSTYdpK0vJfk3bV39303X7xnv+j8t\nyf81lv9ykr+bvDvf1tVHk/xvSZ6c5Nam6//zZINtXX0yw93905P8zUTRV5quv26i3pYkP0jy7TFM\n3J9hCRMAABz1phYXF1dcua2r85Oc2HT9H0wc25zkPUn+aHIjcFtX5yR5TtP1bztAW2vH8z7VdP2N\nbV3VSX56X9ttXf1Wkmcl2bPk1HVJPtx0/d+2dXVchtmBn8kQOKaSzCT5i6br/+PYzgeT/Pum6/96\n4rOflOS1SX6YYcbipgwbnZf7Mlb+ZQEAwI9u6nA2vuJHhI4X3P91huU5k3YkWcgj7/ofl0fODjys\n6fq9Sf46yRltXa1J8twlbU8l+XqGjcaTf28djyfJ/5jkKUk+lSFQvDPJ1jxyhmPXks++Pcn/mmG/\nwpqxndeOy50AAOCo9miWA/2zJPNJbpw8OK7fvz3DUqGvThQ9K8nXlmnzuiS/m+T5Gdb3/+1E2e1J\nfj7JfWNg2J+nJ/lk0/VfT5K2rjZleETpspqunxv797W2rq5P8qYk/yjDMiEAADhqrSgEjHfIfzHJ\n3zZdv2s/Va5O8httXd2aYW39L2W4GP/iwdptuv4HbV19O0mdYd3+3ETxX42f+ZttXV2VYY/BSRmC\nwZVj3R8k+adtXX0vwzKhOkNQWW48L0jyQJI7kuxN8pwMTzzauty5AABwpFvpcqCfznCX/Ev7K2y6\n/isZluScneQtGe7Q/3HT9fetoO3rMoSRf7DMqOn6bUn+MMM6/H+b5KIkL8twkb/vQr/NMIPw5iS/\nmeTLGZ72s5xdSX4lyYXjuT+V5H9vun73Cs4FAIAj2qPaGHw4tHX1K0l+sen6t65qR1bGxmAAAB4L\nh3Wv6qr9em5bV+uSbEny3yT5y9XqBwAAlGbVQkCGpT2/kKTPMnsHAACAQ2fVlwMdYXxZAAA8Fn4y\nficAAAA4OggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQ\nGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBh\nhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIUR\nAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYI\nAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEA\nAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDDTK6nU1tXxSf5VktOTzCa5J8kVTdd/ayyfSnJOkjOT\nbEjyvSSfaLr+zsPRaQAA4Ee37ExAW1cbkrxhfPvHSd6e5JNJHpyodlaSF47H3zWWvbatq9lD2ttD\noK2rtavdBwAAWE0rmQk4K8kDTdd/dOLYvfv+GWcBXpDks03Xf2089tEkFyd5TpIvLm2wratnJHld\nkjc2Xb994vi5Saqm698xvj81yXlJnpLkh0n6JF3T9XNj+WlJzk5y8tjErUk+1XT998fyLRlCyYcz\nzFI8LUnX1tUNSV6W5FlJ1ifZluTzTddfu4LvAwAAjmgrCQH/OMn/19bVbyb5mSQPJLkuyV81Xb+Y\nZEuSTUm+se+Epuv3tHV1S5JTs58Q0HT9LW1d3ZPkeUmuSh4OE89NcvX4/pQkr0nymSQfS3Jskpcm\naZJ8cGxqXZJrk9yRZCZDIHh1W1cXNV0/P/GR5yW5cmxnb5KXJDklyfszzFpsSXLccl/Ettu2ZXbz\nbHbv2J3p2ekszC9kamoqU2umsnf33hyz4Zjs2r4rsyfM5qH7H8qGx23Iznt3PuJ1/QnrM/fAXGY2\nzmR+bj5rpocJmYX5hUzPTmf3jt2ZPX42D209SBsnrs/c1rms27Que3buydqZtVlcWMzi4mLWTK/J\n/Nx8ZjbOZG7b3AHb2PdqTMZkTMZkTMZkTMZkTKs/ps1P3rzc5eghs5IQcFKS5ye5Jslnk/xUkv9u\nLPtCkuPH/7cvOW97koON5LokZ2QMAUlOy3AhfsP4/qwkX2m6/up9J7R1dUWSt7R1dVzT9Q/um3mY\nKG+TXJph5uDbE0VfmKw7zhDc3nT9reOh+w7STwAAOKpMLS4uHrRCW1d/kuS2puvfM3Hs3CTPbrr+\n7eOSnTckubDp+vsn6jRJNjddf+kB2j0uybuTvK/p+u+0dXV+koWm6y8byy/KEED2TvY3wx3/9zRd\n/922rk7KcFf/qUk2juXrknyk6fobJ5YDXbxvE/PY9ulJzk9yd5Kbk/ST5Qdx8C8LAAAOjanD2fhK\nHhH6QJLvLzl2V5ITJ8qTYUnQpE155OzAw5qufzDDGv8z2ro6NkmV5MsTVaYyzBa8c+Lv95K8Ncnf\njXUuyHDxf3mGQPHOJAt55AzHriWffVOSCzMsPdqY5IIxtAAAwFFvJcuBvpPk8UuOPT7/ZQnNfRku\n9p+ZYWNu2ro6JsnTk3TLtP2lDHfk7xnbuHmi7PYkJzddf/f+ThyDwxMyPKr0m+OxJ2WFv33QdP2O\nDEuPbmjr6qYkr2zr6uNL9hIAAMBRZyUh4Jokb2zr6uwkX8mwJ+BfJPmzJGm6frGtq2uSnN3W1V1J\nfpDkRRnuvt+4TNs3Z3jqzzkZni40udzmqiRvauvqFRk2F+/KcNFfNV1/eZKdSXYkObOtq60Z9h/U\nGWYCDqqtqxdnCBl3Jlmb5NlJ7hUAAAAowbJ3zcfNs3+S5Ocz/EbAuUn+Isl/mqj2uQxh4eVJ3pxh\ns/Al+x7leZC2F5Ncn+FC/PolZXckeW+GJ/e8PsMyoPMyLjEaz70sw1N+3p7hkZ+fTrJnuTElmR/H\n8bYM+xlmk3xgBecBAMARb9mNwYfbeKf/pKbrL1nVjqyMjcEAADwWDuvG4JUsBzos2rpan+SJGX4b\n4EOr1Q8AACjNqoWAJK/K8GjP65qu//oq9gMAAIqy6suBjjC+LAAAHgur/jsBAADAUUQIAACAwggB\nAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQA\nAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAA\nAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAA\nFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQ\nGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBh\nhAAAACjM9HIV2rr6l0nOWXJ4e9P1vzNRZ2qsc2aSDUm+l+QTTdffeQj7CgAAHAIrnQn4QZLfmfh7\nx5Lys5K8MMknk7wryYNJXtvW1ewh6uch09bV2tXuAwAArKZlZwJGe5uu376/gnEW4AVJPtt0/dfG\nYx9NcnGS5yT54n7OeUaS1yV542S7bV2dm6Rquv4d4/tTk5yX5ClJfpikT9I1XT83lp+W5OwkJ49N\n3JrkU03Xf38s35IhlHw4wyzF05J0bV3dkORlSZ6VZH2SbUk+33T9tSv8PgAA4Ii10hBwUltXf5hk\nPsNSnz9ruv7esWxLkk1JvrGvctP1e9q6uiXJqdlPCGi6/pa2ru5J8rwkVyUPh4nnJrl6fH9Kktck\n+UySjyU5NslLkzRJPjg2tS7JtUnuSDKTIRC8uq2ri5qun5/4yPOSXDm2szfJS5KckuT9GWYttiQ5\nbrkvYdtt2zK7eTa7d+zO9Ox0FuYXMjU1lak1U9m7e2+O2XBMdm3fldkTZvPQ/Q9lw+M2ZOe9Ox/x\nuv6E9Zl7YC4zG2cyPzefNdPDhMzC/EKmZ6eze8fuzB4/m4e2HqSNE9dnbutc1m1alz0792TtzNos\nLixmcXExa6bXZH5uPjMbZzK3be6Abex7NSZjMiZjMiZjMiZjMqbVH9PmJ29e7nL0kFlJCPhekn+f\n5K4MF8pnJ3njeKH9wyTHj/WWzhRsT3KwkVyX5IyMISDJaWP7N4zvz0rylabrr953QltXVyR5S1tX\nxzVd/+C+mYeJ8jbJpRlmDr49UfSFybrjDMHtTdffOh667yD9BACAo8rU4uLiozqhrat1SX4/w/Kf\na8YlO29IcmHT9fdP1GuSbG66/tIDtHNckncneV/T9d9p6+r8JAtN1182ll+U5KQMd+4f7m+GO/7v\nabr+u21dnZThrv5Tk2wcy9cl+UjT9TdOLAe6uOn6b0189ulJzk9yd5Kbk/ST5Qfx6L4sAAD40Uwd\nzsYf9SNCm67fleT7SR4/HnpgfN20pOqmPHJ2YLKdBzOs8T+jratjk1RJvjxRZSrDbME7J/5+L8lb\nk/zdWOeCDBf/l2cIFO9MspBHznDsWvLZNyW5MMPSo41JLhhDCwAAHPVWuifgYW1dHZPkCUm+OR66\nL8PF/jMzbMzdV+fpSbplmvtShjvy94xt3DxRdnuSk5uuv/sA/Th27McVTdd/czz2pKww2DRdvyPD\n0qMb2rq6Kckr27r6+JK9BAAAcNRZye8E/FqGO/b3Z1iz/6IMS3L+Okmarl9s6+qaJGe3dXVXhseJ\nvijD3fcbl2n+5gxP/Tknw/KiyeU2VyV5U1tXr8iwuXhXhov+qun6y5PsTLIjyZltXW3NsP+gzjAT\nsNyYXpwhZNyZZG2SZye5VwAAAKAEK7lrfkKSV2b4bYD/OcMTgt7ddP3kZtrPJbkmycuTvDnDZuFL\n9j3K80DGi/7rM1yIX7+k7I4k783w5J7XZ1gGdF7GJUbjuZdleMrP2zM88vPTSfasYEzzSc5N8rYM\n+xlmk3xgBecBAMAR71FvDD7Uxjv9JzVdf8mqdmRlbAwGAOCxcFg3Bj/qPQGHSltX65M8McNvA3xo\ntfoBAAClWbUQkORVGR7teV3T9V9fxX4AAEBRVn050BHGlwUAwGPhJ+t3AgAAgCObEAAAAIURAgAA\noDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACA\nwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAK\nIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiM\nEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBC\nAAAAFEYIAACAwggBAABQGCEWmA5sAAAgAElEQVQAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBC\nAAAAFEYIAACAwggBAABQGCEAAAAKM/1oKrd19atJzk3yV03Xf2Li+FSSc5KcmWRDku8l+UTT9Xce\nwr4CAACHwIpnAtq6elqGi/w79lN8VpIXJvlkkncleTDJa9u6mj0UnTyU2rpau9p9AACA1bSimYC2\nrtYn+Z+StBnu+E+WTSV5QZLPNl3/tfHYR5NcnOQ5Sb64n/aekeR1Sd7YdP32iePnJqmarn/H+P7U\nJOcleUqSHybpk3RN18+N5aclOTvJyWMTtyb5VNP13x/Lt2QIJR/OEGCelqRr6+qGJC9L8qwk65Ns\nS/L5puuvXcn3AQAAR7KVLgf675N8ten6b7Z1dc6Ssi1JNiX5xr4DTdfvaevqliSnZj8hoOn6W9q6\nuifJ85JclTwcJp6b5Orx/SlJXpPkM0k+luTYJC9N0iT54NjUuiTXZpidmMkQCF7d1tVFTdfPT3zk\neUmuHNvZm+QlSU5J8v4MsxZbkhy33Jew7bZtmd08m907dmd6djoL8wuZmprK1Jqp7N29N8dsOCa7\ntu/K7Amzeej+h7LhcRuy896dj3hdf8L6zD0wl5mNM5mfm8+a6WFCZmF+IdOz09m9Y3dmj5/NQ1sP\n0saJ6zO3dS7rNq3Lnp17snZmbRYXFrO4uJg102syPzefmY0zmds2d8A29r0akzEZkzEZkzEZkzEZ\n0+qPafOTNy93OXrILBsC2ro6M8k/SvJ/HqDK8ePr9iXHtyc52EiuS3JGxhCQ5LQMF+I3jO/PSvKV\npuuvnujLFUne0tbVcU3XP7hv5mGivE1yaYaZg29PFH1hsu44Q3B70/W3jofuO0g/AQDgqDK1uLh4\nwMK2rh6f5A1J/rDp+h+Mx/6XJHfu2xg8Ltl5Q5ILm66/f+LcJsnmpusvPUDbxyV5d5L3NV3/nbau\nzk+y0HT9ZWP5RUlOynDn/uH+Zrjj/56m67/b1tVJGe7qPzXJxrF8XZKPNF1/48RyoIubrv/WxGef\nnuT8JHcnuTlJP1l+EAf+sgAA4NCZOpyNLzcTcGqGi+uL2rrad2xNkme0dfVLSX4ryQPj8U1J7p84\nd1MeOTvwsKbrH2zrqk9yRltXdyWpknxgospUhtmC/a3T3zq+XjD+f3mGdf17k/zufsa1a8ln39TW\n1YVJTk/ys0kuaOvqq03XtwfqLwAAHC2WCwH/T4bNtpP+hwx30P8yw0X3fRku9p+5r25bV8ckeXqS\nbpn2v5Thjvw9Yxs3T5TdnuTkpuvv3t+JbV0dm+QJSa5ouv6b47EnZYVPPGq6fkeGpUc3tHV1U5JX\ntnX18SV7CQAA4Khz0BDQdP3OJDsnj7V1tSvJDyd/A6Ctq2uSnD3e0f9BkhdluPt+4zKff3OGp/6c\nk+HpQpPLba5K8qa2rl6RYXPxrgwX/VXT9ZeP/dqR5My2rrZm2H9QJ1lY5jPT1tWLM4SMO5OsTfLs\nJPcKAAAAlOBQ/WLw55Jck+TlSd6cYbPwJfse5Xkg40X/9RkuxK9fUnZHkvdmeHLP65O8NcNTfrZP\nnHtZhqf8vD3DIz8/nWTPCvo7n+FHz96WYT/DbP7hUiQAADhqHXRj8GNhvNN/UtP1l6xqR1bGxmAA\nAB4Lq7ox+LAZf4DsiRl+G+BDq9UPAAAozaqFgCSvyvBoz+uarv/6KvYDAACKsurLgY4wviwAAB4L\nh3U50KHaGAwAABwhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBh\nhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIUR\nAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYI\nAACAwggBAABQGCEAAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEA\nAAAKIwQAAEBhhAAAACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQGCEAAAAKIwQAAEBhhAAA\nACiMEAAAAIURAgAAoDBCAAAAFEYIAACAwggBAABQmOnlKrR19fwkv5Rky3joziR/2XT91yfqTCU5\nJ8mZSTYk+V6STzRdf+eh7jAAAPDjWclMwNYk/yHJ7yd5V5JvJnlVW1f/1USds5K8MMknxzoPJnlt\nW1ezh7a7P762rtaudh8AAGA1LTsT0HT9/7vk0J+3dfXLSZ6W5I5xFuAFST7bdP3XkqStq48muTjJ\nc5J8cWmbbV09I8nrkryx6frtE8fPTVI1Xf+O8f2pSc5L8pQkP0zSJ+marp8by09LcnaSk8cmbk3y\nqabrvz+Wb8kQSj6cYZbiaUm6tq5uSPKyJM9Ksj7JtiSfb7r+2uW+DwAAONItGwImtXW1JsnPJ1mX\n5Dvj4S1JNiX5xr56TdfvaevqliSnZj8hoOn6W9q6uifJ85JcNbY9leS5Sa4e35+S5DVJPpPkY0mO\nTfLSJE2SD45NrUtybZI7ksxkCASvbuvqoqbr5yc+8rwkV47t7E3ykiSnJHl/hlmLLUmOW278227b\nltnNs9m9Y3emZ6ezML+QqampTK2Zyt7de3PMhmOya/uuzJ4wm4fufygbHrchO+/d+YjX9Sesz9wD\nc5nZOJP5ufmsmR4mZBbmFzI9O53dO3Zn9vjZPLT1IG2cuD5zW+eybtO67Nm5J2tn1mZxYTGLi4tZ\nM70m83Pzmdk4k7ltcwdsY9+rMRmTMRmTMRmTMRmTMa3+mDY/efNyl6OHzIpCwHhB/sYkxyTZleTf\nNV3/92Px8ePr9iWnbU9ysJFcl+SMjCEgyWkZLsRvGN+fleQrTddfPdGPK5K8pa2r45quf3DfzMNE\neZvk0gwzB9+eKPrCZN1xhuD2putvHQ/dd5B+AgDAUWVqcXFx2UptXU0nOTHD0pmfy7C05o+arr9z\nXLLzhiQXNl1//8Q5TZLNTddfeoA2j0vy7iTva7r+O21dnZ9koen6y8byi5KclOHO/cP9zXDH/z1N\n13+3rauTMtzVf2qSjWP5uiQfabr+xonlQBc3Xf+tic8+Pcn5Se5OcnOSfrL8IJb/sgAA4Mc3dTgb\nX9FMwLi05u7x7W1tXT0lwz6AjyV5YDy+Kcn9E6dtyiNnBybbfLCtqz7JGW1d3ZWkSvKBiSpTGWYL\n9rdOf+v4esH4/+UZ1vXvTfK7+xnXriWffVNbVxcmOT3Jzya5oK2rrzZd3x6ovwAAcLR4VHsCJkxN\nnHtfhov9Z2bYmJu2ro5J8vQk3TLtfCnDHfl7xjZunii7PcnJTdffvb8T27o6NskTklzRdP03x2NP\nygp/+6Dp+h0Zlh7d0NbVTUle2dbVx5fsJQAAgKPOSn4n4F8l+XqGu/yzGZ7489MZNtWm6frFtq6u\nSXL2eEf/B0lelOHu+43LNH9zhqf+nJPh6UKTy22uSvKmtq5ekWFz8a4MF/1V0/WXJ9mZZEeSM9u6\n2pph/0GdZGEFY3pxhpBxZ5K1SZ6d5F4BAACAEqzkrvmmJL+R5B1JfjvDpts/brr+pok6n0tyTZKX\nJ3lzhs3Cl+x7lOeBjBf912e4EL9+SdkdSd6b4ck9r0/y1gxP+dk+ce5lGZ7y8/YMj/z8dJI9KxjT\nfJJzk7wtw36G2fzDpUgAAHDUWtHG4MNpvNN/UtP1l6xqR1bGxmAAAB4Lq78x+HBo62p9kidm+G2A\nD61WPwAAoDSrFgKSvCrDoz2va7r+66vYDwAAKMqqLwc6wviyAAB4LBzW5UArepwmAABw9BACAACg\nMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDC\nCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAoj\nBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQ\nAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIA\nAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEA\nAFAYIQAAAAozvVyFtq5+Ncmzkzw+yXyS7yb5s6br75yoM5XknCRnJtmQ5HtJPjFZBwAA+MmwkpmA\nn07yV0nek+R9SRaS/HZbV8dO1DkryQuTfDLJu5I8mOS1bV3NHtLeHgJtXa1d7T4AAMBqmlpcXHxU\nJ7R1tS7JpUn+pOn6fpwF+MMkX2i6/i/HOsckuTjJlU3Xf3E/bTwjyeuSvLHp+u0Tx89NUjVd/47x\n/alJzkvylCQ/TNIn6ZqunxvLT0tydpKTxyZuTfKppuu/P5ZvyRBKPpxhluJpSbokNyR5WZJnJVmf\nZFuSzzddf+0yw390XxYAAPxopg5n48suB9qP2Qyd2jm+35JkU5Jv7KvQdP2etq5uSXJqkkeEgKbr\nb2nr6p4kz0tyVfLwkqLnJrl6fH9Kktck+UySjyU5NslLkzRJPjg2tS7JtUnuSDKTIRC8uq2ri5qu\nn5/4yPOSXDm2szfJS5KckuT9GWYttiQ5brmBb7ttW2Y3z2b3jt2Znp3OwvxCpqamMrVmKnt3780x\nG47Jru27MnvCbB66/6FseNyG7Lx35yNe15+wPnMPzGVm40zm5+azZnqYkFmYX8j07HR279id2eNn\n89DWg7Rx4vrMbZ3Luk3rsmfnnqydWZvFhcUsLi5mzfSazM/NZ2bjTOa2zR2wjX2vxmRMxmRMxmRM\nxmRMxrT6Y9r85M3LXY4eMj9KCPj1JH+XYW9Akhw/vm5fUm97koON5LokZ2QMAUlOy3AhfsP4/qwk\nX2m6/up9J7R1dUWSt7R1dVzT9Q82Xf+1yQbbumozzFI8Jcm3J4q+MFl3nCG4ven6W8dD9x2knwAA\ncFR5VMuB2rr610l+IckfNl1/73js1CRvSHJh0/X3T9Rtkmxuuv7SA7R1XJJ3J3lf0/Xfaevq/CQL\nTddfNpZflOSkDHfuH+5vhjv+72m6/rttXZ2U4a7+U5NsHMvXJflI0/U3TiwHurjp+m9NfPbpSc5P\ncneSm5P0k+UHYTkQAACPhcO6HGjFjwht6+qlSZ6T4aL93omiB8bXTUtO2ZRHzg48rOn6BzOs8T9j\n3GRcJfnyRJWpDLMF75z4+70kb80wE5EkF2S4+L88Q6B4Z4aNy0tnOHYt+eybklyYYenRxiQXjKEF\nAACOeitaDtTW1a8n+ScZAsBdS4rvy3Cx/8wMG3P3bQx+eoZNuAfzpQx35O8Z27h5ouz2JCc3XX/3\nAfp0bJInJLmi6fpvjseelBUGm6brd2RYenRDW1c3JXllW1cfX7KXAAAAjjor+Z2Al2XYsPvvkvyw\nrat9d/x3NV2/q+n6xbaurklydltXdyX5QZIXZbj7fuMyzd+c4ak/5yT5bNP1k8ttrkryprauXpFh\nc/GuDBf9VdP1l2fYmLwjyZltXW3NsP+gzjATsNyYXpwhZNyZZG2G30G4VwAAAKAEK7lr/vwMTwT6\n7STvnfg7a6LO55Jck+TlSd6cYbPwJfse5Xkg40X/9RkuxK9fUnbH+Dlbkrw+wzKg8zIuMRrPvSzD\nU37enuGRn59OsmcFY5pPcm6St2XYzzCb5AMrOA8AAI54j/p3Ag618U7/SU3XX7KqHVkZG4MBAHgs\n/MT9TsAh0dbV+iRPzLDU6EOr1Q8AACjNqoWAJK/K8GjP65qu//oq9gMAAIqy6suBjjC+LAAAHgs/\nGb8TAAAAHB2EAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAA\nKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACg\nMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDC\nCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAoj\nBAAAQGGEAAAAKIwQAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFAYIQAAAAojBAAAQGGEAAAAKIwQ\nAAAAhRECAACgMEIAAAAURggAAIDCCAEAAFCY6eUqtHX1jCRnJXlSks1J2qbrr19SZyrJOUnOTLIh\nyfeSfKLp+jsPeY8BAIAfy0pmAtYl/397dx51R10ecPz7hpC8gSxABEFkMQiKeMZSRW3BShWiRUXp\niBS0Dlo9ntYNd1Fpqbh7oIDaqlhxFBGUKR6EKosbREgpcsoQiGxhFdlCIAnZk7d/PHPJ5OZ9c2/y\n3uRd5vs55z03985y7zyZ+7vzzG/jj8CFwOoh1pkNHAlcAHwBWAKclKdJfy8+ZC/labLdSH8GSZIk\naSR1rAnIinIeMA8gT5MT25dXtQBHAL/IivLG6rVzgdOBlwJXD7LN/sCHgU9kRbm49vqbgCQrys9W\nz/cDjgH2BZ4CSqDIinJFtfwg4CjgWdUu7gF+nBXln6rlM4mk5DtELcUsoMjTZC5wPPACYArwBPCr\nrCh/2SkekiRJ0ljXMQnowkxgOnBr64WsKFfnaXIHsB+DJAFZUd6Rp8mjwF8Al8PTycTLgSur53sC\nHwR+Bnwf2BF4C5AB36p2NRn4JfAAMIlICN6bp8mpWVGuqb3lMcBF1X7WAm8E9gS+TtRazASmdTrQ\nJ+59gv6d+lm1dBUT+yeybs06+vr66JvQx9pVa9l+h+1ZuXgl/Tv3s/zx5ezwjB1Y9tiyjR6n7DyF\nFU+uYNLUSaxZsYYJE6NCZt2adUzsn8iqpavon9HP8kWb2McuU1ixaAWTp09m9bLVbDdpOwbWDTAw\nMMCEiRNYs2INk6ZOYsUTK4bcR+vRY/KYPCaPyWPymDwmj8ljGvlj2mmfnTpdjvZML5KAGdXj4rbX\nFxN9CIYyBziUKgkADiIuxOdWz2cDN2RFeWVrgzxNzgc+k6fJtKwol7RqHmrLc+AsoubgztqiX9fX\nrWoI7suK8p7qpYWbOkBJkiRpPOkbGBjoeuU8Tc4GLqh3DK6a7HwcODkrysdrr2fATllRnjXEvqYB\nXwLOyIryrjxN3gOsy4rynGr5qcCuxJ37pz8vccf/y1lRLsjTZFfirv5zgKnV8snAf2ZFeX2tOdDp\nWVHeXnvvFwLvAR4B5gNlffkmdB8sSZIkacv1bc2d92KI0Cerx+ltr09n49qBp2VFuYRo439oniY7\nAgnwu9oqfURtwedqf6cBpwD3V+u8j7j4P49IKD4HrGPjGo6Vbe89DziZaHo0FXhflbRIkiRJ414v\nmgMtJC72DyQ65pKnyfbAc4Giw7bXEHfkH632Mb+27D7gWVlRPjLYhlXisDtwflaUt1Wv7U2XiU1W\nlEuJpkdz8zSZB7wrT5MftvUlkCRJksadbuYJmAzsVj2dAOySp8lewFNZUT6eFeVAniZXAUflafIQ\n8DDwOuLu+/Uddj+fGPXn9cToQvXmNpcDn8zT5K1E5+KVxEV/khXlecAyYCnwijxNFhH9D1KiJqDT\nMR1NJBkPAtsBBwOPmQBIkiSpCbq5a74P8Jnqb3vgDdW/j66tcwVwFXAC8Gmis/CZraE8h1Jd9F9L\nXIhf27bsAeCrxMg9HyWaAR1D1cSo2vYcYpSffyGG/LyEoecyqFsDvAn4Z6I/Qz/wjS62kyRJksa8\nzeoYvDVUd/p3zYryzBH9IN2xY7AkSZK2ha3aMbgXfQK2SJ4mU4A9iLkBvj1Sn0OSJElqmhFLAoB/\nIob2nJMV5c0j+DkkSZKkRhnx5kBjjMGSJEnStjDq5wmQJEmSNIaYBEiSJEkNYxIgSZIkNYxJgCRJ\nktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1jEmAJEmS1DAmAZIkSVLDmARIkiRJDWMSIEmSJDWMSYAk\nSZLUMCYBkiRJUsOYBEiSJEkNYxIgSZIkNYxJgCRJktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1jEmA\nJEmS1DAmAZIkSVLDmARIkiRJDWMSIEmSJDWMSYAkSZLUMCYBkiRJUsOYBEiSJEkNYxIgSZIkNYxJ\ngCRJktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1jEmAJEmS1DAmAZIkSVLDmARIkiRJDWMSIEmSJDWM\nSYAkSZLUMCYBkiRJUsOYBEiSJEkNYxIgSZIkNYxJgCRJktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1\njEmAJEmS1DAmAZIkSVLDmARIkiRJDWMSIEmSJDWMSYAkSZLUMCYBkiRJUsOYBEiSJEkNYxIgSZIk\nNYxJgCRJktQwJgGSJElSw5gESJIkSQ1jEiBJkiQ1zMRe7ShPk8OB2cAM4EHgx1lR3tGr/UuSJEnq\njZ7UBORp8hLgOODnwOeAu4D352mySy/230t5mvQs8ZEkSZLGol5dEB8JXJsV5TXV8wvyNDkIeCVw\ncfvKeZrMBD4PfDEryntrr78COAb4eFaUa/I02QN4M7A/sAr4A1HDsLhaf1/gTcDewHbAH4GLsqJc\nUNvnt4AfAc8HDgJ+m6fJxcCxwJ8DOwJLgOuzovyv3oRDkiRJGr2GXRNQ3VnfG7i1bdGtwH6DbZMV\n5UJgPnBo26K/BOZWCcAM4GPEhf0XgTOBycB78zTpq9bvB+YCX63WuZ+ogdixbb+vB+YB/wr8BngV\n8GfAOcAp1eNDXR+0JEmSNIb1oiZgKpFMLG57fQkwfRPbXQP8fZ4mP8mKcnV1138W8INq+SuB++t3\n5/M0ORf4N2Af4J6sKP9Q32GeJhcQd/dfCPxPbdENWVHOqa03E3gYuDMrygHgcaIJUyd9nVeRJEmS\nRreRbB9/E3ACcDBwPVELcE9WlA9Wy/cBDsjT5OxBtt0VuCdPk2nAG4HnEQlHHzAJaO+LcG/b82uB\nk4DP5mlyK1FLMK9KCCRJkqRxrRcdg5cC69j4rv80Nq4deFpWlGuB64BD8zSZALwcmFNbpQ+4meho\nXP87pXod4B3AvsCPgS9XyxexcXKzsu297wM+RfRXmFDt56RaMyNJkiRp3Bp2TUDVfv8+4EDg97VF\nLwBu7LD5HKKd/uFE+/7/rS27D3gxsLBKGAbzXOCCrChvBsjTZDoxRGk3n3tF9fluzNPkWuCTwG5E\nMyFJkiRp3OpVc6ArgXfmaXIP0bb+r4iL8as3tVFWlA/naXInkBLt9lfUFv8GOAx4d54mlxN9DHYl\nEoOLqnUfBl6Wp8ndRKfhFFjT6cPmaXIE8CTwALAWeCmwgqhFkCRJksa1nswTkBXlDUSTnKOAzxB3\n6L9WjQLUyRwiGak3BSIryieArwADwAeAU4HjiYv81oV+TtQgfBp4N/A7oJv3XAm8Bji52nYv4Oys\nKFd1sa0kSZI0pvUNDIxsX9g8TV4DHJYV5Skj+kEkSZKkhhix0YHyNJkMzAReDfz3SH0OSZIkqWlG\ncojQ44FDgJIOfQd6JU+T/YHZxORmOwF5VpTX1pZPJmYsPpiYSfhx4OqsKK+qrTORmMX4pcD2xCzG\n52dFuai2zi7E8T0fWE0MgXpRVpQd+yuMBsONUzVZ2xuIzuG7ECNI3Qz8NCvKp2r7+QKRCNZdPpZm\nbu7ROfUR4IC2Xd+QFeU5tXV2AP4OeFH10k1Ep/hlPT+oraAH59RM4AtD7L7IivKKar2OsRztuojV\ndOBvie/XDsDtxLnwSG0dy6kOcWpKOdWj82ncl1HQk3OqEeVUniZ/Q5TVzySaZy8ALq4N8U412uLr\ngVcQsbob+FHbOh3PmTxN9iTKqX2Bp4g5pi4bC0O69yJO1Tn1OmIo/BlEf9YbgEuzolxd28+3BvkI\nP8yKcpPX1yOWBGRF+T3ge9v4bScTMxBfB7xzkOXHEqMcfRd4DNifmNBsaVaUc6t1jiNO2HOIE/JY\n4H15mnw+K8p11XCn7yd+UL5KXNC8o9r2gq1yVL033DjNIArQAvhT9e8TiH4bZ7bt61Lgt7XnKxlb\nenFOQcxdcXHt+Wo29C7iQuWs6vnbifPqG8M9gG1kuHFaRMwgXncw8ePQPgpZp1iOdkPGqvrB+Eei\nr9S/A8uBI4EP5WlyalaUre9Po8upLuPUlHKqF+cTjP8yCoYfq6aUUwcQg7fcQwznfjTr49BKoGcT\n8fke8BBxoXtSnib/XBsEZpPnTJ4m/cScTncQydXuwInE9+/KrXVwPdSLOO1O9N89nxgMZw/gbUSZ\nfV7b+/2AuLHesrzTBxzJmoBtLivKecTEYORpcuIgq+wHzM2K8rbq+cI8TQ4DngPMzdNkCnAocXdg\nfrWf7wJfJC5gbiHuEOwBnNy665anSQG8PU+Tn7aNgDQqDTdOVQb7zdr6j+RpchFxEdLfFoOVWVEO\nOZ/EaDfcWNXWWzVUHKrZtA8CvpIV5YLqtfOAj+Vp8sysKEf9sLY9OKfW0TbvSJ4mBwN/yIrysbZ9\nDRnLsaBDrHYjZlY/LSvKB6p1fkhcyB8CzLGcArqIU1PKqeHGqbbuuC6joCfnVCPKqawoz6o/r8qX\ns4hyvKwSpiOAX2RFeWO1zrnA6UTt5NVdnjMvIyaAPbe66/1gnia7A0fkaXLVaK8N6EWcsqK8hSiz\nWx7L0+TnRELRngQs29xzqlFJQBfuBF6Up8mcrCgX5WmyHzFy0BXV8n2A7YBbWxtU6z1EFA63VI8P\n1avdq/UnVtvfxtjXKU6DmUJUh7WPwHRkniavJe6g/B64Yqw0R+hSt7E6JE+TQ4gfkHlEVV/rImQW\ncedjQW39u6rX9mN8zPrMBLMAAAZOSURBVG2xWedUnibPIJqxfHuQxZuK5VjXKrOfvmuYFeVAniZr\niFHZ5mA5Bd3FaTBNK6c2J05NL6M2+5xqUDnVT9zpbjXjmUlMIFsvg1bnaXIHcT5cTXfnzCzgznqz\nl2qfb6zeoz2xGu22JE5D7WewZnbH5WnyNiIuc4BrOiVKJgEbuhB4K/ClPE3WVa/9KCvKVvXKdGJ2\n5KVt2y1m/SRl09l4puShZlUeqzrFaQNVu7+jWX+npOVXwP1Ec4V9ibaWzwC+v5U+90joJlbXE23g\nnwCeRbSNfzbrmyRMB5bUv8zVj88SupwcbwzYrHOKmENkKdGGtK5TLMe6h4jjOyZPkx8QP5ivBnZm\nwzKo6eVUN3HaQEPLqW7jZBm1BecUzSmnjiO+I60L+lY82suYxUSzO+junJnBxvM3La5tP9aSgC2J\n0waqPgKz2XhAnUuImzcricTzWGDqIOttwCRgQ39NZF/fIL6g+wNvztNkYVUlo9B1nPLo8PleorAr\n6suyWudY4IE8TVYQk8MV9Y55Y1zHWGVFeU1t/T/mafIocHKeJntnRXnfNv/EI2NzzqkJRHOX67K2\n2cTHeyyzolybp8k3ibazZxAX7fOJO4l9I/nZRpPNjVNTy6lu4zTev1fd2IJzqhHlVJ4mxxI1IV9p\nS55V04s45dEx/QNEzcEv68uyorys9vT+6vw7ig5JQE8mCxsP8jTZnsjGi6woy6woH8iK8tdEL+zZ\n1WqLiZhNbdt8OtFju7VO+520qdV2Y7L9X12XcWqtO5nofAjw9bYqvcHcXT3u1svPPFI2J1Zt7iV+\nYFpxWAxMq9oPtvbdB0xj/Xk3Zm1BnF5EfMeGatJR1x7LMS8rynuzojyN6DD38awozybKmEerVRpf\nTkFXcQIsp7qNU5tGlVEtmxmrcV9O5WnyFqLt+hltfR5a/+ftZUy9BrKbc+bJIfbR2n5MGGacWvuY\nDnwYeBD4bhf9Ie4G+qvthmQSsN521V97YNexPsu/F1hLdK4DIE+TnYne263qnQXA7tXrLQcS7Uzv\n7f3H3ua6iVOrV/8HiXPsa9mGo0wM5dnV43j50egqVoPYk4hbKw4LiFErZtXWmVW9dldPPunI2tw4\nHQbc3mVnw/ZYjhtZUS7PinJJnia7Ee34W00OLKdqNhEny6maTcVpEE0rozbQZazGdTmVp8lxRIfo\nM7KifKht8ULiIrZeBm1P3AlvnQ/dnDMLgOdW27YcSNTYLezNkWxdPYgTeZrMAD5KNEk7p8uahL2I\n/iubHKK3Uc2Bqjs+rUx7ArBLniZ7AU9lRfl4nia3E+39VhBNEg4AXk5VPZwV5fI8TX4HpFW7taXA\nW4ghxeZX+72VGG7uHXma/IS4S5ASHTTGRKef4cap9sM6hRhKbVKeJpOq/S3LinJNniaziC/8bcQw\nVvsSbdhuyory8W1wmD3Rg1jtSoyAcDNxPu1BxOF+qkIgK8o/5WlyC/C2qi0qxBBh5VgZdWO4cart\nZxdiRIlzB3mPjrEcC7qI1YuJ41tIXDwcB/xfVpS3guUUXcapKeVUD+LUiDIKhh+r2n7GdTmVp8nx\nRPn8H8BTtbvNK7OiXFm17b8KOCqPAQkeJsa6X0n0h+j2nLmeGDLzxDxNLiPG238t0Yl6VI8MBL2J\nU54mOwEfIRKfC4GpeZq03mJpFkM+J0T/gruIC//nEf2bruk0gEGjkgAiY/9I7fkbqr/riDFazyGa\nJfwD6ycsuoQY57XlQuIu27uJoavmE1Uz6wCq/5CvEeNNf4IYZeJ64KKtdExbw3DjtDfrs/vT2vZ9\nOjHByhrgJcQXfGK1jznA5b08kG1guLFaQ3TieRVxB2QR8eNwaVu2/x1iUpUPVs9vYuyM5w69+e5B\ntLFdzsZjbkP3sRztOsVqBnHR0GreMxe4bMNdWE7ROU5NKaeGG6emlFHQm+8ejP9y6vDq8UNtr18K\n/Kz69xVE2XMC6yfBOrPtJsMmz5nqhsaZxDwLnybual8J1PvpjGaHV4/DidMLiMR0N+BLbfv5FJGQ\nrgVeSZybfUSH6UuAX3f6gH0DA6M+mZIkSZLUQ/YJkCRJkhrGJECSJElqGJMASZIkqWFMAiRJkqSG\nMQmQJEmSGsYkQJIkSWoYkwBJkiSpYUwCJEmSpIYxCZAkSZIa5v8BKR+reaqB02kAAAAASUVORK5C\nYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAKzCAYAAABGagHfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VFX6x/HPTHpPCEmA0BJCCG3o\nRYoKCioW1Fnr6o51dW27uu7a+8+1r22b3VHsjr0hojQB6Qy9EyAQSEJ6z8z8/rjDkJCEBE0B5vt+\nvfYVc++59557xeU+5z7nOSaPx4OIiIiIiPgPc3t3QERERERE2paCABERERERP6MgQERERETEzygI\nEBERERHxMwoCRERERET8jIIAERERERE/oyBARERERMTPKAgQEREREfEzCgJERERERPxMYHt34Bij\n5ZVFREREpC2YWvPk+hIgIiIiIuJnFASIiIiIiPgZBQEiIiIiIn5GQYCIiIiIiJ9RECAiIiIi4mcU\nBIiIiIiI+BkFASIiIiIifkZBgIiIiIiIn1EQICIiIiLiZxQEiIiIiIj4GQUBIiIiIiJ+RkGAiIiI\niIifURAgIiIiIuJnFASIiIiIiPgZBQEiIiIiIn5GQYCIiIiIiJ9RECAiIiIi4mcUBIiIiIiI+BkF\nASIiIiIifkZBgIiIiIiIn1EQICIiIiLiZxQEiIiIiIj4GQUBIiIiIiJ+RkGAiIiIiIifURAgIiIi\nIuJnFASIiIiIiPgZBQEiIiIiIn5GQYCIiIiIiJ9RECAiIiIi4mcUBIiIiIiI+JnAphrYrZZQ4Bxg\nCBAF7AQ+sDmc22u1MQFnAeOBcGAb8J7N4dzdCn0WEREREZHfoDlfAi4H+gNvAA8Da4Fb7VZLbK02\nk4FJwPvAP4Bi4C/eAOKoYrdaAtq7DyIiIiIi7emwXwLsVksQMBT4n83h3Ojd/KXdarEAJwGfe78C\nnAp8Z3M4l3mPewN4BhgJzGngvL2B24A7bA5nUa3t5wIWm8P5sPf3XsB5QE+gFHACDpvDWeHd3x+Y\nAnTxnmI78KHN4dzj3R+PEZS8ivGVIhVw2K2WhcAlQD8gDCgAfrQ5nDObfmQiIiIiIse2ptKBAjC+\nFtQcsr0aSPP+czwQjfGFAACbw1ltt1o2Ab1oIAiwOZyb7FZLDnACMB18KUWjgRne35OBPwNfAm8B\nEcCFgA14yXuqEGAmsAsIxggIbrRbLQ/aHM7afT4P+Nh7HhcwFUgG/oXx1SIeI9XpsAoyCwiNDaWq\npIrA0EDcNW5MJhMmswlXlYug8CAqiyoJjQulfH854R3DKcstq/czLC6MisIKgiODqamowRxofJBx\n17gJDA2kqqSK0JhQyvMPc44OYVTkVxASHUJ1WTUBwQF43B48Hg/mQDM1FTUERwZTUVDR6DkO/NQ9\n6Z50T7on3ZPuSfeke9I9tf89xfaonWjTug4bBNgczgq71bIVmGK3WrKAImAExoj6Pm+zGO/PokMO\nLwIOdyfzgLF4gwCMlKMoYKH398nAEpvDOePAAXar5V3gXrvVEmVzOIsPfHmotd8OPI/x5WBzrV0/\n1W7r/UKwo9a8hrzD9FNERERE5Lhi8ng8h21gt1oSMEbfewNuYAewF+hhczgf8Kbs/B24y+Zw7q91\nnA2ItTmczzdy3ijgceCfNodzi91quQ5w2xzOV7z7HwQSMEbuff3FGPF/wuZwbvX2bSqQAkR694cA\nr9kczkW10oGeqZXOhN1qGQBchxHIrAOctfcfxuEfloiIiIhIyzC15smbnBhsczhzbA7n08AtwJ02\nh/MxjDShXG+TQu/P6EMOjab+14Ha5y3GyPEfa7daIgAL8HOtJiaMrwX/V+t/jwD3YVQoArgJ4+V/\nGkZA8X8YgcqhXzgqD7n2auAujNSjSOAmb9AiIiIiInLca7JE6AE2h7MSqLRbLeEYqTsO7648jJf9\nvhgTcw9MKE6r1aYxczFG5HO851hXa98OoIvN4dzX0IHewKET8K7N4dzg3dadZq59YHM4SzBSjxba\nrZbVwDV2q+WdQ+YSiIiIiIgcd5qzTkB/jFH5bIz0nN95/3k+gM3h9Nitlh8w5g1kY6QKnYkx+r6o\nidOvw6j6cxZGdaHa6TbTgTvtVsvvMSYXV2K89FtsDuc0oAwoAcbbrZZ8jPkHVowvAU3d0zkYQcZu\njK8aQ4BcBQAiIiIi4g+aM2oehlFO8yHgKowJt8/bHM7aufrfAz8AlwL3YEwWfu5AKc/GeF/652O8\niM8/ZN8u4CmMyj23Y6QBnYc3xch77CsYVX4e8PbxC4zKRU2pAc4F7seYzxAK/LsZx4mIiIiIHPOa\nnBjc2rwj/Qk2h/O5du1I82hisIiIiIi0hVadGNzsOQEtzW61hAGdMdYGeLm9+iEiIiIi4m/aLQgA\nbsAo7TnP5nCuasd+iIiIiIj4lXZPBzrG6GGJiIiISFto33UCRERERETk+KIgQERERETEzygIEBER\nERHxMwoCRERERET8jIIAERERERE/oyBARERERMTPKAgQEREREfEzCgJERERERPyMggARERERET+j\nIEBERERExM8oCBARERER8TMKAkRERERE/IyCABERERERP6MgQERERETEzygIEBERERHxMwoCRERE\nRET8jIIAERERERE/oyBARERERMTPKAgQEREREfEzCgJERERERPyMggARERERET+jIEBERERExM8o\nCBARERER8TMKAkRERERE/IyCABERERERP6MgQERERETEzygIEBERERHxMwoCRERERET8jIIAERER\nEZFfYX9pFR8v3cWWnJL27soRC2zvDoiIiIiIHCvySiqZvmYvd3+6qs72bY9NwWQytVOvjpyCABER\nERGRRng8HrblljJ7Yw7T12SzcOv+BtvlFFeSGB3axr379RQEiIiIiIjUUu1ys3BrHtPXZDNrQw67\n8subPGbH/jIFASIiIiIix5o9heW8MHMz367eQ0FZdbOPCzSbGNo9rhV71vIUBIiIiIiIX6uodvHy\nnK38d9YWyqtdR3x8YICJY2g6AKAgQERERET8VEW1i4+W7OTFHzezr7jyN53L4+GYCgQUBIiIiIiI\nX3G5PVz6ykJ+2dbwJN8jVVHtbpHztCUFASIiIiLiNxZv388F/1vQ4ud1ezyYOXY+BSgIEBEREZHj\nksvtYVVWIaFBZgLNZp79YSNfO/e0+HW6xoURGHBsrcGrIEBEREREjlkut4fiimoKyqpxeTzEhAWx\naW8JXzl3M31NNrklVa3eh7ySKjwejxYLExERERFpaW63h437ilmyPZ+lmcb/duaX4fG0b79+TUWh\n9qYgQERERESOCgVlVeSXVdMlNpSQwAA8Hg9r9xQxZ2MuC7fmsWxHPsUVNe3dzQapOpCIiIiISDN4\nPB6+XZ3Nt6uzce4qIDOvDDBeprvEhFFZ4ya35LeV7mwLV4zpidl8DEUAgMnT3t9Pji16WCIiIiIt\nYNWuQh76cg1LMvOb1b57h3BSEyJYs7uInN9Y07+ldIwM5tMbxtKtQ3hrnL5Vowp9CRARERGRNpNb\nUslT323gw6U7fbn80aGBjEzpgKVrLJ2iQ9mVX8b2vDJcHg+jU+PpFB3K7I37+GjJLipr2r8m/ykZ\niTx9wSDiIoLbuyu/mr4EHBk9LBEREZFfodrl5u0FmTz7w0ZfXn9QgIkrx6Zw08Q0okODfG1dbg+z\nN+7j21XZzN2US3ZRRXt1u44bTu7FdSf1IiYsqOnGv52+BIiIiIjIsWv+5lwe/HING/eW+LZNzEjk\n3jP7kpoQ6dtWWF7NR0t28taCTHbsL2uPrtbTISKYa8ancPnoHkSFtsnLf5tQECAiIiIirSKroJxH\nv17LN6uyfdt6xodz/9n9mJiR5Nu2cW8xb87fzqfLsuqU2wwNMjM6NZ6qGjfzt+S1ad87RoZw/Ump\nXDqqO+HBx98r8/F3RyIiIiLSrtxuD+/8ksnj366ntMp4qQ8PDuCmiWlcPS6FkMAAADbvK+Ef36zj\nx/X76hyfmhCB7YSeJEWH8N/ZW1m5s6DN+t4pOpTrT0rl4pHdCQ0KaLPrtjUFASIiIiLSYrbnlnKH\nw8kv2/b7tp0zqAt3T+lLp5hQwEj7ef6HTby1YDs1bmPKpckEE/okYhvTk/DgAJ6evqHOOVpbcmwY\nN0zoxe+GdfUFKcczBQEiIiIi8pu53B7e+HkbT3+/gYpqo4JPcmwYj1sHMr53AnBwXYD7P1/jq/9v\nMsFFw7tx/Um9yCut5MUfNzNrQ06b9btHfDg3npzGeUOTCQowt9l125uqAx0ZPSwRERGRQ2zJKeFv\nH61k2Y6DaTuXj+7BHWdkEBlijDnvLargvs9W8/3avb42o1I6cP1JvVidVcgny7PYllvaZn3ulRDB\nTRPTONvShcCj8+W/VasDKQg4MnpYIiIiIrV8viKLuz5ZRZk3979HfDhPWC2MTo33tfludTZ3fuKk\noKwagLjwIG6e2JvdBeW8tTCTqjas/d8nKYqbT0njjAGdCTi6V/lVEHAU0cMSERERASprXDz69Tre\nWpDp23b1uBRun9yHsGAjp76sqoZHvlrLe4t2+tqcZelM17hw3lmYSXFlTZv1t3+XaG6e2JvJ/ZIw\nH90v/wcoCDiK6GGJiIiI38sqKOeGd5b5qvbEhgfx7EWDmdAnETBKfr6/aCefLt9Fvnf0Pzo0kDvP\n6MuMtdn81IY5/4O6xXLLxDQmZiRiMh0TL/8HtG8QYLdazMDZwCggBigEfgG+tDmcbm8bE3AWMB4I\nB7YB79kczt2t1/V2oSBARERE/NrsjTn85f3lvpf7QV1j+Pfvh9IhIpivVu7h/cU76swNABiZ0oEr\nxvTk0a/XkVVQ3ib9HNEzjpsn9mZ8747H2sv/Ae2+YvBpwMnAG0AW0BW4AqgBvva2mQxMAt4EsjEC\ngr/YrZb7bQ7n0bHOs5fdagmwOZyupluKiIiIyAEut4cXZm7ihR83cWAM+fLRPbj+5F68Pm8bHyze\nSckh6T1jesVjHdqVTftKuPm95bjcrT+eekJqPLec0pvRqR2O1Zf/NtGcIKAX4LQ5nE7v73l2q8UJ\npIDvK8CpwHc2h3OZd9sbwDPASGDOoSe0Wy29gduAO2wOZ1Gt7ecCFpvD+bD3917AeUBPoBRwAo4D\ngYXdaukPTAG6eE+xHfjQ5nDu8e6PB/4BvIrxlSIVcNitloXAJUA/IAwoAH60OZwzm/E8RERERPzK\n/tIq/vz+cuZuygUgLCiAO07vw+7CCk55ZpavJChAYlQIFwzvyoXDu7G3qJL7PlvNhr3Frd7HE9MT\nuGViGsN7dmj1ax0PmhMEbAZOtlstnWwOZ7bdaukM9AG+8+6PB6KBtQcOsDmc1XarZRNGAFEvCLA5\nnJvsVksOcAIwHXzBxGhghvf3ZODPwJfAW0AEcCFgA17ynioEmAnsAoIxAoIb7VbLgzaHs3Yoeh7w\nsfc8LmAqkAz8Cyj23kNUUw+iILOA0NhQqkqqCAwNxF3jxmQyYTKbcFW5CAoPorKoktC4UMr3lxPe\nMZyy3LJ6P8PiwqgorCA4MpiaihrMgUZZKneNm8DQQKpKqgiNCaU8/zDn6BBGRX4FIdEhVJdVExAc\ngMftwePxYA40U1NRQ3BkMBUFFY2e48BP3ZPuSfeke9I96Z50T7qnhu6pZH85i/JLefibdWSXVAGQ\nEh/OrSN78OTcbeyqldozqnsslw1OZkyPDszcmseNby1ldRu8/E/o3ZGrBnZhZN9EKvIrqCioOGb/\nPcX2iG3153VAc4KA6UAo8KDdavEAZuAbm8M5y7s/xvuz6JDjioDD3ck8YKz3/AD9MV7EF3p/nwws\nsTmcMw4cYLda3gXutVstUTaHs/jAl4da++3A8xhfDjbX2vVT7bbeLwQ7bA7ndu+mvMP0U0RERMSv\nZBdX8snSnThW7iantMq3/bS0jlxzYio3fLDCt314t1j+NLwbo3rF89XqbKa+tZhdha2fDT45I5Gr\nBnRmaN9EynLLWv16x5vmTAweAVgBB7Ab6AZcBHxsczh/9qbs/B24y+Zw7q91nA2ItTmczzdy3ijg\nceCfNodzi91quQ5w2xzOV7z7HwQSMEbuff3FGPF/wuZwbrVbLQkYo/opQKR3fwjwms3hXFQrHegZ\nm8O5sda1BwDXAfuAdRjpThtpmiYGi4iIyHFrfXYRL8/eyhcrd1NzSP7++N4dOSUjkRd+3Mx+bwBw\nw8m9uGFCGjPWZvPS7K2sz279kf+zLJ25aWIaGZ2iW/1a7azdJwZbgRk2h3Ox9/csu9XSATgD+Bmj\nWhAYKUH7ax0XTf2vAz42h7PYO7dgrN1qyQYswL9rNTFhfC1oKE8/3/vzJu8/T8PI63cBDzVwX5WH\nXHu13Wq5CxgAZAA32a2WpTaH095Yf0VERESOBznFlazdU8SO/WXsyi9j1/5yduWXsTO/3Pdy35C5\nm3J9cwLACAoy88oY/n8z6swJaC3nD0nmhglppCVGtvq1/EFzgoBg4NB/sx4ORid5GC/7fTEm5mK3\nWoKANIyvB4czF2NEPsd7jnW19u0Autgczn0NHWi3WiKATsC7Nodzg3dbd4x0pSbZHM4SjNSjhXar\nZTVwjd1qeeeQuQQiIiIixySX20NmXikb9xazIbuEdXuKcO4qYHcTqTpmEyRGhVJe7aKwvLrRdrUD\ngtZ0wbCu3DQxjR7xEW1yPX/RnCDACZxut1pyMdKBumNUA1oIYHM4PXar5QdgindEfy9wJsbo+6Im\nzr0Oo+rPWRjVhWp/d5oO3Gm3Wn6PMbm4EuOl32JzOKcBZUAJMN5uteRjzD+wUj9gqcdutZyDEWTs\nBgKAIUCuAgARERE5FlVUu1i7p4iVOwtYlVXIxr3FbNpbQmXN4V+LAs0mkuPC6BoXRmx4MM5dBewv\nqSK76GCgEBkSyPUnpZIUHcrrP29n3Z5GEz1a1PlDkrl1UjrdOoS3yfX8TXOCgPeBc4BLMSbuFmKM\n4H9dq833GF8MLuXgYmHPNbVGgDeAmI8RBMw/ZN8uu9XyFEbO/+0YI/y5wPJax76CMT/hAYz8/o8x\nviw0pQY4F+gIVANbqZuKJCIiInLU2pVfxvzNeSzfWYBzVwEbsovr5fAfqmtcGAO6xGDpFoMlOZbU\nhAjiwoP5acM+vlixmxlr91JVK2gICjBxycjuXDk2hbcXZPLcD5uavEZLmNQviYen9qdzTFirX8uf\nNTkxuLV5R/oTbA7nc+3akebRxGARERFpczUuN4u27ef7tXuZszGHrbmljbaNCw+ib+do+nSKok9S\nFH06RdE7KYrIkINjv7kllbyzcAdvL8wkt6TO1Em6xITy+9E9uHB4N7bklHDrByvY0wbVfoZ0j+Wl\ny4eRGBXa6tc6RrT7xOBWYbdawoDOGGsDvNxe/RARERFpLxXVLjbvK2FLTglbc0oJNJuICQ8iOjSI\n4soacosr2ZlfxqwNOQ1O2g0PDmBgcgyDusVi6RrDoK6xdI0La3Cl3IpqFz+t38eXzt38sG5fnVH/\nqJBAJvfvxNmDOjMurSMe4NkZG/nv7C209nhxYlQIX98ynoSokNa9kNTRbkEAcANGac95NodzVTv2\nQ0RERKTNVLvczNqQwyfLdjFz3T6qXM2vrBNgNjGsRxwnpSdwYu8E+nWJJsB8+AHjwrJq/jt7C9MW\nZlJSWXf644DkaK4el8IZAzoTGhQAwOqsQv7+sZO1bZD7/9mNYxncre0WyJKD2j0d6BijhyUiIiK/\nitvt4YMlO3nm+431UnAOJy48iKHd4zh9QCdO7ZtEXERws44rqqhm2sJM/jdrC0UVB1/+I0MCmdwv\niUtGdWd4jzjfV4PyKhcv/LiJl+dsxdVA7n9wgJmzBnVmWWY+2/N+2+Jc39wynn5djvs6/79Vq6YD\nKQg4MnpYIiIicsRW7izg/s9Xs3JXoW9beHAAZwzozInpHemdGEVqQgQmExSWV1NUXkNkSCDxkcEE\nBTSr+jkAHo+HpZn5vL94J18791BefXDN1WE94rhmXAoTMhJ9o/4A+aVVvL0wE/v87eQdZp2AiOAA\nSqtcje5vjjeuGMGEjMTfdA4/oiDgKKKHJSIiIs1WWePin99v5OW5W3259V1iQrl1UjpnWjoTHtxy\nmdm5JZXc9ckqZqzdW2d7n6Qo/nZaH07pm1hnrkBpZQ3/mbWZ1+dtrxMstIaHzunPZaN7NJm6JHUc\nnxODRURERI5n6/YUcesHK1ifXQwY6TTXnpjCjRPSWvTlH+D7Ndnc9ckq30h+oNnEpH5JXDSiG+N7\nJ9R5+Xa7PXy2IovHv13PvuLmpyX9GleO7cltk9KJCg1q1evIkVMQICIiItKCXG4PL8/Zyj9nbKDa\nZQz/D0yO4dmLBpGWGNWi16qodvHIV2t555cdvm1nDuzMA+f0q1dqs6rGzecrsnh5zlY27Stp0X4c\n6pSMRB44uz/d47XQ19FKQYCIiIhIC9m5v4zbPlzB4u35gFHN58YJadw8Me2IcvubY0deGTe8u5TV\nWUYVn6jQQB6ZOoCpg7vUSfupcbl5f/FOXvxxE3uLGh75DzSbWmQhsPSkSB46ZwAn9Ir/zeeS1qUg\nQEREROQ3crs9TPslkye+Xe+bPJvSMYJnLxrcKiUwv1m1hzscToq9VX+GdI/lX5cOJTm27iq7szfm\n8OjXa9m4t+GR/84xoYQGBZCZ1/jiY831j/MGctGIbsr7P0ZoYvCR0cMSERGROjbvK+GuT5y+0X+A\ny0f34K4pGS2e+19cUc1DX67l46W7fNuuGpvCnWdkEBx48EvDpr3FPPrNOmZtyDns+YIDzEe0TkFj\nVtw/idjw5pUulWZTdaCjiB6WiIiIAFBSWcO/f9rMa3O3+V6kk2PDeOz8gZyYntDi11uyfT+3friC\nnfvLAYgJC+IJ60BOH9DZ12ZXfhkvzd7K2wszW/z6DTm9fydevHRIi6c6CaDqQCIiIiJHD4/Hw8dL\nd/Hk9A3keKvrmExwxZie3D65DxEhLft6Ve1y88LMTfz7p80cSNsfl9aRpy8YRKeYUFxuDzPWZvPw\nl2vZXVjRotc+nFf+MJxJ/ZLa7HrSshQEiIiIiDTT9txS7vzEycKt+33bBneL5cFz+rdK7v+a3YXc\n/ckq3yJjwYFm7jw9gyvG9MRsNrGvuIKRj85s8jy9EyMJDDCzbk/Rb+7TqX2TeODsfnTroMo/xzIF\nASIiIiJNcLk9vDZvK898v5HKGiP1JzEqhLumZDB1UDLmFp4Mu6ewnKenb+ST5bt8i4xldIri+YuH\n0KdTFJU1Lu5xrK4zN6Aho1I6UFxRw9oWePkf2bMD95/djwHJMb/5XNL+NCfgyOhhiYiI+Jl9RRX8\n5YMVzN+S59t22eju3HF6RqssgvXB4h088MUaKqqNYCPQbOKqcSn8dXI6IYEBzNqwjyveWNzi121M\nbHgQr9mGM6xHhza7pgCaGHxU0cMSERHxI3M25nDbhyvILTFW4k3pGMHj5w9kVGrL18GvqnHzyFdr\n60zqPa1/EnecnkFqQiT7iiu477PVTF+zt8Wv3ZgXLxnCWZbOddYdkDajicEiIiIibamqxs0zMzbw\n0uytvm3nD03mkakDWnziL8C+4gpuemc5i7Ybcw06RobwwsWDGZPWEYD12UVc8L8FvnUBWltSdAhv\nXz2K9KSWXeFYjh4KAkRERERqycwr5Zb3lvsm44YHB/DI1AFYh3VtlevN3ZTDrR8c/Npg6RrDS5cP\no3OMsfDXd6v3cP20Za1y7Yb06xzNG1eOICk6tM2uKW1PQYCIiIiI12fLs7j3s9WUVBoj7v27RPPC\nJUPolRDZ4teqrHHx/A+b+O/sLb7Jv9ahXXn0vAG+VXxPempWi1/3cAYmx/DOtaOIboW5DnJ0URAg\nIiIifq+ksob7P1/NJ8uyfNuuHpfC30/vQ0hgQItey+Px8JVzD09OX+9b+CssKIBHzh3A74Z1Zef+\nMsY/+VOLXrM5MjpF8dZVIxUA+AkFASIiIuLXVu0q5Jb3l7MttxSA+Ihgnr5gEBMyElv8Wpv3lXD7\nRytZsbPAty2jUxT/unQoIYFmBj30PYXl1Yc9R2x4EAVlh29zpHolRDDtmlHERQS36Hnl6KUgQERE\nRPzaqqxCXwAwNi2eZy8cTGIr5MN/viKLuz5ZRVmVCzCCjb9MSqdf5ygu+N988pv5Yv9rA4AAswnr\n0GQWbM3zfYEA4yvEq7YRdIwM+VXnlWOTggARERHxa5eM7MaCrXn06xzNdSemtvjCX1U1bh7+ag3T\nFu7wbbMO7UrvpEju+2x1i16rMeN7d+TeM/vxwsxNdQIAgLunZJDSMaJN+iFHD60TcGT0sERERI5D\nHo+nVWrhF5ZXc/3bS1mwNa/pxq0gtWME957Vlwl9Ennuh008P3NTnf3je3fkratGah2Ao5MWCzuK\n6GGJiIhIs+zIK+PEp9p+gi9AdGggfz41nctH9yCnpJK3Fmyvs+bBgTbTbz3RV4pUjjpaLExERETk\nWOFye3joyzW8tSCz6cYtzGyCS0d157ZJfdi0t5gb313GzHV7cTcwjHn/2f0VAPgxBQEiIiIiLWTN\n7kIue/WXZk/ybUnj0jpyz5l9ycwr5ao3F9epQHSo8b07Yh2a3Ia9k6ONggARERGR36i0sobnftjI\nK3O3tfm1e8aHc8+Z/RjULYbbPljJvM25vn0hgWbOHZzMhSO68bePVrI1t5TQIDOPnjtQ8wD8nIIA\nERERkd/gh7V7uf/z1ewurGi0zZDusSzf0fjI/K8RFRLILaf0xjamJwu35jHl+bnkllQBEBMWhO2E\nHvxhTE/iI4K57/PVbPWWQb311HS6x4e3aF/k2KMgQERERORXyC+t4oEv1vDFyt2NtklNiKBLTFid\n0fnfymyCi0Z056+T06mscXPPp6v4aOku3/7zhyTz0NT+RIUG4XZ7uO/z1b7ypP27RHP1uJQW64sc\nuxQEiIiIiByh79dkc/enq8ktqWxwf8fIYDpEBLMrv5ytOaUtdt0TUuO576x+dI8P59kZG3l7QSZV\nLjcA4cEBPDJ1ANZhXQFjgvJdnzj5cIkRIPSID+ely4cRGGBusf7IsUslQo+MHpaIiIgfc7k9PDl9\nfb1ym7VFhwZSUeOmqsbdYtc7U7XiAAAgAElEQVTt3iGcu6f05bT+SZRU1nD5a4vqTPyd3C+JO8/I\nIDUhEoDCsmr++tEKfli3DzC+SLx7zWg6xbT8SsjSarROwFFED0tERMRPlVTW8Of3ljNz/b42u2Zk\nSCA3TUzjyrE9CQkMoKSyBtvri1iamQ/A8B5x3H1mX4Z2j/Mds3JnATe+u4xd+cbKwH2Soph2zSgS\nokLarN/SIrROgIiIiEh72l1QzpjHf2yz65lMcOGwbtx+Wh/fy3tpZQ1XvbHYFwBM6pfEvy8dSnDg\nwfSeDxbv4L7P1vhShCb3S+KpCwYRExbUZn2XY4OCABEREZHD+HLlbm5+b3mbXW9kSgfuP6sfA5Jj\nfNuyCsq51r6EtXuKADglI7FOAOB2e3hy+gb+N3sLAIFmE3eekcHV41JUClQapCBAREREpAFbckq4\n6s3FZOaVtcn1usaFcc+Uvpw+oFOdF/elmflc9/ZS3yTkCX0S+M9lBwOA8ioXt324gm9XZwPQISKY\n/102jJEpHdqk33JsUhAgIiIiUktWQTnP/7DRV1WntUUEB3DDhDSuHpdCaFBAnX0z1u7lxneW+dJ7\nrhjTk3vP7Our8FNZ4+KPby9h7iajBGlqQgRvXDGCHvERbdJ3OXYpCBAREREBcoor+c+szbyzcIfv\npbs1mUzwu6Fd+dtpfUiMrl+1Z8GWPG581wgAAs0mHpran9+P6uHb73J7uO3Dlb4AYHRqB166bDgx\n4cr/l6YpCBARERG/VlhezStztvL6z9soq3K1yTWH94jjgbP7M7BrTIP7V2cVcu1bS6iqMQKAl/8w\njIkZSb79Ho+xCNjXzj0ADO0ey+tXjCA8WK920jz6kyIiIiJ+qayqhjfnb+d/s7ZQVFHTJtdMjg3j\nrikZnDmwc6MTdrfllmJ7fREllTWYTPDMhYPqBQCPf7ued38xVgHukxSlAECOmP60iIiIiF+prHHx\n/qKdvPjj5kZX/G1pYUEB3HByL649MbVe3n9tRRXVXG1fTF5pFQAPnt2fqYOTffs9Hg+Pfbuel+cY\ni5V16xDGW1ePJDY8uHVvQI47CgJERETEL9S43Hy6PIvnfthEVkF5m133/KHJ3HF6BkkN5P3X5nJ7\nuOW95WzNKQXghpN7YRvT07ff4/Hw6NfreHXeNsD4qvDuNaObPK9IQxQEiIiIyHGtssbF2wsyeXth\nZpuV+wQjT//+s/szuFtss9o/OX09szbkAHBq3yRun9ynzv4nvtvgCwC6xoXx/h9H0zUuvGU7LX5D\nQYCIiIgclzweD7d+sILPVuxu0+vGhAXx8NT+nDOoy2EX6vJ4PCzatp9ZG3OYszGHNbuNhcDSkyJ5\n9qJBmM0Hj31p9hbfQmDdOoTx/h9PIDk2rHVvRI5rCgJERETkuPP9mmz++PbSNr/uLRPT+NPJaYQF\nN57373Z7+H5tNi/+uNn34n9AbHgQr/xhOFGhB8t8frh4J499ux6AxKgQ3r1mtAIA+c0UBIiIiMhx\nobCsmhd/3ORLmWlrC+6aSOeY+i/nlTUuPlmWxbo9RewuKGfj3hJ27D+YlmQywcDkGE7sncBFI7rR\nrYOR4lPtcvPavG08+Z0RAESHBvL21aN8+0V+CwUBIiIicszaX1rFFyuy+O/sLewtarzST3hwAAO6\nxFBQXsXGvSUt2ocBydF8edO4BlN/8koquX7aUhZvz6+3LzY8iKvGpvD7Ud2Jjwyps2/Zjnzu/mQV\n67OLAaO60BtXjqRPp6gW7bv4L5PH42nvPhxL9LBERESOEoVl1Qx6+PvDtokJC2JkSgdyiitZsbOg\nxftw5sDO/OvSIQ0GAOuzi7j6zSW+SkSRIYEkx4bROTaUsb06csmo7kSG1B2P3byvmOdnbuYr524O\nvKKlJkTw1O8sDOvRocX7L0e1xieUtMTJFQQcET0sERGRo0BOcSUjHv2h0f2JUSGclJ5AVkE587fk\ntUofrjsxlTvPyGgwAPh0+S7u/XQ1pd4ViM8bksxj5w9sdI2AHXll/HPGBj5fefDlPzjQzI0np3H9\nyamEBDY+x0COWwoCjiJ6WCIiIm0kv7SKvcUVZHSK9m0rLKvm5blb+PdPWxo8pnuHcE7rn8SWnFJ+\nXL+vVfoVHRrI8xcPYUJGYr19RRXV3PfZaj73ViQymeDvp2Vw/UmpDQYLBWVV/OvHzdgXbKfa5fEd\nM3VQF/5yajo9O0a0yj3IMUFBwFFED0tERKQNfL4iiz+/vwKAcwd34R/nD+SNn7fz1PQNDbbP6BTF\nWZbOrNldxLers1utX+lJkbz6hxF0j68/OXd1ViHXT1vKrnwj/Sc+IpinLxjUYLBQWlnDm/O38/Kc\nrRSWV/u2n2npzK2n9iYtUbn/oiDgaKKHJSIi0sIKy6rZnFNCaJCZsKAA7v50FQu37m/28Q9P7c+S\n7fl8sbJ11wPI6BTFO9eMqjeJF4yg5e8fO6mscQNwUnoCT11gITGq7mq+BWVVvL94Jy/P2cr+0irf\n9pEpHbhnSl8GNXNhMfELCgKOInpYIiIiLWD+llwe/3Y9oYEBLN+Z70uFOVr17RzNO9eMokNEcJ3t\nLreHJ75bz8tztgJgNsEdp2dw7fhU32JfHo+HX7bt591fdvDdmmyqvIECGIHFbZPSmdQv6bALi4lf\natU/ECoRKiIiIm1q0bb9XPrKL+3djWYb1DWGN68cSdwhAUBBWRU3v7ecuZtyAaMS0b8vHcq43h19\nbVZnFfKPb9bVm5zcOzGSWyelc3r/TnVWBhZpKwoCREREpM3kllRy4UsL6m3vkxTFhr3F7dCjujpG\nhrC/tBK398PExSO68eA5/etV9dmQXcwf315CZp6x6FefpChe+cNw31yB/aVV/N/Xa/l0edbBaj8B\nZk4f0ImLR3ZjdEq8Xv6lXSkIEBERkTZR43Jz2asNfwFoLAC4eEQ3bGN68tq8bXy8dFer9e2+s/ph\nn7/dt5JvcICZh6f25+KR3eu083g8vL94J498tZYyb/nPMwZ04ukLBhHhrfn/4/q9/P3jVeSWGIuX\nBZpNXDa6BzdPTGtwPoFIe9CcgCOjhyUiIvIrVLvcPPzlWt5emOnb9scTU3259IeyndCDq8al8Orc\nbXWOaUxKxwi25Zb+6v6ZTPhG7Ad1i+VJq6Xe6rzZhRXc4XAye2OO75i/TkrnxglpmEwmCsurefzb\ndby3aKfvmFP7JnLPmf1IUalPOXKaGHwU0cMSERFpws+bc5m5bh9DuscyLq0j2UUV3P7RStbsLmry\n2GvHp3DN+FT+89Nm7AuafvkPDjDTNS6Mrb8hADggNMjM307L4IoxPQmolarj8Xj4fMVu7v98NUUV\nNQB0ig7lyd9ZODE9AbfbwyfLs3j823XklhgVf6JCAnloan/OG5KsCb/ya7VvEGC3Wv4BxDewa7XN\n4XyxVruTgclADLAb+NDmcG5qua4eFRQEiIiINKLG5eafMzbyn1kHF/IymcBsMuFyH/6v0BtO7sUf\nT0zluR828eb87U1eq3NMKCf0iueTZVnN7l/fztHcPSWDvp2jKSqv5pb3l7M6ywhMusaF8apteJ2F\nyQDySiq597PVddYeOH9IMg+c05+YsCBySyr507SlLN6e79s/plc8T10wiOTYsGb3TaQB7V4d6LFD\nOhED3AMsObDBbrUMBy4C3gU2AycBN9utlgdtDmfzC/22AbvVEmhzOGvaux8iIiLHk537y/jbxyvr\n1ff3eMB1mAHHW07pzXUnpvL09xsY/PCMJq/TMTKYG05Oo9rl5rFv1zerb/ERwdx+Wh8uHN6NALOJ\npZn5XPf2Ul/O/ujUDvzn98Pqlf+cvyWXW95b7hvdj48I5tHzBnL6gE4AlFXVcPWbi1m5qxCAxKgQ\n7j2rH2dbOmv0X456TQYBNoezzkwdu9UyDqigVhAATALm2xzOud7f37dbLf0xgoFPDz2n3WqJBx4F\nHrM5nJm1to8HzgP+bnM4a+xWS2fgd0BvoApYj/GFocjbvidwLtAdCACygI9tDufWWud8CXgPyAD6\nA7PtVsunwAXAUCACKAYW2RzOT5p6HiIiImIoq6rhoyW7+HLlbpZkHhwJ75MUxTMXDuL5mZuYsXZv\ng8feNimd605K5cnvNtD/gelNXismLIjrTkplQp9EbvtwJev2NJ1aFBRg4qqxKdw4MY3o0CAAPlqy\nk3s+XU2Vy6jVf/noHtx/dj+CAsy+4zweD6/M3crj3673VQk6vX8nHj1vgG9ib43LzU3vLvcFAGcP\n6sJj5w8kMkQ1V+TYcER/Uu1WiwkYC/xiczirvdsCMV7Cvz+k+VqgV0PnsTmceXarZZ33XLUT/sYA\nC70BQAzwN2Ae8DHGS/5U4Ea71fK4zeH0AKHAQuADjFSdCRhfIO61OZy1kwPPAj7zngdgIjAYeAXI\nA+KApKbuvyCzgNDYUKpKqggMDcRd48ZkMmEym3BVuQgKD6KyqJLQuFDK95cT3jGcstyyej/D4sKo\nKKwgODKYmooazIHG//G4a9wEhgZSVVJFaEwo5fmHOUeHMCryKwiJDqG6rJqA4AA8bg8ejwdzoJma\nihqCI4OpKKho9BwHfuqedE+6J92T7kn3dKT3FBgbyoWv/sLanJJ6f19m5pVy1ovzGvy79KbRPbj+\npFSe+G4Dfe79rqm/egkPCsA2vBvn90vi3ZW7OeO7uU0eA3BqnwRuGdaNPj07UJFTRmlEEM/M3Mzr\nS41Ju4FmE/dOSue8tATcpdUUeP895e0p5uGft/HtOiN4CQkw88AZGUzpFkdojYfi3cWYg8w8+P0G\nfly/D4ATusXyj9P6UJNdQtVR9u/pePyzdzzfU2yPtlsx+kjD1b5AR6D2f4GRgBk4NCQvBqJp3Fzg\ncrvV8pHN4az2jvqnAm97958E7Kw9Om+3Wt4AngV6ANttDmed74B2q+V9jNH9AUDtGmRLbA7nvFrt\n4oG9wGZvMLEf2IKIiIg0y5MzN/oCgIigAEqrXb59FbVWxD1gYq94XjhvIE/O3MSAJ35q8vwhAWZO\nSovn5O4dqDbBRe8tY39ZdZPHxYUH8cQp6Zw8uAtluUa5z/JqF/d/toHvvVV94sKC+OeZfRndqyNV\n3lQfgL3FFVz3+SrW5hjjiF1jQ3n61D4M6ZNARX4FYHwleG7eVj5atQeAjMRI/jmlL0EBZlyIHDuO\nqDqQ3Wq5Duhgczgfq7UtFngCeLr2RGC71XIWMNLmcN7fyLkCvMd9aHM4F9mtFiuQfuDcdqvlZqAf\ncOh/8SHAqzaHc7HdaonC+DrQByPgMAHBwOc2h/Nb73leAt60OZy+lUnsVkt34C9AKcYXi9UYE52b\nehiaGCwiIn5vxtq9XPuWkRWcnhTJxr31vwYccNXYFO49sy+Pf7e+0XKgtQUFmLhkZHfOG5LMef+Z\n3+w+dYgI5q+T07l4RPc6lX32FVdwrX2JL22nV0IEr18xgh7xdUt2rt1dxNX2xewpNF72x6bF869L\nhtZbJfiFmZv454yNACTHhvHpDWNIjA5tdj9FjkC7TwwGwPvCPQgjv762EsBN/VH/KOp/HfCxOZwu\nu9WyABhrt1qWAKOBL2o1MQGrOJjCU9uB817pve6HGGk9NcCt1L+vykOuvcNutdyNEWT09Z5np91q\nea4ZgYCIiMhxqcblZt2eYrrHhxMTFtRgm4+W7ORvHzt9vzcWANw+OZ0/nZzGk9+tJ/Xub5q8doDZ\nhHVoMjdP7I3L7eHkp2c1u9/XjEvh5lN61+vz+uwirn5zCVkF5YBRtee/vx9GTHjddj+t38dN7y6j\n1Lv41yUju/Hw1AF15gkAvDxniy8ASIoO4b1rRysAkGPWkaQDjcF4yV5Ue6M3f38Hxsv00lq7+gHL\nmjjnPOAh4GSM/P7FtfbtAIYBeTaHs7EvbGnA+zaHcxWA3WqJxqhe1CSbw1nh7d8yu9UyH7gTSMRI\nExIREfErHo+HP3+wgq+dezCboH+XGMb0iuey0T3o1iEcOFAByHnY89x6ajo3TOjF09M30KsZL/8m\nE5xt6cJfTu1NQlQI//ppMy/NbvqLwQGPnjeA34/qUW/7rA37uOnd5ZRUGgUBLxzelf87dyDBgXVf\n7O3zt/PQl2twe4y+3HVGBteOT61T3ae4opqHvlzrW7G4Y2Qw71wzmu7x4c3up8jRpllBgHdC8Dhg\nsc3hrGygyQzgKrvVsh0jt/5EjJfxOYc7r83h3Gu3WjYDVoy8/Ypau2d5r3mt3WqZjjHHIAEjMPjY\n23YvMMputWzDSBOyYgQqTd3PqUAhsAtwASMxKh7lH+44ERGR45VjWRZfO408d7cHVmUVsiqrkLcX\nZnLXlL6MTunApGcb/2v96nEp/O20Pjw7YyO97/m2Wdec1C+Jv05O5+fNeUx8ZvYR9zk1IYJLR3av\nt/3zFVnc9uFK39oEd5yewfUn1X2xd7k9PPLVWt+aBKFBZp67aIiv/OcBC7fm8dcPV/q+JsSFBzHt\nmlGkJUYecX9FjibN/RKQjjFK/lpDO20O5xK71RIJTOHgYmEv2hzOvGacex5GCdA6ZQRsDmeB3Wp5\nEqNk6C1AEMYE3rUcfNG3A5djrFtQCHyJMVG5KZXAad578gA7gRdsDmfVYY8SERE5Du3KL+OhL9YA\nkBAVwvlDk1m4JY+Vuwopq3Jx32erGz02PiKYb/48ntfnbSPjvqar/QCM792R2yf3YVC3WC5+eUG9\ntQWa6w+je9Srx//uLzu457NVeDwQHGjmuYsGM2Vg5zptKmtc3PbBSr72Tu5NiArhNdtwLF0PVmZZ\nmrmfF3/czKwNOXX6/eTvLHSO0SJgcuw7oonBrcFutZwGjLM5nPe1a0eaR/MFRETkmFdQVsWny7NI\niAqhb+do7v10NQu2GuN2b1wxggkZieSWVHLVm4txeifUHuqqsSncNDGNl2Zv4aVmTPgFGNEzjtsn\n92FUajw78so48ammqwQ1ZFDXGM4Y2Jmrx6XUydt/Zc5WHv1mHQARwQG8ahvBCb3i6xxbUlnD9W8v\nZd7mXMCY2PzGlSN9q/tuyC7m4a/W8PPmg+OYIYFm7jojgz+c0BOzWYuASZs5OiYGtzS71RICxAOn\nAE0nDYqIiMgR2V9axVfO3Uzok+jL669xubnijcWs2FlQr/0lI7vROymSBz5fjX1BZr39B8z52wTe\n+SWToY80vcIvgKVrDH+d3IcTe3ektMrFE9+t57+zmleZu3uHcIorqsn3lge9YFhXnrpgUJ02Ho+H\nZ3/YxAszjSKFMWFB2K8ayeBudWuu55VUcmWtwGZYjzhet40gJjyI4opqnvthE2/O3+5LIwoOMHPh\niK5cf1IvusYp/1+OL+25rN0lwAjASRNzB0REROTIZBdWcMkrC9mWW0ps+EY+vn4MaYmR/OunzQ0G\nAAAFZdWMa6KGf3Cgudkj+H2SorhtcjqT+yXh9sBHS3bx5PQN5JY0NL2wrtSOEfSID+fnzXm+1X27\ndQjjtsnpddp5PB7+7+t1vDZvGwAdI0OYds1IMjrVLVq4K7+MP7y2iK25xhoAEzMS+felQwkLDmDx\n9v3c9O4y9hYZ/Qowm7hsVHdumJBGkqr/yHGq3dOBjjF6WCIictTbU1jOJS8vZHtemW9bcmwY95/d\njxveWYbL7SE9KZLHzrfw8dJdvLdoR4teP6VjBH85tTdnWboQYDbxy9Y8Hv5qLWt2N1o5vI47Ts+g\nb+cornjDKBpoMsGVY1K4/bR0woMPjl+63R7u+WwV7y0yVgHuEhPKtGtGkZpQd3rgxr3FXP7aL76X\n/POHJPPE7ywEmk28OX87j369jhrv6P/Inh14aGp/+nY+3HqnIm2iVdOBFAQcGT0sERE5qu0tquDC\nlxaQ6Q0ABibHsCqrbl5/UICJu87oy08b9jF3U+5hz3dKRiIz1+9r1rWTY8P48ym9OX9oMoEBZnbu\nL+Oxb9fxzarsZvd/5l9PIjEqhNOfm0tWQTnhwQG8ffUohvWIq9PO4/Fw3+ermbbQCGBSOkYw7ZpR\nvtz+A5Zm7ueqN5dQWG6kE10zLoW7p/SluLKG+z5bzRcrdwNG6s/9Z/fj96O615tsLNJOFAQcRfSw\nRETkqHbHx04+WGKMjF8xpicPnN2P+z9fw9sLG8/xP1KBZpNv5ByM6jo3TUjj4pHdCAkMYO3uIq59\n6+AiXc2RlhjJ67YRdI8P5+5PV/HuL8bL/SPnDuDy0XXXAfB4PDz69Tpe9aYA9UqI4L0/jiYxqm7q\nzk8b9vGnaUupqDbSie48I4PrTkxl1sYc7nKsIrvIqEzeOSaU/142rN4cApF2dnxODBYREZGW5fF4\nmLXRGLUfmxbPA2f3w2Qycd9Z/ZoMAvp2juZPJ/filveWN9omLCiA8mqXLwCIDQ/iTyf14g8n9CQs\nOAC324Pt9UXM3pjT6DkO9fzFgzlnUBff6Pu8Tbm+AOCE1Hh+38A6AP+csdEXAPSID+fda+sHAJ8t\nz+L2j1ZS4/ZgNsHj51s4OSOBv33s9C36BXBiegL/vHAQHSNDmt1nkeOBggAREZHjxJacUl/e+6l9\nk6hyuXEszeJ/sxuvxJPSMYJrx6eyIbuo0QAgKjSQ4ooayqtdxu8hgVwzPpWrxvUkKjQIMBbVuvjl\nhUfU3+TYMKYOTvb9/pVzt29NgvDgAJ78naVeSc7X523jxR83+45/55pR9Sbvvr9oB3d+sgowJjI/\n9TsL23PLOPmpWZRVGfcQGRLIvWf25aIR3ZT+I35JQYCIiMhx4ufNB/P71+4uYvwTP7GvuOFKPF1i\nQrlibE8y88q4+9NVDbaJjwgmr7SK4gpjjc7QIDNXjEnhuhNTiYsIBmDn/jIe/3a9b+GtIzGku5F+\nk1dSyf2fr6lzjnvP7Ocra3rAFyt38/BXawGjCtA714yqV7rz3V921LmfYd3jeOSrteSWHFwPdGJG\nIo+cO6De/AERf6IgQERE5DjxtfPgS/RHtVJeaouPCObSUd3JLqzgH9+sP+z58kqNF+fgADOXjurO\nDRN6+dJuSitr+M+szbwydxtVNe5f1d+ByTFs3lfM5a8tYk+hkZ8fFx7EI+cO4CxLlzpt523K5a8f\nrgCMUfw3rxxBz44Rddq880sm93xad3XjA4ugAfTrHM09Z/ZlbFrHX9VfkeOJggAREZFjXHZhBS/N\n2cKi7fsbbRMVGsj5Q5IpKK/2pdM0JcBs4sLhXblpYm/fqLnb7eGT5Vk8+d36Rr8yNJfbAxf8b4Fv\nIbDT+3fikXMHkBBVNz9/495irp+2lGqXh+AAMy9fPowByTF12rzx8zYe+nJtg9exdI3h6nEpnG3p\nohV/RbxUHejI6GGJiMhRY3tuKS/N2YJjaZZvQa1DhQaZmTKgM2VVLr5b07xSnSYTnDs4mT+f0rvO\naPvi7ft5+Mu19UqONiQqJJDrT+7F9DXZOHcVktoxgotHdmNXfjlvNbAa8e2T07lxQlq9/Py8kkrO\n/c/P7NxvVBp68ZIhnD3o4FeC3JJKTn9ubr0FyALMJk7rn8RVY1MY1iNOef9yLFJ1IBERETlo3Z4i\n/jNrC187d+NuZHgqKMDESekJVLuMkfuGpHSMYJt3Bd0DzhjQiVsnpZOeFOXbtivfyPv/ytl03r/Z\nBBeP7M5tk9LpGBnCteNTyS6soFuHMEwmE9fYl9RpbzLBI1MHcNkhZUABqmrc/GnaMl8AcPvkdF8A\nkFtSyUuzt/DK3G31jrvh5F5cNroHXZTzL9IoBQEiIiLHiKWZ+/n3T1v4sYnFu0b27ADAD+sabpeW\nGElWfnm9AODTG8YwpPvBRblKK2v43+wtvDxnK5XNzPv/+pbxdVbbDQ400z3+4OTd1Yd8RbjrjIwG\nAwCPx8O9n63ypThNHdyFGyekUV7l4t8/bea1edt81YoOsJ3Qg7um9CU0KKBZfRXxZwoCREREjmIe\nj4c5m3L590+bWbSt8Zz/2hqbG5DRKYqs/HI27yupt+8/vx/qCwDcbg+fLs/iyenrfSVHm2PTo2cQ\nFGBudH9OcaVvga4DDp0AfMC0X3bw4RJjcvPgbrE8YbUwa2MO93++2vdloLavbh5Xb56AiDROQYCI\niMhRyOX2MH1NNv+ZtZnVWUW/6Vz9OkeTVVDO+uxi37ZB3WJZubMAMFb8ndQvCYAl2/fz8Fdrce5q\nOu/fZIIDUwvjI4K5+d3lTO6fxNTByQQ0MAH30K8AqQkRDabsLM3cz8NfrgEgMSqE5y8ezF2frOLT\nBtKawoMDePvqUQoARI6QggAREZGjSFWNm89WGAt8bc0pPWzb8OAAggPNFHir6xxqYHIMewrLWbvn\nYBCR0SmK2yf3oUtsGFNemAvAhcO7sq+4kse/Xc+XK3c32UeTCS4a3o30pChf3f680iq+W5PNd2uy\neWn2Vm6cmEZEcICvbyemJ9SbUDy+gVKd+4or+NO0ZVS7PAQFmLjnzL5c9/bSOgHMAcEBZl75w3CG\n9Yirt09EDk9BgIiIyFGgvMrFB4t38PKcrewurGiyvdkEZVUu3wq4tQ3uFkt2YUWdl+7UhAhum5TO\nlAGdMZtN3PvZwQW19hRWMPHpWc3K+x+Z0oH7z+rHgOSYepN8D9iwt7je6sMBZhORIXVfOw6t11/t\ncnPTO8t9pUcn9UviwS/W+EqIHli5+MD5/nXpENX8F/mVFASIiIi0o8LyaqYtzOT1edt8i3M1R0NV\ngXrEh1Pj8rDCm+YD0DUujL+cms65g7sQ6M3XL62s4ZNlB1Nrav9zY7rGhXHPlL6cPqATJpOJmev2\n8sO6vXXaRIUGcv1Jvfjf7C2+l/UDXG4PheUHv1gEmE2M7hVfp83T0zf45jNEhQYyY+1eql3GjZ6Y\nnsDyHfmA8SXimQsGMbl/pyb7LSINUxAgIiLSDnKKK3n95238d9aWFjtnZl6Z75+TokO4aWJvLhre\njeDAg5N1y6tcXPnm4ga/IDQkIjiAGyemcdXYFF/Vnf2lVdzhWFWv7VmWztw4IY3LT+jB6qxCwoMD\niQ0LIqekkk+WZfGVcxOs9XQAACAASURBVLcvOBjUNYbo0CDfsd+vyealOVt9vx9oFxxg5s+n9sY+\nf7tv2yNTB3DukOTmPhYRaYCCABERkf9n7z4Do6rSBo7/p2TSe++90ELvLVRRscaKJTZE0F0Vdd2m\nu6u7++6uZV0Lgtiwt9jAhgKh9xYglPSEFEiB9DKZue+HO7kzk5kkE6Rzfl8kU+7cmcTkPuc85Vdq\n6zCgVavtFsN2dfREM2+sK+DT7aUOt93sCz93ndIn37JVZlNbB099vb/bmQFdqVRww7AInrgsmSAv\nF+V2SZL401f7lOFcqRHeShHxdUMjAHDXaekf6oW3qxMqlYqYAHdGxvjx4JR4Jvx7DQATEgOVY5bU\nNPPY53ttzsFZq+b5Gwfz8qpcJUXoyVn2W4oKgtA3IggQBEEQhFMkSRKfbC/ln98dRKNRcf3QCG4Z\nFWk1aKtT3vEGFmXl8+2ecjq6m/DloAkJAWzIq7a6zdNFy7xJcdw1PtYm9765vYMBf/nJ4eOPjPHl\n6dkDGBRh23Hnmz3l/LBfnjx82YBgKk31CxG+rowwFeg++ukevt1bToy/G7MGhjJrYAip4d7sKDph\n9R4AWvUG5n+40yZ9yNVJw6Lbh7FkbT65ppamd4+PYX5avMPvQxCE7okgQBAEQRBOQVVDG7/PzGaV\nxeCutzcW8vbGQmb0D+a1OcPQadXsLT3Joqw8VuYcU9ppnqqJiQE0tHbYBAAAYd6uBHo6WwUARqPE\nN3vLePRT21V2e8J9XPnDFSlcOSiUY/VtLNtUxOWDQgjylHcCKupaeOqb/QAEeOi4d0IcNy3ZDMD1\nQ8NRq1UUVTfxranDUFFNM4vX5rN4bT5+7jrcdPLOhLtOw9AoHwD+tjyHA+XWLVCdtWreuXskn2wr\nYUuBXCMwa0AIf76yv8OflSAIPRNBgCAIgiD00f6yOjLe3qYU8gZ7ORMf6MGm/BoAfs45xi1vbMbd\nWcv6XPMFu0oF8YEedod19WRyUiAt7QarY3V1+FgDT319gCkpQQR5urCr5ATPLM+xKhLujptOw4K0\neO6bGKekEP0uM5t1R6p4c0MBn88bR5CnM098nq2s2P/zukGsPWIOgK4bJqcCfbnrqHKbZapQbVM7\ntaaOp6Pj/HHSqPly11E+3lZicz4v3jSEDbnVfL1HDiaGRvnw0i1DHEq3EgTBMSIIEARBEIQ+yCmv\n5/a3tir9768aHMaz1wzAx01HUXUTac9nAbCrxPbiW5LoUwCQlhxIe4eRdblVyi6CVq3ippGRbCmo\nsZkj0G4w8u8fDmMwGpUL6N5cPyycJ2elEGyR99/c3sHmfDngKK1t4fa3tnL14DBlB+LG4RFMSgrk\nz1/LuwJDIn2IDXDHaJTINHUaGhzhzTcPTaCyrpU1h4+z7kgVG/KqaWrr4M6x0RyubOBPX+23OZ8n\nLkumvlXPq2vyAIjxd+PNO0dY1TcIgvDriSBAEARBEBx0uLLBKgB4enZ/7pkQS4fByDd7yli0xrbT\nT4CHs1JE66i05ECMEqzPrcZgqh9Qq+TC24enJbK5oJqPtsor6BMTA3hkehJ/+mofhyobyLRYie/J\n8Ghfnp7dn8GRPjb3bSusVVpzghy4vPjzEUBOGXr6qv58vK1EKda9w1Sou6WghrKTLQDcMFzeGQjx\nduHWUVHcOiqKDoMRoyQHK1e/uoEWvXWHouuHhdM/zEuZP+DnruPdu0fh7+Hs2AcnCILDRBAgCIIg\nCA6obWrntje3UGtKAXpqdn/mjI7iw63FLFlbQElts93n9SUASEsORKtWse5INe0Gc+egK1NDeXR6\nIglBnhyrb+Xv3x0EIMTLhdduG8aaQ8ftTtS1J8zbhScvT+HqwWGoVPbTazrTmtQqmDUwhO/3yYXA\nKhW8cNNgnDRqpbVpjL8b1wwJA+ALUwCi06i5anCYzXG1GjWSJLHws2ybXYyB4V5kjI1hztItGIwS\nzlo1b2aMICbA3aH3JQhC34ggQBAEQRAc8OP+Sqob5QDgt1MTMBiNTPzPGqoazBf5AR46bhsdjVGS\neGV1nsPHTksOxFmrZt2RaqvV8WkpQSycmcSAMLlLjyRJPPX1fiUv/8YREWS8vY3ddlKPunJ10vDA\n5HjunxSHq67n1JqNprSfQRE+vHzLUFSqPXyXXcFvpiQwJs6fdzcWKrsAD01NRKtR09jWwQ+mYGF6\n/yB83HR2j/3+lmJWZFdY3ebpouVvVw9g/gc7aWo3oFLB/24ZyrAo317flyAIp0YEAYIgCILggB2m\nSbYA71gMrgI5RebeCbEAvLGugMr6VoeOOSkpEC8XLWsPV9HQZj7e+AR/HpuZbHMR/HPOMVbmmKf0\nOhpoXDskjCcvTyHU27XXx55oaienQu7WMz7eH61Gzau3DuXZawbi566jVW/g9bXyLkC0vxvXmnYB\nfthXoQQwnalAXe0pPcmzK3Jsbv/7tQP52/Icyk3tRv9weQqzBoppwIJwJokgQBAEQRB6UVnXajVk\nqzMASAjy4IHJct/6V1bnWk3s7cnExAD83XWsPVLFCVN9AcCwKB8evyyZcfEBdp/3zsaiPp/7lwvG\n9WlFfUtBjVKEPN7Uy1+lUuHnLq/sf7q9lGP1pl2AKQloNfI04i92yqlAAR7OTLIYBNaptqmdBz/c\nZVVrAHDvhFh+2FepdBG6dVQkcyfG9eEdCoJwKkQQIAiCIAjdKKxuYsnafD7ZXmp1++AIb+anJaBS\nwX9/PuJwPv74BH9CvFxZl1tllUY0IMyLx2cmk5YcaDdPv3Mo2eaCmj6d/6FnZ/W5q85GU1cgnVbN\n8Gjb4OGzHfJnEeXnxnVDwwF5fsA2007JtUPClMCgk8Eo8duPdytFw52STUPVfjwgpxGNT/DnmWsG\ndlurIAjC6SOCAEEQBEHoIqe8nkVZeXy/r4Kuw30XzkhiRLQv//npsEM9+AFGx/oR4+/OhrxqNuaZ\nL+QTgjx4bEYSlw0IQd1ND/w9pSd5ZvkBuy1Hu3LWqpk3OZ6Z/YNJCfG0uRh3xCbT+Y2I9rUJICRJ\noqhaLuidkhyoHH/F3gpl9+CaIeE2x3xh5WGbAWcatYrRcX68taEQgPhAdxbNGY7TKZyzIAh9J4IA\nQRAEQTDZUVTLa2vyWHO4qtvHbMitVtpl9mZEtC9JIZ5szq9ha6G5piDKz41HpidyzZDwbgdgVda1\n8p8fD1mlIfXk6sFy3n+4T+95/92pqGuhwHSR35kKZOlEs56mdjnvP9LPTbl9ebY8kyDG342B4V5W\nz/npQCWLsmxbpw6L8lHanPq6OfH2XSPxdnM65XMXBKFvRBAgCIIgXNIkSWLtkSoWrclXUlpAXqm+\nenAYD0yOZ9b/1ikr3ZaP6c6QSB9SI7zZWlCrXOgChHq78Jupidw4IqLbFe9WvYE31hXwela+TR99\ne1IjvPnLVf0ZHu3X62N7Y7lLMS7e3+b+oyfMNQ8RvnIQUFjdpOTzd207WlDVyOOf7bU5jouTmpzy\nejqMEjqNmjfuHEG0v2gFKghnkwgCBEEQhEuSwSjx4/5KFmXlcaC8Xrldp1Vz04gI5k2KxyhJ/PXb\nA0oA0JuB4V6MiPZjV8kJ3ttcrNwe4KFjQVoCc0ZHdZujL0kSy7Mr+Nf3B5UuOT0J8nTmyVkpXDc0\nvNtUor5ac/g4AJ7OWgaFe9vcX1przumP8JV3HJbvNU8mtpwN0NTWwbz3d1p1PerUqjfPQPj3DYMY\nGfPrAxhBEPpGBAGCIAjCJaW9w8jXu8tYvDZfSX0BcNdpuH1sNPeOj8Uoyd1+Pt1eSkfXogA7UkI8\nGZ8QQPbRk7y7qUi53dvViXmT47hrXAxuuu7/5O4tPckzK3LYWXzCoffw0JQE5qfF4+58+v6Mbymo\n4TtT//5JSYF26wlKLXYCIv3ckCSJb01BQEqIJ4mmQl9JkngyM5vc440A+LvrqDENWbM0Py2e64ba\nbycqCMKZJYIAQRAE4ZLQ0m7gk+0lvLGugAqLlXZfNyfuHh9LxtgYDJLE4rX5LNtURFuHsYejyeID\n3ZnWL5ic8nqlwBXkgOLeiXHcOyEWb9fu89yP1bfynx8Pk2matOuIDU9OUVJxTpeWdgNPZmYDcqrO\nE5cl231cZzqQl4sWb1cnDlbUk2e60L96iHkX4K0NhcpAsJQQT46eaLE51vR+QTwx0/7rCIJw5okg\nQBAEQbio1bXoeX9zEW9vLKLWYjU6xMuFuZPiuHVUJAajxFsbCnlzfSGNdtJXuor2d2PWwBDyjzfy\nxroC5XZnrZqMcTE8MDle6atvT6vewJvrC1iUlU9ze+95/53+fGW/0x4AADy/8rAy4+DxmcnEBNjP\nz+9MB+o8h2/2WKQCpcpBwNaCGv7vh0OAPEQt0NPZpoVqUrAHL90y9LSlMQmC0HciCBAEQRAuSlUN\nbby1oZAPthTbvbD/zw2pjIr14/3NxSzKyrMa2tWdcB9XrhocRkltE2+sK1BqBZw0Km4dFcVDUxII\n8nLp9vmSJPHdvgr+7/tDNj3zHTGz/+mforuz+ARvb5R3MYZG+XD3+NhuH9uZDhTh68ritfm8sU7u\n+jMsyodIPzeO1bfy4Ee7MZgKfu+dEMszXSYE+7o58eadI/E4jalMgiD0nfg/UBAEQbiolNY288a6\nAj7bUWqV0tMv1Iu2DgMFVXIdwJ1vb+vTceMC3Rkc4cPS9QUYTHUCahXcMDyC30xNtGqZac++o3U8\ns+IA24t6z/vXadXcNyGWBVMS+HZPOc+sOMDUlCCi/E//LsCiNXlIkvyaz92Q2m3LUkmSKDOl9azM\nOcbKnGOAvPvx2Mxk2juMzP9gJ9WN8hC0v10zgI+3lVgdQ6tWsei24WfkfQiC0DciCBAEQRAuCrnH\nGrh16RaqG60LUEfG+LJgSgKRvm5c9tK6Uz5+QVWTEkCA3Ann0emJxAV69Pi8Y/WtPPeTnPfvSJeh\nyweG8Mcr+ilBxZzRUaQPD8dZ27fJv46QJEkZeHbFwBASgjy7fWxVQ5tNnUSknyuLbx/OgDBvnvp6\nvzLQ7JaRkeg0aqV1aKe/Xj2AsXZajwqCcPaJIEAQBEG4oO0tPclra/KUlelOacmBLEhLYFSsH0aj\nRNwfvz8trzejfzALZyTRL9Srx8e16g28taGQ19bkOZT33y/Ui79c1Z8xcbYXyWciAAA4Vt+mdO0Z\naKclqKXSLsW9w6N9eStjBD5uOt7fXMT7W+SWqKkR3jw5K8Um4LpjTDS3j4k+fScvCMKvIoIAQRAE\n4YIjSRKb82tYlJXPhrxqm/s1ahXv3j0KgI151dz25tY+Hd/HzYmTXWoEJiYG8PjMZAZH+vR6bt/v\nq+TJzGyHiowDPHQ8PjOZG0dEdpuKc6bsLzOv1PcWBFgOCgO4eWQkPm461udW8dflct5/gIczi28f\nzjsbCzne0KY8dmycP09f1f80nrkgCL+WCAIEQRCEC4bRKPHLwWMsyspX0lhALszVG8y5NgajxGfb\nS/lqdxmbC2rsHcqKp7OWW0dHoVGr+GhriVUAMDLGl8dnJjPazgp9V/vL6nhmeY5DU4UB5k2O46Ep\nCXi6dN9G9EzaX24OAvqH9byzUVprHQQMifQh73gjCz7cJRcCa9UsvXM4apWKl1fnKY+L9HNl0W3D\nup2QLAjCuSGCAEEQBOG812EwsiK7gkVZeRw51qjc7uKk5tZRUcydGMf97+9gf5l58u/vTH3ve+Km\n0zBnVBRuzlo+2lpsVU+QGuHNYzOTmZQYgErV8wr98YZWnvvxMF84mPcP8MvCST3m4J8NnZOSo/3d\n8OolELHs9e+u0+DvruP61zfR0Crvdjx/42CGRvly7WsbrZ73VsZIfHtolyoIwrkhggBBEAThvNWq\nN/D5zqO8sS5f6VEP8rCqjHEx3DUuBn8PZxrbOqwCgN44a+XgIcBDx4dbS6yGhyUHe7JwZhIz+wf3\nevHfmfe/aE0eTX3o9//glPhzHgAAHDClAw0M6zkVCKynBfcL9WLBh7uU2QIPT0vk6sFhbC2osdqh\neStjBEnB5/59CoJgSwQBgiAIwnmnoVXPh1tLeGtDIVUWueUBHs7cNzGW20ZHKSk0FXUt3PD6ZoeO\nq9OouWVUJGE+rny0tYQSixSX2AB3HpmeyOzUsF5z8yVJ4of9lfzz+4N2p+H2RKWCW0dF9ek5Z0Jt\nUzvlpuBnQHjPqUAAuRY7MDuKzW1OZ6eG8sj0RNo7jNz8xhbl9uuHhjOtX/BpPGNBEE4nEQQIgiAI\n543apnbe3VjIu5uKqG81F9VG+Loyb3I8Nw6PwMVJozz25VW5vLupyKFj3zoqioQgDz7ZVkLucfMF\nbbiPK7+dlkD6sAi0DuSt7y+r45kVOWwr7D3v30mjItzHlaIac7AxLSXojEz97asDFvUAA3rZCTAY\nJatC306DI7x5/sbBAFzx8nqr+164afBpOEtBEM4UEQQIgiAI51xFXQtL1xXy8bYSWvTmtJrEIA8W\nTIlndmqYUlja0Krn9ax8FmXlO3z8O8dGs7P4hNXwqkBPZx6aksAtoyIdasF5vKGV5386zOc7Hcv7\nn94vmD9d2Y8Yfzdue3Mrm/LlAuXzpU2mZfrUgF6KgivrW21uC/V2YemdI3Bx0vDuxkLyLAKrrMfT\nek2lEgTh3BJBgCAIgnDOFFY3sTgrny93H7Xq7jM40ocH0+KZ3i8YtSk1p1Vv4M31BTy/8kifX+e9\nzcXKv33cnJg/OZ47x8bgquv94r9Vb+CdjUW8tibPoZafAI9MT+SR6UnK189eO5D5H+wkMdiTSYmB\nfT7/M6GzM1CotwsBHs49PvZol85Ark4alt45giAvFzbkVistQgGuGxpOTID76T9hQRBOKxEECIIg\nCGfdgfI6FmXl88O+CowWq+rjE/xZkJbAuHh/ZSW5vcPIe5uL+Pt3Bx069pWpoUxODLTpDuTprOW+\niXHcMyHGoZackiTx04FK/vH9Qaui5N5E+Lry8LREq9viAz1Y+ehkh49xNuSYOgN1twuwq+QEH2wu\n5pZRUVbFvgD/vXkIA8O9KaxuYsGHO63ue2q2mAcgCBcCEQQIgiAIZ832olpeW5NH1uEqq9tn9g9m\nwZQEhlgM4jIYJT7eVsKfv97v8PEfnpbI/rI6qwDAxUnNXeNimTcpzuFWlQfK5X7/Wx3I+9eqVYyJ\n81eGlt04PPK8T4VpaNVTWN0E2K8HaNUbePDDXVTUtfLl7jKr+3QaNbMGhtDQqmfuezusajcWpMXj\nJ9qBCsIFQQQBgiAIwhklSRJZR6p4fU2+1RAtjVrFNYPDeCAt3qqNpCRJfLmrjMc+39vn1/rfqlzl\n3zqNmjmjo1gwJZ4gTxeHnl/V0MYLKw/z6Y5Sh/L+p6YE8ccr+vH5jlIlCLhuaHifz/ts69wFAPs7\nAZ9ss26baumtu0ZgNEos/GyvVR2Ah7OWuRPjTv/JCoJwRoggQBAEQTgjDEaJH/ZXsGhNPjkV5otO\nnVbNzSMiuX9SHJF+5i45kiTx/b5KHvxol0PHn5AQwA3DI3jk0z1Wt2vUKm4aEcFDUxMJ93F16Fht\nHXLe/6urHc/7BxgZ48eWghq+Mq2Wj4rxI8r/3Hf+6c0BiyBgYLj1TkBLu8Fq4m9XqRE+vLI6j59z\njlndfte4GDEUTBAuICIIEARBEE6r9g4jX+0+yuK1BUrKCcgrxbePieaeCTE2K/OrDh7j3mU7HDr+\nqFg/bhsdxbbCWpsA4NohYTwyPcnhwlQ57/8Y//z+oNXMAEf9+8dDVl9fP+z83wUAc1Gwn7uO5vYO\n/vLNfqb2C2ZyUiDvbS6itsk8OfnKQaF8t69C+XpbYS3//cW6OFuut4g9K+cuCMLpIYIAQRAE4bRo\nbu/gk22lLF1fYJVK4ueu4+5xMdw5NgZvN+uC3PW5Vdzx1jaHjj80yoe7xsWQfbSOJ77Ipr3DaHV/\n5vxxDI/2dfh8c8rreWbFAbYU9J73b+maIWFE+bnx8bYSqhvNF8vhPq5cmRrap2OdKwfKzEXBz6w4\nyLojVSzbXMyU5EB2lZiLgP3cdfz7hlTWHqmisa2DIZE+PNol8AK4a3wMPm5iF0AQLiQiCBAEQRB+\nlbpmPe9tLuLtjYWcaNYrt4d6uzB3Yhy3jIrETWf952ZrQY3VdNmeDAr35r6JsRw51sAfvtxHc7vB\n5jG/LJxEQpCnnWfbqm6U8/4/2e5Y3v/kpEBiA9yVoWS3j4lmZIwfj05PollvoLmtg+Z2A6E+Lg7N\nGzjXWvUG8qrkXP6UEE8+2mqenbCmS8H2vElx5B5rUFKkunYJArld6N3jxS6AIFxoRBAgCIIgnJLj\nDa28taGQD7eUWOXRxwa4M39yPNcODUentZ7Au7O4lvTXNzt0/JQQT+ZNjuNobQtPfb3fqgtNJ5UK\nlt4xwqEAoK3DwLumvP8GB/L+4wLdeerK/kxJCeKmxfI5h3m7MDxK3m1Qq1V4OGvxcL6w/pQeqmzA\nYOrL6qRR02QKqgaFe7OvzDxF2MfNidvHRLNsc5HNMSYlBbLuiBwwzBkdJToCCcIF6ML6zSUIgiCc\nc6W1zSxZl89nO45apeT0D/XiwSkJzBoYgkZt3SJzd8kJrlu0yaHjJwR5MH9yPLVN7Ty74qBVfvqg\ncG/2l9cpK/gLpycxvX9wj8eTJImVOXLef3FN73n/Xi7yPIE7x0bj46ajoq5F6Wo0e3CYMrzsQrXf\n4kK/zeL799ItQ1i+t5yXfpE7LN03IRZ3Zy0/7q+0ev70fkHK5++kUYmOQIJwgXIoCFiWnuoNXA8M\nBFyAKuCjjMzsI6b7VcBsYCLgBhQCH2dkZpefiZMWBEEQzr4jxxp4PSufb/eWKyvJIHfEWTAlnslJ\ngTb98bOPnuTqVzc6dPwYfzcWTEmgVW/gPz8d4lh9m3JfSognj89MZktBjbJafcWgEB6amtDjMQ9W\n1PPsihw25dc4dA53jIlmYLgXzyzPYVFWHn+4vB9tHeb0o6tSwxw6zvmsszOQh7OWmkb5M/ZxcyLW\n351VB48DciB0x9gY3t9STPZRc9AQF+jOA5PjucG0M3LD8AhCvB1rvyoIwvml1yBgWXqqG/A7IA94\nBWgEAoAGi4fNBGYA7wKVyAHBI8vSU5/OyMy232j4HFmWnqrJyMy2TSgVBEEQ7NpTepJFa/JY2aUl\n5JTkQBZMSWBkjJ/Nc/py8R/h68pDUxJQqeCV1blW03njAt1ZOCOJKwaG8s3eMt7cUAjIQcFzNwzu\ndiiXnPd/hE+3l1hNJO5NoKczv/9yn7LS/ZdvD6A1rfzH+LsxMNz+dN0LyQFTZ6D+YV7sNuX4D4vy\nZW1ulRJg3TU+lv/+fESpg+j03j2jeO6nwwCoVTBvUvzZO3FBEE4rR3YCZgJ1GZnZ71jcVt35D9Mu\nwHTgx4zM7F2m294BXgBGAeu6HnBZemoisBB4MiMzu97i9muB1IzM7GdMX8cD1wExQBOQDWR2BhbL\n0lMHAFcAnUszRcBnGZnZFab7/YF/Am8i71LEAZnL0lO3ALcC/QFX4CSwOiMze5UDn4cgCMJFT5Ik\nNuXXsCgrj4155lV0lUpuGTk/Ld7upNm+XPyHervw4JQE3J01vLI6j4IqczvRCF9XHp6WyHVDw9Fq\n1HQYjPz12xxAXrVeeucI3O3k4rd3GFm2qYiXV+U6lPcPkBrhrax2v/iz3PrSXafBx01H2ckWOkxR\nxFWDw877ScC90RuMHKqQ1/BCvFzYZpqIPCzKh1dMg9bcdRrSkgO54XXr9K1tf5qG3iCxQv4Ty5Wp\nYQ63YhUE4fzjSBAwBDiwLD11LpAM1AEbgKyMzGwJ8Ae8gJzOJ2RkZuuXpafmAvHYCQIyMrNzl6Wn\nVgFjgZ9ACSbGAD+bvg4HHgaWA+8B7sBNQAawxHQoZ2AVcBTQIQcEDy5LT/1rRma25W//64AvTMcx\nANcA4cCryDsa/kCvVWUni0/i4uNCe2M7Whctxg4jKpUKlVqFod2Ak5sTbfVtuPi60FLbgluAG83V\nzTb/dfV1pbWuFZ2Hjo7WDtSmwjljhxGti5b2xnZcvF1oOdHDMfxcaT3RirOXM/pmPRqdBskoIUkS\naq2ajtYOdB46Wk+2dnuMzv+K9yTek3hP4j11PrexqonNNU28vjaf/RbTYLVqFdcODOHuYRHE+Lmj\nUqtoKG9Q3tOR5jZufHd7b79GAQhw03H/6CgCPHQs2VDIYYtZAoHuOh6cFMeVkb54B3vQeLQetwA3\niotPUtcidx56YEwMPq0Gmqublfek0qj45eBxXtxUSPGJlu5e2sbi9FTGR/rwxPcH+dFU6Brs6cwr\nl/cjPsqHZ1bk8M2h42jVKq5MDuJk8cnz4vt0qj97Re162g1yHUCTRbpVc7NeaQ1688BQ3lqTb7WD\nkuDvhmeHxD9/PKSkgt0zMtLq8xD/P4n3JN7Tr39PPtE+Dv/++rUcCQICgTTgF+BHIBK4xXTfGqBz\nKai+y/PqgZ7eyQZgPKYgABiAfCHe2TNuJrAjIzP7584nLEtP/Qj487L0VM+MzOyGzp0Hi/uXAf9D\n3jmwHHe4xvKxph2CkozM7CLTTY4liwqCIFyk9AYjX2eXs3hdAQUWF9EuWjU3Dw3ntoGhRAS4Y+zS\nm393WR23vu/YkC9fFy1zx8YQ6eHM0h0lZFc0WN03b3ws18b54xfiSXO1dQFvbYu59WiIl7PVfUeq\nG/nP2gK2lJxw+P0CzE4OYlKcP8YOI89eloKLk4bWdgN/mJmMjwQuzlr+NiWR28fFYGhoIy7A3ea8\nLjQ5lebPvM0UDGhUsM5UM+HqpGZclA9zv95v9byRET40tHXwpSklbGSYNwNCvS74z0MQLmUqqZcm\nycvSUxcBxRmZ2f+2uO1aYGhGZvZfTCk7vwP+kJGZXWvxmAzAJyMz+3/dHNcT+BfwYkZmdv6y9NR5\ngDEjM3up6f6/Igcglvn7KuQV/39nZGYXLEtPDURe1Y8FPEz3OwNvZWRmb7NIB3qhs4jZdOyBwDzg\nOHAQyLa8vwd9z3WNNwAAIABJREFUyCwVBEE4/7XqDXy+o5Ql6wo4anHx7+Wi5a5xMdw1PtZu+8ct\nBTXc4mCff29XJ+6fFMegcG8WZeVZDefydNEyb1Icd42P7bHV5obcam5/aysAn9w/hjFx/tQ0tvHi\nz0f4eFvf8v4BIv1c+ebBCZdca8u/fnuAdzcV4axVMyDMy2owGMgdgcrrWvh+n3VHoMW3D6ektol/\nfi9PSH7nrpFMSQk6a+ctCJeoM5p/6MhOQB1Q0eW2SsDP4n6QU4Isxy56Ybs7oMjIzG5Ylp6aDYxf\nlp5aCaQCr1k8RIW8W2AvT79zuech078/QM7rNwB/w/Z9tVl+kZGZvX9ZeuofkLsdpQAPLUtP3ZmR\nmb2su/MVBEG4mDS06vlwawlvri+kutH8KzLAw5m5E2OZMzoKTxfr6b6SJLExr4a73tmm5Mn3xNNZ\ny70TYxkd68+SdflKQSmAm07DPeNjmTsxzmaKsD01TeZz9HTR8ub6Av63KpcGO7MDehPq7cJH9425\n5AIAMBcFxwd6KF2COum0aiYmBZLxtvUEZ5UKhkf78rflBwC5hevkpMCzc8KCIJwxjgQB+UDXJszB\nmFNoapAv9vshF+ayLD3VCUgAMns59nrkFfkq0zEOWtxXAoRlZGYft/fEZemp7kAIcqvSw6bbogC1\nvcd3lZGZ3YicerRlWXrqfuC+ZempH3apJRAEQbio1DS28e6mIpZtKrIavhXh6yq3fhwegYuT9dRb\nSZLIOlLFgg920aLvvbmam07D3eNjSEsO4u0NhUrfeZAvNO8YE838tHgCPJx7OErX8zbPCpizdKtS\nH9CbcB9X+oV68oup9WWgpzMf3jeaSD83h1/7YmE0SsqFv1ptPSMA4NaRkXywpRgAjVqFp4uWk816\n+oV4sTGvmoo6udnf3ImxF/ysBEEQHAsCfgGeXJaeegWwA7kmYCrwFUBGZra0LD31F+AK04r+MeBK\n5NX3bfYPqTiI3PVnNnJ3IculpZ+A3y9LT70Nubi4DfmiPzUjM/sDoBm5XenEZempJ5DrD9IB699q\ndixLT70aOcgoBzTAUKBaBACCIFysyk+2sHR9AR9vK6FVb/41mRTswYK0BGanhqLVWK+hSJLEzznH\neOyzvQ512nFxUnPn2BhmDQzh/c3F3LRks9JqU6tWcfPISH4zNbHXvvKSJNHWYbQKRrYUmEu3HA0A\nAD6aOxp/D2ce+WQPVQ2tPHfjYOICPRx+/sWksKaJZtN04Da99Z9KJ42KcQkBzHt/JwBTU4L45aCc\n/58Y7MG/fpDTgAI8nLlmSPhZPGtBEM6UXoOAjMzsIlNdwLXIF/e1wDfAWouHrUTO1Z+DeVjYS73N\nCDAFEJuQg4BNXe47uiw99TnknP/HkVf4q4HdFs9dCtwM/AU5v/8L5J2F3nSY3k8AoAcKsE5FEgRB\nuCgUVDWyeG0+X+0uQ28wr7MMifRhQVo80/sF26zqGo0SP+yv5I9f7XPoglunVTNnVBTXDQ3nk+0l\n3Lh4s9JBRq2C64ZG8PC0RKL8e199b2k3cPe729hVcpL37xlFYrAnL/582GZGQXdGx/pxqLKBuhY9\nMf5uRPvLLSzfzBjh0PMvZpbpP113AW4YHskn20oAOSAYGuXDz6bP/Js95rmfD09LsNkpEgThwtRr\nYfCZZlrpD8zIzH7pnJ6IY0RhsCAIF4T9ZXW8npXP9/srsPw1PyEhgAVT4hkb52/T895glFiRXc7f\nludQ29ROb5w08ur+zSOiyNx1lI+2lijtJ0GeJ/DojEQSgnrtwAzIOwC//WQPy/eaLzo9XbQO5f1H\n+rnypyv6MSExkKHPrERvkMgYG83frhno0GtfCv7v+4MsWVeARq3CXadR0sE0ahUv3jSYhz/ZA8Bt\no6No1RvJ3HXU6vkZY6P569UDLvhZCYJwATnnhcFnxLL0VFcgFHk2wBvn6jwEQRAuJtsKa3ltTR5r\nTT3vO102IJgFaQkMjrTt3Kw3GPl6dxn//vEQ1Y29X/xr1CpuGBbBHWOjWZFdwU1LNlvVCkxLCWLh\nzCS7w8R6snhtgVUAAPQaALjrNDw4NYF7xsfi4qTh55xjyo7H5GRRvGop1zT3Qa3Cqh7kuqHhfLFT\nvuDXadQ8OCWBa1+zHvh22YBgnr5KBACCcDE5Z0EAsAC5teeGjMzsfefwPARBEC5okiSRdbiKRVl5\nbC8y98rXqFVcMySM+ZPjSQy2XY1v75BXe19YecSqQ1B31Cq4dkg490yIZdXB49z6xharWoHxCf4s\nnJHM8GjfPr+H1YeO8e8fDzn8eJUKbhweweMzkwnyMtcYrD0iFwDrNGrGxPn3+TwuZpWmwl7LtDCA\nUTF+/C4zG4A5o6Ooa9FzvMH88zAk0of/3TIUjSgGFoSLyjkLAjIys184V68tCIJwMTAYJb7fV8Gi\nrHwOVpjzvXVaNbeMjGTuxDi7XXBa9QY+21HKy6vyHLr4B5idGsoDk+PZmFfNHW9t5USzuVZgWJQP\nj1+WzLj4gFN6HzuKarnnXccGjgGMjPHl6dkDGBRhvdMgSZKyAzIq1g833blc5zr/HG+wLdO7enAY\nX+6WdwGctWoWpMXz5e4yq8f88Yp+og5AEC5C4jekIAjCBaa9w8hXu4+yeG0BhdVNyu0ezlpuHxPN\nPRNiCPK07cDT0m7go20lvJ6V7/DF/2UDgnloSiK7Sk5w97vbqbJYIR4Q5sXjM5NJSw48pTQRvcHI\na2vyrFqI9iYp2IPP5o21+3pf7ymjtFYeeCb62Ftr7zDaTfUaEePL09/I/f/vGBNNkJcLqw6ai7AH\nhHkxMqbvOzuCIJz/RBAgCIJwgWhu7+DjbaUsXVdAZb15VdfPXcc942O4Y2wM3q62g7ea2jp4f0sx\nS9cVUONAwS/ILSJ/Oy2RI5UNPPDBTspOmqcJJwR58NiMJC4bEHJK/eIlSWLN4eM8szyHoprmPj33\njjHRdgOA8pMtysVsgIeO9OERfT6vi1lVN0Hft6bOP65OGh5Ii6eprcMqpezu8bGiDkAQLlIiCBAE\nQTjP1TXrWba5iHc2Flql4YR5uzB3Uhy3jIzCVWebrlHfque9TUW8uaGQk82O9dafmBjAI9MTOXqi\nhUc/3WO10xDl58Yj0xO5Zkj4KeeH5x5r4NnvDrKuS+Fyd1JCPHny8hTufmc7AP52BowZjRJPfLFX\nKSL+v+tTL8lpwD3prAewdM2QMKX9Z8a4GAI8nPmlSyvWqwaHnpXzEwTh7BNBgCAIwnnqeH0rb20o\n5IMtxTS1m7vvxAW480BaPNcOCUentR2SfrK5nbc3FvHuxkKrLjA9GR3rx8IZSZxs0fPHL/dz+FiD\ncl+otwu/mZrIjSMicNI4NJTdxommdl765QgfbC1RZgg44onLknFSm1/T3sX9+1uK2ZgnDxO7aUQE\nM/p3HXIvHKu3DQI6Azx3nYZ5k+IAeGnVEeX+uRNjcdaKWgBBuFiJIEAQBOE8U1LTzJJ1+Xy+8yjt\nFkOdBoR58eCUBC4bEGJ3Jb6msY23NhTy3uZiGh2Y8AtyUe9jM5PpMEr84/uDZB+tU+4L8NCxIC2B\nOaOjTrkwVG8w8sGWYl76JdehwWNh3i5kjIvh/0wTaivrW/FwNv+p8u8SBLTqDfzH1FUo3MeVp2b3\nP6XzvFhJkkR+VRNHT9imXXV+r++ZEIuvu466Fj37y8wF5nNNgYEgCBcnEQQIgiCcJw5XNvB6Vh7L\nsyusVstHxfrx4JQEJiUG2M3PPt7QytJ1BXywpcSqX39PUiO8eXRGEu46Lc//dJhtRbXKfd6uTsyb\nHEfG2BjcnU/9z8Saw8f5+4oc8quaen2sq5OG+WnxzJ0Yh1aj4l8/HkKS4FhdK+0WF/5d04GKa5qV\nXZKHpyfi6WJbE3Ehqqxr5Q9fZjM+IYD7Jp76xfiirHye++lwt/d7umi5b4J8/CVr85Xb3XQau8Xl\ngiBcPEQQIAiCcI7tKjnBojX5/HLQOh97akoQC9LiGRHjZ/d5lXWtLF6bz8fbSmiz2DHoSUqIJwtn\nJBHs5cLzKw+zPrdauc9dp+HeiXHcOyHWboGxo/KON/DsioM2A8u6c93QcH43K5lQb1flNn93Z6ob\n26isb6UzHlKrwKfLeVmucMcHepzyOZ9vXluTx5rDVaw5XEVKiBcTEk+t/epXXdp9dnXfhDi83Zyo\na9GzKMscBPwrPfWUXk8QhAuHCAIEQRDOAUmS2JhXw2tr8thcUKPcrlbBlanygK/+YV52n3v0RDOv\nZ+Xz+Y6jtBscu/hPCPJg4YwkYgPc+e/PR1hpUQDqrFWTMS6GBybH/6qC2pPN7bz0Sy7vbyl2KO9/\nSKQPT1/Vn2FRti0oQ7w7g4A2NKaaAF83nU03oqMnzF2LIn1duRh0dk/q9Oev9/HjI5P6nJJVfrKF\nPNOUYHu8XZ24Z0IMAO9sLLS6b4qYtiwIFz0RBAiCIJxFRqPEypxjLMrKs8q/d9KoSB8WwbzJ8cQG\nuNt9bnFNE6+tyePLXWV0OFhcGxvgziPTExkQ5s3Lq3JZnl2OJJlf89ZRUTw0JcFq6m5f6Q1GPtxS\nzH8dzPsH+E96KjcMj+i2xWiIlwv7y+o5VteKq5McBPh72AYonTsBOo2aADudgy5Ecg6/Obgpqmnm\n1dV5PH5Zcp+Osz63552Y+yfF4eki7wK8td4cBExMDLho0qoEQeieCAIEQRDOAr3ByLd7ynl9bb7V\n6qyrk4Y5o6O4b2KsVTqMpfyqRl5bncc3e8sd7qwT6efKb6cmMirWj9fW5LHws73Kc9UquGF4BL+Z\nmmh3onBfZB0+zt+/O9jjinNXa59II9rffqDTKdgUlFTWt+LpIv+psrdL0XmxHO7rekozC85HWRa7\nABG+rhw90cLitflcPSSMpGBPh4+zziLVqys/dx13jYsB4L1NRTRYFJKL7kqCcGkQQYAgCMIZ1Ko3\n8NmOUpasLbAauOXt6kTGuBjuGhfTbQrO4coGXlmdy3f7KpTV+96Eebvw0NREJicHsmRtPn/8ah96\ng/nJVw0O49HpicT9yvz5vOON/OO7HNYcdizvv9PXD47vNQAAeScAoK5FT7npc/N3t13p7wwCIs7D\nVCCjUeLHA5WEersw1E7KU3c6U4Ei/Vx5/bbhXP3qBjqMEk9/s59P7h/r0DEMRomNed0HAQ9MjlOK\nvjd0edz0fiIIEIRLgQgCBEEQzoCGVj0fbCnhrQ0FVDeap/QGejozd2Isc0ZHW7W+tLS/rI5XV+fx\n44FKh18vyNNZaR/69sZC/vb8Aati4Rn9g1k4I4l+ofbrDBzVmff/wZZih1OSOr1w42CGRPo49Nhg\nb3N6Urlp0FVP6UDnYxDw0qpcXl6Vi1at4qsF4xkU4Q3IMxNe/PkIg8K9uWlkpNVzmto62FYod2pK\nSwpiYLg3t42O5v0txWwpqKWhVe9Qqs7+srpuB8QFeDhzx5gY5WvLKdIDw70I8zn/PktBEE4/EQQI\ngiCcRjWNbbyzsYhlm4uUCbYgr+o+MDme9GER3RZ47ik9ySurcll16Ljd++3xd9cxPy2eq4eE8cGW\nEqa/uNZqRsDExAAem5ns8MV3dzoMRj7aVsKLPx9xaPpwkKczxxvalK/vnRBL+vCIbh+/8kAl63Or\neWR6Iv4ezko6kKWuOyZNbR3KBOUI31+X1nS6rTl0nJdX5QLQYZR47PM9LP/NBFSomPf+TrYV1aJS\nwdh4f6uUrI151crOTZqpOHdiYgDvbykG4FBlAyO76RZlqaeJzAvS4q0mTFumcoldAEG4dIggQBAE\n4TQoP9nCG+sK+GR7Ca168wp8crAnC6bEc+WgULTdTNvdUVTLy6vzerxw68rHzYn7J8Vx04hIPttR\nyowX11kV5Y6M8eXxmcmMjvM/9TdlsvZIFX9fkUOuA3n/zlo190+KwyhJvLZGbjk5ISGAP1ye0u1z\n9pfVseDDXXQYJY43tLLkjhFKOpClroPCLNOrzqedgNLaZh75dI/VbUeONfLiz0eob+lQZjJIEny3\nr4IHJscrj8sy/QzotGrGxsvfO8suUTnl9Q4FAT/s734Xac7oKOXfXWtMRD2AIFw6RBAgCILwK+RX\nNbI4K5+vdlt37Bka5cODaQlMTQmyW7AqSRJbCmp5eVWuVYvQ3nQOd7ptTBTf7iln1kvrrNKNUiO8\neWxmcreDxfr63v7x3UFWO7gzcWVqKH+4PIUjxxq4d9kOAKL83Hh1ztBuA6C2DgMLP9ujfHY/HTjG\n1oIaUkJs05a6DgqznBFwvgQBbR0G5n+4UwnI/nfLEN5cX8i+sjqWrC2wefy3e8qVIECSJLJMn/Xo\nWD/cdPKf6HAfV7xctNS3dnCwot7mGF01tOrJ6eZxv788xWon6kRzu9X9/X9lupggCBcOEQQIgiCc\ngv1ldSzKyuOH/ZVWRbsTEwNYkJbAmDg/uxfhkiSxPreaV1bnsr3ohMOv567TcPf4WO4aH8PKA8e4\n6pUNVJhy5UHecVg4M4mZ/YN/9cV/XbOe/63K5b3NRQ7l/Q8K9+bpq/ozMsaPvOONPPzxHiRJnjq7\n9M4R+Lh1P3vgpV9yOXLMeofhn98f5KsF43FxUlvtqnRNB7Jso3m+pAN9u6ec/WXyBfg942O5Zkg4\n/UK9mP3KBtpNNRpBns5M7x/MR1tLyKmoJ+94IwlBHuQeb1TqH6YkBynHVKlU9Av1YmthbbcX95Z6\nCtruHh9j9XVtk3UQ8Gt/dgRBuHCIIEAQBMFBkiSxrbCW17LybVJ3Zg0IYcGUeFIj7OfeS5LE6kPH\neWV1HntKTzr8mi5O8iCv+ybEsT63iusXbaKk1rwC3jkHYHZqGJpf2SKzw2DkY1Pe/wkH8v4DPZ15\n4rJkbhgm9/uva9Fz/3s7lHaTL940mOSQ7lta7io5wZK1csrQoHBvJiQG8HpWPnuP1rE8u5wQLxeK\naszvtWs6UGcQoNOoCTxPZgR0XoD7uDnxe1MKVFKwJ0/MTOYf3x9Ep1Wz5I7heLk68dHWEgBWZJfz\nyPQkPt5Wohwnrcuwrs4g4FBlAx0GY7c7KwAPf2JORRoU7s2+MvM8CmetdT1KpUUg+WvrRgRBuLCI\nIEAQBKEXnRNcF63JZ0exefVeo1Zx7ZBw5qfFkRBk/2K3czjYK6tzOVDe+ypuJ51Wze2jo3kgLY6d\nRSeYs3SLVU5+uI8rv52WQPqwiB4vCB21PreKZ1fk2KzKd3du902IZcGUBKXDkcEo8cgnuymobgLg\nt9MSmTUwtNtjdBiM/O6LbIySfBH/wk2DCfNx5fMdR6lubOM/Px4myMvZOgjoJh3ofJkRoDcY2WDq\nzT8pMRCd1vx9uW9iLPFB7oT5uCqpTgPCvDhQXs/yveWMiw/g3U1FAAyP9rUZGNdZF9DeYaSwuonE\nbuYFtOoNVl9X1psv8kfZqSXIPmoOSEdEO97GVBCEC58IAgRBELphMEp8t6+C17PyrXKxnbVqbhkZ\nydxJcd2moRiMEt/vq+DV1XkcPtbg8Gs6aVTcMjKKB6ckcLCinrvf2W4VPAR6OvPQlARuGRVps6p7\nKgpMef+OdiS6fGAIf7yin82QsedXHlZmBszoH8wj0xJ7PE7mrqNKV5qHpycqQ7AWzkjij1/to+xk\ni1Xhr1oFPq7WrTHPtxkBu4pPKLsgXVfyVSoVU1Osi26vGhzGgfJ68quamP/BTiRJ/tn6zw2pNmk5\nlrn6ORX13QYBT3293+rrKosOTfY+J8ugdpgIAgThkiKCAEEQhC7aOgx8tauMxWvzrVaiPZ213D42\nmnvGxxLoaT/9pMNgZHl2Oa+uziO/qsnh19SoVdw4PIKHpiZQUtvMgx/tYqfFBZqPmxPzJ8dz59gY\nq/aOp6quRc/Lq3JZtsmxvP/+oV48fVV/xtjpNrR8bzmvZ8lpPYlBHrx40+AeV+Zb9QZe+kVunxnm\n7cK9E2KV+24aEcFflx9Q8uc7+bnrbI5Zdp4FAVkWKWKTkgJ7eKTsykGh/OuHQ4C5V//vZqUQb2eQ\nW2KwB1q1ig6jRE5FPdcMCbd5THuHkc93Hu329YLsdFyy/BkbGiXSgQThUiKCAEEQBJOmtg4+3lbC\n0vUFHKs3r6D6u+u4Z0Ist4+JxtvV/qAmvcHIV7vKWJSVZxU49EatgmuHhvPwtERqmtp5MjObjXnm\nbkGezlrumxjHPRNiHBoS1ZsOg5GPt5fy4srDDuX9B3jo5Lz/4ZF2aw4OlNfxxBd7AfBy0bL0zhG9\nnucHW4qVouaHpydadavRatR4Omup6bAuWO1aFNzc3qFcOJ8vRcFZpp2Q1AhvAhyoUYj0c2NYlA+7\nSuSUnFGxftw9LsbuY521GhKCPDhU2UBON2llmbu6DwAAQrxsz8lyloW9tqyCIFy8RBAgCMIl72Rz\nO8s2FfPOpkKrQVhh3i7cPymOm0dGdbv63tZh4IudR3k9K9+qW01vVCqYnRrGw9MSaesw8MzyHKuU\nHBcnNXeNi2XepDh83bvvrtMXG3KreXZFjkPpSTqNmrsnxPDQlIRuL+prGtu4/72dtOqNqFXwypxh\nxHTJZe+qoVXPa2vyAIgLdCd9mO0AMVedBprk1JjOqcddg4Ayi886/CxOuG3VG1CrVFb5/gDH6luV\nlLE0B3YBOt00IpJdJSdx12l4/oaed1D6hXpxqLLBbptQvcHIH77c1+Nr2RvAZkl0BhKES4sIAgRB\nuGQdr2/lzQ2FfLilmKZ2c0FlXKA78yfHc82QcJuLvU6tegOfbCthyboCq1adjpg1IIRHZyShUav4\n7y9H+C67QrlPp1EzZ3QUC6bEE+R5elZmC6ub+Md3B/nl4DGHHn/ZgGD+eEU/ov27v6DXG4ws+HCX\nkrf/+8tTmOzAxe/S9YXKDsTjM5PtFjW7m/rje7o40dYo78jYFgWf/UFhxxtamfnfdThr1byVMZKB\n4d7KfWsPm1OBJlu09+zNzSMj8XPXER/kQZR/zzsa/UO9+Gp3GdWN7RxvaLX6+fhmT7nd51w/LJwv\nd5UBEOwtVvoFQTATQYAgCJeckppmFq/L54sdR2k3mHPPB4Z78WBaAjMHhHTbbrO5vYOPtsoX/5ZF\nl46YlhLEozOS8HJx4n+rcvlq91E60/E1ahU3jYjgoamJp21lu65Fzyurclm2uQi9ofe8/5QQT56e\n3Z9xCQG9PvbZFTlsLZQn3147JIy5E+McOp+3NxQCcuvKyweG2H2cm7O86+LlqqW6Mwhw17GzuJYD\n5fXcNCKyy6Cws5MOtP5ItbJTdOvSLbx3zyiGRsnFtFlHzK1B+9JqU6VSMXOA/c+hq66Tg4OS5Yt6\ng1FikWl3xVJKiCfDonzNQUCXnYCudReCIFxaRBAgCMIl41BlPa9n5bN8bzmWtbCjY/14cEoCE3uY\nstvY1sF7m4t4c32hzYCl3kxMDGDhjCRCvV15ZXUun24vVYpxVSq4ZnAYj0xP6jWVxlEdBiOf7ijl\nhZVHHDpXf3cdj81M5uaR9vP+u/p0ewnvbS4G5MDpX+m23Wzs+WBLMY2m7jmPzkjs9jluptQrD2et\nkhIU5OnMfct2cKJZz57Sk8pcACeNiqBuirRPt4Jqc/vUhtYObn9zK/9KTyXMx5X1ptagExMDf/W8\nhu70s+gQdLCigTTTjsOK7HKlNaulR2ckKZ2lVCpsPqdSi0Cqux0vQRAuXiIIEAThorer5ASL1uTx\ny0HrNpjTUoJYMCWe4dG2/dM71bXoWbapiLc3WtcLOGJMnB+PzUwmNsCd17PyeX9LsdXq66wBISyc\nmaS0xzwdNubJef+HKnvP+3fSqLhrXAy/mZaIl4NFxzuLa/mzqQ1lgIeON+4YYVXY251WvUHZBUgJ\n8bSaiNuVmykdqL3DyL/SB7E5v4ZZA0N5fuURAL7cVaYU3ob7nL0ZAYWmC21XJw2tHQaa2g385uPd\nVo/pSz1AX/m56wjxcqGyvlWZHGw0SkqNhaWB4V7M7B/MatPPvL+7M05dUq8KLLpXDROdgQThkiOC\nAEEQLkqSJLEhr5rX1uSxpaBWuV1tKsidnxZvtbLa1Ymmdt7eWMi7G4uU3u+OGh7ty2MzkhgQ5s3S\n9QVkvL2NZouag7TkQB6bkcygCO8ejtI3hdVN/PP7g/yc41je//R+wfzpyn42Q6l6UlHXwrz3d6E3\nSDhpVCy6bThhDqYufbajVOnmMz8tvsedA3fTTkBzu4HrhkZw3dAISmutOy51pgmdzc5AnRfNo+P8\nuGZIGE98nm3VXtXLRcuUFMfrAU5F/zAvOQgol6cA/3Sg0u6At4UzklCpVBTWyOccbqduYk+puT3o\ncDEjQBAuOSIIEAThoiJP6K3ktTX57CurU27XadSkDw9n3qT4HtNuqhvbeHN9Ie9vLrIqFnZxUtPe\nYaSnlvqDI7xZODOZEdG+vLOxkAc+2Em9RQvG0bF+PH5ZMiPtTG49VfWtel5dncc7GwsdyvtPCvbg\n6dkDmJDYe96/pVa9gXnv71Quvv929UBGxXb/Pn7cX8kn20u4YmAoVw0OY8naAgCi/Ny4clD3k4QB\nXE07AZaBU2M3gdjZKgo2GiWKTBfUsQHuXDc0gvHxAeQdb6TdYKTDINE/zMumi9Hp1j/Ui9WHjlNY\n3URTWwevrLbdBRgS6cOU5CAkSeKQacegX4jtbpPljIDTuRslCMKFQQQBgiBcFPQGI9/sKWfx2nxl\nEi3I+eVzRkVx38Q4QnrojnK8vpUl6wr4cGsxrXpzyk6AhzNGSeJEcztSN9fY/UO9WDgjiQmJAXyw\npZhHP91jlYs/ONKHJ2YmMz7B/7S1YTQYJT7dXsoLKw8rK+w98XVzYuHMZG4dGWm3I09PJEniD1/u\nI/uoHFTdPiaKOaOjenzOsytyKDvZQtbhKv7+XY4SDN0/Ka7X1zfvBJgv/C3/PTjCm72mczlbQUBl\nfavycxFnCiKDvFzsDuA6kwaGy7tXRgleXZOnpAVZ6twFqKhrUT73ZDtBQOd8AsChuQaCIFxcRBAg\nCMIFrVVO2/guAAAgAElEQVRv4NPtpbyxrkBpVwng7erEXeNiuGtcTI999stPtrB4bT6fbC+1yteP\n9ndDo1JReqK52xX2pGAPHp2exNR+QXy24yiTn1tjNWQsJcSTx2cmM61f0Gntwb4pv5pnljuW969V\nq8gYF8Nvpybi7XZqw8beXF/IV7vlDjOjYv14evaAHh/f0Kq3+l50XogGeDhzw3DbuQBduTmbdwKM\nRgm1WkVjm3lX4PeX9+PDrcUcKK/n2qG2k3PPhEKLwtvYANuJvmeLZVvSzinNXU007fIcqjD/fNgL\nAix/3s/0DoYgCOcfEQQIgnBBqm/V88GWYt7eUEh1o3klPMjTmbkT47h1dBQezt3/iiutbWZRVj5f\n7Cy1usjvH+qFTqvmcGUDLXqD3efGBbjz8PRELh8Yyjd7ypj2wlqrvvVxge4snJHEFQNDT2vRanGN\n3O9/pYN5/1NTgvjTlf2IDzz1i9a1R6r4vx8OAnIR7qLbhvXaSSbfouD0+mHhbC+qpbS2hSdnJTtU\nROxuMZitRW/A3VlLk0U6kI+bE6/OGdbXt/KrWHbfiQ08PV2cTkW4jyt+7rpuuz799ar+SsBpGSSm\nhFjXv3RtD+rvIYIAQbjUiCBAEIQLSnVjG+9sLOS9TcVWBbtRfm48MDme9OHhOGu7v9Asqm7itTV5\nfLm7DINFgv+IaF88XbTsKD5BQ6v9/PMoPzd+Oy2Ra4aE8dOBSmb9b51Vh5UIX1cenpbIdUPD+5xy\n05MGJe+/yGquQXcSgjx4anZ/h4Z39aSwuonffLQLoyTXRCy5Y7hDaSOW6VjzJ8fz3A2DaW7v6Hby\ncFduFkFAc7scBFjWBPQU3J0phabvs4uTmtCznAJkSaVSMTDcm3VHquzef9uYaOXfhyrlVKEgT2eb\nlX7L9qAAvm4iCBCES40IAgRBuCCUnWxh6boCPtleYpWznxLiyfy0eK4cFNrjhXfe8QZeXZ3Ht11m\nBExMDMDfXceGvGqrHQVLYd4u/GZaIunDIlh3pIqrX93IQYtc7GAvZx6amsjNIyJPa791g1Hisx1y\n3n9352bJx82JR6cnMWd0lE07yL5qaNUz970dSirPczcMtkpF6UlnEKBRq4j2d0ejVjkcAIC5RSh0\n1gI4W+0EWAYJZ0uhaUZAjL/7WWtJ2p3mHrpVWX7fD5t2AlLsdMEq6jJX4Nf+vAiCcOERQYAgCOe1\nvOONLF6bz9e7y6zaMQ6L8uHBKQlMTek53/5gRT2vrs7j+/0VVoW90/sFE+7jws85x1hf12r3uUGe\nzjw0NYGbR0ayvfAENy3ZzJ5SczGln7uOBWnx3D4m2qE0l77YnF/DMytyrIKN7mjUKu4YE80j0xPx\nOQ0rukajxKOf7lEu5hekxXPV4DCHn593XL74jPZ3O6WgyN3Z/Fk2mWoBLDsFuZ+LnQDTRXPcOUwF\n6rTDoquPpfRh5nqL9g6j8v1LsVMPUFRj3gnwchGXAoJwKRL/5wuCcF7ad7SORVl5/Hig0urifWJi\nAA9OSWB0rF+PF//7y+p4eVWuVf68SgVXDAolLsCd77Ir+OWg/dz6AA8dD0yWL+4PlNeR8fY2q1kD\nni5a7p8Yx90TYk97akpJTTP/+D6Hnw44lvc/OSmQp2b3IyHo9LV4/O8vR5TBalNTgnhsZnKfnt95\n8ZkYdGq1CK4WOwEtennVuzMdSKtW4XyWp9u2dxgpNdV89GWuwpmws7i22/v6h5lX/AuqG5Wg2W4Q\nYLETYK9oWBCEi58IAgRBOG9IksTWwlpeW5PH+txq5XaVSp6uuyAtodcBW7tLTvDK6jxWHzJPB1ar\n4Joh4QwI8+LLXWV8l11h97k+bk7MmxRPxrhoCqqaeOCDnWQdNudeu+k03D0+hvsnxp9yp53uNLTq\neXVNHu9scCzvPy7Qnadm9+9x8u6p+C67Quk9Hxfozku3DEHTh/SXVr2BEtNgr4RTDAIsC4M7dwI6\n04HcnbWntdOSI0pqm5X6kXPZGQjg5VW2cwE69Qs1X8z31hnIsnuT6AwkCJcmEQQIgnDOSZLE6kPH\nWZSVbzXASKtWce3QcB6YHN/rBeW2wlpeWZ1rFTxo1SquHxbOiGg/PttRqrS57MrTRcvciXHcPT6G\nirpWHvtsLz/sr1Tu12nV3DEmmvlp8ae9n7rBKPHFzlKe++mIMoirJ14uWh6ZnsQdY6NPex53Tnk9\nj3++F5A/kzfvHIFXH3L5AYpqmpSai1MNAmxrAsw7AeekKNiqPei52wnYW3qStd0UBIPc2apTZ2cg\njVpl9/vQaFH87ucuZgQIwqVIBAGCIJwzHQYj3+2r4PWsfKt2hs5aNbeOiuK+ibFE+Lp1+3xJktic\nX8P/VuWytdCcJqHTqLlxRAQTEgL4eHspv8vMtvt8d52GeybEct+EOE40t/PU1/v5Zm+5kn6kVau4\neWQkv5ma2OOgsVO1paCGZ5bn2B341JVGreK20VE8Mj3pjKzc1ja1M/e9HbToDahV8MqtQ4lzoLXo\n8YZWsg5XMTs1FDed1qozUELgqaWZdO0OBOadgHNZFAzmQWHngr3pwJ1C/5+98wyMqk7b9zWT3nvv\nnZpI7xBCUQEr9rKxI82Cuvruqv9dfV91LVsUEBXQWLBGcUEUFAi9t9BJr6SRXibJzJz/hzNzMieZ\nJBNIqOf6Aplycqbm9/ye+7lvN3vZPIjRGSjS28msW1atplX6v7diD6qgcE2iFAEKCgoXnWatjh8P\nFrFsSxZ5JgOKLnbWPDgmjEfGR3S54y4IAlvOlPPBpkxZ58BYPEzp78uqPfnM/eqg2fs72FiRPDac\nJyZGomnV8dZvJ/luf6Ek+VCr4LYhwTw9JYZQr86LkPMl/1wjb/56UtZt6IoJMd68MmsAsX59o91u\n1emZ99UBSSLy4g39SLRQZrTgq0Psza1kV9Y5/nX3dWSUti2Yo3zPb8HsaDoY3CIfDL6UQ8HujjZd\nBs/1JSeKazudYQHo384ByOgM1Jnev1iRAykoXPMoRYCCgsJFo6FZy9d78/lkW7YsWdfLyZZHxkfw\n4JiwLuUngiDwx8kyFm/K4EhhjXS5g40VD4wO5cbBAXy1O5/klXtlNqBGjLKeJydFAfD+xgxW7cmX\nafBnDg7g2WkxvTpoa6S+WcuSzZms2JZjke4/wtuJl2f279YB6UL537UnpMHnW64L5ImJkRbdL/9c\nI3tzxfv9cvQsf7t5IJnlYhEQ5O4gk/X0BCdTOVDzxZMD1TdrOZBXRXpBNUeLavBytuUvM/pLWRAX\nKgU6lF+Fr6s9Qe4OPb7v4s0ZXV5vOg9Q09jKWYPjVfviwEitTA6kFAEKCtciShGgoKDQ51Q3tvDZ\nzlw+25lLdWObDCHI3YEnJkZy1/AQHLqQeej1AuuPl/DBpkyZdMbJ1oo/jQ3n5oRAvt6bz90f7ZKl\n/xqxsVJx78hQ5k+Oxs5azbIt2aTszJUlAk/p58ui6bEMDLTMC78n6PQCqQcKeXv9aYt0/y721jw9\nJYY/jQnv1dwBc3yzN5+UXXkADApy5R+z4y0uONYdaxuwbtHqWXf0LFkGOdD5zgOAWNQZaS8HMrUP\n7U0qG1qY/q8tHfIYDuVXU1orLqgjL2Ao+J+/n+H9jRl4O9ux9c+JPSqQMkrrOnSNVCpkrln9ZfMA\nbZ+ROAu6R70956KgoHBloBQBCgoKfUZprYbl27L5ak++zOc9yseJuYnR3HJdYJfDrTq9wC9Hz7J4\nUwZnTGQmLvbWPDwugtuHBPHNvgJuW7pDFiBmxFqt4s7hwSxIisHV3pqV23NZvi1bljQ8LtqLRdPi\nGBbm0UuPWs6ebNHv/3hx97p/tQruHRnKommxeF2Ehdn+3Epe+fkYIOrCP35weI/yDtq7LH2/v4Bs\ng3TmQooAtVqFg40VTa06aTDY6BLUV3KgP06WygoAD0cbqhpbZbMq55sR8OmOHN7fKO7kV9Q3czCv\nmvEx3hbff/HmTNmCH+DmhEB+Plws/dzfzFAwQL+AjkWAvl2bTOkEKChcmyhFgIKCQq+Td66BZVuy\nST1QKJO9DA5yY/7kKKYP8O8ydVWr0/Pz4WKWpGVKUgwQNdmPjovgzuEhfL+/gJs+2C5b0Bsx1fT7\nuNjx+a5clm3JosqkCzE01J3nr49jbJTli7GeUFAp6v7XHbVM9z82yotXZg3oVL7R2xRXN/Hklwdp\n1QnYWKn48IFhBHYhU/l8Vy7vrj/NC9fH8eCYcPLPNXK0SJRkudpbU6vRcjC/LUjtfDMCjDjZiUWA\ncSagr+VA2w2uUq721qS9MBk3Bxv+9t/jfLE7T7rN+ciBVh8q4u9rTsgu25tbaXERkFPRwJojxbLL\n1Cp4ekqMrAgI9WybXTldKhYBLnbWZqVHGq1O9rOXUgQoKFyTKEWAgoJCr3HybC0fpmWxNr1Ypskf\nHenJvMRoJsR4dyk1adHq+fFgIUvTsiSveRAXKY8bZEOrDxUx8/1tnGto6XB/lQpuig/k6akxBHs4\n8M3eAhZvzqS8rk2CMzDQleenx5EY59MnOvv6Zi1LN2eyfHsOLdrudf9hXo78dUZ/pg3wu2j+95pW\nHXO+OCBJk167ZRAjwj07vX1ji5Z31p+mTqPl72tOMDTMQ2bF+vqtg3j6m8Oy+1xIJwCMNqEtNEmD\nwVqTy3sXvV5gR6b4eMZGeUs746/dMpBgDwfe/PUUtlZqhoS69+i4e3MqJctVZztrnOysKK1tZn9u\n54Ff7VmyObPDfMvtQ4M7ODeV1TVLC/6c8rZ0Y3PvKWNXxcilGnZWUFC4tChFgIKCwgVzIK+KpZsz\n2WgS0AUwtb8vcxOju5XaNGt1fLe/kGVpWbIQI18XO+ZMiuKu4cGsO3qWWe9vo9gw8NieGwf588zU\nWKJ8nEg9WMifVmTKjhXt68xz02K5fmDXXYjzRa8X+OFgIe+sPy0rOjrD2c6ahUnRPDQu3KyFY18h\nCAIvpaZLu/gPjg7j3pGhXd5n7ZGz1BkGSbV6gee/T8f4DEb5OHFzQiAfbcmWzWtceBEgPicNzVqa\ntTpp1sO5D2YCTpbUSkWl6Q69SqVizqQokvr5olarCHCzfKC3oVnLc98fRqsXsLVWszx5OP89Usyq\nPfkcyq+mVafvNuehoLKxQ7aFtVrF01NiOtw2/1yjVAQYC+gwL/OdC2NBZaS38yYUFBSuDJQiQEFB\n4bwQBIFtGRUs2Zwp8+hXq+CmhEDmJkbRz79raUtTi46v9+bz0dYsmVtQgJs9cxOjuHNYCH+cLOXm\nxTtkgU2mTO3vy7PTYunv78qa9GKe/PKA7Lahno48MzWGW64L6lHybU/Ym1PJa2uPc6yoe92/SgX3\njAhh0bQ4fFwu/kDmJ9uyWW2QkYyM8OTVmwZ0e5+v9uTJfj5pstifOTgAlUoMZTvxi3i5t7OdzLP+\nfDAWAY0tOtnOdV/MBBi7ACDasbYn5jysWd/89SQFlWIR+tIN/Rgd6UVJjYZVe/JpatVxrKiGIaFd\nF8dL07Ik21ojdw4PIcQg/bG3UUuzMAWVjYyJ8qJZq6O4Rvy9YZ3Y27bvBCgoKFybKEWAgoJCjzA6\n9SxNy5J2k0EM6Jo9LJgnJ0V2ugNppKFZy1d78vh4a7ZsGDPYw4F5idHMHhbEjswKbv9wp2zBacqk\nWB+enRZLQrAbG06UsujbI5IWGsRCYmFSDHcOD+6znc6Cykbe+vUUvxw92/2NEWVRr8wa0CcORJaw\n5Uw5b/16ChCdmT68f2i3z82xohrJjnVuYhSbT5XJBk9nxAcA4qDqG+tOohcg+jzzAUwxLvYbW7SS\nM5Dp5b2JUdoU4unQ7XvXsuOV8+XufABGRXjy0NhwAEZEtEmu9uVWdlkEFFc38cOBAtlltlZqFiRF\nSz872FhJRYBx97+wqkkaIjadEzCloaXjHI2CgsK1h1IEKCgoWESrTs/qQ2LAV5bJsK6jrRX3jwrl\nsQmR+Ll2napbp2nl8115LN+WLRvSjfB2Yl5iFLcOCeJAXhX3fbJHFgJmytgoLxZNi2VYmAdbMyq4\nZckO0k0yA7ydbZmXGM19o0J75HTTExqatSxNy+STbZbp/kM8HfjrjP5cP9D/oun+25NdXs+CVQfR\nC+IO8sd/GmaRA9FXe8TFrFolSodmDg7gliU70OkFonycJAtKX1d7bh0SxI8Hi5g+wP+Cz9doE9rY\nopOGgqFng8EH8irZeLKMvHON5FU24Ghrzf2jQpk5OABrQ/GjadWx19DJGh/tc8HnXdnQwos/iAnV\njrZWvHNHgiQ/C3J3IMjdgaLqJvbmVPHExM6P89GWrA52t/eMDJEkP4IgSBItaCsC8s61fTY7K2hM\niyrFHlRB4dpFKQIUFBS6pKlFx7f78vlkW45MY+/uaMNDY8NJHhPe7WBhTWMrn+7MYeX2HFlIUbSv\nMwuTopk5OIATZ2t55LN9soFTU4aHebBoeixjo7zZm1PJ3R/tloKqQHR1mTMpiofGhveZjaReL/Dj\noSLe/u0UZRbo/p1srViQFMPD48L7rCCxhFpNK499vl9aNL57Z4JF3Yg6TSs/HxY16Un9fAl0dyDQ\n3YH/vXUQH2/N5sUb+smKmnfvSODFG/p1WwxagvE1bGjRyjTsjl3kSZhSVqvh3k/2dCjS9uZU8vZv\np3lyUiT3jwrjQF4VzYbbmJMC9YTi6iYeXLFHmlv568z+HRKnR4R7UHS4if15lej1gtn5lLJaDV/v\nk3cB7KzVzJ/c1gWobdKiNZEKtRUBbQP1ncmBTO16Qz17HlymoKBwdaAUAQoKCmap1bTyxa48Vm7P\nkTnx+Lna8fiESO4dGdrtYruyoYUV27P5fGeezMqzn78LC5NiuHGQP1nl9SxYdYjfjpu30kwIcee5\nabFMiPEmvbCGB1fskRUKTrZWPDo+gkcnROLm0Hna8IWyL7eS19ackEmgOkOlgjuHBfP89XH4ulz4\ngvhC0OkFnvr6kGS1ujApmlnxgRbdd/XhYmnBeP+oMOnye0eGmh0mVqtVvVIAQNtiv6lFR72Jht3S\nTsAfJ8ukAiDYw4FwLydOldRSUd9CUXUTr/x8nLTT5QS4i+erUoldpvMlq7yeB5e3FQC3DwniPjPP\n0YgIT1YfLqa6sZXM8npizcwbfLw1u0Px8sDoMNlze65BXoQWtCsC7G3U+HYyc1KnaevChXQiGVJQ\nULj6UYoABQUFGRX1zazcnsMXu+QL9zAvR56cFMXtQ4O6dbMpr2tm+bZsvtidJ9t1HBzkxsKkaKb2\n96OouonnfzjCjweLzB5jYKAri6bFktTPl9Oldcz54gAbTpRK19tZq0keG86Tk6L6NOyosErU/a9N\nt0z3PzJcHLYdFHRpdP/teXv9KdJOlwMwbYAfz06Nteh+x4treNtkfmBi7IVLZXpCmzuQ7rxmAjae\nFN8r3s52bH1hMmq1Ck2rjtSDhXyYlkVhVZPMzWpwkNt5DzOX1zVz17JdUrH80NhwXp01wKz0a6SJ\nFevenMoORcC5+mZJgmXEwcaKuYlRsssq21nknmtoob5Z2+YM5GneHhSgqLrNYauzuQEFBYWrH6UI\nUFBQAMTF7idbs/lmX4EkjwBx137e5GhmDPKXdNSdUVqrYdmWLL7emy9L8B0S6s5TSTEkxvlQXtfM\n/2sXwmRKnJ8Lz06LYfoAf3LPNfD0N4dZk14sDTvaWKm4d2QoCyZH49tLu87maGjWsmxLFh9vzZY9\nH50R5O7AX2b0Z8bgS6f7b89Phwr5aEs2ALF+zvzr7ussskfNqWggeeVeqQj8nxn9+sxZqTOMeQBN\nrTrZzrUlnYCmFh3bDY4/Sf18pMdsb2PF/aPCuCkhkGe/OSwrAsZHn78UaG16sVQAPD0lhmemxnT6\nHojyccbd0Ybqxlb25VbywOgw2fXLt+fQ1Cp370keG95Bu28uJ6OgslGaCWgvQzKl0CSDI8RDKQIU\nFK5VlCJAQeEaJ7Osjg/Tsvn5cJFMYzwszIP5k6OYHOfb7aK2qLqJZWlZfLuvQJYQPDLck6emxDAu\n2ovqxlbe+u0UK7blyH6PkUgfJ56ZGsuswQEU1zTx0o/ppB4skiwS1Sq4Y1gwC5Ni+lTCoNcL/HSo\niLfXn5LZlnaGo60V8ydH8+j4iEuq+2/PkYJqXkw9CojzG5/8abhFC+jSWg0PrtgjuTa9OmuAxfKh\n3sTJJA/A1EHKkk7AjswKqXCb0t+vw/Wu9uLz8a8/zvDBpkwArh94/sPMxqRkLyfbLgsAECVTw8M8\n+eNkKfty5KFh1Y0tfL4zV3aZs501cyZGdjhO+04AQG5Fg2RLGtbFZ6Sgqq0I6ColWkFB4epGKQIU\nFK5R0gurWbo5i/UnSqRddoCJsT7MT4xiZIRnt4v//HONLE3LJPVgoczJZFy0FwuTYhgd6UV9s5YP\nNmWybEuWTBpkJNTTkaenxHDLdYFUNrTwtzXH+Xpvvux4NyUE8uzUmA4pqb3N/txKXlt7QuY21BWz\nhwbz5xviek0H31uU1Wp44ov9tGj1WKlVLL1vqMXWly+vPkZhlbiQXJgUzSPjI/ryVDvFwSQZ2DR8\nzZLB4I2nRCmQrbW602FftVrFc9PjmDbAD02rnoSQnqUBm3LQ4GQ1NMzDoi7Q8HAP/jhZSnGNhsqG\nFknOtnJHLg3tPiOPjAvHxlrNv34/w9goL0ZFinML5oqAvbmVUhEe5t356y1L43ZW0oIVFK5Vui0C\nUmbH3wTMandxbXJq+gsmt1EZbjMBcARygK+TU9OLe/FcFRQULhBBENidXcnStEzZcK1KJSbuzp0U\nzeDg7rXs2eX1LNmcxerDRbIwo8Q4HxYmxTAszANNq47l27JZvDmTahM7UCNB7g4sTIpm9rBg6jRa\n3l5/mpSduTLpzbQBfiyaFkv/gK5Dxy6Uouom3vr1FGuOWPaVNTzMg1dvGkB88PkvHPuKZq2OOV8e\nkLoYL93Qj6ZWnWyx2RkFlY38YdDSz4oPYNE0y+YH+gInk8V+WZ2oYbdWq7Cz7lqSptcLbDwpynzG\nRnlJsqLOuNDXsLRWI7lmDe0m/MtIuIlUp6iqCU8nW2o1rXy6I0d2O1d7ax6dEMmrq4/x46EiVm7P\nYc9fp+Boa805Q3fE0dYKK5WKumYt200+0111Akw7XF59OE+joKBweWNpJ6AUeNfk5/a9/OnANOAz\noASxIHgmZXb8q8mp6RouI1Jmx1slp6YrcYkK1xSCIC6MlqZlStIFEBdVtw0JYs6kKKJ9u99lP1Na\nx+JNmaxNL8ZU0TO1vx8Lk6JJCHGnVafn6735/PuPM2blNH6udiyYHM1dI0Jo1ur5YFMmK7fnyLzg\nJ8R489z0OK67gN1ZS2hs0bIsLYuPeqD7f+nGfsyKD7hsdP+mCILAyz8d45DhNb57eAg1Ta08mrIf\nb2c7Pn1oRJdF3ld78qWu0PzJ0Zf0MTqa6QQ42Vl3e07Himsk+1ZzUqDe5qBJnsXQUMver0HuJkVA\ndRODg934fGeuzPcf4PEJkZTUaPjJYNNa16xl06kyZsUHUmlwB/J0ssXV3oYTZ2vJKKuX7tuZPWh7\nurP3VVBQuHqxtAjQJaemm43tNHQBpgK/JaemHzRc9inwHjAS2GrmPjHAIuBF0+OmzI6/FYhPTk1/\nzfBzFHAbEA40AOlAqrGwSJkdPxCYARgFq7nAd8mpoo1Hyux4L+ANYDlilyISSE2ZHb8buBcYADgA\n1cCm5NT0jRY+HwoKVwRanZ5fjp7lw7QsWcqrvY2ae0aE8vjESCl8qCuOF9eweFMmvx6T23jOGOzP\n/MnRDAx0Q68X+O+RYv654TS5Jl7lRrycbJk3OZr7R4WiFwRWbM/hoy3Z1DS1dQlGhHvw/PQ4SfLQ\nV+j1AqsPF/GP3yzT/RvdWZ6YGHlZ6f7bk7Izl+8PFALigvS1Wwcy9Z9bANH16a6PdrHk/iEk9eu4\nONa0inkQIL4Ofd196Q5HWSdAfI0smWn442TbsO+Ufr69f2LtOJgvFgHWapXFXYVA9zb5WHF1Ew3N\nWlZsl3cBPBxteHh8BM9+e1gm11tzpJhZ8YHSYLCXky0Bbg6cMEnWtlKrLNb691WatoKCwuWPpUWA\nT8rs+LcBLaLU56fk1HRj39ELcAVOGG+cnJremjI7PgOIwkwRkJyanpEyO74cGAOsB6mYGA38bvg5\nCHgaWAN8DjgBdwHJwEeGQ9kBG4FCwBaxIJifMjv+b8mp6aZbKrcBPxiOowNuAYKAxUCd4TF0NGtu\nR3VeNfbu9rTUt2Btb41eq0elUqFSq9C16LBxtKG5thl7D3uaKptw9HaksaKxw78OHg5oajTYOtui\n1WhRG9rbeq0ea3trWupbsHezp6mqi2N4OqCp0mDnakdrYytWtlYIegFBEFBbq9FqtNg626Kp1nR6\nDOO/ymO6+h6Tlbsd3+7II+VoMQVVbQFfLnbW3D3In4fGhONmpUbdqqehvKHTx7TvRCkrj55l45ly\n6RhqFVwf7cO8iZGEO9mhtlHzy+48/rM9hzMVDbTHxdaKuRMiuS3CC2cfR1b8dpqVh4tk7iYD/Vx4\namw448I9UVupqSuu67PXadexEt7bk0d6sdl9jQ7cPMCPBaPCCPV3QVNch/oyfe+l12t4fa34Nezj\nZMt/bh3MiWNl0qAoiE47j6Xs540b+zMjylv23vt+R66U4nzvkGCq86ov6WPSm7xvy2rFhrKjjZqa\n/JouP09/GArV/n4uONY002Jj1aev0z6DBCfW2wl9jYYGC74j1BWN2FmradbqKSivZ8Vvp2UJ2gAP\nDw3m6JlyfjfY4lqrVWj1AptPlXHuXAPlhufHRa0myFXuHBToYkdzRSMtnTwmU1oaWq6a772r8btc\neUzX3mNyD7t4MlNLioAc2mQ+LogL7RcNC+0GwNhbbv8XtRbo6pFsB8ZhKAKAgYbj7zb8PB3Yn5ya\n/rvxDimz41cBL6fMjndJTk2vM3YeTK5PAf6D2DnINLlqs+ltDR2C/OTU9FzDRee6OE8FhSuG+mYt\nX3CPAXMAACAASURBVB4u4qujxZSZOKp4Odly/6AA/jQuAptmLbZO4hdSZxwuqWXFhlNsy2r7aFip\nVMyI9WH+5CgC1FbYudqx80w57+/O5bCZBbW9tZq54yO4I8obdz9nvt6Ry/LvCikx2XmP8XFi/ohQ\npg3wQ9AJfSo/KalvZvHWLNZ2EkrWnoQAV16cFMV1Ie5dPleXA0W1Gp76MR2dALZWav55fT98Xez4\n0SR19vlJUSzekYNGq+f1P84wLsgNH5Oh0O+OiTkIXg42TO/vi7aqb5ScPx87y5pjJbw4OZqoLoaV\nHU06Lk0Gu1mnbvT9J8rqOFEqdrySYi8s/dcSWnR6TpSLEpyEHnROVCoVga725FQ2kl3RwLF2nx8v\nRxvuuS6IBT8fA0Rb3JfGR/L6lixadAJ/nC6n2mCb6uFgQ0i7Xf9QD8XxR0FBoXu6LQKSU9OPmf6c\nMjs+G/g/xF38Py7gd+8CbkmZHR+VnJqehVgQHDYUFgBhiB2I4Sb3Ma4QfIC6lNnxPoi7+hGAs+F6\nFeCJnPaG5FuAOSmz40OBk0B6cmr6me5O2Fid2bt17gRib2jz2hmSGm0Nesv2/9q5mk9yBHAwfIEb\nb9PpMQy/w969i/MxnGtnxzD+qzymK/sxVTW08NnpUj7bmSuT1wS5OzBnUiR3DQ+xSMZypKqRD747\nxI7MtsW/jZWK2UODmZcYLXmPHymo5t3UI7LhYiNqFSxIiuHR8RE421nz8+Ei/v3TUZkjSYS3E89M\njWFWfGCX/vO98ToJTjYs2ZLNx1uzZNkFnRHgZs9LN/bj5oTADkXJ5fjea2zR8tzGM1QbXvc3bx/M\nhGHBAOwoEReX4V6OzL8hjrgwDx7/fD8NLTq+z6pgUZQX9m72HC2s4ahBT37fmDCcXe3BVf5Ye+Mx\nCQ7WvPbJLhpbdPx4ppy/3dwm12n/efIP6zhk6+xgg1uom+x3GhEEgfe+PwyI79k7R4XhbnDI6avX\n6VB+FS0GF6vR/X1x8pEXNV19RwR7OZJT2ciWrI57UPOSYjjV2MLeAnG248HR4fxpeixL9hdQ2dDC\nulNlVBkKU39fJyLaFSAR/i44+3Wc8TH3HWTrZHvFfu+ZHv9q+S5XHpPymC4mPbYITU5Nb06ZHX8W\nMIpKjV56roCp6bErHbsDpsepS5kdnw6MS5kdXwLEA0tMbqJC7BaY0+kbJ7EWGP7/JaKuXwf8nY6P\nSyb6TU5NP5YyO/5/gEFAP2BByuz4A8mp6Smdna+CwuVISY2G5duyWbU3X2a/GeXjxLzEaG6+LrBb\nza8gCOzIPMf7GzPYm9v2Eba1UnP3iBCeTIyS5gbOlNbx3obTrD9eavZYcxOjeGJCJG4ONqw/XsI/\nfz8jG1YMcnfgqSnRzB4a3G3w2IWi1wv8fKSIf/x6mpLa7ne17W3UzJkYxZxJkd06ylwuCILAC9+n\nS/Mej4yLYLahAKhpbOWAYWg1qZ8fKpWKqf19SQhx50hBNZ/uyOXR8ZE421vz7obTgKglv29UaJ+d\n766sc9L71FzYlSkOZqxATbMD2rPuaAn7csXH+9DYcMK7sMjsLQ7IhoItcwYyEuhmfrfez9WO+0aG\nctdHuwDRJWn+5ChsrNTcOMifr/bks8VEnufpZNch9TfMs+8fu4KCwpVPj//SpcyOtwH8gdOGi84h\nLvb7Iw7mGm8TDaR2c7htwByg3HCMkybX5QOByanpZebumDI73slwHquSU9NPGy4LBSxaWSSnptcj\nSo92p8yOPwY8ljI7/qt2swQKCpcluRUNfLQ1i9QDRbJwrvhgN+YlRjN9gF+3ybCCIJB2upz3N2VI\nbjIAdtZq7hsVypyJUfgbdkHyzzXy7z/O8OOhIrPHemx8BE8mRuHlZEva6XLe3XCa4yYSBx8X0RHo\nnpEh2Fn3/WDtwfwqXltzgsMF1d3fGLjlukBevKHfFRectDQti1+OijKecdFe/GVGP+m6LRnlkn1r\nkmFAVqVS8cyUGB7+bB91zVpW7MihXqOVFpU3xQcQ0MnitDf4/WRb8Viv6Wgba4q5BX9nQWGaVh1v\nrBP/fHg62bIgKeYCzrIjuRUNNLbo6B/gIusOGT83Pi52BPdQgtPZe23+5Gg2ny7jaJG4v/bYhEi8\nDGnBNycE8tWefNntvZxsCXJ3QKVCGiDuKi1YbyaoT0FB4drEkpyAOxBdeSoRNfszEYdwdwEkp6YL\nKbPj/wBmGHb0Sw23aQb2dnP4k4iuP7MQ3YVMv53WAy+lzI6/H3G4uBlx0R+fnJr+JdAI1AMTUmbH\nVyHOH8wGuu33p8yOvxmxyCgGrIAhQIVSAChc7pw8Wysu/NpZdI6J9GLe5CjGR3t3q6vX6wV+P1nK\n4k2Z0kIDRDeWB0eH8diESHwM7c3SWg0fbMrgy935Zo+VPCaMeZOj8XO1Z2dWBe9tOCPbHXV3tGHu\npCj+NCbc7M5ub1Nc3cTbv51i9WHL/P4Tgt149aaBDDMjPbnc2XSqlHfWn5Z+XnzvUFl3ZZNhwe1k\na8XIiDaFZGKcDwnBbhwprOHDtEwplC3Oz4XXbx3UZ+cr2tS2FQHt7TDbY29tJVvYQufuQCu250he\n/YumxeLmYHPhJ2zgSEE1dy7bRYtOT6inIzclBDB9gD/9A1wlZ6Choe49nmfxNSMRCHSz585hIcz8\nYBsgOgQ9NqEtrG1EuCd+rnYyRytPJ1tsrdUEujlIz0F4F7MWVY1tHRhL3JYUFBSuXiz5BvAAHkPU\n3NchDgq/lZyabipk3IBYGNxHW1jYv7vLCDAUEDsRi4Cd7a4rTJkd/w6i5v95xB3+CuCQyX0/Ae4G\n/h9QhugANMeCx6QFbgW8gVYgG7kUSUHhsuJAXiVLNmex6ZS8MTa1vx/zJkdZJEXQ6wV+PVbCB5sy\nZHahznbWPDQ2nEfGR0hhUlUNLSzbIvrnm+PekaEsSIomyN2Bg/lVLPrusGyOwNnOmscmRPDo+Ahc\n7HtvQdYZTS06PtqaxbItlun+/VztePGGftx6XVC3HZPLgWatjj3ZlcT4ORPg5kBmWT1Pf31Ydhtn\n+7avc61OT5phd39irA+2JgFbKpWKp6fG8Mhn+6UCwNvZjhUPDe/T1+pYUa1s8dpdEaBWq3CwsZLJ\n3Mx1AjStOj5MywLEQuaeESG9dMZi4fLmryelblt+ZSNLNmexZHMWtlZq6fKeSoEA9uZUdrjsbK2G\nwX9bj9ZQ4Vc1tvLGulOAOGszPtqbpH5+fL23rSj3NAx3h3i2FQHt5UGmGG8j3seyLAEFBYWrE0sG\ngz+x4DYCopXnmvM4BzfgVLuiwnjcPOD9Ln7vKcQZAFOeMrn+HGaKguTU9HXAuvM4VwWFi4YgCGzN\nqGDJ5kzZgkGtgpsSApmbGEU//+4dSXR6gbXpxXywKZNME32+q701j4yP4OGxEbg5iou/+mYtK7bl\n8K8/zM/J3zEsmKeSYgj1cuR4cQ2vrj7GRpPCxN5GzUNjI5gzMfKihBAJgphN8Navpzhb073u385a\nzZyJkcyZFNWptORyokWr57v9BSzZnMnZGg3+rvasnj+OJz7fT12zfBF9oriWBEO42qGCaimlOcmM\nV/7kOF/ig91IL6zBzlrN8uThBHv07oIwo7SOjafKuHNYMF7OdjIpECALh+sMR1treRFgpptUWNUo\nHevRCRG9OmuyNaOC3dniZ29ctBf1zTqOGCRmpjK8nnaStDo9P5mR1gkCaAW5XMd0wd9eCgRtib/R\nvs7szq4k2MOhy66b6YB+qOeVJX9TUFDoXS7ZX8GU2fEOQABiNsDHl+o8FBQuN3R6gfXHS1ialsmx\nojZdva2VmjuGBzNnYiRhXbT7jbTq9Kw+VMTStCxyTPz7RYlBJH8aEybt/GpadXy5O4///eWk2WPd\ncl0gT0+JIdLHmcyyeuavOsgvYiafdG73jQpl3uQofF06d1PoTQ7lV/Ha2hOyeYaumBUfwEs39uv1\nxW5fkVPRwJ9W7pH5/JfUahj9pvlMw705lVIRsNEkMCsxrmMRoFKp+Pfd17E0LYvZQ4P7JJn5+R/S\nOVJQzepDRaTOHcsfJ+RFQG03MwEgzgVU1Jv+3PFPVnF1W/EX1os723q9wD9+FXfhne2sef+eIXg5\n21FQ2ciBvCoOF1Rz4mwtAwNde1wErEm3TK5mlOUB1Gu0NLV2DLs3du/mJkaj08PMwQFdHtP0/RRy\nhXwWFBQU+oZLuRU2D9Hac3tyavrRS3geCgqXBS1aPasPF7FsSxbZ5W2LdidbKx4YHcaj4yPwde1+\ngd2i1fPDgUKWpmVSaBK45O1sxxMTI7h/VJi0mGrV6fl+fyF/+cn8R3DGYH+emRpLrJ8L+ecaee67\nI/x0qFCaR7BSq7hreDALkmIsSh7uDUpqNPzjt1Nmd1LNMTjIjVdvGsCI8PbOwZc33+zNlxZswR4O\n6PUCxV10O/bmVvL4xEgANhu6Mwkh7rKFpCmRPs68e2dCL5+1iCAInDFIzk6V1PFoyj4p0dbeRo2m\nVU99sxa9XuhSjuXQztbWfBHQ9h7vzcHuNenF0jk/bjKcG+LpSIinI7cOCTqv4+r1As9+e6TD5Yde\nmcaUf26hsqGFSG8nNjw7UdbVqGlq5YONGSxvlyy8ak8+D40LJ8jdgTdvH9zt7y+oausEKHIgBYVr\nm0tWBCSnpr93qX63gsLlRFOLjm/35fPx1mzZIs/d0YaHx0aQPDYMd8fupTWaVh3f7S9gWVqW7Dh+\nrnY8OSmKe0eGSlkBer3AmvRi/vLjURpaOu4uTu3vy7PTYhkY6EZJjYa//nSUb/cVSFpllQpuSQjk\nmamxF8WKEcTn6eOt2SzbkmV2R7Q9Pi52/Pn6OGYPDb4idP/tOWSQncT6ObN24QTmfLHfbBFga62m\nRatnf24ler1AUXUTpw2BWVPMSIEuBnXN8l1ro6QGYNoAf9YcKUYQoLFV1+VwavtFv7nbGosAlQrJ\nzepCEASBA3lV0tC1t7OtbDj3Qln49SGzl6fsyqXSYJu6aHpsB1mTm4MNL88aQLNWzxe726Jv3vz1\nFHtzKlnx0AiLfn+BiRyop45GCgoKVxeXvyhWQeEqpaaplS9357Fye47MM93f1Z7HJkRw78hQi3Tr\nTS06vtqTx8dbsymraxu8DHJ34MnEKO4cFiwt/kWHljL+8tNR2W2NTIjx5vnpcSSEuFNR38zra0/w\nxe48WrRt+ucbBvqzaLrYHbgYGHX///j1VJc74UZsrdU8PiGCuYnRV6z7iVan52ih6Nw0PNyTjLI6\ntmd2DGazVquYOymK/2zMoKqxlczyenZnt41XmZsHuBiUmeQy2FippAFkP1c7xkR6seaIKIep07R2\n+Ro52nbfCSgyyIF8Xey6zcTojrXpxSzelCkbnF+YFNNr8yPLt2VLlq6muNhbs3ybuMM/MNCVGYM6\nl/T0N5NMvOVMOc1anUX2u6ZFgLtj3w/tKygoXL5cmX8hFRSuYMrrmlm5I4cvd+XJhjvDvRx5clIU\ntw0NsuiPeX2zli935/HJ1mxZERHq6ci8xChuHxosc4XZmVXBy6uPyaRGRkaEe/DSjf0YFuZJTWMr\n764/zcodObKhzMQ4H56bFsfgYLfzfeg95nBBNa+tOc5BC3X/Mwb78z839r/iZQ4ZZfXSTnqopyNP\nfH5AWkibMrW/H7PiA/jPxgxAnAswzgP4udoxMLD7wfG+oKSmrcD831sH8eavp6hubGXG4ABcHdr+\n7NRptAR08XbqUASYGXg9WyN2Ai5UCrTpVCkLVrXt0ttYqbhnRGivhKc1tmh5efUxfjxoXsJm6pT0\nwvVxHTpXRversVHe2Fl3LHS0eoHs8gazBUJ7CkwkgldKKJ6CgkLfoHwDKChcJAqrGvl4azbf7iug\n2WRnvZ+/C/MnRzNjcABWFshWajWtpOzIZcWOHMkBBiDS24n5k6O55bpAmZTgcEE1/+/nYxwprOlw\nrEFBrrw8cwCjI71oaNayeFMGH2/NptZkUTIqwpPnr4+7qJr6khoNb/92qtNwsvYMCHDl1ZvEx3E1\nYBpy9vHWbEkm8ty0WL7YnSd1ce4dFUq0rzMejjZUNbay5Uw5uwydgKR+vj32ru8tSk06ASPCPfl5\n/ji2ZlRw+5Ag9pmkUndnE+rUbpHa1UxAZwm8lqBp1fH//nscECVHcxOjuHtECN7O5ucpesLpkjrm\nfXWALDPFd3tGRXgyKdanw+X//P00n2zLYcW2HF65aYDZ+54prbOoCNCZBIxcqZ0yBQWF3kH5BlBQ\n6GMyy+pYmpbFfw8XS5p6gOFhHsyfHE1inI9Fi7XqxhZW7sjl0x05ssVTjK8zC6fEMLNdEXG6pI7X\n154wKyOJ9HHi7zcPZHy0N81aPcu3ZbM0LUtabII4VPrC9DjGRXtdtMWkplXU/X+YZpnu39vZlheu\nj+OOYSEWFVBXCkdMigDja3LrdYEsSIrGx8WOl348ysBAVyYYwuGGh3vy+4lSfjdx4Enq53fRz9tI\naZ3pTIo9TnbWPGhwtDLNIqjrxiHIsV1qcPtFqyC0DUsHup//PMCyLVnSEPYL18eRPDb8vI9lem7f\n7S/g1Z+Py4p+U+4aHsx3+wuln/98Q78OnzW9XpTDgThrsS2j7fOcEOzGseJadHqBUyV13NLDc2zf\naVFQULi2UIoABYU+4khBNUvTMtlwolSWejop1of5k6NlKa5dca6+meXbc/h8Z65siLd/gCtPJUVz\n/UB/mXwg71wDb647xW/HSzocy9/VnjduH8TkOF9adQJf7sln8aYMWYhTP38Xnpsex9T+F28nWRAE\n1qSf5a11Jy3T/VupeWR8BPMnR12UMLKLjWknACA+2I23ZsejUqm4Z2QoQ8M88Hezl173URGesgLA\n1lrNuOhL1xUpNbyGLnbWHXbvXe3lcqCuaC9XaX+scw0t0rzK+cqB8s81stQQNjYgwJX7e0H+U9+s\n5eWfjkrJ1WoVsoRvEF/T8TE+siLAnNXogfwq2efTOE8B4OFkS7iXI1nlDZIbU0+4ErIyFBQU+g7l\nG0BBoRcRBIFd2edYujlLtgOvUsGMQQHMTYxiUJBlmvqyOg2fbM3my935sl3xhGA3FibFMKXdIr2k\nRsN7G07z/YHCDsdysbPmnTsTuH6gHzq9wA8HCvnPxgyZhWikjxPPTo1l5uCAi+qmc6SgmtfWnuBA\nXpVFt79+oB9/mdHfoqyEK5GGZq1sMNXb2Y6PHhwmDXcDHYay20u1xkR6XVK9t3HR6uvaUU4j7wR0\nVwS0HwyW/2xqDxpwnnKgv685LhUSr9866ILDxk4U17Jg1UGyDdkcPi52PDAqrEMA37PTYlm+rS2R\n+45hwWaPZ5rH0R4nO2v6+buSVd4gOUJ1hb5dJWJuvkBBQeHaQSkCFBR6Ab1eYOOpMpZszpTt4lqr\nVdw+NIg5k6KI8nG26Fhna5r4aEs2X+/Nl8kIhoV5sDApmkmxcvlQZUML72/M4LOduR2OpVLB+/cM\nkQKEfjl6ln/+fkY2HBzs4cDTU2K4bUhQr6atdkdprYa3fztN6sGORYs5+vm78OpNAxgb5d3HZ3Zp\nWd+ug/PRg0O7XeAODHTF0dZKGuSe0v/SuAIZKTHMBJiz7HQ26QTUN3ctBzKdCbCxUnUYmDctAs4n\np2LrmXIp8fqu4cE9Dv0yRRAEVu3N5+9rTkhFxYQYb/5193U8881h2W2Hhrrj42zHjsw2JycX+45/\njnV6gXUGNyFvZzsq6uWOXs621gS6O/DL0bMUVjVR36ztUudf3SR/vi/VzIiCgsLlgVIEKChcAFqd\nnrXpZ1malsmZ0rZoU3sbNfeMCOXxiZEWL04KKhv5cEsWP+wvpEXXtvgfHenJU0kxjImSa/PrNK18\nvDWbDzZlmj3eP+9K4JbrglCrxATZ934/w8mzbQnEfq52LEiK4e7hITIXob5G06qTZhAazWQUtMfL\nyZbnpsdx94irS/dvjsYWLYu+awuSen56LMPCupeNWVupGRbmIenFJ5tJCb6YGC1C/cykRzvZWkny\nmG47ASY7/+Y6G6ZpwQE9nAnQ6wX+8VtbIvCfb+jXo/ubUqdp5S8/HZOkOmoVPDc9jrmTojhcWN1h\nLue56XFSDoGR4uomjhXVsHhTJkNC3XliYiT7cyulIfBnp8XwwcZMqcACsRMQ59+2uXCmtI6hoZ0X\nMpUNHW2BFRQUrl2UIkBB4TzQtOr44UAhH21tGygEcTcveUw4D48LlxJGuyO3ooGlaZn8eLBINjg8\nIcabhUkxHWYHNK06PtuZy1u/njJ7vH/MHsztQ4OxVqvYkXmOdzeclnUnPJ1smZcYxQOjw2QSk75G\nEAR+OXqWN9edoshkB7czbKxUPDwuggVJ0bheBbr/Vp2ej7ZkEeblxE0JgR2uFwSBF35Il122ICnG\n4uPfFB/ItowKxkZ5XVKLVL1ekBau5hKuVSoVznbW1Gq0PZIDdRUUZmutxsup+0A9U9YePcvx4rZE\n4PN1AjpWVMOCVQfJPSf67/u52vH+PUMYZXCqWtKuSB8V4YmVWsWWM+Wyy3dmnWPTqTJadQK/HS+h\nrK5Z6ihYqVXcOCiAvHOiw5gRZzsr4vzbHIFOl3RdBJyrb+n0OgUFhWsPpQhQUOgB9c1avtqdx/Lt\nOZSbhG15O9vy6PhIHhgdavGgamZZPUs3Z7L6cJFsaDCpny8LkqI7/DFv1en5Zl8Br6w+ZvZ4r986\nSNrVP5BXyTvrT8uSWl3srXliQiQPj4+46NaARwtreG3tcfblWqb7n9rfj7/O7E/ERUojvhisO3qW\ndzecQaWCAYGuHeRhS9OyZPrvaQN65u5z14gQRkZ49nhHvLc519AiFbP+ZmYCQJwLsKwIaHuftp8H\nACg2ZAQEuTv0SNrSotXz3oYLSwQWBIEvd+fx+tqTUuduUqwP/7wrQdoAOFZUI8mNjCyaFit1IOxt\n1IyL8mbjqbIOz8WK7TlS52tslBeeTrbcnBAoKwKc7KwJ9XTE3kaNplXP6W6Gg03dv6yv8q6agoJC\n9yhFgIKCBVQ1tPDpzlxSduZSY6KrDXJ34MlJkdw5PMTiXfXTJXV8sCmDX46elbkGTR/gx8KkmA5h\nXDq9wH+PFPHst0cwxyuzBnD/qFDsbaw4VlTDuxtOk3a6bZfR0daKh8eF88SEKNwuckJoaa2Gd9aL\nun+hY9ZVB+L8XHhl1gDGx1x9un9jArAgQOqBQpn85I8Tpby7QS4PGX4e+vTwy6BoMs0I8DPTCYA2\n/Xt3FqFOsiKgczlQgJnZg674dl8+eYad+/NJBK7VtPJSajrrjorzG1ZqFc9Pj2POxEjZUP2SzfIu\nwPhob+o0Win87qGxEbjYW0uFQriXI/8zoz+vrz1BYVWT5Ok/K16c6RkY6Iqbg430HWRvY4WVWkWM\nrwtHi2o4081wcIVJEXClB+opKChcOEoRoKDQBSU1Gj7Zls2qPXKHnmhfZ+YlRnFTQiA2Fg7THiuq\n4YNNGaw/3mblqFLBjMEBLJgc3SHoRxAENpwoZc4XB8we7883xPHw2AgcbK04U1rHv34/w6/H2oZK\nba3VPDg6jLmJUb0SetQTNK06VmzPYcnmTIt0/x6ONiyaHse9I0Iu6nDyxcTUveXHg0U8Nz0OK7WK\njNI6nvn2cIci6boQ94t8hueHVqcnu6KBaB9n1GoVZSYZAebkQGBaBHTdCXCwUA7UE3vQOk0r/9ko\nLs5DPR25d2TPLEGPFtYwf9VB8ivFIiLAzZ4P7h3C8HYOTWdK62SfRxB1/X/9SezkudhbM3dSFBqt\njj05lUT5OPH89Dic7KwZEODKPR/vpqi6CWu1iukD/AFRSvXo+Aj++bvoNNRq6EDE+olFQLedABM5\nULDHhSUsKygoXPkoRYCCghlyKhr4aEsWqQcLadW1rc4Sgt2YNzmaaf39LLbRPFxQzQcbM2SyALUK\nbk4Qw5+ifV063GdHZgX3L99j9nhPT4nh8YmRONtZk1vRwL//OMPPR4qlRaS1WsXdI0JYkBR93raJ\n54sgCKw7WsIb605apPu3VqtIHhvOU1NicHO48nX/XWG6S1tSq2FHZgUJwe48/vl+6pvFxbDR4cfG\nSmWxleyl5s+p6fx4sIinp8Tw7LRYSmraZHLm3IGgbUFvfNyd4SQbDJZ32lq0esoNbjk9KQL+75eT\nksvOc9NjLR6KFwSBlJ25vLHulCT/Serny3t3JuBhZh6hfRdgcpwPBZVNkv3rk5PEzpwbNnz+yEjZ\nbUM8HfnmidH8Z2MG46O9Zcd/YmKkVAQY3cOMw8HnGlqoqG/utOg3HQy+2j9vCgoK3aMUAQoKJpwo\nrmVpWibrjp6V6fTHRnkxLzG6R+m5+3IreX9jhizh00qt4vYhQcybHG1W734wv4q7lu2SDQgbeWJi\npDQkW1zdxP/9coLv9hdKkgG1Cm4bEszTU2II9br4rf5jRTW8tuYEe3Mru78x4gLqrzP7W2ydeiVT\n3dgiC3wC+HZ/AZ9sy5YGSpPHhPH13gIAbhgUcEUEOen1AhsMna3fjpXw7LRYmRzIp5PFqHFu5kLk\nQKW1GqnwDbRQDrT1TDnf7BOf4/HR3txsZkDbHDVNrbz4Q7oUwGelVvHiDXE8Nj7S7GZATkWDLNQL\nYOGUGMkq1NvZjofHhXf5O0M8HXn3zoQOl5t6+7cVAfLhYO9o88/7ORM50MWeC1JQULj8UL4FFBSA\n/bmVLNmcyebTcseOaQP8mJcYxZAuHDdMMYaFfbAxk13ZbR7gNlYq7hgWwrzEKLNa3FMltTywfG8H\nH3CAB0aH8vz0ONwdbSmva+ZvG46zak++zEZ05uAAnp0WY7ar0NeU1Wl457fT/GCh7j/G15mXZw1g\nUqxP35/cZYKpfayPix3ldc2yIeAbBvrj52YvvaYPjg676Od4PmRX1Eu7+WfK6qjTtEpFgJeTbae7\n7L0hBzLtNFnSCTDq+EG0KX1r9mCLCvrDBdUsWHVQCtYLdLPng/uGdpkp8GFapmwTYfoAP44Xg/b5\npQAAIABJREFU10oSoqemRJ93mJtKpcLOWk2zVk+zVpTaxZmEx50uqWNctPmZmiYTad6lDJNTUFC4\nPFC+BRSuWQRBYMuZcpZuzpLtXlupVdycEMiTk6KI87dsUS0IAtsyKnh/Ywb7TZJvba3V3DsihDmT\noswuVHIrGng0ZR9ZJuFdRm4fEsRfZvbH29mO6sYW3vr1FCk7c2WzCVP6+bJoeiwDAy++dMSo+1+6\nOZMGC3T/7o42LJoWy30jQ69a3X9nmM4DPDO1TRcOYgjaO3fGM+P9bQDE+jkzIvz8Q6suJkcKaqT/\nCwKkF9ZIRUBnQ8HQFhjWXRHQVSeguIdFwBu/nKS4Rjy3v8zsT7BH190yQRBYuSOXt349KUkCp/b3\n5d07E3B37NyOtKCykR8PFskuezIxiicNsz0hng7cM6JncwjtkYqAVrFo9HO1kwaGuxoONg0fNOe2\npKCgcG2hFAEK1xw6vcBvx0pYmpYp+YSDuGC/a3gwcyaa3603hyAIbDpVxvubMjli4sVvb6Pm/lFh\nzJkYaXY4sqRGw7yvDkguIaZMG+DH/906CF9Xe3GI8Y8Mlm/Lps5EPz0u2otF0+IuKOH0fBEEgV+P\nibp/4+5oV1ipVTw4OoxnpsZ0uXi6mjldIr7PnGyt6NeusFx6/1D251ZJeRMPjg67YpJc0wvl799D\n+VWS7MmvE3tQQMp9aNGJu9ntk4CN2NuoCfV0JL+yscPzdramTXYU2I0tat65BkkGNC7ai/u6GQau\naWzl+R+O8PsJUepkrVbx0o39eHR8RLevzUdbs2RyvpmDA9iTbRL6NdXyOYTOsLOxAo1WWtSrVCri\n/FzYm1spzRyYo9ZEfqV0AhQUFJRvAYVrhhatntWHili2JYvsiraddydbKx4YE8aj4yI6dTNpj14v\nsOFECR9skhcSTrZWPDgmnMcmRJgdzqtsaOG57w53kB0BjIn04r27Egh0d6CpRcdHW7JYtiWLqsa2\nP9xDQ915/vo4xkZdGgvNY0U1vLb2BHtzLNP9J8b58PLM/pdEptTXnK1p4skvD+JoY8Xy5OFdavjP\nlIhyIDcHG+Z+eVB23YJVh7CzEReFTrZW3DokqO9Oupc5XFgj+/lQfrVFnQCjHAjEboCds/kiQKVS\n8fUTo8korWNCjFw+ZpQDuTvadLug3WwylP+XGf27XMgfyq9iwapD0vGD3B1YfN8QiySBpbUavttX\naHL+8Mj4cB7+dB8gdnluue7CX1/jXIBRDgQQ5evE3txKCgySI3NUNbbNBCidAAUFBaUIULjqaWrR\n8c2+fD7emi3bPfRwtOHhcREkjwm32D9fpxdYd/QsizdlyiQeLnbWPDQunEfGRZh1CqnTtPLK6mOs\nPlzc4bqBga4se2AYIZ6ONGt1pOzMZfHmTFkY2cBAV56fHkdinM8l2SUuq9Pw7vrTfH/AMt1/lI8T\nL88awOQ4374/uUuAplXHE58f4GiRuAheuT2HhVPMp/sKgiC9V4pN3n9GTpxtKyJvHRJkcdjcpaZF\nq+ekSQEMcCC/impD0dqlHMhOXgR0ZWEb5O5AkBm5j2QPaoEDljGd19/VngHtrHhNWbE9hzfXnZR2\n8qcN8OPdOxIs/n74aEu2bFbnloRANp4so9Yge3reYAt7obQVAW2/y8PQZatuakUQBLPfE9UNSidA\nQUGhDeVbQOGqpaaplS925bJyR64sKdPf1Z7HJ0Zy78gQi/8QanV6/nukmCWbM2X6fTcHGx4dH0Hy\n2HCzlnuaVh1vrDvJ57vyOlwX4unA54+MIsLbCa1Oz7f78nl/Y6Zs4DHa15lF02K5YaC/xZakvYmm\nVcenO3JZsjmzWztHAFd7a56dFssDo8Mszk+40hAEgT//kC4VAAAfb83mwTFhZuVOZXXNsoA5gHtG\nhPD3WwayZFMmS9Pa5CMPXCEDwSAOoBoXvENC3TmUXy0VANBdJ6Dts1LfzVxAZ5w1BIV1JwXStOqk\nIf1JsZ0X0T8fLuL1tScAcZD/pRv788i4cIuL7or6ZlbtbfucW6lV3DcqjOSVewHxOeppCnRnGOVT\nxpkAaCsCdHqBumatJLkyxVRS6Kx0AhQUrnmUIkDhqqO8rpkV23P4cneebOEa7uXI3MQobh0S1KkG\nuT2tOj0/HSxiSVqmlDAK4Olky2MTInhwdJjZndsWrZ73N2awuJ1XOIgL5R/njSXa1wW9XuDnw0X8\n+48MckwkSqGejjwzNYZbrgvqlZ3DniIIAuuPl/B/605KWvWusFKruH9UKM9OjTXbCbmaWLYlm/8a\n7B/DvBzJO9dIXbOWj7Zm86JJCrCR9gFOw8I8+PstA7GztmLR9DhuHBzA4k2ZxAe7dQiMu9RoWnUc\nKagmIcS9QyL2EZN5gIfGhnMo/7Ds+q5mAuRyoK5tQjvD0qCwfbmVaAyL5Ulx5h2pCqsaeXm1OKzt\n4WjDpw+P7HFY24rtOdLvAbhtSBBr04ulQf4Xro/rtS6eUT5mKgcy7VbUNLaaLQJMUToBCgoKyreA\nwlVDQWUjH2/N5rv9BbI2ef8AV+ZPjuLGQQEWL6ibtTq+31/Ih2lZsp15Hxc75kyM5L5RoWb/iOr0\nAsu3ZfPmr6fMHveXp8YzMNBNWmT/c8MZmawowM2ehUkx3Dk8+JLtpB8vFv3+91io+58Q480rswYQ\n63f16f7bczC/irfXi69tsIcDP80bx+Of7+dAXhWf7sjh4XHh+LrId6ZX7siR/m+tVrHsgWGyIrR/\ngCtL7h96cR5ADyiobOSxlP2cLq3jnhEhvDU7Xna9cRDe1d6aGwb5S441RiyVA9WeRyegVtMq7Wp3\nF4i3xTB/Y6VWmbXO1OkFFn13RHIqevuOhB4XANWNLXy+M1f62dqQB5L8qdgFmBDj3atzPF3JgUDU\n/ndnbqDMBCgoKChFgMIVT0ZpHR+mZfHzkWIpOAtgRLgH8yZHk9iFBKA9mlYd3+zNZ9mWbEpMQo/8\nXe15clIk94wM7bAjCuLO+Tf7CvifH4+aPe7q+eO4LsRdsiV9b8Np0k2GKr2dbZmXGM19o8wf/2JQ\nXtfMextO8+3+Aot0/xHeTrw8sz9J/XyvGDebC0GvF/j7mhMIgugk9cmfhuPpZMsL18dxz8e70bTq\nWbIpk7/fMki6T25FA2kmQ+A/zRuHj0vnO+SXC/tyK5nzxQFJRpdmZpDd+P6ND3bHztqKwUFuMnvc\nrooA011qS2Rm7TEdfg326KYIMMwDDAlxNyvZW7YlSxp0v29U6HlJdj7dkSuzyb1zeAg/HGhLG//z\n9R07RBeCJAcyKQLcTToBprKszlA6AQoKCsq3gMIVy+GCapZuzmSDwcbPSGKcD/MSoxkZ4WnxsRpb\ntHy1O5+Pt2XLBnKD3B2YNzmKO4YFm5UQCYLAL0fPsmDVIbPH/eaJ0YyO9AJgb04l764/LcskcLW3\nZs6kKB4aG37JEmKbtaLuf/Emy3T/LvbWPD0lhj+NCb9gq8PLhcYWLfmVjeSfa8TP1Z4EMzvBPx0q\nkna/H58QIUl3Rkd6MSHGm20ZFaTsyqOwqolHxkcQH+zG45/vlx1jcPDFz3PoKX+cKGXuVwekBSxA\nSa2Gc/XNeBkGeBuatWSUiR2seMNjGhLqLhUB1moVXl3Iwi5UDmRqTdvVjndRdRMZZaIzk7lwuvTC\nav71+xkAIg1FbU+p07TyqUm3x9ZKzfSBfjzymegINGOwf6+/7lInwCQzxMOkCDB1AeoMJ6UIUFC4\n5lG+BRSuKARBYFfWOZakZbIjsy2RV6WCGYMDmDspikFBlv/BrW/W8vmuXJZvy5END4d5OTJ/cjS3\nDQnqVJaz5Uy5NPTXns8eHkGiwRnnSEE17244zbaMCul6J1srHh0fwaMTIs3uTl4MRElSKW+sOykl\nmXaFWiXulD47NVZaDF7paHV6Hv5sn+y1Uakgde5YhppYQtY3a/nHb6IMyNfFjnmJ0bLjvHhDP/bl\n7kTTqmfjqTI2mlhSGkkec/kP/QqCwBvrxHAsGysVt14XxPcHRMvL48W1TDQspI8V1UiJuMaCSbTQ\nFBfDvi52XQ6yO7ezCO0ppp2AkC46AVvPtHUw2s8DNLZoeeabw2j1AtZqFf+5Z8h57Y5/vitPJmm6\nd2QIq/bkIwjiZ2bRtLgeH7M7jMV3i0knwM2hrehqP4huDkUOpKCgoBQBClcEer3AHydLWZKWJQvl\nsrFScfuQYOZMiiTSx9ni49U0tfLZjlxW7siR/cGM8nFiQVI0N8UHdppqeyCvktkf7jJ73Yf3D+WG\nQf6oVCpOldTy3oYzUuAQiDt4yWPDmTMx8pIupE8U1/L62hOSa0p3jIv24pVZA+jnf3kNrl4o+/Oq\nZAUAiMm3q/bky4qApZszpbCnl27s16FrMyjIjV+emsCK7Tn8eLBQNiBqJNbC9OlLyYG8KilD4/np\ncdwxLNhsEWAqZUsINhYBbd2T7vI2bKzU2Nuo0bTqz0sOZOwEONhY4dlFx8E4D+DpZMugdqnar689\nKT3WRdNjz2u3vrFFy4rtJl0AazVjorx40pAFccewYKJ9Lf9espTu5EBVDR2LAKGdxu9SdR4VFBQu\nH5RvAYXLGq1Oz5r0Yj5My+JMab10ub2NmntHhvL4hMhu3UFMqWpoYeWOHD7bkSuzy4vzc2HhlOgu\nh4dPnq3lxv9sM3vdO3fEc8ewYFQqFdnl9fzrjwzWphdL2nobKxX3jAhlQVJ0l1rpvqaiXtT9f7PP\nMt1/mJcjf53Rn2kD/K5K3f/B/DYN+9uz41mTXsy2jAp+PXqW124ZiKOtNQWVjSzfJi70hoS6c2sn\nYU9RPs68cdtgBga68tefjnW4Pu4KGJz+fr+44LdWq5g9LBgvZzv8Xe0pqdVwvLht4W90BvJ1scPf\nTXw/B7g5EOBmz9kajVlf//a42NugaW0+TzmQ2AkI8XTo9H3Z2KJlR6ZY4E2M8ZZ1JjYcL+HrvfkA\njIzwZM7EqB6fA4jFomkH8cHRYXxmGBC2tVLz9NTY8zpud5hzB7KxUuNsZ019s5bqpo5yIFN5F7RJ\nihQUFK5dlCJA4bJE06rj+wOFfLw1S2ZR6WpvTfLYcB4aG96jnfSK+mY+2ZbNl7vyZAN8AwNdWZgU\nw/QBfp3KF3IrGkh8N83sdX+7aQDJY0Uv8cKqRt7fmEHqwSJpQFmtEncDFybFdOvW0Zc0a3V8ZtD9\n11mi+7ezZuGUaJLHhltsp3olcjBPXMwGuTtw14gQPJxs2ZZRQUOLjt+OlXD70GA+2JQh+eG/OmtA\nlzKX48U1/O/ak9LPYyK92JNzjgA3hx7J1C4GmlYdW8+UMzrKC1d7GxpbtKxNF61PJ/fzlQK8Bga6\nGooAMRhMrxfYnS3OtbR30Xl55gC+2J3LYxMiuv39LvbWlNc1n5c7kPE7IdjD/GdKEARe+CFdeq8n\n9W8b9i2r1fCSYYDfxd6af9193XnZ8GpadXy8NVv62c5azaAgV6kz8MDoMIuKofPBnDsQiN2A+mYt\nNWYGg01DzICrsqhXUFDoGUoRoHBZUadp5as9+azYniMb0PV2tuOxCRHcPyq0R4mqZbUaPtqazVd7\n8mQSjYQQd56eEs3kuM6dbUprNSS+kyb5fJvy/PRY5iVGo1arKKvVsHhzJl/vzZfttt2UEMizU2N6\nJFPqbQRBYMMJUfdvmnPQGSoV3DMilOemx3aZ4no1IAgChwvETsDQMFH6kxjng6eTLZUNLaQeLGRo\nqAepB4sAmD7Az6B7N8+5+mae+PwATa06VCpY+dAIJsf5Ut3Ygq21+pK5PnXGm+tOkrIrjwhvJ354\ncgybT5dLBfJdw0Ok2w0MdGXjqTJyKhqob9aSXV5PRb342Wyvs58ZH8DM+ACLfr+LQY7S05kAQRDa\nOgGdzAMs25LNL+lnAVHKNmOQPyAWMM//kC7t3v/fbYPPe6H+/f4CSSIG8NC4cFZuzwXEmZ/5k8+v\nu2AJ5uRAIBYBhVVNZgeDW7QdJWoKCgrXNkoRoHBZUNnQwmc7cvhsZ65sZzDYw4E5k6K4c1hwjxZR\nxdVNLNuSxTf7CmR//EaEe7AwKYYJMd6dLv6rGlq48T/bZBahRp6YGMmLN/TDSq2isqGFZVuySNmZ\nK/tjPG3A/2fvvOOjqPP//9q+6b33HgKE0DskdAVFjZVTYjkUAVERy33P8+48786fChYQRRSNoqhn\nrIjSktA7gVDSeyG9Z7N15vfH7M7ObN/UReb5eOSR7M7s7Gc2u7Of9+f9er9fAdiwMH7EjZ8KrlO6\n/xNltun+p0V745Vlo5EU/MfS/Zujpq0PLT3UZGm8dkVbJODj9nHB+OxEJU6UteLlH6/QWZ1nF5qX\ndqg0BNZ8eYH2lHhxSSLStIXhplyERxqFWoPv86jgpqKlF49lnoNuMdzXVYxUxuQ+iaGlL7jeRUts\nANDn2B90wXyPnXKgdpmKDlZMZddyi5pYXg5bH5hA1/dknqyki4XvHB+C28cF92vsSjWBD3LL6NsS\nIR/h3s7YXkdlBh6bPbQ1PxJGYTBJkvS1zFNbHNxhojCYCwI4ODgM4YIAjhHlemcfdhypwO4z1awV\n9zh/V6xJi8Gy5GC7TLNq2mTYllvK6tENULKM9fPjMC3a2+zkv1ehRvoHJ1Bo4PAKAPdNCsO/7xwD\noYCPLrkKHx+twM5jFayixtlxvnhuUYLdRkODDaX7L8Y3Z6tB2KD7D/d2xv/dOgqLR/8xdf/myKvR\n1wPoMgEAJd/67EQlSBI4pp3wLh0bZDGoY5qrLU8JxhNzoodo1IPD0eIW1gr8RUaxvWFHrNGMoPBq\nXSdytJ2PEgPd7KrHMUTXJtTeTIAljwC5SoMN314CSVJ1Qx89NIl2sC5q6KZN/EI8nfDP5aP7PfYf\n8mpR36lfJHhsVhQtA/JyFmGVDXKogaCrCQCobIBugURXHGzKJ4ALAjg4OAzhggCOEaGipRcf5pbh\n+zz2ZH1cmCfWpsZgwSjzGn1zx3s/pxQ/5NWxDMPmxPth/bxYTIo07xmgUGuw8pMzJh1ybxkTiHfv\nHw+xkA+ZUo2PjpZj++FyVkehyZFe2LgoAVO1fgAjhVJNIPNEJd47VGKT7t9FLMC6eXF4ZGakw0lV\nhoML2p72YiEfSYwJ/uhgdyQEuNFOzjwe8PSCOLPH+ep0Nb44VQUAGBvigf+XnuzwwZRO+y8V8ZES\n5klr/AHK6IpJqJcTPJxE6OxT4UhJCy5pOwPNS+x/FgDQuwbrgoAvT1fhUEETXrtjjMXggukRYFgT\ncLmuk5b6vLw0ic5qyVUaPP11HpRqAnwe8M79KSzDMntQawi8n6PPAkhFfHi7iFHeTHUaWpsWa5dk\nsT8w63RMBwEm5EAaY1kjBwfHzQ0XBHAMK1frO7Ettwy/Xb7OWqWeGeuDNamxmBHjY9cEqqSxG1tz\nSvHLpXrW8eYn+uOp+XEWV+XVGgJrv7qAfVcbjbZNj/bBp49MhlQkgFylwc5jFdiWW0rLRwBqwrdx\ncQLmWJAWDQckSeJgQRP+/es1VNqo+793YhieWxwPf7eR61Q00lyopla/x4Z4sEzPeDwe0ieG4D97\nqVXj28cFI95MZ58zFW145SeqE5CvqwQfrZw47AFVS48C3s5im4NmuUpDt62dnxiA/6aPxb0fnkRh\nQzcmR3oZnSuPx0NSkDtOlrcim+F/kDbAIICWAynUqGzpxd9+vAKCBDbtL8ame8eZfVxNO8MjwEAO\ndJnRupQ5vjf3FdEZvrVpsZhsYVHAGnvyr7N8Nf48Kxo7tVmAIA8pHpw29H4QzM4+VIcg6rX00krP\nOvtUIAiS9Z4wrB/g4ODg4IIAjmHhbGUb3s8pRW5RM+v+RUkBWJMWa7eEpuB6F7Zml2LvleusVpdL\nRgdi3bxYi51YSJLES1mX8c25GqNto4Lc8d3q6XCRCKHSEPjqdDW2ZJfgOiP1Hx/gig0LExxCPlPY\nQOn+mcZplpgS6Y1XbktyuE41w02fUoOC61S3mwnhxu+99Amh+PR4JVQaAs+aafNY19GHJ3edh5qg\njLU+fHACgjyGphuMOX7Nv461X13A3Hg/ZD46hbWtW66Cq0Ro9B7NZRQAL0sOgrtUhG+emI7fr1w3\nq/EfHezO8pTwcBLRdRT9RScH6lGosf1IGR3EHyxohEpDmJUB6oqC3aRCI6O9K3VUEODtIkawtnXp\n0ZJmWqozLswT6+ebz+pYgyBIvJddQt92EgkgFvJpadDT8+OGJQhkBQEqpmEY9XoQJJVh8WB4BzDl\nQK6cRwAHBwe4IIBjCCFJErnFzfggpwxnKvVyAwGfh+XjgrE6NcbsCqs5Ltd24r3sEpYBF48HLEsO\nxrq0WCRYMGQiSRKv/1aI7Yy2fjqCPaTY+/RseDqLoSFIfH+hFu8cLGGt+EX6OOPZhfFYlhzcr5aC\ng0lrjwKbDxRj9xnbdP+hXk74v1tH4RatkdnNzuW6Tqi1L5ypjj8+rhLkPp8KDUGadJHtU2rw+Ofn\n0KqVnrx2xxiLkrOhIlPbk/5wcTPae5W0/v2XS/V4ance5iX6Y/tDE1kTap0UyFksoFfLPZxEuG9y\nuNnnGR3CroeYG+9n1kxPx2+Xr+OrM9X4yy2jTBabuzFcg3ef0QfknX0qnC5vw6w4X5PH1bUHDTPR\nHvSyNggYE+IBHo+H9l4lnvv2EgDqfN+5L8WuGiNDfr/aQMt+AKoWQOcLEO3rgrsnhvb72PYgEbHl\nQDq8GEXo7TKl2SDAy2VkXMo5ODgcCy4I4Bh0NASJ365cx7acMlzTrrYClPb6vklheHxOtN098y9U\nt2PLoRLkMDIJumBiTVqsVVfObbmleOP3IqP7ncUC5D6fCn83KQiCxG+Xr2PzgWKUNOmNyUI8nbB+\nfizumhA6oAnEYKBUE/j8ZCXePVRiU0Gls1iAtWmxeGxW1E2p+zcH0yRsgpm2n+b8Eage9JfovvkP\nz4i0OIEeDJRqAl+ersKEcC+M067AN3crcLZKH1xfrO2gV/K/1Wa5sgub8M9fruK1O8YCoAy0DhVQ\nkp4FowJsfk+MNnDbtaUe4L+/FaK6TYYexWX8sGam0XZmEKCDx6Mcm3+/et18EMAwCmMiU6pR1kx9\nbseGuFMZv+/z6Taef78tCVG+LlbHbQ6SJPHuQXYWQKUh6BqEDYvirQZGg4WxHIiC6Rps2CGI6RPg\n5YAdqzg4OIYfLgjgGDSUagI/5NXiw8PlqGjRr5a5SoR4cFoEHp0VabcG/XR5K7Zkl9JdWgCtm+mE\nUKxJi0GEj+Uv9V2nqvDyj8burQBw9IU0hHk7gyRJ5BQ24a39RfTEDgD83CRYlxaL+6eEjbhhFkmS\nOFTQhH/vLWC9tpa4e2IoXlicAP8RdCh2VPK0QUCwh5R2vLWVbbll2KPtQT892gd/XTpq0MdnyK5T\nVXh1zzU4iwU49uI8eLuIsf9aA0sKd7GaCgLUGoIueqYeW43EQHfcPzkMX53Wd+FaZmM/f4Ba5ZYI\n+VBoC2vnxvtZ3F+tIeh2qXnVHThf1Y6JEexgy7B4dkK4J1ylIhwpbsa+q4149fYxRnUOJEmirt20\nUdi1+i46KzY2xAPfnquh630Wjw5geR/0h+zCJrpYHAAemRmJz09SBeGjg91x6xjbX8+Bwg4C9JN7\nT4NMABOmbMgR29ZycHAMP1wQwDFgZEo1vj5Tgx1Hy1naeW8XMR6ZEYmV0yNZaWlrkCSJE2WteO9Q\nCatjj1jAxz2TQvFkaoxZp1AdP12sw9NfXzS57cCzcxCnlSGdKGvBpv3FOM+YNHk6i/Dk3BisnB4J\nJ/HIr54XNXTjX3uusQIhS0yK8MIrtyUhOXRkW5U6KiRJ0kXBlsy/THGooBFv7acySmHeTtj2pwnD\nkh06rw1aZEoNvjxVhafmx+H3Kw2sfXRtPgsbumnNv25l/R8/X8V7h0roVXE3iRBzrEzkmQgFfCSH\neuBsJTWZ18mOzNHUrWB16fr4aDkmRkxk7WOoS189NwatvUocKW5Gc7cCF6rbjSRWzd0KetJraBSm\nkwIBVICxQSsD8neT4PW7BtaxiSRJvH2wmL7tJBKgS66iWwQ/vzjBrm5mA4XVHYg1uddfZw1dg7sY\nfgxedlyPOTg4/rhwQQBHv+mUqfD5yUrsPF6BdsYXTpCHFKtmR+P+KWEm9dTmIEkSh4ub8d6hEnqS\nBlCrXg9MCccTc6OtFl5mFzbi0c/Omdz287qZ9MT4QnU7Nu0vYhXUukqE+PPsKDw2K2rIW/zZQluv\nEpsPFOGr07bp/kM8nfDSLYlYlhzE6f4tUNbcS7tRjzdRFGyO0qZuPP31RZAkJbPasXKS1cnwYFHC\nWIHOPFmJ+yaH4aSBCdzFmg6QJIlzjPqbTfeMw0tZl6HUEHQAIBHysXFxgt3ysFeWjcaXp6vw8MxI\nq/vWd/Sxbu+72oDqVhnCfajgPa+6HRu+ZQfpC0YFoE2mxP/9cJmSBF1pMAoCaiy1B9V2BnKTCvHG\n74WQaQOhTfeOG/D/6VhpC67U6bOEGTMisfM4VWw8JcrbamZksGH7BOjlQIY1AUyY12hODsTBwQFw\nQQBHP2jqluOTYxX48lQ1yywrytcFT86NwR3jQ1gtF62ha3G5JbsE+YwWf04iAR6cFo5Vc6KtyohO\nlbfi/o9Omdy2e9U0TI+hevhfre/E5v3FOMRodSgV8fHwjCg8MSd62CZ1lrBX9+8kEuDJ1Bg8Piea\n0/3bwHfna+m/U210vO3sU2HV5+fp9/vme8chMXB4nJVVGoIlAWvpUWL913l0YfOtYwOx93IDOvtU\nqGjpxVltVsvXVUwbf/3j56uI8XNF+sQQ3Do2qF9B7thQD7wemmzTvkwjLYDqVvPpiQo8NisK//j5\nGg4WsNvy3jUhBHw+D76uEkyO9MaZijb8frUBf106ihXQ1lpqD6rNBHTL1bSXwWOzojA7buAT9M0H\n2FmApi45XWj74pKEYQ+6xQLTciB3Rp2FoWEY0zvAk8sEcHBwgAsCOOygpk2G7UfK8O18NsmaAAAg\nAElEQVS5WlaniaQgd6xNi8WSMYF2dc0hCBK/X23AluxSul0jQK3Ir5wegcdmRcHHVWLxGJdqOrD8\n/eMmt+1YOQkLkwIAAKVNPXj7QDF+vXyd3i4W8LFiajjWpMU4RL98kiSRXdiEf/9agHIbdf93jQ/B\nC0sS7da136yoNAQdBEyO9LJaUA5Qhe7rd+fRE/Gn58dhyTDqv6tae1mGegBocy8vZxEenxODvZcp\nadDFmg46EzApgnLHvm1cMG4bFzxs4wXYmYCUME9crOnA7jPV+PpMDcsZXAezOHvJ6ECcqWhDbXsf\nrtZ3sdrZmnMLlinVrGJ+gHI0fn5xwoDP5XR5K/IYmckHp4Vj5/FKAMCCUf6YGDH8XaGkItNBgFDA\nh5tUiG65mmVoCLAzA94OsNjBwcEx8nBBAIdVihu78UFuGX6+VM/S+U6J9MaatBjMjfezayVMQ5DY\nk1+P93NKUdyo/+J2kwrxyMwoPDoz0mrhWnFjNxa9fcTkts33jsNdE6hWfdWtMrx7qAQ/5NXSkhoB\nn4d7JobiqflxCLHgTDqcFDdSuv+jJbbp/ieEe+KV20bb7a9ws/H7leuoapUhYwblipxd2ISWHkoW\nY2tHnzf2FeJwMdWValFSAJ4eQJ/5/sD8jCxNDsKv+fpAdmFSAEYHu9NFu7/mX0djF3V+kyLtq3cY\nTHRBgJtEiGcWxOHhT89CztCu3zUhBGvTYjF/02EAYGW8Fo8JxKt7rgGgWp8ygwCdW7C3ixgujJqC\nt/bpV+p12997YPygZMY27dcfWyrio7pNBg1BgscDNg5CkNEf2DUB7KDKy1mMbrnaohyIKwzm4OAA\nuCCAwwJ51e3YllvG6skPAGkJfljTD9dNtYbAjxfrsS2nlLXS7ekswp9nRWHljEi4W5EpVLX2Yu6b\nuSa3/eO2JGTMiASPx0NDpxxbskvwzdkaWjbB4wHLxwXjmQXxiBxAq8DBpK1XibcPFOOrM9WsAMsc\nQR5SvHRLIm4fF8zp/q2QW9SE1bsuAACKGrux6Z5x+OYs1TrTTSLErWMDrR7jp4t12H6Y8pWID3DF\n5vtShrUAFKACRB2vLEvC4aJmWpZ0y5ggiAR8jA3xwLmqdpbMbSR8C3TUd1ByoGBPJ8yN96OzAdG+\nLnjtzjGYEeMLkiQh4POgIUj0KPQT1BBPJ0hFfMhVBEvCAjDag2qzAK09Crzy01VWhi851AM7H54M\nXytZRFvIq25neZzcPzmc9gVYPi542CRhhjC7AzFbfwLU9bS6zbIciCsM5uDgALgggMMAXWee93NK\ncYJReMjjAUvHBuHJ1BijnuHWUKoJfH+hFu/nltJGPwClWV41OxoPTotgreqZ4npnHxZtPoJuhbFG\nfsPCeDw1LxY8Hg8tPQp8kFuGL05VsSRLS0YHYsOieLvNyYYKlYbAFyer8M7BYnTZoPuXivhYPTcG\nT8yJcYiORY5Oc7cCG/93ib79/YU6+LlJkFtETZJvTwm2WrR+ubYTL3yXD4Ay09qxctKIOK2WaDMB\nIZ5OCHCX4k9Tw7H9SDl8XcWYEUvVuqSEeeIco8OVVMTHaBMGXcOFLhMQ7CkFj8fDF49NQcH1biSH\netCr8zweD17OIrT0KNHSzZ7sS0UCyFUEK3sA6I3CQryc8NPFOrz6yzXasE3HT2tnDlqArOsERY2J\nj1Kt5EjI5+HZhaadpIcDc92BAP0qv2EA1d7LFQZzcHCw4YIADgCUPv9AQSO25ZTSRXUAIBJQPfmf\nmBtjt9GOXKXB/87V4MPD5XTPcIBq2ffE3BismBJudULb3K3AnduO0zIAJo/NisL/3ToKAj4PnTIV\ndhwtx87jFXRXEABITfDDcwsTMDbUvsBlqCBJEjlFTXjt1wKW86gllqcE48UliQh2EOmSo0MQJJ77\n3yW09FCTIDeJEN0KNb2iD1ArupZo7lbg8S/O0X3x318xwaonxVChywTEB1D1CxsXJyDCxwXjwz3p\nyWCKQZej8WFeI2psV9+pCwKo96ybVIQpUcaZiTBvZ7T0KFHVxv4sSIUCACrIGVIXDUHS15G9lxvo\nOggms+N8By0AuFrfyeoeduf4ENrZ+P4pYSP2fgAMuwMZBAFO1Cq/oVkYMyiwlnHl4OC4OeCCgJsc\nlYbAL5fq8UFuGauwzkkkwANTwrFqTpTVtpyG9Ck12H2mGtuPlNH6ZIAyZlqdGoN7J4VZ1eq29yrx\n0M7TrLZ8OtInhOK/d42FWMhHr0KNT49X4KMj5awV9alR3ti4OMFuydJQUtLYjX/9WoAjxc3WdwYw\nLswTryxLMjJZ4rDMzuMV9Gu8PCUYj82Kwt0fnqQzQ0lB7hgTYn6VXKkm8OSu87TnxV+XJpl1rx1q\nlGp9ZyBdFkukLWhnYlgbMpL1ADKlmpaiWAtcI31ckFfdgapWGet+XeGrnDHB7VNpjCRz3i5ivLA4\nAf/3w2UQJGUSNlj8P4bDuETIR8H1bnps6+cNb12IIezuQIY1AdQEv73XfE2As4TLJnJwcHBBwE2L\nbpV++5Fy1iq7u1SIh2dE4uGZUXZ3kOhVqLHrVBV2HC2nV2EBylRpTWos0ieEWm0d2tmnwtovL5g0\nxlowKgBbHhgPJ7EAcpUGHx8tx7bcMrQxvuzGhXni+UUJmBnr4zCa+fZeJd45WIxdp23T/Qe4S/Di\nkkTckRIy7PrzG50OmRJv7NObeb12xxi4SUX4751j8ZxWHvTAlDCz7w2SJPH3n6/Q0pr0CaF41Ia+\n+ENFZWsvXdMSZ0HKFuLpBD83Ce1/4Aj1AAAlB7JEhNY34HqnHH1KDZ0Z1C0SMDMBhpPaF5YkIGN6\nJCpaeumi/1FBgyOBKmnsZgXrS8cG4fu8OgDAwzOiRtyFm8/nQSzgQ6khjDIBHlqpT5dcDQ1B0h3b\nmF2ZXOzwb+Hg4Pjjwl0JbjK65Sp8eboaHx+toLukAICvqwSrZkdhxdRwu3uId8tV+PxkFT4+Ws5a\nbYrydcHatFgsTwm2Kk3oUajx4nf5rAI/HZMjvfDJw5PhLhVBqSbwxakqbM0uYWUZEgPd8NyiBCwY\n5e8wk3+VhsCuU1V452CJUbs+U0iEfDwxJxqrU2PsMlnj0HOwoIle8X91+Rj6vZw+MRRCAQ/1HXKs\nmBph9vG7TlfTko+UME/8+84xI/p+YhYF6+RApuDxeEgJ88SBa43g86juUSMFsz1osJUsIlNiWN0m\nQ0IgFehITAQBzELXUUHuWJMaCwC0Th+ATS1fbeH//V5I/y0S8HClXm9E9uTcmEF5joEiEWqDAIOa\nAGbRb2efyuRiDrPFKAcHx80LN9O4SWjtUeCzE5XIPFHJks2Eejlh9dwY3D0x1O52ep0yFXYer8Cn\nxytYx4z1d8VT82KxLDnYqm+ATKnGq79cw9fari1M4vxd8fXj0+DjKoFaQ+B/52rw7qESVuYi2tcF\nzy6Mx9KxQQ61ap5T1ITX9lxDmY26/2XJQXjplkQjF1QO+/j9ChVEejmLMDuWLeFZnhJi8bGnylvx\nz5+vAqDqVrY/NHHEzddKGm2f4KZPCEV2YROW9tMMzBoVLb3IOl+LuyaEINrP/FhYQYAVORBTV1/Z\n2ouEQDfUd/ThUg3Vl7+oQR8EtZvpbqMLAvg82F23ZIrKll4cLNB3WVqUFEgvTqyeGwMPB+msIxHx\n0a0wlgMxjcA6ZEqTQYCjLJRwcHCMLFwQ8AenvqMPO46WY/eZalanjfgAV6xJjcWy5CAI7SwgbOtV\n4pNj5cg8UcVyDE4MdMP6+XFYMjrQ6oRcrtLgrX1F+PhYhdE2PzcJfl43E0EeTiC0ngKbDxSzCmlD\nvZzw9Pw43Dk+xO7xDyWlTd34154Cuq+8NcaGeODvtyWNqHzjj0KPQo0jWp+FhUkBdr0vatpkWPPl\nBagJEmIBHx8+NBEBIyz5AICSJmoSHOrlZDU7tGRMIPL/vgjOQ9A9SkOQePzzcyhp6sHnJyvxccZk\nk4W+gN4tmMeDVRO7SB990Jtf24ELVe34VNuCEwCauvXZPnYQoJ/Y6oKAMG/nQQna/vtbAf03jwfk\n11EBia+rBI+MoDTMEF1RuHFhsP61aZdZz0BycHDcvHBBwB+U8uYefHi4DD/k1bHcRlPCPLEmNQYL\nRgXYvXLe3K3AjqPl2HWqitWBZ2yIB56aF2vTMZVqAttyS/HOwRKjbWIBH/uenYMoXxeQJImD1xqx\n6UAxy004wF2CdfPicN+kMKv1BcNJh0yJdw6W4ItTVTbp/v3dJHhhSSLuGs/p/geLnEK9FOgWOxx9\nZUo1Vn1+jq4t+c9dY1kOtiOJzijM1ta21lrt9pcf8+roxgFdcjUe/OQ03rt/PJaMMfZa0GUC/N0k\nVmWAns5i2hPg/Zwyi/t2sMyuGJmAZmpcsRayE7ZS2y7Dvqt6X5R5Cf6098L6+bEOJdPTeQUYBQEs\nORC7joKDg4ODieNc0TgGhSt1nfggtwx7r1wHyZiLzor1xZq0GEyPtr9gtqFTju1HyvDV6WrWF874\ncE+snx+HVBscg1UaAp8er8B/9haa3P7r+lkYHewBkiRxrKQFb+0vwkWtJACguoCsSY3Bg9MiRlyi\nwUSlIfDlqSq8baPuXyzkY9XsKKxJjR2yCdvNyu9XqJaRbhIh3T/fGiRJYuP/LqFQKzt5bFYU7p4Y\nOmRjtAelmkCltjNQnIV6gOEYx9sHKddcd6kQMqUGSjWBNV+ex53jQ3F7SjBmxvjQmRe9R4BlKZBM\nqcYPeXVGXgATI7xwnuF5oIOZCdDVSqg0+tdoMOoB/mtwfcqvo2oBwrydrLaVHW50iyCGjsFMN2BD\nwzAODg4OJtws5A/CmYo2vJ9TaiRDWTw6AGtSYzEuzP5Cwdp2GT48XIZvz9ayXCmnRHlj/bw4mzrw\naAgSu89U4+Ufr5jc/t3q6bQU5nxVG97cV4RT5XqHTjepEI/PjsYjs6JGxKjJErnafv/MwkRLLB1L\n6f7DvDnd/2AjV2mQozUCmz/Kn2WmZIkt2aV0v/nZcb74yy2JQzZGe6lo0XcGivcfOZO7b85W03U4\nLyxJRKiXE57cdQF9Kg2yLtQi60ItfF3FeOuecUhN8LcaBNS0yfD5yUp8c7bGyCjvo4cmYmFSAKL+\nstfocXWMWqCzlVSQUNUqo1+jmAEGAY1dclZjgpmxPrRPwLML4h0q8wjoi6cNMwHMeglODsTBwWEJ\nx5pVcdgFSZLILWrGttxS+ksRAAR8HpanBOPJuTEW2wqao6q1F9tyypB1oZb+ggWobMJT82IxNdr6\nKitBkPghr45uy2jIp49MRlqCPwAqe/HW/iLkFukDGGexAI/MjMTjsx2nEE9HaVMP/v3rNeQU2ab7\nHx3sjleWJdn0unH0j8PFzbREbYmNUqB9Vxuw+QC1wh3h44wtD4x3qPoSdmegkQkC+pQavJddCgAI\n93bGvVoZ3ndPTsd7h0qQU9QMpZpAS48S/91biLnxfnRNQDCjHoAkSRwvbcVnJypxqLCRlaVkMjfB\nfFZRZ0DGZDA7A/1nbwHr9mWtaWJ8gKvVovKRQC8HYmcC3KQi8HgASQKdMk4OxMHBYR4uCLgB0RAk\n9l6+jm25ZSy9vFjIx/2Tw7BqdnS/VpvLmnvwfk4pfrpYz9K1pyb44al5cTaZVpEkib2XG7D2qwsm\nt29dMR5LxwaBx+OhuLEbbx8oxm9X9M6fYiEfD02LwJOpMfB1ldh9DkOJTve/61QVKzgyh6+rBC8s\nTkD6xFCrXZI4BsY+7XvISSTA3Hg/q/sXNXRjwzcXAQCuEiE+XjmJJaNwBE6WU6vQfB4Q4z8y7rSZ\nJytp74FnF8bRq+Gjgz2w/aFJ6JKr8ObvRfjiVBWKGruRzajLCPZ0oiU/nx2vZJkRAsC0aG88PCMS\nXXI1XvguHwCVJYg1k/Vg+g8AVI1SWfPgBAGtPQr8dLGevj0pwov2iti4KMEhP7/magIEfB48nETo\nkKm4TAAHB4dF7AoCMtOTbwFwB4DcjKz83Yz7eQCWAZgNwBlABYDdGVn59SYPxNEvlGoCP+TV4sPD\n5bSLKEBNYh6cFoFHZ0XC383+jibFjd3Ykl2KX/PrwZzbLkwKwFPzYpEcal1KRJIkDhU04c+fnzO5\n/fW7xuKeSWEQ8HmobOnFOweL8dOlenpFUMjn4d7JYXhqXqzdDsVDjVpD4Ksz1dh8oNgmja1YwMej\ns6KwNi1mSFo1crApa+7B/mtUMWdqgh9tOGWO9l4lVn1+Dr1KDXg84J37UvqVMRtKehVq/KydlM6N\n9xuRgtQuuQof5FLFunH+rrh9nPFquLtUhHXzYvHl6SoQJFgF/5knKvH2gWKW5Ecq4uPO8SFYOT2S\nNvZi6v8rW4yDAIIgwefzcN0gE3Cuso3OBPi7SeA+gM/av39lZwGu1lOLK+PDPbEwKaDfxx1K6CDA\noKYCADy1QUCHDXVKHBwcNy82f7NkpidHg5rk15rYvAjAQgCfAWgAFRA8k5me/EpGVr7cxP4jRmZ6\nsiAjK19jfU/HQaZU4yutwVdDl/7l9HYR49GZkXhoeiQ8nOz/Arxa34mt2aWslXgeD7hlTCDWpcUh\nKdi6+yZJkjha0oKVO8+Y3P7XW0fh4ZmREAn4qO/ow5bsEnx7rpbONPB5wB3jQ/DM/HiE+zieVv5w\ncTNe23PNaBXTHEtGB+Ivtyay+p9zDB217TI8+PFpulXtvZPCLO6v1hBYt/sCqttkAKhV3gUOOMnb\nk19Pn9MDU0amIPXjI+V0sftzFlbDA9ylSNN20bmsLaQFgMpWGf13iKcTHpoegfsnhxllXJhtQitb\njX01FGpC6xLOnuyeYQQBA8kCdMpUtBswQMn3dEHA84sTHLanvr5FqPHXmaezGGiVoYOTA3FwcFjA\npiAgMz3ZCcBjADJBTfCZ23gAFgD4PSMr/4L2vk8BbAIwBcARE8eLA7ABwIsZWfldjPvvAJCckZX/\nqvZ2DIA7AUQC6AWQDyBLF1hkpiePBnArgGDtISoBfJuRlX9du90HwH8AfAwqgIkGkJWZnnwKwAMA\nkgA4AegAkJ2RlX/IltdjuOiQKZF5ogqfnahgpXWDPaRYNSca908Ot7rqaYpLNR3Ykl3CMsTh84Db\nxgVjXVqszauiJ8ta8cCOUya3rZ8fhzWpMZCKBGjuVuD9nFJ8dbqaVWC8dGwQnl0YZzb9P5KUNffg\n378WILuwyfrOoBxM/7ZsFGbE+FrfmaPf7D5Tjd+uNCAhwBXJoZ7YtL8I17Ua9A0L45GW6G/x8a/9\nWkAXey5NDsKaVMdwfzVE51rs7ybBPCvnNBS09ijwidbDIznUA4tHmw+UZEo1zInjKMlPFBaM8jdb\nb+HtIoabRIhuhRpVjMBBh1ylMXmdO13eRgcNAwkCXvv1Guu2rhZjdpyvQ3+edZkA5jVVh65NqC5z\nSZorwuDg4LipsTUT8CCA8xlZ+UWZ6cnLDLb5AHAHQF9JM7LyVZnpySUAYmAiCMjIyi/JTE9uBjAd\nwD6ADiamATigvR0C4GkAvwD4HIALgHsBZADYrj2UBMAhUNkJMaiAYG1mevI/MrLymW0n7gTwnfY4\nGgDLAYQA2AqgW3sOVmeiHVUdkHpKoexRQigVglAT4PF44PF50Cg1EDmLoOhSQOolRV9bH5x9nSFr\nkRn9dvJygrxTDrGrGGq5GnztxZxQExBKhahr7MHuwkbsPl8DGWP1K8JDitVzorEgyAPufi6QN/SA\n5y6BSqaCQCwASZAgSRJ8IR9quRpiVzHkHXL6eQv7lNhyqATHGa03BTzgtjFBeHRcMGKD3EGoCfQ2\n9Vo8pxNXGvDM74UmU80PTQzFmsnhcHcRo/V6Nz45XY3d+XXoY5xHWpwvnkgJwYREf8haZFD2KqnX\nxdsJ8nY5JHack7nf/f0/NdR1YefV69h1tsYm3b+3swhrJ4djxawoKNr66HOh/9cOcE72vPeUPUpI\nPaToa7dwjBE6J8JNjL/9eAVqgsQRgy5YK1NC8OfxIei+3m32nHafqMRnWiOqUQFueHlKBFQy1Yj/\nnyoq23G5W44QoQATR/kjr7CZbo9715gg9DX1Dvv/aWteDXq1hdZPpoRC0aVgnZOKIHGyuh2/XG1A\nbkUr6/Ot46dV0xAhFMDZ1xk9tV0W33thnk641tiNisZudFR1wEMqRKdWRtRU2Q6XSON6pGuMeqhQ\nqQiyVpnd/6e2Nhn+d16f3I72dka5Nkv05LgQKLoVDvt5gvb1kcvV9HVH995z5VPjaO9RQNYiQ08v\nOyPQUdXhkOfEXfe4c+LOSQbPCPu7OfYXq0FAZnrybAD+AHaa2cVD+7vL4P4uAJbO5BiAmdAGAQBG\ng5qI65aWFwE4l5GVf4Axlq8AvJyZnuyWkZXfrcs8MLZnAngXVOaglLEph7mvNkNQnZGVX6m9q9XC\nOIeNms4+ZB6uxw+X66FkGHwl+rpgzdwYzPR1hZu/C2QtxqtlljhT1Yb3DpXiDCNVL+TzcNe4YKxM\nCkRsuCeUPdbTxleauvHS7guo7TDu0nFXchDWTwpHgJ8LOjrl2HayEpnnatDDMBWbHumN1eNDMH1M\noN3nMNSoCRJfnqvBuzml6DBoW2gKEZ+HP40Lxrq0OAj7VA5ZOPhH41pDl8nA7N6UEGyYEWlRtnGh\ntgOvHaH07V5SET64bxycVCO3OqpUE9hyugqHq9tRqq3v4fOA1TOj0KidhPIA3D3OdtOzwaKxR4Ev\nz1IT46kRXpgWSl3iCZLE2Zp27LnaiP0lzfQk3RQRHlKMCnSz+XMe7kUFAVXaNqDeLmL6+N1K6+rN\n6H623d1k4FheoX3tFyf4Y7QDZiiZ0DUBGuP3sYs2c6LrmCVT3VAKWA4OjmHCYhCQmZ4cAKoQ+I0h\n0NGfBLA8Mz05JiMrvwxUQHAxIytfJwqNAOCXmZ48ifEY3be8H4DuzPRkP1Cr+lEAXLXbeQAM/eyr\nDG4fBvBEZnpyOIACAPkZWfnF1gasi86kHuaLb6We1DaJG9XZRuwiNvlb4q7vfFPU0I0PckvxS/51\nVleeKVHeWJsWizlxvqwJDn0M7XPonpMJSZI4VtqCLYdKcaZS33dfLODjvslhWJ0agxBGH29L51Qm\nU2DjzjOsTkQ6FiUF4NXlYxDoIUWfUoPPT1biw8NlLPnShHBPbFycwEqtm31dLJyT4VjNHUP329b/\n09GSZvxrzzXandUaC5MC8NdbRyHSl637d6Rzsjged/Ndl5y8nFj7ONI5FRwpp+/P2ZiK6519UKgI\nzI33s+i63MEHnso8CzVBQiTgYXvGJEQGe9DbR+KcPjxchk8usMurCBLYxpiUzo73Q2yk4aWMYij/\nT58VNdESkxduTUSdkI+fj1fgl0v1tPSKfqyIj4VJgbh9XDAifJyx6G0q8Rvq5wKxi9jm915skDtQ\n2IS6zj44h7jDz02KCq00SOUuoR9vjrEJfnB215+jLf8nmVKNrKv6eqgQTyfUdfSBzwOeXzoKHlqJ\nkaN+nty1x1YSBOu1lnpI4aHdV6bWwNnXGcyPh6eziP4uc7Rz4q573Dlx5zS8XeqsZQJiQE2u/5GZ\nnqy7jw8gLjM9eQ6ApwDolpfdAbQxHusO4+wATUZWfndmenI+gJmZ6ckNAJIBvM/YhQcqW2BKp69r\nJ7FO+/cuULp+DYB/mjgvhcFzX8lMT/4LgDEAEgGsy0xPPp+RlZ9pbrxDwYXqdmzLKcPBgkbW/fMS\n/bEmNYY20bIHkiSRU9SE9w6Vshx3JUI+/jQ1Ak/MjUaAu/k3NZPixm789YfLLA8CHdOjffB6+lhE\n+LhAodYg80QltuaU0u0EAarAbuOiBKRa6P09kpRrdf+HbNT9JwS44ZXbkjAz1nF1wn9kLtVS7+cA\ndwmifF0Q5Wu9+Fqu0uDxz8+jpYd6X/7z9jGYEmX/52owUag12Kmd7Ae6S7FiajiSgtzx5r4iFDG8\nAVZMsVzkPBRUtvTi23M19O3nv8tHeTO7WFfI52F2nC+Wp4RgYVIAy/k6LcEPOUXNmBhh32scoS0O\nJkigrqMPPq76L8LWXoXR/u5SId11yE0ihL+b/e2EXzPoCFSnzXDePTF0UNyHhxpmi1CSJFnXWCet\nkZhcRUBDkOhV6rM2Xg7WCpeDg2PksBYEXARVbMvkYQBNAPaCmnS3gprsj9Ltm5meLAIQCyDLyvGP\nAngCQLP2GMyrcjWA4IysfJMztMz0ZBcAgQC+ysjKL9LeFw4qSLFKRlZ+Dyjp0anM9OQrAP6cmZ78\npUEtwaCjM815P6eU7gMOUFKApcmUwZctXXkMIQgSBwoasSW7BFfq9LGXs1iAh6ZF4M+zo+Fn4xdl\neXMPXt1zjWXepWN0sDs235uChEA3qDUEvjlbjfcOldJfoABVpLdhYTyWjA60uEI7UnT2qfDeoRJk\nnqi0TffvIsaGhfG4f3KYQ5lJ3Wzka82bxobYppckSRIvZuXTHWsenBaOFVNHptMOk58u1qNJGyxv\nXJyAuyeGAgBmxfni9d8K8dmJSsT6u2L+qOHtWtTUJUfqW7ms+5gBwJRIb9yeEoxbxwbB28xq1dYV\nE1DY0I3xdjqUM7NqlS297CDAhFRxQVIAvr9AdfSJ8Xe1e5FBrtLgq9PV9G0vZxHaZSqIBXw8vSDe\nrmONFDrHYJIEVBoSYqH+NXCR6Aup+1Qa9Cr0X2ueDma+yMHBMXJYDAIysvJlAFiizsz0ZAWAXqYH\nQGZ68kEAt2pX9BsBLAW1+m66b6SeAlBdf5aB6i7EnJHtA/BSZnryn0AVFytATfqTM7Lyd2nH1QNg\ndmZ6cjuo+oN0AMYVagZkpiffDirIqAcgADAeQMtQBgAEQWL/tUZsyy2lJzMAIBLwkD4hFE/MjbFp\nZdMQDUHityvXsTW7FIUN+lVEN4kQGTMi8eisKLNf2IZUt8rw+u8F2Hu5wWhbmLcT3rt/PMaHe4Eg\nSPx0sQ7vHCxh+RWEezvjmQVxWJ4S4pAaebWGwO6zNdi8v8gmEx0hn4eHZ0TiqV5OaT0AACAASURB\nVPlx/WrByjF4tPcq6bae40I9rOxN8dGRctoAamqUN/5+2+ghG5+tEASJHVpZU4C7BLePC6a3SUUC\n/OP20Vg9NwaeziKIhjjgVGsI5NV04EhxM44UN+MS47qkIynIHctTgrFsXDBLPmgOF4nQJlNBQyIM\n2oR6u+gXLFp7jDMBaQn+dBDQn1V7Q3dg3fXgwWkRNp2nI6DLBABUdknMuM30lZAp1Cx/Ey4TwMHB\noWOwHGj2g+rOswJ6s7B3rHkEZGTlk5npySdABQEnDLbVZqYnvwlK878R1Ap/C4A8xmN3ALgPwN9B\nZSe+A5VZsIYaVK2DLwAVgHKwpUiDhkpD4OeL9fjgcBnL4t5JJMCKqeH48+yofpljqTUE9uRfx9ac\nUtZx3aVCPDorCo/MiIKHjSs+dR192Ly/GFkXjC0g3KVCfPjgRMyI9QVJkth3tQGb9xezZAuB7lKs\nnx+HeyaFDvnEpb8cK2nBv/ZcY43bEvMT/fHXpaMQ7ef4soCbgXxGUXuyDavMOUVNeP33QgCU1nvb\nnyYM+Xvz1/zrcJEIkJpgvqVnbnET7TnxyMwo1sRNR6AFDepAae9V4nBxM7ILm3C4uJn2ATBkaXIQ\nnpkfN2wman6uErpN6JW6LowL0wd6rb3GmYCp0d7g8ahV8MRA+8ao0hD4/KS+TEwi5EOhJuAiFmBt\nmmO2jDUFOwggWO3tmJmAXqUG7Qy/AC4TwMHBocPuICAjK3+TiftIUK08f+nHGDwAFGZk5Rt16MnI\nyq8C8J6FsRSCqgFgsp6xvRUmgoKMrPy9oORMQ4ZcpcG352qw/XA5Syrj4SRCxoxIPDwj0uYVeiYq\nDYEf8uqwLaeUZcbj7SLGY7OisHJ6hM0utY1dcrx3qARfMtLiTHasnIQFo6gJzeHiZmzaX8TKYvi6\nirEmNRYrpoZDKrLfr2A4qGjpxb9/LTCquzBHnL8r/rYsCXPi/YZ4ZBz2kM+ob0kOsZwJKGvuwfrd\neSBJKtjesXISfFzt14zbw+nyVqz9impA9u79KVieYuyuCwDbD1NZAFeJcFikSSRJorChG9mFTcgu\nbEJedTusKeDunRSKN+4eN+RjY8Lj8TA12hsHC5pwrLQZaYn6z58pOZC/mxT/Wj4GF2s6cI8VgzhD\nDN2BFWoqefzY7Oghf58MJjqzMEB/DjqcRIxMgFLNCgK4TAAHB4eO4fei16I1IAsC5Q3w0UiNY7Dp\nlquw61Q1PjlWjhbGl5efmwSrZkdhxdQIuErsf9kVag2yztdhW24patv1QYWvqwRPzInGn6aFs1LA\nlmjpUWBbThl2Hq8wuf3d+1NwW3Iw+HwezlS04a19RawOQ+5SIZ6YG4OHZ0SyigIdic4+FbYcKkHm\nyUqoTLTQM8TTWYQNC+OxYko4p/t3QHSZgDBvJ3hZCJ47+1RYlXkO3dqi0U33jutXjY29MOt7XszK\nR3yAG0YFsZ/3t8vXcbqC+hw9MCUM7jYG6/bSp9TgRFkLsgubkFPYhPpO44Ssm0SIOfF+SEv0x5x4\nXzz7zUUcL20dUU38nHg/HCxoQmOXAm2M1f/WXgUIE5HLg9Mi8OC0CLueQ60haK8IJl7OIqyaHWX3\nmEcSiYiRCTBoAcrMBMiUGpb80YvLBHBwcGgZyRncGlCtPY9lZOVfHsFxDAqtPQp8erwSmScr6QkI\nQE1aVs+NQfqE0H6tlstVGnxztgYfHi5jtecLcJdg9dwYPDDF9lX49l4lth8px4eHy0xu/8+dY2lJ\nz6WaDry1vwhHS1ro7S5iAR6bFYXHZkc7rEZerSHwzbkabNpfzJpImEPI5+Gh6RF4en4cPLkVMocl\nX9sZKDnUvBRIQ5BYvzsP5do6lfXzYnHr2OHps3+ZkSGTqwg88cV5/LJuFi3J+/xkJf7+81UAgFjI\nxyMzB2/CKVdpkF/biXNVbThT0YaTZa1GK8MAEOPngnmJ/piXGIBJkV60POp4aQvtovynaeEjpomf\nHadf/b9Wr29u0NqjRN8g9bn/z95Ck/evSY21OYPqKBjKgZgwF4R6FWp0sORA3HWOg4ODYsSCAFOy\nohuR+o4+fHSkHF+frYac4ZqZEOCGNWkxWDo2qF8ry31KDb48XYWPjpTTnUQASt+8OjUG90y0Pajo\n7FPhk6PleC+71OT2l5eOwoPTIiAVCVDY0IVN+4tx4JpePiMR8pExIxJPzHHsdPnxUkr3zyyQtkRq\ngh9eXpp0Q7QDvJlp7JKjsYv6DFgqCn5jXyEOa52EFyUF4JlhWtEmSZLOVHg4idDZp0J1mwz3fXQS\nKWGekCk1+PkSVaDsJBLg/T+NR/AAJtotPQqcq2zH+ao2nKtqx5W6TpPZLrGAj6nR3tqJvz8ifIwb\nD5AkiTf3FQGgOomtSY3t97gGSqSPM0K9nFDb3oerzCCgV8lqcdlfCII0mf0M8pDioen2ZRQcAbHF\nIIDRHUipQXuvPhPg7qALOBwcHMOPY2o5bgDKmnvwYW4ZfsirY7WZHB/uibWpsZiX6N+v9pg9CjW+\nOFmFj4+Wswriwr2dsTYtBneODzVZTGjuWJ8eq8CmA6Z90J5dEI9HZ0XCTSpCeXMP3j5Ygj359SC1\npyMS8HD/5HCsmxdrs7fASFDR0ov/7C1gBS6WiPFzwcvLkpBmoYCTw3G4xKwHMJMJ+DGvjtbbxwe4\nYvN9KcPWnraxS0H7Y6xLi8W5qjbsu9qIwoZuVkDq6yrGzocnW8xmGEIQJMpbenCush1ntRN/Zi2Q\nIWHeTpgZ44t5if6YGetrVa53sKCJ9hN5dGaUzW2EhwIej4fZcX7YfaYahQ36IKCzTwWZYuCZgP/+\nVmDy/qfnxzlsTZMlWDUBhnIgZibAoDBYYuP3BwcHxx8fLgiwkyt1ndiWW4rfrjTQk2UAmB3nizWp\nsZgW7d0vY6wuuQqZxyvxyfEKVju3aF8XrJsXi9vHBducUZAp1fj8ZBVe/8106vvxOdF4cm4MvFzE\nqG2X4V97riHrQh3tVsznAekTQrF+fhzCvJ1NHsMR6JKrsDW7FJ8er7BJ9+/hJMIzC+Lw4LQIh+1i\nxGGMrhidxwPGmCgKzq/twItZ+QCo2o4dKyf1q+6m/+NjBikeuH9KGPzdinC2sg0tPZS+fXy4F965\nL8Xq56lHocbVuk6cr27H+cp2nK9uZ10PmAj5PIwOdsfECG9MivTCpAgv+NsRrBMEibe0WQB3qRCr\n5kTb/NihYk6cL3afqTb6PA80E0CSJHYcNc4CRPu60D4NNxoW5UCsmgB2i1BbF5E4ODj++HBBgB1k\n7DxDyw10iIV83DcpDGNDPVDTLkPNefOrdKbolKmw83gFS++vY3acL5aODYKaIPF9Xp3VYylUGnx5\nutqsHEYs5GP9vFj4u0vx1ZlqbM0uNam1fXxODKL9XHCyvJVV8OgoEASJb87VIK+6w/rOWpy17f9c\nJEL8YMNryeE45BRRfoExfq5Gk/umLjke//w8FGoCAj4P76+YYFL2MpTozMh4PGB0iAdcJUL8644x\n9HaCIE1mJTr7VLha14kr9Z24UteFK3WdqGjtZS0uMHGTCjEhnJrsT4z0QkqYp83NAEzxS3493TJ3\ndWqMQ9T5zIj1BZ8How5GMuXAMgH/NbMgsmFR/A3bCMBSdyCmHKhXoUEbMxNwg54vBwfH4MMFAXZg\nGAAAgFJN4ItTVSb2HjhHS1pYhbkDRakm8NZ+09IgJuYKh29kZEqN2aJAjhuDZIN6AIVag9W7zqOh\niwqgX146CjNjfYd9XLpMhakgBQD4fB56FGqUNvWguKEbeTUdOF/VhuLGHqN9mYR5O2FShDcmRnhh\nUqQX4v3dBk3ipNIQ2KyVCfq6SvDwjMhBOe5A8XASISXMExcMAnym4629kCSJj7QGbUxGB7vj1jHD\nUzg+FDC7AykNggCpUED7KPQp2YXBXCaAg4NDBxcEcHBwODwiAQ93jtf33idJEn/78Qo9Wbx3UuiI\nTGRJkqQzAckhHuiUqVDa3I2Sxh6UNFE/pY3dJtt0MvF3k2BMiAfGBLtjTIgHxoV5Dmkdzv/O1aJK\nW1uwLi1mQBmFwWZ2nJ9REDCQTIDONM6Q5xcnDFvdyFBg6BjMhM/nwVkkQK9Sg16lhiWv4oIADg4O\nHY5z5b8BOPZiWr8f29Apx4eHy3CwoIl1v85td3acL2wtJdAQJH7Mq8fbB02v6od7O+PFJYkYF+aB\nPqUGn52oNDIEC/aQYuPiBEyJ8u7X+QwXPQo1tmSX4tf86zY/5pGZkVg5PRIiwY37Bc/BxsNJxGrh\n+NmJSnx7jnK4nhDuiX/dMaZftTj9pa1XiZLGbuQUNdOtaL/Pq7NJtucsFiAlzBOTIryQEu6JMcEe\ndmn5B4pcpcF7h0oAUN3GHhgG0zJ7mBPvi3e149PR30wASZJ0wTiTKVHemHuDGwJakgMBgLNEiF6l\nBjKDegouCODg4NDBBQF2EOplf5FsTZsMHxwuw3fnaqHU6C/U06K9sX5eHKbH+Ng8eSEIEr/k1+PN\nfUUswzAdyaEeeOmWRMyI8YVcpcFXp6uxLbeUZVo2NsQDGxcnYE6c77BOmuxFQ5D49lwNNu0vYo3f\nHHwesGJqODYsTOiXEzPHjcPx0ha8pnV9DXSX4sOHJrImRIMFSZJo7lGglF7Vp1b4S5t6WJ27zCEW\n8hHj54o4f+1PgCti/d0Q6eM8ojr0XaeqaAnV0wvihuS1GwjjQj0h5PNYXdf6GwS8oS18NuTFJQkO\nff2zBVYmwERtl64uwDCLIuZqAjg4OLRwQcAQUdnSi225pfj+AruF6Ow4X6yfH4fJkbavwBMEiX1X\nG/DW/iKUNfcabY/2c8Ffbx2FeYn+UBMkvjpdjS3ZJaxi4/gAV2xYmIDFowMc/svvZFkrXt1zDQXX\nu6zvDGBmrA/+tiwJiYFD7wzLMbJUtfZizZcXoCFISIR8fLRyIvzdBraKTpIkGrrktISntEkv5+ns\nM92ZxxS3jAnE2FAPxPm7Ic7fFWHezhA4mNykR6HGtlyq5ifazwV3MSRWjoJQwIeTSIBuxsS/s8/+\nIIAkSXyQa1zfND/RHxMjHDsDagssx2BTmQCtxKvXoL0qlwng4ODQwQUBg0xpUw/ezynFTxfrWB0u\n5iX646l5sRgf7mXzsUiSxKGCJmw6UGxyQhzoLsVfbk3EbcnBIAH8kFeHdw6WoLpN36Eo0scZzy6M\nx7LkYIebkBhS3SrDf/YW4PerDTbtH+njjL8uTcKCUf4OH9hwDJwehRqrPj9HT8zfuDvZpp77CrUG\n1zvkqO/oQ11HH+o75KjrkKGecZ+pSZQhrhIhYhmr+nH+bvjHL1dR1SpDYqAbPnhw4oDPcajZeayC\nli89tzDBYTvjSAyCgLZehYW9TfOmiSwAjwdsXJwwoLE5CswVfVPvXxc6E8DJgTg4OEzDBQGDRGFD\nF7Zkl2Lv5eusFn+LRwfgqXlxJvubm4MkSRwpacHm/UW4pO08wsTDSYSXbknE3RNDIeDxsO9qAzYf\nKEZJk77bSLCHFE8viMNdE0Idvid+t1yFrTml+PRYJUsyZQ43iRDr58dh5YwIh5MycAwNBEHi2W8u\n0h11npgbjeUpISBJEu0yFT2Zr2vvQ31HH+o7+1CnneQ3d9s3gXSXChEf4EbLd3ST/kB3KSvYJEkS\nbV9TE2rDzkWOSHuvEju0XXJGB7vjljGBIzwi8ziJ2desFob8ypZ4nyBIOuPB5I6UEIwK+mNkDIUC\nPi2bUqg1qO/ow9sHirFsXDDmxvvBSRsE9BrIgSQC7prJwcFBwQUBA+RKXSe2ZJdg31W9Wy2PB9w6\nNghPzYu1W6JyoqwFm/cX41xVu9E2sZCPFxYn4MFpEZAI+cgtasZb+4twtV6fJfB1lWBdWgwemBru\n8BNkDUHiu/M1eHNfMVp6rE/U+DzgvsnheG5RPHxdR87ZlGP4UKoJNHTKsfF/l3Cmso2+/0pdJ+Zt\nykV9Rx/kKuuBoyG+rhKEeEoR7OmEEE8nhHo5IT7ADbEBrvBzlYDH46Guow8EQZo1+KpqlaFbTq2y\njrXDBXik+PBIGb26vtHBO+NIDa5d1zv0NVC2+BlsOmCcBRDyeXh2QfzAB+dASIR8qJUaKFQE3tpf\nhO8v1OHnS/U48Oxc2jW43aB+hcsEcHBw6OCCgH6SV92OLdmlyC7Ud/vh84DlKSFYmxaDWH83u453\nrrINm/YXmzXn2rAwHo/OioKrRIgTZS3YtL8Y5xmBgqezCKvnxiBjeiS9AuTInCpvxau/XMM1G3X/\n06Mp3X9S8B9jFe9mR6Uh0NKjQFOXAk3dCjR1y+m/m7vlaOpWoKFTjuYehUnzrOOl5k3sxEI+QrST\n+2DtRF832Q/xdEKghxRSkfnPSE2bDG8fLMYPeXUQ8Hg4sGEuonyNDcj25NfTf6c4eBDQ1CVH5olK\nAMDkSC+kOnhnHMP/D1Pi6C61HARoCBLv5xhnAVZMDUe4j+M6oPcHibYNqFytwfFSylNGoSbwt5+u\nwEfbIMEwE8Z1TePg4NDBBQF2crayDe8dKmGZeAn5VA/zNWmxJicLlrhY04HNB4pxxIQRGUDJHlbP\niYGXixgXqtuxaX8RawLkKhHiz7Oj8NisKFYLRUelulWG//5WgN+u2Kb7D/d2xv/dOuqGKGi+WSFJ\nEjKlBu0yJTpkKvp3h0yJdsbttl4lPclv7VWadca1hq+rmJrYezhpJ/hShHo50ZN9Hxdxv98r7x4s\nwdacErqvupokceBaAx6fE8PaT67S4LMTlEngqCB3jAlx7OB0a04pnTHZuMjxO+NIRQZyIEaHME9n\ny9e5tw8Yt052Egmwbl7s4AzOgdB1CCpq6EZjl36yf7i4mQ4CDF3hHbUOhIODY/jhggA7eOCjU0Yr\n9W5SIR6aFoFQL2ecLGvFyTJqOwnTMxzdxOdqfRd2n6k2uQ9ASYrWpcXC312KN/YVmdzXVSLEqtnR\n8HIR4QdGf3JzkyvSzAZzczFLkzTzjzG9pUehxracMps0/zp8XMS4d1Ioqtt6seNoeb/HRJAkCIKE\nhtD+TZLQECSrcJt6vNEdVp/D8HwNx2dqTMb7WD6GKYye18pz2PI8toyVIEh09qmMJvz2/F8t4e0i\nhr+bBP7uUoj4PBxiZNpeWZaEFVPDLa7iD4TzVW0s7w2xgA+lhsCp8jajIODHvDpawvb4nCiHnlTX\ntMno68eceD9MjfYZ4RFZx9L/2JIcSK0hsDWn1Oj+R2dFDriLlCOiCwKY5mpSER9yFWFTG1sODo6b\nGy4IsANTUp1uudpkAdpAIUlgS7bxlxmTHoXarGHYH4HWXiXe2v/HPb+bBRexAJ7OYni5iODvJqUm\n+dqJPvO3r6uE1iurNAQe/Pg0fYy/3JKIR2dFDek492vreng84LvVM7D7TDW+O1+LsxVtUGsIegWV\nIEh8pA1KgzykWJYcPKTjGijvHNRnNp5fdGN0xrEUBLhbCALeOVhidJ+Hk8goiPujoPu8aLQrGl7O\nIvzl1lF44bv8kRwWBwfHDQIXBHDcdPB4gIDHA5/HAwwWcA3Xc00t8PIM9jLcx/gYxgcxusfKMUwd\nx9rzmnyM0XarI2PtwwM1qfJyFsPTWQRPZ93fYng5i+jfXi7Udg8nUb8K1P/5y1WcrqAKge9ICcbj\nc6LtPoa9HCiggoAJ4V6YGOGFipZefHe+Ft0KNa7Wd2FcGKX7P1TYhHKtX8ejM6McuvtWSWM3fsij\nnJV1PgY3AhaDADOyR6XadBZgTWqMTcXENyKGn62pUT64Z2Ioss7X0p8fDg4ODnNwQYAdnPzLPKMJ\noA5zaoDqNplRDQGTxEA3bFyUgOQwDzR2KrA1h91pCKAMxp5ZEIcIH+N6A3MiBEvyBPOPMbe/2Q0m\nqW2X4fXfCs2esyG61atbxgSyxm3vOM2NlccD+DweBHwe+DzLrw3HyPPl6SrsOkXJV5JDPfB6evKQ\n/8/Kmnvoif2CUQEAgKlRekOpU+WtdBDw0REq8+cmEeL+KWFDOq6BsvlAMQiSalqwYeGN0xlHaqGD\njbmagPcOGWcBAtwlyJgROVjDcjgkBq+TzoH+ibnRXBDAwcFhFS4IsIMgDyeb961tl2Frdim+Pltj\ncvuEcE88vzgR02N80NKjwAe5ZfjiVBWUDNOXJaMD8ezCeCQE2tdpaKSgdP+l+PhYBes8zOEsFmBt\nWiwemxU1ZDpvjhuLMxVt+PtPVwFQbTy3PzRxWN4bhwr0gffCJCoICPN2RqiXE2rb+3CqvBVPzI3B\n+ao2nK2kunKtmBbu0MX4+bUddAH+neNDERdwY1xHAPtrAuQqjckswNPz4//Q1xaJyDgIAIDZcaa7\nPzm6YSQHB8fwwgUBg0xDpxzv55Ri1+kqk8WZo4Lc8fzieKQl+KOrT4239hVh5/EKyBiGLnPj/bBx\nUcINk7onCBLfXajFm/uKbDJm4vGAuyeE4vnFCfB3/+MV63H0j9p2GZ7cdR5qgoRYwMf2hybaFXgP\nhIPXqALkKF8XxPjpM27Ton2ouoDKdqg1BK05Fwv4eGTG0NYoDBRdPY1IwMMzC+JGeDT2YdgdiImp\nIMBUFiDK1wX3TAod1HE5Gkw5kK+rGHH+rgAAkYBqk1vH8FcAqKwrBwcHhw4uCBgkmrup1fxdp6pM\ndkqJ8nXBhoXxWDo2CH0qDd7PKcVHR8rRJddbuk+N8sbGxQmYHOlt9HhH5UxFG17dcxVX6mzr9z8p\nwgt/v230DRPgcAwPMqUaj39+nu5o8todYzAxwmtYnrutV4lzVZR0YsEof5b0SBcE9CjU+OJUFS1x\nu39KGAI9HDeAPV3eSrcdfmBKuFnDM0fFyY6aALlKY7I5w4aF8Q5drzEYMOVAU6N9WO/dFVPD8eY+\ntmmap7N42MbGwcHh+HBBwABp61Vi+5EyZJ6oNOlcGuQhxdPz43D3xFCoCRI7j1dgW24Z2hjt28aF\neeL5RQmYGetzw+jVa9oo3f+vl6/btH+IpxNeuiURy5KDbphz5BgeSJLE8//Lp43jHp4RiXsnD5/W\nPruwiW4Xq6sH0MGsC/jP3gIAVBbgyVTH7TZDkiTe2k9N/qQiPtal3Xj98SUWggDDLIGpLMDoYHcs\nHRs06ONyNJhBwHSD1q86aRATdyn3lc/BwaGHuyL0k06ZCjuOluPT4xXoVWqMtvu4iLEmLRZ/mhoO\nPo+H3WdrsDW7hGXokhjohucWJRitPjoyvQo1tuWWYsdR23T/TiIB1qTGYNWc6D+0Npej/2zLLaOD\nyZmxPnh56ahhff6D16h6AE9nkVH2gVkXoGuzef+UsGGTKfWH3OJmum4hY0bkDSm5s3StEDMmvtT1\nyDgL8MKSRPBvAv07Uw5kOOl3ERt/vfenUxcHB8cfFy4IsJNuuQo7j1Xi42Pl6GZIeXS4SYR4fE40\nHpkVBamQjx/y6vDuoRLUtuu1mdG+LnhWKw26Ub6oCILE93l1eOP3QjTZoPsHgLsmhOCFxYkOLZvg\nGFkOXmukV63DvZ2x9YEJw+poKldpcKSEks3MS/A3+dw6SRDg+FkAgiDxllYC4iYRYvUN2h/fUk0A\nU+JjyktlapQ35sT5Dsm4HI1gTyoYjfBxRrSBW72z2HjCL7bQdYmDg+PmgwsC7OCD3DJsP1KGDpnK\n5Pa7J4Zi9dxouEtF+O5cDTYfKGZp/qUiPp6eH4+7JoRAwOehTWabo2N/wgR7MwuW9j5b2YZX91xj\nBTKWiPZzwSvLkpCibanYoT1Ps61G+zMoU7sP7eG1zzF4r6vp49v5ANj/ug5H0smW5yhp7MGaLy+A\nJKmM0Y6Vk+DlMrya5e/O19JF+bquQIYwg4D7Jjt2FuC3Kw24Wk/JqlbNiR7213OwkFpYsdZNZLvl\nKnx42HQW4EbJrA6Ux2ZHwctFhOnRxlJSLgjg4OCwBo801cKGwySRL/3KvVgcHEMEjwcI+ZSfg5DP\nh0D7N3WbMnfTeT7weUBlq4x+bEKAG/ja/QR8HkQC3W8+fTwhnwehgKf9zQdBkvj+Qh19jAemhEMi\n5IPykKOeQ8DnoVeppn0LVk6PQLCnE2OcPPD5PMp8TvtboL1Ptw/zPt3f1A+050SFcbrzA+Nv2tjO\n6LH6Y/N5PBAkCZWGwPxNh9GtoBYefnt6NlzEQpAg6U5lJKiaAf3furM33Ie+FyRpfJt+FON+DUGC\nIEloCDD+JunnpH9rj8e+n/333svXzdYbrU2Lwaggd/x+pQF78tn7LEwKwI6Vkyy/0W4S5CoNEv/2\nO+u+pclBeH/FhBEaEQcHRz8Y0hUNLhPAwcHhEJAkoNKQ/7+9O4+TqyoT///pJd2dPRCyIwmBAAG8\nCIiCkRFlUQFBrEHGbS46zs8ZdRSXcddR3PWLg/vCKFOOigtXlEVBZBCIyCCiXCBhDRBC2LKvnd7q\n98e51al0lq4k1d3VfT/vF3lV193q3EP17fvc85xzstz7/vubVLr/6fV7/fmX3b60321++KfH9vpz\nBssrv3rLUBdhQHzzxu2f/kMImN5/2qGDXJr61drcSGMDvZ3eAVpH+GhJknaPVwRJ0rB3ztGzhs3E\nioOhoaGBMX06B5sOJKmSLQG74XnPmdTbXH/vE+t2OB8AhJz48oQ2g5F3vuefs/XnOx5bvcPJzXZl\nVFMDRz+nirHc9yjPfQ/2GYR8+j35nHot157am+/nTdnY9WUvmLMvo3eQuxw+Z8fHKpW2P07ZKfOn\nZulCW1NwGhvC55fTbgCuvGs5XRWPSM89dv/eNKDyZ4fP3/q+VAodb7sqUl1Cusv2vzjllJfKbSv3\n6e4p0V0q0VOqSJGhRE8P26bNELbZZr/yvj2l3nkV+hrf2kwJ6Cll5c32GanZn6OaGnjPKYcMdTHq\nzpiWJjZs2dovzSBAUiWDgN3wq3cs4IGn1/OV3z3AX7vX9C5vaW7kTcfP5l9POoj9xrUOYQl33xNr\nNvOF395HqbS6qu2nTWjlQ688jLOPmjVsRjZSfbhz6Wr+9PBKOrp72HdsOxjFAgAAIABJREFUC79+\nx4I9msRq8ZPreoOAd508j9/e/SQPPrMBgJcdNo3Xv/CAHe63dnMntz60gruWrWW/ca08ta6d/ca1\nsvCDLx12w9eWSiW+v/ARvvDb+3qDmVcdNZPPv+a5jGutj8t6OZDpyYKdnor35SCmKwtqunpKdHeX\n6OrpobunxKn/efMujz2utZk3nTCbb2fDg77hhbOH3YRog2FsazNUjOY20idPk7R76uOvxTDxnp/9\njV/97YltnqYdPHUcbz/pIKZPbOOBp9fzQA1ykwfD5o5uvnPTw73jiVfjuDn78C8vOYjRLU3c9sjK\nASydRpqOrh4+cHlKR3cPzY0NfOsNx+z2TVspu5n81V+3duZ95ZHTeemhUzjnW7cC8JEr7uYvj63m\ng684FBq2PpHf2NHFyRfdtN0xX3LIFJY8u7H3BrW3Iyw777S6zc/Z0/vyTW3lU/qeHRyPbL+tn7f1\neFQ8+e/Z5nj0PsnvKZVYt7lru1Fx9hvXytz9xvK9m5ds04oQPmvrz+WWhK2tE9u3OpR/zv7bvqx9\njtfbwpEdq7tn681+5T7l95Wf2RsgVNRbdxXNFRu2dPGDhY8A4Wn3O4bhhGiDoe8IQbYESKrk6EC7\nwdGBpNoY1bS1FamaS1D5ZlHq610vO5j32iF4h879zq3bPOh598nzeM+ppk1Jw4ijA0kaWcqz76r2\nGir6QDSW+zmUhxptIAw3mg0v2rtNNvRqeb/ycXqHKs2WN/TpX9HUuH3/i/KwpTTQ+/mNjeE19LXY\n2k+jctjXymFUr7xreb/nGZ8wmxmTRvOWBQcOXGUOc3YMlrQrBgG74af/3/FDXYQ98uTakPf/9Lrq\nZvqF0FHynGNmhT/mu/DzPz/OL7P0jEljRjF1fP99Iqrp9FqLTq7VdGCt5mOqKUtV29TovPvdZDDP\nu6rjhK3GtDRx5KyJO9ynv88KN5INfO2GB3uXnf+iOcyaNHqbG8sN7V1cdP0Dvdt89pwjAfjoFff0\nLrvo3KP6jNtf3r98E8zWTsLb3BxX3MhmJ9/AtmP+b3NTvM1N89Yb54aK45V/v7a9Oa64WW9ooKun\nxOd+s5grKtKgLjhlHv960kG9N/KVnzES9BcE7DeuhU+dfeQglWb4Gtu6bTpQq0GApAoGAbvh+LmT\nh7oIu2VTRxffuWkJ37v5Ydo7+x93vaW5kX8+8UDeftLBoUNZP0qlEp/4dbi5mj6hjVs++FI7nmnA\nlEolrvjrMh5ftZljZ+/DJ886YofbdfaUeoOF4+dOZmPF6CifPedICsfuPyjlrYUn1mzm7T++k7se\nDwMR7Du2ha/9w9G8eN5+Q1yyoTVtQttQF2FYGD3KlgBJO2cQMAL19JS48q7lfOG39/HUuvaq9jnj\nuTP40CsP263OmgsfWsEDT4dRWeIXzTEA0IB6Zv0WHl+1GQgzw+7Mq583szcI+PXftn2i/LLDpg5c\nAWvslgef5V2X/ZXVmzqBMETxt95wDDMnjR7ikg296QYBVenbEtDiNVpSBYOAEebOpau58KpF/O3x\nNf1vDBwxcwKfOPNwXrgHrRzfz0bnGD2qide/YMfDMkq1cu/ytb0/R7Mm7nS7uVPGEe0/kXTZWn79\ntyd6h8w8fMYEZkys/xvonp4S3/rDQ1x0/QO9nabfdPxsPnbmfFqbh9dQpgNl2kSDgGrYJ0DSrhgE\njBDL12zmS9fex6/+1n+HOghDCn7g5YdSOHZ/mvZgvP+HnlnPH+4PY7X//bH7M3HMqN0+hrQ7Fi1f\n1/vz4TMn7HLbs583i3TZWh5bual32cnz678VYO2mTt73i7/x+8XPANA2qpHPv+a5nHP08ElhGgy2\nBFRnrEOEStoFg4BhbnNHN9+9+WG+c1OVef9NjfzTiQfyjpcevFeTCn1/4aO9P795wZw9Po5UrUVP\nhiBg1qTRTBrTssttXxXN4LPXLNpmWNF6TwW6d/la/vVHd7J0VQhc5kwew3fedCyHTd91wJNH0yYM\nr0kZh0rf2bhNB5JUySBgmCqVtub9P7m2urz/VxwxnY+cPp8DJu/dzJqrNnbwyzuXAXDK/KnMnTJu\nr44nVePerCWgv1YAgKkT2njRQfux8KEVAEwe28JR+08a0PLtjcv/soyPXnE3W7pCIH/a4dP4f689\niglttrDtiB2Dq9N3gAdbAiRVMggYhv66dDUXXr2Ivy6tLu9//oyQ93/CQbUZ3egn//dY783KW17s\nGN0aeOvbO3tTew6fUd2T8bOfN7M3CHjpYVNp3IO0t4HW3tnNp65axGW3LwXCuPr//vLD+JeXzB0x\nw30OBIOA6jhjsKRdMQgYRp5a284Xr71vm/HCd2Xy2Bbe//JDee3zn7NHef87sqWrm+KfHgNCcHHC\nMBs2VcPT4ifX9/58RBUtAQCvOHI6/3n9Azy1rp1z63BY0GWrN/H2H99Juix0eJ48toWvv+5oXnRw\nvof/rMbE0baQVKNvx2DnCZBUySBgGNjc0c33bl7Cd256mM2d3f1uP6qpgbcsOJB3vOzgmqcTXH3X\nkzy7Pkw69k8vPtCnlRoUiypGBqomHQhgfNsofvXOBaxv7+KgOktZu+mBZ3n3T//Kmmz4z6MPCMN/\nDofRi+rB6FGOklSN7ToGN1lvkrYyCKhj5bz/L/72PpZXmfd/6uHT+Ojp85mz39gBKU95WNAp41t5\n1VEzav4Z0o6U+wNMHD2KWbsxTv7U8W1MHT9Qpdp9PT0lvv6/D3HxDVuH/zz/RXP4yOnzTdXYDW0G\nAVUZY58ASbtgEFCn/vb4Gi686l7urDLv/7Dp4/n4mYezYABTCW5bsqp3hJZ/PH62Y5Zr0JS/d4fP\nmDBsW5+eWtvOh3+ZcmM2tO7oUU18ofBczn7erCEu2fBjWkt1HCJU0q4YBNSZp9a286Vr7+OXVeb9\n7zu2hfeddgjnPf85NA/w8G/lVoDW5kbecPzsAf0sqayjq4cHs5mpq+0PUE86unq49I+P8LUbHmRj\nR0jnm7vfWL79xmM5dHodNVMMI/XYybsebTdEqEGApAoGAXWivTPk/X/7D9Xl/Tc3NnD+i+bwbyfP\nG5ROco+s2MgN9z0NwGuOmcW+Y3c9Tru0p7p7Sty2ZCXL12zmVUfNZMmzG+noDqNRVdsfoF788aEV\nfOLX9/Dwsxt7l73qqJl87pwjGe/wnxpgY/vOGOw8AZIqGAQMsVKpxFXpk3zhN4urzvs/Zf5UPnL6\n/EEdn//SPz7Sm8P8lgUOC6raW7pyEz/44yNcnT7Jig2h8/kVf32CVz53a9+TI2ZOHKri7Zblazbz\n2WsWc83dT/YumztlLJ866whOnDdlCEumPBnT6mRhknbOIGAI3fX4Gi68ehF/eWx1VdsfMm0cHzvj\ncP7ukMG9iVi7qZNf3BEmB3vJIVOYN80UBtXe+ZfezpIVG7dZduvDK7kj+/1oaW5k7pTad3ivpS1d\n3Xx/4SN8/YaHelv0xrQ08a6T5/GWBQeajlGl6RPaeGpddQ9FtHMtTY00NTbQnU2d7fdPUiWDgCHw\n9Lp2vnTt/STZrLv92WfMKN576iG87gUHDHje/45c9uelvTc0/+TkYBoAy9ds7g0Ajtp/Iq97wQFc\neddybn14JR3ZxHSHThvPqDp+knnzA8/yySvv3SaQOTOawUfPmO/Qn7tp2kSDgFpoaGhgTEsT69u7\nAIMASdsyCBhE7Z3d/NctS/jWHx5mU0d1ef9vOmE2F5x8CBPHDE3+cGd3D8VbHwVCS8SJ85zISLVX\n2Rr2H2cdwTEH7MNZz5vJmy/9M//3yCqgfjsFP7FmM5++ahHX3vtU77J5U8fxqbOOcOKvPTRtfOtQ\nF2HEGNvSzPr2LpoaG2o2aaSkkcEgYBCUSiWuuftJPv+b+3hizeaq9nnpoVP46BmHc/DUoZ3k6Dd3\nP8mTWV+FtyxwcjANjL9UpPyUb/bHtDTzg/OP412X/ZXbH1nF39fZrL9burq55OYlfOPGh2jvDK0V\nY1uauOCUQzh/wZy6brWodzMmtg11EUaMcr8A+wNI6ssgYIDdvWwtF159L39+tLq8/4OmjOXjZx7O\nSYdOHeCS9a9UKvGDbFjQfce28OqjHc9cA6McBESzJm4z/8TY1ma+f/5xdPeU6uop5o33P8OnrryX\nR1du6l129vNm8pHT5zNtgjewe2uaQUDNjMmGCTUVSFJfBgED5Ol17Xz5uvu5/C/V5f1PHD2K95wy\njzccP7tuniD+5bHV3LVsLQBvPH62s3RqQGzq6OqdDOzY2fvscJt6CQAeX7WJC69exPWLnu5ddui0\n8Xzq7CM4fu7kISzZyDLdQKpmxmTDhBoESOrLIKDG2jvD6CDfvPGhqvL+mxobeNPxs3n3yfPYp87G\n3i9PDtbS1MibnBxMA+Sux9f2jl5yzE6CgKHW3tnNd29awrf+8BBbso7K41ubueDUQ/jHE+oncB8p\nDAJqpzxrsOlAkvoyCKiRUqnEb+5+is/9ZnHVef9/d8gUPn7G/LoccvPxVZu4LuvoeNbzZjLFjnoa\nIHcu3Zoqd8wB9RcE3LD4aT511SKWrtqa+vOao2fxodMPY+p4b1YHwtQJXm9qpTyZ5LhW/9xL2la/\nV4ViIToJ+Dug3Na9HPhNnKR3V2zTAJwJnAiMAR4BLouTdHmtC1yP7nliLRdetYjbH11V1fZz9xvL\nx86cz0sPnVq3HW0v/eOj9Dg5mAZBuT/A7Mlj6irYXLpyE5+66l5uuO+Z3mWHTR/Pp199JMfN2XcI\nSzbyTXA25Zr5xxfN4Yk1m3nTCXOGuiiS6kw1jwZWA78EngEagBOAtxcL0WfjJC0nvJ8GnAr8N/AU\nISC4oFiIPhEnaV0N9lwsRE1xkvafp1OFZ9a38+Vr7+cXVeb9T2hr5t2nHMKbjp9d1/mZ69s7+fkd\njwOw4ODJHF6nQzNq+OvpKfW2BBxbJ60A7Z3dfOsPD/Odmx7unaNgfFsz7zv1EN54/Owhmasjb1rt\nf1QzxxywD7/4lxcNdTEk1aF+g4A4Se/qs+hXxUL0EmAusCxrBTgFuDZO0jsBioXoUuAi4AXAzX2P\nWSxE84D3Ah+Mk3RdxfJXA1GcpBdm7w8CzgHmABuBFEjKgUWxEB0BnA7MzA7xKPDzOEmfzNZPBj4H\n/BehlWIukBQL0W3A64DDgdHAGuB/4yS9ob/6gK15/9+68SE2VpH339gAb3jhbN5z6iHsW2d5/zvy\nsz8/zoYtYXIZJwfTQFqyYgNrNnUCQ98foFQqcf2ip7nw6kUsW701pe/vj92fD77isLpqpRjp2kYZ\naEnSQNutJMFiIWoEjgVagYezxZOBCcCi8nZxknYWC9GDwEHsIAiIk/TBYiF6ltCqcF127AbgeOD6\n7P0s4N3AVcAPgbHAa4EY+G52qFbgBmAZ0EIICN5RLESfjJO0q+IjzwEuz47TDZwNzAK+AazPzqHf\nxPzVj67mpqfX8aUbHmT5ui39bQ7AC/efyMfPOJz9GxsZA6x5bA2j9xlN+9p2Wsa10NXeRWPWKtDT\n1UNzWzMdGzpom9jG5tWbGbPfGDat2LTd6+h9R9O+up3WCa10buqkqaWJUk+JUqlEY3MjXe1dtIxr\noX1N+06PUX5tm9RGx4aO8Nkd3Vx6S+gQPGef0Rw/bQJrl66lbZ82Nq/aRXnq+Jx6unpoaGigobGB\n7o5uRo0ZxZZ1WzynOjin2x7bmkI3f1wrG5/ZOCTn9AwlLrxmMQsr+ifMnzqOj7z0YI49YB+61m2h\nvaeU2/9Pg31Ooyfveobl9jXtw+6cRuL/J8/Jc/Kcan9Ok2ZPqur+shaqCgKyG/IPAqOALcC34yR9\nIls9MXtd12e3dcCuzmQhsIAsCACOINyI35a9Pw24I07S6yvK8RPgY8VCND5O0vXlloeK9UXgq4SW\ng4cqVt1YuW3WQrA0TtJHs0Urd1HOXm/99T385cm+p7lzrzlqJgumT+DRVZt4YN0WWlZsoGPdFlrG\ntdCxqYPmtlH0dHTT0BT6BZS6SzS2NNHV3knLmBY6NnRs3afv6zMtdGzsYNToUXR3dNPY3Bi+6EBj\nYwPdnd00tzXTubFz58fIXkeNHUVXexdNo5q47v5neGJdyOCaMa6VGx54ls7NnbSM7ac8dXxOPT0l\nGoCGxgZ6unpoamnynOrknH734LNAGMHk4Mljq/7dqpXNnd184/8eo3jXE3R2h04w41ubueDFczn3\nuTOok5FJc6de+0pJ0kjSUCqV+t2oWIiagX0JqTPHEFJr/l+cpMuzlJ0PAB+Ok3RVxT4xMClO0q/u\n5JjjgS8AX4mT9OFiIXob0BMn6SXZ+k8CUwhP7nvLS3ji/8U4SZcUC9EUwlP9A4Fx2fpW4Ptxkt5e\nkQ50UZykD1R89pHA2wj9HBYDaeX6nZnzoWv6ryxJu+3EefvxP//0wkH7vFKpxHX3PsWnr952NK/z\nnv8cPvCKQ5k8ztSfoTbnQ9fscHlLUyMPfPaVg1waSRoSA/pEpKqWgCy1pjxExmPFQjSH0A/gh8Da\nbPkEoHJ4nAls3zpQecz1xUKUAguKhegpIAK+WbFJA6G1YEd5+uU2+3dmP/+IkNffDXxqB+e1Te5O\nnKT3FAvRh4EjgcOAdxYL0V/iJC3urLySBs4tD67g8E9c2+92e3I1bGhooLEhzMnR1NhAY0MDJeDZ\n9VsvC8+dNZELzz6Co+ukc7J2btpEAzRJqoU9HTi4oWLflYSb/fmEjrkUC9Eo4GAg6ec4txCeyD+b\nHWNxxbqlwMw4SZ/Z0Y7FQjQWmA78JE7S+7NlBwBV9SiLk3QDIfXotmIhugd4a7EQ/bhPXwJJg6Sa\nyfVqbdKYUfz7yw/lH447oG5mJdauOZGYJNVGNfMEvAa4m/CUv40w4s8hhE61xElaKhai3wOnZ0/0\nnwbOIDx9v72fwy8mjPpzJmF0ocp0m+uADxUL0RsInYu3EG76ozhJfwRsAjYAJxYL0WpC/4MC0FPF\nOZ1FCDKWA03A0cCKPQ0AXjBn310/otzDJKLSHu5YRYbXdjZ2dLO4or/Du06eN7AfyB5Xy55+3KDW\nZ/i8PdxvkM9vkHejmhTEHe+3Z5/XU4KeUonunhLdpRI9PeHnGRPbePOCA+tupm7t2jSDAEmqiWpa\nAiYAb8leNwNPAF+Pk/Teim1+R8jVfz1bJwu7uL85ArIA4lZCEHBrn3XLioXoy4Sc//cTnvCvAP5a\nse8lwHnAfxDSlS4ntCz0pwt4NbAf0AksYdtUpN1S7SRhw8VV73wxz91/Yv8bStIgsyVAkmqjqo7B\nAyl70j8lTtKLh7QgVchDx+CXHTaVH5x/3FAXQ1LO7axj8MfOmM9bT5w7yKWRpCEx9B2DB0KxEI0G\nZhDmBvjeUJVjd/ziX04Y6iIMqObGBo6YaQuApPo11ZYASaqJIQsCgLcThvZcGCfp3UNYjqodN2ff\noS6CJOWa6UCSVBtDFgTESXrRUH22JGl4mjLeIUIlqRaqGk5TkqR6ML5tKBuwJWnkMAiQJA0bbaOa\nhroIkjQiGARIkoaNtmb/bElSLXg1lSQNG81N/tmSpFrwaipJkiTljEGAJEmSlDMGAZKkujOmxQ7A\nkjSQDAIkSXXHScEkaWAZBEiS6s7UCU4KJkkDySBAklR3bAmQpIFlECBJqjvTJhoESNJAMgiQJNUd\nWwIkaWAZBEiS6o5BgCQNLIMASVLdMR1IkgaWQYAkqe5MGefoQJI0kAwCJEl1Z1xr81AXQZJGNIMA\nSVLdaRvljMGSNJAMAiRJdae12T9PkjSQvMpKkupOY2PDUBdBkkY0gwBJkiQpZwwCJEnDwsTRo4a6\nCJI0YhgESJKGBScQk6TaMQiQJA0LUyc4d4Ak1YpBgCRpWLAlQJJqxyBAkjQsTJ9oECBJtWIQIEka\nFqbZEiBJNWMQIEkaFkwHkqTaMQiQJA0LpgNJUu0YBEiShoV9x7YMdREkacQwCJAkDQtjW5uHugiS\nNGIYBEiShoW2Uf7JkqRa8YoqSRoWWpr8kyVJteIVVZI0LDQ0NAx1ESRpxDAIkCRJknLGIECSJEnK\nGYMASVJdmuyQoJI0YAwCJEl1aZozBEvSgDEIkCTVJWcIlqSBYxAgSapLtgRI0sAxCJAk1aVpE1qH\nugiSNGIZBEiS6tJ0WwIkacAYBEiS6pLpQJI0cAwCJEl1yY7BkjRwDAIkSXVp8jjnCZCkgWIQIEmq\nS2Namnt/fv0LDxjCkkjSyGMQIEmqS23NjbQ0hz9Tz9lnzBCXRpJGlub+N5EkafA1NzXy8TPmc8uD\nK3jNMbOGujiSNKI0lEqloS7DcGJlSZIkaTA0DOTBTQeSJEmScsYgQJIkScoZgwBJkiQpZwwCJEmS\npJwxCJAkSZJyxiBAkiRJypl+5wkoFqJXAkcD04AuYAlwRZykyyu2aQDOBE4ExgCPAJdVbiNJkiSp\nPlTTEnAI8Afgi8BXgB7gPcVCNLZim9OAU4GfAp8D1gMXFAtRW01LWwPFQtQ01GWQJEmShtJuTxZW\nLEStwFeBb8VJmmatAF8CboyT9DfZNqOAi4DL4yS9eQfHmAe8F/hgnKTrKpa/GojiJL0we38QcA4w\nB9gIpEASJ2l7tv4I4HRgZnaIR4Gfx0n6ZLZ+MiEo+S9CK8VcIAFuA14HHA6MBtYA/xsn6Q39nL6T\nhUmSJGkwDOhkYf2mA+1AG6FQm7L3k4EJwKLyBnGSdhYL0YPAQcB2QUCcpA8WC9GzwAnAddCbUnQ8\ncH32fhbwbuAq4IfAWOC1QAx8NztUK3ADsAxoIQQE7ygWok/GSdpV8ZHnAJdnx+kGzgZmAd8gtFpM\nBsb3d+JrHltD26Q2OjZ00NzWTE9XDw0NDTQ0NtDd0c2oMaPYsm4Lbfu0sXnVZsbsN4ZNKzZt9zp6\nn9G0r22nZVwLXe1dNDaHBpmerh6a25rp2NBB28Q2Nq/exTH2HU376nZaJ7TSuamTppYmSj0lSqUS\njc2NdLV30TKuhfY17Ts9RvnVc/KcPCfPyXPynDwnz8lzGvpzmjR7Un+3ozWzJ0HAecDjhL4BABOz\n13V9tlsH7OpMFgILyIIA4AjCjfht2fvTgDviJL2+vEOxEP0E+FixEI2Pk3R9nKR3Vh6wWIiKhFaK\nOcBDFaturNw2ayFYGifpo9milbsopyRJkjSi7FY6ULEQnQscB3wpTtIV2bKDgA8AH46TdFXFtjEw\nKU7Sr+7kWOOBLwBfiZP04WIhehvQEyfpJdn6TwJTCE/ue8tLeOL/xThJlxQL0RTCU/0DgXHZ+lbg\n+3GS3l6RDnRRnKQPVHz2kcDbgGeAxUBauX4XTAeSJEnSYBjQdKCqhwgtFqLXAi8g3LSvqFi1Nnud\n0GeXCWzfOtArTtL1hBz/BVkn4wj4Y8UmDYTWgs9U/Ps08HFCSwTAOwk3/z8iBBSfIXRc7tvCsaXP\nZ98DfJiQejQOeGcWtEiSJEkjXlXpQMVCdB7wfEIA8FSf1SsJN/vzCR1zyx2DDyZ0wt2VWwhP5J/N\njrG4Yt1SYGacpM/spExjgenAT+IkvT9bdgBVBjZxkm4gpB7dVixE9wBvLRaiH/fpSyBJkiSNONXM\nE/A6QofdbwMbi4Wo/MR/S5ykW+IkLRUL0e+B04uF6CngaeAMwtP32/s5/GLCqD9nAtfGSVqZbnMd\n8KFiIXoDoXPxFsJNfxQn6Y8IHZM3ACcWC9FqQv+DAqEloL9zOosQZCwHmgjzIKwwAJAkSVIeVPPU\n/CTCiEDvAb5c8e+0im1+B/weeD3wUUJn4YvLQ3nuTHbTfyvhRvzWPuuWZZ8zGXg/IQ3oHLIUo2zf\nSwij/PwHYcjPK4HOKs6pC3g18AlCf4Y24JtV7CdJkiQNe7s9T0CtZU/6p8RJevGQFqQ6dgyWJEnS\nYKi7eQJqoliIRgMzCKlG3xuqckiSJEl5M2RBAPB2wtCeC+MkvXsIyyFJkiTlypCnAw0zVpYkSZIG\nQ33MEyBJkiRpZDAIkCRJknLGIECSJEnKGYMASZIkKWcMAiRJkqScMQiQJEmScsYgQJIkScoZgwBJ\nkiQpZwwCJEmSpJwxCJAkSZJyxiBAkiRJyhmDAEmSJClnDAIkSZKknDEIkCRJknLGIECSJEnKGYMA\nSZIkKWcMAiRJkqScMQiQJEmScsYgQJIkScoZgwBJkiQpZwwCJEmSpJwxCJAkSZJyxiBAkiRJyhmD\nAEmSJClnDAIkSZKknDEIkCRJknLGIECSJEnKGYMASZIkKWcMAiRJkqScMQiQJEmScsYgQJIkScoZ\ngwBJkiQpZwwCJEmSpJwxCJAkSZJyxiBAkiRJyhmDAEmSJClnDAIkSZKknDEIkCRJknLGIECSJEnK\nGYMASZIkKWcMAiRJkqScMQiQJEmScsYgQJIkScoZgwBJkiQpZwwCJEmSpJwxCJAkSZJyxiBAkiRJ\nyhmDAEmSJClnDAIkSZKknDEIkCRJknLGIECSJEnKGYMASZIkKWcMAiRJkqScMQiQJEmScsYgQJIk\nScqZ5v42KBaiecBpwAHAJKAYJ+mtfbZpAM4ETgTGAI8Al8VJurzmJZYkSZK0V6ppCWgFngB+BnTu\nZJvTgFOBnwKfA9YDFxQLUVstCllLxULUNNRlkCRJkoZSvy0BcZLeA9wDUCxE5/ddn7UCnAJcGyfp\nndmyS4GLgBcAN+9gn3nAe4EPxkm6rmL5q4EoTtILs/cHAecAc4CNQAokcZK2Z+uPAE4HZmaHeBT4\neZykT2brJxOCkv8itFLMBZJiIboNeB1wODAaWAP8b5ykN/RXH5IkSdJw128QUIXJwARgUXlBnKSd\nxUL0IHAQOwgC4iR9sFiIngVOAK6D3mDieOD67P0s4N3AVcAPgbHAa4EY+G52qFbgBmAZ0EIICN5R\nLESfjJO0q+IjzwEuz47TDZwNzAK+QWi1mAyM7+9E1zy2hrZJbXRs6KC5rZmerh4aGhpoaGygu6Ob\nUWNGsWXdFtr2aWPzqs2M2W8Mm1Zs2u519D6jaV/bTsu4Frrau2jd65CNAAASIUlEQVRsDg0yPV09\nNLc107Ghg7aJbWxevYtj7Dua9tXttE5opXNTJ00tTZR6SpRKJRqbG+lq76JlXAvta9p3eozyq+fk\nOXlOnpPn5Dl5Tp6T5zT05zRp9qT+bkdrphZBwMTsdV2f5esIfQh2ZiGwgCwIAI4g3Ijflr0/Dbgj\nTtLryzsUC9FPgI8VC9H4OEnXl1seKtYXga8SWg4eqlh1Y+W2WQvB0jhJH80WrdzVCUqSJEkjSUOp\nVKp642Ih+hrw08qOwVnKzgeAD8dJuqpieQxMipP0qzs51njgC8BX4iR9uFiI3gb0xEl6Sbb+k8AU\nwpP73vISnvh/MU7SJcVCNIXwVP9AYFy2vhX4fpykt1ekA10UJ+kDFZ99JPA24BlgMZBWrt+F6itL\nkiRJ2nMNA3nwWgwRujZ7ndBn+QS2bx3oFSfpekKO/4JiIRoLRMAfKzZpILQWfKbi36eBjwOPZ9u8\nk3Dz/yNCQPEZoIftWzi29Pnse4APE1KPxgHvzIIWSZIkacSrRTrQSsLN/nxCx1yKhWgUcDCQ9LPv\nLYQn8s9mx1hcsW4pMDNO0md2tGMWOEwHfhIn6f3ZsgOoMrCJk3QDIfXotmIhugd4a7EQ/bhPXwJJ\nkiRpxKlmnoBWYGr2thHYt1iIngNsjJN0VZykpWIh+j1werEQPQU8DZxBePp+ez+HX0wY9edMwuhC\nlek21wEfKhaiNxA6F28h3PRHcZL+CNgEbABOLBai1YT+BwVCS0B/53QWIchYDjQBRwMrDAAkSZKU\nB9U8NZ8NfCz7Nwp4VfbzWRXb/A74PfB64KOEzsIXl4fy3Jnspv9Wwo34rX3WLQO+TBi55/2ENKBz\nyFKMsn0vIYzy8x+EIT+vZOdzGVTqAl4NfILQn6EN+GYV+0mSJEnD3m51DB4I2ZP+KXGSXjykBamO\nHYMlSZI0GAa0Y3At+gTskWIhGg3MIMwN8L2hKockSZKUN0MWBABvJwztuTBO0ruHsBySJElSrgx5\nOtAwY2VJkiRpMNT9PAGSJEmShhGDAEmSJClnDAIkSZKknDEIkCRJknLGIECSJEnKGYMASZIkKWcM\nAiRJkqScMQiQJEmScsYgQJIkScoZgwBJkiQpZwwCJEmSpJwxCJAkSZJyxiBAkiRJyhmDAEmSJCln\nDAIkSZKknDEIkCRJknLGIECSJEnKGYMASZIkKWcMAiRJkqScMQiQJEmScsYgQJIkScoZgwBJkiQp\nZwwCJEmSpJwxCJAkSZJyxiBAkiRJyhmDAEmSJClnDAIkSZKknDEIkCRJknLGIECSJEnKGYMASZIk\nKWcMAiRJkqScMQiQJEmScsYgQJIkScoZgwBJkiQpZwwCJEmSpJwxCJAkSZJyxiBAkiRJyhmDAEmS\nJClnDAIkSZKknDEIkCRJknLGIECSJEnKGYMASZIkKWcMAiRJkqScMQiQJEmScsYgQJIkScoZgwBJ\nkiQpZwwCJEmSpJwxCJAkSZJyxiBAkiRJyhmDAEmSJClnDAIkSZKknDEIkCRJknLGIECSJEnKGYMA\nSZIkKWcMAiRJkqScaa7VgYqF6CTgNGAisBz4eZykD9bq+JIkSZJqoyYtAcVC9HzgPOC3wGeAh4F/\nKxaifWtx/FoqFqKaBT6SJEnScFSrG+JTgVvjJL0le//TYiE6AngJcEXfjYuFaDLwWeDzcZI+VrH8\nROAc4ANxknYVC9EM4O+BeUAHcB+hhWFdtv0c4NXAAUAT8ARweZykSyqO+V3gMuAw4AjgpmIhugI4\nFzgGGAusB26Pk/SXtakOSZIkqX7tdUtA9mT9AGBRn1WLgIN2tE+cpCuBxcCCPqteBNyWBQATgX8n\n3Nh/HrgYaAXeUSxEDdn2bcBtwJezbR4ntECM7XPcM4F7gE8BfwBeBjwPuAT4ePb6VNUnLUmSJA1j\ntWgJGEcIJtb1Wb4emLCL/W4B3lQsRL+Ik7Qze+o/F/ifbP1LgMcrn84XC9GlwH8Cs4FH4yS9r/KA\nxUL0U8LT/SOB/6tYdUecpAsrtpsMPA08FCdpCVhFSGHqT0P/m0iSJEn1bSjz4+8CXg8cDdxOaAV4\nNE7S5dn62cAhxUL0tR3sOwV4tFiIxgNnA4cSAo4GoAXo2xfhsT7vbwUuAC4sFqJFhFaCe7KAQJIk\nSRrRatExeAPQw/ZP/cezfetArzhJu4E/AQuKhagROB5YWLFJA3A3oaNx5b+PZ8sB3gzMAX4OfDFb\nv5rtg5stfT57KfARQn+Fxuw4F1SkGUmSJEkj1l63BGT5+0uB+cBfKlYdDtzZz+4LCXn6JxHy+/9c\nsW4pcCywMgsYduRg4Kdxkt4NUCxEEwhDlFZT7vasfHcWC9GtwIeAqYQ0IUmSJGnEqlU60PXAW4qF\n6FFCbv3fEW7Gb97VTnGSPl0sRA8BBULefnvF6j8ALwb+uViIriP0MZhCCAwuz7Z9GnhhsRA9Qug0\nXAC6+itssRCdAqwFlgHdwAuAdkIrgiRJkjSi1WSegDhJ7yCk5JwOfIzwhP7r2ShA/VlICEYqU4GI\nk3QN8CWgBLwL+CTwOsJNfvlGv0hoQfgo8M/AH4FqPnML8HLgw9m+zwG+FidpRxX7SpIkScNaQ6k0\ntH1hi4Xo5cCL4yT9+JAWRJIkScqJIRsdqFiIWoHJwMnAb4aqHJIkSVLeDOUQoa8DjgNS+uk7UCvF\nQjQPOI0wudkkoBgn6a0V61sJMxYfTZhJeBVwc5ykv6/Yppkwi/ELgFGEWYx/Eifp6opt9iWc32FA\nJ2EI1MvjJO23v0I92Nt6yiZrexWhc/i+hBGk7gZ+FSfpxorjfI4QCFa6bjjN3Fyj79T7gEP6HPqO\nOEkvqdhmDPAPwFHZorsIneI31fykBkANvlOTgc/t5PBJnKS/y7brty7rXRV1NQF4DeH3awzwAOG7\n8EzFNl6n+qmnvFynavR9GvHXKKjJdyoX16liIXol4Vo9jZCevQS4omKId7LRFs8ETiTU1SPAZX22\n6fc7UyxEswjXqTnARsIcU9cMhyHda1FP2XfqDMJQ+BMJ/VnvAK6Ok7Sz4jjf3UERfhwn6S7vr4cs\nCIiT9L+B/x7kj20lzED8J+AtO1h/LmGUox8AK4B5hAnNNsRJelu2zXmEL+wlhC/kucA7i4Xos3GS\n9mTDnf4b4Q/Klwk3NG/O9v3pgJxV7e1tPU0kXEAT4Mns59cT+m1c3OdYVwM3VbzfwvBSi+8UhLkr\nrqh438m23kq4Uflq9v4fCd+rb+7tCQySva2n1YQZxCsdTfjj0HcUsv7qst7ttK6yPxj/Sugr9S1g\nM3Aq8J5iIfpknKTl359cX6eqrKe8XKdq8X2CkX+Ngr2vq7xcpw4hDN7yKGE497PYWg/lAPo0Qv38\nN/AU4Ub3gmIh+kTFIDC7/M4UC1EbYU6nBwnB1XTgfMLv3/UDdXI1VIt6mk7ov/sTwmA4M4A3Eq7Z\nP+rzef9DeLBetrm/Ag5lS8Cgi5P0HsLEYBQL0fk72OQg4LY4Se/P3q8sFqIXAwcCtxUL0WhgAeHp\nwOLsOD8APk+4gbmX8IRgBvDh8lO3YiFKgH8sFqJf9RkBqS7tbT1lEex3KrZ/pliILifchLT1qYMt\ncZLudD6Jere3dVWxXcfO6iGbTfsI4Etxki7Jlv0I+PdiIZoWJ2ndD2tbg+9UD33mHSkWoqOB++Ik\nXdHnWDuty+Ggn7qaSphZ/dNxki7Ltvkx4Ub+OGCh1ymginrKy3Vqb+upYtsRfY2CmnyncnGdipP0\nq5Xvs+vLVwnX8TQLmE4Bro2T9M5sm0uBiwitkzdX+Z15IWEC2Euzp97Li4VoOnBKsRD9vt5bA2pR\nT3GS3ku4ZpetKBai3xICir5BwKbd/U7lKgiowkPAUcVCtDBO0tXFQnQQYeSg32XrZwNNwKLyDtl2\nTxEuDvdmr09VNrtn2zdn+9/P8NdfPe3IaEJzWN8RmE4tFqJXEJ6g/AX43XBJR6hStXV1XLEQHUf4\nA3IPoamvfBMyl/DkY0nF9g9nyw5iZMxtsVvfqWIh2o+QxvK9HazeVV0Od+Vrdu9TwzhJS8VC1EUY\nlW0hXqegunrakbxdp3annvJ+jdrt71SOrlNthCfd5TSeyYQJZCuvQZ3FQvQg4ftwM9V9Z+YCD1Wm\nvWTHPDv7jL6BVb3bk3ra2XF2lGZ3XrEQvZFQLwuBW/oLlAwCtvUz4A3AF4qFqCdbdlmcpOXmlQmE\n2ZE39NlvHVsnKZvA9jMl72xW5eGqv3raRpb3dxZbn5SU/S/wOCFdYQ4h13I/4IcDVO6hUE1d3U7I\ngV8DzCTkxu/P1pSECcD6yl/m7I/PeqqcHG8Y2K3vFGEOkQ2EHNJK/dXlcPcU4fzOKRai/yH8wTwZ\n2Idtr0F5v05VU0/byOl1qtp68hq1B98p8nOdOo/wO1K+oS/XR99rzDpC2h1U952ZyPbzN62r2H+4\nBQF7Uk/byPoInMb2A+pcSXh4s4UQeJ4LjNvBdtswCNjWSwnR1zcJv6DzgL8vFqKVWZOMgqrrqRg6\nfL6DcLFLKtfFFZ1jgWXFQtROmBwuqeyYN8z1W1dxkt5Ssf0TxUL0LPDhYiE6IE7SpYNe4qGxO9+p\nRkK6y5/iPrOJj/S6jJO0u1iIvkPInf0K4aZ9MeFJYsNQlq2e7G495fU6VW09jfTfq2rswXcqF9ep\nYiE6l9AS8qU+wbMq1KKeiqFj+rsILQc3VK6Lk/SairePZ9+/0+knCKjJZGEjQbEQjSJE40mcpGmc\npMviJL2R0Av7tGyzdYQ6G9dn9wmEHtvlbfo+SRuX7Tcs8/8qVVlP5W1bCZ0PAb7Rp0lvRx7JXqfW\nssxDZXfqqo/HCH9gyvWwDhif5Q+Wj90AjGfr927Y2oN6OorwO7azlI5Kfety2IuT9LE4ST9N6DD3\ngThJv0a4xjybbZL76xRUVU+A16lq66mPXF2jynazrkb8dapYiF5LyF3/Sp8+D+X/532vMZUtkNV8\nZ9bu5Bjl/YeFvayn8jEmAO8FlgM/qKI/xCNAW7bfThkEbNWU/etbsT1sjfIfA7oJnesAKBaifQi9\nt8vNO0uA6dnysvmEPNPHal/sQVdNPZV79b+b8B37erztKBM7s3/2OlL+aFRVVzswi1Bv5XpYQhi1\nYm7FNnOzZQ/XpKRDa3fr6cXAA1V2NuxblyNGnKSb4yRdXyxEUwl5/OWUA69TFXZRT16nKuyqnnYg\nb9eobVRZVyP6OlUsROcROkR/JU7Sp/qsXkm4ia28Bo0iPAkvfx+q+c4sAQ7O9i2bT2ixW1mbMxlY\nNagnioVoIvB+QkraJVW2JDyH0H9ll0P05iodKHviU460G4F9i4XoOcDGOElXFQvRA4R8v3ZCSsIh\nwPFkzcNxkm4uFqI/AoUsb20D8FrCkGKLs+MuIgw39+ZiIfoF4SlBgdBBY1h0+tnbeqr4wzqaMJRa\nS7EQtWTH2xQnaVexEM0l/MLfTxjGag4hh+2uOElXDcJp1kQN6moKYQSEuwnfpxmEenic7CIQJ+mT\nxUJ0L/DGLBcVwhBh6XAZdWNv66niOPsSRpS4dAef0W9dDgdV1NWxhPNbSbh5OA/4W5yki8DrFFXW\nU16uUzWop1xco2Dv66riOCP6OlUsRK8jXJ+/DWyseNq8JU7SLVlu/++B04thQIKnCWPdbyH0h6j2\nO3M7YcjM84uF6BrCePuvIHSiruuRgaA29VQsRJOA9xECn58B44qFqPwRG+Iw5HNE6F/wMOHG/1BC\n/6Zb+hvAIFdBACFif1/F+1dl//5EGKP1EkJawj+xdcKiKwnjvJb9jPCU7Z8JQ1ctJjTN9ABk/0O+\nThhv+oOEUSZuBy4foHMaCHtbTwewNbr/dJ9jX0SYYKULeD7hF7w5O8ZC4Lpansgg2Nu66iJ04nkZ\n4QnIasIfh6v7RPv/RZhU5d3Z+7sYPuO5Q21+9yDk2G5m+zG3ofq6rHf91dVEwk1DOb3nNuCabQ/h\ndYr+6ykv16m9rae8XKOgNr97MPKvUydlr+/ps/xq4Krs598Rrj2vZ+skWBf3eciwy+9M9kDjYsI8\nCx8lPNW+Hqjsp1PPTspe96aeDicEplOBL/Q5zkcIAWk38BLCd7OB0GH6SuDG/grYUCrVfTAlSZIk\nqYbsEyBJkiTljEGAJEmSlDMGAZIkSVLOGARIkiRJOWMQIEmSJOWMQYAkSZKUMwYBkiRJUs4YBEiS\nJEk5YxAgSZIk5cz/Dw+Cn79JE8cPAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { From e2b4aea99b49043f65ab3581f25644fd9e874a57 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Fri, 16 Nov 2018 11:03:21 -0500 Subject: [PATCH 08/12] Sprint_challenge_2_upload --- DS_Unit_1_Sprint_Challenge_2.ipynb | 227 +++++++++++++++++++++++++++++ 1 file changed, 227 insertions(+) create mode 100644 DS_Unit_1_Sprint_Challenge_2.ipynb diff --git a/DS_Unit_1_Sprint_Challenge_2.ipynb b/DS_Unit_1_Sprint_Challenge_2.ipynb new file mode 100644 index 0000000..7ad2556 --- /dev/null +++ b/DS_Unit_1_Sprint_Challenge_2.ipynb @@ -0,0 +1,227 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "DS_Unit_1_Sprint_Challenge_2.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "metadata": { + "id": "i-n_5en3ER1o", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Data Science Unit 1 Sprint Challenge 2\n", + "\n", + "# Storytelling with Data\n", + "\n", + "In this sprint challenge you'll work with a dataset from **FiveThirtyEight's article, [Every Guest Jon Stewart Ever Had On ‘The Daily Show’](https://fivethirtyeight.com/features/every-guest-jon-stewart-ever-had-on-the-daily-show/)**!" + ] + }, + { + "metadata": { + "id": "Thm2n5FF2Fnp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Part 0 — Run this starter code\n", + "\n", + "You don't need to add or change anything here. Just run this cell and it loads the data for you, into a dataframe named `df`.\n", + "\n", + "(You can explore the data if you want, but it's not required to pass the Sprint Challenge.)" + ] + }, + { + "metadata": { + "id": "0rTHgzJIuRS7", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "df = pd.read_csv('https://raw.githubusercontent.com/fivethirtyeight/data/master/daily-show-guests/daily_show_guests.csv')\n", + "df.rename(columns={'YEAR': 'Year', 'Raw_Guest_List': 'Guest'}, inplace=True)\n", + "\n", + "def get_occupation(group):\n", + " if group in ['Acting', 'Comedy', 'Musician']:\n", + " return 'Acting, Comedy & Music'\n", + " elif group in ['Media', 'media']:\n", + " return 'Media'\n", + " elif group in ['Government', 'Politician', 'Political Aide']:\n", + " return 'Government and Politics'\n", + " else:\n", + " return 'Other'\n", + " \n", + "df['Occupation'] = df['Group'].apply(get_occupation)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "OS0nW1vz1itX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Part 1 — What's the breakdown of guests’ occupations per year?\n", + "\n", + "For example, in 1999, what percentage of guests were actors, comedians, or musicians? What percentage were in the media? What percentage were in politics? What percentage were from another occupation?\n", + "\n", + "Then, what about in 2000? In 2001? And so on, up through 2015.\n", + "\n", + "So, **for each year of _The Daily Show_, calculate the percentage of guests from each occupation:**\n", + "- Acting, Comedy & Music\n", + "- Government and Politics\n", + "- Media\n", + "- Other\n", + "\n", + "#### Hints:\n", + "1. Use pandas to make a **crosstab** of **`Year`** & **`Occupation`**. ([This documentation](http://pandas.pydata.org/pandas-docs/stable/reshaping.html#cross-tabulations) has examples and explanation.)\n", + "2. To get percentages instead of counts, use crosstab's **`normalize`** parameter to normalize over each _row._ ([This documentation](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.crosstab.html) describes the parameter and its options.)\n", + "3. You'll know you've calculated the crosstab correctly when the percentage of \"Acting, Comedy & Music\" guests is 90.36% in 1999, and 45% in 2015." + ] + }, + { + "metadata": { + "id": "sRMc0H_5z6ff", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Nqf9oJJDDu-d", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Part 2 — Recreate this explanatory visualization:" + ] + }, + { + "metadata": { + "id": "scozkHQc0_eD", + "colab_type": "code", + "outputId": "64a105e6-8fa5-45e5-c78e-d29fcd19b3f2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 406 + } + }, + "cell_type": "code", + "source": [ + "from IPython.display import display, Image\n", + "url = 'https://fivethirtyeight.com/wp-content/uploads/2015/08/hickey-datalab-dailyshow.png'\n", + "example = Image(url, width=500)\n", + "display(example)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMQAAAO2CAMAAAAwo7uMAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJ\nbWFnZVJlYWR5ccllPAAAAppQTFRFAI/VCIfPDZPVD5XXEH/KGHfEGpfUHpvYH4XMIG+/JpvUKGe5\nKZ3WLaHaMF+0MHytM5/TOFeuPDw8PKfcQHWgQKLTQU+pR0dHR12wR6nZSUejS63dTKHOTabSUG+S\nUT+dU1NTVmOxVq/bWLHdWTeYWqrSWrPfW15fXl5eX1usYGiFYS+SZWhpZ67RZ7ffaSeNaWlpabnh\nbmGub0uhb7facDWUcHJzcR+Hc7LRdHR0eMDjeReCenx9fI2nfzuWgFtrgICAgLbQgL/egQ98hIaH\nhhuBhzOQh8bkiB2DiyeGi4uLjSmIjVekjbrQjkGXjpCRjyuLjzOLj1VdlD+QljmSlpaWlszml7bZ\nmKDMmMXamUqVmYm/mZqbmr7PnUeZnU+an05Qn1GcoaGhomKfo6Slo8bYpFWgpdLop26lp6bOp8HP\np8vcq2Ooq8/hrHqqra2tra+vr0hDsYavsnGvs8XOtHuytNjptZK0t7m5uLi4uYC2up65uszVu4m5\nvHNxvpO8vpq8v0E1v469v6m+wMnOwaS/wdLbwsPDw8PDw97rxLXDxdfgxpzFx6vGx9DUyMHIzHJo\nzM3NzarMzc3NzrHMzs7Ozzso0MPA0r3S0uTt1LjT1q6n1tbW1tfX2NDX2YyE2cTY2cvJ2cvZ2n91\n2qSa2tPZ2tra28ba3U053ZmN3zQb37ev39/f4I+A4Kqg4OHh4eru4qyj4tTi5eXl5+fn6KSY6XBa\n6eLp6mxY6n5r6t3a69DL6+vr7GVN7nRe7y4N71tA8PDw8ePh8pSD8tfS81Ez84d088rD9L609VM1\n9bGl9fX19kYm9mFH9qWW95iH+Egp+H9p+Ix4+XJa+ksr+mZL+z4c+1k8/DEN/E0t/UAe/jQP/ycA\n////UNdpdAAAe4tJREFUeNrs3Yt/I+l6J3SfYzYmBG8SeRPBmrBa2PWInA7IXDqRMrAK7mBHsEwn\naZnbxID20D7sGtTQQdvyAsvpPTDlbHOZnhXB5jTXIAM7MKZ1WHMZLjJmbTyLjW2M43b3/0Ld3nov\n9dZVJaneqt/z+ZwzbtkqVZWqvvW8bz3vWzNDBAKBUDhmsAsQCAQQQyAQCCCGQCAQQAyBQAAxBAKB\nAGIIBAIBxBAIBAKIIRAIIIZAIBBADIFAIIAYAoFAADEEAgHEEAgEAoghEAgEEEMgEEAMgUAggBgC\ngUAAMQQCgQBiCAQCiCEQCAQQQyAQCCCGQCAQQAyBQAAxBAKBAGIIBAIBxBAIBAKIIRAIIIZAIBDZ\nRKynmdHHzk1zpOxb6lur00tuiQNridqEt6PbNEMb4BBLDWKa5ODqS47/Hj1iKgUzmkkdjN1mvVKp\n1JvtfqLnizyiEeBEAief1mxam9kb2SbmFJbGIKFvqedaapSvwTrbm9a32rRWpxJ7x1WbLf7L06wl\nFsZ59mjCmdAuF5wot6FLShArWd9IkX2tar3WYF8r0j9LFLF2hR4WhVIzietbs+ATIZdRcb+z0hhB\nn26V3cxGfK6N76vEnMLS0BL6lsS9UKq2wu8DjVmZ+Ihp7I4r1vsTRaxvf4T9qb2ScESgMZIOxBr2\nF8IenOSQZa/J1kvVhBHrCodFodhMLWLGHunGvKCLm1mox9S6Tb6FqSAWKQFJArG+aw2ak0SsbX9Z\n3L/Yo7UHYNKAWNf+Plruo6/AXGha1ivtZBGry06SQXoRE7LTsNGQLKgYry+nRL6rqSGmU65NCrFe\n0f3p1QkiVmfPA20sBysiAcQG4rHBnHNtVwuznyRig7L0HAl9YLBdLpNCLMZWD6ryJcXpUuk6LEwR\nsZCUj46YzDAnL5oEYmVmnQfFZA4HRPKI2V8U2ylWLrhhKzINzKQQo6dIUe+4lVxrA4I9RyaGWCFy\nPwhjmL6ZzKnQjbvLhtNGzIFkvIjRi1yJPT66k0JsINmAQlG/v9B3enKLECYNiDXFTrEBtUXs4awn\niZiT8FWso6Rdinh2eyHWrjhBzwES0U5f8uf0qI3coHQ2s2SlXl3n1CxG9lCjK9Wjm1SkVwI7eski\nVrJy3nopUi42MmItJ90xd1S7yPfVjh8xK+8ts5dxp51QL3gdfojJI6aJnWJM/2VPeK2dIGKaq1nl\nNC/LoyHm+pMYq1pxnXP1aCvn2kzalV+PmnIK69AMXNdhsog5S+5VY6eRMRArCQeI07rsTQixJvPx\nXSERJ63LFohJAWJD8YyqS1r89muDBBErue8oDEqSW6We0Z8sYs4Kx2uRVYZuD6NexvtyPyaHGHOF\nK40dsb5rzzW5r3P8iFWYDW2K7egKOsVShFhFOCrNk7XIZx0l9p+JfH1tycntvBhq0d0JI9aIc9LI\n7vRSrCOmYtylZDqI0TZee9yIaa4vr8/ttvEjxm5nRdxqIJYmxFpCRZ91sHHnS5/rCOG/vp5HJffA\nv869LEtGBl4nt6zWvjoaYv7l+5LTtyk/afq+21mV9oQ7+cxAuuM8FjfwyIHCIOb1LfmvvWzJFXmz\nOmg0RHTEmu4vzx4D0JYg5rnXetHHGrCKFgfcZmtALJWI9fhLq2Val2u5tLl/0a9v0LJvQouX5XaV\n9IN6FKf35a2SFnuUkmOJdCiX6s4hpDWd23xloye7EQ0x2SLDIsau8aBNkCq3Bn4rIDaQi9w+tzvp\njY3QrB1Xqvc9z+p6VMS8vqXgtZctWZJbdsnuLFbYBTF3GTjENPsXdAF19i9FxKoBmZr5fcr3Wr9B\n7r1XnW3vWp/lHBLWzq8La90lZwL5u4awin107KcJMXJG1dncoV9iX+PbMc7pwQzDKLMHIF+HLy1O\nb4W9y9XjbvOTg0isoqhEQUy+yMDTt+oypFsMGmugefQg1bkETSMfNqj4VSBVrfOoHRExz28pcO3l\nSxb72/nhCMWWuPNddycHYm9oX1quoBX8e0gpYg35XhvUZaMt+sI30uBJ7tF/GiM2KwP/JBUlFilB\nrMp9rfbPVfa1Mncsk9ODq0UsDdz91j6DM6ohb3K15SWioyDWDlN16j59NVddhLidkgPeK5toc20y\nghhf/Rv6vpc/YmG/JdnpKl1yg9+pbc9KWM8Si7qw2LY0xexRYAe+iNXle81VKlvnEO7z/Rpt7uoa\neNuiHqFgDjEBxNps+0Czv5sW89qAp8A+tBtF+bFbDzPErBSudLTtUeg+AmLtULXzrtOXVCm1h97b\nWfe0uunRhC9wiPG1paHLyHwRC/8t1UMumb8lo8lLbX0R6wo9glX5BY3J8CqSuT+cjn/5XpOU+9dZ\nhNuymwVkkwMaCM4gjCKGHaUEsT57LjfsH/vMhU24Dyiv4y4KyYfRWVV0JwBCX1GIrlW7WrXEti7i\nI+a5SHlrQSwo7boaxJW21qp45ZUVLyYL7gtHQTzrWkkg5vEthVp7+ZI1bp87N1r1+XKELn/vYlfh\nglCUt8zEL7lc5+bQ8BizYO81Z5SQ/hWWud9pnFptYceEaSD0yjFrZBBjQ4wciHWaXffJi1UKW9F1\nepT0GcB6Tf4L7bMDnJ1eCfHKNgiHGFdL1mLOEX2KKfK5ddedAF/EPBcZgoAi073X507EuseNw6LX\nwc7tNHo66vcZBk5JfyUZxKTfUqi1ly+5x/bzaexloM2n196INThHuh6Z4KAkGXzeliAm22t1tkdW\nK7JpGmdmla/e1UIcllpxlOGviPEgxhzEA+ekrtOvs8z361T4XpQWJ0WdT26q8majJurRqHDR5q6S\nLT57aEvOkbCI+S8yALF6eyD2DNV5G9t+VgUj1uVP3kQQk35L4dbeY8nsBYi/Y1rhdq43Yj1uAxte\n2Y90AHipJyIm22tCK7HHNiir7BEqNLSbwfV7Tn9EEYalCDFmSEXb+ULbziE4EFo3FQEm7vTgb3U6\nB1Nr6NMkcaPRlNxxcM616giI+S8yqDHG3MQr8vugKV9ONMTqQjsqEcT8vqWAtQ+DmHXR0bjlNIMQ\nI73pXeY7kN3n65V8pv/w3WtC8SO5thYZhWhPSVGc3KAVposDk4mlCrEBvaTVnYNr4FygNKHjqFKQ\nZmZ19it2Lqtl6XkQDjGxLcrXzMdCzH+RgYg5A4A1AUNNfsc9GmJijtFPADG/bylo7eVL7nsPPOKl\n8kGsxaxM3+c+30A6FRs/dlK61ypCpt9lVqbP7BnzeK/T9wXv+CqmEkslYkSaBrkqMi+WyfFXFA/t\npuxQdyURciU0sU9MhpgmCtDlXoiDWMAiXadvmcwv33T6TsqSc5Ke2b1R+sQ813IExPy+paC1D9Ox\nHw+xAaNmy7cvfdByX0/4+6LSvSZ+8QP2hTJ9o3m89wr8VJPlMB3IMCxliDXI+dlz974O7EO5Hur0\nqIvX9KZ8gE0YxNriqcWneXEQC1ik3+k74Mol6uIcP/K1iXR3cnKIhVz7sIj1280qO1NaMGLsmLFK\nYNVor92oFF1zuvntNXcvBpuCN50/7FkfXSar1ggusIg5AQli3IiRfMS+KnKzBHSHQUNf2UPdddi3\n5OeHOHiQdOyXmGW7srqerLEZCbGARfqfviWmNqjiMx2hBLFQdWKTQyzk2suXLIxpHLRK8kzJF7G2\nY8og5NANZko3rlRCutfce7DIfH7P2YCWBVKdHIvlsIcU+vRTh5hzvNXZPIWUfIv9BJEQ8zghyx6n\nTdMPsWHyiA0jINZmsraQDDQ9Ckm7sop9RRCr8uM+JX3vIRCjUwV3w8++1OaqVqMhVnHXqVXsw7Bl\nL7htg1oMcaqgQCx9iJF74yX2S6za5ZBiN24kxNry88OrlL3qh1g/ecT6ERBj54YJyUDXoxO8IRs7\nqQhiRbZNx1VBFMvhEasTu+oRpidrskpGQ6zEfj4pHxrY69C3v4xuiKYiEEsrYk12BEeVbwk2xVwi\nxOlRch13wpXWq8xU1pzsi4dpa2TEPBYZGTF74mYawn2tgcfM/Pwg6mkhFrT2vvlomduQsvlIbC08\nYj2y30sRJv3WoiLWFo+EKrsNWpccqyXrhwaaigoj1mMHvrRlL3bDnR6uVMdrFi752d3zvTupJX93\nUouQg7CIhZ0eqyzN9DS+S3DqdycjLHnADXno8li0wyNm41Xpe7Umm7I9x1IU6e4k/wKpfGyQy7Ol\nl/2USzwSV03EhkXx3g97mRXuLvqdHq7bfxWPgT1laW8R18p03WLi73TGQSxgkf4wsEXv7ZAzsbSl\nI4Ur/MZPHLGwa1/xnlrb2iB+/FD4EgtnbxbbXq1JTZKra7JrnHSviUXMwl1o6+hrlslLXWYSvTLQ\nUBQx5rliJdcBK3yzfqeHqMTAa96wdkFS3NDli13FI7HMrUuYYdKuC7L/IsPlIOw9fFqrYYW4HGcc\nclWiIblcTByxsGvvWjJ9hmZL9iER+sScGlev1uRA0lHXYI8Z370mlvo0+IuV9Q1U6J8UfdcFoQRi\nLdmULG3JFC4Bp4fT3TLw7RJj0jxmYgg6TV9T9mah/6oUok3kQsx/kX4w9MvcfAdl3qa210ihlnu3\ntsSdOnHEwq69sOQendeHf9xCnb8GhUKMvW5K701WXMN7+LTWd69p8jktqkK3hfNS1X9d3GuFnv30\nIdanX2LXfTHk8yXf06PLnbO9oqc0Xaqmddj0XI9Z6nPP+iNTBgqznheqmuf86m7E/Bfp2kba9V0R\n1q3N9Qb1i541kGU6AYP5Kd2Ka4bCySMWcu35CYmYLgeywxqsM87sDkUtDGJtWfIvO0DsSRH7zUKE\ne7plTkDXUyJLwkjMtmuyIiCmHGLMtzqQnICF0KeH8y2XWlq37je/H2NWkZ4iFXbZzlOXG5rmZAFd\noYUQbT4x30W6j1XJ4Elh3+gzcnUbRe9Du8+c+2V23sOia9jA5BALufZee8FZ9Tbdm+26+H0EIDYo\nSvN86aeXWEKLYW6H0Od9djWnHLchOfgGwvW6DsSURawu6/1qSJHwPz36xVBTp3qcIo2mrJNFOgGp\nFgsx30WGQMwZ9yubJ0Z6AkgnlOEmQZgCYuHW3mMvlPtD2b0fZl7HMIgxkMgT6UFZ/vHdUHut4fPd\nMWleVdzUNhBTFrF2QXLCa7IXA04PyfnhcVwM6pI0h0fMfRzXpZ0qERDzXWQgYtWBpAevwE/d5VKs\n7Dct1nQQC7f2Ff/piIbi9KrtZhTENN/WpJdizixeQXut7mMYzbxaYkflAIgpi1hfWrUtvVQGnB7D\nPn/sl7y/75ZwJulTAzSF2Qf4C2qxJT/GozwoxG+RAYhVuE0RR9x4PoJw0HSJ0RgMp4tYqLWX7IWS\n8NQOBkOdl0E5AmJOGue949zpVCV8I1w4urhd7pqts+9RfQ3EFELMaWYNJV91MdLpoad1Fc+DXjy9\nSwIRTfGw1ugVtSg+V9Dp7Ij0yDbfRXqdvsVKvSX+KTv22WtBku0slISHcU4FsTBrL+yFSrXZ89w0\naxGDZjk8Ys3gedP6Dc7aqhZlr/WZp6RUhZ3ZEs0qBYAKxBRALNnod/UbevVmK3hcb69lzg7aaHse\nygN9Rv2q/iAK2XHTlxc4BYXfIiNFr91sVBrNVvCCrPlqKrLn9kwtwq+9/6bp30CcMvd2qOSnR3Zc\nnG9LazXr+ju7mP0LiCEQyUclRLkyAgHEEGmNdriudAQQwy5ApI4vvf3ZqoQrzEIggBgire1I70Jo\nBAKIIVRBDD1iCCCGUBkxNCYRQAyhMmJN7AwEEEOoF3YNdbmB/jAEEEOoGX0NJe8IIIZAIIAYAoFA\nADEEAoEAYggEAgHEEAgEEEMgEAgghkAgEEAMgUAggBgCgQBiCAQCAcQQCAQCiI0Y+pM6mq3UTYWs\nDyLs4btBIJJArNeolIyncrWyObOA/aTe1A07bno/bw6BQERArMs83q8+bcb053O1E19mAYghENlF\nzE5TdDxK3JPipxRjmCzPeLJqtatpqWtOAjEEIgHEzIfPly25+k3jqckTV6zfbLbHiZhuRWkyKDWb\nUVcMiCEQoyJW4eY675WnoJjGnstjaE5OzAp93wExBGLCiLWE5zUM9FysOOF2lzbmcxmIIRDZRcww\nqyyKMumn0LQyglgPiCEQE0es7b5pV594KtbICGJdIIZATByxqrvPW+N7xfrdZrPL110MNL0nPmSV\n5kB/u3BbsK+/vcW8phW9z2XJp3ss1Wf1vK3otZutsOWmklXRWuxq9MsCYvrSZSvvWjG9Erc1WvmH\n5BsZmCsn2XUanjKEyBRi+mnXEF8rMu1JzS6xKnfpyWyVZBRKTUa9oetns6Nr0LCrzyg4PfLcQfs1\n5lmqmv3vpvenW0u116AhY0xcvYKwfDZzsurjSl1DE/rnGrNzNHFVKpQK81ausyGNovA8RVJ9V+n5\nI9a3llxsOm3rMnuNaQhfTZdtvA74TaZfEtlFzKdXjK0x/hSPe0RkCTHDnK5PdtZ2P625R0/W8iAA\nMbN8w/rTnnuJ1tsL3oi13J/OL1WSX2nFgOVzrVg72oGIMattZ6l0LQqlAY9x026V21HU/BCj+7Nq\nrm9f/4nkSgP9557Q1K8zq18VvxHJl1TsMYiZrwMxRJYQa4tniX1qFeivq/opqFWdY984DcrdwbDX\ndBDxRqxSKLU1rWucz3Z20S9ayUG/SXJAvbaqYuRNevR5xMind41Pb9GllguVlqa1pCVtzuoZQlVl\ny3eiZdbH9XrG4usBiBmrUu9ZO6LYJ4YU24PhoG0nrnrT0dhO43M0u3/M+MBu2adITd8J5ZJZh9uu\nODlx2dlY42PLYq9bkfxcsq8/xiZX9J/Mb8S+IpWttMxcuTJFrF3Eg7cRWUOsKeuKbpJ2Sp82LOvk\n7Ck7CZgDoCdiRfLutnPqNJyTqknPR67PykGsT+mqO9mJRnMh48ZqVVz3kvNamxon7RPrF7k/9UXM\n+NuWk6bWSZKkOc26vkvzMlnioORdeNdkMrs6WSDTnqxSz1ztyR7zjVQdlkuOdXSVes6OLeqNVow4\nR+QAsS45neo0iSDnbJtp7JDz1BMxmkY4LdQKbY7R00uOWJ15tUTSFLYApOHOcdrMndU666UbsQbz\np40AxJhVGdg7QKNbV6/YHU/sjnA6rIYt7+rdJtMlaWBXZz+B/Yld6zr/E7vJZXvvNulOonldhXYA\nIBAZR0wjJ2+RySEa1qlYZTpl2pVKwx+xLuuieTr26AjGksOFHDH201sk7WAyC7M96O7Oc1av5/yp\nFLES02c+CECM7U+vWCrICnQFxIK/nyaljjHZyb9crUkm/3Jak2zff9NOyvQpfvqU8iZFDDcmEflA\njNSOaewpRs/Nrt+5yyPm+76KP2Lcp/f8m67yj3HagDLEBlxHf8UXMe6DbCg0SW+igFgrDGIV7t0D\nzq6qZBlOTxjRjLuFynSZ0Y+giFVxSiDy0yfGdbFwiYD7au5TYjF0dRFZgui9/c2ATKzJnZAyT9yI\n8bI4MjU9sqYB20rzQczYERoJ0rQ0+sjrbc1rRxg3IyqtgIkzmuxecVglrciBbGeTViT5r/GNdMm6\nCbmp/kqzwiKGLn1E9hDrymbZatinguTc17yan0GI0TOo36oUhZoHL8QqHGLNcIhxn1nxRUymiQyx\nZoGPCslXzRKGqjNjLLtMp8ih0uyHQ4x+tJ2BSVqTNAMjGZkmrJu9AoN2tcSXrQExRDYR68nKFMjJ\nPw7EBo2Cu3BLScSYqSTJFGzcMnu0cKwREbGupVdV2iItm3r12E5CN2KtYkEoWwNiiIwixlXnM82a\nxrgQMypES4220e9cUQkxs86MBGFfa1ZtqXqyFeq16nbS2YqGmPGt9OWtSbNtW2fuUmp2bZoTJJcu\n1lvGBP5NIIbIOGJV92hvp/6rKR9XGb5PjGkMlZwWknNGT79PjP5pPQixsuceNCeSrHsSP2iXvKtd\nm2yW1qdrVDf2UlfeEd8390uZhXPg/hNnoFcdiCEyjljXlScMnJOOOyftu/bsOT6wn9XD/l1bfneS\ndFozJRCDQsS7k/1gxFx3J9ueiA25hnRJhlhfendSSlHZO0+VMjOUbDgzB0bXeL3uUSSr+6X1KYyS\nXk32jkwZiCEyjphx+ha53KpBS+JZEuz7d2Umd+japyB7ltY5xNriCcqcSO0AxLhPb8lglZjBrh69\nkypFrMwkOhpXJ9YV13AgKRDRaMGbsx7MCvVopdbQ+xElTTaxZSck0v01BiRI7dP3RaNFt7Ps7nNj\ntrePPjFE5hHThDrudoEb9cLWzPesM4gtiW9xGYs1FEhWsV+xM7CKc8YZCZ9/savw6c0wiAmrVxl6\nI8YMGx0ww6JpTmZWh2quVbGLXSs0g+1KMrEmJXJAjG+6puDnKva50mL97V5lXfrySmWu5NfZZPtT\nm9xXCMQQGUfMPJFKJFMwbx468x5o3Mi+EjnVmAGRfZI3WOfboMwjxv6pxnXBmXNvkZOqyXbMVViv\n2uIfBCDGrJ7mgSSXg1qtxVKB0lW1J6UwNrlIlsCsChl70HD+zhGa/cguN6iqRKyvuvc9s4eLXPPZ\nc8hl1Zw5Q7LJfdvBlpNC1pm5PoAYIquIWTPSVNpGsaQ5J1axx/2qrg0G5jwSzu1/fc6E/lBjxhvW\nzdf0WstSockhVjL+dGDUhzJDH0tNfV6LYqFsyNRwTtliQ59AkD/XrE+359DoDsMgZq+ePclGY+iH\nmFnJVTIfVNfmp84wpt7QX6rQ+6dkVczFNgkYxnQZg26FemUWwOozPlqtvGJb187c+JarfU0zJ3MP\n982ldDlhPXvS2nzZBtnkfptMLmk+J6HR1RolfR2cZ4kCMURmERt2i1wRFHvq1F3TaMmmGBsU6Ssc\nYr2i+Kd1Os1Vn5ZmVpiCJuZck3x6EGKy1fOa2ZVUchW77IdW6HRkFDF2VUh2WXSvXZPWkfVK4jva\nbpaM+oe2aylETa9BQoMCP+TJNUXbkF1mSTbbJAKRLcSGg6ZzxlWFLui2e3pSMscpM49oj05Oyt+d\nJLOW0hugLesJvUYFgFEtaq9AXYqY5NMDEZOtnuf01Jo+rL2qTwrGfiiZE1VfQwYxZ1XoYvvVgsdk\nr1Y6RKZ6Je9oulkyi7g0e35Zbs/3/J6cJ84pTja5SKfEtWZsrPas7waIIbKOmHHStIxu566kAdOT\nT5IvzB1vTCfP/5VNTL9tTRLI/KnebnX+yHFU06RP6A6cpl4SxmT47WjTZnEnuMe8/saq8Is1ZrYX\np7E3toO8Ysxy3+0x9LQ9d74403/P72ktVRdHxirz0/T3mf3ZwwQ8iBwglnxoUR/9M80oTuCJwRXP\nTi5JNHyemzfAnDoIIAbEhAeSTIKFKDPhDIqetWV40BsCiAExM9r0CR5acQLPCx5ESfbqPhPz9yaR\nNiIQQCz9zUmj77ts9AQaP4z/ccEDTQv3GfVmo+RV5K93y1ULSMQQQAyImaowD1krp6iPyW/6HquG\no4geMQQQm0D0KpW0Jwztqj2tYapaZyaqHmvUNMtTYBgCiCGYRl7q1knzKQ/payiXQAAxBAKBAGII\nBAIBxBAIBAKIIRAIIIZAIBBADIFAIIAYAoFAADEEAgHEEAgEAoghEAgEEEMgEEAMgUAggBgCgUAA\nMQQCgQBiCAQCiCEQCAQQQyAQCCCGQCAQQAyBQAAxBAKBAGIIBAIBxBAIBAKIIRAIIIZAIBBADIFA\nIIAYAoEAYggEAgHEEAgEAoiNFl98kcNv8csvvszhVv/wix/lb6N/9MUPoRYQA2JADIgBMSAGxIAY\nEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAM\niAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIIYAYkAMiAExIAbEgBgQ\nA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyI\nATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsQQ0RDTtL7wyqDbbGri\nXzWb3QHz716z1QdiQAyIAbEpI9aoFAuFQpF/sWm8Vij1mJe6JeOlYtt5oW78uwHEgBgQA2JTRUwr\nWMHDZr9YpIp17ZcKRLFWodRtFwsaEANiQAyITROxfqFSbZZ4xDQj4xr0dcpKpPk40FOzZn/Q0v9j\nw1YpdPWMrdAEYkAMiAGxqTYnLZA4xKoFK8FqsHmXxZWekNXJezQgBsSAGBBLJWLFQtnO0ohYhmtW\nUlYqlIAYEANiQCzdiBUKFeEH+hfMD0AMiAExIKYwYtVCy7hDCcSAGBADYmoipvf+16uFolUp1q0C\nMSAGxICYWoiZhWNmJVm/URRKNIAYEANiQCz9iOl1F0Zff1t/pdQaADEgBsSAmHKI6SOP6noSVp9o\nwSsQA2JADIglhNigXfZPwn74BQKBQATGlBDTgpMwIIZAIFKLGEnCBrplpS6ak2hOojmJ5qRizcmi\nnYSVC6UKHZ0ExIAYEANiSnXs62Mp9THiGhmKBMSAGBADYoohZo07mmCZGBADYkAMiAUiVrTtGnAD\nwIek+QjEgBgQA2LpRqxqTxrWLBjjI81o2T/qg42qQAyIATEglh7EBpoe+q1G4z9kxnxjUkTNhKvI\nToqoK6YVC/xcri0jVxsAMSAGxIDYtBBrFmiQDjBr+nwjaO1Em7zEz6qvTznW1uqFyY3/BmJADIgB\nsWDE7En2i2z9V9t8dohr6h0Tt9IEn3oExIAYEANiruakHQxF/Vaz2eYHFA3aTdkz2vquPwRiQAyI\nAbHJIaZcADEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAM\niAExIAbEgBgCiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQ\nA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyI\nATEgBsSAGBBDADEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBAD\nYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQCx3iO12doAYEANiQExZxNZnZmaWgBgQA2JATFHE\ndmeMqAExIAbEgJiaiK2biM3uAjEgBsSAmJKIdUzEZhaAGBADYkBMScSG85Zim0AMiAExIKYkYnYq\nNncAxIAYEANiKiI2XLYUWwZiQAyIATElETuYtRSLVy0GxIAYEANi0w7rBuXMPBADYkAMiCmJ2HDB\nUmwViAExIAbElETMKniNVywGxIAYEANi04+apdgiEANiQAyIKYnYcC52sRgQA2JADIilIOIXiwEx\nIAbEgFgaYilusRgQA2JADIilIWIXiwExIAbEgFgqIm6xGBADYkAMiKUjYhaLATEgBsSAWDoiZrEY\nEANiQAyIpSTiFYsBMSAGxIBYWiJWsRgQA2JADIilJWIViwExIAbEgFhqwi4Wi/TUECAGxIAYEEtN\nxCkWA2JADIgBsfTEevSnhgAxIAbEgFiKInqxGBADYkAMiKUoduxisfB9+0AMiAExIJamiFwsBsSA\nGBADYmmKA7tYrAPEgBgQA2IqIha5WAyIATEgBsTSFYvRisWAGBADYkAsZQ3KaMViQAyIATEglrJY\njVQsBsSAGBADYmmLSMViQAyIATEglraIVCwGxIAYEANiqYsoxWJADIgBMSCWuohSLAbEgBgQA2Lp\niwjFYkBMuAB09Ah3Z3ens6vUVgMxhEKIRSgWi4HYas2I8MMzdxb0WE5iszo1Y1ELtc0Rl+ODWCfk\nnd31eavJLsl2d2tW7Ii7rLY+hX0GxKCWmoiRYrHgVCE6YvYTScKfkJ2o0wN5uWG3ko0cc32kJY2M\n2MGCsyqrXnnwzJK4yyLshKT2GRADYqoiFr5YLDpiy1GfcJnMCXmwOMPG0lQRW2DWZNMLsVnx2wBi\nQAyIRYiFkPlSdMRIPrQb+PkLCZ6QB/MzM4kpNipim+Yf7Q47szLNOy7e5oEYEANikSNssVhkxHa8\n21EeiCXSv2Plf7N6R9NObTZiezZxxMyHGRh71pxK1xOxJaE1GUEl9IkBMSBGWn1BCUtkxIzlzhvZ\n2FxYxJIIC4ZZq698x1RsbnqIORvX8UVs5oC2JmfHkFoBMSCWbcRCFotFRsxY7PJi4BDzuWTP2UVu\nW2qRn4eSPGJmK3Kd6/piFzHPJIvGz4tADIgBsaixad/ISxYx8wzdNJtRXGtnd10vIVglynRMZub1\nkqtdtvRqx/jJ+K9ecrDJNHQPNvXyg136e1fs8kMQDrj2rPHuWs15n/lxxseuWwu1/2KVMe/LH/wT\n3FvIBujrRBDbsZdi/or5mWa5u/aFYkm6i5bpCpsrv+4gZi75wL1gcyvIXuHL1fidC8SAWF4QC1cs\nFhUxszvIOi/n2C4cUvuwSjKVGefTaXJjvu78MVmxA7vlu2z/XhLrwn3ARaPLyMpzDpbIzcAaY0ht\naPecLekqrFs/LhA2D/42bm2Zpcyuk5VdZTKnZbELzv4j82aDu9fRWoF5pz1pLGpO2AkdmlFaq22v\nLrk0sAmhsHOBGBDLD2K7YYrFoiI2ayUY81xLdV24a+iL2M4s87she99xyROxZbaLiQu6ND3zO6CG\nENr0la05v3e/ZUl8adle2V3mE+dcH25eHxbnaDedG7FVRz5j+5YDEFuiq7QgILaeVGEJEEMoh1io\nYrGIiG3ap+Yqe0rZPdkLsySV8EWM/nJ2KKRts16ILczIOp8o1HNzVKkO/yEzq/RH0xSrEHje6tez\n2qQHc3z5xgJxynzDjns0vfMGiWE2Ys67TA53/BEzoZpdsPbgOoeYa+cCMSCWI8RIfdJ6coiR4oJd\nVpU50m5btTO/nc4q0ycmnL8z85udDu2otxKNxd3hgZ0xeSK24NVkntclMUu2TBDss77W6ZAUTP9x\nlXaqmZvwd5L0y2wNWn+oj6TaXXAQW3fesOreh6QNO79LerZciDn5m9maHPojNm+PdDVxnOcQc+1c\nIAbE8oRYiGKxaIgdzJIze452Uq3TweYL7kzChZj1l3Pk/GVu2y17IuaVUe7Sm5brhNUOzbCWaKuV\nNBOtt/zYl86vV8nKLNMUa4E0nGfIWvNZ4M482yBeFNp5NmKkJ23e/LU/YjTvMnr32X0m27lADIjl\nB7EQxWLREFt3zqNlutxF2s6pcemQHLFV+iZy/toa7kZGbJV2dR0Qzzo0SdykHVsdsmzzLb/wpfPr\nRWL9Ll3igkPcpr3gJY9+uHX795tuxOz25K7162DEuJZph2vVCjsXiAGxHCEWXCwWDbFF52zfoT7M\nSkYQ+iDGn787LFyRm5PMKW79DdcFZ1dsDTnEzLf8wp8xmoCr9j3WdabXX+iMWrJ/uyn2w81uLtuK\nrYp1LDZidnvSLiXzR8zu0ltwyj6cP5+VDs8EYkAsN4gFF4tFQsxMOuY6Zjh90EMZk6ER67BwLfgi\nNuPxes0fsQUesQVhDOaMvS7ugZ5zFj9LYmuSdPlbjdXOvJgfEcRM5TbtxqY/YjXm5sYqtxrRHoUM\nxIBY9hALLBaLhNi6CMDihBBbEjq1SSnqWBGrWWs7K7QmD5y8bdG5o3ogQ8xMMkmj1B8xbnj7MhAD\nYkBMbPv43NWKhNiiCIC52OQQm/MvdqWd2uRWZFzEfu7vrTnhiZjZm7W8I+3ysu4CzEvLtzp8I5G5\n3eBX7DrH7VQgBsSAmBMBxWJRENt1GUbv7VmnuTNaJjRiQ2YY5IFnn9guP4XZDrkbsMQQMm+vTwBi\nS7Rjn9tF8259zSGSNbE12aGfSRTblSO2zBgn7IR1V2tYr9RYrS3MiBsh27lADIjlCzFSLLY5OmLm\nyb5IMpgFcuozveurIe5Oyvq0lxhvh96dYqtcRkhqp+YYAXcCETPf8jNfutSxm4TscCOrVEzMtDpM\nJ6NVOCs8y8BBbIeZV0zYCTWaedZcu7gmvzu5iruTQCyniPkXi0VBbJ7LOpzChHW6eL5OzP7IMH3a\nq7THzVn2rMsZO4FZdfIbpk6sRmwJQMx6y190kHLabCYPTJ2YTdSseAHYZTy1iy3md6WI2e3JWX5V\naGHcKvncVecq0xERk+1cIAbEcobYcHnGZ8RKBMR2hVmp57hkan5zuLPonHGWcHPLxrMxAvq07YFD\nC3Mzs06fmHuWDDIptp4C2jSYcJiNw9lNAsJ6MGLWW+Y7ZFz4OnlpZvWAVLGStveSOM80kxUubXY2\nl7jhVW7ElmmPGV0VS+2FdfJucgvAGPl5sOhKJyU7F4gBsbwhRp4a0hkRsVVhPtdlLvcRnpwx5zl2\nUuzTpqWj687dyZq7p0mcnrrD9UrNyLiQI3Ywy75lXujsYzMxUqAi1Arzm2vdnpQjtjPDp1gLsg+r\nOS4u0EFPrrGToabTBWJALKOIkXNxfkTE5gRZNp0++fVZV0qyGRoxMtXM7DotsZDNC7vMyUFE3pkX\n53gIQkwy8QWtHZnd4e6CzEm7E9lKk9mdnVlPxEipGb8qzoYsSUsszFViZ7GYleZ7QAyI5Qmx4YL3\nKRAesR0XhLNOo2+XNKzocxg782ER09++aU0H6AxXnJX1/nSc1tss89TLAzIT1/zmMBxi+nxi37Yz\noZqwtnM7Qw6xZXmlsDPDl7kiB8tzXogty2i15w7T5z+jO+FgaZbbNPbPJTsXiAGxvCFmF4vN7o6U\niflHZ7223uF6bA6E+VBD7F2bjF2PiXeGHeMptOtimcGOMSlrlE/68os/Y8wtuyMsZHVH2oKWdSYe\ndEaaa3VHMoOtsW1eS3TvXCAGxPKFGBnWsjBGxOIGnbfLaqaRoqrlMX6mzxz7PFVzo83ln64AYgiV\nEfMuFps6Yuvk/uKB1fnTsc3dHeNnhkGsQ+6DLmTl2AViCKUR63gVi00dMWFWVXM0Zm1hYWmcnxkG\nMWdMdlYSMSCGUBsxz2KxqSM23GEVWzyYxEdGQWw9M8cuEEOojZhXsdj0EdPvLxLG5ickRnjE5jaz\nc+wCMYTaiHkVi6UAsaE9TX3nYFIfFwYx18MmgRgQA2JTDnmxWDoQm3CEvTuZrQBiCNURkxeLATEg\nBsSAmCohLRYDYkAMiAExZUJWLAbEgBgQA2LKhF0sxs3hB8SAGBADYuqEpFgMiAExIAbE1AlSLLYD\nxIAYEANiSsa6q1gMiAExIAbEVIoFcYJQIAbEgBgQUynsuZFpsRgQA2JADIgpFTVmsgggBsSAGBBT\nL+b4YjEgBsSAGBBTK4RiMSAGxIAYEFMslrhiMSAGxIAYEFMs+GIxIAbEgBgQUy24YjEgBsSAGBBT\nLthiMSAGxIAYEFMu2GIxIAbEgBgQUy+YYjEgBsSAGBBTMGixGBADYkAMiCkYtFgMiAExIAbEVIwl\n8tQQIAbEgBgQUzGcYjEgBsSAGBALioFGokdfdF6b0obYxWILQAyIATEgFhSVghMt8lrL/dKEwy4W\n+yUgBsSAGBALj1iTvNZ0vzThsIvFvv0DIAbEgBgQ8w+taUWdR6xuvtgaTGtT7GKxnwFiQAyIAbFw\noTchNSY7G0x5Uw7sYrEOEANiQAyIhYoqA5eO2NS3hRSLbR4AMSAGxIBYcAwKhfKQIlac/sYsztix\nUMtXOgbEgBgQixNt9k5koVCZ/saQYjFzNPji6g4QA2JADIj5tyb7DGLlRqVSaU23Y2x1hovZpfVd\nIAbEgBgQC9GaHJICi2JvqpuzMCPG3HIOusiAGBADYqO2JjUDsEqlqCvWn+bm7M7PSGJ+OeNdZEAM\niAGxGFFmW5P9UqGs/2ugl47Vp7tBf/qXFmdlkC1kuYsMiAExIBY9+lxrcjjsWb1hJabU4ssvphS/\n9Qs/JXPs2z/zK7/9BQKBUC3GhFhLPkqyyRTAfjnFrf7Bn/zjf4MMsh/7uV/5AY4JBAKICa1JOWJT\nCWaDD9aX5uRdZJtoTqI5ieZk3puTA6E1mUbEzJ7+VY8uslqWusiAGBADYpGjWyg0VEDMiJ3VBZlj\nGSqHBWJADIhFjgaPVZHclEwjYkZ0lqXFF3PZKIcFYkAMiEWOMj/gu0gal3V5V9nUEdPjYNOzi0z1\nclggBsSAWOQQxkpW7QRsUCyUprtB/ncydteXpF1k82qPGAdiQAyIRY2+UNSqV+wX2/p/ytOb2TUU\nYkbsrC7KHJtRuIsMiAExIBY1NBGrOhk8Oe3JLMI9KKRTk/f1L60DMSAGxPKJ2LBZNA1rTHuDQj/t\n6GBT2tc/r2L/GBADYkAsumKaOOnOoK1PsN+f+gZFemTbrqQcVkXFgBgQA2LZicjPndwRy2EVVAyI\nATEglmPETMi4LjL1FANiQAyI5RwxI5guMuUUA2JADIgBMSMO5hVVDIgBMSAGxJRWDIgBMSAGxOxY\nUlIxIAbEgBgQU1oxIAbEgBgQU1oxIAbEgBgQcys2q85QSiAGxIAYEFNaMSAGxIAYEFNaMSAGxIAY\nEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNa\nMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEJPHshqKATEgBsSAmEesK6EYEANiQAyIKa0YEANiQAyI\nBSvWAWJADIgBMQURcxSbWQdiQAyIATEFEVNAMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAG\nxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAYEFNaMSAGxIAY\nEFNaMSAGxIAYEAsXm7OpVAyIATEgBsRCxk4qFQNiQAyIATGlFQNiQAyIAbHoitWAGBADYkBMQcSo\nYktADIgBMSCmIGIpVAyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSU\nVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsSUVgyIATEgBsTixe58\nKhQDYkAMiAGxmHGQCsWAGBADYkBMacWAGBADYkBsdMUWD4AYEANiQEw9xKhi81NTDIgBMSAGxJRW\nDIgBMSAGxJJRbEoT7wMxIAbEgFgyis3MLu8CMSAGxICYaogxiukd/JtADIgBMSCmGGKcYjNztQmn\nY0AMiAExIJaoYpNOx4AYEANiQGx0xZZnOcYmmY4BMSAGxIBYEoyt89nY5NIxIAbEgBgQSyZ2lsR0\nbCKlY0AMiAExIJZYOrY6x6djSx0gBsSAGBBTBzE9Oks8Y3Or407HgBgQA2JATOl0DIgBMSAGxJRO\nx4AYEANiQEzpdAyIATEgBsQmko7Nr48nHQNiQAyIAbExxW6NT8dml3aAGBADYkBMHcT02FwcezoG\nxIAYEANiSqdjQAyIATEgpnQ6BsSAGBADYlNIx5IbIA7EgBgQA2KTiPUFPh1bSGo2ayAGxIAYEJtQ\nOibM15PQbNZADIgBMSCmdDoGxIAYEANiSqdjQAyIATEgpnQ6BsSAGBADYlNPx0aZzRqIATEgBsQm\nH67ZrONnY0AMiAExIDaV4Gezno1d/wrEgBgQA2JpSMeWgRgQA2JATDHE+HQsbrcYEANiQAyIpSId\nWwJiQAyIAbEvlFzthZFSMSAGxIAYEJtydEZKxYAYEANiQEzpVAyIATEgBsSUTsWAGBADYkBM6VQM\niAExIAbEph47I6RiQAyIATEgNv1Yip+KATEx9vf0OARiQAyITTJ246diWUTs7bYV+/Sll9Yrr0Ig\ntrGix56h2YYez4EYEANi6U7FsojY3ooVW5Q1+5WNKIjtse8AYkAMiE0iFVsAYixiazQRA2JADIip\nkYp1gBiD2Mpr8soTIAbEgFhWU7FMI7YltCajIYY+MSAGxFRIxTKN2MohbU2uRUYsawHEgFg2U7HM\nIma2IF/R1uRTIAbEgFgmU7HMIvbc+L+ntDX5ikfsPzCKLl695d62vf1yn0Hs0CgYI2Uah3tGicbr\nt0AMiAGxlKVimUVs+4nTnjRak4+5bvp/49fs9uZTR6XXj61es0NZx/7h8zXSq7YPxIAYEEtVKpZd\nxF467UmDs+csYltOp9nK2r7w0hMJYodP3G8AYkAMiCUdB7NxUrHsIrZP2pNma3KfQWzbxOjpczP3\neuwka2zwiFnCbWysKF10AcSAWOqjFicVyy5iw8d2e9JsTTIkmaitvSU4bRupltlafKLT9XLNjdhb\nkoHtm79UtV8MiAGxbKZiGUbsud2efGJWjAl51SvKmf7DK8c1OyfjELNuFBi/fM6V0AIxIAbEUpCK\nZRgxuz351oKHImamU1aJhdnXpadYT5nS2DWfiv1tkroBMSAGxMaYis0DMYsaqz35ysq2HJJM237t\nLxn1E3ukmOwxk2F5DDvSCy5eb28AMSAGxCaRiq0DMZMaq/H31Eqy+MYhG/pfrjAFrjLE9rfWuL8H\nYkAMiI01FZsDYiY1Zs61ZSdZoyD2XPx7IAbEgFhqUrEsI2a1Eu2+ex6xX/tXtp3YC0LslVVA9vzl\n3hYQA2JALG2pWKYRe87MZsEXTKzwYyfXfPvEHju3M9GxD8SAWOpSsUwjts/MKybcnfxPuHdsOEUU\nsruT5jLM3yETA2JALHWpWKYRs9uTa8Ohq/7eqqd4bINl1fAztftuxA4dFIEYEANiaUrFso3Yczo3\nolCxv7J9OHxrloc9dl56sj88fCkZdmTmZluHw9fWLcq1V0AMiAGxMaZic9FSsWwjtk9nqRbHTq5w\nc1gzQ8IfuxCjv1xTefQkEANiisR6tFQs24iZ7cW1oYAYS5Y9byKdp2Jr24WY88u1/Q0gBsSA2Ngj\nWiqWccSeO91f/Hxiv07mE3MmPbRnDHs+3JZMxbNttSjfDg+NqlcgBsSAWIpSsbw+Afw/e63P48o9\n6NuYu/W155O/3+7tq77RQAyIKZaKzR4AMR/EfpS/jQZiQEy1VKwGxIAYEANi2U/FgBgQA2JATOlU\nDIgBMSAGxJROxYAYEANiQEzpVAyIATEgFi0Gmh099lWt2ewOgNg0UjEgBsSAWLSoFkhQxbol49/F\nNhCbQioGxIAYEIsWFQcxzTGMvDJtxTKE2HAhbCoGxIAYEIuMWNMMR6xBUX+pP2gV2eQMiI0YnbCp\nGBADYkAsWhQKZeGVlm6YnZDVgdjEUzEgBsSAWFTEKsIrei+Z1adfKpSA2MRTMSAGxIBYVMSq7gam\n8AMQSzAV2wViQAyIJYmYZrcdgdikUrElIAbEgFjCiFXrlUq1DcQmlIrN7AIxIAbEkkXMivIAiKUi\nFQNiQAyIRYqmUdVaMYrFykAsFakYEANiQCxSdIuFup6D9cu0tBWITTUVA2JADIhFbVCa/9+npRZS\nxL78AjF6/JSl2G9jTyByG+NATKQLiI0vfstC7OewJxBAbOKIoTmZSCwF94qhOYnmJJqTQCy9sRvc\nKwbEgBgQA2JKp2JADIgBsSjRc25KArGUpGJADIgBsYiINayf6GjvKrGrjAHgY0vFOkAMiAGxZJqT\nxULRLNXX6Lw7+lQ8LfulKhAbUyq2AMSAGBBLBjG9Yr+sV4q1i3RmV2NSRF0xjXkJiE0uFQNiQAyI\nRYpBmQyepJNZtMlLjSlvUCYRC0rFgBgQA2IRFasXXE8FMfKygnuOHiA2iVQMiAExIBY1+i19gn3+\n+WyDdrPZ6k99g7KJWEAqlkvE9v7p3/zXgBgCD8/NRiqWR8Rer+ixBcQQQCwTqVgOETtcMxBbeQ7E\nEEBMkaj5pWI5RGxjxYpXQAyIATE14mDWJxXLH2IvV0i8BmJADIipn4rlDrF9x7CVtX0gBsSAmPKp\nWN4QO3yyklfFgBgQUz8VWwdiw+crbDw5BGJADIgplIrNAbHXtl7fy6FiQAyIZTMVyxdidnXFyve+\n+PO2YjkqFwNiQCybqVi+ELOrKzb0YUdbuVMMiAGxbKZiuULMrq5Ye2uMndzKW7kYEANi2UzF8oTY\nvlMfZiDm3KfMi2JADIhlMxXLEWJErS17Fgvy77wUWgAxIJbNVCxHiNnVFY8PyVQ8+2u5UgyIATHF\nY12eiuUHMVJdYYhlzydGFMtHoQUQA2Kqx5w0FcsNYqS6YntIEXNgy4ViQAyIZTMVyw1ipLpiyCI2\nfGUr9hSIpTZqCwurQAyIeadieUHMqa7gEXOGIeWgXExNxDbNw7YGxIAYk4rV8ojYPj/7DjPHPikX\newnEUhidBeugnQViQIxJxWYP8ofY4eMVbjZX9kEhuSkXUw+xXXtqdT2AGBDzTMXygdiW0H/PIuYU\nvWa90EI1xA5qs45hC0AMiHmmYrlA7LXIFPfItrc5KRdTDLF1StjM/C4QA2KeqVgeECNK0W4v/rmT\npFzscbYLLZRCrDNHCZtdH9vHALEspGJ5QIyrrpAglpNyMYUQ212ghM3UDsb3QUAsC6lYDhDbtluL\nh56I5aNcTBnEDpYYwpZ2x/lRQCwLqVj2EduXPNtIRIxAl+lyMVUQY/rzZxY64/0sIKZgdMRULPOI\nidUVcsSccrFtIDblxgLTGTa3Pu5PA2IqxoKQimUesS1Zd5cbsRw8UlcFxDpMZ9hsbfyfB8SykIpl\nHbHX0iIwCWJOudgeEJPEztJCbXfca7i7yHSGLR9MYJ8AsSykYhlHzF1d4YWYM81FZsvFRkFsxyrX\nWh8nLAc1hrCF3YnsEyCmciq2lA/E3NUVnojRORIzWmgxCmLzBJfFzXGt3ipb3NqZ0D4BYiqnYjO7\neUBs24MlKWLDvWyXi42AGJsjzS7tjOPaOpniViCWxVQs04jJqit8EHPKxTaAmKQxydw1TLp7bIfr\nzz+Y3D4BYllIxbKMmLS6wg8xMutYNsvF4iM2P+OKJLvHdidX3ArEspiKZRmxLc/WoRdiTrnYcyAm\nb0wykVD32AFX3Loz2X0CxLKQimUYsdfeU+x4IjZ8mt1ysbiIkcbkzuaiwFgS3WNccevmpPcJEMtC\nKpZdxDyqKwIQc8rFXgMx/ppnlBYerM8n2z3WYZY3uzr5fQLEspCKZRexDZ9Oem/EnI607JWLxURs\n1e4Es/+5W5tLrHts8sWtQCwzsUtTscwitu1X9OWDGC0XewvEjGPF7rFiGo47S7NJdI8dLLNL2J3K\nPgFi6saSk4plFbF931ahH2LOW7NWLhYPsQXZ42WGCXSPTaW4FYhlMRXLKGLe1RXBiDnlYk+AGGlM\nzrnzqNG6xzYnOlkFEMtwKraTVcS2/JMpf8QyWi4WBzHSmJRmSu7usYWQ3WOdaRW3ArHspWILGUXs\ndcADjAIQy2a5WBzEbGyWvX7v7h5bCu4e44tbD6a5T4BYBlKxTiYR86uuCIWYo1iWysViIEYak37Q\nuLvHln27x6Za3ArEspiKZRKxjaAhkIGIHWbwkbrREfNtTDIsrbq6x1Y9u8fYJ7HNdaa9T4BYFlKx\nfy6DiG0HTqkTiJijWIbKxaIjthjQmGS4Ww7XPTbt4lYglsVU7Keyh9h+cM19MGK0XCwzikVGbDNE\nY5LxKbh7bGJPYgNi+UrFfitriAVUV4RFzFEsM+ViURE7CNeYZJuKvt1jB9ObrAKIZTwVyxpiWyHs\nCYMYLRfLiGJREQvfmGSg8u4em+ST2IBYXsIe9fEvZGurgqorwiPmKJaRcrGIiNmNydmorT5599h6\nOopbgVjGwm4uLGRqowKrKyIg5hRaZEOxaIiRxmScUZHu7rH5yT6JDYjlJmpR+zwUCPum4tNhEohl\nq1wsGmJ2Y3Ix5oe5usfSUdwKxDKais0trWbGse1wDywKi1imysUiIRa3MckcXauSWa0XdtO1T4BY\nVlIxM9/PhGR7IR+AGxaxTJWLRUFslMYkDbF7bD51hxgQy0oqRq+Ty+s7Km9PmOqKaIg5fWwZUCwK\nYsujNSZpMN1js+vp2ydALFOpGCPZ5q6im/M07BQ64RFzysUeK19oEQGxzsiNSSas7rHZ2kEK9wkQ\ny14q5lw0F2oKSvYqdNIUATGnZkP5crHwiB3MJdGYZJa3ulRL5+EExDIQu3/zt2e8Ynax1jlQaFvC\nVVdERswpF3uaG8QSa0ymPoBYFuLLL/6tzdrCrKdkc+pI9iS8NZEQGz7PRrlYaMRIY3I3+4c/EMsG\nYuawo9315QVPyNS4dRmyuiIGYk652Eulv+qwiJHG5GoODn8gliHEzNgJkCzVty7DVlfEQWyYiXKx\nsIgtz2RwJAcQywliVltidWneW7LUFmGErq6IhZhT9KpyoUVIxHLUmARiGUWMSDbnI1kKb10+jfSA\noqiIZaJcLCRiOWpMArEsI2Z2jXRqi96SpawI41U0YyIjloVysXCI1XLUmARiWUfMkizo1uVqp9OZ\nPmYRqitiIub0ualbLhYKsZ08NSaBWC4QM2PXVzL7yr2wsFir1TZ106awFU8iVnLFQMwpF9vINGLz\neWpMArH8IGZdon1vXYopmm7acm1iaVqU6orYiJFPUbZcLAxi+WpMArGcIUYkm5+JHvNWmrY+pjQt\nUnVFfMSccrHtzCJmNyZndvJy+AOx/CFmhn8RRnDMWmlaLaksLVp1xQiIkedZKlouFgIx+3ut5ebw\nB2I5RcyWzOfWZehI5GyJVl0xCmJOudieil91MGJ2Y3I+P4c/EMszYkboRRi1JT2tGkGxBDqQX8Wo\n4IqJ2PDQvgu68lzBe5SBiOWuMQnEgBjnWaezqjcRddKiJWgjT5QXtbpiJMSccrGVNfXGUQYitpC3\nxiQQA2I+1/ROZ7MWLk0bVbEncebJiY2YcxNBL3t9nTHEVnPXmARiQCyZNG00xSJXV4yImFMuZlSM\nqdU1FoDY7mzuGpNADIiNmKbNJqDYXrye9hEQYxVb2Xob9d3rCwtLtemMcQhALIeNSSAGxEbFbHTF\nYlRXjIzYcH+DKra2HS0FdB5qMAXK/BGzG5Nz+Tr8gRgQS0ix2C2YGNUVoyOm53+PGcaiFI3tiIO1\nJkmZL2KkMdnJ1+EPxIDYiLFJyl9jKvYq7vw4IyI2HL5co4w9Cd2WPZDfuZ0QZb6I2Y3J5Zwd/kAM\niI0a6yMpFqu6IhnEhofbTNfYRsiusWXfIfTjpswPMdKYPMjZ4Q/EgNh0FXsS+ylEoyOmE7rF9vCH\n6RrbDFE3N0bKfBDLaWMSiAGxKSsWr7oiMcT0rjGuhz+4MWlLsbQ4PxXKfBBbzGdjEogBsekqtjfC\nOMZkENM75Zge/sdBPfyLzDQ3O5u1cJQl2L7zRmwzp41JIAbEklUs4ikUt7oiUcT0dHAtbPHrqnvO\n1DCUzS4sryZDmSdiB3ltTAIxIJZQkO7u+UinatzqioQRGx5uhSt+Jd1Om67fTIoyT8Ry25gEYkAs\nqViKoRiprngb6xMTREzv4We6xlY8i19tpha9lhKSss3kEbMbk7MHOTz8gRgQm5pie2sjTU+YKGL6\n2jxhevjlBR+1cG3mYMrmYzf6PBA78EwRgRgQywFih2+TWYtoih2+JP3pT2N+XsKI6Ykh0zX2WNI1\nRkr1wwnkT9lSzJTJA7HFgBQRiAGxDCNmlBg8fpmIYxEU26edULEfApk4YnrxK9vDLw4hIKX6kbqd\nPCmbjTeVpByxPDcmgVjeEXv7lKRDSUysRRQLSgheMS23+LNEJ4+Yf/HrcvypugzKXKOVFuLUBksR\ny3VjEojlGzHulF17Pno6RnKOJb8Pfc6kO6M8dWgciInFr4eubGeEqbo66zV+Lrbl6JmTFLHlPDcm\ngVieEeMIs0odXo046/xBoGKvN/iPfB7/w8aDmL6K0uJXku2M/ECBTo0+w3g2cu4kQ6yT68YkEMsv\nYofPVySxtjXaRKf+ir3dfsx92uPtUdAcF2Ly4tfF5J5Iu7vItCkjDkz6S3/u3xT3GemrG3djcn9v\nP52HPxDLJ2JcFzYfo/Xy+yi2J2R+o3bDjQ8xXvinxv6QlOqPEJtMq7IWJoF6u/d6+/mG3ZW4trG1\nvfd2co3Jw71X2xvm5edpKp8PBcTyiBhP2NZrsV05Ci8eih2+4pOwBHrgxogYc8fDerbbbsJd5wc1\nqticT8nG3t7L7acbj6VXmydPt1/v0cbkOKbNeLun08keK0/epvDwB2I5RIwnzDgsD18+WUnKGEcx\npvdof2tN6HxLYKvHiphQ/PpHE892dplHSC3uShOvjZUQ8fjv+8M//ePfSuThn1zb8bWOp6y/YR+I\nAbGpI8alRHQmQNGZ+L38u+K0+682hH63ZE6EMSPG76lf/InEZ4jYZDr4a6TbyTvx8o/v6C3MRHbr\nob4KvmvwCogBsekixhPG9+K/eppMLz/38JC3Qu/b45dJ9auMHTG+2f2dP5D0DBEHZNT8t378J/7u\n7XCJl3/oLcxXse/M6G3HrY214A95DsSA2BQR8yPMPI6F24f6/cO3Iyn2WnBxK8GnPI4fMaEM5e9J\nukNo/5//m372j3znF6Mw9Q//5q8F/s3axvOXe1HWVW+8Pn0Sfh3S1r0PxHKEGFvH6flkjD1XL/+r\nuIp966d/MQERp4rYaM9282yxvd6OmnhtbDzXu/HfmnViex79VeJbtrZf74/YdrS/uI3tl3uHw+cp\n7d4HYrlBjCPMbwbTw1euXv79GIr9gT8inFNJd6ZMBrHh8B//xZjPduPbanqdgtFZH82utY2n29t7\nzPWGFrsadw7/gV8OA9CrvcO4bUf7DihJ5NPZvQ/EcoJYaMKs9OP5iL38h//U35V0RcW0ENNL9X/6\nl+M82+1wz8i49JQrTEeTiIeeeL2SNQn5iv15vTvtD/7sd/6hMC1MUloWru0o1KKRo2gtjd37QCwX\niHFVT49DHYBiL3+U7ixheOTow5mmiZhRXv+tnw35bLc9o7BLb+zFusO4svLL3/ljfweXePkjVnNG\nEegVEVthWpjh244eV7cnKezeB2I5QIwf5x26XyduL79QUbHyj+yNZ6sng5hdqv/X88Wv7HlNGopP\nRrir+I/+4Z/9gz/+14UYiMQitiMOSX+79/J5jLRP3nb0SC83Ij3gDogBsSQQi0mYlVhE7uUX5fvF\nn/7W7I7CiNFSfX56i9gNRb7NtmH0eBlfSSfkQCQWMbuquOb61l5Futno1Xb0COeQeHIIxIDYJBDj\nRgHGuLsWrZdfRO+P/UT8R4OnA7F5ZgzVq8crycQTHY1XYm0qOxBpMwxiNf/5zfb3QrQwPbr9/TPt\ntHXvA7FMIyYMkox36Qzby08nnCbc/WOjPBo8FYgJs+pvr42QdOlZl95c8854fAciuRHbCTW/2aHR\nwpThq9/2fB0TIad7f+0VEANi40Xs0D1IMmaE6OUXhy2ZFRUxH0eZGsRcs+ofbkVKuPR7gnqmE3o8\nEDO5xWwtCDGvxqTcHXpLkrlRGTdo9/42EANi40TsZVKEmX1dL317+b2GR8Z7HGVaECMzdbFQvN3w\nb54ZhV0v9/bi3cxwBiJ5Tm7hILYaY7JsvVhtL5ly3VR17wOxrCLmMc57hNgTh4iT8lWxouIx09xc\nGp9i40dsSQrF3mOPhmIS5/MO26Y88EaM3HDYmdIhl6bufSCWTcSCBknGvAC7evn1jCtgeOT4FBs7\nYptePXqvNkhDcQzjb9Zn/Z6IRBBbiNKYHEekqHsfiGURsddjIUyada2sBZWSjU2xcSOW2Kz6UT93\nyecpuzZidmNybooH3evUdO8Dsewhxo8wSr7SVEy9GC9f+zTKElds3IgtJDerfsTozHs+EclCjDQm\nO9M86vYfp6R7H4hlDbFogyRjpmMvJTftvYdHhn0cZboQW53mM4RWmTbluhuxhRiP8U0+Dp3OhS0g\nBsQSQ2wShFkftBVheGSYx1GmDbGd6T6Qlnsi0o6A2OoYC1ciRTq694FYlhDjRxiNuauC7eUPmHD6\nYCyKjRex+XG4G6lNKR2IZCCWisakFS+dC+YUu/eBWHYQG2WQZMxmpdnLH2LC6bEoNlbEailIdpin\n7DoDkQzE0tGYtIJ277+e2joAsawgNnnCrIN4O9Sdg3EoNk7EOjNpSHbYgUj25BY6YptpaUyaQbv3\nXwIxIDYKYv/R9lQICx9jUGyMiMlK9acSroFIP/ri30lPY9LqVph69z4Qy0L8F9/71QRHGI1ZscTK\nrsaI2FKMMT1j2m3CU3Z/9MXPpKgxacW0u/eBmPKxt82N5ksnYUPJ4yjTi9jmOCffiBrcQKTdH/3J\naVZ+eMSUu/eBWJYASzFhQ+FxlGlGbFql+l7BDkT6B7891coPj3g11e59IJYdwPSK+f1Ur3HCio0N\nsemV6nupykxuMZa64ZFjf5pPEAFiKsahBLCkB0mmX7FxIbaawgYbOxApbetmHZJT7N4HYsoB9vq5\ndP709BOWtGJjQmzKpfqetM4yiG2m8Lh0uvc3Jt29D8SyANjKyj+7p8YWOIol0Gc+JsSmXqrv1aZc\nTG1j0gqnyufJhHs1gJj6gG1s/9thngCejthMbtr98SBWS1UpKd+mnEtrY9IK2r0/2UsqEEsund6w\nHsA1hmW/9QHM+Lwv1UHMmXZ/dMXGglg6SvU9hZ1NaWPSiil178dFTGs2uwPuBRI5RYyds3jDeIZy\nUin121dbj/0AGyqGWHKKjQOx1JTqe8Tu3/7tv3Ezvd/tdLr34yHWLRX0KLboK60CiVYeEeOe7kgn\nX386ImaegK09fckuVynEElNsHIilp1TfI9iH56ZRsWl078dCrE3AajgvNR3EmjlEbO+x/xNwjEel\nRq1CDQuYeoglpdgYEEtVqb6KiE2lez8OYj2DqsGgXSwUNAaxetOI1iB3iEnTMClmz/Vn4oS5QO1H\nAExBxBJ6HGXyiKWtVF9FxJgniEyqez8OYlW7zagVClXyWqVQGKRiF04esf0nkR9i/9yn/3//5dO1\nKICpiFgyj6NMHrHUleqriNjku/fjIFYslKwfyoUig1g69uDEEaNz4Ky9fLW9tfE4NGbum5megD3e\neuXXHFUOsUQeHpI4YqvprmBQBbHhW+ey/jy1iJVIXxgjV4V6livEmDTMeUDt/t7L7acba2Ets/v/\n4wKmJmKOYnPxa/eTRiylpfrqITY8dJ6H9XQS3fsj1YmVqFyFQiWPiLFpmBu4ve3tjY2VUSIEYIoi\n5ig2M7caM/NJGrG0luqrh9hw6HQTP5nAtCqjIKbfpKxTxMqNSqXSmnrH2CQRk6VhktgzMHsSGbAn\n4QBTFTGqmD5n6W4KEEtxqb56iE30AeEjIDZg706SAotiLz+IvaTNvzDTix/uvd5+HhKzJ89fR8nD\nlUSMUUxPf2Iwlixi6S7VVw6xSXbvx0dsUGbqxDQDsEpFZ63Yzwlib2lDMVpFzNs9//7/iICpi9iQ\nm15mIbIeiSKW9lJ95RCbYPd+bMT6umFlp/HYLxXKul6DOtPCzDZiTBoW8yHubyX9/zEAUxgx9plk\nMfr4E0Us9aX6yiE2ue79uIj1iqxhxgvWP0pMqcWXX2Q2fuc3HXd+/S+MuKy/8Of+xe/9k/ryfvNP\n/dl/94ucxQ9+5cdYxn7sF34wpRWxZ67/9p/+ApFc/CnnJPmd0RY0FsSMgUd1WSd+k+knyy5if5Y+\nXOh7OFRHi1/5KZaxb//x354KpvbM9b+E7yPR+JfJafKro13qx4FY23OMJItYVpuTNE1eeZyOuQhV\nbU7aXeqL3NTLS2EHLibYnFSgVF+95qQRe5Po3o+FWFc3rD3MK2KvaTfW85Q8pFZtxPQJZpZmY/Tx\nJ4eYCqX6aiLGlCFtj+0z4iBm1FZ4GJZ9xNKXhmUAMeMZsdH7+BNDTIlSfUURGx46d/G3xnXJj4NY\nk52Dx4oiuSmZdcRSmIZlAjE91ue45/nUAtOixBBTolRfVcSYB4SPa6LEkQaAsy+VrR/0GovpFoqN\nFTFm0p21ND2ZIxOI6bN5LXCMBRXAJoWYGqX66iJGq/fTg1jPnYgZs/NodkuzNN0dNk7EmLkPnx6m\n6SjJCGJ6H/8S38ffmQBineSevwTEPE6ctbQhplfn18mE+j36WlHvJtPKGZ7ZlU3DXqfrIMkMYu4+\n/s1xI6ZKqb7KiNnd+ylqTmoFJsiLdfLCtCezGBtiqU3DsoWY0cc/F66PPxnEVCnVVxoxc+79pynq\n2JciNmwWhVn3M4bYdmrTsOHw5P9+//+eDTMU4fr4E0GMzKq/q8iuURSxsUacjn2NBjNnxaCtT7Df\nn/oGjQexkJPuTMmw+/d63Bxn6bjsLPCdY7tjQkyBWfWB2DgQS3WMBTHfuQ+nHUd37824v8rUF7nD\n9/EvdsaCmG3lojK7BYgBscylYcPhzXsSd6eZ+ip3l/k+/vXkEVOoVB+IAbGMpmHD4eV7Ji6PMvVl\nuvr4D5JFbGdGnVJ9IAbE4gY792EK07Dh+Xsu7s8z9n2uz3v28Y+OmL3sZYX2BxADYlFj9LkPxxtW\npz4bt8cZ+0Y9+/hHRmxZpVJ9IAbERk7D9tO4tUe2YX/tv7+jjF1l7Tvd5fv4ySQXoyKmVqk+EANi\nWUzDhkObrt//D78cXtGc7N1p1r7VXX6Si/n1BBBTrFQfiAGx6MFMupPONGw4vLbV+u+Miv3jW5qM\n3Rxl7Xs9WOX7+PWHVUZA7OjUjIsrI65vzfgvf+Pnf1KhUn0gBsQiRzon3eHiwibrwh52dPaOdvBf\nZO9YFfv4/1UXYicmVWcmVVcWVe/e+8b3f+M/ViptPf4//vf/9XiIAGLR0rDHeynd1FP7RLx2xk4e\nMfUWdyfZO1q5iaz/0M//e3/VSavejxJ31xdKSHZ2+S6Td6CB2FgQUyANc25M3rEDwE/uMls0ZobZ\nx/+Tf+uf+Jf+6/cJR8olO76gRc36ZQsBxNRPw+hooyN+FosLpoP/LGvf7tHp1f/w/ffji7vrq9MU\n0m+nYMx6Hg0RQMwnmEl3tg5Tu6H2hfneaDVyU/Ec3WSyaOz0/Or2/v0k4t1NmiTjUjDa53kKu4CY\ndxr2PMWT7tAgvV9m/4gwn9gp08GfgaKx47Orm7sRYfr3v2/EP/MnzPhDZvz8b3w/7ZIduVIwGhfA\nC4gFp2FP05uGOaONLocSxIZHV+8zMSr86PTiOkqf/f9mUvV9i6qfN6n6yRnvmDs4Ob+8DZBsarns\nyYVs1f6/33c6xtCkBGIKp2FOp/7NUIoYXzSm5NF+Eth6vP+//spfvfrP//W/34y/ZUGP2ZloYZfq\nn5z5ftT97dXZpCU7OruWpWA3F8c/+t2/luX7z0BsZMSYSXfSnIY5o41I/65seurz+wmMCj86v9Hr\nGy6vri70+qyEzvTj08DW463Z/+5f7NphYrPGxNKCFYs7Qps1LZLJU7B3l+ZtGr3Y9dpZqTMABsSE\nSPmkO5QOcmOSnFbSOfbZorGxdPDrgrl5ub290QtNz3TTYrUeL28DO93PSAKS3BPA0yOZdwpm/4FR\nsU+vT5cQDIix8Tbdcx8yQS7FjhMeDwo5ZUeFH41fMDc5odM0o/XoX1x/f3spFHIlj5iTCfqtyu3l\n+Zjacb4pGIPY8MRZv1t0jAExGnS0d7rTMDraiDYSPZ92NKZR4ccXse4W3llp2jmXpulmXN8FV29J\nEBwTYnZSGCCZviGnSXb6B6ZgLGLDI0e7d+gYA2J2MPWtKU/Dhmfusm3vR7Yd3yQ+KjymYJLU6vb2\nOqDz/t0tbT1OFLFQklkbYTSeR9QsTArGIaZfnpw/wyAkIGbGHh1mlPI0jB1tFAKxpEeFJyVYcLha\nj5NHjEh2HWabjYbz+Wn0vChsCiYgNjy7xyAkIMbE89RPukOPefuEencUErEER4WfXLrP5ptzc9aI\n61EHYbOtx5DVWZNBzO5evLi+C91ovjZ6AZNOwUTEmGGyd8dALO+IMYUVz1O/fbfMaKNwiOmH+20C\no8JPJMXjN+dHYtpiTdoVPAeOV+sxQqf5JBGLKpm1NWbH2VEyKZgLseHRNQYhATErXiow2tuJS2lH\nSABi3KjwWMVFEsHur4MXdHIaOk0zWo8RfZ04YkSy2+i9f2LHWfQUzI0YvcWT80FIuUfscEON+lYr\nzuXT6AciNtKo8LN4gkl6l6Rpmt56jFd9NR3EbJ0vdJrvYtzLMDrOYqVgMsSGp/fZncsXiIUNOnHY\n2qv0b9zJe260UQTEYo8KP7u+T0QwjzTtfISG0BQRYzbi/Opy9O7AECmYFDGnizTXg5DyjdjhljKF\nFeYRe+8xm1QYxNi78mGLxiSCvbtMTf9LGhBjNDszcsw4kwWFS8HkiNHK5xwPQso1YvuP0/40o6Hs\nqnvvOubDIRZtVPiRVLA0Xe5ThRjdyaenV1c3Ye9rhE/BvBBTZBDS+e3N2JDNM2J0qOTjfRU2zTXa\nKCpibHGR/6hw2aCidAmWWsToPjwN6jiLlIJ5IqbAIKQja+TIuOa2yy9izFDJrUMVtuzCu0I7NGL8\nqPCT8ILdXaSvyyXliNE4lXScRU7BvBFL+yCkY3L1vQdiySL2ak2JicOYJMqnPjs8YoGjwo+lgqWy\nmlIZxGjOpGtm3Jy9ib9D5c+dTPEgpFMGbyCWJGLsUMlDNY5/yWijWIjxjxLhm6ayQUUpFUxJxBII\nj4fnpnUQ0jnbN3gLxBJEjJmD+qUamyUdbRQTMX5U+LGfYDcXKR7RAsTYi1wKByEdXXG3hsbW1s0l\nYgoNlSQhHW0UFzHJqHCpYOfpLqAEYpwYaRuE5HSF2YSNr6GbQ8SUGippx6V/j0dkxPhHiZyFGRYJ\nxNKNWMoGIZ3x9zFuxwlr/hBjJj/cU2WjPEYbjYAYPypcLMlXQDAg5o7UDEI6OuevitfjbeHmDTG1\nhkoSbzxGG42EGNfBn/ygIiA2ecRSMgjpWOgKuxq3qDlDTK2hkuSguA96dn08xJhuFPUEA2LSmP4g\npBP+oLqbQM1HrhBjnir55K0yW+Q92mhUxLhR4YoJBsQ8eh6mOwhJ6Aq7mcg9hjwhpthQSfHi6tNA\niI0YLZNM3aAiIBYLsWkOQhK6wu6vJ1TskSPEVBsqKSjjl5aPgJg5KlxBwYCYJyVTGoQ08a6w/CH2\ndkOxoZIkPw9TiD0KYvpRr+gU7UAs4Lo3yUFIU+gKyx1ir1UbKkmOjfswIzZGQ0zVAGKeV75JD0Ka\nSldYzhBT6KmSQpL0zm+0ERADYh5Nu0kOQjq6mE5XWL4QU2+oJAn/0UZADIh5wTKxQUjHl3xX2MXk\n62zzgNi2ekMl7SBHYlDpAxADYmJMZhDSKd8VdjuVmYCyjxg7VPJQrW0JGm0ExICYd5yMfxDSOd8V\ndj2lkeeZR0zFoZLkKAzdOQvEgJikSTneQUhiV9jl1G5yZxwxpkf/qWJpWIjRRkAMiPnG5fgGIaWg\nKywniDGFFS9V25AQo42AGBALaO+NaRBSKrrCcoGYmkMlSYQYbQTEgFhQl8Q4BiGlpCssD4gxPfrb\n6m3HVZSaayAGxLwS+puEByEdXaWlKywHiDFDJffU24yzSBXXQAyIBV4OExmEdHydnq6wzCP2dkPd\nHv1h2NFGQAyIhbkgJjYI6ZR/nN9tSqZuyihiqg6VJCl7uNFGQAyIhUqfog9COj5l4soO/lky16mZ\n+SSTiB1uKTpUkkTI0UZADIiFuygyE75eXDFxy8Td+whxf5WiqU+yiNjeY5V79IfhRxsBMSAWMi7e\nJxnv0vUgmQwipu5QSTtCjzYCYkAsbJzcJ0bYbdpmMc8cYr/z68oOlbTjNHovLBADYoFNyrtkCLtO\n3yTAWUPs5a8q3aM/jDTaCIgBsQhxObpgqeoKyyhi+2oXVrAXzPsovQ5ADIiF6acI36S8Z7v8r8l9\ngLN0PlM5S4gxNyXVGypJ4ibCaCMgBsSiZfmXt7c37N3JM7aSQtl9kiHE6KQ7qvboDyOONgJiQAyR\nIcT26EjJlefKbsV5vDkHgBgQA2Kqx1vaklRyqKQdEUcbATEghsgKYtu0JbnyvUNlN4OMNrqL2n8K\nxIAYEFO7JUkr9Fc2fucLdTfkLuJoIyAGxBBZQOztU64l+YW6iEUebQTEgBhCfcQO6SCjlTVjpKS6\niJ3Hf8IWEANiQEzVeM20JJ+aE1Yoi9jpCHM+ATEgBsQUbUnSAv2VJ/Y9SVURizPaCIgBMYTSiDHP\nAWEq9BVFLNZoIyAGxBAqI/aKKavYomUVaiJ2dhtntBEQA2IIdRFjhnqvbLDVrQoidkKfQxrzUQ5A\nDIgBMdVakkyB/tor7leqIXZ8yTwBK+4TToEYEANiagUz1Ns186FSiB1fcDPV3cZdDhADYvI4Mqan\niNVHcWK880iJfaIgYuxQ7w3XdBXqIHZ0zj8AK96NSSAWIs4ujWmxbq5O1N/oiIidihfHY2YeHt8J\nDs1eWmN6nnNj37n7OcyZxoBYrOCGeksmb1UFsbMbcR66m/iXPSDmF1d0LsB3p6pv9KiInXIP/Lg6\nCkbsSv68B3MBQCxOsEO9t2VDvZVA7PRanGPz7mKUeX+BmE+ziJ9b/lLxjU4UMZ2xEyA26ZYkO9Rb\n/kTJ9CN2wnblW0fS5YgzlwMx770tXi6uVNm8U6LIOBF7f38cAbErBi4gFq8l+TTEpGEpR+z4QhTs\n/nL0nhog5hV2EbHxiJ4ju1l5rMjmjRMxo9P+4tb3bpKsT4xFDH1iMcI11Fs9xI4uxMdm3V8n8gw/\nIOYVl2z53UnswalZQ4zdOccBiDFxlZ7sS0nE2KHeW2+H6iHmuhmpd+Un9SBlIOaV+PL9YOZZe6/I\n5p2PHbHhO59ZU2SIXQOxEWJfMtRbKcTO3F35CT4KHoh5xBWfa5zy/zw6MyoN7BOVq6hiiqS4P7J/\nY71sv+fY+psL8t5j+73HF84zzo7Pr67O2YznRP8dfUW2mOMzM2u/EJ9C9D/93v/IVUeQtT5lV9L+\nSP3T/RG7YTsJT/mHsjmIHdtrNzyxHvlGPpB9QJK9k47YfpMrZp8AMY+h3vJ85/d+L30FeicJ34wE\nYmERu/Pp9Tm6dp4I6yRtJEszvq933B+9u2DObatswxbhitRw3J1QOE/tN5rLvhRujJ6RftGbYwoL\nvxi2/51dZ2eE2q3tg7WB9hLvz/htuz/3R4ztsycLvj4SECN/dMVXZTPLoXvy0n7zyW3g3c+cIeYx\n1Fua8Nwbx02qGDuW3IxM+psFYh5O+dyPZG9bmmXGd3RW3TNiDvtH1wxid9YZbOlz7fRwHjkynDm9\nnxfDW6G845rpEz2hiHGLkSN2dCe+1ULs3Hn1VNi2y3CZmGTB4RFz7UnulVMgppdVbPgV6PPHLHlQ\n+3Va7kAdS7ryx/CtAjGfHiH5dN/2/G3vrCvMnf7KBZXq2p5Q5Mj8o7vLGzrlrnluX71nELulX+6F\ngxh98Z45+Y+d39/fWNe2d0dD6WLkiFnO3bK3Fc0VpGbcmOeBcNn07xM7J4C/v79jqi5CI3ZkJ5B0\nT1rLvbs1F/cOiPkM9XZfWxkwrlNQmn10fit25SdzMxKIRUJMeijckJbb6b19kh7RU+7ePhuvuYzM\nTLTMr/SeRUx/8+mp1V10S/vh9JbcqX0nx/jx2kHu2HHimuRBksXo3WTuPjHzrb//l0mmc0wQ0+06\nPbVzP7oGeoPk+NYXsWsi6wVpix7T9rcLMb1v7D3TJ+Ysx1zK3THZk+d2IntBrgtneUfMb6i3GBfC\n5WfKjI3xZiQQC4nYFYMYn0cc09+ck86wGzKh24l9Eh5T1q7JeXlrd/6cGbic0vzrXCDkxMlIrE+5\nI2JdOzUfTi+cdDGS24Pm3/2VH5JetjNns26G3Ca9c9quVk4mrxM7p8K9c1rdx87Ky4pd30uKXek7\nrL+8Jr2C5ivC7YYcIsYN9X4bkPa4sp73786ntuZn4+7KB2KjIXbhNH3sjrNTG5BLQgRJUK5oL9mN\nk4mdMCJYNwNOeMRMVqwF3dFVubWzPBuCO/v0ly5GWuNASiwoLMxUmvf2G06Ye7AXYSr2rTccDTls\nwyLG7ElyF+FqwuV4KUaMK9B/HdRwuH8viXcX0+jjl4wruhpvJx0QC25O8ojdMB3tt6Q9Se5JvmP/\n6MqsJbggSdkte5+RvffHI8YM07nkEDuxxqGbcWcnZdLFeCH2u//t6dnVLY/YkHvDOWUl3NhJxiGK\nbVjEbtwjUq108v72mq8rySFigUO92bh0vpX/87/iUrKJ36o8vhr/zUggFgkxKyE3h8nccafoFY8Y\n6c8/IW9yJfciLaEQu+JwEDMh49fhEeOKdbwQu2IWF2oWC/YNkRG7dd8APmJW8vY4v4jtuZ7F5pf6\n0B79K73Y9fia70yf3K3KsY0rAmKxEDsWSyxOfRE7s+u1SOMqdYhduoeyx0PMnE/MKUVNGrHheZgR\n5llHjH0W2+O9oL++uGeSY7Ni//iSa13eTKSPXzquaDL7C4h5xD3TUOK6iKSI2Xcl70iflvmLazqL\n4FVSiL1jlnkaHjHLhv/n8uL0ekTEJF2HSSI2PLkR6+vyhljIod7EDrq/jGJje9jR0RXH2O3Z5AW7\nPZ9YSxaIecS1MMT5lpyi18zpdefcG7R69J07f9eS83NUxI4liIRFzOyo+G8kHfv8ql0E94lJEqd3\nTLJ3EwGxa6ZPjB2KpPfcXb+bzFjVFCIWdqi3va8crKwxF3Ts5Pm7Sd2qdJe0jvdmJBALi9gprUCg\n/3TuTlrn7RG9wXdCitzvad52kyxiVnJ4Egsx83fm3UnfTOyUudl4EQYx9nbmHVdLEu3u5In4YVaF\nRw4R2wo71JseG+9Jud2QHwDOF5u+G08f/8mlS7AJdOUDsXBT8dyyLRr7gifUiV0xecg7rgl0TE/u\nc1crKy5iTA74jlVHjtiVC7Hf/SFRxwuxIf2tV52YsJdonRgdIu+J2Cm/ouKevKa1ws5I07whth92\nqLd5lN25JuzkZ7E4FW5VJp0enbqqKfSu/Mk/jgKIeV5iyAVMr5K4sWvtb52mopG8X7Azjl3xA/6s\nYnSjauGeu2M5CmLHTjn9DdFTjpjVP3Fzdc338P0v/6k5QtgcCeCBmD084Ijc8QpE7Jy8wWL+euiB\n2L11gJudg3zF/v350bFTlXdDdtapJJXNA2IvQw71Nvf9vfsBEOJUPGO8VemuaJ3QzUggFhox7kaZ\nMQySnNNHXP5MoDi2DyfSHOK+4LtEmpPsGES7802O2Llr7CQ9lO9lk0nQyXOYRkEoxIbX7qduyRC7\n9hk7yQzetD7j3e27CY0AT2smFjDU29x5N7IHBbnnExvLrUq9I99dXntzPqX5M4BYmCudcff6yjmn\nuZG2zl/f8ZPmuCdoGB0xToxz7z6x4Z2ImAPv/cmtH2LUv/uTcIgx5xJ5cqAMMXvUvDiLxTvxkV3n\n4hbmsU8saKi3+W04u+6e3U+ySRGTvlV57L4VaeRg05sBCIj5fVvXzFRZFDF6VNwxx8PFe77f/Yi8\n+d2VKEVsxIbOPD03J0MfxMjkYa4DWW9OmOvlidjQGgxglByFQ4zeBiPbKX/akdUEds0n5uxJciY6\nWziREcwpvDv5avtlcEvS3aPvg9gwyVuVkluR799NpxUJxMJ2XV4I846SROs86BGy9pvPEu7nPDbm\ncA3xfO0TcWLX4f/8e3851CfomxZxXlVjnc6D3yJ/ovjJmb49x8LSgvdtZhELtcNvvR4k6Dk9dSK3\nKt3DIqdwLxKIRUUsQxFxjv1chJqIndHiMDFd9Zljf9RblWcSwSZbDwbEgBgQywRiR9eyHv1gxEa6\nVSm5Ffn+5iIlM8gCMSAGxFQKejPkXvK0qYCnHcW6VSkZUzTFW5FADIgh1EaM6dGX9UUFPrIt6q3K\n44vb9ykpBwNiQAyIqY/YkWePfljEhlFuVZ7IbkVenqVtrwAxIAbEVIkzYbh3PMRC3qqU3Yq8m/6t\nSCAGxBDKInZEJ4W79eqQCvsE8KBblWfXab0VCcSAGEJVxJiBIheefxQWMb9blUfSW5Hnx6ndM0AM\niAExFeLCv0c/MmIetypltyLv03QrEogBMYSSiLE9+n6gREFMcqtS0pGftluRQAyIIVRELLhHPxZi\nQ/FWpftW5KkCeweIATEglva4DP0IqMiIibcq2Y78qxM1dg8QA2JALN1x4p7ANUnExFuVKb8VCcSA\nGEI1xLhHso0FMdetypR35AMxIIZQCDHhkWxjQoy5VXl/rZZgQAyIAbFUx2nYHv1RETNuVb6b+vSG\nQAyIAbGMIXbpMYHrOBBTN4AYEANiKY3jCD36QAyIATEglraQPZINiAExIIZQBDH5I9mAGBADYgg1\nEPN4JBsQA2JADKEEYldRe/SBGBADYkAsPcH06F9GeycQA2JADIjFDK3Z7A6SWZTPI9mAGBADYoix\nINYtFfQothNYlO8j2YAYEANiiHEg1i3YMbpi/o9kA2JADIghxoDYoFgoNPuDlv6f3oiLOg81gSsQ\nA2JADJEkYi3dMDshq4+2pOO4PfpADIgBMSAWP6qFgtWnXyqUkknE7mMOxAZiQAyIAbEYUSkUhB/i\nxmnAI9mAGBADYohUIza8838kGxADYkAMkW7Eji5vr0eY2h6IATEgBsSmi9iIAcSAGBADYkAMiAEx\nIAbEgBgQA2JATHXEmgUEAoEYOYAYAoEAYmhOojmJ5iSak+gTA2JADIgBMSAGxIAYEEMAMSAGxIAY\nEOOjSuwqjzoAHIgBMSAGxKaAmD4VT8v4r1YoVIEYEANiQEw5xIxJEXXFNP0/GhADYkAMiCmH2LBN\nKjoaU94gIAbEgBgQi6dY0TSsOe0NAmJADIgBsZgtynaz2epPfYOAGBADYkBM6QBiQAyIATEgBsSA\nGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExBBADYkAMiAEx\nIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAY\nEANiQAyIATEgBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEghgBiQAyIATEg\nBsSAGBADYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYEANiQAyIATEghkAgEEAMgUAAMQQCgQBiCAQC\nAcQQCAQCiCEQCCCWjtCqxUKp3g94qV8vFYpVjX1p0CwXCpW2sl9Vu1LhNlG2jUZ0xb9TOQbVSlPc\nDYVCuTngtrhaEL9/taNXqXS5A7zdrFaqg8AdAcTUiHrBjGLb/VKP+YKtlwrMX/WK1kt1Vb8q/Zjl\njljJNpqnvQ56do5PrVBocFtXtja6PHB9/4V2Zra6WSiwiJWs7dNkO6LUA2KqIdYwGDJSqoLz5bX0\nf1SNl4rOtbhnHOZN/fpMj4WBfiSUGvWicFIoFMVClbtau7eR7I5mdo7PFvNFG6Fvb7He0L/LMnvG\nW99/ITPnc7VQZP9ZkCBmHO8NY0eUkIsphphmJ1x6FlKhmYf5kn4sV5mkpW3/NXOoGzlYv6TqsT4Q\nUg3JNtqX7WKGDusGn1ZqVg420C1r0f1Cvv9KVra6zLcX2l3N2DyNz9XMZLSeqUtWPhBrkDOZtq26\n5GvUr030uK6QP9ec48I6t7uqfusa35qUbaPdyMzSUV3hE2eysQMqVtv9/SsfYnZtqaXxiVjfvoSX\ngZhqx3RB/E6dn+hLGjmuNXpGO0e9qhfsFt+alG2j3X+SoR5uvQ3dk37/zg/c95+R9mRPSK4liDlH\ncSU7dOemOdns5hWxBt+a9ECsrfCdC2kbujSMgJiWja3uSr5DYevazR4QUxQxNuEY5AuxvjYMgVgl\nW4nYUOuHQMy6sNWFu7cK060NghBzjooCmpOqItaivfh5QUw8u6WIaQW+0Zm1kCDWszc5W6UlYRFj\n7nAAMcU6DYq0/wOIMYhVzH2gaVm97S5BzOjjrvaG3XK279PJEWujxEJVxAzDmkMg5kKsZ26clt2r\nswwxUsWc7XaVFLF2ITP9gHlDrF1ke6+BGEWsbvYPadnNSWSIkdr1TN3RCIVYI1PDFHKFmFGh3RgC\nMfc26r28pWHuEKsYtetNY+xRlnuH3IgZFb9FGKYkYnXh8gPEnG2sO0X8OULMLuI3mtLFDHcPuRAz\nEtAiBk4qiVhd/OqAGNlGOxHLGWJ18rU3Mt0/1JQMAC+jT19JxFquyw8QI9vYMkaE66Gf1pWMTtEi\nQcz5Scv07UkRsSoMUxWxQdE1tgSIkW1sFpjIZlICxOjXj9oKRRFruntvgRiTiTmR0d4SIEa3Gv1h\niiJWdg+N7TITW5B8jdxub7KzWJQydajLtnGY+bO5QSdvqNCXsjZ2MhixQcZHZmQaMUkaReYTY6YY\nI3Nt6WWQzg0rez4xoz80G4e6ZBuzj5jmnkbLuTtZlMz9kFXENEwjpjJixQqJPv167TqhHvMd6/O/\nNopM49PoTas0m6XMXMIk25iDI1ynu9RsVtgeoWrW68T6xtFuTGar/6fqfMUlch4gJVMOMUnXtWSO\n9ba7iJuMTsnMPZ22V6F6lhEj5flMn1/mK/Y19qj3fAmIqRLVSsWViemns3EYV7mOTs2YfL7MzY/Z\nNybYL2Xo9JZsI7lyZ7dzaGAk08U6dyVqmd9/Zre5zxz0Vc+XgBgCgUAAMQQCgQBiCAQCAcQQCAQQ\nQyAQCCCGQCAQQAyBQCCAGAKBAGIIBAIBxBAIBAKIIRAIBBBDIBBADIFAIIAYAoFAADEEAgHEEAgE\nAoghEAgEEEMgEAgghkAggBgCgUAAMQQCgQBiCAQCAcQQCAQQQyAQCCCGQCAQCSL2EQKBQCgcQAyB\nQAAxBAKBAGIIBAIBxBAIBBBDIBAIIIZAIBBADIFAIIAYAoEAYggEAgHEEAgEAoghEAgEEEMgEEAM\ngUAggBgCgUCMHbFnnz8QXnnhegWBQCBSi9ibD1/xZn324cMj7DUEAqEOYrxiumFADIFAKIUYq5hh\nGBBDIBBqIUYVMw0DYggEQinEvnH6xT778M3XQAyBQKiF2IsHOl6mYrphH3/06TcsYh+/seKF/vOn\nbz41X3lhvfGN9f9WMD8aP7948/FH9D/Wn74wfvf5J+xS9UU9fPPGBPTBmzcP+Y8jH/TgmQ7r59Y6\nWatg/4f9QERO49HnekPiU+YfXz97wByf5Igxj5PPPrb/7tOvPnx4Q44oKz4VlmsfuvRH+3C0X3/2\n5hnzG/OQfSCeL/brDz9i18dclReyLTFWytmSh5998+Gbzx4G/YpZS/fJYP/8+ZtPzHV5wK4Fs8SP\n6erw2+i7OdxqyHYi9wl0B/F7gN91L4TViYDYI5Ovrx5YhpFXyGHxwQpj2599eGa+Yu2HDx+s/7eC\n+fEDXYb9H+tP31i/fcEs1VjUG3Op+sLfCB9nf9CDr6yXPv3IWQX7P+wHIvIZn1pHwGfsP6xmhX1Y\n2EeMfaR8wnSakCPKimfS84L50T4cyT++ecj8wwzzFf4AZj6HrM9HH3scsZ+xW/LxN9YiPw74FbOW\n7pPB+vnZh6+sdfkusxbsEskJLW7jR76bw62GZCfyn0B3EL8H+F33RlidiIgZin3m3jHGIr96ZMTH\nnoiZvza/y0ePPvvwmfWzHLHvPnqkb66+qAf6X31l/PNj83jQD7oH39jHA/04+4Ne6C999OC7Hz48\nFBFjPxCRy3ion5sPPvqudWY9/OaDnoXpB9YLGWL6cfL5h2+Mnz/58M2nen5PjqjPzCPuYRTEHnxt\nkfCGHrSffPXhc9cB/JV5iH74mEXsxYfPvrIxZcNcqY8++cYyQl/Yw48efm76Y/9KbyF9Qn/12Yev\nXYg5ZyKL2MfWx+tafE3XgluiP2Jem8OthnsncpvD7iB+D/C7blTEDDlt9wXE6CLliLELe0YsliNm\n5XzPhKPETMWeubfA/vkboux3RcTYHxC5jO9al/oX5lnwXXIMfSNDzPj/r81j6XPrJe6I8jwvpIi9\nsA9T9jcPzI+QHMCfWetIzpSvPjyy15oLe6U+NbfkY/PCblzZP6a/esb+St+Uj0XExEWar3xlvfmR\n3dVt/RW3RH/EPDaHXw33TuQ2x3rnQ8kekOy6URD76LOvP/5oAog9cyFmpGJ2IibbafYnPHz0EIgh\nhLC//4eP2FOJOzI5xKxjzj7yuCMqEmKfkJYR9xsvxITjWCf2oZW/yD7vAdsI4df3EdvJ8tHHjx6E\nQeyFlcwZJ5npCbsfhCWGREy2Gs+8WuPc5kj2gGTXjYSY/JUJIGakYnYi5oMY9wFADGH3gn39wHX0\nhUTMfQS94X72REy/4n73o7iImTmIlb8En3U+iLneJUXskd34M972tdF8Thoxr9NQtjmSPZAdxPSr\nBLkjCsQQUUL35KuPJ43Y585BGgOxN0Zv0Av3YTsWxPS+u2fOEs0tTQFi7B5IDLGvPn/mfODDT569\n+Vp2d5L687GVCT4kPQ/sbQlGKOZ93J574UbM+Os37o+TI+bxgYh8hnGTjFQiBCP2lQwxelPvY6Zn\n2vyjh8+euRF74dxmkyLmOoC541jv/nlgnENfjQEx8QahXgngfI7+tgfGieuJ2KcGAp53Jx8FISbe\nGZVszgPJHpDtuhiIff5BvzlAvpbPjTuoX3146IeY3tP+0EzkP4uD2KNvyJ0ZZjMffaD9Y3LEnunx\nCIghXPHwM+doCETsu+b5440YG+bF9oXZGvvGfJdzgr+hArGIfWpe3IMQs3q67XPIhdin+mH+aQjE\nHhrnw8NgxN58eME48pl+6kkQM3HR/+9zYwe9iIKYsxoeiHGb8+Aza79xe0C262Ig9uzDpw/eEER0\nzT7hUx93c9K+q/O5dS84UnOSW0X2UHKW4tWcJF8PmpMIVzL2xi5H8keMnuKezUn+UH5hZG7GsW4t\niWYpX5MuMVo09uaN9aeBzUmrJujRmw+fyhB7w5dIeiL2iMAS0Jx8SLrEzLcZ/5MgZjQ79XsVRsvq\nmbiD/JuTj4T0xntzmIyG2wOSXRenOfmJ8Z7PCGJGxT6X6koQM9/xkXVRi46YM1lZJMSePXsDxBCe\n3fvcqeSN2LOPQiNmHH0PPhi1G/zJpb/5kdOe5Ipdn/3/7Z27maMwFEbLISEmIlROA4QugNAdEFOA\naqABOlAN9LJXb11LgPDau7P7/SfyDAZLsnRGjytNUyExuZ8F147TXCUx6gJtNRJzka7+tm3vShLT\nPz0pq/1Ls72UWEjGdJWdZEs2K4FC0b0jMcqZjntzocGtniodzyXWWnOvzRsT+4/4uFsS84+GxEAB\nG7t0NZxc7klMkRwHuVNVX15a/OzDNpNgV9E2dRJb9Uab7WgmXFRJrLRGUQ6x8L1GcxuNFssSezTb\nKihJ697fnNiXZxJjb1ZBYkkJFIruLYmFVVgDbfKRzbnEzEhydoVzU2JtnAyAxMBv43b5iWRb3LHE\nhAtO8g1sEmc1iO6Yd9opIibWUXC1eMgn9islJprKVv8Rifleo52WUhQGkEuMEtPR4FnJuH74BYlN\nLr6VlcBxcd2TGP29UX3iMH7Qa0liemrOR7rcDbGYQ7ByvcS6MNEKiYGXtjLEGQ7XTDovsc520uLE\n/mYHGW5CitWoHOo5bCutok1P+/Z05W5w8epVErNx8dcSG2NOvG79mNGeesAurXUS85sLbFrm3aci\neaIeHlGfk/omLbf8WXZ4Mi6zI83X0n1PYonFMocVJUbRFb2POb4rsc59/fUSW8w0Wq/S/Q2QGGhs\n+9uoZXSraTK9mXZpFysNW29EunMxNFp9k1DZjpk0xEIPsvTcvlrzCSQTaFErMb/nsSAxu7SX5oQa\n4MMa1ApWJZnc0kujvXQtsTbdINk7ifEnCr1vujWDTXkpMZ8dloy8GbLseINOX5SYtdhjanOHFSWm\nF2382i0LpagJdpU82jmTWFysdR9N23qVXsB4NpAYeEEfcSL1Cet2cEkvpHIDKFZvQoN2m5d3fWW2\nNSgumsvXYxgGG3XUZRLrVNIR4i0xrcDp6RMFibGT+1hOaLFwo2kjN2o9viTjxDhvifETba/RpXF1\nLY09sdvNqz4kNT71ODssGVMeHJF+gh9Uqm9KTFtMH8uUO6wssSkcanJfYoPvw9VKzCyh74qFAkFi\nwFnMHPkyu2o76fNh/GFYab1xNexpW6C96dmcSkxfaE1s2d5kEtM9jUqJ+XPAriTGczLow0m34epS\nhcRIw3NI4+h+x5/oCkPF5dtjiYVjzdJkFCSWfkIw6PhNifGTmH4cHU7bAYca86tbtiWkI8LjesNv\n+nuD4ZNE9aKvuvSRYnuLi2R8sozr/nnu+IMdBsB/ybKgDD4pMW0xOAyAP4gcUAYflVgzzHAYAOAf\nlhgAAEBiAAAAiQEAACQGAIDEAAAAEgMAAEgMAACJAQAAJAYAAJAYAABAYgAASAwAACAxAACAxAAA\n4JhflzBydcIRb30AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 500 + } + } + } + ] + }, + { + "metadata": { + "id": "W7lw3JzAE6BJ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Hint:** use the crosstab you calculated in part 1!\n", + "\n", + "**Expectations:** Your plot should include:\n", + "- 3 lines visualizing \"occupation of guests, by year.\" The shapes of the lines should look roughly identical to 538's example. Each line should be a different color. (But you don't need to use the _same_ colors as 538.)\n", + "- Legend or labels for the lines. (But you don't need each label positioned next to its line or colored like 538.)\n", + "- Title in the upper left: _\"Who Got To Be On 'The Daily Show'?\"_ with more visual emphasis than the subtitle. (Bolder and/or larger font.)\n", + "- Subtitle underneath the title: _\"Occupation of guests, by year\"_\n", + "\n", + "Any visual element not specifically mentioned in the expectations is an optional bonus, but it's _not_ required to pass the Sprint Challenge.\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "metadata": { + "id": "E8XBAr8rz_Na", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "LuacMjSf2ses", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Part 3 — Who were the top 10 guests on _The Daily Show_?\n", + "\n", + "**Make a plot** that shows their names and number of appearances.\n", + "\n", + "**Hint:** you can use the pandas `value_counts` method.\n", + "\n", + "**Expectations:** This can be a simple, quick plot: exploratory, not explanatory. \n", + "\n", + "If you want, you can add titles and change aesthetics, but it's _not_ required to pass the Sprint Challenge." + ] + }, + { + "metadata": { + "id": "tbwfBN3HsFlh", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 065530ecafcfb1e23ade533d88c25e78f0be2f72 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Fri, 16 Nov 2018 11:18:30 -0500 Subject: [PATCH 09/12] Created using Colaboratory --- DS_Unit_1_Sprint_Challenge_2.ipynb | 320 ++++++++++++++++++++++++++++- 1 file changed, 314 insertions(+), 6 deletions(-) diff --git a/DS_Unit_1_Sprint_Challenge_2.ipynb b/DS_Unit_1_Sprint_Challenge_2.ipynb index 7ad2556..e9f96d4 100644 --- a/DS_Unit_1_Sprint_Challenge_2.ipynb +++ b/DS_Unit_1_Sprint_Challenge_2.ipynb @@ -98,18 +98,326 @@ "3. You'll know you've calculated the crosstab correctly when the percentage of \"Acting, Comedy & Music\" guests is 90.36% in 1999, and 45% in 2015." ] }, + { + "metadata": { + "id": "xjo9v9vBRqCs", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + }, + "outputId": "2743b3a1-bcd4-48ac-9ff7-c09918084df4" + }, + "cell_type": "code", + "source": [ + "df.head()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YearGoogleKnowlege_OccupationShowGroupGuestOccupation
01999actor1/11/99ActingMichael J. FoxActing, Comedy & Music
11999Comedian1/12/99ComedySandra BernhardActing, Comedy & Music
21999television actress1/13/99ActingTracey UllmanActing, Comedy & Music
31999film actress1/14/99ActingGillian AndersonActing, Comedy & Music
41999actor1/18/99ActingDavid Alan GrierActing, Comedy & Music
\n", + "
" + ], + "text/plain": [ + " Year GoogleKnowlege_Occupation Show Group Guest \\\n", + "0 1999 actor 1/11/99 Acting Michael J. Fox \n", + "1 1999 Comedian 1/12/99 Comedy Sandra Bernhard \n", + "2 1999 television actress 1/13/99 Acting Tracey Ullman \n", + "3 1999 film actress 1/14/99 Acting Gillian Anderson \n", + "4 1999 actor 1/18/99 Acting David Alan Grier \n", + "\n", + " Occupation \n", + "0 Acting, Comedy & Music \n", + "1 Acting, Comedy & Music \n", + "2 Acting, Comedy & Music \n", + "3 Acting, Comedy & Music \n", + "4 Acting, Comedy & Music " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, { "metadata": { "id": "sRMc0H_5z6ff", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 229 + }, + "outputId": "4d197bf5-84fa-4576-93d9-7b74fce95b75" }, "cell_type": "code", "source": [ - "" + "year = df.Year\n", + "occupation = df.Occupation\n", + "pd.crosstab(occupation, year, normalize='columns')\n", + "\n" ], - "execution_count": 0, - "outputs": [] + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Year19992000200120022003200420052006200720082009201020112012201320142015
Occupation
Acting, Comedy & Music0.9036140.7396450.7261150.6226420.5602410.3841460.3703700.3602480.2553190.2073170.2085890.3515150.3374230.2682930.4277110.3926380.45
Government and Politics0.0120480.0828400.0382170.0691820.1024100.2256100.1604940.1925470.1702130.2012200.2085890.1818180.1656440.2012200.1265060.1288340.17
Media0.0662650.1242600.1974520.2641510.2469880.2743900.3333330.2919250.3333330.4695120.3619630.3030300.3128830.3170730.3072290.3251530.24
Other0.0180720.0532540.0382170.0440250.0903610.1158540.1358020.1552800.2411350.1219510.2208590.1636360.1840490.2134150.1385540.1533740.14
\n", + "
" + ], + "text/plain": [ + "Year 1999 2000 2001 2002 2003 \\\n", + "Occupation \n", + "Acting, Comedy & Music 0.903614 0.739645 0.726115 0.622642 0.560241 \n", + "Government and Politics 0.012048 0.082840 0.038217 0.069182 0.102410 \n", + "Media 0.066265 0.124260 0.197452 0.264151 0.246988 \n", + "Other 0.018072 0.053254 0.038217 0.044025 0.090361 \n", + "\n", + "Year 2004 2005 2006 2007 2008 \\\n", + "Occupation \n", + "Acting, Comedy & Music 0.384146 0.370370 0.360248 0.255319 0.207317 \n", + "Government and Politics 0.225610 0.160494 0.192547 0.170213 0.201220 \n", + "Media 0.274390 0.333333 0.291925 0.333333 0.469512 \n", + "Other 0.115854 0.135802 0.155280 0.241135 0.121951 \n", + "\n", + "Year 2009 2010 2011 2012 2013 \\\n", + "Occupation \n", + "Acting, Comedy & Music 0.208589 0.351515 0.337423 0.268293 0.427711 \n", + "Government and Politics 0.208589 0.181818 0.165644 0.201220 0.126506 \n", + "Media 0.361963 0.303030 0.312883 0.317073 0.307229 \n", + "Other 0.220859 0.163636 0.184049 0.213415 0.138554 \n", + "\n", + "Year 2014 2015 \n", + "Occupation \n", + "Acting, Comedy & Music 0.392638 0.45 \n", + "Government and Politics 0.128834 0.17 \n", + "Media 0.325153 0.24 \n", + "Other 0.153374 0.14 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] }, { "metadata": { @@ -125,7 +433,7 @@ "metadata": { "id": "scozkHQc0_eD", "colab_type": "code", - "outputId": "64a105e6-8fa5-45e5-c78e-d29fcd19b3f2", + "outputId": "40fc9438-449a-4782-c814-29253b693631", "colab": { "base_uri": "https://localhost:8080/", "height": 406 @@ -138,7 +446,7 @@ "example = Image(url, width=500)\n", "display(example)" ], - "execution_count": 0, + "execution_count": 21, "outputs": [ { "output_type": "display_data", From 48a41c166f83c1c69e3f02c76106c44668c52697 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Fri, 16 Nov 2018 12:29:17 -0500 Subject: [PATCH 10/12] Created using Colaboratory --- DS_Unit_1_Sprint_Challenge_2.ipynb | 284 ++++++++++++++--------------- 1 file changed, 142 insertions(+), 142 deletions(-) diff --git a/DS_Unit_1_Sprint_Challenge_2.ipynb b/DS_Unit_1_Sprint_Challenge_2.ipynb index e9f96d4..f7b001c 100644 --- a/DS_Unit_1_Sprint_Challenge_2.ipynb +++ b/DS_Unit_1_Sprint_Challenge_2.ipynb @@ -51,6 +51,7 @@ "cell_type": "code", "source": [ "%matplotlib inline\n", + "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", @@ -104,15 +105,15 @@ "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 195 + "height": 279 }, - "outputId": "2743b3a1-bcd4-48ac-9ff7-c09918084df4" + "outputId": "ad987a55-a909-41a0-f8c4-abc1f552632e" }, "cell_type": "code", "source": [ "df.head()" ], - "execution_count": 4, + "execution_count": 5, "outputs": [ { "output_type": "execute_result", @@ -213,7 +214,7 @@ "metadata": { "tags": [] }, - "execution_count": 4 + "execution_count": 5 } ] }, @@ -221,18 +222,34 @@ "metadata": { "id": "sRMc0H_5z6ff", "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "year = df.Year\n", + "occupation = df.Occupation\n", + "year_x_job = pd.crosstab(year, occupation, normalize='index')\n", + "\n", + "pull = [\"Acting, Comedy & Music\", \"Government and Politics\",\n", + " \"Media\"]\n", + "year_x_job_mod = year_x_job[pull]\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "bkRCOQ--a0us", + "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 229 + "height": 225 }, - "outputId": "4d197bf5-84fa-4576-93d9-7b74fce95b75" + "outputId": "09226569-8271-4713-92b7-bfe45eb1f192" }, "cell_type": "code", "source": [ - "year = df.Year\n", - "occupation = df.Occupation\n", - "pd.crosstab(occupation, year, normalize='columns')\n", - "\n" + "year_x_job_mod.head()" ], "execution_count": 20, "outputs": [ @@ -257,41 +274,13 @@ "\n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -299,117 +288,47 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Year19992000200120022003200420052006200720082009201020112012201320142015OccupationActing, Comedy & MusicGovernment and PoliticsMedia
OccupationYear
Acting, Comedy & Music19990.9036140.7396450.7261150.6226420.5602410.3841460.3703700.3602480.2553190.2073170.2085890.3515150.3374230.2682930.4277110.3926380.450.0120480.066265
Government and Politics0.01204820000.7396450.0828400.0382170.0691820.1024100.2256100.1604940.1925470.1702130.2012200.2085890.1818180.1656440.2012200.1265060.1288340.170.124260
Media0.0662650.12426020010.7261150.0382170.197452
20020.6226420.0691820.2641510.2469880.2743900.3333330.2919250.3333330.4695120.3619630.3030300.3128830.3170730.3072290.3251530.24
Other0.0180720.0532540.0382170.0440250.0903610.1158540.1358020.1552800.2411350.1219510.2208590.1636360.1840490.2134150.1385540.1533740.1420030.5602410.1024100.246988
\n", "" ], "text/plain": [ - "Year 1999 2000 2001 2002 2003 \\\n", - "Occupation \n", - "Acting, Comedy & Music 0.903614 0.739645 0.726115 0.622642 0.560241 \n", - "Government and Politics 0.012048 0.082840 0.038217 0.069182 0.102410 \n", - "Media 0.066265 0.124260 0.197452 0.264151 0.246988 \n", - "Other 0.018072 0.053254 0.038217 0.044025 0.090361 \n", - "\n", - "Year 2004 2005 2006 2007 2008 \\\n", - "Occupation \n", - "Acting, Comedy & Music 0.384146 0.370370 0.360248 0.255319 0.207317 \n", - "Government and Politics 0.225610 0.160494 0.192547 0.170213 0.201220 \n", - "Media 0.274390 0.333333 0.291925 0.333333 0.469512 \n", - "Other 0.115854 0.135802 0.155280 0.241135 0.121951 \n", - "\n", - "Year 2009 2010 2011 2012 2013 \\\n", - "Occupation \n", - "Acting, Comedy & Music 0.208589 0.351515 0.337423 0.268293 0.427711 \n", - "Government and Politics 0.208589 0.181818 0.165644 0.201220 0.126506 \n", - "Media 0.361963 0.303030 0.312883 0.317073 0.307229 \n", - "Other 0.220859 0.163636 0.184049 0.213415 0.138554 \n", - "\n", - "Year 2014 2015 \n", - "Occupation \n", - "Acting, Comedy & Music 0.392638 0.45 \n", - "Government and Politics 0.128834 0.17 \n", - "Media 0.325153 0.24 \n", - "Other 0.153374 0.14 " + "Occupation Acting, Comedy & Music Government and Politics Media\n", + "Year \n", + "1999 0.903614 0.012048 0.066265\n", + "2000 0.739645 0.082840 0.124260\n", + "2001 0.726115 0.038217 0.197452\n", + "2002 0.622642 0.069182 0.264151\n", + "2003 0.560241 0.102410 0.246988" ] }, "metadata": { @@ -433,7 +352,7 @@ "metadata": { "id": "scozkHQc0_eD", "colab_type": "code", - "outputId": "40fc9438-449a-4782-c814-29253b693631", + "outputId": "5d0410f6-ff1b-402b-a4e7-16d74f83a3c2", "colab": { "base_uri": "https://localhost:8080/", "height": 406 @@ -444,9 +363,10 @@ "from IPython.display import display, Image\n", "url = 'https://fivethirtyeight.com/wp-content/uploads/2015/08/hickey-datalab-dailyshow.png'\n", "example = Image(url, width=500)\n", - "display(example)" + "display(example)\n", + "\n" ], - "execution_count": 21, + "execution_count": 7, "outputs": [ { "output_type": "display_data", @@ -495,11 +415,91 @@ }, "cell_type": "code", "source": [ - "" + "!pip install seaborn --upgrade\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "6vygAHBYY6qq", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import seaborn as sns\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "HvqY9jPoZiyT", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "occupation_plotted = [\"Acting, Comedy & Music\", \"Government and Poltics\",\n", + " \"Media\"]" ], "execution_count": 0, "outputs": [] }, + { + "metadata": { + "id": "6_Q0vJo1Y9Eb", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 284 + }, + "outputId": "432a1f83-cac5-4061-82a1-24461f735e9a" + }, + "cell_type": "code", + "source": [ + "import matplotlib.ticker as ticker\n", + "sns.set_style(\"whitegrid\")\n", + "sns.despine(offset=10, trim=True)\n", + "sns.set_context(\"paper\")\n", + "\n", + "ax = sns.lineplot(data=year_x_job_mod)\n", + "\n", + "ax.xaxis.set_major_locator(ticker.MultipleLocator(4))\n", + "ax.xaxis.set_major_formatter(ticker.ScalarFormatter())\n", + "\n", + "# create percentage based tick spacing\n", + "y_tick_spacing = .25\n", + "ax.yaxis.set_major_locator(ticker.MultipleLocator(y_tick_spacing))\n", + "\n", + "\n", + "#format\n", + "vals = ax.get_yticks()\n", + "ax.set_yticklabels(['{:,.0%}'.format(x) for x in vals])\n", + "#ax.yaxis.set_major_locator(plt.MaxNLocator(5))\n", + "plt.show()\n", + "\n", + "\n", + "# bit of an issue with the formatting on the y ticks\n", + "# changing it to 5 ticks puts the 100% below the line? I couldn't fix it :P" + ], + "execution_count": 94, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAELCAYAAAA1AlaNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4U+XbwPFvkqZ700VLC5QuhuwN\nIktAZCubgoKICIKgKCii4IsggmxEQBHKEhBF2cheP6HsUUpLodAy2tI9kybn/eNIZdOWtEnb53Nd\nuUqTk3PunJT7POeZCkmSJARBEIQyQWnsAARBEITiI5K+IAhCGSKSviAIQhkikr4gCEIZIpK+IAhC\nGSKSviAIQhkikr4gCEIZIpK+IAhCGSKSviAIQhkikr4gCEIZYmbsAB508uRJY4cgCIJQItWrVy9f\n25lU0of8B16UwsLCqFq1qrHDKDHE+So4cc4KRpyvZytIgVlU7wiCIJQhIukLgiCUISZXvSMIZZFe\nr+fWrVtotVpjh2KSJEni2rVrxg7DJKjVajw9PVEqC1dmF0lfEEzArVu3sLe3x97e3tihmKSsrCys\nrKyMHYZJSE1N5datW1SoUKFQ7xfVO4JgArRarUj4Qr7Y29u/0B2hSPqCIAhliEj6giAIZUipSPpJ\nGRrm7YlALPcrCAU3atQoxowZ88xtwsLCOHXqVN7vEyZMMNjxExISGDNmDAMGDKBPnz7Mnz/fYPt+\nkvnz57Njx458bXvu3DnefPNNevTowd9///3EbcaPH0/nzp3zfg8NDSUwMJDz588XKC5DntNnKTUN\nuT/sv0qQhx3tqnsYOxRBKDHS09NJTU1Fq9WSmZmJtbX1E7cLCwsjKSmJunXrAjBt2jSDxTBu3Dje\neecdmjVrBsDhw4cNtu8XtWzZMr799lt8fX1JSkp66nbW1tZERkbi5+fH1q1bqV27doGPZchz+iyl\nIuk72ZgzuHklZu26Qpuq7qiUCmOHJAgvJCVLS7ZW98L7sVSrcLBSP/X13bt3065dO7RaLXv27Mkr\nsU6fPp0zZ86gVqsZP348K1euJD09nf3797No0SL69u3Lli1bmD9/PtHR0aSnp5OQkMDixYtxcXFh\n2bJlbN++ncqVKxMVFcWyZctwdnZ+7Ph3794lJycnL+EDNG/ePC+2JUuWANClSxeCg4OZP38+169f\nJy0tjdTUVPr06cPmzZvJyspi2bJl2Nra8ssvv7Br1y50Oh3vvfcerVq14sSJE0ydOhUPDw8kScLf\n35/Vq1ejVCrp27cvWVlZ9O/fn02bNj0Un1qt5ujRo1SpUuWJ8d/XsWNHtm3bxvvvv8+NGzeoXLky\nAP/88w87d+5k0qRJJCYmMnr0aEJCQpg3bx6HDx/G0tKS/v370759ezp16sSWLVuIiYlh0qRJaLVa\nnJycmDdvXj6/7fwpFUkf4N2XqxByLJq/zt6iWx0vY4cjCIWWq9PTfPpe0nJyX3hfdhZmnJ70Kmaq\nJ9fk7ty5k2nTpiFJEpMmTaJz587s27ePlJQU1q1bB4BOp2PgwIEkJSUxZMiQx/bh6enJ2LFjWb58\nOdu3b+e1115j586drF+/noyMDNq2bfvU+O7cuYOHx+N35zqdjtmzZ7NhwwbMzc3p1asXr7/+OgBe\nXl6MHTuWb775hgsXLrB8+XLmzJnD/v37CQoK4tSpU6xZs4acnBz69u1Lq1atmDFjBj/++CNubm4M\nGjQIgM6dOzNixAj69u3L7t27ad++/WNxuLm5sXnzZnx9fR+6MD2qTp06zJkzh2PHjtG4cWOuXr36\n1G0B9u7dy/r16zE3N0ev1z/02owZMxg+fDgNGjRAp3vxC/+jSk3Sd7BWM+yVKny/+wqv1yyP+il/\n5IJg6sxUSg6Pb22wkv7TEn5iYiIXLlzg448/BiAiIoLk5GQiIyNp1KhR3nYqleqZx7g/J0758uWJ\njIwkJiaGwMBAVCoV9vb2VKpU6anv9fDw4Pbt2489n5SUhLu7OzY2NgAEBgYSExPz0PHc3d1xdHTM\n+3dKSgoRERFcunSJ4OBgADIzM0lPTyc7Oxt3d3cAatasCchdH93c3Lh69Sp//vknU6dOfSiGLVu2\n4O7uztKlSxk+fDjlypXjhx9+4PPPP8fNze2hbRUKBYGBgcyZM4d58+bltUsoFE+udRg3bhxffPEF\nCoWCoUOHUqVKlbzXrl27RoMGDYDnn/vCKDVJH+DtZpVYfuQa60Nv0r9RRWOHIwiF5mClfma1jCFs\n376d0aNH07NnTwA2bNjArl278Pf3Z/fu3XTr1g2QRwur1eqnljofTGySJOHl5cWVK1fQ6XRkZmZy\n/fp1AHJzc0lMTHwoYbq7u2NpacmRI0fyStLHjh2jYcOG3L17l4yMDMzNzQkPD88bjPTg8R49tq+v\nL7Vq1WLWrFkAaDQazM3NsbCwIC4uDldXVy5cuECNGjUAePPNN1m0aBFmZmZ5F4X70tLSiIuLw8nJ\niQULFvDuu+9Sv379xxL+fW+88QYg34ncZ29vz507dwC4dOlS3vN169alWbNmhIaGsmjRorx4ASpX\nrkxoaCj169dHr9cXeuTt05Sq4rC1uRkjWvkxb0+EQUpJglCabd269aEqi6ZNm7JlyxZatmyJra0t\nffr0YeDAgVy6dIk6deqwd+9eRo0aRXp6+jP36+rqStu2benVqxdfffUV7u7umJubExsb+1hpGuC7\n775jw4YNeb13QkNDUalUjB49mkGDBtGvXz+6dev2zDr1+wIDA6lZsyb9+/cnODiYL774ApBL1u++\n+y7Dhg3D1tY2b/vGjRtz5syZvAvcg9544w3i4+Pp06cPn3zyCZ06deLcuXNERUU98dh+fn58+umn\nj8WjVCoZOHAgx48fz3t+5MiRBAcH891339G9e/eH3vPJJ5+wcOFCgoODn9urqlAkExIaGvrC+8jW\n5kpNvvlbWnLgaqH3cenSpReOoywR56vgHj1nUVFRRoqkaGg0GkmSJCklJUXq0KGDJEmStGXLFmn/\n/v2F2l9mZqbBYnuQXq+XevfuLeXk5BTJ/ovKo38vBcmdpap6B8DCTMWHbQOYtj2MPg29sbMs2ltk\nQRAet3jxYo4fP056ejqjR48GyGuINRUxMTFMmDCBzp07Y25ubuxwik2pS/oAPep6sfjAVX46fI0P\n2wYYOxxBKHM++OADY4fwXBUqVCAkJMTYYRS7UlWnf5+ZSsnYdgEsO3SNxAyNscMRBEEwGaUy6QN0\nrFEeH2drFh94dn9ZQRCEsqTUJn2lUsG49oGsOHqdOynZxg5HEATBJJTapA/QMtCVl7wcmL83wtih\nCIJJunDhAoMHDyY4OJi+ffsye/ZsY4dUKDExMRw4cMCg++zUqdNjzwUHB9OnTx/69OnD119//cx4\nhg0bBsCSJUuIiop6LMapU6eSlpZm0Jjzo1QnfYVCLu3/euIm0fcyjB2OIJiU1NRUJkyYwNdff01I\nSAhr166lcePGBj/Oo9MMFIXY2FiDJ/2nWbRoEevWrSM6OprTp08/d/t3330XX1/fx2L8/PPPsbOz\nK8pQn6hU9t55UCPfcjT1c2HO3xHM7l3wme8EwShy0iDnkUFQVk6gtoS0uyA9kEgVSrBzB202ZD0y\nE6SFLVg8ObHs37+fNm3aPDSCtEmTJgDEx8czfvx4cnJycHZ25ttvv2XDhg1YWlrSq1cvcnJy6NOn\nD7///jtbt25l9erV6PV63njjDXr27Mn48eOxtLQkNjaWsWPHMmrUKBo2bEhYWBivv/46Q4YMKdDk\naVqtlvfff59WrVoRHBxMtWrVCAsLw8HBgfnz57Ny5UrOnTtHREQEkydPxtfXN+8zDR48GK1Wi1ar\nZfr06VSqVOmJ+9Dr9XzyySfcvXuX6tWrP/crCgoK4vbt29jb2/Pll1+i1+vx9fV97A5g/Pjx9O/f\n/7EYv/zyS+bOnYutrS0TJ04kNjYWpVLJzJkzuXjxIgsXLsTa2pp69erx4YcfPjee/CrVJf37xrUL\nZPOZWMLvFP+tlCAUytEF8H3Qw4+offJrP7Z4+PkfW8jPR+17/D1HFzz1EA9OdhYdHU1wcDAdOnQg\nJSWFH3/8kV69erFq1Speeukl1q9fz+uvv862bdsA2LdvHy1btiQ5OZm1a9cSEhLCmjVr+P333/NG\n7FaqVImlS5dStWpVEhISGDduHOvWrWP9+vV5MXh5ebFkyRJq1qyZN3la48aN2b9/P5GRkXmTpy1d\nuvShefZffvllVq5ciVarJTw8nIEDB/Lqq68SEhLyUMIHWLBgASEhIYwYMYLly5c/dR979uzBwcGB\nkJAQWrdu/cyvR6vVEhoaiq+vLzNnzmT8+PGsWbMGMzMz9uzZ88T3PC3G9evX4+Pjw+rVqwkJCcHV\n1ZUdO3YwZcoUQkJCGDVq1DNjKahSX9IHeKmCA+2rezBrVzhLBtY3djiC8HxNR0K9tx5+zspJ/jns\n4OMlfQDfVjD28sPvsbDlaTw8PPJmg6xYsSIhISEEBwej0+m4fv06Q4cOBeQZJLds2UK5cuWwsLDg\n9u3bbNmyhY8++ogbN24QHR3NW2/JsaampnL37t28993n6emZNzmaWv3fgMn8Tp52fx6f+xeUatWq\n5e03JSXlqZ8xKyuLKVOmcOPGDXJzcx+ayuHRfVy7do1atWoB5P18kvfffx8zMzPatWtHUFAQMTEx\neXP51KlTh2vXrhEUFPTU9z8qMjLyofYDpVLJiBEj+Omnn8jIyKBTp060atUq3/t7njKR9AHGvhpA\n+zkHOXMzmdrejsYORxCezcLuqdUy2Lk/+Xm1JajL5/sQLVu2ZOnSpfTs2TNvMrPcXHk650qVKnHm\nzBnat2/P6dOn82bK7NSpE2vWrCEpKYnKlSuTlJRElSpV+Pnnn1EqlWi12ryk/uBEYU+bbTK/k6dl\nZWWhUqmeOHJWkiTUanVe7A86dOgQdnZ2rFmzhoMHD7J69eonxiFJEpUqVeL48eN06dKFc+fOPfW8\nLVq06KGLh5eXV94kbqdPn85bD+BRT4vR39+f48ePU7++XCDV6/W4ubkxZcoUNBqNwZN+majeAfB3\nt6N7nQrM2hVu7FAEwSTY29szbdo0vvjiC4KDgxk8eDB169bFzs6OoUOHsm7dOgYMGMDZs2fp1asX\nAG3btmXdunV5c887OTnRq1cvgoODCQ4OZvjw4QZruH1w8rR33nknb/K0JwkICCAyMpJRo0Zx8+bN\nvOdr1arFyZMnGTJkCEeOHHnm8dq0aUNSUhLBwcEFahT++OOP+eabb+jXrx8ajeapVUNPi7Fnz55c\nu3aN/v37M3DgQOLj41m4cGHepHFvvvlmvmPJD4Ukmc7CsidPnqRevXpFtv+biZm0nrWfFYMb0rSK\ny1O3CwsLy7vtFJ5PnK+Ce/ScXbt2LW+1JeFxWVlZWFlZGTsMk/Ho30tBcmeZKekDeDtb07ehDzN3\nhotF1AVBKJPKVNIHGNnKj0u3U9l7Oc7YoQiCIBS7Mpf03ewteatpZb7bGY5eL0r7giCULWUu6QO8\n94ovsUlZbDn/+NqcgiAIpVmZTPqO1ua828KX73eFo9UV/RBxQRAEU1Emkz7A280rk5ady28nY4wd\niiAIQrEps0nf1sKM91v5MVcsoi6UYTExMQQGBrJz5868595+++28GSKf995HZ5IUTF+ZTfoA/Rv5\nALD6nxtGjkQQjKdGjRp5ST8+Pp6cnJwC7+P+TJKC6Ssz0zA8iaVaxeg2/ny3M5zeDbyxtSjTp0Mw\nIRnaDLQ6LXbmdtzLvkc5y3KkadJQq9SYKc1I06ThYuVCQlYCduZ25Opzn7q9jdrmmcdycXEhKyuL\nzMxMtm/fTocOHThy5AiXL19m2rRp6PV6KleuzOTJk8nMzGTs2LFoNBq8vb3z9nF/JkkvLy/GjBmD\nXq9HoVAwZ86ch6YsEIyvTJf0Ad6oVwF7KzXLD18zdiiCkGfFxRVMPDKRe9n3aLOhDfey7zHxyERW\nXFzBsVvH6PWXPC1Cr796cezWsWdunx+tW7dm7969HDp0iJdffhmQF/mYOXMmISEhWFtbc/jwYTZs\n2ECjRo1Yvnz5QxOq3WdnZ8eyZcsICQmhY8eObNy40XAnRTCIMl+0VauUjHk1gM83nSe4SUUcrR+f\n0EkQitug6oPySu57eu6hnGU5/q/Z/+WV9Nd3lqcnXt95PXbmdjTwaPDU7fOjXbt2DBs2DF9f37wJ\n0yIiIhg7diwAGRkZ+Pv7c+3aNbp06QJAzZo12bFjx0P7SUlJYfLkySQmJpKenp43iZhgOp6b9CMj\nI5k8eTIgf/GSJBEcHMyiRYsoX16e0S8kJAS9Xs+oUaOIj4/nyy+/pFq1ahw9epTTp08zYsSIov0U\nL6jTS+VZtC+SxQeiGP9a/qdEFYSiYqO2gX/ztZu1GwCOlv/NDmthZQGAi5U8h5SFyuKZ2z+Pg4MD\nzZs3zyvlgzxB2IPVM1qtltTUVM6fP0+9evU4f/78Y/v566+/qFevHm+99RZr164lIkIsVWpqnpv0\n/fz8CAkJAWD16tWkpqYC0LdvX4YMGZK3XVhYGHXq1KFjx4789NNPBAYGsmLFCubOnVtEoRvO/UXU\nR6w5xeBmlYwdjiAYxciRIwG5Vw7AZ599xkcffURubi5KpZKJEyfSs2dPxowZw/79+/Hz83tsH02a\nNGHcuHEcO3YMd3d3zMzKfGWCySnQN7JlyxZmzJjBiRMn2LBhA3///Tft27fnrbfewtLSktTUVLKy\nsrC2tmbDhg107doVS0vLoordoFoHuVGtvD0L9kXSN0Bl7HAEoVhUqFCBH3/88anPPbjS1H1Lly59\n7Lnp06fn/fuvv/4ycJSCIeU76cfExKDX6/H29sbBwYGuXbui0+l47733qF27NrVr10atVrNkyRKG\nDh3K3Llzefvtt5k+fToBAQH06NEjX8cJCwsr9Id5Ub2rWvH57miaOruBEeMoabKzs436vZVEj54z\nSZLIysoyYkSmTZyfh2VlZRX6/1y+k/62bdvo2LEjIC++AKBSqWjTpg2XLl2idu3aebeHs2bNYtiw\nYaxatYpp06YxZcoUOnTogLW19XOPY8x52atWhS1R/7DqQgbf9KqOl5MVKuWTV/wR/iPm0y+4J82n\nL+aLfzoxn/7DrKysHptPP78KlPTv39alpaVhZ2eHJEmEhobSs2fPvO1u3rxJeno61atXJykpCYDM\nzEw0Gk2+kr6xfdohiOClx2jx3T4szJRUdrGhipstfq62eT99XW2wVIsqIMFwJEl6aKlBQXgarVb7\nQuuB5CvpR0RE4OjoiKurKwA///wzR44cQaFQUL9+fZo2bZq37Q8//JDXzatt27b06dOHgICAvEWP\nTV0NLwdW9/LB3acKkXHpXI3P4Gp8OmduJvPbqRhikrJQKMDL0Qo/N1uquNrm/aziakM5WwtjfwSh\nBHJzc+PWrVsGW2qwtBEl/f8olUrc3NwK/f4ytVxifj2ruiJLoyMqQb4YyBeFdK7GpROVkIEmV4+T\ntfrfC4B8Majt40iDSqV7RKKo3ik4cc4KRpyvZytI7hT9qQrIylxFdU8Hqns6PPS8Ti8Rm5RFZHwa\nV+Pku4OdF+/w7Y7LzO5dm861PI0UsSAIwn9E0jcQlVKBTzlrfMpZ0/qB8V1r/rnBxxvOUrGcNTUr\nlIwqLkEQSq8yP/dOUevXyIe+DX0YujKUOynZxg5HEIQyTiT9YjDx9aoEuNvxbkiomLtfEASjEkm/\nGJiplCzoW5f07FzGbTz3Qt2tBEEQXoRI+sXEwVrNskH1ORAex8J9kcYORxCEMkok/WLk62rLwv51\nmfN3BDsu3DZ2OIIglEEi6Rezl/1d+aJTNcb8epaLt1KMHY4gCGWMSPpGMLBJRbrX9WLoilDi0wq+\nHqkgCEJhiaRvBAqFgsldquNTzpphIaHk5IoePYIgFA+R9I1ErVLyQ/96JKRrmLDpvOjRIwhCsRBJ\n34icbMz5aVB9dl28y5KDUcYORxCEMkAkfSPzd7djft86fLcznD1hd40djiAIpZxI+iagVZAb418L\nYtTa04TfSTN2OIIglGIi6ZuIIc0r0/Gl8ryz8gSJGRpjhyMIQiklkr6JUCgU/F/3GnjYW/LeqpNo\ncsViGoIgGJ5I+ibEwkzFDwPqEZuUxaTNF0SPHkEQDE4kfRPjYmvBskH1+fPsLX45et3Y4QiCUMqI\npG+Cqpa3Z07v2kzdGsaBK/HGDkcQhFJEJH0T1a66B2NeDWDkmlNExqUbOxxBEEoJkfRN2Pstq9Am\nyI13VpwgOVP06BEE4cWJpG/CFAoF09+oiYO1OSPWnEKrEz16BEF4MSLpmzhLtYqlwfWIis9g8l8X\n0etFjx5BEApPJP0SwM3ekqUD6/PX2dsMWXGChHQxHbMgCIUjkn4JUcPLgW2jXyY9J5fX5h7icESC\nsUMSBKEEEkm/BPFytGLt0Mb0a+jDW8uPM337ZVHPLwhCgYikX8KYqZSMeTWA1e80YvOZWN5cfIwb\n9zKNHZYgCCWESPolVCPfcmwf/TIe9hZ0nHeIzWdijR2SIAglgEj6JZijtTmLB9Rj/GtBfLLxHB9v\nOEtGTq6xwxIEwYSJpF/CKRQKBjSuyJ8jm3MuJpnO8w9zITbF2GEJgmCiRNIvJQI97Ng8ojlNqpSj\nx6Kj/HT4mpilUxCEx4ikX4pYmauY2v0l5vWtzdy/rzD4lxPcE336BUF4gEj6pVCHGuXZ/mEL0nNy\n6TD3EEciRZ9+QRBkIumXUg/26R/083G+3SH69AuCIJJ+qXa/T/+qdxrxx2nRp18QBJH0y4TGvuXY\nNupl3O1En35BKOtE0i8jnGzM+TG4Hp/+26f/043nxIydglAGiaRfhigUCoIbV2TzyGb8de4Wf4fd\nNXZIgiAUM5H0y6AgD3sGNK7Ign2Roi+/IJQxIumXUe+8XJnwO2li4XVBKGNE0i+j3Ows6dvQh/l7\nRWlfEMoSkfTLsGGv+HI+JoVjV+8ZOxRBEIqJSPplWHkHK96sX4H5eyONHYogCMVEJP0ybvgrVThx\nPZHQ64nGDkUQhGIgkn4Z5+1sTfc6XswTpX1BKBNE0hd4v5UfhyPiOXMz2dihCIJQxETSF6jsYkPn\nWp4sEKV9QSj1RNIXABjZyo+9l+9y6VaqsUMRBKEI5Svp165dm+DgYIKDgzl48CDZ2dl8+OGH9OvX\njy+//BK9Xo9er2fkyJH07t2bS5cuAXD06FEWLlxYpB9AMAx/dzs61PBgwb4IY4ciCEIRylfSr1Ch\nAiEhIYSEhNCiRQt+++03atSowZo1a1AqlRw6dIiwsDDq1KnDnDlz2LRpEzqdjhUrVjBkyJCi/gyC\ngYxo5ceOC3eIuJtm7FAEQSgiZvnZ6Pbt2/Tv3x8PDw8mTpxIaGgoI0eOBKBly5acOHGC7t27k5qa\nSlZWFtbW1mzYsIGuXbtiaWlZoIDCwsIK/ikMLDs72yTiKG5KoIGXNd9sPsUnL7vl+31l9Xy9CHHO\nCkacL8PJV9LfvXs3zs7ObNy4kdmzZ5OSkoK9vT0A9vb2pKSkUKVKFdRqNUuWLGHo0KHMnTuXt99+\nm+nTpxMQEECPHj3yFVDVqlUL/2kMJCwszCTiMIbPbMvTfdERJvWoT2UXm3y9pyyfr8IS56xgxPl6\ntpMnT+Z723xV7zg7OwPw+uuvExYWhr29PampcoNfWloaDg4OAIwcOZLp06fzxx9/MGzYMNavX8/4\n8eO5cOECmZlixaaSoJa3I839XVm0T/TkEYTS6LlJPzMzE51OB8Dx48epWLEiDRo04ODBgwAcPHiQ\n+vXr521/8+ZN0tPTqV69OklJSXn70Gg0RRG/UAQ+aO3H76djuZkoLtSCUNo8N+lHRUXxxhtvMGDA\nAFasWMHYsWPp0aMHZ86coX///mg0Glq0aJG3/Q8//MCIESMAaNu2LX369MHc3BxHR8ei+xSCQTWo\n5Ez9Sk4sPnDV2KEIgmBgCsmE5tU9efIk9erVM3YYov4QOBqZwFvLT3Dwk1Z4ODy7MV6cr4IT56xg\nxPl6toLkTjE4S3iiJlXK8VIFB1HaNzBJktDpdcYOQyjDRNIXnkihUDCytR9rj98gPi3H2OGUGtuu\nbWPY38NI1YqRz4JxiKQvPFXLAFcCPexYdijK2KGUCnpJT1PPpvQN6stHFz7ixJ0Txg5JKINE0hee\nSqFQMLKVHyH/iyYxQ/S+elFTjk3hz6t/0sanDV8EfkFN15rcTL1p7LCEMkYkfeGZ2lZ1x8fZmp8P\nXzN2KCWaJEn08O9BE88mAPhY+7AmbA2Tj002cmSCKdDri68/jUj6wjMplXLd/oqj10nJ0ho7nBIp\nR5fDgO0DAAhwCsh7fkDVAcxqOYujt46Sq881VniCEUmSxOp/oqk5eVexzXklkr7wXK/VKI+bvQUr\njl43diglklqp5k3/N/Fz9Hv4eZUatVLNlGNTuJBwwUjRCcYSk5RJ8E/Hmb79Ml92roafm22xHFck\nfeG5VP+W9n8+co30HFEiLYiryVcZuH0g7Su1x1pt/djr1mprNnfbTDnLchy4ecAIEQrFTZIk1vxz\ngw5zDmGmUrBrTAt61vdGoVAUy/FF0hfypXNNTxys1IQcizZ2KCWKi5ULXf26PjHh32ehsiD0big7\nr+8sxsgEY4hNzmLgz8eZti2MSZ2qsfytBpR3sCrWGETSF/LFTKXk/ZZVWHYoiiyNGFyUHxuvbGTZ\n+WX0DOj53G27+3fnq6ZfMe/UPJKzxVrFRSUlS4sxJiGQJIm1x2/QfvZBFAoFO8e0oFeD4ivdP0gk\nfSHfutepgKVaxZrjN4wdSolQ1bkqtd1qF+g9MekxJGYnFlFEZVtcWjbNpu+lzawDLDsURXJm8XRD\nvpWcxaDlJ/hmaxhfdKrKircb4OlYvKX7B4mkL+SbuZmS91pW4ccDV8nWitL+s0w5NoWErATa+LTJ\n93vMVebMaDGD6NRoFp4Ry4wa2rw9EVRxs6VvQx9W/S+aRt/s4aP1Zzl9I6lISv+SJPHrCbl0L0kS\nO8e0oHcDH6OU7h8kkr5QID3rVQBgw8kYI0diuiRJolq5anjbeRfq/U6WTjhZOBmlGqK0upaQwbrj\nN5nwWhBDW/iy96OWLBtUn4z3pk8IAAAgAElEQVScXN5cfIxO8w+z5p8bZBioo8LtlCzeWn6Cr7eE\n8fnrVVk5uKFRS/cPEklfKBBLtYphr1Rh8f6raHL1xg7H5GRqMxm9bzTNPJvh6+hbqH3UdqtNV7+u\nDNoxiIgksVC9IczcFU6LAFca+5YD5PEnL/u7sji4Hkc+bU27ah7M2xNBo2/2MGnzBcLvFK7PvCRJ\nrA+9SbvZB9H/W7rv09D4pfsHiaQvFFi/hj7k5Or4/bQo7T9KL+nxc/SjnFW5F9qPtZk1nXw7Ud6m\nPFqdGBT3Is7eTGb7+dt80iHwia97OFgyuq0/hz9txaxetbh+L5MOcw/Sc/FRNp+JJSc3f1WZd1Ky\nGfzLCSb/eZEJr8mley8TKd0/SCR9ocCszFW887IvC/ddJVcnSvv3Xbp3iZmhMxlZZyTmKvMX2pdC\noaBXYC82X93M2ANjDRRh2SNJEt/uuEy3Ol4Eedg/c1szlZL21T1YObgh+z9uSV0fJ7768yJNpu1l\n2vYwbtx78kpykiSxIfQmr84+gFYnl+77NTKt0v2D8rUwuiA8akDjiiw+cJW/zt0i6NlrrJQZZkoz\nvO28USoMV5Zq69OW2q61Sc5OxtFSrD5XUIciEgi9nsTej18p0PsqlrNhQseqjHk1gB0X7rD6n2iW\nHIziZX9XBjTyoXWQG2YqJXdSsvns9/P8E3WPz16vSj8Tq8p5EpH0hUKxtTBjcLPKLNgbydwObsYO\nx+g2XNmApcqSIS8NMeh+3W3csVHb0HFTR+a1nlfgLqBlmV4vMX37ZQY2qUgFp6cPjnsWS7WKbnW8\n6FbHi8t3Uln9vxuMXX8WO0sz2lf3YNOpGGp4ObDjwxZ4OxfuGMVNVO8IhTaoaSXiUnM4ciPD2KEY\nnaXKEkuzornlsTW3ZWm7pQQ5BxGTJtpR8uuvc7e4mZjJiFZ+z984H4I87Pm6Ww3++awNH7T2JyIu\njXEdglg1pFGJSfggSvrCC3CwUvNWs0qsOhmNd4Xb+LvZUrGcDeZmZacsIUkSs0Jn0dWvK/5O/kV2\nnEDnQH48+yOn40+zuO3iIjtOaaHJ1TNzVzjvtayCk82Lta88ysbCjH6NfOjXyMeg+y0uIukLL2RI\n88ocv3KLyX9d5G5qDiqlgorlrPFztcXP7b9HFVdbbCxK359brj6XHF0OVmZF30vjrRpv0VfXl2O3\njtHQoyEqparIj1lSrfknmhytnrebVTJ2KCan9P0vFIqVo7U5X7XxoGrVqqRma7kal05kXDqR8elc\nuZvGtvO3uZGYiV4CL0crqrjZPnZBcDZwSay4pGpSWXRmER/W+xAbtU2RH89CZYFGp2HS0UnMbjmb\nGi41ivyYJVFatpZ5eyP5uF0g1uYixT1KnBHBYOwt1dTxcaKOj9NDz2drdVy/l0FkXDoRd+ULwtGr\nCUQlZKDJ1eNsY46fq618QXCzpYKTFV6OVng6WuFkrTbZ3hApOSmkadJeuHtmQdiZ27Gl+xbuZNzh\nSOwRmnk1K7ZjlxRLD13D0UpNr/oVjB2KSRJJXyhylmoVQR72j/WT1uklbiZm5t0ZRMals+XcLW4l\nZxGXloMkgZVahaejJZ6O/10I5IclFRyt8XCwNEobwpm4M1xJusLU5lOL/dgWKguO3TrGpXuXRNJ/\nRFxaNssORfF9r1qYqcpO21JBiKQvGI1KqaCSiw2VXGxoi/tDr2ly9dxNzSYmKYtbyf8+UrI4cT3x\n39+zydLqUCjA1dYi76Lg5WSFp4N8kfD9txqpKCRmJxKXGVck+86P3oG90eq1zD89n54BPfGw8TBa\nLKZk/p5IAtztaF9dnI+nEUlfMEnmZkq8na2f2hVOkiSSM7XEJmcRm/zfhSE2KYt/rskXhoT0HOb0\nrk3X2l4Gje33iN/xd/KntU9rg+63IBQKBXpJz83UmwCEJ4YT4BRgslVhxeF6QgZrj99g1TuNyvR5\neB6R9IUSSaFQ4GRjjpONOTW8HJ64zbrjN/hk4zl8XWx5qcKTtymMyORI7C3sqYFxG1ItzSyZ8coM\nUjWp9PizB0vbLaWac7VCJ7wrd9OwtTCjvINliUyaM3eF87K/S96kasKTiaQvlFp9GvoQdjuVoStD\n+fODZrjZvdjgKUmS+PnCzwx9aahJTYlgb27Ptu7bUCqV9N7Sm2kvT6OKY5UC7ePszWS6LTqCJMmj\nrf3cbPF3s8Xf3RZ/Nzv83GzxcrRCqTTNi8G5mGS2nb/N1lEvGzsUkyeSvlCqTexUjYi4dN4LOcna\ndxtjYVb4vu2pmlT+uf0PnXw7GTBCw3C0dESn19EnqA8+dj78cuEX3gh4Aztzu+e+V6eX+GLzBXrV\n8+bDV/2JuJtORFw6kXFp7Lp4lwV7I0nNzsVKrcq7GPj9ezHwd7PF29kalZEvBt/uuEy32l5ULf/s\nSdUEkfSFUk6tUrKwX126LjzCxN8vMOPNmoWqukjKTmLn9Z380PYHkx0UpVKq6OHfg8TsRA7GHuS1\nyq+RpknD09bzme/79cRNou9l8svbDXG2Mae8gxUtAlzzXpckifj0HCL/vRhExKVxIDyenw5d416G\nBnMzJVVc/70z+PfuINDDnsouRT92AeBQRDwnriWx56OCTapWVomkL5iUOxl3cLd2N2idspONOUsH\n1qfHoiNULW/P4OaVC/R+SZKISonicOzhfC1ybmzOls783P5n4jLj6Pp7VzZ22UhF+4pP3DYxQ8OM\nnZf5pEPgUwfJKRQK3OwscbOzpKmfy0Ov3UvPkcdf/Dso73/X7hHyv2ji0nIY0NiHSZ2qF2mX2vuT\nqgU3qVii5r8xJpH0BZOQmJ2ISqFiwekFeNh4MLTmUNRKtcGmKQ70sGN279q8v/oU/u62vOzv+vw3\nAVqdlrd2vsXERhNZ0GaBQWIpLm7WbvzR7Q9szGwYsnMIU5tPfaxr53c7L+PtZE2fBoWbR6acrQXl\nbC1o9Ejj6fmYFN5bdZIrd/5hYf+6uNpZFPpzPMtf525x414mIUMaFcn+SyMxekEwOkmS+PLIl6wK\nW8WH9T7kzYA3WXpuKeMPjkcv6dHpDbMIe7vqHoxu48/INae5nvDsmUHvZNwheFswmbmZ9Ansg6t1\n/i4SpsbL1gtzlTnNvJpRzrIcv0f8jlYvr8R15mYy60Nj+LpbDYPXyb9UwYE/RzZDoYAuCw5zPibF\noPsHeSzHrF1XeK9llWKdykOn1xGbHltsxzM0kfQFo5p5Yiarw1bzVdOveK/me7hYueBh48GAqgN4\np+Y77I7ezYBtA5AkCb304qt0jWztR3M/F95ZGUpa9uPLEF66d4kP932Iq5UrbSu2RalQ0rlKZ1ys\nXJ6wt5LBWm3N4BqDicuKY1XYKpKzk0nMSmbS5gv0ql+B2t5F0xOpnK0Fq95pRPvqHry5+CibThl2\nWui1x2+QpdUV6aRqkiQRmx6LRqdhw5UN/HX1L47cOkKvv3oRnRrN6L2jydCWrKnFRdIXjOLEnROc\njz9PY8/GNPBoQDmrcg81kDpaOhLgFEBTz6aMrT+WqJQoOm7qSLomHUmSCn1chULBdz1rYq5S8uG6\nM+j08r4Oxx7m+9Dv8bTxpIZLDfSSnkHVB+Wr90tJ4WXrxcbOG8nQZvDqxnZEp9xhXPugIj2mWqXk\nqy7V+bpbDcZvOs/XWy6Rq9OTpkkjU5tJSk5K3uLve27sITk7mRN3TnAk9ghxmXF8e/xb9JKe/fH7\nuZhwkXtZ94hKiSI9J5d5eyL4sK2/QSdVS8xOJD4znrPxZ/n2+LfkSrl0+b0LF+9dxFJliYXKgkbl\nG7H9je04WjgS5ByEudKcdE26wWIoaiLpC8UqR5dDqiaVAzcPcCb+DM29mhPo/OQFq0GeYKyBRwPK\n25RnXP1xKBVKevzZg6jkqELHYG1uxtJB9TlzM5n3Ny9hw5UNOFk64W7jjqOlI++89A5qlbrQ+zdl\nCoUCezNPcmPeZ2TLAKaemEBydnKh96eX9EiSRHhiOLHpsYQnhrPi4goA3v/7fcITw1l2fhnR0jq+\n7+/B+oR+DPj5MMN2Dee3iN84GHOQcQfGAfB96PfEpMdwOfEyFxIuoJf0JGYnkqvPJSozirjMOPbf\n3M9nhz7jxwMRaCtMpE6VbNZdXscfkX+QkJXA5sjNSJLE3Yy7aHSaZ8aeqc0kKiWKTG0mH+3/iISs\nBKYcm8LqsNVYm1ljb26PWqlmT8891HGrQ+cqnWlXqR0WKgvsze1xsHBgeO3hLLuwjAmHJxT6HBY3\n0ZArFKspx6Zgo7ZhQsMJBeqhY622pk3FNmh0GgZVH4S3vTfD/x7OwGoDaeLZpMBx/B27nlGve/HN\nziS8HG3oGVCd6uWqF3g/JdF3Oy9T0c6PbrU9CbnshY3ahv039/NKhVce+06yc7O5lXELXwdfNkVs\nooF7A84lnCM6NZruft3puKkje3vtZcHpBdT3qE8t11rcTJOnhmhUvhF25nY09WyKRqch0DmQuZY/\nMn97DnfD3qR6zcbU9nbLG/ewtcdWgIemjP62xbcADK44mKo+VQFo6t6BNrP28177SVRy8CY6LQpz\nlTl3Mu6wPnw9Xf26MmjHIEbXHU2aJo1L9y7xacNPmXNyDsNrDWfN5TX4O/mToc1gxcUVbOqyCS87\nL3R6HV83+xobtQ1KhTJvUZznDcQbUHUASdlJnLhzggCnABwsDDf6u0hIJiQ0NNTYIUiSJEmXLl0y\ndgglSn7O18qLK6WQiyHS7fTbUoYm44WPqdPrpM2Rm6W4jDhpxvEZ0ubIzc99j1anleaenCvFpsVK\nP53/STocc1ha80+0FDhxm3TuZvILx1QQxvobO30jSfKdsFU6cyMp77nwxHCp/cb20u3029KkI5Ok\n+Mx46Zv/fSMtOr1IOhp7VGq8urEkSZL04d4PpeO3j0vHbx+Xtl7dKml0Gun03dOSJlcj6fX6fMeQ\nrc2Vxv92VgqauF3662xsvt7z4Pn64o/zUpcFh595zOTsZClDkyFdSbwiHY09KiVlJUmfHvxUSstJ\nkzZd2SQdv31cys7NljQ6Tb7jfha9Xi+9veNt6c/IPw2yv4IqSO4USf8JRNIvmGedr6vJV6Xz8eel\n/Tf2S4diDhXJ8Xdf3y2dizsnbQzfKC09t/Sx11NzUqX5p+ZLObk50uSjk6UL8Rceev2LP85Ljb/5\nW7qbmlUk8T2JMf7GcnV6qfP8Q9L4384+9ppGp5F0ep00+ehk6U76Helc3DkpIjFC0ug0UnZudpHE\ns+p/1yW/z7ZK07eHSbm6Z1807p+v6wnpUpUJW6WjkQlFEtOL0Og0UnJ2svTZoc+kpKyk57/BgAqS\nO0X1jlAk9JKe7Nxs/oj8A0mS+Kj+R0V2rLYV2wKQrk3H3sKeU3dPsSt6F4NrDGbn9Z30DOjJ5cTL\nxGfFM6nJpMfe/0WnakTcTWf4qlOsGdrohaZqMGXrTtzgRqI88vZRaqXchnH//LjbuD+2jaH1b1SR\nAHc7hq86SdjtVOb2qYOD1bPbUmbuukJzfxeaVDG9SdXUSjVmSjOszaxRKVVk52ZjafZi8z0VBdGQ\nKxSJ70O/Z+o/UxldZ3SRJvwHNfFswqsVX8VCZYGnjSc5uTkciDmAXtKzoM0CvGyfPMWyWqVkYf+6\nxKVl88UfF16od5CpSszQMGNHOJ+0DzKp5SkbVHLmz5HNSczQ0G3hESLupj112/MxKWw9d4tPirjH\n0YuwUdvweePP2X9zP0N2DjHJvyVR0hcMasf1HSRmJdKvaj/MlGZGmaemukt1qrvIjbLL2i3L13uc\n86ZqOErV8va83axgUzWYuu92XqZiOWt6N/A2diiP8XS0Yv2wJnz2+3m6LTzC971rP3ERlPuTqlXz\nNP1J1dr4tMHbzptrKddwsHCgnJXp3JmIkr5gEPey7nE58TKWKksszSzxtPXEzdrN2GEVSJCHPd/3\nqs3UrWEcjkgwdjgGc/pGkjzytqvhR94aiqVaxayetfioXSAjVp9i9u4r6PX/lZJP3crk+LVExrwa\nYMQo889abU1tt9osOLOA9eHrjR3OQ0RJX3ghkiSh0Wv4NfxXolOj87rYlVQdangwqo0/I9acYvOI\nZlQqppkii4pOLzFp80V61femVhGNvDUUhULB4OaVCfKwY8SaU1y6ncr3vWphY27G8pOJDGhc8iZV\nm9p8KiqFiu9Dv2dg9YEmMbJbJH2hUE7dPYW3nTcrLq7g8u3L/PD6DwabHM3YPmjtx+U78uIrm95v\nip1lyR2otfb4DW4mZbJy8OONt6aqqZ8Lf45szrshJ+m+6Cjd63gRm6ZlZGs/Y4dWYFZmVmTlZhGf\nFU9Wbha5+lzMlMZNu6Xjf6lQLBKyEph+fDq5+lxmhc7iTPwZ+lftz9BKQ1Gr1CY7z3xBKRQKZvas\nhZlKyZhfzzxUzVCSJGZo+G6n3HjrZEKNt/nh7WzNb8ObEORhx3c7w+lZw9GkGqALwsrMimkvT+NO\nxh36bOlDji7HqPGIpF9CSJLEF0e+YO3ltdzLusfR2KNFfsz7c6PsuLaDsfvHYm1mTWJWImmaNEI6\nhvBqxVcpb1see7XpN6wVlLW5GUsH1uP0jWRm7Q43djiFMmPHZSqZaONtflibmzG/bx1+ebsBb1Q3\n7aqp/KjhUoPhtYeTqc0kPjPeaHE89z7j9OnTTJ8+HbVajbW1NTNnzmTFihXs2LEDZ2dnXFxcmD17\nNhkZGYwcOZKcnBxmzZpF+fLlWb9+Pebm5nTr1q04PkupNf/0fFysXBhQdQCZuZlcTrzM7JOzaeLZ\nhD5b+/B5o8+RkFCi5CXXl17oWFqdlh3Xd9DGpw0fH/iYquWq0qVKF6zV1lirrZnxygwDfSrTV8HJ\nmh8G1KP/sv8R5GFP51rPXoHKlJy+kcSGkzFsGt7UZBtv80OhUNAy0I2wsHvGDuWFWZlZ0canDdP+\nmUaGNoP/a/5/RonjuUnf09OTX375BSsrK9auXcvq1asB+OCDD+jQoUPedkeOHKF37964uLiwY8cO\nevbsyb59+1i0aFHRRV/KxWfGk5yTzEsuL+Fs6fzQxGRNPZuil/QMrDYQbztv1l5eS64+FwmJ8YfG\n81e3v9gStYW67nXxsvV6Zn27XtITkRTB+vD1TGg0gRUXV+Dn6MdXTb/CydIJtVL91JWXSruGlZ35\nqkt1Pt5wlptJmQxuVhlLtWlXY5WkxtuyaEy9MegkHavDVtPWp22xDIR70HOTvrv7fwGp1WpUKhW5\nubn88MMPrFy5kn79+tGpUycsLS25c+cONjY2WFtbs2TJEoYNG2bQZe/KEkmSWBW2isTsRL5u9vVj\nrysUClQKFa/7vg7A+7XfByA5O5nxDcejUqrYeX0n3nbebIrYRFxmHJ80+IT14esJrhZMfFY89ub2\nrA5bTVxmHENrDsVGLfdU2dhlY/F90BKgf6OK2FqY8e32y6z+3w0+6RBIl1qeJvu3XRIbb8sSSzNL\ncvW5nLx7kmrlquFm7Vasf0sKKZ9DxpKSkhgyZAjLli1DoVDg5OREWloagwYNYuHChbi6ujJjxgyy\ns7Pp378/ISEhtG7dmhMnTtCgQQNat2793GOcPHkSa2vjd8nKzs7G0tJ4w6cPJhzkdPJpRviOQKlQ\nvnCvmPiceLJ0WZgpzFh+YzkTAiYw7sI4upfvTkVruQTvbV34el9jn6/ikpOr54+wFH49n4yPgzlD\nG5SjulvhPndRnbOUbB3v/H6TwfWceS2g9LS1lNa/sVtZt1gYtZBPAz59obaxzMxM6tWrl7+N8zNB\nT2ZmphQcHCydPHnysde+/fZbaf/+/Q89N378eOnOnTvS+PHj837Pj7I+4Vq6Jl06HHNYupFyQ9ob\nvbdIj5WcbbhZJcvaBHVxqdnShE3nJN8JW6Xhq0Kl6wnpBd5HUZ2zTzeelbrMPyTpnjOBWUlTWv/G\ncnJzpF8v/yrp9LoX2k9Bcudzi5C5ubmMGTOG4OBg6tatC0BaWlrea2fOnMHH579FlU+ePImPjw/u\n7u4kJSUB5P0Unk4v6Tl++zgLTi/A09aTVj6tivR4Jj/ntwlztbPgm+4vsX30y2RqdLT9/gD/t+US\nKZmPL79YnE7923g7pWsNlCW48bYsMVeZ0yuwV7GOcXlunf6WLVsIDQ0lIyODlStX8sorr3Dt2jWu\nXr2KTqejU6dOVK4sz1MiSRIrV65kxgy5h0eNGjXo06cPzZs3L9pPUcKdjz/PV8e+IuS1EJpXaF5q\n+ruXdgHudvzydkMOXonnm21hbDwVw+g2/gxoXBG1qnh7Q8uNtxfo3UA03grP9tyk361bt3x3uVQo\nFMydOzfv95EjRzJy5MjCR1fKafVatkVto0PlDgx9aShWZlYm2zj4VHo9VgnnQAqCkha7gbQIcKWZ\nnwsbQm8ya/cVVh6LZvxrQbSr5l5s3+fa4zeIScoiZHCjYjmeUHKJwVlGotVpicuM45eLv5CSk0KH\nyh1KXsIHOP4jlfa8C2v7QlbZrcZTKRX0aejD/o9b0rlmeUavO02fJf/jfExKkR/7XnoO3+0M59MO\nJW/krVD8RNI3guTsZF7//XUytZn81uW3Ejcb5UMCOnCr4SRIvws/toDYU8aOyKhsLMwY2y6QfR+3\nxMvJiq4LDzP21zPcSs4qsmPO2BFOJRcbetcvmSNvheIlkn4xkiSJ9eHrUSqVTGw8EV8H35I7SVmu\nBs6uA8eKpFTuCIN3QMBrZbq0/6DyDlZ836s2f45szq2ULFrN3M/MneGk5+Qa9DinbiSx8VQMX3et\nLhpvhXwRs2wWk6zcLFQKFbuu7yLAKYAWFVoYO6QXs/8bOL8RguTBYZhZQMd/p2i4dghOrYBOs8HC\nzngxmoAaXg6sHdqY3ZfuMn37ZdaduMkHrf2Q0jO4qb+DTi+Rq5fyfurzftfnPX//Naus21hmx2OZ\nk4ilJhELbTJTU9rRt355arpbGPujCiWESPrFQJIkBu8YTN+qfVnabmnJrLt/UPQxODofBm5+clK3\n94S4MFjSEnquAI8axR6iKVEoFLSr7kGrIDdW/y+aJQej0GRn4qa+hosilXKKVNQKiVPm9aiuD6ej\nZheOUgqOUjIOUiq/2/XjmG0HpsR9REVNBOkqR9JUjqSbOdLUryfj/WNhRkfwawNBncC/HVg7G/tj\nCyYq3yNyi8PJkyfzP6qsCIWFhVG1alWD7GvHtR1423mjl/T4OflhZWZlkP0aTXYqLG4G1bpCO3nC\nqCeeL20WbP8Ezq2HjjOhbrARgjUhkgQ3j4NTRbDzQPd/5VHlZsqvWTpA+Vow6C+48Q+cXQs2rv8+\nXMCrLjhVgpw0UNuA8pEqwVwNRB+Gy1vh8ja5faXncvk7ykwsuReAlFhIuw0V6nPl9BEC6jQzdkQm\nqyC5U5T0i4he0qPRaTifcJ5cKZdOvp2MHZJhxIeDY0Vo/cWzt1NbQZf54NMUUmOKJzZTdO8qnPtV\nfqTEQI8lUOMNotssxbd6XbAuJ1eN3efTSH48ydOqyszMoUpr+fHad3D7tPwdabPg+2rg4i/fAQS9\nDu7VTbtrrSTBtQNwYpl8AaveHbrMx3fnAEgeCi0nmHb8JYBI+kVk3ql5xGfFM7X5VGOHYjiaTPBu\nIJdI8/sfr3Zf+Wd6HGx6F16bAa5FuM6pTguRe+REWqUVHJgB+lyo3AIqNHg4wRaVzESwcoKYUPip\nrXzcJiOheg+wkRfIznGsIleDGZpSCV4PlPiGH/n3DmAr7J8GtfpC9x/k78PKGVQmlgKWd4TYk1Dj\nDRiyGyrInyW2yddUPPYZJN+AzvPkC51QKCb2jZd8CVkJnIk7Q+/A3uTqDdtTw6jS/u2S2Wc1VKhf\n8PerreVS7ZKW0GUevPSmYeO7exHOrJGrk7RZ8Mo4OelbOUHYn3B4DiiUUKkZ9FsPeh0oVfLDELRZ\nEL5dLtFH/g3DDsrVMh+cgnJVDHOMwihXBZqNkh/pcf/1rvrzA4g5Ife4CnpdPldqI1Q93j4rl+od\nfOTvrPVEcKv6WJVUpls9GLwLVveE1W9A33VgXrLXLzYWkfQNSC/pORd/jo1XNtK6beuS2x3zUZIE\nf46Ecn7gWadw+7CwhTeWwcnl8Mf7EH0EOkx/sZJ3xj25ZGtmBT+/Bl51oP1UuSrD/N/ZWhsOlR/a\nLLlOPT5cTvQXNsG2j6DSy/JdQOVXwDWwcFUH5zfCljGgNIMaPeDtHeBWTd6XMRP+o2zd5AfI30Xk\nHvkO4I/3QKGCj69ARgLEXQSPmv9ta2h6nXzOTiyV74YCOsBLPeXXKj2j3t4tCN75G0J/lr9zoVBE\n0jeQy4mXmXh4Iss7LKeVd6uS30PnQaE/w43/yVUFL1IyViig/mDwrAv//CgnmoLK1UDkbrlUf2UH\ntP8GGg2DMeflBtGnUVuB7yvyAyCgvXwhunYQTq6QG53fXC4n7bAtUL4mOPo8eV9xYfIYhRvH5ARf\nvjZ0/xH82pacagcLO6jeTX7otBB/GVRquHVarobTpIGtu5z8m34gn7e0u3Lj8qMNyfmVFA1IcnvD\nyV+gUnN44ye5cTu/7Nyh1QS5qvG3d+CVT8CzduHiKaNE0jeAo7FHqedRj0HVB2Grti1dCT8jAXZN\nlPvcPy0JFpRnbbleWa+D9QOhxptQrcvz35cQAT+3l5NUjR7w1jbw/nehkGcl/CextIfA1+QHQHq8\nfGHI1cDfX8K9SHCqLN8FBHaEwA5yoj+2AO6cl+8Q6gwASQcufvKjpFKpwePfZTaDOsL4G5AcLX/O\nO+f/q0b56VX578Gjhrx9+drP75Wl18PVPXIVzpWd0OpzuRpn8PYXi9nMAhy85DaAnr9AQLsX218Z\nIpL+C0rKTuKLo1+wuO1iOlfpbOxwDM/GBd7aIpfODU2hBO/GsHEwNHwX2n71cEk5PQ7Ob5BL9T2W\ngGuQ3P0z8DXD1z/buv737w9Oyg2GUQfkO4GofXLSz82We5P0WQuOpXjKA6USnCvLjwcvxkP3/nch\nuHNebsOoGwyXNsO+aXe5sWQAABCQSURBVP9eCGrKPz3rAAr48WX5e6zZS27nKF/TQDGq5E4BjhVh\nXV/53w2GGGbfxSkzEY4vkcdWeBXB/7EnEEm/kHR6HZ8e+pT+Vfuzrcc2LFSlcETkiWXy7b13ES27\np1BAk/fl3i0b3oKY4/JgrswEOYlE7JLrxGv1lasalCq5hF8cHH3khPZgSbbeW8VzbFNl4yI3+FZ5\nZK0Hz7rQ+D35QnDpT9j3DXSaA7V6Q5sv5UFjBb0Tyw+FApqOlC/AB2bIfyfmxl95L1/S4+S7xhM/\ngUMFqFh8YxBE0i+Euxl3sTSzpK5bXdyt3Utnwo89Cds/hX6/Fv2xvBvAe4dgx3i59A9gXx6G7JK7\nH5am6rLSyNH74QuiXic/oHgu0tW6yo33SpVcBVetG6hNeGnFjASYW0seP9Hth39jN6FFVITHffPP\nN/g5+fFBnQ+MHUrR0GTKjXn13pYbJ4uDtbNchQNywu80u3iOKxieIbvCFuSY2Slw4FsIXQ5915rW\nSOSESDg8W64mrNoZ3t4uj8I2QoFGJP0COBhzkJtpN5nSbAo26lLcR3j3F4ACXp1i7EgEIf8sHWDI\n37C2DyxrCwM2grOvcWO6cwEOzYJLf4BvK7D3kp83Yo+jUtKRvGhJksS9rHuA3BffwcIBM2UpvV5K\nkjyQqsePJad+VBDusykHg/6Uexj90hm02caJQ6+X56n6uT3oNPDOHgjeVGyNtc9SSjOXYe2K3sWC\n0wv4vevvJX9K5GfJTJRvN9t9bexIBKHw1Fbw5i9w94Jct5+RIDdCFzVJknt7HZoJ/u3lRubR5/Km\n3jAVoqT/DOmadJacW0Jr79bMaz2v9JbuQf6D/WuUPDxfEEo6pVLuHpqZCPPrwrFFRXcsSYLwHfI4\nhtVvylVK99eZMLGEDyLpP1WOLoc0TRqn4k6Roc2gskNlY4dUtM6uk4flt51s7EgEwXCsnaH7Etj7\ntdwb7X6vIkPQ6yAnXa6+2fmZ3PV49FnoPFce42CiSnHRtfAyczPp9Hsn5rScw+K2i40dTtFLioZt\n4+QpDUxprhjh/9u796AorzSP49+mAZFgoyTKSGJE4iVMxku8xGhWkWGSNSpGo2MQ4zobxGtlMaZ0\n1ktFM2NGXG8ssqhoasYZJSox6mocx9oUBC8ZFTTlDDolGklIShhiBFtAmqbP/nG0jSmj0EA39Pt8\nqqzi8nb3ec8fP1/Oe97nEU2h10j41ceQ+Zre4TNuo176uZIL9hod2vYa/SBa2LP6GZHyL/XDeHYb\noPRuoJK/6xpUdhvU1UB1OfSN0/We5p5qeRVLf0TrGKWbKKX4qPAjwhxh/Gbob3g65GlPD8k9TmyA\nrkPl4SPhvR7vr4u1/XWjvm917bJ+kMy3jf5n9tc3XkFv/2zT7m6vgzvF3R7pqEtvmG+/xjdAl+mA\nVhP4IKHvVFpZSkhACDlf5zAscBiTwiZ5ekjuM3Il2CrlISjh3Tp0hZeT9dd3is3dT9TC+/+8XSgM\nmt48Y3MjWdNHl1SYfmQ6R748woafb6B3cG9PD8k9Sv4Ou6bqG1Ft23t6NEIINzB06DuUg3nZ88gv\nzWfzi5sZ1W2Up4fkPrW39FO3AZbWUw5YCNFohgx9pRR/vvJnrlVfI+qJKMKCwggLCvOuksgPk70C\nbDd1IxMhhGEYbk3/u1vf0c6/HQe/OEigbyDje4z39JDc72SGvqE17eCPN9sWQnglQ4W+UooZR2Yw\nJXIKaT9PM86VfdlFOPsnKD6pOz11j4Ens5uutrkQotUwROgrpVh6fCljIsawbsQ6Hg963BiBf/5/\n4bP/geK/6k5PAxNAOWQvvhAG5vWhn/t1Lr069HLWvn/S0kQt/1oipXSj6Yqv4GcT4MY3ev/9uHQJ\neiEE4MWhb7VZCfANYOc/djK2+1gm9JxQvxdePYe5prJ5B9fUKr/VZRTO/kn3ke03WYf+87M9PTIh\nRAvjlaGvlGLW/80iNiKWtJg0fEz13KRUsA/2zcbys1nw9DNwZAm8MK9lXiU76vQj5YEhushTjRWe\nnapbxrUL9fTohBAtlFeFvlKK5FPJRD0RxW9f+C1dgrrUL/AdDt1x5+haeDmZ60Ev8JOaG2AthbRB\n8OwUGL6wZTTDvl4EZ3foZuHdhsH4TRCfpUvHGuE+hRCiUbxmn/7pktOUVpXyVPunCA4IJiI4Aj+z\nX/1e/GkynNqsmxzcecw6+AmYslu3Nfvuii7PWnyq+U7gYepq4Y/j4L/7weVPIGoBvPxf+ndBHSXw\nhRD14jVX+n8o+AO/ePIXTOrVgJo5N/8JgY/BwDd0tbz7tVZ7cjBMOwBFx3QFvutfQv7vYeh/NG8P\nzjo7fJED53ZB5JjbzZ9H60qYoT9tvs8VQng1rwn91OhUzA1pxvzVSdg1BV5aoQP/QUwmvZQCUP0d\nXDwCp9+HoW/qm6VN+YDTzX/qBsp/+1AXQYuMheDby0rPJTbd5wghDMlrQr9Bgf95JhxIgsGzoPcv\nG/ZBYc/CrGNQ8BFk/w5OboKZRyH48Ya9z/eVfwV/y4L+vwKzny77+q/v6St7fy9uwC6EcDuvCf16\ny7l9wzY2VW9tdIWPD/SeCD8dB4V/AUsYfJ0PVz/XO2jqU8CsuhzO79fLN18eh859ocdL8JPe+l6C\nEEI0A6+5kftQd9qkdR2iu+i4GvjfZ/bVV+MmE1ivQs5KSBsIn39w/7Zsdpu+NwB6vT53NXQZDHNO\nwsxcHfhCCNGMjHGlf+0y7HodRq+92+mmqUWOgaei9XLP4V/DiVRIzNYddopP6Sv6go90GYSkc3qt\nPnKs/qtBCCHcxPtD/4sc2D1NB3Lnfs37Wf6PwLC3dY2bL3LALwD+skT/R9DjJRiTAj1H6p8LIYQH\neHfon9oCh/8Ton4Nwxe4by972/Z3W7ENngX/Mh8eedQ9ny2EEA/g3aFfY4WJv9dd7j2lJTzFK4QQ\nt3nfgnLlNcj6d7hxFYbN92zgCyFEC+NdoV9aAFtG6J00Pt79R4wQQrjCe0L/H4fg/Zf07px/26/r\n0QghhLiHd1wOKwV570P0El0WQYqPCSHEfbl8pb97927i4uKYOnUqxcXFZGVlERcXR1paGgA2m43E\nxERqa2ubbLA/ymTS5YWHzJHAF0KIB3DpSr+8vJysrCw++OADzp8/z5o1azCbzezcuZO5c+cCsG3b\nNl5//XX8/OpZ3rix5CEnIYR4KJdC/9y5czz33HP4+vrSp08frly5Qrdu3airq8NkMnHt2jXOnz9P\nYmLDq0JeuHDBlSE1qVu3brWIcbQWMl8NJ3PWMDJfTcel0K+oqCA4ONj5vVKK+Ph4FixYQGxsLOnp\n6SQkJLBmzRoA5syZQ2BgYL3eOzIy0pUhNakLFy60iHG0FjJfDSdz1jAyXw+Wn59f72NdWhOxWCzc\nuHHj7pv4+DB48GDWrVtHt27d8Pf3p6CggJiYGGJiYjh48KArHyOEEKKJuRT6ffv25fTp09TV1VFQ\nUEDXrl2dv9u8eTOzZ8+mqqoKm82GzWajsrKyyQYshBDCdS4t77Rv355x48YxZcoUfH19ee+99wDI\nyclhwIABWCwWRo4cydtvvw3AunXrmm7EQgghXObyPv3JkyczefK9NelHjBjh/Lpz585kZma6PDAh\nhBBNT/Y5CiGEgUjoCyGEgZiUUsrTg7ijIduOhBBC3DVgwIB6HdeiQl8IIUTzkuUdIYQwEAl9IYQw\nEAl9IYQwEAl9IYQwEAl9IYQwEAl9IYQwEAl9IYQwEO/okVtPZ8+eJTk5GT8/PwIDA1mzZg12u52F\nCxdSWVnJ0KFDefPNNwHIzs5m06ZNmEwmFi9eTJ8+fXA4HLz77rsUFhbSqVMnkpOTCQgI8PBZNZ/G\nztcdGzdu5OOPP/b6EtuNna8bN24wb948amtrMZlMrF69mtDQUA+fVfNpyHzNnTuXvLw8ZsyYQUJC\nAgAbNmzg6NGjALz44osuNW0yJGUgJSUlqqqqSimlVGZmpkpPT1fJycnq0KFDSimlEhMTVWFhobLb\n7eqVV15RVqtVlZSUqLi4OKWUUtnZ2Wr58uVKKaW2bNmitm/f7pkTcZPGzpdSSl2/fl3Nnz9fjR49\n2iPn4E6Nna9du3aptLQ0pZRSe/fuVSkpKZ45ETep73zdOXbPnj1q69atztdfuXJFKaWUw+FQr732\nmrp69ap7T6CVMtTyTmhoKG3btgXAz88Ps9nMmTNniI6OBnSV0NOnT1NUVER4eDhBQUGEhoZit9up\nqakhLy/PWUk0OjqavLw8T52KWzR2vgAyMjJ44403PHYO7tTY+YqIiHD2nrBarYSEhHjsXNyhvvN1\n59gfCg8PB8BkMuHr64uP9MmuF0PO0vXr18nMzGTixIlUVVU5l2gsFgsVFRVUVFRgsVicx1ssFsrL\ny+9pE9muXTsqKio8Mn53c3W+SkpKKCsr45lnnvHU0D3C1fnq2bMnZ86cITY2lu3btzN27FhPnYJb\nPWy+Hubw4cN06dKFTp06NfdQvYLhQr+6upqkpCSWLl1KSEgIbdu2dV6VWq1WgoODCQ4Oxmq1Ol9j\ntVpp3779PW0i7xzr7RozX+np6cycOdNTQ/eIxszX1q1biY2N5cCBAyxevJjVq1d76jTcpj7z9SD5\n+flkZmaybNkydwzXKxgq9O12O2+99RZTp06lf//+gK5M9+mnnwKQm5vLwIED6dq1K0VFRVRVVVFW\nVobZbKZNmzYMGjSI3Nzce471Zo2dr+LiYlauXElCQgLffPMNa9eu9eTpNLvGzpfD4aBDhw6A7k73\n/T7U3qi+8/VjCgsLWbVqFSkpKV69oaKpGarK5r59+1ixYgWRkZEAREVF8eqrrzp3Czz//PMkJSUB\n8Mknn5CRkYHJZGLRokX07dsXh8PB8uXLuXTpEh07diQ5Odm5JumNGjtf3zdmzBiv373T2PkqLS1l\n4cKFOBwOamtrWbZsmfO9vFFD5mvFihV89tln2O12+vXrx6pVq5g2bRqlpaV07NgRgKVLl9KrVy+P\nnU9rYajQF0IIozPU8o4QQhidhL4QQhiIhL4QQhiIhL4QQhiIhL4QQhiIhL4wtDlz5nDo0CHn9zt2\n7OCdd97x4IiEaF6yZVMYWnFxMdOnT2f//v3U1NQwadIkdu7c6XxIqqHq6uowm81NPEohmo6EvjC8\n1NRUTCYT5eXldO/encmTJ5OWlkZ2djY2m41p06YxceJEioqKWLRoEdXV1bRp04aVK1cSERFBVlYW\nx44d49tvvyUsLMwQ5RNE62WoevpC3M+MGTMYP348QUFBLFmyhOzsbCorK9mzZw82m424uDiio6Pp\n1KkT27Ztw9/fnzNnzpCSkkJqaioAFy9eZM+ePQQGBnr4bIR4MAl9YXgBAQGMHDmSxx57DB8fH44f\nP05OTg4nTpwAdOGv4uJiwsPDWbJkCZcuXQLA4XA432P48OES+KJVkNAXAvDx8bmnHvv8+fMZNWrU\nPcesX7+eHj16sH79esrKyoiPj3f+Tgp+idZCdu8I8QNDhgzhww8/xGazAXD58mVsNhs3b950Fvfa\nu3evJ4cohMvkSl+IH4iJieHSpUtMmDABpRSPPvooGRkZxMfHk5SUxI4dO5zdnYRobWT3jhBCGIgs\n7wghhIFI6AshhIFI6AshhIFI6AshhIFI6AshhIFI6AshhIFI6AshhIH8P+hpVi4odxbzAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, { "metadata": { "id": "LuacMjSf2ses", From b50bac8393caaac06da98ea231d37aaa3b8c4398 Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Fri, 16 Nov 2018 12:50:06 -0500 Subject: [PATCH 11/12] Created using Colaboratory --- DS_Unit_1_Sprint_Challenge_2.ipynb | 170 +++++++++++++++++++++++++++++ 1 file changed, 170 insertions(+) diff --git a/DS_Unit_1_Sprint_Challenge_2.ipynb b/DS_Unit_1_Sprint_Challenge_2.ipynb index f7b001c..69812a4 100644 --- a/DS_Unit_1_Sprint_Challenge_2.ipynb +++ b/DS_Unit_1_Sprint_Challenge_2.ipynb @@ -525,6 +525,176 @@ "colab": {} }, "cell_type": "code", + "source": [ + "actor_freq = pd.DataFrame(df.Guest.value_counts().reset_index().head(10))\n", + "actor_freq.columns = ['Guest', 'Visits']\n", + "#sns.lineplot();" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "bhH2KAvikzh2", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 + }, + "outputId": "25d28238-4739-4633-a533-02f37cfe5b23" + }, + "cell_type": "code", + "source": [ + "actor_freq" + ], + "execution_count": 120, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GuestVisits
0Fareed Zakaria19
1Denis Leary17
2Brian Williams16
3Ricky Gervais13
4Paul Rudd13
5Tom Brokaw12
6Reza Aslan10
7Bill O'Reilly10
8Will Ferrell10
9Richard Lewis10
\n", + "
" + ], + "text/plain": [ + " Guest Visits\n", + "0 Fareed Zakaria 19\n", + "1 Denis Leary 17\n", + "2 Brian Williams 16\n", + "3 Ricky Gervais 13\n", + "4 Paul Rudd 13\n", + "5 Tom Brokaw 12\n", + "6 Reza Aslan 10\n", + "7 Bill O'Reilly 10\n", + "8 Will Ferrell 10\n", + "9 Richard Lewis 10" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 120 + } + ] + }, + { + "metadata": { + "id": "AuqtrEmhmJwy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 685 + }, + "outputId": "47c7bf25-1fe4-40c4-b1fe-cf05fdaff5bd" + }, + "cell_type": "code", + "source": [ + "from matplotlib import rcParams\n", + "list_actors = actor_freq.Guest.tolist()\n", + "\n", + "#set figure size\n", + "rcParams['figure.figsize']= 11, 11\n", + "\n", + "sns.lineplot(x='Guest', y='Visits', data=actor_freq, color='sienna')\n", + "ax2.set_xticklabels(list_actors);" + ], + "execution_count": 143, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApoAAAKICAYAAADQElpvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Wl8W+Wd9vFLluU1tqUsTuJYih3L\nQBqWAKFQEsoWEtMWSkuBdLrRQKEsT2mZ6Q5ha6edrsCwt4ROGdqktNBlOjhbCwWHNWQhEIjl2JEc\nZ4+O90W29LwIMFASYjuS7iOd3/fNfCrLOtepnfqac87/vl2JRCIhAAAAIMlyTAcAAABAdqJoAgAA\nICUomgAAAEgJiiYAAABSgqIJAACAlKBoAgAAICUomgAAAEgJiiYAAABSgqIJAACAlKBoAgAAICUo\nmgAAAEiJXNMBhmPNmjWmIwAAAEDSiSeeOOz3ZkTRlEZ2Uodr06ZNmj59etqOZxect7Nw3s7CeTsL\n5+0s6TzvkV7849Y5AAAAUoKiCQAAgJSgaAIAACAlKJoAAABICYomAAAAUoKiCQAAgJSgaAIAACAl\nKJoAAABICYomAAAAUoKiCQAAgJSgaAIAACAlKJoAAABICYomAAAAUoKiCQAAgJSgaAIAACAlKJoA\nAABICYomAAAAUoKiCQAAgJSgaAIAACAlKJoAAABICYomAAAAUoKiCQAAgJSgaAIAACAlKJoAAABI\nCYom4DC97Xv1xA1f0GBPl+koAIAsR9EEHGbj4w9p16a16m7bYjoKACDLUTQBB+nZt0tvLFsqT2Gx\nendFTMcBAGS5XNMBAKTPhj/8UmOrj1LZlGlq30nRBACkFlc0AYfo2tWmxpW/1/Gfvla+qUH1UDQB\nACnGFU3AITb84QGVH3m8Jh9zshLxhHp3tSqRSMjlcpmOBgDIUlzRBBygY3tYob/9STM/fY0kyRuo\nUXygT927txtOBgDIZhRNwAHWP3qfJh97siZOP0GSVOgdL3fhGFmRkOFkAIBsRtEEspzVukXNT/+v\nZi645u3XXC6Xiib6FQ1TNAEAqUPRBLLc+qX3qvLED2tC7THver1wol8WRRMAkEIUTSCL7WvZrK3P\nrXjX1cy3FJb7uXUOAEgpiiaQxdYtvUeBk8/W2Koj3/O1wvJKWa1bFB8aMpAMAOAEFE0gS+0JvarW\nl57UzEuuPuDXCyf6FY8NqJP1NAEAKULRBLLUuiV3q3rOufL6aw74dU9RiQp9E3hOEwCQMhRNIAvt\nen2d2tY/q+Mu+vL7vs8bCFI0AQApQ9EEstDaJXep5ozzVVox9X3f5/MHZUWa0pQKAOA0FE0gy2x/\n5QXt2vSyjrvoikO+1+uvYS1NAEDKUDSBLJJIJLRuyd2qPfuTGlM+5ZDv9waC6ti+VUOxgTSkAwA4\nDUUTyCJt61ZrT9OrOubCLw3r/V5/jRJDg+poa0ltMACAI1E0gSyRSCS0dsndOnL+xSoeN3FY3+Mp\nLNaY8gpunwMAUoKiCWSJyEtPqj0S0jGfuGxE3+dlIAgAkCIUTSALJOJxrVtyj44699Mq9I4b0fd6\n/SxxBABIDYomkAW2PrdSXTtbNeOCL474e72BIHueAwBSgqIJZLj40JDWLb1H0z/6WRWUeEf8/b5A\nUJ07WxXr60lBOgCAk1E0gQzX0lCv3uhuzTj/c6P6/rIp1XK5XGpvbU5yMgCA01E0gQwWHxrUuqX3\nasb5X1BecemoPsOdl6+SSQFunwMAko6iCWSwpif/ooHuDk3/6GcO63O8/hoGggAASUfRBDLUUCym\n9Y/er6M/sVCewuLD+iwfA0EAgBSgaAIZqnHVY4rHBnRU3SWH/VneQC2LtgMAko6iCWSgwf4+bfjD\nL3TMhZcrN7/wsD/PGwiqZ+9ODXR3JCEdAAD7UTSBDLR5xaNyuVw6Yu6FSfm80kl+5eR6ZEW2JOXz\nAACQKJpAxon19eiVxx7UsZ+6Qu68/KR8Zk6uR2UVVQwEAQCSiqIJZJjXn1ii3PxCBc+8IKmf6w0E\nFWUgCACQRBRNIIMM9HTp1T8+pOMu+rLcHk9SP9sbCMoKNyb1MwEAzkbRBDLIpr8+ovxSr6ad/tGk\nf/b+oskVTQBA8lA0gQzR39WhV//8ax138VXKcecm/fN9/lr1dUTV27436Z8NAHAmiiaQIV7983+p\neFy5qmfXpeTzx5RXKDe/QFa4KSWfDwBwHoomkAH62vdp01//WzMXXCNXTmr+2bpyclRWWcMOQQCA\npKFoAhlg4x8fUunkqQqcfHZKj8NzmgCAZKJoAjbXE92t1+uX7r+a6XKl9Fi+QJCtKAEASUPRBGzu\nlccelG9qrSpP/HDKj+X1B2VFmpRIJFJ+LABA9qNoAjbWvWeHNi9/VMd/+tqUX82UJG+gRrGeTvXs\n25nyYwEAsh9FE7CxDX/4hSYccawmH3tKWo5XNHaiPEUlPKcJAEgKiiZgU507WtW46vG0PJv5FpfL\nxXOaAICkoWgCNrX+9/dr0oxZmjRjVlqPy+Q5ACBZKJqADbVva9aWp/5Hx3/6mrQf+62BIAAADhdF\nE7Ch9b+7T1OOn60JRxyX9mN7/TX7J8/j8bQfGwCQXSiagM1Ew41qWb1MMxdcbeT4vkBQQwN96ty1\nzcjxAQDZg6IJ2My6JffIf9KZGjftA0aOX1A2VgVlY3lOEwBw2CiagI3s3fKaIi/+3djVzLfsHwhq\nNJoBAJD5KJqAjaxbco+qTp0vX6DWaA4GggAAyUDRBGxi9+b12ra2Qcdd/GXTUeTzs8QRAODwUTQB\nm1i75B5NO/1jKptSbTqKvIGg2tuaFR+MmY4CAMhgFE3ABna8+pJ2bHxRx110pekokvYvcRQfHFTH\n9rDpKACADEbRBAxLJBJa+9u7VHvWBSqZWGk6jiQpr7hExeMn8ZwmAOCwUDQBw7ZveE57Gl/RsZ+6\nwnSUd/H6a5g8BwAcFoomYNBbVzOPmHeRisdPMh3nXbz+oKIMBAEADgNFEzBo28tPK7q1Ucd88jLT\nUd7DGwjKilA0AQCjl7KiGYvFtGDBAs2aNUv19fWSpI0bN+riiy/WZz7zGX3961/X0NBQqg4P2N5b\nVzOPqrtERb4JpuO8hy9Qq84dEQ0N9JuOAgDIUCkrmrm5ubrzzjv1hS984e3XHnroIX3jG9/QI488\nIo/HoxdeeCFVhwdsL/z8KnVs36qjL/ii6SgHVFZZrUQiofZtzaajAAAyVMqKpsvlUnl5+bteq62t\nVUdHhxKJhLq6uuTz+VJ1eMDW4kNDWrfkbk3/6GdVUDbWdJwDys0vVMnESp7TBACMWm46D3bGGWfo\n6quv1o9//GMFg0EdeeSRw/7eTZs2pTDZu/X19aX1eHbBeafP3vUN6ty9XZ6jTjH23/lwztvtm6im\ntc9roLwmTalSj99zZ+G8nYXztp+0Fs2bb75Z999/v2pra/WjH/1If/nLX3T++ecP63unT5+e4nT/\nZ9OmTWk9nl1w3ukRHxrUn+75ho75+KU65oST0nbcfzac8+79wPGKtryRVb8X/J47C+ftLJx36q1Z\ns2ZE70/71LnX6337/3Z0dKT78IBxW576q/o7LE3/2GdNRzkkX4AljgAAo5fSK5rXXXedNm7cqKKi\nIm3YsEFf/epXde2118rj8aigoEC33357Kg8P2E58MKb1j96nGRd8UXlFY0zHOSRvIKju3W2K9XbL\nU1hsOg4AIMOktGjecccd73lt6dKlqTwkYGuhv/1Jg/29OurcBaajDEvp5Cq53LmyIk2acMSxpuMA\nADIMC7YDaTI00K/1v79fx3zyMnkKikzHGRa3x6PSyVNlcfscADAKFE0gTTav/IMSiYSOnHex6Sgj\n4gsEFWWHIADAKFA0gTQY7O/Vhj/8Qsde+CW58/JNxxkRbyDIFU0AwKhQNIE0eL1+qdyefNWe/UnT\nUUZs/57nTaZjAAAyEEUTSLFYb7c2/vEhHXfRlXJ7PKbjjJjXX6Pe6G71dVqmowAAMgxFE0ixTX99\nRHlFJao54zzTUUalZKJfOZ48bp8DAEaMogmk0EB3h17983/puIu/rBx3WjfiSpoct1veymmyGAgC\nAIwQRRNIoVf//LAKfRNUPedc01EOCwNBAIDRoGgCKdLXaWnTX/9bMy+5Wjlut+k4h8XHQBAAYBQo\nmkCKvPrHX2nMxEpNPWWu6SiHzevff0UzkUiYjgIAyCAUTSAFeq29ev2J32jmgqvlysn8f2Zef1D9\nXe3qtfaYjgIAyCCZ/xcQsKFXHn9QZf6g/LPOMB0lKYonTFZuQRHPaQIARoSiCSRZ994demPZ73T8\ngmvkcrlMx0kKl8u1fytKiiYAYAQomkCSvfKHX2p8zQxVzDzVdJSk8gaCameJIwDACFA0gSTq2rVN\njase0/GfvjZrrma+xeuv4YomAGBEKJpAEq1/9AGVTz9Bk44+yXSUpPP6a2VFmpSIx01HAQBkCIom\nkCQdbVvV9OSfdfyCa01HSQlfIKjBvh5179luOgoAIENQNIEkWf/ofao47kMqP2qm6SgpUeAdp/wS\nL7fPAQDDRtEEksCKNKn5mSc0c8E1pqOkjMvl2r8VJTsEAQCGiaIJJMG6pfeqctYZGh+cYTpKSnn9\nNaylCQAYNoomcJj2Nb+u8PMrNfOSq01HSTmvPyiLJY4AAMNE0QQO07ql92jqKedobNURpqOknC8Q\nlNW6RfGhQdNRAAAZgKIJHIbdja+odc0/dNwlV5mOkhZef1Dx2IA6d0RMRwEAZACKJnAY1i25W9Wn\nfUTeymmmo6RFfkmZCseWMxAEABgWiiYwSjs3vaztr7yg4y52xtXMtzAQBAAYLoomMErrfnu3gmee\nr9JJftNR0srnD7KWJgBgWCiawChsf+V57XpjrY698ArTUdJu/1qaFE0AwKFRNIERSiQSWvvbu1U7\n91MaU15hOk7aeQNBdbRt1VBswHQUAIDNUTSBEdq29hnta96kYy+83HQUI7yVNUrEh9TR1mI6CgDA\n5iiawAgkEgmtW3K3jpx3sYrGlpuOY4SnsEhjyit4ThMAcEgUTWAEIi/8Xe2tW3T0JxeajmKU1x9k\n8hwAcEgUTWCYEvG41i25W0d95DMqLBtnOo5R3kAtA0EAgEOiaALDtPXZFeras11Hf/xS01GM8wVY\n4ggAcGgUTWAY4kNDWrf0Hn3gY59VfkmZ6TjGef016tq1TbG+HtNRAAA2RtEEhqH56f9Vb/tefeBj\nnzMdxRbKplTL5XKpvbXZdBQAgI1RNIFDiA/GtO539+roj1+qvOIS03FswZ2Xr5JJAQaCAADvi6IJ\nHELoyT9rsLdbR537L6aj2IovEFQ00mg6BgDAxiiawPsYig1ow6MP6OhPXCZPYZHpOLbiDbDEEQDg\n/VE0gffRuPIxxYcGdeT8i01HsR2vPygr0mQ6BgDAxiiawEEM9vdpwx9+oWM+ebly8wtMx7EdbyCo\nnr07NdDdYToKAMCmKJrAQbyx7HfKcbt1xDkXmo5iS6WT/MrJ9XBVEwBwUBRN4ABivT3a+PiDOvZT\nV8jtyTMdx5Zycj0qm1LNwu0AgIOiaAIH8PoTv1VuYbGCZ37cdBRbYyAIAPB+KJrAPxno7tTGPz2k\nmRd/WTm5HtNxbM3rr2HPcwDAQVE0gX/y2l//WwWlY1V92kdNR7E9rmgCAN4PRRN4h/7Odr32l4c1\nc8HVynG7TcexPZ+/Vn0dUfW27zUdBQBgQxRN4B1e/fOvNGb8ZFV9aJ7pKBlhTHmFcvMLuKoJADgg\niibwpt72vdr0v7/RzAXXyJXDP43hcOXkqMzP7XMAwIHx1xR408bHH1LZlGr5P3im6SgZZf9AEGtp\nAgDei6IJSOrZt0tvLFuqmZdcI5fLZTpORvEFgqylCQA4IIomIOmVxx7U2OqjNOWEOaajZJz9e56H\nlEgkTEcBANgMRROO12/t0eYVv9fxC7iaORreQFCxni717N1pOgoAwGYomnC8ticfU/mRMzXpmJNN\nR8lIRWPLlVdcwsLtAID3oGjC0Tp2RLTn5Sc189NczRwtl8slr5/nNAEA70XRhKNtePQ+lUyboYnT\nTzAdJaOxQxAA4EAomnCsloZl2vKP/1Xl3EtMR8l4bw0EAQDwTrmmAwAmND31P1p9zyJ96MobNTgl\naDpOxvMFgrIiW5SIx1nsHgDwNv4iwHEaVz2uhrsX6dSrblHt3E+ajpMVvP4aDQ30qXPXNtNRAAA2\nQtGEo7yx7Hd67oHbdNpXvq+aM84zHSdrFJSNVUHZWJ7TBAC8C0UTjrHpr4/ohcU/1Ie/+h+qnnOu\n6ThZZ/9AUKPpGAAAG+EZTTjCxj/9Smt/8586499+Jv9JZ5iOk5V8LHEEAPgnXNFE1tvw+we0bsnd\nOutbd1AyU8gbYPIcAPBuXNFE1kokElq/9B5t/NN/6exv/6cmH3uK6UhZzRuoVUdbi+KDMeXkekzH\nAQDYAFc0kZUSiYRe/u879Opffq25N9xDyUwDb+U0xQcH1bE9bDoKAMAmKJrIOolEQi/96id6Y/nv\ndM6N92vSjFmmIzlCXnGJisdPYvIcAPA2iiaySiIe1/O//IFCf/+j5t30gMqPmmk6kqOw5zkA4J14\nRhNZIxGP69n7b1X4uVWad/MvNW7adNORHIeBIADAO3FFE1khPjSkhrsXKfLC3zX/1gcpmYb4KJoA\ngHegaCLjxYcG9cyd31HbutWaf+ti+aYeYTqSY3n9QXXuiGiwv890FACADVA0kdHigzH942ff0M7X\n1mj+bYvl9deYjuRoZZXVSiQSat/WbDoKAMAGKJrIWEOxAT35k3/VnqbXVHfbr1RWUWU6kuPl5heq\nZKKfyXMAgCSGgZChBvv79OSPr1d7W4vqbl2sMeUVpiPhTQwEAQDeQtFExhns79XffniduvdsV91t\ni1U8bpLpSHgHXyCofc2vm44BALABbp0jo8R6e7Ty+9eoZ99uzb+VkmlHXn8Na2kCACRRNJFBBnq6\ntOK2L2ugs13zb/2linwTTEfCAXgDQXXvbtNAT5fpKAAAwyiayAj9XR1acesVGor1a96tD6qwbJzp\nSDiI0slVcrlz1d7aZDoKAMAwiiZsr6/T0vKbL5ckzb/5Fyoo8RpOhPfj9nhUVjGV2+cAAIom7K23\nfa+WL7pM7rwCnbPoAeUVl5qOhGHw+oOyIlzRBACno2jCtnqiu7Vs0WXKKynTOTfep7yiMaYjYZi8\ngSBraQIAKJqwp+69O7TsxoUqGluuud+9W57CItORMAIUTQCARNGEDXXtalP9jQtVMsmvs7/9n8rN\nLzQdCSPk8wfVa+1RX0fUdBQAgEEUTdhK545W1d/4RfkCQZ35zdvlzss3HQmjMGZipdx5+TynCQAO\nR9GEbbS3taj+xks1PjhDp//rT+X25JmOhFHKcbtVNqWarSgBwOEomrAFK9KkZTcu1MQPnKgPX/8j\nuT0e05FwmHhOEwBA0YRx0a2btWzRQlXMPFVzvvLvynHnmo6EJPAFgqylCQAOR9GEUXu3bNKymy6X\n/4NnavY1tyrH7TYdCUni9dfKioSUSCRMRwEAGELRhDG7G1/R8psvV9Xs+frQlYvkyuHXMZt4A0EN\ndHWoN7rbdBQAgCH8ZYcRu15fpxW3XKHgmRfo5Mu/Q8nMQsXjJ8lTWMzkOQA4GH/dkXY7Xn1JK267\nUkfWLdCsS/9NLpfLdCSkgMvlktdfw3OaAOBgTF0grbZveE6rfvAVHX3BpTru4qsomVmOyXMAcDau\naCJttq19Rqt+8P907IWXa+YlV1MyHcDrD8qKNJqOAQAwhKKJtIi8+KT+9sPrNHPBNTr2U1eYjoM0\n8QWCsiJNSsTjpqMAAAygaCLltj67Qk/+5HrN+vz1Ovrjl5qOgzTy+oMa7OtV957tpqMAAAygaCKl\nmp95Qv+4/Zv64GXf1vSPfsZ0HKRZgXec8ku8DAQBgENRNJEyTU/+WU/f+V2dcuUiHTnvItNxYIDL\n5WIgCAAcjKlzpETjysf07APf0+xrblXN6R8zHQcG7R8IomgCgBNxRRNJ93r9Ej33i+/ptOv+nZIJ\n9jwHAAfjiiaS6rX/eVhrHr5dH77+x5p68tmm48AGvP4atW9rVnxoUDlu/icHAJyEK5pImo1/XKw1\n/32Hzvj6zyiZeJvXH1Q8NqDOHRHTUQAAaUbRRFKsf/R+rVt6r8765h3yzzrddBzYSH5JmQrHljMQ\nBAAORNHEYUkkElr727u08fEHdfZ37tKU42ebjgQb8vmDijIQBACOwwNTGLVEIqE1D/9cbyz7nebe\ncK8mfuBE05FgUyxxBADOxBVNjEoikdCLD/1Im1f8Xucsup+Siffl9dfIijSZjgEASDOuaGLEEvG4\nnv/lv6u5oV7zbvqFxgdnmI4Em/MGgupo26qh2IDcnjzTcQAAacIVTYxIfGhIz953i1pWL9f8m39J\nycSweCtrlIgPqX1bi+koAIA0omhi2OJDg2q4+0ZFXnpK8299UGOrjzIdCRnCU1ikMeVTZEUaTUcB\nAKQRt84xLPHBmJ6+87va+doa1d36kMoqq01HQoZhIAgAnIeiiUMaisX0j59/Q3tCG1V362KVVkw1\nHQkZaP+e5wwEAYCTcOsc72soNqAnf/w17WvepLrbHqJkYtTY8xwAnIeiiYMa7O/T3374FbVva9b8\nWx9SycRK05GQwbyBoLp2tirW12M6CgAgTSiaOKBYX49W/eBade1q0/xbF2vMhMmmIyHDlVVUyZXj\nVnvrFtNRAABpQtHEe8R6u7Xye1erN7pXdbcuVvG4iaYjIQu48/JVOjkgK8xzmgDgFAwD4V0Guju1\n8vtXa7C/T3W3PqiCsrGmIyGLeP01irLEEQA4RsquaMZiMS1YsECzZs1SfX29JGlwcFDf//73deml\nl+pzn/uc9u3bl6rDYxQGe7u0/JYrFB+Maf7Nv6RkIulY4ggAnCVlVzRzc3N15513aunSpW+/tmTJ\nEh177LH67ne/m6rDYpT6OqJ6ffFtKhpTonNuvFd5xaWmIyELeQNBNa58zHQMAECapOyKpsvlUnl5\n+bteW7FihRobG/W5z31OP//5z1N1aIxQfDCm5Td/STl5BTpn0f2UTKSMz1+rnn27NNDdYToKACAN\n0vqM5o4dO3T++efr+uuv19e//nU99dRTOv3004f1vZs2bUpxuv/T19eX1uOZ1rO9RdFwo2b8691q\n2hoxHSftnPbzfouJ804MDcnlztW6p1epZKqZLUz5eTsL5+0snLf9pLVolpWVac6cOZKkOXPmaPPm\nzcMumtOnT09ltHfZtGlTWo9n2pbdW1QysVLF3nGOOu+3OO3n/RZT5x2qnKaynEEdaei/c37ezsJ5\nOwvnnXpr1qwZ0fvTurzRSSedpI0bN0qSNm7cqEAgkM7D4yCi4ZC8/hrTMeAQDAQBgHOk9Irmdddd\np40bN6qoqEgbNmzQl770JX3729/WQw89pClTpmju3LmpPDyGyQo3yjf1CNMx4BC+QFBt6541HQMA\nkAYpLZp33HHHe1677777UnlIjIIVCan6tI+o33QQOILXH9Srf3nYdAwAQBqwM5DDxXp71LWrTb5A\n0HQUOITXH1R/R1S97XtNRwEApBhF0+Gs1ia53Lkqrag2HQUOMaa8Qrn5BTynCQAOQNF0OCscUunk\ngNwej+kocAhXTo7K/AwEAYATUDQdzgqH5PVz2xzp5QsEFaVoAkDWo2g6XDQS4vlMpJ3XH5QVoWgC\nQLajaDqcFWmSl6KJNPP6a2RFmpRIJExHAQCkEEXTwfo729W7bxdFE2nnDQQV6+lSz96dpqMAAFKI\noulgViSkHE+eSib6TUeBwxSNLVdecYmi4UbTUQAAKUTRdLBoOCRv5TTluN2mo8BhXC4XW1ECgANQ\nNB3MijBxDnMYCAKA7EfRdDAGgWDS/qLZZDoGACCFKJoOlUgkZIVZ2gjm+AJBWZEtig8NmY4CAEgR\niqZD9Vl71d9pyeuvMR0FDuX112hooE9du7aZjgIASBGKpkNFwyHlFhSpePxk01HgUAVlY1XgHcdA\nEABkMYqmQ1mRRnn9NXLl8CsAc3z+oKIMBAFA1qJlOJQVaeL5TBjn9ddwRRMAshhF06GscIiJcxjn\nDbDEEQBkM4qmAyUSif2LtbOGJgzzBmrVvq1FQ7GY6SgAgBSgaDpQ9+7tGuzr4YomjPP6a5QYGlTH\n9q2mowAAUoCi6UBWJKT8MWUq9I43HQUOl1c0RsXjJ3P7HACyFEXTgazI/uczXS6X6SjAmwNB7BAE\nANmIoulAUQaBYCMMBAFA9qJoOpAVDrEjEGzDFwiyxBEAZCmKpsPEh4bUvq2ZiXPYhjcQVMeOsAb7\n+0xHAQAkGUXTYbp2tmpooJ9b57CNsinTJEnt27YYTgIASDaKpsNEIyEV+iaooMRrOgogScrNL1DJ\nRD8DQQCQhSiaDsOOQLAjBoIAIDtRNB2GQSDYkS8QVJSBIADIOhRNh4mGQ/IxCASb8TJ5DgBZiaLp\nIEOxmDq2b+XWOWzH6w+qe892DfR0mY4CAEgiiqaDdGxvUWJokFvnsJ3SyVPlcueqvZWBIADIJhRN\nB7HCIY0pr5CnsNh0FOBd3B6Pyiqm8pwmAGQZiqaDRMMhFmqHbXkDtTynCQBZhqLpIBZFEzbGQBAA\nZB+KpoNYkSYGgWBbPn9QUdbSBICsQtF0iMH+XnXujMhH0YRNef016rP2qq8jajoKACBJKJoO0d7a\nLJfLpbIp1aajAAc0ZmKl3Hn5siJMngNAtqBoOkQ03KiSSX658/JNRwEOKMftVlnlNJ7TBIAsQtF0\nCAaBkAn2b0XZaDoGACBJKJoOYUWaeD4Ttuf1B2UxEAQAWYOi6RBWJCRvoNZ0DOB97S+aTUokEqaj\nAACSgKLpAAPdneres4OtJ2F73kBQA10d6o3uNh0FAJAEFE0HsCJNysnNVenkgOkowPsqHj9JnsJi\ntqIEgCxB0XQAKxxSWUW1cnI9pqMA78vlcrFDEABkEYqmA+x/PpNBIGQGBoIAIHtQNB0gStFEBvH6\nayiaAJAlKJoOwBqayCS+wJuT5/G46SgAgMNE0cxyve171de+jyuayBjeQK0G+3rVtbvNdBQAwGGi\naGY5K9wkd16BSsqnmI4CDEtZiQcGAAAgAElEQVRB2Vjll/oYCAKALEDRzHJWpElef41cOfyokRlc\nLhfPaQJAlqB9ZDkmzpGJ3tohCACQ2SiaWW7/IBA7AiGz+AJBFm0HgCxA0cxiiURC0XBIPq5oIsN4\nA0G1t25RfGjQdBQAwGGgaGaxnn07Fevp5NY5Mo7XH1R8MKbO7RHTUQAAh4GimcWscJM8RSUqGjvR\ndBRgRPLHlKpwbDkDQQCQ4SiaWcyK7L9t7nK5TEcBRsznDypK0QSAjEbRzGJRBoGQwbyBIGtpAkCG\no2hmMSvM0kbIXBRNAMh8FM0slYjH1d7axB7nyFi+QFAd28Maig2YjgIAGCWKZpbq2tWmwf4+ljZC\nxiqbMk2J+JDat7WYjgIAGCWKZpaKRhpVUDZWBWVjTUcBRsVTWKQx5VNkRRpNRwEAjBJFM0uxIxCy\nAc9pAkBmo2hmqf2DQLWmYwCHha0oASCzUTSzlBUOyccgEDIcVzQBILNRNLNQfDCm9rYWljZCxvP6\ng+ratU2xvh7TUQAAo0DRzEIdOyKKD8Z4RhMZr6yiSq4ct9pbt5iOAgAYBYpmFrLCIRWNm6i84hLT\nUYDD4s7LV+nkAM9pAkCGomhmISvcyPqZyBo8pwkAmYuimYX273FO0UR2oGgCQOaiaGYhK9LEIBCy\nhtdfIytC0QSATETRzDJDA/3q3BGWjzU0kSV8/lr17Nul/q4O01EAACNE0cwy7dualUgkVFZZbToK\nkBQlk/3KyfVwVRMAMhBFM8tEwyGVTKxUbn6h6ShAUuS4c1VWOY3nNAEgA1E0s4zFIBCyEFtRAkBm\nomhmGSsSYhAIWcfrr1F7pMl0DADACB2yaHZ1dSkej0uStmzZolWrVmlgYCDlwTA6ViTEGprIOl5/\nUNFwoxKJhOkoAIAROGTR/PznP69YLKa2tjZdccUVWrlypb7+9a+nIxtGKNbbra5dbWw9iazjDQTV\n32mpr32f6SgAgBE4ZNFMJBLKz8/XE088oc9+9rP6wQ9+oHA4nI5sGCEr0iSXO1elFUycI7uMmVCh\n3IJCWeFG01EAACNwyKLpcrn0+OOP67HHHtNZZ50lSYrFYikPhpGzwiGVTp4qt8djOgqQVK6cHHn9\nNQwEAUCGOWTR/OEPf6hXX31VV111lQKBgFpbW3X++eenIxtGyIo08XwmspbXH5TFQBAAZJTcQ73h\nscce0w033PD2f66srNS+fTwnZUfRSEgTjzredAwgJbz+oLY+t8J0DADACBzyiubzzz//ntcaGhpS\nEgaHxwqztBGylzcQlBUOMXkOABnkoFc0Fy9erMWLF8uyLM2ZM+ft13NycnTeeeelJRyGr6/TUm90\nN0UTWcsXCCrW263uPTs0ZsJk03EAAMNw0KK5cOFCLVy4UD//+c/1ta99LZ2ZMApWOKQcT55KJvpN\nRwFSotA3QXljSmWFQxRNAMgQBy2abW1tqqio0AUXXKDm5ub3fL26miV07MSKNMlbOU05brfpKEBK\nuFwuef01siIhVZ54muk4AIBhOGjRvPfee3Xbbbdp0aJF7/may+XSr3/965QGw8hYEfY4R/bbP3nO\nEkcAkCkOWjRvu+02SdLDDz+ctjAYPSsc0pQTuMqD7OYL1Krxb4+bjgEAGKZDTp0vXrz47f3Ov/3t\nb+sTn/iEnnrqqXRkwzAlEglZYfY4R/bzBoJqb92i+NCQ6SgAgGE4ZNH885//rDFjxujJJ59Uf3+/\n7r77bt1+++3pyIZh6rP2qr+rnVvnyHpef42GBvrVtbPVdBQAwDAcsmj29/dLklatWqXzzjtPFRUV\nisfjKQ+G4YuGQ8otKFIxk7jIcgWlPhV4x7FDEABkiEMWzTPOOENnn322XnnlFc2ZM0f79u2Th720\nbcWKNMrrr5HL5TIdBUg5nz+oKANBAJARDrkF5Te/+U1deeWVKikpkdvtVmFhoe699950ZMMw8Xwm\nnOStHYIAAPZ30KK5fPlyzZs3T0uXLj3g1y+55JKUhcLIRMMhVc+pMx0DSAtvIKjtG54zHQMAMAwH\nLZpNTU3q7+/X7t2705kHI5RIJPYv1u6vNR0FSAtfIKj2tq0aisXk5jEeALC1gxbNUCikuXPnatas\nWTr33HN1+umnKz8/P53ZMAzdu7drsK+HW+dwjLLKGiWGBtWxfSu/9wBgcwcdBvrpT3+qVatW6WMf\n+5hWrFihefPm6frrr9fy5cs1MDCQzox4H1YkpPwxZSrwjjMdBUiLvKIxKh4/mR2CACADvO/UeV5e\nns4++2z9+Mc/1sqVK3Xeeefprrvu0imnnJKufDiEaDgkbyDIxDkchYEgAMgMh5w6l6QNGzboiSee\n0IoVKzR58mQGgWzEerNoAk7iCwQVpWgCgO0dtGiuW7dO9fX1WrFihSoqKlRXV6clS5Zo/Pjx6cyH\nQ7AiIdXOvdB0DCCtvP4abX1ulekYAIBDOGjR/OlPf6q6ujotXbqUcmlT8aEhWa1bGIiA43gDQXXu\njGiwv0+5+QWm4wAADuKgRfPhhx9OZw6MQufOiOKxAfY4h+OUTZkmSWrftkXjpn3AcBoAwMEccgtK\n2JcVDqnQN0H5JWWmowBplZtfoNJJAQaCAMDmKJoZjEEgOJmXgSAAsD2KZgazIk3ycdscDuX113BF\nEwBsjqKZwaJc0YSDeQNBWZEm0zEAAO+DopmhhmID6ti+VV5/jekogBFef1Dde7ZroKfLdBQAwEFQ\nNDNUR1uLEkODFE04VunkqcrJzeWqJgDYGEUzQ0XDIY0pr5CnsNh0FMAIt8ej0ooqWeFG01EAAAdB\n0cxQVqSJ9TPheF4/e54DgJ1RNDPU/qWNak3HAIxiIAgA7I2imaGsSIjnM+F4Pn9Q0QhXNAHAriia\nGSjW16POna3scQ7H8waC6rP2qq99n+koAIADoGhmoPbWZrlcLpVNqTYdBTBqTPkUufMKuH0OADaV\nsqIZi8W0YMECzZo1S/X19e/62he/+EXdeuutqTp01rMiIZVMCsidl286CmBUjtutsspqtqIEAJvK\nTdkH5+bqzjvv1NKlS9/1+urVq+XxeFJ1WEewwiFumwNv8gWCsnhOEwBsKWVXNF0ul8rLy9/z+q9/\n/Wt95jOfSdVhHYFBIOD/eP0UTQCwq5Rd0TyQ+vp6zZkzRwUFBSP+3k2bNqUg0YH19fWl9Xgjtbvp\ndRUeeVLSM9r9vFOF885sna587W3erNdee00ul+uQ78+W8x4pzttZOG9nsfN5p61oDg0N6dFHH9W9\n996rtWvXjvj7p0+fnoJUB7Zp06a0Hm8kBro79ELHXs340BnyVk5L6mfb+bxTifPObN0TfNr86x9q\n6sRxKh438ZDvz5bzHinO21k4b2dJ53mvWbNmRO9PW9Hcs2eP9u3bp6uuukrt7e3au3evTjjhBH3s\nYx9LV4SsYEW2KCfXo9JJftNRAFsoGjdRnqIxsiJNwyqaAID0SWnRvO6667Rx40YVFRXptNNO0+OP\nPy5Jev7557Vs2TJK5ihY4ZDKplQrJ5eBKkDa/zy4118jKxzSlJmnmo4DAHiHlBbNO+6444Cvn3zy\nyTr55JNTeeisFWUQCHgPBoIAwJ5YsD3DWOFGeVnaCHgXXyDIWpoAYEMUzQxjhUMUTeCfeANBtUdC\nSsTjpqMAAN6BoplBetv3qq8jKp+/1nQUwFa8/qAG+/vUtbvNdBQAwDtQNDOIFW5Sbn6BxpRXmI4C\n2EpB2Vjll/pkcfscAGyFoplBrEhIZZU1cuXwYwPeyeVyycdAEADYDo0lg/B8JnBwXgaCAMB2KJoZ\nJBoOyUfRBA7IGwhy6xwAbIaimSESiYSsSJO8foomcCBef43atzUrPjRoOgoA4E0UzQzRs2+nYj2d\n8gZYrB04EK8/qPhgTJ3bI6ajAADeRNHMEFY4JE9RiYrGspczcCD5Y0pVNLZc0Uij6SgAgDdRNDPE\nW89nulwu01EA2+I5TQCwF4pmhmDiHDg0iiYA2AtFM0MwCAQcmtcflBVpMh0DAPAmimYGSMTjbxZN\nBoGA9+MLBNWxPayhgX7TUQAAomhmhM5d2zQ00McamsAhlFVOUyI+pPa2FtNRAACiaGYEKxxSQdlY\nFZSNNR0FsDVPQZHGTKzkOU0AsAmKZgawwo0MAgHD5GMrSgCwDYpmBrAiTfIxCAQMi9dfIytC0QQA\nO6BoZgArHGLiHBgmljgCAPugaNpcfDCm9rZmbp0Dw+T116pr1zbFentMRwEAx6No2lzH9rDig4Ms\nbQQMU9mUKrly3LJaWU8TAEyjaNqcFQ6pePwk5RWXmI4CZAS3J0+lkwPcPgcAG6Bo2pwV4flMYKS8\nAXYIAgA7oGjaXDQc4rY5MEIMBAGAPVA0bc6KhBgEAkbI5w8qyhJHAGAcRdPGBvv71LkjIl+g1nQU\nIKN4A0H17tul/s5201EAwNEomjbWvq1ZiURCZZXVpqMAGaVkkl85uR4WbgcAwyiaNmZFmlQy0a/c\n/ELTUYCMkuPOVVnlNAaCAMAwiqaNWQwCAaPGnucAYB5F08YYBAJGz+sPcuscAAyjaNpYNBySj6IJ\njMpbSxwlEgnTUQDAsSiaNhXr7Vb37jauaAKj5PXXqL/TUp+113QUAHAsiqZNWZEmudy5Kp1cZToK\nkJHGTKhQbkEht88BwCCKpk1Z4ZBKJ0+V2+MxHQXISK6cHHn9NQwEAYBBFE2bikZ4PhM4XF5/LVc0\nAcAgiqZNWWEmzoHDxZ7nAGAWRdOmrEgTRRM4TF5/jaxIE5PnAGAIRdOG+jot9UZ3y+enaAKHwxcI\n7l/BYc8O01EAwJEomjZkhUNy5+VrzMRK01GAjFbom6C8MaXcPgcAQyiaNmRFQiqbUq0ct9t0FCCj\nuVyuN3cIajQdBQAciaJpQwwCAcnDnucAYA5F04asSBNLGwFJ4vUzeQ4AplA0bSaRSOy/oumvNR0F\nyAreQFDt25oVHxoyHQUAHIeiaTO91h71d7XL668xHQXICl5/jYYG+tW1s9V0FABwHIqmzVjhkHIL\nilQ8YbLpKEBWKCj1qdA7XlF2CAKAtKNo2kw0vH/rSZfLZToKkDXYIQgAzKBo2kx7hIlzINm8/hqK\nJgAYQNG0mWg4xPOZQJJ5A0FZ3DoHgLSjaNpIIh7fv8c5E+dAUvkCQbW3bdVQLGY6CgA4CkXTRrr3\nbNdgXw9raAJJVlZZo8TQoDq2t5iOAgCOQtG0kWg4pPwSrwq840xHAbJKXtEYFU+o4DlNAEgziqaN\nWJEmeZk4B1LC669hK0oASDOKpo1YDAIBKeMLBGVFmkzHAABHoWjaiBUJyevn+UwgFdjzHADSj6Jp\nE/GhQVmtWxgEAlLEGwiqc2dEQwP9pqMAKZOIx9X8zBOKxwZMRwEkUTRto3NHRPHYAFc0gRTx+muU\nm1+ozubXTEcBUmbnppf1j59/U5sf/g/F+npMxwEomnZhRZpUOLZc+SVlpqMAWcntyVPgg2dq7yur\nTUcBUqaloV6TZpykWJelVd+/RrHebtOR4HAUTZtgEAhIvarZdYpuepHb58hK8aFBbX12hY6Y9ykd\nddlNGujp0orbvqyB7k7T0eBgFE2biIZD8nHbHEipiuNOlcuVo9a1z5iOAiTdjo0varC/V5WzTpen\nuFTzb/6l4oMxLb/1SvV3dZiOB4eiaNqEFQnJyyAQkFJuj0e+D3xQLQ3LTEcBkq6loV6VJ54uT0GR\nJCm/pEzzbnpALpdLy2++XH0dUcMJ4UQUTRsYig2oo20rRRNIg3HHnqrWl55kUAJZZSgW09bnVqpq\nTt27Xs8rLtU5i+5XbkGhlt10mXrb9xpKCKeiaNpAR1uLEvEheSt5RhNItdLqGcrNL1Trmn+YjgIk\nTdv61UrE46o8fs57vpZXNEZzv3uvCkp9WrboMvVEdxtICKeiaNpANBzSmPIKeQqLTEcBsp7L7dbU\nD52j5mfqTUcBkqalYZn8HzxT7rz8A37dU1iks79zl4rGTdSyGxeqe++ONCeEU1E0bWD/xDm3zYF0\nqZpdp20vP800LrLCYH+fwi/8TdWzz33f9+XmF+rsb92pkskB1d/wRXXt2pamhHAyiqYN7B8EqjUd\nA3CM8qOOV36pT5EX/246CnDYtq19Rjm5uZp87CmHfK87L19nfuPn8k09QvU3LlTHjkgaEsLJKJo2\nEA2H2HoSSKMct1tVp87j9jmyQvMz9Zp6yly5PZ5hvd/tydMZ//YTja89Rstu/KLatzWnOCGcjKJp\nWKyvR127tjFxDqRZ9ez5atvwnPo6LdNRgFGL9faodc0/VD277tBvfoecXI8+/LUfatLRJ6l+0UJZ\nkaYUJYTTUTQNa29tlsvlUllFlekogKOMrz1WRWPLFX5upekowKhFXnpSnsIiTZwxa8Tfm+PO1exr\nv6cpx8/RskULta9lcwoSwukomoZZ4ZBKJgUOOikIIDVcLpeqZ89XcwO3z5G5WhrqNfVD85Tjzh3V\n9+e43Zp99S0KnHy2lt90mfZueS3JCeF0FE3DopFGns8EDKmaXaedr76k3uge01GAERvo7tC2tQ2q\nnj3/sD7HlZOjU668UdWnfUTLbvqSdm/ekKSEAEXTOCvM1pOAKWOrj1LJJL9anl1hOgowYuHn/66C\nUp/Kjzr+sD/L5XLpg5d9S7VzP6EVt16pXa+vTUJCgKJpnBVpomgChrhcLlWdWqeW1dw+R+ZpWV2v\nqlPny5WTnD/lLpdLsz7/rzrq3AVacduXtWPji0n5XDgbRdOgge4O9ezdyWLtgEHVc+q0a9Nade9h\npxRkjr6OqNrWP/eevc0Pl8vl0vH/8hXN+PilWvn9a9S2/rmkfj6ch6JpkBVpUk6uR6WT/KajAI7l\n9dfIGwiqZfUy01GAYdv63EoVj5+k8cGjk/7ZLpdLMy++SsdddIVW/eBata55OunHgHNQNA2KhkMq\nm1KtnNzhLbILIDWqZ9epuYGiiczR0lCvqtl1crlcKTvGMZ+8XCf8y1f09x99VeEX2EULo0PRNIhB\nIMAeqmbXaW9oI9vxISP0RHdrx6svqTrJt80PZMb5n9esL/ybnvrpv6rl2eUpPx6yD0XTICvC1pOA\nHZRODmhczQe0ldvnyABbn12h0slT5Zt6RFqON/0jn9bJl31HT9/+LW15+q9pOSayB0XTICscUpm/\nxnQMANp/VZO9z5EJmp+pV/Wc1N42/2dHzPuUTrlykZ75zxsV+vuf0nZcZD6KpiG97XvV1xGVz19r\nOgoASVWnzld062ZZrVtMRwEOqmv3du1+Y52qRri3eTLUnnWB5lx7m1bfe4s2r/h92o+PzDS6Patw\n2KxwSLn5BRpTXmE6CgBJYyZM1oQjZ6qloV4zL7nadBzggFpWL5Nv6hHyVk4zcvxpH/6ocnI9evqO\nbyk+OKijzl1gJAcyB1c0Ddl/2zyYtIV2ARy+6jn7b58nEgnTUYADammoT8sQ0PupOnWeTr/+J3rx\nVz/Wq3952GgW2B8txxAr0sQgEGAzUz90jjq2b1V062bTUYD36Nge1t6m11R1qtmiKUmBk8/Smd/4\nuV5+5A698tiDpuPAxiiahkTDIXkZBAJspcg3QZNmzGIoCLbU0lCvccGjVTKp0nQUSVLliR/WWd+6\nU+sfvV/rf3cfdwJwQBRNAxKJhKxIiK0nARuqml2nlgZun8N+mhvqVW1gCOj9TJl5qs7+zl3a+MfF\nWvvbu/h3g/egaBrQs3enYj1dLNYO2NDUU+aqe88O7QltNB0FeFs0HJIVDqnq1Hmmo7zH5GM+qLk3\n3qdNf31Ea379M8om3oWiaUA03Ki84hIVjS03HQXAPyko9WnysSerhdvnsJGWhmUqn368isdPMh3l\ngCZOP0Hzbrpfm1c+phcX/wdlE2+jaBpgRZrkDQTTutgugOGrnn2uWlYvUyIeNx0FUCKRUMvqelsM\nAb2fCUccp/k3/0JN//gfPffA9/j3A0kUTSOsMM9nAnYWOPlM9XVEtev1taajANrX/Lo6d0RU9aFz\nTEc5pHE1H9D8Wx7U1udWavW9Nys+NGQ6EgyjaBrAIBBgb3nFpZpy/Gw1N7D3OcxraajXpBknqdA3\n3nSUYRlbdaTm3/KgWl9+Wg133aD40KDpSDCIoplm8aEhWZEtrKEJ2FzV7DptfXY5fyRhVCKRUHPD\nMlXNnm86yoj4AkHV3bJY2195QU/f/m3FB2OmI8EQimaade3apqGBPtbQBGzOP+sMxXp7tGPjS6aj\nwMH2NG5Qz75dCpwy13SUESurrFbdbQ9p9+b1eupn39BQjLLpRBTNNLMiTSooG6uCsrGmowB4H57C\nIlWe+GG1rGb6HOY0NyxTxbGnqKDEazrKqJRODqjutoe0r3mTnvzx1zQ00G86EtKMoplmVriR9TOB\nDFE9p05bn1vJlRgYkYjH1bJ6ufG9zQ/XmPIpqrvtV2rf1qK//fA6Dfb3mo6ENKJoplk0HJKPQSAg\nI0w5fo7ig4PavuE501HgQDs3vaz+jqj8J51pOsphKx4/SXW3LVbX7jat+vdrFevrMR0JaULRTDMr\nEuKKJpAhcvMLFPjgWWpueMJ0FDhQS0O9ppxwmvKKS0xHSYqiseWqu+0h9bXv08rvXa1Yb7fpSEgD\nimYaxQdj6mhrkTdQazoKgGGqmj1fkRf+zrNlSKv40KC2Prsi42+b/7NC7zjNv+VBxXq7teLWKzXQ\n3WE6ElKMoplGHdvDig8Oyls5zXQUAMNUcdypcuXkqHXtM6ajwEF2bHxRg/29qjzxw6ajJF1B2VjN\nv/mXig8NafktV6i/s910JKQQRTONrHBIxeMnZc1tEMAJ3B6Ppp4yl73PkVbNz9SrctYZ8hQUmY6S\nEvklZZp30wPKcedq2c2Xq68jajoSUoSimUZRtp4EMlLV7Dq1rnmKAQakxVAspvDzKzNukfaRyisu\n0TmL7pensEjLFi1Ur7XXdCSkAEUzjRgEAjLTpKNPUm5+oVpfesp0FDhA2/rVSsTjqjx+jukoKecp\nLNbcG+5VQdlYLVu0UD37dpmOhCSjaKaRFQ6x9SSQgXLcuZr6oXPUzO1zpEFLQ70CJ58ld16+6Shp\n4Sko0tnfuUvF4yer/saF6t6zw3QkJBFFM00G+/vUuTPCrXMgQ1XNrtO2tc9ooLvTdBRkscH+PoVf\n+LuqTs2uafNDyc0v1FnfukNlU6pUf+Ol6tzZajoSkoSimSbt25qVSCRUVlltOgqAUZg4/QTll/oU\nfuFvpqMgi217+Wm5cz2afOwppqOknTsvX2d8/ecaWz1dyxYtVMf2sOlISAKKZppY4ZBKJvqVm19o\nOgqAUXDl5Kjq1HlqaVhmOgqyWHPDMgVOOVtuj8d0FCPcHo9Ov/5HmnDEcapftFDtrc2mI+EwUTTT\nhEEgIPNVz65T24bnWIoFKRHr7Vbrmn+oerazbpv/s5xcj0776g80+egPqv6mhYqGG01HwmGgaKaJ\nFWliEAjIcONrj1HxuHKFn1tlOgqyUOSlJ+UpKtbEGSeZjmJcjjtXs6+9TZUnnKZlN12ufS1vmI6E\nUaJopsn+NTRrTMcAcBhcLpeqTq1T82qmz5F8LQ3LNPWUc5TjdpuOYgs5brdOvepmTT1lrpbddJn2\nhF41HQmjQNFMg4GeLnXvbuPWOZAFqufUaeerL6k3usd0FGSRge4ObVv7TNbtbX64XDk5OuWKGzTt\nwx/T8lu+pN2b15uOhBGiaKZBe2uTXO5clU6uMh0FwGHyVR2pkkl+tTy7wnQUZJHw839XQelYlR85\n03QU23G5XPrgwm/qiLkXavktV2rnppdNR8IIUDTTIBoOqaxiqmOnCIFs4nK5VD27Ti0N3D5H8jQ3\nPKGq2XVy5fBn+UBcLpdO/Pz1mv7Rz2jlbV/W9ldeMB0Jw8RvdBpYkSZ5A7WmYwBIkqrZddr1+lp2\nMEFS9LXv0/YNz3Pb/BBcLpdO+Jf/p6MvWKhV/36Ntq1bbToShoGimQYWg0BAVvH6a+QL1KplNWtq\n4vBtfX6ViidM1riaGaajZITjLv6yjrvoy/rbD7+i1jX/MB0Hh5CyohmLxbRgwQLNmjVL9fX7bzHd\ncMMNuuSSS3TRRRfpj3/8Y6oObTtWmDU0gWxTNXs+e58jKVqeqVf17PlyuVymo2SMYz55mU74zHX6\n+4++pvDz7NZlZykrmrm5ubrzzjv1hS984e3XLr/8ci1dulSPPPKI7rvvPg0ODqbq8LbR1xFVr7VH\nPvY4B7JK1ew67W16VR07IqajIIP1RHdrx2svqcrhi7SPxozzPqeTLv26nvrZv6ll9XLTcXAQuan6\nYJfLpfLy8ne9VlVVJUnyeDxyu92O+P/erEiT3Hn5GjOx0nQUAElUOjmgcTUz1NJQr2Mv/JLpOMhQ\nW1cvV1lFlXxTjzAdJSMdde4C5eTm6h+3f0vxwZg0YZrpSPgnRp7RXLx4sc4991y5HbAorRUJqaxy\nGgvwAlmoavZ89j7HYWluqFcVt80PyxHnfEqnXnWTnvnPG9TdtsV0HPyTlF3RPJj6+nqtX79et99+\n+4i+b9OmTSlK9F59fX1JO17L+hflKh2f1vyjlczzziSct7Mk87wHy2sU3bpZLz+1QoXl9r5rwc/b\nfvqju7X7jfWaNP/zSc9o5/NOiUlHyDfjZIWXL1FxhfOuatr5553Wovn888/rN7/5jR544AHljHCt\nsOnTp6co1Xtt2rQpacdreWSvqmZ9OK35RyuZ551JOG9nSfZ5tx05UznbN2v66eck7TNTgZ+3/Wz8\n43PyVR2pE1Lwu2Pn806Vii99U3/86ic03j2gCUccZzpOWqXz571mzZoRvT+lRfO6667Txo0bVVRU\npA0bNmj58uUqLi7Wl760/3mmO+64Q2PHjk1lBKMSiYSsSEjHfOIy01EApEj1nDq9/sQSHXfJ1dz+\nxIi0rF6m6tnzTcfIGmVTqjX+uNO0dsk9mrfoftNx8KaUFs077rjjXf/5G9/4RioPZzu90d0a6Opg\naSMgi1V9aJ5efOhHikoaCZcAACAASURBVLa8obHVR5mOgwzRsT2svU2v6fTrf2I6SlapOPNCvXLH\n9drx6kuaNGOW6TgQC7anlBVpkqewWMXjJ5mOAiBFCn3jNfEDJ6qZoSCMQEtDvcYFj1bJJHs/25tp\nCsZOVO1ZF2jtb+9SIpEwHQeiaKZU9M0dgbidBmS36tnnqqXhCf6wYdiaG+pVzdqZKXHsp67QnsZX\ntH3Dc6ajQBTNlGJHIMAZAqecre49O7Wn8RXTUZABouGQrHBIVbPnmY6SlYrHT9IR8y7iqqZNUDRT\nyIo0ysuOQEDWKyj1qeK4U1hTE8PS0rBM5dOPV/E4HqtKlWM+eZmiWzdr28tPm47ieBTNFEnE47Ii\nTfJxRRNwhKrZdWpZvUyJeNx0FNhYIpFQS0O9qmefazpKVivyTdCRdZdwVdMGKJop0r1nuwb7euUN\n1JqOAiANAh88S30dUe16fa3pKLCxfc2vq3NnRFM/ZO91V7PBMRcsVMf2rQo/v8p0FEejaKZINBxS\nfolXBWXZu04ogP+TV1yiKcfPUXNDvekosLGWhnpNmnGSCr3jTEfJegVlYzX9I5/RuiV3Kz40ZDqO\nY1E0U+StQSAmzgHnqJo9X1tXL1d8aNB0FNhQIpFQc8MyVc1h2jxdZnz8UnXv3aWW1Tw/bQpFM0Ws\nSIhBIMBh/LPOUKyvVzs2vmQ6CmxoT+MG9ezbpaknzzUdxTHyx5Rqxnn/v707D4iq3P8H/p5hE5Bd\n2ZEZcckNBBUV0FxS8LZ5XXHBe70tXw3T1Mz20m6mXltMMyuNuphLKmaZgXsqGKaiaKICsoOgsi/C\nAPP7gx9zQdkGGB4G3q9/SmDOvJ8zZ/nM85xzngBc+fFLfgEUhIWmhuQkx/FGIKJORs/QCE5DH0di\n+G+io1A7lHA2FPZuI2FgYiY6SqfS76m5KM3Pxe3ffxUdpVNioakBlRXlyEtL4DM0iTohmbcvkiKP\no0KhEB2F2pHKigokRhzh3OYC6Bt1xYDJ83Fl71ZUlnO/bGssNDWg4E4KKhVlHDon6oQc3H2grKhA\nRvQ50VGoHcm6EYXSwjw4DRsrOkqn9Ngkf5SXliDuxEHRUTodFpoakJscB0NLaxh0NRUdhYjamK5B\nFzgNG4uEs7z7nP4n4exvcPQYBX1jE9FROiW9LkYYNOU5XNn3FSrKSkXH6VRYaGpATkocLNibSdRp\nyX38kPLnSZSXPhAdhdqByopyJP1xDDIOmwvVd+IMKJVK3Dq2X3SUToWFpgZwjnOizs3OdSQkOjpI\nizorOgq1AxlXz6OitASOQ0aLjtKp6egbwHXq84je/w3KS0tEx+k0WGhqQG5KPMydXETHICJBdPT0\n4Dx8POc+JwBVc5s7Dh0DvS5GoqN0er3HT4GOngFuhO4RHaXTYKHZyioUZchPT2KPJlEnJ/OehJQL\nv0NRUiw6CglUoShDcuQxyL35kPb2QEdPH27TXsS1n4KgKCkSHadTYKHZyvLSEqGsrIC5I3s0iToz\n24FDodfFEKkXfxcdhQRKvxwBpVIJB3dv0VHo/3MZ8zT0jUwQ8+sPoqN0Ciw0W1luSiy6WjtAz5BD\nJESdmVRHF85eE3n3eSeXGBGGHp5joaNvIDoK/X9SXT24zViAv37+HmVF+aLjdHgsNFsZbwQiomoy\nL1+kRZ3lyayTKi99gOTzJyHjsHm7I/eZBEOL7vjr52DRUTo8FpqtrOpGIBaaRATY9POAgakFks+f\nFB2FBEi7dAY6unqwdx0hOgo9RKqjg8EzX0LMrzvwoCBXdJwOjYVmK+Mc50RUTSKVQu7li8RwDp93\nRgnhoegx4glIdfVER6E6OI94Al2tHfDXT9+JjtKhsdBsRYoHxSjMTOXQORGpyLx9kR4diQf5OaKj\nUBtSlBQh9eIZzm3ejkmkUgyeFYgbv+1ESe590XE6LBaarSgv9TYkUh2Y2ctERyGidqJb70EwtrJG\n8h/HRUehNpRy4RT0jIxhM2CY6CjUAKehY2Dm1AtXD2wXHaXDYqHZinKS42Bq14N3FxKRikQigczL\nDwnhv4mOQm0o4WwoZCMnQqqjIzoKNUAikcDd/yXcDPsRRfczRcfpkFhotqLclDjOCEREj5D7+OHO\nXxdQnHNXdBRqA6WF+Ui/HM65zbWE/WBvdHMZgKv7vxEdpUNiodmK+GgjIqqLhawvTO2ckXTuqOgo\n1AaSz59AFzMrWPcdLDoKNYFEIsFg/0DEHg9BYVaa6DgdDgvNVsRCk4jqIpFIIPf25dznnURieChk\nXr6QSHmK1RZ2gzxh3c8DV/Z+LTpKh8O9oJWUFuajODsLFk69RUchonZI5u2HrBtRKLybIToKadCD\nvGxkREdC7sOHtGsbd/9FiD/1M/IzkkVH6VBYaLaS3JQ4SHX1YGLnJDoKEbVD5k4usOjRG4kR7NXs\nyJL+OAbj7nawchkgOgqpyfqxwbB3G4ErP24VHaVDYaHZSnJT4mHmIIdUR1d0FCJqp2Q+fhw+7+AS\nw8Mg9/aFRCIRHYWaYbD/IiScPYzclHjRUToMFpqthNdnElFjZN5+uB//F4fmOqji7CzcuX4BMu9J\noqNQM3XrNQCOQx7H5T1fio7SYbDQbCW5nHqSiBphausEK5cBHD7voJLOHYWZvQwWzrxWX5sN9g9E\ncuQxZCfcEB2lQ2Ch2QqUSiVykmNh7sRCk4gaJvfxQ+JZzn3eESWEh0Lm48dhcy1nKesD5xETcHnP\nFtFROgQWmq3gQV42SgtyOXRORI2SefkiJzmW14B1MIVZ6bh78wrkXrzbvCNwm7kQqRdP417cNdFR\ntB4LzVaQmxIHXYMu6NrdXnQUImrnjLvZwvoxdySGs1ezI0mMCIOFrC/MHOWio1ArMHfsCfmovyFq\n12bRUbQeC81WkJscBzOnXnw4LxE1iczbDwnhoVAqlaKjUCtJCA+F3Ju9mR2J2/QFyIiORGbMJdFR\ntBoro1aQwxuBiEgNspETUHAnBTmJN0VHoVaQn56E7NsxkHlxbvOOxNSuB3qNexaXd30hOopWY6HZ\nCnJT4ngjEBE1maFFN9gMGIoE3hTUISREhKFb74EwsXUUHYVamevUF5F1MwoZVyNFR9FaLDRbSKlU\nIjclnjcCEZFa5F5+SIzg8HlHkHj2N8h4E1CH1NXaHr2fmIqoXV9wX20mFpotVHw/E4riQpg7uYiO\nQkRapMeI8Si6n4V7sVdFR6EWqH6CgMx7ougopCGuU19AdkIM0qLOio6ilVhotlBOciz0jU1gZGkt\nOgoRaZEuphawdx2BBN59rtUSw8Ng3c8Dxla2oqOQhhhZWqPvxBm4vHsLezWbgYVmC1VPPckH9BKR\numTevkiMOAJlZaXoKNQMSqXy/89tzmHzjm7glH8hLzUeKX+eEh1F67DQbCHeCEREzdXDcxxK83P4\n+BQtlZ0Qg4LMFDiPnCA6CmmYoZkVHvvbHFzetZlfDNXEQrOFqh5txHltiUh9+sYmcHD34dznWirh\nbChsBwyDobmV6CjUBgY8+w8U3k1H0rmjoqNoFRaaLVBZUYG81ATeCEREzSb38UNSxBFUVpSLjkJq\nqB42l/lw2Lyz6GJijv5PB+Dyni2orKgQHUdrsNBsgcKsNFSUPWChSUTN5jjkcSgelODOtT9FRyE1\n3L0VjeKcu3Ae/oToKNSG+j8VgJK8+0g4c1h0FK3BQrMFcpPj0MXcCl3MLEVHISItpWdoBKehj3Pu\ncy2TGB4Ke7eRMDAxEx2F2pC+sQkGPvtPXNm7FZXlCtFxtAILzRbISYmDBW8EIqIWkvn4IemPY6hQ\n8MSlDSorKpAYcYR3m3dSj02aDUVxIeJO/Sw6ilZgodkC1Y82IiJqCUd3HygrK5ERfU50FGqCrBtR\nKC3Mg5PnWNFRSAA9QyMM/Pu/EL33a1QoykTHafdYaLZA1aONeH0mEbWMjr4BnDzHcu5zLZFw9jc4\neoyCvlFX0VFIkL6+M1BZUY7YYyGio7R7LDSbqUKhQF5aIsz5aCMiagVybz8knz+B8tIHoqNQAyor\nypH0xzEOm3dyugaGGDTleUTv/4b7bCNYaDZTfkYSlBXl7NEkolZh5zoSUl1dzqfczmVcPY+K0hI4\nDBklOgoJ1mfCVEh1dHDzyF7RUdo1FprNlJsSB+Nudhw6IaJWoaOnB+cRT3D4vJ1LDA+F49Ax0Oti\nJDoKCaajpw/XaS/iWsg2KEqKRcdpt1hoNlNucjxvBCKiViXz8kPqxdM8abVTFYoyJEce57A5qfQa\n+yx0DY1x47ddoqO0Wyw0m4k3AhFRa7MdOBR6hkZIuXBKdBSqQ/rlCCiVSji4e4uOQu2EVFcPg2cs\nwLWDQSgrKhAdp11iodlMuclxsGCPJhG1IqmOLpxHTuDD29uphPBQ9PAcCx19A9FRqB2Rj3oSXUwt\ncf3XHaKjtEssNJuhvPQB8u8kc+iciFqd3NsPaVHhKCvKFx2FaigvLUHKn6cg47A5PUSqo4PBMxfi\n+i/BKC3IEx2n3WGh2Qx5abcBAGYOPQUnIaKOxvoxd3QxtUBy5EnRUaiG1EtnoKOrB3vXEaKjUDsk\n8/KFcTdb/PXzd6KjtDssNJshNzkeJjZO0DXoIjoKEXUwEqkUMi9fJEZw+Lw9SQwPQ48RT0Cqqyc6\nCrVDEqkUg/0DEXN4J0ry7ouO066w0GyG3BROPUlEmiPz8UP6lT/wID9HdBQCoCgpQurF05D7cNic\n6tfDcxxM7WW4diBIdJR2hYVmM+TwRiAi0qBuvQbCuJstkv44JjoKAUj58xT0jLrCpv9Q0VGoHZNI\nJHD3X4SbYXtQnJ0lOk67wUKzGXKT2aNJRJojkUgg8/bj3eftREJ4KGQjJ0KqoyM6CrVzDh4+sJT1\nxdWQ7aKjtBssNNVUVlyIonsZMHdioUlEmiP38cOdvy6gOOeu6CidWmlhPtIvh3PYnJpEIpHAfdYi\n3Dq6D4V3M0THaRdYaKopLzUeEh1dmNo5i45CRB2YhXMfmNo5I+ncUdFROrXk8yfQxcwK3fu4iY5C\nWsJ20HB07+uG6H1fi47SLrDQVFNOchzM7J2ho8c7D4lIcyQSCeQ+fpz7XLDEs6GQeftCIuXpkpqm\n6lrNQMSdPIj8Oymi4wjHPUdNVddn9hYdg4g6AZm3H+7evMwhOEEe5GUj42ok5zYntdn0HwK7gZ6I\n3rtVdBThWGiqiTcCEVFbMXfsCQvnPkiMCBMdpVNK+uMYjLvbwcplgOgopIUGzwrE7dO/Ii81QXQU\noVhoqiknJQ4WvBGIiNqIzNuXd58LkhAeCrm3HyQSiegopIW69x4EB49RuPzjl6KjCMVCUw0P8nPw\nIPc+zJ1cREchok5C5u2H+/HXkZ+RLDpKp1KcnYXM6xc5tzm1iLt/IJLOHUFO0i3RUYRhoamG3JR4\n6OgboKuNo+goRNRJmNo6warXQPZqtrHEiCMwc5DDwpnX5FPzWcofQ4/h43F5T+ft1WShqYbc5DiY\nOfbkQ3uJqE3JvX2RGM7rNNtSYkRY1d3mHDanFnKbsRApf57E/fjroqMIwUJTDTnJsZx6kojanMzL\nFznJschJjhMdpVMozErD3ZtXIPfisDm1nEWPXpB5+yFq9xeiowjBQlMNuSlxnBGIiNqccTdbWD/m\nzl7NNpIYEQZL+WMwc5SLjkIdhNuMBUi/HIGsm1dER2lzLDSbSKlUIjclnoUmEQkh8/ZDYkQolEql\n6CgdXkJ4GGRevqJjUAdiZi+Dy5incXnXZtFR2hwLzSYqybmLssJ8PkOTiISQjZyAgjspyE64ITpK\nh5afnoTs2zGQebPQpNblNv3/kBlzEXeu/Sk6SptiodlEOclx0DM0hnE3W9FRiKgTMrToBpsBQzl8\nrmEJEWHo1nsgTPh0EWplXa0d0Gvc3xG1e3OnGplgodlE1TMC8Q5EIhJF7u2HhHAOn2tS4tnfIPOe\nJDoGdVCu017Avbi/kH7lnOgobYaFZhPxRiAiEq3HiCdQnJ2Fe7HRoqN0SDnJschNiYfMa4LoKNRB\nGVvZou/E6Yja1Xl6NVloNlFVockZgYhInC4m5rB3HYEEDp9rRGJ4GKz7ecDYipdIkeYM+vtzyE2O\nQ+qF30VHaRMsNJtAWVmJ3JR4PkOTiIST+/ghMeIIlJWVoqN0KEqlEglnQyH34bMzSbMMLbqh399m\n4fKeLZ1iP2ah2QSFd9NR/qAE5j04FRkRieU0bCxK83OQGXNJdJQOJTshBoVZqXAewWFz0rwBz/4T\n+RnJSIo8JjqKxrHQbILc5DgYmFqgi5ml6ChE1MnpG5vAwWMU5z5vZQlnQ2E70BOG5laio1An0MXU\nAv2fmovLu79EZUWF6DgaxUKzCXJT4mDhxDvOiah9kHv7IuncUVRWlIuO0iEolUokhofx2ZnUpgY8\nMw8lOVlIjOjYXxpZaDZBbko8zHgjEBG1E45DH0d5aUmne/Czpty9FY3inLtwHv6E6CjUiegbm6L/\nM//AlT1bO/SXRhaaTZCTHMcbgYio3dDrYgTHoWOQcLZj94S0lcSzv8FhsBcMTMxER6FOpv+Tc1Ba\nmIf43w+JjqIxLDQbUVlRjrzU25x6kojaFZm3L5Ijj6FCoRAdRatVVlQg8dxRzm1OQugZGmPg5Pm4\n8uPWDrsvs9BsREFGCirLFXxYOxG1K47uPlBWViL9SoToKFotK+YSSgvz4OQ5VnQU6qQem+SPCkUp\n4k4cEB1FI1hoNiInJRZGltYw6GoqOgoRkYqOvgGcPMfy7vMWSggPhaPHKOgbdRUdhTopXQNDuE55\nHtH7vkZFWanoOK2OhWYjclPi2ZtJRO2S3HsSks+fRHnpA9FRtFJluQJJfxyD3JsPaSex+kyYBkgk\nuHlkr+gorY6FZiNyk+N4fSYRtUt2riOgo6uHtEtnREfRShlXz6Oi7AEchowSHYU6OR19A7hOexFX\nD2yH4kGx6DitioVmI1hoElF7paOnhx4jxnPu82ZKjAiD45DHodfFSHQUIvQaOxm6+ga4GbpbdJRW\nxUKzARVlpcjPSOajjYio3ZJ7+yH14mkoSopER9EqFYoyJP1xHHKfSaKjEAGo+uLoOn0Brv30XYfa\nn1loNiAvPRHKygqYOfYUHYWIqE42A4ZCz9AIKRdOiY6iVdIuhwNQwsHdW3QUIhWXx5+CQVczXP/1\nB9FRWg0LzQbkpsShq7UDh1WIqN2S6ujCeeREJHL4XC2J4WHo4TkOOnr6oqMQqUh1dOE2cwH+Ovg9\nSgvzRcdpFSw0G8DrM4lIG8i9fZEWdRZlRR3jxKRp5aUlSPnzJOQ+vNuc2h+Zlx+Mraxx/Zf/io7S\nKlhoNoBTTxKRNrB+zB1dTC2RHHlSdBStkHrpDHT0DGA3aLjoKESPkOroYPDMl3D90A48yM8RHafF\nWGg2gD2aRKQNJFIpZN5+SAj/TXQUrZB4NhTOI56AVFdPdBSiOvUYPh6mdj1w7acg0VFajIVmPRQl\nxSjMSoO5U2/RUYiIGiXz9kVGdGSH6AHRJEVJEVIvnYHMm3ObU/slkUox2D8QN37bjZKce6LjtAgL\nzXrkpd2GRKoDMweZ6ChERI3q1msgjLvZIumPY6KjtGspf56CnlFX2PQfKjoKUYMch4yGhXNvXA3Z\nJjpKi7DQrEdOchxM7XrwjkQi0goSiQQybz8knuXc5w1JOPsbZCMnQqqjIzoKUYMkEgncZy3CzSN7\nUXT/jug4zcZCsx68PpOItI3cxw93rl9Acc5d0VHapdLCfKRfieDd5qQ17FxHoFvvQYje943oKM3G\nQrMeLDSJSNtYOPeBmb0MSRFHREdpl5Ijj8PQvBu693ETHYWoSap7NWOPH0BBZqroOM3CQrMeOSlx\nMHdyER2DiKjJqobPfTn3eT0Sw8Pg7DUREilPfaQ9bAcMhe2AoYje97XoKM3Cva0O5SWFKMnOggXv\nOCciLSPz9sPdm5dRmJUuOkq7UpJ3HxlXIyH35tzmpH3cZwUi/tQvyEtPFB1FbSw061CSmQqprh5M\n7JxERyEiUou5Y09YOPdBYgR7NWtKOncMxt3tYOXSX3QUIrV17+MGB3dvXPlxq+goamOhWYeSrBSY\nOfaEVEdXdBQiIrXJffxYaD4kMSIMcm8/SCQS0VGImmWw/0tIDA9FTnKc6ChqYaFZh+LMFE49SURa\nS+blh/vx15GfkSw6SrtQnJ2FzOsXebc5aTWrnv3hNGwsruzZIjqKWlho1qEkM4U3AhGR1jKxdYRV\nr4FIDOczNQEgMeIIzBzkMO/B6+5Juw2euRDJ50/g/u0Y0VGajIXmQ5RKJUqyUmDuxB5NItJecm8/\nJLDQBAAkhody2Jw6BAvnPnAeORGXd38hOkqTsdB8yIO8bJQXF/AZmkSk1WReE5GbHKd113O1ttKc\nLNy9Fc25zanDGDxzIdKiwnH3VrToKE3CQvMhucmxkOoboGt3e9FRiIiazbibLaz7uSOxkz9TM/va\nOVjKH4OZg1x0FKJWYeYgR8/RT+Lybu24VpOF5kNykuNgaO3EB/oSkdaTe09CYngolEql6CjC3I+O\ngMybNwFRx+I2fQEyrp1H5vWLoqM0SmPVlEKhgL+/P4YOHYrQ0KrrhLKzs/H8889j1qxZ2LRpk6be\nukVyU+JgaO0oOgYRUYs5j5yAgswUZCfcEB1FiLz0RBRnJELmNVF0FKJWZWLriN7jJiNq1+Z2/0VS\nY4Wmrq4uPv/8c/zjH/9Q/eybb77B1KlTsWvXLly9ehVxce3v2qHclHgY2vBB7USk/QzNrWA7YFin\nvfs8MTwMxo69YGLDzgPqeFynvYi7t6KRER0pOkqDNPZEcolEAmtr61o/u3TpEpYsWQIAGDNmDP78\n80/06tV+brpRKpXITY5DzxFPio5CRNQqZN6+iN73DRxMbZH24L7oOG3q9ulfYeU2WnQMIo0w7maL\nPhOm4fLuzZAFvCk6Tr3adOqb4uJidOnSBQBgamqK1NTUJr82Jkbzz4yqrCiHQXcH6Fg5tMn7tTcP\nHjxguzsRtrtzKLd0RnlFJeL3bsLtTvZ4H6meAYz7eHSqz7taZ9vOq3W2dndxfRwl1y6ipKig3ba7\nTQtNQ0NDlJaWwsDAAAUFBTAzM2vya/v166fBZP8z4NN9iImJabP3a0/Y7s6F7e48Bm072inbDXTO\nzxtguzsTN0+vNm33xYvq3YDUprdWDxkyBL///jsA4PTp0xg6dGhbvj0RERERtSGN9mguWbIE165d\ng5GREaKjo/HCCy/gtddeQ1BQEEaMGIHevTkdGBEREVFHpdFCc+PGjY/8bNu2bZp8SyIiIiJqJ/hU\nciIiIiLSCBaaRERERKQRLDSJiIiISCNYaBIRERGRRrDQJCIiIiKNYKFJRERERBrBQpOIiIiINIKF\nJhERERFpBAtNIiIiItIIFppEREREpBEsNImIiIhII1hoEhEREZFGsNAkIiIiIo1goUlEREREGsFC\nk4iIiIg0goUmEREREWkEC00iIiIi0ggWmkRERESkESw0iYiIiEgjWGgSERERkUaw0CQiIiIijWCh\nSUREREQawUKTiIiIiDRColQqlaJDNObixYuiIxARERERgCFDhjT5b7Wi0CQiIiIi7cOhcyIiIiLS\nCBaaRERERKQRLDSJiIiISCNYaBIRERGRRrDQJCIiIiKNYKFJRERERBqhdYVmamoqhg8fjoCAAEyb\nNg2bN28GANy9excff/wxAOD111/H1atXkZqaiv/7v/97ZBlZWVlYtGgR5syZg1mzZuHEiROq3wUE\nBAAANm3ahCeffBIBAQEICAhARkZGg7neeOMN1etCQ0MBAE899VSrtO1hISEhOH/+vFrLrunpp5/G\ngwcPAACffvopFi9erPqdn58fysrK8OGHH6KgoACRkZFYvXo1gKp1k52djZiYGHz//ffNfv+mql4f\n8+bNw7x587By5UpkZWWpvZymrq/q7UbTan7OAQEBCAkJ0ej71fwMqx0/flz1/gEBARgzZgxWrVpV\n7zKqP3t1ff3117h9+7bar6u5jqZOnYozZ86ovYy69r+AgAD4+/tjzpw5WL58OcrLy1u0vJCQEGzf\nvl3tbA97eN//5ZdfWrzMugQHB2PUqFGorKys92/q2l5aqqH2VR8769Lc7e5h9W0LLV326dOncfjw\n4Qb/pi3bXlRUhHfffRdz5szB3LlzERgYiNTUVLWW0RTqnIMqKipUx5mhQ4fC398fAQEBOHfuXIsy\nREREYPTo0QgICMCUKVOwf//+Jr927969+O6771r0/up67733EB4eDgAIDw/HiBEjVL9buXIl/vzz\nz1rrtXqbrVlTVIuMjMSoUaNU6/X06dOtlrOuc35L6bZ4CQIMHjwYX331FZRKJf7+979j3rx56N69\nO5YvX96k17/66qt48cUX4ePjg/z8fMybNw+9evVCjx49av3dyy+/DD8/P/z000/YsWMHVqxYUe8y\nP/rooxa1qVpdbTM1NVX9vqKiAlOmTGnRewwaNAjR0dHw9PREbGwsKioqAACZmZmwtLSEvr4+3nrr\nrXpf369fP/Tr169FGZqqen0AVcXRsmXLsGPHDrWW0dL1pa6Kigro6Og0+Dc129Vay1TH+PHjMX78\neADAvXv38M9//hMLFixoteUDVZlffPHFZr++eh3duXMHzz//PEaNGtUqubZs2QJLS0u8+eabCA8P\nx+OPP94qy22p6vaWlJTgmWeewdNPP93q73Hs2DE8/vjjOH/+fK0TXVuor32tdeys1tr7SkNGjx7d\npL9rq7Z/+OGHcHNzUxUKaWlpquN7Q6ofpy2RSJr0PuocU3V0dBAcHAygqnDZuHEjLC0tm/z6hvj6\n+uKtt95CaWkpnn32WUydOrXW79tyW2iMu7s7oqKi4O3tjUuXLqFPnz64ffs2evbsiWvXrmHVqlUY\nNmxYk5c3YcIEvPvuu03++4fXRVuuG60sNKspFAoolUro6uoiNTUVH3zwQaMn7zt37qCsrAw+Pj4A\nAFNTU8yaNQuH7cwhKgAAFelJREFUDh3CSy+9hHXr1j3ymvz8fFUPQF5eHt555x3k5ubCwMAA69at\ng6WlJZ566ikcOnTokdeWl5djxowZ2Lt3L3R0dLBlyxY4OjrimWeeaXLbIiMjsX37dhgYGGDAgAFQ\nKBTo3bs3/Pz88K9//QsKhQIKhQJr166FTCZDQEAA+vfvj5iYGJiZmWHTpk21ll29wXt4eEAqlcLO\nzg4pKSn466+/MHjwYAD/OyDUJTIyEmFhYXj33Xexfv16XL16FUVFRQgMDMT48eOxadMmJCYmoqCg\nAPn5+fD398fBgwdRUlKCbdu2oaKiAosWLVIt76uvvoKRkVGD6wOoKo62bduGO3fuwNDQ8JHPobi4\nGMuWLYOTkxNu3bqFBQsW4Mknn8SmTZvQu3dvjBw5Uu33PXfuHDZv3gylUgkvLy8sWrQI586dw5Yt\nW6BQKNCzZ0+sWbMGqampePXVV+Hg4ABLS0tcv34dX375JUxNTXHw4EGkp6dj4cKF9b5PdnY2li5d\nisrKSkgkEnz22WewtLTEk08+idGjRyMmJgbfffcd1q1bh2vXrqG8vBxvvPEGXF1d68yYlZWF5cuX\nQ19fH1ZWVujatWud76tUKvH6669j+fLlsLGxAYA6t6lqV69excaNG7F+/XocPHgQJ0+eREFBAfz9\n/TFz5kyEhITg9OnTKC0txbhx43Dx4kXMmTMHDg4OdbavKWxtbVFcXAwAeO2115CRkYHi4mK88847\nGDx4MF5//XXMmTMHgwYNwvbt22FhYdHoiVCpVKKgoEB1gq15Aly9ejV8fX0xbNgwvPbaa8jMzMSA\nAQNUr42Li8Mbb7wBc3NzGBoaws3NrUntaKrCwkIoFArVv7/77jscOXIEFRUVWLBgAUaPHo1//vOf\nAIDc3FzIZDJs2rSpwc8NqOpZs7S0xNy5c/HDDz9gxIgRUCgUWLx4MQoKCiCRSPDhhx/Wek19+3dS\nUhIKCwtx7949bN26Fd26dWt2+6qPnampqXj33XehUChgYWGBzz//HEDVflrzWNaUfeXbb7+t87Nr\nzK+//ooffvgBlZWVmDp1KqZPn46ZM2diz5492Lt3L3bv3o39+/dj06ZNGDRoELKzs5GTk4N58+Y9\nsh4f7rhoTtuB/+1za9euxdKlS1VF21tvvYUpU6aoZmiprKzEhQsXsGbNGtVrHRwcVP//8HY0duxY\nBAQEYODAgYiJicHQoUNhbW2NGTNmoLS0FP7+/jhw4ECd+1xLjqnVQkNDVaMBM2bMwPTp0/Hpp58i\nNTW1znPH9u3bYWxsXOeySkpKYGBgAKCqt/LcuXMoLi7GxIkT4eTkhA0bNkAikcDHx6dW3uLiYqxc\nuRLTp0+HjY0N/v3vf6OiogIWFhb49NNPceHCBURGRmLp0qWYOXMmJk+ejFmzZmHatGnYt29fk9pZ\nzcPDQ9WbfePGDfj7+yMqKgrm5uYwMjJCly5dVOvVz89PrWUDQFlZGd577z2kpaUBAD744AM4Oztj\nwoQJGD58OEpKSuDt7V3r+Dxo0CB89NFHqKyshFwub3BUqyW0stC8fPkyAgICkJaWhrFjx8LIyKjJ\n3buZmZmwt7ev9TM7Oztcv34dAGr9btOmTdi6dSvy8/Oxa9cuAFVDgc8++yzGjx+PEydOICgoqMGe\nVF1dXXh5eSE8PByjR4/GiRMnGuyRq6ttQFWvU3WxWrNw3Lx5M4yMjHDmzBkEBQWpNpRRo0bhjTfe\nwIIFC3Dz5k307dtX9RoPDw/85z//QUxMDPr27QuZTIaoqChcv34dQ4cObdJ6rLZo0SIYGRkhLy8P\n8+fPV/WSOTg4YNmyZVizZg2uXbuGoKAgfPbZZzh16hSsrKzQt29fvP3221B3YipbW1tkZmbiyJEj\nj3wOM2fOxL1797Bjxw4UFhbi+eefx5NPPql67fXr19V6X6VSiQ0bNiA4OBhGRkZYvHgxbt++DTc3\nN9XBftmyZbhy5QqsrKyQlpaGoKAgGBoaYteuXfj1118xa9Ys/Pzzz4+cwKs/ZwB4++230bNnT2zb\ntg16enrYvXs39u3bhxdffFHVA7Jy5Ur8/vvvqKysRHBwMLKzs7FkyRL897//rTPjzp07MXfuXPj6\n+mLz5s317h9BQUGQyWQYO3as6mf1bVN//PEHfv75Z3z22Wfo2rUrZs6cifnz56OsrAyTJ0/G9OnT\nAVQd8L788ksA/5s+1sTEpM72NcXNmzdhYWEBAHj//fdhZGSE27dvY82aNdi2bVuTllHTSy+9hKys\nLLi4uKi+cNbl+PHjMDMzw4YNG3D+/HmcPXsWAPDxxx/jvffew8CBAxsc+lTX5cuXMWfOHFy/fh3v\nv/8+gKqi9tKlS9i5cydKS0sxa9YsjB07FsHBwSgpKcGCBQtUJ876Prdqhw8fxlNPPYXHHnsMSUlJ\nUCgUuHPnDpRKpeqYVFlZWesyofr2b3t7eyxbtgxBQUH47bffVNuyuu2raf369Vi4cCGGDRtWqxfu\n4WNZU/aVo0eP1vnZNSQ3Nxe7du1CcHAwJBIJ5s6di0mTJkEulyM+Ph4XL15E9+7dUVBQgEuXLmH+\n/Pk4cuQIANS5Hluj7Q/vc926dUN8fDwcHBxw8+bNWtMAZmdnq/YToKoQjYmJgb+/Pzw8POrcjoCq\nqQRXrlyJ+/fvY/ny5ZgxYwZOnjyJMWPGAGh4n1P3mFqtvLwcmzZtwr59+6Crq4uZM2diwoQJAIAe\nPXpgyZIl+OCDD3Djxg0EBQXh448/xunTpzFp0qRaywkLC8ONGzdw+/btWseT8vJybN26FUBV7+tX\nX32Fbt264fnnn8etW7cAVHUaLVmyBAsXLoSHhwcePHiA//73v5BIJFi3bh1OnjyJ0aNHY+vWrSgq\nKoKFhQUuXrwIb29vODs7N7mt1Xr06IHU1FSUl5ejsrISQ4YMwebNm2FhYQF3d3e1l3f06FHExsYC\nADZu3IjQ0FD069cPH330EW7evImNGzfik08+QWZmJhYvXgxra2uEhITUOj4HBATgk08+Qffu3bF2\n7VqcPXsW+vr6amdpjFYWmtXDEJWVlVi8eDGioqLQvXv3Jr3WxsYG6enptX52584dVW9OTS+//DJ8\nfX3xxhtvID4+HjY2NoiNjcXFixfx3Xffoby8HL179270PadOnYpNmzbB2NgYAwYMQJcuXdRqG1A1\n3P1wN3dJSQlWr16N5ORklJeX1+oh6t+/P4CqE0JeXl6t1/Xs2RMJCQmIioqCu7s7nJ2d8e233yIm\nJkbtoc7g4GCcOnUKurq6tdZr9dC6jY0NzM3NVf+fl5eHSZMmISoqCq+++irs7e3x8ssvQ09Pr0nv\nV/1Z1fc59OrVC/r6+rC0tERZWVmt13p6eqr1vjk5ObWu883Pz0dGRgby8vLw+eefQ6FQID09Hb6+\nvqri2dDQEEBVT0VgYCDGjBkDHR0d2Nra1lr2w0Pn9+7dw6pVq5CdnY3CwkJVwW9gYKBal7GxsTh7\n9qzqpF5UVFRvxsTERLzwwgsAAFdXV5w6deqR9v311184fPgwdu7cqfpZQ9vUf/7zH2zdulXVO3r4\n8GEcOHAAEokEWVlZqu2sule8pry8vDrb15DqYlxPTw+rVq1CRUUFPvvsM1y9ehW6urrIzc0FUHu4\nryknuy1btsDAwADPPfcc8vPzH+lZrV5GQkKCqreyZq9lamoqBg4cCKBq3Vb3trZU9TZx7tw5hISE\n4Nlnn0VsbCyuX7+u+syLi4tRWFgIIyMjrFy5Ei+88AL69u3b4OdW7ciRIzAxMcHOnTuRlZWFs2fP\nYuzYsRg1ahSWL18OCwsLvPLKK7Ve09j+bWdnh7i4uGa3r6aEhATV0GHNY93Dx7L6tqWa+0p9n11D\nkpOTkZSUpOotzs/PR2ZmJjw9PREZGYmCggKMGzcO4eHhKC8vrzVK4OTk9Mh6rPn75rb94X1u2rRp\nOHDgAPr06YOJEyfWWoalpWWtL5QffvghQkJCkJOTU+92VJ0NAKysrGBgYICMjAwcOnQIy5cvr3ef\nq6buMbXa/fv3YWdnpzpe9unTR9UTV/1529jYwNraWvX/D5/HgP8NnZeVlWHOnDmqnsCaxyCFQqGq\nDwYPHozExEQAwP79+/Hss8/Cw8MDQNVlBmvXrkVJSQnu3r0LW1tbVb6IiAg8/vjjOH36NCIjIzF8\n+PBG21iX3r174/Dhw+jduzdsbGyQkZGhOg+r6+Gh89jYWFy5cgVHjx4FAFV2BwcH1XqsXgc1X7Ns\n2TIAVeeT3r17w9HRsVlta4jW3QxUk1QqhYmJiVoXq9ra2kJPTw8REREAgIKCAuzatQt/+9vf6vx7\niUSCxYsXq4YyXFxcEBgYiODgYOzatQtvv/12o+8pl8uRm5uL77///pFrSOrzcNvqupbizJkzqhPH\nokWL6j3JPvxziUQCmUyGn376CW5ubnByckJcXBwKCwvVunYmNzcXoaGh+OGHH7Bp0yZIpf/bnGqe\n/B8uBBQKBV566SVs2LAB9+/fR2RkZJPe79SpU5BKpbC1ta33c2joGiN139fCwgIymQzffPMNgoOD\nceDAAYwYMQJfffUVXnvtNezYsQNubm6q9VvzMzIxMYGtrS0++eQTTJ48udG2/fLLLxgyZAh++OEH\n+Pv717nMXr16Ydy4cQgODkZwcDB2795db0aZTIbo6GgAUP23pqKiIrz55ptYt25drW+wDW1Tmzdv\nxqpVq5CUlASgapgsKCgI3377LUxNTevM3Fj7GjJ48GAEBwfj22+/xcCBA3Hjxg2kpaVh165deP/9\n91XLMDU1RWZmJgAgJiam0eUCgLGxMWbPnq0aujMzM0NmZiaUSiVu3LgBAPWuQwcHB9UISF3rtqVG\njhyJ7OxsxMbGomfPnqoe9ODgYPz888/o2rUr1q5dCx8fH1WPbGPHgri4OMjlcgQFBWH79u346quv\ncOjQIZSVlWHWrFn4+OOPYWlpiV9//VX1mqbu3+qOStRsX01yuRwXLlwA8GiPYM33asq+0tj2Xxcn\nJye4uLjg+++/V+1LLi4u8PT0xP79+9GjRw94enrim2++eaR4bWg9tqTtD+9zI0eOxIULF3Dw4MFH\njitSqRTDhg3Dnj17VD+r7h2tbzuqfl21p556Cjt37kROTg7kcnm9+1y15h7LrayskJ6ejpKSEigU\nCty8eVM1zN/QuaM++vr60NfXR0FBwSNt0tPTw927d6FUKnH58mXVJSXz589Hdna2an0FBwdj9uzZ\n2LFjB8aNG6d6P3d3d2zduhWenp7o2bMndu/e3exC093dHUFBQapiz9TUFKdPn1YVuy3Rq1cvzJgx\nQ/UZV99M/PDxuOa/+/Tpg40bNyI4OBghISGNXtLXXFrZo1nd01FeXg57e3uMHj1adaJpig0bNmD1\n6tXYsmULysvLERgY+Mj1TDXZ29vD2toakZGRWLBgAd59911s27YNlZWVmDFjRpMu2n/66aexfft2\nuLq6qt22S5cu1fm3bm5u2Lp1K5577jn06tWr0Qw1VV8vYmJiAqCqMHr4koLGmJmZwd7eHnPmzEH/\n/v1Vy2rM1atX8cknn0BXVxcGBgYN9jhUrw+JRKIq3ADU+Tk09q2wKe+7evVq1XVAixcvxiuvvKLq\nGdTV1cWGDRvg5+eHV199FT179mzw4Ddt2jS8/PLLjwyb12XkyJFYsWIFzp07BxsbG+jqPrprjhkz\nBhcuXFD1Sri6umLFihV1ZnzhhRewfPly7N69G7a2tqrrl6pV92rVHMYbNGgQ/vGPf9S7TdnZ2WHD\nhg1YsWIF1qxZAx8fH8yaNQt9+vSpdcNac9vXGLlcjry8PMybN6/WgXnatGlYvnw5QkJCGhwteNik\nSZPw5ZdfYsGCBZg7dy5WrFgBFxcXVVvGjx+PsLAwBAQE1NpWli1bhjfffBPm5uaq3vrWNnfuXGzf\nvh1r166Fq6sr5syZA6lUCnt7e7zyyivYs2cPXF1d8csvv8DDwwOzZ89u8Fhw6NAheHt7q/7t7OyM\nW7du4fbt21i9ejV0dHSgVCqxfv16pKSkAGj+/q1u+6q99tpreOedd1Q9svVdI96Ubam+z+5hixcv\nVr1+9erVmDFjBgICAiCVSmFgYICvv/4ajo6OyMnJgaenJ2QyGe7evQtPT89ay0lLS8Nbb71Vaz22\nRtsf3uecnZ3h4+ODq1ev1uqlqvbmm29i/fr1mD17NgwNDWFoaIilS5fCxcXlke2orvsRnnjiCaxe\nvRovv/wygPr3uWrqHMtr0tXVxaJFi1THdn9//2btS9VD56WlpRgyZAh69eqlGgWstnLlSgQGBkIi\nkcDb2xt9+vTBlStXIJFI8MEHH+Cdd96BRCLB+PHj8dFHH2Hv3r0wMjJSjXIOHz4c+/fvh4uLC4YP\nH45Dhw41a+gcqDrvrl+/XlVourq6Iioqqs4RVXVNnz4dq1atwuHDh6FUKjF+/HhV73x93nzzTdXT\nN6RSaZM6zppDolT36yg1y08//YTc3NxGP3jqOC5cuIDQ0FCN7bxE1Pl88cUX6NOnj+qaRqL2TquH\nzrXF119/jR9//BHTpk0THYXayP79+7Fu3TrMnz9fdBQi6iDWrFmDy5cvY9y4caKjEDUZezSJiIiI\nSCPYo0lEREREGsFCk4iIiIg0goUmEREREWkEC00iomZIT09XTcs4ZcoUPPfcc6pncLZUSEiIWs8H\nJiJqr1hoEhGpqbKyEoGBgZgwYQKOHz+OkJAQLFmyBMnJya2y/AMHDiAnJ6dVlkVEJBILTSIiNZ07\ndw4mJia1ZmdxdXXFxIkTERAQgPj4eABAZGQkli5dCqBqmtGFCxdiypQpmD17NhISEgAA69atg5+f\nH5555hls27YNR48exbVr17Bo0SLMnj277RtHRNSKtHJmICIikeLj41XzajfVRx99hEWLFmHAgAGI\njo7G2rVrsXbtWoSFheHYsWOQSqUoKCiAiYkJBg4ciPfffx8uLi4aagERUdtgoUlE1EKBgYFISEiA\nl5dXvX/zxx9/IC4uTvVvHR0dmJiYwNjYGG+99RaeeOIJjBkzpg3SEhG1HRaaRERq6tmzJ44fP676\n9xdffIHTp0/j8OHDkEqlqJ4Ho6ysTPU3EokEBw4cgFRa+4ql/fv348yZM/jll19w9OjRWnNgExFp\nO16jSUSkJi8vL+Tm5uLgwYOqn5WWlgIA7O3tERMTAwA4ceKE6vdDhgzB3r17AVTdTHTz5k0UFRWh\noKAA48ePx4oVK1SvMzY2RlFRUVs1h4hIYzgFJRFRM6SlpeHf//43bt26hW7dusHc3ByBgYEwMDDA\n0qVL0aVLF3h4eOD+/fv49NNPce/ePbz33ntISUlBeXk5Jk+ejMmTJ2PhwoVQKBSQSCRYsmQJxo0b\nh7CwMHz66aewtLTEzp07RTeViKjZWGgSERERkUZw6JyIiIiINIKFJhERERFpBAtNIiIiItIIFppE\nREREpBEsNImIiIhII1hoEhEREZFGsNAkIiIiIo1goUlEREREGvH/AHBE6x4dFzOkAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "lT1fNMzDmkQS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", "source": [ "" ], From 6c703fa2525677b8d74162a52192f80340330e7f Mon Sep 17 00:00:00 2001 From: Edward Barnett Date: Fri, 16 Nov 2018 13:43:46 -0500 Subject: [PATCH 12/12] Created using Colaboratory --- DS_Unit_1_Sprint_Challenge_2.ipynb | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/DS_Unit_1_Sprint_Challenge_2.ipynb b/DS_Unit_1_Sprint_Challenge_2.ipynb index 69812a4..d6a6b17 100644 --- a/DS_Unit_1_Sprint_Challenge_2.ipynb +++ b/DS_Unit_1_Sprint_Challenge_2.ipynb @@ -105,7 +105,7 @@ "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 279 + "height": 195 }, "outputId": "ad987a55-a909-41a0-f8c4-abc1f552632e" }, @@ -453,9 +453,9 @@ "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 284 + "height": 665 }, - "outputId": "432a1f83-cac5-4061-82a1-24461f735e9a" + "outputId": "f8cad69f-a77f-417e-ff20-7d27ef533cd7" }, "cell_type": "code", "source": [ @@ -470,28 +470,30 @@ "ax.xaxis.set_major_formatter(ticker.ScalarFormatter())\n", "\n", "# create percentage based tick spacing\n", + "# location dependent code, do not move\n", "y_tick_spacing = .25\n", "ax.yaxis.set_major_locator(ticker.MultipleLocator(y_tick_spacing))\n", + "ax.yaxis.set_major_locator(plt.MaxNLocator(4)) \n", "\n", "\n", "#format\n", "vals = ax.get_yticks()\n", "ax.set_yticklabels(['{:,.0%}'.format(x) for x in vals])\n", - "#ax.yaxis.set_major_locator(plt.MaxNLocator(5))\n", + "\n", "plt.show()\n", "\n", "\n", "# bit of an issue with the formatting on the y ticks\n", "# changing it to 5 ticks puts the 100% below the line? I couldn't fix it :P" ], - "execution_count": 94, + "execution_count": 145, "outputs": [ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAELCAYAAAA1AlaNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4U+XbwPFvkqZ700VLC5QuhuwN\nIktAZCubgoKICIKgKCii4IsggmxEQBHKEhBF2cheP6HsUUpLodAy2tI9kybn/eNIZdOWtEnb53Nd\nuUqTk3PunJT7POeZCkmSJARBEIQyQWnsAARBEITiI5K+IAhCGSKSviAIQhkikr4gCEIZIpK+IAhC\nGSKSviAIQhkikr4gCEIZIpK+IAhCGSKSviAIQhkikr4gCEIZYmbsAB508uRJY4cgCIJQItWrVy9f\n25lU0of8B16UwsLCqFq1qrHDKDHE+So4cc4KRpyvZytIgVlU7wiCIJQhIukLgiCUISZXvSMIZZFe\nr+fWrVtotVpjh2KSJEni2rVrxg7DJKjVajw9PVEqC1dmF0lfEEzArVu3sLe3x97e3tihmKSsrCys\nrKyMHYZJSE1N5datW1SoUKFQ7xfVO4JgArRarUj4Qr7Y29u/0B2hSPqCIAhliEj6giAIZUipSPpJ\nGRrm7YlALPcrCAU3atQoxowZ88xtwsLCOHXqVN7vEyZMMNjxExISGDNmDAMGDKBPnz7Mnz/fYPt+\nkvnz57Njx458bXvu3DnefPNNevTowd9///3EbcaPH0/nzp3zfg8NDSUwMJDz588XKC5DntNnKTUN\nuT/sv0qQhx3tqnsYOxRBKDHS09NJTU1Fq9WSmZmJtbX1E7cLCwsjKSmJunXrAjBt2jSDxTBu3Dje\neecdmjVrBsDhw4cNtu8XtWzZMr799lt8fX1JSkp66nbW1tZERkbi5+fH1q1bqV27doGPZchz+iyl\nIuk72ZgzuHklZu26Qpuq7qiUCmOHJAgvJCVLS7ZW98L7sVSrcLBSP/X13bt3065dO7RaLXv27Mkr\nsU6fPp0zZ86gVqsZP348K1euJD09nf3797No0SL69u3Lli1bmD9/PtHR0aSnp5OQkMDixYtxcXFh\n2bJlbN++ncqVKxMVFcWyZctwdnZ+7Ph3794lJycnL+EDNG/ePC+2JUuWANClSxeCg4OZP38+169f\nJy0tjdTUVPr06cPmzZvJyspi2bJl2Nra8ssvv7Br1y50Oh3vvfcerVq14sSJE0ydOhUPDw8kScLf\n35/Vq1ejVCrp27cvWVlZ9O/fn02bNj0Un1qt5ujRo1SpUuWJ8d/XsWNHtm3bxvvvv8+NGzeoXLky\nAP/88w87d+5k0qRJJCYmMnr0aEJCQpg3bx6HDx/G0tKS/v370759ezp16sSWLVuIiYlh0qRJaLVa\nnJycmDdvXj6/7fwpFUkf4N2XqxByLJq/zt6iWx0vY4cjCIWWq9PTfPpe0nJyX3hfdhZmnJ70Kmaq\nJ9fk7ty5k2nTpiFJEpMmTaJz587s27ePlJQU1q1bB4BOp2PgwIEkJSUxZMiQx/bh6enJ2LFjWb58\nOdu3b+e1115j586drF+/noyMDNq2bfvU+O7cuYOHx+N35zqdjtmzZ7NhwwbMzc3p1asXr7/+OgBe\nXl6MHTuWb775hgsXLrB8+XLmzJnD/v37CQoK4tSpU6xZs4acnBz69u1Lq1atmDFjBj/++CNubm4M\nGjQIgM6dOzNixAj69u3L7t27ad++/WNxuLm5sXnzZnx9fR+6MD2qTp06zJkzh2PHjtG4cWOuXr36\n1G0B9u7dy/r16zE3N0ev1z/02owZMxg+fDgNGjRAp3vxC/+jSk3Sd7BWM+yVKny/+wqv1yyP+il/\n5IJg6sxUSg6Pb22wkv7TEn5iYiIXLlzg448/BiAiIoLk5GQiIyNp1KhR3nYqleqZx7g/J0758uWJ\njIwkJiaGwMBAVCoV9vb2VKpU6anv9fDw4Pbt2489n5SUhLu7OzY2NgAEBgYSExPz0PHc3d1xdHTM\n+3dKSgoRERFcunSJ4OBgADIzM0lPTyc7Oxt3d3cAatasCchdH93c3Lh69Sp//vknU6dOfSiGLVu2\n4O7uztKlSxk+fDjlypXjhx9+4PPPP8fNze2hbRUKBYGBgcyZM4d58+bltUsoFE+udRg3bhxffPEF\nCoWCoUOHUqVKlbzXrl27RoMGDYDnn/vCKDVJH+DtZpVYfuQa60Nv0r9RRWOHIwiF5mClfma1jCFs\n376d0aNH07NnTwA2bNjArl278Pf3Z/fu3XTr1g2QRwur1eqnljofTGySJOHl5cWVK1fQ6XRkZmZy\n/fp1AHJzc0lMTHwoYbq7u2NpacmRI0fyStLHjh2jYcOG3L17l4yMDMzNzQkPD88bjPTg8R49tq+v\nL7Vq1WLWrFkAaDQazM3NsbCwIC4uDldXVy5cuECNGjUAePPNN1m0aBFmZmZ5F4X70tLSiIuLw8nJ\niQULFvDuu+9Sv379xxL+fW+88QYg34ncZ29vz507dwC4dOlS3vN169alWbNmhIaGsmjRorx4ASpX\nrkxoaCj169dHr9cXeuTt05Sq4rC1uRkjWvkxb0+EQUpJglCabd269aEqi6ZNm7JlyxZatmyJra0t\nffr0YeDAgVy6dIk6deqwd+9eRo0aRXp6+jP36+rqStu2benVqxdfffUV7u7umJubExsb+1hpGuC7\n775jw4YNeb13QkNDUalUjB49mkGDBtGvXz+6dev2zDr1+wIDA6lZsyb9+/cnODiYL774ApBL1u++\n+y7Dhg3D1tY2b/vGjRtz5syZvAvcg9544w3i4+Pp06cPn3zyCZ06deLcuXNERUU98dh+fn58+umn\nj8WjVCoZOHAgx48fz3t+5MiRBAcH891339G9e/eH3vPJJ5+wcOFCgoODn9urqlAkExIaGvrC+8jW\n5kpNvvlbWnLgaqH3cenSpReOoywR56vgHj1nUVFRRoqkaGg0GkmSJCklJUXq0KGDJEmStGXLFmn/\n/v2F2l9mZqbBYnuQXq+XevfuLeXk5BTJ/ovKo38vBcmdpap6B8DCTMWHbQOYtj2MPg29sbMs2ltk\nQRAet3jxYo4fP056ejqjR48GyGuINRUxMTFMmDCBzp07Y25ubuxwik2pS/oAPep6sfjAVX46fI0P\n2wYYOxxBKHM++OADY4fwXBUqVCAkJMTYYRS7UlWnf5+ZSsnYdgEsO3SNxAyNscMRBEEwGaUy6QN0\nrFEeH2drFh94dn9ZQRCEsqTUJn2lUsG49oGsOHqdOynZxg5HEATBJJTapA/QMtCVl7wcmL83wtih\nCIJJunDhAoMHDyY4OJi+ffsye/ZsY4dUKDExMRw4cMCg++zUqdNjzwUHB9OnTx/69OnD119//cx4\nhg0bBsCSJUuIiop6LMapU6eSlpZm0Jjzo1QnfYVCLu3/euIm0fcyjB2OIJiU1NRUJkyYwNdff01I\nSAhr166lcePGBj/Oo9MMFIXY2FiDJ/2nWbRoEevWrSM6OprTp08/d/t3330XX1/fx2L8/PPPsbOz\nK8pQn6hU9t55UCPfcjT1c2HO3xHM7l3wme8EwShy0iDnkUFQVk6gtoS0uyA9kEgVSrBzB202ZD0y\nE6SFLVg8ObHs37+fNm3aPDSCtEmTJgDEx8czfvx4cnJycHZ25ttvv2XDhg1YWlrSq1cvcnJy6NOn\nD7///jtbt25l9erV6PV63njjDXr27Mn48eOxtLQkNjaWsWPHMmrUKBo2bEhYWBivv/46Q4YMKdDk\naVqtlvfff59WrVoRHBxMtWrVCAsLw8HBgfnz57Ny5UrOnTtHREQEkydPxtfXN+8zDR48GK1Wi1ar\nZfr06VSqVOmJ+9Dr9XzyySfcvXuX6tWrP/crCgoK4vbt29jb2/Pll1+i1+vx9fV97A5g/Pjx9O/f\n/7EYv/zyS+bOnYutrS0TJ04kNjYWpVLJzJkzuXjxIgsXLsTa2pp69erx4YcfPjee/CrVJf37xrUL\nZPOZWMLvFP+tlCAUytEF8H3Qw4+offJrP7Z4+PkfW8jPR+17/D1HFzz1EA9OdhYdHU1wcDAdOnQg\nJSWFH3/8kV69erFq1Speeukl1q9fz+uvv862bdsA2LdvHy1btiQ5OZm1a9cSEhLCmjVr+P333/NG\n7FaqVImlS5dStWpVEhISGDduHOvWrWP9+vV5MXh5ebFkyRJq1qyZN3la48aN2b9/P5GRkXmTpy1d\nuvShefZffvllVq5ciVarJTw8nIEDB/Lqq68SEhLyUMIHWLBgASEhIYwYMYLly5c/dR979uzBwcGB\nkJAQWrdu/cyvR6vVEhoaiq+vLzNnzmT8+PGsWbMGMzMz9uzZ88T3PC3G9evX4+Pjw+rVqwkJCcHV\n1ZUdO3YwZcoUQkJCGDVq1DNjKahSX9IHeKmCA+2rezBrVzhLBtY3djiC8HxNR0K9tx5+zspJ/jns\n4OMlfQDfVjD28sPvsbDlaTw8PPJmg6xYsSIhISEEBwej0+m4fv06Q4cOBeQZJLds2UK5cuWwsLDg\n9u3bbNmyhY8++ogbN24QHR3NW2/JsaampnL37t28993n6emZNzmaWv3fgMn8Tp52fx6f+xeUatWq\n5e03JSXlqZ8xKyuLKVOmcOPGDXJzcx+ayuHRfVy7do1atWoB5P18kvfffx8zMzPatWtHUFAQMTEx\neXP51KlTh2vXrhEUFPTU9z8qMjLyofYDpVLJiBEj+Omnn8jIyKBTp060atUq3/t7njKR9AHGvhpA\n+zkHOXMzmdrejsYORxCezcLuqdUy2Lk/+Xm1JajL5/sQLVu2ZOnSpfTs2TNvMrPcXHk650qVKnHm\nzBnat2/P6dOn82bK7NSpE2vWrCEpKYnKlSuTlJRElSpV+Pnnn1EqlWi12ryk/uBEYU+bbTK/k6dl\nZWWhUqmeOHJWkiTUanVe7A86dOgQdnZ2rFmzhoMHD7J69eonxiFJEpUqVeL48eN06dKFc+fOPfW8\nLVq06KGLh5eXV94kbqdPn85bD+BRT4vR39+f48ePU7++XCDV6/W4ubkxZcoUNBqNwZN+majeAfB3\nt6N7nQrM2hVu7FAEwSTY29szbdo0vvjiC4KDgxk8eDB169bFzs6OoUOHsm7dOgYMGMDZs2fp1asX\nAG3btmXdunV5c887OTnRq1cvgoODCQ4OZvjw4QZruH1w8rR33nknb/K0JwkICCAyMpJRo0Zx8+bN\nvOdr1arFyZMnGTJkCEeOHHnm8dq0aUNSUhLBwcEFahT++OOP+eabb+jXrx8ajeapVUNPi7Fnz55c\nu3aN/v37M3DgQOLj41m4cGHepHFvvvlmvmPJD4Ukmc7CsidPnqRevXpFtv+biZm0nrWfFYMb0rSK\ny1O3CwsLy7vtFJ5PnK+Ce/ScXbt2LW+1JeFxWVlZWFlZGTsMk/Ho30tBcmeZKekDeDtb07ehDzN3\nhotF1AVBKJPKVNIHGNnKj0u3U9l7Oc7YoQiCIBS7Mpf03ewteatpZb7bGY5eL0r7giCULWUu6QO8\n94ovsUlZbDn/+NqcgiAIpVmZTPqO1ua828KX73eFo9UV/RBxQRAEU1Emkz7A280rk5ady28nY4wd\niiAIQrEps0nf1sKM91v5MVcsoi6UYTExMQQGBrJz5868595+++28GSKf995HZ5IUTF+ZTfoA/Rv5\nALD6nxtGjkQQjKdGjRp5ST8+Pp6cnJwC7+P+TJKC6Ssz0zA8iaVaxeg2/ny3M5zeDbyxtSjTp0Mw\nIRnaDLQ6LXbmdtzLvkc5y3KkadJQq9SYKc1I06ThYuVCQlYCduZ25Opzn7q9jdrmmcdycXEhKyuL\nzMxMtm/fTocOHThy5AiXL19m2rRp6PV6KleuzOTJk8nMzGTs2LFoNBq8vb3z9nF/JkkvLy/GjBmD\nXq9HoVAwZ86ch6YsEIyvTJf0Ad6oVwF7KzXLD18zdiiCkGfFxRVMPDKRe9n3aLOhDfey7zHxyERW\nXFzBsVvH6PWXPC1Cr796cezWsWdunx+tW7dm7969HDp0iJdffhmQF/mYOXMmISEhWFtbc/jwYTZs\n2ECjRo1Yvnz5QxOq3WdnZ8eyZcsICQmhY8eObNy40XAnRTCIMl+0VauUjHk1gM83nSe4SUUcrR+f\n0EkQitug6oPySu57eu6hnGU5/q/Z/+WV9Nd3lqcnXt95PXbmdjTwaPDU7fOjXbt2DBs2DF9f37wJ\n0yIiIhg7diwAGRkZ+Pv7c+3aNbp06QJAzZo12bFjx0P7SUlJYfLkySQmJpKenp43iZhgOp6b9CMj\nI5k8eTIgf/GSJBEcHMyiRYsoX16e0S8kJAS9Xs+oUaOIj4/nyy+/pFq1ahw9epTTp08zYsSIov0U\nL6jTS+VZtC+SxQeiGP9a/qdEFYSiYqO2gX/ztZu1GwCOlv/NDmthZQGAi5U8h5SFyuKZ2z+Pg4MD\nzZs3zyvlgzxB2IPVM1qtltTUVM6fP0+9evU4f/78Y/v566+/qFevHm+99RZr164lIkIsVWpqnpv0\n/fz8CAkJAWD16tWkpqYC0LdvX4YMGZK3XVhYGHXq1KFjx4789NNPBAYGsmLFCubOnVtEoRvO/UXU\nR6w5xeBmlYwdjiAYxciRIwG5Vw7AZ599xkcffURubi5KpZKJEyfSs2dPxowZw/79+/Hz83tsH02a\nNGHcuHEcO3YMd3d3zMzKfGWCySnQN7JlyxZmzJjBiRMn2LBhA3///Tft27fnrbfewtLSktTUVLKy\nsrC2tmbDhg107doVS0vLoordoFoHuVGtvD0L9kXSN0Bl7HAEoVhUqFCBH3/88anPPbjS1H1Lly59\n7Lnp06fn/fuvv/4ycJSCIeU76cfExKDX6/H29sbBwYGuXbui0+l47733qF27NrVr10atVrNkyRKG\nDh3K3Llzefvtt5k+fToBAQH06NEjX8cJCwsr9Id5Ub2rWvH57miaOruBEeMoabKzs436vZVEj54z\nSZLIysoyYkSmTZyfh2VlZRX6/1y+k/62bdvo2LEjIC++AKBSqWjTpg2XLl2idu3aebeHs2bNYtiw\nYaxatYpp06YxZcoUOnTogLW19XOPY8x52atWhS1R/7DqQgbf9KqOl5MVKuWTV/wR/iPm0y+4J82n\nL+aLfzoxn/7DrKysHptPP78KlPTv39alpaVhZ2eHJEmEhobSs2fPvO1u3rxJeno61atXJykpCYDM\nzEw0Gk2+kr6xfdohiOClx2jx3T4szJRUdrGhipstfq62eT99XW2wVIsqIMFwJEl6aKlBQXgarVb7\nQuuB5CvpR0RE4OjoiKurKwA///wzR44cQaFQUL9+fZo2bZq37Q8//JDXzatt27b06dOHgICAvEWP\nTV0NLwdW9/LB3acKkXHpXI3P4Gp8OmduJvPbqRhikrJQKMDL0Qo/N1uquNrm/aziakM5WwtjfwSh\nBHJzc+PWrVsGW2qwtBEl/f8olUrc3NwK/f4ytVxifj2ruiJLoyMqQb4YyBeFdK7GpROVkIEmV4+T\ntfrfC4B8Majt40iDSqV7RKKo3ik4cc4KRpyvZytI7hT9qQrIylxFdU8Hqns6PPS8Ti8Rm5RFZHwa\nV+Pku4OdF+/w7Y7LzO5dm861PI0UsSAIwn9E0jcQlVKBTzlrfMpZ0/qB8V1r/rnBxxvOUrGcNTUr\nlIwqLkEQSq8yP/dOUevXyIe+DX0YujKUOynZxg5HEIQyTiT9YjDx9aoEuNvxbkiomLtfEASjEkm/\nGJiplCzoW5f07FzGbTz3Qt2tBEEQXoRI+sXEwVrNskH1ORAex8J9kcYORxCEMkok/WLk62rLwv51\nmfN3BDsu3DZ2OIIglEEi6Rezl/1d+aJTNcb8epaLt1KMHY4gCGWMSPpGMLBJRbrX9WLoilDi0wq+\nHqkgCEJhiaRvBAqFgsldquNTzpphIaHk5IoePYIgFA+R9I1ErVLyQ/96JKRrmLDpvOjRIwhCsRBJ\n34icbMz5aVB9dl28y5KDUcYORxCEMkAkfSPzd7djft86fLcznD1hd40djiAIpZxI+iagVZAb418L\nYtTa04TfSTN2OIIglGIi6ZuIIc0r0/Gl8ryz8gSJGRpjhyMIQiklkr6JUCgU/F/3GnjYW/LeqpNo\ncsViGoIgGJ5I+ibEwkzFDwPqEZuUxaTNF0SPHkEQDE4kfRPjYmvBskH1+fPsLX45et3Y4QiCUMqI\npG+Cqpa3Z07v2kzdGsaBK/HGDkcQhFJEJH0T1a66B2NeDWDkmlNExqUbOxxBEEoJkfRN2Pstq9Am\nyI13VpwgOVP06BEE4cWJpG/CFAoF09+oiYO1OSPWnEKrEz16BEF4MSLpmzhLtYqlwfWIis9g8l8X\n0etFjx5BEApPJP0SwM3ekqUD6/PX2dsMWXGChHQxHbMgCIUjkn4JUcPLgW2jXyY9J5fX5h7icESC\nsUMSBKEEEkm/BPFytGLt0Mb0a+jDW8uPM337ZVHPLwhCgYikX8KYqZSMeTWA1e80YvOZWN5cfIwb\n9zKNHZYgCCWESPolVCPfcmwf/TIe9hZ0nHeIzWdijR2SIAglgEj6JZijtTmLB9Rj/GtBfLLxHB9v\nOEtGTq6xwxIEwYSJpF/CKRQKBjSuyJ8jm3MuJpnO8w9zITbF2GEJgmCiRNIvJQI97Ng8ojlNqpSj\nx6Kj/HT4mpilUxCEx4ikX4pYmauY2v0l5vWtzdy/rzD4lxPcE336BUF4gEj6pVCHGuXZ/mEL0nNy\n6TD3EEciRZ9+QRBkIumXUg/26R/083G+3SH69AuCIJJ+qXa/T/+qdxrxx2nRp18QBJH0y4TGvuXY\nNupl3O1En35BKOtE0i8jnGzM+TG4Hp/+26f/043nxIydglAGiaRfhigUCoIbV2TzyGb8de4Wf4fd\nNXZIgiAUM5H0y6AgD3sGNK7Ign2Roi+/IJQxIumXUe+8XJnwO2li4XVBKGNE0i+j3Ows6dvQh/l7\nRWlfEMoSkfTLsGGv+HI+JoVjV+8ZOxRBEIqJSPplWHkHK96sX4H5eyONHYogCMVEJP0ybvgrVThx\nPZHQ64nGDkUQhGIgkn4Z5+1sTfc6XswTpX1BKBNE0hd4v5UfhyPiOXMz2dihCIJQxETSF6jsYkPn\nWp4sEKV9QSj1RNIXABjZyo+9l+9y6VaqsUMRBKEI5Svp165dm+DgYIKDgzl48CDZ2dl8+OGH9OvX\njy+//BK9Xo9er2fkyJH07t2bS5cuAXD06FEWLlxYpB9AMAx/dzs61PBgwb4IY4ciCEIRylfSr1Ch\nAiEhIYSEhNCiRQt+++03atSowZo1a1AqlRw6dIiwsDDq1KnDnDlz2LRpEzqdjhUrVjBkyJCi/gyC\ngYxo5ceOC3eIuJtm7FAEQSgiZvnZ6Pbt2/Tv3x8PDw8mTpxIaGgoI0eOBKBly5acOHGC7t27k5qa\nSlZWFtbW1mzYsIGuXbtiaWlZoIDCwsIK/ikMLDs72yTiKG5KoIGXNd9sPsUnL7vl+31l9Xy9CHHO\nCkacL8PJV9LfvXs3zs7ObNy4kdmzZ5OSkoK9vT0A9vb2pKSkUKVKFdRqNUuWLGHo0KHMnTuXt99+\nm+nTpxMQEECPHj3yFVDVqlUL/2kMJCwszCTiMIbPbMvTfdERJvWoT2UXm3y9pyyfr8IS56xgxPl6\ntpMnT+Z723xV7zg7OwPw+uuvExYWhr29PampcoNfWloaDg4OAIwcOZLp06fzxx9/MGzYMNavX8/4\n8eO5cOECmZlixaaSoJa3I839XVm0T/TkEYTS6LlJPzMzE51OB8Dx48epWLEiDRo04ODBgwAcPHiQ\n+vXr521/8+ZN0tPTqV69OklJSXn70Gg0RRG/UAQ+aO3H76djuZkoLtSCUNo8N+lHRUXxxhtvMGDA\nAFasWMHYsWPp0aMHZ86coX///mg0Glq0aJG3/Q8//MCIESMAaNu2LX369MHc3BxHR8ei+xSCQTWo\n5Ez9Sk4sPnDV2KEIgmBgCsmE5tU9efIk9erVM3YYov4QOBqZwFvLT3Dwk1Z4ODy7MV6cr4IT56xg\nxPl6toLkTjE4S3iiJlXK8VIFB1HaNzBJktDpdcYOQyjDRNIXnkihUDCytR9rj98gPi3H2OGUGtuu\nbWPY38NI1YqRz4JxiKQvPFXLAFcCPexYdijK2KGUCnpJT1PPpvQN6stHFz7ixJ0Txg5JKINE0hee\nSqFQMLKVHyH/iyYxQ/S+elFTjk3hz6t/0sanDV8EfkFN15rcTL1p7LCEMkYkfeGZ2lZ1x8fZmp8P\nXzN2KCWaJEn08O9BE88mAPhY+7AmbA2Tj002cmSCKdDri68/jUj6wjMplXLd/oqj10nJ0ho7nBIp\nR5fDgO0DAAhwCsh7fkDVAcxqOYujt46Sq881VniCEUmSxOp/oqk5eVexzXklkr7wXK/VKI+bvQUr\njl43diglklqp5k3/N/Fz9Hv4eZUatVLNlGNTuJBwwUjRCcYSk5RJ8E/Hmb79Ml92roafm22xHFck\nfeG5VP+W9n8+co30HFEiLYiryVcZuH0g7Su1x1pt/djr1mprNnfbTDnLchy4ecAIEQrFTZIk1vxz\ngw5zDmGmUrBrTAt61vdGoVAUy/FF0hfypXNNTxys1IQcizZ2KCWKi5ULXf26PjHh32ehsiD0big7\nr+8sxsgEY4hNzmLgz8eZti2MSZ2qsfytBpR3sCrWGETSF/LFTKXk/ZZVWHYoiiyNGFyUHxuvbGTZ\n+WX0DOj53G27+3fnq6ZfMe/UPJKzxVrFRSUlS4sxJiGQJIm1x2/QfvZBFAoFO8e0oFeD4ivdP0gk\nfSHfutepgKVaxZrjN4wdSolQ1bkqtd1qF+g9MekxJGYnFlFEZVtcWjbNpu+lzawDLDsURXJm8XRD\nvpWcxaDlJ/hmaxhfdKrKircb4OlYvKX7B4mkL+SbuZmS91pW4ccDV8nWitL+s0w5NoWErATa+LTJ\n93vMVebMaDGD6NRoFp4Ry4wa2rw9EVRxs6VvQx9W/S+aRt/s4aP1Zzl9I6lISv+SJPHrCbl0L0kS\nO8e0oHcDH6OU7h8kkr5QID3rVQBgw8kYI0diuiRJolq5anjbeRfq/U6WTjhZOBmlGqK0upaQwbrj\nN5nwWhBDW/iy96OWLBtUn4z3pk8IAAAgAElEQVScXN5cfIxO8w+z5p8bZBioo8LtlCzeWn6Cr7eE\n8fnrVVk5uKFRS/cPEklfKBBLtYphr1Rh8f6raHL1xg7H5GRqMxm9bzTNPJvh6+hbqH3UdqtNV7+u\nDNoxiIgksVC9IczcFU6LAFca+5YD5PEnL/u7sji4Hkc+bU27ah7M2xNBo2/2MGnzBcLvFK7PvCRJ\nrA+9SbvZB9H/W7rv09D4pfsHiaQvFFi/hj7k5Or4/bQo7T9KL+nxc/SjnFW5F9qPtZk1nXw7Ud6m\nPFqdGBT3Is7eTGb7+dt80iHwia97OFgyuq0/hz9txaxetbh+L5MOcw/Sc/FRNp+JJSc3f1WZd1Ky\nGfzLCSb/eZEJr8mley8TKd0/SCR9ocCszFW887IvC/ddJVcnSvv3Xbp3iZmhMxlZZyTmKvMX2pdC\noaBXYC82X93M2ANjDRRh2SNJEt/uuEy3Ol4Eedg/c1szlZL21T1YObgh+z9uSV0fJ7768yJNpu1l\n2vYwbtx78kpykiSxIfQmr84+gFYnl+77NTKt0v2D8rUwuiA8akDjiiw+cJW/zt0i6NlrrJQZZkoz\nvO28USoMV5Zq69OW2q61Sc5OxtFSrD5XUIciEgi9nsTej18p0PsqlrNhQseqjHk1gB0X7rD6n2iW\nHIziZX9XBjTyoXWQG2YqJXdSsvns9/P8E3WPz16vSj8Tq8p5EpH0hUKxtTBjcLPKLNgbydwObsYO\nx+g2XNmApcqSIS8NMeh+3W3csVHb0HFTR+a1nlfgLqBlmV4vMX37ZQY2qUgFp6cPjnsWS7WKbnW8\n6FbHi8t3Uln9vxuMXX8WO0sz2lf3YNOpGGp4ObDjwxZ4OxfuGMVNVO8IhTaoaSXiUnM4ciPD2KEY\nnaXKEkuzornlsTW3ZWm7pQQ5BxGTJtpR8uuvc7e4mZjJiFZ+z984H4I87Pm6Ww3++awNH7T2JyIu\njXEdglg1pFGJSfggSvrCC3CwUvNWs0qsOhmNd4Xb+LvZUrGcDeZmZacsIUkSs0Jn0dWvK/5O/kV2\nnEDnQH48+yOn40+zuO3iIjtOaaHJ1TNzVzjvtayCk82Lta88ysbCjH6NfOjXyMeg+y0uIukLL2RI\n88ocv3KLyX9d5G5qDiqlgorlrPFztcXP7b9HFVdbbCxK359brj6XHF0OVmZF30vjrRpv0VfXl2O3\njtHQoyEqparIj1lSrfknmhytnrebVTJ2KCan9P0vFIqVo7U5X7XxoGrVqqRma7kal05kXDqR8elc\nuZvGtvO3uZGYiV4CL0crqrjZPnZBcDZwSay4pGpSWXRmER/W+xAbtU2RH89CZYFGp2HS0UnMbjmb\nGi41ivyYJVFatpZ5eyP5uF0g1uYixT1KnBHBYOwt1dTxcaKOj9NDz2drdVy/l0FkXDoRd+ULwtGr\nCUQlZKDJ1eNsY46fq618QXCzpYKTFV6OVng6WuFkrTbZ3hApOSmkadJeuHtmQdiZ27Gl+xbuZNzh\nSOwRmnk1K7ZjlxRLD13D0UpNr/oVjB2KSRJJXyhylmoVQR72j/WT1uklbiZm5t0ZRMals+XcLW4l\nZxGXloMkgZVahaejJZ6O/10I5IclFRyt8XCwNEobwpm4M1xJusLU5lOL/dgWKguO3TrGpXuXRNJ/\nRFxaNssORfF9r1qYqcpO21JBiKQvGI1KqaCSiw2VXGxoi/tDr2ly9dxNzSYmKYtbyf8+UrI4cT3x\n39+zydLqUCjA1dYi76Lg5WSFp4N8kfD9txqpKCRmJxKXGVck+86P3oG90eq1zD89n54BPfGw8TBa\nLKZk/p5IAtztaF9dnI+nEUlfMEnmZkq8na2f2hVOkiSSM7XEJmcRm/zfhSE2KYt/rskXhoT0HOb0\nrk3X2l4Gje33iN/xd/KntU9rg+63IBQKBXpJz83UmwCEJ4YT4BRgslVhxeF6QgZrj99g1TuNyvR5\neB6R9IUSSaFQ4GRjjpONOTW8HJ64zbrjN/hk4zl8XWx5qcKTtymMyORI7C3sqYFxG1ItzSyZ8coM\nUjWp9PizB0vbLaWac7VCJ7wrd9OwtTCjvINliUyaM3eF87K/S96kasKTiaQvlFp9GvoQdjuVoStD\n+fODZrjZvdjgKUmS+PnCzwx9aahJTYlgb27Ptu7bUCqV9N7Sm2kvT6OKY5UC7ePszWS6LTqCJMmj\nrf3cbPF3s8Xf3RZ/Nzv83GzxcrRCqTTNi8G5mGS2nb/N1lEvGzsUkyeSvlCqTexUjYi4dN4LOcna\ndxtjYVb4vu2pmlT+uf0PnXw7GTBCw3C0dESn19EnqA8+dj78cuEX3gh4Aztzu+e+V6eX+GLzBXrV\n8+bDV/2JuJtORFw6kXFp7Lp4lwV7I0nNzsVKrcq7GPj9ezHwd7PF29kalZEvBt/uuEy32l5ULf/s\nSdUEkfSFUk6tUrKwX126LjzCxN8vMOPNmoWqukjKTmLn9Z380PYHkx0UpVKq6OHfg8TsRA7GHuS1\nyq+RpknD09bzme/79cRNou9l8svbDXG2Mae8gxUtAlzzXpckifj0HCL/vRhExKVxIDyenw5d416G\nBnMzJVVc/70z+PfuINDDnsouRT92AeBQRDwnriWx56OCTapWVomkL5iUOxl3cLd2N2idspONOUsH\n1qfHoiNULW/P4OaVC/R+SZKISonicOzhfC1ybmzOls783P5n4jLj6Pp7VzZ22UhF+4pP3DYxQ8OM\nnZf5pEPgUwfJKRQK3OwscbOzpKmfy0Ov3UvPkcdf/Dso73/X7hHyv2ji0nIY0NiHSZ2qF2mX2vuT\nqgU3qVii5r8xJpH0BZOQmJ2ISqFiwekFeNh4MLTmUNRKtcGmKQ70sGN279q8v/oU/u62vOzv+vw3\nAVqdlrd2vsXERhNZ0GaBQWIpLm7WbvzR7Q9szGwYsnMIU5tPfaxr53c7L+PtZE2fBoWbR6acrQXl\nbC1o9Ejj6fmYFN5bdZIrd/5hYf+6uNpZFPpzPMtf525x414mIUMaFcn+SyMxekEwOkmS+PLIl6wK\nW8WH9T7kzYA3WXpuKeMPjkcv6dHpDbMIe7vqHoxu48/INae5nvDsmUHvZNwheFswmbmZ9Ansg6t1\n/i4SpsbL1gtzlTnNvJpRzrIcv0f8jlYvr8R15mYy60Nj+LpbDYPXyb9UwYE/RzZDoYAuCw5zPibF\noPsHeSzHrF1XeK9llWKdykOn1xGbHltsxzM0kfQFo5p5Yiarw1bzVdOveK/me7hYueBh48GAqgN4\np+Y77I7ezYBtA5AkCb304qt0jWztR3M/F95ZGUpa9uPLEF66d4kP932Iq5UrbSu2RalQ0rlKZ1ys\nXJ6wt5LBWm3N4BqDicuKY1XYKpKzk0nMSmbS5gv0ql+B2t5F0xOpnK0Fq95pRPvqHry5+CibThl2\nWui1x2+QpdUV6aRqkiQRmx6LRqdhw5UN/HX1L47cOkKvv3oRnRrN6L2jydCWrKnFRdIXjOLEnROc\njz9PY8/GNPBoQDmrcg81kDpaOhLgFEBTz6aMrT+WqJQoOm7qSLomHUmSCn1chULBdz1rYq5S8uG6\nM+j08r4Oxx7m+9Dv8bTxpIZLDfSSnkHVB+Wr90tJ4WXrxcbOG8nQZvDqxnZEp9xhXPugIj2mWqXk\nqy7V+bpbDcZvOs/XWy6Rq9OTpkkjU5tJSk5K3uLve27sITk7mRN3TnAk9ghxmXF8e/xb9JKe/fH7\nuZhwkXtZ94hKiSI9J5d5eyL4sK2/QSdVS8xOJD4znrPxZ/n2+LfkSrl0+b0LF+9dxFJliYXKgkbl\nG7H9je04WjgS5ByEudKcdE26wWIoaiLpC8UqR5dDqiaVAzcPcCb+DM29mhPo/OQFq0GeYKyBRwPK\n25RnXP1xKBVKevzZg6jkqELHYG1uxtJB9TlzM5n3Ny9hw5UNOFk64W7jjqOlI++89A5qlbrQ+zdl\nCoUCezNPcmPeZ2TLAKaemEBydnKh96eX9EiSRHhiOLHpsYQnhrPi4goA3v/7fcITw1l2fhnR0jq+\n7+/B+oR+DPj5MMN2Dee3iN84GHOQcQfGAfB96PfEpMdwOfEyFxIuoJf0JGYnkqvPJSozirjMOPbf\n3M9nhz7jxwMRaCtMpE6VbNZdXscfkX+QkJXA5sjNSJLE3Yy7aHSaZ8aeqc0kKiWKTG0mH+3/iISs\nBKYcm8LqsNVYm1ljb26PWqlmT8891HGrQ+cqnWlXqR0WKgvsze1xsHBgeO3hLLuwjAmHJxT6HBY3\n0ZArFKspx6Zgo7ZhQsMJBeqhY622pk3FNmh0GgZVH4S3vTfD/x7OwGoDaeLZpMBx/B27nlGve/HN\nziS8HG3oGVCd6uWqF3g/JdF3Oy9T0c6PbrU9CbnshY3ahv039/NKhVce+06yc7O5lXELXwdfNkVs\nooF7A84lnCM6NZruft3puKkje3vtZcHpBdT3qE8t11rcTJOnhmhUvhF25nY09WyKRqch0DmQuZY/\nMn97DnfD3qR6zcbU9nbLG/ewtcdWgIemjP62xbcADK44mKo+VQFo6t6BNrP28177SVRy8CY6LQpz\nlTl3Mu6wPnw9Xf26MmjHIEbXHU2aJo1L9y7xacNPmXNyDsNrDWfN5TX4O/mToc1gxcUVbOqyCS87\nL3R6HV83+xobtQ1KhTJvUZznDcQbUHUASdlJnLhzggCnABwsDDf6u0hIJiQ0NNTYIUiSJEmXLl0y\ndgglSn7O18qLK6WQiyHS7fTbUoYm44WPqdPrpM2Rm6W4jDhpxvEZ0ubIzc99j1anleaenCvFpsVK\nP53/STocc1ha80+0FDhxm3TuZvILx1QQxvobO30jSfKdsFU6cyMp77nwxHCp/cb20u3029KkI5Ok\n+Mx46Zv/fSMtOr1IOhp7VGq8urEkSZL04d4PpeO3j0vHbx+Xtl7dKml0Gun03dOSJlcj6fX6fMeQ\nrc2Vxv92VgqauF3662xsvt7z4Pn64o/zUpcFh595zOTsZClDkyFdSbwiHY09KiVlJUmfHvxUSstJ\nkzZd2SQdv31cys7NljQ6Tb7jfha9Xi+9veNt6c/IPw2yv4IqSO4USf8JRNIvmGedr6vJV6Xz8eel\n/Tf2S4diDhXJ8Xdf3y2dizsnbQzfKC09t/Sx11NzUqX5p+ZLObk50uSjk6UL8Rceev2LP85Ljb/5\nW7qbmlUk8T2JMf7GcnV6qfP8Q9L4384+9ppGp5F0ep00+ehk6U76Helc3DkpIjFC0ug0UnZudpHE\ns+p/1yW/z7ZK07eHSbm6Z1807p+v6wnpUpUJW6WjkQlFEtOL0Og0UnJ2svTZoc+kpKyk57/BgAqS\nO0X1jlAk9JKe7Nxs/oj8A0mS+Kj+R0V2rLYV2wKQrk3H3sKeU3dPsSt6F4NrDGbn9Z30DOjJ5cTL\nxGfFM6nJpMfe/0WnakTcTWf4qlOsGdrohaZqMGXrTtzgRqI88vZRaqXchnH//LjbuD+2jaH1b1SR\nAHc7hq86SdjtVOb2qYOD1bPbUmbuukJzfxeaVDG9SdXUSjVmSjOszaxRKVVk52ZjafZi8z0VBdGQ\nKxSJ70O/Z+o/UxldZ3SRJvwHNfFswqsVX8VCZYGnjSc5uTkciDmAXtKzoM0CvGyfPMWyWqVkYf+6\nxKVl88UfF16od5CpSszQMGNHOJ+0DzKp5SkbVHLmz5HNSczQ0G3hESLupj112/MxKWw9d4tPirjH\n0YuwUdvweePP2X9zP0N2DjHJvyVR0hcMasf1HSRmJdKvaj/MlGZGmaemukt1qrvIjbLL2i3L13uc\n86ZqOErV8va83axgUzWYuu92XqZiOWt6N/A2diiP8XS0Yv2wJnz2+3m6LTzC971rP3ERlPuTqlXz\nNP1J1dr4tMHbzptrKddwsHCgnJXp3JmIkr5gEPey7nE58TKWKksszSzxtPXEzdrN2GEVSJCHPd/3\nqs3UrWEcjkgwdjgGc/pGkjzytqvhR94aiqVaxayetfioXSAjVp9i9u4r6PX/lZJP3crk+LVExrwa\nYMQo889abU1tt9osOLOA9eHrjR3OQ0RJX3ghkiSh0Wv4NfxXolOj87rYlVQdangwqo0/I9acYvOI\nZlQqppkii4pOLzFp80V61femVhGNvDUUhULB4OaVCfKwY8SaU1y6ncr3vWphY27G8pOJDGhc8iZV\nm9p8KiqFiu9Dv2dg9YEmMbJbJH2hUE7dPYW3nTcrLq7g8u3L/PD6DwabHM3YPmjtx+U78uIrm95v\nip1lyR2otfb4DW4mZbJy8OONt6aqqZ8Lf45szrshJ+m+6Cjd63gRm6ZlZGs/Y4dWYFZmVmTlZhGf\nFU9Wbha5+lzMlMZNu6Xjf6lQLBKyEph+fDq5+lxmhc7iTPwZ+lftz9BKQ1Gr1CY7z3xBKRQKZvas\nhZlKyZhfzzxUzVCSJGZo+G6n3HjrZEKNt/nh7WzNb8ObEORhx3c7w+lZw9GkGqALwsrMimkvT+NO\nxh36bOlDji7HqPGIpF9CSJLEF0e+YO3ltdzLusfR2KNFfsz7c6PsuLaDsfvHYm1mTWJWImmaNEI6\nhvBqxVcpb1see7XpN6wVlLW5GUsH1uP0jWRm7Q43djiFMmPHZSqZaONtflibmzG/bx1+ebsBb1Q3\n7aqp/KjhUoPhtYeTqc0kPjPeaHE89z7j9OnTTJ8+HbVajbW1NTNnzmTFihXs2LEDZ2dnXFxcmD17\nNhkZGYwcOZKcnBxmzZpF+fLlWb9+Pebm5nTr1q04PkupNf/0fFysXBhQdQCZuZlcTrzM7JOzaeLZ\nhD5b+/B5o8+RkFCi5CXXl17oWFqdlh3Xd9DGpw0fH/iYquWq0qVKF6zV1lirrZnxygwDfSrTV8HJ\nmh8G1KP/sv8R5GFP51rPXoHKlJy+kcSGkzFsGt7UZBtv80OhUNAy0I2wsHvGDuWFWZlZ0canDdP+\nmUaGNoP/a/5/RonjuUnf09OTX375BSsrK9auXcvq1asB+OCDD+jQoUPedkeOHKF37964uLiwY8cO\nevbsyb59+1i0aFHRRV/KxWfGk5yTzEsuL+Fs6fzQxGRNPZuil/QMrDYQbztv1l5eS64+FwmJ8YfG\n81e3v9gStYW67nXxsvV6Zn27XtITkRTB+vD1TGg0gRUXV+Dn6MdXTb/CydIJtVL91JWXSruGlZ35\nqkt1Pt5wlptJmQxuVhlLtWlXY5WkxtuyaEy9MegkHavDVtPWp22xDIR70HOTvrv7fwGp1WpUKhW5\nubn88MMPrFy5kn79+tGpUycsLS25c+cONjY2WFtbs2TJEoYNG2bQZe/KEkmSWBW2isTsRL5u9vVj\nrysUClQKFa/7vg7A+7XfByA5O5nxDcejUqrYeX0n3nbebIrYRFxmHJ80+IT14esJrhZMfFY89ub2\nrA5bTVxmHENrDsVGLfdU2dhlY/F90BKgf6OK2FqY8e32y6z+3w0+6RBIl1qeJvu3XRIbb8sSSzNL\ncvW5nLx7kmrlquFm7Vasf0sKKZ9DxpKSkhgyZAjLli1DoVDg5OREWloagwYNYuHChbi6ujJjxgyy\ns7Pp378/ISEhtG7dmhMnTtCgQQNat2793GOcPHkSa2vjd8nKzs7G0tJ4w6cPJhzkdPJpRviOQKlQ\nvnCvmPiceLJ0WZgpzFh+YzkTAiYw7sI4upfvTkVruQTvbV34el9jn6/ikpOr54+wFH49n4yPgzlD\nG5SjulvhPndRnbOUbB3v/H6TwfWceS2g9LS1lNa/sVtZt1gYtZBPAz59obaxzMxM6tWrl7+N8zNB\nT2ZmphQcHCydPHnysde+/fZbaf/+/Q89N378eOnOnTvS+PHj837Pj7I+4Vq6Jl06HHNYupFyQ9ob\nvbdIj5WcbbhZJcvaBHVxqdnShE3nJN8JW6Xhq0Kl6wnpBd5HUZ2zTzeelbrMPyTpnjOBWUlTWv/G\ncnJzpF8v/yrp9LoX2k9Bcudzi5C5ubmMGTOG4OBg6tatC0BaWlrea2fOnMHH579FlU+ePImPjw/u\n7u4kJSUB5P0Unk4v6Tl++zgLTi/A09aTVj6tivR4Jj/ntwlztbPgm+4vsX30y2RqdLT9/gD/t+US\nKZmPL79YnE7923g7pWsNlCW48bYsMVeZ0yuwV7GOcXlunf6WLVsIDQ0lIyODlStX8sorr3Dt2jWu\nXr2KTqejU6dOVK4sz1MiSRIrV65kxgy5h0eNGjXo06cPzZs3L9pPUcKdjz/PV8e+IuS1EJpXaF5q\n+ruXdgHudvzydkMOXonnm21hbDwVw+g2/gxoXBG1qnh7Q8uNtxfo3UA03grP9tyk361bt3x3uVQo\nFMydOzfv95EjRzJy5MjCR1fKafVatkVto0PlDgx9aShWZlYm2zj4VHo9VgnnQAqCkha7gbQIcKWZ\nnwsbQm8ya/cVVh6LZvxrQbSr5l5s3+fa4zeIScoiZHCjYjmeUHKJwVlGotVpicuM45eLv5CSk0KH\nyh1KXsIHOP4jlfa8C2v7QlbZrcZTKRX0aejD/o9b0rlmeUavO02fJf/jfExKkR/7XnoO3+0M59MO\nJW/krVD8RNI3guTsZF7//XUytZn81uW3Ejcb5UMCOnCr4SRIvws/toDYU8aOyKhsLMwY2y6QfR+3\nxMvJiq4LDzP21zPcSs4qsmPO2BFOJRcbetcvmSNvheIlkn4xkiSJ9eHrUSqVTGw8EV8H35I7SVmu\nBs6uA8eKpFTuCIN3QMBrZbq0/6DyDlZ836s2f45szq2ULFrN3M/MneGk5+Qa9DinbiSx8VQMX3et\nLhpvhXwRs2wWk6zcLFQKFbuu7yLAKYAWFVoYO6QXs/8bOL8RguTBYZhZQMd/p2i4dghOrYBOs8HC\nzngxmoAaXg6sHdqY3ZfuMn37ZdaduMkHrf2Q0jO4qb+DTi+Rq5fyfurzftfnPX//Naus21hmx2OZ\nk4ilJhELbTJTU9rRt355arpbGPujCiWESPrFQJIkBu8YTN+qfVnabmnJrLt/UPQxODofBm5+clK3\n94S4MFjSEnquAI8axR6iKVEoFLSr7kGrIDdW/y+aJQej0GRn4qa+hosilXKKVNQKiVPm9aiuD6ej\nZheOUgqOUjIOUiq/2/XjmG0HpsR9REVNBOkqR9JUjqSbOdLUryfj/WNhRkfwawNBncC/HVg7G/tj\nCyYq3yNyi8PJkyfzP6qsCIWFhVG1alWD7GvHtR1423mjl/T4OflhZWZlkP0aTXYqLG4G1bpCO3nC\nqCeeL20WbP8Ezq2HjjOhbrARgjUhkgQ3j4NTRbDzQPd/5VHlZsqvWTpA+Vow6C+48Q+cXQs2rv8+\nXMCrLjhVgpw0UNuA8pEqwVwNRB+Gy1vh8ja5faXncvk7ykwsuReAlFhIuw0V6nPl9BEC6jQzdkQm\nqyC5U5T0i4he0qPRaTifcJ5cKZdOvp2MHZJhxIeDY0Vo/cWzt1NbQZf54NMUUmOKJzZTdO8qnPtV\nfqTEQI8lUOMNotssxbd6XbAuJ1eN3efTSH48ydOqyszMoUpr+fHad3D7tPwdabPg+2rg4i/fAQS9\nDu7VTbtrrSTBtQNwYpl8AaveHbrMx3fnAEgeCi0nmHb8JYBI+kVk3ql5xGfFM7X5VGOHYjiaTPBu\nIJdI8/sfr3Zf+Wd6HGx6F16bAa5FuM6pTguRe+REWqUVHJgB+lyo3AIqNHg4wRaVzESwcoKYUPip\nrXzcJiOheg+wkRfIznGsIleDGZpSCV4PlPiGH/n3DmAr7J8GtfpC9x/k78PKGVQmlgKWd4TYk1Dj\nDRiyGyrInyW2yddUPPYZJN+AzvPkC51QKCb2jZd8CVkJnIk7Q+/A3uTqDdtTw6jS/u2S2Wc1VKhf\n8PerreVS7ZKW0GUevPSmYeO7exHOrJGrk7RZ8Mo4OelbOUHYn3B4DiiUUKkZ9FsPeh0oVfLDELRZ\nEL5dLtFH/g3DDsrVMh+cgnJVDHOMwihXBZqNkh/pcf/1rvrzA4g5Ife4CnpdPldqI1Q93j4rl+od\nfOTvrPVEcKv6WJVUpls9GLwLVveE1W9A33VgXrLXLzYWkfQNSC/pORd/jo1XNtK6beuS2x3zUZIE\nf46Ecn7gWadw+7CwhTeWwcnl8Mf7EH0EOkx/sZJ3xj25ZGtmBT+/Bl51oP1UuSrD/N/ZWhsOlR/a\nLLlOPT5cTvQXNsG2j6DSy/JdQOVXwDWwcFUH5zfCljGgNIMaPeDtHeBWTd6XMRP+o2zd5AfI30Xk\nHvkO4I/3QKGCj69ARgLEXQSPmv9ta2h6nXzOTiyV74YCOsBLPeXXKj2j3t4tCN75G0J/lr9zoVBE\n0jeQy4mXmXh4Iss7LKeVd6uS30PnQaE/w43/yVUFL1IyViig/mDwrAv//CgnmoLK1UDkbrlUf2UH\ntP8GGg2DMeflBtGnUVuB7yvyAyCgvXwhunYQTq6QG53fXC4n7bAtUL4mOPo8eV9xYfIYhRvH5ARf\nvjZ0/xH82pacagcLO6jeTX7otBB/GVRquHVarobTpIGtu5z8m34gn7e0u3Lj8qMNyfmVFA1IcnvD\nyV+gUnN44ye5cTu/7Nyh1QS5qvG3d+CVT8CzduHiKaNE0jeAo7FHqedRj0HVB2Grti1dCT8jAXZN\nlPvcPy0JFpRnbbleWa+D9QOhxptQrcvz35cQAT+3l5NUjR7w1jbw/nehkGcl/CextIfA1+QHQHq8\nfGHI1cDfX8K9SHCqLN8FBHaEwA5yoj+2AO6cl+8Q6gwASQcufvKjpFKpwePfZTaDOsL4G5AcLX/O\nO+f/q0b56VX578Gjhrx9+drP75Wl18PVPXIVzpWd0OpzuRpn8PYXi9nMAhy85DaAnr9AQLsX218Z\nIpL+C0rKTuKLo1+wuO1iOlfpbOxwDM/GBd7aIpfODU2hBO/GsHEwNHwX2n71cEk5PQ7Ob5BL9T2W\ngGuQ3P0z8DXD1z/buv737w9Oyg2GUQfkO4GofXLSz82We5P0WQuOpXjKA6USnCvLjwcvxkP3/nch\nuHNebsOoGwyXNsO+aXe5sWQAABCQSURBVP9eCGrKPz3rAAr48WX5e6zZS27nKF/TQDGq5E4BjhVh\nXV/53w2GGGbfxSkzEY4vkcdWeBXB/7EnEEm/kHR6HZ8e+pT+Vfuzrcc2LFSlcETkiWXy7b13ES27\np1BAk/fl3i0b3oKY4/JgrswEOYlE7JLrxGv1lasalCq5hF8cHH3khPZgSbbeW8VzbFNl4yI3+FZ5\nZK0Hz7rQ+D35QnDpT9j3DXSaA7V6Q5sv5UFjBb0Tyw+FApqOlC/AB2bIfyfmxl95L1/S4+S7xhM/\ngUMFqFh8YxBE0i+Euxl3sTSzpK5bXdyt3Utnwo89Cds/hX6/Fv2xvBvAe4dgx3i59A9gXx6G7JK7\nH5am6rLSyNH74QuiXic/oHgu0tW6yo33SpVcBVetG6hNeGnFjASYW0seP9Hth39jN6FFVITHffPP\nN/g5+fFBnQ+MHUrR0GTKjXn13pYbJ4uDtbNchQNywu80u3iOKxieIbvCFuSY2Slw4FsIXQ5915rW\nSOSESDg8W64mrNoZ3t4uj8I2QoFGJP0COBhzkJtpN5nSbAo26lLcR3j3F4ACXp1i7EgEIf8sHWDI\n37C2DyxrCwM2grOvcWO6cwEOzYJLf4BvK7D3kp83Yo+jUtKRvGhJksS9rHuA3BffwcIBM2UpvV5K\nkjyQqsePJad+VBDusykHg/6Uexj90hm02caJQ6+X56n6uT3oNPDOHgjeVGyNtc9SSjOXYe2K3sWC\n0wv4vevvJX9K5GfJTJRvN9t9bexIBKHw1Fbw5i9w94Jct5+RIDdCFzVJknt7HZoJ/u3lRubR5/Km\n3jAVoqT/DOmadJacW0Jr79bMaz2v9JbuQf6D/WuUPDxfEEo6pVLuHpqZCPPrwrFFRXcsSYLwHfI4\nhtVvylVK99eZMLGEDyLpP1WOLoc0TRqn4k6Roc2gskNlY4dUtM6uk4flt51s7EgEwXCsnaH7Etj7\ntdwb7X6vIkPQ6yAnXa6+2fmZ3PV49FnoPFce42CiSnHRtfAyczPp9Hsn5rScw+K2i40dTtFLioZt\n4+QpDUxprhjh/9u796AorzSP49+mAZFgoyTKSGJE4iVMxku8xGhWkWGSNSpGo2MQ4zobxGtlMaZ0\n1ktFM2NGXG8ssqhoasYZJSox6mocx9oUBC8ZFTTlDDolGklIShhiBFtAmqbP/nG0jSmj0EA39Pt8\nqqzi8nb3ec8fP1/Oe97nEU2h10j41ceQ+Zre4TNuo176uZIL9hod2vYa/SBa2LP6GZHyL/XDeHYb\noPRuoJK/6xpUdhvU1UB1OfSN0/We5p5qeRVLf0TrGKWbKKX4qPAjwhxh/Gbob3g65GlPD8k9TmyA\nrkPl4SPhvR7vr4u1/XWjvm917bJ+kMy3jf5n9tc3XkFv/2zT7m6vgzvF3R7pqEtvmG+/xjdAl+mA\nVhP4IKHvVFpZSkhACDlf5zAscBiTwiZ5ekjuM3Il2CrlISjh3Tp0hZeT9dd3is3dT9TC+/+8XSgM\nmt48Y3MjWdNHl1SYfmQ6R748woafb6B3cG9PD8k9Sv4Ou6bqG1Ft23t6NEIINzB06DuUg3nZ88gv\nzWfzi5sZ1W2Up4fkPrW39FO3AZbWUw5YCNFohgx9pRR/vvJnrlVfI+qJKMKCwggLCvOuksgPk70C\nbDd1IxMhhGEYbk3/u1vf0c6/HQe/OEigbyDje4z39JDc72SGvqE17eCPN9sWQnglQ4W+UooZR2Yw\nJXIKaT9PM86VfdlFOPsnKD6pOz11j4Ens5uutrkQotUwROgrpVh6fCljIsawbsQ6Hg963BiBf/5/\n4bP/geK/6k5PAxNAOWQvvhAG5vWhn/t1Lr069HLWvn/S0kQt/1oipXSj6Yqv4GcT4MY3ev/9uHQJ\neiEE4MWhb7VZCfANYOc/djK2+1gm9JxQvxdePYe5prJ5B9fUKr/VZRTO/kn3ke03WYf+87M9PTIh\nRAvjlaGvlGLW/80iNiKWtJg0fEz13KRUsA/2zcbys1nw9DNwZAm8MK9lXiU76vQj5YEhushTjRWe\nnapbxrUL9fTohBAtlFeFvlKK5FPJRD0RxW9f+C1dgrrUL/AdDt1x5+haeDmZ60Ev8JOaG2AthbRB\n8OwUGL6wZTTDvl4EZ3foZuHdhsH4TRCfpUvHGuE+hRCiUbxmn/7pktOUVpXyVPunCA4IJiI4Aj+z\nX/1e/GkynNqsmxzcecw6+AmYslu3Nfvuii7PWnyq+U7gYepq4Y/j4L/7weVPIGoBvPxf+ndBHSXw\nhRD14jVX+n8o+AO/ePIXTOrVgJo5N/8JgY/BwDd0tbz7tVZ7cjBMOwBFx3QFvutfQv7vYeh/NG8P\nzjo7fJED53ZB5JjbzZ9H60qYoT9tvs8VQng1rwn91OhUzA1pxvzVSdg1BV5aoQP/QUwmvZQCUP0d\nXDwCp9+HoW/qm6VN+YDTzX/qBsp/+1AXQYuMheDby0rPJTbd5wghDMlrQr9Bgf95JhxIgsGzoPcv\nG/ZBYc/CrGNQ8BFk/w5OboKZRyH48Ya9z/eVfwV/y4L+vwKzny77+q/v6St7fy9uwC6EcDuvCf16\ny7l9wzY2VW9tdIWPD/SeCD8dB4V/AUsYfJ0PVz/XO2jqU8CsuhzO79fLN18eh859ocdL8JPe+l6C\nEEI0A6+5kftQd9qkdR2iu+i4GvjfZ/bVV+MmE1ivQs5KSBsIn39w/7Zsdpu+NwB6vT53NXQZDHNO\nwsxcHfhCCNGMjHGlf+0y7HodRq+92+mmqUWOgaei9XLP4V/DiVRIzNYddopP6Sv6go90GYSkc3qt\nPnKs/qtBCCHcxPtD/4sc2D1NB3Lnfs37Wf6PwLC3dY2bL3LALwD+skT/R9DjJRiTAj1H6p8LIYQH\neHfon9oCh/8Ton4Nwxe4by972/Z3W7ENngX/Mh8eedQ9ny2EEA/g3aFfY4WJv9dd7j2lJTzFK4QQ\nt3nfgnLlNcj6d7hxFYbN92zgCyFEC+NdoV9aAFtG6J00Pt79R4wQQrjCe0L/H4fg/Zf07px/26/r\n0QghhLiHd1wOKwV570P0El0WQYqPCSHEfbl8pb97927i4uKYOnUqxcXFZGVlERcXR1paGgA2m43E\nxERqa2ubbLA/ymTS5YWHzJHAF0KIB3DpSr+8vJysrCw++OADzp8/z5o1azCbzezcuZO5c+cCsG3b\nNl5//XX8/OpZ3rix5CEnIYR4KJdC/9y5czz33HP4+vrSp08frly5Qrdu3airq8NkMnHt2jXOnz9P\nYmLDq0JeuHDBlSE1qVu3brWIcbQWMl8NJ3PWMDJfTcel0K+oqCA4ONj5vVKK+Ph4FixYQGxsLOnp\n6SQkJLBmzRoA5syZQ2BgYL3eOzIy0pUhNakLFy60iHG0FjJfDSdz1jAyXw+Wn59f72NdWhOxWCzc\nuHHj7pv4+DB48GDWrVtHt27d8Pf3p6CggJiYGGJiYjh48KArHyOEEKKJuRT6ffv25fTp09TV1VFQ\nUEDXrl2dv9u8eTOzZ8+mqqoKm82GzWajsrKyyQYshBDCdS4t77Rv355x48YxZcoUfH19ee+99wDI\nyclhwIABWCwWRo4cydtvvw3AunXrmm7EQgghXObyPv3JkyczefK9NelHjBjh/Lpz585kZma6PDAh\nhBBNT/Y5CiGEgUjoCyGEgZiUUsrTg7ijIduOhBBC3DVgwIB6HdeiQl8IIUTzkuUdIYQwEAl9IYQw\nEAl9IYQwEAl9IYQwEAl9IYQwEAl9IYQwEAl9IYQwEO/okVtPZ8+eJTk5GT8/PwIDA1mzZg12u52F\nCxdSWVnJ0KFDefPNNwHIzs5m06ZNmEwmFi9eTJ8+fXA4HLz77rsUFhbSqVMnkpOTCQgI8PBZNZ/G\nztcdGzdu5OOPP/b6EtuNna8bN24wb948amtrMZlMrF69mtDQUA+fVfNpyHzNnTuXvLw8ZsyYQUJC\nAgAbNmzg6NGjALz44osuNW0yJGUgJSUlqqqqSimlVGZmpkpPT1fJycnq0KFDSimlEhMTVWFhobLb\n7eqVV15RVqtVlZSUqLi4OKWUUtnZ2Wr58uVKKaW2bNmitm/f7pkTcZPGzpdSSl2/fl3Nnz9fjR49\n2iPn4E6Nna9du3aptLQ0pZRSe/fuVSkpKZ45ETep73zdOXbPnj1q69atztdfuXJFKaWUw+FQr732\nmrp69ap7T6CVMtTyTmhoKG3btgXAz88Ps9nMmTNniI6OBnSV0NOnT1NUVER4eDhBQUGEhoZit9up\nqakhLy/PWUk0OjqavLw8T52KWzR2vgAyMjJ44403PHYO7tTY+YqIiHD2nrBarYSEhHjsXNyhvvN1\n59gfCg8PB8BkMuHr64uP9MmuF0PO0vXr18nMzGTixIlUVVU5l2gsFgsVFRVUVFRgsVicx1ssFsrL\ny+9pE9muXTsqKio8Mn53c3W+SkpKKCsr45lnnvHU0D3C1fnq2bMnZ86cITY2lu3btzN27FhPnYJb\nPWy+Hubw4cN06dKFTp06NfdQvYLhQr+6upqkpCSWLl1KSEgIbdu2dV6VWq1WgoODCQ4Oxmq1Ol9j\ntVpp3779PW0i7xzr7RozX+np6cycOdNTQ/eIxszX1q1biY2N5cCBAyxevJjVq1d76jTcpj7z9SD5\n+flkZmaybNkydwzXKxgq9O12O2+99RZTp06lf//+gK5M9+mnnwKQm5vLwIED6dq1K0VFRVRVVVFW\nVobZbKZNmzYMGjSI3Nzce471Zo2dr+LiYlauXElCQgLffPMNa9eu9eTpNLvGzpfD4aBDhw6A7k73\n/T7U3qi+8/VjCgsLWbVqFSkpKV69oaKpGarK5r59+1ixYgWRkZEAREVF8eqrrzp3Czz//PMkJSUB\n8Mknn5CRkYHJZGLRokX07dsXh8PB8uXLuXTpEh07diQ5Odm5JumNGjtf3zdmzBiv373T2PkqLS1l\n4cKFOBwOamtrWbZsmfO9vFFD5mvFihV89tln2O12+vXrx6pVq5g2bRqlpaV07NgRgKVLl9KrVy+P\nnU9rYajQF0IIozPU8o4QQhidhL4QQhiIhL4QQhiIhL4QQhiIhL4QQhiIhL4wtDlz5nDo0CHn9zt2\n7OCdd97x4IiEaF6yZVMYWnFxMdOnT2f//v3U1NQwadIkdu7c6XxIqqHq6uowm81NPEohmo6EvjC8\n1NRUTCYT5eXldO/encmTJ5OWlkZ2djY2m41p06YxceJEioqKWLRoEdXV1bRp04aVK1cSERFBVlYW\nx44d49tvvyUsLMwQ5RNE62WoevpC3M+MGTMYP348QUFBLFmyhOzsbCorK9mzZw82m424uDiio6Pp\n1KkT27Ztw9/fnzNnzpCSkkJqaioAFy9eZM+ePQQGBnr4bIR4MAl9YXgBAQGMHDmSxx57DB8fH44f\nP05OTg4nTpwAdOGv4uJiwsPDWbJkCZcuXQLA4XA432P48OES+KJVkNAXAvDx8bmnHvv8+fMZNWrU\nPcesX7+eHj16sH79esrKyoiPj3f+Tgp+idZCdu8I8QNDhgzhww8/xGazAXD58mVsNhs3b950Fvfa\nu3evJ4cohMvkSl+IH4iJieHSpUtMmDABpRSPPvooGRkZxMfHk5SUxI4dO5zdnYRobWT3jhBCGIgs\n7wghhIFI6AshhIFI6AshhIFI6AshhIFI6AshhIFI6AshhIFI6AshhIH8P+hpVi4odxbzAAAAAElF\nTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAKICAYAAADO22rcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VGXi9vF7Jpn0DumUJARCIJBQ\nFUUFRapEf4oaFrGsa1tZVFx2sb+6KnYFXQtiI4qurB2piqgoSlcCASmhJCSBkJDeM+8fkaz0lJmc\nSeb7uS4vYXLmnHuSAW+fZ87zmKxWq1UAAABAM5mNDgAAAIC2jUIJAACAFqFQAgAAoEUolAAAAGgR\nCiUAAABahEIJAACAFqFQAgAAoEUolAAAAGgRCiUAAABahEIJAACAFqFQAgAAoEVcjQ7wR+vXrzc6\nAgAAAH43YMCARh3nUIVSanzw9iY9PV3x8fFGx0AbwHsFTcH7BY3FewXHa8pAH1PeAAAAaBEKJQAA\nAFrE4aa8AQCAbdTV1enAgQOqrq4+47FWq1UZGRmtkAqOyGKxKCIiQmZz88YaKZQAALRTBw4ckJ+f\nn/z8/M54bHl5uTw9PVshFRxRUVGRDhw4oE6dOjXr+Ux5AwDQTlVXVzeqTAJ+fn6NGsk+FQolAAAA\nWoRCCQAAbG7q1Km66667TntMenq6NmzY0PD7e+65x2bXz8vL01133aVrrrlGKSkpevHFF2127pN5\n8cUXtWTJkkYd++uvv2rChAm6/PLL9dVXX530mBkzZmj8+PENv1+3bp3i4uK0efPmJuWy5ff0dPgM\nJQAAsKmSkhIVFRWpurpaZWVl8vLyOulx6enpKigoUP/+/SVJM2fOtFmG6dOn6y9/+YvOPfdcSdKq\nVatsdu6Wmjt3rp588knFxMSooKDglMd5eXlp586dio2N1ZdffqmkpKQmX8uW39PToVACAOAkCsur\nVVFde9KvVVRUyqPa1KjzeFhc5O9pOeXXly9frpEjR6q6ulpff/11w0jbE088oU2bNslisWjGjBma\nN2+eSkpKtHLlSr388suaOHGiFi5cqBdffFF79+5VSUmJ8vLy9Oqrr6pjx46aO3euFi9erOjoaO3e\nvVtz585VUFDQCdfPzc1VZWVlQ5mUpKFDhzZkmzNnjiTpiiuuaBi93LNnj4qLi1VUVKSUlBR99tln\nKi8v19y5c+Xj46O3335by5YtU21trW699VYNHz5ca9eu1WOPPaawsDBZrVZ1795d7733nsxmsyZO\nnKjy8nJNmjRJH3/88TH5LBaLfvzxR3Xr1u2k+Y8aO3asFi1apL/+9a/at2+foqOjJUk///yzli5d\nqgcffFD5+fm64447lJqaqtmzZ2vVqlXy8PDQpEmTNGrUKF1yySVauHChMjMz9eCDD6q6ulqBgYGa\nPXt2o37WjUWhBADACdTU1mnoEytUXFnT4nP5urtq44MXy9Xl5J+cW7p0qWbOnCmr1aoHH3xQ48eP\n1zfffKPCwkJ98MEHkqTa2lpde+21Kigo0I033njCOSIiIjRt2jS99dZbWrx4scaMGaOlS5fqww8/\nVGlpqUaMGHHKfDk5OQoLCzvh8draWj3//PNasGCB3NzclJKSopEjR0qSIiMjNW3aND3++ONKS0vT\nW2+9pRdeeEErV65Uz549tWHDBs2fP1+VlZWaOHGihg8frqeeekqvvfaaQkJCdN1110mSxo8fr9tv\nv10TJ07U8uXLNWrUqBNyhISE6LPPPlNMTMwxpfd4/fr10wsvvKDVq1fr7LPP1q5du055rCStWLFC\nH374odzc3FRXV3fM15566inddtttGjRokGprT/4/FS1BoQQAwAm4upi1asaFpxmhrJCHh0ejzuVh\ncTllmczPz1daWpr+/ve/S5J27NihI0eOaOfOnTrrrLMajnNxcTntNY5uAxkeHq6dO3cqMzNTcXFx\ncnFxkZ+fn6Kiok753LCwMGVnZ5/weEFBgUJDQ+Xt7S1J6tmzpzIzM4+5XmhoqAICAhp+XVhYqB07\ndmjr1q2aPHmyJKmsrEwlJSWqqKhQaGioJKlv376S6u+WDgkJ0a5du/T555/rscceOybDwoULFRoa\nqtdff1233XabOnTooFdeeUX33XefQkJCjjnWZDIpLi5OL7zwgmbPnt3wOVCT6eQjydOnT9cDDzwg\nk8mkm266Sd26dWv4WkZGhgYNGiTpzN/75qBQAgDgJPw9Laecqi63WOXp2bhCeTqLFy/WHXfcoSuv\nvFKStGDBAi1btkzdu3fX8uXLddlll0mqX3TdYrGccrTsj6XJarUqMjJSv/32m2pra1VWVqY9e/ZI\nkmpqapSfn39MGQsNDZWHh4d++OGHhhHA1atXa/DgwcrNzVVpaanc3NyUnp7esO7iH693/LVjYmKU\nmJioZ599VpJUVVUlNzc3ubu76+DBgwoODlZaWpoSEhIkSRMmTNDLL78sV1fXhsJ5VHFxsQ4ePKjA\nwEC99NJLuvnmmzVw4MATyuRRV1xxhaT6EdSj/Pz8lJOTI0naunVrw+P9+/fXueeeq3Xr1unll19u\nyCtJ0dHRWrdunQYOHKi6urpmL2B+KhRKAABgM19++aWeeeaZht+fc845uueeezRv3jytXr1aKSkp\ncnNz0z/+8Q/169dP7733ntLS0vT444+f9rzBwcEaMWKErrrqKkVFRSk0NFRubm7KysrSc889p1mz\nZh1z/NNPP61HH31Ur7zyimpqanTuuedqyJAhuuOOO3TdddfJZDJpwoQJp/0M41FxcXHq27evJk2a\nJLPZrIiICD355JOaPn26br75ZoWEhMjHx6fh+LPPPlv333+/pk+ffsK5rrjiCt13331KSUmRl5eX\nLrnkEi1btky7d+9WTEzMCcfHxsbqn//85wl5zGazrr322mNu1JkyZYqqqqpUVVWlv/3tb8c85x//\n+IceeOAB1dTUKCgo6ITvV0uZrFar1aZnbIH169drwIABRscwRHp6esNwO3A6vFfQFLxfnFtGRkbD\njRxn0hZ2yqmurpbFYlFRUZGuvvpqLV68WF9++aV8fHx0wQUXGB2vgdVq1cSJEzVv3jy5ubkZHafR\njn+/NKWXMUIJAADahFdffVVr1qxRSUmJ7rjjDknSuHHjDE51rMzMTN1zzz0aP358myqTLUWhBAAA\nbcLx07iOqFOnTkpNTTU6RqtjpxwAAAC0CIUSAAAALUKhBAAAQItQKAEAgE2lpaXpz3/+syZPnqyJ\nEyfq+eefNzpSs2RmZurbb7+16TkvueSSEx6bPHmyUlJSlJKSon/961+nzXPLLbdIkubMmaPdu3ef\nkPGxxx5TcXGxTTM3BjflAAAAmykqKtI999yjV199tWEx7tWrV9v8OvZYnPt4WVlZ+vbbb1tlSaKX\nX35ZQUFB+stf/qKNGzeqX79+pz3+5ptvllS/r/cfM9533312z3oyFEoAAGAzK1eu1EUXXXTMzi5D\nhgyRJB06dEgzZsxQZWWlgoKC9OSTT2rBggXy8PDQVVddpcrKSqWkpOiTTz7Rl19+qffee091dXW6\n4oordOWVV2rGjBny8PBQVlaWpk2bpqlTp2rw4MFKT0/XuHHjdOONN+rFF1/Unj17VFxcrKKiIqWk\npOizzz5TeXm55s6dKx8fH7399ttatmyZamtrdeutt2r48OGaPHmyevXqpfT0dPn7++vFF1/UvHnz\n9Ouvv2rHjh16+OGHj1l4/M9//rOqq6tVXV2tJ554QlFRUSc9R11dnf7xj38oNzdXvXv3PuP3r2fP\nnsrOzpafn58eeugh1dXVKSYm5oSRyxkzZmjSpEknZHzooYc0a9Ys+fj46P7771dWVpbMZrOeeeYZ\nbdmyRf/+97/l5eWlAQMG6M4777TRT50pbwAAnEdlsVSUfew/1RX1Xys5eOzjxbn1j1dXnPicylNP\nqebk5CgsLEyStHfvXk2ePFmjR49WYWGhXnvtNV111VV699131adPH3344YcaN26cFi1aJEn65ptv\nNGzYMB05ckTvv/++UlNTNX/+fH3yyScqKSmRJEVFRen1119XfHy88vLyNH36dH3wwQf68MMPGzJE\nRkZqzpw56tu3r9LS0vTWW2/p7LPP1sqVK7Vz505t2LBB8+fP17x58xr2x5ak8847T/PmzVN1dbW2\nb9+ua6+9VhdffLFSU1NP2MXmpZdeUmpqqm6//Xa99dZbpzzH119/LX9/f6WmpurCCy887Y+nurpa\n69atU0xMjJ555hnNmDFD8+fPl6urq77++uuTPudUGT/88EN16dJF7733nlJTUxUcHKwlS5bokUce\nUWpqqqZOnXraLE3FCCUAAM7ix5ekb5849rGJH0hxY+TxzsVSSe7/HvcJk/6+Xdr9jfR+yrHPuWCG\nNPyek14iLCxMu3btkiR17dpVqampmjx5smpra7Vnzx7ddNNNkqR+/fpp4cKF6tChg9zd3ZWdna2F\nCxfq7rvv1r59+7R3715df/31kuqn0XNzcxued1RERIQCAgIkSRbL//YoP7o7VGhoaMPXQ0NDVVhY\nqB07dmjr1q2aPHmyJKmsrKyhrPbq1avhvIWFhaf8NpaXl+uRRx7Rvn37GrYyPOr4c2RkZCgxMVGS\nGv59Mn/961/l6uqqkSNHqmfPnsrMzGzYG7xfv37KyMhQz549T/n84+3cufOYz2uazWbdfvvteuON\nN1RaWqpLLrlEw4cPb/T5zsRpC+XHGzJ1sLhSt17QzegoAAC0jnOmSAOuP/Yxz0BJUsV1y+Xp/oed\nXUy/T2LGDJembTv2Oe4+OpVhw4bp9ddf15VXXqlOnTpJkmpqaiTVjy5u2rRJo0aN0saNGxUVFSWp\n/kaV+fPnq6CgQNHR0SooKFC3bt305ptvymw2N2y5KOmYz02aTKaTZvjj43/8tdVqVUxMjBITE/Xs\ns89Kkqqqqk66o43VapXFYmnI/kfff/+9fH19NX/+fH333Xd67733TprDarUqKipKa9asUXJysn79\n9ddTft+OfobyqMjISKWlpSkhIUEbN27U0KFDT/q8U2Xs3r271qxZo4EDB0qq/8xpSEiIHnnkEVVV\nVVEobcXVxazXv9utvwyNlqsLM/8AACfg7lv/z8n4hEgn28vb4iFZwht9CT8/P82cOVMPPPCAampq\nZLFY1L9/f/n6+uqmm27SjBkzlJqaqoCAAD311FOSpBEjRuiRRx5p2AknMDBQV111lSZPniyz2Sx3\nd3fNmTOnyS/3ZOLi4tS3b19NmjRJZrNZERERevLJJ096bI8ePbRz505NnTpV06dPV+fOnSXVjzS+\n+uqruvHGGxUbG3va61100UVaunSpJk+efNoRyuP9/e9/14MPPiipvohfeOGFOnDgwBkzHnXllVfq\nvvvu06RJk+Ti4qKnn35aqamp2rhxo2pqajRhwoRGZ2kMk9Vqtdr0jC3QlE3IW6qsqkYD/vWVXp08\nQBf0CG6Va55Oenp6wxA9cDq8V9AUvF+cW0ZGhqKjoxt1bHl5uTxPVijhNI5/vzSllznt0JyXm6tG\n9g7VZ5uyjI4CAADQpjltoZSk5MQILduSq4rqWqOjAAAAtFlOXSjP6x4sF7NJ32w7aHQUAACANsup\nC6Wbq1lj+4Trs00nfsgVAAAAjePUhVKqn/Zesf2giiqqjY4CAADQJjl9oRwcHaRAL4uWbck988EA\nAAA4gdMXShezSeP7RnC3NwAANpKZmam4uDgtXbq04bEbbrhBt9xyS6Oee/S4OXPmaPfu3XbLCdtx\n+kIpSclJEfpx12HllVQaHQUAgHYhISGhoVAeOnRIlZVN/2/szTfffMIe2nBMTrtTzh/1ifRX50BP\nLdqcrWuHRBkdBwAAuyitLlV1bbV83Xx1uOKwOnh0UHFVsSwuFlXXVqu0vFQdPTsqrzxPvm6+qqmr\nOeXx3hbv016rY8eOKi8vV1lZmRYvXqzRo0frhx9+0LZt2zRz5kzV1dUpOjpaDz/8sMrKyjRt2jRV\nVVU17EYjSTNmzNCkSZMUGRmpu+66S3V1dTKZTHrhhReO2aYQxmOEUvX7fCYnRuhz7vYGALRj72x5\nR/f/cL8OVxzWRQsu0uGKw7r/h/v1zpZ3tCZ3ja764ipJ0lVfXKXVB1af9vjGuPDCC7VixQp9//33\nOu+88yRJjz32mJ555hmlpqbKy8tLq1at0oIFC3TWWWfprbfeUr9+/U44j6+vr+bOnavU1FSNHTtW\n//3vf233TYFNMEL5u+SkCM1esVOZBWXqFOhldBwAAGzuut7XNYw4fn3l1+rg0UGPnvto/QhlZbU+\nHP+hJOnD8R/K181Xg8IGnfL4xhg5cqRuueUWxcTEyGKpf86OHTs0bdo0SVJpaam6d++ujIwMJScn\nS5L69u2rJUuWHHOewsJCPfzww8rPz1dJSYkGDhxoq28JbIRC+bvYEF/1CvfTF79k67Zh3YyOAwCA\nzXlbvKXfu2CIV4gkKcAjQJJUXlOuAM/6X3f07ChJcndxP+XxjeHv76+hQ4c2jE5KUo8ePY6Zsq6u\nrlZRUZE2b96sAQMGaPPmzSec54svvtCAAQN0/fXX6/3339eOHTua8KrRGiiUf5CcFKHPNh2gUAIA\nYCNTpkyRVH/3tiTde++9uvvuu1VTUyOz2az7779fV155pe666y6tXLlSsbGxJ5xjyJAhmj59ulav\nXq3Q0FC5ulJfHI3JarVajQ5x1Pr16zVgwADDrp91pFznPrFCy+86X91DfVv12unp6YqPj2/Va6Jt\n4r2CpuD94twyMjIUHR3dqGPLy8vl6elp50RwZMe/X5rSy7gp5w8iAzw1KCpQn//CzTkAAACNRaE8\nTnJihD7/5YAcaOAWAADAoVEojzO2T7gyC8r1S2ah0VEAAADaBArlcTr4uGtobEfWpAQAtHkWi0VF\nRUVGx0AbUFRU1LC0U3Nwm9RJJCdG6Mkl23TfuHi5mE1GxwEAoFkiIiJ04MABHT58+IzHclOOc7NY\nLIqIiGj28ymUJzGyd6ju/WSzft59WOfEdjQ6DgAAzWI2m9WpU6dGHZuent7oO8KB4zHlfRK+HhZd\nFB/C3d4AAACNQKE8heTECC1Oy1FlTa3RUQAAABwahfIUhsWFqK7Oqu9+yzM6CgAAgEOjUJ6Ch8VF\noxLCmPYGAAA4AwrlaSQnRuirrbkqq6oxOgoAAIDDolCexjndOsjb3UXLt+YaHQUAAMBhUShPw9XF\nrHF9wlnkHAAA4DQolGeQnBSh73Yc0pGyKqOjAAAAOCQK5Rn07xKoEF8PLU7LMToKAACAQ6JQnoHJ\nZFJyUoQ+25RldBQAAACHRKFshOTECP2cka+cwgqjowAAADgcCmUj9AzzVWywjxb+ys05AAAAx6NQ\nNoLJZFJyYgSLnAMAAJwEhbKRkpMi9GtmoTLySo2OAgAA4FAolI3UtYO3EjsH6AtGKQEAAI5BoWyC\n5MT6u72tVqvRUQAAABwGhbIJxvcN1+68Um3NLjI6CgAAgMOgUDZBiJ+HhsR04OYcAACAP6BQNlFy\nYoQW/pKtujqmvQEAACQKZZONSQjXweIKrd9XYHQUAAAAh0ChbCJ/L4su6BGizzcx7Q0AACBRKJsl\nOSlCizZnq7q2zugoAAAAhqNQNsOI+BCVV9fqh515RkcBAAAwHIWyGbzcXHVxr1Du9gYAABCFstmS\nEyO0bEuuKqprjY4CAABgKAplM53XPVguZpNWbDtodBQAAABDUSibyc3VrLF9wrnbGwAAOD0KZQsk\nJ0ZoxfaDKqqoNjoKAACAYSiULTA4OkiBXhYtTcsxOgoAAIBhKJQt4GI2aXzfCO72BgAATo1C2ULJ\nSRH6cddh5ZVUGh0FAADAEBTKFuoT6a/OgZ5atDnb6CgAAACGoFC2kMlkUnJSpD7jbm8AAOCkKJQ2\nkJwYofV7C5RZUGZ0FAAAgFZHobSB2BAf9Qr30xe/MO0NAACcD4XSRpKTIvTZpiyjYwAAALQ6CqWN\njE+M0LacYu3ILTY6CgAAQKuiUNpIZICnBkUFsiYlAABwOhRKG0pOjNBnmw7IarUaHQUAAKDVUCht\naGyfcGUdKdcvmYVGRwEAAGg1FEob6uDjrqGxHfU5a1ICAAAnQqG0seTECH3x6wHV1jHtDQAAnAOF\n0sZG9g5VUXm1ft592OgoAAAArYJCaWO+HhZdFB/C3d4AAMBpUCjtIDkxQos2Z6uyptboKAAAAHZH\nobSDYXEhslql737LMzoKAACA3VEo7cDD4qJRCWFMewMAAKdAobST5MQIfbU1V6WVNUZHAQAAsCsK\npZ2c062DvN1d9FV6rtFRAAAA7IpCaSeuLmaN6xPOIucAAKDdo1DaUXJShL797ZAKSquMjgIAAGA3\nFEo76t8lUKF+HlqclmN0FAAAALuhUNqRyWRSclKEPv8ly+goAAAAdkOhtLPkxAj9nJGvnMIKo6MA\nAADYBYXSznqG+So22EcLf+XmHAAA0D5RKO3MZDLp0qQIFjkHAADtFoWyFYxPjNCvmYXKyCs1OgoA\nAIDNUShbQdcO3krsHMCalAAAoF2iULaS5MT6u72tVqvRUQAAAGyKQtlKxvcN1+68Um3NLjI6CgAA\ngE1RKFtJiJ+HhsR04OYcAADQ7lAoW1FyYoS+2HRAdXVMewMAgPaDQtmKxiSE61BJpdbvKzA6CgAA\ngM1QKFuRv5dFF/QI4W5vAADQrlAoW1lyUoS+3Jyt6to6o6MAAADYBIWylY2ID1FFda1+2JlndBQA\nAACboFC2Mi83V13cK5S7vQEAQLtBoTRAcmKElqblqKK61ugoAAAALeZ6pgN27typhx9+WJJUWloq\nq9WqyZMn6+WXX1Z4eLgkKTU1VXV1dZo6daoOHTqkhx56SL169dKPP/6ojRs36vbbb7fvq2hjzuse\nLIurWSu2HdTYPuFGxwEAAGiRMxbK2NhYpaamSpLee+89FRXV7/QyceJE3XjjjQ3Hpaenq1+/fho7\ndqzeeOMNxcXF6Z133tGsWbPsFL3tcnM1a0xCuD7fdIBCCQAA2rwmTXkvXLhQl1xyiSRpwYIFmjhx\not5++21JkoeHh4qKilReXi4vLy8tWLBAl156qTw8PGweuj1ITozQiu0HVVRRbXQUAACAFjnjCOVR\nmZmZqqurU+fOneXv769LL71UtbW1uvXWW5WUlKSkpCRZLBbNmTNHN910k2bNmqUbbrhBTzzxhHr0\n6KHLL7+8UddJT09v9otpS3zrrPK1mPT28o26ONZXFRUVTvPa0TK8V9AUvF/QWLxX0BKNLpSLFi3S\n2LFjJUl+fn6SJBcXF1100UXaunWrkpKSNGXKFEnSs88+q1tuuUXvvvuuZs6cqUceeUSjR4+Wl5fX\nGa8THx/fnNfRJv1fhrQ2t1hTx8crPT3dqV47mo/3CpqC9wsai/cKjrd+/fpGH9voKe8/Fsri4mJJ\nktVq1bp16xQVFdVw3P79+1VSUqLevXuroKB+i8GysjJVVVU1OpSzSE6K0A8783SouNLoKAAAAM3W\nqBHKHTt2KCAgQMHBwZKkN998Uz/88INMJpMGDhyoc845p+HYV155RdOmTZMkjRgxQikpKerRo4cC\nAgLsEL9t6xPpry5BXlq0OVuDA41OAwAA0Dwmq9VqNTrEUevXr9eAAQOMjtGqnlv+m37YmadHhwUy\n1YBGYVoKTcH7BY3FewXHa0ovY2FzgyUnRmj93gLllnC3NwAAaJsafVMO7CM2xEcJkX566OscjTzo\nqkFRQRoYFaQgbzejowEAADQKhdIBvDZ5oN76apP2HC7Tf9dnqqCsWrEhPhoUFaRBUYEaFBWkToGe\nMplMRkcFAAA4AYXSAUQGeOqK3gGKj49XXZ1Vu/NKtCajQOv25Ou55b8ps6BcYX4eGhT9v4IZF+or\ns5mCCQAAjEehdDBms0mxIb6KDfHVn87qIknKLizX2j0FWpuRr/k/79NDn2+Rj7urBnYN1MCoIA2O\nDlKfSH95WFwMTg8AAJwRhbINCPf3VHKip5ITIyRJhWXV2rCvQGv25Gvl9oOa9dUOySQldvL/fZo8\nSP27Bsrf02JwcgAA4AwolG2Qv5dFw3uGaHjPEElSRXWtNmcVak1GvtbtyVfqT3tVUlmjuFBfDY6u\nv8lncFSQwvzZVx0AANgehbId8LC4NIxMSlJtnVXbc4q1bm++1mTk67Evtyq3qFKdgzw1qGtQw2cx\nuwX7cKMPAABoMQplO+RiNqlXhJ96Rfjp2iFRslqtyiwo19o9+Vq7J19vrMrQPR9vVqCXpWH0cmBU\noBIi/WVxYWlSAADQNBRKJ2AymdQ5yEudg7x0ef9OkqTDJZVat7f+TvKFm7P15JJtcnUxqX+XQD04\nvpd6hvkZnBoAALQVFEon1cHHXaN6h2lU7zBJUllVjTbtO6K5qzJ03ydp+u+tQ5gOBwAAjcL8JiRJ\nXm6uOie2o564vI+2HijS0i05RkcCAABtBIUSxwjx89DN58foicXbVFVTZ3QcAADQBlAocYKbz49R\naVWt5v+81+goAACgDaBQ4gTe7q6adnEPzfp6hwrLq42OAwAAHByFEid15YBOCvZ11ysrdxkdBQAA\nODgKJU7K1cWse8bE680fMpRZUGZ0HAAA4MAolDilYXHBGhQVqGeX/WZ0FAAA4MAolDglk8mke8bE\n67NNWdqcWWh0HAAA4KAolDithEh/XdYvUo8t2iqr1Wp0HAAA4IAolDijv4+M08Z9R7Ri20GjowAA\nAAdEocQZRQR46sah0Zq5eJtqalnsHAAAHItCiUa5dVg35ZdW6T/r9hsdBQAAOBgKJRrFz8OiO0d0\n1/PLd6ikssboOAAAwIFQKNFoEwd3kZ+Hq+Z8y2LnAADgfyiUaDSLi1n/HNNTc77frZzCCqPjAAAA\nB0GhRJOM7BWqPpH+em75dqOjAAAAB0GhRJOYTCbdOzZeH23IUnp2kdFxAACAA6BQosn6dQnUmIQw\nzVy8zegoAADAAVAo0Sz/HN1TP+06rO9+O2R0FAAAYDAKJZqlc5CXrh3SVY8vSldtHVsyAgDgzCiU\naLYpF8Yqu7BCH2/INDoKAAAwEIUSzRbg5aa/XRirZ5ZtV3lVrdFxAACAQSiUaJHJQ7rKzdWsN1bt\nNjoKAAAwCIUSLeLu6qJ/jOqPTjkiAAAgAElEQVSpV1bu0qHiSqPjAAAAA1Ao0WKX9A1X91Bfzfr6\nN6OjAAAAA1Ao0WImk0n3jYvX+2v2a+fBEqPjAACAVkahhE0MigrSiPgQPcFi5wAAOB0KJWzmn6N7\nauX2g/pp92GjowAAgFZEoYTNxAT7aNJZXfT4onTVsdg5AABOg0IJm5p6UXdlHCrVF78eMDoKAABo\nJRRK2FQHH3fdNrybnlqyXRXVLHYOAIAzoFDC5v58brSsVqve+XGP0VEAAEAroFDC5jwsLvr7qDi9\n9M1OFZRWGR0HAADYGYUSdnFZUqS6BHlp9oodRkcBAAB2RqGEXZjNJt03Nl7v/rRXe/JKjY4DAADs\niEIJuzkntqOGxnbUU0tZ7BwAgPaMQgm7umdsvJZuydX6vflGRwEAAHZCoYRd9Qj11VUDO+mxL9Nl\ntbLYOQAA7RGFEnZ314ge2pZTrMVpOUZHAQAAdkChhN2F+Hno5vNj9OSSbaqqqTM6DgAAsDEKJVrF\nzefHqLyqVu/+tNfoKAAAwMYolGgVXm6umnZxD81esUOF5dVGxwEAADZEoUSruXJgZ4X6eujlb3Ya\nHQUAANgQhRKtxsVs0j1je+qtH/dof36Z0XEAAICNUCjRqi7oEazBUUF6Ztl2o6MAAAAboVCiVZlM\n9aOUX/xyQL9mHjE6DgAAsAEKJVpd7wh//V8/FjsHAKC9oFDCEH8f1UOb9h/R1+kHjY4CAABaiEIJ\nQ4T7e+ov50Vr5uJ01dSy2DkAAG0ZhRKGufWCbjpSVq0P1u43OgoAAGgBCiUM4+th0Z0juuuFr35T\nSWWN0XEAAEAzUShhqJTBXeTnadFr3+4yOgoAAGgmCiUMZXExa8bonnr9+93KKawwOg4AAGgGCiUM\nd3GvUPXtFKBnWewcAIA2iUIJw5lMJt03Nl4fbcjU1gNFRscBAABNRKGEQ0jsHKBL+kZo5uJ0o6MA\nAIAmolDCYUwfFaefd+fr298OGR0FAAA0AYUSDqNzkJeuPzdKMxelq7aOLRkBAGgrKJRwKLcPi1V2\nYYU+Wp9pdBQAANBIFEo4FH8vi6Ze1F3PLt+usioWOwcAoC2gUMLhTD67q9xdXTT3+wyjowAAgEag\nUMLhuLma9c/RPfXqt7t04Ei50XEAAMAZUCjhkMb2CdNZ0UG6/q01OlJWZXQcAABwGhRKOCSTyaR/\nT+ovLzdX3fjOOpVX1RodCQAAnAKFEg7Ly81Vb10/SIXl1brtvfWqrq0zOhIAADgJCiUcWqC3m1Jv\nHKzfcor1j//+qjrWpwQAwOFQKOHwwv09Ne/Gs7Ry+0E9+mW6rFZKJQAAjoRCiTYhNsRHb98wWB+s\n3aeXV+4yOg4AAPgDCiXajMTOAZozeaBmfbVD76/ZZ3QcAADwOwol2pSh3Tvq+auT9MCnaVqSlm10\nHAAAIMnV6ABAU43rG66CsipN/WCT3r7eonNiOxodCQAAp8YIJdqka87uqinDY3XTvHXanFlodBwA\nAJwahRJt1t8ujNWEAZ10/VtrtPtQidFxAABwWhRKtFkmk0kPje+tc2M7avIba5RTWGF0JAAAnBKF\nEm2a2WzSM1cmqluIj65982f2/QYAwAAUSrR5bq5mvXoN+34DAGAUCiXahT/u+/1X9v0GAKBVUSjR\nbhzd93s7+34DANCqKJRoV9j3GwCA1kehRLvDvt8AALQuCiXaJfb9BgCg9VAo0W6x7zcAAK2DvbzR\nrh2z7/cNFp3TjX2/AQCwNUYo0e4d3ff75nnrlZbFvt8AANgahRJO4W8XxuqK/pG67k32/QYAwNYo\nlHAKx+/7nVvEvt8AANgKhRJO45h9v99Yo8KyaqMjAQDQLlAo4VSO7vvt6eaiP7+zln2/AQCwAQol\nnA77fgMAYFsUSjgl9v0GAMB2KJRwWuz7DQCAbVAo4dTY9xsAgJajUMLpse83AAAtQ6EExL7fAAC0\nBHt5A79j328AAJqHEUrgD9j3GwCApqNQAsdh328AAJqGQgkch32/AQBoGgolcBLs+w0AQONRKIFT\nOH7fb7ZoBADg5CiUwGkc3fd7e06xVu3IMzoOAAAOiUIJnEGgt5su7BmixaxPCQDASVEogUYYkxCm\nZVtzmfYGAOAkKJRAIwyLC1FldZ1+3p1vdBQAABwOhRJoBE83Fw2LC2baGwCAk6BQAo00OiFMS7fk\nqrbOanQUAAAcCoUSaKQLe4aoqLxa6/cWGB0FAACHQqEEGsnXw6Lzundk2hsAgONQKIEmGJ0QpiVp\nOapj2hsAgAYUSqAJLu4VqkPFlfol84jRUQAAcBgUSqAJArzcNKRbBy1JyzE6CgAADoNCCTTRmIRw\nLU7LkdXKtDcAABKFEmiykb1DlVlQpq3ZRUZHAQDAIVAogSbq6OOuQVFBTHsDAPA7CiXQDGMSwrRo\nM8sHAQAgUSiBZhmdEK5dh0q1I7fY6CgAABiOQgk0Q5i/h/p3CdBipr0BAKBQAs119G5vAACcHYUS\naKbRCWFKzy7S3sOlRkcBAMBQFEqgmToHeSkh0o9RSgCA06NQAi3AtDcAABRKoEVGJ4Tpl/1HlHWk\n3OgoAAAYhkIJtEC3YB/1CPVhkXMAgFOjUAItNCYhXEvSWOQcAOC8KJRAC43pE6Z1ewt0sLjC6CgA\nABiCQgm0UFyor6I6eGvpllyjowAAYAgKJdBCJpNJoxPCmPYGADgtCiVgA2MSwvTT7nzll1YZHQUA\ngFZHoQRsoE+kv8L8PLR8K3d7AwCcD4USsIGj094scg4AcEYUSsBGxvYJ0w8781RYXm10FAAAWhWF\nErCRfp0DFeTtphXbuNsbAOBcKJSAjZjNJo3qHabFm5n2BgA4FwolYEOjE8L07W+HVFpZY3QUAABa\nTaMKZVJSkiZPnqzJkyfru+++U0VFhe6880796U9/0kMPPaS6ujrV1dVpypQpuvrqq7V161ZJ0o8/\n/qh///vfdn0BgCMZHBUkb3dXfbP9oNFRAABoNY0qlJ06dVJqaqpSU1N1/vnn66OPPlJCQoLmz58v\ns9ms77//Xunp6erXr59eeOEFffzxx6qtrdU777yjG2+80d6vAXAYri5mjewVyt3eAACn0qhCmZ2d\nrUmTJunuu+9WQUGB1q1bp+HDh0uShg0bprVr18rDw0NFRUUqLy+Xl5eXFixYoEsvvVQeHh52fQGA\noxnTJ1zfbDuoiupao6MAANAqXBtz0PLlyxUUFKT//ve/ev7551VYWCg/Pz9Jkp+fnwoLC9WtWzdZ\nLBbNmTNHN910k2bNmqUbbrhBTzzxhHr06KHLL7+8UYHS09Ob/2rasIqKCqd97e1NYK1VZlk1f8VG\nDenibfPz815BU/B+QWPxXkFLNKpQBgUFSZLGjRun//znP4qMjFRRUZGCg4NVXFwsf39/SdKUKVMk\nSc8++6xuueUWvfvuu5o5c6YeeeQRjR49Wl5eXme8Vnx8fHNfS5uWnp7utK+9PRq5tUppR6Q/j7L9\nz5T3CpqC9wsai/cKjrd+/fpGH3vGKe+ysjLV1tZP3a1Zs0Zdu3bVoEGD9N1330mSvvvuOw0cOLDh\n+P3796ukpES9e/dWQUFBwzmqqtjjGM5jTEK4lqfnqqqmzugoAADY3RlHKHfv3q37779fPj4+cnNz\n06OPPqrAwEDNmDFDkyZNUrdu3XT++ec3HP/KK69o2rRpkqQRI0YoJSVFPXr0UEBAgP1eBeBgzuve\nUXV1Vv2wK0/D40KMjgMAgF2dsVAmJCTo008/PeHxWbNmnfT4xx9/vOHXEyZM0IQJE1oQD2ibPCwu\nGt4zREs251AoAQDtHgubA3YyJiFcy7bmqKaWaW8AQPtGoQTsZFhcsMqra7UmI9/oKAAA2BWFErAT\nb3dXXdAjmEXOAQDtHoUSsKMxCeFasiVHdXVWo6MAAGA3FErAji6MD9GRsiqt31dgdBQAAOyGQgnY\nkZ+HRUNjO2rxZqa9AQDtF4USsLMxCeFauiVHVivT3gCA9olCCdjZxb1ClVNUoV8zC42OAgCAXVAo\nATsL9HbTkJgO3O0NAGi3KJRAKxidEKYladlMewMA2iUKJdAKRvYO1d78MqVnFxsdBQAAm6NQAq0g\nxNdDg7oGaUlattFRAACwOQol0EpGJ4TxOUq0qpKqEtVaa42OAcAJUCiBVjI6IUw7DpZo58ESo6PA\nSdy36j49/dvTRscA4AQolEAriQjwVGLnAKa90SpySnN0S+Itmtptqqrrqo2OA6Cdo1ACrWgs095o\nJe9ufVdvp72tlXkrNW3lNKPjAGjnXI0OADiTMQnhmrl4m/YdLlOXDl5Gx0E7VVVbpWkDp6m0ulQb\ntm7QJV0uMToSgHaOEUqgFXXp4KVe4X5azLQ37OidLe/orm/ukq+br0LcQ3So/JCmfD2FdVAB2A2F\nEmhlY5j2hp1dFXeV/pr014bfdw/orlFRowxMBKC9o1ACrWxMnzBt2n9E2YXlRkdBO/TNvm/03Prn\nFBcU1/BYqHeoenXopRnfz1Cdtc7AdADaKwol0MpiQ3wVG+KjJYxSwg46+XbSoLBBJzze0bOjwr3D\nVVVbZUAqAO0dhRIwAHd7wx52F+7Win0rNC563Alf83f313W9r9PsjbNVXcsyQgBsi0IJGGB0QrjW\n7snXoeJKo6OgHTlScUR55XkymUwn/bqHq4fyyvJ0pPJIKycD0N5RKAEDxIf7qkuQl5ZuYZQStlFS\nVaLCykLdc9Y9pzzG09VTjw19TMv2LlNZdVkrpgPQ3lEoAQOYTCaNTgjjc5SwmW352zR74+wzLw1k\nkr7e97X2Fu1tnWAAbOJwSaVDz2pRKAGDjEkI1+rdh1VQyk0SaBmr1aoInwh9lPyRXMwupz3WYrbo\nzVFvqqiqSAUVBa2UEEBL7Mkr1bjZq7Rg/X6jo5wShRIwSGInf4X6umt5eq7RUdDGpeWl6bLPLlN5\nTeOWorJarZq9YbY2HNxg52QAWmpPXqlS5vykgVGBuvm8GKPjnBKFEjCIyWTSKKa9YQO9OvTS55d9\nLm+Ld6OON5lMmjdmnnp36K288jw7pwPQXHsPl2ri6/Vl8oWrk+Tq4ri1zXGTAU5gbJ9wrdqRp6IK\nlnFB8+SU5mjkf0fK1ezapOe5mF300I8P6dOdn9opGYCW2Hu4fmSyf1fHL5OS1LS/gQDY1IAugfL3\nsmhF+kFd1i/S6DhogwI9AnX/2fero2fHJj/3mQuekYeLhwoqChToEWiHdACao6FMdgnUrDZQJiVG\nKAFDmc0mjeodqsVp2UZHQRtUVVul6d9OV4+gHs16vq+br2aumann1z9v42QAmmvf4TJN/L1MvpDS\nNsqkxAglYLgxCeG68Z21KquqkZcbfyTReJW1lYrxj2nW6ORRtyXeJm+LtypqKuTh6mHDdACaat/h\nMqXMWa2kLgF6ISVJljZSJiVGKAHDnRUdJE+Li1ZuP2R0FLQxH/32kSb2nCh3F/dmnyPYK1gf7fhI\nU1dMtWEyAE2173CZJr7+kxI7B2hWSr82VSYlCiVgOFcXsy7uFcre3miSsuoy/XjgR9Vaa1t8rpFd\nR+res+4986LoAOxif359mezbyV+zJ7a9MilRKAGHMCYhXCvSc1VR3fJyAOew9fBWzbpwliJ8Ilp8\nrlDvUO0v3q8/L/2z6qx1NkgHoLH255cpZU7bLpMShRJwCOfEdpDZbNL3O1gTEGdWU1ejB354QJsO\nbrLZOXt37K1r4q+RSSabnRPA6R0tk30i23aZlCiUgENwd3XRiHju9kbjFFcV6/P/+1xnh59ts3MG\neQSpq19XTVkxRdV1rIsK2NvRMpkQ6acX/9S2y6REoQQcxuiEMH21NVdVNUw54tSsVqsmL56sZXuW\nyWSy7WhiuE+4EoMTVVvHRy8AezqmTE7s3+bLpEShBBzGBT2CVVNn1erdh42OAgf3+sWva1jnYTY/\nr7fFWxN6TNATa55QRU2Fzc8PNMauQyW675PNyjrSuL3p25rMgvobcHpH1JdJN9f2UcXax6sA2gEP\ni4uGx4VoCdPeOI1pK6dpw8ENjd63u6l8LD6SpJLqErucHziTt37I0Ccbs3Txc9/qtW93qbq2/cza\nZBbUj0zGh/vppT+1nzIpUSgBhzI6IUzLtuSqph39BQrbuqLHFerTsY/dzu/m4qZ7z7pXn+78VIWV\nhXa7DnAyVTV1+vLXbD09IVFPXtFXb6zK0CWzV2ntnnyjo7XYH8vkv9tZmZQolIBDGd4zRMWVNVrT\nDv7yhO29s+UdVddWq4tfF7tex8Xkol8O/aLsUkbL0bq+++2Qamqtuig+ROMTI/TV3RdoSLcOSpnz\nk6Yv+EX5pVVGR2yWrCPlmvh6+y2TEoUScCg+7q66oEewlrDIOU7CzcVNbi5udr+Oi9lFs4fPVm5p\nrg6VsYMTWs8nm7I0pk+YPCwukiQ/D4v+X3JvfXb7ufrtYIkufHalPlizT3V1bWcR/qwj5UqZs1px\noe23TEoUSsDhjEkI05K0nDb1Fybs76fsn9S7Q2+dG3luq13z3fR39Wver612PTi3oopqfbU1V5f1\nizzhawmR/vr4tnP095FxenxRuq58bbXSs4sMSNk0WUfKNXHOT4oL9dXLk9pvmZQolIDDuSg+VAVl\nVdq4v8DoKHAg63LWaW3O2la7nslk0pyL56hHQA9llzD1DftbkpajIG83nR3d4aRfdzGbdM3ZXfX1\n3cPUNchL419cpUcXblVJZU0rJ22cA7+XyR6hPvp3Oy+TEoUScDj+nhad062jFm9m2hv1skqy9Kf4\nP+nGPje26nVNJpOeWvuUvsz4slWvC+f06cYsJSdFyGw+/fqqwb7ueu7qJKXeeJZW/nZII579Vos3\nZzvUXvQHjpQrZc5P6h5SXybdXV2MjmR3FErAAY1JCNPitByH+gsSxpmfPl9Pr33akGs/fcHTuib+\nGuWW5hpyfTiHnMIKrd59WP93kunuUxnSrYMWTT1Pk4d01V0fbtINb6/VvsNldkzZOAd+vwEnNsRH\nL1/jHGVSolACDuniXqHKLixXWpbjf0YI9lVRU6FpA6bp/rPvN+T6Hq4eembdM5q9cbYh14dz+PyX\nLMWF+qpnmF+Tnufmatbtw2O1/K4L5GIy6eLnv9WLX+9QZY0xuz1lF9aXyW7BPnrFicqkRKEEHFIH\nH3edHdNBi1jk3Om9teUtTVs5zW4LmTfGlKQpemjIQyquKjYsA9q3TzYeOOnNOI3VOchLc68bqNkT\n++n9Nfs0Ztb3+nFnng0Tnll2Yf00tzOWSYlCCTiso3d7M+3t3CbFT9Lf+v3N0AwBHgH6z/b/6G8r\njM2B9mlbTpG25RQpOTGiRecxmUwa1TtMy6ddoIvjQ3Xtm2t0xwcbdbDY/tuI5hRWaOKcnxTT0dsp\ny6REoQQc1qjeYdpzuFTbcxkVclbL9izT02ufVmxgrNFRNC5mnB4f+rhq64yZSkT79enGAzo7uoMi\nAjxtcj5vd1fdMzZeX049TweOlOuiZ7/VvNV7VGunpdhyCiuUMme1ojp665VrBjhlmZQolIDDCvHz\n0IAugdzt7cRi/GNadd3J0wnyCNKuI7s08cuJlErYTF2dVZ9tymrSzTiNFRfmq//cPEQPXNJLzy//\nTf/38g/6NfOITa/xxzL56jUDGhZkd0YUSsCBjf592hvOZ0fBDi3fu1yjuo4yOkqDpJAk3dH/DplN\n/KcDtvFzRr4Ol1ZpdJ8wu5zfbDbpqoGdteLuYeoV7qf/e/lHPfhZmgrLq1t87pzCCk18/Sd17UCZ\nlCiUgEMbnRCm7bnF2nWoxOgoaGUl1SUqqS6RyXT6Nflak6+br0K9QnXD0htUWVtpdBy0A59uzNLF\n8aHy87DY9TqB3m564oq++vCWs7UmI18XPfutPtuU1ezPqOcW1ZfJLkFeem0yZVKiUAIOrVOgl/p2\n8meU0skUVRXpcPlhTRswzegoJ+jk20kjuowwOgbagYrqWi1Ky9alSS27GacpBnQN0sK/DdWtF8To\n3o83a9Lcn5v8P+y5RfU34HSmTB6DQgk4uDEJ4VrM8kFOZXv+ds35dY5DjU4e5eHqobExY/XAqgdU\nUsXIOZrvm20H5WI2aVhcSKte19XFrL+cF6Ov7r5A/p4WjXnhez27bLsqqs/82eCjZbJTkJfmUCaP\nQaEEHNyYhDClZRVpf77xO0DA/uqsdQrzCtN/LvmPw35W0c/NTx29Oqqi1v7LsaD9+mRjlsb1CTds\nj+twf0+9cs0AvXbtAH226YBGPv+dvtl+8JTHH/y9TEYGelImT8Ix/7YC0CCqo7d6hvky7e0kNudt\n1hVfXKHymnKjo5ySq9lVd/a/U/PT5+tw+WGj46ANOlJWpW+2H7TL3d1NNTwuRMvuOl+XJkXolnnr\nddu765VdeOyfv4NFFUp5vb5Mvn7tQMrkSVAogTaAaW/n0atDLy26fJG8LF5GRzkti9mi7NJs5ZW3\n7m4kaB++3JytUD8PDegaaHQUSZKHxUV3j4zT4jvPU2F5tUY8+63mfr9bNbV1/yuTAZTJ06FQAm3A\nmD5h2rDviHIKmWJszzKLMzViwQiZ5HifnTyeyWTS40MfV0ZhhrJKsoyOgzbm0431a0862ueEuwX7\n6L2/nKXHL++jV7/drUteXEWZbCQKJdAGdA/xUUywt5YwStmuhXqF6tFzH1UHzw5GR2kUk8mkpXuW\nanv+dqOjoA3Zn1+mtXsKdGmS8dPdJ2MymXRpUqS+vvsCnR3TQfFhfpTJRqBQAm2AyWTSmIQwLeZz\nlO1WRU2Fpn4zVd0CuhkdpUmeG/acuvp11b6ifUZHQRvx+S8H1CfSX7EhPkZHOS1/T4v+X3Jv/XtS\nf8pkI1AogTZiTEK41u7J15Fytr1rj6rrqpXQMUHBnsFGR2kSk8mkV355RV/t+8roKGgDrFarPt6Q\nqcsc4GYc2Jar0QEANE7vCD9FBnrqx/2lGtLf6DSwJavVqve3va8J3SfI4mLfHUPsYeZ5M1VVW6XM\n4kx18u1kdBw4sC0HipSRV6rxieFGR4GNMUIJtBH1097hWrWntNnbhcExldWUadPBTUbHaDaL2aKX\nNr6klze9bHQUOLhPNmZpaPdghfh6GB0FNsYIJdCGJCdG6M1VuzXosa81ODpQg6OCNCg6SD3D/ORi\ndqy7JdF4m/M265kLnnH4pYJO5/ak2+Xu6q7D5YfbzE1FaF01tXX6/JcDundsT6OjwA4olEAbkhDp\nr3kTuuiIpaPWZOTrP+sy9fDCrfJxd9WgqCANigrS4Ogg9Yn0N2z3CTRNdV21Hln9iB4+52ENChtk\ndJxm83Hz0btb39WSPUv07th3jY4DB/TjrsMqqajRyF5hRkeBHVAogTYm0NNV58SHa2yf+s8gFZZX\na/3efP2cka/lW3P07LLtcnUxqV/nQA2ODtJZ0UHq1yVQnm7cpeiICisL9flln8vF1PZ/PsmxyRod\nPVpVtVVyc3EzOg4czKebsjSyd6i83ake7RE/VaCN8/e06MKeobqwZ6gkqbyqVhv3F2hNRr7WZOTr\nte92qabWqj6d/DU4OkiDo4I0sGuQ/L3a3s0f7Y3VatU1i67RHf3v0JjoMUbHaTE/Nz99n/m9nlr7\nlD659BO5mvlPDOqVVdVoaVqOXprEHYXtFX/agXbG081F53TrqHO6dZQkVdXUKe1AodZk5GttRr7m\n/7xPJZU1igv11VnRQRoc3UGDogP5kLxB5o2ZJx+LY6/H1xQDQgfo4XMebhcjrrCd5Vtz5WFx0Xmx\nHY2OAjuhUALtnJurWf27BKp/l0DdekE31dZZtT2nWGv31I9gPvT5FuWVVCq6o3fDTT5nRQepU6Cn\nw22L1t5MWTFFY6PHalzMOKOj2IyXxUt+bn66euHVenv02236RiPYzqcbszQ+MUKuLny2u72iUAJO\nxsVsUq8IP/WK8NN150TJarVqz+Eyrck4rJ8z8jXr69+0P79c4f4eDTf5nBUdpNgQHwqmjU3uNVmd\nfNrfuo1d/brq6rirZTHzsQpIeSWV+m5Hnj4e0cPoKLAjCiXg5Ewmk6I7eiu6o7euHtRFknTgSHnD\nCOY7P+7R/Z+mKcjbTQO7Hr3Rp4Piw30ZbWiBuZvnKsY/pl0uBG5xsejCLhfqzpV36rFzH1OAR4DR\nkWCghb8cUNcgL/Xt5G90FNgRhRLACSICPHVpUqQuTarfHi2/tKqhYH7+ywE9vihdnhYX9esSqJ5h\nvooL81V8uJ9iQ3zY87aR/Nz85G3xNjqG3fi7+6t3h96qtbJVqLP7ZNMBXdYvkhmOdo5CCeCMgrzd\nNKp3mEb1rl8/rqSyRhv2FmjDvgJtzynWim0HlXG4VCZJUR29FR/mp7ijRTPMT50CPWVm4fUGq7JW\nqUdgDyWFJBkdxW7MJrNu6nOTnlv/nK7rfZ3CvFl70Bll5JXql/1HNDul/b7XUY9CCaDJfNxddX6P\nYJ3fI7jhsfKqWu04WKxtOcXall2snzMOa97qPcorqZKXm4t6hPqqZ5jv7yOafuoZ5qtAb+dcq3DT\nwU3yc/Nr14VSklzNrqqpq1FhZSGF0kl9ujFL/bsEqGuH9jsaj3oUSgA24enmor6dAtS307GflztU\nXKntOcXallOk7TnF+mhDln7L3abKmjqF+rk3lMujU+exIT5yd22/0+b7i/YrpWeKOnq2/+VTTCaT\n7j3rXn2681O5ubgp2j/a6EhoRVarVZ9uytJfhvJzdwYUSgB2FezrrmBfdw3t/r8CVVtn1d7DpfWj\nmTnF2p5TpKVbcrQvv0zm328SOn40s70sY/T+9vdVVFmkR4c+anSUVmEymbTh4AYFegRSKJ3Mxv1H\nlFVQrnF9I4yOglZAoQTQ6lzMJsUE+ygm2KdhC0mpfjeN33JLtD2nSOnZxfph52G9sSpDBWXV8nF3\nVY9QH/UMry+YcaG+6hnm16Z2/CmrLtPdA+5WVV2V0VFa1b/O/Ze2HN6itLw0JXRMMDoOWsmnG7M0\nLC5YQU760RZnQ6H8//CmOGcAACAASURBVOzdd1gU5/bA8e/ssvReBFSk2LvYe4s91kRTNFVTNGqK\nN83cEm+qMdUYjTEmxhi7Ro0lthRjLwTsHQugiAhIh2V3fn+Mmp83FlBgdpfzeR4eZdmdOejCnn3n\nPecIIWyGu7MTTcJ8aRL212VzVVW5mFVwZSUzi8PJmSzcncDxlGwKi6yE+rhSO8SLQdF/VaXbqm8O\nfMPJjJN81uUzvUMpdxtOb8CgGCShrCDMFisr957j7YHy/11RSEIphLBpiqJQyduVSt6u1xUBFVms\nnL5y2TzmTDqvLN5H02p+hPnb7mSWJ+s/SUpeit5h6OKFpi9gtpp5ffPrjGgwgpp+NfUOSZShP45d\nxGxR6VY3WO9QRDmRrsRCCLvkZDRQo5IXfRtV5s1+9WkV5c/H64/qHdZNrY5fzcRdE4nyidI7FF0o\nioKTwYlwr3C8nb3JK8rTOyRRhpbHnaNXgxDpS1uBSEIphHAIr/Wqw097z3Eg6bLeodxQXf+6dKnW\nRe8wdGVQDIxqMoqzWWcZuHygJJUOKivfzPqDyQyKtu0tKKJ0SUIphHAIDar4MKBJFSb+fETvUP7m\nSNoR1pxaQ9ewrnqHYhOiK0XzXof3yCzIJCk7Se9wRClbd/ACvu4mWkcF6B2KKEeSUAohHMa47rXY\ndSqNP45d1DuU6+QV5WFRLQ7R9qg0OBmcaBbcjG8PfMvX+74u9/OfvJhNek7FqrQvT8tjkxjQpApG\nmY5VoUhRjhDCYYT5u/N423De//kI7WsE2sS4x4z8DC7kXGBMkzF6h2JzXm7+MlaszNw/kwHVBxDk\nHnT7B92l1OwCen+2mUKLlTohXrSK9KdVVAAtI/0J9HQp8/M7uguZ+Ww9mcobferqHYooZ7JCKYRw\nKKO71CApPZflcbZxKfVY+jF+OPwDBkV+3f4vk9GEAQNH0o5wMe8iqqqW+TmXxCQSHuDOuhc7MrRV\nNVKzC/nPigM0f2cj3T7ZxD+X7eenvedIycwv81gc0U9x56hVyYu6oV56hyLKmaxQCiEciq+7M6O7\n1ODj9cfo0zBU1ypTi9VCoHsgc3rPkcvdN2Eymvio00ccunSIJ9Y+wZfdvsTdVDatn6xWlQW7zvJ4\n2whqXxn1+VibCFRV5eTFHHaeusTO+DTeXX2IC5kFRAZ6XFnB9KdVZACVfd3KJC5Hsiw2iQHRleX5\nXgFJQimEcDiPt43g++1n+H77aZ7pWF23OPal7mPUxlH89sBvuDlJMnIrEd4R9K3eF0VRyCzMxNvZ\nu9TPsT3+Eucv53NfdNXrblcUhRqVPKlRyZNhrcJRVZUzl3KvJZgfrTtGUkYeYf5utIoMoFWkP62j\nAmy656kejl3I4tD5TL5+vLneoQgdSEIphHA4riYj47rX4r8rD/JA8zB83fUZ/dYgoAE/3/ezJJPF\n4G5yZ0itIUzcNZHMgkze6/BeqZ9j3q6z3Nso9LbjOhVFISLQg4hADx5sUQ2AhLRcdsRfYuepND7/\n9TivLNlHFV+361YwwwPcK/TK3PLYJFpF+lNFVnIrJEkohRAOaWB0FWZuOcXU307wz3vrlfv5z2Se\nYdiaYawcuLLcz23PRjUehdlq5rezv9EqtFWpXf5OzS5g/cFk5j/d+o4eH+bvTpi/O0OahwFwLiPv\n2grm9E3xvLZ0P8HeLtoK5pUEs3qQR4VJMK1WlRVx5xjbtYbeoQidSEIphHBIRoPC673r8PTsPTzW\nJqLcL09W9qzMR50+ws/Vr1zPa+98XHwwW8x8ufdL3ExutA69swTwfy2JSSQy0INm4aXz/1HZ141B\n0VUZdOXy+YXMfHaeSmNn/CVmbT3NP5cdINDT5boVzJqVPG2i80BZ2H06jYtZBfRuGKp3KEInklAK\nIRxWx5qBtIz055MNx/j0wSbldt5ccy7P//Y8b7d9u9zO6UhMRhPz7p3HhdwLTNg2gTdavYGz8c63\nLVitKvN3neWJthFltmIY7O1K/8aV6d+4MqCtiO66kmDO23mW/6w4iJ+7iZaR/tdWMeuGeDtMgrk8\nLol76lbCx+3W2wmE45KEUgjhsBRFW6Xs/8UWRrSPpEEVn3I5b5FaRMuQluXSV9FRORmccFKccHVy\nBcBsNWMy3Fmysj3+Esk3KMYpS4GeLvRpGEqfKyt2aTmFWoJ56hJLYhJ5e/UhvFycaFcjkHcGNiDA\njntg5pstrNp3no+GNNY7FKEjaYwmhHBoDar40L9xZT5YWz4jGVVVZc6hOfSv3h8ng7xnvxvBHsG8\n3vJ1vtr3Fe/uePeOjzNvZ/GKccqSv4czvRqE8Ga/+qx5oQNx/+7BJw804fzlfEbN/ZPCIqtusd2t\n34+moACda8sbqIpMEkohhMP7R4/a7Iwvn5GMOeYcjqYdlWSyFA2sMZCH6zzMifQTWKyWEj32YlYB\n6w4mM7RltTKK7s74uJvoVi+YmY83Jyk9jzd/OlAujd3LwvLYc9zbqDIuTvr1fBX6k4RSCFFiVtXK\nlqQtJGQmMO/wPJt/IQzzd+exNuFM/PkIVmvZxXow9SDT905ncpfJBLoFltl5KpowrzCifKN4/rfn\n+T3x9xI9dklMIlFBpVeMU9oCPV34+rHmrIg7x+xtp/UOp8Qu55r59UgKg6Kr6B2K0JkklEKIEjue\nfpy3tr/FwUsHOZJ2hEJrIWn5aXqHdUtjutYgMT2XFXtLfySjxWrhYOpB3E3uGAwGrKr9Xr60VSaD\nibl95tI6tDU/HPqhWG9irFaVBbvP8nDLajbdvqdeZW8+fbAJ76w+XC6r6KVpzYHzBHm50NxGE3ZR\nfiShFEIUm6qqTI2bisloYtWgVfSK7MVb7d5i4ZGFvPTbS3qHd0u+7s4816UGH607Rr65ZJdNb0VV\nVXac38G438dRxbMK45qNw2iQS39lwc/Vj+ScZH5P+J0cc85t769HMc6d6lk/hBe71WT0vD85eTFb\n73CKbVlsEgOjKztMtbq4c5JQCiGKRVVVitQiMvIzyC/Kv66Ny9C6Q3m/w/usP72eqXFTdYzy1p5o\nq81tnrP9TKkc79ClQzyy5hGiK0WztP/Su2ptI4qnum91ZvacyZpTa/j8z89veV9bKMYpidFdatC5\ndiWenr2Hy7lmvcO5rcT0XHadSmNgE7ncLSShFEIU07cHvuXdHe/yz9b/pF7A9ZNnnAxOVPasTKBb\nIFU8q5CQlUBCZoJOkd6cq8nIuB61mfLrcTJyC+/4OHlFeSw9tpQonygG1xqMq5Mrns6epRipuJ3a\n/rVpGNiQywWXb/j1q8U4w1rZVjHOrSiKwoeDG+Hp6sSY+X9SZLHtrRMr4s7RoIo3NYO99A6lzOSa\nc2/6HBPXk4RSCHFbCZkJdAvvxoAaA255v6bBTRlYYyDLji9j+r7pJa7ILQ+DoqtQ2deNab+fvKPH\nZxdmk5KbwsKjC8kvymdQzUEYFPlVWt4aBzWmQ9UOPLLmETac2fC3r18txmlazb729rmajHz9WHOO\nXcji3TWH9Q7nplRVZXlsksOuTq48uZKjaUeZvnc6L296We9w7IL8FhRC3NLB1IM8uPpB/Fz9iK4U\nXazHjI0ey3/a/IeP9nzE5D8nl3GEJXN1JON3206TmJ5boscmZCbQY2kPXIwuLOy7EF9X3zKKUhSH\nk8GJjzp9ROeqndmatPXa7fZSjHMzwd6uzHi0OfN2nmX+rrN6h3NDh85ncvJiNv2uTAayd9mF2aTl\np/Hk2ie5XHCZuJQ4ErMSGdFwBJO7TCYuJU7vEG2eJJRCiJtaE7+Gql5V+bH/j3g7exf7cYqi4GJ0\nYXCtwfQI78GmhE3sv7i/DCMtmU61gmgR4ccn648V6/6ZhZm8s+Md/N38md5tOiEeIXaZqDii2v61\nOZFxgv9u/++1S5PbTtpPMc7NNA7zZdLgRvxnxQF2xF/SO5y/WR6bRLsagQR7u+odyh07ln6M4+nH\nWR2/modXP4yviy/tq7THqlr5d5t/c0/4Pfi4+HAx7yKjfxnNxVz7qsAvb5JQCiFuqMhaxJLjSzh0\n6RAhHiF3dIzqvtWpG1CXvRf3si91H+n56TbRUkdRFF7vVZflcUkcPHfr/VFH047ibHCmwFJAjjmH\nRkGNyilKUVx1A+qyctBKDqYe5MfjPzJ/l30V49zMgCZVeLZjdUb9EENCWslW08uSxaqyIu6c3V3u\nVlWVImsRE3dNJDErkXmH57Hx7EbaV2nPtG7TMCgGRjQcgZ/r9dskwr3D2TB4A+kF6WQVZukUve2T\nhFII8TcrTqzgu4Pf8U2Pb2hTuc1dH+/5ps8zrO4wxm8ezzf7vymFCO9ew6o+9GtcmYk/33gko6qq\nZBZmMnzdcE5ePsnb7d6mknulco5SFJeL0YUscxZJmamsO3jOropxbmVc91q0iPDnqdl7yC4oKvXj\n55pzyTXnkpGfwdGso8V6zPaTl8jMN9OzwZ290SxPeUV5JGUncSD1AANWDEBBQVVV8ory+E+b/zCq\n8Sh8XHwI8wq75XHcnNyYsG0CG89sLKfI7Y8klEKI6+SacwnxCKGKZ5VSv6z7Vru3eLDOg3z+5+ds\nP7e9VI99J16+MpJx8/HrL2XlFeUxfN1wzmefZ/Wg1dQPqK9ThKIkekb0xJDZGe+omWQbbGeLxd0w\nGBQ+fbAJigIvLojFcpNJT4WWQqyqlcSsRJJzkrmQc4GfT/0MwFd7v+JY+jFWx69m8p+TSc1Lpcui\nLqTmpfLKH68w6+As9qXuY1r8NADu++k+YlNi2X5uO38k/kGRtYjswr96Yy6LTaJHvRA8XWx3vOiq\n+FXEX47nq71f8cGuD4jyieL56OdRURnfajw1/WqWqJhOURRm9phJ9/DuHL5ku8VSepKEUghxzf6L\n++m3vB/1AurRO7J3qR+/knslvExeeJg88Hb25mDqQQosBaV+nuIK83fn0f8ZybjhzAYsVgu9I3sT\n7B4shTd2xGpVWbQniT5hD9KkUhMSsmyvddXtqKqKVbVyJvMMhZZCDqYeJCHnBO8OqcyejCV8tP4o\n7+18j5gLMSw7vozxm8dzueAyzX5oRlJWEp/9+Rnzj8znfM555h2eB0BafhoFRQVU9qxMbb/a+Lj4\n8GabN/EweTChzQQer/c4Hat25LNGn6GqKqObjCbCO4L4y/EcSz/G4UuH6bCgA2aLmQ92fsjaE1vp\nWM/IyYw765RQFvKK8riYe5Fn1j9DrjmXbUnbOJt5lqcaPsXHnT/G3eROt/BuOBnuPAl2N7mz9PhS\nmys0tBW2+/ZCCFGu9l/cT23/2nzQ4QO8nMuur5yiKIxoOAKrauWhVQ/xaL1HuTfqXt1a74zpUoNF\nexJYEhvPoOhqfHfwO7ycvXig9gO6xCPu3NVinFc6DOZ8zkmeXPskP9/3s029KcgvyifHnIPZambp\n8aWMbjKaVze9Sq/IXqTmpbI6fjVf9/iavsv6srT/UlbFr8Lb2ZseET1oXCOLbzbH07+TJx4mDxoH\nNSbUMxQvZy+W9FtCsEcwEztMvJY0zekzB4Dxrcb/LY7OYZ0B7VLuVYqioCgK91S7B4BhdYcBYLaa\nWTZgGSajiZTLRpwNbmQaYvg0JoZ32r3Doz8/yqxes4hLiaOKZxWq+1bHoBjuKnkrjhPpJzAajOy9\nuJe5h+cy/975RFeKxmw1816H98rknEPrDuXhOg+zO3k3LUJalMk57JVxwoQJE/QO4qrz589TubJj\ntCAoqdTUVIKCgvQOQ9iBsniumK1mntnwDGFeYbSt0rZUj30ziqJwb9S91PavzfB1wwnxCLntPqay\n4OZsBFXl00Njqertz+utXtMljrJSkX63fLD2CPUq+9C/idZkv29UX7LMWRxNP0pVr/Kv+E7LTyMu\nJY6qnlV59Y9XCfcOZ9aBWWw8s5HWoa356eRPdKnWBaNiJMo3ilp+tWgZ2pJK7pV4pN4jhHqE0r5q\ne1qEtMDf1Z9Bte4l2MeVL9dZGNCwDvWCK1PVqyqKohDoFojRYLyrN2Y3e64YFeO1pHzRZidahIUz\nrmNPekb0REXF29mbJkFNWHB0AS5OLhxNP8q/tv6LB2o9wITtE6jlV4v0/HTMFjMeJo87jg+0S/sf\nx3xMLb9aTImbQmZhJr0ie9E5rDP+rv60CGmBq1PZVZ4bFSPnss/x7IZn6RPZx+EHGpQkL5MVSiEq\nuJ3nd5JdmM2Cvgvu+pd9Sbmb3AEYWmco9QPr8+PxH7mnmtaqozyoqsrsg7NpV78F38UM5vy56hhq\nyk4ge3R1Ms7CZ1tfuy3EI4S5h+dyPP04rUNb3+LRd86qWsksyMTVyZUfDv/AkFpDmBo3FT9XPxoH\nNWbSrkksG7CMugF1cXVyZVTjUbg4ueDm5MZnXT4DoEdEj2vHu1r4dbM2XQ80D+NYchbPfB/DyrHt\nCPVxu+H9ysKl7AI2HbvI4pFaoZ7RYMTD4MGgmoMA+FfrfwFaT8dGgY0osBTgbHDGxejClNgpVHKr\nRNdqXZkSO4WZPWayKn4VLUJaEOAWgMlw44r8AksBGfkZnM85z3s732Nh34XkmHPIKszi/fbvYzQY\nAfB39S+HfwFNmHcY6wav40zmGVyMLja1Aq4n+c0pRAWmqioJWQnEX44v92Ty/+sV2QtngzPLTywn\nKTupXEadpealkm3WmhnnFF3mlc49+PL3BLuYoSz+7maTcYbVHca/W/+bCdsm3HVz6vyifLaf246q\nqkyLm8amhE38ePxHhq8fjslgYtf5XWQUZNA3qi89wnvQJrQNywcuR1EUhjcYTrh3OL6uvtddZr4T\n4/vUpX5lb57+fg95heU3jWr1/vNU9XOjSditEyhPZ0+ifKNwdXLln63/SaBbIO+3f5+x0WMJdg9m\nYI2BACw9vpTknGQmx0zmn1v+SWpeKu/vfJ8CSwGbEjaRkJXAZzGf8eGeD4n0iby2Vea/bf9LlG/U\ntWRSD65GV97f+T6/JvyqWwy2RlYohaigjqQd4d0d7zK9+3Rdk8mrXJ1cmd1rNtnmbHr/2Jvp3abT\nILBBmZ3vjc1v0CKkBeOajwPAEqLyzZZTTPv9BOP71C2z84rSZ7WqzN91luHtIm7YmcCgGKjmXQ1f\nF1/yivJum9DlmnNxN7mz/MRyGgc1Znfybvan7uf56Od54bcXWHPfGgLdAvEweRAdHE3nsM4YDUZm\n9JhRVt/idYwGhSlDoxk0dSsvL97LF0Ojy6XR/rLYJAZG31n3B0VRMBlNhHqG0s+zHwDf9foOgFCP\nUPKK8sgvyie3KBdngzNzD8/lkXqPMLLxSNyd3DEZTfSM6Fma385dURSFr7p/RaG1kAOpB8r0d5W9\nkBVKISqgi7kXqeZVjf41+uPu5K53ONcoioKXsxczus+gpl9NJmybQEpuSqme4/M/P2fR0UW81+E9\nhjcYfu32qyMZZ207TVJGXqmeU5StbScvcSEzn0E3mYxzdYXQbDXT58c+pOWnAdoK/cFLB8kuzGbl\nyZUsPbaUfRf30WFBB4qsRWw/t53z2eeJrhRNv6h+BLoFsmPoDgLdAnmg9gM0D2mOt7M3gW6B5fnt\nAuDtauKbx1uw5UQqn/9yoszPdzo1h9izGWXSzDzYI5gInwiqelXl7XZvoygKM3rMoGPVjvi4+GAy\n2maDelcnV1aeXMmU2Cl6h2ITJKEUooIxW8wMWzOMXcm7GFJriE2OEKwXUI8CSwGKouDm5MahS4fu\n+pjxGfEcTTtK/cD61Pavfa2I4f/rVCuI5uF+fLy+eA2ehW2Yt+sMfRtVvu1knBq+NZjUcRIn0k/w\n7IZnARi1YRSHLh3CZDThbHSmtn9tFvdbjEEx8EHHD2hbpS01/WrSMrQliqLo1o3gRiICPfhyWFO+\n+O04a/afL9NzLY9LokmYLxGB+l/NsCUP1X6IKV2nsC1pm96h6M52fjKEEGXuZMZJTmScYEb3GXSq\n2knvcG7J29mbN9u8yeWCy4xYN4LknGRU9cZNnW9FVVUKLYUsOLqAtafXck+1e2gc1PiG91UUhfG9\n67I8NolD5zLv9lsQ5eBiVgHrD15gaKvbV+YrikKLkBZU865G36i+KIrCLw/8QsvQlvSK6EW/6v1w\nMboQ5RtlU4njrbStEch/+tZj3KI4DiSVzd5jVdVGLQ6Ktq9Ri+XBaDCSmpfKG1ve4Hx22Sb1ts4+\nfmKEEKVidfxqlp1YRoTPjfea2aKqXlVZe/9azFZtZTU9P71Ej/8i7gve3vE2r7Z4leejn7/t/RtW\n9aFvo8pMXHvjkYzCtiyOSaB6kOffinFuJcQjhH7VtX18N6sutiePtolgcLOqPPP9HlKy8kv9+HsT\nL3M2LZe+jUJL/diOoLJnZdYNXkd6QTqpeal6h6MbSSiFqAASsxKZsG0CzzZ+ltdavKZ3OCXm4+JD\ngGsAA2sMvFYscbvVytiUWFaeXEn/6v0Z0WAETganYifRr/SszfaTqWw5XnFfHOyB1aqyYFcCD7cM\ns5s3SGXlzX71CQ/w4Nk5MeSbS7fye3lsEp1qBRHg6VKqx3UkLkYXPtnzCb8n/K53KLqRhFIIB2e2\nmDEqRtyc3DAoBl1bbdwNd5M7D9R+gJMZJ5l/ZD55RXnkmHP+dr8iaxHJOcmczz7P6czThHuHE+ET\nUaJzhfm782jrCN7/+fC1kYzC9lwrxmla/k3LbY3JaGDasKak5RTyxrL9d7Q95EbMFisr955joFzu\nvq1p3abRPbw7sSmxeoeiC0kohXBghZZChqwcwpmsM7zW8jWHuLxXL6AeC+5dQNzFOO7/6X4KLYXX\nfX3u4bm8vvl1+kT1YWz02Ds+z9iuNTiblsvKfefuNmRRRq4V47jZ//O6NPh5OPPN483ZcPACM/6I\nL5VjbjmeSr7ZQve6waVyPEfmbHRm3el1fBn3Zakl9PZEEkohHNSlvEtkFmbycouXia4UrXc4pUpR\nFFqGtGRSx0kk5yTz+Z+fszVpK29tf4sHaj/Ax50+vutz+Hk4M6pzdT5cd5SCovJrHi2KpyTFOBVJ\njUpefD40mg/XHeWXwxfu+njLYpPo1SBUG1EqbmtwrcFMvWcqfyT+UeGSSkkohXBQ0/dOZ0rsFNpX\naY+L0fH2PjkZnGgU1IjMwkxyzDlU9qxMlE8UrkZXAtwCSuUcw9tFYrGqzNl+plSOJ0rPnRTjVBRd\nalfitV51eGFBHMcuZN3xcbILilh/KJmB0cWb5Sy0JvqX8i/x9o63ScpO0jucciWTcoRwMJmFmaw8\nuZJ/NP8HVtWqdzhlrkFgg2tTKiJ9Ikv12K4mI+O61+Kd1YcZ0izstn0ORfm4Woxzs8k4Ap7qEMnR\nC1k8NXsPy0e3w9/DucTHWH8wGS9XE22rl3/jdnsW4hHCz/f9zNH0o5gMJoI9KsZ2AVmhFMLBJGYl\nsilhEyoq7ibbmYJjr+5rWpVQH1embSr7aSSieLaeTJVinNtQFIV3BzUgyMuFUT/EUFhU8jeXy2KT\nGNC4MkaDJO0lZTKa+CLuCzYlbtI7lHIjCaUQDqLAUsCYX8YAMKPHjNvOKxbFYzQovNa7DrO2ykhG\nWzF/11kpxikGFycj0x9pRmJ6Hm/+dLBEe/pSMvPZeiJVqrvvwpSuU+gR3oPdybv1DqVcSEIphAPI\nL8pHVVVahrSksofsdyptnWsF0ayaH5+sP6Z3KBVeSlb+lWKcanqHYheCvFz4+rHmLI9N4vsS7AX+\nae85qgd5Ur+ydxlG59hMBhO/JfzGjH0zKkSBjiSUQjiASbsnMWn3JB6r/xi+rr56h+NwFEVhfJ86\nLI9L4vB5GcmopyUxiVeKceR5Xlz1Knvz6YNNeGf1oWI3618el8TA6CqyR/UuDawxkGn3TOOXs784\nfFIpCaUQdsxsMbP93HZGNR7FyMYj9Q7HoTWq6kufhqFM/FlGMurlajHO0FbVJNEpoV4NQni+a02e\nmxvDqdS/DwT4/45fyOJAUiYDmsjVjrulKAoZBRl8tOcjErMS9Q6nTElCKYQdi7sYx7s738XL2YtK\n7pX0DsfhvdKjNttOprL1hIxk1MPVYhzZ13dnxnStQafalRgxezeX88w3vd/yuCRaRvhT1U+K+kpD\nkHsQqwatIq0gjXPZjjsoQRJKIeyQxWrhk5hPCPMK48f+P+Lq5Kp3SBVCtQB3HmkdLiMZdSLFOHdH\nURQ+HNwITxcnxs6Ppcjy98pvq1VlRZyMWixtTgYnZu6fyZakLXqHUmYkoRTCzlhVK0VqERn5GeQX\n5eNsLHl/OXHnxnatyZlUGclY3qQYp3S4mozMeLQ5R85n8t6av2/fiDmbTkpmAfc2DNUhOsf2aedP\n6R7enW1J2/QOpUxIQimEnfkh4Qe+2vsVb7V7iwifCL3DqXD8PZwZ1UVGMpY3KcYpPSE+rsx4rDlz\nd55h4e6z131tWWwSXeoESRP/MuBkcGLrua3MOjjLIQt0JKEUwk6sPbWWdafX0T6gPT0jeuodToU2\nvF0kRRaVH3acvf2dxV2TYpzS1yTMl0mDG/Hv5QfZdSoNgEKLyup95xkkl7vLzL2R9zKt2zTWnl7r\ncJPMJKEUwsbNPzKfA6kHyDHnkGvOJcojitr+tfUOq0JzNRkZ16MWU349fsviBlE6tp5MJSVLinFK\n24AmVXi6YyQjf4ghIS2XPUm5qKpK59pS4FdWFEUhsyCTaXHTOJvpWG9IJaEUwgaZLWZm7p9JWn4a\nyTnJpOWncX+t+xlUc5DeoYkr7m9alWAvV778/aTeoTi8eTulGKes/KN7bZqF+/HU7D38fCyTPg1D\ncTUZ9Q7LoQW4BbB8wHLSC9IdKqmUhFIIG5JVmMWsA7NQFIVDlw5xPvs8LzV7iY5VO+odmvgfRoPC\n673rMGvrKc7JSMYyk5KVz4ZDF3i4pRTjlAWDQeGzB5ugKLAnKU9WgcuJ0WDkh0M/sOP8Dr1DKTWS\nUAphA1LzUll2fBkAmxI3kZqXyiedP6F+YH2dIxO30rl2ENHVfPlkg4xkLCuL9yRSo5IU45QlDxcn\nZj7enAcb+tIyUOusrAAAIABJREFUwl/vcCqMSR0ncU+1e/gj8Q+9QykVklAKoaOErAQ2JWziUt4l\nlp9YjovRhe96fUeIR4jeoYliUBSF8b3rsiw2iSPJMpKxtFmtKgt2n+XhllKMU9aq+rnzRFN/DAb5\ndy4vRoORPRf2MOfQHIeo+paEUtikhKwEDl46yLZz21h8bDGAQ/zAXXUi/QQHUg8QlxLHqvhV1Pav\nzezes6WnpB1qHOZL7wYhMpKxDGw9mcrFrAK5DCscVs+InkzrNo1V8auwWO27DZkklMImrT+9nrmH\n5pJnziOrMItTl09x77J7yTXnciL9BGaLfVbWHkg9wLnsc6w4uYKNZzbSN6ovH3b6UO+wxF16pWdt\ntp5IZZuMZCxVUowjKoKcwhy+PfAtZ7Psu0DHSe8AhPj/zBYzM/bP4Mn6T+JsdMbJoD1FMwszeaHp\nC7g5uTFy40jGtxqPyaC9yNh6wYqqquy5sIcGgQ34Iu4LulXrxkvNXsKgyPs5RxEe4HFlJOMRVoxu\nJ5cNS8HVYpyFz7bROxQhypSvqy9L+y8lNiUWFZUonyi9Q7oj8oombMrlwsscuXSE3KLca8kkgLez\nNz0jeqIoCqsGraJjlY4kZCVw+vJp4lLieGr9U1hVK+ezz9vMpXFVVYm5EEORWsSb295k78W9fNH1\nCwbXGizJpAMa27Ump1NzWLX/vN6hOAQpxhEViUExsPTYUnad36V3KHdMViiFzZi5fyb+rv5MuWfK\nLe/n6uQKwLC6wwA4n32eAdUHUGApoO+yvszqNYuMggwC3AKoH1D+VdIWq4Vj6cfwd/Vn7C9jWdRv\nEcsHLJf9kQ7O38OZkZ2r8+G6I/SsH4yLk/Tyu1NXi3Geah8lxTiiwnin/Tuk5afxy5lfuCf8Hr3D\nKTFZJhE2wWK1UM2rGqEeoSV+bKhnKP2q98PNyY2196+lfkB9dpzfwcHUg2xO3Mxb298CtMvmZcls\nNXMm8wx/pvzJyI0j8XX15ZcHfqGqV1VJJiuI4e0iMRepfLUpXu9Q7NqWE1KMIyoeg2Jg/8X9LDy6\n0C7HMt52hTI2NpaJEydiMplwd3fno48+Yvbs2axduxZ/f38CAwP59NNPycnJYcyYMRQUFPDxxx8T\nGhrKokWLcHZ2ZuDAgeXxvQg7dSTtCK/+8Spz+8zFy9nrro4V5B4EwKstXr127IaBDUnOSabX0l6s\nvX8tJzJOEOkTSRXP0nmxKrAUcLngMhvPbGRV/Crm9pnL6kGrcTG6lMrxhf1wczby3n0NGPXDn2Tm\nmRnfpy5G2U9ZYvN3STGOqJi6VOtCh6odWH5iOf2q97tWK2APbptQVq5cme+++w43Nzfmz5/P3Llz\nARg7diy9evW6dr+tW7fy4IMPEhgYyNq1axkyZAi//fYb06ZNK7vohd1Ly08jyieKsdFj7zqZvJE6\n/nWo418HVVVZ1G8RIR4hvLvjXXpH9uZg6kESsxN5sv6TFFmLMBlL9oObY85BVVU++/Mz8ory+Ffr\nfzGwxkAURcHT2bPUvxdhH7rWCWbBM615+vsYTqXmMPnhaDxdZHdRcV0txlk0UopxRMWUY85hwZEF\nNAlqQpSv/RTo3PaSd3BwMG5ubgCYTCaMRm1f0JdffsnQoUNZtWoVAK6urmRmZpKXl4e7uzszZszg\n2Weflf0v4qZUVeWFX19g8bHFdA/vXqbnUhSFWn61AJhyzxR6R/bG0+SJn4sfR9KO0HlRZ/KK8th1\nfheXCy7f8liXCy5jsVoY++tYFh5dyOgmo3mzzZu4ObnhbnIv0+9D2Ifoan78NKYd5y7nM/jLbSSm\n5+odkt24WowTHSbFOKJi8nHxYWHfhVzKv8SxdPuZwqWoxSyJTU9PZ8SIEcycORNFUfDz8yMrK4vH\nH3+cqVOnEhQUxKRJk8jPz2fYsGHMmTOHrl27snv3blq0aEHXrl1ve46YmBjc3SvmC3J+fj6urq56\nh1FuiqxFnM07i7vRHX9nf5wN+u0xLLQWEp8TTy3PWozbP47h4cPJMGdgwEC7gHaAlpDmFuXiYnRh\ndNxono54mnD3cPyc/TAq5Vt8UdGeK/Ysz2zlw80pHL5YwL+7BFOvUvn/v9nT88Wqqoz4MYH76vvQ\nr46P3uFUOPb0XKkIpp+aTqR7JD2De+oWQ25uLs2aNSvendViyM3NVR999FE1Jibmb1/74IMP1N9/\n//26215//XU1OTlZff311699Xhx79uwp1v0c0aFDh/QOoVxtOL1B7besn2q2mPUO5TpWq1W1WC3q\nsuPL1BUnVqhbE7eq96+4X03JSVFb/NBCPXP5jHoy46RqsVp0i7GiPVfsncViVd9bc0it+c816rI/\nE8v9/Pb0fNl0NEWt/a81akZuod6hVEj29FypCKxWq5qSk6L+HP+zbjGUJC+77caeoqIiXnrpJR59\n9FGaNm0KQFZWFl5eXhQVFREXF8eQIUOu3T8mJoZq1aoRHBxMeno6wLU/hQBYFb+KDlU6MK/PvOt6\nTdoCRVFQUBhYQyskS89PZ1yzcQS5BzGr1yzCvMJkG4coEYNBm/ddI8iTV5fs40RKNuO615Lm5zcg\nxThC/EVRFI6lH2PZiWX0iOhh8/2Lb/tqvmrVKvbs2UNOTg7ff/89nTp14tSpU5w8eRKLxULfvn2J\njIwEtD1x33//PZMmTQKgQYMGPPTQQ7Rv375svwthN8wWM4uPLibYPZgWIS30Due2/Fz9aFulLYAu\nPS2F4xjSPIzwAA+enbOH+NRsPh7SBDdn6VV5lRTjCPF37aq0o1VoK5YcW8KgGoNKXDxanm6bUA4c\nOLDYbX8URWHy5MnXPh8zZgxjxoy58+iEQ4lNiWVvyl6+6/WdrPKJCqllpD8rRrdnxOzdPPDVdr5+\nrDkhPrJnDaQYR4ibyS/KZ8WJFTQLbkZ13+p6h3NTtr1+KhxKnjmPfEu+JJOiQqsW4M7S59ri7+HM\ngKlb2J94664CFcHVyThDW1WT3w9C/A9PZ09+6PMDKbkpHLp0SO9wbkoSSlHmMgszGbFuBKGeoYxs\nPFLvcITQnberiW8eb07vBqEM+Wobayr4/O+rk3EGNJHJOELciKIonMs+RyX3SnqHclO2VREhHI7Z\nYsbN6EbHqh3vaKyiEI7KyWhgQv/61KjkyQsLYom/mM3oLjUq5ArdvJ1n6SfFOELc0v217tc7hFuS\nhFKUqU9iPsFsNfOv1v/SOxQhbNIjrcOJCPDgubkxnEjJZuL9jXA1VZxinZTMfDYelmIcIeydXPIW\nZSYxK5HH6j3G0LpD9Q5FCJvWvmYgy0a3Iy4hg6Ff7+BiVoHeIZWbxTFSjCOEI5CEUpSJ+Mvx3PfT\nfZiMJqJ87GcWqRB6qR7kybLn2uHsZGDg1K0cSc7UO6QyZ7WqzN8lxThCOAJJKEWpO5h6EG9nb1YM\nWEGgW6De4QhhN/w8nPl+eCs61Azk/mnb+OXwBb1DKlNbTqSSmi3FOEI4AkkoRan75sA3rDixglBP\nKcIRoqScnQy8f19DXupei2fnxDBzczyqquodVpmQYhwhHIcU5YhSk5GfwU8nf2Jih4k2N1JRCHui\nKApPdYgiKsiDsfNiOZGSzVsDGuDs5DhrAFKMI4RjcZzfTkJ3STlJ7EzeiYpq8zNHhbAHXesEs/S5\ntmw+nspj3+4kPadQ75BKjRTjCOFY5FVf3DVVVZm4ayJmi5mp90zFxeiid0iOK2Y2vieXgzlP70hE\nOakT4s2KMe0oLLIyaNpWTqRk6x3SXZNiHCEcjySU4q5ZVSs+Lj54O3vrHYpjKyqE3yeiWM3wbU/Y\nOUPviEQ5CfR0Yd7TrWkS5sugaVvZfPyi3iHdlc1XinEGRksxjhCOQhJKcVfWn17P6F9HM7LRSKJ8\npT1Qmdq/GCyFZET2g46vwLrxcHiV3lGJcuJqMvLpg00Y2ak6w7/bzZztp/UO6Y7Nv1KM4+0qxThC\nOAqpnBB3LLMwk6bBTXEyOMllq7JmtcLWydBqJKqTK9TtBz3fg6Uj4PFVENZC7whFOVAUhdFdahAV\n6MFLi+I4kZLNv/vWw8loP2sDKZn5bDh8gSVSjCOEQ7Gf30LCpuSacxm4fCCnL5+ma7Wueofj+DIT\nwWCEFiP+uq3Vs9DiKfj9Pf3iErro3TCUxc+2Ze3BZIbP3kNmvlnvkIptcUwiNSt50kSKcYRwKJJQ\nihK7XHCZzMJMptwzhabBTfUOp2LwrQajtoG7//W3d38bHvwBVBUKsvSJTeiiYVUfVoxuT3pOIfdN\n28aZSzl6h3RbUowjhOOShFKU2JxDc5i4ayL1A+pLe6DycHYnrH75xl8zGMDZA7Z+BnMGQWFu+cYm\ndBXi48qiZ9tQs5InA6duZWf8Jb1DuiUpxhHCcUk2IIpNVVVWxa/i2UbP8la7t/QOp+LY8ikUZsOt\nVnSaPg75l+HHp8FqKb/YhO7cnI1MHdqUYa3CefSbXSzak6B3SDclxThCOC5JKEWxpeSm8PW+r7mQ\ne0FaBJWXlMNwbC20e+HW93P3h2FLIGEXrB2vXQIXFYbBoPByz9p8MLgh/1p+gPfXHMZita3nwNVi\nnKGtqukdihCiDEiVtyiWtafW4uXsxY/9f8RoMOodTsWx9XOo1RMq1b39ff3CYdgimP8wtB2j7bsU\nFcqg6KpU8/fg2Tl7OHkxh8kPNdElDlVVMVtUiqxWzEUqhUUW5uw4I8U4QjgwSShFsVzIvUBeUZ4k\nk+XJaoGMs9D1n8V/TOVoeD4OTK6Qm/b3Ih7h8JqF+7F8dDtGfLeHwdO3c291F/bnJFBkUTFbrFc+\nivP3m3+tyKJS+P/+brZYcS7KpsACmVYXBvEr9ZQzhCkXCVNS8FFymFIwlem9vFD2zoeGQ8Aol72F\ncCSSUIpbOpt5lg92f8DEDhPxcvbSO5yKxWCEJ1eX/PK1yRUunYSvOsGwxRAu/f4qmqp+7ix9ri3j\nf9zP/H0X8Tieh8lowGQ04Gw04GRUrn1u+p+/u5mMeLuaMDkpmAxXbndScFXN+JqTcbdmkRkYTXBG\nLLXi5+Cem4R7biImLnOqzQTS6j9OxPZVOBW5Y/HpgOpTDdUvgpiIDgQk/Qo//Qt+fVdbRW/6mFZU\nJoSwe5JQipsyW834uPjQJKgJHib5pV+uctPgp7HQf8qdrTIGVNf6VM5/CEZsgKBapR+jsGmeLk5M\neTiaw4cPU7duMbZMWIogMwkyzkD6GYjsAH4RMOc+uHAQspO1+wXVgV474VwqWGuDbw/wDQe/cCJ9\nw4k0uUL4tBufo04fiDoAsT/AtimwaRKM3gmelUrt+xZC6EMSSnFDqqoyeuNoekX24ulGT+sdTsWz\n+xtIPQ6ud7HfrOu/4HICzL0fRmwEr+DSi0/YH1WF7JS/EsaM0+DsCa1Hwa6vYe3rYC0CJzdtP65v\nmJZQNhwMzZ/UkkbfauB25TlZOVr7KClnd2j1jHbM+E1aMhn/OxxdC21Ga+cVQtgdSSjF36iqSmpe\nKiMbjyTCJ0LvcCoecx7snA7d/6v1mbxTigL9v9ASyqOrofnw0otR2L6CbNg1g7BDGyBwMvhHwid1\nteeFT1UtQax2ZTtErZ4Q2kRLJD2Crm9R1WRo2cRnNEHNbtrfndzgXCx83kTbX9nuheIVoonSc34f\ngftnQa1Jsr9V3BFJKMXfbDizgcl/TmbFwBU4GeQpUu7i5oLRGRo+cPfHcnKGR37UXiByUrUVT6P8\nnzo0ixn+/B5+nwgunuSFdMbT5Ko9B17cD57Bf38O+FbTtytAtVYwYh2c2a416f+qE/zjCLj53br/\nqrh7RQXwy1uw40v8jS6w0R16vqt3VMIOySuLuE5cShydwzpTx7+OJJN6ST8DbcdqyWBpMJq0y50L\nhmqrPn0/kxdpR3S1eCt5H/z+PnR6DZo9QeqxEwRdTRZ9bHxCTXgb7SMrWds7HDMb9i2E9i9BjW7y\nvC1thbng5Ap56fDYCs4mJhN5eJp2u7O73tEJOyONzcU1ZquZf2/9NzvO76Cat/Qw1E2Pt6HNc6V7\nTEWBez+G/Uth88ele2yhvzPb4JvucPIXqNIMXjwALZ+230uXXiHan9W7QHADWPgoTG8P+xZrxUPi\n7lxOhAXDYPET2raagdMgsgP5gQ3g6V/B5AZ5GXpHKeyMJJQCgIz8DLaf287CvgvpWLWj3uFUTKoK\nS5+Cc3Flc/yQhvDglUuhexeWzTlE+Uo5AvMegtn9IKQRBDfUbje56htXafGtBn0mwUsHoHYf+O1d\nKMqHgixtr7EoGUsRbJ8KU1tp41x7vf/3+ygK7J4J390r/8aiRCShFADEpMTw7YFvcXVykBciexT/\nGxz6Cbwrl905qneFfpNh7zwZz2jv8tLh6y7aKuRzO6HvJ45bye8RqDX4H/snuHjCrhnwWUP44yNZ\nSSuJX/4LWz6Fvp/Co8u19mI30vghLXFf83L5xifsmiSUgiXHllDXvy7f9PgGgyJPCd1s+UyrqC3r\nnnzRw7RCHdWqXfqyZ4U52orrn99f2Sc6TPt3zE7RO7KykZcBGydA7FytYGXMHnhwDgTW0Duy8nG1\n60GbsdBtAuxdAJ82gPX/1vb9ib/Lz9S2uViKtL3ZY3ZDowduvR/VxQse+F7bIvPnnPKLVdg1yR4q\nOKtqZWvSVpKyk2Ssop7OxcLpzdov/PJgMMKeb+GbHpB5rnzOWZqsFq059pRmWlLhGazdFt4O9s7X\n2uMsGKb1N3QERQXapcrPm8DRn//aY2jrRTZlxckZoh+B0btg0JfaGyMnF62gLfWE3tHZBlWFg8th\nakvYv0RrTO9ZSXsjUhzB9bWVzI0TtDduQtyGlPFWYAmZCSw5voQPO30oFd16u3QSmgy7+SWostDs\nCS05mTsEnvwZXL3L79x3a+4QSIrRKplbPPVXRXyb57RG3Yl74M/ZcHoLRHWGk79pfRj9InQM+g6p\nKnzbE7IuQPe3tVVsefOnMRigbj/tA+DQCtj4pvZ5uxehSlN949NLVrI2aevUZuj8GrQZc2cFWk0e\n1rbJOHtoz0Opshe3IFlEBZZtzia/KB+jIi9Oums4WPsoT0YTPDAbZvWBRY9pc79tuSr44jFtJbfx\ng9DxFQiqfeOxlIoCYS20j6t2z4QjqyGqkzY/uk5fbUXLlp34BTLOahNl7v0YgupKK5fbafe89n+8\n5TOYeQ9EdICHF1ScfzeL+cq0I1dw84fRO+7+TZRXsLa3+/BPcN/XklSKm5JL3hWQqqq8u+Nd0gvS\nGd9qPIr8gtDXL29rl6T04OKlJZL5GZB+Wp8YbifnEqx+Gb5sA8fXaysl4W1KNuP8obkwaquWlK3+\nh1bBCtoLsK05FwffD9DmsGcmabdVaVZxkqK7FdoYhszS9pfW7KH9u53dCQeXadsiHNXZnVpD+C2f\nauMx7/uq9FbkQxrAsfWw4yYz2oVAEsoKq5p3NULcQ/QOQ2SnwLYpxd/XVBa8QuDp3yCwprYKaEvi\n5sPn0ZC4Gx77CQZ/c+crJMH1ofdEGHcEBkzVblv9D5jZXSs8KMguvbjv1Mb/apXbniEwNkabxy7u\nTEB1aDtG+/ul4/DT8/BFC61ZelGBvrGVprx0WPkCzOoNEe20eeilzT9K26u64U04u6P0jy8cgiSU\nFcy+i/t4Yu0TPFD7AaJ8o/QOR+ycrl26rd5V3zgURdt39VVH/as6VRUSdml/9w6FPh9qCW9Eu9I5\nvslV+zcHbQJLVCetv+HHtbWko7xXLXNStcIigJrd4ZlN2uqSnqMQHU30I1ovy6aPwq/vwBfNtdXK\nwhz7LzhZ8Ii2n3jEBu1nxdWnbM5T515tf/LiJ23jzZewObKHsgIxW8yEe4czsMZAXIw2vn+sIijI\n0vb23fuJbexL8gqBAV/AspFaIlejW/nHkLAb1r0BKYfh+VitoKYs+Udqq4CdXtemzJzZpu0jPb0F\nkvdDowdLdmm9JApztEuIWyZrbX/qDYTwtmVzLqElWu1fglaj4MwWrbBp/2JY84r2716ju/acD6pt\nGz+Pt3LpJBxdo3WFGPQleFX++3z2snDPf7R9qS6eZX8uYXdkhbICGfvrWNafWc+gmoP0DkUApJ3S\n9nvVG6h3JH9pOFhrIL3ocTi/t/zOm5GgrXx821ObNz42BjyDyu/8Rieo1RO6/1f7PC9da579cW1Y\nMlxrP2S1lt75jq2Hz5tqq8H9PoOnfnWc6Ta2zuT615ulJsPgsRXaHtX9i2BaK22fLmhFUfmZ+sV5\nI0UFsGkSTGujXXq2mLWV7PJIJkF7s1Wrh/Zma+eM8jmnsBuyQllBZBZmMqrJKKp4VtC+dbYotBE8\nvlLvKP6u3YtwOUm7jBbauGzPVZAFzp5aAleQCSM3a3sd9Va3n1YJfnqL1jR9wbArU1q8tAKmO5lm\npKra8SLaa8ly+5eg+fC/Wh6J8mc0aauT4W211bfslCv/x5dh6Qjt+RnWGmrcA7V7a2929JIUAz8+\nq41DHPId1OmjXyx56bBuvLa3sqYOVzKETZIVygrgzwt/0n9Zf2r61iTQLVDvcATAvsVaAYYtUhRt\nL1bz4Vrld1566Z/DUgS7vobJjbUVodBG8MhS20gmr1IUiOwA938NLx/X2qccXw+f1od5D2ptiIq7\n3/LsDvi2l9Y/89JJqBwNrUdKMmlrPCuByU27PP7KSXhyrfYG4Mgq2PmVdp+Dy+HAj2Xzc3Ejeena\nmxEnN20VffROfZNJgMiO0Hk8/Pi0dnVBCCShdHjJOck0CGzAtG7TcDdJ2xGbYLXCHx+CLf9/XN1D\n9vNr2qb/0qqKVVU4tk5rAfT7RG3/YvV7SufYZelqy556A+DpX7UVymUjteTyXOzNH5d+BuYP1Xp9\nVqqj7QutKGMS7Z3BqPUy7TJe+z+/9xPt9pTD8POrMClKmzS1aVLZVI2rqjYN6vOmcGwtBNeDnu/a\nzv7F9uOganNY/AQUFeodjbABklA6uAnbJ/DtgW+pF1BP71DEVcfWaqPiWozQO5Lb6/8FZCbC8udK\nZw9h7iUtEavTV0uumg8vv/1fpUFRtNXFvp/CP45o86QDamoV8rP7wb5F2iXJrGRt9VIxaJdVn9sB\n/SZrxU7CPl2dI95lPPzjmNZ5oGZ3rW+o0RkSY+DHZ7TnQE7q3Z3r4jH4ri+sHQ9d3tD6adoagwEG\nfaWt4quluL9Y2C07+k0uSkJVVfZe3MvE9hNxsfWJIBXN1s+g2eNlVz1cmjyDYNhS+KYb/PLfv4pW\nSiIrWWvVEtIQWj2rtW9x9ij9WMubs4c2BhG0iu3QxloCsOZlbcVm4FRocL82jUg4FoMBKjfRPq4y\nuWqJ5Yb/aIll5Wjo8Y7W7qokYwsLc7XitKjOMGb3X3PbbZG7v/amKj9TW6kPb6N3REJHskLpoI6k\nHeGF315AURTcnNz0DkdclZ8JBido/ZzekRRfYA14eCGkxWt7H4urMAd+/0C7ZJd6XLs8Bo6RTP4v\nr2AteRh3WGua/sD3UP8+vaMS5Sm4vtZ2a9xhbSpTvQHankxLkdacf/ETEDtXe4N1Iyd/hbh52vaK\nkVu0aT+2nEz+f0dWwdzB2s+5KH0FWdoQhstJekdyS7JC6YD2XtxLgGsAa+5bg4fJAV+87ZmrNzy5\nRu8oSq5aK+2jqACS9kGVpre+v6pql+zy0rQ+eXX7235vv9Lg5KxViIuKS1G05PJqgZmlCHq+Byc2\naPuGVzwHTR7RVrBzUrWfqQ3/gUPLodNr2mN87KwbR+OHtTZLCx+Fp39xzDeNekmM0ToOmNyhVZ7e\n0dySrFA6oGXHl7E6frUkk7Ym5bBW5WvPG9iPrtHmYCfF3PjrpzZr/ekURVupG71LW6mpCMmkEDdi\ndNKqsvt+Ci/u02aMNx+ufW3tePi0nran+tnN0OlVfWO9U4qi7RFWrbBqnPaGUtwdqxU2f6xtf6jZ\nQysMs/GCPlmhdCBmi5l5R+bxRqs3MCpGvcMR/2vr51qRhj23iqk/SBuLOO9BbdSbf6R2e+oJbZXl\n+DpoNVK7LVgKwYS4jqJAYM2/Pu83WZu9HdLor6Ife+XiqW31WPm81lO2rEZAViQXj8FDc7V2UXbA\nzp/B4v9Lzk3mt4TfyDXnYjRIQmlTLidqkzjavah3JHevx7tQrY22Zyo3DbZ9oU0YAXhup9baRAhx\ne87uWmGPvSeTV1WqA8PXgYv33Ve6V1SHV8G8h7TV3vu+sptkEiShdBhrT63lePpxvuv1Hb6uvnqH\nI/7Xji+18W6OUAVpMMB9M7Sq7ZxUqNoCHl0OD8+z+UsyQogypigQNxe+7lp+zd8dQWEurHxRK96K\naKddzbIzcsnbQWQUZOBilPZANqsgSxu15yhMbtr4NyGE+F8Nh8DumbB8tHbJVvZQ31rqCVgwFFQL\nPLXx+nZUdsT+UmBxnczCTP7x+z/oFt6NQTUH6R2OuJn+n2uzgIUQwtE5ucCQ2XBmK2ybonc0tktV\ntS4Abn5ak/xnNtltMgmSUNo19UolXRXPKng5e+kcjbghc57WPictXu9IhBCi/PiFa5N0tnwCeRl6\nR2N7slO0rh+bPgCPANsaq3mH5JK3HZu5fyZmq5lxzcfpHYq4mbi5cOkkeFfVOxIhhChftXvB2D/B\nzbdk04Ic3fGNsHykNra16WN6R1NqZIXSThVZi2gV2opmwc30DkXcjKVIu9zT5jn7bhUkhBB3yt0f\njv6sdYUoyaQtR7X5E5j/ILR8Bp5YBb5hekdUaiShtEOpean0W9YPL2cvWoW20jsccTOHV0BuOjR7\nQu9IhBBCP5WbQvJ++P09vSPRz9U2SuHt4Ik1WhN7B2vvJwmlnSmwFODt7M245uMI9w7XOxxxK3np\n0P4FcJH9rUKICswrGAbPgq2T4dg6vaMpX6oKe2bBZw3h/N6/xtg6INlDaWe+jPuSc9nnmNRpkt6h\niNtp8ZTeEQghhG2IaAdd/w0/PgPPx2qXwh1dbpo2Oejkb9rozZBGekdUpiShtCPns8/zZIMnSc+X\nZrE2b8nQkHXiAAAYpUlEQVQIaPyQ1gpCCCEEtH0eKkdXjGTSnAczOoFHEIzcDP5RekdU5uSSt524\nXHCZ+366j3PZ54jwidA7HHEr52Lh4I8V4heIEEIUm8EAUZ0g+QBs+lDvaMqGxQwph7XhDwOmaqMo\nK8hrgSSUdiA9P53MwkyW9F9C3YC6eocjbmfrZKjbHwKq6x2JEELYHmsR/PEh7FusdySlKy0evu0J\nS58CqxUiO4LRpHdU5UYSSjuw5NgSJu6aSBXPKnqHIm4nLR4OrYD2L+odiRBC2KbKTaD3B7DyBUg5\nonc0pWPvQpjeEbxC4fGV2mpsBSN7KG3cpoRNPF7/cR6yPKR3KKI4LidB46HaPiEhhBA31uwJOLsD\nFj0GT/9q31Nijq7Vim96vgfNh1fYBu4VL4W2I7nmXD7c8yFH047KaEV7EdkBBk7VOwohhLBtigJ9\nP4H6g8Bgp2tbCbsh4yzU7AHPbYcWIypsMgmSUNqsM5ln2H5uO8sGLKNhUEO9wxHFselD2PKZ3lEI\nIYR9cPaALuPBUggnftE7muKzWrQ9oLN6aX01DYYKU3hzK5JQ2qiDqQfZeHYjJkPF2dBr1wqyYPsU\n8JGZ3UIIUSKnt8D8hyApRu9Ibu9yIszuDzumw0PzoeXTekdkMyShtDGqqvJl3Jc0rtSY99pX4DFV\n9iZmNrj6Qr2BekcihBD2pU4faPYkLHpCawZuyzZOACcXGLUNavXQOxqbIgmljTFbzZzJOkOBpQCl\nAu/FsCtFhbB9KrQdC0Y73QskhBB66vEOeFaCZSO1lju2pDAHNn+s9Zjs+xkMW6KNkxTXkVc/GxKX\nEse60+t4v/37kkzak5wUCG0M0Y/oHYkQQtgnJ2cY8h2seA7y0sEjoOzOZSnSimcMRkg7BeZcKMzV\n/jQ4aWMiU49rIxPNORA3T5vJ3ehB2dZ0C5JQ2hCT0USQe5Akk/bGpyoMXaB3FEIIYd98w7Qejqqq\n9ad09tCSPHMueIaAdyic2gyZSf8vCczT+v7mXoJf39E+v/qY8HbQ6VXYNAn2fPvXY6xmePJnCG8L\n09pAUR4oBjB5QEgDGL5W6ym8b6E28aZmD+jyhhaPuClJKG1AkbWID459wBi/MQxvMFzvcERJHP0Z\n9s6HIbMrdLsIIYQoNYdWwOLHr7+txzvatqKY7yB5n5bomTy0Py3PgWLUVhc9g8HZXbs9uIH22Nq9\nIbj+9Y+5OsnsH0e0z43O1/8Or9VT+xDFJgmlzlRVxWw1E+0bTaRPpN7hiJLa8ilUaSbJpBBClJb6\nAyHsiDa20OQGTm5/TZ4Z/M2NH+PsAf1u0rYtpKH2cSNuvncfrwAkodTd/CPz2ZS4iRervkiAWxnu\nGRGl7+wOrc3F4G/1jkQIIRyLd6jeEYgSkoRSJ6qqEpsSy71R99KkUhNI0TsiUWJbPoOGQ2STthBC\niApP2gbp5Ezmmf9r707DsyrvPI5/s0GImGAkoFRkcUUrWBFBHQWkVnAAFxBZqxVBhbFQrTgIFVt1\nhJEKVYqKS4tlk6WCVaS1Douglk20I8iOpSgYhISEICHJMy9OSdWpmuTJk/OEfD9vSMLJOf+T687F\nj3tl+OLhHC4+zDknnhN2OSqv4qJgiOWSH4ddiSRJoTNQhuCFD14gQoTXerxGg7QGYZejikhKDuby\nNPQ/A5IkGSirWHFJMdsPbGfvob0cl+IWBNVS7t/hqcvi/0QHSZKqiHMoq9D0DdPZuG8jv7j0F2GX\nomi8PTlYeZiWGXYlkiTFBQNlFdmVv4tLG13KafVOC7sURaNgX7APWo9nwq5EkqS44ZB3Fdjw2QZu\nePkGTkg9gXYntwu7HEVj1XPBqu4zu4RdiSRJccNAGWMLty2kUd1GzO0+l4zaGWGXo2glJgVHeSX6\nqyNJ0lEOecdQUUkRczbNIbNOpj2Tx4JIBC67K+wqJEmKOwbKGJm7aS45h3N4/qrnSfBYvuqvuAh+\n0wWu+i9o3CbsaiRJiisGyhjIL8znlONPoV7teobJY8WGBZC9EbLOCrsSSZLijhPBKtmaPWu4ZsE1\ntKzfku83+X7Y5agyFB0OjllsMxBS08OuRpKkuGOgrEQrP1nJefXP47EOj5GWkhZ2OaoMJcXwbCco\n+Aza3RF2NZIkxSUDZSX5vOhzHnj7AdZ9uo5WWa3CLkfRyt4EHy4MVnVf9QgMXQl1PSZTkqR/xTmU\nlWDR9kWkJKbw++6/JzU5NexyFI1DObD0v2Hl09CqN5x9NTS7LOyqJEmKawbKKBWXFHOg8AApiSmG\nyerur3PhtXuDnsj+v4fm7cOuSJKkasFAGYV3PnmHCWsmMK3LNFKSUsIuRxWV+/fg9BuADv8JrX8E\nSf5qSJJUVv6rWUHbc7fTsn5LBrccbJisrnJ3wev3w4evwl3r4byeYVckSVK15KKcCsgrzGPAawPY\nmrOVTqd2CrscldeRQ7D0UZh0IeTvgUFvQFpm2FVJklRt2UNZTst3Lad+nfrMv2Y+9evUD7scVcTO\nlbD2BbjuKWjRHdx8XpKkqNhDWU4rdq3g3U/fNUxWN7v/F37bFT56K1hsc+caOOcaw6QkSZXAHsoy\nWvnJSmZvms24y8aRlJgUdjkqq4J9sPhhWP0b+O71UK9J8PXkWuHWJUnSMcRAWQa5h3NpfHxj2jRs\nY5isTg7nwaQ2kPEd+NFCOLVd2BVJknRMcsj7W3x26DO6zOtCQVEBN559Y2wesnMltQ5sj829a6Jt\nS2Hz61D7eOg9AwYtNkxKkhRDBspv8F72e0SI8NxVz3FavdNi85BP3oOp3Wn2p5vhvRdj84yaYv8O\nmNUPpl0Pu/8afO3UtsHxiZIkKWYc8v4Gz//1eS46+SL6tegXmwcc2h8EoPP7sjuhIY32bYvNc2qC\nZeODIxObXQ5D3oH6Z4RdkSRJNYaB8l9Y9+k63vr4Lca3H09yYgx/RLUzgpNZzutF7uatNGrRAvKz\nYeHdcNUjwdw/fb1IBPZuhqwzoW5DuPF3cOZVYVclSVKN45D3VxwpPlL6cXJiMgmx2lbm7cmQvxu+\n1//LK44Tk+BwPkxpD9uXxebZx4KP34Xnr4LfXQtFhXDBAMOkJEkhMVB+wcf5H9P1pa5kpWUx5Pwh\nsQuTa1+AN34enNLyVWmZ0G9OcJ70766D5RODnjgF8j+FBf8Bz3SCE88IFty4BZAkSaEyUP7Dttxt\nZKZmcu9F99LouEaxe9DOVfDq3dD9CWj0vX99TWISXDEKbpwOf3sHSopiV091cTRUb10M2R/Cra/D\ntb+G4xuGW5ckSTJQAkQiEX624mcs2LKAK069InY9kwc+gRf7w0WDoWWvb7/+rM7QdxYkJMKrP4VP\nP4xNXfFu8+sw+eLg/Vv2glv+BN9pHXZVkiTpH2r8opyN+zayNWcrkztNJr1Wemwfllw7mOvX/j/L\n930lRVCYD89cAddMCk58qQn2boE/joRtS+CSOyHjlOCoRI9LlCQprtToHspIJMK23G2s/XQtGbUz\nYtczGYnAX+cGG21fMRqSypnjk2vDtU/CDx6El26DRffBFxYPHZP274DJ7SCpFgxdCZ3uh9p1w65K\nkiT9CzU2UO48sJObF91Mu5PbMbrd6Ng+bOUUePnHkPO3it8jIQHaDIQfvQY73oSDeyuvvnhxOB+W\njA1Wt5/QFAYvgd7TIbNZyIVJkqRvUmMDZYPjGnBlkyvJqJ0R2wdtXwZ/HAXXPw0nVsJpO6dcCLct\ng/STYeUz8NHb0d8zbMVHgnd5/Hx4fzaUFAdfP+m74dYlSZLKpMbOoaydVJv+5/SP7UP2fwSzb4LL\n7oIW3SrvvkeH5vN2w6KRwVB429ur59zCokJ4+nIo2Avt74XWN0NSSthVSZKkcqixgbJKHNoP53Qv\n/yKcsur0s2Drofl3wM6VwVZE1WWe4Y7lwRD3WZ3hyl9Ak4uDOaaSJKnaqbFD3jEViQT7TTY6H7r9\nChJj+GNu0TXY3Dt7I+xaHbvnVJY9H8D0G+CFa+CT94KvnfkDw6QkSdWYgTIWVkyE6T2CHsqqUP90\nuP1NaN4BdqyA9S9XzXPLa9FIeOrfoNZxwcrtDveGXZEkSaoEBsrKtvl1+J+H4Ppnoc4JVffcxKTg\nz31bYe4t8Pr9UBwHJ+wU7IMtbwQfN24Lt/4Zbvht5SxQkiRJccE5lJVp7xaYOzDYa/LMH4RTwwU/\nDM64nnMz7FoLPX8DdbOqvo4jh+AvT8Pyx6D+WdC8I5x7bdXXIUmSYs4eysq0a3WwyOTS4eHW0eTi\nYGuhSAmsnVr1z9/wCjzROtgKqPM4uGVRbOeRSpKkUNlDWRlKSiB/N7TqDS1vjI/te45vCD9cEJwD\nnp8NmxbB9/rHrrZIJFhwc9J3g2e0vT04szwlNTbPkyRJccNuo8qwdCxM7R5syB0PYfKopJRgbuWn\n6+G1e4PthQoLKv85f18Dv+0Kz/0ADn4GZ/87XPpjw6QkSTWEgTJa61+GNx+DrhP+uTAm3jRvD4P+\nB/6+Gp67EvZtq5z77tsOs38Y3DOzKfzHSjjuxMq5tyRJqjYMlNHYsx5euh2uehiaXRZ2Nd+swdlB\nqMxsHmzfE42CfcEQ98G9UHQYbl8O1/waMk6pnFolSVK14hzKaKz5LZx7XTBXsDpITYdeL0BhfjDv\n872ZwbzPsvasHs6Dt56AtyZBvznQ9FLo+2Jsa5YkSXHPQFkRJcVQUgSdxwZ/xtO8yW+TkBCcSrNv\nO/x5DPzvXOjxHKRlfv33FBUG4XnpOKhTD657CppcUmUlS5Kk+OaQd0X8eUyweXhiIiTXCruaisls\nFmwtdDgfnm4f7Fn5VZFIEJ7zdwc9k1eMgiHvBOeTV6cQLUmSYspAWV7vzw427L50WNiVRC+9Edz8\nKpzVBV4cEMyHPGr7MnimI6x9AeqdCsPWwYW3BCvHJUmSvsAh7/L4eB28fCf8+y+h8UVhV1M5kmvB\n1f8Nl98DybXhw4Ww+jnYtjQIkGd3Da6L1xXskiQpdAbK8vjjKPjegOB4w2NN3Sw48jksnwD1Ggdb\nAGU2D7sqSZJUDRgoyyISCeYM3vi7YEHLsSolFW59PewqJElSNeMcyrJY+NNg8/K0TOcQSpIkfYWB\n8tusmQrvTofTrgi7EkmSpLjkkPc3+dtfgt7Ja5+ERueHXY0kSVJcsofy6xQVwryB0PZ2OK9n2NVI\nkiTFLXsov05yLegzCxq0CLsSSZKkuGYP5VdFIrDwHtjyZzjpu+6/KEmS9C0MlF/1l6dg3QxI/07Y\nlUiSJFULDnl/0bal8KfRcMNUh7olSZLKyB7Ko/I/hTk3w2U/hRZdw65GkiSp2rCH8qjjsqDbr/55\ndrUkSZLKxB7KSATeeBBy/gbndIdEfySSJEnlYXpa/hisegZKisKuRJIkqVqq2UPem/4Ii/8L+r4I\nJ54WdjWSJEnVUs3tody7BebdCp3uh9O/H3Y1kiRJ1VbN7aGsmwUdRkK7O8KuRJIkqVqruYEyNQMu\nHhJ2FZIkSdVezR3yliRJUqUwUEqSJCkqBkpJkiRFpcKBcvbs2fTu3ZsBAwawc+dO5syZQ+/evZk0\naRIAhYWFDBo0iCNHjlRasZIkSYo/FVqUk5OTw5w5c5g5cybr169n/PjxJCUlMWvWLIYOHQrA1KlT\n6d+/PykpKZVasCRJkuJLhXoo33//fS666CKSk5Np2bIl27dvp7i4mOLiYhISEvjss89Yv3497du3\nr+x6JUmSFGcq1EOZm5tLRkZG6eeRSIS+fftyzz330K1bNyZPnszAgQMZP348AEOGDCEtLa1M996w\nYUNFSqr2Pv/88xr77iof24rKw/aisrKtKBoVCpTp6els3Lix9PPExETatm1L27Zt2bRpE+vWreOD\nDz6gU6dOALzyyiv06tWrTPdu0aJFRUqq9jZs2FBj313lY1tRedheVFa2FX3VmjVrynxthYa8W7Vq\nxapVqyguLuaDDz6gSZMmpX/39NNPc8cdd1BQUEBhYSGFhYUcPHiwIo+RJElSNVChHsp69epx7bXX\n0q9fP5KTk3n44YcBWLJkCa1btyY9PZ3OnTtz9913A/DYY49VXsWSJEmKKxU+erFPnz706dPnS1/r\n0KFD6ccnn3wyM2bMqHBhkiRJqh7c2FySJElRMVBKkiQpKgZKSZIkRcVAKUmSpKgYKCVJkhQVA6Uk\nSZKiYqCUJElSVAyUkiRJioqBUpIkSVExUEqSJCkqBkpJkiRFxUApSZKkqBgoJUmSFBUDpSRJkqJi\noJQkSVJUEiKRSCTsIo5as2ZN2CVIkiTpH1q3bl2m6+IqUEqSJKn6cchbkiRJUTFQSpIkKSoGSkmS\nJEXFQClJkqSoGCglSZIUFQOlJEmSopIcdgHHsnfffZexY8eSkpJCWloa48ePp6ioiBEjRnDw4EEu\nueQS7rzzTgAWL17MU089RUJCAvfddx8tW7akpKSEn//852zevJkGDRowduxYUlNTQ34rxUq07eWo\nJ598kldffZVXXnklrFdRjEXbVg4cOMDw4cM5cuQICQkJPProozRs2DDkt1KslKe9DB06lNWrVzN4\n8GAGDhwIwBNPPMGbb74JwJVXXsmgQYNCexfFL/ehjKE9e/aQnp5OnTp1mDlzJjk5ORw4cICWLVvS\npUsXBg8ezIgRI2jWrBk9evRg2rRpHDx4kOHDhzNz5kyWLFnC0qVLGTNmDM8++yx16tShX79+Yb+W\nYiTa9gKQk5PDgw8+yMaNGw2Ux7Bo28rs2bPJzs5m6NChzJ8/n48++ohhw4aF/VqKkbK2l9NPP509\ne/awYsUK9u/fXxood+zYQdOmTYlEIvTp04eJEydy0kknhfxWijcOecdQw4YNqVOnDgApKSkkJSWx\ndu1aOnbsCECHDh1YtWpV6S9r3bp1adiwIUVFRRw+fJjVq1fToUMHADp27Mjq1avDehVVgWjbC8CU\nKVO45ZZbQnsHVY1o20rz5s05ePAgAHl5eWRmZob2Loq9sraXo9d+VdOmTQFISEggOTmZxESjg/4/\nW0UV2L9/PzNmzKBnz54UFBSUDlunp6eTm5tLbm4u6enppdenp6eTk5NDbm4uGRkZABx//PHk5uaG\nUr+qVkXby+7du8nOzubcc88Nq3RVsYq2lTPPPJO1a9fSrVs3pk2bRvfu3cN6BVWhb2sv32bRokU0\nbtyYBg0axLpUVUMGyhg7dOgQw4YNY/To0WRmZlKnTp3S3qS8vDwyMjLIyMggLy+v9Hvy8vKoV68e\n6enpHDhw4EvX6tgWTXuZPHkyt912W1ilq4pF01aeffZZunXrxh/+8Afuu+8+Hn300bBeQ1WkLO3l\nm6xZs4YZM2YwZsyYqihX1ZCBMoaKior4yU9+woABA7jggguA4JD1pUuXArBs2TIuvPBCmjRpwo4d\nOygoKCA7O5ukpCRq165NmzZtWLZs2Zeu1bEr2vayc+dOHnnkEQYOHMiuXbv45S9/GebrKIaibSsl\nJSWccMIJANSrV6/0P646NpW1vXydzZs3M27cOCZOnOjCUH0tF+XE0Pz583nooYdo0aIFAO3bt+f6\n668vXVnXrl270onwb7zxBlOmTCEhIYGRI0fSqlUrSkpKeOCBB9iyZQtZWVmMHTu2dB6Mjj3Rtpcv\n6tq1q4tyjmHRtpU9e/YwYsQISkpKOHLkCGPGjCm9l4495WkvDz30EG+//TZFRUWcf/75jBs3jptu\nuok9e/aQlZUFwOjRoznrrLNCex/FJwOlJEmSouKQtyRJkqJioJQkSVJUDJSSJEmKioFSkiRJUTFQ\nSpIkKSoGSkkqgyFDhrBw4cLSz6dPn879998fYkWSFD/cNkiSymDnzp3ceuutLFiwgMOHD9OrVy9m\nzZpVukF4eRUXF5OUlFTJVUpSOAyUklRGjz/+OAkJCeTk5HD66afTp08fJk2axOLFiyksLOSmm26i\nZ8+e7Nixg5EjR3Lo0CFq167NI488QvPmzZkzZw7Lly9n7969NGrUyCMPJR0zksMuQJKqi8GDB3Pd\ndddRt25dRo0axeLFizl48CDz5s2jsLCQ3r1707FjRxo0aMDUqVOpVasWa9euZeLEiTz++OMAbNq0\niXnz5pGWlhby20hS5TFQSlIZpaam0rlzZ+rXr09iYiIrVqxgyZIlvPXWWwDk5eWxc+dOmjZtyqhR\no9iyZQsAJSUlpfe4/PLLDZOSjjkGSkkqh8TERBIT/7me8a677uLqq6/+0jUTJkzgjDPOYMKECWRn\nZ9O3b9/Sv0tNTa2yWiWpqrjKW5Iq6OKLL2bu3LkUFhYCsHXrVgoLC8nPzycrKwuAl156KcwSJalK\n2EMpSRXUqVMntmzZQo8ePYhEIpx44olMmTKFvn37MmzYMKZPn07Hjh3DLlOSYs5V3pIkSYqKQ96S\nJEmKioFSkiRJUTFQSpIkKSoGSkmSJEXFQClJkqSoGCglSZIUFQOlJEmSomKglCRJUlT+D7gc4gV7\n9OeCAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -657,7 +659,7 @@ "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 685 + "height": 665 }, "outputId": "47c7bf25-1fe4-40c4-b1fe-cf05fdaff5bd" },