-
Notifications
You must be signed in to change notification settings - Fork 106
/
two-city-scheduling.py
41 lines (35 loc) · 1.55 KB
/
two-city-scheduling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Time: O(n) ~ O(n^2), O(n) on average.
# Space: O(1)
import random
# quick select solution
class Solution(object):
def twoCitySchedCost(self, costs):
"""
:type costs: List[List[int]]
:rtype: int
"""
def kthElement(nums, k, compare):
def PartitionAroundPivot(left, right, pivot_idx, nums, compare):
new_pivot_idx = left
nums[pivot_idx], nums[right] = nums[right], nums[pivot_idx]
for i in xrange(left, right):
if compare(nums[i], nums[right]):
nums[i], nums[new_pivot_idx] = nums[new_pivot_idx], nums[i]
new_pivot_idx += 1
nums[right], nums[new_pivot_idx] = nums[new_pivot_idx], nums[right]
return new_pivot_idx
left, right = 0, len(nums) - 1
while left <= right:
pivot_idx = random.randint(left, right)
new_pivot_idx = PartitionAroundPivot(left, right, pivot_idx, nums, compare)
if new_pivot_idx == k - 1:
return
elif new_pivot_idx > k - 1:
right = new_pivot_idx - 1
else: # new_pivot_idx < k - 1.
left = new_pivot_idx + 1
kthElement(costs, len(costs)//2, lambda a, b: a[0]-a[1] < b[0]-b[1])
result = 0
for i in xrange(len(costs)):
result += costs[i][0] if i < len(costs)//2 else costs[i][1]
return result