forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_ops.cpp
78 lines (65 loc) · 2.47 KB
/
test_ops.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <gtest/gtest.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/operators/operators.h>
#include <torch/torch.h>
using namespace torch::jit::tensorexpr;
using Tensors = std::vector<Tensor>;
using Args = std::vector<CodeGen::BufferArg>;
std::unique_ptr<SimpleIREvaluator> compile(
const Args& inputs,
const Tensors& outputs) {
LoopNest nest({outputs});
nest.prepareForCodegen();
nest.simplify();
auto join = inputs;
join.insert(join.end(), outputs.begin(), outputs.end());
return std::make_unique<SimpleIREvaluator>(nest.root_stmt(), join);
}
TEST(Ops, Sum) {
constexpr int M = 8;
constexpr int N = 16;
std::vector<IntList> testDims = {{0}, {1}, {0, 1}};
std::vector<std::vector<ExprHandle>> outputShapes = {{N}, {M}, {}};
for (unsigned idx = 0; idx < testDims.size(); idx++) {
const auto& dims = testDims[idx];
const auto& outShape = outputShapes[idx];
BufHandle a("a", {M, N}, kFloat);
std::vector<ExprHandle> outStrides =
c10::fmap<ExprHandle>(make_contiguous_strides(outShape));
Tensor b = computeSum(
{a, dims, false}, outShape, outStrides, c10::kFloat, at::kCPU);
auto cg = compile({a}, {b});
auto at = at::arange(M * N, at::kFloat).view({M, N});
auto ref = at::sum(at, dims);
auto bt = at::empty_like(ref);
cg->call({at.data_ptr<float>(), bt.data_ptr<float>()});
ASSERT_TRUE(at::allclose(bt, ref));
}
}
TEST(Ops, ChannelsLastSum) {
constexpr int A = 2;
constexpr int B = 3;
constexpr int C = 4;
constexpr int D = 5;
constexpr int E = 6;
std::vector<IntList> testDims = {{0}, {1}, {0, 1}};
std::vector<std::vector<ExprHandle>> outputShapes = {
{B, C, D, E}, {A, C, D, E}, {C, D, E}};
for (unsigned idx = 0; idx < testDims.size(); idx++) {
const auto& dims = testDims[idx];
const auto& outShape = outputShapes[idx];
BufHandle a("a", {A, B, C, D, E}, kFloat);
std::vector<ExprHandle> outStrides =
c10::fmap<ExprHandle>(make_channels_last_strides(outShape));
Tensor b = computeSum(
{a, dims, false}, outShape, outStrides, c10::kFloat, at::kCPU);
auto cg = compile({a}, {b});
auto at = at::arange(A * B * C * D * E, at::kFloat).view({A, B, C, D, E});
auto ref = at::sum(at, dims);
auto bt = at::empty_like(ref);
cg->call({at.data_ptr<float>(), bt.data_ptr<float>()});
ASSERT_TRUE(at::allclose(bt, ref));
}
}