forked from uchidalab/fontdesign_gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
321 lines (267 loc) · 14.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import shutil
from glob import glob
import json
import time
from subprocess import Popen, PIPE
import tensorflow as tf
import numpy as np
from PIL import Image
from tqdm import tqdm
from dataset import Dataset
from models import GeneratorDCGAN, DiscriminatorDCGAN, GeneratorResNet, DiscriminatorResNet
from ops import average_gradients
from utils import set_chars_type, concat_imgs
FLAGS = tf.app.flags.FLAGS
class TrainingFontDesignGAN():
"""Training font design GAN.
This is main part of our programs.
"""
def __init__(self):
global FLAGS
self._setup_dirs()
self._save_flags()
self._prepare_training()
self._load_dataset()
def _setup_dirs(self):
"""Setup output directories
If destinations are not existed, make directories like this:
FLAGS.gan_dir
├ log
│ └ keep
└ sample
"""
if not os.path.exists(FLAGS.gan_dir):
os.makedirs(FLAGS.gan_dir)
self.dst_log = os.path.join(FLAGS.gan_dir, 'log')
self.dst_samples = os.path.join(FLAGS.gan_dir, 'sample')
if not os.path.exists(self.dst_log):
os.mkdir(self.dst_log)
self.dst_log_keep = os.path.join(self.dst_log, 'keep')
if not os.path.exists(self.dst_log_keep):
os.mkdir(self.dst_log_keep)
if not os.path.exists(self.dst_samples):
os.mkdir(self.dst_samples)
def _save_flags(self):
"""Save FLAGS as JSON
Write FLAGS paramaters as 'FLAGS.gan_dir/log/flsgs.json'.
"""
with open(os.path.join(self.dst_log, 'flags.json'), 'w') as f:
json.dump(FLAGS.__dict__['__flags'], f, indent=4)
def _load_dataset(self):
"""Load dataset
Set up dataset. All of data is for training, and they are shuffled.
"""
self.real_dataset = Dataset(FLAGS.font_h5, 'r', FLAGS.img_width, FLAGS.img_height, FLAGS.img_dim)
self.real_dataset.set_load_data()
self.real_dataset.shuffle()
def _prepare_training(self):
"""Prepare Training
Make tensorflow's graph.
To support Multi-GPU, divide mini-batch.
And this program has resume function.
If there is checkpoint file in FLAGS.gan_dir/log, load checkpoint file and restart training.
"""
assert FLAGS.batch_size >= FLAGS.style_ids_n, 'batch_size must be greater equal than style_ids_n'
self.gpu_n = len(FLAGS.gpu_ids.split(','))
self.embedding_chars = set_chars_type(FLAGS.chars_type)
assert self.embedding_chars != [], 'embedding_chars is empty'
self.char_embedding_n = len(self.embedding_chars)
self.z_size = FLAGS.style_z_size + self.char_embedding_n
with tf.device('/cpu:0'):
# Set embeddings from uniform distribution
style_embedding_np = np.random.uniform(-1, 1, (FLAGS.style_ids_n, FLAGS.style_z_size)).astype(np.float32)
with tf.variable_scope('embeddings'):
self.style_embedding = tf.Variable(style_embedding_np, name='style_embedding')
self.style_ids = tf.placeholder(tf.int32, (FLAGS.batch_size,), name='style_ids')
self.char_ids = tf.placeholder(tf.int32, (FLAGS.batch_size,), name='char_ids')
self.is_train = tf.placeholder(tf.bool, name='is_train')
self.real_imgs = tf.placeholder(tf.float32, (FLAGS.batch_size, FLAGS.img_width, FLAGS.img_height, FLAGS.img_dim), name='real_imgs')
self.labels = tf.placeholder(tf.float32, (FLAGS.batch_size, self.char_embedding_n), name='labels')
d_opt = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0., beta2=0.9)
g_opt = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0., beta2=0.9)
# Initialize lists for multi gpu
fake_imgs = [0] * self.gpu_n
d_loss = [0] * self.gpu_n
g_loss = [0] * self.gpu_n
d_grads = [0] * self.gpu_n
g_grads = [0] * self.gpu_n
divided_batch_size = FLAGS.batch_size // self.gpu_n
is_not_first = False
# Build graph
for i in range(self.gpu_n):
batch_start = i * divided_batch_size
batch_end = (i + 1) * divided_batch_size
with tf.device('/gpu:{}'.format(i)):
if FLAGS.arch == 'DCGAN':
generator = GeneratorDCGAN(img_size=(FLAGS.img_width, FLAGS.img_height),
img_dim=FLAGS.img_dim,
z_size=self.z_size,
layer_n=4,
k_size=3,
smallest_hidden_unit_n=64,
is_bn=False)
discriminator = DiscriminatorDCGAN(img_size=(FLAGS.img_width, FLAGS.img_height),
img_dim=FLAGS.img_dim,
layer_n=4,
k_size=3,
smallest_hidden_unit_n=64,
is_bn=False)
elif FLAGS.arch == 'ResNet':
generator = GeneratorResNet(k_size=3, smallest_unit_n=64)
discriminator = DiscriminatorResNet(k_size=3, smallest_unit_n=64)
# If sum of (style/char)_ids is less than -1, z is generated from uniform distribution
style_z = tf.cond(tf.less(tf.reduce_sum(self.style_ids[batch_start:batch_end]), 0),
lambda: tf.random_uniform((divided_batch_size, FLAGS.style_z_size), -1, 1),
lambda: tf.nn.embedding_lookup(self.style_embedding, self.style_ids[batch_start:batch_end]))
char_z = tf.one_hot(self.char_ids[batch_start:batch_end], self.char_embedding_n)
z = tf.concat([style_z, char_z], axis=1)
# Generate fake images
fake_imgs[i] = generator(z, is_reuse=is_not_first, is_train=self.is_train)
# Calculate loss
d_real = discriminator(self.real_imgs[batch_start:batch_end], is_reuse=is_not_first, is_train=self.is_train)
d_fake = discriminator(fake_imgs[i], is_reuse=True, is_train=self.is_train)
d_loss[i] = - (tf.reduce_mean(d_real) - tf.reduce_mean(d_fake))
g_loss[i] = - tf.reduce_mean(d_fake)
# Calculate gradient Penalty
epsilon = tf.random_uniform((divided_batch_size, 1, 1, 1), minval=0., maxval=1.)
interp = self.real_imgs[batch_start:batch_end] + epsilon * (fake_imgs[i] - self.real_imgs[batch_start:batch_end])
d_interp = discriminator(interp, is_reuse=True, is_train=self.is_train)
grads = tf.gradients(d_interp, [interp])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(grads), reduction_indices=[-1]))
grad_penalty = tf.reduce_mean((slopes - 1.) ** 2)
d_loss[i] += 10 * grad_penalty
# Get trainable variables
d_vars = [var for var in tf.trainable_variables() if 'discriminator' in var.name]
g_vars = [var for var in tf.trainable_variables() if 'generator' in var.name]
d_grads[i] = d_opt.compute_gradients(d_loss[i], var_list=d_vars)
g_grads[i] = g_opt.compute_gradients(g_loss[i], var_list=g_vars)
is_not_first = True
with tf.device('/cpu:0'):
self.fake_imgs = tf.concat(fake_imgs, axis=0)
avg_d_grads = average_gradients(d_grads)
avg_g_grads = average_gradients(g_grads)
self.d_train = d_opt.apply_gradients(avg_d_grads)
self.g_train = g_opt.apply_gradients(avg_g_grads)
# Calculate summary for tensorboard
tf.summary.scalar('d_loss', -(sum(d_loss) / len(d_loss)))
tf.summary.scalar('g_loss', -(sum(g_loss) / len(g_loss)))
self.summary = tf.summary.merge_all()
# Setup session
sess_config = tf.ConfigProto(
gpu_options=tf.GPUOptions(visible_device_list=FLAGS.gpu_ids)
)
self.sess = tf.Session(config=sess_config)
self.saver = tf.train.Saver(max_to_keep=5)
# If checkpoint is found, restart training
checkpoint = tf.train.get_checkpoint_state(self.dst_log)
if checkpoint:
saver_resume = tf.train.Saver()
saver_resume.restore(self.sess, checkpoint.model_checkpoint_path)
self.epoch_start = int(checkpoint.model_checkpoint_path.split('-')[-1])
print('restore ckpt')
else:
self.sess.run(tf.global_variables_initializer())
self.epoch_start = 0
# Setup writer for tensorboard
self.writer = tf.summary.FileWriter(self.dst_log)
def _get_ids(self, char_selector=''):
"""Get IDs for Generator's input.
Generator's input 'z' is made from style_z and char_z.
style_z is always given from random uniform distribution.
char_z is one-hot encoded shape. It correspond with its character.
In this function, prepare IDs(style_ids, char_ids) for style_z and char_z.
Ids will converted style_z and char_z in _prepare_training().
Args:
char_selector: If this is only 1 character, set char_ids of this character.
Else, char_ids will be random IDs.
"""
# All ids are -1 -> z is generated from uniform distribution when calculate graph
style_ids = np.ones(FLAGS.batch_size) * -1
if type(char_selector) == str and len(char_selector) == 1:
char_ids = np.repeat(self.real_dataset.get_ids_from_labels(char_selector)[0], FLAGS.batch_size).astype(np.int32)
else:
char_ids = np.random.randint(0, self.char_embedding_n, (FLAGS.batch_size), dtype=np.int32)
return style_ids, char_ids
def train(self):
"""Train GAN
Run training GAN program.
"""
# Start tensorboard
if FLAGS.run_tensorboard:
self._run_tensorboard()
for epoch_i in tqdm(range(self.epoch_start, FLAGS.gan_epoch_n), initial=self.epoch_start, total=FLAGS.gan_epoch_n):
for embedding_char in self.embedding_chars:
# Calculate wasserstein distance
for critic_i in range(FLAGS.critic_n):
real_imgs = self.real_dataset.get_random_by_labels(FLAGS.batch_size, [embedding_char])
style_ids, char_ids = self._get_ids(embedding_char)
self.sess.run(self.d_train, feed_dict={self.style_ids: style_ids,
self.char_ids: char_ids,
self.real_imgs: real_imgs,
self.is_train: True})
# Minimize wasserstein distance
style_ids, char_ids = self._get_ids(embedding_char)
self.sess.run(self.g_train, feed_dict={self.style_ids: style_ids,
self.char_ids: char_ids,
self.is_train: True})
# Calculate losses for tensorboard
real_imgs = self.real_dataset.get_random(FLAGS.batch_size, is_label=False)
style_ids, char_ids = self._get_ids()
summary = self.sess.run(self.summary, feed_dict={self.style_ids: style_ids,
self.char_ids: char_ids,
self.real_imgs: real_imgs,
self.is_train: True})
self.writer.add_summary(summary, epoch_i)
# Save model weights
dst_model_path = os.path.join(self.dst_log, 'result.ckpt')
global_step = epoch_i + 1
self.saver.save(self.sess, dst_model_path, global_step=global_step)
if global_step % FLAGS.keep_ckpt_interval == 0:
for f in glob(dst_model_path + '-' + str(global_step) + '.*'):
shutil.copy(f, self.dst_log_keep)
# Save sample images
if (epoch_i + 1) % FLAGS.sample_imgs_interval == 0:
self._save_sample_imgs(epoch_i + 1)
def _run_tensorboard(self):
"""Run tensorboard
Run tensorboard for visualization of losses.
To show progress-bar clearly in command line, sleep only 1 sec.
"""
Popen(['tensorboard', '--logdir', '{}'.format(os.path.realpath(self.dst_log)), '--port', '{}'.format(FLAGS.tensorboard_port)], stdout=PIPE)
time.sleep(1)
def _generate_img(self, style_ids, char_ids, row_n, col_n):
"""Generate image
This function is used for generating samples.
Args:
style_ids: ID of style_z. This paramaters are initialized when training started.
char_ids: ID of char_z. ex. A->0, B->1...
row_n: # of images in 1 row.
col_n: # of images in 1 column.
"""
feed = {self.style_ids: style_ids, self.char_ids: char_ids, self.is_train: False}
generated_imgs = self.sess.run(self.fake_imgs, feed_dict=feed)
combined_img = concat_imgs(generated_imgs, row_n, col_n)
combined_img = (combined_img + 1.) * 127.5
if FLAGS.img_dim == 1:
combined_img = np.reshape(combined_img, (-1, col_n * FLAGS.img_height))
else:
combined_img = np.reshape(combined_img, (-1, col_n * FLAGS.img_height, FLAGS.img_dim))
return Image.fromarray(np.uint8(combined_img))
def _init_sample_imgs_inputs(self):
"""Initialize inputs for generating sample images
Sample images are generated once every FLAGS.sample_imgs_interval times.
These' inputs are given by this method.
"""
self.sample_row_n = FLAGS.batch_size // FLAGS.sample_col_n
self.sample_style_ids = np.repeat(np.arange(0, FLAGS.style_ids_n), self.char_embedding_n)[:FLAGS.batch_size]
self.sample_char_ids = np.tile(np.arange(0, self.char_embedding_n), FLAGS.style_ids_n)[:FLAGS.batch_size]
def _save_sample_imgs(self, epoch_i):
"""Save sample images
Generate and save sample images in 'FLAGS.gan_dir/sample'.
"""
if not hasattr(self, 'sample_style_ids'):
self._init_sample_imgs_inputs()
concated_img = self._generate_img(self.sample_style_ids, self.sample_char_ids,
self.sample_row_n, FLAGS.sample_col_n)
concated_img.save(os.path.join(self.dst_samples, '{}.png'.format(epoch_i)))