forked from Sardhendu/License-Plate-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
blog.py
executable file
·53 lines (38 loc) · 1.66 KB
/
blog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#-------------------------------------------------------------------------------
# Name: module1
# Purpose:
#
# Author: Sardhendu_Mishra
#
# Created: 15/03/2015
# Copyright: (c) Sardhendu_Mishra 2015
# Licence: <your licence>
#-------------------------------------------------------------------------------
"""
import cv2
import sys
sys.path.insert(0, 'C:\\Users\\sardhendu_mishra\\Desktop\\StudyHard\\Machine_learning\\Data mining and analysis\\image_processing')
import imutils
image=cv2.imread("C:\\Users\\sardhendu_mishra\\Desktop\\ahha\\DSC_0023.jpg")
image_resize=imutils.resize(image,width=700)
image_gray = cv2.cvtColor(image_resize, cv2.COLOR_BGR2GRAY)
image_blurr=cv2.GaussianBlur(image_gray, (3,3), 0)
image_thresh=cv2.adaptiveThreshold(image_blurr,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
cv2.imwrite("C:\\Users\\sardhendu_mishra\\Desktop\\ahha\\23.jpg", image_thresh)
cv2.imshow("image_orig",image_thresh)
cv2.waitKey()
"""
import numpy as np
f=np.fromfile("C:\\Users\\sardhendu_mishra\\Desktop\\StudyHard\\Machine_learning\\Data_sets\\For_blog\\ex4x.dat", dtype='float64')
fa=np.fromfile("C:\\Users\\sardhendu_mishra\\Desktop\\StudyHard\\Machine_learning\\Data_sets\\For_blog\\ex4y.dat", dtype='float64')
a=f.read()
"""
x=np.array(feature_array,dtype="float64")
y=np.array(class_array,dtype="float64")
# Add the intercept value 1 to the first column. the 0 indicates first column and 1 indicates the intercept term
x=np.insert(x,0,1,axis=1)
(m,n)=x.shape
# Calculate mean and standard deviation
mn=np.mean(x, axis=0) # axis=0 will perform column wise mean
sd=np.std(x, axis=0)
"""