Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

mind-wandering scale #666

Closed
ben-domingue opened this issue Oct 31, 2024 · 2 comments
Closed

mind-wandering scale #666

ben-domingue opened this issue Oct 31, 2024 · 2 comments
Assignees

Comments

@ben-domingue
Copy link
Owner

ben-domingue commented Oct 31, 2024

https://link.springer.com/article/10.3758/s13428-024-02500-6#data-availability

(Edited by Arthur) Data available at: https://osf.io/mxn3v/

@KingArthur0205
Copy link
Collaborator

KingArthur0205 commented Nov 16, 2024

Brief Mind Wandering Three-Factor Scale(BMW3_df) : a 12-item questionnaire available in German and English. Based on results from 1038 participants (823 German speakers, 215 English speakers). Five-point Likert response scale is used, with categories being labeled 0 = fully disagree, 1 = somewhat disagree, 2 = neutral, 3 = somewhat agree, and 4 = fully agree.

Mindful Attention Awareness Scale(MAAS_df ):15 items to measure dispositional mindfulness, based on results from 175 German speakers, 215 English speakers,ranging from 1 to 6.

International Personality Item Pool(IPIP_df) short 50-item version of the IPIP questionnaire, based on results from 176 German speakers, 215 English speakers, ranging from 1 to 5.

Deliberate Mind Wandering(DMW_df): 4 items, 215 English speakers, 176 German speakers, ranging from 1 to 7.

Spontaneous Mind Wandering(SMW_df ):4 items, 215 English speakers, 176 German speakers, ranging from 1 to 7.

Attentional Control Scale(ACS_df): the German version of the ACS as a 20-item measure of self-reported attentional control, 230 participants, ranging from 1 to 4.

Cognitive Emotion-Regulation Questionnaire(CERQ_df): The German versions of the 10-item Emotion Regulation Questionnaire and of the four-item rumination scale of the Cognitive Emotion-Regulation Questionnaire, 174 German Participants, ranging from 1 to 7.

@KingArthur0205
Copy link
Collaborator

Data:
OS_TBMWTFS_Schubert_2023.zip

Code:

# Paper: https://pmc.ncbi.nlm.nih.gov/articles/PMC5372834/#sec6
# Data: https://osf.io/fecgz/

library(haven)
library(dplyr)
library(tidyr)
library(openxlsx)
library(readr)
library(readxl)
library(sas7bdat)

rm(list =ls()) 
remove_na <- function(df) {
  df <- df[!(rowSums(is.na(df[, -which(names(df) %in% c("id"))])) == (ncol(df) - 1)), ]
  return(df)
}

German_BMW3_merged_df <- read.table("cleanData_BMW3_merged.txt",sep = ",", header = TRUE) # if the file has a header
US_UNGG_Personality_df <- read.table("cleanData_UNCG_personality_merged.txt",sep = ",", header = TRUE) # if the file has a header

US_UNGG_Personality_df <-US_UNGG_Personality_df |>
  rename(ID= id)
US_UNGG_Personality_df <- US_UNGG_Personality_df |>
  mutate(id = row_number())

US_cog_abilities_merged_df <- read.table("cleanData_UNCG_personality_merged.txt",sep = ",", header = TRUE)

# ------ Process BMW3 Dataset ------
HD4_ACS_df <- read.table("cleanData_HD4_ACS.txt",sep = ",", header = TRUE)
HD4_ACS_df <- HD4_ACS_df|>
  rename(ID= id)
HD4_ACS_df <- HD4_ACS_df|>
  mutate(id = row_number())

HD4_df <- read.table("cleanData_HD4.txt",sep = ",", header = TRUE) 
cleanData_HD2_Emotion_df  <- read.table("cleanData_HD2_Emotion.txt",sep = ",", header = TRUE) 

cleanData_HD2_Emotion_df <- cleanData_HD2_Emotion_df|>
  rename(ID= id)
cleanData_HD2_Emotion_df <- cleanData_HD2_Emotion_df|>
  mutate(id = row_number())

measurement_invariance_df <- read.table("cleanData_measurement_invariance.txt",sep = ",", header = TRUE) 

measurement_invariance_df <- measurement_invariance_df|>
  rename(ID= id)
measurement_invariance_df <- measurement_invariance_df|>
  mutate(id = row_number())

cleanData_personality_merged_df<- read.table("cleanData_personality_merged.txt",sep = ",", header = TRUE) 

cleanData_personality_merged_df <- cleanData_personality_merged_df|>
  rename(ID= id)
cleanData_personality_merged_df <- cleanData_personality_merged_df|>
  mutate(id = row_number())

cleanData_UNCG_BMW3_df <- read.table("cleanData_UNCG_BMW3.txt",sep = ",", header = TRUE) 
cleanData_WMC_merged_df <- read.table("cleanData_WMC_merged.txt",sep = ",", header = TRUE) 


BMW3_df <- measurement_invariance_df |>
  select(starts_with("BMW3"), id)
BMW3_df <- remove_na(BMW3_df)
BMW3_df <- pivot_longer(BMW3_df, cols=-c(id), names_to="item", values_to="resp")

BMW3_df$group <- c(rep("German", 9876), rep("English", 12456 - 9876))

save(BMW3_df, file="OS_TBMWTFS_Schubert_2023_BMW3.Rdata")
write.csv(BMW3_df,"OS_TBMWTFS_Schubert_2023_BMW3.csv", row.names=FALSE)

# ------ Process IPIP Dataset ------
German_IPIP_df <- cleanData_personality_merged_df |>
  select(matches("^IPIP.*0"),- ends_with("z"),id)
German_IPIP_df <- remove_na(German_IPIP_df)
German_IPIP_df <- pivot_longer(German_IPIP_df, cols=-c(id), names_to="item", values_to="resp")

English_IPIP_df <-US_UNGG_Personality_df |>
  select(matches("^IPIP.*0"),- ends_with("z"),id)
English_IPIP_df <- remove_na(English_IPIP_df)
English_IPIP_df <- pivot_longer(English_IPIP_df, cols=-c(id), names_to="item", values_to="resp")

German_IPIP_df$group <- "German"
English_IPIP_df$group <- "English"

IPIP_df <- rbind(German_IPIP_df,English_IPIP_df)
save(IPIP_df, file="OS_TBMWTFS_Schubert_2023_IPIP.Rdata")
write.csv(IPIP_df,"OS_TBMWTFS_Schubert_2023_IPIP.csv", row.names=FALSE)

# ------ Process MAAS Dataset ------
German_MAAS_df <- cleanData_personality_merged_df |>
  select(matches("^MAAS"),- ends_with("z"),-MAAS_p1, -MAAS_p2, -MAAS_p3,-MAAS, id)
German_MAAS_df <- remove_na(German_MAAS_df)
German_MAAS_df <- pivot_longer(German_MAAS_df, cols=-c(id), names_to="item", values_to="resp")

English_MAAS_df <- US_UNGG_Personality_df |>
  select(matches("^MAAS"), -ends_with("z"), -MAAS_p1, -MAAS_p2, -MAAS_p3,-MAAS,id)
English_MAAS_df <- remove_na(English_MAAS_df)
English_MAAS_df <- pivot_longer(English_MAAS_df, cols=-c(id), names_to="item", values_to="resp")

German_MAAS_df$group <- "German"
English_MAAS_df$group <- "English"

MAAS_df <- rbind(German_MAAS_df,English_MAAS_df)
save(MAAS_df, file="OS_TBMWTFS_Schubert_2023_MAAS.Rdata")
write.csv(MAAS_df,"OS_TBMWTFS_Schubert_2023_MAAS.csv", row.names=FALSE)

# ------ Process DMW Dataset ------
German_DMW_df <- cleanData_personality_merged_df |>
  select(matches("^DMW.*0"),- ends_with("z"),id)
German_DMW_df <- remove_na(German_DMW_df)
German_DMW_df <- pivot_longer(German_DMW_df, cols=-c(id), names_to="item", values_to="resp")

English_DMW_df <- US_UNGG_Personality_df |>
  select(matches("^DMW.*0"), -ends_with("z"), id)
English_DMW_df <- remove_na(English_DMW_df)
English_DMW_df <- pivot_longer(English_DMW_df, cols=-c(id), names_to="item", values_to="resp")

German_DMW_df$group <- "German"
English_DMW_df$group <- "English"

DMW_df <- rbind(German_DMW_df,English_DMW_df)
save(DMW_df, file="OS_TBMWTFS_Schubert_2023_DMW.Rdata")
write.csv(DMW_df,"OS_TBMWTFS_Schubert_2023_DMW.csv", row.names=FALSE)

# ------ Process SMW Dataset ------
German_SMW_df <- cleanData_personality_merged_df |>
  select(matches("^SMW.*0"),- ends_with("z"),id)
German_SMW_df <- remove_na(German_SMW_df)
German_SMW_df <- pivot_longer(German_SMW_df, cols=-c(id), names_to="item", values_to="resp")

English_SMW_df <- US_UNGG_Personality_df |>
  select(matches("^SMW.*0"), -ends_with("z"), id)
English_SMW_df <- remove_na(English_SMW_df)
English_SMW_df <- pivot_longer(English_SMW_df, cols=-c(id), names_to="item", values_to="resp")

German_SMW_df$group <- "German"
English_SMW_df$group <- "English"

SMW_df <- rbind(German_SMW_df,English_SMW_df)
save(SMW_df, file="OS_TBMWTFS_Schubert_2023_SMW.Rdata")
write.csv(SMW_df,"OS_TBMWTFS_Schubert_2023_SMW.csv", row.names=FALSE)

# ------ Process ACS Dataset ------
German_ACS_df1 <- HD4_ACS_df |>
  select(starts_with("ACS"),- ends_with("R"),-ends_with("z"),-ACS_sum,-ACS_FOC,-ACS_SHIF,id)
German_ACS_df1 <- remove_na(German_ACS_df1)
German_ACS_df1 <- pivot_longer(German_ACS_df1, cols=-c(id), names_to="item", values_to="resp")

German_ACS_df2 <- HD4_ACS_df |>
  select(starts_with("ACS")&ends_with("R"), -ends_with("z"),-ACS_sum,-ACS_FOC,-ACS_SHIF,id)
German_ACS_df2 <- remove_na(German_ACS_df2)
German_ACS_df2 <- pivot_longer(German_ACS_df2, cols=-c(id), names_to="item", values_to="resp")

ACS_df <- rbind(German_ACS_df1,German_ACS_df2)

save(ACS_df, file="OS_TBMWTFS_Schubert_2023_ACS.Rdata")
write.csv(ACS_df,"OS_TBMWTFS_Schubert_2023_ACS.csv", row.names=FALSE)

# ------ Process CERQ Dataset ------
German_ERQ_df <- cleanData_HD2_Emotion_df |>
  select(starts_with("ERQ"),-ends_with("z"),id)
German_ERQ_df  <- remove_na(German_ERQ_df)
German_ERQ_df <- pivot_longer(German_ERQ_df, cols=-c(id), names_to="item", values_to="resp")

German_Rumination_df <- cleanData_HD2_Emotion_df |>
  select(starts_with("Rumination"),-ends_with("z"),-Rumination,id)
German_Rumination_df<- remove_na(German_Rumination_df)
German_Rumination_df <- pivot_longer(German_Rumination_df, cols=-c(id), names_to="item", values_to="resp")

CERQ_df <- rbind(German_ERQ_df,German_Rumination_df)

save(CERQ_df, file="OS_TBMWTFS_Schubert_2023_CERQ.Rdata")
write.csv(CERQ_df,"OS_TBMWTFS_Schubert_2023_CERQ.csv", row.names=FALSE)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

2 participants