-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBaysianClassifier.py
63 lines (49 loc) · 1.67 KB
/
BaysianClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pandas as pd
import math
def sqr(x):
return x*x
class BaysianClassifier:
def __init__(self, train):
self.d = len(train.columns)
self.ammount = train.iloc[:,0].groupby('LABEL').count()
self.total = self.ammount.sum()
self.priori = self.ammount/self.total
self.data_mean = train.groupby('LABEL').mean()
delta = train - self.data_mean
self.variance = delta.apply(sqr).groupby('LABEL').mean().mean(axis = 1)
def likelihood(self, label, x):
var = self.variance[label]
mean = self.data_mean.loc[label]
power = -1.0 / (2 * var) * (x-mean).apply(sqr).mean()
p = pow(2*math.pi * var , -self.d/2.0) * math.exp(power)
return p
def posteriori(self, label, x):
return self.priori.loc[label] * self.likelihood(label, x)
def test(self, x, y):
maxx = 0;
for i in self.priori.index:
p = self.posteriori(i,x)
if(maxx < p):
maxx = p
label = i
return label == y
def test_label(self, x):
maxx = 0
for i in self.priori.index:
p = self.posteriori(i,x)
if(maxx < p):
maxx = p
label = i
return label
def test_df_label(self, test):
v = []
for i in range(len(test)):
x = self.test_label(test.iloc[i])
v += [x]
return v
def test_df(self, test):
correct = 0
for i in range(len(test)):
if self.test(test.iloc[i], test.index[i]):
correct +=1
return correct