-
Notifications
You must be signed in to change notification settings - Fork 11
/
darknet.py
268 lines (204 loc) · 8.84 KB
/
darknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import numpy as np
from tensorflow.keras.layers import Add, BatchNormalization, Concatenate, Conv2D, \
Lambda, LeakyReLU, GlobalMaxPooling2D, UpSampling2D, ZeroPadding2D
from tensorflow.keras.regularizers import l2
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.python.keras.layers import MaxPool2D, MaxPooling2D
from data.coco_labels import COCOLabels
from definitions import ROOT_DIR
from utils.parser import Parser
from yolo_layer import YOLOLayer
# TODO: It seems like turning on eager execution always gives different values during
# TODO: inference. Weirdly, it also loads the network very fast compared to non-eager.
# TODO: It could be that in eager mode, the weights are not loaded. Need to verify
# TODO: this.
# tf.enable_eager_execution()
YOLO_VERSION = 'yolov3-tiny' # yolov3 or yolov3-tiny
# Read weights
# NOTE: The original Darknet parser is at
# NOTE: https://github.com/pjreddie/darknet/blob/master/src/parser.c
weights_file = open(os.path.join(ROOT_DIR, 'cfg', '{}.weights'.format(YOLO_VERSION)), 'rb')
major, minor, revision = np.ndarray(
shape=(3,), dtype='int32', buffer=weights_file.read(12))
if (major * 10 + minor) >= 2 and major < 1000 and minor < 1000:
seen = np.ndarray(shape=(1,), dtype='int64', buffer=weights_file.read(8))
else:
seen = np.ndarray(shape=(1,), dtype='int32', buffer=weights_file.read(4))
print('Weights Header: ', major, minor, revision, seen)
def darknet_base(inputs, include_yolo_head=True):
"""
Builds Darknet53 by reading the YOLO configuration file
:param inputs: Input tensor
:param include_yolo_head: Includes the YOLO head
:return: A list of output layers and the network config
"""
path = os.path.join(ROOT_DIR, 'cfg', '{}.cfg'.format(YOLO_VERSION))
blocks = Parser.parse_cfg(path)
x, layers, yolo_layers = inputs, [], []
ptr = 0
config = {}
for block in blocks:
block_type = block['type']
if block_type == 'net':
config = _read_net_config(block)
elif block_type == 'convolutional':
x, layers, yolo_layers, ptr = _build_conv_layer(x, block, layers, yolo_layers, ptr, config)
elif block_type == 'shortcut':
x, layers, yolo_layers, ptr = _build_shortcut_layer(x, block, layers, yolo_layers, ptr)
elif block_type == 'yolo':
x, layers, yolo_layers, ptr = _build_yolo_layer(x, block, layers, yolo_layers, ptr, config)
elif block_type == 'route':
x, layers, yolo_layers, ptr = _build_route_layer(x, block, layers, yolo_layers, ptr)
elif block_type == 'upsample':
x, layers, yolo_layers, ptr = _build_upsample_layer(x, block, layers, yolo_layers, ptr)
elif block_type == 'maxpool':
x, layers, yolo_layers, ptr = _build_maxpool_layer(x, block, layers, yolo_layers, ptr)
else:
raise ValueError('{} not recognized as block type'.format(block_type))
_verify_weights_completed_consumed(ptr)
if include_yolo_head:
output_layers = yolo_layers
return tf.keras.layers.Concatenate(axis=1)(output_layers), config
else:
output_layers = [layers[i - 1] for i in range(len(layers)) if layers[i] is None]
# NOTE: Apparently TFLite doesn't like Concatenate.
# return tf.keras.layers.Concatenate(axis=1)(output_layers), config
return output_layers, config
def _read_net_config(block):
width = int(block['width'])
height = int(block['height'])
channels = int(block['channels'])
decay = float(block['decay'])
labels = COCOLabels.all()
colors = COCOLabels.colors()
return {
'width': width,
'height': height,
'channels': channels,
'labels': labels,
'colors': colors,
'decay': decay
}
def _build_conv_layer(x, block, layers, outputs, ptr, config):
stride = int(block['stride'])
filters = int(block['filters'])
kernel_size = int(block['size'])
pad = int(block['pad'])
padding = 'same' if pad == 1 and stride == 1 else 'valid'
use_batch_normalization = 'batch_normalize' in block
# Darknet serializes convolutional weights as:
# [bias/beta, [gamma, mean, variance], conv_weights]
prev_layer_shape = K.int_shape(x)
weights_shape = (kernel_size, kernel_size, prev_layer_shape[-1], filters)
darknet_w_shape = (filters, weights_shape[2], kernel_size, kernel_size)
weights_size = np.product(weights_shape)
# number of filters * 4 bytes
conv_bias = np.ndarray(
shape=(filters,),
dtype='float32',
buffer=weights_file.read(filters * 4)
)
ptr += filters
bn_weights_list = []
if use_batch_normalization:
# [gamma, mean, variance] * filters * 4 bytes
bn_weights = np.ndarray(
shape=(3, filters),
dtype='float32',
buffer=weights_file.read(3 * filters * 4)
)
ptr += 3 * filters
bn_weights_list = [
bn_weights[0], # scale gamma
conv_bias, # shift beta
bn_weights[1], # running mean
bn_weights[2] # running var
]
conv_weights = np.ndarray(
shape=darknet_w_shape,
dtype='float32',
buffer=weights_file.read(weights_size * 4))
ptr += weights_size
# DarkNet conv_weights are serialized Caffe-style:
# (out_dim, in_dim, height, width)
# We would like to set these to Tensorflow order:
# (height, width, in_dim, out_dim)
conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
if use_batch_normalization:
conv_weights = [conv_weights]
else:
conv_weights = [conv_weights, conv_bias]
if stride > 1:
x = ZeroPadding2D(((1, 0), (1, 0)))(x)
x = Conv2D(filters=filters,
kernel_size=kernel_size,
strides=(stride, stride),
padding=padding,
use_bias=not use_batch_normalization,
activation='linear',
kernel_regularizer=l2(config['decay']),
weights=conv_weights)(x)
if use_batch_normalization:
x = BatchNormalization(weights=bn_weights_list)(x)
assert block['activation'] in ['linear', 'leaky'], 'Invalid activation: {}'.format(block['activation'])
if block['activation'] == 'leaky':
x = LeakyReLU(alpha=0.1)(x)
layers.append(x)
return x, layers, outputs, ptr
def _build_upsample_layer(x, block, layers, outputs, ptr):
stride = int(block['stride'])
# NOTE: Alternative way of defining Upsample2D
x = Lambda(lambda _x: tf.image.resize_bilinear(_x, (stride * tf.shape(_x)[1], stride * tf.shape(_x)[2])))(x)
# x = UpSampling2D(size=stride)(x)
layers.append(x)
return x, layers, outputs, ptr
def _build_maxpool_layer(x, block, layers, outputs, ptr):
stride = int(block['stride'])
size = int(block['size'])
x = MaxPooling2D(pool_size=(size, size),
strides=(stride, stride),
padding='same')(x)
layers.append(x)
return x, layers, outputs, ptr
def _build_route_layer(_x, block, layers, outputs, ptr):
selected_layers = [layers[int(l)] for l in block['layers'].split(',')]
if len(selected_layers) == 1:
x = selected_layers[0]
layers.append(x)
return x, layers, outputs, ptr
elif len(selected_layers) == 2:
x = Concatenate(axis=3)(selected_layers)
layers.append(x)
return x, layers, outputs, ptr
else:
raise ValueError('Invalid number of layers: {}'.format(len(selected_layers)))
def _build_shortcut_layer(x, block, layers, outputs, ptr):
from_layer = layers[int(block['from'])]
x = Add()([from_layer, x])
assert block['activation'] == 'linear', 'Invalid activation: {}'.format(block['activation'])
layers.append(x)
return x, layers, outputs, ptr
def _build_yolo_layer(x, block, layers, outputs, ptr, config):
# Read indices of masks
masks = [int(m) for m in block['mask'].split(',')]
# Anchors used based on mask indices
anchors = [a for a in block['anchors'].split(', ')]
anchors = [anchors[i] for i in range(len(anchors)) if i in masks]
anchors = [[int(a) for a in anchor.split(',')] for anchor in anchors]
classes = int(block['classes'])
x = YOLOLayer(num_classes=classes, anchors=anchors, input_dims=(config['width'], config['height']))(x)
outputs.append(x)
# NOTE: Here we append None to specify that the preceding layer is a output layer
layers.append(None)
return x, layers, outputs, ptr
def _verify_weights_completed_consumed(ptr):
remaining_weights = len(weights_file.read()) // 4
weights_file.close()
percentage = int((ptr / (ptr + remaining_weights)) * 100)
print('Read {}% from Darknet weights.'.format(percentage))
if remaining_weights > 0:
print('Warning: {} unused weights'.format(remaining_weights))
else:
print('Weights loaded successfully!')