Skip to content

Latest commit

 

History

History
45 lines (37 loc) · 1.69 KB

README.md

File metadata and controls

45 lines (37 loc) · 1.69 KB

Relational-RfD-Net

Relational-RfD-Net: A Semantic Instance Reconstruction framework using Attention
[Ingo Blakowski], [Trung Quoc Nguyen]

Ground-truth Prediction (RfD) Prediction (Relational-RfD)

Setting up the project and basic commands

To set up the project please refer to the README_original.md of the original RfDNet in this project folder. There you can also see the basic commands to train and test the models.


Training and testing

To control the training and testing the configuration files (see 'configs/config_files/****.yaml') are used.

Use the self-attention module:

  1. Set before proposal generation MLP (before_prop_gen: True)

  2. Or/and set after proposal generation MLP (after_prop_gen: False):

    self_attention:
     appearance_feature_dim: 128
     before_prop_gen: True
     after_prop_gen: False
    

Use the relation-module (use_relation: True):

  1. Use GT (use_gt_boxsize: True) or predicted (use_gt_boxsize: False) box size.
  2. Compute either two box losses before and after the relation module (compute_two_losses: True) or only one box loss after the relation module (compute_two_losses: False).
    relation_module:
     use_relation: False
     method: RelationalProposalModule
     loss: Null
     use_gt_boxsize: True
     compute_two_losses: False
     #use_learned_pos_embed: False
     n_relations: 8 #4
     appearance_feature_dim: 768 #384
     key_feature_dim: 96 
     geo_feature_dim: 96
     isDuplication: False