forked from Rayhane-mamah/Tacotron-2
-
Notifications
You must be signed in to change notification settings - Fork 47
/
preprocess.py
107 lines (81 loc) · 4.28 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import argparse
import os
from multiprocessing import cpu_count
from datasets import preprocessor
from hparams import hparams
from tqdm import tqdm
def preprocess(args, input_folders, output_dir, hparams):
mel_frames, timesteps = 0, 0
max_text_lens, max_mel_lens, max_timestep_lens = [], [], []
for input_dir in input_folders:
wav_dir = os.path.join(output_dir, input_dir.split('/')[-1], 'audio')
mel_dir = os.path.join(output_dir, input_dir.split('/')[-1], 'mels')
os.makedirs(wav_dir, exist_ok=True)
os.makedirs(mel_dir, exist_ok=True)
metadata = preprocessor.build_from_path(hparams, input_dir, wav_dir, mel_dir, args.n_jobs, tqdm=tqdm)
with open(os.path.join(output_dir, input_dir.split('/')[-1], 'train.txt'), 'w') as f:
for m in metadata:
f.write('|'.join([str(x) for x in m]) + '\n')
max_text_lens.append(max(len(m[3]) for m in metadata))
max_mel_lens.append(max(int(m[2]) for m in metadata))
max_timestep_lens.append(max(m[1] for m in metadata))
mel_frames += sum([int(m[2]) for m in metadata])
timesteps += sum([int(m[1]) for m in metadata])
hours = timesteps / hparams.sample_rate / 3600
print(f'Write {len(metadata)} utterances, {mel_frames} mel frames, {timesteps} audio timesteps, ({hours:.2f} hours)')
print(f'Max input length (text chars): {max(max_text_lens)}')
print(f'Max mel frames length: {max(max_mel_lens)}')
print(f'Max audio timesteps length: {max(max_timestep_lens)}')
def norm_data(args):
merge_books = (args.merge_books=='True')
print('Selecting data folders..')
supported_datasets = ['LJSpeech-1.0', 'LJSpeech-1.1', 'M-AILABS', 'MANDARIN']
if args.dataset not in supported_datasets:
raise ValueError(f'dataset value entered {args.dataset} does not belong to supported datasets: {supported_datasets}')
if args.dataset.startswith('LJSpeech'):
return [os.path.join(args.base_dir, args.dataset)]
if args.dataset.startswith('MANDARIN'):
return [os.path.join(args.base_dir, 'data_mandarin', anchor) for anchor in hparams.anchor_dirs]
if args.dataset == 'M-AILABS':
supported_languages = ['en_US', 'en_UK', 'fr_FR', 'it_IT', 'de_DE', 'es_ES', 'ru_RU',
'uk_UK', 'pl_PL', 'nl_NL', 'pt_PT', 'fi_FI', 'se_SE', 'tr_TR', 'ar_SA']
if args.language not in supported_languages:
raise ValueError(f'Please enter a supported language to use from M-AILABS dataset! \n{supported_languages}')
supported_voices = ['female', 'male', 'mix']
if args.voice not in supported_voices:
raise ValueError(f'Please enter a supported voice option to use from M-AILABS dataset! \n{supported_voices}')
path = os.path.join(args.base_dir, args.language, 'by_book', args.voice)
supported_readers = [e for e in os.listdir(path) if os.path.isdir(os.path.join(path,e))]
if args.reader not in supported_readers:
raise ValueError(f'Please enter a valid reader for your language and voice settings! \n{supported_readers}')
path = os.path.join(path, args.reader)
supported_books = [e for e in os.listdir(path) if os.path.isdir(os.path.join(path,e))]
if merge_books:
return [os.path.join(path, book) for book in supported_books]
else:
if args.book not in supported_books:
raise ValueError(f'Please enter a valid book for your reader settings! \n{supported_books}')
return [os.path.join(path, args.book)]
def run_preprocess(args, hparams):
input_folders = norm_data(args)
output_folder = os.path.join(args.base_dir, args.output)
preprocess(args, input_folders, output_folder, hparams)
def main():
print('initializing preprocessing..')
parser = argparse.ArgumentParser()
parser.add_argument('--base_dir', default='')
parser.add_argument('--hparams', default='', help='Hyperparameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--dataset', default='MANDARIN')
parser.add_argument('--language', default='en_US')
parser.add_argument('--voice', default='female')
parser.add_argument('--reader', default='mary_ann')
parser.add_argument('--merge_books', default='False')
parser.add_argument('--book', default='northandsouth')
parser.add_argument('--output', default='training_data')
parser.add_argument('--n_jobs', type=int, default=cpu_count())
args = parser.parse_args()
modified_hp = hparams.parse(args.hparams)
assert args.merge_books in ('False', 'True')
run_preprocess(args, modified_hp)
if __name__ == '__main__':
main()