-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspatial_bootstrap.R
249 lines (213 loc) · 9.63 KB
/
spatial_bootstrap.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#### Comparing different Bootstrapping procedures for spatially correlated data.
# This is very interesting for estimation of predictor performance through resampling.
# Classical resampling procedures do not respect the inherent spatial correlation
# present in spatial data. Thus predictor performance tends to be overestimated.
#### Running this script uses about 13.5 GB of ram on my computer, (Ubuntu 18.04 LTS)
# so running it on machines that have less than 16 GB of ram available, or are using
# operating systems that require more ram in idle might lead to errors.
# Running the bagged bootstrap also took around 2300 seconds on my CPU (i5-4690K)
# Load packages
rm(list = ls()) # clean the workspace
packagelist <- c("rgdal", "foreign","RColorBrewer","plyr","raster","ncdf","rgeos",
"maptools","rgeos","rasterVis","gstat","caret")
newpackages <- packagelist[!(packagelist %in% installed.packages()[,"Package"])]
if (length(newpackages)) install.packages(newpackages)
lapply(packagelist, function(i) require(i, character.only = TRUE))
remove(packagelist, newpackages)
# to install the package rgeos on linux you need to run
# sudo apt-get install libgeos-dev
# first
# sudo apt-get install libgdal-dev libproj-dev
# sudo apt-get install r-cran-spdep
# check installation of spdep with
# sudo dpkg-query -l | grep r-cran-spdep *
# macro parameter settings
size_lon <- 200
size_lat <- 200
# general error terms with spatial correlation - one sample
# a raster without spatial correlation
errors <- matrix(rnorm(size_lon*size_lat, mean = 0, sd = 1),size_lon,size_lat)
# rasterize error values
errors_raster <- raster(errors)
extent(errors_raster) <- c(0,1,0,1)
plot(errors_raster)
# a raster with spatial correlation
positions <- expand.grid(1:200, 1:200)
names(positions) <- c('X','Y')
# define the gstat object (spatial model)
variomodel <- gstat(formula = z~1, locations = ~X+Y, dummy = T,
beta = 1, model = vgm(psill = 1,model = 'Exp',range = 50), nmax = 20)
# make four simulations based on the gstat object
pred1 <- predict(variomodel, newdata = positions, nsim = 4)
# show one realisation
# converting simulations to gridded (spatial) objects
gridded(pred1) = ~X+Y
spplot(pred1)
# standardizing and rasterizing predictions
pred1rast <- (raster(pred1) - mean(as.matrix(raster(pred1))))/sd(as.matrix(raster(pred1)))
extent(pred1rast) <- c(0,1,0,1)
plot(pred1rast)
# change the resoultion of the raster to size_lon*size_lat
# note: 'bilinear' - values are locally interpolated (using the resample function)
# note: for disaggregate() function, 'fact' has to be an integer
#pred1_new <- disaggregate(pred1rast, fact = c(size_lon/200,size_lat/200), method = 'bilinear')
# compare two different resolutions
#par(mfcol = c(1, 2))
#plot(pred1rast, main = "Resolution - Low")
#plot(pred1_new, main = "Resolution - High")
#par(mfcol = c(1, 1))
# generating simulation population of 300 rasters as shown above
pop_size <- 300
positions <- expand.grid(1:200, 1:200)
names(positions) <- c('X','Y')
# define the gstat object (spatial model)
variomodel <- gstat(formula = z~1, locations = ~X+Y, dummy = T,
beta = 1, model = vgm(psill = 1,model = 'Exp',range = 50), nmax = 20)
# make four simulations based on the gstat object
pred2 <- predict(variomodel, newdata = positions, nsim = pop_size)
# show one realisation
gridded(pred2) = ~X+Y
spplot(pred2[1:4], main = "Resolution - 200 * 200")
# standardize the raster stack
resultbrick <- brick(pred2)
for (i in 1:pop_size) {
pred2[[i]] <- (pred2[[i]] - colMeans(as.matrix(pred2[[i]])))/sd(as.matrix(pred2[[i]]))
print(i)
}
extent(resultbrick) <- c(0,1,0,1)
plot(resultbrick[[1:4]], main = "Resolution - 200 * 200")
# change the resoultion of the raster to size_lon*size_lat
# pred2_new <- disaggregate(resultbrick, fact = c(2, 2), method = 'bilinear')
# pred2_agg <- aggregate(pred2_new, fact = c(0.625, 0.625), method = "bilinear")
# plot(pred2_new[[1:4]], main = "")
# save the raster brick
# writeRaster(pred2_new[[1:50]], filename="pred2_new1.tif", format="GTiff", overwrite=TRUE)
# writeRaster(pred2_new[[51:100]], filename="pred2_new2.tif", format="GTiff", overwrite=TRUE)
# generate independent variable
x <- matrix(rnorm(size_lon*size_lat, mean = 1, sd = 1),size_lon,size_lat)
x_rast <- raster(x)
extent(x_rast) <- c(0,1,0,1)
plot(x_rast,main = "X - resolution - 200 * 200")
# generate intercept
intercept <- matrix(1,size_lon,size_lat)
intercept_rast <- raster(intercept)
extent(intercept_rast) <- c(0,1,0,1)
plot(intercept_rast)
# generate dependent variable
# initialize the stack, set values to NA
y_rast <- resultbrick
y_rast <- setValues(y_rast, NA)
for (i in 1:pop_size) {
y_rast[[i]] <- sum(stack(intercept_rast, x_rast, resultbrick[[i]]))
print(i)
}
plot(y_rast[[1:4]], main = "Y - resolution - 200 * 200")
# assmeble data - with spatial correlation
data_rast <- stack(y_rast,x_rast)
names(data_rast[[301]]) <- c("x_rast") # name the independent variable
data <- as.data.frame(data_rast)
# simple linear regression
# data with spatial correlation
ols <- matrix(NA,pop_size,1)
for (i in 1:pop_size) {
fit <- lm(data[,i]~x_rast, data = data) # Ordinary Least Squares
ols[i] <- coef(fit)[2] # extract estimate on X coefficient
print(i)
}
plot(density(ols), col = "blue", lwd = 2, xlim = c(0.995,1.005), main = "Ordinary Least Squares")
abline(v = 1, col = "black", lty = 2)
# spatial block bootstrapping
# parameter setting for bootstrapping
b <- 2500 # block size for bootstrapping
b_lon <- ceiling(sqrt(b)) # longitude length of block
b_lat <- ceiling(sqrt(b)) # latitude length of block
tolerance <- 0.2; # tolerance for percentage of 'NA' values in selected blocks
draws <- 500 # number of draws for block bootstrapping
map = stack(data_rast[[sample(1:pop_size,1,replace = TRUE)]],data_rast[[pop_size + 1]])
nx <- nrow(map)
ny <- ncol(map)
b_boot1 <- matrix(NA,draws,1)
for (i in 1:draws) {
na_counter <- 1 # a counter for 'NA' values in selected block
while (na_counter > tolerance)
{
sub_x <- sample(1:nx - b_lon,1,replace = TRUE) # determine the starting point of block - X dimension
sub_y <- sample(1:ny - b_lat,1,replace = TRUE) # determine the starting point of block - Y dimension
multi_block <- matrix(NA,b_lon*b_lat,nlayers(map)) # initialize the outcome matrix
multi_block <- getValuesBlock(map,sub_x,b_lon,sub_y,b_lat,lyr = 1:nlayers(map))
na_mat <- as.vector(1:nlayers(map))
for (j in 1:nlayers(map)) {
na_mat[j] <- sum(is.na(multi_block[,j]))/length(multi_block[,j])
}
na_counter <- min(na_mat)
if (na_counter <= tolerance) { break
cat('\n','Percentage of NULL cell values:',na_counter*100,',no block selected!')
}
}
data_block <- as.data.frame(multi_block)
names(data_block) <- c("y_rast","x_rast")
fit <- lm(y_rast~x_rast,data = data_block) # Ordinary Least Squares
b_boot1[i] <- coef(fit)[2] # extract estimate on X coefficient
print(i)
}
plot(density(b_boot1),col = "blue",lwd = 2,xlim = c(0.99,1.01),ylim = c(0,800),main = "Ordinary Least Squares")
lines(density(ols),col = "red",lwd = 2)
legend("topright", inset = .05, title = "Spatial Block Bootstrapping",
c("Estimated Distribution","True Distribution"),col = c("blue","red"),lwd = 2,cex = 0.8)
abline(v = 1, col = "black",lty = 2) # true beta
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Step 6: spatial bootstrapping - little bag of bootstraps
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# parameter setting for bootstrapping
# note: total population size = size_lon*size_lat
b_num <- 4 # number of bags
draws <- 50 # number of draws within each bag
map = stack(data_rast[[sample(1:pop_size,1,replace = TRUE)]],data_rast[[pop_size + 1]])
mapdata <- as.data.frame(map)
names(mapdata) <- c("y","x")
# split the data into 'b_num' random bags
bags <- createFolds(mapdata$y, k = b_num, list = TRUE, returnTrain = FALSE)
b_boot2 <- matrix(NA,draws,b_num)
# library(parallel)
# no_cores <- detectCores()
# clust <- makeCluster(4)
#
# clusterEvalQ(clust,
# for (i in 1:b_num) {
# bag <- mapdata[bags[[i]],c("y","x")]
# for (j in 1:draws) {
# # resample the entire population from the i-th bag
# bag_data <- bag[sample(nrow(bag), nrow(mapdata), replace = TRUE),]
# fit <- lm(y~x,data = bag_data) # Ordinary Least Squares
# b_boot2[j,i] <- coef(fit)[2] # extract estimate on X coefficient
# print(c(i,j)) # tracking both loops
# }
# } )
for (i in 1:b_num) {
bag <- mapdata[bags[[i]],c("y","x")]
for (j in 1:draws) {
# resample the entire population from the i-th bag
bag_data <- bag[sample(nrow(bag), nrow(mapdata), replace = TRUE),]
fit <- lm(y~x,data = bag_data) # Ordinary Least Squares
b_boot2[j,i] <- coef(fit)[2] # extract estimate on X coefficient
print(c(i,j)) # tracking both loops
}
}
# plotting for all bags
par(mfrow = c(2,2))
for (p in 1:b_num) {
plot(density(b_boot2[,p]),col = "blue",lwd = 2,xlim = c(0.975,1.025),ylim = c(0,750),
main = "Little Bag Bootstrap")
lines(density(ols),col = "red",lwd = 2)
legend("topright", inset = .05, title = "Spatial Block Bootstrapping",
c("Estimated Distribution","True Distribution"),col = c("blue","red"),lwd = 2,cex = 0.2)
abline(v = 1, col = "black",lty = 2) # true beta
}
par(mfrow = c(1,1))
avg_bboot <- rowSums(b_boot2)/ncol(b_boot2)
plot(density(avg_bboot),col = "blue",lwd = 2,xlim = c(0.975,1.025),ylim = c(0,750),
main = "Little Bag Bootstrap")
lines(density(ols),col = "red",lwd = 2)
legend("topright", inset = .05, title = "Spatial Block Bootstrapping",
c("Estimated Distribution","True Distribution"),col = c("blue","red"),lwd = 2,cex = 0.2)
abline(v = 1, col = "black",lty = 2)