forked from zeruniverse/neural-colorization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
adam_lrd.py
86 lines (67 loc) · 3.34 KB
/
adam_lrd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import math
import torch
from torch.optim.optimizer import Optimizer
class Adam_LRD(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, dropout=0.0):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, dropout=dropout)
super(Adam_LRD, self).__init__(params, defaults)
def __setstate__(self, state):
super(Adam_LRD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
## mask
m = torch.ones_like(p.data) * group['dropout']
mask = torch.bernoulli(m)
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
if group['weight_decay'] != 0:
grad.add_(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
# if amsgrad:
# # Maintains the maximum of all 2nd moment running avg. till now
# torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# # Use the max. for normalizing running avg. of gradient
# denom = max_exp_avg_sq.sqrt().add_(group['eps'])
# else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
##dropout learning rate
lr_dropout = step_size / denom.clone()
lr_dropout=lr_dropout * mask
p.data.addcmul_(-1, exp_avg, lr_dropout)
# p.data.addcdiv_(-step_size, exp_avg2, denom)
return loss