forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
core_test.py
1264 lines (1132 loc) · 46.6 KB
/
core_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from inspect import currentframe, getframeinfo
import unittest
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace, schema, test_util
from caffe2.python.task import Node, Task
class TestScopes(test_util.TestCase):
def testBlobReferenceIsIndependentFromNameScope(self):
blob_v = core.BlobReference("v")
with core.NameScope("foo"):
blob_w = core.BlobReference("w")
with core.NameScope("bar"):
blob_x = core.BlobReference("x")
self.assertEqual(str(blob_v), "v")
self.assertEqual(str(blob_w), "w")
self.assertEqual(str(blob_x), "x")
def testNameScopeWithOp(self):
global_x = core.BlobReference("x")
global_y = core.BlobReference("y")
with core.NameScope("foo"):
# Raw strings should have namescope prepended.
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
# BlobReferences should not.
op = core.CreateOperator("Relu", global_x, global_y)
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "y")
def testNameScopeWithReset(self):
with core.NameScope("foo"):
# foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
with core.NameScope("bar"):
# foo/bar/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/bar/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/bar/y")
# Back to foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
with core.NameScope("bar", reset=True):
# bar/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "bar/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "bar/y")
# Back to foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
def testDeviceScope(self):
# No device
op = core.CreateOperator("Relu", "x", "y")
self.assertFalse(op.HasField('device_option'))
# explicitly setting a device
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
op = core.CreateOperator("Relu", "x", "y", device_option=device_option)
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
with core.DeviceScope(device_option):
# from device scope
op = core.CreateOperator("Relu", "x", "y")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
# from an overridden device option
override_device = caffe2_pb2.DeviceOption()
override_device.device_type = caffe2_pb2.CPU
op = core.CreateOperator(
"Relu", "x", "y", device_option=override_device)
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CPU)
# back from normal: no device
op = core.CreateOperator("Relu", "x", "y")
self.assertFalse(op.HasField('device_option'))
device_option = caffe2_pb2.DeviceOption()
def testNameAndDeviceScopeTogether(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
with core.DeviceScope(device_option):
with core.NameScope("foo"):
op = core.CreateOperator("Relu", "x", "y")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
class TestCloneNet(test_util.TestCase):
def testPartialClone(self):
params = core.Net('params')
p1 = params.ConstantFill([], ['p1'])
workspace.CreateNet(params)
workspace.RunNetOnce(params)
n = core.Net('original')
a1 = n.AddExternalInput('a1')
a2 = n.AddExternalInput('a2')
b1, b2 = n.Concat([a1, a2], ['b1', 'b2'], axis=0)
c1 = n.Sum([b1, p1], ['c1'])
c2 = n.Sum([b2], ['c2'])
d = n.Sum([c1, c2], ['d'])
# test that gradient ops are ignored when partial-cloning
n.AddGradientOperators([d])
# test some in-place ops
k = n.Sum([p1], ['k'])
e = n.Sum([d], ['e'])
e = n.Sum([e, k], [e])
e = n.Sum([e], [e])
f = n.Sum(e, ['f'])
def net_assert(net, num_ops, inputs, outputs, internals):
self.assertEqual(len(net.Proto().op), num_ops)
self.assertEqual(set(net.Proto().external_input), inputs)
self.assertEqual(set(net.Proto().external_output), outputs)
all_blobs = set(net.Proto().external_input)
all_blobs |= set(net.Proto().external_output)
for op in net.Proto().op:
all_blobs |= set(op.input) | set(op.output)
self.assertEqual(all_blobs, inputs | outputs | internals)
# create net to make sure its valid
for input in inputs:
workspace.FeedBlob(input, np.array([]))
workspace.CreateNet(net)
n2, (d22, ) = n.ClonePartial('f1', {a1: 'a11', a2: 'a22'}, [d])
net_assert(
n2, 4, {'p1', 'a11', 'a22'}, {'f1/d'},
{'f1/b1', 'f1/b2', 'f1/c1', 'f1/c2', 'p1'})
self.assertTrue(isinstance(d22, core.BlobReference))
self.assertEqual(d22.Net(), n2)
self.assertEqual(str(d22), 'f1/d')
n3, (d22, ) = n.ClonePartial('f2', [b1, b2], [d])
net_assert(
n3, 3, {'p1', 'b1', 'b2'}, {'f2/d'}, {'f2/c1', 'f2/c2', 'p1'})
self.assertEqual(str(d22), 'f2/d')
n4, (c22, ) = n.ClonePartial('f3', [b1], [c1])
net_assert(n4, 1, {'p1', 'b1'}, {'f3/c1'}, {'p1'})
self.assertEqual(str(c22), 'f3/c1')
n5, (c11, c22) = n.ClonePartial('f4', [b1, b2], [c1, c2])
net_assert(n5, 2, {'p1', 'b1', 'b2'}, {'f4/c1', 'f4/c2'}, {'p1'})
self.assertEqual(str(c11), 'f4/c1')
self.assertEqual(str(c22), 'f4/c2')
with self.assertRaises(AssertionError):
n.ClonePartial('f4', [a1, a2, c2], [d])
n6, (e22, ) = n.ClonePartial('f5', [d], [e])
net_assert(n6, 4, {'p1', 'd'}, {'f5/e'}, {'f5/k', 'p1'})
self.assertEqual(str(e22), 'f5/e')
n8, (e22, f22) = n.ClonePartial('f7', [d], [e, f])
net_assert(n8, 5, {'p1', 'd'}, {'f7/e', 'f7/f'}, {'p1', 'f7/k'})
self.assertEqual(str(e22), 'f7/e')
self.assertEqual(str(f22), 'f7/f')
params._CheckLookupTables()
n._CheckLookupTables()
def test_mask_clone_update_external_list(self):
n = core.Net('original')
a1 = n.AddExternalInput('a1')
a2 = n.AddExternalInput('a2')
p1 = 'p1'
b1, b2 = n.Concat([a1, a2], ['b1', 'b2'], axis=0)
c1 = n.Sum([b1, p1], ['c1'])
c2 = n.Sum([b2], ['c2'])
n.Sum([c1, c2], ['d'])
new_net = n.Clone(
"new", op_id_mask=[0, 1], keep_schema=True, update_external_list=True)
self.assertEqual(
sorted(map(str, new_net.external_inputs)),
["a1", "a2", "p1"],
"external input not matched",
)
self.assertEqual(
sorted(map(str, new_net.external_outputs)),
["b2", "c1"],
"external output not matched",
)
new_net = n.Clone(
"new2", op_id_mask=[2, 3], keep_schema=True, update_external_list=True)
self.assertEqual(
sorted(map(str, new_net.external_inputs)),
["b2", "c1"],
"external input not matched",
)
self.assertEqual(
sorted(map(str, new_net.external_outputs)),
["d"],
"external output not matched",
)
def test_control_op_remap(self):
# Subnets under If/AsyncIf operators should get name remapping when cloned
n = core.Net("original")
then_net = core.Net("a")
then_net.FC(["inputA"], "fc_a")
else_net = core.Net("b")
else_net.FC(["inputB"], "fc_b")
n.If(
inputs=[],
outputs=[],
then_net=then_net.Proto(),
else_net=else_net.Proto(),
)
copied = n.Clone("copied", blob_remap={"inputA": "inputX"})
if_op = copied._net.op[0]
self.assertEqual(if_op.arg[0].n.op[0].input, ["inputX"])
self.assertEqual(if_op.arg[1].n.op[0].input, ["inputB"])
class TestExternalInputs(test_util.TestCase):
def testAddExternalInputShouldRaiseIfDuplicate(self):
net = core.Net("test")
net.AddExternalInput(
schema.Struct(("x", schema.Scalar(np.float64))),
)
with self.assertRaises(AssertionError):
net.AddExternalInput(
schema.Struct(("x", schema.Scalar(np.float64))),
)
def testAddExternalInputShouldRaiseIfDuplicateInSameCall(self):
net = core.Net("test")
with self.assertRaises(AssertionError):
net.AddExternalInput(
schema.Struct(("x", schema.Scalar(np.float64))),
schema.Struct(("x", schema.Scalar(np.float64))),
)
def testSetInputRecordWithBlobs(self):
net = core.Net("test")
record = schema.NewRecord(net, schema.Struct(
("x", schema.Scalar(np.float64)),
))
input_record = net.set_input_record(record)
self.assertTrue(net.BlobIsDefined(input_record.x()))
self.assertIn(input_record.x(), net.external_inputs)
def testSetInputRecordWithoutBlobs(self):
net = core.Net("test")
record = schema.Struct(("x", schema.Scalar(np.float64)))
input_record = net.set_input_record(record)
self.assertTrue(net.BlobIsDefined(input_record.x()))
self.assertIn(input_record.x(), net.external_inputs)
class TestCreateOperator(test_util.TestCase):
def testCreate(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
op = core.CreateOperator(
"Ludicrous", "x", "y", name="ludicrous",
control_input="z", device_option=device_option,
engine="WARP", arg1=1, arg2="2", arg3=[1, 2, 3])
self.assertEqual(op.type, "Ludicrous")
self.assertEqual(op.name, "ludicrous")
self.assertEqual(op.engine, "WARP")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "y")
self.assertEqual(len(op.control_input), 1)
self.assertEqual(op.control_input[0], "z")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(len(op.arg), 3)
# can't guarantee ordering of kwargs, so generate a set of args
# to test with
arg_map = {}
for arg in op.arg:
arg_map[arg.name] = arg
# Check all elements exist that should
self.assertEqual("arg1" in arg_map, True)
self.assertEqual("arg2" in arg_map, True)
self.assertEqual("arg3" in arg_map, True)
# Now test that all args were initialized correctly
self.assertEqual(arg_map["arg1"].i, 1)
self.assertEqual(arg_map["arg2"].s, b"2")
self.assertEqual(list(arg_map["arg3"].ints), [1, 2, 3])
class TestAutoNaming(test_util.TestCase):
def assertOperatorListEqual(self, operatorDefList1, operatorDefList2):
for op in operatorDefList1:
op.debug_info = ""
for op in operatorDefList2:
op.debug_info = ""
self.assertEqual(operatorDefList1, operatorDefList2)
"""
Test that operators are named with different names, and that automatically
named blob names don't clash intra or inter networks.
"""
def test_next_blob(self):
def create_net():
net = core.Net('net')
with core.NameScope('foo'):
net.Add(['a', 'b'], net.NextScopedBlob('ab'))
net.Add(['c', 'd'], net.NextBlob('cd'))
return net
net_a = create_net()
net_b = create_net()
# created net proto is predicatable.
self.assertOperatorListEqual(net_a.Proto().op,
net_b.Proto().op)
self.assertEqual(net_a.Proto().op[0].output[0], 'foo/ab')
self.assertEqual(net_a.Proto().op[1].output[0], 'cd')
net_c = core.Net('net')
# different calls return different blob names
self.assertNotEqual(str(net_c.NextBlob('b')), str(net_c.NextBlob('b')))
def test_auto_naming(self):
a = core.Net('net')
b = core.Net('net')
self.assertNotEqual(a.Proto().name, b.Proto().name)
a_in1 = a.AddExternalInput('a')
b_in1 = b.AddExternalInput('b')
all_outputs_single = []
all_outputs_list = []
def add_ops():
all_outputs_single.append(a.Sum([a_in1, a_in1]))
all_outputs_single.append(a.Sum([a_in1, a_in1]))
all_outputs_single.append(b.Sum([b_in1, b_in1]))
all_outputs_single.append(b.Sum([b_in1, b_in1]))
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
add_ops()
with core.NameScope('n1'):
add_ops()
# Force reset of lookup tables
a.Proto().name
with core.NameScope('n2'):
add_ops()
all_outputs = []
for s in all_outputs_single:
all_outputs.append(str(s))
for l in all_outputs_list:
for o in l:
all_outputs.append(str(o))
for i, o1 in enumerate(all_outputs):
for j, o2 in enumerate(all_outputs):
if i != j:
self.assertNotEqual(str(o1), str(o2))
a._CheckLookupTables()
b._CheckLookupTables()
class TestAppendNet(test_util.TestCase):
def test_external_inputs_merged_correctly(self):
netA = core.Net("A")
netA.Sum(["in1", "in2"], ["sum1"])
self.assertTrue("in1" in netA.external_inputs)
netB = core.Net("B")
netB.Sum(["in3", "in4"], ["in1"])
netB.AppendNet(netA)
self.assertFalse("in1" in netB.external_inputs)
def test_external_inputs_merged_correctlyB(self):
netA = core.Net("A")
netA.Sum(["in1", "in2"], ["sum1"])
self.assertTrue("in1" in netA.external_inputs)
netB = core.Net("B")
netB.Sum(["in3", "in4"], ["in1"])
netA.AppendNet(netB) # note different order than in prev test
self.assertTrue("in1" in netA.external_inputs)
class TestExtractPredictorNet(test_util.TestCase):
@unittest.skipIf('ImageInput' not in workspace.RegisteredOperators(), "Needs OpenCV")
def test_extract_simple(self):
from caffe2.python import brew
from caffe2.python.model_helper import ModelHelper, ExtractPredictorNet
model = ModelHelper(name="test", arg_scope={'order': 'NCHW'})
[data, label] = brew.image_input(
model,
"reader", ["xx/data", "label"],
is_test=1,
)
cnv = brew.conv(model, data, 'cnv', 32, 32, 4)
a = brew.fc(model, cnv, 'a', 100, 200)
pred = brew.fc(model, a, 'pred', 200, 5)
brew.softmax(model, [pred, label], "softmax")
(predict_net, export_blobs) = ExtractPredictorNet(
net_proto=model.net.Proto(),
input_blobs=["xx/data"],
output_blobs=["pred"],
renames={"xx/data": "image"},
)
export_blobs = set(export_blobs)
ops = list(predict_net.Proto().op)
for op in ops:
self.assertFalse(op.type == "Softmax")
self.assertFalse("xx/data" in op.input)
# Note: image input should not be included
self.assertEqual(ops[0].type, "Conv")
self.assertEqual(ops[1].type, "FC")
self.assertEqual(ops[2].type, "FC")
self.assertEqual(len(ops), 3)
# test rename happened
self.assertEqual(ops[0].input[0], "image")
# Check export blobs
self.assertTrue("image" not in export_blobs)
self.assertTrue("xx/data" not in export_blobs)
self.assertEqual(set([str(p) for p in model.params]), export_blobs)
# Check external inputs/outputs
self.assertTrue("image" in predict_net.Proto().external_input)
self.assertEqual(set(["pred"]), set(predict_net.Proto().external_output))
self.assertEqual(
set(predict_net.Proto().external_input) -
set([str(p) for p in model.params]), set(["image"])
)
class TestOperatorTraceback(test_util.TestCase):
def op_name_check(self, net, cf, line, func):
net.PopulateProtoWithFileName()
filename = getframeinfo(cf).filename
self.assertEqual(net.Proto().op[0].name, '{}:{}:{}'.format(
filename, line, func))
def test_operator_constructor_traceback(self):
net = core.Net("test")
a, b = net.AddExternalInput("a", "b")
net.Mul([a, b], "c"); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
with self.assertRaises(Exception):
workspace.RunNetOnce(net)
with self.assertRaises(Exception):
workspace.CreateNet(net)
self.op_name_check(net, cf, line, func)
def test_operator_runtime_traceback(self):
net = core.Net("test")
a = net.AddExternalInput("a")
workspace.blobs[a] = np.array([1, 2, 3], dtype=np.float32)
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
with self.assertRaises(Exception):
workspace.RunNetOnce(net)
workspace.CreateNet(net)
with self.assertRaises(Exception):
workspace.RunNet(net)
self.op_name_check(net, cf, line, func)
def test_c_workspace_constructor(self):
net = core.Net("test")
a, b = net.AddExternalInput("a", "b")
net.Mul([a, b], "c"); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
ws = workspace.C.Workspace()
with self.assertRaises(Exception):
ws.run(net)
with self.assertRaises(Exception):
ws.create_net(net)
self.op_name_check(net, cf, line, func)
def test_c_workspace_runtime(self):
net = core.Net("test")
a = net.AddExternalInput("a")
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
ws = workspace.C.Workspace()
ws.create_blob(str(a)).feed(np.array([1, 2, 3], dtype=np.float32))
ws.create_net(net)
with self.assertRaises(Exception):
ws.run(net)
self.op_name_check(net, cf, line, func)
def test_async_exception_handling(self):
net = core.Net("test")
net.Proto().type = 'dag' # this runs operators on background threads
a = net.AddExternalInput("a")
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
workspace.FeedBlob(a, np.array([1, 2, 3], dtype=np.float32))
with self.assertRaises(Exception) as enforceNotMet:
workspace.RunNetOnce(net)
self.assertIn('enforce fail', str(enforceNotMet.exception))
self.op_name_check(net, cf, line, func)
class TestCreatePlan(test_util.TestCase):
def test_create_plan_from_proto_correctly(self):
from caffe2.python.net_builder import ops
with Node('trainer'), Task(name='my_task', num_instances=2) as task:
with ops.task_init():
globl = ops.Const(0)
with ops.task_instance_init():
local = ops.Const(0)
with ops.loop(100):
ops.Copy(globl, local)
with ops.task_instance_exit():
ops.Add([globl, local], [globl])
with ops.task_exit():
ops.Mul([globl, globl], [globl])
plan = core.Plan(task.get_step())
test_plan = core.Plan.create_from_proto(plan.Proto())
self.assertEqual(len(plan.Steps()), 1)
self.assertEqual(len(test_plan.Steps()), 1)
self.assertEqual(len(plan.Proto().network), 9)
self.assertEqual(len(test_plan.Proto().network), 9)
self.assertEqual(len(plan.Proto().execution_step), 1)
self.assertEqual(len(test_plan.Proto().execution_step), 1)
self.assertEqual(plan.Steps()[0].Name(), test_plan.Steps()[0].Name())
self.assertEqual(len(plan.Nets()), len(test_plan.Nets()))
for idx in range(0, len(plan.Nets())):
# When we create Net for test_plan, we will end up with new Net
# name with postfix.
net_1 = plan.Nets()[idx]
net_2 = test_plan.Nets()[idx]
trim_size = len(net_1.Name())
self.assertEqual(net_1.Name(), net_2.Name()[:trim_size])
class TestOpRegistryKey(test_util.TestCase):
def test_is_operator(self):
self.assertTrue(core.IsOperator('Relu'))
self.assertFalse(core.IsOperator('NOEXIST'))
def test_is_operator_with_engine(self):
self.assertTrue(core.IsOperatorWithEngine('Relu', 'DEFAULT'))
self.assertFalse(core.IsOperatorWithEngine('Relu', 'NOEXIST'))
class TestDeviceOption(test_util.TestCase):
def test_check_equal_node_name(self):
opt1 = core.DeviceOption(0)
opt2 = core.DeviceOption(0)
self.assertTrue(core.device_option_equal(opt1, opt2))
opt2.node_name = 'test'
self.assertTrue(core.device_option_equal(opt1, opt2))
self.assertFalse(core.device_option_equal(opt1, opt2, ignore_node_name=False))
opt1.node_name = 'test'
self.assertTrue(core.device_option_equal(opt1, opt2, ignore_node_name=False))
def test_check_equal_default_value(self):
opt1 = caffe2_pb2.DeviceOption()
opt2 = caffe2_pb2.DeviceOption()
opt1.device_type = 0
self.assertTrue(core.device_option_equal(opt1, opt2))
opt1.device_id = 5
# opt1 still is on CPU, so the options should be equal
self.assertTrue(core.device_option_equal(opt1, opt2))
opt2.device_type = 0
self.assertTrue(core.device_option_equal(opt1, opt2))
opt1.device_type = 1
self.assertFalse(core.device_option_equal(opt1, opt2))
class TestInferDeviceCpuOnly(test_util.TestCase):
def test_inject_copy(self):
'''
Test inject cross device copies - this is a no-op on CPU only devices.
'''
send_node = 'node:0'
recv_node = 'node:1'
# Using placeholder ops for send/recv. Placeholder ops are
# decorator/fake ops that don't have operator schema.
placeholder_send = 'Placeholder:Dummy:Send'
placeholder_recv = 'Placeholder:Dummy:Recv'
# init_net.
init_net = core.Net("init_net")
with core.DeviceScope(0, node_name=send_node):
init_net.XavierFill([], 'fc_w', shape=[10, 100])
init_net.ConstantFill([], 'fc_b', shape=[10, ])
# train_net.
train_net = core.Net("train_net")
train_net.Proto().external_input.extend(['fc_w', 'fc_b'])
with core.DeviceScope(0, node_name=send_node):
op = core.CreateOperator(
placeholder_send, ["fc_w", 'fc_b'], [],
dst_node=recv_node)
train_net.Proto().op.extend([op])
with core.DeviceScope(0, node_name=recv_node):
# Let's rename the recv blob i.e. fc_w -> fc_w_recv.
op = core.CreateOperator(
placeholder_recv, [], ['fc_w_recv', 'fc_b'],
src_node=send_node)
train_net.Proto().op.extend([op])
train_net.FC(["data", 'fc_w_recv', 'fc_b'], "fc1")
# Inject cross device copies.
init_net, x_dev_state = core.InjectCrossDeviceCopies(
init_net,
placeHolderOps=[placeholder_send, placeholder_recv])
train_net, x_dev_state = core.InjectCrossDeviceCopies(
train_net, x_dev_state,
placeHolderOps=[placeholder_send, placeholder_recv])
# Verify: No Copy operators should be injected since it is CPU only.
op = train_net.Proto().op[0]
self.assertEqual(op.type, placeholder_send)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[0], "fc_w")
self.assertEqual(op.input[1], "fc_b")
op = train_net.Proto().op[1]
self.assertEqual(op.type, placeholder_recv)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "fc_w_recv")
self.assertEqual(op.output[1], "fc_b")
op = train_net.Proto().op[2]
self.assertEqual(op.type, "FC")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[1], "fc_w_recv")
self.assertEqual(op.input[2], "fc_b")
@unittest.skipIf(not workspace.has_gpu_support, 'No GPU support')
class TestInferDevice(test_util.TestCase):
def setUp(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
self.gpu_option = device_option
self.cpu_option = caffe2_pb2.DeviceOption()
def _test_op(
self,
op_name,
in_option,
out_option,
op_option=None,
inputs=None,
outputs=None
):
op_option = self.gpu_option if not op_option else op_option
inputs = ["blob_1"] if not inputs else inputs
outputs = ["blob_2"] if not outputs else outputs
with core.DeviceScope(op_option):
op = core.CreateOperator(op_name, inputs, outputs)
input_dev, output_dev = core.InferOpBlobDevices(op)
if isinstance(in_option, list):
assert len(in_option) == len(input_dev), \
'Length of input device option should match' \
'{} vs. {}'.format(in_option, input_dev)
for in_dev, in_opt in zip(input_dev, in_option):
self.assertEqual(in_dev, in_opt)
else:
for in_dev in input_dev:
self.assertEqual(in_dev, in_option)
if isinstance(out_option, list):
assert len(out_option) == len(output_dev), \
'Length of output device option should match' \
'{} vs. {}'.format(out_option, output_dev)
for out_dev, out_opt in zip(output_dev, out_option):
self.assertEqual(out_dev, out_opt)
else:
for out_dev in output_dev:
self.assertEqual(out_dev, out_option)
def test_infer_device(self):
self._test_op(
"FC",
self.gpu_option,
self.gpu_option,
op_option=self.gpu_option,
inputs=["data", "fc_w", "fc_b"],
outputs=["fc_1"]
)
def test_infer_device_split_by_lengths(self):
self._test_op(
"SplitByLengths",
[self.gpu_option, self.cpu_option],
self.gpu_option,
op_option=self.gpu_option,
inputs=["data", "fc_w"],
outputs=["fc_1"]
)
def test_infer_device_adam(self):
in_options = [self.gpu_option] * 6
in_options[5] = self.cpu_option
out_options = [self.gpu_option] * 4
self._test_op(
"Adam",
in_options,
out_options,
op_option=self.gpu_option,
inputs=["param", "moment_1", "moment_2", "grad", "lr", "iter"],
outputs=["output_param", "output_moment_1", "output_moment_2",
"output_grad"]
)
def test_infer_device_cross_device(self):
self._test_op("CopyGPUToCPU", self.gpu_option, self.cpu_option)
self._test_op("CopyCPUToGPU", self.cpu_option, self.gpu_option)
self._test_op("CopyFromCPUInput", self.cpu_option, self.gpu_option)
self._test_op(
"CopyFromCPUInput",
self.cpu_option,
self.cpu_option,
op_option=self.cpu_option
)
def test_device_inference_function(self):
# ConcatOp.
op_option = self.gpu_option
with core.DeviceScope(op_option):
op = core.CreateOperator(
'Concat',
['X_{}'.format(i) for i in range(4)],
['concat_result', 'split_info'],
axis=1)
input_dev, output_dev = core.InferOpBlobDevices(op)
# 2nd output's type is CPU irrespective of Concat op's device option.
self.assertEqual(output_dev[1], self.cpu_option)
#SplitOp.
op_option = self.gpu_option
with core.DeviceScope(op_option):
op = core.CreateOperator(
'Split',
['input', 'split'],
['X_{}'.format(i) for i in range(4)],
axis=0)
input_dev, output_dev = core.InferOpBlobDevices(op)
# 2nd input's type is CPU irrespective of Split op's device option.
self.assertEqual(input_dev[1], self.cpu_option)
def test_inject_copy(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
with core.DeviceScope(device_option):
net.FC(["data", weight, bias], "fc1")
_, blob_to_device = core.InjectCrossDeviceCopies(init_net)
new_net, blob_to_device = core.InjectCrossDeviceCopies(
net, blob_to_device
)
op = new_net._net.op[-1]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data_gpu_1")
self.assertEqual(op.input[1], "fc_w_gpu_1")
self.assertEqual(op.input[2], "fc_b_gpu_1")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(new_net._net.op[-2].type, "CopyCPUToGPU")
self.assertEqual(new_net._net.op[0].type, "CopyCPUToGPU")
self.assertNotEqual(blob_to_device["fc_w"], device_option)
def test_cross_nets(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
const = init_net.ConstantFill([], 'const', shape=[], value=1.)
with core.DeviceScope(device_option):
const = init_net.Add([const, const], [const])
fc_out = net.FC(["data", weight, bias], "fc1")
net.Add([fc_out, const], [fc_out])
data_remap = {'data': device_option}
nets, _ = core.InjectDeviceCopiesAmongNets(
[init_net, net], blob_to_device_init=data_remap
)
op = nets[1]._net.op[0]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.output[0], "fc_w_gpu_1")
op = nets[1]._net.op[1]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.output[0], "fc_b_gpu_1")
op = nets[1]._net.op[2]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data")
self.assertEqual(op.input[1], "fc_w_gpu_1")
self.assertEqual(op.input[2], "fc_b_gpu_1")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
op = nets[1]._net.op[3]
self.assertEqual(op.type, "Add")
self.assertEqual(op.input[0], "fc1")
self.assertEqual(op.input[1], "const_gpu_1")
# check that moved blob is in input to the new net
for c in ["data", "fc_w", "fc_b", "const_gpu_1"]:
self.assertTrue(c in nets[1]._net.external_input)
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "fc_w"
output: "fc_w_gpu_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
device_id: 1
}
}
op {
input: "fc_b"
output: "fc_b_gpu_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
device_id: 1
}
}
op {
input: "data"
input: "fc_w_gpu_1"
input: "fc_b_gpu_1"
output: "fc1"
name: ""
type: "FC"
device_option {
device_type: 1
device_id: 1
}
}
op {
input: "fc1"
input: "const_gpu_1"
output: "fc1"
name: ""
type: "Add"
device_option {
device_type: 1
device_id: 1
}
}
external_input: "data"
external_input: "fc_w"
external_input: "fc_b"
external_input: "const"
external_input: "const_gpu_1"
"""
def test_cross_nets_no_change(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
with core.DeviceScope(device_option):
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
net.FC(["data", weight, bias], "fc1")
data_remap = {'data': device_option}
nets = core.InjectDeviceCopiesAmongNetsWithoutB2D(
[init_net, net], blob_to_device_init=data_remap
)
op = nets[1]._net.op[0]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data")
self.assertEqual(op.input[1], "fc_w")
self.assertEqual(op.input[2], "fc_b")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "data"
input: "fc_w"
input: "fc_b"
output: "fc1"
name: ""
type: "FC"
device_option {
device_type: 1
device_id: 1
}
}
external_input: "data"
external_input: "fc_w"
external_input: "fc_b"
"""
def test_inject_copy_multi_use(self):
net = core.Net("test")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
with core.DeviceScope(device_option):
net.Relu("data", "relu1")
net.Relu("data", "relu2")
with core.DeviceScope(device_option):
net.Relu("data", "relu3")
net.Relu("data", "relu4")
device_option.device_id = 0
with core.DeviceScope(device_option):
net.Relu("data", "relu5")
device_option.device_id = 1
with core.DeviceScope(device_option):
net.Relu("data", "relu6")
new_net, _ = core.InjectCrossDeviceCopies(net)
op = new_net._net.op[0]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.output[0], "data_gpu_1")
op = new_net._net.op[1]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.output[0], "relu1")
op = new_net._net.op[2]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "relu2")
op = new_net._net.op[3]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.input[0], "data_gpu_1")