diff --git a/examples/benchmark_w_matlab.jl b/examples/benchmark_w_matlab.jl index a44f7b5..9004e28 100644 --- a/examples/benchmark_w_matlab.jl +++ b/examples/benchmark_w_matlab.jl @@ -1,7 +1,9 @@ # # Comparing the performance of the Julia and MATLAB implementations -# We can compare the performance of the Julia and MATLAB implementations by running the same model for the same number of epochs and measuring the time taken. +# We can compare the performance of the Julia and MATLAB implementations +# by running the same model for the same number of epochs and measuring +# the time taken. using BeforeIT, Plots, Statistics @@ -9,8 +11,7 @@ parameters = BeforeIT.AUSTRIA2010Q1.parameters initial_conditions = BeforeIT.AUSTRIA2010Q1.initial_conditions T = 12*2 -# We will run the model without any output to avoid the overhead of printing the results. -function run_no_output(;multi_threading = false) +function run(; multi_threading = false) model = BeforeIT.init_model(parameters, initial_conditions, T) data = BeforeIT.init_data(model); @@ -18,11 +19,12 @@ function run_no_output(;multi_threading = false) BeforeIT.one_epoch!(model; multi_threading = multi_threading) BeforeIT.update_data!(data, model) end + return model, data end -# we run the code to compile it fist -@time run_no_output() -@time run_no_output(;multi_threading = true) +# we run the code to compile it first +@time run(); +@time run(;multi_threading = true); # time taken by the MATLAB code, computed independently on an Apple M1 chip matlab_times = [3.1919, 3.2454, 3.1501, 3.1074, 3.1551] @@ -34,15 +36,14 @@ n_runs = 5 julia_times_1_thread = zeros(n_runs) for i in 1:n_runs - julia_times_1_thread[i] = @elapsed run_no_output() + julia_times_1_thread[i] = @elapsed run(); end julia_time_1_thread = mean(julia_times_1_thread) julia_time_1_thread_std = std(julia_times_1_thread) - julia_times_multi_thread = zeros(n_runs) for i in 1:5 - julia_times_multi_thread[i] = @elapsed run_no_output(multi_threading = true) + julia_times_multi_thread[i] = @elapsed run(multi_threading = true); end julia_time_multi_thread = mean(julia_times_multi_thread) julia_time_multi_thread_std = std(julia_times_multi_thread) @@ -51,15 +52,17 @@ julia_time_multi_thread_std = std(julia_times_multi_thread) n_threads = Threads.nthreads() theme(:default, bg = :white) + # bar chart of the time taken vs the time taken by the MATLAB code, also plot the stds as error bars # make a white background with no grid bar(["MATLAB", "Julia, 1 thread", "Julia, $n_threads threads"], [matlab_time, julia_time_1_thread, julia_time_multi_thread], yerr = [matlab_time_std, julia_time_1_thread_std, julia_time_multi_thread_std], legend = false, dpi=300, size=(400, 300), grid = false, ylabel = "Time for one simulation (s)") -# the Julia implementation is faster than the MATLAB implementation, and the multi-threaded version is faster than the single-threaded version. +# the Julia implementation is faster than the MATLAB implementation, and the multi-threaded version is +# faster than the single-threaded version. # increase # save the image -savefig("benchmark_w_matlab.png") \ No newline at end of file +savefig("benchmark_w_matlab.png")