forked from uchidalab/dtw-features-cnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dtw.py
135 lines (111 loc) · 4.05 KB
/
dtw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
__author__ = 'Brian K. Iwana'
import numpy as np
import math
def slow_dtw(base_list, test_list, extended=False):
""" Computes the DTW of two sequences.
:param base_list: np array [0..b]
:param test_list: np array [0..t]
:param extended: bool
"""
b = base_list.shape[0]
t = test_list.shape[0]
if (b > 0 and t > 0):
DTW = np.zeros((b, t))
cost = np.zeros((b, t))
DTW[:, 0] = float('inf')
DTW[0, :] = float('inf')
DTW[0, 0] = 0.0
for i in range(0, b):
for j in range(0, t):
dist = math.sqrt((test_list[j, 0] - base_list[i, 0]) ** 2 + (test_list[j, 1] - base_list[i, 1]) ** 2)
cost[i, j] = dist
if (i > 0 and j > 0):
jminus2 = DTW[i - 1, j - 2] if j > 1 else float('inf')
jminus1 = DTW[i - 1, j - 1]
jeven = DTW[i - 1, j]
minimum = min(jminus2, jminus1, jeven)
DTW[i, j] = dist + minimum
if (extended):
return DTW[b - 1, t - 1], cost, DTW, _traceback(DTW)
else:
return DTW[b - 1, t - 1]
def fast_dtw(base_list, test_list, extended=False):
""" Computes the DTW of two sequences.
:param base_list: np array [0..b]
:param test_list: np array [0..t]
:param extended: bool
"""
b = base_list.shape[0]
t = test_list.shape[0]
if (b > 0 and t > 0):
DTW = np.full((b, t), float('inf'))
DTW[0, 0] = 0.0
cost = np.zeros((b, t))
for i in range(b):
cost[i] = np.linalg.norm(test_list - base_list[i], axis=1)
for i in range(1, b):
DTW[i, 1] = cost[i, 1] + min(DTW[i - 1, 0], DTW[i - 1, 1])
for j in range(2, t):
DTW[i, j] = cost[i, j] + min(DTW[i - 1, j - 2], DTW[i - 1, j - 1], DTW[i - 1, j])
if (extended):
return DTW[b - 1, t - 1], cost, DTW, _traceback(DTW)
else:
return DTW[b - 1, t - 1]
def dtw(base_list, test_list, extended=False, fastdtw=True):
# fast_dtw is the best and default, but just in case...
if fastdtw:
return fast_dtw(base_list, test_list, extended)
else:
return slow_dtw(base_list, test_list, extended)
def _traceback(DTW):
i, j = np.array(DTW.shape) - 1
p, q = [i], [j]
while (i > 0 and j > 0):
tb = np.argmin((DTW[i - 1, j], DTW[i - 1, j - 1], DTW[i - 1, j - 2]))
if (tb == 0):
i = i - 1
elif (tb == 1):
i = i - 1
j = j - 1
elif (tb == 2):
i = i - 1
j = j - 2
p.insert(0, i)
q.insert(0, j)
return (np.array(p), np.array(q))
def dtw_draw(cost, DTW, path, train, test):
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 8))
# plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01)
# cost
plt.subplot(2, 3, 1)
plt.imshow(cost.T, cmap=plt.cm.gray, interpolation='none', origin='lower')
plt.plot(path[0], path[1], 'y')
plt.xlim((-0.5, cost.shape[0] - 0.5))
plt.ylim((-0.5, cost.shape[0] - 0.5))
# dtw
plt.subplot(2, 3, 2)
plt.imshow(DTW.T, cmap=plt.cm.gray, interpolation='none', origin='lower')
plt.plot(path[0], path[1], 'y')
plt.xlim((-0.5, DTW.shape[0] - 0.5))
plt.ylim((-0.5, DTW.shape[0] - 0.5))
# training
plt.subplot(2, 3, 4)
plt.plot(train[:, 0], train[:, 1], 'b-o')
plt.xlim((0, 130))
plt.ylim((0, 130))
# connection
plt.subplot(2, 3, 5)
for i in range(0, path[0].shape[0]):
plt.plot([train[path[0][i], 0], test[path[1][i], 0]], [train[path[0][i], 1], test[path[1][i], 1]], 'y-')
plt.plot(test[:, 0], test[:, 1], 'g-o')
plt.plot(train[:, 0], train[:, 1], 'b-o')
plt.xlim((0, 130))
plt.ylim((0, 130))
# test
plt.subplot(2, 3, 6)
plt.plot(test[:, 0], test[:, 1], 'g-o')
plt.xlim((0, 130))
plt.ylim((0, 130))
plt.tight_layout()
plt.show()