-
Notifications
You must be signed in to change notification settings - Fork 0
/
List.hs
208 lines (138 loc) · 5.99 KB
/
List.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
-- (c) MP-I (1998/9-2006/7) and CP (2005/6-2018/9)
module List where
import Cp
import Nat
-- (1) Datatype definition -----------------------------------------------------
--- Haskell lists are already defined, so the following is a dummy, informal declaration:
--- data [a] = [] | (a : [a])
inList = either nil cons
outList [] = i1 ()
outList (a:x) = i2(a,x)
-- (2) Ana + cata + hylo -------------------------------------------------------
cataList g = g . recList (cataList g) . outList
recList f = id -|- id >< f -- this is F f for this data type
anaList g = inList . recList (anaList g) . g
hyloList h g = cataList h . anaList g
baseList f g = id -|- f >< g
-- (3) Map ---------------------------------------------------------------------
-- NB: already in the Haskell Prelude
-- (4) Examples ----------------------------------------------------------------
-- (4.1) number representation (base b) evaluator ------------------------------
eval b = cataList (either zero (add.(id><(b*))))
-- eval b [] = 0
-- eval b (x:xs) = x + b * (eval b xs)
-- (4.2) inversion -------------------------------------------------------------
invl = cataList (either nil snoc) where snoc(a,l) = l ++ [a]
-- alternatively: snoc = conc . swap . (singl >< id)
-- where singl a = [a]
-- conc = uncurry (++)
-- (4.3) Look-up function ------------------------------------------------------
look :: Eq a => a -> [(a,b)] -> Maybe b
look k = cataList (either nothing aux)
where nothing = const Nothing
aux((a,b),r)
| a == k = Just b
| otherwise = r
-- (4.4) Insertion sort --------------------------------------------------------
iSort :: Ord a => [a] -> [a]
iSort = cataList (either nil insert)
where insert(x,[]) = [x]
insert(x,a:l) | x < a = [x,a]++l
| otherwise = a:(insert(x,l))
-- also iSort = hyloList (either (const []) insert) outList
-- (4.5) take (cf GHC.List.take) -----------------------------------------------
take' = curry (anaList aux)
where aux(0,_) = i1()
aux(_,[]) = i1()
--- aux(n+1,x:xs) = i2(x,(n,xs))
aux(n,x:xs) = i2(x,(n-1,xs))
-- pointwise version:
-- take 0 _ = []
-- take _ [] = []
-- take (n+1) (x:xs) = x : take n xs
-- (4.6) Factorial--------------------------------------------------------------
fac = hyloList algMul nats
-- where
algMul = either (const 1) mul
--mul = uncurry (*)
nats = (id -|- (split succ id)) . outNat
-- (4.6.1) Factorial (alternative) ---------------------------------------------
fac' = hyloList (either (const 1) (mul . (succ >< id)))
((id -|- (split id id)) . outNat)
{-- cf:
fac' = hyloList (either (const 1) g) nats'
where g(n,m) = (n+1) * m
nats' 0 = i1 ()
nats' (n+1) = i2 (n,n)
--}
-- (4.7) Square function -------------------------------------------------------
{-- pointwise:
sq 0 = 0
sq (n+1) = 2*n+1 + sq n
cf. Newton's binomial: (n+1)^2 = n^2 + 2n + 1
--}
sq = hyloList summing odds
summing = either (const 0) add
odds = (id -|- (split impar id)) . outNat
where impar n = 2*n+1
{-- odds pointwise:
odds 0 = i1 ()
odds (n+1) = i2 (2*n+1,n)
--}
-- (4.7.1) Square function reusing anaList of factorial ----------------------------
sq' = (cataList summing) . fmap (\n->2*n-1) . (anaList nats)
-- (4.8) Prefixes and suffixes -------------------------------------------------
prefixes :: Eq a => [a] -> [[a]]
prefixes = cataList (either (const [[]]) scan)
where scan(a,l) = [[]] ++ (map (a:) l)
suffixes = anaList g
where g = (id -|- (split cons p2)).outList
diff :: Eq a => [a] -> [a] -> [a]
diff x l = cataList (either nil (g l)) x
where g l (a,x) = if (a `elem` l) then x else (a:x)
-- (4.9) Grouping --------------------------------------------------------------
--nest :: Int -> [a] -> [[a]]
nest n = anaList (g n) where
-- g n [] = i1()
-- g n l = i2(take n l,drop n l)
g n = cond (==[]) (i1.(!)) (i2.(split (take n)(drop n)))
-- (4.10) Relationship with foldr, foldl ----------------------------------------
myfoldr :: (a -> b -> b) -> b -> [a] -> b
myfoldr f u = cataList (either (const u) (uncurry f))
myfoldl :: (a -> b -> a) -> a -> [b] -> a
myfoldl f u = cataList' (either (const u) (uncurry f . swap))
where cataList' g = g . recList (cataList' g) . outList'
outList' [] = i1()
outList' x =i2(last x, blast x)
blast = tail . reverse
-- (4.11) No repeats ------------------------------------------------------------
nr :: Eq a => [a] -> Bool
nr = p2 . aux where
aux = cataList (either f (split g h))
f _ = ([],True)
g(a,(t,b)) = a:t
h(a,(t,b)) = not(a `elem` t) && b
-- (4.12) Advanced --------------------------------------------------------------
-- (++) as a list catamorphism ------------------------------------------------
ccat :: [a] -> [a] -> [a]
ccat = cataList (either (const id) compose). map (:) where
-- compose(f,g) = f.g
compose = curry(ap.(id><ap).assocr)
-- monadic map
mmap f = cataList $ either (return.nil)(fmap cons.dstr.(f><id))
-- distributive law
lam :: Strong m => [m a] -> m [a]
lam = cataList ( either (return.nil)(fmap cons.dstr) )
-- monadic catas
mcataList :: Strong ff => (Either () (b, c) -> ff c) -> [b] -> ff c
mcataList g = g .! (dl . recList (mcataList g) . outList)
dl :: Strong m => Either () (b, m a) -> m (Either () (b, a))
dl = either (return.i1)(fmap i2. lstr)
--lam' = mcataList (either (return.nil)(fmap cons.rstr))
-- streaming -------------------------------------------------------------------
stream f g c x = case f c of
Just (b, c') -> b : stream f g c' x
Nothing -> case x of
a:x' -> stream f g (g c a) x'
[] -> []
---- end of List.hs ------------------------------------------------------------