-
Notifications
You must be signed in to change notification settings - Fork 0
/
Cp.hs
241 lines (148 loc) · 5.47 KB
/
Cp.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
-- (c) MP-I (1998/9-2006/7) and CP (2005/6-2018/9)
module Cp where
infix 5 ><
infix 4 -|-
-- (1) Product -----------------------------------------------------------------
split :: (a -> b) -> (a -> c) -> a -> (b,c)
split f g x = (f x, g x)
(><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)
f >< g = split (f . p1) (g . p2)
-- the 0-adic split
(!) :: a -> ()
(!) = const ()
-- Renamings:
p1 = fst
p2 = snd
-- (2) Coproduct ---------------------------------------------------------------
-- Renamings:
i1 = Left
i2 = Right
-- either is predefined
(-|-) :: (a -> b) -> (c -> d) -> Either a c -> Either b d
f -|- g = either (i1 . f) (i2 . g)
-- McCarthy's conditional:
cond p f g = (either f g) . (grd p)
-- (3) Exponentiation ---------------------------------------------------------
-- curry is predefined
ap :: (a -> b,a) -> b
ap = uncurry ($)
expn :: (b -> c) -> (a -> b) -> a -> c
expn f = curry (f . ap)
p2p :: (a, a) -> Bool -> a
p2p p b = if b then (snd p) else (fst p) -- pair to predicate
-- exponentiation functor is (a->) predefined
-- instance Functor ((->) s) where fmap f g = f . g
-- (4) Others -----------------------------------------------------------------
--const :: a -> b -> a st const a x = a is predefined
-- guards
grd :: (a -> Bool) -> a -> Either a a
grd p x = if p x then Left x else Right x
-- (5) Natural isomorphisms ----------------------------------------------------
swap :: (a,b) -> (b,a)
swap = split p2 p1
assocr :: ((a,b),c) -> (a,(b,c))
assocr = split ( p1 . p1 ) (p2 >< id)
assocl :: (a,(b,c)) -> ((a,b),c)
assocl = split ( id >< p1 ) ( p2 . p2 )
undistr :: Either (a,b) (a,c) -> (a,Either b c)
undistr = either ( id >< i1 ) ( id >< i2 )
undistl :: Either (b, c) (a, c) -> (Either b a, c)
undistl = either ( i1 >< id ) ( i2 >< id )
flatr :: (a,(b,c)) -> (a,b,c)
flatr (a,(b,c)) = (a,b,c)
flatl :: ((a,b),c) -> (a,b,c)
flatl ((b,c),d) = (b,c,d)
br :: a -> (a, ())
br = split id (!) -- 'bang' on the right
bl :: a -> ((), a)
bl = swap . br -- 'bang' on the left
coswap :: Either a b -> Either b a
coswap = either i2 i1
coassocr :: Either (Either a b) c -> Either a (Either b c)
coassocr = either (id -|- i1) (i2 . i2)
coassocl :: Either b (Either a c) -> Either (Either b a) c
coassocl = either (i1.i1) (i2 -|- id)
distl :: (Either c a, b) -> Either (c, b) (a, b)
distl = uncurry (either (curry i1)(curry i2))
distr :: (b, Either c a) -> Either (b, c) (b, a)
distr = (swap -|- swap) . distl . swap
-- (6) Class bifunctor ---------------------------------------------------------
class BiFunctor f where
bmap :: (a -> b) -> (c -> d) -> (f a c -> f b d)
instance BiFunctor Either where
bmap f g = f -|- g
instance BiFunctor (,) where
bmap f g = f >< g
-- (7) Monads: -----------------------------------------------------------------
-- (7.1) Kleisli monadic composition -------------------------------------------
infix 4 .!
(.!) :: Monad a => (b -> a c) -> (d -> a b) -> d -> a c
(f .! g) a = (g a) >>= f
mult :: (Monad m) => m (m b) -> m b
mult = (>>= id) -- also known as join
-- (7.2) Monadic binding ---------------------------------------------------------
ap' :: (Monad m) => (a -> m b, m a) -> m b
ap' = uncurry (flip (>>=))
-- (7.3) Lists
singl :: a -> [a]
singl = return
-- (7.4) Strong monads -----------------------------------------------------------
class (Functor f, Monad f) => Strong f where
rstr :: (f a,b) -> f(a,b)
rstr(x,b) = do a <- x ; return (a,b)
lstr :: (b,f a) -> f(b,a)
lstr(b,x) = do a <- x ; return (b,a)
instance Strong IO
instance Strong []
instance Strong Maybe
dstr :: Strong m => (m a, m b) -> m (a, b) --- double strength
dstr = rstr .! lstr
splitm :: Strong ff => ff (a -> b) -> a -> ff b
-- Exercise 4.8.13 in Jacobs' "Introduction to Coalgebra" (2012)
splitm = curry (fmap ap . rstr)
{--
-- (7.5) Monad transformers ------------------------------------------------------
class (Monad m, Monad (t m)) => MT t m where -- monad transformer class
lift :: m a -> t m a
-- nested lifting:
dlift :: (MT t (t1 m), MT t1 m) => m a -> t (t1 m) a
dlift = lift . lift
--}
-- (8) Basic functions, abbreviations ------------------------------------------
bang = (!)
dup = split id id
zero = const 0
one = const 1
nil = const []
cons = uncurry (:)
add = uncurry (+)
mul = uncurry (*)
conc = uncurry (++)
true = const True
nothing = const Nothing
false = const False
inMaybe :: Either () a -> Maybe a
inMaybe = either (const Nothing) Just
-- (9) Advanced ----------------------------------------------------------------
class (Functor f) => Unzipable f where
unzp :: f(a,b) -> (f a,f b)
unzp = split (fmap p1)(fmap p2)
class Functor g => DistL g where
lamb :: Monad m => g (m a) -> m (g a)
instance DistL [] where lamb = sequence
instance DistL Maybe where
lamb Nothing = return Nothing
lamb (Just a) = fmap Just a -- where mp f = (return.f).!id
aap :: Monad m => m (a->b) -> m a -> m b
-- to convert Monad into Applicative
-- (<*>) = curry(lift ap) where lift h (x,y) = do { a <- x; b <- y; return ((curry h a b)) }
aap mf mx = do { f <- mf ; x <- mx ; return (f x) }
-- gather: n-ary split
gather :: [a -> b] -> a -> [b]
gather l x = map (flip ($) x) l
-- the dual of zip
cozip :: (Functor f) => Either (f a) (f b) -> f (Either a b)
cozip = either (fmap Left)(fmap Right)
tot :: (a -> b) -> (a -> Bool) -> a -> Maybe b
tot f p = cond p (return . f) nothing
--------------------------------------------------------------------------------