forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_conv.cpp
234 lines (202 loc) · 6.7 KB
/
test_conv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#include <gtest/gtest.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/operators/conv2d.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/torch.h>
namespace torch {
namespace jit {
namespace te = torch::jit::tensorexpr;
namespace F = torch::nn::functional;
#ifdef TORCH_ENABLE_LLVM
// Generate test data with few bits of precision, to minimize error
// accumulation from floating-point reordering.
static at::Tensor genTestData(c10::IntArrayRef args) {
return at::trunc(at::randn(args) * 256.0f) / 256.0f;
}
TEST(Conv, DepthwiseConv2D) {
constexpr int N = 1, C = 72, H = 56, W = 56;
constexpr int K = 72, R = 3, S = 3;
constexpr int kPad = 1, kStride = 2, kGroups = C;
constexpr int CperG = C / kGroups;
te::BufHandle input("input", {N, C, H, W}, te::kFloat);
te::BufHandle weight("weight", {K, CperG, R, S}, te::kFloat);
te::BufHandle bias("bias", {K}, te::kFloat);
te::Tensor output =
te::conv2d_depthwise(input, weight, bias, kStride, kPad, kGroups);
te::LoopNest loop({output});
loop.simplify();
loop.prepareForCodegen();
te::LLVMCodeGen cg(loop.root_stmt(), {input, weight, bias, output});
auto it = genTestData({N, C, H, W});
auto wt = genTestData({K, CperG, R, S});
auto bt = genTestData({K});
auto ref = at::conv2d(it, wt, bt, kStride, kPad, /*dilation=*/1, kGroups);
auto ot = at::zeros_like(ref);
cg.call(
{it.data_ptr<float>(),
wt.data_ptr<float>(),
bt.data_ptr<float>(),
ot.data_ptr<float>()});
ASSERT_TRUE(at::allclose(ref, ot));
}
TEST(Conv, DepthwiseConv2DNoBias) {
constexpr int N = 1, C = 72, H = 56, W = 56;
constexpr int K = 72, R = 3, S = 3;
constexpr int kPad = 1, kStride = 2, kGroups = C;
constexpr int CperG = C / kGroups;
te::BufHandle input("input", {N, C, H, W}, te::kFloat);
te::BufHandle weight("weight", {K, CperG, R, S}, te::kFloat);
te::Tensor output =
te::conv2d_depthwise(input, weight, kStride, kPad, kGroups);
te::LoopNest loop({output});
loop.simplify();
loop.prepareForCodegen();
te::LLVMCodeGen cg(loop.root_stmt(), {input, weight, output});
auto it = genTestData({N, C, H, W});
auto wt = genTestData({K, CperG, R, S});
auto ref =
at::conv2d(it, wt, at::Tensor(), kStride, kPad, /*dilation=*/1, kGroups);
auto ot = at::zeros_like(ref);
cg.call({it.data_ptr<float>(), wt.data_ptr<float>(), ot.data_ptr<float>()});
ASSERT_TRUE(at::allclose(ref, ot));
}
TEST(Conv, DepthwiseConv2DDynamicShapes) {
te::VarHandle N_var("N", te::kInt);
te::VarHandle C_var("C", te::kInt);
te::VarHandle H_var("H", te::kInt);
te::VarHandle W_var("W", te::kInt);
te::VarHandle K_var("K", te::kInt);
te::VarHandle CperG_var("CperG", te::kInt);
te::VarHandle R_var("R", te::kInt);
te::VarHandle S_var("S", te::kInt);
te::VarHandle kPad_var("kPad", te::kInt);
te::VarHandle kStride_var("kStride", te::kInt);
te::VarHandle kGroups_var("kGroups", te::kInt);
te::BufHandle input("input", {N_var, C_var, H_var, W_var}, te::kFloat);
te::BufHandle weight("weight", {K_var, CperG_var, R_var, S_var}, te::kFloat);
te::Tensor output = te::conv2d_depthwise(
input,
weight,
N_var,
C_var,
H_var,
W_var,
K_var,
CperG_var,
R_var,
S_var,
kStride_var,
kPad_var,
kGroups_var);
te::LoopNest loop({output});
loop.simplify();
loop.prepareForCodegen();
std::vector<te::CodeGen::BufferArg> buffer_args = {
input,
weight,
N_var,
C_var,
H_var,
W_var,
K_var,
CperG_var,
R_var,
S_var,
kPad_var,
kStride_var,
kGroups_var,
output};
te::LLVMCodeGen cg(loop.root_stmt(), buffer_args);
constexpr int N = 1, C = 72, H = 56, W = 56;
constexpr int K = 72, R = 3, S = 3;
constexpr int kPad = 1, kStride = 2, kGroups = C;
constexpr int CperG = C / kGroups;
auto it = genTestData({N, C, H, W});
auto wt = genTestData({K, CperG, R, S});
auto ref =
at::conv2d(it, wt, at::Tensor(), kStride, kPad, /*dilation=*/1, kGroups);
auto ot = at::zeros_like(ref);
std::vector<te::CodeGen::CallArg> call_args = {
it.data_ptr<float>(),
wt.data_ptr<float>(),
N,
C,
H,
W,
K,
CperG,
R,
S,
kPad,
kStride,
kGroups,
ot.data_ptr<float>()};
cg.call(call_args);
ASSERT_TRUE(at::allclose(ref, ot));
}
#endif
TEST(Conv, Conv2D) {
// Input dimensions.
constexpr int N = 1;
constexpr int C = 3;
constexpr int H = 11;
constexpr int W = 11;
// Filter dimensions.
constexpr int K = 8;
constexpr int R = 3;
constexpr int S = 3;
// Output dims.
constexpr int OH = H - R + 1;
constexpr int OW = W - S + 1;
// Compute reference result.
at::Tensor input = torch::randn({N, C, H, W});
at::Tensor filter = torch::randn({K, C, R, S});
at::Tensor ref = F::conv2d(input, filter);
// Double check the output size is as expected.
ASSERT_EQ(ref.size(0), N);
ASSERT_EQ(ref.size(1), K);
ASSERT_EQ(ref.size(2), OH);
ASSERT_EQ(ref.size(3), OW);
te::BufHandle inputB("input", {N, C, H, W}, te::kFloat);
te::BufHandle filterB("filter", {K, C, R, S}, te::kFloat);
te::Tensor conv = te::Reduce(
"conv",
{N, K, OH, OW},
te::Sum(),
// FIXME: We have to use a `std::vector` parameter here and then unpack
// it, because we don't have an overload allowing for an arbitrary number
// of ExprHandle/VarHandle parameters.
[&](const std::vector<te::VarHandle>& v) {
auto const& n = v[0];
auto const& k = v[1];
auto const& oh = v[2];
auto const& ow = v[3];
auto const& c = v[4];
auto const& r = v[5];
auto const& s = v[6];
// FIXME: We have to use `call` and construct a `std::vector` here
// because the `operator()` overload is only specialized for a small
// number of arguments.
return inputB.load(n, c, oh + r, ow + s) * filterB.load(k, c, r, s);
},
// FIXME: If you forget one of the reduction dims, you get a segfault.
// Could that be caught by a verifier?
{C, R, S});
// FIXME: It'd be nice to have a single header that pulls in things like
// LoopNest, IRSimplifier, etc.
te::LoopNest loop({conv});
loop.prepareForCodegen();
te::StmtPtr s = loop.root_stmt();
s = te::IRSimplifier::simplify(s);
at::Tensor result = at::empty_like(ref);
te::SimpleIREvaluator cg(s, {inputB, filterB, conv});
cg.call(
{input.data_ptr<float>(),
filter.data_ptr<float>(),
result.data_ptr<float>()});
ASSERT_TRUE(at::allclose(ref, result, 1e-3, 1e-3));
}
} // namespace jit
} // namespace torch