-
Notifications
You must be signed in to change notification settings - Fork 9
/
metrics.py
109 lines (96 loc) · 3.46 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
'''
Evaluation codes from Deblur-NeRF (https://github.com/limacv/Deblur-NeRF)
'''
from skimage import metrics
import torch
import torch.hub
from lpips.lpips import LPIPS
import os
import numpy as np
photometric = {
"mse": None,
"ssim": None,
"psnr": None,
"lpips": None
}
def compute_img_metric(im1t: torch.Tensor, im2t: torch.Tensor,
metric="mse", margin=0, mask=None):
"""
im1t, im2t: torch.tensors with batched imaged shape, range from (0, 1)
"""
if metric not in photometric.keys():
raise RuntimeError(f"img_utils:: metric {metric} not recognized")
if photometric[metric] is None:
if metric == "mse":
photometric[metric] = metrics.mean_squared_error
elif metric == "ssim":
photometric[metric] = metrics.structural_similarity
elif metric == "psnr":
photometric[metric] = metrics.peak_signal_noise_ratio
elif metric == "lpips":
photometric[metric] = LPIPS().cpu()
if mask is not None:
if mask.dim() == 3:
mask = mask.unsqueeze(1)
if mask.shape[1] == 1:
mask = mask.expand(-1, 3, -1, -1)
mask = mask.permute(0, 2, 3, 1).numpy()
batchsz, hei, wid, _ = mask.shape
if margin > 0:
marginh = int(hei * margin) + 1
marginw = int(wid * margin) + 1
mask = mask[:, marginh:hei - marginh, marginw:wid - marginw]
# convert from [0, 1] to [-1, 1]
im1t = (im1t * 2 - 1).clamp(-1, 1)
im2t = (im2t * 2 - 1).clamp(-1, 1)
if im1t.dim() == 3:
im1t = im1t.unsqueeze(0)
im2t = im2t.unsqueeze(0)
im1t = im1t.detach().cpu()
im2t = im2t.detach().cpu()
if im1t.shape[-1] == 3:
im1t = im1t.permute(0, 3, 1, 2)
im2t = im2t.permute(0, 3, 1, 2)
im1 = im1t.permute(0, 2, 3, 1).numpy()
im2 = im2t.permute(0, 2, 3, 1).numpy()
batchsz, hei, wid, _ = im1.shape
if margin > 0:
marginh = int(hei * margin) + 1
marginw = int(wid * margin) + 1
im1 = im1[:, marginh:hei - marginh, marginw:wid - marginw]
im2 = im2[:, marginh:hei - marginh, marginw:wid - marginw]
values = []
for i in range(batchsz):
if metric in ["mse", "psnr"]:
if mask is not None:
im1 = im1 * mask[i]
im2 = im2 * mask[i]
value = photometric[metric](
im1[i], im2[i]
)
if mask is not None:
hei, wid, _ = im1[i].shape
pixelnum = mask[i, ..., 0].sum()
value = value - 10 * np.log10(hei * wid / pixelnum)
elif metric in ["ssim"]:
value, ssimmap = photometric["ssim"](
im1[i], im2[i], multichannel=True, full=True
)
if mask is not None:
value = (ssimmap * mask[i]).sum() / mask[i].sum()
elif metric in ["lpips"]:
value = photometric[metric](
im1t[i:i + 1], im2t[i:i + 1]
)
else:
raise NotImplementedError
values.append(value)
return sum(values) / len(values)
if __name__ == "__main__":
device = torch.device("cuda:0")
torch.cuda.set_device(device)
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
parser.add_argument('--model_paths', '-m', required=True, nargs="+", type=str, default=[])
args = parser.parse_args()
evaluate(args.model_paths)