-
Notifications
You must be signed in to change notification settings - Fork 24
/
utilityV2.py
354 lines (303 loc) · 10.9 KB
/
utilityV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import openai
import requests
import re
import time
import random
import traceback
import concurrent.futures
import threading as th
import json
import tracemalloc
import os
import linecache
import nltk
# from tenacity import (retry,stop_after_attempt,stop_after_delay, wait_random_exponential)
from tenacity import *
import selenium
openai.api_key = os.getenv("OPENAI_API_KEY")
google_key = os.getenv("GOOGLE_KEY")
google_cx = os.getenv("GOOGLE_CX")
GOOGLE = "google"
USER = "user"
ASSISTANT = "assistant"
MODEL = "gpt-3.5-turbo"
sites = {} # initialize dictionay or sites used
new_sites = {} # initialize dictionay or sites used
try:
with open("sites", "r") as f:
sites = json.loads(f.read())
except:
print("Failed to read sites.")
# for experimenting with Vicuna
def display_top(snapshot, key_type="lineno", limit=10):
snapshot = snapshot.filter_traces(
(
tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<unknown>"),
)
)
top_stats = snapshot.statistics(key_type)
print("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):
frame = stat.traceback[0]
print(
"#%s: %s:%s: %.1f KiB"
% (index, frame.filename, frame.lineno, stat.size / 1024)
)
line = linecache.getline(frame.filename, frame.lineno).strip()
if line:
print(" %s" % line)
other = top_stats[limit:]
if other:
size = sum(stat.size for stat in other)
print("%s other: %.1f KiB" % (len(other), size / 1024))
total = sum(stat.size for stat in top_stats)
print("Total allocated size: %.1f KiB" % (total / 1024))
class turn:
def __init__(self, role="assistant", message="", tldr="", source="", keywords=[]):
self.role = role
self.message = message
self.tldr = tldr
self.source = source
self.keywords = keywords
def __str__(self):
s = ""
if self.role is not None and len(self.role) > 0:
s = s + "r: " + self.role
if self.message is not None and len(self.message) > 0:
s = s + " m: " + self.message
if self.source is not None and len(self.source) > 0:
s = s + " s: " + self.source
if self.tldr is not None and len(self.tldr) > 0:
s = s + "tldr: " + self.tldr
return s
def is_google_turn(self):
return self.source is not None and self.source == GOOGLE
def is_user_turn(self):
return self.source is not None and self.source == USER
def is_assistant_turn(self):
return self.source is not None and self.source == ASSISTANT
# @retry(wait=wait_random_exponential(min=1, max=2), stop=(stop_after_delay(15) | stop_after_attempt(2)))
def chatCompletion_with_backoff(**kwargs):
return openai.ChatCompletion.create(**kwargs)
def ask_gpt(model, gpt_message, max_tokens, temp, top_p):
completion = None
try:
completion = openai.ChatCompletion.create(
model=model,
messages=gpt_message,
max_tokens=max_tokens,
temperature=temp,
top_p=top_p,
)
except:
traceback.print_exc()
if completion is not None:
response = completion["choices"][0]["message"]["content"].lstrip(" ,:.")
print(response)
return response
else:
print("no response")
return None
def ask_gpt_with_retries(model, gpt_message, tokens, temp, timeout, tries):
retryer = Retrying(stop=(stop_after_delay(timeout) | stop_after_attempt(1)))
r = retryer(
ask_gpt,
model=model,
gpt_message=gpt_message,
max_tokens=tokens,
temp=temp,
top_p=1,
)
return r
INFORMATION_QUERY = "information query"
INTENTS = []
def find_intent(response):
global INTENTS, INFORMATION_QUERY
for intent in INTENTS:
if intent in response.lower():
return intent
return INFORMATION_QUERY
def find_query(response):
search_query_phrase = response
phrase_index = response.lower().find("phrase:")
quoted_strings = []
if phrase_index < 0:
phrase_index = 0
else:
phrase_index += len("phrase:")
quoted_strings = re.findall(r'"([^"]*)"', search_query_phrase[phrase_index:])
if len(quoted_strings) == 0:
quoted_strings = re.findall(r"'([^']*)'", search_query_phrase[phrase_index:])
if len(quoted_strings) > 0:
# print(quoted_strings)
phrase = quoted_strings[0]
return phrase, response[response.find(phrase) + len(phrase) + 1 :]
else:
print("no quoted text, returning original query string", response)
# print(response)
return "", response
def find_keywords(response, query_phrase, orig_phrase):
# keywords includes those suggested by gpt and any remaining words from query phrase len > 4
keywords = []
quoted_strings = re.findall(r'"([^"]*)"', query_phrase)
quoted_strings2 = re.findall(r'"([^"]*)"', orig_phrase)
remainder = query_phrase
k_index = response.lower().find("keyword")
if k_index > 0:
keyword_string = response[k_index + len("keyword") :]
nm_index = keyword_string.find("Named-Entities:")
if nm_index > 0:
keyword_string = keyword_string[:nm_index].rstrip()
# print(keyword_string)
c_index = keyword_string.find(":")
keyword_string = keyword_string[c_index + 1 :]
candidates = keyword_string.split(",")
for keyword in candidates:
keyword = keyword.strip(":,.\t\n").lstrip(" ")
if len(keyword) > 3 or keyword[0:1].isupper():
keywords.append(keyword)
return keywords
return ""
def split_interaction(interaction):
qs = interaction.find(prefix)
rs = interaction.find(suffix)
if qs >= 0 and rs >= 0:
query = interaction[len(prefix) : rs].lstrip()
response = interaction[rs + len(suffix) :].lstrip()
return query, response
else:
print("can't parse", interaction)
return "", ""
def findnth(haystack, needle, n):
parts = haystack.split(needle, n + 1)
if len(parts) <= n + 1:
return -1
return len(haystack) - len(parts[-1]) - len(needle)
def extract_site(url):
site = ""
base = findnth(url, "/", 2)
if base > 2:
site = url[:base].split(".")
if len(site) > 1:
site = site[-2]
site = site.replace("https://", "")
site = site.replace("http://", "")
return site
def extract_domain(url):
site = ""
base = findnth(url, "/", 2)
if base > 2:
domain = url[:base].split(".")
if len(domain) > 1:
domain = domain[-2] + "." + domain[-1]
domain = domain.replace("https://", "")
domain = domain.replace("http://", "")
return domain
def part_of_keyword(word, keywords):
for keyword in keywords:
if word in keyword:
return True
return False
keyword_prompt = 'Perform two tasks on the following text. First, rewrite the <text> as an effective google search phrase. Second, analyze text and list keywords and named-entities found. Return the result as: Phrase: "<google search phrase>"\nKeywords: <list of keywords>\nNamed-Entities: <list of Named-Entities>'
def get_search_phrase_and_keywords(query_string, chat_history):
gpt_message = [
{"role": "user", "content": keyword_prompt},
{"role": "user", "content": "Text\n" + query_string},
{"role": "assistant", "content": "Phrase:"},
]
response_text = ""
completion = None
# for role in gpt_message:
# print(role)
# print()
response_text = ask_gpt_with_retries(
"gpt-3.5-turbo", gpt_message, tokens=150, temp=0.3, timeout=6, tries=2
)
print(response_text)
query_phrase, remainder = find_query(response_text)
print("PHRASE:", query_phrase)
# print(remainder)
keywords = find_keywords(remainder, query_phrase, query_string)
print("KEYWORDS:", keywords)
return query_phrase, keywords
def reform(elements):
# reformulates text extracted from a webpage by unstructured.partition_html into larger keyword-rankable chunks
texts = (
[]
) # a list of text_strings, each of at most *max* chars, separated on '\n' when splitting an element is needed
paragraphs = []
total_elem_len = 0
for element in elements:
text = str(element)
total_elem_len += len(text)
if len(text) < 4:
continue
elif len(text) < 500:
texts.append(text)
else:
subtexts = text.split("\n")
for subtext in subtexts:
if len(subtext) < 500:
texts.append(subtext)
else:
texts.extend(nltk.sent_tokenize(subtext))
# now reassemble shorter texts into chunks
paragraph = ""
total_pp_len = 0
for text in texts:
if len(text) + len(paragraph) < 500:
paragraph += " " + text
else:
if len(paragraph) > 0: # start a new paragraph
paragraphs.append(paragraph)
paragraph = ""
paragraph += text
if len(paragraph) > 0:
paragraphs.append(paragraph + ".\n")
# print(f'\n***** reform elements in {len(elements)}, paragraphs out {len(paragraphs)}')
total_pp_len = 0
for paragraph in paragraphs:
total_pp_len += len(paragraph)
if total_pp_len > 1.2 * total_elem_len:
print(
f"******** reform out > reform in. out: {total_pp_len}, in: {total_elem_len}"
)
return paragraphs
def get_actions(text):
# look for actions in response
action_indecies = re.finditer("Action:", text) # Action: [search, ask} (query)
actions = []
editted_response = text
for action_index in action_indecies:
action = text[action_index.span()[1] :]
agent = None
query = None
query_start = action.find("(")
if query_start > 0:
agent = action[:query_start].strip()
query_end = action[query_start + 1 :].find(")")
if query_end > 0:
query = action[query_start + 1 : query_start + 1 + query_end]
action = text[
action_index.start() : action_index.span()[1]
+ action_index.start()
+ query_start
+ query_end
+ 2
]
if agent is None or query is None:
print(
"can't parse action, skipping",
text[action_index.start() : action_index.start() + 48],
)
continue
actions.append([agent, query, action])
editted_response = editted_response.replace(action, "")
return actions
if __name__ == "__main__":
get_search_phrase_and_keywords(
"Would I like the video game Forspoken, given that I like Final Fantasy VII?",
[],
)
# print(query_vicuna("what is 5 * 3?"))