-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsort.h
180 lines (172 loc) · 12.4 KB
/
sort.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/**
* Here is a tested example of this codes:
* https://github.com/blackball/boring/blob/master/sort-by-another.c
*
* @blackball
*/
#ifndef CGDL_SORT_H
#define CGDL_SORT_H
#include <stdlib.h>
/* Swap two items pointed to by A and B using temporary buffer t. */
#define _QSORT_SWAP(QSORT_BASE, QSORT_BASE1, a, b, t) \
do { \
((void)((t = *a), (*a = *b), (*b = t))) ; \
/* swap another array */ \
hold1 = QSORT_BASE1[a - QSORT_BASE]; \
QSORT_BASE1[a - QSORT_BASE] = QSORT_BASE1[b - QSORT_BASE]; \
QSORT_BASE1[b - QSORT_BASE] = hold1; \
} while (0)
#define _QSORT_MAX_THRESH 4
#define _QSORT_STACK_SIZE (8 * sizeof(unsigned))
#define _QSORT_PUSH(top, low, high) (((top->_lo = (low)), (top->_hi = (high)), ++top))
#define _QSORT_POP(low, high, top) ((--top, (low = top->_lo), (high = top->_hi)))
#define _QSORT_STACK_NOT_EMPTY (_stack < _top)
/* The main code starts here... */
#define _QSORT(QSORT_TYPE, QSORT_BASE, QSORT_TYPE1, QSORT_BASE1, QSORT_NELT, QSORT_LT) \
do { \
QSORT_TYPE *const _base = (QSORT_BASE); \
const unsigned _elems = (QSORT_NELT); \
QSORT_TYPE _hold; \
QSORT_TYPE1 hold1; \
\
/* Don't declare two variables of type QSORT_TYPE in a single \
* statement: eg `TYPE a, b;', in case if TYPE is a pointer, \
* expands to `type* a, b;' wich isn't what we want. \
*/ \
\
if (_elems > _QSORT_MAX_THRESH) { \
QSORT_TYPE *_lo = _base; \
QSORT_TYPE *_hi = _lo + _elems - 1; \
struct { \
QSORT_TYPE *_hi; QSORT_TYPE *_lo; \
} _stack[_QSORT_STACK_SIZE], *_top = _stack + 1; \
\
while (_QSORT_STACK_NOT_EMPTY) { \
QSORT_TYPE *_left_ptr; QSORT_TYPE *_right_ptr; \
\
/* Select median value from among LO, MID, and HI. Rearrange \
LO and HI so the three values are sorted. This lowers the \
probability of picking a pathological pivot value and \
skips a comparison for both the LEFT_PTR and RIGHT_PTR in \
the while loops. */ \
\
QSORT_TYPE *_mid = _lo + ((_hi - _lo) >> 1); \
\
if (QSORT_LT (_mid, _lo)) \
_QSORT_SWAP (QSORT_BASE, QSORT_BASE1, _mid, _lo, _hold); \
if (QSORT_LT (_hi, _mid)) { \
_QSORT_SWAP (QSORT_BASE, QSORT_BASE1,_mid, _hi, _hold); \
if (QSORT_LT (_mid, _lo)) \
_QSORT_SWAP (QSORT_BASE, QSORT_BASE1,_mid, _lo, _hold); \
} \
\
_left_ptr = _lo + 1; \
_right_ptr = _hi - 1; \
\
/* Here's the famous ``collapse the walls'' section of quicksort. \
Gotta like those tight inner loops! They are the main reason \
that this algorithm runs much faster than others. */ \
do { \
while (QSORT_LT (_left_ptr, _mid)) \
++_left_ptr; \
\
while (QSORT_LT (_mid, _right_ptr)) \
--_right_ptr; \
\
if (_left_ptr < _right_ptr) { \
_QSORT_SWAP (QSORT_BASE, QSORT_BASE1,_left_ptr, _right_ptr, _hold); \
if (_mid == _left_ptr) \
_mid = _right_ptr; \
else if (_mid == _right_ptr) \
_mid = _left_ptr; \
++_left_ptr; \
--_right_ptr; \
} \
else if (_left_ptr == _right_ptr) { \
++_left_ptr; \
--_right_ptr; \
break; \
} \
} while (_left_ptr <= _right_ptr); \
\
/* Set up pointers for next iteration. First determine whether \
left and right partitions are below the threshold size. If so, \
ignore one or both. Otherwise, push the larger partition's \
bounds on the stack and continue sorting the smaller one. */ \
\
if (_right_ptr - _lo <= _QSORT_MAX_THRESH) { \
if (_hi - _left_ptr <= _QSORT_MAX_THRESH) \
/* Ignore both small partitions. */ \
_QSORT_POP (_lo, _hi, _top); \
else \
/* Ignore small left partition. */ \
_lo = _left_ptr; \
} \
else if (_hi - _left_ptr <= _QSORT_MAX_THRESH) \
/* Ignore small right partition. */ \
_hi = _right_ptr; \
else if (_right_ptr - _lo > _hi - _left_ptr) { \
/* Push larger left partition indices. */ \
_QSORT_PUSH (_top, _lo, _right_ptr); \
_lo = _left_ptr; \
} \
else { \
/* Push larger right partition indices. */ \
_QSORT_PUSH (_top, _left_ptr, _hi); \
_hi = _right_ptr; \
} \
} \
} \
\
/* Once the BASE array is partially sorted by quicksort the rest \
is completely sorted using insertion sort, since this is efficient \
for partitions below MAX_THRESH size. BASE points to the \
beginning of the array to sort, and END_PTR points at the very \
last element in the array (*not* one beyond it!). */ \
\
{ \
QSORT_TYPE *const _end_ptr = _base + _elems - 1; \
QSORT_TYPE *_tmp_ptr = _base; \
register QSORT_TYPE *_run_ptr; \
QSORT_TYPE *_thresh; \
\
_thresh = _base + _QSORT_MAX_THRESH; \
if (_thresh > _end_ptr) \
_thresh = _end_ptr; \
\
/* Find smallest element in first threshold and place it at the \
array's beginning. This is the smallest array element, \
and the operation speeds up insertion sort's inner loop. */ \
\
for (_run_ptr = _tmp_ptr + 1; _run_ptr <= _thresh; ++_run_ptr) \
if (QSORT_LT (_run_ptr, _tmp_ptr)) \
_tmp_ptr = _run_ptr; \
\
if (_tmp_ptr != _base) \
_QSORT_SWAP (QSORT_BASE, QSORT_BASE1, _tmp_ptr, _base, _hold); \
\
/* Insertion sort, running from left-hand-side \
* up to right-hand-side. */ \
\
_run_ptr = _base + 1; \
while (++_run_ptr <= _end_ptr) { \
_tmp_ptr = _run_ptr - 1; \
while (QSORT_LT (_run_ptr, _tmp_ptr)) \
--_tmp_ptr; \
\
++_tmp_ptr; \
if (_tmp_ptr != _run_ptr) { \
QSORT_TYPE *_trav = _run_ptr + 1; \
while (--_trav >= _run_ptr) { \
QSORT_TYPE *_hi; QSORT_TYPE *_lo; \
_hold = *_trav; \
\
for (_hi = _lo = _trav; --_lo >= _tmp_ptr; _hi = _lo) \
*_hi = *_lo; \
*_hi = _hold; \
} \
} \
} \
} \
} while(0)
#endif