forked from futscdav/Chunkmogrify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
styleclip_mapper.py
173 lines (130 loc) · 4.57 KB
/
styleclip_mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import Module
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
input = input.cuda()
if input.ndim == 3:
return (
F.leaky_relu(
input + bias.view(1, *rest_dim, bias.shape[0]), negative_slope=negative_slope
)
* scale
)
else:
return (
F.leaky_relu(
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope
)
* scale
)
class PixelNorm(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
class EqualLinear(nn.Module):
def __init__(
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(
input, self.weight * self.scale, bias=self.bias * self.lr_mul
)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class Mapper(Module):
def __init__(self, opts):
super(Mapper, self).__init__()
self.opts = opts
layers = [PixelNorm()]
for i in range(4):
layers.append(
EqualLinear(
512, 512, lr_mul=0.01, activation='fused_lrelu'
)
)
self.mapping = nn.Sequential(*layers)
def forward(self, x):
x = self.mapping(x)
return x
class SingleMapper(Module):
def __init__(self, opts):
super(SingleMapper, self).__init__()
self.opts = opts
self.mapping = Mapper(opts)
def forward(self, x):
out = self.mapping(x)
return out
class LevelsMapper(Module):
def __init__(self, opts):
super(LevelsMapper, self).__init__()
self.opts = opts
if not opts.no_coarse_mapper:
self.course_mapping = Mapper(opts)
if not opts.no_medium_mapper:
self.medium_mapping = Mapper(opts)
if not opts.no_fine_mapper:
self.fine_mapping = Mapper(opts)
def forward(self, x):
x_coarse = x[:, :4, :]
x_medium = x[:, 4:8, :]
x_fine = x[:, 8:, :]
if not self.opts.no_coarse_mapper:
x_coarse = self.course_mapping(x_coarse)
else:
x_coarse = torch.zeros_like(x_coarse)
if not self.opts.no_medium_mapper:
x_medium = self.medium_mapping(x_medium)
else:
x_medium = torch.zeros_like(x_medium)
if not self.opts.no_fine_mapper:
x_fine = self.fine_mapping(x_fine)
else:
x_fine = torch.zeros_like(x_fine)
out = torch.cat([x_coarse, x_medium, x_fine], dim=1)
return out
def get_keys(d, name):
if 'state_dict' in d:
d = d['state_dict']
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
return d_filt
class StyleCLIPMapper(nn.Module):
def __init__(self, opts):
super().__init__()
self.opts = opts
# Define architecture
self.mapper = self.set_mapper()
# Load weights if needed
self.load_weights()
def set_mapper(self):
if self.opts.mapper_type == 'SingleMapper':
mapper = SingleMapper(self.opts)
elif self.opts.mapper_type == 'LevelsMapper':
mapper = LevelsMapper(self.opts)
else:
raise Exception('{} is not a valid mapper'.format(self.opts.mapper_type))
return mapper
def load_weights(self):
if self.opts.checkpoint_path is not None:
print('Loading from checkpoint: {}'.format(self.opts.checkpoint_path))
ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu')
self.mapper.load_state_dict(get_keys(ckpt, 'mapper'), strict=True)