forked from kenshohara/3D-ResNets-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
225 lines (197 loc) · 8.86 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
from torch import nn
from models import resnet, pre_act_resnet, wide_resnet, resnext, densenet, i3dpt, I3D_Pytorch
def generate_model(opt):
assert opt.model in [
'resnet', 'preresnet', 'wideresnet', 'resnext', 'densenet', 'i3d', 'i3dv2'
]
if opt.model == 'resnet':
assert opt.model_depth in [10, 18, 34, 50, 101, 152, 200]
from models.resnet import get_fine_tuning_parameters
if opt.model_depth == 10:
model = resnet.resnet10(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 18:
model = resnet.resnet18(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 34:
model = resnet.resnet34(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 50:
model = resnet.resnet50(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 101:
model = resnet.resnet101(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 152:
model = resnet.resnet152(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 200:
model = resnet.resnet200(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model == 'wideresnet':
assert opt.model_depth in [50]
from models.wide_resnet import get_fine_tuning_parameters
if opt.model_depth == 50:
model = wide_resnet.resnet50(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
k=opt.wide_resnet_k,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model == 'resnext':
assert opt.model_depth in [50, 101, 152]
from models.resnext import get_fine_tuning_parameters
if opt.model_depth == 50:
model = resnext.resnet50(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
cardinality=opt.resnext_cardinality,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 101:
model = resnext.resnet101(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
cardinality=opt.resnext_cardinality,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 152:
model = resnext.resnet152(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
cardinality=opt.resnext_cardinality,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model == 'preresnet':
assert opt.model_depth in [18, 34, 50, 101, 152, 200]
from models.pre_act_resnet import get_fine_tuning_parameters
if opt.model_depth == 18:
model = pre_act_resnet.resnet18(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 34:
model = pre_act_resnet.resnet34(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 50:
model = pre_act_resnet.resnet50(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 101:
model = pre_act_resnet.resnet101(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 152:
model = pre_act_resnet.resnet152(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 200:
model = pre_act_resnet.resnet200(
num_classes=opt.n_classes,
shortcut_type=opt.resnet_shortcut,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model == 'densenet':
assert opt.model_depth in [121, 169, 201, 264]
from models.densenet import get_fine_tuning_parameters
if opt.model_depth == 121:
model = densenet.densenet121(
num_classes=opt.n_classes,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 169:
model = densenet.densenet169(
num_classes=opt.n_classes,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 201:
model = densenet.densenet201(
num_classes=opt.n_classes,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model_depth == 264:
model = densenet.densenet264(
num_classes=opt.n_classes,
sample_size=opt.sample_size,
sample_duration=opt.sample_duration)
elif opt.model == "i3d":
from models.i3dpt import get_fine_tuning_parameters
model = i3dpt.I3D(
num_classes=opt.n_classes,
dropout_prob=0.5)
elif opt.model == "i3dv2":
from models.I3D_Pytorch import get_fine_tuning_parameters
model = I3D_Pytorch.I3D(
num_classes=opt.n_classes,
dropout_keep_prob=0.5)
if not opt.no_cuda:
model = model.cuda()
model = nn.DataParallel(model, device_ids=None)
if opt.pretrain_path:
print('loading pretrained model {}'.format(opt.pretrain_path))
pretrain = torch.load(opt.pretrain_path)
if opt.model != "i3d" and opt.model != "i3dv2":
assert opt.arch == pretrain['arch']
model.load_state_dict(pretrain['state_dict'])
else:
pretrain = {"module." + k: v for k, v in pretrain.items()}
model_dict = model.state_dict()
model_dict.update(pretrain)
model.load_state_dict(model_dict)
if opt.model == 'densenet':
model.module.classifier = nn.Linear(
model.module.classifier.in_features, opt.n_finetune_classes)
model.module.classifier = model.module.classifier.cuda()
else:
model.module.fc = nn.Linear(model.module.fc.in_features,
opt.n_finetune_classes)
model.module.fc = model.module.fc.cuda()
parameters = get_fine_tuning_parameters(model, opt.ft_begin_index)
return model, parameters
else:
if opt.pretrain_path:
print('loading pretrained model {}'.format(opt.pretrain_path))
pretrain = torch.load(opt.pretrain_path)
assert opt.arch == pretrain['arch']
model.load_state_dict(pretrain['state_dict'])
if opt.model == 'densenet':
model.classifier = nn.Linear(
model.classifier.in_features, opt.n_finetune_classes)
else:
model.fc = nn.Linear(model.fc.in_features,
opt.n_finetune_classes)
parameters = get_fine_tuning_parameters(model, opt.ft_begin_index)
return model, parameters
return model, model.parameters()