-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
255 lines (202 loc) · 7.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import cv2,torch
import numpy as np
import torchvision.transforms as T
import torch.nn.functional as F
import scipy.signal
import torch.fft
import imageio
import os
import scipy
import kornia
from PIL import Image
from typing import Tuple, Optional
from skimage import metrics
mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
def get_gaussian(ksize=5):
xx, yy = np.meshgrid(np.arange(ksize), np.arange(ksize))
grid = torch.from_numpy(np.stack([xx,yy])).permute(1,2,0) - (ksize // 2)
grid = grid**2 / 2
grid = grid.sum(-1) * (-1)
grid = torch.exp(grid)
return grid # ksize x ksize
def SML_torch(img, kx, ky, conv, ksize):
'''
img: BxCxHxW
kx, ky: 1x3x3
ksize: For BoxBlur
return: BxCxHxW
'''
mx = abs(kornia.filters.filter2d(img, kx, normalized=False))
my = abs(kornia.filters.filter2d(img, ky, normalized=False))
ml_img = mx + my
sml = conv(ml_img) * ksize * ksize
return sml
def visualize_depth_numpy(depth, minmax=None, cmap=cv2.COLORMAP_JET):
"""
depth: (H, W)
"""
x = np.nan_to_num(depth) # change nan to 0
if minmax is None:
mi = np.min(x[x>0]) # get minimum positive depth (ignore background)
ma = np.max(x)
else:
mi,ma = minmax
x = (x-mi)/(ma-mi+1e-8) # normalize to 0~1
x = (255*x).astype(np.uint8)
x_ = cv2.applyColorMap(x, cmap)
return x_, [mi,ma]
def init_log(log, keys):
for key in keys:
log[key] = torch.tensor([0.0], dtype=float)
return log
def visualize_depth(depth, minmax=None, cmap=cv2.COLORMAP_JET):
"""
depth: (H, W)
"""
if type(depth) is not np.ndarray:
depth = depth.cpu().numpy()
x = np.nan_to_num(depth) # change nan to 0
if minmax is None:
mi = np.min(x[x>0]) # get minimum positive depth (ignore background)
ma = np.max(x)
else:
mi,ma = minmax
x = (x-mi)/(ma-mi+1e-8) # normalize to 0~1
x = (255*x).astype(np.uint8)
x_ = Image.fromarray(cv2.applyColorMap(x, cmap))
x_ = T.ToTensor()(x_) # (3, H, W)
return x_, [mi,ma]
def N_to_reso(n_voxels, bbox):
xyz_min, xyz_max = bbox
dim = len(xyz_min)
voxel_size = ((xyz_max - xyz_min).prod() / n_voxels).pow(1 / dim)
return ((xyz_max - xyz_min) / voxel_size).long().tolist()
def cal_n_samples(reso, step_ratio=0.5):
return int(np.linalg.norm(reso)/step_ratio)
__LPIPS__ = {}
def init_lpips(net_name, device):
assert net_name in ['alex', 'vgg']
import lpips
print(f'init_lpips: lpips_{net_name}')
return lpips.LPIPS(net=net_name, version='0.1').eval().to(device)
def rgb_lpips(np_gt, np_im, net_name, device):
if net_name not in __LPIPS__:
__LPIPS__[net_name] = init_lpips(net_name, device)
gt = torch.from_numpy(np_gt).permute([2, 0, 1]).contiguous().to(device)
im = torch.from_numpy(np_im).permute([2, 0, 1]).contiguous().to(device)
return __LPIPS__[net_name](gt, im, normalize=True).item()
def findItem(items, target):
for one in items:
if one[:len(target)]==target:
return one
return None
''' Evaluation metrics (ssim, lpips)
'''
def rgb_ssim_nerf(im1t: torch.Tensor, im2t: torch.Tensor,
metric="mse", margin=0, mask=None):
"""
im1t, im2t: torch.tensors with batched imaged shape, range from (0, 1)
"""
photometric= metrics.structural_similarity
if mask is not None:
if mask.dim() == 3:
mask = mask.unsqueeze(1)
if mask.shape[1] == 1:
mask = mask.expand(-1, 3, -1, -1)
mask = mask.permute(0, 2, 3, 1).numpy()
batchsz, hei, wid, _ = mask.shape
if margin > 0:
marginh = int(hei * margin) + 1
marginw = int(wid * margin) + 1
mask = mask[:, marginh:hei - marginh, marginw:wid - marginw]
# convert from [0, 1] to [-1, 1]
im1t = (im1t * 2 - 1).clamp(-1, 1)
im2t = (im2t * 2 - 1).clamp(-1, 1)
if im1t.dim() == 3:
im1t = im1t.unsqueeze(0)
im2t = im2t.unsqueeze(0)
im1t = im1t.detach().cpu()
im2t = im2t.detach().cpu()
if im1t.shape[-1] == 3:
im1t = im1t.permute(0, 3, 1, 2)
im2t = im2t.permute(0, 3, 1, 2)
im1 = im1t.permute(0, 2, 3, 1).numpy()
im2 = im2t.permute(0, 2, 3, 1).numpy()
batchsz, hei, wid, _ = im1.shape
if margin > 0:
marginh = int(hei * margin) + 1
marginw = int(wid * margin) + 1
im1 = im1[:, marginh:hei - marginh, marginw:wid - marginw]
im2 = im2[:, marginh:hei - marginh, marginw:wid - marginw]
values = []
for i in range(batchsz):
value, ssimmap = photometric(im1[i], im2[i], multichannel=True, full=True, channel_axis=-1)
if mask is not None:
value = (ssimmap * mask[i]).sum() / mask[i].sum()
return value
import torch.nn as nn
class TVLoss(nn.Module):
def __init__(self,TVLoss_weight=1):
super(TVLoss,self).__init__()
self.TVLoss_weight = TVLoss_weight
def forward(self,x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self._tensor_size(x[:,:,1:,:])
count_w = self._tensor_size(x[:,:,:,1:])
h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum()
w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum()
return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size
def _tensor_size(self,t):
return t.size()[1]*t.size()[2]*t.size()[3]
import plyfile
import skimage.measure
def convert_sdf_samples_to_ply(
pytorch_3d_sdf_tensor,
ply_filename_out,
bbox,
level=0.5,
offset=None,
scale=None,
):
"""
Convert sdf samples to .ply
:param pytorch_3d_sdf_tensor: a torch.FloatTensor of shape (n,n,n)
:voxel_grid_origin: a list of three floats: the bottom, left, down origin of the voxel grid
:voxel_size: float, the size of the voxels
:ply_filename_out: string, path of the filename to save to
This function adapted from: https://github.com/RobotLocomotion/spartan
"""
numpy_3d_sdf_tensor = pytorch_3d_sdf_tensor.numpy()
voxel_size = list((bbox[1]-bbox[0]) / np.array(pytorch_3d_sdf_tensor.shape))
verts, faces, normals, values = skimage.measure.marching_cubes(
numpy_3d_sdf_tensor, level=level, spacing=voxel_size
)
faces = faces[...,::-1] # inverse face orientation
# transform from voxel coordinates to camera coordinates
# note x and y are flipped in the output of marching_cubes
mesh_points = np.zeros_like(verts)
mesh_points[:, 0] = bbox[0,0] + verts[:, 0]
mesh_points[:, 1] = bbox[0,1] + verts[:, 1]
mesh_points[:, 2] = bbox[0,2] + verts[:, 2]
# apply additional offset and scale
if scale is not None:
mesh_points = mesh_points / scale
if offset is not None:
mesh_points = mesh_points - offset
# try writing to the ply file
num_verts = verts.shape[0]
num_faces = faces.shape[0]
verts_tuple = np.zeros((num_verts,), dtype=[("x", "f4"), ("y", "f4"), ("z", "f4")])
for i in range(0, num_verts):
verts_tuple[i] = tuple(mesh_points[i, :])
faces_building = []
for i in range(0, num_faces):
faces_building.append(((faces[i, :].tolist(),)))
faces_tuple = np.array(faces_building, dtype=[("vertex_indices", "i4", (3,))])
el_verts = plyfile.PlyElement.describe(verts_tuple, "vertex")
el_faces = plyfile.PlyElement.describe(faces_tuple, "face")
ply_data = plyfile.PlyData([el_verts, el_faces])
print("saving mesh to %s" % (ply_filename_out))
ply_data.write(ply_filename_out)