-
Notifications
You must be signed in to change notification settings - Fork 106
/
path-with-maximum-probability.cpp
36 lines (35 loc) · 1.35 KB
/
path-with-maximum-probability.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
// Time: O((|E| + |V|) * log|V|) = O(|E| * log|V|) by using binary heap,
// if we can further to use Fibonacci heap, it would be O(|E| + |V| * log|V|)
// Space: O(|E| + |V|) = O(|E|)
class Solution {
public:
double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) {
unordered_map<int, vector<pair<int, double>>> adj;
for (int i = 0; i < edges.size(); ++i) {
adj[edges[i][0]].emplace_back(edges[i][1], succProb[i]);
adj[edges[i][1]].emplace_back(edges[i][0], succProb[i]);
}
priority_queue<pair<double, int>> max_heap;
max_heap.emplace(1.0, start);
unordered_map<int, double> result;
unordered_set<int> lookup;
while (!max_heap.empty() && lookup.size() != adj.size()) {
const auto [curr, u] = max_heap.top(); max_heap.pop();
if (lookup.count(u)) {
continue;
}
lookup.emplace(u);
for (const auto& [v, w] : adj[u]) {
if (lookup.count(v)) {
continue;
}
if (result.count(v) && result[v] >= curr * w) {
continue;
}
result[v] = curr * w;
max_heap.emplace(result[v], v);
}
}
return result[end];
}
};