diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 0aa9966..59881ad 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.10.7","generation_timestamp":"2024-12-06T01:09:53","documenter_version":"1.8.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.10.7","generation_timestamp":"2024-12-08T15:03:53","documenter_version":"1.8.0"}} \ No newline at end of file diff --git a/dev/api.html b/dev/api.html index 20542fd..9b75b5d 100644 --- a/dev/api.html +++ b/dev/api.html @@ -1,9 +1,9 @@ -API · BeforeIT.jl

Code reference

In this page we document the functions which constitute the bulk of BeforeIT.jl functionality.

Agent types

BeforeIT.AggregatesType

This is a Aggregates type. It is used to store the aggregate variables of the economy. Note that t is an integer, while the rest are floats or vectors of floats.

Fields

  • Y [vector]: GDP data + predictions
  • pi_ [vector]: inflation data + predictions
  • P_bar: Global price index
  • P_bar_g [vector]: Producer price index for principal good g
  • P_bar_HH: Consumer price index
  • P_bar_CF: Capital price index
  • P_bar_h: CPI_h
  • P_bar_CF_h: Capital price index _h
  • Y_e: Expected GDP
  • gamma_e: Expected growth
  • pi_e: Expected inflation
  • t: Time index
source
BeforeIT.BankType

This is a Bank type. It represents the bank of the model.

Fields

  • E_k: equity capital (common equity) of the bank
  • Pi_k: Profits of the bank
  • Pi_e_k: Expected profits of the bank
  • D_k: Residual and balancing item on the bank’s balance sheet
  • r: Rate for loans and morgages

Household fields (bank' owner)

  • Y_h: Net disposable income of bank owner (investor)
  • C_d_h: Consumption budget
  • I_d_h: Investment budget
  • C_h: Realised consumption
  • I_h: Realised investment
  • K_h: Capital stock
  • D_h: Deposits
source
BeforeIT.CentralBankType

This is a CentralBank type. It represents the central bank of the model.

Fields

  • r_bar: Nominal interest rate
  • r_G: Interest rate on government bonds
  • rho: Parameter for gradual adjustment of the policy rate
  • r_star: Real equilibrium interest rate
  • pi_star: Inflation target by CB
  • xi_pi: Weight the CB puts on inflation targeting
  • xi_gamma: Weight placed on economic
  • E_CB: Central bank equity
source
BeforeIT.FirmsType

This is a Firms type. Each field is an array which stores the values for all the firms in the economy. Note that the G_i, N_i and V_i fields are integers, while the rest are floats.

For all fields the entry at index i corresponds to the ith firm.

Fields

  • G_i: Principal product
  • alpha_bar_i: Average productivity of labor
  • beta_i: Productivity of intermediate consumption
  • kappa_i: Productivity of capital
  • w_i: Wages
  • w_bar_i: Average wage rate
  • delta_i: Depreciation rate for capital
  • tau_Y_i: Net tax rate on products
  • tau_K_i: Net tax rate on production
  • N_i: Number of persons employed
  • Y_i: Production of goods
  • Q_i: Sales of goods
  • Q_d_i: Demand for goods
  • P_i: Price
  • S_i: Inventories
  • K_i: Capital, in real terms
  • M_i: Intermediate goods/services and raw materials, in real terms
  • L_i: Outstanding loans
  • pi_bar_i: Operating margin
  • D_i: Deposits of the firm
  • Pi_i: Profits
  • V_i: Vacancies
  • I_i: Investments
  • E_i: Equity
  • P_bar_i: Price index
  • P_CF_i: Price index
  • DS_i: Differnece in stock of final goods
  • DM_i: Difference in stock of intermediate goods
  • DL_i: Obtained loans
  • DL_d_i: Target loans
  • K_e_i: Expected capital
  • L_e_i: Expected loans
  • Q_s_i: Expected sales
  • I_d_i: Desired investments
  • DM_d_i: Desired materials
  • N_d_i: Desired employment
  • Pi_e_i: Expected profits

Household fields (firms' owners)

  • Y_h: Net disposable income of firm owner (investor)
  • C_d_h: Consumption budget
  • I_d_h: Investment budget
  • C_h: Realised consumption
  • I_h: Realised investment
  • K_h: Capital stock
  • D_h: Deposits of the owner of the firms
source
BeforeIT.GovernmentType

This is a Government type. It represents the government of the model.

Fields

  • alpha_G: Autoregressive coefficient for government consumption
  • beta_G: Scalar constant for government consumption
  • sigma_G: Variance coefficient for government consumption
  • Y_G: Government revenues
  • C_G: Consumption demand of the general government
  • L_G: Loans taken out by the government
  • sb_inact: Social benefits for inactive persons
  • sb_other: Social benefits for all
  • C_d_j [vector]: Local governments consumption demand
  • C_j: Realised government consumption
  • P_j: Price inflation of government goods <- ??
source
BeforeIT.ModelType

This is a Model type. It is used to store all the agents of the economy.

Fields

  • w_act: Workers that are active
  • w_inact: Workers that are inactive
  • firms: Firms
  • bank: Bank
  • cb: CentralBank
  • gov: Government
  • rotw: RestOfTheWorld
  • agg: Aggregates
source
BeforeIT.RestOfTheWorldType

This is a RestOfTheWorld type. It represents the rest of the world of the model.

Fields

  • alpha_E: Autoregressive coefficient for exports
  • beta_E: Scalar constant for exports
  • sigma_E: Variance coefficient for exports
  • alpha_I: Autoregressive coefficient for imports
  • beta_I: Scalar constant for imports
  • sigma_I: Variance coefficient for imports
  • Y_EA: GDP euro area
  • gamma_EA: Growth euro area
  • pi_EA: Inflation euro area
  • alpha_pi_EA: Autoregressive coefficient for euro area inflation
  • beta_pi_EA: Autoregressive coefficient for euro area inflation Scalar constant for euro area inflation
  • sigma_pi_EA: Variance coefficient for euro area inflation
  • alpha_Y_EA: Autoregressive coefficient for euro area GDP
  • beta_Y_EA: Autoregressive coefficient for euro area GDP Scalar constant for euro area GDP
  • sigma_Y_EA: Variance coefficient for euro area GDP
  • D_RoW: Net creditor/debtor position of the national economy to the rest of the world
  • Y_I: Supply of imports (in real terms)
  • C_E: Total demand for exports
  • C_d_l [vector]: Demand for exports of specific product
  • C_l: Realised consumption by foreign consumers
  • Y_m [vector]: Supply of imports per sector
  • Q_m [vector]: Sales for imports per sector
  • Q_d_m [vector]: Demand for goods
  • P_m [vector]: Price of imports per sector
  • P_l: Price inflation of exports <- ??
source
BeforeIT.WorkersType

This is a Workers. Each field is an array which stores the values for all the workers in the economy. Note that the O_h field is an integer, while the rest are floats.

For all fields the entry at index i corresponds to the ith worker.

Fields

  • Y_h: Net disposable income of worker owner (investor)
  • D_h: Deposits
  • K_h: Capital stock
  • w_h: Wages (0 if inactive or unemployed)
  • O_h: Occupation (0 if unemployed, -1 if inactive)
  • C_d_h: Consumption budget
  • I_d_h: Investment budget
  • C_h: Realised consumption
  • I_h: Realised investment
source

Initialisation function

BeforeIT.init_modelFunction
init_model(parameters, initial_conditions, T, typeInt = Int64, typeFloat = Float64)

Initializes the model with given parameters and initial conditions.

Parameters:

  • parameters: A dictionary containing the model parameters.
  • initial_conditions: A dictionary containing the initial conditions.
  • T (integer): The time horizon of the model.
  • typeInt: (optional, default: Int64): The data type to be used for integer values.
  • typeFloat: (optional, default: Float64): The data type to be used for floating-point values.

Returns:

  • model::Model: The initialized model.
source
BeforeIT.update_variables_with_totals!Method
update_variables_with_totals!(model::Model)

Update the variables in the given model with some global quantities obtained from all agents. This is the last step in the initialization process and it must be performed after all agents have been initialized.

Arguments

  • model::Model: The model object to update.

Returns

  • Nothing
source

Functions to run an entire simulation

BeforeIT.run_one_epoch!Method
run_one_epoch!(model; multi_threading = false)

This function simulates a single epoch the economic model, updating various components of the model based the interactions between different economic agents. It accepts a model object, which encapsulates the state for the simulation, and an optional boolean parameter multi_threading to enable or disable multi-threading.

Key operations performed include:

  • Financial adjustments for firms and banks, including insolvency checks and profit calculations.
  • Economic expectations and adjustments, such as growth, inflation, and central bank rates.
  • Labor and credit market operations, including wage updates and loan processing.
  • Household economic activities, including consumption and investment budgeting.
  • Government and international trade financial activities, including budgeting and trade balances.
  • General market matching and accounting updates to reflect changes in economic indicators and positions.

The function updates the model in-place and does not return any value.

source
BeforeIT.run_n_simsMethod
run_n_sims(model, n_sims; shock = NoShock(), multi_threading = true)

A function that runs n_sims simulations in parallel with multiple threading and returns a vector of data objects of dimension n_sims.

Arguments

  • model: The model configuration used to simulate.
  • n_sims: The number of simulations to run in parallel.

Returns

  • data_vector: A vector containing the data objects collected during each simulation.
source
BeforeIT.run_one_sim!Method
run_one_sim!(model; shock = NoShock())

Run a single simulation based on the provided model. The simulation runs for a number of epochs specified by model.prop.T.

Arguments

  • model::Model: The model configuration used for the simulation.

Returns

  • data::Data: The data collected during the simulation.

Details

The function initializes the data using BeforeIT.init_data(model), then iteratively updates the model and data for each epoch using BeforeIT.run_one_epoch!(model) and BeforeIT.update_data!(data, model) respectively.

Example

```julia model = BeforeIT.initmodel(parameters, initialconditions, T) data = runonesim!(model)

source

Firms actions

BeforeIT.firms_depositsMethod
firms_deposits(firms, model)

Calculate the new deposits of firms.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • DD_i: Vector of new deposits

The new deposits DD_i are calculated as follows:

DD_i = sales + labour_cost + material_cost + taxes_products + taxes_production + corporate_tax + dividend_payments + interest_payments + interest_received + investment_cost + new_credit + debt_installment

where:

  • sales = P_i * Q_i
  • labour_cost = (1 + tau_SIF) * w_i * N_i * P_bar_HH
  • material_cost = -DM_i * P_bar_i
  • taxes_products = -tau_Y_i * P_i * Y_i
  • taxes_production = -tau_K_i * P_i * Y_i
  • corporate_tax = -tau_FIRM * pos(Pi_i)
  • dividend_payments = -theta_DIV * (1 - tau_FIRM) * pos(Pi_i)
  • interest_payments = -r * (L_i + pos(-D_i))
  • interest_received = r_bar * pos(D_i)
  • investment_cost = -P_CF_i * I_i
  • new_credit = DL_i
  • debt_installment = -theta * L_i
source
BeforeIT.firms_equityMethod
firms_equity(firms, model)

Calculate the equity of firms.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • E_i: Vector of equity

The equity E_i is calculated as follows:

\[E_i = D_i + M_i * \sum(a_{sg}[:, G_i] * \bar{P}_g) + P_i * S_i + \bar{P}_{CF} * K_i - L_i\]

where:

  • D_i: Deposits
  • M_i: Intermediate goods
  • a_sg: Technology coefficient of the gth product in the sth industry
  • G_i: Vector of goods
  • P_bar_g: Producer price index for principal good g
  • P_i: Price
  • S_i: Stock
  • P_bar_CF: Capital price index
  • K_i: Capital stock
  • L_i: Loans
source
BeforeIT.firms_expectations_and_decisionsMethod
firms_expectations_and_decisions(firms, model)

Calculate the expectations and decisions of firms. That is: compute firm quantity, price, investment and intermediate-goods, employment decisions, expected profits, and desired/expected loans and capital.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • Q_s_i: Vector of desired quantities
  • I_d_i: Vector of desired investments
  • DM_d_i: Vector of desired intermediate goods
  • N_d_i: Vector of desired employment
  • Pi_e_i: Vector of expected profits
  • DL_d_i: Vector of desired new loans
  • K_e_i: Vector of expected capital
  • L_e_i: Vector of expected loans
  • P_i: Vector of prices
source
BeforeIT.firms_loansMethod
firms_loans(firms, model)

Calculate the new loans of firms.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • L_i: Vector of new loans

The new loans L_i are calculated as follows:

\[L_i = (1 - theta) * L_i + DL_i\]

where:

  • theta: Rate of repayment
  • L_i: Loans
  • DL_i: Acquired new loans
source
BeforeIT.firms_productionMethod
firms_production(firms)

Calculate the production of firms.

Arguments

  • firms: Firms object

Returns

  • Y_i: Vector of production

The production Y_i is computed using a Leontief technology.

source
BeforeIT.firms_profitsMethod
firms_profits(firms, model)

Calculate the profits of firms.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • Pi_i: Vector of profits

The profits Pi_i are calculated as follows:

Pi_i = in_sales + in_deposits - out_wages - out_expenses - out_depreciation - out_taxes_prods - out_taxes_capital - out_loans

where:

  • in_sales = P_i * Q_i + P_i * DS_i
  • in_deposits = r_bar * pos(D_i)
  • out_wages = (1 + tau_SIF) * w_i * N_i * P_bar_HH
  • out_expenses = 1 / beta_i * P_bar_i * Y_i
  • out_depreciation = delta_i / kappa_i * P_CF_i * Y_i
  • out_taxes_prods = tau_Y_i * P_i * Y_i
  • out_taxes_capital = tau_K_i * P_i * Y_i
  • out_loans = r * (L_i + pos(-D_i))
source
BeforeIT.firms_stocksMethod
firms_stocks(firms)

Calculate the stocks of firms.

Arguments

  • firms: Firms object

Returns

  • K_i: Vector of capital stock
  • M_i: Vector of intermediate goods
  • DS_i: Vector of differneces in stock of final goods
  • S_i: Vector of stock of final goods

The stocks are calculated as follows:

K_i = K_i - delta_i / kappa_i * Y_i + I_i
+API · BeforeIT.jl

Code reference

In this page we document the functions which constitute the bulk of BeforeIT.jl functionality.

Agent types

BeforeIT.AggregatesType

This is a Aggregates type. It is used to store the aggregate variables of the economy. Note that t is an integer, while the rest are floats or vectors of floats.

Fields

  • Y [vector]: GDP data + predictions
  • pi_ [vector]: inflation data + predictions
  • P_bar: Global price index
  • P_bar_g [vector]: Producer price index for principal good g
  • P_bar_HH: Consumer price index
  • P_bar_CF: Capital price index
  • P_bar_h: CPI_h
  • P_bar_CF_h: Capital price index _h
  • Y_e: Expected GDP
  • gamma_e: Expected growth
  • pi_e: Expected inflation
  • t: Time index
source
BeforeIT.BankType

This is a Bank type. It represents the bank of the model.

Fields

  • E_k: equity capital (common equity) of the bank
  • Pi_k: Profits of the bank
  • Pi_e_k: Expected profits of the bank
  • D_k: Residual and balancing item on the bank’s balance sheet
  • r: Rate for loans and morgages

Household fields (bank' owner)

  • Y_h: Net disposable income of bank owner (investor)
  • C_d_h: Consumption budget
  • I_d_h: Investment budget
  • C_h: Realised consumption
  • I_h: Realised investment
  • K_h: Capital stock
  • D_h: Deposits
source
BeforeIT.CentralBankType

This is a CentralBank type. It represents the central bank of the model.

Fields

  • r_bar: Nominal interest rate
  • r_G: Interest rate on government bonds
  • rho: Parameter for gradual adjustment of the policy rate
  • r_star: Real equilibrium interest rate
  • pi_star: Inflation target by CB
  • xi_pi: Weight the CB puts on inflation targeting
  • xi_gamma: Weight placed on economic
  • E_CB: Central bank equity
source
BeforeIT.FirmsType

This is a Firms type. Each field is an array which stores the values for all the firms in the economy. Note that the G_i, N_i and V_i fields are integers, while the rest are floats.

For all fields the entry at index i corresponds to the ith firm.

Fields

  • G_i: Principal product
  • alpha_bar_i: Average productivity of labor
  • beta_i: Productivity of intermediate consumption
  • kappa_i: Productivity of capital
  • w_i: Wages
  • w_bar_i: Average wage rate
  • delta_i: Depreciation rate for capital
  • tau_Y_i: Net tax rate on products
  • tau_K_i: Net tax rate on production
  • N_i: Number of persons employed
  • Y_i: Production of goods
  • Q_i: Sales of goods
  • Q_d_i: Demand for goods
  • P_i: Price
  • S_i: Inventories
  • K_i: Capital, in real terms
  • M_i: Intermediate goods/services and raw materials, in real terms
  • L_i: Outstanding loans
  • pi_bar_i: Operating margin
  • D_i: Deposits of the firm
  • Pi_i: Profits
  • V_i: Vacancies
  • I_i: Investments
  • E_i: Equity
  • P_bar_i: Price index
  • P_CF_i: Price index
  • DS_i: Differnece in stock of final goods
  • DM_i: Difference in stock of intermediate goods
  • DL_i: Obtained loans
  • DL_d_i: Target loans
  • K_e_i: Expected capital
  • L_e_i: Expected loans
  • Q_s_i: Expected sales
  • I_d_i: Desired investments
  • DM_d_i: Desired materials
  • N_d_i: Desired employment
  • Pi_e_i: Expected profits

Household fields (firms' owners)

  • Y_h: Net disposable income of firm owner (investor)
  • C_d_h: Consumption budget
  • I_d_h: Investment budget
  • C_h: Realised consumption
  • I_h: Realised investment
  • K_h: Capital stock
  • D_h: Deposits of the owner of the firms
source
BeforeIT.GovernmentType

This is a Government type. It represents the government of the model.

Fields

  • alpha_G: Autoregressive coefficient for government consumption
  • beta_G: Scalar constant for government consumption
  • sigma_G: Variance coefficient for government consumption
  • Y_G: Government revenues
  • C_G: Consumption demand of the general government
  • L_G: Loans taken out by the government
  • sb_inact: Social benefits for inactive persons
  • sb_other: Social benefits for all
  • C_d_j [vector]: Local governments consumption demand
  • C_j: Realised government consumption
  • P_j: Price inflation of government goods <- ??
source
BeforeIT.ModelType

This is a Model type. It is used to store all the agents of the economy.

Fields

  • w_act: Workers that are active
  • w_inact: Workers that are inactive
  • firms: Firms
  • bank: Bank
  • cb: CentralBank
  • gov: Government
  • rotw: RestOfTheWorld
  • agg: Aggregates
source
BeforeIT.RestOfTheWorldType

This is a RestOfTheWorld type. It represents the rest of the world of the model.

Fields

  • alpha_E: Autoregressive coefficient for exports
  • beta_E: Scalar constant for exports
  • sigma_E: Variance coefficient for exports
  • alpha_I: Autoregressive coefficient for imports
  • beta_I: Scalar constant for imports
  • sigma_I: Variance coefficient for imports
  • Y_EA: GDP euro area
  • gamma_EA: Growth euro area
  • pi_EA: Inflation euro area
  • alpha_pi_EA: Autoregressive coefficient for euro area inflation
  • beta_pi_EA: Autoregressive coefficient for euro area inflation Scalar constant for euro area inflation
  • sigma_pi_EA: Variance coefficient for euro area inflation
  • alpha_Y_EA: Autoregressive coefficient for euro area GDP
  • beta_Y_EA: Autoregressive coefficient for euro area GDP Scalar constant for euro area GDP
  • sigma_Y_EA: Variance coefficient for euro area GDP
  • D_RoW: Net creditor/debtor position of the national economy to the rest of the world
  • Y_I: Supply of imports (in real terms)
  • C_E: Total demand for exports
  • C_d_l [vector]: Demand for exports of specific product
  • C_l: Realised consumption by foreign consumers
  • Y_m [vector]: Supply of imports per sector
  • Q_m [vector]: Sales for imports per sector
  • Q_d_m [vector]: Demand for goods
  • P_m [vector]: Price of imports per sector
  • P_l: Price inflation of exports <- ??
source
BeforeIT.WorkersType

This is a Workers. Each field is an array which stores the values for all the workers in the economy. Note that the O_h field is an integer, while the rest are floats.

For all fields the entry at index i corresponds to the ith worker.

Fields

  • Y_h: Net disposable income of worker owner (investor)
  • D_h: Deposits
  • K_h: Capital stock
  • w_h: Wages (0 if inactive or unemployed)
  • O_h: Occupation (0 if unemployed, -1 if inactive)
  • C_d_h: Consumption budget
  • I_d_h: Investment budget
  • C_h: Realised consumption
  • I_h: Realised investment
source

Initialisation function

BeforeIT.init_modelFunction
init_model(parameters, initial_conditions, T, typeInt = Int64, typeFloat = Float64)

Initializes the model with given parameters and initial conditions.

Parameters:

  • parameters: A dictionary containing the model parameters.
  • initial_conditions: A dictionary containing the initial conditions.
  • T (integer): The time horizon of the model.
  • typeInt: (optional, default: Int64): The data type to be used for integer values.
  • typeFloat: (optional, default: Float64): The data type to be used for floating-point values.

Returns:

  • model::Model: The initialized model.
source
BeforeIT.update_variables_with_totals!Method
update_variables_with_totals!(model::Model)

Update the variables in the given model with some global quantities obtained from all agents. This is the last step in the initialization process and it must be performed after all agents have been initialized.

Arguments

  • model::Model: The model object to update.

Returns

  • Nothing
source

Functions to run an entire simulation

BeforeIT.run_one_epoch!Method
run_one_epoch!(model; multi_threading = false)

This function simulates a single epoch the economic model, updating various components of the model based the interactions between different economic agents. It accepts a model object, which encapsulates the state for the simulation, and an optional boolean parameter multi_threading to enable or disable multi-threading.

Key operations performed include:

  • Financial adjustments for firms and banks, including insolvency checks and profit calculations.
  • Economic expectations and adjustments, such as growth, inflation, and central bank rates.
  • Labor and credit market operations, including wage updates and loan processing.
  • Household economic activities, including consumption and investment budgeting.
  • Government and international trade financial activities, including budgeting and trade balances.
  • General market matching and accounting updates to reflect changes in economic indicators and positions.

The function updates the model in-place and does not return any value.

source
BeforeIT.run_n_simsMethod
run_n_sims(model, n_sims; shock = NoShock(), multi_threading = true)

A function that runs n_sims simulations in parallel with multiple threading and returns a vector of data objects of dimension n_sims.

Arguments

  • model: The model configuration used to simulate.
  • n_sims: The number of simulations to run in parallel.

Returns

  • data_vector: A vector containing the data objects collected during each simulation.
source
BeforeIT.run_one_sim!Method
run_one_sim!(model; shock = NoShock())

Run a single simulation based on the provided model. The simulation runs for a number of epochs specified by model.prop.T.

Arguments

  • model::Model: The model configuration used for the simulation.

Returns

  • data::Data: The data collected during the simulation.

Details

The function initializes the data using BeforeIT.init_data(model), then iteratively updates the model and data for each epoch using BeforeIT.run_one_epoch!(model) and BeforeIT.update_data!(data, model) respectively.

Example

```julia model = BeforeIT.initmodel(parameters, initialconditions, T) data = runonesim!(model)

source

Firms actions

BeforeIT.firms_depositsMethod
firms_deposits(firms, model)

Calculate the new deposits of firms.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • DD_i: Vector of new deposits

The new deposits DD_i are calculated as follows:

DD_i = sales + labour_cost + material_cost + taxes_products + taxes_production + corporate_tax + dividend_payments + interest_payments + interest_received + investment_cost + new_credit + debt_installment

where:

  • sales = P_i * Q_i
  • labour_cost = (1 + tau_SIF) * w_i * N_i * P_bar_HH
  • material_cost = -DM_i * P_bar_i
  • taxes_products = -tau_Y_i * P_i * Y_i
  • taxes_production = -tau_K_i * P_i * Y_i
  • corporate_tax = -tau_FIRM * pos(Pi_i)
  • dividend_payments = -theta_DIV * (1 - tau_FIRM) * pos(Pi_i)
  • interest_payments = -r * (L_i + pos(-D_i))
  • interest_received = r_bar * pos(D_i)
  • investment_cost = -P_CF_i * I_i
  • new_credit = DL_i
  • debt_installment = -theta * L_i
source
BeforeIT.firms_equityMethod
firms_equity(firms, model)

Calculate the equity of firms.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • E_i: Vector of equity

The equity E_i is calculated as follows:

\[E_i = D_i + M_i * \sum(a_{sg}[:, G_i] * \bar{P}_g) + P_i * S_i + \bar{P}_{CF} * K_i - L_i\]

where:

  • D_i: Deposits
  • M_i: Intermediate goods
  • a_sg: Technology coefficient of the gth product in the sth industry
  • G_i: Vector of goods
  • P_bar_g: Producer price index for principal good g
  • P_i: Price
  • S_i: Stock
  • P_bar_CF: Capital price index
  • K_i: Capital stock
  • L_i: Loans
source
BeforeIT.firms_expectations_and_decisionsMethod
firms_expectations_and_decisions(firms, model)

Calculate the expectations and decisions of firms. That is: compute firm quantity, price, investment and intermediate-goods, employment decisions, expected profits, and desired/expected loans and capital.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • Q_s_i: Vector of desired quantities
  • I_d_i: Vector of desired investments
  • DM_d_i: Vector of desired intermediate goods
  • N_d_i: Vector of desired employment
  • Pi_e_i: Vector of expected profits
  • DL_d_i: Vector of desired new loans
  • K_e_i: Vector of expected capital
  • L_e_i: Vector of expected loans
  • P_i: Vector of prices
source
BeforeIT.firms_loansMethod
firms_loans(firms, model)

Calculate the new loans of firms.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • L_i: Vector of new loans

The new loans L_i are calculated as follows:

\[L_i = (1 - theta) * L_i + DL_i\]

where:

  • theta: Rate of repayment
  • L_i: Loans
  • DL_i: Acquired new loans
source
BeforeIT.firms_productionMethod
firms_production(firms)

Calculate the production of firms.

Arguments

  • firms: Firms object

Returns

  • Y_i: Vector of production

The production Y_i is computed using a Leontief technology.

source
BeforeIT.firms_profitsMethod
firms_profits(firms, model)

Calculate the profits of firms.

Arguments

  • firms: Firms object
  • model: Model object

Returns

  • Pi_i: Vector of profits

The profits Pi_i are calculated as follows:

Pi_i = in_sales + in_deposits - out_wages - out_expenses - out_depreciation - out_taxes_prods - out_taxes_capital - out_loans

where:

  • in_sales = P_i * Q_i + P_i * DS_i
  • in_deposits = r_bar * pos(D_i)
  • out_wages = (1 + tau_SIF) * w_i * N_i * P_bar_HH
  • out_expenses = 1 / beta_i * P_bar_i * Y_i
  • out_depreciation = delta_i / kappa_i * P_CF_i * Y_i
  • out_taxes_prods = tau_Y_i * P_i * Y_i
  • out_taxes_capital = tau_K_i * P_i * Y_i
  • out_loans = r * (L_i + pos(-D_i))
source
BeforeIT.firms_stocksMethod
firms_stocks(firms)

Calculate the stocks of firms.

Arguments

  • firms: Firms object

Returns

  • K_i: Vector of capital stock
  • M_i: Vector of intermediate goods
  • DS_i: Vector of differneces in stock of final goods
  • S_i: Vector of stock of final goods

The stocks are calculated as follows:

K_i = K_i - delta_i / kappa_i * Y_i + I_i
 M_i = M_i - Y_i / beta_i + DM_i
 DS_i = Y_i - Q_i
-S_i = S_i + DS_i
source
BeforeIT.firms_wagesMethod
firms_wages(firms)

Calculate the wages set by firms.

Arguments

  • firms: Firms object

Returns

  • w_i: Vector of wages
source
BeforeIT.init_firmsMethod
init_firms(parameters, initial_conditions; typeInt = Int64, typeFloat = Float64)

Initialize firms with given parameters and initial conditions.

Arguments

  • parameters: The parameters for initializing the firms.
  • initial_conditions: The initial conditions for the firms.
  • typeInt: (optional) The integer type to be used. Default is Int64.
  • typeFloat: (optional) The floating-point type to be used. Default is Float64.

Returns

  • firms::Firms: The initialized firms.
  • firms_args::Tuple: The arguments used to initialize the firms.
source
BeforeIT.leontief_productionMethod
leontief_production(Q_s_i, N_i, alpha_i, K_i, kappa_i, M_i, beta_i)

Calculate the production function of firms.

Arguments

  • Q_s_i: Vector of desired quantities
  • N_i: Vector of employment
  • alpha_i: Vector of labour productivity
  • K_i: Vector of capital stock
  • kappa_i: Vector of capital productivity
  • M_i: Vector of intermediate goods
  • beta_i: Vector of intermediate goods productivity

Returns

  • Y_i: Vector of production

The Leontief production function Y_i is calculated as follows:

\[Y_i = \min(Q_s_i, \min(N_i \cdot \alpha_i, \min(K_i \cdot \kappa_i, M_i \cdot \beta_i)))\]

source

Households actions

Government actions

BeforeIT.gov_expenditureMethod
gov_expenditure(gov::AbstractGovernment, model)

Computes government expenditure on consumption and transfers to households.

Arguments

  • gov: government object
  • model: model object

Returns

  • C_G: government consumption
  • C_d_j: local government consumptions
source
BeforeIT.gov_loansMethod
gov_loans(gov::AbstractGovernment, model, Y_G)

Computes government new government debt.

Arguments

  • gov::AbstractGovernment: government object
  • model: model object

Returns

  • L_G: new government debt
source
BeforeIT.gov_revenuesMethod
gov_revenues(model)

Computes government revenues from taxes and social security contributions. The government collects taxes on labour income, capital income, value added, and corporate income. It also collects social security contributions from workers and firms. The government also collects taxes on consumption and capital formation. Finally, the government collects taxes on exports and imports.

Arguments

  • model: model object

Returns

  • Y_G: government revenues
source
BeforeIT.gov_social_benefitsMethod
gov_social_benefits(gov::AbstractGovernment, model)

Computes social benefits paid by the government households.

Arguments

  • gov: government object
  • model: model object

Returns

  • sb_other: social benefits for other households
  • sb_inact: social benefits for inactive households
source
BeforeIT.init_governmentMethod
init_government(parameters, initial_conditions; typeInt = Int64, typeFloat = Float64)

Initialize the government agent.

Arguments

  • parameters: The parameters.
  • initial_conditions: The initial conditions.
  • typeInt: The integer type to be used (default: Int64).
  • typeFloat: The floating-point type to be used (default: Float64).

Returns

  • The initialized government model.
  • The arguments used to initialize the government model.
source

Bank and Central Bank actions

BeforeIT._bank_depositsMethod
_deposit_bank(waD_h, wiD_h, fD_h, bD_h, fD_i, bE_k, fL_i)

Helper function to calculate the new deposits of a bank.

Arguments

  • waD_h: Array of deposits from active workers
  • wiD_h: Array of deposits from inactive workers
  • fD_h: Array of deposits from firms
  • bD_h: Deposits from the bank owner
  • fD_i: Array of deposits from firms
  • bE_k: Bank equity
  • fL_i: Array of loans to firms

Returns

  • D_k: New deposits of the bank

The new deposits D_k are calculated as the sum of the deposits of the active workers, the inactive workers, the firms, and the bank owner itself, plus the bank's equity, minus the loans of the firms.

source
BeforeIT._bank_profitsMethod
_bank_profits(L_i, D_i, D_h, D_k, r_bar, r)

Helper function to calculate the total profits of a bank.

Arguments

  • L_i: Array of loans provided by the bank
  • D_i: Array of deposits from firms
  • D_h: Array of deposits from households
  • D_k: Residual and balancing item on the bank’s balance sheet
  • r_bar: Base interest rate
  • r: Interest rate set by the bank

Returns

  • Pi_k: Total profits of the bank

The total profits Pi_k are calculated as follows:

\[\Pi_k = r \cdot \sum_i(L_i + \max(0, -D_i)) + r \cdot \sum_h(\max(0, -D_h)) + r_{bar} +S_i = S_i + DS_i

source
BeforeIT.firms_wagesMethod
firms_wages(firms)

Calculate the wages set by firms.

Arguments

  • firms: Firms object

Returns

  • w_i: Vector of wages
source
BeforeIT.init_firmsMethod
init_firms(parameters, initial_conditions; typeInt = Int64, typeFloat = Float64)

Initialize firms with given parameters and initial conditions.

Arguments

  • parameters: The parameters for initializing the firms.
  • initial_conditions: The initial conditions for the firms.
  • typeInt: (optional) The integer type to be used. Default is Int64.
  • typeFloat: (optional) The floating-point type to be used. Default is Float64.

Returns

  • firms::Firms: The initialized firms.
  • firms_args::Tuple: The arguments used to initialize the firms.
source
BeforeIT.leontief_productionMethod
leontief_production(Q_s_i, N_i, alpha_i, K_i, kappa_i, M_i, beta_i)

Calculate the production function of firms.

Arguments

  • Q_s_i: Vector of desired quantities
  • N_i: Vector of employment
  • alpha_i: Vector of labour productivity
  • K_i: Vector of capital stock
  • kappa_i: Vector of capital productivity
  • M_i: Vector of intermediate goods
  • beta_i: Vector of intermediate goods productivity

Returns

  • Y_i: Vector of production

The Leontief production function Y_i is calculated as follows:

\[Y_i = \min(Q_s_i, \min(N_i \cdot \alpha_i, \min(K_i \cdot \kappa_i, M_i \cdot \beta_i)))\]

source

Households actions

Government actions

BeforeIT.gov_expenditureMethod
gov_expenditure(gov::AbstractGovernment, model)

Computes government expenditure on consumption and transfers to households.

Arguments

  • gov: government object
  • model: model object

Returns

  • C_G: government consumption
  • C_d_j: local government consumptions
source
BeforeIT.gov_loansMethod
gov_loans(gov::AbstractGovernment, model, Y_G)

Computes government new government debt.

Arguments

  • gov::AbstractGovernment: government object
  • model: model object

Returns

  • L_G: new government debt
source
BeforeIT.gov_revenuesMethod
gov_revenues(model)

Computes government revenues from taxes and social security contributions. The government collects taxes on labour income, capital income, value added, and corporate income. It also collects social security contributions from workers and firms. The government also collects taxes on consumption and capital formation. Finally, the government collects taxes on exports and imports.

Arguments

  • model: model object

Returns

  • Y_G: government revenues
source
BeforeIT.gov_social_benefitsMethod
gov_social_benefits(gov::AbstractGovernment, model)

Computes social benefits paid by the government households.

Arguments

  • gov: government object
  • model: model object

Returns

  • sb_other: social benefits for other households
  • sb_inact: social benefits for inactive households
source
BeforeIT.init_governmentMethod
init_government(parameters, initial_conditions; typeInt = Int64, typeFloat = Float64)

Initialize the government agent.

Arguments

  • parameters: The parameters.
  • initial_conditions: The initial conditions.
  • typeInt: The integer type to be used (default: Int64).
  • typeFloat: The floating-point type to be used (default: Float64).

Returns

  • The initialized government model.
  • The arguments used to initialize the government model.
source

Bank and Central Bank actions

BeforeIT._bank_depositsMethod
_deposit_bank(waD_h, wiD_h, fD_h, bD_h, fD_i, bE_k, fL_i)

Helper function to calculate the new deposits of a bank.

Arguments

  • waD_h: Array of deposits from active workers
  • wiD_h: Array of deposits from inactive workers
  • fD_h: Array of deposits from firms
  • bD_h: Deposits from the bank owner
  • fD_i: Array of deposits from firms
  • bE_k: Bank equity
  • fL_i: Array of loans to firms

Returns

  • D_k: New deposits of the bank

The new deposits D_k are calculated as the sum of the deposits of the active workers, the inactive workers, the firms, and the bank owner itself, plus the bank's equity, minus the loans of the firms.

source
BeforeIT._bank_profitsMethod
_bank_profits(L_i, D_i, D_h, D_k, r_bar, r)

Helper function to calculate the total profits of a bank.

Arguments

  • L_i: Array of loans provided by the bank
  • D_i: Array of deposits from firms
  • D_h: Array of deposits from households
  • D_k: Residual and balancing item on the bank’s balance sheet
  • r_bar: Base interest rate
  • r: Interest rate set by the bank

Returns

  • Pi_k: Total profits of the bank

The total profits Pi_k are calculated as follows:

\[\Pi_k = r \cdot \sum_i(L_i + \max(0, -D_i)) + r \cdot \sum_h(\max(0, -D_h)) + r_{bar} \cdot \max(0, D_k) - r_{bar} \cdot \sum_i(\max(0, D_i)) - r_{bar} \cdot -\sum_h(\max(0, D_h)) - r_{bar} \cdot \max(0, -D_k)\]

source
BeforeIT._central_bank_profitsMethod
_central_bank_profits(r_bar, D_k, L_G, r_G)

Helper function to calculate the profits of a central bank.

Arguments

  • r_bar: The base interest rate
  • D_k: Deposits from commercial banks
  • L_G: Loans provided to the government
  • r_G: Interest rate on government loans

Returns

  • Pi_CB: Profits of the central bank

The profits Pi_CB are calculated as follows:

\[\{Pi}_{CB} = r_{G} \cdot L_{G} - r_{bar} \cdot D_{k}\]

source
BeforeIT.bank_depositsMethod
deposits_bank(bank, w_act, w_inact, firms)

Calculate the new deposits of a bank.

Arguments

  • bank: The Bank object containing the bank of the model
  • w_act: The Workers object containing the active workers of the model
  • w_inact: The Workers object containing the inactive workers of the model
  • firms: The Firms object containing the firms of the model

Returns

  • D_k: New deposits of the bank

The new deposits D_k are calculated as the sum of the deposits of the active workers, the inactive workers, the firms, and the bank owner itself, plus the bank's equity, minus the loans of the firms.

source
BeforeIT.bank_equityMethod
bank_equity(bank, model)

Calculate the net profits of a bank.

Arguments

  • bank: The bank object.
  • model: The model object.

Returns

  • E_k: The updated equity of the bank.

The net profits DE_k are calculated as:

\[DE_k = \Pi_k - \theta_{DIV} \cdot (1 - \tau_{FIRM}) \cdot \max(0, \Pi_k) - \tau_{FIRM} \cdot \max(0, \Pi_k)\]

and the equity E_k is updated as:

\[E_k = E_k + DE_k\]

source
BeforeIT.bank_expected_profitsMethod
bank_expected_profits(Pi_k, pi_e, gamma_e)

Calculate the expected profits of a bank.

Arguments

  • Pi_k: Past profits of the bank
  • pi_e: Expected inflation rate
  • gamma_e: Expected growth rate

Returns

  • E_Pi_k: Expected profits of the bank

The expected profits E_Pi_k are calculated as follows:

\[E_{\Pi_k} = \Pi_k \cdot (1 + \pi_e) \cdot (1 + \gamma_e)\]

source
BeforeIT.bank_profitsMethod
bank_profits(bank, model)

Calculate the total profits of a bank.

Arguments

  • bank: The bank object.
  • model: The model object.

Returns

  • Pi_k: The total profits of the bank.

The total profits Pi_k are calculated as:

\[\Pi_k = r \cdot \sum_i(L_i + \max(0, -D_i)) + r \cdot \sum_h(\max(0, -D_h)) + r_{bar} +\sum_h(\max(0, D_h)) - r_{bar} \cdot \max(0, -D_k)\]

source
BeforeIT._central_bank_profitsMethod
_central_bank_profits(r_bar, D_k, L_G, r_G)

Helper function to calculate the profits of a central bank.

Arguments

  • r_bar: The base interest rate
  • D_k: Deposits from commercial banks
  • L_G: Loans provided to the government
  • r_G: Interest rate on government loans

Returns

  • Pi_CB: Profits of the central bank

The profits Pi_CB are calculated as follows:

\[\{Pi}_{CB} = r_{G} \cdot L_{G} - r_{bar} \cdot D_{k}\]

source
BeforeIT.bank_depositsMethod
deposits_bank(bank, w_act, w_inact, firms)

Calculate the new deposits of a bank.

Arguments

  • bank: The Bank object containing the bank of the model
  • w_act: The Workers object containing the active workers of the model
  • w_inact: The Workers object containing the inactive workers of the model
  • firms: The Firms object containing the firms of the model

Returns

  • D_k: New deposits of the bank

The new deposits D_k are calculated as the sum of the deposits of the active workers, the inactive workers, the firms, and the bank owner itself, plus the bank's equity, minus the loans of the firms.

source
BeforeIT.bank_equityMethod
bank_equity(bank, model)

Calculate the net profits of a bank.

Arguments

  • bank: The bank object.
  • model: The model object.

Returns

  • E_k: The updated equity of the bank.

The net profits DE_k are calculated as:

\[DE_k = \Pi_k - \theta_{DIV} \cdot (1 - \tau_{FIRM}) \cdot \max(0, \Pi_k) - \tau_{FIRM} \cdot \max(0, \Pi_k)\]

and the equity E_k is updated as:

\[E_k = E_k + DE_k\]

source
BeforeIT.bank_expected_profitsMethod
bank_expected_profits(Pi_k, pi_e, gamma_e)

Calculate the expected profits of a bank.

Arguments

  • Pi_k: Past profits of the bank
  • pi_e: Expected inflation rate
  • gamma_e: Expected growth rate

Returns

  • E_Pi_k: Expected profits of the bank

The expected profits E_Pi_k are calculated as follows:

\[E_{\Pi_k} = \Pi_k \cdot (1 + \pi_e) \cdot (1 + \gamma_e)\]

source
BeforeIT.bank_profitsMethod
bank_profits(bank, model)

Calculate the total profits of a bank.

Arguments

  • bank: The bank object.
  • model: The model object.

Returns

  • Pi_k: The total profits of the bank.

The total profits Pi_k are calculated as:

\[\Pi_k = r \cdot \sum_i(L_i + \max(0, -D_i)) + r \cdot \sum_h(\max(0, -D_h)) + r_{bar} \cdot \max(0, D_k) - r_{bar} \cdot \sum_i(\max(0, D_i)) - r_{bar} \cdot -\sum_h(\max(0, D_h)) - r_{bar} \cdot \max(0, -D_k)\]

source
BeforeIT.bank_rateMethod
bank_rate(bank, model)

Update the interest rate set by the bank.

Arguments

  • bank: The bank whose interest rate is to be updated
  • model: Model object

Returns

  • r: The updated interest rate

\[r = \bar{r} + \mu\]

source
BeforeIT.central_bank_equityMethod
central_bank_equity(cb, model)

Calculate the equity of the central bank.

Arguments

  • cb: The central bank
  • model: The model object

Returns

  • E_CB: The equity of the central bank

The equity E_CB is calculated as follows:

\[E_{CB} = E_{CB} + \Pi_{CB}\]

where \Pi_{CB} are the profits of the central bank.

source
BeforeIT.central_bank_rateMethod
central_bank_rate(cb, model)

Update the base interest rate set by the central bank according to the Taylor rule.

Arguments

  • cb: The central bank whose base interest rate is to be updated
  • model: The model object

Returns

  • r_bar: The updated base interest rate
source
BeforeIT.finance_insolvent_firms!Method
finance_insolvent_firms!(firms, bank, P_bar_CF, zeta_b,  insolvent)

Rifinance insolvent firms using bank equity.

Arguments

  • firms: The Firms object containing the firms of the model
  • bank: The Bank object containing the bank of the model
  • P_bar_CF: Capital price index
  • zeta_b: Parameter of loan-to-capital ratio for new firms after bankruptcy

Returns

  • This function does not return a value. It modifies the banks and firms collections in-place.
source
BeforeIT.taylor_ruleMethod
taylor_rule(rho, r_bar, r_star, pi_star, xi_pi, xi_gamma, gamma_EA, pi_EA)

Calculate the interest rate according to the Taylor rule.

Arguments

  • rho: Parameter for gradual adjustment of the policy rate.
  • r_bar: Nominal interest rate.
  • r_star: Real equilibrium interest rate.
  • pi_star: The target inflation rate.
  • xi_pi: Weight the CB puts on inflation targeting.
  • xi_gamma: Weight placed on economic growth.
  • gamma_EA: The output growth rate.
  • pi_EA: The inflation rate.

Returns

  • rate: The calculated interest rate.

The Taylor rule is given by the following equation:

\[r_t = ρ * r_{t-1} + (1 - ρ) * (r^* + π^* + ξ_π * (π_t - π^*) + ξ_γ * γ_t)```\]

source

Rest Of The World actions

BeforeIT.rotw_depositsMethod
rotw_deposits(rotw, tau_EXPORT)

Calculate the deposits of the rest of the world.

Arguments

  • rotw: The rest of the world object.
  • tau_EXPORT: The export tax.

Returns

  • D_RoW: The deposits of the rest of the world.

The deposits D_RoW are calculated as follows:

\[D_{RoW} = D_{RoW} + \left( \sum_{m} P_m \cdot Q_m \right) - (1 + \tau_{EXPORT}) \cdot C_l\]

source
BeforeIT.rotw_import_exportMethod
rotw_import_export(rotw, model, pi_e, epsilon_E, epsilon_I)

Calculate the demand for exports and supply of imports of the rest of the world.

Arguments

  • rotw: The rest of the world object.
  • model: The model object.

Returns

  • C_E: Total demand for exports.
  • Y_I: Supply of imports (in real terms).
  • C_d_l: TDemand for exports of specific product.
  • Y_m: Supply of imports per sector.
  • P_m: Price of imports per sector.
source

Markets

BeforeIT.search_and_matching_creditMethod
search_and_matching_credit(firms::Firms, model)

This function calculates the credit allocation for each firm in the given firms object.

Parameters:

  • firms::Firms: The firms object.
  • model: The model object.

Returns:

  • DL_i: An array of credit allocations for each firm.
source
BeforeIT.search_and_matching_labourMethod
search_and_matching_labour(firms::Firms, model)

This function implements a labor search and matching algorithm. It takes in a Firms object and a Model object as input. The Firms object contains information about the number of desired employees (N_d_i) and the current number of employees (N_i) for each firm. The model object contains information about the current employment status (O_h) of each worker.

The function performs the following steps:

  • Calculates the vacancies (V_i) for each firm as the difference between desired and current employees.
  • Identifies employed workers and shuffles them randomly.
  • Fires workers from firms with negative vacancies to adjust the workforce.
  • Identifies unemployed workers and firms with positive vacancies.
  • Randomly matches unemployed workers to firms with vacancies until all vacancies are filled or there are no more unemployed workers.

The function returns:

  • N_i: An updated array of the number of employed workers for each firm.
  • O_h: An updated array where each element represents the firm a worker is employed with (0 if unemployed).
source
BeforeIT.search_and_matching!Function
search_and_matching!(model, multi_threading::Bool = false)

This function performs a search and matching algorithm for firms and for retail markets. It takes in a model object and an optional boolean argument for multi-threading. The function loops over all goods and performs the firms market and retail market operations for each good. Finally, it updates the aggregate variables based on the results of markets.

Args:

  • model: The model object
  • multi_threading: A boolean indicating whether to use multi-threading for the algorithm. Default is false.

This function updates the model in-place and does not return any value.

source
+\sum_h(\max(0, D_h)) - r_{bar} \cdot \max(0, -D_k)\]

source
BeforeIT.bank_rateMethod
bank_rate(bank, model)

Update the interest rate set by the bank.

Arguments

  • bank: The bank whose interest rate is to be updated
  • model: Model object

Returns

  • r: The updated interest rate

\[r = \bar{r} + \mu\]

source
BeforeIT.central_bank_equityMethod
central_bank_equity(cb, model)

Calculate the equity of the central bank.

Arguments

  • cb: The central bank
  • model: The model object

Returns

  • E_CB: The equity of the central bank

The equity E_CB is calculated as follows:

\[E_{CB} = E_{CB} + \Pi_{CB}\]

where \Pi_{CB} are the profits of the central bank.

source
BeforeIT.central_bank_rateMethod
central_bank_rate(cb, model)

Update the base interest rate set by the central bank according to the Taylor rule.

Arguments

  • cb: The central bank whose base interest rate is to be updated
  • model: The model object

Returns

  • r_bar: The updated base interest rate
source
BeforeIT.finance_insolvent_firms!Method
finance_insolvent_firms!(firms, bank, P_bar_CF, zeta_b,  insolvent)

Rifinance insolvent firms using bank equity.

Arguments

  • firms: The Firms object containing the firms of the model
  • bank: The Bank object containing the bank of the model
  • P_bar_CF: Capital price index
  • zeta_b: Parameter of loan-to-capital ratio for new firms after bankruptcy

Returns

  • This function does not return a value. It modifies the banks and firms collections in-place.
source
BeforeIT.taylor_ruleMethod
taylor_rule(rho, r_bar, r_star, pi_star, xi_pi, xi_gamma, gamma_EA, pi_EA)

Calculate the interest rate according to the Taylor rule.

Arguments

  • rho: Parameter for gradual adjustment of the policy rate.
  • r_bar: Nominal interest rate.
  • r_star: Real equilibrium interest rate.
  • pi_star: The target inflation rate.
  • xi_pi: Weight the CB puts on inflation targeting.
  • xi_gamma: Weight placed on economic growth.
  • gamma_EA: The output growth rate.
  • pi_EA: The inflation rate.

Returns

  • rate: The calculated interest rate.

The Taylor rule is given by the following equation:

\[r_t = ρ * r_{t-1} + (1 - ρ) * (r^* + π^* + ξ_π * (π_t - π^*) + ξ_γ * γ_t)```\]

source

Rest Of The World actions

BeforeIT.rotw_depositsMethod
rotw_deposits(rotw, tau_EXPORT)

Calculate the deposits of the rest of the world.

Arguments

  • rotw: The rest of the world object.
  • tau_EXPORT: The export tax.

Returns

  • D_RoW: The deposits of the rest of the world.

The deposits D_RoW are calculated as follows:

\[D_{RoW} = D_{RoW} + \left( \sum_{m} P_m \cdot Q_m \right) - (1 + \tau_{EXPORT}) \cdot C_l\]

source
BeforeIT.rotw_import_exportMethod
rotw_import_export(rotw, model, pi_e, epsilon_E, epsilon_I)

Calculate the demand for exports and supply of imports of the rest of the world.

Arguments

  • rotw: The rest of the world object.
  • model: The model object.

Returns

  • C_E: Total demand for exports.
  • Y_I: Supply of imports (in real terms).
  • C_d_l: TDemand for exports of specific product.
  • Y_m: Supply of imports per sector.
  • P_m: Price of imports per sector.
source

Markets

BeforeIT.search_and_matching_creditMethod
search_and_matching_credit(firms::Firms, model)

This function calculates the credit allocation for each firm in the given firms object.

Parameters:

  • firms::Firms: The firms object.
  • model: The model object.

Returns:

  • DL_i: An array of credit allocations for each firm.
source
BeforeIT.search_and_matching_labourMethod
search_and_matching_labour(firms::Firms, model)

This function implements a labor search and matching algorithm. It takes in a Firms object and a Model object as input. The Firms object contains information about the number of desired employees (N_d_i) and the current number of employees (N_i) for each firm. The model object contains information about the current employment status (O_h) of each worker.

The function performs the following steps:

  • Calculates the vacancies (V_i) for each firm as the difference between desired and current employees.
  • Identifies employed workers and shuffles them randomly.
  • Fires workers from firms with negative vacancies to adjust the workforce.
  • Identifies unemployed workers and firms with positive vacancies.
  • Randomly matches unemployed workers to firms with vacancies until all vacancies are filled or there are no more unemployed workers.

The function returns:

  • N_i: An updated array of the number of employed workers for each firm.
  • O_h: An updated array where each element represents the firm a worker is employed with (0 if unemployed).
source
BeforeIT.perform_firms_market!Method

Perform the firms market exchange process

source
BeforeIT.perform_retail_market!Method

Perform the retail market exchange process

source
BeforeIT.search_and_matching!Function
search_and_matching!(model, multi_threading::Bool = false)

This function performs a search and matching algorithm for firms and for retail markets. It takes in a model object and an optional boolean argument for multi-threading. The function loops over all goods and performs the firms market and retail market operations for each good. Finally, it updates the aggregate variables based on the results of markets.

Args:

  • model: The model object
  • multi_threading: A boolean indicating whether to use multi-threading for the algorithm. Default is false.

This function updates the model in-place and does not return any value.

source
diff --git a/dev/examples/basic_example-03acb1a0.svg b/dev/examples/basic_example-03acb1a0.svg new file mode 100644 index 0000000..39d46da --- /dev/null +++ b/dev/examples/basic_example-03acb1a0.svg @@ -0,0 +1,44 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/dev/examples/basic_example-29886d8c.svg b/dev/examples/basic_example-29886d8c.svg new file mode 100644 index 0000000..3e83f0d --- /dev/null +++ b/dev/examples/basic_example-29886d8c.svg @@ -0,0 +1,273 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/dev/examples/basic_example-7b90d60f.svg b/dev/examples/basic_example-7b90d60f.svg new file mode 100644 index 0000000..33d653f --- /dev/null +++ b/dev/examples/basic_example-7b90d60f.svg @@ -0,0 +1,280 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/dev/examples/basic_example-952228f8.svg b/dev/examples/basic_example-952228f8.svg deleted file mode 100644 index 77bb7a7..0000000 --- a/dev/examples/basic_example-952228f8.svg +++ /dev/null @@ -1,281 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/dev/examples/basic_example-b17081b5.svg b/dev/examples/basic_example-b17081b5.svg deleted file mode 100644 index 2922ea0..0000000 --- a/dev/examples/basic_example-b17081b5.svg +++ /dev/null @@ -1,44 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/dev/examples/basic_example-b50d133d.svg b/dev/examples/basic_example-b50d133d.svg deleted file mode 100644 index 2064c53..0000000 --- a/dev/examples/basic_example-b50d133d.svg +++ /dev/null @@ -1,282 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/dev/examples/basic_example.html b/dev/examples/basic_example.html index c3d25de..d0a0e32 100644 --- a/dev/examples/basic_example.html +++ b/dev/examples/basic_example.html @@ -22,10 +22,10 @@ "Y_EA" => 2.35485e6 "D_I" => 54049.0 ⋮ => ⋮

We can now initialise the model, by specifying in advance the maximum number of epochs.

T = 16
-model = Bit.init_model(parameters, initial_conditions, T)
Model(Workers{Vector{Float64}, Vector{Int64}}([0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249  …  4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569], [3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487  …  22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958], [6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249  …  42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032], [0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983  …  11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), Workers{Vector{Float64}, Vector{Int64}}([2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714  …  2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714], [13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984  …  13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984], [25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977  …  25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1  …  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), Firms{Vector{Float64}, Vector{Int64}}([1, 1, 1, 1, 1, 1, 1, 1, 1, 1  …  62, 62, 62, 62, 62, 62, 62, 62, 62, 62], [10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621  …  11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951], [1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485  …  3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877], [0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754  …  0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983  …  2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687], [0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721  …  0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782], [0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832  …  0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318], [-0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635  …  0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037], [10, 1, 3, 5, 2, 1, 1, 1, 2, 3  …  1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [108.22026659306621, 10.822026659306621, 32.46607997791986, 54.11013329653311, 21.644053318613242, 10.822026659306621, 10.822026659306621, 10.822026659306621, 21.644053318613242, 32.46607997791986  …  11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [108.22026659306621, 10.822026659306621, 32.46607997791986, 54.11013329653311, 21.644053318613242, 10.822026659306621, 10.822026659306621, 10.822026659306621, 21.644053318613242, 32.46607997791986  …  11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0  …  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2981.5365853658536, 298.15365853658534, 894.460975609756, 1490.7682926829268, 596.3073170731707, 298.15365853658534, 298.15365853658534, 298.15365853658534, 596.3073170731707, 894.460975609756  …  79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334], [76.5511425407355, 7.65511425407355, 22.965342762220647, 38.27557127036775, 15.3102285081471, 7.65511425407355, 7.65511425407355, 7.65511425407355, 15.3102285081471, 22.965342762220647  …  4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064], [940.8074124607996, 94.08074124607997, 282.2422237382399, 470.4037062303998, 188.16148249215993, 94.08074124607997, 94.08074124607997, 94.08074124607997, 188.16148249215993, 282.2422237382399  …  24.99375238071137, 24.99375238071137, 24.99375238071137, 24.99375238071137, 24.99375238071137, 24.99375238071137, 24.99375238071137, 24.99375238071137, 24.99375238071137, 24.99375238071137], [0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726  …  0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956], [123.84292053067003, 12.384292053067004, 37.15287615920101, 61.921460265335014, 24.768584106134007, 12.384292053067004, 12.384292053067004, 12.384292053067004, 24.768584106134007, 37.15287615920101  …  13.530111496595195, 13.530111496595195, 13.530111496595195, 13.530111496595195, 13.530111496595195, 13.530111496595195, 13.530111496595195, 13.530111496595195, 13.530111496595195, 13.530111496595195], [12.548454674764377, 1.2548454674764373, 3.764536402429312, 6.274227337382189, 2.5096909349528747, 1.2548454674764373, 1.2548454674764373, 1.2548454674764373, 2.5096909349528747, 3.764536402429312  …  3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [7.749284819252181, 1.3061857958470848, 2.7379855788259944, 4.169785361804905, 2.02208568733654, 1.3061857958470848, 1.3061857958470848, 1.3061857958470848, 2.02208568733654, 2.7379855788259944  …  2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [70.53582526964651, 11.88921238727358, 24.921793027800895, 37.954373668328216, 18.405502707537238, 11.88921238727358, 11.88921238727358, 11.88921238727358, 18.405502707537238, 24.921793027800895  …  23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181], [38.25246668743176, 6.447669663541784, 13.515402335517333, 20.583135007492885, 9.981535999529559, 6.447669663541784, 6.447669663541784, 6.447669663541784, 9.981535999529559, 13.515402335517333  …  12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651]), Bank{Float64}(89460.0, 6476.292527744358, 0.0, 126431.00000000006, 0.028359903595743693, 3695.3696336675216, 0.0, 0.0, 0.0, 0.0, 33636.12938055408, 18241.296726948152), CentralBank{Float64}(0.0016459319014481277, 0.0089810924595537, 0.9259668580654086, -0.003424572940686137, 0.0049629315732038215, 0.30996974466133875, 1.328593153520194, 106179.90000000002), Government{Float64}(0.9905949533296431, 0.09373211872949586, 0.011235005057648862, 0.0, 14732.121510837034, 232610.9, 2.238468336136841, 0.5902859043576301, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.0, 0.0), RestOfTheWorld{Float64}(0.962809216044625, 0.39260026877953946, 0.020320381298662014, 0.9662360466537488, 0.35492769963078624, 0.02122821278168188, 2.3548476e6, 0.0, 0.0019383188997990075, 0.38456173629534834, 0.0026219533879005877, 0.0025327891562467505, 0.9635784504324201, 0.5360029623199525, 0.006618207536795881, 0.0, 33097.63671130043, 34095.03119997918, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.0, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.0), Aggregates{Float64, Int64}([104531.39273728609, 105062.38754395355, 105399.12953350678, 106689.88106040593, 107938.33111423723, 108890.48532381697, 110110.17779727321, 110374.00540561741, 110808.89423399912, 111932.48072916963  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.007497362866886709, -0.007895434153021436, -0.0019938777296781562, -0.0035311300388783107, 0.001212170001002849, -0.001672412335241874, 0.001839696090252002, 0.004290005139261838, 0.00600429551344886, 0.0036060572293247772  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 1.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0  …  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1), MutableNamedTuple(tau_VAT = 0.1528683933530887, tau_EXPORT = 0.0029486201783457183, tau_SIW = 0.17114894621657745, psi_H = 0.07125099957246343, tau_FIRM = 0.07701197259426128, H_inact = 4130, theta_DIV = 0.7858074440019603, I_s = [48, 2, 1, 1, 5, 2, 4, 1, 1, 1  …  14, 10, 13, 41, 20, 16, 7, 7, 2, 19], psi = 0.9096681249468772, tau_INC = 0.21340742230566648, zeta_b = 0.5, tau_CF = 0.08761417854834112, H_act = 4743, zeta = 0.03, mu = 0.026713971694295565, tau_G = 0.009147800682711324, theta_UB = 0.3585824478060919, T_prime = 54, tau_SIF = 0.21215146534992413, T = 16, zeta_LTV = 0.6, I = 624, products = MutableNamedTuple(a_sg = [0.37790282216028437 0.0 … 0.0 0.0; 0.0006712800413285777 0.8149348034258406 … 2.4029219530949635e-5 0.00019143106686926454; … ; 0.00037430822580994426 0.000357977071568566 … 0.3197327950788158 0.0011366219595362582; 0.0 5.36965607352849e-5 … 0.0 0.05594572929254256], b_CF_g = [0.0033476048872100555, 0.0, 0.0, 0.0008050086095806136, 0.0, 0.003306696048303853, 0.0030629933432974495, 0.0, 0.0, 0.0  …  0.0017883064872300512, 0.0, 0.0, 0.0, 0.0, 0.002291709084994238, 0.0, 0.0, 0.0, 0.0], b_CFH_g = [0.0006092803753845975, 0.0, 0.0, 0.004372477702289994, 0.0, 0.0, 0.06710603871527036, 0.0, 0.0, 0.0  …  0.0041711096896454745, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], c_E_g = [0.005090338238241512, 0.0005933402816643566, 1.793599921320476e-5, 0.007268146142708006, 0.05434404438533037, 0.02138421321578873, 0.023894091259534518, 0.028037089231640524, 0.005923381894006229, 0.011927802553688313  …  0.0014618202435669027, 0.0009447261124040238, 0.0001280209174610526, 0.0010477673386531637, 0.0, 0.0013030104043795392, 5.5260305268213854e-5, 0.0, 1.307076865739618e-5, 8.641230390167474e-6], b_HH_g = [0.011287997598927976, 0.0020040637862256817, 0.0003326837475323491, 0.00034402684015257527, 0.06305103828047173, 0.03068200872784047, 0.0003505790613555631, 0.0020473225369636873, 0.0, 0.0191077565617325  …  0.005591228759882936, 0.0004356874830029748, 0.014434120586233577, 0.03514505772295519, 0.024907176866291014, 0.013342154173060372, 0.009686226103767459, 0.011051272187723254, 0.0021206651420422927, 0.01721782824162338], c_G_g = [0.0, 0.0, 0.0, 0.0, 8.57086390274792e-6, 0.0, 0.0, 0.0, 2.4536198623552867e-5, 0.0  …  0.008555738848801895, 0.3324338967920097, 0.22067672180252998, 0.2370889178393625, 0.0477595425645907, 0.012942508661614227, 0.004667927760053456, 0.021757222045203074, 0.0, 0.002000708524749294], c_I_g = [0.016810689305736877, 0.004087420487057966, 0.00036885674795364003, 0.05818437780960789, 0.04895082866561155, 0.04689140072807505, 0.010101572733480902, 0.016066325760592727, 0.00037371898454196314, 0.041008926225895866  …  0.0018123421762754539, 0.000401097116716159, 0.0003479865324437806, 0.0006664256271585853, 0.0028556289501379516, 0.001307065586721844, 6.418152296577174e-5, 0.0, 3.538212163497461e-5, 0.00020458795490837936]), J = 156, G = 62, H = 8873, L = 312, theta = 0.05, C = [4.3800671000101816e-5 0.00010629745355671226 9.959785873214212e-5; 0.00010629745355671226 0.0004129178961230129 0.0003596689472264872; 9.959785873214212e-5 0.0003596689472264872 0.0004506370179043619]))

Note that the it is very simple to inspect the model by typing

fieldnames(typeof(model))
(:w_act, :w_inact, :firms, :bank, :cb, :gov, :rotw, :agg, :prop)

and to inspect the specific attributes of one agent type by typing

fieldnames(typeof(model.bank))
(:E_k, :Pi_k, :Pi_e_k, :D_k, :r, :Y_h, :C_d_h, :I_d_h, :C_h, :I_h, :K_h, :D_h)

We can now define a data tracker, which will store the time series of the model.

data = Bit.init_data(model);

We can run now the model for a number of epochs and progressively update the data tracker.

for t in 1:T
+model = Bit.init_model(parameters, initial_conditions, T)
Model(Workers{Vector{Float64}, Vector{Int64}}([0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249, 0.7661282859097249  …  4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569, 4.655745607447569], [3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487, 3.781806633594487  …  22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958, 22.981960001210958], [6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249, 6.973481059156249  …  42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032, 42.37769888790032], [0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983  …  11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522, 11.337587012313522], [1, 2, 3, 4, 4, 5, 6, 7, 8, 9  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), Workers{Vector{Float64}, Vector{Int64}}([2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714  …  2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714, 2.8287542404944714], [13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984  …  13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984, 13.963459838592984], [25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977  …  25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977, 25.74799087814977], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1  …  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), Firms{Vector{Float64}, Vector{Int64}}([1, 1, 1, 1, 1, 1, 1, 1, 1, 1  …  62, 62, 62, 62, 62, 62, 62, 62, 62, 62], [10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621  …  11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951], [1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485, 1.6631751855300485  …  3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877, 3.4759574544453877], [0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754, 0.042702129272078754  …  0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946, 0.17805766706016946], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983, 0.2697101055708983  …  2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687, 2.6020133813757687], [0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721, 0.011078553057541721  …  0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782, 0.012425621091468782], [0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832, 0.009528627732528832  …  0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318, 0.010357147774366318], [-0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635, -0.26105054841223635  …  0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037, 0.013413693877270037], [1, 1, 1, 2, 1, 1, 1, 1, 1, 1  …  1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [10.822026659306621, 10.822026659306621, 10.822026659306621, 21.644053318613242, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621  …  11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [10.822026659306621, 10.822026659306621, 10.822026659306621, 21.644053318613242, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621, 10.822026659306621  …  11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951, 11.988103388298951], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0  …  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [298.15365853658534, 298.15365853658534, 298.15365853658534, 596.3073170731707, 298.15365853658534, 298.15365853658534, 298.15365853658534, 298.15365853658534, 298.15365853658534, 298.15365853658534  …  79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334, 79.20833333333334], [7.65511425407355, 7.65511425407355, 7.65511425407355, 15.3102285081471, 7.65511425407355, 7.65511425407355, 7.65511425407355, 7.65511425407355, 7.65511425407355, 7.65511425407355  …  4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064, 4.057486672347064], [94.08074124607995, 94.08074124607995, 94.08074124607995, 188.1614824921599, 94.08074124607995, 94.08074124607995, 94.08074124607995, 94.08074124607995, 94.08074124607995, 94.08074124607995  …  24.993752380711367, 24.993752380711367, 24.993752380711367, 24.993752380711367, 24.993752380711367, 24.993752380711367, 24.993752380711367, 24.993752380711367, 24.993752380711367, 24.993752380711367], [0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726, 0.36061475737617726  …  0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956, 0.35565736393550956], [12.384292053067, 12.384292053067, 12.384292053067, 24.768584106134, 12.384292053067, 12.384292053067, 12.384292053067, 12.384292053067, 12.384292053067, 12.384292053067  …  13.530111496595191, 13.530111496595191, 13.530111496595191, 13.530111496595191, 13.530111496595191, 13.530111496595191, 13.530111496595191, 13.530111496595191, 13.530111496595191, 13.530111496595191], [1.2548454674764378, 1.2548454674764378, 1.2548454674764378, 2.5096909349528755, 1.2548454674764378, 1.2548454674764378, 1.2548454674764378, 1.2548454674764378, 1.2548454674764378, 1.2548454674764378  …  3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878, 3.5771064837982878], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.3061857958470853, 1.3061857958470853, 1.3061857958470853, 2.0220856873365403, 1.3061857958470853, 1.3061857958470853, 1.3061857958470853, 1.3061857958470853, 1.3061857958470853, 1.3061857958470853  …  2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208, 2.631055234104208], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [11.889212387273586, 11.889212387273586, 11.889212387273586, 18.40550270753724, 11.889212387273586, 11.889212387273586, 11.889212387273586, 11.889212387273586, 11.889212387273586, 11.889212387273586  …  23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181, 23.94848771160181], [6.447669663541786, 6.447669663541786, 6.447669663541786, 9.98153599952956, 6.447669663541786, 6.447669663541786, 6.447669663541786, 6.447669663541786, 6.447669663541786, 6.447669663541786  …  12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651, 12.987566600381651]), Bank{Float64}(89460.0, 6476.292527744357, 0.0, 126431.00000000006, 0.028359903595743693, 3695.3696336675207, 0.0, 0.0, 0.0, 0.0, 33636.12938055406, 18241.296726948145), CentralBank{Float64}(0.0016459319014481277, 0.0089810924595537, 0.9259668580654086, -0.003424572940686137, 0.0049629315732038215, 0.30996974466133875, 1.328593153520194, 106179.90000000002), Government{Float64}(0.9905949533296431, 0.09373211872949586, 0.011235005057648862, 0.0, 14732.121510837034, 232610.9, 2.238468336136841, 0.5902859043576301, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.0, 0.0), RestOfTheWorld{Float64}(0.962809216044625, 0.39260026877953946, 0.020320381298662014, 0.9662360466537488, 0.35492769963078624, 0.02122821278168188, 2.3548476e6, 0.0, 0.0019383188997990075, 0.38456173629534834, 0.0026219533879005877, 0.0025327891562467505, 0.9635784504324201, 0.5360029623199525, 0.006618207536795881, 0.0, 33097.63671130043, 34095.03119997918, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.0, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.0), Aggregates{Float64, Int64}([104531.39273728609, 105062.38754395355, 105399.12953350678, 106689.88106040593, 107938.33111423723, 108890.48532381697, 110110.17779727321, 110374.00540561741, 110808.89423399912, 111932.48072916963  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.007497362866886709, -0.007895434153021436, -0.0019938777296781562, -0.0035311300388783107, 0.001212170001002849, -0.001672412335241874, 0.001839696090252002, 0.004290005139261838, 0.00600429551344886, 0.0036060572293247772  …  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 1.0, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0  …  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1), MutableNamedTuple(tau_VAT = 0.1528683933530887, tau_EXPORT = 0.0029486201783457183, tau_SIW = 0.17114894621657745, psi_H = 0.07125099957246343, tau_FIRM = 0.07701197259426128, H_inact = 4130, theta_DIV = 0.7858074440019603, I_s = [48, 2, 1, 1, 5, 2, 4, 1, 1, 1  …  14, 10, 13, 41, 20, 16, 7, 7, 2, 19], psi = 0.9096681249468772, tau_INC = 0.21340742230566648, zeta_b = 0.5, tau_CF = 0.08761417854834112, H_act = 4743, zeta = 0.03, mu = 0.026713971694295565, tau_G = 0.009147800682711324, theta_UB = 0.3585824478060919, T_prime = 54, tau_SIF = 0.21215146534992413, T = 16, zeta_LTV = 0.6, I = 624, products = MutableNamedTuple(a_sg = [0.37790282216028437 0.0 … 0.0 0.0; 0.0006712800413285777 0.8149348034258406 … 2.4029219530949635e-5 0.00019143106686926454; … ; 0.00037430822580994426 0.000357977071568566 … 0.3197327950788158 0.0011366219595362582; 0.0 5.36965607352849e-5 … 0.0 0.05594572929254256], b_CF_g = [0.0033476048872100555, 0.0, 0.0, 0.0008050086095806136, 0.0, 0.003306696048303853, 0.0030629933432974495, 0.0, 0.0, 0.0  …  0.0017883064872300512, 0.0, 0.0, 0.0, 0.0, 0.002291709084994238, 0.0, 0.0, 0.0, 0.0], b_CFH_g = [0.0006092803753845975, 0.0, 0.0, 0.004372477702289994, 0.0, 0.0, 0.06710603871527036, 0.0, 0.0, 0.0  …  0.0041711096896454745, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], c_E_g = [0.005090338238241512, 0.0005933402816643566, 1.793599921320476e-5, 0.007268146142708006, 0.05434404438533037, 0.02138421321578873, 0.023894091259534518, 0.028037089231640524, 0.005923381894006229, 0.011927802553688313  …  0.0014618202435669027, 0.0009447261124040238, 0.0001280209174610526, 0.0010477673386531637, 0.0, 0.0013030104043795392, 5.5260305268213854e-5, 0.0, 1.307076865739618e-5, 8.641230390167474e-6], b_HH_g = [0.011287997598927976, 0.0020040637862256817, 0.0003326837475323491, 0.00034402684015257527, 0.06305103828047173, 0.03068200872784047, 0.0003505790613555631, 0.0020473225369636873, 0.0, 0.0191077565617325  …  0.005591228759882936, 0.0004356874830029748, 0.014434120586233577, 0.03514505772295519, 0.024907176866291014, 0.013342154173060372, 0.009686226103767459, 0.011051272187723254, 0.0021206651420422927, 0.01721782824162338], c_G_g = [0.0, 0.0, 0.0, 0.0, 8.57086390274792e-6, 0.0, 0.0, 0.0, 2.4536198623552867e-5, 0.0  …  0.008555738848801895, 0.3324338967920097, 0.22067672180252998, 0.2370889178393625, 0.0477595425645907, 0.012942508661614227, 0.004667927760053456, 0.021757222045203074, 0.0, 0.002000708524749294], c_I_g = [0.016810689305736877, 0.004087420487057966, 0.00036885674795364003, 0.05818437780960789, 0.04895082866561155, 0.04689140072807505, 0.010101572733480902, 0.016066325760592727, 0.00037371898454196314, 0.041008926225895866  …  0.0018123421762754539, 0.000401097116716159, 0.0003479865324437806, 0.0006664256271585853, 0.0028556289501379516, 0.001307065586721844, 6.418152296577174e-5, 0.0, 3.538212163497461e-5, 0.00020458795490837936]), J = 156, G = 62, H = 8873, L = 312, theta = 0.05, C = [4.3800671000101816e-5 0.00010629745355671226 9.959785873214212e-5; 0.00010629745355671226 0.0004129178961230129 0.0003596689472264872; 9.959785873214212e-5 0.0003596689472264872 0.0004506370179043619]))

Note that the it is very simple to inspect the model by typing

fieldnames(typeof(model))
(:w_act, :w_inact, :firms, :bank, :cb, :gov, :rotw, :agg, :prop)

and to inspect the specific attributes of one agent type by typing

fieldnames(typeof(model.bank))
(:E_k, :Pi_k, :Pi_e_k, :D_k, :r, :Y_h, :C_d_h, :I_d_h, :C_h, :I_h, :K_h, :D_h)

We can now define a data tracker, which will store the time series of the model.

data = Bit.init_data(model);

We can run now the model for a number of epochs and progressively update the data tracker.

for t in 1:T
     Bit.run_one_epoch!(model; multi_threading = true)
     Bit.update_data!(data, model)
-end

Note that we can equivalently run the model for a number of epochs in the single command data = BeforeIT.run_one_sim!(model), but writing the loop explicitely is more instructive.

We can then plot any time series stored in the data tracker, for example

plot(data.real_gdp, title = "gdp", titlefont = 10)
Example block output

Or we can plot multiple time series at once using the function plot_data

ps = Bit.plot_data(data, quantities = [:real_gdp, :real_household_consumption, :real_government_consumption, :real_capitalformation, :real_exports, :real_imports, :wages, :euribor, :gdp_deflator])
-plot(ps..., layout = (3, 3))
Example block output

To run multiple monte-carlo repetitions in parallel we can use

model = Bit.init_model(parameters, initial_conditions, T)
-data_vector = Bit.run_n_sims(model, 4)
BeforeIT.DataVector(BeforeIT.Data[BeforeIT.Data{Float64, Vector{Float64}, Matrix{Float64}}([72422.0, 72261.72471842117, 71281.34249787165, 72415.0937550587, 72552.82256083682, 72431.34094068738, 72924.5068761251, 73773.93708061901, 74181.87140036981, 74539.17458762674, 75423.86733547597, 74873.60771677352, 75387.7306897918, 76567.95344829277, 76629.10064745527, 76274.23876364478, 77475.55068086338], [72422.0, 72295.8839104264, 70945.81175759561, 71973.74107058211, 71672.06713057922, 71603.15217403913, 72158.49557648113, 72930.00293182943, 73240.68252846393, 73268.85056562767, 73785.7653066205, 73032.65373714102, 73029.36000486909, 74027.41613992819, 74056.14172630096, 73654.57507036068, 74671.439843943], [64900.92049553802, 64774.805266484735, 63862.08059213402, 64889.61176945754, 64998.59464690491, 64884.45118139118, 65335.66820708844, 66107.40511566389, 66471.46535765215, 66789.01584048258, 67594.50719451251, 67091.05256427304, 67548.59446965608, 68631.50853734717, 68684.75506279217, 68344.90541947984, 69436.1966284175], [64900.92049553802, 64805.4252803139, 63561.47330240338, 64494.12509859904, 64209.543812302705, 64142.55447064869, 64649.37134667312, 65351.17196785168, 65628.102925391, 65650.77287365042, 66126.44803384501, 65441.452071090695, 65435.457178649376, 66354.30377848913, 66378.54173400535, 65997.57727500433, 66923.05809982136], [40512.94792630534, 40352.22978808121, 40025.4294128378, 40569.41927402573, 40745.200401784976, 40675.075069590326, 40819.204879293546, 41247.98959664229, 41500.44732653624, 41722.868313635365, 42121.729882539024, 41880.494449709746, 42106.21448253402, 42576.28888263774, 42684.15282248925, 42664.191130490406, 43197.50036205236], [40512.94792630534, 40371.304887250815, 39837.024404035394, 40322.1583623046, 40250.57379396807, 40209.99131140346, 40390.43307788614, 40776.13478765352, 40973.90683267298, 41011.8118499874, 41206.90419649208, 40850.75826793241, 40788.99666764464, 41163.6006039691, 41250.95615348741, 41198.87552302539, 41634.03191518627], [14866.888022051655, 14756.62371804465, 14706.644186901702, 14807.972754864772, 15007.380908593726, 15130.08941891924, 15308.253558623652, 15503.182798294722, 15529.558285753285, 15766.051886730675, 15967.573613924385, 15952.067679574939, 16375.755176720968, 16478.814200493158, 16189.945066969003, 16355.413480630727, 16779.033086047137], [14866.888022051655, 14763.599393547804, 14637.418060708078, 14717.721701001323, 14825.198716879471, 14957.090135288785, 15147.453085558534, 15325.834728011972, 15332.525679696779, 15497.361033168103, 15620.780010561035, 15559.846396620782, 15863.468885584727, 15932.044430784834, 15646.338744552379, 15793.681451857206, 16171.741261772919], [15944.236265986641, 16547.46139012076, 15845.046840029207, 16317.385884746067, 16174.709322221997, 15762.218959949427, 16080.329858144469, 16459.61103861553, 16650.154037148845, 15968.249424461073, 17048.45280322267, 16552.08452550965, 16088.53889869156, 16886.71107899789, 17140.2523284664, 16877.840414992304, 16551.751349844646], [15944.236265986641, 16555.283621226183, 15770.462101447683, 16217.935318704787, 15978.356340138633, 15581.991830221566, 15911.419365622858, 16271.321943835315, 16438.903776142288, 15696.112646110792, 16678.1839995615, 16145.110335168583, 15585.23765650347, 16326.407223668402, 16564.737742405185, 16298.165462178831, 15952.685645603366], [15944.236265986641, 15903.16152527303, 15723.149528178164, 15961.406950741726, 16005.613102458465, 15979.09429741388, 16043.058748310583, 16228.95011803029, 16329.135983935088, 16414.752441359928, 16600.836399520296, 16491.49368859639, 16594.47902809325, 16813.25376150237, 16853.93059380645, 16801.479283665572, 17056.613748399057], [15944.236265986641, 15910.679186249821, 15649.138576422896, 15864.125991200872, 15811.31286496223, 15796.387388685405, 15874.539757802573, 16043.299660082757, 16121.958667081355, 16135.00619441277, 16240.2892047471, 16086.00927476999, 16075.350351406345, 16255.38723206792, 16288.029771384496, 16224.426978898902, 16439.27531023722], [3173.2320350842083, 3156.9738626337885, 3136.572462611857, 3177.2873917384136, 3190.913315159333, 3188.8043613083696, 3197.220029637389, 3230.919424657729, 3250.530199030681, 3267.012598951603, 3296.2569559477793, 3280.434465085235, 3298.9585067453336, 3314.1411404204487, 3331.9810852158994, 3336.6526996103307, 3379.5021910771798], [3173.2320350842083, 3158.46621113155, 3121.808199714575, 3157.922584666, 3152.1772035841936, 3152.343184188411, 3163.6358920811263, 3193.9594447196014, 3209.288817634276, 3211.334968932465, 3224.6668161429575, 3199.7768199205143, 3195.7564742408827, 3204.177391446672, 3220.1038690423015, 3222.0542706262854, 3257.186200624508], [34195.564496956766, 31706.52797696222, 31626.754644168497, 31982.563067735387, 32394.798623632618, 32796.45907006331, 33671.278753785424, 33569.723946769824, 33056.82873090624, 32575.89484576405, 32344.343999790653, 31399.84058809731, 32303.308691187776, 32623.841286153714, 32654.412752214383, 32535.730193916395, 32845.75053958754], [34195.564496956766, 31721.51612430032, 31477.88331225433, 31787.636991769345, 32001.541768932842, 32421.460365981504, 33317.589972006244, 33185.704365801, 32637.417373997945, 32020.724467374068, 31641.8696054137, 30627.797364146572, 31292.75729845799, 31541.37685819159, 31557.982520148813, 31418.279892149287, 31656.9480822261], [33097.63671130043, 31101.118154788044, 30922.53258606568, 31262.247226313266, 31769.266695396174, 31932.501577834995, 32954.56017372143, 33006.57029970382, 32555.116979975275, 31493.889882964315, 32058.23296400045, 30910.87952611775, 31486.086559342748, 31997.70199999034, 32039.66232268402, 32158.93645638525, 31898.484656669145], [33097.63671130043, 31115.820115899074, 30776.976120850064, 31071.711303197946, 31383.603489339508, 31567.381468856252, 32608.399924592155, 32628.992893472885, 32142.071134046502, 30957.159431012613, 31361.972505407535, 30150.858626726855, 30501.100503321984, 30936.01297668631, 30963.873434293102, 31054.42725885027, 30743.967060846513], [29576.147776884878, 29518.675515737905, 29124.025315909188, 29569.99360020722, 29650.73653846254, 29575.302382438113, 29694.285393110244, 30066.20678061372, 30232.592571550947, 30392.62267883786, 30736.123406886618, 30499.751563843325, 30654.818769291873, 31109.20548858297, 31186.595268932964, 31078.973313708117, 31552.02375395757], [34346.71094688275, 34279.96854499965, 33781.459459503414, 34347.13298474562, 34375.26466100839, 34338.273523783, 34652.308093101514, 35037.29629098138, 35231.987704059786, 35388.64107870814, 35841.991273954816, 35582.40953753418, 35880.91023339269, 36490.386553875345, 36467.556900150164, 36241.558613376525, 36844.24208553145], [28335.329312139664, 28280.26820485153, 27869.00847391326, 28335.677484686523, 28358.885538355495, 28328.368611813887, 28587.44066534464, 28905.04800146144, 29065.664408440087, 29194.900216939586, 29568.904793270158, 29354.7552056642, 29601.01213344207, 30103.817548363306, 30084.983554116072, 29898.539620965854, 30395.74107588547], [978.0617717704337, 976.1612057471267, 956.5958167214617, 972.4851845046691, 972.5934474340173, 970.8752751700957, 989.0747208767303, 1003.9020440687905, 1006.8850820413442, 1007.7520829366229, 1016.3925136710792, 1008.8914628954642, 1012.8654669715431, 1031.916494888831, 1030.6028937090762, 1024.3734923952331, 1039.9307889284917], [0.0019383188997990075, 0.0033377938821534947, 0.0029167714235693865, 0.003966093139174953, 0.0012014712571790653, 0.001062658304219033, 0.00389959767678838, 0.0035425937308115607, 0.005711662719937838, 0.003124835266633097, 0.006427543823254389, -0.0010856491146444824, 0.0029065221066268965, 0.0030552492760622663, 0.007490259507987318, 0.004243305280670739, 0.007650798607264919], [2.3548476e6, 2.3253478407580536e6, 2.3118571498940894e6, 2.323337782832051e6, 2.315208354436807e6, 2.3220739665255006e6, 2.3406804668413643e6, 2.341365916560376e6, 2.3409942773712105e6, 2.3304903412811044e6, 2.320927611753943e6, 2.290477886359066e6, 2.30837283229992e6, 2.3239368066658466e6, 2.3357783807886853e6, 2.3411130431032274e6, 2.3521166434527533e6], [0.0016459319014481277, 0.0003684950460678617, 0.0, 0.0005794673174966443, 0.00021997461333060647, 0.0005197556046618663, 0.0013589108560630228, 0.0013684059019620767, 0.0013825575181104796, 0.0009105747031261154, 0.0005870600061240693, 0.0, 0.0008351611134573856, 0.001506625497390663, 0.00206816306747933, 0.002237069282266634, 0.00270932995701031], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.9046295086172; 517.076701213853 257.74144901633974 … 136.73101585594438 503.9235006969701; … ; 552.3451959916507 267.27656873718234 … 143.46074182796647 533.2546088789047; 560.9149851373193 278.17694593371925 … 145.76090621168873 542.1321444922927], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.9046295086172; 517.3211310608717 257.8632872326146 … 136.79565064070619 504.1617128304798; … ; 533.3747194644044 258.09686750993 … 138.53353569821527 514.9398048139922; 540.6135122908277 268.10875046019123 … 140.48530980591207 522.5104882658566]), BeforeIT.Data{Float64, Vector{Float64}, Matrix{Float64}}([72422.0, 72757.14090955805, 72937.80815511568, 72753.15869263453, 73551.51998191312, 73600.45540150159, 73308.72553873362, 73699.32683123552, 72694.9487967447, 72662.63905033006, 73871.29825840566, 74218.73011357327, 73623.4402020617, 74269.46537658059, 75181.18509014923, 75489.57278492431, 75924.71696418739], [72422.0, 72742.45572315402, 73324.19359371641, 72906.8218479765, 73115.85924000865, 72831.35990642413, 72467.02420373332, 72151.37407750428, 71077.84453537583, 71000.38794440673, 71715.22790788795, 71703.20079109095, 70958.41053902043, 71410.81498736783, 71963.13524793823, 71892.24802606595, 71605.75490830987], [64900.92049553802, 65207.34801280065, 65366.32467339926, 65182.28380781821, 65894.63596932907, 65925.02822391683, 65636.05555326922, 65990.32837388074, 65065.55362167924, 65040.75260611015, 66145.46255912514, 66476.41360523064, 65941.85070530867, 66519.6515029749, 67336.99988969907, 67607.37320955658, 68000.80022691787], [64900.92049553802, 65194.186664670306, 65712.60044816528, 65319.95639251823, 65504.32852223645, 65236.13789106115, 64882.44873256204, 64604.29250465373, 63618.16579389314, 63552.861932682936, 64214.8850004888, 64223.298152816875, 63554.880092645464, 63959.29339759345, 64454.711966062685, 64385.661010693984, 64132.58856024945], [40512.94792630534, 40687.2275056669, 40832.69567525355, 40868.75101037492, 41359.10145652339, 41465.46102043044, 41439.896568660646, 41605.02000765913, 41139.94786367086, 41028.57727642195, 41486.19800819166, 41564.465412416605, 41211.029123035805, 41544.306539904646, 42100.12486310955, 42326.4017206551, 42567.79837148296], [40512.94792630534, 40679.01525993115, 41049.00542498147, 40955.07057845957, 41114.123013800796, 41032.163439618525, 40964.10032465577, 40731.16392160045, 40224.786822855654, 40089.99592507643, 40275.346654689376, 40155.701999754514, 39719.2676031188, 39945.25573944841, 40298.07425682642, 40309.41040323309, 40146.33783373208], [14866.888022051655, 14692.280058071268, 14594.627557353091, 14559.568014027831, 14911.055434149801, 14887.565014420785, 15158.273763789708, 15409.67716444342, 15296.61638105839, 15479.009351317993, 16048.000647078597, 16109.543855192098, 16042.973124383887, 16174.330227825958, 16354.400440959222, 16366.81744360839, 16549.494088199008], [14866.888022051655, 14689.314591470269, 14671.942076566093, 14590.319519552193, 14822.73419381897, 14731.9958793821, 14984.232554240372, 15086.018140319175, 14956.342071167925, 15124.907150391824, 15579.610092208191, 15563.535726549335, 15462.247758352174, 15551.776192104946, 15654.367903624574, 15586.885123930953, 15608.079488726518], [15944.236265986641, 16571.600757542077, 16923.543315242776, 16557.286495109216, 16684.18995569002, 17287.880776427817, 15869.962693512945, 16402.384481552126, 16105.133711850025, 15253.408014975003, 15412.301572813325, 16133.462017525273, 15857.500321489602, 16464.010718552905, 16869.68499383328, 15961.135086773302, 16103.126173572733], [15944.236265986641, 16568.255971819413, 17013.195182661573, 16592.257415031585, 16585.3660758306, 17107.22929605238, 15687.750157592145, 16057.875008838502, 15746.873876931279, 14904.466734099833, 14962.465070168717, 15586.643219680858, 15283.488721074436, 15830.306807935593, 16147.59625490935, 15200.534856716164, 15187.103121982373], [15944.236265986641, 16016.789000576793, 16073.284940769769, 16042.320798256093, 16207.567242922927, 16229.840551155401, 16159.019435182312, 16250.351334659736, 16001.294388332622, 15979.572671322923, 16205.395393076255, 16273.583733686799, 16171.014243094589, 16278.288790282682, 16502.445723712255, 16573.89996198286, 16653.089753621796], [15944.236265986641, 16013.556197182854, 16158.432594759966, 16076.204050573459, 16111.566497170097, 16060.245170452563, 15973.488065881638, 15909.035108594471, 15645.344466486753, 15614.019442149802, 15732.410981685462, 15722.015726509626, 15585.65403008321, 15651.73336336379, 15796.0762671307, 15784.099483790393, 15705.782135827956], [3173.2320350842083, 3185.4869019469957, 3198.276714675389, 3201.1007980931404, 3239.508167188241, 3247.83892544462, 3245.8365548083793, 3258.7700739224733, 3222.3426624042254, 3216.4153563247905, 3250.015672561401, 3256.6206652273663, 3234.3127844606456, 3259.0269775447046, 3297.9319184672345, 3310.299275119781, 3320.2543456937437], [3173.2320350842083, 3184.843948302068, 3215.2194715585997, 3207.8618962783175, 3220.3198957307663, 3213.900300028914, 3208.5691634944833, 3190.324101257667, 3150.6614226865354, 3142.8357278797466, 3155.157959274499, 3146.2425334128493, 3117.236762388264, 3133.5862100560066, 3156.7674864737787, 3152.552700297507, 3131.3823536956975], [34195.564496956766, 33641.35014495978, 33930.435228903865, 34634.93575840518, 33484.84134594639, 33851.77694423968, 34392.22689788687, 34245.17707596013, 35745.724886402655, 35614.89068247676, 36579.60096269297, 35613.20674462212, 35893.72479553239, 35911.27020851794, 35254.18161353397, 35417.706637788724, 35700.51152461849], [34195.564496956766, 33634.560027981795, 34110.18049997035, 34708.088781715, 33286.50376125862, 33498.03933478934, 33997.349165654436, 33525.90434395625, 34950.55871603855, 34800.154358583, 35511.957711134826, 34406.15206049264, 34594.43966250144, 34529.036392262686, 33745.16425177426, 33729.937210968805, 33669.695200035065], [33097.63671130043, 32835.31755668213, 33343.49362163755, 33867.382585283354, 32887.66821039702, 33892.22835401708, 33551.63438511647, 33962.931898379116, 35592.47404623704, 34713.24627486187, 35654.802932371356, 35201.9479161829, 35381.787162380395, 35824.45231822094, 35397.206821286745, 34582.48810390128, 34996.21319368612], [33097.63671130043, 32828.69012804868, 33520.12959046294, 33938.91444678255, 32692.867804700836, 33538.068043418236, 33166.40799840932, 33249.587337210025, 34800.71695161744, 33919.13622374454, 34614.15162031344, 34008.83221538669, 34101.033206026776, 34445.560144384, 33882.067419196195, 32934.519568782955, 33005.46073616657], [29576.147776884878, 29715.79056568142, 29828.832767716183, 29769.16292169468, 30080.693158908398, 30079.085113419063, 29936.30230581552, 30079.58724128338, 29586.75109012121, 29535.823830594392, 29939.07842073836, 30082.67995334284, 29895.5972823925, 30079.8137161512, 30506.236204362533, 30641.09276752171, 30804.294690787046], [34346.71094688275, 34508.87778952886, 34554.29441229562, 34434.40016026815, 34816.48788521054, 34847.95830240957, 34698.882329336055, 34922.696868799125, 34485.01902983022, 34497.741620886176, 35175.4293397357, 35358.01786060599, 35046.88067240655, 35425.24929631211, 35788.07046138514, 35939.52918892875, 36151.14045010896], [28335.329312139664, 28469.11361821175, 28506.58139683928, 28407.671107609985, 28722.885613275816, 28748.84805947057, 28625.86345124714, 28810.50583783078, 28449.43063272631, 28459.926508381825, 29019.0049224428, 29169.63669255544, 28912.95491878914, 29225.101242678073, 29524.421233161513, 29649.371564760448, 29823.946498033427], [978.0617717704337, 982.6796575903064, 983.197493387419, 978.7207258553836, 997.454925210107, 997.984808088222, 1000.8709181175659, 988.0442637983051, 993.7835017278345, 1007.1871546295171, 1030.9547986509072, 1035.7157912820423, 999.3727505095369, 1014.5884905117235, 1042.693223951303, 1026.7512531059149, 1045.3650860219166], [0.0019383188997990075, 0.0034641607852239353, 0.0051371347153443825, 0.0073067470481034125, 0.002151511472250789, 0.0009155934312508052, 0.005071539071470843, 0.0002813484124575272, 0.001638761038026182, 0.00779575299858104, 0.0059852136041746995, 0.006873720465355726, 0.0027122686291662923, 0.0024054440346314987, -0.0025244945618511094, 0.0038447636712271027, 0.0021001777515716746], [2.3548476e6, 2.342407699727753e6, 2.3531732617608756e6, 2.3544590601503025e6, 2.318726071639517e6, 2.3381983319862615e6, 2.3374901610418144e6, 2.3283232163165906e6, 2.362208568419968e6, 2.3720770171588333e6, 2.368246782227599e6, 2.3656730470165075e6, 2.378263627054326e6, 2.3905849264855357e6, 2.3725504635455986e6, 2.384796128022753e6, 2.3866653513674582e6], [0.0016459319014481277, 0.0010839703125167899, 0.0015736639083838116, 0.0016785809935030314, 0.00011090133426323433, 0.0009497116647909077, 0.000965993072926283, 0.0005151954414437781, 0.0019461456561448763, 0.0023918755992763897, 0.0021933228990460045, 0.002081788249390881, 0.0025133991428856702, 0.002892107258591496, 0.00187804052154472, 0.0023349072435120063, 0.0022873370150730916], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.9046295086172; 520.5295526038178 259.46255329042145 … 137.6440561786683 507.2885197661567; … ; 538.4282285285136 254.21348617143866 … 142.40397714438262 529.1663870012752; 521.6902960341979 256.9623472945898 … 143.0497185683965 532.0064061145885], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.9046295086172; 520.4244897410769 259.4101837784768 … 137.6162743197729 507.186129452571; … ; 512.7703644567146 242.09938306946987 … 135.61796241621786 503.9498799356083; 492.01404983160637 242.34509652132635 … 134.91236447207112 501.74333009184204]), BeforeIT.Data{Float64, Vector{Float64}, Matrix{Float64}}([72422.0, 71756.80740848665, 72940.27451079307, 73442.35187069116, 73175.92350063204, 74424.4546752723, 75213.05146810507, 75277.65466286683, 75538.99670341743, 76126.57250897247, 77436.5895562433, 76833.46089259027, 77427.8724077178, 77668.41060147232, 77046.37940131103, 76583.58934413418, 77352.91517783863], [72422.0, 71807.7537740971, 72380.1281955477, 72405.34957408671, 72022.02921078201, 72994.72520106331, 73382.70586375821, 73813.33713892188, 73891.1064584415, 74074.92066736343, 75039.28239738442, 74474.18016435101, 75163.96358915757, 75397.88334923194, 75312.55021812535, 74714.04233504793, 75192.26351481711], [64900.92049553802, 64330.79593160165, 65397.264313148364, 65871.07081956755, 65660.1934189941, 66778.79783500197, 67483.09322352159, 67568.26283785801, 67799.41907767371, 68363.61208741022, 69530.30313090101, 68991.95934900346, 69521.98725612741, 69716.02426314885, 69146.41683495675, 68758.92231562312, 69451.3065156745], [64900.92049553802, 64376.4699292042, 64895.04469747203, 64940.97462874902, 64624.812946399565, 65495.945096160656, 65840.85985260484, 66253.91010225397, 66320.36843907714, 66521.17618079364, 67377.7613620997, 66873.4630818222, 67489.23812924726, 67677.97389258633, 67590.3660983386, 67080.38989550468, 67511.36565401319], [40512.94792630534, 39932.56613205775, 40579.135777747484, 40691.81198421009, 40355.46763163128, 41124.97440173064, 41601.71987496387, 41462.16239730964, 41643.56578808893, 41704.413146634695, 42541.79353733803, 42171.84637988082, 42503.38616927243, 42796.99081557143, 42508.199781327006, 42017.92932729715, 42417.99635952451], [40512.94792630534, 39960.91771551592, 40267.50748275961, 40117.24565557563, 39719.11155388438, 40334.94391665969, 40589.32211127654, 40655.631279264904, 40735.10752384115, 40580.456908812026, 41224.7708380922, 40876.89983858927, 41260.63226457263, 41545.88070261648, 41551.60768863876, 40992.19398667671, 41233.16041422709], [14866.888022051655, 14669.947578229487, 14931.613974758933, 15033.522457641759, 14796.981600968982, 14837.686815026842, 14863.310866506907, 14797.083376535984, 14971.849038803126, 14915.059398194866, 15098.42958008978, 15241.246030961123, 15135.223107992684, 15118.829228232526, 15352.21585009723, 15313.136968481425, 15465.398426518894], [14866.888022051655, 14680.363043183974, 14816.946342854291, 14821.249880340873, 14563.651404921266, 14552.647733973628, 14501.605083008835, 14509.247250549137, 14645.23675829899, 14513.09057083949, 14631.00747992632, 14773.24188774717, 14692.685246631447, 14676.851421311616, 15006.734075686796, 14939.314983062242, 15033.412912427737], [15944.236265986641, 15841.651633975653, 15969.906136743939, 16134.714206268316, 16177.469355121639, 16526.23580233104, 16609.330213295394, 16579.877116326174, 16445.59539478252, 16772.575894818572, 17057.082637275686, 16602.24331465441, 17459.722387652237, 17491.378823735347, 16449.236958134723, 16486.726317085602, 17314.513761449263], [15944.236265986641, 15852.898993009152, 15847.264919154512, 15906.892857131543, 15922.370565518555, 16208.758885269122, 16205.134213350582, 16257.361693721426, 16086.833200332318, 16320.546004479334, 16529.023917878083, 16092.447813543766, 16949.218634237983, 16980.04285083469, 16079.068141627487, 16084.254845851405, 16830.878039808067], [15944.236265986641, 15788.250507721143, 16022.252605314861, 16112.15018097489, 16031.186037905896, 16336.773693628587, 16542.534354296335, 16547.8619949831, 16602.856463834192, 16716.715427287745, 17007.581473640173, 16886.31812834585, 17017.106960114823, 17111.194081215017, 16976.40329772336, 16837.513543958223, 16989.59335863238], [15944.236265986641, 15799.45995267512, 15899.209391959956, 15884.647434734863, 15778.3939562521, 16022.93643455596, 16139.963863548679, 16225.969337572405, 16240.663604523268, 16266.191006422643, 16481.055227387827, 16367.799705925474, 16519.54481207436, 16610.972277023273, 16594.371284125304, 16426.478707955648, 16515.033439849834], [3173.2320350842083, 3129.4336412286657, 3153.7558233802474, 3157.1401471588338, 3124.6197342655805, 3189.5160029244776, 3236.8429681079456, 3222.221335495849, 3231.977306466474, 3237.4620049494197, 3281.548435248088, 3263.8434830925275, 3296.591849655218, 3349.295136642358, 3327.8671745498727, 3276.2262269466187, 3295.3123370096473], [3173.2320350842083, 3131.655496913139, 3129.5364916667536, 3112.5614878442393, 3075.3483250801432, 3128.2438705623513, 3158.0728453301213, 3159.5419761464273, 3161.4714206626054, 3150.2106725212952, 3179.9571900622623, 3163.6225254499423, 3200.2030024926758, 3251.383182159814, 3252.9778251756957, 3196.2474874264044, 3203.2663932366704], [34195.564496956766, 34797.50603569583, 35492.78179949581, 35862.85698054944, 35054.00728029806, 35017.04088653732, 36132.55873413301, 36849.974808777704, 37178.127500712275, 36852.61066428348, 37331.43628607214, 37100.811733839815, 37487.01771516064, 37526.400919511725, 37836.1635406214, 37570.25841321475, 38013.19656632639], [34195.564496956766, 34822.21179573251, 35220.214262889494, 35356.475252509095, 34501.24871023713, 34344.346734144725, 35253.25562434135, 36133.16097987879, 36367.08318838923, 35859.41309810423, 36175.71752350857, 35961.57852595342, 36390.937100417854, 36429.36912361918, 36984.70958475388, 36653.09894277789, 36951.397199244144], [33097.63671130043, 33484.86397147247, 34033.163177952985, 34280.55375797896, 33208.002367387504, 33081.48323035353, 33993.868220794204, 34411.44303608347, 34700.14101896959, 34118.0865949595, 34592.15248453182, 34282.68656674529, 35157.47697236019, 35265.18918557969, 35099.43672887, 34804.46168194477, 35858.18993598077], [33097.63671130043, 33508.63777334467, 33771.80481211008, 33796.51407147098, 32684.353023778945, 32445.972068983872, 33166.61116821919, 33742.06406449305, 33943.15421242037, 33198.58591487204, 33521.23736202023, 33229.98790148201, 34129.5096567024, 34234.26074915106, 34309.569272582245, 33954.820423320256, 34856.58505089024], [29576.147776884878, 29316.33500034067, 29809.05972132499, 30021.341184537556, 29895.775091326792, 30463.54764892239, 30826.722431576516, 30889.146781531348, 31007.176252987934, 31247.38158175006, 31814.471966676945, 31577.15804624553, 31778.764819075477, 31889.50020776129, 31640.030643522172, 31415.303010166488, 31704.645702489608], [34346.71094688275, 34044.99097971232, 34600.7863883623, 34855.32565508268, 34771.05139457002, 35309.40657371201, 35644.423024665644, 35665.71227568754, 35777.39148400608, 36093.91734334426, 36680.56390543498, 36388.98955538952, 36707.77086273533, 36785.54627744635, 36471.018371947815, 36318.039535577576, 36707.46161182709], [28335.329312139664, 28086.416551816157, 28544.936319797078, 28754.92597372774, 28685.401444061536, 29129.53338180298, 29405.91505565338, 29423.478249388216, 29515.61129671023, 29776.738613210076, 30260.709947536157, 30020.167112436513, 30283.15512710165, 30347.318242796573, 30087.839197075387, 29961.63480699442, 30282.900001470007], [978.0617717704337, 969.4699515485318, 987.4182034610641, 994.4039799474218, 993.3669330973281, 1005.8436123675705, 1011.9477672794388, 1013.4037806390592, 1014.8513406797452, 1022.3131623159164, 1035.267258789039, 1025.811747368406, 1035.45157431663, 1040.9777779412216, 1035.3678194867334, 1025.5797698790154, 1039.1992013577803], [0.0019383188997990075, 0.006606915927781953, 0.005002760602064171, 0.007352217332445399, 0.006406190356976982, 0.009064960535340338, 0.007884733496392071, 0.00617599866946561, 0.00597670779007653, 0.0034085231370473146, 0.006228063099480652, 0.009750561141601333, 0.001022232957388347, 0.002595975697647912, 1.2398625185205958e-5, 0.004560171257316004, 0.004497628776414242], [2.3548476e6, 2.3585004996332433e6, 2.36603453431644e6, 2.370498783218781e6, 2.3689297406765283e6, 2.3596328163884855e6, 2.3896090404809685e6, 2.404319079657286e6, 2.4030427604770856e6, 2.410637768970612e6, 2.408586233156943e6, 2.41283971166401e6, 2.4121518988706027e6, 2.4158908502277085e6, 2.4144016218583495e6, 2.405460549986655e6, 2.422108858890411e6], [0.0016459319014481277, 0.0018282725474971725, 0.002121925950270894, 0.0023191381679425666, 0.002229349732931583, 0.0018863109922224845, 0.0031771421128739923, 0.0036891428085911483, 0.0035009638596579322, 0.0036308698077333074, 0.0034212792261477916, 0.003565447551431786, 0.0032969056683279543, 0.0032648605330148008, 0.0029628051335166975, 0.0024838574143280275, 0.003083935189959198], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.9046295086172; 513.5323156885711 255.97471874399452 … 135.79377108680404 500.4692759029941; … ; 557.988485713482 279.7159843657496 … 144.01976634139197 524.5325987045475; 558.4915415147232 282.1627534984208 … 145.07430778011226 529.5391332759764], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.9046295086172; 513.8969167076626 256.1564573424517 … 135.89018283307985 500.82460233999524; … ; 544.3669551283525 272.88760002854286 … 140.50397757099458 511.72778817693325; 542.8915389138784 274.28127390340586 … 141.02203588258726 514.7478405843275]), BeforeIT.Data{Float64, Vector{Float64}, Matrix{Float64}}([72422.0, 72778.67247939, 72361.96445060895, 73213.26933054916, 72513.04444500057, 72663.13278041253, 73645.39783058336, 73999.2613400394, 74143.34448569133, 75610.98304405507, 77205.46365294818, 77378.6211083045, 77186.96834010232, 78309.43352047382, 78086.2876053575, 78363.17748890725, 77587.45274575072], [72422.0, 72728.7002337789, 71994.89309836294, 72756.64609745004, 72851.52100102206, 72869.2796536801, 73716.93587477098, 73100.01937111998, 72573.28522391914, 73616.56903575403, 74745.60523672967, 74886.15834547002, 74766.60019291117, 74794.71528693377, 74436.61643245738, 74602.18761473073, 73591.0464091162], [64900.92049553802, 65222.733392249225, 64855.045676132475, 65626.2626156571, 65001.02931399031, 65132.200298555515, 66032.16608697589, 66343.80085038891, 66471.8975843831, 67800.50795349527, 69248.3541611585, 69403.65350726279, 69225.33286189812, 70207.38697730361, 69986.97908395692, 70249.52702439258, 69519.48043983334], [64900.92049553802, 65177.94930452865, 64526.05475532124, 65216.95872189874, 65304.44126846612, 65316.98175411374, 66096.30875107285, 65537.5883420213, 65064.288861390116, 66012.1132337283, 67042.01877072139, 67168.07448693625, 67054.61940804956, 67056.30833907268, 66715.86109545677, 66877.94654143129, 65938.64252961459], [40512.94792630534, 40689.231072820345, 40375.4705931527, 40832.114326110626, 40437.259092033164, 40576.81963768912, 40954.87867753684, 41180.91016718087, 41237.285178328675, 41998.12137476566, 42801.05302986383, 42955.321031003485, 42924.88785278265, 43719.90379497443, 43691.35406416128, 43755.92387003793, 43537.182877597814], [40512.94792630534, 40661.29249988911, 40170.65748863398, 40577.448850462, 40626.0122232413, 40691.93694925233, 40994.66163759732, 40680.47810785989, 40364.04453921678, 40890.32409162022, 41437.36028666888, 41571.67608357643, 41578.883034678525, 41757.647957730514, 41649.26600589886, 41655.886685688856, 41294.65180622203], [14866.888022051655, 14955.60614880818, 14904.81504324953, 14920.249662199078, 14587.43511323753, 14907.402009915615, 15117.937983982634, 15196.639504768073, 15313.52141768476, 15570.063881105734, 15493.224481016334, 15525.440855214138, 15379.446289622834, 15761.190732960584, 15973.026379835863, 15732.896868634758, 15760.14966171764], [14866.888022051655, 14945.337134572661, 14829.207220072774, 14827.193680657847, 14655.526376486901, 14949.694630606364, 15132.623324104112, 15011.96933669124, 14989.242329670004, 15159.367547525117, 14999.591817850065, 15025.346867314725, 14897.189728426863, 15053.790079411538, 15226.463881986221, 14977.806688393219, 14948.369409299874], [15944.236265986641, 16064.091931755538, 15969.953044802487, 16237.473916675857, 16027.959448992411, 15751.704384333494, 16100.933216805963, 16435.720146053285, 16184.089587031904, 16731.69533649866, 17829.514730884468, 17585.786185691097, 17494.018047076403, 17713.615105608806, 16807.980545917584, 17588.06209367253, 16573.042380786235], [15944.236265986641, 16053.06179448886, 15888.94208408618, 16136.202550091773, 16102.774795057017, 15796.392309051436, 16116.57342387737, 16235.992620709083, 15841.3753498238, 16290.358294996437, 17261.445065957534, 17019.32588186048, 16945.45441051844, 16918.584887731962, 16022.393166182886, 16743.9344617876, 15719.39131680651], [15944.236265986641, 16015.61668777426, 15913.085440605926, 16090.37097143157, 15953.628160870518, 15989.503309449345, 16176.27887233198, 16253.390134983612, 16274.961432326627, 16581.837370439294, 16968.313675472134, 17054.069100041506, 17027.879822111863, 17287.05344730054, 17230.31822869896, 17271.59935592556, 17128.636006094617], [15944.236265986641, 16004.619835214706, 15832.362952826057, 15990.017069988302, 16028.096543177075, 16034.865874841355, 16191.992269052611, 16055.878291190525, 15930.322893168981, 16144.453178308046, 16427.682906239617, 16504.73607267773, 16493.932980799975, 16511.168356272217, 16424.991228688465, 16442.66014786876, 16246.367197799298], [3173.2320350842083, 3181.2871013286494, 3159.0990365702387, 3194.070442975187, 3166.774334397677, 3169.896018925432, 3187.2445139956076, 3204.620848147639, 3210.8206810735064, 3263.757086916806, 3339.061047179559, 3366.4953795968445, 3362.872578445263, 3418.224914409134, 3417.9573439851174, 3420.794895729359, 3409.470857457315], [3173.2320350842083, 3179.1027242993437, 3143.0738392993053, 3174.1493714842736, 3181.556210936014, 3178.8890822283697, 3190.3405559153384, 3165.6781680594395, 3142.8283510379742, 3177.667968751976, 3232.6745684182383, 3258.0563268621727, 3257.4222693196657, 3264.806649292023, 3258.2056030445074, 3256.616063569394, 3233.854434219867], [34195.564496956766, 34811.00509964384, 35734.04525157069, 35111.451517321424, 35461.22342319838, 35070.31952654304, 35482.549325623004, 35920.048299870345, 36377.615861261605, 35404.754406510045, 34823.742680063806, 34053.51297081031, 33444.817907035125, 34794.76766026613, 35579.662590296546, 34780.368118329265, 36946.57792286331], [34195.564496956766, 34787.102711244195, 35552.77675766916, 34892.46519616353, 35626.7494036405, 35169.81477865021, 35517.01654633632, 35483.546443339284, 35607.28356642982, 34470.87237897896, 33714.216586148395, 32956.606463460615, 32396.081654121055, 33233.09368524812, 33916.70648264301, 33111.106910389055, 35043.51843447228], [33097.63671130043, 33741.26177363728, 34622.31948216632, 33888.020091757455, 34000.83263246112, 33643.11277806892, 34010.901373365436, 34734.056777833895, 34969.1675586153, 34093.6519548253, 33742.07126887929, 32741.439934414797, 32056.201756415205, 33680.04377333627, 33965.735974852745, 33494.073461766864, 35229.500097213655], [33097.63671130043, 33718.09390641542, 34446.69045209915, 33676.66417992463, 34159.54179740365, 33738.55901388066, 34043.93905714448, 34311.9671374802, 34228.660561221004, 33194.353277366965, 32667.008519894312, 31686.79695074249, 31051.008634834205, 32168.40132318853, 32378.213104252707, 31886.547131527637, 33414.8845576839], [29576.147776884878, 29722.801872342476, 29535.0967093524, 29883.467433428414, 29627.87122677416, 29729.9391101603, 30091.65722265606, 30220.85801023183, 30258.023140062236, 30845.440016339715, 31541.244788566648, 31687.22997873939, 31623.23073982324, 32095.53383767175, 31970.75715891088, 32065.403098880623, 31757.662972768612], [34346.71094688275, 34517.02000348672, 34339.73023998506, 34745.1534324405, 34389.89170522452, 34420.23283792828, 34944.6408685695, 35122.097442426275, 35206.10719979284, 35924.06882048894, 36662.568995679154, 36677.345118615754, 36572.00325475136, 37071.49030429263, 36975.094896694274, 37143.11188197755, 36725.86776116377], [28335.329312139664, 28475.830777074003, 28329.570372685936, 28664.036158558996, 28370.952548654346, 28395.98335839312, 28828.60918580144, 28975.00720529775, 29044.313525314705, 29636.617079135704, 30245.864517513404, 30258.054514687017, 30171.14964605001, 30583.21617718857, 30503.69195075823, 30642.302504048093, 30298.084695679296], [978.0617717704337, 982.9115164201688, 980.2187267951148, 997.6417497880798, 983.2663819914274, 982.0283504671022, 995.8679957503648, 1000.8453977307701, 1007.7672445280723, 1030.9991166666089, 1044.5403769127602, 1039.0784099076197, 1030.0988673235015, 1040.362835339259, 1041.1270283518288, 1041.0120435343808, 1035.9497059009734], [0.0019383188997990075, 0.0010373908252390152, 0.003370978142227088, 0.006267186915072553, 0.005260135376057518, 0.00928012483935059, 0.009101028094665287, 0.004493053844932815, 3.524053569048391e-5, -0.0016461205924724887, 0.0014591638324072953, 0.002971235729445132, 0.0026376982062688015, -0.0018277445258746416, -0.000987582636484463, -0.0014087703621578074, 0.0006047837843068393], [2.3548476e6, 2.3857753921475084e6, 2.3884348071954935e6, 2.379589959868747e6, 2.3794437482792065e6, 2.384974617214357e6, 2.408294587701246e6, 2.407312105505114e6, 2.413728129827542e6, 2.3920589326653266e6, 2.374182776573776e6, 2.3583877302324884e6, 2.345703849359788e6, 2.378784650494084e6, 2.384362906552679e6, 2.357544669897643e6, 2.4002633446569727e6], [0.0016459319014481277, 0.0028397113105430374, 0.0028164773283182115, 0.0023875379887354515, 0.0023254471860215285, 0.0025948791722485527, 0.0035733733295688873, 0.0033718053436452896, 0.003385139866673902, 0.0022137277840017368, 0.001348267455862829, 0.000662262640910635, 0.000144763894591903, 0.001479245768662792, 0.001577723752302773, 0.00032228339499080724, 0.0020945827457468226], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.9046295086172; 520.6523692023319 259.52377230878017 … 137.6765326724641 507.4082122027378; … ; 579.3067901137362 286.23831265501633 … 147.85856719085706 544.8946907659881; 565.7135615975737 279.92885485833517 … 146.8830566803667 541.2669914905986], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.9046295086172; 520.2948720512369 259.3455746960738 … 137.5819994078246 507.0598089282411; … ; 551.5033364831341 272.5004905044374 … 140.76219116534713 518.7428235225558; 536.5745554531495 265.51016459628175 … 139.31734395636167 513.3871893054107])])

Note that this will use the number of threads specified when activating the Julia environment. To discover the number of threads available, you can use the command

Threads.nthreads()
2

To activate Julia with a specific number of threads, say 8, you can use the command julia -t 8 in the terminal.

We can then plot the results of the monte-carlo repetitions using the function plot_data_vector

ps = Bit.plot_data_vector(data_vector)
-plot(ps..., layout = (3, 3))
Example block output +end

Note that we can equivalently run the model for a number of epochs in the single command data = BeforeIT.run_one_sim!(model), but writing the loop explicitely is more instructive.

We can then plot any time series stored in the data tracker, for example

plot(data.real_gdp, title = "gdp", titlefont = 10)
Example block output

Or we can plot multiple time series at once using the function plot_data

ps = Bit.plot_data(data, quantities = [:real_gdp, :real_household_consumption, :real_government_consumption, :real_capitalformation, :real_exports, :real_imports, :wages, :euribor, :gdp_deflator])
+plot(ps..., layout = (3, 3))
Example block output

To run multiple monte-carlo repetitions in parallel we can use

model = Bit.init_model(parameters, initial_conditions, T)
+data_vector = Bit.run_n_sims(model, 4)
BeforeIT.DataVector(BeforeIT.Data[BeforeIT.Data{Float64, Vector{Float64}, Matrix{Float64}}([72421.99999999999, 72827.42777825409, 73206.41254568762, 73534.04612782295, 75020.43024657895, 75338.9387869725, 75873.84658608028, 76656.02663532071, 77020.10516503155, 77498.96379717518, 77059.1180640915, 77407.73947738032, 78594.0977859202, 80785.61545767084, 82863.88146312539, 83257.78651237191, 84281.88113356571], [72421.99999999999, 72185.73523786054, 72393.81550940928, 72908.78576552287, 73459.75827297212, 73917.07354106661, 74284.19660263037, 74793.21463538233, 75414.96267565298, 75564.6386504986, 74790.17233506052, 74937.51175754315, 75305.43176756796, 76349.97866005031, 77821.21541292594, 78107.64626178512, 78893.63185141007], [64900.920495538005, 65278.31849379104, 65600.37782233297, 65911.57218402976, 67251.5132836183, 67541.67920963331, 68020.61987506114, 68722.14404332856, 69054.94513607923, 69487.28989309777, 69072.7592819415, 69397.34758849264, 70460.56154703506, 72455.8588310815, 74362.00215848016, 74715.51286316063, 75642.88076821552], [64900.920495538005, 64703.14219957338, 64872.20838001944, 65351.125755828114, 65852.46036404141, 66266.97096626596, 66595.50460644261, 67052.13269256521, 67615.8010800938, 67752.9310626185, 67038.96566864321, 67182.74666029523, 67512.2325894977, 68477.57789810104, 69836.71638754634, 70093.7785334518, 70806.93391323721], [40512.94792630535, 40668.24973459184, 40981.09720456593, 41051.29501567892, 41867.27457122023, 42030.99179863371, 42340.20360602066, 42764.081417759946, 42881.98396291052, 43121.78610102914, 42973.99926669174, 43052.8502529793, 43708.59064420421, 44730.21389729971, 45606.066803587724, 45855.00648296977, 46416.401214685655], [40512.94792630535, 40309.91616052946, 40526.20374682293, 40702.235648678085, 40996.29740113677, 41237.74454227901, 41453.124500505444, 41724.87488008843, 41988.2991991695, 42045.4935786784, 41708.66332014687, 41678.952179854656, 41879.66250823661, 42274.24470520686, 42830.71811495647, 43018.51845618603, 43448.940864234726], [14866.888022051655, 14897.769072878109, 14811.584695293848, 14831.776796759808, 14999.092734968224, 15081.140444731083, 15130.320526691052, 15379.339018923674, 15367.67303807732, 15738.983823326838, 15744.665212236047, 15960.630709083069, 15914.921438036965, 16380.553710770571, 16647.302190897437, 16625.511562679676, 16393.594563316918], [14866.888022051655, 14766.502768764227, 14647.174920146468, 14705.662124416396, 14687.062217627066, 14796.515391441924, 14813.321786584213, 15005.606925922511, 15047.402052943738, 15346.148736237486, 15281.075804703327, 15451.296724266442, 15248.982610663688, 15481.158609386903, 15634.233721219167, 15597.094643706832, 15345.53093505313], [15944.236265986641, 16254.232176774902, 16250.178096252665, 16234.365783956577, 16664.71846165788, 16975.59982169332, 17072.510247206174, 17263.046451721362, 16834.832277726524, 17024.35350114421, 16501.300893402447, 16909.54139378283, 17024.668790468168, 17516.889750225728, 18398.70590407572, 18312.47372686698, 18970.398621860164], [15944.236265986641, 16111.013888612635, 16069.79981925718, 16096.324890434373, 16318.03744469124, 16655.22080118276, 16714.82025450058, 16843.538534375908, 16483.984865448365, 16599.43639942195, 16015.43293739495, 16369.925870029396, 16312.294053660076, 16555.10267568552, 17279.056088113688, 17179.70510570581, 17757.596589185378], [15944.236265986641, 16027.774057391784, 16128.805048314103, 16189.7871889489, 16513.760847899666, 16596.02611141481, 16713.69381153388, 16891.941479805537, 16958.282279588486, 17056.66360390327, 16937.24769905684, 16994.194112495796, 17238.417614904974, 17735.2552500382, 18184.849216284412, 18285.890183937958, 18517.666116470104], [15944.236265986641, 15886.551123045421, 15949.774021861424, 16052.125347443183, 16170.2202463668, 16282.81075255909, 16363.521462478806, 16481.451754835354, 16604.86209955212, 16630.94006244044, 16438.543628808435, 16451.877159999753, 16517.098841391955, 16761.478540452055, 17078.213609168164, 17154.765961218985, 17333.8078563401], [3173.2320350842087, 3182.5066050184646, 3206.5259948224025, 3214.232263050785, 3280.5001717610016, 3292.1348968334496, 3316.3543343972483, 3349.555143521758, 3358.7900215654468, 3377.047995818303, 3361.195849738787, 3364.2832639072635, 3422.248366630074, 3497.7777270317547, 3575.303639127539, 3593.7260200650057, 3637.198057112711], [3173.2320350842087, 3154.465099084575, 3170.9332997355295, 3186.901630029203, 3212.2549662796105, 3230.0027209625127, 3246.8726506551734, 3268.1578706694654, 3288.790940611665, 3292.7590125882657, 3262.228055150759, 3256.9226067947216, 3279.048912386657, 3305.727799479379, 3357.7292030542535, 3371.426175199835, 3404.667297752499], [34195.564496956766, 33096.05986369695, 35255.31293503201, 36348.14815391935, 36071.479043786574, 35874.41532032601, 35746.914220241684, 36645.1485896439, 38432.106041719766, 39002.07022019379, 39925.27513004039, 40372.12787886963, 40821.40787027287, 42140.49804253692, 42167.53499675699, 42454.591838114626, 42240.63297190924], [34195.564496956766, 32804.44590205026, 34863.976140783336, 36039.07966822566, 35321.07350485335, 35197.36059693254, 34997.972599967776, 35754.637751441114, 37631.1592469616, 38028.60320201778, 38749.70649179894, 39083.77673893823, 39113.29007687401, 39826.72048784994, 39601.43751985607, 39828.44584737038, 39540.134866889566], [33097.63671130043, 32088.88306968721, 34091.76038545685, 34931.53962249194, 34582.13456505377, 34623.20859841124, 34416.10201407929, 35395.588842728044, 36496.490155402236, 37388.22984851938, 38086.12243827839, 38887.41075733445, 38875.49095706202, 39982.53994316215, 39955.72843219246, 39989.79709825928, 39739.146238206245], [33097.63671130043, 31806.143482095606, 33713.33911760074, 34634.51656623185, 33862.7122953362, 33969.76779076945, 33695.0425389277, 34535.44345644554, 35735.88268886995, 36455.04326585759, 36964.70621898284, 37646.43975554552, 37248.797481866364, 37787.247818078984, 37524.23003121946, 37516.117791184035, 37198.57140395266], [29576.14777688487, 29748.13268683385, 29909.865926508974, 30076.755027277588, 30687.41657757014, 30845.854403954538, 31062.670781256016, 31396.015783395014, 31523.19657523706, 31725.689070789533, 31475.32977548401, 31616.096046068225, 32039.93990108083, 33027.13745873507, 33890.998273756915, 34073.470734075505, 34512.76416606031], [34346.71094688275, 34546.43661886029, 34705.31998637677, 34842.65903185745, 35546.618311602884, 35679.13231551171, 35934.56662376652, 36295.555106662, 36491.989611249606, 36710.24754204572, 36546.93600891747, 36729.42676736513, 37338.587706324775, 38320.26748021431, 39334.6133662075, 39505.90439246716, 39982.99123686346], [28335.329312139664, 28500.098879051733, 28631.174385750575, 28744.47627038018, 29325.228181233342, 29434.549505916617, 29645.277550683753, 29943.08561610672, 30105.140037689176, 30285.198336536432, 30150.469684386426, 30301.020802513383, 30803.56603417203, 31613.43163426528, 32450.246104229536, 32591.557673910487, 32985.144497037894], [978.0617717704336, 983.7491880969767, 985.1919094472756, 992.1581248947434, 1017.4783944453789, 1016.6924901671647, 1023.3824700386261, 1030.5731532716545, 1039.758949592606, 1051.3532802624939, 1050.493497539958, 1051.8247750592593, 1082.0339396293805, 1108.4538921320827, 1136.3905185157494, 1136.1377366179183, 1147.1253652916564], [0.0019383188997990075, 0.0011295943769122907, 0.0007273857967851072, -0.0016859128641788512, 0.002987819787879431, 0.002475577400359086, 0.00575539362817068, 0.00541214147138791, 0.004762738101786512, 0.00733665776847392, 0.003344872570353763, 0.0021861259058764126, 0.0036039259001936497, 0.0027322372653710847, 0.005978238070151631, 0.009442085110417331, 0.006440017752965765], [2.3548476e6, 2.3312602695157453e6, 2.3758281546298843e6, 2.4178547798561114e6, 2.3991132535032006e6, 2.390084664841891e6, 2.383166356014675e6, 2.4022513952081543e6, 2.4336982910729134e6, 2.4416130887764385e6, 2.461987980915778e6, 2.4677250067734295e6, 2.4413035582658476e6, 2.4579309169808775e6, 2.441156340480771e6, 2.438725921729838e6, 2.437106679166647e6], [0.0016459319014481277, 0.0005647781887389446, 0.0024200545484302336, 0.003942115524485388, 0.0029564152763673765, 0.0024241940556145505, 0.002092086926518574, 0.0028490939876684787, 0.004035051859998375, 0.004224569248635245, 0.00480936807343251, 0.004732685088146167, 0.003411892090583842, 0.0038919134286187667, 0.0030696972631333577, 0.002961187938270467, 0.002824439529527029], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.90462950861706; 521.0960874169 259.7449475721583 … 137.7938654435777 507.8406432820791; … ; 581.249204131561 299.9928096650047 … 157.27770594477616 572.28559789475; 592.5212204486018 305.26565520024957 … 159.2078955216718 578.8939370793748], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.90462950861706; 516.5046377072953 257.45629890850546 … 136.5797446340886 503.36598912437586; … ; 545.2944298429767 281.43592617504083 … 147.54885921659917 536.8852922175038; 554.6405751924227 285.7496284412738 … 149.02952957610557 541.8845016116379]), BeforeIT.Data{Float64, Vector{Float64}, Matrix{Float64}}([72421.99999999999, 73790.87554087919, 73854.9009555262, 73006.7791942278, 74117.05134313628, 74500.50057503201, 75048.50360465999, 75140.17936971839, 77020.41561595866, 77195.16965222321, 77902.8317823961, 78601.04074779587, 79403.69066955145, 79594.56068120411, 80373.09927135191, 81018.8775862933, 81861.92540131288], [72421.99999999999, 73182.71961135222, 73167.42736097706, 73157.00959734639, 74078.60267751616, 74339.13196185911, 74793.91608334672, 74354.46878179659, 75434.42755921136, 75231.39404805758, 75296.13360397944, 75540.44513621468, 75759.50824096314, 75872.86445886262, 76001.15297911831, 76479.71668004694, 76889.6053319657], [64900.920495538005, 66137.05383323722, 66202.02568602264, 65431.785033289634, 66447.32990491537, 66791.20432668949, 67314.63188490187, 67392.81337712507, 69129.60750991318, 69298.27886836824, 69931.13706814684, 70551.56704883801, 71267.41264345519, 71420.7815903835, 72143.70687709382, 72765.0643551173, 73500.93975101455], [64900.920495538005, 65591.97774957093, 65585.78838861958, 65566.42791920806, 66412.85995336488, 66646.53410392375, 67086.28002634959, 66688.11387461652, 67706.10529947282, 67535.39305484574, 67591.17889924062, 67804.40474099155, 67996.63957615464, 68081.2763432068, 68219.40366309893, 68688.33131090233, 69036.46867916768], [40512.94792630535, 41220.940552128035, 41250.56616871854, 40830.61269522102, 41322.812138617934, 41519.44801345813, 41579.05174481266, 41655.29683094043, 42299.54120209013, 42314.56023784565, 42760.47465065139, 43162.30978205125, 43667.968716994495, 43908.24745845628, 44162.74513431035, 44305.069165796966, 44953.296572159794], [40512.94792630535, 40881.21346210911, 40866.58792713545, 40914.632281792015, 41301.37568158667, 41429.51659428758, 41438.00286024024, 41219.72417144418, 41428.51802445742, 41238.11592830602, 41329.67106071985, 41481.64023050509, 41663.85476525301, 41855.17803641016, 41760.48428341359, 41822.834853284745, 42222.818665204984], [14866.888022051655, 14843.148342032751, 14906.714101521971, 14710.159218836727, 14898.830145308144, 15152.225953565572, 15152.205777917488, 15450.251829816767, 15833.23458121005, 15856.365032125166, 15934.347500961032, 16012.336871396234, 15911.440240659733, 15963.947179192346, 16109.320922342544, 15853.16849652747, 15862.180704662138], [14866.888022051655, 14720.81683951448, 14767.955912238618, 14740.429190663648, 14891.101287670026, 15119.406124574707, 15100.804852833764, 15288.694770057642, 15507.19997409122, 15452.993383858613, 15401.170032893695, 15388.842735777785, 15181.194701068223, 15217.502178403618, 15233.044077038145, 14964.979412410283, 14898.70667110198], [15944.236265986641, 16575.781015198998, 16392.34401292563, 16065.234296982113, 16473.846379120816, 16257.444196964912, 16509.72903320105, 16190.45973303641, 16832.125300099382, 16875.352407711187, 17063.07123532055, 17294.690307842902, 17842.87985339512, 17473.324899810134, 17426.446702114205, 18120.374420459884, 18115.03587364122], [15944.236265986641, 16439.169822595002, 16239.756933180723, 16098.29268760373, 16465.300472349973, 16222.230457412166, 16453.72297325005, 16021.16261740171, 16485.521747234365, 16446.058638175342, 16492.12566518333, 16621.263432622723, 17023.992107890266, 16656.304154738977, 16478.523955115303, 17105.16293362719, 17014.722681765008], [15944.236265986641, 16243.087526175777, 16267.624779622589, 16085.910577608442, 16319.537291891085, 16408.36127404379, 16514.165429398072, 16542.563752445276, 16885.33488032329, 16907.732409690652, 17047.712806716776, 17231.32764856726, 17421.391336577697, 17501.69691524333, 17655.50278265235, 17764.165070377494, 18008.160781221784], [15944.236265986641, 16109.218264963456, 16116.198640837853, 16119.011515045679, 16311.071433886205, 16372.82064703063, 16458.144319831725, 16369.584826913126, 16537.63564707191, 16477.614922061606, 16477.281143288063, 16560.36801137691, 16621.847541384046, 16683.349546571837, 16695.120383218728, 16768.91055659236, 16914.339217344124], [3173.2320350842087, 3228.840765503686, 3233.3478546925485, 3196.978023557147, 3236.8037010809694, 3252.7135599894696, 3263.5786344141166, 3269.6114385239844, 3281.9013021731266, 3274.968772973745, 3284.6473194443615, 3339.895035654294, 3399.6157317484253, 3436.3264710943295, 3456.516625575288, 3438.4702955719918, 3505.5354672366752], [3173.2320350842087, 3202.229905520714, 3203.250444184449, 3203.5566358797364, 3235.124589716908, 3245.6681593254143, 3252.5075756289466, 3235.4224287666584, 3214.3210868880833, 3191.6565163941605, 3174.740092859158, 3209.8450007945135, 3243.5925065163956, 3275.6501241586793, 3268.4971864566282, 3245.826674629135, 3292.6080987182977], [34195.564496956766, 35221.481168546474, 34618.60008736633, 35313.980339121415, 35355.57916203688, 35857.965618602815, 35974.85843706368, 36259.36510602992, 37448.38111640738, 37591.18297650105, 37844.1998039813, 39406.50329998059, 39168.78998813707, 39829.40986365208, 40484.76588475525, 38829.33388959807, 40303.19363663982], [34195.564496956766, 34931.19930832511, 34296.35507542522, 35386.64802232314, 35337.23824295859, 35780.29701049406, 35852.8206934821, 35880.215531007634, 36677.25199797616, 36634.897131239544, 36577.89915180186, 37872.078692873, 37371.16301361954, 37967.05943469056, 38282.57107447136, 36653.882937200935, 37855.16449982407], [33097.63671130043, 34070.47553702652, 33313.323415006154, 33913.20735593331, 33934.01648194733, 34286.5832075596, 34167.34138833453, 34415.1941301054, 35392.866583848045, 35442.29100195943, 35699.26140851801, 37274.79951347519, 37187.38812963527, 37580.368719906524, 37810.179372170394, 36089.06838608924, 37371.78138578986], [33097.63671130043, 33789.67982119084, 33003.228487002874, 33982.99258503606, 33916.41300704892, 34212.31822490941, 34051.43529645905, 34055.32830811479, 34664.06418454756, 34540.67103352162, 34504.73230661915, 35823.37995556411, 35480.69634686814, 35823.179345380515, 35753.47041092009, 34067.143456476304, 35101.80718593018], [29576.14777688487, 30139.468943804743, 30216.18103383191, 29865.43447617591, 30328.966793336524, 30489.241370425727, 30697.874448885024, 30751.439504022186, 31480.763817598698, 31549.20680022146, 31851.224591770304, 32148.83575473331, 32474.207853448817, 32586.81611575651, 32909.990289826, 33205.1258572007, 33609.44534761263], [34346.71094688275, 35000.89449493695, 34988.1273456223, 34584.090591277745, 35118.05677767768, 35298.119545686386, 35603.793966497484, 35629.518842279336, 36609.61338717371, 36706.45846766643, 37028.41815949638, 37342.11897607319, 37715.30713223805, 37754.26713902093, 38140.74135075104, 38461.32634363172, 38788.287647697645], [28335.329312139664, 28875.017269259235, 28864.48463395779, 28531.16263097863, 28971.67374007983, 29120.2218160884, 29372.39691924092, 29393.61941207058, 30202.177230883633, 30282.07242819279, 30547.68254461253, 30806.479259003543, 31114.351803675283, 31146.493007061636, 31465.32627400699, 31729.802292099444, 31999.538635627716], [978.0617717704336, 996.6903944954007, 997.7173065685113, 982.2599658360162, 1000.3063339011325, 1003.8434105772146, 1012.9634695194184, 1011.8550308234956, 1039.2303051407264, 1042.6136004804441, 1051.4943168801667, 1060.6123180316358, 1077.8976577682995, 1079.6983356061098, 1092.9752365168354, 1098.612154284806, 1103.2067557042492], [0.0019383188997990075, 0.004904883655211023, 0.0015005517773736265, 0.0041692469768643825, 0.0006031632339829063, 0.0002015487747124567, 0.005255152919985129, 0.0026886729015387356, 0.004952446968200075, 0.004394520368434129, 0.0020599692163771888, 0.0004402152245297497, -0.0011322895726847415, 0.0019267262267144147, 0.002369418488355368, 0.005786348142358344, 0.0038382937109628923], [2.3548476e6, 2.3686417582736276e6, 2.363487160014049e6, 2.3779612185926214e6, 2.3679886360336402e6, 2.3778444218691937e6, 2.3752761432444626e6, 2.3712628297626264e6, 2.410985798383259e6, 2.4074831199126886e6, 2.399821661330251e6, 2.419411334404654e6, 2.4287056607531332e6, 2.4533620510310824e6, 2.4627433245436414e6, 2.4389765689284685e6, 2.4510788530190284e6], [0.0016459319014481277, 0.0022128057601969995, 0.0018693702990739015, 0.002429009778611215, 0.0018505267073401365, 0.002127534578180399, 0.0019843846695789245, 0.0017329833224318323, 0.003366041833113286, 0.003074791553068131, 0.0025814114174534967, 0.003203312649442002, 0.003318033595028203, 0.004115160587273675, 0.004240988816831973, 0.0031105758998406755, 0.0034564367593557907], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.90462950861706; 527.9510989404348 263.1618886158217 … 139.60654175855535 514.5212796289661; … ; 574.6196467862713 292.6827942769187 … 152.4389692062635 555.4626678044369; 585.801789529989 299.9682087904387 … 154.45238216556893 561.3309701254839], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.90462950861706; 523.5999296533461 260.99300985114917 … 138.45595849810644 510.2807937317532; … ; 542.4260258134902 276.2849579048003 … 143.89842865295157 524.3423350907221; 550.2199976229462 281.7480418761763 … 145.0708940581805 527.2355437765658]), BeforeIT.Data{Float64, Vector{Float64}, Matrix{Float64}}([72421.99999999999, 72361.12287799471, 73233.17457973043, 73949.30930387048, 74933.3511674387, 76147.66209338879, 76053.97403630585, 76319.05210906845, 76494.32216978814, 76067.19647694821, 76083.4878900162, 76030.90107781466, 77089.19060741467, 76902.88441057496, 77026.25412631653, 78216.52704159475, 79036.24166876821], [72421.99999999999, 72475.61627679973, 73043.77099273514, 73312.07324966828, 73434.37836810928, 74188.54256019002, 73654.45403342666, 73567.94160341412, 73511.77130397968, 73231.89464977988, 73340.05864614731, 73340.1086111768, 74533.60714305192, 74352.01009422595, 74246.62349485104, 74861.52096283225, 75514.3237600047], [64900.920495538005, 64846.73730609358, 65630.64391563126, 66279.33477588792, 67167.40048003639, 68265.30552801272, 68169.86806429797, 68394.20419392765, 68547.1650346864, 68148.79646612002, 68169.42164344148, 68119.77641504366, 69097.7296105607, 68920.54169589207, 69043.17927711624, 70123.28680583536, 70866.24407903203], [64900.920495538005, 64949.3410670677, 65460.90281884325, 65708.19243304088, 65823.77838449892, 66508.98248639797, 66019.09337978467, 65928.76458895352, 65874.47769497603, 65608.64228549016, 65711.35892759182, 65708.96477650924, 66807.07103928272, 66634.44227285485, 66551.63223008327, 67115.43076319528, 67708.38777312703], [40512.94792630535, 40477.34073147385, 40937.52990130655, 41269.62813256159, 41742.73142039766, 42353.29582982777, 42433.85403269699, 42674.90884003732, 42820.89314689955, 42686.24823004159, 42644.86298456279, 42641.9880939591, 43011.43739972684, 42954.05042070661, 42956.52780966412, 43526.139210402165, 43937.47866665238], [40512.94792630535, 40541.3860106322, 40831.65281690412, 40913.99945614601, 40907.70645495771, 41263.63441574794, 41095.05638483044, 41136.58535732578, 41151.2856739881, 41095.17608321576, 41107.16844061984, 41132.8551138271, 41585.565402224696, 41529.26141778238, 41406.364402712876, 41659.13658117132, 41979.589605700916], [14866.888022051655, 14866.707410254076, 15008.523069038765, 15287.552997862294, 15494.346871157504, 15623.906124761923, 15499.876787198758, 15599.889168415486, 15524.817202097433, 15646.679107747015, 15412.128007310881, 15648.906988296361, 15874.467294743321, 15795.946961038182, 15777.016975401799, 16032.156964096028, 16240.462215241947], [14866.888022051655, 14890.230260546341, 14969.706397208116, 15155.8170825107, 15184.396706892967, 15221.935810343815, 15010.852185074855, 15037.55227097949, 14919.497020491579, 15063.470314495957, 14856.395300279532, 15095.080051639017, 15348.21288988631, 15271.994241785138, 15207.675000312867, 15344.476417481972, 15516.774277723778], [15944.236265986641, 16127.694766259961, 16179.067504400185, 16143.92322750292, 16680.56124263559, 16996.334363463196, 17242.57935983389, 17014.982062203024, 17288.55830155961, 16386.7087722963, 16787.00312925864, 16233.415270286241, 16869.351870411567, 16633.410183947995, 16685.099565147357, 17013.503469189793, 17310.98770293831], [15944.236265986641, 16153.212814007687, 16137.223443465247, 16004.807797843363, 16346.881950428464, 16559.054350803075, 16698.572099208654, 16401.634613417253, 16614.468995735802, 15775.916374584527, 16181.694979239292, 15658.902132892494, 16310.11605077391, 16081.678748167202, 16082.987799926637, 16283.729216622643, 16539.59629664052], [15944.236265986641, 15930.767086439773, 16116.285597436852, 16271.006379906245, 16467.31202464669, 16710.962343790154, 16713.903081244585, 16784.563956190726, 16819.508394110566, 16744.76221602844, 16738.619507983098, 16745.339759243612, 16956.139507447293, 16922.83436721951, 16940.922688943883, 17194.391674589126, 17349.142272360164], [15944.236265986641, 15955.97354533309, 16074.603909885907, 16130.795849192256, 16137.898586992487, 16281.024354280844, 16186.57567622975, 16179.522502495633, 16163.70757255445, 16120.623860660067, 16135.055981471594, 16152.709217756967, 16394.026591184647, 16361.502710051755, 16329.579087134358, 16456.85843486612, 16576.050668045482], [3173.2320350842087, 3170.4248574990315, 3206.457171428155, 3227.515285651426, 3266.485112299436, 3317.5094778597363, 3323.689632104271, 3342.5705794560863, 3354.004999878846, 3343.4587526812315, 3340.2171967477548, 3339.992017010709, 3369.079709969953, 3364.578590078495, 3368.9128026303956, 3404.7186521845606, 3414.4393464807094], [3173.2320350842087, 3175.441262761329, 3198.1642837676004, 3199.703138048339, 3201.142080705794, 3232.15692151105, 3218.8264759490216, 3222.0792894975743, 3223.2307118982253, 3218.8358514887054, 3219.77516927817, 3221.7871130756007, 3257.391361330173, 3252.975271470216, 3247.3395374217403, 3258.677243717514, 3262.2892084066575], [34195.564496956766, 34072.99974503414, 34422.35105691396, 35967.003882801146, 37563.58588094355, 37531.07930204346, 36660.9817170312, 37368.020738481835, 37074.10705734363, 36730.65016725507, 36834.457623443355, 37380.756222507756, 36746.78479029407, 37815.60096394665, 37476.23606425202, 38550.88395190633, 38804.49573995958], [34195.564496956766, 34126.91175459301, 34333.3242353893, 35657.06898480816, 36812.16087987839, 36565.48339875119, 35504.319490370835, 36020.99726808777, 35628.569572123255, 35361.56488009242, 35506.27550366098, 36057.822312546545, 35528.592267598935, 36561.254706383275, 36123.83882128862, 36897.289054608846, 37075.336488437315], [33097.63671130043, 33183.619775027095, 33314.296951929384, 34718.79893685766, 36547.87424769555, 36356.95352670763, 35783.317860455034, 36338.74870006945, 36214.05353811273, 35383.089800391484, 35594.96385455968, 35874.16549723543, 35412.85074776064, 36296.12411906471, 35868.62628814865, 36906.156553999645, 37257.18265602436], [33097.63671130043, 33236.124562979334, 33228.13590023207, 34419.62007164005, 35816.767624048196, 35421.565415455916, 34654.34612605814, 35028.82790639633, 34802.04995835962, 34064.23300260855, 34311.47557765244, 34604.55099972889, 34238.87946743151, 35092.17901989227, 34574.24252938989, 35323.1103070526, 35596.97290849818], [29576.14777688487, 29551.45583098033, 29893.359117477023, 30208.426771551545, 30576.42433623059, 31029.984996116942, 31030.054605427136, 31155.62193851548, 31228.288698035656, 31071.566770454687, 31049.67917616942, 31086.577593540456, 31482.83946411879, 31394.828687508212, 31446.80355286958, 31950.885610064066, 32287.162000557855], [34346.71094688275, 34318.036248098564, 34746.62181309175, 35072.70057327198, 35574.175855423986, 36192.29766821164, 36098.70507780033, 36195.792130946465, 36272.06013380168, 36041.13666851871, 36083.28394174262, 36005.42983352821, 36568.38401946108, 36484.157562887674, 36550.13357184386, 37112.10720551392, 37506.4597259602], [28335.329312139664, 28311.67327607167, 28665.247542361452, 28934.255805356126, 29347.962587459664, 29857.900355516747, 29780.688395554058, 29860.783215319927, 29923.702747272313, 29733.195643264222, 29767.966275836734, 29703.738239621853, 30168.16385145772, 30098.67875905708, 30153.107607960985, 30616.724284370182, 30942.056993787348], [978.0617717704336, 977.2452270147742, 990.6629850624997, 998.2074310643299, 1016.8002883818241, 1043.0228636839604, 1041.1083810705286, 1042.7901244656434, 1046.8162028489837, 1036.0930271467082, 1036.4585255293619, 1027.7689879749412, 1046.5061269808423, 1041.5554454961582, 1046.2421524028157, 1060.2939902573144, 1072.622352513896], [0.0019383188997990075, 0.0002786241026511149, 0.0007785032465532638, -0.0007499483640375226, 0.0007907869784482546, 0.005863149058996653, 0.005690760155860675, 0.007004841747121349, 0.01120400413450362, 0.006803845543604359, 0.0054808130508339215, 0.006351802777975424, 0.010003833782984639, 0.005810789407545425, 0.00467346891487308, 0.007876268690710786, 0.00788034562295703], [2.3548476e6, 2.37244609886333e6, 2.3709014238486164e6, 2.3940793912856784e6, 2.4195306665567583e6, 2.4233969934920566e6, 2.406805876094356e6, 2.402061460134326e6, 2.3963583777008513e6, 2.3901870920651867e6, 2.3962763843782344e6, 2.407583868951469e6, 2.3976450412931438e6, 2.4314535711681196e6, 2.4268604006030657e6, 2.4341577537858426e6, 2.4228462100932705e6], [0.0016459319014481277, 0.002265546178677477, 0.0020516446699917366, 0.00284411321696721, 0.003697358446406134, 0.0037153549122766055, 0.0028974932413587105, 0.0026498380621366247, 0.0024772415314949637, 0.00219667442341454, 0.002410405471664165, 0.0028418551398734578, 0.00245498908877748, 0.0037935308436320434, 0.003434122600104289, 0.00365638813663173, 0.0031094535914232423], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.90462950861706; 517.6509118440449 258.027669376914 … 136.8828548434621 504.4831047754832; … ; 555.0895738603151 279.1162456509703 … 147.58096447572927 542.9225185153882; 558.9555960096436 281.7662104020745 … 149.06077113052106 547.5865700883787], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.90462950861706; 518.4699650860932 258.43593370004373 … 137.0994377634865 505.28132325259054; … ; 531.279658424302 267.14388205647845 … 141.2506523070185 519.634494630775; 534.0480892478724 269.21048354124594 … 142.41850438991864 523.1856761810621]), BeforeIT.Data{Float64, Vector{Float64}, Matrix{Float64}}([72421.99999999999, 72505.62719102693, 71806.94442063631, 72667.7262275567, 73294.92992504657, 72670.11439485352, 72964.84294875253, 72640.78235999437, 73555.55320448188, 74707.96094499473, 75837.82428476788, 77437.97680355699, 78718.84588410983, 80348.0760230807, 80279.80222450409, 81176.66304935583, 81671.26018233257], [72421.99999999999, 72719.16637527174, 71796.03943689774, 72599.9297691632, 72847.34686805787, 72139.99611425443, 72584.62990531628, 72841.2978367513, 74158.3003915666, 75402.4028025854, 76197.04970142957, 77189.86151800354, 78468.57107567134, 79221.28731294454, 78243.31391848905, 78686.99939294002, 78860.40303734047], [64900.920495538005, 64987.04664860343, 64340.241432440904, 65119.31166940418, 65697.32420809107, 65149.23501802997, 65415.70212864365, 65147.005485290516, 66001.78617615493, 67072.98746842053, 68094.45259582694, 69541.73995775788, 70709.43726242137, 72165.62760638716, 72089.81501144121, 72897.29039004647, 73326.13903643377], [64900.920495538005, 65178.44256455436, 64330.47038185218, 65058.557618969426, 65296.136714834654, 64673.980496446995, 65074.82695931971, 65326.83536101284, 66542.6344089138, 67696.45904256804, 68416.99953512513, 69318.9246237355, 70484.62717194189, 71153.58825869438, 70261.08522903554, 70661.55258415831, 70802.4936149587], [40512.94792630535, 40509.00155431588, 40275.019484014825, 40643.002112227514, 40884.67332109595, 40442.93403165078, 40572.6143640386, 40204.52558809246, 40508.77440674221, 40903.24824140752, 41481.43890852801, 42315.03090455834, 42881.68527562453, 43894.582151263494, 43964.48426170071, 44487.91937788437, 44856.09989153944], [40512.94792630535, 40628.306213576245, 40268.903105771904, 40605.08360638268, 40635.00684228553, 40147.90850664956, 40361.19422573515, 40315.50497672473, 40840.72146936623, 41283.46110401216, 41677.92644382026, 42179.45135548617, 42745.34936460679, 43279.01147362861, 42849.220451900146, 43123.48837192727, 43312.299923287115], [14866.888022051655, 14579.159480094284, 14799.810294897861, 14934.56624602812, 15046.892884240808, 15005.21736932407, 15197.403417462163, 15141.647455066755, 15070.29879805386, 15333.80009963171, 15320.349869897007, 15702.574064399898, 15633.017589134379, 15645.837485512066, 15615.354091823983, 15637.414312072608, 15914.676808440363], [14866.888022051655, 14622.097138079836, 14797.562717147524, 14920.63281571885, 14955.007479313108, 14895.756415559494, 15118.211154830416, 15183.44401286388, 15193.79158429939, 15476.334208318625, 15392.918658853165, 15652.262204396162, 15583.314745571404, 15426.422735192029, 15219.233459720856, 15157.819553793222, 15366.94578387462], [15944.236265986641, 16319.896195785534, 15653.786019366562, 15924.245208147473, 16072.499478322983, 16034.962363095414, 15915.785412396039, 15949.567591993025, 16291.720750314511, 16369.327352902212, 16758.919727224602, 16908.39188499191, 17592.206744554693, 18123.480071049915, 17728.32345613834, 18298.39043371687, 17953.370935766186], [15944.236265986641, 16367.960566174734, 15651.40875232971, 15909.388441825618, 15974.351100838836, 15917.989564192025, 15832.84972767764, 15993.594308747337, 16425.222415752647, 16521.487122097722, 16838.302673380935, 16854.216522282775, 17536.27495181112, 17869.31925297916, 17278.602325750984, 17737.184344153517, 17335.474739982896], [15944.236265986641, 15960.640730981235, 15831.490352928475, 15997.662868791438, 16112.375157629194, 15964.636951139246, 16008.2997936168, 15895.371516245988, 16107.993748290712, 16387.543713400115, 16625.54493479164, 16978.437927044724, 17262.1386765499, 17651.323365282075, 17654.605991423236, 17842.079000390542, 17964.86025458901], [15944.236265986641, 16007.647043922181, 15829.086098768254, 15982.737606348492, 16013.983275192362, 15848.177166241392, 15924.882025020412, 15939.248631748584, 16239.989872286536, 16539.872811313246, 16704.29611684034, 16924.038133191552, 17207.256285910284, 17403.78399817576, 17206.75488002797, 17294.867844209322, 17346.56863410146], [3173.2320350842087, 3172.6888596325657, 3154.598910511474, 3183.013733926349, 3192.4657167891514, 3153.0748899439914, 3160.790032083774, 3098.9769630484534, 3140.561326109589, 3187.1971523063685, 3219.123087561004, 3284.025548956874, 3337.6890633017247, 3437.5557692491525, 3443.582545191311, 3484.6550922018214, 3513.4232587447145], [3173.2320350842087, 3182.03287081068, 3154.119836375978, 3180.044092940161, 3172.9705952805616, 3130.073651358136, 3144.319447769551, 3107.531287809506, 3166.2964939210115, 3216.8234877458353, 3234.3712944197873, 3273.5033611302033, 3327.0773796373733, 3389.3480308318585, 3356.2278757756058, 3377.7817764937813, 3392.5027433984806], [34195.564496956766, 33677.11762887282, 33814.928990590764, 35081.05308972228, 35649.82565119606, 35712.64931383029, 35083.64923641695, 35328.131459614575, 35316.00155321811, 35762.97079468962, 37569.85609783065, 38660.71660160113, 40092.33672102652, 40032.17270669547, 41921.20733554952, 41418.076904140355, 42229.57670825395], [34195.564496956766, 33776.301437148046, 33809.793675981055, 35048.32368865705, 35432.12631015849, 35452.13055164673, 34900.831587369226, 35425.65019347745, 35605.39670651274, 36095.402620662055, 37747.815412169395, 38536.84566468807, 39964.8691269579, 39470.76784822486, 40857.776109422004, 40147.79703658562, 40776.17306105441], [33097.63671130043, 32579.547668041534, 32736.600368234314, 33915.140428568775, 34358.96140980945, 34525.64868304681, 33804.60948156179, 33983.08973477226, 33631.24230384678, 33661.385543636185, 35292.74031871181, 36148.73665199419, 37480.400446230036, 37347.99639144015, 38949.56692070855, 38665.13797845875, 39282.46416166714], [33097.63671130043, 32675.498979706954, 32731.628814333064, 33883.498783421135, 34149.14486453835, 34273.78892379314, 33628.456790296696, 34076.89565506191, 33906.83178436438, 33974.2822525051, 35459.91348679367, 36032.914228849564, 37361.23711327559, 36824.23399708, 37961.518428305055, 37479.289913519926, 37930.49047085832], [29576.14777688487, 29615.39652422255, 29376.176219872166, 29672.729376520256, 29929.2328131024, 29682.704601836747, 29755.37822983955, 29604.619590033937, 30024.09715045319, 30562.511534543948, 31022.492187930337, 31714.114488120736, 32228.009152782317, 32933.852976410366, 32958.6502659097, 33327.22106413658, 33550.96831571661], [34346.71094688275, 34392.29042498129, 33998.5559932891, 34466.60865170408, 34775.25049715275, 34484.82903198308, 34667.88085689911, 34555.32427868246, 34977.141382249356, 35498.203853690815, 36048.219448444695, 36781.15490043997, 37416.196910891034, 38141.442297899855, 38046.462052193296, 38467.68048074804, 38668.18616894641], [28335.329312139664, 28372.931443062622, 28048.108644140757, 28434.242449852794, 28688.865617230287, 28449.273888414587, 28600.28787482526, 28507.431015402868, 28855.421440382575, 29285.28725033813, 29739.038790864546, 30343.69544718735, 30867.59202991989, 31465.904540971846, 31387.54779396322, 31735.04432438497, 31900.45738861824], [978.0617717704336, 979.3596993994976, 965.5092192796692, 979.9736411799026, 992.8408978359566, 981.7013842101117, 992.4430419050067, 987.0616165741445, 1000.5476434524132, 1012.2720801858248, 1023.7409594519488, 1046.470569197209, 1065.2311987479804, 1090.3323320769098, 1084.7026933382695, 1102.3888451617759, 1106.9845517707065], [0.0019383188997990075, 0.0025244114282909624, 0.006542407812582418, 0.0028110544736823506, 0.0002786044634339735, -0.0007463258125232075, 0.006166444620442357, 0.009701545005843748, 0.008345564497688196, 0.0011282058271049333, 0.0037320502701803093, 0.002674990327351523, 0.004372650167040026, 0.005308354795151793, 0.009738683546042015, 0.012383450319992662, 0.004679490205427905], [2.3548476e6, 2.340620953075092e6, 2.343893864026149e6, 2.386101702293997e6, 2.3982798224751777e6, 2.3767018489347496e6, 2.370376735257493e6, 2.387262474652696e6, 2.3881920143359727e6, 2.397784051238556e6, 2.4200576123210443e6, 2.4263489666431993e6, 2.4652368937867736e6, 2.447925888795407e6, 2.4715340676489323e6, 2.4468438605217384e6, 2.4495444198183552e6], [0.0016459319014481277, 0.000987774066622322, 0.0012023189990935824, 0.0029490391919222846, 0.003239112659640883, 0.002097213355040523, 0.0018216926949662154, 0.002610140344426191, 0.0026467166220413563, 0.0028717190067076214, 0.0036584475485951316, 0.0037046904267614257, 0.005107212544000658, 0.004160238013149901, 0.005024324617878208, 0.003953934908232973, 0.0038771567392535634], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.90462950861706; 518.7709567700912 258.5859656635673 … 137.1790292411543 505.57465842457725; … ; 573.5839955821882 296.22026875835155 … 153.20719668842506 553.4877598594692; 579.4166889903511 301.24402483839935 … 154.801366208223 558.5562156088866], [518.0834390395164 258.24326637797435 … 136.99722836422484 504.90462950861706; 520.2988095893876 259.3475373967448 … 137.5830406142646 507.0636463047932; … ; 555.9923482532695 287.1352828804156 … 148.5083783930167 536.512457990319; 559.4750652595529 290.8761926571304 … 149.47361045559367 539.3325410137004])])

Note that this will use the number of threads specified when activating the Julia environment. To discover the number of threads available, you can use the command

Threads.nthreads()
2

To activate Julia with a specific number of threads, say 8, you can use the command julia -t 8 in the terminal.

We can then plot the results of the monte-carlo repetitions using the function plot_data_vector

ps = Bit.plot_data_vector(data_vector)
+plot(ps..., layout = (3, 3))
Example block output diff --git a/dev/examples/change_expectations-f1cebb2b.svg b/dev/examples/change_expectations-3d56481d.svg similarity index 86% rename from dev/examples/change_expectations-f1cebb2b.svg rename to dev/examples/change_expectations-3d56481d.svg index d9ad9b4..63fbd4f 100644 --- a/dev/examples/change_expectations-f1cebb2b.svg +++ b/dev/examples/change_expectations-3d56481d.svg @@ -1,284 +1,284 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + diff --git a/dev/examples/change_expectations-38ea584d.svg b/dev/examples/change_expectations-bfd9176c.svg similarity index 86% rename from dev/examples/change_expectations-38ea584d.svg rename to dev/examples/change_expectations-bfd9176c.svg index 4d7fd09..1e0ee24 100644 --- a/dev/examples/change_expectations-38ea584d.svg +++ b/dev/examples/change_expectations-bfd9176c.svg @@ -1,86 +1,86 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/dev/examples/change_expectations.html b/dev/examples/change_expectations.html index 6a7193a..f03a727 100644 --- a/dev/examples/change_expectations.html +++ b/dev/examples/change_expectations.html @@ -35,7 +35,7 @@ p2 = plot(data.real_household_consumption, title = "consumption", titlefont = 10) plot!(p2, data_back.real_household_consumption, titlefont = 10, label = "backward looking") -plot(p1, p2, layout = (2, 1), legend = true)Example block output

Plot all time series

p1 = plot(data.real_gdp, title = "gdp", titlefont = 10)
+plot(p1, p2, layout = (2, 1), legend = true)
Example block output

Plot all time series

p1 = plot(data.real_gdp, title = "gdp", titlefont = 10)
 plot!(p1, data_back.real_gdp, titlefont = 10)
 p2 = plot(data.real_household_consumption, title = "household cons.", titlefont = 10)
 plot!(p2, data_back.real_household_consumption, titlefont = 10)
@@ -54,4 +54,4 @@
 p9 = plot(data.nominal_gdp ./ data.real_gdp, title = "gdp deflator", titlefont = 10)
 plot!(p9, data_back.nominal_gdp ./ data_back.real_gdp, titlefont = 10)
 
-plot(p1, p2, p3, p4, p5, p6, p7, p8, p9, layout = (3, 3), legend = false)
Example block output

Note that, importantly, once the function estimate_next_value has been changed, the model will use the new expectations in all the simulations, unless the function is changed again. To restore the original expectations you could close the Julia session.

+plot(p1, p2, p3, p4, p5, p6, p7, p8, p9, layout = (3, 3), legend = false)Example block output

Note that, importantly, once the function estimate_next_value has been changed, the model will use the new expectations in all the simulations, unless the function is changed again. To restore the original expectations you could close the Julia session.

diff --git a/dev/examples/get_parameters_and_initial_conditions.html b/dev/examples/get_parameters_and_initial_conditions.html index aa6f6f5..3513986 100644 --- a/dev/examples/get_parameters_and_initial_conditions.html +++ b/dev/examples/get_parameters_and_initial_conditions.html @@ -31,4 +31,4 @@ ".jld2", init_conds, ) -end +end diff --git a/dev/examples/multithreading_speedup.html b/dev/examples/multithreading_speedup.html index dd5cf18..23c4b7a 100644 --- a/dev/examples/multithreading_speedup.html +++ b/dev/examples/multithreading_speedup.html @@ -7,5 +7,5 @@ @time data = Bit.run_one_sim!(model; multi_threading = false); model = Bit.init_model(parameters, initial_conditions, T); -@time data = Bit.run_one_sim!(model; multi_threading = true);
  5.604058 seconds (3.40 M allocations: 6.003 GiB, 16.71% gc time)
-  2.784843 seconds (3.48 M allocations: 6.246 GiB, 8.25% gc time)

Is the speedup in line to what we would expect? Yes!

+@time data = Bit.run_one_sim!(model; multi_threading = true);
  5.777847 seconds (3.40 M allocations: 6.003 GiB, 19.03% gc time)
+  2.956127 seconds (3.48 M allocations: 6.246 GiB, 13.33% gc time)

Is the speedup in line to what we would expect? Yes!

diff --git a/dev/examples/scenario_analysis_via_overload-a7863064.svg b/dev/examples/scenario_analysis_via_overload-c7d4ee53.svg similarity index 86% rename from dev/examples/scenario_analysis_via_overload-a7863064.svg rename to dev/examples/scenario_analysis_via_overload-c7d4ee53.svg index 5661687..bb639b5 100644 --- a/dev/examples/scenario_analysis_via_overload-a7863064.svg +++ b/dev/examples/scenario_analysis_via_overload-c7d4ee53.svg @@ -1,48 +1,48 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/dev/examples/scenario_analysis_via_overload.html b/dev/examples/scenario_analysis_via_overload.html index 5005277..b34decd 100644 --- a/dev/examples/scenario_analysis_via_overload.html +++ b/dev/examples/scenario_analysis_via_overload.html @@ -56,4 +56,4 @@ titlefont = 10, xlabel = "quarters", ylabel = "GDP", -)Example block output

Note that, importantly, once the function central_bank_rate has been changed, the model will use the new interest rate in all the simulations, unless the function is changed again. To restore the original interest rate, you could close and restart the Julia session.

+)Example block output

Note that, importantly, once the function central_bank_rate has been changed, the model will use the new interest rate in all the simulations, unless the function is changed again. To restore the original interest rate, you could close and restart the Julia session.

diff --git a/dev/examples/scenario_analysis_via_shock-0fcb7178.svg b/dev/examples/scenario_analysis_via_shock-141a438b.svg similarity index 86% rename from dev/examples/scenario_analysis_via_shock-0fcb7178.svg rename to dev/examples/scenario_analysis_via_shock-141a438b.svg index 643267c..74b0af7 100644 --- a/dev/examples/scenario_analysis_via_shock-0fcb7178.svg +++ b/dev/examples/scenario_analysis_via_shock-141a438b.svg @@ -1,46 +1,46 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/dev/examples/scenario_analysis_via_shock.html b/dev/examples/scenario_analysis_via_shock.html index 3a5e144..a91b7b9 100644 --- a/dev/examples/scenario_analysis_via_shock.html +++ b/dev/examples/scenario_analysis_via_shock.html @@ -50,4 +50,4 @@ titlefont = 10, xlabel = "quarters", ylabel = "GDP", -)Example block output

Note that, importantly, once the function central_bank_rate has been changed, the model will use the new interest rate in all the simulations, unless the function is changed again. To restore the original interest rate, we can simply re-import the function central_bank_rate.

+)Example block output

Note that, importantly, once the function central_bank_rate has been changed, the model will use the new interest rate in all the simulations, unless the function is changed again. To restore the original interest rate, we can simply re-import the function central_bank_rate.

diff --git a/dev/index.html b/dev/index.html index 30a6d96..9558eaf 100644 --- a/dev/index.html +++ b/dev/index.html @@ -68,7 +68,7 @@ [d7ba0133] Git v1.3.1 [42e2da0e] Grisu v1.0.2 [f67ccb44] HDF5 v0.17.2 - [cd3eb016] HTTP v1.10.12 + [cd3eb016] HTTP v1.10.13 [34004b35] HypergeometricFunctions v0.3.25 [b5f81e59] IOCapture v0.2.5 [a98d9a8b] Interpolations v0.15.1 @@ -82,7 +82,7 @@ [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.5 [0e77f7df] LazilyInitializedFields v1.3.0 - [5078a376] LazyArrays v2.3.0 + [5078a376] LazyArrays v2.3.1 [98b081ad] Literate v2.20.1 [2ab3a3ac] LogExpFunctions v0.3.28 [e6f89c97] LoggingExtras v1.1.0 @@ -98,7 +98,7 @@ [77ba4419] NaNMath v1.0.2 [b8a86587] NearestNeighbors v0.4.21 [510215fc] Observables v0.5.5 - [6fe1bfb0] OffsetArrays v1.14.1 + [6fe1bfb0] OffsetArrays v1.14.2 [4d8831e6] OpenSSL v1.4.3 [bac558e1] OrderedCollections v1.7.0 [90014a1f] PDMats v0.11.31 @@ -152,7 +152,7 @@ [2e619515] Expat_jll v2.6.4+1 ⌅ [b22a6f82] FFMPEG_jll v4.4.4+1 [f5851436] FFTW_jll v3.3.10+1 - [a3f928ae] Fontconfig_jll v2.13.96+0 + [a3f928ae] Fontconfig_jll v2.15.0+0 [d7e528f0] FreeType2_jll v2.13.3+1 [559328eb] FriBidi_jll v1.0.14+0 [0656b61e] GLFW_jll v3.4.0+1 @@ -162,7 +162,7 @@ [7746bdde] Glib_jll v2.82.2+1 [3b182d85] Graphite2_jll v1.3.14+1 ⌃ [0234f1f7] HDF5_jll v1.14.2+1 - [2e76f6c2] HarfBuzz_jll v8.3.1+0 + [2e76f6c2] HarfBuzz_jll v8.5.0+0 [e33a78d0] Hwloc_jll v2.11.2+1 [1d5cc7b8] IntelOpenMP_jll v2024.2.1+0 [aacddb02] JpegTurbo_jll v3.0.4+0 @@ -289,4 +289,4 @@ [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 -Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`

You can also download the manifest file and the project file.

+Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`

You can also download the manifest file and the project file.