-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCARMER_equations.m
494 lines (384 loc) · 16.7 KB
/
CARMER_equations.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
function dy = CARMER_equations(t,y)
%%%%%% CAR-MER
%%%%%% Coupled C-Hg 4-box ocean-atmosphere model
%%%%%% As used in Dal Corso et al. 2020 Nat. Comm.
%%%%%% Coded by Benjamin JW Mills // [email protected]
%%%%%% Model equations file: do not run this code directly
%%%%%%% setup dy array
dy = zeros(19,1);
%%%%%%% set up global parameters
global stepnumber
global pars
global workingstate
%%%%%%%%%%%%% get variables from Y
CO2_a = y(1) ;
DIC_s = y(2) ;
DIC_h = y(3) ;
DIC_d = y(4) ;
ALK_s = y(5) ;
ALK_h = y(6) ;
ALK_d = y(7) ;
d13c_atm = y(8) / y(1) ;
d13c_DIC_s = y(9) / y(2) ;
d13c_DIC_h = y(10) / y(3) ;
d13c_DIC_d = y(11) / y(4) ;
Hg_a = y(12) ;
Hg_s = y(13) ;
Hg_h = y(14) ;
Hg_d = y(15) ;
Atmospheric_CO2_ppm = ( CO2_a / pars.CO2_a_0 ) * 280 ;
%%%% pCO2 in PAL
pCO2_a = ( CO2_a / pars.CO2_a_0 ) ;
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%% SCENARIO 1: VOLC ONLY %%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%% SIBERIAN TRAPS INTRUSIVE MAGMATISM
%
% %%% LOW INPUT SCENARIO
% CO2_ramp = 4e12 ;
% Hg_ramp = 25 ;
%
% %%% HIGH INPUT SCENARIO
% CO2_ramp = 8e12 ;
% Hg_ramp = 43 ;
%
% %%% TH slowdown
% TH_ramp = 1 ;
%
% %%% interpolaiton functions
% CO2_input_force = interp1([-253e6 -251.99e6 -251.98e6 -251.56e6 -251.55e6 -251e6 ],[ 0 0 CO2_ramp CO2_ramp 0 0 ],t) ;
% Hg_volc_force = interp1([-253e6 -251.99e6 -251.98e6 -251.56e6 -251.55e6 -251e6 ],[ 1 1 Hg_ramp Hg_ramp 1 1 ],t) ;
% thermo_force = interp1([-253e6 -251.99e6 -251.98e6 -251.56e6 -251.55e6 -251e6 ],[ 10 10 TH_ramp TH_ramp 10 10 ],t) ;
%
% %%% LAND BIOTA OPTIONS
%
% %%% carbon burial from land biota
% C_burial_force = 1.2 ;
% OXIDW_FORCE = 1 ;
% Hg_runoff_force = 1 ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% SCENARIO 2: VOLC+BIOSPHERE %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SIBERIAN TRAPS INTRUSIVE MAGMATISM
%%%% LOW INPUT SCENARIO
% CO2_ramp = 4e12 ;
% Hg_ramp = 25 ;
%%%% HIGH INPUT SCENARIO
CO2_ramp = 8e12 ;
Hg_ramp = 43 ;
%%%% TH slowdown
TH_ramp = 1 ;
%%%% interpolaiton functions
CO2_input_force = interp1([-253e6 -251.99e6 -251.98e6 -251.56e6 -251.55e6 -251e6 ],[ 0 0 CO2_ramp CO2_ramp 0 0 ],t) ;
Hg_volc_force = interp1([-253e6 -251.99e6 -251.98e6 -251.56e6 -251.55e6 -251e6 ],[ 1 1 Hg_ramp Hg_ramp 1 1 ],t) ;
thermo_force = interp1([-253e6 -251.99e6 -251.98e6 -251.56e6 -251.55e6 -251e6 ],[ 10 10 TH_ramp TH_ramp 10 10 ],t) ;
%%%% LAND BIOTA COLLAPSE (1kyr)
C_burial_force = interp1([-253e6 -251.951e6 -251.950e6 -251.949e6 -251.948e6 -251e6 ],[ 1.2 1.2 0 0 1.2 1.2],t) ;
OXIDW_FORCE = interp1([-253e6 -251.951e6 -251.950e6 -251.949e6 -251.948e6 -251e6 ],[ 1 1 30 30 1 1],t) ;
Hg_runoff_force = interp1([-253e6 -251.951e6 -251.950e6 -251.949e6 -251.948e6 -251e6 ],[ 1 1 100 100 1 1],t) ;
CO2_input_force_spike = 0 ;
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%% SI PLOT: VOLC + VOLC SPIKE %%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% % %%% SIBERIAN TRAPS INTRUSIVE MAGMATISM
% %
% %%% LOW INPUT SCENARIO
% % CO2_ramp = 4e12 ;
% % CO2_ramp_pulse = CO2_ramp * 5 ;
% % Hg_ramp = 25 ;
% % Hg_ramp_pulse = Hg_ramp * 5 ;
%
% % %%%% HIGH INPUT SCENARIO
% CO2_ramp = 8e12 ;
% CO2_ramp_pulse = CO2_ramp * 5 ;
% Hg_ramp = 43 ;
% Hg_ramp_pulse = Hg_ramp * 5 ;
%
% %%%% TH slowdown
% TH_ramp = 1 ;
%
% %%%% interpolaiton functions
% CO2_input_force = interp1([-253e6 -251.99e6 -251.98e6 -251.56e6 -251.55e6 -251e6 ],[ 0 0 CO2_ramp CO2_ramp 0 0 ],t) ;
%
% CO2_input_force_spike = interp1([-253e6 -251.951e6 -251.950e6 -251.949e6 -251.948e6 -251e6],[ 0 0 CO2_ramp_pulse CO2_ramp_pulse 0 0 ],t);
%
% Hg_volc_force = interp1([-253e6 -251.99e6 -251.98e6 -251.56e6 -251.55e6 -251e6 ],[ 1 1 Hg_ramp Hg_ramp 1 1 ],t) ...
% + interp1([-253e6 -251.951e6 -251.950e6 -251.949e6 -251.948e6 -251e6],[ 0 0 Hg_ramp_pulse Hg_ramp_pulse 0 0 ],t) ;
%
% thermo_force = interp1([-253e6 -251.99e6 -251.98e6 -251.56e6 -251.55e6 -251e6 ],[ 10 10 TH_ramp TH_ramp 10 10 ],t) ;
%
% %%%% LAND BIOTA OPTIONS
%
% %%%% carbon burial from land biota
% C_burial_force = 1.2 ;
% OXIDW_FORCE = 1 ;
% Hg_runoff_force = 1 ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Flux calculations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Thermohaline speed (Sv)
circ_TH_Sv = thermo_force ;
%%%% Thermohaline speed (m3/yr)
circ_TH_m3_yr = ( circ_TH_Sv * 1e6 ) * 3.15e7 ;
%%%% DIC concentration in mol/m3
DIC_conc_s = DIC_s / pars.vol_s ;
DIC_conc_h = DIC_h / pars.vol_h ;
DIC_conc_d = DIC_d / pars.vol_d ;
ALK_conc_s = ALK_s / pars.vol_s ;
ALK_conc_h = ALK_h / pars.vol_h ;
ALK_conc_d = ALK_d / pars.vol_d ;
Hg_conc_s = Hg_s / pars.vol_s ;
Hg_conc_h = Hg_h / pars.vol_h ;
Hg_conc_d = Hg_d / pars.vol_d ;
%%%% Transport fluxes in mol/yr
Tran_DIC_s_h = DIC_conc_s * circ_TH_m3_yr ;
Tran_DIC_h_d = DIC_conc_h * circ_TH_m3_yr ;
Tran_DIC_d_s = DIC_conc_d * circ_TH_m3_yr ;
Tran_ALK_s_h = ALK_conc_s * circ_TH_m3_yr ;
Tran_ALK_h_d = ALK_conc_h * circ_TH_m3_yr ;
Tran_ALK_d_s = ALK_conc_d * circ_TH_m3_yr ;
f_Tran_Hg_s_h = Hg_conc_s * circ_TH_m3_yr ;
f_Tran_Hg_h_d = Hg_conc_h * circ_TH_m3_yr ;
f_Tran_Hg_d_s = Hg_conc_d * circ_TH_m3_yr ;
%%%% Global average surface temperature
Climate_Sensitivity = 3 ;
t_geol = -250 ;
GAST = 288 + Climate_Sensitivity * ( log( Atmospheric_CO2_ppm / 280 ) / log(2) ) - 7.4*(t_geol/-570) ;
T_s = 298 + (GAST - 288)*0.66 ;
T_h = max( 275.5 + (GAST - 288) , 271 ) ;
T_d = max( 275.5 + (GAST - 288) , 271 ) ;
T_cont = GAST ;
%%%% Carbonate chemistry parameters
k_2 = 7.4e-10 ;
k_carb_s = 0.000575 + 0.000006 * ( T_s - 278 ) ;
KCO2_s = 0.035 + 0.0019 * ( T_s - 278 ) ;
k_carb_h = 0.000575 + 0.000006 * ( T_h - 278 ) ;
KCO2_h = 0.035 + 0.0019 * ( T_h - 278 ) ;
k_carb_d = 0.000575 + 0.000006 * ( T_d - 278 ) ;
%%%% Carbonate speciation lowlat
HCO3_s = ( DIC_conc_s - ( DIC_conc_s^2 - ALK_conc_s * ( 2 * DIC_conc_s - ALK_conc_s ) * ( 1 - 4 * k_carb_s ) )^0.5 ) / ( 1 - 4 * k_carb_s ) ;
CO3_s = ( ALK_conc_s - HCO3_s ) / 2 ;
H_s = k_2 * HCO3_s / CO3_s ;
pH_s = -1 * log10(H_s) ;
%%%% Carbonate speciation hilat
HCO3_h = ( DIC_conc_h - ( DIC_conc_h^2 - ALK_conc_h * ( 2 * DIC_conc_h - ALK_conc_h ) * ( 1 - 4 * k_carb_h ) )^0.5 ) / ( 1 - 4 * k_carb_h ) ;
CO3_h = ( ALK_conc_h - HCO3_h ) / 2 ;
H_h = k_2 * HCO3_h / CO3_h ;
pH_h = -1 * log10(H_h) ;
%%%% Carbonate speciation deep
HCO3_d = ( DIC_conc_d - ( DIC_conc_d^2 - ALK_conc_d * ( 2 * DIC_conc_d - ALK_conc_d ) * ( 1 - 4 * k_carb_d ) )^0.5 ) / ( 1 - 4 * k_carb_d ) ;
CO3_d = ( ALK_conc_d - HCO3_d ) / 2 ;
H_d = k_2 * HCO3_d / CO3_d ;
pH_d = -1 * log10(H_d) ;
%%%% Air-sea exchange (mol/yr)
%%%% pCO2 in PAL
pCO2_s = KCO2_s * ( ( HCO3_s^2 ) / CO3_s ) ;
AirSea_s = 5e16 * 0.85 * 0.1 * ( pCO2_a - pCO2_s ) ;
pCO2_h = KCO2_h * ( ( HCO3_h^2 ) / CO3_h ) ;
AirSea_h = 5e16 * 0.15 * 0.1 * ( pCO2_a - pCO2_h ) ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Continental fluxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% weathering relationships
silconst = 0.33 ;
carbconst = 0.9 ;
UPLIFT = 1 ;
CARB_AREA = 1 ;
BAS_AREA = 1 ;
GRAN_AREA = 1 ;
ORG_AREA = 1 ;
PG = 1 ;
f_biota = 1 ;
O = pars.O0 ;
%%%%%% basalt and granite temp dependency - direct and runoff
f_T_bas = exp(0.0608*(T_cont-288)) * ( (1 + 0.038*(T_cont - 288))^0.65 ) ; %%% 42KJ/mol
f_T_gran = exp(0.0724*(T_cont-288)) * ( (1 + 0.038*(T_cont - 288))^0.65 ) ; %%% 50 KJ/mol
g_T = 1 + 0.087*(T_cont - 288) ;
%%%% basalt and granite weathering
basw = pars.k_basw * BAS_AREA * PG * f_biota * f_T_bas ;
granw = pars.k_granw * UPLIFT^silconst * GRAN_AREA * PG * f_biota * f_T_gran ;
%%% silicate weathering
silw = basw + granw ;
%%%% carbonate weathering
carbw = pars.k_carbw * CARB_AREA * UPLIFT^carbconst * PG * f_biota * g_T ;
%%%% oxidative weathering
oxidw = pars.k_oxidw*UPLIFT^silconst*ORG_AREA*((O/pars.O0)^0.5) * OXIDW_FORCE ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Degassing fluxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DEGASS = 1.5 ;
Bforcing = 1 ;
ccdeg = pars.k_ccdeg*DEGASS*Bforcing ;
ocdeg = pars.k_ocdeg*DEGASS ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Burial fluxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%% CaCO3 saturation
Ca_conc_s = 1.397e19 / 1.35e18 ;
ksp_s = 0.8 ; %%% in mM^2
sat = ( Ca_conc_s * CO3_s ) / ksp_s ;
satpresent = 3 ;
%%%% shallow carbonate burial
sat_minus_1 = max( sat - 1 , 0 ) ;
mccb = pars.k_mccb * (1 / satpresent) * ( (sat_minus_1)^1.7 ) ;
%%%% land organic C burial
locb = pars.k_locb * C_burial_force ;
%%%% marine organic C burial
mocb = pars.k_mocb ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Mercury fluxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% surface ocean Hg conc at present (mM)
Hg_conc_s_0 = pars.Hg_s_0 / pars.vol_s ;
Hg_conc_h_0 = pars.Hg_h_0 / pars.vol_h ;
%%%% volcanic input
f_Hg_volc = pars.k_Hg_volc * Hg_volc_force ;
%%%% wildfire
f_Hg_wildfire = pars.k_Hg_wildfire ;
%%%% runoff to rivers
f_Hg_runoff = pars.k_Hg_runoff * Hg_runoff_force ;
%%%% marine burial rate
f_Hgb = pars.k_Hgb * ( Hg_conc_s / Hg_conc_s_0) ;
%%%% vegetation uptake and evasion
f_Hg_veg_dep = pars.k_Hg_vegdep * ( Hg_a / pars.Hg_a_0 ) ;
f_Hg_veg_eva = pars.k_Hg_vegevasion ;
%%%% ocean deposition and evasion
f_Hg_ocean_dep_s = pars.k_Hg_oceandep_s * ( Hg_a / pars.Hg_a_0 ) ;
f_Hg_ocean_dep_h = pars.k_Hg_oceandep_h * ( Hg_a / pars.Hg_a_0 ) ;
f_Hg_ocean_eva_s = pars.k_Hg_oceanevasion_s * ( Hg_conc_s / Hg_conc_s_0 ) ;
f_Hg_ocean_eva_h = pars.k_Hg_oceanevasion_h * ( Hg_conc_h / Hg_conc_h_0 ) ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Reservoir calculations %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% CO2_a
dy(1) = - AirSea_s - AirSea_h + ccdeg + ocdeg + oxidw - locb - carbw - 2*silw + CO2_input_force + CO2_input_force_spike ;
%%%% DIC_s
dy(2) = AirSea_s + Tran_DIC_d_s - Tran_DIC_s_h + 2*carbw + 2*silw - mccb - mocb ;
%%%% DIC_h
dy(3) = AirSea_h + Tran_DIC_s_h - Tran_DIC_h_d ;
%%%% DIC_d
dy(4) = Tran_DIC_h_d - Tran_DIC_d_s ;
%%%% ALK_s
dy(5) = Tran_ALK_d_s - Tran_ALK_s_h + 2*carbw + 2*silw - 2*mccb ;
%%%% ALK_h
dy(6) = Tran_ALK_s_h - Tran_ALK_h_d ;
%%%% ALK_d
dy(7) = Tran_ALK_h_d - Tran_ALK_d_s ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Carbon isotopes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
d13c_C = 3 ;
d13c_G = -24 ;
d13c_CO2_input_force = -25 ;
d13c_CO2_input_force_spike = -5 ;
capdelB = 27 ;
%%%% CO2_a * d13c_a
dy(8) = - AirSea_s*d13c_atm - AirSea_h*d13c_atm + ccdeg*d13c_C + ocdeg*d13c_G + oxidw*d13c_G - locb*(d13c_atm - capdelB) - carbw*d13c_atm - 2*silw*d13c_atm + CO2_input_force*d13c_CO2_input_force + CO2_input_force_spike*d13c_CO2_input_force_spike;
%%%% DIC_s * d13c_s
dy(9) = AirSea_s*d13c_atm + Tran_DIC_d_s*d13c_DIC_d - Tran_DIC_s_h*d13c_DIC_s + carbw*d13c_C + carbw*d13c_atm + 2*silw*d13c_atm - mccb*d13c_DIC_s - mocb*(d13c_DIC_s - capdelB) ;
%%%% DIC_h * d13c_h
dy(10) = AirSea_h*d13c_atm + Tran_DIC_s_h*d13c_DIC_s - Tran_DIC_h_d*d13c_DIC_h ;
%%%% DIC_d * d13c_d
dy(11) = Tran_DIC_h_d*d13c_DIC_h - Tran_DIC_d_s*d13c_DIC_d ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% Hg reservoir calculations %%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Hg_a
dy(12) = f_Hg_volc + f_Hg_wildfire + f_Hg_ocean_eva_s + f_Hg_ocean_eva_h + f_Hg_veg_eva - f_Hg_veg_dep - f_Hg_ocean_dep_s - f_Hg_ocean_dep_h ;
%%%% Hg_s
dy(13) = f_Hg_ocean_dep_s - f_Hg_ocean_eva_s + f_Tran_Hg_d_s - f_Tran_Hg_s_h + f_Hg_runoff - f_Hgb ;
%%%% Hg_h
dy(14) = f_Hg_ocean_dep_h - f_Hg_ocean_eva_h + f_Tran_Hg_s_h - f_Tran_Hg_h_d ;
%%%% Hg_d
dy(15) = f_Tran_Hg_h_d - f_Tran_Hg_d_s ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Hg reservoir * d202hg calculations %%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
d202hg_a = - 1 ;
d202hg_s = y(17) / y(13) ;
d202hg_h = y(18) / y(14) ;
d202hg_d = y(19) / y(15) ;
%%%% fixed input
d202hg_veg = - 3 ;
%%%% Static atmospheric composition
dy(16) = 0 ;
%%%% Hg_s * d202hg_s
dy(17) = f_Hg_ocean_dep_s*d202hg_a - f_Hg_ocean_eva_s*d202hg_s + f_Tran_Hg_d_s*d202hg_d - f_Tran_Hg_s_h*d202hg_s + f_Hg_runoff*d202hg_veg - f_Hgb*d202hg_s;
%%%% Hg_h * d202hg_h
dy(18) = f_Hg_ocean_dep_h*d202hg_a - f_Hg_ocean_eva_h*d202hg_h + f_Tran_Hg_s_h*d202hg_s - f_Tran_Hg_h_d*d202hg_h ;
%%%% Hg_d * d202hg_d
dy(19) = f_Tran_Hg_h_d*d202hg_h - f_Tran_Hg_d_s*d202hg_d ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Save output as working %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% record model dy states while working
workingstate.CO2_a(stepnumber,1) = CO2_a ;
workingstate.DIC_s(stepnumber,1) = DIC_s ;
workingstate.DIC_h(stepnumber,1) = DIC_h ;
workingstate.DIC_d(stepnumber,1) = DIC_d ;
workingstate.ALK_s(stepnumber,1) = ALK_s ;
workingstate.ALK_h(stepnumber,1) = ALK_h ;
workingstate.ALK_d(stepnumber,1) = ALK_d ;
workingstate.DIC_conc_s(stepnumber,1) = DIC_conc_s ;
workingstate.DIC_conc_h(stepnumber,1) = DIC_conc_h ;
workingstate.DIC_conc_d(stepnumber,1) = DIC_conc_d ;
workingstate.ALK_conc_s(stepnumber,1) = ALK_conc_s ;
workingstate.ALK_conc_h(stepnumber,1) = ALK_conc_h ;
workingstate.ALK_conc_d(stepnumber,1) = ALK_conc_d ;
workingstate.pH_s(stepnumber,1) = pH_s ;
workingstate.pH_h(stepnumber,1) = pH_h ;
workingstate.pH_d(stepnumber,1) = pH_d ;
workingstate.T_s(stepnumber,1) = T_s ;
workingstate.T_h(stepnumber,1) = T_h ;
workingstate.T_d(stepnumber,1) = T_d ;
workingstate.T_cont(stepnumber,1) = T_cont ;
workingstate.GAST(stepnumber,1) = GAST ;
workingstate.Atmospheric_CO2_ppm(stepnumber,1) = Atmospheric_CO2_ppm ;
workingstate.granw(stepnumber,1) = granw ;
workingstate.basw(stepnumber,1) = basw ;
workingstate.silw(stepnumber,1) = silw ;
workingstate.carbw(stepnumber,1) = carbw ;
workingstate.ccdeg(stepnumber,1) = ccdeg ;
workingstate.mccb(stepnumber,1) = mccb ;
workingstate.CO2_input_force(stepnumber,1) = CO2_input_force ;
workingstate.HCO3_s(stepnumber,1) = HCO3_s ;
workingstate.CO3_s(stepnumber,1) = CO3_s ;
workingstate.H_s(stepnumber,1) = H_s ;
workingstate.HCO3_h(stepnumber,1) = HCO3_h ;
workingstate.CO3_h(stepnumber,1) = CO3_h ;
workingstate.H_h(stepnumber,1) = H_h ;
workingstate.HCO3_d(stepnumber,1) = HCO3_d ;
workingstate.CO3_d(stepnumber,1) = CO3_d ;
workingstate.H_d(stepnumber,1) = H_d ;
workingstate.d13c_atm(stepnumber,1) = d13c_atm ;
workingstate.d13c_DIC_s(stepnumber,1) = d13c_DIC_s ;
workingstate.d13c_DIC_h(stepnumber,1) = d13c_DIC_h ;
workingstate.d13c_DIC_d(stepnumber,1) = d13c_DIC_d ;
workingstate.Hg_a(stepnumber,1) = Hg_a ;
workingstate.Hg_s(stepnumber,1) = Hg_s ;
workingstate.Hg_h(stepnumber,1) = Hg_h ;
workingstate.Hg_d(stepnumber,1) = Hg_d ;
workingstate.f_Hgb(stepnumber,1) = f_Hgb ;
workingstate.mocb(stepnumber,1) = mocb ;
workingstate.Hg_conc_s(stepnumber,1) = Hg_conc_s ;
workingstate.Hg_conc_h(stepnumber,1) = Hg_conc_h ;
workingstate.Hg_conc_d(stepnumber,1) = Hg_conc_d ;
workingstate.d202hg_a(stepnumber,1) = d202hg_a ;
workingstate.d202hg_s(stepnumber,1) = d202hg_s ;
workingstate.d202hg_h(stepnumber,1) = d202hg_h ;
workingstate.d202hg_d(stepnumber,1) = d202hg_d ;
workingstate.Hg_volc_force(stepnumber,1) = Hg_volc_force ;
workingstate.C_burial_force(stepnumber,1) = C_burial_force ;
workingstate.OXIDW_FORCE(stepnumber,1) = OXIDW_FORCE ;
workingstate.Hg_runoff_force(stepnumber,1) = Hg_runoff_force ;
workingstate.f_Hg_ocean_dep_s(stepnumber,1) = f_Hg_ocean_dep_s ;
workingstate.f_Hg_ocean_dep_h(stepnumber,1) = f_Hg_ocean_dep_h ;
workingstate.f_Hg_runoff(stepnumber,1) = f_Hg_runoff ;
%%%%%%%% record time
workingstate.time(stepnumber,1) = t ;
workingstate.time_myr(stepnumber,1) = t / 1e6 ;
%%%% final action: record current model step
stepnumber = stepnumber + 1 ;
end