forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist-2.py
79 lines (60 loc) · 2.83 KB
/
mnist-2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.import tensorflow as tf
import argparse
import json
import os
import numpy as np
import tensorflow as tf
def model(x_train, y_train, x_test, y_test):
"""Generate a simple model"""
model = tf.keras.models.Sequential(
[
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1024, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(10, activation=tf.nn.softmax),
]
)
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
model.fit(x_train, y_train)
model.evaluate(x_test, y_test)
return model
def _load_training_data(base_dir):
"""Load MNIST training data"""
x_train = np.load(os.path.join(base_dir, "train_data.npy"))
y_train = np.load(os.path.join(base_dir, "train_labels.npy"))
return x_train, y_train
def _load_testing_data(base_dir):
"""Load MNIST testing data"""
x_test = np.load(os.path.join(base_dir, "eval_data.npy"))
y_test = np.load(os.path.join(base_dir, "eval_labels.npy"))
return x_test, y_test
def _parse_args():
parser = argparse.ArgumentParser()
# Data, model, and output directories
# model_dir is always passed in from SageMaker. By default this is a S3 path under the default bucket.
parser.add_argument("--model_dir", type=str)
parser.add_argument("--sm-model-dir", type=str, default=os.environ.get("SM_MODEL_DIR"))
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAINING"))
parser.add_argument("--hosts", type=list, default=json.loads(os.environ.get("SM_HOSTS")))
parser.add_argument("--current-host", type=str, default=os.environ.get("SM_CURRENT_HOST"))
return parser.parse_known_args()
if __name__ == "__main__":
args, unknown = _parse_args()
train_data, train_labels = _load_training_data(args.train)
eval_data, eval_labels = _load_testing_data(args.train)
mnist_classifier = model(train_data, train_labels, eval_data, eval_labels)
if args.current_host == args.hosts[0]:
# save model to an S3 directory with version number '00000001' in Tensorflow SavedModel Format
# To export the model as h5 format use model.save('my_model.h5')
mnist_classifier.save(os.path.join(args.sm_model_dir, "000000001"))