-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathresources.bib
646 lines (599 loc) · 28.8 KB
/
resources.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
@article{altekruger2023conditional,
title = {Conditional Generative Models Are Provably Robust: {{Pointwise}} Guarantees for Bayesian Inverse Problems},
author = {Altekr{\"u}ger, Fabian and Hagemann, Paul and Steidl, Gabriele},
year = {2023},
journal = {Transactions on Machine Learning Research},
issn = {2835-8856},
awesome-category = {method},
awesome-tags = {diagnostics; theory},
awesome-link-paper = {https://arxiv.org/abs/2303.15845}
}
@inproceedings{arruda2024anamortized,
title = {An amortized approach to non-linear mixed-effects modeling based on neural posterior estimation},
author = {Arruda, Jonas and Sch{\"a}lte, Yannik and Peiter, Clemens and Teplytska, Olga and Jaehde, Ulrich and Hasenauer, Jan},
booktitle = {Forty-first International Conference on Machine Learning},
year = {2024},
awesome-category = {method},
awesome-tldr = {Neural posterior estimation for hierarchical models, where the NPE is used in a first stage on a local level and then repeatedly used for global inference leveraging amortization.},
awesome-link-paper = {https://openreview.net/forum?id=uCdcXRuHnC},
awesome-link-code = {https://github.com/arrjon/Amortized-NLME-Models/tree/ICML2024},
awesome-tags = {parameter estimation; hierarchical models},
}
@misc{bahl2024advancing,
title = {Advancing {{Tools}} for {{Simulation-Based Inference}}},
author = {Bahl, Henning and Bres{\'o}, Victor and Crescenzo, Giovanni De and Plehn, Tilman},
year = {2024},
number = {arXiv:2410.07315},
eprint = {2410.07315},
primaryclass = {hep-ph},
publisher = {arXiv},
archiveprefix = {arXiv},
awesome-category = {application},
awesome-tags = {physics; simulation-based},
awesome-link-paper = {https://arxiv.org/abs/2410.07315}
}
@article{bieringer2021measuring,
title = {Measuring {{QCD}} Splittings with Invertible Networks},
author = {Bieringer, Sebastian and Butter, Anja and Heimel, Theo and H{\"o}che, Stefan and K{\"o}the, Ullrich and Plehn, Tilman and Radev, Stefan T.},
year = {2021},
journal = {SciPost Physics},
volume = {10},
pages = {126},
doi = {10.21468/SciPostPhys.10.6.126},
awesome-category = {application},
awesome-tags = {simulation-based; physics; parameter estimation},
awesome-link-paper = {https://www.scipost.org/10.21468/SciPostPhys.10.6.126?acad_field_slug=astronomy}
}
@article{bischoff2024practical,
title = {A Practical Guide to Sample-Based Statistical Distances for Evaluating Generative Models in Science},
author = {Bischoff, Sebastian and Darcher, Alana and Deistler, Michael and Gao, Richard and Gerken, Franziska and Gloeckler, Manuel and Haxel, Lisa and Kapoor, Jaivardhan and Lappalainen, Janne K and Macke, Jakob H. and Moss, Guy and Pals, Matthijs and Pei, Felix C and Rapp, Rachel and Sa{\u g}tekin, A Erdem and Schr{\"o}der, Cornelius and Schulz, Auguste and Stefanidi, Zinovia and Toyota, Shoji and Ulmer, Linda and Vetter, Julius},
year = {2024},
journal = {Transactions on Machine Learning Research},
issn = {2835-8856},
awesome-category = {method},
awesome-tags = {diagnostics; model evaluation},
awesome-link-paper = {https://openreview.net/forum?id=isEFziui9p}
}
@misc{cannon2022investigating,
title = {Investigating the {{Impact}} of {{Model Misspecification}} in {{Neural Simulation-based Inference}}},
author = {Cannon, Patrick and Ward, Daniel and Schmon, Sebastian M.},
year = {2022},
number = {arXiv:2209.01845},
eprint = {2209.01845},
primaryclass = {stat},
publisher = {arXiv},
archiveprefix = {arXiv},
awesome-category = {method},
awesome-tags = {diagnostics; misspecification; simulation-based},
awesome-link-paper = {https://arxiv.org/abs/2209.01845}
}
@article{cranmer2020frontier,
title = {The Frontier of Simulation-Based Inference},
author = {Cranmer, Kyle and Brehmer, Johann and Louppe, Gilles},
year = {2020},
journal = {Proceedings of the National Academy of Sciences},
volume = {117},
number = {48},
pages = {30055--30062},
issn = {0027-8424, 1091-6490},
doi = {10.1073/pnas.1912789117},
awesome-category = {review},
langid = {english},
awesome-link-paper = {https://www.pnas.org/doi/abs/10.1073/pnas.1912789117}
}
@article{dax2023neural,
title = {Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference},
author = {Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and P{\"u}rrer, Michael and Wildberger, Jonas and Macke, Jakob H. and Buonanno, Alessandra and Sch{\"o}lkopf, Bernhard},
year = {2023},
journal = {Physical Review Letters},
volume = {130},
number = {17},
pages = {171403},
doi = {10.1103/PhysRevLett.130.171403},
awesome-category = {method},
awesome-link-paper = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.171403},
awesome-tags = {likelihood-based; physics; parameter estimation}
}
@article{dingeldein2024amortized,
title = {Amortized Template-Matching of Molecular Conformations from Cryo-Electron Microscopy Images Using Simulation-Based Inference},
author = {Dingeldein, Lars and {Silva-S{\'a}nchez}, David and Evans, Luke and D'Imprima, Edoardo and Grigorieff, Nikolaus and Covino, Roberto and Cossio, Pilar},
year = {2024},
journal = {bioRxiv : the preprint server for biology},
pages = {2024.07.23.604154},
doi = {10.1101/2024.07.23.604154},
awesome-category = {application},
awesome-tags = {biology; simulation-based; parameter estimation},
awesome-link-paper = {https://www.biorxiv.org/content/10.1101/2024.07.23.604154v2.abstract}
}
@article{elsemuller2024deep,
title = {A Deep Learning Method for Comparing {{Bayesian}} Hierarchical Models.},
author = {Elsem{\"u}ller, Lasse and Schnuerch, Martin and B{\"u}rkner, Paul-Christian and Radev, Stefan T.},
year = {2024},
journal = {Psychological Methods},
issn = {1939-1463, 1082-989X},
doi = {10.1037/met0000645},
awesome-category = {method},
awesome-tldr = {Proposes a multilevel neural architecture for compressing hierarchical data structures in Bayesian model comparison.},
awesome-link-paper = {https://arxiv.org/abs/2301.11873},
awesome-link-code = {https://github.com/bayesflow-org/Hierarchical-Model-Comparison},
awesome-tags = {hierarchical models; model comparison; simulation-based}
}
@article{elsemuller2024sensitivityaware,
title = {Sensitivity-Aware Amortized {{Bayesian}} Inference},
author = {Elsem{\"u}ller, Lasse and Olischl{\"a}ger, Hans and Schmitt, Marvin and B{\"u}rkner, Paul-Christian and K{\"o}the, Ullrich and Radev, Stefan T.},
year = {2024},
journal = {Transactions on Machine Learning Research},
issn = {2835-8856},
awesome-category = {method},
awesome-tldr = {Proposes a framework for amortized and thus efficient sensitivity analyses on all major dimensions of a Bayesian model.},
awesome-link-paper = {https://openreview.net/forum?id=Kxtpa9rvM0},
awesome-link-code = {https://github.com/bayesflow-org/SA-ABI},
awesome-tags = {sensitivity analysis; simulation-based; meta learning}
}
@inproceedings{falkiewicz2023calibrating,
title = {Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability},
booktitle = {Thirty-Seventh Conference on Neural Information Processing Systems},
author = {Falkiewicz, Maciej and Takeishi, Naoya and Shekhzadeh, Imahn and Wehenkel, Antoine and Delaunoy, Arnaud and Louppe, Gilles and Kalousis, Alexandros},
year = {2023},
awesome-category = {method},
awesome-tags = {diagnostics; simulation-based},
awesome-link-paper = {https://proceedings.neurips.cc/paper_files/paper/2023/file/03a9a9c1e15850439653bb971a4ad4b3-Paper-Conference.pdf}
}
@inproceedings{foster2021deep,
title = {Deep {{Adaptive Design}}: {{Amortizing Sequential Bayesian Experimental Design}}},
booktitle = {Proceedings of the 38th {{International Conference}} on {{Machine Learning}}},
author = {Foster, Adam and Ivanova, Desi R. and Ilyas, Malik and Rainforth, Tom},
year = {2021},
volume = {139},
publisher = {PMLR},
awesome-category = {method},
awesome-tags = {experimental design; adaptive design},
awesome-link-paper = {http://proceedings.mlr.press/v139/foster21a.html}
}
@article{ghaderi-kangavari2023general,
title = {A {{General Integrative Neurocognitive Modeling Framework}} to {{Jointly Describe EEG}} and {{Decision-making}} on {{Single Trials}}},
author = {{Ghaderi-Kangavari}, Amin and Rad, Jamal Amani and Nunez, Michael D.},
year = {2023},
journal = {Computational Brain \& Behavior},
volume = {6},
number = {3},
pages = {317--376},
issn = {2522-0861, 2522-087X},
doi = {10.1007/s42113-023-00167-4},
awesome-category = {application},
awesome-tags = {cognitive modeling; simulation-based; parameter estimation},
awesome-link-paper = {https://link.springer.com/article/10.1007/s42113-023-00167-4}
}
@misc{habermann2024amortized,
title = {Amortized {{Bayesian Multilevel Models}}},
author = {Habermann, Daniel and Schmitt, Marvin and K{\"u}hmichel, Lars and Bulling, Andreas and Radev, Stefan T. and B{\"u}rkner, Paul-Christian},
year = {2024},
number = {arXiv:2408.13230},
eprint = {2408.13230},
publisher = {arXiv},
archiveprefix = {arXiv},
awesome-category = {method},
awesome-tags = {parameter estimation; hierarchical models; simulation-based},
awesome-link-paper = {https://arxiv.org/abs/2408.13230}
}
@article{heringhaus2022reliable,
title = {Towards {{Reliable Parameter Extraction}} in {{MEMS Final Module Testing Using Bayesian Inference}}},
author = {Heringhaus, Monika E. and Zhang, Yi and Zimmermann, Andr'e and Mikelsons, Lars},
year = {2022},
journal = {Sensors},
volume = {22},
number = {14},
pages = {5408},
issn = {1424-8220},
doi = {10.3390/s22145408},
awesome-category = {application},
awesome-tags = {parameter estimation; simulation-based; engineering},
awesome-link-paper = {https://www.mdpi.com/1424-8220/22/14/5408}
}
@misc{lavin2022simulation,
title = {Simulation {{Intelligence}}: {{Towards}} a {{New Generation}} of {{Scientific Methods}}},
shorttitle = {Simulation {{Intelligence}}},
author = {Lavin, Alexander and Krakauer, David and Zenil, Hector and Gottschlich, Justin and Mattson, Tim and Brehmer, Johann and Anandkumar, Anima and Choudry, Sanjay and Rocki, Kamil and Baydin, At{\i}l{\i}m G{\"u}ne{\c s} and Prunkl, Carina and Paige, Brooks and Isayev, Olexandr and Peterson, Erik and McMahon, Peter L. and Macke, Jakob and Cranmer, Kyle and Zhang, Jiaxin and Wainwright, Haruko and Hanuka, Adi and Veloso, Manuela and Assefa, Samuel and Zheng, Stephan and Pfeffer, Avi},
year = {2022},
number = {arXiv:2112.03235},
eprint = {2112.03235},
primaryclass = {cs},
publisher = {arXiv},
archiveprefix = {arXiv},
awesome-category = {review},
awesome-link-paper = {https://arxiv.org/abs/2112.03235}
}
@misc{zammit2024neural,
title={Neural Methods for Amortised Parameter Inference},
author={Zammit-Mangion, Andrew and Sainsbury-Dale, Matthew and Huser, Rapha{\"e}l},
year={2024},
number={arXiv:2404.12484},
eprint={2404.12484},
primaryclass = {cs},
publisher = {arXiv},
archiveprefix = {arXiv},
awesome-category = {review},
awesome-link-paper = {https://arxiv.org/abs/2404.12484}
}
@inproceedings{moon2023amortized,
title = {Amortized Inference with User Simulations},
booktitle = {Proceedings of the 2023 {{CHI}} Conference on Human Factors in Computing Systems},
author = {Moon, Hee-Seung and Oulasvirta, Antti and Lee, Byungjoo},
year = {2023},
series = {Chi '23},
publisher = {Association for Computing Machinery},
doi = {10.1145/3544548.3581439},
awesome-category = {application},
awesome-tags = {human-computer interaction, simulation-based; user interfaces},
awesome-link-paper = {https://dl.acm.org/doi/pdf/10.1145/3544548.3581439}
}
@article{noever-castelos2022model,
title = {Model Updating of Wind Turbine Blade Cross Sections with Invertible Neural Networks},
author = {{Noever-Castelos}, Pablo and Ardizzone, Lynton and Balzani, Claudio},
year = {2022},
journal = {Wind Energy},
volume = {25},
number = {3},
pages = {573--599},
issn = {1095-4244, 1099-1824},
doi = {10.1002/we.2687},
awesome-category = {application},
langid = {english},
awesome-tags = {simulation-based},
awesome-link-paper = {https://onlinelibrary.wiley.com/doi/full/10.1002/we.2687}
}
@article{papamakarios2021normalizing,
title = {Normalizing Flows for Probabilistic Modeling and Inference},
author = {Papamakarios, George and Nalisnick, Eric and Rezende, Danilo Jimenez and Mohamed, Shakir and Lakshminarayanan, Balaji},
year = {2021},
journal = {Journal of Machine Learning Research},
volume = {22},
number = {57},
pages = {1--64},
awesome-category = {review},
awesome-link-paper = {https://www.jmlr.org/papers/v22/19-1028.html}
}
@article{radev2021outbreakflow,
title = {{{OutbreakFlow}}: {{Model-based Bayesian}} Inference of Disease Outbreak Dynamics with Invertible Neural Networks and Its Application to the {{COVID-19}} Pandemics in {{Germany}}},
shorttitle = {{{OutbreakFlow}}},
author = {Radev, Stefan T. and Graw, Frederik and Chen, Simiao and Mutters, Nico T. and Eichel, Vanessa M. and B{\"a}rnighausen, Till and K{\"o}the, Ullrich},
editor = {Tanaka, Mark M.},
year = {2021},
journal = {PLOS Computational Biology},
volume = {17},
number = {10},
pages = {e1009472},
issn = {1553-7358},
doi = {10.1371/journal.pcbi.1009472},
awesome-category = {application},
langid = {english},
awesome-tags = {epidemiology; public health; simulation-based},
awesome-link-paper = {https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009472}
}
@article{radev2020bayesflow,
title = {{{BayesFlow}}: {{Learning Complex Stochastic Models With Invertible Neural Networks}}},
shorttitle = {{{BayesFlow}}},
author = {Radev, Stefan T. and Mertens, Ulf K. and Voss, Andreas and Ardizzone, Lynton and K{\"o}the, Ullrich},
year = {2020},
journal = {IEEE Transactions on Neural Networks and Learning Systems},
volume = {33},
number = {4},
pages = {1452--1466},
issn = {2162-237X, 2162-2388},
doi = {10.1109/TNNLS.2020.3042395},
awesome-category = {method},
awesome-tags = {simulation-based; summary learning; parameter estimation},
awesome-link-paper = {https://ieeexplore.ieee.org/abstract/document/9298920?casa_token=fdTVHBVa5Z4AAAAA:Un2ZODPlovOuoZZaCPLPrBwA58re3eYXPMbBx9u_WAj9PRUJj34W3hTEuSG1osciKgjzZpiS}
}
@article{radev2023amortized,
title = {Amortized {{Bayesian Model Comparison With Evidential Deep Learning}}},
author = {Radev, Stefan T. and D'Alessandro, Marco and Mertens, Ulf K. and Voss, Andreas and K{\"o}the, Ullrich and B{\"u}rkner, Paul-Christian},
year = {2023},
journal = {IEEE Transactions on Neural Networks and Learning Systems},
volume = {34},
number = {8},
pages = {4903--4917},
issn = {2162-237X, 2162-2388},
doi = {10.1109/TNNLS.2021.3124052},
awesome-category = {method},
awesome-tags = {model comparison},
awesome-link-paper = {https://ieeexplore.ieee.org/abstract/document/9612724?casa_token=knr0jyL2bTAAAAAA:Dh8KfjVW9QJympB0c8UbUq8HozJjOw-BPBSdy1g-QUhPskT1IL-cN5RHFHU7EVJNyZnY78Id}
}
@article{radev2023bayesflow,
title = {{{BayesFlow}}: {{Amortized Bayesian}} Workflows with Neural Networks},
author = {Radev, Stefan T. and Schmitt, Marvin and Schumacher, Lukas and Elsem{\"u}ller, Lasse and Pratz, Valentin and Sch{\"a}lte, Yannik and K{\"o}the, Ullrich and B{\"u}rkner, Paul-Christian},
year = {2023},
journal = {Journal of Open Source Software},
volume = {8},
number = {89},
pages = {5702},
publisher = {The Open Journal},
doi = {10.21105/joss.05702},
awesome-category = {software},
awesome-link-paper = {https://joss.theoj.org/papers/10.21105/joss.05702},
awesome-link-code = {https://github.com/bayesflow-org/bayesflow}
}
@inproceedings{radev2023jana,
title = {{{JANA}}: {{Jointly}} Amortized Neural Approximation of Complex {{Bayesian}} Models},
booktitle = {Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence},
author = {Radev, Stefan T. and Schmitt, Marvin and Pratz, Valentin and Picchini, Umberto and K{\"o}the, Ullrich and B{\"u}rkner, Paul-Christian},
editor = {Evans, Robin J. and Shpitser, Ilya},
year = {2023},
series = {Proceedings of Machine Learning Research},
volume = {216},
pages = {1695--1706},
publisher = {PMLR},
awesome-category = {method},
awesome-tags = {joint learning; simulation-based; diagnostics},
awesome-link-paper = {https://proceedings.mlr.press/v216/radev23a.html}
}
@article{sainsbury-dale2024likelihoodfree,
title = {Likelihood-{{Free Parameter Estimation}} with {{Neural Bayes Estimators}}},
author = {{Sainsbury-Dale}, Matthew and {Zammit-Mangion}, Andrew and Huser, Rapha{\"e}l},
year = {2024},
journal = {The American Statistician},
volume = {78},
number = {1},
pages = {1--14},
issn = {0003-1305, 1537-2731},
doi = {10.1080/00031305.2023.2249522},
awesome-category = {method},
langid = {english},
awesome-tags = {parameter estimation; point estimation; simulation-based},
awesome-link-paper = {https://www.tandfonline.com/doi/full/10.1080/00031305.2023.2249522}
}
@misc{schmitt2023fuse,
title = {Fuse {{It}} or {{Lose It}}: {{Deep Fusion}} for {{Multimodal Simulation-Based Inference}}},
shorttitle = {Fuse {{It}} or {{Lose It}}},
author = {Schmitt, Marvin and Radev, Stefan T. and B{\"u}rkner, Paul-Christian},
year = {2023},
number = {arXiv:2311.10671},
eprint = {2311.10671},
publisher = {arXiv},
archiveprefix = {arXiv},
awesome-category = {method},
awesome-tags = {summary learning; parameter estimation},
awesome-link-paper = {https://arxiv.org/abs/2311.10671}
}
@inproceedings{schmitt2024amortized,
title = {Amortized {{Bayesian Workflow}} ({{Extended Abstract}})},
booktitle = {{{NeurIPS Workshop}} on {{Bayesian Decision-Making}} and {{Uncertainty}}},
author = {Schmitt, Marvin and Li, Chengkun and Vehtari, Aki and Acerbi, Luigi and B{\"u}rkner, Paul-Christian and Radev, Stefan T.},
year = {2024},
publisher = {arXiv},
awesome-category = {method},
awesome-tags = {likelihood-based; workflow},
awesome-link-paper = {https://arxiv.org/abs/2409.04332}
}
@inproceedings{schmitt2024consistency,
title = {Consistency {{Models}} for {{Scalable}} and {{Fast Simulation-Based Inference}}},
booktitle = {Proceedings of the 38th International Conference on Neural Information Processing Systems},
author = {Schmitt, Marvin and Pratz, Valentin and K{\"o}the, Ullrich and B{\"u}rkner, Paul-Christian and Radev, Stefan T.},
year = {2024},
awesome-category = {method},
awesome-tags = {simulation-based},
awesome-link-paper = {https://arxiv.org/abs/2312.05440}
}
@inproceedings{schmitt2024detecting,
title = {Detecting Model Misspecification in Amortized {{Bayesian}} Inference with Neural Networks},
booktitle = {Pattern Recognition},
author = {Schmitt, Marvin and B{\"u}rkner, Paul-Christian and K{\"o}the, Ullrich and Radev, Stefan T.},
year = {2024},
pages = {541--557},
publisher = {Springer Nature Switzerland},
address = {Cham},
awesome-category = {method},
isbn = {978-3-031-54605-1},
awesome-tags = {diagnostics; workflow},
awesome-link-paper = {https://link.springer.com/chapter/10.1007/978-3-031-54605-1_35}
}
@inproceedings{schmitt2024leveraging,
title = {Leveraging Self-Consistency for Data-Efficient Amortized {{Bayesian}} Inference},
booktitle = {Proceedings of the 41st International Conference on Machine Learning},
author = {Schmitt, Marvin and Ivanova, Desi R. and Habermann, Daniel and K{\"o}the, Ullrich and B{\"u}rkner, Paul-Christian and Radev, Stefan T.},
editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix},
year = {2024},
series = {Proceedings of Machine Learning Research},
volume = {235},
pages = {43723--43741},
publisher = {PMLR},
awesome-category = {method},
awesome-tags = {likelihood-based; simulation-based},
awesome-link-paper = {https://arxiv.org/abs/2310.04395}
}
@article{schumacher2023neural,
title = {Neural Superstatistics for {{Bayesian}} Estimation of Dynamic Cognitive Models},
author = {Schumacher, Lukas and B{\"u}rkner, Paul-Christian and Voss, Andreas and K{\"o}the, Ullrich and Radev, Stefan T.},
year = {2023},
journal = {Scientific Reports},
volume = {13},
number = {1},
pages = {13778},
issn = {2045-2322},
doi = {10.1038/s41598-023-40278-3},
awesome-category = {application},
langid = {english},
awesome-tags = {simulation-based; dynamic modeling; parameter estimation},
awesome-link-paper = {https://www.nature.com/articles/s41598-023-40278-3}
}
@inproceedings{sharrock2024sequential,
title = {Sequential Neural Score Estimation: {{Likelihood-free}} Inference with Conditional Score Based Diffusion Models},
booktitle = {Proceedings of the 41st International Conference on Machine Learning},
author = {Sharrock, Louis and Simons, Jack and Liu, Song and Beaumont, Mark},
editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix},
year = {2024},
series = {Proceedings of Machine Learning Research},
volume = {235},
pages = {44565--44602},
publisher = {PMLR},
awesome-category = {method},
awesome-tags = {simulation-based},
awesome-link-paper = {https://arxiv.org/abs/2210.04872}
}
@article{shiono2021estimation,
title = {Estimation of Agent-Based Models Using {{Bayesian}} Deep Learning Approach of {{BayesFlow}}},
author = {Shiono, Takashi},
year = {2021},
journal = {Journal of Economic Dynamics and Control},
volume = {125},
pages = {104082},
issn = {01651889},
doi = {10.1016/j.jedc.2021.104082},
awesome-category = {application},
langid = {english},
awesome-tags = {agent modeling; simulation-based},
awesome-link-paper = {https://www.sciencedirect.com/science/article/pii/S0165188921000178?casa_token=lM5bqeFY9-AAAAAA:usisG1ypAZdWNDwk39x_KdFGIvgKXoxYD9x0fukFWDyiqBEtXHaLPRIFhShjyeXdAmvoKgwNmA}
}
@article{siahkoohi2023reliable,
title = {Reliable Amortized Variational Inference with Physics-Based Latent Distribution Correction},
author = {Siahkoohi, Ali and Rizzuti, Gabrio and Orozco, Rafael and Herrmann, Felix J.},
year = {2023},
journal = {GEOPHYSICS},
volume = {88},
number = {3},
pages = {R297-R322},
issn = {0016-8033, 1942-2156},
doi = {10.1190/geo2022-0472.1},
awesome-category = {application},
langid = {english},
awesome-tags = {physics; correction; misspecification},
awesome-link-paper = {https://library.seg.org/doi/abs/10.1190/geo2022-0472.1}
}
@misc{starostin2024fast,
title = {Fast and {{Reliable Probabilistic Reflectometry Inversion}} with {{Prior-Amortized Neural Posterior Estimation}}},
author = {Starostin, Vladimir and Dax, Maximilian and Gerlach, Alexander and Hinderhofer, Alexander and {Tejero-Cantero}, {\'A}lvaro and Schreiber, Frank},
year = {2024},
number = {arXiv:2407.18648},
eprint = {2407.18648},
primaryclass = {cond-mat, physics:physics, stat},
publisher = {arXiv},
archiveprefix = {arXiv},
awesome-category = {method},
awesome-tags = {physics; meta learning},
awesome-link-paper = {https://arxiv.org/abs/2407.18648}
}
@article{tejero-cantero2020sbi,
title = {{sbi}: {{A}} Toolkit for Simulation-Based Inference},
author = {{Tejero-Cantero}, Alvaro and Boelts, Jan and Deistler, Michael and Lueckmann, Jan-Matthis and Durkan, Conor and Gon{\c c}alves, Pedro J. and Greenberg, David S. and Macke, Jakob H.},
year = {2020},
journal = {Journal of Open Source Software},
volume = {5},
number = {52},
pages = {2505},
publisher = {The Open Journal},
doi = {10.21105/joss.02505},
awesome-category = {software},
awesome-link-paper = {https://joss.theoj.org/papers/10.21105/joss.02505},
awesome-link-code = {https://github.com/sbi-dev/sbi}
}
@inproceedings{tsilifis2022inverse,
title = {Inverse {{Design}} under {{Uncertainty}} Using {{Conditional Normalizing Flows}}},
booktitle = {{{AIAA SCITECH}} 2022 {{Forum}}},
author = {Tsilifis, Panagiotis and Ghosh, Sayan},
year = {2022},
publisher = {{American Institute of Aeronautics and Astronautics}},
address = {San Diego, CA \& Virtual},
doi = {10.2514/6.2022-0631},
awesome-category = {application},
isbn = {978-1-62410-631-6},
langid = {english},
awesome-tags = {engineering; aerospace; simulation-based},
awesome-link-paper = {https://arc.aiaa.org/doi/abs/10.2514/6.2022-0631}
}
@article{vonkrause2022mental,
title = {Mental Speed Is High until Age 60 as Revealed by Analysis of over a Million Participants},
author = {{von Krause}, Mischa and Radev, Stefan T. and Voss, Andreas},
year = {2022},
journal = {Nature Human Behaviour},
volume = {6},
number = {5},
pages = {700--708},
issn = {2397-3374},
doi = {10.1038/s41562-021-01282-7},
awesome-category = {application},
langid = {english},
awesome-tags = {cognitive modeling; parameter estimation},
awesome-link-paper = {https://www.nature.com/articles/s41562-021-01282-7}
}
@inproceedings{ward2022robust,
title = {Robust Neural Posterior Estimation and Statistical Model Criticism},
booktitle = {Proceedings of the 36th International Conference on Neural Information Processing Systems},
author = {Ward, Daniel and Cannon, Patrick and Beaumont, Mark and Fasiolo, Matteo and Schmon, Sebastian M.},
year = {2022},
awesome-category = {method},
awesome-tags = {model evaluation; simulation-based},
awesome-link-paper = {https://proceedings.neurips.cc/paper_files/paper/2022/hash/db0eac6747e3631eb91095cd76065611-Abstract-Conference.html}
}
@article{wang2024missing,
doi = {10.1371/journal.pcbi.1012184},
author = {Wang, Zijian and Hasenauer, Jan and Schälte, Yannik},
journal = {PLOS Computational Biology},
publisher = {Public Library of Science},
title = {Missing data in amortized simulation-based neural posterior estimation},
year = {2024},
month = {06},
volume = {20},
pages = {1-17},
number = {6},
awesome-category = {method},
awesome-tldr = {Encoding missing data in a time series by augmenting the data vector with binary indicators for presence or absence yields the most robust performance.},
awesome-link-paper = {https://doi.org/10.1371/journal.pcbi.1012184},
awesome-link-code = {https://github.com/emune-dev/Data-missingness-paper},
awesome-tags = {missing data; simulation-based; parameter estimation}
}
@inproceedings{wehenkel2024simulationbased,
title = {Simulation-Based Inference for Cardiovascular Models},
booktitle = {{{NeurIPS}} Workshop},
author = {Wehenkel, Antoine and Behrmann, Jens and Miller, Andrew C. and Sapiro, Guillermo and Sener, Ozan and Cameto, Marco Cuturi and Jacobsen, J{\"o}rn-Henrik},
year = {2024},
awesome-category = {application},
awesome-tags = {medicine; simulation-based; parameter estimation},
awesome-link-paper = {https://arxiv.org/abs/2307.13918}
}
@inproceedings{wildberger2023flow,
title = {Flow Matching for Scalable Simulation-Based Inference},
booktitle = {Advances in Neural Information Processing Systems},
author = {Wildberger, Jonas and Dax, Maximilian and Buchholz, Simon and Green, Stephen and Macke, Jakob H and Sch{\"o}lkopf, Bernhard},
editor = {Oh, A. and Naumann, T. and Globerson, A. and Saenko, K. and Hardt, M. and Levine, S.},
year = {2023},
volume = {36},
pages = {16837--16864},
awesome-category = {method},
awesome-tags = {simulation-based},
awesome-link-paper = {https://arxiv.org/abs/2305.17161}
}
@article{zeng2023probabilistic,
title = {Probabilistic Damage Detection Using a New Likelihood-Free {{Bayesian}} Inference Method},
author = {Zeng, Jice and Todd, Michael D. and Hu, Zhen},
year = {2023},
journal = {Journal of Civil Structural Health Monitoring},
volume = {13},
number = {2-3},
pages = {319--341},
issn = {2190-5452, 2190-5479},
doi = {10.1007/s13349-022-00638-5},
awesome-category = {application},
langid = {english},
awesome-tags = {structural health monitoring},
awesome-link-paper = {https://link.springer.com/article/10.1007/s13349-022-00638-5}
}
@inproceedings{zhou2024evaluating,
title = {Evaluating {{Sparse Galaxy Simulations}} via {{Out-of-Distribution Detection}} and {{Amortized Bayesian Model Comparison}}},
booktitle = {38th {{Conference}} on {{Neural Information Processing Systems}}},
author = {Zhou, Lingyi and Radev, Stefan T. and Oliver, William H. and Obreja, Aura and Jin, Zehao and Buck, Tobias},
year = {2024},
awesome-category = {application},
awesome-tags = {physics; model evaluation; model comparison},
awesome-link-paper = {https://arxiv.org/abs/2410.10606}
}
@misc{chang2024amortized,
title={Amortized Probabilistic Conditioning for Optimization, Simulation and Inference},
author={Paul E. Chang and Nasrulloh Loka and Daolang Huang and Ulpu Remes and Samuel Kaski and Luigi Acerbi},
year={2024},
eprint={2410.15320},
url={https://arxiv.org/abs/2410.15320},
awesome-link-paper={https://arxiv.org/abs/2410.15320},
awesome-link-code={https://github.com/acerbilab/amortized-conditioning-engine/},
awesome-category = {method},
awesome-tags = {meta-learning, optimization, simulation-based inference}
}