forked from kenshohara/3D-ResNets-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
146 lines (135 loc) · 4.61 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from datasets.kinetics import Kinetics
from datasets.activitynet import ActivityNet
from datasets.ucf101 import UCF101
from datasets.hmdb51 import HMDB51
def get_training_set(opt, spatial_transform, temporal_transform,
target_transform):
assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51']
if opt.dataset == 'kinetics':
training_data = Kinetics(
opt.video_path,
opt.annotation_path,
'training',
spatial_transform=spatial_transform,
temporal_transform=temporal_transform,
target_transform=target_transform)
elif opt.dataset == 'activitynet':
training_data = ActivityNet(
opt.video_path,
opt.annotation_path,
'training',
False,
spatial_transform=spatial_transform,
temporal_transform=temporal_transform,
target_transform=target_transform)
elif opt.dataset == 'ucf101':
training_data = UCF101(
opt.video_path,
opt.annotation_path,
'training',
spatial_transform=spatial_transform,
temporal_transform=temporal_transform,
target_transform=target_transform)
elif opt.dataset == 'hmdb51':
training_data = HMDB51(
opt.video_path,
opt.annotation_path,
'training',
spatial_transform=spatial_transform,
temporal_transform=temporal_transform,
target_transform=target_transform)
return training_data
def get_validation_set(opt, spatial_transform, temporal_transform,
target_transform):
assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51']
if opt.dataset == 'kinetics':
validation_data = Kinetics(
opt.video_path,
opt.annotation_path,
'validation',
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
elif opt.dataset == 'activitynet':
validation_data = ActivityNet(
opt.video_path,
opt.annotation_path,
'validation',
False,
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
elif opt.dataset == 'ucf101':
validation_data = UCF101(
opt.video_path,
opt.annotation_path,
'validation',
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
elif opt.dataset == 'hmdb51':
validation_data = HMDB51(
opt.video_path,
opt.annotation_path,
'validation',
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
return validation_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform):
assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51']
assert opt.test_subset in ['val', 'test']
if opt.test_subset == 'val':
subset = 'validation'
elif opt.test_subset == 'test':
subset = 'testing'
if opt.dataset == 'kinetics':
test_data = Kinetics(
opt.video_path,
opt.annotation_path,
subset,
0,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
elif opt.dataset == 'activitynet':
test_data = ActivityNet(
opt.video_path,
opt.annotation_path,
subset,
True,
0,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
elif opt.dataset == 'ucf101':
test_data = UCF101(
opt.video_path,
opt.annotation_path,
subset,
0,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
elif opt.dataset == 'hmdb51':
test_data = HMDB51(
opt.video_path,
opt.annotation_path,
subset,
0,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
return test_data