-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
352 lines (291 loc) · 13.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# USAGE
# python main.py --model mobilenet_ssd_v2/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --labels mobilenet_ssd_v2/coco_labels.txt
# import the necessary packages
from __future__ import print_function
from dronekit import connect, VehicleMode, LocationGlobal, LocationGlobalRelative
from edgetpu.detection.engine import DetectionEngine
from imutils.video import VideoStream
from pymavlink import mavutil
from imutils.video import FPS
from subprocess import call
from PIL import Image
import argparse
import time
import cv2
import math
import numpy as np
"""
The following functions are used to control the movement of the drone
"""
def arm_and_takeoff(aTargetAltitude):
"""
Arms vehicle and fly to aTargetAltitude.
"""
print("Basic pre-arm checks")
# don't let the user try to arm until autopilot is ready
while not vehicle.is_armable:
print(" Waiting for vehicle to initialise...")
time.sleep(1)
# copter should arm in GUIDED mode
while not vehicle.mode.name == 'GUIDED': # Wait until mode has changed
print(" Waiting for mode change ...")
time.sleep(1)
# arm the copter
print("Arming motors")
vehicle.armed = True
while not vehicle.armed: # wait until copter is armed
print(" Waiting for arming...")
time.sleep(1)
print("Taking off!")
vehicle.simple_takeoff(aTargetAltitude) # take off to target altitude
# wait until the vehicle reaches a safe height before processing the goto (otherwise the command
# after Vehicle.simple_takeoff will execute immediately).
while True:
print(" Altitude: ", vehicle.location.global_relative_frame.alt)
if vehicle.location.global_relative_frame.alt >= aTargetAltitude * 0.95: # Trigger just below target alt.
print("Reached target altitude")
break
time.sleep(1)
def cw_yaw(heading, relative=False):
"""
Send MAV_CMD_CONDITION_YAW message to rotate the vehicle clockwise.
This method sets an absolute heading by default, but you can set the `relative` parameter
to `True` to set yaw relative to the current yaw heading.
By default the yaw of the vehicle will follow the direction of travel. After setting
the yaw using this function there is no way to return to the default yaw "follow direction
of travel" behaviour (https://github.com/diydrones/ardupilot/issues/2427)
For more information see:
http://copter.ardupilot.com/wiki/common-mavlink-mission-command-messages-mav_cmd/#mav_cmd_condition_yaw
"""
if relative:
is_relative = 1 # yaw relative to direction of travel
else:
is_relative = 0 # yaw is an absolute angle
# create the CONDITION_YAW command using command_long_encode()
msg = vehicle.message_factory.command_long_encode(
0, 0, # target system, target component
mavutil.mavlink.MAV_CMD_CONDITION_YAW, # command
0, # confirmation
heading, # param 1, yaw in degrees
0, # param 2, yaw speed deg/s
-1, # param 3, direction 1 ccw, -1 cw
is_relative, # param 4, relative offset 1, absolute angle 0
0, 0, 0) # param 5 ~ 7 not used
# send command to vehicle
vehicle.send_mavlink(msg)
def ccw_yaw(heading, relative=False):
"""
Send MAV_CMD_CONDITION_YAW message to rotate the vehicle counter clockwise.
This method sets an absolute heading by default, but you can set the `relative` parameter
to `True` to set yaw relative to the current yaw heading.
By default the yaw of the vehicle will follow the direction of travel. After setting
the yaw using this function there is no way to return to the default yaw "follow direction
of travel" behaviour (https://github.com/diydrones/ardupilot/issues/2427)
For more information see:
http://copter.ardupilot.com/wiki/common-mavlink-mission-command-messages-mav_cmd/#mav_cmd_condition_yaw
"""
if relative:
is_relative = 1 # yaw relative to direction of travel
else:
is_relative = 0 # yaw is an absolute angle
# create the CONDITION_YAW command using command_long_encode()
msg = vehicle.message_factory.command_long_encode(
0, 0, # target system, target component
mavutil.mavlink.MAV_CMD_CONDITION_YAW, # command
0, # confirmation
heading, # param 1, yaw in degrees
0, # param 2, yaw speed deg/s
1, # param 3, direction 1 ccw, -1 cw
is_relative, # param 4, relative offset 1, absolute angle 0
0, 0, 0) # param 5 ~ 7 not used
# send command to vehicle
vehicle.send_mavlink(msg)
def send_ned_velocity(velocity_x, velocity_y, velocity_z):
"""
Move vehicle in direction based on specified velocity vectors and
for the specified duration.
This uses the SET_POSITION_TARGET_LOCAL_NED command with a type mask enabling only
velocity components
(http://dev.ardupilot.com/wiki/copter-commands-in-guided-mode/#set_position_target_local_ned).
Note that from AC3.3 the message should be re-sent every second (after about 3 seconds
with no message the velocity will drop back to zero). In AC3.2.1 and earlier the specified
velocity persists until it is canceled. The code below should work on either version
(sending the message multiple times does not cause problems).
See the above link for information on the type_mask (0=enable, 1=ignore).
At time of writing, acceleration and yaw bits are ignored.
"""
msg = vehicle.message_factory.set_position_target_local_ned_encode(
0, # time_boot_ms (not used)
0, 0, # target system, target component
mavutil.mavlink.MAV_FRAME_BODY_OFFSET_NED, # frame
0b0000111111000111, # type_mask (only speeds enabled)
0, 0, 0, # x, y, z positions (not used)
velocity_x, velocity_y, velocity_z, # x, y, z velocity in m/s
0, 0, 0, # x, y, z acceleration (not supported yet, ignored in GCS_Mavlink)
0, 0) # yaw, yaw_rate (not supported yet, ignored in GCS_Mavlink)
# send command to vehicle
vehicle.send_mavlink(msg)
# create variable to store whether or not the copter is flying or not
flying = 0
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True,
help="path to TensorFlow Lite object detection model")
ap.add_argument("-l", "--labels", required=True,
help="path to labels file")
ap.add_argument("-c", "--confidence", type=float, default=0.3,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize the labels dictionary
print("[INFO] parsing class labels...")
labels = {}
# loop over the class labels file
for row in open(args["labels"]):
# unpack the row and update the labels dictionary
(classID, label) = row.strip().split(maxsplit=1)
labels[int(classID)] = label.strip()
# load the Google Coral object detection model
print("[INFO] loading Coral model...")
model = DetectionEngine(args["model"])
# initialize the video stream and allow the camera sensor to warmup
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
# vs = VideoStream(usePiCamera=False).start()
time.sleep(2.0)
# start video recording
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter('/home/pi/SAR_Drone/detection/output.mp4', fourcc, 20.0, (640, 480))
# start fps counter and clock
fps = FPS().start()
clock_check = time.clock()
# create important variables for calculating angle and distance the subject is from drone
angle = 0
calcDistance = 0
# create variables for the status of the drone
searching = 1
count = 0
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 500 pixels
frame_height = 480
frame_width = 360
midframe_height = 180
midframe_width = 240
Xpov = midframe_width
Ypov = frame_height - 125
frame = vs.read()
frame = cv2.resize(frame, (frame_height, frame_width))
frame = cv2.flip(frame, 0)
orig = frame.copy()
# prepare the frame for object detection by converting (1) it
# from BGR to RGB channel ordering and then (2) from a NumPy
# array to PIL image format
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
# make predictions on the input frame
start = time.time()
results = model.detect_with_image(frame, threshold=args["confidence"],
keep_aspect_ratio=True, relative_coord=False)
end = time.time()
# loop over the results
for r in results:
# extract the bounding box and box and predicted class label
box = r.bounding_box.flatten().astype("int")
(startX, startY, endX, endY) = box
label = labels[r.label_id]
# draw the bounding box and label on the image
cv2.rectangle(orig, (startX, startY), (endX, endY),
(0, 255, 0), 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
text = "{}: {:.2f}%".format(label, r.score * 100)
cv2.putText(orig, text, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# if a person is detected
if label == "person":
# no longer searching beacuse subject is found
searching = 0
# calculate and draw a dot on the center of the bounding box (detecting the person)
box_centerX = ((endX - startX) // 2) + startX
box_centerY = ((endY - startY) // 2) + startY
cv2.circle(orig, (box_centerX, box_centerY), 5, (0, 0, 255), -1)
# calculate angle from person to drone (-90 degrees to +90 degrees)
if box_centerX - Xpov != 0:
angle = int(math.atan((box_centerY - Ypov) / (box_centerX - Xpov)) * 180 / math.pi)
if angle < 0:
angle += 90
else:
angle -= 90
# create dot of where the drone is relative to the video frame
cv2.circle(orig, (Xpov, Ypov), 5, (0, 0, 255), -1)
# create line connecting the drone and person location with the calculated angle
cv2.line(orig, (box_centerX, box_centerY), (Xpov, Ypov), (0, 0, 255), 1)
cv2.putText(orig, str(angle), (Xpov, Ypov - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# create dot on center of video frame
cv2.circle(orig, (midframe_width, midframe_height), 5, (0, 0, 255), -1)
# calculate the distance from person to center of frame
calcDistance = midframe_height - box_centerY
cv2.putText(orig, str(calcDistance), (midframe_width, midframe_height + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 0, 255), 2)
# resize video frame
orig = cv2.resize(orig, (640, 480))
print(time.clock())
# if the copter is on the ground for at least 10 seconds (time it takes to initialize the camera gimbal)
if flying == 0 and time.clock() - clock_check >= 10:
# change variable to flying
flying = 1
# connect to the Vehicle.
print("Connecting to vehicle on: serial0")
vehicle = connect('/dev/serial0', wait_ready=True, baud=921600)
# arm and take of to altitude of 6 meters
arm_and_takeoff(6)
print("connected")
# if the copter is flying, searching, and in GUIDED mode, begin search pattern.
if flying == 1 and searching = 1 and vehicle.mode.name == "GUIDED":
if count % 10 != 0:
send_ned_velocity(1, 0, 0)
elif
cw_yaw(90, relative=True)
# if the copter is flying, found the missing subject, and in GUIDED mode, track the person
if flying == 1 and searching = 0 and vehicle.mode.name == "GUIDED":
# if angle between subject and drone is between 10 to 20 degrees to the right, rotate CW at 2 km/h
if 10 < angle < 20:
cw_yaw(2, relative=True)
# if angle between subject and drone is greater than 20 degrees to the right, rotate CW at 4 km/h
elif angle > 20:
cw_yaw(4, relative=True)
# if angle between subject and drone is between 10 to 20 degrees to the left, rotate CCW at 2 km/h
elif -10 > angle > -20:
ccw_yaw(2, relative=True)
# if angle between subject and drone is greater 20 degrees to the left, rotate CCW at 4 km/h
elif angle < -20:
ccw_yaw(4, relative=True)
# if distance between subject and center of the frame is greater than 40 pixels, fly forward at 1 km/h
if calcDistance > 40:
send_ned_velocity(1, 0, 0)
# if distance between subject and center of the frame is less than -35 pixels, fly backward at 1 km/h
elif calcDistance < -35:
send_ned_velocity(-1, 0, 0)
# if subject is near the center of the frame, hover in place
elif -35 < calcDistance < 40:
send_ned_velocity(0, 0, 0)
# update the FPS counter
fps.update()
# start recording
out.write(orig)
# if copter is flying and user takes manual control, cancel RPI control over the drone and cancel recording
if flying == 1 and vehicle.mode.name != 'GUIDED':
break
# stop the timer and display FPS information
fps.stop()
print("[INFO] elapse time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
out.release()
vs.stop()
# close vehicle object before exiting script
print("Close vehicle object")
vehicle.close()
# shutdown RPI to save battery power
call("sudo shutdown -h now", shell=True)