forked from elseif/MikroTikPatch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
mikro.py
208 lines (179 loc) · 8.01 KB
/
mikro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import struct
from sha256 import SHA256
from toyecc import AffineCurvePoint, getcurvebyname, FieldElement,ECPrivateKey,ECPublicKey,Tools
from toyecc.Random import secure_rand_int_between
MIKRO_BASE64_CHARACTER_TABLE = b'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
SOFTWARE_ID_CHARACTER_TABLE = b'TN0BYX18S5HZ4IA67DGF3LPCJQRUK9MW2VE'
MIKRO_SHA256_K = (
0x0548D563, 0x98308EAB, 0x37AF7CCC, 0xDFBC4E3C,
0xF125AAC9, 0xEC98ACB8, 0x8B540795, 0xD3E0EF0E,
0x4904D6E5, 0x0DA84981, 0x9A1F8452, 0x00EB7EAA,
0x96F8E3B3, 0xA6CDB655, 0xE7410F9E, 0x8EECB03D,
0x9C6A7C25, 0xD77B072F, 0x6E8F650A, 0x124E3640,
0x7E53785A, 0xE0150772, 0xC61EF4E0, 0xBC57E5E0,
0xC0F9A285, 0xDB342856, 0x190834C7, 0xFBEB7D8E,
0x251BED34, 0x0E9F2AAD, 0x256AB901, 0x0A5B7890,
0x9F124F09, 0xD84A9151, 0x427AF67A, 0x8059C9AA,
0x13EAB029, 0x3153CDF1, 0x262D405D, 0xA2105D87,
0x9C745F15, 0xD1613847, 0x294CE135, 0x20FB0F3C,
0x8424D8ED, 0x8F4201B6, 0x12CA1EA7, 0x2054B091,
0x463D8288, 0xC83253C3, 0x33EA314A, 0x9696DC92,
0xD041CE9A, 0xE5477160, 0xC7656BE8, 0x5179FE33,
0x1F4726F1, 0x5F393AF0, 0x26E2D004, 0x6D020245,
0x85FDF6D7, 0xB0237C56, 0xFF5FBD94, 0xA8B3F534
)
def mikro_softwareid_decode(software_id:str)->int:
assert(isinstance(software_id, str))
software_id = software_id.replace('-', '')
ret = 0
for i in reversed(range(len(software_id))):
ret *= len(SOFTWARE_ID_CHARACTER_TABLE)
ret += SOFTWARE_ID_CHARACTER_TABLE.index(ord(software_id[i]))
return ret
def mikro_softwareid_encode(id:int)->str:
assert(isinstance(id, int))
ret = ''
for i in range(8):
ret += chr(SOFTWARE_ID_CHARACTER_TABLE[id % 0x23])
id //= 0x23
if i == 3:
ret += '-'
return ret
def to32bits(v):
return (v + (1 << 32)) % (1 << 32)
def rotl(n, d):
return (n << d) | (n >> (32 - d))
def mikro_encode(s:bytes)->bytes:
s = list(struct.unpack('>' + 'I' * (len(s) // 4), s))
for i in reversed(range(16)):
s[(i+0) % 4] = to32bits(rotl(s[(i+3) % 4], MIKRO_SHA256_K[i*4+3] & 0x0F) ^ (s[(i+0) % 4] - s[(i+3) % 4]))
s[(i+3) % 4] = to32bits(s[(i+3) % 4] + s[(i+1) % 4] + MIKRO_SHA256_K[i*4+3])
s[(i+1) % 4] = to32bits(rotl(s[(i+2) % 4], MIKRO_SHA256_K[i*4+2] & 0x0F) ^ (s[(i+1) % 4] - s[(i+2) % 4]))
s[(i+0) % 4] = to32bits(s[(i+0) % 4] + s[(i+2) % 4] + MIKRO_SHA256_K[i*4+2])
s[(i+2) % 4] = to32bits(rotl(s[(i+1) % 4], MIKRO_SHA256_K[i*4+1] & 0x0F) ^ (s[(i+2) % 4] - s[(i+1) % 4]))
s[(i+1) % 4] = to32bits(s[(i+1) % 4] + s[(i+3) % 4] + MIKRO_SHA256_K[i*4+1])
s[(i+3) % 4] = to32bits(rotl(s[(i+0) % 4], MIKRO_SHA256_K[i*4+0] & 0x0F) ^ (s[(i+3) % 4] - s[(i+0) % 4]))
s[(i+2) % 4] = to32bits(s[(i+2) % 4] + s[(i+0) % 4] + MIKRO_SHA256_K[i*4+0])
encodedLicensePayload = b''
for x in s:
encodedLicensePayload += x.to_bytes(4, 'big')
return encodedLicensePayload
def mikro_decode(s:bytes)->bytes:
s = list(struct.unpack('>'+'I'*(len(s) // 4), s))
for i in range(16):
s[(i+2) % 4] = to32bits(s[(i+2) % 4] - s[(i+0) % 4] - MIKRO_SHA256_K[i*4+0])
s[(i+3) % 4] = to32bits((rotl(s[(i+0) % 4], MIKRO_SHA256_K[i*4+0] & 0x0F) ^ s[(i+3) % 4]) + s[(i+0) % 4])
s[(i+1) % 4] = to32bits(s[(i+1) % 4] - s[(i+3) % 4] - MIKRO_SHA256_K[i*4+1])
s[(i+2) % 4] = to32bits((rotl(s[(i+1) % 4], MIKRO_SHA256_K[i*4+1] & 0x0F) ^ s[(i+2) % 4]) + s[(i+1) % 4])
s[(i+0) % 4] = to32bits(s[(i+0) % 4] - s[(i+2) % 4] - MIKRO_SHA256_K[i*4+2])
s[(i+1) % 4] = to32bits((rotl(s[(i+2) % 4], MIKRO_SHA256_K[i*4+2] & 0x0F) ^ s[(i+1) % 4]) + s[(i+2) % 4])
s[(i+3) % 4] = to32bits(s[(i+3) % 4] - s[(i+1) % 4] - MIKRO_SHA256_K[i*4+3])
s[(i+0) % 4] = to32bits((rotl(s[(i+3) % 4], MIKRO_SHA256_K[i*4+3] & 0x0F) ^ s[(i+0) % 4]) + s[(i+3) % 4])
ret = b''
for x in s:
ret += x.to_bytes(4, 'big')
return ret
def mikro_base64_encode(data:bytes, pad = False)->str:
encoded = ''
left = 0
for i in range(0, len(data)):
if left == 0:
encoded += chr(MIKRO_BASE64_CHARACTER_TABLE[data[i] & 0x3F])
left = 2
else:
if left == 6:
encoded += chr(MIKRO_BASE64_CHARACTER_TABLE[data[i - 1] >> 2])
encoded += chr(MIKRO_BASE64_CHARACTER_TABLE[data[i] & 0x3F])
left = 2
else:
index1 = data[i - 1] >> (8 - left)
index2 = data[i] << (left)
encoded += chr(MIKRO_BASE64_CHARACTER_TABLE[(index1 | index2) & 0x3F])
left += 2
if left != 0:
encoded += chr(MIKRO_BASE64_CHARACTER_TABLE[data[len(data) - 1] >> (8 - left)])
if pad:
for i in range(0, (4 - len(encoded) % 4) % 4):
encoded += '='
return encoded
def mikro_base64_decode(data:str)->bytes:
ret = b""
data = data.replace("=", "").encode()
left = 0
for i in range(0, len(data)):
if left == 0:
left = 6
else:
value1 = MIKRO_BASE64_CHARACTER_TABLE.index(data[i - 1]) >> (6 - left)
value2 = MIKRO_BASE64_CHARACTER_TABLE.index(data[i]) & (2 ** (8 - left) - 1)
value = value1 | (value2 << left)
ret += bytes([value])
left -= 2
return ret
class MikroSHA256(SHA256):
K = MIKRO_SHA256_K
INITIAL_STATE = SHA256.State(
0x5B653932, 0x7B145F8F, 0x71FFB291, 0x38EF925F,
0x03E1AAF9, 0x4A2057CC, 0x4CAF4DD9, 0x643CC9EA
)
def mikro_sha256(data:bytes)->bytes:
return MikroSHA256(data).digest()
def mikro_eddsa_sign(data:bytes,private_key:bytes)->bytes:
assert(isinstance(data, bytes))
assert(isinstance(private_key, bytes))
curve = getcurvebyname('Ed25519')
private_key = ECPrivateKey.eddsa_decode(curve,private_key)
return private_key.eddsa_sign(data).encode()
def mikro_eddsa_verify(data:bytes,signature:bytes,public_key:bytes):
assert(isinstance(data, bytes))
assert(isinstance(signature, bytes))
assert(isinstance(public_key, bytes))
curve = getcurvebyname('Ed25519')
public_key = ECPublicKey.eddsa_decode(curve,public_key)
signature = ECPrivateKey.EDDSASignature.decode(curve,signature)
return public_key.eddsa_verify(data,signature)
def mikro_kcdsa_sign(data:bytes,private_key:bytes)->bytes:
assert(isinstance(data, bytes))
assert(isinstance(private_key, bytes))
curve = getcurvebyname('Curve25519')
private_key:ECPrivateKey = ECPrivateKey(Tools.bytestoint_le(private_key), curve)
public_key:ECPublicKey = private_key.pubkey
while True:
nonce_secret = secure_rand_int_between(1, curve.n - 1)
nonce_point = nonce_secret * curve.G
nonce = int(nonce_point.x) % curve.n
nonce_hash = mikro_sha256(Tools.inttobytes_le(nonce,32))
data_hash = bytearray(mikro_sha256(data))
for i in range(16):
data_hash[8+i] ^= nonce_hash[i]
data_hash[0] &= 0xF8
data_hash[31] &= 0x7F
data_hash[31] |= 0x40
data_hash = Tools.bytestoint_le(data_hash)
signature = pow(private_key.scalar, -1, curve.n) * (nonce_secret - data_hash)
signature %= curve.n
if int((public_key.point * signature + curve.G * data_hash).x) == nonce:
return bytes(nonce_hash[:16]+Tools.inttobytes_le(signature,32))
def mikro_kcdsa_verify(data:bytes, signature:bytes, public_key:bytes)->bool:
assert(isinstance(data, bytes))
assert(isinstance(signature, bytes))
assert(isinstance(public_key, bytes))
curve = getcurvebyname('Curve25519')
#y^2 = x^3 + ax^2 + x
x = FieldElement(Tools.bytestoint_le(public_key), curve.p)
YY = ((x**3) + (curve.a * x**2) + x).sqrt()
public_keys = [AffineCurvePoint(int(x), int(y), curve) for y in YY]
data_hash = bytearray(mikro_sha256(data))
nonce_hash = signature[:16]
signature = Tools.bytestoint_le(signature[16:])
for i in range(16):
data_hash[8+i] ^= nonce_hash[i]
data_hash[0] &= 0xF8
data_hash[31] &= 0x7F
data_hash[31] |= 0x40
data_hash = Tools.bytestoint_le(data_hash)
for public_key in public_keys:
nonce = int((public_key * signature + curve.G * data_hash).x)
if mikro_sha256(Tools.inttobytes_le(nonce,32))[:len(nonce_hash)] == nonce_hash:
return True
return False