-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathjurischain.h
247 lines (199 loc) · 6.51 KB
/
jurischain.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#ifndef H_JURISCHAIN
#define H_JURISCHAIN
#define JURISCHAIN_VERSION '1.0.0'
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <strings.h>
#ifndef KECCAKF_ROUNDS
#define KECCAKF_ROUNDS 24
#endif
#ifndef ROTL64
#define ROTL64(x, y) (((x) << (y)) | ((x) >> (64 - (y))))
#endif
#ifndef HASH_LEN
#define HASH_LEN 32
#endif
#define memcpy __builtin_memcpy
/* state context */
typedef struct {
union { /* state */
uint8_t b[200]; /* 8-bit bytes */
uint64_t q[25]; /* 64-bit words */
} st;
int pt, rsiz, mdlen; /* these don't overflow */
} sha3_ctx_t;
typedef struct {
uint8_t payload[HASH_LEN + 1];
uint8_t seed[HASH_LEN];
} jurischain_ctx_t;
/* Compression function */
void sha3_keccakf(uint64_t st[25]);
/* OpenSSL - like interface */
int sha3_init(sha3_ctx_t *c, int mdlen); /* mdlen = hash output in bytes */
int sha3_update(sha3_ctx_t *c, const void *data, size_t len);
int sha3_final(void *md, sha3_ctx_t *c); /* digest goes to md */
/* compute a sha3 hash (md) of given byte length from "in" */
void *sha3(const void *in, size_t inlen, void *md, int mdlen);
void sha3_keccakf(uint64_t st[25]) {
/* constants */
const uint64_t keccakf_rndc[24] = {
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008};
const int keccakf_rotc[24] = {1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44};
const int keccakf_piln[24] = {10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1};
/* variables */
int i = 0, j = 0, r = 0;
uint64_t t = 0, bc[5] = {
0,
};
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
uint8_t *v;
/* endianess conversion. this is redundant on little-endian targets */
for (i = 0; i < 25; i++) {
v = (uint8_t *)&st[i];
st[i] = ((uint64_t)v[0]) | (((uint64_t)v[1]) << 8) |
(((uint64_t)v[2]) << 16) | (((uint64_t)v[3]) << 24) |
(((uint64_t)v[4]) << 32) | (((uint64_t)v[5]) << 40) |
(((uint64_t)v[6]) << 48) | (((uint64_t)v[7]) << 56);
}
#endif
/* actual iteration */
for (r = 0; r < KECCAKF_ROUNDS; r++) {
/* Theta */
for (i = 0; i < 5; i++)
bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
for (i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
for (j = 0; j < 25; j += 5) st[j + i] ^= t;
}
/* Rho Pi */
t = st[1];
for (i = 0; i < 24; i++) {
j = keccakf_piln[i];
bc[0] = st[j];
st[j] = ROTL64(t, keccakf_rotc[i]);
t = bc[0];
}
/* Chi */
for (j = 0; j < 25; j += 5) {
for (i = 0; i < 5; i++) bc[i] = st[j + i];
for (i = 0; i < 5; i++) st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
}
/* Iota */
st[0] ^= keccakf_rndc[r];
}
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
#error WebAssembly should be little endian
/* endianess conversion. this is redundant on little-endian targets */
for (i = 0; i < 25; i++) {
v = (uint8_t *)&st[i];
t = st[i];
v[0] = t & 0xFF;
v[1] = (t >> 8) & 0xFF;
v[2] = (t >> 16) & 0xFF;
v[3] = (t >> 24) & 0xFF;
v[4] = (t >> 32) & 0xFF;
v[5] = (t >> 40) & 0xFF;
v[6] = (t >> 48) & 0xFF;
v[7] = (t >> 56) & 0xFF;
}
#endif
}
/* Initialize the context for SHA3 */
int sha3_init(sha3_ctx_t *c, int mdlen) {
int i = 0;
for (i = 0; i < 25; i++) c->st.q[i] = 0;
c->mdlen = mdlen;
c->rsiz = 200 - 2 * mdlen;
c->pt = 0;
return 1;
}
/* update state with more data */
int sha3_update(sha3_ctx_t *c, const void *data, size_t len) {
size_t i = 0;
int j = 0;
j = c->pt;
for (i = 0; i < len; i++) {
c->st.b[j++] ^= ((const uint8_t *)data)[i];
if (j >= c->rsiz) {
sha3_keccakf(c->st.q);
j = 0;
}
}
c->pt = j;
return 1;
}
/* finalize and output a hash */
int sha3_final(void *md, sha3_ctx_t *c) {
int i = 0;
c->st.b[c->pt] ^= 0x06;
c->st.b[c->rsiz - 1] ^= 0x80;
sha3_keccakf(c->st.q);
for (i = 0; i < c->mdlen; i++) {
((uint8_t *)md)[i] = c->st.b[i];
}
return 1;
}
/* compute a SHA-3 hash (md) of given byte length from "in" */
void *sha3(const void *in, size_t inlen, void *md, int mdlen) {
sha3_ctx_t sha3;
bzero(&sha3, sizeof(sha3));
sha3_init(&sha3, mdlen);
sha3_update(&sha3, in, inlen);
sha3_final(md, &sha3);
return md;
}
void jurischain_gen(jurischain_ctx_t *challenge, uint8_t d, const void *seed, size_t inlen) {
uint8_t rand_hash[HASH_LEN] = {
0,
};
memset(challenge, 0, sizeof(jurischain_ctx_t));
sha3(seed, inlen, rand_hash, HASH_LEN);
memcpy(challenge->seed, rand_hash, sizeof(rand_hash));
memcpy(challenge->payload, rand_hash, sizeof(rand_hash));
challenge->payload[HASH_LEN] = d;
}
jurischain_ctx_t *jurischain_init() {
jurischain_ctx_t *ptr = NULL;
ptr = (jurischain_ctx_t *)malloc(sizeof(jurischain_ctx_t));
return ptr;
}
void jurischain_destroy(jurischain_ctx_t **ptr) {
free(*ptr);
*ptr = NULL;
}
int jurischain_verify(jurischain_ctx_t *challenge) {
uint8_t hash[HASH_LEN] = { 0, },
d = 0,
hash_concat[HASH_LEN * 2] = { 0, },
response[HASH_LEN] = { 0, };
uint64_t mask = 0, *res64 = NULL, valid = 0, i = 0;
memcpy(hash, challenge->payload, HASH_LEN);
memcpy(&hash_concat[HASH_LEN], challenge->payload, HASH_LEN);
memcpy(hash_concat, challenge->seed, HASH_LEN);
d = challenge->payload[HASH_LEN];
sha3(hash_concat, HASH_LEN * 2, response, HASH_LEN);
/* checar se os primeiros bits estão corretos */
mask = 0xFFFFFFFFFFFFFFFF >> (64 - (d % 64));
res64 = (uint64_t *)response; /* webassembly assumes little endian */
valid = 1;
for (i = 0; i < (d / 64); i++) valid = (res64[i] == 0) ? valid : 0;
if ((d % 64) != 0) valid = ((res64[d / 64] & mask) == 0) ? valid : 0;
return valid;
}
int jurischain_try(jurischain_ctx_t *challenge) {
uint8_t rand_hash[HASH_LEN] = { 0, };
sha3(challenge->seed, HASH_LEN, rand_hash, HASH_LEN);
memcpy(challenge->seed, rand_hash, HASH_LEN);
return jurischain_verify(challenge);
}
#endif