Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Psychedelic Experience and Mindfulness are Associated with Improved Wellbeing #457

Closed
ben-domingue opened this issue Sep 21, 2024 · 8 comments
Assignees

Comments

@ben-domingue
Copy link
Owner

https://osf.io/ph6ks/

License: CC-By Attribution 4.0 International

https://www.tandfonline.com/doi/abs/10.1080/02791072.2022.2060773

@KingArthur0205
Copy link
Collaborator

KingArthur0205 commented Nov 11, 2024

Five Facet Mindfulness Questionnaire (FFMQ): 39-item questionnaire, ratings ranged from 1 (never or very rarely true) to 5 (very often or always true).1030 participants in web recruit group, 154 partcipants in internal recruit group.

Mystical Experience Questionnaire (MEQ): 30-item questionnaire, rating from 0 (none; not at all) to 5 (extreme, more than any other time in my life); 963 participants in web recruit group, 154 partcipants in internal recruit group.

Depression Anxiety and Stress Scale (DASS): 21-item questionnaire,rated from 0 (did not apply to me at all) to 3 (applied to me very much or most of the time). 920 participants in web recruit group, 154 partcipants in internal recruit group.

The Positive and Negative Affect Schedule (PANAS): two combined 10-item inventories of positive and negative mood states administered togethe, rated from 1 (very slightly or not at all) to 5 (extremely). 930 participants in web recruit group, 154 partcipants in internal recruit group.

The Meaning in Life Questionnaire (MLQ):10-item questionnaire, rated from 1 (absolutely untrue) to 7 (absolutely true). 924 participants in web recruit group, 154 partcipants in internal recruit group.

The Satisfaction with Life Scale (SWLS) : 5-item scale, Rated from 1 (strongly disagree) to 7 (strongly agree). 938 participants in web recruit group, 154 partcipants in internal recruit group.

The Brief Wisdom Screening Scale (BWSS):a 20-item scale, Scored from 1 (strongly disagree) to 5 (strongly agree). 923 participants in web recruit group, 154 partcipants in internal recruit group.

@KingArthur0205
Copy link
Collaborator

Data:
PEMAIW_Qiu_2020.zip

Code:

library(haven)
library(dplyr)
library(tidyr)
library(openxlsx)
library(readr)
library(readxl)
library(sas7bdat)

remove_na <- function(df) {
  df <- df[!(rowSums(is.na(df[, -which(names(df) %in% c("id"))])) == (ncol(df) - 1)), ]
  return(df)
}

data_web_df <- read_csv("data_anonymizedWebRecruit.csv")
data_web_df <- data_web_df %>%
  mutate(id = row_number())
data_web_df <- data_web_df[-c(1, 2), ]

data_IR_df <- read_csv("data_anonymizedInternalRecruit.csv")
data_IR_df <- data_IR_df %>%
  mutate(id = row_number())
data_IR_df  <- data_IR_df [-c(1, 2), ]

DASS_web_df <- data_web_df |>
  select(starts_with("DASS"), id)
DASS_web_df <- remove_na(DASS_web_df)
DASS_web_df <- pivot_longer(DASS_web_df, cols=-c(id), names_to="item", values_to="resp")

DASS_IR_df <- data_IR_df |>
  select(starts_with("DASS"), id)
DASS_IR_df <- remove_na(DASS_IR_df)
DASS_IR_df <- pivot_longer(DASS_IR_df , cols=-c(id), names_to="item", values_to="resp")

DASS_web_df $group <- "WebRecruit"
DASS_IR_df$group <- "InternalRecruit"

DASS_df <- rbind(DASS_web_df,DASS_IR_df)

save(DASS_df, file="PEMAIW_Qiu_2020_DASS.Rdata")
write.csv(DASS_df, "PEMAIW_Qiu_2020_DASS.csv", row.names=FALSE)

FFMQ_web_df <- data_web_df |>
  select(starts_with("FFMQ"), id)
FFMQ_web_df <- remove_na(FFMQ_web_df)
FFMQ_web_df <- pivot_longer(FFMQ_web_df, cols=-c(id), names_to="item", values_to="resp")

FFMQ_IR_df <- data_IR_df |>
  select(starts_with("FFMQ"), id)
FFMQ_IR_df <- remove_na(FFMQ_IR_df)
FFMQ_IR_df <- pivot_longer(FFMQ_IR_df , cols=-c(id), names_to="item", values_to="resp")

FFMQ_web_df$group <- "WebRecruit"
FFMQ_IR_df$group <- "InternalRecruit"

FFMQ_df <- rbind(FFMQ_web_df,FFMQ_IR_df)

save(FFMQ_df, file="PEMAIW_Qiu_2020_FFMQ.Rdata")
write.csv(FFMQ_df, "PEMAIW_Qiu_2020_FFMQ.csv", row.names=FALSE)

MEQ_web_df <- data_web_df |>
  select(starts_with("MEQ"), id)
MEQ_web_df <- remove_na(MEQ_web_df)
MEQ_web_df <- pivot_longer(MEQ_web_df, cols=-c(id), names_to="item", values_to="resp")

MEQ_IR_df <- data_IR_df |>
  select(starts_with("MEQ"), id)
MEQ_IR_df <- remove_na(MEQ_IR_df)
MEQ_IR_df <- pivot_longer(MEQ_IR_df , cols=-c(id), names_to="item", values_to="resp")

MEQ_web_df$group <- "WebRecruit"
MEQ_IR_df$group <- "InternalRecruit"

MEQ_df <- rbind(MEQ_web_df,MEQ_IR_df)

save(MEQ_df, file="PEMAIW_Qiu_2020_MEQ.Rdata")
write.csv(MEQ_df, "PEMAIW_Qiu_2020_MEQ.csv", row.names=FALSE)

MLQ_web_df <- data_web_df |>
  select(starts_with("MLQ"), id)
MLQ_web_df <- remove_na(MLQ_web_df)
MLQ_web_df <- pivot_longer(MLQ_web_df, cols=-c(id), names_to="item", values_to="resp")

MLQ_IR_df <- data_IR_df |>
  select(starts_with("MLQ"), id)
MLQ_IR_df <- remove_na(MLQ_IR_df)
MLQ_IR_df <- pivot_longer(MLQ_IR_df , cols=-c(id), names_to="item", values_to="resp")

MLQ_web_df$group <- "WebRecruit"
MLQ_IR_df$group <- "InternalRecruit"

MLQ_df <- rbind(MLQ_web_df,MLQ_IR_df)

save(MLQ_df, file="PEMAIW_Qiu_2020_MLQ.Rdata")
write.csv(MLQ_df, "PEMAIW_Qiu_2020_MLQ.csv", row.names=FALSE)

PANAS_web_df <- data_web_df |>
  select(starts_with("PANAS"), id)
PANAS_web_df <- remove_na(PANAS_web_df)
PANAS_web_df <- pivot_longer(PANAS_web_df, cols=-c(id), names_to="item", values_to="resp")

PANAS_IR_df <- data_IR_df |>
  select(starts_with("PANAS"), id)
PANAS_IR_df <- remove_na(PANAS_IR_df)
PANAS_IR_df <- pivot_longer(PANAS_IR_df , cols=-c(id), names_to="item", values_to="resp")

PANAS_web_df $group <- "WebRecruit"
PANAS_IR_df$group <- "InternalRecruit"

PANAS_df <- rbind(PANAS_web_df,PANAS_IR_df)

save(PANAS_df, file="PEMAIW_Qiu_2020_PANAS.Rdata")
write.csv(PANAS_df, "PEMAIW_Qiu_2020_PANAS.csv", row.names=FALSE)

BWSS_web_df <- data_web_df |>
  select(starts_with("BWSS"), id)
BWSS_web_df <- remove_na(BWSS_web_df)
BWSS_web_df <- pivot_longer(BWSS_web_df, cols=-c(id), names_to="item", values_to="resp")

BWSS_IR_df <- data_IR_df |>
  select(starts_with("BWSS"), id)
BWSS_IR_df <- remove_na(BWSS_IR_df)
BWSS_IR_df <- pivot_longer(BWSS_IR_df , cols=-c(id), names_to="item", values_to="resp")

BWSS_web_df$group <- "WebRecruit"
BWSS_IR_df$group <- "InternalRecruit"

BWSS_df <- rbind(BWSS_web_df,BWSS_IR_df)

save(BWSS_df, file="PEMAIW_Qiu_2020_BWSS.Rdata")
write.csv(BWSS_df, "PEMAIW_Qiu_2020_BWSS.csv", row.names=FALSE)

SWLS_web_df <- data_web_df |>
  select(starts_with("SWLS"), id)
SWLS_web_df <- remove_na(SWLS_web_df)
SWLS_web_df <- pivot_longer(SWLS_web_df, cols=-c(id), names_to="item", values_to="resp")

SWLS_IR_df <- data_IR_df |>
  select(starts_with("SWLS"), id)
SWLS_IR_df <- remove_na(SWLS_IR_df)
SWLS_IR_df <- pivot_longer(SWLS_IR_df , cols=-c(id), names_to="item", values_to="resp")

SWLS_web_df $group <- "WebRecruit"
SWLS_IR_df $group <- "InternalRecruit"

SWLS_df <- rbind(SWLS_web_df,SWLS_IR_df)

save(SWLS_df, file="PEMAIW_Qiu_2020_SWLS.Rdata")
write.csv(SWLS_df, "PEMAIW_Qiu_2020_SWLS.csv", row.names=FALSE)

@KingArthur0205
Copy link
Collaborator

added to dictionary

@ben-domingue
Copy link
Owner Author

you're making this so easy for me @KingArthur0205

@ben-domingue
Copy link
Owner Author

but just checking that the data has been added?

@KingArthur0205
Copy link
Collaborator

@ben-domingue Code has been added. Data(as I just checked) have been uploaded to Redvis

@ben-domingue
Copy link
Owner Author

@KingArthur0205 yeah sorry 'data' should have been 'code'. doh!

@KingArthur0205
Copy link
Collaborator

Both are in the right place :)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

2 participants