Skip to content

Latest commit

 

History

History
28 lines (22 loc) · 1.2 KB

README.md

File metadata and controls

28 lines (22 loc) · 1.2 KB

Building segmentation hackathon

Visualizer links

Setup

conda config --set channel_priority strict
conda env create --file environment.yml
conda activate torchgeo

Pipeline steps

  • Upload geojson labels to data/labels/
  • Convert labels from EPSG:4326 (lat/lon) to the coordinate system (CRS) of the imagery, in this case, EPSG:32616
    • ogr2ogr -f GeoJSON -t_srs EPSG:32616 demo_annotations_epsg32616.geojson demo_annotations.geojson
  • Create masks
    • python create_mask_from_annotations.py --input-fn data/labels/demo_annotations_epsg32616.geojson --target-fn data/imagery/16_pre_imagery_cropped.tif --output-dir data/masks/ --overwrite
    • NOTE: create_mask_from_annotations.py will need to be edited with the class names used in the web-tool
  • Buffer the masks
    • python apply_distance_buffer_to_mask.py --input_path=/path/to/input/mask --output_path=/path/to/output/mask
  • Train models
    • python train.py
  • Inference
    • python inference.py --input-model-checkpoint output/runs/unet-resnet18-imagenet-lr_0.001/last.ckpt --input-image-fn data/imagery/16_pre_imagery_cropped.tif --output-dir predictions/unet-resnet18-imagenet-lr_0.001/ --overwrite --gpu 1