forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10_main.py
274 lines (222 loc) · 9.53 KB
/
cifar10_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the CIFAR-10 dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app as absl_app
from absl import flags
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
_HEIGHT = 32
_WIDTH = 32
_NUM_CHANNELS = 3
_DEFAULT_IMAGE_BYTES = _HEIGHT * _WIDTH * _NUM_CHANNELS
# The record is the image plus a one-byte label
_RECORD_BYTES = _DEFAULT_IMAGE_BYTES + 1
_NUM_CLASSES = 10
_NUM_DATA_FILES = 5
# TODO(tobyboyd): Change to best practice 45K(train)/5K(val)/10K(test) splits.
_NUM_IMAGES = {
'train': 50000,
'validation': 10000,
}
DATASET_NAME = 'CIFAR-10'
###############################################################################
# Data processing
###############################################################################
def get_filenames(is_training, data_dir):
"""Returns a list of filenames."""
data_dir = os.path.join(data_dir, 'cifar-10-batches-bin')
assert os.path.exists(data_dir), (
'Run cifar10_download_and_extract.py first to download and extract the '
'CIFAR-10 data.')
if is_training:
return [
os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in range(1, _NUM_DATA_FILES + 1)
]
else:
return [os.path.join(data_dir, 'test_batch.bin')]
def parse_record(raw_record, is_training, dtype):
"""Parse CIFAR-10 image and label from a raw record."""
# Convert bytes to a vector of uint8 that is record_bytes long.
record_vector = tf.decode_raw(raw_record, tf.uint8)
# The first byte represents the label, which we convert from uint8 to int32
# and then to one-hot.
label = tf.cast(record_vector[0], tf.int32)
# The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(record_vector[1:_RECORD_BYTES],
[_NUM_CHANNELS, _HEIGHT, _WIDTH])
# Convert from [depth, height, width] to [height, width, depth], and cast as
# float32.
image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)
image = preprocess_image(image, is_training)
image = tf.cast(image, dtype)
return image, label
def preprocess_image(image, is_training):
"""Preprocess a single image of layout [height, width, depth]."""
if is_training:
# Resize the image to add four extra pixels on each side.
image = tf.image.resize_image_with_crop_or_pad(
image, _HEIGHT + 8, _WIDTH + 8)
# Randomly crop a [_HEIGHT, _WIDTH] section of the image.
image = tf.random_crop(image, [_HEIGHT, _WIDTH, _NUM_CHANNELS])
# Randomly flip the image horizontally.
image = tf.image.random_flip_left_right(image)
# Subtract off the mean and divide by the variance of the pixels.
image = tf.image.per_image_standardization(image)
return image
def input_fn(is_training, data_dir, batch_size, num_epochs=1,
dtype=tf.float32, datasets_num_private_threads=None,
num_parallel_batches=1):
"""Input function which provides batches for train or eval.
Args:
is_training: A boolean denoting whether the input is for training.
data_dir: The directory containing the input data.
batch_size: The number of samples per batch.
num_epochs: The number of epochs to repeat the dataset.
dtype: Data type to use for images/features
datasets_num_private_threads: Number of private threads for tf.data.
num_parallel_batches: Number of parallel batches for tf.data.
Returns:
A dataset that can be used for iteration.
"""
filenames = get_filenames(is_training, data_dir)
dataset = tf.data.FixedLengthRecordDataset(filenames, _RECORD_BYTES)
return resnet_run_loop.process_record_dataset(
dataset=dataset,
is_training=is_training,
batch_size=batch_size,
shuffle_buffer=_NUM_IMAGES['train'],
parse_record_fn=parse_record,
num_epochs=num_epochs,
dtype=dtype,
datasets_num_private_threads=datasets_num_private_threads,
num_parallel_batches=num_parallel_batches
)
def get_synth_input_fn(dtype):
return resnet_run_loop.get_synth_input_fn(
_HEIGHT, _WIDTH, _NUM_CHANNELS, _NUM_CLASSES, dtype=dtype)
###############################################################################
# Running the model
###############################################################################
class Cifar10Model(resnet_model.Model):
"""Model class with appropriate defaults for CIFAR-10 data."""
def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES,
resnet_version=resnet_model.DEFAULT_VERSION,
dtype=resnet_model.DEFAULT_DTYPE):
"""These are the parameters that work for CIFAR-10 data.
Args:
resnet_size: The number of convolutional layers needed in the model.
data_format: Either 'channels_first' or 'channels_last', specifying which
data format to use when setting up the model.
num_classes: The number of output classes needed from the model. This
enables users to extend the same model to their own datasets.
resnet_version: Integer representing which version of the ResNet network
to use. See README for details. Valid values: [1, 2]
dtype: The TensorFlow dtype to use for calculations.
Raises:
ValueError: if invalid resnet_size is chosen
"""
if resnet_size % 6 != 2:
raise ValueError('resnet_size must be 6n + 2:', resnet_size)
num_blocks = (resnet_size - 2) // 6
super(Cifar10Model, self).__init__(
resnet_size=resnet_size,
bottleneck=False,
num_classes=num_classes,
num_filters=16,
kernel_size=3,
conv_stride=1,
first_pool_size=None,
first_pool_stride=None,
block_sizes=[num_blocks] * 3,
block_strides=[1, 2, 2],
resnet_version=resnet_version,
data_format=data_format,
dtype=dtype
)
def cifar10_model_fn(features, labels, mode, params):
"""Model function for CIFAR-10."""
features = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _NUM_CHANNELS])
# Learning rate schedule follows arXiv:1512.03385 for ResNet-56 and under.
learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
batch_size=params['batch_size'], batch_denom=128,
num_images=_NUM_IMAGES['train'], boundary_epochs=[91, 136, 182],
decay_rates=[1, 0.1, 0.01, 0.001])
# Weight decay of 2e-4 diverges from 1e-4 decay used in the ResNet paper
# and seems more stable in testing. The difference was nominal for ResNet-56.
weight_decay = 2e-4
# Empirical testing showed that including batch_normalization variables
# in the calculation of regularized loss helped validation accuracy
# for the CIFAR-10 dataset, perhaps because the regularization prevents
# overfitting on the small data set. We therefore include all vars when
# regularizing and computing loss during training.
def loss_filter_fn(_):
return True
return resnet_run_loop.resnet_model_fn(
features=features,
labels=labels,
mode=mode,
model_class=Cifar10Model,
resnet_size=params['resnet_size'],
weight_decay=weight_decay,
learning_rate_fn=learning_rate_fn,
momentum=0.9,
data_format=params['data_format'],
resnet_version=params['resnet_version'],
loss_scale=params['loss_scale'],
loss_filter_fn=loss_filter_fn,
dtype=params['dtype'],
fine_tune=params['fine_tune']
)
def define_cifar_flags():
resnet_run_loop.define_resnet_flags()
flags.adopt_module_key_flags(resnet_run_loop)
flags_core.set_defaults(data_dir='/tmp/cifar10_data',
model_dir='/tmp/cifar10_model',
resnet_size='56',
train_epochs=182,
epochs_between_evals=10,
batch_size=128,
image_bytes_as_serving_input=False)
def run_cifar(flags_obj):
"""Run ResNet CIFAR-10 training and eval loop.
Args:
flags_obj: An object containing parsed flag values.
"""
if flags_obj.image_bytes_as_serving_input:
tf.logging.fatal('--image_bytes_as_serving_input cannot be set to True '
'for CIFAR. This flag is only applicable to ImageNet.')
return
input_function = (flags_obj.use_synthetic_data and
get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or
input_fn)
resnet_run_loop.resnet_main(
flags_obj, cifar10_model_fn, input_function, DATASET_NAME,
shape=[_HEIGHT, _WIDTH, _NUM_CHANNELS])
def main(_):
with logger.benchmark_context(flags.FLAGS):
run_cifar(flags.FLAGS)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
define_cifar_flags()
absl_app.run(main)