forked from alchemyst/Skogestad-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathP_N_M_matrices.py
202 lines (148 loc) · 5.18 KB
/
P_N_M_matrices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
"""
Created on Thu May 09 18:25:34 2013
@author: Simon Streicher
"""
from __future__ import print_function
import scipy.linalg as sc_lin
import numpy as np
import numpy.matlib
# Calculates the P, N and M matrices for the six different kinds
# of unstructured uncertainty in MIMO systems.
# Approach: Use arrays for easy manipulation and convert to matrices
# for linear algebra computations.
# TODO: Test accuracy with example as resiliency for handling
# arbitrary matrix dimensions unsure.
def G(s):
"""
Give the transfer matrix of the system.
"""
G = np.matrix([[1/(2*s + 1), 2],
[5/(s + 1), 3*(s + 1)/((s + 2)*(s + 4))]], dtype=complex)
return G
def Wp(s):
"""
Give the performance weight matrix.
"""
Wp = np.matrix([[10, 10], [10, 10]])
return Wp
def Wg(s):
"""
Give the uncertainty weight matrix.
This is the weight that is multiplied by the delta matrix and
goes by different names depending on the form of unstructured uncertainty.
"""
Wg = np.matrix([[10, 10], [10, 10]])
return Wg
def Delta(s):
"""
Give the delta complex perturbation marix.
"""
Delta = np.matrix([[10]])
return Delta
def K(s):
"""
Give the transfer matrix of the controller.
"""
K = np.matrix([[10, 10], [10, 10]])
return K
def P(Ps):
"""
Create concatenated P matrix from Ps matrix array
"""
P = np.vstack([np.hstack([Ps[0, 0], Ps[0, 1], Ps[0, 2]]),
np.hstack([Ps[1, 0], Ps[1, 1], Ps[1, 2]]),
np.hstack([Ps[2, 0], Ps[2, 1], Ps[2, 2]])])
return P
def partP(Ps):
"""
Create partitions of P needed for lower LFT calculation from
Ps matrix array
"""
P11 = np.vstack([np.hstack([Ps[0, 0], Ps[0, 1]]),
np.hstack([Ps[1, 0], Ps[1, 1]])])
P12 = np.vstack([Ps[0, 2], Ps[1, 2]])
P21 = np.hstack([Ps[2, 0], Ps[2, 1]])
P22 = Ps[2, 2]
return P11, P12, P21, P22
# Specify the form of the unstructured uncertainty by allocating a value to
# variable FORM as follows:
# (Cross reference Figure 8.5 on page 293 of the 3rd edition of Skogestad)
# 1 --> additive uncertainty
# 2 --> multiplicative input uncertainty
# 3 --> multiplicative output uncertainty
# 4 --> inverse additive uncertainty
# 5 --> inverse multiplicative input uncertainty
# 6 --> inverse multiplicative output uncertainty
FORM = 1
# Specify the range and resolution of frequency response
omega = np.logspace(-3, 4, num=1000)
# Create a suitable identity and zero matrix
# TODO: Verify that correct dimension is used
dim = np.shape(G(1))[0] # 1 (non-zero value) used to allow for ramps
I = np.matlib.identity(dim)
Z = np.matlib.zeros((dim, dim))
# Store the matrices in suitable indices for later
# partitioning and concatenation
Pstore = list()
Nstore = list()
Mstore = list()
for k in range(len(omega)):
s = 1j * omega[k]
if FORM == 1:
# Define matrix P for additive uncertainty form
Ps = np.array([[Z, Z, Wg(s)],
[Wp(s), Wp(s), Wp(s)*G(s)],
[-I, -I, -G(s)]])
if FORM == 2:
# Define matrix P for multiplicative input uncertainty form
Ps = np.array([[Z, Z, Wg(s)],
[Wp(s)*G(s), Wp(s), Wp(s)*G(s)],
[-G(s), -I, -G(s)]])
if FORM == 3:
# Define matrix P for multiplicative output uncertainty form
Ps = np.array([[Z, Z, Wg(s)*G(s)],
[Wp(s), Wp(s), Wp(s)*G(s)],
[-I, -I, -G(s)]])
if FORM == 4:
# Define matrix P for inverse additive uncertainty form
Ps = np.array([[G(s)*Wg(s), Z, G(s)],
[Wp(s)*G(s)*Wg(s), Wp(s), Wp(s)*G(s)],
[-G(s)*Wg(s), -I, -G(s)]])
if FORM == 5:
# Define matrix P for inverse multiplicative uncertainty form
Ps = np.array([[Wg(s), Z, I],
[Wp(s)*G(s)*Wg(s), Wp(s), Wp(s)*G(s)],
[-G(s)*Wg(s), -I, -G(s)]])
if FORM == 6:
# Define matrix P for inverse multiplicative uncertainty form
Ps = np.array([[Wg(s), Z, G(s)],
[Wp(s)*Wg(s), Wp(s), Wp(s)*G(s)],
[-Wg(s), -I, -G(s)]])
# Calculate and store P matrix
Pstore.append(P(Ps))
Pp = partP(Ps)
P11mat = np.mat(Pp[0])
P12mat = np.mat(Pp[1])
P21mat = np.mat(Pp[2])
P22mat = np.mat(Pp[3])
# Calculate N-matrix using lower LFT of P and K
N = P11mat + P12mat * K(s) * sc_lin.inv((I - P22mat*K(s))) * P21mat
Nstore.append(N)
# Calculate M-matrix using the fact that it is
# the first partition of the N-matrix.
# TODO: Generalize means of handling dimensions
M = N[0:dim][:, 0:dim]
Mstore.append(M)
# Input the step to view
step = 500
print("The following results is for step: " + str(step))
print("and corresponds to a frequency of: " + str(omega[step]) + " rad/time")
print("The P-matrix is:")
print(Pstore[step])
print("")
print("The N-matrix is:")
print(Nstore[step])
print("")
print("The M-matrix is:")
print(Mstore[step])